SelectionDAGBuilder.cpp revision b9e12e519e01078663941ddfbecccf1432c1120c
1//===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements routines for translating from LLVM IR into SelectionDAG IR.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "isel"
15#include "SelectionDAGBuilder.h"
16#include "SDNodeDbgValue.h"
17#include "llvm/ADT/BitVector.h"
18#include "llvm/ADT/PostOrderIterator.h"
19#include "llvm/ADT/SmallSet.h"
20#include "llvm/Analysis/AliasAnalysis.h"
21#include "llvm/Analysis/ConstantFolding.h"
22#include "llvm/Analysis/ValueTracking.h"
23#include "llvm/CallingConv.h"
24#include "llvm/CodeGen/Analysis.h"
25#include "llvm/CodeGen/FastISel.h"
26#include "llvm/CodeGen/FunctionLoweringInfo.h"
27#include "llvm/CodeGen/GCMetadata.h"
28#include "llvm/CodeGen/GCStrategy.h"
29#include "llvm/CodeGen/MachineFrameInfo.h"
30#include "llvm/CodeGen/MachineFunction.h"
31#include "llvm/CodeGen/MachineInstrBuilder.h"
32#include "llvm/CodeGen/MachineJumpTableInfo.h"
33#include "llvm/CodeGen/MachineModuleInfo.h"
34#include "llvm/CodeGen/MachineRegisterInfo.h"
35#include "llvm/CodeGen/SelectionDAG.h"
36#include "llvm/Constants.h"
37#include "llvm/DataLayout.h"
38#include "llvm/DebugInfo.h"
39#include "llvm/DerivedTypes.h"
40#include "llvm/Function.h"
41#include "llvm/GlobalVariable.h"
42#include "llvm/InlineAsm.h"
43#include "llvm/Instructions.h"
44#include "llvm/IntrinsicInst.h"
45#include "llvm/Intrinsics.h"
46#include "llvm/LLVMContext.h"
47#include "llvm/Module.h"
48#include "llvm/Support/CommandLine.h"
49#include "llvm/Support/Debug.h"
50#include "llvm/Support/ErrorHandling.h"
51#include "llvm/Support/IntegersSubsetMapping.h"
52#include "llvm/Support/MathExtras.h"
53#include "llvm/Support/raw_ostream.h"
54#include "llvm/Target/TargetFrameLowering.h"
55#include "llvm/Target/TargetInstrInfo.h"
56#include "llvm/Target/TargetIntrinsicInfo.h"
57#include "llvm/Target/TargetLibraryInfo.h"
58#include "llvm/Target/TargetLowering.h"
59#include "llvm/Target/TargetOptions.h"
60#include <algorithm>
61using namespace llvm;
62
63/// LimitFloatPrecision - Generate low-precision inline sequences for
64/// some float libcalls (6, 8 or 12 bits).
65static unsigned LimitFloatPrecision;
66
67static cl::opt<unsigned, true>
68LimitFPPrecision("limit-float-precision",
69                 cl::desc("Generate low-precision inline sequences "
70                          "for some float libcalls"),
71                 cl::location(LimitFloatPrecision),
72                 cl::init(0));
73
74// Limit the width of DAG chains. This is important in general to prevent
75// prevent DAG-based analysis from blowing up. For example, alias analysis and
76// load clustering may not complete in reasonable time. It is difficult to
77// recognize and avoid this situation within each individual analysis, and
78// future analyses are likely to have the same behavior. Limiting DAG width is
79// the safe approach, and will be especially important with global DAGs.
80//
81// MaxParallelChains default is arbitrarily high to avoid affecting
82// optimization, but could be lowered to improve compile time. Any ld-ld-st-st
83// sequence over this should have been converted to llvm.memcpy by the
84// frontend. It easy to induce this behavior with .ll code such as:
85// %buffer = alloca [4096 x i8]
86// %data = load [4096 x i8]* %argPtr
87// store [4096 x i8] %data, [4096 x i8]* %buffer
88static const unsigned MaxParallelChains = 64;
89
90static SDValue getCopyFromPartsVector(SelectionDAG &DAG, DebugLoc DL,
91                                      const SDValue *Parts, unsigned NumParts,
92                                      MVT PartVT, EVT ValueVT, const Value *V);
93
94/// getCopyFromParts - Create a value that contains the specified legal parts
95/// combined into the value they represent.  If the parts combine to a type
96/// larger then ValueVT then AssertOp can be used to specify whether the extra
97/// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
98/// (ISD::AssertSext).
99static SDValue getCopyFromParts(SelectionDAG &DAG, DebugLoc DL,
100                                const SDValue *Parts,
101                                unsigned NumParts, MVT PartVT, EVT ValueVT,
102                                const Value *V,
103                                ISD::NodeType AssertOp = ISD::DELETED_NODE) {
104  if (ValueVT.isVector())
105    return getCopyFromPartsVector(DAG, DL, Parts, NumParts,
106                                  PartVT, ValueVT, V);
107
108  assert(NumParts > 0 && "No parts to assemble!");
109  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
110  SDValue Val = Parts[0];
111
112  if (NumParts > 1) {
113    // Assemble the value from multiple parts.
114    if (ValueVT.isInteger()) {
115      unsigned PartBits = PartVT.getSizeInBits();
116      unsigned ValueBits = ValueVT.getSizeInBits();
117
118      // Assemble the power of 2 part.
119      unsigned RoundParts = NumParts & (NumParts - 1) ?
120        1 << Log2_32(NumParts) : NumParts;
121      unsigned RoundBits = PartBits * RoundParts;
122      EVT RoundVT = RoundBits == ValueBits ?
123        ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
124      SDValue Lo, Hi;
125
126      EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
127
128      if (RoundParts > 2) {
129        Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2,
130                              PartVT, HalfVT, V);
131        Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2,
132                              RoundParts / 2, PartVT, HalfVT, V);
133      } else {
134        Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
135        Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
136      }
137
138      if (TLI.isBigEndian())
139        std::swap(Lo, Hi);
140
141      Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
142
143      if (RoundParts < NumParts) {
144        // Assemble the trailing non-power-of-2 part.
145        unsigned OddParts = NumParts - RoundParts;
146        EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
147        Hi = getCopyFromParts(DAG, DL,
148                              Parts + RoundParts, OddParts, PartVT, OddVT, V);
149
150        // Combine the round and odd parts.
151        Lo = Val;
152        if (TLI.isBigEndian())
153          std::swap(Lo, Hi);
154        EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
155        Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
156        Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
157                         DAG.getConstant(Lo.getValueType().getSizeInBits(),
158                                         TLI.getPointerTy()));
159        Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
160        Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
161      }
162    } else if (PartVT.isFloatingPoint()) {
163      // FP split into multiple FP parts (for ppcf128)
164      assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 &&
165             "Unexpected split");
166      SDValue Lo, Hi;
167      Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
168      Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
169      if (TLI.isBigEndian())
170        std::swap(Lo, Hi);
171      Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
172    } else {
173      // FP split into integer parts (soft fp)
174      assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
175             !PartVT.isVector() && "Unexpected split");
176      EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
177      Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V);
178    }
179  }
180
181  // There is now one part, held in Val.  Correct it to match ValueVT.
182  EVT PartEVT = Val.getValueType();
183
184  if (PartEVT == ValueVT)
185    return Val;
186
187  if (PartEVT.isInteger() && ValueVT.isInteger()) {
188    if (ValueVT.bitsLT(PartEVT)) {
189      // For a truncate, see if we have any information to
190      // indicate whether the truncated bits will always be
191      // zero or sign-extension.
192      if (AssertOp != ISD::DELETED_NODE)
193        Val = DAG.getNode(AssertOp, DL, PartEVT, Val,
194                          DAG.getValueType(ValueVT));
195      return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
196    }
197    return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
198  }
199
200  if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
201    // FP_ROUND's are always exact here.
202    if (ValueVT.bitsLT(Val.getValueType()))
203      return DAG.getNode(ISD::FP_ROUND, DL, ValueVT, Val,
204                         DAG.getTargetConstant(1, TLI.getPointerTy()));
205
206    return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
207  }
208
209  if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits())
210    return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
211
212  llvm_unreachable("Unknown mismatch!");
213}
214
215/// getCopyFromPartsVector - Create a value that contains the specified legal
216/// parts combined into the value they represent.  If the parts combine to a
217/// type larger then ValueVT then AssertOp can be used to specify whether the
218/// extra bits are known to be zero (ISD::AssertZext) or sign extended from
219/// ValueVT (ISD::AssertSext).
220static SDValue getCopyFromPartsVector(SelectionDAG &DAG, DebugLoc DL,
221                                      const SDValue *Parts, unsigned NumParts,
222                                      MVT PartVT, EVT ValueVT, const Value *V) {
223  assert(ValueVT.isVector() && "Not a vector value");
224  assert(NumParts > 0 && "No parts to assemble!");
225  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
226  SDValue Val = Parts[0];
227
228  // Handle a multi-element vector.
229  if (NumParts > 1) {
230    EVT IntermediateVT;
231    MVT RegisterVT;
232    unsigned NumIntermediates;
233    unsigned NumRegs =
234    TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
235                               NumIntermediates, RegisterVT);
236    assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
237    NumParts = NumRegs; // Silence a compiler warning.
238    assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
239    assert(RegisterVT == Parts[0].getSimpleValueType() &&
240           "Part type doesn't match part!");
241
242    // Assemble the parts into intermediate operands.
243    SmallVector<SDValue, 8> Ops(NumIntermediates);
244    if (NumIntermediates == NumParts) {
245      // If the register was not expanded, truncate or copy the value,
246      // as appropriate.
247      for (unsigned i = 0; i != NumParts; ++i)
248        Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1,
249                                  PartVT, IntermediateVT, V);
250    } else if (NumParts > 0) {
251      // If the intermediate type was expanded, build the intermediate
252      // operands from the parts.
253      assert(NumParts % NumIntermediates == 0 &&
254             "Must expand into a divisible number of parts!");
255      unsigned Factor = NumParts / NumIntermediates;
256      for (unsigned i = 0; i != NumIntermediates; ++i)
257        Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor,
258                                  PartVT, IntermediateVT, V);
259    }
260
261    // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
262    // intermediate operands.
263    Val = DAG.getNode(IntermediateVT.isVector() ?
264                      ISD::CONCAT_VECTORS : ISD::BUILD_VECTOR, DL,
265                      ValueVT, &Ops[0], NumIntermediates);
266  }
267
268  // There is now one part, held in Val.  Correct it to match ValueVT.
269  EVT PartEVT = Val.getValueType();
270
271  if (PartEVT == ValueVT)
272    return Val;
273
274  if (PartEVT.isVector()) {
275    // If the element type of the source/dest vectors are the same, but the
276    // parts vector has more elements than the value vector, then we have a
277    // vector widening case (e.g. <2 x float> -> <4 x float>).  Extract the
278    // elements we want.
279    if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) {
280      assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() &&
281             "Cannot narrow, it would be a lossy transformation");
282      return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
283                         DAG.getIntPtrConstant(0));
284    }
285
286    // Vector/Vector bitcast.
287    if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits())
288      return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
289
290    assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() &&
291      "Cannot handle this kind of promotion");
292    // Promoted vector extract
293    bool Smaller = ValueVT.bitsLE(PartEVT);
294    return DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
295                       DL, ValueVT, Val);
296
297  }
298
299  // Trivial bitcast if the types are the same size and the destination
300  // vector type is legal.
301  if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() &&
302      TLI.isTypeLegal(ValueVT))
303    return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
304
305  // Handle cases such as i8 -> <1 x i1>
306  if (ValueVT.getVectorNumElements() != 1) {
307    LLVMContext &Ctx = *DAG.getContext();
308    Twine ErrMsg("non-trivial scalar-to-vector conversion");
309    if (const Instruction *I = dyn_cast_or_null<Instruction>(V)) {
310      if (const CallInst *CI = dyn_cast<CallInst>(I))
311        if (isa<InlineAsm>(CI->getCalledValue()))
312          ErrMsg = ErrMsg + ", possible invalid constraint for vector type";
313      Ctx.emitError(I, ErrMsg);
314    } else {
315      Ctx.emitError(ErrMsg);
316    }
317    report_fatal_error("Cannot handle scalar-to-vector conversion!");
318  }
319
320  if (ValueVT.getVectorNumElements() == 1 &&
321      ValueVT.getVectorElementType() != PartEVT) {
322    bool Smaller = ValueVT.bitsLE(PartEVT);
323    Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
324                       DL, ValueVT.getScalarType(), Val);
325  }
326
327  return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val);
328}
329
330static void getCopyToPartsVector(SelectionDAG &DAG, DebugLoc dl,
331                                 SDValue Val, SDValue *Parts, unsigned NumParts,
332                                 MVT PartVT, const Value *V);
333
334/// getCopyToParts - Create a series of nodes that contain the specified value
335/// split into legal parts.  If the parts contain more bits than Val, then, for
336/// integers, ExtendKind can be used to specify how to generate the extra bits.
337static void getCopyToParts(SelectionDAG &DAG, DebugLoc DL,
338                           SDValue Val, SDValue *Parts, unsigned NumParts,
339                           MVT PartVT, const Value *V,
340                           ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
341  EVT ValueVT = Val.getValueType();
342
343  // Handle the vector case separately.
344  if (ValueVT.isVector())
345    return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V);
346
347  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
348  unsigned PartBits = PartVT.getSizeInBits();
349  unsigned OrigNumParts = NumParts;
350  assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!");
351
352  if (NumParts == 0)
353    return;
354
355  assert(!ValueVT.isVector() && "Vector case handled elsewhere");
356  EVT PartEVT = PartVT;
357  if (PartEVT == ValueVT) {
358    assert(NumParts == 1 && "No-op copy with multiple parts!");
359    Parts[0] = Val;
360    return;
361  }
362
363  if (NumParts * PartBits > ValueVT.getSizeInBits()) {
364    // If the parts cover more bits than the value has, promote the value.
365    if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
366      assert(NumParts == 1 && "Do not know what to promote to!");
367      Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
368    } else {
369      assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
370             ValueVT.isInteger() &&
371             "Unknown mismatch!");
372      ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
373      Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
374      if (PartVT == MVT::x86mmx)
375        Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
376    }
377  } else if (PartBits == ValueVT.getSizeInBits()) {
378    // Different types of the same size.
379    assert(NumParts == 1 && PartEVT != ValueVT);
380    Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
381  } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
382    // If the parts cover less bits than value has, truncate the value.
383    assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
384           ValueVT.isInteger() &&
385           "Unknown mismatch!");
386    ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
387    Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
388    if (PartVT == MVT::x86mmx)
389      Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
390  }
391
392  // The value may have changed - recompute ValueVT.
393  ValueVT = Val.getValueType();
394  assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
395         "Failed to tile the value with PartVT!");
396
397  if (NumParts == 1) {
398    if (PartEVT != ValueVT) {
399      LLVMContext &Ctx = *DAG.getContext();
400      Twine ErrMsg("scalar-to-vector conversion failed");
401      if (const Instruction *I = dyn_cast_or_null<Instruction>(V)) {
402        if (const CallInst *CI = dyn_cast<CallInst>(I))
403          if (isa<InlineAsm>(CI->getCalledValue()))
404            ErrMsg = ErrMsg + ", possible invalid constraint for vector type";
405        Ctx.emitError(I, ErrMsg);
406      } else {
407        Ctx.emitError(ErrMsg);
408      }
409    }
410
411    Parts[0] = Val;
412    return;
413  }
414
415  // Expand the value into multiple parts.
416  if (NumParts & (NumParts - 1)) {
417    // The number of parts is not a power of 2.  Split off and copy the tail.
418    assert(PartVT.isInteger() && ValueVT.isInteger() &&
419           "Do not know what to expand to!");
420    unsigned RoundParts = 1 << Log2_32(NumParts);
421    unsigned RoundBits = RoundParts * PartBits;
422    unsigned OddParts = NumParts - RoundParts;
423    SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
424                                 DAG.getIntPtrConstant(RoundBits));
425    getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V);
426
427    if (TLI.isBigEndian())
428      // The odd parts were reversed by getCopyToParts - unreverse them.
429      std::reverse(Parts + RoundParts, Parts + NumParts);
430
431    NumParts = RoundParts;
432    ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
433    Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
434  }
435
436  // The number of parts is a power of 2.  Repeatedly bisect the value using
437  // EXTRACT_ELEMENT.
438  Parts[0] = DAG.getNode(ISD::BITCAST, DL,
439                         EVT::getIntegerVT(*DAG.getContext(),
440                                           ValueVT.getSizeInBits()),
441                         Val);
442
443  for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
444    for (unsigned i = 0; i < NumParts; i += StepSize) {
445      unsigned ThisBits = StepSize * PartBits / 2;
446      EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
447      SDValue &Part0 = Parts[i];
448      SDValue &Part1 = Parts[i+StepSize/2];
449
450      Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
451                          ThisVT, Part0, DAG.getIntPtrConstant(1));
452      Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
453                          ThisVT, Part0, DAG.getIntPtrConstant(0));
454
455      if (ThisBits == PartBits && ThisVT != PartVT) {
456        Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
457        Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
458      }
459    }
460  }
461
462  if (TLI.isBigEndian())
463    std::reverse(Parts, Parts + OrigNumParts);
464}
465
466
467/// getCopyToPartsVector - Create a series of nodes that contain the specified
468/// value split into legal parts.
469static void getCopyToPartsVector(SelectionDAG &DAG, DebugLoc DL,
470                                 SDValue Val, SDValue *Parts, unsigned NumParts,
471                                 MVT PartVT, const Value *V) {
472  EVT ValueVT = Val.getValueType();
473  assert(ValueVT.isVector() && "Not a vector");
474  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
475
476  if (NumParts == 1) {
477    EVT PartEVT = PartVT;
478    if (PartEVT == ValueVT) {
479      // Nothing to do.
480    } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
481      // Bitconvert vector->vector case.
482      Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
483    } else if (PartVT.isVector() &&
484               PartEVT.getVectorElementType() == ValueVT.getVectorElementType() &&
485               PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements()) {
486      EVT ElementVT = PartVT.getVectorElementType();
487      // Vector widening case, e.g. <2 x float> -> <4 x float>.  Shuffle in
488      // undef elements.
489      SmallVector<SDValue, 16> Ops;
490      for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i)
491        Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
492                                  ElementVT, Val, DAG.getIntPtrConstant(i)));
493
494      for (unsigned i = ValueVT.getVectorNumElements(),
495           e = PartVT.getVectorNumElements(); i != e; ++i)
496        Ops.push_back(DAG.getUNDEF(ElementVT));
497
498      Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, &Ops[0], Ops.size());
499
500      // FIXME: Use CONCAT for 2x -> 4x.
501
502      //SDValue UndefElts = DAG.getUNDEF(VectorTy);
503      //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts);
504    } else if (PartVT.isVector() &&
505               PartEVT.getVectorElementType().bitsGE(
506                 ValueVT.getVectorElementType()) &&
507               PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) {
508
509      // Promoted vector extract
510      bool Smaller = PartEVT.bitsLE(ValueVT);
511      Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
512                        DL, PartVT, Val);
513    } else{
514      // Vector -> scalar conversion.
515      assert(ValueVT.getVectorNumElements() == 1 &&
516             "Only trivial vector-to-scalar conversions should get here!");
517      Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
518                        PartVT, Val, DAG.getIntPtrConstant(0));
519
520      bool Smaller = ValueVT.bitsLE(PartVT);
521      Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
522                         DL, PartVT, Val);
523    }
524
525    Parts[0] = Val;
526    return;
527  }
528
529  // Handle a multi-element vector.
530  EVT IntermediateVT;
531  MVT RegisterVT;
532  unsigned NumIntermediates;
533  unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT,
534                                                IntermediateVT,
535                                                NumIntermediates, RegisterVT);
536  unsigned NumElements = ValueVT.getVectorNumElements();
537
538  assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
539  NumParts = NumRegs; // Silence a compiler warning.
540  assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
541
542  // Split the vector into intermediate operands.
543  SmallVector<SDValue, 8> Ops(NumIntermediates);
544  for (unsigned i = 0; i != NumIntermediates; ++i) {
545    if (IntermediateVT.isVector())
546      Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL,
547                           IntermediateVT, Val,
548                   DAG.getIntPtrConstant(i * (NumElements / NumIntermediates)));
549    else
550      Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
551                           IntermediateVT, Val, DAG.getIntPtrConstant(i));
552  }
553
554  // Split the intermediate operands into legal parts.
555  if (NumParts == NumIntermediates) {
556    // If the register was not expanded, promote or copy the value,
557    // as appropriate.
558    for (unsigned i = 0; i != NumParts; ++i)
559      getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V);
560  } else if (NumParts > 0) {
561    // If the intermediate type was expanded, split each the value into
562    // legal parts.
563    assert(NumParts % NumIntermediates == 0 &&
564           "Must expand into a divisible number of parts!");
565    unsigned Factor = NumParts / NumIntermediates;
566    for (unsigned i = 0; i != NumIntermediates; ++i)
567      getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT, V);
568  }
569}
570
571namespace {
572  /// RegsForValue - This struct represents the registers (physical or virtual)
573  /// that a particular set of values is assigned, and the type information
574  /// about the value. The most common situation is to represent one value at a
575  /// time, but struct or array values are handled element-wise as multiple
576  /// values.  The splitting of aggregates is performed recursively, so that we
577  /// never have aggregate-typed registers. The values at this point do not
578  /// necessarily have legal types, so each value may require one or more
579  /// registers of some legal type.
580  ///
581  struct RegsForValue {
582    /// ValueVTs - The value types of the values, which may not be legal, and
583    /// may need be promoted or synthesized from one or more registers.
584    ///
585    SmallVector<EVT, 4> ValueVTs;
586
587    /// RegVTs - The value types of the registers. This is the same size as
588    /// ValueVTs and it records, for each value, what the type of the assigned
589    /// register or registers are. (Individual values are never synthesized
590    /// from more than one type of register.)
591    ///
592    /// With virtual registers, the contents of RegVTs is redundant with TLI's
593    /// getRegisterType member function, however when with physical registers
594    /// it is necessary to have a separate record of the types.
595    ///
596    SmallVector<MVT, 4> RegVTs;
597
598    /// Regs - This list holds the registers assigned to the values.
599    /// Each legal or promoted value requires one register, and each
600    /// expanded value requires multiple registers.
601    ///
602    SmallVector<unsigned, 4> Regs;
603
604    RegsForValue() {}
605
606    RegsForValue(const SmallVector<unsigned, 4> &regs,
607                 MVT regvt, EVT valuevt)
608      : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {}
609
610    RegsForValue(LLVMContext &Context, const TargetLowering &tli,
611                 unsigned Reg, Type *Ty) {
612      ComputeValueVTs(tli, Ty, ValueVTs);
613
614      for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
615        EVT ValueVT = ValueVTs[Value];
616        unsigned NumRegs = tli.getNumRegisters(Context, ValueVT);
617        MVT RegisterVT = tli.getRegisterType(Context, ValueVT);
618        for (unsigned i = 0; i != NumRegs; ++i)
619          Regs.push_back(Reg + i);
620        RegVTs.push_back(RegisterVT);
621        Reg += NumRegs;
622      }
623    }
624
625    /// areValueTypesLegal - Return true if types of all the values are legal.
626    bool areValueTypesLegal(const TargetLowering &TLI) {
627      for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
628        MVT RegisterVT = RegVTs[Value];
629        if (!TLI.isTypeLegal(RegisterVT))
630          return false;
631      }
632      return true;
633    }
634
635    /// append - Add the specified values to this one.
636    void append(const RegsForValue &RHS) {
637      ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end());
638      RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end());
639      Regs.append(RHS.Regs.begin(), RHS.Regs.end());
640    }
641
642    /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
643    /// this value and returns the result as a ValueVTs value.  This uses
644    /// Chain/Flag as the input and updates them for the output Chain/Flag.
645    /// If the Flag pointer is NULL, no flag is used.
646    SDValue getCopyFromRegs(SelectionDAG &DAG, FunctionLoweringInfo &FuncInfo,
647                            DebugLoc dl,
648                            SDValue &Chain, SDValue *Flag,
649                            const Value *V = 0) const;
650
651    /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
652    /// specified value into the registers specified by this object.  This uses
653    /// Chain/Flag as the input and updates them for the output Chain/Flag.
654    /// If the Flag pointer is NULL, no flag is used.
655    void getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl,
656                       SDValue &Chain, SDValue *Flag, const Value *V) const;
657
658    /// AddInlineAsmOperands - Add this value to the specified inlineasm node
659    /// operand list.  This adds the code marker, matching input operand index
660    /// (if applicable), and includes the number of values added into it.
661    void AddInlineAsmOperands(unsigned Kind,
662                              bool HasMatching, unsigned MatchingIdx,
663                              SelectionDAG &DAG,
664                              std::vector<SDValue> &Ops) const;
665  };
666}
667
668/// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
669/// this value and returns the result as a ValueVT value.  This uses
670/// Chain/Flag as the input and updates them for the output Chain/Flag.
671/// If the Flag pointer is NULL, no flag is used.
672SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
673                                      FunctionLoweringInfo &FuncInfo,
674                                      DebugLoc dl,
675                                      SDValue &Chain, SDValue *Flag,
676                                      const Value *V) const {
677  // A Value with type {} or [0 x %t] needs no registers.
678  if (ValueVTs.empty())
679    return SDValue();
680
681  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
682
683  // Assemble the legal parts into the final values.
684  SmallVector<SDValue, 4> Values(ValueVTs.size());
685  SmallVector<SDValue, 8> Parts;
686  for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
687    // Copy the legal parts from the registers.
688    EVT ValueVT = ValueVTs[Value];
689    unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
690    MVT RegisterVT = RegVTs[Value];
691
692    Parts.resize(NumRegs);
693    for (unsigned i = 0; i != NumRegs; ++i) {
694      SDValue P;
695      if (Flag == 0) {
696        P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
697      } else {
698        P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
699        *Flag = P.getValue(2);
700      }
701
702      Chain = P.getValue(1);
703      Parts[i] = P;
704
705      // If the source register was virtual and if we know something about it,
706      // add an assert node.
707      if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) ||
708          !RegisterVT.isInteger() || RegisterVT.isVector())
709        continue;
710
711      const FunctionLoweringInfo::LiveOutInfo *LOI =
712        FuncInfo.GetLiveOutRegInfo(Regs[Part+i]);
713      if (!LOI)
714        continue;
715
716      unsigned RegSize = RegisterVT.getSizeInBits();
717      unsigned NumSignBits = LOI->NumSignBits;
718      unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes();
719
720      // FIXME: We capture more information than the dag can represent.  For
721      // now, just use the tightest assertzext/assertsext possible.
722      bool isSExt = true;
723      EVT FromVT(MVT::Other);
724      if (NumSignBits == RegSize)
725        isSExt = true, FromVT = MVT::i1;   // ASSERT SEXT 1
726      else if (NumZeroBits >= RegSize-1)
727        isSExt = false, FromVT = MVT::i1;  // ASSERT ZEXT 1
728      else if (NumSignBits > RegSize-8)
729        isSExt = true, FromVT = MVT::i8;   // ASSERT SEXT 8
730      else if (NumZeroBits >= RegSize-8)
731        isSExt = false, FromVT = MVT::i8;  // ASSERT ZEXT 8
732      else if (NumSignBits > RegSize-16)
733        isSExt = true, FromVT = MVT::i16;  // ASSERT SEXT 16
734      else if (NumZeroBits >= RegSize-16)
735        isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16
736      else if (NumSignBits > RegSize-32)
737        isSExt = true, FromVT = MVT::i32;  // ASSERT SEXT 32
738      else if (NumZeroBits >= RegSize-32)
739        isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32
740      else
741        continue;
742
743      // Add an assertion node.
744      assert(FromVT != MVT::Other);
745      Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
746                             RegisterVT, P, DAG.getValueType(FromVT));
747    }
748
749    Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(),
750                                     NumRegs, RegisterVT, ValueVT, V);
751    Part += NumRegs;
752    Parts.clear();
753  }
754
755  return DAG.getNode(ISD::MERGE_VALUES, dl,
756                     DAG.getVTList(&ValueVTs[0], ValueVTs.size()),
757                     &Values[0], ValueVTs.size());
758}
759
760/// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
761/// specified value into the registers specified by this object.  This uses
762/// Chain/Flag as the input and updates them for the output Chain/Flag.
763/// If the Flag pointer is NULL, no flag is used.
764void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl,
765                                 SDValue &Chain, SDValue *Flag,
766                                 const Value *V) const {
767  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
768
769  // Get the list of the values's legal parts.
770  unsigned NumRegs = Regs.size();
771  SmallVector<SDValue, 8> Parts(NumRegs);
772  for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
773    EVT ValueVT = ValueVTs[Value];
774    unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
775    MVT RegisterVT = RegVTs[Value];
776    ISD::NodeType ExtendKind =
777      TLI.isZExtFree(Val, RegisterVT)? ISD::ZERO_EXTEND: ISD::ANY_EXTEND;
778
779    getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value),
780                   &Parts[Part], NumParts, RegisterVT, V, ExtendKind);
781    Part += NumParts;
782  }
783
784  // Copy the parts into the registers.
785  SmallVector<SDValue, 8> Chains(NumRegs);
786  for (unsigned i = 0; i != NumRegs; ++i) {
787    SDValue Part;
788    if (Flag == 0) {
789      Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
790    } else {
791      Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
792      *Flag = Part.getValue(1);
793    }
794
795    Chains[i] = Part.getValue(0);
796  }
797
798  if (NumRegs == 1 || Flag)
799    // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
800    // flagged to it. That is the CopyToReg nodes and the user are considered
801    // a single scheduling unit. If we create a TokenFactor and return it as
802    // chain, then the TokenFactor is both a predecessor (operand) of the
803    // user as well as a successor (the TF operands are flagged to the user).
804    // c1, f1 = CopyToReg
805    // c2, f2 = CopyToReg
806    // c3     = TokenFactor c1, c2
807    // ...
808    //        = op c3, ..., f2
809    Chain = Chains[NumRegs-1];
810  else
811    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0], NumRegs);
812}
813
814/// AddInlineAsmOperands - Add this value to the specified inlineasm node
815/// operand list.  This adds the code marker and includes the number of
816/// values added into it.
817void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
818                                        unsigned MatchingIdx,
819                                        SelectionDAG &DAG,
820                                        std::vector<SDValue> &Ops) const {
821  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
822
823  unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
824  if (HasMatching)
825    Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
826  else if (!Regs.empty() &&
827           TargetRegisterInfo::isVirtualRegister(Regs.front())) {
828    // Put the register class of the virtual registers in the flag word.  That
829    // way, later passes can recompute register class constraints for inline
830    // assembly as well as normal instructions.
831    // Don't do this for tied operands that can use the regclass information
832    // from the def.
833    const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
834    const TargetRegisterClass *RC = MRI.getRegClass(Regs.front());
835    Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID());
836  }
837
838  SDValue Res = DAG.getTargetConstant(Flag, MVT::i32);
839  Ops.push_back(Res);
840
841  for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
842    unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]);
843    MVT RegisterVT = RegVTs[Value];
844    for (unsigned i = 0; i != NumRegs; ++i) {
845      assert(Reg < Regs.size() && "Mismatch in # registers expected");
846      Ops.push_back(DAG.getRegister(Regs[Reg++], RegisterVT));
847    }
848  }
849}
850
851void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa,
852                               const TargetLibraryInfo *li) {
853  AA = &aa;
854  GFI = gfi;
855  LibInfo = li;
856  TD = DAG.getTarget().getDataLayout();
857  Context = DAG.getContext();
858  LPadToCallSiteMap.clear();
859}
860
861/// clear - Clear out the current SelectionDAG and the associated
862/// state and prepare this SelectionDAGBuilder object to be used
863/// for a new block. This doesn't clear out information about
864/// additional blocks that are needed to complete switch lowering
865/// or PHI node updating; that information is cleared out as it is
866/// consumed.
867void SelectionDAGBuilder::clear() {
868  NodeMap.clear();
869  UnusedArgNodeMap.clear();
870  PendingLoads.clear();
871  PendingExports.clear();
872  CurDebugLoc = DebugLoc();
873  HasTailCall = false;
874}
875
876/// clearDanglingDebugInfo - Clear the dangling debug information
877/// map. This function is separated from the clear so that debug
878/// information that is dangling in a basic block can be properly
879/// resolved in a different basic block. This allows the
880/// SelectionDAG to resolve dangling debug information attached
881/// to PHI nodes.
882void SelectionDAGBuilder::clearDanglingDebugInfo() {
883  DanglingDebugInfoMap.clear();
884}
885
886/// getRoot - Return the current virtual root of the Selection DAG,
887/// flushing any PendingLoad items. This must be done before emitting
888/// a store or any other node that may need to be ordered after any
889/// prior load instructions.
890///
891SDValue SelectionDAGBuilder::getRoot() {
892  if (PendingLoads.empty())
893    return DAG.getRoot();
894
895  if (PendingLoads.size() == 1) {
896    SDValue Root = PendingLoads[0];
897    DAG.setRoot(Root);
898    PendingLoads.clear();
899    return Root;
900  }
901
902  // Otherwise, we have to make a token factor node.
903  SDValue Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
904                               &PendingLoads[0], PendingLoads.size());
905  PendingLoads.clear();
906  DAG.setRoot(Root);
907  return Root;
908}
909
910/// getControlRoot - Similar to getRoot, but instead of flushing all the
911/// PendingLoad items, flush all the PendingExports items. It is necessary
912/// to do this before emitting a terminator instruction.
913///
914SDValue SelectionDAGBuilder::getControlRoot() {
915  SDValue Root = DAG.getRoot();
916
917  if (PendingExports.empty())
918    return Root;
919
920  // Turn all of the CopyToReg chains into one factored node.
921  if (Root.getOpcode() != ISD::EntryToken) {
922    unsigned i = 0, e = PendingExports.size();
923    for (; i != e; ++i) {
924      assert(PendingExports[i].getNode()->getNumOperands() > 1);
925      if (PendingExports[i].getNode()->getOperand(0) == Root)
926        break;  // Don't add the root if we already indirectly depend on it.
927    }
928
929    if (i == e)
930      PendingExports.push_back(Root);
931  }
932
933  Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
934                     &PendingExports[0],
935                     PendingExports.size());
936  PendingExports.clear();
937  DAG.setRoot(Root);
938  return Root;
939}
940
941void SelectionDAGBuilder::AssignOrderingToNode(const SDNode *Node) {
942  if (DAG.GetOrdering(Node) != 0) return; // Already has ordering.
943  DAG.AssignOrdering(Node, SDNodeOrder);
944
945  for (unsigned I = 0, E = Node->getNumOperands(); I != E; ++I)
946    AssignOrderingToNode(Node->getOperand(I).getNode());
947}
948
949void SelectionDAGBuilder::visit(const Instruction &I) {
950  // Set up outgoing PHI node register values before emitting the terminator.
951  if (isa<TerminatorInst>(&I))
952    HandlePHINodesInSuccessorBlocks(I.getParent());
953
954  CurDebugLoc = I.getDebugLoc();
955
956  visit(I.getOpcode(), I);
957
958  if (!isa<TerminatorInst>(&I) && !HasTailCall)
959    CopyToExportRegsIfNeeded(&I);
960
961  CurDebugLoc = DebugLoc();
962}
963
964void SelectionDAGBuilder::visitPHI(const PHINode &) {
965  llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
966}
967
968void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
969  // Note: this doesn't use InstVisitor, because it has to work with
970  // ConstantExpr's in addition to instructions.
971  switch (Opcode) {
972  default: llvm_unreachable("Unknown instruction type encountered!");
973    // Build the switch statement using the Instruction.def file.
974#define HANDLE_INST(NUM, OPCODE, CLASS) \
975    case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break;
976#include "llvm/Instruction.def"
977  }
978
979  // Assign the ordering to the freshly created DAG nodes.
980  if (NodeMap.count(&I)) {
981    ++SDNodeOrder;
982    AssignOrderingToNode(getValue(&I).getNode());
983  }
984}
985
986// resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
987// generate the debug data structures now that we've seen its definition.
988void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
989                                                   SDValue Val) {
990  DanglingDebugInfo &DDI = DanglingDebugInfoMap[V];
991  if (DDI.getDI()) {
992    const DbgValueInst *DI = DDI.getDI();
993    DebugLoc dl = DDI.getdl();
994    unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
995    MDNode *Variable = DI->getVariable();
996    uint64_t Offset = DI->getOffset();
997    SDDbgValue *SDV;
998    if (Val.getNode()) {
999      if (!EmitFuncArgumentDbgValue(V, Variable, Offset, Val)) {
1000        SDV = DAG.getDbgValue(Variable, Val.getNode(),
1001                              Val.getResNo(), Offset, dl, DbgSDNodeOrder);
1002        DAG.AddDbgValue(SDV, Val.getNode(), false);
1003      }
1004    } else
1005      DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
1006    DanglingDebugInfoMap[V] = DanglingDebugInfo();
1007  }
1008}
1009
1010/// getValue - Return an SDValue for the given Value.
1011SDValue SelectionDAGBuilder::getValue(const Value *V) {
1012  // If we already have an SDValue for this value, use it. It's important
1013  // to do this first, so that we don't create a CopyFromReg if we already
1014  // have a regular SDValue.
1015  SDValue &N = NodeMap[V];
1016  if (N.getNode()) return N;
1017
1018  // If there's a virtual register allocated and initialized for this
1019  // value, use it.
1020  DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V);
1021  if (It != FuncInfo.ValueMap.end()) {
1022    unsigned InReg = It->second;
1023    RegsForValue RFV(*DAG.getContext(), TLI, InReg, V->getType());
1024    SDValue Chain = DAG.getEntryNode();
1025    N = RFV.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), Chain, NULL, V);
1026    resolveDanglingDebugInfo(V, N);
1027    return N;
1028  }
1029
1030  // Otherwise create a new SDValue and remember it.
1031  SDValue Val = getValueImpl(V);
1032  NodeMap[V] = Val;
1033  resolveDanglingDebugInfo(V, Val);
1034  return Val;
1035}
1036
1037/// getNonRegisterValue - Return an SDValue for the given Value, but
1038/// don't look in FuncInfo.ValueMap for a virtual register.
1039SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
1040  // If we already have an SDValue for this value, use it.
1041  SDValue &N = NodeMap[V];
1042  if (N.getNode()) return N;
1043
1044  // Otherwise create a new SDValue and remember it.
1045  SDValue Val = getValueImpl(V);
1046  NodeMap[V] = Val;
1047  resolveDanglingDebugInfo(V, Val);
1048  return Val;
1049}
1050
1051/// getValueImpl - Helper function for getValue and getNonRegisterValue.
1052/// Create an SDValue for the given value.
1053SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
1054  if (const Constant *C = dyn_cast<Constant>(V)) {
1055    EVT VT = TLI.getValueType(V->getType(), true);
1056
1057    if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
1058      return DAG.getConstant(*CI, VT);
1059
1060    if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
1061      return DAG.getGlobalAddress(GV, getCurDebugLoc(), VT);
1062
1063    if (isa<ConstantPointerNull>(C))
1064      return DAG.getConstant(0, TLI.getPointerTy());
1065
1066    if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
1067      return DAG.getConstantFP(*CFP, VT);
1068
1069    if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
1070      return DAG.getUNDEF(VT);
1071
1072    if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1073      visit(CE->getOpcode(), *CE);
1074      SDValue N1 = NodeMap[V];
1075      assert(N1.getNode() && "visit didn't populate the NodeMap!");
1076      return N1;
1077    }
1078
1079    if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
1080      SmallVector<SDValue, 4> Constants;
1081      for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end();
1082           OI != OE; ++OI) {
1083        SDNode *Val = getValue(*OI).getNode();
1084        // If the operand is an empty aggregate, there are no values.
1085        if (!Val) continue;
1086        // Add each leaf value from the operand to the Constants list
1087        // to form a flattened list of all the values.
1088        for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1089          Constants.push_back(SDValue(Val, i));
1090      }
1091
1092      return DAG.getMergeValues(&Constants[0], Constants.size(),
1093                                getCurDebugLoc());
1094    }
1095
1096    if (const ConstantDataSequential *CDS =
1097          dyn_cast<ConstantDataSequential>(C)) {
1098      SmallVector<SDValue, 4> Ops;
1099      for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1100        SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode();
1101        // Add each leaf value from the operand to the Constants list
1102        // to form a flattened list of all the values.
1103        for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1104          Ops.push_back(SDValue(Val, i));
1105      }
1106
1107      if (isa<ArrayType>(CDS->getType()))
1108        return DAG.getMergeValues(&Ops[0], Ops.size(), getCurDebugLoc());
1109      return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(),
1110                                      VT, &Ops[0], Ops.size());
1111    }
1112
1113    if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
1114      assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1115             "Unknown struct or array constant!");
1116
1117      SmallVector<EVT, 4> ValueVTs;
1118      ComputeValueVTs(TLI, C->getType(), ValueVTs);
1119      unsigned NumElts = ValueVTs.size();
1120      if (NumElts == 0)
1121        return SDValue(); // empty struct
1122      SmallVector<SDValue, 4> Constants(NumElts);
1123      for (unsigned i = 0; i != NumElts; ++i) {
1124        EVT EltVT = ValueVTs[i];
1125        if (isa<UndefValue>(C))
1126          Constants[i] = DAG.getUNDEF(EltVT);
1127        else if (EltVT.isFloatingPoint())
1128          Constants[i] = DAG.getConstantFP(0, EltVT);
1129        else
1130          Constants[i] = DAG.getConstant(0, EltVT);
1131      }
1132
1133      return DAG.getMergeValues(&Constants[0], NumElts,
1134                                getCurDebugLoc());
1135    }
1136
1137    if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
1138      return DAG.getBlockAddress(BA, VT);
1139
1140    VectorType *VecTy = cast<VectorType>(V->getType());
1141    unsigned NumElements = VecTy->getNumElements();
1142
1143    // Now that we know the number and type of the elements, get that number of
1144    // elements into the Ops array based on what kind of constant it is.
1145    SmallVector<SDValue, 16> Ops;
1146    if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
1147      for (unsigned i = 0; i != NumElements; ++i)
1148        Ops.push_back(getValue(CV->getOperand(i)));
1149    } else {
1150      assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!");
1151      EVT EltVT = TLI.getValueType(VecTy->getElementType());
1152
1153      SDValue Op;
1154      if (EltVT.isFloatingPoint())
1155        Op = DAG.getConstantFP(0, EltVT);
1156      else
1157        Op = DAG.getConstant(0, EltVT);
1158      Ops.assign(NumElements, Op);
1159    }
1160
1161    // Create a BUILD_VECTOR node.
1162    return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(),
1163                                    VT, &Ops[0], Ops.size());
1164  }
1165
1166  // If this is a static alloca, generate it as the frameindex instead of
1167  // computation.
1168  if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1169    DenseMap<const AllocaInst*, int>::iterator SI =
1170      FuncInfo.StaticAllocaMap.find(AI);
1171    if (SI != FuncInfo.StaticAllocaMap.end())
1172      return DAG.getFrameIndex(SI->second, TLI.getPointerTy());
1173  }
1174
1175  // If this is an instruction which fast-isel has deferred, select it now.
1176  if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
1177    unsigned InReg = FuncInfo.InitializeRegForValue(Inst);
1178    RegsForValue RFV(*DAG.getContext(), TLI, InReg, Inst->getType());
1179    SDValue Chain = DAG.getEntryNode();
1180    return RFV.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), Chain, NULL, V);
1181  }
1182
1183  llvm_unreachable("Can't get register for value!");
1184}
1185
1186void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
1187  SDValue Chain = getControlRoot();
1188  SmallVector<ISD::OutputArg, 8> Outs;
1189  SmallVector<SDValue, 8> OutVals;
1190
1191  if (!FuncInfo.CanLowerReturn) {
1192    unsigned DemoteReg = FuncInfo.DemoteRegister;
1193    const Function *F = I.getParent()->getParent();
1194
1195    // Emit a store of the return value through the virtual register.
1196    // Leave Outs empty so that LowerReturn won't try to load return
1197    // registers the usual way.
1198    SmallVector<EVT, 1> PtrValueVTs;
1199    ComputeValueVTs(TLI, PointerType::getUnqual(F->getReturnType()),
1200                    PtrValueVTs);
1201
1202    SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]);
1203    SDValue RetOp = getValue(I.getOperand(0));
1204
1205    SmallVector<EVT, 4> ValueVTs;
1206    SmallVector<uint64_t, 4> Offsets;
1207    ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs, &Offsets);
1208    unsigned NumValues = ValueVTs.size();
1209
1210    SmallVector<SDValue, 4> Chains(NumValues);
1211    for (unsigned i = 0; i != NumValues; ++i) {
1212      SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(),
1213                                RetPtr.getValueType(), RetPtr,
1214                                DAG.getIntPtrConstant(Offsets[i]));
1215      Chains[i] =
1216        DAG.getStore(Chain, getCurDebugLoc(),
1217                     SDValue(RetOp.getNode(), RetOp.getResNo() + i),
1218                     // FIXME: better loc info would be nice.
1219                     Add, MachinePointerInfo(), false, false, 0);
1220    }
1221
1222    Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
1223                        MVT::Other, &Chains[0], NumValues);
1224  } else if (I.getNumOperands() != 0) {
1225    SmallVector<EVT, 4> ValueVTs;
1226    ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs);
1227    unsigned NumValues = ValueVTs.size();
1228    if (NumValues) {
1229      SDValue RetOp = getValue(I.getOperand(0));
1230      for (unsigned j = 0, f = NumValues; j != f; ++j) {
1231        EVT VT = ValueVTs[j];
1232
1233        ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1234
1235        const Function *F = I.getParent()->getParent();
1236        if (F->getRetAttributes().hasAttribute(Attribute::SExt))
1237          ExtendKind = ISD::SIGN_EXTEND;
1238        else if (F->getRetAttributes().hasAttribute(Attribute::ZExt))
1239          ExtendKind = ISD::ZERO_EXTEND;
1240
1241        if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
1242          VT = TLI.getTypeForExtArgOrReturn(VT.getSimpleVT(), ExtendKind);
1243
1244        unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), VT);
1245        MVT PartVT = TLI.getRegisterType(*DAG.getContext(), VT);
1246        SmallVector<SDValue, 4> Parts(NumParts);
1247        getCopyToParts(DAG, getCurDebugLoc(),
1248                       SDValue(RetOp.getNode(), RetOp.getResNo() + j),
1249                       &Parts[0], NumParts, PartVT, &I, ExtendKind);
1250
1251        // 'inreg' on function refers to return value
1252        ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1253        if (F->getRetAttributes().hasAttribute(Attribute::InReg))
1254          Flags.setInReg();
1255
1256        // Propagate extension type if any
1257        if (ExtendKind == ISD::SIGN_EXTEND)
1258          Flags.setSExt();
1259        else if (ExtendKind == ISD::ZERO_EXTEND)
1260          Flags.setZExt();
1261
1262        for (unsigned i = 0; i < NumParts; ++i) {
1263          Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(),
1264                                        /*isfixed=*/true, 0, 0));
1265          OutVals.push_back(Parts[i]);
1266        }
1267      }
1268    }
1269  }
1270
1271  bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
1272  CallingConv::ID CallConv =
1273    DAG.getMachineFunction().getFunction()->getCallingConv();
1274  Chain = TLI.LowerReturn(Chain, CallConv, isVarArg,
1275                          Outs, OutVals, getCurDebugLoc(), DAG);
1276
1277  // Verify that the target's LowerReturn behaved as expected.
1278  assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
1279         "LowerReturn didn't return a valid chain!");
1280
1281  // Update the DAG with the new chain value resulting from return lowering.
1282  DAG.setRoot(Chain);
1283}
1284
1285/// CopyToExportRegsIfNeeded - If the given value has virtual registers
1286/// created for it, emit nodes to copy the value into the virtual
1287/// registers.
1288void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
1289  // Skip empty types
1290  if (V->getType()->isEmptyTy())
1291    return;
1292
1293  DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
1294  if (VMI != FuncInfo.ValueMap.end()) {
1295    assert(!V->use_empty() && "Unused value assigned virtual registers!");
1296    CopyValueToVirtualRegister(V, VMI->second);
1297  }
1298}
1299
1300/// ExportFromCurrentBlock - If this condition isn't known to be exported from
1301/// the current basic block, add it to ValueMap now so that we'll get a
1302/// CopyTo/FromReg.
1303void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
1304  // No need to export constants.
1305  if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
1306
1307  // Already exported?
1308  if (FuncInfo.isExportedInst(V)) return;
1309
1310  unsigned Reg = FuncInfo.InitializeRegForValue(V);
1311  CopyValueToVirtualRegister(V, Reg);
1312}
1313
1314bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
1315                                                     const BasicBlock *FromBB) {
1316  // The operands of the setcc have to be in this block.  We don't know
1317  // how to export them from some other block.
1318  if (const Instruction *VI = dyn_cast<Instruction>(V)) {
1319    // Can export from current BB.
1320    if (VI->getParent() == FromBB)
1321      return true;
1322
1323    // Is already exported, noop.
1324    return FuncInfo.isExportedInst(V);
1325  }
1326
1327  // If this is an argument, we can export it if the BB is the entry block or
1328  // if it is already exported.
1329  if (isa<Argument>(V)) {
1330    if (FromBB == &FromBB->getParent()->getEntryBlock())
1331      return true;
1332
1333    // Otherwise, can only export this if it is already exported.
1334    return FuncInfo.isExportedInst(V);
1335  }
1336
1337  // Otherwise, constants can always be exported.
1338  return true;
1339}
1340
1341/// Return branch probability calculated by BranchProbabilityInfo for IR blocks.
1342uint32_t SelectionDAGBuilder::getEdgeWeight(const MachineBasicBlock *Src,
1343                                            const MachineBasicBlock *Dst) const {
1344  BranchProbabilityInfo *BPI = FuncInfo.BPI;
1345  if (!BPI)
1346    return 0;
1347  const BasicBlock *SrcBB = Src->getBasicBlock();
1348  const BasicBlock *DstBB = Dst->getBasicBlock();
1349  return BPI->getEdgeWeight(SrcBB, DstBB);
1350}
1351
1352void SelectionDAGBuilder::
1353addSuccessorWithWeight(MachineBasicBlock *Src, MachineBasicBlock *Dst,
1354                       uint32_t Weight /* = 0 */) {
1355  if (!Weight)
1356    Weight = getEdgeWeight(Src, Dst);
1357  Src->addSuccessor(Dst, Weight);
1358}
1359
1360
1361static bool InBlock(const Value *V, const BasicBlock *BB) {
1362  if (const Instruction *I = dyn_cast<Instruction>(V))
1363    return I->getParent() == BB;
1364  return true;
1365}
1366
1367/// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
1368/// This function emits a branch and is used at the leaves of an OR or an
1369/// AND operator tree.
1370///
1371void
1372SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
1373                                                  MachineBasicBlock *TBB,
1374                                                  MachineBasicBlock *FBB,
1375                                                  MachineBasicBlock *CurBB,
1376                                                  MachineBasicBlock *SwitchBB) {
1377  const BasicBlock *BB = CurBB->getBasicBlock();
1378
1379  // If the leaf of the tree is a comparison, merge the condition into
1380  // the caseblock.
1381  if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
1382    // The operands of the cmp have to be in this block.  We don't know
1383    // how to export them from some other block.  If this is the first block
1384    // of the sequence, no exporting is needed.
1385    if (CurBB == SwitchBB ||
1386        (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
1387         isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
1388      ISD::CondCode Condition;
1389      if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
1390        Condition = getICmpCondCode(IC->getPredicate());
1391      } else if (const FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) {
1392        Condition = getFCmpCondCode(FC->getPredicate());
1393        if (TM.Options.NoNaNsFPMath)
1394          Condition = getFCmpCodeWithoutNaN(Condition);
1395      } else {
1396        Condition = ISD::SETEQ; // silence warning.
1397        llvm_unreachable("Unknown compare instruction");
1398      }
1399
1400      CaseBlock CB(Condition, BOp->getOperand(0),
1401                   BOp->getOperand(1), NULL, TBB, FBB, CurBB);
1402      SwitchCases.push_back(CB);
1403      return;
1404    }
1405  }
1406
1407  // Create a CaseBlock record representing this branch.
1408  CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()),
1409               NULL, TBB, FBB, CurBB);
1410  SwitchCases.push_back(CB);
1411}
1412
1413/// FindMergedConditions - If Cond is an expression like
1414void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
1415                                               MachineBasicBlock *TBB,
1416                                               MachineBasicBlock *FBB,
1417                                               MachineBasicBlock *CurBB,
1418                                               MachineBasicBlock *SwitchBB,
1419                                               unsigned Opc) {
1420  // If this node is not part of the or/and tree, emit it as a branch.
1421  const Instruction *BOp = dyn_cast<Instruction>(Cond);
1422  if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
1423      (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() ||
1424      BOp->getParent() != CurBB->getBasicBlock() ||
1425      !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
1426      !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
1427    EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB);
1428    return;
1429  }
1430
1431  //  Create TmpBB after CurBB.
1432  MachineFunction::iterator BBI = CurBB;
1433  MachineFunction &MF = DAG.getMachineFunction();
1434  MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
1435  CurBB->getParent()->insert(++BBI, TmpBB);
1436
1437  if (Opc == Instruction::Or) {
1438    // Codegen X | Y as:
1439    //   jmp_if_X TBB
1440    //   jmp TmpBB
1441    // TmpBB:
1442    //   jmp_if_Y TBB
1443    //   jmp FBB
1444    //
1445
1446    // Emit the LHS condition.
1447    FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc);
1448
1449    // Emit the RHS condition into TmpBB.
1450    FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc);
1451  } else {
1452    assert(Opc == Instruction::And && "Unknown merge op!");
1453    // Codegen X & Y as:
1454    //   jmp_if_X TmpBB
1455    //   jmp FBB
1456    // TmpBB:
1457    //   jmp_if_Y TBB
1458    //   jmp FBB
1459    //
1460    //  This requires creation of TmpBB after CurBB.
1461
1462    // Emit the LHS condition.
1463    FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc);
1464
1465    // Emit the RHS condition into TmpBB.
1466    FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc);
1467  }
1468}
1469
1470/// If the set of cases should be emitted as a series of branches, return true.
1471/// If we should emit this as a bunch of and/or'd together conditions, return
1472/// false.
1473bool
1474SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases){
1475  if (Cases.size() != 2) return true;
1476
1477  // If this is two comparisons of the same values or'd or and'd together, they
1478  // will get folded into a single comparison, so don't emit two blocks.
1479  if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
1480       Cases[0].CmpRHS == Cases[1].CmpRHS) ||
1481      (Cases[0].CmpRHS == Cases[1].CmpLHS &&
1482       Cases[0].CmpLHS == Cases[1].CmpRHS)) {
1483    return false;
1484  }
1485
1486  // Handle: (X != null) | (Y != null) --> (X|Y) != 0
1487  // Handle: (X == null) & (Y == null) --> (X|Y) == 0
1488  if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
1489      Cases[0].CC == Cases[1].CC &&
1490      isa<Constant>(Cases[0].CmpRHS) &&
1491      cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
1492    if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
1493      return false;
1494    if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
1495      return false;
1496  }
1497
1498  return true;
1499}
1500
1501void SelectionDAGBuilder::visitBr(const BranchInst &I) {
1502  MachineBasicBlock *BrMBB = FuncInfo.MBB;
1503
1504  // Update machine-CFG edges.
1505  MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
1506
1507  // Figure out which block is immediately after the current one.
1508  MachineBasicBlock *NextBlock = 0;
1509  MachineFunction::iterator BBI = BrMBB;
1510  if (++BBI != FuncInfo.MF->end())
1511    NextBlock = BBI;
1512
1513  if (I.isUnconditional()) {
1514    // Update machine-CFG edges.
1515    BrMBB->addSuccessor(Succ0MBB);
1516
1517    // If this is not a fall-through branch, emit the branch.
1518    if (Succ0MBB != NextBlock)
1519      DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
1520                              MVT::Other, getControlRoot(),
1521                              DAG.getBasicBlock(Succ0MBB)));
1522
1523    return;
1524  }
1525
1526  // If this condition is one of the special cases we handle, do special stuff
1527  // now.
1528  const Value *CondVal = I.getCondition();
1529  MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
1530
1531  // If this is a series of conditions that are or'd or and'd together, emit
1532  // this as a sequence of branches instead of setcc's with and/or operations.
1533  // As long as jumps are not expensive, this should improve performance.
1534  // For example, instead of something like:
1535  //     cmp A, B
1536  //     C = seteq
1537  //     cmp D, E
1538  //     F = setle
1539  //     or C, F
1540  //     jnz foo
1541  // Emit:
1542  //     cmp A, B
1543  //     je foo
1544  //     cmp D, E
1545  //     jle foo
1546  //
1547  if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
1548    if (!TLI.isJumpExpensive() &&
1549        BOp->hasOneUse() &&
1550        (BOp->getOpcode() == Instruction::And ||
1551         BOp->getOpcode() == Instruction::Or)) {
1552      FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB,
1553                           BOp->getOpcode());
1554      // If the compares in later blocks need to use values not currently
1555      // exported from this block, export them now.  This block should always
1556      // be the first entry.
1557      assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
1558
1559      // Allow some cases to be rejected.
1560      if (ShouldEmitAsBranches(SwitchCases)) {
1561        for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
1562          ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
1563          ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
1564        }
1565
1566        // Emit the branch for this block.
1567        visitSwitchCase(SwitchCases[0], BrMBB);
1568        SwitchCases.erase(SwitchCases.begin());
1569        return;
1570      }
1571
1572      // Okay, we decided not to do this, remove any inserted MBB's and clear
1573      // SwitchCases.
1574      for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
1575        FuncInfo.MF->erase(SwitchCases[i].ThisBB);
1576
1577      SwitchCases.clear();
1578    }
1579  }
1580
1581  // Create a CaseBlock record representing this branch.
1582  CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
1583               NULL, Succ0MBB, Succ1MBB, BrMBB);
1584
1585  // Use visitSwitchCase to actually insert the fast branch sequence for this
1586  // cond branch.
1587  visitSwitchCase(CB, BrMBB);
1588}
1589
1590/// visitSwitchCase - Emits the necessary code to represent a single node in
1591/// the binary search tree resulting from lowering a switch instruction.
1592void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
1593                                          MachineBasicBlock *SwitchBB) {
1594  SDValue Cond;
1595  SDValue CondLHS = getValue(CB.CmpLHS);
1596  DebugLoc dl = getCurDebugLoc();
1597
1598  // Build the setcc now.
1599  if (CB.CmpMHS == NULL) {
1600    // Fold "(X == true)" to X and "(X == false)" to !X to
1601    // handle common cases produced by branch lowering.
1602    if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
1603        CB.CC == ISD::SETEQ)
1604      Cond = CondLHS;
1605    else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
1606             CB.CC == ISD::SETEQ) {
1607      SDValue True = DAG.getConstant(1, CondLHS.getValueType());
1608      Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
1609    } else
1610      Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
1611  } else {
1612    assert(CB.CC == ISD::SETCC_INVALID &&
1613           "Condition is undefined for to-the-range belonging check.");
1614
1615    const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
1616    const APInt& High  = cast<ConstantInt>(CB.CmpRHS)->getValue();
1617
1618    SDValue CmpOp = getValue(CB.CmpMHS);
1619    EVT VT = CmpOp.getValueType();
1620
1621    if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(false)) {
1622      Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, VT),
1623                          ISD::SETULE);
1624    } else {
1625      SDValue SUB = DAG.getNode(ISD::SUB, dl,
1626                                VT, CmpOp, DAG.getConstant(Low, VT));
1627      Cond = DAG.getSetCC(dl, MVT::i1, SUB,
1628                          DAG.getConstant(High-Low, VT), ISD::SETULE);
1629    }
1630  }
1631
1632  // Update successor info
1633  addSuccessorWithWeight(SwitchBB, CB.TrueBB, CB.TrueWeight);
1634  // TrueBB and FalseBB are always different unless the incoming IR is
1635  // degenerate. This only happens when running llc on weird IR.
1636  if (CB.TrueBB != CB.FalseBB)
1637    addSuccessorWithWeight(SwitchBB, CB.FalseBB, CB.FalseWeight);
1638
1639  // Set NextBlock to be the MBB immediately after the current one, if any.
1640  // This is used to avoid emitting unnecessary branches to the next block.
1641  MachineBasicBlock *NextBlock = 0;
1642  MachineFunction::iterator BBI = SwitchBB;
1643  if (++BBI != FuncInfo.MF->end())
1644    NextBlock = BBI;
1645
1646  // If the lhs block is the next block, invert the condition so that we can
1647  // fall through to the lhs instead of the rhs block.
1648  if (CB.TrueBB == NextBlock) {
1649    std::swap(CB.TrueBB, CB.FalseBB);
1650    SDValue True = DAG.getConstant(1, Cond.getValueType());
1651    Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
1652  }
1653
1654  SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
1655                               MVT::Other, getControlRoot(), Cond,
1656                               DAG.getBasicBlock(CB.TrueBB));
1657
1658  // Insert the false branch. Do this even if it's a fall through branch,
1659  // this makes it easier to do DAG optimizations which require inverting
1660  // the branch condition.
1661  BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
1662                       DAG.getBasicBlock(CB.FalseBB));
1663
1664  DAG.setRoot(BrCond);
1665}
1666
1667/// visitJumpTable - Emit JumpTable node in the current MBB
1668void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) {
1669  // Emit the code for the jump table
1670  assert(JT.Reg != -1U && "Should lower JT Header first!");
1671  EVT PTy = TLI.getPointerTy();
1672  SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(),
1673                                     JT.Reg, PTy);
1674  SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
1675  SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurDebugLoc(),
1676                                    MVT::Other, Index.getValue(1),
1677                                    Table, Index);
1678  DAG.setRoot(BrJumpTable);
1679}
1680
1681/// visitJumpTableHeader - This function emits necessary code to produce index
1682/// in the JumpTable from switch case.
1683void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT,
1684                                               JumpTableHeader &JTH,
1685                                               MachineBasicBlock *SwitchBB) {
1686  // Subtract the lowest switch case value from the value being switched on and
1687  // conditional branch to default mbb if the result is greater than the
1688  // difference between smallest and largest cases.
1689  SDValue SwitchOp = getValue(JTH.SValue);
1690  EVT VT = SwitchOp.getValueType();
1691  SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp,
1692                            DAG.getConstant(JTH.First, VT));
1693
1694  // The SDNode we just created, which holds the value being switched on minus
1695  // the smallest case value, needs to be copied to a virtual register so it
1696  // can be used as an index into the jump table in a subsequent basic block.
1697  // This value may be smaller or larger than the target's pointer type, and
1698  // therefore require extension or truncating.
1699  SwitchOp = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(), TLI.getPointerTy());
1700
1701  unsigned JumpTableReg = FuncInfo.CreateReg(TLI.getPointerTy());
1702  SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(),
1703                                    JumpTableReg, SwitchOp);
1704  JT.Reg = JumpTableReg;
1705
1706  // Emit the range check for the jump table, and branch to the default block
1707  // for the switch statement if the value being switched on exceeds the largest
1708  // case in the switch.
1709  SDValue CMP = DAG.getSetCC(getCurDebugLoc(),
1710                             TLI.getSetCCResultType(Sub.getValueType()), Sub,
1711                             DAG.getConstant(JTH.Last-JTH.First,VT),
1712                             ISD::SETUGT);
1713
1714  // Set NextBlock to be the MBB immediately after the current one, if any.
1715  // This is used to avoid emitting unnecessary branches to the next block.
1716  MachineBasicBlock *NextBlock = 0;
1717  MachineFunction::iterator BBI = SwitchBB;
1718
1719  if (++BBI != FuncInfo.MF->end())
1720    NextBlock = BBI;
1721
1722  SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1723                               MVT::Other, CopyTo, CMP,
1724                               DAG.getBasicBlock(JT.Default));
1725
1726  if (JT.MBB != NextBlock)
1727    BrCond = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrCond,
1728                         DAG.getBasicBlock(JT.MBB));
1729
1730  DAG.setRoot(BrCond);
1731}
1732
1733/// visitBitTestHeader - This function emits necessary code to produce value
1734/// suitable for "bit tests"
1735void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
1736                                             MachineBasicBlock *SwitchBB) {
1737  // Subtract the minimum value
1738  SDValue SwitchOp = getValue(B.SValue);
1739  EVT VT = SwitchOp.getValueType();
1740  SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp,
1741                            DAG.getConstant(B.First, VT));
1742
1743  // Check range
1744  SDValue RangeCmp = DAG.getSetCC(getCurDebugLoc(),
1745                                  TLI.getSetCCResultType(Sub.getValueType()),
1746                                  Sub, DAG.getConstant(B.Range, VT),
1747                                  ISD::SETUGT);
1748
1749  // Determine the type of the test operands.
1750  bool UsePtrType = false;
1751  if (!TLI.isTypeLegal(VT))
1752    UsePtrType = true;
1753  else {
1754    for (unsigned i = 0, e = B.Cases.size(); i != e; ++i)
1755      if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) {
1756        // Switch table case range are encoded into series of masks.
1757        // Just use pointer type, it's guaranteed to fit.
1758        UsePtrType = true;
1759        break;
1760      }
1761  }
1762  if (UsePtrType) {
1763    VT = TLI.getPointerTy();
1764    Sub = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(), VT);
1765  }
1766
1767  B.RegVT = VT.getSimpleVT();
1768  B.Reg = FuncInfo.CreateReg(B.RegVT);
1769  SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(),
1770                                    B.Reg, Sub);
1771
1772  // Set NextBlock to be the MBB immediately after the current one, if any.
1773  // This is used to avoid emitting unnecessary branches to the next block.
1774  MachineBasicBlock *NextBlock = 0;
1775  MachineFunction::iterator BBI = SwitchBB;
1776  if (++BBI != FuncInfo.MF->end())
1777    NextBlock = BBI;
1778
1779  MachineBasicBlock* MBB = B.Cases[0].ThisBB;
1780
1781  addSuccessorWithWeight(SwitchBB, B.Default);
1782  addSuccessorWithWeight(SwitchBB, MBB);
1783
1784  SDValue BrRange = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1785                                MVT::Other, CopyTo, RangeCmp,
1786                                DAG.getBasicBlock(B.Default));
1787
1788  if (MBB != NextBlock)
1789    BrRange = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, CopyTo,
1790                          DAG.getBasicBlock(MBB));
1791
1792  DAG.setRoot(BrRange);
1793}
1794
1795/// visitBitTestCase - this function produces one "bit test"
1796void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB,
1797                                           MachineBasicBlock* NextMBB,
1798                                           uint32_t BranchWeightToNext,
1799                                           unsigned Reg,
1800                                           BitTestCase &B,
1801                                           MachineBasicBlock *SwitchBB) {
1802  MVT VT = BB.RegVT;
1803  SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(),
1804                                       Reg, VT);
1805  SDValue Cmp;
1806  unsigned PopCount = CountPopulation_64(B.Mask);
1807  if (PopCount == 1) {
1808    // Testing for a single bit; just compare the shift count with what it
1809    // would need to be to shift a 1 bit in that position.
1810    Cmp = DAG.getSetCC(getCurDebugLoc(),
1811                       TLI.getSetCCResultType(VT),
1812                       ShiftOp,
1813                       DAG.getConstant(CountTrailingZeros_64(B.Mask), VT),
1814                       ISD::SETEQ);
1815  } else if (PopCount == BB.Range) {
1816    // There is only one zero bit in the range, test for it directly.
1817    Cmp = DAG.getSetCC(getCurDebugLoc(),
1818                       TLI.getSetCCResultType(VT),
1819                       ShiftOp,
1820                       DAG.getConstant(CountTrailingOnes_64(B.Mask), VT),
1821                       ISD::SETNE);
1822  } else {
1823    // Make desired shift
1824    SDValue SwitchVal = DAG.getNode(ISD::SHL, getCurDebugLoc(), VT,
1825                                    DAG.getConstant(1, VT), ShiftOp);
1826
1827    // Emit bit tests and jumps
1828    SDValue AndOp = DAG.getNode(ISD::AND, getCurDebugLoc(),
1829                                VT, SwitchVal, DAG.getConstant(B.Mask, VT));
1830    Cmp = DAG.getSetCC(getCurDebugLoc(),
1831                       TLI.getSetCCResultType(VT),
1832                       AndOp, DAG.getConstant(0, VT),
1833                       ISD::SETNE);
1834  }
1835
1836  // The branch weight from SwitchBB to B.TargetBB is B.ExtraWeight.
1837  addSuccessorWithWeight(SwitchBB, B.TargetBB, B.ExtraWeight);
1838  // The branch weight from SwitchBB to NextMBB is BranchWeightToNext.
1839  addSuccessorWithWeight(SwitchBB, NextMBB, BranchWeightToNext);
1840
1841  SDValue BrAnd = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1842                              MVT::Other, getControlRoot(),
1843                              Cmp, DAG.getBasicBlock(B.TargetBB));
1844
1845  // Set NextBlock to be the MBB immediately after the current one, if any.
1846  // This is used to avoid emitting unnecessary branches to the next block.
1847  MachineBasicBlock *NextBlock = 0;
1848  MachineFunction::iterator BBI = SwitchBB;
1849  if (++BBI != FuncInfo.MF->end())
1850    NextBlock = BBI;
1851
1852  if (NextMBB != NextBlock)
1853    BrAnd = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrAnd,
1854                        DAG.getBasicBlock(NextMBB));
1855
1856  DAG.setRoot(BrAnd);
1857}
1858
1859void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
1860  MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
1861
1862  // Retrieve successors.
1863  MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
1864  MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)];
1865
1866  const Value *Callee(I.getCalledValue());
1867  const Function *Fn = dyn_cast<Function>(Callee);
1868  if (isa<InlineAsm>(Callee))
1869    visitInlineAsm(&I);
1870  else if (Fn && Fn->isIntrinsic()) {
1871    assert(Fn->getIntrinsicID() == Intrinsic::donothing);
1872    // Ignore invokes to @llvm.donothing: jump directly to the next BB.
1873  } else
1874    LowerCallTo(&I, getValue(Callee), false, LandingPad);
1875
1876  // If the value of the invoke is used outside of its defining block, make it
1877  // available as a virtual register.
1878  CopyToExportRegsIfNeeded(&I);
1879
1880  // Update successor info
1881  addSuccessorWithWeight(InvokeMBB, Return);
1882  addSuccessorWithWeight(InvokeMBB, LandingPad);
1883
1884  // Drop into normal successor.
1885  DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
1886                          MVT::Other, getControlRoot(),
1887                          DAG.getBasicBlock(Return)));
1888}
1889
1890void SelectionDAGBuilder::visitResume(const ResumeInst &RI) {
1891  llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!");
1892}
1893
1894void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) {
1895  assert(FuncInfo.MBB->isLandingPad() &&
1896         "Call to landingpad not in landing pad!");
1897
1898  MachineBasicBlock *MBB = FuncInfo.MBB;
1899  MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
1900  AddLandingPadInfo(LP, MMI, MBB);
1901
1902  // If there aren't registers to copy the values into (e.g., during SjLj
1903  // exceptions), then don't bother to create these DAG nodes.
1904  if (TLI.getExceptionPointerRegister() == 0 &&
1905      TLI.getExceptionSelectorRegister() == 0)
1906    return;
1907
1908  SmallVector<EVT, 2> ValueVTs;
1909  ComputeValueVTs(TLI, LP.getType(), ValueVTs);
1910
1911  // Insert the EXCEPTIONADDR instruction.
1912  assert(FuncInfo.MBB->isLandingPad() &&
1913         "Call to eh.exception not in landing pad!");
1914  SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
1915  SDValue Ops[2];
1916  Ops[0] = DAG.getRoot();
1917  SDValue Op1 = DAG.getNode(ISD::EXCEPTIONADDR, getCurDebugLoc(), VTs, Ops, 1);
1918  SDValue Chain = Op1.getValue(1);
1919
1920  // Insert the EHSELECTION instruction.
1921  VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
1922  Ops[0] = Op1;
1923  Ops[1] = Chain;
1924  SDValue Op2 = DAG.getNode(ISD::EHSELECTION, getCurDebugLoc(), VTs, Ops, 2);
1925  Chain = Op2.getValue(1);
1926  Op2 = DAG.getSExtOrTrunc(Op2, getCurDebugLoc(), MVT::i32);
1927
1928  Ops[0] = Op1;
1929  Ops[1] = Op2;
1930  SDValue Res = DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
1931                            DAG.getVTList(&ValueVTs[0], ValueVTs.size()),
1932                            &Ops[0], 2);
1933
1934  std::pair<SDValue, SDValue> RetPair = std::make_pair(Res, Chain);
1935  setValue(&LP, RetPair.first);
1936  DAG.setRoot(RetPair.second);
1937}
1938
1939/// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for
1940/// small case ranges).
1941bool SelectionDAGBuilder::handleSmallSwitchRange(CaseRec& CR,
1942                                                 CaseRecVector& WorkList,
1943                                                 const Value* SV,
1944                                                 MachineBasicBlock *Default,
1945                                                 MachineBasicBlock *SwitchBB) {
1946  // Size is the number of Cases represented by this range.
1947  size_t Size = CR.Range.second - CR.Range.first;
1948  if (Size > 3)
1949    return false;
1950
1951  // Get the MachineFunction which holds the current MBB.  This is used when
1952  // inserting any additional MBBs necessary to represent the switch.
1953  MachineFunction *CurMF = FuncInfo.MF;
1954
1955  // Figure out which block is immediately after the current one.
1956  MachineBasicBlock *NextBlock = 0;
1957  MachineFunction::iterator BBI = CR.CaseBB;
1958
1959  if (++BBI != FuncInfo.MF->end())
1960    NextBlock = BBI;
1961
1962  BranchProbabilityInfo *BPI = FuncInfo.BPI;
1963  // If any two of the cases has the same destination, and if one value
1964  // is the same as the other, but has one bit unset that the other has set,
1965  // use bit manipulation to do two compares at once.  For example:
1966  // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
1967  // TODO: This could be extended to merge any 2 cases in switches with 3 cases.
1968  // TODO: Handle cases where CR.CaseBB != SwitchBB.
1969  if (Size == 2 && CR.CaseBB == SwitchBB) {
1970    Case &Small = *CR.Range.first;
1971    Case &Big = *(CR.Range.second-1);
1972
1973    if (Small.Low == Small.High && Big.Low == Big.High && Small.BB == Big.BB) {
1974      const APInt& SmallValue = cast<ConstantInt>(Small.Low)->getValue();
1975      const APInt& BigValue = cast<ConstantInt>(Big.Low)->getValue();
1976
1977      // Check that there is only one bit different.
1978      if (BigValue.countPopulation() == SmallValue.countPopulation() + 1 &&
1979          (SmallValue | BigValue) == BigValue) {
1980        // Isolate the common bit.
1981        APInt CommonBit = BigValue & ~SmallValue;
1982        assert((SmallValue | CommonBit) == BigValue &&
1983               CommonBit.countPopulation() == 1 && "Not a common bit?");
1984
1985        SDValue CondLHS = getValue(SV);
1986        EVT VT = CondLHS.getValueType();
1987        DebugLoc DL = getCurDebugLoc();
1988
1989        SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
1990                                 DAG.getConstant(CommonBit, VT));
1991        SDValue Cond = DAG.getSetCC(DL, MVT::i1,
1992                                    Or, DAG.getConstant(BigValue, VT),
1993                                    ISD::SETEQ);
1994
1995        // Update successor info.
1996        // Both Small and Big will jump to Small.BB, so we sum up the weights.
1997        addSuccessorWithWeight(SwitchBB, Small.BB,
1998                               Small.ExtraWeight + Big.ExtraWeight);
1999        addSuccessorWithWeight(SwitchBB, Default,
2000          // The default destination is the first successor in IR.
2001          BPI ? BPI->getEdgeWeight(SwitchBB->getBasicBlock(), (unsigned)0) : 0);
2002
2003        // Insert the true branch.
2004        SDValue BrCond = DAG.getNode(ISD::BRCOND, DL, MVT::Other,
2005                                     getControlRoot(), Cond,
2006                                     DAG.getBasicBlock(Small.BB));
2007
2008        // Insert the false branch.
2009        BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
2010                             DAG.getBasicBlock(Default));
2011
2012        DAG.setRoot(BrCond);
2013        return true;
2014      }
2015    }
2016  }
2017
2018  // Order cases by weight so the most likely case will be checked first.
2019  uint32_t UnhandledWeights = 0;
2020  if (BPI) {
2021    for (CaseItr I = CR.Range.first, IE = CR.Range.second; I != IE; ++I) {
2022      uint32_t IWeight = I->ExtraWeight;
2023      UnhandledWeights += IWeight;
2024      for (CaseItr J = CR.Range.first; J < I; ++J) {
2025        uint32_t JWeight = J->ExtraWeight;
2026        if (IWeight > JWeight)
2027          std::swap(*I, *J);
2028      }
2029    }
2030  }
2031  // Rearrange the case blocks so that the last one falls through if possible.
2032  Case &BackCase = *(CR.Range.second-1);
2033  if (Size > 1 &&
2034      NextBlock && Default != NextBlock && BackCase.BB != NextBlock) {
2035    // The last case block won't fall through into 'NextBlock' if we emit the
2036    // branches in this order.  See if rearranging a case value would help.
2037    // We start at the bottom as it's the case with the least weight.
2038    for (Case *I = &*(CR.Range.second-2), *E = &*CR.Range.first-1; I != E; --I){
2039      if (I->BB == NextBlock) {
2040        std::swap(*I, BackCase);
2041        break;
2042      }
2043    }
2044  }
2045
2046  // Create a CaseBlock record representing a conditional branch to
2047  // the Case's target mbb if the value being switched on SV is equal
2048  // to C.
2049  MachineBasicBlock *CurBlock = CR.CaseBB;
2050  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) {
2051    MachineBasicBlock *FallThrough;
2052    if (I != E-1) {
2053      FallThrough = CurMF->CreateMachineBasicBlock(CurBlock->getBasicBlock());
2054      CurMF->insert(BBI, FallThrough);
2055
2056      // Put SV in a virtual register to make it available from the new blocks.
2057      ExportFromCurrentBlock(SV);
2058    } else {
2059      // If the last case doesn't match, go to the default block.
2060      FallThrough = Default;
2061    }
2062
2063    const Value *RHS, *LHS, *MHS;
2064    ISD::CondCode CC;
2065    if (I->High == I->Low) {
2066      // This is just small small case range :) containing exactly 1 case
2067      CC = ISD::SETEQ;
2068      LHS = SV; RHS = I->High; MHS = NULL;
2069    } else {
2070      CC = ISD::SETCC_INVALID;
2071      LHS = I->Low; MHS = SV; RHS = I->High;
2072    }
2073
2074    // The false weight should be sum of all un-handled cases.
2075    UnhandledWeights -= I->ExtraWeight;
2076    CaseBlock CB(CC, LHS, RHS, MHS, /* truebb */ I->BB, /* falsebb */ FallThrough,
2077                 /* me */ CurBlock,
2078                 /* trueweight */ I->ExtraWeight,
2079                 /* falseweight */ UnhandledWeights);
2080
2081    // If emitting the first comparison, just call visitSwitchCase to emit the
2082    // code into the current block.  Otherwise, push the CaseBlock onto the
2083    // vector to be later processed by SDISel, and insert the node's MBB
2084    // before the next MBB.
2085    if (CurBlock == SwitchBB)
2086      visitSwitchCase(CB, SwitchBB);
2087    else
2088      SwitchCases.push_back(CB);
2089
2090    CurBlock = FallThrough;
2091  }
2092
2093  return true;
2094}
2095
2096static inline bool areJTsAllowed(const TargetLowering &TLI) {
2097  return TLI.supportJumpTables() &&
2098          (TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) ||
2099           TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other));
2100}
2101
2102static APInt ComputeRange(const APInt &First, const APInt &Last) {
2103  uint32_t BitWidth = std::max(Last.getBitWidth(), First.getBitWidth()) + 1;
2104  APInt LastExt = Last.zext(BitWidth), FirstExt = First.zext(BitWidth);
2105  return (LastExt - FirstExt + 1ULL);
2106}
2107
2108/// handleJTSwitchCase - Emit jumptable for current switch case range
2109bool SelectionDAGBuilder::handleJTSwitchCase(CaseRec &CR,
2110                                             CaseRecVector &WorkList,
2111                                             const Value *SV,
2112                                             MachineBasicBlock *Default,
2113                                             MachineBasicBlock *SwitchBB) {
2114  Case& FrontCase = *CR.Range.first;
2115  Case& BackCase  = *(CR.Range.second-1);
2116
2117  const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue();
2118  const APInt &Last  = cast<ConstantInt>(BackCase.High)->getValue();
2119
2120  APInt TSize(First.getBitWidth(), 0);
2121  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I)
2122    TSize += I->size();
2123
2124  if (!areJTsAllowed(TLI) || TSize.ult(TLI.getMinimumJumpTableEntries()))
2125    return false;
2126
2127  APInt Range = ComputeRange(First, Last);
2128  // The density is TSize / Range. Require at least 40%.
2129  // It should not be possible for IntTSize to saturate for sane code, but make
2130  // sure we handle Range saturation correctly.
2131  uint64_t IntRange = Range.getLimitedValue(UINT64_MAX/10);
2132  uint64_t IntTSize = TSize.getLimitedValue(UINT64_MAX/10);
2133  if (IntTSize * 10 < IntRange * 4)
2134    return false;
2135
2136  DEBUG(dbgs() << "Lowering jump table\n"
2137               << "First entry: " << First << ". Last entry: " << Last << '\n'
2138               << "Range: " << Range << ". Size: " << TSize << ".\n\n");
2139
2140  // Get the MachineFunction which holds the current MBB.  This is used when
2141  // inserting any additional MBBs necessary to represent the switch.
2142  MachineFunction *CurMF = FuncInfo.MF;
2143
2144  // Figure out which block is immediately after the current one.
2145  MachineFunction::iterator BBI = CR.CaseBB;
2146  ++BBI;
2147
2148  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2149
2150  // Create a new basic block to hold the code for loading the address
2151  // of the jump table, and jumping to it.  Update successor information;
2152  // we will either branch to the default case for the switch, or the jump
2153  // table.
2154  MachineBasicBlock *JumpTableBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2155  CurMF->insert(BBI, JumpTableBB);
2156
2157  addSuccessorWithWeight(CR.CaseBB, Default);
2158  addSuccessorWithWeight(CR.CaseBB, JumpTableBB);
2159
2160  // Build a vector of destination BBs, corresponding to each target
2161  // of the jump table. If the value of the jump table slot corresponds to
2162  // a case statement, push the case's BB onto the vector, otherwise, push
2163  // the default BB.
2164  std::vector<MachineBasicBlock*> DestBBs;
2165  APInt TEI = First;
2166  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) {
2167    const APInt &Low = cast<ConstantInt>(I->Low)->getValue();
2168    const APInt &High = cast<ConstantInt>(I->High)->getValue();
2169
2170    if (Low.ule(TEI) && TEI.ule(High)) {
2171      DestBBs.push_back(I->BB);
2172      if (TEI==High)
2173        ++I;
2174    } else {
2175      DestBBs.push_back(Default);
2176    }
2177  }
2178
2179  // Calculate weight for each unique destination in CR.
2180  DenseMap<MachineBasicBlock*, uint32_t> DestWeights;
2181  if (FuncInfo.BPI)
2182    for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) {
2183      DenseMap<MachineBasicBlock*, uint32_t>::iterator Itr =
2184          DestWeights.find(I->BB);
2185      if (Itr != DestWeights.end())
2186        Itr->second += I->ExtraWeight;
2187      else
2188        DestWeights[I->BB] = I->ExtraWeight;
2189    }
2190
2191  // Update successor info. Add one edge to each unique successor.
2192  BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs());
2193  for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(),
2194         E = DestBBs.end(); I != E; ++I) {
2195    if (!SuccsHandled[(*I)->getNumber()]) {
2196      SuccsHandled[(*I)->getNumber()] = true;
2197      DenseMap<MachineBasicBlock*, uint32_t>::iterator Itr =
2198          DestWeights.find(*I);
2199      addSuccessorWithWeight(JumpTableBB, *I,
2200                             Itr != DestWeights.end() ? Itr->second : 0);
2201    }
2202  }
2203
2204  // Create a jump table index for this jump table.
2205  unsigned JTEncoding = TLI.getJumpTableEncoding();
2206  unsigned JTI = CurMF->getOrCreateJumpTableInfo(JTEncoding)
2207                       ->createJumpTableIndex(DestBBs);
2208
2209  // Set the jump table information so that we can codegen it as a second
2210  // MachineBasicBlock
2211  JumpTable JT(-1U, JTI, JumpTableBB, Default);
2212  JumpTableHeader JTH(First, Last, SV, CR.CaseBB, (CR.CaseBB == SwitchBB));
2213  if (CR.CaseBB == SwitchBB)
2214    visitJumpTableHeader(JT, JTH, SwitchBB);
2215
2216  JTCases.push_back(JumpTableBlock(JTH, JT));
2217  return true;
2218}
2219
2220/// handleBTSplitSwitchCase - emit comparison and split binary search tree into
2221/// 2 subtrees.
2222bool SelectionDAGBuilder::handleBTSplitSwitchCase(CaseRec& CR,
2223                                                  CaseRecVector& WorkList,
2224                                                  const Value* SV,
2225                                                  MachineBasicBlock *Default,
2226                                                  MachineBasicBlock *SwitchBB) {
2227  // Get the MachineFunction which holds the current MBB.  This is used when
2228  // inserting any additional MBBs necessary to represent the switch.
2229  MachineFunction *CurMF = FuncInfo.MF;
2230
2231  // Figure out which block is immediately after the current one.
2232  MachineFunction::iterator BBI = CR.CaseBB;
2233  ++BBI;
2234
2235  Case& FrontCase = *CR.Range.first;
2236  Case& BackCase  = *(CR.Range.second-1);
2237  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2238
2239  // Size is the number of Cases represented by this range.
2240  unsigned Size = CR.Range.second - CR.Range.first;
2241
2242  const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue();
2243  const APInt &Last  = cast<ConstantInt>(BackCase.High)->getValue();
2244  double FMetric = 0;
2245  CaseItr Pivot = CR.Range.first + Size/2;
2246
2247  // Select optimal pivot, maximizing sum density of LHS and RHS. This will
2248  // (heuristically) allow us to emit JumpTable's later.
2249  APInt TSize(First.getBitWidth(), 0);
2250  for (CaseItr I = CR.Range.first, E = CR.Range.second;
2251       I!=E; ++I)
2252    TSize += I->size();
2253
2254  APInt LSize = FrontCase.size();
2255  APInt RSize = TSize-LSize;
2256  DEBUG(dbgs() << "Selecting best pivot: \n"
2257               << "First: " << First << ", Last: " << Last <<'\n'
2258               << "LSize: " << LSize << ", RSize: " << RSize << '\n');
2259  for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second;
2260       J!=E; ++I, ++J) {
2261    const APInt &LEnd = cast<ConstantInt>(I->High)->getValue();
2262    const APInt &RBegin = cast<ConstantInt>(J->Low)->getValue();
2263    APInt Range = ComputeRange(LEnd, RBegin);
2264    assert((Range - 2ULL).isNonNegative() &&
2265           "Invalid case distance");
2266    // Use volatile double here to avoid excess precision issues on some hosts,
2267    // e.g. that use 80-bit X87 registers.
2268    volatile double LDensity =
2269       (double)LSize.roundToDouble() /
2270                           (LEnd - First + 1ULL).roundToDouble();
2271    volatile double RDensity =
2272      (double)RSize.roundToDouble() /
2273                           (Last - RBegin + 1ULL).roundToDouble();
2274    double Metric = Range.logBase2()*(LDensity+RDensity);
2275    // Should always split in some non-trivial place
2276    DEBUG(dbgs() <<"=>Step\n"
2277                 << "LEnd: " << LEnd << ", RBegin: " << RBegin << '\n'
2278                 << "LDensity: " << LDensity
2279                 << ", RDensity: " << RDensity << '\n'
2280                 << "Metric: " << Metric << '\n');
2281    if (FMetric < Metric) {
2282      Pivot = J;
2283      FMetric = Metric;
2284      DEBUG(dbgs() << "Current metric set to: " << FMetric << '\n');
2285    }
2286
2287    LSize += J->size();
2288    RSize -= J->size();
2289  }
2290  if (areJTsAllowed(TLI)) {
2291    // If our case is dense we *really* should handle it earlier!
2292    assert((FMetric > 0) && "Should handle dense range earlier!");
2293  } else {
2294    Pivot = CR.Range.first + Size/2;
2295  }
2296
2297  CaseRange LHSR(CR.Range.first, Pivot);
2298  CaseRange RHSR(Pivot, CR.Range.second);
2299  const Constant *C = Pivot->Low;
2300  MachineBasicBlock *FalseBB = 0, *TrueBB = 0;
2301
2302  // We know that we branch to the LHS if the Value being switched on is
2303  // less than the Pivot value, C.  We use this to optimize our binary
2304  // tree a bit, by recognizing that if SV is greater than or equal to the
2305  // LHS's Case Value, and that Case Value is exactly one less than the
2306  // Pivot's Value, then we can branch directly to the LHS's Target,
2307  // rather than creating a leaf node for it.
2308  if ((LHSR.second - LHSR.first) == 1 &&
2309      LHSR.first->High == CR.GE &&
2310      cast<ConstantInt>(C)->getValue() ==
2311      (cast<ConstantInt>(CR.GE)->getValue() + 1LL)) {
2312    TrueBB = LHSR.first->BB;
2313  } else {
2314    TrueBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2315    CurMF->insert(BBI, TrueBB);
2316    WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR));
2317
2318    // Put SV in a virtual register to make it available from the new blocks.
2319    ExportFromCurrentBlock(SV);
2320  }
2321
2322  // Similar to the optimization above, if the Value being switched on is
2323  // known to be less than the Constant CR.LT, and the current Case Value
2324  // is CR.LT - 1, then we can branch directly to the target block for
2325  // the current Case Value, rather than emitting a RHS leaf node for it.
2326  if ((RHSR.second - RHSR.first) == 1 && CR.LT &&
2327      cast<ConstantInt>(RHSR.first->Low)->getValue() ==
2328      (cast<ConstantInt>(CR.LT)->getValue() - 1LL)) {
2329    FalseBB = RHSR.first->BB;
2330  } else {
2331    FalseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2332    CurMF->insert(BBI, FalseBB);
2333    WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR));
2334
2335    // Put SV in a virtual register to make it available from the new blocks.
2336    ExportFromCurrentBlock(SV);
2337  }
2338
2339  // Create a CaseBlock record representing a conditional branch to
2340  // the LHS node if the value being switched on SV is less than C.
2341  // Otherwise, branch to LHS.
2342  CaseBlock CB(ISD::SETULT, SV, C, NULL, TrueBB, FalseBB, CR.CaseBB);
2343
2344  if (CR.CaseBB == SwitchBB)
2345    visitSwitchCase(CB, SwitchBB);
2346  else
2347    SwitchCases.push_back(CB);
2348
2349  return true;
2350}
2351
2352/// handleBitTestsSwitchCase - if current case range has few destination and
2353/// range span less, than machine word bitwidth, encode case range into series
2354/// of masks and emit bit tests with these masks.
2355bool SelectionDAGBuilder::handleBitTestsSwitchCase(CaseRec& CR,
2356                                                   CaseRecVector& WorkList,
2357                                                   const Value* SV,
2358                                                   MachineBasicBlock* Default,
2359                                                   MachineBasicBlock *SwitchBB){
2360  EVT PTy = TLI.getPointerTy();
2361  unsigned IntPtrBits = PTy.getSizeInBits();
2362
2363  Case& FrontCase = *CR.Range.first;
2364  Case& BackCase  = *(CR.Range.second-1);
2365
2366  // Get the MachineFunction which holds the current MBB.  This is used when
2367  // inserting any additional MBBs necessary to represent the switch.
2368  MachineFunction *CurMF = FuncInfo.MF;
2369
2370  // If target does not have legal shift left, do not emit bit tests at all.
2371  if (!TLI.isOperationLegal(ISD::SHL, TLI.getPointerTy()))
2372    return false;
2373
2374  size_t numCmps = 0;
2375  for (CaseItr I = CR.Range.first, E = CR.Range.second;
2376       I!=E; ++I) {
2377    // Single case counts one, case range - two.
2378    numCmps += (I->Low == I->High ? 1 : 2);
2379  }
2380
2381  // Count unique destinations
2382  SmallSet<MachineBasicBlock*, 4> Dests;
2383  for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
2384    Dests.insert(I->BB);
2385    if (Dests.size() > 3)
2386      // Don't bother the code below, if there are too much unique destinations
2387      return false;
2388  }
2389  DEBUG(dbgs() << "Total number of unique destinations: "
2390        << Dests.size() << '\n'
2391        << "Total number of comparisons: " << numCmps << '\n');
2392
2393  // Compute span of values.
2394  const APInt& minValue = cast<ConstantInt>(FrontCase.Low)->getValue();
2395  const APInt& maxValue = cast<ConstantInt>(BackCase.High)->getValue();
2396  APInt cmpRange = maxValue - minValue;
2397
2398  DEBUG(dbgs() << "Compare range: " << cmpRange << '\n'
2399               << "Low bound: " << minValue << '\n'
2400               << "High bound: " << maxValue << '\n');
2401
2402  if (cmpRange.uge(IntPtrBits) ||
2403      (!(Dests.size() == 1 && numCmps >= 3) &&
2404       !(Dests.size() == 2 && numCmps >= 5) &&
2405       !(Dests.size() >= 3 && numCmps >= 6)))
2406    return false;
2407
2408  DEBUG(dbgs() << "Emitting bit tests\n");
2409  APInt lowBound = APInt::getNullValue(cmpRange.getBitWidth());
2410
2411  // Optimize the case where all the case values fit in a
2412  // word without having to subtract minValue. In this case,
2413  // we can optimize away the subtraction.
2414  if (maxValue.ult(IntPtrBits)) {
2415    cmpRange = maxValue;
2416  } else {
2417    lowBound = minValue;
2418  }
2419
2420  CaseBitsVector CasesBits;
2421  unsigned i, count = 0;
2422
2423  for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
2424    MachineBasicBlock* Dest = I->BB;
2425    for (i = 0; i < count; ++i)
2426      if (Dest == CasesBits[i].BB)
2427        break;
2428
2429    if (i == count) {
2430      assert((count < 3) && "Too much destinations to test!");
2431      CasesBits.push_back(CaseBits(0, Dest, 0, 0/*Weight*/));
2432      count++;
2433    }
2434
2435    const APInt& lowValue = cast<ConstantInt>(I->Low)->getValue();
2436    const APInt& highValue = cast<ConstantInt>(I->High)->getValue();
2437
2438    uint64_t lo = (lowValue - lowBound).getZExtValue();
2439    uint64_t hi = (highValue - lowBound).getZExtValue();
2440    CasesBits[i].ExtraWeight += I->ExtraWeight;
2441
2442    for (uint64_t j = lo; j <= hi; j++) {
2443      CasesBits[i].Mask |=  1ULL << j;
2444      CasesBits[i].Bits++;
2445    }
2446
2447  }
2448  std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp());
2449
2450  BitTestInfo BTC;
2451
2452  // Figure out which block is immediately after the current one.
2453  MachineFunction::iterator BBI = CR.CaseBB;
2454  ++BBI;
2455
2456  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2457
2458  DEBUG(dbgs() << "Cases:\n");
2459  for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) {
2460    DEBUG(dbgs() << "Mask: " << CasesBits[i].Mask
2461                 << ", Bits: " << CasesBits[i].Bits
2462                 << ", BB: " << CasesBits[i].BB << '\n');
2463
2464    MachineBasicBlock *CaseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2465    CurMF->insert(BBI, CaseBB);
2466    BTC.push_back(BitTestCase(CasesBits[i].Mask,
2467                              CaseBB,
2468                              CasesBits[i].BB, CasesBits[i].ExtraWeight));
2469
2470    // Put SV in a virtual register to make it available from the new blocks.
2471    ExportFromCurrentBlock(SV);
2472  }
2473
2474  BitTestBlock BTB(lowBound, cmpRange, SV,
2475                   -1U, MVT::Other, (CR.CaseBB == SwitchBB),
2476                   CR.CaseBB, Default, BTC);
2477
2478  if (CR.CaseBB == SwitchBB)
2479    visitBitTestHeader(BTB, SwitchBB);
2480
2481  BitTestCases.push_back(BTB);
2482
2483  return true;
2484}
2485
2486/// Clusterify - Transform simple list of Cases into list of CaseRange's
2487size_t SelectionDAGBuilder::Clusterify(CaseVector& Cases,
2488                                       const SwitchInst& SI) {
2489
2490  /// Use a shorter form of declaration, and also
2491  /// show the we want to use CRSBuilder as Clusterifier.
2492  typedef IntegersSubsetMapping<MachineBasicBlock> Clusterifier;
2493
2494  Clusterifier TheClusterifier;
2495
2496  BranchProbabilityInfo *BPI = FuncInfo.BPI;
2497  // Start with "simple" cases
2498  for (SwitchInst::ConstCaseIt i = SI.case_begin(), e = SI.case_end();
2499       i != e; ++i) {
2500    const BasicBlock *SuccBB = i.getCaseSuccessor();
2501    MachineBasicBlock *SMBB = FuncInfo.MBBMap[SuccBB];
2502
2503    TheClusterifier.add(i.getCaseValueEx(), SMBB,
2504        BPI ? BPI->getEdgeWeight(SI.getParent(), i.getSuccessorIndex()) : 0);
2505  }
2506
2507  TheClusterifier.optimize();
2508
2509  size_t numCmps = 0;
2510  for (Clusterifier::RangeIterator i = TheClusterifier.begin(),
2511       e = TheClusterifier.end(); i != e; ++i, ++numCmps) {
2512    Clusterifier::Cluster &C = *i;
2513    // Update edge weight for the cluster.
2514    unsigned W = C.first.Weight;
2515
2516    // FIXME: Currently work with ConstantInt based numbers.
2517    // Changing it to APInt based is a pretty heavy for this commit.
2518    Cases.push_back(Case(C.first.getLow().toConstantInt(),
2519                         C.first.getHigh().toConstantInt(), C.second, W));
2520
2521    if (C.first.getLow() != C.first.getHigh())
2522    // A range counts double, since it requires two compares.
2523    ++numCmps;
2524  }
2525
2526  return numCmps;
2527}
2528
2529void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
2530                                           MachineBasicBlock *Last) {
2531  // Update JTCases.
2532  for (unsigned i = 0, e = JTCases.size(); i != e; ++i)
2533    if (JTCases[i].first.HeaderBB == First)
2534      JTCases[i].first.HeaderBB = Last;
2535
2536  // Update BitTestCases.
2537  for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i)
2538    if (BitTestCases[i].Parent == First)
2539      BitTestCases[i].Parent = Last;
2540}
2541
2542void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
2543  MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
2544
2545  // Figure out which block is immediately after the current one.
2546  MachineBasicBlock *NextBlock = 0;
2547  MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()];
2548
2549  // If there is only the default destination, branch to it if it is not the
2550  // next basic block.  Otherwise, just fall through.
2551  if (!SI.getNumCases()) {
2552    // Update machine-CFG edges.
2553
2554    // If this is not a fall-through branch, emit the branch.
2555    SwitchMBB->addSuccessor(Default);
2556    if (Default != NextBlock)
2557      DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
2558                              MVT::Other, getControlRoot(),
2559                              DAG.getBasicBlock(Default)));
2560
2561    return;
2562  }
2563
2564  // If there are any non-default case statements, create a vector of Cases
2565  // representing each one, and sort the vector so that we can efficiently
2566  // create a binary search tree from them.
2567  CaseVector Cases;
2568  size_t numCmps = Clusterify(Cases, SI);
2569  DEBUG(dbgs() << "Clusterify finished. Total clusters: " << Cases.size()
2570               << ". Total compares: " << numCmps << '\n');
2571  (void)numCmps;
2572
2573  // Get the Value to be switched on and default basic blocks, which will be
2574  // inserted into CaseBlock records, representing basic blocks in the binary
2575  // search tree.
2576  const Value *SV = SI.getCondition();
2577
2578  // Push the initial CaseRec onto the worklist
2579  CaseRecVector WorkList;
2580  WorkList.push_back(CaseRec(SwitchMBB,0,0,
2581                             CaseRange(Cases.begin(),Cases.end())));
2582
2583  while (!WorkList.empty()) {
2584    // Grab a record representing a case range to process off the worklist
2585    CaseRec CR = WorkList.back();
2586    WorkList.pop_back();
2587
2588    if (handleBitTestsSwitchCase(CR, WorkList, SV, Default, SwitchMBB))
2589      continue;
2590
2591    // If the range has few cases (two or less) emit a series of specific
2592    // tests.
2593    if (handleSmallSwitchRange(CR, WorkList, SV, Default, SwitchMBB))
2594      continue;
2595
2596    // If the switch has more than N blocks, and is at least 40% dense, and the
2597    // target supports indirect branches, then emit a jump table rather than
2598    // lowering the switch to a binary tree of conditional branches.
2599    // N defaults to 4 and is controlled via TLS.getMinimumJumpTableEntries().
2600    if (handleJTSwitchCase(CR, WorkList, SV, Default, SwitchMBB))
2601      continue;
2602
2603    // Emit binary tree. We need to pick a pivot, and push left and right ranges
2604    // onto the worklist. Leafs are handled via handleSmallSwitchRange() call.
2605    handleBTSplitSwitchCase(CR, WorkList, SV, Default, SwitchMBB);
2606  }
2607}
2608
2609void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
2610  MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
2611
2612  // Update machine-CFG edges with unique successors.
2613  SmallSet<BasicBlock*, 32> Done;
2614  for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) {
2615    BasicBlock *BB = I.getSuccessor(i);
2616    bool Inserted = Done.insert(BB);
2617    if (!Inserted)
2618        continue;
2619
2620    MachineBasicBlock *Succ = FuncInfo.MBBMap[BB];
2621    addSuccessorWithWeight(IndirectBrMBB, Succ);
2622  }
2623
2624  DAG.setRoot(DAG.getNode(ISD::BRIND, getCurDebugLoc(),
2625                          MVT::Other, getControlRoot(),
2626                          getValue(I.getAddress())));
2627}
2628
2629void SelectionDAGBuilder::visitFSub(const User &I) {
2630  // -0.0 - X --> fneg
2631  Type *Ty = I.getType();
2632  if (isa<Constant>(I.getOperand(0)) &&
2633      I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) {
2634    SDValue Op2 = getValue(I.getOperand(1));
2635    setValue(&I, DAG.getNode(ISD::FNEG, getCurDebugLoc(),
2636                             Op2.getValueType(), Op2));
2637    return;
2638  }
2639
2640  visitBinary(I, ISD::FSUB);
2641}
2642
2643void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) {
2644  SDValue Op1 = getValue(I.getOperand(0));
2645  SDValue Op2 = getValue(I.getOperand(1));
2646  setValue(&I, DAG.getNode(OpCode, getCurDebugLoc(),
2647                           Op1.getValueType(), Op1, Op2));
2648}
2649
2650void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
2651  SDValue Op1 = getValue(I.getOperand(0));
2652  SDValue Op2 = getValue(I.getOperand(1));
2653
2654  MVT ShiftTy = TLI.getShiftAmountTy(Op2.getValueType());
2655
2656  // Coerce the shift amount to the right type if we can.
2657  if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
2658    unsigned ShiftSize = ShiftTy.getSizeInBits();
2659    unsigned Op2Size = Op2.getValueType().getSizeInBits();
2660    DebugLoc DL = getCurDebugLoc();
2661
2662    // If the operand is smaller than the shift count type, promote it.
2663    if (ShiftSize > Op2Size)
2664      Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2);
2665
2666    // If the operand is larger than the shift count type but the shift
2667    // count type has enough bits to represent any shift value, truncate
2668    // it now. This is a common case and it exposes the truncate to
2669    // optimization early.
2670    else if (ShiftSize >= Log2_32_Ceil(Op2.getValueType().getSizeInBits()))
2671      Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2);
2672    // Otherwise we'll need to temporarily settle for some other convenient
2673    // type.  Type legalization will make adjustments once the shiftee is split.
2674    else
2675      Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32);
2676  }
2677
2678  setValue(&I, DAG.getNode(Opcode, getCurDebugLoc(),
2679                           Op1.getValueType(), Op1, Op2));
2680}
2681
2682void SelectionDAGBuilder::visitSDiv(const User &I) {
2683  SDValue Op1 = getValue(I.getOperand(0));
2684  SDValue Op2 = getValue(I.getOperand(1));
2685
2686  // Turn exact SDivs into multiplications.
2687  // FIXME: This should be in DAGCombiner, but it doesn't have access to the
2688  // exact bit.
2689  if (isa<BinaryOperator>(&I) && cast<BinaryOperator>(&I)->isExact() &&
2690      !isa<ConstantSDNode>(Op1) &&
2691      isa<ConstantSDNode>(Op2) && !cast<ConstantSDNode>(Op2)->isNullValue())
2692    setValue(&I, TLI.BuildExactSDIV(Op1, Op2, getCurDebugLoc(), DAG));
2693  else
2694    setValue(&I, DAG.getNode(ISD::SDIV, getCurDebugLoc(), Op1.getValueType(),
2695                             Op1, Op2));
2696}
2697
2698void SelectionDAGBuilder::visitICmp(const User &I) {
2699  ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
2700  if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
2701    predicate = IC->getPredicate();
2702  else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
2703    predicate = ICmpInst::Predicate(IC->getPredicate());
2704  SDValue Op1 = getValue(I.getOperand(0));
2705  SDValue Op2 = getValue(I.getOperand(1));
2706  ISD::CondCode Opcode = getICmpCondCode(predicate);
2707
2708  EVT DestVT = TLI.getValueType(I.getType());
2709  setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Opcode));
2710}
2711
2712void SelectionDAGBuilder::visitFCmp(const User &I) {
2713  FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
2714  if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
2715    predicate = FC->getPredicate();
2716  else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
2717    predicate = FCmpInst::Predicate(FC->getPredicate());
2718  SDValue Op1 = getValue(I.getOperand(0));
2719  SDValue Op2 = getValue(I.getOperand(1));
2720  ISD::CondCode Condition = getFCmpCondCode(predicate);
2721  if (TM.Options.NoNaNsFPMath)
2722    Condition = getFCmpCodeWithoutNaN(Condition);
2723  EVT DestVT = TLI.getValueType(I.getType());
2724  setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Condition));
2725}
2726
2727void SelectionDAGBuilder::visitSelect(const User &I) {
2728  SmallVector<EVT, 4> ValueVTs;
2729  ComputeValueVTs(TLI, I.getType(), ValueVTs);
2730  unsigned NumValues = ValueVTs.size();
2731  if (NumValues == 0) return;
2732
2733  SmallVector<SDValue, 4> Values(NumValues);
2734  SDValue Cond     = getValue(I.getOperand(0));
2735  SDValue TrueVal  = getValue(I.getOperand(1));
2736  SDValue FalseVal = getValue(I.getOperand(2));
2737  ISD::NodeType OpCode = Cond.getValueType().isVector() ?
2738    ISD::VSELECT : ISD::SELECT;
2739
2740  for (unsigned i = 0; i != NumValues; ++i)
2741    Values[i] = DAG.getNode(OpCode, getCurDebugLoc(),
2742                            TrueVal.getNode()->getValueType(TrueVal.getResNo()+i),
2743                            Cond,
2744                            SDValue(TrueVal.getNode(),
2745                                    TrueVal.getResNo() + i),
2746                            SDValue(FalseVal.getNode(),
2747                                    FalseVal.getResNo() + i));
2748
2749  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
2750                           DAG.getVTList(&ValueVTs[0], NumValues),
2751                           &Values[0], NumValues));
2752}
2753
2754void SelectionDAGBuilder::visitTrunc(const User &I) {
2755  // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
2756  SDValue N = getValue(I.getOperand(0));
2757  EVT DestVT = TLI.getValueType(I.getType());
2758  setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), DestVT, N));
2759}
2760
2761void SelectionDAGBuilder::visitZExt(const User &I) {
2762  // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2763  // ZExt also can't be a cast to bool for same reason. So, nothing much to do
2764  SDValue N = getValue(I.getOperand(0));
2765  EVT DestVT = TLI.getValueType(I.getType());
2766  setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), DestVT, N));
2767}
2768
2769void SelectionDAGBuilder::visitSExt(const User &I) {
2770  // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2771  // SExt also can't be a cast to bool for same reason. So, nothing much to do
2772  SDValue N = getValue(I.getOperand(0));
2773  EVT DestVT = TLI.getValueType(I.getType());
2774  setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurDebugLoc(), DestVT, N));
2775}
2776
2777void SelectionDAGBuilder::visitFPTrunc(const User &I) {
2778  // FPTrunc is never a no-op cast, no need to check
2779  SDValue N = getValue(I.getOperand(0));
2780  EVT DestVT = TLI.getValueType(I.getType());
2781  setValue(&I, DAG.getNode(ISD::FP_ROUND, getCurDebugLoc(),
2782                           DestVT, N,
2783                           DAG.getTargetConstant(0, TLI.getPointerTy())));
2784}
2785
2786void SelectionDAGBuilder::visitFPExt(const User &I){
2787  // FPExt is never a no-op cast, no need to check
2788  SDValue N = getValue(I.getOperand(0));
2789  EVT DestVT = TLI.getValueType(I.getType());
2790  setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurDebugLoc(), DestVT, N));
2791}
2792
2793void SelectionDAGBuilder::visitFPToUI(const User &I) {
2794  // FPToUI is never a no-op cast, no need to check
2795  SDValue N = getValue(I.getOperand(0));
2796  EVT DestVT = TLI.getValueType(I.getType());
2797  setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurDebugLoc(), DestVT, N));
2798}
2799
2800void SelectionDAGBuilder::visitFPToSI(const User &I) {
2801  // FPToSI is never a no-op cast, no need to check
2802  SDValue N = getValue(I.getOperand(0));
2803  EVT DestVT = TLI.getValueType(I.getType());
2804  setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurDebugLoc(), DestVT, N));
2805}
2806
2807void SelectionDAGBuilder::visitUIToFP(const User &I) {
2808  // UIToFP is never a no-op cast, no need to check
2809  SDValue N = getValue(I.getOperand(0));
2810  EVT DestVT = TLI.getValueType(I.getType());
2811  setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurDebugLoc(), DestVT, N));
2812}
2813
2814void SelectionDAGBuilder::visitSIToFP(const User &I){
2815  // SIToFP is never a no-op cast, no need to check
2816  SDValue N = getValue(I.getOperand(0));
2817  EVT DestVT = TLI.getValueType(I.getType());
2818  setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurDebugLoc(), DestVT, N));
2819}
2820
2821void SelectionDAGBuilder::visitPtrToInt(const User &I) {
2822  // What to do depends on the size of the integer and the size of the pointer.
2823  // We can either truncate, zero extend, or no-op, accordingly.
2824  SDValue N = getValue(I.getOperand(0));
2825  EVT DestVT = TLI.getValueType(I.getType());
2826  setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT));
2827}
2828
2829void SelectionDAGBuilder::visitIntToPtr(const User &I) {
2830  // What to do depends on the size of the integer and the size of the pointer.
2831  // We can either truncate, zero extend, or no-op, accordingly.
2832  SDValue N = getValue(I.getOperand(0));
2833  EVT DestVT = TLI.getValueType(I.getType());
2834  setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT));
2835}
2836
2837void SelectionDAGBuilder::visitBitCast(const User &I) {
2838  SDValue N = getValue(I.getOperand(0));
2839  EVT DestVT = TLI.getValueType(I.getType());
2840
2841  // BitCast assures us that source and destination are the same size so this is
2842  // either a BITCAST or a no-op.
2843  if (DestVT != N.getValueType())
2844    setValue(&I, DAG.getNode(ISD::BITCAST, getCurDebugLoc(),
2845                             DestVT, N)); // convert types.
2846  else
2847    setValue(&I, N);            // noop cast.
2848}
2849
2850void SelectionDAGBuilder::visitInsertElement(const User &I) {
2851  SDValue InVec = getValue(I.getOperand(0));
2852  SDValue InVal = getValue(I.getOperand(1));
2853  SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(),
2854                              TLI.getPointerTy(),
2855                              getValue(I.getOperand(2)));
2856  setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurDebugLoc(),
2857                           TLI.getValueType(I.getType()),
2858                           InVec, InVal, InIdx));
2859}
2860
2861void SelectionDAGBuilder::visitExtractElement(const User &I) {
2862  SDValue InVec = getValue(I.getOperand(0));
2863  SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(),
2864                              TLI.getPointerTy(),
2865                              getValue(I.getOperand(1)));
2866  setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
2867                           TLI.getValueType(I.getType()), InVec, InIdx));
2868}
2869
2870// Utility for visitShuffleVector - Return true if every element in Mask,
2871// beginning from position Pos and ending in Pos+Size, falls within the
2872// specified sequential range [L, L+Pos). or is undef.
2873static bool isSequentialInRange(const SmallVectorImpl<int> &Mask,
2874                                unsigned Pos, unsigned Size, int Low) {
2875  for (unsigned i = Pos, e = Pos+Size; i != e; ++i, ++Low)
2876    if (Mask[i] >= 0 && Mask[i] != Low)
2877      return false;
2878  return true;
2879}
2880
2881void SelectionDAGBuilder::visitShuffleVector(const User &I) {
2882  SDValue Src1 = getValue(I.getOperand(0));
2883  SDValue Src2 = getValue(I.getOperand(1));
2884
2885  SmallVector<int, 8> Mask;
2886  ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask);
2887  unsigned MaskNumElts = Mask.size();
2888
2889  EVT VT = TLI.getValueType(I.getType());
2890  EVT SrcVT = Src1.getValueType();
2891  unsigned SrcNumElts = SrcVT.getVectorNumElements();
2892
2893  if (SrcNumElts == MaskNumElts) {
2894    setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2895                                      &Mask[0]));
2896    return;
2897  }
2898
2899  // Normalize the shuffle vector since mask and vector length don't match.
2900  if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) {
2901    // Mask is longer than the source vectors and is a multiple of the source
2902    // vectors.  We can use concatenate vector to make the mask and vectors
2903    // lengths match.
2904    if (SrcNumElts*2 == MaskNumElts) {
2905      // First check for Src1 in low and Src2 in high
2906      if (isSequentialInRange(Mask, 0, SrcNumElts, 0) &&
2907          isSequentialInRange(Mask, SrcNumElts, SrcNumElts, SrcNumElts)) {
2908        // The shuffle is concatenating two vectors together.
2909        setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurDebugLoc(),
2910                                 VT, Src1, Src2));
2911        return;
2912      }
2913      // Then check for Src2 in low and Src1 in high
2914      if (isSequentialInRange(Mask, 0, SrcNumElts, SrcNumElts) &&
2915          isSequentialInRange(Mask, SrcNumElts, SrcNumElts, 0)) {
2916        // The shuffle is concatenating two vectors together.
2917        setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurDebugLoc(),
2918                                 VT, Src2, Src1));
2919        return;
2920      }
2921    }
2922
2923    // Pad both vectors with undefs to make them the same length as the mask.
2924    unsigned NumConcat = MaskNumElts / SrcNumElts;
2925    bool Src1U = Src1.getOpcode() == ISD::UNDEF;
2926    bool Src2U = Src2.getOpcode() == ISD::UNDEF;
2927    SDValue UndefVal = DAG.getUNDEF(SrcVT);
2928
2929    SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
2930    SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
2931    MOps1[0] = Src1;
2932    MOps2[0] = Src2;
2933
2934    Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
2935                                                  getCurDebugLoc(), VT,
2936                                                  &MOps1[0], NumConcat);
2937    Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
2938                                                  getCurDebugLoc(), VT,
2939                                                  &MOps2[0], NumConcat);
2940
2941    // Readjust mask for new input vector length.
2942    SmallVector<int, 8> MappedOps;
2943    for (unsigned i = 0; i != MaskNumElts; ++i) {
2944      int Idx = Mask[i];
2945      if (Idx >= (int)SrcNumElts)
2946        Idx -= SrcNumElts - MaskNumElts;
2947      MappedOps.push_back(Idx);
2948    }
2949
2950    setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2951                                      &MappedOps[0]));
2952    return;
2953  }
2954
2955  if (SrcNumElts > MaskNumElts) {
2956    // Analyze the access pattern of the vector to see if we can extract
2957    // two subvectors and do the shuffle. The analysis is done by calculating
2958    // the range of elements the mask access on both vectors.
2959    int MinRange[2] = { static_cast<int>(SrcNumElts),
2960                        static_cast<int>(SrcNumElts)};
2961    int MaxRange[2] = {-1, -1};
2962
2963    for (unsigned i = 0; i != MaskNumElts; ++i) {
2964      int Idx = Mask[i];
2965      unsigned Input = 0;
2966      if (Idx < 0)
2967        continue;
2968
2969      if (Idx >= (int)SrcNumElts) {
2970        Input = 1;
2971        Idx -= SrcNumElts;
2972      }
2973      if (Idx > MaxRange[Input])
2974        MaxRange[Input] = Idx;
2975      if (Idx < MinRange[Input])
2976        MinRange[Input] = Idx;
2977    }
2978
2979    // Check if the access is smaller than the vector size and can we find
2980    // a reasonable extract index.
2981    int RangeUse[2] = { -1, -1 };  // 0 = Unused, 1 = Extract, -1 = Can not
2982                                   // Extract.
2983    int StartIdx[2];  // StartIdx to extract from
2984    for (unsigned Input = 0; Input < 2; ++Input) {
2985      if (MinRange[Input] >= (int)SrcNumElts && MaxRange[Input] < 0) {
2986        RangeUse[Input] = 0; // Unused
2987        StartIdx[Input] = 0;
2988        continue;
2989      }
2990
2991      // Find a good start index that is a multiple of the mask length. Then
2992      // see if the rest of the elements are in range.
2993      StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts;
2994      if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts &&
2995          StartIdx[Input] + MaskNumElts <= SrcNumElts)
2996        RangeUse[Input] = 1; // Extract from a multiple of the mask length.
2997    }
2998
2999    if (RangeUse[0] == 0 && RangeUse[1] == 0) {
3000      setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
3001      return;
3002    }
3003    if (RangeUse[0] >= 0 && RangeUse[1] >= 0) {
3004      // Extract appropriate subvector and generate a vector shuffle
3005      for (unsigned Input = 0; Input < 2; ++Input) {
3006        SDValue &Src = Input == 0 ? Src1 : Src2;
3007        if (RangeUse[Input] == 0)
3008          Src = DAG.getUNDEF(VT);
3009        else
3010          Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, getCurDebugLoc(), VT,
3011                            Src, DAG.getIntPtrConstant(StartIdx[Input]));
3012      }
3013
3014      // Calculate new mask.
3015      SmallVector<int, 8> MappedOps;
3016      for (unsigned i = 0; i != MaskNumElts; ++i) {
3017        int Idx = Mask[i];
3018        if (Idx >= 0) {
3019          if (Idx < (int)SrcNumElts)
3020            Idx -= StartIdx[0];
3021          else
3022            Idx -= SrcNumElts + StartIdx[1] - MaskNumElts;
3023        }
3024        MappedOps.push_back(Idx);
3025      }
3026
3027      setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
3028                                        &MappedOps[0]));
3029      return;
3030    }
3031  }
3032
3033  // We can't use either concat vectors or extract subvectors so fall back to
3034  // replacing the shuffle with extract and build vector.
3035  // to insert and build vector.
3036  EVT EltVT = VT.getVectorElementType();
3037  EVT PtrVT = TLI.getPointerTy();
3038  SmallVector<SDValue,8> Ops;
3039  for (unsigned i = 0; i != MaskNumElts; ++i) {
3040    int Idx = Mask[i];
3041    SDValue Res;
3042
3043    if (Idx < 0) {
3044      Res = DAG.getUNDEF(EltVT);
3045    } else {
3046      SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2;
3047      if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts;
3048
3049      Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
3050                        EltVT, Src, DAG.getConstant(Idx, PtrVT));
3051    }
3052
3053    Ops.push_back(Res);
3054  }
3055
3056  setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(),
3057                           VT, &Ops[0], Ops.size()));
3058}
3059
3060void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) {
3061  const Value *Op0 = I.getOperand(0);
3062  const Value *Op1 = I.getOperand(1);
3063  Type *AggTy = I.getType();
3064  Type *ValTy = Op1->getType();
3065  bool IntoUndef = isa<UndefValue>(Op0);
3066  bool FromUndef = isa<UndefValue>(Op1);
3067
3068  unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices());
3069
3070  SmallVector<EVT, 4> AggValueVTs;
3071  ComputeValueVTs(TLI, AggTy, AggValueVTs);
3072  SmallVector<EVT, 4> ValValueVTs;
3073  ComputeValueVTs(TLI, ValTy, ValValueVTs);
3074
3075  unsigned NumAggValues = AggValueVTs.size();
3076  unsigned NumValValues = ValValueVTs.size();
3077  SmallVector<SDValue, 4> Values(NumAggValues);
3078
3079  SDValue Agg = getValue(Op0);
3080  unsigned i = 0;
3081  // Copy the beginning value(s) from the original aggregate.
3082  for (; i != LinearIndex; ++i)
3083    Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3084                SDValue(Agg.getNode(), Agg.getResNo() + i);
3085  // Copy values from the inserted value(s).
3086  if (NumValValues) {
3087    SDValue Val = getValue(Op1);
3088    for (; i != LinearIndex + NumValValues; ++i)
3089      Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3090                  SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
3091  }
3092  // Copy remaining value(s) from the original aggregate.
3093  for (; i != NumAggValues; ++i)
3094    Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3095                SDValue(Agg.getNode(), Agg.getResNo() + i);
3096
3097  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
3098                           DAG.getVTList(&AggValueVTs[0], NumAggValues),
3099                           &Values[0], NumAggValues));
3100}
3101
3102void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) {
3103  const Value *Op0 = I.getOperand(0);
3104  Type *AggTy = Op0->getType();
3105  Type *ValTy = I.getType();
3106  bool OutOfUndef = isa<UndefValue>(Op0);
3107
3108  unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices());
3109
3110  SmallVector<EVT, 4> ValValueVTs;
3111  ComputeValueVTs(TLI, ValTy, ValValueVTs);
3112
3113  unsigned NumValValues = ValValueVTs.size();
3114
3115  // Ignore a extractvalue that produces an empty object
3116  if (!NumValValues) {
3117    setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3118    return;
3119  }
3120
3121  SmallVector<SDValue, 4> Values(NumValValues);
3122
3123  SDValue Agg = getValue(Op0);
3124  // Copy out the selected value(s).
3125  for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
3126    Values[i - LinearIndex] =
3127      OutOfUndef ?
3128        DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
3129        SDValue(Agg.getNode(), Agg.getResNo() + i);
3130
3131  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
3132                           DAG.getVTList(&ValValueVTs[0], NumValValues),
3133                           &Values[0], NumValValues));
3134}
3135
3136void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
3137  SDValue N = getValue(I.getOperand(0));
3138  // Note that the pointer operand may be a vector of pointers. Take the scalar
3139  // element which holds a pointer.
3140  Type *Ty = I.getOperand(0)->getType()->getScalarType();
3141
3142  for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end();
3143       OI != E; ++OI) {
3144    const Value *Idx = *OI;
3145    if (StructType *StTy = dyn_cast<StructType>(Ty)) {
3146      unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue();
3147      if (Field) {
3148        // N = N + Offset
3149        uint64_t Offset = TD->getStructLayout(StTy)->getElementOffset(Field);
3150        N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N,
3151                        DAG.getConstant(Offset, N.getValueType()));
3152      }
3153
3154      Ty = StTy->getElementType(Field);
3155    } else {
3156      Ty = cast<SequentialType>(Ty)->getElementType();
3157
3158      // If this is a constant subscript, handle it quickly.
3159      if (const ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
3160        if (CI->isZero()) continue;
3161        uint64_t Offs =
3162            TD->getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue();
3163        SDValue OffsVal;
3164        EVT PTy = TLI.getPointerTy();
3165        unsigned PtrBits = PTy.getSizeInBits();
3166        if (PtrBits < 64)
3167          OffsVal = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(),
3168                                TLI.getPointerTy(),
3169                                DAG.getConstant(Offs, MVT::i64));
3170        else
3171          OffsVal = DAG.getIntPtrConstant(Offs);
3172
3173        N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N,
3174                        OffsVal);
3175        continue;
3176      }
3177
3178      // N = N + Idx * ElementSize;
3179      APInt ElementSize = APInt(TLI.getPointerTy().getSizeInBits(),
3180                                TD->getTypeAllocSize(Ty));
3181      SDValue IdxN = getValue(Idx);
3182
3183      // If the index is smaller or larger than intptr_t, truncate or extend
3184      // it.
3185      IdxN = DAG.getSExtOrTrunc(IdxN, getCurDebugLoc(), N.getValueType());
3186
3187      // If this is a multiply by a power of two, turn it into a shl
3188      // immediately.  This is a very common case.
3189      if (ElementSize != 1) {
3190        if (ElementSize.isPowerOf2()) {
3191          unsigned Amt = ElementSize.logBase2();
3192          IdxN = DAG.getNode(ISD::SHL, getCurDebugLoc(),
3193                             N.getValueType(), IdxN,
3194                             DAG.getConstant(Amt, IdxN.getValueType()));
3195        } else {
3196          SDValue Scale = DAG.getConstant(ElementSize, IdxN.getValueType());
3197          IdxN = DAG.getNode(ISD::MUL, getCurDebugLoc(),
3198                             N.getValueType(), IdxN, Scale);
3199        }
3200      }
3201
3202      N = DAG.getNode(ISD::ADD, getCurDebugLoc(),
3203                      N.getValueType(), N, IdxN);
3204    }
3205  }
3206
3207  setValue(&I, N);
3208}
3209
3210void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
3211  // If this is a fixed sized alloca in the entry block of the function,
3212  // allocate it statically on the stack.
3213  if (FuncInfo.StaticAllocaMap.count(&I))
3214    return;   // getValue will auto-populate this.
3215
3216  Type *Ty = I.getAllocatedType();
3217  uint64_t TySize = TLI.getDataLayout()->getTypeAllocSize(Ty);
3218  unsigned Align =
3219    std::max((unsigned)TLI.getDataLayout()->getPrefTypeAlignment(Ty),
3220             I.getAlignment());
3221
3222  SDValue AllocSize = getValue(I.getArraySize());
3223
3224  EVT IntPtr = TLI.getPointerTy();
3225  if (AllocSize.getValueType() != IntPtr)
3226    AllocSize = DAG.getZExtOrTrunc(AllocSize, getCurDebugLoc(), IntPtr);
3227
3228  AllocSize = DAG.getNode(ISD::MUL, getCurDebugLoc(), IntPtr,
3229                          AllocSize,
3230                          DAG.getConstant(TySize, IntPtr));
3231
3232  // Handle alignment.  If the requested alignment is less than or equal to
3233  // the stack alignment, ignore it.  If the size is greater than or equal to
3234  // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
3235  unsigned StackAlign = TM.getFrameLowering()->getStackAlignment();
3236  if (Align <= StackAlign)
3237    Align = 0;
3238
3239  // Round the size of the allocation up to the stack alignment size
3240  // by add SA-1 to the size.
3241  AllocSize = DAG.getNode(ISD::ADD, getCurDebugLoc(),
3242                          AllocSize.getValueType(), AllocSize,
3243                          DAG.getIntPtrConstant(StackAlign-1));
3244
3245  // Mask out the low bits for alignment purposes.
3246  AllocSize = DAG.getNode(ISD::AND, getCurDebugLoc(),
3247                          AllocSize.getValueType(), AllocSize,
3248                          DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1)));
3249
3250  SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) };
3251  SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
3252  SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, getCurDebugLoc(),
3253                            VTs, Ops, 3);
3254  setValue(&I, DSA);
3255  DAG.setRoot(DSA.getValue(1));
3256
3257  // Inform the Frame Information that we have just allocated a variable-sized
3258  // object.
3259  FuncInfo.MF->getFrameInfo()->CreateVariableSizedObject(Align ? Align : 1);
3260}
3261
3262void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
3263  if (I.isAtomic())
3264    return visitAtomicLoad(I);
3265
3266  const Value *SV = I.getOperand(0);
3267  SDValue Ptr = getValue(SV);
3268
3269  Type *Ty = I.getType();
3270
3271  bool isVolatile = I.isVolatile();
3272  bool isNonTemporal = I.getMetadata("nontemporal") != 0;
3273  bool isInvariant = I.getMetadata("invariant.load") != 0;
3274  unsigned Alignment = I.getAlignment();
3275  const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa);
3276  const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
3277
3278  SmallVector<EVT, 4> ValueVTs;
3279  SmallVector<uint64_t, 4> Offsets;
3280  ComputeValueVTs(TLI, Ty, ValueVTs, &Offsets);
3281  unsigned NumValues = ValueVTs.size();
3282  if (NumValues == 0)
3283    return;
3284
3285  SDValue Root;
3286  bool ConstantMemory = false;
3287  if (I.isVolatile() || NumValues > MaxParallelChains)
3288    // Serialize volatile loads with other side effects.
3289    Root = getRoot();
3290  else if (AA->pointsToConstantMemory(
3291             AliasAnalysis::Location(SV, AA->getTypeStoreSize(Ty), TBAAInfo))) {
3292    // Do not serialize (non-volatile) loads of constant memory with anything.
3293    Root = DAG.getEntryNode();
3294    ConstantMemory = true;
3295  } else {
3296    // Do not serialize non-volatile loads against each other.
3297    Root = DAG.getRoot();
3298  }
3299
3300  SmallVector<SDValue, 4> Values(NumValues);
3301  SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains),
3302                                          NumValues));
3303  EVT PtrVT = Ptr.getValueType();
3304  unsigned ChainI = 0;
3305  for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3306    // Serializing loads here may result in excessive register pressure, and
3307    // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
3308    // could recover a bit by hoisting nodes upward in the chain by recognizing
3309    // they are side-effect free or do not alias. The optimizer should really
3310    // avoid this case by converting large object/array copies to llvm.memcpy
3311    // (MaxParallelChains should always remain as failsafe).
3312    if (ChainI == MaxParallelChains) {
3313      assert(PendingLoads.empty() && "PendingLoads must be serialized first");
3314      SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
3315                                  MVT::Other, &Chains[0], ChainI);
3316      Root = Chain;
3317      ChainI = 0;
3318    }
3319    SDValue A = DAG.getNode(ISD::ADD, getCurDebugLoc(),
3320                            PtrVT, Ptr,
3321                            DAG.getConstant(Offsets[i], PtrVT));
3322    SDValue L = DAG.getLoad(ValueVTs[i], getCurDebugLoc(), Root,
3323                            A, MachinePointerInfo(SV, Offsets[i]), isVolatile,
3324                            isNonTemporal, isInvariant, Alignment, TBAAInfo,
3325                            Ranges);
3326
3327    Values[i] = L;
3328    Chains[ChainI] = L.getValue(1);
3329  }
3330
3331  if (!ConstantMemory) {
3332    SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
3333                                MVT::Other, &Chains[0], ChainI);
3334    if (isVolatile)
3335      DAG.setRoot(Chain);
3336    else
3337      PendingLoads.push_back(Chain);
3338  }
3339
3340  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
3341                           DAG.getVTList(&ValueVTs[0], NumValues),
3342                           &Values[0], NumValues));
3343}
3344
3345void SelectionDAGBuilder::visitStore(const StoreInst &I) {
3346  if (I.isAtomic())
3347    return visitAtomicStore(I);
3348
3349  const Value *SrcV = I.getOperand(0);
3350  const Value *PtrV = I.getOperand(1);
3351
3352  SmallVector<EVT, 4> ValueVTs;
3353  SmallVector<uint64_t, 4> Offsets;
3354  ComputeValueVTs(TLI, SrcV->getType(), ValueVTs, &Offsets);
3355  unsigned NumValues = ValueVTs.size();
3356  if (NumValues == 0)
3357    return;
3358
3359  // Get the lowered operands. Note that we do this after
3360  // checking if NumResults is zero, because with zero results
3361  // the operands won't have values in the map.
3362  SDValue Src = getValue(SrcV);
3363  SDValue Ptr = getValue(PtrV);
3364
3365  SDValue Root = getRoot();
3366  SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains),
3367                                          NumValues));
3368  EVT PtrVT = Ptr.getValueType();
3369  bool isVolatile = I.isVolatile();
3370  bool isNonTemporal = I.getMetadata("nontemporal") != 0;
3371  unsigned Alignment = I.getAlignment();
3372  const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa);
3373
3374  unsigned ChainI = 0;
3375  for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3376    // See visitLoad comments.
3377    if (ChainI == MaxParallelChains) {
3378      SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
3379                                  MVT::Other, &Chains[0], ChainI);
3380      Root = Chain;
3381      ChainI = 0;
3382    }
3383    SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT, Ptr,
3384                              DAG.getConstant(Offsets[i], PtrVT));
3385    SDValue St = DAG.getStore(Root, getCurDebugLoc(),
3386                              SDValue(Src.getNode(), Src.getResNo() + i),
3387                              Add, MachinePointerInfo(PtrV, Offsets[i]),
3388                              isVolatile, isNonTemporal, Alignment, TBAAInfo);
3389    Chains[ChainI] = St;
3390  }
3391
3392  SDValue StoreNode = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
3393                                  MVT::Other, &Chains[0], ChainI);
3394  ++SDNodeOrder;
3395  AssignOrderingToNode(StoreNode.getNode());
3396  DAG.setRoot(StoreNode);
3397}
3398
3399static SDValue InsertFenceForAtomic(SDValue Chain, AtomicOrdering Order,
3400                                    SynchronizationScope Scope,
3401                                    bool Before, DebugLoc dl,
3402                                    SelectionDAG &DAG,
3403                                    const TargetLowering &TLI) {
3404  // Fence, if necessary
3405  if (Before) {
3406    if (Order == AcquireRelease || Order == SequentiallyConsistent)
3407      Order = Release;
3408    else if (Order == Acquire || Order == Monotonic)
3409      return Chain;
3410  } else {
3411    if (Order == AcquireRelease)
3412      Order = Acquire;
3413    else if (Order == Release || Order == Monotonic)
3414      return Chain;
3415  }
3416  SDValue Ops[3];
3417  Ops[0] = Chain;
3418  Ops[1] = DAG.getConstant(Order, TLI.getPointerTy());
3419  Ops[2] = DAG.getConstant(Scope, TLI.getPointerTy());
3420  return DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops, 3);
3421}
3422
3423void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) {
3424  DebugLoc dl = getCurDebugLoc();
3425  AtomicOrdering Order = I.getOrdering();
3426  SynchronizationScope Scope = I.getSynchScope();
3427
3428  SDValue InChain = getRoot();
3429
3430  if (TLI.getInsertFencesForAtomic())
3431    InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl,
3432                                   DAG, TLI);
3433
3434  SDValue L =
3435    DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, dl,
3436                  getValue(I.getCompareOperand()).getValueType().getSimpleVT(),
3437                  InChain,
3438                  getValue(I.getPointerOperand()),
3439                  getValue(I.getCompareOperand()),
3440                  getValue(I.getNewValOperand()),
3441                  MachinePointerInfo(I.getPointerOperand()), 0 /* Alignment */,
3442                  TLI.getInsertFencesForAtomic() ? Monotonic : Order,
3443                  Scope);
3444
3445  SDValue OutChain = L.getValue(1);
3446
3447  if (TLI.getInsertFencesForAtomic())
3448    OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl,
3449                                    DAG, TLI);
3450
3451  setValue(&I, L);
3452  DAG.setRoot(OutChain);
3453}
3454
3455void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) {
3456  DebugLoc dl = getCurDebugLoc();
3457  ISD::NodeType NT;
3458  switch (I.getOperation()) {
3459  default: llvm_unreachable("Unknown atomicrmw operation");
3460  case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break;
3461  case AtomicRMWInst::Add:  NT = ISD::ATOMIC_LOAD_ADD; break;
3462  case AtomicRMWInst::Sub:  NT = ISD::ATOMIC_LOAD_SUB; break;
3463  case AtomicRMWInst::And:  NT = ISD::ATOMIC_LOAD_AND; break;
3464  case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break;
3465  case AtomicRMWInst::Or:   NT = ISD::ATOMIC_LOAD_OR; break;
3466  case AtomicRMWInst::Xor:  NT = ISD::ATOMIC_LOAD_XOR; break;
3467  case AtomicRMWInst::Max:  NT = ISD::ATOMIC_LOAD_MAX; break;
3468  case AtomicRMWInst::Min:  NT = ISD::ATOMIC_LOAD_MIN; break;
3469  case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break;
3470  case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break;
3471  }
3472  AtomicOrdering Order = I.getOrdering();
3473  SynchronizationScope Scope = I.getSynchScope();
3474
3475  SDValue InChain = getRoot();
3476
3477  if (TLI.getInsertFencesForAtomic())
3478    InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl,
3479                                   DAG, TLI);
3480
3481  SDValue L =
3482    DAG.getAtomic(NT, dl,
3483                  getValue(I.getValOperand()).getValueType().getSimpleVT(),
3484                  InChain,
3485                  getValue(I.getPointerOperand()),
3486                  getValue(I.getValOperand()),
3487                  I.getPointerOperand(), 0 /* Alignment */,
3488                  TLI.getInsertFencesForAtomic() ? Monotonic : Order,
3489                  Scope);
3490
3491  SDValue OutChain = L.getValue(1);
3492
3493  if (TLI.getInsertFencesForAtomic())
3494    OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl,
3495                                    DAG, TLI);
3496
3497  setValue(&I, L);
3498  DAG.setRoot(OutChain);
3499}
3500
3501void SelectionDAGBuilder::visitFence(const FenceInst &I) {
3502  DebugLoc dl = getCurDebugLoc();
3503  SDValue Ops[3];
3504  Ops[0] = getRoot();
3505  Ops[1] = DAG.getConstant(I.getOrdering(), TLI.getPointerTy());
3506  Ops[2] = DAG.getConstant(I.getSynchScope(), TLI.getPointerTy());
3507  DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops, 3));
3508}
3509
3510void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) {
3511  DebugLoc dl = getCurDebugLoc();
3512  AtomicOrdering Order = I.getOrdering();
3513  SynchronizationScope Scope = I.getSynchScope();
3514
3515  SDValue InChain = getRoot();
3516
3517  EVT VT = TLI.getValueType(I.getType());
3518
3519  if (I.getAlignment() * 8 < VT.getSizeInBits())
3520    report_fatal_error("Cannot generate unaligned atomic load");
3521
3522  SDValue L =
3523    DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain,
3524                  getValue(I.getPointerOperand()),
3525                  I.getPointerOperand(), I.getAlignment(),
3526                  TLI.getInsertFencesForAtomic() ? Monotonic : Order,
3527                  Scope);
3528
3529  SDValue OutChain = L.getValue(1);
3530
3531  if (TLI.getInsertFencesForAtomic())
3532    OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl,
3533                                    DAG, TLI);
3534
3535  setValue(&I, L);
3536  DAG.setRoot(OutChain);
3537}
3538
3539void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) {
3540  DebugLoc dl = getCurDebugLoc();
3541
3542  AtomicOrdering Order = I.getOrdering();
3543  SynchronizationScope Scope = I.getSynchScope();
3544
3545  SDValue InChain = getRoot();
3546
3547  EVT VT = TLI.getValueType(I.getValueOperand()->getType());
3548
3549  if (I.getAlignment() * 8 < VT.getSizeInBits())
3550    report_fatal_error("Cannot generate unaligned atomic store");
3551
3552  if (TLI.getInsertFencesForAtomic())
3553    InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl,
3554                                   DAG, TLI);
3555
3556  SDValue OutChain =
3557    DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT,
3558                  InChain,
3559                  getValue(I.getPointerOperand()),
3560                  getValue(I.getValueOperand()),
3561                  I.getPointerOperand(), I.getAlignment(),
3562                  TLI.getInsertFencesForAtomic() ? Monotonic : Order,
3563                  Scope);
3564
3565  if (TLI.getInsertFencesForAtomic())
3566    OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl,
3567                                    DAG, TLI);
3568
3569  DAG.setRoot(OutChain);
3570}
3571
3572/// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
3573/// node.
3574void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
3575                                               unsigned Intrinsic) {
3576  bool HasChain = !I.doesNotAccessMemory();
3577  bool OnlyLoad = HasChain && I.onlyReadsMemory();
3578
3579  // Build the operand list.
3580  SmallVector<SDValue, 8> Ops;
3581  if (HasChain) {  // If this intrinsic has side-effects, chainify it.
3582    if (OnlyLoad) {
3583      // We don't need to serialize loads against other loads.
3584      Ops.push_back(DAG.getRoot());
3585    } else {
3586      Ops.push_back(getRoot());
3587    }
3588  }
3589
3590  // Info is set by getTgtMemInstrinsic
3591  TargetLowering::IntrinsicInfo Info;
3592  bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic);
3593
3594  // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
3595  if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
3596      Info.opc == ISD::INTRINSIC_W_CHAIN)
3597    Ops.push_back(DAG.getTargetConstant(Intrinsic, TLI.getPointerTy()));
3598
3599  // Add all operands of the call to the operand list.
3600  for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
3601    SDValue Op = getValue(I.getArgOperand(i));
3602    Ops.push_back(Op);
3603  }
3604
3605  SmallVector<EVT, 4> ValueVTs;
3606  ComputeValueVTs(TLI, I.getType(), ValueVTs);
3607
3608  if (HasChain)
3609    ValueVTs.push_back(MVT::Other);
3610
3611  SDVTList VTs = DAG.getVTList(ValueVTs.data(), ValueVTs.size());
3612
3613  // Create the node.
3614  SDValue Result;
3615  if (IsTgtIntrinsic) {
3616    // This is target intrinsic that touches memory
3617    Result = DAG.getMemIntrinsicNode(Info.opc, getCurDebugLoc(),
3618                                     VTs, &Ops[0], Ops.size(),
3619                                     Info.memVT,
3620                                   MachinePointerInfo(Info.ptrVal, Info.offset),
3621                                     Info.align, Info.vol,
3622                                     Info.readMem, Info.writeMem);
3623  } else if (!HasChain) {
3624    Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurDebugLoc(),
3625                         VTs, &Ops[0], Ops.size());
3626  } else if (!I.getType()->isVoidTy()) {
3627    Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurDebugLoc(),
3628                         VTs, &Ops[0], Ops.size());
3629  } else {
3630    Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurDebugLoc(),
3631                         VTs, &Ops[0], Ops.size());
3632  }
3633
3634  if (HasChain) {
3635    SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
3636    if (OnlyLoad)
3637      PendingLoads.push_back(Chain);
3638    else
3639      DAG.setRoot(Chain);
3640  }
3641
3642  if (!I.getType()->isVoidTy()) {
3643    if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
3644      EVT VT = TLI.getValueType(PTy);
3645      Result = DAG.getNode(ISD::BITCAST, getCurDebugLoc(), VT, Result);
3646    }
3647
3648    setValue(&I, Result);
3649  } else {
3650    // Assign order to result here. If the intrinsic does not produce a result,
3651    // it won't be mapped to a SDNode and visit() will not assign it an order
3652    // number.
3653    ++SDNodeOrder;
3654    AssignOrderingToNode(Result.getNode());
3655  }
3656}
3657
3658/// GetSignificand - Get the significand and build it into a floating-point
3659/// number with exponent of 1:
3660///
3661///   Op = (Op & 0x007fffff) | 0x3f800000;
3662///
3663/// where Op is the hexidecimal representation of floating point value.
3664static SDValue
3665GetSignificand(SelectionDAG &DAG, SDValue Op, DebugLoc dl) {
3666  SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
3667                           DAG.getConstant(0x007fffff, MVT::i32));
3668  SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
3669                           DAG.getConstant(0x3f800000, MVT::i32));
3670  return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
3671}
3672
3673/// GetExponent - Get the exponent:
3674///
3675///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
3676///
3677/// where Op is the hexidecimal representation of floating point value.
3678static SDValue
3679GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI,
3680            DebugLoc dl) {
3681  SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
3682                           DAG.getConstant(0x7f800000, MVT::i32));
3683  SDValue t1 = DAG.getNode(ISD::SRL, dl, MVT::i32, t0,
3684                           DAG.getConstant(23, TLI.getPointerTy()));
3685  SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
3686                           DAG.getConstant(127, MVT::i32));
3687  return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
3688}
3689
3690/// getF32Constant - Get 32-bit floating point constant.
3691static SDValue
3692getF32Constant(SelectionDAG &DAG, unsigned Flt) {
3693  return DAG.getConstantFP(APFloat(APInt(32, Flt)), MVT::f32);
3694}
3695
3696/// expandExp - Lower an exp intrinsic. Handles the special sequences for
3697/// limited-precision mode.
3698static SDValue expandExp(DebugLoc dl, SDValue Op, SelectionDAG &DAG,
3699                         const TargetLowering &TLI) {
3700  if (Op.getValueType() == MVT::f32 &&
3701      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3702
3703    // Put the exponent in the right bit position for later addition to the
3704    // final result:
3705    //
3706    //   #define LOG2OFe 1.4426950f
3707    //   IntegerPartOfX = ((int32_t)(X * LOG2OFe));
3708    SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
3709                             getF32Constant(DAG, 0x3fb8aa3b));
3710    SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
3711
3712    //   FractionalPartOfX = (X * LOG2OFe) - (float)IntegerPartOfX;
3713    SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
3714    SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
3715
3716    //   IntegerPartOfX <<= 23;
3717    IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
3718                                 DAG.getConstant(23, TLI.getPointerTy()));
3719
3720    SDValue TwoToFracPartOfX;
3721    if (LimitFloatPrecision <= 6) {
3722      // For floating-point precision of 6:
3723      //
3724      //   TwoToFractionalPartOfX =
3725      //     0.997535578f +
3726      //       (0.735607626f + 0.252464424f * x) * x;
3727      //
3728      // error 0.0144103317, which is 6 bits
3729      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3730                               getF32Constant(DAG, 0x3e814304));
3731      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3732                               getF32Constant(DAG, 0x3f3c50c8));
3733      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3734      TwoToFracPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3735                                     getF32Constant(DAG, 0x3f7f5e7e));
3736    } else if (LimitFloatPrecision <= 12) {
3737      // For floating-point precision of 12:
3738      //
3739      //   TwoToFractionalPartOfX =
3740      //     0.999892986f +
3741      //       (0.696457318f +
3742      //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
3743      //
3744      // 0.000107046256 error, which is 13 to 14 bits
3745      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3746                               getF32Constant(DAG, 0x3da235e3));
3747      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3748                               getF32Constant(DAG, 0x3e65b8f3));
3749      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3750      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3751                               getF32Constant(DAG, 0x3f324b07));
3752      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3753      TwoToFracPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3754                                     getF32Constant(DAG, 0x3f7ff8fd));
3755    } else { // LimitFloatPrecision <= 18
3756      // For floating-point precision of 18:
3757      //
3758      //   TwoToFractionalPartOfX =
3759      //     0.999999982f +
3760      //       (0.693148872f +
3761      //         (0.240227044f +
3762      //           (0.554906021e-1f +
3763      //             (0.961591928e-2f +
3764      //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
3765      //
3766      // error 2.47208000*10^(-7), which is better than 18 bits
3767      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3768                               getF32Constant(DAG, 0x3924b03e));
3769      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3770                               getF32Constant(DAG, 0x3ab24b87));
3771      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3772      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3773                               getF32Constant(DAG, 0x3c1d8c17));
3774      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3775      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3776                               getF32Constant(DAG, 0x3d634a1d));
3777      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3778      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3779                               getF32Constant(DAG, 0x3e75fe14));
3780      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3781      SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
3782                                getF32Constant(DAG, 0x3f317234));
3783      SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
3784      TwoToFracPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
3785                                     getF32Constant(DAG, 0x3f800000));
3786    }
3787
3788    // Add the exponent into the result in integer domain.
3789    SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFracPartOfX);
3790    return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
3791                       DAG.getNode(ISD::ADD, dl, MVT::i32,
3792                                   t13, IntegerPartOfX));
3793  }
3794
3795  // No special expansion.
3796  return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op);
3797}
3798
3799/// expandLog - Lower a log intrinsic. Handles the special sequences for
3800/// limited-precision mode.
3801static SDValue expandLog(DebugLoc dl, SDValue Op, SelectionDAG &DAG,
3802                         const TargetLowering &TLI) {
3803  if (Op.getValueType() == MVT::f32 &&
3804      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3805    SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
3806
3807    // Scale the exponent by log(2) [0.69314718f].
3808    SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
3809    SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
3810                                        getF32Constant(DAG, 0x3f317218));
3811
3812    // Get the significand and build it into a floating-point number with
3813    // exponent of 1.
3814    SDValue X = GetSignificand(DAG, Op1, dl);
3815
3816    SDValue LogOfMantissa;
3817    if (LimitFloatPrecision <= 6) {
3818      // For floating-point precision of 6:
3819      //
3820      //   LogofMantissa =
3821      //     -1.1609546f +
3822      //       (1.4034025f - 0.23903021f * x) * x;
3823      //
3824      // error 0.0034276066, which is better than 8 bits
3825      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3826                               getF32Constant(DAG, 0xbe74c456));
3827      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3828                               getF32Constant(DAG, 0x3fb3a2b1));
3829      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3830      LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3831                                  getF32Constant(DAG, 0x3f949a29));
3832    } else if (LimitFloatPrecision <= 12) {
3833      // For floating-point precision of 12:
3834      //
3835      //   LogOfMantissa =
3836      //     -1.7417939f +
3837      //       (2.8212026f +
3838      //         (-1.4699568f +
3839      //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
3840      //
3841      // error 0.000061011436, which is 14 bits
3842      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3843                               getF32Constant(DAG, 0xbd67b6d6));
3844      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3845                               getF32Constant(DAG, 0x3ee4f4b8));
3846      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3847      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3848                               getF32Constant(DAG, 0x3fbc278b));
3849      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3850      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3851                               getF32Constant(DAG, 0x40348e95));
3852      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3853      LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3854                                  getF32Constant(DAG, 0x3fdef31a));
3855    } else { // LimitFloatPrecision <= 18
3856      // For floating-point precision of 18:
3857      //
3858      //   LogOfMantissa =
3859      //     -2.1072184f +
3860      //       (4.2372794f +
3861      //         (-3.7029485f +
3862      //           (2.2781945f +
3863      //             (-0.87823314f +
3864      //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
3865      //
3866      // error 0.0000023660568, which is better than 18 bits
3867      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3868                               getF32Constant(DAG, 0xbc91e5ac));
3869      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3870                               getF32Constant(DAG, 0x3e4350aa));
3871      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3872      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3873                               getF32Constant(DAG, 0x3f60d3e3));
3874      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3875      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3876                               getF32Constant(DAG, 0x4011cdf0));
3877      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3878      SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3879                               getF32Constant(DAG, 0x406cfd1c));
3880      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3881      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3882                               getF32Constant(DAG, 0x408797cb));
3883      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3884      LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
3885                                  getF32Constant(DAG, 0x4006dcab));
3886    }
3887
3888    return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa);
3889  }
3890
3891  // No special expansion.
3892  return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op);
3893}
3894
3895/// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for
3896/// limited-precision mode.
3897static SDValue expandLog2(DebugLoc dl, SDValue Op, SelectionDAG &DAG,
3898                          const TargetLowering &TLI) {
3899  if (Op.getValueType() == MVT::f32 &&
3900      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3901    SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
3902
3903    // Get the exponent.
3904    SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
3905
3906    // Get the significand and build it into a floating-point number with
3907    // exponent of 1.
3908    SDValue X = GetSignificand(DAG, Op1, dl);
3909
3910    // Different possible minimax approximations of significand in
3911    // floating-point for various degrees of accuracy over [1,2].
3912    SDValue Log2ofMantissa;
3913    if (LimitFloatPrecision <= 6) {
3914      // For floating-point precision of 6:
3915      //
3916      //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
3917      //
3918      // error 0.0049451742, which is more than 7 bits
3919      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3920                               getF32Constant(DAG, 0xbeb08fe0));
3921      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3922                               getF32Constant(DAG, 0x40019463));
3923      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3924      Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3925                                   getF32Constant(DAG, 0x3fd6633d));
3926    } else if (LimitFloatPrecision <= 12) {
3927      // For floating-point precision of 12:
3928      //
3929      //   Log2ofMantissa =
3930      //     -2.51285454f +
3931      //       (4.07009056f +
3932      //         (-2.12067489f +
3933      //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
3934      //
3935      // error 0.0000876136000, which is better than 13 bits
3936      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3937                               getF32Constant(DAG, 0xbda7262e));
3938      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3939                               getF32Constant(DAG, 0x3f25280b));
3940      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3941      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3942                               getF32Constant(DAG, 0x4007b923));
3943      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3944      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3945                               getF32Constant(DAG, 0x40823e2f));
3946      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3947      Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3948                                   getF32Constant(DAG, 0x4020d29c));
3949    } else { // LimitFloatPrecision <= 18
3950      // For floating-point precision of 18:
3951      //
3952      //   Log2ofMantissa =
3953      //     -3.0400495f +
3954      //       (6.1129976f +
3955      //         (-5.3420409f +
3956      //           (3.2865683f +
3957      //             (-1.2669343f +
3958      //               (0.27515199f -
3959      //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
3960      //
3961      // error 0.0000018516, which is better than 18 bits
3962      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3963                               getF32Constant(DAG, 0xbcd2769e));
3964      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3965                               getF32Constant(DAG, 0x3e8ce0b9));
3966      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3967      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3968                               getF32Constant(DAG, 0x3fa22ae7));
3969      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3970      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3971                               getF32Constant(DAG, 0x40525723));
3972      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3973      SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3974                               getF32Constant(DAG, 0x40aaf200));
3975      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3976      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3977                               getF32Constant(DAG, 0x40c39dad));
3978      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3979      Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
3980                                   getF32Constant(DAG, 0x4042902c));
3981    }
3982
3983    return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa);
3984  }
3985
3986  // No special expansion.
3987  return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op);
3988}
3989
3990/// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for
3991/// limited-precision mode.
3992static SDValue expandLog10(DebugLoc dl, SDValue Op, SelectionDAG &DAG,
3993                           const TargetLowering &TLI) {
3994  if (Op.getValueType() == MVT::f32 &&
3995      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3996    SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
3997
3998    // Scale the exponent by log10(2) [0.30102999f].
3999    SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
4000    SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
4001                                        getF32Constant(DAG, 0x3e9a209a));
4002
4003    // Get the significand and build it into a floating-point number with
4004    // exponent of 1.
4005    SDValue X = GetSignificand(DAG, Op1, dl);
4006
4007    SDValue Log10ofMantissa;
4008    if (LimitFloatPrecision <= 6) {
4009      // For floating-point precision of 6:
4010      //
4011      //   Log10ofMantissa =
4012      //     -0.50419619f +
4013      //       (0.60948995f - 0.10380950f * x) * x;
4014      //
4015      // error 0.0014886165, which is 6 bits
4016      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4017                               getF32Constant(DAG, 0xbdd49a13));
4018      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4019                               getF32Constant(DAG, 0x3f1c0789));
4020      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4021      Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4022                                    getF32Constant(DAG, 0x3f011300));
4023    } else if (LimitFloatPrecision <= 12) {
4024      // For floating-point precision of 12:
4025      //
4026      //   Log10ofMantissa =
4027      //     -0.64831180f +
4028      //       (0.91751397f +
4029      //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
4030      //
4031      // error 0.00019228036, which is better than 12 bits
4032      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4033                               getF32Constant(DAG, 0x3d431f31));
4034      SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
4035                               getF32Constant(DAG, 0x3ea21fb2));
4036      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4037      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4038                               getF32Constant(DAG, 0x3f6ae232));
4039      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4040      Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
4041                                    getF32Constant(DAG, 0x3f25f7c3));
4042    } else { // LimitFloatPrecision <= 18
4043      // For floating-point precision of 18:
4044      //
4045      //   Log10ofMantissa =
4046      //     -0.84299375f +
4047      //       (1.5327582f +
4048      //         (-1.0688956f +
4049      //           (0.49102474f +
4050      //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
4051      //
4052      // error 0.0000037995730, which is better than 18 bits
4053      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4054                               getF32Constant(DAG, 0x3c5d51ce));
4055      SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
4056                               getF32Constant(DAG, 0x3e00685a));
4057      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4058      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4059                               getF32Constant(DAG, 0x3efb6798));
4060      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4061      SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
4062                               getF32Constant(DAG, 0x3f88d192));
4063      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4064      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4065                               getF32Constant(DAG, 0x3fc4316c));
4066      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4067      Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
4068                                    getF32Constant(DAG, 0x3f57ce70));
4069    }
4070
4071    return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa);
4072  }
4073
4074  // No special expansion.
4075  return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op);
4076}
4077
4078/// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for
4079/// limited-precision mode.
4080static SDValue expandExp2(DebugLoc dl, SDValue Op, SelectionDAG &DAG,
4081                          const TargetLowering &TLI) {
4082  if (Op.getValueType() == MVT::f32 &&
4083      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4084    SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Op);
4085
4086    //   FractionalPartOfX = x - (float)IntegerPartOfX;
4087    SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
4088    SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, Op, t1);
4089
4090    //   IntegerPartOfX <<= 23;
4091    IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
4092                                 DAG.getConstant(23, TLI.getPointerTy()));
4093
4094    SDValue TwoToFractionalPartOfX;
4095    if (LimitFloatPrecision <= 6) {
4096      // For floating-point precision of 6:
4097      //
4098      //   TwoToFractionalPartOfX =
4099      //     0.997535578f +
4100      //       (0.735607626f + 0.252464424f * x) * x;
4101      //
4102      // error 0.0144103317, which is 6 bits
4103      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4104                               getF32Constant(DAG, 0x3e814304));
4105      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4106                               getF32Constant(DAG, 0x3f3c50c8));
4107      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4108      TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4109                                           getF32Constant(DAG, 0x3f7f5e7e));
4110    } else if (LimitFloatPrecision <= 12) {
4111      // For floating-point precision of 12:
4112      //
4113      //   TwoToFractionalPartOfX =
4114      //     0.999892986f +
4115      //       (0.696457318f +
4116      //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
4117      //
4118      // error 0.000107046256, which is 13 to 14 bits
4119      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4120                               getF32Constant(DAG, 0x3da235e3));
4121      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4122                               getF32Constant(DAG, 0x3e65b8f3));
4123      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4124      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4125                               getF32Constant(DAG, 0x3f324b07));
4126      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4127      TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4128                                           getF32Constant(DAG, 0x3f7ff8fd));
4129    } else { // LimitFloatPrecision <= 18
4130      // For floating-point precision of 18:
4131      //
4132      //   TwoToFractionalPartOfX =
4133      //     0.999999982f +
4134      //       (0.693148872f +
4135      //         (0.240227044f +
4136      //           (0.554906021e-1f +
4137      //             (0.961591928e-2f +
4138      //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
4139      // error 2.47208000*10^(-7), which is better than 18 bits
4140      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4141                               getF32Constant(DAG, 0x3924b03e));
4142      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4143                               getF32Constant(DAG, 0x3ab24b87));
4144      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4145      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4146                               getF32Constant(DAG, 0x3c1d8c17));
4147      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4148      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4149                               getF32Constant(DAG, 0x3d634a1d));
4150      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4151      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4152                               getF32Constant(DAG, 0x3e75fe14));
4153      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4154      SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
4155                                getF32Constant(DAG, 0x3f317234));
4156      SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
4157      TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
4158                                           getF32Constant(DAG, 0x3f800000));
4159    }
4160
4161    // Add the exponent into the result in integer domain.
4162    SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32,
4163                              TwoToFractionalPartOfX);
4164    return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
4165                       DAG.getNode(ISD::ADD, dl, MVT::i32,
4166                                   t13, IntegerPartOfX));
4167  }
4168
4169  // No special expansion.
4170  return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op);
4171}
4172
4173/// visitPow - Lower a pow intrinsic. Handles the special sequences for
4174/// limited-precision mode with x == 10.0f.
4175static SDValue expandPow(DebugLoc dl, SDValue LHS, SDValue RHS,
4176                         SelectionDAG &DAG, const TargetLowering &TLI) {
4177  bool IsExp10 = false;
4178  if (LHS.getValueType() == MVT::f32 && LHS.getValueType() == MVT::f32 &&
4179      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4180    if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) {
4181      APFloat Ten(10.0f);
4182      IsExp10 = LHSC->isExactlyValue(Ten);
4183    }
4184  }
4185
4186  if (IsExp10) {
4187    // Put the exponent in the right bit position for later addition to the
4188    // final result:
4189    //
4190    //   #define LOG2OF10 3.3219281f
4191    //   IntegerPartOfX = (int32_t)(x * LOG2OF10);
4192    SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS,
4193                             getF32Constant(DAG, 0x40549a78));
4194    SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
4195
4196    //   FractionalPartOfX = x - (float)IntegerPartOfX;
4197    SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
4198    SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
4199
4200    //   IntegerPartOfX <<= 23;
4201    IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
4202                                 DAG.getConstant(23, TLI.getPointerTy()));
4203
4204    SDValue TwoToFractionalPartOfX;
4205    if (LimitFloatPrecision <= 6) {
4206      // For floating-point precision of 6:
4207      //
4208      //   twoToFractionalPartOfX =
4209      //     0.997535578f +
4210      //       (0.735607626f + 0.252464424f * x) * x;
4211      //
4212      // error 0.0144103317, which is 6 bits
4213      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4214                               getF32Constant(DAG, 0x3e814304));
4215      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4216                               getF32Constant(DAG, 0x3f3c50c8));
4217      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4218      TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4219                                           getF32Constant(DAG, 0x3f7f5e7e));
4220    } else if (LimitFloatPrecision <= 12) {
4221      // For floating-point precision of 12:
4222      //
4223      //   TwoToFractionalPartOfX =
4224      //     0.999892986f +
4225      //       (0.696457318f +
4226      //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
4227      //
4228      // error 0.000107046256, which is 13 to 14 bits
4229      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4230                               getF32Constant(DAG, 0x3da235e3));
4231      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4232                               getF32Constant(DAG, 0x3e65b8f3));
4233      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4234      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4235                               getF32Constant(DAG, 0x3f324b07));
4236      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4237      TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4238                                           getF32Constant(DAG, 0x3f7ff8fd));
4239    } else { // LimitFloatPrecision <= 18
4240      // For floating-point precision of 18:
4241      //
4242      //   TwoToFractionalPartOfX =
4243      //     0.999999982f +
4244      //       (0.693148872f +
4245      //         (0.240227044f +
4246      //           (0.554906021e-1f +
4247      //             (0.961591928e-2f +
4248      //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
4249      // error 2.47208000*10^(-7), which is better than 18 bits
4250      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4251                               getF32Constant(DAG, 0x3924b03e));
4252      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4253                               getF32Constant(DAG, 0x3ab24b87));
4254      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4255      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4256                               getF32Constant(DAG, 0x3c1d8c17));
4257      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4258      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4259                               getF32Constant(DAG, 0x3d634a1d));
4260      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4261      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4262                               getF32Constant(DAG, 0x3e75fe14));
4263      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4264      SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
4265                                getF32Constant(DAG, 0x3f317234));
4266      SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
4267      TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
4268                                           getF32Constant(DAG, 0x3f800000));
4269    }
4270
4271    SDValue t13 = DAG.getNode(ISD::BITCAST, dl,MVT::i32,TwoToFractionalPartOfX);
4272    return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
4273                       DAG.getNode(ISD::ADD, dl, MVT::i32,
4274                                   t13, IntegerPartOfX));
4275  }
4276
4277  // No special expansion.
4278  return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS);
4279}
4280
4281
4282/// ExpandPowI - Expand a llvm.powi intrinsic.
4283static SDValue ExpandPowI(DebugLoc DL, SDValue LHS, SDValue RHS,
4284                          SelectionDAG &DAG) {
4285  // If RHS is a constant, we can expand this out to a multiplication tree,
4286  // otherwise we end up lowering to a call to __powidf2 (for example).  When
4287  // optimizing for size, we only want to do this if the expansion would produce
4288  // a small number of multiplies, otherwise we do the full expansion.
4289  if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
4290    // Get the exponent as a positive value.
4291    unsigned Val = RHSC->getSExtValue();
4292    if ((int)Val < 0) Val = -Val;
4293
4294    // powi(x, 0) -> 1.0
4295    if (Val == 0)
4296      return DAG.getConstantFP(1.0, LHS.getValueType());
4297
4298    const Function *F = DAG.getMachineFunction().getFunction();
4299    if (!F->getFnAttributes().hasAttribute(Attribute::OptimizeForSize) ||
4300        // If optimizing for size, don't insert too many multiplies.  This
4301        // inserts up to 5 multiplies.
4302        CountPopulation_32(Val)+Log2_32(Val) < 7) {
4303      // We use the simple binary decomposition method to generate the multiply
4304      // sequence.  There are more optimal ways to do this (for example,
4305      // powi(x,15) generates one more multiply than it should), but this has
4306      // the benefit of being both really simple and much better than a libcall.
4307      SDValue Res;  // Logically starts equal to 1.0
4308      SDValue CurSquare = LHS;
4309      while (Val) {
4310        if (Val & 1) {
4311          if (Res.getNode())
4312            Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare);
4313          else
4314            Res = CurSquare;  // 1.0*CurSquare.
4315        }
4316
4317        CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
4318                                CurSquare, CurSquare);
4319        Val >>= 1;
4320      }
4321
4322      // If the original was negative, invert the result, producing 1/(x*x*x).
4323      if (RHSC->getSExtValue() < 0)
4324        Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
4325                          DAG.getConstantFP(1.0, LHS.getValueType()), Res);
4326      return Res;
4327    }
4328  }
4329
4330  // Otherwise, expand to a libcall.
4331  return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
4332}
4333
4334// getTruncatedArgReg - Find underlying register used for an truncated
4335// argument.
4336static unsigned getTruncatedArgReg(const SDValue &N) {
4337  if (N.getOpcode() != ISD::TRUNCATE)
4338    return 0;
4339
4340  const SDValue &Ext = N.getOperand(0);
4341  if (Ext.getOpcode() == ISD::AssertZext || Ext.getOpcode() == ISD::AssertSext){
4342    const SDValue &CFR = Ext.getOperand(0);
4343    if (CFR.getOpcode() == ISD::CopyFromReg)
4344      return cast<RegisterSDNode>(CFR.getOperand(1))->getReg();
4345    if (CFR.getOpcode() == ISD::TRUNCATE)
4346      return getTruncatedArgReg(CFR);
4347  }
4348  return 0;
4349}
4350
4351/// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function
4352/// argument, create the corresponding DBG_VALUE machine instruction for it now.
4353/// At the end of instruction selection, they will be inserted to the entry BB.
4354bool
4355SelectionDAGBuilder::EmitFuncArgumentDbgValue(const Value *V, MDNode *Variable,
4356                                              int64_t Offset,
4357                                              const SDValue &N) {
4358  const Argument *Arg = dyn_cast<Argument>(V);
4359  if (!Arg)
4360    return false;
4361
4362  MachineFunction &MF = DAG.getMachineFunction();
4363  const TargetInstrInfo *TII = DAG.getTarget().getInstrInfo();
4364  const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
4365
4366  // Ignore inlined function arguments here.
4367  DIVariable DV(Variable);
4368  if (DV.isInlinedFnArgument(MF.getFunction()))
4369    return false;
4370
4371  unsigned Reg = 0;
4372  // Some arguments' frame index is recorded during argument lowering.
4373  Offset = FuncInfo.getArgumentFrameIndex(Arg);
4374  if (Offset)
4375    Reg = TRI->getFrameRegister(MF);
4376
4377  if (!Reg && N.getNode()) {
4378    if (N.getOpcode() == ISD::CopyFromReg)
4379      Reg = cast<RegisterSDNode>(N.getOperand(1))->getReg();
4380    else
4381      Reg = getTruncatedArgReg(N);
4382    if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) {
4383      MachineRegisterInfo &RegInfo = MF.getRegInfo();
4384      unsigned PR = RegInfo.getLiveInPhysReg(Reg);
4385      if (PR)
4386        Reg = PR;
4387    }
4388  }
4389
4390  if (!Reg) {
4391    // Check if ValueMap has reg number.
4392    DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
4393    if (VMI != FuncInfo.ValueMap.end())
4394      Reg = VMI->second;
4395  }
4396
4397  if (!Reg && N.getNode()) {
4398    // Check if frame index is available.
4399    if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode()))
4400      if (FrameIndexSDNode *FINode =
4401          dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) {
4402        Reg = TRI->getFrameRegister(MF);
4403        Offset = FINode->getIndex();
4404      }
4405  }
4406
4407  if (!Reg)
4408    return false;
4409
4410  MachineInstrBuilder MIB = BuildMI(MF, getCurDebugLoc(),
4411                                    TII->get(TargetOpcode::DBG_VALUE))
4412    .addReg(Reg, RegState::Debug).addImm(Offset).addMetadata(Variable);
4413  FuncInfo.ArgDbgValues.push_back(&*MIB);
4414  return true;
4415}
4416
4417// VisualStudio defines setjmp as _setjmp
4418#if defined(_MSC_VER) && defined(setjmp) && \
4419                         !defined(setjmp_undefined_for_msvc)
4420#  pragma push_macro("setjmp")
4421#  undef setjmp
4422#  define setjmp_undefined_for_msvc
4423#endif
4424
4425/// visitIntrinsicCall - Lower the call to the specified intrinsic function.  If
4426/// we want to emit this as a call to a named external function, return the name
4427/// otherwise lower it and return null.
4428const char *
4429SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) {
4430  DebugLoc dl = getCurDebugLoc();
4431  SDValue Res;
4432
4433  switch (Intrinsic) {
4434  default:
4435    // By default, turn this into a target intrinsic node.
4436    visitTargetIntrinsic(I, Intrinsic);
4437    return 0;
4438  case Intrinsic::vastart:  visitVAStart(I); return 0;
4439  case Intrinsic::vaend:    visitVAEnd(I); return 0;
4440  case Intrinsic::vacopy:   visitVACopy(I); return 0;
4441  case Intrinsic::returnaddress:
4442    setValue(&I, DAG.getNode(ISD::RETURNADDR, dl, TLI.getPointerTy(),
4443                             getValue(I.getArgOperand(0))));
4444    return 0;
4445  case Intrinsic::frameaddress:
4446    setValue(&I, DAG.getNode(ISD::FRAMEADDR, dl, TLI.getPointerTy(),
4447                             getValue(I.getArgOperand(0))));
4448    return 0;
4449  case Intrinsic::setjmp:
4450    return &"_setjmp"[!TLI.usesUnderscoreSetJmp()];
4451  case Intrinsic::longjmp:
4452    return &"_longjmp"[!TLI.usesUnderscoreLongJmp()];
4453  case Intrinsic::memcpy: {
4454    // Assert for address < 256 since we support only user defined address
4455    // spaces.
4456    assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4457           < 256 &&
4458           cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace()
4459           < 256 &&
4460           "Unknown address space");
4461    SDValue Op1 = getValue(I.getArgOperand(0));
4462    SDValue Op2 = getValue(I.getArgOperand(1));
4463    SDValue Op3 = getValue(I.getArgOperand(2));
4464    unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4465    bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4466    DAG.setRoot(DAG.getMemcpy(getRoot(), dl, Op1, Op2, Op3, Align, isVol, false,
4467                              MachinePointerInfo(I.getArgOperand(0)),
4468                              MachinePointerInfo(I.getArgOperand(1))));
4469    return 0;
4470  }
4471  case Intrinsic::memset: {
4472    // Assert for address < 256 since we support only user defined address
4473    // spaces.
4474    assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4475           < 256 &&
4476           "Unknown address space");
4477    SDValue Op1 = getValue(I.getArgOperand(0));
4478    SDValue Op2 = getValue(I.getArgOperand(1));
4479    SDValue Op3 = getValue(I.getArgOperand(2));
4480    unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4481    bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4482    DAG.setRoot(DAG.getMemset(getRoot(), dl, Op1, Op2, Op3, Align, isVol,
4483                              MachinePointerInfo(I.getArgOperand(0))));
4484    return 0;
4485  }
4486  case Intrinsic::memmove: {
4487    // Assert for address < 256 since we support only user defined address
4488    // spaces.
4489    assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4490           < 256 &&
4491           cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace()
4492           < 256 &&
4493           "Unknown address space");
4494    SDValue Op1 = getValue(I.getArgOperand(0));
4495    SDValue Op2 = getValue(I.getArgOperand(1));
4496    SDValue Op3 = getValue(I.getArgOperand(2));
4497    unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4498    bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4499    DAG.setRoot(DAG.getMemmove(getRoot(), dl, Op1, Op2, Op3, Align, isVol,
4500                               MachinePointerInfo(I.getArgOperand(0)),
4501                               MachinePointerInfo(I.getArgOperand(1))));
4502    return 0;
4503  }
4504  case Intrinsic::dbg_declare: {
4505    const DbgDeclareInst &DI = cast<DbgDeclareInst>(I);
4506    MDNode *Variable = DI.getVariable();
4507    const Value *Address = DI.getAddress();
4508    if (!Address || !DIVariable(Variable).Verify()) {
4509      DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4510      return 0;
4511    }
4512
4513    // Build an entry in DbgOrdering.  Debug info input nodes get an SDNodeOrder
4514    // but do not always have a corresponding SDNode built.  The SDNodeOrder
4515    // absolute, but not relative, values are different depending on whether
4516    // debug info exists.
4517    ++SDNodeOrder;
4518
4519    // Check if address has undef value.
4520    if (isa<UndefValue>(Address) ||
4521        (Address->use_empty() && !isa<Argument>(Address))) {
4522      DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4523      return 0;
4524    }
4525
4526    SDValue &N = NodeMap[Address];
4527    if (!N.getNode() && isa<Argument>(Address))
4528      // Check unused arguments map.
4529      N = UnusedArgNodeMap[Address];
4530    SDDbgValue *SDV;
4531    if (N.getNode()) {
4532      if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
4533        Address = BCI->getOperand(0);
4534      // Parameters are handled specially.
4535      bool isParameter =
4536        (DIVariable(Variable).getTag() == dwarf::DW_TAG_arg_variable ||
4537         isa<Argument>(Address));
4538
4539      const AllocaInst *AI = dyn_cast<AllocaInst>(Address);
4540
4541      if (isParameter && !AI) {
4542        FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
4543        if (FINode)
4544          // Byval parameter.  We have a frame index at this point.
4545          SDV = DAG.getDbgValue(Variable, FINode->getIndex(),
4546                                0, dl, SDNodeOrder);
4547        else {
4548          // Address is an argument, so try to emit its dbg value using
4549          // virtual register info from the FuncInfo.ValueMap.
4550          EmitFuncArgumentDbgValue(Address, Variable, 0, N);
4551          return 0;
4552        }
4553      } else if (AI)
4554        SDV = DAG.getDbgValue(Variable, N.getNode(), N.getResNo(),
4555                              0, dl, SDNodeOrder);
4556      else {
4557        // Can't do anything with other non-AI cases yet.
4558        DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4559        DEBUG(dbgs() << "non-AllocaInst issue for Address: \n\t");
4560        DEBUG(Address->dump());
4561        return 0;
4562      }
4563      DAG.AddDbgValue(SDV, N.getNode(), isParameter);
4564    } else {
4565      // If Address is an argument then try to emit its dbg value using
4566      // virtual register info from the FuncInfo.ValueMap.
4567      if (!EmitFuncArgumentDbgValue(Address, Variable, 0, N)) {
4568        // If variable is pinned by a alloca in dominating bb then
4569        // use StaticAllocaMap.
4570        if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) {
4571          if (AI->getParent() != DI.getParent()) {
4572            DenseMap<const AllocaInst*, int>::iterator SI =
4573              FuncInfo.StaticAllocaMap.find(AI);
4574            if (SI != FuncInfo.StaticAllocaMap.end()) {
4575              SDV = DAG.getDbgValue(Variable, SI->second,
4576                                    0, dl, SDNodeOrder);
4577              DAG.AddDbgValue(SDV, 0, false);
4578              return 0;
4579            }
4580          }
4581        }
4582        DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4583      }
4584    }
4585    return 0;
4586  }
4587  case Intrinsic::dbg_value: {
4588    const DbgValueInst &DI = cast<DbgValueInst>(I);
4589    if (!DIVariable(DI.getVariable()).Verify())
4590      return 0;
4591
4592    MDNode *Variable = DI.getVariable();
4593    uint64_t Offset = DI.getOffset();
4594    const Value *V = DI.getValue();
4595    if (!V)
4596      return 0;
4597
4598    // Build an entry in DbgOrdering.  Debug info input nodes get an SDNodeOrder
4599    // but do not always have a corresponding SDNode built.  The SDNodeOrder
4600    // absolute, but not relative, values are different depending on whether
4601    // debug info exists.
4602    ++SDNodeOrder;
4603    SDDbgValue *SDV;
4604    if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) {
4605      SDV = DAG.getDbgValue(Variable, V, Offset, dl, SDNodeOrder);
4606      DAG.AddDbgValue(SDV, 0, false);
4607    } else {
4608      // Do not use getValue() in here; we don't want to generate code at
4609      // this point if it hasn't been done yet.
4610      SDValue N = NodeMap[V];
4611      if (!N.getNode() && isa<Argument>(V))
4612        // Check unused arguments map.
4613        N = UnusedArgNodeMap[V];
4614      if (N.getNode()) {
4615        if (!EmitFuncArgumentDbgValue(V, Variable, Offset, N)) {
4616          SDV = DAG.getDbgValue(Variable, N.getNode(),
4617                                N.getResNo(), Offset, dl, SDNodeOrder);
4618          DAG.AddDbgValue(SDV, N.getNode(), false);
4619        }
4620      } else if (!V->use_empty() ) {
4621        // Do not call getValue(V) yet, as we don't want to generate code.
4622        // Remember it for later.
4623        DanglingDebugInfo DDI(&DI, dl, SDNodeOrder);
4624        DanglingDebugInfoMap[V] = DDI;
4625      } else {
4626        // We may expand this to cover more cases.  One case where we have no
4627        // data available is an unreferenced parameter.
4628        DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4629      }
4630    }
4631
4632    // Build a debug info table entry.
4633    if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V))
4634      V = BCI->getOperand(0);
4635    const AllocaInst *AI = dyn_cast<AllocaInst>(V);
4636    // Don't handle byval struct arguments or VLAs, for example.
4637    if (!AI) {
4638      DEBUG(dbgs() << "Dropping debug location info for:\n  " << DI << "\n");
4639      DEBUG(dbgs() << "  Last seen at:\n    " << *V << "\n");
4640      return 0;
4641    }
4642    DenseMap<const AllocaInst*, int>::iterator SI =
4643      FuncInfo.StaticAllocaMap.find(AI);
4644    if (SI == FuncInfo.StaticAllocaMap.end())
4645      return 0; // VLAs.
4646    int FI = SI->second;
4647
4648    MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4649    if (!DI.getDebugLoc().isUnknown() && MMI.hasDebugInfo())
4650      MMI.setVariableDbgInfo(Variable, FI, DI.getDebugLoc());
4651    return 0;
4652  }
4653
4654  case Intrinsic::eh_typeid_for: {
4655    // Find the type id for the given typeinfo.
4656    GlobalVariable *GV = ExtractTypeInfo(I.getArgOperand(0));
4657    unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV);
4658    Res = DAG.getConstant(TypeID, MVT::i32);
4659    setValue(&I, Res);
4660    return 0;
4661  }
4662
4663  case Intrinsic::eh_return_i32:
4664  case Intrinsic::eh_return_i64:
4665    DAG.getMachineFunction().getMMI().setCallsEHReturn(true);
4666    DAG.setRoot(DAG.getNode(ISD::EH_RETURN, dl,
4667                            MVT::Other,
4668                            getControlRoot(),
4669                            getValue(I.getArgOperand(0)),
4670                            getValue(I.getArgOperand(1))));
4671    return 0;
4672  case Intrinsic::eh_unwind_init:
4673    DAG.getMachineFunction().getMMI().setCallsUnwindInit(true);
4674    return 0;
4675  case Intrinsic::eh_dwarf_cfa: {
4676    SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), dl,
4677                                        TLI.getPointerTy());
4678    SDValue Offset = DAG.getNode(ISD::ADD, dl,
4679                                 TLI.getPointerTy(),
4680                                 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, dl,
4681                                             TLI.getPointerTy()),
4682                                 CfaArg);
4683    SDValue FA = DAG.getNode(ISD::FRAMEADDR, dl,
4684                             TLI.getPointerTy(),
4685                             DAG.getConstant(0, TLI.getPointerTy()));
4686    setValue(&I, DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(),
4687                             FA, Offset));
4688    return 0;
4689  }
4690  case Intrinsic::eh_sjlj_callsite: {
4691    MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4692    ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0));
4693    assert(CI && "Non-constant call site value in eh.sjlj.callsite!");
4694    assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
4695
4696    MMI.setCurrentCallSite(CI->getZExtValue());
4697    return 0;
4698  }
4699  case Intrinsic::eh_sjlj_functioncontext: {
4700    // Get and store the index of the function context.
4701    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
4702    AllocaInst *FnCtx =
4703      cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts());
4704    int FI = FuncInfo.StaticAllocaMap[FnCtx];
4705    MFI->setFunctionContextIndex(FI);
4706    return 0;
4707  }
4708  case Intrinsic::eh_sjlj_setjmp: {
4709    SDValue Ops[2];
4710    Ops[0] = getRoot();
4711    Ops[1] = getValue(I.getArgOperand(0));
4712    SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, dl,
4713                             DAG.getVTList(MVT::i32, MVT::Other),
4714                             Ops, 2);
4715    setValue(&I, Op.getValue(0));
4716    DAG.setRoot(Op.getValue(1));
4717    return 0;
4718  }
4719  case Intrinsic::eh_sjlj_longjmp: {
4720    DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, dl, MVT::Other,
4721                            getRoot(), getValue(I.getArgOperand(0))));
4722    return 0;
4723  }
4724
4725  case Intrinsic::x86_mmx_pslli_w:
4726  case Intrinsic::x86_mmx_pslli_d:
4727  case Intrinsic::x86_mmx_pslli_q:
4728  case Intrinsic::x86_mmx_psrli_w:
4729  case Intrinsic::x86_mmx_psrli_d:
4730  case Intrinsic::x86_mmx_psrli_q:
4731  case Intrinsic::x86_mmx_psrai_w:
4732  case Intrinsic::x86_mmx_psrai_d: {
4733    SDValue ShAmt = getValue(I.getArgOperand(1));
4734    if (isa<ConstantSDNode>(ShAmt)) {
4735      visitTargetIntrinsic(I, Intrinsic);
4736      return 0;
4737    }
4738    unsigned NewIntrinsic = 0;
4739    EVT ShAmtVT = MVT::v2i32;
4740    switch (Intrinsic) {
4741    case Intrinsic::x86_mmx_pslli_w:
4742      NewIntrinsic = Intrinsic::x86_mmx_psll_w;
4743      break;
4744    case Intrinsic::x86_mmx_pslli_d:
4745      NewIntrinsic = Intrinsic::x86_mmx_psll_d;
4746      break;
4747    case Intrinsic::x86_mmx_pslli_q:
4748      NewIntrinsic = Intrinsic::x86_mmx_psll_q;
4749      break;
4750    case Intrinsic::x86_mmx_psrli_w:
4751      NewIntrinsic = Intrinsic::x86_mmx_psrl_w;
4752      break;
4753    case Intrinsic::x86_mmx_psrli_d:
4754      NewIntrinsic = Intrinsic::x86_mmx_psrl_d;
4755      break;
4756    case Intrinsic::x86_mmx_psrli_q:
4757      NewIntrinsic = Intrinsic::x86_mmx_psrl_q;
4758      break;
4759    case Intrinsic::x86_mmx_psrai_w:
4760      NewIntrinsic = Intrinsic::x86_mmx_psra_w;
4761      break;
4762    case Intrinsic::x86_mmx_psrai_d:
4763      NewIntrinsic = Intrinsic::x86_mmx_psra_d;
4764      break;
4765    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
4766    }
4767
4768    // The vector shift intrinsics with scalars uses 32b shift amounts but
4769    // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
4770    // to be zero.
4771    // We must do this early because v2i32 is not a legal type.
4772    SDValue ShOps[2];
4773    ShOps[0] = ShAmt;
4774    ShOps[1] = DAG.getConstant(0, MVT::i32);
4775    ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 2);
4776    EVT DestVT = TLI.getValueType(I.getType());
4777    ShAmt = DAG.getNode(ISD::BITCAST, dl, DestVT, ShAmt);
4778    Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
4779                       DAG.getConstant(NewIntrinsic, MVT::i32),
4780                       getValue(I.getArgOperand(0)), ShAmt);
4781    setValue(&I, Res);
4782    return 0;
4783  }
4784  case Intrinsic::x86_avx_vinsertf128_pd_256:
4785  case Intrinsic::x86_avx_vinsertf128_ps_256:
4786  case Intrinsic::x86_avx_vinsertf128_si_256:
4787  case Intrinsic::x86_avx2_vinserti128: {
4788    EVT DestVT = TLI.getValueType(I.getType());
4789    EVT ElVT = TLI.getValueType(I.getArgOperand(1)->getType());
4790    uint64_t Idx = (cast<ConstantInt>(I.getArgOperand(2))->getZExtValue() & 1) *
4791                   ElVT.getVectorNumElements();
4792    Res = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, DestVT,
4793                      getValue(I.getArgOperand(0)),
4794                      getValue(I.getArgOperand(1)),
4795                      DAG.getIntPtrConstant(Idx));
4796    setValue(&I, Res);
4797    return 0;
4798  }
4799  case Intrinsic::x86_avx_vextractf128_pd_256:
4800  case Intrinsic::x86_avx_vextractf128_ps_256:
4801  case Intrinsic::x86_avx_vextractf128_si_256:
4802  case Intrinsic::x86_avx2_vextracti128: {
4803    EVT DestVT = TLI.getValueType(I.getType());
4804    uint64_t Idx = (cast<ConstantInt>(I.getArgOperand(1))->getZExtValue() & 1) *
4805                   DestVT.getVectorNumElements();
4806    Res = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT,
4807                      getValue(I.getArgOperand(0)),
4808                      DAG.getIntPtrConstant(Idx));
4809    setValue(&I, Res);
4810    return 0;
4811  }
4812  case Intrinsic::convertff:
4813  case Intrinsic::convertfsi:
4814  case Intrinsic::convertfui:
4815  case Intrinsic::convertsif:
4816  case Intrinsic::convertuif:
4817  case Intrinsic::convertss:
4818  case Intrinsic::convertsu:
4819  case Intrinsic::convertus:
4820  case Intrinsic::convertuu: {
4821    ISD::CvtCode Code = ISD::CVT_INVALID;
4822    switch (Intrinsic) {
4823    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
4824    case Intrinsic::convertff:  Code = ISD::CVT_FF; break;
4825    case Intrinsic::convertfsi: Code = ISD::CVT_FS; break;
4826    case Intrinsic::convertfui: Code = ISD::CVT_FU; break;
4827    case Intrinsic::convertsif: Code = ISD::CVT_SF; break;
4828    case Intrinsic::convertuif: Code = ISD::CVT_UF; break;
4829    case Intrinsic::convertss:  Code = ISD::CVT_SS; break;
4830    case Intrinsic::convertsu:  Code = ISD::CVT_SU; break;
4831    case Intrinsic::convertus:  Code = ISD::CVT_US; break;
4832    case Intrinsic::convertuu:  Code = ISD::CVT_UU; break;
4833    }
4834    EVT DestVT = TLI.getValueType(I.getType());
4835    const Value *Op1 = I.getArgOperand(0);
4836    Res = DAG.getConvertRndSat(DestVT, dl, getValue(Op1),
4837                               DAG.getValueType(DestVT),
4838                               DAG.getValueType(getValue(Op1).getValueType()),
4839                               getValue(I.getArgOperand(1)),
4840                               getValue(I.getArgOperand(2)),
4841                               Code);
4842    setValue(&I, Res);
4843    return 0;
4844  }
4845  case Intrinsic::powi:
4846    setValue(&I, ExpandPowI(dl, getValue(I.getArgOperand(0)),
4847                            getValue(I.getArgOperand(1)), DAG));
4848    return 0;
4849  case Intrinsic::log:
4850    setValue(&I, expandLog(dl, getValue(I.getArgOperand(0)), DAG, TLI));
4851    return 0;
4852  case Intrinsic::log2:
4853    setValue(&I, expandLog2(dl, getValue(I.getArgOperand(0)), DAG, TLI));
4854    return 0;
4855  case Intrinsic::log10:
4856    setValue(&I, expandLog10(dl, getValue(I.getArgOperand(0)), DAG, TLI));
4857    return 0;
4858  case Intrinsic::exp:
4859    setValue(&I, expandExp(dl, getValue(I.getArgOperand(0)), DAG, TLI));
4860    return 0;
4861  case Intrinsic::exp2:
4862    setValue(&I, expandExp2(dl, getValue(I.getArgOperand(0)), DAG, TLI));
4863    return 0;
4864  case Intrinsic::pow:
4865    setValue(&I, expandPow(dl, getValue(I.getArgOperand(0)),
4866                           getValue(I.getArgOperand(1)), DAG, TLI));
4867    return 0;
4868  case Intrinsic::sqrt:
4869  case Intrinsic::fabs:
4870  case Intrinsic::sin:
4871  case Intrinsic::cos:
4872  case Intrinsic::floor:
4873  case Intrinsic::ceil:
4874  case Intrinsic::trunc:
4875  case Intrinsic::rint:
4876  case Intrinsic::nearbyint: {
4877    unsigned Opcode;
4878    switch (Intrinsic) {
4879    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
4880    case Intrinsic::sqrt:      Opcode = ISD::FSQRT;      break;
4881    case Intrinsic::fabs:      Opcode = ISD::FABS;       break;
4882    case Intrinsic::sin:       Opcode = ISD::FSIN;       break;
4883    case Intrinsic::cos:       Opcode = ISD::FCOS;       break;
4884    case Intrinsic::floor:     Opcode = ISD::FFLOOR;     break;
4885    case Intrinsic::ceil:      Opcode = ISD::FCEIL;      break;
4886    case Intrinsic::trunc:     Opcode = ISD::FTRUNC;     break;
4887    case Intrinsic::rint:      Opcode = ISD::FRINT;      break;
4888    case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break;
4889    }
4890
4891    setValue(&I, DAG.getNode(Opcode, dl,
4892                             getValue(I.getArgOperand(0)).getValueType(),
4893                             getValue(I.getArgOperand(0))));
4894    return 0;
4895  }
4896  case Intrinsic::fma:
4897    setValue(&I, DAG.getNode(ISD::FMA, dl,
4898                             getValue(I.getArgOperand(0)).getValueType(),
4899                             getValue(I.getArgOperand(0)),
4900                             getValue(I.getArgOperand(1)),
4901                             getValue(I.getArgOperand(2))));
4902    return 0;
4903  case Intrinsic::fmuladd: {
4904    EVT VT = TLI.getValueType(I.getType());
4905    if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
4906        TLI.isOperationLegalOrCustom(ISD::FMA, VT) &&
4907        TLI.isFMAFasterThanMulAndAdd(VT)){
4908      setValue(&I, DAG.getNode(ISD::FMA, dl,
4909                               getValue(I.getArgOperand(0)).getValueType(),
4910                               getValue(I.getArgOperand(0)),
4911                               getValue(I.getArgOperand(1)),
4912                               getValue(I.getArgOperand(2))));
4913    } else {
4914      SDValue Mul = DAG.getNode(ISD::FMUL, dl,
4915                                getValue(I.getArgOperand(0)).getValueType(),
4916                                getValue(I.getArgOperand(0)),
4917                                getValue(I.getArgOperand(1)));
4918      SDValue Add = DAG.getNode(ISD::FADD, dl,
4919                                getValue(I.getArgOperand(0)).getValueType(),
4920                                Mul,
4921                                getValue(I.getArgOperand(2)));
4922      setValue(&I, Add);
4923    }
4924    return 0;
4925  }
4926  case Intrinsic::convert_to_fp16:
4927    setValue(&I, DAG.getNode(ISD::FP32_TO_FP16, dl,
4928                             MVT::i16, getValue(I.getArgOperand(0))));
4929    return 0;
4930  case Intrinsic::convert_from_fp16:
4931    setValue(&I, DAG.getNode(ISD::FP16_TO_FP32, dl,
4932                             MVT::f32, getValue(I.getArgOperand(0))));
4933    return 0;
4934  case Intrinsic::pcmarker: {
4935    SDValue Tmp = getValue(I.getArgOperand(0));
4936    DAG.setRoot(DAG.getNode(ISD::PCMARKER, dl, MVT::Other, getRoot(), Tmp));
4937    return 0;
4938  }
4939  case Intrinsic::readcyclecounter: {
4940    SDValue Op = getRoot();
4941    Res = DAG.getNode(ISD::READCYCLECOUNTER, dl,
4942                      DAG.getVTList(MVT::i64, MVT::Other),
4943                      &Op, 1);
4944    setValue(&I, Res);
4945    DAG.setRoot(Res.getValue(1));
4946    return 0;
4947  }
4948  case Intrinsic::bswap:
4949    setValue(&I, DAG.getNode(ISD::BSWAP, dl,
4950                             getValue(I.getArgOperand(0)).getValueType(),
4951                             getValue(I.getArgOperand(0))));
4952    return 0;
4953  case Intrinsic::cttz: {
4954    SDValue Arg = getValue(I.getArgOperand(0));
4955    ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
4956    EVT Ty = Arg.getValueType();
4957    setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF,
4958                             dl, Ty, Arg));
4959    return 0;
4960  }
4961  case Intrinsic::ctlz: {
4962    SDValue Arg = getValue(I.getArgOperand(0));
4963    ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
4964    EVT Ty = Arg.getValueType();
4965    setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF,
4966                             dl, Ty, Arg));
4967    return 0;
4968  }
4969  case Intrinsic::ctpop: {
4970    SDValue Arg = getValue(I.getArgOperand(0));
4971    EVT Ty = Arg.getValueType();
4972    setValue(&I, DAG.getNode(ISD::CTPOP, dl, Ty, Arg));
4973    return 0;
4974  }
4975  case Intrinsic::stacksave: {
4976    SDValue Op = getRoot();
4977    Res = DAG.getNode(ISD::STACKSAVE, dl,
4978                      DAG.getVTList(TLI.getPointerTy(), MVT::Other), &Op, 1);
4979    setValue(&I, Res);
4980    DAG.setRoot(Res.getValue(1));
4981    return 0;
4982  }
4983  case Intrinsic::stackrestore: {
4984    Res = getValue(I.getArgOperand(0));
4985    DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, dl, MVT::Other, getRoot(), Res));
4986    return 0;
4987  }
4988  case Intrinsic::stackprotector: {
4989    // Emit code into the DAG to store the stack guard onto the stack.
4990    MachineFunction &MF = DAG.getMachineFunction();
4991    MachineFrameInfo *MFI = MF.getFrameInfo();
4992    EVT PtrTy = TLI.getPointerTy();
4993
4994    SDValue Src = getValue(I.getArgOperand(0));   // The guard's value.
4995    AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
4996
4997    int FI = FuncInfo.StaticAllocaMap[Slot];
4998    MFI->setStackProtectorIndex(FI);
4999
5000    SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
5001
5002    // Store the stack protector onto the stack.
5003    Res = DAG.getStore(getRoot(), dl, Src, FIN,
5004                       MachinePointerInfo::getFixedStack(FI),
5005                       true, false, 0);
5006    setValue(&I, Res);
5007    DAG.setRoot(Res);
5008    return 0;
5009  }
5010  case Intrinsic::objectsize: {
5011    // If we don't know by now, we're never going to know.
5012    ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1));
5013
5014    assert(CI && "Non-constant type in __builtin_object_size?");
5015
5016    SDValue Arg = getValue(I.getCalledValue());
5017    EVT Ty = Arg.getValueType();
5018
5019    if (CI->isZero())
5020      Res = DAG.getConstant(-1ULL, Ty);
5021    else
5022      Res = DAG.getConstant(0, Ty);
5023
5024    setValue(&I, Res);
5025    return 0;
5026  }
5027  case Intrinsic::var_annotation:
5028    // Discard annotate attributes
5029    return 0;
5030
5031  case Intrinsic::init_trampoline: {
5032    const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
5033
5034    SDValue Ops[6];
5035    Ops[0] = getRoot();
5036    Ops[1] = getValue(I.getArgOperand(0));
5037    Ops[2] = getValue(I.getArgOperand(1));
5038    Ops[3] = getValue(I.getArgOperand(2));
5039    Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
5040    Ops[5] = DAG.getSrcValue(F);
5041
5042    Res = DAG.getNode(ISD::INIT_TRAMPOLINE, dl, MVT::Other, Ops, 6);
5043
5044    DAG.setRoot(Res);
5045    return 0;
5046  }
5047  case Intrinsic::adjust_trampoline: {
5048    setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, dl,
5049                             TLI.getPointerTy(),
5050                             getValue(I.getArgOperand(0))));
5051    return 0;
5052  }
5053  case Intrinsic::gcroot:
5054    if (GFI) {
5055      const Value *Alloca = I.getArgOperand(0)->stripPointerCasts();
5056      const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
5057
5058      FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
5059      GFI->addStackRoot(FI->getIndex(), TypeMap);
5060    }
5061    return 0;
5062  case Intrinsic::gcread:
5063  case Intrinsic::gcwrite:
5064    llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
5065  case Intrinsic::flt_rounds:
5066    setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, dl, MVT::i32));
5067    return 0;
5068
5069  case Intrinsic::expect: {
5070    // Just replace __builtin_expect(exp, c) with EXP.
5071    setValue(&I, getValue(I.getArgOperand(0)));
5072    return 0;
5073  }
5074
5075  case Intrinsic::debugtrap:
5076  case Intrinsic::trap: {
5077    StringRef TrapFuncName = TM.Options.getTrapFunctionName();
5078    if (TrapFuncName.empty()) {
5079      ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ?
5080        ISD::TRAP : ISD::DEBUGTRAP;
5081      DAG.setRoot(DAG.getNode(Op, dl,MVT::Other, getRoot()));
5082      return 0;
5083    }
5084    TargetLowering::ArgListTy Args;
5085    TargetLowering::
5086    CallLoweringInfo CLI(getRoot(), I.getType(),
5087                 false, false, false, false, 0, CallingConv::C,
5088                 /*isTailCall=*/false,
5089                 /*doesNotRet=*/false, /*isReturnValueUsed=*/true,
5090                 DAG.getExternalSymbol(TrapFuncName.data(), TLI.getPointerTy()),
5091                 Args, DAG, dl);
5092    std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
5093    DAG.setRoot(Result.second);
5094    return 0;
5095  }
5096
5097  case Intrinsic::uadd_with_overflow:
5098  case Intrinsic::sadd_with_overflow:
5099  case Intrinsic::usub_with_overflow:
5100  case Intrinsic::ssub_with_overflow:
5101  case Intrinsic::umul_with_overflow:
5102  case Intrinsic::smul_with_overflow: {
5103    ISD::NodeType Op;
5104    switch (Intrinsic) {
5105    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
5106    case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break;
5107    case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break;
5108    case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break;
5109    case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break;
5110    case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break;
5111    case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break;
5112    }
5113    SDValue Op1 = getValue(I.getArgOperand(0));
5114    SDValue Op2 = getValue(I.getArgOperand(1));
5115
5116    SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1);
5117    setValue(&I, DAG.getNode(Op, dl, VTs, Op1, Op2));
5118    return 0;
5119  }
5120  case Intrinsic::prefetch: {
5121    SDValue Ops[5];
5122    unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
5123    Ops[0] = getRoot();
5124    Ops[1] = getValue(I.getArgOperand(0));
5125    Ops[2] = getValue(I.getArgOperand(1));
5126    Ops[3] = getValue(I.getArgOperand(2));
5127    Ops[4] = getValue(I.getArgOperand(3));
5128    DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, dl,
5129                                        DAG.getVTList(MVT::Other),
5130                                        &Ops[0], 5,
5131                                        EVT::getIntegerVT(*Context, 8),
5132                                        MachinePointerInfo(I.getArgOperand(0)),
5133                                        0, /* align */
5134                                        false, /* volatile */
5135                                        rw==0, /* read */
5136                                        rw==1)); /* write */
5137    return 0;
5138  }
5139  case Intrinsic::lifetime_start:
5140  case Intrinsic::lifetime_end: {
5141    bool IsStart = (Intrinsic == Intrinsic::lifetime_start);
5142    // Stack coloring is not enabled in O0, discard region information.
5143    if (TM.getOptLevel() == CodeGenOpt::None)
5144      return 0;
5145
5146    SmallVector<Value *, 4> Allocas;
5147    GetUnderlyingObjects(I.getArgOperand(1), Allocas, TD);
5148
5149    for (SmallVector<Value*, 4>::iterator Object = Allocas.begin(),
5150         E = Allocas.end(); Object != E; ++Object) {
5151      AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object);
5152
5153      // Could not find an Alloca.
5154      if (!LifetimeObject)
5155        continue;
5156
5157      int FI = FuncInfo.StaticAllocaMap[LifetimeObject];
5158
5159      SDValue Ops[2];
5160      Ops[0] = getRoot();
5161      Ops[1] = DAG.getFrameIndex(FI, TLI.getPointerTy(), true);
5162      unsigned Opcode = (IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END);
5163
5164      Res = DAG.getNode(Opcode, dl, MVT::Other, Ops, 2);
5165      DAG.setRoot(Res);
5166    }
5167  }
5168  case Intrinsic::invariant_start:
5169    // Discard region information.
5170    setValue(&I, DAG.getUNDEF(TLI.getPointerTy()));
5171    return 0;
5172  case Intrinsic::invariant_end:
5173    // Discard region information.
5174    return 0;
5175  case Intrinsic::donothing:
5176    // ignore
5177    return 0;
5178  }
5179}
5180
5181void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee,
5182                                      bool isTailCall,
5183                                      MachineBasicBlock *LandingPad) {
5184  PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
5185  FunctionType *FTy = cast<FunctionType>(PT->getElementType());
5186  Type *RetTy = FTy->getReturnType();
5187  MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
5188  MCSymbol *BeginLabel = 0;
5189
5190  TargetLowering::ArgListTy Args;
5191  TargetLowering::ArgListEntry Entry;
5192  Args.reserve(CS.arg_size());
5193
5194  // Check whether the function can return without sret-demotion.
5195  SmallVector<ISD::OutputArg, 4> Outs;
5196  GetReturnInfo(RetTy, CS.getAttributes().getRetAttributes(),
5197                Outs, TLI);
5198
5199  bool CanLowerReturn = TLI.CanLowerReturn(CS.getCallingConv(),
5200                                           DAG.getMachineFunction(),
5201                                           FTy->isVarArg(), Outs,
5202                                           FTy->getContext());
5203
5204  SDValue DemoteStackSlot;
5205  int DemoteStackIdx = -100;
5206
5207  if (!CanLowerReturn) {
5208    uint64_t TySize = TLI.getDataLayout()->getTypeAllocSize(
5209                      FTy->getReturnType());
5210    unsigned Align  = TLI.getDataLayout()->getPrefTypeAlignment(
5211                      FTy->getReturnType());
5212    MachineFunction &MF = DAG.getMachineFunction();
5213    DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
5214    Type *StackSlotPtrType = PointerType::getUnqual(FTy->getReturnType());
5215
5216    DemoteStackSlot = DAG.getFrameIndex(DemoteStackIdx, TLI.getPointerTy());
5217    Entry.Node = DemoteStackSlot;
5218    Entry.Ty = StackSlotPtrType;
5219    Entry.isSExt = false;
5220    Entry.isZExt = false;
5221    Entry.isInReg = false;
5222    Entry.isSRet = true;
5223    Entry.isNest = false;
5224    Entry.isByVal = false;
5225    Entry.Alignment = Align;
5226    Args.push_back(Entry);
5227    RetTy = Type::getVoidTy(FTy->getContext());
5228  }
5229
5230  for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
5231       i != e; ++i) {
5232    const Value *V = *i;
5233
5234    // Skip empty types
5235    if (V->getType()->isEmptyTy())
5236      continue;
5237
5238    SDValue ArgNode = getValue(V);
5239    Entry.Node = ArgNode; Entry.Ty = V->getType();
5240
5241    unsigned attrInd = i - CS.arg_begin() + 1;
5242    Entry.isSExt  = CS.paramHasAttr(attrInd, Attribute::SExt);
5243    Entry.isZExt  = CS.paramHasAttr(attrInd, Attribute::ZExt);
5244    Entry.isInReg = CS.paramHasAttr(attrInd, Attribute::InReg);
5245    Entry.isSRet  = CS.paramHasAttr(attrInd, Attribute::StructRet);
5246    Entry.isNest  = CS.paramHasAttr(attrInd, Attribute::Nest);
5247    Entry.isByVal = CS.paramHasAttr(attrInd, Attribute::ByVal);
5248    Entry.Alignment = CS.getParamAlignment(attrInd);
5249    Args.push_back(Entry);
5250  }
5251
5252  if (LandingPad) {
5253    // Insert a label before the invoke call to mark the try range.  This can be
5254    // used to detect deletion of the invoke via the MachineModuleInfo.
5255    BeginLabel = MMI.getContext().CreateTempSymbol();
5256
5257    // For SjLj, keep track of which landing pads go with which invokes
5258    // so as to maintain the ordering of pads in the LSDA.
5259    unsigned CallSiteIndex = MMI.getCurrentCallSite();
5260    if (CallSiteIndex) {
5261      MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
5262      LPadToCallSiteMap[LandingPad].push_back(CallSiteIndex);
5263
5264      // Now that the call site is handled, stop tracking it.
5265      MMI.setCurrentCallSite(0);
5266    }
5267
5268    // Both PendingLoads and PendingExports must be flushed here;
5269    // this call might not return.
5270    (void)getRoot();
5271    DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getControlRoot(), BeginLabel));
5272  }
5273
5274  // Check if target-independent constraints permit a tail call here.
5275  // Target-dependent constraints are checked within TLI.LowerCallTo.
5276  if (isTailCall &&
5277      !isInTailCallPosition(CS, CS.getAttributes().getRetAttributes(), TLI))
5278    isTailCall = false;
5279
5280  TargetLowering::
5281  CallLoweringInfo CLI(getRoot(), RetTy, FTy, isTailCall, Callee, Args, DAG,
5282                       getCurDebugLoc(), CS);
5283  std::pair<SDValue,SDValue> Result = TLI.LowerCallTo(CLI);
5284  assert((isTailCall || Result.second.getNode()) &&
5285         "Non-null chain expected with non-tail call!");
5286  assert((Result.second.getNode() || !Result.first.getNode()) &&
5287         "Null value expected with tail call!");
5288  if (Result.first.getNode()) {
5289    setValue(CS.getInstruction(), Result.first);
5290  } else if (!CanLowerReturn && Result.second.getNode()) {
5291    // The instruction result is the result of loading from the
5292    // hidden sret parameter.
5293    SmallVector<EVT, 1> PVTs;
5294    Type *PtrRetTy = PointerType::getUnqual(FTy->getReturnType());
5295
5296    ComputeValueVTs(TLI, PtrRetTy, PVTs);
5297    assert(PVTs.size() == 1 && "Pointers should fit in one register");
5298    EVT PtrVT = PVTs[0];
5299
5300    SmallVector<EVT, 4> RetTys;
5301    SmallVector<uint64_t, 4> Offsets;
5302    RetTy = FTy->getReturnType();
5303    ComputeValueVTs(TLI, RetTy, RetTys, &Offsets);
5304
5305    unsigned NumValues = RetTys.size();
5306    SmallVector<SDValue, 4> Values(NumValues);
5307    SmallVector<SDValue, 4> Chains(NumValues);
5308
5309    for (unsigned i = 0; i < NumValues; ++i) {
5310      SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT,
5311                                DemoteStackSlot,
5312                                DAG.getConstant(Offsets[i], PtrVT));
5313      SDValue L = DAG.getLoad(RetTys[i], getCurDebugLoc(), Result.second, Add,
5314                  MachinePointerInfo::getFixedStack(DemoteStackIdx, Offsets[i]),
5315                              false, false, false, 1);
5316      Values[i] = L;
5317      Chains[i] = L.getValue(1);
5318    }
5319
5320    SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
5321                                MVT::Other, &Chains[0], NumValues);
5322    PendingLoads.push_back(Chain);
5323
5324    setValue(CS.getInstruction(),
5325             DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
5326                         DAG.getVTList(&RetTys[0], RetTys.size()),
5327                         &Values[0], Values.size()));
5328  }
5329
5330  // Assign order to nodes here. If the call does not produce a result, it won't
5331  // be mapped to a SDNode and visit() will not assign it an order number.
5332  if (!Result.second.getNode()) {
5333    // As a special case, a null chain means that a tail call has been emitted and
5334    // the DAG root is already updated.
5335    HasTailCall = true;
5336    ++SDNodeOrder;
5337    AssignOrderingToNode(DAG.getRoot().getNode());
5338  } else {
5339    DAG.setRoot(Result.second);
5340    ++SDNodeOrder;
5341    AssignOrderingToNode(Result.second.getNode());
5342  }
5343
5344  if (LandingPad) {
5345    // Insert a label at the end of the invoke call to mark the try range.  This
5346    // can be used to detect deletion of the invoke via the MachineModuleInfo.
5347    MCSymbol *EndLabel = MMI.getContext().CreateTempSymbol();
5348    DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getRoot(), EndLabel));
5349
5350    // Inform MachineModuleInfo of range.
5351    MMI.addInvoke(LandingPad, BeginLabel, EndLabel);
5352  }
5353}
5354
5355/// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the
5356/// value is equal or not-equal to zero.
5357static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) {
5358  for (Value::const_use_iterator UI = V->use_begin(), E = V->use_end();
5359       UI != E; ++UI) {
5360    if (const ICmpInst *IC = dyn_cast<ICmpInst>(*UI))
5361      if (IC->isEquality())
5362        if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
5363          if (C->isNullValue())
5364            continue;
5365    // Unknown instruction.
5366    return false;
5367  }
5368  return true;
5369}
5370
5371static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
5372                             Type *LoadTy,
5373                             SelectionDAGBuilder &Builder) {
5374
5375  // Check to see if this load can be trivially constant folded, e.g. if the
5376  // input is from a string literal.
5377  if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
5378    // Cast pointer to the type we really want to load.
5379    LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
5380                                         PointerType::getUnqual(LoadTy));
5381
5382    if (const Constant *LoadCst =
5383          ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput),
5384                                       Builder.TD))
5385      return Builder.getValue(LoadCst);
5386  }
5387
5388  // Otherwise, we have to emit the load.  If the pointer is to unfoldable but
5389  // still constant memory, the input chain can be the entry node.
5390  SDValue Root;
5391  bool ConstantMemory = false;
5392
5393  // Do not serialize (non-volatile) loads of constant memory with anything.
5394  if (Builder.AA->pointsToConstantMemory(PtrVal)) {
5395    Root = Builder.DAG.getEntryNode();
5396    ConstantMemory = true;
5397  } else {
5398    // Do not serialize non-volatile loads against each other.
5399    Root = Builder.DAG.getRoot();
5400  }
5401
5402  SDValue Ptr = Builder.getValue(PtrVal);
5403  SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurDebugLoc(), Root,
5404                                        Ptr, MachinePointerInfo(PtrVal),
5405                                        false /*volatile*/,
5406                                        false /*nontemporal*/,
5407                                        false /*isinvariant*/, 1 /* align=1 */);
5408
5409  if (!ConstantMemory)
5410    Builder.PendingLoads.push_back(LoadVal.getValue(1));
5411  return LoadVal;
5412}
5413
5414
5415/// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form.
5416/// If so, return true and lower it, otherwise return false and it will be
5417/// lowered like a normal call.
5418bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) {
5419  // Verify that the prototype makes sense.  int memcmp(void*,void*,size_t)
5420  if (I.getNumArgOperands() != 3)
5421    return false;
5422
5423  const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
5424  if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() ||
5425      !I.getArgOperand(2)->getType()->isIntegerTy() ||
5426      !I.getType()->isIntegerTy())
5427    return false;
5428
5429  const ConstantInt *Size = dyn_cast<ConstantInt>(I.getArgOperand(2));
5430
5431  // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0
5432  // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0
5433  if (Size && IsOnlyUsedInZeroEqualityComparison(&I)) {
5434    bool ActuallyDoIt = true;
5435    MVT LoadVT;
5436    Type *LoadTy;
5437    switch (Size->getZExtValue()) {
5438    default:
5439      LoadVT = MVT::Other;
5440      LoadTy = 0;
5441      ActuallyDoIt = false;
5442      break;
5443    case 2:
5444      LoadVT = MVT::i16;
5445      LoadTy = Type::getInt16Ty(Size->getContext());
5446      break;
5447    case 4:
5448      LoadVT = MVT::i32;
5449      LoadTy = Type::getInt32Ty(Size->getContext());
5450      break;
5451    case 8:
5452      LoadVT = MVT::i64;
5453      LoadTy = Type::getInt64Ty(Size->getContext());
5454      break;
5455        /*
5456    case 16:
5457      LoadVT = MVT::v4i32;
5458      LoadTy = Type::getInt32Ty(Size->getContext());
5459      LoadTy = VectorType::get(LoadTy, 4);
5460      break;
5461         */
5462    }
5463
5464    // This turns into unaligned loads.  We only do this if the target natively
5465    // supports the MVT we'll be loading or if it is small enough (<= 4) that
5466    // we'll only produce a small number of byte loads.
5467
5468    // Require that we can find a legal MVT, and only do this if the target
5469    // supports unaligned loads of that type.  Expanding into byte loads would
5470    // bloat the code.
5471    if (ActuallyDoIt && Size->getZExtValue() > 4) {
5472      // TODO: Handle 5 byte compare as 4-byte + 1 byte.
5473      // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
5474      if (!TLI.isTypeLegal(LoadVT) ||!TLI.allowsUnalignedMemoryAccesses(LoadVT))
5475        ActuallyDoIt = false;
5476    }
5477
5478    if (ActuallyDoIt) {
5479      SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this);
5480      SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this);
5481
5482      SDValue Res = DAG.getSetCC(getCurDebugLoc(), MVT::i1, LHSVal, RHSVal,
5483                                 ISD::SETNE);
5484      EVT CallVT = TLI.getValueType(I.getType(), true);
5485      setValue(&I, DAG.getZExtOrTrunc(Res, getCurDebugLoc(), CallVT));
5486      return true;
5487    }
5488  }
5489
5490
5491  return false;
5492}
5493
5494/// visitUnaryFloatCall - If a call instruction is a unary floating-point
5495/// operation (as expected), translate it to an SDNode with the specified opcode
5496/// and return true.
5497bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I,
5498                                              unsigned Opcode) {
5499  // Sanity check that it really is a unary floating-point call.
5500  if (I.getNumArgOperands() != 1 ||
5501      !I.getArgOperand(0)->getType()->isFloatingPointTy() ||
5502      I.getType() != I.getArgOperand(0)->getType() ||
5503      !I.onlyReadsMemory())
5504    return false;
5505
5506  SDValue Tmp = getValue(I.getArgOperand(0));
5507  setValue(&I, DAG.getNode(Opcode, getCurDebugLoc(), Tmp.getValueType(), Tmp));
5508  return true;
5509}
5510
5511void SelectionDAGBuilder::visitCall(const CallInst &I) {
5512  // Handle inline assembly differently.
5513  if (isa<InlineAsm>(I.getCalledValue())) {
5514    visitInlineAsm(&I);
5515    return;
5516  }
5517
5518  MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
5519  ComputeUsesVAFloatArgument(I, &MMI);
5520
5521  const char *RenameFn = 0;
5522  if (Function *F = I.getCalledFunction()) {
5523    if (F->isDeclaration()) {
5524      if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) {
5525        if (unsigned IID = II->getIntrinsicID(F)) {
5526          RenameFn = visitIntrinsicCall(I, IID);
5527          if (!RenameFn)
5528            return;
5529        }
5530      }
5531      if (unsigned IID = F->getIntrinsicID()) {
5532        RenameFn = visitIntrinsicCall(I, IID);
5533        if (!RenameFn)
5534          return;
5535      }
5536    }
5537
5538    // Check for well-known libc/libm calls.  If the function is internal, it
5539    // can't be a library call.
5540    LibFunc::Func Func;
5541    if (!F->hasLocalLinkage() && F->hasName() &&
5542        LibInfo->getLibFunc(F->getName(), Func) &&
5543        LibInfo->hasOptimizedCodeGen(Func)) {
5544      switch (Func) {
5545      default: break;
5546      case LibFunc::copysign:
5547      case LibFunc::copysignf:
5548      case LibFunc::copysignl:
5549        if (I.getNumArgOperands() == 2 &&   // Basic sanity checks.
5550            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5551            I.getType() == I.getArgOperand(0)->getType() &&
5552            I.getType() == I.getArgOperand(1)->getType() &&
5553            I.onlyReadsMemory()) {
5554          SDValue LHS = getValue(I.getArgOperand(0));
5555          SDValue RHS = getValue(I.getArgOperand(1));
5556          setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurDebugLoc(),
5557                                   LHS.getValueType(), LHS, RHS));
5558          return;
5559        }
5560        break;
5561      case LibFunc::fabs:
5562      case LibFunc::fabsf:
5563      case LibFunc::fabsl:
5564        if (visitUnaryFloatCall(I, ISD::FABS))
5565          return;
5566        break;
5567      case LibFunc::sin:
5568      case LibFunc::sinf:
5569      case LibFunc::sinl:
5570        if (visitUnaryFloatCall(I, ISD::FSIN))
5571          return;
5572        break;
5573      case LibFunc::cos:
5574      case LibFunc::cosf:
5575      case LibFunc::cosl:
5576        if (visitUnaryFloatCall(I, ISD::FCOS))
5577          return;
5578        break;
5579      case LibFunc::sqrt:
5580      case LibFunc::sqrtf:
5581      case LibFunc::sqrtl:
5582        if (visitUnaryFloatCall(I, ISD::FSQRT))
5583          return;
5584        break;
5585      case LibFunc::floor:
5586      case LibFunc::floorf:
5587      case LibFunc::floorl:
5588        if (visitUnaryFloatCall(I, ISD::FFLOOR))
5589          return;
5590        break;
5591      case LibFunc::nearbyint:
5592      case LibFunc::nearbyintf:
5593      case LibFunc::nearbyintl:
5594        if (visitUnaryFloatCall(I, ISD::FNEARBYINT))
5595          return;
5596        break;
5597      case LibFunc::ceil:
5598      case LibFunc::ceilf:
5599      case LibFunc::ceill:
5600        if (visitUnaryFloatCall(I, ISD::FCEIL))
5601          return;
5602        break;
5603      case LibFunc::rint:
5604      case LibFunc::rintf:
5605      case LibFunc::rintl:
5606        if (visitUnaryFloatCall(I, ISD::FRINT))
5607          return;
5608        break;
5609      case LibFunc::trunc:
5610      case LibFunc::truncf:
5611      case LibFunc::truncl:
5612        if (visitUnaryFloatCall(I, ISD::FTRUNC))
5613          return;
5614        break;
5615      case LibFunc::log2:
5616      case LibFunc::log2f:
5617      case LibFunc::log2l:
5618        if (visitUnaryFloatCall(I, ISD::FLOG2))
5619          return;
5620        break;
5621      case LibFunc::exp2:
5622      case LibFunc::exp2f:
5623      case LibFunc::exp2l:
5624        if (visitUnaryFloatCall(I, ISD::FEXP2))
5625          return;
5626        break;
5627      case LibFunc::memcmp:
5628        if (visitMemCmpCall(I))
5629          return;
5630        break;
5631      }
5632    }
5633  }
5634
5635  SDValue Callee;
5636  if (!RenameFn)
5637    Callee = getValue(I.getCalledValue());
5638  else
5639    Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy());
5640
5641  // Check if we can potentially perform a tail call. More detailed checking is
5642  // be done within LowerCallTo, after more information about the call is known.
5643  LowerCallTo(&I, Callee, I.isTailCall());
5644}
5645
5646namespace {
5647
5648/// AsmOperandInfo - This contains information for each constraint that we are
5649/// lowering.
5650class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
5651public:
5652  /// CallOperand - If this is the result output operand or a clobber
5653  /// this is null, otherwise it is the incoming operand to the CallInst.
5654  /// This gets modified as the asm is processed.
5655  SDValue CallOperand;
5656
5657  /// AssignedRegs - If this is a register or register class operand, this
5658  /// contains the set of register corresponding to the operand.
5659  RegsForValue AssignedRegs;
5660
5661  explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
5662    : TargetLowering::AsmOperandInfo(info), CallOperand(0,0) {
5663  }
5664
5665  /// getCallOperandValEVT - Return the EVT of the Value* that this operand
5666  /// corresponds to.  If there is no Value* for this operand, it returns
5667  /// MVT::Other.
5668  EVT getCallOperandValEVT(LLVMContext &Context,
5669                           const TargetLowering &TLI,
5670                           const DataLayout *TD) const {
5671    if (CallOperandVal == 0) return MVT::Other;
5672
5673    if (isa<BasicBlock>(CallOperandVal))
5674      return TLI.getPointerTy();
5675
5676    llvm::Type *OpTy = CallOperandVal->getType();
5677
5678    // FIXME: code duplicated from TargetLowering::ParseConstraints().
5679    // If this is an indirect operand, the operand is a pointer to the
5680    // accessed type.
5681    if (isIndirect) {
5682      llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
5683      if (!PtrTy)
5684        report_fatal_error("Indirect operand for inline asm not a pointer!");
5685      OpTy = PtrTy->getElementType();
5686    }
5687
5688    // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
5689    if (StructType *STy = dyn_cast<StructType>(OpTy))
5690      if (STy->getNumElements() == 1)
5691        OpTy = STy->getElementType(0);
5692
5693    // If OpTy is not a single value, it may be a struct/union that we
5694    // can tile with integers.
5695    if (!OpTy->isSingleValueType() && OpTy->isSized()) {
5696      unsigned BitSize = TD->getTypeSizeInBits(OpTy);
5697      switch (BitSize) {
5698      default: break;
5699      case 1:
5700      case 8:
5701      case 16:
5702      case 32:
5703      case 64:
5704      case 128:
5705        OpTy = IntegerType::get(Context, BitSize);
5706        break;
5707      }
5708    }
5709
5710    return TLI.getValueType(OpTy, true);
5711  }
5712};
5713
5714typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector;
5715
5716} // end anonymous namespace
5717
5718/// GetRegistersForValue - Assign registers (virtual or physical) for the
5719/// specified operand.  We prefer to assign virtual registers, to allow the
5720/// register allocator to handle the assignment process.  However, if the asm
5721/// uses features that we can't model on machineinstrs, we have SDISel do the
5722/// allocation.  This produces generally horrible, but correct, code.
5723///
5724///   OpInfo describes the operand.
5725///
5726static void GetRegistersForValue(SelectionDAG &DAG,
5727                                 const TargetLowering &TLI,
5728                                 DebugLoc DL,
5729                                 SDISelAsmOperandInfo &OpInfo) {
5730  LLVMContext &Context = *DAG.getContext();
5731
5732  MachineFunction &MF = DAG.getMachineFunction();
5733  SmallVector<unsigned, 4> Regs;
5734
5735  // If this is a constraint for a single physreg, or a constraint for a
5736  // register class, find it.
5737  std::pair<unsigned, const TargetRegisterClass*> PhysReg =
5738    TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
5739                                     OpInfo.ConstraintVT);
5740
5741  unsigned NumRegs = 1;
5742  if (OpInfo.ConstraintVT != MVT::Other) {
5743    // If this is a FP input in an integer register (or visa versa) insert a bit
5744    // cast of the input value.  More generally, handle any case where the input
5745    // value disagrees with the register class we plan to stick this in.
5746    if (OpInfo.Type == InlineAsm::isInput &&
5747        PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) {
5748      // Try to convert to the first EVT that the reg class contains.  If the
5749      // types are identical size, use a bitcast to convert (e.g. two differing
5750      // vector types).
5751      MVT RegVT = *PhysReg.second->vt_begin();
5752      if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) {
5753        OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL,
5754                                         RegVT, OpInfo.CallOperand);
5755        OpInfo.ConstraintVT = RegVT;
5756      } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
5757        // If the input is a FP value and we want it in FP registers, do a
5758        // bitcast to the corresponding integer type.  This turns an f64 value
5759        // into i64, which can be passed with two i32 values on a 32-bit
5760        // machine.
5761        RegVT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits());
5762        OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL,
5763                                         RegVT, OpInfo.CallOperand);
5764        OpInfo.ConstraintVT = RegVT;
5765      }
5766    }
5767
5768    NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT);
5769  }
5770
5771  MVT RegVT;
5772  EVT ValueVT = OpInfo.ConstraintVT;
5773
5774  // If this is a constraint for a specific physical register, like {r17},
5775  // assign it now.
5776  if (unsigned AssignedReg = PhysReg.first) {
5777    const TargetRegisterClass *RC = PhysReg.second;
5778    if (OpInfo.ConstraintVT == MVT::Other)
5779      ValueVT = *RC->vt_begin();
5780
5781    // Get the actual register value type.  This is important, because the user
5782    // may have asked for (e.g.) the AX register in i32 type.  We need to
5783    // remember that AX is actually i16 to get the right extension.
5784    RegVT = *RC->vt_begin();
5785
5786    // This is a explicit reference to a physical register.
5787    Regs.push_back(AssignedReg);
5788
5789    // If this is an expanded reference, add the rest of the regs to Regs.
5790    if (NumRegs != 1) {
5791      TargetRegisterClass::iterator I = RC->begin();
5792      for (; *I != AssignedReg; ++I)
5793        assert(I != RC->end() && "Didn't find reg!");
5794
5795      // Already added the first reg.
5796      --NumRegs; ++I;
5797      for (; NumRegs; --NumRegs, ++I) {
5798        assert(I != RC->end() && "Ran out of registers to allocate!");
5799        Regs.push_back(*I);
5800      }
5801    }
5802
5803    OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
5804    return;
5805  }
5806
5807  // Otherwise, if this was a reference to an LLVM register class, create vregs
5808  // for this reference.
5809  if (const TargetRegisterClass *RC = PhysReg.second) {
5810    RegVT = *RC->vt_begin();
5811    if (OpInfo.ConstraintVT == MVT::Other)
5812      ValueVT = RegVT;
5813
5814    // Create the appropriate number of virtual registers.
5815    MachineRegisterInfo &RegInfo = MF.getRegInfo();
5816    for (; NumRegs; --NumRegs)
5817      Regs.push_back(RegInfo.createVirtualRegister(RC));
5818
5819    OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
5820    return;
5821  }
5822
5823  // Otherwise, we couldn't allocate enough registers for this.
5824}
5825
5826/// visitInlineAsm - Handle a call to an InlineAsm object.
5827///
5828void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) {
5829  const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
5830
5831  /// ConstraintOperands - Information about all of the constraints.
5832  SDISelAsmOperandInfoVector ConstraintOperands;
5833
5834  TargetLowering::AsmOperandInfoVector
5835    TargetConstraints = TLI.ParseConstraints(CS);
5836
5837  bool hasMemory = false;
5838
5839  unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
5840  unsigned ResNo = 0;   // ResNo - The result number of the next output.
5841  for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
5842    ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i]));
5843    SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
5844
5845    EVT OpVT = MVT::Other;
5846
5847    // Compute the value type for each operand.
5848    switch (OpInfo.Type) {
5849    case InlineAsm::isOutput:
5850      // Indirect outputs just consume an argument.
5851      if (OpInfo.isIndirect) {
5852        OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
5853        break;
5854      }
5855
5856      // The return value of the call is this value.  As such, there is no
5857      // corresponding argument.
5858      assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
5859      if (StructType *STy = dyn_cast<StructType>(CS.getType())) {
5860        OpVT = TLI.getValueType(STy->getElementType(ResNo));
5861      } else {
5862        assert(ResNo == 0 && "Asm only has one result!");
5863        OpVT = TLI.getValueType(CS.getType());
5864      }
5865      ++ResNo;
5866      break;
5867    case InlineAsm::isInput:
5868      OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
5869      break;
5870    case InlineAsm::isClobber:
5871      // Nothing to do.
5872      break;
5873    }
5874
5875    // If this is an input or an indirect output, process the call argument.
5876    // BasicBlocks are labels, currently appearing only in asm's.
5877    if (OpInfo.CallOperandVal) {
5878      if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) {
5879        OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
5880      } else {
5881        OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
5882      }
5883
5884      OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, TD);
5885    }
5886
5887    OpInfo.ConstraintVT = OpVT;
5888
5889    // Indirect operand accesses access memory.
5890    if (OpInfo.isIndirect)
5891      hasMemory = true;
5892    else {
5893      for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) {
5894        TargetLowering::ConstraintType
5895          CType = TLI.getConstraintType(OpInfo.Codes[j]);
5896        if (CType == TargetLowering::C_Memory) {
5897          hasMemory = true;
5898          break;
5899        }
5900      }
5901    }
5902  }
5903
5904  SDValue Chain, Flag;
5905
5906  // We won't need to flush pending loads if this asm doesn't touch
5907  // memory and is nonvolatile.
5908  if (hasMemory || IA->hasSideEffects())
5909    Chain = getRoot();
5910  else
5911    Chain = DAG.getRoot();
5912
5913  // Second pass over the constraints: compute which constraint option to use
5914  // and assign registers to constraints that want a specific physreg.
5915  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
5916    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
5917
5918    // If this is an output operand with a matching input operand, look up the
5919    // matching input. If their types mismatch, e.g. one is an integer, the
5920    // other is floating point, or their sizes are different, flag it as an
5921    // error.
5922    if (OpInfo.hasMatchingInput()) {
5923      SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
5924
5925      if (OpInfo.ConstraintVT != Input.ConstraintVT) {
5926        std::pair<unsigned, const TargetRegisterClass*> MatchRC =
5927          TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
5928                                           OpInfo.ConstraintVT);
5929        std::pair<unsigned, const TargetRegisterClass*> InputRC =
5930          TLI.getRegForInlineAsmConstraint(Input.ConstraintCode,
5931                                           Input.ConstraintVT);
5932        if ((OpInfo.ConstraintVT.isInteger() !=
5933             Input.ConstraintVT.isInteger()) ||
5934            (MatchRC.second != InputRC.second)) {
5935          report_fatal_error("Unsupported asm: input constraint"
5936                             " with a matching output constraint of"
5937                             " incompatible type!");
5938        }
5939        Input.ConstraintVT = OpInfo.ConstraintVT;
5940      }
5941    }
5942
5943    // Compute the constraint code and ConstraintType to use.
5944    TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
5945
5946    // If this is a memory input, and if the operand is not indirect, do what we
5947    // need to to provide an address for the memory input.
5948    if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
5949        !OpInfo.isIndirect) {
5950      assert((OpInfo.isMultipleAlternative ||
5951              (OpInfo.Type == InlineAsm::isInput)) &&
5952             "Can only indirectify direct input operands!");
5953
5954      // Memory operands really want the address of the value.  If we don't have
5955      // an indirect input, put it in the constpool if we can, otherwise spill
5956      // it to a stack slot.
5957      // TODO: This isn't quite right. We need to handle these according to
5958      // the addressing mode that the constraint wants. Also, this may take
5959      // an additional register for the computation and we don't want that
5960      // either.
5961
5962      // If the operand is a float, integer, or vector constant, spill to a
5963      // constant pool entry to get its address.
5964      const Value *OpVal = OpInfo.CallOperandVal;
5965      if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
5966          isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) {
5967        OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal),
5968                                                 TLI.getPointerTy());
5969      } else {
5970        // Otherwise, create a stack slot and emit a store to it before the
5971        // asm.
5972        Type *Ty = OpVal->getType();
5973        uint64_t TySize = TLI.getDataLayout()->getTypeAllocSize(Ty);
5974        unsigned Align  = TLI.getDataLayout()->getPrefTypeAlignment(Ty);
5975        MachineFunction &MF = DAG.getMachineFunction();
5976        int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
5977        SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy());
5978        Chain = DAG.getStore(Chain, getCurDebugLoc(),
5979                             OpInfo.CallOperand, StackSlot,
5980                             MachinePointerInfo::getFixedStack(SSFI),
5981                             false, false, 0);
5982        OpInfo.CallOperand = StackSlot;
5983      }
5984
5985      // There is no longer a Value* corresponding to this operand.
5986      OpInfo.CallOperandVal = 0;
5987
5988      // It is now an indirect operand.
5989      OpInfo.isIndirect = true;
5990    }
5991
5992    // If this constraint is for a specific register, allocate it before
5993    // anything else.
5994    if (OpInfo.ConstraintType == TargetLowering::C_Register)
5995      GetRegistersForValue(DAG, TLI, getCurDebugLoc(), OpInfo);
5996  }
5997
5998  // Second pass - Loop over all of the operands, assigning virtual or physregs
5999  // to register class operands.
6000  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
6001    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
6002
6003    // C_Register operands have already been allocated, Other/Memory don't need
6004    // to be.
6005    if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass)
6006      GetRegistersForValue(DAG, TLI, getCurDebugLoc(), OpInfo);
6007  }
6008
6009  // AsmNodeOperands - The operands for the ISD::INLINEASM node.
6010  std::vector<SDValue> AsmNodeOperands;
6011  AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
6012  AsmNodeOperands.push_back(
6013          DAG.getTargetExternalSymbol(IA->getAsmString().c_str(),
6014                                      TLI.getPointerTy()));
6015
6016  // If we have a !srcloc metadata node associated with it, we want to attach
6017  // this to the ultimately generated inline asm machineinstr.  To do this, we
6018  // pass in the third operand as this (potentially null) inline asm MDNode.
6019  const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc");
6020  AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
6021
6022  // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore
6023  // bits as operand 3.
6024  unsigned ExtraInfo = 0;
6025  if (IA->hasSideEffects())
6026    ExtraInfo |= InlineAsm::Extra_HasSideEffects;
6027  if (IA->isAlignStack())
6028    ExtraInfo |= InlineAsm::Extra_IsAlignStack;
6029  // Set the asm dialect.
6030  ExtraInfo |= IA->getDialect() * InlineAsm::Extra_AsmDialect;
6031
6032  // Determine if this InlineAsm MayLoad or MayStore based on the constraints.
6033  for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
6034    TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i];
6035
6036    // Compute the constraint code and ConstraintType to use.
6037    TLI.ComputeConstraintToUse(OpInfo, SDValue());
6038
6039    // Ideally, we would only check against memory constraints.  However, the
6040    // meaning of an other constraint can be target-specific and we can't easily
6041    // reason about it.  Therefore, be conservative and set MayLoad/MayStore
6042    // for other constriants as well.
6043    if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
6044        OpInfo.ConstraintType == TargetLowering::C_Other) {
6045      if (OpInfo.Type == InlineAsm::isInput)
6046        ExtraInfo |= InlineAsm::Extra_MayLoad;
6047      else if (OpInfo.Type == InlineAsm::isOutput)
6048        ExtraInfo |= InlineAsm::Extra_MayStore;
6049    }
6050  }
6051
6052  AsmNodeOperands.push_back(DAG.getTargetConstant(ExtraInfo,
6053                                                  TLI.getPointerTy()));
6054
6055  // Loop over all of the inputs, copying the operand values into the
6056  // appropriate registers and processing the output regs.
6057  RegsForValue RetValRegs;
6058
6059  // IndirectStoresToEmit - The set of stores to emit after the inline asm node.
6060  std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit;
6061
6062  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
6063    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
6064
6065    switch (OpInfo.Type) {
6066    case InlineAsm::isOutput: {
6067      if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass &&
6068          OpInfo.ConstraintType != TargetLowering::C_Register) {
6069        // Memory output, or 'other' output (e.g. 'X' constraint).
6070        assert(OpInfo.isIndirect && "Memory output must be indirect operand");
6071
6072        // Add information to the INLINEASM node to know about this output.
6073        unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
6074        AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags,
6075                                                        TLI.getPointerTy()));
6076        AsmNodeOperands.push_back(OpInfo.CallOperand);
6077        break;
6078      }
6079
6080      // Otherwise, this is a register or register class output.
6081
6082      // Copy the output from the appropriate register.  Find a register that
6083      // we can use.
6084      if (OpInfo.AssignedRegs.Regs.empty()) {
6085        LLVMContext &Ctx = *DAG.getContext();
6086        Ctx.emitError(CS.getInstruction(),
6087                      "couldn't allocate output register for constraint '" +
6088                           Twine(OpInfo.ConstraintCode) + "'");
6089        break;
6090      }
6091
6092      // If this is an indirect operand, store through the pointer after the
6093      // asm.
6094      if (OpInfo.isIndirect) {
6095        IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs,
6096                                                      OpInfo.CallOperandVal));
6097      } else {
6098        // This is the result value of the call.
6099        assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
6100        // Concatenate this output onto the outputs list.
6101        RetValRegs.append(OpInfo.AssignedRegs);
6102      }
6103
6104      // Add information to the INLINEASM node to know that this register is
6105      // set.
6106      OpInfo.AssignedRegs.AddInlineAsmOperands(OpInfo.isEarlyClobber ?
6107                                           InlineAsm::Kind_RegDefEarlyClobber :
6108                                               InlineAsm::Kind_RegDef,
6109                                               false,
6110                                               0,
6111                                               DAG,
6112                                               AsmNodeOperands);
6113      break;
6114    }
6115    case InlineAsm::isInput: {
6116      SDValue InOperandVal = OpInfo.CallOperand;
6117
6118      if (OpInfo.isMatchingInputConstraint()) {   // Matching constraint?
6119        // If this is required to match an output register we have already set,
6120        // just use its register.
6121        unsigned OperandNo = OpInfo.getMatchedOperand();
6122
6123        // Scan until we find the definition we already emitted of this operand.
6124        // When we find it, create a RegsForValue operand.
6125        unsigned CurOp = InlineAsm::Op_FirstOperand;
6126        for (; OperandNo; --OperandNo) {
6127          // Advance to the next operand.
6128          unsigned OpFlag =
6129            cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
6130          assert((InlineAsm::isRegDefKind(OpFlag) ||
6131                  InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||
6132                  InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?");
6133          CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1;
6134        }
6135
6136        unsigned OpFlag =
6137          cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
6138        if (InlineAsm::isRegDefKind(OpFlag) ||
6139            InlineAsm::isRegDefEarlyClobberKind(OpFlag)) {
6140          // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
6141          if (OpInfo.isIndirect) {
6142            // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
6143            LLVMContext &Ctx = *DAG.getContext();
6144            Ctx.emitError(CS.getInstruction(),  "inline asm not supported yet:"
6145                          " don't know how to handle tied "
6146                          "indirect register inputs");
6147          }
6148
6149          RegsForValue MatchedRegs;
6150          MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType());
6151          MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType();
6152          MatchedRegs.RegVTs.push_back(RegVT);
6153          MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo();
6154          for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag);
6155               i != e; ++i)
6156            MatchedRegs.Regs.push_back
6157              (RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT)));
6158
6159          // Use the produced MatchedRegs object to
6160          MatchedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(),
6161                                    Chain, &Flag, CS.getInstruction());
6162          MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse,
6163                                           true, OpInfo.getMatchedOperand(),
6164                                           DAG, AsmNodeOperands);
6165          break;
6166        }
6167
6168        assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!");
6169        assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 &&
6170               "Unexpected number of operands");
6171        // Add information to the INLINEASM node to know about this input.
6172        // See InlineAsm.h isUseOperandTiedToDef.
6173        OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
6174                                                    OpInfo.getMatchedOperand());
6175        AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlag,
6176                                                        TLI.getPointerTy()));
6177        AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
6178        break;
6179      }
6180
6181      // Treat indirect 'X' constraint as memory.
6182      if (OpInfo.ConstraintType == TargetLowering::C_Other &&
6183          OpInfo.isIndirect)
6184        OpInfo.ConstraintType = TargetLowering::C_Memory;
6185
6186      if (OpInfo.ConstraintType == TargetLowering::C_Other) {
6187        std::vector<SDValue> Ops;
6188        TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode,
6189                                         Ops, DAG);
6190        if (Ops.empty()) {
6191          LLVMContext &Ctx = *DAG.getContext();
6192          Ctx.emitError(CS.getInstruction(),
6193                        "invalid operand for inline asm constraint '" +
6194                        Twine(OpInfo.ConstraintCode) + "'");
6195          break;
6196        }
6197
6198        // Add information to the INLINEASM node to know about this input.
6199        unsigned ResOpType =
6200          InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
6201        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
6202                                                        TLI.getPointerTy()));
6203        AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
6204        break;
6205      }
6206
6207      if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
6208        assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
6209        assert(InOperandVal.getValueType() == TLI.getPointerTy() &&
6210               "Memory operands expect pointer values");
6211
6212        // Add information to the INLINEASM node to know about this input.
6213        unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
6214        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
6215                                                        TLI.getPointerTy()));
6216        AsmNodeOperands.push_back(InOperandVal);
6217        break;
6218      }
6219
6220      assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
6221              OpInfo.ConstraintType == TargetLowering::C_Register) &&
6222             "Unknown constraint type!");
6223
6224      // TODO: Support this.
6225      if (OpInfo.isIndirect) {
6226        LLVMContext &Ctx = *DAG.getContext();
6227        Ctx.emitError(CS.getInstruction(),
6228                      "Don't know how to handle indirect register inputs yet "
6229                      "for constraint '" + Twine(OpInfo.ConstraintCode) + "'");
6230        break;
6231      }
6232
6233      // Copy the input into the appropriate registers.
6234      if (OpInfo.AssignedRegs.Regs.empty()) {
6235        LLVMContext &Ctx = *DAG.getContext();
6236        Ctx.emitError(CS.getInstruction(),
6237                      "couldn't allocate input reg for constraint '" +
6238                           Twine(OpInfo.ConstraintCode) + "'");
6239        break;
6240      }
6241
6242      OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(),
6243                                        Chain, &Flag, CS.getInstruction());
6244
6245      OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0,
6246                                               DAG, AsmNodeOperands);
6247      break;
6248    }
6249    case InlineAsm::isClobber: {
6250      // Add the clobbered value to the operand list, so that the register
6251      // allocator is aware that the physreg got clobbered.
6252      if (!OpInfo.AssignedRegs.Regs.empty())
6253        OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber,
6254                                                 false, 0, DAG,
6255                                                 AsmNodeOperands);
6256      break;
6257    }
6258    }
6259  }
6260
6261  // Finish up input operands.  Set the input chain and add the flag last.
6262  AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
6263  if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
6264
6265  Chain = DAG.getNode(ISD::INLINEASM, getCurDebugLoc(),
6266                      DAG.getVTList(MVT::Other, MVT::Glue),
6267                      &AsmNodeOperands[0], AsmNodeOperands.size());
6268  Flag = Chain.getValue(1);
6269
6270  // If this asm returns a register value, copy the result from that register
6271  // and set it as the value of the call.
6272  if (!RetValRegs.Regs.empty()) {
6273    SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(),
6274                                             Chain, &Flag, CS.getInstruction());
6275
6276    // FIXME: Why don't we do this for inline asms with MRVs?
6277    if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) {
6278      EVT ResultType = TLI.getValueType(CS.getType());
6279
6280      // If any of the results of the inline asm is a vector, it may have the
6281      // wrong width/num elts.  This can happen for register classes that can
6282      // contain multiple different value types.  The preg or vreg allocated may
6283      // not have the same VT as was expected.  Convert it to the right type
6284      // with bit_convert.
6285      if (ResultType != Val.getValueType() && Val.getValueType().isVector()) {
6286        Val = DAG.getNode(ISD::BITCAST, getCurDebugLoc(),
6287                          ResultType, Val);
6288
6289      } else if (ResultType != Val.getValueType() &&
6290                 ResultType.isInteger() && Val.getValueType().isInteger()) {
6291        // If a result value was tied to an input value, the computed result may
6292        // have a wider width than the expected result.  Extract the relevant
6293        // portion.
6294        Val = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), ResultType, Val);
6295      }
6296
6297      assert(ResultType == Val.getValueType() && "Asm result value mismatch!");
6298    }
6299
6300    setValue(CS.getInstruction(), Val);
6301    // Don't need to use this as a chain in this case.
6302    if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty())
6303      return;
6304  }
6305
6306  std::vector<std::pair<SDValue, const Value *> > StoresToEmit;
6307
6308  // Process indirect outputs, first output all of the flagged copies out of
6309  // physregs.
6310  for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
6311    RegsForValue &OutRegs = IndirectStoresToEmit[i].first;
6312    const Value *Ptr = IndirectStoresToEmit[i].second;
6313    SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(),
6314                                             Chain, &Flag, IA);
6315    StoresToEmit.push_back(std::make_pair(OutVal, Ptr));
6316  }
6317
6318  // Emit the non-flagged stores from the physregs.
6319  SmallVector<SDValue, 8> OutChains;
6320  for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) {
6321    SDValue Val = DAG.getStore(Chain, getCurDebugLoc(),
6322                               StoresToEmit[i].first,
6323                               getValue(StoresToEmit[i].second),
6324                               MachinePointerInfo(StoresToEmit[i].second),
6325                               false, false, 0);
6326    OutChains.push_back(Val);
6327  }
6328
6329  if (!OutChains.empty())
6330    Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
6331                        &OutChains[0], OutChains.size());
6332
6333  DAG.setRoot(Chain);
6334}
6335
6336void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
6337  DAG.setRoot(DAG.getNode(ISD::VASTART, getCurDebugLoc(),
6338                          MVT::Other, getRoot(),
6339                          getValue(I.getArgOperand(0)),
6340                          DAG.getSrcValue(I.getArgOperand(0))));
6341}
6342
6343void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
6344  const DataLayout &TD = *TLI.getDataLayout();
6345  SDValue V = DAG.getVAArg(TLI.getValueType(I.getType()), getCurDebugLoc(),
6346                           getRoot(), getValue(I.getOperand(0)),
6347                           DAG.getSrcValue(I.getOperand(0)),
6348                           TD.getABITypeAlignment(I.getType()));
6349  setValue(&I, V);
6350  DAG.setRoot(V.getValue(1));
6351}
6352
6353void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
6354  DAG.setRoot(DAG.getNode(ISD::VAEND, getCurDebugLoc(),
6355                          MVT::Other, getRoot(),
6356                          getValue(I.getArgOperand(0)),
6357                          DAG.getSrcValue(I.getArgOperand(0))));
6358}
6359
6360void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
6361  DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurDebugLoc(),
6362                          MVT::Other, getRoot(),
6363                          getValue(I.getArgOperand(0)),
6364                          getValue(I.getArgOperand(1)),
6365                          DAG.getSrcValue(I.getArgOperand(0)),
6366                          DAG.getSrcValue(I.getArgOperand(1))));
6367}
6368
6369/// TargetLowering::LowerCallTo - This is the default LowerCallTo
6370/// implementation, which just calls LowerCall.
6371/// FIXME: When all targets are
6372/// migrated to using LowerCall, this hook should be integrated into SDISel.
6373std::pair<SDValue, SDValue>
6374TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const {
6375  // Handle all of the outgoing arguments.
6376  CLI.Outs.clear();
6377  CLI.OutVals.clear();
6378  ArgListTy &Args = CLI.Args;
6379  for (unsigned i = 0, e = Args.size(); i != e; ++i) {
6380    SmallVector<EVT, 4> ValueVTs;
6381    ComputeValueVTs(*this, Args[i].Ty, ValueVTs);
6382    for (unsigned Value = 0, NumValues = ValueVTs.size();
6383         Value != NumValues; ++Value) {
6384      EVT VT = ValueVTs[Value];
6385      Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext());
6386      SDValue Op = SDValue(Args[i].Node.getNode(),
6387                           Args[i].Node.getResNo() + Value);
6388      ISD::ArgFlagsTy Flags;
6389      unsigned OriginalAlignment =
6390        getDataLayout()->getABITypeAlignment(ArgTy);
6391
6392      if (Args[i].isZExt)
6393        Flags.setZExt();
6394      if (Args[i].isSExt)
6395        Flags.setSExt();
6396      if (Args[i].isInReg)
6397        Flags.setInReg();
6398      if (Args[i].isSRet)
6399        Flags.setSRet();
6400      if (Args[i].isByVal) {
6401        Flags.setByVal();
6402        PointerType *Ty = cast<PointerType>(Args[i].Ty);
6403        Type *ElementTy = Ty->getElementType();
6404        Flags.setByValSize(getDataLayout()->getTypeAllocSize(ElementTy));
6405        // For ByVal, alignment should come from FE.  BE will guess if this
6406        // info is not there but there are cases it cannot get right.
6407        unsigned FrameAlign;
6408        if (Args[i].Alignment)
6409          FrameAlign = Args[i].Alignment;
6410        else
6411          FrameAlign = getByValTypeAlignment(ElementTy);
6412        Flags.setByValAlign(FrameAlign);
6413      }
6414      if (Args[i].isNest)
6415        Flags.setNest();
6416      Flags.setOrigAlign(OriginalAlignment);
6417
6418      MVT PartVT = getRegisterType(CLI.RetTy->getContext(), VT);
6419      unsigned NumParts = getNumRegisters(CLI.RetTy->getContext(), VT);
6420      SmallVector<SDValue, 4> Parts(NumParts);
6421      ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
6422
6423      if (Args[i].isSExt)
6424        ExtendKind = ISD::SIGN_EXTEND;
6425      else if (Args[i].isZExt)
6426        ExtendKind = ISD::ZERO_EXTEND;
6427
6428      getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts,
6429                     PartVT, CLI.CS ? CLI.CS->getInstruction() : 0, ExtendKind);
6430
6431      for (unsigned j = 0; j != NumParts; ++j) {
6432        // if it isn't first piece, alignment must be 1
6433        ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(),
6434                               i < CLI.NumFixedArgs,
6435                               i, j*Parts[j].getValueType().getStoreSize());
6436        if (NumParts > 1 && j == 0)
6437          MyFlags.Flags.setSplit();
6438        else if (j != 0)
6439          MyFlags.Flags.setOrigAlign(1);
6440
6441        CLI.Outs.push_back(MyFlags);
6442        CLI.OutVals.push_back(Parts[j]);
6443      }
6444    }
6445  }
6446
6447  // Handle the incoming return values from the call.
6448  CLI.Ins.clear();
6449  SmallVector<EVT, 4> RetTys;
6450  ComputeValueVTs(*this, CLI.RetTy, RetTys);
6451  for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
6452    EVT VT = RetTys[I];
6453    MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT);
6454    unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT);
6455    for (unsigned i = 0; i != NumRegs; ++i) {
6456      ISD::InputArg MyFlags;
6457      MyFlags.VT = RegisterVT;
6458      MyFlags.Used = CLI.IsReturnValueUsed;
6459      if (CLI.RetSExt)
6460        MyFlags.Flags.setSExt();
6461      if (CLI.RetZExt)
6462        MyFlags.Flags.setZExt();
6463      if (CLI.IsInReg)
6464        MyFlags.Flags.setInReg();
6465      CLI.Ins.push_back(MyFlags);
6466    }
6467  }
6468
6469  SmallVector<SDValue, 4> InVals;
6470  CLI.Chain = LowerCall(CLI, InVals);
6471
6472  // Verify that the target's LowerCall behaved as expected.
6473  assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other &&
6474         "LowerCall didn't return a valid chain!");
6475  assert((!CLI.IsTailCall || InVals.empty()) &&
6476         "LowerCall emitted a return value for a tail call!");
6477  assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) &&
6478         "LowerCall didn't emit the correct number of values!");
6479
6480  // For a tail call, the return value is merely live-out and there aren't
6481  // any nodes in the DAG representing it. Return a special value to
6482  // indicate that a tail call has been emitted and no more Instructions
6483  // should be processed in the current block.
6484  if (CLI.IsTailCall) {
6485    CLI.DAG.setRoot(CLI.Chain);
6486    return std::make_pair(SDValue(), SDValue());
6487  }
6488
6489  DEBUG(for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) {
6490          assert(InVals[i].getNode() &&
6491                 "LowerCall emitted a null value!");
6492          assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() &&
6493                 "LowerCall emitted a value with the wrong type!");
6494        });
6495
6496  // Collect the legal value parts into potentially illegal values
6497  // that correspond to the original function's return values.
6498  ISD::NodeType AssertOp = ISD::DELETED_NODE;
6499  if (CLI.RetSExt)
6500    AssertOp = ISD::AssertSext;
6501  else if (CLI.RetZExt)
6502    AssertOp = ISD::AssertZext;
6503  SmallVector<SDValue, 4> ReturnValues;
6504  unsigned CurReg = 0;
6505  for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
6506    EVT VT = RetTys[I];
6507    MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT);
6508    unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT);
6509
6510    ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg],
6511                                            NumRegs, RegisterVT, VT, NULL,
6512                                            AssertOp));
6513    CurReg += NumRegs;
6514  }
6515
6516  // For a function returning void, there is no return value. We can't create
6517  // such a node, so we just return a null return value in that case. In
6518  // that case, nothing will actually look at the value.
6519  if (ReturnValues.empty())
6520    return std::make_pair(SDValue(), CLI.Chain);
6521
6522  SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL,
6523                                CLI.DAG.getVTList(&RetTys[0], RetTys.size()),
6524                            &ReturnValues[0], ReturnValues.size());
6525  return std::make_pair(Res, CLI.Chain);
6526}
6527
6528void TargetLowering::LowerOperationWrapper(SDNode *N,
6529                                           SmallVectorImpl<SDValue> &Results,
6530                                           SelectionDAG &DAG) const {
6531  SDValue Res = LowerOperation(SDValue(N, 0), DAG);
6532  if (Res.getNode())
6533    Results.push_back(Res);
6534}
6535
6536SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
6537  llvm_unreachable("LowerOperation not implemented for this target!");
6538}
6539
6540void
6541SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) {
6542  SDValue Op = getNonRegisterValue(V);
6543  assert((Op.getOpcode() != ISD::CopyFromReg ||
6544          cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
6545         "Copy from a reg to the same reg!");
6546  assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg");
6547
6548  RegsForValue RFV(V->getContext(), TLI, Reg, V->getType());
6549  SDValue Chain = DAG.getEntryNode();
6550  RFV.getCopyToRegs(Op, DAG, getCurDebugLoc(), Chain, 0, V);
6551  PendingExports.push_back(Chain);
6552}
6553
6554#include "llvm/CodeGen/SelectionDAGISel.h"
6555
6556/// isOnlyUsedInEntryBlock - If the specified argument is only used in the
6557/// entry block, return true.  This includes arguments used by switches, since
6558/// the switch may expand into multiple basic blocks.
6559static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) {
6560  // With FastISel active, we may be splitting blocks, so force creation
6561  // of virtual registers for all non-dead arguments.
6562  if (FastISel)
6563    return A->use_empty();
6564
6565  const BasicBlock *Entry = A->getParent()->begin();
6566  for (Value::const_use_iterator UI = A->use_begin(), E = A->use_end();
6567       UI != E; ++UI) {
6568    const User *U = *UI;
6569    if (cast<Instruction>(U)->getParent() != Entry || isa<SwitchInst>(U))
6570      return false;  // Use not in entry block.
6571  }
6572  return true;
6573}
6574
6575void SelectionDAGISel::LowerArguments(const BasicBlock *LLVMBB) {
6576  // If this is the entry block, emit arguments.
6577  const Function &F = *LLVMBB->getParent();
6578  SelectionDAG &DAG = SDB->DAG;
6579  DebugLoc dl = SDB->getCurDebugLoc();
6580  const DataLayout *TD = TLI.getDataLayout();
6581  SmallVector<ISD::InputArg, 16> Ins;
6582
6583  // Check whether the function can return without sret-demotion.
6584  SmallVector<ISD::OutputArg, 4> Outs;
6585  GetReturnInfo(F.getReturnType(), F.getAttributes().getRetAttributes(),
6586                Outs, TLI);
6587
6588  if (!FuncInfo->CanLowerReturn) {
6589    // Put in an sret pointer parameter before all the other parameters.
6590    SmallVector<EVT, 1> ValueVTs;
6591    ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs);
6592
6593    // NOTE: Assuming that a pointer will never break down to more than one VT
6594    // or one register.
6595    ISD::ArgFlagsTy Flags;
6596    Flags.setSRet();
6597    MVT RegisterVT = TLI.getRegisterType(*DAG.getContext(), ValueVTs[0]);
6598    ISD::InputArg RetArg(Flags, RegisterVT, true, 0, 0);
6599    Ins.push_back(RetArg);
6600  }
6601
6602  // Set up the incoming argument description vector.
6603  unsigned Idx = 1;
6604  for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end();
6605       I != E; ++I, ++Idx) {
6606    SmallVector<EVT, 4> ValueVTs;
6607    ComputeValueVTs(TLI, I->getType(), ValueVTs);
6608    bool isArgValueUsed = !I->use_empty();
6609    for (unsigned Value = 0, NumValues = ValueVTs.size();
6610         Value != NumValues; ++Value) {
6611      EVT VT = ValueVTs[Value];
6612      Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
6613      ISD::ArgFlagsTy Flags;
6614      unsigned OriginalAlignment =
6615        TD->getABITypeAlignment(ArgTy);
6616
6617      if (F.getParamAttributes(Idx).hasAttribute(Attribute::ZExt))
6618        Flags.setZExt();
6619      if (F.getParamAttributes(Idx).hasAttribute(Attribute::SExt))
6620        Flags.setSExt();
6621      if (F.getParamAttributes(Idx).hasAttribute(Attribute::InReg))
6622        Flags.setInReg();
6623      if (F.getParamAttributes(Idx).hasAttribute(Attribute::StructRet))
6624        Flags.setSRet();
6625      if (F.getParamAttributes(Idx).hasAttribute(Attribute::ByVal)) {
6626        Flags.setByVal();
6627        PointerType *Ty = cast<PointerType>(I->getType());
6628        Type *ElementTy = Ty->getElementType();
6629        Flags.setByValSize(TD->getTypeAllocSize(ElementTy));
6630        // For ByVal, alignment should be passed from FE.  BE will guess if
6631        // this info is not there but there are cases it cannot get right.
6632        unsigned FrameAlign;
6633        if (F.getParamAlignment(Idx))
6634          FrameAlign = F.getParamAlignment(Idx);
6635        else
6636          FrameAlign = TLI.getByValTypeAlignment(ElementTy);
6637        Flags.setByValAlign(FrameAlign);
6638      }
6639      if (F.getParamAttributes(Idx).hasAttribute(Attribute::Nest))
6640        Flags.setNest();
6641      Flags.setOrigAlign(OriginalAlignment);
6642
6643      MVT RegisterVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
6644      unsigned NumRegs = TLI.getNumRegisters(*CurDAG->getContext(), VT);
6645      for (unsigned i = 0; i != NumRegs; ++i) {
6646        ISD::InputArg MyFlags(Flags, RegisterVT, isArgValueUsed,
6647                              Idx-1, i*RegisterVT.getStoreSize());
6648        if (NumRegs > 1 && i == 0)
6649          MyFlags.Flags.setSplit();
6650        // if it isn't first piece, alignment must be 1
6651        else if (i > 0)
6652          MyFlags.Flags.setOrigAlign(1);
6653        Ins.push_back(MyFlags);
6654      }
6655    }
6656  }
6657
6658  // Call the target to set up the argument values.
6659  SmallVector<SDValue, 8> InVals;
6660  SDValue NewRoot = TLI.LowerFormalArguments(DAG.getRoot(), F.getCallingConv(),
6661                                             F.isVarArg(), Ins,
6662                                             dl, DAG, InVals);
6663
6664  // Verify that the target's LowerFormalArguments behaved as expected.
6665  assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
6666         "LowerFormalArguments didn't return a valid chain!");
6667  assert(InVals.size() == Ins.size() &&
6668         "LowerFormalArguments didn't emit the correct number of values!");
6669  DEBUG({
6670      for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
6671        assert(InVals[i].getNode() &&
6672               "LowerFormalArguments emitted a null value!");
6673        assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
6674               "LowerFormalArguments emitted a value with the wrong type!");
6675      }
6676    });
6677
6678  // Update the DAG with the new chain value resulting from argument lowering.
6679  DAG.setRoot(NewRoot);
6680
6681  // Set up the argument values.
6682  unsigned i = 0;
6683  Idx = 1;
6684  if (!FuncInfo->CanLowerReturn) {
6685    // Create a virtual register for the sret pointer, and put in a copy
6686    // from the sret argument into it.
6687    SmallVector<EVT, 1> ValueVTs;
6688    ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs);
6689    MVT VT = ValueVTs[0].getSimpleVT();
6690    MVT RegVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
6691    ISD::NodeType AssertOp = ISD::DELETED_NODE;
6692    SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1,
6693                                        RegVT, VT, NULL, AssertOp);
6694
6695    MachineFunction& MF = SDB->DAG.getMachineFunction();
6696    MachineRegisterInfo& RegInfo = MF.getRegInfo();
6697    unsigned SRetReg = RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT));
6698    FuncInfo->DemoteRegister = SRetReg;
6699    NewRoot = SDB->DAG.getCopyToReg(NewRoot, SDB->getCurDebugLoc(),
6700                                    SRetReg, ArgValue);
6701    DAG.setRoot(NewRoot);
6702
6703    // i indexes lowered arguments.  Bump it past the hidden sret argument.
6704    // Idx indexes LLVM arguments.  Don't touch it.
6705    ++i;
6706  }
6707
6708  for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E;
6709      ++I, ++Idx) {
6710    SmallVector<SDValue, 4> ArgValues;
6711    SmallVector<EVT, 4> ValueVTs;
6712    ComputeValueVTs(TLI, I->getType(), ValueVTs);
6713    unsigned NumValues = ValueVTs.size();
6714
6715    // If this argument is unused then remember its value. It is used to generate
6716    // debugging information.
6717    if (I->use_empty() && NumValues)
6718      SDB->setUnusedArgValue(I, InVals[i]);
6719
6720    for (unsigned Val = 0; Val != NumValues; ++Val) {
6721      EVT VT = ValueVTs[Val];
6722      MVT PartVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
6723      unsigned NumParts = TLI.getNumRegisters(*CurDAG->getContext(), VT);
6724
6725      if (!I->use_empty()) {
6726        ISD::NodeType AssertOp = ISD::DELETED_NODE;
6727        if (F.getParamAttributes(Idx).hasAttribute(Attribute::SExt))
6728          AssertOp = ISD::AssertSext;
6729        else if (F.getParamAttributes(Idx).hasAttribute(Attribute::ZExt))
6730          AssertOp = ISD::AssertZext;
6731
6732        ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i],
6733                                             NumParts, PartVT, VT,
6734                                             NULL, AssertOp));
6735      }
6736
6737      i += NumParts;
6738    }
6739
6740    // We don't need to do anything else for unused arguments.
6741    if (ArgValues.empty())
6742      continue;
6743
6744    // Note down frame index.
6745    if (FrameIndexSDNode *FI =
6746        dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
6747      FuncInfo->setArgumentFrameIndex(I, FI->getIndex());
6748
6749    SDValue Res = DAG.getMergeValues(&ArgValues[0], NumValues,
6750                                     SDB->getCurDebugLoc());
6751
6752    SDB->setValue(I, Res);
6753    if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) {
6754      if (LoadSDNode *LNode =
6755          dyn_cast<LoadSDNode>(Res.getOperand(0).getNode()))
6756        if (FrameIndexSDNode *FI =
6757            dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
6758        FuncInfo->setArgumentFrameIndex(I, FI->getIndex());
6759    }
6760
6761    // If this argument is live outside of the entry block, insert a copy from
6762    // wherever we got it to the vreg that other BB's will reference it as.
6763    if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) {
6764      // If we can, though, try to skip creating an unnecessary vreg.
6765      // FIXME: This isn't very clean... it would be nice to make this more
6766      // general.  It's also subtly incompatible with the hacks FastISel
6767      // uses with vregs.
6768      unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
6769      if (TargetRegisterInfo::isVirtualRegister(Reg)) {
6770        FuncInfo->ValueMap[I] = Reg;
6771        continue;
6772      }
6773    }
6774    if (!isOnlyUsedInEntryBlock(I, TM.Options.EnableFastISel)) {
6775      FuncInfo->InitializeRegForValue(I);
6776      SDB->CopyToExportRegsIfNeeded(I);
6777    }
6778  }
6779
6780  assert(i == InVals.size() && "Argument register count mismatch!");
6781
6782  // Finally, if the target has anything special to do, allow it to do so.
6783  // FIXME: this should insert code into the DAG!
6784  EmitFunctionEntryCode();
6785}
6786
6787/// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
6788/// ensure constants are generated when needed.  Remember the virtual registers
6789/// that need to be added to the Machine PHI nodes as input.  We cannot just
6790/// directly add them, because expansion might result in multiple MBB's for one
6791/// BB.  As such, the start of the BB might correspond to a different MBB than
6792/// the end.
6793///
6794void
6795SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
6796  const TerminatorInst *TI = LLVMBB->getTerminator();
6797
6798  SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
6799
6800  // Check successor nodes' PHI nodes that expect a constant to be available
6801  // from this block.
6802  for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
6803    const BasicBlock *SuccBB = TI->getSuccessor(succ);
6804    if (!isa<PHINode>(SuccBB->begin())) continue;
6805    MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
6806
6807    // If this terminator has multiple identical successors (common for
6808    // switches), only handle each succ once.
6809    if (!SuccsHandled.insert(SuccMBB)) continue;
6810
6811    MachineBasicBlock::iterator MBBI = SuccMBB->begin();
6812
6813    // At this point we know that there is a 1-1 correspondence between LLVM PHI
6814    // nodes and Machine PHI nodes, but the incoming operands have not been
6815    // emitted yet.
6816    for (BasicBlock::const_iterator I = SuccBB->begin();
6817         const PHINode *PN = dyn_cast<PHINode>(I); ++I) {
6818      // Ignore dead phi's.
6819      if (PN->use_empty()) continue;
6820
6821      // Skip empty types
6822      if (PN->getType()->isEmptyTy())
6823        continue;
6824
6825      unsigned Reg;
6826      const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
6827
6828      if (const Constant *C = dyn_cast<Constant>(PHIOp)) {
6829        unsigned &RegOut = ConstantsOut[C];
6830        if (RegOut == 0) {
6831          RegOut = FuncInfo.CreateRegs(C->getType());
6832          CopyValueToVirtualRegister(C, RegOut);
6833        }
6834        Reg = RegOut;
6835      } else {
6836        DenseMap<const Value *, unsigned>::iterator I =
6837          FuncInfo.ValueMap.find(PHIOp);
6838        if (I != FuncInfo.ValueMap.end())
6839          Reg = I->second;
6840        else {
6841          assert(isa<AllocaInst>(PHIOp) &&
6842                 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
6843                 "Didn't codegen value into a register!??");
6844          Reg = FuncInfo.CreateRegs(PHIOp->getType());
6845          CopyValueToVirtualRegister(PHIOp, Reg);
6846        }
6847      }
6848
6849      // Remember that this register needs to added to the machine PHI node as
6850      // the input for this MBB.
6851      SmallVector<EVT, 4> ValueVTs;
6852      ComputeValueVTs(TLI, PN->getType(), ValueVTs);
6853      for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
6854        EVT VT = ValueVTs[vti];
6855        unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
6856        for (unsigned i = 0, e = NumRegisters; i != e; ++i)
6857          FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i));
6858        Reg += NumRegisters;
6859      }
6860    }
6861  }
6862  ConstantsOut.clear();
6863}
6864