SelectionDAGBuilder.cpp revision db125cfaf57cc83e7dd7453de2d509bc8efd0e5e
1//===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements routines for translating from LLVM IR into SelectionDAG IR.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "isel"
15#include "SDNodeDbgValue.h"
16#include "SelectionDAGBuilder.h"
17#include "llvm/ADT/BitVector.h"
18#include "llvm/ADT/PostOrderIterator.h"
19#include "llvm/ADT/SmallSet.h"
20#include "llvm/Analysis/AliasAnalysis.h"
21#include "llvm/Analysis/ConstantFolding.h"
22#include "llvm/Constants.h"
23#include "llvm/CallingConv.h"
24#include "llvm/DerivedTypes.h"
25#include "llvm/Function.h"
26#include "llvm/GlobalVariable.h"
27#include "llvm/InlineAsm.h"
28#include "llvm/Instructions.h"
29#include "llvm/Intrinsics.h"
30#include "llvm/IntrinsicInst.h"
31#include "llvm/LLVMContext.h"
32#include "llvm/Module.h"
33#include "llvm/CodeGen/Analysis.h"
34#include "llvm/CodeGen/FastISel.h"
35#include "llvm/CodeGen/FunctionLoweringInfo.h"
36#include "llvm/CodeGen/GCStrategy.h"
37#include "llvm/CodeGen/GCMetadata.h"
38#include "llvm/CodeGen/MachineFunction.h"
39#include "llvm/CodeGen/MachineFrameInfo.h"
40#include "llvm/CodeGen/MachineInstrBuilder.h"
41#include "llvm/CodeGen/MachineJumpTableInfo.h"
42#include "llvm/CodeGen/MachineModuleInfo.h"
43#include "llvm/CodeGen/MachineRegisterInfo.h"
44#include "llvm/CodeGen/PseudoSourceValue.h"
45#include "llvm/CodeGen/SelectionDAG.h"
46#include "llvm/Analysis/DebugInfo.h"
47#include "llvm/Target/TargetData.h"
48#include "llvm/Target/TargetFrameLowering.h"
49#include "llvm/Target/TargetInstrInfo.h"
50#include "llvm/Target/TargetIntrinsicInfo.h"
51#include "llvm/Target/TargetLowering.h"
52#include "llvm/Target/TargetOptions.h"
53#include "llvm/Support/CommandLine.h"
54#include "llvm/Support/Debug.h"
55#include "llvm/Support/ErrorHandling.h"
56#include "llvm/Support/MathExtras.h"
57#include "llvm/Support/raw_ostream.h"
58#include <algorithm>
59using namespace llvm;
60
61/// LimitFloatPrecision - Generate low-precision inline sequences for
62/// some float libcalls (6, 8 or 12 bits).
63static unsigned LimitFloatPrecision;
64
65static cl::opt<unsigned, true>
66LimitFPPrecision("limit-float-precision",
67                 cl::desc("Generate low-precision inline sequences "
68                          "for some float libcalls"),
69                 cl::location(LimitFloatPrecision),
70                 cl::init(0));
71
72// Limit the width of DAG chains. This is important in general to prevent
73// prevent DAG-based analysis from blowing up. For example, alias analysis and
74// load clustering may not complete in reasonable time. It is difficult to
75// recognize and avoid this situation within each individual analysis, and
76// future analyses are likely to have the same behavior. Limiting DAG width is
77// the safe approach, and will be especially important with global DAGs.
78//
79// MaxParallelChains default is arbitrarily high to avoid affecting
80// optimization, but could be lowered to improve compile time. Any ld-ld-st-st
81// sequence over this should have been converted to llvm.memcpy by the
82// frontend. It easy to induce this behavior with .ll code such as:
83// %buffer = alloca [4096 x i8]
84// %data = load [4096 x i8]* %argPtr
85// store [4096 x i8] %data, [4096 x i8]* %buffer
86static const unsigned MaxParallelChains = 64;
87
88static SDValue getCopyFromPartsVector(SelectionDAG &DAG, DebugLoc DL,
89                                      const SDValue *Parts, unsigned NumParts,
90                                      EVT PartVT, EVT ValueVT);
91
92/// getCopyFromParts - Create a value that contains the specified legal parts
93/// combined into the value they represent.  If the parts combine to a type
94/// larger then ValueVT then AssertOp can be used to specify whether the extra
95/// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
96/// (ISD::AssertSext).
97static SDValue getCopyFromParts(SelectionDAG &DAG, DebugLoc DL,
98                                const SDValue *Parts,
99                                unsigned NumParts, EVT PartVT, EVT ValueVT,
100                                ISD::NodeType AssertOp = ISD::DELETED_NODE) {
101  if (ValueVT.isVector())
102    return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT);
103
104  assert(NumParts > 0 && "No parts to assemble!");
105  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
106  SDValue Val = Parts[0];
107
108  if (NumParts > 1) {
109    // Assemble the value from multiple parts.
110    if (ValueVT.isInteger()) {
111      unsigned PartBits = PartVT.getSizeInBits();
112      unsigned ValueBits = ValueVT.getSizeInBits();
113
114      // Assemble the power of 2 part.
115      unsigned RoundParts = NumParts & (NumParts - 1) ?
116        1 << Log2_32(NumParts) : NumParts;
117      unsigned RoundBits = PartBits * RoundParts;
118      EVT RoundVT = RoundBits == ValueBits ?
119        ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
120      SDValue Lo, Hi;
121
122      EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
123
124      if (RoundParts > 2) {
125        Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2,
126                              PartVT, HalfVT);
127        Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2,
128                              RoundParts / 2, PartVT, HalfVT);
129      } else {
130        Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
131        Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
132      }
133
134      if (TLI.isBigEndian())
135        std::swap(Lo, Hi);
136
137      Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
138
139      if (RoundParts < NumParts) {
140        // Assemble the trailing non-power-of-2 part.
141        unsigned OddParts = NumParts - RoundParts;
142        EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
143        Hi = getCopyFromParts(DAG, DL,
144                              Parts + RoundParts, OddParts, PartVT, OddVT);
145
146        // Combine the round and odd parts.
147        Lo = Val;
148        if (TLI.isBigEndian())
149          std::swap(Lo, Hi);
150        EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
151        Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
152        Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
153                         DAG.getConstant(Lo.getValueType().getSizeInBits(),
154                                         TLI.getPointerTy()));
155        Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
156        Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
157      }
158    } else if (PartVT.isFloatingPoint()) {
159      // FP split into multiple FP parts (for ppcf128)
160      assert(ValueVT == EVT(MVT::ppcf128) && PartVT == EVT(MVT::f64) &&
161             "Unexpected split");
162      SDValue Lo, Hi;
163      Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
164      Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
165      if (TLI.isBigEndian())
166        std::swap(Lo, Hi);
167      Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
168    } else {
169      // FP split into integer parts (soft fp)
170      assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
171             !PartVT.isVector() && "Unexpected split");
172      EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
173      Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT);
174    }
175  }
176
177  // There is now one part, held in Val.  Correct it to match ValueVT.
178  PartVT = Val.getValueType();
179
180  if (PartVT == ValueVT)
181    return Val;
182
183  if (PartVT.isInteger() && ValueVT.isInteger()) {
184    if (ValueVT.bitsLT(PartVT)) {
185      // For a truncate, see if we have any information to
186      // indicate whether the truncated bits will always be
187      // zero or sign-extension.
188      if (AssertOp != ISD::DELETED_NODE)
189        Val = DAG.getNode(AssertOp, DL, PartVT, Val,
190                          DAG.getValueType(ValueVT));
191      return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
192    }
193    return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
194  }
195
196  if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
197    // FP_ROUND's are always exact here.
198    if (ValueVT.bitsLT(Val.getValueType()))
199      return DAG.getNode(ISD::FP_ROUND, DL, ValueVT, Val,
200                         DAG.getIntPtrConstant(1));
201
202    return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
203  }
204
205  if (PartVT.getSizeInBits() == ValueVT.getSizeInBits())
206    return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
207
208  llvm_unreachable("Unknown mismatch!");
209  return SDValue();
210}
211
212/// getCopyFromParts - Create a value that contains the specified legal parts
213/// combined into the value they represent.  If the parts combine to a type
214/// larger then ValueVT then AssertOp can be used to specify whether the extra
215/// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
216/// (ISD::AssertSext).
217static SDValue getCopyFromPartsVector(SelectionDAG &DAG, DebugLoc DL,
218                                      const SDValue *Parts, unsigned NumParts,
219                                      EVT PartVT, EVT ValueVT) {
220  assert(ValueVT.isVector() && "Not a vector value");
221  assert(NumParts > 0 && "No parts to assemble!");
222  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
223  SDValue Val = Parts[0];
224
225  // Handle a multi-element vector.
226  if (NumParts > 1) {
227    EVT IntermediateVT, RegisterVT;
228    unsigned NumIntermediates;
229    unsigned NumRegs =
230    TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
231                               NumIntermediates, RegisterVT);
232    assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
233    NumParts = NumRegs; // Silence a compiler warning.
234    assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
235    assert(RegisterVT == Parts[0].getValueType() &&
236           "Part type doesn't match part!");
237
238    // Assemble the parts into intermediate operands.
239    SmallVector<SDValue, 8> Ops(NumIntermediates);
240    if (NumIntermediates == NumParts) {
241      // If the register was not expanded, truncate or copy the value,
242      // as appropriate.
243      for (unsigned i = 0; i != NumParts; ++i)
244        Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1,
245                                  PartVT, IntermediateVT);
246    } else if (NumParts > 0) {
247      // If the intermediate type was expanded, build the intermediate
248      // operands from the parts.
249      assert(NumParts % NumIntermediates == 0 &&
250             "Must expand into a divisible number of parts!");
251      unsigned Factor = NumParts / NumIntermediates;
252      for (unsigned i = 0; i != NumIntermediates; ++i)
253        Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor,
254                                  PartVT, IntermediateVT);
255    }
256
257    // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
258    // intermediate operands.
259    Val = DAG.getNode(IntermediateVT.isVector() ?
260                      ISD::CONCAT_VECTORS : ISD::BUILD_VECTOR, DL,
261                      ValueVT, &Ops[0], NumIntermediates);
262  }
263
264  // There is now one part, held in Val.  Correct it to match ValueVT.
265  PartVT = Val.getValueType();
266
267  if (PartVT == ValueVT)
268    return Val;
269
270  if (PartVT.isVector()) {
271    // If the element type of the source/dest vectors are the same, but the
272    // parts vector has more elements than the value vector, then we have a
273    // vector widening case (e.g. <2 x float> -> <4 x float>).  Extract the
274    // elements we want.
275    if (PartVT.getVectorElementType() == ValueVT.getVectorElementType()) {
276      assert(PartVT.getVectorNumElements() > ValueVT.getVectorNumElements() &&
277             "Cannot narrow, it would be a lossy transformation");
278      return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
279                         DAG.getIntPtrConstant(0));
280    }
281
282    // Vector/Vector bitcast.
283    if (ValueVT.getSizeInBits() == PartVT.getSizeInBits())
284      return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
285
286    assert(PartVT.getVectorNumElements() == ValueVT.getVectorNumElements() &&
287      "Cannot handle this kind of promotion");
288    // Promoted vector extract
289    bool Smaller = ValueVT.bitsLE(PartVT);
290    return DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
291                       DL, ValueVT, Val);
292
293  }
294
295  // Trivial bitcast if the types are the same size and the destination
296  // vector type is legal.
297  if (PartVT.getSizeInBits() == ValueVT.getSizeInBits() &&
298      TLI.isTypeLegal(ValueVT))
299    return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
300
301  // Handle cases such as i8 -> <1 x i1>
302  assert(ValueVT.getVectorNumElements() == 1 &&
303         "Only trivial scalar-to-vector conversions should get here!");
304
305  if (ValueVT.getVectorNumElements() == 1 &&
306      ValueVT.getVectorElementType() != PartVT) {
307    bool Smaller = ValueVT.bitsLE(PartVT);
308    Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
309                       DL, ValueVT.getScalarType(), Val);
310  }
311
312  return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val);
313}
314
315
316
317
318static void getCopyToPartsVector(SelectionDAG &DAG, DebugLoc dl,
319                                 SDValue Val, SDValue *Parts, unsigned NumParts,
320                                 EVT PartVT);
321
322/// getCopyToParts - Create a series of nodes that contain the specified value
323/// split into legal parts.  If the parts contain more bits than Val, then, for
324/// integers, ExtendKind can be used to specify how to generate the extra bits.
325static void getCopyToParts(SelectionDAG &DAG, DebugLoc DL,
326                           SDValue Val, SDValue *Parts, unsigned NumParts,
327                           EVT PartVT,
328                           ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
329  EVT ValueVT = Val.getValueType();
330
331  // Handle the vector case separately.
332  if (ValueVT.isVector())
333    return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT);
334
335  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
336  unsigned PartBits = PartVT.getSizeInBits();
337  unsigned OrigNumParts = NumParts;
338  assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!");
339
340  if (NumParts == 0)
341    return;
342
343  assert(!ValueVT.isVector() && "Vector case handled elsewhere");
344  if (PartVT == ValueVT) {
345    assert(NumParts == 1 && "No-op copy with multiple parts!");
346    Parts[0] = Val;
347    return;
348  }
349
350  if (NumParts * PartBits > ValueVT.getSizeInBits()) {
351    // If the parts cover more bits than the value has, promote the value.
352    if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
353      assert(NumParts == 1 && "Do not know what to promote to!");
354      Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
355    } else {
356      assert(PartVT.isInteger() && ValueVT.isInteger() &&
357             "Unknown mismatch!");
358      ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
359      Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
360    }
361  } else if (PartBits == ValueVT.getSizeInBits()) {
362    // Different types of the same size.
363    assert(NumParts == 1 && PartVT != ValueVT);
364    Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
365  } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
366    // If the parts cover less bits than value has, truncate the value.
367    assert(PartVT.isInteger() && ValueVT.isInteger() &&
368           "Unknown mismatch!");
369    ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
370    Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
371  }
372
373  // The value may have changed - recompute ValueVT.
374  ValueVT = Val.getValueType();
375  assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
376         "Failed to tile the value with PartVT!");
377
378  if (NumParts == 1) {
379    assert(PartVT == ValueVT && "Type conversion failed!");
380    Parts[0] = Val;
381    return;
382  }
383
384  // Expand the value into multiple parts.
385  if (NumParts & (NumParts - 1)) {
386    // The number of parts is not a power of 2.  Split off and copy the tail.
387    assert(PartVT.isInteger() && ValueVT.isInteger() &&
388           "Do not know what to expand to!");
389    unsigned RoundParts = 1 << Log2_32(NumParts);
390    unsigned RoundBits = RoundParts * PartBits;
391    unsigned OddParts = NumParts - RoundParts;
392    SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
393                                 DAG.getIntPtrConstant(RoundBits));
394    getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT);
395
396    if (TLI.isBigEndian())
397      // The odd parts were reversed by getCopyToParts - unreverse them.
398      std::reverse(Parts + RoundParts, Parts + NumParts);
399
400    NumParts = RoundParts;
401    ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
402    Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
403  }
404
405  // The number of parts is a power of 2.  Repeatedly bisect the value using
406  // EXTRACT_ELEMENT.
407  Parts[0] = DAG.getNode(ISD::BITCAST, DL,
408                         EVT::getIntegerVT(*DAG.getContext(),
409                                           ValueVT.getSizeInBits()),
410                         Val);
411
412  for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
413    for (unsigned i = 0; i < NumParts; i += StepSize) {
414      unsigned ThisBits = StepSize * PartBits / 2;
415      EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
416      SDValue &Part0 = Parts[i];
417      SDValue &Part1 = Parts[i+StepSize/2];
418
419      Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
420                          ThisVT, Part0, DAG.getIntPtrConstant(1));
421      Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
422                          ThisVT, Part0, DAG.getIntPtrConstant(0));
423
424      if (ThisBits == PartBits && ThisVT != PartVT) {
425        Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
426        Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
427      }
428    }
429  }
430
431  if (TLI.isBigEndian())
432    std::reverse(Parts, Parts + OrigNumParts);
433}
434
435
436/// getCopyToPartsVector - Create a series of nodes that contain the specified
437/// value split into legal parts.
438static void getCopyToPartsVector(SelectionDAG &DAG, DebugLoc DL,
439                                 SDValue Val, SDValue *Parts, unsigned NumParts,
440                                 EVT PartVT) {
441  EVT ValueVT = Val.getValueType();
442  assert(ValueVT.isVector() && "Not a vector");
443  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
444
445  if (NumParts == 1) {
446    if (PartVT == ValueVT) {
447      // Nothing to do.
448    } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
449      // Bitconvert vector->vector case.
450      Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
451    } else if (PartVT.isVector() &&
452               PartVT.getVectorElementType() == ValueVT.getVectorElementType() &&
453               PartVT.getVectorNumElements() > ValueVT.getVectorNumElements()) {
454      EVT ElementVT = PartVT.getVectorElementType();
455      // Vector widening case, e.g. <2 x float> -> <4 x float>.  Shuffle in
456      // undef elements.
457      SmallVector<SDValue, 16> Ops;
458      for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i)
459        Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
460                                  ElementVT, Val, DAG.getIntPtrConstant(i)));
461
462      for (unsigned i = ValueVT.getVectorNumElements(),
463           e = PartVT.getVectorNumElements(); i != e; ++i)
464        Ops.push_back(DAG.getUNDEF(ElementVT));
465
466      Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, &Ops[0], Ops.size());
467
468      // FIXME: Use CONCAT for 2x -> 4x.
469
470      //SDValue UndefElts = DAG.getUNDEF(VectorTy);
471      //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts);
472    } else if (PartVT.isVector() &&
473               PartVT.getVectorElementType().bitsGE(
474                 ValueVT.getVectorElementType()) &&
475               PartVT.getVectorNumElements() == ValueVT.getVectorNumElements()) {
476
477      // Promoted vector extract
478      bool Smaller = PartVT.bitsLE(ValueVT);
479      Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
480                        DL, PartVT, Val);
481    } else{
482      // Vector -> scalar conversion.
483      assert(ValueVT.getVectorNumElements() == 1 &&
484             "Only trivial vector-to-scalar conversions should get here!");
485      Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
486                        PartVT, Val, DAG.getIntPtrConstant(0));
487
488      bool Smaller = ValueVT.bitsLE(PartVT);
489      Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
490                         DL, PartVT, Val);
491    }
492
493    Parts[0] = Val;
494    return;
495  }
496
497  // Handle a multi-element vector.
498  EVT IntermediateVT, RegisterVT;
499  unsigned NumIntermediates;
500  unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT,
501                                                IntermediateVT,
502                                                NumIntermediates, RegisterVT);
503  unsigned NumElements = ValueVT.getVectorNumElements();
504
505  assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
506  NumParts = NumRegs; // Silence a compiler warning.
507  assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
508
509  // Split the vector into intermediate operands.
510  SmallVector<SDValue, 8> Ops(NumIntermediates);
511  for (unsigned i = 0; i != NumIntermediates; ++i) {
512    if (IntermediateVT.isVector())
513      Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL,
514                           IntermediateVT, Val,
515                   DAG.getIntPtrConstant(i * (NumElements / NumIntermediates)));
516    else
517      Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
518                           IntermediateVT, Val, DAG.getIntPtrConstant(i));
519  }
520
521  // Split the intermediate operands into legal parts.
522  if (NumParts == NumIntermediates) {
523    // If the register was not expanded, promote or copy the value,
524    // as appropriate.
525    for (unsigned i = 0; i != NumParts; ++i)
526      getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT);
527  } else if (NumParts > 0) {
528    // If the intermediate type was expanded, split each the value into
529    // legal parts.
530    assert(NumParts % NumIntermediates == 0 &&
531           "Must expand into a divisible number of parts!");
532    unsigned Factor = NumParts / NumIntermediates;
533    for (unsigned i = 0; i != NumIntermediates; ++i)
534      getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT);
535  }
536}
537
538
539
540
541namespace {
542  /// RegsForValue - This struct represents the registers (physical or virtual)
543  /// that a particular set of values is assigned, and the type information
544  /// about the value. The most common situation is to represent one value at a
545  /// time, but struct or array values are handled element-wise as multiple
546  /// values.  The splitting of aggregates is performed recursively, so that we
547  /// never have aggregate-typed registers. The values at this point do not
548  /// necessarily have legal types, so each value may require one or more
549  /// registers of some legal type.
550  ///
551  struct RegsForValue {
552    /// ValueVTs - The value types of the values, which may not be legal, and
553    /// may need be promoted or synthesized from one or more registers.
554    ///
555    SmallVector<EVT, 4> ValueVTs;
556
557    /// RegVTs - The value types of the registers. This is the same size as
558    /// ValueVTs and it records, for each value, what the type of the assigned
559    /// register or registers are. (Individual values are never synthesized
560    /// from more than one type of register.)
561    ///
562    /// With virtual registers, the contents of RegVTs is redundant with TLI's
563    /// getRegisterType member function, however when with physical registers
564    /// it is necessary to have a separate record of the types.
565    ///
566    SmallVector<EVT, 4> RegVTs;
567
568    /// Regs - This list holds the registers assigned to the values.
569    /// Each legal or promoted value requires one register, and each
570    /// expanded value requires multiple registers.
571    ///
572    SmallVector<unsigned, 4> Regs;
573
574    RegsForValue() {}
575
576    RegsForValue(const SmallVector<unsigned, 4> &regs,
577                 EVT regvt, EVT valuevt)
578      : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {}
579
580    RegsForValue(LLVMContext &Context, const TargetLowering &tli,
581                 unsigned Reg, Type *Ty) {
582      ComputeValueVTs(tli, Ty, ValueVTs);
583
584      for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
585        EVT ValueVT = ValueVTs[Value];
586        unsigned NumRegs = tli.getNumRegisters(Context, ValueVT);
587        EVT RegisterVT = tli.getRegisterType(Context, ValueVT);
588        for (unsigned i = 0; i != NumRegs; ++i)
589          Regs.push_back(Reg + i);
590        RegVTs.push_back(RegisterVT);
591        Reg += NumRegs;
592      }
593    }
594
595    /// areValueTypesLegal - Return true if types of all the values are legal.
596    bool areValueTypesLegal(const TargetLowering &TLI) {
597      for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
598        EVT RegisterVT = RegVTs[Value];
599        if (!TLI.isTypeLegal(RegisterVT))
600          return false;
601      }
602      return true;
603    }
604
605    /// append - Add the specified values to this one.
606    void append(const RegsForValue &RHS) {
607      ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end());
608      RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end());
609      Regs.append(RHS.Regs.begin(), RHS.Regs.end());
610    }
611
612    /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
613    /// this value and returns the result as a ValueVTs value.  This uses
614    /// Chain/Flag as the input and updates them for the output Chain/Flag.
615    /// If the Flag pointer is NULL, no flag is used.
616    SDValue getCopyFromRegs(SelectionDAG &DAG, FunctionLoweringInfo &FuncInfo,
617                            DebugLoc dl,
618                            SDValue &Chain, SDValue *Flag) const;
619
620    /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
621    /// specified value into the registers specified by this object.  This uses
622    /// Chain/Flag as the input and updates them for the output Chain/Flag.
623    /// If the Flag pointer is NULL, no flag is used.
624    void getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl,
625                       SDValue &Chain, SDValue *Flag) const;
626
627    /// AddInlineAsmOperands - Add this value to the specified inlineasm node
628    /// operand list.  This adds the code marker, matching input operand index
629    /// (if applicable), and includes the number of values added into it.
630    void AddInlineAsmOperands(unsigned Kind,
631                              bool HasMatching, unsigned MatchingIdx,
632                              SelectionDAG &DAG,
633                              std::vector<SDValue> &Ops) const;
634  };
635}
636
637/// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
638/// this value and returns the result as a ValueVT value.  This uses
639/// Chain/Flag as the input and updates them for the output Chain/Flag.
640/// If the Flag pointer is NULL, no flag is used.
641SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
642                                      FunctionLoweringInfo &FuncInfo,
643                                      DebugLoc dl,
644                                      SDValue &Chain, SDValue *Flag) const {
645  // A Value with type {} or [0 x %t] needs no registers.
646  if (ValueVTs.empty())
647    return SDValue();
648
649  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
650
651  // Assemble the legal parts into the final values.
652  SmallVector<SDValue, 4> Values(ValueVTs.size());
653  SmallVector<SDValue, 8> Parts;
654  for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
655    // Copy the legal parts from the registers.
656    EVT ValueVT = ValueVTs[Value];
657    unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
658    EVT RegisterVT = RegVTs[Value];
659
660    Parts.resize(NumRegs);
661    for (unsigned i = 0; i != NumRegs; ++i) {
662      SDValue P;
663      if (Flag == 0) {
664        P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
665      } else {
666        P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
667        *Flag = P.getValue(2);
668      }
669
670      Chain = P.getValue(1);
671      Parts[i] = P;
672
673      // If the source register was virtual and if we know something about it,
674      // add an assert node.
675      if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) ||
676          !RegisterVT.isInteger() || RegisterVT.isVector())
677        continue;
678
679      const FunctionLoweringInfo::LiveOutInfo *LOI =
680        FuncInfo.GetLiveOutRegInfo(Regs[Part+i]);
681      if (!LOI)
682        continue;
683
684      unsigned RegSize = RegisterVT.getSizeInBits();
685      unsigned NumSignBits = LOI->NumSignBits;
686      unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes();
687
688      // FIXME: We capture more information than the dag can represent.  For
689      // now, just use the tightest assertzext/assertsext possible.
690      bool isSExt = true;
691      EVT FromVT(MVT::Other);
692      if (NumSignBits == RegSize)
693        isSExt = true, FromVT = MVT::i1;   // ASSERT SEXT 1
694      else if (NumZeroBits >= RegSize-1)
695        isSExt = false, FromVT = MVT::i1;  // ASSERT ZEXT 1
696      else if (NumSignBits > RegSize-8)
697        isSExt = true, FromVT = MVT::i8;   // ASSERT SEXT 8
698      else if (NumZeroBits >= RegSize-8)
699        isSExt = false, FromVT = MVT::i8;  // ASSERT ZEXT 8
700      else if (NumSignBits > RegSize-16)
701        isSExt = true, FromVT = MVT::i16;  // ASSERT SEXT 16
702      else if (NumZeroBits >= RegSize-16)
703        isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16
704      else if (NumSignBits > RegSize-32)
705        isSExt = true, FromVT = MVT::i32;  // ASSERT SEXT 32
706      else if (NumZeroBits >= RegSize-32)
707        isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32
708      else
709        continue;
710
711      // Add an assertion node.
712      assert(FromVT != MVT::Other);
713      Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
714                             RegisterVT, P, DAG.getValueType(FromVT));
715    }
716
717    Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(),
718                                     NumRegs, RegisterVT, ValueVT);
719    Part += NumRegs;
720    Parts.clear();
721  }
722
723  return DAG.getNode(ISD::MERGE_VALUES, dl,
724                     DAG.getVTList(&ValueVTs[0], ValueVTs.size()),
725                     &Values[0], ValueVTs.size());
726}
727
728/// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
729/// specified value into the registers specified by this object.  This uses
730/// Chain/Flag as the input and updates them for the output Chain/Flag.
731/// If the Flag pointer is NULL, no flag is used.
732void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl,
733                                 SDValue &Chain, SDValue *Flag) const {
734  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
735
736  // Get the list of the values's legal parts.
737  unsigned NumRegs = Regs.size();
738  SmallVector<SDValue, 8> Parts(NumRegs);
739  for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
740    EVT ValueVT = ValueVTs[Value];
741    unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
742    EVT RegisterVT = RegVTs[Value];
743
744    getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value),
745                   &Parts[Part], NumParts, RegisterVT);
746    Part += NumParts;
747  }
748
749  // Copy the parts into the registers.
750  SmallVector<SDValue, 8> Chains(NumRegs);
751  for (unsigned i = 0; i != NumRegs; ++i) {
752    SDValue Part;
753    if (Flag == 0) {
754      Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
755    } else {
756      Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
757      *Flag = Part.getValue(1);
758    }
759
760    Chains[i] = Part.getValue(0);
761  }
762
763  if (NumRegs == 1 || Flag)
764    // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
765    // flagged to it. That is the CopyToReg nodes and the user are considered
766    // a single scheduling unit. If we create a TokenFactor and return it as
767    // chain, then the TokenFactor is both a predecessor (operand) of the
768    // user as well as a successor (the TF operands are flagged to the user).
769    // c1, f1 = CopyToReg
770    // c2, f2 = CopyToReg
771    // c3     = TokenFactor c1, c2
772    // ...
773    //        = op c3, ..., f2
774    Chain = Chains[NumRegs-1];
775  else
776    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0], NumRegs);
777}
778
779/// AddInlineAsmOperands - Add this value to the specified inlineasm node
780/// operand list.  This adds the code marker and includes the number of
781/// values added into it.
782void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
783                                        unsigned MatchingIdx,
784                                        SelectionDAG &DAG,
785                                        std::vector<SDValue> &Ops) const {
786  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
787
788  unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
789  if (HasMatching)
790    Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
791  SDValue Res = DAG.getTargetConstant(Flag, MVT::i32);
792  Ops.push_back(Res);
793
794  for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
795    unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]);
796    EVT RegisterVT = RegVTs[Value];
797    for (unsigned i = 0; i != NumRegs; ++i) {
798      assert(Reg < Regs.size() && "Mismatch in # registers expected");
799      Ops.push_back(DAG.getRegister(Regs[Reg++], RegisterVT));
800    }
801  }
802}
803
804void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa) {
805  AA = &aa;
806  GFI = gfi;
807  TD = DAG.getTarget().getTargetData();
808}
809
810/// clear - Clear out the current SelectionDAG and the associated
811/// state and prepare this SelectionDAGBuilder object to be used
812/// for a new block. This doesn't clear out information about
813/// additional blocks that are needed to complete switch lowering
814/// or PHI node updating; that information is cleared out as it is
815/// consumed.
816void SelectionDAGBuilder::clear() {
817  NodeMap.clear();
818  UnusedArgNodeMap.clear();
819  PendingLoads.clear();
820  PendingExports.clear();
821  CurDebugLoc = DebugLoc();
822  HasTailCall = false;
823}
824
825/// clearDanglingDebugInfo - Clear the dangling debug information
826/// map. This function is seperated from the clear so that debug
827/// information that is dangling in a basic block can be properly
828/// resolved in a different basic block. This allows the
829/// SelectionDAG to resolve dangling debug information attached
830/// to PHI nodes.
831void SelectionDAGBuilder::clearDanglingDebugInfo() {
832  DanglingDebugInfoMap.clear();
833}
834
835/// getRoot - Return the current virtual root of the Selection DAG,
836/// flushing any PendingLoad items. This must be done before emitting
837/// a store or any other node that may need to be ordered after any
838/// prior load instructions.
839///
840SDValue SelectionDAGBuilder::getRoot() {
841  if (PendingLoads.empty())
842    return DAG.getRoot();
843
844  if (PendingLoads.size() == 1) {
845    SDValue Root = PendingLoads[0];
846    DAG.setRoot(Root);
847    PendingLoads.clear();
848    return Root;
849  }
850
851  // Otherwise, we have to make a token factor node.
852  SDValue Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
853                               &PendingLoads[0], PendingLoads.size());
854  PendingLoads.clear();
855  DAG.setRoot(Root);
856  return Root;
857}
858
859/// getControlRoot - Similar to getRoot, but instead of flushing all the
860/// PendingLoad items, flush all the PendingExports items. It is necessary
861/// to do this before emitting a terminator instruction.
862///
863SDValue SelectionDAGBuilder::getControlRoot() {
864  SDValue Root = DAG.getRoot();
865
866  if (PendingExports.empty())
867    return Root;
868
869  // Turn all of the CopyToReg chains into one factored node.
870  if (Root.getOpcode() != ISD::EntryToken) {
871    unsigned i = 0, e = PendingExports.size();
872    for (; i != e; ++i) {
873      assert(PendingExports[i].getNode()->getNumOperands() > 1);
874      if (PendingExports[i].getNode()->getOperand(0) == Root)
875        break;  // Don't add the root if we already indirectly depend on it.
876    }
877
878    if (i == e)
879      PendingExports.push_back(Root);
880  }
881
882  Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
883                     &PendingExports[0],
884                     PendingExports.size());
885  PendingExports.clear();
886  DAG.setRoot(Root);
887  return Root;
888}
889
890void SelectionDAGBuilder::AssignOrderingToNode(const SDNode *Node) {
891  if (DAG.GetOrdering(Node) != 0) return; // Already has ordering.
892  DAG.AssignOrdering(Node, SDNodeOrder);
893
894  for (unsigned I = 0, E = Node->getNumOperands(); I != E; ++I)
895    AssignOrderingToNode(Node->getOperand(I).getNode());
896}
897
898void SelectionDAGBuilder::visit(const Instruction &I) {
899  // Set up outgoing PHI node register values before emitting the terminator.
900  if (isa<TerminatorInst>(&I))
901    HandlePHINodesInSuccessorBlocks(I.getParent());
902
903  CurDebugLoc = I.getDebugLoc();
904
905  visit(I.getOpcode(), I);
906
907  if (!isa<TerminatorInst>(&I) && !HasTailCall)
908    CopyToExportRegsIfNeeded(&I);
909
910  CurDebugLoc = DebugLoc();
911}
912
913void SelectionDAGBuilder::visitPHI(const PHINode &) {
914  llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
915}
916
917void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
918  // Note: this doesn't use InstVisitor, because it has to work with
919  // ConstantExpr's in addition to instructions.
920  switch (Opcode) {
921  default: llvm_unreachable("Unknown instruction type encountered!");
922    // Build the switch statement using the Instruction.def file.
923#define HANDLE_INST(NUM, OPCODE, CLASS) \
924    case Instruction::OPCODE: visit##OPCODE((CLASS&)I); break;
925#include "llvm/Instruction.def"
926  }
927
928  // Assign the ordering to the freshly created DAG nodes.
929  if (NodeMap.count(&I)) {
930    ++SDNodeOrder;
931    AssignOrderingToNode(getValue(&I).getNode());
932  }
933}
934
935// resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
936// generate the debug data structures now that we've seen its definition.
937void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
938                                                   SDValue Val) {
939  DanglingDebugInfo &DDI = DanglingDebugInfoMap[V];
940  if (DDI.getDI()) {
941    const DbgValueInst *DI = DDI.getDI();
942    DebugLoc dl = DDI.getdl();
943    unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
944    MDNode *Variable = DI->getVariable();
945    uint64_t Offset = DI->getOffset();
946    SDDbgValue *SDV;
947    if (Val.getNode()) {
948      if (!EmitFuncArgumentDbgValue(V, Variable, Offset, Val)) {
949        SDV = DAG.getDbgValue(Variable, Val.getNode(),
950                              Val.getResNo(), Offset, dl, DbgSDNodeOrder);
951        DAG.AddDbgValue(SDV, Val.getNode(), false);
952      }
953    } else
954      DEBUG(dbgs() << "Dropping debug info for " << DI);
955    DanglingDebugInfoMap[V] = DanglingDebugInfo();
956  }
957}
958
959// getValue - Return an SDValue for the given Value.
960SDValue SelectionDAGBuilder::getValue(const Value *V) {
961  // If we already have an SDValue for this value, use it. It's important
962  // to do this first, so that we don't create a CopyFromReg if we already
963  // have a regular SDValue.
964  SDValue &N = NodeMap[V];
965  if (N.getNode()) return N;
966
967  // If there's a virtual register allocated and initialized for this
968  // value, use it.
969  DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V);
970  if (It != FuncInfo.ValueMap.end()) {
971    unsigned InReg = It->second;
972    RegsForValue RFV(*DAG.getContext(), TLI, InReg, V->getType());
973    SDValue Chain = DAG.getEntryNode();
974    N = RFV.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), Chain,NULL);
975    resolveDanglingDebugInfo(V, N);
976    return N;
977  }
978
979  // Otherwise create a new SDValue and remember it.
980  SDValue Val = getValueImpl(V);
981  NodeMap[V] = Val;
982  resolveDanglingDebugInfo(V, Val);
983  return Val;
984}
985
986/// getNonRegisterValue - Return an SDValue for the given Value, but
987/// don't look in FuncInfo.ValueMap for a virtual register.
988SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
989  // If we already have an SDValue for this value, use it.
990  SDValue &N = NodeMap[V];
991  if (N.getNode()) return N;
992
993  // Otherwise create a new SDValue and remember it.
994  SDValue Val = getValueImpl(V);
995  NodeMap[V] = Val;
996  resolveDanglingDebugInfo(V, Val);
997  return Val;
998}
999
1000/// getValueImpl - Helper function for getValue and getNonRegisterValue.
1001/// Create an SDValue for the given value.
1002SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
1003  if (const Constant *C = dyn_cast<Constant>(V)) {
1004    EVT VT = TLI.getValueType(V->getType(), true);
1005
1006    if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
1007      return DAG.getConstant(*CI, VT);
1008
1009    if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
1010      return DAG.getGlobalAddress(GV, getCurDebugLoc(), VT);
1011
1012    if (isa<ConstantPointerNull>(C))
1013      return DAG.getConstant(0, TLI.getPointerTy());
1014
1015    if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
1016      return DAG.getConstantFP(*CFP, VT);
1017
1018    if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
1019      return DAG.getUNDEF(VT);
1020
1021    if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1022      visit(CE->getOpcode(), *CE);
1023      SDValue N1 = NodeMap[V];
1024      assert(N1.getNode() && "visit didn't populate the NodeMap!");
1025      return N1;
1026    }
1027
1028    if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
1029      SmallVector<SDValue, 4> Constants;
1030      for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end();
1031           OI != OE; ++OI) {
1032        SDNode *Val = getValue(*OI).getNode();
1033        // If the operand is an empty aggregate, there are no values.
1034        if (!Val) continue;
1035        // Add each leaf value from the operand to the Constants list
1036        // to form a flattened list of all the values.
1037        for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1038          Constants.push_back(SDValue(Val, i));
1039      }
1040
1041      return DAG.getMergeValues(&Constants[0], Constants.size(),
1042                                getCurDebugLoc());
1043    }
1044
1045    if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
1046      assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1047             "Unknown struct or array constant!");
1048
1049      SmallVector<EVT, 4> ValueVTs;
1050      ComputeValueVTs(TLI, C->getType(), ValueVTs);
1051      unsigned NumElts = ValueVTs.size();
1052      if (NumElts == 0)
1053        return SDValue(); // empty struct
1054      SmallVector<SDValue, 4> Constants(NumElts);
1055      for (unsigned i = 0; i != NumElts; ++i) {
1056        EVT EltVT = ValueVTs[i];
1057        if (isa<UndefValue>(C))
1058          Constants[i] = DAG.getUNDEF(EltVT);
1059        else if (EltVT.isFloatingPoint())
1060          Constants[i] = DAG.getConstantFP(0, EltVT);
1061        else
1062          Constants[i] = DAG.getConstant(0, EltVT);
1063      }
1064
1065      return DAG.getMergeValues(&Constants[0], NumElts,
1066                                getCurDebugLoc());
1067    }
1068
1069    if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
1070      return DAG.getBlockAddress(BA, VT);
1071
1072    VectorType *VecTy = cast<VectorType>(V->getType());
1073    unsigned NumElements = VecTy->getNumElements();
1074
1075    // Now that we know the number and type of the elements, get that number of
1076    // elements into the Ops array based on what kind of constant it is.
1077    SmallVector<SDValue, 16> Ops;
1078    if (const ConstantVector *CP = dyn_cast<ConstantVector>(C)) {
1079      for (unsigned i = 0; i != NumElements; ++i)
1080        Ops.push_back(getValue(CP->getOperand(i)));
1081    } else {
1082      assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!");
1083      EVT EltVT = TLI.getValueType(VecTy->getElementType());
1084
1085      SDValue Op;
1086      if (EltVT.isFloatingPoint())
1087        Op = DAG.getConstantFP(0, EltVT);
1088      else
1089        Op = DAG.getConstant(0, EltVT);
1090      Ops.assign(NumElements, Op);
1091    }
1092
1093    // Create a BUILD_VECTOR node.
1094    return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(),
1095                                    VT, &Ops[0], Ops.size());
1096  }
1097
1098  // If this is a static alloca, generate it as the frameindex instead of
1099  // computation.
1100  if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1101    DenseMap<const AllocaInst*, int>::iterator SI =
1102      FuncInfo.StaticAllocaMap.find(AI);
1103    if (SI != FuncInfo.StaticAllocaMap.end())
1104      return DAG.getFrameIndex(SI->second, TLI.getPointerTy());
1105  }
1106
1107  // If this is an instruction which fast-isel has deferred, select it now.
1108  if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
1109    unsigned InReg = FuncInfo.InitializeRegForValue(Inst);
1110    RegsForValue RFV(*DAG.getContext(), TLI, InReg, Inst->getType());
1111    SDValue Chain = DAG.getEntryNode();
1112    return RFV.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), Chain, NULL);
1113  }
1114
1115  llvm_unreachable("Can't get register for value!");
1116  return SDValue();
1117}
1118
1119void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
1120  SDValue Chain = getControlRoot();
1121  SmallVector<ISD::OutputArg, 8> Outs;
1122  SmallVector<SDValue, 8> OutVals;
1123
1124  if (!FuncInfo.CanLowerReturn) {
1125    unsigned DemoteReg = FuncInfo.DemoteRegister;
1126    const Function *F = I.getParent()->getParent();
1127
1128    // Emit a store of the return value through the virtual register.
1129    // Leave Outs empty so that LowerReturn won't try to load return
1130    // registers the usual way.
1131    SmallVector<EVT, 1> PtrValueVTs;
1132    ComputeValueVTs(TLI, PointerType::getUnqual(F->getReturnType()),
1133                    PtrValueVTs);
1134
1135    SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]);
1136    SDValue RetOp = getValue(I.getOperand(0));
1137
1138    SmallVector<EVT, 4> ValueVTs;
1139    SmallVector<uint64_t, 4> Offsets;
1140    ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs, &Offsets);
1141    unsigned NumValues = ValueVTs.size();
1142
1143    SmallVector<SDValue, 4> Chains(NumValues);
1144    for (unsigned i = 0; i != NumValues; ++i) {
1145      SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(),
1146                                RetPtr.getValueType(), RetPtr,
1147                                DAG.getIntPtrConstant(Offsets[i]));
1148      Chains[i] =
1149        DAG.getStore(Chain, getCurDebugLoc(),
1150                     SDValue(RetOp.getNode(), RetOp.getResNo() + i),
1151                     // FIXME: better loc info would be nice.
1152                     Add, MachinePointerInfo(), false, false, 0);
1153    }
1154
1155    Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
1156                        MVT::Other, &Chains[0], NumValues);
1157  } else if (I.getNumOperands() != 0) {
1158    SmallVector<EVT, 4> ValueVTs;
1159    ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs);
1160    unsigned NumValues = ValueVTs.size();
1161    if (NumValues) {
1162      SDValue RetOp = getValue(I.getOperand(0));
1163      for (unsigned j = 0, f = NumValues; j != f; ++j) {
1164        EVT VT = ValueVTs[j];
1165
1166        ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1167
1168        const Function *F = I.getParent()->getParent();
1169        if (F->paramHasAttr(0, Attribute::SExt))
1170          ExtendKind = ISD::SIGN_EXTEND;
1171        else if (F->paramHasAttr(0, Attribute::ZExt))
1172          ExtendKind = ISD::ZERO_EXTEND;
1173
1174        if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
1175          VT = TLI.getTypeForExtArgOrReturn(*DAG.getContext(), VT, ExtendKind);
1176
1177        unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), VT);
1178        EVT PartVT = TLI.getRegisterType(*DAG.getContext(), VT);
1179        SmallVector<SDValue, 4> Parts(NumParts);
1180        getCopyToParts(DAG, getCurDebugLoc(),
1181                       SDValue(RetOp.getNode(), RetOp.getResNo() + j),
1182                       &Parts[0], NumParts, PartVT, ExtendKind);
1183
1184        // 'inreg' on function refers to return value
1185        ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1186        if (F->paramHasAttr(0, Attribute::InReg))
1187          Flags.setInReg();
1188
1189        // Propagate extension type if any
1190        if (ExtendKind == ISD::SIGN_EXTEND)
1191          Flags.setSExt();
1192        else if (ExtendKind == ISD::ZERO_EXTEND)
1193          Flags.setZExt();
1194
1195        for (unsigned i = 0; i < NumParts; ++i) {
1196          Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(),
1197                                        /*isfixed=*/true));
1198          OutVals.push_back(Parts[i]);
1199        }
1200      }
1201    }
1202  }
1203
1204  bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
1205  CallingConv::ID CallConv =
1206    DAG.getMachineFunction().getFunction()->getCallingConv();
1207  Chain = TLI.LowerReturn(Chain, CallConv, isVarArg,
1208                          Outs, OutVals, getCurDebugLoc(), DAG);
1209
1210  // Verify that the target's LowerReturn behaved as expected.
1211  assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
1212         "LowerReturn didn't return a valid chain!");
1213
1214  // Update the DAG with the new chain value resulting from return lowering.
1215  DAG.setRoot(Chain);
1216}
1217
1218/// CopyToExportRegsIfNeeded - If the given value has virtual registers
1219/// created for it, emit nodes to copy the value into the virtual
1220/// registers.
1221void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
1222  // Skip empty types
1223  if (V->getType()->isEmptyTy())
1224    return;
1225
1226  DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
1227  if (VMI != FuncInfo.ValueMap.end()) {
1228    assert(!V->use_empty() && "Unused value assigned virtual registers!");
1229    CopyValueToVirtualRegister(V, VMI->second);
1230  }
1231}
1232
1233/// ExportFromCurrentBlock - If this condition isn't known to be exported from
1234/// the current basic block, add it to ValueMap now so that we'll get a
1235/// CopyTo/FromReg.
1236void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
1237  // No need to export constants.
1238  if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
1239
1240  // Already exported?
1241  if (FuncInfo.isExportedInst(V)) return;
1242
1243  unsigned Reg = FuncInfo.InitializeRegForValue(V);
1244  CopyValueToVirtualRegister(V, Reg);
1245}
1246
1247bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
1248                                                     const BasicBlock *FromBB) {
1249  // The operands of the setcc have to be in this block.  We don't know
1250  // how to export them from some other block.
1251  if (const Instruction *VI = dyn_cast<Instruction>(V)) {
1252    // Can export from current BB.
1253    if (VI->getParent() == FromBB)
1254      return true;
1255
1256    // Is already exported, noop.
1257    return FuncInfo.isExportedInst(V);
1258  }
1259
1260  // If this is an argument, we can export it if the BB is the entry block or
1261  // if it is already exported.
1262  if (isa<Argument>(V)) {
1263    if (FromBB == &FromBB->getParent()->getEntryBlock())
1264      return true;
1265
1266    // Otherwise, can only export this if it is already exported.
1267    return FuncInfo.isExportedInst(V);
1268  }
1269
1270  // Otherwise, constants can always be exported.
1271  return true;
1272}
1273
1274/// Return branch probability calculated by BranchProbabilityInfo for IR blocks.
1275uint32_t SelectionDAGBuilder::getEdgeWeight(MachineBasicBlock *Src,
1276                                            MachineBasicBlock *Dst) {
1277  BranchProbabilityInfo *BPI = FuncInfo.BPI;
1278  if (!BPI)
1279    return 0;
1280  BasicBlock *SrcBB = const_cast<BasicBlock*>(Src->getBasicBlock());
1281  BasicBlock *DstBB = const_cast<BasicBlock*>(Dst->getBasicBlock());
1282  return BPI->getEdgeWeight(SrcBB, DstBB);
1283}
1284
1285void SelectionDAGBuilder::addSuccessorWithWeight(MachineBasicBlock *Src,
1286                                                 MachineBasicBlock *Dst) {
1287  uint32_t weight = getEdgeWeight(Src, Dst);
1288  Src->addSuccessor(Dst, weight);
1289}
1290
1291
1292static bool InBlock(const Value *V, const BasicBlock *BB) {
1293  if (const Instruction *I = dyn_cast<Instruction>(V))
1294    return I->getParent() == BB;
1295  return true;
1296}
1297
1298/// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
1299/// This function emits a branch and is used at the leaves of an OR or an
1300/// AND operator tree.
1301///
1302void
1303SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
1304                                                  MachineBasicBlock *TBB,
1305                                                  MachineBasicBlock *FBB,
1306                                                  MachineBasicBlock *CurBB,
1307                                                  MachineBasicBlock *SwitchBB) {
1308  const BasicBlock *BB = CurBB->getBasicBlock();
1309
1310  // If the leaf of the tree is a comparison, merge the condition into
1311  // the caseblock.
1312  if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
1313    // The operands of the cmp have to be in this block.  We don't know
1314    // how to export them from some other block.  If this is the first block
1315    // of the sequence, no exporting is needed.
1316    if (CurBB == SwitchBB ||
1317        (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
1318         isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
1319      ISD::CondCode Condition;
1320      if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
1321        Condition = getICmpCondCode(IC->getPredicate());
1322      } else if (const FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) {
1323        Condition = getFCmpCondCode(FC->getPredicate());
1324      } else {
1325        Condition = ISD::SETEQ; // silence warning.
1326        llvm_unreachable("Unknown compare instruction");
1327      }
1328
1329      CaseBlock CB(Condition, BOp->getOperand(0),
1330                   BOp->getOperand(1), NULL, TBB, FBB, CurBB);
1331      SwitchCases.push_back(CB);
1332      return;
1333    }
1334  }
1335
1336  // Create a CaseBlock record representing this branch.
1337  CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()),
1338               NULL, TBB, FBB, CurBB);
1339  SwitchCases.push_back(CB);
1340}
1341
1342/// FindMergedConditions - If Cond is an expression like
1343void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
1344                                               MachineBasicBlock *TBB,
1345                                               MachineBasicBlock *FBB,
1346                                               MachineBasicBlock *CurBB,
1347                                               MachineBasicBlock *SwitchBB,
1348                                               unsigned Opc) {
1349  // If this node is not part of the or/and tree, emit it as a branch.
1350  const Instruction *BOp = dyn_cast<Instruction>(Cond);
1351  if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
1352      (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() ||
1353      BOp->getParent() != CurBB->getBasicBlock() ||
1354      !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
1355      !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
1356    EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB);
1357    return;
1358  }
1359
1360  //  Create TmpBB after CurBB.
1361  MachineFunction::iterator BBI = CurBB;
1362  MachineFunction &MF = DAG.getMachineFunction();
1363  MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
1364  CurBB->getParent()->insert(++BBI, TmpBB);
1365
1366  if (Opc == Instruction::Or) {
1367    // Codegen X | Y as:
1368    //   jmp_if_X TBB
1369    //   jmp TmpBB
1370    // TmpBB:
1371    //   jmp_if_Y TBB
1372    //   jmp FBB
1373    //
1374
1375    // Emit the LHS condition.
1376    FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc);
1377
1378    // Emit the RHS condition into TmpBB.
1379    FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc);
1380  } else {
1381    assert(Opc == Instruction::And && "Unknown merge op!");
1382    // Codegen X & Y as:
1383    //   jmp_if_X TmpBB
1384    //   jmp FBB
1385    // TmpBB:
1386    //   jmp_if_Y TBB
1387    //   jmp FBB
1388    //
1389    //  This requires creation of TmpBB after CurBB.
1390
1391    // Emit the LHS condition.
1392    FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc);
1393
1394    // Emit the RHS condition into TmpBB.
1395    FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc);
1396  }
1397}
1398
1399/// If the set of cases should be emitted as a series of branches, return true.
1400/// If we should emit this as a bunch of and/or'd together conditions, return
1401/// false.
1402bool
1403SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases){
1404  if (Cases.size() != 2) return true;
1405
1406  // If this is two comparisons of the same values or'd or and'd together, they
1407  // will get folded into a single comparison, so don't emit two blocks.
1408  if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
1409       Cases[0].CmpRHS == Cases[1].CmpRHS) ||
1410      (Cases[0].CmpRHS == Cases[1].CmpLHS &&
1411       Cases[0].CmpLHS == Cases[1].CmpRHS)) {
1412    return false;
1413  }
1414
1415  // Handle: (X != null) | (Y != null) --> (X|Y) != 0
1416  // Handle: (X == null) & (Y == null) --> (X|Y) == 0
1417  if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
1418      Cases[0].CC == Cases[1].CC &&
1419      isa<Constant>(Cases[0].CmpRHS) &&
1420      cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
1421    if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
1422      return false;
1423    if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
1424      return false;
1425  }
1426
1427  return true;
1428}
1429
1430void SelectionDAGBuilder::visitBr(const BranchInst &I) {
1431  MachineBasicBlock *BrMBB = FuncInfo.MBB;
1432
1433  // Update machine-CFG edges.
1434  MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
1435
1436  // Figure out which block is immediately after the current one.
1437  MachineBasicBlock *NextBlock = 0;
1438  MachineFunction::iterator BBI = BrMBB;
1439  if (++BBI != FuncInfo.MF->end())
1440    NextBlock = BBI;
1441
1442  if (I.isUnconditional()) {
1443    // Update machine-CFG edges.
1444    BrMBB->addSuccessor(Succ0MBB);
1445
1446    // If this is not a fall-through branch, emit the branch.
1447    if (Succ0MBB != NextBlock)
1448      DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
1449                              MVT::Other, getControlRoot(),
1450                              DAG.getBasicBlock(Succ0MBB)));
1451
1452    return;
1453  }
1454
1455  // If this condition is one of the special cases we handle, do special stuff
1456  // now.
1457  const Value *CondVal = I.getCondition();
1458  MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
1459
1460  // If this is a series of conditions that are or'd or and'd together, emit
1461  // this as a sequence of branches instead of setcc's with and/or operations.
1462  // As long as jumps are not expensive, this should improve performance.
1463  // For example, instead of something like:
1464  //     cmp A, B
1465  //     C = seteq
1466  //     cmp D, E
1467  //     F = setle
1468  //     or C, F
1469  //     jnz foo
1470  // Emit:
1471  //     cmp A, B
1472  //     je foo
1473  //     cmp D, E
1474  //     jle foo
1475  //
1476  if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
1477    if (!TLI.isJumpExpensive() &&
1478        BOp->hasOneUse() &&
1479        (BOp->getOpcode() == Instruction::And ||
1480         BOp->getOpcode() == Instruction::Or)) {
1481      FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB,
1482                           BOp->getOpcode());
1483      // If the compares in later blocks need to use values not currently
1484      // exported from this block, export them now.  This block should always
1485      // be the first entry.
1486      assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
1487
1488      // Allow some cases to be rejected.
1489      if (ShouldEmitAsBranches(SwitchCases)) {
1490        for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
1491          ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
1492          ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
1493        }
1494
1495        // Emit the branch for this block.
1496        visitSwitchCase(SwitchCases[0], BrMBB);
1497        SwitchCases.erase(SwitchCases.begin());
1498        return;
1499      }
1500
1501      // Okay, we decided not to do this, remove any inserted MBB's and clear
1502      // SwitchCases.
1503      for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
1504        FuncInfo.MF->erase(SwitchCases[i].ThisBB);
1505
1506      SwitchCases.clear();
1507    }
1508  }
1509
1510  // Create a CaseBlock record representing this branch.
1511  CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
1512               NULL, Succ0MBB, Succ1MBB, BrMBB);
1513
1514  // Use visitSwitchCase to actually insert the fast branch sequence for this
1515  // cond branch.
1516  visitSwitchCase(CB, BrMBB);
1517}
1518
1519/// visitSwitchCase - Emits the necessary code to represent a single node in
1520/// the binary search tree resulting from lowering a switch instruction.
1521void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
1522                                          MachineBasicBlock *SwitchBB) {
1523  SDValue Cond;
1524  SDValue CondLHS = getValue(CB.CmpLHS);
1525  DebugLoc dl = getCurDebugLoc();
1526
1527  // Build the setcc now.
1528  if (CB.CmpMHS == NULL) {
1529    // Fold "(X == true)" to X and "(X == false)" to !X to
1530    // handle common cases produced by branch lowering.
1531    if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
1532        CB.CC == ISD::SETEQ)
1533      Cond = CondLHS;
1534    else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
1535             CB.CC == ISD::SETEQ) {
1536      SDValue True = DAG.getConstant(1, CondLHS.getValueType());
1537      Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
1538    } else
1539      Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
1540  } else {
1541    assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
1542
1543    const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
1544    const APInt& High  = cast<ConstantInt>(CB.CmpRHS)->getValue();
1545
1546    SDValue CmpOp = getValue(CB.CmpMHS);
1547    EVT VT = CmpOp.getValueType();
1548
1549    if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
1550      Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, VT),
1551                          ISD::SETLE);
1552    } else {
1553      SDValue SUB = DAG.getNode(ISD::SUB, dl,
1554                                VT, CmpOp, DAG.getConstant(Low, VT));
1555      Cond = DAG.getSetCC(dl, MVT::i1, SUB,
1556                          DAG.getConstant(High-Low, VT), ISD::SETULE);
1557    }
1558  }
1559
1560  // Update successor info
1561  addSuccessorWithWeight(SwitchBB, CB.TrueBB);
1562  addSuccessorWithWeight(SwitchBB, CB.FalseBB);
1563
1564  // Set NextBlock to be the MBB immediately after the current one, if any.
1565  // This is used to avoid emitting unnecessary branches to the next block.
1566  MachineBasicBlock *NextBlock = 0;
1567  MachineFunction::iterator BBI = SwitchBB;
1568  if (++BBI != FuncInfo.MF->end())
1569    NextBlock = BBI;
1570
1571  // If the lhs block is the next block, invert the condition so that we can
1572  // fall through to the lhs instead of the rhs block.
1573  if (CB.TrueBB == NextBlock) {
1574    std::swap(CB.TrueBB, CB.FalseBB);
1575    SDValue True = DAG.getConstant(1, Cond.getValueType());
1576    Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
1577  }
1578
1579  SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
1580                               MVT::Other, getControlRoot(), Cond,
1581                               DAG.getBasicBlock(CB.TrueBB));
1582
1583  // Insert the false branch. Do this even if it's a fall through branch,
1584  // this makes it easier to do DAG optimizations which require inverting
1585  // the branch condition.
1586  BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
1587                       DAG.getBasicBlock(CB.FalseBB));
1588
1589  DAG.setRoot(BrCond);
1590}
1591
1592/// visitJumpTable - Emit JumpTable node in the current MBB
1593void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) {
1594  // Emit the code for the jump table
1595  assert(JT.Reg != -1U && "Should lower JT Header first!");
1596  EVT PTy = TLI.getPointerTy();
1597  SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(),
1598                                     JT.Reg, PTy);
1599  SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
1600  SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurDebugLoc(),
1601                                    MVT::Other, Index.getValue(1),
1602                                    Table, Index);
1603  DAG.setRoot(BrJumpTable);
1604}
1605
1606/// visitJumpTableHeader - This function emits necessary code to produce index
1607/// in the JumpTable from switch case.
1608void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT,
1609                                               JumpTableHeader &JTH,
1610                                               MachineBasicBlock *SwitchBB) {
1611  // Subtract the lowest switch case value from the value being switched on and
1612  // conditional branch to default mbb if the result is greater than the
1613  // difference between smallest and largest cases.
1614  SDValue SwitchOp = getValue(JTH.SValue);
1615  EVT VT = SwitchOp.getValueType();
1616  SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp,
1617                            DAG.getConstant(JTH.First, VT));
1618
1619  // The SDNode we just created, which holds the value being switched on minus
1620  // the smallest case value, needs to be copied to a virtual register so it
1621  // can be used as an index into the jump table in a subsequent basic block.
1622  // This value may be smaller or larger than the target's pointer type, and
1623  // therefore require extension or truncating.
1624  SwitchOp = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(), TLI.getPointerTy());
1625
1626  unsigned JumpTableReg = FuncInfo.CreateReg(TLI.getPointerTy());
1627  SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(),
1628                                    JumpTableReg, SwitchOp);
1629  JT.Reg = JumpTableReg;
1630
1631  // Emit the range check for the jump table, and branch to the default block
1632  // for the switch statement if the value being switched on exceeds the largest
1633  // case in the switch.
1634  SDValue CMP = DAG.getSetCC(getCurDebugLoc(),
1635                             TLI.getSetCCResultType(Sub.getValueType()), Sub,
1636                             DAG.getConstant(JTH.Last-JTH.First,VT),
1637                             ISD::SETUGT);
1638
1639  // Set NextBlock to be the MBB immediately after the current one, if any.
1640  // This is used to avoid emitting unnecessary branches to the next block.
1641  MachineBasicBlock *NextBlock = 0;
1642  MachineFunction::iterator BBI = SwitchBB;
1643
1644  if (++BBI != FuncInfo.MF->end())
1645    NextBlock = BBI;
1646
1647  SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1648                               MVT::Other, CopyTo, CMP,
1649                               DAG.getBasicBlock(JT.Default));
1650
1651  if (JT.MBB != NextBlock)
1652    BrCond = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrCond,
1653                         DAG.getBasicBlock(JT.MBB));
1654
1655  DAG.setRoot(BrCond);
1656}
1657
1658/// visitBitTestHeader - This function emits necessary code to produce value
1659/// suitable for "bit tests"
1660void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
1661                                             MachineBasicBlock *SwitchBB) {
1662  // Subtract the minimum value
1663  SDValue SwitchOp = getValue(B.SValue);
1664  EVT VT = SwitchOp.getValueType();
1665  SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp,
1666                            DAG.getConstant(B.First, VT));
1667
1668  // Check range
1669  SDValue RangeCmp = DAG.getSetCC(getCurDebugLoc(),
1670                                  TLI.getSetCCResultType(Sub.getValueType()),
1671                                  Sub, DAG.getConstant(B.Range, VT),
1672                                  ISD::SETUGT);
1673
1674  // Determine the type of the test operands.
1675  bool UsePtrType = false;
1676  if (!TLI.isTypeLegal(VT))
1677    UsePtrType = true;
1678  else {
1679    for (unsigned i = 0, e = B.Cases.size(); i != e; ++i)
1680      if ((uint64_t)((int64_t)B.Cases[i].Mask >> VT.getSizeInBits()) + 1 >= 2) {
1681        // Switch table case range are encoded into series of masks.
1682        // Just use pointer type, it's guaranteed to fit.
1683        UsePtrType = true;
1684        break;
1685      }
1686  }
1687  if (UsePtrType) {
1688    VT = TLI.getPointerTy();
1689    Sub = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(), VT);
1690  }
1691
1692  B.RegVT = VT;
1693  B.Reg = FuncInfo.CreateReg(VT);
1694  SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(),
1695                                    B.Reg, Sub);
1696
1697  // Set NextBlock to be the MBB immediately after the current one, if any.
1698  // This is used to avoid emitting unnecessary branches to the next block.
1699  MachineBasicBlock *NextBlock = 0;
1700  MachineFunction::iterator BBI = SwitchBB;
1701  if (++BBI != FuncInfo.MF->end())
1702    NextBlock = BBI;
1703
1704  MachineBasicBlock* MBB = B.Cases[0].ThisBB;
1705
1706  addSuccessorWithWeight(SwitchBB, B.Default);
1707  addSuccessorWithWeight(SwitchBB, MBB);
1708
1709  SDValue BrRange = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1710                                MVT::Other, CopyTo, RangeCmp,
1711                                DAG.getBasicBlock(B.Default));
1712
1713  if (MBB != NextBlock)
1714    BrRange = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, CopyTo,
1715                          DAG.getBasicBlock(MBB));
1716
1717  DAG.setRoot(BrRange);
1718}
1719
1720/// visitBitTestCase - this function produces one "bit test"
1721void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB,
1722                                           MachineBasicBlock* NextMBB,
1723                                           unsigned Reg,
1724                                           BitTestCase &B,
1725                                           MachineBasicBlock *SwitchBB) {
1726  EVT VT = BB.RegVT;
1727  SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(),
1728                                       Reg, VT);
1729  SDValue Cmp;
1730  unsigned PopCount = CountPopulation_64(B.Mask);
1731  if (PopCount == 1) {
1732    // Testing for a single bit; just compare the shift count with what it
1733    // would need to be to shift a 1 bit in that position.
1734    Cmp = DAG.getSetCC(getCurDebugLoc(),
1735                       TLI.getSetCCResultType(VT),
1736                       ShiftOp,
1737                       DAG.getConstant(CountTrailingZeros_64(B.Mask), VT),
1738                       ISD::SETEQ);
1739  } else if (PopCount == BB.Range) {
1740    // There is only one zero bit in the range, test for it directly.
1741    Cmp = DAG.getSetCC(getCurDebugLoc(),
1742                       TLI.getSetCCResultType(VT),
1743                       ShiftOp,
1744                       DAG.getConstant(CountTrailingOnes_64(B.Mask), VT),
1745                       ISD::SETNE);
1746  } else {
1747    // Make desired shift
1748    SDValue SwitchVal = DAG.getNode(ISD::SHL, getCurDebugLoc(), VT,
1749                                    DAG.getConstant(1, VT), ShiftOp);
1750
1751    // Emit bit tests and jumps
1752    SDValue AndOp = DAG.getNode(ISD::AND, getCurDebugLoc(),
1753                                VT, SwitchVal, DAG.getConstant(B.Mask, VT));
1754    Cmp = DAG.getSetCC(getCurDebugLoc(),
1755                       TLI.getSetCCResultType(VT),
1756                       AndOp, DAG.getConstant(0, VT),
1757                       ISD::SETNE);
1758  }
1759
1760  addSuccessorWithWeight(SwitchBB, B.TargetBB);
1761  addSuccessorWithWeight(SwitchBB, NextMBB);
1762
1763  SDValue BrAnd = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1764                              MVT::Other, getControlRoot(),
1765                              Cmp, DAG.getBasicBlock(B.TargetBB));
1766
1767  // Set NextBlock to be the MBB immediately after the current one, if any.
1768  // This is used to avoid emitting unnecessary branches to the next block.
1769  MachineBasicBlock *NextBlock = 0;
1770  MachineFunction::iterator BBI = SwitchBB;
1771  if (++BBI != FuncInfo.MF->end())
1772    NextBlock = BBI;
1773
1774  if (NextMBB != NextBlock)
1775    BrAnd = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrAnd,
1776                        DAG.getBasicBlock(NextMBB));
1777
1778  DAG.setRoot(BrAnd);
1779}
1780
1781void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
1782  MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
1783
1784  // Retrieve successors.
1785  MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
1786  MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)];
1787
1788  const Value *Callee(I.getCalledValue());
1789  if (isa<InlineAsm>(Callee))
1790    visitInlineAsm(&I);
1791  else
1792    LowerCallTo(&I, getValue(Callee), false, LandingPad);
1793
1794  // If the value of the invoke is used outside of its defining block, make it
1795  // available as a virtual register.
1796  CopyToExportRegsIfNeeded(&I);
1797
1798  // Update successor info
1799  InvokeMBB->addSuccessor(Return);
1800  InvokeMBB->addSuccessor(LandingPad);
1801
1802  // Drop into normal successor.
1803  DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
1804                          MVT::Other, getControlRoot(),
1805                          DAG.getBasicBlock(Return)));
1806}
1807
1808void SelectionDAGBuilder::visitUnwind(const UnwindInst &I) {
1809}
1810
1811/// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for
1812/// small case ranges).
1813bool SelectionDAGBuilder::handleSmallSwitchRange(CaseRec& CR,
1814                                                 CaseRecVector& WorkList,
1815                                                 const Value* SV,
1816                                                 MachineBasicBlock *Default,
1817                                                 MachineBasicBlock *SwitchBB) {
1818  Case& BackCase  = *(CR.Range.second-1);
1819
1820  // Size is the number of Cases represented by this range.
1821  size_t Size = CR.Range.second - CR.Range.first;
1822  if (Size > 3)
1823    return false;
1824
1825  // Get the MachineFunction which holds the current MBB.  This is used when
1826  // inserting any additional MBBs necessary to represent the switch.
1827  MachineFunction *CurMF = FuncInfo.MF;
1828
1829  // Figure out which block is immediately after the current one.
1830  MachineBasicBlock *NextBlock = 0;
1831  MachineFunction::iterator BBI = CR.CaseBB;
1832
1833  if (++BBI != FuncInfo.MF->end())
1834    NextBlock = BBI;
1835
1836  // If any two of the cases has the same destination, and if one value
1837  // is the same as the other, but has one bit unset that the other has set,
1838  // use bit manipulation to do two compares at once.  For example:
1839  // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
1840  // TODO: This could be extended to merge any 2 cases in switches with 3 cases.
1841  // TODO: Handle cases where CR.CaseBB != SwitchBB.
1842  if (Size == 2 && CR.CaseBB == SwitchBB) {
1843    Case &Small = *CR.Range.first;
1844    Case &Big = *(CR.Range.second-1);
1845
1846    if (Small.Low == Small.High && Big.Low == Big.High && Small.BB == Big.BB) {
1847      const APInt& SmallValue = cast<ConstantInt>(Small.Low)->getValue();
1848      const APInt& BigValue = cast<ConstantInt>(Big.Low)->getValue();
1849
1850      // Check that there is only one bit different.
1851      if (BigValue.countPopulation() == SmallValue.countPopulation() + 1 &&
1852          (SmallValue | BigValue) == BigValue) {
1853        // Isolate the common bit.
1854        APInt CommonBit = BigValue & ~SmallValue;
1855        assert((SmallValue | CommonBit) == BigValue &&
1856               CommonBit.countPopulation() == 1 && "Not a common bit?");
1857
1858        SDValue CondLHS = getValue(SV);
1859        EVT VT = CondLHS.getValueType();
1860        DebugLoc DL = getCurDebugLoc();
1861
1862        SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
1863                                 DAG.getConstant(CommonBit, VT));
1864        SDValue Cond = DAG.getSetCC(DL, MVT::i1,
1865                                    Or, DAG.getConstant(BigValue, VT),
1866                                    ISD::SETEQ);
1867
1868        // Update successor info.
1869        SwitchBB->addSuccessor(Small.BB);
1870        SwitchBB->addSuccessor(Default);
1871
1872        // Insert the true branch.
1873        SDValue BrCond = DAG.getNode(ISD::BRCOND, DL, MVT::Other,
1874                                     getControlRoot(), Cond,
1875                                     DAG.getBasicBlock(Small.BB));
1876
1877        // Insert the false branch.
1878        BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
1879                             DAG.getBasicBlock(Default));
1880
1881        DAG.setRoot(BrCond);
1882        return true;
1883      }
1884    }
1885  }
1886
1887  // Rearrange the case blocks so that the last one falls through if possible.
1888  if (NextBlock && Default != NextBlock && BackCase.BB != NextBlock) {
1889    // The last case block won't fall through into 'NextBlock' if we emit the
1890    // branches in this order.  See if rearranging a case value would help.
1891    for (CaseItr I = CR.Range.first, E = CR.Range.second-1; I != E; ++I) {
1892      if (I->BB == NextBlock) {
1893        std::swap(*I, BackCase);
1894        break;
1895      }
1896    }
1897  }
1898
1899  // Create a CaseBlock record representing a conditional branch to
1900  // the Case's target mbb if the value being switched on SV is equal
1901  // to C.
1902  MachineBasicBlock *CurBlock = CR.CaseBB;
1903  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) {
1904    MachineBasicBlock *FallThrough;
1905    if (I != E-1) {
1906      FallThrough = CurMF->CreateMachineBasicBlock(CurBlock->getBasicBlock());
1907      CurMF->insert(BBI, FallThrough);
1908
1909      // Put SV in a virtual register to make it available from the new blocks.
1910      ExportFromCurrentBlock(SV);
1911    } else {
1912      // If the last case doesn't match, go to the default block.
1913      FallThrough = Default;
1914    }
1915
1916    const Value *RHS, *LHS, *MHS;
1917    ISD::CondCode CC;
1918    if (I->High == I->Low) {
1919      // This is just small small case range :) containing exactly 1 case
1920      CC = ISD::SETEQ;
1921      LHS = SV; RHS = I->High; MHS = NULL;
1922    } else {
1923      CC = ISD::SETLE;
1924      LHS = I->Low; MHS = SV; RHS = I->High;
1925    }
1926    CaseBlock CB(CC, LHS, RHS, MHS, I->BB, FallThrough, CurBlock);
1927
1928    // If emitting the first comparison, just call visitSwitchCase to emit the
1929    // code into the current block.  Otherwise, push the CaseBlock onto the
1930    // vector to be later processed by SDISel, and insert the node's MBB
1931    // before the next MBB.
1932    if (CurBlock == SwitchBB)
1933      visitSwitchCase(CB, SwitchBB);
1934    else
1935      SwitchCases.push_back(CB);
1936
1937    CurBlock = FallThrough;
1938  }
1939
1940  return true;
1941}
1942
1943static inline bool areJTsAllowed(const TargetLowering &TLI) {
1944  return !DisableJumpTables &&
1945          (TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) ||
1946           TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other));
1947}
1948
1949static APInt ComputeRange(const APInt &First, const APInt &Last) {
1950  uint32_t BitWidth = std::max(Last.getBitWidth(), First.getBitWidth()) + 1;
1951  APInt LastExt = Last.sext(BitWidth), FirstExt = First.sext(BitWidth);
1952  return (LastExt - FirstExt + 1ULL);
1953}
1954
1955/// handleJTSwitchCase - Emit jumptable for current switch case range
1956bool SelectionDAGBuilder::handleJTSwitchCase(CaseRec& CR,
1957                                             CaseRecVector& WorkList,
1958                                             const Value* SV,
1959                                             MachineBasicBlock* Default,
1960                                             MachineBasicBlock *SwitchBB) {
1961  Case& FrontCase = *CR.Range.first;
1962  Case& BackCase  = *(CR.Range.second-1);
1963
1964  const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue();
1965  const APInt &Last  = cast<ConstantInt>(BackCase.High)->getValue();
1966
1967  APInt TSize(First.getBitWidth(), 0);
1968  for (CaseItr I = CR.Range.first, E = CR.Range.second;
1969       I!=E; ++I)
1970    TSize += I->size();
1971
1972  if (!areJTsAllowed(TLI) || TSize.ult(4))
1973    return false;
1974
1975  APInt Range = ComputeRange(First, Last);
1976  double Density = TSize.roundToDouble() / Range.roundToDouble();
1977  if (Density < 0.4)
1978    return false;
1979
1980  DEBUG(dbgs() << "Lowering jump table\n"
1981               << "First entry: " << First << ". Last entry: " << Last << '\n'
1982               << "Range: " << Range
1983               << ". Size: " << TSize << ". Density: " << Density << "\n\n");
1984
1985  // Get the MachineFunction which holds the current MBB.  This is used when
1986  // inserting any additional MBBs necessary to represent the switch.
1987  MachineFunction *CurMF = FuncInfo.MF;
1988
1989  // Figure out which block is immediately after the current one.
1990  MachineFunction::iterator BBI = CR.CaseBB;
1991  ++BBI;
1992
1993  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
1994
1995  // Create a new basic block to hold the code for loading the address
1996  // of the jump table, and jumping to it.  Update successor information;
1997  // we will either branch to the default case for the switch, or the jump
1998  // table.
1999  MachineBasicBlock *JumpTableBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2000  CurMF->insert(BBI, JumpTableBB);
2001
2002  addSuccessorWithWeight(CR.CaseBB, Default);
2003  addSuccessorWithWeight(CR.CaseBB, JumpTableBB);
2004
2005  // Build a vector of destination BBs, corresponding to each target
2006  // of the jump table. If the value of the jump table slot corresponds to
2007  // a case statement, push the case's BB onto the vector, otherwise, push
2008  // the default BB.
2009  std::vector<MachineBasicBlock*> DestBBs;
2010  APInt TEI = First;
2011  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) {
2012    const APInt &Low = cast<ConstantInt>(I->Low)->getValue();
2013    const APInt &High = cast<ConstantInt>(I->High)->getValue();
2014
2015    if (Low.sle(TEI) && TEI.sle(High)) {
2016      DestBBs.push_back(I->BB);
2017      if (TEI==High)
2018        ++I;
2019    } else {
2020      DestBBs.push_back(Default);
2021    }
2022  }
2023
2024  // Update successor info. Add one edge to each unique successor.
2025  BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs());
2026  for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(),
2027         E = DestBBs.end(); I != E; ++I) {
2028    if (!SuccsHandled[(*I)->getNumber()]) {
2029      SuccsHandled[(*I)->getNumber()] = true;
2030      addSuccessorWithWeight(JumpTableBB, *I);
2031    }
2032  }
2033
2034  // Create a jump table index for this jump table.
2035  unsigned JTEncoding = TLI.getJumpTableEncoding();
2036  unsigned JTI = CurMF->getOrCreateJumpTableInfo(JTEncoding)
2037                       ->createJumpTableIndex(DestBBs);
2038
2039  // Set the jump table information so that we can codegen it as a second
2040  // MachineBasicBlock
2041  JumpTable JT(-1U, JTI, JumpTableBB, Default);
2042  JumpTableHeader JTH(First, Last, SV, CR.CaseBB, (CR.CaseBB == SwitchBB));
2043  if (CR.CaseBB == SwitchBB)
2044    visitJumpTableHeader(JT, JTH, SwitchBB);
2045
2046  JTCases.push_back(JumpTableBlock(JTH, JT));
2047
2048  return true;
2049}
2050
2051/// handleBTSplitSwitchCase - emit comparison and split binary search tree into
2052/// 2 subtrees.
2053bool SelectionDAGBuilder::handleBTSplitSwitchCase(CaseRec& CR,
2054                                                  CaseRecVector& WorkList,
2055                                                  const Value* SV,
2056                                                  MachineBasicBlock *Default,
2057                                                  MachineBasicBlock *SwitchBB) {
2058  // Get the MachineFunction which holds the current MBB.  This is used when
2059  // inserting any additional MBBs necessary to represent the switch.
2060  MachineFunction *CurMF = FuncInfo.MF;
2061
2062  // Figure out which block is immediately after the current one.
2063  MachineFunction::iterator BBI = CR.CaseBB;
2064  ++BBI;
2065
2066  Case& FrontCase = *CR.Range.first;
2067  Case& BackCase  = *(CR.Range.second-1);
2068  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2069
2070  // Size is the number of Cases represented by this range.
2071  unsigned Size = CR.Range.second - CR.Range.first;
2072
2073  const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue();
2074  const APInt &Last  = cast<ConstantInt>(BackCase.High)->getValue();
2075  double FMetric = 0;
2076  CaseItr Pivot = CR.Range.first + Size/2;
2077
2078  // Select optimal pivot, maximizing sum density of LHS and RHS. This will
2079  // (heuristically) allow us to emit JumpTable's later.
2080  APInt TSize(First.getBitWidth(), 0);
2081  for (CaseItr I = CR.Range.first, E = CR.Range.second;
2082       I!=E; ++I)
2083    TSize += I->size();
2084
2085  APInt LSize = FrontCase.size();
2086  APInt RSize = TSize-LSize;
2087  DEBUG(dbgs() << "Selecting best pivot: \n"
2088               << "First: " << First << ", Last: " << Last <<'\n'
2089               << "LSize: " << LSize << ", RSize: " << RSize << '\n');
2090  for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second;
2091       J!=E; ++I, ++J) {
2092    const APInt &LEnd = cast<ConstantInt>(I->High)->getValue();
2093    const APInt &RBegin = cast<ConstantInt>(J->Low)->getValue();
2094    APInt Range = ComputeRange(LEnd, RBegin);
2095    assert((Range - 2ULL).isNonNegative() &&
2096           "Invalid case distance");
2097    // Use volatile double here to avoid excess precision issues on some hosts,
2098    // e.g. that use 80-bit X87 registers.
2099    volatile double LDensity =
2100       (double)LSize.roundToDouble() /
2101                           (LEnd - First + 1ULL).roundToDouble();
2102    volatile double RDensity =
2103      (double)RSize.roundToDouble() /
2104                           (Last - RBegin + 1ULL).roundToDouble();
2105    double Metric = Range.logBase2()*(LDensity+RDensity);
2106    // Should always split in some non-trivial place
2107    DEBUG(dbgs() <<"=>Step\n"
2108                 << "LEnd: " << LEnd << ", RBegin: " << RBegin << '\n'
2109                 << "LDensity: " << LDensity
2110                 << ", RDensity: " << RDensity << '\n'
2111                 << "Metric: " << Metric << '\n');
2112    if (FMetric < Metric) {
2113      Pivot = J;
2114      FMetric = Metric;
2115      DEBUG(dbgs() << "Current metric set to: " << FMetric << '\n');
2116    }
2117
2118    LSize += J->size();
2119    RSize -= J->size();
2120  }
2121  if (areJTsAllowed(TLI)) {
2122    // If our case is dense we *really* should handle it earlier!
2123    assert((FMetric > 0) && "Should handle dense range earlier!");
2124  } else {
2125    Pivot = CR.Range.first + Size/2;
2126  }
2127
2128  CaseRange LHSR(CR.Range.first, Pivot);
2129  CaseRange RHSR(Pivot, CR.Range.second);
2130  Constant *C = Pivot->Low;
2131  MachineBasicBlock *FalseBB = 0, *TrueBB = 0;
2132
2133  // We know that we branch to the LHS if the Value being switched on is
2134  // less than the Pivot value, C.  We use this to optimize our binary
2135  // tree a bit, by recognizing that if SV is greater than or equal to the
2136  // LHS's Case Value, and that Case Value is exactly one less than the
2137  // Pivot's Value, then we can branch directly to the LHS's Target,
2138  // rather than creating a leaf node for it.
2139  if ((LHSR.second - LHSR.first) == 1 &&
2140      LHSR.first->High == CR.GE &&
2141      cast<ConstantInt>(C)->getValue() ==
2142      (cast<ConstantInt>(CR.GE)->getValue() + 1LL)) {
2143    TrueBB = LHSR.first->BB;
2144  } else {
2145    TrueBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2146    CurMF->insert(BBI, TrueBB);
2147    WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR));
2148
2149    // Put SV in a virtual register to make it available from the new blocks.
2150    ExportFromCurrentBlock(SV);
2151  }
2152
2153  // Similar to the optimization above, if the Value being switched on is
2154  // known to be less than the Constant CR.LT, and the current Case Value
2155  // is CR.LT - 1, then we can branch directly to the target block for
2156  // the current Case Value, rather than emitting a RHS leaf node for it.
2157  if ((RHSR.second - RHSR.first) == 1 && CR.LT &&
2158      cast<ConstantInt>(RHSR.first->Low)->getValue() ==
2159      (cast<ConstantInt>(CR.LT)->getValue() - 1LL)) {
2160    FalseBB = RHSR.first->BB;
2161  } else {
2162    FalseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2163    CurMF->insert(BBI, FalseBB);
2164    WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR));
2165
2166    // Put SV in a virtual register to make it available from the new blocks.
2167    ExportFromCurrentBlock(SV);
2168  }
2169
2170  // Create a CaseBlock record representing a conditional branch to
2171  // the LHS node if the value being switched on SV is less than C.
2172  // Otherwise, branch to LHS.
2173  CaseBlock CB(ISD::SETLT, SV, C, NULL, TrueBB, FalseBB, CR.CaseBB);
2174
2175  if (CR.CaseBB == SwitchBB)
2176    visitSwitchCase(CB, SwitchBB);
2177  else
2178    SwitchCases.push_back(CB);
2179
2180  return true;
2181}
2182
2183/// handleBitTestsSwitchCase - if current case range has few destination and
2184/// range span less, than machine word bitwidth, encode case range into series
2185/// of masks and emit bit tests with these masks.
2186bool SelectionDAGBuilder::handleBitTestsSwitchCase(CaseRec& CR,
2187                                                   CaseRecVector& WorkList,
2188                                                   const Value* SV,
2189                                                   MachineBasicBlock* Default,
2190                                                   MachineBasicBlock *SwitchBB){
2191  EVT PTy = TLI.getPointerTy();
2192  unsigned IntPtrBits = PTy.getSizeInBits();
2193
2194  Case& FrontCase = *CR.Range.first;
2195  Case& BackCase  = *(CR.Range.second-1);
2196
2197  // Get the MachineFunction which holds the current MBB.  This is used when
2198  // inserting any additional MBBs necessary to represent the switch.
2199  MachineFunction *CurMF = FuncInfo.MF;
2200
2201  // If target does not have legal shift left, do not emit bit tests at all.
2202  if (!TLI.isOperationLegal(ISD::SHL, TLI.getPointerTy()))
2203    return false;
2204
2205  size_t numCmps = 0;
2206  for (CaseItr I = CR.Range.first, E = CR.Range.second;
2207       I!=E; ++I) {
2208    // Single case counts one, case range - two.
2209    numCmps += (I->Low == I->High ? 1 : 2);
2210  }
2211
2212  // Count unique destinations
2213  SmallSet<MachineBasicBlock*, 4> Dests;
2214  for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
2215    Dests.insert(I->BB);
2216    if (Dests.size() > 3)
2217      // Don't bother the code below, if there are too much unique destinations
2218      return false;
2219  }
2220  DEBUG(dbgs() << "Total number of unique destinations: "
2221        << Dests.size() << '\n'
2222        << "Total number of comparisons: " << numCmps << '\n');
2223
2224  // Compute span of values.
2225  const APInt& minValue = cast<ConstantInt>(FrontCase.Low)->getValue();
2226  const APInt& maxValue = cast<ConstantInt>(BackCase.High)->getValue();
2227  APInt cmpRange = maxValue - minValue;
2228
2229  DEBUG(dbgs() << "Compare range: " << cmpRange << '\n'
2230               << "Low bound: " << minValue << '\n'
2231               << "High bound: " << maxValue << '\n');
2232
2233  if (cmpRange.uge(IntPtrBits) ||
2234      (!(Dests.size() == 1 && numCmps >= 3) &&
2235       !(Dests.size() == 2 && numCmps >= 5) &&
2236       !(Dests.size() >= 3 && numCmps >= 6)))
2237    return false;
2238
2239  DEBUG(dbgs() << "Emitting bit tests\n");
2240  APInt lowBound = APInt::getNullValue(cmpRange.getBitWidth());
2241
2242  // Optimize the case where all the case values fit in a
2243  // word without having to subtract minValue. In this case,
2244  // we can optimize away the subtraction.
2245  if (minValue.isNonNegative() && maxValue.slt(IntPtrBits)) {
2246    cmpRange = maxValue;
2247  } else {
2248    lowBound = minValue;
2249  }
2250
2251  CaseBitsVector CasesBits;
2252  unsigned i, count = 0;
2253
2254  for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
2255    MachineBasicBlock* Dest = I->BB;
2256    for (i = 0; i < count; ++i)
2257      if (Dest == CasesBits[i].BB)
2258        break;
2259
2260    if (i == count) {
2261      assert((count < 3) && "Too much destinations to test!");
2262      CasesBits.push_back(CaseBits(0, Dest, 0));
2263      count++;
2264    }
2265
2266    const APInt& lowValue = cast<ConstantInt>(I->Low)->getValue();
2267    const APInt& highValue = cast<ConstantInt>(I->High)->getValue();
2268
2269    uint64_t lo = (lowValue - lowBound).getZExtValue();
2270    uint64_t hi = (highValue - lowBound).getZExtValue();
2271
2272    for (uint64_t j = lo; j <= hi; j++) {
2273      CasesBits[i].Mask |=  1ULL << j;
2274      CasesBits[i].Bits++;
2275    }
2276
2277  }
2278  std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp());
2279
2280  BitTestInfo BTC;
2281
2282  // Figure out which block is immediately after the current one.
2283  MachineFunction::iterator BBI = CR.CaseBB;
2284  ++BBI;
2285
2286  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2287
2288  DEBUG(dbgs() << "Cases:\n");
2289  for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) {
2290    DEBUG(dbgs() << "Mask: " << CasesBits[i].Mask
2291                 << ", Bits: " << CasesBits[i].Bits
2292                 << ", BB: " << CasesBits[i].BB << '\n');
2293
2294    MachineBasicBlock *CaseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2295    CurMF->insert(BBI, CaseBB);
2296    BTC.push_back(BitTestCase(CasesBits[i].Mask,
2297                              CaseBB,
2298                              CasesBits[i].BB));
2299
2300    // Put SV in a virtual register to make it available from the new blocks.
2301    ExportFromCurrentBlock(SV);
2302  }
2303
2304  BitTestBlock BTB(lowBound, cmpRange, SV,
2305                   -1U, MVT::Other, (CR.CaseBB == SwitchBB),
2306                   CR.CaseBB, Default, BTC);
2307
2308  if (CR.CaseBB == SwitchBB)
2309    visitBitTestHeader(BTB, SwitchBB);
2310
2311  BitTestCases.push_back(BTB);
2312
2313  return true;
2314}
2315
2316/// Clusterify - Transform simple list of Cases into list of CaseRange's
2317size_t SelectionDAGBuilder::Clusterify(CaseVector& Cases,
2318                                       const SwitchInst& SI) {
2319  size_t numCmps = 0;
2320
2321  // Start with "simple" cases
2322  for (size_t i = 1; i < SI.getNumSuccessors(); ++i) {
2323    MachineBasicBlock *SMBB = FuncInfo.MBBMap[SI.getSuccessor(i)];
2324    Cases.push_back(Case(SI.getSuccessorValue(i),
2325                         SI.getSuccessorValue(i),
2326                         SMBB));
2327  }
2328  std::sort(Cases.begin(), Cases.end(), CaseCmp());
2329
2330  // Merge case into clusters
2331  if (Cases.size() >= 2)
2332    // Must recompute end() each iteration because it may be
2333    // invalidated by erase if we hold on to it
2334    for (CaseItr I = Cases.begin(), J = llvm::next(Cases.begin());
2335         J != Cases.end(); ) {
2336      const APInt& nextValue = cast<ConstantInt>(J->Low)->getValue();
2337      const APInt& currentValue = cast<ConstantInt>(I->High)->getValue();
2338      MachineBasicBlock* nextBB = J->BB;
2339      MachineBasicBlock* currentBB = I->BB;
2340
2341      // If the two neighboring cases go to the same destination, merge them
2342      // into a single case.
2343      if ((nextValue - currentValue == 1) && (currentBB == nextBB)) {
2344        I->High = J->High;
2345        J = Cases.erase(J);
2346      } else {
2347        I = J++;
2348      }
2349    }
2350
2351  for (CaseItr I=Cases.begin(), E=Cases.end(); I!=E; ++I, ++numCmps) {
2352    if (I->Low != I->High)
2353      // A range counts double, since it requires two compares.
2354      ++numCmps;
2355  }
2356
2357  return numCmps;
2358}
2359
2360void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
2361                                           MachineBasicBlock *Last) {
2362  // Update JTCases.
2363  for (unsigned i = 0, e = JTCases.size(); i != e; ++i)
2364    if (JTCases[i].first.HeaderBB == First)
2365      JTCases[i].first.HeaderBB = Last;
2366
2367  // Update BitTestCases.
2368  for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i)
2369    if (BitTestCases[i].Parent == First)
2370      BitTestCases[i].Parent = Last;
2371}
2372
2373void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
2374  MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
2375
2376  // Figure out which block is immediately after the current one.
2377  MachineBasicBlock *NextBlock = 0;
2378  MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()];
2379
2380  // If there is only the default destination, branch to it if it is not the
2381  // next basic block.  Otherwise, just fall through.
2382  if (SI.getNumOperands() == 2) {
2383    // Update machine-CFG edges.
2384
2385    // If this is not a fall-through branch, emit the branch.
2386    SwitchMBB->addSuccessor(Default);
2387    if (Default != NextBlock)
2388      DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
2389                              MVT::Other, getControlRoot(),
2390                              DAG.getBasicBlock(Default)));
2391
2392    return;
2393  }
2394
2395  // If there are any non-default case statements, create a vector of Cases
2396  // representing each one, and sort the vector so that we can efficiently
2397  // create a binary search tree from them.
2398  CaseVector Cases;
2399  size_t numCmps = Clusterify(Cases, SI);
2400  DEBUG(dbgs() << "Clusterify finished. Total clusters: " << Cases.size()
2401               << ". Total compares: " << numCmps << '\n');
2402  numCmps = 0;
2403
2404  // Get the Value to be switched on and default basic blocks, which will be
2405  // inserted into CaseBlock records, representing basic blocks in the binary
2406  // search tree.
2407  const Value *SV = SI.getOperand(0);
2408
2409  // Push the initial CaseRec onto the worklist
2410  CaseRecVector WorkList;
2411  WorkList.push_back(CaseRec(SwitchMBB,0,0,
2412                             CaseRange(Cases.begin(),Cases.end())));
2413
2414  while (!WorkList.empty()) {
2415    // Grab a record representing a case range to process off the worklist
2416    CaseRec CR = WorkList.back();
2417    WorkList.pop_back();
2418
2419    if (handleBitTestsSwitchCase(CR, WorkList, SV, Default, SwitchMBB))
2420      continue;
2421
2422    // If the range has few cases (two or less) emit a series of specific
2423    // tests.
2424    if (handleSmallSwitchRange(CR, WorkList, SV, Default, SwitchMBB))
2425      continue;
2426
2427    // If the switch has more than 5 blocks, and at least 40% dense, and the
2428    // target supports indirect branches, then emit a jump table rather than
2429    // lowering the switch to a binary tree of conditional branches.
2430    if (handleJTSwitchCase(CR, WorkList, SV, Default, SwitchMBB))
2431      continue;
2432
2433    // Emit binary tree. We need to pick a pivot, and push left and right ranges
2434    // onto the worklist. Leafs are handled via handleSmallSwitchRange() call.
2435    handleBTSplitSwitchCase(CR, WorkList, SV, Default, SwitchMBB);
2436  }
2437}
2438
2439void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
2440  MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
2441
2442  // Update machine-CFG edges with unique successors.
2443  SmallVector<BasicBlock*, 32> succs;
2444  succs.reserve(I.getNumSuccessors());
2445  for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i)
2446    succs.push_back(I.getSuccessor(i));
2447  array_pod_sort(succs.begin(), succs.end());
2448  succs.erase(std::unique(succs.begin(), succs.end()), succs.end());
2449  for (unsigned i = 0, e = succs.size(); i != e; ++i) {
2450    MachineBasicBlock *Succ = FuncInfo.MBBMap[succs[i]];
2451    addSuccessorWithWeight(IndirectBrMBB, Succ);
2452  }
2453
2454  DAG.setRoot(DAG.getNode(ISD::BRIND, getCurDebugLoc(),
2455                          MVT::Other, getControlRoot(),
2456                          getValue(I.getAddress())));
2457}
2458
2459void SelectionDAGBuilder::visitFSub(const User &I) {
2460  // -0.0 - X --> fneg
2461  Type *Ty = I.getType();
2462  if (isa<Constant>(I.getOperand(0)) &&
2463      I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) {
2464    SDValue Op2 = getValue(I.getOperand(1));
2465    setValue(&I, DAG.getNode(ISD::FNEG, getCurDebugLoc(),
2466                             Op2.getValueType(), Op2));
2467    return;
2468  }
2469
2470  visitBinary(I, ISD::FSUB);
2471}
2472
2473void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) {
2474  SDValue Op1 = getValue(I.getOperand(0));
2475  SDValue Op2 = getValue(I.getOperand(1));
2476  setValue(&I, DAG.getNode(OpCode, getCurDebugLoc(),
2477                           Op1.getValueType(), Op1, Op2));
2478}
2479
2480void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
2481  SDValue Op1 = getValue(I.getOperand(0));
2482  SDValue Op2 = getValue(I.getOperand(1));
2483
2484  MVT ShiftTy = TLI.getShiftAmountTy(Op2.getValueType());
2485
2486  // Coerce the shift amount to the right type if we can.
2487  if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
2488    unsigned ShiftSize = ShiftTy.getSizeInBits();
2489    unsigned Op2Size = Op2.getValueType().getSizeInBits();
2490    DebugLoc DL = getCurDebugLoc();
2491
2492    // If the operand is smaller than the shift count type, promote it.
2493    if (ShiftSize > Op2Size)
2494      Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2);
2495
2496    // If the operand is larger than the shift count type but the shift
2497    // count type has enough bits to represent any shift value, truncate
2498    // it now. This is a common case and it exposes the truncate to
2499    // optimization early.
2500    else if (ShiftSize >= Log2_32_Ceil(Op2.getValueType().getSizeInBits()))
2501      Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2);
2502    // Otherwise we'll need to temporarily settle for some other convenient
2503    // type.  Type legalization will make adjustments once the shiftee is split.
2504    else
2505      Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32);
2506  }
2507
2508  setValue(&I, DAG.getNode(Opcode, getCurDebugLoc(),
2509                           Op1.getValueType(), Op1, Op2));
2510}
2511
2512void SelectionDAGBuilder::visitSDiv(const User &I) {
2513  SDValue Op1 = getValue(I.getOperand(0));
2514  SDValue Op2 = getValue(I.getOperand(1));
2515
2516  // Turn exact SDivs into multiplications.
2517  // FIXME: This should be in DAGCombiner, but it doesn't have access to the
2518  // exact bit.
2519  if (isa<BinaryOperator>(&I) && cast<BinaryOperator>(&I)->isExact() &&
2520      !isa<ConstantSDNode>(Op1) &&
2521      isa<ConstantSDNode>(Op2) && !cast<ConstantSDNode>(Op2)->isNullValue())
2522    setValue(&I, TLI.BuildExactSDIV(Op1, Op2, getCurDebugLoc(), DAG));
2523  else
2524    setValue(&I, DAG.getNode(ISD::SDIV, getCurDebugLoc(), Op1.getValueType(),
2525                             Op1, Op2));
2526}
2527
2528void SelectionDAGBuilder::visitICmp(const User &I) {
2529  ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
2530  if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
2531    predicate = IC->getPredicate();
2532  else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
2533    predicate = ICmpInst::Predicate(IC->getPredicate());
2534  SDValue Op1 = getValue(I.getOperand(0));
2535  SDValue Op2 = getValue(I.getOperand(1));
2536  ISD::CondCode Opcode = getICmpCondCode(predicate);
2537
2538  EVT DestVT = TLI.getValueType(I.getType());
2539  setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Opcode));
2540}
2541
2542void SelectionDAGBuilder::visitFCmp(const User &I) {
2543  FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
2544  if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
2545    predicate = FC->getPredicate();
2546  else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
2547    predicate = FCmpInst::Predicate(FC->getPredicate());
2548  SDValue Op1 = getValue(I.getOperand(0));
2549  SDValue Op2 = getValue(I.getOperand(1));
2550  ISD::CondCode Condition = getFCmpCondCode(predicate);
2551  EVT DestVT = TLI.getValueType(I.getType());
2552  setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Condition));
2553}
2554
2555void SelectionDAGBuilder::visitSelect(const User &I) {
2556  SmallVector<EVT, 4> ValueVTs;
2557  ComputeValueVTs(TLI, I.getType(), ValueVTs);
2558  unsigned NumValues = ValueVTs.size();
2559  if (NumValues == 0) return;
2560
2561  SmallVector<SDValue, 4> Values(NumValues);
2562  SDValue Cond     = getValue(I.getOperand(0));
2563  SDValue TrueVal  = getValue(I.getOperand(1));
2564  SDValue FalseVal = getValue(I.getOperand(2));
2565
2566  for (unsigned i = 0; i != NumValues; ++i)
2567    Values[i] = DAG.getNode(ISD::SELECT, getCurDebugLoc(),
2568                          TrueVal.getNode()->getValueType(TrueVal.getResNo()+i),
2569                            Cond,
2570                            SDValue(TrueVal.getNode(),
2571                                    TrueVal.getResNo() + i),
2572                            SDValue(FalseVal.getNode(),
2573                                    FalseVal.getResNo() + i));
2574
2575  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
2576                           DAG.getVTList(&ValueVTs[0], NumValues),
2577                           &Values[0], NumValues));
2578}
2579
2580void SelectionDAGBuilder::visitTrunc(const User &I) {
2581  // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
2582  SDValue N = getValue(I.getOperand(0));
2583  EVT DestVT = TLI.getValueType(I.getType());
2584  setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), DestVT, N));
2585}
2586
2587void SelectionDAGBuilder::visitZExt(const User &I) {
2588  // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2589  // ZExt also can't be a cast to bool for same reason. So, nothing much to do
2590  SDValue N = getValue(I.getOperand(0));
2591  EVT DestVT = TLI.getValueType(I.getType());
2592  setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), DestVT, N));
2593}
2594
2595void SelectionDAGBuilder::visitSExt(const User &I) {
2596  // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2597  // SExt also can't be a cast to bool for same reason. So, nothing much to do
2598  SDValue N = getValue(I.getOperand(0));
2599  EVT DestVT = TLI.getValueType(I.getType());
2600  setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurDebugLoc(), DestVT, N));
2601}
2602
2603void SelectionDAGBuilder::visitFPTrunc(const User &I) {
2604  // FPTrunc is never a no-op cast, no need to check
2605  SDValue N = getValue(I.getOperand(0));
2606  EVT DestVT = TLI.getValueType(I.getType());
2607  setValue(&I, DAG.getNode(ISD::FP_ROUND, getCurDebugLoc(),
2608                           DestVT, N, DAG.getIntPtrConstant(0)));
2609}
2610
2611void SelectionDAGBuilder::visitFPExt(const User &I){
2612  // FPTrunc is never a no-op cast, no need to check
2613  SDValue N = getValue(I.getOperand(0));
2614  EVT DestVT = TLI.getValueType(I.getType());
2615  setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurDebugLoc(), DestVT, N));
2616}
2617
2618void SelectionDAGBuilder::visitFPToUI(const User &I) {
2619  // FPToUI is never a no-op cast, no need to check
2620  SDValue N = getValue(I.getOperand(0));
2621  EVT DestVT = TLI.getValueType(I.getType());
2622  setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurDebugLoc(), DestVT, N));
2623}
2624
2625void SelectionDAGBuilder::visitFPToSI(const User &I) {
2626  // FPToSI is never a no-op cast, no need to check
2627  SDValue N = getValue(I.getOperand(0));
2628  EVT DestVT = TLI.getValueType(I.getType());
2629  setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurDebugLoc(), DestVT, N));
2630}
2631
2632void SelectionDAGBuilder::visitUIToFP(const User &I) {
2633  // UIToFP is never a no-op cast, no need to check
2634  SDValue N = getValue(I.getOperand(0));
2635  EVT DestVT = TLI.getValueType(I.getType());
2636  setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurDebugLoc(), DestVT, N));
2637}
2638
2639void SelectionDAGBuilder::visitSIToFP(const User &I){
2640  // SIToFP is never a no-op cast, no need to check
2641  SDValue N = getValue(I.getOperand(0));
2642  EVT DestVT = TLI.getValueType(I.getType());
2643  setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurDebugLoc(), DestVT, N));
2644}
2645
2646void SelectionDAGBuilder::visitPtrToInt(const User &I) {
2647  // What to do depends on the size of the integer and the size of the pointer.
2648  // We can either truncate, zero extend, or no-op, accordingly.
2649  SDValue N = getValue(I.getOperand(0));
2650  EVT DestVT = TLI.getValueType(I.getType());
2651  setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT));
2652}
2653
2654void SelectionDAGBuilder::visitIntToPtr(const User &I) {
2655  // What to do depends on the size of the integer and the size of the pointer.
2656  // We can either truncate, zero extend, or no-op, accordingly.
2657  SDValue N = getValue(I.getOperand(0));
2658  EVT DestVT = TLI.getValueType(I.getType());
2659  setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT));
2660}
2661
2662void SelectionDAGBuilder::visitBitCast(const User &I) {
2663  SDValue N = getValue(I.getOperand(0));
2664  EVT DestVT = TLI.getValueType(I.getType());
2665
2666  // BitCast assures us that source and destination are the same size so this is
2667  // either a BITCAST or a no-op.
2668  if (DestVT != N.getValueType())
2669    setValue(&I, DAG.getNode(ISD::BITCAST, getCurDebugLoc(),
2670                             DestVT, N)); // convert types.
2671  else
2672    setValue(&I, N);            // noop cast.
2673}
2674
2675void SelectionDAGBuilder::visitInsertElement(const User &I) {
2676  SDValue InVec = getValue(I.getOperand(0));
2677  SDValue InVal = getValue(I.getOperand(1));
2678  SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(),
2679                              TLI.getPointerTy(),
2680                              getValue(I.getOperand(2)));
2681  setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurDebugLoc(),
2682                           TLI.getValueType(I.getType()),
2683                           InVec, InVal, InIdx));
2684}
2685
2686void SelectionDAGBuilder::visitExtractElement(const User &I) {
2687  SDValue InVec = getValue(I.getOperand(0));
2688  SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(),
2689                              TLI.getPointerTy(),
2690                              getValue(I.getOperand(1)));
2691  setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
2692                           TLI.getValueType(I.getType()), InVec, InIdx));
2693}
2694
2695// Utility for visitShuffleVector - Returns true if the mask is mask starting
2696// from SIndx and increasing to the element length (undefs are allowed).
2697static bool SequentialMask(SmallVectorImpl<int> &Mask, unsigned SIndx) {
2698  unsigned MaskNumElts = Mask.size();
2699  for (unsigned i = 0; i != MaskNumElts; ++i)
2700    if ((Mask[i] >= 0) && (Mask[i] != (int)(i + SIndx)))
2701      return false;
2702  return true;
2703}
2704
2705void SelectionDAGBuilder::visitShuffleVector(const User &I) {
2706  SmallVector<int, 8> Mask;
2707  SDValue Src1 = getValue(I.getOperand(0));
2708  SDValue Src2 = getValue(I.getOperand(1));
2709
2710  // Convert the ConstantVector mask operand into an array of ints, with -1
2711  // representing undef values.
2712  SmallVector<Constant*, 8> MaskElts;
2713  cast<Constant>(I.getOperand(2))->getVectorElements(MaskElts);
2714  unsigned MaskNumElts = MaskElts.size();
2715  for (unsigned i = 0; i != MaskNumElts; ++i) {
2716    if (isa<UndefValue>(MaskElts[i]))
2717      Mask.push_back(-1);
2718    else
2719      Mask.push_back(cast<ConstantInt>(MaskElts[i])->getSExtValue());
2720  }
2721
2722  EVT VT = TLI.getValueType(I.getType());
2723  EVT SrcVT = Src1.getValueType();
2724  unsigned SrcNumElts = SrcVT.getVectorNumElements();
2725
2726  if (SrcNumElts == MaskNumElts) {
2727    setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2728                                      &Mask[0]));
2729    return;
2730  }
2731
2732  // Normalize the shuffle vector since mask and vector length don't match.
2733  if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) {
2734    // Mask is longer than the source vectors and is a multiple of the source
2735    // vectors.  We can use concatenate vector to make the mask and vectors
2736    // lengths match.
2737    if (SrcNumElts*2 == MaskNumElts && SequentialMask(Mask, 0)) {
2738      // The shuffle is concatenating two vectors together.
2739      setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurDebugLoc(),
2740                               VT, Src1, Src2));
2741      return;
2742    }
2743
2744    // Pad both vectors with undefs to make them the same length as the mask.
2745    unsigned NumConcat = MaskNumElts / SrcNumElts;
2746    bool Src1U = Src1.getOpcode() == ISD::UNDEF;
2747    bool Src2U = Src2.getOpcode() == ISD::UNDEF;
2748    SDValue UndefVal = DAG.getUNDEF(SrcVT);
2749
2750    SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
2751    SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
2752    MOps1[0] = Src1;
2753    MOps2[0] = Src2;
2754
2755    Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
2756                                                  getCurDebugLoc(), VT,
2757                                                  &MOps1[0], NumConcat);
2758    Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
2759                                                  getCurDebugLoc(), VT,
2760                                                  &MOps2[0], NumConcat);
2761
2762    // Readjust mask for new input vector length.
2763    SmallVector<int, 8> MappedOps;
2764    for (unsigned i = 0; i != MaskNumElts; ++i) {
2765      int Idx = Mask[i];
2766      if (Idx < (int)SrcNumElts)
2767        MappedOps.push_back(Idx);
2768      else
2769        MappedOps.push_back(Idx + MaskNumElts - SrcNumElts);
2770    }
2771
2772    setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2773                                      &MappedOps[0]));
2774    return;
2775  }
2776
2777  if (SrcNumElts > MaskNumElts) {
2778    // Analyze the access pattern of the vector to see if we can extract
2779    // two subvectors and do the shuffle. The analysis is done by calculating
2780    // the range of elements the mask access on both vectors.
2781    int MinRange[2] = { SrcNumElts+1, SrcNumElts+1};
2782    int MaxRange[2] = {-1, -1};
2783
2784    for (unsigned i = 0; i != MaskNumElts; ++i) {
2785      int Idx = Mask[i];
2786      int Input = 0;
2787      if (Idx < 0)
2788        continue;
2789
2790      if (Idx >= (int)SrcNumElts) {
2791        Input = 1;
2792        Idx -= SrcNumElts;
2793      }
2794      if (Idx > MaxRange[Input])
2795        MaxRange[Input] = Idx;
2796      if (Idx < MinRange[Input])
2797        MinRange[Input] = Idx;
2798    }
2799
2800    // Check if the access is smaller than the vector size and can we find
2801    // a reasonable extract index.
2802    int RangeUse[2] = { 2, 2 };  // 0 = Unused, 1 = Extract, 2 = Can not
2803                                 // Extract.
2804    int StartIdx[2];  // StartIdx to extract from
2805    for (int Input=0; Input < 2; ++Input) {
2806      if (MinRange[Input] == (int)(SrcNumElts+1) && MaxRange[Input] == -1) {
2807        RangeUse[Input] = 0; // Unused
2808        StartIdx[Input] = 0;
2809      } else if (MaxRange[Input] - MinRange[Input] < (int)MaskNumElts) {
2810        // Fits within range but we should see if we can find a good
2811        // start index that is a multiple of the mask length.
2812        if (MaxRange[Input] < (int)MaskNumElts) {
2813          RangeUse[Input] = 1; // Extract from beginning of the vector
2814          StartIdx[Input] = 0;
2815        } else {
2816          StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts;
2817          if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts &&
2818              StartIdx[Input] + MaskNumElts <= SrcNumElts)
2819            RangeUse[Input] = 1; // Extract from a multiple of the mask length.
2820        }
2821      }
2822    }
2823
2824    if (RangeUse[0] == 0 && RangeUse[1] == 0) {
2825      setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
2826      return;
2827    }
2828    else if (RangeUse[0] < 2 && RangeUse[1] < 2) {
2829      // Extract appropriate subvector and generate a vector shuffle
2830      for (int Input=0; Input < 2; ++Input) {
2831        SDValue &Src = Input == 0 ? Src1 : Src2;
2832        if (RangeUse[Input] == 0)
2833          Src = DAG.getUNDEF(VT);
2834        else
2835          Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, getCurDebugLoc(), VT,
2836                            Src, DAG.getIntPtrConstant(StartIdx[Input]));
2837      }
2838
2839      // Calculate new mask.
2840      SmallVector<int, 8> MappedOps;
2841      for (unsigned i = 0; i != MaskNumElts; ++i) {
2842        int Idx = Mask[i];
2843        if (Idx < 0)
2844          MappedOps.push_back(Idx);
2845        else if (Idx < (int)SrcNumElts)
2846          MappedOps.push_back(Idx - StartIdx[0]);
2847        else
2848          MappedOps.push_back(Idx - SrcNumElts - StartIdx[1] + MaskNumElts);
2849      }
2850
2851      setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2852                                        &MappedOps[0]));
2853      return;
2854    }
2855  }
2856
2857  // We can't use either concat vectors or extract subvectors so fall back to
2858  // replacing the shuffle with extract and build vector.
2859  // to insert and build vector.
2860  EVT EltVT = VT.getVectorElementType();
2861  EVT PtrVT = TLI.getPointerTy();
2862  SmallVector<SDValue,8> Ops;
2863  for (unsigned i = 0; i != MaskNumElts; ++i) {
2864    if (Mask[i] < 0) {
2865      Ops.push_back(DAG.getUNDEF(EltVT));
2866    } else {
2867      int Idx = Mask[i];
2868      SDValue Res;
2869
2870      if (Idx < (int)SrcNumElts)
2871        Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
2872                          EltVT, Src1, DAG.getConstant(Idx, PtrVT));
2873      else
2874        Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
2875                          EltVT, Src2,
2876                          DAG.getConstant(Idx - SrcNumElts, PtrVT));
2877
2878      Ops.push_back(Res);
2879    }
2880  }
2881
2882  setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(),
2883                           VT, &Ops[0], Ops.size()));
2884}
2885
2886void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) {
2887  const Value *Op0 = I.getOperand(0);
2888  const Value *Op1 = I.getOperand(1);
2889  Type *AggTy = I.getType();
2890  Type *ValTy = Op1->getType();
2891  bool IntoUndef = isa<UndefValue>(Op0);
2892  bool FromUndef = isa<UndefValue>(Op1);
2893
2894  unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices());
2895
2896  SmallVector<EVT, 4> AggValueVTs;
2897  ComputeValueVTs(TLI, AggTy, AggValueVTs);
2898  SmallVector<EVT, 4> ValValueVTs;
2899  ComputeValueVTs(TLI, ValTy, ValValueVTs);
2900
2901  unsigned NumAggValues = AggValueVTs.size();
2902  unsigned NumValValues = ValValueVTs.size();
2903  SmallVector<SDValue, 4> Values(NumAggValues);
2904
2905  SDValue Agg = getValue(Op0);
2906  unsigned i = 0;
2907  // Copy the beginning value(s) from the original aggregate.
2908  for (; i != LinearIndex; ++i)
2909    Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
2910                SDValue(Agg.getNode(), Agg.getResNo() + i);
2911  // Copy values from the inserted value(s).
2912  if (NumValValues) {
2913    SDValue Val = getValue(Op1);
2914    for (; i != LinearIndex + NumValValues; ++i)
2915      Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
2916                  SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
2917  }
2918  // Copy remaining value(s) from the original aggregate.
2919  for (; i != NumAggValues; ++i)
2920    Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
2921                SDValue(Agg.getNode(), Agg.getResNo() + i);
2922
2923  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
2924                           DAG.getVTList(&AggValueVTs[0], NumAggValues),
2925                           &Values[0], NumAggValues));
2926}
2927
2928void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) {
2929  const Value *Op0 = I.getOperand(0);
2930  Type *AggTy = Op0->getType();
2931  Type *ValTy = I.getType();
2932  bool OutOfUndef = isa<UndefValue>(Op0);
2933
2934  unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices());
2935
2936  SmallVector<EVT, 4> ValValueVTs;
2937  ComputeValueVTs(TLI, ValTy, ValValueVTs);
2938
2939  unsigned NumValValues = ValValueVTs.size();
2940
2941  // Ignore a extractvalue that produces an empty object
2942  if (!NumValValues) {
2943    setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
2944    return;
2945  }
2946
2947  SmallVector<SDValue, 4> Values(NumValValues);
2948
2949  SDValue Agg = getValue(Op0);
2950  // Copy out the selected value(s).
2951  for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
2952    Values[i - LinearIndex] =
2953      OutOfUndef ?
2954        DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
2955        SDValue(Agg.getNode(), Agg.getResNo() + i);
2956
2957  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
2958                           DAG.getVTList(&ValValueVTs[0], NumValValues),
2959                           &Values[0], NumValValues));
2960}
2961
2962void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
2963  SDValue N = getValue(I.getOperand(0));
2964  Type *Ty = I.getOperand(0)->getType();
2965
2966  for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end();
2967       OI != E; ++OI) {
2968    const Value *Idx = *OI;
2969    if (StructType *StTy = dyn_cast<StructType>(Ty)) {
2970      unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
2971      if (Field) {
2972        // N = N + Offset
2973        uint64_t Offset = TD->getStructLayout(StTy)->getElementOffset(Field);
2974        N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N,
2975                        DAG.getIntPtrConstant(Offset));
2976      }
2977
2978      Ty = StTy->getElementType(Field);
2979    } else {
2980      Ty = cast<SequentialType>(Ty)->getElementType();
2981
2982      // If this is a constant subscript, handle it quickly.
2983      if (const ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
2984        if (CI->isZero()) continue;
2985        uint64_t Offs =
2986            TD->getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue();
2987        SDValue OffsVal;
2988        EVT PTy = TLI.getPointerTy();
2989        unsigned PtrBits = PTy.getSizeInBits();
2990        if (PtrBits < 64)
2991          OffsVal = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(),
2992                                TLI.getPointerTy(),
2993                                DAG.getConstant(Offs, MVT::i64));
2994        else
2995          OffsVal = DAG.getIntPtrConstant(Offs);
2996
2997        N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N,
2998                        OffsVal);
2999        continue;
3000      }
3001
3002      // N = N + Idx * ElementSize;
3003      APInt ElementSize = APInt(TLI.getPointerTy().getSizeInBits(),
3004                                TD->getTypeAllocSize(Ty));
3005      SDValue IdxN = getValue(Idx);
3006
3007      // If the index is smaller or larger than intptr_t, truncate or extend
3008      // it.
3009      IdxN = DAG.getSExtOrTrunc(IdxN, getCurDebugLoc(), N.getValueType());
3010
3011      // If this is a multiply by a power of two, turn it into a shl
3012      // immediately.  This is a very common case.
3013      if (ElementSize != 1) {
3014        if (ElementSize.isPowerOf2()) {
3015          unsigned Amt = ElementSize.logBase2();
3016          IdxN = DAG.getNode(ISD::SHL, getCurDebugLoc(),
3017                             N.getValueType(), IdxN,
3018                             DAG.getConstant(Amt, TLI.getPointerTy()));
3019        } else {
3020          SDValue Scale = DAG.getConstant(ElementSize, TLI.getPointerTy());
3021          IdxN = DAG.getNode(ISD::MUL, getCurDebugLoc(),
3022                             N.getValueType(), IdxN, Scale);
3023        }
3024      }
3025
3026      N = DAG.getNode(ISD::ADD, getCurDebugLoc(),
3027                      N.getValueType(), N, IdxN);
3028    }
3029  }
3030
3031  setValue(&I, N);
3032}
3033
3034void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
3035  // If this is a fixed sized alloca in the entry block of the function,
3036  // allocate it statically on the stack.
3037  if (FuncInfo.StaticAllocaMap.count(&I))
3038    return;   // getValue will auto-populate this.
3039
3040  Type *Ty = I.getAllocatedType();
3041  uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty);
3042  unsigned Align =
3043    std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty),
3044             I.getAlignment());
3045
3046  SDValue AllocSize = getValue(I.getArraySize());
3047
3048  EVT IntPtr = TLI.getPointerTy();
3049  if (AllocSize.getValueType() != IntPtr)
3050    AllocSize = DAG.getZExtOrTrunc(AllocSize, getCurDebugLoc(), IntPtr);
3051
3052  AllocSize = DAG.getNode(ISD::MUL, getCurDebugLoc(), IntPtr,
3053                          AllocSize,
3054                          DAG.getConstant(TySize, IntPtr));
3055
3056  // Handle alignment.  If the requested alignment is less than or equal to
3057  // the stack alignment, ignore it.  If the size is greater than or equal to
3058  // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
3059  unsigned StackAlign = TM.getFrameLowering()->getStackAlignment();
3060  if (Align <= StackAlign)
3061    Align = 0;
3062
3063  // Round the size of the allocation up to the stack alignment size
3064  // by add SA-1 to the size.
3065  AllocSize = DAG.getNode(ISD::ADD, getCurDebugLoc(),
3066                          AllocSize.getValueType(), AllocSize,
3067                          DAG.getIntPtrConstant(StackAlign-1));
3068
3069  // Mask out the low bits for alignment purposes.
3070  AllocSize = DAG.getNode(ISD::AND, getCurDebugLoc(),
3071                          AllocSize.getValueType(), AllocSize,
3072                          DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1)));
3073
3074  SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) };
3075  SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
3076  SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, getCurDebugLoc(),
3077                            VTs, Ops, 3);
3078  setValue(&I, DSA);
3079  DAG.setRoot(DSA.getValue(1));
3080
3081  // Inform the Frame Information that we have just allocated a variable-sized
3082  // object.
3083  FuncInfo.MF->getFrameInfo()->CreateVariableSizedObject(Align ? Align : 1);
3084}
3085
3086void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
3087  const Value *SV = I.getOperand(0);
3088  SDValue Ptr = getValue(SV);
3089
3090  Type *Ty = I.getType();
3091
3092  bool isVolatile = I.isVolatile();
3093  bool isNonTemporal = I.getMetadata("nontemporal") != 0;
3094  unsigned Alignment = I.getAlignment();
3095  const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa);
3096
3097  SmallVector<EVT, 4> ValueVTs;
3098  SmallVector<uint64_t, 4> Offsets;
3099  ComputeValueVTs(TLI, Ty, ValueVTs, &Offsets);
3100  unsigned NumValues = ValueVTs.size();
3101  if (NumValues == 0)
3102    return;
3103
3104  SDValue Root;
3105  bool ConstantMemory = false;
3106  if (I.isVolatile() || NumValues > MaxParallelChains)
3107    // Serialize volatile loads with other side effects.
3108    Root = getRoot();
3109  else if (AA->pointsToConstantMemory(
3110             AliasAnalysis::Location(SV, AA->getTypeStoreSize(Ty), TBAAInfo))) {
3111    // Do not serialize (non-volatile) loads of constant memory with anything.
3112    Root = DAG.getEntryNode();
3113    ConstantMemory = true;
3114  } else {
3115    // Do not serialize non-volatile loads against each other.
3116    Root = DAG.getRoot();
3117  }
3118
3119  SmallVector<SDValue, 4> Values(NumValues);
3120  SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains),
3121                                          NumValues));
3122  EVT PtrVT = Ptr.getValueType();
3123  unsigned ChainI = 0;
3124  for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3125    // Serializing loads here may result in excessive register pressure, and
3126    // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
3127    // could recover a bit by hoisting nodes upward in the chain by recognizing
3128    // they are side-effect free or do not alias. The optimizer should really
3129    // avoid this case by converting large object/array copies to llvm.memcpy
3130    // (MaxParallelChains should always remain as failsafe).
3131    if (ChainI == MaxParallelChains) {
3132      assert(PendingLoads.empty() && "PendingLoads must be serialized first");
3133      SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
3134                                  MVT::Other, &Chains[0], ChainI);
3135      Root = Chain;
3136      ChainI = 0;
3137    }
3138    SDValue A = DAG.getNode(ISD::ADD, getCurDebugLoc(),
3139                            PtrVT, Ptr,
3140                            DAG.getConstant(Offsets[i], PtrVT));
3141    SDValue L = DAG.getLoad(ValueVTs[i], getCurDebugLoc(), Root,
3142                            A, MachinePointerInfo(SV, Offsets[i]), isVolatile,
3143                            isNonTemporal, Alignment, TBAAInfo);
3144
3145    Values[i] = L;
3146    Chains[ChainI] = L.getValue(1);
3147  }
3148
3149  if (!ConstantMemory) {
3150    SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
3151                                MVT::Other, &Chains[0], ChainI);
3152    if (isVolatile)
3153      DAG.setRoot(Chain);
3154    else
3155      PendingLoads.push_back(Chain);
3156  }
3157
3158  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
3159                           DAG.getVTList(&ValueVTs[0], NumValues),
3160                           &Values[0], NumValues));
3161}
3162
3163void SelectionDAGBuilder::visitStore(const StoreInst &I) {
3164  const Value *SrcV = I.getOperand(0);
3165  const Value *PtrV = I.getOperand(1);
3166
3167  SmallVector<EVT, 4> ValueVTs;
3168  SmallVector<uint64_t, 4> Offsets;
3169  ComputeValueVTs(TLI, SrcV->getType(), ValueVTs, &Offsets);
3170  unsigned NumValues = ValueVTs.size();
3171  if (NumValues == 0)
3172    return;
3173
3174  // Get the lowered operands. Note that we do this after
3175  // checking if NumResults is zero, because with zero results
3176  // the operands won't have values in the map.
3177  SDValue Src = getValue(SrcV);
3178  SDValue Ptr = getValue(PtrV);
3179
3180  SDValue Root = getRoot();
3181  SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains),
3182                                          NumValues));
3183  EVT PtrVT = Ptr.getValueType();
3184  bool isVolatile = I.isVolatile();
3185  bool isNonTemporal = I.getMetadata("nontemporal") != 0;
3186  unsigned Alignment = I.getAlignment();
3187  const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa);
3188
3189  unsigned ChainI = 0;
3190  for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3191    // See visitLoad comments.
3192    if (ChainI == MaxParallelChains) {
3193      SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
3194                                  MVT::Other, &Chains[0], ChainI);
3195      Root = Chain;
3196      ChainI = 0;
3197    }
3198    SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT, Ptr,
3199                              DAG.getConstant(Offsets[i], PtrVT));
3200    SDValue St = DAG.getStore(Root, getCurDebugLoc(),
3201                              SDValue(Src.getNode(), Src.getResNo() + i),
3202                              Add, MachinePointerInfo(PtrV, Offsets[i]),
3203                              isVolatile, isNonTemporal, Alignment, TBAAInfo);
3204    Chains[ChainI] = St;
3205  }
3206
3207  SDValue StoreNode = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
3208                                  MVT::Other, &Chains[0], ChainI);
3209  ++SDNodeOrder;
3210  AssignOrderingToNode(StoreNode.getNode());
3211  DAG.setRoot(StoreNode);
3212}
3213
3214/// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
3215/// node.
3216void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
3217                                               unsigned Intrinsic) {
3218  bool HasChain = !I.doesNotAccessMemory();
3219  bool OnlyLoad = HasChain && I.onlyReadsMemory();
3220
3221  // Build the operand list.
3222  SmallVector<SDValue, 8> Ops;
3223  if (HasChain) {  // If this intrinsic has side-effects, chainify it.
3224    if (OnlyLoad) {
3225      // We don't need to serialize loads against other loads.
3226      Ops.push_back(DAG.getRoot());
3227    } else {
3228      Ops.push_back(getRoot());
3229    }
3230  }
3231
3232  // Info is set by getTgtMemInstrinsic
3233  TargetLowering::IntrinsicInfo Info;
3234  bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic);
3235
3236  // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
3237  if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
3238      Info.opc == ISD::INTRINSIC_W_CHAIN)
3239    Ops.push_back(DAG.getConstant(Intrinsic, TLI.getPointerTy()));
3240
3241  // Add all operands of the call to the operand list.
3242  for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
3243    SDValue Op = getValue(I.getArgOperand(i));
3244    assert(TLI.isTypeLegal(Op.getValueType()) &&
3245           "Intrinsic uses a non-legal type?");
3246    Ops.push_back(Op);
3247  }
3248
3249  SmallVector<EVT, 4> ValueVTs;
3250  ComputeValueVTs(TLI, I.getType(), ValueVTs);
3251#ifndef NDEBUG
3252  for (unsigned Val = 0, E = ValueVTs.size(); Val != E; ++Val) {
3253    assert(TLI.isTypeLegal(ValueVTs[Val]) &&
3254           "Intrinsic uses a non-legal type?");
3255  }
3256#endif // NDEBUG
3257
3258  if (HasChain)
3259    ValueVTs.push_back(MVT::Other);
3260
3261  SDVTList VTs = DAG.getVTList(ValueVTs.data(), ValueVTs.size());
3262
3263  // Create the node.
3264  SDValue Result;
3265  if (IsTgtIntrinsic) {
3266    // This is target intrinsic that touches memory
3267    Result = DAG.getMemIntrinsicNode(Info.opc, getCurDebugLoc(),
3268                                     VTs, &Ops[0], Ops.size(),
3269                                     Info.memVT,
3270                                   MachinePointerInfo(Info.ptrVal, Info.offset),
3271                                     Info.align, Info.vol,
3272                                     Info.readMem, Info.writeMem);
3273  } else if (!HasChain) {
3274    Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurDebugLoc(),
3275                         VTs, &Ops[0], Ops.size());
3276  } else if (!I.getType()->isVoidTy()) {
3277    Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurDebugLoc(),
3278                         VTs, &Ops[0], Ops.size());
3279  } else {
3280    Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurDebugLoc(),
3281                         VTs, &Ops[0], Ops.size());
3282  }
3283
3284  if (HasChain) {
3285    SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
3286    if (OnlyLoad)
3287      PendingLoads.push_back(Chain);
3288    else
3289      DAG.setRoot(Chain);
3290  }
3291
3292  if (!I.getType()->isVoidTy()) {
3293    if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
3294      EVT VT = TLI.getValueType(PTy);
3295      Result = DAG.getNode(ISD::BITCAST, getCurDebugLoc(), VT, Result);
3296    }
3297
3298    setValue(&I, Result);
3299  }
3300}
3301
3302/// GetSignificand - Get the significand and build it into a floating-point
3303/// number with exponent of 1:
3304///
3305///   Op = (Op & 0x007fffff) | 0x3f800000;
3306///
3307/// where Op is the hexidecimal representation of floating point value.
3308static SDValue
3309GetSignificand(SelectionDAG &DAG, SDValue Op, DebugLoc dl) {
3310  SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
3311                           DAG.getConstant(0x007fffff, MVT::i32));
3312  SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
3313                           DAG.getConstant(0x3f800000, MVT::i32));
3314  return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
3315}
3316
3317/// GetExponent - Get the exponent:
3318///
3319///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
3320///
3321/// where Op is the hexidecimal representation of floating point value.
3322static SDValue
3323GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI,
3324            DebugLoc dl) {
3325  SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
3326                           DAG.getConstant(0x7f800000, MVT::i32));
3327  SDValue t1 = DAG.getNode(ISD::SRL, dl, MVT::i32, t0,
3328                           DAG.getConstant(23, TLI.getPointerTy()));
3329  SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
3330                           DAG.getConstant(127, MVT::i32));
3331  return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
3332}
3333
3334/// getF32Constant - Get 32-bit floating point constant.
3335static SDValue
3336getF32Constant(SelectionDAG &DAG, unsigned Flt) {
3337  return DAG.getConstantFP(APFloat(APInt(32, Flt)), MVT::f32);
3338}
3339
3340/// Inlined utility function to implement binary input atomic intrinsics for
3341/// visitIntrinsicCall: I is a call instruction
3342///                     Op is the associated NodeType for I
3343const char *
3344SelectionDAGBuilder::implVisitBinaryAtomic(const CallInst& I,
3345                                           ISD::NodeType Op) {
3346  SDValue Root = getRoot();
3347  SDValue L =
3348    DAG.getAtomic(Op, getCurDebugLoc(),
3349                  getValue(I.getArgOperand(1)).getValueType().getSimpleVT(),
3350                  Root,
3351                  getValue(I.getArgOperand(0)),
3352                  getValue(I.getArgOperand(1)),
3353                  I.getArgOperand(0));
3354  setValue(&I, L);
3355  DAG.setRoot(L.getValue(1));
3356  return 0;
3357}
3358
3359// implVisitAluOverflow - Lower arithmetic overflow instrinsics.
3360const char *
3361SelectionDAGBuilder::implVisitAluOverflow(const CallInst &I, ISD::NodeType Op) {
3362  SDValue Op1 = getValue(I.getArgOperand(0));
3363  SDValue Op2 = getValue(I.getArgOperand(1));
3364
3365  SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1);
3366  setValue(&I, DAG.getNode(Op, getCurDebugLoc(), VTs, Op1, Op2));
3367  return 0;
3368}
3369
3370/// visitExp - Lower an exp intrinsic. Handles the special sequences for
3371/// limited-precision mode.
3372void
3373SelectionDAGBuilder::visitExp(const CallInst &I) {
3374  SDValue result;
3375  DebugLoc dl = getCurDebugLoc();
3376
3377  if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3378      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3379    SDValue Op = getValue(I.getArgOperand(0));
3380
3381    // Put the exponent in the right bit position for later addition to the
3382    // final result:
3383    //
3384    //   #define LOG2OFe 1.4426950f
3385    //   IntegerPartOfX = ((int32_t)(X * LOG2OFe));
3386    SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
3387                             getF32Constant(DAG, 0x3fb8aa3b));
3388    SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
3389
3390    //   FractionalPartOfX = (X * LOG2OFe) - (float)IntegerPartOfX;
3391    SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
3392    SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
3393
3394    //   IntegerPartOfX <<= 23;
3395    IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
3396                                 DAG.getConstant(23, TLI.getPointerTy()));
3397
3398    if (LimitFloatPrecision <= 6) {
3399      // For floating-point precision of 6:
3400      //
3401      //   TwoToFractionalPartOfX =
3402      //     0.997535578f +
3403      //       (0.735607626f + 0.252464424f * x) * x;
3404      //
3405      // error 0.0144103317, which is 6 bits
3406      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3407                               getF32Constant(DAG, 0x3e814304));
3408      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3409                               getF32Constant(DAG, 0x3f3c50c8));
3410      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3411      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3412                               getF32Constant(DAG, 0x3f7f5e7e));
3413      SDValue TwoToFracPartOfX = DAG.getNode(ISD::BITCAST, dl,MVT::i32, t5);
3414
3415      // Add the exponent into the result in integer domain.
3416      SDValue t6 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3417                               TwoToFracPartOfX, IntegerPartOfX);
3418
3419      result = DAG.getNode(ISD::BITCAST, dl, MVT::f32, t6);
3420    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3421      // For floating-point precision of 12:
3422      //
3423      //   TwoToFractionalPartOfX =
3424      //     0.999892986f +
3425      //       (0.696457318f +
3426      //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
3427      //
3428      // 0.000107046256 error, which is 13 to 14 bits
3429      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3430                               getF32Constant(DAG, 0x3da235e3));
3431      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3432                               getF32Constant(DAG, 0x3e65b8f3));
3433      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3434      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3435                               getF32Constant(DAG, 0x3f324b07));
3436      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3437      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3438                               getF32Constant(DAG, 0x3f7ff8fd));
3439      SDValue TwoToFracPartOfX = DAG.getNode(ISD::BITCAST, dl,MVT::i32, t7);
3440
3441      // Add the exponent into the result in integer domain.
3442      SDValue t8 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3443                               TwoToFracPartOfX, IntegerPartOfX);
3444
3445      result = DAG.getNode(ISD::BITCAST, dl, MVT::f32, t8);
3446    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3447      // For floating-point precision of 18:
3448      //
3449      //   TwoToFractionalPartOfX =
3450      //     0.999999982f +
3451      //       (0.693148872f +
3452      //         (0.240227044f +
3453      //           (0.554906021e-1f +
3454      //             (0.961591928e-2f +
3455      //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
3456      //
3457      // error 2.47208000*10^(-7), which is better than 18 bits
3458      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3459                               getF32Constant(DAG, 0x3924b03e));
3460      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3461                               getF32Constant(DAG, 0x3ab24b87));
3462      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3463      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3464                               getF32Constant(DAG, 0x3c1d8c17));
3465      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3466      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3467                               getF32Constant(DAG, 0x3d634a1d));
3468      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3469      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3470                               getF32Constant(DAG, 0x3e75fe14));
3471      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3472      SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
3473                                getF32Constant(DAG, 0x3f317234));
3474      SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
3475      SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
3476                                getF32Constant(DAG, 0x3f800000));
3477      SDValue TwoToFracPartOfX = DAG.getNode(ISD::BITCAST, dl,
3478                                             MVT::i32, t13);
3479
3480      // Add the exponent into the result in integer domain.
3481      SDValue t14 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3482                                TwoToFracPartOfX, IntegerPartOfX);
3483
3484      result = DAG.getNode(ISD::BITCAST, dl, MVT::f32, t14);
3485    }
3486  } else {
3487    // No special expansion.
3488    result = DAG.getNode(ISD::FEXP, dl,
3489                         getValue(I.getArgOperand(0)).getValueType(),
3490                         getValue(I.getArgOperand(0)));
3491  }
3492
3493  setValue(&I, result);
3494}
3495
3496/// visitLog - Lower a log intrinsic. Handles the special sequences for
3497/// limited-precision mode.
3498void
3499SelectionDAGBuilder::visitLog(const CallInst &I) {
3500  SDValue result;
3501  DebugLoc dl = getCurDebugLoc();
3502
3503  if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3504      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3505    SDValue Op = getValue(I.getArgOperand(0));
3506    SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
3507
3508    // Scale the exponent by log(2) [0.69314718f].
3509    SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
3510    SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
3511                                        getF32Constant(DAG, 0x3f317218));
3512
3513    // Get the significand and build it into a floating-point number with
3514    // exponent of 1.
3515    SDValue X = GetSignificand(DAG, Op1, dl);
3516
3517    if (LimitFloatPrecision <= 6) {
3518      // For floating-point precision of 6:
3519      //
3520      //   LogofMantissa =
3521      //     -1.1609546f +
3522      //       (1.4034025f - 0.23903021f * x) * x;
3523      //
3524      // error 0.0034276066, which is better than 8 bits
3525      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3526                               getF32Constant(DAG, 0xbe74c456));
3527      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3528                               getF32Constant(DAG, 0x3fb3a2b1));
3529      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3530      SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3531                                          getF32Constant(DAG, 0x3f949a29));
3532
3533      result = DAG.getNode(ISD::FADD, dl,
3534                           MVT::f32, LogOfExponent, LogOfMantissa);
3535    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3536      // For floating-point precision of 12:
3537      //
3538      //   LogOfMantissa =
3539      //     -1.7417939f +
3540      //       (2.8212026f +
3541      //         (-1.4699568f +
3542      //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
3543      //
3544      // error 0.000061011436, which is 14 bits
3545      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3546                               getF32Constant(DAG, 0xbd67b6d6));
3547      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3548                               getF32Constant(DAG, 0x3ee4f4b8));
3549      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3550      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3551                               getF32Constant(DAG, 0x3fbc278b));
3552      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3553      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3554                               getF32Constant(DAG, 0x40348e95));
3555      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3556      SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3557                                          getF32Constant(DAG, 0x3fdef31a));
3558
3559      result = DAG.getNode(ISD::FADD, dl,
3560                           MVT::f32, LogOfExponent, LogOfMantissa);
3561    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3562      // For floating-point precision of 18:
3563      //
3564      //   LogOfMantissa =
3565      //     -2.1072184f +
3566      //       (4.2372794f +
3567      //         (-3.7029485f +
3568      //           (2.2781945f +
3569      //             (-0.87823314f +
3570      //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
3571      //
3572      // error 0.0000023660568, which is better than 18 bits
3573      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3574                               getF32Constant(DAG, 0xbc91e5ac));
3575      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3576                               getF32Constant(DAG, 0x3e4350aa));
3577      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3578      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3579                               getF32Constant(DAG, 0x3f60d3e3));
3580      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3581      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3582                               getF32Constant(DAG, 0x4011cdf0));
3583      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3584      SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3585                               getF32Constant(DAG, 0x406cfd1c));
3586      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3587      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3588                               getF32Constant(DAG, 0x408797cb));
3589      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3590      SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
3591                                          getF32Constant(DAG, 0x4006dcab));
3592
3593      result = DAG.getNode(ISD::FADD, dl,
3594                           MVT::f32, LogOfExponent, LogOfMantissa);
3595    }
3596  } else {
3597    // No special expansion.
3598    result = DAG.getNode(ISD::FLOG, dl,
3599                         getValue(I.getArgOperand(0)).getValueType(),
3600                         getValue(I.getArgOperand(0)));
3601  }
3602
3603  setValue(&I, result);
3604}
3605
3606/// visitLog2 - Lower a log2 intrinsic. Handles the special sequences for
3607/// limited-precision mode.
3608void
3609SelectionDAGBuilder::visitLog2(const CallInst &I) {
3610  SDValue result;
3611  DebugLoc dl = getCurDebugLoc();
3612
3613  if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3614      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3615    SDValue Op = getValue(I.getArgOperand(0));
3616    SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
3617
3618    // Get the exponent.
3619    SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
3620
3621    // Get the significand and build it into a floating-point number with
3622    // exponent of 1.
3623    SDValue X = GetSignificand(DAG, Op1, dl);
3624
3625    // Different possible minimax approximations of significand in
3626    // floating-point for various degrees of accuracy over [1,2].
3627    if (LimitFloatPrecision <= 6) {
3628      // For floating-point precision of 6:
3629      //
3630      //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
3631      //
3632      // error 0.0049451742, which is more than 7 bits
3633      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3634                               getF32Constant(DAG, 0xbeb08fe0));
3635      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3636                               getF32Constant(DAG, 0x40019463));
3637      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3638      SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3639                                           getF32Constant(DAG, 0x3fd6633d));
3640
3641      result = DAG.getNode(ISD::FADD, dl,
3642                           MVT::f32, LogOfExponent, Log2ofMantissa);
3643    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3644      // For floating-point precision of 12:
3645      //
3646      //   Log2ofMantissa =
3647      //     -2.51285454f +
3648      //       (4.07009056f +
3649      //         (-2.12067489f +
3650      //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
3651      //
3652      // error 0.0000876136000, which is better than 13 bits
3653      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3654                               getF32Constant(DAG, 0xbda7262e));
3655      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3656                               getF32Constant(DAG, 0x3f25280b));
3657      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3658      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3659                               getF32Constant(DAG, 0x4007b923));
3660      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3661      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3662                               getF32Constant(DAG, 0x40823e2f));
3663      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3664      SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3665                                           getF32Constant(DAG, 0x4020d29c));
3666
3667      result = DAG.getNode(ISD::FADD, dl,
3668                           MVT::f32, LogOfExponent, Log2ofMantissa);
3669    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3670      // For floating-point precision of 18:
3671      //
3672      //   Log2ofMantissa =
3673      //     -3.0400495f +
3674      //       (6.1129976f +
3675      //         (-5.3420409f +
3676      //           (3.2865683f +
3677      //             (-1.2669343f +
3678      //               (0.27515199f -
3679      //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
3680      //
3681      // error 0.0000018516, which is better than 18 bits
3682      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3683                               getF32Constant(DAG, 0xbcd2769e));
3684      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3685                               getF32Constant(DAG, 0x3e8ce0b9));
3686      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3687      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3688                               getF32Constant(DAG, 0x3fa22ae7));
3689      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3690      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3691                               getF32Constant(DAG, 0x40525723));
3692      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3693      SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3694                               getF32Constant(DAG, 0x40aaf200));
3695      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3696      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3697                               getF32Constant(DAG, 0x40c39dad));
3698      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3699      SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
3700                                           getF32Constant(DAG, 0x4042902c));
3701
3702      result = DAG.getNode(ISD::FADD, dl,
3703                           MVT::f32, LogOfExponent, Log2ofMantissa);
3704    }
3705  } else {
3706    // No special expansion.
3707    result = DAG.getNode(ISD::FLOG2, dl,
3708                         getValue(I.getArgOperand(0)).getValueType(),
3709                         getValue(I.getArgOperand(0)));
3710  }
3711
3712  setValue(&I, result);
3713}
3714
3715/// visitLog10 - Lower a log10 intrinsic. Handles the special sequences for
3716/// limited-precision mode.
3717void
3718SelectionDAGBuilder::visitLog10(const CallInst &I) {
3719  SDValue result;
3720  DebugLoc dl = getCurDebugLoc();
3721
3722  if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3723      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3724    SDValue Op = getValue(I.getArgOperand(0));
3725    SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
3726
3727    // Scale the exponent by log10(2) [0.30102999f].
3728    SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
3729    SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
3730                                        getF32Constant(DAG, 0x3e9a209a));
3731
3732    // Get the significand and build it into a floating-point number with
3733    // exponent of 1.
3734    SDValue X = GetSignificand(DAG, Op1, dl);
3735
3736    if (LimitFloatPrecision <= 6) {
3737      // For floating-point precision of 6:
3738      //
3739      //   Log10ofMantissa =
3740      //     -0.50419619f +
3741      //       (0.60948995f - 0.10380950f * x) * x;
3742      //
3743      // error 0.0014886165, which is 6 bits
3744      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3745                               getF32Constant(DAG, 0xbdd49a13));
3746      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3747                               getF32Constant(DAG, 0x3f1c0789));
3748      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3749      SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3750                                            getF32Constant(DAG, 0x3f011300));
3751
3752      result = DAG.getNode(ISD::FADD, dl,
3753                           MVT::f32, LogOfExponent, Log10ofMantissa);
3754    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3755      // For floating-point precision of 12:
3756      //
3757      //   Log10ofMantissa =
3758      //     -0.64831180f +
3759      //       (0.91751397f +
3760      //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
3761      //
3762      // error 0.00019228036, which is better than 12 bits
3763      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3764                               getF32Constant(DAG, 0x3d431f31));
3765      SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
3766                               getF32Constant(DAG, 0x3ea21fb2));
3767      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3768      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3769                               getF32Constant(DAG, 0x3f6ae232));
3770      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3771      SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
3772                                            getF32Constant(DAG, 0x3f25f7c3));
3773
3774      result = DAG.getNode(ISD::FADD, dl,
3775                           MVT::f32, LogOfExponent, Log10ofMantissa);
3776    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3777      // For floating-point precision of 18:
3778      //
3779      //   Log10ofMantissa =
3780      //     -0.84299375f +
3781      //       (1.5327582f +
3782      //         (-1.0688956f +
3783      //           (0.49102474f +
3784      //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
3785      //
3786      // error 0.0000037995730, which is better than 18 bits
3787      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3788                               getF32Constant(DAG, 0x3c5d51ce));
3789      SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
3790                               getF32Constant(DAG, 0x3e00685a));
3791      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3792      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3793                               getF32Constant(DAG, 0x3efb6798));
3794      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3795      SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
3796                               getF32Constant(DAG, 0x3f88d192));
3797      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3798      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3799                               getF32Constant(DAG, 0x3fc4316c));
3800      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3801      SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
3802                                            getF32Constant(DAG, 0x3f57ce70));
3803
3804      result = DAG.getNode(ISD::FADD, dl,
3805                           MVT::f32, LogOfExponent, Log10ofMantissa);
3806    }
3807  } else {
3808    // No special expansion.
3809    result = DAG.getNode(ISD::FLOG10, dl,
3810                         getValue(I.getArgOperand(0)).getValueType(),
3811                         getValue(I.getArgOperand(0)));
3812  }
3813
3814  setValue(&I, result);
3815}
3816
3817/// visitExp2 - Lower an exp2 intrinsic. Handles the special sequences for
3818/// limited-precision mode.
3819void
3820SelectionDAGBuilder::visitExp2(const CallInst &I) {
3821  SDValue result;
3822  DebugLoc dl = getCurDebugLoc();
3823
3824  if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3825      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3826    SDValue Op = getValue(I.getArgOperand(0));
3827
3828    SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Op);
3829
3830    //   FractionalPartOfX = x - (float)IntegerPartOfX;
3831    SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
3832    SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, Op, t1);
3833
3834    //   IntegerPartOfX <<= 23;
3835    IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
3836                                 DAG.getConstant(23, TLI.getPointerTy()));
3837
3838    if (LimitFloatPrecision <= 6) {
3839      // For floating-point precision of 6:
3840      //
3841      //   TwoToFractionalPartOfX =
3842      //     0.997535578f +
3843      //       (0.735607626f + 0.252464424f * x) * x;
3844      //
3845      // error 0.0144103317, which is 6 bits
3846      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3847                               getF32Constant(DAG, 0x3e814304));
3848      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3849                               getF32Constant(DAG, 0x3f3c50c8));
3850      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3851      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3852                               getF32Constant(DAG, 0x3f7f5e7e));
3853      SDValue t6 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t5);
3854      SDValue TwoToFractionalPartOfX =
3855        DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX);
3856
3857      result = DAG.getNode(ISD::BITCAST, dl,
3858                           MVT::f32, TwoToFractionalPartOfX);
3859    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3860      // For floating-point precision of 12:
3861      //
3862      //   TwoToFractionalPartOfX =
3863      //     0.999892986f +
3864      //       (0.696457318f +
3865      //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
3866      //
3867      // error 0.000107046256, which is 13 to 14 bits
3868      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3869                               getF32Constant(DAG, 0x3da235e3));
3870      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3871                               getF32Constant(DAG, 0x3e65b8f3));
3872      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3873      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3874                               getF32Constant(DAG, 0x3f324b07));
3875      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3876      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3877                               getF32Constant(DAG, 0x3f7ff8fd));
3878      SDValue t8 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t7);
3879      SDValue TwoToFractionalPartOfX =
3880        DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX);
3881
3882      result = DAG.getNode(ISD::BITCAST, dl,
3883                           MVT::f32, TwoToFractionalPartOfX);
3884    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3885      // For floating-point precision of 18:
3886      //
3887      //   TwoToFractionalPartOfX =
3888      //     0.999999982f +
3889      //       (0.693148872f +
3890      //         (0.240227044f +
3891      //           (0.554906021e-1f +
3892      //             (0.961591928e-2f +
3893      //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
3894      // error 2.47208000*10^(-7), which is better than 18 bits
3895      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3896                               getF32Constant(DAG, 0x3924b03e));
3897      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3898                               getF32Constant(DAG, 0x3ab24b87));
3899      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3900      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3901                               getF32Constant(DAG, 0x3c1d8c17));
3902      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3903      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3904                               getF32Constant(DAG, 0x3d634a1d));
3905      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3906      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3907                               getF32Constant(DAG, 0x3e75fe14));
3908      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3909      SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
3910                                getF32Constant(DAG, 0x3f317234));
3911      SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
3912      SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
3913                                getF32Constant(DAG, 0x3f800000));
3914      SDValue t14 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t13);
3915      SDValue TwoToFractionalPartOfX =
3916        DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX);
3917
3918      result = DAG.getNode(ISD::BITCAST, dl,
3919                           MVT::f32, TwoToFractionalPartOfX);
3920    }
3921  } else {
3922    // No special expansion.
3923    result = DAG.getNode(ISD::FEXP2, dl,
3924                         getValue(I.getArgOperand(0)).getValueType(),
3925                         getValue(I.getArgOperand(0)));
3926  }
3927
3928  setValue(&I, result);
3929}
3930
3931/// visitPow - Lower a pow intrinsic. Handles the special sequences for
3932/// limited-precision mode with x == 10.0f.
3933void
3934SelectionDAGBuilder::visitPow(const CallInst &I) {
3935  SDValue result;
3936  const Value *Val = I.getArgOperand(0);
3937  DebugLoc dl = getCurDebugLoc();
3938  bool IsExp10 = false;
3939
3940  if (getValue(Val).getValueType() == MVT::f32 &&
3941      getValue(I.getArgOperand(1)).getValueType() == MVT::f32 &&
3942      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3943    if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(Val))) {
3944      if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
3945        APFloat Ten(10.0f);
3946        IsExp10 = CFP->getValueAPF().bitwiseIsEqual(Ten);
3947      }
3948    }
3949  }
3950
3951  if (IsExp10 && LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3952    SDValue Op = getValue(I.getArgOperand(1));
3953
3954    // Put the exponent in the right bit position for later addition to the
3955    // final result:
3956    //
3957    //   #define LOG2OF10 3.3219281f
3958    //   IntegerPartOfX = (int32_t)(x * LOG2OF10);
3959    SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
3960                             getF32Constant(DAG, 0x40549a78));
3961    SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
3962
3963    //   FractionalPartOfX = x - (float)IntegerPartOfX;
3964    SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
3965    SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
3966
3967    //   IntegerPartOfX <<= 23;
3968    IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
3969                                 DAG.getConstant(23, TLI.getPointerTy()));
3970
3971    if (LimitFloatPrecision <= 6) {
3972      // For floating-point precision of 6:
3973      //
3974      //   twoToFractionalPartOfX =
3975      //     0.997535578f +
3976      //       (0.735607626f + 0.252464424f * x) * x;
3977      //
3978      // error 0.0144103317, which is 6 bits
3979      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3980                               getF32Constant(DAG, 0x3e814304));
3981      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3982                               getF32Constant(DAG, 0x3f3c50c8));
3983      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3984      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3985                               getF32Constant(DAG, 0x3f7f5e7e));
3986      SDValue t6 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t5);
3987      SDValue TwoToFractionalPartOfX =
3988        DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX);
3989
3990      result = DAG.getNode(ISD::BITCAST, dl,
3991                           MVT::f32, TwoToFractionalPartOfX);
3992    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3993      // For floating-point precision of 12:
3994      //
3995      //   TwoToFractionalPartOfX =
3996      //     0.999892986f +
3997      //       (0.696457318f +
3998      //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
3999      //
4000      // error 0.000107046256, which is 13 to 14 bits
4001      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4002                               getF32Constant(DAG, 0x3da235e3));
4003      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4004                               getF32Constant(DAG, 0x3e65b8f3));
4005      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4006      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4007                               getF32Constant(DAG, 0x3f324b07));
4008      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4009      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4010                               getF32Constant(DAG, 0x3f7ff8fd));
4011      SDValue t8 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t7);
4012      SDValue TwoToFractionalPartOfX =
4013        DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX);
4014
4015      result = DAG.getNode(ISD::BITCAST, dl,
4016                           MVT::f32, TwoToFractionalPartOfX);
4017    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
4018      // For floating-point precision of 18:
4019      //
4020      //   TwoToFractionalPartOfX =
4021      //     0.999999982f +
4022      //       (0.693148872f +
4023      //         (0.240227044f +
4024      //           (0.554906021e-1f +
4025      //             (0.961591928e-2f +
4026      //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
4027      // error 2.47208000*10^(-7), which is better than 18 bits
4028      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4029                               getF32Constant(DAG, 0x3924b03e));
4030      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4031                               getF32Constant(DAG, 0x3ab24b87));
4032      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4033      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4034                               getF32Constant(DAG, 0x3c1d8c17));
4035      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4036      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4037                               getF32Constant(DAG, 0x3d634a1d));
4038      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4039      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4040                               getF32Constant(DAG, 0x3e75fe14));
4041      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4042      SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
4043                                getF32Constant(DAG, 0x3f317234));
4044      SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
4045      SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
4046                                getF32Constant(DAG, 0x3f800000));
4047      SDValue t14 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t13);
4048      SDValue TwoToFractionalPartOfX =
4049        DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX);
4050
4051      result = DAG.getNode(ISD::BITCAST, dl,
4052                           MVT::f32, TwoToFractionalPartOfX);
4053    }
4054  } else {
4055    // No special expansion.
4056    result = DAG.getNode(ISD::FPOW, dl,
4057                         getValue(I.getArgOperand(0)).getValueType(),
4058                         getValue(I.getArgOperand(0)),
4059                         getValue(I.getArgOperand(1)));
4060  }
4061
4062  setValue(&I, result);
4063}
4064
4065
4066/// ExpandPowI - Expand a llvm.powi intrinsic.
4067static SDValue ExpandPowI(DebugLoc DL, SDValue LHS, SDValue RHS,
4068                          SelectionDAG &DAG) {
4069  // If RHS is a constant, we can expand this out to a multiplication tree,
4070  // otherwise we end up lowering to a call to __powidf2 (for example).  When
4071  // optimizing for size, we only want to do this if the expansion would produce
4072  // a small number of multiplies, otherwise we do the full expansion.
4073  if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
4074    // Get the exponent as a positive value.
4075    unsigned Val = RHSC->getSExtValue();
4076    if ((int)Val < 0) Val = -Val;
4077
4078    // powi(x, 0) -> 1.0
4079    if (Val == 0)
4080      return DAG.getConstantFP(1.0, LHS.getValueType());
4081
4082    const Function *F = DAG.getMachineFunction().getFunction();
4083    if (!F->hasFnAttr(Attribute::OptimizeForSize) ||
4084        // If optimizing for size, don't insert too many multiplies.  This
4085        // inserts up to 5 multiplies.
4086        CountPopulation_32(Val)+Log2_32(Val) < 7) {
4087      // We use the simple binary decomposition method to generate the multiply
4088      // sequence.  There are more optimal ways to do this (for example,
4089      // powi(x,15) generates one more multiply than it should), but this has
4090      // the benefit of being both really simple and much better than a libcall.
4091      SDValue Res;  // Logically starts equal to 1.0
4092      SDValue CurSquare = LHS;
4093      while (Val) {
4094        if (Val & 1) {
4095          if (Res.getNode())
4096            Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare);
4097          else
4098            Res = CurSquare;  // 1.0*CurSquare.
4099        }
4100
4101        CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
4102                                CurSquare, CurSquare);
4103        Val >>= 1;
4104      }
4105
4106      // If the original was negative, invert the result, producing 1/(x*x*x).
4107      if (RHSC->getSExtValue() < 0)
4108        Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
4109                          DAG.getConstantFP(1.0, LHS.getValueType()), Res);
4110      return Res;
4111    }
4112  }
4113
4114  // Otherwise, expand to a libcall.
4115  return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
4116}
4117
4118// getTruncatedArgReg - Find underlying register used for an truncated
4119// argument.
4120static unsigned getTruncatedArgReg(const SDValue &N) {
4121  if (N.getOpcode() != ISD::TRUNCATE)
4122    return 0;
4123
4124  const SDValue &Ext = N.getOperand(0);
4125  if (Ext.getOpcode() == ISD::AssertZext || Ext.getOpcode() == ISD::AssertSext){
4126    const SDValue &CFR = Ext.getOperand(0);
4127    if (CFR.getOpcode() == ISD::CopyFromReg)
4128      return cast<RegisterSDNode>(CFR.getOperand(1))->getReg();
4129    else
4130      if (CFR.getOpcode() == ISD::TRUNCATE)
4131        return getTruncatedArgReg(CFR);
4132  }
4133  return 0;
4134}
4135
4136/// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function
4137/// argument, create the corresponding DBG_VALUE machine instruction for it now.
4138/// At the end of instruction selection, they will be inserted to the entry BB.
4139bool
4140SelectionDAGBuilder::EmitFuncArgumentDbgValue(const Value *V, MDNode *Variable,
4141                                              int64_t Offset,
4142                                              const SDValue &N) {
4143  const Argument *Arg = dyn_cast<Argument>(V);
4144  if (!Arg)
4145    return false;
4146
4147  MachineFunction &MF = DAG.getMachineFunction();
4148  const TargetInstrInfo *TII = DAG.getTarget().getInstrInfo();
4149  const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
4150
4151  // Ignore inlined function arguments here.
4152  DIVariable DV(Variable);
4153  if (DV.isInlinedFnArgument(MF.getFunction()))
4154    return false;
4155
4156  unsigned Reg = 0;
4157  if (Arg->hasByValAttr()) {
4158    // Byval arguments' frame index is recorded during argument lowering.
4159    // Use this info directly.
4160    Reg = TRI->getFrameRegister(MF);
4161    Offset = FuncInfo.getByValArgumentFrameIndex(Arg);
4162    // If byval argument ofset is not recorded then ignore this.
4163    if (!Offset)
4164      Reg = 0;
4165  }
4166
4167  if (N.getNode()) {
4168    if (N.getOpcode() == ISD::CopyFromReg)
4169      Reg = cast<RegisterSDNode>(N.getOperand(1))->getReg();
4170    else
4171      Reg = getTruncatedArgReg(N);
4172    if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) {
4173      MachineRegisterInfo &RegInfo = MF.getRegInfo();
4174      unsigned PR = RegInfo.getLiveInPhysReg(Reg);
4175      if (PR)
4176        Reg = PR;
4177    }
4178  }
4179
4180  if (!Reg) {
4181    // Check if ValueMap has reg number.
4182    DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
4183    if (VMI != FuncInfo.ValueMap.end())
4184      Reg = VMI->second;
4185  }
4186
4187  if (!Reg && N.getNode()) {
4188    // Check if frame index is available.
4189    if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode()))
4190      if (FrameIndexSDNode *FINode =
4191          dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) {
4192        Reg = TRI->getFrameRegister(MF);
4193        Offset = FINode->getIndex();
4194      }
4195  }
4196
4197  if (!Reg)
4198    return false;
4199
4200  MachineInstrBuilder MIB = BuildMI(MF, getCurDebugLoc(),
4201                                    TII->get(TargetOpcode::DBG_VALUE))
4202    .addReg(Reg, RegState::Debug).addImm(Offset).addMetadata(Variable);
4203  FuncInfo.ArgDbgValues.push_back(&*MIB);
4204  return true;
4205}
4206
4207// VisualStudio defines setjmp as _setjmp
4208#if defined(_MSC_VER) && defined(setjmp) && \
4209                         !defined(setjmp_undefined_for_msvc)
4210#  pragma push_macro("setjmp")
4211#  undef setjmp
4212#  define setjmp_undefined_for_msvc
4213#endif
4214
4215/// visitIntrinsicCall - Lower the call to the specified intrinsic function.  If
4216/// we want to emit this as a call to a named external function, return the name
4217/// otherwise lower it and return null.
4218const char *
4219SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) {
4220  DebugLoc dl = getCurDebugLoc();
4221  SDValue Res;
4222
4223  switch (Intrinsic) {
4224  default:
4225    // By default, turn this into a target intrinsic node.
4226    visitTargetIntrinsic(I, Intrinsic);
4227    return 0;
4228  case Intrinsic::vastart:  visitVAStart(I); return 0;
4229  case Intrinsic::vaend:    visitVAEnd(I); return 0;
4230  case Intrinsic::vacopy:   visitVACopy(I); return 0;
4231  case Intrinsic::returnaddress:
4232    setValue(&I, DAG.getNode(ISD::RETURNADDR, dl, TLI.getPointerTy(),
4233                             getValue(I.getArgOperand(0))));
4234    return 0;
4235  case Intrinsic::frameaddress:
4236    setValue(&I, DAG.getNode(ISD::FRAMEADDR, dl, TLI.getPointerTy(),
4237                             getValue(I.getArgOperand(0))));
4238    return 0;
4239  case Intrinsic::setjmp:
4240    return "_setjmp"+!TLI.usesUnderscoreSetJmp();
4241  case Intrinsic::longjmp:
4242    return "_longjmp"+!TLI.usesUnderscoreLongJmp();
4243  case Intrinsic::memcpy: {
4244    // Assert for address < 256 since we support only user defined address
4245    // spaces.
4246    assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4247           < 256 &&
4248           cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace()
4249           < 256 &&
4250           "Unknown address space");
4251    SDValue Op1 = getValue(I.getArgOperand(0));
4252    SDValue Op2 = getValue(I.getArgOperand(1));
4253    SDValue Op3 = getValue(I.getArgOperand(2));
4254    unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4255    bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4256    DAG.setRoot(DAG.getMemcpy(getRoot(), dl, Op1, Op2, Op3, Align, isVol, false,
4257                              MachinePointerInfo(I.getArgOperand(0)),
4258                              MachinePointerInfo(I.getArgOperand(1))));
4259    return 0;
4260  }
4261  case Intrinsic::memset: {
4262    // Assert for address < 256 since we support only user defined address
4263    // spaces.
4264    assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4265           < 256 &&
4266           "Unknown address space");
4267    SDValue Op1 = getValue(I.getArgOperand(0));
4268    SDValue Op2 = getValue(I.getArgOperand(1));
4269    SDValue Op3 = getValue(I.getArgOperand(2));
4270    unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4271    bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4272    DAG.setRoot(DAG.getMemset(getRoot(), dl, Op1, Op2, Op3, Align, isVol,
4273                              MachinePointerInfo(I.getArgOperand(0))));
4274    return 0;
4275  }
4276  case Intrinsic::memmove: {
4277    // Assert for address < 256 since we support only user defined address
4278    // spaces.
4279    assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4280           < 256 &&
4281           cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace()
4282           < 256 &&
4283           "Unknown address space");
4284    SDValue Op1 = getValue(I.getArgOperand(0));
4285    SDValue Op2 = getValue(I.getArgOperand(1));
4286    SDValue Op3 = getValue(I.getArgOperand(2));
4287    unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4288    bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4289    DAG.setRoot(DAG.getMemmove(getRoot(), dl, Op1, Op2, Op3, Align, isVol,
4290                               MachinePointerInfo(I.getArgOperand(0)),
4291                               MachinePointerInfo(I.getArgOperand(1))));
4292    return 0;
4293  }
4294  case Intrinsic::dbg_declare: {
4295    const DbgDeclareInst &DI = cast<DbgDeclareInst>(I);
4296    MDNode *Variable = DI.getVariable();
4297    const Value *Address = DI.getAddress();
4298    if (!Address || !DIVariable(DI.getVariable()).Verify())
4299      return 0;
4300
4301    // Build an entry in DbgOrdering.  Debug info input nodes get an SDNodeOrder
4302    // but do not always have a corresponding SDNode built.  The SDNodeOrder
4303    // absolute, but not relative, values are different depending on whether
4304    // debug info exists.
4305    ++SDNodeOrder;
4306
4307    // Check if address has undef value.
4308    if (isa<UndefValue>(Address) ||
4309        (Address->use_empty() && !isa<Argument>(Address))) {
4310      DEBUG(dbgs() << "Dropping debug info for " << DI);
4311      return 0;
4312    }
4313
4314    SDValue &N = NodeMap[Address];
4315    if (!N.getNode() && isa<Argument>(Address))
4316      // Check unused arguments map.
4317      N = UnusedArgNodeMap[Address];
4318    SDDbgValue *SDV;
4319    if (N.getNode()) {
4320      // Parameters are handled specially.
4321      bool isParameter =
4322        DIVariable(Variable).getTag() == dwarf::DW_TAG_arg_variable;
4323      if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
4324        Address = BCI->getOperand(0);
4325      const AllocaInst *AI = dyn_cast<AllocaInst>(Address);
4326
4327      if (isParameter && !AI) {
4328        FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
4329        if (FINode)
4330          // Byval parameter.  We have a frame index at this point.
4331          SDV = DAG.getDbgValue(Variable, FINode->getIndex(),
4332                                0, dl, SDNodeOrder);
4333        else {
4334          // Address is an argument, so try to emit its dbg value using
4335          // virtual register info from the FuncInfo.ValueMap.
4336          EmitFuncArgumentDbgValue(Address, Variable, 0, N);
4337          return 0;
4338        }
4339      } else if (AI)
4340        SDV = DAG.getDbgValue(Variable, N.getNode(), N.getResNo(),
4341                              0, dl, SDNodeOrder);
4342      else {
4343        // Can't do anything with other non-AI cases yet.
4344        DEBUG(dbgs() << "Dropping debug info for " << DI);
4345        return 0;
4346      }
4347      DAG.AddDbgValue(SDV, N.getNode(), isParameter);
4348    } else {
4349      // If Address is an argument then try to emit its dbg value using
4350      // virtual register info from the FuncInfo.ValueMap.
4351      if (!EmitFuncArgumentDbgValue(Address, Variable, 0, N)) {
4352        // If variable is pinned by a alloca in dominating bb then
4353        // use StaticAllocaMap.
4354        if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) {
4355          if (AI->getParent() != DI.getParent()) {
4356            DenseMap<const AllocaInst*, int>::iterator SI =
4357              FuncInfo.StaticAllocaMap.find(AI);
4358            if (SI != FuncInfo.StaticAllocaMap.end()) {
4359              SDV = DAG.getDbgValue(Variable, SI->second,
4360                                    0, dl, SDNodeOrder);
4361              DAG.AddDbgValue(SDV, 0, false);
4362              return 0;
4363            }
4364          }
4365        }
4366        DEBUG(dbgs() << "Dropping debug info for " << DI);
4367      }
4368    }
4369    return 0;
4370  }
4371  case Intrinsic::dbg_value: {
4372    const DbgValueInst &DI = cast<DbgValueInst>(I);
4373    if (!DIVariable(DI.getVariable()).Verify())
4374      return 0;
4375
4376    MDNode *Variable = DI.getVariable();
4377    uint64_t Offset = DI.getOffset();
4378    const Value *V = DI.getValue();
4379    if (!V)
4380      return 0;
4381
4382    // Build an entry in DbgOrdering.  Debug info input nodes get an SDNodeOrder
4383    // but do not always have a corresponding SDNode built.  The SDNodeOrder
4384    // absolute, but not relative, values are different depending on whether
4385    // debug info exists.
4386    ++SDNodeOrder;
4387    SDDbgValue *SDV;
4388    if (isa<ConstantInt>(V) || isa<ConstantFP>(V)) {
4389      SDV = DAG.getDbgValue(Variable, V, Offset, dl, SDNodeOrder);
4390      DAG.AddDbgValue(SDV, 0, false);
4391    } else {
4392      // Do not use getValue() in here; we don't want to generate code at
4393      // this point if it hasn't been done yet.
4394      SDValue N = NodeMap[V];
4395      if (!N.getNode() && isa<Argument>(V))
4396        // Check unused arguments map.
4397        N = UnusedArgNodeMap[V];
4398      if (N.getNode()) {
4399        if (!EmitFuncArgumentDbgValue(V, Variable, Offset, N)) {
4400          SDV = DAG.getDbgValue(Variable, N.getNode(),
4401                                N.getResNo(), Offset, dl, SDNodeOrder);
4402          DAG.AddDbgValue(SDV, N.getNode(), false);
4403        }
4404      } else if (!V->use_empty() ) {
4405        // Do not call getValue(V) yet, as we don't want to generate code.
4406        // Remember it for later.
4407        DanglingDebugInfo DDI(&DI, dl, SDNodeOrder);
4408        DanglingDebugInfoMap[V] = DDI;
4409      } else {
4410        // We may expand this to cover more cases.  One case where we have no
4411        // data available is an unreferenced parameter.
4412        DEBUG(dbgs() << "Dropping debug info for " << DI);
4413      }
4414    }
4415
4416    // Build a debug info table entry.
4417    if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V))
4418      V = BCI->getOperand(0);
4419    const AllocaInst *AI = dyn_cast<AllocaInst>(V);
4420    // Don't handle byval struct arguments or VLAs, for example.
4421    if (!AI)
4422      return 0;
4423    DenseMap<const AllocaInst*, int>::iterator SI =
4424      FuncInfo.StaticAllocaMap.find(AI);
4425    if (SI == FuncInfo.StaticAllocaMap.end())
4426      return 0; // VLAs.
4427    int FI = SI->second;
4428
4429    MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4430    if (!DI.getDebugLoc().isUnknown() && MMI.hasDebugInfo())
4431      MMI.setVariableDbgInfo(Variable, FI, DI.getDebugLoc());
4432    return 0;
4433  }
4434  case Intrinsic::eh_exception: {
4435    // Insert the EXCEPTIONADDR instruction.
4436    assert(FuncInfo.MBB->isLandingPad() &&
4437           "Call to eh.exception not in landing pad!");
4438    SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
4439    SDValue Ops[1];
4440    Ops[0] = DAG.getRoot();
4441    SDValue Op = DAG.getNode(ISD::EXCEPTIONADDR, dl, VTs, Ops, 1);
4442    setValue(&I, Op);
4443    DAG.setRoot(Op.getValue(1));
4444    return 0;
4445  }
4446
4447  case Intrinsic::eh_selector: {
4448    MachineBasicBlock *CallMBB = FuncInfo.MBB;
4449    MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4450    if (CallMBB->isLandingPad())
4451      AddCatchInfo(I, &MMI, CallMBB);
4452    else {
4453#ifndef NDEBUG
4454      FuncInfo.CatchInfoLost.insert(&I);
4455#endif
4456      // FIXME: Mark exception selector register as live in.  Hack for PR1508.
4457      unsigned Reg = TLI.getExceptionSelectorRegister();
4458      if (Reg) FuncInfo.MBB->addLiveIn(Reg);
4459    }
4460
4461    // Insert the EHSELECTION instruction.
4462    SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
4463    SDValue Ops[2];
4464    Ops[0] = getValue(I.getArgOperand(0));
4465    Ops[1] = getRoot();
4466    SDValue Op = DAG.getNode(ISD::EHSELECTION, dl, VTs, Ops, 2);
4467    DAG.setRoot(Op.getValue(1));
4468    setValue(&I, DAG.getSExtOrTrunc(Op, dl, MVT::i32));
4469    return 0;
4470  }
4471
4472  case Intrinsic::eh_typeid_for: {
4473    // Find the type id for the given typeinfo.
4474    GlobalVariable *GV = ExtractTypeInfo(I.getArgOperand(0));
4475    unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV);
4476    Res = DAG.getConstant(TypeID, MVT::i32);
4477    setValue(&I, Res);
4478    return 0;
4479  }
4480
4481  case Intrinsic::eh_return_i32:
4482  case Intrinsic::eh_return_i64:
4483    DAG.getMachineFunction().getMMI().setCallsEHReturn(true);
4484    DAG.setRoot(DAG.getNode(ISD::EH_RETURN, dl,
4485                            MVT::Other,
4486                            getControlRoot(),
4487                            getValue(I.getArgOperand(0)),
4488                            getValue(I.getArgOperand(1))));
4489    return 0;
4490  case Intrinsic::eh_unwind_init:
4491    DAG.getMachineFunction().getMMI().setCallsUnwindInit(true);
4492    return 0;
4493  case Intrinsic::eh_dwarf_cfa: {
4494    SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), dl,
4495                                        TLI.getPointerTy());
4496    SDValue Offset = DAG.getNode(ISD::ADD, dl,
4497                                 TLI.getPointerTy(),
4498                                 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, dl,
4499                                             TLI.getPointerTy()),
4500                                 CfaArg);
4501    SDValue FA = DAG.getNode(ISD::FRAMEADDR, dl,
4502                             TLI.getPointerTy(),
4503                             DAG.getConstant(0, TLI.getPointerTy()));
4504    setValue(&I, DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(),
4505                             FA, Offset));
4506    return 0;
4507  }
4508  case Intrinsic::eh_sjlj_callsite: {
4509    MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4510    ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0));
4511    assert(CI && "Non-constant call site value in eh.sjlj.callsite!");
4512    assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
4513
4514    MMI.setCurrentCallSite(CI->getZExtValue());
4515    return 0;
4516  }
4517  case Intrinsic::eh_sjlj_setjmp: {
4518    setValue(&I, DAG.getNode(ISD::EH_SJLJ_SETJMP, dl, MVT::i32, getRoot(),
4519                             getValue(I.getArgOperand(0))));
4520    return 0;
4521  }
4522  case Intrinsic::eh_sjlj_longjmp: {
4523    DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, dl, MVT::Other,
4524                            getRoot(), getValue(I.getArgOperand(0))));
4525    return 0;
4526  }
4527  case Intrinsic::eh_sjlj_dispatch_setup: {
4528    DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_DISPATCHSETUP, dl, MVT::Other,
4529                            getRoot(), getValue(I.getArgOperand(0))));
4530    return 0;
4531  }
4532
4533  case Intrinsic::x86_mmx_pslli_w:
4534  case Intrinsic::x86_mmx_pslli_d:
4535  case Intrinsic::x86_mmx_pslli_q:
4536  case Intrinsic::x86_mmx_psrli_w:
4537  case Intrinsic::x86_mmx_psrli_d:
4538  case Intrinsic::x86_mmx_psrli_q:
4539  case Intrinsic::x86_mmx_psrai_w:
4540  case Intrinsic::x86_mmx_psrai_d: {
4541    SDValue ShAmt = getValue(I.getArgOperand(1));
4542    if (isa<ConstantSDNode>(ShAmt)) {
4543      visitTargetIntrinsic(I, Intrinsic);
4544      return 0;
4545    }
4546    unsigned NewIntrinsic = 0;
4547    EVT ShAmtVT = MVT::v2i32;
4548    switch (Intrinsic) {
4549    case Intrinsic::x86_mmx_pslli_w:
4550      NewIntrinsic = Intrinsic::x86_mmx_psll_w;
4551      break;
4552    case Intrinsic::x86_mmx_pslli_d:
4553      NewIntrinsic = Intrinsic::x86_mmx_psll_d;
4554      break;
4555    case Intrinsic::x86_mmx_pslli_q:
4556      NewIntrinsic = Intrinsic::x86_mmx_psll_q;
4557      break;
4558    case Intrinsic::x86_mmx_psrli_w:
4559      NewIntrinsic = Intrinsic::x86_mmx_psrl_w;
4560      break;
4561    case Intrinsic::x86_mmx_psrli_d:
4562      NewIntrinsic = Intrinsic::x86_mmx_psrl_d;
4563      break;
4564    case Intrinsic::x86_mmx_psrli_q:
4565      NewIntrinsic = Intrinsic::x86_mmx_psrl_q;
4566      break;
4567    case Intrinsic::x86_mmx_psrai_w:
4568      NewIntrinsic = Intrinsic::x86_mmx_psra_w;
4569      break;
4570    case Intrinsic::x86_mmx_psrai_d:
4571      NewIntrinsic = Intrinsic::x86_mmx_psra_d;
4572      break;
4573    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
4574    }
4575
4576    // The vector shift intrinsics with scalars uses 32b shift amounts but
4577    // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
4578    // to be zero.
4579    // We must do this early because v2i32 is not a legal type.
4580    DebugLoc dl = getCurDebugLoc();
4581    SDValue ShOps[2];
4582    ShOps[0] = ShAmt;
4583    ShOps[1] = DAG.getConstant(0, MVT::i32);
4584    ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 2);
4585    EVT DestVT = TLI.getValueType(I.getType());
4586    ShAmt = DAG.getNode(ISD::BITCAST, dl, DestVT, ShAmt);
4587    Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
4588                       DAG.getConstant(NewIntrinsic, MVT::i32),
4589                       getValue(I.getArgOperand(0)), ShAmt);
4590    setValue(&I, Res);
4591    return 0;
4592  }
4593  case Intrinsic::convertff:
4594  case Intrinsic::convertfsi:
4595  case Intrinsic::convertfui:
4596  case Intrinsic::convertsif:
4597  case Intrinsic::convertuif:
4598  case Intrinsic::convertss:
4599  case Intrinsic::convertsu:
4600  case Intrinsic::convertus:
4601  case Intrinsic::convertuu: {
4602    ISD::CvtCode Code = ISD::CVT_INVALID;
4603    switch (Intrinsic) {
4604    case Intrinsic::convertff:  Code = ISD::CVT_FF; break;
4605    case Intrinsic::convertfsi: Code = ISD::CVT_FS; break;
4606    case Intrinsic::convertfui: Code = ISD::CVT_FU; break;
4607    case Intrinsic::convertsif: Code = ISD::CVT_SF; break;
4608    case Intrinsic::convertuif: Code = ISD::CVT_UF; break;
4609    case Intrinsic::convertss:  Code = ISD::CVT_SS; break;
4610    case Intrinsic::convertsu:  Code = ISD::CVT_SU; break;
4611    case Intrinsic::convertus:  Code = ISD::CVT_US; break;
4612    case Intrinsic::convertuu:  Code = ISD::CVT_UU; break;
4613    }
4614    EVT DestVT = TLI.getValueType(I.getType());
4615    const Value *Op1 = I.getArgOperand(0);
4616    Res = DAG.getConvertRndSat(DestVT, getCurDebugLoc(), getValue(Op1),
4617                               DAG.getValueType(DestVT),
4618                               DAG.getValueType(getValue(Op1).getValueType()),
4619                               getValue(I.getArgOperand(1)),
4620                               getValue(I.getArgOperand(2)),
4621                               Code);
4622    setValue(&I, Res);
4623    return 0;
4624  }
4625  case Intrinsic::sqrt:
4626    setValue(&I, DAG.getNode(ISD::FSQRT, dl,
4627                             getValue(I.getArgOperand(0)).getValueType(),
4628                             getValue(I.getArgOperand(0))));
4629    return 0;
4630  case Intrinsic::powi:
4631    setValue(&I, ExpandPowI(dl, getValue(I.getArgOperand(0)),
4632                            getValue(I.getArgOperand(1)), DAG));
4633    return 0;
4634  case Intrinsic::sin:
4635    setValue(&I, DAG.getNode(ISD::FSIN, dl,
4636                             getValue(I.getArgOperand(0)).getValueType(),
4637                             getValue(I.getArgOperand(0))));
4638    return 0;
4639  case Intrinsic::cos:
4640    setValue(&I, DAG.getNode(ISD::FCOS, dl,
4641                             getValue(I.getArgOperand(0)).getValueType(),
4642                             getValue(I.getArgOperand(0))));
4643    return 0;
4644  case Intrinsic::log:
4645    visitLog(I);
4646    return 0;
4647  case Intrinsic::log2:
4648    visitLog2(I);
4649    return 0;
4650  case Intrinsic::log10:
4651    visitLog10(I);
4652    return 0;
4653  case Intrinsic::exp:
4654    visitExp(I);
4655    return 0;
4656  case Intrinsic::exp2:
4657    visitExp2(I);
4658    return 0;
4659  case Intrinsic::pow:
4660    visitPow(I);
4661    return 0;
4662  case Intrinsic::fma:
4663    setValue(&I, DAG.getNode(ISD::FMA, dl,
4664                             getValue(I.getArgOperand(0)).getValueType(),
4665                             getValue(I.getArgOperand(0)),
4666                             getValue(I.getArgOperand(1)),
4667                             getValue(I.getArgOperand(2))));
4668    return 0;
4669  case Intrinsic::convert_to_fp16:
4670    setValue(&I, DAG.getNode(ISD::FP32_TO_FP16, dl,
4671                             MVT::i16, getValue(I.getArgOperand(0))));
4672    return 0;
4673  case Intrinsic::convert_from_fp16:
4674    setValue(&I, DAG.getNode(ISD::FP16_TO_FP32, dl,
4675                             MVT::f32, getValue(I.getArgOperand(0))));
4676    return 0;
4677  case Intrinsic::pcmarker: {
4678    SDValue Tmp = getValue(I.getArgOperand(0));
4679    DAG.setRoot(DAG.getNode(ISD::PCMARKER, dl, MVT::Other, getRoot(), Tmp));
4680    return 0;
4681  }
4682  case Intrinsic::readcyclecounter: {
4683    SDValue Op = getRoot();
4684    Res = DAG.getNode(ISD::READCYCLECOUNTER, dl,
4685                      DAG.getVTList(MVT::i64, MVT::Other),
4686                      &Op, 1);
4687    setValue(&I, Res);
4688    DAG.setRoot(Res.getValue(1));
4689    return 0;
4690  }
4691  case Intrinsic::bswap:
4692    setValue(&I, DAG.getNode(ISD::BSWAP, dl,
4693                             getValue(I.getArgOperand(0)).getValueType(),
4694                             getValue(I.getArgOperand(0))));
4695    return 0;
4696  case Intrinsic::cttz: {
4697    SDValue Arg = getValue(I.getArgOperand(0));
4698    EVT Ty = Arg.getValueType();
4699    setValue(&I, DAG.getNode(ISD::CTTZ, dl, Ty, Arg));
4700    return 0;
4701  }
4702  case Intrinsic::ctlz: {
4703    SDValue Arg = getValue(I.getArgOperand(0));
4704    EVT Ty = Arg.getValueType();
4705    setValue(&I, DAG.getNode(ISD::CTLZ, dl, Ty, Arg));
4706    return 0;
4707  }
4708  case Intrinsic::ctpop: {
4709    SDValue Arg = getValue(I.getArgOperand(0));
4710    EVT Ty = Arg.getValueType();
4711    setValue(&I, DAG.getNode(ISD::CTPOP, dl, Ty, Arg));
4712    return 0;
4713  }
4714  case Intrinsic::stacksave: {
4715    SDValue Op = getRoot();
4716    Res = DAG.getNode(ISD::STACKSAVE, dl,
4717                      DAG.getVTList(TLI.getPointerTy(), MVT::Other), &Op, 1);
4718    setValue(&I, Res);
4719    DAG.setRoot(Res.getValue(1));
4720    return 0;
4721  }
4722  case Intrinsic::stackrestore: {
4723    Res = getValue(I.getArgOperand(0));
4724    DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, dl, MVT::Other, getRoot(), Res));
4725    return 0;
4726  }
4727  case Intrinsic::stackprotector: {
4728    // Emit code into the DAG to store the stack guard onto the stack.
4729    MachineFunction &MF = DAG.getMachineFunction();
4730    MachineFrameInfo *MFI = MF.getFrameInfo();
4731    EVT PtrTy = TLI.getPointerTy();
4732
4733    SDValue Src = getValue(I.getArgOperand(0));   // The guard's value.
4734    AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
4735
4736    int FI = FuncInfo.StaticAllocaMap[Slot];
4737    MFI->setStackProtectorIndex(FI);
4738
4739    SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
4740
4741    // Store the stack protector onto the stack.
4742    Res = DAG.getStore(getRoot(), getCurDebugLoc(), Src, FIN,
4743                       MachinePointerInfo::getFixedStack(FI),
4744                       true, false, 0);
4745    setValue(&I, Res);
4746    DAG.setRoot(Res);
4747    return 0;
4748  }
4749  case Intrinsic::objectsize: {
4750    // If we don't know by now, we're never going to know.
4751    ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1));
4752
4753    assert(CI && "Non-constant type in __builtin_object_size?");
4754
4755    SDValue Arg = getValue(I.getCalledValue());
4756    EVT Ty = Arg.getValueType();
4757
4758    if (CI->isZero())
4759      Res = DAG.getConstant(-1ULL, Ty);
4760    else
4761      Res = DAG.getConstant(0, Ty);
4762
4763    setValue(&I, Res);
4764    return 0;
4765  }
4766  case Intrinsic::var_annotation:
4767    // Discard annotate attributes
4768    return 0;
4769
4770  case Intrinsic::init_trampoline: {
4771    const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
4772
4773    SDValue Ops[6];
4774    Ops[0] = getRoot();
4775    Ops[1] = getValue(I.getArgOperand(0));
4776    Ops[2] = getValue(I.getArgOperand(1));
4777    Ops[3] = getValue(I.getArgOperand(2));
4778    Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
4779    Ops[5] = DAG.getSrcValue(F);
4780
4781    Res = DAG.getNode(ISD::TRAMPOLINE, dl,
4782                      DAG.getVTList(TLI.getPointerTy(), MVT::Other),
4783                      Ops, 6);
4784
4785    setValue(&I, Res);
4786    DAG.setRoot(Res.getValue(1));
4787    return 0;
4788  }
4789  case Intrinsic::gcroot:
4790    if (GFI) {
4791      const Value *Alloca = I.getArgOperand(0);
4792      const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
4793
4794      FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
4795      GFI->addStackRoot(FI->getIndex(), TypeMap);
4796    }
4797    return 0;
4798  case Intrinsic::gcread:
4799  case Intrinsic::gcwrite:
4800    llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
4801    return 0;
4802  case Intrinsic::flt_rounds:
4803    setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, dl, MVT::i32));
4804    return 0;
4805
4806  case Intrinsic::expect: {
4807    // Just replace __builtin_expect(exp, c) with EXP.
4808    setValue(&I, getValue(I.getArgOperand(0)));
4809    return 0;
4810  }
4811
4812  case Intrinsic::trap: {
4813    StringRef TrapFuncName = getTrapFunctionName();
4814    if (TrapFuncName.empty()) {
4815      DAG.setRoot(DAG.getNode(ISD::TRAP, dl,MVT::Other, getRoot()));
4816      return 0;
4817    }
4818    TargetLowering::ArgListTy Args;
4819    std::pair<SDValue, SDValue> Result =
4820      TLI.LowerCallTo(getRoot(), I.getType(),
4821                 false, false, false, false, 0, CallingConv::C,
4822                 /*isTailCall=*/false, /*isReturnValueUsed=*/true,
4823                 DAG.getExternalSymbol(TrapFuncName.data(), TLI.getPointerTy()),
4824                 Args, DAG, getCurDebugLoc());
4825    DAG.setRoot(Result.second);
4826    return 0;
4827  }
4828  case Intrinsic::uadd_with_overflow:
4829    return implVisitAluOverflow(I, ISD::UADDO);
4830  case Intrinsic::sadd_with_overflow:
4831    return implVisitAluOverflow(I, ISD::SADDO);
4832  case Intrinsic::usub_with_overflow:
4833    return implVisitAluOverflow(I, ISD::USUBO);
4834  case Intrinsic::ssub_with_overflow:
4835    return implVisitAluOverflow(I, ISD::SSUBO);
4836  case Intrinsic::umul_with_overflow:
4837    return implVisitAluOverflow(I, ISD::UMULO);
4838  case Intrinsic::smul_with_overflow:
4839    return implVisitAluOverflow(I, ISD::SMULO);
4840
4841  case Intrinsic::prefetch: {
4842    SDValue Ops[5];
4843    unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
4844    Ops[0] = getRoot();
4845    Ops[1] = getValue(I.getArgOperand(0));
4846    Ops[2] = getValue(I.getArgOperand(1));
4847    Ops[3] = getValue(I.getArgOperand(2));
4848    Ops[4] = getValue(I.getArgOperand(3));
4849    DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, dl,
4850                                        DAG.getVTList(MVT::Other),
4851                                        &Ops[0], 5,
4852                                        EVT::getIntegerVT(*Context, 8),
4853                                        MachinePointerInfo(I.getArgOperand(0)),
4854                                        0, /* align */
4855                                        false, /* volatile */
4856                                        rw==0, /* read */
4857                                        rw==1)); /* write */
4858    return 0;
4859  }
4860  case Intrinsic::memory_barrier: {
4861    SDValue Ops[6];
4862    Ops[0] = getRoot();
4863    for (int x = 1; x < 6; ++x)
4864      Ops[x] = getValue(I.getArgOperand(x - 1));
4865
4866    DAG.setRoot(DAG.getNode(ISD::MEMBARRIER, dl, MVT::Other, &Ops[0], 6));
4867    return 0;
4868  }
4869  case Intrinsic::atomic_cmp_swap: {
4870    SDValue Root = getRoot();
4871    SDValue L =
4872      DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, getCurDebugLoc(),
4873                    getValue(I.getArgOperand(1)).getValueType().getSimpleVT(),
4874                    Root,
4875                    getValue(I.getArgOperand(0)),
4876                    getValue(I.getArgOperand(1)),
4877                    getValue(I.getArgOperand(2)),
4878                    MachinePointerInfo(I.getArgOperand(0)));
4879    setValue(&I, L);
4880    DAG.setRoot(L.getValue(1));
4881    return 0;
4882  }
4883  case Intrinsic::atomic_load_add:
4884    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_ADD);
4885  case Intrinsic::atomic_load_sub:
4886    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_SUB);
4887  case Intrinsic::atomic_load_or:
4888    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_OR);
4889  case Intrinsic::atomic_load_xor:
4890    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_XOR);
4891  case Intrinsic::atomic_load_and:
4892    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_AND);
4893  case Intrinsic::atomic_load_nand:
4894    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_NAND);
4895  case Intrinsic::atomic_load_max:
4896    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MAX);
4897  case Intrinsic::atomic_load_min:
4898    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MIN);
4899  case Intrinsic::atomic_load_umin:
4900    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMIN);
4901  case Intrinsic::atomic_load_umax:
4902    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMAX);
4903  case Intrinsic::atomic_swap:
4904    return implVisitBinaryAtomic(I, ISD::ATOMIC_SWAP);
4905
4906  case Intrinsic::invariant_start:
4907  case Intrinsic::lifetime_start:
4908    // Discard region information.
4909    setValue(&I, DAG.getUNDEF(TLI.getPointerTy()));
4910    return 0;
4911  case Intrinsic::invariant_end:
4912  case Intrinsic::lifetime_end:
4913    // Discard region information.
4914    return 0;
4915  }
4916}
4917
4918void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee,
4919                                      bool isTailCall,
4920                                      MachineBasicBlock *LandingPad) {
4921  PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
4922  FunctionType *FTy = cast<FunctionType>(PT->getElementType());
4923  Type *RetTy = FTy->getReturnType();
4924  MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4925  MCSymbol *BeginLabel = 0;
4926
4927  TargetLowering::ArgListTy Args;
4928  TargetLowering::ArgListEntry Entry;
4929  Args.reserve(CS.arg_size());
4930
4931  // Check whether the function can return without sret-demotion.
4932  SmallVector<ISD::OutputArg, 4> Outs;
4933  SmallVector<uint64_t, 4> Offsets;
4934  GetReturnInfo(RetTy, CS.getAttributes().getRetAttributes(),
4935                Outs, TLI, &Offsets);
4936
4937  bool CanLowerReturn = TLI.CanLowerReturn(CS.getCallingConv(),
4938					   DAG.getMachineFunction(),
4939					   FTy->isVarArg(), Outs,
4940					   FTy->getContext());
4941
4942  SDValue DemoteStackSlot;
4943  int DemoteStackIdx = -100;
4944
4945  if (!CanLowerReturn) {
4946    uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(
4947                      FTy->getReturnType());
4948    unsigned Align  = TLI.getTargetData()->getPrefTypeAlignment(
4949                      FTy->getReturnType());
4950    MachineFunction &MF = DAG.getMachineFunction();
4951    DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
4952    Type *StackSlotPtrType = PointerType::getUnqual(FTy->getReturnType());
4953
4954    DemoteStackSlot = DAG.getFrameIndex(DemoteStackIdx, TLI.getPointerTy());
4955    Entry.Node = DemoteStackSlot;
4956    Entry.Ty = StackSlotPtrType;
4957    Entry.isSExt = false;
4958    Entry.isZExt = false;
4959    Entry.isInReg = false;
4960    Entry.isSRet = true;
4961    Entry.isNest = false;
4962    Entry.isByVal = false;
4963    Entry.Alignment = Align;
4964    Args.push_back(Entry);
4965    RetTy = Type::getVoidTy(FTy->getContext());
4966  }
4967
4968  for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
4969       i != e; ++i) {
4970    const Value *V = *i;
4971
4972    // Skip empty types
4973    if (V->getType()->isEmptyTy())
4974      continue;
4975
4976    SDValue ArgNode = getValue(V);
4977    Entry.Node = ArgNode; Entry.Ty = V->getType();
4978
4979    unsigned attrInd = i - CS.arg_begin() + 1;
4980    Entry.isSExt  = CS.paramHasAttr(attrInd, Attribute::SExt);
4981    Entry.isZExt  = CS.paramHasAttr(attrInd, Attribute::ZExt);
4982    Entry.isInReg = CS.paramHasAttr(attrInd, Attribute::InReg);
4983    Entry.isSRet  = CS.paramHasAttr(attrInd, Attribute::StructRet);
4984    Entry.isNest  = CS.paramHasAttr(attrInd, Attribute::Nest);
4985    Entry.isByVal = CS.paramHasAttr(attrInd, Attribute::ByVal);
4986    Entry.Alignment = CS.getParamAlignment(attrInd);
4987    Args.push_back(Entry);
4988  }
4989
4990  if (LandingPad) {
4991    // Insert a label before the invoke call to mark the try range.  This can be
4992    // used to detect deletion of the invoke via the MachineModuleInfo.
4993    BeginLabel = MMI.getContext().CreateTempSymbol();
4994
4995    // For SjLj, keep track of which landing pads go with which invokes
4996    // so as to maintain the ordering of pads in the LSDA.
4997    unsigned CallSiteIndex = MMI.getCurrentCallSite();
4998    if (CallSiteIndex) {
4999      MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
5000      // Now that the call site is handled, stop tracking it.
5001      MMI.setCurrentCallSite(0);
5002    }
5003
5004    // Both PendingLoads and PendingExports must be flushed here;
5005    // this call might not return.
5006    (void)getRoot();
5007    DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getControlRoot(), BeginLabel));
5008  }
5009
5010  // Check if target-independent constraints permit a tail call here.
5011  // Target-dependent constraints are checked within TLI.LowerCallTo.
5012  if (isTailCall &&
5013      !isInTailCallPosition(CS, CS.getAttributes().getRetAttributes(), TLI))
5014    isTailCall = false;
5015
5016  // If there's a possibility that fast-isel has already selected some amount
5017  // of the current basic block, don't emit a tail call.
5018  if (isTailCall && EnableFastISel)
5019    isTailCall = false;
5020
5021  std::pair<SDValue,SDValue> Result =
5022    TLI.LowerCallTo(getRoot(), RetTy,
5023                    CS.paramHasAttr(0, Attribute::SExt),
5024                    CS.paramHasAttr(0, Attribute::ZExt), FTy->isVarArg(),
5025                    CS.paramHasAttr(0, Attribute::InReg), FTy->getNumParams(),
5026                    CS.getCallingConv(),
5027                    isTailCall,
5028                    !CS.getInstruction()->use_empty(),
5029                    Callee, Args, DAG, getCurDebugLoc());
5030  assert((isTailCall || Result.second.getNode()) &&
5031         "Non-null chain expected with non-tail call!");
5032  assert((Result.second.getNode() || !Result.first.getNode()) &&
5033         "Null value expected with tail call!");
5034  if (Result.first.getNode()) {
5035    setValue(CS.getInstruction(), Result.first);
5036  } else if (!CanLowerReturn && Result.second.getNode()) {
5037    // The instruction result is the result of loading from the
5038    // hidden sret parameter.
5039    SmallVector<EVT, 1> PVTs;
5040    Type *PtrRetTy = PointerType::getUnqual(FTy->getReturnType());
5041
5042    ComputeValueVTs(TLI, PtrRetTy, PVTs);
5043    assert(PVTs.size() == 1 && "Pointers should fit in one register");
5044    EVT PtrVT = PVTs[0];
5045    unsigned NumValues = Outs.size();
5046    SmallVector<SDValue, 4> Values(NumValues);
5047    SmallVector<SDValue, 4> Chains(NumValues);
5048
5049    for (unsigned i = 0; i < NumValues; ++i) {
5050      SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT,
5051                                DemoteStackSlot,
5052                                DAG.getConstant(Offsets[i], PtrVT));
5053      SDValue L = DAG.getLoad(Outs[i].VT, getCurDebugLoc(), Result.second,
5054                              Add,
5055                  MachinePointerInfo::getFixedStack(DemoteStackIdx, Offsets[i]),
5056                              false, false, 1);
5057      Values[i] = L;
5058      Chains[i] = L.getValue(1);
5059    }
5060
5061    SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
5062                                MVT::Other, &Chains[0], NumValues);
5063    PendingLoads.push_back(Chain);
5064
5065    // Collect the legal value parts into potentially illegal values
5066    // that correspond to the original function's return values.
5067    SmallVector<EVT, 4> RetTys;
5068    RetTy = FTy->getReturnType();
5069    ComputeValueVTs(TLI, RetTy, RetTys);
5070    ISD::NodeType AssertOp = ISD::DELETED_NODE;
5071    SmallVector<SDValue, 4> ReturnValues;
5072    unsigned CurReg = 0;
5073    for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
5074      EVT VT = RetTys[I];
5075      EVT RegisterVT = TLI.getRegisterType(RetTy->getContext(), VT);
5076      unsigned NumRegs = TLI.getNumRegisters(RetTy->getContext(), VT);
5077
5078      SDValue ReturnValue =
5079        getCopyFromParts(DAG, getCurDebugLoc(), &Values[CurReg], NumRegs,
5080                         RegisterVT, VT, AssertOp);
5081      ReturnValues.push_back(ReturnValue);
5082      CurReg += NumRegs;
5083    }
5084
5085    setValue(CS.getInstruction(),
5086             DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
5087                         DAG.getVTList(&RetTys[0], RetTys.size()),
5088                         &ReturnValues[0], ReturnValues.size()));
5089  }
5090
5091  // Assign order to nodes here. If the call does not produce a result, it won't
5092  // be mapped to a SDNode and visit() will not assign it an order number.
5093  if (!Result.second.getNode()) {
5094    // As a special case, a null chain means that a tail call has been emitted and
5095    // the DAG root is already updated.
5096    HasTailCall = true;
5097    ++SDNodeOrder;
5098    AssignOrderingToNode(DAG.getRoot().getNode());
5099  } else {
5100    DAG.setRoot(Result.second);
5101    ++SDNodeOrder;
5102    AssignOrderingToNode(Result.second.getNode());
5103  }
5104
5105  if (LandingPad) {
5106    // Insert a label at the end of the invoke call to mark the try range.  This
5107    // can be used to detect deletion of the invoke via the MachineModuleInfo.
5108    MCSymbol *EndLabel = MMI.getContext().CreateTempSymbol();
5109    DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getRoot(), EndLabel));
5110
5111    // Inform MachineModuleInfo of range.
5112    MMI.addInvoke(LandingPad, BeginLabel, EndLabel);
5113  }
5114}
5115
5116/// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the
5117/// value is equal or not-equal to zero.
5118static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) {
5119  for (Value::const_use_iterator UI = V->use_begin(), E = V->use_end();
5120       UI != E; ++UI) {
5121    if (const ICmpInst *IC = dyn_cast<ICmpInst>(*UI))
5122      if (IC->isEquality())
5123        if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
5124          if (C->isNullValue())
5125            continue;
5126    // Unknown instruction.
5127    return false;
5128  }
5129  return true;
5130}
5131
5132static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
5133                             Type *LoadTy,
5134                             SelectionDAGBuilder &Builder) {
5135
5136  // Check to see if this load can be trivially constant folded, e.g. if the
5137  // input is from a string literal.
5138  if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
5139    // Cast pointer to the type we really want to load.
5140    LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
5141                                         PointerType::getUnqual(LoadTy));
5142
5143    if (const Constant *LoadCst =
5144          ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput),
5145                                       Builder.TD))
5146      return Builder.getValue(LoadCst);
5147  }
5148
5149  // Otherwise, we have to emit the load.  If the pointer is to unfoldable but
5150  // still constant memory, the input chain can be the entry node.
5151  SDValue Root;
5152  bool ConstantMemory = false;
5153
5154  // Do not serialize (non-volatile) loads of constant memory with anything.
5155  if (Builder.AA->pointsToConstantMemory(PtrVal)) {
5156    Root = Builder.DAG.getEntryNode();
5157    ConstantMemory = true;
5158  } else {
5159    // Do not serialize non-volatile loads against each other.
5160    Root = Builder.DAG.getRoot();
5161  }
5162
5163  SDValue Ptr = Builder.getValue(PtrVal);
5164  SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurDebugLoc(), Root,
5165                                        Ptr, MachinePointerInfo(PtrVal),
5166                                        false /*volatile*/,
5167                                        false /*nontemporal*/, 1 /* align=1 */);
5168
5169  if (!ConstantMemory)
5170    Builder.PendingLoads.push_back(LoadVal.getValue(1));
5171  return LoadVal;
5172}
5173
5174
5175/// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form.
5176/// If so, return true and lower it, otherwise return false and it will be
5177/// lowered like a normal call.
5178bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) {
5179  // Verify that the prototype makes sense.  int memcmp(void*,void*,size_t)
5180  if (I.getNumArgOperands() != 3)
5181    return false;
5182
5183  const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
5184  if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() ||
5185      !I.getArgOperand(2)->getType()->isIntegerTy() ||
5186      !I.getType()->isIntegerTy())
5187    return false;
5188
5189  const ConstantInt *Size = dyn_cast<ConstantInt>(I.getArgOperand(2));
5190
5191  // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0
5192  // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0
5193  if (Size && IsOnlyUsedInZeroEqualityComparison(&I)) {
5194    bool ActuallyDoIt = true;
5195    MVT LoadVT;
5196    Type *LoadTy;
5197    switch (Size->getZExtValue()) {
5198    default:
5199      LoadVT = MVT::Other;
5200      LoadTy = 0;
5201      ActuallyDoIt = false;
5202      break;
5203    case 2:
5204      LoadVT = MVT::i16;
5205      LoadTy = Type::getInt16Ty(Size->getContext());
5206      break;
5207    case 4:
5208      LoadVT = MVT::i32;
5209      LoadTy = Type::getInt32Ty(Size->getContext());
5210      break;
5211    case 8:
5212      LoadVT = MVT::i64;
5213      LoadTy = Type::getInt64Ty(Size->getContext());
5214      break;
5215        /*
5216    case 16:
5217      LoadVT = MVT::v4i32;
5218      LoadTy = Type::getInt32Ty(Size->getContext());
5219      LoadTy = VectorType::get(LoadTy, 4);
5220      break;
5221         */
5222    }
5223
5224    // This turns into unaligned loads.  We only do this if the target natively
5225    // supports the MVT we'll be loading or if it is small enough (<= 4) that
5226    // we'll only produce a small number of byte loads.
5227
5228    // Require that we can find a legal MVT, and only do this if the target
5229    // supports unaligned loads of that type.  Expanding into byte loads would
5230    // bloat the code.
5231    if (ActuallyDoIt && Size->getZExtValue() > 4) {
5232      // TODO: Handle 5 byte compare as 4-byte + 1 byte.
5233      // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
5234      if (!TLI.isTypeLegal(LoadVT) ||!TLI.allowsUnalignedMemoryAccesses(LoadVT))
5235        ActuallyDoIt = false;
5236    }
5237
5238    if (ActuallyDoIt) {
5239      SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this);
5240      SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this);
5241
5242      SDValue Res = DAG.getSetCC(getCurDebugLoc(), MVT::i1, LHSVal, RHSVal,
5243                                 ISD::SETNE);
5244      EVT CallVT = TLI.getValueType(I.getType(), true);
5245      setValue(&I, DAG.getZExtOrTrunc(Res, getCurDebugLoc(), CallVT));
5246      return true;
5247    }
5248  }
5249
5250
5251  return false;
5252}
5253
5254
5255void SelectionDAGBuilder::visitCall(const CallInst &I) {
5256  // Handle inline assembly differently.
5257  if (isa<InlineAsm>(I.getCalledValue())) {
5258    visitInlineAsm(&I);
5259    return;
5260  }
5261
5262  // See if any floating point values are being passed to this function. This is
5263  // used to emit an undefined reference to fltused on Windows.
5264  FunctionType *FT =
5265    cast<FunctionType>(I.getCalledValue()->getType()->getContainedType(0));
5266  MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
5267  if (FT->isVarArg() &&
5268      !MMI.callsExternalVAFunctionWithFloatingPointArguments()) {
5269    for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
5270      Type* T = I.getArgOperand(i)->getType();
5271      for (po_iterator<Type*> i = po_begin(T), e = po_end(T);
5272           i != e; ++i) {
5273        if (!i->isFloatingPointTy()) continue;
5274        MMI.setCallsExternalVAFunctionWithFloatingPointArguments(true);
5275        break;
5276      }
5277    }
5278  }
5279
5280  const char *RenameFn = 0;
5281  if (Function *F = I.getCalledFunction()) {
5282    if (F->isDeclaration()) {
5283      if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) {
5284        if (unsigned IID = II->getIntrinsicID(F)) {
5285          RenameFn = visitIntrinsicCall(I, IID);
5286          if (!RenameFn)
5287            return;
5288        }
5289      }
5290      if (unsigned IID = F->getIntrinsicID()) {
5291        RenameFn = visitIntrinsicCall(I, IID);
5292        if (!RenameFn)
5293          return;
5294      }
5295    }
5296
5297    // Check for well-known libc/libm calls.  If the function is internal, it
5298    // can't be a library call.
5299    if (!F->hasLocalLinkage() && F->hasName()) {
5300      StringRef Name = F->getName();
5301      if (Name == "copysign" || Name == "copysignf" || Name == "copysignl") {
5302        if (I.getNumArgOperands() == 2 &&   // Basic sanity checks.
5303            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5304            I.getType() == I.getArgOperand(0)->getType() &&
5305            I.getType() == I.getArgOperand(1)->getType()) {
5306          SDValue LHS = getValue(I.getArgOperand(0));
5307          SDValue RHS = getValue(I.getArgOperand(1));
5308          setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurDebugLoc(),
5309                                   LHS.getValueType(), LHS, RHS));
5310          return;
5311        }
5312      } else if (Name == "fabs" || Name == "fabsf" || Name == "fabsl") {
5313        if (I.getNumArgOperands() == 1 &&   // Basic sanity checks.
5314            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5315            I.getType() == I.getArgOperand(0)->getType()) {
5316          SDValue Tmp = getValue(I.getArgOperand(0));
5317          setValue(&I, DAG.getNode(ISD::FABS, getCurDebugLoc(),
5318                                   Tmp.getValueType(), Tmp));
5319          return;
5320        }
5321      } else if (Name == "sin" || Name == "sinf" || Name == "sinl") {
5322        if (I.getNumArgOperands() == 1 &&   // Basic sanity checks.
5323            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5324            I.getType() == I.getArgOperand(0)->getType() &&
5325            I.onlyReadsMemory()) {
5326          SDValue Tmp = getValue(I.getArgOperand(0));
5327          setValue(&I, DAG.getNode(ISD::FSIN, getCurDebugLoc(),
5328                                   Tmp.getValueType(), Tmp));
5329          return;
5330        }
5331      } else if (Name == "cos" || Name == "cosf" || Name == "cosl") {
5332        if (I.getNumArgOperands() == 1 &&   // Basic sanity checks.
5333            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5334            I.getType() == I.getArgOperand(0)->getType() &&
5335            I.onlyReadsMemory()) {
5336          SDValue Tmp = getValue(I.getArgOperand(0));
5337          setValue(&I, DAG.getNode(ISD::FCOS, getCurDebugLoc(),
5338                                   Tmp.getValueType(), Tmp));
5339          return;
5340        }
5341      } else if (Name == "sqrt" || Name == "sqrtf" || Name == "sqrtl") {
5342        if (I.getNumArgOperands() == 1 &&   // Basic sanity checks.
5343            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5344            I.getType() == I.getArgOperand(0)->getType() &&
5345            I.onlyReadsMemory()) {
5346          SDValue Tmp = getValue(I.getArgOperand(0));
5347          setValue(&I, DAG.getNode(ISD::FSQRT, getCurDebugLoc(),
5348                                   Tmp.getValueType(), Tmp));
5349          return;
5350        }
5351      } else if (Name == "memcmp") {
5352        if (visitMemCmpCall(I))
5353          return;
5354      }
5355    }
5356  }
5357
5358  SDValue Callee;
5359  if (!RenameFn)
5360    Callee = getValue(I.getCalledValue());
5361  else
5362    Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy());
5363
5364  // Check if we can potentially perform a tail call. More detailed checking is
5365  // be done within LowerCallTo, after more information about the call is known.
5366  LowerCallTo(&I, Callee, I.isTailCall());
5367}
5368
5369namespace {
5370
5371/// AsmOperandInfo - This contains information for each constraint that we are
5372/// lowering.
5373class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
5374public:
5375  /// CallOperand - If this is the result output operand or a clobber
5376  /// this is null, otherwise it is the incoming operand to the CallInst.
5377  /// This gets modified as the asm is processed.
5378  SDValue CallOperand;
5379
5380  /// AssignedRegs - If this is a register or register class operand, this
5381  /// contains the set of register corresponding to the operand.
5382  RegsForValue AssignedRegs;
5383
5384  explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
5385    : TargetLowering::AsmOperandInfo(info), CallOperand(0,0) {
5386  }
5387
5388  /// MarkAllocatedRegs - Once AssignedRegs is set, mark the assigned registers
5389  /// busy in OutputRegs/InputRegs.
5390  void MarkAllocatedRegs(bool isOutReg, bool isInReg,
5391                         std::set<unsigned> &OutputRegs,
5392                         std::set<unsigned> &InputRegs,
5393                         const TargetRegisterInfo &TRI) const {
5394    if (isOutReg) {
5395      for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i)
5396        MarkRegAndAliases(AssignedRegs.Regs[i], OutputRegs, TRI);
5397    }
5398    if (isInReg) {
5399      for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i)
5400        MarkRegAndAliases(AssignedRegs.Regs[i], InputRegs, TRI);
5401    }
5402  }
5403
5404  /// getCallOperandValEVT - Return the EVT of the Value* that this operand
5405  /// corresponds to.  If there is no Value* for this operand, it returns
5406  /// MVT::Other.
5407  EVT getCallOperandValEVT(LLVMContext &Context,
5408                           const TargetLowering &TLI,
5409                           const TargetData *TD) const {
5410    if (CallOperandVal == 0) return MVT::Other;
5411
5412    if (isa<BasicBlock>(CallOperandVal))
5413      return TLI.getPointerTy();
5414
5415    llvm::Type *OpTy = CallOperandVal->getType();
5416
5417    // FIXME: code duplicated from TargetLowering::ParseConstraints().
5418    // If this is an indirect operand, the operand is a pointer to the
5419    // accessed type.
5420    if (isIndirect) {
5421      llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
5422      if (!PtrTy)
5423        report_fatal_error("Indirect operand for inline asm not a pointer!");
5424      OpTy = PtrTy->getElementType();
5425    }
5426
5427    // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
5428    if (StructType *STy = dyn_cast<StructType>(OpTy))
5429      if (STy->getNumElements() == 1)
5430        OpTy = STy->getElementType(0);
5431
5432    // If OpTy is not a single value, it may be a struct/union that we
5433    // can tile with integers.
5434    if (!OpTy->isSingleValueType() && OpTy->isSized()) {
5435      unsigned BitSize = TD->getTypeSizeInBits(OpTy);
5436      switch (BitSize) {
5437      default: break;
5438      case 1:
5439      case 8:
5440      case 16:
5441      case 32:
5442      case 64:
5443      case 128:
5444        OpTy = IntegerType::get(Context, BitSize);
5445        break;
5446      }
5447    }
5448
5449    return TLI.getValueType(OpTy, true);
5450  }
5451
5452private:
5453  /// MarkRegAndAliases - Mark the specified register and all aliases in the
5454  /// specified set.
5455  static void MarkRegAndAliases(unsigned Reg, std::set<unsigned> &Regs,
5456                                const TargetRegisterInfo &TRI) {
5457    assert(TargetRegisterInfo::isPhysicalRegister(Reg) && "Isn't a physreg");
5458    Regs.insert(Reg);
5459    if (const unsigned *Aliases = TRI.getAliasSet(Reg))
5460      for (; *Aliases; ++Aliases)
5461        Regs.insert(*Aliases);
5462  }
5463};
5464
5465typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector;
5466
5467} // end anonymous namespace
5468
5469/// GetRegistersForValue - Assign registers (virtual or physical) for the
5470/// specified operand.  We prefer to assign virtual registers, to allow the
5471/// register allocator to handle the assignment process.  However, if the asm
5472/// uses features that we can't model on machineinstrs, we have SDISel do the
5473/// allocation.  This produces generally horrible, but correct, code.
5474///
5475///   OpInfo describes the operand.
5476///   Input and OutputRegs are the set of already allocated physical registers.
5477///
5478static void GetRegistersForValue(SelectionDAG &DAG,
5479                                 const TargetLowering &TLI,
5480                                 DebugLoc DL,
5481                                 SDISelAsmOperandInfo &OpInfo,
5482                                 std::set<unsigned> &OutputRegs,
5483                                 std::set<unsigned> &InputRegs) {
5484  LLVMContext &Context = *DAG.getContext();
5485
5486  // Compute whether this value requires an input register, an output register,
5487  // or both.
5488  bool isOutReg = false;
5489  bool isInReg = false;
5490  switch (OpInfo.Type) {
5491  case InlineAsm::isOutput:
5492    isOutReg = true;
5493
5494    // If there is an input constraint that matches this, we need to reserve
5495    // the input register so no other inputs allocate to it.
5496    isInReg = OpInfo.hasMatchingInput();
5497    break;
5498  case InlineAsm::isInput:
5499    isInReg = true;
5500    isOutReg = false;
5501    break;
5502  case InlineAsm::isClobber:
5503    isOutReg = true;
5504    isInReg = true;
5505    break;
5506  }
5507
5508
5509  MachineFunction &MF = DAG.getMachineFunction();
5510  SmallVector<unsigned, 4> Regs;
5511
5512  // If this is a constraint for a single physreg, or a constraint for a
5513  // register class, find it.
5514  std::pair<unsigned, const TargetRegisterClass*> PhysReg =
5515    TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
5516                                     OpInfo.ConstraintVT);
5517
5518  unsigned NumRegs = 1;
5519  if (OpInfo.ConstraintVT != MVT::Other) {
5520    // If this is a FP input in an integer register (or visa versa) insert a bit
5521    // cast of the input value.  More generally, handle any case where the input
5522    // value disagrees with the register class we plan to stick this in.
5523    if (OpInfo.Type == InlineAsm::isInput &&
5524        PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) {
5525      // Try to convert to the first EVT that the reg class contains.  If the
5526      // types are identical size, use a bitcast to convert (e.g. two differing
5527      // vector types).
5528      EVT RegVT = *PhysReg.second->vt_begin();
5529      if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) {
5530        OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL,
5531                                         RegVT, OpInfo.CallOperand);
5532        OpInfo.ConstraintVT = RegVT;
5533      } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
5534        // If the input is a FP value and we want it in FP registers, do a
5535        // bitcast to the corresponding integer type.  This turns an f64 value
5536        // into i64, which can be passed with two i32 values on a 32-bit
5537        // machine.
5538        RegVT = EVT::getIntegerVT(Context,
5539                                  OpInfo.ConstraintVT.getSizeInBits());
5540        OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL,
5541                                         RegVT, OpInfo.CallOperand);
5542        OpInfo.ConstraintVT = RegVT;
5543      }
5544    }
5545
5546    NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT);
5547  }
5548
5549  EVT RegVT;
5550  EVT ValueVT = OpInfo.ConstraintVT;
5551
5552  // If this is a constraint for a specific physical register, like {r17},
5553  // assign it now.
5554  if (unsigned AssignedReg = PhysReg.first) {
5555    const TargetRegisterClass *RC = PhysReg.second;
5556    if (OpInfo.ConstraintVT == MVT::Other)
5557      ValueVT = *RC->vt_begin();
5558
5559    // Get the actual register value type.  This is important, because the user
5560    // may have asked for (e.g.) the AX register in i32 type.  We need to
5561    // remember that AX is actually i16 to get the right extension.
5562    RegVT = *RC->vt_begin();
5563
5564    // This is a explicit reference to a physical register.
5565    Regs.push_back(AssignedReg);
5566
5567    // If this is an expanded reference, add the rest of the regs to Regs.
5568    if (NumRegs != 1) {
5569      TargetRegisterClass::iterator I = RC->begin();
5570      for (; *I != AssignedReg; ++I)
5571        assert(I != RC->end() && "Didn't find reg!");
5572
5573      // Already added the first reg.
5574      --NumRegs; ++I;
5575      for (; NumRegs; --NumRegs, ++I) {
5576        assert(I != RC->end() && "Ran out of registers to allocate!");
5577        Regs.push_back(*I);
5578      }
5579    }
5580
5581    OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
5582    const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
5583    OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI);
5584    return;
5585  }
5586
5587  // Otherwise, if this was a reference to an LLVM register class, create vregs
5588  // for this reference.
5589  if (const TargetRegisterClass *RC = PhysReg.second) {
5590    RegVT = *RC->vt_begin();
5591    if (OpInfo.ConstraintVT == MVT::Other)
5592      ValueVT = RegVT;
5593
5594    // Create the appropriate number of virtual registers.
5595    MachineRegisterInfo &RegInfo = MF.getRegInfo();
5596    for (; NumRegs; --NumRegs)
5597      Regs.push_back(RegInfo.createVirtualRegister(RC));
5598
5599    OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
5600    return;
5601  }
5602
5603  // Otherwise, we couldn't allocate enough registers for this.
5604}
5605
5606/// visitInlineAsm - Handle a call to an InlineAsm object.
5607///
5608void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) {
5609  const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
5610
5611  /// ConstraintOperands - Information about all of the constraints.
5612  SDISelAsmOperandInfoVector ConstraintOperands;
5613
5614  std::set<unsigned> OutputRegs, InputRegs;
5615
5616  TargetLowering::AsmOperandInfoVector
5617    TargetConstraints = TLI.ParseConstraints(CS);
5618
5619  bool hasMemory = false;
5620
5621  unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
5622  unsigned ResNo = 0;   // ResNo - The result number of the next output.
5623  for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
5624    ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i]));
5625    SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
5626
5627    EVT OpVT = MVT::Other;
5628
5629    // Compute the value type for each operand.
5630    switch (OpInfo.Type) {
5631    case InlineAsm::isOutput:
5632      // Indirect outputs just consume an argument.
5633      if (OpInfo.isIndirect) {
5634        OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
5635        break;
5636      }
5637
5638      // The return value of the call is this value.  As such, there is no
5639      // corresponding argument.
5640      assert(!CS.getType()->isVoidTy() &&
5641             "Bad inline asm!");
5642      if (StructType *STy = dyn_cast<StructType>(CS.getType())) {
5643        OpVT = TLI.getValueType(STy->getElementType(ResNo));
5644      } else {
5645        assert(ResNo == 0 && "Asm only has one result!");
5646        OpVT = TLI.getValueType(CS.getType());
5647      }
5648      ++ResNo;
5649      break;
5650    case InlineAsm::isInput:
5651      OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
5652      break;
5653    case InlineAsm::isClobber:
5654      // Nothing to do.
5655      break;
5656    }
5657
5658    // If this is an input or an indirect output, process the call argument.
5659    // BasicBlocks are labels, currently appearing only in asm's.
5660    if (OpInfo.CallOperandVal) {
5661      if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) {
5662        OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
5663      } else {
5664        OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
5665      }
5666
5667      OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, TD);
5668    }
5669
5670    OpInfo.ConstraintVT = OpVT;
5671
5672    // Indirect operand accesses access memory.
5673    if (OpInfo.isIndirect)
5674      hasMemory = true;
5675    else {
5676      for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) {
5677        TargetLowering::ConstraintType
5678          CType = TLI.getConstraintType(OpInfo.Codes[j]);
5679        if (CType == TargetLowering::C_Memory) {
5680          hasMemory = true;
5681          break;
5682        }
5683      }
5684    }
5685  }
5686
5687  SDValue Chain, Flag;
5688
5689  // We won't need to flush pending loads if this asm doesn't touch
5690  // memory and is nonvolatile.
5691  if (hasMemory || IA->hasSideEffects())
5692    Chain = getRoot();
5693  else
5694    Chain = DAG.getRoot();
5695
5696  // Second pass over the constraints: compute which constraint option to use
5697  // and assign registers to constraints that want a specific physreg.
5698  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
5699    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
5700
5701    // If this is an output operand with a matching input operand, look up the
5702    // matching input. If their types mismatch, e.g. one is an integer, the
5703    // other is floating point, or their sizes are different, flag it as an
5704    // error.
5705    if (OpInfo.hasMatchingInput()) {
5706      SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
5707
5708      if (OpInfo.ConstraintVT != Input.ConstraintVT) {
5709	std::pair<unsigned, const TargetRegisterClass*> MatchRC =
5710	  TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode, OpInfo.ConstraintVT);
5711	std::pair<unsigned, const TargetRegisterClass*> InputRC =
5712	  TLI.getRegForInlineAsmConstraint(Input.ConstraintCode, Input.ConstraintVT);
5713        if ((OpInfo.ConstraintVT.isInteger() !=
5714             Input.ConstraintVT.isInteger()) ||
5715            (MatchRC.second != InputRC.second)) {
5716          report_fatal_error("Unsupported asm: input constraint"
5717                             " with a matching output constraint of"
5718                             " incompatible type!");
5719        }
5720        Input.ConstraintVT = OpInfo.ConstraintVT;
5721      }
5722    }
5723
5724    // Compute the constraint code and ConstraintType to use.
5725    TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
5726
5727    // If this is a memory input, and if the operand is not indirect, do what we
5728    // need to to provide an address for the memory input.
5729    if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
5730        !OpInfo.isIndirect) {
5731      assert((OpInfo.isMultipleAlternative ||
5732              (OpInfo.Type == InlineAsm::isInput)) &&
5733             "Can only indirectify direct input operands!");
5734
5735      // Memory operands really want the address of the value.  If we don't have
5736      // an indirect input, put it in the constpool if we can, otherwise spill
5737      // it to a stack slot.
5738      // TODO: This isn't quite right. We need to handle these according to
5739      // the addressing mode that the constraint wants. Also, this may take
5740      // an additional register for the computation and we don't want that
5741      // either.
5742
5743      // If the operand is a float, integer, or vector constant, spill to a
5744      // constant pool entry to get its address.
5745      const Value *OpVal = OpInfo.CallOperandVal;
5746      if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
5747          isa<ConstantVector>(OpVal)) {
5748        OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal),
5749                                                 TLI.getPointerTy());
5750      } else {
5751        // Otherwise, create a stack slot and emit a store to it before the
5752        // asm.
5753        Type *Ty = OpVal->getType();
5754        uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty);
5755        unsigned Align  = TLI.getTargetData()->getPrefTypeAlignment(Ty);
5756        MachineFunction &MF = DAG.getMachineFunction();
5757        int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
5758        SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy());
5759        Chain = DAG.getStore(Chain, getCurDebugLoc(),
5760                             OpInfo.CallOperand, StackSlot,
5761                             MachinePointerInfo::getFixedStack(SSFI),
5762                             false, false, 0);
5763        OpInfo.CallOperand = StackSlot;
5764      }
5765
5766      // There is no longer a Value* corresponding to this operand.
5767      OpInfo.CallOperandVal = 0;
5768
5769      // It is now an indirect operand.
5770      OpInfo.isIndirect = true;
5771    }
5772
5773    // If this constraint is for a specific register, allocate it before
5774    // anything else.
5775    if (OpInfo.ConstraintType == TargetLowering::C_Register)
5776      GetRegistersForValue(DAG, TLI, getCurDebugLoc(), OpInfo, OutputRegs,
5777                           InputRegs);
5778  }
5779
5780  // Second pass - Loop over all of the operands, assigning virtual or physregs
5781  // to register class operands.
5782  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
5783    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
5784
5785    // C_Register operands have already been allocated, Other/Memory don't need
5786    // to be.
5787    if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass)
5788      GetRegistersForValue(DAG, TLI, getCurDebugLoc(), OpInfo, OutputRegs,
5789                           InputRegs);
5790  }
5791
5792  // AsmNodeOperands - The operands for the ISD::INLINEASM node.
5793  std::vector<SDValue> AsmNodeOperands;
5794  AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
5795  AsmNodeOperands.push_back(
5796          DAG.getTargetExternalSymbol(IA->getAsmString().c_str(),
5797                                      TLI.getPointerTy()));
5798
5799  // If we have a !srcloc metadata node associated with it, we want to attach
5800  // this to the ultimately generated inline asm machineinstr.  To do this, we
5801  // pass in the third operand as this (potentially null) inline asm MDNode.
5802  const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc");
5803  AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
5804
5805  // Remember the HasSideEffect and AlignStack bits as operand 3.
5806  unsigned ExtraInfo = 0;
5807  if (IA->hasSideEffects())
5808    ExtraInfo |= InlineAsm::Extra_HasSideEffects;
5809  if (IA->isAlignStack())
5810    ExtraInfo |= InlineAsm::Extra_IsAlignStack;
5811  AsmNodeOperands.push_back(DAG.getTargetConstant(ExtraInfo,
5812                                                  TLI.getPointerTy()));
5813
5814  // Loop over all of the inputs, copying the operand values into the
5815  // appropriate registers and processing the output regs.
5816  RegsForValue RetValRegs;
5817
5818  // IndirectStoresToEmit - The set of stores to emit after the inline asm node.
5819  std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit;
5820
5821  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
5822    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
5823
5824    switch (OpInfo.Type) {
5825    case InlineAsm::isOutput: {
5826      if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass &&
5827          OpInfo.ConstraintType != TargetLowering::C_Register) {
5828        // Memory output, or 'other' output (e.g. 'X' constraint).
5829        assert(OpInfo.isIndirect && "Memory output must be indirect operand");
5830
5831        // Add information to the INLINEASM node to know about this output.
5832        unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
5833        AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags,
5834                                                        TLI.getPointerTy()));
5835        AsmNodeOperands.push_back(OpInfo.CallOperand);
5836        break;
5837      }
5838
5839      // Otherwise, this is a register or register class output.
5840
5841      // Copy the output from the appropriate register.  Find a register that
5842      // we can use.
5843      if (OpInfo.AssignedRegs.Regs.empty())
5844        report_fatal_error("Couldn't allocate output reg for constraint '" +
5845                           Twine(OpInfo.ConstraintCode) + "'!");
5846
5847      // If this is an indirect operand, store through the pointer after the
5848      // asm.
5849      if (OpInfo.isIndirect) {
5850        IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs,
5851                                                      OpInfo.CallOperandVal));
5852      } else {
5853        // This is the result value of the call.
5854        assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
5855        // Concatenate this output onto the outputs list.
5856        RetValRegs.append(OpInfo.AssignedRegs);
5857      }
5858
5859      // Add information to the INLINEASM node to know that this register is
5860      // set.
5861      OpInfo.AssignedRegs.AddInlineAsmOperands(OpInfo.isEarlyClobber ?
5862                                           InlineAsm::Kind_RegDefEarlyClobber :
5863                                               InlineAsm::Kind_RegDef,
5864                                               false,
5865                                               0,
5866                                               DAG,
5867                                               AsmNodeOperands);
5868      break;
5869    }
5870    case InlineAsm::isInput: {
5871      SDValue InOperandVal = OpInfo.CallOperand;
5872
5873      if (OpInfo.isMatchingInputConstraint()) {   // Matching constraint?
5874        // If this is required to match an output register we have already set,
5875        // just use its register.
5876        unsigned OperandNo = OpInfo.getMatchedOperand();
5877
5878        // Scan until we find the definition we already emitted of this operand.
5879        // When we find it, create a RegsForValue operand.
5880        unsigned CurOp = InlineAsm::Op_FirstOperand;
5881        for (; OperandNo; --OperandNo) {
5882          // Advance to the next operand.
5883          unsigned OpFlag =
5884            cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
5885          assert((InlineAsm::isRegDefKind(OpFlag) ||
5886                  InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||
5887                  InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?");
5888          CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1;
5889        }
5890
5891        unsigned OpFlag =
5892          cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
5893        if (InlineAsm::isRegDefKind(OpFlag) ||
5894            InlineAsm::isRegDefEarlyClobberKind(OpFlag)) {
5895          // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
5896          if (OpInfo.isIndirect) {
5897            // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
5898            LLVMContext &Ctx = *DAG.getContext();
5899            Ctx.emitError(CS.getInstruction(),  "inline asm not supported yet:"
5900                          " don't know how to handle tied "
5901                          "indirect register inputs");
5902          }
5903
5904          RegsForValue MatchedRegs;
5905          MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType());
5906          EVT RegVT = AsmNodeOperands[CurOp+1].getValueType();
5907          MatchedRegs.RegVTs.push_back(RegVT);
5908          MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo();
5909          for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag);
5910               i != e; ++i)
5911            MatchedRegs.Regs.push_back
5912              (RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT)));
5913
5914          // Use the produced MatchedRegs object to
5915          MatchedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(),
5916                                    Chain, &Flag);
5917          MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse,
5918                                           true, OpInfo.getMatchedOperand(),
5919                                           DAG, AsmNodeOperands);
5920          break;
5921        }
5922
5923        assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!");
5924        assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 &&
5925               "Unexpected number of operands");
5926        // Add information to the INLINEASM node to know about this input.
5927        // See InlineAsm.h isUseOperandTiedToDef.
5928        OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
5929                                                    OpInfo.getMatchedOperand());
5930        AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlag,
5931                                                        TLI.getPointerTy()));
5932        AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
5933        break;
5934      }
5935
5936      // Treat indirect 'X' constraint as memory.
5937      if (OpInfo.ConstraintType == TargetLowering::C_Other &&
5938          OpInfo.isIndirect)
5939        OpInfo.ConstraintType = TargetLowering::C_Memory;
5940
5941      if (OpInfo.ConstraintType == TargetLowering::C_Other) {
5942        std::vector<SDValue> Ops;
5943        TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode,
5944                                         Ops, DAG);
5945        if (Ops.empty())
5946          report_fatal_error("Invalid operand for inline asm constraint '" +
5947                             Twine(OpInfo.ConstraintCode) + "'!");
5948
5949        // Add information to the INLINEASM node to know about this input.
5950        unsigned ResOpType =
5951          InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
5952        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
5953                                                        TLI.getPointerTy()));
5954        AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
5955        break;
5956      }
5957
5958      if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
5959        assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
5960        assert(InOperandVal.getValueType() == TLI.getPointerTy() &&
5961               "Memory operands expect pointer values");
5962
5963        // Add information to the INLINEASM node to know about this input.
5964        unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
5965        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
5966                                                        TLI.getPointerTy()));
5967        AsmNodeOperands.push_back(InOperandVal);
5968        break;
5969      }
5970
5971      assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
5972              OpInfo.ConstraintType == TargetLowering::C_Register) &&
5973             "Unknown constraint type!");
5974      assert(!OpInfo.isIndirect &&
5975             "Don't know how to handle indirect register inputs yet!");
5976
5977      // Copy the input into the appropriate registers.
5978      if (OpInfo.AssignedRegs.Regs.empty())
5979        report_fatal_error("Couldn't allocate input reg for constraint '" +
5980                           Twine(OpInfo.ConstraintCode) + "'!");
5981
5982      OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(),
5983                                        Chain, &Flag);
5984
5985      OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0,
5986                                               DAG, AsmNodeOperands);
5987      break;
5988    }
5989    case InlineAsm::isClobber: {
5990      // Add the clobbered value to the operand list, so that the register
5991      // allocator is aware that the physreg got clobbered.
5992      if (!OpInfo.AssignedRegs.Regs.empty())
5993        OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber,
5994                                                 false, 0, DAG,
5995                                                 AsmNodeOperands);
5996      break;
5997    }
5998    }
5999  }
6000
6001  // Finish up input operands.  Set the input chain and add the flag last.
6002  AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
6003  if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
6004
6005  Chain = DAG.getNode(ISD::INLINEASM, getCurDebugLoc(),
6006                      DAG.getVTList(MVT::Other, MVT::Glue),
6007                      &AsmNodeOperands[0], AsmNodeOperands.size());
6008  Flag = Chain.getValue(1);
6009
6010  // If this asm returns a register value, copy the result from that register
6011  // and set it as the value of the call.
6012  if (!RetValRegs.Regs.empty()) {
6013    SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(),
6014                                             Chain, &Flag);
6015
6016    // FIXME: Why don't we do this for inline asms with MRVs?
6017    if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) {
6018      EVT ResultType = TLI.getValueType(CS.getType());
6019
6020      // If any of the results of the inline asm is a vector, it may have the
6021      // wrong width/num elts.  This can happen for register classes that can
6022      // contain multiple different value types.  The preg or vreg allocated may
6023      // not have the same VT as was expected.  Convert it to the right type
6024      // with bit_convert.
6025      if (ResultType != Val.getValueType() && Val.getValueType().isVector()) {
6026        Val = DAG.getNode(ISD::BITCAST, getCurDebugLoc(),
6027                          ResultType, Val);
6028
6029      } else if (ResultType != Val.getValueType() &&
6030                 ResultType.isInteger() && Val.getValueType().isInteger()) {
6031        // If a result value was tied to an input value, the computed result may
6032        // have a wider width than the expected result.  Extract the relevant
6033        // portion.
6034        Val = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), ResultType, Val);
6035      }
6036
6037      assert(ResultType == Val.getValueType() && "Asm result value mismatch!");
6038    }
6039
6040    setValue(CS.getInstruction(), Val);
6041    // Don't need to use this as a chain in this case.
6042    if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty())
6043      return;
6044  }
6045
6046  std::vector<std::pair<SDValue, const Value *> > StoresToEmit;
6047
6048  // Process indirect outputs, first output all of the flagged copies out of
6049  // physregs.
6050  for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
6051    RegsForValue &OutRegs = IndirectStoresToEmit[i].first;
6052    const Value *Ptr = IndirectStoresToEmit[i].second;
6053    SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(),
6054                                             Chain, &Flag);
6055    StoresToEmit.push_back(std::make_pair(OutVal, Ptr));
6056  }
6057
6058  // Emit the non-flagged stores from the physregs.
6059  SmallVector<SDValue, 8> OutChains;
6060  for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) {
6061    SDValue Val = DAG.getStore(Chain, getCurDebugLoc(),
6062                               StoresToEmit[i].first,
6063                               getValue(StoresToEmit[i].second),
6064                               MachinePointerInfo(StoresToEmit[i].second),
6065                               false, false, 0);
6066    OutChains.push_back(Val);
6067  }
6068
6069  if (!OutChains.empty())
6070    Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
6071                        &OutChains[0], OutChains.size());
6072
6073  DAG.setRoot(Chain);
6074}
6075
6076void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
6077  DAG.setRoot(DAG.getNode(ISD::VASTART, getCurDebugLoc(),
6078                          MVT::Other, getRoot(),
6079                          getValue(I.getArgOperand(0)),
6080                          DAG.getSrcValue(I.getArgOperand(0))));
6081}
6082
6083void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
6084  const TargetData &TD = *TLI.getTargetData();
6085  SDValue V = DAG.getVAArg(TLI.getValueType(I.getType()), getCurDebugLoc(),
6086                           getRoot(), getValue(I.getOperand(0)),
6087                           DAG.getSrcValue(I.getOperand(0)),
6088                           TD.getABITypeAlignment(I.getType()));
6089  setValue(&I, V);
6090  DAG.setRoot(V.getValue(1));
6091}
6092
6093void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
6094  DAG.setRoot(DAG.getNode(ISD::VAEND, getCurDebugLoc(),
6095                          MVT::Other, getRoot(),
6096                          getValue(I.getArgOperand(0)),
6097                          DAG.getSrcValue(I.getArgOperand(0))));
6098}
6099
6100void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
6101  DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurDebugLoc(),
6102                          MVT::Other, getRoot(),
6103                          getValue(I.getArgOperand(0)),
6104                          getValue(I.getArgOperand(1)),
6105                          DAG.getSrcValue(I.getArgOperand(0)),
6106                          DAG.getSrcValue(I.getArgOperand(1))));
6107}
6108
6109/// TargetLowering::LowerCallTo - This is the default LowerCallTo
6110/// implementation, which just calls LowerCall.
6111/// FIXME: When all targets are
6112/// migrated to using LowerCall, this hook should be integrated into SDISel.
6113std::pair<SDValue, SDValue>
6114TargetLowering::LowerCallTo(SDValue Chain, Type *RetTy,
6115                            bool RetSExt, bool RetZExt, bool isVarArg,
6116                            bool isInreg, unsigned NumFixedArgs,
6117                            CallingConv::ID CallConv, bool isTailCall,
6118                            bool isReturnValueUsed,
6119                            SDValue Callee,
6120                            ArgListTy &Args, SelectionDAG &DAG,
6121                            DebugLoc dl) const {
6122  // Handle all of the outgoing arguments.
6123  SmallVector<ISD::OutputArg, 32> Outs;
6124  SmallVector<SDValue, 32> OutVals;
6125  for (unsigned i = 0, e = Args.size(); i != e; ++i) {
6126    SmallVector<EVT, 4> ValueVTs;
6127    ComputeValueVTs(*this, Args[i].Ty, ValueVTs);
6128    for (unsigned Value = 0, NumValues = ValueVTs.size();
6129         Value != NumValues; ++Value) {
6130      EVT VT = ValueVTs[Value];
6131      Type *ArgTy = VT.getTypeForEVT(RetTy->getContext());
6132      SDValue Op = SDValue(Args[i].Node.getNode(),
6133                           Args[i].Node.getResNo() + Value);
6134      ISD::ArgFlagsTy Flags;
6135      unsigned OriginalAlignment =
6136        getTargetData()->getABITypeAlignment(ArgTy);
6137
6138      if (Args[i].isZExt)
6139        Flags.setZExt();
6140      if (Args[i].isSExt)
6141        Flags.setSExt();
6142      if (Args[i].isInReg)
6143        Flags.setInReg();
6144      if (Args[i].isSRet)
6145        Flags.setSRet();
6146      if (Args[i].isByVal) {
6147        Flags.setByVal();
6148        PointerType *Ty = cast<PointerType>(Args[i].Ty);
6149        Type *ElementTy = Ty->getElementType();
6150        Flags.setByValSize(getTargetData()->getTypeAllocSize(ElementTy));
6151        // For ByVal, alignment should come from FE.  BE will guess if this
6152        // info is not there but there are cases it cannot get right.
6153        unsigned FrameAlign;
6154        if (Args[i].Alignment)
6155          FrameAlign = Args[i].Alignment;
6156        else
6157          FrameAlign = getByValTypeAlignment(ElementTy);
6158        Flags.setByValAlign(FrameAlign);
6159      }
6160      if (Args[i].isNest)
6161        Flags.setNest();
6162      Flags.setOrigAlign(OriginalAlignment);
6163
6164      EVT PartVT = getRegisterType(RetTy->getContext(), VT);
6165      unsigned NumParts = getNumRegisters(RetTy->getContext(), VT);
6166      SmallVector<SDValue, 4> Parts(NumParts);
6167      ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
6168
6169      if (Args[i].isSExt)
6170        ExtendKind = ISD::SIGN_EXTEND;
6171      else if (Args[i].isZExt)
6172        ExtendKind = ISD::ZERO_EXTEND;
6173
6174      getCopyToParts(DAG, dl, Op, &Parts[0], NumParts,
6175                     PartVT, ExtendKind);
6176
6177      for (unsigned j = 0; j != NumParts; ++j) {
6178        // if it isn't first piece, alignment must be 1
6179        ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(),
6180                               i < NumFixedArgs);
6181        if (NumParts > 1 && j == 0)
6182          MyFlags.Flags.setSplit();
6183        else if (j != 0)
6184          MyFlags.Flags.setOrigAlign(1);
6185
6186        Outs.push_back(MyFlags);
6187        OutVals.push_back(Parts[j]);
6188      }
6189    }
6190  }
6191
6192  // Handle the incoming return values from the call.
6193  SmallVector<ISD::InputArg, 32> Ins;
6194  SmallVector<EVT, 4> RetTys;
6195  ComputeValueVTs(*this, RetTy, RetTys);
6196  for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
6197    EVT VT = RetTys[I];
6198    EVT RegisterVT = getRegisterType(RetTy->getContext(), VT);
6199    unsigned NumRegs = getNumRegisters(RetTy->getContext(), VT);
6200    for (unsigned i = 0; i != NumRegs; ++i) {
6201      ISD::InputArg MyFlags;
6202      MyFlags.VT = RegisterVT.getSimpleVT();
6203      MyFlags.Used = isReturnValueUsed;
6204      if (RetSExt)
6205        MyFlags.Flags.setSExt();
6206      if (RetZExt)
6207        MyFlags.Flags.setZExt();
6208      if (isInreg)
6209        MyFlags.Flags.setInReg();
6210      Ins.push_back(MyFlags);
6211    }
6212  }
6213
6214  SmallVector<SDValue, 4> InVals;
6215  Chain = LowerCall(Chain, Callee, CallConv, isVarArg, isTailCall,
6216                    Outs, OutVals, Ins, dl, DAG, InVals);
6217
6218  // Verify that the target's LowerCall behaved as expected.
6219  assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
6220         "LowerCall didn't return a valid chain!");
6221  assert((!isTailCall || InVals.empty()) &&
6222         "LowerCall emitted a return value for a tail call!");
6223  assert((isTailCall || InVals.size() == Ins.size()) &&
6224         "LowerCall didn't emit the correct number of values!");
6225
6226  // For a tail call, the return value is merely live-out and there aren't
6227  // any nodes in the DAG representing it. Return a special value to
6228  // indicate that a tail call has been emitted and no more Instructions
6229  // should be processed in the current block.
6230  if (isTailCall) {
6231    DAG.setRoot(Chain);
6232    return std::make_pair(SDValue(), SDValue());
6233  }
6234
6235  DEBUG(for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
6236          assert(InVals[i].getNode() &&
6237                 "LowerCall emitted a null value!");
6238          assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
6239                 "LowerCall emitted a value with the wrong type!");
6240        });
6241
6242  // Collect the legal value parts into potentially illegal values
6243  // that correspond to the original function's return values.
6244  ISD::NodeType AssertOp = ISD::DELETED_NODE;
6245  if (RetSExt)
6246    AssertOp = ISD::AssertSext;
6247  else if (RetZExt)
6248    AssertOp = ISD::AssertZext;
6249  SmallVector<SDValue, 4> ReturnValues;
6250  unsigned CurReg = 0;
6251  for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
6252    EVT VT = RetTys[I];
6253    EVT RegisterVT = getRegisterType(RetTy->getContext(), VT);
6254    unsigned NumRegs = getNumRegisters(RetTy->getContext(), VT);
6255
6256    ReturnValues.push_back(getCopyFromParts(DAG, dl, &InVals[CurReg],
6257                                            NumRegs, RegisterVT, VT,
6258                                            AssertOp));
6259    CurReg += NumRegs;
6260  }
6261
6262  // For a function returning void, there is no return value. We can't create
6263  // such a node, so we just return a null return value in that case. In
6264  // that case, nothing will actually look at the value.
6265  if (ReturnValues.empty())
6266    return std::make_pair(SDValue(), Chain);
6267
6268  SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
6269                            DAG.getVTList(&RetTys[0], RetTys.size()),
6270                            &ReturnValues[0], ReturnValues.size());
6271  return std::make_pair(Res, Chain);
6272}
6273
6274void TargetLowering::LowerOperationWrapper(SDNode *N,
6275                                           SmallVectorImpl<SDValue> &Results,
6276                                           SelectionDAG &DAG) const {
6277  SDValue Res = LowerOperation(SDValue(N, 0), DAG);
6278  if (Res.getNode())
6279    Results.push_back(Res);
6280}
6281
6282SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
6283  llvm_unreachable("LowerOperation not implemented for this target!");
6284  return SDValue();
6285}
6286
6287void
6288SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) {
6289  SDValue Op = getNonRegisterValue(V);
6290  assert((Op.getOpcode() != ISD::CopyFromReg ||
6291          cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
6292         "Copy from a reg to the same reg!");
6293  assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg");
6294
6295  RegsForValue RFV(V->getContext(), TLI, Reg, V->getType());
6296  SDValue Chain = DAG.getEntryNode();
6297  RFV.getCopyToRegs(Op, DAG, getCurDebugLoc(), Chain, 0);
6298  PendingExports.push_back(Chain);
6299}
6300
6301#include "llvm/CodeGen/SelectionDAGISel.h"
6302
6303/// isOnlyUsedInEntryBlock - If the specified argument is only used in the
6304/// entry block, return true.  This includes arguments used by switches, since
6305/// the switch may expand into multiple basic blocks.
6306static bool isOnlyUsedInEntryBlock(const Argument *A) {
6307  // With FastISel active, we may be splitting blocks, so force creation
6308  // of virtual registers for all non-dead arguments.
6309  if (EnableFastISel)
6310    return A->use_empty();
6311
6312  const BasicBlock *Entry = A->getParent()->begin();
6313  for (Value::const_use_iterator UI = A->use_begin(), E = A->use_end();
6314       UI != E; ++UI) {
6315    const User *U = *UI;
6316    if (cast<Instruction>(U)->getParent() != Entry || isa<SwitchInst>(U))
6317      return false;  // Use not in entry block.
6318  }
6319  return true;
6320}
6321
6322void SelectionDAGISel::LowerArguments(const BasicBlock *LLVMBB) {
6323  // If this is the entry block, emit arguments.
6324  const Function &F = *LLVMBB->getParent();
6325  SelectionDAG &DAG = SDB->DAG;
6326  DebugLoc dl = SDB->getCurDebugLoc();
6327  const TargetData *TD = TLI.getTargetData();
6328  SmallVector<ISD::InputArg, 16> Ins;
6329
6330  // Check whether the function can return without sret-demotion.
6331  SmallVector<ISD::OutputArg, 4> Outs;
6332  GetReturnInfo(F.getReturnType(), F.getAttributes().getRetAttributes(),
6333                Outs, TLI);
6334
6335  if (!FuncInfo->CanLowerReturn) {
6336    // Put in an sret pointer parameter before all the other parameters.
6337    SmallVector<EVT, 1> ValueVTs;
6338    ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs);
6339
6340    // NOTE: Assuming that a pointer will never break down to more than one VT
6341    // or one register.
6342    ISD::ArgFlagsTy Flags;
6343    Flags.setSRet();
6344    EVT RegisterVT = TLI.getRegisterType(*DAG.getContext(), ValueVTs[0]);
6345    ISD::InputArg RetArg(Flags, RegisterVT, true);
6346    Ins.push_back(RetArg);
6347  }
6348
6349  // Set up the incoming argument description vector.
6350  unsigned Idx = 1;
6351  for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end();
6352       I != E; ++I, ++Idx) {
6353    SmallVector<EVT, 4> ValueVTs;
6354    ComputeValueVTs(TLI, I->getType(), ValueVTs);
6355    bool isArgValueUsed = !I->use_empty();
6356    for (unsigned Value = 0, NumValues = ValueVTs.size();
6357         Value != NumValues; ++Value) {
6358      EVT VT = ValueVTs[Value];
6359      Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
6360      ISD::ArgFlagsTy Flags;
6361      unsigned OriginalAlignment =
6362        TD->getABITypeAlignment(ArgTy);
6363
6364      if (F.paramHasAttr(Idx, Attribute::ZExt))
6365        Flags.setZExt();
6366      if (F.paramHasAttr(Idx, Attribute::SExt))
6367        Flags.setSExt();
6368      if (F.paramHasAttr(Idx, Attribute::InReg))
6369        Flags.setInReg();
6370      if (F.paramHasAttr(Idx, Attribute::StructRet))
6371        Flags.setSRet();
6372      if (F.paramHasAttr(Idx, Attribute::ByVal)) {
6373        Flags.setByVal();
6374        PointerType *Ty = cast<PointerType>(I->getType());
6375        Type *ElementTy = Ty->getElementType();
6376        Flags.setByValSize(TD->getTypeAllocSize(ElementTy));
6377        // For ByVal, alignment should be passed from FE.  BE will guess if
6378        // this info is not there but there are cases it cannot get right.
6379        unsigned FrameAlign;
6380        if (F.getParamAlignment(Idx))
6381          FrameAlign = F.getParamAlignment(Idx);
6382        else
6383          FrameAlign = TLI.getByValTypeAlignment(ElementTy);
6384        Flags.setByValAlign(FrameAlign);
6385      }
6386      if (F.paramHasAttr(Idx, Attribute::Nest))
6387        Flags.setNest();
6388      Flags.setOrigAlign(OriginalAlignment);
6389
6390      EVT RegisterVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
6391      unsigned NumRegs = TLI.getNumRegisters(*CurDAG->getContext(), VT);
6392      for (unsigned i = 0; i != NumRegs; ++i) {
6393        ISD::InputArg MyFlags(Flags, RegisterVT, isArgValueUsed);
6394        if (NumRegs > 1 && i == 0)
6395          MyFlags.Flags.setSplit();
6396        // if it isn't first piece, alignment must be 1
6397        else if (i > 0)
6398          MyFlags.Flags.setOrigAlign(1);
6399        Ins.push_back(MyFlags);
6400      }
6401    }
6402  }
6403
6404  // Call the target to set up the argument values.
6405  SmallVector<SDValue, 8> InVals;
6406  SDValue NewRoot = TLI.LowerFormalArguments(DAG.getRoot(), F.getCallingConv(),
6407                                             F.isVarArg(), Ins,
6408                                             dl, DAG, InVals);
6409
6410  // Verify that the target's LowerFormalArguments behaved as expected.
6411  assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
6412         "LowerFormalArguments didn't return a valid chain!");
6413  assert(InVals.size() == Ins.size() &&
6414         "LowerFormalArguments didn't emit the correct number of values!");
6415  DEBUG({
6416      for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
6417        assert(InVals[i].getNode() &&
6418               "LowerFormalArguments emitted a null value!");
6419        assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
6420               "LowerFormalArguments emitted a value with the wrong type!");
6421      }
6422    });
6423
6424  // Update the DAG with the new chain value resulting from argument lowering.
6425  DAG.setRoot(NewRoot);
6426
6427  // Set up the argument values.
6428  unsigned i = 0;
6429  Idx = 1;
6430  if (!FuncInfo->CanLowerReturn) {
6431    // Create a virtual register for the sret pointer, and put in a copy
6432    // from the sret argument into it.
6433    SmallVector<EVT, 1> ValueVTs;
6434    ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs);
6435    EVT VT = ValueVTs[0];
6436    EVT RegVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
6437    ISD::NodeType AssertOp = ISD::DELETED_NODE;
6438    SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1,
6439                                        RegVT, VT, AssertOp);
6440
6441    MachineFunction& MF = SDB->DAG.getMachineFunction();
6442    MachineRegisterInfo& RegInfo = MF.getRegInfo();
6443    unsigned SRetReg = RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT));
6444    FuncInfo->DemoteRegister = SRetReg;
6445    NewRoot = SDB->DAG.getCopyToReg(NewRoot, SDB->getCurDebugLoc(),
6446                                    SRetReg, ArgValue);
6447    DAG.setRoot(NewRoot);
6448
6449    // i indexes lowered arguments.  Bump it past the hidden sret argument.
6450    // Idx indexes LLVM arguments.  Don't touch it.
6451    ++i;
6452  }
6453
6454  for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E;
6455      ++I, ++Idx) {
6456    SmallVector<SDValue, 4> ArgValues;
6457    SmallVector<EVT, 4> ValueVTs;
6458    ComputeValueVTs(TLI, I->getType(), ValueVTs);
6459    unsigned NumValues = ValueVTs.size();
6460
6461    // If this argument is unused then remember its value. It is used to generate
6462    // debugging information.
6463    if (I->use_empty() && NumValues)
6464      SDB->setUnusedArgValue(I, InVals[i]);
6465
6466    for (unsigned Val = 0; Val != NumValues; ++Val) {
6467      EVT VT = ValueVTs[Val];
6468      EVT PartVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
6469      unsigned NumParts = TLI.getNumRegisters(*CurDAG->getContext(), VT);
6470
6471      if (!I->use_empty()) {
6472        ISD::NodeType AssertOp = ISD::DELETED_NODE;
6473        if (F.paramHasAttr(Idx, Attribute::SExt))
6474          AssertOp = ISD::AssertSext;
6475        else if (F.paramHasAttr(Idx, Attribute::ZExt))
6476          AssertOp = ISD::AssertZext;
6477
6478        ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i],
6479                                             NumParts, PartVT, VT,
6480                                             AssertOp));
6481      }
6482
6483      i += NumParts;
6484    }
6485
6486    // We don't need to do anything else for unused arguments.
6487    if (ArgValues.empty())
6488      continue;
6489
6490    // Note down frame index for byval arguments.
6491    if (I->hasByValAttr())
6492      if (FrameIndexSDNode *FI =
6493          dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
6494        FuncInfo->setByValArgumentFrameIndex(I, FI->getIndex());
6495
6496    SDValue Res = DAG.getMergeValues(&ArgValues[0], NumValues,
6497                                     SDB->getCurDebugLoc());
6498    SDB->setValue(I, Res);
6499
6500    // If this argument is live outside of the entry block, insert a copy from
6501    // wherever we got it to the vreg that other BB's will reference it as.
6502    if (!EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) {
6503      // If we can, though, try to skip creating an unnecessary vreg.
6504      // FIXME: This isn't very clean... it would be nice to make this more
6505      // general.  It's also subtly incompatible with the hacks FastISel
6506      // uses with vregs.
6507      unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
6508      if (TargetRegisterInfo::isVirtualRegister(Reg)) {
6509        FuncInfo->ValueMap[I] = Reg;
6510        continue;
6511      }
6512    }
6513    if (!isOnlyUsedInEntryBlock(I)) {
6514      FuncInfo->InitializeRegForValue(I);
6515      SDB->CopyToExportRegsIfNeeded(I);
6516    }
6517  }
6518
6519  assert(i == InVals.size() && "Argument register count mismatch!");
6520
6521  // Finally, if the target has anything special to do, allow it to do so.
6522  // FIXME: this should insert code into the DAG!
6523  EmitFunctionEntryCode();
6524}
6525
6526/// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
6527/// ensure constants are generated when needed.  Remember the virtual registers
6528/// that need to be added to the Machine PHI nodes as input.  We cannot just
6529/// directly add them, because expansion might result in multiple MBB's for one
6530/// BB.  As such, the start of the BB might correspond to a different MBB than
6531/// the end.
6532///
6533void
6534SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
6535  const TerminatorInst *TI = LLVMBB->getTerminator();
6536
6537  SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
6538
6539  // Check successor nodes' PHI nodes that expect a constant to be available
6540  // from this block.
6541  for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
6542    const BasicBlock *SuccBB = TI->getSuccessor(succ);
6543    if (!isa<PHINode>(SuccBB->begin())) continue;
6544    MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
6545
6546    // If this terminator has multiple identical successors (common for
6547    // switches), only handle each succ once.
6548    if (!SuccsHandled.insert(SuccMBB)) continue;
6549
6550    MachineBasicBlock::iterator MBBI = SuccMBB->begin();
6551
6552    // At this point we know that there is a 1-1 correspondence between LLVM PHI
6553    // nodes and Machine PHI nodes, but the incoming operands have not been
6554    // emitted yet.
6555    for (BasicBlock::const_iterator I = SuccBB->begin();
6556         const PHINode *PN = dyn_cast<PHINode>(I); ++I) {
6557      // Ignore dead phi's.
6558      if (PN->use_empty()) continue;
6559
6560      // Skip empty types
6561      if (PN->getType()->isEmptyTy())
6562        continue;
6563
6564      unsigned Reg;
6565      const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
6566
6567      if (const Constant *C = dyn_cast<Constant>(PHIOp)) {
6568        unsigned &RegOut = ConstantsOut[C];
6569        if (RegOut == 0) {
6570          RegOut = FuncInfo.CreateRegs(C->getType());
6571          CopyValueToVirtualRegister(C, RegOut);
6572        }
6573        Reg = RegOut;
6574      } else {
6575        DenseMap<const Value *, unsigned>::iterator I =
6576          FuncInfo.ValueMap.find(PHIOp);
6577        if (I != FuncInfo.ValueMap.end())
6578          Reg = I->second;
6579        else {
6580          assert(isa<AllocaInst>(PHIOp) &&
6581                 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
6582                 "Didn't codegen value into a register!??");
6583          Reg = FuncInfo.CreateRegs(PHIOp->getType());
6584          CopyValueToVirtualRegister(PHIOp, Reg);
6585        }
6586      }
6587
6588      // Remember that this register needs to added to the machine PHI node as
6589      // the input for this MBB.
6590      SmallVector<EVT, 4> ValueVTs;
6591      ComputeValueVTs(TLI, PN->getType(), ValueVTs);
6592      for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
6593        EVT VT = ValueVTs[vti];
6594        unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
6595        for (unsigned i = 0, e = NumRegisters; i != e; ++i)
6596          FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i));
6597        Reg += NumRegisters;
6598      }
6599    }
6600  }
6601  ConstantsOut.clear();
6602}
6603