SelectionDAGBuilder.cpp revision d0716b064744598ba7df33b8b47de0375c450570
1//===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements routines for translating from LLVM IR into SelectionDAG IR.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "isel"
15#include "SelectionDAGBuilder.h"
16#include "SDNodeDbgValue.h"
17#include "llvm/ADT/BitVector.h"
18#include "llvm/ADT/Optional.h"
19#include "llvm/ADT/SmallSet.h"
20#include "llvm/Analysis/AliasAnalysis.h"
21#include "llvm/Analysis/BranchProbabilityInfo.h"
22#include "llvm/Analysis/ConstantFolding.h"
23#include "llvm/Analysis/ValueTracking.h"
24#include "llvm/CodeGen/Analysis.h"
25#include "llvm/CodeGen/FastISel.h"
26#include "llvm/CodeGen/FunctionLoweringInfo.h"
27#include "llvm/CodeGen/GCMetadata.h"
28#include "llvm/CodeGen/GCStrategy.h"
29#include "llvm/CodeGen/MachineFrameInfo.h"
30#include "llvm/CodeGen/MachineFunction.h"
31#include "llvm/CodeGen/MachineInstrBuilder.h"
32#include "llvm/CodeGen/MachineJumpTableInfo.h"
33#include "llvm/CodeGen/MachineModuleInfo.h"
34#include "llvm/CodeGen/MachineRegisterInfo.h"
35#include "llvm/CodeGen/SelectionDAG.h"
36#include "llvm/DebugInfo.h"
37#include "llvm/IR/CallingConv.h"
38#include "llvm/IR/Constants.h"
39#include "llvm/IR/DataLayout.h"
40#include "llvm/IR/DerivedTypes.h"
41#include "llvm/IR/Function.h"
42#include "llvm/IR/GlobalVariable.h"
43#include "llvm/IR/InlineAsm.h"
44#include "llvm/IR/Instructions.h"
45#include "llvm/IR/IntrinsicInst.h"
46#include "llvm/IR/Intrinsics.h"
47#include "llvm/IR/LLVMContext.h"
48#include "llvm/IR/Module.h"
49#include "llvm/Support/CommandLine.h"
50#include "llvm/Support/Debug.h"
51#include "llvm/Support/ErrorHandling.h"
52#include "llvm/Support/MathExtras.h"
53#include "llvm/Support/raw_ostream.h"
54#include "llvm/Target/TargetFrameLowering.h"
55#include "llvm/Target/TargetInstrInfo.h"
56#include "llvm/Target/TargetIntrinsicInfo.h"
57#include "llvm/Target/TargetLibraryInfo.h"
58#include "llvm/Target/TargetLowering.h"
59#include "llvm/Target/TargetOptions.h"
60#include "llvm/Target/TargetSelectionDAGInfo.h"
61#include <algorithm>
62using namespace llvm;
63
64/// LimitFloatPrecision - Generate low-precision inline sequences for
65/// some float libcalls (6, 8 or 12 bits).
66static unsigned LimitFloatPrecision;
67
68static cl::opt<unsigned, true>
69LimitFPPrecision("limit-float-precision",
70                 cl::desc("Generate low-precision inline sequences "
71                          "for some float libcalls"),
72                 cl::location(LimitFloatPrecision),
73                 cl::init(0));
74
75// Limit the width of DAG chains. This is important in general to prevent
76// prevent DAG-based analysis from blowing up. For example, alias analysis and
77// load clustering may not complete in reasonable time. It is difficult to
78// recognize and avoid this situation within each individual analysis, and
79// future analyses are likely to have the same behavior. Limiting DAG width is
80// the safe approach, and will be especially important with global DAGs.
81//
82// MaxParallelChains default is arbitrarily high to avoid affecting
83// optimization, but could be lowered to improve compile time. Any ld-ld-st-st
84// sequence over this should have been converted to llvm.memcpy by the
85// frontend. It easy to induce this behavior with .ll code such as:
86// %buffer = alloca [4096 x i8]
87// %data = load [4096 x i8]* %argPtr
88// store [4096 x i8] %data, [4096 x i8]* %buffer
89static const unsigned MaxParallelChains = 64;
90
91static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL,
92                                      const SDValue *Parts, unsigned NumParts,
93                                      MVT PartVT, EVT ValueVT, const Value *V);
94
95/// getCopyFromParts - Create a value that contains the specified legal parts
96/// combined into the value they represent.  If the parts combine to a type
97/// larger then ValueVT then AssertOp can be used to specify whether the extra
98/// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
99/// (ISD::AssertSext).
100static SDValue getCopyFromParts(SelectionDAG &DAG, SDLoc DL,
101                                const SDValue *Parts,
102                                unsigned NumParts, MVT PartVT, EVT ValueVT,
103                                const Value *V,
104                                ISD::NodeType AssertOp = ISD::DELETED_NODE) {
105  if (ValueVT.isVector())
106    return getCopyFromPartsVector(DAG, DL, Parts, NumParts,
107                                  PartVT, ValueVT, V);
108
109  assert(NumParts > 0 && "No parts to assemble!");
110  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
111  SDValue Val = Parts[0];
112
113  if (NumParts > 1) {
114    // Assemble the value from multiple parts.
115    if (ValueVT.isInteger()) {
116      unsigned PartBits = PartVT.getSizeInBits();
117      unsigned ValueBits = ValueVT.getSizeInBits();
118
119      // Assemble the power of 2 part.
120      unsigned RoundParts = NumParts & (NumParts - 1) ?
121        1 << Log2_32(NumParts) : NumParts;
122      unsigned RoundBits = PartBits * RoundParts;
123      EVT RoundVT = RoundBits == ValueBits ?
124        ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
125      SDValue Lo, Hi;
126
127      EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
128
129      if (RoundParts > 2) {
130        Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2,
131                              PartVT, HalfVT, V);
132        Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2,
133                              RoundParts / 2, PartVT, HalfVT, V);
134      } else {
135        Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
136        Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
137      }
138
139      if (TLI.isBigEndian())
140        std::swap(Lo, Hi);
141
142      Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
143
144      if (RoundParts < NumParts) {
145        // Assemble the trailing non-power-of-2 part.
146        unsigned OddParts = NumParts - RoundParts;
147        EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
148        Hi = getCopyFromParts(DAG, DL,
149                              Parts + RoundParts, OddParts, PartVT, OddVT, V);
150
151        // Combine the round and odd parts.
152        Lo = Val;
153        if (TLI.isBigEndian())
154          std::swap(Lo, Hi);
155        EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
156        Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
157        Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
158                         DAG.getConstant(Lo.getValueType().getSizeInBits(),
159                                         TLI.getPointerTy()));
160        Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
161        Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
162      }
163    } else if (PartVT.isFloatingPoint()) {
164      // FP split into multiple FP parts (for ppcf128)
165      assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 &&
166             "Unexpected split");
167      SDValue Lo, Hi;
168      Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
169      Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
170      if (TLI.isBigEndian())
171        std::swap(Lo, Hi);
172      Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
173    } else {
174      // FP split into integer parts (soft fp)
175      assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
176             !PartVT.isVector() && "Unexpected split");
177      EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
178      Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V);
179    }
180  }
181
182  // There is now one part, held in Val.  Correct it to match ValueVT.
183  EVT PartEVT = Val.getValueType();
184
185  if (PartEVT == ValueVT)
186    return Val;
187
188  if (PartEVT.isInteger() && ValueVT.isInteger()) {
189    if (ValueVT.bitsLT(PartEVT)) {
190      // For a truncate, see if we have any information to
191      // indicate whether the truncated bits will always be
192      // zero or sign-extension.
193      if (AssertOp != ISD::DELETED_NODE)
194        Val = DAG.getNode(AssertOp, DL, PartEVT, Val,
195                          DAG.getValueType(ValueVT));
196      return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
197    }
198    return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
199  }
200
201  if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
202    // FP_ROUND's are always exact here.
203    if (ValueVT.bitsLT(Val.getValueType()))
204      return DAG.getNode(ISD::FP_ROUND, DL, ValueVT, Val,
205                         DAG.getTargetConstant(1, TLI.getPointerTy()));
206
207    return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
208  }
209
210  if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits())
211    return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
212
213  llvm_unreachable("Unknown mismatch!");
214}
215
216/// getCopyFromPartsVector - Create a value that contains the specified legal
217/// parts combined into the value they represent.  If the parts combine to a
218/// type larger then ValueVT then AssertOp can be used to specify whether the
219/// extra bits are known to be zero (ISD::AssertZext) or sign extended from
220/// ValueVT (ISD::AssertSext).
221static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL,
222                                      const SDValue *Parts, unsigned NumParts,
223                                      MVT PartVT, EVT ValueVT, const Value *V) {
224  assert(ValueVT.isVector() && "Not a vector value");
225  assert(NumParts > 0 && "No parts to assemble!");
226  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
227  SDValue Val = Parts[0];
228
229  // Handle a multi-element vector.
230  if (NumParts > 1) {
231    EVT IntermediateVT;
232    MVT RegisterVT;
233    unsigned NumIntermediates;
234    unsigned NumRegs =
235    TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
236                               NumIntermediates, RegisterVT);
237    assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
238    NumParts = NumRegs; // Silence a compiler warning.
239    assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
240    assert(RegisterVT == Parts[0].getSimpleValueType() &&
241           "Part type doesn't match part!");
242
243    // Assemble the parts into intermediate operands.
244    SmallVector<SDValue, 8> Ops(NumIntermediates);
245    if (NumIntermediates == NumParts) {
246      // If the register was not expanded, truncate or copy the value,
247      // as appropriate.
248      for (unsigned i = 0; i != NumParts; ++i)
249        Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1,
250                                  PartVT, IntermediateVT, V);
251    } else if (NumParts > 0) {
252      // If the intermediate type was expanded, build the intermediate
253      // operands from the parts.
254      assert(NumParts % NumIntermediates == 0 &&
255             "Must expand into a divisible number of parts!");
256      unsigned Factor = NumParts / NumIntermediates;
257      for (unsigned i = 0; i != NumIntermediates; ++i)
258        Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor,
259                                  PartVT, IntermediateVT, V);
260    }
261
262    // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
263    // intermediate operands.
264    Val = DAG.getNode(IntermediateVT.isVector() ?
265                      ISD::CONCAT_VECTORS : ISD::BUILD_VECTOR, DL,
266                      ValueVT, &Ops[0], NumIntermediates);
267  }
268
269  // There is now one part, held in Val.  Correct it to match ValueVT.
270  EVT PartEVT = Val.getValueType();
271
272  if (PartEVT == ValueVT)
273    return Val;
274
275  if (PartEVT.isVector()) {
276    // If the element type of the source/dest vectors are the same, but the
277    // parts vector has more elements than the value vector, then we have a
278    // vector widening case (e.g. <2 x float> -> <4 x float>).  Extract the
279    // elements we want.
280    if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) {
281      assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() &&
282             "Cannot narrow, it would be a lossy transformation");
283      return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
284                         DAG.getConstant(0, TLI.getVectorIdxTy()));
285    }
286
287    // Vector/Vector bitcast.
288    if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits())
289      return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
290
291    assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() &&
292      "Cannot handle this kind of promotion");
293    // Promoted vector extract
294    bool Smaller = ValueVT.bitsLE(PartEVT);
295    return DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
296                       DL, ValueVT, Val);
297
298  }
299
300  // Trivial bitcast if the types are the same size and the destination
301  // vector type is legal.
302  if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() &&
303      TLI.isTypeLegal(ValueVT))
304    return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
305
306  // Handle cases such as i8 -> <1 x i1>
307  if (ValueVT.getVectorNumElements() != 1) {
308    LLVMContext &Ctx = *DAG.getContext();
309    Twine ErrMsg("non-trivial scalar-to-vector conversion");
310    if (const Instruction *I = dyn_cast_or_null<Instruction>(V)) {
311      if (const CallInst *CI = dyn_cast<CallInst>(I))
312        if (isa<InlineAsm>(CI->getCalledValue()))
313          ErrMsg = ErrMsg + ", possible invalid constraint for vector type";
314      Ctx.emitError(I, ErrMsg);
315    } else {
316      Ctx.emitError(ErrMsg);
317    }
318    return DAG.getUNDEF(ValueVT);
319  }
320
321  if (ValueVT.getVectorNumElements() == 1 &&
322      ValueVT.getVectorElementType() != PartEVT) {
323    bool Smaller = ValueVT.bitsLE(PartEVT);
324    Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
325                       DL, ValueVT.getScalarType(), Val);
326  }
327
328  return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val);
329}
330
331static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc dl,
332                                 SDValue Val, SDValue *Parts, unsigned NumParts,
333                                 MVT PartVT, const Value *V);
334
335/// getCopyToParts - Create a series of nodes that contain the specified value
336/// split into legal parts.  If the parts contain more bits than Val, then, for
337/// integers, ExtendKind can be used to specify how to generate the extra bits.
338static void getCopyToParts(SelectionDAG &DAG, SDLoc DL,
339                           SDValue Val, SDValue *Parts, unsigned NumParts,
340                           MVT PartVT, const Value *V,
341                           ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
342  EVT ValueVT = Val.getValueType();
343
344  // Handle the vector case separately.
345  if (ValueVT.isVector())
346    return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V);
347
348  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
349  unsigned PartBits = PartVT.getSizeInBits();
350  unsigned OrigNumParts = NumParts;
351  assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!");
352
353  if (NumParts == 0)
354    return;
355
356  assert(!ValueVT.isVector() && "Vector case handled elsewhere");
357  EVT PartEVT = PartVT;
358  if (PartEVT == ValueVT) {
359    assert(NumParts == 1 && "No-op copy with multiple parts!");
360    Parts[0] = Val;
361    return;
362  }
363
364  if (NumParts * PartBits > ValueVT.getSizeInBits()) {
365    // If the parts cover more bits than the value has, promote the value.
366    if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
367      assert(NumParts == 1 && "Do not know what to promote to!");
368      Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
369    } else {
370      assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
371             ValueVT.isInteger() &&
372             "Unknown mismatch!");
373      ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
374      Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
375      if (PartVT == MVT::x86mmx)
376        Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
377    }
378  } else if (PartBits == ValueVT.getSizeInBits()) {
379    // Different types of the same size.
380    assert(NumParts == 1 && PartEVT != ValueVT);
381    Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
382  } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
383    // If the parts cover less bits than value has, truncate the value.
384    assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
385           ValueVT.isInteger() &&
386           "Unknown mismatch!");
387    ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
388    Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
389    if (PartVT == MVT::x86mmx)
390      Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
391  }
392
393  // The value may have changed - recompute ValueVT.
394  ValueVT = Val.getValueType();
395  assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
396         "Failed to tile the value with PartVT!");
397
398  if (NumParts == 1) {
399    if (PartEVT != ValueVT) {
400      LLVMContext &Ctx = *DAG.getContext();
401      Twine ErrMsg("scalar-to-vector conversion failed");
402      if (const Instruction *I = dyn_cast_or_null<Instruction>(V)) {
403        if (const CallInst *CI = dyn_cast<CallInst>(I))
404          if (isa<InlineAsm>(CI->getCalledValue()))
405            ErrMsg = ErrMsg + ", possible invalid constraint for vector type";
406        Ctx.emitError(I, ErrMsg);
407      } else {
408        Ctx.emitError(ErrMsg);
409      }
410    }
411
412    Parts[0] = Val;
413    return;
414  }
415
416  // Expand the value into multiple parts.
417  if (NumParts & (NumParts - 1)) {
418    // The number of parts is not a power of 2.  Split off and copy the tail.
419    assert(PartVT.isInteger() && ValueVT.isInteger() &&
420           "Do not know what to expand to!");
421    unsigned RoundParts = 1 << Log2_32(NumParts);
422    unsigned RoundBits = RoundParts * PartBits;
423    unsigned OddParts = NumParts - RoundParts;
424    SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
425                                 DAG.getIntPtrConstant(RoundBits));
426    getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V);
427
428    if (TLI.isBigEndian())
429      // The odd parts were reversed by getCopyToParts - unreverse them.
430      std::reverse(Parts + RoundParts, Parts + NumParts);
431
432    NumParts = RoundParts;
433    ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
434    Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
435  }
436
437  // The number of parts is a power of 2.  Repeatedly bisect the value using
438  // EXTRACT_ELEMENT.
439  Parts[0] = DAG.getNode(ISD::BITCAST, DL,
440                         EVT::getIntegerVT(*DAG.getContext(),
441                                           ValueVT.getSizeInBits()),
442                         Val);
443
444  for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
445    for (unsigned i = 0; i < NumParts; i += StepSize) {
446      unsigned ThisBits = StepSize * PartBits / 2;
447      EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
448      SDValue &Part0 = Parts[i];
449      SDValue &Part1 = Parts[i+StepSize/2];
450
451      Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
452                          ThisVT, Part0, DAG.getIntPtrConstant(1));
453      Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
454                          ThisVT, Part0, DAG.getIntPtrConstant(0));
455
456      if (ThisBits == PartBits && ThisVT != PartVT) {
457        Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
458        Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
459      }
460    }
461  }
462
463  if (TLI.isBigEndian())
464    std::reverse(Parts, Parts + OrigNumParts);
465}
466
467
468/// getCopyToPartsVector - Create a series of nodes that contain the specified
469/// value split into legal parts.
470static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc DL,
471                                 SDValue Val, SDValue *Parts, unsigned NumParts,
472                                 MVT PartVT, const Value *V) {
473  EVT ValueVT = Val.getValueType();
474  assert(ValueVT.isVector() && "Not a vector");
475  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
476
477  if (NumParts == 1) {
478    EVT PartEVT = PartVT;
479    if (PartEVT == ValueVT) {
480      // Nothing to do.
481    } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
482      // Bitconvert vector->vector case.
483      Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
484    } else if (PartVT.isVector() &&
485               PartEVT.getVectorElementType() == ValueVT.getVectorElementType() &&
486               PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements()) {
487      EVT ElementVT = PartVT.getVectorElementType();
488      // Vector widening case, e.g. <2 x float> -> <4 x float>.  Shuffle in
489      // undef elements.
490      SmallVector<SDValue, 16> Ops;
491      for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i)
492        Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
493                                  ElementVT, Val, DAG.getConstant(i,
494                                                  TLI.getVectorIdxTy())));
495
496      for (unsigned i = ValueVT.getVectorNumElements(),
497           e = PartVT.getVectorNumElements(); i != e; ++i)
498        Ops.push_back(DAG.getUNDEF(ElementVT));
499
500      Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, &Ops[0], Ops.size());
501
502      // FIXME: Use CONCAT for 2x -> 4x.
503
504      //SDValue UndefElts = DAG.getUNDEF(VectorTy);
505      //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts);
506    } else if (PartVT.isVector() &&
507               PartEVT.getVectorElementType().bitsGE(
508                 ValueVT.getVectorElementType()) &&
509               PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) {
510
511      // Promoted vector extract
512      bool Smaller = PartEVT.bitsLE(ValueVT);
513      Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
514                        DL, PartVT, Val);
515    } else{
516      // Vector -> scalar conversion.
517      assert(ValueVT.getVectorNumElements() == 1 &&
518             "Only trivial vector-to-scalar conversions should get here!");
519      Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
520                        PartVT, Val, DAG.getConstant(0, TLI.getVectorIdxTy()));
521
522      bool Smaller = ValueVT.bitsLE(PartVT);
523      Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
524                         DL, PartVT, Val);
525    }
526
527    Parts[0] = Val;
528    return;
529  }
530
531  // Handle a multi-element vector.
532  EVT IntermediateVT;
533  MVT RegisterVT;
534  unsigned NumIntermediates;
535  unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT,
536                                                IntermediateVT,
537                                                NumIntermediates, RegisterVT);
538  unsigned NumElements = ValueVT.getVectorNumElements();
539
540  assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
541  NumParts = NumRegs; // Silence a compiler warning.
542  assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
543
544  // Split the vector into intermediate operands.
545  SmallVector<SDValue, 8> Ops(NumIntermediates);
546  for (unsigned i = 0; i != NumIntermediates; ++i) {
547    if (IntermediateVT.isVector())
548      Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL,
549                           IntermediateVT, Val,
550                   DAG.getConstant(i * (NumElements / NumIntermediates),
551                                   TLI.getVectorIdxTy()));
552    else
553      Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
554                           IntermediateVT, Val,
555                           DAG.getConstant(i, TLI.getVectorIdxTy()));
556  }
557
558  // Split the intermediate operands into legal parts.
559  if (NumParts == NumIntermediates) {
560    // If the register was not expanded, promote or copy the value,
561    // as appropriate.
562    for (unsigned i = 0; i != NumParts; ++i)
563      getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V);
564  } else if (NumParts > 0) {
565    // If the intermediate type was expanded, split each the value into
566    // legal parts.
567    assert(NumParts % NumIntermediates == 0 &&
568           "Must expand into a divisible number of parts!");
569    unsigned Factor = NumParts / NumIntermediates;
570    for (unsigned i = 0; i != NumIntermediates; ++i)
571      getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT, V);
572  }
573}
574
575namespace {
576  /// RegsForValue - This struct represents the registers (physical or virtual)
577  /// that a particular set of values is assigned, and the type information
578  /// about the value. The most common situation is to represent one value at a
579  /// time, but struct or array values are handled element-wise as multiple
580  /// values.  The splitting of aggregates is performed recursively, so that we
581  /// never have aggregate-typed registers. The values at this point do not
582  /// necessarily have legal types, so each value may require one or more
583  /// registers of some legal type.
584  ///
585  struct RegsForValue {
586    /// ValueVTs - The value types of the values, which may not be legal, and
587    /// may need be promoted or synthesized from one or more registers.
588    ///
589    SmallVector<EVT, 4> ValueVTs;
590
591    /// RegVTs - The value types of the registers. This is the same size as
592    /// ValueVTs and it records, for each value, what the type of the assigned
593    /// register or registers are. (Individual values are never synthesized
594    /// from more than one type of register.)
595    ///
596    /// With virtual registers, the contents of RegVTs is redundant with TLI's
597    /// getRegisterType member function, however when with physical registers
598    /// it is necessary to have a separate record of the types.
599    ///
600    SmallVector<MVT, 4> RegVTs;
601
602    /// Regs - This list holds the registers assigned to the values.
603    /// Each legal or promoted value requires one register, and each
604    /// expanded value requires multiple registers.
605    ///
606    SmallVector<unsigned, 4> Regs;
607
608    RegsForValue() {}
609
610    RegsForValue(const SmallVector<unsigned, 4> &regs,
611                 MVT regvt, EVT valuevt)
612      : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {}
613
614    RegsForValue(LLVMContext &Context, const TargetLowering &tli,
615                 unsigned Reg, Type *Ty) {
616      ComputeValueVTs(tli, Ty, ValueVTs);
617
618      for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
619        EVT ValueVT = ValueVTs[Value];
620        unsigned NumRegs = tli.getNumRegisters(Context, ValueVT);
621        MVT RegisterVT = tli.getRegisterType(Context, ValueVT);
622        for (unsigned i = 0; i != NumRegs; ++i)
623          Regs.push_back(Reg + i);
624        RegVTs.push_back(RegisterVT);
625        Reg += NumRegs;
626      }
627    }
628
629    /// areValueTypesLegal - Return true if types of all the values are legal.
630    bool areValueTypesLegal(const TargetLowering &TLI) {
631      for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
632        MVT RegisterVT = RegVTs[Value];
633        if (!TLI.isTypeLegal(RegisterVT))
634          return false;
635      }
636      return true;
637    }
638
639    /// append - Add the specified values to this one.
640    void append(const RegsForValue &RHS) {
641      ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end());
642      RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end());
643      Regs.append(RHS.Regs.begin(), RHS.Regs.end());
644    }
645
646    /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
647    /// this value and returns the result as a ValueVTs value.  This uses
648    /// Chain/Flag as the input and updates them for the output Chain/Flag.
649    /// If the Flag pointer is NULL, no flag is used.
650    SDValue getCopyFromRegs(SelectionDAG &DAG, FunctionLoweringInfo &FuncInfo,
651                            SDLoc dl,
652                            SDValue &Chain, SDValue *Flag,
653                            const Value *V = 0) const;
654
655    /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
656    /// specified value into the registers specified by this object.  This uses
657    /// Chain/Flag as the input and updates them for the output Chain/Flag.
658    /// If the Flag pointer is NULL, no flag is used.
659    void getCopyToRegs(SDValue Val, SelectionDAG &DAG, SDLoc dl,
660                       SDValue &Chain, SDValue *Flag, const Value *V) const;
661
662    /// AddInlineAsmOperands - Add this value to the specified inlineasm node
663    /// operand list.  This adds the code marker, matching input operand index
664    /// (if applicable), and includes the number of values added into it.
665    void AddInlineAsmOperands(unsigned Kind,
666                              bool HasMatching, unsigned MatchingIdx,
667                              SelectionDAG &DAG,
668                              std::vector<SDValue> &Ops) const;
669  };
670}
671
672/// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
673/// this value and returns the result as a ValueVT value.  This uses
674/// Chain/Flag as the input and updates them for the output Chain/Flag.
675/// If the Flag pointer is NULL, no flag is used.
676SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
677                                      FunctionLoweringInfo &FuncInfo,
678                                      SDLoc dl,
679                                      SDValue &Chain, SDValue *Flag,
680                                      const Value *V) const {
681  // A Value with type {} or [0 x %t] needs no registers.
682  if (ValueVTs.empty())
683    return SDValue();
684
685  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
686
687  // Assemble the legal parts into the final values.
688  SmallVector<SDValue, 4> Values(ValueVTs.size());
689  SmallVector<SDValue, 8> Parts;
690  for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
691    // Copy the legal parts from the registers.
692    EVT ValueVT = ValueVTs[Value];
693    unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
694    MVT RegisterVT = RegVTs[Value];
695
696    Parts.resize(NumRegs);
697    for (unsigned i = 0; i != NumRegs; ++i) {
698      SDValue P;
699      if (Flag == 0) {
700        P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
701      } else {
702        P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
703        *Flag = P.getValue(2);
704      }
705
706      Chain = P.getValue(1);
707      Parts[i] = P;
708
709      // If the source register was virtual and if we know something about it,
710      // add an assert node.
711      if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) ||
712          !RegisterVT.isInteger() || RegisterVT.isVector())
713        continue;
714
715      const FunctionLoweringInfo::LiveOutInfo *LOI =
716        FuncInfo.GetLiveOutRegInfo(Regs[Part+i]);
717      if (!LOI)
718        continue;
719
720      unsigned RegSize = RegisterVT.getSizeInBits();
721      unsigned NumSignBits = LOI->NumSignBits;
722      unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes();
723
724      if (NumZeroBits == RegSize) {
725        // The current value is a zero.
726        // Explicitly express that as it would be easier for
727        // optimizations to kick in.
728        Parts[i] = DAG.getConstant(0, RegisterVT);
729        continue;
730      }
731
732      // FIXME: We capture more information than the dag can represent.  For
733      // now, just use the tightest assertzext/assertsext possible.
734      bool isSExt = true;
735      EVT FromVT(MVT::Other);
736      if (NumSignBits == RegSize)
737        isSExt = true, FromVT = MVT::i1;   // ASSERT SEXT 1
738      else if (NumZeroBits >= RegSize-1)
739        isSExt = false, FromVT = MVT::i1;  // ASSERT ZEXT 1
740      else if (NumSignBits > RegSize-8)
741        isSExt = true, FromVT = MVT::i8;   // ASSERT SEXT 8
742      else if (NumZeroBits >= RegSize-8)
743        isSExt = false, FromVT = MVT::i8;  // ASSERT ZEXT 8
744      else if (NumSignBits > RegSize-16)
745        isSExt = true, FromVT = MVT::i16;  // ASSERT SEXT 16
746      else if (NumZeroBits >= RegSize-16)
747        isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16
748      else if (NumSignBits > RegSize-32)
749        isSExt = true, FromVT = MVT::i32;  // ASSERT SEXT 32
750      else if (NumZeroBits >= RegSize-32)
751        isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32
752      else
753        continue;
754
755      // Add an assertion node.
756      assert(FromVT != MVT::Other);
757      Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
758                             RegisterVT, P, DAG.getValueType(FromVT));
759    }
760
761    Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(),
762                                     NumRegs, RegisterVT, ValueVT, V);
763    Part += NumRegs;
764    Parts.clear();
765  }
766
767  return DAG.getNode(ISD::MERGE_VALUES, dl,
768                     DAG.getVTList(&ValueVTs[0], ValueVTs.size()),
769                     &Values[0], ValueVTs.size());
770}
771
772/// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
773/// specified value into the registers specified by this object.  This uses
774/// Chain/Flag as the input and updates them for the output Chain/Flag.
775/// If the Flag pointer is NULL, no flag is used.
776void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, SDLoc dl,
777                                 SDValue &Chain, SDValue *Flag,
778                                 const Value *V) const {
779  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
780
781  // Get the list of the values's legal parts.
782  unsigned NumRegs = Regs.size();
783  SmallVector<SDValue, 8> Parts(NumRegs);
784  for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
785    EVT ValueVT = ValueVTs[Value];
786    unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
787    MVT RegisterVT = RegVTs[Value];
788    ISD::NodeType ExtendKind =
789      TLI.isZExtFree(Val, RegisterVT)? ISD::ZERO_EXTEND: ISD::ANY_EXTEND;
790
791    getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value),
792                   &Parts[Part], NumParts, RegisterVT, V, ExtendKind);
793    Part += NumParts;
794  }
795
796  // Copy the parts into the registers.
797  SmallVector<SDValue, 8> Chains(NumRegs);
798  for (unsigned i = 0; i != NumRegs; ++i) {
799    SDValue Part;
800    if (Flag == 0) {
801      Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
802    } else {
803      Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
804      *Flag = Part.getValue(1);
805    }
806
807    Chains[i] = Part.getValue(0);
808  }
809
810  if (NumRegs == 1 || Flag)
811    // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
812    // flagged to it. That is the CopyToReg nodes and the user are considered
813    // a single scheduling unit. If we create a TokenFactor and return it as
814    // chain, then the TokenFactor is both a predecessor (operand) of the
815    // user as well as a successor (the TF operands are flagged to the user).
816    // c1, f1 = CopyToReg
817    // c2, f2 = CopyToReg
818    // c3     = TokenFactor c1, c2
819    // ...
820    //        = op c3, ..., f2
821    Chain = Chains[NumRegs-1];
822  else
823    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0], NumRegs);
824}
825
826/// AddInlineAsmOperands - Add this value to the specified inlineasm node
827/// operand list.  This adds the code marker and includes the number of
828/// values added into it.
829void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
830                                        unsigned MatchingIdx,
831                                        SelectionDAG &DAG,
832                                        std::vector<SDValue> &Ops) const {
833  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
834
835  unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
836  if (HasMatching)
837    Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
838  else if (!Regs.empty() &&
839           TargetRegisterInfo::isVirtualRegister(Regs.front())) {
840    // Put the register class of the virtual registers in the flag word.  That
841    // way, later passes can recompute register class constraints for inline
842    // assembly as well as normal instructions.
843    // Don't do this for tied operands that can use the regclass information
844    // from the def.
845    const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
846    const TargetRegisterClass *RC = MRI.getRegClass(Regs.front());
847    Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID());
848  }
849
850  SDValue Res = DAG.getTargetConstant(Flag, MVT::i32);
851  Ops.push_back(Res);
852
853  for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
854    unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]);
855    MVT RegisterVT = RegVTs[Value];
856    for (unsigned i = 0; i != NumRegs; ++i) {
857      assert(Reg < Regs.size() && "Mismatch in # registers expected");
858      Ops.push_back(DAG.getRegister(Regs[Reg++], RegisterVT));
859    }
860  }
861}
862
863void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa,
864                               const TargetLibraryInfo *li) {
865  AA = &aa;
866  GFI = gfi;
867  LibInfo = li;
868  TD = DAG.getTarget().getDataLayout();
869  Context = DAG.getContext();
870  LPadToCallSiteMap.clear();
871}
872
873/// clear - Clear out the current SelectionDAG and the associated
874/// state and prepare this SelectionDAGBuilder object to be used
875/// for a new block. This doesn't clear out information about
876/// additional blocks that are needed to complete switch lowering
877/// or PHI node updating; that information is cleared out as it is
878/// consumed.
879void SelectionDAGBuilder::clear() {
880  NodeMap.clear();
881  UnusedArgNodeMap.clear();
882  PendingLoads.clear();
883  PendingExports.clear();
884  CurInst = NULL;
885  HasTailCall = false;
886}
887
888/// clearDanglingDebugInfo - Clear the dangling debug information
889/// map. This function is separated from the clear so that debug
890/// information that is dangling in a basic block can be properly
891/// resolved in a different basic block. This allows the
892/// SelectionDAG to resolve dangling debug information attached
893/// to PHI nodes.
894void SelectionDAGBuilder::clearDanglingDebugInfo() {
895  DanglingDebugInfoMap.clear();
896}
897
898/// getRoot - Return the current virtual root of the Selection DAG,
899/// flushing any PendingLoad items. This must be done before emitting
900/// a store or any other node that may need to be ordered after any
901/// prior load instructions.
902///
903SDValue SelectionDAGBuilder::getRoot() {
904  if (PendingLoads.empty())
905    return DAG.getRoot();
906
907  if (PendingLoads.size() == 1) {
908    SDValue Root = PendingLoads[0];
909    DAG.setRoot(Root);
910    PendingLoads.clear();
911    return Root;
912  }
913
914  // Otherwise, we have to make a token factor node.
915  SDValue Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other,
916                               &PendingLoads[0], PendingLoads.size());
917  PendingLoads.clear();
918  DAG.setRoot(Root);
919  return Root;
920}
921
922/// getControlRoot - Similar to getRoot, but instead of flushing all the
923/// PendingLoad items, flush all the PendingExports items. It is necessary
924/// to do this before emitting a terminator instruction.
925///
926SDValue SelectionDAGBuilder::getControlRoot() {
927  SDValue Root = DAG.getRoot();
928
929  if (PendingExports.empty())
930    return Root;
931
932  // Turn all of the CopyToReg chains into one factored node.
933  if (Root.getOpcode() != ISD::EntryToken) {
934    unsigned i = 0, e = PendingExports.size();
935    for (; i != e; ++i) {
936      assert(PendingExports[i].getNode()->getNumOperands() > 1);
937      if (PendingExports[i].getNode()->getOperand(0) == Root)
938        break;  // Don't add the root if we already indirectly depend on it.
939    }
940
941    if (i == e)
942      PendingExports.push_back(Root);
943  }
944
945  Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other,
946                     &PendingExports[0],
947                     PendingExports.size());
948  PendingExports.clear();
949  DAG.setRoot(Root);
950  return Root;
951}
952
953void SelectionDAGBuilder::visit(const Instruction &I) {
954  // Set up outgoing PHI node register values before emitting the terminator.
955  if (isa<TerminatorInst>(&I))
956    HandlePHINodesInSuccessorBlocks(I.getParent());
957
958  ++SDNodeOrder;
959
960  CurInst = &I;
961
962  visit(I.getOpcode(), I);
963
964  if (!isa<TerminatorInst>(&I) && !HasTailCall)
965    CopyToExportRegsIfNeeded(&I);
966
967  CurInst = NULL;
968}
969
970void SelectionDAGBuilder::visitPHI(const PHINode &) {
971  llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
972}
973
974void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
975  // Note: this doesn't use InstVisitor, because it has to work with
976  // ConstantExpr's in addition to instructions.
977  switch (Opcode) {
978  default: llvm_unreachable("Unknown instruction type encountered!");
979    // Build the switch statement using the Instruction.def file.
980#define HANDLE_INST(NUM, OPCODE, CLASS) \
981    case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break;
982#include "llvm/IR/Instruction.def"
983  }
984}
985
986// resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
987// generate the debug data structures now that we've seen its definition.
988void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
989                                                   SDValue Val) {
990  DanglingDebugInfo &DDI = DanglingDebugInfoMap[V];
991  if (DDI.getDI()) {
992    const DbgValueInst *DI = DDI.getDI();
993    DebugLoc dl = DDI.getdl();
994    unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
995    MDNode *Variable = DI->getVariable();
996    uint64_t Offset = DI->getOffset();
997    SDDbgValue *SDV;
998    if (Val.getNode()) {
999      if (!EmitFuncArgumentDbgValue(V, Variable, Offset, Val)) {
1000        SDV = DAG.getDbgValue(Variable, Val.getNode(),
1001                              Val.getResNo(), Offset, dl, DbgSDNodeOrder);
1002        DAG.AddDbgValue(SDV, Val.getNode(), false);
1003      }
1004    } else
1005      DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
1006    DanglingDebugInfoMap[V] = DanglingDebugInfo();
1007  }
1008}
1009
1010/// getValue - Return an SDValue for the given Value.
1011SDValue SelectionDAGBuilder::getValue(const Value *V) {
1012  // If we already have an SDValue for this value, use it. It's important
1013  // to do this first, so that we don't create a CopyFromReg if we already
1014  // have a regular SDValue.
1015  SDValue &N = NodeMap[V];
1016  if (N.getNode()) return N;
1017
1018  // If there's a virtual register allocated and initialized for this
1019  // value, use it.
1020  DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V);
1021  if (It != FuncInfo.ValueMap.end()) {
1022    unsigned InReg = It->second;
1023    RegsForValue RFV(*DAG.getContext(), *TM.getTargetLowering(),
1024                     InReg, V->getType());
1025    SDValue Chain = DAG.getEntryNode();
1026    N = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, NULL, V);
1027    resolveDanglingDebugInfo(V, N);
1028    return N;
1029  }
1030
1031  // Otherwise create a new SDValue and remember it.
1032  SDValue Val = getValueImpl(V);
1033  NodeMap[V] = Val;
1034  resolveDanglingDebugInfo(V, Val);
1035  return Val;
1036}
1037
1038/// getNonRegisterValue - Return an SDValue for the given Value, but
1039/// don't look in FuncInfo.ValueMap for a virtual register.
1040SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
1041  // If we already have an SDValue for this value, use it.
1042  SDValue &N = NodeMap[V];
1043  if (N.getNode()) return N;
1044
1045  // Otherwise create a new SDValue and remember it.
1046  SDValue Val = getValueImpl(V);
1047  NodeMap[V] = Val;
1048  resolveDanglingDebugInfo(V, Val);
1049  return Val;
1050}
1051
1052/// getValueImpl - Helper function for getValue and getNonRegisterValue.
1053/// Create an SDValue for the given value.
1054SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
1055  const TargetLowering *TLI = TM.getTargetLowering();
1056
1057  if (const Constant *C = dyn_cast<Constant>(V)) {
1058    EVT VT = TLI->getValueType(V->getType(), true);
1059
1060    if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
1061      return DAG.getConstant(*CI, VT);
1062
1063    if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
1064      return DAG.getGlobalAddress(GV, getCurSDLoc(), VT);
1065
1066    if (isa<ConstantPointerNull>(C))
1067      return DAG.getConstant(0, TLI->getPointerTy());
1068
1069    if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
1070      return DAG.getConstantFP(*CFP, VT);
1071
1072    if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
1073      return DAG.getUNDEF(VT);
1074
1075    if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1076      visit(CE->getOpcode(), *CE);
1077      SDValue N1 = NodeMap[V];
1078      assert(N1.getNode() && "visit didn't populate the NodeMap!");
1079      return N1;
1080    }
1081
1082    if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
1083      SmallVector<SDValue, 4> Constants;
1084      for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end();
1085           OI != OE; ++OI) {
1086        SDNode *Val = getValue(*OI).getNode();
1087        // If the operand is an empty aggregate, there are no values.
1088        if (!Val) continue;
1089        // Add each leaf value from the operand to the Constants list
1090        // to form a flattened list of all the values.
1091        for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1092          Constants.push_back(SDValue(Val, i));
1093      }
1094
1095      return DAG.getMergeValues(&Constants[0], Constants.size(),
1096                                getCurSDLoc());
1097    }
1098
1099    if (const ConstantDataSequential *CDS =
1100          dyn_cast<ConstantDataSequential>(C)) {
1101      SmallVector<SDValue, 4> Ops;
1102      for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1103        SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode();
1104        // Add each leaf value from the operand to the Constants list
1105        // to form a flattened list of all the values.
1106        for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1107          Ops.push_back(SDValue(Val, i));
1108      }
1109
1110      if (isa<ArrayType>(CDS->getType()))
1111        return DAG.getMergeValues(&Ops[0], Ops.size(), getCurSDLoc());
1112      return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(),
1113                                      VT, &Ops[0], Ops.size());
1114    }
1115
1116    if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
1117      assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1118             "Unknown struct or array constant!");
1119
1120      SmallVector<EVT, 4> ValueVTs;
1121      ComputeValueVTs(*TLI, C->getType(), ValueVTs);
1122      unsigned NumElts = ValueVTs.size();
1123      if (NumElts == 0)
1124        return SDValue(); // empty struct
1125      SmallVector<SDValue, 4> Constants(NumElts);
1126      for (unsigned i = 0; i != NumElts; ++i) {
1127        EVT EltVT = ValueVTs[i];
1128        if (isa<UndefValue>(C))
1129          Constants[i] = DAG.getUNDEF(EltVT);
1130        else if (EltVT.isFloatingPoint())
1131          Constants[i] = DAG.getConstantFP(0, EltVT);
1132        else
1133          Constants[i] = DAG.getConstant(0, EltVT);
1134      }
1135
1136      return DAG.getMergeValues(&Constants[0], NumElts,
1137                                getCurSDLoc());
1138    }
1139
1140    if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
1141      return DAG.getBlockAddress(BA, VT);
1142
1143    VectorType *VecTy = cast<VectorType>(V->getType());
1144    unsigned NumElements = VecTy->getNumElements();
1145
1146    // Now that we know the number and type of the elements, get that number of
1147    // elements into the Ops array based on what kind of constant it is.
1148    SmallVector<SDValue, 16> Ops;
1149    if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
1150      for (unsigned i = 0; i != NumElements; ++i)
1151        Ops.push_back(getValue(CV->getOperand(i)));
1152    } else {
1153      assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!");
1154      EVT EltVT = TLI->getValueType(VecTy->getElementType());
1155
1156      SDValue Op;
1157      if (EltVT.isFloatingPoint())
1158        Op = DAG.getConstantFP(0, EltVT);
1159      else
1160        Op = DAG.getConstant(0, EltVT);
1161      Ops.assign(NumElements, Op);
1162    }
1163
1164    // Create a BUILD_VECTOR node.
1165    return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(),
1166                                    VT, &Ops[0], Ops.size());
1167  }
1168
1169  // If this is a static alloca, generate it as the frameindex instead of
1170  // computation.
1171  if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1172    DenseMap<const AllocaInst*, int>::iterator SI =
1173      FuncInfo.StaticAllocaMap.find(AI);
1174    if (SI != FuncInfo.StaticAllocaMap.end())
1175      return DAG.getFrameIndex(SI->second, TLI->getPointerTy());
1176  }
1177
1178  // If this is an instruction which fast-isel has deferred, select it now.
1179  if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
1180    unsigned InReg = FuncInfo.InitializeRegForValue(Inst);
1181    RegsForValue RFV(*DAG.getContext(), *TLI, InReg, Inst->getType());
1182    SDValue Chain = DAG.getEntryNode();
1183    return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, NULL, V);
1184  }
1185
1186  llvm_unreachable("Can't get register for value!");
1187}
1188
1189void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
1190  const TargetLowering *TLI = TM.getTargetLowering();
1191  SDValue Chain = getControlRoot();
1192  SmallVector<ISD::OutputArg, 8> Outs;
1193  SmallVector<SDValue, 8> OutVals;
1194
1195  if (!FuncInfo.CanLowerReturn) {
1196    unsigned DemoteReg = FuncInfo.DemoteRegister;
1197    const Function *F = I.getParent()->getParent();
1198
1199    // Emit a store of the return value through the virtual register.
1200    // Leave Outs empty so that LowerReturn won't try to load return
1201    // registers the usual way.
1202    SmallVector<EVT, 1> PtrValueVTs;
1203    ComputeValueVTs(*TLI, PointerType::getUnqual(F->getReturnType()),
1204                    PtrValueVTs);
1205
1206    SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]);
1207    SDValue RetOp = getValue(I.getOperand(0));
1208
1209    SmallVector<EVT, 4> ValueVTs;
1210    SmallVector<uint64_t, 4> Offsets;
1211    ComputeValueVTs(*TLI, I.getOperand(0)->getType(), ValueVTs, &Offsets);
1212    unsigned NumValues = ValueVTs.size();
1213
1214    SmallVector<SDValue, 4> Chains(NumValues);
1215    for (unsigned i = 0; i != NumValues; ++i) {
1216      SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(),
1217                                RetPtr.getValueType(), RetPtr,
1218                                DAG.getIntPtrConstant(Offsets[i]));
1219      Chains[i] =
1220        DAG.getStore(Chain, getCurSDLoc(),
1221                     SDValue(RetOp.getNode(), RetOp.getResNo() + i),
1222                     // FIXME: better loc info would be nice.
1223                     Add, MachinePointerInfo(), false, false, 0);
1224    }
1225
1226    Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
1227                        MVT::Other, &Chains[0], NumValues);
1228  } else if (I.getNumOperands() != 0) {
1229    SmallVector<EVT, 4> ValueVTs;
1230    ComputeValueVTs(*TLI, I.getOperand(0)->getType(), ValueVTs);
1231    unsigned NumValues = ValueVTs.size();
1232    if (NumValues) {
1233      SDValue RetOp = getValue(I.getOperand(0));
1234      for (unsigned j = 0, f = NumValues; j != f; ++j) {
1235        EVT VT = ValueVTs[j];
1236
1237        ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1238
1239        const Function *F = I.getParent()->getParent();
1240        if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex,
1241                                            Attribute::SExt))
1242          ExtendKind = ISD::SIGN_EXTEND;
1243        else if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex,
1244                                                 Attribute::ZExt))
1245          ExtendKind = ISD::ZERO_EXTEND;
1246
1247        if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
1248          VT = TLI->getTypeForExtArgOrReturn(VT.getSimpleVT(), ExtendKind);
1249
1250        unsigned NumParts = TLI->getNumRegisters(*DAG.getContext(), VT);
1251        MVT PartVT = TLI->getRegisterType(*DAG.getContext(), VT);
1252        SmallVector<SDValue, 4> Parts(NumParts);
1253        getCopyToParts(DAG, getCurSDLoc(),
1254                       SDValue(RetOp.getNode(), RetOp.getResNo() + j),
1255                       &Parts[0], NumParts, PartVT, &I, ExtendKind);
1256
1257        // 'inreg' on function refers to return value
1258        ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1259        if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex,
1260                                            Attribute::InReg))
1261          Flags.setInReg();
1262
1263        // Propagate extension type if any
1264        if (ExtendKind == ISD::SIGN_EXTEND)
1265          Flags.setSExt();
1266        else if (ExtendKind == ISD::ZERO_EXTEND)
1267          Flags.setZExt();
1268
1269        for (unsigned i = 0; i < NumParts; ++i) {
1270          Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(),
1271                                        VT, /*isfixed=*/true, 0, 0));
1272          OutVals.push_back(Parts[i]);
1273        }
1274      }
1275    }
1276  }
1277
1278  bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
1279  CallingConv::ID CallConv =
1280    DAG.getMachineFunction().getFunction()->getCallingConv();
1281  Chain = TM.getTargetLowering()->LowerReturn(Chain, CallConv, isVarArg,
1282                                              Outs, OutVals, getCurSDLoc(),
1283                                              DAG);
1284
1285  // Verify that the target's LowerReturn behaved as expected.
1286  assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
1287         "LowerReturn didn't return a valid chain!");
1288
1289  // Update the DAG with the new chain value resulting from return lowering.
1290  DAG.setRoot(Chain);
1291}
1292
1293/// CopyToExportRegsIfNeeded - If the given value has virtual registers
1294/// created for it, emit nodes to copy the value into the virtual
1295/// registers.
1296void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
1297  // Skip empty types
1298  if (V->getType()->isEmptyTy())
1299    return;
1300
1301  DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
1302  if (VMI != FuncInfo.ValueMap.end()) {
1303    assert(!V->use_empty() && "Unused value assigned virtual registers!");
1304    CopyValueToVirtualRegister(V, VMI->second);
1305  }
1306}
1307
1308/// ExportFromCurrentBlock - If this condition isn't known to be exported from
1309/// the current basic block, add it to ValueMap now so that we'll get a
1310/// CopyTo/FromReg.
1311void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
1312  // No need to export constants.
1313  if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
1314
1315  // Already exported?
1316  if (FuncInfo.isExportedInst(V)) return;
1317
1318  unsigned Reg = FuncInfo.InitializeRegForValue(V);
1319  CopyValueToVirtualRegister(V, Reg);
1320}
1321
1322bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
1323                                                     const BasicBlock *FromBB) {
1324  // The operands of the setcc have to be in this block.  We don't know
1325  // how to export them from some other block.
1326  if (const Instruction *VI = dyn_cast<Instruction>(V)) {
1327    // Can export from current BB.
1328    if (VI->getParent() == FromBB)
1329      return true;
1330
1331    // Is already exported, noop.
1332    return FuncInfo.isExportedInst(V);
1333  }
1334
1335  // If this is an argument, we can export it if the BB is the entry block or
1336  // if it is already exported.
1337  if (isa<Argument>(V)) {
1338    if (FromBB == &FromBB->getParent()->getEntryBlock())
1339      return true;
1340
1341    // Otherwise, can only export this if it is already exported.
1342    return FuncInfo.isExportedInst(V);
1343  }
1344
1345  // Otherwise, constants can always be exported.
1346  return true;
1347}
1348
1349/// Return branch probability calculated by BranchProbabilityInfo for IR blocks.
1350uint32_t SelectionDAGBuilder::getEdgeWeight(const MachineBasicBlock *Src,
1351                                            const MachineBasicBlock *Dst) const {
1352  BranchProbabilityInfo *BPI = FuncInfo.BPI;
1353  if (!BPI)
1354    return 0;
1355  const BasicBlock *SrcBB = Src->getBasicBlock();
1356  const BasicBlock *DstBB = Dst->getBasicBlock();
1357  return BPI->getEdgeWeight(SrcBB, DstBB);
1358}
1359
1360void SelectionDAGBuilder::
1361addSuccessorWithWeight(MachineBasicBlock *Src, MachineBasicBlock *Dst,
1362                       uint32_t Weight /* = 0 */) {
1363  if (!Weight)
1364    Weight = getEdgeWeight(Src, Dst);
1365  Src->addSuccessor(Dst, Weight);
1366}
1367
1368
1369static bool InBlock(const Value *V, const BasicBlock *BB) {
1370  if (const Instruction *I = dyn_cast<Instruction>(V))
1371    return I->getParent() == BB;
1372  return true;
1373}
1374
1375/// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
1376/// This function emits a branch and is used at the leaves of an OR or an
1377/// AND operator tree.
1378///
1379void
1380SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
1381                                                  MachineBasicBlock *TBB,
1382                                                  MachineBasicBlock *FBB,
1383                                                  MachineBasicBlock *CurBB,
1384                                                  MachineBasicBlock *SwitchBB) {
1385  const BasicBlock *BB = CurBB->getBasicBlock();
1386
1387  // If the leaf of the tree is a comparison, merge the condition into
1388  // the caseblock.
1389  if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
1390    // The operands of the cmp have to be in this block.  We don't know
1391    // how to export them from some other block.  If this is the first block
1392    // of the sequence, no exporting is needed.
1393    if (CurBB == SwitchBB ||
1394        (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
1395         isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
1396      ISD::CondCode Condition;
1397      if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
1398        Condition = getICmpCondCode(IC->getPredicate());
1399      } else if (const FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) {
1400        Condition = getFCmpCondCode(FC->getPredicate());
1401        if (TM.Options.NoNaNsFPMath)
1402          Condition = getFCmpCodeWithoutNaN(Condition);
1403      } else {
1404        Condition = ISD::SETEQ; // silence warning.
1405        llvm_unreachable("Unknown compare instruction");
1406      }
1407
1408      CaseBlock CB(Condition, BOp->getOperand(0),
1409                   BOp->getOperand(1), NULL, TBB, FBB, CurBB);
1410      SwitchCases.push_back(CB);
1411      return;
1412    }
1413  }
1414
1415  // Create a CaseBlock record representing this branch.
1416  CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()),
1417               NULL, TBB, FBB, CurBB);
1418  SwitchCases.push_back(CB);
1419}
1420
1421/// FindMergedConditions - If Cond is an expression like
1422void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
1423                                               MachineBasicBlock *TBB,
1424                                               MachineBasicBlock *FBB,
1425                                               MachineBasicBlock *CurBB,
1426                                               MachineBasicBlock *SwitchBB,
1427                                               unsigned Opc) {
1428  // If this node is not part of the or/and tree, emit it as a branch.
1429  const Instruction *BOp = dyn_cast<Instruction>(Cond);
1430  if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
1431      (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() ||
1432      BOp->getParent() != CurBB->getBasicBlock() ||
1433      !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
1434      !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
1435    EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB);
1436    return;
1437  }
1438
1439  //  Create TmpBB after CurBB.
1440  MachineFunction::iterator BBI = CurBB;
1441  MachineFunction &MF = DAG.getMachineFunction();
1442  MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
1443  CurBB->getParent()->insert(++BBI, TmpBB);
1444
1445  if (Opc == Instruction::Or) {
1446    // Codegen X | Y as:
1447    //   jmp_if_X TBB
1448    //   jmp TmpBB
1449    // TmpBB:
1450    //   jmp_if_Y TBB
1451    //   jmp FBB
1452    //
1453
1454    // Emit the LHS condition.
1455    FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc);
1456
1457    // Emit the RHS condition into TmpBB.
1458    FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc);
1459  } else {
1460    assert(Opc == Instruction::And && "Unknown merge op!");
1461    // Codegen X & Y as:
1462    //   jmp_if_X TmpBB
1463    //   jmp FBB
1464    // TmpBB:
1465    //   jmp_if_Y TBB
1466    //   jmp FBB
1467    //
1468    //  This requires creation of TmpBB after CurBB.
1469
1470    // Emit the LHS condition.
1471    FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc);
1472
1473    // Emit the RHS condition into TmpBB.
1474    FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc);
1475  }
1476}
1477
1478/// If the set of cases should be emitted as a series of branches, return true.
1479/// If we should emit this as a bunch of and/or'd together conditions, return
1480/// false.
1481bool
1482SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) {
1483  if (Cases.size() != 2) return true;
1484
1485  // If this is two comparisons of the same values or'd or and'd together, they
1486  // will get folded into a single comparison, so don't emit two blocks.
1487  if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
1488       Cases[0].CmpRHS == Cases[1].CmpRHS) ||
1489      (Cases[0].CmpRHS == Cases[1].CmpLHS &&
1490       Cases[0].CmpLHS == Cases[1].CmpRHS)) {
1491    return false;
1492  }
1493
1494  // Handle: (X != null) | (Y != null) --> (X|Y) != 0
1495  // Handle: (X == null) & (Y == null) --> (X|Y) == 0
1496  if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
1497      Cases[0].CC == Cases[1].CC &&
1498      isa<Constant>(Cases[0].CmpRHS) &&
1499      cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
1500    if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
1501      return false;
1502    if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
1503      return false;
1504  }
1505
1506  return true;
1507}
1508
1509void SelectionDAGBuilder::visitBr(const BranchInst &I) {
1510  MachineBasicBlock *BrMBB = FuncInfo.MBB;
1511
1512  // Update machine-CFG edges.
1513  MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
1514
1515  // Figure out which block is immediately after the current one.
1516  MachineBasicBlock *NextBlock = 0;
1517  MachineFunction::iterator BBI = BrMBB;
1518  if (++BBI != FuncInfo.MF->end())
1519    NextBlock = BBI;
1520
1521  if (I.isUnconditional()) {
1522    // Update machine-CFG edges.
1523    BrMBB->addSuccessor(Succ0MBB);
1524
1525    // If this is not a fall-through branch, emit the branch.
1526    if (Succ0MBB != NextBlock)
1527      DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
1528                              MVT::Other, getControlRoot(),
1529                              DAG.getBasicBlock(Succ0MBB)));
1530
1531    return;
1532  }
1533
1534  // If this condition is one of the special cases we handle, do special stuff
1535  // now.
1536  const Value *CondVal = I.getCondition();
1537  MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
1538
1539  // If this is a series of conditions that are or'd or and'd together, emit
1540  // this as a sequence of branches instead of setcc's with and/or operations.
1541  // As long as jumps are not expensive, this should improve performance.
1542  // For example, instead of something like:
1543  //     cmp A, B
1544  //     C = seteq
1545  //     cmp D, E
1546  //     F = setle
1547  //     or C, F
1548  //     jnz foo
1549  // Emit:
1550  //     cmp A, B
1551  //     je foo
1552  //     cmp D, E
1553  //     jle foo
1554  //
1555  if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
1556    if (!TM.getTargetLowering()->isJumpExpensive() &&
1557        BOp->hasOneUse() &&
1558        (BOp->getOpcode() == Instruction::And ||
1559         BOp->getOpcode() == Instruction::Or)) {
1560      FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB,
1561                           BOp->getOpcode());
1562      // If the compares in later blocks need to use values not currently
1563      // exported from this block, export them now.  This block should always
1564      // be the first entry.
1565      assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
1566
1567      // Allow some cases to be rejected.
1568      if (ShouldEmitAsBranches(SwitchCases)) {
1569        for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
1570          ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
1571          ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
1572        }
1573
1574        // Emit the branch for this block.
1575        visitSwitchCase(SwitchCases[0], BrMBB);
1576        SwitchCases.erase(SwitchCases.begin());
1577        return;
1578      }
1579
1580      // Okay, we decided not to do this, remove any inserted MBB's and clear
1581      // SwitchCases.
1582      for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
1583        FuncInfo.MF->erase(SwitchCases[i].ThisBB);
1584
1585      SwitchCases.clear();
1586    }
1587  }
1588
1589  // Create a CaseBlock record representing this branch.
1590  CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
1591               NULL, Succ0MBB, Succ1MBB, BrMBB);
1592
1593  // Use visitSwitchCase to actually insert the fast branch sequence for this
1594  // cond branch.
1595  visitSwitchCase(CB, BrMBB);
1596}
1597
1598/// visitSwitchCase - Emits the necessary code to represent a single node in
1599/// the binary search tree resulting from lowering a switch instruction.
1600void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
1601                                          MachineBasicBlock *SwitchBB) {
1602  SDValue Cond;
1603  SDValue CondLHS = getValue(CB.CmpLHS);
1604  SDLoc dl = getCurSDLoc();
1605
1606  // Build the setcc now.
1607  if (CB.CmpMHS == NULL) {
1608    // Fold "(X == true)" to X and "(X == false)" to !X to
1609    // handle common cases produced by branch lowering.
1610    if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
1611        CB.CC == ISD::SETEQ)
1612      Cond = CondLHS;
1613    else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
1614             CB.CC == ISD::SETEQ) {
1615      SDValue True = DAG.getConstant(1, CondLHS.getValueType());
1616      Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
1617    } else
1618      Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
1619  } else {
1620    assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
1621
1622    const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
1623    const APInt& High  = cast<ConstantInt>(CB.CmpRHS)->getValue();
1624
1625    SDValue CmpOp = getValue(CB.CmpMHS);
1626    EVT VT = CmpOp.getValueType();
1627
1628    if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
1629      Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, VT),
1630                          ISD::SETLE);
1631    } else {
1632      SDValue SUB = DAG.getNode(ISD::SUB, dl,
1633                                VT, CmpOp, DAG.getConstant(Low, VT));
1634      Cond = DAG.getSetCC(dl, MVT::i1, SUB,
1635                          DAG.getConstant(High-Low, VT), ISD::SETULE);
1636    }
1637  }
1638
1639  // Update successor info
1640  addSuccessorWithWeight(SwitchBB, CB.TrueBB, CB.TrueWeight);
1641  // TrueBB and FalseBB are always different unless the incoming IR is
1642  // degenerate. This only happens when running llc on weird IR.
1643  if (CB.TrueBB != CB.FalseBB)
1644    addSuccessorWithWeight(SwitchBB, CB.FalseBB, CB.FalseWeight);
1645
1646  // Set NextBlock to be the MBB immediately after the current one, if any.
1647  // This is used to avoid emitting unnecessary branches to the next block.
1648  MachineBasicBlock *NextBlock = 0;
1649  MachineFunction::iterator BBI = SwitchBB;
1650  if (++BBI != FuncInfo.MF->end())
1651    NextBlock = BBI;
1652
1653  // If the lhs block is the next block, invert the condition so that we can
1654  // fall through to the lhs instead of the rhs block.
1655  if (CB.TrueBB == NextBlock) {
1656    std::swap(CB.TrueBB, CB.FalseBB);
1657    SDValue True = DAG.getConstant(1, Cond.getValueType());
1658    Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
1659  }
1660
1661  SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
1662                               MVT::Other, getControlRoot(), Cond,
1663                               DAG.getBasicBlock(CB.TrueBB));
1664
1665  // Insert the false branch. Do this even if it's a fall through branch,
1666  // this makes it easier to do DAG optimizations which require inverting
1667  // the branch condition.
1668  BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
1669                       DAG.getBasicBlock(CB.FalseBB));
1670
1671  DAG.setRoot(BrCond);
1672}
1673
1674/// visitJumpTable - Emit JumpTable node in the current MBB
1675void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) {
1676  // Emit the code for the jump table
1677  assert(JT.Reg != -1U && "Should lower JT Header first!");
1678  EVT PTy = TM.getTargetLowering()->getPointerTy();
1679  SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(),
1680                                     JT.Reg, PTy);
1681  SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
1682  SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(),
1683                                    MVT::Other, Index.getValue(1),
1684                                    Table, Index);
1685  DAG.setRoot(BrJumpTable);
1686}
1687
1688/// visitJumpTableHeader - This function emits necessary code to produce index
1689/// in the JumpTable from switch case.
1690void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT,
1691                                               JumpTableHeader &JTH,
1692                                               MachineBasicBlock *SwitchBB) {
1693  // Subtract the lowest switch case value from the value being switched on and
1694  // conditional branch to default mbb if the result is greater than the
1695  // difference between smallest and largest cases.
1696  SDValue SwitchOp = getValue(JTH.SValue);
1697  EVT VT = SwitchOp.getValueType();
1698  SDValue Sub = DAG.getNode(ISD::SUB, getCurSDLoc(), VT, SwitchOp,
1699                            DAG.getConstant(JTH.First, VT));
1700
1701  // The SDNode we just created, which holds the value being switched on minus
1702  // the smallest case value, needs to be copied to a virtual register so it
1703  // can be used as an index into the jump table in a subsequent basic block.
1704  // This value may be smaller or larger than the target's pointer type, and
1705  // therefore require extension or truncating.
1706  const TargetLowering *TLI = TM.getTargetLowering();
1707  SwitchOp = DAG.getZExtOrTrunc(Sub, getCurSDLoc(), TLI->getPointerTy());
1708
1709  unsigned JumpTableReg = FuncInfo.CreateReg(TLI->getPointerTy());
1710  SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurSDLoc(),
1711                                    JumpTableReg, SwitchOp);
1712  JT.Reg = JumpTableReg;
1713
1714  // Emit the range check for the jump table, and branch to the default block
1715  // for the switch statement if the value being switched on exceeds the largest
1716  // case in the switch.
1717  SDValue CMP = DAG.getSetCC(getCurSDLoc(),
1718                             TLI->getSetCCResultType(*DAG.getContext(),
1719                                                     Sub.getValueType()),
1720                             Sub,
1721                             DAG.getConstant(JTH.Last - JTH.First,VT),
1722                             ISD::SETUGT);
1723
1724  // Set NextBlock to be the MBB immediately after the current one, if any.
1725  // This is used to avoid emitting unnecessary branches to the next block.
1726  MachineBasicBlock *NextBlock = 0;
1727  MachineFunction::iterator BBI = SwitchBB;
1728
1729  if (++BBI != FuncInfo.MF->end())
1730    NextBlock = BBI;
1731
1732  SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurSDLoc(),
1733                               MVT::Other, CopyTo, CMP,
1734                               DAG.getBasicBlock(JT.Default));
1735
1736  if (JT.MBB != NextBlock)
1737    BrCond = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, BrCond,
1738                         DAG.getBasicBlock(JT.MBB));
1739
1740  DAG.setRoot(BrCond);
1741}
1742
1743/// Codegen a new tail for a stack protector check ParentMBB which has had its
1744/// tail spliced into a stack protector check success bb.
1745///
1746/// For a high level explanation of how this fits into the stack protector
1747/// generation see the comment on the declaration of class
1748/// StackProtectorDescriptor.
1749void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD,
1750                                                  MachineBasicBlock *ParentBB) {
1751
1752  // First create the loads to the guard/stack slot for the comparison.
1753  const TargetLowering *TLI = TM.getTargetLowering();
1754  EVT PtrTy = TLI->getPointerTy();
1755
1756  MachineFrameInfo *MFI = ParentBB->getParent()->getFrameInfo();
1757  int FI = MFI->getStackProtectorIndex();
1758
1759  const Value *IRGuard = SPD.getGuard();
1760  SDValue GuardPtr = getValue(IRGuard);
1761  SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy);
1762
1763  unsigned Align =
1764    TLI->getDataLayout()->getPrefTypeAlignment(IRGuard->getType());
1765  SDValue Guard = DAG.getLoad(PtrTy, getCurSDLoc(), DAG.getEntryNode(),
1766                              GuardPtr, MachinePointerInfo(IRGuard, 0),
1767                              true, false, false, Align);
1768
1769  SDValue StackSlot = DAG.getLoad(PtrTy, getCurSDLoc(), DAG.getEntryNode(),
1770                                  StackSlotPtr,
1771                                  MachinePointerInfo::getFixedStack(FI),
1772                                  true, false, false, Align);
1773
1774  // Perform the comparison via a subtract/getsetcc.
1775  EVT VT = Guard.getValueType();
1776  SDValue Sub = DAG.getNode(ISD::SUB, getCurSDLoc(), VT, Guard, StackSlot);
1777
1778  SDValue Cmp = DAG.getSetCC(getCurSDLoc(),
1779                             TLI->getSetCCResultType(*DAG.getContext(),
1780                                                     Sub.getValueType()),
1781                             Sub, DAG.getConstant(0, VT),
1782                             ISD::SETNE);
1783
1784  // If the sub is not 0, then we know the guard/stackslot do not equal, so
1785  // branch to failure MBB.
1786  SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurSDLoc(),
1787                               MVT::Other, StackSlot.getOperand(0),
1788                               Cmp, DAG.getBasicBlock(SPD.getFailureMBB()));
1789  // Otherwise branch to success MBB.
1790  SDValue Br = DAG.getNode(ISD::BR, getCurSDLoc(),
1791                           MVT::Other, BrCond,
1792                           DAG.getBasicBlock(SPD.getSuccessMBB()));
1793
1794  DAG.setRoot(Br);
1795}
1796
1797/// Codegen the failure basic block for a stack protector check.
1798///
1799/// A failure stack protector machine basic block consists simply of a call to
1800/// __stack_chk_fail().
1801///
1802/// For a high level explanation of how this fits into the stack protector
1803/// generation see the comment on the declaration of class
1804/// StackProtectorDescriptor.
1805void
1806SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) {
1807  const TargetLowering *TLI = TM.getTargetLowering();
1808  SDValue Chain = TLI->makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL,
1809                                   MVT::isVoid, 0, 0, false, getCurSDLoc(),
1810                                   false, false).second;
1811  DAG.setRoot(Chain);
1812}
1813
1814/// visitBitTestHeader - This function emits necessary code to produce value
1815/// suitable for "bit tests"
1816void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
1817                                             MachineBasicBlock *SwitchBB) {
1818  // Subtract the minimum value
1819  SDValue SwitchOp = getValue(B.SValue);
1820  EVT VT = SwitchOp.getValueType();
1821  SDValue Sub = DAG.getNode(ISD::SUB, getCurSDLoc(), VT, SwitchOp,
1822                            DAG.getConstant(B.First, VT));
1823
1824  // Check range
1825  const TargetLowering *TLI = TM.getTargetLowering();
1826  SDValue RangeCmp = DAG.getSetCC(getCurSDLoc(),
1827                                  TLI->getSetCCResultType(*DAG.getContext(),
1828                                                         Sub.getValueType()),
1829                                  Sub, DAG.getConstant(B.Range, VT),
1830                                  ISD::SETUGT);
1831
1832  // Determine the type of the test operands.
1833  bool UsePtrType = false;
1834  if (!TLI->isTypeLegal(VT))
1835    UsePtrType = true;
1836  else {
1837    for (unsigned i = 0, e = B.Cases.size(); i != e; ++i)
1838      if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) {
1839        // Switch table case range are encoded into series of masks.
1840        // Just use pointer type, it's guaranteed to fit.
1841        UsePtrType = true;
1842        break;
1843      }
1844  }
1845  if (UsePtrType) {
1846    VT = TLI->getPointerTy();
1847    Sub = DAG.getZExtOrTrunc(Sub, getCurSDLoc(), VT);
1848  }
1849
1850  B.RegVT = VT.getSimpleVT();
1851  B.Reg = FuncInfo.CreateReg(B.RegVT);
1852  SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurSDLoc(),
1853                                    B.Reg, Sub);
1854
1855  // Set NextBlock to be the MBB immediately after the current one, if any.
1856  // This is used to avoid emitting unnecessary branches to the next block.
1857  MachineBasicBlock *NextBlock = 0;
1858  MachineFunction::iterator BBI = SwitchBB;
1859  if (++BBI != FuncInfo.MF->end())
1860    NextBlock = BBI;
1861
1862  MachineBasicBlock* MBB = B.Cases[0].ThisBB;
1863
1864  addSuccessorWithWeight(SwitchBB, B.Default);
1865  addSuccessorWithWeight(SwitchBB, MBB);
1866
1867  SDValue BrRange = DAG.getNode(ISD::BRCOND, getCurSDLoc(),
1868                                MVT::Other, CopyTo, RangeCmp,
1869                                DAG.getBasicBlock(B.Default));
1870
1871  if (MBB != NextBlock)
1872    BrRange = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, CopyTo,
1873                          DAG.getBasicBlock(MBB));
1874
1875  DAG.setRoot(BrRange);
1876}
1877
1878/// visitBitTestCase - this function produces one "bit test"
1879void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB,
1880                                           MachineBasicBlock* NextMBB,
1881                                           uint32_t BranchWeightToNext,
1882                                           unsigned Reg,
1883                                           BitTestCase &B,
1884                                           MachineBasicBlock *SwitchBB) {
1885  MVT VT = BB.RegVT;
1886  SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(),
1887                                       Reg, VT);
1888  SDValue Cmp;
1889  unsigned PopCount = CountPopulation_64(B.Mask);
1890  const TargetLowering *TLI = TM.getTargetLowering();
1891  if (PopCount == 1) {
1892    // Testing for a single bit; just compare the shift count with what it
1893    // would need to be to shift a 1 bit in that position.
1894    Cmp = DAG.getSetCC(getCurSDLoc(),
1895                       TLI->getSetCCResultType(*DAG.getContext(), VT),
1896                       ShiftOp,
1897                       DAG.getConstant(countTrailingZeros(B.Mask), VT),
1898                       ISD::SETEQ);
1899  } else if (PopCount == BB.Range) {
1900    // There is only one zero bit in the range, test for it directly.
1901    Cmp = DAG.getSetCC(getCurSDLoc(),
1902                       TLI->getSetCCResultType(*DAG.getContext(), VT),
1903                       ShiftOp,
1904                       DAG.getConstant(CountTrailingOnes_64(B.Mask), VT),
1905                       ISD::SETNE);
1906  } else {
1907    // Make desired shift
1908    SDValue SwitchVal = DAG.getNode(ISD::SHL, getCurSDLoc(), VT,
1909                                    DAG.getConstant(1, VT), ShiftOp);
1910
1911    // Emit bit tests and jumps
1912    SDValue AndOp = DAG.getNode(ISD::AND, getCurSDLoc(),
1913                                VT, SwitchVal, DAG.getConstant(B.Mask, VT));
1914    Cmp = DAG.getSetCC(getCurSDLoc(),
1915                       TLI->getSetCCResultType(*DAG.getContext(), VT),
1916                       AndOp, DAG.getConstant(0, VT),
1917                       ISD::SETNE);
1918  }
1919
1920  // The branch weight from SwitchBB to B.TargetBB is B.ExtraWeight.
1921  addSuccessorWithWeight(SwitchBB, B.TargetBB, B.ExtraWeight);
1922  // The branch weight from SwitchBB to NextMBB is BranchWeightToNext.
1923  addSuccessorWithWeight(SwitchBB, NextMBB, BranchWeightToNext);
1924
1925  SDValue BrAnd = DAG.getNode(ISD::BRCOND, getCurSDLoc(),
1926                              MVT::Other, getControlRoot(),
1927                              Cmp, DAG.getBasicBlock(B.TargetBB));
1928
1929  // Set NextBlock to be the MBB immediately after the current one, if any.
1930  // This is used to avoid emitting unnecessary branches to the next block.
1931  MachineBasicBlock *NextBlock = 0;
1932  MachineFunction::iterator BBI = SwitchBB;
1933  if (++BBI != FuncInfo.MF->end())
1934    NextBlock = BBI;
1935
1936  if (NextMBB != NextBlock)
1937    BrAnd = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, BrAnd,
1938                        DAG.getBasicBlock(NextMBB));
1939
1940  DAG.setRoot(BrAnd);
1941}
1942
1943void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
1944  MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
1945
1946  // Retrieve successors.
1947  MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
1948  MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)];
1949
1950  const Value *Callee(I.getCalledValue());
1951  const Function *Fn = dyn_cast<Function>(Callee);
1952  if (isa<InlineAsm>(Callee))
1953    visitInlineAsm(&I);
1954  else if (Fn && Fn->isIntrinsic()) {
1955    assert(Fn->getIntrinsicID() == Intrinsic::donothing);
1956    // Ignore invokes to @llvm.donothing: jump directly to the next BB.
1957  } else
1958    LowerCallTo(&I, getValue(Callee), false, LandingPad);
1959
1960  // If the value of the invoke is used outside of its defining block, make it
1961  // available as a virtual register.
1962  CopyToExportRegsIfNeeded(&I);
1963
1964  // Update successor info
1965  addSuccessorWithWeight(InvokeMBB, Return);
1966  addSuccessorWithWeight(InvokeMBB, LandingPad);
1967
1968  // Drop into normal successor.
1969  DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
1970                          MVT::Other, getControlRoot(),
1971                          DAG.getBasicBlock(Return)));
1972}
1973
1974void SelectionDAGBuilder::visitResume(const ResumeInst &RI) {
1975  llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!");
1976}
1977
1978void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) {
1979  assert(FuncInfo.MBB->isLandingPad() &&
1980         "Call to landingpad not in landing pad!");
1981
1982  MachineBasicBlock *MBB = FuncInfo.MBB;
1983  MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
1984  AddLandingPadInfo(LP, MMI, MBB);
1985
1986  // If there aren't registers to copy the values into (e.g., during SjLj
1987  // exceptions), then don't bother to create these DAG nodes.
1988  const TargetLowering *TLI = TM.getTargetLowering();
1989  if (TLI->getExceptionPointerRegister() == 0 &&
1990      TLI->getExceptionSelectorRegister() == 0)
1991    return;
1992
1993  SmallVector<EVT, 2> ValueVTs;
1994  ComputeValueVTs(*TLI, LP.getType(), ValueVTs);
1995  assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported");
1996
1997  // Get the two live-in registers as SDValues. The physregs have already been
1998  // copied into virtual registers.
1999  SDValue Ops[2];
2000  Ops[0] = DAG.getZExtOrTrunc(
2001    DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(),
2002                       FuncInfo.ExceptionPointerVirtReg, TLI->getPointerTy()),
2003    getCurSDLoc(), ValueVTs[0]);
2004  Ops[1] = DAG.getZExtOrTrunc(
2005    DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(),
2006                       FuncInfo.ExceptionSelectorVirtReg, TLI->getPointerTy()),
2007    getCurSDLoc(), ValueVTs[1]);
2008
2009  // Merge into one.
2010  SDValue Res = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
2011                            DAG.getVTList(&ValueVTs[0], ValueVTs.size()),
2012                            &Ops[0], 2);
2013  setValue(&LP, Res);
2014}
2015
2016/// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for
2017/// small case ranges).
2018bool SelectionDAGBuilder::handleSmallSwitchRange(CaseRec& CR,
2019                                                 CaseRecVector& WorkList,
2020                                                 const Value* SV,
2021                                                 MachineBasicBlock *Default,
2022                                                 MachineBasicBlock *SwitchBB) {
2023  // Size is the number of Cases represented by this range.
2024  size_t Size = CR.Range.second - CR.Range.first;
2025  if (Size > 3)
2026    return false;
2027
2028  // Get the MachineFunction which holds the current MBB.  This is used when
2029  // inserting any additional MBBs necessary to represent the switch.
2030  MachineFunction *CurMF = FuncInfo.MF;
2031
2032  // Figure out which block is immediately after the current one.
2033  MachineBasicBlock *NextBlock = 0;
2034  MachineFunction::iterator BBI = CR.CaseBB;
2035
2036  if (++BBI != FuncInfo.MF->end())
2037    NextBlock = BBI;
2038
2039  BranchProbabilityInfo *BPI = FuncInfo.BPI;
2040  // If any two of the cases has the same destination, and if one value
2041  // is the same as the other, but has one bit unset that the other has set,
2042  // use bit manipulation to do two compares at once.  For example:
2043  // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
2044  // TODO: This could be extended to merge any 2 cases in switches with 3 cases.
2045  // TODO: Handle cases where CR.CaseBB != SwitchBB.
2046  if (Size == 2 && CR.CaseBB == SwitchBB) {
2047    Case &Small = *CR.Range.first;
2048    Case &Big = *(CR.Range.second-1);
2049
2050    if (Small.Low == Small.High && Big.Low == Big.High && Small.BB == Big.BB) {
2051      const APInt& SmallValue = cast<ConstantInt>(Small.Low)->getValue();
2052      const APInt& BigValue = cast<ConstantInt>(Big.Low)->getValue();
2053
2054      // Check that there is only one bit different.
2055      if (BigValue.countPopulation() == SmallValue.countPopulation() + 1 &&
2056          (SmallValue | BigValue) == BigValue) {
2057        // Isolate the common bit.
2058        APInt CommonBit = BigValue & ~SmallValue;
2059        assert((SmallValue | CommonBit) == BigValue &&
2060               CommonBit.countPopulation() == 1 && "Not a common bit?");
2061
2062        SDValue CondLHS = getValue(SV);
2063        EVT VT = CondLHS.getValueType();
2064        SDLoc DL = getCurSDLoc();
2065
2066        SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
2067                                 DAG.getConstant(CommonBit, VT));
2068        SDValue Cond = DAG.getSetCC(DL, MVT::i1,
2069                                    Or, DAG.getConstant(BigValue, VT),
2070                                    ISD::SETEQ);
2071
2072        // Update successor info.
2073        // Both Small and Big will jump to Small.BB, so we sum up the weights.
2074        addSuccessorWithWeight(SwitchBB, Small.BB,
2075                               Small.ExtraWeight + Big.ExtraWeight);
2076        addSuccessorWithWeight(SwitchBB, Default,
2077          // The default destination is the first successor in IR.
2078          BPI ? BPI->getEdgeWeight(SwitchBB->getBasicBlock(), (unsigned)0) : 0);
2079
2080        // Insert the true branch.
2081        SDValue BrCond = DAG.getNode(ISD::BRCOND, DL, MVT::Other,
2082                                     getControlRoot(), Cond,
2083                                     DAG.getBasicBlock(Small.BB));
2084
2085        // Insert the false branch.
2086        BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
2087                             DAG.getBasicBlock(Default));
2088
2089        DAG.setRoot(BrCond);
2090        return true;
2091      }
2092    }
2093  }
2094
2095  // Order cases by weight so the most likely case will be checked first.
2096  uint32_t UnhandledWeights = 0;
2097  if (BPI) {
2098    for (CaseItr I = CR.Range.first, IE = CR.Range.second; I != IE; ++I) {
2099      uint32_t IWeight = I->ExtraWeight;
2100      UnhandledWeights += IWeight;
2101      for (CaseItr J = CR.Range.first; J < I; ++J) {
2102        uint32_t JWeight = J->ExtraWeight;
2103        if (IWeight > JWeight)
2104          std::swap(*I, *J);
2105      }
2106    }
2107  }
2108  // Rearrange the case blocks so that the last one falls through if possible.
2109  Case &BackCase = *(CR.Range.second-1);
2110  if (Size > 1 &&
2111      NextBlock && Default != NextBlock && BackCase.BB != NextBlock) {
2112    // The last case block won't fall through into 'NextBlock' if we emit the
2113    // branches in this order.  See if rearranging a case value would help.
2114    // We start at the bottom as it's the case with the least weight.
2115    for (Case *I = &*(CR.Range.second-2), *E = &*CR.Range.first-1; I != E; --I)
2116      if (I->BB == NextBlock) {
2117        std::swap(*I, BackCase);
2118        break;
2119      }
2120  }
2121
2122  // Create a CaseBlock record representing a conditional branch to
2123  // the Case's target mbb if the value being switched on SV is equal
2124  // to C.
2125  MachineBasicBlock *CurBlock = CR.CaseBB;
2126  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) {
2127    MachineBasicBlock *FallThrough;
2128    if (I != E-1) {
2129      FallThrough = CurMF->CreateMachineBasicBlock(CurBlock->getBasicBlock());
2130      CurMF->insert(BBI, FallThrough);
2131
2132      // Put SV in a virtual register to make it available from the new blocks.
2133      ExportFromCurrentBlock(SV);
2134    } else {
2135      // If the last case doesn't match, go to the default block.
2136      FallThrough = Default;
2137    }
2138
2139    const Value *RHS, *LHS, *MHS;
2140    ISD::CondCode CC;
2141    if (I->High == I->Low) {
2142      // This is just small small case range :) containing exactly 1 case
2143      CC = ISD::SETEQ;
2144      LHS = SV; RHS = I->High; MHS = NULL;
2145    } else {
2146      CC = ISD::SETLE;
2147      LHS = I->Low; MHS = SV; RHS = I->High;
2148    }
2149
2150    // The false weight should be sum of all un-handled cases.
2151    UnhandledWeights -= I->ExtraWeight;
2152    CaseBlock CB(CC, LHS, RHS, MHS, /* truebb */ I->BB, /* falsebb */ FallThrough,
2153                 /* me */ CurBlock,
2154                 /* trueweight */ I->ExtraWeight,
2155                 /* falseweight */ UnhandledWeights);
2156
2157    // If emitting the first comparison, just call visitSwitchCase to emit the
2158    // code into the current block.  Otherwise, push the CaseBlock onto the
2159    // vector to be later processed by SDISel, and insert the node's MBB
2160    // before the next MBB.
2161    if (CurBlock == SwitchBB)
2162      visitSwitchCase(CB, SwitchBB);
2163    else
2164      SwitchCases.push_back(CB);
2165
2166    CurBlock = FallThrough;
2167  }
2168
2169  return true;
2170}
2171
2172static inline bool areJTsAllowed(const TargetLowering &TLI) {
2173  return TLI.supportJumpTables() &&
2174          (TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) ||
2175           TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other));
2176}
2177
2178static APInt ComputeRange(const APInt &First, const APInt &Last) {
2179  uint32_t BitWidth = std::max(Last.getBitWidth(), First.getBitWidth()) + 1;
2180  APInt LastExt = Last.sext(BitWidth), FirstExt = First.sext(BitWidth);
2181  return (LastExt - FirstExt + 1ULL);
2182}
2183
2184/// handleJTSwitchCase - Emit jumptable for current switch case range
2185bool SelectionDAGBuilder::handleJTSwitchCase(CaseRec &CR,
2186                                             CaseRecVector &WorkList,
2187                                             const Value *SV,
2188                                             MachineBasicBlock *Default,
2189                                             MachineBasicBlock *SwitchBB) {
2190  Case& FrontCase = *CR.Range.first;
2191  Case& BackCase  = *(CR.Range.second-1);
2192
2193  const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue();
2194  const APInt &Last  = cast<ConstantInt>(BackCase.High)->getValue();
2195
2196  APInt TSize(First.getBitWidth(), 0);
2197  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I)
2198    TSize += I->size();
2199
2200  const TargetLowering *TLI = TM.getTargetLowering();
2201  if (!areJTsAllowed(*TLI) || TSize.ult(TLI->getMinimumJumpTableEntries()))
2202    return false;
2203
2204  APInt Range = ComputeRange(First, Last);
2205  // The density is TSize / Range. Require at least 40%.
2206  // It should not be possible for IntTSize to saturate for sane code, but make
2207  // sure we handle Range saturation correctly.
2208  uint64_t IntRange = Range.getLimitedValue(UINT64_MAX/10);
2209  uint64_t IntTSize = TSize.getLimitedValue(UINT64_MAX/10);
2210  if (IntTSize * 10 < IntRange * 4)
2211    return false;
2212
2213  DEBUG(dbgs() << "Lowering jump table\n"
2214               << "First entry: " << First << ". Last entry: " << Last << '\n'
2215               << "Range: " << Range << ". Size: " << TSize << ".\n\n");
2216
2217  // Get the MachineFunction which holds the current MBB.  This is used when
2218  // inserting any additional MBBs necessary to represent the switch.
2219  MachineFunction *CurMF = FuncInfo.MF;
2220
2221  // Figure out which block is immediately after the current one.
2222  MachineFunction::iterator BBI = CR.CaseBB;
2223  ++BBI;
2224
2225  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2226
2227  // Create a new basic block to hold the code for loading the address
2228  // of the jump table, and jumping to it.  Update successor information;
2229  // we will either branch to the default case for the switch, or the jump
2230  // table.
2231  MachineBasicBlock *JumpTableBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2232  CurMF->insert(BBI, JumpTableBB);
2233
2234  addSuccessorWithWeight(CR.CaseBB, Default);
2235  addSuccessorWithWeight(CR.CaseBB, JumpTableBB);
2236
2237  // Build a vector of destination BBs, corresponding to each target
2238  // of the jump table. If the value of the jump table slot corresponds to
2239  // a case statement, push the case's BB onto the vector, otherwise, push
2240  // the default BB.
2241  std::vector<MachineBasicBlock*> DestBBs;
2242  APInt TEI = First;
2243  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) {
2244    const APInt &Low = cast<ConstantInt>(I->Low)->getValue();
2245    const APInt &High = cast<ConstantInt>(I->High)->getValue();
2246
2247    if (Low.sle(TEI) && TEI.sle(High)) {
2248      DestBBs.push_back(I->BB);
2249      if (TEI==High)
2250        ++I;
2251    } else {
2252      DestBBs.push_back(Default);
2253    }
2254  }
2255
2256  // Calculate weight for each unique destination in CR.
2257  DenseMap<MachineBasicBlock*, uint32_t> DestWeights;
2258  if (FuncInfo.BPI)
2259    for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) {
2260      DenseMap<MachineBasicBlock*, uint32_t>::iterator Itr =
2261          DestWeights.find(I->BB);
2262      if (Itr != DestWeights.end())
2263        Itr->second += I->ExtraWeight;
2264      else
2265        DestWeights[I->BB] = I->ExtraWeight;
2266    }
2267
2268  // Update successor info. Add one edge to each unique successor.
2269  BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs());
2270  for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(),
2271         E = DestBBs.end(); I != E; ++I) {
2272    if (!SuccsHandled[(*I)->getNumber()]) {
2273      SuccsHandled[(*I)->getNumber()] = true;
2274      DenseMap<MachineBasicBlock*, uint32_t>::iterator Itr =
2275          DestWeights.find(*I);
2276      addSuccessorWithWeight(JumpTableBB, *I,
2277                             Itr != DestWeights.end() ? Itr->second : 0);
2278    }
2279  }
2280
2281  // Create a jump table index for this jump table.
2282  unsigned JTEncoding = TLI->getJumpTableEncoding();
2283  unsigned JTI = CurMF->getOrCreateJumpTableInfo(JTEncoding)
2284                       ->createJumpTableIndex(DestBBs);
2285
2286  // Set the jump table information so that we can codegen it as a second
2287  // MachineBasicBlock
2288  JumpTable JT(-1U, JTI, JumpTableBB, Default);
2289  JumpTableHeader JTH(First, Last, SV, CR.CaseBB, (CR.CaseBB == SwitchBB));
2290  if (CR.CaseBB == SwitchBB)
2291    visitJumpTableHeader(JT, JTH, SwitchBB);
2292
2293  JTCases.push_back(JumpTableBlock(JTH, JT));
2294  return true;
2295}
2296
2297/// handleBTSplitSwitchCase - emit comparison and split binary search tree into
2298/// 2 subtrees.
2299bool SelectionDAGBuilder::handleBTSplitSwitchCase(CaseRec& CR,
2300                                                  CaseRecVector& WorkList,
2301                                                  const Value* SV,
2302                                                  MachineBasicBlock* Default,
2303                                                  MachineBasicBlock* SwitchBB) {
2304  // Get the MachineFunction which holds the current MBB.  This is used when
2305  // inserting any additional MBBs necessary to represent the switch.
2306  MachineFunction *CurMF = FuncInfo.MF;
2307
2308  // Figure out which block is immediately after the current one.
2309  MachineFunction::iterator BBI = CR.CaseBB;
2310  ++BBI;
2311
2312  Case& FrontCase = *CR.Range.first;
2313  Case& BackCase  = *(CR.Range.second-1);
2314  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2315
2316  // Size is the number of Cases represented by this range.
2317  unsigned Size = CR.Range.second - CR.Range.first;
2318
2319  const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue();
2320  const APInt &Last  = cast<ConstantInt>(BackCase.High)->getValue();
2321  double FMetric = 0;
2322  CaseItr Pivot = CR.Range.first + Size/2;
2323
2324  // Select optimal pivot, maximizing sum density of LHS and RHS. This will
2325  // (heuristically) allow us to emit JumpTable's later.
2326  APInt TSize(First.getBitWidth(), 0);
2327  for (CaseItr I = CR.Range.first, E = CR.Range.second;
2328       I!=E; ++I)
2329    TSize += I->size();
2330
2331  APInt LSize = FrontCase.size();
2332  APInt RSize = TSize-LSize;
2333  DEBUG(dbgs() << "Selecting best pivot: \n"
2334               << "First: " << First << ", Last: " << Last <<'\n'
2335               << "LSize: " << LSize << ", RSize: " << RSize << '\n');
2336  for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second;
2337       J!=E; ++I, ++J) {
2338    const APInt &LEnd = cast<ConstantInt>(I->High)->getValue();
2339    const APInt &RBegin = cast<ConstantInt>(J->Low)->getValue();
2340    APInt Range = ComputeRange(LEnd, RBegin);
2341    assert((Range - 2ULL).isNonNegative() &&
2342           "Invalid case distance");
2343    // Use volatile double here to avoid excess precision issues on some hosts,
2344    // e.g. that use 80-bit X87 registers.
2345    volatile double LDensity =
2346       (double)LSize.roundToDouble() /
2347                           (LEnd - First + 1ULL).roundToDouble();
2348    volatile double RDensity =
2349      (double)RSize.roundToDouble() /
2350                           (Last - RBegin + 1ULL).roundToDouble();
2351    double Metric = Range.logBase2()*(LDensity+RDensity);
2352    // Should always split in some non-trivial place
2353    DEBUG(dbgs() <<"=>Step\n"
2354                 << "LEnd: " << LEnd << ", RBegin: " << RBegin << '\n'
2355                 << "LDensity: " << LDensity
2356                 << ", RDensity: " << RDensity << '\n'
2357                 << "Metric: " << Metric << '\n');
2358    if (FMetric < Metric) {
2359      Pivot = J;
2360      FMetric = Metric;
2361      DEBUG(dbgs() << "Current metric set to: " << FMetric << '\n');
2362    }
2363
2364    LSize += J->size();
2365    RSize -= J->size();
2366  }
2367
2368  const TargetLowering *TLI = TM.getTargetLowering();
2369  if (areJTsAllowed(*TLI)) {
2370    // If our case is dense we *really* should handle it earlier!
2371    assert((FMetric > 0) && "Should handle dense range earlier!");
2372  } else {
2373    Pivot = CR.Range.first + Size/2;
2374  }
2375
2376  CaseRange LHSR(CR.Range.first, Pivot);
2377  CaseRange RHSR(Pivot, CR.Range.second);
2378  const Constant *C = Pivot->Low;
2379  MachineBasicBlock *FalseBB = 0, *TrueBB = 0;
2380
2381  // We know that we branch to the LHS if the Value being switched on is
2382  // less than the Pivot value, C.  We use this to optimize our binary
2383  // tree a bit, by recognizing that if SV is greater than or equal to the
2384  // LHS's Case Value, and that Case Value is exactly one less than the
2385  // Pivot's Value, then we can branch directly to the LHS's Target,
2386  // rather than creating a leaf node for it.
2387  if ((LHSR.second - LHSR.first) == 1 &&
2388      LHSR.first->High == CR.GE &&
2389      cast<ConstantInt>(C)->getValue() ==
2390      (cast<ConstantInt>(CR.GE)->getValue() + 1LL)) {
2391    TrueBB = LHSR.first->BB;
2392  } else {
2393    TrueBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2394    CurMF->insert(BBI, TrueBB);
2395    WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR));
2396
2397    // Put SV in a virtual register to make it available from the new blocks.
2398    ExportFromCurrentBlock(SV);
2399  }
2400
2401  // Similar to the optimization above, if the Value being switched on is
2402  // known to be less than the Constant CR.LT, and the current Case Value
2403  // is CR.LT - 1, then we can branch directly to the target block for
2404  // the current Case Value, rather than emitting a RHS leaf node for it.
2405  if ((RHSR.second - RHSR.first) == 1 && CR.LT &&
2406      cast<ConstantInt>(RHSR.first->Low)->getValue() ==
2407      (cast<ConstantInt>(CR.LT)->getValue() - 1LL)) {
2408    FalseBB = RHSR.first->BB;
2409  } else {
2410    FalseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2411    CurMF->insert(BBI, FalseBB);
2412    WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR));
2413
2414    // Put SV in a virtual register to make it available from the new blocks.
2415    ExportFromCurrentBlock(SV);
2416  }
2417
2418  // Create a CaseBlock record representing a conditional branch to
2419  // the LHS node if the value being switched on SV is less than C.
2420  // Otherwise, branch to LHS.
2421  CaseBlock CB(ISD::SETLT, SV, C, NULL, TrueBB, FalseBB, CR.CaseBB);
2422
2423  if (CR.CaseBB == SwitchBB)
2424    visitSwitchCase(CB, SwitchBB);
2425  else
2426    SwitchCases.push_back(CB);
2427
2428  return true;
2429}
2430
2431/// handleBitTestsSwitchCase - if current case range has few destination and
2432/// range span less, than machine word bitwidth, encode case range into series
2433/// of masks and emit bit tests with these masks.
2434bool SelectionDAGBuilder::handleBitTestsSwitchCase(CaseRec& CR,
2435                                                   CaseRecVector& WorkList,
2436                                                   const Value* SV,
2437                                                   MachineBasicBlock* Default,
2438                                                   MachineBasicBlock* SwitchBB) {
2439  const TargetLowering *TLI = TM.getTargetLowering();
2440  EVT PTy = TLI->getPointerTy();
2441  unsigned IntPtrBits = PTy.getSizeInBits();
2442
2443  Case& FrontCase = *CR.Range.first;
2444  Case& BackCase  = *(CR.Range.second-1);
2445
2446  // Get the MachineFunction which holds the current MBB.  This is used when
2447  // inserting any additional MBBs necessary to represent the switch.
2448  MachineFunction *CurMF = FuncInfo.MF;
2449
2450  // If target does not have legal shift left, do not emit bit tests at all.
2451  if (!TLI->isOperationLegal(ISD::SHL, PTy))
2452    return false;
2453
2454  size_t numCmps = 0;
2455  for (CaseItr I = CR.Range.first, E = CR.Range.second;
2456       I!=E; ++I) {
2457    // Single case counts one, case range - two.
2458    numCmps += (I->Low == I->High ? 1 : 2);
2459  }
2460
2461  // Count unique destinations
2462  SmallSet<MachineBasicBlock*, 4> Dests;
2463  for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
2464    Dests.insert(I->BB);
2465    if (Dests.size() > 3)
2466      // Don't bother the code below, if there are too much unique destinations
2467      return false;
2468  }
2469  DEBUG(dbgs() << "Total number of unique destinations: "
2470        << Dests.size() << '\n'
2471        << "Total number of comparisons: " << numCmps << '\n');
2472
2473  // Compute span of values.
2474  const APInt& minValue = cast<ConstantInt>(FrontCase.Low)->getValue();
2475  const APInt& maxValue = cast<ConstantInt>(BackCase.High)->getValue();
2476  APInt cmpRange = maxValue - minValue;
2477
2478  DEBUG(dbgs() << "Compare range: " << cmpRange << '\n'
2479               << "Low bound: " << minValue << '\n'
2480               << "High bound: " << maxValue << '\n');
2481
2482  if (cmpRange.uge(IntPtrBits) ||
2483      (!(Dests.size() == 1 && numCmps >= 3) &&
2484       !(Dests.size() == 2 && numCmps >= 5) &&
2485       !(Dests.size() >= 3 && numCmps >= 6)))
2486    return false;
2487
2488  DEBUG(dbgs() << "Emitting bit tests\n");
2489  APInt lowBound = APInt::getNullValue(cmpRange.getBitWidth());
2490
2491  // Optimize the case where all the case values fit in a
2492  // word without having to subtract minValue. In this case,
2493  // we can optimize away the subtraction.
2494  if (minValue.isNonNegative() && maxValue.slt(IntPtrBits)) {
2495    cmpRange = maxValue;
2496  } else {
2497    lowBound = minValue;
2498  }
2499
2500  CaseBitsVector CasesBits;
2501  unsigned i, count = 0;
2502
2503  for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
2504    MachineBasicBlock* Dest = I->BB;
2505    for (i = 0; i < count; ++i)
2506      if (Dest == CasesBits[i].BB)
2507        break;
2508
2509    if (i == count) {
2510      assert((count < 3) && "Too much destinations to test!");
2511      CasesBits.push_back(CaseBits(0, Dest, 0, 0/*Weight*/));
2512      count++;
2513    }
2514
2515    const APInt& lowValue = cast<ConstantInt>(I->Low)->getValue();
2516    const APInt& highValue = cast<ConstantInt>(I->High)->getValue();
2517
2518    uint64_t lo = (lowValue - lowBound).getZExtValue();
2519    uint64_t hi = (highValue - lowBound).getZExtValue();
2520    CasesBits[i].ExtraWeight += I->ExtraWeight;
2521
2522    for (uint64_t j = lo; j <= hi; j++) {
2523      CasesBits[i].Mask |=  1ULL << j;
2524      CasesBits[i].Bits++;
2525    }
2526
2527  }
2528  std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp());
2529
2530  BitTestInfo BTC;
2531
2532  // Figure out which block is immediately after the current one.
2533  MachineFunction::iterator BBI = CR.CaseBB;
2534  ++BBI;
2535
2536  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2537
2538  DEBUG(dbgs() << "Cases:\n");
2539  for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) {
2540    DEBUG(dbgs() << "Mask: " << CasesBits[i].Mask
2541                 << ", Bits: " << CasesBits[i].Bits
2542                 << ", BB: " << CasesBits[i].BB << '\n');
2543
2544    MachineBasicBlock *CaseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2545    CurMF->insert(BBI, CaseBB);
2546    BTC.push_back(BitTestCase(CasesBits[i].Mask,
2547                              CaseBB,
2548                              CasesBits[i].BB, CasesBits[i].ExtraWeight));
2549
2550    // Put SV in a virtual register to make it available from the new blocks.
2551    ExportFromCurrentBlock(SV);
2552  }
2553
2554  BitTestBlock BTB(lowBound, cmpRange, SV,
2555                   -1U, MVT::Other, (CR.CaseBB == SwitchBB),
2556                   CR.CaseBB, Default, BTC);
2557
2558  if (CR.CaseBB == SwitchBB)
2559    visitBitTestHeader(BTB, SwitchBB);
2560
2561  BitTestCases.push_back(BTB);
2562
2563  return true;
2564}
2565
2566/// Clusterify - Transform simple list of Cases into list of CaseRange's
2567size_t SelectionDAGBuilder::Clusterify(CaseVector& Cases,
2568                                       const SwitchInst& SI) {
2569  size_t numCmps = 0;
2570
2571  BranchProbabilityInfo *BPI = FuncInfo.BPI;
2572  // Start with "simple" cases
2573  for (SwitchInst::ConstCaseIt i = SI.case_begin(), e = SI.case_end();
2574       i != e; ++i) {
2575    const BasicBlock *SuccBB = i.getCaseSuccessor();
2576    MachineBasicBlock *SMBB = FuncInfo.MBBMap[SuccBB];
2577
2578    uint32_t ExtraWeight =
2579      BPI ? BPI->getEdgeWeight(SI.getParent(), i.getSuccessorIndex()) : 0;
2580
2581    Cases.push_back(Case(i.getCaseValue(), i.getCaseValue(),
2582                         SMBB, ExtraWeight));
2583  }
2584  std::sort(Cases.begin(), Cases.end(), CaseCmp());
2585
2586  // Merge case into clusters
2587  if (Cases.size() >= 2)
2588    // Must recompute end() each iteration because it may be
2589    // invalidated by erase if we hold on to it
2590    for (CaseItr I = Cases.begin(), J = llvm::next(Cases.begin());
2591         J != Cases.end(); ) {
2592      const APInt& nextValue = cast<ConstantInt>(J->Low)->getValue();
2593      const APInt& currentValue = cast<ConstantInt>(I->High)->getValue();
2594      MachineBasicBlock* nextBB = J->BB;
2595      MachineBasicBlock* currentBB = I->BB;
2596
2597      // If the two neighboring cases go to the same destination, merge them
2598      // into a single case.
2599      if ((nextValue - currentValue == 1) && (currentBB == nextBB)) {
2600        I->High = J->High;
2601        I->ExtraWeight += J->ExtraWeight;
2602        J = Cases.erase(J);
2603      } else {
2604        I = J++;
2605      }
2606    }
2607
2608  for (CaseItr I=Cases.begin(), E=Cases.end(); I!=E; ++I, ++numCmps) {
2609    if (I->Low != I->High)
2610      // A range counts double, since it requires two compares.
2611      ++numCmps;
2612  }
2613
2614  return numCmps;
2615}
2616
2617void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
2618                                           MachineBasicBlock *Last) {
2619  // Update JTCases.
2620  for (unsigned i = 0, e = JTCases.size(); i != e; ++i)
2621    if (JTCases[i].first.HeaderBB == First)
2622      JTCases[i].first.HeaderBB = Last;
2623
2624  // Update BitTestCases.
2625  for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i)
2626    if (BitTestCases[i].Parent == First)
2627      BitTestCases[i].Parent = Last;
2628}
2629
2630void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
2631  MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
2632
2633  // Figure out which block is immediately after the current one.
2634  MachineBasicBlock *NextBlock = 0;
2635  MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()];
2636
2637  // If there is only the default destination, branch to it if it is not the
2638  // next basic block.  Otherwise, just fall through.
2639  if (!SI.getNumCases()) {
2640    // Update machine-CFG edges.
2641
2642    // If this is not a fall-through branch, emit the branch.
2643    SwitchMBB->addSuccessor(Default);
2644    if (Default != NextBlock)
2645      DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
2646                              MVT::Other, getControlRoot(),
2647                              DAG.getBasicBlock(Default)));
2648
2649    return;
2650  }
2651
2652  // If there are any non-default case statements, create a vector of Cases
2653  // representing each one, and sort the vector so that we can efficiently
2654  // create a binary search tree from them.
2655  CaseVector Cases;
2656  size_t numCmps = Clusterify(Cases, SI);
2657  DEBUG(dbgs() << "Clusterify finished. Total clusters: " << Cases.size()
2658               << ". Total compares: " << numCmps << '\n');
2659  (void)numCmps;
2660
2661  // Get the Value to be switched on and default basic blocks, which will be
2662  // inserted into CaseBlock records, representing basic blocks in the binary
2663  // search tree.
2664  const Value *SV = SI.getCondition();
2665
2666  // Push the initial CaseRec onto the worklist
2667  CaseRecVector WorkList;
2668  WorkList.push_back(CaseRec(SwitchMBB,0,0,
2669                             CaseRange(Cases.begin(),Cases.end())));
2670
2671  while (!WorkList.empty()) {
2672    // Grab a record representing a case range to process off the worklist
2673    CaseRec CR = WorkList.back();
2674    WorkList.pop_back();
2675
2676    if (handleBitTestsSwitchCase(CR, WorkList, SV, Default, SwitchMBB))
2677      continue;
2678
2679    // If the range has few cases (two or less) emit a series of specific
2680    // tests.
2681    if (handleSmallSwitchRange(CR, WorkList, SV, Default, SwitchMBB))
2682      continue;
2683
2684    // If the switch has more than N blocks, and is at least 40% dense, and the
2685    // target supports indirect branches, then emit a jump table rather than
2686    // lowering the switch to a binary tree of conditional branches.
2687    // N defaults to 4 and is controlled via TLS.getMinimumJumpTableEntries().
2688    if (handleJTSwitchCase(CR, WorkList, SV, Default, SwitchMBB))
2689      continue;
2690
2691    // Emit binary tree. We need to pick a pivot, and push left and right ranges
2692    // onto the worklist. Leafs are handled via handleSmallSwitchRange() call.
2693    handleBTSplitSwitchCase(CR, WorkList, SV, Default, SwitchMBB);
2694  }
2695}
2696
2697void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
2698  MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
2699
2700  // Update machine-CFG edges with unique successors.
2701  SmallSet<BasicBlock*, 32> Done;
2702  for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) {
2703    BasicBlock *BB = I.getSuccessor(i);
2704    bool Inserted = Done.insert(BB);
2705    if (!Inserted)
2706        continue;
2707
2708    MachineBasicBlock *Succ = FuncInfo.MBBMap[BB];
2709    addSuccessorWithWeight(IndirectBrMBB, Succ);
2710  }
2711
2712  DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(),
2713                          MVT::Other, getControlRoot(),
2714                          getValue(I.getAddress())));
2715}
2716
2717void SelectionDAGBuilder::visitFSub(const User &I) {
2718  // -0.0 - X --> fneg
2719  Type *Ty = I.getType();
2720  if (isa<Constant>(I.getOperand(0)) &&
2721      I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) {
2722    SDValue Op2 = getValue(I.getOperand(1));
2723    setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(),
2724                             Op2.getValueType(), Op2));
2725    return;
2726  }
2727
2728  visitBinary(I, ISD::FSUB);
2729}
2730
2731void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) {
2732  SDValue Op1 = getValue(I.getOperand(0));
2733  SDValue Op2 = getValue(I.getOperand(1));
2734  setValue(&I, DAG.getNode(OpCode, getCurSDLoc(),
2735                           Op1.getValueType(), Op1, Op2));
2736}
2737
2738void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
2739  SDValue Op1 = getValue(I.getOperand(0));
2740  SDValue Op2 = getValue(I.getOperand(1));
2741
2742  EVT ShiftTy = TM.getTargetLowering()->getShiftAmountTy(Op2.getValueType());
2743
2744  // Coerce the shift amount to the right type if we can.
2745  if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
2746    unsigned ShiftSize = ShiftTy.getSizeInBits();
2747    unsigned Op2Size = Op2.getValueType().getSizeInBits();
2748    SDLoc DL = getCurSDLoc();
2749
2750    // If the operand is smaller than the shift count type, promote it.
2751    if (ShiftSize > Op2Size)
2752      Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2);
2753
2754    // If the operand is larger than the shift count type but the shift
2755    // count type has enough bits to represent any shift value, truncate
2756    // it now. This is a common case and it exposes the truncate to
2757    // optimization early.
2758    else if (ShiftSize >= Log2_32_Ceil(Op2.getValueType().getSizeInBits()))
2759      Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2);
2760    // Otherwise we'll need to temporarily settle for some other convenient
2761    // type.  Type legalization will make adjustments once the shiftee is split.
2762    else
2763      Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32);
2764  }
2765
2766  setValue(&I, DAG.getNode(Opcode, getCurSDLoc(),
2767                           Op1.getValueType(), Op1, Op2));
2768}
2769
2770void SelectionDAGBuilder::visitSDiv(const User &I) {
2771  SDValue Op1 = getValue(I.getOperand(0));
2772  SDValue Op2 = getValue(I.getOperand(1));
2773
2774  // Turn exact SDivs into multiplications.
2775  // FIXME: This should be in DAGCombiner, but it doesn't have access to the
2776  // exact bit.
2777  if (isa<BinaryOperator>(&I) && cast<BinaryOperator>(&I)->isExact() &&
2778      !isa<ConstantSDNode>(Op1) &&
2779      isa<ConstantSDNode>(Op2) && !cast<ConstantSDNode>(Op2)->isNullValue())
2780    setValue(&I, TM.getTargetLowering()->BuildExactSDIV(Op1, Op2,
2781                                                        getCurSDLoc(), DAG));
2782  else
2783    setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(),
2784                             Op1, Op2));
2785}
2786
2787void SelectionDAGBuilder::visitICmp(const User &I) {
2788  ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
2789  if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
2790    predicate = IC->getPredicate();
2791  else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
2792    predicate = ICmpInst::Predicate(IC->getPredicate());
2793  SDValue Op1 = getValue(I.getOperand(0));
2794  SDValue Op2 = getValue(I.getOperand(1));
2795  ISD::CondCode Opcode = getICmpCondCode(predicate);
2796
2797  EVT DestVT = TM.getTargetLowering()->getValueType(I.getType());
2798  setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode));
2799}
2800
2801void SelectionDAGBuilder::visitFCmp(const User &I) {
2802  FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
2803  if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
2804    predicate = FC->getPredicate();
2805  else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
2806    predicate = FCmpInst::Predicate(FC->getPredicate());
2807  SDValue Op1 = getValue(I.getOperand(0));
2808  SDValue Op2 = getValue(I.getOperand(1));
2809  ISD::CondCode Condition = getFCmpCondCode(predicate);
2810  if (TM.Options.NoNaNsFPMath)
2811    Condition = getFCmpCodeWithoutNaN(Condition);
2812  EVT DestVT = TM.getTargetLowering()->getValueType(I.getType());
2813  setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition));
2814}
2815
2816void SelectionDAGBuilder::visitSelect(const User &I) {
2817  SmallVector<EVT, 4> ValueVTs;
2818  ComputeValueVTs(*TM.getTargetLowering(), I.getType(), ValueVTs);
2819  unsigned NumValues = ValueVTs.size();
2820  if (NumValues == 0) return;
2821
2822  SmallVector<SDValue, 4> Values(NumValues);
2823  SDValue Cond     = getValue(I.getOperand(0));
2824  SDValue TrueVal  = getValue(I.getOperand(1));
2825  SDValue FalseVal = getValue(I.getOperand(2));
2826  ISD::NodeType OpCode = Cond.getValueType().isVector() ?
2827    ISD::VSELECT : ISD::SELECT;
2828
2829  for (unsigned i = 0; i != NumValues; ++i)
2830    Values[i] = DAG.getNode(OpCode, getCurSDLoc(),
2831                            TrueVal.getNode()->getValueType(TrueVal.getResNo()+i),
2832                            Cond,
2833                            SDValue(TrueVal.getNode(),
2834                                    TrueVal.getResNo() + i),
2835                            SDValue(FalseVal.getNode(),
2836                                    FalseVal.getResNo() + i));
2837
2838  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
2839                           DAG.getVTList(&ValueVTs[0], NumValues),
2840                           &Values[0], NumValues));
2841}
2842
2843void SelectionDAGBuilder::visitTrunc(const User &I) {
2844  // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
2845  SDValue N = getValue(I.getOperand(0));
2846  EVT DestVT = TM.getTargetLowering()->getValueType(I.getType());
2847  setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N));
2848}
2849
2850void SelectionDAGBuilder::visitZExt(const User &I) {
2851  // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2852  // ZExt also can't be a cast to bool for same reason. So, nothing much to do
2853  SDValue N = getValue(I.getOperand(0));
2854  EVT DestVT = TM.getTargetLowering()->getValueType(I.getType());
2855  setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N));
2856}
2857
2858void SelectionDAGBuilder::visitSExt(const User &I) {
2859  // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2860  // SExt also can't be a cast to bool for same reason. So, nothing much to do
2861  SDValue N = getValue(I.getOperand(0));
2862  EVT DestVT = TM.getTargetLowering()->getValueType(I.getType());
2863  setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N));
2864}
2865
2866void SelectionDAGBuilder::visitFPTrunc(const User &I) {
2867  // FPTrunc is never a no-op cast, no need to check
2868  SDValue N = getValue(I.getOperand(0));
2869  const TargetLowering *TLI = TM.getTargetLowering();
2870  EVT DestVT = TLI->getValueType(I.getType());
2871  setValue(&I, DAG.getNode(ISD::FP_ROUND, getCurSDLoc(),
2872                           DestVT, N,
2873                           DAG.getTargetConstant(0, TLI->getPointerTy())));
2874}
2875
2876void SelectionDAGBuilder::visitFPExt(const User &I) {
2877  // FPExt is never a no-op cast, no need to check
2878  SDValue N = getValue(I.getOperand(0));
2879  EVT DestVT = TM.getTargetLowering()->getValueType(I.getType());
2880  setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N));
2881}
2882
2883void SelectionDAGBuilder::visitFPToUI(const User &I) {
2884  // FPToUI is never a no-op cast, no need to check
2885  SDValue N = getValue(I.getOperand(0));
2886  EVT DestVT = TM.getTargetLowering()->getValueType(I.getType());
2887  setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N));
2888}
2889
2890void SelectionDAGBuilder::visitFPToSI(const User &I) {
2891  // FPToSI is never a no-op cast, no need to check
2892  SDValue N = getValue(I.getOperand(0));
2893  EVT DestVT = TM.getTargetLowering()->getValueType(I.getType());
2894  setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N));
2895}
2896
2897void SelectionDAGBuilder::visitUIToFP(const User &I) {
2898  // UIToFP is never a no-op cast, no need to check
2899  SDValue N = getValue(I.getOperand(0));
2900  EVT DestVT = TM.getTargetLowering()->getValueType(I.getType());
2901  setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N));
2902}
2903
2904void SelectionDAGBuilder::visitSIToFP(const User &I) {
2905  // SIToFP is never a no-op cast, no need to check
2906  SDValue N = getValue(I.getOperand(0));
2907  EVT DestVT = TM.getTargetLowering()->getValueType(I.getType());
2908  setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N));
2909}
2910
2911void SelectionDAGBuilder::visitPtrToInt(const User &I) {
2912  // What to do depends on the size of the integer and the size of the pointer.
2913  // We can either truncate, zero extend, or no-op, accordingly.
2914  SDValue N = getValue(I.getOperand(0));
2915  EVT DestVT = TM.getTargetLowering()->getValueType(I.getType());
2916  setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT));
2917}
2918
2919void SelectionDAGBuilder::visitIntToPtr(const User &I) {
2920  // What to do depends on the size of the integer and the size of the pointer.
2921  // We can either truncate, zero extend, or no-op, accordingly.
2922  SDValue N = getValue(I.getOperand(0));
2923  EVT DestVT = TM.getTargetLowering()->getValueType(I.getType());
2924  setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT));
2925}
2926
2927void SelectionDAGBuilder::visitBitCast(const User &I) {
2928  SDValue N = getValue(I.getOperand(0));
2929  EVT DestVT = TM.getTargetLowering()->getValueType(I.getType());
2930
2931  // BitCast assures us that source and destination are the same size so this is
2932  // either a BITCAST or a no-op.
2933  if (DestVT != N.getValueType())
2934    setValue(&I, DAG.getNode(ISD::BITCAST, getCurSDLoc(),
2935                             DestVT, N)); // convert types.
2936  else
2937    setValue(&I, N);            // noop cast.
2938}
2939
2940void SelectionDAGBuilder::visitInsertElement(const User &I) {
2941  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2942  SDValue InVec = getValue(I.getOperand(0));
2943  SDValue InVal = getValue(I.getOperand(1));
2944  SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)),
2945                                     getCurSDLoc(), TLI.getVectorIdxTy());
2946  setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(),
2947                           TM.getTargetLowering()->getValueType(I.getType()),
2948                           InVec, InVal, InIdx));
2949}
2950
2951void SelectionDAGBuilder::visitExtractElement(const User &I) {
2952  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2953  SDValue InVec = getValue(I.getOperand(0));
2954  SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)),
2955                                     getCurSDLoc(), TLI.getVectorIdxTy());
2956  setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(),
2957                           TM.getTargetLowering()->getValueType(I.getType()),
2958                           InVec, InIdx));
2959}
2960
2961// Utility for visitShuffleVector - Return true if every element in Mask,
2962// beginning from position Pos and ending in Pos+Size, falls within the
2963// specified sequential range [L, L+Pos). or is undef.
2964static bool isSequentialInRange(const SmallVectorImpl<int> &Mask,
2965                                unsigned Pos, unsigned Size, int Low) {
2966  for (unsigned i = Pos, e = Pos+Size; i != e; ++i, ++Low)
2967    if (Mask[i] >= 0 && Mask[i] != Low)
2968      return false;
2969  return true;
2970}
2971
2972void SelectionDAGBuilder::visitShuffleVector(const User &I) {
2973  SDValue Src1 = getValue(I.getOperand(0));
2974  SDValue Src2 = getValue(I.getOperand(1));
2975
2976  SmallVector<int, 8> Mask;
2977  ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask);
2978  unsigned MaskNumElts = Mask.size();
2979
2980  const TargetLowering *TLI = TM.getTargetLowering();
2981  EVT VT = TLI->getValueType(I.getType());
2982  EVT SrcVT = Src1.getValueType();
2983  unsigned SrcNumElts = SrcVT.getVectorNumElements();
2984
2985  if (SrcNumElts == MaskNumElts) {
2986    setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2,
2987                                      &Mask[0]));
2988    return;
2989  }
2990
2991  // Normalize the shuffle vector since mask and vector length don't match.
2992  if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) {
2993    // Mask is longer than the source vectors and is a multiple of the source
2994    // vectors.  We can use concatenate vector to make the mask and vectors
2995    // lengths match.
2996    if (SrcNumElts*2 == MaskNumElts) {
2997      // First check for Src1 in low and Src2 in high
2998      if (isSequentialInRange(Mask, 0, SrcNumElts, 0) &&
2999          isSequentialInRange(Mask, SrcNumElts, SrcNumElts, SrcNumElts)) {
3000        // The shuffle is concatenating two vectors together.
3001        setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(),
3002                                 VT, Src1, Src2));
3003        return;
3004      }
3005      // Then check for Src2 in low and Src1 in high
3006      if (isSequentialInRange(Mask, 0, SrcNumElts, SrcNumElts) &&
3007          isSequentialInRange(Mask, SrcNumElts, SrcNumElts, 0)) {
3008        // The shuffle is concatenating two vectors together.
3009        setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(),
3010                                 VT, Src2, Src1));
3011        return;
3012      }
3013    }
3014
3015    // Pad both vectors with undefs to make them the same length as the mask.
3016    unsigned NumConcat = MaskNumElts / SrcNumElts;
3017    bool Src1U = Src1.getOpcode() == ISD::UNDEF;
3018    bool Src2U = Src2.getOpcode() == ISD::UNDEF;
3019    SDValue UndefVal = DAG.getUNDEF(SrcVT);
3020
3021    SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
3022    SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
3023    MOps1[0] = Src1;
3024    MOps2[0] = Src2;
3025
3026    Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
3027                                                  getCurSDLoc(), VT,
3028                                                  &MOps1[0], NumConcat);
3029    Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
3030                                                  getCurSDLoc(), VT,
3031                                                  &MOps2[0], NumConcat);
3032
3033    // Readjust mask for new input vector length.
3034    SmallVector<int, 8> MappedOps;
3035    for (unsigned i = 0; i != MaskNumElts; ++i) {
3036      int Idx = Mask[i];
3037      if (Idx >= (int)SrcNumElts)
3038        Idx -= SrcNumElts - MaskNumElts;
3039      MappedOps.push_back(Idx);
3040    }
3041
3042    setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2,
3043                                      &MappedOps[0]));
3044    return;
3045  }
3046
3047  if (SrcNumElts > MaskNumElts) {
3048    // Analyze the access pattern of the vector to see if we can extract
3049    // two subvectors and do the shuffle. The analysis is done by calculating
3050    // the range of elements the mask access on both vectors.
3051    int MinRange[2] = { static_cast<int>(SrcNumElts),
3052                        static_cast<int>(SrcNumElts)};
3053    int MaxRange[2] = {-1, -1};
3054
3055    for (unsigned i = 0; i != MaskNumElts; ++i) {
3056      int Idx = Mask[i];
3057      unsigned Input = 0;
3058      if (Idx < 0)
3059        continue;
3060
3061      if (Idx >= (int)SrcNumElts) {
3062        Input = 1;
3063        Idx -= SrcNumElts;
3064      }
3065      if (Idx > MaxRange[Input])
3066        MaxRange[Input] = Idx;
3067      if (Idx < MinRange[Input])
3068        MinRange[Input] = Idx;
3069    }
3070
3071    // Check if the access is smaller than the vector size and can we find
3072    // a reasonable extract index.
3073    int RangeUse[2] = { -1, -1 };  // 0 = Unused, 1 = Extract, -1 = Can not
3074                                   // Extract.
3075    int StartIdx[2];  // StartIdx to extract from
3076    for (unsigned Input = 0; Input < 2; ++Input) {
3077      if (MinRange[Input] >= (int)SrcNumElts && MaxRange[Input] < 0) {
3078        RangeUse[Input] = 0; // Unused
3079        StartIdx[Input] = 0;
3080        continue;
3081      }
3082
3083      // Find a good start index that is a multiple of the mask length. Then
3084      // see if the rest of the elements are in range.
3085      StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts;
3086      if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts &&
3087          StartIdx[Input] + MaskNumElts <= SrcNumElts)
3088        RangeUse[Input] = 1; // Extract from a multiple of the mask length.
3089    }
3090
3091    if (RangeUse[0] == 0 && RangeUse[1] == 0) {
3092      setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
3093      return;
3094    }
3095    if (RangeUse[0] >= 0 && RangeUse[1] >= 0) {
3096      // Extract appropriate subvector and generate a vector shuffle
3097      for (unsigned Input = 0; Input < 2; ++Input) {
3098        SDValue &Src = Input == 0 ? Src1 : Src2;
3099        if (RangeUse[Input] == 0)
3100          Src = DAG.getUNDEF(VT);
3101        else
3102          Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, getCurSDLoc(), VT,
3103                            Src, DAG.getConstant(StartIdx[Input],
3104                                                 TLI->getVectorIdxTy()));
3105      }
3106
3107      // Calculate new mask.
3108      SmallVector<int, 8> MappedOps;
3109      for (unsigned i = 0; i != MaskNumElts; ++i) {
3110        int Idx = Mask[i];
3111        if (Idx >= 0) {
3112          if (Idx < (int)SrcNumElts)
3113            Idx -= StartIdx[0];
3114          else
3115            Idx -= SrcNumElts + StartIdx[1] - MaskNumElts;
3116        }
3117        MappedOps.push_back(Idx);
3118      }
3119
3120      setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2,
3121                                        &MappedOps[0]));
3122      return;
3123    }
3124  }
3125
3126  // We can't use either concat vectors or extract subvectors so fall back to
3127  // replacing the shuffle with extract and build vector.
3128  // to insert and build vector.
3129  EVT EltVT = VT.getVectorElementType();
3130  EVT IdxVT = TLI->getVectorIdxTy();
3131  SmallVector<SDValue,8> Ops;
3132  for (unsigned i = 0; i != MaskNumElts; ++i) {
3133    int Idx = Mask[i];
3134    SDValue Res;
3135
3136    if (Idx < 0) {
3137      Res = DAG.getUNDEF(EltVT);
3138    } else {
3139      SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2;
3140      if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts;
3141
3142      Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(),
3143                        EltVT, Src, DAG.getConstant(Idx, IdxVT));
3144    }
3145
3146    Ops.push_back(Res);
3147  }
3148
3149  setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(),
3150                           VT, &Ops[0], Ops.size()));
3151}
3152
3153void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) {
3154  const Value *Op0 = I.getOperand(0);
3155  const Value *Op1 = I.getOperand(1);
3156  Type *AggTy = I.getType();
3157  Type *ValTy = Op1->getType();
3158  bool IntoUndef = isa<UndefValue>(Op0);
3159  bool FromUndef = isa<UndefValue>(Op1);
3160
3161  unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices());
3162
3163  const TargetLowering *TLI = TM.getTargetLowering();
3164  SmallVector<EVT, 4> AggValueVTs;
3165  ComputeValueVTs(*TLI, AggTy, AggValueVTs);
3166  SmallVector<EVT, 4> ValValueVTs;
3167  ComputeValueVTs(*TLI, ValTy, ValValueVTs);
3168
3169  unsigned NumAggValues = AggValueVTs.size();
3170  unsigned NumValValues = ValValueVTs.size();
3171  SmallVector<SDValue, 4> Values(NumAggValues);
3172
3173  SDValue Agg = getValue(Op0);
3174  unsigned i = 0;
3175  // Copy the beginning value(s) from the original aggregate.
3176  for (; i != LinearIndex; ++i)
3177    Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3178                SDValue(Agg.getNode(), Agg.getResNo() + i);
3179  // Copy values from the inserted value(s).
3180  if (NumValValues) {
3181    SDValue Val = getValue(Op1);
3182    for (; i != LinearIndex + NumValValues; ++i)
3183      Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3184                  SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
3185  }
3186  // Copy remaining value(s) from the original aggregate.
3187  for (; i != NumAggValues; ++i)
3188    Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3189                SDValue(Agg.getNode(), Agg.getResNo() + i);
3190
3191  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3192                           DAG.getVTList(&AggValueVTs[0], NumAggValues),
3193                           &Values[0], NumAggValues));
3194}
3195
3196void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) {
3197  const Value *Op0 = I.getOperand(0);
3198  Type *AggTy = Op0->getType();
3199  Type *ValTy = I.getType();
3200  bool OutOfUndef = isa<UndefValue>(Op0);
3201
3202  unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices());
3203
3204  const TargetLowering *TLI = TM.getTargetLowering();
3205  SmallVector<EVT, 4> ValValueVTs;
3206  ComputeValueVTs(*TLI, ValTy, ValValueVTs);
3207
3208  unsigned NumValValues = ValValueVTs.size();
3209
3210  // Ignore a extractvalue that produces an empty object
3211  if (!NumValValues) {
3212    setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3213    return;
3214  }
3215
3216  SmallVector<SDValue, 4> Values(NumValValues);
3217
3218  SDValue Agg = getValue(Op0);
3219  // Copy out the selected value(s).
3220  for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
3221    Values[i - LinearIndex] =
3222      OutOfUndef ?
3223        DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
3224        SDValue(Agg.getNode(), Agg.getResNo() + i);
3225
3226  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3227                           DAG.getVTList(&ValValueVTs[0], NumValValues),
3228                           &Values[0], NumValValues));
3229}
3230
3231void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
3232  Value *Op0 = I.getOperand(0);
3233  // Note that the pointer operand may be a vector of pointers. Take the scalar
3234  // element which holds a pointer.
3235  Type *Ty = Op0->getType()->getScalarType();
3236  unsigned AS = Ty->getPointerAddressSpace();
3237  SDValue N = getValue(Op0);
3238
3239  for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end();
3240       OI != E; ++OI) {
3241    const Value *Idx = *OI;
3242    if (StructType *StTy = dyn_cast<StructType>(Ty)) {
3243      unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue();
3244      if (Field) {
3245        // N = N + Offset
3246        uint64_t Offset = TD->getStructLayout(StTy)->getElementOffset(Field);
3247        N = DAG.getNode(ISD::ADD, getCurSDLoc(), N.getValueType(), N,
3248                        DAG.getConstant(Offset, N.getValueType()));
3249      }
3250
3251      Ty = StTy->getElementType(Field);
3252    } else {
3253      Ty = cast<SequentialType>(Ty)->getElementType();
3254
3255      // If this is a constant subscript, handle it quickly.
3256      const TargetLowering *TLI = TM.getTargetLowering();
3257      if (const ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
3258        if (CI->isZero()) continue;
3259        uint64_t Offs =
3260            TD->getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue();
3261        SDValue OffsVal;
3262        EVT PTy = TLI->getPointerTy(AS);
3263        unsigned PtrBits = PTy.getSizeInBits();
3264        if (PtrBits < 64)
3265          OffsVal = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), PTy,
3266                                DAG.getConstant(Offs, MVT::i64));
3267        else
3268          OffsVal = DAG.getConstant(Offs, PTy);
3269
3270        N = DAG.getNode(ISD::ADD, getCurSDLoc(), N.getValueType(), N,
3271                        OffsVal);
3272        continue;
3273      }
3274
3275      // N = N + Idx * ElementSize;
3276      APInt ElementSize = APInt(TLI->getPointerSizeInBits(AS),
3277                                TD->getTypeAllocSize(Ty));
3278      SDValue IdxN = getValue(Idx);
3279
3280      // If the index is smaller or larger than intptr_t, truncate or extend
3281      // it.
3282      IdxN = DAG.getSExtOrTrunc(IdxN, getCurSDLoc(), N.getValueType());
3283
3284      // If this is a multiply by a power of two, turn it into a shl
3285      // immediately.  This is a very common case.
3286      if (ElementSize != 1) {
3287        if (ElementSize.isPowerOf2()) {
3288          unsigned Amt = ElementSize.logBase2();
3289          IdxN = DAG.getNode(ISD::SHL, getCurSDLoc(),
3290                             N.getValueType(), IdxN,
3291                             DAG.getConstant(Amt, IdxN.getValueType()));
3292        } else {
3293          SDValue Scale = DAG.getConstant(ElementSize, IdxN.getValueType());
3294          IdxN = DAG.getNode(ISD::MUL, getCurSDLoc(),
3295                             N.getValueType(), IdxN, Scale);
3296        }
3297      }
3298
3299      N = DAG.getNode(ISD::ADD, getCurSDLoc(),
3300                      N.getValueType(), N, IdxN);
3301    }
3302  }
3303
3304  setValue(&I, N);
3305}
3306
3307void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
3308  // If this is a fixed sized alloca in the entry block of the function,
3309  // allocate it statically on the stack.
3310  if (FuncInfo.StaticAllocaMap.count(&I))
3311    return;   // getValue will auto-populate this.
3312
3313  Type *Ty = I.getAllocatedType();
3314  const TargetLowering *TLI = TM.getTargetLowering();
3315  uint64_t TySize = TLI->getDataLayout()->getTypeAllocSize(Ty);
3316  unsigned Align =
3317    std::max((unsigned)TLI->getDataLayout()->getPrefTypeAlignment(Ty),
3318             I.getAlignment());
3319
3320  SDValue AllocSize = getValue(I.getArraySize());
3321
3322  EVT IntPtr = TLI->getPointerTy();
3323  if (AllocSize.getValueType() != IntPtr)
3324    AllocSize = DAG.getZExtOrTrunc(AllocSize, getCurSDLoc(), IntPtr);
3325
3326  AllocSize = DAG.getNode(ISD::MUL, getCurSDLoc(), IntPtr,
3327                          AllocSize,
3328                          DAG.getConstant(TySize, IntPtr));
3329
3330  // Handle alignment.  If the requested alignment is less than or equal to
3331  // the stack alignment, ignore it.  If the size is greater than or equal to
3332  // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
3333  unsigned StackAlign = TM.getFrameLowering()->getStackAlignment();
3334  if (Align <= StackAlign)
3335    Align = 0;
3336
3337  // Round the size of the allocation up to the stack alignment size
3338  // by add SA-1 to the size.
3339  AllocSize = DAG.getNode(ISD::ADD, getCurSDLoc(),
3340                          AllocSize.getValueType(), AllocSize,
3341                          DAG.getIntPtrConstant(StackAlign-1));
3342
3343  // Mask out the low bits for alignment purposes.
3344  AllocSize = DAG.getNode(ISD::AND, getCurSDLoc(),
3345                          AllocSize.getValueType(), AllocSize,
3346                          DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1)));
3347
3348  SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) };
3349  SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
3350  SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, getCurSDLoc(),
3351                            VTs, Ops, 3);
3352  setValue(&I, DSA);
3353  DAG.setRoot(DSA.getValue(1));
3354
3355  // Inform the Frame Information that we have just allocated a variable-sized
3356  // object.
3357  FuncInfo.MF->getFrameInfo()->CreateVariableSizedObject(Align ? Align : 1);
3358}
3359
3360void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
3361  if (I.isAtomic())
3362    return visitAtomicLoad(I);
3363
3364  const Value *SV = I.getOperand(0);
3365  SDValue Ptr = getValue(SV);
3366
3367  Type *Ty = I.getType();
3368
3369  bool isVolatile = I.isVolatile();
3370  bool isNonTemporal = I.getMetadata("nontemporal") != 0;
3371  bool isInvariant = I.getMetadata("invariant.load") != 0;
3372  unsigned Alignment = I.getAlignment();
3373  const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa);
3374  const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
3375
3376  SmallVector<EVT, 4> ValueVTs;
3377  SmallVector<uint64_t, 4> Offsets;
3378  ComputeValueVTs(*TM.getTargetLowering(), Ty, ValueVTs, &Offsets);
3379  unsigned NumValues = ValueVTs.size();
3380  if (NumValues == 0)
3381    return;
3382
3383  SDValue Root;
3384  bool ConstantMemory = false;
3385  if (I.isVolatile() || NumValues > MaxParallelChains)
3386    // Serialize volatile loads with other side effects.
3387    Root = getRoot();
3388  else if (AA->pointsToConstantMemory(
3389             AliasAnalysis::Location(SV, AA->getTypeStoreSize(Ty), TBAAInfo))) {
3390    // Do not serialize (non-volatile) loads of constant memory with anything.
3391    Root = DAG.getEntryNode();
3392    ConstantMemory = true;
3393  } else {
3394    // Do not serialize non-volatile loads against each other.
3395    Root = DAG.getRoot();
3396  }
3397
3398  SmallVector<SDValue, 4> Values(NumValues);
3399  SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains),
3400                                          NumValues));
3401  EVT PtrVT = Ptr.getValueType();
3402  unsigned ChainI = 0;
3403  for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3404    // Serializing loads here may result in excessive register pressure, and
3405    // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
3406    // could recover a bit by hoisting nodes upward in the chain by recognizing
3407    // they are side-effect free or do not alias. The optimizer should really
3408    // avoid this case by converting large object/array copies to llvm.memcpy
3409    // (MaxParallelChains should always remain as failsafe).
3410    if (ChainI == MaxParallelChains) {
3411      assert(PendingLoads.empty() && "PendingLoads must be serialized first");
3412      SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
3413                                  MVT::Other, &Chains[0], ChainI);
3414      Root = Chain;
3415      ChainI = 0;
3416    }
3417    SDValue A = DAG.getNode(ISD::ADD, getCurSDLoc(),
3418                            PtrVT, Ptr,
3419                            DAG.getConstant(Offsets[i], PtrVT));
3420    SDValue L = DAG.getLoad(ValueVTs[i], getCurSDLoc(), Root,
3421                            A, MachinePointerInfo(SV, Offsets[i]), isVolatile,
3422                            isNonTemporal, isInvariant, Alignment, TBAAInfo,
3423                            Ranges);
3424
3425    Values[i] = L;
3426    Chains[ChainI] = L.getValue(1);
3427  }
3428
3429  if (!ConstantMemory) {
3430    SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
3431                                MVT::Other, &Chains[0], ChainI);
3432    if (isVolatile)
3433      DAG.setRoot(Chain);
3434    else
3435      PendingLoads.push_back(Chain);
3436  }
3437
3438  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3439                           DAG.getVTList(&ValueVTs[0], NumValues),
3440                           &Values[0], NumValues));
3441}
3442
3443void SelectionDAGBuilder::visitStore(const StoreInst &I) {
3444  if (I.isAtomic())
3445    return visitAtomicStore(I);
3446
3447  const Value *SrcV = I.getOperand(0);
3448  const Value *PtrV = I.getOperand(1);
3449
3450  SmallVector<EVT, 4> ValueVTs;
3451  SmallVector<uint64_t, 4> Offsets;
3452  ComputeValueVTs(*TM.getTargetLowering(), SrcV->getType(), ValueVTs, &Offsets);
3453  unsigned NumValues = ValueVTs.size();
3454  if (NumValues == 0)
3455    return;
3456
3457  // Get the lowered operands. Note that we do this after
3458  // checking if NumResults is zero, because with zero results
3459  // the operands won't have values in the map.
3460  SDValue Src = getValue(SrcV);
3461  SDValue Ptr = getValue(PtrV);
3462
3463  SDValue Root = getRoot();
3464  SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains),
3465                                          NumValues));
3466  EVT PtrVT = Ptr.getValueType();
3467  bool isVolatile = I.isVolatile();
3468  bool isNonTemporal = I.getMetadata("nontemporal") != 0;
3469  unsigned Alignment = I.getAlignment();
3470  const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa);
3471
3472  unsigned ChainI = 0;
3473  for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3474    // See visitLoad comments.
3475    if (ChainI == MaxParallelChains) {
3476      SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
3477                                  MVT::Other, &Chains[0], ChainI);
3478      Root = Chain;
3479      ChainI = 0;
3480    }
3481    SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(), PtrVT, Ptr,
3482                              DAG.getConstant(Offsets[i], PtrVT));
3483    SDValue St = DAG.getStore(Root, getCurSDLoc(),
3484                              SDValue(Src.getNode(), Src.getResNo() + i),
3485                              Add, MachinePointerInfo(PtrV, Offsets[i]),
3486                              isVolatile, isNonTemporal, Alignment, TBAAInfo);
3487    Chains[ChainI] = St;
3488  }
3489
3490  SDValue StoreNode = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
3491                                  MVT::Other, &Chains[0], ChainI);
3492  DAG.setRoot(StoreNode);
3493}
3494
3495static SDValue InsertFenceForAtomic(SDValue Chain, AtomicOrdering Order,
3496                                    SynchronizationScope Scope,
3497                                    bool Before, SDLoc dl,
3498                                    SelectionDAG &DAG,
3499                                    const TargetLowering &TLI) {
3500  // Fence, if necessary
3501  if (Before) {
3502    if (Order == AcquireRelease || Order == SequentiallyConsistent)
3503      Order = Release;
3504    else if (Order == Acquire || Order == Monotonic)
3505      return Chain;
3506  } else {
3507    if (Order == AcquireRelease)
3508      Order = Acquire;
3509    else if (Order == Release || Order == Monotonic)
3510      return Chain;
3511  }
3512  SDValue Ops[3];
3513  Ops[0] = Chain;
3514  Ops[1] = DAG.getConstant(Order, TLI.getPointerTy());
3515  Ops[2] = DAG.getConstant(Scope, TLI.getPointerTy());
3516  return DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops, 3);
3517}
3518
3519void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) {
3520  SDLoc dl = getCurSDLoc();
3521  AtomicOrdering Order = I.getOrdering();
3522  SynchronizationScope Scope = I.getSynchScope();
3523
3524  SDValue InChain = getRoot();
3525
3526  const TargetLowering *TLI = TM.getTargetLowering();
3527  if (TLI->getInsertFencesForAtomic())
3528    InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl,
3529                                   DAG, *TLI);
3530
3531  SDValue L =
3532    DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, dl,
3533                  getValue(I.getCompareOperand()).getSimpleValueType(),
3534                  InChain,
3535                  getValue(I.getPointerOperand()),
3536                  getValue(I.getCompareOperand()),
3537                  getValue(I.getNewValOperand()),
3538                  MachinePointerInfo(I.getPointerOperand()), 0 /* Alignment */,
3539                  TLI->getInsertFencesForAtomic() ? Monotonic : Order,
3540                  Scope);
3541
3542  SDValue OutChain = L.getValue(1);
3543
3544  if (TLI->getInsertFencesForAtomic())
3545    OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl,
3546                                    DAG, *TLI);
3547
3548  setValue(&I, L);
3549  DAG.setRoot(OutChain);
3550}
3551
3552void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) {
3553  SDLoc dl = getCurSDLoc();
3554  ISD::NodeType NT;
3555  switch (I.getOperation()) {
3556  default: llvm_unreachable("Unknown atomicrmw operation");
3557  case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break;
3558  case AtomicRMWInst::Add:  NT = ISD::ATOMIC_LOAD_ADD; break;
3559  case AtomicRMWInst::Sub:  NT = ISD::ATOMIC_LOAD_SUB; break;
3560  case AtomicRMWInst::And:  NT = ISD::ATOMIC_LOAD_AND; break;
3561  case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break;
3562  case AtomicRMWInst::Or:   NT = ISD::ATOMIC_LOAD_OR; break;
3563  case AtomicRMWInst::Xor:  NT = ISD::ATOMIC_LOAD_XOR; break;
3564  case AtomicRMWInst::Max:  NT = ISD::ATOMIC_LOAD_MAX; break;
3565  case AtomicRMWInst::Min:  NT = ISD::ATOMIC_LOAD_MIN; break;
3566  case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break;
3567  case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break;
3568  }
3569  AtomicOrdering Order = I.getOrdering();
3570  SynchronizationScope Scope = I.getSynchScope();
3571
3572  SDValue InChain = getRoot();
3573
3574  const TargetLowering *TLI = TM.getTargetLowering();
3575  if (TLI->getInsertFencesForAtomic())
3576    InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl,
3577                                   DAG, *TLI);
3578
3579  SDValue L =
3580    DAG.getAtomic(NT, dl,
3581                  getValue(I.getValOperand()).getSimpleValueType(),
3582                  InChain,
3583                  getValue(I.getPointerOperand()),
3584                  getValue(I.getValOperand()),
3585                  I.getPointerOperand(), 0 /* Alignment */,
3586                  TLI->getInsertFencesForAtomic() ? Monotonic : Order,
3587                  Scope);
3588
3589  SDValue OutChain = L.getValue(1);
3590
3591  if (TLI->getInsertFencesForAtomic())
3592    OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl,
3593                                    DAG, *TLI);
3594
3595  setValue(&I, L);
3596  DAG.setRoot(OutChain);
3597}
3598
3599void SelectionDAGBuilder::visitFence(const FenceInst &I) {
3600  SDLoc dl = getCurSDLoc();
3601  const TargetLowering *TLI = TM.getTargetLowering();
3602  SDValue Ops[3];
3603  Ops[0] = getRoot();
3604  Ops[1] = DAG.getConstant(I.getOrdering(), TLI->getPointerTy());
3605  Ops[2] = DAG.getConstant(I.getSynchScope(), TLI->getPointerTy());
3606  DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops, 3));
3607}
3608
3609void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) {
3610  SDLoc dl = getCurSDLoc();
3611  AtomicOrdering Order = I.getOrdering();
3612  SynchronizationScope Scope = I.getSynchScope();
3613
3614  SDValue InChain = getRoot();
3615
3616  const TargetLowering *TLI = TM.getTargetLowering();
3617  EVT VT = TLI->getValueType(I.getType());
3618
3619  if (I.getAlignment() < VT.getSizeInBits() / 8)
3620    report_fatal_error("Cannot generate unaligned atomic load");
3621
3622  SDValue L =
3623    DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain,
3624                  getValue(I.getPointerOperand()),
3625                  I.getPointerOperand(), I.getAlignment(),
3626                  TLI->getInsertFencesForAtomic() ? Monotonic : Order,
3627                  Scope);
3628
3629  SDValue OutChain = L.getValue(1);
3630
3631  if (TLI->getInsertFencesForAtomic())
3632    OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl,
3633                                    DAG, *TLI);
3634
3635  setValue(&I, L);
3636  DAG.setRoot(OutChain);
3637}
3638
3639void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) {
3640  SDLoc dl = getCurSDLoc();
3641
3642  AtomicOrdering Order = I.getOrdering();
3643  SynchronizationScope Scope = I.getSynchScope();
3644
3645  SDValue InChain = getRoot();
3646
3647  const TargetLowering *TLI = TM.getTargetLowering();
3648  EVT VT = TLI->getValueType(I.getValueOperand()->getType());
3649
3650  if (I.getAlignment() < VT.getSizeInBits() / 8)
3651    report_fatal_error("Cannot generate unaligned atomic store");
3652
3653  if (TLI->getInsertFencesForAtomic())
3654    InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl,
3655                                   DAG, *TLI);
3656
3657  SDValue OutChain =
3658    DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT,
3659                  InChain,
3660                  getValue(I.getPointerOperand()),
3661                  getValue(I.getValueOperand()),
3662                  I.getPointerOperand(), I.getAlignment(),
3663                  TLI->getInsertFencesForAtomic() ? Monotonic : Order,
3664                  Scope);
3665
3666  if (TLI->getInsertFencesForAtomic())
3667    OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl,
3668                                    DAG, *TLI);
3669
3670  DAG.setRoot(OutChain);
3671}
3672
3673/// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
3674/// node.
3675void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
3676                                               unsigned Intrinsic) {
3677  bool HasChain = !I.doesNotAccessMemory();
3678  bool OnlyLoad = HasChain && I.onlyReadsMemory();
3679
3680  // Build the operand list.
3681  SmallVector<SDValue, 8> Ops;
3682  if (HasChain) {  // If this intrinsic has side-effects, chainify it.
3683    if (OnlyLoad) {
3684      // We don't need to serialize loads against other loads.
3685      Ops.push_back(DAG.getRoot());
3686    } else {
3687      Ops.push_back(getRoot());
3688    }
3689  }
3690
3691  // Info is set by getTgtMemInstrinsic
3692  TargetLowering::IntrinsicInfo Info;
3693  const TargetLowering *TLI = TM.getTargetLowering();
3694  bool IsTgtIntrinsic = TLI->getTgtMemIntrinsic(Info, I, Intrinsic);
3695
3696  // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
3697  if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
3698      Info.opc == ISD::INTRINSIC_W_CHAIN)
3699    Ops.push_back(DAG.getTargetConstant(Intrinsic, TLI->getPointerTy()));
3700
3701  // Add all operands of the call to the operand list.
3702  for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
3703    SDValue Op = getValue(I.getArgOperand(i));
3704    Ops.push_back(Op);
3705  }
3706
3707  SmallVector<EVT, 4> ValueVTs;
3708  ComputeValueVTs(*TLI, I.getType(), ValueVTs);
3709
3710  if (HasChain)
3711    ValueVTs.push_back(MVT::Other);
3712
3713  SDVTList VTs = DAG.getVTList(ValueVTs.data(), ValueVTs.size());
3714
3715  // Create the node.
3716  SDValue Result;
3717  if (IsTgtIntrinsic) {
3718    // This is target intrinsic that touches memory
3719    Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(),
3720                                     VTs, &Ops[0], Ops.size(),
3721                                     Info.memVT,
3722                                   MachinePointerInfo(Info.ptrVal, Info.offset),
3723                                     Info.align, Info.vol,
3724                                     Info.readMem, Info.writeMem);
3725  } else if (!HasChain) {
3726    Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(),
3727                         VTs, &Ops[0], Ops.size());
3728  } else if (!I.getType()->isVoidTy()) {
3729    Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(),
3730                         VTs, &Ops[0], Ops.size());
3731  } else {
3732    Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(),
3733                         VTs, &Ops[0], Ops.size());
3734  }
3735
3736  if (HasChain) {
3737    SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
3738    if (OnlyLoad)
3739      PendingLoads.push_back(Chain);
3740    else
3741      DAG.setRoot(Chain);
3742  }
3743
3744  if (!I.getType()->isVoidTy()) {
3745    if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
3746      EVT VT = TLI->getValueType(PTy);
3747      Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result);
3748    }
3749
3750    setValue(&I, Result);
3751  }
3752}
3753
3754/// GetSignificand - Get the significand and build it into a floating-point
3755/// number with exponent of 1:
3756///
3757///   Op = (Op & 0x007fffff) | 0x3f800000;
3758///
3759/// where Op is the hexadecimal representation of floating point value.
3760static SDValue
3761GetSignificand(SelectionDAG &DAG, SDValue Op, SDLoc dl) {
3762  SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
3763                           DAG.getConstant(0x007fffff, MVT::i32));
3764  SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
3765                           DAG.getConstant(0x3f800000, MVT::i32));
3766  return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
3767}
3768
3769/// GetExponent - Get the exponent:
3770///
3771///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
3772///
3773/// where Op is the hexadecimal representation of floating point value.
3774static SDValue
3775GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI,
3776            SDLoc dl) {
3777  SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
3778                           DAG.getConstant(0x7f800000, MVT::i32));
3779  SDValue t1 = DAG.getNode(ISD::SRL, dl, MVT::i32, t0,
3780                           DAG.getConstant(23, TLI.getPointerTy()));
3781  SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
3782                           DAG.getConstant(127, MVT::i32));
3783  return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
3784}
3785
3786/// getF32Constant - Get 32-bit floating point constant.
3787static SDValue
3788getF32Constant(SelectionDAG &DAG, unsigned Flt) {
3789  return DAG.getConstantFP(APFloat(APFloat::IEEEsingle, APInt(32, Flt)),
3790                           MVT::f32);
3791}
3792
3793/// expandExp - Lower an exp intrinsic. Handles the special sequences for
3794/// limited-precision mode.
3795static SDValue expandExp(SDLoc dl, SDValue Op, SelectionDAG &DAG,
3796                         const TargetLowering &TLI) {
3797  if (Op.getValueType() == MVT::f32 &&
3798      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3799
3800    // Put the exponent in the right bit position for later addition to the
3801    // final result:
3802    //
3803    //   #define LOG2OFe 1.4426950f
3804    //   IntegerPartOfX = ((int32_t)(X * LOG2OFe));
3805    SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
3806                             getF32Constant(DAG, 0x3fb8aa3b));
3807    SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
3808
3809    //   FractionalPartOfX = (X * LOG2OFe) - (float)IntegerPartOfX;
3810    SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
3811    SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
3812
3813    //   IntegerPartOfX <<= 23;
3814    IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
3815                                 DAG.getConstant(23, TLI.getPointerTy()));
3816
3817    SDValue TwoToFracPartOfX;
3818    if (LimitFloatPrecision <= 6) {
3819      // For floating-point precision of 6:
3820      //
3821      //   TwoToFractionalPartOfX =
3822      //     0.997535578f +
3823      //       (0.735607626f + 0.252464424f * x) * x;
3824      //
3825      // error 0.0144103317, which is 6 bits
3826      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3827                               getF32Constant(DAG, 0x3e814304));
3828      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3829                               getF32Constant(DAG, 0x3f3c50c8));
3830      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3831      TwoToFracPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3832                                     getF32Constant(DAG, 0x3f7f5e7e));
3833    } else if (LimitFloatPrecision <= 12) {
3834      // For floating-point precision of 12:
3835      //
3836      //   TwoToFractionalPartOfX =
3837      //     0.999892986f +
3838      //       (0.696457318f +
3839      //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
3840      //
3841      // 0.000107046256 error, which is 13 to 14 bits
3842      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3843                               getF32Constant(DAG, 0x3da235e3));
3844      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3845                               getF32Constant(DAG, 0x3e65b8f3));
3846      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3847      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3848                               getF32Constant(DAG, 0x3f324b07));
3849      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3850      TwoToFracPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3851                                     getF32Constant(DAG, 0x3f7ff8fd));
3852    } else { // LimitFloatPrecision <= 18
3853      // For floating-point precision of 18:
3854      //
3855      //   TwoToFractionalPartOfX =
3856      //     0.999999982f +
3857      //       (0.693148872f +
3858      //         (0.240227044f +
3859      //           (0.554906021e-1f +
3860      //             (0.961591928e-2f +
3861      //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
3862      //
3863      // error 2.47208000*10^(-7), which is better than 18 bits
3864      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3865                               getF32Constant(DAG, 0x3924b03e));
3866      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3867                               getF32Constant(DAG, 0x3ab24b87));
3868      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3869      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3870                               getF32Constant(DAG, 0x3c1d8c17));
3871      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3872      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3873                               getF32Constant(DAG, 0x3d634a1d));
3874      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3875      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3876                               getF32Constant(DAG, 0x3e75fe14));
3877      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3878      SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
3879                                getF32Constant(DAG, 0x3f317234));
3880      SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
3881      TwoToFracPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
3882                                     getF32Constant(DAG, 0x3f800000));
3883    }
3884
3885    // Add the exponent into the result in integer domain.
3886    SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFracPartOfX);
3887    return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
3888                       DAG.getNode(ISD::ADD, dl, MVT::i32,
3889                                   t13, IntegerPartOfX));
3890  }
3891
3892  // No special expansion.
3893  return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op);
3894}
3895
3896/// expandLog - Lower a log intrinsic. Handles the special sequences for
3897/// limited-precision mode.
3898static SDValue expandLog(SDLoc dl, SDValue Op, SelectionDAG &DAG,
3899                         const TargetLowering &TLI) {
3900  if (Op.getValueType() == MVT::f32 &&
3901      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3902    SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
3903
3904    // Scale the exponent by log(2) [0.69314718f].
3905    SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
3906    SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
3907                                        getF32Constant(DAG, 0x3f317218));
3908
3909    // Get the significand and build it into a floating-point number with
3910    // exponent of 1.
3911    SDValue X = GetSignificand(DAG, Op1, dl);
3912
3913    SDValue LogOfMantissa;
3914    if (LimitFloatPrecision <= 6) {
3915      // For floating-point precision of 6:
3916      //
3917      //   LogofMantissa =
3918      //     -1.1609546f +
3919      //       (1.4034025f - 0.23903021f * x) * x;
3920      //
3921      // error 0.0034276066, which is better than 8 bits
3922      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3923                               getF32Constant(DAG, 0xbe74c456));
3924      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3925                               getF32Constant(DAG, 0x3fb3a2b1));
3926      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3927      LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3928                                  getF32Constant(DAG, 0x3f949a29));
3929    } else if (LimitFloatPrecision <= 12) {
3930      // For floating-point precision of 12:
3931      //
3932      //   LogOfMantissa =
3933      //     -1.7417939f +
3934      //       (2.8212026f +
3935      //         (-1.4699568f +
3936      //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
3937      //
3938      // error 0.000061011436, which is 14 bits
3939      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3940                               getF32Constant(DAG, 0xbd67b6d6));
3941      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3942                               getF32Constant(DAG, 0x3ee4f4b8));
3943      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3944      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3945                               getF32Constant(DAG, 0x3fbc278b));
3946      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3947      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3948                               getF32Constant(DAG, 0x40348e95));
3949      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3950      LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3951                                  getF32Constant(DAG, 0x3fdef31a));
3952    } else { // LimitFloatPrecision <= 18
3953      // For floating-point precision of 18:
3954      //
3955      //   LogOfMantissa =
3956      //     -2.1072184f +
3957      //       (4.2372794f +
3958      //         (-3.7029485f +
3959      //           (2.2781945f +
3960      //             (-0.87823314f +
3961      //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
3962      //
3963      // error 0.0000023660568, which is better than 18 bits
3964      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3965                               getF32Constant(DAG, 0xbc91e5ac));
3966      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3967                               getF32Constant(DAG, 0x3e4350aa));
3968      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3969      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3970                               getF32Constant(DAG, 0x3f60d3e3));
3971      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3972      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3973                               getF32Constant(DAG, 0x4011cdf0));
3974      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3975      SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3976                               getF32Constant(DAG, 0x406cfd1c));
3977      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3978      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3979                               getF32Constant(DAG, 0x408797cb));
3980      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3981      LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
3982                                  getF32Constant(DAG, 0x4006dcab));
3983    }
3984
3985    return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa);
3986  }
3987
3988  // No special expansion.
3989  return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op);
3990}
3991
3992/// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for
3993/// limited-precision mode.
3994static SDValue expandLog2(SDLoc dl, SDValue Op, SelectionDAG &DAG,
3995                          const TargetLowering &TLI) {
3996  if (Op.getValueType() == MVT::f32 &&
3997      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3998    SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
3999
4000    // Get the exponent.
4001    SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
4002
4003    // Get the significand and build it into a floating-point number with
4004    // exponent of 1.
4005    SDValue X = GetSignificand(DAG, Op1, dl);
4006
4007    // Different possible minimax approximations of significand in
4008    // floating-point for various degrees of accuracy over [1,2].
4009    SDValue Log2ofMantissa;
4010    if (LimitFloatPrecision <= 6) {
4011      // For floating-point precision of 6:
4012      //
4013      //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
4014      //
4015      // error 0.0049451742, which is more than 7 bits
4016      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4017                               getF32Constant(DAG, 0xbeb08fe0));
4018      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4019                               getF32Constant(DAG, 0x40019463));
4020      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4021      Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4022                                   getF32Constant(DAG, 0x3fd6633d));
4023    } else if (LimitFloatPrecision <= 12) {
4024      // For floating-point precision of 12:
4025      //
4026      //   Log2ofMantissa =
4027      //     -2.51285454f +
4028      //       (4.07009056f +
4029      //         (-2.12067489f +
4030      //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
4031      //
4032      // error 0.0000876136000, which is better than 13 bits
4033      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4034                               getF32Constant(DAG, 0xbda7262e));
4035      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4036                               getF32Constant(DAG, 0x3f25280b));
4037      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4038      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4039                               getF32Constant(DAG, 0x4007b923));
4040      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4041      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4042                               getF32Constant(DAG, 0x40823e2f));
4043      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4044      Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4045                                   getF32Constant(DAG, 0x4020d29c));
4046    } else { // LimitFloatPrecision <= 18
4047      // For floating-point precision of 18:
4048      //
4049      //   Log2ofMantissa =
4050      //     -3.0400495f +
4051      //       (6.1129976f +
4052      //         (-5.3420409f +
4053      //           (3.2865683f +
4054      //             (-1.2669343f +
4055      //               (0.27515199f -
4056      //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
4057      //
4058      // error 0.0000018516, which is better than 18 bits
4059      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4060                               getF32Constant(DAG, 0xbcd2769e));
4061      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4062                               getF32Constant(DAG, 0x3e8ce0b9));
4063      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4064      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4065                               getF32Constant(DAG, 0x3fa22ae7));
4066      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4067      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4068                               getF32Constant(DAG, 0x40525723));
4069      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4070      SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4071                               getF32Constant(DAG, 0x40aaf200));
4072      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4073      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4074                               getF32Constant(DAG, 0x40c39dad));
4075      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4076      Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
4077                                   getF32Constant(DAG, 0x4042902c));
4078    }
4079
4080    return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa);
4081  }
4082
4083  // No special expansion.
4084  return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op);
4085}
4086
4087/// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for
4088/// limited-precision mode.
4089static SDValue expandLog10(SDLoc dl, SDValue Op, SelectionDAG &DAG,
4090                           const TargetLowering &TLI) {
4091  if (Op.getValueType() == MVT::f32 &&
4092      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4093    SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
4094
4095    // Scale the exponent by log10(2) [0.30102999f].
4096    SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
4097    SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
4098                                        getF32Constant(DAG, 0x3e9a209a));
4099
4100    // Get the significand and build it into a floating-point number with
4101    // exponent of 1.
4102    SDValue X = GetSignificand(DAG, Op1, dl);
4103
4104    SDValue Log10ofMantissa;
4105    if (LimitFloatPrecision <= 6) {
4106      // For floating-point precision of 6:
4107      //
4108      //   Log10ofMantissa =
4109      //     -0.50419619f +
4110      //       (0.60948995f - 0.10380950f * x) * x;
4111      //
4112      // error 0.0014886165, which is 6 bits
4113      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4114                               getF32Constant(DAG, 0xbdd49a13));
4115      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4116                               getF32Constant(DAG, 0x3f1c0789));
4117      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4118      Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4119                                    getF32Constant(DAG, 0x3f011300));
4120    } else if (LimitFloatPrecision <= 12) {
4121      // For floating-point precision of 12:
4122      //
4123      //   Log10ofMantissa =
4124      //     -0.64831180f +
4125      //       (0.91751397f +
4126      //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
4127      //
4128      // error 0.00019228036, which is better than 12 bits
4129      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4130                               getF32Constant(DAG, 0x3d431f31));
4131      SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
4132                               getF32Constant(DAG, 0x3ea21fb2));
4133      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4134      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4135                               getF32Constant(DAG, 0x3f6ae232));
4136      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4137      Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
4138                                    getF32Constant(DAG, 0x3f25f7c3));
4139    } else { // LimitFloatPrecision <= 18
4140      // For floating-point precision of 18:
4141      //
4142      //   Log10ofMantissa =
4143      //     -0.84299375f +
4144      //       (1.5327582f +
4145      //         (-1.0688956f +
4146      //           (0.49102474f +
4147      //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
4148      //
4149      // error 0.0000037995730, which is better than 18 bits
4150      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4151                               getF32Constant(DAG, 0x3c5d51ce));
4152      SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
4153                               getF32Constant(DAG, 0x3e00685a));
4154      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4155      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4156                               getF32Constant(DAG, 0x3efb6798));
4157      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4158      SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
4159                               getF32Constant(DAG, 0x3f88d192));
4160      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4161      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4162                               getF32Constant(DAG, 0x3fc4316c));
4163      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4164      Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
4165                                    getF32Constant(DAG, 0x3f57ce70));
4166    }
4167
4168    return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa);
4169  }
4170
4171  // No special expansion.
4172  return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op);
4173}
4174
4175/// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for
4176/// limited-precision mode.
4177static SDValue expandExp2(SDLoc dl, SDValue Op, SelectionDAG &DAG,
4178                          const TargetLowering &TLI) {
4179  if (Op.getValueType() == MVT::f32 &&
4180      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4181    SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Op);
4182
4183    //   FractionalPartOfX = x - (float)IntegerPartOfX;
4184    SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
4185    SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, Op, t1);
4186
4187    //   IntegerPartOfX <<= 23;
4188    IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
4189                                 DAG.getConstant(23, TLI.getPointerTy()));
4190
4191    SDValue TwoToFractionalPartOfX;
4192    if (LimitFloatPrecision <= 6) {
4193      // For floating-point precision of 6:
4194      //
4195      //   TwoToFractionalPartOfX =
4196      //     0.997535578f +
4197      //       (0.735607626f + 0.252464424f * x) * x;
4198      //
4199      // error 0.0144103317, which is 6 bits
4200      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4201                               getF32Constant(DAG, 0x3e814304));
4202      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4203                               getF32Constant(DAG, 0x3f3c50c8));
4204      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4205      TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4206                                           getF32Constant(DAG, 0x3f7f5e7e));
4207    } else if (LimitFloatPrecision <= 12) {
4208      // For floating-point precision of 12:
4209      //
4210      //   TwoToFractionalPartOfX =
4211      //     0.999892986f +
4212      //       (0.696457318f +
4213      //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
4214      //
4215      // error 0.000107046256, which is 13 to 14 bits
4216      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4217                               getF32Constant(DAG, 0x3da235e3));
4218      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4219                               getF32Constant(DAG, 0x3e65b8f3));
4220      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4221      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4222                               getF32Constant(DAG, 0x3f324b07));
4223      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4224      TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4225                                           getF32Constant(DAG, 0x3f7ff8fd));
4226    } else { // LimitFloatPrecision <= 18
4227      // For floating-point precision of 18:
4228      //
4229      //   TwoToFractionalPartOfX =
4230      //     0.999999982f +
4231      //       (0.693148872f +
4232      //         (0.240227044f +
4233      //           (0.554906021e-1f +
4234      //             (0.961591928e-2f +
4235      //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
4236      // error 2.47208000*10^(-7), which is better than 18 bits
4237      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4238                               getF32Constant(DAG, 0x3924b03e));
4239      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4240                               getF32Constant(DAG, 0x3ab24b87));
4241      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4242      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4243                               getF32Constant(DAG, 0x3c1d8c17));
4244      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4245      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4246                               getF32Constant(DAG, 0x3d634a1d));
4247      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4248      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4249                               getF32Constant(DAG, 0x3e75fe14));
4250      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4251      SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
4252                                getF32Constant(DAG, 0x3f317234));
4253      SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
4254      TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
4255                                           getF32Constant(DAG, 0x3f800000));
4256    }
4257
4258    // Add the exponent into the result in integer domain.
4259    SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32,
4260                              TwoToFractionalPartOfX);
4261    return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
4262                       DAG.getNode(ISD::ADD, dl, MVT::i32,
4263                                   t13, IntegerPartOfX));
4264  }
4265
4266  // No special expansion.
4267  return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op);
4268}
4269
4270/// visitPow - Lower a pow intrinsic. Handles the special sequences for
4271/// limited-precision mode with x == 10.0f.
4272static SDValue expandPow(SDLoc dl, SDValue LHS, SDValue RHS,
4273                         SelectionDAG &DAG, const TargetLowering &TLI) {
4274  bool IsExp10 = false;
4275  if (LHS.getValueType() == MVT::f32 && LHS.getValueType() == MVT::f32 &&
4276      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4277    if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) {
4278      APFloat Ten(10.0f);
4279      IsExp10 = LHSC->isExactlyValue(Ten);
4280    }
4281  }
4282
4283  if (IsExp10) {
4284    // Put the exponent in the right bit position for later addition to the
4285    // final result:
4286    //
4287    //   #define LOG2OF10 3.3219281f
4288    //   IntegerPartOfX = (int32_t)(x * LOG2OF10);
4289    SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS,
4290                             getF32Constant(DAG, 0x40549a78));
4291    SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
4292
4293    //   FractionalPartOfX = x - (float)IntegerPartOfX;
4294    SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
4295    SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
4296
4297    //   IntegerPartOfX <<= 23;
4298    IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
4299                                 DAG.getConstant(23, TLI.getPointerTy()));
4300
4301    SDValue TwoToFractionalPartOfX;
4302    if (LimitFloatPrecision <= 6) {
4303      // For floating-point precision of 6:
4304      //
4305      //   twoToFractionalPartOfX =
4306      //     0.997535578f +
4307      //       (0.735607626f + 0.252464424f * x) * x;
4308      //
4309      // error 0.0144103317, which is 6 bits
4310      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4311                               getF32Constant(DAG, 0x3e814304));
4312      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4313                               getF32Constant(DAG, 0x3f3c50c8));
4314      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4315      TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4316                                           getF32Constant(DAG, 0x3f7f5e7e));
4317    } else if (LimitFloatPrecision <= 12) {
4318      // For floating-point precision of 12:
4319      //
4320      //   TwoToFractionalPartOfX =
4321      //     0.999892986f +
4322      //       (0.696457318f +
4323      //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
4324      //
4325      // error 0.000107046256, which is 13 to 14 bits
4326      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4327                               getF32Constant(DAG, 0x3da235e3));
4328      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4329                               getF32Constant(DAG, 0x3e65b8f3));
4330      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4331      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4332                               getF32Constant(DAG, 0x3f324b07));
4333      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4334      TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4335                                           getF32Constant(DAG, 0x3f7ff8fd));
4336    } else { // LimitFloatPrecision <= 18
4337      // For floating-point precision of 18:
4338      //
4339      //   TwoToFractionalPartOfX =
4340      //     0.999999982f +
4341      //       (0.693148872f +
4342      //         (0.240227044f +
4343      //           (0.554906021e-1f +
4344      //             (0.961591928e-2f +
4345      //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
4346      // error 2.47208000*10^(-7), which is better than 18 bits
4347      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4348                               getF32Constant(DAG, 0x3924b03e));
4349      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4350                               getF32Constant(DAG, 0x3ab24b87));
4351      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4352      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4353                               getF32Constant(DAG, 0x3c1d8c17));
4354      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4355      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4356                               getF32Constant(DAG, 0x3d634a1d));
4357      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4358      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4359                               getF32Constant(DAG, 0x3e75fe14));
4360      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4361      SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
4362                                getF32Constant(DAG, 0x3f317234));
4363      SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
4364      TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
4365                                           getF32Constant(DAG, 0x3f800000));
4366    }
4367
4368    SDValue t13 = DAG.getNode(ISD::BITCAST, dl,MVT::i32,TwoToFractionalPartOfX);
4369    return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
4370                       DAG.getNode(ISD::ADD, dl, MVT::i32,
4371                                   t13, IntegerPartOfX));
4372  }
4373
4374  // No special expansion.
4375  return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS);
4376}
4377
4378
4379/// ExpandPowI - Expand a llvm.powi intrinsic.
4380static SDValue ExpandPowI(SDLoc DL, SDValue LHS, SDValue RHS,
4381                          SelectionDAG &DAG) {
4382  // If RHS is a constant, we can expand this out to a multiplication tree,
4383  // otherwise we end up lowering to a call to __powidf2 (for example).  When
4384  // optimizing for size, we only want to do this if the expansion would produce
4385  // a small number of multiplies, otherwise we do the full expansion.
4386  if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
4387    // Get the exponent as a positive value.
4388    unsigned Val = RHSC->getSExtValue();
4389    if ((int)Val < 0) Val = -Val;
4390
4391    // powi(x, 0) -> 1.0
4392    if (Val == 0)
4393      return DAG.getConstantFP(1.0, LHS.getValueType());
4394
4395    const Function *F = DAG.getMachineFunction().getFunction();
4396    if (!F->getAttributes().hasAttribute(AttributeSet::FunctionIndex,
4397                                         Attribute::OptimizeForSize) ||
4398        // If optimizing for size, don't insert too many multiplies.  This
4399        // inserts up to 5 multiplies.
4400        CountPopulation_32(Val)+Log2_32(Val) < 7) {
4401      // We use the simple binary decomposition method to generate the multiply
4402      // sequence.  There are more optimal ways to do this (for example,
4403      // powi(x,15) generates one more multiply than it should), but this has
4404      // the benefit of being both really simple and much better than a libcall.
4405      SDValue Res;  // Logically starts equal to 1.0
4406      SDValue CurSquare = LHS;
4407      while (Val) {
4408        if (Val & 1) {
4409          if (Res.getNode())
4410            Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare);
4411          else
4412            Res = CurSquare;  // 1.0*CurSquare.
4413        }
4414
4415        CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
4416                                CurSquare, CurSquare);
4417        Val >>= 1;
4418      }
4419
4420      // If the original was negative, invert the result, producing 1/(x*x*x).
4421      if (RHSC->getSExtValue() < 0)
4422        Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
4423                          DAG.getConstantFP(1.0, LHS.getValueType()), Res);
4424      return Res;
4425    }
4426  }
4427
4428  // Otherwise, expand to a libcall.
4429  return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
4430}
4431
4432// getTruncatedArgReg - Find underlying register used for an truncated
4433// argument.
4434static unsigned getTruncatedArgReg(const SDValue &N) {
4435  if (N.getOpcode() != ISD::TRUNCATE)
4436    return 0;
4437
4438  const SDValue &Ext = N.getOperand(0);
4439  if (Ext.getOpcode() == ISD::AssertZext ||
4440      Ext.getOpcode() == ISD::AssertSext) {
4441    const SDValue &CFR = Ext.getOperand(0);
4442    if (CFR.getOpcode() == ISD::CopyFromReg)
4443      return cast<RegisterSDNode>(CFR.getOperand(1))->getReg();
4444    if (CFR.getOpcode() == ISD::TRUNCATE)
4445      return getTruncatedArgReg(CFR);
4446  }
4447  return 0;
4448}
4449
4450/// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function
4451/// argument, create the corresponding DBG_VALUE machine instruction for it now.
4452/// At the end of instruction selection, they will be inserted to the entry BB.
4453bool
4454SelectionDAGBuilder::EmitFuncArgumentDbgValue(const Value *V, MDNode *Variable,
4455                                              int64_t Offset,
4456                                              const SDValue &N) {
4457  const Argument *Arg = dyn_cast<Argument>(V);
4458  if (!Arg)
4459    return false;
4460
4461  MachineFunction &MF = DAG.getMachineFunction();
4462  const TargetInstrInfo *TII = DAG.getTarget().getInstrInfo();
4463
4464  // Ignore inlined function arguments here.
4465  DIVariable DV(Variable);
4466  if (DV.isInlinedFnArgument(MF.getFunction()))
4467    return false;
4468
4469  Optional<MachineOperand> Op;
4470  // Some arguments' frame index is recorded during argument lowering.
4471  if (int FI = FuncInfo.getArgumentFrameIndex(Arg))
4472    Op = MachineOperand::CreateFI(FI);
4473
4474  if (!Op && N.getNode()) {
4475    unsigned Reg;
4476    if (N.getOpcode() == ISD::CopyFromReg)
4477      Reg = cast<RegisterSDNode>(N.getOperand(1))->getReg();
4478    else
4479      Reg = getTruncatedArgReg(N);
4480    if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) {
4481      MachineRegisterInfo &RegInfo = MF.getRegInfo();
4482      unsigned PR = RegInfo.getLiveInPhysReg(Reg);
4483      if (PR)
4484        Reg = PR;
4485    }
4486    if (Reg)
4487      Op = MachineOperand::CreateReg(Reg, false);
4488  }
4489
4490  if (!Op) {
4491    // Check if ValueMap has reg number.
4492    DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
4493    if (VMI != FuncInfo.ValueMap.end())
4494      Op = MachineOperand::CreateReg(VMI->second, false);
4495  }
4496
4497  if (!Op && N.getNode())
4498    // Check if frame index is available.
4499    if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode()))
4500      if (FrameIndexSDNode *FINode =
4501          dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
4502        Op = MachineOperand::CreateFI(FINode->getIndex());
4503
4504  if (!Op)
4505    return false;
4506
4507  // FIXME: This does not handle register-indirect values at offset 0.
4508  bool IsIndirect = Offset != 0;
4509  if (Op->isReg())
4510    FuncInfo.ArgDbgValues.push_back(BuildMI(MF, getCurDebugLoc(),
4511                                            TII->get(TargetOpcode::DBG_VALUE),
4512                                            IsIndirect,
4513                                            Op->getReg(), Offset, Variable));
4514  else
4515    FuncInfo.ArgDbgValues.push_back(
4516      BuildMI(MF, getCurDebugLoc(), TII->get(TargetOpcode::DBG_VALUE))
4517          .addOperand(*Op).addImm(Offset).addMetadata(Variable));
4518
4519  return true;
4520}
4521
4522// VisualStudio defines setjmp as _setjmp
4523#if defined(_MSC_VER) && defined(setjmp) && \
4524                         !defined(setjmp_undefined_for_msvc)
4525#  pragma push_macro("setjmp")
4526#  undef setjmp
4527#  define setjmp_undefined_for_msvc
4528#endif
4529
4530/// visitIntrinsicCall - Lower the call to the specified intrinsic function.  If
4531/// we want to emit this as a call to a named external function, return the name
4532/// otherwise lower it and return null.
4533const char *
4534SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) {
4535  const TargetLowering *TLI = TM.getTargetLowering();
4536  SDLoc sdl = getCurSDLoc();
4537  DebugLoc dl = getCurDebugLoc();
4538  SDValue Res;
4539
4540  switch (Intrinsic) {
4541  default:
4542    // By default, turn this into a target intrinsic node.
4543    visitTargetIntrinsic(I, Intrinsic);
4544    return 0;
4545  case Intrinsic::vastart:  visitVAStart(I); return 0;
4546  case Intrinsic::vaend:    visitVAEnd(I); return 0;
4547  case Intrinsic::vacopy:   visitVACopy(I); return 0;
4548  case Intrinsic::returnaddress:
4549    setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, TLI->getPointerTy(),
4550                             getValue(I.getArgOperand(0))));
4551    return 0;
4552  case Intrinsic::frameaddress:
4553    setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, TLI->getPointerTy(),
4554                             getValue(I.getArgOperand(0))));
4555    return 0;
4556  case Intrinsic::setjmp:
4557    return &"_setjmp"[!TLI->usesUnderscoreSetJmp()];
4558  case Intrinsic::longjmp:
4559    return &"_longjmp"[!TLI->usesUnderscoreLongJmp()];
4560  case Intrinsic::memcpy: {
4561    // Assert for address < 256 since we support only user defined address
4562    // spaces.
4563    assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4564           < 256 &&
4565           cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace()
4566           < 256 &&
4567           "Unknown address space");
4568    SDValue Op1 = getValue(I.getArgOperand(0));
4569    SDValue Op2 = getValue(I.getArgOperand(1));
4570    SDValue Op3 = getValue(I.getArgOperand(2));
4571    unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4572    if (!Align)
4573      Align = 1; // @llvm.memcpy defines 0 and 1 to both mean no alignment.
4574    bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4575    DAG.setRoot(DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, false,
4576                              MachinePointerInfo(I.getArgOperand(0)),
4577                              MachinePointerInfo(I.getArgOperand(1))));
4578    return 0;
4579  }
4580  case Intrinsic::memset: {
4581    // Assert for address < 256 since we support only user defined address
4582    // spaces.
4583    assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4584           < 256 &&
4585           "Unknown address space");
4586    SDValue Op1 = getValue(I.getArgOperand(0));
4587    SDValue Op2 = getValue(I.getArgOperand(1));
4588    SDValue Op3 = getValue(I.getArgOperand(2));
4589    unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4590    if (!Align)
4591      Align = 1; // @llvm.memset defines 0 and 1 to both mean no alignment.
4592    bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4593    DAG.setRoot(DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
4594                              MachinePointerInfo(I.getArgOperand(0))));
4595    return 0;
4596  }
4597  case Intrinsic::memmove: {
4598    // Assert for address < 256 since we support only user defined address
4599    // spaces.
4600    assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4601           < 256 &&
4602           cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace()
4603           < 256 &&
4604           "Unknown address space");
4605    SDValue Op1 = getValue(I.getArgOperand(0));
4606    SDValue Op2 = getValue(I.getArgOperand(1));
4607    SDValue Op3 = getValue(I.getArgOperand(2));
4608    unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4609    if (!Align)
4610      Align = 1; // @llvm.memmove defines 0 and 1 to both mean no alignment.
4611    bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4612    DAG.setRoot(DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
4613                               MachinePointerInfo(I.getArgOperand(0)),
4614                               MachinePointerInfo(I.getArgOperand(1))));
4615    return 0;
4616  }
4617  case Intrinsic::dbg_declare: {
4618    const DbgDeclareInst &DI = cast<DbgDeclareInst>(I);
4619    MDNode *Variable = DI.getVariable();
4620    const Value *Address = DI.getAddress();
4621    DIVariable DIVar(Variable);
4622    assert((!DIVar || DIVar.isVariable()) &&
4623      "Variable in DbgDeclareInst should be either null or a DIVariable.");
4624    if (!Address || !DIVar) {
4625      DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4626      return 0;
4627    }
4628
4629    // Check if address has undef value.
4630    if (isa<UndefValue>(Address) ||
4631        (Address->use_empty() && !isa<Argument>(Address))) {
4632      DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4633      return 0;
4634    }
4635
4636    SDValue &N = NodeMap[Address];
4637    if (!N.getNode() && isa<Argument>(Address))
4638      // Check unused arguments map.
4639      N = UnusedArgNodeMap[Address];
4640    SDDbgValue *SDV;
4641    if (N.getNode()) {
4642      if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
4643        Address = BCI->getOperand(0);
4644      // Parameters are handled specially.
4645      bool isParameter =
4646        (DIVariable(Variable).getTag() == dwarf::DW_TAG_arg_variable ||
4647         isa<Argument>(Address));
4648
4649      const AllocaInst *AI = dyn_cast<AllocaInst>(Address);
4650
4651      if (isParameter && !AI) {
4652        FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
4653        if (FINode)
4654          // Byval parameter.  We have a frame index at this point.
4655          SDV = DAG.getDbgValue(Variable, FINode->getIndex(),
4656                                0, dl, SDNodeOrder);
4657        else {
4658          // Address is an argument, so try to emit its dbg value using
4659          // virtual register info from the FuncInfo.ValueMap.
4660          EmitFuncArgumentDbgValue(Address, Variable, 0, N);
4661          return 0;
4662        }
4663      } else if (AI)
4664        SDV = DAG.getDbgValue(Variable, N.getNode(), N.getResNo(),
4665                              0, dl, SDNodeOrder);
4666      else {
4667        // Can't do anything with other non-AI cases yet.
4668        DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4669        DEBUG(dbgs() << "non-AllocaInst issue for Address: \n\t");
4670        DEBUG(Address->dump());
4671        return 0;
4672      }
4673      DAG.AddDbgValue(SDV, N.getNode(), isParameter);
4674    } else {
4675      // If Address is an argument then try to emit its dbg value using
4676      // virtual register info from the FuncInfo.ValueMap.
4677      if (!EmitFuncArgumentDbgValue(Address, Variable, 0, N)) {
4678        // If variable is pinned by a alloca in dominating bb then
4679        // use StaticAllocaMap.
4680        if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) {
4681          if (AI->getParent() != DI.getParent()) {
4682            DenseMap<const AllocaInst*, int>::iterator SI =
4683              FuncInfo.StaticAllocaMap.find(AI);
4684            if (SI != FuncInfo.StaticAllocaMap.end()) {
4685              SDV = DAG.getDbgValue(Variable, SI->second,
4686                                    0, dl, SDNodeOrder);
4687              DAG.AddDbgValue(SDV, 0, false);
4688              return 0;
4689            }
4690          }
4691        }
4692        DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4693      }
4694    }
4695    return 0;
4696  }
4697  case Intrinsic::dbg_value: {
4698    const DbgValueInst &DI = cast<DbgValueInst>(I);
4699    DIVariable DIVar(DI.getVariable());
4700    assert((!DIVar || DIVar.isVariable()) &&
4701      "Variable in DbgValueInst should be either null or a DIVariable.");
4702    if (!DIVar)
4703      return 0;
4704
4705    MDNode *Variable = DI.getVariable();
4706    uint64_t Offset = DI.getOffset();
4707    const Value *V = DI.getValue();
4708    if (!V)
4709      return 0;
4710
4711    SDDbgValue *SDV;
4712    if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) {
4713      SDV = DAG.getDbgValue(Variable, V, Offset, dl, SDNodeOrder);
4714      DAG.AddDbgValue(SDV, 0, false);
4715    } else {
4716      // Do not use getValue() in here; we don't want to generate code at
4717      // this point if it hasn't been done yet.
4718      SDValue N = NodeMap[V];
4719      if (!N.getNode() && isa<Argument>(V))
4720        // Check unused arguments map.
4721        N = UnusedArgNodeMap[V];
4722      if (N.getNode()) {
4723        if (!EmitFuncArgumentDbgValue(V, Variable, Offset, N)) {
4724          SDV = DAG.getDbgValue(Variable, N.getNode(),
4725                                N.getResNo(), Offset, dl, SDNodeOrder);
4726          DAG.AddDbgValue(SDV, N.getNode(), false);
4727        }
4728      } else if (!V->use_empty() ) {
4729        // Do not call getValue(V) yet, as we don't want to generate code.
4730        // Remember it for later.
4731        DanglingDebugInfo DDI(&DI, dl, SDNodeOrder);
4732        DanglingDebugInfoMap[V] = DDI;
4733      } else {
4734        // We may expand this to cover more cases.  One case where we have no
4735        // data available is an unreferenced parameter.
4736        DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4737      }
4738    }
4739
4740    // Build a debug info table entry.
4741    if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V))
4742      V = BCI->getOperand(0);
4743    const AllocaInst *AI = dyn_cast<AllocaInst>(V);
4744    // Don't handle byval struct arguments or VLAs, for example.
4745    if (!AI) {
4746      DEBUG(dbgs() << "Dropping debug location info for:\n  " << DI << "\n");
4747      DEBUG(dbgs() << "  Last seen at:\n    " << *V << "\n");
4748      return 0;
4749    }
4750    DenseMap<const AllocaInst*, int>::iterator SI =
4751      FuncInfo.StaticAllocaMap.find(AI);
4752    if (SI == FuncInfo.StaticAllocaMap.end())
4753      return 0; // VLAs.
4754    int FI = SI->second;
4755
4756    MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4757    if (!DI.getDebugLoc().isUnknown() && MMI.hasDebugInfo())
4758      MMI.setVariableDbgInfo(Variable, FI, DI.getDebugLoc());
4759    return 0;
4760  }
4761
4762  case Intrinsic::eh_typeid_for: {
4763    // Find the type id for the given typeinfo.
4764    GlobalVariable *GV = ExtractTypeInfo(I.getArgOperand(0));
4765    unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV);
4766    Res = DAG.getConstant(TypeID, MVT::i32);
4767    setValue(&I, Res);
4768    return 0;
4769  }
4770
4771  case Intrinsic::eh_return_i32:
4772  case Intrinsic::eh_return_i64:
4773    DAG.getMachineFunction().getMMI().setCallsEHReturn(true);
4774    DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl,
4775                            MVT::Other,
4776                            getControlRoot(),
4777                            getValue(I.getArgOperand(0)),
4778                            getValue(I.getArgOperand(1))));
4779    return 0;
4780  case Intrinsic::eh_unwind_init:
4781    DAG.getMachineFunction().getMMI().setCallsUnwindInit(true);
4782    return 0;
4783  case Intrinsic::eh_dwarf_cfa: {
4784    SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), sdl,
4785                                        TLI->getPointerTy());
4786    SDValue Offset = DAG.getNode(ISD::ADD, sdl,
4787                                 CfaArg.getValueType(),
4788                                 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, sdl,
4789                                             CfaArg.getValueType()),
4790                                 CfaArg);
4791    SDValue FA = DAG.getNode(ISD::FRAMEADDR, sdl,
4792                             TLI->getPointerTy(),
4793                             DAG.getConstant(0, TLI->getPointerTy()));
4794    setValue(&I, DAG.getNode(ISD::ADD, sdl, FA.getValueType(),
4795                             FA, Offset));
4796    return 0;
4797  }
4798  case Intrinsic::eh_sjlj_callsite: {
4799    MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4800    ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0));
4801    assert(CI && "Non-constant call site value in eh.sjlj.callsite!");
4802    assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
4803
4804    MMI.setCurrentCallSite(CI->getZExtValue());
4805    return 0;
4806  }
4807  case Intrinsic::eh_sjlj_functioncontext: {
4808    // Get and store the index of the function context.
4809    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
4810    AllocaInst *FnCtx =
4811      cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts());
4812    int FI = FuncInfo.StaticAllocaMap[FnCtx];
4813    MFI->setFunctionContextIndex(FI);
4814    return 0;
4815  }
4816  case Intrinsic::eh_sjlj_setjmp: {
4817    SDValue Ops[2];
4818    Ops[0] = getRoot();
4819    Ops[1] = getValue(I.getArgOperand(0));
4820    SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl,
4821                             DAG.getVTList(MVT::i32, MVT::Other),
4822                             Ops, 2);
4823    setValue(&I, Op.getValue(0));
4824    DAG.setRoot(Op.getValue(1));
4825    return 0;
4826  }
4827  case Intrinsic::eh_sjlj_longjmp: {
4828    DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other,
4829                            getRoot(), getValue(I.getArgOperand(0))));
4830    return 0;
4831  }
4832
4833  case Intrinsic::x86_mmx_pslli_w:
4834  case Intrinsic::x86_mmx_pslli_d:
4835  case Intrinsic::x86_mmx_pslli_q:
4836  case Intrinsic::x86_mmx_psrli_w:
4837  case Intrinsic::x86_mmx_psrli_d:
4838  case Intrinsic::x86_mmx_psrli_q:
4839  case Intrinsic::x86_mmx_psrai_w:
4840  case Intrinsic::x86_mmx_psrai_d: {
4841    SDValue ShAmt = getValue(I.getArgOperand(1));
4842    if (isa<ConstantSDNode>(ShAmt)) {
4843      visitTargetIntrinsic(I, Intrinsic);
4844      return 0;
4845    }
4846    unsigned NewIntrinsic = 0;
4847    EVT ShAmtVT = MVT::v2i32;
4848    switch (Intrinsic) {
4849    case Intrinsic::x86_mmx_pslli_w:
4850      NewIntrinsic = Intrinsic::x86_mmx_psll_w;
4851      break;
4852    case Intrinsic::x86_mmx_pslli_d:
4853      NewIntrinsic = Intrinsic::x86_mmx_psll_d;
4854      break;
4855    case Intrinsic::x86_mmx_pslli_q:
4856      NewIntrinsic = Intrinsic::x86_mmx_psll_q;
4857      break;
4858    case Intrinsic::x86_mmx_psrli_w:
4859      NewIntrinsic = Intrinsic::x86_mmx_psrl_w;
4860      break;
4861    case Intrinsic::x86_mmx_psrli_d:
4862      NewIntrinsic = Intrinsic::x86_mmx_psrl_d;
4863      break;
4864    case Intrinsic::x86_mmx_psrli_q:
4865      NewIntrinsic = Intrinsic::x86_mmx_psrl_q;
4866      break;
4867    case Intrinsic::x86_mmx_psrai_w:
4868      NewIntrinsic = Intrinsic::x86_mmx_psra_w;
4869      break;
4870    case Intrinsic::x86_mmx_psrai_d:
4871      NewIntrinsic = Intrinsic::x86_mmx_psra_d;
4872      break;
4873    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
4874    }
4875
4876    // The vector shift intrinsics with scalars uses 32b shift amounts but
4877    // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
4878    // to be zero.
4879    // We must do this early because v2i32 is not a legal type.
4880    SDValue ShOps[2];
4881    ShOps[0] = ShAmt;
4882    ShOps[1] = DAG.getConstant(0, MVT::i32);
4883    ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, sdl, ShAmtVT, &ShOps[0], 2);
4884    EVT DestVT = TLI->getValueType(I.getType());
4885    ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt);
4886    Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT,
4887                       DAG.getConstant(NewIntrinsic, MVT::i32),
4888                       getValue(I.getArgOperand(0)), ShAmt);
4889    setValue(&I, Res);
4890    return 0;
4891  }
4892  case Intrinsic::x86_avx_vinsertf128_pd_256:
4893  case Intrinsic::x86_avx_vinsertf128_ps_256:
4894  case Intrinsic::x86_avx_vinsertf128_si_256:
4895  case Intrinsic::x86_avx2_vinserti128: {
4896    EVT DestVT = TLI->getValueType(I.getType());
4897    EVT ElVT = TLI->getValueType(I.getArgOperand(1)->getType());
4898    uint64_t Idx = (cast<ConstantInt>(I.getArgOperand(2))->getZExtValue() & 1) *
4899                   ElVT.getVectorNumElements();
4900    Res = DAG.getNode(ISD::INSERT_SUBVECTOR, sdl, DestVT,
4901                      getValue(I.getArgOperand(0)),
4902                      getValue(I.getArgOperand(1)),
4903                      DAG.getConstant(Idx, TLI->getVectorIdxTy()));
4904    setValue(&I, Res);
4905    return 0;
4906  }
4907  case Intrinsic::x86_avx_vextractf128_pd_256:
4908  case Intrinsic::x86_avx_vextractf128_ps_256:
4909  case Intrinsic::x86_avx_vextractf128_si_256:
4910  case Intrinsic::x86_avx2_vextracti128: {
4911    EVT DestVT = TLI->getValueType(I.getType());
4912    uint64_t Idx = (cast<ConstantInt>(I.getArgOperand(1))->getZExtValue() & 1) *
4913                   DestVT.getVectorNumElements();
4914    Res = DAG.getNode(ISD::EXTRACT_SUBVECTOR, sdl, DestVT,
4915                      getValue(I.getArgOperand(0)),
4916                      DAG.getConstant(Idx, TLI->getVectorIdxTy()));
4917    setValue(&I, Res);
4918    return 0;
4919  }
4920  case Intrinsic::convertff:
4921  case Intrinsic::convertfsi:
4922  case Intrinsic::convertfui:
4923  case Intrinsic::convertsif:
4924  case Intrinsic::convertuif:
4925  case Intrinsic::convertss:
4926  case Intrinsic::convertsu:
4927  case Intrinsic::convertus:
4928  case Intrinsic::convertuu: {
4929    ISD::CvtCode Code = ISD::CVT_INVALID;
4930    switch (Intrinsic) {
4931    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
4932    case Intrinsic::convertff:  Code = ISD::CVT_FF; break;
4933    case Intrinsic::convertfsi: Code = ISD::CVT_FS; break;
4934    case Intrinsic::convertfui: Code = ISD::CVT_FU; break;
4935    case Intrinsic::convertsif: Code = ISD::CVT_SF; break;
4936    case Intrinsic::convertuif: Code = ISD::CVT_UF; break;
4937    case Intrinsic::convertss:  Code = ISD::CVT_SS; break;
4938    case Intrinsic::convertsu:  Code = ISD::CVT_SU; break;
4939    case Intrinsic::convertus:  Code = ISD::CVT_US; break;
4940    case Intrinsic::convertuu:  Code = ISD::CVT_UU; break;
4941    }
4942    EVT DestVT = TLI->getValueType(I.getType());
4943    const Value *Op1 = I.getArgOperand(0);
4944    Res = DAG.getConvertRndSat(DestVT, sdl, getValue(Op1),
4945                               DAG.getValueType(DestVT),
4946                               DAG.getValueType(getValue(Op1).getValueType()),
4947                               getValue(I.getArgOperand(1)),
4948                               getValue(I.getArgOperand(2)),
4949                               Code);
4950    setValue(&I, Res);
4951    return 0;
4952  }
4953  case Intrinsic::powi:
4954    setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)),
4955                            getValue(I.getArgOperand(1)), DAG));
4956    return 0;
4957  case Intrinsic::log:
4958    setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, *TLI));
4959    return 0;
4960  case Intrinsic::log2:
4961    setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, *TLI));
4962    return 0;
4963  case Intrinsic::log10:
4964    setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, *TLI));
4965    return 0;
4966  case Intrinsic::exp:
4967    setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, *TLI));
4968    return 0;
4969  case Intrinsic::exp2:
4970    setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, *TLI));
4971    return 0;
4972  case Intrinsic::pow:
4973    setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)),
4974                           getValue(I.getArgOperand(1)), DAG, *TLI));
4975    return 0;
4976  case Intrinsic::sqrt:
4977  case Intrinsic::fabs:
4978  case Intrinsic::sin:
4979  case Intrinsic::cos:
4980  case Intrinsic::floor:
4981  case Intrinsic::ceil:
4982  case Intrinsic::trunc:
4983  case Intrinsic::rint:
4984  case Intrinsic::nearbyint:
4985  case Intrinsic::round: {
4986    unsigned Opcode;
4987    switch (Intrinsic) {
4988    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
4989    case Intrinsic::sqrt:      Opcode = ISD::FSQRT;      break;
4990    case Intrinsic::fabs:      Opcode = ISD::FABS;       break;
4991    case Intrinsic::sin:       Opcode = ISD::FSIN;       break;
4992    case Intrinsic::cos:       Opcode = ISD::FCOS;       break;
4993    case Intrinsic::floor:     Opcode = ISD::FFLOOR;     break;
4994    case Intrinsic::ceil:      Opcode = ISD::FCEIL;      break;
4995    case Intrinsic::trunc:     Opcode = ISD::FTRUNC;     break;
4996    case Intrinsic::rint:      Opcode = ISD::FRINT;      break;
4997    case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break;
4998    case Intrinsic::round:     Opcode = ISD::FROUND;     break;
4999    }
5000
5001    setValue(&I, DAG.getNode(Opcode, sdl,
5002                             getValue(I.getArgOperand(0)).getValueType(),
5003                             getValue(I.getArgOperand(0))));
5004    return 0;
5005  }
5006  case Intrinsic::copysign:
5007    setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl,
5008                             getValue(I.getArgOperand(0)).getValueType(),
5009                             getValue(I.getArgOperand(0)),
5010                             getValue(I.getArgOperand(1))));
5011    return 0;
5012  case Intrinsic::fma:
5013    setValue(&I, DAG.getNode(ISD::FMA, sdl,
5014                             getValue(I.getArgOperand(0)).getValueType(),
5015                             getValue(I.getArgOperand(0)),
5016                             getValue(I.getArgOperand(1)),
5017                             getValue(I.getArgOperand(2))));
5018    return 0;
5019  case Intrinsic::fmuladd: {
5020    EVT VT = TLI->getValueType(I.getType());
5021    if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
5022        TLI->isFMAFasterThanFMulAndFAdd(VT)) {
5023      setValue(&I, DAG.getNode(ISD::FMA, sdl,
5024                               getValue(I.getArgOperand(0)).getValueType(),
5025                               getValue(I.getArgOperand(0)),
5026                               getValue(I.getArgOperand(1)),
5027                               getValue(I.getArgOperand(2))));
5028    } else {
5029      SDValue Mul = DAG.getNode(ISD::FMUL, sdl,
5030                                getValue(I.getArgOperand(0)).getValueType(),
5031                                getValue(I.getArgOperand(0)),
5032                                getValue(I.getArgOperand(1)));
5033      SDValue Add = DAG.getNode(ISD::FADD, sdl,
5034                                getValue(I.getArgOperand(0)).getValueType(),
5035                                Mul,
5036                                getValue(I.getArgOperand(2)));
5037      setValue(&I, Add);
5038    }
5039    return 0;
5040  }
5041  case Intrinsic::convert_to_fp16:
5042    setValue(&I, DAG.getNode(ISD::FP32_TO_FP16, sdl,
5043                             MVT::i16, getValue(I.getArgOperand(0))));
5044    return 0;
5045  case Intrinsic::convert_from_fp16:
5046    setValue(&I, DAG.getNode(ISD::FP16_TO_FP32, sdl,
5047                             MVT::f32, getValue(I.getArgOperand(0))));
5048    return 0;
5049  case Intrinsic::pcmarker: {
5050    SDValue Tmp = getValue(I.getArgOperand(0));
5051    DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp));
5052    return 0;
5053  }
5054  case Intrinsic::readcyclecounter: {
5055    SDValue Op = getRoot();
5056    Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl,
5057                      DAG.getVTList(MVT::i64, MVT::Other),
5058                      &Op, 1);
5059    setValue(&I, Res);
5060    DAG.setRoot(Res.getValue(1));
5061    return 0;
5062  }
5063  case Intrinsic::bswap:
5064    setValue(&I, DAG.getNode(ISD::BSWAP, sdl,
5065                             getValue(I.getArgOperand(0)).getValueType(),
5066                             getValue(I.getArgOperand(0))));
5067    return 0;
5068  case Intrinsic::cttz: {
5069    SDValue Arg = getValue(I.getArgOperand(0));
5070    ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
5071    EVT Ty = Arg.getValueType();
5072    setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF,
5073                             sdl, Ty, Arg));
5074    return 0;
5075  }
5076  case Intrinsic::ctlz: {
5077    SDValue Arg = getValue(I.getArgOperand(0));
5078    ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
5079    EVT Ty = Arg.getValueType();
5080    setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF,
5081                             sdl, Ty, Arg));
5082    return 0;
5083  }
5084  case Intrinsic::ctpop: {
5085    SDValue Arg = getValue(I.getArgOperand(0));
5086    EVT Ty = Arg.getValueType();
5087    setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg));
5088    return 0;
5089  }
5090  case Intrinsic::stacksave: {
5091    SDValue Op = getRoot();
5092    Res = DAG.getNode(ISD::STACKSAVE, sdl,
5093                      DAG.getVTList(TLI->getPointerTy(), MVT::Other), &Op, 1);
5094    setValue(&I, Res);
5095    DAG.setRoot(Res.getValue(1));
5096    return 0;
5097  }
5098  case Intrinsic::stackrestore: {
5099    Res = getValue(I.getArgOperand(0));
5100    DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res));
5101    return 0;
5102  }
5103  case Intrinsic::stackprotector: {
5104    // Emit code into the DAG to store the stack guard onto the stack.
5105    MachineFunction &MF = DAG.getMachineFunction();
5106    MachineFrameInfo *MFI = MF.getFrameInfo();
5107    EVT PtrTy = TLI->getPointerTy();
5108
5109    SDValue Src = getValue(I.getArgOperand(0));   // The guard's value.
5110    AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
5111
5112    int FI = FuncInfo.StaticAllocaMap[Slot];
5113    MFI->setStackProtectorIndex(FI);
5114
5115    SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
5116
5117    // Store the stack protector onto the stack.
5118    Res = DAG.getStore(getRoot(), sdl, Src, FIN,
5119                       MachinePointerInfo::getFixedStack(FI),
5120                       true, false, 0);
5121    setValue(&I, Res);
5122    DAG.setRoot(Res);
5123    return 0;
5124  }
5125  case Intrinsic::objectsize: {
5126    // If we don't know by now, we're never going to know.
5127    ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1));
5128
5129    assert(CI && "Non-constant type in __builtin_object_size?");
5130
5131    SDValue Arg = getValue(I.getCalledValue());
5132    EVT Ty = Arg.getValueType();
5133
5134    if (CI->isZero())
5135      Res = DAG.getConstant(-1ULL, Ty);
5136    else
5137      Res = DAG.getConstant(0, Ty);
5138
5139    setValue(&I, Res);
5140    return 0;
5141  }
5142  case Intrinsic::annotation:
5143  case Intrinsic::ptr_annotation:
5144    // Drop the intrinsic, but forward the value
5145    setValue(&I, getValue(I.getOperand(0)));
5146    return 0;
5147  case Intrinsic::var_annotation:
5148    // Discard annotate attributes
5149    return 0;
5150
5151  case Intrinsic::init_trampoline: {
5152    const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
5153
5154    SDValue Ops[6];
5155    Ops[0] = getRoot();
5156    Ops[1] = getValue(I.getArgOperand(0));
5157    Ops[2] = getValue(I.getArgOperand(1));
5158    Ops[3] = getValue(I.getArgOperand(2));
5159    Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
5160    Ops[5] = DAG.getSrcValue(F);
5161
5162    Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops, 6);
5163
5164    DAG.setRoot(Res);
5165    return 0;
5166  }
5167  case Intrinsic::adjust_trampoline: {
5168    setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl,
5169                             TLI->getPointerTy(),
5170                             getValue(I.getArgOperand(0))));
5171    return 0;
5172  }
5173  case Intrinsic::gcroot:
5174    if (GFI) {
5175      const Value *Alloca = I.getArgOperand(0)->stripPointerCasts();
5176      const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
5177
5178      FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
5179      GFI->addStackRoot(FI->getIndex(), TypeMap);
5180    }
5181    return 0;
5182  case Intrinsic::gcread:
5183  case Intrinsic::gcwrite:
5184    llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
5185  case Intrinsic::flt_rounds:
5186    setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32));
5187    return 0;
5188
5189  case Intrinsic::expect: {
5190    // Just replace __builtin_expect(exp, c) with EXP.
5191    setValue(&I, getValue(I.getArgOperand(0)));
5192    return 0;
5193  }
5194
5195  case Intrinsic::debugtrap:
5196  case Intrinsic::trap: {
5197    StringRef TrapFuncName = TM.Options.getTrapFunctionName();
5198    if (TrapFuncName.empty()) {
5199      ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ?
5200        ISD::TRAP : ISD::DEBUGTRAP;
5201      DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot()));
5202      return 0;
5203    }
5204    TargetLowering::ArgListTy Args;
5205    TargetLowering::
5206    CallLoweringInfo CLI(getRoot(), I.getType(),
5207                 false, false, false, false, 0, CallingConv::C,
5208                 /*isTailCall=*/false,
5209                 /*doesNotRet=*/false, /*isReturnValueUsed=*/true,
5210                 DAG.getExternalSymbol(TrapFuncName.data(),
5211                                       TLI->getPointerTy()),
5212                 Args, DAG, sdl);
5213    std::pair<SDValue, SDValue> Result = TLI->LowerCallTo(CLI);
5214    DAG.setRoot(Result.second);
5215    return 0;
5216  }
5217
5218  case Intrinsic::uadd_with_overflow:
5219  case Intrinsic::sadd_with_overflow:
5220  case Intrinsic::usub_with_overflow:
5221  case Intrinsic::ssub_with_overflow:
5222  case Intrinsic::umul_with_overflow:
5223  case Intrinsic::smul_with_overflow: {
5224    ISD::NodeType Op;
5225    switch (Intrinsic) {
5226    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
5227    case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break;
5228    case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break;
5229    case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break;
5230    case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break;
5231    case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break;
5232    case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break;
5233    }
5234    SDValue Op1 = getValue(I.getArgOperand(0));
5235    SDValue Op2 = getValue(I.getArgOperand(1));
5236
5237    SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1);
5238    setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2));
5239    return 0;
5240  }
5241  case Intrinsic::prefetch: {
5242    SDValue Ops[5];
5243    unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
5244    Ops[0] = getRoot();
5245    Ops[1] = getValue(I.getArgOperand(0));
5246    Ops[2] = getValue(I.getArgOperand(1));
5247    Ops[3] = getValue(I.getArgOperand(2));
5248    Ops[4] = getValue(I.getArgOperand(3));
5249    DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl,
5250                                        DAG.getVTList(MVT::Other),
5251                                        &Ops[0], 5,
5252                                        EVT::getIntegerVT(*Context, 8),
5253                                        MachinePointerInfo(I.getArgOperand(0)),
5254                                        0, /* align */
5255                                        false, /* volatile */
5256                                        rw==0, /* read */
5257                                        rw==1)); /* write */
5258    return 0;
5259  }
5260  case Intrinsic::lifetime_start:
5261  case Intrinsic::lifetime_end: {
5262    bool IsStart = (Intrinsic == Intrinsic::lifetime_start);
5263    // Stack coloring is not enabled in O0, discard region information.
5264    if (TM.getOptLevel() == CodeGenOpt::None)
5265      return 0;
5266
5267    SmallVector<Value *, 4> Allocas;
5268    GetUnderlyingObjects(I.getArgOperand(1), Allocas, TD);
5269
5270    for (SmallVectorImpl<Value*>::iterator Object = Allocas.begin(),
5271           E = Allocas.end(); Object != E; ++Object) {
5272      AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object);
5273
5274      // Could not find an Alloca.
5275      if (!LifetimeObject)
5276        continue;
5277
5278      int FI = FuncInfo.StaticAllocaMap[LifetimeObject];
5279
5280      SDValue Ops[2];
5281      Ops[0] = getRoot();
5282      Ops[1] = DAG.getFrameIndex(FI, TLI->getPointerTy(), true);
5283      unsigned Opcode = (IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END);
5284
5285      Res = DAG.getNode(Opcode, sdl, MVT::Other, Ops, 2);
5286      DAG.setRoot(Res);
5287    }
5288    return 0;
5289  }
5290  case Intrinsic::invariant_start:
5291    // Discard region information.
5292    setValue(&I, DAG.getUNDEF(TLI->getPointerTy()));
5293    return 0;
5294  case Intrinsic::invariant_end:
5295    // Discard region information.
5296    return 0;
5297  case Intrinsic::stackprotectorcheck: {
5298    // Do not actually emit anything for this basic block. Instead we initialize
5299    // the stack protector descriptor and export the guard variable so we can
5300    // access it in FinishBasicBlock.
5301    const BasicBlock *BB = I.getParent();
5302    SPDescriptor.initialize(BB, FuncInfo.MBBMap[BB], I);
5303    ExportFromCurrentBlock(SPDescriptor.getGuard());
5304
5305    // Flush our exports since we are going to process a terminator.
5306    (void)getControlRoot();
5307    return 0;
5308  }
5309  case Intrinsic::donothing:
5310    // ignore
5311    return 0;
5312  }
5313}
5314
5315void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee,
5316                                      bool isTailCall,
5317                                      MachineBasicBlock *LandingPad) {
5318  PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
5319  FunctionType *FTy = cast<FunctionType>(PT->getElementType());
5320  Type *RetTy = FTy->getReturnType();
5321  MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
5322  MCSymbol *BeginLabel = 0;
5323
5324  TargetLowering::ArgListTy Args;
5325  TargetLowering::ArgListEntry Entry;
5326  Args.reserve(CS.arg_size());
5327
5328  // Check whether the function can return without sret-demotion.
5329  SmallVector<ISD::OutputArg, 4> Outs;
5330  const TargetLowering *TLI = TM.getTargetLowering();
5331  GetReturnInfo(RetTy, CS.getAttributes(), Outs, *TLI);
5332
5333  bool CanLowerReturn = TLI->CanLowerReturn(CS.getCallingConv(),
5334                                            DAG.getMachineFunction(),
5335                                            FTy->isVarArg(), Outs,
5336                                            FTy->getContext());
5337
5338  SDValue DemoteStackSlot;
5339  int DemoteStackIdx = -100;
5340
5341  if (!CanLowerReturn) {
5342    uint64_t TySize = TLI->getDataLayout()->getTypeAllocSize(
5343                      FTy->getReturnType());
5344    unsigned Align  = TLI->getDataLayout()->getPrefTypeAlignment(
5345                      FTy->getReturnType());
5346    MachineFunction &MF = DAG.getMachineFunction();
5347    DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
5348    Type *StackSlotPtrType = PointerType::getUnqual(FTy->getReturnType());
5349
5350    DemoteStackSlot = DAG.getFrameIndex(DemoteStackIdx, TLI->getPointerTy());
5351    Entry.Node = DemoteStackSlot;
5352    Entry.Ty = StackSlotPtrType;
5353    Entry.isSExt = false;
5354    Entry.isZExt = false;
5355    Entry.isInReg = false;
5356    Entry.isSRet = true;
5357    Entry.isNest = false;
5358    Entry.isByVal = false;
5359    Entry.isReturned = false;
5360    Entry.Alignment = Align;
5361    Args.push_back(Entry);
5362    RetTy = Type::getVoidTy(FTy->getContext());
5363  }
5364
5365  for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
5366       i != e; ++i) {
5367    const Value *V = *i;
5368
5369    // Skip empty types
5370    if (V->getType()->isEmptyTy())
5371      continue;
5372
5373    SDValue ArgNode = getValue(V);
5374    Entry.Node = ArgNode; Entry.Ty = V->getType();
5375
5376    unsigned attrInd = i - CS.arg_begin() + 1;
5377    Entry.isSExt     = CS.paramHasAttr(attrInd, Attribute::SExt);
5378    Entry.isZExt     = CS.paramHasAttr(attrInd, Attribute::ZExt);
5379    Entry.isInReg    = CS.paramHasAttr(attrInd, Attribute::InReg);
5380    Entry.isSRet     = CS.paramHasAttr(attrInd, Attribute::StructRet);
5381    Entry.isNest     = CS.paramHasAttr(attrInd, Attribute::Nest);
5382    Entry.isByVal    = CS.paramHasAttr(attrInd, Attribute::ByVal);
5383    Entry.isReturned = CS.paramHasAttr(attrInd, Attribute::Returned);
5384    Entry.Alignment  = CS.getParamAlignment(attrInd);
5385    Args.push_back(Entry);
5386  }
5387
5388  if (LandingPad) {
5389    // Insert a label before the invoke call to mark the try range.  This can be
5390    // used to detect deletion of the invoke via the MachineModuleInfo.
5391    BeginLabel = MMI.getContext().CreateTempSymbol();
5392
5393    // For SjLj, keep track of which landing pads go with which invokes
5394    // so as to maintain the ordering of pads in the LSDA.
5395    unsigned CallSiteIndex = MMI.getCurrentCallSite();
5396    if (CallSiteIndex) {
5397      MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
5398      LPadToCallSiteMap[LandingPad].push_back(CallSiteIndex);
5399
5400      // Now that the call site is handled, stop tracking it.
5401      MMI.setCurrentCallSite(0);
5402    }
5403
5404    // Both PendingLoads and PendingExports must be flushed here;
5405    // this call might not return.
5406    (void)getRoot();
5407    DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel));
5408  }
5409
5410  // Check if target-independent constraints permit a tail call here.
5411  // Target-dependent constraints are checked within TLI->LowerCallTo.
5412  if (isTailCall && !isInTailCallPosition(CS, *TLI))
5413    isTailCall = false;
5414
5415  TargetLowering::
5416  CallLoweringInfo CLI(getRoot(), RetTy, FTy, isTailCall, Callee, Args, DAG,
5417                       getCurSDLoc(), CS);
5418  std::pair<SDValue,SDValue> Result = TLI->LowerCallTo(CLI);
5419  assert((isTailCall || Result.second.getNode()) &&
5420         "Non-null chain expected with non-tail call!");
5421  assert((Result.second.getNode() || !Result.first.getNode()) &&
5422         "Null value expected with tail call!");
5423  if (Result.first.getNode()) {
5424    setValue(CS.getInstruction(), Result.first);
5425  } else if (!CanLowerReturn && Result.second.getNode()) {
5426    // The instruction result is the result of loading from the
5427    // hidden sret parameter.
5428    SmallVector<EVT, 1> PVTs;
5429    Type *PtrRetTy = PointerType::getUnqual(FTy->getReturnType());
5430
5431    ComputeValueVTs(*TLI, PtrRetTy, PVTs);
5432    assert(PVTs.size() == 1 && "Pointers should fit in one register");
5433    EVT PtrVT = PVTs[0];
5434
5435    SmallVector<EVT, 4> RetTys;
5436    SmallVector<uint64_t, 4> Offsets;
5437    RetTy = FTy->getReturnType();
5438    ComputeValueVTs(*TLI, RetTy, RetTys, &Offsets);
5439
5440    unsigned NumValues = RetTys.size();
5441    SmallVector<SDValue, 4> Values(NumValues);
5442    SmallVector<SDValue, 4> Chains(NumValues);
5443
5444    for (unsigned i = 0; i < NumValues; ++i) {
5445      SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(), PtrVT,
5446                                DemoteStackSlot,
5447                                DAG.getConstant(Offsets[i], PtrVT));
5448      SDValue L = DAG.getLoad(RetTys[i], getCurSDLoc(), Result.second, Add,
5449                  MachinePointerInfo::getFixedStack(DemoteStackIdx, Offsets[i]),
5450                              false, false, false, 1);
5451      Values[i] = L;
5452      Chains[i] = L.getValue(1);
5453    }
5454
5455    SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
5456                                MVT::Other, &Chains[0], NumValues);
5457    PendingLoads.push_back(Chain);
5458
5459    setValue(CS.getInstruction(),
5460             DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
5461                         DAG.getVTList(&RetTys[0], RetTys.size()),
5462                         &Values[0], Values.size()));
5463  }
5464
5465  if (!Result.second.getNode()) {
5466    // As a special case, a null chain means that a tail call has been emitted and
5467    // the DAG root is already updated.
5468    HasTailCall = true;
5469
5470    // Since there's no actual continuation from this block, nothing can be
5471    // relying on us setting vregs for them.
5472    PendingExports.clear();
5473  } else {
5474    DAG.setRoot(Result.second);
5475  }
5476
5477  if (LandingPad) {
5478    // Insert a label at the end of the invoke call to mark the try range.  This
5479    // can be used to detect deletion of the invoke via the MachineModuleInfo.
5480    MCSymbol *EndLabel = MMI.getContext().CreateTempSymbol();
5481    DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel));
5482
5483    // Inform MachineModuleInfo of range.
5484    MMI.addInvoke(LandingPad, BeginLabel, EndLabel);
5485  }
5486}
5487
5488/// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the
5489/// value is equal or not-equal to zero.
5490static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) {
5491  for (Value::const_use_iterator UI = V->use_begin(), E = V->use_end();
5492       UI != E; ++UI) {
5493    if (const ICmpInst *IC = dyn_cast<ICmpInst>(*UI))
5494      if (IC->isEquality())
5495        if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
5496          if (C->isNullValue())
5497            continue;
5498    // Unknown instruction.
5499    return false;
5500  }
5501  return true;
5502}
5503
5504static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
5505                             Type *LoadTy,
5506                             SelectionDAGBuilder &Builder) {
5507
5508  // Check to see if this load can be trivially constant folded, e.g. if the
5509  // input is from a string literal.
5510  if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
5511    // Cast pointer to the type we really want to load.
5512    LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
5513                                         PointerType::getUnqual(LoadTy));
5514
5515    if (const Constant *LoadCst =
5516          ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput),
5517                                       Builder.TD))
5518      return Builder.getValue(LoadCst);
5519  }
5520
5521  // Otherwise, we have to emit the load.  If the pointer is to unfoldable but
5522  // still constant memory, the input chain can be the entry node.
5523  SDValue Root;
5524  bool ConstantMemory = false;
5525
5526  // Do not serialize (non-volatile) loads of constant memory with anything.
5527  if (Builder.AA->pointsToConstantMemory(PtrVal)) {
5528    Root = Builder.DAG.getEntryNode();
5529    ConstantMemory = true;
5530  } else {
5531    // Do not serialize non-volatile loads against each other.
5532    Root = Builder.DAG.getRoot();
5533  }
5534
5535  SDValue Ptr = Builder.getValue(PtrVal);
5536  SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root,
5537                                        Ptr, MachinePointerInfo(PtrVal),
5538                                        false /*volatile*/,
5539                                        false /*nontemporal*/,
5540                                        false /*isinvariant*/, 1 /* align=1 */);
5541
5542  if (!ConstantMemory)
5543    Builder.PendingLoads.push_back(LoadVal.getValue(1));
5544  return LoadVal;
5545}
5546
5547/// processIntegerCallValue - Record the value for an instruction that
5548/// produces an integer result, converting the type where necessary.
5549void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I,
5550                                                  SDValue Value,
5551                                                  bool IsSigned) {
5552  EVT VT = TM.getTargetLowering()->getValueType(I.getType(), true);
5553  if (IsSigned)
5554    Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT);
5555  else
5556    Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT);
5557  setValue(&I, Value);
5558}
5559
5560/// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form.
5561/// If so, return true and lower it, otherwise return false and it will be
5562/// lowered like a normal call.
5563bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) {
5564  // Verify that the prototype makes sense.  int memcmp(void*,void*,size_t)
5565  if (I.getNumArgOperands() != 3)
5566    return false;
5567
5568  const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
5569  if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() ||
5570      !I.getArgOperand(2)->getType()->isIntegerTy() ||
5571      !I.getType()->isIntegerTy())
5572    return false;
5573
5574  const Value *Size = I.getArgOperand(2);
5575  const ConstantInt *CSize = dyn_cast<ConstantInt>(Size);
5576  if (CSize && CSize->getZExtValue() == 0) {
5577    EVT CallVT = TM.getTargetLowering()->getValueType(I.getType(), true);
5578    setValue(&I, DAG.getConstant(0, CallVT));
5579    return true;
5580  }
5581
5582  const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo();
5583  std::pair<SDValue, SDValue> Res =
5584    TSI.EmitTargetCodeForMemcmp(DAG, getCurSDLoc(), DAG.getRoot(),
5585                                getValue(LHS), getValue(RHS), getValue(Size),
5586                                MachinePointerInfo(LHS),
5587                                MachinePointerInfo(RHS));
5588  if (Res.first.getNode()) {
5589    processIntegerCallValue(I, Res.first, true);
5590    PendingLoads.push_back(Res.second);
5591    return true;
5592  }
5593
5594  // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0
5595  // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0
5596  if (CSize && IsOnlyUsedInZeroEqualityComparison(&I)) {
5597    bool ActuallyDoIt = true;
5598    MVT LoadVT;
5599    Type *LoadTy;
5600    switch (CSize->getZExtValue()) {
5601    default:
5602      LoadVT = MVT::Other;
5603      LoadTy = 0;
5604      ActuallyDoIt = false;
5605      break;
5606    case 2:
5607      LoadVT = MVT::i16;
5608      LoadTy = Type::getInt16Ty(CSize->getContext());
5609      break;
5610    case 4:
5611      LoadVT = MVT::i32;
5612      LoadTy = Type::getInt32Ty(CSize->getContext());
5613      break;
5614    case 8:
5615      LoadVT = MVT::i64;
5616      LoadTy = Type::getInt64Ty(CSize->getContext());
5617      break;
5618        /*
5619    case 16:
5620      LoadVT = MVT::v4i32;
5621      LoadTy = Type::getInt32Ty(CSize->getContext());
5622      LoadTy = VectorType::get(LoadTy, 4);
5623      break;
5624         */
5625    }
5626
5627    // This turns into unaligned loads.  We only do this if the target natively
5628    // supports the MVT we'll be loading or if it is small enough (<= 4) that
5629    // we'll only produce a small number of byte loads.
5630
5631    // Require that we can find a legal MVT, and only do this if the target
5632    // supports unaligned loads of that type.  Expanding into byte loads would
5633    // bloat the code.
5634    const TargetLowering *TLI = TM.getTargetLowering();
5635    if (ActuallyDoIt && CSize->getZExtValue() > 4) {
5636      // TODO: Handle 5 byte compare as 4-byte + 1 byte.
5637      // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
5638      if (!TLI->isTypeLegal(LoadVT) ||!TLI->allowsUnalignedMemoryAccesses(LoadVT))
5639        ActuallyDoIt = false;
5640    }
5641
5642    if (ActuallyDoIt) {
5643      SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this);
5644      SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this);
5645
5646      SDValue Res = DAG.getSetCC(getCurSDLoc(), MVT::i1, LHSVal, RHSVal,
5647                                 ISD::SETNE);
5648      processIntegerCallValue(I, Res, false);
5649      return true;
5650    }
5651  }
5652
5653
5654  return false;
5655}
5656
5657/// visitMemChrCall -- See if we can lower a memchr call into an optimized
5658/// form.  If so, return true and lower it, otherwise return false and it
5659/// will be lowered like a normal call.
5660bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) {
5661  // Verify that the prototype makes sense.  void *memchr(void *, int, size_t)
5662  if (I.getNumArgOperands() != 3)
5663    return false;
5664
5665  const Value *Src = I.getArgOperand(0);
5666  const Value *Char = I.getArgOperand(1);
5667  const Value *Length = I.getArgOperand(2);
5668  if (!Src->getType()->isPointerTy() ||
5669      !Char->getType()->isIntegerTy() ||
5670      !Length->getType()->isIntegerTy() ||
5671      !I.getType()->isPointerTy())
5672    return false;
5673
5674  const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo();
5675  std::pair<SDValue, SDValue> Res =
5676    TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(),
5677                                getValue(Src), getValue(Char), getValue(Length),
5678                                MachinePointerInfo(Src));
5679  if (Res.first.getNode()) {
5680    setValue(&I, Res.first);
5681    PendingLoads.push_back(Res.second);
5682    return true;
5683  }
5684
5685  return false;
5686}
5687
5688/// visitStrCpyCall -- See if we can lower a strcpy or stpcpy call into an
5689/// optimized form.  If so, return true and lower it, otherwise return false
5690/// and it will be lowered like a normal call.
5691bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) {
5692  // Verify that the prototype makes sense.  char *strcpy(char *, char *)
5693  if (I.getNumArgOperands() != 2)
5694    return false;
5695
5696  const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
5697  if (!Arg0->getType()->isPointerTy() ||
5698      !Arg1->getType()->isPointerTy() ||
5699      !I.getType()->isPointerTy())
5700    return false;
5701
5702  const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo();
5703  std::pair<SDValue, SDValue> Res =
5704    TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(),
5705                                getValue(Arg0), getValue(Arg1),
5706                                MachinePointerInfo(Arg0),
5707                                MachinePointerInfo(Arg1), isStpcpy);
5708  if (Res.first.getNode()) {
5709    setValue(&I, Res.first);
5710    DAG.setRoot(Res.second);
5711    return true;
5712  }
5713
5714  return false;
5715}
5716
5717/// visitStrCmpCall - See if we can lower a call to strcmp in an optimized form.
5718/// If so, return true and lower it, otherwise return false and it will be
5719/// lowered like a normal call.
5720bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) {
5721  // Verify that the prototype makes sense.  int strcmp(void*,void*)
5722  if (I.getNumArgOperands() != 2)
5723    return false;
5724
5725  const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
5726  if (!Arg0->getType()->isPointerTy() ||
5727      !Arg1->getType()->isPointerTy() ||
5728      !I.getType()->isIntegerTy())
5729    return false;
5730
5731  const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo();
5732  std::pair<SDValue, SDValue> Res =
5733    TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(),
5734                                getValue(Arg0), getValue(Arg1),
5735                                MachinePointerInfo(Arg0),
5736                                MachinePointerInfo(Arg1));
5737  if (Res.first.getNode()) {
5738    processIntegerCallValue(I, Res.first, true);
5739    PendingLoads.push_back(Res.second);
5740    return true;
5741  }
5742
5743  return false;
5744}
5745
5746/// visitStrLenCall -- See if we can lower a strlen call into an optimized
5747/// form.  If so, return true and lower it, otherwise return false and it
5748/// will be lowered like a normal call.
5749bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) {
5750  // Verify that the prototype makes sense.  size_t strlen(char *)
5751  if (I.getNumArgOperands() != 1)
5752    return false;
5753
5754  const Value *Arg0 = I.getArgOperand(0);
5755  if (!Arg0->getType()->isPointerTy() || !I.getType()->isIntegerTy())
5756    return false;
5757
5758  const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo();
5759  std::pair<SDValue, SDValue> Res =
5760    TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(),
5761                                getValue(Arg0), MachinePointerInfo(Arg0));
5762  if (Res.first.getNode()) {
5763    processIntegerCallValue(I, Res.first, false);
5764    PendingLoads.push_back(Res.second);
5765    return true;
5766  }
5767
5768  return false;
5769}
5770
5771/// visitStrNLenCall -- See if we can lower a strnlen call into an optimized
5772/// form.  If so, return true and lower it, otherwise return false and it
5773/// will be lowered like a normal call.
5774bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) {
5775  // Verify that the prototype makes sense.  size_t strnlen(char *, size_t)
5776  if (I.getNumArgOperands() != 2)
5777    return false;
5778
5779  const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
5780  if (!Arg0->getType()->isPointerTy() ||
5781      !Arg1->getType()->isIntegerTy() ||
5782      !I.getType()->isIntegerTy())
5783    return false;
5784
5785  const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo();
5786  std::pair<SDValue, SDValue> Res =
5787    TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(),
5788                                 getValue(Arg0), getValue(Arg1),
5789                                 MachinePointerInfo(Arg0));
5790  if (Res.first.getNode()) {
5791    processIntegerCallValue(I, Res.first, false);
5792    PendingLoads.push_back(Res.second);
5793    return true;
5794  }
5795
5796  return false;
5797}
5798
5799/// visitUnaryFloatCall - If a call instruction is a unary floating-point
5800/// operation (as expected), translate it to an SDNode with the specified opcode
5801/// and return true.
5802bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I,
5803                                              unsigned Opcode) {
5804  // Sanity check that it really is a unary floating-point call.
5805  if (I.getNumArgOperands() != 1 ||
5806      !I.getArgOperand(0)->getType()->isFloatingPointTy() ||
5807      I.getType() != I.getArgOperand(0)->getType() ||
5808      !I.onlyReadsMemory())
5809    return false;
5810
5811  SDValue Tmp = getValue(I.getArgOperand(0));
5812  setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp));
5813  return true;
5814}
5815
5816void SelectionDAGBuilder::visitCall(const CallInst &I) {
5817  // Handle inline assembly differently.
5818  if (isa<InlineAsm>(I.getCalledValue())) {
5819    visitInlineAsm(&I);
5820    return;
5821  }
5822
5823  MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
5824  ComputeUsesVAFloatArgument(I, &MMI);
5825
5826  const char *RenameFn = 0;
5827  if (Function *F = I.getCalledFunction()) {
5828    if (F->isDeclaration()) {
5829      if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) {
5830        if (unsigned IID = II->getIntrinsicID(F)) {
5831          RenameFn = visitIntrinsicCall(I, IID);
5832          if (!RenameFn)
5833            return;
5834        }
5835      }
5836      if (unsigned IID = F->getIntrinsicID()) {
5837        RenameFn = visitIntrinsicCall(I, IID);
5838        if (!RenameFn)
5839          return;
5840      }
5841    }
5842
5843    // Check for well-known libc/libm calls.  If the function is internal, it
5844    // can't be a library call.
5845    LibFunc::Func Func;
5846    if (!F->hasLocalLinkage() && F->hasName() &&
5847        LibInfo->getLibFunc(F->getName(), Func) &&
5848        LibInfo->hasOptimizedCodeGen(Func)) {
5849      switch (Func) {
5850      default: break;
5851      case LibFunc::copysign:
5852      case LibFunc::copysignf:
5853      case LibFunc::copysignl:
5854        if (I.getNumArgOperands() == 2 &&   // Basic sanity checks.
5855            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5856            I.getType() == I.getArgOperand(0)->getType() &&
5857            I.getType() == I.getArgOperand(1)->getType() &&
5858            I.onlyReadsMemory()) {
5859          SDValue LHS = getValue(I.getArgOperand(0));
5860          SDValue RHS = getValue(I.getArgOperand(1));
5861          setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(),
5862                                   LHS.getValueType(), LHS, RHS));
5863          return;
5864        }
5865        break;
5866      case LibFunc::fabs:
5867      case LibFunc::fabsf:
5868      case LibFunc::fabsl:
5869        if (visitUnaryFloatCall(I, ISD::FABS))
5870          return;
5871        break;
5872      case LibFunc::sin:
5873      case LibFunc::sinf:
5874      case LibFunc::sinl:
5875        if (visitUnaryFloatCall(I, ISD::FSIN))
5876          return;
5877        break;
5878      case LibFunc::cos:
5879      case LibFunc::cosf:
5880      case LibFunc::cosl:
5881        if (visitUnaryFloatCall(I, ISD::FCOS))
5882          return;
5883        break;
5884      case LibFunc::sqrt:
5885      case LibFunc::sqrtf:
5886      case LibFunc::sqrtl:
5887      case LibFunc::sqrt_finite:
5888      case LibFunc::sqrtf_finite:
5889      case LibFunc::sqrtl_finite:
5890        if (visitUnaryFloatCall(I, ISD::FSQRT))
5891          return;
5892        break;
5893      case LibFunc::floor:
5894      case LibFunc::floorf:
5895      case LibFunc::floorl:
5896        if (visitUnaryFloatCall(I, ISD::FFLOOR))
5897          return;
5898        break;
5899      case LibFunc::nearbyint:
5900      case LibFunc::nearbyintf:
5901      case LibFunc::nearbyintl:
5902        if (visitUnaryFloatCall(I, ISD::FNEARBYINT))
5903          return;
5904        break;
5905      case LibFunc::ceil:
5906      case LibFunc::ceilf:
5907      case LibFunc::ceill:
5908        if (visitUnaryFloatCall(I, ISD::FCEIL))
5909          return;
5910        break;
5911      case LibFunc::rint:
5912      case LibFunc::rintf:
5913      case LibFunc::rintl:
5914        if (visitUnaryFloatCall(I, ISD::FRINT))
5915          return;
5916        break;
5917      case LibFunc::round:
5918      case LibFunc::roundf:
5919      case LibFunc::roundl:
5920        if (visitUnaryFloatCall(I, ISD::FROUND))
5921          return;
5922        break;
5923      case LibFunc::trunc:
5924      case LibFunc::truncf:
5925      case LibFunc::truncl:
5926        if (visitUnaryFloatCall(I, ISD::FTRUNC))
5927          return;
5928        break;
5929      case LibFunc::log2:
5930      case LibFunc::log2f:
5931      case LibFunc::log2l:
5932        if (visitUnaryFloatCall(I, ISD::FLOG2))
5933          return;
5934        break;
5935      case LibFunc::exp2:
5936      case LibFunc::exp2f:
5937      case LibFunc::exp2l:
5938        if (visitUnaryFloatCall(I, ISD::FEXP2))
5939          return;
5940        break;
5941      case LibFunc::memcmp:
5942        if (visitMemCmpCall(I))
5943          return;
5944        break;
5945      case LibFunc::memchr:
5946        if (visitMemChrCall(I))
5947          return;
5948        break;
5949      case LibFunc::strcpy:
5950        if (visitStrCpyCall(I, false))
5951          return;
5952        break;
5953      case LibFunc::stpcpy:
5954        if (visitStrCpyCall(I, true))
5955          return;
5956        break;
5957      case LibFunc::strcmp:
5958        if (visitStrCmpCall(I))
5959          return;
5960        break;
5961      case LibFunc::strlen:
5962        if (visitStrLenCall(I))
5963          return;
5964        break;
5965      case LibFunc::strnlen:
5966        if (visitStrNLenCall(I))
5967          return;
5968        break;
5969      }
5970    }
5971  }
5972
5973  SDValue Callee;
5974  if (!RenameFn)
5975    Callee = getValue(I.getCalledValue());
5976  else
5977    Callee = DAG.getExternalSymbol(RenameFn,
5978                                   TM.getTargetLowering()->getPointerTy());
5979
5980  // Check if we can potentially perform a tail call. More detailed checking is
5981  // be done within LowerCallTo, after more information about the call is known.
5982  LowerCallTo(&I, Callee, I.isTailCall());
5983}
5984
5985namespace {
5986
5987/// AsmOperandInfo - This contains information for each constraint that we are
5988/// lowering.
5989class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
5990public:
5991  /// CallOperand - If this is the result output operand or a clobber
5992  /// this is null, otherwise it is the incoming operand to the CallInst.
5993  /// This gets modified as the asm is processed.
5994  SDValue CallOperand;
5995
5996  /// AssignedRegs - If this is a register or register class operand, this
5997  /// contains the set of register corresponding to the operand.
5998  RegsForValue AssignedRegs;
5999
6000  explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
6001    : TargetLowering::AsmOperandInfo(info), CallOperand(0,0) {
6002  }
6003
6004  /// getCallOperandValEVT - Return the EVT of the Value* that this operand
6005  /// corresponds to.  If there is no Value* for this operand, it returns
6006  /// MVT::Other.
6007  EVT getCallOperandValEVT(LLVMContext &Context,
6008                           const TargetLowering &TLI,
6009                           const DataLayout *TD) const {
6010    if (CallOperandVal == 0) return MVT::Other;
6011
6012    if (isa<BasicBlock>(CallOperandVal))
6013      return TLI.getPointerTy();
6014
6015    llvm::Type *OpTy = CallOperandVal->getType();
6016
6017    // FIXME: code duplicated from TargetLowering::ParseConstraints().
6018    // If this is an indirect operand, the operand is a pointer to the
6019    // accessed type.
6020    if (isIndirect) {
6021      llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
6022      if (!PtrTy)
6023        report_fatal_error("Indirect operand for inline asm not a pointer!");
6024      OpTy = PtrTy->getElementType();
6025    }
6026
6027    // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
6028    if (StructType *STy = dyn_cast<StructType>(OpTy))
6029      if (STy->getNumElements() == 1)
6030        OpTy = STy->getElementType(0);
6031
6032    // If OpTy is not a single value, it may be a struct/union that we
6033    // can tile with integers.
6034    if (!OpTy->isSingleValueType() && OpTy->isSized()) {
6035      unsigned BitSize = TD->getTypeSizeInBits(OpTy);
6036      switch (BitSize) {
6037      default: break;
6038      case 1:
6039      case 8:
6040      case 16:
6041      case 32:
6042      case 64:
6043      case 128:
6044        OpTy = IntegerType::get(Context, BitSize);
6045        break;
6046      }
6047    }
6048
6049    return TLI.getValueType(OpTy, true);
6050  }
6051};
6052
6053typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector;
6054
6055} // end anonymous namespace
6056
6057/// GetRegistersForValue - Assign registers (virtual or physical) for the
6058/// specified operand.  We prefer to assign virtual registers, to allow the
6059/// register allocator to handle the assignment process.  However, if the asm
6060/// uses features that we can't model on machineinstrs, we have SDISel do the
6061/// allocation.  This produces generally horrible, but correct, code.
6062///
6063///   OpInfo describes the operand.
6064///
6065static void GetRegistersForValue(SelectionDAG &DAG,
6066                                 const TargetLowering &TLI,
6067                                 SDLoc DL,
6068                                 SDISelAsmOperandInfo &OpInfo) {
6069  LLVMContext &Context = *DAG.getContext();
6070
6071  MachineFunction &MF = DAG.getMachineFunction();
6072  SmallVector<unsigned, 4> Regs;
6073
6074  // If this is a constraint for a single physreg, or a constraint for a
6075  // register class, find it.
6076  std::pair<unsigned, const TargetRegisterClass*> PhysReg =
6077    TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
6078                                     OpInfo.ConstraintVT);
6079
6080  unsigned NumRegs = 1;
6081  if (OpInfo.ConstraintVT != MVT::Other) {
6082    // If this is a FP input in an integer register (or visa versa) insert a bit
6083    // cast of the input value.  More generally, handle any case where the input
6084    // value disagrees with the register class we plan to stick this in.
6085    if (OpInfo.Type == InlineAsm::isInput &&
6086        PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) {
6087      // Try to convert to the first EVT that the reg class contains.  If the
6088      // types are identical size, use a bitcast to convert (e.g. two differing
6089      // vector types).
6090      MVT RegVT = *PhysReg.second->vt_begin();
6091      if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) {
6092        OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL,
6093                                         RegVT, OpInfo.CallOperand);
6094        OpInfo.ConstraintVT = RegVT;
6095      } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
6096        // If the input is a FP value and we want it in FP registers, do a
6097        // bitcast to the corresponding integer type.  This turns an f64 value
6098        // into i64, which can be passed with two i32 values on a 32-bit
6099        // machine.
6100        RegVT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits());
6101        OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL,
6102                                         RegVT, OpInfo.CallOperand);
6103        OpInfo.ConstraintVT = RegVT;
6104      }
6105    }
6106
6107    NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT);
6108  }
6109
6110  MVT RegVT;
6111  EVT ValueVT = OpInfo.ConstraintVT;
6112
6113  // If this is a constraint for a specific physical register, like {r17},
6114  // assign it now.
6115  if (unsigned AssignedReg = PhysReg.first) {
6116    const TargetRegisterClass *RC = PhysReg.second;
6117    if (OpInfo.ConstraintVT == MVT::Other)
6118      ValueVT = *RC->vt_begin();
6119
6120    // Get the actual register value type.  This is important, because the user
6121    // may have asked for (e.g.) the AX register in i32 type.  We need to
6122    // remember that AX is actually i16 to get the right extension.
6123    RegVT = *RC->vt_begin();
6124
6125    // This is a explicit reference to a physical register.
6126    Regs.push_back(AssignedReg);
6127
6128    // If this is an expanded reference, add the rest of the regs to Regs.
6129    if (NumRegs != 1) {
6130      TargetRegisterClass::iterator I = RC->begin();
6131      for (; *I != AssignedReg; ++I)
6132        assert(I != RC->end() && "Didn't find reg!");
6133
6134      // Already added the first reg.
6135      --NumRegs; ++I;
6136      for (; NumRegs; --NumRegs, ++I) {
6137        assert(I != RC->end() && "Ran out of registers to allocate!");
6138        Regs.push_back(*I);
6139      }
6140    }
6141
6142    OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
6143    return;
6144  }
6145
6146  // Otherwise, if this was a reference to an LLVM register class, create vregs
6147  // for this reference.
6148  if (const TargetRegisterClass *RC = PhysReg.second) {
6149    RegVT = *RC->vt_begin();
6150    if (OpInfo.ConstraintVT == MVT::Other)
6151      ValueVT = RegVT;
6152
6153    // Create the appropriate number of virtual registers.
6154    MachineRegisterInfo &RegInfo = MF.getRegInfo();
6155    for (; NumRegs; --NumRegs)
6156      Regs.push_back(RegInfo.createVirtualRegister(RC));
6157
6158    OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
6159    return;
6160  }
6161
6162  // Otherwise, we couldn't allocate enough registers for this.
6163}
6164
6165/// visitInlineAsm - Handle a call to an InlineAsm object.
6166///
6167void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) {
6168  const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
6169
6170  /// ConstraintOperands - Information about all of the constraints.
6171  SDISelAsmOperandInfoVector ConstraintOperands;
6172
6173  const TargetLowering *TLI = TM.getTargetLowering();
6174  TargetLowering::AsmOperandInfoVector
6175    TargetConstraints = TLI->ParseConstraints(CS);
6176
6177  bool hasMemory = false;
6178
6179  unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
6180  unsigned ResNo = 0;   // ResNo - The result number of the next output.
6181  for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
6182    ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i]));
6183    SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
6184
6185    MVT OpVT = MVT::Other;
6186
6187    // Compute the value type for each operand.
6188    switch (OpInfo.Type) {
6189    case InlineAsm::isOutput:
6190      // Indirect outputs just consume an argument.
6191      if (OpInfo.isIndirect) {
6192        OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
6193        break;
6194      }
6195
6196      // The return value of the call is this value.  As such, there is no
6197      // corresponding argument.
6198      assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
6199      if (StructType *STy = dyn_cast<StructType>(CS.getType())) {
6200        OpVT = TLI->getSimpleValueType(STy->getElementType(ResNo));
6201      } else {
6202        assert(ResNo == 0 && "Asm only has one result!");
6203        OpVT = TLI->getSimpleValueType(CS.getType());
6204      }
6205      ++ResNo;
6206      break;
6207    case InlineAsm::isInput:
6208      OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
6209      break;
6210    case InlineAsm::isClobber:
6211      // Nothing to do.
6212      break;
6213    }
6214
6215    // If this is an input or an indirect output, process the call argument.
6216    // BasicBlocks are labels, currently appearing only in asm's.
6217    if (OpInfo.CallOperandVal) {
6218      if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) {
6219        OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
6220      } else {
6221        OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
6222      }
6223
6224      OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), *TLI, TD).
6225        getSimpleVT();
6226    }
6227
6228    OpInfo.ConstraintVT = OpVT;
6229
6230    // Indirect operand accesses access memory.
6231    if (OpInfo.isIndirect)
6232      hasMemory = true;
6233    else {
6234      for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) {
6235        TargetLowering::ConstraintType
6236          CType = TLI->getConstraintType(OpInfo.Codes[j]);
6237        if (CType == TargetLowering::C_Memory) {
6238          hasMemory = true;
6239          break;
6240        }
6241      }
6242    }
6243  }
6244
6245  SDValue Chain, Flag;
6246
6247  // We won't need to flush pending loads if this asm doesn't touch
6248  // memory and is nonvolatile.
6249  if (hasMemory || IA->hasSideEffects())
6250    Chain = getRoot();
6251  else
6252    Chain = DAG.getRoot();
6253
6254  // Second pass over the constraints: compute which constraint option to use
6255  // and assign registers to constraints that want a specific physreg.
6256  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
6257    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
6258
6259    // If this is an output operand with a matching input operand, look up the
6260    // matching input. If their types mismatch, e.g. one is an integer, the
6261    // other is floating point, or their sizes are different, flag it as an
6262    // error.
6263    if (OpInfo.hasMatchingInput()) {
6264      SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
6265
6266      if (OpInfo.ConstraintVT != Input.ConstraintVT) {
6267        std::pair<unsigned, const TargetRegisterClass*> MatchRC =
6268          TLI->getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
6269                                            OpInfo.ConstraintVT);
6270        std::pair<unsigned, const TargetRegisterClass*> InputRC =
6271          TLI->getRegForInlineAsmConstraint(Input.ConstraintCode,
6272                                            Input.ConstraintVT);
6273        if ((OpInfo.ConstraintVT.isInteger() !=
6274             Input.ConstraintVT.isInteger()) ||
6275            (MatchRC.second != InputRC.second)) {
6276          report_fatal_error("Unsupported asm: input constraint"
6277                             " with a matching output constraint of"
6278                             " incompatible type!");
6279        }
6280        Input.ConstraintVT = OpInfo.ConstraintVT;
6281      }
6282    }
6283
6284    // Compute the constraint code and ConstraintType to use.
6285    TLI->ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
6286
6287    if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
6288        OpInfo.Type == InlineAsm::isClobber)
6289      continue;
6290
6291    // If this is a memory input, and if the operand is not indirect, do what we
6292    // need to to provide an address for the memory input.
6293    if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
6294        !OpInfo.isIndirect) {
6295      assert((OpInfo.isMultipleAlternative ||
6296              (OpInfo.Type == InlineAsm::isInput)) &&
6297             "Can only indirectify direct input operands!");
6298
6299      // Memory operands really want the address of the value.  If we don't have
6300      // an indirect input, put it in the constpool if we can, otherwise spill
6301      // it to a stack slot.
6302      // TODO: This isn't quite right. We need to handle these according to
6303      // the addressing mode that the constraint wants. Also, this may take
6304      // an additional register for the computation and we don't want that
6305      // either.
6306
6307      // If the operand is a float, integer, or vector constant, spill to a
6308      // constant pool entry to get its address.
6309      const Value *OpVal = OpInfo.CallOperandVal;
6310      if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
6311          isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) {
6312        OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal),
6313                                                 TLI->getPointerTy());
6314      } else {
6315        // Otherwise, create a stack slot and emit a store to it before the
6316        // asm.
6317        Type *Ty = OpVal->getType();
6318        uint64_t TySize = TLI->getDataLayout()->getTypeAllocSize(Ty);
6319        unsigned Align  = TLI->getDataLayout()->getPrefTypeAlignment(Ty);
6320        MachineFunction &MF = DAG.getMachineFunction();
6321        int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
6322        SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI->getPointerTy());
6323        Chain = DAG.getStore(Chain, getCurSDLoc(),
6324                             OpInfo.CallOperand, StackSlot,
6325                             MachinePointerInfo::getFixedStack(SSFI),
6326                             false, false, 0);
6327        OpInfo.CallOperand = StackSlot;
6328      }
6329
6330      // There is no longer a Value* corresponding to this operand.
6331      OpInfo.CallOperandVal = 0;
6332
6333      // It is now an indirect operand.
6334      OpInfo.isIndirect = true;
6335    }
6336
6337    // If this constraint is for a specific register, allocate it before
6338    // anything else.
6339    if (OpInfo.ConstraintType == TargetLowering::C_Register)
6340      GetRegistersForValue(DAG, *TLI, getCurSDLoc(), OpInfo);
6341  }
6342
6343  // Second pass - Loop over all of the operands, assigning virtual or physregs
6344  // to register class operands.
6345  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
6346    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
6347
6348    // C_Register operands have already been allocated, Other/Memory don't need
6349    // to be.
6350    if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass)
6351      GetRegistersForValue(DAG, *TLI, getCurSDLoc(), OpInfo);
6352  }
6353
6354  // AsmNodeOperands - The operands for the ISD::INLINEASM node.
6355  std::vector<SDValue> AsmNodeOperands;
6356  AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
6357  AsmNodeOperands.push_back(
6358          DAG.getTargetExternalSymbol(IA->getAsmString().c_str(),
6359                                      TLI->getPointerTy()));
6360
6361  // If we have a !srcloc metadata node associated with it, we want to attach
6362  // this to the ultimately generated inline asm machineinstr.  To do this, we
6363  // pass in the third operand as this (potentially null) inline asm MDNode.
6364  const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc");
6365  AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
6366
6367  // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore
6368  // bits as operand 3.
6369  unsigned ExtraInfo = 0;
6370  if (IA->hasSideEffects())
6371    ExtraInfo |= InlineAsm::Extra_HasSideEffects;
6372  if (IA->isAlignStack())
6373    ExtraInfo |= InlineAsm::Extra_IsAlignStack;
6374  // Set the asm dialect.
6375  ExtraInfo |= IA->getDialect() * InlineAsm::Extra_AsmDialect;
6376
6377  // Determine if this InlineAsm MayLoad or MayStore based on the constraints.
6378  for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
6379    TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i];
6380
6381    // Compute the constraint code and ConstraintType to use.
6382    TLI->ComputeConstraintToUse(OpInfo, SDValue());
6383
6384    // Ideally, we would only check against memory constraints.  However, the
6385    // meaning of an other constraint can be target-specific and we can't easily
6386    // reason about it.  Therefore, be conservative and set MayLoad/MayStore
6387    // for other constriants as well.
6388    if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
6389        OpInfo.ConstraintType == TargetLowering::C_Other) {
6390      if (OpInfo.Type == InlineAsm::isInput)
6391        ExtraInfo |= InlineAsm::Extra_MayLoad;
6392      else if (OpInfo.Type == InlineAsm::isOutput)
6393        ExtraInfo |= InlineAsm::Extra_MayStore;
6394      else if (OpInfo.Type == InlineAsm::isClobber)
6395        ExtraInfo |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore);
6396    }
6397  }
6398
6399  AsmNodeOperands.push_back(DAG.getTargetConstant(ExtraInfo,
6400                                                  TLI->getPointerTy()));
6401
6402  // Loop over all of the inputs, copying the operand values into the
6403  // appropriate registers and processing the output regs.
6404  RegsForValue RetValRegs;
6405
6406  // IndirectStoresToEmit - The set of stores to emit after the inline asm node.
6407  std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit;
6408
6409  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
6410    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
6411
6412    switch (OpInfo.Type) {
6413    case InlineAsm::isOutput: {
6414      if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass &&
6415          OpInfo.ConstraintType != TargetLowering::C_Register) {
6416        // Memory output, or 'other' output (e.g. 'X' constraint).
6417        assert(OpInfo.isIndirect && "Memory output must be indirect operand");
6418
6419        // Add information to the INLINEASM node to know about this output.
6420        unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
6421        AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags,
6422                                                        TLI->getPointerTy()));
6423        AsmNodeOperands.push_back(OpInfo.CallOperand);
6424        break;
6425      }
6426
6427      // Otherwise, this is a register or register class output.
6428
6429      // Copy the output from the appropriate register.  Find a register that
6430      // we can use.
6431      if (OpInfo.AssignedRegs.Regs.empty()) {
6432        LLVMContext &Ctx = *DAG.getContext();
6433        Ctx.emitError(CS.getInstruction(),
6434                      "couldn't allocate output register for constraint '" +
6435                          Twine(OpInfo.ConstraintCode) + "'");
6436        return;
6437      }
6438
6439      // If this is an indirect operand, store through the pointer after the
6440      // asm.
6441      if (OpInfo.isIndirect) {
6442        IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs,
6443                                                      OpInfo.CallOperandVal));
6444      } else {
6445        // This is the result value of the call.
6446        assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
6447        // Concatenate this output onto the outputs list.
6448        RetValRegs.append(OpInfo.AssignedRegs);
6449      }
6450
6451      // Add information to the INLINEASM node to know that this register is
6452      // set.
6453      OpInfo.AssignedRegs
6454          .AddInlineAsmOperands(OpInfo.isEarlyClobber
6455                                    ? InlineAsm::Kind_RegDefEarlyClobber
6456                                    : InlineAsm::Kind_RegDef,
6457                                false, 0, DAG, AsmNodeOperands);
6458      break;
6459    }
6460    case InlineAsm::isInput: {
6461      SDValue InOperandVal = OpInfo.CallOperand;
6462
6463      if (OpInfo.isMatchingInputConstraint()) {   // Matching constraint?
6464        // If this is required to match an output register we have already set,
6465        // just use its register.
6466        unsigned OperandNo = OpInfo.getMatchedOperand();
6467
6468        // Scan until we find the definition we already emitted of this operand.
6469        // When we find it, create a RegsForValue operand.
6470        unsigned CurOp = InlineAsm::Op_FirstOperand;
6471        for (; OperandNo; --OperandNo) {
6472          // Advance to the next operand.
6473          unsigned OpFlag =
6474            cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
6475          assert((InlineAsm::isRegDefKind(OpFlag) ||
6476                  InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||
6477                  InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?");
6478          CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1;
6479        }
6480
6481        unsigned OpFlag =
6482          cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
6483        if (InlineAsm::isRegDefKind(OpFlag) ||
6484            InlineAsm::isRegDefEarlyClobberKind(OpFlag)) {
6485          // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
6486          if (OpInfo.isIndirect) {
6487            // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
6488            LLVMContext &Ctx = *DAG.getContext();
6489            Ctx.emitError(CS.getInstruction(), "inline asm not supported yet:"
6490                                               " don't know how to handle tied "
6491                                               "indirect register inputs");
6492            return;
6493          }
6494
6495          RegsForValue MatchedRegs;
6496          MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType());
6497          MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType();
6498          MatchedRegs.RegVTs.push_back(RegVT);
6499          MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo();
6500          for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag);
6501               i != e; ++i) {
6502            if (const TargetRegisterClass *RC = TLI->getRegClassFor(RegVT))
6503              MatchedRegs.Regs.push_back(RegInfo.createVirtualRegister(RC));
6504            else {
6505              LLVMContext &Ctx = *DAG.getContext();
6506              Ctx.emitError(CS.getInstruction(),
6507                            "inline asm error: This value"
6508                            " type register class is not natively supported!");
6509              return;
6510            }
6511          }
6512          // Use the produced MatchedRegs object to
6513          MatchedRegs.getCopyToRegs(InOperandVal, DAG, getCurSDLoc(),
6514                                    Chain, &Flag, CS.getInstruction());
6515          MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse,
6516                                           true, OpInfo.getMatchedOperand(),
6517                                           DAG, AsmNodeOperands);
6518          break;
6519        }
6520
6521        assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!");
6522        assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 &&
6523               "Unexpected number of operands");
6524        // Add information to the INLINEASM node to know about this input.
6525        // See InlineAsm.h isUseOperandTiedToDef.
6526        OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
6527                                                    OpInfo.getMatchedOperand());
6528        AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlag,
6529                                                        TLI->getPointerTy()));
6530        AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
6531        break;
6532      }
6533
6534      // Treat indirect 'X' constraint as memory.
6535      if (OpInfo.ConstraintType == TargetLowering::C_Other &&
6536          OpInfo.isIndirect)
6537        OpInfo.ConstraintType = TargetLowering::C_Memory;
6538
6539      if (OpInfo.ConstraintType == TargetLowering::C_Other) {
6540        std::vector<SDValue> Ops;
6541        TLI->LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode,
6542                                          Ops, DAG);
6543        if (Ops.empty()) {
6544          LLVMContext &Ctx = *DAG.getContext();
6545          Ctx.emitError(CS.getInstruction(),
6546                        "invalid operand for inline asm constraint '" +
6547                            Twine(OpInfo.ConstraintCode) + "'");
6548          return;
6549        }
6550
6551        // Add information to the INLINEASM node to know about this input.
6552        unsigned ResOpType =
6553          InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
6554        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
6555                                                        TLI->getPointerTy()));
6556        AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
6557        break;
6558      }
6559
6560      if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
6561        assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
6562        assert(InOperandVal.getValueType() == TLI->getPointerTy() &&
6563               "Memory operands expect pointer values");
6564
6565        // Add information to the INLINEASM node to know about this input.
6566        unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
6567        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
6568                                                        TLI->getPointerTy()));
6569        AsmNodeOperands.push_back(InOperandVal);
6570        break;
6571      }
6572
6573      assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
6574              OpInfo.ConstraintType == TargetLowering::C_Register) &&
6575             "Unknown constraint type!");
6576
6577      // TODO: Support this.
6578      if (OpInfo.isIndirect) {
6579        LLVMContext &Ctx = *DAG.getContext();
6580        Ctx.emitError(CS.getInstruction(),
6581                      "Don't know how to handle indirect register inputs yet "
6582                      "for constraint '" +
6583                          Twine(OpInfo.ConstraintCode) + "'");
6584        return;
6585      }
6586
6587      // Copy the input into the appropriate registers.
6588      if (OpInfo.AssignedRegs.Regs.empty()) {
6589        LLVMContext &Ctx = *DAG.getContext();
6590        Ctx.emitError(CS.getInstruction(),
6591                      "couldn't allocate input reg for constraint '" +
6592                          Twine(OpInfo.ConstraintCode) + "'");
6593        return;
6594      }
6595
6596      OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, getCurSDLoc(),
6597                                        Chain, &Flag, CS.getInstruction());
6598
6599      OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0,
6600                                               DAG, AsmNodeOperands);
6601      break;
6602    }
6603    case InlineAsm::isClobber: {
6604      // Add the clobbered value to the operand list, so that the register
6605      // allocator is aware that the physreg got clobbered.
6606      if (!OpInfo.AssignedRegs.Regs.empty())
6607        OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber,
6608                                                 false, 0, DAG,
6609                                                 AsmNodeOperands);
6610      break;
6611    }
6612    }
6613  }
6614
6615  // Finish up input operands.  Set the input chain and add the flag last.
6616  AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
6617  if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
6618
6619  Chain = DAG.getNode(ISD::INLINEASM, getCurSDLoc(),
6620                      DAG.getVTList(MVT::Other, MVT::Glue),
6621                      &AsmNodeOperands[0], AsmNodeOperands.size());
6622  Flag = Chain.getValue(1);
6623
6624  // If this asm returns a register value, copy the result from that register
6625  // and set it as the value of the call.
6626  if (!RetValRegs.Regs.empty()) {
6627    SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(),
6628                                             Chain, &Flag, CS.getInstruction());
6629
6630    // FIXME: Why don't we do this for inline asms with MRVs?
6631    if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) {
6632      EVT ResultType = TLI->getValueType(CS.getType());
6633
6634      // If any of the results of the inline asm is a vector, it may have the
6635      // wrong width/num elts.  This can happen for register classes that can
6636      // contain multiple different value types.  The preg or vreg allocated may
6637      // not have the same VT as was expected.  Convert it to the right type
6638      // with bit_convert.
6639      if (ResultType != Val.getValueType() && Val.getValueType().isVector()) {
6640        Val = DAG.getNode(ISD::BITCAST, getCurSDLoc(),
6641                          ResultType, Val);
6642
6643      } else if (ResultType != Val.getValueType() &&
6644                 ResultType.isInteger() && Val.getValueType().isInteger()) {
6645        // If a result value was tied to an input value, the computed result may
6646        // have a wider width than the expected result.  Extract the relevant
6647        // portion.
6648        Val = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultType, Val);
6649      }
6650
6651      assert(ResultType == Val.getValueType() && "Asm result value mismatch!");
6652    }
6653
6654    setValue(CS.getInstruction(), Val);
6655    // Don't need to use this as a chain in this case.
6656    if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty())
6657      return;
6658  }
6659
6660  std::vector<std::pair<SDValue, const Value *> > StoresToEmit;
6661
6662  // Process indirect outputs, first output all of the flagged copies out of
6663  // physregs.
6664  for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
6665    RegsForValue &OutRegs = IndirectStoresToEmit[i].first;
6666    const Value *Ptr = IndirectStoresToEmit[i].second;
6667    SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(),
6668                                             Chain, &Flag, IA);
6669    StoresToEmit.push_back(std::make_pair(OutVal, Ptr));
6670  }
6671
6672  // Emit the non-flagged stores from the physregs.
6673  SmallVector<SDValue, 8> OutChains;
6674  for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) {
6675    SDValue Val = DAG.getStore(Chain, getCurSDLoc(),
6676                               StoresToEmit[i].first,
6677                               getValue(StoresToEmit[i].second),
6678                               MachinePointerInfo(StoresToEmit[i].second),
6679                               false, false, 0);
6680    OutChains.push_back(Val);
6681  }
6682
6683  if (!OutChains.empty())
6684    Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other,
6685                        &OutChains[0], OutChains.size());
6686
6687  DAG.setRoot(Chain);
6688}
6689
6690void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
6691  DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(),
6692                          MVT::Other, getRoot(),
6693                          getValue(I.getArgOperand(0)),
6694                          DAG.getSrcValue(I.getArgOperand(0))));
6695}
6696
6697void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
6698  const TargetLowering *TLI = TM.getTargetLowering();
6699  const DataLayout &TD = *TLI->getDataLayout();
6700  SDValue V = DAG.getVAArg(TLI->getValueType(I.getType()), getCurSDLoc(),
6701                           getRoot(), getValue(I.getOperand(0)),
6702                           DAG.getSrcValue(I.getOperand(0)),
6703                           TD.getABITypeAlignment(I.getType()));
6704  setValue(&I, V);
6705  DAG.setRoot(V.getValue(1));
6706}
6707
6708void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
6709  DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(),
6710                          MVT::Other, getRoot(),
6711                          getValue(I.getArgOperand(0)),
6712                          DAG.getSrcValue(I.getArgOperand(0))));
6713}
6714
6715void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
6716  DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(),
6717                          MVT::Other, getRoot(),
6718                          getValue(I.getArgOperand(0)),
6719                          getValue(I.getArgOperand(1)),
6720                          DAG.getSrcValue(I.getArgOperand(0)),
6721                          DAG.getSrcValue(I.getArgOperand(1))));
6722}
6723
6724/// TargetLowering::LowerCallTo - This is the default LowerCallTo
6725/// implementation, which just calls LowerCall.
6726/// FIXME: When all targets are
6727/// migrated to using LowerCall, this hook should be integrated into SDISel.
6728std::pair<SDValue, SDValue>
6729TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const {
6730  // Handle the incoming return values from the call.
6731  CLI.Ins.clear();
6732  SmallVector<EVT, 4> RetTys;
6733  ComputeValueVTs(*this, CLI.RetTy, RetTys);
6734  for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
6735    EVT VT = RetTys[I];
6736    MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT);
6737    unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT);
6738    for (unsigned i = 0; i != NumRegs; ++i) {
6739      ISD::InputArg MyFlags;
6740      MyFlags.VT = RegisterVT;
6741      MyFlags.ArgVT = VT;
6742      MyFlags.Used = CLI.IsReturnValueUsed;
6743      if (CLI.RetSExt)
6744        MyFlags.Flags.setSExt();
6745      if (CLI.RetZExt)
6746        MyFlags.Flags.setZExt();
6747      if (CLI.IsInReg)
6748        MyFlags.Flags.setInReg();
6749      CLI.Ins.push_back(MyFlags);
6750    }
6751  }
6752
6753  // Handle all of the outgoing arguments.
6754  CLI.Outs.clear();
6755  CLI.OutVals.clear();
6756  ArgListTy &Args = CLI.Args;
6757  for (unsigned i = 0, e = Args.size(); i != e; ++i) {
6758    SmallVector<EVT, 4> ValueVTs;
6759    ComputeValueVTs(*this, Args[i].Ty, ValueVTs);
6760    for (unsigned Value = 0, NumValues = ValueVTs.size();
6761         Value != NumValues; ++Value) {
6762      EVT VT = ValueVTs[Value];
6763      Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext());
6764      SDValue Op = SDValue(Args[i].Node.getNode(),
6765                           Args[i].Node.getResNo() + Value);
6766      ISD::ArgFlagsTy Flags;
6767      unsigned OriginalAlignment =
6768        getDataLayout()->getABITypeAlignment(ArgTy);
6769
6770      if (Args[i].isZExt)
6771        Flags.setZExt();
6772      if (Args[i].isSExt)
6773        Flags.setSExt();
6774      if (Args[i].isInReg)
6775        Flags.setInReg();
6776      if (Args[i].isSRet)
6777        Flags.setSRet();
6778      if (Args[i].isByVal) {
6779        Flags.setByVal();
6780        PointerType *Ty = cast<PointerType>(Args[i].Ty);
6781        Type *ElementTy = Ty->getElementType();
6782        Flags.setByValSize(getDataLayout()->getTypeAllocSize(ElementTy));
6783        // For ByVal, alignment should come from FE.  BE will guess if this
6784        // info is not there but there are cases it cannot get right.
6785        unsigned FrameAlign;
6786        if (Args[i].Alignment)
6787          FrameAlign = Args[i].Alignment;
6788        else
6789          FrameAlign = getByValTypeAlignment(ElementTy);
6790        Flags.setByValAlign(FrameAlign);
6791      }
6792      if (Args[i].isNest)
6793        Flags.setNest();
6794      Flags.setOrigAlign(OriginalAlignment);
6795
6796      MVT PartVT = getRegisterType(CLI.RetTy->getContext(), VT);
6797      unsigned NumParts = getNumRegisters(CLI.RetTy->getContext(), VT);
6798      SmallVector<SDValue, 4> Parts(NumParts);
6799      ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
6800
6801      if (Args[i].isSExt)
6802        ExtendKind = ISD::SIGN_EXTEND;
6803      else if (Args[i].isZExt)
6804        ExtendKind = ISD::ZERO_EXTEND;
6805
6806      // Conservatively only handle 'returned' on non-vectors for now
6807      if (Args[i].isReturned && !Op.getValueType().isVector()) {
6808        assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues &&
6809               "unexpected use of 'returned'");
6810        // Before passing 'returned' to the target lowering code, ensure that
6811        // either the register MVT and the actual EVT are the same size or that
6812        // the return value and argument are extended in the same way; in these
6813        // cases it's safe to pass the argument register value unchanged as the
6814        // return register value (although it's at the target's option whether
6815        // to do so)
6816        // TODO: allow code generation to take advantage of partially preserved
6817        // registers rather than clobbering the entire register when the
6818        // parameter extension method is not compatible with the return
6819        // extension method
6820        if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) ||
6821            (ExtendKind != ISD::ANY_EXTEND &&
6822             CLI.RetSExt == Args[i].isSExt && CLI.RetZExt == Args[i].isZExt))
6823        Flags.setReturned();
6824      }
6825
6826      getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts,
6827                     PartVT, CLI.CS ? CLI.CS->getInstruction() : 0, ExtendKind);
6828
6829      for (unsigned j = 0; j != NumParts; ++j) {
6830        // if it isn't first piece, alignment must be 1
6831        ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT,
6832                               i < CLI.NumFixedArgs,
6833                               i, j*Parts[j].getValueType().getStoreSize());
6834        if (NumParts > 1 && j == 0)
6835          MyFlags.Flags.setSplit();
6836        else if (j != 0)
6837          MyFlags.Flags.setOrigAlign(1);
6838
6839        CLI.Outs.push_back(MyFlags);
6840        CLI.OutVals.push_back(Parts[j]);
6841      }
6842    }
6843  }
6844
6845  SmallVector<SDValue, 4> InVals;
6846  CLI.Chain = LowerCall(CLI, InVals);
6847
6848  // Verify that the target's LowerCall behaved as expected.
6849  assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other &&
6850         "LowerCall didn't return a valid chain!");
6851  assert((!CLI.IsTailCall || InVals.empty()) &&
6852         "LowerCall emitted a return value for a tail call!");
6853  assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) &&
6854         "LowerCall didn't emit the correct number of values!");
6855
6856  // For a tail call, the return value is merely live-out and there aren't
6857  // any nodes in the DAG representing it. Return a special value to
6858  // indicate that a tail call has been emitted and no more Instructions
6859  // should be processed in the current block.
6860  if (CLI.IsTailCall) {
6861    CLI.DAG.setRoot(CLI.Chain);
6862    return std::make_pair(SDValue(), SDValue());
6863  }
6864
6865  DEBUG(for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) {
6866          assert(InVals[i].getNode() &&
6867                 "LowerCall emitted a null value!");
6868          assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() &&
6869                 "LowerCall emitted a value with the wrong type!");
6870        });
6871
6872  // Collect the legal value parts into potentially illegal values
6873  // that correspond to the original function's return values.
6874  ISD::NodeType AssertOp = ISD::DELETED_NODE;
6875  if (CLI.RetSExt)
6876    AssertOp = ISD::AssertSext;
6877  else if (CLI.RetZExt)
6878    AssertOp = ISD::AssertZext;
6879  SmallVector<SDValue, 4> ReturnValues;
6880  unsigned CurReg = 0;
6881  for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
6882    EVT VT = RetTys[I];
6883    MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT);
6884    unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT);
6885
6886    ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg],
6887                                            NumRegs, RegisterVT, VT, NULL,
6888                                            AssertOp));
6889    CurReg += NumRegs;
6890  }
6891
6892  // For a function returning void, there is no return value. We can't create
6893  // such a node, so we just return a null return value in that case. In
6894  // that case, nothing will actually look at the value.
6895  if (ReturnValues.empty())
6896    return std::make_pair(SDValue(), CLI.Chain);
6897
6898  SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL,
6899                                CLI.DAG.getVTList(&RetTys[0], RetTys.size()),
6900                            &ReturnValues[0], ReturnValues.size());
6901  return std::make_pair(Res, CLI.Chain);
6902}
6903
6904void TargetLowering::LowerOperationWrapper(SDNode *N,
6905                                           SmallVectorImpl<SDValue> &Results,
6906                                           SelectionDAG &DAG) const {
6907  SDValue Res = LowerOperation(SDValue(N, 0), DAG);
6908  if (Res.getNode())
6909    Results.push_back(Res);
6910}
6911
6912SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
6913  llvm_unreachable("LowerOperation not implemented for this target!");
6914}
6915
6916void
6917SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) {
6918  SDValue Op = getNonRegisterValue(V);
6919  assert((Op.getOpcode() != ISD::CopyFromReg ||
6920          cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
6921         "Copy from a reg to the same reg!");
6922  assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg");
6923
6924  const TargetLowering *TLI = TM.getTargetLowering();
6925  RegsForValue RFV(V->getContext(), *TLI, Reg, V->getType());
6926  SDValue Chain = DAG.getEntryNode();
6927  RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, 0, V);
6928  PendingExports.push_back(Chain);
6929}
6930
6931#include "llvm/CodeGen/SelectionDAGISel.h"
6932
6933/// isOnlyUsedInEntryBlock - If the specified argument is only used in the
6934/// entry block, return true.  This includes arguments used by switches, since
6935/// the switch may expand into multiple basic blocks.
6936static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) {
6937  // With FastISel active, we may be splitting blocks, so force creation
6938  // of virtual registers for all non-dead arguments.
6939  if (FastISel)
6940    return A->use_empty();
6941
6942  const BasicBlock *Entry = A->getParent()->begin();
6943  for (Value::const_use_iterator UI = A->use_begin(), E = A->use_end();
6944       UI != E; ++UI) {
6945    const User *U = *UI;
6946    if (cast<Instruction>(U)->getParent() != Entry || isa<SwitchInst>(U))
6947      return false;  // Use not in entry block.
6948  }
6949  return true;
6950}
6951
6952void SelectionDAGISel::LowerArguments(const Function &F) {
6953  SelectionDAG &DAG = SDB->DAG;
6954  SDLoc dl = SDB->getCurSDLoc();
6955  const TargetLowering *TLI = getTargetLowering();
6956  const DataLayout *TD = TLI->getDataLayout();
6957  SmallVector<ISD::InputArg, 16> Ins;
6958
6959  if (!FuncInfo->CanLowerReturn) {
6960    // Put in an sret pointer parameter before all the other parameters.
6961    SmallVector<EVT, 1> ValueVTs;
6962    ComputeValueVTs(*getTargetLowering(),
6963                    PointerType::getUnqual(F.getReturnType()), ValueVTs);
6964
6965    // NOTE: Assuming that a pointer will never break down to more than one VT
6966    // or one register.
6967    ISD::ArgFlagsTy Flags;
6968    Flags.setSRet();
6969    MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]);
6970    ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 0, 0);
6971    Ins.push_back(RetArg);
6972  }
6973
6974  // Set up the incoming argument description vector.
6975  unsigned Idx = 1;
6976  for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end();
6977       I != E; ++I, ++Idx) {
6978    SmallVector<EVT, 4> ValueVTs;
6979    ComputeValueVTs(*TLI, I->getType(), ValueVTs);
6980    bool isArgValueUsed = !I->use_empty();
6981    unsigned PartBase = 0;
6982    for (unsigned Value = 0, NumValues = ValueVTs.size();
6983         Value != NumValues; ++Value) {
6984      EVT VT = ValueVTs[Value];
6985      Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
6986      ISD::ArgFlagsTy Flags;
6987      unsigned OriginalAlignment =
6988        TD->getABITypeAlignment(ArgTy);
6989
6990      if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt))
6991        Flags.setZExt();
6992      if (F.getAttributes().hasAttribute(Idx, Attribute::SExt))
6993        Flags.setSExt();
6994      if (F.getAttributes().hasAttribute(Idx, Attribute::InReg))
6995        Flags.setInReg();
6996      if (F.getAttributes().hasAttribute(Idx, Attribute::StructRet))
6997        Flags.setSRet();
6998      if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) {
6999        Flags.setByVal();
7000        PointerType *Ty = cast<PointerType>(I->getType());
7001        Type *ElementTy = Ty->getElementType();
7002        Flags.setByValSize(TD->getTypeAllocSize(ElementTy));
7003        // For ByVal, alignment should be passed from FE.  BE will guess if
7004        // this info is not there but there are cases it cannot get right.
7005        unsigned FrameAlign;
7006        if (F.getParamAlignment(Idx))
7007          FrameAlign = F.getParamAlignment(Idx);
7008        else
7009          FrameAlign = TLI->getByValTypeAlignment(ElementTy);
7010        Flags.setByValAlign(FrameAlign);
7011      }
7012      if (F.getAttributes().hasAttribute(Idx, Attribute::Nest))
7013        Flags.setNest();
7014      Flags.setOrigAlign(OriginalAlignment);
7015
7016      MVT RegisterVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
7017      unsigned NumRegs = TLI->getNumRegisters(*CurDAG->getContext(), VT);
7018      for (unsigned i = 0; i != NumRegs; ++i) {
7019        ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed,
7020                              Idx-1, PartBase+i*RegisterVT.getStoreSize());
7021        if (NumRegs > 1 && i == 0)
7022          MyFlags.Flags.setSplit();
7023        // if it isn't first piece, alignment must be 1
7024        else if (i > 0)
7025          MyFlags.Flags.setOrigAlign(1);
7026        Ins.push_back(MyFlags);
7027      }
7028      PartBase += VT.getStoreSize();
7029    }
7030  }
7031
7032  // Call the target to set up the argument values.
7033  SmallVector<SDValue, 8> InVals;
7034  SDValue NewRoot = TLI->LowerFormalArguments(DAG.getRoot(), F.getCallingConv(),
7035                                              F.isVarArg(), Ins,
7036                                              dl, DAG, InVals);
7037
7038  // Verify that the target's LowerFormalArguments behaved as expected.
7039  assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
7040         "LowerFormalArguments didn't return a valid chain!");
7041  assert(InVals.size() == Ins.size() &&
7042         "LowerFormalArguments didn't emit the correct number of values!");
7043  DEBUG({
7044      for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
7045        assert(InVals[i].getNode() &&
7046               "LowerFormalArguments emitted a null value!");
7047        assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
7048               "LowerFormalArguments emitted a value with the wrong type!");
7049      }
7050    });
7051
7052  // Update the DAG with the new chain value resulting from argument lowering.
7053  DAG.setRoot(NewRoot);
7054
7055  // Set up the argument values.
7056  unsigned i = 0;
7057  Idx = 1;
7058  if (!FuncInfo->CanLowerReturn) {
7059    // Create a virtual register for the sret pointer, and put in a copy
7060    // from the sret argument into it.
7061    SmallVector<EVT, 1> ValueVTs;
7062    ComputeValueVTs(*TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs);
7063    MVT VT = ValueVTs[0].getSimpleVT();
7064    MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
7065    ISD::NodeType AssertOp = ISD::DELETED_NODE;
7066    SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1,
7067                                        RegVT, VT, NULL, AssertOp);
7068
7069    MachineFunction& MF = SDB->DAG.getMachineFunction();
7070    MachineRegisterInfo& RegInfo = MF.getRegInfo();
7071    unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT));
7072    FuncInfo->DemoteRegister = SRetReg;
7073    NewRoot = SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(),
7074                                    SRetReg, ArgValue);
7075    DAG.setRoot(NewRoot);
7076
7077    // i indexes lowered arguments.  Bump it past the hidden sret argument.
7078    // Idx indexes LLVM arguments.  Don't touch it.
7079    ++i;
7080  }
7081
7082  for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E;
7083      ++I, ++Idx) {
7084    SmallVector<SDValue, 4> ArgValues;
7085    SmallVector<EVT, 4> ValueVTs;
7086    ComputeValueVTs(*TLI, I->getType(), ValueVTs);
7087    unsigned NumValues = ValueVTs.size();
7088
7089    // If this argument is unused then remember its value. It is used to generate
7090    // debugging information.
7091    if (I->use_empty() && NumValues) {
7092      SDB->setUnusedArgValue(I, InVals[i]);
7093
7094      // Also remember any frame index for use in FastISel.
7095      if (FrameIndexSDNode *FI =
7096          dyn_cast<FrameIndexSDNode>(InVals[i].getNode()))
7097        FuncInfo->setArgumentFrameIndex(I, FI->getIndex());
7098    }
7099
7100    for (unsigned Val = 0; Val != NumValues; ++Val) {
7101      EVT VT = ValueVTs[Val];
7102      MVT PartVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
7103      unsigned NumParts = TLI->getNumRegisters(*CurDAG->getContext(), VT);
7104
7105      if (!I->use_empty()) {
7106        ISD::NodeType AssertOp = ISD::DELETED_NODE;
7107        if (F.getAttributes().hasAttribute(Idx, Attribute::SExt))
7108          AssertOp = ISD::AssertSext;
7109        else if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt))
7110          AssertOp = ISD::AssertZext;
7111
7112        ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i],
7113                                             NumParts, PartVT, VT,
7114                                             NULL, AssertOp));
7115      }
7116
7117      i += NumParts;
7118    }
7119
7120    // We don't need to do anything else for unused arguments.
7121    if (ArgValues.empty())
7122      continue;
7123
7124    // Note down frame index.
7125    if (FrameIndexSDNode *FI =
7126        dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
7127      FuncInfo->setArgumentFrameIndex(I, FI->getIndex());
7128
7129    SDValue Res = DAG.getMergeValues(&ArgValues[0], NumValues,
7130                                     SDB->getCurSDLoc());
7131
7132    SDB->setValue(I, Res);
7133    if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) {
7134      if (LoadSDNode *LNode =
7135          dyn_cast<LoadSDNode>(Res.getOperand(0).getNode()))
7136        if (FrameIndexSDNode *FI =
7137            dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
7138        FuncInfo->setArgumentFrameIndex(I, FI->getIndex());
7139    }
7140
7141    // If this argument is live outside of the entry block, insert a copy from
7142    // wherever we got it to the vreg that other BB's will reference it as.
7143    if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) {
7144      // If we can, though, try to skip creating an unnecessary vreg.
7145      // FIXME: This isn't very clean... it would be nice to make this more
7146      // general.  It's also subtly incompatible with the hacks FastISel
7147      // uses with vregs.
7148      unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
7149      if (TargetRegisterInfo::isVirtualRegister(Reg)) {
7150        FuncInfo->ValueMap[I] = Reg;
7151        continue;
7152      }
7153    }
7154    if (!isOnlyUsedInEntryBlock(I, TM.Options.EnableFastISel)) {
7155      FuncInfo->InitializeRegForValue(I);
7156      SDB->CopyToExportRegsIfNeeded(I);
7157    }
7158  }
7159
7160  assert(i == InVals.size() && "Argument register count mismatch!");
7161
7162  // Finally, if the target has anything special to do, allow it to do so.
7163  // FIXME: this should insert code into the DAG!
7164  EmitFunctionEntryCode();
7165}
7166
7167/// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
7168/// ensure constants are generated when needed.  Remember the virtual registers
7169/// that need to be added to the Machine PHI nodes as input.  We cannot just
7170/// directly add them, because expansion might result in multiple MBB's for one
7171/// BB.  As such, the start of the BB might correspond to a different MBB than
7172/// the end.
7173///
7174void
7175SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
7176  const TerminatorInst *TI = LLVMBB->getTerminator();
7177
7178  SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
7179
7180  // Check successor nodes' PHI nodes that expect a constant to be available
7181  // from this block.
7182  for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
7183    const BasicBlock *SuccBB = TI->getSuccessor(succ);
7184    if (!isa<PHINode>(SuccBB->begin())) continue;
7185    MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
7186
7187    // If this terminator has multiple identical successors (common for
7188    // switches), only handle each succ once.
7189    if (!SuccsHandled.insert(SuccMBB)) continue;
7190
7191    MachineBasicBlock::iterator MBBI = SuccMBB->begin();
7192
7193    // At this point we know that there is a 1-1 correspondence between LLVM PHI
7194    // nodes and Machine PHI nodes, but the incoming operands have not been
7195    // emitted yet.
7196    for (BasicBlock::const_iterator I = SuccBB->begin();
7197         const PHINode *PN = dyn_cast<PHINode>(I); ++I) {
7198      // Ignore dead phi's.
7199      if (PN->use_empty()) continue;
7200
7201      // Skip empty types
7202      if (PN->getType()->isEmptyTy())
7203        continue;
7204
7205      unsigned Reg;
7206      const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
7207
7208      if (const Constant *C = dyn_cast<Constant>(PHIOp)) {
7209        unsigned &RegOut = ConstantsOut[C];
7210        if (RegOut == 0) {
7211          RegOut = FuncInfo.CreateRegs(C->getType());
7212          CopyValueToVirtualRegister(C, RegOut);
7213        }
7214        Reg = RegOut;
7215      } else {
7216        DenseMap<const Value *, unsigned>::iterator I =
7217          FuncInfo.ValueMap.find(PHIOp);
7218        if (I != FuncInfo.ValueMap.end())
7219          Reg = I->second;
7220        else {
7221          assert(isa<AllocaInst>(PHIOp) &&
7222                 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
7223                 "Didn't codegen value into a register!??");
7224          Reg = FuncInfo.CreateRegs(PHIOp->getType());
7225          CopyValueToVirtualRegister(PHIOp, Reg);
7226        }
7227      }
7228
7229      // Remember that this register needs to added to the machine PHI node as
7230      // the input for this MBB.
7231      SmallVector<EVT, 4> ValueVTs;
7232      const TargetLowering *TLI = TM.getTargetLowering();
7233      ComputeValueVTs(*TLI, PN->getType(), ValueVTs);
7234      for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
7235        EVT VT = ValueVTs[vti];
7236        unsigned NumRegisters = TLI->getNumRegisters(*DAG.getContext(), VT);
7237        for (unsigned i = 0, e = NumRegisters; i != e; ++i)
7238          FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i));
7239        Reg += NumRegisters;
7240      }
7241    }
7242  }
7243
7244  ConstantsOut.clear();
7245}
7246
7247/// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB
7248/// is 0.
7249MachineBasicBlock *
7250SelectionDAGBuilder::StackProtectorDescriptor::
7251AddSuccessorMBB(const BasicBlock *BB,
7252                MachineBasicBlock *ParentMBB,
7253                MachineBasicBlock *SuccMBB) {
7254  // If SuccBB has not been created yet, create it.
7255  if (!SuccMBB) {
7256    MachineFunction *MF = ParentMBB->getParent();
7257    MachineFunction::iterator BBI = ParentMBB;
7258    SuccMBB = MF->CreateMachineBasicBlock(BB);
7259    MF->insert(++BBI, SuccMBB);
7260  }
7261  // Add it as a successor of ParentMBB.
7262  ParentMBB->addSuccessor(SuccMBB);
7263  return SuccMBB;
7264}
7265