SelectionDAGBuilder.cpp revision af16f1f936ad883d3b32e8ff59b805a857c59d31
1//===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements routines for translating from LLVM IR into SelectionDAG IR.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "isel"
15#include "SDNodeDbgValue.h"
16#include "SelectionDAGBuilder.h"
17#include "llvm/ADT/BitVector.h"
18#include "llvm/ADT/PostOrderIterator.h"
19#include "llvm/ADT/SmallSet.h"
20#include "llvm/Analysis/AliasAnalysis.h"
21#include "llvm/Analysis/ConstantFolding.h"
22#include "llvm/Constants.h"
23#include "llvm/CallingConv.h"
24#include "llvm/DerivedTypes.h"
25#include "llvm/Function.h"
26#include "llvm/GlobalVariable.h"
27#include "llvm/InlineAsm.h"
28#include "llvm/Instructions.h"
29#include "llvm/Intrinsics.h"
30#include "llvm/IntrinsicInst.h"
31#include "llvm/LLVMContext.h"
32#include "llvm/Module.h"
33#include "llvm/CodeGen/Analysis.h"
34#include "llvm/CodeGen/FastISel.h"
35#include "llvm/CodeGen/FunctionLoweringInfo.h"
36#include "llvm/CodeGen/GCStrategy.h"
37#include "llvm/CodeGen/GCMetadata.h"
38#include "llvm/CodeGen/MachineFunction.h"
39#include "llvm/CodeGen/MachineFrameInfo.h"
40#include "llvm/CodeGen/MachineInstrBuilder.h"
41#include "llvm/CodeGen/MachineJumpTableInfo.h"
42#include "llvm/CodeGen/MachineModuleInfo.h"
43#include "llvm/CodeGen/MachineRegisterInfo.h"
44#include "llvm/CodeGen/PseudoSourceValue.h"
45#include "llvm/CodeGen/SelectionDAG.h"
46#include "llvm/Analysis/DebugInfo.h"
47#include "llvm/Target/TargetRegisterInfo.h"
48#include "llvm/Target/TargetData.h"
49#include "llvm/Target/TargetFrameInfo.h"
50#include "llvm/Target/TargetInstrInfo.h"
51#include "llvm/Target/TargetIntrinsicInfo.h"
52#include "llvm/Target/TargetLowering.h"
53#include "llvm/Target/TargetOptions.h"
54#include "llvm/Support/Compiler.h"
55#include "llvm/Support/CommandLine.h"
56#include "llvm/Support/Debug.h"
57#include "llvm/Support/ErrorHandling.h"
58#include "llvm/Support/MathExtras.h"
59#include "llvm/Support/raw_ostream.h"
60#include <algorithm>
61using namespace llvm;
62
63/// LimitFloatPrecision - Generate low-precision inline sequences for
64/// some float libcalls (6, 8 or 12 bits).
65static unsigned LimitFloatPrecision;
66
67static cl::opt<unsigned, true>
68LimitFPPrecision("limit-float-precision",
69                 cl::desc("Generate low-precision inline sequences "
70                          "for some float libcalls"),
71                 cl::location(LimitFloatPrecision),
72                 cl::init(0));
73
74// Limit the width of DAG chains. This is important in general to prevent
75// prevent DAG-based analysis from blowing up. For example, alias analysis and
76// load clustering may not complete in reasonable time. It is difficult to
77// recognize and avoid this situation within each individual analysis, and
78// future analyses are likely to have the same behavior. Limiting DAG width is
79// the safe approach, and will be especially important with global DAGs. See
80// 2010-11-11-ReturnBigBuffer.ll.
81//
82// MaxParallelChains default is arbitrarily high to avoid affecting
83// optimization, but could be lowered to improve compile time. Any ld-ld-st-st
84// sequence over this should have been converted to llvm.memcpy by the frontend.
85static cl::opt<unsigned>
86MaxParallelChains("dag-chain-limit", cl::desc("Max parallel isel dag chains"),
87                  cl::init(64), cl::Hidden);
88
89static SDValue getCopyFromPartsVector(SelectionDAG &DAG, DebugLoc DL,
90                                      const SDValue *Parts, unsigned NumParts,
91                                      EVT PartVT, EVT ValueVT);
92
93/// getCopyFromParts - Create a value that contains the specified legal parts
94/// combined into the value they represent.  If the parts combine to a type
95/// larger then ValueVT then AssertOp can be used to specify whether the extra
96/// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
97/// (ISD::AssertSext).
98static SDValue getCopyFromParts(SelectionDAG &DAG, DebugLoc DL,
99                                const SDValue *Parts,
100                                unsigned NumParts, EVT PartVT, EVT ValueVT,
101                                ISD::NodeType AssertOp = ISD::DELETED_NODE) {
102  if (ValueVT.isVector())
103    return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT);
104
105  assert(NumParts > 0 && "No parts to assemble!");
106  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
107  SDValue Val = Parts[0];
108
109  if (NumParts > 1) {
110    // Assemble the value from multiple parts.
111    if (ValueVT.isInteger()) {
112      unsigned PartBits = PartVT.getSizeInBits();
113      unsigned ValueBits = ValueVT.getSizeInBits();
114
115      // Assemble the power of 2 part.
116      unsigned RoundParts = NumParts & (NumParts - 1) ?
117        1 << Log2_32(NumParts) : NumParts;
118      unsigned RoundBits = PartBits * RoundParts;
119      EVT RoundVT = RoundBits == ValueBits ?
120        ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
121      SDValue Lo, Hi;
122
123      EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
124
125      if (RoundParts > 2) {
126        Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2,
127                              PartVT, HalfVT);
128        Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2,
129                              RoundParts / 2, PartVT, HalfVT);
130      } else {
131        Lo = DAG.getNode(ISD::BIT_CONVERT, DL, HalfVT, Parts[0]);
132        Hi = DAG.getNode(ISD::BIT_CONVERT, DL, HalfVT, Parts[1]);
133      }
134
135      if (TLI.isBigEndian())
136        std::swap(Lo, Hi);
137
138      Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
139
140      if (RoundParts < NumParts) {
141        // Assemble the trailing non-power-of-2 part.
142        unsigned OddParts = NumParts - RoundParts;
143        EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
144        Hi = getCopyFromParts(DAG, DL,
145                              Parts + RoundParts, OddParts, PartVT, OddVT);
146
147        // Combine the round and odd parts.
148        Lo = Val;
149        if (TLI.isBigEndian())
150          std::swap(Lo, Hi);
151        EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
152        Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
153        Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
154                         DAG.getConstant(Lo.getValueType().getSizeInBits(),
155                                         TLI.getPointerTy()));
156        Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
157        Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
158      }
159    } else if (PartVT.isFloatingPoint()) {
160      // FP split into multiple FP parts (for ppcf128)
161      assert(ValueVT == EVT(MVT::ppcf128) && PartVT == EVT(MVT::f64) &&
162             "Unexpected split");
163      SDValue Lo, Hi;
164      Lo = DAG.getNode(ISD::BIT_CONVERT, DL, EVT(MVT::f64), Parts[0]);
165      Hi = DAG.getNode(ISD::BIT_CONVERT, DL, EVT(MVT::f64), Parts[1]);
166      if (TLI.isBigEndian())
167        std::swap(Lo, Hi);
168      Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
169    } else {
170      // FP split into integer parts (soft fp)
171      assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
172             !PartVT.isVector() && "Unexpected split");
173      EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
174      Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT);
175    }
176  }
177
178  // There is now one part, held in Val.  Correct it to match ValueVT.
179  PartVT = Val.getValueType();
180
181  if (PartVT == ValueVT)
182    return Val;
183
184  if (PartVT.isInteger() && ValueVT.isInteger()) {
185    if (ValueVT.bitsLT(PartVT)) {
186      // For a truncate, see if we have any information to
187      // indicate whether the truncated bits will always be
188      // zero or sign-extension.
189      if (AssertOp != ISD::DELETED_NODE)
190        Val = DAG.getNode(AssertOp, DL, PartVT, Val,
191                          DAG.getValueType(ValueVT));
192      return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
193    }
194    return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
195  }
196
197  if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
198    // FP_ROUND's are always exact here.
199    if (ValueVT.bitsLT(Val.getValueType()))
200      return DAG.getNode(ISD::FP_ROUND, DL, ValueVT, Val,
201                         DAG.getIntPtrConstant(1));
202
203    return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
204  }
205
206  if (PartVT.getSizeInBits() == ValueVT.getSizeInBits())
207    return DAG.getNode(ISD::BIT_CONVERT, DL, ValueVT, Val);
208
209  llvm_unreachable("Unknown mismatch!");
210  return SDValue();
211}
212
213/// getCopyFromParts - Create a value that contains the specified legal parts
214/// combined into the value they represent.  If the parts combine to a type
215/// larger then ValueVT then AssertOp can be used to specify whether the extra
216/// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
217/// (ISD::AssertSext).
218static SDValue getCopyFromPartsVector(SelectionDAG &DAG, DebugLoc DL,
219                                      const SDValue *Parts, unsigned NumParts,
220                                      EVT PartVT, EVT ValueVT) {
221  assert(ValueVT.isVector() && "Not a vector value");
222  assert(NumParts > 0 && "No parts to assemble!");
223  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
224  SDValue Val = Parts[0];
225
226  // Handle a multi-element vector.
227  if (NumParts > 1) {
228    EVT IntermediateVT, RegisterVT;
229    unsigned NumIntermediates;
230    unsigned NumRegs =
231    TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
232                               NumIntermediates, RegisterVT);
233    assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
234    NumParts = NumRegs; // Silence a compiler warning.
235    assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
236    assert(RegisterVT == Parts[0].getValueType() &&
237           "Part type doesn't match part!");
238
239    // Assemble the parts into intermediate operands.
240    SmallVector<SDValue, 8> Ops(NumIntermediates);
241    if (NumIntermediates == NumParts) {
242      // If the register was not expanded, truncate or copy the value,
243      // as appropriate.
244      for (unsigned i = 0; i != NumParts; ++i)
245        Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1,
246                                  PartVT, IntermediateVT);
247    } else if (NumParts > 0) {
248      // If the intermediate type was expanded, build the intermediate
249      // operands from the parts.
250      assert(NumParts % NumIntermediates == 0 &&
251             "Must expand into a divisible number of parts!");
252      unsigned Factor = NumParts / NumIntermediates;
253      for (unsigned i = 0; i != NumIntermediates; ++i)
254        Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor,
255                                  PartVT, IntermediateVT);
256    }
257
258    // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
259    // intermediate operands.
260    Val = DAG.getNode(IntermediateVT.isVector() ?
261                      ISD::CONCAT_VECTORS : ISD::BUILD_VECTOR, DL,
262                      ValueVT, &Ops[0], NumIntermediates);
263  }
264
265  // There is now one part, held in Val.  Correct it to match ValueVT.
266  PartVT = Val.getValueType();
267
268  if (PartVT == ValueVT)
269    return Val;
270
271  if (PartVT.isVector()) {
272    // If the element type of the source/dest vectors are the same, but the
273    // parts vector has more elements than the value vector, then we have a
274    // vector widening case (e.g. <2 x float> -> <4 x float>).  Extract the
275    // elements we want.
276    if (PartVT.getVectorElementType() == ValueVT.getVectorElementType()) {
277      assert(PartVT.getVectorNumElements() > ValueVT.getVectorNumElements() &&
278             "Cannot narrow, it would be a lossy transformation");
279      return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
280                         DAG.getIntPtrConstant(0));
281    }
282
283    // Vector/Vector bitcast.
284    return DAG.getNode(ISD::BIT_CONVERT, DL, ValueVT, Val);
285  }
286
287  assert(ValueVT.getVectorElementType() == PartVT &&
288         ValueVT.getVectorNumElements() == 1 &&
289         "Only trivial scalar-to-vector conversions should get here!");
290  return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val);
291}
292
293
294
295
296static void getCopyToPartsVector(SelectionDAG &DAG, DebugLoc dl,
297                                 SDValue Val, SDValue *Parts, unsigned NumParts,
298                                 EVT PartVT);
299
300/// getCopyToParts - Create a series of nodes that contain the specified value
301/// split into legal parts.  If the parts contain more bits than Val, then, for
302/// integers, ExtendKind can be used to specify how to generate the extra bits.
303static void getCopyToParts(SelectionDAG &DAG, DebugLoc DL,
304                           SDValue Val, SDValue *Parts, unsigned NumParts,
305                           EVT PartVT,
306                           ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
307  EVT ValueVT = Val.getValueType();
308
309  // Handle the vector case separately.
310  if (ValueVT.isVector())
311    return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT);
312
313  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
314  unsigned PartBits = PartVT.getSizeInBits();
315  unsigned OrigNumParts = NumParts;
316  assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!");
317
318  if (NumParts == 0)
319    return;
320
321  assert(!ValueVT.isVector() && "Vector case handled elsewhere");
322  if (PartVT == ValueVT) {
323    assert(NumParts == 1 && "No-op copy with multiple parts!");
324    Parts[0] = Val;
325    return;
326  }
327
328  if (NumParts * PartBits > ValueVT.getSizeInBits()) {
329    // If the parts cover more bits than the value has, promote the value.
330    if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
331      assert(NumParts == 1 && "Do not know what to promote to!");
332      Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
333    } else {
334      assert(PartVT.isInteger() && ValueVT.isInteger() &&
335             "Unknown mismatch!");
336      ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
337      Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
338    }
339  } else if (PartBits == ValueVT.getSizeInBits()) {
340    // Different types of the same size.
341    assert(NumParts == 1 && PartVT != ValueVT);
342    Val = DAG.getNode(ISD::BIT_CONVERT, DL, PartVT, Val);
343  } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
344    // If the parts cover less bits than value has, truncate the value.
345    assert(PartVT.isInteger() && ValueVT.isInteger() &&
346           "Unknown mismatch!");
347    ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
348    Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
349  }
350
351  // The value may have changed - recompute ValueVT.
352  ValueVT = Val.getValueType();
353  assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
354         "Failed to tile the value with PartVT!");
355
356  if (NumParts == 1) {
357    assert(PartVT == ValueVT && "Type conversion failed!");
358    Parts[0] = Val;
359    return;
360  }
361
362  // Expand the value into multiple parts.
363  if (NumParts & (NumParts - 1)) {
364    // The number of parts is not a power of 2.  Split off and copy the tail.
365    assert(PartVT.isInteger() && ValueVT.isInteger() &&
366           "Do not know what to expand to!");
367    unsigned RoundParts = 1 << Log2_32(NumParts);
368    unsigned RoundBits = RoundParts * PartBits;
369    unsigned OddParts = NumParts - RoundParts;
370    SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
371                                 DAG.getIntPtrConstant(RoundBits));
372    getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT);
373
374    if (TLI.isBigEndian())
375      // The odd parts were reversed by getCopyToParts - unreverse them.
376      std::reverse(Parts + RoundParts, Parts + NumParts);
377
378    NumParts = RoundParts;
379    ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
380    Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
381  }
382
383  // The number of parts is a power of 2.  Repeatedly bisect the value using
384  // EXTRACT_ELEMENT.
385  Parts[0] = DAG.getNode(ISD::BIT_CONVERT, DL,
386                         EVT::getIntegerVT(*DAG.getContext(),
387                                           ValueVT.getSizeInBits()),
388                         Val);
389
390  for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
391    for (unsigned i = 0; i < NumParts; i += StepSize) {
392      unsigned ThisBits = StepSize * PartBits / 2;
393      EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
394      SDValue &Part0 = Parts[i];
395      SDValue &Part1 = Parts[i+StepSize/2];
396
397      Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
398                          ThisVT, Part0, DAG.getIntPtrConstant(1));
399      Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
400                          ThisVT, Part0, DAG.getIntPtrConstant(0));
401
402      if (ThisBits == PartBits && ThisVT != PartVT) {
403        Part0 = DAG.getNode(ISD::BIT_CONVERT, DL, PartVT, Part0);
404        Part1 = DAG.getNode(ISD::BIT_CONVERT, DL, PartVT, Part1);
405      }
406    }
407  }
408
409  if (TLI.isBigEndian())
410    std::reverse(Parts, Parts + OrigNumParts);
411}
412
413
414/// getCopyToPartsVector - Create a series of nodes that contain the specified
415/// value split into legal parts.
416static void getCopyToPartsVector(SelectionDAG &DAG, DebugLoc DL,
417                                 SDValue Val, SDValue *Parts, unsigned NumParts,
418                                 EVT PartVT) {
419  EVT ValueVT = Val.getValueType();
420  assert(ValueVT.isVector() && "Not a vector");
421  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
422
423  if (NumParts == 1) {
424    if (PartVT == ValueVT) {
425      // Nothing to do.
426    } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
427      // Bitconvert vector->vector case.
428      Val = DAG.getNode(ISD::BIT_CONVERT, DL, PartVT, Val);
429    } else if (PartVT.isVector() &&
430               PartVT.getVectorElementType() == ValueVT.getVectorElementType()&&
431               PartVT.getVectorNumElements() > ValueVT.getVectorNumElements()) {
432      EVT ElementVT = PartVT.getVectorElementType();
433      // Vector widening case, e.g. <2 x float> -> <4 x float>.  Shuffle in
434      // undef elements.
435      SmallVector<SDValue, 16> Ops;
436      for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i)
437        Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
438                                  ElementVT, Val, DAG.getIntPtrConstant(i)));
439
440      for (unsigned i = ValueVT.getVectorNumElements(),
441           e = PartVT.getVectorNumElements(); i != e; ++i)
442        Ops.push_back(DAG.getUNDEF(ElementVT));
443
444      Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, &Ops[0], Ops.size());
445
446      // FIXME: Use CONCAT for 2x -> 4x.
447
448      //SDValue UndefElts = DAG.getUNDEF(VectorTy);
449      //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts);
450    } else {
451      // Vector -> scalar conversion.
452      assert(ValueVT.getVectorElementType() == PartVT &&
453             ValueVT.getVectorNumElements() == 1 &&
454             "Only trivial vector-to-scalar conversions should get here!");
455      Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
456                        PartVT, Val, DAG.getIntPtrConstant(0));
457    }
458
459    Parts[0] = Val;
460    return;
461  }
462
463  // Handle a multi-element vector.
464  EVT IntermediateVT, RegisterVT;
465  unsigned NumIntermediates;
466  unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT,
467                                                IntermediateVT,
468                                                NumIntermediates, RegisterVT);
469  unsigned NumElements = ValueVT.getVectorNumElements();
470
471  assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
472  NumParts = NumRegs; // Silence a compiler warning.
473  assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
474
475  // Split the vector into intermediate operands.
476  SmallVector<SDValue, 8> Ops(NumIntermediates);
477  for (unsigned i = 0; i != NumIntermediates; ++i) {
478    if (IntermediateVT.isVector())
479      Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL,
480                           IntermediateVT, Val,
481                   DAG.getIntPtrConstant(i * (NumElements / NumIntermediates)));
482    else
483      Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
484                           IntermediateVT, Val, DAG.getIntPtrConstant(i));
485  }
486
487  // Split the intermediate operands into legal parts.
488  if (NumParts == NumIntermediates) {
489    // If the register was not expanded, promote or copy the value,
490    // as appropriate.
491    for (unsigned i = 0; i != NumParts; ++i)
492      getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT);
493  } else if (NumParts > 0) {
494    // If the intermediate type was expanded, split each the value into
495    // legal parts.
496    assert(NumParts % NumIntermediates == 0 &&
497           "Must expand into a divisible number of parts!");
498    unsigned Factor = NumParts / NumIntermediates;
499    for (unsigned i = 0; i != NumIntermediates; ++i)
500      getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT);
501  }
502}
503
504
505
506
507namespace {
508  /// RegsForValue - This struct represents the registers (physical or virtual)
509  /// that a particular set of values is assigned, and the type information
510  /// about the value. The most common situation is to represent one value at a
511  /// time, but struct or array values are handled element-wise as multiple
512  /// values.  The splitting of aggregates is performed recursively, so that we
513  /// never have aggregate-typed registers. The values at this point do not
514  /// necessarily have legal types, so each value may require one or more
515  /// registers of some legal type.
516  ///
517  struct RegsForValue {
518    /// ValueVTs - The value types of the values, which may not be legal, and
519    /// may need be promoted or synthesized from one or more registers.
520    ///
521    SmallVector<EVT, 4> ValueVTs;
522
523    /// RegVTs - The value types of the registers. This is the same size as
524    /// ValueVTs and it records, for each value, what the type of the assigned
525    /// register or registers are. (Individual values are never synthesized
526    /// from more than one type of register.)
527    ///
528    /// With virtual registers, the contents of RegVTs is redundant with TLI's
529    /// getRegisterType member function, however when with physical registers
530    /// it is necessary to have a separate record of the types.
531    ///
532    SmallVector<EVT, 4> RegVTs;
533
534    /// Regs - This list holds the registers assigned to the values.
535    /// Each legal or promoted value requires one register, and each
536    /// expanded value requires multiple registers.
537    ///
538    SmallVector<unsigned, 4> Regs;
539
540    RegsForValue() {}
541
542    RegsForValue(const SmallVector<unsigned, 4> &regs,
543                 EVT regvt, EVT valuevt)
544      : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {}
545
546    RegsForValue(LLVMContext &Context, const TargetLowering &tli,
547                 unsigned Reg, const Type *Ty) {
548      ComputeValueVTs(tli, Ty, ValueVTs);
549
550      for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
551        EVT ValueVT = ValueVTs[Value];
552        unsigned NumRegs = tli.getNumRegisters(Context, ValueVT);
553        EVT RegisterVT = tli.getRegisterType(Context, ValueVT);
554        for (unsigned i = 0; i != NumRegs; ++i)
555          Regs.push_back(Reg + i);
556        RegVTs.push_back(RegisterVT);
557        Reg += NumRegs;
558      }
559    }
560
561    /// areValueTypesLegal - Return true if types of all the values are legal.
562    bool areValueTypesLegal(const TargetLowering &TLI) {
563      for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
564        EVT RegisterVT = RegVTs[Value];
565        if (!TLI.isTypeLegal(RegisterVT))
566          return false;
567      }
568      return true;
569    }
570
571    /// append - Add the specified values to this one.
572    void append(const RegsForValue &RHS) {
573      ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end());
574      RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end());
575      Regs.append(RHS.Regs.begin(), RHS.Regs.end());
576    }
577
578    /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
579    /// this value and returns the result as a ValueVTs value.  This uses
580    /// Chain/Flag as the input and updates them for the output Chain/Flag.
581    /// If the Flag pointer is NULL, no flag is used.
582    SDValue getCopyFromRegs(SelectionDAG &DAG, FunctionLoweringInfo &FuncInfo,
583                            DebugLoc dl,
584                            SDValue &Chain, SDValue *Flag) const;
585
586    /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
587    /// specified value into the registers specified by this object.  This uses
588    /// Chain/Flag as the input and updates them for the output Chain/Flag.
589    /// If the Flag pointer is NULL, no flag is used.
590    void getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl,
591                       SDValue &Chain, SDValue *Flag) const;
592
593    /// AddInlineAsmOperands - Add this value to the specified inlineasm node
594    /// operand list.  This adds the code marker, matching input operand index
595    /// (if applicable), and includes the number of values added into it.
596    void AddInlineAsmOperands(unsigned Kind,
597                              bool HasMatching, unsigned MatchingIdx,
598                              SelectionDAG &DAG,
599                              std::vector<SDValue> &Ops) const;
600  };
601}
602
603/// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
604/// this value and returns the result as a ValueVT value.  This uses
605/// Chain/Flag as the input and updates them for the output Chain/Flag.
606/// If the Flag pointer is NULL, no flag is used.
607SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
608                                      FunctionLoweringInfo &FuncInfo,
609                                      DebugLoc dl,
610                                      SDValue &Chain, SDValue *Flag) const {
611  // A Value with type {} or [0 x %t] needs no registers.
612  if (ValueVTs.empty())
613    return SDValue();
614
615  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
616
617  // Assemble the legal parts into the final values.
618  SmallVector<SDValue, 4> Values(ValueVTs.size());
619  SmallVector<SDValue, 8> Parts;
620  for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
621    // Copy the legal parts from the registers.
622    EVT ValueVT = ValueVTs[Value];
623    unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
624    EVT RegisterVT = RegVTs[Value];
625
626    Parts.resize(NumRegs);
627    for (unsigned i = 0; i != NumRegs; ++i) {
628      SDValue P;
629      if (Flag == 0) {
630        P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
631      } else {
632        P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
633        *Flag = P.getValue(2);
634      }
635
636      Chain = P.getValue(1);
637
638      // If the source register was virtual and if we know something about it,
639      // add an assert node.
640      if (TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) &&
641          RegisterVT.isInteger() && !RegisterVT.isVector()) {
642        unsigned SlotNo = Regs[Part+i]-TargetRegisterInfo::FirstVirtualRegister;
643        if (FuncInfo.LiveOutRegInfo.size() > SlotNo) {
644          const FunctionLoweringInfo::LiveOutInfo &LOI =
645            FuncInfo.LiveOutRegInfo[SlotNo];
646
647          unsigned RegSize = RegisterVT.getSizeInBits();
648          unsigned NumSignBits = LOI.NumSignBits;
649          unsigned NumZeroBits = LOI.KnownZero.countLeadingOnes();
650
651          // FIXME: We capture more information than the dag can represent.  For
652          // now, just use the tightest assertzext/assertsext possible.
653          bool isSExt = true;
654          EVT FromVT(MVT::Other);
655          if (NumSignBits == RegSize)
656            isSExt = true, FromVT = MVT::i1;   // ASSERT SEXT 1
657          else if (NumZeroBits >= RegSize-1)
658            isSExt = false, FromVT = MVT::i1;  // ASSERT ZEXT 1
659          else if (NumSignBits > RegSize-8)
660            isSExt = true, FromVT = MVT::i8;   // ASSERT SEXT 8
661          else if (NumZeroBits >= RegSize-8)
662            isSExt = false, FromVT = MVT::i8;  // ASSERT ZEXT 8
663          else if (NumSignBits > RegSize-16)
664            isSExt = true, FromVT = MVT::i16;  // ASSERT SEXT 16
665          else if (NumZeroBits >= RegSize-16)
666            isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16
667          else if (NumSignBits > RegSize-32)
668            isSExt = true, FromVT = MVT::i32;  // ASSERT SEXT 32
669          else if (NumZeroBits >= RegSize-32)
670            isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32
671
672          if (FromVT != MVT::Other)
673            P = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
674                            RegisterVT, P, DAG.getValueType(FromVT));
675        }
676      }
677
678      Parts[i] = P;
679    }
680
681    Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(),
682                                     NumRegs, RegisterVT, ValueVT);
683    Part += NumRegs;
684    Parts.clear();
685  }
686
687  return DAG.getNode(ISD::MERGE_VALUES, dl,
688                     DAG.getVTList(&ValueVTs[0], ValueVTs.size()),
689                     &Values[0], ValueVTs.size());
690}
691
692/// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
693/// specified value into the registers specified by this object.  This uses
694/// Chain/Flag as the input and updates them for the output Chain/Flag.
695/// If the Flag pointer is NULL, no flag is used.
696void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl,
697                                 SDValue &Chain, SDValue *Flag) const {
698  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
699
700  // Get the list of the values's legal parts.
701  unsigned NumRegs = Regs.size();
702  SmallVector<SDValue, 8> Parts(NumRegs);
703  for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
704    EVT ValueVT = ValueVTs[Value];
705    unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
706    EVT RegisterVT = RegVTs[Value];
707
708    getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value),
709                   &Parts[Part], NumParts, RegisterVT);
710    Part += NumParts;
711  }
712
713  // Copy the parts into the registers.
714  SmallVector<SDValue, 8> Chains(NumRegs);
715  for (unsigned i = 0; i != NumRegs; ++i) {
716    SDValue Part;
717    if (Flag == 0) {
718      Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
719    } else {
720      Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
721      *Flag = Part.getValue(1);
722    }
723
724    Chains[i] = Part.getValue(0);
725  }
726
727  if (NumRegs == 1 || Flag)
728    // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
729    // flagged to it. That is the CopyToReg nodes and the user are considered
730    // a single scheduling unit. If we create a TokenFactor and return it as
731    // chain, then the TokenFactor is both a predecessor (operand) of the
732    // user as well as a successor (the TF operands are flagged to the user).
733    // c1, f1 = CopyToReg
734    // c2, f2 = CopyToReg
735    // c3     = TokenFactor c1, c2
736    // ...
737    //        = op c3, ..., f2
738    Chain = Chains[NumRegs-1];
739  else
740    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0], NumRegs);
741}
742
743/// AddInlineAsmOperands - Add this value to the specified inlineasm node
744/// operand list.  This adds the code marker and includes the number of
745/// values added into it.
746void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
747                                        unsigned MatchingIdx,
748                                        SelectionDAG &DAG,
749                                        std::vector<SDValue> &Ops) const {
750  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
751
752  unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
753  if (HasMatching)
754    Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
755  SDValue Res = DAG.getTargetConstant(Flag, MVT::i32);
756  Ops.push_back(Res);
757
758  for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
759    unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]);
760    EVT RegisterVT = RegVTs[Value];
761    for (unsigned i = 0; i != NumRegs; ++i) {
762      assert(Reg < Regs.size() && "Mismatch in # registers expected");
763      Ops.push_back(DAG.getRegister(Regs[Reg++], RegisterVT));
764    }
765  }
766}
767
768void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa) {
769  AA = &aa;
770  GFI = gfi;
771  TD = DAG.getTarget().getTargetData();
772}
773
774/// clear - Clear out the current SelectionDAG and the associated
775/// state and prepare this SelectionDAGBuilder object to be used
776/// for a new block. This doesn't clear out information about
777/// additional blocks that are needed to complete switch lowering
778/// or PHI node updating; that information is cleared out as it is
779/// consumed.
780void SelectionDAGBuilder::clear() {
781  NodeMap.clear();
782  UnusedArgNodeMap.clear();
783  PendingLoads.clear();
784  PendingExports.clear();
785  DanglingDebugInfoMap.clear();
786  CurDebugLoc = DebugLoc();
787  HasTailCall = false;
788}
789
790/// getRoot - Return the current virtual root of the Selection DAG,
791/// flushing any PendingLoad items. This must be done before emitting
792/// a store or any other node that may need to be ordered after any
793/// prior load instructions.
794///
795SDValue SelectionDAGBuilder::getRoot() {
796  if (PendingLoads.empty())
797    return DAG.getRoot();
798
799  if (PendingLoads.size() == 1) {
800    SDValue Root = PendingLoads[0];
801    DAG.setRoot(Root);
802    PendingLoads.clear();
803    return Root;
804  }
805
806  // Otherwise, we have to make a token factor node.
807  SDValue Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
808                               &PendingLoads[0], PendingLoads.size());
809  PendingLoads.clear();
810  DAG.setRoot(Root);
811  return Root;
812}
813
814/// getControlRoot - Similar to getRoot, but instead of flushing all the
815/// PendingLoad items, flush all the PendingExports items. It is necessary
816/// to do this before emitting a terminator instruction.
817///
818SDValue SelectionDAGBuilder::getControlRoot() {
819  SDValue Root = DAG.getRoot();
820
821  if (PendingExports.empty())
822    return Root;
823
824  // Turn all of the CopyToReg chains into one factored node.
825  if (Root.getOpcode() != ISD::EntryToken) {
826    unsigned i = 0, e = PendingExports.size();
827    for (; i != e; ++i) {
828      assert(PendingExports[i].getNode()->getNumOperands() > 1);
829      if (PendingExports[i].getNode()->getOperand(0) == Root)
830        break;  // Don't add the root if we already indirectly depend on it.
831    }
832
833    if (i == e)
834      PendingExports.push_back(Root);
835  }
836
837  Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
838                     &PendingExports[0],
839                     PendingExports.size());
840  PendingExports.clear();
841  DAG.setRoot(Root);
842  return Root;
843}
844
845void SelectionDAGBuilder::AssignOrderingToNode(const SDNode *Node) {
846  if (DAG.GetOrdering(Node) != 0) return; // Already has ordering.
847  DAG.AssignOrdering(Node, SDNodeOrder);
848
849  for (unsigned I = 0, E = Node->getNumOperands(); I != E; ++I)
850    AssignOrderingToNode(Node->getOperand(I).getNode());
851}
852
853void SelectionDAGBuilder::visit(const Instruction &I) {
854  // Set up outgoing PHI node register values before emitting the terminator.
855  if (isa<TerminatorInst>(&I))
856    HandlePHINodesInSuccessorBlocks(I.getParent());
857
858  CurDebugLoc = I.getDebugLoc();
859
860  visit(I.getOpcode(), I);
861
862  if (!isa<TerminatorInst>(&I) && !HasTailCall)
863    CopyToExportRegsIfNeeded(&I);
864
865  CurDebugLoc = DebugLoc();
866}
867
868void SelectionDAGBuilder::visitPHI(const PHINode &) {
869  llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
870}
871
872void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
873  // Note: this doesn't use InstVisitor, because it has to work with
874  // ConstantExpr's in addition to instructions.
875  switch (Opcode) {
876  default: llvm_unreachable("Unknown instruction type encountered!");
877    // Build the switch statement using the Instruction.def file.
878#define HANDLE_INST(NUM, OPCODE, CLASS) \
879    case Instruction::OPCODE: visit##OPCODE((CLASS&)I); break;
880#include "llvm/Instruction.def"
881  }
882
883  // Assign the ordering to the freshly created DAG nodes.
884  if (NodeMap.count(&I)) {
885    ++SDNodeOrder;
886    AssignOrderingToNode(getValue(&I).getNode());
887  }
888}
889
890// resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
891// generate the debug data structures now that we've seen its definition.
892void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
893                                                   SDValue Val) {
894  DanglingDebugInfo &DDI = DanglingDebugInfoMap[V];
895  if (DDI.getDI()) {
896    const DbgValueInst *DI = DDI.getDI();
897    DebugLoc dl = DDI.getdl();
898    unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
899    MDNode *Variable = DI->getVariable();
900    uint64_t Offset = DI->getOffset();
901    SDDbgValue *SDV;
902    if (Val.getNode()) {
903      if (!EmitFuncArgumentDbgValue(V, Variable, Offset, Val)) {
904        SDV = DAG.getDbgValue(Variable, Val.getNode(),
905                              Val.getResNo(), Offset, dl, DbgSDNodeOrder);
906        DAG.AddDbgValue(SDV, Val.getNode(), false);
907      }
908    } else {
909      SDV = DAG.getDbgValue(Variable, UndefValue::get(V->getType()),
910                            Offset, dl, SDNodeOrder);
911      DAG.AddDbgValue(SDV, 0, false);
912    }
913    DanglingDebugInfoMap[V] = DanglingDebugInfo();
914  }
915}
916
917// getValue - Return an SDValue for the given Value.
918SDValue SelectionDAGBuilder::getValue(const Value *V) {
919  // If we already have an SDValue for this value, use it. It's important
920  // to do this first, so that we don't create a CopyFromReg if we already
921  // have a regular SDValue.
922  SDValue &N = NodeMap[V];
923  if (N.getNode()) return N;
924
925  // If there's a virtual register allocated and initialized for this
926  // value, use it.
927  DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V);
928  if (It != FuncInfo.ValueMap.end()) {
929    unsigned InReg = It->second;
930    RegsForValue RFV(*DAG.getContext(), TLI, InReg, V->getType());
931    SDValue Chain = DAG.getEntryNode();
932    return N = RFV.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), Chain,NULL);
933  }
934
935  // Otherwise create a new SDValue and remember it.
936  SDValue Val = getValueImpl(V);
937  NodeMap[V] = Val;
938  resolveDanglingDebugInfo(V, Val);
939  return Val;
940}
941
942/// getNonRegisterValue - Return an SDValue for the given Value, but
943/// don't look in FuncInfo.ValueMap for a virtual register.
944SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
945  // If we already have an SDValue for this value, use it.
946  SDValue &N = NodeMap[V];
947  if (N.getNode()) return N;
948
949  // Otherwise create a new SDValue and remember it.
950  SDValue Val = getValueImpl(V);
951  NodeMap[V] = Val;
952  resolveDanglingDebugInfo(V, Val);
953  return Val;
954}
955
956/// getValueImpl - Helper function for getValue and getNonRegisterValue.
957/// Create an SDValue for the given value.
958SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
959  if (const Constant *C = dyn_cast<Constant>(V)) {
960    EVT VT = TLI.getValueType(V->getType(), true);
961
962    if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
963      return DAG.getConstant(*CI, VT);
964
965    if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
966      return DAG.getGlobalAddress(GV, getCurDebugLoc(), VT);
967
968    if (isa<ConstantPointerNull>(C))
969      return DAG.getConstant(0, TLI.getPointerTy());
970
971    if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
972      return DAG.getConstantFP(*CFP, VT);
973
974    if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
975      return DAG.getUNDEF(VT);
976
977    if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
978      visit(CE->getOpcode(), *CE);
979      SDValue N1 = NodeMap[V];
980      assert(N1.getNode() && "visit didn't populate the NodeMap!");
981      return N1;
982    }
983
984    if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
985      SmallVector<SDValue, 4> Constants;
986      for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end();
987           OI != OE; ++OI) {
988        SDNode *Val = getValue(*OI).getNode();
989        // If the operand is an empty aggregate, there are no values.
990        if (!Val) continue;
991        // Add each leaf value from the operand to the Constants list
992        // to form a flattened list of all the values.
993        for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
994          Constants.push_back(SDValue(Val, i));
995      }
996
997      return DAG.getMergeValues(&Constants[0], Constants.size(),
998                                getCurDebugLoc());
999    }
1000
1001    if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
1002      assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1003             "Unknown struct or array constant!");
1004
1005      SmallVector<EVT, 4> ValueVTs;
1006      ComputeValueVTs(TLI, C->getType(), ValueVTs);
1007      unsigned NumElts = ValueVTs.size();
1008      if (NumElts == 0)
1009        return SDValue(); // empty struct
1010      SmallVector<SDValue, 4> Constants(NumElts);
1011      for (unsigned i = 0; i != NumElts; ++i) {
1012        EVT EltVT = ValueVTs[i];
1013        if (isa<UndefValue>(C))
1014          Constants[i] = DAG.getUNDEF(EltVT);
1015        else if (EltVT.isFloatingPoint())
1016          Constants[i] = DAG.getConstantFP(0, EltVT);
1017        else
1018          Constants[i] = DAG.getConstant(0, EltVT);
1019      }
1020
1021      return DAG.getMergeValues(&Constants[0], NumElts,
1022                                getCurDebugLoc());
1023    }
1024
1025    if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
1026      return DAG.getBlockAddress(BA, VT);
1027
1028    const VectorType *VecTy = cast<VectorType>(V->getType());
1029    unsigned NumElements = VecTy->getNumElements();
1030
1031    // Now that we know the number and type of the elements, get that number of
1032    // elements into the Ops array based on what kind of constant it is.
1033    SmallVector<SDValue, 16> Ops;
1034    if (const ConstantVector *CP = dyn_cast<ConstantVector>(C)) {
1035      for (unsigned i = 0; i != NumElements; ++i)
1036        Ops.push_back(getValue(CP->getOperand(i)));
1037    } else {
1038      assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!");
1039      EVT EltVT = TLI.getValueType(VecTy->getElementType());
1040
1041      SDValue Op;
1042      if (EltVT.isFloatingPoint())
1043        Op = DAG.getConstantFP(0, EltVT);
1044      else
1045        Op = DAG.getConstant(0, EltVT);
1046      Ops.assign(NumElements, Op);
1047    }
1048
1049    // Create a BUILD_VECTOR node.
1050    return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(),
1051                                    VT, &Ops[0], Ops.size());
1052  }
1053
1054  // If this is a static alloca, generate it as the frameindex instead of
1055  // computation.
1056  if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1057    DenseMap<const AllocaInst*, int>::iterator SI =
1058      FuncInfo.StaticAllocaMap.find(AI);
1059    if (SI != FuncInfo.StaticAllocaMap.end())
1060      return DAG.getFrameIndex(SI->second, TLI.getPointerTy());
1061  }
1062
1063  // If this is an instruction which fast-isel has deferred, select it now.
1064  if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
1065    unsigned InReg = FuncInfo.InitializeRegForValue(Inst);
1066    RegsForValue RFV(*DAG.getContext(), TLI, InReg, Inst->getType());
1067    SDValue Chain = DAG.getEntryNode();
1068    return RFV.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), Chain, NULL);
1069  }
1070
1071  llvm_unreachable("Can't get register for value!");
1072  return SDValue();
1073}
1074
1075void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
1076  SDValue Chain = getControlRoot();
1077  SmallVector<ISD::OutputArg, 8> Outs;
1078  SmallVector<SDValue, 8> OutVals;
1079
1080  if (!FuncInfo.CanLowerReturn) {
1081    unsigned DemoteReg = FuncInfo.DemoteRegister;
1082    const Function *F = I.getParent()->getParent();
1083
1084    // Emit a store of the return value through the virtual register.
1085    // Leave Outs empty so that LowerReturn won't try to load return
1086    // registers the usual way.
1087    SmallVector<EVT, 1> PtrValueVTs;
1088    ComputeValueVTs(TLI, PointerType::getUnqual(F->getReturnType()),
1089                    PtrValueVTs);
1090
1091    SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]);
1092    SDValue RetOp = getValue(I.getOperand(0));
1093
1094    SmallVector<EVT, 4> ValueVTs;
1095    SmallVector<uint64_t, 4> Offsets;
1096    ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs, &Offsets);
1097    unsigned NumValues = ValueVTs.size();
1098
1099    SmallVector<SDValue, 4> Chains(NumValues);
1100    for (unsigned i = 0; i != NumValues; ++i) {
1101      SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(),
1102                                RetPtr.getValueType(), RetPtr,
1103                                DAG.getIntPtrConstant(Offsets[i]));
1104      Chains[i] =
1105        DAG.getStore(Chain, getCurDebugLoc(),
1106                     SDValue(RetOp.getNode(), RetOp.getResNo() + i),
1107                     // FIXME: better loc info would be nice.
1108                     Add, MachinePointerInfo(), false, false, 0);
1109    }
1110
1111    Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
1112                        MVT::Other, &Chains[0], NumValues);
1113  } else if (I.getNumOperands() != 0) {
1114    SmallVector<EVT, 4> ValueVTs;
1115    ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs);
1116    unsigned NumValues = ValueVTs.size();
1117    if (NumValues) {
1118      SDValue RetOp = getValue(I.getOperand(0));
1119      for (unsigned j = 0, f = NumValues; j != f; ++j) {
1120        EVT VT = ValueVTs[j];
1121
1122        ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1123
1124        const Function *F = I.getParent()->getParent();
1125        if (F->paramHasAttr(0, Attribute::SExt))
1126          ExtendKind = ISD::SIGN_EXTEND;
1127        else if (F->paramHasAttr(0, Attribute::ZExt))
1128          ExtendKind = ISD::ZERO_EXTEND;
1129
1130        // FIXME: C calling convention requires the return type to be promoted
1131        // to at least 32-bit. But this is not necessary for non-C calling
1132        // conventions. The frontend should mark functions whose return values
1133        // require promoting with signext or zeroext attributes.
1134        if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) {
1135          EVT MinVT = TLI.getRegisterType(*DAG.getContext(), MVT::i32);
1136          if (VT.bitsLT(MinVT))
1137            VT = MinVT;
1138        }
1139
1140        unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), VT);
1141        EVT PartVT = TLI.getRegisterType(*DAG.getContext(), VT);
1142        SmallVector<SDValue, 4> Parts(NumParts);
1143        getCopyToParts(DAG, getCurDebugLoc(),
1144                       SDValue(RetOp.getNode(), RetOp.getResNo() + j),
1145                       &Parts[0], NumParts, PartVT, ExtendKind);
1146
1147        // 'inreg' on function refers to return value
1148        ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1149        if (F->paramHasAttr(0, Attribute::InReg))
1150          Flags.setInReg();
1151
1152        // Propagate extension type if any
1153        if (F->paramHasAttr(0, Attribute::SExt))
1154          Flags.setSExt();
1155        else if (F->paramHasAttr(0, Attribute::ZExt))
1156          Flags.setZExt();
1157
1158        for (unsigned i = 0; i < NumParts; ++i) {
1159          Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(),
1160                                        /*isfixed=*/true));
1161          OutVals.push_back(Parts[i]);
1162        }
1163      }
1164    }
1165  }
1166
1167  bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
1168  CallingConv::ID CallConv =
1169    DAG.getMachineFunction().getFunction()->getCallingConv();
1170  Chain = TLI.LowerReturn(Chain, CallConv, isVarArg,
1171                          Outs, OutVals, getCurDebugLoc(), DAG);
1172
1173  // Verify that the target's LowerReturn behaved as expected.
1174  assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
1175         "LowerReturn didn't return a valid chain!");
1176
1177  // Update the DAG with the new chain value resulting from return lowering.
1178  DAG.setRoot(Chain);
1179}
1180
1181/// CopyToExportRegsIfNeeded - If the given value has virtual registers
1182/// created for it, emit nodes to copy the value into the virtual
1183/// registers.
1184void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
1185  DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
1186  if (VMI != FuncInfo.ValueMap.end()) {
1187    assert(!V->use_empty() && "Unused value assigned virtual registers!");
1188    CopyValueToVirtualRegister(V, VMI->second);
1189  }
1190}
1191
1192/// ExportFromCurrentBlock - If this condition isn't known to be exported from
1193/// the current basic block, add it to ValueMap now so that we'll get a
1194/// CopyTo/FromReg.
1195void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
1196  // No need to export constants.
1197  if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
1198
1199  // Already exported?
1200  if (FuncInfo.isExportedInst(V)) return;
1201
1202  unsigned Reg = FuncInfo.InitializeRegForValue(V);
1203  CopyValueToVirtualRegister(V, Reg);
1204}
1205
1206bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
1207                                                     const BasicBlock *FromBB) {
1208  // The operands of the setcc have to be in this block.  We don't know
1209  // how to export them from some other block.
1210  if (const Instruction *VI = dyn_cast<Instruction>(V)) {
1211    // Can export from current BB.
1212    if (VI->getParent() == FromBB)
1213      return true;
1214
1215    // Is already exported, noop.
1216    return FuncInfo.isExportedInst(V);
1217  }
1218
1219  // If this is an argument, we can export it if the BB is the entry block or
1220  // if it is already exported.
1221  if (isa<Argument>(V)) {
1222    if (FromBB == &FromBB->getParent()->getEntryBlock())
1223      return true;
1224
1225    // Otherwise, can only export this if it is already exported.
1226    return FuncInfo.isExportedInst(V);
1227  }
1228
1229  // Otherwise, constants can always be exported.
1230  return true;
1231}
1232
1233static bool InBlock(const Value *V, const BasicBlock *BB) {
1234  if (const Instruction *I = dyn_cast<Instruction>(V))
1235    return I->getParent() == BB;
1236  return true;
1237}
1238
1239/// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
1240/// This function emits a branch and is used at the leaves of an OR or an
1241/// AND operator tree.
1242///
1243void
1244SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
1245                                                  MachineBasicBlock *TBB,
1246                                                  MachineBasicBlock *FBB,
1247                                                  MachineBasicBlock *CurBB,
1248                                                  MachineBasicBlock *SwitchBB) {
1249  const BasicBlock *BB = CurBB->getBasicBlock();
1250
1251  // If the leaf of the tree is a comparison, merge the condition into
1252  // the caseblock.
1253  if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
1254    // The operands of the cmp have to be in this block.  We don't know
1255    // how to export them from some other block.  If this is the first block
1256    // of the sequence, no exporting is needed.
1257    if (CurBB == SwitchBB ||
1258        (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
1259         isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
1260      ISD::CondCode Condition;
1261      if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
1262        Condition = getICmpCondCode(IC->getPredicate());
1263      } else if (const FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) {
1264        Condition = getFCmpCondCode(FC->getPredicate());
1265      } else {
1266        Condition = ISD::SETEQ; // silence warning.
1267        llvm_unreachable("Unknown compare instruction");
1268      }
1269
1270      CaseBlock CB(Condition, BOp->getOperand(0),
1271                   BOp->getOperand(1), NULL, TBB, FBB, CurBB);
1272      SwitchCases.push_back(CB);
1273      return;
1274    }
1275  }
1276
1277  // Create a CaseBlock record representing this branch.
1278  CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()),
1279               NULL, TBB, FBB, CurBB);
1280  SwitchCases.push_back(CB);
1281}
1282
1283/// FindMergedConditions - If Cond is an expression like
1284void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
1285                                               MachineBasicBlock *TBB,
1286                                               MachineBasicBlock *FBB,
1287                                               MachineBasicBlock *CurBB,
1288                                               MachineBasicBlock *SwitchBB,
1289                                               unsigned Opc) {
1290  // If this node is not part of the or/and tree, emit it as a branch.
1291  const Instruction *BOp = dyn_cast<Instruction>(Cond);
1292  if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
1293      (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() ||
1294      BOp->getParent() != CurBB->getBasicBlock() ||
1295      !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
1296      !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
1297    EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB);
1298    return;
1299  }
1300
1301  //  Create TmpBB after CurBB.
1302  MachineFunction::iterator BBI = CurBB;
1303  MachineFunction &MF = DAG.getMachineFunction();
1304  MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
1305  CurBB->getParent()->insert(++BBI, TmpBB);
1306
1307  if (Opc == Instruction::Or) {
1308    // Codegen X | Y as:
1309    //   jmp_if_X TBB
1310    //   jmp TmpBB
1311    // TmpBB:
1312    //   jmp_if_Y TBB
1313    //   jmp FBB
1314    //
1315
1316    // Emit the LHS condition.
1317    FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc);
1318
1319    // Emit the RHS condition into TmpBB.
1320    FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc);
1321  } else {
1322    assert(Opc == Instruction::And && "Unknown merge op!");
1323    // Codegen X & Y as:
1324    //   jmp_if_X TmpBB
1325    //   jmp FBB
1326    // TmpBB:
1327    //   jmp_if_Y TBB
1328    //   jmp FBB
1329    //
1330    //  This requires creation of TmpBB after CurBB.
1331
1332    // Emit the LHS condition.
1333    FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc);
1334
1335    // Emit the RHS condition into TmpBB.
1336    FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc);
1337  }
1338}
1339
1340/// If the set of cases should be emitted as a series of branches, return true.
1341/// If we should emit this as a bunch of and/or'd together conditions, return
1342/// false.
1343bool
1344SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases){
1345  if (Cases.size() != 2) return true;
1346
1347  // If this is two comparisons of the same values or'd or and'd together, they
1348  // will get folded into a single comparison, so don't emit two blocks.
1349  if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
1350       Cases[0].CmpRHS == Cases[1].CmpRHS) ||
1351      (Cases[0].CmpRHS == Cases[1].CmpLHS &&
1352       Cases[0].CmpLHS == Cases[1].CmpRHS)) {
1353    return false;
1354  }
1355
1356  // Handle: (X != null) | (Y != null) --> (X|Y) != 0
1357  // Handle: (X == null) & (Y == null) --> (X|Y) == 0
1358  if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
1359      Cases[0].CC == Cases[1].CC &&
1360      isa<Constant>(Cases[0].CmpRHS) &&
1361      cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
1362    if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
1363      return false;
1364    if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
1365      return false;
1366  }
1367
1368  return true;
1369}
1370
1371void SelectionDAGBuilder::visitBr(const BranchInst &I) {
1372  MachineBasicBlock *BrMBB = FuncInfo.MBB;
1373
1374  // Update machine-CFG edges.
1375  MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
1376
1377  // Figure out which block is immediately after the current one.
1378  MachineBasicBlock *NextBlock = 0;
1379  MachineFunction::iterator BBI = BrMBB;
1380  if (++BBI != FuncInfo.MF->end())
1381    NextBlock = BBI;
1382
1383  if (I.isUnconditional()) {
1384    // Update machine-CFG edges.
1385    BrMBB->addSuccessor(Succ0MBB);
1386
1387    // If this is not a fall-through branch, emit the branch.
1388    if (Succ0MBB != NextBlock)
1389      DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
1390                              MVT::Other, getControlRoot(),
1391                              DAG.getBasicBlock(Succ0MBB)));
1392
1393    return;
1394  }
1395
1396  // If this condition is one of the special cases we handle, do special stuff
1397  // now.
1398  const Value *CondVal = I.getCondition();
1399  MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
1400
1401  // If this is a series of conditions that are or'd or and'd together, emit
1402  // this as a sequence of branches instead of setcc's with and/or operations.
1403  // For example, instead of something like:
1404  //     cmp A, B
1405  //     C = seteq
1406  //     cmp D, E
1407  //     F = setle
1408  //     or C, F
1409  //     jnz foo
1410  // Emit:
1411  //     cmp A, B
1412  //     je foo
1413  //     cmp D, E
1414  //     jle foo
1415  //
1416  if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
1417    if (BOp->hasOneUse() &&
1418        (BOp->getOpcode() == Instruction::And ||
1419         BOp->getOpcode() == Instruction::Or)) {
1420      FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB,
1421                           BOp->getOpcode());
1422      // If the compares in later blocks need to use values not currently
1423      // exported from this block, export them now.  This block should always
1424      // be the first entry.
1425      assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
1426
1427      // Allow some cases to be rejected.
1428      if (ShouldEmitAsBranches(SwitchCases)) {
1429        for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
1430          ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
1431          ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
1432        }
1433
1434        // Emit the branch for this block.
1435        visitSwitchCase(SwitchCases[0], BrMBB);
1436        SwitchCases.erase(SwitchCases.begin());
1437        return;
1438      }
1439
1440      // Okay, we decided not to do this, remove any inserted MBB's and clear
1441      // SwitchCases.
1442      for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
1443        FuncInfo.MF->erase(SwitchCases[i].ThisBB);
1444
1445      SwitchCases.clear();
1446    }
1447  }
1448
1449  // Create a CaseBlock record representing this branch.
1450  CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
1451               NULL, Succ0MBB, Succ1MBB, BrMBB);
1452
1453  // Use visitSwitchCase to actually insert the fast branch sequence for this
1454  // cond branch.
1455  visitSwitchCase(CB, BrMBB);
1456}
1457
1458/// visitSwitchCase - Emits the necessary code to represent a single node in
1459/// the binary search tree resulting from lowering a switch instruction.
1460void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
1461                                          MachineBasicBlock *SwitchBB) {
1462  SDValue Cond;
1463  SDValue CondLHS = getValue(CB.CmpLHS);
1464  DebugLoc dl = getCurDebugLoc();
1465
1466  // Build the setcc now.
1467  if (CB.CmpMHS == NULL) {
1468    // Fold "(X == true)" to X and "(X == false)" to !X to
1469    // handle common cases produced by branch lowering.
1470    if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
1471        CB.CC == ISD::SETEQ)
1472      Cond = CondLHS;
1473    else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
1474             CB.CC == ISD::SETEQ) {
1475      SDValue True = DAG.getConstant(1, CondLHS.getValueType());
1476      Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
1477    } else
1478      Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
1479  } else {
1480    assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
1481
1482    const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
1483    const APInt& High  = cast<ConstantInt>(CB.CmpRHS)->getValue();
1484
1485    SDValue CmpOp = getValue(CB.CmpMHS);
1486    EVT VT = CmpOp.getValueType();
1487
1488    if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
1489      Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, VT),
1490                          ISD::SETLE);
1491    } else {
1492      SDValue SUB = DAG.getNode(ISD::SUB, dl,
1493                                VT, CmpOp, DAG.getConstant(Low, VT));
1494      Cond = DAG.getSetCC(dl, MVT::i1, SUB,
1495                          DAG.getConstant(High-Low, VT), ISD::SETULE);
1496    }
1497  }
1498
1499  // Update successor info
1500  SwitchBB->addSuccessor(CB.TrueBB);
1501  SwitchBB->addSuccessor(CB.FalseBB);
1502
1503  // Set NextBlock to be the MBB immediately after the current one, if any.
1504  // This is used to avoid emitting unnecessary branches to the next block.
1505  MachineBasicBlock *NextBlock = 0;
1506  MachineFunction::iterator BBI = SwitchBB;
1507  if (++BBI != FuncInfo.MF->end())
1508    NextBlock = BBI;
1509
1510  // If the lhs block is the next block, invert the condition so that we can
1511  // fall through to the lhs instead of the rhs block.
1512  if (CB.TrueBB == NextBlock) {
1513    std::swap(CB.TrueBB, CB.FalseBB);
1514    SDValue True = DAG.getConstant(1, Cond.getValueType());
1515    Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
1516  }
1517
1518  SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
1519                               MVT::Other, getControlRoot(), Cond,
1520                               DAG.getBasicBlock(CB.TrueBB));
1521
1522  // Insert the false branch. Do this even if it's a fall through branch,
1523  // this makes it easier to do DAG optimizations which require inverting
1524  // the branch condition.
1525  BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
1526                       DAG.getBasicBlock(CB.FalseBB));
1527
1528  DAG.setRoot(BrCond);
1529}
1530
1531/// visitJumpTable - Emit JumpTable node in the current MBB
1532void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) {
1533  // Emit the code for the jump table
1534  assert(JT.Reg != -1U && "Should lower JT Header first!");
1535  EVT PTy = TLI.getPointerTy();
1536  SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(),
1537                                     JT.Reg, PTy);
1538  SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
1539  SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurDebugLoc(),
1540                                    MVT::Other, Index.getValue(1),
1541                                    Table, Index);
1542  DAG.setRoot(BrJumpTable);
1543}
1544
1545/// visitJumpTableHeader - This function emits necessary code to produce index
1546/// in the JumpTable from switch case.
1547void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT,
1548                                               JumpTableHeader &JTH,
1549                                               MachineBasicBlock *SwitchBB) {
1550  // Subtract the lowest switch case value from the value being switched on and
1551  // conditional branch to default mbb if the result is greater than the
1552  // difference between smallest and largest cases.
1553  SDValue SwitchOp = getValue(JTH.SValue);
1554  EVT VT = SwitchOp.getValueType();
1555  SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp,
1556                            DAG.getConstant(JTH.First, VT));
1557
1558  // The SDNode we just created, which holds the value being switched on minus
1559  // the smallest case value, needs to be copied to a virtual register so it
1560  // can be used as an index into the jump table in a subsequent basic block.
1561  // This value may be smaller or larger than the target's pointer type, and
1562  // therefore require extension or truncating.
1563  SwitchOp = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(), TLI.getPointerTy());
1564
1565  unsigned JumpTableReg = FuncInfo.CreateReg(TLI.getPointerTy());
1566  SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(),
1567                                    JumpTableReg, SwitchOp);
1568  JT.Reg = JumpTableReg;
1569
1570  // Emit the range check for the jump table, and branch to the default block
1571  // for the switch statement if the value being switched on exceeds the largest
1572  // case in the switch.
1573  SDValue CMP = DAG.getSetCC(getCurDebugLoc(),
1574                             TLI.getSetCCResultType(Sub.getValueType()), Sub,
1575                             DAG.getConstant(JTH.Last-JTH.First,VT),
1576                             ISD::SETUGT);
1577
1578  // Set NextBlock to be the MBB immediately after the current one, if any.
1579  // This is used to avoid emitting unnecessary branches to the next block.
1580  MachineBasicBlock *NextBlock = 0;
1581  MachineFunction::iterator BBI = SwitchBB;
1582
1583  if (++BBI != FuncInfo.MF->end())
1584    NextBlock = BBI;
1585
1586  SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1587                               MVT::Other, CopyTo, CMP,
1588                               DAG.getBasicBlock(JT.Default));
1589
1590  if (JT.MBB != NextBlock)
1591    BrCond = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrCond,
1592                         DAG.getBasicBlock(JT.MBB));
1593
1594  DAG.setRoot(BrCond);
1595}
1596
1597/// visitBitTestHeader - This function emits necessary code to produce value
1598/// suitable for "bit tests"
1599void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
1600                                             MachineBasicBlock *SwitchBB) {
1601  // Subtract the minimum value
1602  SDValue SwitchOp = getValue(B.SValue);
1603  EVT VT = SwitchOp.getValueType();
1604  SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp,
1605                            DAG.getConstant(B.First, VT));
1606
1607  // Check range
1608  SDValue RangeCmp = DAG.getSetCC(getCurDebugLoc(),
1609                                  TLI.getSetCCResultType(Sub.getValueType()),
1610                                  Sub, DAG.getConstant(B.Range, VT),
1611                                  ISD::SETUGT);
1612
1613  SDValue ShiftOp = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(),
1614                                       TLI.getPointerTy());
1615
1616  B.Reg = FuncInfo.CreateReg(TLI.getPointerTy());
1617  SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(),
1618                                    B.Reg, ShiftOp);
1619
1620  // Set NextBlock to be the MBB immediately after the current one, if any.
1621  // This is used to avoid emitting unnecessary branches to the next block.
1622  MachineBasicBlock *NextBlock = 0;
1623  MachineFunction::iterator BBI = SwitchBB;
1624  if (++BBI != FuncInfo.MF->end())
1625    NextBlock = BBI;
1626
1627  MachineBasicBlock* MBB = B.Cases[0].ThisBB;
1628
1629  SwitchBB->addSuccessor(B.Default);
1630  SwitchBB->addSuccessor(MBB);
1631
1632  SDValue BrRange = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1633                                MVT::Other, CopyTo, RangeCmp,
1634                                DAG.getBasicBlock(B.Default));
1635
1636  if (MBB != NextBlock)
1637    BrRange = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, CopyTo,
1638                          DAG.getBasicBlock(MBB));
1639
1640  DAG.setRoot(BrRange);
1641}
1642
1643/// visitBitTestCase - this function produces one "bit test"
1644void SelectionDAGBuilder::visitBitTestCase(MachineBasicBlock* NextMBB,
1645                                           unsigned Reg,
1646                                           BitTestCase &B,
1647                                           MachineBasicBlock *SwitchBB) {
1648  SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(), Reg,
1649                                       TLI.getPointerTy());
1650  SDValue Cmp;
1651  if (CountPopulation_64(B.Mask) == 1) {
1652    // Testing for a single bit; just compare the shift count with what it
1653    // would need to be to shift a 1 bit in that position.
1654    Cmp = DAG.getSetCC(getCurDebugLoc(),
1655                       TLI.getSetCCResultType(ShiftOp.getValueType()),
1656                       ShiftOp,
1657                       DAG.getConstant(CountTrailingZeros_64(B.Mask),
1658                                       TLI.getPointerTy()),
1659                       ISD::SETEQ);
1660  } else {
1661    // Make desired shift
1662    SDValue SwitchVal = DAG.getNode(ISD::SHL, getCurDebugLoc(),
1663                                    TLI.getPointerTy(),
1664                                    DAG.getConstant(1, TLI.getPointerTy()),
1665                                    ShiftOp);
1666
1667    // Emit bit tests and jumps
1668    SDValue AndOp = DAG.getNode(ISD::AND, getCurDebugLoc(),
1669                                TLI.getPointerTy(), SwitchVal,
1670                                DAG.getConstant(B.Mask, TLI.getPointerTy()));
1671    Cmp = DAG.getSetCC(getCurDebugLoc(),
1672                       TLI.getSetCCResultType(AndOp.getValueType()),
1673                       AndOp, DAG.getConstant(0, TLI.getPointerTy()),
1674                       ISD::SETNE);
1675  }
1676
1677  SwitchBB->addSuccessor(B.TargetBB);
1678  SwitchBB->addSuccessor(NextMBB);
1679
1680  SDValue BrAnd = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1681                              MVT::Other, getControlRoot(),
1682                              Cmp, DAG.getBasicBlock(B.TargetBB));
1683
1684  // Set NextBlock to be the MBB immediately after the current one, if any.
1685  // This is used to avoid emitting unnecessary branches to the next block.
1686  MachineBasicBlock *NextBlock = 0;
1687  MachineFunction::iterator BBI = SwitchBB;
1688  if (++BBI != FuncInfo.MF->end())
1689    NextBlock = BBI;
1690
1691  if (NextMBB != NextBlock)
1692    BrAnd = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrAnd,
1693                        DAG.getBasicBlock(NextMBB));
1694
1695  DAG.setRoot(BrAnd);
1696}
1697
1698void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
1699  MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
1700
1701  // Retrieve successors.
1702  MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
1703  MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)];
1704
1705  const Value *Callee(I.getCalledValue());
1706  if (isa<InlineAsm>(Callee))
1707    visitInlineAsm(&I);
1708  else
1709    LowerCallTo(&I, getValue(Callee), false, LandingPad);
1710
1711  // If the value of the invoke is used outside of its defining block, make it
1712  // available as a virtual register.
1713  CopyToExportRegsIfNeeded(&I);
1714
1715  // Update successor info
1716  InvokeMBB->addSuccessor(Return);
1717  InvokeMBB->addSuccessor(LandingPad);
1718
1719  // Drop into normal successor.
1720  DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
1721                          MVT::Other, getControlRoot(),
1722                          DAG.getBasicBlock(Return)));
1723}
1724
1725void SelectionDAGBuilder::visitUnwind(const UnwindInst &I) {
1726}
1727
1728/// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for
1729/// small case ranges).
1730bool SelectionDAGBuilder::handleSmallSwitchRange(CaseRec& CR,
1731                                                 CaseRecVector& WorkList,
1732                                                 const Value* SV,
1733                                                 MachineBasicBlock *Default,
1734                                                 MachineBasicBlock *SwitchBB) {
1735  Case& BackCase  = *(CR.Range.second-1);
1736
1737  // Size is the number of Cases represented by this range.
1738  size_t Size = CR.Range.second - CR.Range.first;
1739  if (Size > 3)
1740    return false;
1741
1742  // Get the MachineFunction which holds the current MBB.  This is used when
1743  // inserting any additional MBBs necessary to represent the switch.
1744  MachineFunction *CurMF = FuncInfo.MF;
1745
1746  // Figure out which block is immediately after the current one.
1747  MachineBasicBlock *NextBlock = 0;
1748  MachineFunction::iterator BBI = CR.CaseBB;
1749
1750  if (++BBI != FuncInfo.MF->end())
1751    NextBlock = BBI;
1752
1753  // TODO: If any two of the cases has the same destination, and if one value
1754  // is the same as the other, but has one bit unset that the other has set,
1755  // use bit manipulation to do two compares at once.  For example:
1756  // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
1757
1758  // Rearrange the case blocks so that the last one falls through if possible.
1759  if (NextBlock && Default != NextBlock && BackCase.BB != NextBlock) {
1760    // The last case block won't fall through into 'NextBlock' if we emit the
1761    // branches in this order.  See if rearranging a case value would help.
1762    for (CaseItr I = CR.Range.first, E = CR.Range.second-1; I != E; ++I) {
1763      if (I->BB == NextBlock) {
1764        std::swap(*I, BackCase);
1765        break;
1766      }
1767    }
1768  }
1769
1770  // Create a CaseBlock record representing a conditional branch to
1771  // the Case's target mbb if the value being switched on SV is equal
1772  // to C.
1773  MachineBasicBlock *CurBlock = CR.CaseBB;
1774  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) {
1775    MachineBasicBlock *FallThrough;
1776    if (I != E-1) {
1777      FallThrough = CurMF->CreateMachineBasicBlock(CurBlock->getBasicBlock());
1778      CurMF->insert(BBI, FallThrough);
1779
1780      // Put SV in a virtual register to make it available from the new blocks.
1781      ExportFromCurrentBlock(SV);
1782    } else {
1783      // If the last case doesn't match, go to the default block.
1784      FallThrough = Default;
1785    }
1786
1787    const Value *RHS, *LHS, *MHS;
1788    ISD::CondCode CC;
1789    if (I->High == I->Low) {
1790      // This is just small small case range :) containing exactly 1 case
1791      CC = ISD::SETEQ;
1792      LHS = SV; RHS = I->High; MHS = NULL;
1793    } else {
1794      CC = ISD::SETLE;
1795      LHS = I->Low; MHS = SV; RHS = I->High;
1796    }
1797    CaseBlock CB(CC, LHS, RHS, MHS, I->BB, FallThrough, CurBlock);
1798
1799    // If emitting the first comparison, just call visitSwitchCase to emit the
1800    // code into the current block.  Otherwise, push the CaseBlock onto the
1801    // vector to be later processed by SDISel, and insert the node's MBB
1802    // before the next MBB.
1803    if (CurBlock == SwitchBB)
1804      visitSwitchCase(CB, SwitchBB);
1805    else
1806      SwitchCases.push_back(CB);
1807
1808    CurBlock = FallThrough;
1809  }
1810
1811  return true;
1812}
1813
1814static inline bool areJTsAllowed(const TargetLowering &TLI) {
1815  return !DisableJumpTables &&
1816          (TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) ||
1817           TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other));
1818}
1819
1820static APInt ComputeRange(const APInt &First, const APInt &Last) {
1821  APInt LastExt(Last), FirstExt(First);
1822  uint32_t BitWidth = std::max(Last.getBitWidth(), First.getBitWidth()) + 1;
1823  LastExt.sext(BitWidth); FirstExt.sext(BitWidth);
1824  return (LastExt - FirstExt + 1ULL);
1825}
1826
1827/// handleJTSwitchCase - Emit jumptable for current switch case range
1828bool SelectionDAGBuilder::handleJTSwitchCase(CaseRec& CR,
1829                                             CaseRecVector& WorkList,
1830                                             const Value* SV,
1831                                             MachineBasicBlock* Default,
1832                                             MachineBasicBlock *SwitchBB) {
1833  Case& FrontCase = *CR.Range.first;
1834  Case& BackCase  = *(CR.Range.second-1);
1835
1836  const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue();
1837  const APInt &Last  = cast<ConstantInt>(BackCase.High)->getValue();
1838
1839  APInt TSize(First.getBitWidth(), 0);
1840  for (CaseItr I = CR.Range.first, E = CR.Range.second;
1841       I!=E; ++I)
1842    TSize += I->size();
1843
1844  if (!areJTsAllowed(TLI) || TSize.ult(4))
1845    return false;
1846
1847  APInt Range = ComputeRange(First, Last);
1848  double Density = TSize.roundToDouble() / Range.roundToDouble();
1849  if (Density < 0.4)
1850    return false;
1851
1852  DEBUG(dbgs() << "Lowering jump table\n"
1853               << "First entry: " << First << ". Last entry: " << Last << '\n'
1854               << "Range: " << Range
1855               << "Size: " << TSize << ". Density: " << Density << "\n\n");
1856
1857  // Get the MachineFunction which holds the current MBB.  This is used when
1858  // inserting any additional MBBs necessary to represent the switch.
1859  MachineFunction *CurMF = FuncInfo.MF;
1860
1861  // Figure out which block is immediately after the current one.
1862  MachineFunction::iterator BBI = CR.CaseBB;
1863  ++BBI;
1864
1865  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
1866
1867  // Create a new basic block to hold the code for loading the address
1868  // of the jump table, and jumping to it.  Update successor information;
1869  // we will either branch to the default case for the switch, or the jump
1870  // table.
1871  MachineBasicBlock *JumpTableBB = CurMF->CreateMachineBasicBlock(LLVMBB);
1872  CurMF->insert(BBI, JumpTableBB);
1873  CR.CaseBB->addSuccessor(Default);
1874  CR.CaseBB->addSuccessor(JumpTableBB);
1875
1876  // Build a vector of destination BBs, corresponding to each target
1877  // of the jump table. If the value of the jump table slot corresponds to
1878  // a case statement, push the case's BB onto the vector, otherwise, push
1879  // the default BB.
1880  std::vector<MachineBasicBlock*> DestBBs;
1881  APInt TEI = First;
1882  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) {
1883    const APInt &Low = cast<ConstantInt>(I->Low)->getValue();
1884    const APInt &High = cast<ConstantInt>(I->High)->getValue();
1885
1886    if (Low.sle(TEI) && TEI.sle(High)) {
1887      DestBBs.push_back(I->BB);
1888      if (TEI==High)
1889        ++I;
1890    } else {
1891      DestBBs.push_back(Default);
1892    }
1893  }
1894
1895  // Update successor info. Add one edge to each unique successor.
1896  BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs());
1897  for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(),
1898         E = DestBBs.end(); I != E; ++I) {
1899    if (!SuccsHandled[(*I)->getNumber()]) {
1900      SuccsHandled[(*I)->getNumber()] = true;
1901      JumpTableBB->addSuccessor(*I);
1902    }
1903  }
1904
1905  // Create a jump table index for this jump table.
1906  unsigned JTEncoding = TLI.getJumpTableEncoding();
1907  unsigned JTI = CurMF->getOrCreateJumpTableInfo(JTEncoding)
1908                       ->createJumpTableIndex(DestBBs);
1909
1910  // Set the jump table information so that we can codegen it as a second
1911  // MachineBasicBlock
1912  JumpTable JT(-1U, JTI, JumpTableBB, Default);
1913  JumpTableHeader JTH(First, Last, SV, CR.CaseBB, (CR.CaseBB == SwitchBB));
1914  if (CR.CaseBB == SwitchBB)
1915    visitJumpTableHeader(JT, JTH, SwitchBB);
1916
1917  JTCases.push_back(JumpTableBlock(JTH, JT));
1918
1919  return true;
1920}
1921
1922/// handleBTSplitSwitchCase - emit comparison and split binary search tree into
1923/// 2 subtrees.
1924bool SelectionDAGBuilder::handleBTSplitSwitchCase(CaseRec& CR,
1925                                                  CaseRecVector& WorkList,
1926                                                  const Value* SV,
1927                                                  MachineBasicBlock *Default,
1928                                                  MachineBasicBlock *SwitchBB) {
1929  // Get the MachineFunction which holds the current MBB.  This is used when
1930  // inserting any additional MBBs necessary to represent the switch.
1931  MachineFunction *CurMF = FuncInfo.MF;
1932
1933  // Figure out which block is immediately after the current one.
1934  MachineFunction::iterator BBI = CR.CaseBB;
1935  ++BBI;
1936
1937  Case& FrontCase = *CR.Range.first;
1938  Case& BackCase  = *(CR.Range.second-1);
1939  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
1940
1941  // Size is the number of Cases represented by this range.
1942  unsigned Size = CR.Range.second - CR.Range.first;
1943
1944  const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue();
1945  const APInt &Last  = cast<ConstantInt>(BackCase.High)->getValue();
1946  double FMetric = 0;
1947  CaseItr Pivot = CR.Range.first + Size/2;
1948
1949  // Select optimal pivot, maximizing sum density of LHS and RHS. This will
1950  // (heuristically) allow us to emit JumpTable's later.
1951  APInt TSize(First.getBitWidth(), 0);
1952  for (CaseItr I = CR.Range.first, E = CR.Range.second;
1953       I!=E; ++I)
1954    TSize += I->size();
1955
1956  APInt LSize = FrontCase.size();
1957  APInt RSize = TSize-LSize;
1958  DEBUG(dbgs() << "Selecting best pivot: \n"
1959               << "First: " << First << ", Last: " << Last <<'\n'
1960               << "LSize: " << LSize << ", RSize: " << RSize << '\n');
1961  for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second;
1962       J!=E; ++I, ++J) {
1963    const APInt &LEnd = cast<ConstantInt>(I->High)->getValue();
1964    const APInt &RBegin = cast<ConstantInt>(J->Low)->getValue();
1965    APInt Range = ComputeRange(LEnd, RBegin);
1966    assert((Range - 2ULL).isNonNegative() &&
1967           "Invalid case distance");
1968    double LDensity = (double)LSize.roundToDouble() /
1969                           (LEnd - First + 1ULL).roundToDouble();
1970    double RDensity = (double)RSize.roundToDouble() /
1971                           (Last - RBegin + 1ULL).roundToDouble();
1972    double Metric = Range.logBase2()*(LDensity+RDensity);
1973    // Should always split in some non-trivial place
1974    DEBUG(dbgs() <<"=>Step\n"
1975                 << "LEnd: " << LEnd << ", RBegin: " << RBegin << '\n'
1976                 << "LDensity: " << LDensity
1977                 << ", RDensity: " << RDensity << '\n'
1978                 << "Metric: " << Metric << '\n');
1979    if (FMetric < Metric) {
1980      Pivot = J;
1981      FMetric = Metric;
1982      DEBUG(dbgs() << "Current metric set to: " << FMetric << '\n');
1983    }
1984
1985    LSize += J->size();
1986    RSize -= J->size();
1987  }
1988  if (areJTsAllowed(TLI)) {
1989    // If our case is dense we *really* should handle it earlier!
1990    assert((FMetric > 0) && "Should handle dense range earlier!");
1991  } else {
1992    Pivot = CR.Range.first + Size/2;
1993  }
1994
1995  CaseRange LHSR(CR.Range.first, Pivot);
1996  CaseRange RHSR(Pivot, CR.Range.second);
1997  Constant *C = Pivot->Low;
1998  MachineBasicBlock *FalseBB = 0, *TrueBB = 0;
1999
2000  // We know that we branch to the LHS if the Value being switched on is
2001  // less than the Pivot value, C.  We use this to optimize our binary
2002  // tree a bit, by recognizing that if SV is greater than or equal to the
2003  // LHS's Case Value, and that Case Value is exactly one less than the
2004  // Pivot's Value, then we can branch directly to the LHS's Target,
2005  // rather than creating a leaf node for it.
2006  if ((LHSR.second - LHSR.first) == 1 &&
2007      LHSR.first->High == CR.GE &&
2008      cast<ConstantInt>(C)->getValue() ==
2009      (cast<ConstantInt>(CR.GE)->getValue() + 1LL)) {
2010    TrueBB = LHSR.first->BB;
2011  } else {
2012    TrueBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2013    CurMF->insert(BBI, TrueBB);
2014    WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR));
2015
2016    // Put SV in a virtual register to make it available from the new blocks.
2017    ExportFromCurrentBlock(SV);
2018  }
2019
2020  // Similar to the optimization above, if the Value being switched on is
2021  // known to be less than the Constant CR.LT, and the current Case Value
2022  // is CR.LT - 1, then we can branch directly to the target block for
2023  // the current Case Value, rather than emitting a RHS leaf node for it.
2024  if ((RHSR.second - RHSR.first) == 1 && CR.LT &&
2025      cast<ConstantInt>(RHSR.first->Low)->getValue() ==
2026      (cast<ConstantInt>(CR.LT)->getValue() - 1LL)) {
2027    FalseBB = RHSR.first->BB;
2028  } else {
2029    FalseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2030    CurMF->insert(BBI, FalseBB);
2031    WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR));
2032
2033    // Put SV in a virtual register to make it available from the new blocks.
2034    ExportFromCurrentBlock(SV);
2035  }
2036
2037  // Create a CaseBlock record representing a conditional branch to
2038  // the LHS node if the value being switched on SV is less than C.
2039  // Otherwise, branch to LHS.
2040  CaseBlock CB(ISD::SETLT, SV, C, NULL, TrueBB, FalseBB, CR.CaseBB);
2041
2042  if (CR.CaseBB == SwitchBB)
2043    visitSwitchCase(CB, SwitchBB);
2044  else
2045    SwitchCases.push_back(CB);
2046
2047  return true;
2048}
2049
2050/// handleBitTestsSwitchCase - if current case range has few destination and
2051/// range span less, than machine word bitwidth, encode case range into series
2052/// of masks and emit bit tests with these masks.
2053bool SelectionDAGBuilder::handleBitTestsSwitchCase(CaseRec& CR,
2054                                                   CaseRecVector& WorkList,
2055                                                   const Value* SV,
2056                                                   MachineBasicBlock* Default,
2057                                                   MachineBasicBlock *SwitchBB){
2058  EVT PTy = TLI.getPointerTy();
2059  unsigned IntPtrBits = PTy.getSizeInBits();
2060
2061  Case& FrontCase = *CR.Range.first;
2062  Case& BackCase  = *(CR.Range.second-1);
2063
2064  // Get the MachineFunction which holds the current MBB.  This is used when
2065  // inserting any additional MBBs necessary to represent the switch.
2066  MachineFunction *CurMF = FuncInfo.MF;
2067
2068  // If target does not have legal shift left, do not emit bit tests at all.
2069  if (!TLI.isOperationLegal(ISD::SHL, TLI.getPointerTy()))
2070    return false;
2071
2072  size_t numCmps = 0;
2073  for (CaseItr I = CR.Range.first, E = CR.Range.second;
2074       I!=E; ++I) {
2075    // Single case counts one, case range - two.
2076    numCmps += (I->Low == I->High ? 1 : 2);
2077  }
2078
2079  // Count unique destinations
2080  SmallSet<MachineBasicBlock*, 4> Dests;
2081  for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
2082    Dests.insert(I->BB);
2083    if (Dests.size() > 3)
2084      // Don't bother the code below, if there are too much unique destinations
2085      return false;
2086  }
2087  DEBUG(dbgs() << "Total number of unique destinations: "
2088        << Dests.size() << '\n'
2089        << "Total number of comparisons: " << numCmps << '\n');
2090
2091  // Compute span of values.
2092  const APInt& minValue = cast<ConstantInt>(FrontCase.Low)->getValue();
2093  const APInt& maxValue = cast<ConstantInt>(BackCase.High)->getValue();
2094  APInt cmpRange = maxValue - minValue;
2095
2096  DEBUG(dbgs() << "Compare range: " << cmpRange << '\n'
2097               << "Low bound: " << minValue << '\n'
2098               << "High bound: " << maxValue << '\n');
2099
2100  if (cmpRange.uge(IntPtrBits) ||
2101      (!(Dests.size() == 1 && numCmps >= 3) &&
2102       !(Dests.size() == 2 && numCmps >= 5) &&
2103       !(Dests.size() >= 3 && numCmps >= 6)))
2104    return false;
2105
2106  DEBUG(dbgs() << "Emitting bit tests\n");
2107  APInt lowBound = APInt::getNullValue(cmpRange.getBitWidth());
2108
2109  // Optimize the case where all the case values fit in a
2110  // word without having to subtract minValue. In this case,
2111  // we can optimize away the subtraction.
2112  if (minValue.isNonNegative() && maxValue.slt(IntPtrBits)) {
2113    cmpRange = maxValue;
2114  } else {
2115    lowBound = minValue;
2116  }
2117
2118  CaseBitsVector CasesBits;
2119  unsigned i, count = 0;
2120
2121  for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
2122    MachineBasicBlock* Dest = I->BB;
2123    for (i = 0; i < count; ++i)
2124      if (Dest == CasesBits[i].BB)
2125        break;
2126
2127    if (i == count) {
2128      assert((count < 3) && "Too much destinations to test!");
2129      CasesBits.push_back(CaseBits(0, Dest, 0));
2130      count++;
2131    }
2132
2133    const APInt& lowValue = cast<ConstantInt>(I->Low)->getValue();
2134    const APInt& highValue = cast<ConstantInt>(I->High)->getValue();
2135
2136    uint64_t lo = (lowValue - lowBound).getZExtValue();
2137    uint64_t hi = (highValue - lowBound).getZExtValue();
2138
2139    for (uint64_t j = lo; j <= hi; j++) {
2140      CasesBits[i].Mask |=  1ULL << j;
2141      CasesBits[i].Bits++;
2142    }
2143
2144  }
2145  std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp());
2146
2147  BitTestInfo BTC;
2148
2149  // Figure out which block is immediately after the current one.
2150  MachineFunction::iterator BBI = CR.CaseBB;
2151  ++BBI;
2152
2153  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2154
2155  DEBUG(dbgs() << "Cases:\n");
2156  for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) {
2157    DEBUG(dbgs() << "Mask: " << CasesBits[i].Mask
2158                 << ", Bits: " << CasesBits[i].Bits
2159                 << ", BB: " << CasesBits[i].BB << '\n');
2160
2161    MachineBasicBlock *CaseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2162    CurMF->insert(BBI, CaseBB);
2163    BTC.push_back(BitTestCase(CasesBits[i].Mask,
2164                              CaseBB,
2165                              CasesBits[i].BB));
2166
2167    // Put SV in a virtual register to make it available from the new blocks.
2168    ExportFromCurrentBlock(SV);
2169  }
2170
2171  BitTestBlock BTB(lowBound, cmpRange, SV,
2172                   -1U, (CR.CaseBB == SwitchBB),
2173                   CR.CaseBB, Default, BTC);
2174
2175  if (CR.CaseBB == SwitchBB)
2176    visitBitTestHeader(BTB, SwitchBB);
2177
2178  BitTestCases.push_back(BTB);
2179
2180  return true;
2181}
2182
2183/// Clusterify - Transform simple list of Cases into list of CaseRange's
2184size_t SelectionDAGBuilder::Clusterify(CaseVector& Cases,
2185                                       const SwitchInst& SI) {
2186  size_t numCmps = 0;
2187
2188  // Start with "simple" cases
2189  for (size_t i = 1; i < SI.getNumSuccessors(); ++i) {
2190    MachineBasicBlock *SMBB = FuncInfo.MBBMap[SI.getSuccessor(i)];
2191    Cases.push_back(Case(SI.getSuccessorValue(i),
2192                         SI.getSuccessorValue(i),
2193                         SMBB));
2194  }
2195  std::sort(Cases.begin(), Cases.end(), CaseCmp());
2196
2197  // Merge case into clusters
2198  if (Cases.size() >= 2)
2199    // Must recompute end() each iteration because it may be
2200    // invalidated by erase if we hold on to it
2201    for (CaseItr I = Cases.begin(), J = ++(Cases.begin()); J != Cases.end(); ) {
2202      const APInt& nextValue = cast<ConstantInt>(J->Low)->getValue();
2203      const APInt& currentValue = cast<ConstantInt>(I->High)->getValue();
2204      MachineBasicBlock* nextBB = J->BB;
2205      MachineBasicBlock* currentBB = I->BB;
2206
2207      // If the two neighboring cases go to the same destination, merge them
2208      // into a single case.
2209      if ((nextValue - currentValue == 1) && (currentBB == nextBB)) {
2210        I->High = J->High;
2211        J = Cases.erase(J);
2212      } else {
2213        I = J++;
2214      }
2215    }
2216
2217  for (CaseItr I=Cases.begin(), E=Cases.end(); I!=E; ++I, ++numCmps) {
2218    if (I->Low != I->High)
2219      // A range counts double, since it requires two compares.
2220      ++numCmps;
2221  }
2222
2223  return numCmps;
2224}
2225
2226void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
2227                                           MachineBasicBlock *Last) {
2228  // Update JTCases.
2229  for (unsigned i = 0, e = JTCases.size(); i != e; ++i)
2230    if (JTCases[i].first.HeaderBB == First)
2231      JTCases[i].first.HeaderBB = Last;
2232
2233  // Update BitTestCases.
2234  for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i)
2235    if (BitTestCases[i].Parent == First)
2236      BitTestCases[i].Parent = Last;
2237}
2238
2239void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
2240  MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
2241
2242  // Figure out which block is immediately after the current one.
2243  MachineBasicBlock *NextBlock = 0;
2244  MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()];
2245
2246  // If there is only the default destination, branch to it if it is not the
2247  // next basic block.  Otherwise, just fall through.
2248  if (SI.getNumOperands() == 2) {
2249    // Update machine-CFG edges.
2250
2251    // If this is not a fall-through branch, emit the branch.
2252    SwitchMBB->addSuccessor(Default);
2253    if (Default != NextBlock)
2254      DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
2255                              MVT::Other, getControlRoot(),
2256                              DAG.getBasicBlock(Default)));
2257
2258    return;
2259  }
2260
2261  // If there are any non-default case statements, create a vector of Cases
2262  // representing each one, and sort the vector so that we can efficiently
2263  // create a binary search tree from them.
2264  CaseVector Cases;
2265  size_t numCmps = Clusterify(Cases, SI);
2266  DEBUG(dbgs() << "Clusterify finished. Total clusters: " << Cases.size()
2267               << ". Total compares: " << numCmps << '\n');
2268  numCmps = 0;
2269
2270  // Get the Value to be switched on and default basic blocks, which will be
2271  // inserted into CaseBlock records, representing basic blocks in the binary
2272  // search tree.
2273  const Value *SV = SI.getOperand(0);
2274
2275  // Push the initial CaseRec onto the worklist
2276  CaseRecVector WorkList;
2277  WorkList.push_back(CaseRec(SwitchMBB,0,0,
2278                             CaseRange(Cases.begin(),Cases.end())));
2279
2280  while (!WorkList.empty()) {
2281    // Grab a record representing a case range to process off the worklist
2282    CaseRec CR = WorkList.back();
2283    WorkList.pop_back();
2284
2285    if (handleBitTestsSwitchCase(CR, WorkList, SV, Default, SwitchMBB))
2286      continue;
2287
2288    // If the range has few cases (two or less) emit a series of specific
2289    // tests.
2290    if (handleSmallSwitchRange(CR, WorkList, SV, Default, SwitchMBB))
2291      continue;
2292
2293    // If the switch has more than 5 blocks, and at least 40% dense, and the
2294    // target supports indirect branches, then emit a jump table rather than
2295    // lowering the switch to a binary tree of conditional branches.
2296    if (handleJTSwitchCase(CR, WorkList, SV, Default, SwitchMBB))
2297      continue;
2298
2299    // Emit binary tree. We need to pick a pivot, and push left and right ranges
2300    // onto the worklist. Leafs are handled via handleSmallSwitchRange() call.
2301    handleBTSplitSwitchCase(CR, WorkList, SV, Default, SwitchMBB);
2302  }
2303}
2304
2305void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
2306  MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
2307
2308  // Update machine-CFG edges with unique successors.
2309  SmallVector<BasicBlock*, 32> succs;
2310  succs.reserve(I.getNumSuccessors());
2311  for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i)
2312    succs.push_back(I.getSuccessor(i));
2313  array_pod_sort(succs.begin(), succs.end());
2314  succs.erase(std::unique(succs.begin(), succs.end()), succs.end());
2315  for (unsigned i = 0, e = succs.size(); i != e; ++i)
2316    IndirectBrMBB->addSuccessor(FuncInfo.MBBMap[succs[i]]);
2317
2318  DAG.setRoot(DAG.getNode(ISD::BRIND, getCurDebugLoc(),
2319                          MVT::Other, getControlRoot(),
2320                          getValue(I.getAddress())));
2321}
2322
2323void SelectionDAGBuilder::visitFSub(const User &I) {
2324  // -0.0 - X --> fneg
2325  const Type *Ty = I.getType();
2326  if (Ty->isVectorTy()) {
2327    if (ConstantVector *CV = dyn_cast<ConstantVector>(I.getOperand(0))) {
2328      const VectorType *DestTy = cast<VectorType>(I.getType());
2329      const Type *ElTy = DestTy->getElementType();
2330      unsigned VL = DestTy->getNumElements();
2331      std::vector<Constant*> NZ(VL, ConstantFP::getNegativeZero(ElTy));
2332      Constant *CNZ = ConstantVector::get(&NZ[0], NZ.size());
2333      if (CV == CNZ) {
2334        SDValue Op2 = getValue(I.getOperand(1));
2335        setValue(&I, DAG.getNode(ISD::FNEG, getCurDebugLoc(),
2336                                 Op2.getValueType(), Op2));
2337        return;
2338      }
2339    }
2340  }
2341
2342  if (ConstantFP *CFP = dyn_cast<ConstantFP>(I.getOperand(0)))
2343    if (CFP->isExactlyValue(ConstantFP::getNegativeZero(Ty)->getValueAPF())) {
2344      SDValue Op2 = getValue(I.getOperand(1));
2345      setValue(&I, DAG.getNode(ISD::FNEG, getCurDebugLoc(),
2346                               Op2.getValueType(), Op2));
2347      return;
2348    }
2349
2350  visitBinary(I, ISD::FSUB);
2351}
2352
2353void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) {
2354  SDValue Op1 = getValue(I.getOperand(0));
2355  SDValue Op2 = getValue(I.getOperand(1));
2356  setValue(&I, DAG.getNode(OpCode, getCurDebugLoc(),
2357                           Op1.getValueType(), Op1, Op2));
2358}
2359
2360void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
2361  SDValue Op1 = getValue(I.getOperand(0));
2362  SDValue Op2 = getValue(I.getOperand(1));
2363  if (!I.getType()->isVectorTy() &&
2364      Op2.getValueType() != TLI.getShiftAmountTy()) {
2365    // If the operand is smaller than the shift count type, promote it.
2366    EVT PTy = TLI.getPointerTy();
2367    EVT STy = TLI.getShiftAmountTy();
2368    if (STy.bitsGT(Op2.getValueType()))
2369      Op2 = DAG.getNode(ISD::ANY_EXTEND, getCurDebugLoc(),
2370                        TLI.getShiftAmountTy(), Op2);
2371    // If the operand is larger than the shift count type but the shift
2372    // count type has enough bits to represent any shift value, truncate
2373    // it now. This is a common case and it exposes the truncate to
2374    // optimization early.
2375    else if (STy.getSizeInBits() >=
2376             Log2_32_Ceil(Op2.getValueType().getSizeInBits()))
2377      Op2 = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(),
2378                        TLI.getShiftAmountTy(), Op2);
2379    // Otherwise we'll need to temporarily settle for some other
2380    // convenient type; type legalization will make adjustments as
2381    // needed.
2382    else if (PTy.bitsLT(Op2.getValueType()))
2383      Op2 = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(),
2384                        TLI.getPointerTy(), Op2);
2385    else if (PTy.bitsGT(Op2.getValueType()))
2386      Op2 = DAG.getNode(ISD::ANY_EXTEND, getCurDebugLoc(),
2387                        TLI.getPointerTy(), Op2);
2388  }
2389
2390  setValue(&I, DAG.getNode(Opcode, getCurDebugLoc(),
2391                           Op1.getValueType(), Op1, Op2));
2392}
2393
2394void SelectionDAGBuilder::visitICmp(const User &I) {
2395  ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
2396  if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
2397    predicate = IC->getPredicate();
2398  else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
2399    predicate = ICmpInst::Predicate(IC->getPredicate());
2400  SDValue Op1 = getValue(I.getOperand(0));
2401  SDValue Op2 = getValue(I.getOperand(1));
2402  ISD::CondCode Opcode = getICmpCondCode(predicate);
2403
2404  EVT DestVT = TLI.getValueType(I.getType());
2405  setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Opcode));
2406}
2407
2408void SelectionDAGBuilder::visitFCmp(const User &I) {
2409  FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
2410  if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
2411    predicate = FC->getPredicate();
2412  else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
2413    predicate = FCmpInst::Predicate(FC->getPredicate());
2414  SDValue Op1 = getValue(I.getOperand(0));
2415  SDValue Op2 = getValue(I.getOperand(1));
2416  ISD::CondCode Condition = getFCmpCondCode(predicate);
2417  EVT DestVT = TLI.getValueType(I.getType());
2418  setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Condition));
2419}
2420
2421void SelectionDAGBuilder::visitSelect(const User &I) {
2422  SmallVector<EVT, 4> ValueVTs;
2423  ComputeValueVTs(TLI, I.getType(), ValueVTs);
2424  unsigned NumValues = ValueVTs.size();
2425  if (NumValues == 0) return;
2426
2427  SmallVector<SDValue, 4> Values(NumValues);
2428  SDValue Cond     = getValue(I.getOperand(0));
2429  SDValue TrueVal  = getValue(I.getOperand(1));
2430  SDValue FalseVal = getValue(I.getOperand(2));
2431
2432  for (unsigned i = 0; i != NumValues; ++i)
2433    Values[i] = DAG.getNode(ISD::SELECT, getCurDebugLoc(),
2434                          TrueVal.getNode()->getValueType(TrueVal.getResNo()+i),
2435                            Cond,
2436                            SDValue(TrueVal.getNode(),
2437                                    TrueVal.getResNo() + i),
2438                            SDValue(FalseVal.getNode(),
2439                                    FalseVal.getResNo() + i));
2440
2441  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
2442                           DAG.getVTList(&ValueVTs[0], NumValues),
2443                           &Values[0], NumValues));
2444}
2445
2446void SelectionDAGBuilder::visitTrunc(const User &I) {
2447  // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
2448  SDValue N = getValue(I.getOperand(0));
2449  EVT DestVT = TLI.getValueType(I.getType());
2450  setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), DestVT, N));
2451}
2452
2453void SelectionDAGBuilder::visitZExt(const User &I) {
2454  // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2455  // ZExt also can't be a cast to bool for same reason. So, nothing much to do
2456  SDValue N = getValue(I.getOperand(0));
2457  EVT DestVT = TLI.getValueType(I.getType());
2458  setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), DestVT, N));
2459}
2460
2461void SelectionDAGBuilder::visitSExt(const User &I) {
2462  // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2463  // SExt also can't be a cast to bool for same reason. So, nothing much to do
2464  SDValue N = getValue(I.getOperand(0));
2465  EVT DestVT = TLI.getValueType(I.getType());
2466  setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurDebugLoc(), DestVT, N));
2467}
2468
2469void SelectionDAGBuilder::visitFPTrunc(const User &I) {
2470  // FPTrunc is never a no-op cast, no need to check
2471  SDValue N = getValue(I.getOperand(0));
2472  EVT DestVT = TLI.getValueType(I.getType());
2473  setValue(&I, DAG.getNode(ISD::FP_ROUND, getCurDebugLoc(),
2474                           DestVT, N, DAG.getIntPtrConstant(0)));
2475}
2476
2477void SelectionDAGBuilder::visitFPExt(const User &I){
2478  // FPTrunc is never a no-op cast, no need to check
2479  SDValue N = getValue(I.getOperand(0));
2480  EVT DestVT = TLI.getValueType(I.getType());
2481  setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurDebugLoc(), DestVT, N));
2482}
2483
2484void SelectionDAGBuilder::visitFPToUI(const User &I) {
2485  // FPToUI is never a no-op cast, no need to check
2486  SDValue N = getValue(I.getOperand(0));
2487  EVT DestVT = TLI.getValueType(I.getType());
2488  setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurDebugLoc(), DestVT, N));
2489}
2490
2491void SelectionDAGBuilder::visitFPToSI(const User &I) {
2492  // FPToSI is never a no-op cast, no need to check
2493  SDValue N = getValue(I.getOperand(0));
2494  EVT DestVT = TLI.getValueType(I.getType());
2495  setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurDebugLoc(), DestVT, N));
2496}
2497
2498void SelectionDAGBuilder::visitUIToFP(const User &I) {
2499  // UIToFP is never a no-op cast, no need to check
2500  SDValue N = getValue(I.getOperand(0));
2501  EVT DestVT = TLI.getValueType(I.getType());
2502  setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurDebugLoc(), DestVT, N));
2503}
2504
2505void SelectionDAGBuilder::visitSIToFP(const User &I){
2506  // SIToFP is never a no-op cast, no need to check
2507  SDValue N = getValue(I.getOperand(0));
2508  EVT DestVT = TLI.getValueType(I.getType());
2509  setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurDebugLoc(), DestVT, N));
2510}
2511
2512void SelectionDAGBuilder::visitPtrToInt(const User &I) {
2513  // What to do depends on the size of the integer and the size of the pointer.
2514  // We can either truncate, zero extend, or no-op, accordingly.
2515  SDValue N = getValue(I.getOperand(0));
2516  EVT DestVT = TLI.getValueType(I.getType());
2517  setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT));
2518}
2519
2520void SelectionDAGBuilder::visitIntToPtr(const User &I) {
2521  // What to do depends on the size of the integer and the size of the pointer.
2522  // We can either truncate, zero extend, or no-op, accordingly.
2523  SDValue N = getValue(I.getOperand(0));
2524  EVT DestVT = TLI.getValueType(I.getType());
2525  setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT));
2526}
2527
2528void SelectionDAGBuilder::visitBitCast(const User &I) {
2529  SDValue N = getValue(I.getOperand(0));
2530  EVT DestVT = TLI.getValueType(I.getType());
2531
2532  // BitCast assures us that source and destination are the same size so this is
2533  // either a BIT_CONVERT or a no-op.
2534  if (DestVT != N.getValueType())
2535    setValue(&I, DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(),
2536                             DestVT, N)); // convert types.
2537  else
2538    setValue(&I, N);            // noop cast.
2539}
2540
2541void SelectionDAGBuilder::visitInsertElement(const User &I) {
2542  SDValue InVec = getValue(I.getOperand(0));
2543  SDValue InVal = getValue(I.getOperand(1));
2544  SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(),
2545                              TLI.getPointerTy(),
2546                              getValue(I.getOperand(2)));
2547  setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurDebugLoc(),
2548                           TLI.getValueType(I.getType()),
2549                           InVec, InVal, InIdx));
2550}
2551
2552void SelectionDAGBuilder::visitExtractElement(const User &I) {
2553  SDValue InVec = getValue(I.getOperand(0));
2554  SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(),
2555                              TLI.getPointerTy(),
2556                              getValue(I.getOperand(1)));
2557  setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
2558                           TLI.getValueType(I.getType()), InVec, InIdx));
2559}
2560
2561// Utility for visitShuffleVector - Returns true if the mask is mask starting
2562// from SIndx and increasing to the element length (undefs are allowed).
2563static bool SequentialMask(SmallVectorImpl<int> &Mask, unsigned SIndx) {
2564  unsigned MaskNumElts = Mask.size();
2565  for (unsigned i = 0; i != MaskNumElts; ++i)
2566    if ((Mask[i] >= 0) && (Mask[i] != (int)(i + SIndx)))
2567      return false;
2568  return true;
2569}
2570
2571void SelectionDAGBuilder::visitShuffleVector(const User &I) {
2572  SmallVector<int, 8> Mask;
2573  SDValue Src1 = getValue(I.getOperand(0));
2574  SDValue Src2 = getValue(I.getOperand(1));
2575
2576  // Convert the ConstantVector mask operand into an array of ints, with -1
2577  // representing undef values.
2578  SmallVector<Constant*, 8> MaskElts;
2579  cast<Constant>(I.getOperand(2))->getVectorElements(MaskElts);
2580  unsigned MaskNumElts = MaskElts.size();
2581  for (unsigned i = 0; i != MaskNumElts; ++i) {
2582    if (isa<UndefValue>(MaskElts[i]))
2583      Mask.push_back(-1);
2584    else
2585      Mask.push_back(cast<ConstantInt>(MaskElts[i])->getSExtValue());
2586  }
2587
2588  EVT VT = TLI.getValueType(I.getType());
2589  EVT SrcVT = Src1.getValueType();
2590  unsigned SrcNumElts = SrcVT.getVectorNumElements();
2591
2592  if (SrcNumElts == MaskNumElts) {
2593    setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2594                                      &Mask[0]));
2595    return;
2596  }
2597
2598  // Normalize the shuffle vector since mask and vector length don't match.
2599  if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) {
2600    // Mask is longer than the source vectors and is a multiple of the source
2601    // vectors.  We can use concatenate vector to make the mask and vectors
2602    // lengths match.
2603    if (SrcNumElts*2 == MaskNumElts && SequentialMask(Mask, 0)) {
2604      // The shuffle is concatenating two vectors together.
2605      setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurDebugLoc(),
2606                               VT, Src1, Src2));
2607      return;
2608    }
2609
2610    // Pad both vectors with undefs to make them the same length as the mask.
2611    unsigned NumConcat = MaskNumElts / SrcNumElts;
2612    bool Src1U = Src1.getOpcode() == ISD::UNDEF;
2613    bool Src2U = Src2.getOpcode() == ISD::UNDEF;
2614    SDValue UndefVal = DAG.getUNDEF(SrcVT);
2615
2616    SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
2617    SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
2618    MOps1[0] = Src1;
2619    MOps2[0] = Src2;
2620
2621    Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
2622                                                  getCurDebugLoc(), VT,
2623                                                  &MOps1[0], NumConcat);
2624    Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
2625                                                  getCurDebugLoc(), VT,
2626                                                  &MOps2[0], NumConcat);
2627
2628    // Readjust mask for new input vector length.
2629    SmallVector<int, 8> MappedOps;
2630    for (unsigned i = 0; i != MaskNumElts; ++i) {
2631      int Idx = Mask[i];
2632      if (Idx < (int)SrcNumElts)
2633        MappedOps.push_back(Idx);
2634      else
2635        MappedOps.push_back(Idx + MaskNumElts - SrcNumElts);
2636    }
2637
2638    setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2639                                      &MappedOps[0]));
2640    return;
2641  }
2642
2643  if (SrcNumElts > MaskNumElts) {
2644    // Analyze the access pattern of the vector to see if we can extract
2645    // two subvectors and do the shuffle. The analysis is done by calculating
2646    // the range of elements the mask access on both vectors.
2647    int MinRange[2] = { SrcNumElts+1, SrcNumElts+1};
2648    int MaxRange[2] = {-1, -1};
2649
2650    for (unsigned i = 0; i != MaskNumElts; ++i) {
2651      int Idx = Mask[i];
2652      int Input = 0;
2653      if (Idx < 0)
2654        continue;
2655
2656      if (Idx >= (int)SrcNumElts) {
2657        Input = 1;
2658        Idx -= SrcNumElts;
2659      }
2660      if (Idx > MaxRange[Input])
2661        MaxRange[Input] = Idx;
2662      if (Idx < MinRange[Input])
2663        MinRange[Input] = Idx;
2664    }
2665
2666    // Check if the access is smaller than the vector size and can we find
2667    // a reasonable extract index.
2668    int RangeUse[2] = { 2, 2 };  // 0 = Unused, 1 = Extract, 2 = Can not
2669                                 // Extract.
2670    int StartIdx[2];  // StartIdx to extract from
2671    for (int Input=0; Input < 2; ++Input) {
2672      if (MinRange[Input] == (int)(SrcNumElts+1) && MaxRange[Input] == -1) {
2673        RangeUse[Input] = 0; // Unused
2674        StartIdx[Input] = 0;
2675      } else if (MaxRange[Input] - MinRange[Input] < (int)MaskNumElts) {
2676        // Fits within range but we should see if we can find a good
2677        // start index that is a multiple of the mask length.
2678        if (MaxRange[Input] < (int)MaskNumElts) {
2679          RangeUse[Input] = 1; // Extract from beginning of the vector
2680          StartIdx[Input] = 0;
2681        } else {
2682          StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts;
2683          if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts &&
2684              StartIdx[Input] + MaskNumElts < SrcNumElts)
2685            RangeUse[Input] = 1; // Extract from a multiple of the mask length.
2686        }
2687      }
2688    }
2689
2690    if (RangeUse[0] == 0 && RangeUse[1] == 0) {
2691      setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
2692      return;
2693    }
2694    else if (RangeUse[0] < 2 && RangeUse[1] < 2) {
2695      // Extract appropriate subvector and generate a vector shuffle
2696      for (int Input=0; Input < 2; ++Input) {
2697        SDValue &Src = Input == 0 ? Src1 : Src2;
2698        if (RangeUse[Input] == 0)
2699          Src = DAG.getUNDEF(VT);
2700        else
2701          Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, getCurDebugLoc(), VT,
2702                            Src, DAG.getIntPtrConstant(StartIdx[Input]));
2703      }
2704
2705      // Calculate new mask.
2706      SmallVector<int, 8> MappedOps;
2707      for (unsigned i = 0; i != MaskNumElts; ++i) {
2708        int Idx = Mask[i];
2709        if (Idx < 0)
2710          MappedOps.push_back(Idx);
2711        else if (Idx < (int)SrcNumElts)
2712          MappedOps.push_back(Idx - StartIdx[0]);
2713        else
2714          MappedOps.push_back(Idx - SrcNumElts - StartIdx[1] + MaskNumElts);
2715      }
2716
2717      setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2718                                        &MappedOps[0]));
2719      return;
2720    }
2721  }
2722
2723  // We can't use either concat vectors or extract subvectors so fall back to
2724  // replacing the shuffle with extract and build vector.
2725  // to insert and build vector.
2726  EVT EltVT = VT.getVectorElementType();
2727  EVT PtrVT = TLI.getPointerTy();
2728  SmallVector<SDValue,8> Ops;
2729  for (unsigned i = 0; i != MaskNumElts; ++i) {
2730    if (Mask[i] < 0) {
2731      Ops.push_back(DAG.getUNDEF(EltVT));
2732    } else {
2733      int Idx = Mask[i];
2734      SDValue Res;
2735
2736      if (Idx < (int)SrcNumElts)
2737        Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
2738                          EltVT, Src1, DAG.getConstant(Idx, PtrVT));
2739      else
2740        Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
2741                          EltVT, Src2,
2742                          DAG.getConstant(Idx - SrcNumElts, PtrVT));
2743
2744      Ops.push_back(Res);
2745    }
2746  }
2747
2748  setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(),
2749                           VT, &Ops[0], Ops.size()));
2750}
2751
2752void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) {
2753  const Value *Op0 = I.getOperand(0);
2754  const Value *Op1 = I.getOperand(1);
2755  const Type *AggTy = I.getType();
2756  const Type *ValTy = Op1->getType();
2757  bool IntoUndef = isa<UndefValue>(Op0);
2758  bool FromUndef = isa<UndefValue>(Op1);
2759
2760  unsigned LinearIndex = ComputeLinearIndex(AggTy, I.idx_begin(), I.idx_end());
2761
2762  SmallVector<EVT, 4> AggValueVTs;
2763  ComputeValueVTs(TLI, AggTy, AggValueVTs);
2764  SmallVector<EVT, 4> ValValueVTs;
2765  ComputeValueVTs(TLI, ValTy, ValValueVTs);
2766
2767  unsigned NumAggValues = AggValueVTs.size();
2768  unsigned NumValValues = ValValueVTs.size();
2769  SmallVector<SDValue, 4> Values(NumAggValues);
2770
2771  SDValue Agg = getValue(Op0);
2772  SDValue Val = getValue(Op1);
2773  unsigned i = 0;
2774  // Copy the beginning value(s) from the original aggregate.
2775  for (; i != LinearIndex; ++i)
2776    Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
2777                SDValue(Agg.getNode(), Agg.getResNo() + i);
2778  // Copy values from the inserted value(s).
2779  for (; i != LinearIndex + NumValValues; ++i)
2780    Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
2781                SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
2782  // Copy remaining value(s) from the original aggregate.
2783  for (; i != NumAggValues; ++i)
2784    Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
2785                SDValue(Agg.getNode(), Agg.getResNo() + i);
2786
2787  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
2788                           DAG.getVTList(&AggValueVTs[0], NumAggValues),
2789                           &Values[0], NumAggValues));
2790}
2791
2792void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) {
2793  const Value *Op0 = I.getOperand(0);
2794  const Type *AggTy = Op0->getType();
2795  const Type *ValTy = I.getType();
2796  bool OutOfUndef = isa<UndefValue>(Op0);
2797
2798  unsigned LinearIndex = ComputeLinearIndex(AggTy, I.idx_begin(), I.idx_end());
2799
2800  SmallVector<EVT, 4> ValValueVTs;
2801  ComputeValueVTs(TLI, ValTy, ValValueVTs);
2802
2803  unsigned NumValValues = ValValueVTs.size();
2804  SmallVector<SDValue, 4> Values(NumValValues);
2805
2806  SDValue Agg = getValue(Op0);
2807  // Copy out the selected value(s).
2808  for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
2809    Values[i - LinearIndex] =
2810      OutOfUndef ?
2811        DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
2812        SDValue(Agg.getNode(), Agg.getResNo() + i);
2813
2814  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
2815                           DAG.getVTList(&ValValueVTs[0], NumValValues),
2816                           &Values[0], NumValValues));
2817}
2818
2819void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
2820  SDValue N = getValue(I.getOperand(0));
2821  const Type *Ty = I.getOperand(0)->getType();
2822
2823  for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end();
2824       OI != E; ++OI) {
2825    const Value *Idx = *OI;
2826    if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
2827      unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
2828      if (Field) {
2829        // N = N + Offset
2830        uint64_t Offset = TD->getStructLayout(StTy)->getElementOffset(Field);
2831        N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N,
2832                        DAG.getIntPtrConstant(Offset));
2833      }
2834
2835      Ty = StTy->getElementType(Field);
2836    } else {
2837      Ty = cast<SequentialType>(Ty)->getElementType();
2838
2839      // If this is a constant subscript, handle it quickly.
2840      if (const ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
2841        if (CI->isZero()) continue;
2842        uint64_t Offs =
2843            TD->getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue();
2844        SDValue OffsVal;
2845        EVT PTy = TLI.getPointerTy();
2846        unsigned PtrBits = PTy.getSizeInBits();
2847        if (PtrBits < 64)
2848          OffsVal = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(),
2849                                TLI.getPointerTy(),
2850                                DAG.getConstant(Offs, MVT::i64));
2851        else
2852          OffsVal = DAG.getIntPtrConstant(Offs);
2853
2854        N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N,
2855                        OffsVal);
2856        continue;
2857      }
2858
2859      // N = N + Idx * ElementSize;
2860      APInt ElementSize = APInt(TLI.getPointerTy().getSizeInBits(),
2861                                TD->getTypeAllocSize(Ty));
2862      SDValue IdxN = getValue(Idx);
2863
2864      // If the index is smaller or larger than intptr_t, truncate or extend
2865      // it.
2866      IdxN = DAG.getSExtOrTrunc(IdxN, getCurDebugLoc(), N.getValueType());
2867
2868      // If this is a multiply by a power of two, turn it into a shl
2869      // immediately.  This is a very common case.
2870      if (ElementSize != 1) {
2871        if (ElementSize.isPowerOf2()) {
2872          unsigned Amt = ElementSize.logBase2();
2873          IdxN = DAG.getNode(ISD::SHL, getCurDebugLoc(),
2874                             N.getValueType(), IdxN,
2875                             DAG.getConstant(Amt, TLI.getPointerTy()));
2876        } else {
2877          SDValue Scale = DAG.getConstant(ElementSize, TLI.getPointerTy());
2878          IdxN = DAG.getNode(ISD::MUL, getCurDebugLoc(),
2879                             N.getValueType(), IdxN, Scale);
2880        }
2881      }
2882
2883      N = DAG.getNode(ISD::ADD, getCurDebugLoc(),
2884                      N.getValueType(), N, IdxN);
2885    }
2886  }
2887
2888  setValue(&I, N);
2889}
2890
2891void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
2892  // If this is a fixed sized alloca in the entry block of the function,
2893  // allocate it statically on the stack.
2894  if (FuncInfo.StaticAllocaMap.count(&I))
2895    return;   // getValue will auto-populate this.
2896
2897  const Type *Ty = I.getAllocatedType();
2898  uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty);
2899  unsigned Align =
2900    std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty),
2901             I.getAlignment());
2902
2903  SDValue AllocSize = getValue(I.getArraySize());
2904
2905  EVT IntPtr = TLI.getPointerTy();
2906  if (AllocSize.getValueType() != IntPtr)
2907    AllocSize = DAG.getZExtOrTrunc(AllocSize, getCurDebugLoc(), IntPtr);
2908
2909  AllocSize = DAG.getNode(ISD::MUL, getCurDebugLoc(), IntPtr,
2910                          AllocSize,
2911                          DAG.getConstant(TySize, IntPtr));
2912
2913  // Handle alignment.  If the requested alignment is less than or equal to
2914  // the stack alignment, ignore it.  If the size is greater than or equal to
2915  // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
2916  unsigned StackAlign = TM.getFrameInfo()->getStackAlignment();
2917  if (Align <= StackAlign)
2918    Align = 0;
2919
2920  // Round the size of the allocation up to the stack alignment size
2921  // by add SA-1 to the size.
2922  AllocSize = DAG.getNode(ISD::ADD, getCurDebugLoc(),
2923                          AllocSize.getValueType(), AllocSize,
2924                          DAG.getIntPtrConstant(StackAlign-1));
2925
2926  // Mask out the low bits for alignment purposes.
2927  AllocSize = DAG.getNode(ISD::AND, getCurDebugLoc(),
2928                          AllocSize.getValueType(), AllocSize,
2929                          DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1)));
2930
2931  SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) };
2932  SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
2933  SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, getCurDebugLoc(),
2934                            VTs, Ops, 3);
2935  setValue(&I, DSA);
2936  DAG.setRoot(DSA.getValue(1));
2937
2938  // Inform the Frame Information that we have just allocated a variable-sized
2939  // object.
2940  FuncInfo.MF->getFrameInfo()->CreateVariableSizedObject(Align ? Align : 1);
2941}
2942
2943void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
2944  const Value *SV = I.getOperand(0);
2945  SDValue Ptr = getValue(SV);
2946
2947  const Type *Ty = I.getType();
2948
2949  bool isVolatile = I.isVolatile();
2950  bool isNonTemporal = I.getMetadata("nontemporal") != 0;
2951  unsigned Alignment = I.getAlignment();
2952  const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa);
2953
2954  SmallVector<EVT, 4> ValueVTs;
2955  SmallVector<uint64_t, 4> Offsets;
2956  ComputeValueVTs(TLI, Ty, ValueVTs, &Offsets);
2957  unsigned NumValues = ValueVTs.size();
2958  if (NumValues == 0)
2959    return;
2960
2961  SDValue Root;
2962  bool ConstantMemory = false;
2963  if (I.isVolatile() || NumValues > MaxParallelChains)
2964    // Serialize volatile loads with other side effects.
2965    Root = getRoot();
2966  else if (AA->pointsToConstantMemory(
2967             AliasAnalysis::Location(SV, AA->getTypeStoreSize(Ty), TBAAInfo))) {
2968    // Do not serialize (non-volatile) loads of constant memory with anything.
2969    Root = DAG.getEntryNode();
2970    ConstantMemory = true;
2971  } else {
2972    // Do not serialize non-volatile loads against each other.
2973    Root = DAG.getRoot();
2974  }
2975
2976  SmallVector<SDValue, 4> Values(NumValues);
2977  SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains),
2978                                          NumValues));
2979  EVT PtrVT = Ptr.getValueType();
2980  unsigned ChainI = 0;
2981  for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
2982    // Serializing loads here may result in excessive register pressure, and
2983    // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
2984    // could recover a bit by hoisting nodes upward in the chain by recognizing
2985    // they are side-effect free or do not alias. The optimizer should really
2986    // avoid this case by converting large object/array copies to llvm.memcpy
2987    // (MaxParallelChains should always remain as failsafe).
2988    if (ChainI == MaxParallelChains) {
2989      assert(PendingLoads.empty() && "PendingLoads must be serialized first");
2990      SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
2991                                  MVT::Other, &Chains[0], ChainI);
2992      Root = Chain;
2993      ChainI = 0;
2994    }
2995    SDValue A = DAG.getNode(ISD::ADD, getCurDebugLoc(),
2996                            PtrVT, Ptr,
2997                            DAG.getConstant(Offsets[i], PtrVT));
2998    SDValue L = DAG.getLoad(ValueVTs[i], getCurDebugLoc(), Root,
2999                            A, MachinePointerInfo(SV, Offsets[i]), isVolatile,
3000                            isNonTemporal, Alignment, TBAAInfo);
3001
3002    Values[i] = L;
3003    Chains[ChainI] = L.getValue(1);
3004  }
3005
3006  if (!ConstantMemory) {
3007    SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
3008                                MVT::Other, &Chains[0], ChainI);
3009    if (isVolatile)
3010      DAG.setRoot(Chain);
3011    else
3012      PendingLoads.push_back(Chain);
3013  }
3014
3015  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
3016                           DAG.getVTList(&ValueVTs[0], NumValues),
3017                           &Values[0], NumValues));
3018}
3019
3020void SelectionDAGBuilder::visitStore(const StoreInst &I) {
3021  const Value *SrcV = I.getOperand(0);
3022  const Value *PtrV = I.getOperand(1);
3023
3024  SmallVector<EVT, 4> ValueVTs;
3025  SmallVector<uint64_t, 4> Offsets;
3026  ComputeValueVTs(TLI, SrcV->getType(), ValueVTs, &Offsets);
3027  unsigned NumValues = ValueVTs.size();
3028  if (NumValues == 0)
3029    return;
3030
3031  // Get the lowered operands. Note that we do this after
3032  // checking if NumResults is zero, because with zero results
3033  // the operands won't have values in the map.
3034  SDValue Src = getValue(SrcV);
3035  SDValue Ptr = getValue(PtrV);
3036
3037  SDValue Root = getRoot();
3038  SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains),
3039                                          NumValues));
3040  EVT PtrVT = Ptr.getValueType();
3041  bool isVolatile = I.isVolatile();
3042  bool isNonTemporal = I.getMetadata("nontemporal") != 0;
3043  unsigned Alignment = I.getAlignment();
3044  const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa);
3045
3046  unsigned ChainI = 0;
3047  for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3048    // See visitLoad comments.
3049    if (ChainI == MaxParallelChains) {
3050      SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
3051                                  MVT::Other, &Chains[0], ChainI);
3052      Root = Chain;
3053      ChainI = 0;
3054    }
3055    SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT, Ptr,
3056                              DAG.getConstant(Offsets[i], PtrVT));
3057    SDValue St = DAG.getStore(Root, getCurDebugLoc(),
3058                              SDValue(Src.getNode(), Src.getResNo() + i),
3059                              Add, MachinePointerInfo(PtrV, Offsets[i]),
3060                              isVolatile, isNonTemporal, Alignment, TBAAInfo);
3061    Chains[ChainI] = St;
3062  }
3063
3064  SDValue StoreNode = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
3065                                  MVT::Other, &Chains[0], ChainI);
3066  ++SDNodeOrder;
3067  AssignOrderingToNode(StoreNode.getNode());
3068  DAG.setRoot(StoreNode);
3069}
3070
3071/// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
3072/// node.
3073void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
3074                                               unsigned Intrinsic) {
3075  bool HasChain = !I.doesNotAccessMemory();
3076  bool OnlyLoad = HasChain && I.onlyReadsMemory();
3077
3078  // Build the operand list.
3079  SmallVector<SDValue, 8> Ops;
3080  if (HasChain) {  // If this intrinsic has side-effects, chainify it.
3081    if (OnlyLoad) {
3082      // We don't need to serialize loads against other loads.
3083      Ops.push_back(DAG.getRoot());
3084    } else {
3085      Ops.push_back(getRoot());
3086    }
3087  }
3088
3089  // Info is set by getTgtMemInstrinsic
3090  TargetLowering::IntrinsicInfo Info;
3091  bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic);
3092
3093  // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
3094  if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
3095      Info.opc == ISD::INTRINSIC_W_CHAIN)
3096    Ops.push_back(DAG.getConstant(Intrinsic, TLI.getPointerTy()));
3097
3098  // Add all operands of the call to the operand list.
3099  for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
3100    SDValue Op = getValue(I.getArgOperand(i));
3101    assert(TLI.isTypeLegal(Op.getValueType()) &&
3102           "Intrinsic uses a non-legal type?");
3103    Ops.push_back(Op);
3104  }
3105
3106  SmallVector<EVT, 4> ValueVTs;
3107  ComputeValueVTs(TLI, I.getType(), ValueVTs);
3108#ifndef NDEBUG
3109  for (unsigned Val = 0, E = ValueVTs.size(); Val != E; ++Val) {
3110    assert(TLI.isTypeLegal(ValueVTs[Val]) &&
3111           "Intrinsic uses a non-legal type?");
3112  }
3113#endif // NDEBUG
3114
3115  if (HasChain)
3116    ValueVTs.push_back(MVT::Other);
3117
3118  SDVTList VTs = DAG.getVTList(ValueVTs.data(), ValueVTs.size());
3119
3120  // Create the node.
3121  SDValue Result;
3122  if (IsTgtIntrinsic) {
3123    // This is target intrinsic that touches memory
3124    Result = DAG.getMemIntrinsicNode(Info.opc, getCurDebugLoc(),
3125                                     VTs, &Ops[0], Ops.size(),
3126                                     Info.memVT,
3127                                   MachinePointerInfo(Info.ptrVal, Info.offset),
3128                                     Info.align, Info.vol,
3129                                     Info.readMem, Info.writeMem);
3130  } else if (!HasChain) {
3131    Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurDebugLoc(),
3132                         VTs, &Ops[0], Ops.size());
3133  } else if (!I.getType()->isVoidTy()) {
3134    Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurDebugLoc(),
3135                         VTs, &Ops[0], Ops.size());
3136  } else {
3137    Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurDebugLoc(),
3138                         VTs, &Ops[0], Ops.size());
3139  }
3140
3141  if (HasChain) {
3142    SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
3143    if (OnlyLoad)
3144      PendingLoads.push_back(Chain);
3145    else
3146      DAG.setRoot(Chain);
3147  }
3148
3149  if (!I.getType()->isVoidTy()) {
3150    if (const VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
3151      EVT VT = TLI.getValueType(PTy);
3152      Result = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(), VT, Result);
3153    }
3154
3155    setValue(&I, Result);
3156  }
3157}
3158
3159/// GetSignificand - Get the significand and build it into a floating-point
3160/// number with exponent of 1:
3161///
3162///   Op = (Op & 0x007fffff) | 0x3f800000;
3163///
3164/// where Op is the hexidecimal representation of floating point value.
3165static SDValue
3166GetSignificand(SelectionDAG &DAG, SDValue Op, DebugLoc dl) {
3167  SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
3168                           DAG.getConstant(0x007fffff, MVT::i32));
3169  SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
3170                           DAG.getConstant(0x3f800000, MVT::i32));
3171  return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t2);
3172}
3173
3174/// GetExponent - Get the exponent:
3175///
3176///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
3177///
3178/// where Op is the hexidecimal representation of floating point value.
3179static SDValue
3180GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI,
3181            DebugLoc dl) {
3182  SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
3183                           DAG.getConstant(0x7f800000, MVT::i32));
3184  SDValue t1 = DAG.getNode(ISD::SRL, dl, MVT::i32, t0,
3185                           DAG.getConstant(23, TLI.getPointerTy()));
3186  SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
3187                           DAG.getConstant(127, MVT::i32));
3188  return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
3189}
3190
3191/// getF32Constant - Get 32-bit floating point constant.
3192static SDValue
3193getF32Constant(SelectionDAG &DAG, unsigned Flt) {
3194  return DAG.getConstantFP(APFloat(APInt(32, Flt)), MVT::f32);
3195}
3196
3197/// Inlined utility function to implement binary input atomic intrinsics for
3198/// visitIntrinsicCall: I is a call instruction
3199///                     Op is the associated NodeType for I
3200const char *
3201SelectionDAGBuilder::implVisitBinaryAtomic(const CallInst& I,
3202                                           ISD::NodeType Op) {
3203  SDValue Root = getRoot();
3204  SDValue L =
3205    DAG.getAtomic(Op, getCurDebugLoc(),
3206                  getValue(I.getArgOperand(1)).getValueType().getSimpleVT(),
3207                  Root,
3208                  getValue(I.getArgOperand(0)),
3209                  getValue(I.getArgOperand(1)),
3210                  I.getArgOperand(0));
3211  setValue(&I, L);
3212  DAG.setRoot(L.getValue(1));
3213  return 0;
3214}
3215
3216// implVisitAluOverflow - Lower arithmetic overflow instrinsics.
3217const char *
3218SelectionDAGBuilder::implVisitAluOverflow(const CallInst &I, ISD::NodeType Op) {
3219  SDValue Op1 = getValue(I.getArgOperand(0));
3220  SDValue Op2 = getValue(I.getArgOperand(1));
3221
3222  SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1);
3223  setValue(&I, DAG.getNode(Op, getCurDebugLoc(), VTs, Op1, Op2));
3224  return 0;
3225}
3226
3227/// visitExp - Lower an exp intrinsic. Handles the special sequences for
3228/// limited-precision mode.
3229void
3230SelectionDAGBuilder::visitExp(const CallInst &I) {
3231  SDValue result;
3232  DebugLoc dl = getCurDebugLoc();
3233
3234  if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3235      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3236    SDValue Op = getValue(I.getArgOperand(0));
3237
3238    // Put the exponent in the right bit position for later addition to the
3239    // final result:
3240    //
3241    //   #define LOG2OFe 1.4426950f
3242    //   IntegerPartOfX = ((int32_t)(X * LOG2OFe));
3243    SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
3244                             getF32Constant(DAG, 0x3fb8aa3b));
3245    SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
3246
3247    //   FractionalPartOfX = (X * LOG2OFe) - (float)IntegerPartOfX;
3248    SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
3249    SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
3250
3251    //   IntegerPartOfX <<= 23;
3252    IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
3253                                 DAG.getConstant(23, TLI.getPointerTy()));
3254
3255    if (LimitFloatPrecision <= 6) {
3256      // For floating-point precision of 6:
3257      //
3258      //   TwoToFractionalPartOfX =
3259      //     0.997535578f +
3260      //       (0.735607626f + 0.252464424f * x) * x;
3261      //
3262      // error 0.0144103317, which is 6 bits
3263      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3264                               getF32Constant(DAG, 0x3e814304));
3265      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3266                               getF32Constant(DAG, 0x3f3c50c8));
3267      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3268      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3269                               getF32Constant(DAG, 0x3f7f5e7e));
3270      SDValue TwoToFracPartOfX = DAG.getNode(ISD::BIT_CONVERT, dl,MVT::i32, t5);
3271
3272      // Add the exponent into the result in integer domain.
3273      SDValue t6 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3274                               TwoToFracPartOfX, IntegerPartOfX);
3275
3276      result = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t6);
3277    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3278      // For floating-point precision of 12:
3279      //
3280      //   TwoToFractionalPartOfX =
3281      //     0.999892986f +
3282      //       (0.696457318f +
3283      //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
3284      //
3285      // 0.000107046256 error, which is 13 to 14 bits
3286      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3287                               getF32Constant(DAG, 0x3da235e3));
3288      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3289                               getF32Constant(DAG, 0x3e65b8f3));
3290      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3291      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3292                               getF32Constant(DAG, 0x3f324b07));
3293      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3294      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3295                               getF32Constant(DAG, 0x3f7ff8fd));
3296      SDValue TwoToFracPartOfX = DAG.getNode(ISD::BIT_CONVERT, dl,MVT::i32, t7);
3297
3298      // Add the exponent into the result in integer domain.
3299      SDValue t8 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3300                               TwoToFracPartOfX, IntegerPartOfX);
3301
3302      result = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t8);
3303    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3304      // For floating-point precision of 18:
3305      //
3306      //   TwoToFractionalPartOfX =
3307      //     0.999999982f +
3308      //       (0.693148872f +
3309      //         (0.240227044f +
3310      //           (0.554906021e-1f +
3311      //             (0.961591928e-2f +
3312      //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
3313      //
3314      // error 2.47208000*10^(-7), which is better than 18 bits
3315      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3316                               getF32Constant(DAG, 0x3924b03e));
3317      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3318                               getF32Constant(DAG, 0x3ab24b87));
3319      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3320      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3321                               getF32Constant(DAG, 0x3c1d8c17));
3322      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3323      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3324                               getF32Constant(DAG, 0x3d634a1d));
3325      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3326      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3327                               getF32Constant(DAG, 0x3e75fe14));
3328      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3329      SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
3330                                getF32Constant(DAG, 0x3f317234));
3331      SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
3332      SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
3333                                getF32Constant(DAG, 0x3f800000));
3334      SDValue TwoToFracPartOfX = DAG.getNode(ISD::BIT_CONVERT, dl,
3335                                             MVT::i32, t13);
3336
3337      // Add the exponent into the result in integer domain.
3338      SDValue t14 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3339                                TwoToFracPartOfX, IntegerPartOfX);
3340
3341      result = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t14);
3342    }
3343  } else {
3344    // No special expansion.
3345    result = DAG.getNode(ISD::FEXP, dl,
3346                         getValue(I.getArgOperand(0)).getValueType(),
3347                         getValue(I.getArgOperand(0)));
3348  }
3349
3350  setValue(&I, result);
3351}
3352
3353/// visitLog - Lower a log intrinsic. Handles the special sequences for
3354/// limited-precision mode.
3355void
3356SelectionDAGBuilder::visitLog(const CallInst &I) {
3357  SDValue result;
3358  DebugLoc dl = getCurDebugLoc();
3359
3360  if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3361      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3362    SDValue Op = getValue(I.getArgOperand(0));
3363    SDValue Op1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, Op);
3364
3365    // Scale the exponent by log(2) [0.69314718f].
3366    SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
3367    SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
3368                                        getF32Constant(DAG, 0x3f317218));
3369
3370    // Get the significand and build it into a floating-point number with
3371    // exponent of 1.
3372    SDValue X = GetSignificand(DAG, Op1, dl);
3373
3374    if (LimitFloatPrecision <= 6) {
3375      // For floating-point precision of 6:
3376      //
3377      //   LogofMantissa =
3378      //     -1.1609546f +
3379      //       (1.4034025f - 0.23903021f * x) * x;
3380      //
3381      // error 0.0034276066, which is better than 8 bits
3382      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3383                               getF32Constant(DAG, 0xbe74c456));
3384      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3385                               getF32Constant(DAG, 0x3fb3a2b1));
3386      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3387      SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3388                                          getF32Constant(DAG, 0x3f949a29));
3389
3390      result = DAG.getNode(ISD::FADD, dl,
3391                           MVT::f32, LogOfExponent, LogOfMantissa);
3392    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3393      // For floating-point precision of 12:
3394      //
3395      //   LogOfMantissa =
3396      //     -1.7417939f +
3397      //       (2.8212026f +
3398      //         (-1.4699568f +
3399      //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
3400      //
3401      // error 0.000061011436, which is 14 bits
3402      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3403                               getF32Constant(DAG, 0xbd67b6d6));
3404      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3405                               getF32Constant(DAG, 0x3ee4f4b8));
3406      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3407      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3408                               getF32Constant(DAG, 0x3fbc278b));
3409      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3410      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3411                               getF32Constant(DAG, 0x40348e95));
3412      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3413      SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3414                                          getF32Constant(DAG, 0x3fdef31a));
3415
3416      result = DAG.getNode(ISD::FADD, dl,
3417                           MVT::f32, LogOfExponent, LogOfMantissa);
3418    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3419      // For floating-point precision of 18:
3420      //
3421      //   LogOfMantissa =
3422      //     -2.1072184f +
3423      //       (4.2372794f +
3424      //         (-3.7029485f +
3425      //           (2.2781945f +
3426      //             (-0.87823314f +
3427      //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
3428      //
3429      // error 0.0000023660568, which is better than 18 bits
3430      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3431                               getF32Constant(DAG, 0xbc91e5ac));
3432      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3433                               getF32Constant(DAG, 0x3e4350aa));
3434      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3435      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3436                               getF32Constant(DAG, 0x3f60d3e3));
3437      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3438      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3439                               getF32Constant(DAG, 0x4011cdf0));
3440      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3441      SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3442                               getF32Constant(DAG, 0x406cfd1c));
3443      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3444      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3445                               getF32Constant(DAG, 0x408797cb));
3446      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3447      SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
3448                                          getF32Constant(DAG, 0x4006dcab));
3449
3450      result = DAG.getNode(ISD::FADD, dl,
3451                           MVT::f32, LogOfExponent, LogOfMantissa);
3452    }
3453  } else {
3454    // No special expansion.
3455    result = DAG.getNode(ISD::FLOG, dl,
3456                         getValue(I.getArgOperand(0)).getValueType(),
3457                         getValue(I.getArgOperand(0)));
3458  }
3459
3460  setValue(&I, result);
3461}
3462
3463/// visitLog2 - Lower a log2 intrinsic. Handles the special sequences for
3464/// limited-precision mode.
3465void
3466SelectionDAGBuilder::visitLog2(const CallInst &I) {
3467  SDValue result;
3468  DebugLoc dl = getCurDebugLoc();
3469
3470  if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3471      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3472    SDValue Op = getValue(I.getArgOperand(0));
3473    SDValue Op1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, Op);
3474
3475    // Get the exponent.
3476    SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
3477
3478    // Get the significand and build it into a floating-point number with
3479    // exponent of 1.
3480    SDValue X = GetSignificand(DAG, Op1, dl);
3481
3482    // Different possible minimax approximations of significand in
3483    // floating-point for various degrees of accuracy over [1,2].
3484    if (LimitFloatPrecision <= 6) {
3485      // For floating-point precision of 6:
3486      //
3487      //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
3488      //
3489      // error 0.0049451742, which is more than 7 bits
3490      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3491                               getF32Constant(DAG, 0xbeb08fe0));
3492      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3493                               getF32Constant(DAG, 0x40019463));
3494      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3495      SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3496                                           getF32Constant(DAG, 0x3fd6633d));
3497
3498      result = DAG.getNode(ISD::FADD, dl,
3499                           MVT::f32, LogOfExponent, Log2ofMantissa);
3500    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3501      // For floating-point precision of 12:
3502      //
3503      //   Log2ofMantissa =
3504      //     -2.51285454f +
3505      //       (4.07009056f +
3506      //         (-2.12067489f +
3507      //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
3508      //
3509      // error 0.0000876136000, which is better than 13 bits
3510      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3511                               getF32Constant(DAG, 0xbda7262e));
3512      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3513                               getF32Constant(DAG, 0x3f25280b));
3514      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3515      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3516                               getF32Constant(DAG, 0x4007b923));
3517      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3518      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3519                               getF32Constant(DAG, 0x40823e2f));
3520      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3521      SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3522                                           getF32Constant(DAG, 0x4020d29c));
3523
3524      result = DAG.getNode(ISD::FADD, dl,
3525                           MVT::f32, LogOfExponent, Log2ofMantissa);
3526    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3527      // For floating-point precision of 18:
3528      //
3529      //   Log2ofMantissa =
3530      //     -3.0400495f +
3531      //       (6.1129976f +
3532      //         (-5.3420409f +
3533      //           (3.2865683f +
3534      //             (-1.2669343f +
3535      //               (0.27515199f -
3536      //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
3537      //
3538      // error 0.0000018516, which is better than 18 bits
3539      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3540                               getF32Constant(DAG, 0xbcd2769e));
3541      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3542                               getF32Constant(DAG, 0x3e8ce0b9));
3543      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3544      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3545                               getF32Constant(DAG, 0x3fa22ae7));
3546      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3547      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3548                               getF32Constant(DAG, 0x40525723));
3549      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3550      SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3551                               getF32Constant(DAG, 0x40aaf200));
3552      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3553      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3554                               getF32Constant(DAG, 0x40c39dad));
3555      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3556      SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
3557                                           getF32Constant(DAG, 0x4042902c));
3558
3559      result = DAG.getNode(ISD::FADD, dl,
3560                           MVT::f32, LogOfExponent, Log2ofMantissa);
3561    }
3562  } else {
3563    // No special expansion.
3564    result = DAG.getNode(ISD::FLOG2, dl,
3565                         getValue(I.getArgOperand(0)).getValueType(),
3566                         getValue(I.getArgOperand(0)));
3567  }
3568
3569  setValue(&I, result);
3570}
3571
3572/// visitLog10 - Lower a log10 intrinsic. Handles the special sequences for
3573/// limited-precision mode.
3574void
3575SelectionDAGBuilder::visitLog10(const CallInst &I) {
3576  SDValue result;
3577  DebugLoc dl = getCurDebugLoc();
3578
3579  if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3580      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3581    SDValue Op = getValue(I.getArgOperand(0));
3582    SDValue Op1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, Op);
3583
3584    // Scale the exponent by log10(2) [0.30102999f].
3585    SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
3586    SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
3587                                        getF32Constant(DAG, 0x3e9a209a));
3588
3589    // Get the significand and build it into a floating-point number with
3590    // exponent of 1.
3591    SDValue X = GetSignificand(DAG, Op1, dl);
3592
3593    if (LimitFloatPrecision <= 6) {
3594      // For floating-point precision of 6:
3595      //
3596      //   Log10ofMantissa =
3597      //     -0.50419619f +
3598      //       (0.60948995f - 0.10380950f * x) * x;
3599      //
3600      // error 0.0014886165, which is 6 bits
3601      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3602                               getF32Constant(DAG, 0xbdd49a13));
3603      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3604                               getF32Constant(DAG, 0x3f1c0789));
3605      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3606      SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3607                                            getF32Constant(DAG, 0x3f011300));
3608
3609      result = DAG.getNode(ISD::FADD, dl,
3610                           MVT::f32, LogOfExponent, Log10ofMantissa);
3611    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3612      // For floating-point precision of 12:
3613      //
3614      //   Log10ofMantissa =
3615      //     -0.64831180f +
3616      //       (0.91751397f +
3617      //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
3618      //
3619      // error 0.00019228036, which is better than 12 bits
3620      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3621                               getF32Constant(DAG, 0x3d431f31));
3622      SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
3623                               getF32Constant(DAG, 0x3ea21fb2));
3624      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3625      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3626                               getF32Constant(DAG, 0x3f6ae232));
3627      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3628      SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
3629                                            getF32Constant(DAG, 0x3f25f7c3));
3630
3631      result = DAG.getNode(ISD::FADD, dl,
3632                           MVT::f32, LogOfExponent, Log10ofMantissa);
3633    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3634      // For floating-point precision of 18:
3635      //
3636      //   Log10ofMantissa =
3637      //     -0.84299375f +
3638      //       (1.5327582f +
3639      //         (-1.0688956f +
3640      //           (0.49102474f +
3641      //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
3642      //
3643      // error 0.0000037995730, which is better than 18 bits
3644      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3645                               getF32Constant(DAG, 0x3c5d51ce));
3646      SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
3647                               getF32Constant(DAG, 0x3e00685a));
3648      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3649      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3650                               getF32Constant(DAG, 0x3efb6798));
3651      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3652      SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
3653                               getF32Constant(DAG, 0x3f88d192));
3654      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3655      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3656                               getF32Constant(DAG, 0x3fc4316c));
3657      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3658      SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
3659                                            getF32Constant(DAG, 0x3f57ce70));
3660
3661      result = DAG.getNode(ISD::FADD, dl,
3662                           MVT::f32, LogOfExponent, Log10ofMantissa);
3663    }
3664  } else {
3665    // No special expansion.
3666    result = DAG.getNode(ISD::FLOG10, dl,
3667                         getValue(I.getArgOperand(0)).getValueType(),
3668                         getValue(I.getArgOperand(0)));
3669  }
3670
3671  setValue(&I, result);
3672}
3673
3674/// visitExp2 - Lower an exp2 intrinsic. Handles the special sequences for
3675/// limited-precision mode.
3676void
3677SelectionDAGBuilder::visitExp2(const CallInst &I) {
3678  SDValue result;
3679  DebugLoc dl = getCurDebugLoc();
3680
3681  if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3682      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3683    SDValue Op = getValue(I.getArgOperand(0));
3684
3685    SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Op);
3686
3687    //   FractionalPartOfX = x - (float)IntegerPartOfX;
3688    SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
3689    SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, Op, t1);
3690
3691    //   IntegerPartOfX <<= 23;
3692    IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
3693                                 DAG.getConstant(23, TLI.getPointerTy()));
3694
3695    if (LimitFloatPrecision <= 6) {
3696      // For floating-point precision of 6:
3697      //
3698      //   TwoToFractionalPartOfX =
3699      //     0.997535578f +
3700      //       (0.735607626f + 0.252464424f * x) * x;
3701      //
3702      // error 0.0144103317, which is 6 bits
3703      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3704                               getF32Constant(DAG, 0x3e814304));
3705      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3706                               getF32Constant(DAG, 0x3f3c50c8));
3707      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3708      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3709                               getF32Constant(DAG, 0x3f7f5e7e));
3710      SDValue t6 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t5);
3711      SDValue TwoToFractionalPartOfX =
3712        DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX);
3713
3714      result = DAG.getNode(ISD::BIT_CONVERT, dl,
3715                           MVT::f32, TwoToFractionalPartOfX);
3716    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3717      // For floating-point precision of 12:
3718      //
3719      //   TwoToFractionalPartOfX =
3720      //     0.999892986f +
3721      //       (0.696457318f +
3722      //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
3723      //
3724      // error 0.000107046256, which is 13 to 14 bits
3725      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3726                               getF32Constant(DAG, 0x3da235e3));
3727      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3728                               getF32Constant(DAG, 0x3e65b8f3));
3729      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3730      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3731                               getF32Constant(DAG, 0x3f324b07));
3732      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3733      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3734                               getF32Constant(DAG, 0x3f7ff8fd));
3735      SDValue t8 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t7);
3736      SDValue TwoToFractionalPartOfX =
3737        DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX);
3738
3739      result = DAG.getNode(ISD::BIT_CONVERT, dl,
3740                           MVT::f32, TwoToFractionalPartOfX);
3741    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3742      // For floating-point precision of 18:
3743      //
3744      //   TwoToFractionalPartOfX =
3745      //     0.999999982f +
3746      //       (0.693148872f +
3747      //         (0.240227044f +
3748      //           (0.554906021e-1f +
3749      //             (0.961591928e-2f +
3750      //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
3751      // error 2.47208000*10^(-7), which is better than 18 bits
3752      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3753                               getF32Constant(DAG, 0x3924b03e));
3754      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3755                               getF32Constant(DAG, 0x3ab24b87));
3756      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3757      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3758                               getF32Constant(DAG, 0x3c1d8c17));
3759      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3760      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3761                               getF32Constant(DAG, 0x3d634a1d));
3762      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3763      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3764                               getF32Constant(DAG, 0x3e75fe14));
3765      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3766      SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
3767                                getF32Constant(DAG, 0x3f317234));
3768      SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
3769      SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
3770                                getF32Constant(DAG, 0x3f800000));
3771      SDValue t14 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t13);
3772      SDValue TwoToFractionalPartOfX =
3773        DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX);
3774
3775      result = DAG.getNode(ISD::BIT_CONVERT, dl,
3776                           MVT::f32, TwoToFractionalPartOfX);
3777    }
3778  } else {
3779    // No special expansion.
3780    result = DAG.getNode(ISD::FEXP2, dl,
3781                         getValue(I.getArgOperand(0)).getValueType(),
3782                         getValue(I.getArgOperand(0)));
3783  }
3784
3785  setValue(&I, result);
3786}
3787
3788/// visitPow - Lower a pow intrinsic. Handles the special sequences for
3789/// limited-precision mode with x == 10.0f.
3790void
3791SelectionDAGBuilder::visitPow(const CallInst &I) {
3792  SDValue result;
3793  const Value *Val = I.getArgOperand(0);
3794  DebugLoc dl = getCurDebugLoc();
3795  bool IsExp10 = false;
3796
3797  if (getValue(Val).getValueType() == MVT::f32 &&
3798      getValue(I.getArgOperand(1)).getValueType() == MVT::f32 &&
3799      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3800    if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(Val))) {
3801      if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
3802        APFloat Ten(10.0f);
3803        IsExp10 = CFP->getValueAPF().bitwiseIsEqual(Ten);
3804      }
3805    }
3806  }
3807
3808  if (IsExp10 && LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3809    SDValue Op = getValue(I.getArgOperand(1));
3810
3811    // Put the exponent in the right bit position for later addition to the
3812    // final result:
3813    //
3814    //   #define LOG2OF10 3.3219281f
3815    //   IntegerPartOfX = (int32_t)(x * LOG2OF10);
3816    SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
3817                             getF32Constant(DAG, 0x40549a78));
3818    SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
3819
3820    //   FractionalPartOfX = x - (float)IntegerPartOfX;
3821    SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
3822    SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
3823
3824    //   IntegerPartOfX <<= 23;
3825    IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
3826                                 DAG.getConstant(23, TLI.getPointerTy()));
3827
3828    if (LimitFloatPrecision <= 6) {
3829      // For floating-point precision of 6:
3830      //
3831      //   twoToFractionalPartOfX =
3832      //     0.997535578f +
3833      //       (0.735607626f + 0.252464424f * x) * x;
3834      //
3835      // error 0.0144103317, which is 6 bits
3836      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3837                               getF32Constant(DAG, 0x3e814304));
3838      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3839                               getF32Constant(DAG, 0x3f3c50c8));
3840      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3841      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3842                               getF32Constant(DAG, 0x3f7f5e7e));
3843      SDValue t6 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t5);
3844      SDValue TwoToFractionalPartOfX =
3845        DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX);
3846
3847      result = DAG.getNode(ISD::BIT_CONVERT, dl,
3848                           MVT::f32, TwoToFractionalPartOfX);
3849    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3850      // For floating-point precision of 12:
3851      //
3852      //   TwoToFractionalPartOfX =
3853      //     0.999892986f +
3854      //       (0.696457318f +
3855      //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
3856      //
3857      // error 0.000107046256, which is 13 to 14 bits
3858      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3859                               getF32Constant(DAG, 0x3da235e3));
3860      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3861                               getF32Constant(DAG, 0x3e65b8f3));
3862      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3863      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3864                               getF32Constant(DAG, 0x3f324b07));
3865      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3866      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3867                               getF32Constant(DAG, 0x3f7ff8fd));
3868      SDValue t8 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t7);
3869      SDValue TwoToFractionalPartOfX =
3870        DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX);
3871
3872      result = DAG.getNode(ISD::BIT_CONVERT, dl,
3873                           MVT::f32, TwoToFractionalPartOfX);
3874    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3875      // For floating-point precision of 18:
3876      //
3877      //   TwoToFractionalPartOfX =
3878      //     0.999999982f +
3879      //       (0.693148872f +
3880      //         (0.240227044f +
3881      //           (0.554906021e-1f +
3882      //             (0.961591928e-2f +
3883      //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
3884      // error 2.47208000*10^(-7), which is better than 18 bits
3885      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3886                               getF32Constant(DAG, 0x3924b03e));
3887      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3888                               getF32Constant(DAG, 0x3ab24b87));
3889      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3890      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3891                               getF32Constant(DAG, 0x3c1d8c17));
3892      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3893      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3894                               getF32Constant(DAG, 0x3d634a1d));
3895      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3896      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3897                               getF32Constant(DAG, 0x3e75fe14));
3898      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3899      SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
3900                                getF32Constant(DAG, 0x3f317234));
3901      SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
3902      SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
3903                                getF32Constant(DAG, 0x3f800000));
3904      SDValue t14 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t13);
3905      SDValue TwoToFractionalPartOfX =
3906        DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX);
3907
3908      result = DAG.getNode(ISD::BIT_CONVERT, dl,
3909                           MVT::f32, TwoToFractionalPartOfX);
3910    }
3911  } else {
3912    // No special expansion.
3913    result = DAG.getNode(ISD::FPOW, dl,
3914                         getValue(I.getArgOperand(0)).getValueType(),
3915                         getValue(I.getArgOperand(0)),
3916                         getValue(I.getArgOperand(1)));
3917  }
3918
3919  setValue(&I, result);
3920}
3921
3922
3923/// ExpandPowI - Expand a llvm.powi intrinsic.
3924static SDValue ExpandPowI(DebugLoc DL, SDValue LHS, SDValue RHS,
3925                          SelectionDAG &DAG) {
3926  // If RHS is a constant, we can expand this out to a multiplication tree,
3927  // otherwise we end up lowering to a call to __powidf2 (for example).  When
3928  // optimizing for size, we only want to do this if the expansion would produce
3929  // a small number of multiplies, otherwise we do the full expansion.
3930  if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
3931    // Get the exponent as a positive value.
3932    unsigned Val = RHSC->getSExtValue();
3933    if ((int)Val < 0) Val = -Val;
3934
3935    // powi(x, 0) -> 1.0
3936    if (Val == 0)
3937      return DAG.getConstantFP(1.0, LHS.getValueType());
3938
3939    const Function *F = DAG.getMachineFunction().getFunction();
3940    if (!F->hasFnAttr(Attribute::OptimizeForSize) ||
3941        // If optimizing for size, don't insert too many multiplies.  This
3942        // inserts up to 5 multiplies.
3943        CountPopulation_32(Val)+Log2_32(Val) < 7) {
3944      // We use the simple binary decomposition method to generate the multiply
3945      // sequence.  There are more optimal ways to do this (for example,
3946      // powi(x,15) generates one more multiply than it should), but this has
3947      // the benefit of being both really simple and much better than a libcall.
3948      SDValue Res;  // Logically starts equal to 1.0
3949      SDValue CurSquare = LHS;
3950      while (Val) {
3951        if (Val & 1) {
3952          if (Res.getNode())
3953            Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare);
3954          else
3955            Res = CurSquare;  // 1.0*CurSquare.
3956        }
3957
3958        CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
3959                                CurSquare, CurSquare);
3960        Val >>= 1;
3961      }
3962
3963      // If the original was negative, invert the result, producing 1/(x*x*x).
3964      if (RHSC->getSExtValue() < 0)
3965        Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
3966                          DAG.getConstantFP(1.0, LHS.getValueType()), Res);
3967      return Res;
3968    }
3969  }
3970
3971  // Otherwise, expand to a libcall.
3972  return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
3973}
3974
3975/// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function
3976/// argument, create the corresponding DBG_VALUE machine instruction for it now.
3977/// At the end of instruction selection, they will be inserted to the entry BB.
3978bool
3979SelectionDAGBuilder::EmitFuncArgumentDbgValue(const Value *V, MDNode *Variable,
3980                                              int64_t Offset,
3981                                              const SDValue &N) {
3982  const Argument *Arg = dyn_cast<Argument>(V);
3983  if (!Arg)
3984    return false;
3985
3986  MachineFunction &MF = DAG.getMachineFunction();
3987  const TargetInstrInfo *TII = DAG.getTarget().getInstrInfo();
3988  const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
3989
3990  // Ignore inlined function arguments here.
3991  DIVariable DV(Variable);
3992  if (DV.isInlinedFnArgument(MF.getFunction()))
3993    return false;
3994
3995  MachineBasicBlock *MBB = FuncInfo.MBB;
3996  if (MBB != &MF.front())
3997    return false;
3998
3999  unsigned Reg = 0;
4000  if (Arg->hasByValAttr()) {
4001    // Byval arguments' frame index is recorded during argument lowering.
4002    // Use this info directly.
4003    Reg = TRI->getFrameRegister(MF);
4004    Offset = FuncInfo.getByValArgumentFrameIndex(Arg);
4005    // If byval argument ofset is not recorded then ignore this.
4006    if (!Offset)
4007      Reg = 0;
4008  }
4009
4010  if (N.getNode() && N.getOpcode() == ISD::CopyFromReg) {
4011    Reg = cast<RegisterSDNode>(N.getOperand(1))->getReg();
4012    if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) {
4013      MachineRegisterInfo &RegInfo = MF.getRegInfo();
4014      unsigned PR = RegInfo.getLiveInPhysReg(Reg);
4015      if (PR)
4016        Reg = PR;
4017    }
4018  }
4019
4020  if (!Reg) {
4021    // Check if ValueMap has reg number.
4022    DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
4023    if (VMI != FuncInfo.ValueMap.end())
4024      Reg = VMI->second;
4025  }
4026
4027  if (!Reg && N.getNode()) {
4028    // Check if frame index is available.
4029    if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode()))
4030      if (FrameIndexSDNode *FINode =
4031          dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) {
4032        Reg = TRI->getFrameRegister(MF);
4033        Offset = FINode->getIndex();
4034      }
4035  }
4036
4037  if (!Reg)
4038    return false;
4039
4040  MachineInstrBuilder MIB = BuildMI(MF, getCurDebugLoc(),
4041                                    TII->get(TargetOpcode::DBG_VALUE))
4042    .addReg(Reg, RegState::Debug).addImm(Offset).addMetadata(Variable);
4043  FuncInfo.ArgDbgValues.push_back(&*MIB);
4044  return true;
4045}
4046
4047// VisualStudio defines setjmp as _setjmp
4048#if defined(_MSC_VER) && defined(setjmp) && \
4049                         !defined(setjmp_undefined_for_msvc)
4050#  pragma push_macro("setjmp")
4051#  undef setjmp
4052#  define setjmp_undefined_for_msvc
4053#endif
4054
4055/// visitIntrinsicCall - Lower the call to the specified intrinsic function.  If
4056/// we want to emit this as a call to a named external function, return the name
4057/// otherwise lower it and return null.
4058const char *
4059SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) {
4060  DebugLoc dl = getCurDebugLoc();
4061  SDValue Res;
4062
4063  switch (Intrinsic) {
4064  default:
4065    // By default, turn this into a target intrinsic node.
4066    visitTargetIntrinsic(I, Intrinsic);
4067    return 0;
4068  case Intrinsic::vastart:  visitVAStart(I); return 0;
4069  case Intrinsic::vaend:    visitVAEnd(I); return 0;
4070  case Intrinsic::vacopy:   visitVACopy(I); return 0;
4071  case Intrinsic::returnaddress:
4072    setValue(&I, DAG.getNode(ISD::RETURNADDR, dl, TLI.getPointerTy(),
4073                             getValue(I.getArgOperand(0))));
4074    return 0;
4075  case Intrinsic::frameaddress:
4076    setValue(&I, DAG.getNode(ISD::FRAMEADDR, dl, TLI.getPointerTy(),
4077                             getValue(I.getArgOperand(0))));
4078    return 0;
4079  case Intrinsic::setjmp:
4080    return "_setjmp"+!TLI.usesUnderscoreSetJmp();
4081  case Intrinsic::longjmp:
4082    return "_longjmp"+!TLI.usesUnderscoreLongJmp();
4083  case Intrinsic::memcpy: {
4084    // Assert for address < 256 since we support only user defined address
4085    // spaces.
4086    assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4087           < 256 &&
4088           cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace()
4089           < 256 &&
4090           "Unknown address space");
4091    SDValue Op1 = getValue(I.getArgOperand(0));
4092    SDValue Op2 = getValue(I.getArgOperand(1));
4093    SDValue Op3 = getValue(I.getArgOperand(2));
4094    unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4095    bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4096    DAG.setRoot(DAG.getMemcpy(getRoot(), dl, Op1, Op2, Op3, Align, isVol, false,
4097                              MachinePointerInfo(I.getArgOperand(0)),
4098                              MachinePointerInfo(I.getArgOperand(1))));
4099    return 0;
4100  }
4101  case Intrinsic::memset: {
4102    // Assert for address < 256 since we support only user defined address
4103    // spaces.
4104    assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4105           < 256 &&
4106           "Unknown address space");
4107    SDValue Op1 = getValue(I.getArgOperand(0));
4108    SDValue Op2 = getValue(I.getArgOperand(1));
4109    SDValue Op3 = getValue(I.getArgOperand(2));
4110    unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4111    bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4112    DAG.setRoot(DAG.getMemset(getRoot(), dl, Op1, Op2, Op3, Align, isVol,
4113                              MachinePointerInfo(I.getArgOperand(0))));
4114    return 0;
4115  }
4116  case Intrinsic::memmove: {
4117    // Assert for address < 256 since we support only user defined address
4118    // spaces.
4119    assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4120           < 256 &&
4121           cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace()
4122           < 256 &&
4123           "Unknown address space");
4124    SDValue Op1 = getValue(I.getArgOperand(0));
4125    SDValue Op2 = getValue(I.getArgOperand(1));
4126    SDValue Op3 = getValue(I.getArgOperand(2));
4127    unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4128    bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4129    DAG.setRoot(DAG.getMemmove(getRoot(), dl, Op1, Op2, Op3, Align, isVol,
4130                               MachinePointerInfo(I.getArgOperand(0)),
4131                               MachinePointerInfo(I.getArgOperand(1))));
4132    return 0;
4133  }
4134  case Intrinsic::dbg_declare: {
4135    const DbgDeclareInst &DI = cast<DbgDeclareInst>(I);
4136    MDNode *Variable = DI.getVariable();
4137    const Value *Address = DI.getAddress();
4138    if (!Address || !DIVariable(DI.getVariable()).Verify())
4139      return 0;
4140
4141    // Build an entry in DbgOrdering.  Debug info input nodes get an SDNodeOrder
4142    // but do not always have a corresponding SDNode built.  The SDNodeOrder
4143    // absolute, but not relative, values are different depending on whether
4144    // debug info exists.
4145    ++SDNodeOrder;
4146
4147    // Check if address has undef value.
4148    if (isa<UndefValue>(Address) ||
4149        (Address->use_empty() && !isa<Argument>(Address))) {
4150      SDDbgValue*SDV =
4151        DAG.getDbgValue(Variable, UndefValue::get(Address->getType()),
4152                        0, dl, SDNodeOrder);
4153      DAG.AddDbgValue(SDV, 0, false);
4154      return 0;
4155    }
4156
4157    SDValue &N = NodeMap[Address];
4158    if (!N.getNode() && isa<Argument>(Address))
4159      // Check unused arguments map.
4160      N = UnusedArgNodeMap[Address];
4161    SDDbgValue *SDV;
4162    if (N.getNode()) {
4163      // Parameters are handled specially.
4164      bool isParameter =
4165        DIVariable(Variable).getTag() == dwarf::DW_TAG_arg_variable;
4166      if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
4167        Address = BCI->getOperand(0);
4168      const AllocaInst *AI = dyn_cast<AllocaInst>(Address);
4169
4170      if (isParameter && !AI) {
4171        FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
4172        if (FINode)
4173          // Byval parameter.  We have a frame index at this point.
4174          SDV = DAG.getDbgValue(Variable, FINode->getIndex(),
4175                                0, dl, SDNodeOrder);
4176        else
4177          // Can't do anything with other non-AI cases yet.  This might be a
4178          // parameter of a callee function that got inlined, for example.
4179          return 0;
4180      } else if (AI)
4181        SDV = DAG.getDbgValue(Variable, N.getNode(), N.getResNo(),
4182                              0, dl, SDNodeOrder);
4183      else
4184        // Can't do anything with other non-AI cases yet.
4185        return 0;
4186      DAG.AddDbgValue(SDV, N.getNode(), isParameter);
4187    } else {
4188      // If Address is an argument then try to emit its dbg value using
4189      // virtual register info from the FuncInfo.ValueMap.
4190      if (!EmitFuncArgumentDbgValue(Address, Variable, 0, N)) {
4191        // If variable is pinned by a alloca in dominating bb then
4192        // use StaticAllocaMap.
4193        if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) {
4194          if (AI->getParent() != DI.getParent()) {
4195            DenseMap<const AllocaInst*, int>::iterator SI =
4196              FuncInfo.StaticAllocaMap.find(AI);
4197            if (SI != FuncInfo.StaticAllocaMap.end()) {
4198              SDV = DAG.getDbgValue(Variable, SI->second,
4199                                    0, dl, SDNodeOrder);
4200              DAG.AddDbgValue(SDV, 0, false);
4201              return 0;
4202            }
4203          }
4204        }
4205        // Otherwise add undef to help track missing debug info.
4206        SDV = DAG.getDbgValue(Variable, UndefValue::get(Address->getType()),
4207                              0, dl, SDNodeOrder);
4208        DAG.AddDbgValue(SDV, 0, false);
4209      }
4210    }
4211    return 0;
4212  }
4213  case Intrinsic::dbg_value: {
4214    const DbgValueInst &DI = cast<DbgValueInst>(I);
4215    if (!DIVariable(DI.getVariable()).Verify())
4216      return 0;
4217
4218    MDNode *Variable = DI.getVariable();
4219    uint64_t Offset = DI.getOffset();
4220    const Value *V = DI.getValue();
4221    if (!V)
4222      return 0;
4223
4224    // Build an entry in DbgOrdering.  Debug info input nodes get an SDNodeOrder
4225    // but do not always have a corresponding SDNode built.  The SDNodeOrder
4226    // absolute, but not relative, values are different depending on whether
4227    // debug info exists.
4228    ++SDNodeOrder;
4229    SDDbgValue *SDV;
4230    if (isa<ConstantInt>(V) || isa<ConstantFP>(V)) {
4231      SDV = DAG.getDbgValue(Variable, V, Offset, dl, SDNodeOrder);
4232      DAG.AddDbgValue(SDV, 0, false);
4233    } else {
4234      // Do not use getValue() in here; we don't want to generate code at
4235      // this point if it hasn't been done yet.
4236      SDValue N = NodeMap[V];
4237      if (!N.getNode() && isa<Argument>(V))
4238        // Check unused arguments map.
4239        N = UnusedArgNodeMap[V];
4240      if (N.getNode()) {
4241        if (!EmitFuncArgumentDbgValue(V, Variable, Offset, N)) {
4242          SDV = DAG.getDbgValue(Variable, N.getNode(),
4243                                N.getResNo(), Offset, dl, SDNodeOrder);
4244          DAG.AddDbgValue(SDV, N.getNode(), false);
4245        }
4246      } else if (isa<PHINode>(V) && !V->use_empty() ) {
4247        // Do not call getValue(V) yet, as we don't want to generate code.
4248        // Remember it for later.
4249        DanglingDebugInfo DDI(&DI, dl, SDNodeOrder);
4250        DanglingDebugInfoMap[V] = DDI;
4251      } else {
4252        // We may expand this to cover more cases.  One case where we have no
4253        // data available is an unreferenced parameter; we need this fallback.
4254        SDV = DAG.getDbgValue(Variable, UndefValue::get(V->getType()),
4255                              Offset, dl, SDNodeOrder);
4256        DAG.AddDbgValue(SDV, 0, false);
4257      }
4258    }
4259
4260    // Build a debug info table entry.
4261    if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V))
4262      V = BCI->getOperand(0);
4263    const AllocaInst *AI = dyn_cast<AllocaInst>(V);
4264    // Don't handle byval struct arguments or VLAs, for example.
4265    if (!AI)
4266      return 0;
4267    DenseMap<const AllocaInst*, int>::iterator SI =
4268      FuncInfo.StaticAllocaMap.find(AI);
4269    if (SI == FuncInfo.StaticAllocaMap.end())
4270      return 0; // VLAs.
4271    int FI = SI->second;
4272
4273    MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4274    if (!DI.getDebugLoc().isUnknown() && MMI.hasDebugInfo())
4275      MMI.setVariableDbgInfo(Variable, FI, DI.getDebugLoc());
4276    return 0;
4277  }
4278  case Intrinsic::eh_exception: {
4279    // Insert the EXCEPTIONADDR instruction.
4280    assert(FuncInfo.MBB->isLandingPad() &&
4281           "Call to eh.exception not in landing pad!");
4282    SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
4283    SDValue Ops[1];
4284    Ops[0] = DAG.getRoot();
4285    SDValue Op = DAG.getNode(ISD::EXCEPTIONADDR, dl, VTs, Ops, 1);
4286    setValue(&I, Op);
4287    DAG.setRoot(Op.getValue(1));
4288    return 0;
4289  }
4290
4291  case Intrinsic::eh_selector: {
4292    MachineBasicBlock *CallMBB = FuncInfo.MBB;
4293    MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4294    if (CallMBB->isLandingPad())
4295      AddCatchInfo(I, &MMI, CallMBB);
4296    else {
4297#ifndef NDEBUG
4298      FuncInfo.CatchInfoLost.insert(&I);
4299#endif
4300      // FIXME: Mark exception selector register as live in.  Hack for PR1508.
4301      unsigned Reg = TLI.getExceptionSelectorRegister();
4302      if (Reg) FuncInfo.MBB->addLiveIn(Reg);
4303    }
4304
4305    // Insert the EHSELECTION instruction.
4306    SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
4307    SDValue Ops[2];
4308    Ops[0] = getValue(I.getArgOperand(0));
4309    Ops[1] = getRoot();
4310    SDValue Op = DAG.getNode(ISD::EHSELECTION, dl, VTs, Ops, 2);
4311    DAG.setRoot(Op.getValue(1));
4312    setValue(&I, DAG.getSExtOrTrunc(Op, dl, MVT::i32));
4313    return 0;
4314  }
4315
4316  case Intrinsic::eh_typeid_for: {
4317    // Find the type id for the given typeinfo.
4318    GlobalVariable *GV = ExtractTypeInfo(I.getArgOperand(0));
4319    unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV);
4320    Res = DAG.getConstant(TypeID, MVT::i32);
4321    setValue(&I, Res);
4322    return 0;
4323  }
4324
4325  case Intrinsic::eh_return_i32:
4326  case Intrinsic::eh_return_i64:
4327    DAG.getMachineFunction().getMMI().setCallsEHReturn(true);
4328    DAG.setRoot(DAG.getNode(ISD::EH_RETURN, dl,
4329                            MVT::Other,
4330                            getControlRoot(),
4331                            getValue(I.getArgOperand(0)),
4332                            getValue(I.getArgOperand(1))));
4333    return 0;
4334  case Intrinsic::eh_unwind_init:
4335    DAG.getMachineFunction().getMMI().setCallsUnwindInit(true);
4336    return 0;
4337  case Intrinsic::eh_dwarf_cfa: {
4338    SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), dl,
4339                                        TLI.getPointerTy());
4340    SDValue Offset = DAG.getNode(ISD::ADD, dl,
4341                                 TLI.getPointerTy(),
4342                                 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, dl,
4343                                             TLI.getPointerTy()),
4344                                 CfaArg);
4345    SDValue FA = DAG.getNode(ISD::FRAMEADDR, dl,
4346                             TLI.getPointerTy(),
4347                             DAG.getConstant(0, TLI.getPointerTy()));
4348    setValue(&I, DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(),
4349                             FA, Offset));
4350    return 0;
4351  }
4352  case Intrinsic::eh_sjlj_callsite: {
4353    MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4354    ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0));
4355    assert(CI && "Non-constant call site value in eh.sjlj.callsite!");
4356    assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
4357
4358    MMI.setCurrentCallSite(CI->getZExtValue());
4359    return 0;
4360  }
4361  case Intrinsic::eh_sjlj_setjmp: {
4362    setValue(&I, DAG.getNode(ISD::EH_SJLJ_SETJMP, dl, MVT::i32, getRoot(),
4363                             getValue(I.getArgOperand(0))));
4364    return 0;
4365  }
4366  case Intrinsic::eh_sjlj_longjmp: {
4367    DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, dl, MVT::Other,
4368                            getRoot(), getValue(I.getArgOperand(0))));
4369    return 0;
4370  }
4371  case Intrinsic::eh_sjlj_dispatch_setup: {
4372    DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_DISPATCHSETUP, dl, MVT::Other,
4373                            getRoot(), getValue(I.getArgOperand(0))));
4374    return 0;
4375  }
4376
4377  case Intrinsic::x86_mmx_pslli_w:
4378  case Intrinsic::x86_mmx_pslli_d:
4379  case Intrinsic::x86_mmx_pslli_q:
4380  case Intrinsic::x86_mmx_psrli_w:
4381  case Intrinsic::x86_mmx_psrli_d:
4382  case Intrinsic::x86_mmx_psrli_q:
4383  case Intrinsic::x86_mmx_psrai_w:
4384  case Intrinsic::x86_mmx_psrai_d: {
4385    SDValue ShAmt = getValue(I.getArgOperand(1));
4386    if (isa<ConstantSDNode>(ShAmt)) {
4387      visitTargetIntrinsic(I, Intrinsic);
4388      return 0;
4389    }
4390    unsigned NewIntrinsic = 0;
4391    EVT ShAmtVT = MVT::v2i32;
4392    switch (Intrinsic) {
4393    case Intrinsic::x86_mmx_pslli_w:
4394      NewIntrinsic = Intrinsic::x86_mmx_psll_w;
4395      break;
4396    case Intrinsic::x86_mmx_pslli_d:
4397      NewIntrinsic = Intrinsic::x86_mmx_psll_d;
4398      break;
4399    case Intrinsic::x86_mmx_pslli_q:
4400      NewIntrinsic = Intrinsic::x86_mmx_psll_q;
4401      break;
4402    case Intrinsic::x86_mmx_psrli_w:
4403      NewIntrinsic = Intrinsic::x86_mmx_psrl_w;
4404      break;
4405    case Intrinsic::x86_mmx_psrli_d:
4406      NewIntrinsic = Intrinsic::x86_mmx_psrl_d;
4407      break;
4408    case Intrinsic::x86_mmx_psrli_q:
4409      NewIntrinsic = Intrinsic::x86_mmx_psrl_q;
4410      break;
4411    case Intrinsic::x86_mmx_psrai_w:
4412      NewIntrinsic = Intrinsic::x86_mmx_psra_w;
4413      break;
4414    case Intrinsic::x86_mmx_psrai_d:
4415      NewIntrinsic = Intrinsic::x86_mmx_psra_d;
4416      break;
4417    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
4418    }
4419
4420    // The vector shift intrinsics with scalars uses 32b shift amounts but
4421    // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
4422    // to be zero.
4423    // We must do this early because v2i32 is not a legal type.
4424    DebugLoc dl = getCurDebugLoc();
4425    SDValue ShOps[2];
4426    ShOps[0] = ShAmt;
4427    ShOps[1] = DAG.getConstant(0, MVT::i32);
4428    ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 2);
4429    EVT DestVT = TLI.getValueType(I.getType());
4430    ShAmt = DAG.getNode(ISD::BIT_CONVERT, dl, DestVT, ShAmt);
4431    Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
4432                       DAG.getConstant(NewIntrinsic, MVT::i32),
4433                       getValue(I.getArgOperand(0)), ShAmt);
4434    setValue(&I, Res);
4435    return 0;
4436  }
4437  case Intrinsic::convertff:
4438  case Intrinsic::convertfsi:
4439  case Intrinsic::convertfui:
4440  case Intrinsic::convertsif:
4441  case Intrinsic::convertuif:
4442  case Intrinsic::convertss:
4443  case Intrinsic::convertsu:
4444  case Intrinsic::convertus:
4445  case Intrinsic::convertuu: {
4446    ISD::CvtCode Code = ISD::CVT_INVALID;
4447    switch (Intrinsic) {
4448    case Intrinsic::convertff:  Code = ISD::CVT_FF; break;
4449    case Intrinsic::convertfsi: Code = ISD::CVT_FS; break;
4450    case Intrinsic::convertfui: Code = ISD::CVT_FU; break;
4451    case Intrinsic::convertsif: Code = ISD::CVT_SF; break;
4452    case Intrinsic::convertuif: Code = ISD::CVT_UF; break;
4453    case Intrinsic::convertss:  Code = ISD::CVT_SS; break;
4454    case Intrinsic::convertsu:  Code = ISD::CVT_SU; break;
4455    case Intrinsic::convertus:  Code = ISD::CVT_US; break;
4456    case Intrinsic::convertuu:  Code = ISD::CVT_UU; break;
4457    }
4458    EVT DestVT = TLI.getValueType(I.getType());
4459    const Value *Op1 = I.getArgOperand(0);
4460    Res = DAG.getConvertRndSat(DestVT, getCurDebugLoc(), getValue(Op1),
4461                               DAG.getValueType(DestVT),
4462                               DAG.getValueType(getValue(Op1).getValueType()),
4463                               getValue(I.getArgOperand(1)),
4464                               getValue(I.getArgOperand(2)),
4465                               Code);
4466    setValue(&I, Res);
4467    return 0;
4468  }
4469  case Intrinsic::sqrt:
4470    setValue(&I, DAG.getNode(ISD::FSQRT, dl,
4471                             getValue(I.getArgOperand(0)).getValueType(),
4472                             getValue(I.getArgOperand(0))));
4473    return 0;
4474  case Intrinsic::powi:
4475    setValue(&I, ExpandPowI(dl, getValue(I.getArgOperand(0)),
4476                            getValue(I.getArgOperand(1)), DAG));
4477    return 0;
4478  case Intrinsic::sin:
4479    setValue(&I, DAG.getNode(ISD::FSIN, dl,
4480                             getValue(I.getArgOperand(0)).getValueType(),
4481                             getValue(I.getArgOperand(0))));
4482    return 0;
4483  case Intrinsic::cos:
4484    setValue(&I, DAG.getNode(ISD::FCOS, dl,
4485                             getValue(I.getArgOperand(0)).getValueType(),
4486                             getValue(I.getArgOperand(0))));
4487    return 0;
4488  case Intrinsic::log:
4489    visitLog(I);
4490    return 0;
4491  case Intrinsic::log2:
4492    visitLog2(I);
4493    return 0;
4494  case Intrinsic::log10:
4495    visitLog10(I);
4496    return 0;
4497  case Intrinsic::exp:
4498    visitExp(I);
4499    return 0;
4500  case Intrinsic::exp2:
4501    visitExp2(I);
4502    return 0;
4503  case Intrinsic::pow:
4504    visitPow(I);
4505    return 0;
4506  case Intrinsic::convert_to_fp16:
4507    setValue(&I, DAG.getNode(ISD::FP32_TO_FP16, dl,
4508                             MVT::i16, getValue(I.getArgOperand(0))));
4509    return 0;
4510  case Intrinsic::convert_from_fp16:
4511    setValue(&I, DAG.getNode(ISD::FP16_TO_FP32, dl,
4512                             MVT::f32, getValue(I.getArgOperand(0))));
4513    return 0;
4514  case Intrinsic::pcmarker: {
4515    SDValue Tmp = getValue(I.getArgOperand(0));
4516    DAG.setRoot(DAG.getNode(ISD::PCMARKER, dl, MVT::Other, getRoot(), Tmp));
4517    return 0;
4518  }
4519  case Intrinsic::readcyclecounter: {
4520    SDValue Op = getRoot();
4521    Res = DAG.getNode(ISD::READCYCLECOUNTER, dl,
4522                      DAG.getVTList(MVT::i64, MVT::Other),
4523                      &Op, 1);
4524    setValue(&I, Res);
4525    DAG.setRoot(Res.getValue(1));
4526    return 0;
4527  }
4528  case Intrinsic::bswap:
4529    setValue(&I, DAG.getNode(ISD::BSWAP, dl,
4530                             getValue(I.getArgOperand(0)).getValueType(),
4531                             getValue(I.getArgOperand(0))));
4532    return 0;
4533  case Intrinsic::cttz: {
4534    SDValue Arg = getValue(I.getArgOperand(0));
4535    EVT Ty = Arg.getValueType();
4536    setValue(&I, DAG.getNode(ISD::CTTZ, dl, Ty, Arg));
4537    return 0;
4538  }
4539  case Intrinsic::ctlz: {
4540    SDValue Arg = getValue(I.getArgOperand(0));
4541    EVT Ty = Arg.getValueType();
4542    setValue(&I, DAG.getNode(ISD::CTLZ, dl, Ty, Arg));
4543    return 0;
4544  }
4545  case Intrinsic::ctpop: {
4546    SDValue Arg = getValue(I.getArgOperand(0));
4547    EVT Ty = Arg.getValueType();
4548    setValue(&I, DAG.getNode(ISD::CTPOP, dl, Ty, Arg));
4549    return 0;
4550  }
4551  case Intrinsic::stacksave: {
4552    SDValue Op = getRoot();
4553    Res = DAG.getNode(ISD::STACKSAVE, dl,
4554                      DAG.getVTList(TLI.getPointerTy(), MVT::Other), &Op, 1);
4555    setValue(&I, Res);
4556    DAG.setRoot(Res.getValue(1));
4557    return 0;
4558  }
4559  case Intrinsic::stackrestore: {
4560    Res = getValue(I.getArgOperand(0));
4561    DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, dl, MVT::Other, getRoot(), Res));
4562    return 0;
4563  }
4564  case Intrinsic::stackprotector: {
4565    // Emit code into the DAG to store the stack guard onto the stack.
4566    MachineFunction &MF = DAG.getMachineFunction();
4567    MachineFrameInfo *MFI = MF.getFrameInfo();
4568    EVT PtrTy = TLI.getPointerTy();
4569
4570    SDValue Src = getValue(I.getArgOperand(0));   // The guard's value.
4571    AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
4572
4573    int FI = FuncInfo.StaticAllocaMap[Slot];
4574    MFI->setStackProtectorIndex(FI);
4575
4576    SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
4577
4578    // Store the stack protector onto the stack.
4579    Res = DAG.getStore(getRoot(), getCurDebugLoc(), Src, FIN,
4580                       MachinePointerInfo::getFixedStack(FI),
4581                       true, false, 0);
4582    setValue(&I, Res);
4583    DAG.setRoot(Res);
4584    return 0;
4585  }
4586  case Intrinsic::objectsize: {
4587    // If we don't know by now, we're never going to know.
4588    ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1));
4589
4590    assert(CI && "Non-constant type in __builtin_object_size?");
4591
4592    SDValue Arg = getValue(I.getCalledValue());
4593    EVT Ty = Arg.getValueType();
4594
4595    if (CI->isZero())
4596      Res = DAG.getConstant(-1ULL, Ty);
4597    else
4598      Res = DAG.getConstant(0, Ty);
4599
4600    setValue(&I, Res);
4601    return 0;
4602  }
4603  case Intrinsic::var_annotation:
4604    // Discard annotate attributes
4605    return 0;
4606
4607  case Intrinsic::init_trampoline: {
4608    const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
4609
4610    SDValue Ops[6];
4611    Ops[0] = getRoot();
4612    Ops[1] = getValue(I.getArgOperand(0));
4613    Ops[2] = getValue(I.getArgOperand(1));
4614    Ops[3] = getValue(I.getArgOperand(2));
4615    Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
4616    Ops[5] = DAG.getSrcValue(F);
4617
4618    Res = DAG.getNode(ISD::TRAMPOLINE, dl,
4619                      DAG.getVTList(TLI.getPointerTy(), MVT::Other),
4620                      Ops, 6);
4621
4622    setValue(&I, Res);
4623    DAG.setRoot(Res.getValue(1));
4624    return 0;
4625  }
4626  case Intrinsic::gcroot:
4627    if (GFI) {
4628      const Value *Alloca = I.getArgOperand(0);
4629      const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
4630
4631      FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
4632      GFI->addStackRoot(FI->getIndex(), TypeMap);
4633    }
4634    return 0;
4635  case Intrinsic::gcread:
4636  case Intrinsic::gcwrite:
4637    llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
4638    return 0;
4639  case Intrinsic::flt_rounds:
4640    setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, dl, MVT::i32));
4641    return 0;
4642  case Intrinsic::trap:
4643    DAG.setRoot(DAG.getNode(ISD::TRAP, dl,MVT::Other, getRoot()));
4644    return 0;
4645  case Intrinsic::uadd_with_overflow:
4646    return implVisitAluOverflow(I, ISD::UADDO);
4647  case Intrinsic::sadd_with_overflow:
4648    return implVisitAluOverflow(I, ISD::SADDO);
4649  case Intrinsic::usub_with_overflow:
4650    return implVisitAluOverflow(I, ISD::USUBO);
4651  case Intrinsic::ssub_with_overflow:
4652    return implVisitAluOverflow(I, ISD::SSUBO);
4653  case Intrinsic::umul_with_overflow:
4654    return implVisitAluOverflow(I, ISD::UMULO);
4655  case Intrinsic::smul_with_overflow:
4656    return implVisitAluOverflow(I, ISD::SMULO);
4657
4658  case Intrinsic::prefetch: {
4659    SDValue Ops[4];
4660    unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
4661    Ops[0] = getRoot();
4662    Ops[1] = getValue(I.getArgOperand(0));
4663    Ops[2] = getValue(I.getArgOperand(1));
4664    Ops[3] = getValue(I.getArgOperand(2));
4665    DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, dl,
4666                                        DAG.getVTList(MVT::Other),
4667                                        &Ops[0], 4,
4668                                        EVT::getIntegerVT(*Context, 8),
4669                                        MachinePointerInfo(I.getArgOperand(0)),
4670                                        0, /* align */
4671                                        false, /* volatile */
4672                                        rw==0, /* read */
4673                                        rw==1)); /* write */
4674    return 0;
4675  }
4676  case Intrinsic::memory_barrier: {
4677    SDValue Ops[6];
4678    Ops[0] = getRoot();
4679    for (int x = 1; x < 6; ++x)
4680      Ops[x] = getValue(I.getArgOperand(x - 1));
4681
4682    DAG.setRoot(DAG.getNode(ISD::MEMBARRIER, dl, MVT::Other, &Ops[0], 6));
4683    return 0;
4684  }
4685  case Intrinsic::atomic_cmp_swap: {
4686    SDValue Root = getRoot();
4687    SDValue L =
4688      DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, getCurDebugLoc(),
4689                    getValue(I.getArgOperand(1)).getValueType().getSimpleVT(),
4690                    Root,
4691                    getValue(I.getArgOperand(0)),
4692                    getValue(I.getArgOperand(1)),
4693                    getValue(I.getArgOperand(2)),
4694                    MachinePointerInfo(I.getArgOperand(0)));
4695    setValue(&I, L);
4696    DAG.setRoot(L.getValue(1));
4697    return 0;
4698  }
4699  case Intrinsic::atomic_load_add:
4700    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_ADD);
4701  case Intrinsic::atomic_load_sub:
4702    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_SUB);
4703  case Intrinsic::atomic_load_or:
4704    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_OR);
4705  case Intrinsic::atomic_load_xor:
4706    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_XOR);
4707  case Intrinsic::atomic_load_and:
4708    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_AND);
4709  case Intrinsic::atomic_load_nand:
4710    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_NAND);
4711  case Intrinsic::atomic_load_max:
4712    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MAX);
4713  case Intrinsic::atomic_load_min:
4714    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MIN);
4715  case Intrinsic::atomic_load_umin:
4716    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMIN);
4717  case Intrinsic::atomic_load_umax:
4718    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMAX);
4719  case Intrinsic::atomic_swap:
4720    return implVisitBinaryAtomic(I, ISD::ATOMIC_SWAP);
4721
4722  case Intrinsic::invariant_start:
4723  case Intrinsic::lifetime_start:
4724    // Discard region information.
4725    setValue(&I, DAG.getUNDEF(TLI.getPointerTy()));
4726    return 0;
4727  case Intrinsic::invariant_end:
4728  case Intrinsic::lifetime_end:
4729    // Discard region information.
4730    return 0;
4731  }
4732}
4733
4734void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee,
4735                                      bool isTailCall,
4736                                      MachineBasicBlock *LandingPad) {
4737  const PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
4738  const FunctionType *FTy = cast<FunctionType>(PT->getElementType());
4739  const Type *RetTy = FTy->getReturnType();
4740  MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4741  MCSymbol *BeginLabel = 0;
4742
4743  TargetLowering::ArgListTy Args;
4744  TargetLowering::ArgListEntry Entry;
4745  Args.reserve(CS.arg_size());
4746
4747  // Check whether the function can return without sret-demotion.
4748  SmallVector<ISD::OutputArg, 4> Outs;
4749  SmallVector<uint64_t, 4> Offsets;
4750  GetReturnInfo(RetTy, CS.getAttributes().getRetAttributes(),
4751                Outs, TLI, &Offsets);
4752
4753  bool CanLowerReturn = TLI.CanLowerReturn(CS.getCallingConv(),
4754                        FTy->isVarArg(), Outs, FTy->getContext());
4755
4756  SDValue DemoteStackSlot;
4757  int DemoteStackIdx = -100;
4758
4759  if (!CanLowerReturn) {
4760    uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(
4761                      FTy->getReturnType());
4762    unsigned Align  = TLI.getTargetData()->getPrefTypeAlignment(
4763                      FTy->getReturnType());
4764    MachineFunction &MF = DAG.getMachineFunction();
4765    DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
4766    const Type *StackSlotPtrType = PointerType::getUnqual(FTy->getReturnType());
4767
4768    DemoteStackSlot = DAG.getFrameIndex(DemoteStackIdx, TLI.getPointerTy());
4769    Entry.Node = DemoteStackSlot;
4770    Entry.Ty = StackSlotPtrType;
4771    Entry.isSExt = false;
4772    Entry.isZExt = false;
4773    Entry.isInReg = false;
4774    Entry.isSRet = true;
4775    Entry.isNest = false;
4776    Entry.isByVal = false;
4777    Entry.Alignment = Align;
4778    Args.push_back(Entry);
4779    RetTy = Type::getVoidTy(FTy->getContext());
4780  }
4781
4782  for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
4783       i != e; ++i) {
4784    SDValue ArgNode = getValue(*i);
4785    Entry.Node = ArgNode; Entry.Ty = (*i)->getType();
4786
4787    unsigned attrInd = i - CS.arg_begin() + 1;
4788    Entry.isSExt  = CS.paramHasAttr(attrInd, Attribute::SExt);
4789    Entry.isZExt  = CS.paramHasAttr(attrInd, Attribute::ZExt);
4790    Entry.isInReg = CS.paramHasAttr(attrInd, Attribute::InReg);
4791    Entry.isSRet  = CS.paramHasAttr(attrInd, Attribute::StructRet);
4792    Entry.isNest  = CS.paramHasAttr(attrInd, Attribute::Nest);
4793    Entry.isByVal = CS.paramHasAttr(attrInd, Attribute::ByVal);
4794    Entry.Alignment = CS.getParamAlignment(attrInd);
4795    Args.push_back(Entry);
4796  }
4797
4798  if (LandingPad) {
4799    // Insert a label before the invoke call to mark the try range.  This can be
4800    // used to detect deletion of the invoke via the MachineModuleInfo.
4801    BeginLabel = MMI.getContext().CreateTempSymbol();
4802
4803    // For SjLj, keep track of which landing pads go with which invokes
4804    // so as to maintain the ordering of pads in the LSDA.
4805    unsigned CallSiteIndex = MMI.getCurrentCallSite();
4806    if (CallSiteIndex) {
4807      MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
4808      // Now that the call site is handled, stop tracking it.
4809      MMI.setCurrentCallSite(0);
4810    }
4811
4812    // Both PendingLoads and PendingExports must be flushed here;
4813    // this call might not return.
4814    (void)getRoot();
4815    DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getControlRoot(), BeginLabel));
4816  }
4817
4818  // Check if target-independent constraints permit a tail call here.
4819  // Target-dependent constraints are checked within TLI.LowerCallTo.
4820  if (isTailCall &&
4821      !isInTailCallPosition(CS, CS.getAttributes().getRetAttributes(), TLI))
4822    isTailCall = false;
4823
4824  // If there's a possibility that fast-isel has already selected some amount
4825  // of the current basic block, don't emit a tail call.
4826  if (isTailCall && EnableFastISel)
4827    isTailCall = false;
4828
4829  std::pair<SDValue,SDValue> Result =
4830    TLI.LowerCallTo(getRoot(), RetTy,
4831                    CS.paramHasAttr(0, Attribute::SExt),
4832                    CS.paramHasAttr(0, Attribute::ZExt), FTy->isVarArg(),
4833                    CS.paramHasAttr(0, Attribute::InReg), FTy->getNumParams(),
4834                    CS.getCallingConv(),
4835                    isTailCall,
4836                    !CS.getInstruction()->use_empty(),
4837                    Callee, Args, DAG, getCurDebugLoc());
4838  assert((isTailCall || Result.second.getNode()) &&
4839         "Non-null chain expected with non-tail call!");
4840  assert((Result.second.getNode() || !Result.first.getNode()) &&
4841         "Null value expected with tail call!");
4842  if (Result.first.getNode()) {
4843    setValue(CS.getInstruction(), Result.first);
4844  } else if (!CanLowerReturn && Result.second.getNode()) {
4845    // The instruction result is the result of loading from the
4846    // hidden sret parameter.
4847    SmallVector<EVT, 1> PVTs;
4848    const Type *PtrRetTy = PointerType::getUnqual(FTy->getReturnType());
4849
4850    ComputeValueVTs(TLI, PtrRetTy, PVTs);
4851    assert(PVTs.size() == 1 && "Pointers should fit in one register");
4852    EVT PtrVT = PVTs[0];
4853    unsigned NumValues = Outs.size();
4854    SmallVector<SDValue, 4> Values(NumValues);
4855    SmallVector<SDValue, 4> Chains(NumValues);
4856
4857    for (unsigned i = 0; i < NumValues; ++i) {
4858      SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT,
4859                                DemoteStackSlot,
4860                                DAG.getConstant(Offsets[i], PtrVT));
4861      SDValue L = DAG.getLoad(Outs[i].VT, getCurDebugLoc(), Result.second,
4862                              Add,
4863                  MachinePointerInfo::getFixedStack(DemoteStackIdx, Offsets[i]),
4864                              false, false, 1);
4865      Values[i] = L;
4866      Chains[i] = L.getValue(1);
4867    }
4868
4869    SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
4870                                MVT::Other, &Chains[0], NumValues);
4871    PendingLoads.push_back(Chain);
4872
4873    // Collect the legal value parts into potentially illegal values
4874    // that correspond to the original function's return values.
4875    SmallVector<EVT, 4> RetTys;
4876    RetTy = FTy->getReturnType();
4877    ComputeValueVTs(TLI, RetTy, RetTys);
4878    ISD::NodeType AssertOp = ISD::DELETED_NODE;
4879    SmallVector<SDValue, 4> ReturnValues;
4880    unsigned CurReg = 0;
4881    for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
4882      EVT VT = RetTys[I];
4883      EVT RegisterVT = TLI.getRegisterType(RetTy->getContext(), VT);
4884      unsigned NumRegs = TLI.getNumRegisters(RetTy->getContext(), VT);
4885
4886      SDValue ReturnValue =
4887        getCopyFromParts(DAG, getCurDebugLoc(), &Values[CurReg], NumRegs,
4888                         RegisterVT, VT, AssertOp);
4889      ReturnValues.push_back(ReturnValue);
4890      CurReg += NumRegs;
4891    }
4892
4893    setValue(CS.getInstruction(),
4894             DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
4895                         DAG.getVTList(&RetTys[0], RetTys.size()),
4896                         &ReturnValues[0], ReturnValues.size()));
4897
4898  }
4899
4900  // As a special case, a null chain means that a tail call has been emitted and
4901  // the DAG root is already updated.
4902  if (Result.second.getNode())
4903    DAG.setRoot(Result.second);
4904  else
4905    HasTailCall = true;
4906
4907  if (LandingPad) {
4908    // Insert a label at the end of the invoke call to mark the try range.  This
4909    // can be used to detect deletion of the invoke via the MachineModuleInfo.
4910    MCSymbol *EndLabel = MMI.getContext().CreateTempSymbol();
4911    DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getRoot(), EndLabel));
4912
4913    // Inform MachineModuleInfo of range.
4914    MMI.addInvoke(LandingPad, BeginLabel, EndLabel);
4915  }
4916}
4917
4918/// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the
4919/// value is equal or not-equal to zero.
4920static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) {
4921  for (Value::const_use_iterator UI = V->use_begin(), E = V->use_end();
4922       UI != E; ++UI) {
4923    if (const ICmpInst *IC = dyn_cast<ICmpInst>(*UI))
4924      if (IC->isEquality())
4925        if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
4926          if (C->isNullValue())
4927            continue;
4928    // Unknown instruction.
4929    return false;
4930  }
4931  return true;
4932}
4933
4934static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
4935                             const Type *LoadTy,
4936                             SelectionDAGBuilder &Builder) {
4937
4938  // Check to see if this load can be trivially constant folded, e.g. if the
4939  // input is from a string literal.
4940  if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
4941    // Cast pointer to the type we really want to load.
4942    LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
4943                                         PointerType::getUnqual(LoadTy));
4944
4945    if (const Constant *LoadCst =
4946          ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput),
4947                                       Builder.TD))
4948      return Builder.getValue(LoadCst);
4949  }
4950
4951  // Otherwise, we have to emit the load.  If the pointer is to unfoldable but
4952  // still constant memory, the input chain can be the entry node.
4953  SDValue Root;
4954  bool ConstantMemory = false;
4955
4956  // Do not serialize (non-volatile) loads of constant memory with anything.
4957  if (Builder.AA->pointsToConstantMemory(PtrVal)) {
4958    Root = Builder.DAG.getEntryNode();
4959    ConstantMemory = true;
4960  } else {
4961    // Do not serialize non-volatile loads against each other.
4962    Root = Builder.DAG.getRoot();
4963  }
4964
4965  SDValue Ptr = Builder.getValue(PtrVal);
4966  SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurDebugLoc(), Root,
4967                                        Ptr, MachinePointerInfo(PtrVal),
4968                                        false /*volatile*/,
4969                                        false /*nontemporal*/, 1 /* align=1 */);
4970
4971  if (!ConstantMemory)
4972    Builder.PendingLoads.push_back(LoadVal.getValue(1));
4973  return LoadVal;
4974}
4975
4976
4977/// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form.
4978/// If so, return true and lower it, otherwise return false and it will be
4979/// lowered like a normal call.
4980bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) {
4981  // Verify that the prototype makes sense.  int memcmp(void*,void*,size_t)
4982  if (I.getNumArgOperands() != 3)
4983    return false;
4984
4985  const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
4986  if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() ||
4987      !I.getArgOperand(2)->getType()->isIntegerTy() ||
4988      !I.getType()->isIntegerTy())
4989    return false;
4990
4991  const ConstantInt *Size = dyn_cast<ConstantInt>(I.getArgOperand(2));
4992
4993  // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0
4994  // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0
4995  if (Size && IsOnlyUsedInZeroEqualityComparison(&I)) {
4996    bool ActuallyDoIt = true;
4997    MVT LoadVT;
4998    const Type *LoadTy;
4999    switch (Size->getZExtValue()) {
5000    default:
5001      LoadVT = MVT::Other;
5002      LoadTy = 0;
5003      ActuallyDoIt = false;
5004      break;
5005    case 2:
5006      LoadVT = MVT::i16;
5007      LoadTy = Type::getInt16Ty(Size->getContext());
5008      break;
5009    case 4:
5010      LoadVT = MVT::i32;
5011      LoadTy = Type::getInt32Ty(Size->getContext());
5012      break;
5013    case 8:
5014      LoadVT = MVT::i64;
5015      LoadTy = Type::getInt64Ty(Size->getContext());
5016      break;
5017        /*
5018    case 16:
5019      LoadVT = MVT::v4i32;
5020      LoadTy = Type::getInt32Ty(Size->getContext());
5021      LoadTy = VectorType::get(LoadTy, 4);
5022      break;
5023         */
5024    }
5025
5026    // This turns into unaligned loads.  We only do this if the target natively
5027    // supports the MVT we'll be loading or if it is small enough (<= 4) that
5028    // we'll only produce a small number of byte loads.
5029
5030    // Require that we can find a legal MVT, and only do this if the target
5031    // supports unaligned loads of that type.  Expanding into byte loads would
5032    // bloat the code.
5033    if (ActuallyDoIt && Size->getZExtValue() > 4) {
5034      // TODO: Handle 5 byte compare as 4-byte + 1 byte.
5035      // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
5036      if (!TLI.isTypeLegal(LoadVT) ||!TLI.allowsUnalignedMemoryAccesses(LoadVT))
5037        ActuallyDoIt = false;
5038    }
5039
5040    if (ActuallyDoIt) {
5041      SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this);
5042      SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this);
5043
5044      SDValue Res = DAG.getSetCC(getCurDebugLoc(), MVT::i1, LHSVal, RHSVal,
5045                                 ISD::SETNE);
5046      EVT CallVT = TLI.getValueType(I.getType(), true);
5047      setValue(&I, DAG.getZExtOrTrunc(Res, getCurDebugLoc(), CallVT));
5048      return true;
5049    }
5050  }
5051
5052
5053  return false;
5054}
5055
5056
5057void SelectionDAGBuilder::visitCall(const CallInst &I) {
5058  // Handle inline assembly differently.
5059  if (isa<InlineAsm>(I.getCalledValue())) {
5060    visitInlineAsm(&I);
5061    return;
5062  }
5063
5064  // See if any floating point values are being passed to this function. This is
5065  // used to emit an undefined reference to fltused on Windows.
5066  const FunctionType *FT =
5067    cast<FunctionType>(I.getCalledValue()->getType()->getContainedType(0));
5068  MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
5069  if (FT->isVarArg() &&
5070      !MMI.callsExternalVAFunctionWithFloatingPointArguments()) {
5071    for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
5072      const Type* T = I.getArgOperand(i)->getType();
5073      for (po_iterator<const Type*> i = po_begin(T), e = po_end(T);
5074           i != e; ++i) {
5075        if (!i->isFloatingPointTy()) continue;
5076        MMI.setCallsExternalVAFunctionWithFloatingPointArguments(true);
5077        break;
5078      }
5079    }
5080  }
5081
5082  const char *RenameFn = 0;
5083  if (Function *F = I.getCalledFunction()) {
5084    if (F->isDeclaration()) {
5085      if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) {
5086        if (unsigned IID = II->getIntrinsicID(F)) {
5087          RenameFn = visitIntrinsicCall(I, IID);
5088          if (!RenameFn)
5089            return;
5090        }
5091      }
5092      if (unsigned IID = F->getIntrinsicID()) {
5093        RenameFn = visitIntrinsicCall(I, IID);
5094        if (!RenameFn)
5095          return;
5096      }
5097    }
5098
5099    // Check for well-known libc/libm calls.  If the function is internal, it
5100    // can't be a library call.
5101    if (!F->hasLocalLinkage() && F->hasName()) {
5102      StringRef Name = F->getName();
5103      if (Name == "copysign" || Name == "copysignf" || Name == "copysignl") {
5104        if (I.getNumArgOperands() == 2 &&   // Basic sanity checks.
5105            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5106            I.getType() == I.getArgOperand(0)->getType() &&
5107            I.getType() == I.getArgOperand(1)->getType()) {
5108          SDValue LHS = getValue(I.getArgOperand(0));
5109          SDValue RHS = getValue(I.getArgOperand(1));
5110          setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurDebugLoc(),
5111                                   LHS.getValueType(), LHS, RHS));
5112          return;
5113        }
5114      } else if (Name == "fabs" || Name == "fabsf" || Name == "fabsl") {
5115        if (I.getNumArgOperands() == 1 &&   // Basic sanity checks.
5116            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5117            I.getType() == I.getArgOperand(0)->getType()) {
5118          SDValue Tmp = getValue(I.getArgOperand(0));
5119          setValue(&I, DAG.getNode(ISD::FABS, getCurDebugLoc(),
5120                                   Tmp.getValueType(), Tmp));
5121          return;
5122        }
5123      } else if (Name == "sin" || Name == "sinf" || Name == "sinl") {
5124        if (I.getNumArgOperands() == 1 &&   // Basic sanity checks.
5125            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5126            I.getType() == I.getArgOperand(0)->getType() &&
5127            I.onlyReadsMemory()) {
5128          SDValue Tmp = getValue(I.getArgOperand(0));
5129          setValue(&I, DAG.getNode(ISD::FSIN, getCurDebugLoc(),
5130                                   Tmp.getValueType(), Tmp));
5131          return;
5132        }
5133      } else if (Name == "cos" || Name == "cosf" || Name == "cosl") {
5134        if (I.getNumArgOperands() == 1 &&   // Basic sanity checks.
5135            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5136            I.getType() == I.getArgOperand(0)->getType() &&
5137            I.onlyReadsMemory()) {
5138          SDValue Tmp = getValue(I.getArgOperand(0));
5139          setValue(&I, DAG.getNode(ISD::FCOS, getCurDebugLoc(),
5140                                   Tmp.getValueType(), Tmp));
5141          return;
5142        }
5143      } else if (Name == "sqrt" || Name == "sqrtf" || Name == "sqrtl") {
5144        if (I.getNumArgOperands() == 1 &&   // Basic sanity checks.
5145            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5146            I.getType() == I.getArgOperand(0)->getType() &&
5147            I.onlyReadsMemory()) {
5148          SDValue Tmp = getValue(I.getArgOperand(0));
5149          setValue(&I, DAG.getNode(ISD::FSQRT, getCurDebugLoc(),
5150                                   Tmp.getValueType(), Tmp));
5151          return;
5152        }
5153      } else if (Name == "memcmp") {
5154        if (visitMemCmpCall(I))
5155          return;
5156      }
5157    }
5158  }
5159
5160  SDValue Callee;
5161  if (!RenameFn)
5162    Callee = getValue(I.getCalledValue());
5163  else
5164    Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy());
5165
5166  // Check if we can potentially perform a tail call. More detailed checking is
5167  // be done within LowerCallTo, after more information about the call is known.
5168  LowerCallTo(&I, Callee, I.isTailCall());
5169}
5170
5171namespace llvm {
5172
5173/// AsmOperandInfo - This contains information for each constraint that we are
5174/// lowering.
5175class LLVM_LIBRARY_VISIBILITY SDISelAsmOperandInfo :
5176    public TargetLowering::AsmOperandInfo {
5177public:
5178  /// CallOperand - If this is the result output operand or a clobber
5179  /// this is null, otherwise it is the incoming operand to the CallInst.
5180  /// This gets modified as the asm is processed.
5181  SDValue CallOperand;
5182
5183  /// AssignedRegs - If this is a register or register class operand, this
5184  /// contains the set of register corresponding to the operand.
5185  RegsForValue AssignedRegs;
5186
5187  explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
5188    : TargetLowering::AsmOperandInfo(info), CallOperand(0,0) {
5189  }
5190
5191  /// MarkAllocatedRegs - Once AssignedRegs is set, mark the assigned registers
5192  /// busy in OutputRegs/InputRegs.
5193  void MarkAllocatedRegs(bool isOutReg, bool isInReg,
5194                         std::set<unsigned> &OutputRegs,
5195                         std::set<unsigned> &InputRegs,
5196                         const TargetRegisterInfo &TRI) const {
5197    if (isOutReg) {
5198      for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i)
5199        MarkRegAndAliases(AssignedRegs.Regs[i], OutputRegs, TRI);
5200    }
5201    if (isInReg) {
5202      for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i)
5203        MarkRegAndAliases(AssignedRegs.Regs[i], InputRegs, TRI);
5204    }
5205  }
5206
5207  /// getCallOperandValEVT - Return the EVT of the Value* that this operand
5208  /// corresponds to.  If there is no Value* for this operand, it returns
5209  /// MVT::Other.
5210  EVT getCallOperandValEVT(LLVMContext &Context,
5211                           const TargetLowering &TLI,
5212                           const TargetData *TD) const {
5213    if (CallOperandVal == 0) return MVT::Other;
5214
5215    if (isa<BasicBlock>(CallOperandVal))
5216      return TLI.getPointerTy();
5217
5218    const llvm::Type *OpTy = CallOperandVal->getType();
5219
5220    // If this is an indirect operand, the operand is a pointer to the
5221    // accessed type.
5222    if (isIndirect) {
5223      const llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
5224      if (!PtrTy)
5225        report_fatal_error("Indirect operand for inline asm not a pointer!");
5226      OpTy = PtrTy->getElementType();
5227    }
5228
5229    // If OpTy is not a single value, it may be a struct/union that we
5230    // can tile with integers.
5231    if (!OpTy->isSingleValueType() && OpTy->isSized()) {
5232      unsigned BitSize = TD->getTypeSizeInBits(OpTy);
5233      switch (BitSize) {
5234      default: break;
5235      case 1:
5236      case 8:
5237      case 16:
5238      case 32:
5239      case 64:
5240      case 128:
5241        OpTy = IntegerType::get(Context, BitSize);
5242        break;
5243      }
5244    }
5245
5246    return TLI.getValueType(OpTy, true);
5247  }
5248
5249private:
5250  /// MarkRegAndAliases - Mark the specified register and all aliases in the
5251  /// specified set.
5252  static void MarkRegAndAliases(unsigned Reg, std::set<unsigned> &Regs,
5253                                const TargetRegisterInfo &TRI) {
5254    assert(TargetRegisterInfo::isPhysicalRegister(Reg) && "Isn't a physreg");
5255    Regs.insert(Reg);
5256    if (const unsigned *Aliases = TRI.getAliasSet(Reg))
5257      for (; *Aliases; ++Aliases)
5258        Regs.insert(*Aliases);
5259  }
5260};
5261
5262typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector;
5263
5264} // end llvm namespace.
5265
5266/// isAllocatableRegister - If the specified register is safe to allocate,
5267/// i.e. it isn't a stack pointer or some other special register, return the
5268/// register class for the register.  Otherwise, return null.
5269static const TargetRegisterClass *
5270isAllocatableRegister(unsigned Reg, MachineFunction &MF,
5271                      const TargetLowering &TLI,
5272                      const TargetRegisterInfo *TRI) {
5273  EVT FoundVT = MVT::Other;
5274  const TargetRegisterClass *FoundRC = 0;
5275  for (TargetRegisterInfo::regclass_iterator RCI = TRI->regclass_begin(),
5276       E = TRI->regclass_end(); RCI != E; ++RCI) {
5277    EVT ThisVT = MVT::Other;
5278
5279    const TargetRegisterClass *RC = *RCI;
5280    // If none of the value types for this register class are valid, we
5281    // can't use it.  For example, 64-bit reg classes on 32-bit targets.
5282    for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
5283         I != E; ++I) {
5284      if (TLI.isTypeLegal(*I)) {
5285        // If we have already found this register in a different register class,
5286        // choose the one with the largest VT specified.  For example, on
5287        // PowerPC, we favor f64 register classes over f32.
5288        if (FoundVT == MVT::Other || FoundVT.bitsLT(*I)) {
5289          ThisVT = *I;
5290          break;
5291        }
5292      }
5293    }
5294
5295    if (ThisVT == MVT::Other) continue;
5296
5297    // NOTE: This isn't ideal.  In particular, this might allocate the
5298    // frame pointer in functions that need it (due to them not being taken
5299    // out of allocation, because a variable sized allocation hasn't been seen
5300    // yet).  This is a slight code pessimization, but should still work.
5301    for (TargetRegisterClass::iterator I = RC->allocation_order_begin(MF),
5302         E = RC->allocation_order_end(MF); I != E; ++I)
5303      if (*I == Reg) {
5304        // We found a matching register class.  Keep looking at others in case
5305        // we find one with larger registers that this physreg is also in.
5306        FoundRC = RC;
5307        FoundVT = ThisVT;
5308        break;
5309      }
5310  }
5311  return FoundRC;
5312}
5313
5314/// GetRegistersForValue - Assign registers (virtual or physical) for the
5315/// specified operand.  We prefer to assign virtual registers, to allow the
5316/// register allocator to handle the assignment process.  However, if the asm
5317/// uses features that we can't model on machineinstrs, we have SDISel do the
5318/// allocation.  This produces generally horrible, but correct, code.
5319///
5320///   OpInfo describes the operand.
5321///   Input and OutputRegs are the set of already allocated physical registers.
5322///
5323void SelectionDAGBuilder::
5324GetRegistersForValue(SDISelAsmOperandInfo &OpInfo,
5325                     std::set<unsigned> &OutputRegs,
5326                     std::set<unsigned> &InputRegs) {
5327  LLVMContext &Context = FuncInfo.Fn->getContext();
5328
5329  // Compute whether this value requires an input register, an output register,
5330  // or both.
5331  bool isOutReg = false;
5332  bool isInReg = false;
5333  switch (OpInfo.Type) {
5334  case InlineAsm::isOutput:
5335    isOutReg = true;
5336
5337    // If there is an input constraint that matches this, we need to reserve
5338    // the input register so no other inputs allocate to it.
5339    isInReg = OpInfo.hasMatchingInput();
5340    break;
5341  case InlineAsm::isInput:
5342    isInReg = true;
5343    isOutReg = false;
5344    break;
5345  case InlineAsm::isClobber:
5346    isOutReg = true;
5347    isInReg = true;
5348    break;
5349  }
5350
5351
5352  MachineFunction &MF = DAG.getMachineFunction();
5353  SmallVector<unsigned, 4> Regs;
5354
5355  // If this is a constraint for a single physreg, or a constraint for a
5356  // register class, find it.
5357  std::pair<unsigned, const TargetRegisterClass*> PhysReg =
5358    TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
5359                                     OpInfo.ConstraintVT);
5360
5361  unsigned NumRegs = 1;
5362  if (OpInfo.ConstraintVT != MVT::Other) {
5363    // If this is a FP input in an integer register (or visa versa) insert a bit
5364    // cast of the input value.  More generally, handle any case where the input
5365    // value disagrees with the register class we plan to stick this in.
5366    if (OpInfo.Type == InlineAsm::isInput &&
5367        PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) {
5368      // Try to convert to the first EVT that the reg class contains.  If the
5369      // types are identical size, use a bitcast to convert (e.g. two differing
5370      // vector types).
5371      EVT RegVT = *PhysReg.second->vt_begin();
5372      if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) {
5373        OpInfo.CallOperand = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(),
5374                                         RegVT, OpInfo.CallOperand);
5375        OpInfo.ConstraintVT = RegVT;
5376      } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
5377        // If the input is a FP value and we want it in FP registers, do a
5378        // bitcast to the corresponding integer type.  This turns an f64 value
5379        // into i64, which can be passed with two i32 values on a 32-bit
5380        // machine.
5381        RegVT = EVT::getIntegerVT(Context,
5382                                  OpInfo.ConstraintVT.getSizeInBits());
5383        OpInfo.CallOperand = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(),
5384                                         RegVT, OpInfo.CallOperand);
5385        OpInfo.ConstraintVT = RegVT;
5386      }
5387    }
5388
5389    NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT);
5390  }
5391
5392  EVT RegVT;
5393  EVT ValueVT = OpInfo.ConstraintVT;
5394
5395  // If this is a constraint for a specific physical register, like {r17},
5396  // assign it now.
5397  if (unsigned AssignedReg = PhysReg.first) {
5398    const TargetRegisterClass *RC = PhysReg.second;
5399    if (OpInfo.ConstraintVT == MVT::Other)
5400      ValueVT = *RC->vt_begin();
5401
5402    // Get the actual register value type.  This is important, because the user
5403    // may have asked for (e.g.) the AX register in i32 type.  We need to
5404    // remember that AX is actually i16 to get the right extension.
5405    RegVT = *RC->vt_begin();
5406
5407    // This is a explicit reference to a physical register.
5408    Regs.push_back(AssignedReg);
5409
5410    // If this is an expanded reference, add the rest of the regs to Regs.
5411    if (NumRegs != 1) {
5412      TargetRegisterClass::iterator I = RC->begin();
5413      for (; *I != AssignedReg; ++I)
5414        assert(I != RC->end() && "Didn't find reg!");
5415
5416      // Already added the first reg.
5417      --NumRegs; ++I;
5418      for (; NumRegs; --NumRegs, ++I) {
5419        assert(I != RC->end() && "Ran out of registers to allocate!");
5420        Regs.push_back(*I);
5421      }
5422    }
5423
5424    OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
5425    const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
5426    OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI);
5427    return;
5428  }
5429
5430  // Otherwise, if this was a reference to an LLVM register class, create vregs
5431  // for this reference.
5432  if (const TargetRegisterClass *RC = PhysReg.second) {
5433    RegVT = *RC->vt_begin();
5434    if (OpInfo.ConstraintVT == MVT::Other)
5435      ValueVT = RegVT;
5436
5437    // Create the appropriate number of virtual registers.
5438    MachineRegisterInfo &RegInfo = MF.getRegInfo();
5439    for (; NumRegs; --NumRegs)
5440      Regs.push_back(RegInfo.createVirtualRegister(RC));
5441
5442    OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
5443    return;
5444  }
5445
5446  // This is a reference to a register class that doesn't directly correspond
5447  // to an LLVM register class.  Allocate NumRegs consecutive, available,
5448  // registers from the class.
5449  std::vector<unsigned> RegClassRegs
5450    = TLI.getRegClassForInlineAsmConstraint(OpInfo.ConstraintCode,
5451                                            OpInfo.ConstraintVT);
5452
5453  const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
5454  unsigned NumAllocated = 0;
5455  for (unsigned i = 0, e = RegClassRegs.size(); i != e; ++i) {
5456    unsigned Reg = RegClassRegs[i];
5457    // See if this register is available.
5458    if ((isOutReg && OutputRegs.count(Reg)) ||   // Already used.
5459        (isInReg  && InputRegs.count(Reg))) {    // Already used.
5460      // Make sure we find consecutive registers.
5461      NumAllocated = 0;
5462      continue;
5463    }
5464
5465    // Check to see if this register is allocatable (i.e. don't give out the
5466    // stack pointer).
5467    const TargetRegisterClass *RC = isAllocatableRegister(Reg, MF, TLI, TRI);
5468    if (!RC) {        // Couldn't allocate this register.
5469      // Reset NumAllocated to make sure we return consecutive registers.
5470      NumAllocated = 0;
5471      continue;
5472    }
5473
5474    // Okay, this register is good, we can use it.
5475    ++NumAllocated;
5476
5477    // If we allocated enough consecutive registers, succeed.
5478    if (NumAllocated == NumRegs) {
5479      unsigned RegStart = (i-NumAllocated)+1;
5480      unsigned RegEnd   = i+1;
5481      // Mark all of the allocated registers used.
5482      for (unsigned i = RegStart; i != RegEnd; ++i)
5483        Regs.push_back(RegClassRegs[i]);
5484
5485      OpInfo.AssignedRegs = RegsForValue(Regs, *RC->vt_begin(),
5486                                         OpInfo.ConstraintVT);
5487      OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI);
5488      return;
5489    }
5490  }
5491
5492  // Otherwise, we couldn't allocate enough registers for this.
5493}
5494
5495/// visitInlineAsm - Handle a call to an InlineAsm object.
5496///
5497void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) {
5498  const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
5499
5500  /// ConstraintOperands - Information about all of the constraints.
5501  SDISelAsmOperandInfoVector ConstraintOperands;
5502
5503  std::set<unsigned> OutputRegs, InputRegs;
5504
5505  TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints(CS);
5506  bool hasMemory = false;
5507
5508  unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
5509  unsigned ResNo = 0;   // ResNo - The result number of the next output.
5510  for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
5511    ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i]));
5512    SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
5513
5514    EVT OpVT = MVT::Other;
5515
5516    // Compute the value type for each operand.
5517    switch (OpInfo.Type) {
5518    case InlineAsm::isOutput:
5519      // Indirect outputs just consume an argument.
5520      if (OpInfo.isIndirect) {
5521        OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
5522        break;
5523      }
5524
5525      // The return value of the call is this value.  As such, there is no
5526      // corresponding argument.
5527      assert(!CS.getType()->isVoidTy() &&
5528             "Bad inline asm!");
5529      if (const StructType *STy = dyn_cast<StructType>(CS.getType())) {
5530        OpVT = TLI.getValueType(STy->getElementType(ResNo));
5531      } else {
5532        assert(ResNo == 0 && "Asm only has one result!");
5533        OpVT = TLI.getValueType(CS.getType());
5534      }
5535      ++ResNo;
5536      break;
5537    case InlineAsm::isInput:
5538      OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
5539      break;
5540    case InlineAsm::isClobber:
5541      // Nothing to do.
5542      break;
5543    }
5544
5545    // If this is an input or an indirect output, process the call argument.
5546    // BasicBlocks are labels, currently appearing only in asm's.
5547    if (OpInfo.CallOperandVal) {
5548      // Strip bitcasts, if any.  This mostly comes up for functions.
5549      OpInfo.CallOperandVal = OpInfo.CallOperandVal->stripPointerCasts();
5550
5551      if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) {
5552        OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
5553      } else {
5554        OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
5555      }
5556
5557      OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, TD);
5558    }
5559
5560    OpInfo.ConstraintVT = OpVT;
5561
5562    // Indirect operand accesses access memory.
5563    if (OpInfo.isIndirect)
5564      hasMemory = true;
5565    else {
5566      for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) {
5567        TargetLowering::ConstraintType CType = TLI.getConstraintType(OpInfo.Codes[j]);
5568        if (CType == TargetLowering::C_Memory) {
5569          hasMemory = true;
5570          break;
5571        }
5572      }
5573    }
5574  }
5575
5576  SDValue Chain, Flag;
5577
5578  // We won't need to flush pending loads if this asm doesn't touch
5579  // memory and is nonvolatile.
5580  if (hasMemory || IA->hasSideEffects())
5581    Chain = getRoot();
5582  else
5583    Chain = DAG.getRoot();
5584
5585  // Second pass over the constraints: compute which constraint option to use
5586  // and assign registers to constraints that want a specific physreg.
5587  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
5588    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
5589
5590    // If this is an output operand with a matching input operand, look up the
5591    // matching input. If their types mismatch, e.g. one is an integer, the
5592    // other is floating point, or their sizes are different, flag it as an
5593    // error.
5594    if (OpInfo.hasMatchingInput()) {
5595      SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
5596
5597      if (OpInfo.ConstraintVT != Input.ConstraintVT) {
5598        if ((OpInfo.ConstraintVT.isInteger() !=
5599             Input.ConstraintVT.isInteger()) ||
5600            (OpInfo.ConstraintVT.getSizeInBits() !=
5601             Input.ConstraintVT.getSizeInBits())) {
5602          report_fatal_error("Unsupported asm: input constraint"
5603                             " with a matching output constraint of"
5604                             " incompatible type!");
5605        }
5606        Input.ConstraintVT = OpInfo.ConstraintVT;
5607      }
5608    }
5609
5610    // Compute the constraint code and ConstraintType to use.
5611    TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
5612
5613    // If this is a memory input, and if the operand is not indirect, do what we
5614    // need to to provide an address for the memory input.
5615    if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
5616        !OpInfo.isIndirect) {
5617      assert((OpInfo.isMultipleAlternative || (OpInfo.Type == InlineAsm::isInput)) &&
5618             "Can only indirectify direct input operands!");
5619
5620      // Memory operands really want the address of the value.  If we don't have
5621      // an indirect input, put it in the constpool if we can, otherwise spill
5622      // it to a stack slot.
5623
5624      // If the operand is a float, integer, or vector constant, spill to a
5625      // constant pool entry to get its address.
5626      const Value *OpVal = OpInfo.CallOperandVal;
5627      if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
5628          isa<ConstantVector>(OpVal)) {
5629        OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal),
5630                                                 TLI.getPointerTy());
5631      } else {
5632        // Otherwise, create a stack slot and emit a store to it before the
5633        // asm.
5634        const Type *Ty = OpVal->getType();
5635        uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty);
5636        unsigned Align  = TLI.getTargetData()->getPrefTypeAlignment(Ty);
5637        MachineFunction &MF = DAG.getMachineFunction();
5638        int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
5639        SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy());
5640        Chain = DAG.getStore(Chain, getCurDebugLoc(),
5641                             OpInfo.CallOperand, StackSlot,
5642                             MachinePointerInfo::getFixedStack(SSFI),
5643                             false, false, 0);
5644        OpInfo.CallOperand = StackSlot;
5645      }
5646
5647      // There is no longer a Value* corresponding to this operand.
5648      OpInfo.CallOperandVal = 0;
5649
5650      // It is now an indirect operand.
5651      OpInfo.isIndirect = true;
5652    }
5653
5654    // If this constraint is for a specific register, allocate it before
5655    // anything else.
5656    if (OpInfo.ConstraintType == TargetLowering::C_Register)
5657      GetRegistersForValue(OpInfo, OutputRegs, InputRegs);
5658  }
5659
5660  // Second pass - Loop over all of the operands, assigning virtual or physregs
5661  // to register class operands.
5662  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
5663    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
5664
5665    // C_Register operands have already been allocated, Other/Memory don't need
5666    // to be.
5667    if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass)
5668      GetRegistersForValue(OpInfo, OutputRegs, InputRegs);
5669  }
5670
5671  // AsmNodeOperands - The operands for the ISD::INLINEASM node.
5672  std::vector<SDValue> AsmNodeOperands;
5673  AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
5674  AsmNodeOperands.push_back(
5675          DAG.getTargetExternalSymbol(IA->getAsmString().c_str(),
5676                                      TLI.getPointerTy()));
5677
5678  // If we have a !srcloc metadata node associated with it, we want to attach
5679  // this to the ultimately generated inline asm machineinstr.  To do this, we
5680  // pass in the third operand as this (potentially null) inline asm MDNode.
5681  const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc");
5682  AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
5683
5684  // Remember the AlignStack bit as operand 3.
5685  AsmNodeOperands.push_back(DAG.getTargetConstant(IA->isAlignStack() ? 1 : 0,
5686                                            MVT::i1));
5687
5688  // Loop over all of the inputs, copying the operand values into the
5689  // appropriate registers and processing the output regs.
5690  RegsForValue RetValRegs;
5691
5692  // IndirectStoresToEmit - The set of stores to emit after the inline asm node.
5693  std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit;
5694
5695  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
5696    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
5697
5698    switch (OpInfo.Type) {
5699    case InlineAsm::isOutput: {
5700      if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass &&
5701          OpInfo.ConstraintType != TargetLowering::C_Register) {
5702        // Memory output, or 'other' output (e.g. 'X' constraint).
5703        assert(OpInfo.isIndirect && "Memory output must be indirect operand");
5704
5705        // Add information to the INLINEASM node to know about this output.
5706        unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
5707        AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags,
5708                                                        TLI.getPointerTy()));
5709        AsmNodeOperands.push_back(OpInfo.CallOperand);
5710        break;
5711      }
5712
5713      // Otherwise, this is a register or register class output.
5714
5715      // Copy the output from the appropriate register.  Find a register that
5716      // we can use.
5717      if (OpInfo.AssignedRegs.Regs.empty())
5718        report_fatal_error("Couldn't allocate output reg for constraint '" +
5719                           Twine(OpInfo.ConstraintCode) + "'!");
5720
5721      // If this is an indirect operand, store through the pointer after the
5722      // asm.
5723      if (OpInfo.isIndirect) {
5724        IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs,
5725                                                      OpInfo.CallOperandVal));
5726      } else {
5727        // This is the result value of the call.
5728        assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
5729        // Concatenate this output onto the outputs list.
5730        RetValRegs.append(OpInfo.AssignedRegs);
5731      }
5732
5733      // Add information to the INLINEASM node to know that this register is
5734      // set.
5735      OpInfo.AssignedRegs.AddInlineAsmOperands(OpInfo.isEarlyClobber ?
5736                                           InlineAsm::Kind_RegDefEarlyClobber :
5737                                               InlineAsm::Kind_RegDef,
5738                                               false,
5739                                               0,
5740                                               DAG,
5741                                               AsmNodeOperands);
5742      break;
5743    }
5744    case InlineAsm::isInput: {
5745      SDValue InOperandVal = OpInfo.CallOperand;
5746
5747      if (OpInfo.isMatchingInputConstraint()) {   // Matching constraint?
5748        // If this is required to match an output register we have already set,
5749        // just use its register.
5750        unsigned OperandNo = OpInfo.getMatchedOperand();
5751
5752        // Scan until we find the definition we already emitted of this operand.
5753        // When we find it, create a RegsForValue operand.
5754        unsigned CurOp = InlineAsm::Op_FirstOperand;
5755        for (; OperandNo; --OperandNo) {
5756          // Advance to the next operand.
5757          unsigned OpFlag =
5758            cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
5759          assert((InlineAsm::isRegDefKind(OpFlag) ||
5760                  InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||
5761                  InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?");
5762          CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1;
5763        }
5764
5765        unsigned OpFlag =
5766          cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
5767        if (InlineAsm::isRegDefKind(OpFlag) ||
5768            InlineAsm::isRegDefEarlyClobberKind(OpFlag)) {
5769          // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
5770          if (OpInfo.isIndirect) {
5771            // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
5772            LLVMContext &Ctx = *DAG.getContext();
5773            Ctx.emitError(CS.getInstruction(),  "inline asm not supported yet:"
5774                          " don't know how to handle tied "
5775                          "indirect register inputs");
5776          }
5777
5778          RegsForValue MatchedRegs;
5779          MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType());
5780          EVT RegVT = AsmNodeOperands[CurOp+1].getValueType();
5781          MatchedRegs.RegVTs.push_back(RegVT);
5782          MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo();
5783          for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag);
5784               i != e; ++i)
5785            MatchedRegs.Regs.push_back
5786              (RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT)));
5787
5788          // Use the produced MatchedRegs object to
5789          MatchedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(),
5790                                    Chain, &Flag);
5791          MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse,
5792                                           true, OpInfo.getMatchedOperand(),
5793                                           DAG, AsmNodeOperands);
5794          break;
5795        }
5796
5797        assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!");
5798        assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 &&
5799               "Unexpected number of operands");
5800        // Add information to the INLINEASM node to know about this input.
5801        // See InlineAsm.h isUseOperandTiedToDef.
5802        OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
5803                                                    OpInfo.getMatchedOperand());
5804        AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlag,
5805                                                        TLI.getPointerTy()));
5806        AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
5807        break;
5808      }
5809
5810      // Treat indirect 'X' constraint as memory.
5811      if (OpInfo.ConstraintType == TargetLowering::C_Other &&
5812          OpInfo.isIndirect)
5813        OpInfo.ConstraintType = TargetLowering::C_Memory;
5814
5815      if (OpInfo.ConstraintType == TargetLowering::C_Other) {
5816        std::vector<SDValue> Ops;
5817        TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode[0],
5818                                         Ops, DAG);
5819        if (Ops.empty())
5820          report_fatal_error("Invalid operand for inline asm constraint '" +
5821                             Twine(OpInfo.ConstraintCode) + "'!");
5822
5823        // Add information to the INLINEASM node to know about this input.
5824        unsigned ResOpType =
5825          InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
5826        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
5827                                                        TLI.getPointerTy()));
5828        AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
5829        break;
5830      }
5831
5832      if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
5833        assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
5834        assert(InOperandVal.getValueType() == TLI.getPointerTy() &&
5835               "Memory operands expect pointer values");
5836
5837        // Add information to the INLINEASM node to know about this input.
5838        unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
5839        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
5840                                                        TLI.getPointerTy()));
5841        AsmNodeOperands.push_back(InOperandVal);
5842        break;
5843      }
5844
5845      assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
5846              OpInfo.ConstraintType == TargetLowering::C_Register) &&
5847             "Unknown constraint type!");
5848      assert(!OpInfo.isIndirect &&
5849             "Don't know how to handle indirect register inputs yet!");
5850
5851      // Copy the input into the appropriate registers.
5852      if (OpInfo.AssignedRegs.Regs.empty() ||
5853          !OpInfo.AssignedRegs.areValueTypesLegal(TLI))
5854        report_fatal_error("Couldn't allocate input reg for constraint '" +
5855                           Twine(OpInfo.ConstraintCode) + "'!");
5856
5857      OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(),
5858                                        Chain, &Flag);
5859
5860      OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0,
5861                                               DAG, AsmNodeOperands);
5862      break;
5863    }
5864    case InlineAsm::isClobber: {
5865      // Add the clobbered value to the operand list, so that the register
5866      // allocator is aware that the physreg got clobbered.
5867      if (!OpInfo.AssignedRegs.Regs.empty())
5868        OpInfo.AssignedRegs.AddInlineAsmOperands(
5869                                            InlineAsm::Kind_RegDefEarlyClobber,
5870                                                 false, 0, DAG,
5871                                                 AsmNodeOperands);
5872      break;
5873    }
5874    }
5875  }
5876
5877  // Finish up input operands.  Set the input chain and add the flag last.
5878  AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
5879  if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
5880
5881  Chain = DAG.getNode(ISD::INLINEASM, getCurDebugLoc(),
5882                      DAG.getVTList(MVT::Other, MVT::Flag),
5883                      &AsmNodeOperands[0], AsmNodeOperands.size());
5884  Flag = Chain.getValue(1);
5885
5886  // If this asm returns a register value, copy the result from that register
5887  // and set it as the value of the call.
5888  if (!RetValRegs.Regs.empty()) {
5889    SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(),
5890                                             Chain, &Flag);
5891
5892    // FIXME: Why don't we do this for inline asms with MRVs?
5893    if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) {
5894      EVT ResultType = TLI.getValueType(CS.getType());
5895
5896      // If any of the results of the inline asm is a vector, it may have the
5897      // wrong width/num elts.  This can happen for register classes that can
5898      // contain multiple different value types.  The preg or vreg allocated may
5899      // not have the same VT as was expected.  Convert it to the right type
5900      // with bit_convert.
5901      if (ResultType != Val.getValueType() && Val.getValueType().isVector()) {
5902        Val = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(),
5903                          ResultType, Val);
5904
5905      } else if (ResultType != Val.getValueType() &&
5906                 ResultType.isInteger() && Val.getValueType().isInteger()) {
5907        // If a result value was tied to an input value, the computed result may
5908        // have a wider width than the expected result.  Extract the relevant
5909        // portion.
5910        Val = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), ResultType, Val);
5911      }
5912
5913      assert(ResultType == Val.getValueType() && "Asm result value mismatch!");
5914    }
5915
5916    setValue(CS.getInstruction(), Val);
5917    // Don't need to use this as a chain in this case.
5918    if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty())
5919      return;
5920  }
5921
5922  std::vector<std::pair<SDValue, const Value *> > StoresToEmit;
5923
5924  // Process indirect outputs, first output all of the flagged copies out of
5925  // physregs.
5926  for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
5927    RegsForValue &OutRegs = IndirectStoresToEmit[i].first;
5928    const Value *Ptr = IndirectStoresToEmit[i].second;
5929    SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(),
5930                                             Chain, &Flag);
5931    StoresToEmit.push_back(std::make_pair(OutVal, Ptr));
5932  }
5933
5934  // Emit the non-flagged stores from the physregs.
5935  SmallVector<SDValue, 8> OutChains;
5936  for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) {
5937    SDValue Val = DAG.getStore(Chain, getCurDebugLoc(),
5938                               StoresToEmit[i].first,
5939                               getValue(StoresToEmit[i].second),
5940                               MachinePointerInfo(StoresToEmit[i].second),
5941                               false, false, 0);
5942    OutChains.push_back(Val);
5943  }
5944
5945  if (!OutChains.empty())
5946    Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
5947                        &OutChains[0], OutChains.size());
5948
5949  DAG.setRoot(Chain);
5950}
5951
5952void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
5953  DAG.setRoot(DAG.getNode(ISD::VASTART, getCurDebugLoc(),
5954                          MVT::Other, getRoot(),
5955                          getValue(I.getArgOperand(0)),
5956                          DAG.getSrcValue(I.getArgOperand(0))));
5957}
5958
5959void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
5960  const TargetData &TD = *TLI.getTargetData();
5961  SDValue V = DAG.getVAArg(TLI.getValueType(I.getType()), getCurDebugLoc(),
5962                           getRoot(), getValue(I.getOperand(0)),
5963                           DAG.getSrcValue(I.getOperand(0)),
5964                           TD.getABITypeAlignment(I.getType()));
5965  setValue(&I, V);
5966  DAG.setRoot(V.getValue(1));
5967}
5968
5969void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
5970  DAG.setRoot(DAG.getNode(ISD::VAEND, getCurDebugLoc(),
5971                          MVT::Other, getRoot(),
5972                          getValue(I.getArgOperand(0)),
5973                          DAG.getSrcValue(I.getArgOperand(0))));
5974}
5975
5976void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
5977  DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurDebugLoc(),
5978                          MVT::Other, getRoot(),
5979                          getValue(I.getArgOperand(0)),
5980                          getValue(I.getArgOperand(1)),
5981                          DAG.getSrcValue(I.getArgOperand(0)),
5982                          DAG.getSrcValue(I.getArgOperand(1))));
5983}
5984
5985/// TargetLowering::LowerCallTo - This is the default LowerCallTo
5986/// implementation, which just calls LowerCall.
5987/// FIXME: When all targets are
5988/// migrated to using LowerCall, this hook should be integrated into SDISel.
5989std::pair<SDValue, SDValue>
5990TargetLowering::LowerCallTo(SDValue Chain, const Type *RetTy,
5991                            bool RetSExt, bool RetZExt, bool isVarArg,
5992                            bool isInreg, unsigned NumFixedArgs,
5993                            CallingConv::ID CallConv, bool isTailCall,
5994                            bool isReturnValueUsed,
5995                            SDValue Callee,
5996                            ArgListTy &Args, SelectionDAG &DAG,
5997                            DebugLoc dl) const {
5998  // Handle all of the outgoing arguments.
5999  SmallVector<ISD::OutputArg, 32> Outs;
6000  SmallVector<SDValue, 32> OutVals;
6001  for (unsigned i = 0, e = Args.size(); i != e; ++i) {
6002    SmallVector<EVT, 4> ValueVTs;
6003    ComputeValueVTs(*this, Args[i].Ty, ValueVTs);
6004    for (unsigned Value = 0, NumValues = ValueVTs.size();
6005         Value != NumValues; ++Value) {
6006      EVT VT = ValueVTs[Value];
6007      const Type *ArgTy = VT.getTypeForEVT(RetTy->getContext());
6008      SDValue Op = SDValue(Args[i].Node.getNode(),
6009                           Args[i].Node.getResNo() + Value);
6010      ISD::ArgFlagsTy Flags;
6011      unsigned OriginalAlignment =
6012        getTargetData()->getABITypeAlignment(ArgTy);
6013
6014      if (Args[i].isZExt)
6015        Flags.setZExt();
6016      if (Args[i].isSExt)
6017        Flags.setSExt();
6018      if (Args[i].isInReg)
6019        Flags.setInReg();
6020      if (Args[i].isSRet)
6021        Flags.setSRet();
6022      if (Args[i].isByVal) {
6023        Flags.setByVal();
6024        const PointerType *Ty = cast<PointerType>(Args[i].Ty);
6025        const Type *ElementTy = Ty->getElementType();
6026        unsigned FrameAlign = getByValTypeAlignment(ElementTy);
6027        unsigned FrameSize  = getTargetData()->getTypeAllocSize(ElementTy);
6028        // For ByVal, alignment should come from FE.  BE will guess if this
6029        // info is not there but there are cases it cannot get right.
6030        if (Args[i].Alignment)
6031          FrameAlign = Args[i].Alignment;
6032        Flags.setByValAlign(FrameAlign);
6033        Flags.setByValSize(FrameSize);
6034      }
6035      if (Args[i].isNest)
6036        Flags.setNest();
6037      Flags.setOrigAlign(OriginalAlignment);
6038
6039      EVT PartVT = getRegisterType(RetTy->getContext(), VT);
6040      unsigned NumParts = getNumRegisters(RetTy->getContext(), VT);
6041      SmallVector<SDValue, 4> Parts(NumParts);
6042      ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
6043
6044      if (Args[i].isSExt)
6045        ExtendKind = ISD::SIGN_EXTEND;
6046      else if (Args[i].isZExt)
6047        ExtendKind = ISD::ZERO_EXTEND;
6048
6049      getCopyToParts(DAG, dl, Op, &Parts[0], NumParts,
6050                     PartVT, ExtendKind);
6051
6052      for (unsigned j = 0; j != NumParts; ++j) {
6053        // if it isn't first piece, alignment must be 1
6054        ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(),
6055                               i < NumFixedArgs);
6056        if (NumParts > 1 && j == 0)
6057          MyFlags.Flags.setSplit();
6058        else if (j != 0)
6059          MyFlags.Flags.setOrigAlign(1);
6060
6061        Outs.push_back(MyFlags);
6062        OutVals.push_back(Parts[j]);
6063      }
6064    }
6065  }
6066
6067  // Handle the incoming return values from the call.
6068  SmallVector<ISD::InputArg, 32> Ins;
6069  SmallVector<EVT, 4> RetTys;
6070  ComputeValueVTs(*this, RetTy, RetTys);
6071  for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
6072    EVT VT = RetTys[I];
6073    EVT RegisterVT = getRegisterType(RetTy->getContext(), VT);
6074    unsigned NumRegs = getNumRegisters(RetTy->getContext(), VT);
6075    for (unsigned i = 0; i != NumRegs; ++i) {
6076      ISD::InputArg MyFlags;
6077      MyFlags.VT = RegisterVT.getSimpleVT();
6078      MyFlags.Used = isReturnValueUsed;
6079      if (RetSExt)
6080        MyFlags.Flags.setSExt();
6081      if (RetZExt)
6082        MyFlags.Flags.setZExt();
6083      if (isInreg)
6084        MyFlags.Flags.setInReg();
6085      Ins.push_back(MyFlags);
6086    }
6087  }
6088
6089  SmallVector<SDValue, 4> InVals;
6090  Chain = LowerCall(Chain, Callee, CallConv, isVarArg, isTailCall,
6091                    Outs, OutVals, Ins, dl, DAG, InVals);
6092
6093  // Verify that the target's LowerCall behaved as expected.
6094  assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
6095         "LowerCall didn't return a valid chain!");
6096  assert((!isTailCall || InVals.empty()) &&
6097         "LowerCall emitted a return value for a tail call!");
6098  assert((isTailCall || InVals.size() == Ins.size()) &&
6099         "LowerCall didn't emit the correct number of values!");
6100
6101  // For a tail call, the return value is merely live-out and there aren't
6102  // any nodes in the DAG representing it. Return a special value to
6103  // indicate that a tail call has been emitted and no more Instructions
6104  // should be processed in the current block.
6105  if (isTailCall) {
6106    DAG.setRoot(Chain);
6107    return std::make_pair(SDValue(), SDValue());
6108  }
6109
6110  DEBUG(for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
6111          assert(InVals[i].getNode() &&
6112                 "LowerCall emitted a null value!");
6113          assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
6114                 "LowerCall emitted a value with the wrong type!");
6115        });
6116
6117  // Collect the legal value parts into potentially illegal values
6118  // that correspond to the original function's return values.
6119  ISD::NodeType AssertOp = ISD::DELETED_NODE;
6120  if (RetSExt)
6121    AssertOp = ISD::AssertSext;
6122  else if (RetZExt)
6123    AssertOp = ISD::AssertZext;
6124  SmallVector<SDValue, 4> ReturnValues;
6125  unsigned CurReg = 0;
6126  for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
6127    EVT VT = RetTys[I];
6128    EVT RegisterVT = getRegisterType(RetTy->getContext(), VT);
6129    unsigned NumRegs = getNumRegisters(RetTy->getContext(), VT);
6130
6131    ReturnValues.push_back(getCopyFromParts(DAG, dl, &InVals[CurReg],
6132                                            NumRegs, RegisterVT, VT,
6133                                            AssertOp));
6134    CurReg += NumRegs;
6135  }
6136
6137  // For a function returning void, there is no return value. We can't create
6138  // such a node, so we just return a null return value in that case. In
6139  // that case, nothing will actualy look at the value.
6140  if (ReturnValues.empty())
6141    return std::make_pair(SDValue(), Chain);
6142
6143  SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
6144                            DAG.getVTList(&RetTys[0], RetTys.size()),
6145                            &ReturnValues[0], ReturnValues.size());
6146  return std::make_pair(Res, Chain);
6147}
6148
6149void TargetLowering::LowerOperationWrapper(SDNode *N,
6150                                           SmallVectorImpl<SDValue> &Results,
6151                                           SelectionDAG &DAG) const {
6152  SDValue Res = LowerOperation(SDValue(N, 0), DAG);
6153  if (Res.getNode())
6154    Results.push_back(Res);
6155}
6156
6157SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
6158  llvm_unreachable("LowerOperation not implemented for this target!");
6159  return SDValue();
6160}
6161
6162void
6163SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) {
6164  SDValue Op = getNonRegisterValue(V);
6165  assert((Op.getOpcode() != ISD::CopyFromReg ||
6166          cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
6167         "Copy from a reg to the same reg!");
6168  assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg");
6169
6170  RegsForValue RFV(V->getContext(), TLI, Reg, V->getType());
6171  SDValue Chain = DAG.getEntryNode();
6172  RFV.getCopyToRegs(Op, DAG, getCurDebugLoc(), Chain, 0);
6173  PendingExports.push_back(Chain);
6174}
6175
6176#include "llvm/CodeGen/SelectionDAGISel.h"
6177
6178void SelectionDAGISel::LowerArguments(const BasicBlock *LLVMBB) {
6179  // If this is the entry block, emit arguments.
6180  const Function &F = *LLVMBB->getParent();
6181  SelectionDAG &DAG = SDB->DAG;
6182  DebugLoc dl = SDB->getCurDebugLoc();
6183  const TargetData *TD = TLI.getTargetData();
6184  SmallVector<ISD::InputArg, 16> Ins;
6185
6186  // Check whether the function can return without sret-demotion.
6187  SmallVector<ISD::OutputArg, 4> Outs;
6188  GetReturnInfo(F.getReturnType(), F.getAttributes().getRetAttributes(),
6189                Outs, TLI);
6190
6191  if (!FuncInfo->CanLowerReturn) {
6192    // Put in an sret pointer parameter before all the other parameters.
6193    SmallVector<EVT, 1> ValueVTs;
6194    ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs);
6195
6196    // NOTE: Assuming that a pointer will never break down to more than one VT
6197    // or one register.
6198    ISD::ArgFlagsTy Flags;
6199    Flags.setSRet();
6200    EVT RegisterVT = TLI.getRegisterType(*DAG.getContext(), ValueVTs[0]);
6201    ISD::InputArg RetArg(Flags, RegisterVT, true);
6202    Ins.push_back(RetArg);
6203  }
6204
6205  // Set up the incoming argument description vector.
6206  unsigned Idx = 1;
6207  for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end();
6208       I != E; ++I, ++Idx) {
6209    SmallVector<EVT, 4> ValueVTs;
6210    ComputeValueVTs(TLI, I->getType(), ValueVTs);
6211    bool isArgValueUsed = !I->use_empty();
6212    for (unsigned Value = 0, NumValues = ValueVTs.size();
6213         Value != NumValues; ++Value) {
6214      EVT VT = ValueVTs[Value];
6215      const Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
6216      ISD::ArgFlagsTy Flags;
6217      unsigned OriginalAlignment =
6218        TD->getABITypeAlignment(ArgTy);
6219
6220      if (F.paramHasAttr(Idx, Attribute::ZExt))
6221        Flags.setZExt();
6222      if (F.paramHasAttr(Idx, Attribute::SExt))
6223        Flags.setSExt();
6224      if (F.paramHasAttr(Idx, Attribute::InReg))
6225        Flags.setInReg();
6226      if (F.paramHasAttr(Idx, Attribute::StructRet))
6227        Flags.setSRet();
6228      if (F.paramHasAttr(Idx, Attribute::ByVal)) {
6229        Flags.setByVal();
6230        const PointerType *Ty = cast<PointerType>(I->getType());
6231        const Type *ElementTy = Ty->getElementType();
6232        unsigned FrameAlign = TLI.getByValTypeAlignment(ElementTy);
6233        unsigned FrameSize  = TD->getTypeAllocSize(ElementTy);
6234        // For ByVal, alignment should be passed from FE.  BE will guess if
6235        // this info is not there but there are cases it cannot get right.
6236        if (F.getParamAlignment(Idx))
6237          FrameAlign = F.getParamAlignment(Idx);
6238        Flags.setByValAlign(FrameAlign);
6239        Flags.setByValSize(FrameSize);
6240      }
6241      if (F.paramHasAttr(Idx, Attribute::Nest))
6242        Flags.setNest();
6243      Flags.setOrigAlign(OriginalAlignment);
6244
6245      EVT RegisterVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
6246      unsigned NumRegs = TLI.getNumRegisters(*CurDAG->getContext(), VT);
6247      for (unsigned i = 0; i != NumRegs; ++i) {
6248        ISD::InputArg MyFlags(Flags, RegisterVT, isArgValueUsed);
6249        if (NumRegs > 1 && i == 0)
6250          MyFlags.Flags.setSplit();
6251        // if it isn't first piece, alignment must be 1
6252        else if (i > 0)
6253          MyFlags.Flags.setOrigAlign(1);
6254        Ins.push_back(MyFlags);
6255      }
6256    }
6257  }
6258
6259  // Call the target to set up the argument values.
6260  SmallVector<SDValue, 8> InVals;
6261  SDValue NewRoot = TLI.LowerFormalArguments(DAG.getRoot(), F.getCallingConv(),
6262                                             F.isVarArg(), Ins,
6263                                             dl, DAG, InVals);
6264
6265  // Verify that the target's LowerFormalArguments behaved as expected.
6266  assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
6267         "LowerFormalArguments didn't return a valid chain!");
6268  assert(InVals.size() == Ins.size() &&
6269         "LowerFormalArguments didn't emit the correct number of values!");
6270  DEBUG({
6271      for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
6272        assert(InVals[i].getNode() &&
6273               "LowerFormalArguments emitted a null value!");
6274        assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
6275               "LowerFormalArguments emitted a value with the wrong type!");
6276      }
6277    });
6278
6279  // Update the DAG with the new chain value resulting from argument lowering.
6280  DAG.setRoot(NewRoot);
6281
6282  // Set up the argument values.
6283  unsigned i = 0;
6284  Idx = 1;
6285  if (!FuncInfo->CanLowerReturn) {
6286    // Create a virtual register for the sret pointer, and put in a copy
6287    // from the sret argument into it.
6288    SmallVector<EVT, 1> ValueVTs;
6289    ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs);
6290    EVT VT = ValueVTs[0];
6291    EVT RegVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
6292    ISD::NodeType AssertOp = ISD::DELETED_NODE;
6293    SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1,
6294                                        RegVT, VT, AssertOp);
6295
6296    MachineFunction& MF = SDB->DAG.getMachineFunction();
6297    MachineRegisterInfo& RegInfo = MF.getRegInfo();
6298    unsigned SRetReg = RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT));
6299    FuncInfo->DemoteRegister = SRetReg;
6300    NewRoot = SDB->DAG.getCopyToReg(NewRoot, SDB->getCurDebugLoc(),
6301                                    SRetReg, ArgValue);
6302    DAG.setRoot(NewRoot);
6303
6304    // i indexes lowered arguments.  Bump it past the hidden sret argument.
6305    // Idx indexes LLVM arguments.  Don't touch it.
6306    ++i;
6307  }
6308
6309  for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E;
6310      ++I, ++Idx) {
6311    SmallVector<SDValue, 4> ArgValues;
6312    SmallVector<EVT, 4> ValueVTs;
6313    ComputeValueVTs(TLI, I->getType(), ValueVTs);
6314    unsigned NumValues = ValueVTs.size();
6315
6316    // If this argument is unused then remember its value. It is used to generate
6317    // debugging information.
6318    if (I->use_empty() && NumValues)
6319      SDB->setUnusedArgValue(I, InVals[i]);
6320
6321    for (unsigned Value = 0; Value != NumValues; ++Value) {
6322      EVT VT = ValueVTs[Value];
6323      EVT PartVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
6324      unsigned NumParts = TLI.getNumRegisters(*CurDAG->getContext(), VT);
6325
6326      if (!I->use_empty()) {
6327        ISD::NodeType AssertOp = ISD::DELETED_NODE;
6328        if (F.paramHasAttr(Idx, Attribute::SExt))
6329          AssertOp = ISD::AssertSext;
6330        else if (F.paramHasAttr(Idx, Attribute::ZExt))
6331          AssertOp = ISD::AssertZext;
6332
6333        ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i],
6334                                             NumParts, PartVT, VT,
6335                                             AssertOp));
6336      }
6337
6338      i += NumParts;
6339    }
6340
6341    // Note down frame index for byval arguments.
6342    if (I->hasByValAttr() && !ArgValues.empty())
6343      if (FrameIndexSDNode *FI =
6344          dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
6345        FuncInfo->setByValArgumentFrameIndex(I, FI->getIndex());
6346
6347    if (!I->use_empty()) {
6348      SDValue Res;
6349      if (!ArgValues.empty())
6350        Res = DAG.getMergeValues(&ArgValues[0], NumValues,
6351                                 SDB->getCurDebugLoc());
6352      SDB->setValue(I, Res);
6353
6354      // If this argument is live outside of the entry block, insert a copy from
6355      // whereever we got it to the vreg that other BB's will reference it as.
6356      SDB->CopyToExportRegsIfNeeded(I);
6357    }
6358  }
6359
6360  assert(i == InVals.size() && "Argument register count mismatch!");
6361
6362  // Finally, if the target has anything special to do, allow it to do so.
6363  // FIXME: this should insert code into the DAG!
6364  EmitFunctionEntryCode();
6365}
6366
6367/// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
6368/// ensure constants are generated when needed.  Remember the virtual registers
6369/// that need to be added to the Machine PHI nodes as input.  We cannot just
6370/// directly add them, because expansion might result in multiple MBB's for one
6371/// BB.  As such, the start of the BB might correspond to a different MBB than
6372/// the end.
6373///
6374void
6375SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
6376  const TerminatorInst *TI = LLVMBB->getTerminator();
6377
6378  SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
6379
6380  // Check successor nodes' PHI nodes that expect a constant to be available
6381  // from this block.
6382  for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
6383    const BasicBlock *SuccBB = TI->getSuccessor(succ);
6384    if (!isa<PHINode>(SuccBB->begin())) continue;
6385    MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
6386
6387    // If this terminator has multiple identical successors (common for
6388    // switches), only handle each succ once.
6389    if (!SuccsHandled.insert(SuccMBB)) continue;
6390
6391    MachineBasicBlock::iterator MBBI = SuccMBB->begin();
6392
6393    // At this point we know that there is a 1-1 correspondence between LLVM PHI
6394    // nodes and Machine PHI nodes, but the incoming operands have not been
6395    // emitted yet.
6396    for (BasicBlock::const_iterator I = SuccBB->begin();
6397         const PHINode *PN = dyn_cast<PHINode>(I); ++I) {
6398      // Ignore dead phi's.
6399      if (PN->use_empty()) continue;
6400
6401      unsigned Reg;
6402      const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
6403
6404      if (const Constant *C = dyn_cast<Constant>(PHIOp)) {
6405        unsigned &RegOut = ConstantsOut[C];
6406        if (RegOut == 0) {
6407          RegOut = FuncInfo.CreateRegs(C->getType());
6408          CopyValueToVirtualRegister(C, RegOut);
6409        }
6410        Reg = RegOut;
6411      } else {
6412        DenseMap<const Value *, unsigned>::iterator I =
6413          FuncInfo.ValueMap.find(PHIOp);
6414        if (I != FuncInfo.ValueMap.end())
6415          Reg = I->second;
6416        else {
6417          assert(isa<AllocaInst>(PHIOp) &&
6418                 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
6419                 "Didn't codegen value into a register!??");
6420          Reg = FuncInfo.CreateRegs(PHIOp->getType());
6421          CopyValueToVirtualRegister(PHIOp, Reg);
6422        }
6423      }
6424
6425      // Remember that this register needs to added to the machine PHI node as
6426      // the input for this MBB.
6427      SmallVector<EVT, 4> ValueVTs;
6428      ComputeValueVTs(TLI, PN->getType(), ValueVTs);
6429      for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
6430        EVT VT = ValueVTs[vti];
6431        unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
6432        for (unsigned i = 0, e = NumRegisters; i != e; ++i)
6433          FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i));
6434        Reg += NumRegisters;
6435      }
6436    }
6437  }
6438  ConstantsOut.clear();
6439}
6440