SelectionDAGBuilder.cpp revision c187df2198bc6e2b038fa2d75af974644874d26f
1//===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements routines for translating from LLVM IR into SelectionDAG IR.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "isel"
15#include "SDNodeDbgValue.h"
16#include "SelectionDAGBuilder.h"
17#include "llvm/ADT/BitVector.h"
18#include "llvm/ADT/PostOrderIterator.h"
19#include "llvm/ADT/SmallSet.h"
20#include "llvm/Analysis/AliasAnalysis.h"
21#include "llvm/Analysis/ConstantFolding.h"
22#include "llvm/Constants.h"
23#include "llvm/CallingConv.h"
24#include "llvm/DerivedTypes.h"
25#include "llvm/Function.h"
26#include "llvm/GlobalVariable.h"
27#include "llvm/InlineAsm.h"
28#include "llvm/Instructions.h"
29#include "llvm/Intrinsics.h"
30#include "llvm/IntrinsicInst.h"
31#include "llvm/LLVMContext.h"
32#include "llvm/Module.h"
33#include "llvm/CodeGen/Analysis.h"
34#include "llvm/CodeGen/FastISel.h"
35#include "llvm/CodeGen/FunctionLoweringInfo.h"
36#include "llvm/CodeGen/GCStrategy.h"
37#include "llvm/CodeGen/GCMetadata.h"
38#include "llvm/CodeGen/MachineFunction.h"
39#include "llvm/CodeGen/MachineFrameInfo.h"
40#include "llvm/CodeGen/MachineInstrBuilder.h"
41#include "llvm/CodeGen/MachineJumpTableInfo.h"
42#include "llvm/CodeGen/MachineModuleInfo.h"
43#include "llvm/CodeGen/MachineRegisterInfo.h"
44#include "llvm/CodeGen/SelectionDAG.h"
45#include "llvm/Analysis/DebugInfo.h"
46#include "llvm/Target/TargetData.h"
47#include "llvm/Target/TargetFrameLowering.h"
48#include "llvm/Target/TargetInstrInfo.h"
49#include "llvm/Target/TargetIntrinsicInfo.h"
50#include "llvm/Target/TargetLibraryInfo.h"
51#include "llvm/Target/TargetLowering.h"
52#include "llvm/Target/TargetOptions.h"
53#include "llvm/Support/CommandLine.h"
54#include "llvm/Support/Debug.h"
55#include "llvm/Support/ErrorHandling.h"
56#include "llvm/Support/MathExtras.h"
57#include "llvm/Support/raw_ostream.h"
58#include <algorithm>
59using namespace llvm;
60
61/// LimitFloatPrecision - Generate low-precision inline sequences for
62/// some float libcalls (6, 8 or 12 bits).
63static unsigned LimitFloatPrecision;
64
65static cl::opt<unsigned, true>
66LimitFPPrecision("limit-float-precision",
67                 cl::desc("Generate low-precision inline sequences "
68                          "for some float libcalls"),
69                 cl::location(LimitFloatPrecision),
70                 cl::init(0));
71
72// Limit the width of DAG chains. This is important in general to prevent
73// prevent DAG-based analysis from blowing up. For example, alias analysis and
74// load clustering may not complete in reasonable time. It is difficult to
75// recognize and avoid this situation within each individual analysis, and
76// future analyses are likely to have the same behavior. Limiting DAG width is
77// the safe approach, and will be especially important with global DAGs.
78//
79// MaxParallelChains default is arbitrarily high to avoid affecting
80// optimization, but could be lowered to improve compile time. Any ld-ld-st-st
81// sequence over this should have been converted to llvm.memcpy by the
82// frontend. It easy to induce this behavior with .ll code such as:
83// %buffer = alloca [4096 x i8]
84// %data = load [4096 x i8]* %argPtr
85// store [4096 x i8] %data, [4096 x i8]* %buffer
86static const unsigned MaxParallelChains = 64;
87
88static SDValue getCopyFromPartsVector(SelectionDAG &DAG, DebugLoc DL,
89                                      const SDValue *Parts, unsigned NumParts,
90                                      EVT PartVT, EVT ValueVT);
91
92/// getCopyFromParts - Create a value that contains the specified legal parts
93/// combined into the value they represent.  If the parts combine to a type
94/// larger then ValueVT then AssertOp can be used to specify whether the extra
95/// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
96/// (ISD::AssertSext).
97static SDValue getCopyFromParts(SelectionDAG &DAG, DebugLoc DL,
98                                const SDValue *Parts,
99                                unsigned NumParts, EVT PartVT, EVT ValueVT,
100                                ISD::NodeType AssertOp = ISD::DELETED_NODE) {
101  if (ValueVT.isVector())
102    return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT);
103
104  assert(NumParts > 0 && "No parts to assemble!");
105  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
106  SDValue Val = Parts[0];
107
108  if (NumParts > 1) {
109    // Assemble the value from multiple parts.
110    if (ValueVT.isInteger()) {
111      unsigned PartBits = PartVT.getSizeInBits();
112      unsigned ValueBits = ValueVT.getSizeInBits();
113
114      // Assemble the power of 2 part.
115      unsigned RoundParts = NumParts & (NumParts - 1) ?
116        1 << Log2_32(NumParts) : NumParts;
117      unsigned RoundBits = PartBits * RoundParts;
118      EVT RoundVT = RoundBits == ValueBits ?
119        ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
120      SDValue Lo, Hi;
121
122      EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
123
124      if (RoundParts > 2) {
125        Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2,
126                              PartVT, HalfVT);
127        Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2,
128                              RoundParts / 2, PartVT, HalfVT);
129      } else {
130        Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
131        Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
132      }
133
134      if (TLI.isBigEndian())
135        std::swap(Lo, Hi);
136
137      Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
138
139      if (RoundParts < NumParts) {
140        // Assemble the trailing non-power-of-2 part.
141        unsigned OddParts = NumParts - RoundParts;
142        EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
143        Hi = getCopyFromParts(DAG, DL,
144                              Parts + RoundParts, OddParts, PartVT, OddVT);
145
146        // Combine the round and odd parts.
147        Lo = Val;
148        if (TLI.isBigEndian())
149          std::swap(Lo, Hi);
150        EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
151        Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
152        Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
153                         DAG.getConstant(Lo.getValueType().getSizeInBits(),
154                                         TLI.getPointerTy()));
155        Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
156        Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
157      }
158    } else if (PartVT.isFloatingPoint()) {
159      // FP split into multiple FP parts (for ppcf128)
160      assert(ValueVT == EVT(MVT::ppcf128) && PartVT == EVT(MVT::f64) &&
161             "Unexpected split");
162      SDValue Lo, Hi;
163      Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
164      Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
165      if (TLI.isBigEndian())
166        std::swap(Lo, Hi);
167      Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
168    } else {
169      // FP split into integer parts (soft fp)
170      assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
171             !PartVT.isVector() && "Unexpected split");
172      EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
173      Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT);
174    }
175  }
176
177  // There is now one part, held in Val.  Correct it to match ValueVT.
178  PartVT = Val.getValueType();
179
180  if (PartVT == ValueVT)
181    return Val;
182
183  if (PartVT.isInteger() && ValueVT.isInteger()) {
184    if (ValueVT.bitsLT(PartVT)) {
185      // For a truncate, see if we have any information to
186      // indicate whether the truncated bits will always be
187      // zero or sign-extension.
188      if (AssertOp != ISD::DELETED_NODE)
189        Val = DAG.getNode(AssertOp, DL, PartVT, Val,
190                          DAG.getValueType(ValueVT));
191      return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
192    }
193    return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
194  }
195
196  if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
197    // FP_ROUND's are always exact here.
198    if (ValueVT.bitsLT(Val.getValueType()))
199      return DAG.getNode(ISD::FP_ROUND, DL, ValueVT, Val,
200                         DAG.getTargetConstant(1, TLI.getPointerTy()));
201
202    return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
203  }
204
205  if (PartVT.getSizeInBits() == ValueVT.getSizeInBits())
206    return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
207
208  llvm_unreachable("Unknown mismatch!");
209}
210
211/// getCopyFromParts - Create a value that contains the specified legal parts
212/// combined into the value they represent.  If the parts combine to a type
213/// larger then ValueVT then AssertOp can be used to specify whether the extra
214/// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
215/// (ISD::AssertSext).
216static SDValue getCopyFromPartsVector(SelectionDAG &DAG, DebugLoc DL,
217                                      const SDValue *Parts, unsigned NumParts,
218                                      EVT PartVT, EVT ValueVT) {
219  assert(ValueVT.isVector() && "Not a vector value");
220  assert(NumParts > 0 && "No parts to assemble!");
221  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
222  SDValue Val = Parts[0];
223
224  // Handle a multi-element vector.
225  if (NumParts > 1) {
226    EVT IntermediateVT, RegisterVT;
227    unsigned NumIntermediates;
228    unsigned NumRegs =
229    TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
230                               NumIntermediates, RegisterVT);
231    assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
232    NumParts = NumRegs; // Silence a compiler warning.
233    assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
234    assert(RegisterVT == Parts[0].getValueType() &&
235           "Part type doesn't match part!");
236
237    // Assemble the parts into intermediate operands.
238    SmallVector<SDValue, 8> Ops(NumIntermediates);
239    if (NumIntermediates == NumParts) {
240      // If the register was not expanded, truncate or copy the value,
241      // as appropriate.
242      for (unsigned i = 0; i != NumParts; ++i)
243        Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1,
244                                  PartVT, IntermediateVT);
245    } else if (NumParts > 0) {
246      // If the intermediate type was expanded, build the intermediate
247      // operands from the parts.
248      assert(NumParts % NumIntermediates == 0 &&
249             "Must expand into a divisible number of parts!");
250      unsigned Factor = NumParts / NumIntermediates;
251      for (unsigned i = 0; i != NumIntermediates; ++i)
252        Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor,
253                                  PartVT, IntermediateVT);
254    }
255
256    // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
257    // intermediate operands.
258    Val = DAG.getNode(IntermediateVT.isVector() ?
259                      ISD::CONCAT_VECTORS : ISD::BUILD_VECTOR, DL,
260                      ValueVT, &Ops[0], NumIntermediates);
261  }
262
263  // There is now one part, held in Val.  Correct it to match ValueVT.
264  PartVT = Val.getValueType();
265
266  if (PartVT == ValueVT)
267    return Val;
268
269  if (PartVT.isVector()) {
270    // If the element type of the source/dest vectors are the same, but the
271    // parts vector has more elements than the value vector, then we have a
272    // vector widening case (e.g. <2 x float> -> <4 x float>).  Extract the
273    // elements we want.
274    if (PartVT.getVectorElementType() == ValueVT.getVectorElementType()) {
275      assert(PartVT.getVectorNumElements() > ValueVT.getVectorNumElements() &&
276             "Cannot narrow, it would be a lossy transformation");
277      return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
278                         DAG.getIntPtrConstant(0));
279    }
280
281    // Vector/Vector bitcast.
282    if (ValueVT.getSizeInBits() == PartVT.getSizeInBits())
283      return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
284
285    assert(PartVT.getVectorNumElements() == ValueVT.getVectorNumElements() &&
286      "Cannot handle this kind of promotion");
287    // Promoted vector extract
288    bool Smaller = ValueVT.bitsLE(PartVT);
289    return DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
290                       DL, ValueVT, Val);
291
292  }
293
294  // Trivial bitcast if the types are the same size and the destination
295  // vector type is legal.
296  if (PartVT.getSizeInBits() == ValueVT.getSizeInBits() &&
297      TLI.isTypeLegal(ValueVT))
298    return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
299
300  // Handle cases such as i8 -> <1 x i1>
301  assert(ValueVT.getVectorNumElements() == 1 &&
302         "Only trivial scalar-to-vector conversions should get here!");
303
304  if (ValueVT.getVectorNumElements() == 1 &&
305      ValueVT.getVectorElementType() != PartVT) {
306    bool Smaller = ValueVT.bitsLE(PartVT);
307    Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
308                       DL, ValueVT.getScalarType(), Val);
309  }
310
311  return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val);
312}
313
314
315
316
317static void getCopyToPartsVector(SelectionDAG &DAG, DebugLoc dl,
318                                 SDValue Val, SDValue *Parts, unsigned NumParts,
319                                 EVT PartVT);
320
321/// getCopyToParts - Create a series of nodes that contain the specified value
322/// split into legal parts.  If the parts contain more bits than Val, then, for
323/// integers, ExtendKind can be used to specify how to generate the extra bits.
324static void getCopyToParts(SelectionDAG &DAG, DebugLoc DL,
325                           SDValue Val, SDValue *Parts, unsigned NumParts,
326                           EVT PartVT,
327                           ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
328  EVT ValueVT = Val.getValueType();
329
330  // Handle the vector case separately.
331  if (ValueVT.isVector())
332    return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT);
333
334  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
335  unsigned PartBits = PartVT.getSizeInBits();
336  unsigned OrigNumParts = NumParts;
337  assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!");
338
339  if (NumParts == 0)
340    return;
341
342  assert(!ValueVT.isVector() && "Vector case handled elsewhere");
343  if (PartVT == ValueVT) {
344    assert(NumParts == 1 && "No-op copy with multiple parts!");
345    Parts[0] = Val;
346    return;
347  }
348
349  if (NumParts * PartBits > ValueVT.getSizeInBits()) {
350    // If the parts cover more bits than the value has, promote the value.
351    if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
352      assert(NumParts == 1 && "Do not know what to promote to!");
353      Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
354    } else {
355      assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
356             ValueVT.isInteger() &&
357             "Unknown mismatch!");
358      ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
359      Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
360      if (PartVT == MVT::x86mmx)
361        Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
362    }
363  } else if (PartBits == ValueVT.getSizeInBits()) {
364    // Different types of the same size.
365    assert(NumParts == 1 && PartVT != ValueVT);
366    Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
367  } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
368    // If the parts cover less bits than value has, truncate the value.
369    assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
370           ValueVT.isInteger() &&
371           "Unknown mismatch!");
372    ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
373    Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
374    if (PartVT == MVT::x86mmx)
375      Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
376  }
377
378  // The value may have changed - recompute ValueVT.
379  ValueVT = Val.getValueType();
380  assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
381         "Failed to tile the value with PartVT!");
382
383  if (NumParts == 1) {
384    assert(PartVT == ValueVT && "Type conversion failed!");
385    Parts[0] = Val;
386    return;
387  }
388
389  // Expand the value into multiple parts.
390  if (NumParts & (NumParts - 1)) {
391    // The number of parts is not a power of 2.  Split off and copy the tail.
392    assert(PartVT.isInteger() && ValueVT.isInteger() &&
393           "Do not know what to expand to!");
394    unsigned RoundParts = 1 << Log2_32(NumParts);
395    unsigned RoundBits = RoundParts * PartBits;
396    unsigned OddParts = NumParts - RoundParts;
397    SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
398                                 DAG.getIntPtrConstant(RoundBits));
399    getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT);
400
401    if (TLI.isBigEndian())
402      // The odd parts were reversed by getCopyToParts - unreverse them.
403      std::reverse(Parts + RoundParts, Parts + NumParts);
404
405    NumParts = RoundParts;
406    ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
407    Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
408  }
409
410  // The number of parts is a power of 2.  Repeatedly bisect the value using
411  // EXTRACT_ELEMENT.
412  Parts[0] = DAG.getNode(ISD::BITCAST, DL,
413                         EVT::getIntegerVT(*DAG.getContext(),
414                                           ValueVT.getSizeInBits()),
415                         Val);
416
417  for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
418    for (unsigned i = 0; i < NumParts; i += StepSize) {
419      unsigned ThisBits = StepSize * PartBits / 2;
420      EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
421      SDValue &Part0 = Parts[i];
422      SDValue &Part1 = Parts[i+StepSize/2];
423
424      Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
425                          ThisVT, Part0, DAG.getIntPtrConstant(1));
426      Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
427                          ThisVT, Part0, DAG.getIntPtrConstant(0));
428
429      if (ThisBits == PartBits && ThisVT != PartVT) {
430        Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
431        Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
432      }
433    }
434  }
435
436  if (TLI.isBigEndian())
437    std::reverse(Parts, Parts + OrigNumParts);
438}
439
440
441/// getCopyToPartsVector - Create a series of nodes that contain the specified
442/// value split into legal parts.
443static void getCopyToPartsVector(SelectionDAG &DAG, DebugLoc DL,
444                                 SDValue Val, SDValue *Parts, unsigned NumParts,
445                                 EVT PartVT) {
446  EVT ValueVT = Val.getValueType();
447  assert(ValueVT.isVector() && "Not a vector");
448  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
449
450  if (NumParts == 1) {
451    if (PartVT == ValueVT) {
452      // Nothing to do.
453    } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
454      // Bitconvert vector->vector case.
455      Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
456    } else if (PartVT.isVector() &&
457               PartVT.getVectorElementType() == ValueVT.getVectorElementType() &&
458               PartVT.getVectorNumElements() > ValueVT.getVectorNumElements()) {
459      EVT ElementVT = PartVT.getVectorElementType();
460      // Vector widening case, e.g. <2 x float> -> <4 x float>.  Shuffle in
461      // undef elements.
462      SmallVector<SDValue, 16> Ops;
463      for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i)
464        Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
465                                  ElementVT, Val, DAG.getIntPtrConstant(i)));
466
467      for (unsigned i = ValueVT.getVectorNumElements(),
468           e = PartVT.getVectorNumElements(); i != e; ++i)
469        Ops.push_back(DAG.getUNDEF(ElementVT));
470
471      Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, &Ops[0], Ops.size());
472
473      // FIXME: Use CONCAT for 2x -> 4x.
474
475      //SDValue UndefElts = DAG.getUNDEF(VectorTy);
476      //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts);
477    } else if (PartVT.isVector() &&
478               PartVT.getVectorElementType().bitsGE(
479                 ValueVT.getVectorElementType()) &&
480               PartVT.getVectorNumElements() == ValueVT.getVectorNumElements()) {
481
482      // Promoted vector extract
483      bool Smaller = PartVT.bitsLE(ValueVT);
484      Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
485                        DL, PartVT, Val);
486    } else{
487      // Vector -> scalar conversion.
488      assert(ValueVT.getVectorNumElements() == 1 &&
489             "Only trivial vector-to-scalar conversions should get here!");
490      Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
491                        PartVT, Val, DAG.getIntPtrConstant(0));
492
493      bool Smaller = ValueVT.bitsLE(PartVT);
494      Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
495                         DL, PartVT, Val);
496    }
497
498    Parts[0] = Val;
499    return;
500  }
501
502  // Handle a multi-element vector.
503  EVT IntermediateVT, RegisterVT;
504  unsigned NumIntermediates;
505  unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT,
506                                                IntermediateVT,
507                                                NumIntermediates, RegisterVT);
508  unsigned NumElements = ValueVT.getVectorNumElements();
509
510  assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
511  NumParts = NumRegs; // Silence a compiler warning.
512  assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
513
514  // Split the vector into intermediate operands.
515  SmallVector<SDValue, 8> Ops(NumIntermediates);
516  for (unsigned i = 0; i != NumIntermediates; ++i) {
517    if (IntermediateVT.isVector())
518      Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL,
519                           IntermediateVT, Val,
520                   DAG.getIntPtrConstant(i * (NumElements / NumIntermediates)));
521    else
522      Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
523                           IntermediateVT, Val, DAG.getIntPtrConstant(i));
524  }
525
526  // Split the intermediate operands into legal parts.
527  if (NumParts == NumIntermediates) {
528    // If the register was not expanded, promote or copy the value,
529    // as appropriate.
530    for (unsigned i = 0; i != NumParts; ++i)
531      getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT);
532  } else if (NumParts > 0) {
533    // If the intermediate type was expanded, split each the value into
534    // legal parts.
535    assert(NumParts % NumIntermediates == 0 &&
536           "Must expand into a divisible number of parts!");
537    unsigned Factor = NumParts / NumIntermediates;
538    for (unsigned i = 0; i != NumIntermediates; ++i)
539      getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT);
540  }
541}
542
543
544
545
546namespace {
547  /// RegsForValue - This struct represents the registers (physical or virtual)
548  /// that a particular set of values is assigned, and the type information
549  /// about the value. The most common situation is to represent one value at a
550  /// time, but struct or array values are handled element-wise as multiple
551  /// values.  The splitting of aggregates is performed recursively, so that we
552  /// never have aggregate-typed registers. The values at this point do not
553  /// necessarily have legal types, so each value may require one or more
554  /// registers of some legal type.
555  ///
556  struct RegsForValue {
557    /// ValueVTs - The value types of the values, which may not be legal, and
558    /// may need be promoted or synthesized from one or more registers.
559    ///
560    SmallVector<EVT, 4> ValueVTs;
561
562    /// RegVTs - The value types of the registers. This is the same size as
563    /// ValueVTs and it records, for each value, what the type of the assigned
564    /// register or registers are. (Individual values are never synthesized
565    /// from more than one type of register.)
566    ///
567    /// With virtual registers, the contents of RegVTs is redundant with TLI's
568    /// getRegisterType member function, however when with physical registers
569    /// it is necessary to have a separate record of the types.
570    ///
571    SmallVector<EVT, 4> RegVTs;
572
573    /// Regs - This list holds the registers assigned to the values.
574    /// Each legal or promoted value requires one register, and each
575    /// expanded value requires multiple registers.
576    ///
577    SmallVector<unsigned, 4> Regs;
578
579    RegsForValue() {}
580
581    RegsForValue(const SmallVector<unsigned, 4> &regs,
582                 EVT regvt, EVT valuevt)
583      : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {}
584
585    RegsForValue(LLVMContext &Context, const TargetLowering &tli,
586                 unsigned Reg, Type *Ty) {
587      ComputeValueVTs(tli, Ty, ValueVTs);
588
589      for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
590        EVT ValueVT = ValueVTs[Value];
591        unsigned NumRegs = tli.getNumRegisters(Context, ValueVT);
592        EVT RegisterVT = tli.getRegisterType(Context, ValueVT);
593        for (unsigned i = 0; i != NumRegs; ++i)
594          Regs.push_back(Reg + i);
595        RegVTs.push_back(RegisterVT);
596        Reg += NumRegs;
597      }
598    }
599
600    /// areValueTypesLegal - Return true if types of all the values are legal.
601    bool areValueTypesLegal(const TargetLowering &TLI) {
602      for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
603        EVT RegisterVT = RegVTs[Value];
604        if (!TLI.isTypeLegal(RegisterVT))
605          return false;
606      }
607      return true;
608    }
609
610    /// append - Add the specified values to this one.
611    void append(const RegsForValue &RHS) {
612      ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end());
613      RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end());
614      Regs.append(RHS.Regs.begin(), RHS.Regs.end());
615    }
616
617    /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
618    /// this value and returns the result as a ValueVTs value.  This uses
619    /// Chain/Flag as the input and updates them for the output Chain/Flag.
620    /// If the Flag pointer is NULL, no flag is used.
621    SDValue getCopyFromRegs(SelectionDAG &DAG, FunctionLoweringInfo &FuncInfo,
622                            DebugLoc dl,
623                            SDValue &Chain, SDValue *Flag) const;
624
625    /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
626    /// specified value into the registers specified by this object.  This uses
627    /// Chain/Flag as the input and updates them for the output Chain/Flag.
628    /// If the Flag pointer is NULL, no flag is used.
629    void getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl,
630                       SDValue &Chain, SDValue *Flag) const;
631
632    /// AddInlineAsmOperands - Add this value to the specified inlineasm node
633    /// operand list.  This adds the code marker, matching input operand index
634    /// (if applicable), and includes the number of values added into it.
635    void AddInlineAsmOperands(unsigned Kind,
636                              bool HasMatching, unsigned MatchingIdx,
637                              SelectionDAG &DAG,
638                              std::vector<SDValue> &Ops) const;
639  };
640}
641
642/// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
643/// this value and returns the result as a ValueVT value.  This uses
644/// Chain/Flag as the input and updates them for the output Chain/Flag.
645/// If the Flag pointer is NULL, no flag is used.
646SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
647                                      FunctionLoweringInfo &FuncInfo,
648                                      DebugLoc dl,
649                                      SDValue &Chain, SDValue *Flag) const {
650  // A Value with type {} or [0 x %t] needs no registers.
651  if (ValueVTs.empty())
652    return SDValue();
653
654  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
655
656  // Assemble the legal parts into the final values.
657  SmallVector<SDValue, 4> Values(ValueVTs.size());
658  SmallVector<SDValue, 8> Parts;
659  for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
660    // Copy the legal parts from the registers.
661    EVT ValueVT = ValueVTs[Value];
662    unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
663    EVT RegisterVT = RegVTs[Value];
664
665    Parts.resize(NumRegs);
666    for (unsigned i = 0; i != NumRegs; ++i) {
667      SDValue P;
668      if (Flag == 0) {
669        P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
670      } else {
671        P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
672        *Flag = P.getValue(2);
673      }
674
675      Chain = P.getValue(1);
676      Parts[i] = P;
677
678      // If the source register was virtual and if we know something about it,
679      // add an assert node.
680      if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) ||
681          !RegisterVT.isInteger() || RegisterVT.isVector())
682        continue;
683
684      const FunctionLoweringInfo::LiveOutInfo *LOI =
685        FuncInfo.GetLiveOutRegInfo(Regs[Part+i]);
686      if (!LOI)
687        continue;
688
689      unsigned RegSize = RegisterVT.getSizeInBits();
690      unsigned NumSignBits = LOI->NumSignBits;
691      unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes();
692
693      // FIXME: We capture more information than the dag can represent.  For
694      // now, just use the tightest assertzext/assertsext possible.
695      bool isSExt = true;
696      EVT FromVT(MVT::Other);
697      if (NumSignBits == RegSize)
698        isSExt = true, FromVT = MVT::i1;   // ASSERT SEXT 1
699      else if (NumZeroBits >= RegSize-1)
700        isSExt = false, FromVT = MVT::i1;  // ASSERT ZEXT 1
701      else if (NumSignBits > RegSize-8)
702        isSExt = true, FromVT = MVT::i8;   // ASSERT SEXT 8
703      else if (NumZeroBits >= RegSize-8)
704        isSExt = false, FromVT = MVT::i8;  // ASSERT ZEXT 8
705      else if (NumSignBits > RegSize-16)
706        isSExt = true, FromVT = MVT::i16;  // ASSERT SEXT 16
707      else if (NumZeroBits >= RegSize-16)
708        isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16
709      else if (NumSignBits > RegSize-32)
710        isSExt = true, FromVT = MVT::i32;  // ASSERT SEXT 32
711      else if (NumZeroBits >= RegSize-32)
712        isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32
713      else
714        continue;
715
716      // Add an assertion node.
717      assert(FromVT != MVT::Other);
718      Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
719                             RegisterVT, P, DAG.getValueType(FromVT));
720    }
721
722    Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(),
723                                     NumRegs, RegisterVT, ValueVT);
724    Part += NumRegs;
725    Parts.clear();
726  }
727
728  return DAG.getNode(ISD::MERGE_VALUES, dl,
729                     DAG.getVTList(&ValueVTs[0], ValueVTs.size()),
730                     &Values[0], ValueVTs.size());
731}
732
733/// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
734/// specified value into the registers specified by this object.  This uses
735/// Chain/Flag as the input and updates them for the output Chain/Flag.
736/// If the Flag pointer is NULL, no flag is used.
737void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl,
738                                 SDValue &Chain, SDValue *Flag) const {
739  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
740
741  // Get the list of the values's legal parts.
742  unsigned NumRegs = Regs.size();
743  SmallVector<SDValue, 8> Parts(NumRegs);
744  for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
745    EVT ValueVT = ValueVTs[Value];
746    unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
747    EVT RegisterVT = RegVTs[Value];
748
749    getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value),
750                   &Parts[Part], NumParts, RegisterVT);
751    Part += NumParts;
752  }
753
754  // Copy the parts into the registers.
755  SmallVector<SDValue, 8> Chains(NumRegs);
756  for (unsigned i = 0; i != NumRegs; ++i) {
757    SDValue Part;
758    if (Flag == 0) {
759      Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
760    } else {
761      Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
762      *Flag = Part.getValue(1);
763    }
764
765    Chains[i] = Part.getValue(0);
766  }
767
768  if (NumRegs == 1 || Flag)
769    // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
770    // flagged to it. That is the CopyToReg nodes and the user are considered
771    // a single scheduling unit. If we create a TokenFactor and return it as
772    // chain, then the TokenFactor is both a predecessor (operand) of the
773    // user as well as a successor (the TF operands are flagged to the user).
774    // c1, f1 = CopyToReg
775    // c2, f2 = CopyToReg
776    // c3     = TokenFactor c1, c2
777    // ...
778    //        = op c3, ..., f2
779    Chain = Chains[NumRegs-1];
780  else
781    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0], NumRegs);
782}
783
784/// AddInlineAsmOperands - Add this value to the specified inlineasm node
785/// operand list.  This adds the code marker and includes the number of
786/// values added into it.
787void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
788                                        unsigned MatchingIdx,
789                                        SelectionDAG &DAG,
790                                        std::vector<SDValue> &Ops) const {
791  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
792
793  unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
794  if (HasMatching)
795    Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
796  else if (!Regs.empty() &&
797           TargetRegisterInfo::isVirtualRegister(Regs.front())) {
798    // Put the register class of the virtual registers in the flag word.  That
799    // way, later passes can recompute register class constraints for inline
800    // assembly as well as normal instructions.
801    // Don't do this for tied operands that can use the regclass information
802    // from the def.
803    const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
804    const TargetRegisterClass *RC = MRI.getRegClass(Regs.front());
805    Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID());
806  }
807
808  SDValue Res = DAG.getTargetConstant(Flag, MVT::i32);
809  Ops.push_back(Res);
810
811  for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
812    unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]);
813    EVT RegisterVT = RegVTs[Value];
814    for (unsigned i = 0; i != NumRegs; ++i) {
815      assert(Reg < Regs.size() && "Mismatch in # registers expected");
816      Ops.push_back(DAG.getRegister(Regs[Reg++], RegisterVT));
817    }
818  }
819}
820
821void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa,
822                               const TargetLibraryInfo *li) {
823  AA = &aa;
824  GFI = gfi;
825  LibInfo = li;
826  TD = DAG.getTarget().getTargetData();
827  LPadToCallSiteMap.clear();
828}
829
830/// clear - Clear out the current SelectionDAG and the associated
831/// state and prepare this SelectionDAGBuilder object to be used
832/// for a new block. This doesn't clear out information about
833/// additional blocks that are needed to complete switch lowering
834/// or PHI node updating; that information is cleared out as it is
835/// consumed.
836void SelectionDAGBuilder::clear() {
837  NodeMap.clear();
838  UnusedArgNodeMap.clear();
839  PendingLoads.clear();
840  PendingExports.clear();
841  CurDebugLoc = DebugLoc();
842  HasTailCall = false;
843}
844
845/// clearDanglingDebugInfo - Clear the dangling debug information
846/// map. This function is seperated from the clear so that debug
847/// information that is dangling in a basic block can be properly
848/// resolved in a different basic block. This allows the
849/// SelectionDAG to resolve dangling debug information attached
850/// to PHI nodes.
851void SelectionDAGBuilder::clearDanglingDebugInfo() {
852  DanglingDebugInfoMap.clear();
853}
854
855/// getRoot - Return the current virtual root of the Selection DAG,
856/// flushing any PendingLoad items. This must be done before emitting
857/// a store or any other node that may need to be ordered after any
858/// prior load instructions.
859///
860SDValue SelectionDAGBuilder::getRoot() {
861  if (PendingLoads.empty())
862    return DAG.getRoot();
863
864  if (PendingLoads.size() == 1) {
865    SDValue Root = PendingLoads[0];
866    DAG.setRoot(Root);
867    PendingLoads.clear();
868    return Root;
869  }
870
871  // Otherwise, we have to make a token factor node.
872  SDValue Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
873                               &PendingLoads[0], PendingLoads.size());
874  PendingLoads.clear();
875  DAG.setRoot(Root);
876  return Root;
877}
878
879/// getControlRoot - Similar to getRoot, but instead of flushing all the
880/// PendingLoad items, flush all the PendingExports items. It is necessary
881/// to do this before emitting a terminator instruction.
882///
883SDValue SelectionDAGBuilder::getControlRoot() {
884  SDValue Root = DAG.getRoot();
885
886  if (PendingExports.empty())
887    return Root;
888
889  // Turn all of the CopyToReg chains into one factored node.
890  if (Root.getOpcode() != ISD::EntryToken) {
891    unsigned i = 0, e = PendingExports.size();
892    for (; i != e; ++i) {
893      assert(PendingExports[i].getNode()->getNumOperands() > 1);
894      if (PendingExports[i].getNode()->getOperand(0) == Root)
895        break;  // Don't add the root if we already indirectly depend on it.
896    }
897
898    if (i == e)
899      PendingExports.push_back(Root);
900  }
901
902  Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
903                     &PendingExports[0],
904                     PendingExports.size());
905  PendingExports.clear();
906  DAG.setRoot(Root);
907  return Root;
908}
909
910void SelectionDAGBuilder::AssignOrderingToNode(const SDNode *Node) {
911  if (DAG.GetOrdering(Node) != 0) return; // Already has ordering.
912  DAG.AssignOrdering(Node, SDNodeOrder);
913
914  for (unsigned I = 0, E = Node->getNumOperands(); I != E; ++I)
915    AssignOrderingToNode(Node->getOperand(I).getNode());
916}
917
918void SelectionDAGBuilder::visit(const Instruction &I) {
919  // Set up outgoing PHI node register values before emitting the terminator.
920  if (isa<TerminatorInst>(&I))
921    HandlePHINodesInSuccessorBlocks(I.getParent());
922
923  CurDebugLoc = I.getDebugLoc();
924
925  visit(I.getOpcode(), I);
926
927  if (!isa<TerminatorInst>(&I) && !HasTailCall)
928    CopyToExportRegsIfNeeded(&I);
929
930  CurDebugLoc = DebugLoc();
931}
932
933void SelectionDAGBuilder::visitPHI(const PHINode &) {
934  llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
935}
936
937void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
938  // Note: this doesn't use InstVisitor, because it has to work with
939  // ConstantExpr's in addition to instructions.
940  switch (Opcode) {
941  default: llvm_unreachable("Unknown instruction type encountered!");
942    // Build the switch statement using the Instruction.def file.
943#define HANDLE_INST(NUM, OPCODE, CLASS) \
944    case Instruction::OPCODE: visit##OPCODE((CLASS&)I); break;
945#include "llvm/Instruction.def"
946  }
947
948  // Assign the ordering to the freshly created DAG nodes.
949  if (NodeMap.count(&I)) {
950    ++SDNodeOrder;
951    AssignOrderingToNode(getValue(&I).getNode());
952  }
953}
954
955// resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
956// generate the debug data structures now that we've seen its definition.
957void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
958                                                   SDValue Val) {
959  DanglingDebugInfo &DDI = DanglingDebugInfoMap[V];
960  if (DDI.getDI()) {
961    const DbgValueInst *DI = DDI.getDI();
962    DebugLoc dl = DDI.getdl();
963    unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
964    MDNode *Variable = DI->getVariable();
965    uint64_t Offset = DI->getOffset();
966    SDDbgValue *SDV;
967    if (Val.getNode()) {
968      if (!EmitFuncArgumentDbgValue(V, Variable, Offset, Val)) {
969        SDV = DAG.getDbgValue(Variable, Val.getNode(),
970                              Val.getResNo(), Offset, dl, DbgSDNodeOrder);
971        DAG.AddDbgValue(SDV, Val.getNode(), false);
972      }
973    } else
974      DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
975    DanglingDebugInfoMap[V] = DanglingDebugInfo();
976  }
977}
978
979/// getValue - Return an SDValue for the given Value.
980SDValue SelectionDAGBuilder::getValue(const Value *V) {
981  // If we already have an SDValue for this value, use it. It's important
982  // to do this first, so that we don't create a CopyFromReg if we already
983  // have a regular SDValue.
984  SDValue &N = NodeMap[V];
985  if (N.getNode()) return N;
986
987  // If there's a virtual register allocated and initialized for this
988  // value, use it.
989  DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V);
990  if (It != FuncInfo.ValueMap.end()) {
991    unsigned InReg = It->second;
992    RegsForValue RFV(*DAG.getContext(), TLI, InReg, V->getType());
993    SDValue Chain = DAG.getEntryNode();
994    N = RFV.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), Chain, NULL);
995    resolveDanglingDebugInfo(V, N);
996    return N;
997  }
998
999  // Otherwise create a new SDValue and remember it.
1000  SDValue Val = getValueImpl(V);
1001  NodeMap[V] = Val;
1002  resolveDanglingDebugInfo(V, Val);
1003  return Val;
1004}
1005
1006/// getNonRegisterValue - Return an SDValue for the given Value, but
1007/// don't look in FuncInfo.ValueMap for a virtual register.
1008SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
1009  // If we already have an SDValue for this value, use it.
1010  SDValue &N = NodeMap[V];
1011  if (N.getNode()) return N;
1012
1013  // Otherwise create a new SDValue and remember it.
1014  SDValue Val = getValueImpl(V);
1015  NodeMap[V] = Val;
1016  resolveDanglingDebugInfo(V, Val);
1017  return Val;
1018}
1019
1020/// getValueImpl - Helper function for getValue and getNonRegisterValue.
1021/// Create an SDValue for the given value.
1022SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
1023  if (const Constant *C = dyn_cast<Constant>(V)) {
1024    EVT VT = TLI.getValueType(V->getType(), true);
1025
1026    if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
1027      return DAG.getConstant(*CI, VT);
1028
1029    if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
1030      return DAG.getGlobalAddress(GV, getCurDebugLoc(), VT);
1031
1032    if (isa<ConstantPointerNull>(C))
1033      return DAG.getConstant(0, TLI.getPointerTy());
1034
1035    if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
1036      return DAG.getConstantFP(*CFP, VT);
1037
1038    if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
1039      return DAG.getUNDEF(VT);
1040
1041    if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1042      visit(CE->getOpcode(), *CE);
1043      SDValue N1 = NodeMap[V];
1044      assert(N1.getNode() && "visit didn't populate the NodeMap!");
1045      return N1;
1046    }
1047
1048    if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
1049      SmallVector<SDValue, 4> Constants;
1050      for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end();
1051           OI != OE; ++OI) {
1052        SDNode *Val = getValue(*OI).getNode();
1053        // If the operand is an empty aggregate, there are no values.
1054        if (!Val) continue;
1055        // Add each leaf value from the operand to the Constants list
1056        // to form a flattened list of all the values.
1057        for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1058          Constants.push_back(SDValue(Val, i));
1059      }
1060
1061      return DAG.getMergeValues(&Constants[0], Constants.size(),
1062                                getCurDebugLoc());
1063    }
1064
1065    if (const ConstantDataSequential *CDS =
1066          dyn_cast<ConstantDataSequential>(C)) {
1067      SmallVector<SDValue, 4> Ops;
1068      for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1069        SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode();
1070        // Add each leaf value from the operand to the Constants list
1071        // to form a flattened list of all the values.
1072        for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1073          Ops.push_back(SDValue(Val, i));
1074      }
1075
1076      if (isa<ArrayType>(CDS->getType()))
1077        return DAG.getMergeValues(&Ops[0], Ops.size(), getCurDebugLoc());
1078      return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(),
1079                                      VT, &Ops[0], Ops.size());
1080    }
1081
1082    if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
1083      assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1084             "Unknown struct or array constant!");
1085
1086      SmallVector<EVT, 4> ValueVTs;
1087      ComputeValueVTs(TLI, C->getType(), ValueVTs);
1088      unsigned NumElts = ValueVTs.size();
1089      if (NumElts == 0)
1090        return SDValue(); // empty struct
1091      SmallVector<SDValue, 4> Constants(NumElts);
1092      for (unsigned i = 0; i != NumElts; ++i) {
1093        EVT EltVT = ValueVTs[i];
1094        if (isa<UndefValue>(C))
1095          Constants[i] = DAG.getUNDEF(EltVT);
1096        else if (EltVT.isFloatingPoint())
1097          Constants[i] = DAG.getConstantFP(0, EltVT);
1098        else
1099          Constants[i] = DAG.getConstant(0, EltVT);
1100      }
1101
1102      return DAG.getMergeValues(&Constants[0], NumElts,
1103                                getCurDebugLoc());
1104    }
1105
1106    if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
1107      return DAG.getBlockAddress(BA, VT);
1108
1109    VectorType *VecTy = cast<VectorType>(V->getType());
1110    unsigned NumElements = VecTy->getNumElements();
1111
1112    // Now that we know the number and type of the elements, get that number of
1113    // elements into the Ops array based on what kind of constant it is.
1114    SmallVector<SDValue, 16> Ops;
1115    if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
1116      for (unsigned i = 0; i != NumElements; ++i)
1117        Ops.push_back(getValue(CV->getOperand(i)));
1118    } else {
1119      assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!");
1120      EVT EltVT = TLI.getValueType(VecTy->getElementType());
1121
1122      SDValue Op;
1123      if (EltVT.isFloatingPoint())
1124        Op = DAG.getConstantFP(0, EltVT);
1125      else
1126        Op = DAG.getConstant(0, EltVT);
1127      Ops.assign(NumElements, Op);
1128    }
1129
1130    // Create a BUILD_VECTOR node.
1131    return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(),
1132                                    VT, &Ops[0], Ops.size());
1133  }
1134
1135  // If this is a static alloca, generate it as the frameindex instead of
1136  // computation.
1137  if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1138    DenseMap<const AllocaInst*, int>::iterator SI =
1139      FuncInfo.StaticAllocaMap.find(AI);
1140    if (SI != FuncInfo.StaticAllocaMap.end())
1141      return DAG.getFrameIndex(SI->second, TLI.getPointerTy());
1142  }
1143
1144  // If this is an instruction which fast-isel has deferred, select it now.
1145  if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
1146    unsigned InReg = FuncInfo.InitializeRegForValue(Inst);
1147    RegsForValue RFV(*DAG.getContext(), TLI, InReg, Inst->getType());
1148    SDValue Chain = DAG.getEntryNode();
1149    return RFV.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), Chain, NULL);
1150  }
1151
1152  llvm_unreachable("Can't get register for value!");
1153}
1154
1155void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
1156  SDValue Chain = getControlRoot();
1157  SmallVector<ISD::OutputArg, 8> Outs;
1158  SmallVector<SDValue, 8> OutVals;
1159
1160  if (!FuncInfo.CanLowerReturn) {
1161    unsigned DemoteReg = FuncInfo.DemoteRegister;
1162    const Function *F = I.getParent()->getParent();
1163
1164    // Emit a store of the return value through the virtual register.
1165    // Leave Outs empty so that LowerReturn won't try to load return
1166    // registers the usual way.
1167    SmallVector<EVT, 1> PtrValueVTs;
1168    ComputeValueVTs(TLI, PointerType::getUnqual(F->getReturnType()),
1169                    PtrValueVTs);
1170
1171    SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]);
1172    SDValue RetOp = getValue(I.getOperand(0));
1173
1174    SmallVector<EVT, 4> ValueVTs;
1175    SmallVector<uint64_t, 4> Offsets;
1176    ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs, &Offsets);
1177    unsigned NumValues = ValueVTs.size();
1178
1179    SmallVector<SDValue, 4> Chains(NumValues);
1180    for (unsigned i = 0; i != NumValues; ++i) {
1181      SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(),
1182                                RetPtr.getValueType(), RetPtr,
1183                                DAG.getIntPtrConstant(Offsets[i]));
1184      Chains[i] =
1185        DAG.getStore(Chain, getCurDebugLoc(),
1186                     SDValue(RetOp.getNode(), RetOp.getResNo() + i),
1187                     // FIXME: better loc info would be nice.
1188                     Add, MachinePointerInfo(), false, false, 0);
1189    }
1190
1191    Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
1192                        MVT::Other, &Chains[0], NumValues);
1193  } else if (I.getNumOperands() != 0) {
1194    SmallVector<EVT, 4> ValueVTs;
1195    ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs);
1196    unsigned NumValues = ValueVTs.size();
1197    if (NumValues) {
1198      SDValue RetOp = getValue(I.getOperand(0));
1199      for (unsigned j = 0, f = NumValues; j != f; ++j) {
1200        EVT VT = ValueVTs[j];
1201
1202        ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1203
1204        const Function *F = I.getParent()->getParent();
1205        if (F->paramHasAttr(0, Attribute::SExt))
1206          ExtendKind = ISD::SIGN_EXTEND;
1207        else if (F->paramHasAttr(0, Attribute::ZExt))
1208          ExtendKind = ISD::ZERO_EXTEND;
1209
1210        if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
1211          VT = TLI.getTypeForExtArgOrReturn(*DAG.getContext(), VT, ExtendKind);
1212
1213        unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), VT);
1214        EVT PartVT = TLI.getRegisterType(*DAG.getContext(), VT);
1215        SmallVector<SDValue, 4> Parts(NumParts);
1216        getCopyToParts(DAG, getCurDebugLoc(),
1217                       SDValue(RetOp.getNode(), RetOp.getResNo() + j),
1218                       &Parts[0], NumParts, PartVT, ExtendKind);
1219
1220        // 'inreg' on function refers to return value
1221        ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1222        if (F->paramHasAttr(0, Attribute::InReg))
1223          Flags.setInReg();
1224
1225        // Propagate extension type if any
1226        if (ExtendKind == ISD::SIGN_EXTEND)
1227          Flags.setSExt();
1228        else if (ExtendKind == ISD::ZERO_EXTEND)
1229          Flags.setZExt();
1230
1231        for (unsigned i = 0; i < NumParts; ++i) {
1232          Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(),
1233                                        /*isfixed=*/true));
1234          OutVals.push_back(Parts[i]);
1235        }
1236      }
1237    }
1238  }
1239
1240  bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
1241  CallingConv::ID CallConv =
1242    DAG.getMachineFunction().getFunction()->getCallingConv();
1243  Chain = TLI.LowerReturn(Chain, CallConv, isVarArg,
1244                          Outs, OutVals, getCurDebugLoc(), DAG);
1245
1246  // Verify that the target's LowerReturn behaved as expected.
1247  assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
1248         "LowerReturn didn't return a valid chain!");
1249
1250  // Update the DAG with the new chain value resulting from return lowering.
1251  DAG.setRoot(Chain);
1252}
1253
1254/// CopyToExportRegsIfNeeded - If the given value has virtual registers
1255/// created for it, emit nodes to copy the value into the virtual
1256/// registers.
1257void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
1258  // Skip empty types
1259  if (V->getType()->isEmptyTy())
1260    return;
1261
1262  DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
1263  if (VMI != FuncInfo.ValueMap.end()) {
1264    assert(!V->use_empty() && "Unused value assigned virtual registers!");
1265    CopyValueToVirtualRegister(V, VMI->second);
1266  }
1267}
1268
1269/// ExportFromCurrentBlock - If this condition isn't known to be exported from
1270/// the current basic block, add it to ValueMap now so that we'll get a
1271/// CopyTo/FromReg.
1272void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
1273  // No need to export constants.
1274  if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
1275
1276  // Already exported?
1277  if (FuncInfo.isExportedInst(V)) return;
1278
1279  unsigned Reg = FuncInfo.InitializeRegForValue(V);
1280  CopyValueToVirtualRegister(V, Reg);
1281}
1282
1283bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
1284                                                     const BasicBlock *FromBB) {
1285  // The operands of the setcc have to be in this block.  We don't know
1286  // how to export them from some other block.
1287  if (const Instruction *VI = dyn_cast<Instruction>(V)) {
1288    // Can export from current BB.
1289    if (VI->getParent() == FromBB)
1290      return true;
1291
1292    // Is already exported, noop.
1293    return FuncInfo.isExportedInst(V);
1294  }
1295
1296  // If this is an argument, we can export it if the BB is the entry block or
1297  // if it is already exported.
1298  if (isa<Argument>(V)) {
1299    if (FromBB == &FromBB->getParent()->getEntryBlock())
1300      return true;
1301
1302    // Otherwise, can only export this if it is already exported.
1303    return FuncInfo.isExportedInst(V);
1304  }
1305
1306  // Otherwise, constants can always be exported.
1307  return true;
1308}
1309
1310/// Return branch probability calculated by BranchProbabilityInfo for IR blocks.
1311uint32_t SelectionDAGBuilder::getEdgeWeight(const MachineBasicBlock *Src,
1312                                            const MachineBasicBlock *Dst) const {
1313  BranchProbabilityInfo *BPI = FuncInfo.BPI;
1314  if (!BPI)
1315    return 0;
1316  const BasicBlock *SrcBB = Src->getBasicBlock();
1317  const BasicBlock *DstBB = Dst->getBasicBlock();
1318  return BPI->getEdgeWeight(SrcBB, DstBB);
1319}
1320
1321void SelectionDAGBuilder::
1322addSuccessorWithWeight(MachineBasicBlock *Src, MachineBasicBlock *Dst,
1323                       uint32_t Weight /* = 0 */) {
1324  if (!Weight)
1325    Weight = getEdgeWeight(Src, Dst);
1326  Src->addSuccessor(Dst, Weight);
1327}
1328
1329
1330static bool InBlock(const Value *V, const BasicBlock *BB) {
1331  if (const Instruction *I = dyn_cast<Instruction>(V))
1332    return I->getParent() == BB;
1333  return true;
1334}
1335
1336/// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
1337/// This function emits a branch and is used at the leaves of an OR or an
1338/// AND operator tree.
1339///
1340void
1341SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
1342                                                  MachineBasicBlock *TBB,
1343                                                  MachineBasicBlock *FBB,
1344                                                  MachineBasicBlock *CurBB,
1345                                                  MachineBasicBlock *SwitchBB) {
1346  const BasicBlock *BB = CurBB->getBasicBlock();
1347
1348  // If the leaf of the tree is a comparison, merge the condition into
1349  // the caseblock.
1350  if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
1351    // The operands of the cmp have to be in this block.  We don't know
1352    // how to export them from some other block.  If this is the first block
1353    // of the sequence, no exporting is needed.
1354    if (CurBB == SwitchBB ||
1355        (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
1356         isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
1357      ISD::CondCode Condition;
1358      if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
1359        Condition = getICmpCondCode(IC->getPredicate());
1360      } else if (const FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) {
1361        Condition = getFCmpCondCode(FC->getPredicate());
1362        if (TM.Options.NoNaNsFPMath)
1363          Condition = getFCmpCodeWithoutNaN(Condition);
1364      } else {
1365        Condition = ISD::SETEQ; // silence warning.
1366        llvm_unreachable("Unknown compare instruction");
1367      }
1368
1369      CaseBlock CB(Condition, BOp->getOperand(0),
1370                   BOp->getOperand(1), NULL, TBB, FBB, CurBB);
1371      SwitchCases.push_back(CB);
1372      return;
1373    }
1374  }
1375
1376  // Create a CaseBlock record representing this branch.
1377  CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()),
1378               NULL, TBB, FBB, CurBB);
1379  SwitchCases.push_back(CB);
1380}
1381
1382/// FindMergedConditions - If Cond is an expression like
1383void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
1384                                               MachineBasicBlock *TBB,
1385                                               MachineBasicBlock *FBB,
1386                                               MachineBasicBlock *CurBB,
1387                                               MachineBasicBlock *SwitchBB,
1388                                               unsigned Opc) {
1389  // If this node is not part of the or/and tree, emit it as a branch.
1390  const Instruction *BOp = dyn_cast<Instruction>(Cond);
1391  if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
1392      (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() ||
1393      BOp->getParent() != CurBB->getBasicBlock() ||
1394      !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
1395      !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
1396    EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB);
1397    return;
1398  }
1399
1400  //  Create TmpBB after CurBB.
1401  MachineFunction::iterator BBI = CurBB;
1402  MachineFunction &MF = DAG.getMachineFunction();
1403  MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
1404  CurBB->getParent()->insert(++BBI, TmpBB);
1405
1406  if (Opc == Instruction::Or) {
1407    // Codegen X | Y as:
1408    //   jmp_if_X TBB
1409    //   jmp TmpBB
1410    // TmpBB:
1411    //   jmp_if_Y TBB
1412    //   jmp FBB
1413    //
1414
1415    // Emit the LHS condition.
1416    FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc);
1417
1418    // Emit the RHS condition into TmpBB.
1419    FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc);
1420  } else {
1421    assert(Opc == Instruction::And && "Unknown merge op!");
1422    // Codegen X & Y as:
1423    //   jmp_if_X TmpBB
1424    //   jmp FBB
1425    // TmpBB:
1426    //   jmp_if_Y TBB
1427    //   jmp FBB
1428    //
1429    //  This requires creation of TmpBB after CurBB.
1430
1431    // Emit the LHS condition.
1432    FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc);
1433
1434    // Emit the RHS condition into TmpBB.
1435    FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc);
1436  }
1437}
1438
1439/// If the set of cases should be emitted as a series of branches, return true.
1440/// If we should emit this as a bunch of and/or'd together conditions, return
1441/// false.
1442bool
1443SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases){
1444  if (Cases.size() != 2) return true;
1445
1446  // If this is two comparisons of the same values or'd or and'd together, they
1447  // will get folded into a single comparison, so don't emit two blocks.
1448  if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
1449       Cases[0].CmpRHS == Cases[1].CmpRHS) ||
1450      (Cases[0].CmpRHS == Cases[1].CmpLHS &&
1451       Cases[0].CmpLHS == Cases[1].CmpRHS)) {
1452    return false;
1453  }
1454
1455  // Handle: (X != null) | (Y != null) --> (X|Y) != 0
1456  // Handle: (X == null) & (Y == null) --> (X|Y) == 0
1457  if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
1458      Cases[0].CC == Cases[1].CC &&
1459      isa<Constant>(Cases[0].CmpRHS) &&
1460      cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
1461    if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
1462      return false;
1463    if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
1464      return false;
1465  }
1466
1467  return true;
1468}
1469
1470void SelectionDAGBuilder::visitBr(const BranchInst &I) {
1471  MachineBasicBlock *BrMBB = FuncInfo.MBB;
1472
1473  // Update machine-CFG edges.
1474  MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
1475
1476  // Figure out which block is immediately after the current one.
1477  MachineBasicBlock *NextBlock = 0;
1478  MachineFunction::iterator BBI = BrMBB;
1479  if (++BBI != FuncInfo.MF->end())
1480    NextBlock = BBI;
1481
1482  if (I.isUnconditional()) {
1483    // Update machine-CFG edges.
1484    BrMBB->addSuccessor(Succ0MBB);
1485
1486    // If this is not a fall-through branch, emit the branch.
1487    if (Succ0MBB != NextBlock)
1488      DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
1489                              MVT::Other, getControlRoot(),
1490                              DAG.getBasicBlock(Succ0MBB)));
1491
1492    return;
1493  }
1494
1495  // If this condition is one of the special cases we handle, do special stuff
1496  // now.
1497  const Value *CondVal = I.getCondition();
1498  MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
1499
1500  // If this is a series of conditions that are or'd or and'd together, emit
1501  // this as a sequence of branches instead of setcc's with and/or operations.
1502  // As long as jumps are not expensive, this should improve performance.
1503  // For example, instead of something like:
1504  //     cmp A, B
1505  //     C = seteq
1506  //     cmp D, E
1507  //     F = setle
1508  //     or C, F
1509  //     jnz foo
1510  // Emit:
1511  //     cmp A, B
1512  //     je foo
1513  //     cmp D, E
1514  //     jle foo
1515  //
1516  if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
1517    if (!TLI.isJumpExpensive() &&
1518        BOp->hasOneUse() &&
1519        (BOp->getOpcode() == Instruction::And ||
1520         BOp->getOpcode() == Instruction::Or)) {
1521      FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB,
1522                           BOp->getOpcode());
1523      // If the compares in later blocks need to use values not currently
1524      // exported from this block, export them now.  This block should always
1525      // be the first entry.
1526      assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
1527
1528      // Allow some cases to be rejected.
1529      if (ShouldEmitAsBranches(SwitchCases)) {
1530        for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
1531          ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
1532          ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
1533        }
1534
1535        // Emit the branch for this block.
1536        visitSwitchCase(SwitchCases[0], BrMBB);
1537        SwitchCases.erase(SwitchCases.begin());
1538        return;
1539      }
1540
1541      // Okay, we decided not to do this, remove any inserted MBB's and clear
1542      // SwitchCases.
1543      for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
1544        FuncInfo.MF->erase(SwitchCases[i].ThisBB);
1545
1546      SwitchCases.clear();
1547    }
1548  }
1549
1550  // Create a CaseBlock record representing this branch.
1551  CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
1552               NULL, Succ0MBB, Succ1MBB, BrMBB);
1553
1554  // Use visitSwitchCase to actually insert the fast branch sequence for this
1555  // cond branch.
1556  visitSwitchCase(CB, BrMBB);
1557}
1558
1559/// visitSwitchCase - Emits the necessary code to represent a single node in
1560/// the binary search tree resulting from lowering a switch instruction.
1561void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
1562                                          MachineBasicBlock *SwitchBB) {
1563  SDValue Cond;
1564  SDValue CondLHS = getValue(CB.CmpLHS);
1565  DebugLoc dl = getCurDebugLoc();
1566
1567  // Build the setcc now.
1568  if (CB.CmpMHS == NULL) {
1569    // Fold "(X == true)" to X and "(X == false)" to !X to
1570    // handle common cases produced by branch lowering.
1571    if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
1572        CB.CC == ISD::SETEQ)
1573      Cond = CondLHS;
1574    else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
1575             CB.CC == ISD::SETEQ) {
1576      SDValue True = DAG.getConstant(1, CondLHS.getValueType());
1577      Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
1578    } else
1579      Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
1580  } else {
1581    assert(CB.CC == ISD::SETCC_INVALID &&
1582           "Condition is undefined for to-the-range belonging check.");
1583
1584    const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
1585    const APInt& High  = cast<ConstantInt>(CB.CmpRHS)->getValue();
1586
1587    SDValue CmpOp = getValue(CB.CmpMHS);
1588    EVT VT = CmpOp.getValueType();
1589
1590    if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(false)) {
1591      Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, VT),
1592                          ISD::SETULE);
1593    } else {
1594      SDValue SUB = DAG.getNode(ISD::SUB, dl,
1595                                VT, CmpOp, DAG.getConstant(Low, VT));
1596      Cond = DAG.getSetCC(dl, MVT::i1, SUB,
1597                          DAG.getConstant(High-Low, VT), ISD::SETULE);
1598    }
1599  }
1600
1601  // Update successor info
1602  addSuccessorWithWeight(SwitchBB, CB.TrueBB, CB.TrueWeight);
1603  addSuccessorWithWeight(SwitchBB, CB.FalseBB, CB.FalseWeight);
1604
1605  // Set NextBlock to be the MBB immediately after the current one, if any.
1606  // This is used to avoid emitting unnecessary branches to the next block.
1607  MachineBasicBlock *NextBlock = 0;
1608  MachineFunction::iterator BBI = SwitchBB;
1609  if (++BBI != FuncInfo.MF->end())
1610    NextBlock = BBI;
1611
1612  // If the lhs block is the next block, invert the condition so that we can
1613  // fall through to the lhs instead of the rhs block.
1614  if (CB.TrueBB == NextBlock) {
1615    std::swap(CB.TrueBB, CB.FalseBB);
1616    SDValue True = DAG.getConstant(1, Cond.getValueType());
1617    Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
1618  }
1619
1620  SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
1621                               MVT::Other, getControlRoot(), Cond,
1622                               DAG.getBasicBlock(CB.TrueBB));
1623
1624  // Insert the false branch. Do this even if it's a fall through branch,
1625  // this makes it easier to do DAG optimizations which require inverting
1626  // the branch condition.
1627  BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
1628                       DAG.getBasicBlock(CB.FalseBB));
1629
1630  DAG.setRoot(BrCond);
1631}
1632
1633/// visitJumpTable - Emit JumpTable node in the current MBB
1634void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) {
1635  // Emit the code for the jump table
1636  assert(JT.Reg != -1U && "Should lower JT Header first!");
1637  EVT PTy = TLI.getPointerTy();
1638  SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(),
1639                                     JT.Reg, PTy);
1640  SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
1641  SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurDebugLoc(),
1642                                    MVT::Other, Index.getValue(1),
1643                                    Table, Index);
1644  DAG.setRoot(BrJumpTable);
1645}
1646
1647/// visitJumpTableHeader - This function emits necessary code to produce index
1648/// in the JumpTable from switch case.
1649void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT,
1650                                               JumpTableHeader &JTH,
1651                                               MachineBasicBlock *SwitchBB) {
1652  // Subtract the lowest switch case value from the value being switched on and
1653  // conditional branch to default mbb if the result is greater than the
1654  // difference between smallest and largest cases.
1655  SDValue SwitchOp = getValue(JTH.SValue);
1656  EVT VT = SwitchOp.getValueType();
1657  SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp,
1658                            DAG.getConstant(JTH.First, VT));
1659
1660  // The SDNode we just created, which holds the value being switched on minus
1661  // the smallest case value, needs to be copied to a virtual register so it
1662  // can be used as an index into the jump table in a subsequent basic block.
1663  // This value may be smaller or larger than the target's pointer type, and
1664  // therefore require extension or truncating.
1665  SwitchOp = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(), TLI.getPointerTy());
1666
1667  unsigned JumpTableReg = FuncInfo.CreateReg(TLI.getPointerTy());
1668  SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(),
1669                                    JumpTableReg, SwitchOp);
1670  JT.Reg = JumpTableReg;
1671
1672  // Emit the range check for the jump table, and branch to the default block
1673  // for the switch statement if the value being switched on exceeds the largest
1674  // case in the switch.
1675  SDValue CMP = DAG.getSetCC(getCurDebugLoc(),
1676                             TLI.getSetCCResultType(Sub.getValueType()), Sub,
1677                             DAG.getConstant(JTH.Last-JTH.First,VT),
1678                             ISD::SETUGT);
1679
1680  // Set NextBlock to be the MBB immediately after the current one, if any.
1681  // This is used to avoid emitting unnecessary branches to the next block.
1682  MachineBasicBlock *NextBlock = 0;
1683  MachineFunction::iterator BBI = SwitchBB;
1684
1685  if (++BBI != FuncInfo.MF->end())
1686    NextBlock = BBI;
1687
1688  SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1689                               MVT::Other, CopyTo, CMP,
1690                               DAG.getBasicBlock(JT.Default));
1691
1692  if (JT.MBB != NextBlock)
1693    BrCond = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrCond,
1694                         DAG.getBasicBlock(JT.MBB));
1695
1696  DAG.setRoot(BrCond);
1697}
1698
1699/// visitBitTestHeader - This function emits necessary code to produce value
1700/// suitable for "bit tests"
1701void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
1702                                             MachineBasicBlock *SwitchBB) {
1703  // Subtract the minimum value
1704  SDValue SwitchOp = getValue(B.SValue);
1705  EVT VT = SwitchOp.getValueType();
1706  SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp,
1707                            DAG.getConstant(B.First, VT));
1708
1709  // Check range
1710  SDValue RangeCmp = DAG.getSetCC(getCurDebugLoc(),
1711                                  TLI.getSetCCResultType(Sub.getValueType()),
1712                                  Sub, DAG.getConstant(B.Range, VT),
1713                                  ISD::SETUGT);
1714
1715  // Determine the type of the test operands.
1716  bool UsePtrType = false;
1717  if (!TLI.isTypeLegal(VT))
1718    UsePtrType = true;
1719  else {
1720    for (unsigned i = 0, e = B.Cases.size(); i != e; ++i)
1721      if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) {
1722        // Switch table case range are encoded into series of masks.
1723        // Just use pointer type, it's guaranteed to fit.
1724        UsePtrType = true;
1725        break;
1726      }
1727  }
1728  if (UsePtrType) {
1729    VT = TLI.getPointerTy();
1730    Sub = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(), VT);
1731  }
1732
1733  B.RegVT = VT;
1734  B.Reg = FuncInfo.CreateReg(VT);
1735  SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(),
1736                                    B.Reg, Sub);
1737
1738  // Set NextBlock to be the MBB immediately after the current one, if any.
1739  // This is used to avoid emitting unnecessary branches to the next block.
1740  MachineBasicBlock *NextBlock = 0;
1741  MachineFunction::iterator BBI = SwitchBB;
1742  if (++BBI != FuncInfo.MF->end())
1743    NextBlock = BBI;
1744
1745  MachineBasicBlock* MBB = B.Cases[0].ThisBB;
1746
1747  addSuccessorWithWeight(SwitchBB, B.Default);
1748  addSuccessorWithWeight(SwitchBB, MBB);
1749
1750  SDValue BrRange = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1751                                MVT::Other, CopyTo, RangeCmp,
1752                                DAG.getBasicBlock(B.Default));
1753
1754  if (MBB != NextBlock)
1755    BrRange = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, CopyTo,
1756                          DAG.getBasicBlock(MBB));
1757
1758  DAG.setRoot(BrRange);
1759}
1760
1761/// visitBitTestCase - this function produces one "bit test"
1762void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB,
1763                                           MachineBasicBlock* NextMBB,
1764                                           unsigned Reg,
1765                                           BitTestCase &B,
1766                                           MachineBasicBlock *SwitchBB) {
1767  EVT VT = BB.RegVT;
1768  SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(),
1769                                       Reg, VT);
1770  SDValue Cmp;
1771  unsigned PopCount = CountPopulation_64(B.Mask);
1772  if (PopCount == 1) {
1773    // Testing for a single bit; just compare the shift count with what it
1774    // would need to be to shift a 1 bit in that position.
1775    Cmp = DAG.getSetCC(getCurDebugLoc(),
1776                       TLI.getSetCCResultType(VT),
1777                       ShiftOp,
1778                       DAG.getConstant(CountTrailingZeros_64(B.Mask), VT),
1779                       ISD::SETEQ);
1780  } else if (PopCount == BB.Range) {
1781    // There is only one zero bit in the range, test for it directly.
1782    Cmp = DAG.getSetCC(getCurDebugLoc(),
1783                       TLI.getSetCCResultType(VT),
1784                       ShiftOp,
1785                       DAG.getConstant(CountTrailingOnes_64(B.Mask), VT),
1786                       ISD::SETNE);
1787  } else {
1788    // Make desired shift
1789    SDValue SwitchVal = DAG.getNode(ISD::SHL, getCurDebugLoc(), VT,
1790                                    DAG.getConstant(1, VT), ShiftOp);
1791
1792    // Emit bit tests and jumps
1793    SDValue AndOp = DAG.getNode(ISD::AND, getCurDebugLoc(),
1794                                VT, SwitchVal, DAG.getConstant(B.Mask, VT));
1795    Cmp = DAG.getSetCC(getCurDebugLoc(),
1796                       TLI.getSetCCResultType(VT),
1797                       AndOp, DAG.getConstant(0, VT),
1798                       ISD::SETNE);
1799  }
1800
1801  addSuccessorWithWeight(SwitchBB, B.TargetBB);
1802  addSuccessorWithWeight(SwitchBB, NextMBB);
1803
1804  SDValue BrAnd = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1805                              MVT::Other, getControlRoot(),
1806                              Cmp, DAG.getBasicBlock(B.TargetBB));
1807
1808  // Set NextBlock to be the MBB immediately after the current one, if any.
1809  // This is used to avoid emitting unnecessary branches to the next block.
1810  MachineBasicBlock *NextBlock = 0;
1811  MachineFunction::iterator BBI = SwitchBB;
1812  if (++BBI != FuncInfo.MF->end())
1813    NextBlock = BBI;
1814
1815  if (NextMBB != NextBlock)
1816    BrAnd = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrAnd,
1817                        DAG.getBasicBlock(NextMBB));
1818
1819  DAG.setRoot(BrAnd);
1820}
1821
1822void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
1823  MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
1824
1825  // Retrieve successors.
1826  MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
1827  MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)];
1828
1829  const Value *Callee(I.getCalledValue());
1830  if (isa<InlineAsm>(Callee))
1831    visitInlineAsm(&I);
1832  else
1833    LowerCallTo(&I, getValue(Callee), false, LandingPad);
1834
1835  // If the value of the invoke is used outside of its defining block, make it
1836  // available as a virtual register.
1837  CopyToExportRegsIfNeeded(&I);
1838
1839  // Update successor info
1840  addSuccessorWithWeight(InvokeMBB, Return);
1841  addSuccessorWithWeight(InvokeMBB, LandingPad);
1842
1843  // Drop into normal successor.
1844  DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
1845                          MVT::Other, getControlRoot(),
1846                          DAG.getBasicBlock(Return)));
1847}
1848
1849void SelectionDAGBuilder::visitResume(const ResumeInst &RI) {
1850  llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!");
1851}
1852
1853void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) {
1854  assert(FuncInfo.MBB->isLandingPad() &&
1855         "Call to landingpad not in landing pad!");
1856
1857  MachineBasicBlock *MBB = FuncInfo.MBB;
1858  MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
1859  AddLandingPadInfo(LP, MMI, MBB);
1860
1861  // If there aren't registers to copy the values into (e.g., during SjLj
1862  // exceptions), then don't bother to create these DAG nodes.
1863  if (TLI.getExceptionPointerRegister() == 0 &&
1864      TLI.getExceptionSelectorRegister() == 0)
1865    return;
1866
1867  SmallVector<EVT, 2> ValueVTs;
1868  ComputeValueVTs(TLI, LP.getType(), ValueVTs);
1869
1870  // Insert the EXCEPTIONADDR instruction.
1871  assert(FuncInfo.MBB->isLandingPad() &&
1872         "Call to eh.exception not in landing pad!");
1873  SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
1874  SDValue Ops[2];
1875  Ops[0] = DAG.getRoot();
1876  SDValue Op1 = DAG.getNode(ISD::EXCEPTIONADDR, getCurDebugLoc(), VTs, Ops, 1);
1877  SDValue Chain = Op1.getValue(1);
1878
1879  // Insert the EHSELECTION instruction.
1880  VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
1881  Ops[0] = Op1;
1882  Ops[1] = Chain;
1883  SDValue Op2 = DAG.getNode(ISD::EHSELECTION, getCurDebugLoc(), VTs, Ops, 2);
1884  Chain = Op2.getValue(1);
1885  Op2 = DAG.getSExtOrTrunc(Op2, getCurDebugLoc(), MVT::i32);
1886
1887  Ops[0] = Op1;
1888  Ops[1] = Op2;
1889  SDValue Res = DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
1890                            DAG.getVTList(&ValueVTs[0], ValueVTs.size()),
1891                            &Ops[0], 2);
1892
1893  std::pair<SDValue, SDValue> RetPair = std::make_pair(Res, Chain);
1894  setValue(&LP, RetPair.first);
1895  DAG.setRoot(RetPair.second);
1896}
1897
1898/// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for
1899/// small case ranges).
1900bool SelectionDAGBuilder::handleSmallSwitchRange(CaseRec& CR,
1901                                                 CaseRecVector& WorkList,
1902                                                 const Value* SV,
1903                                                 MachineBasicBlock *Default,
1904                                                 MachineBasicBlock *SwitchBB) {
1905  Case& BackCase  = *(CR.Range.second-1);
1906
1907  // Size is the number of Cases represented by this range.
1908  size_t Size = CR.Range.second - CR.Range.first;
1909  if (Size > 3)
1910    return false;
1911
1912  // Get the MachineFunction which holds the current MBB.  This is used when
1913  // inserting any additional MBBs necessary to represent the switch.
1914  MachineFunction *CurMF = FuncInfo.MF;
1915
1916  // Figure out which block is immediately after the current one.
1917  MachineBasicBlock *NextBlock = 0;
1918  MachineFunction::iterator BBI = CR.CaseBB;
1919
1920  if (++BBI != FuncInfo.MF->end())
1921    NextBlock = BBI;
1922
1923  // If any two of the cases has the same destination, and if one value
1924  // is the same as the other, but has one bit unset that the other has set,
1925  // use bit manipulation to do two compares at once.  For example:
1926  // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
1927  // TODO: This could be extended to merge any 2 cases in switches with 3 cases.
1928  // TODO: Handle cases where CR.CaseBB != SwitchBB.
1929  if (Size == 2 && CR.CaseBB == SwitchBB) {
1930    Case &Small = *CR.Range.first;
1931    Case &Big = *(CR.Range.second-1);
1932
1933    if (Small.Low == Small.High && Big.Low == Big.High && Small.BB == Big.BB) {
1934      const APInt& SmallValue = cast<ConstantInt>(Small.Low)->getValue();
1935      const APInt& BigValue = cast<ConstantInt>(Big.Low)->getValue();
1936
1937      // Check that there is only one bit different.
1938      if (BigValue.countPopulation() == SmallValue.countPopulation() + 1 &&
1939          (SmallValue | BigValue) == BigValue) {
1940        // Isolate the common bit.
1941        APInt CommonBit = BigValue & ~SmallValue;
1942        assert((SmallValue | CommonBit) == BigValue &&
1943               CommonBit.countPopulation() == 1 && "Not a common bit?");
1944
1945        SDValue CondLHS = getValue(SV);
1946        EVT VT = CondLHS.getValueType();
1947        DebugLoc DL = getCurDebugLoc();
1948
1949        SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
1950                                 DAG.getConstant(CommonBit, VT));
1951        SDValue Cond = DAG.getSetCC(DL, MVT::i1,
1952                                    Or, DAG.getConstant(BigValue, VT),
1953                                    ISD::SETEQ);
1954
1955        // Update successor info.
1956        addSuccessorWithWeight(SwitchBB, Small.BB);
1957        addSuccessorWithWeight(SwitchBB, Default);
1958
1959        // Insert the true branch.
1960        SDValue BrCond = DAG.getNode(ISD::BRCOND, DL, MVT::Other,
1961                                     getControlRoot(), Cond,
1962                                     DAG.getBasicBlock(Small.BB));
1963
1964        // Insert the false branch.
1965        BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
1966                             DAG.getBasicBlock(Default));
1967
1968        DAG.setRoot(BrCond);
1969        return true;
1970      }
1971    }
1972  }
1973
1974  // Rearrange the case blocks so that the last one falls through if possible.
1975  if (NextBlock && Default != NextBlock && BackCase.BB != NextBlock) {
1976    // The last case block won't fall through into 'NextBlock' if we emit the
1977    // branches in this order.  See if rearranging a case value would help.
1978    for (CaseItr I = CR.Range.first, E = CR.Range.second-1; I != E; ++I) {
1979      if (I->BB == NextBlock) {
1980        std::swap(*I, BackCase);
1981        break;
1982      }
1983    }
1984  }
1985
1986  // Create a CaseBlock record representing a conditional branch to
1987  // the Case's target mbb if the value being switched on SV is equal
1988  // to C.
1989  MachineBasicBlock *CurBlock = CR.CaseBB;
1990  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) {
1991    MachineBasicBlock *FallThrough;
1992    if (I != E-1) {
1993      FallThrough = CurMF->CreateMachineBasicBlock(CurBlock->getBasicBlock());
1994      CurMF->insert(BBI, FallThrough);
1995
1996      // Put SV in a virtual register to make it available from the new blocks.
1997      ExportFromCurrentBlock(SV);
1998    } else {
1999      // If the last case doesn't match, go to the default block.
2000      FallThrough = Default;
2001    }
2002
2003    const Value *RHS, *LHS, *MHS;
2004    ISD::CondCode CC;
2005    if (I->High == I->Low) {
2006      // This is just small small case range :) containing exactly 1 case
2007      CC = ISD::SETEQ;
2008      LHS = SV; RHS = I->High; MHS = NULL;
2009    } else {
2010      CC = ISD::SETCC_INVALID;
2011      LHS = I->Low; MHS = SV; RHS = I->High;
2012    }
2013
2014    uint32_t ExtraWeight = I->ExtraWeight;
2015    CaseBlock CB(CC, LHS, RHS, MHS, /* truebb */ I->BB, /* falsebb */ FallThrough,
2016                 /* me */ CurBlock,
2017                 /* trueweight */ ExtraWeight / 2, /* falseweight */ ExtraWeight / 2);
2018
2019    // If emitting the first comparison, just call visitSwitchCase to emit the
2020    // code into the current block.  Otherwise, push the CaseBlock onto the
2021    // vector to be later processed by SDISel, and insert the node's MBB
2022    // before the next MBB.
2023    if (CurBlock == SwitchBB)
2024      visitSwitchCase(CB, SwitchBB);
2025    else
2026      SwitchCases.push_back(CB);
2027
2028    CurBlock = FallThrough;
2029  }
2030
2031  return true;
2032}
2033
2034static inline bool areJTsAllowed(const TargetLowering &TLI) {
2035  return !TLI.getTargetMachine().Options.DisableJumpTables &&
2036          (TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) ||
2037           TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other));
2038}
2039
2040static APInt ComputeRange(const APInt &First, const APInt &Last) {
2041  uint32_t BitWidth = std::max(Last.getBitWidth(), First.getBitWidth()) + 1;
2042  APInt LastExt = Last.zext(BitWidth), FirstExt = First.zext(BitWidth);
2043  return (LastExt - FirstExt + 1ULL);
2044}
2045
2046/// handleJTSwitchCase - Emit jumptable for current switch case range
2047bool SelectionDAGBuilder::handleJTSwitchCase(CaseRec &CR,
2048                                             CaseRecVector &WorkList,
2049                                             const Value *SV,
2050                                             MachineBasicBlock *Default,
2051                                             MachineBasicBlock *SwitchBB) {
2052  Case& FrontCase = *CR.Range.first;
2053  Case& BackCase  = *(CR.Range.second-1);
2054
2055  const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue();
2056  const APInt &Last  = cast<ConstantInt>(BackCase.High)->getValue();
2057
2058  APInt TSize(First.getBitWidth(), 0);
2059  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I)
2060    TSize += I->size();
2061
2062  if (!areJTsAllowed(TLI) || TSize.ult(4))
2063    return false;
2064
2065  APInt Range = ComputeRange(First, Last);
2066  // The density is TSize / Range. Require at least 40%.
2067  // It should not be possible for IntTSize to saturate for sane code, but make
2068  // sure we handle Range saturation correctly.
2069  uint64_t IntRange = Range.getLimitedValue(UINT64_MAX/10);
2070  uint64_t IntTSize = TSize.getLimitedValue(UINT64_MAX/10);
2071  if (IntTSize * 10 < IntRange * 4)
2072    return false;
2073
2074  DEBUG(dbgs() << "Lowering jump table\n"
2075               << "First entry: " << First << ". Last entry: " << Last << '\n'
2076               << "Range: " << Range << ". Size: " << TSize << ".\n\n");
2077
2078  // Get the MachineFunction which holds the current MBB.  This is used when
2079  // inserting any additional MBBs necessary to represent the switch.
2080  MachineFunction *CurMF = FuncInfo.MF;
2081
2082  // Figure out which block is immediately after the current one.
2083  MachineFunction::iterator BBI = CR.CaseBB;
2084  ++BBI;
2085
2086  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2087
2088  // Create a new basic block to hold the code for loading the address
2089  // of the jump table, and jumping to it.  Update successor information;
2090  // we will either branch to the default case for the switch, or the jump
2091  // table.
2092  MachineBasicBlock *JumpTableBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2093  CurMF->insert(BBI, JumpTableBB);
2094
2095  addSuccessorWithWeight(CR.CaseBB, Default);
2096  addSuccessorWithWeight(CR.CaseBB, JumpTableBB);
2097
2098  // Build a vector of destination BBs, corresponding to each target
2099  // of the jump table. If the value of the jump table slot corresponds to
2100  // a case statement, push the case's BB onto the vector, otherwise, push
2101  // the default BB.
2102  std::vector<MachineBasicBlock*> DestBBs;
2103  APInt TEI = First;
2104  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) {
2105    const APInt &Low = cast<ConstantInt>(I->Low)->getValue();
2106    const APInt &High = cast<ConstantInt>(I->High)->getValue();
2107
2108    if (Low.ule(TEI) && TEI.ule(High)) {
2109      DestBBs.push_back(I->BB);
2110      if (TEI==High)
2111        ++I;
2112    } else {
2113      DestBBs.push_back(Default);
2114    }
2115  }
2116
2117  // Update successor info. Add one edge to each unique successor.
2118  BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs());
2119  for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(),
2120         E = DestBBs.end(); I != E; ++I) {
2121    if (!SuccsHandled[(*I)->getNumber()]) {
2122      SuccsHandled[(*I)->getNumber()] = true;
2123      addSuccessorWithWeight(JumpTableBB, *I);
2124    }
2125  }
2126
2127  // Create a jump table index for this jump table.
2128  unsigned JTEncoding = TLI.getJumpTableEncoding();
2129  unsigned JTI = CurMF->getOrCreateJumpTableInfo(JTEncoding)
2130                       ->createJumpTableIndex(DestBBs);
2131
2132  // Set the jump table information so that we can codegen it as a second
2133  // MachineBasicBlock
2134  JumpTable JT(-1U, JTI, JumpTableBB, Default);
2135  JumpTableHeader JTH(First, Last, SV, CR.CaseBB, (CR.CaseBB == SwitchBB));
2136  if (CR.CaseBB == SwitchBB)
2137    visitJumpTableHeader(JT, JTH, SwitchBB);
2138
2139  JTCases.push_back(JumpTableBlock(JTH, JT));
2140  return true;
2141}
2142
2143/// handleBTSplitSwitchCase - emit comparison and split binary search tree into
2144/// 2 subtrees.
2145bool SelectionDAGBuilder::handleBTSplitSwitchCase(CaseRec& CR,
2146                                                  CaseRecVector& WorkList,
2147                                                  const Value* SV,
2148                                                  MachineBasicBlock *Default,
2149                                                  MachineBasicBlock *SwitchBB) {
2150  // Get the MachineFunction which holds the current MBB.  This is used when
2151  // inserting any additional MBBs necessary to represent the switch.
2152  MachineFunction *CurMF = FuncInfo.MF;
2153
2154  // Figure out which block is immediately after the current one.
2155  MachineFunction::iterator BBI = CR.CaseBB;
2156  ++BBI;
2157
2158  Case& FrontCase = *CR.Range.first;
2159  Case& BackCase  = *(CR.Range.second-1);
2160  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2161
2162  // Size is the number of Cases represented by this range.
2163  unsigned Size = CR.Range.second - CR.Range.first;
2164
2165  const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue();
2166  const APInt &Last  = cast<ConstantInt>(BackCase.High)->getValue();
2167  double FMetric = 0;
2168  CaseItr Pivot = CR.Range.first + Size/2;
2169
2170  // Select optimal pivot, maximizing sum density of LHS and RHS. This will
2171  // (heuristically) allow us to emit JumpTable's later.
2172  APInt TSize(First.getBitWidth(), 0);
2173  for (CaseItr I = CR.Range.first, E = CR.Range.second;
2174       I!=E; ++I)
2175    TSize += I->size();
2176
2177  APInt LSize = FrontCase.size();
2178  APInt RSize = TSize-LSize;
2179  DEBUG(dbgs() << "Selecting best pivot: \n"
2180               << "First: " << First << ", Last: " << Last <<'\n'
2181               << "LSize: " << LSize << ", RSize: " << RSize << '\n');
2182  for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second;
2183       J!=E; ++I, ++J) {
2184    const APInt &LEnd = cast<ConstantInt>(I->High)->getValue();
2185    const APInt &RBegin = cast<ConstantInt>(J->Low)->getValue();
2186    APInt Range = ComputeRange(LEnd, RBegin);
2187    assert((Range - 2ULL).isNonNegative() &&
2188           "Invalid case distance");
2189    // Use volatile double here to avoid excess precision issues on some hosts,
2190    // e.g. that use 80-bit X87 registers.
2191    volatile double LDensity =
2192       (double)LSize.roundToDouble() /
2193                           (LEnd - First + 1ULL).roundToDouble();
2194    volatile double RDensity =
2195      (double)RSize.roundToDouble() /
2196                           (Last - RBegin + 1ULL).roundToDouble();
2197    double Metric = Range.logBase2()*(LDensity+RDensity);
2198    // Should always split in some non-trivial place
2199    DEBUG(dbgs() <<"=>Step\n"
2200                 << "LEnd: " << LEnd << ", RBegin: " << RBegin << '\n'
2201                 << "LDensity: " << LDensity
2202                 << ", RDensity: " << RDensity << '\n'
2203                 << "Metric: " << Metric << '\n');
2204    if (FMetric < Metric) {
2205      Pivot = J;
2206      FMetric = Metric;
2207      DEBUG(dbgs() << "Current metric set to: " << FMetric << '\n');
2208    }
2209
2210    LSize += J->size();
2211    RSize -= J->size();
2212  }
2213  if (areJTsAllowed(TLI)) {
2214    // If our case is dense we *really* should handle it earlier!
2215    assert((FMetric > 0) && "Should handle dense range earlier!");
2216  } else {
2217    Pivot = CR.Range.first + Size/2;
2218  }
2219
2220  CaseRange LHSR(CR.Range.first, Pivot);
2221  CaseRange RHSR(Pivot, CR.Range.second);
2222  const Constant *C = Pivot->Low;
2223  MachineBasicBlock *FalseBB = 0, *TrueBB = 0;
2224
2225  // We know that we branch to the LHS if the Value being switched on is
2226  // less than the Pivot value, C.  We use this to optimize our binary
2227  // tree a bit, by recognizing that if SV is greater than or equal to the
2228  // LHS's Case Value, and that Case Value is exactly one less than the
2229  // Pivot's Value, then we can branch directly to the LHS's Target,
2230  // rather than creating a leaf node for it.
2231  if ((LHSR.second - LHSR.first) == 1 &&
2232      LHSR.first->High == CR.GE &&
2233      cast<ConstantInt>(C)->getValue() ==
2234      (cast<ConstantInt>(CR.GE)->getValue() + 1LL)) {
2235    TrueBB = LHSR.first->BB;
2236  } else {
2237    TrueBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2238    CurMF->insert(BBI, TrueBB);
2239    WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR));
2240
2241    // Put SV in a virtual register to make it available from the new blocks.
2242    ExportFromCurrentBlock(SV);
2243  }
2244
2245  // Similar to the optimization above, if the Value being switched on is
2246  // known to be less than the Constant CR.LT, and the current Case Value
2247  // is CR.LT - 1, then we can branch directly to the target block for
2248  // the current Case Value, rather than emitting a RHS leaf node for it.
2249  if ((RHSR.second - RHSR.first) == 1 && CR.LT &&
2250      cast<ConstantInt>(RHSR.first->Low)->getValue() ==
2251      (cast<ConstantInt>(CR.LT)->getValue() - 1LL)) {
2252    FalseBB = RHSR.first->BB;
2253  } else {
2254    FalseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2255    CurMF->insert(BBI, FalseBB);
2256    WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR));
2257
2258    // Put SV in a virtual register to make it available from the new blocks.
2259    ExportFromCurrentBlock(SV);
2260  }
2261
2262  // Create a CaseBlock record representing a conditional branch to
2263  // the LHS node if the value being switched on SV is less than C.
2264  // Otherwise, branch to LHS.
2265  CaseBlock CB(ISD::SETULT, SV, C, NULL, TrueBB, FalseBB, CR.CaseBB);
2266
2267  if (CR.CaseBB == SwitchBB)
2268    visitSwitchCase(CB, SwitchBB);
2269  else
2270    SwitchCases.push_back(CB);
2271
2272  return true;
2273}
2274
2275/// handleBitTestsSwitchCase - if current case range has few destination and
2276/// range span less, than machine word bitwidth, encode case range into series
2277/// of masks and emit bit tests with these masks.
2278bool SelectionDAGBuilder::handleBitTestsSwitchCase(CaseRec& CR,
2279                                                   CaseRecVector& WorkList,
2280                                                   const Value* SV,
2281                                                   MachineBasicBlock* Default,
2282                                                   MachineBasicBlock *SwitchBB){
2283  EVT PTy = TLI.getPointerTy();
2284  unsigned IntPtrBits = PTy.getSizeInBits();
2285
2286  Case& FrontCase = *CR.Range.first;
2287  Case& BackCase  = *(CR.Range.second-1);
2288
2289  // Get the MachineFunction which holds the current MBB.  This is used when
2290  // inserting any additional MBBs necessary to represent the switch.
2291  MachineFunction *CurMF = FuncInfo.MF;
2292
2293  // If target does not have legal shift left, do not emit bit tests at all.
2294  if (!TLI.isOperationLegal(ISD::SHL, TLI.getPointerTy()))
2295    return false;
2296
2297  size_t numCmps = 0;
2298  for (CaseItr I = CR.Range.first, E = CR.Range.second;
2299       I!=E; ++I) {
2300    // Single case counts one, case range - two.
2301    numCmps += (I->Low == I->High ? 1 : 2);
2302  }
2303
2304  // Count unique destinations
2305  SmallSet<MachineBasicBlock*, 4> Dests;
2306  for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
2307    Dests.insert(I->BB);
2308    if (Dests.size() > 3)
2309      // Don't bother the code below, if there are too much unique destinations
2310      return false;
2311  }
2312  DEBUG(dbgs() << "Total number of unique destinations: "
2313        << Dests.size() << '\n'
2314        << "Total number of comparisons: " << numCmps << '\n');
2315
2316  // Compute span of values.
2317  const APInt& minValue = cast<ConstantInt>(FrontCase.Low)->getValue();
2318  const APInt& maxValue = cast<ConstantInt>(BackCase.High)->getValue();
2319  APInt cmpRange = maxValue - minValue;
2320
2321  DEBUG(dbgs() << "Compare range: " << cmpRange << '\n'
2322               << "Low bound: " << minValue << '\n'
2323               << "High bound: " << maxValue << '\n');
2324
2325  if (cmpRange.uge(IntPtrBits) ||
2326      (!(Dests.size() == 1 && numCmps >= 3) &&
2327       !(Dests.size() == 2 && numCmps >= 5) &&
2328       !(Dests.size() >= 3 && numCmps >= 6)))
2329    return false;
2330
2331  DEBUG(dbgs() << "Emitting bit tests\n");
2332  APInt lowBound = APInt::getNullValue(cmpRange.getBitWidth());
2333
2334  // Optimize the case where all the case values fit in a
2335  // word without having to subtract minValue. In this case,
2336  // we can optimize away the subtraction.
2337  if (maxValue.ult(IntPtrBits)) {
2338    cmpRange = maxValue;
2339  } else {
2340    lowBound = minValue;
2341  }
2342
2343  CaseBitsVector CasesBits;
2344  unsigned i, count = 0;
2345
2346  for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
2347    MachineBasicBlock* Dest = I->BB;
2348    for (i = 0; i < count; ++i)
2349      if (Dest == CasesBits[i].BB)
2350        break;
2351
2352    if (i == count) {
2353      assert((count < 3) && "Too much destinations to test!");
2354      CasesBits.push_back(CaseBits(0, Dest, 0));
2355      count++;
2356    }
2357
2358    const APInt& lowValue = cast<ConstantInt>(I->Low)->getValue();
2359    const APInt& highValue = cast<ConstantInt>(I->High)->getValue();
2360
2361    uint64_t lo = (lowValue - lowBound).getZExtValue();
2362    uint64_t hi = (highValue - lowBound).getZExtValue();
2363
2364    for (uint64_t j = lo; j <= hi; j++) {
2365      CasesBits[i].Mask |=  1ULL << j;
2366      CasesBits[i].Bits++;
2367    }
2368
2369  }
2370  std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp());
2371
2372  BitTestInfo BTC;
2373
2374  // Figure out which block is immediately after the current one.
2375  MachineFunction::iterator BBI = CR.CaseBB;
2376  ++BBI;
2377
2378  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2379
2380  DEBUG(dbgs() << "Cases:\n");
2381  for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) {
2382    DEBUG(dbgs() << "Mask: " << CasesBits[i].Mask
2383                 << ", Bits: " << CasesBits[i].Bits
2384                 << ", BB: " << CasesBits[i].BB << '\n');
2385
2386    MachineBasicBlock *CaseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2387    CurMF->insert(BBI, CaseBB);
2388    BTC.push_back(BitTestCase(CasesBits[i].Mask,
2389                              CaseBB,
2390                              CasesBits[i].BB));
2391
2392    // Put SV in a virtual register to make it available from the new blocks.
2393    ExportFromCurrentBlock(SV);
2394  }
2395
2396  BitTestBlock BTB(lowBound, cmpRange, SV,
2397                   -1U, MVT::Other, (CR.CaseBB == SwitchBB),
2398                   CR.CaseBB, Default, BTC);
2399
2400  if (CR.CaseBB == SwitchBB)
2401    visitBitTestHeader(BTB, SwitchBB);
2402
2403  BitTestCases.push_back(BTB);
2404
2405  return true;
2406}
2407
2408/// Clusterify - Transform simple list of Cases into list of CaseRange's
2409size_t SelectionDAGBuilder::Clusterify(CaseVector& Cases,
2410                                       const SwitchInst& SI) {
2411  size_t numCmps = 0;
2412
2413  BranchProbabilityInfo *BPI = FuncInfo.BPI;
2414  // Start with "simple" cases
2415  for (SwitchInst::ConstCaseIt i = SI.case_begin(), e = SI.case_end();
2416       i != e; ++i) {
2417    const BasicBlock *SuccBB = i.getCaseSuccessor();
2418    MachineBasicBlock *SMBB = FuncInfo.MBBMap[SuccBB];
2419
2420    uint32_t ExtraWeight = BPI ? BPI->getEdgeWeight(SI.getParent(), SuccBB) : 0;
2421
2422    Cases.push_back(Case(i.getCaseValue(), i.getCaseValue(),
2423                         SMBB, ExtraWeight));
2424  }
2425  std::sort(Cases.begin(), Cases.end(), CaseCmp());
2426
2427  // Merge case into clusters
2428  if (Cases.size() >= 2)
2429    // Must recompute end() each iteration because it may be
2430    // invalidated by erase if we hold on to it
2431    for (CaseItr I = Cases.begin(), J = llvm::next(Cases.begin());
2432         J != Cases.end(); ) {
2433      const APInt& nextValue = cast<ConstantInt>(J->Low)->getValue();
2434      const APInt& currentValue = cast<ConstantInt>(I->High)->getValue();
2435      MachineBasicBlock* nextBB = J->BB;
2436      MachineBasicBlock* currentBB = I->BB;
2437
2438      // If the two neighboring cases go to the same destination, merge them
2439      // into a single case.
2440      if ((nextValue - currentValue == 1) && (currentBB == nextBB)) {
2441        I->High = J->High;
2442        J = Cases.erase(J);
2443
2444        if (BranchProbabilityInfo *BPI = FuncInfo.BPI) {
2445          uint32_t CurWeight = currentBB->getBasicBlock() ?
2446            BPI->getEdgeWeight(SI.getParent(), currentBB->getBasicBlock()) : 16;
2447          uint32_t NextWeight = nextBB->getBasicBlock() ?
2448            BPI->getEdgeWeight(SI.getParent(), nextBB->getBasicBlock()) : 16;
2449
2450          BPI->setEdgeWeight(SI.getParent(), currentBB->getBasicBlock(),
2451                             CurWeight + NextWeight);
2452        }
2453      } else {
2454        I = J++;
2455      }
2456    }
2457
2458  for (CaseItr I=Cases.begin(), E=Cases.end(); I!=E; ++I, ++numCmps) {
2459    if (I->Low != I->High)
2460      // A range counts double, since it requires two compares.
2461      ++numCmps;
2462  }
2463
2464  return numCmps;
2465}
2466
2467void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
2468                                           MachineBasicBlock *Last) {
2469  // Update JTCases.
2470  for (unsigned i = 0, e = JTCases.size(); i != e; ++i)
2471    if (JTCases[i].first.HeaderBB == First)
2472      JTCases[i].first.HeaderBB = Last;
2473
2474  // Update BitTestCases.
2475  for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i)
2476    if (BitTestCases[i].Parent == First)
2477      BitTestCases[i].Parent = Last;
2478}
2479
2480void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
2481  MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
2482
2483  // Figure out which block is immediately after the current one.
2484  MachineBasicBlock *NextBlock = 0;
2485  MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()];
2486
2487  // If there is only the default destination, branch to it if it is not the
2488  // next basic block.  Otherwise, just fall through.
2489  if (!SI.getNumCases()) {
2490    // Update machine-CFG edges.
2491
2492    // If this is not a fall-through branch, emit the branch.
2493    SwitchMBB->addSuccessor(Default);
2494    if (Default != NextBlock)
2495      DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
2496                              MVT::Other, getControlRoot(),
2497                              DAG.getBasicBlock(Default)));
2498
2499    return;
2500  }
2501
2502  // If there are any non-default case statements, create a vector of Cases
2503  // representing each one, and sort the vector so that we can efficiently
2504  // create a binary search tree from them.
2505  CaseVector Cases;
2506  size_t numCmps = Clusterify(Cases, SI);
2507  DEBUG(dbgs() << "Clusterify finished. Total clusters: " << Cases.size()
2508               << ". Total compares: " << numCmps << '\n');
2509  (void)numCmps;
2510
2511  // Get the Value to be switched on and default basic blocks, which will be
2512  // inserted into CaseBlock records, representing basic blocks in the binary
2513  // search tree.
2514  const Value *SV = SI.getCondition();
2515
2516  // Push the initial CaseRec onto the worklist
2517  CaseRecVector WorkList;
2518  WorkList.push_back(CaseRec(SwitchMBB,0,0,
2519                             CaseRange(Cases.begin(),Cases.end())));
2520
2521  while (!WorkList.empty()) {
2522    // Grab a record representing a case range to process off the worklist
2523    CaseRec CR = WorkList.back();
2524    WorkList.pop_back();
2525
2526    if (handleBitTestsSwitchCase(CR, WorkList, SV, Default, SwitchMBB))
2527      continue;
2528
2529    // If the range has few cases (two or less) emit a series of specific
2530    // tests.
2531    if (handleSmallSwitchRange(CR, WorkList, SV, Default, SwitchMBB))
2532      continue;
2533
2534    // If the switch has more than 5 blocks, and at least 40% dense, and the
2535    // target supports indirect branches, then emit a jump table rather than
2536    // lowering the switch to a binary tree of conditional branches.
2537    if (handleJTSwitchCase(CR, WorkList, SV, Default, SwitchMBB))
2538      continue;
2539
2540    // Emit binary tree. We need to pick a pivot, and push left and right ranges
2541    // onto the worklist. Leafs are handled via handleSmallSwitchRange() call.
2542    handleBTSplitSwitchCase(CR, WorkList, SV, Default, SwitchMBB);
2543  }
2544}
2545
2546void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
2547  MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
2548
2549  // Update machine-CFG edges with unique successors.
2550  SmallVector<BasicBlock*, 32> succs;
2551  succs.reserve(I.getNumSuccessors());
2552  for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i)
2553    succs.push_back(I.getSuccessor(i));
2554  array_pod_sort(succs.begin(), succs.end());
2555  succs.erase(std::unique(succs.begin(), succs.end()), succs.end());
2556  for (unsigned i = 0, e = succs.size(); i != e; ++i) {
2557    MachineBasicBlock *Succ = FuncInfo.MBBMap[succs[i]];
2558    addSuccessorWithWeight(IndirectBrMBB, Succ);
2559  }
2560
2561  DAG.setRoot(DAG.getNode(ISD::BRIND, getCurDebugLoc(),
2562                          MVT::Other, getControlRoot(),
2563                          getValue(I.getAddress())));
2564}
2565
2566void SelectionDAGBuilder::visitFSub(const User &I) {
2567  // -0.0 - X --> fneg
2568  Type *Ty = I.getType();
2569  if (isa<Constant>(I.getOperand(0)) &&
2570      I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) {
2571    SDValue Op2 = getValue(I.getOperand(1));
2572    setValue(&I, DAG.getNode(ISD::FNEG, getCurDebugLoc(),
2573                             Op2.getValueType(), Op2));
2574    return;
2575  }
2576
2577  visitBinary(I, ISD::FSUB);
2578}
2579
2580void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) {
2581  SDValue Op1 = getValue(I.getOperand(0));
2582  SDValue Op2 = getValue(I.getOperand(1));
2583  setValue(&I, DAG.getNode(OpCode, getCurDebugLoc(),
2584                           Op1.getValueType(), Op1, Op2));
2585}
2586
2587void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
2588  SDValue Op1 = getValue(I.getOperand(0));
2589  SDValue Op2 = getValue(I.getOperand(1));
2590
2591  MVT ShiftTy = TLI.getShiftAmountTy(Op2.getValueType());
2592
2593  // Coerce the shift amount to the right type if we can.
2594  if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
2595    unsigned ShiftSize = ShiftTy.getSizeInBits();
2596    unsigned Op2Size = Op2.getValueType().getSizeInBits();
2597    DebugLoc DL = getCurDebugLoc();
2598
2599    // If the operand is smaller than the shift count type, promote it.
2600    if (ShiftSize > Op2Size)
2601      Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2);
2602
2603    // If the operand is larger than the shift count type but the shift
2604    // count type has enough bits to represent any shift value, truncate
2605    // it now. This is a common case and it exposes the truncate to
2606    // optimization early.
2607    else if (ShiftSize >= Log2_32_Ceil(Op2.getValueType().getSizeInBits()))
2608      Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2);
2609    // Otherwise we'll need to temporarily settle for some other convenient
2610    // type.  Type legalization will make adjustments once the shiftee is split.
2611    else
2612      Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32);
2613  }
2614
2615  setValue(&I, DAG.getNode(Opcode, getCurDebugLoc(),
2616                           Op1.getValueType(), Op1, Op2));
2617}
2618
2619void SelectionDAGBuilder::visitSDiv(const User &I) {
2620  SDValue Op1 = getValue(I.getOperand(0));
2621  SDValue Op2 = getValue(I.getOperand(1));
2622
2623  // Turn exact SDivs into multiplications.
2624  // FIXME: This should be in DAGCombiner, but it doesn't have access to the
2625  // exact bit.
2626  if (isa<BinaryOperator>(&I) && cast<BinaryOperator>(&I)->isExact() &&
2627      !isa<ConstantSDNode>(Op1) &&
2628      isa<ConstantSDNode>(Op2) && !cast<ConstantSDNode>(Op2)->isNullValue())
2629    setValue(&I, TLI.BuildExactSDIV(Op1, Op2, getCurDebugLoc(), DAG));
2630  else
2631    setValue(&I, DAG.getNode(ISD::SDIV, getCurDebugLoc(), Op1.getValueType(),
2632                             Op1, Op2));
2633}
2634
2635void SelectionDAGBuilder::visitICmp(const User &I) {
2636  ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
2637  if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
2638    predicate = IC->getPredicate();
2639  else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
2640    predicate = ICmpInst::Predicate(IC->getPredicate());
2641  SDValue Op1 = getValue(I.getOperand(0));
2642  SDValue Op2 = getValue(I.getOperand(1));
2643  ISD::CondCode Opcode = getICmpCondCode(predicate);
2644
2645  EVT DestVT = TLI.getValueType(I.getType());
2646  setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Opcode));
2647}
2648
2649void SelectionDAGBuilder::visitFCmp(const User &I) {
2650  FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
2651  if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
2652    predicate = FC->getPredicate();
2653  else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
2654    predicate = FCmpInst::Predicate(FC->getPredicate());
2655  SDValue Op1 = getValue(I.getOperand(0));
2656  SDValue Op2 = getValue(I.getOperand(1));
2657  ISD::CondCode Condition = getFCmpCondCode(predicate);
2658  if (TM.Options.NoNaNsFPMath)
2659    Condition = getFCmpCodeWithoutNaN(Condition);
2660  EVT DestVT = TLI.getValueType(I.getType());
2661  setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Condition));
2662}
2663
2664void SelectionDAGBuilder::visitSelect(const User &I) {
2665  SmallVector<EVT, 4> ValueVTs;
2666  ComputeValueVTs(TLI, I.getType(), ValueVTs);
2667  unsigned NumValues = ValueVTs.size();
2668  if (NumValues == 0) return;
2669
2670  SmallVector<SDValue, 4> Values(NumValues);
2671  SDValue Cond     = getValue(I.getOperand(0));
2672  SDValue TrueVal  = getValue(I.getOperand(1));
2673  SDValue FalseVal = getValue(I.getOperand(2));
2674  ISD::NodeType OpCode = Cond.getValueType().isVector() ?
2675    ISD::VSELECT : ISD::SELECT;
2676
2677  for (unsigned i = 0; i != NumValues; ++i)
2678    Values[i] = DAG.getNode(OpCode, getCurDebugLoc(),
2679                            TrueVal.getNode()->getValueType(TrueVal.getResNo()+i),
2680                            Cond,
2681                            SDValue(TrueVal.getNode(),
2682                                    TrueVal.getResNo() + i),
2683                            SDValue(FalseVal.getNode(),
2684                                    FalseVal.getResNo() + i));
2685
2686  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
2687                           DAG.getVTList(&ValueVTs[0], NumValues),
2688                           &Values[0], NumValues));
2689}
2690
2691void SelectionDAGBuilder::visitTrunc(const User &I) {
2692  // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
2693  SDValue N = getValue(I.getOperand(0));
2694  EVT DestVT = TLI.getValueType(I.getType());
2695  setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), DestVT, N));
2696}
2697
2698void SelectionDAGBuilder::visitZExt(const User &I) {
2699  // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2700  // ZExt also can't be a cast to bool for same reason. So, nothing much to do
2701  SDValue N = getValue(I.getOperand(0));
2702  EVT DestVT = TLI.getValueType(I.getType());
2703  setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), DestVT, N));
2704}
2705
2706void SelectionDAGBuilder::visitSExt(const User &I) {
2707  // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2708  // SExt also can't be a cast to bool for same reason. So, nothing much to do
2709  SDValue N = getValue(I.getOperand(0));
2710  EVT DestVT = TLI.getValueType(I.getType());
2711  setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurDebugLoc(), DestVT, N));
2712}
2713
2714void SelectionDAGBuilder::visitFPTrunc(const User &I) {
2715  // FPTrunc is never a no-op cast, no need to check
2716  SDValue N = getValue(I.getOperand(0));
2717  EVT DestVT = TLI.getValueType(I.getType());
2718  setValue(&I, DAG.getNode(ISD::FP_ROUND, getCurDebugLoc(),
2719                           DestVT, N,
2720                           DAG.getTargetConstant(0, TLI.getPointerTy())));
2721}
2722
2723void SelectionDAGBuilder::visitFPExt(const User &I){
2724  // FPExt is never a no-op cast, no need to check
2725  SDValue N = getValue(I.getOperand(0));
2726  EVT DestVT = TLI.getValueType(I.getType());
2727  setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurDebugLoc(), DestVT, N));
2728}
2729
2730void SelectionDAGBuilder::visitFPToUI(const User &I) {
2731  // FPToUI is never a no-op cast, no need to check
2732  SDValue N = getValue(I.getOperand(0));
2733  EVT DestVT = TLI.getValueType(I.getType());
2734  setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurDebugLoc(), DestVT, N));
2735}
2736
2737void SelectionDAGBuilder::visitFPToSI(const User &I) {
2738  // FPToSI is never a no-op cast, no need to check
2739  SDValue N = getValue(I.getOperand(0));
2740  EVT DestVT = TLI.getValueType(I.getType());
2741  setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurDebugLoc(), DestVT, N));
2742}
2743
2744void SelectionDAGBuilder::visitUIToFP(const User &I) {
2745  // UIToFP is never a no-op cast, no need to check
2746  SDValue N = getValue(I.getOperand(0));
2747  EVT DestVT = TLI.getValueType(I.getType());
2748  setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurDebugLoc(), DestVT, N));
2749}
2750
2751void SelectionDAGBuilder::visitSIToFP(const User &I){
2752  // SIToFP is never a no-op cast, no need to check
2753  SDValue N = getValue(I.getOperand(0));
2754  EVT DestVT = TLI.getValueType(I.getType());
2755  setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurDebugLoc(), DestVT, N));
2756}
2757
2758void SelectionDAGBuilder::visitPtrToInt(const User &I) {
2759  // What to do depends on the size of the integer and the size of the pointer.
2760  // We can either truncate, zero extend, or no-op, accordingly.
2761  SDValue N = getValue(I.getOperand(0));
2762  EVT DestVT = TLI.getValueType(I.getType());
2763  setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT));
2764}
2765
2766void SelectionDAGBuilder::visitIntToPtr(const User &I) {
2767  // What to do depends on the size of the integer and the size of the pointer.
2768  // We can either truncate, zero extend, or no-op, accordingly.
2769  SDValue N = getValue(I.getOperand(0));
2770  EVT DestVT = TLI.getValueType(I.getType());
2771  setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT));
2772}
2773
2774void SelectionDAGBuilder::visitBitCast(const User &I) {
2775  SDValue N = getValue(I.getOperand(0));
2776  EVT DestVT = TLI.getValueType(I.getType());
2777
2778  // BitCast assures us that source and destination are the same size so this is
2779  // either a BITCAST or a no-op.
2780  if (DestVT != N.getValueType())
2781    setValue(&I, DAG.getNode(ISD::BITCAST, getCurDebugLoc(),
2782                             DestVT, N)); // convert types.
2783  else
2784    setValue(&I, N);            // noop cast.
2785}
2786
2787void SelectionDAGBuilder::visitInsertElement(const User &I) {
2788  SDValue InVec = getValue(I.getOperand(0));
2789  SDValue InVal = getValue(I.getOperand(1));
2790  SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(),
2791                              TLI.getPointerTy(),
2792                              getValue(I.getOperand(2)));
2793  setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurDebugLoc(),
2794                           TLI.getValueType(I.getType()),
2795                           InVec, InVal, InIdx));
2796}
2797
2798void SelectionDAGBuilder::visitExtractElement(const User &I) {
2799  SDValue InVec = getValue(I.getOperand(0));
2800  SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(),
2801                              TLI.getPointerTy(),
2802                              getValue(I.getOperand(1)));
2803  setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
2804                           TLI.getValueType(I.getType()), InVec, InIdx));
2805}
2806
2807// Utility for visitShuffleVector - Return true if every element in Mask,
2808// begining from position Pos and ending in Pos+Size, falls within the
2809// specified sequential range [L, L+Pos). or is undef.
2810static bool isSequentialInRange(const SmallVectorImpl<int> &Mask,
2811                                unsigned Pos, unsigned Size, int Low) {
2812  for (unsigned i = Pos, e = Pos+Size; i != e; ++i, ++Low)
2813    if (Mask[i] >= 0 && Mask[i] != Low)
2814      return false;
2815  return true;
2816}
2817
2818void SelectionDAGBuilder::visitShuffleVector(const User &I) {
2819  SDValue Src1 = getValue(I.getOperand(0));
2820  SDValue Src2 = getValue(I.getOperand(1));
2821
2822  SmallVector<int, 8> Mask;
2823  ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask);
2824  unsigned MaskNumElts = Mask.size();
2825
2826  EVT VT = TLI.getValueType(I.getType());
2827  EVT SrcVT = Src1.getValueType();
2828  unsigned SrcNumElts = SrcVT.getVectorNumElements();
2829
2830  if (SrcNumElts == MaskNumElts) {
2831    setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2832                                      &Mask[0]));
2833    return;
2834  }
2835
2836  // Normalize the shuffle vector since mask and vector length don't match.
2837  if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) {
2838    // Mask is longer than the source vectors and is a multiple of the source
2839    // vectors.  We can use concatenate vector to make the mask and vectors
2840    // lengths match.
2841    if (SrcNumElts*2 == MaskNumElts) {
2842      // First check for Src1 in low and Src2 in high
2843      if (isSequentialInRange(Mask, 0, SrcNumElts, 0) &&
2844          isSequentialInRange(Mask, SrcNumElts, SrcNumElts, SrcNumElts)) {
2845        // The shuffle is concatenating two vectors together.
2846        setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurDebugLoc(),
2847                                 VT, Src1, Src2));
2848        return;
2849      }
2850      // Then check for Src2 in low and Src1 in high
2851      if (isSequentialInRange(Mask, 0, SrcNumElts, SrcNumElts) &&
2852          isSequentialInRange(Mask, SrcNumElts, SrcNumElts, 0)) {
2853        // The shuffle is concatenating two vectors together.
2854        setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurDebugLoc(),
2855                                 VT, Src2, Src1));
2856        return;
2857      }
2858    }
2859
2860    // Pad both vectors with undefs to make them the same length as the mask.
2861    unsigned NumConcat = MaskNumElts / SrcNumElts;
2862    bool Src1U = Src1.getOpcode() == ISD::UNDEF;
2863    bool Src2U = Src2.getOpcode() == ISD::UNDEF;
2864    SDValue UndefVal = DAG.getUNDEF(SrcVT);
2865
2866    SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
2867    SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
2868    MOps1[0] = Src1;
2869    MOps2[0] = Src2;
2870
2871    Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
2872                                                  getCurDebugLoc(), VT,
2873                                                  &MOps1[0], NumConcat);
2874    Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
2875                                                  getCurDebugLoc(), VT,
2876                                                  &MOps2[0], NumConcat);
2877
2878    // Readjust mask for new input vector length.
2879    SmallVector<int, 8> MappedOps;
2880    for (unsigned i = 0; i != MaskNumElts; ++i) {
2881      int Idx = Mask[i];
2882      if (Idx >= (int)SrcNumElts)
2883        Idx -= SrcNumElts - MaskNumElts;
2884      MappedOps.push_back(Idx);
2885    }
2886
2887    setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2888                                      &MappedOps[0]));
2889    return;
2890  }
2891
2892  if (SrcNumElts > MaskNumElts) {
2893    // Analyze the access pattern of the vector to see if we can extract
2894    // two subvectors and do the shuffle. The analysis is done by calculating
2895    // the range of elements the mask access on both vectors.
2896    int MinRange[2] = { static_cast<int>(SrcNumElts),
2897                        static_cast<int>(SrcNumElts)};
2898    int MaxRange[2] = {-1, -1};
2899
2900    for (unsigned i = 0; i != MaskNumElts; ++i) {
2901      int Idx = Mask[i];
2902      unsigned Input = 0;
2903      if (Idx < 0)
2904        continue;
2905
2906      if (Idx >= (int)SrcNumElts) {
2907        Input = 1;
2908        Idx -= SrcNumElts;
2909      }
2910      if (Idx > MaxRange[Input])
2911        MaxRange[Input] = Idx;
2912      if (Idx < MinRange[Input])
2913        MinRange[Input] = Idx;
2914    }
2915
2916    // Check if the access is smaller than the vector size and can we find
2917    // a reasonable extract index.
2918    int RangeUse[2] = { -1, -1 };  // 0 = Unused, 1 = Extract, -1 = Can not
2919                                   // Extract.
2920    int StartIdx[2];  // StartIdx to extract from
2921    for (unsigned Input = 0; Input < 2; ++Input) {
2922      if (MinRange[Input] >= (int)SrcNumElts && MaxRange[Input] < 0) {
2923        RangeUse[Input] = 0; // Unused
2924        StartIdx[Input] = 0;
2925        continue;
2926      }
2927
2928      // Find a good start index that is a multiple of the mask length. Then
2929      // see if the rest of the elements are in range.
2930      StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts;
2931      if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts &&
2932          StartIdx[Input] + MaskNumElts <= SrcNumElts)
2933        RangeUse[Input] = 1; // Extract from a multiple of the mask length.
2934    }
2935
2936    if (RangeUse[0] == 0 && RangeUse[1] == 0) {
2937      setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
2938      return;
2939    }
2940    if (RangeUse[0] >= 0 && RangeUse[1] >= 0) {
2941      // Extract appropriate subvector and generate a vector shuffle
2942      for (unsigned Input = 0; Input < 2; ++Input) {
2943        SDValue &Src = Input == 0 ? Src1 : Src2;
2944        if (RangeUse[Input] == 0)
2945          Src = DAG.getUNDEF(VT);
2946        else
2947          Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, getCurDebugLoc(), VT,
2948                            Src, DAG.getIntPtrConstant(StartIdx[Input]));
2949      }
2950
2951      // Calculate new mask.
2952      SmallVector<int, 8> MappedOps;
2953      for (unsigned i = 0; i != MaskNumElts; ++i) {
2954        int Idx = Mask[i];
2955        if (Idx >= 0) {
2956          if (Idx < (int)SrcNumElts)
2957            Idx -= StartIdx[0];
2958          else
2959            Idx -= SrcNumElts + StartIdx[1] - MaskNumElts;
2960        }
2961        MappedOps.push_back(Idx);
2962      }
2963
2964      setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2965                                        &MappedOps[0]));
2966      return;
2967    }
2968  }
2969
2970  // We can't use either concat vectors or extract subvectors so fall back to
2971  // replacing the shuffle with extract and build vector.
2972  // to insert and build vector.
2973  EVT EltVT = VT.getVectorElementType();
2974  EVT PtrVT = TLI.getPointerTy();
2975  SmallVector<SDValue,8> Ops;
2976  for (unsigned i = 0; i != MaskNumElts; ++i) {
2977    int Idx = Mask[i];
2978    SDValue Res;
2979
2980    if (Idx < 0) {
2981      Res = DAG.getUNDEF(EltVT);
2982    } else {
2983      SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2;
2984      if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts;
2985
2986      Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
2987                        EltVT, Src, DAG.getConstant(Idx, PtrVT));
2988    }
2989
2990    Ops.push_back(Res);
2991  }
2992
2993  setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(),
2994                           VT, &Ops[0], Ops.size()));
2995}
2996
2997void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) {
2998  const Value *Op0 = I.getOperand(0);
2999  const Value *Op1 = I.getOperand(1);
3000  Type *AggTy = I.getType();
3001  Type *ValTy = Op1->getType();
3002  bool IntoUndef = isa<UndefValue>(Op0);
3003  bool FromUndef = isa<UndefValue>(Op1);
3004
3005  unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices());
3006
3007  SmallVector<EVT, 4> AggValueVTs;
3008  ComputeValueVTs(TLI, AggTy, AggValueVTs);
3009  SmallVector<EVT, 4> ValValueVTs;
3010  ComputeValueVTs(TLI, ValTy, ValValueVTs);
3011
3012  unsigned NumAggValues = AggValueVTs.size();
3013  unsigned NumValValues = ValValueVTs.size();
3014  SmallVector<SDValue, 4> Values(NumAggValues);
3015
3016  SDValue Agg = getValue(Op0);
3017  unsigned i = 0;
3018  // Copy the beginning value(s) from the original aggregate.
3019  for (; i != LinearIndex; ++i)
3020    Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3021                SDValue(Agg.getNode(), Agg.getResNo() + i);
3022  // Copy values from the inserted value(s).
3023  if (NumValValues) {
3024    SDValue Val = getValue(Op1);
3025    for (; i != LinearIndex + NumValValues; ++i)
3026      Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3027                  SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
3028  }
3029  // Copy remaining value(s) from the original aggregate.
3030  for (; i != NumAggValues; ++i)
3031    Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3032                SDValue(Agg.getNode(), Agg.getResNo() + i);
3033
3034  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
3035                           DAG.getVTList(&AggValueVTs[0], NumAggValues),
3036                           &Values[0], NumAggValues));
3037}
3038
3039void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) {
3040  const Value *Op0 = I.getOperand(0);
3041  Type *AggTy = Op0->getType();
3042  Type *ValTy = I.getType();
3043  bool OutOfUndef = isa<UndefValue>(Op0);
3044
3045  unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices());
3046
3047  SmallVector<EVT, 4> ValValueVTs;
3048  ComputeValueVTs(TLI, ValTy, ValValueVTs);
3049
3050  unsigned NumValValues = ValValueVTs.size();
3051
3052  // Ignore a extractvalue that produces an empty object
3053  if (!NumValValues) {
3054    setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3055    return;
3056  }
3057
3058  SmallVector<SDValue, 4> Values(NumValValues);
3059
3060  SDValue Agg = getValue(Op0);
3061  // Copy out the selected value(s).
3062  for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
3063    Values[i - LinearIndex] =
3064      OutOfUndef ?
3065        DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
3066        SDValue(Agg.getNode(), Agg.getResNo() + i);
3067
3068  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
3069                           DAG.getVTList(&ValValueVTs[0], NumValValues),
3070                           &Values[0], NumValValues));
3071}
3072
3073void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
3074  SDValue N = getValue(I.getOperand(0));
3075  // Note that the pointer operand may be a vector of pointers. Take the scalar
3076  // element which holds a pointer.
3077  Type *Ty = I.getOperand(0)->getType()->getScalarType();
3078
3079  for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end();
3080       OI != E; ++OI) {
3081    const Value *Idx = *OI;
3082    if (StructType *StTy = dyn_cast<StructType>(Ty)) {
3083      unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
3084      if (Field) {
3085        // N = N + Offset
3086        uint64_t Offset = TD->getStructLayout(StTy)->getElementOffset(Field);
3087        N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N,
3088                        DAG.getIntPtrConstant(Offset));
3089      }
3090
3091      Ty = StTy->getElementType(Field);
3092    } else {
3093      Ty = cast<SequentialType>(Ty)->getElementType();
3094
3095      // If this is a constant subscript, handle it quickly.
3096      if (const ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
3097        if (CI->isZero()) continue;
3098        uint64_t Offs =
3099            TD->getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue();
3100        SDValue OffsVal;
3101        EVT PTy = TLI.getPointerTy();
3102        unsigned PtrBits = PTy.getSizeInBits();
3103        if (PtrBits < 64)
3104          OffsVal = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(),
3105                                TLI.getPointerTy(),
3106                                DAG.getConstant(Offs, MVT::i64));
3107        else
3108          OffsVal = DAG.getIntPtrConstant(Offs);
3109
3110        N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N,
3111                        OffsVal);
3112        continue;
3113      }
3114
3115      // N = N + Idx * ElementSize;
3116      APInt ElementSize = APInt(TLI.getPointerTy().getSizeInBits(),
3117                                TD->getTypeAllocSize(Ty));
3118      SDValue IdxN = getValue(Idx);
3119
3120      // If the index is smaller or larger than intptr_t, truncate or extend
3121      // it.
3122      IdxN = DAG.getSExtOrTrunc(IdxN, getCurDebugLoc(), N.getValueType());
3123
3124      // If this is a multiply by a power of two, turn it into a shl
3125      // immediately.  This is a very common case.
3126      if (ElementSize != 1) {
3127        if (ElementSize.isPowerOf2()) {
3128          unsigned Amt = ElementSize.logBase2();
3129          IdxN = DAG.getNode(ISD::SHL, getCurDebugLoc(),
3130                             N.getValueType(), IdxN,
3131                             DAG.getConstant(Amt, IdxN.getValueType()));
3132        } else {
3133          SDValue Scale = DAG.getConstant(ElementSize, TLI.getPointerTy());
3134          IdxN = DAG.getNode(ISD::MUL, getCurDebugLoc(),
3135                             N.getValueType(), IdxN, Scale);
3136        }
3137      }
3138
3139      N = DAG.getNode(ISD::ADD, getCurDebugLoc(),
3140                      N.getValueType(), N, IdxN);
3141    }
3142  }
3143
3144  setValue(&I, N);
3145}
3146
3147void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
3148  // If this is a fixed sized alloca in the entry block of the function,
3149  // allocate it statically on the stack.
3150  if (FuncInfo.StaticAllocaMap.count(&I))
3151    return;   // getValue will auto-populate this.
3152
3153  Type *Ty = I.getAllocatedType();
3154  uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty);
3155  unsigned Align =
3156    std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty),
3157             I.getAlignment());
3158
3159  SDValue AllocSize = getValue(I.getArraySize());
3160
3161  EVT IntPtr = TLI.getPointerTy();
3162  if (AllocSize.getValueType() != IntPtr)
3163    AllocSize = DAG.getZExtOrTrunc(AllocSize, getCurDebugLoc(), IntPtr);
3164
3165  AllocSize = DAG.getNode(ISD::MUL, getCurDebugLoc(), IntPtr,
3166                          AllocSize,
3167                          DAG.getConstant(TySize, IntPtr));
3168
3169  // Handle alignment.  If the requested alignment is less than or equal to
3170  // the stack alignment, ignore it.  If the size is greater than or equal to
3171  // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
3172  unsigned StackAlign = TM.getFrameLowering()->getStackAlignment();
3173  if (Align <= StackAlign)
3174    Align = 0;
3175
3176  // Round the size of the allocation up to the stack alignment size
3177  // by add SA-1 to the size.
3178  AllocSize = DAG.getNode(ISD::ADD, getCurDebugLoc(),
3179                          AllocSize.getValueType(), AllocSize,
3180                          DAG.getIntPtrConstant(StackAlign-1));
3181
3182  // Mask out the low bits for alignment purposes.
3183  AllocSize = DAG.getNode(ISD::AND, getCurDebugLoc(),
3184                          AllocSize.getValueType(), AllocSize,
3185                          DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1)));
3186
3187  SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) };
3188  SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
3189  SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, getCurDebugLoc(),
3190                            VTs, Ops, 3);
3191  setValue(&I, DSA);
3192  DAG.setRoot(DSA.getValue(1));
3193
3194  // Inform the Frame Information that we have just allocated a variable-sized
3195  // object.
3196  FuncInfo.MF->getFrameInfo()->CreateVariableSizedObject(Align ? Align : 1);
3197}
3198
3199void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
3200  if (I.isAtomic())
3201    return visitAtomicLoad(I);
3202
3203  const Value *SV = I.getOperand(0);
3204  SDValue Ptr = getValue(SV);
3205
3206  Type *Ty = I.getType();
3207
3208  bool isVolatile = I.isVolatile();
3209  bool isNonTemporal = I.getMetadata("nontemporal") != 0;
3210  bool isInvariant = I.getMetadata("invariant.load") != 0;
3211  unsigned Alignment = I.getAlignment();
3212  const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa);
3213  const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
3214
3215  SmallVector<EVT, 4> ValueVTs;
3216  SmallVector<uint64_t, 4> Offsets;
3217  ComputeValueVTs(TLI, Ty, ValueVTs, &Offsets);
3218  unsigned NumValues = ValueVTs.size();
3219  if (NumValues == 0)
3220    return;
3221
3222  SDValue Root;
3223  bool ConstantMemory = false;
3224  if (I.isVolatile() || NumValues > MaxParallelChains)
3225    // Serialize volatile loads with other side effects.
3226    Root = getRoot();
3227  else if (AA->pointsToConstantMemory(
3228             AliasAnalysis::Location(SV, AA->getTypeStoreSize(Ty), TBAAInfo))) {
3229    // Do not serialize (non-volatile) loads of constant memory with anything.
3230    Root = DAG.getEntryNode();
3231    ConstantMemory = true;
3232  } else {
3233    // Do not serialize non-volatile loads against each other.
3234    Root = DAG.getRoot();
3235  }
3236
3237  SmallVector<SDValue, 4> Values(NumValues);
3238  SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains),
3239                                          NumValues));
3240  EVT PtrVT = Ptr.getValueType();
3241  unsigned ChainI = 0;
3242  for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3243    // Serializing loads here may result in excessive register pressure, and
3244    // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
3245    // could recover a bit by hoisting nodes upward in the chain by recognizing
3246    // they are side-effect free or do not alias. The optimizer should really
3247    // avoid this case by converting large object/array copies to llvm.memcpy
3248    // (MaxParallelChains should always remain as failsafe).
3249    if (ChainI == MaxParallelChains) {
3250      assert(PendingLoads.empty() && "PendingLoads must be serialized first");
3251      SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
3252                                  MVT::Other, &Chains[0], ChainI);
3253      Root = Chain;
3254      ChainI = 0;
3255    }
3256    SDValue A = DAG.getNode(ISD::ADD, getCurDebugLoc(),
3257                            PtrVT, Ptr,
3258                            DAG.getConstant(Offsets[i], PtrVT));
3259    SDValue L = DAG.getLoad(ValueVTs[i], getCurDebugLoc(), Root,
3260                            A, MachinePointerInfo(SV, Offsets[i]), isVolatile,
3261                            isNonTemporal, isInvariant, Alignment, TBAAInfo,
3262                            Ranges);
3263
3264    Values[i] = L;
3265    Chains[ChainI] = L.getValue(1);
3266  }
3267
3268  if (!ConstantMemory) {
3269    SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
3270                                MVT::Other, &Chains[0], ChainI);
3271    if (isVolatile)
3272      DAG.setRoot(Chain);
3273    else
3274      PendingLoads.push_back(Chain);
3275  }
3276
3277  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
3278                           DAG.getVTList(&ValueVTs[0], NumValues),
3279                           &Values[0], NumValues));
3280}
3281
3282void SelectionDAGBuilder::visitStore(const StoreInst &I) {
3283  if (I.isAtomic())
3284    return visitAtomicStore(I);
3285
3286  const Value *SrcV = I.getOperand(0);
3287  const Value *PtrV = I.getOperand(1);
3288
3289  SmallVector<EVT, 4> ValueVTs;
3290  SmallVector<uint64_t, 4> Offsets;
3291  ComputeValueVTs(TLI, SrcV->getType(), ValueVTs, &Offsets);
3292  unsigned NumValues = ValueVTs.size();
3293  if (NumValues == 0)
3294    return;
3295
3296  // Get the lowered operands. Note that we do this after
3297  // checking if NumResults is zero, because with zero results
3298  // the operands won't have values in the map.
3299  SDValue Src = getValue(SrcV);
3300  SDValue Ptr = getValue(PtrV);
3301
3302  SDValue Root = getRoot();
3303  SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains),
3304                                          NumValues));
3305  EVT PtrVT = Ptr.getValueType();
3306  bool isVolatile = I.isVolatile();
3307  bool isNonTemporal = I.getMetadata("nontemporal") != 0;
3308  unsigned Alignment = I.getAlignment();
3309  const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa);
3310
3311  unsigned ChainI = 0;
3312  for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3313    // See visitLoad comments.
3314    if (ChainI == MaxParallelChains) {
3315      SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
3316                                  MVT::Other, &Chains[0], ChainI);
3317      Root = Chain;
3318      ChainI = 0;
3319    }
3320    SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT, Ptr,
3321                              DAG.getConstant(Offsets[i], PtrVT));
3322    SDValue St = DAG.getStore(Root, getCurDebugLoc(),
3323                              SDValue(Src.getNode(), Src.getResNo() + i),
3324                              Add, MachinePointerInfo(PtrV, Offsets[i]),
3325                              isVolatile, isNonTemporal, Alignment, TBAAInfo);
3326    Chains[ChainI] = St;
3327  }
3328
3329  SDValue StoreNode = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
3330                                  MVT::Other, &Chains[0], ChainI);
3331  ++SDNodeOrder;
3332  AssignOrderingToNode(StoreNode.getNode());
3333  DAG.setRoot(StoreNode);
3334}
3335
3336static SDValue InsertFenceForAtomic(SDValue Chain, AtomicOrdering Order,
3337                                    SynchronizationScope Scope,
3338                                    bool Before, DebugLoc dl,
3339                                    SelectionDAG &DAG,
3340                                    const TargetLowering &TLI) {
3341  // Fence, if necessary
3342  if (Before) {
3343    if (Order == AcquireRelease || Order == SequentiallyConsistent)
3344      Order = Release;
3345    else if (Order == Acquire || Order == Monotonic)
3346      return Chain;
3347  } else {
3348    if (Order == AcquireRelease)
3349      Order = Acquire;
3350    else if (Order == Release || Order == Monotonic)
3351      return Chain;
3352  }
3353  SDValue Ops[3];
3354  Ops[0] = Chain;
3355  Ops[1] = DAG.getConstant(Order, TLI.getPointerTy());
3356  Ops[2] = DAG.getConstant(Scope, TLI.getPointerTy());
3357  return DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops, 3);
3358}
3359
3360void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) {
3361  DebugLoc dl = getCurDebugLoc();
3362  AtomicOrdering Order = I.getOrdering();
3363  SynchronizationScope Scope = I.getSynchScope();
3364
3365  SDValue InChain = getRoot();
3366
3367  if (TLI.getInsertFencesForAtomic())
3368    InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl,
3369                                   DAG, TLI);
3370
3371  SDValue L =
3372    DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, dl,
3373                  getValue(I.getCompareOperand()).getValueType().getSimpleVT(),
3374                  InChain,
3375                  getValue(I.getPointerOperand()),
3376                  getValue(I.getCompareOperand()),
3377                  getValue(I.getNewValOperand()),
3378                  MachinePointerInfo(I.getPointerOperand()), 0 /* Alignment */,
3379                  TLI.getInsertFencesForAtomic() ? Monotonic : Order,
3380                  Scope);
3381
3382  SDValue OutChain = L.getValue(1);
3383
3384  if (TLI.getInsertFencesForAtomic())
3385    OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl,
3386                                    DAG, TLI);
3387
3388  setValue(&I, L);
3389  DAG.setRoot(OutChain);
3390}
3391
3392void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) {
3393  DebugLoc dl = getCurDebugLoc();
3394  ISD::NodeType NT;
3395  switch (I.getOperation()) {
3396  default: llvm_unreachable("Unknown atomicrmw operation");
3397  case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break;
3398  case AtomicRMWInst::Add:  NT = ISD::ATOMIC_LOAD_ADD; break;
3399  case AtomicRMWInst::Sub:  NT = ISD::ATOMIC_LOAD_SUB; break;
3400  case AtomicRMWInst::And:  NT = ISD::ATOMIC_LOAD_AND; break;
3401  case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break;
3402  case AtomicRMWInst::Or:   NT = ISD::ATOMIC_LOAD_OR; break;
3403  case AtomicRMWInst::Xor:  NT = ISD::ATOMIC_LOAD_XOR; break;
3404  case AtomicRMWInst::Max:  NT = ISD::ATOMIC_LOAD_MAX; break;
3405  case AtomicRMWInst::Min:  NT = ISD::ATOMIC_LOAD_MIN; break;
3406  case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break;
3407  case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break;
3408  }
3409  AtomicOrdering Order = I.getOrdering();
3410  SynchronizationScope Scope = I.getSynchScope();
3411
3412  SDValue InChain = getRoot();
3413
3414  if (TLI.getInsertFencesForAtomic())
3415    InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl,
3416                                   DAG, TLI);
3417
3418  SDValue L =
3419    DAG.getAtomic(NT, dl,
3420                  getValue(I.getValOperand()).getValueType().getSimpleVT(),
3421                  InChain,
3422                  getValue(I.getPointerOperand()),
3423                  getValue(I.getValOperand()),
3424                  I.getPointerOperand(), 0 /* Alignment */,
3425                  TLI.getInsertFencesForAtomic() ? Monotonic : Order,
3426                  Scope);
3427
3428  SDValue OutChain = L.getValue(1);
3429
3430  if (TLI.getInsertFencesForAtomic())
3431    OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl,
3432                                    DAG, TLI);
3433
3434  setValue(&I, L);
3435  DAG.setRoot(OutChain);
3436}
3437
3438void SelectionDAGBuilder::visitFence(const FenceInst &I) {
3439  DebugLoc dl = getCurDebugLoc();
3440  SDValue Ops[3];
3441  Ops[0] = getRoot();
3442  Ops[1] = DAG.getConstant(I.getOrdering(), TLI.getPointerTy());
3443  Ops[2] = DAG.getConstant(I.getSynchScope(), TLI.getPointerTy());
3444  DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops, 3));
3445}
3446
3447void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) {
3448  DebugLoc dl = getCurDebugLoc();
3449  AtomicOrdering Order = I.getOrdering();
3450  SynchronizationScope Scope = I.getSynchScope();
3451
3452  SDValue InChain = getRoot();
3453
3454  EVT VT = EVT::getEVT(I.getType());
3455
3456  if (I.getAlignment() * 8 < VT.getSizeInBits())
3457    report_fatal_error("Cannot generate unaligned atomic load");
3458
3459  SDValue L =
3460    DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain,
3461                  getValue(I.getPointerOperand()),
3462                  I.getPointerOperand(), I.getAlignment(),
3463                  TLI.getInsertFencesForAtomic() ? Monotonic : Order,
3464                  Scope);
3465
3466  SDValue OutChain = L.getValue(1);
3467
3468  if (TLI.getInsertFencesForAtomic())
3469    OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl,
3470                                    DAG, TLI);
3471
3472  setValue(&I, L);
3473  DAG.setRoot(OutChain);
3474}
3475
3476void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) {
3477  DebugLoc dl = getCurDebugLoc();
3478
3479  AtomicOrdering Order = I.getOrdering();
3480  SynchronizationScope Scope = I.getSynchScope();
3481
3482  SDValue InChain = getRoot();
3483
3484  EVT VT = EVT::getEVT(I.getValueOperand()->getType());
3485
3486  if (I.getAlignment() * 8 < VT.getSizeInBits())
3487    report_fatal_error("Cannot generate unaligned atomic store");
3488
3489  if (TLI.getInsertFencesForAtomic())
3490    InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl,
3491                                   DAG, TLI);
3492
3493  SDValue OutChain =
3494    DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT,
3495                  InChain,
3496                  getValue(I.getPointerOperand()),
3497                  getValue(I.getValueOperand()),
3498                  I.getPointerOperand(), I.getAlignment(),
3499                  TLI.getInsertFencesForAtomic() ? Monotonic : Order,
3500                  Scope);
3501
3502  if (TLI.getInsertFencesForAtomic())
3503    OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl,
3504                                    DAG, TLI);
3505
3506  DAG.setRoot(OutChain);
3507}
3508
3509/// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
3510/// node.
3511void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
3512                                               unsigned Intrinsic) {
3513  bool HasChain = !I.doesNotAccessMemory();
3514  bool OnlyLoad = HasChain && I.onlyReadsMemory();
3515
3516  // Build the operand list.
3517  SmallVector<SDValue, 8> Ops;
3518  if (HasChain) {  // If this intrinsic has side-effects, chainify it.
3519    if (OnlyLoad) {
3520      // We don't need to serialize loads against other loads.
3521      Ops.push_back(DAG.getRoot());
3522    } else {
3523      Ops.push_back(getRoot());
3524    }
3525  }
3526
3527  // Info is set by getTgtMemInstrinsic
3528  TargetLowering::IntrinsicInfo Info;
3529  bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic);
3530
3531  // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
3532  if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
3533      Info.opc == ISD::INTRINSIC_W_CHAIN)
3534    Ops.push_back(DAG.getTargetConstant(Intrinsic, TLI.getPointerTy()));
3535
3536  // Add all operands of the call to the operand list.
3537  for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
3538    SDValue Op = getValue(I.getArgOperand(i));
3539    Ops.push_back(Op);
3540  }
3541
3542  SmallVector<EVT, 4> ValueVTs;
3543  ComputeValueVTs(TLI, I.getType(), ValueVTs);
3544
3545  if (HasChain)
3546    ValueVTs.push_back(MVT::Other);
3547
3548  SDVTList VTs = DAG.getVTList(ValueVTs.data(), ValueVTs.size());
3549
3550  // Create the node.
3551  SDValue Result;
3552  if (IsTgtIntrinsic) {
3553    // This is target intrinsic that touches memory
3554    Result = DAG.getMemIntrinsicNode(Info.opc, getCurDebugLoc(),
3555                                     VTs, &Ops[0], Ops.size(),
3556                                     Info.memVT,
3557                                   MachinePointerInfo(Info.ptrVal, Info.offset),
3558                                     Info.align, Info.vol,
3559                                     Info.readMem, Info.writeMem);
3560  } else if (!HasChain) {
3561    Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurDebugLoc(),
3562                         VTs, &Ops[0], Ops.size());
3563  } else if (!I.getType()->isVoidTy()) {
3564    Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurDebugLoc(),
3565                         VTs, &Ops[0], Ops.size());
3566  } else {
3567    Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurDebugLoc(),
3568                         VTs, &Ops[0], Ops.size());
3569  }
3570
3571  if (HasChain) {
3572    SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
3573    if (OnlyLoad)
3574      PendingLoads.push_back(Chain);
3575    else
3576      DAG.setRoot(Chain);
3577  }
3578
3579  if (!I.getType()->isVoidTy()) {
3580    if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
3581      EVT VT = TLI.getValueType(PTy);
3582      Result = DAG.getNode(ISD::BITCAST, getCurDebugLoc(), VT, Result);
3583    }
3584
3585    setValue(&I, Result);
3586  } else {
3587    // Assign order to result here. If the intrinsic does not produce a result,
3588    // it won't be mapped to a SDNode and visit() will not assign it an order
3589    // number.
3590    ++SDNodeOrder;
3591    AssignOrderingToNode(Result.getNode());
3592  }
3593}
3594
3595/// GetSignificand - Get the significand and build it into a floating-point
3596/// number with exponent of 1:
3597///
3598///   Op = (Op & 0x007fffff) | 0x3f800000;
3599///
3600/// where Op is the hexidecimal representation of floating point value.
3601static SDValue
3602GetSignificand(SelectionDAG &DAG, SDValue Op, DebugLoc dl) {
3603  SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
3604                           DAG.getConstant(0x007fffff, MVT::i32));
3605  SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
3606                           DAG.getConstant(0x3f800000, MVT::i32));
3607  return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
3608}
3609
3610/// GetExponent - Get the exponent:
3611///
3612///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
3613///
3614/// where Op is the hexidecimal representation of floating point value.
3615static SDValue
3616GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI,
3617            DebugLoc dl) {
3618  SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
3619                           DAG.getConstant(0x7f800000, MVT::i32));
3620  SDValue t1 = DAG.getNode(ISD::SRL, dl, MVT::i32, t0,
3621                           DAG.getConstant(23, TLI.getPointerTy()));
3622  SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
3623                           DAG.getConstant(127, MVT::i32));
3624  return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
3625}
3626
3627/// getF32Constant - Get 32-bit floating point constant.
3628static SDValue
3629getF32Constant(SelectionDAG &DAG, unsigned Flt) {
3630  return DAG.getConstantFP(APFloat(APInt(32, Flt)), MVT::f32);
3631}
3632
3633/// visitExp - Lower an exp intrinsic. Handles the special sequences for
3634/// limited-precision mode.
3635void
3636SelectionDAGBuilder::visitExp(const CallInst &I) {
3637  SDValue result;
3638  DebugLoc dl = getCurDebugLoc();
3639
3640  if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3641      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3642    SDValue Op = getValue(I.getArgOperand(0));
3643
3644    // Put the exponent in the right bit position for later addition to the
3645    // final result:
3646    //
3647    //   #define LOG2OFe 1.4426950f
3648    //   IntegerPartOfX = ((int32_t)(X * LOG2OFe));
3649    SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
3650                             getF32Constant(DAG, 0x3fb8aa3b));
3651    SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
3652
3653    //   FractionalPartOfX = (X * LOG2OFe) - (float)IntegerPartOfX;
3654    SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
3655    SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
3656
3657    //   IntegerPartOfX <<= 23;
3658    IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
3659                                 DAG.getConstant(23, TLI.getPointerTy()));
3660
3661    if (LimitFloatPrecision <= 6) {
3662      // For floating-point precision of 6:
3663      //
3664      //   TwoToFractionalPartOfX =
3665      //     0.997535578f +
3666      //       (0.735607626f + 0.252464424f * x) * x;
3667      //
3668      // error 0.0144103317, which is 6 bits
3669      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3670                               getF32Constant(DAG, 0x3e814304));
3671      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3672                               getF32Constant(DAG, 0x3f3c50c8));
3673      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3674      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3675                               getF32Constant(DAG, 0x3f7f5e7e));
3676      SDValue TwoToFracPartOfX = DAG.getNode(ISD::BITCAST, dl,MVT::i32, t5);
3677
3678      // Add the exponent into the result in integer domain.
3679      SDValue t6 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3680                               TwoToFracPartOfX, IntegerPartOfX);
3681
3682      result = DAG.getNode(ISD::BITCAST, dl, MVT::f32, t6);
3683    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3684      // For floating-point precision of 12:
3685      //
3686      //   TwoToFractionalPartOfX =
3687      //     0.999892986f +
3688      //       (0.696457318f +
3689      //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
3690      //
3691      // 0.000107046256 error, which is 13 to 14 bits
3692      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3693                               getF32Constant(DAG, 0x3da235e3));
3694      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3695                               getF32Constant(DAG, 0x3e65b8f3));
3696      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3697      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3698                               getF32Constant(DAG, 0x3f324b07));
3699      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3700      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3701                               getF32Constant(DAG, 0x3f7ff8fd));
3702      SDValue TwoToFracPartOfX = DAG.getNode(ISD::BITCAST, dl,MVT::i32, t7);
3703
3704      // Add the exponent into the result in integer domain.
3705      SDValue t8 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3706                               TwoToFracPartOfX, IntegerPartOfX);
3707
3708      result = DAG.getNode(ISD::BITCAST, dl, MVT::f32, t8);
3709    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3710      // For floating-point precision of 18:
3711      //
3712      //   TwoToFractionalPartOfX =
3713      //     0.999999982f +
3714      //       (0.693148872f +
3715      //         (0.240227044f +
3716      //           (0.554906021e-1f +
3717      //             (0.961591928e-2f +
3718      //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
3719      //
3720      // error 2.47208000*10^(-7), which is better than 18 bits
3721      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3722                               getF32Constant(DAG, 0x3924b03e));
3723      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3724                               getF32Constant(DAG, 0x3ab24b87));
3725      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3726      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3727                               getF32Constant(DAG, 0x3c1d8c17));
3728      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3729      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3730                               getF32Constant(DAG, 0x3d634a1d));
3731      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3732      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3733                               getF32Constant(DAG, 0x3e75fe14));
3734      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3735      SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
3736                                getF32Constant(DAG, 0x3f317234));
3737      SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
3738      SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
3739                                getF32Constant(DAG, 0x3f800000));
3740      SDValue TwoToFracPartOfX = DAG.getNode(ISD::BITCAST, dl,
3741                                             MVT::i32, t13);
3742
3743      // Add the exponent into the result in integer domain.
3744      SDValue t14 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3745                                TwoToFracPartOfX, IntegerPartOfX);
3746
3747      result = DAG.getNode(ISD::BITCAST, dl, MVT::f32, t14);
3748    }
3749  } else {
3750    // No special expansion.
3751    result = DAG.getNode(ISD::FEXP, dl,
3752                         getValue(I.getArgOperand(0)).getValueType(),
3753                         getValue(I.getArgOperand(0)));
3754  }
3755
3756  setValue(&I, result);
3757}
3758
3759/// visitLog - Lower a log intrinsic. Handles the special sequences for
3760/// limited-precision mode.
3761void
3762SelectionDAGBuilder::visitLog(const CallInst &I) {
3763  SDValue result;
3764  DebugLoc dl = getCurDebugLoc();
3765
3766  if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3767      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3768    SDValue Op = getValue(I.getArgOperand(0));
3769    SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
3770
3771    // Scale the exponent by log(2) [0.69314718f].
3772    SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
3773    SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
3774                                        getF32Constant(DAG, 0x3f317218));
3775
3776    // Get the significand and build it into a floating-point number with
3777    // exponent of 1.
3778    SDValue X = GetSignificand(DAG, Op1, dl);
3779
3780    if (LimitFloatPrecision <= 6) {
3781      // For floating-point precision of 6:
3782      //
3783      //   LogofMantissa =
3784      //     -1.1609546f +
3785      //       (1.4034025f - 0.23903021f * x) * x;
3786      //
3787      // error 0.0034276066, which is better than 8 bits
3788      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3789                               getF32Constant(DAG, 0xbe74c456));
3790      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3791                               getF32Constant(DAG, 0x3fb3a2b1));
3792      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3793      SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3794                                          getF32Constant(DAG, 0x3f949a29));
3795
3796      result = DAG.getNode(ISD::FADD, dl,
3797                           MVT::f32, LogOfExponent, LogOfMantissa);
3798    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3799      // For floating-point precision of 12:
3800      //
3801      //   LogOfMantissa =
3802      //     -1.7417939f +
3803      //       (2.8212026f +
3804      //         (-1.4699568f +
3805      //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
3806      //
3807      // error 0.000061011436, which is 14 bits
3808      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3809                               getF32Constant(DAG, 0xbd67b6d6));
3810      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3811                               getF32Constant(DAG, 0x3ee4f4b8));
3812      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3813      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3814                               getF32Constant(DAG, 0x3fbc278b));
3815      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3816      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3817                               getF32Constant(DAG, 0x40348e95));
3818      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3819      SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3820                                          getF32Constant(DAG, 0x3fdef31a));
3821
3822      result = DAG.getNode(ISD::FADD, dl,
3823                           MVT::f32, LogOfExponent, LogOfMantissa);
3824    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3825      // For floating-point precision of 18:
3826      //
3827      //   LogOfMantissa =
3828      //     -2.1072184f +
3829      //       (4.2372794f +
3830      //         (-3.7029485f +
3831      //           (2.2781945f +
3832      //             (-0.87823314f +
3833      //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
3834      //
3835      // error 0.0000023660568, which is better than 18 bits
3836      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3837                               getF32Constant(DAG, 0xbc91e5ac));
3838      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3839                               getF32Constant(DAG, 0x3e4350aa));
3840      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3841      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3842                               getF32Constant(DAG, 0x3f60d3e3));
3843      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3844      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3845                               getF32Constant(DAG, 0x4011cdf0));
3846      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3847      SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3848                               getF32Constant(DAG, 0x406cfd1c));
3849      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3850      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3851                               getF32Constant(DAG, 0x408797cb));
3852      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3853      SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
3854                                          getF32Constant(DAG, 0x4006dcab));
3855
3856      result = DAG.getNode(ISD::FADD, dl,
3857                           MVT::f32, LogOfExponent, LogOfMantissa);
3858    }
3859  } else {
3860    // No special expansion.
3861    result = DAG.getNode(ISD::FLOG, dl,
3862                         getValue(I.getArgOperand(0)).getValueType(),
3863                         getValue(I.getArgOperand(0)));
3864  }
3865
3866  setValue(&I, result);
3867}
3868
3869/// visitLog2 - Lower a log2 intrinsic. Handles the special sequences for
3870/// limited-precision mode.
3871void
3872SelectionDAGBuilder::visitLog2(const CallInst &I) {
3873  SDValue result;
3874  DebugLoc dl = getCurDebugLoc();
3875
3876  if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3877      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3878    SDValue Op = getValue(I.getArgOperand(0));
3879    SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
3880
3881    // Get the exponent.
3882    SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
3883
3884    // Get the significand and build it into a floating-point number with
3885    // exponent of 1.
3886    SDValue X = GetSignificand(DAG, Op1, dl);
3887
3888    // Different possible minimax approximations of significand in
3889    // floating-point for various degrees of accuracy over [1,2].
3890    if (LimitFloatPrecision <= 6) {
3891      // For floating-point precision of 6:
3892      //
3893      //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
3894      //
3895      // error 0.0049451742, which is more than 7 bits
3896      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3897                               getF32Constant(DAG, 0xbeb08fe0));
3898      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3899                               getF32Constant(DAG, 0x40019463));
3900      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3901      SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3902                                           getF32Constant(DAG, 0x3fd6633d));
3903
3904      result = DAG.getNode(ISD::FADD, dl,
3905                           MVT::f32, LogOfExponent, Log2ofMantissa);
3906    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3907      // For floating-point precision of 12:
3908      //
3909      //   Log2ofMantissa =
3910      //     -2.51285454f +
3911      //       (4.07009056f +
3912      //         (-2.12067489f +
3913      //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
3914      //
3915      // error 0.0000876136000, which is better than 13 bits
3916      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3917                               getF32Constant(DAG, 0xbda7262e));
3918      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3919                               getF32Constant(DAG, 0x3f25280b));
3920      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3921      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3922                               getF32Constant(DAG, 0x4007b923));
3923      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3924      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3925                               getF32Constant(DAG, 0x40823e2f));
3926      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3927      SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3928                                           getF32Constant(DAG, 0x4020d29c));
3929
3930      result = DAG.getNode(ISD::FADD, dl,
3931                           MVT::f32, LogOfExponent, Log2ofMantissa);
3932    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3933      // For floating-point precision of 18:
3934      //
3935      //   Log2ofMantissa =
3936      //     -3.0400495f +
3937      //       (6.1129976f +
3938      //         (-5.3420409f +
3939      //           (3.2865683f +
3940      //             (-1.2669343f +
3941      //               (0.27515199f -
3942      //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
3943      //
3944      // error 0.0000018516, which is better than 18 bits
3945      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3946                               getF32Constant(DAG, 0xbcd2769e));
3947      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3948                               getF32Constant(DAG, 0x3e8ce0b9));
3949      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3950      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3951                               getF32Constant(DAG, 0x3fa22ae7));
3952      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3953      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3954                               getF32Constant(DAG, 0x40525723));
3955      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3956      SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3957                               getF32Constant(DAG, 0x40aaf200));
3958      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3959      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3960                               getF32Constant(DAG, 0x40c39dad));
3961      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3962      SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
3963                                           getF32Constant(DAG, 0x4042902c));
3964
3965      result = DAG.getNode(ISD::FADD, dl,
3966                           MVT::f32, LogOfExponent, Log2ofMantissa);
3967    }
3968  } else {
3969    // No special expansion.
3970    result = DAG.getNode(ISD::FLOG2, dl,
3971                         getValue(I.getArgOperand(0)).getValueType(),
3972                         getValue(I.getArgOperand(0)));
3973  }
3974
3975  setValue(&I, result);
3976}
3977
3978/// visitLog10 - Lower a log10 intrinsic. Handles the special sequences for
3979/// limited-precision mode.
3980void
3981SelectionDAGBuilder::visitLog10(const CallInst &I) {
3982  SDValue result;
3983  DebugLoc dl = getCurDebugLoc();
3984
3985  if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3986      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3987    SDValue Op = getValue(I.getArgOperand(0));
3988    SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
3989
3990    // Scale the exponent by log10(2) [0.30102999f].
3991    SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
3992    SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
3993                                        getF32Constant(DAG, 0x3e9a209a));
3994
3995    // Get the significand and build it into a floating-point number with
3996    // exponent of 1.
3997    SDValue X = GetSignificand(DAG, Op1, dl);
3998
3999    if (LimitFloatPrecision <= 6) {
4000      // For floating-point precision of 6:
4001      //
4002      //   Log10ofMantissa =
4003      //     -0.50419619f +
4004      //       (0.60948995f - 0.10380950f * x) * x;
4005      //
4006      // error 0.0014886165, which is 6 bits
4007      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4008                               getF32Constant(DAG, 0xbdd49a13));
4009      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4010                               getF32Constant(DAG, 0x3f1c0789));
4011      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4012      SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4013                                            getF32Constant(DAG, 0x3f011300));
4014
4015      result = DAG.getNode(ISD::FADD, dl,
4016                           MVT::f32, LogOfExponent, Log10ofMantissa);
4017    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
4018      // For floating-point precision of 12:
4019      //
4020      //   Log10ofMantissa =
4021      //     -0.64831180f +
4022      //       (0.91751397f +
4023      //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
4024      //
4025      // error 0.00019228036, which is better than 12 bits
4026      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4027                               getF32Constant(DAG, 0x3d431f31));
4028      SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
4029                               getF32Constant(DAG, 0x3ea21fb2));
4030      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4031      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4032                               getF32Constant(DAG, 0x3f6ae232));
4033      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4034      SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
4035                                            getF32Constant(DAG, 0x3f25f7c3));
4036
4037      result = DAG.getNode(ISD::FADD, dl,
4038                           MVT::f32, LogOfExponent, Log10ofMantissa);
4039    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
4040      // For floating-point precision of 18:
4041      //
4042      //   Log10ofMantissa =
4043      //     -0.84299375f +
4044      //       (1.5327582f +
4045      //         (-1.0688956f +
4046      //           (0.49102474f +
4047      //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
4048      //
4049      // error 0.0000037995730, which is better than 18 bits
4050      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4051                               getF32Constant(DAG, 0x3c5d51ce));
4052      SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
4053                               getF32Constant(DAG, 0x3e00685a));
4054      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4055      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4056                               getF32Constant(DAG, 0x3efb6798));
4057      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4058      SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
4059                               getF32Constant(DAG, 0x3f88d192));
4060      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4061      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4062                               getF32Constant(DAG, 0x3fc4316c));
4063      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4064      SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
4065                                            getF32Constant(DAG, 0x3f57ce70));
4066
4067      result = DAG.getNode(ISD::FADD, dl,
4068                           MVT::f32, LogOfExponent, Log10ofMantissa);
4069    }
4070  } else {
4071    // No special expansion.
4072    result = DAG.getNode(ISD::FLOG10, dl,
4073                         getValue(I.getArgOperand(0)).getValueType(),
4074                         getValue(I.getArgOperand(0)));
4075  }
4076
4077  setValue(&I, result);
4078}
4079
4080/// visitExp2 - Lower an exp2 intrinsic. Handles the special sequences for
4081/// limited-precision mode.
4082void
4083SelectionDAGBuilder::visitExp2(const CallInst &I) {
4084  SDValue result;
4085  DebugLoc dl = getCurDebugLoc();
4086
4087  if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
4088      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4089    SDValue Op = getValue(I.getArgOperand(0));
4090
4091    SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Op);
4092
4093    //   FractionalPartOfX = x - (float)IntegerPartOfX;
4094    SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
4095    SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, Op, t1);
4096
4097    //   IntegerPartOfX <<= 23;
4098    IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
4099                                 DAG.getConstant(23, TLI.getPointerTy()));
4100
4101    if (LimitFloatPrecision <= 6) {
4102      // For floating-point precision of 6:
4103      //
4104      //   TwoToFractionalPartOfX =
4105      //     0.997535578f +
4106      //       (0.735607626f + 0.252464424f * x) * x;
4107      //
4108      // error 0.0144103317, which is 6 bits
4109      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4110                               getF32Constant(DAG, 0x3e814304));
4111      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4112                               getF32Constant(DAG, 0x3f3c50c8));
4113      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4114      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4115                               getF32Constant(DAG, 0x3f7f5e7e));
4116      SDValue t6 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t5);
4117      SDValue TwoToFractionalPartOfX =
4118        DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX);
4119
4120      result = DAG.getNode(ISD::BITCAST, dl,
4121                           MVT::f32, TwoToFractionalPartOfX);
4122    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
4123      // For floating-point precision of 12:
4124      //
4125      //   TwoToFractionalPartOfX =
4126      //     0.999892986f +
4127      //       (0.696457318f +
4128      //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
4129      //
4130      // error 0.000107046256, which is 13 to 14 bits
4131      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4132                               getF32Constant(DAG, 0x3da235e3));
4133      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4134                               getF32Constant(DAG, 0x3e65b8f3));
4135      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4136      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4137                               getF32Constant(DAG, 0x3f324b07));
4138      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4139      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4140                               getF32Constant(DAG, 0x3f7ff8fd));
4141      SDValue t8 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t7);
4142      SDValue TwoToFractionalPartOfX =
4143        DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX);
4144
4145      result = DAG.getNode(ISD::BITCAST, dl,
4146                           MVT::f32, TwoToFractionalPartOfX);
4147    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
4148      // For floating-point precision of 18:
4149      //
4150      //   TwoToFractionalPartOfX =
4151      //     0.999999982f +
4152      //       (0.693148872f +
4153      //         (0.240227044f +
4154      //           (0.554906021e-1f +
4155      //             (0.961591928e-2f +
4156      //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
4157      // error 2.47208000*10^(-7), which is better than 18 bits
4158      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4159                               getF32Constant(DAG, 0x3924b03e));
4160      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4161                               getF32Constant(DAG, 0x3ab24b87));
4162      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4163      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4164                               getF32Constant(DAG, 0x3c1d8c17));
4165      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4166      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4167                               getF32Constant(DAG, 0x3d634a1d));
4168      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4169      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4170                               getF32Constant(DAG, 0x3e75fe14));
4171      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4172      SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
4173                                getF32Constant(DAG, 0x3f317234));
4174      SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
4175      SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
4176                                getF32Constant(DAG, 0x3f800000));
4177      SDValue t14 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t13);
4178      SDValue TwoToFractionalPartOfX =
4179        DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX);
4180
4181      result = DAG.getNode(ISD::BITCAST, dl,
4182                           MVT::f32, TwoToFractionalPartOfX);
4183    }
4184  } else {
4185    // No special expansion.
4186    result = DAG.getNode(ISD::FEXP2, dl,
4187                         getValue(I.getArgOperand(0)).getValueType(),
4188                         getValue(I.getArgOperand(0)));
4189  }
4190
4191  setValue(&I, result);
4192}
4193
4194/// visitPow - Lower a pow intrinsic. Handles the special sequences for
4195/// limited-precision mode with x == 10.0f.
4196void
4197SelectionDAGBuilder::visitPow(const CallInst &I) {
4198  SDValue result;
4199  const Value *Val = I.getArgOperand(0);
4200  DebugLoc dl = getCurDebugLoc();
4201  bool IsExp10 = false;
4202
4203  if (getValue(Val).getValueType() == MVT::f32 &&
4204      getValue(I.getArgOperand(1)).getValueType() == MVT::f32 &&
4205      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4206    if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(Val))) {
4207      if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
4208        APFloat Ten(10.0f);
4209        IsExp10 = CFP->getValueAPF().bitwiseIsEqual(Ten);
4210      }
4211    }
4212  }
4213
4214  if (IsExp10 && LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4215    SDValue Op = getValue(I.getArgOperand(1));
4216
4217    // Put the exponent in the right bit position for later addition to the
4218    // final result:
4219    //
4220    //   #define LOG2OF10 3.3219281f
4221    //   IntegerPartOfX = (int32_t)(x * LOG2OF10);
4222    SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
4223                             getF32Constant(DAG, 0x40549a78));
4224    SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
4225
4226    //   FractionalPartOfX = x - (float)IntegerPartOfX;
4227    SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
4228    SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
4229
4230    //   IntegerPartOfX <<= 23;
4231    IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
4232                                 DAG.getConstant(23, TLI.getPointerTy()));
4233
4234    if (LimitFloatPrecision <= 6) {
4235      // For floating-point precision of 6:
4236      //
4237      //   twoToFractionalPartOfX =
4238      //     0.997535578f +
4239      //       (0.735607626f + 0.252464424f * x) * x;
4240      //
4241      // error 0.0144103317, which is 6 bits
4242      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4243                               getF32Constant(DAG, 0x3e814304));
4244      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4245                               getF32Constant(DAG, 0x3f3c50c8));
4246      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4247      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4248                               getF32Constant(DAG, 0x3f7f5e7e));
4249      SDValue t6 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t5);
4250      SDValue TwoToFractionalPartOfX =
4251        DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX);
4252
4253      result = DAG.getNode(ISD::BITCAST, dl,
4254                           MVT::f32, TwoToFractionalPartOfX);
4255    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
4256      // For floating-point precision of 12:
4257      //
4258      //   TwoToFractionalPartOfX =
4259      //     0.999892986f +
4260      //       (0.696457318f +
4261      //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
4262      //
4263      // error 0.000107046256, which is 13 to 14 bits
4264      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4265                               getF32Constant(DAG, 0x3da235e3));
4266      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4267                               getF32Constant(DAG, 0x3e65b8f3));
4268      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4269      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4270                               getF32Constant(DAG, 0x3f324b07));
4271      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4272      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4273                               getF32Constant(DAG, 0x3f7ff8fd));
4274      SDValue t8 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t7);
4275      SDValue TwoToFractionalPartOfX =
4276        DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX);
4277
4278      result = DAG.getNode(ISD::BITCAST, dl,
4279                           MVT::f32, TwoToFractionalPartOfX);
4280    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
4281      // For floating-point precision of 18:
4282      //
4283      //   TwoToFractionalPartOfX =
4284      //     0.999999982f +
4285      //       (0.693148872f +
4286      //         (0.240227044f +
4287      //           (0.554906021e-1f +
4288      //             (0.961591928e-2f +
4289      //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
4290      // error 2.47208000*10^(-7), which is better than 18 bits
4291      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4292                               getF32Constant(DAG, 0x3924b03e));
4293      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4294                               getF32Constant(DAG, 0x3ab24b87));
4295      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4296      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4297                               getF32Constant(DAG, 0x3c1d8c17));
4298      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4299      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4300                               getF32Constant(DAG, 0x3d634a1d));
4301      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4302      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4303                               getF32Constant(DAG, 0x3e75fe14));
4304      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4305      SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
4306                                getF32Constant(DAG, 0x3f317234));
4307      SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
4308      SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
4309                                getF32Constant(DAG, 0x3f800000));
4310      SDValue t14 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t13);
4311      SDValue TwoToFractionalPartOfX =
4312        DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX);
4313
4314      result = DAG.getNode(ISD::BITCAST, dl,
4315                           MVT::f32, TwoToFractionalPartOfX);
4316    }
4317  } else {
4318    // No special expansion.
4319    result = DAG.getNode(ISD::FPOW, dl,
4320                         getValue(I.getArgOperand(0)).getValueType(),
4321                         getValue(I.getArgOperand(0)),
4322                         getValue(I.getArgOperand(1)));
4323  }
4324
4325  setValue(&I, result);
4326}
4327
4328
4329/// ExpandPowI - Expand a llvm.powi intrinsic.
4330static SDValue ExpandPowI(DebugLoc DL, SDValue LHS, SDValue RHS,
4331                          SelectionDAG &DAG) {
4332  // If RHS is a constant, we can expand this out to a multiplication tree,
4333  // otherwise we end up lowering to a call to __powidf2 (for example).  When
4334  // optimizing for size, we only want to do this if the expansion would produce
4335  // a small number of multiplies, otherwise we do the full expansion.
4336  if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
4337    // Get the exponent as a positive value.
4338    unsigned Val = RHSC->getSExtValue();
4339    if ((int)Val < 0) Val = -Val;
4340
4341    // powi(x, 0) -> 1.0
4342    if (Val == 0)
4343      return DAG.getConstantFP(1.0, LHS.getValueType());
4344
4345    const Function *F = DAG.getMachineFunction().getFunction();
4346    if (!F->hasFnAttr(Attribute::OptimizeForSize) ||
4347        // If optimizing for size, don't insert too many multiplies.  This
4348        // inserts up to 5 multiplies.
4349        CountPopulation_32(Val)+Log2_32(Val) < 7) {
4350      // We use the simple binary decomposition method to generate the multiply
4351      // sequence.  There are more optimal ways to do this (for example,
4352      // powi(x,15) generates one more multiply than it should), but this has
4353      // the benefit of being both really simple and much better than a libcall.
4354      SDValue Res;  // Logically starts equal to 1.0
4355      SDValue CurSquare = LHS;
4356      while (Val) {
4357        if (Val & 1) {
4358          if (Res.getNode())
4359            Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare);
4360          else
4361            Res = CurSquare;  // 1.0*CurSquare.
4362        }
4363
4364        CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
4365                                CurSquare, CurSquare);
4366        Val >>= 1;
4367      }
4368
4369      // If the original was negative, invert the result, producing 1/(x*x*x).
4370      if (RHSC->getSExtValue() < 0)
4371        Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
4372                          DAG.getConstantFP(1.0, LHS.getValueType()), Res);
4373      return Res;
4374    }
4375  }
4376
4377  // Otherwise, expand to a libcall.
4378  return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
4379}
4380
4381// getTruncatedArgReg - Find underlying register used for an truncated
4382// argument.
4383static unsigned getTruncatedArgReg(const SDValue &N) {
4384  if (N.getOpcode() != ISD::TRUNCATE)
4385    return 0;
4386
4387  const SDValue &Ext = N.getOperand(0);
4388  if (Ext.getOpcode() == ISD::AssertZext || Ext.getOpcode() == ISD::AssertSext){
4389    const SDValue &CFR = Ext.getOperand(0);
4390    if (CFR.getOpcode() == ISD::CopyFromReg)
4391      return cast<RegisterSDNode>(CFR.getOperand(1))->getReg();
4392    if (CFR.getOpcode() == ISD::TRUNCATE)
4393      return getTruncatedArgReg(CFR);
4394  }
4395  return 0;
4396}
4397
4398/// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function
4399/// argument, create the corresponding DBG_VALUE machine instruction for it now.
4400/// At the end of instruction selection, they will be inserted to the entry BB.
4401bool
4402SelectionDAGBuilder::EmitFuncArgumentDbgValue(const Value *V, MDNode *Variable,
4403                                              int64_t Offset,
4404                                              const SDValue &N) {
4405  const Argument *Arg = dyn_cast<Argument>(V);
4406  if (!Arg)
4407    return false;
4408
4409  MachineFunction &MF = DAG.getMachineFunction();
4410  const TargetInstrInfo *TII = DAG.getTarget().getInstrInfo();
4411  const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
4412
4413  // Ignore inlined function arguments here.
4414  DIVariable DV(Variable);
4415  if (DV.isInlinedFnArgument(MF.getFunction()))
4416    return false;
4417
4418  unsigned Reg = 0;
4419  // Some arguments' frame index is recorded during argument lowering.
4420  Offset = FuncInfo.getArgumentFrameIndex(Arg);
4421  if (Offset)
4422    Reg = TRI->getFrameRegister(MF);
4423
4424  if (!Reg && N.getNode()) {
4425    if (N.getOpcode() == ISD::CopyFromReg)
4426      Reg = cast<RegisterSDNode>(N.getOperand(1))->getReg();
4427    else
4428      Reg = getTruncatedArgReg(N);
4429    if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) {
4430      MachineRegisterInfo &RegInfo = MF.getRegInfo();
4431      unsigned PR = RegInfo.getLiveInPhysReg(Reg);
4432      if (PR)
4433        Reg = PR;
4434    }
4435  }
4436
4437  if (!Reg) {
4438    // Check if ValueMap has reg number.
4439    DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
4440    if (VMI != FuncInfo.ValueMap.end())
4441      Reg = VMI->second;
4442  }
4443
4444  if (!Reg && N.getNode()) {
4445    // Check if frame index is available.
4446    if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode()))
4447      if (FrameIndexSDNode *FINode =
4448          dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) {
4449        Reg = TRI->getFrameRegister(MF);
4450        Offset = FINode->getIndex();
4451      }
4452  }
4453
4454  if (!Reg)
4455    return false;
4456
4457  MachineInstrBuilder MIB = BuildMI(MF, getCurDebugLoc(),
4458                                    TII->get(TargetOpcode::DBG_VALUE))
4459    .addReg(Reg, RegState::Debug).addImm(Offset).addMetadata(Variable);
4460  FuncInfo.ArgDbgValues.push_back(&*MIB);
4461  return true;
4462}
4463
4464// VisualStudio defines setjmp as _setjmp
4465#if defined(_MSC_VER) && defined(setjmp) && \
4466                         !defined(setjmp_undefined_for_msvc)
4467#  pragma push_macro("setjmp")
4468#  undef setjmp
4469#  define setjmp_undefined_for_msvc
4470#endif
4471
4472/// visitIntrinsicCall - Lower the call to the specified intrinsic function.  If
4473/// we want to emit this as a call to a named external function, return the name
4474/// otherwise lower it and return null.
4475const char *
4476SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) {
4477  DebugLoc dl = getCurDebugLoc();
4478  SDValue Res;
4479
4480  switch (Intrinsic) {
4481  default:
4482    // By default, turn this into a target intrinsic node.
4483    visitTargetIntrinsic(I, Intrinsic);
4484    return 0;
4485  case Intrinsic::vastart:  visitVAStart(I); return 0;
4486  case Intrinsic::vaend:    visitVAEnd(I); return 0;
4487  case Intrinsic::vacopy:   visitVACopy(I); return 0;
4488  case Intrinsic::returnaddress:
4489    setValue(&I, DAG.getNode(ISD::RETURNADDR, dl, TLI.getPointerTy(),
4490                             getValue(I.getArgOperand(0))));
4491    return 0;
4492  case Intrinsic::frameaddress:
4493    setValue(&I, DAG.getNode(ISD::FRAMEADDR, dl, TLI.getPointerTy(),
4494                             getValue(I.getArgOperand(0))));
4495    return 0;
4496  case Intrinsic::setjmp:
4497    return &"_setjmp"[!TLI.usesUnderscoreSetJmp()];
4498  case Intrinsic::longjmp:
4499    return &"_longjmp"[!TLI.usesUnderscoreLongJmp()];
4500  case Intrinsic::memcpy: {
4501    // Assert for address < 256 since we support only user defined address
4502    // spaces.
4503    assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4504           < 256 &&
4505           cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace()
4506           < 256 &&
4507           "Unknown address space");
4508    SDValue Op1 = getValue(I.getArgOperand(0));
4509    SDValue Op2 = getValue(I.getArgOperand(1));
4510    SDValue Op3 = getValue(I.getArgOperand(2));
4511    unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4512    bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4513    DAG.setRoot(DAG.getMemcpy(getRoot(), dl, Op1, Op2, Op3, Align, isVol, false,
4514                              MachinePointerInfo(I.getArgOperand(0)),
4515                              MachinePointerInfo(I.getArgOperand(1))));
4516    return 0;
4517  }
4518  case Intrinsic::memset: {
4519    // Assert for address < 256 since we support only user defined address
4520    // spaces.
4521    assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4522           < 256 &&
4523           "Unknown address space");
4524    SDValue Op1 = getValue(I.getArgOperand(0));
4525    SDValue Op2 = getValue(I.getArgOperand(1));
4526    SDValue Op3 = getValue(I.getArgOperand(2));
4527    unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4528    bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4529    DAG.setRoot(DAG.getMemset(getRoot(), dl, Op1, Op2, Op3, Align, isVol,
4530                              MachinePointerInfo(I.getArgOperand(0))));
4531    return 0;
4532  }
4533  case Intrinsic::memmove: {
4534    // Assert for address < 256 since we support only user defined address
4535    // spaces.
4536    assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4537           < 256 &&
4538           cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace()
4539           < 256 &&
4540           "Unknown address space");
4541    SDValue Op1 = getValue(I.getArgOperand(0));
4542    SDValue Op2 = getValue(I.getArgOperand(1));
4543    SDValue Op3 = getValue(I.getArgOperand(2));
4544    unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4545    bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4546    DAG.setRoot(DAG.getMemmove(getRoot(), dl, Op1, Op2, Op3, Align, isVol,
4547                               MachinePointerInfo(I.getArgOperand(0)),
4548                               MachinePointerInfo(I.getArgOperand(1))));
4549    return 0;
4550  }
4551  case Intrinsic::dbg_declare: {
4552    const DbgDeclareInst &DI = cast<DbgDeclareInst>(I);
4553    MDNode *Variable = DI.getVariable();
4554    const Value *Address = DI.getAddress();
4555    if (!Address || !DIVariable(Variable).Verify()) {
4556      DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4557      return 0;
4558    }
4559
4560    // Build an entry in DbgOrdering.  Debug info input nodes get an SDNodeOrder
4561    // but do not always have a corresponding SDNode built.  The SDNodeOrder
4562    // absolute, but not relative, values are different depending on whether
4563    // debug info exists.
4564    ++SDNodeOrder;
4565
4566    // Check if address has undef value.
4567    if (isa<UndefValue>(Address) ||
4568        (Address->use_empty() && !isa<Argument>(Address))) {
4569      DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4570      return 0;
4571    }
4572
4573    SDValue &N = NodeMap[Address];
4574    if (!N.getNode() && isa<Argument>(Address))
4575      // Check unused arguments map.
4576      N = UnusedArgNodeMap[Address];
4577    SDDbgValue *SDV;
4578    if (N.getNode()) {
4579      if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
4580        Address = BCI->getOperand(0);
4581      // Parameters are handled specially.
4582      bool isParameter =
4583        (DIVariable(Variable).getTag() == dwarf::DW_TAG_arg_variable ||
4584         isa<Argument>(Address));
4585
4586      const AllocaInst *AI = dyn_cast<AllocaInst>(Address);
4587
4588      if (isParameter && !AI) {
4589        FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
4590        if (FINode)
4591          // Byval parameter.  We have a frame index at this point.
4592          SDV = DAG.getDbgValue(Variable, FINode->getIndex(),
4593                                0, dl, SDNodeOrder);
4594        else {
4595          // Address is an argument, so try to emit its dbg value using
4596          // virtual register info from the FuncInfo.ValueMap.
4597          EmitFuncArgumentDbgValue(Address, Variable, 0, N);
4598          return 0;
4599        }
4600      } else if (AI)
4601        SDV = DAG.getDbgValue(Variable, N.getNode(), N.getResNo(),
4602                              0, dl, SDNodeOrder);
4603      else {
4604        // Can't do anything with other non-AI cases yet.
4605        DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4606        DEBUG(dbgs() << "non-AllocaInst issue for Address: \n\t");
4607        DEBUG(Address->dump());
4608        return 0;
4609      }
4610      DAG.AddDbgValue(SDV, N.getNode(), isParameter);
4611    } else {
4612      // If Address is an argument then try to emit its dbg value using
4613      // virtual register info from the FuncInfo.ValueMap.
4614      if (!EmitFuncArgumentDbgValue(Address, Variable, 0, N)) {
4615        // If variable is pinned by a alloca in dominating bb then
4616        // use StaticAllocaMap.
4617        if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) {
4618          if (AI->getParent() != DI.getParent()) {
4619            DenseMap<const AllocaInst*, int>::iterator SI =
4620              FuncInfo.StaticAllocaMap.find(AI);
4621            if (SI != FuncInfo.StaticAllocaMap.end()) {
4622              SDV = DAG.getDbgValue(Variable, SI->second,
4623                                    0, dl, SDNodeOrder);
4624              DAG.AddDbgValue(SDV, 0, false);
4625              return 0;
4626            }
4627          }
4628        }
4629        DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4630      }
4631    }
4632    return 0;
4633  }
4634  case Intrinsic::dbg_value: {
4635    const DbgValueInst &DI = cast<DbgValueInst>(I);
4636    if (!DIVariable(DI.getVariable()).Verify())
4637      return 0;
4638
4639    MDNode *Variable = DI.getVariable();
4640    uint64_t Offset = DI.getOffset();
4641    const Value *V = DI.getValue();
4642    if (!V)
4643      return 0;
4644
4645    // Build an entry in DbgOrdering.  Debug info input nodes get an SDNodeOrder
4646    // but do not always have a corresponding SDNode built.  The SDNodeOrder
4647    // absolute, but not relative, values are different depending on whether
4648    // debug info exists.
4649    ++SDNodeOrder;
4650    SDDbgValue *SDV;
4651    if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) {
4652      SDV = DAG.getDbgValue(Variable, V, Offset, dl, SDNodeOrder);
4653      DAG.AddDbgValue(SDV, 0, false);
4654    } else {
4655      // Do not use getValue() in here; we don't want to generate code at
4656      // this point if it hasn't been done yet.
4657      SDValue N = NodeMap[V];
4658      if (!N.getNode() && isa<Argument>(V))
4659        // Check unused arguments map.
4660        N = UnusedArgNodeMap[V];
4661      if (N.getNode()) {
4662        if (!EmitFuncArgumentDbgValue(V, Variable, Offset, N)) {
4663          SDV = DAG.getDbgValue(Variable, N.getNode(),
4664                                N.getResNo(), Offset, dl, SDNodeOrder);
4665          DAG.AddDbgValue(SDV, N.getNode(), false);
4666        }
4667      } else if (!V->use_empty() ) {
4668        // Do not call getValue(V) yet, as we don't want to generate code.
4669        // Remember it for later.
4670        DanglingDebugInfo DDI(&DI, dl, SDNodeOrder);
4671        DanglingDebugInfoMap[V] = DDI;
4672      } else {
4673        // We may expand this to cover more cases.  One case where we have no
4674        // data available is an unreferenced parameter.
4675        DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4676      }
4677    }
4678
4679    // Build a debug info table entry.
4680    if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V))
4681      V = BCI->getOperand(0);
4682    const AllocaInst *AI = dyn_cast<AllocaInst>(V);
4683    // Don't handle byval struct arguments or VLAs, for example.
4684    if (!AI) {
4685      DEBUG(dbgs() << "Dropping debug location info for:\n  " << DI << "\n");
4686      DEBUG(dbgs() << "  Last seen at:\n    " << *V << "\n");
4687      return 0;
4688    }
4689    DenseMap<const AllocaInst*, int>::iterator SI =
4690      FuncInfo.StaticAllocaMap.find(AI);
4691    if (SI == FuncInfo.StaticAllocaMap.end())
4692      return 0; // VLAs.
4693    int FI = SI->second;
4694
4695    MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4696    if (!DI.getDebugLoc().isUnknown() && MMI.hasDebugInfo())
4697      MMI.setVariableDbgInfo(Variable, FI, DI.getDebugLoc());
4698    return 0;
4699  }
4700
4701  case Intrinsic::eh_typeid_for: {
4702    // Find the type id for the given typeinfo.
4703    GlobalVariable *GV = ExtractTypeInfo(I.getArgOperand(0));
4704    unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV);
4705    Res = DAG.getConstant(TypeID, MVT::i32);
4706    setValue(&I, Res);
4707    return 0;
4708  }
4709
4710  case Intrinsic::eh_return_i32:
4711  case Intrinsic::eh_return_i64:
4712    DAG.getMachineFunction().getMMI().setCallsEHReturn(true);
4713    DAG.setRoot(DAG.getNode(ISD::EH_RETURN, dl,
4714                            MVT::Other,
4715                            getControlRoot(),
4716                            getValue(I.getArgOperand(0)),
4717                            getValue(I.getArgOperand(1))));
4718    return 0;
4719  case Intrinsic::eh_unwind_init:
4720    DAG.getMachineFunction().getMMI().setCallsUnwindInit(true);
4721    return 0;
4722  case Intrinsic::eh_dwarf_cfa: {
4723    SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), dl,
4724                                        TLI.getPointerTy());
4725    SDValue Offset = DAG.getNode(ISD::ADD, dl,
4726                                 TLI.getPointerTy(),
4727                                 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, dl,
4728                                             TLI.getPointerTy()),
4729                                 CfaArg);
4730    SDValue FA = DAG.getNode(ISD::FRAMEADDR, dl,
4731                             TLI.getPointerTy(),
4732                             DAG.getConstant(0, TLI.getPointerTy()));
4733    setValue(&I, DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(),
4734                             FA, Offset));
4735    return 0;
4736  }
4737  case Intrinsic::eh_sjlj_callsite: {
4738    MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4739    ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0));
4740    assert(CI && "Non-constant call site value in eh.sjlj.callsite!");
4741    assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
4742
4743    MMI.setCurrentCallSite(CI->getZExtValue());
4744    return 0;
4745  }
4746  case Intrinsic::eh_sjlj_functioncontext: {
4747    // Get and store the index of the function context.
4748    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
4749    AllocaInst *FnCtx =
4750      cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts());
4751    int FI = FuncInfo.StaticAllocaMap[FnCtx];
4752    MFI->setFunctionContextIndex(FI);
4753    return 0;
4754  }
4755  case Intrinsic::eh_sjlj_setjmp: {
4756    SDValue Ops[2];
4757    Ops[0] = getRoot();
4758    Ops[1] = getValue(I.getArgOperand(0));
4759    SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, dl,
4760                             DAG.getVTList(MVT::i32, MVT::Other),
4761                             Ops, 2);
4762    setValue(&I, Op.getValue(0));
4763    DAG.setRoot(Op.getValue(1));
4764    return 0;
4765  }
4766  case Intrinsic::eh_sjlj_longjmp: {
4767    DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, dl, MVT::Other,
4768                            getRoot(), getValue(I.getArgOperand(0))));
4769    return 0;
4770  }
4771
4772  case Intrinsic::x86_mmx_pslli_w:
4773  case Intrinsic::x86_mmx_pslli_d:
4774  case Intrinsic::x86_mmx_pslli_q:
4775  case Intrinsic::x86_mmx_psrli_w:
4776  case Intrinsic::x86_mmx_psrli_d:
4777  case Intrinsic::x86_mmx_psrli_q:
4778  case Intrinsic::x86_mmx_psrai_w:
4779  case Intrinsic::x86_mmx_psrai_d: {
4780    SDValue ShAmt = getValue(I.getArgOperand(1));
4781    if (isa<ConstantSDNode>(ShAmt)) {
4782      visitTargetIntrinsic(I, Intrinsic);
4783      return 0;
4784    }
4785    unsigned NewIntrinsic = 0;
4786    EVT ShAmtVT = MVT::v2i32;
4787    switch (Intrinsic) {
4788    case Intrinsic::x86_mmx_pslli_w:
4789      NewIntrinsic = Intrinsic::x86_mmx_psll_w;
4790      break;
4791    case Intrinsic::x86_mmx_pslli_d:
4792      NewIntrinsic = Intrinsic::x86_mmx_psll_d;
4793      break;
4794    case Intrinsic::x86_mmx_pslli_q:
4795      NewIntrinsic = Intrinsic::x86_mmx_psll_q;
4796      break;
4797    case Intrinsic::x86_mmx_psrli_w:
4798      NewIntrinsic = Intrinsic::x86_mmx_psrl_w;
4799      break;
4800    case Intrinsic::x86_mmx_psrli_d:
4801      NewIntrinsic = Intrinsic::x86_mmx_psrl_d;
4802      break;
4803    case Intrinsic::x86_mmx_psrli_q:
4804      NewIntrinsic = Intrinsic::x86_mmx_psrl_q;
4805      break;
4806    case Intrinsic::x86_mmx_psrai_w:
4807      NewIntrinsic = Intrinsic::x86_mmx_psra_w;
4808      break;
4809    case Intrinsic::x86_mmx_psrai_d:
4810      NewIntrinsic = Intrinsic::x86_mmx_psra_d;
4811      break;
4812    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
4813    }
4814
4815    // The vector shift intrinsics with scalars uses 32b shift amounts but
4816    // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
4817    // to be zero.
4818    // We must do this early because v2i32 is not a legal type.
4819    DebugLoc dl = getCurDebugLoc();
4820    SDValue ShOps[2];
4821    ShOps[0] = ShAmt;
4822    ShOps[1] = DAG.getConstant(0, MVT::i32);
4823    ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 2);
4824    EVT DestVT = TLI.getValueType(I.getType());
4825    ShAmt = DAG.getNode(ISD::BITCAST, dl, DestVT, ShAmt);
4826    Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
4827                       DAG.getConstant(NewIntrinsic, MVT::i32),
4828                       getValue(I.getArgOperand(0)), ShAmt);
4829    setValue(&I, Res);
4830    return 0;
4831  }
4832  case Intrinsic::x86_avx_vinsertf128_pd_256:
4833  case Intrinsic::x86_avx_vinsertf128_ps_256:
4834  case Intrinsic::x86_avx_vinsertf128_si_256:
4835  case Intrinsic::x86_avx2_vinserti128: {
4836    DebugLoc dl = getCurDebugLoc();
4837    EVT DestVT = TLI.getValueType(I.getType());
4838    EVT ElVT = TLI.getValueType(I.getArgOperand(1)->getType());
4839    uint64_t Idx = (cast<ConstantInt>(I.getArgOperand(2))->getZExtValue() & 1) *
4840                   ElVT.getVectorNumElements();
4841    Res = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, DestVT,
4842                      getValue(I.getArgOperand(0)),
4843                      getValue(I.getArgOperand(1)),
4844                      DAG.getConstant(Idx, MVT::i32));
4845    setValue(&I, Res);
4846    return 0;
4847  }
4848  case Intrinsic::convertff:
4849  case Intrinsic::convertfsi:
4850  case Intrinsic::convertfui:
4851  case Intrinsic::convertsif:
4852  case Intrinsic::convertuif:
4853  case Intrinsic::convertss:
4854  case Intrinsic::convertsu:
4855  case Intrinsic::convertus:
4856  case Intrinsic::convertuu: {
4857    ISD::CvtCode Code = ISD::CVT_INVALID;
4858    switch (Intrinsic) {
4859    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
4860    case Intrinsic::convertff:  Code = ISD::CVT_FF; break;
4861    case Intrinsic::convertfsi: Code = ISD::CVT_FS; break;
4862    case Intrinsic::convertfui: Code = ISD::CVT_FU; break;
4863    case Intrinsic::convertsif: Code = ISD::CVT_SF; break;
4864    case Intrinsic::convertuif: Code = ISD::CVT_UF; break;
4865    case Intrinsic::convertss:  Code = ISD::CVT_SS; break;
4866    case Intrinsic::convertsu:  Code = ISD::CVT_SU; break;
4867    case Intrinsic::convertus:  Code = ISD::CVT_US; break;
4868    case Intrinsic::convertuu:  Code = ISD::CVT_UU; break;
4869    }
4870    EVT DestVT = TLI.getValueType(I.getType());
4871    const Value *Op1 = I.getArgOperand(0);
4872    Res = DAG.getConvertRndSat(DestVT, getCurDebugLoc(), getValue(Op1),
4873                               DAG.getValueType(DestVT),
4874                               DAG.getValueType(getValue(Op1).getValueType()),
4875                               getValue(I.getArgOperand(1)),
4876                               getValue(I.getArgOperand(2)),
4877                               Code);
4878    setValue(&I, Res);
4879    return 0;
4880  }
4881  case Intrinsic::sqrt:
4882    setValue(&I, DAG.getNode(ISD::FSQRT, dl,
4883                             getValue(I.getArgOperand(0)).getValueType(),
4884                             getValue(I.getArgOperand(0))));
4885    return 0;
4886  case Intrinsic::powi:
4887    setValue(&I, ExpandPowI(dl, getValue(I.getArgOperand(0)),
4888                            getValue(I.getArgOperand(1)), DAG));
4889    return 0;
4890  case Intrinsic::sin:
4891    setValue(&I, DAG.getNode(ISD::FSIN, dl,
4892                             getValue(I.getArgOperand(0)).getValueType(),
4893                             getValue(I.getArgOperand(0))));
4894    return 0;
4895  case Intrinsic::cos:
4896    setValue(&I, DAG.getNode(ISD::FCOS, dl,
4897                             getValue(I.getArgOperand(0)).getValueType(),
4898                             getValue(I.getArgOperand(0))));
4899    return 0;
4900  case Intrinsic::log:
4901    visitLog(I);
4902    return 0;
4903  case Intrinsic::log2:
4904    visitLog2(I);
4905    return 0;
4906  case Intrinsic::log10:
4907    visitLog10(I);
4908    return 0;
4909  case Intrinsic::exp:
4910    visitExp(I);
4911    return 0;
4912  case Intrinsic::exp2:
4913    visitExp2(I);
4914    return 0;
4915  case Intrinsic::pow:
4916    visitPow(I);
4917    return 0;
4918  case Intrinsic::fma:
4919    setValue(&I, DAG.getNode(ISD::FMA, dl,
4920                             getValue(I.getArgOperand(0)).getValueType(),
4921                             getValue(I.getArgOperand(0)),
4922                             getValue(I.getArgOperand(1)),
4923                             getValue(I.getArgOperand(2))));
4924    return 0;
4925  case Intrinsic::convert_to_fp16:
4926    setValue(&I, DAG.getNode(ISD::FP32_TO_FP16, dl,
4927                             MVT::i16, getValue(I.getArgOperand(0))));
4928    return 0;
4929  case Intrinsic::convert_from_fp16:
4930    setValue(&I, DAG.getNode(ISD::FP16_TO_FP32, dl,
4931                             MVT::f32, getValue(I.getArgOperand(0))));
4932    return 0;
4933  case Intrinsic::pcmarker: {
4934    SDValue Tmp = getValue(I.getArgOperand(0));
4935    DAG.setRoot(DAG.getNode(ISD::PCMARKER, dl, MVT::Other, getRoot(), Tmp));
4936    return 0;
4937  }
4938  case Intrinsic::readcyclecounter: {
4939    SDValue Op = getRoot();
4940    Res = DAG.getNode(ISD::READCYCLECOUNTER, dl,
4941                      DAG.getVTList(MVT::i64, MVT::Other),
4942                      &Op, 1);
4943    setValue(&I, Res);
4944    DAG.setRoot(Res.getValue(1));
4945    return 0;
4946  }
4947  case Intrinsic::bswap:
4948    setValue(&I, DAG.getNode(ISD::BSWAP, dl,
4949                             getValue(I.getArgOperand(0)).getValueType(),
4950                             getValue(I.getArgOperand(0))));
4951    return 0;
4952  case Intrinsic::cttz: {
4953    SDValue Arg = getValue(I.getArgOperand(0));
4954    ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
4955    EVT Ty = Arg.getValueType();
4956    setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF,
4957                             dl, Ty, Arg));
4958    return 0;
4959  }
4960  case Intrinsic::ctlz: {
4961    SDValue Arg = getValue(I.getArgOperand(0));
4962    ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
4963    EVT Ty = Arg.getValueType();
4964    setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF,
4965                             dl, Ty, Arg));
4966    return 0;
4967  }
4968  case Intrinsic::ctpop: {
4969    SDValue Arg = getValue(I.getArgOperand(0));
4970    EVT Ty = Arg.getValueType();
4971    setValue(&I, DAG.getNode(ISD::CTPOP, dl, Ty, Arg));
4972    return 0;
4973  }
4974  case Intrinsic::stacksave: {
4975    SDValue Op = getRoot();
4976    Res = DAG.getNode(ISD::STACKSAVE, dl,
4977                      DAG.getVTList(TLI.getPointerTy(), MVT::Other), &Op, 1);
4978    setValue(&I, Res);
4979    DAG.setRoot(Res.getValue(1));
4980    return 0;
4981  }
4982  case Intrinsic::stackrestore: {
4983    Res = getValue(I.getArgOperand(0));
4984    DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, dl, MVT::Other, getRoot(), Res));
4985    return 0;
4986  }
4987  case Intrinsic::stackprotector: {
4988    // Emit code into the DAG to store the stack guard onto the stack.
4989    MachineFunction &MF = DAG.getMachineFunction();
4990    MachineFrameInfo *MFI = MF.getFrameInfo();
4991    EVT PtrTy = TLI.getPointerTy();
4992
4993    SDValue Src = getValue(I.getArgOperand(0));   // The guard's value.
4994    AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
4995
4996    int FI = FuncInfo.StaticAllocaMap[Slot];
4997    MFI->setStackProtectorIndex(FI);
4998
4999    SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
5000
5001    // Store the stack protector onto the stack.
5002    Res = DAG.getStore(getRoot(), getCurDebugLoc(), Src, FIN,
5003                       MachinePointerInfo::getFixedStack(FI),
5004                       true, false, 0);
5005    setValue(&I, Res);
5006    DAG.setRoot(Res);
5007    return 0;
5008  }
5009  case Intrinsic::objectsize: {
5010    // If we don't know by now, we're never going to know.
5011    ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1));
5012
5013    assert(CI && "Non-constant type in __builtin_object_size?");
5014
5015    SDValue Arg = getValue(I.getCalledValue());
5016    EVT Ty = Arg.getValueType();
5017
5018    if (CI->isZero())
5019      Res = DAG.getConstant(-1ULL, Ty);
5020    else
5021      Res = DAG.getConstant(0, Ty);
5022
5023    setValue(&I, Res);
5024    return 0;
5025  }
5026  case Intrinsic::var_annotation:
5027    // Discard annotate attributes
5028    return 0;
5029
5030  case Intrinsic::init_trampoline: {
5031    const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
5032
5033    SDValue Ops[6];
5034    Ops[0] = getRoot();
5035    Ops[1] = getValue(I.getArgOperand(0));
5036    Ops[2] = getValue(I.getArgOperand(1));
5037    Ops[3] = getValue(I.getArgOperand(2));
5038    Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
5039    Ops[5] = DAG.getSrcValue(F);
5040
5041    Res = DAG.getNode(ISD::INIT_TRAMPOLINE, dl, MVT::Other, Ops, 6);
5042
5043    DAG.setRoot(Res);
5044    return 0;
5045  }
5046  case Intrinsic::adjust_trampoline: {
5047    setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, dl,
5048                             TLI.getPointerTy(),
5049                             getValue(I.getArgOperand(0))));
5050    return 0;
5051  }
5052  case Intrinsic::gcroot:
5053    if (GFI) {
5054      const Value *Alloca = I.getArgOperand(0)->stripPointerCasts();
5055      const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
5056
5057      FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
5058      GFI->addStackRoot(FI->getIndex(), TypeMap);
5059    }
5060    return 0;
5061  case Intrinsic::gcread:
5062  case Intrinsic::gcwrite:
5063    llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
5064  case Intrinsic::flt_rounds:
5065    setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, dl, MVT::i32));
5066    return 0;
5067
5068  case Intrinsic::expect: {
5069    // Just replace __builtin_expect(exp, c) with EXP.
5070    setValue(&I, getValue(I.getArgOperand(0)));
5071    return 0;
5072  }
5073
5074  case Intrinsic::trap: {
5075    StringRef TrapFuncName = TM.Options.getTrapFunctionName();
5076    if (TrapFuncName.empty()) {
5077      DAG.setRoot(DAG.getNode(ISD::TRAP, dl,MVT::Other, getRoot()));
5078      return 0;
5079    }
5080    TargetLowering::ArgListTy Args;
5081    std::pair<SDValue, SDValue> Result =
5082      TLI.LowerCallTo(getRoot(), I.getType(),
5083                 false, false, false, false, 0, CallingConv::C,
5084                 /*isTailCall=*/false,
5085                 /*doesNotRet=*/false, /*isReturnValueUsed=*/true,
5086                 DAG.getExternalSymbol(TrapFuncName.data(), TLI.getPointerTy()),
5087                 Args, DAG, getCurDebugLoc());
5088    DAG.setRoot(Result.second);
5089    return 0;
5090  }
5091  case Intrinsic::debugtrap: {
5092    DAG.setRoot(DAG.getNode(ISD::DEBUGTRAP, dl,MVT::Other, getRoot()));
5093    return 0;
5094  }
5095  case Intrinsic::uadd_with_overflow:
5096  case Intrinsic::sadd_with_overflow:
5097  case Intrinsic::usub_with_overflow:
5098  case Intrinsic::ssub_with_overflow:
5099  case Intrinsic::umul_with_overflow:
5100  case Intrinsic::smul_with_overflow: {
5101    ISD::NodeType Op;
5102    switch (Intrinsic) {
5103    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
5104    case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break;
5105    case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break;
5106    case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break;
5107    case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break;
5108    case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break;
5109    case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break;
5110    }
5111    SDValue Op1 = getValue(I.getArgOperand(0));
5112    SDValue Op2 = getValue(I.getArgOperand(1));
5113
5114    SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1);
5115    setValue(&I, DAG.getNode(Op, getCurDebugLoc(), VTs, Op1, Op2));
5116    return 0;
5117  }
5118  case Intrinsic::prefetch: {
5119    SDValue Ops[5];
5120    unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
5121    Ops[0] = getRoot();
5122    Ops[1] = getValue(I.getArgOperand(0));
5123    Ops[2] = getValue(I.getArgOperand(1));
5124    Ops[3] = getValue(I.getArgOperand(2));
5125    Ops[4] = getValue(I.getArgOperand(3));
5126    DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, dl,
5127                                        DAG.getVTList(MVT::Other),
5128                                        &Ops[0], 5,
5129                                        EVT::getIntegerVT(*Context, 8),
5130                                        MachinePointerInfo(I.getArgOperand(0)),
5131                                        0, /* align */
5132                                        false, /* volatile */
5133                                        rw==0, /* read */
5134                                        rw==1)); /* write */
5135    return 0;
5136  }
5137
5138  case Intrinsic::invariant_start:
5139  case Intrinsic::lifetime_start:
5140    // Discard region information.
5141    setValue(&I, DAG.getUNDEF(TLI.getPointerTy()));
5142    return 0;
5143  case Intrinsic::invariant_end:
5144  case Intrinsic::lifetime_end:
5145    // Discard region information.
5146    return 0;
5147  }
5148}
5149
5150void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee,
5151                                      bool isTailCall,
5152                                      MachineBasicBlock *LandingPad) {
5153  PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
5154  FunctionType *FTy = cast<FunctionType>(PT->getElementType());
5155  Type *RetTy = FTy->getReturnType();
5156  MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
5157  MCSymbol *BeginLabel = 0;
5158
5159  TargetLowering::ArgListTy Args;
5160  TargetLowering::ArgListEntry Entry;
5161  Args.reserve(CS.arg_size());
5162
5163  // Check whether the function can return without sret-demotion.
5164  SmallVector<ISD::OutputArg, 4> Outs;
5165  SmallVector<uint64_t, 4> Offsets;
5166  GetReturnInfo(RetTy, CS.getAttributes().getRetAttributes(),
5167                Outs, TLI, &Offsets);
5168
5169  bool CanLowerReturn = TLI.CanLowerReturn(CS.getCallingConv(),
5170					   DAG.getMachineFunction(),
5171					   FTy->isVarArg(), Outs,
5172					   FTy->getContext());
5173
5174  SDValue DemoteStackSlot;
5175  int DemoteStackIdx = -100;
5176
5177  if (!CanLowerReturn) {
5178    uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(
5179                      FTy->getReturnType());
5180    unsigned Align  = TLI.getTargetData()->getPrefTypeAlignment(
5181                      FTy->getReturnType());
5182    MachineFunction &MF = DAG.getMachineFunction();
5183    DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
5184    Type *StackSlotPtrType = PointerType::getUnqual(FTy->getReturnType());
5185
5186    DemoteStackSlot = DAG.getFrameIndex(DemoteStackIdx, TLI.getPointerTy());
5187    Entry.Node = DemoteStackSlot;
5188    Entry.Ty = StackSlotPtrType;
5189    Entry.isSExt = false;
5190    Entry.isZExt = false;
5191    Entry.isInReg = false;
5192    Entry.isSRet = true;
5193    Entry.isNest = false;
5194    Entry.isByVal = false;
5195    Entry.Alignment = Align;
5196    Args.push_back(Entry);
5197    RetTy = Type::getVoidTy(FTy->getContext());
5198  }
5199
5200  for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
5201       i != e; ++i) {
5202    const Value *V = *i;
5203
5204    // Skip empty types
5205    if (V->getType()->isEmptyTy())
5206      continue;
5207
5208    SDValue ArgNode = getValue(V);
5209    Entry.Node = ArgNode; Entry.Ty = V->getType();
5210
5211    unsigned attrInd = i - CS.arg_begin() + 1;
5212    Entry.isSExt  = CS.paramHasAttr(attrInd, Attribute::SExt);
5213    Entry.isZExt  = CS.paramHasAttr(attrInd, Attribute::ZExt);
5214    Entry.isInReg = CS.paramHasAttr(attrInd, Attribute::InReg);
5215    Entry.isSRet  = CS.paramHasAttr(attrInd, Attribute::StructRet);
5216    Entry.isNest  = CS.paramHasAttr(attrInd, Attribute::Nest);
5217    Entry.isByVal = CS.paramHasAttr(attrInd, Attribute::ByVal);
5218    Entry.Alignment = CS.getParamAlignment(attrInd);
5219    Args.push_back(Entry);
5220  }
5221
5222  if (LandingPad) {
5223    // Insert a label before the invoke call to mark the try range.  This can be
5224    // used to detect deletion of the invoke via the MachineModuleInfo.
5225    BeginLabel = MMI.getContext().CreateTempSymbol();
5226
5227    // For SjLj, keep track of which landing pads go with which invokes
5228    // so as to maintain the ordering of pads in the LSDA.
5229    unsigned CallSiteIndex = MMI.getCurrentCallSite();
5230    if (CallSiteIndex) {
5231      MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
5232      LPadToCallSiteMap[LandingPad].push_back(CallSiteIndex);
5233
5234      // Now that the call site is handled, stop tracking it.
5235      MMI.setCurrentCallSite(0);
5236    }
5237
5238    // Both PendingLoads and PendingExports must be flushed here;
5239    // this call might not return.
5240    (void)getRoot();
5241    DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getControlRoot(), BeginLabel));
5242  }
5243
5244  // Check if target-independent constraints permit a tail call here.
5245  // Target-dependent constraints are checked within TLI.LowerCallTo.
5246  if (isTailCall &&
5247      !isInTailCallPosition(CS, CS.getAttributes().getRetAttributes(), TLI))
5248    isTailCall = false;
5249
5250  // If there's a possibility that fast-isel has already selected some amount
5251  // of the current basic block, don't emit a tail call.
5252  if (isTailCall && TM.Options.EnableFastISel)
5253    isTailCall = false;
5254
5255  std::pair<SDValue,SDValue> Result =
5256    TLI.LowerCallTo(getRoot(), RetTy,
5257                    CS.paramHasAttr(0, Attribute::SExt),
5258                    CS.paramHasAttr(0, Attribute::ZExt), FTy->isVarArg(),
5259                    CS.paramHasAttr(0, Attribute::InReg), FTy->getNumParams(),
5260                    CS.getCallingConv(),
5261                    isTailCall,
5262                    CS.doesNotReturn(),
5263                    !CS.getInstruction()->use_empty(),
5264                    Callee, Args, DAG, getCurDebugLoc());
5265  assert((isTailCall || Result.second.getNode()) &&
5266         "Non-null chain expected with non-tail call!");
5267  assert((Result.second.getNode() || !Result.first.getNode()) &&
5268         "Null value expected with tail call!");
5269  if (Result.first.getNode()) {
5270    setValue(CS.getInstruction(), Result.first);
5271  } else if (!CanLowerReturn && Result.second.getNode()) {
5272    // The instruction result is the result of loading from the
5273    // hidden sret parameter.
5274    SmallVector<EVT, 1> PVTs;
5275    Type *PtrRetTy = PointerType::getUnqual(FTy->getReturnType());
5276
5277    ComputeValueVTs(TLI, PtrRetTy, PVTs);
5278    assert(PVTs.size() == 1 && "Pointers should fit in one register");
5279    EVT PtrVT = PVTs[0];
5280    unsigned NumValues = Outs.size();
5281    SmallVector<SDValue, 4> Values(NumValues);
5282    SmallVector<SDValue, 4> Chains(NumValues);
5283
5284    for (unsigned i = 0; i < NumValues; ++i) {
5285      SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT,
5286                                DemoteStackSlot,
5287                                DAG.getConstant(Offsets[i], PtrVT));
5288      SDValue L = DAG.getLoad(Outs[i].VT, getCurDebugLoc(), Result.second,
5289                              Add,
5290                  MachinePointerInfo::getFixedStack(DemoteStackIdx, Offsets[i]),
5291                              false, false, false, 1);
5292      Values[i] = L;
5293      Chains[i] = L.getValue(1);
5294    }
5295
5296    SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
5297                                MVT::Other, &Chains[0], NumValues);
5298    PendingLoads.push_back(Chain);
5299
5300    // Collect the legal value parts into potentially illegal values
5301    // that correspond to the original function's return values.
5302    SmallVector<EVT, 4> RetTys;
5303    RetTy = FTy->getReturnType();
5304    ComputeValueVTs(TLI, RetTy, RetTys);
5305    ISD::NodeType AssertOp = ISD::DELETED_NODE;
5306    SmallVector<SDValue, 4> ReturnValues;
5307    unsigned CurReg = 0;
5308    for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
5309      EVT VT = RetTys[I];
5310      EVT RegisterVT = TLI.getRegisterType(RetTy->getContext(), VT);
5311      unsigned NumRegs = TLI.getNumRegisters(RetTy->getContext(), VT);
5312
5313      SDValue ReturnValue =
5314        getCopyFromParts(DAG, getCurDebugLoc(), &Values[CurReg], NumRegs,
5315                         RegisterVT, VT, AssertOp);
5316      ReturnValues.push_back(ReturnValue);
5317      CurReg += NumRegs;
5318    }
5319
5320    setValue(CS.getInstruction(),
5321             DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
5322                         DAG.getVTList(&RetTys[0], RetTys.size()),
5323                         &ReturnValues[0], ReturnValues.size()));
5324  }
5325
5326  // Assign order to nodes here. If the call does not produce a result, it won't
5327  // be mapped to a SDNode and visit() will not assign it an order number.
5328  if (!Result.second.getNode()) {
5329    // As a special case, a null chain means that a tail call has been emitted and
5330    // the DAG root is already updated.
5331    HasTailCall = true;
5332    ++SDNodeOrder;
5333    AssignOrderingToNode(DAG.getRoot().getNode());
5334  } else {
5335    DAG.setRoot(Result.second);
5336    ++SDNodeOrder;
5337    AssignOrderingToNode(Result.second.getNode());
5338  }
5339
5340  if (LandingPad) {
5341    // Insert a label at the end of the invoke call to mark the try range.  This
5342    // can be used to detect deletion of the invoke via the MachineModuleInfo.
5343    MCSymbol *EndLabel = MMI.getContext().CreateTempSymbol();
5344    DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getRoot(), EndLabel));
5345
5346    // Inform MachineModuleInfo of range.
5347    MMI.addInvoke(LandingPad, BeginLabel, EndLabel);
5348  }
5349}
5350
5351/// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the
5352/// value is equal or not-equal to zero.
5353static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) {
5354  for (Value::const_use_iterator UI = V->use_begin(), E = V->use_end();
5355       UI != E; ++UI) {
5356    if (const ICmpInst *IC = dyn_cast<ICmpInst>(*UI))
5357      if (IC->isEquality())
5358        if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
5359          if (C->isNullValue())
5360            continue;
5361    // Unknown instruction.
5362    return false;
5363  }
5364  return true;
5365}
5366
5367static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
5368                             Type *LoadTy,
5369                             SelectionDAGBuilder &Builder) {
5370
5371  // Check to see if this load can be trivially constant folded, e.g. if the
5372  // input is from a string literal.
5373  if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
5374    // Cast pointer to the type we really want to load.
5375    LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
5376                                         PointerType::getUnqual(LoadTy));
5377
5378    if (const Constant *LoadCst =
5379          ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput),
5380                                       Builder.TD))
5381      return Builder.getValue(LoadCst);
5382  }
5383
5384  // Otherwise, we have to emit the load.  If the pointer is to unfoldable but
5385  // still constant memory, the input chain can be the entry node.
5386  SDValue Root;
5387  bool ConstantMemory = false;
5388
5389  // Do not serialize (non-volatile) loads of constant memory with anything.
5390  if (Builder.AA->pointsToConstantMemory(PtrVal)) {
5391    Root = Builder.DAG.getEntryNode();
5392    ConstantMemory = true;
5393  } else {
5394    // Do not serialize non-volatile loads against each other.
5395    Root = Builder.DAG.getRoot();
5396  }
5397
5398  SDValue Ptr = Builder.getValue(PtrVal);
5399  SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurDebugLoc(), Root,
5400                                        Ptr, MachinePointerInfo(PtrVal),
5401                                        false /*volatile*/,
5402                                        false /*nontemporal*/,
5403                                        false /*isinvariant*/, 1 /* align=1 */);
5404
5405  if (!ConstantMemory)
5406    Builder.PendingLoads.push_back(LoadVal.getValue(1));
5407  return LoadVal;
5408}
5409
5410
5411/// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form.
5412/// If so, return true and lower it, otherwise return false and it will be
5413/// lowered like a normal call.
5414bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) {
5415  // Verify that the prototype makes sense.  int memcmp(void*,void*,size_t)
5416  if (I.getNumArgOperands() != 3)
5417    return false;
5418
5419  const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
5420  if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() ||
5421      !I.getArgOperand(2)->getType()->isIntegerTy() ||
5422      !I.getType()->isIntegerTy())
5423    return false;
5424
5425  const ConstantInt *Size = dyn_cast<ConstantInt>(I.getArgOperand(2));
5426
5427  // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0
5428  // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0
5429  if (Size && IsOnlyUsedInZeroEqualityComparison(&I)) {
5430    bool ActuallyDoIt = true;
5431    MVT LoadVT;
5432    Type *LoadTy;
5433    switch (Size->getZExtValue()) {
5434    default:
5435      LoadVT = MVT::Other;
5436      LoadTy = 0;
5437      ActuallyDoIt = false;
5438      break;
5439    case 2:
5440      LoadVT = MVT::i16;
5441      LoadTy = Type::getInt16Ty(Size->getContext());
5442      break;
5443    case 4:
5444      LoadVT = MVT::i32;
5445      LoadTy = Type::getInt32Ty(Size->getContext());
5446      break;
5447    case 8:
5448      LoadVT = MVT::i64;
5449      LoadTy = Type::getInt64Ty(Size->getContext());
5450      break;
5451        /*
5452    case 16:
5453      LoadVT = MVT::v4i32;
5454      LoadTy = Type::getInt32Ty(Size->getContext());
5455      LoadTy = VectorType::get(LoadTy, 4);
5456      break;
5457         */
5458    }
5459
5460    // This turns into unaligned loads.  We only do this if the target natively
5461    // supports the MVT we'll be loading or if it is small enough (<= 4) that
5462    // we'll only produce a small number of byte loads.
5463
5464    // Require that we can find a legal MVT, and only do this if the target
5465    // supports unaligned loads of that type.  Expanding into byte loads would
5466    // bloat the code.
5467    if (ActuallyDoIt && Size->getZExtValue() > 4) {
5468      // TODO: Handle 5 byte compare as 4-byte + 1 byte.
5469      // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
5470      if (!TLI.isTypeLegal(LoadVT) ||!TLI.allowsUnalignedMemoryAccesses(LoadVT))
5471        ActuallyDoIt = false;
5472    }
5473
5474    if (ActuallyDoIt) {
5475      SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this);
5476      SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this);
5477
5478      SDValue Res = DAG.getSetCC(getCurDebugLoc(), MVT::i1, LHSVal, RHSVal,
5479                                 ISD::SETNE);
5480      EVT CallVT = TLI.getValueType(I.getType(), true);
5481      setValue(&I, DAG.getZExtOrTrunc(Res, getCurDebugLoc(), CallVT));
5482      return true;
5483    }
5484  }
5485
5486
5487  return false;
5488}
5489
5490
5491void SelectionDAGBuilder::visitCall(const CallInst &I) {
5492  // Handle inline assembly differently.
5493  if (isa<InlineAsm>(I.getCalledValue())) {
5494    visitInlineAsm(&I);
5495    return;
5496  }
5497
5498  MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
5499  ComputeUsesVAFloatArgument(I, &MMI);
5500
5501  const char *RenameFn = 0;
5502  if (Function *F = I.getCalledFunction()) {
5503    if (F->isDeclaration()) {
5504      if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) {
5505        if (unsigned IID = II->getIntrinsicID(F)) {
5506          RenameFn = visitIntrinsicCall(I, IID);
5507          if (!RenameFn)
5508            return;
5509        }
5510      }
5511      if (unsigned IID = F->getIntrinsicID()) {
5512        RenameFn = visitIntrinsicCall(I, IID);
5513        if (!RenameFn)
5514          return;
5515      }
5516    }
5517
5518    // Check for well-known libc/libm calls.  If the function is internal, it
5519    // can't be a library call.
5520    if (!F->hasLocalLinkage() && F->hasName()) {
5521      StringRef Name = F->getName();
5522      if ((LibInfo->has(LibFunc::copysign) && Name == "copysign") ||
5523          (LibInfo->has(LibFunc::copysignf) && Name == "copysignf") ||
5524          (LibInfo->has(LibFunc::copysignl) && Name == "copysignl")) {
5525        if (I.getNumArgOperands() == 2 &&   // Basic sanity checks.
5526            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5527            I.getType() == I.getArgOperand(0)->getType() &&
5528            I.getType() == I.getArgOperand(1)->getType()) {
5529          SDValue LHS = getValue(I.getArgOperand(0));
5530          SDValue RHS = getValue(I.getArgOperand(1));
5531          setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurDebugLoc(),
5532                                   LHS.getValueType(), LHS, RHS));
5533          return;
5534        }
5535      } else if ((LibInfo->has(LibFunc::fabs) && Name == "fabs") ||
5536                 (LibInfo->has(LibFunc::fabsf) && Name == "fabsf") ||
5537                 (LibInfo->has(LibFunc::fabsl) && Name == "fabsl")) {
5538        if (I.getNumArgOperands() == 1 &&   // Basic sanity checks.
5539            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5540            I.getType() == I.getArgOperand(0)->getType()) {
5541          SDValue Tmp = getValue(I.getArgOperand(0));
5542          setValue(&I, DAG.getNode(ISD::FABS, getCurDebugLoc(),
5543                                   Tmp.getValueType(), Tmp));
5544          return;
5545        }
5546      } else if ((LibInfo->has(LibFunc::sin) && Name == "sin") ||
5547                 (LibInfo->has(LibFunc::sinf) && Name == "sinf") ||
5548                 (LibInfo->has(LibFunc::sinl) && Name == "sinl")) {
5549        if (I.getNumArgOperands() == 1 &&   // Basic sanity checks.
5550            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5551            I.getType() == I.getArgOperand(0)->getType() &&
5552            I.onlyReadsMemory()) {
5553          SDValue Tmp = getValue(I.getArgOperand(0));
5554          setValue(&I, DAG.getNode(ISD::FSIN, getCurDebugLoc(),
5555                                   Tmp.getValueType(), Tmp));
5556          return;
5557        }
5558      } else if ((LibInfo->has(LibFunc::cos) && Name == "cos") ||
5559                 (LibInfo->has(LibFunc::cosf) && Name == "cosf") ||
5560                 (LibInfo->has(LibFunc::cosl) && Name == "cosl")) {
5561        if (I.getNumArgOperands() == 1 &&   // Basic sanity checks.
5562            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5563            I.getType() == I.getArgOperand(0)->getType() &&
5564            I.onlyReadsMemory()) {
5565          SDValue Tmp = getValue(I.getArgOperand(0));
5566          setValue(&I, DAG.getNode(ISD::FCOS, getCurDebugLoc(),
5567                                   Tmp.getValueType(), Tmp));
5568          return;
5569        }
5570      } else if ((LibInfo->has(LibFunc::sqrt) && Name == "sqrt") ||
5571                 (LibInfo->has(LibFunc::sqrtf) && Name == "sqrtf") ||
5572                 (LibInfo->has(LibFunc::sqrtl) && Name == "sqrtl")) {
5573        if (I.getNumArgOperands() == 1 &&   // Basic sanity checks.
5574            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5575            I.getType() == I.getArgOperand(0)->getType() &&
5576            I.onlyReadsMemory()) {
5577          SDValue Tmp = getValue(I.getArgOperand(0));
5578          setValue(&I, DAG.getNode(ISD::FSQRT, getCurDebugLoc(),
5579                                   Tmp.getValueType(), Tmp));
5580          return;
5581        }
5582      } else if ((LibInfo->has(LibFunc::floor) && Name == "floor") ||
5583                 (LibInfo->has(LibFunc::floorf) && Name == "floorf") ||
5584                 (LibInfo->has(LibFunc::floorl) && Name == "floorl")) {
5585        if (I.getNumArgOperands() == 1 && // Basic sanity checks.
5586            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5587            I.getType() == I.getArgOperand(0)->getType()) {
5588          SDValue Tmp = getValue(I.getArgOperand(0));
5589          setValue(&I, DAG.getNode(ISD::FFLOOR, getCurDebugLoc(),
5590                                   Tmp.getValueType(), Tmp));
5591          return;
5592        }
5593      } else if ((LibInfo->has(LibFunc::nearbyint) && Name == "nearbyint") ||
5594                 (LibInfo->has(LibFunc::nearbyintf) && Name == "nearbyintf") ||
5595                 (LibInfo->has(LibFunc::nearbyintl) && Name == "nearbyintl")) {
5596        if (I.getNumArgOperands() == 1 && // Basic sanity checks.
5597            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5598            I.getType() == I.getArgOperand(0)->getType()) {
5599          SDValue Tmp = getValue(I.getArgOperand(0));
5600          setValue(&I, DAG.getNode(ISD::FNEARBYINT, getCurDebugLoc(),
5601                                   Tmp.getValueType(), Tmp));
5602          return;
5603        }
5604      } else if ((LibInfo->has(LibFunc::ceil) && Name == "ceil") ||
5605                 (LibInfo->has(LibFunc::ceilf) && Name == "ceilf") ||
5606                 (LibInfo->has(LibFunc::ceill) && Name == "ceill")) {
5607        if (I.getNumArgOperands() == 1 && // Basic sanity checks.
5608            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5609            I.getType() == I.getArgOperand(0)->getType()) {
5610          SDValue Tmp = getValue(I.getArgOperand(0));
5611          setValue(&I, DAG.getNode(ISD::FCEIL, getCurDebugLoc(),
5612                                   Tmp.getValueType(), Tmp));
5613          return;
5614        }
5615      } else if ((LibInfo->has(LibFunc::rint) && Name == "rint") ||
5616                 (LibInfo->has(LibFunc::rintf) && Name == "rintf") ||
5617                 (LibInfo->has(LibFunc::rintl) && Name == "rintl")) {
5618        if (I.getNumArgOperands() == 1 && // Basic sanity checks.
5619            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5620            I.getType() == I.getArgOperand(0)->getType()) {
5621          SDValue Tmp = getValue(I.getArgOperand(0));
5622          setValue(&I, DAG.getNode(ISD::FRINT, getCurDebugLoc(),
5623                                   Tmp.getValueType(), Tmp));
5624          return;
5625        }
5626      } else if ((LibInfo->has(LibFunc::trunc) && Name == "trunc") ||
5627                 (LibInfo->has(LibFunc::truncf) && Name == "truncf") ||
5628                 (LibInfo->has(LibFunc::truncl) && Name == "truncl")) {
5629        if (I.getNumArgOperands() == 1 && // Basic sanity checks.
5630            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5631            I.getType() == I.getArgOperand(0)->getType()) {
5632          SDValue Tmp = getValue(I.getArgOperand(0));
5633          setValue(&I, DAG.getNode(ISD::FTRUNC, getCurDebugLoc(),
5634                                   Tmp.getValueType(), Tmp));
5635          return;
5636        }
5637      } else if ((LibInfo->has(LibFunc::log2) && Name == "log2") ||
5638                 (LibInfo->has(LibFunc::log2f) && Name == "log2f") ||
5639                 (LibInfo->has(LibFunc::log2l) && Name == "log2l")) {
5640        if (I.getNumArgOperands() == 1 && // Basic sanity checks.
5641            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5642            I.getType() == I.getArgOperand(0)->getType() &&
5643            I.onlyReadsMemory()) {
5644          SDValue Tmp = getValue(I.getArgOperand(0));
5645          setValue(&I, DAG.getNode(ISD::FLOG2, getCurDebugLoc(),
5646                                   Tmp.getValueType(), Tmp));
5647          return;
5648        }
5649      } else if ((LibInfo->has(LibFunc::exp2) && Name == "exp2") ||
5650                 (LibInfo->has(LibFunc::exp2f) && Name == "exp2f") ||
5651                 (LibInfo->has(LibFunc::exp2l) && Name == "exp2l")) {
5652        if (I.getNumArgOperands() == 1 && // Basic sanity checks.
5653            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5654            I.getType() == I.getArgOperand(0)->getType() &&
5655            I.onlyReadsMemory()) {
5656          SDValue Tmp = getValue(I.getArgOperand(0));
5657          setValue(&I, DAG.getNode(ISD::FEXP2, getCurDebugLoc(),
5658                                   Tmp.getValueType(), Tmp));
5659          return;
5660        }
5661      } else if (Name == "memcmp") {
5662        if (visitMemCmpCall(I))
5663          return;
5664      }
5665    }
5666  }
5667
5668  SDValue Callee;
5669  if (!RenameFn)
5670    Callee = getValue(I.getCalledValue());
5671  else
5672    Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy());
5673
5674  // Check if we can potentially perform a tail call. More detailed checking is
5675  // be done within LowerCallTo, after more information about the call is known.
5676  LowerCallTo(&I, Callee, I.isTailCall());
5677}
5678
5679namespace {
5680
5681/// AsmOperandInfo - This contains information for each constraint that we are
5682/// lowering.
5683class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
5684public:
5685  /// CallOperand - If this is the result output operand or a clobber
5686  /// this is null, otherwise it is the incoming operand to the CallInst.
5687  /// This gets modified as the asm is processed.
5688  SDValue CallOperand;
5689
5690  /// AssignedRegs - If this is a register or register class operand, this
5691  /// contains the set of register corresponding to the operand.
5692  RegsForValue AssignedRegs;
5693
5694  explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
5695    : TargetLowering::AsmOperandInfo(info), CallOperand(0,0) {
5696  }
5697
5698  /// getCallOperandValEVT - Return the EVT of the Value* that this operand
5699  /// corresponds to.  If there is no Value* for this operand, it returns
5700  /// MVT::Other.
5701  EVT getCallOperandValEVT(LLVMContext &Context,
5702                           const TargetLowering &TLI,
5703                           const TargetData *TD) const {
5704    if (CallOperandVal == 0) return MVT::Other;
5705
5706    if (isa<BasicBlock>(CallOperandVal))
5707      return TLI.getPointerTy();
5708
5709    llvm::Type *OpTy = CallOperandVal->getType();
5710
5711    // FIXME: code duplicated from TargetLowering::ParseConstraints().
5712    // If this is an indirect operand, the operand is a pointer to the
5713    // accessed type.
5714    if (isIndirect) {
5715      llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
5716      if (!PtrTy)
5717        report_fatal_error("Indirect operand for inline asm not a pointer!");
5718      OpTy = PtrTy->getElementType();
5719    }
5720
5721    // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
5722    if (StructType *STy = dyn_cast<StructType>(OpTy))
5723      if (STy->getNumElements() == 1)
5724        OpTy = STy->getElementType(0);
5725
5726    // If OpTy is not a single value, it may be a struct/union that we
5727    // can tile with integers.
5728    if (!OpTy->isSingleValueType() && OpTy->isSized()) {
5729      unsigned BitSize = TD->getTypeSizeInBits(OpTy);
5730      switch (BitSize) {
5731      default: break;
5732      case 1:
5733      case 8:
5734      case 16:
5735      case 32:
5736      case 64:
5737      case 128:
5738        OpTy = IntegerType::get(Context, BitSize);
5739        break;
5740      }
5741    }
5742
5743    return TLI.getValueType(OpTy, true);
5744  }
5745};
5746
5747typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector;
5748
5749} // end anonymous namespace
5750
5751/// GetRegistersForValue - Assign registers (virtual or physical) for the
5752/// specified operand.  We prefer to assign virtual registers, to allow the
5753/// register allocator to handle the assignment process.  However, if the asm
5754/// uses features that we can't model on machineinstrs, we have SDISel do the
5755/// allocation.  This produces generally horrible, but correct, code.
5756///
5757///   OpInfo describes the operand.
5758///
5759static void GetRegistersForValue(SelectionDAG &DAG,
5760                                 const TargetLowering &TLI,
5761                                 DebugLoc DL,
5762                                 SDISelAsmOperandInfo &OpInfo) {
5763  LLVMContext &Context = *DAG.getContext();
5764
5765  MachineFunction &MF = DAG.getMachineFunction();
5766  SmallVector<unsigned, 4> Regs;
5767
5768  // If this is a constraint for a single physreg, or a constraint for a
5769  // register class, find it.
5770  std::pair<unsigned, const TargetRegisterClass*> PhysReg =
5771    TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
5772                                     OpInfo.ConstraintVT);
5773
5774  unsigned NumRegs = 1;
5775  if (OpInfo.ConstraintVT != MVT::Other) {
5776    // If this is a FP input in an integer register (or visa versa) insert a bit
5777    // cast of the input value.  More generally, handle any case where the input
5778    // value disagrees with the register class we plan to stick this in.
5779    if (OpInfo.Type == InlineAsm::isInput &&
5780        PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) {
5781      // Try to convert to the first EVT that the reg class contains.  If the
5782      // types are identical size, use a bitcast to convert (e.g. two differing
5783      // vector types).
5784      EVT RegVT = *PhysReg.second->vt_begin();
5785      if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) {
5786        OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL,
5787                                         RegVT, OpInfo.CallOperand);
5788        OpInfo.ConstraintVT = RegVT;
5789      } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
5790        // If the input is a FP value and we want it in FP registers, do a
5791        // bitcast to the corresponding integer type.  This turns an f64 value
5792        // into i64, which can be passed with two i32 values on a 32-bit
5793        // machine.
5794        RegVT = EVT::getIntegerVT(Context,
5795                                  OpInfo.ConstraintVT.getSizeInBits());
5796        OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL,
5797                                         RegVT, OpInfo.CallOperand);
5798        OpInfo.ConstraintVT = RegVT;
5799      }
5800    }
5801
5802    NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT);
5803  }
5804
5805  EVT RegVT;
5806  EVT ValueVT = OpInfo.ConstraintVT;
5807
5808  // If this is a constraint for a specific physical register, like {r17},
5809  // assign it now.
5810  if (unsigned AssignedReg = PhysReg.first) {
5811    const TargetRegisterClass *RC = PhysReg.second;
5812    if (OpInfo.ConstraintVT == MVT::Other)
5813      ValueVT = *RC->vt_begin();
5814
5815    // Get the actual register value type.  This is important, because the user
5816    // may have asked for (e.g.) the AX register in i32 type.  We need to
5817    // remember that AX is actually i16 to get the right extension.
5818    RegVT = *RC->vt_begin();
5819
5820    // This is a explicit reference to a physical register.
5821    Regs.push_back(AssignedReg);
5822
5823    // If this is an expanded reference, add the rest of the regs to Regs.
5824    if (NumRegs != 1) {
5825      TargetRegisterClass::iterator I = RC->begin();
5826      for (; *I != AssignedReg; ++I)
5827        assert(I != RC->end() && "Didn't find reg!");
5828
5829      // Already added the first reg.
5830      --NumRegs; ++I;
5831      for (; NumRegs; --NumRegs, ++I) {
5832        assert(I != RC->end() && "Ran out of registers to allocate!");
5833        Regs.push_back(*I);
5834      }
5835    }
5836
5837    OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
5838    return;
5839  }
5840
5841  // Otherwise, if this was a reference to an LLVM register class, create vregs
5842  // for this reference.
5843  if (const TargetRegisterClass *RC = PhysReg.second) {
5844    RegVT = *RC->vt_begin();
5845    if (OpInfo.ConstraintVT == MVT::Other)
5846      ValueVT = RegVT;
5847
5848    // Create the appropriate number of virtual registers.
5849    MachineRegisterInfo &RegInfo = MF.getRegInfo();
5850    for (; NumRegs; --NumRegs)
5851      Regs.push_back(RegInfo.createVirtualRegister(RC));
5852
5853    OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
5854    return;
5855  }
5856
5857  // Otherwise, we couldn't allocate enough registers for this.
5858}
5859
5860/// visitInlineAsm - Handle a call to an InlineAsm object.
5861///
5862void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) {
5863  const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
5864
5865  /// ConstraintOperands - Information about all of the constraints.
5866  SDISelAsmOperandInfoVector ConstraintOperands;
5867
5868  TargetLowering::AsmOperandInfoVector
5869    TargetConstraints = TLI.ParseConstraints(CS);
5870
5871  bool hasMemory = false;
5872
5873  unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
5874  unsigned ResNo = 0;   // ResNo - The result number of the next output.
5875  for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
5876    ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i]));
5877    SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
5878
5879    EVT OpVT = MVT::Other;
5880
5881    // Compute the value type for each operand.
5882    switch (OpInfo.Type) {
5883    case InlineAsm::isOutput:
5884      // Indirect outputs just consume an argument.
5885      if (OpInfo.isIndirect) {
5886        OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
5887        break;
5888      }
5889
5890      // The return value of the call is this value.  As such, there is no
5891      // corresponding argument.
5892      assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
5893      if (StructType *STy = dyn_cast<StructType>(CS.getType())) {
5894        OpVT = TLI.getValueType(STy->getElementType(ResNo));
5895      } else {
5896        assert(ResNo == 0 && "Asm only has one result!");
5897        OpVT = TLI.getValueType(CS.getType());
5898      }
5899      ++ResNo;
5900      break;
5901    case InlineAsm::isInput:
5902      OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
5903      break;
5904    case InlineAsm::isClobber:
5905      // Nothing to do.
5906      break;
5907    }
5908
5909    // If this is an input or an indirect output, process the call argument.
5910    // BasicBlocks are labels, currently appearing only in asm's.
5911    if (OpInfo.CallOperandVal) {
5912      if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) {
5913        OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
5914      } else {
5915        OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
5916      }
5917
5918      OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, TD);
5919    }
5920
5921    OpInfo.ConstraintVT = OpVT;
5922
5923    // Indirect operand accesses access memory.
5924    if (OpInfo.isIndirect)
5925      hasMemory = true;
5926    else {
5927      for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) {
5928        TargetLowering::ConstraintType
5929          CType = TLI.getConstraintType(OpInfo.Codes[j]);
5930        if (CType == TargetLowering::C_Memory) {
5931          hasMemory = true;
5932          break;
5933        }
5934      }
5935    }
5936  }
5937
5938  SDValue Chain, Flag;
5939
5940  // We won't need to flush pending loads if this asm doesn't touch
5941  // memory and is nonvolatile.
5942  if (hasMemory || IA->hasSideEffects())
5943    Chain = getRoot();
5944  else
5945    Chain = DAG.getRoot();
5946
5947  // Second pass over the constraints: compute which constraint option to use
5948  // and assign registers to constraints that want a specific physreg.
5949  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
5950    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
5951
5952    // If this is an output operand with a matching input operand, look up the
5953    // matching input. If their types mismatch, e.g. one is an integer, the
5954    // other is floating point, or their sizes are different, flag it as an
5955    // error.
5956    if (OpInfo.hasMatchingInput()) {
5957      SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
5958
5959      if (OpInfo.ConstraintVT != Input.ConstraintVT) {
5960	std::pair<unsigned, const TargetRegisterClass*> MatchRC =
5961	  TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
5962                                           OpInfo.ConstraintVT);
5963	std::pair<unsigned, const TargetRegisterClass*> InputRC =
5964	  TLI.getRegForInlineAsmConstraint(Input.ConstraintCode,
5965                                           Input.ConstraintVT);
5966        if ((OpInfo.ConstraintVT.isInteger() !=
5967             Input.ConstraintVT.isInteger()) ||
5968            (MatchRC.second != InputRC.second)) {
5969          report_fatal_error("Unsupported asm: input constraint"
5970                             " with a matching output constraint of"
5971                             " incompatible type!");
5972        }
5973        Input.ConstraintVT = OpInfo.ConstraintVT;
5974      }
5975    }
5976
5977    // Compute the constraint code and ConstraintType to use.
5978    TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
5979
5980    // If this is a memory input, and if the operand is not indirect, do what we
5981    // need to to provide an address for the memory input.
5982    if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
5983        !OpInfo.isIndirect) {
5984      assert((OpInfo.isMultipleAlternative ||
5985              (OpInfo.Type == InlineAsm::isInput)) &&
5986             "Can only indirectify direct input operands!");
5987
5988      // Memory operands really want the address of the value.  If we don't have
5989      // an indirect input, put it in the constpool if we can, otherwise spill
5990      // it to a stack slot.
5991      // TODO: This isn't quite right. We need to handle these according to
5992      // the addressing mode that the constraint wants. Also, this may take
5993      // an additional register for the computation and we don't want that
5994      // either.
5995
5996      // If the operand is a float, integer, or vector constant, spill to a
5997      // constant pool entry to get its address.
5998      const Value *OpVal = OpInfo.CallOperandVal;
5999      if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
6000          isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) {
6001        OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal),
6002                                                 TLI.getPointerTy());
6003      } else {
6004        // Otherwise, create a stack slot and emit a store to it before the
6005        // asm.
6006        Type *Ty = OpVal->getType();
6007        uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty);
6008        unsigned Align  = TLI.getTargetData()->getPrefTypeAlignment(Ty);
6009        MachineFunction &MF = DAG.getMachineFunction();
6010        int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
6011        SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy());
6012        Chain = DAG.getStore(Chain, getCurDebugLoc(),
6013                             OpInfo.CallOperand, StackSlot,
6014                             MachinePointerInfo::getFixedStack(SSFI),
6015                             false, false, 0);
6016        OpInfo.CallOperand = StackSlot;
6017      }
6018
6019      // There is no longer a Value* corresponding to this operand.
6020      OpInfo.CallOperandVal = 0;
6021
6022      // It is now an indirect operand.
6023      OpInfo.isIndirect = true;
6024    }
6025
6026    // If this constraint is for a specific register, allocate it before
6027    // anything else.
6028    if (OpInfo.ConstraintType == TargetLowering::C_Register)
6029      GetRegistersForValue(DAG, TLI, getCurDebugLoc(), OpInfo);
6030  }
6031
6032  // Second pass - Loop over all of the operands, assigning virtual or physregs
6033  // to register class operands.
6034  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
6035    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
6036
6037    // C_Register operands have already been allocated, Other/Memory don't need
6038    // to be.
6039    if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass)
6040      GetRegistersForValue(DAG, TLI, getCurDebugLoc(), OpInfo);
6041  }
6042
6043  // AsmNodeOperands - The operands for the ISD::INLINEASM node.
6044  std::vector<SDValue> AsmNodeOperands;
6045  AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
6046  AsmNodeOperands.push_back(
6047          DAG.getTargetExternalSymbol(IA->getAsmString().c_str(),
6048                                      TLI.getPointerTy()));
6049
6050  // If we have a !srcloc metadata node associated with it, we want to attach
6051  // this to the ultimately generated inline asm machineinstr.  To do this, we
6052  // pass in the third operand as this (potentially null) inline asm MDNode.
6053  const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc");
6054  AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
6055
6056  // Remember the HasSideEffect and AlignStack bits as operand 3.
6057  unsigned ExtraInfo = 0;
6058  if (IA->hasSideEffects())
6059    ExtraInfo |= InlineAsm::Extra_HasSideEffects;
6060  if (IA->isAlignStack())
6061    ExtraInfo |= InlineAsm::Extra_IsAlignStack;
6062  AsmNodeOperands.push_back(DAG.getTargetConstant(ExtraInfo,
6063                                                  TLI.getPointerTy()));
6064
6065  // Loop over all of the inputs, copying the operand values into the
6066  // appropriate registers and processing the output regs.
6067  RegsForValue RetValRegs;
6068
6069  // IndirectStoresToEmit - The set of stores to emit after the inline asm node.
6070  std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit;
6071
6072  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
6073    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
6074
6075    switch (OpInfo.Type) {
6076    case InlineAsm::isOutput: {
6077      if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass &&
6078          OpInfo.ConstraintType != TargetLowering::C_Register) {
6079        // Memory output, or 'other' output (e.g. 'X' constraint).
6080        assert(OpInfo.isIndirect && "Memory output must be indirect operand");
6081
6082        // Add information to the INLINEASM node to know about this output.
6083        unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
6084        AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags,
6085                                                        TLI.getPointerTy()));
6086        AsmNodeOperands.push_back(OpInfo.CallOperand);
6087        break;
6088      }
6089
6090      // Otherwise, this is a register or register class output.
6091
6092      // Copy the output from the appropriate register.  Find a register that
6093      // we can use.
6094      if (OpInfo.AssignedRegs.Regs.empty()) {
6095        LLVMContext &Ctx = *DAG.getContext();
6096        Ctx.emitError(CS.getInstruction(),
6097                      "couldn't allocate output register for constraint '" +
6098                           Twine(OpInfo.ConstraintCode) + "'");
6099        break;
6100      }
6101
6102      // If this is an indirect operand, store through the pointer after the
6103      // asm.
6104      if (OpInfo.isIndirect) {
6105        IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs,
6106                                                      OpInfo.CallOperandVal));
6107      } else {
6108        // This is the result value of the call.
6109        assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
6110        // Concatenate this output onto the outputs list.
6111        RetValRegs.append(OpInfo.AssignedRegs);
6112      }
6113
6114      // Add information to the INLINEASM node to know that this register is
6115      // set.
6116      OpInfo.AssignedRegs.AddInlineAsmOperands(OpInfo.isEarlyClobber ?
6117                                           InlineAsm::Kind_RegDefEarlyClobber :
6118                                               InlineAsm::Kind_RegDef,
6119                                               false,
6120                                               0,
6121                                               DAG,
6122                                               AsmNodeOperands);
6123      break;
6124    }
6125    case InlineAsm::isInput: {
6126      SDValue InOperandVal = OpInfo.CallOperand;
6127
6128      if (OpInfo.isMatchingInputConstraint()) {   // Matching constraint?
6129        // If this is required to match an output register we have already set,
6130        // just use its register.
6131        unsigned OperandNo = OpInfo.getMatchedOperand();
6132
6133        // Scan until we find the definition we already emitted of this operand.
6134        // When we find it, create a RegsForValue operand.
6135        unsigned CurOp = InlineAsm::Op_FirstOperand;
6136        for (; OperandNo; --OperandNo) {
6137          // Advance to the next operand.
6138          unsigned OpFlag =
6139            cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
6140          assert((InlineAsm::isRegDefKind(OpFlag) ||
6141                  InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||
6142                  InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?");
6143          CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1;
6144        }
6145
6146        unsigned OpFlag =
6147          cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
6148        if (InlineAsm::isRegDefKind(OpFlag) ||
6149            InlineAsm::isRegDefEarlyClobberKind(OpFlag)) {
6150          // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
6151          if (OpInfo.isIndirect) {
6152            // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
6153            LLVMContext &Ctx = *DAG.getContext();
6154            Ctx.emitError(CS.getInstruction(),  "inline asm not supported yet:"
6155                          " don't know how to handle tied "
6156                          "indirect register inputs");
6157          }
6158
6159          RegsForValue MatchedRegs;
6160          MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType());
6161          EVT RegVT = AsmNodeOperands[CurOp+1].getValueType();
6162          MatchedRegs.RegVTs.push_back(RegVT);
6163          MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo();
6164          for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag);
6165               i != e; ++i)
6166            MatchedRegs.Regs.push_back
6167              (RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT)));
6168
6169          // Use the produced MatchedRegs object to
6170          MatchedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(),
6171                                    Chain, &Flag);
6172          MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse,
6173                                           true, OpInfo.getMatchedOperand(),
6174                                           DAG, AsmNodeOperands);
6175          break;
6176        }
6177
6178        assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!");
6179        assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 &&
6180               "Unexpected number of operands");
6181        // Add information to the INLINEASM node to know about this input.
6182        // See InlineAsm.h isUseOperandTiedToDef.
6183        OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
6184                                                    OpInfo.getMatchedOperand());
6185        AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlag,
6186                                                        TLI.getPointerTy()));
6187        AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
6188        break;
6189      }
6190
6191      // Treat indirect 'X' constraint as memory.
6192      if (OpInfo.ConstraintType == TargetLowering::C_Other &&
6193          OpInfo.isIndirect)
6194        OpInfo.ConstraintType = TargetLowering::C_Memory;
6195
6196      if (OpInfo.ConstraintType == TargetLowering::C_Other) {
6197        std::vector<SDValue> Ops;
6198        TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode,
6199                                         Ops, DAG);
6200        if (Ops.empty()) {
6201          LLVMContext &Ctx = *DAG.getContext();
6202          Ctx.emitError(CS.getInstruction(),
6203                        "invalid operand for inline asm constraint '" +
6204                        Twine(OpInfo.ConstraintCode) + "'");
6205          break;
6206        }
6207
6208        // Add information to the INLINEASM node to know about this input.
6209        unsigned ResOpType =
6210          InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
6211        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
6212                                                        TLI.getPointerTy()));
6213        AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
6214        break;
6215      }
6216
6217      if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
6218        assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
6219        assert(InOperandVal.getValueType() == TLI.getPointerTy() &&
6220               "Memory operands expect pointer values");
6221
6222        // Add information to the INLINEASM node to know about this input.
6223        unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
6224        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
6225                                                        TLI.getPointerTy()));
6226        AsmNodeOperands.push_back(InOperandVal);
6227        break;
6228      }
6229
6230      assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
6231              OpInfo.ConstraintType == TargetLowering::C_Register) &&
6232             "Unknown constraint type!");
6233      assert(!OpInfo.isIndirect &&
6234             "Don't know how to handle indirect register inputs yet!");
6235
6236      // Copy the input into the appropriate registers.
6237      if (OpInfo.AssignedRegs.Regs.empty()) {
6238        LLVMContext &Ctx = *DAG.getContext();
6239        Ctx.emitError(CS.getInstruction(),
6240                      "couldn't allocate input reg for constraint '" +
6241                           Twine(OpInfo.ConstraintCode) + "'");
6242        break;
6243      }
6244
6245      OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(),
6246                                        Chain, &Flag);
6247
6248      OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0,
6249                                               DAG, AsmNodeOperands);
6250      break;
6251    }
6252    case InlineAsm::isClobber: {
6253      // Add the clobbered value to the operand list, so that the register
6254      // allocator is aware that the physreg got clobbered.
6255      if (!OpInfo.AssignedRegs.Regs.empty())
6256        OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber,
6257                                                 false, 0, DAG,
6258                                                 AsmNodeOperands);
6259      break;
6260    }
6261    }
6262  }
6263
6264  // Finish up input operands.  Set the input chain and add the flag last.
6265  AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
6266  if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
6267
6268  Chain = DAG.getNode(ISD::INLINEASM, getCurDebugLoc(),
6269                      DAG.getVTList(MVT::Other, MVT::Glue),
6270                      &AsmNodeOperands[0], AsmNodeOperands.size());
6271  Flag = Chain.getValue(1);
6272
6273  // If this asm returns a register value, copy the result from that register
6274  // and set it as the value of the call.
6275  if (!RetValRegs.Regs.empty()) {
6276    SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(),
6277                                             Chain, &Flag);
6278
6279    // FIXME: Why don't we do this for inline asms with MRVs?
6280    if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) {
6281      EVT ResultType = TLI.getValueType(CS.getType());
6282
6283      // If any of the results of the inline asm is a vector, it may have the
6284      // wrong width/num elts.  This can happen for register classes that can
6285      // contain multiple different value types.  The preg or vreg allocated may
6286      // not have the same VT as was expected.  Convert it to the right type
6287      // with bit_convert.
6288      if (ResultType != Val.getValueType() && Val.getValueType().isVector()) {
6289        Val = DAG.getNode(ISD::BITCAST, getCurDebugLoc(),
6290                          ResultType, Val);
6291
6292      } else if (ResultType != Val.getValueType() &&
6293                 ResultType.isInteger() && Val.getValueType().isInteger()) {
6294        // If a result value was tied to an input value, the computed result may
6295        // have a wider width than the expected result.  Extract the relevant
6296        // portion.
6297        Val = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), ResultType, Val);
6298      }
6299
6300      assert(ResultType == Val.getValueType() && "Asm result value mismatch!");
6301    }
6302
6303    setValue(CS.getInstruction(), Val);
6304    // Don't need to use this as a chain in this case.
6305    if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty())
6306      return;
6307  }
6308
6309  std::vector<std::pair<SDValue, const Value *> > StoresToEmit;
6310
6311  // Process indirect outputs, first output all of the flagged copies out of
6312  // physregs.
6313  for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
6314    RegsForValue &OutRegs = IndirectStoresToEmit[i].first;
6315    const Value *Ptr = IndirectStoresToEmit[i].second;
6316    SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(),
6317                                             Chain, &Flag);
6318    StoresToEmit.push_back(std::make_pair(OutVal, Ptr));
6319  }
6320
6321  // Emit the non-flagged stores from the physregs.
6322  SmallVector<SDValue, 8> OutChains;
6323  for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) {
6324    SDValue Val = DAG.getStore(Chain, getCurDebugLoc(),
6325                               StoresToEmit[i].first,
6326                               getValue(StoresToEmit[i].second),
6327                               MachinePointerInfo(StoresToEmit[i].second),
6328                               false, false, 0);
6329    OutChains.push_back(Val);
6330  }
6331
6332  if (!OutChains.empty())
6333    Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
6334                        &OutChains[0], OutChains.size());
6335
6336  DAG.setRoot(Chain);
6337}
6338
6339void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
6340  DAG.setRoot(DAG.getNode(ISD::VASTART, getCurDebugLoc(),
6341                          MVT::Other, getRoot(),
6342                          getValue(I.getArgOperand(0)),
6343                          DAG.getSrcValue(I.getArgOperand(0))));
6344}
6345
6346void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
6347  const TargetData &TD = *TLI.getTargetData();
6348  SDValue V = DAG.getVAArg(TLI.getValueType(I.getType()), getCurDebugLoc(),
6349                           getRoot(), getValue(I.getOperand(0)),
6350                           DAG.getSrcValue(I.getOperand(0)),
6351                           TD.getABITypeAlignment(I.getType()));
6352  setValue(&I, V);
6353  DAG.setRoot(V.getValue(1));
6354}
6355
6356void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
6357  DAG.setRoot(DAG.getNode(ISD::VAEND, getCurDebugLoc(),
6358                          MVT::Other, getRoot(),
6359                          getValue(I.getArgOperand(0)),
6360                          DAG.getSrcValue(I.getArgOperand(0))));
6361}
6362
6363void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
6364  DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurDebugLoc(),
6365                          MVT::Other, getRoot(),
6366                          getValue(I.getArgOperand(0)),
6367                          getValue(I.getArgOperand(1)),
6368                          DAG.getSrcValue(I.getArgOperand(0)),
6369                          DAG.getSrcValue(I.getArgOperand(1))));
6370}
6371
6372/// TargetLowering::LowerCallTo - This is the default LowerCallTo
6373/// implementation, which just calls LowerCall.
6374/// FIXME: When all targets are
6375/// migrated to using LowerCall, this hook should be integrated into SDISel.
6376std::pair<SDValue, SDValue>
6377TargetLowering::LowerCallTo(SDValue Chain, Type *RetTy,
6378                            bool RetSExt, bool RetZExt, bool isVarArg,
6379                            bool isInreg, unsigned NumFixedArgs,
6380                            CallingConv::ID CallConv, bool isTailCall,
6381                            bool doesNotRet, bool isReturnValueUsed,
6382                            SDValue Callee,
6383                            ArgListTy &Args, SelectionDAG &DAG,
6384                            DebugLoc dl) const {
6385  // Handle all of the outgoing arguments.
6386  SmallVector<ISD::OutputArg, 32> Outs;
6387  SmallVector<SDValue, 32> OutVals;
6388  for (unsigned i = 0, e = Args.size(); i != e; ++i) {
6389    SmallVector<EVT, 4> ValueVTs;
6390    ComputeValueVTs(*this, Args[i].Ty, ValueVTs);
6391    for (unsigned Value = 0, NumValues = ValueVTs.size();
6392         Value != NumValues; ++Value) {
6393      EVT VT = ValueVTs[Value];
6394      Type *ArgTy = VT.getTypeForEVT(RetTy->getContext());
6395      SDValue Op = SDValue(Args[i].Node.getNode(),
6396                           Args[i].Node.getResNo() + Value);
6397      ISD::ArgFlagsTy Flags;
6398      unsigned OriginalAlignment =
6399        getTargetData()->getABITypeAlignment(ArgTy);
6400
6401      if (Args[i].isZExt)
6402        Flags.setZExt();
6403      if (Args[i].isSExt)
6404        Flags.setSExt();
6405      if (Args[i].isInReg)
6406        Flags.setInReg();
6407      if (Args[i].isSRet)
6408        Flags.setSRet();
6409      if (Args[i].isByVal) {
6410        Flags.setByVal();
6411        PointerType *Ty = cast<PointerType>(Args[i].Ty);
6412        Type *ElementTy = Ty->getElementType();
6413        Flags.setByValSize(getTargetData()->getTypeAllocSize(ElementTy));
6414        // For ByVal, alignment should come from FE.  BE will guess if this
6415        // info is not there but there are cases it cannot get right.
6416        unsigned FrameAlign;
6417        if (Args[i].Alignment)
6418          FrameAlign = Args[i].Alignment;
6419        else
6420          FrameAlign = getByValTypeAlignment(ElementTy);
6421        Flags.setByValAlign(FrameAlign);
6422      }
6423      if (Args[i].isNest)
6424        Flags.setNest();
6425      Flags.setOrigAlign(OriginalAlignment);
6426
6427      EVT PartVT = getRegisterType(RetTy->getContext(), VT);
6428      unsigned NumParts = getNumRegisters(RetTy->getContext(), VT);
6429      SmallVector<SDValue, 4> Parts(NumParts);
6430      ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
6431
6432      if (Args[i].isSExt)
6433        ExtendKind = ISD::SIGN_EXTEND;
6434      else if (Args[i].isZExt)
6435        ExtendKind = ISD::ZERO_EXTEND;
6436
6437      getCopyToParts(DAG, dl, Op, &Parts[0], NumParts,
6438                     PartVT, ExtendKind);
6439
6440      for (unsigned j = 0; j != NumParts; ++j) {
6441        // if it isn't first piece, alignment must be 1
6442        ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(),
6443                               i < NumFixedArgs);
6444        if (NumParts > 1 && j == 0)
6445          MyFlags.Flags.setSplit();
6446        else if (j != 0)
6447          MyFlags.Flags.setOrigAlign(1);
6448
6449        Outs.push_back(MyFlags);
6450        OutVals.push_back(Parts[j]);
6451      }
6452    }
6453  }
6454
6455  // Handle the incoming return values from the call.
6456  SmallVector<ISD::InputArg, 32> Ins;
6457  SmallVector<EVT, 4> RetTys;
6458  ComputeValueVTs(*this, RetTy, RetTys);
6459  for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
6460    EVT VT = RetTys[I];
6461    EVT RegisterVT = getRegisterType(RetTy->getContext(), VT);
6462    unsigned NumRegs = getNumRegisters(RetTy->getContext(), VT);
6463    for (unsigned i = 0; i != NumRegs; ++i) {
6464      ISD::InputArg MyFlags;
6465      MyFlags.VT = RegisterVT.getSimpleVT();
6466      MyFlags.Used = isReturnValueUsed;
6467      if (RetSExt)
6468        MyFlags.Flags.setSExt();
6469      if (RetZExt)
6470        MyFlags.Flags.setZExt();
6471      if (isInreg)
6472        MyFlags.Flags.setInReg();
6473      Ins.push_back(MyFlags);
6474    }
6475  }
6476
6477  SmallVector<SDValue, 4> InVals;
6478  Chain = LowerCall(Chain, Callee, CallConv, isVarArg, doesNotRet, isTailCall,
6479                    Outs, OutVals, Ins, dl, DAG, InVals);
6480
6481  // Verify that the target's LowerCall behaved as expected.
6482  assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
6483         "LowerCall didn't return a valid chain!");
6484  assert((!isTailCall || InVals.empty()) &&
6485         "LowerCall emitted a return value for a tail call!");
6486  assert((isTailCall || InVals.size() == Ins.size()) &&
6487         "LowerCall didn't emit the correct number of values!");
6488
6489  // For a tail call, the return value is merely live-out and there aren't
6490  // any nodes in the DAG representing it. Return a special value to
6491  // indicate that a tail call has been emitted and no more Instructions
6492  // should be processed in the current block.
6493  if (isTailCall) {
6494    DAG.setRoot(Chain);
6495    return std::make_pair(SDValue(), SDValue());
6496  }
6497
6498  DEBUG(for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
6499          assert(InVals[i].getNode() &&
6500                 "LowerCall emitted a null value!");
6501          assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
6502                 "LowerCall emitted a value with the wrong type!");
6503        });
6504
6505  // Collect the legal value parts into potentially illegal values
6506  // that correspond to the original function's return values.
6507  ISD::NodeType AssertOp = ISD::DELETED_NODE;
6508  if (RetSExt)
6509    AssertOp = ISD::AssertSext;
6510  else if (RetZExt)
6511    AssertOp = ISD::AssertZext;
6512  SmallVector<SDValue, 4> ReturnValues;
6513  unsigned CurReg = 0;
6514  for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
6515    EVT VT = RetTys[I];
6516    EVT RegisterVT = getRegisterType(RetTy->getContext(), VT);
6517    unsigned NumRegs = getNumRegisters(RetTy->getContext(), VT);
6518
6519    ReturnValues.push_back(getCopyFromParts(DAG, dl, &InVals[CurReg],
6520                                            NumRegs, RegisterVT, VT,
6521                                            AssertOp));
6522    CurReg += NumRegs;
6523  }
6524
6525  // For a function returning void, there is no return value. We can't create
6526  // such a node, so we just return a null return value in that case. In
6527  // that case, nothing will actually look at the value.
6528  if (ReturnValues.empty())
6529    return std::make_pair(SDValue(), Chain);
6530
6531  SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
6532                            DAG.getVTList(&RetTys[0], RetTys.size()),
6533                            &ReturnValues[0], ReturnValues.size());
6534  return std::make_pair(Res, Chain);
6535}
6536
6537void TargetLowering::LowerOperationWrapper(SDNode *N,
6538                                           SmallVectorImpl<SDValue> &Results,
6539                                           SelectionDAG &DAG) const {
6540  SDValue Res = LowerOperation(SDValue(N, 0), DAG);
6541  if (Res.getNode())
6542    Results.push_back(Res);
6543}
6544
6545SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
6546  llvm_unreachable("LowerOperation not implemented for this target!");
6547}
6548
6549void
6550SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) {
6551  SDValue Op = getNonRegisterValue(V);
6552  assert((Op.getOpcode() != ISD::CopyFromReg ||
6553          cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
6554         "Copy from a reg to the same reg!");
6555  assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg");
6556
6557  RegsForValue RFV(V->getContext(), TLI, Reg, V->getType());
6558  SDValue Chain = DAG.getEntryNode();
6559  RFV.getCopyToRegs(Op, DAG, getCurDebugLoc(), Chain, 0);
6560  PendingExports.push_back(Chain);
6561}
6562
6563#include "llvm/CodeGen/SelectionDAGISel.h"
6564
6565/// isOnlyUsedInEntryBlock - If the specified argument is only used in the
6566/// entry block, return true.  This includes arguments used by switches, since
6567/// the switch may expand into multiple basic blocks.
6568static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) {
6569  // With FastISel active, we may be splitting blocks, so force creation
6570  // of virtual registers for all non-dead arguments.
6571  if (FastISel)
6572    return A->use_empty();
6573
6574  const BasicBlock *Entry = A->getParent()->begin();
6575  for (Value::const_use_iterator UI = A->use_begin(), E = A->use_end();
6576       UI != E; ++UI) {
6577    const User *U = *UI;
6578    if (cast<Instruction>(U)->getParent() != Entry || isa<SwitchInst>(U))
6579      return false;  // Use not in entry block.
6580  }
6581  return true;
6582}
6583
6584void SelectionDAGISel::LowerArguments(const BasicBlock *LLVMBB) {
6585  // If this is the entry block, emit arguments.
6586  const Function &F = *LLVMBB->getParent();
6587  SelectionDAG &DAG = SDB->DAG;
6588  DebugLoc dl = SDB->getCurDebugLoc();
6589  const TargetData *TD = TLI.getTargetData();
6590  SmallVector<ISD::InputArg, 16> Ins;
6591
6592  // Check whether the function can return without sret-demotion.
6593  SmallVector<ISD::OutputArg, 4> Outs;
6594  GetReturnInfo(F.getReturnType(), F.getAttributes().getRetAttributes(),
6595                Outs, TLI);
6596
6597  if (!FuncInfo->CanLowerReturn) {
6598    // Put in an sret pointer parameter before all the other parameters.
6599    SmallVector<EVT, 1> ValueVTs;
6600    ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs);
6601
6602    // NOTE: Assuming that a pointer will never break down to more than one VT
6603    // or one register.
6604    ISD::ArgFlagsTy Flags;
6605    Flags.setSRet();
6606    EVT RegisterVT = TLI.getRegisterType(*DAG.getContext(), ValueVTs[0]);
6607    ISD::InputArg RetArg(Flags, RegisterVT, true);
6608    Ins.push_back(RetArg);
6609  }
6610
6611  // Set up the incoming argument description vector.
6612  unsigned Idx = 1;
6613  for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end();
6614       I != E; ++I, ++Idx) {
6615    SmallVector<EVT, 4> ValueVTs;
6616    ComputeValueVTs(TLI, I->getType(), ValueVTs);
6617    bool isArgValueUsed = !I->use_empty();
6618    for (unsigned Value = 0, NumValues = ValueVTs.size();
6619         Value != NumValues; ++Value) {
6620      EVT VT = ValueVTs[Value];
6621      Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
6622      ISD::ArgFlagsTy Flags;
6623      unsigned OriginalAlignment =
6624        TD->getABITypeAlignment(ArgTy);
6625
6626      if (F.paramHasAttr(Idx, Attribute::ZExt))
6627        Flags.setZExt();
6628      if (F.paramHasAttr(Idx, Attribute::SExt))
6629        Flags.setSExt();
6630      if (F.paramHasAttr(Idx, Attribute::InReg))
6631        Flags.setInReg();
6632      if (F.paramHasAttr(Idx, Attribute::StructRet))
6633        Flags.setSRet();
6634      if (F.paramHasAttr(Idx, Attribute::ByVal)) {
6635        Flags.setByVal();
6636        PointerType *Ty = cast<PointerType>(I->getType());
6637        Type *ElementTy = Ty->getElementType();
6638        Flags.setByValSize(TD->getTypeAllocSize(ElementTy));
6639        // For ByVal, alignment should be passed from FE.  BE will guess if
6640        // this info is not there but there are cases it cannot get right.
6641        unsigned FrameAlign;
6642        if (F.getParamAlignment(Idx))
6643          FrameAlign = F.getParamAlignment(Idx);
6644        else
6645          FrameAlign = TLI.getByValTypeAlignment(ElementTy);
6646        Flags.setByValAlign(FrameAlign);
6647      }
6648      if (F.paramHasAttr(Idx, Attribute::Nest))
6649        Flags.setNest();
6650      Flags.setOrigAlign(OriginalAlignment);
6651
6652      EVT RegisterVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
6653      unsigned NumRegs = TLI.getNumRegisters(*CurDAG->getContext(), VT);
6654      for (unsigned i = 0; i != NumRegs; ++i) {
6655        ISD::InputArg MyFlags(Flags, RegisterVT, isArgValueUsed);
6656        if (NumRegs > 1 && i == 0)
6657          MyFlags.Flags.setSplit();
6658        // if it isn't first piece, alignment must be 1
6659        else if (i > 0)
6660          MyFlags.Flags.setOrigAlign(1);
6661        Ins.push_back(MyFlags);
6662      }
6663    }
6664  }
6665
6666  // Call the target to set up the argument values.
6667  SmallVector<SDValue, 8> InVals;
6668  SDValue NewRoot = TLI.LowerFormalArguments(DAG.getRoot(), F.getCallingConv(),
6669                                             F.isVarArg(), Ins,
6670                                             dl, DAG, InVals);
6671
6672  // Verify that the target's LowerFormalArguments behaved as expected.
6673  assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
6674         "LowerFormalArguments didn't return a valid chain!");
6675  assert(InVals.size() == Ins.size() &&
6676         "LowerFormalArguments didn't emit the correct number of values!");
6677  DEBUG({
6678      for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
6679        assert(InVals[i].getNode() &&
6680               "LowerFormalArguments emitted a null value!");
6681        assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
6682               "LowerFormalArguments emitted a value with the wrong type!");
6683      }
6684    });
6685
6686  // Update the DAG with the new chain value resulting from argument lowering.
6687  DAG.setRoot(NewRoot);
6688
6689  // Set up the argument values.
6690  unsigned i = 0;
6691  Idx = 1;
6692  if (!FuncInfo->CanLowerReturn) {
6693    // Create a virtual register for the sret pointer, and put in a copy
6694    // from the sret argument into it.
6695    SmallVector<EVT, 1> ValueVTs;
6696    ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs);
6697    EVT VT = ValueVTs[0];
6698    EVT RegVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
6699    ISD::NodeType AssertOp = ISD::DELETED_NODE;
6700    SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1,
6701                                        RegVT, VT, AssertOp);
6702
6703    MachineFunction& MF = SDB->DAG.getMachineFunction();
6704    MachineRegisterInfo& RegInfo = MF.getRegInfo();
6705    unsigned SRetReg = RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT));
6706    FuncInfo->DemoteRegister = SRetReg;
6707    NewRoot = SDB->DAG.getCopyToReg(NewRoot, SDB->getCurDebugLoc(),
6708                                    SRetReg, ArgValue);
6709    DAG.setRoot(NewRoot);
6710
6711    // i indexes lowered arguments.  Bump it past the hidden sret argument.
6712    // Idx indexes LLVM arguments.  Don't touch it.
6713    ++i;
6714  }
6715
6716  for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E;
6717      ++I, ++Idx) {
6718    SmallVector<SDValue, 4> ArgValues;
6719    SmallVector<EVT, 4> ValueVTs;
6720    ComputeValueVTs(TLI, I->getType(), ValueVTs);
6721    unsigned NumValues = ValueVTs.size();
6722
6723    // If this argument is unused then remember its value. It is used to generate
6724    // debugging information.
6725    if (I->use_empty() && NumValues)
6726      SDB->setUnusedArgValue(I, InVals[i]);
6727
6728    for (unsigned Val = 0; Val != NumValues; ++Val) {
6729      EVT VT = ValueVTs[Val];
6730      EVT PartVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
6731      unsigned NumParts = TLI.getNumRegisters(*CurDAG->getContext(), VT);
6732
6733      if (!I->use_empty()) {
6734        ISD::NodeType AssertOp = ISD::DELETED_NODE;
6735        if (F.paramHasAttr(Idx, Attribute::SExt))
6736          AssertOp = ISD::AssertSext;
6737        else if (F.paramHasAttr(Idx, Attribute::ZExt))
6738          AssertOp = ISD::AssertZext;
6739
6740        ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i],
6741                                             NumParts, PartVT, VT,
6742                                             AssertOp));
6743      }
6744
6745      i += NumParts;
6746    }
6747
6748    // We don't need to do anything else for unused arguments.
6749    if (ArgValues.empty())
6750      continue;
6751
6752    // Note down frame index.
6753    if (FrameIndexSDNode *FI =
6754	dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
6755      FuncInfo->setArgumentFrameIndex(I, FI->getIndex());
6756
6757    SDValue Res = DAG.getMergeValues(&ArgValues[0], NumValues,
6758                                     SDB->getCurDebugLoc());
6759
6760    SDB->setValue(I, Res);
6761    if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) {
6762      if (LoadSDNode *LNode =
6763          dyn_cast<LoadSDNode>(Res.getOperand(0).getNode()))
6764        if (FrameIndexSDNode *FI =
6765            dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
6766        FuncInfo->setArgumentFrameIndex(I, FI->getIndex());
6767    }
6768
6769    // If this argument is live outside of the entry block, insert a copy from
6770    // wherever we got it to the vreg that other BB's will reference it as.
6771    if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) {
6772      // If we can, though, try to skip creating an unnecessary vreg.
6773      // FIXME: This isn't very clean... it would be nice to make this more
6774      // general.  It's also subtly incompatible with the hacks FastISel
6775      // uses with vregs.
6776      unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
6777      if (TargetRegisterInfo::isVirtualRegister(Reg)) {
6778        FuncInfo->ValueMap[I] = Reg;
6779        continue;
6780      }
6781    }
6782    if (!isOnlyUsedInEntryBlock(I, TM.Options.EnableFastISel)) {
6783      FuncInfo->InitializeRegForValue(I);
6784      SDB->CopyToExportRegsIfNeeded(I);
6785    }
6786  }
6787
6788  assert(i == InVals.size() && "Argument register count mismatch!");
6789
6790  // Finally, if the target has anything special to do, allow it to do so.
6791  // FIXME: this should insert code into the DAG!
6792  EmitFunctionEntryCode();
6793}
6794
6795/// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
6796/// ensure constants are generated when needed.  Remember the virtual registers
6797/// that need to be added to the Machine PHI nodes as input.  We cannot just
6798/// directly add them, because expansion might result in multiple MBB's for one
6799/// BB.  As such, the start of the BB might correspond to a different MBB than
6800/// the end.
6801///
6802void
6803SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
6804  const TerminatorInst *TI = LLVMBB->getTerminator();
6805
6806  SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
6807
6808  // Check successor nodes' PHI nodes that expect a constant to be available
6809  // from this block.
6810  for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
6811    const BasicBlock *SuccBB = TI->getSuccessor(succ);
6812    if (!isa<PHINode>(SuccBB->begin())) continue;
6813    MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
6814
6815    // If this terminator has multiple identical successors (common for
6816    // switches), only handle each succ once.
6817    if (!SuccsHandled.insert(SuccMBB)) continue;
6818
6819    MachineBasicBlock::iterator MBBI = SuccMBB->begin();
6820
6821    // At this point we know that there is a 1-1 correspondence between LLVM PHI
6822    // nodes and Machine PHI nodes, but the incoming operands have not been
6823    // emitted yet.
6824    for (BasicBlock::const_iterator I = SuccBB->begin();
6825         const PHINode *PN = dyn_cast<PHINode>(I); ++I) {
6826      // Ignore dead phi's.
6827      if (PN->use_empty()) continue;
6828
6829      // Skip empty types
6830      if (PN->getType()->isEmptyTy())
6831        continue;
6832
6833      unsigned Reg;
6834      const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
6835
6836      if (const Constant *C = dyn_cast<Constant>(PHIOp)) {
6837        unsigned &RegOut = ConstantsOut[C];
6838        if (RegOut == 0) {
6839          RegOut = FuncInfo.CreateRegs(C->getType());
6840          CopyValueToVirtualRegister(C, RegOut);
6841        }
6842        Reg = RegOut;
6843      } else {
6844        DenseMap<const Value *, unsigned>::iterator I =
6845          FuncInfo.ValueMap.find(PHIOp);
6846        if (I != FuncInfo.ValueMap.end())
6847          Reg = I->second;
6848        else {
6849          assert(isa<AllocaInst>(PHIOp) &&
6850                 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
6851                 "Didn't codegen value into a register!??");
6852          Reg = FuncInfo.CreateRegs(PHIOp->getType());
6853          CopyValueToVirtualRegister(PHIOp, Reg);
6854        }
6855      }
6856
6857      // Remember that this register needs to added to the machine PHI node as
6858      // the input for this MBB.
6859      SmallVector<EVT, 4> ValueVTs;
6860      ComputeValueVTs(TLI, PN->getType(), ValueVTs);
6861      for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
6862        EVT VT = ValueVTs[vti];
6863        unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
6864        for (unsigned i = 0, e = NumRegisters; i != e; ++i)
6865          FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i));
6866        Reg += NumRegisters;
6867      }
6868    }
6869  }
6870  ConstantsOut.clear();
6871}
6872