SelectionDAGBuilder.cpp revision dc54f8ebe288c7313e22902d4bdfe030e479db48
1//===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements routines for translating from LLVM IR into SelectionDAG IR.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "isel"
15#include "SDNodeDbgValue.h"
16#include "SelectionDAGBuilder.h"
17#include "llvm/ADT/BitVector.h"
18#include "llvm/ADT/PostOrderIterator.h"
19#include "llvm/ADT/SmallSet.h"
20#include "llvm/Analysis/AliasAnalysis.h"
21#include "llvm/Analysis/ConstantFolding.h"
22#include "llvm/Constants.h"
23#include "llvm/CallingConv.h"
24#include "llvm/DerivedTypes.h"
25#include "llvm/Function.h"
26#include "llvm/GlobalVariable.h"
27#include "llvm/InlineAsm.h"
28#include "llvm/Instructions.h"
29#include "llvm/Intrinsics.h"
30#include "llvm/IntrinsicInst.h"
31#include "llvm/LLVMContext.h"
32#include "llvm/Module.h"
33#include "llvm/CodeGen/Analysis.h"
34#include "llvm/CodeGen/FastISel.h"
35#include "llvm/CodeGen/FunctionLoweringInfo.h"
36#include "llvm/CodeGen/GCStrategy.h"
37#include "llvm/CodeGen/GCMetadata.h"
38#include "llvm/CodeGen/MachineFunction.h"
39#include "llvm/CodeGen/MachineFrameInfo.h"
40#include "llvm/CodeGen/MachineInstrBuilder.h"
41#include "llvm/CodeGen/MachineJumpTableInfo.h"
42#include "llvm/CodeGen/MachineModuleInfo.h"
43#include "llvm/CodeGen/MachineRegisterInfo.h"
44#include "llvm/CodeGen/SelectionDAG.h"
45#include "llvm/Analysis/DebugInfo.h"
46#include "llvm/Target/TargetData.h"
47#include "llvm/Target/TargetFrameLowering.h"
48#include "llvm/Target/TargetInstrInfo.h"
49#include "llvm/Target/TargetIntrinsicInfo.h"
50#include "llvm/Target/TargetLibraryInfo.h"
51#include "llvm/Target/TargetLowering.h"
52#include "llvm/Target/TargetOptions.h"
53#include "llvm/Support/CommandLine.h"
54#include "llvm/Support/CRSBuilder.h"
55#include "llvm/Support/Debug.h"
56#include "llvm/Support/ErrorHandling.h"
57#include "llvm/Support/MathExtras.h"
58#include "llvm/Support/raw_ostream.h"
59#include <algorithm>
60using namespace llvm;
61
62/// LimitFloatPrecision - Generate low-precision inline sequences for
63/// some float libcalls (6, 8 or 12 bits).
64static unsigned LimitFloatPrecision;
65
66static cl::opt<unsigned, true>
67LimitFPPrecision("limit-float-precision",
68                 cl::desc("Generate low-precision inline sequences "
69                          "for some float libcalls"),
70                 cl::location(LimitFloatPrecision),
71                 cl::init(0));
72
73// Limit the width of DAG chains. This is important in general to prevent
74// prevent DAG-based analysis from blowing up. For example, alias analysis and
75// load clustering may not complete in reasonable time. It is difficult to
76// recognize and avoid this situation within each individual analysis, and
77// future analyses are likely to have the same behavior. Limiting DAG width is
78// the safe approach, and will be especially important with global DAGs.
79//
80// MaxParallelChains default is arbitrarily high to avoid affecting
81// optimization, but could be lowered to improve compile time. Any ld-ld-st-st
82// sequence over this should have been converted to llvm.memcpy by the
83// frontend. It easy to induce this behavior with .ll code such as:
84// %buffer = alloca [4096 x i8]
85// %data = load [4096 x i8]* %argPtr
86// store [4096 x i8] %data, [4096 x i8]* %buffer
87static const unsigned MaxParallelChains = 64;
88
89static SDValue getCopyFromPartsVector(SelectionDAG &DAG, DebugLoc DL,
90                                      const SDValue *Parts, unsigned NumParts,
91                                      EVT PartVT, EVT ValueVT);
92
93/// getCopyFromParts - Create a value that contains the specified legal parts
94/// combined into the value they represent.  If the parts combine to a type
95/// larger then ValueVT then AssertOp can be used to specify whether the extra
96/// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
97/// (ISD::AssertSext).
98static SDValue getCopyFromParts(SelectionDAG &DAG, DebugLoc DL,
99                                const SDValue *Parts,
100                                unsigned NumParts, EVT PartVT, EVT ValueVT,
101                                ISD::NodeType AssertOp = ISD::DELETED_NODE) {
102  if (ValueVT.isVector())
103    return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT);
104
105  assert(NumParts > 0 && "No parts to assemble!");
106  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
107  SDValue Val = Parts[0];
108
109  if (NumParts > 1) {
110    // Assemble the value from multiple parts.
111    if (ValueVT.isInteger()) {
112      unsigned PartBits = PartVT.getSizeInBits();
113      unsigned ValueBits = ValueVT.getSizeInBits();
114
115      // Assemble the power of 2 part.
116      unsigned RoundParts = NumParts & (NumParts - 1) ?
117        1 << Log2_32(NumParts) : NumParts;
118      unsigned RoundBits = PartBits * RoundParts;
119      EVT RoundVT = RoundBits == ValueBits ?
120        ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
121      SDValue Lo, Hi;
122
123      EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
124
125      if (RoundParts > 2) {
126        Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2,
127                              PartVT, HalfVT);
128        Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2,
129                              RoundParts / 2, PartVT, HalfVT);
130      } else {
131        Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
132        Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
133      }
134
135      if (TLI.isBigEndian())
136        std::swap(Lo, Hi);
137
138      Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
139
140      if (RoundParts < NumParts) {
141        // Assemble the trailing non-power-of-2 part.
142        unsigned OddParts = NumParts - RoundParts;
143        EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
144        Hi = getCopyFromParts(DAG, DL,
145                              Parts + RoundParts, OddParts, PartVT, OddVT);
146
147        // Combine the round and odd parts.
148        Lo = Val;
149        if (TLI.isBigEndian())
150          std::swap(Lo, Hi);
151        EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
152        Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
153        Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
154                         DAG.getConstant(Lo.getValueType().getSizeInBits(),
155                                         TLI.getPointerTy()));
156        Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
157        Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
158      }
159    } else if (PartVT.isFloatingPoint()) {
160      // FP split into multiple FP parts (for ppcf128)
161      assert(ValueVT == EVT(MVT::ppcf128) && PartVT == EVT(MVT::f64) &&
162             "Unexpected split");
163      SDValue Lo, Hi;
164      Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
165      Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
166      if (TLI.isBigEndian())
167        std::swap(Lo, Hi);
168      Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
169    } else {
170      // FP split into integer parts (soft fp)
171      assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
172             !PartVT.isVector() && "Unexpected split");
173      EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
174      Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT);
175    }
176  }
177
178  // There is now one part, held in Val.  Correct it to match ValueVT.
179  PartVT = Val.getValueType();
180
181  if (PartVT == ValueVT)
182    return Val;
183
184  if (PartVT.isInteger() && ValueVT.isInteger()) {
185    if (ValueVT.bitsLT(PartVT)) {
186      // For a truncate, see if we have any information to
187      // indicate whether the truncated bits will always be
188      // zero or sign-extension.
189      if (AssertOp != ISD::DELETED_NODE)
190        Val = DAG.getNode(AssertOp, DL, PartVT, Val,
191                          DAG.getValueType(ValueVT));
192      return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
193    }
194    return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
195  }
196
197  if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
198    // FP_ROUND's are always exact here.
199    if (ValueVT.bitsLT(Val.getValueType()))
200      return DAG.getNode(ISD::FP_ROUND, DL, ValueVT, Val,
201                         DAG.getTargetConstant(1, TLI.getPointerTy()));
202
203    return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
204  }
205
206  if (PartVT.getSizeInBits() == ValueVT.getSizeInBits())
207    return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
208
209  llvm_unreachable("Unknown mismatch!");
210}
211
212/// getCopyFromParts - Create a value that contains the specified legal parts
213/// combined into the value they represent.  If the parts combine to a type
214/// larger then ValueVT then AssertOp can be used to specify whether the extra
215/// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
216/// (ISD::AssertSext).
217static SDValue getCopyFromPartsVector(SelectionDAG &DAG, DebugLoc DL,
218                                      const SDValue *Parts, unsigned NumParts,
219                                      EVT PartVT, EVT ValueVT) {
220  assert(ValueVT.isVector() && "Not a vector value");
221  assert(NumParts > 0 && "No parts to assemble!");
222  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
223  SDValue Val = Parts[0];
224
225  // Handle a multi-element vector.
226  if (NumParts > 1) {
227    EVT IntermediateVT, RegisterVT;
228    unsigned NumIntermediates;
229    unsigned NumRegs =
230    TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
231                               NumIntermediates, RegisterVT);
232    assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
233    NumParts = NumRegs; // Silence a compiler warning.
234    assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
235    assert(RegisterVT == Parts[0].getValueType() &&
236           "Part type doesn't match part!");
237
238    // Assemble the parts into intermediate operands.
239    SmallVector<SDValue, 8> Ops(NumIntermediates);
240    if (NumIntermediates == NumParts) {
241      // If the register was not expanded, truncate or copy the value,
242      // as appropriate.
243      for (unsigned i = 0; i != NumParts; ++i)
244        Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1,
245                                  PartVT, IntermediateVT);
246    } else if (NumParts > 0) {
247      // If the intermediate type was expanded, build the intermediate
248      // operands from the parts.
249      assert(NumParts % NumIntermediates == 0 &&
250             "Must expand into a divisible number of parts!");
251      unsigned Factor = NumParts / NumIntermediates;
252      for (unsigned i = 0; i != NumIntermediates; ++i)
253        Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor,
254                                  PartVT, IntermediateVT);
255    }
256
257    // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
258    // intermediate operands.
259    Val = DAG.getNode(IntermediateVT.isVector() ?
260                      ISD::CONCAT_VECTORS : ISD::BUILD_VECTOR, DL,
261                      ValueVT, &Ops[0], NumIntermediates);
262  }
263
264  // There is now one part, held in Val.  Correct it to match ValueVT.
265  PartVT = Val.getValueType();
266
267  if (PartVT == ValueVT)
268    return Val;
269
270  if (PartVT.isVector()) {
271    // If the element type of the source/dest vectors are the same, but the
272    // parts vector has more elements than the value vector, then we have a
273    // vector widening case (e.g. <2 x float> -> <4 x float>).  Extract the
274    // elements we want.
275    if (PartVT.getVectorElementType() == ValueVT.getVectorElementType()) {
276      assert(PartVT.getVectorNumElements() > ValueVT.getVectorNumElements() &&
277             "Cannot narrow, it would be a lossy transformation");
278      return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
279                         DAG.getIntPtrConstant(0));
280    }
281
282    // Vector/Vector bitcast.
283    if (ValueVT.getSizeInBits() == PartVT.getSizeInBits())
284      return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
285
286    assert(PartVT.getVectorNumElements() == ValueVT.getVectorNumElements() &&
287      "Cannot handle this kind of promotion");
288    // Promoted vector extract
289    bool Smaller = ValueVT.bitsLE(PartVT);
290    return DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
291                       DL, ValueVT, Val);
292
293  }
294
295  // Trivial bitcast if the types are the same size and the destination
296  // vector type is legal.
297  if (PartVT.getSizeInBits() == ValueVT.getSizeInBits() &&
298      TLI.isTypeLegal(ValueVT))
299    return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
300
301  // Handle cases such as i8 -> <1 x i1>
302  assert(ValueVT.getVectorNumElements() == 1 &&
303         "Only trivial scalar-to-vector conversions should get here!");
304
305  if (ValueVT.getVectorNumElements() == 1 &&
306      ValueVT.getVectorElementType() != PartVT) {
307    bool Smaller = ValueVT.bitsLE(PartVT);
308    Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
309                       DL, ValueVT.getScalarType(), Val);
310  }
311
312  return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val);
313}
314
315
316
317
318static void getCopyToPartsVector(SelectionDAG &DAG, DebugLoc dl,
319                                 SDValue Val, SDValue *Parts, unsigned NumParts,
320                                 EVT PartVT);
321
322/// getCopyToParts - Create a series of nodes that contain the specified value
323/// split into legal parts.  If the parts contain more bits than Val, then, for
324/// integers, ExtendKind can be used to specify how to generate the extra bits.
325static void getCopyToParts(SelectionDAG &DAG, DebugLoc DL,
326                           SDValue Val, SDValue *Parts, unsigned NumParts,
327                           EVT PartVT,
328                           ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
329  EVT ValueVT = Val.getValueType();
330
331  // Handle the vector case separately.
332  if (ValueVT.isVector())
333    return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT);
334
335  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
336  unsigned PartBits = PartVT.getSizeInBits();
337  unsigned OrigNumParts = NumParts;
338  assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!");
339
340  if (NumParts == 0)
341    return;
342
343  assert(!ValueVT.isVector() && "Vector case handled elsewhere");
344  if (PartVT == ValueVT) {
345    assert(NumParts == 1 && "No-op copy with multiple parts!");
346    Parts[0] = Val;
347    return;
348  }
349
350  if (NumParts * PartBits > ValueVT.getSizeInBits()) {
351    // If the parts cover more bits than the value has, promote the value.
352    if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
353      assert(NumParts == 1 && "Do not know what to promote to!");
354      Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
355    } else {
356      assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
357             ValueVT.isInteger() &&
358             "Unknown mismatch!");
359      ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
360      Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
361      if (PartVT == MVT::x86mmx)
362        Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
363    }
364  } else if (PartBits == ValueVT.getSizeInBits()) {
365    // Different types of the same size.
366    assert(NumParts == 1 && PartVT != ValueVT);
367    Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
368  } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
369    // If the parts cover less bits than value has, truncate the value.
370    assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
371           ValueVT.isInteger() &&
372           "Unknown mismatch!");
373    ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
374    Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
375    if (PartVT == MVT::x86mmx)
376      Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
377  }
378
379  // The value may have changed - recompute ValueVT.
380  ValueVT = Val.getValueType();
381  assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
382         "Failed to tile the value with PartVT!");
383
384  if (NumParts == 1) {
385    assert(PartVT == ValueVT && "Type conversion failed!");
386    Parts[0] = Val;
387    return;
388  }
389
390  // Expand the value into multiple parts.
391  if (NumParts & (NumParts - 1)) {
392    // The number of parts is not a power of 2.  Split off and copy the tail.
393    assert(PartVT.isInteger() && ValueVT.isInteger() &&
394           "Do not know what to expand to!");
395    unsigned RoundParts = 1 << Log2_32(NumParts);
396    unsigned RoundBits = RoundParts * PartBits;
397    unsigned OddParts = NumParts - RoundParts;
398    SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
399                                 DAG.getIntPtrConstant(RoundBits));
400    getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT);
401
402    if (TLI.isBigEndian())
403      // The odd parts were reversed by getCopyToParts - unreverse them.
404      std::reverse(Parts + RoundParts, Parts + NumParts);
405
406    NumParts = RoundParts;
407    ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
408    Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
409  }
410
411  // The number of parts is a power of 2.  Repeatedly bisect the value using
412  // EXTRACT_ELEMENT.
413  Parts[0] = DAG.getNode(ISD::BITCAST, DL,
414                         EVT::getIntegerVT(*DAG.getContext(),
415                                           ValueVT.getSizeInBits()),
416                         Val);
417
418  for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
419    for (unsigned i = 0; i < NumParts; i += StepSize) {
420      unsigned ThisBits = StepSize * PartBits / 2;
421      EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
422      SDValue &Part0 = Parts[i];
423      SDValue &Part1 = Parts[i+StepSize/2];
424
425      Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
426                          ThisVT, Part0, DAG.getIntPtrConstant(1));
427      Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
428                          ThisVT, Part0, DAG.getIntPtrConstant(0));
429
430      if (ThisBits == PartBits && ThisVT != PartVT) {
431        Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
432        Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
433      }
434    }
435  }
436
437  if (TLI.isBigEndian())
438    std::reverse(Parts, Parts + OrigNumParts);
439}
440
441
442/// getCopyToPartsVector - Create a series of nodes that contain the specified
443/// value split into legal parts.
444static void getCopyToPartsVector(SelectionDAG &DAG, DebugLoc DL,
445                                 SDValue Val, SDValue *Parts, unsigned NumParts,
446                                 EVT PartVT) {
447  EVT ValueVT = Val.getValueType();
448  assert(ValueVT.isVector() && "Not a vector");
449  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
450
451  if (NumParts == 1) {
452    if (PartVT == ValueVT) {
453      // Nothing to do.
454    } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
455      // Bitconvert vector->vector case.
456      Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
457    } else if (PartVT.isVector() &&
458               PartVT.getVectorElementType() == ValueVT.getVectorElementType() &&
459               PartVT.getVectorNumElements() > ValueVT.getVectorNumElements()) {
460      EVT ElementVT = PartVT.getVectorElementType();
461      // Vector widening case, e.g. <2 x float> -> <4 x float>.  Shuffle in
462      // undef elements.
463      SmallVector<SDValue, 16> Ops;
464      for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i)
465        Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
466                                  ElementVT, Val, DAG.getIntPtrConstant(i)));
467
468      for (unsigned i = ValueVT.getVectorNumElements(),
469           e = PartVT.getVectorNumElements(); i != e; ++i)
470        Ops.push_back(DAG.getUNDEF(ElementVT));
471
472      Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, &Ops[0], Ops.size());
473
474      // FIXME: Use CONCAT for 2x -> 4x.
475
476      //SDValue UndefElts = DAG.getUNDEF(VectorTy);
477      //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts);
478    } else if (PartVT.isVector() &&
479               PartVT.getVectorElementType().bitsGE(
480                 ValueVT.getVectorElementType()) &&
481               PartVT.getVectorNumElements() == ValueVT.getVectorNumElements()) {
482
483      // Promoted vector extract
484      bool Smaller = PartVT.bitsLE(ValueVT);
485      Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
486                        DL, PartVT, Val);
487    } else{
488      // Vector -> scalar conversion.
489      assert(ValueVT.getVectorNumElements() == 1 &&
490             "Only trivial vector-to-scalar conversions should get here!");
491      Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
492                        PartVT, Val, DAG.getIntPtrConstant(0));
493
494      bool Smaller = ValueVT.bitsLE(PartVT);
495      Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
496                         DL, PartVT, Val);
497    }
498
499    Parts[0] = Val;
500    return;
501  }
502
503  // Handle a multi-element vector.
504  EVT IntermediateVT, RegisterVT;
505  unsigned NumIntermediates;
506  unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT,
507                                                IntermediateVT,
508                                                NumIntermediates, RegisterVT);
509  unsigned NumElements = ValueVT.getVectorNumElements();
510
511  assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
512  NumParts = NumRegs; // Silence a compiler warning.
513  assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
514
515  // Split the vector into intermediate operands.
516  SmallVector<SDValue, 8> Ops(NumIntermediates);
517  for (unsigned i = 0; i != NumIntermediates; ++i) {
518    if (IntermediateVT.isVector())
519      Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL,
520                           IntermediateVT, Val,
521                   DAG.getIntPtrConstant(i * (NumElements / NumIntermediates)));
522    else
523      Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
524                           IntermediateVT, Val, DAG.getIntPtrConstant(i));
525  }
526
527  // Split the intermediate operands into legal parts.
528  if (NumParts == NumIntermediates) {
529    // If the register was not expanded, promote or copy the value,
530    // as appropriate.
531    for (unsigned i = 0; i != NumParts; ++i)
532      getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT);
533  } else if (NumParts > 0) {
534    // If the intermediate type was expanded, split each the value into
535    // legal parts.
536    assert(NumParts % NumIntermediates == 0 &&
537           "Must expand into a divisible number of parts!");
538    unsigned Factor = NumParts / NumIntermediates;
539    for (unsigned i = 0; i != NumIntermediates; ++i)
540      getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT);
541  }
542}
543
544
545
546
547namespace {
548  /// RegsForValue - This struct represents the registers (physical or virtual)
549  /// that a particular set of values is assigned, and the type information
550  /// about the value. The most common situation is to represent one value at a
551  /// time, but struct or array values are handled element-wise as multiple
552  /// values.  The splitting of aggregates is performed recursively, so that we
553  /// never have aggregate-typed registers. The values at this point do not
554  /// necessarily have legal types, so each value may require one or more
555  /// registers of some legal type.
556  ///
557  struct RegsForValue {
558    /// ValueVTs - The value types of the values, which may not be legal, and
559    /// may need be promoted or synthesized from one or more registers.
560    ///
561    SmallVector<EVT, 4> ValueVTs;
562
563    /// RegVTs - The value types of the registers. This is the same size as
564    /// ValueVTs and it records, for each value, what the type of the assigned
565    /// register or registers are. (Individual values are never synthesized
566    /// from more than one type of register.)
567    ///
568    /// With virtual registers, the contents of RegVTs is redundant with TLI's
569    /// getRegisterType member function, however when with physical registers
570    /// it is necessary to have a separate record of the types.
571    ///
572    SmallVector<EVT, 4> RegVTs;
573
574    /// Regs - This list holds the registers assigned to the values.
575    /// Each legal or promoted value requires one register, and each
576    /// expanded value requires multiple registers.
577    ///
578    SmallVector<unsigned, 4> Regs;
579
580    RegsForValue() {}
581
582    RegsForValue(const SmallVector<unsigned, 4> &regs,
583                 EVT regvt, EVT valuevt)
584      : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {}
585
586    RegsForValue(LLVMContext &Context, const TargetLowering &tli,
587                 unsigned Reg, Type *Ty) {
588      ComputeValueVTs(tli, Ty, ValueVTs);
589
590      for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
591        EVT ValueVT = ValueVTs[Value];
592        unsigned NumRegs = tli.getNumRegisters(Context, ValueVT);
593        EVT RegisterVT = tli.getRegisterType(Context, ValueVT);
594        for (unsigned i = 0; i != NumRegs; ++i)
595          Regs.push_back(Reg + i);
596        RegVTs.push_back(RegisterVT);
597        Reg += NumRegs;
598      }
599    }
600
601    /// areValueTypesLegal - Return true if types of all the values are legal.
602    bool areValueTypesLegal(const TargetLowering &TLI) {
603      for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
604        EVT RegisterVT = RegVTs[Value];
605        if (!TLI.isTypeLegal(RegisterVT))
606          return false;
607      }
608      return true;
609    }
610
611    /// append - Add the specified values to this one.
612    void append(const RegsForValue &RHS) {
613      ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end());
614      RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end());
615      Regs.append(RHS.Regs.begin(), RHS.Regs.end());
616    }
617
618    /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
619    /// this value and returns the result as a ValueVTs value.  This uses
620    /// Chain/Flag as the input and updates them for the output Chain/Flag.
621    /// If the Flag pointer is NULL, no flag is used.
622    SDValue getCopyFromRegs(SelectionDAG &DAG, FunctionLoweringInfo &FuncInfo,
623                            DebugLoc dl,
624                            SDValue &Chain, SDValue *Flag) const;
625
626    /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
627    /// specified value into the registers specified by this object.  This uses
628    /// Chain/Flag as the input and updates them for the output Chain/Flag.
629    /// If the Flag pointer is NULL, no flag is used.
630    void getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl,
631                       SDValue &Chain, SDValue *Flag) const;
632
633    /// AddInlineAsmOperands - Add this value to the specified inlineasm node
634    /// operand list.  This adds the code marker, matching input operand index
635    /// (if applicable), and includes the number of values added into it.
636    void AddInlineAsmOperands(unsigned Kind,
637                              bool HasMatching, unsigned MatchingIdx,
638                              SelectionDAG &DAG,
639                              std::vector<SDValue> &Ops) const;
640  };
641}
642
643/// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
644/// this value and returns the result as a ValueVT value.  This uses
645/// Chain/Flag as the input and updates them for the output Chain/Flag.
646/// If the Flag pointer is NULL, no flag is used.
647SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
648                                      FunctionLoweringInfo &FuncInfo,
649                                      DebugLoc dl,
650                                      SDValue &Chain, SDValue *Flag) const {
651  // A Value with type {} or [0 x %t] needs no registers.
652  if (ValueVTs.empty())
653    return SDValue();
654
655  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
656
657  // Assemble the legal parts into the final values.
658  SmallVector<SDValue, 4> Values(ValueVTs.size());
659  SmallVector<SDValue, 8> Parts;
660  for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
661    // Copy the legal parts from the registers.
662    EVT ValueVT = ValueVTs[Value];
663    unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
664    EVT RegisterVT = RegVTs[Value];
665
666    Parts.resize(NumRegs);
667    for (unsigned i = 0; i != NumRegs; ++i) {
668      SDValue P;
669      if (Flag == 0) {
670        P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
671      } else {
672        P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
673        *Flag = P.getValue(2);
674      }
675
676      Chain = P.getValue(1);
677      Parts[i] = P;
678
679      // If the source register was virtual and if we know something about it,
680      // add an assert node.
681      if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) ||
682          !RegisterVT.isInteger() || RegisterVT.isVector())
683        continue;
684
685      const FunctionLoweringInfo::LiveOutInfo *LOI =
686        FuncInfo.GetLiveOutRegInfo(Regs[Part+i]);
687      if (!LOI)
688        continue;
689
690      unsigned RegSize = RegisterVT.getSizeInBits();
691      unsigned NumSignBits = LOI->NumSignBits;
692      unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes();
693
694      // FIXME: We capture more information than the dag can represent.  For
695      // now, just use the tightest assertzext/assertsext possible.
696      bool isSExt = true;
697      EVT FromVT(MVT::Other);
698      if (NumSignBits == RegSize)
699        isSExt = true, FromVT = MVT::i1;   // ASSERT SEXT 1
700      else if (NumZeroBits >= RegSize-1)
701        isSExt = false, FromVT = MVT::i1;  // ASSERT ZEXT 1
702      else if (NumSignBits > RegSize-8)
703        isSExt = true, FromVT = MVT::i8;   // ASSERT SEXT 8
704      else if (NumZeroBits >= RegSize-8)
705        isSExt = false, FromVT = MVT::i8;  // ASSERT ZEXT 8
706      else if (NumSignBits > RegSize-16)
707        isSExt = true, FromVT = MVT::i16;  // ASSERT SEXT 16
708      else if (NumZeroBits >= RegSize-16)
709        isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16
710      else if (NumSignBits > RegSize-32)
711        isSExt = true, FromVT = MVT::i32;  // ASSERT SEXT 32
712      else if (NumZeroBits >= RegSize-32)
713        isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32
714      else
715        continue;
716
717      // Add an assertion node.
718      assert(FromVT != MVT::Other);
719      Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
720                             RegisterVT, P, DAG.getValueType(FromVT));
721    }
722
723    Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(),
724                                     NumRegs, RegisterVT, ValueVT);
725    Part += NumRegs;
726    Parts.clear();
727  }
728
729  return DAG.getNode(ISD::MERGE_VALUES, dl,
730                     DAG.getVTList(&ValueVTs[0], ValueVTs.size()),
731                     &Values[0], ValueVTs.size());
732}
733
734/// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
735/// specified value into the registers specified by this object.  This uses
736/// Chain/Flag as the input and updates them for the output Chain/Flag.
737/// If the Flag pointer is NULL, no flag is used.
738void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl,
739                                 SDValue &Chain, SDValue *Flag) const {
740  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
741
742  // Get the list of the values's legal parts.
743  unsigned NumRegs = Regs.size();
744  SmallVector<SDValue, 8> Parts(NumRegs);
745  for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
746    EVT ValueVT = ValueVTs[Value];
747    unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
748    EVT RegisterVT = RegVTs[Value];
749
750    getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value),
751                   &Parts[Part], NumParts, RegisterVT);
752    Part += NumParts;
753  }
754
755  // Copy the parts into the registers.
756  SmallVector<SDValue, 8> Chains(NumRegs);
757  for (unsigned i = 0; i != NumRegs; ++i) {
758    SDValue Part;
759    if (Flag == 0) {
760      Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
761    } else {
762      Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
763      *Flag = Part.getValue(1);
764    }
765
766    Chains[i] = Part.getValue(0);
767  }
768
769  if (NumRegs == 1 || Flag)
770    // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
771    // flagged to it. That is the CopyToReg nodes and the user are considered
772    // a single scheduling unit. If we create a TokenFactor and return it as
773    // chain, then the TokenFactor is both a predecessor (operand) of the
774    // user as well as a successor (the TF operands are flagged to the user).
775    // c1, f1 = CopyToReg
776    // c2, f2 = CopyToReg
777    // c3     = TokenFactor c1, c2
778    // ...
779    //        = op c3, ..., f2
780    Chain = Chains[NumRegs-1];
781  else
782    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0], NumRegs);
783}
784
785/// AddInlineAsmOperands - Add this value to the specified inlineasm node
786/// operand list.  This adds the code marker and includes the number of
787/// values added into it.
788void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
789                                        unsigned MatchingIdx,
790                                        SelectionDAG &DAG,
791                                        std::vector<SDValue> &Ops) const {
792  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
793
794  unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
795  if (HasMatching)
796    Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
797  else if (!Regs.empty() &&
798           TargetRegisterInfo::isVirtualRegister(Regs.front())) {
799    // Put the register class of the virtual registers in the flag word.  That
800    // way, later passes can recompute register class constraints for inline
801    // assembly as well as normal instructions.
802    // Don't do this for tied operands that can use the regclass information
803    // from the def.
804    const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
805    const TargetRegisterClass *RC = MRI.getRegClass(Regs.front());
806    Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID());
807  }
808
809  SDValue Res = DAG.getTargetConstant(Flag, MVT::i32);
810  Ops.push_back(Res);
811
812  for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
813    unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]);
814    EVT RegisterVT = RegVTs[Value];
815    for (unsigned i = 0; i != NumRegs; ++i) {
816      assert(Reg < Regs.size() && "Mismatch in # registers expected");
817      Ops.push_back(DAG.getRegister(Regs[Reg++], RegisterVT));
818    }
819  }
820}
821
822void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa,
823                               const TargetLibraryInfo *li) {
824  AA = &aa;
825  GFI = gfi;
826  LibInfo = li;
827  TD = DAG.getTarget().getTargetData();
828  LPadToCallSiteMap.clear();
829}
830
831/// clear - Clear out the current SelectionDAG and the associated
832/// state and prepare this SelectionDAGBuilder object to be used
833/// for a new block. This doesn't clear out information about
834/// additional blocks that are needed to complete switch lowering
835/// or PHI node updating; that information is cleared out as it is
836/// consumed.
837void SelectionDAGBuilder::clear() {
838  NodeMap.clear();
839  UnusedArgNodeMap.clear();
840  PendingLoads.clear();
841  PendingExports.clear();
842  CurDebugLoc = DebugLoc();
843  HasTailCall = false;
844}
845
846/// clearDanglingDebugInfo - Clear the dangling debug information
847/// map. This function is seperated from the clear so that debug
848/// information that is dangling in a basic block can be properly
849/// resolved in a different basic block. This allows the
850/// SelectionDAG to resolve dangling debug information attached
851/// to PHI nodes.
852void SelectionDAGBuilder::clearDanglingDebugInfo() {
853  DanglingDebugInfoMap.clear();
854}
855
856/// getRoot - Return the current virtual root of the Selection DAG,
857/// flushing any PendingLoad items. This must be done before emitting
858/// a store or any other node that may need to be ordered after any
859/// prior load instructions.
860///
861SDValue SelectionDAGBuilder::getRoot() {
862  if (PendingLoads.empty())
863    return DAG.getRoot();
864
865  if (PendingLoads.size() == 1) {
866    SDValue Root = PendingLoads[0];
867    DAG.setRoot(Root);
868    PendingLoads.clear();
869    return Root;
870  }
871
872  // Otherwise, we have to make a token factor node.
873  SDValue Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
874                               &PendingLoads[0], PendingLoads.size());
875  PendingLoads.clear();
876  DAG.setRoot(Root);
877  return Root;
878}
879
880/// getControlRoot - Similar to getRoot, but instead of flushing all the
881/// PendingLoad items, flush all the PendingExports items. It is necessary
882/// to do this before emitting a terminator instruction.
883///
884SDValue SelectionDAGBuilder::getControlRoot() {
885  SDValue Root = DAG.getRoot();
886
887  if (PendingExports.empty())
888    return Root;
889
890  // Turn all of the CopyToReg chains into one factored node.
891  if (Root.getOpcode() != ISD::EntryToken) {
892    unsigned i = 0, e = PendingExports.size();
893    for (; i != e; ++i) {
894      assert(PendingExports[i].getNode()->getNumOperands() > 1);
895      if (PendingExports[i].getNode()->getOperand(0) == Root)
896        break;  // Don't add the root if we already indirectly depend on it.
897    }
898
899    if (i == e)
900      PendingExports.push_back(Root);
901  }
902
903  Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
904                     &PendingExports[0],
905                     PendingExports.size());
906  PendingExports.clear();
907  DAG.setRoot(Root);
908  return Root;
909}
910
911void SelectionDAGBuilder::AssignOrderingToNode(const SDNode *Node) {
912  if (DAG.GetOrdering(Node) != 0) return; // Already has ordering.
913  DAG.AssignOrdering(Node, SDNodeOrder);
914
915  for (unsigned I = 0, E = Node->getNumOperands(); I != E; ++I)
916    AssignOrderingToNode(Node->getOperand(I).getNode());
917}
918
919void SelectionDAGBuilder::visit(const Instruction &I) {
920  // Set up outgoing PHI node register values before emitting the terminator.
921  if (isa<TerminatorInst>(&I))
922    HandlePHINodesInSuccessorBlocks(I.getParent());
923
924  CurDebugLoc = I.getDebugLoc();
925
926  visit(I.getOpcode(), I);
927
928  if (!isa<TerminatorInst>(&I) && !HasTailCall)
929    CopyToExportRegsIfNeeded(&I);
930
931  CurDebugLoc = DebugLoc();
932}
933
934void SelectionDAGBuilder::visitPHI(const PHINode &) {
935  llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
936}
937
938void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
939  // Note: this doesn't use InstVisitor, because it has to work with
940  // ConstantExpr's in addition to instructions.
941  switch (Opcode) {
942  default: llvm_unreachable("Unknown instruction type encountered!");
943    // Build the switch statement using the Instruction.def file.
944#define HANDLE_INST(NUM, OPCODE, CLASS) \
945    case Instruction::OPCODE: visit##OPCODE((CLASS&)I); break;
946#include "llvm/Instruction.def"
947  }
948
949  // Assign the ordering to the freshly created DAG nodes.
950  if (NodeMap.count(&I)) {
951    ++SDNodeOrder;
952    AssignOrderingToNode(getValue(&I).getNode());
953  }
954}
955
956// resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
957// generate the debug data structures now that we've seen its definition.
958void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
959                                                   SDValue Val) {
960  DanglingDebugInfo &DDI = DanglingDebugInfoMap[V];
961  if (DDI.getDI()) {
962    const DbgValueInst *DI = DDI.getDI();
963    DebugLoc dl = DDI.getdl();
964    unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
965    MDNode *Variable = DI->getVariable();
966    uint64_t Offset = DI->getOffset();
967    SDDbgValue *SDV;
968    if (Val.getNode()) {
969      if (!EmitFuncArgumentDbgValue(V, Variable, Offset, Val)) {
970        SDV = DAG.getDbgValue(Variable, Val.getNode(),
971                              Val.getResNo(), Offset, dl, DbgSDNodeOrder);
972        DAG.AddDbgValue(SDV, Val.getNode(), false);
973      }
974    } else
975      DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
976    DanglingDebugInfoMap[V] = DanglingDebugInfo();
977  }
978}
979
980/// getValue - Return an SDValue for the given Value.
981SDValue SelectionDAGBuilder::getValue(const Value *V) {
982  // If we already have an SDValue for this value, use it. It's important
983  // to do this first, so that we don't create a CopyFromReg if we already
984  // have a regular SDValue.
985  SDValue &N = NodeMap[V];
986  if (N.getNode()) return N;
987
988  // If there's a virtual register allocated and initialized for this
989  // value, use it.
990  DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V);
991  if (It != FuncInfo.ValueMap.end()) {
992    unsigned InReg = It->second;
993    RegsForValue RFV(*DAG.getContext(), TLI, InReg, V->getType());
994    SDValue Chain = DAG.getEntryNode();
995    N = RFV.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), Chain, NULL);
996    resolveDanglingDebugInfo(V, N);
997    return N;
998  }
999
1000  // Otherwise create a new SDValue and remember it.
1001  SDValue Val = getValueImpl(V);
1002  NodeMap[V] = Val;
1003  resolveDanglingDebugInfo(V, Val);
1004  return Val;
1005}
1006
1007/// getNonRegisterValue - Return an SDValue for the given Value, but
1008/// don't look in FuncInfo.ValueMap for a virtual register.
1009SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
1010  // If we already have an SDValue for this value, use it.
1011  SDValue &N = NodeMap[V];
1012  if (N.getNode()) return N;
1013
1014  // Otherwise create a new SDValue and remember it.
1015  SDValue Val = getValueImpl(V);
1016  NodeMap[V] = Val;
1017  resolveDanglingDebugInfo(V, Val);
1018  return Val;
1019}
1020
1021/// getValueImpl - Helper function for getValue and getNonRegisterValue.
1022/// Create an SDValue for the given value.
1023SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
1024  if (const Constant *C = dyn_cast<Constant>(V)) {
1025    EVT VT = TLI.getValueType(V->getType(), true);
1026
1027    if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
1028      return DAG.getConstant(*CI, VT);
1029
1030    if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
1031      return DAG.getGlobalAddress(GV, getCurDebugLoc(), VT);
1032
1033    if (isa<ConstantPointerNull>(C))
1034      return DAG.getConstant(0, TLI.getPointerTy());
1035
1036    if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
1037      return DAG.getConstantFP(*CFP, VT);
1038
1039    if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
1040      return DAG.getUNDEF(VT);
1041
1042    if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1043      visit(CE->getOpcode(), *CE);
1044      SDValue N1 = NodeMap[V];
1045      assert(N1.getNode() && "visit didn't populate the NodeMap!");
1046      return N1;
1047    }
1048
1049    if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
1050      SmallVector<SDValue, 4> Constants;
1051      for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end();
1052           OI != OE; ++OI) {
1053        SDNode *Val = getValue(*OI).getNode();
1054        // If the operand is an empty aggregate, there are no values.
1055        if (!Val) continue;
1056        // Add each leaf value from the operand to the Constants list
1057        // to form a flattened list of all the values.
1058        for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1059          Constants.push_back(SDValue(Val, i));
1060      }
1061
1062      return DAG.getMergeValues(&Constants[0], Constants.size(),
1063                                getCurDebugLoc());
1064    }
1065
1066    if (const ConstantDataSequential *CDS =
1067          dyn_cast<ConstantDataSequential>(C)) {
1068      SmallVector<SDValue, 4> Ops;
1069      for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1070        SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode();
1071        // Add each leaf value from the operand to the Constants list
1072        // to form a flattened list of all the values.
1073        for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1074          Ops.push_back(SDValue(Val, i));
1075      }
1076
1077      if (isa<ArrayType>(CDS->getType()))
1078        return DAG.getMergeValues(&Ops[0], Ops.size(), getCurDebugLoc());
1079      return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(),
1080                                      VT, &Ops[0], Ops.size());
1081    }
1082
1083    if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
1084      assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1085             "Unknown struct or array constant!");
1086
1087      SmallVector<EVT, 4> ValueVTs;
1088      ComputeValueVTs(TLI, C->getType(), ValueVTs);
1089      unsigned NumElts = ValueVTs.size();
1090      if (NumElts == 0)
1091        return SDValue(); // empty struct
1092      SmallVector<SDValue, 4> Constants(NumElts);
1093      for (unsigned i = 0; i != NumElts; ++i) {
1094        EVT EltVT = ValueVTs[i];
1095        if (isa<UndefValue>(C))
1096          Constants[i] = DAG.getUNDEF(EltVT);
1097        else if (EltVT.isFloatingPoint())
1098          Constants[i] = DAG.getConstantFP(0, EltVT);
1099        else
1100          Constants[i] = DAG.getConstant(0, EltVT);
1101      }
1102
1103      return DAG.getMergeValues(&Constants[0], NumElts,
1104                                getCurDebugLoc());
1105    }
1106
1107    if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
1108      return DAG.getBlockAddress(BA, VT);
1109
1110    VectorType *VecTy = cast<VectorType>(V->getType());
1111    unsigned NumElements = VecTy->getNumElements();
1112
1113    // Now that we know the number and type of the elements, get that number of
1114    // elements into the Ops array based on what kind of constant it is.
1115    SmallVector<SDValue, 16> Ops;
1116    if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
1117      for (unsigned i = 0; i != NumElements; ++i)
1118        Ops.push_back(getValue(CV->getOperand(i)));
1119    } else {
1120      assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!");
1121      EVT EltVT = TLI.getValueType(VecTy->getElementType());
1122
1123      SDValue Op;
1124      if (EltVT.isFloatingPoint())
1125        Op = DAG.getConstantFP(0, EltVT);
1126      else
1127        Op = DAG.getConstant(0, EltVT);
1128      Ops.assign(NumElements, Op);
1129    }
1130
1131    // Create a BUILD_VECTOR node.
1132    return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(),
1133                                    VT, &Ops[0], Ops.size());
1134  }
1135
1136  // If this is a static alloca, generate it as the frameindex instead of
1137  // computation.
1138  if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1139    DenseMap<const AllocaInst*, int>::iterator SI =
1140      FuncInfo.StaticAllocaMap.find(AI);
1141    if (SI != FuncInfo.StaticAllocaMap.end())
1142      return DAG.getFrameIndex(SI->second, TLI.getPointerTy());
1143  }
1144
1145  // If this is an instruction which fast-isel has deferred, select it now.
1146  if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
1147    unsigned InReg = FuncInfo.InitializeRegForValue(Inst);
1148    RegsForValue RFV(*DAG.getContext(), TLI, InReg, Inst->getType());
1149    SDValue Chain = DAG.getEntryNode();
1150    return RFV.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), Chain, NULL);
1151  }
1152
1153  llvm_unreachable("Can't get register for value!");
1154}
1155
1156void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
1157  SDValue Chain = getControlRoot();
1158  SmallVector<ISD::OutputArg, 8> Outs;
1159  SmallVector<SDValue, 8> OutVals;
1160
1161  if (!FuncInfo.CanLowerReturn) {
1162    unsigned DemoteReg = FuncInfo.DemoteRegister;
1163    const Function *F = I.getParent()->getParent();
1164
1165    // Emit a store of the return value through the virtual register.
1166    // Leave Outs empty so that LowerReturn won't try to load return
1167    // registers the usual way.
1168    SmallVector<EVT, 1> PtrValueVTs;
1169    ComputeValueVTs(TLI, PointerType::getUnqual(F->getReturnType()),
1170                    PtrValueVTs);
1171
1172    SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]);
1173    SDValue RetOp = getValue(I.getOperand(0));
1174
1175    SmallVector<EVT, 4> ValueVTs;
1176    SmallVector<uint64_t, 4> Offsets;
1177    ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs, &Offsets);
1178    unsigned NumValues = ValueVTs.size();
1179
1180    SmallVector<SDValue, 4> Chains(NumValues);
1181    for (unsigned i = 0; i != NumValues; ++i) {
1182      SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(),
1183                                RetPtr.getValueType(), RetPtr,
1184                                DAG.getIntPtrConstant(Offsets[i]));
1185      Chains[i] =
1186        DAG.getStore(Chain, getCurDebugLoc(),
1187                     SDValue(RetOp.getNode(), RetOp.getResNo() + i),
1188                     // FIXME: better loc info would be nice.
1189                     Add, MachinePointerInfo(), false, false, 0);
1190    }
1191
1192    Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
1193                        MVT::Other, &Chains[0], NumValues);
1194  } else if (I.getNumOperands() != 0) {
1195    SmallVector<EVT, 4> ValueVTs;
1196    ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs);
1197    unsigned NumValues = ValueVTs.size();
1198    if (NumValues) {
1199      SDValue RetOp = getValue(I.getOperand(0));
1200      for (unsigned j = 0, f = NumValues; j != f; ++j) {
1201        EVT VT = ValueVTs[j];
1202
1203        ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1204
1205        const Function *F = I.getParent()->getParent();
1206        if (F->paramHasAttr(0, Attribute::SExt))
1207          ExtendKind = ISD::SIGN_EXTEND;
1208        else if (F->paramHasAttr(0, Attribute::ZExt))
1209          ExtendKind = ISD::ZERO_EXTEND;
1210
1211        if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
1212          VT = TLI.getTypeForExtArgOrReturn(*DAG.getContext(), VT, ExtendKind);
1213
1214        unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), VT);
1215        EVT PartVT = TLI.getRegisterType(*DAG.getContext(), VT);
1216        SmallVector<SDValue, 4> Parts(NumParts);
1217        getCopyToParts(DAG, getCurDebugLoc(),
1218                       SDValue(RetOp.getNode(), RetOp.getResNo() + j),
1219                       &Parts[0], NumParts, PartVT, ExtendKind);
1220
1221        // 'inreg' on function refers to return value
1222        ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1223        if (F->paramHasAttr(0, Attribute::InReg))
1224          Flags.setInReg();
1225
1226        // Propagate extension type if any
1227        if (ExtendKind == ISD::SIGN_EXTEND)
1228          Flags.setSExt();
1229        else if (ExtendKind == ISD::ZERO_EXTEND)
1230          Flags.setZExt();
1231
1232        for (unsigned i = 0; i < NumParts; ++i) {
1233          Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(),
1234                                        /*isfixed=*/true));
1235          OutVals.push_back(Parts[i]);
1236        }
1237      }
1238    }
1239  }
1240
1241  bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
1242  CallingConv::ID CallConv =
1243    DAG.getMachineFunction().getFunction()->getCallingConv();
1244  Chain = TLI.LowerReturn(Chain, CallConv, isVarArg,
1245                          Outs, OutVals, getCurDebugLoc(), DAG);
1246
1247  // Verify that the target's LowerReturn behaved as expected.
1248  assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
1249         "LowerReturn didn't return a valid chain!");
1250
1251  // Update the DAG with the new chain value resulting from return lowering.
1252  DAG.setRoot(Chain);
1253}
1254
1255/// CopyToExportRegsIfNeeded - If the given value has virtual registers
1256/// created for it, emit nodes to copy the value into the virtual
1257/// registers.
1258void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
1259  // Skip empty types
1260  if (V->getType()->isEmptyTy())
1261    return;
1262
1263  DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
1264  if (VMI != FuncInfo.ValueMap.end()) {
1265    assert(!V->use_empty() && "Unused value assigned virtual registers!");
1266    CopyValueToVirtualRegister(V, VMI->second);
1267  }
1268}
1269
1270/// ExportFromCurrentBlock - If this condition isn't known to be exported from
1271/// the current basic block, add it to ValueMap now so that we'll get a
1272/// CopyTo/FromReg.
1273void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
1274  // No need to export constants.
1275  if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
1276
1277  // Already exported?
1278  if (FuncInfo.isExportedInst(V)) return;
1279
1280  unsigned Reg = FuncInfo.InitializeRegForValue(V);
1281  CopyValueToVirtualRegister(V, Reg);
1282}
1283
1284bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
1285                                                     const BasicBlock *FromBB) {
1286  // The operands of the setcc have to be in this block.  We don't know
1287  // how to export them from some other block.
1288  if (const Instruction *VI = dyn_cast<Instruction>(V)) {
1289    // Can export from current BB.
1290    if (VI->getParent() == FromBB)
1291      return true;
1292
1293    // Is already exported, noop.
1294    return FuncInfo.isExportedInst(V);
1295  }
1296
1297  // If this is an argument, we can export it if the BB is the entry block or
1298  // if it is already exported.
1299  if (isa<Argument>(V)) {
1300    if (FromBB == &FromBB->getParent()->getEntryBlock())
1301      return true;
1302
1303    // Otherwise, can only export this if it is already exported.
1304    return FuncInfo.isExportedInst(V);
1305  }
1306
1307  // Otherwise, constants can always be exported.
1308  return true;
1309}
1310
1311/// Return branch probability calculated by BranchProbabilityInfo for IR blocks.
1312uint32_t SelectionDAGBuilder::getEdgeWeight(const MachineBasicBlock *Src,
1313                                            const MachineBasicBlock *Dst) const {
1314  BranchProbabilityInfo *BPI = FuncInfo.BPI;
1315  if (!BPI)
1316    return 0;
1317  const BasicBlock *SrcBB = Src->getBasicBlock();
1318  const BasicBlock *DstBB = Dst->getBasicBlock();
1319  return BPI->getEdgeWeight(SrcBB, DstBB);
1320}
1321
1322void SelectionDAGBuilder::
1323addSuccessorWithWeight(MachineBasicBlock *Src, MachineBasicBlock *Dst,
1324                       uint32_t Weight /* = 0 */) {
1325  if (!Weight)
1326    Weight = getEdgeWeight(Src, Dst);
1327  Src->addSuccessor(Dst, Weight);
1328}
1329
1330
1331static bool InBlock(const Value *V, const BasicBlock *BB) {
1332  if (const Instruction *I = dyn_cast<Instruction>(V))
1333    return I->getParent() == BB;
1334  return true;
1335}
1336
1337/// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
1338/// This function emits a branch and is used at the leaves of an OR or an
1339/// AND operator tree.
1340///
1341void
1342SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
1343                                                  MachineBasicBlock *TBB,
1344                                                  MachineBasicBlock *FBB,
1345                                                  MachineBasicBlock *CurBB,
1346                                                  MachineBasicBlock *SwitchBB) {
1347  const BasicBlock *BB = CurBB->getBasicBlock();
1348
1349  // If the leaf of the tree is a comparison, merge the condition into
1350  // the caseblock.
1351  if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
1352    // The operands of the cmp have to be in this block.  We don't know
1353    // how to export them from some other block.  If this is the first block
1354    // of the sequence, no exporting is needed.
1355    if (CurBB == SwitchBB ||
1356        (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
1357         isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
1358      ISD::CondCode Condition;
1359      if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
1360        Condition = getICmpCondCode(IC->getPredicate());
1361      } else if (const FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) {
1362        Condition = getFCmpCondCode(FC->getPredicate());
1363        if (TM.Options.NoNaNsFPMath)
1364          Condition = getFCmpCodeWithoutNaN(Condition);
1365      } else {
1366        Condition = ISD::SETEQ; // silence warning.
1367        llvm_unreachable("Unknown compare instruction");
1368      }
1369
1370      CaseBlock CB(Condition, BOp->getOperand(0),
1371                   BOp->getOperand(1), NULL, TBB, FBB, CurBB);
1372      SwitchCases.push_back(CB);
1373      return;
1374    }
1375  }
1376
1377  // Create a CaseBlock record representing this branch.
1378  CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()),
1379               NULL, TBB, FBB, CurBB);
1380  SwitchCases.push_back(CB);
1381}
1382
1383/// FindMergedConditions - If Cond is an expression like
1384void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
1385                                               MachineBasicBlock *TBB,
1386                                               MachineBasicBlock *FBB,
1387                                               MachineBasicBlock *CurBB,
1388                                               MachineBasicBlock *SwitchBB,
1389                                               unsigned Opc) {
1390  // If this node is not part of the or/and tree, emit it as a branch.
1391  const Instruction *BOp = dyn_cast<Instruction>(Cond);
1392  if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
1393      (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() ||
1394      BOp->getParent() != CurBB->getBasicBlock() ||
1395      !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
1396      !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
1397    EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB);
1398    return;
1399  }
1400
1401  //  Create TmpBB after CurBB.
1402  MachineFunction::iterator BBI = CurBB;
1403  MachineFunction &MF = DAG.getMachineFunction();
1404  MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
1405  CurBB->getParent()->insert(++BBI, TmpBB);
1406
1407  if (Opc == Instruction::Or) {
1408    // Codegen X | Y as:
1409    //   jmp_if_X TBB
1410    //   jmp TmpBB
1411    // TmpBB:
1412    //   jmp_if_Y TBB
1413    //   jmp FBB
1414    //
1415
1416    // Emit the LHS condition.
1417    FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc);
1418
1419    // Emit the RHS condition into TmpBB.
1420    FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc);
1421  } else {
1422    assert(Opc == Instruction::And && "Unknown merge op!");
1423    // Codegen X & Y as:
1424    //   jmp_if_X TmpBB
1425    //   jmp FBB
1426    // TmpBB:
1427    //   jmp_if_Y TBB
1428    //   jmp FBB
1429    //
1430    //  This requires creation of TmpBB after CurBB.
1431
1432    // Emit the LHS condition.
1433    FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc);
1434
1435    // Emit the RHS condition into TmpBB.
1436    FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc);
1437  }
1438}
1439
1440/// If the set of cases should be emitted as a series of branches, return true.
1441/// If we should emit this as a bunch of and/or'd together conditions, return
1442/// false.
1443bool
1444SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases){
1445  if (Cases.size() != 2) return true;
1446
1447  // If this is two comparisons of the same values or'd or and'd together, they
1448  // will get folded into a single comparison, so don't emit two blocks.
1449  if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
1450       Cases[0].CmpRHS == Cases[1].CmpRHS) ||
1451      (Cases[0].CmpRHS == Cases[1].CmpLHS &&
1452       Cases[0].CmpLHS == Cases[1].CmpRHS)) {
1453    return false;
1454  }
1455
1456  // Handle: (X != null) | (Y != null) --> (X|Y) != 0
1457  // Handle: (X == null) & (Y == null) --> (X|Y) == 0
1458  if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
1459      Cases[0].CC == Cases[1].CC &&
1460      isa<Constant>(Cases[0].CmpRHS) &&
1461      cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
1462    if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
1463      return false;
1464    if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
1465      return false;
1466  }
1467
1468  return true;
1469}
1470
1471void SelectionDAGBuilder::visitBr(const BranchInst &I) {
1472  MachineBasicBlock *BrMBB = FuncInfo.MBB;
1473
1474  // Update machine-CFG edges.
1475  MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
1476
1477  // Figure out which block is immediately after the current one.
1478  MachineBasicBlock *NextBlock = 0;
1479  MachineFunction::iterator BBI = BrMBB;
1480  if (++BBI != FuncInfo.MF->end())
1481    NextBlock = BBI;
1482
1483  if (I.isUnconditional()) {
1484    // Update machine-CFG edges.
1485    BrMBB->addSuccessor(Succ0MBB);
1486
1487    // If this is not a fall-through branch, emit the branch.
1488    if (Succ0MBB != NextBlock)
1489      DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
1490                              MVT::Other, getControlRoot(),
1491                              DAG.getBasicBlock(Succ0MBB)));
1492
1493    return;
1494  }
1495
1496  // If this condition is one of the special cases we handle, do special stuff
1497  // now.
1498  const Value *CondVal = I.getCondition();
1499  MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
1500
1501  // If this is a series of conditions that are or'd or and'd together, emit
1502  // this as a sequence of branches instead of setcc's with and/or operations.
1503  // As long as jumps are not expensive, this should improve performance.
1504  // For example, instead of something like:
1505  //     cmp A, B
1506  //     C = seteq
1507  //     cmp D, E
1508  //     F = setle
1509  //     or C, F
1510  //     jnz foo
1511  // Emit:
1512  //     cmp A, B
1513  //     je foo
1514  //     cmp D, E
1515  //     jle foo
1516  //
1517  if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
1518    if (!TLI.isJumpExpensive() &&
1519        BOp->hasOneUse() &&
1520        (BOp->getOpcode() == Instruction::And ||
1521         BOp->getOpcode() == Instruction::Or)) {
1522      FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB,
1523                           BOp->getOpcode());
1524      // If the compares in later blocks need to use values not currently
1525      // exported from this block, export them now.  This block should always
1526      // be the first entry.
1527      assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
1528
1529      // Allow some cases to be rejected.
1530      if (ShouldEmitAsBranches(SwitchCases)) {
1531        for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
1532          ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
1533          ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
1534        }
1535
1536        // Emit the branch for this block.
1537        visitSwitchCase(SwitchCases[0], BrMBB);
1538        SwitchCases.erase(SwitchCases.begin());
1539        return;
1540      }
1541
1542      // Okay, we decided not to do this, remove any inserted MBB's and clear
1543      // SwitchCases.
1544      for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
1545        FuncInfo.MF->erase(SwitchCases[i].ThisBB);
1546
1547      SwitchCases.clear();
1548    }
1549  }
1550
1551  // Create a CaseBlock record representing this branch.
1552  CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
1553               NULL, Succ0MBB, Succ1MBB, BrMBB);
1554
1555  // Use visitSwitchCase to actually insert the fast branch sequence for this
1556  // cond branch.
1557  visitSwitchCase(CB, BrMBB);
1558}
1559
1560/// visitSwitchCase - Emits the necessary code to represent a single node in
1561/// the binary search tree resulting from lowering a switch instruction.
1562void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
1563                                          MachineBasicBlock *SwitchBB) {
1564  SDValue Cond;
1565  SDValue CondLHS = getValue(CB.CmpLHS);
1566  DebugLoc dl = getCurDebugLoc();
1567
1568  // Build the setcc now.
1569  if (CB.CmpMHS == NULL) {
1570    // Fold "(X == true)" to X and "(X == false)" to !X to
1571    // handle common cases produced by branch lowering.
1572    if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
1573        CB.CC == ISD::SETEQ)
1574      Cond = CondLHS;
1575    else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
1576             CB.CC == ISD::SETEQ) {
1577      SDValue True = DAG.getConstant(1, CondLHS.getValueType());
1578      Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
1579    } else
1580      Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
1581  } else {
1582    assert(CB.CC == ISD::SETCC_INVALID &&
1583           "Condition is undefined for to-the-range belonging check.");
1584
1585    const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
1586    const APInt& High  = cast<ConstantInt>(CB.CmpRHS)->getValue();
1587
1588    SDValue CmpOp = getValue(CB.CmpMHS);
1589    EVT VT = CmpOp.getValueType();
1590
1591    if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(false)) {
1592      Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, VT),
1593                          ISD::SETULE);
1594    } else {
1595      SDValue SUB = DAG.getNode(ISD::SUB, dl,
1596                                VT, CmpOp, DAG.getConstant(Low, VT));
1597      Cond = DAG.getSetCC(dl, MVT::i1, SUB,
1598                          DAG.getConstant(High-Low, VT), ISD::SETULE);
1599    }
1600  }
1601
1602  // Update successor info
1603  addSuccessorWithWeight(SwitchBB, CB.TrueBB, CB.TrueWeight);
1604  addSuccessorWithWeight(SwitchBB, CB.FalseBB, CB.FalseWeight);
1605
1606  // Set NextBlock to be the MBB immediately after the current one, if any.
1607  // This is used to avoid emitting unnecessary branches to the next block.
1608  MachineBasicBlock *NextBlock = 0;
1609  MachineFunction::iterator BBI = SwitchBB;
1610  if (++BBI != FuncInfo.MF->end())
1611    NextBlock = BBI;
1612
1613  // If the lhs block is the next block, invert the condition so that we can
1614  // fall through to the lhs instead of the rhs block.
1615  if (CB.TrueBB == NextBlock) {
1616    std::swap(CB.TrueBB, CB.FalseBB);
1617    SDValue True = DAG.getConstant(1, Cond.getValueType());
1618    Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
1619  }
1620
1621  SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
1622                               MVT::Other, getControlRoot(), Cond,
1623                               DAG.getBasicBlock(CB.TrueBB));
1624
1625  // Insert the false branch. Do this even if it's a fall through branch,
1626  // this makes it easier to do DAG optimizations which require inverting
1627  // the branch condition.
1628  BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
1629                       DAG.getBasicBlock(CB.FalseBB));
1630
1631  DAG.setRoot(BrCond);
1632}
1633
1634/// visitJumpTable - Emit JumpTable node in the current MBB
1635void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) {
1636  // Emit the code for the jump table
1637  assert(JT.Reg != -1U && "Should lower JT Header first!");
1638  EVT PTy = TLI.getPointerTy();
1639  SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(),
1640                                     JT.Reg, PTy);
1641  SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
1642  SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurDebugLoc(),
1643                                    MVT::Other, Index.getValue(1),
1644                                    Table, Index);
1645  DAG.setRoot(BrJumpTable);
1646}
1647
1648/// visitJumpTableHeader - This function emits necessary code to produce index
1649/// in the JumpTable from switch case.
1650void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT,
1651                                               JumpTableHeader &JTH,
1652                                               MachineBasicBlock *SwitchBB) {
1653  // Subtract the lowest switch case value from the value being switched on and
1654  // conditional branch to default mbb if the result is greater than the
1655  // difference between smallest and largest cases.
1656  SDValue SwitchOp = getValue(JTH.SValue);
1657  EVT VT = SwitchOp.getValueType();
1658  SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp,
1659                            DAG.getConstant(JTH.First, VT));
1660
1661  // The SDNode we just created, which holds the value being switched on minus
1662  // the smallest case value, needs to be copied to a virtual register so it
1663  // can be used as an index into the jump table in a subsequent basic block.
1664  // This value may be smaller or larger than the target's pointer type, and
1665  // therefore require extension or truncating.
1666  SwitchOp = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(), TLI.getPointerTy());
1667
1668  unsigned JumpTableReg = FuncInfo.CreateReg(TLI.getPointerTy());
1669  SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(),
1670                                    JumpTableReg, SwitchOp);
1671  JT.Reg = JumpTableReg;
1672
1673  // Emit the range check for the jump table, and branch to the default block
1674  // for the switch statement if the value being switched on exceeds the largest
1675  // case in the switch.
1676  SDValue CMP = DAG.getSetCC(getCurDebugLoc(),
1677                             TLI.getSetCCResultType(Sub.getValueType()), Sub,
1678                             DAG.getConstant(JTH.Last-JTH.First,VT),
1679                             ISD::SETUGT);
1680
1681  // Set NextBlock to be the MBB immediately after the current one, if any.
1682  // This is used to avoid emitting unnecessary branches to the next block.
1683  MachineBasicBlock *NextBlock = 0;
1684  MachineFunction::iterator BBI = SwitchBB;
1685
1686  if (++BBI != FuncInfo.MF->end())
1687    NextBlock = BBI;
1688
1689  SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1690                               MVT::Other, CopyTo, CMP,
1691                               DAG.getBasicBlock(JT.Default));
1692
1693  if (JT.MBB != NextBlock)
1694    BrCond = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrCond,
1695                         DAG.getBasicBlock(JT.MBB));
1696
1697  DAG.setRoot(BrCond);
1698}
1699
1700/// visitBitTestHeader - This function emits necessary code to produce value
1701/// suitable for "bit tests"
1702void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
1703                                             MachineBasicBlock *SwitchBB) {
1704  // Subtract the minimum value
1705  SDValue SwitchOp = getValue(B.SValue);
1706  EVT VT = SwitchOp.getValueType();
1707  SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp,
1708                            DAG.getConstant(B.First, VT));
1709
1710  // Check range
1711  SDValue RangeCmp = DAG.getSetCC(getCurDebugLoc(),
1712                                  TLI.getSetCCResultType(Sub.getValueType()),
1713                                  Sub, DAG.getConstant(B.Range, VT),
1714                                  ISD::SETUGT);
1715
1716  // Determine the type of the test operands.
1717  bool UsePtrType = false;
1718  if (!TLI.isTypeLegal(VT))
1719    UsePtrType = true;
1720  else {
1721    for (unsigned i = 0, e = B.Cases.size(); i != e; ++i)
1722      if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) {
1723        // Switch table case range are encoded into series of masks.
1724        // Just use pointer type, it's guaranteed to fit.
1725        UsePtrType = true;
1726        break;
1727      }
1728  }
1729  if (UsePtrType) {
1730    VT = TLI.getPointerTy();
1731    Sub = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(), VT);
1732  }
1733
1734  B.RegVT = VT;
1735  B.Reg = FuncInfo.CreateReg(VT);
1736  SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(),
1737                                    B.Reg, Sub);
1738
1739  // Set NextBlock to be the MBB immediately after the current one, if any.
1740  // This is used to avoid emitting unnecessary branches to the next block.
1741  MachineBasicBlock *NextBlock = 0;
1742  MachineFunction::iterator BBI = SwitchBB;
1743  if (++BBI != FuncInfo.MF->end())
1744    NextBlock = BBI;
1745
1746  MachineBasicBlock* MBB = B.Cases[0].ThisBB;
1747
1748  addSuccessorWithWeight(SwitchBB, B.Default);
1749  addSuccessorWithWeight(SwitchBB, MBB);
1750
1751  SDValue BrRange = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1752                                MVT::Other, CopyTo, RangeCmp,
1753                                DAG.getBasicBlock(B.Default));
1754
1755  if (MBB != NextBlock)
1756    BrRange = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, CopyTo,
1757                          DAG.getBasicBlock(MBB));
1758
1759  DAG.setRoot(BrRange);
1760}
1761
1762/// visitBitTestCase - this function produces one "bit test"
1763void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB,
1764                                           MachineBasicBlock* NextMBB,
1765                                           unsigned Reg,
1766                                           BitTestCase &B,
1767                                           MachineBasicBlock *SwitchBB) {
1768  EVT VT = BB.RegVT;
1769  SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(),
1770                                       Reg, VT);
1771  SDValue Cmp;
1772  unsigned PopCount = CountPopulation_64(B.Mask);
1773  if (PopCount == 1) {
1774    // Testing for a single bit; just compare the shift count with what it
1775    // would need to be to shift a 1 bit in that position.
1776    Cmp = DAG.getSetCC(getCurDebugLoc(),
1777                       TLI.getSetCCResultType(VT),
1778                       ShiftOp,
1779                       DAG.getConstant(CountTrailingZeros_64(B.Mask), VT),
1780                       ISD::SETEQ);
1781  } else if (PopCount == BB.Range) {
1782    // There is only one zero bit in the range, test for it directly.
1783    Cmp = DAG.getSetCC(getCurDebugLoc(),
1784                       TLI.getSetCCResultType(VT),
1785                       ShiftOp,
1786                       DAG.getConstant(CountTrailingOnes_64(B.Mask), VT),
1787                       ISD::SETNE);
1788  } else {
1789    // Make desired shift
1790    SDValue SwitchVal = DAG.getNode(ISD::SHL, getCurDebugLoc(), VT,
1791                                    DAG.getConstant(1, VT), ShiftOp);
1792
1793    // Emit bit tests and jumps
1794    SDValue AndOp = DAG.getNode(ISD::AND, getCurDebugLoc(),
1795                                VT, SwitchVal, DAG.getConstant(B.Mask, VT));
1796    Cmp = DAG.getSetCC(getCurDebugLoc(),
1797                       TLI.getSetCCResultType(VT),
1798                       AndOp, DAG.getConstant(0, VT),
1799                       ISD::SETNE);
1800  }
1801
1802  addSuccessorWithWeight(SwitchBB, B.TargetBB);
1803  addSuccessorWithWeight(SwitchBB, NextMBB);
1804
1805  SDValue BrAnd = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1806                              MVT::Other, getControlRoot(),
1807                              Cmp, DAG.getBasicBlock(B.TargetBB));
1808
1809  // Set NextBlock to be the MBB immediately after the current one, if any.
1810  // This is used to avoid emitting unnecessary branches to the next block.
1811  MachineBasicBlock *NextBlock = 0;
1812  MachineFunction::iterator BBI = SwitchBB;
1813  if (++BBI != FuncInfo.MF->end())
1814    NextBlock = BBI;
1815
1816  if (NextMBB != NextBlock)
1817    BrAnd = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrAnd,
1818                        DAG.getBasicBlock(NextMBB));
1819
1820  DAG.setRoot(BrAnd);
1821}
1822
1823void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
1824  MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
1825
1826  // Retrieve successors.
1827  MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
1828  MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)];
1829
1830  const Value *Callee(I.getCalledValue());
1831  if (isa<InlineAsm>(Callee))
1832    visitInlineAsm(&I);
1833  else
1834    LowerCallTo(&I, getValue(Callee), false, LandingPad);
1835
1836  // If the value of the invoke is used outside of its defining block, make it
1837  // available as a virtual register.
1838  CopyToExportRegsIfNeeded(&I);
1839
1840  // Update successor info
1841  addSuccessorWithWeight(InvokeMBB, Return);
1842  addSuccessorWithWeight(InvokeMBB, LandingPad);
1843
1844  // Drop into normal successor.
1845  DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
1846                          MVT::Other, getControlRoot(),
1847                          DAG.getBasicBlock(Return)));
1848}
1849
1850void SelectionDAGBuilder::visitResume(const ResumeInst &RI) {
1851  llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!");
1852}
1853
1854void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) {
1855  assert(FuncInfo.MBB->isLandingPad() &&
1856         "Call to landingpad not in landing pad!");
1857
1858  MachineBasicBlock *MBB = FuncInfo.MBB;
1859  MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
1860  AddLandingPadInfo(LP, MMI, MBB);
1861
1862  // If there aren't registers to copy the values into (e.g., during SjLj
1863  // exceptions), then don't bother to create these DAG nodes.
1864  if (TLI.getExceptionPointerRegister() == 0 &&
1865      TLI.getExceptionSelectorRegister() == 0)
1866    return;
1867
1868  SmallVector<EVT, 2> ValueVTs;
1869  ComputeValueVTs(TLI, LP.getType(), ValueVTs);
1870
1871  // Insert the EXCEPTIONADDR instruction.
1872  assert(FuncInfo.MBB->isLandingPad() &&
1873         "Call to eh.exception not in landing pad!");
1874  SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
1875  SDValue Ops[2];
1876  Ops[0] = DAG.getRoot();
1877  SDValue Op1 = DAG.getNode(ISD::EXCEPTIONADDR, getCurDebugLoc(), VTs, Ops, 1);
1878  SDValue Chain = Op1.getValue(1);
1879
1880  // Insert the EHSELECTION instruction.
1881  VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
1882  Ops[0] = Op1;
1883  Ops[1] = Chain;
1884  SDValue Op2 = DAG.getNode(ISD::EHSELECTION, getCurDebugLoc(), VTs, Ops, 2);
1885  Chain = Op2.getValue(1);
1886  Op2 = DAG.getSExtOrTrunc(Op2, getCurDebugLoc(), MVT::i32);
1887
1888  Ops[0] = Op1;
1889  Ops[1] = Op2;
1890  SDValue Res = DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
1891                            DAG.getVTList(&ValueVTs[0], ValueVTs.size()),
1892                            &Ops[0], 2);
1893
1894  std::pair<SDValue, SDValue> RetPair = std::make_pair(Res, Chain);
1895  setValue(&LP, RetPair.first);
1896  DAG.setRoot(RetPair.second);
1897}
1898
1899/// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for
1900/// small case ranges).
1901bool SelectionDAGBuilder::handleSmallSwitchRange(CaseRec& CR,
1902                                                 CaseRecVector& WorkList,
1903                                                 const Value* SV,
1904                                                 MachineBasicBlock *Default,
1905                                                 MachineBasicBlock *SwitchBB) {
1906  // Size is the number of Cases represented by this range.
1907  size_t Size = CR.Range.second - CR.Range.first;
1908  if (Size > 3)
1909    return false;
1910
1911  // Get the MachineFunction which holds the current MBB.  This is used when
1912  // inserting any additional MBBs necessary to represent the switch.
1913  MachineFunction *CurMF = FuncInfo.MF;
1914
1915  // Figure out which block is immediately after the current one.
1916  MachineBasicBlock *NextBlock = 0;
1917  MachineFunction::iterator BBI = CR.CaseBB;
1918
1919  if (++BBI != FuncInfo.MF->end())
1920    NextBlock = BBI;
1921
1922  // If any two of the cases has the same destination, and if one value
1923  // is the same as the other, but has one bit unset that the other has set,
1924  // use bit manipulation to do two compares at once.  For example:
1925  // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
1926  // TODO: This could be extended to merge any 2 cases in switches with 3 cases.
1927  // TODO: Handle cases where CR.CaseBB != SwitchBB.
1928  if (Size == 2 && CR.CaseBB == SwitchBB) {
1929    Case &Small = *CR.Range.first;
1930    Case &Big = *(CR.Range.second-1);
1931
1932    if (Small.Low == Small.High && Big.Low == Big.High && Small.BB == Big.BB) {
1933      const APInt& SmallValue = cast<ConstantInt>(Small.Low)->getValue();
1934      const APInt& BigValue = cast<ConstantInt>(Big.Low)->getValue();
1935
1936      // Check that there is only one bit different.
1937      if (BigValue.countPopulation() == SmallValue.countPopulation() + 1 &&
1938          (SmallValue | BigValue) == BigValue) {
1939        // Isolate the common bit.
1940        APInt CommonBit = BigValue & ~SmallValue;
1941        assert((SmallValue | CommonBit) == BigValue &&
1942               CommonBit.countPopulation() == 1 && "Not a common bit?");
1943
1944        SDValue CondLHS = getValue(SV);
1945        EVT VT = CondLHS.getValueType();
1946        DebugLoc DL = getCurDebugLoc();
1947
1948        SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
1949                                 DAG.getConstant(CommonBit, VT));
1950        SDValue Cond = DAG.getSetCC(DL, MVT::i1,
1951                                    Or, DAG.getConstant(BigValue, VT),
1952                                    ISD::SETEQ);
1953
1954        // Update successor info.
1955        addSuccessorWithWeight(SwitchBB, Small.BB);
1956        addSuccessorWithWeight(SwitchBB, Default);
1957
1958        // Insert the true branch.
1959        SDValue BrCond = DAG.getNode(ISD::BRCOND, DL, MVT::Other,
1960                                     getControlRoot(), Cond,
1961                                     DAG.getBasicBlock(Small.BB));
1962
1963        // Insert the false branch.
1964        BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
1965                             DAG.getBasicBlock(Default));
1966
1967        DAG.setRoot(BrCond);
1968        return true;
1969      }
1970    }
1971  }
1972
1973  // Order cases by weight so the most likely case will be checked first.
1974  BranchProbabilityInfo *BPI = FuncInfo.BPI;
1975  if (BPI) {
1976    for (CaseItr I = CR.Range.first, IE = CR.Range.second; I != IE; ++I) {
1977      uint32_t IWeight = BPI->getEdgeWeight(SwitchBB->getBasicBlock(),
1978                                            I->BB->getBasicBlock());
1979      for (CaseItr J = CR.Range.first; J < I; ++J) {
1980        uint32_t JWeight = BPI->getEdgeWeight(SwitchBB->getBasicBlock(),
1981                                              J->BB->getBasicBlock());
1982        if (IWeight > JWeight)
1983          std::swap(*I, *J);
1984      }
1985    }
1986  }
1987  // Rearrange the case blocks so that the last one falls through if possible.
1988  Case &BackCase = *(CR.Range.second-1);
1989  if (Size > 1 &&
1990      NextBlock && Default != NextBlock && BackCase.BB != NextBlock) {
1991    // The last case block won't fall through into 'NextBlock' if we emit the
1992    // branches in this order.  See if rearranging a case value would help.
1993    // We start at the bottom as it's the case with the least weight.
1994    for (CaseItr I = CR.Range.second-2, E = CR.Range.first; I >= E; --I) {
1995      if (I->BB == NextBlock) {
1996        std::swap(*I, BackCase);
1997        break;
1998      }
1999    }
2000  }
2001
2002  // Create a CaseBlock record representing a conditional branch to
2003  // the Case's target mbb if the value being switched on SV is equal
2004  // to C.
2005  MachineBasicBlock *CurBlock = CR.CaseBB;
2006  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) {
2007    MachineBasicBlock *FallThrough;
2008    if (I != E-1) {
2009      FallThrough = CurMF->CreateMachineBasicBlock(CurBlock->getBasicBlock());
2010      CurMF->insert(BBI, FallThrough);
2011
2012      // Put SV in a virtual register to make it available from the new blocks.
2013      ExportFromCurrentBlock(SV);
2014    } else {
2015      // If the last case doesn't match, go to the default block.
2016      FallThrough = Default;
2017    }
2018
2019    const Value *RHS, *LHS, *MHS;
2020    ISD::CondCode CC;
2021    if (I->High == I->Low) {
2022      // This is just small small case range :) containing exactly 1 case
2023      CC = ISD::SETEQ;
2024      LHS = SV; RHS = I->High; MHS = NULL;
2025    } else {
2026      CC = ISD::SETCC_INVALID;
2027      LHS = I->Low; MHS = SV; RHS = I->High;
2028    }
2029
2030    uint32_t ExtraWeight = I->ExtraWeight;
2031    CaseBlock CB(CC, LHS, RHS, MHS, /* truebb */ I->BB, /* falsebb */ FallThrough,
2032                 /* me */ CurBlock,
2033                 /* trueweight */ ExtraWeight / 2, /* falseweight */ ExtraWeight / 2);
2034
2035    // If emitting the first comparison, just call visitSwitchCase to emit the
2036    // code into the current block.  Otherwise, push the CaseBlock onto the
2037    // vector to be later processed by SDISel, and insert the node's MBB
2038    // before the next MBB.
2039    if (CurBlock == SwitchBB)
2040      visitSwitchCase(CB, SwitchBB);
2041    else
2042      SwitchCases.push_back(CB);
2043
2044    CurBlock = FallThrough;
2045  }
2046
2047  return true;
2048}
2049
2050static inline bool areJTsAllowed(const TargetLowering &TLI) {
2051  return !TLI.getTargetMachine().Options.DisableJumpTables &&
2052          (TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) ||
2053           TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other));
2054}
2055
2056static APInt ComputeRange(const APInt &First, const APInt &Last) {
2057  uint32_t BitWidth = std::max(Last.getBitWidth(), First.getBitWidth()) + 1;
2058  APInt LastExt = Last.zext(BitWidth), FirstExt = First.zext(BitWidth);
2059  return (LastExt - FirstExt + 1ULL);
2060}
2061
2062/// handleJTSwitchCase - Emit jumptable for current switch case range
2063bool SelectionDAGBuilder::handleJTSwitchCase(CaseRec &CR,
2064                                             CaseRecVector &WorkList,
2065                                             const Value *SV,
2066                                             MachineBasicBlock *Default,
2067                                             MachineBasicBlock *SwitchBB) {
2068  Case& FrontCase = *CR.Range.first;
2069  Case& BackCase  = *(CR.Range.second-1);
2070
2071  const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue();
2072  const APInt &Last  = cast<ConstantInt>(BackCase.High)->getValue();
2073
2074  APInt TSize(First.getBitWidth(), 0);
2075  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I)
2076    TSize += I->size();
2077
2078  if (!areJTsAllowed(TLI) || TSize.ult(4))
2079    return false;
2080
2081  APInt Range = ComputeRange(First, Last);
2082  // The density is TSize / Range. Require at least 40%.
2083  // It should not be possible for IntTSize to saturate for sane code, but make
2084  // sure we handle Range saturation correctly.
2085  uint64_t IntRange = Range.getLimitedValue(UINT64_MAX/10);
2086  uint64_t IntTSize = TSize.getLimitedValue(UINT64_MAX/10);
2087  if (IntTSize * 10 < IntRange * 4)
2088    return false;
2089
2090  DEBUG(dbgs() << "Lowering jump table\n"
2091               << "First entry: " << First << ". Last entry: " << Last << '\n'
2092               << "Range: " << Range << ". Size: " << TSize << ".\n\n");
2093
2094  // Get the MachineFunction which holds the current MBB.  This is used when
2095  // inserting any additional MBBs necessary to represent the switch.
2096  MachineFunction *CurMF = FuncInfo.MF;
2097
2098  // Figure out which block is immediately after the current one.
2099  MachineFunction::iterator BBI = CR.CaseBB;
2100  ++BBI;
2101
2102  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2103
2104  // Create a new basic block to hold the code for loading the address
2105  // of the jump table, and jumping to it.  Update successor information;
2106  // we will either branch to the default case for the switch, or the jump
2107  // table.
2108  MachineBasicBlock *JumpTableBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2109  CurMF->insert(BBI, JumpTableBB);
2110
2111  addSuccessorWithWeight(CR.CaseBB, Default);
2112  addSuccessorWithWeight(CR.CaseBB, JumpTableBB);
2113
2114  // Build a vector of destination BBs, corresponding to each target
2115  // of the jump table. If the value of the jump table slot corresponds to
2116  // a case statement, push the case's BB onto the vector, otherwise, push
2117  // the default BB.
2118  std::vector<MachineBasicBlock*> DestBBs;
2119  APInt TEI = First;
2120  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) {
2121    const APInt &Low = cast<ConstantInt>(I->Low)->getValue();
2122    const APInt &High = cast<ConstantInt>(I->High)->getValue();
2123
2124    if (Low.ule(TEI) && TEI.ule(High)) {
2125      DestBBs.push_back(I->BB);
2126      if (TEI==High)
2127        ++I;
2128    } else {
2129      DestBBs.push_back(Default);
2130    }
2131  }
2132
2133  // Update successor info. Add one edge to each unique successor.
2134  BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs());
2135  for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(),
2136         E = DestBBs.end(); I != E; ++I) {
2137    if (!SuccsHandled[(*I)->getNumber()]) {
2138      SuccsHandled[(*I)->getNumber()] = true;
2139      addSuccessorWithWeight(JumpTableBB, *I);
2140    }
2141  }
2142
2143  // Create a jump table index for this jump table.
2144  unsigned JTEncoding = TLI.getJumpTableEncoding();
2145  unsigned JTI = CurMF->getOrCreateJumpTableInfo(JTEncoding)
2146                       ->createJumpTableIndex(DestBBs);
2147
2148  // Set the jump table information so that we can codegen it as a second
2149  // MachineBasicBlock
2150  JumpTable JT(-1U, JTI, JumpTableBB, Default);
2151  JumpTableHeader JTH(First, Last, SV, CR.CaseBB, (CR.CaseBB == SwitchBB));
2152  if (CR.CaseBB == SwitchBB)
2153    visitJumpTableHeader(JT, JTH, SwitchBB);
2154
2155  JTCases.push_back(JumpTableBlock(JTH, JT));
2156  return true;
2157}
2158
2159/// handleBTSplitSwitchCase - emit comparison and split binary search tree into
2160/// 2 subtrees.
2161bool SelectionDAGBuilder::handleBTSplitSwitchCase(CaseRec& CR,
2162                                                  CaseRecVector& WorkList,
2163                                                  const Value* SV,
2164                                                  MachineBasicBlock *Default,
2165                                                  MachineBasicBlock *SwitchBB) {
2166  // Get the MachineFunction which holds the current MBB.  This is used when
2167  // inserting any additional MBBs necessary to represent the switch.
2168  MachineFunction *CurMF = FuncInfo.MF;
2169
2170  // Figure out which block is immediately after the current one.
2171  MachineFunction::iterator BBI = CR.CaseBB;
2172  ++BBI;
2173
2174  Case& FrontCase = *CR.Range.first;
2175  Case& BackCase  = *(CR.Range.second-1);
2176  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2177
2178  // Size is the number of Cases represented by this range.
2179  unsigned Size = CR.Range.second - CR.Range.first;
2180
2181  const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue();
2182  const APInt &Last  = cast<ConstantInt>(BackCase.High)->getValue();
2183  double FMetric = 0;
2184  CaseItr Pivot = CR.Range.first + Size/2;
2185
2186  // Select optimal pivot, maximizing sum density of LHS and RHS. This will
2187  // (heuristically) allow us to emit JumpTable's later.
2188  APInt TSize(First.getBitWidth(), 0);
2189  for (CaseItr I = CR.Range.first, E = CR.Range.second;
2190       I!=E; ++I)
2191    TSize += I->size();
2192
2193  APInt LSize = FrontCase.size();
2194  APInt RSize = TSize-LSize;
2195  DEBUG(dbgs() << "Selecting best pivot: \n"
2196               << "First: " << First << ", Last: " << Last <<'\n'
2197               << "LSize: " << LSize << ", RSize: " << RSize << '\n');
2198  for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second;
2199       J!=E; ++I, ++J) {
2200    const APInt &LEnd = cast<ConstantInt>(I->High)->getValue();
2201    const APInt &RBegin = cast<ConstantInt>(J->Low)->getValue();
2202    APInt Range = ComputeRange(LEnd, RBegin);
2203    assert((Range - 2ULL).isNonNegative() &&
2204           "Invalid case distance");
2205    // Use volatile double here to avoid excess precision issues on some hosts,
2206    // e.g. that use 80-bit X87 registers.
2207    volatile double LDensity =
2208       (double)LSize.roundToDouble() /
2209                           (LEnd - First + 1ULL).roundToDouble();
2210    volatile double RDensity =
2211      (double)RSize.roundToDouble() /
2212                           (Last - RBegin + 1ULL).roundToDouble();
2213    double Metric = Range.logBase2()*(LDensity+RDensity);
2214    // Should always split in some non-trivial place
2215    DEBUG(dbgs() <<"=>Step\n"
2216                 << "LEnd: " << LEnd << ", RBegin: " << RBegin << '\n'
2217                 << "LDensity: " << LDensity
2218                 << ", RDensity: " << RDensity << '\n'
2219                 << "Metric: " << Metric << '\n');
2220    if (FMetric < Metric) {
2221      Pivot = J;
2222      FMetric = Metric;
2223      DEBUG(dbgs() << "Current metric set to: " << FMetric << '\n');
2224    }
2225
2226    LSize += J->size();
2227    RSize -= J->size();
2228  }
2229  if (areJTsAllowed(TLI)) {
2230    // If our case is dense we *really* should handle it earlier!
2231    assert((FMetric > 0) && "Should handle dense range earlier!");
2232  } else {
2233    Pivot = CR.Range.first + Size/2;
2234  }
2235
2236  CaseRange LHSR(CR.Range.first, Pivot);
2237  CaseRange RHSR(Pivot, CR.Range.second);
2238  const Constant *C = Pivot->Low;
2239  MachineBasicBlock *FalseBB = 0, *TrueBB = 0;
2240
2241  // We know that we branch to the LHS if the Value being switched on is
2242  // less than the Pivot value, C.  We use this to optimize our binary
2243  // tree a bit, by recognizing that if SV is greater than or equal to the
2244  // LHS's Case Value, and that Case Value is exactly one less than the
2245  // Pivot's Value, then we can branch directly to the LHS's Target,
2246  // rather than creating a leaf node for it.
2247  if ((LHSR.second - LHSR.first) == 1 &&
2248      LHSR.first->High == CR.GE &&
2249      cast<ConstantInt>(C)->getValue() ==
2250      (cast<ConstantInt>(CR.GE)->getValue() + 1LL)) {
2251    TrueBB = LHSR.first->BB;
2252  } else {
2253    TrueBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2254    CurMF->insert(BBI, TrueBB);
2255    WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR));
2256
2257    // Put SV in a virtual register to make it available from the new blocks.
2258    ExportFromCurrentBlock(SV);
2259  }
2260
2261  // Similar to the optimization above, if the Value being switched on is
2262  // known to be less than the Constant CR.LT, and the current Case Value
2263  // is CR.LT - 1, then we can branch directly to the target block for
2264  // the current Case Value, rather than emitting a RHS leaf node for it.
2265  if ((RHSR.second - RHSR.first) == 1 && CR.LT &&
2266      cast<ConstantInt>(RHSR.first->Low)->getValue() ==
2267      (cast<ConstantInt>(CR.LT)->getValue() - 1LL)) {
2268    FalseBB = RHSR.first->BB;
2269  } else {
2270    FalseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2271    CurMF->insert(BBI, FalseBB);
2272    WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR));
2273
2274    // Put SV in a virtual register to make it available from the new blocks.
2275    ExportFromCurrentBlock(SV);
2276  }
2277
2278  // Create a CaseBlock record representing a conditional branch to
2279  // the LHS node if the value being switched on SV is less than C.
2280  // Otherwise, branch to LHS.
2281  CaseBlock CB(ISD::SETULT, SV, C, NULL, TrueBB, FalseBB, CR.CaseBB);
2282
2283  if (CR.CaseBB == SwitchBB)
2284    visitSwitchCase(CB, SwitchBB);
2285  else
2286    SwitchCases.push_back(CB);
2287
2288  return true;
2289}
2290
2291/// handleBitTestsSwitchCase - if current case range has few destination and
2292/// range span less, than machine word bitwidth, encode case range into series
2293/// of masks and emit bit tests with these masks.
2294bool SelectionDAGBuilder::handleBitTestsSwitchCase(CaseRec& CR,
2295                                                   CaseRecVector& WorkList,
2296                                                   const Value* SV,
2297                                                   MachineBasicBlock* Default,
2298                                                   MachineBasicBlock *SwitchBB){
2299  EVT PTy = TLI.getPointerTy();
2300  unsigned IntPtrBits = PTy.getSizeInBits();
2301
2302  Case& FrontCase = *CR.Range.first;
2303  Case& BackCase  = *(CR.Range.second-1);
2304
2305  // Get the MachineFunction which holds the current MBB.  This is used when
2306  // inserting any additional MBBs necessary to represent the switch.
2307  MachineFunction *CurMF = FuncInfo.MF;
2308
2309  // If target does not have legal shift left, do not emit bit tests at all.
2310  if (!TLI.isOperationLegal(ISD::SHL, TLI.getPointerTy()))
2311    return false;
2312
2313  size_t numCmps = 0;
2314  for (CaseItr I = CR.Range.first, E = CR.Range.second;
2315       I!=E; ++I) {
2316    // Single case counts one, case range - two.
2317    numCmps += (I->Low == I->High ? 1 : 2);
2318  }
2319
2320  // Count unique destinations
2321  SmallSet<MachineBasicBlock*, 4> Dests;
2322  for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
2323    Dests.insert(I->BB);
2324    if (Dests.size() > 3)
2325      // Don't bother the code below, if there are too much unique destinations
2326      return false;
2327  }
2328  DEBUG(dbgs() << "Total number of unique destinations: "
2329        << Dests.size() << '\n'
2330        << "Total number of comparisons: " << numCmps << '\n');
2331
2332  // Compute span of values.
2333  const APInt& minValue = cast<ConstantInt>(FrontCase.Low)->getValue();
2334  const APInt& maxValue = cast<ConstantInt>(BackCase.High)->getValue();
2335  APInt cmpRange = maxValue - minValue;
2336
2337  DEBUG(dbgs() << "Compare range: " << cmpRange << '\n'
2338               << "Low bound: " << minValue << '\n'
2339               << "High bound: " << maxValue << '\n');
2340
2341  if (cmpRange.uge(IntPtrBits) ||
2342      (!(Dests.size() == 1 && numCmps >= 3) &&
2343       !(Dests.size() == 2 && numCmps >= 5) &&
2344       !(Dests.size() >= 3 && numCmps >= 6)))
2345    return false;
2346
2347  DEBUG(dbgs() << "Emitting bit tests\n");
2348  APInt lowBound = APInt::getNullValue(cmpRange.getBitWidth());
2349
2350  // Optimize the case where all the case values fit in a
2351  // word without having to subtract minValue. In this case,
2352  // we can optimize away the subtraction.
2353  if (maxValue.ult(IntPtrBits)) {
2354    cmpRange = maxValue;
2355  } else {
2356    lowBound = minValue;
2357  }
2358
2359  CaseBitsVector CasesBits;
2360  unsigned i, count = 0;
2361
2362  for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
2363    MachineBasicBlock* Dest = I->BB;
2364    for (i = 0; i < count; ++i)
2365      if (Dest == CasesBits[i].BB)
2366        break;
2367
2368    if (i == count) {
2369      assert((count < 3) && "Too much destinations to test!");
2370      CasesBits.push_back(CaseBits(0, Dest, 0));
2371      count++;
2372    }
2373
2374    const APInt& lowValue = cast<ConstantInt>(I->Low)->getValue();
2375    const APInt& highValue = cast<ConstantInt>(I->High)->getValue();
2376
2377    uint64_t lo = (lowValue - lowBound).getZExtValue();
2378    uint64_t hi = (highValue - lowBound).getZExtValue();
2379
2380    for (uint64_t j = lo; j <= hi; j++) {
2381      CasesBits[i].Mask |=  1ULL << j;
2382      CasesBits[i].Bits++;
2383    }
2384
2385  }
2386  std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp());
2387
2388  BitTestInfo BTC;
2389
2390  // Figure out which block is immediately after the current one.
2391  MachineFunction::iterator BBI = CR.CaseBB;
2392  ++BBI;
2393
2394  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2395
2396  DEBUG(dbgs() << "Cases:\n");
2397  for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) {
2398    DEBUG(dbgs() << "Mask: " << CasesBits[i].Mask
2399                 << ", Bits: " << CasesBits[i].Bits
2400                 << ", BB: " << CasesBits[i].BB << '\n');
2401
2402    MachineBasicBlock *CaseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2403    CurMF->insert(BBI, CaseBB);
2404    BTC.push_back(BitTestCase(CasesBits[i].Mask,
2405                              CaseBB,
2406                              CasesBits[i].BB));
2407
2408    // Put SV in a virtual register to make it available from the new blocks.
2409    ExportFromCurrentBlock(SV);
2410  }
2411
2412  BitTestBlock BTB(lowBound, cmpRange, SV,
2413                   -1U, MVT::Other, (CR.CaseBB == SwitchBB),
2414                   CR.CaseBB, Default, BTC);
2415
2416  if (CR.CaseBB == SwitchBB)
2417    visitBitTestHeader(BTB, SwitchBB);
2418
2419  BitTestCases.push_back(BTB);
2420
2421  return true;
2422}
2423
2424/// Clusterify - Transform simple list of Cases into list of CaseRange's
2425size_t SelectionDAGBuilder::Clusterify(CaseVector& Cases,
2426                                       const SwitchInst& SI) {
2427
2428  /// Use a shorter form of declaration, and also
2429  /// show the we want to use CRSBuilder as Clusterifier.
2430  typedef CRSBuilderBase<MachineBasicBlock, true> Clusterifier;
2431
2432  Clusterifier TheClusterifier;
2433
2434  // Start with "simple" cases
2435  for (SwitchInst::ConstCaseIt i = SI.case_begin(), e = SI.case_end();
2436       i != e; ++i) {
2437    const BasicBlock *SuccBB = i.getCaseSuccessor();
2438    MachineBasicBlock *SMBB = FuncInfo.MBBMap[SuccBB];
2439
2440    TheClusterifier.add(i.getCaseValueEx(), SMBB);
2441  }
2442
2443  TheClusterifier.optimize();
2444
2445  BranchProbabilityInfo *BPI = FuncInfo.BPI;
2446  size_t numCmps = 0;
2447  for (Clusterifier::RangeIterator i = TheClusterifier.begin(),
2448       e = TheClusterifier.end(); i != e; ++i, ++numCmps) {
2449    Clusterifier::Cluster &C = *i;
2450    unsigned W = 0;
2451    if (BPI) {
2452      W = BPI->getEdgeWeight(SI.getParent(), C.second->getBasicBlock());
2453      if (!W)
2454        W = 16;
2455      W *= C.first.Weight;
2456      BPI->setEdgeWeight(SI.getParent(), C.second->getBasicBlock(), W);
2457    }
2458
2459    Cases.push_back(Case(C.first.Low, C.first.High, C.second, W));
2460
2461    if (C.first.Low != C.first.High)
2462    // A range counts double, since it requires two compares.
2463    ++numCmps;
2464  }
2465
2466  return numCmps;
2467}
2468
2469void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
2470                                           MachineBasicBlock *Last) {
2471  // Update JTCases.
2472  for (unsigned i = 0, e = JTCases.size(); i != e; ++i)
2473    if (JTCases[i].first.HeaderBB == First)
2474      JTCases[i].first.HeaderBB = Last;
2475
2476  // Update BitTestCases.
2477  for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i)
2478    if (BitTestCases[i].Parent == First)
2479      BitTestCases[i].Parent = Last;
2480}
2481
2482void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
2483  MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
2484
2485  // Figure out which block is immediately after the current one.
2486  MachineBasicBlock *NextBlock = 0;
2487  MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()];
2488
2489  // If there is only the default destination, branch to it if it is not the
2490  // next basic block.  Otherwise, just fall through.
2491  if (!SI.getNumCases()) {
2492    // Update machine-CFG edges.
2493
2494    // If this is not a fall-through branch, emit the branch.
2495    SwitchMBB->addSuccessor(Default);
2496    if (Default != NextBlock)
2497      DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
2498                              MVT::Other, getControlRoot(),
2499                              DAG.getBasicBlock(Default)));
2500
2501    return;
2502  }
2503
2504  // If there are any non-default case statements, create a vector of Cases
2505  // representing each one, and sort the vector so that we can efficiently
2506  // create a binary search tree from them.
2507  CaseVector Cases;
2508  size_t numCmps = Clusterify(Cases, SI);
2509  DEBUG(dbgs() << "Clusterify finished. Total clusters: " << Cases.size()
2510               << ". Total compares: " << numCmps << '\n');
2511  (void)numCmps;
2512
2513  // Get the Value to be switched on and default basic blocks, which will be
2514  // inserted into CaseBlock records, representing basic blocks in the binary
2515  // search tree.
2516  const Value *SV = SI.getCondition();
2517
2518  // Push the initial CaseRec onto the worklist
2519  CaseRecVector WorkList;
2520  WorkList.push_back(CaseRec(SwitchMBB,0,0,
2521                             CaseRange(Cases.begin(),Cases.end())));
2522
2523  while (!WorkList.empty()) {
2524    // Grab a record representing a case range to process off the worklist
2525    CaseRec CR = WorkList.back();
2526    WorkList.pop_back();
2527
2528    if (handleBitTestsSwitchCase(CR, WorkList, SV, Default, SwitchMBB))
2529      continue;
2530
2531    // If the range has few cases (two or less) emit a series of specific
2532    // tests.
2533    if (handleSmallSwitchRange(CR, WorkList, SV, Default, SwitchMBB))
2534      continue;
2535
2536    // If the switch has more than 5 blocks, and at least 40% dense, and the
2537    // target supports indirect branches, then emit a jump table rather than
2538    // lowering the switch to a binary tree of conditional branches.
2539    if (handleJTSwitchCase(CR, WorkList, SV, Default, SwitchMBB))
2540      continue;
2541
2542    // Emit binary tree. We need to pick a pivot, and push left and right ranges
2543    // onto the worklist. Leafs are handled via handleSmallSwitchRange() call.
2544    handleBTSplitSwitchCase(CR, WorkList, SV, Default, SwitchMBB);
2545  }
2546}
2547
2548void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
2549  MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
2550
2551  // Update machine-CFG edges with unique successors.
2552  SmallVector<BasicBlock*, 32> succs;
2553  succs.reserve(I.getNumSuccessors());
2554  for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i)
2555    succs.push_back(I.getSuccessor(i));
2556  array_pod_sort(succs.begin(), succs.end());
2557  succs.erase(std::unique(succs.begin(), succs.end()), succs.end());
2558  for (unsigned i = 0, e = succs.size(); i != e; ++i) {
2559    MachineBasicBlock *Succ = FuncInfo.MBBMap[succs[i]];
2560    addSuccessorWithWeight(IndirectBrMBB, Succ);
2561  }
2562
2563  DAG.setRoot(DAG.getNode(ISD::BRIND, getCurDebugLoc(),
2564                          MVT::Other, getControlRoot(),
2565                          getValue(I.getAddress())));
2566}
2567
2568void SelectionDAGBuilder::visitFSub(const User &I) {
2569  // -0.0 - X --> fneg
2570  Type *Ty = I.getType();
2571  if (isa<Constant>(I.getOperand(0)) &&
2572      I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) {
2573    SDValue Op2 = getValue(I.getOperand(1));
2574    setValue(&I, DAG.getNode(ISD::FNEG, getCurDebugLoc(),
2575                             Op2.getValueType(), Op2));
2576    return;
2577  }
2578
2579  visitBinary(I, ISD::FSUB);
2580}
2581
2582void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) {
2583  SDValue Op1 = getValue(I.getOperand(0));
2584  SDValue Op2 = getValue(I.getOperand(1));
2585  setValue(&I, DAG.getNode(OpCode, getCurDebugLoc(),
2586                           Op1.getValueType(), Op1, Op2));
2587}
2588
2589void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
2590  SDValue Op1 = getValue(I.getOperand(0));
2591  SDValue Op2 = getValue(I.getOperand(1));
2592
2593  MVT ShiftTy = TLI.getShiftAmountTy(Op2.getValueType());
2594
2595  // Coerce the shift amount to the right type if we can.
2596  if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
2597    unsigned ShiftSize = ShiftTy.getSizeInBits();
2598    unsigned Op2Size = Op2.getValueType().getSizeInBits();
2599    DebugLoc DL = getCurDebugLoc();
2600
2601    // If the operand is smaller than the shift count type, promote it.
2602    if (ShiftSize > Op2Size)
2603      Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2);
2604
2605    // If the operand is larger than the shift count type but the shift
2606    // count type has enough bits to represent any shift value, truncate
2607    // it now. This is a common case and it exposes the truncate to
2608    // optimization early.
2609    else if (ShiftSize >= Log2_32_Ceil(Op2.getValueType().getSizeInBits()))
2610      Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2);
2611    // Otherwise we'll need to temporarily settle for some other convenient
2612    // type.  Type legalization will make adjustments once the shiftee is split.
2613    else
2614      Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32);
2615  }
2616
2617  setValue(&I, DAG.getNode(Opcode, getCurDebugLoc(),
2618                           Op1.getValueType(), Op1, Op2));
2619}
2620
2621void SelectionDAGBuilder::visitSDiv(const User &I) {
2622  SDValue Op1 = getValue(I.getOperand(0));
2623  SDValue Op2 = getValue(I.getOperand(1));
2624
2625  // Turn exact SDivs into multiplications.
2626  // FIXME: This should be in DAGCombiner, but it doesn't have access to the
2627  // exact bit.
2628  if (isa<BinaryOperator>(&I) && cast<BinaryOperator>(&I)->isExact() &&
2629      !isa<ConstantSDNode>(Op1) &&
2630      isa<ConstantSDNode>(Op2) && !cast<ConstantSDNode>(Op2)->isNullValue())
2631    setValue(&I, TLI.BuildExactSDIV(Op1, Op2, getCurDebugLoc(), DAG));
2632  else
2633    setValue(&I, DAG.getNode(ISD::SDIV, getCurDebugLoc(), Op1.getValueType(),
2634                             Op1, Op2));
2635}
2636
2637void SelectionDAGBuilder::visitICmp(const User &I) {
2638  ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
2639  if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
2640    predicate = IC->getPredicate();
2641  else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
2642    predicate = ICmpInst::Predicate(IC->getPredicate());
2643  SDValue Op1 = getValue(I.getOperand(0));
2644  SDValue Op2 = getValue(I.getOperand(1));
2645  ISD::CondCode Opcode = getICmpCondCode(predicate);
2646
2647  EVT DestVT = TLI.getValueType(I.getType());
2648  setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Opcode));
2649}
2650
2651void SelectionDAGBuilder::visitFCmp(const User &I) {
2652  FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
2653  if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
2654    predicate = FC->getPredicate();
2655  else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
2656    predicate = FCmpInst::Predicate(FC->getPredicate());
2657  SDValue Op1 = getValue(I.getOperand(0));
2658  SDValue Op2 = getValue(I.getOperand(1));
2659  ISD::CondCode Condition = getFCmpCondCode(predicate);
2660  if (TM.Options.NoNaNsFPMath)
2661    Condition = getFCmpCodeWithoutNaN(Condition);
2662  EVT DestVT = TLI.getValueType(I.getType());
2663  setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Condition));
2664}
2665
2666void SelectionDAGBuilder::visitSelect(const User &I) {
2667  SmallVector<EVT, 4> ValueVTs;
2668  ComputeValueVTs(TLI, I.getType(), ValueVTs);
2669  unsigned NumValues = ValueVTs.size();
2670  if (NumValues == 0) return;
2671
2672  SmallVector<SDValue, 4> Values(NumValues);
2673  SDValue Cond     = getValue(I.getOperand(0));
2674  SDValue TrueVal  = getValue(I.getOperand(1));
2675  SDValue FalseVal = getValue(I.getOperand(2));
2676  ISD::NodeType OpCode = Cond.getValueType().isVector() ?
2677    ISD::VSELECT : ISD::SELECT;
2678
2679  for (unsigned i = 0; i != NumValues; ++i)
2680    Values[i] = DAG.getNode(OpCode, getCurDebugLoc(),
2681                            TrueVal.getNode()->getValueType(TrueVal.getResNo()+i),
2682                            Cond,
2683                            SDValue(TrueVal.getNode(),
2684                                    TrueVal.getResNo() + i),
2685                            SDValue(FalseVal.getNode(),
2686                                    FalseVal.getResNo() + i));
2687
2688  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
2689                           DAG.getVTList(&ValueVTs[0], NumValues),
2690                           &Values[0], NumValues));
2691}
2692
2693void SelectionDAGBuilder::visitTrunc(const User &I) {
2694  // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
2695  SDValue N = getValue(I.getOperand(0));
2696  EVT DestVT = TLI.getValueType(I.getType());
2697  setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), DestVT, N));
2698}
2699
2700void SelectionDAGBuilder::visitZExt(const User &I) {
2701  // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2702  // ZExt also can't be a cast to bool for same reason. So, nothing much to do
2703  SDValue N = getValue(I.getOperand(0));
2704  EVT DestVT = TLI.getValueType(I.getType());
2705  setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), DestVT, N));
2706}
2707
2708void SelectionDAGBuilder::visitSExt(const User &I) {
2709  // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2710  // SExt also can't be a cast to bool for same reason. So, nothing much to do
2711  SDValue N = getValue(I.getOperand(0));
2712  EVT DestVT = TLI.getValueType(I.getType());
2713  setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurDebugLoc(), DestVT, N));
2714}
2715
2716void SelectionDAGBuilder::visitFPTrunc(const User &I) {
2717  // FPTrunc is never a no-op cast, no need to check
2718  SDValue N = getValue(I.getOperand(0));
2719  EVT DestVT = TLI.getValueType(I.getType());
2720  setValue(&I, DAG.getNode(ISD::FP_ROUND, getCurDebugLoc(),
2721                           DestVT, N,
2722                           DAG.getTargetConstant(0, TLI.getPointerTy())));
2723}
2724
2725void SelectionDAGBuilder::visitFPExt(const User &I){
2726  // FPExt is never a no-op cast, no need to check
2727  SDValue N = getValue(I.getOperand(0));
2728  EVT DestVT = TLI.getValueType(I.getType());
2729  setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurDebugLoc(), DestVT, N));
2730}
2731
2732void SelectionDAGBuilder::visitFPToUI(const User &I) {
2733  // FPToUI is never a no-op cast, no need to check
2734  SDValue N = getValue(I.getOperand(0));
2735  EVT DestVT = TLI.getValueType(I.getType());
2736  setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurDebugLoc(), DestVT, N));
2737}
2738
2739void SelectionDAGBuilder::visitFPToSI(const User &I) {
2740  // FPToSI is never a no-op cast, no need to check
2741  SDValue N = getValue(I.getOperand(0));
2742  EVT DestVT = TLI.getValueType(I.getType());
2743  setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurDebugLoc(), DestVT, N));
2744}
2745
2746void SelectionDAGBuilder::visitUIToFP(const User &I) {
2747  // UIToFP is never a no-op cast, no need to check
2748  SDValue N = getValue(I.getOperand(0));
2749  EVT DestVT = TLI.getValueType(I.getType());
2750  setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurDebugLoc(), DestVT, N));
2751}
2752
2753void SelectionDAGBuilder::visitSIToFP(const User &I){
2754  // SIToFP is never a no-op cast, no need to check
2755  SDValue N = getValue(I.getOperand(0));
2756  EVT DestVT = TLI.getValueType(I.getType());
2757  setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurDebugLoc(), DestVT, N));
2758}
2759
2760void SelectionDAGBuilder::visitPtrToInt(const User &I) {
2761  // What to do depends on the size of the integer and the size of the pointer.
2762  // We can either truncate, zero extend, or no-op, accordingly.
2763  SDValue N = getValue(I.getOperand(0));
2764  EVT DestVT = TLI.getValueType(I.getType());
2765  setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT));
2766}
2767
2768void SelectionDAGBuilder::visitIntToPtr(const User &I) {
2769  // What to do depends on the size of the integer and the size of the pointer.
2770  // We can either truncate, zero extend, or no-op, accordingly.
2771  SDValue N = getValue(I.getOperand(0));
2772  EVT DestVT = TLI.getValueType(I.getType());
2773  setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT));
2774}
2775
2776void SelectionDAGBuilder::visitBitCast(const User &I) {
2777  SDValue N = getValue(I.getOperand(0));
2778  EVT DestVT = TLI.getValueType(I.getType());
2779
2780  // BitCast assures us that source and destination are the same size so this is
2781  // either a BITCAST or a no-op.
2782  if (DestVT != N.getValueType())
2783    setValue(&I, DAG.getNode(ISD::BITCAST, getCurDebugLoc(),
2784                             DestVT, N)); // convert types.
2785  else
2786    setValue(&I, N);            // noop cast.
2787}
2788
2789void SelectionDAGBuilder::visitInsertElement(const User &I) {
2790  SDValue InVec = getValue(I.getOperand(0));
2791  SDValue InVal = getValue(I.getOperand(1));
2792  SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(),
2793                              TLI.getPointerTy(),
2794                              getValue(I.getOperand(2)));
2795  setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurDebugLoc(),
2796                           TLI.getValueType(I.getType()),
2797                           InVec, InVal, InIdx));
2798}
2799
2800void SelectionDAGBuilder::visitExtractElement(const User &I) {
2801  SDValue InVec = getValue(I.getOperand(0));
2802  SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(),
2803                              TLI.getPointerTy(),
2804                              getValue(I.getOperand(1)));
2805  setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
2806                           TLI.getValueType(I.getType()), InVec, InIdx));
2807}
2808
2809// Utility for visitShuffleVector - Return true if every element in Mask,
2810// begining from position Pos and ending in Pos+Size, falls within the
2811// specified sequential range [L, L+Pos). or is undef.
2812static bool isSequentialInRange(const SmallVectorImpl<int> &Mask,
2813                                unsigned Pos, unsigned Size, int Low) {
2814  for (unsigned i = Pos, e = Pos+Size; i != e; ++i, ++Low)
2815    if (Mask[i] >= 0 && Mask[i] != Low)
2816      return false;
2817  return true;
2818}
2819
2820void SelectionDAGBuilder::visitShuffleVector(const User &I) {
2821  SDValue Src1 = getValue(I.getOperand(0));
2822  SDValue Src2 = getValue(I.getOperand(1));
2823
2824  SmallVector<int, 8> Mask;
2825  ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask);
2826  unsigned MaskNumElts = Mask.size();
2827
2828  EVT VT = TLI.getValueType(I.getType());
2829  EVT SrcVT = Src1.getValueType();
2830  unsigned SrcNumElts = SrcVT.getVectorNumElements();
2831
2832  if (SrcNumElts == MaskNumElts) {
2833    setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2834                                      &Mask[0]));
2835    return;
2836  }
2837
2838  // Normalize the shuffle vector since mask and vector length don't match.
2839  if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) {
2840    // Mask is longer than the source vectors and is a multiple of the source
2841    // vectors.  We can use concatenate vector to make the mask and vectors
2842    // lengths match.
2843    if (SrcNumElts*2 == MaskNumElts) {
2844      // First check for Src1 in low and Src2 in high
2845      if (isSequentialInRange(Mask, 0, SrcNumElts, 0) &&
2846          isSequentialInRange(Mask, SrcNumElts, SrcNumElts, SrcNumElts)) {
2847        // The shuffle is concatenating two vectors together.
2848        setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurDebugLoc(),
2849                                 VT, Src1, Src2));
2850        return;
2851      }
2852      // Then check for Src2 in low and Src1 in high
2853      if (isSequentialInRange(Mask, 0, SrcNumElts, SrcNumElts) &&
2854          isSequentialInRange(Mask, SrcNumElts, SrcNumElts, 0)) {
2855        // The shuffle is concatenating two vectors together.
2856        setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurDebugLoc(),
2857                                 VT, Src2, Src1));
2858        return;
2859      }
2860    }
2861
2862    // Pad both vectors with undefs to make them the same length as the mask.
2863    unsigned NumConcat = MaskNumElts / SrcNumElts;
2864    bool Src1U = Src1.getOpcode() == ISD::UNDEF;
2865    bool Src2U = Src2.getOpcode() == ISD::UNDEF;
2866    SDValue UndefVal = DAG.getUNDEF(SrcVT);
2867
2868    SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
2869    SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
2870    MOps1[0] = Src1;
2871    MOps2[0] = Src2;
2872
2873    Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
2874                                                  getCurDebugLoc(), VT,
2875                                                  &MOps1[0], NumConcat);
2876    Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
2877                                                  getCurDebugLoc(), VT,
2878                                                  &MOps2[0], NumConcat);
2879
2880    // Readjust mask for new input vector length.
2881    SmallVector<int, 8> MappedOps;
2882    for (unsigned i = 0; i != MaskNumElts; ++i) {
2883      int Idx = Mask[i];
2884      if (Idx >= (int)SrcNumElts)
2885        Idx -= SrcNumElts - MaskNumElts;
2886      MappedOps.push_back(Idx);
2887    }
2888
2889    setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2890                                      &MappedOps[0]));
2891    return;
2892  }
2893
2894  if (SrcNumElts > MaskNumElts) {
2895    // Analyze the access pattern of the vector to see if we can extract
2896    // two subvectors and do the shuffle. The analysis is done by calculating
2897    // the range of elements the mask access on both vectors.
2898    int MinRange[2] = { static_cast<int>(SrcNumElts),
2899                        static_cast<int>(SrcNumElts)};
2900    int MaxRange[2] = {-1, -1};
2901
2902    for (unsigned i = 0; i != MaskNumElts; ++i) {
2903      int Idx = Mask[i];
2904      unsigned Input = 0;
2905      if (Idx < 0)
2906        continue;
2907
2908      if (Idx >= (int)SrcNumElts) {
2909        Input = 1;
2910        Idx -= SrcNumElts;
2911      }
2912      if (Idx > MaxRange[Input])
2913        MaxRange[Input] = Idx;
2914      if (Idx < MinRange[Input])
2915        MinRange[Input] = Idx;
2916    }
2917
2918    // Check if the access is smaller than the vector size and can we find
2919    // a reasonable extract index.
2920    int RangeUse[2] = { -1, -1 };  // 0 = Unused, 1 = Extract, -1 = Can not
2921                                   // Extract.
2922    int StartIdx[2];  // StartIdx to extract from
2923    for (unsigned Input = 0; Input < 2; ++Input) {
2924      if (MinRange[Input] >= (int)SrcNumElts && MaxRange[Input] < 0) {
2925        RangeUse[Input] = 0; // Unused
2926        StartIdx[Input] = 0;
2927        continue;
2928      }
2929
2930      // Find a good start index that is a multiple of the mask length. Then
2931      // see if the rest of the elements are in range.
2932      StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts;
2933      if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts &&
2934          StartIdx[Input] + MaskNumElts <= SrcNumElts)
2935        RangeUse[Input] = 1; // Extract from a multiple of the mask length.
2936    }
2937
2938    if (RangeUse[0] == 0 && RangeUse[1] == 0) {
2939      setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
2940      return;
2941    }
2942    if (RangeUse[0] >= 0 && RangeUse[1] >= 0) {
2943      // Extract appropriate subvector and generate a vector shuffle
2944      for (unsigned Input = 0; Input < 2; ++Input) {
2945        SDValue &Src = Input == 0 ? Src1 : Src2;
2946        if (RangeUse[Input] == 0)
2947          Src = DAG.getUNDEF(VT);
2948        else
2949          Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, getCurDebugLoc(), VT,
2950                            Src, DAG.getIntPtrConstant(StartIdx[Input]));
2951      }
2952
2953      // Calculate new mask.
2954      SmallVector<int, 8> MappedOps;
2955      for (unsigned i = 0; i != MaskNumElts; ++i) {
2956        int Idx = Mask[i];
2957        if (Idx >= 0) {
2958          if (Idx < (int)SrcNumElts)
2959            Idx -= StartIdx[0];
2960          else
2961            Idx -= SrcNumElts + StartIdx[1] - MaskNumElts;
2962        }
2963        MappedOps.push_back(Idx);
2964      }
2965
2966      setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2967                                        &MappedOps[0]));
2968      return;
2969    }
2970  }
2971
2972  // We can't use either concat vectors or extract subvectors so fall back to
2973  // replacing the shuffle with extract and build vector.
2974  // to insert and build vector.
2975  EVT EltVT = VT.getVectorElementType();
2976  EVT PtrVT = TLI.getPointerTy();
2977  SmallVector<SDValue,8> Ops;
2978  for (unsigned i = 0; i != MaskNumElts; ++i) {
2979    int Idx = Mask[i];
2980    SDValue Res;
2981
2982    if (Idx < 0) {
2983      Res = DAG.getUNDEF(EltVT);
2984    } else {
2985      SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2;
2986      if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts;
2987
2988      Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
2989                        EltVT, Src, DAG.getConstant(Idx, PtrVT));
2990    }
2991
2992    Ops.push_back(Res);
2993  }
2994
2995  setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(),
2996                           VT, &Ops[0], Ops.size()));
2997}
2998
2999void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) {
3000  const Value *Op0 = I.getOperand(0);
3001  const Value *Op1 = I.getOperand(1);
3002  Type *AggTy = I.getType();
3003  Type *ValTy = Op1->getType();
3004  bool IntoUndef = isa<UndefValue>(Op0);
3005  bool FromUndef = isa<UndefValue>(Op1);
3006
3007  unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices());
3008
3009  SmallVector<EVT, 4> AggValueVTs;
3010  ComputeValueVTs(TLI, AggTy, AggValueVTs);
3011  SmallVector<EVT, 4> ValValueVTs;
3012  ComputeValueVTs(TLI, ValTy, ValValueVTs);
3013
3014  unsigned NumAggValues = AggValueVTs.size();
3015  unsigned NumValValues = ValValueVTs.size();
3016  SmallVector<SDValue, 4> Values(NumAggValues);
3017
3018  SDValue Agg = getValue(Op0);
3019  unsigned i = 0;
3020  // Copy the beginning value(s) from the original aggregate.
3021  for (; i != LinearIndex; ++i)
3022    Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3023                SDValue(Agg.getNode(), Agg.getResNo() + i);
3024  // Copy values from the inserted value(s).
3025  if (NumValValues) {
3026    SDValue Val = getValue(Op1);
3027    for (; i != LinearIndex + NumValValues; ++i)
3028      Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3029                  SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
3030  }
3031  // Copy remaining value(s) from the original aggregate.
3032  for (; i != NumAggValues; ++i)
3033    Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3034                SDValue(Agg.getNode(), Agg.getResNo() + i);
3035
3036  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
3037                           DAG.getVTList(&AggValueVTs[0], NumAggValues),
3038                           &Values[0], NumAggValues));
3039}
3040
3041void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) {
3042  const Value *Op0 = I.getOperand(0);
3043  Type *AggTy = Op0->getType();
3044  Type *ValTy = I.getType();
3045  bool OutOfUndef = isa<UndefValue>(Op0);
3046
3047  unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices());
3048
3049  SmallVector<EVT, 4> ValValueVTs;
3050  ComputeValueVTs(TLI, ValTy, ValValueVTs);
3051
3052  unsigned NumValValues = ValValueVTs.size();
3053
3054  // Ignore a extractvalue that produces an empty object
3055  if (!NumValValues) {
3056    setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3057    return;
3058  }
3059
3060  SmallVector<SDValue, 4> Values(NumValValues);
3061
3062  SDValue Agg = getValue(Op0);
3063  // Copy out the selected value(s).
3064  for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
3065    Values[i - LinearIndex] =
3066      OutOfUndef ?
3067        DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
3068        SDValue(Agg.getNode(), Agg.getResNo() + i);
3069
3070  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
3071                           DAG.getVTList(&ValValueVTs[0], NumValValues),
3072                           &Values[0], NumValValues));
3073}
3074
3075void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
3076  SDValue N = getValue(I.getOperand(0));
3077  // Note that the pointer operand may be a vector of pointers. Take the scalar
3078  // element which holds a pointer.
3079  Type *Ty = I.getOperand(0)->getType()->getScalarType();
3080
3081  for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end();
3082       OI != E; ++OI) {
3083    const Value *Idx = *OI;
3084    if (StructType *StTy = dyn_cast<StructType>(Ty)) {
3085      unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
3086      if (Field) {
3087        // N = N + Offset
3088        uint64_t Offset = TD->getStructLayout(StTy)->getElementOffset(Field);
3089        N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N,
3090                        DAG.getIntPtrConstant(Offset));
3091      }
3092
3093      Ty = StTy->getElementType(Field);
3094    } else {
3095      Ty = cast<SequentialType>(Ty)->getElementType();
3096
3097      // If this is a constant subscript, handle it quickly.
3098      if (const ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
3099        if (CI->isZero()) continue;
3100        uint64_t Offs =
3101            TD->getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue();
3102        SDValue OffsVal;
3103        EVT PTy = TLI.getPointerTy();
3104        unsigned PtrBits = PTy.getSizeInBits();
3105        if (PtrBits < 64)
3106          OffsVal = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(),
3107                                TLI.getPointerTy(),
3108                                DAG.getConstant(Offs, MVT::i64));
3109        else
3110          OffsVal = DAG.getIntPtrConstant(Offs);
3111
3112        N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N,
3113                        OffsVal);
3114        continue;
3115      }
3116
3117      // N = N + Idx * ElementSize;
3118      APInt ElementSize = APInt(TLI.getPointerTy().getSizeInBits(),
3119                                TD->getTypeAllocSize(Ty));
3120      SDValue IdxN = getValue(Idx);
3121
3122      // If the index is smaller or larger than intptr_t, truncate or extend
3123      // it.
3124      IdxN = DAG.getSExtOrTrunc(IdxN, getCurDebugLoc(), N.getValueType());
3125
3126      // If this is a multiply by a power of two, turn it into a shl
3127      // immediately.  This is a very common case.
3128      if (ElementSize != 1) {
3129        if (ElementSize.isPowerOf2()) {
3130          unsigned Amt = ElementSize.logBase2();
3131          IdxN = DAG.getNode(ISD::SHL, getCurDebugLoc(),
3132                             N.getValueType(), IdxN,
3133                             DAG.getConstant(Amt, IdxN.getValueType()));
3134        } else {
3135          SDValue Scale = DAG.getConstant(ElementSize, TLI.getPointerTy());
3136          IdxN = DAG.getNode(ISD::MUL, getCurDebugLoc(),
3137                             N.getValueType(), IdxN, Scale);
3138        }
3139      }
3140
3141      N = DAG.getNode(ISD::ADD, getCurDebugLoc(),
3142                      N.getValueType(), N, IdxN);
3143    }
3144  }
3145
3146  setValue(&I, N);
3147}
3148
3149void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
3150  // If this is a fixed sized alloca in the entry block of the function,
3151  // allocate it statically on the stack.
3152  if (FuncInfo.StaticAllocaMap.count(&I))
3153    return;   // getValue will auto-populate this.
3154
3155  Type *Ty = I.getAllocatedType();
3156  uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty);
3157  unsigned Align =
3158    std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty),
3159             I.getAlignment());
3160
3161  SDValue AllocSize = getValue(I.getArraySize());
3162
3163  EVT IntPtr = TLI.getPointerTy();
3164  if (AllocSize.getValueType() != IntPtr)
3165    AllocSize = DAG.getZExtOrTrunc(AllocSize, getCurDebugLoc(), IntPtr);
3166
3167  AllocSize = DAG.getNode(ISD::MUL, getCurDebugLoc(), IntPtr,
3168                          AllocSize,
3169                          DAG.getConstant(TySize, IntPtr));
3170
3171  // Handle alignment.  If the requested alignment is less than or equal to
3172  // the stack alignment, ignore it.  If the size is greater than or equal to
3173  // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
3174  unsigned StackAlign = TM.getFrameLowering()->getStackAlignment();
3175  if (Align <= StackAlign)
3176    Align = 0;
3177
3178  // Round the size of the allocation up to the stack alignment size
3179  // by add SA-1 to the size.
3180  AllocSize = DAG.getNode(ISD::ADD, getCurDebugLoc(),
3181                          AllocSize.getValueType(), AllocSize,
3182                          DAG.getIntPtrConstant(StackAlign-1));
3183
3184  // Mask out the low bits for alignment purposes.
3185  AllocSize = DAG.getNode(ISD::AND, getCurDebugLoc(),
3186                          AllocSize.getValueType(), AllocSize,
3187                          DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1)));
3188
3189  SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) };
3190  SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
3191  SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, getCurDebugLoc(),
3192                            VTs, Ops, 3);
3193  setValue(&I, DSA);
3194  DAG.setRoot(DSA.getValue(1));
3195
3196  // Inform the Frame Information that we have just allocated a variable-sized
3197  // object.
3198  FuncInfo.MF->getFrameInfo()->CreateVariableSizedObject(Align ? Align : 1);
3199}
3200
3201void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
3202  if (I.isAtomic())
3203    return visitAtomicLoad(I);
3204
3205  const Value *SV = I.getOperand(0);
3206  SDValue Ptr = getValue(SV);
3207
3208  Type *Ty = I.getType();
3209
3210  bool isVolatile = I.isVolatile();
3211  bool isNonTemporal = I.getMetadata("nontemporal") != 0;
3212  bool isInvariant = I.getMetadata("invariant.load") != 0;
3213  unsigned Alignment = I.getAlignment();
3214  const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa);
3215  const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
3216
3217  SmallVector<EVT, 4> ValueVTs;
3218  SmallVector<uint64_t, 4> Offsets;
3219  ComputeValueVTs(TLI, Ty, ValueVTs, &Offsets);
3220  unsigned NumValues = ValueVTs.size();
3221  if (NumValues == 0)
3222    return;
3223
3224  SDValue Root;
3225  bool ConstantMemory = false;
3226  if (I.isVolatile() || NumValues > MaxParallelChains)
3227    // Serialize volatile loads with other side effects.
3228    Root = getRoot();
3229  else if (AA->pointsToConstantMemory(
3230             AliasAnalysis::Location(SV, AA->getTypeStoreSize(Ty), TBAAInfo))) {
3231    // Do not serialize (non-volatile) loads of constant memory with anything.
3232    Root = DAG.getEntryNode();
3233    ConstantMemory = true;
3234  } else {
3235    // Do not serialize non-volatile loads against each other.
3236    Root = DAG.getRoot();
3237  }
3238
3239  SmallVector<SDValue, 4> Values(NumValues);
3240  SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains),
3241                                          NumValues));
3242  EVT PtrVT = Ptr.getValueType();
3243  unsigned ChainI = 0;
3244  for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3245    // Serializing loads here may result in excessive register pressure, and
3246    // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
3247    // could recover a bit by hoisting nodes upward in the chain by recognizing
3248    // they are side-effect free or do not alias. The optimizer should really
3249    // avoid this case by converting large object/array copies to llvm.memcpy
3250    // (MaxParallelChains should always remain as failsafe).
3251    if (ChainI == MaxParallelChains) {
3252      assert(PendingLoads.empty() && "PendingLoads must be serialized first");
3253      SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
3254                                  MVT::Other, &Chains[0], ChainI);
3255      Root = Chain;
3256      ChainI = 0;
3257    }
3258    SDValue A = DAG.getNode(ISD::ADD, getCurDebugLoc(),
3259                            PtrVT, Ptr,
3260                            DAG.getConstant(Offsets[i], PtrVT));
3261    SDValue L = DAG.getLoad(ValueVTs[i], getCurDebugLoc(), Root,
3262                            A, MachinePointerInfo(SV, Offsets[i]), isVolatile,
3263                            isNonTemporal, isInvariant, Alignment, TBAAInfo,
3264                            Ranges);
3265
3266    Values[i] = L;
3267    Chains[ChainI] = L.getValue(1);
3268  }
3269
3270  if (!ConstantMemory) {
3271    SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
3272                                MVT::Other, &Chains[0], ChainI);
3273    if (isVolatile)
3274      DAG.setRoot(Chain);
3275    else
3276      PendingLoads.push_back(Chain);
3277  }
3278
3279  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
3280                           DAG.getVTList(&ValueVTs[0], NumValues),
3281                           &Values[0], NumValues));
3282}
3283
3284void SelectionDAGBuilder::visitStore(const StoreInst &I) {
3285  if (I.isAtomic())
3286    return visitAtomicStore(I);
3287
3288  const Value *SrcV = I.getOperand(0);
3289  const Value *PtrV = I.getOperand(1);
3290
3291  SmallVector<EVT, 4> ValueVTs;
3292  SmallVector<uint64_t, 4> Offsets;
3293  ComputeValueVTs(TLI, SrcV->getType(), ValueVTs, &Offsets);
3294  unsigned NumValues = ValueVTs.size();
3295  if (NumValues == 0)
3296    return;
3297
3298  // Get the lowered operands. Note that we do this after
3299  // checking if NumResults is zero, because with zero results
3300  // the operands won't have values in the map.
3301  SDValue Src = getValue(SrcV);
3302  SDValue Ptr = getValue(PtrV);
3303
3304  SDValue Root = getRoot();
3305  SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains),
3306                                          NumValues));
3307  EVT PtrVT = Ptr.getValueType();
3308  bool isVolatile = I.isVolatile();
3309  bool isNonTemporal = I.getMetadata("nontemporal") != 0;
3310  unsigned Alignment = I.getAlignment();
3311  const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa);
3312
3313  unsigned ChainI = 0;
3314  for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3315    // See visitLoad comments.
3316    if (ChainI == MaxParallelChains) {
3317      SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
3318                                  MVT::Other, &Chains[0], ChainI);
3319      Root = Chain;
3320      ChainI = 0;
3321    }
3322    SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT, Ptr,
3323                              DAG.getConstant(Offsets[i], PtrVT));
3324    SDValue St = DAG.getStore(Root, getCurDebugLoc(),
3325                              SDValue(Src.getNode(), Src.getResNo() + i),
3326                              Add, MachinePointerInfo(PtrV, Offsets[i]),
3327                              isVolatile, isNonTemporal, Alignment, TBAAInfo);
3328    Chains[ChainI] = St;
3329  }
3330
3331  SDValue StoreNode = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
3332                                  MVT::Other, &Chains[0], ChainI);
3333  ++SDNodeOrder;
3334  AssignOrderingToNode(StoreNode.getNode());
3335  DAG.setRoot(StoreNode);
3336}
3337
3338static SDValue InsertFenceForAtomic(SDValue Chain, AtomicOrdering Order,
3339                                    SynchronizationScope Scope,
3340                                    bool Before, DebugLoc dl,
3341                                    SelectionDAG &DAG,
3342                                    const TargetLowering &TLI) {
3343  // Fence, if necessary
3344  if (Before) {
3345    if (Order == AcquireRelease || Order == SequentiallyConsistent)
3346      Order = Release;
3347    else if (Order == Acquire || Order == Monotonic)
3348      return Chain;
3349  } else {
3350    if (Order == AcquireRelease)
3351      Order = Acquire;
3352    else if (Order == Release || Order == Monotonic)
3353      return Chain;
3354  }
3355  SDValue Ops[3];
3356  Ops[0] = Chain;
3357  Ops[1] = DAG.getConstant(Order, TLI.getPointerTy());
3358  Ops[2] = DAG.getConstant(Scope, TLI.getPointerTy());
3359  return DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops, 3);
3360}
3361
3362void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) {
3363  DebugLoc dl = getCurDebugLoc();
3364  AtomicOrdering Order = I.getOrdering();
3365  SynchronizationScope Scope = I.getSynchScope();
3366
3367  SDValue InChain = getRoot();
3368
3369  if (TLI.getInsertFencesForAtomic())
3370    InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl,
3371                                   DAG, TLI);
3372
3373  SDValue L =
3374    DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, dl,
3375                  getValue(I.getCompareOperand()).getValueType().getSimpleVT(),
3376                  InChain,
3377                  getValue(I.getPointerOperand()),
3378                  getValue(I.getCompareOperand()),
3379                  getValue(I.getNewValOperand()),
3380                  MachinePointerInfo(I.getPointerOperand()), 0 /* Alignment */,
3381                  TLI.getInsertFencesForAtomic() ? Monotonic : Order,
3382                  Scope);
3383
3384  SDValue OutChain = L.getValue(1);
3385
3386  if (TLI.getInsertFencesForAtomic())
3387    OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl,
3388                                    DAG, TLI);
3389
3390  setValue(&I, L);
3391  DAG.setRoot(OutChain);
3392}
3393
3394void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) {
3395  DebugLoc dl = getCurDebugLoc();
3396  ISD::NodeType NT;
3397  switch (I.getOperation()) {
3398  default: llvm_unreachable("Unknown atomicrmw operation");
3399  case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break;
3400  case AtomicRMWInst::Add:  NT = ISD::ATOMIC_LOAD_ADD; break;
3401  case AtomicRMWInst::Sub:  NT = ISD::ATOMIC_LOAD_SUB; break;
3402  case AtomicRMWInst::And:  NT = ISD::ATOMIC_LOAD_AND; break;
3403  case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break;
3404  case AtomicRMWInst::Or:   NT = ISD::ATOMIC_LOAD_OR; break;
3405  case AtomicRMWInst::Xor:  NT = ISD::ATOMIC_LOAD_XOR; break;
3406  case AtomicRMWInst::Max:  NT = ISD::ATOMIC_LOAD_MAX; break;
3407  case AtomicRMWInst::Min:  NT = ISD::ATOMIC_LOAD_MIN; break;
3408  case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break;
3409  case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break;
3410  }
3411  AtomicOrdering Order = I.getOrdering();
3412  SynchronizationScope Scope = I.getSynchScope();
3413
3414  SDValue InChain = getRoot();
3415
3416  if (TLI.getInsertFencesForAtomic())
3417    InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl,
3418                                   DAG, TLI);
3419
3420  SDValue L =
3421    DAG.getAtomic(NT, dl,
3422                  getValue(I.getValOperand()).getValueType().getSimpleVT(),
3423                  InChain,
3424                  getValue(I.getPointerOperand()),
3425                  getValue(I.getValOperand()),
3426                  I.getPointerOperand(), 0 /* Alignment */,
3427                  TLI.getInsertFencesForAtomic() ? Monotonic : Order,
3428                  Scope);
3429
3430  SDValue OutChain = L.getValue(1);
3431
3432  if (TLI.getInsertFencesForAtomic())
3433    OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl,
3434                                    DAG, TLI);
3435
3436  setValue(&I, L);
3437  DAG.setRoot(OutChain);
3438}
3439
3440void SelectionDAGBuilder::visitFence(const FenceInst &I) {
3441  DebugLoc dl = getCurDebugLoc();
3442  SDValue Ops[3];
3443  Ops[0] = getRoot();
3444  Ops[1] = DAG.getConstant(I.getOrdering(), TLI.getPointerTy());
3445  Ops[2] = DAG.getConstant(I.getSynchScope(), TLI.getPointerTy());
3446  DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops, 3));
3447}
3448
3449void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) {
3450  DebugLoc dl = getCurDebugLoc();
3451  AtomicOrdering Order = I.getOrdering();
3452  SynchronizationScope Scope = I.getSynchScope();
3453
3454  SDValue InChain = getRoot();
3455
3456  EVT VT = EVT::getEVT(I.getType());
3457
3458  if (I.getAlignment() * 8 < VT.getSizeInBits())
3459    report_fatal_error("Cannot generate unaligned atomic load");
3460
3461  SDValue L =
3462    DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain,
3463                  getValue(I.getPointerOperand()),
3464                  I.getPointerOperand(), I.getAlignment(),
3465                  TLI.getInsertFencesForAtomic() ? Monotonic : Order,
3466                  Scope);
3467
3468  SDValue OutChain = L.getValue(1);
3469
3470  if (TLI.getInsertFencesForAtomic())
3471    OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl,
3472                                    DAG, TLI);
3473
3474  setValue(&I, L);
3475  DAG.setRoot(OutChain);
3476}
3477
3478void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) {
3479  DebugLoc dl = getCurDebugLoc();
3480
3481  AtomicOrdering Order = I.getOrdering();
3482  SynchronizationScope Scope = I.getSynchScope();
3483
3484  SDValue InChain = getRoot();
3485
3486  EVT VT = EVT::getEVT(I.getValueOperand()->getType());
3487
3488  if (I.getAlignment() * 8 < VT.getSizeInBits())
3489    report_fatal_error("Cannot generate unaligned atomic store");
3490
3491  if (TLI.getInsertFencesForAtomic())
3492    InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl,
3493                                   DAG, TLI);
3494
3495  SDValue OutChain =
3496    DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT,
3497                  InChain,
3498                  getValue(I.getPointerOperand()),
3499                  getValue(I.getValueOperand()),
3500                  I.getPointerOperand(), I.getAlignment(),
3501                  TLI.getInsertFencesForAtomic() ? Monotonic : Order,
3502                  Scope);
3503
3504  if (TLI.getInsertFencesForAtomic())
3505    OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl,
3506                                    DAG, TLI);
3507
3508  DAG.setRoot(OutChain);
3509}
3510
3511/// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
3512/// node.
3513void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
3514                                               unsigned Intrinsic) {
3515  bool HasChain = !I.doesNotAccessMemory();
3516  bool OnlyLoad = HasChain && I.onlyReadsMemory();
3517
3518  // Build the operand list.
3519  SmallVector<SDValue, 8> Ops;
3520  if (HasChain) {  // If this intrinsic has side-effects, chainify it.
3521    if (OnlyLoad) {
3522      // We don't need to serialize loads against other loads.
3523      Ops.push_back(DAG.getRoot());
3524    } else {
3525      Ops.push_back(getRoot());
3526    }
3527  }
3528
3529  // Info is set by getTgtMemInstrinsic
3530  TargetLowering::IntrinsicInfo Info;
3531  bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic);
3532
3533  // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
3534  if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
3535      Info.opc == ISD::INTRINSIC_W_CHAIN)
3536    Ops.push_back(DAG.getTargetConstant(Intrinsic, TLI.getPointerTy()));
3537
3538  // Add all operands of the call to the operand list.
3539  for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
3540    SDValue Op = getValue(I.getArgOperand(i));
3541    Ops.push_back(Op);
3542  }
3543
3544  SmallVector<EVT, 4> ValueVTs;
3545  ComputeValueVTs(TLI, I.getType(), ValueVTs);
3546
3547  if (HasChain)
3548    ValueVTs.push_back(MVT::Other);
3549
3550  SDVTList VTs = DAG.getVTList(ValueVTs.data(), ValueVTs.size());
3551
3552  // Create the node.
3553  SDValue Result;
3554  if (IsTgtIntrinsic) {
3555    // This is target intrinsic that touches memory
3556    Result = DAG.getMemIntrinsicNode(Info.opc, getCurDebugLoc(),
3557                                     VTs, &Ops[0], Ops.size(),
3558                                     Info.memVT,
3559                                   MachinePointerInfo(Info.ptrVal, Info.offset),
3560                                     Info.align, Info.vol,
3561                                     Info.readMem, Info.writeMem);
3562  } else if (!HasChain) {
3563    Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurDebugLoc(),
3564                         VTs, &Ops[0], Ops.size());
3565  } else if (!I.getType()->isVoidTy()) {
3566    Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurDebugLoc(),
3567                         VTs, &Ops[0], Ops.size());
3568  } else {
3569    Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurDebugLoc(),
3570                         VTs, &Ops[0], Ops.size());
3571  }
3572
3573  if (HasChain) {
3574    SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
3575    if (OnlyLoad)
3576      PendingLoads.push_back(Chain);
3577    else
3578      DAG.setRoot(Chain);
3579  }
3580
3581  if (!I.getType()->isVoidTy()) {
3582    if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
3583      EVT VT = TLI.getValueType(PTy);
3584      Result = DAG.getNode(ISD::BITCAST, getCurDebugLoc(), VT, Result);
3585    }
3586
3587    setValue(&I, Result);
3588  } else {
3589    // Assign order to result here. If the intrinsic does not produce a result,
3590    // it won't be mapped to a SDNode and visit() will not assign it an order
3591    // number.
3592    ++SDNodeOrder;
3593    AssignOrderingToNode(Result.getNode());
3594  }
3595}
3596
3597/// GetSignificand - Get the significand and build it into a floating-point
3598/// number with exponent of 1:
3599///
3600///   Op = (Op & 0x007fffff) | 0x3f800000;
3601///
3602/// where Op is the hexidecimal representation of floating point value.
3603static SDValue
3604GetSignificand(SelectionDAG &DAG, SDValue Op, DebugLoc dl) {
3605  SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
3606                           DAG.getConstant(0x007fffff, MVT::i32));
3607  SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
3608                           DAG.getConstant(0x3f800000, MVT::i32));
3609  return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
3610}
3611
3612/// GetExponent - Get the exponent:
3613///
3614///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
3615///
3616/// where Op is the hexidecimal representation of floating point value.
3617static SDValue
3618GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI,
3619            DebugLoc dl) {
3620  SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
3621                           DAG.getConstant(0x7f800000, MVT::i32));
3622  SDValue t1 = DAG.getNode(ISD::SRL, dl, MVT::i32, t0,
3623                           DAG.getConstant(23, TLI.getPointerTy()));
3624  SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
3625                           DAG.getConstant(127, MVT::i32));
3626  return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
3627}
3628
3629/// getF32Constant - Get 32-bit floating point constant.
3630static SDValue
3631getF32Constant(SelectionDAG &DAG, unsigned Flt) {
3632  return DAG.getConstantFP(APFloat(APInt(32, Flt)), MVT::f32);
3633}
3634
3635/// visitExp - Lower an exp intrinsic. Handles the special sequences for
3636/// limited-precision mode.
3637void
3638SelectionDAGBuilder::visitExp(const CallInst &I) {
3639  SDValue result;
3640  DebugLoc dl = getCurDebugLoc();
3641
3642  if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3643      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3644    SDValue Op = getValue(I.getArgOperand(0));
3645
3646    // Put the exponent in the right bit position for later addition to the
3647    // final result:
3648    //
3649    //   #define LOG2OFe 1.4426950f
3650    //   IntegerPartOfX = ((int32_t)(X * LOG2OFe));
3651    SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
3652                             getF32Constant(DAG, 0x3fb8aa3b));
3653    SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
3654
3655    //   FractionalPartOfX = (X * LOG2OFe) - (float)IntegerPartOfX;
3656    SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
3657    SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
3658
3659    //   IntegerPartOfX <<= 23;
3660    IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
3661                                 DAG.getConstant(23, TLI.getPointerTy()));
3662
3663    if (LimitFloatPrecision <= 6) {
3664      // For floating-point precision of 6:
3665      //
3666      //   TwoToFractionalPartOfX =
3667      //     0.997535578f +
3668      //       (0.735607626f + 0.252464424f * x) * x;
3669      //
3670      // error 0.0144103317, which is 6 bits
3671      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3672                               getF32Constant(DAG, 0x3e814304));
3673      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3674                               getF32Constant(DAG, 0x3f3c50c8));
3675      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3676      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3677                               getF32Constant(DAG, 0x3f7f5e7e));
3678      SDValue TwoToFracPartOfX = DAG.getNode(ISD::BITCAST, dl,MVT::i32, t5);
3679
3680      // Add the exponent into the result in integer domain.
3681      SDValue t6 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3682                               TwoToFracPartOfX, IntegerPartOfX);
3683
3684      result = DAG.getNode(ISD::BITCAST, dl, MVT::f32, t6);
3685    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3686      // For floating-point precision of 12:
3687      //
3688      //   TwoToFractionalPartOfX =
3689      //     0.999892986f +
3690      //       (0.696457318f +
3691      //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
3692      //
3693      // 0.000107046256 error, which is 13 to 14 bits
3694      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3695                               getF32Constant(DAG, 0x3da235e3));
3696      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3697                               getF32Constant(DAG, 0x3e65b8f3));
3698      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3699      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3700                               getF32Constant(DAG, 0x3f324b07));
3701      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3702      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3703                               getF32Constant(DAG, 0x3f7ff8fd));
3704      SDValue TwoToFracPartOfX = DAG.getNode(ISD::BITCAST, dl,MVT::i32, t7);
3705
3706      // Add the exponent into the result in integer domain.
3707      SDValue t8 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3708                               TwoToFracPartOfX, IntegerPartOfX);
3709
3710      result = DAG.getNode(ISD::BITCAST, dl, MVT::f32, t8);
3711    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3712      // For floating-point precision of 18:
3713      //
3714      //   TwoToFractionalPartOfX =
3715      //     0.999999982f +
3716      //       (0.693148872f +
3717      //         (0.240227044f +
3718      //           (0.554906021e-1f +
3719      //             (0.961591928e-2f +
3720      //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
3721      //
3722      // error 2.47208000*10^(-7), which is better than 18 bits
3723      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3724                               getF32Constant(DAG, 0x3924b03e));
3725      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3726                               getF32Constant(DAG, 0x3ab24b87));
3727      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3728      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3729                               getF32Constant(DAG, 0x3c1d8c17));
3730      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3731      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3732                               getF32Constant(DAG, 0x3d634a1d));
3733      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3734      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3735                               getF32Constant(DAG, 0x3e75fe14));
3736      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3737      SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
3738                                getF32Constant(DAG, 0x3f317234));
3739      SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
3740      SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
3741                                getF32Constant(DAG, 0x3f800000));
3742      SDValue TwoToFracPartOfX = DAG.getNode(ISD::BITCAST, dl,
3743                                             MVT::i32, t13);
3744
3745      // Add the exponent into the result in integer domain.
3746      SDValue t14 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3747                                TwoToFracPartOfX, IntegerPartOfX);
3748
3749      result = DAG.getNode(ISD::BITCAST, dl, MVT::f32, t14);
3750    }
3751  } else {
3752    // No special expansion.
3753    result = DAG.getNode(ISD::FEXP, dl,
3754                         getValue(I.getArgOperand(0)).getValueType(),
3755                         getValue(I.getArgOperand(0)));
3756  }
3757
3758  setValue(&I, result);
3759}
3760
3761/// visitLog - Lower a log intrinsic. Handles the special sequences for
3762/// limited-precision mode.
3763void
3764SelectionDAGBuilder::visitLog(const CallInst &I) {
3765  SDValue result;
3766  DebugLoc dl = getCurDebugLoc();
3767
3768  if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3769      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3770    SDValue Op = getValue(I.getArgOperand(0));
3771    SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
3772
3773    // Scale the exponent by log(2) [0.69314718f].
3774    SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
3775    SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
3776                                        getF32Constant(DAG, 0x3f317218));
3777
3778    // Get the significand and build it into a floating-point number with
3779    // exponent of 1.
3780    SDValue X = GetSignificand(DAG, Op1, dl);
3781
3782    if (LimitFloatPrecision <= 6) {
3783      // For floating-point precision of 6:
3784      //
3785      //   LogofMantissa =
3786      //     -1.1609546f +
3787      //       (1.4034025f - 0.23903021f * x) * x;
3788      //
3789      // error 0.0034276066, which is better than 8 bits
3790      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3791                               getF32Constant(DAG, 0xbe74c456));
3792      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3793                               getF32Constant(DAG, 0x3fb3a2b1));
3794      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3795      SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3796                                          getF32Constant(DAG, 0x3f949a29));
3797
3798      result = DAG.getNode(ISD::FADD, dl,
3799                           MVT::f32, LogOfExponent, LogOfMantissa);
3800    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3801      // For floating-point precision of 12:
3802      //
3803      //   LogOfMantissa =
3804      //     -1.7417939f +
3805      //       (2.8212026f +
3806      //         (-1.4699568f +
3807      //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
3808      //
3809      // error 0.000061011436, which is 14 bits
3810      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3811                               getF32Constant(DAG, 0xbd67b6d6));
3812      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3813                               getF32Constant(DAG, 0x3ee4f4b8));
3814      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3815      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3816                               getF32Constant(DAG, 0x3fbc278b));
3817      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3818      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3819                               getF32Constant(DAG, 0x40348e95));
3820      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3821      SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3822                                          getF32Constant(DAG, 0x3fdef31a));
3823
3824      result = DAG.getNode(ISD::FADD, dl,
3825                           MVT::f32, LogOfExponent, LogOfMantissa);
3826    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3827      // For floating-point precision of 18:
3828      //
3829      //   LogOfMantissa =
3830      //     -2.1072184f +
3831      //       (4.2372794f +
3832      //         (-3.7029485f +
3833      //           (2.2781945f +
3834      //             (-0.87823314f +
3835      //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
3836      //
3837      // error 0.0000023660568, which is better than 18 bits
3838      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3839                               getF32Constant(DAG, 0xbc91e5ac));
3840      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3841                               getF32Constant(DAG, 0x3e4350aa));
3842      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3843      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3844                               getF32Constant(DAG, 0x3f60d3e3));
3845      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3846      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3847                               getF32Constant(DAG, 0x4011cdf0));
3848      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3849      SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3850                               getF32Constant(DAG, 0x406cfd1c));
3851      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3852      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3853                               getF32Constant(DAG, 0x408797cb));
3854      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3855      SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
3856                                          getF32Constant(DAG, 0x4006dcab));
3857
3858      result = DAG.getNode(ISD::FADD, dl,
3859                           MVT::f32, LogOfExponent, LogOfMantissa);
3860    }
3861  } else {
3862    // No special expansion.
3863    result = DAG.getNode(ISD::FLOG, dl,
3864                         getValue(I.getArgOperand(0)).getValueType(),
3865                         getValue(I.getArgOperand(0)));
3866  }
3867
3868  setValue(&I, result);
3869}
3870
3871/// visitLog2 - Lower a log2 intrinsic. Handles the special sequences for
3872/// limited-precision mode.
3873void
3874SelectionDAGBuilder::visitLog2(const CallInst &I) {
3875  SDValue result;
3876  DebugLoc dl = getCurDebugLoc();
3877
3878  if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3879      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3880    SDValue Op = getValue(I.getArgOperand(0));
3881    SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
3882
3883    // Get the exponent.
3884    SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
3885
3886    // Get the significand and build it into a floating-point number with
3887    // exponent of 1.
3888    SDValue X = GetSignificand(DAG, Op1, dl);
3889
3890    // Different possible minimax approximations of significand in
3891    // floating-point for various degrees of accuracy over [1,2].
3892    if (LimitFloatPrecision <= 6) {
3893      // For floating-point precision of 6:
3894      //
3895      //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
3896      //
3897      // error 0.0049451742, which is more than 7 bits
3898      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3899                               getF32Constant(DAG, 0xbeb08fe0));
3900      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3901                               getF32Constant(DAG, 0x40019463));
3902      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3903      SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3904                                           getF32Constant(DAG, 0x3fd6633d));
3905
3906      result = DAG.getNode(ISD::FADD, dl,
3907                           MVT::f32, LogOfExponent, Log2ofMantissa);
3908    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3909      // For floating-point precision of 12:
3910      //
3911      //   Log2ofMantissa =
3912      //     -2.51285454f +
3913      //       (4.07009056f +
3914      //         (-2.12067489f +
3915      //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
3916      //
3917      // error 0.0000876136000, which is better than 13 bits
3918      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3919                               getF32Constant(DAG, 0xbda7262e));
3920      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3921                               getF32Constant(DAG, 0x3f25280b));
3922      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3923      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3924                               getF32Constant(DAG, 0x4007b923));
3925      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3926      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3927                               getF32Constant(DAG, 0x40823e2f));
3928      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3929      SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3930                                           getF32Constant(DAG, 0x4020d29c));
3931
3932      result = DAG.getNode(ISD::FADD, dl,
3933                           MVT::f32, LogOfExponent, Log2ofMantissa);
3934    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3935      // For floating-point precision of 18:
3936      //
3937      //   Log2ofMantissa =
3938      //     -3.0400495f +
3939      //       (6.1129976f +
3940      //         (-5.3420409f +
3941      //           (3.2865683f +
3942      //             (-1.2669343f +
3943      //               (0.27515199f -
3944      //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
3945      //
3946      // error 0.0000018516, which is better than 18 bits
3947      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3948                               getF32Constant(DAG, 0xbcd2769e));
3949      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3950                               getF32Constant(DAG, 0x3e8ce0b9));
3951      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3952      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3953                               getF32Constant(DAG, 0x3fa22ae7));
3954      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3955      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3956                               getF32Constant(DAG, 0x40525723));
3957      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3958      SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3959                               getF32Constant(DAG, 0x40aaf200));
3960      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3961      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3962                               getF32Constant(DAG, 0x40c39dad));
3963      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3964      SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
3965                                           getF32Constant(DAG, 0x4042902c));
3966
3967      result = DAG.getNode(ISD::FADD, dl,
3968                           MVT::f32, LogOfExponent, Log2ofMantissa);
3969    }
3970  } else {
3971    // No special expansion.
3972    result = DAG.getNode(ISD::FLOG2, dl,
3973                         getValue(I.getArgOperand(0)).getValueType(),
3974                         getValue(I.getArgOperand(0)));
3975  }
3976
3977  setValue(&I, result);
3978}
3979
3980/// visitLog10 - Lower a log10 intrinsic. Handles the special sequences for
3981/// limited-precision mode.
3982void
3983SelectionDAGBuilder::visitLog10(const CallInst &I) {
3984  SDValue result;
3985  DebugLoc dl = getCurDebugLoc();
3986
3987  if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3988      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3989    SDValue Op = getValue(I.getArgOperand(0));
3990    SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
3991
3992    // Scale the exponent by log10(2) [0.30102999f].
3993    SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
3994    SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
3995                                        getF32Constant(DAG, 0x3e9a209a));
3996
3997    // Get the significand and build it into a floating-point number with
3998    // exponent of 1.
3999    SDValue X = GetSignificand(DAG, Op1, dl);
4000
4001    if (LimitFloatPrecision <= 6) {
4002      // For floating-point precision of 6:
4003      //
4004      //   Log10ofMantissa =
4005      //     -0.50419619f +
4006      //       (0.60948995f - 0.10380950f * x) * x;
4007      //
4008      // error 0.0014886165, which is 6 bits
4009      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4010                               getF32Constant(DAG, 0xbdd49a13));
4011      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4012                               getF32Constant(DAG, 0x3f1c0789));
4013      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4014      SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4015                                            getF32Constant(DAG, 0x3f011300));
4016
4017      result = DAG.getNode(ISD::FADD, dl,
4018                           MVT::f32, LogOfExponent, Log10ofMantissa);
4019    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
4020      // For floating-point precision of 12:
4021      //
4022      //   Log10ofMantissa =
4023      //     -0.64831180f +
4024      //       (0.91751397f +
4025      //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
4026      //
4027      // error 0.00019228036, which is better than 12 bits
4028      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4029                               getF32Constant(DAG, 0x3d431f31));
4030      SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
4031                               getF32Constant(DAG, 0x3ea21fb2));
4032      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4033      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4034                               getF32Constant(DAG, 0x3f6ae232));
4035      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4036      SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
4037                                            getF32Constant(DAG, 0x3f25f7c3));
4038
4039      result = DAG.getNode(ISD::FADD, dl,
4040                           MVT::f32, LogOfExponent, Log10ofMantissa);
4041    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
4042      // For floating-point precision of 18:
4043      //
4044      //   Log10ofMantissa =
4045      //     -0.84299375f +
4046      //       (1.5327582f +
4047      //         (-1.0688956f +
4048      //           (0.49102474f +
4049      //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
4050      //
4051      // error 0.0000037995730, which is better than 18 bits
4052      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4053                               getF32Constant(DAG, 0x3c5d51ce));
4054      SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
4055                               getF32Constant(DAG, 0x3e00685a));
4056      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4057      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4058                               getF32Constant(DAG, 0x3efb6798));
4059      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4060      SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
4061                               getF32Constant(DAG, 0x3f88d192));
4062      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4063      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4064                               getF32Constant(DAG, 0x3fc4316c));
4065      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4066      SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
4067                                            getF32Constant(DAG, 0x3f57ce70));
4068
4069      result = DAG.getNode(ISD::FADD, dl,
4070                           MVT::f32, LogOfExponent, Log10ofMantissa);
4071    }
4072  } else {
4073    // No special expansion.
4074    result = DAG.getNode(ISD::FLOG10, dl,
4075                         getValue(I.getArgOperand(0)).getValueType(),
4076                         getValue(I.getArgOperand(0)));
4077  }
4078
4079  setValue(&I, result);
4080}
4081
4082/// visitExp2 - Lower an exp2 intrinsic. Handles the special sequences for
4083/// limited-precision mode.
4084void
4085SelectionDAGBuilder::visitExp2(const CallInst &I) {
4086  SDValue result;
4087  DebugLoc dl = getCurDebugLoc();
4088
4089  if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
4090      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4091    SDValue Op = getValue(I.getArgOperand(0));
4092
4093    SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Op);
4094
4095    //   FractionalPartOfX = x - (float)IntegerPartOfX;
4096    SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
4097    SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, Op, t1);
4098
4099    //   IntegerPartOfX <<= 23;
4100    IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
4101                                 DAG.getConstant(23, TLI.getPointerTy()));
4102
4103    if (LimitFloatPrecision <= 6) {
4104      // For floating-point precision of 6:
4105      //
4106      //   TwoToFractionalPartOfX =
4107      //     0.997535578f +
4108      //       (0.735607626f + 0.252464424f * x) * x;
4109      //
4110      // error 0.0144103317, which is 6 bits
4111      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4112                               getF32Constant(DAG, 0x3e814304));
4113      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4114                               getF32Constant(DAG, 0x3f3c50c8));
4115      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4116      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4117                               getF32Constant(DAG, 0x3f7f5e7e));
4118      SDValue t6 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t5);
4119      SDValue TwoToFractionalPartOfX =
4120        DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX);
4121
4122      result = DAG.getNode(ISD::BITCAST, dl,
4123                           MVT::f32, TwoToFractionalPartOfX);
4124    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
4125      // For floating-point precision of 12:
4126      //
4127      //   TwoToFractionalPartOfX =
4128      //     0.999892986f +
4129      //       (0.696457318f +
4130      //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
4131      //
4132      // error 0.000107046256, which is 13 to 14 bits
4133      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4134                               getF32Constant(DAG, 0x3da235e3));
4135      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4136                               getF32Constant(DAG, 0x3e65b8f3));
4137      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4138      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4139                               getF32Constant(DAG, 0x3f324b07));
4140      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4141      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4142                               getF32Constant(DAG, 0x3f7ff8fd));
4143      SDValue t8 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t7);
4144      SDValue TwoToFractionalPartOfX =
4145        DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX);
4146
4147      result = DAG.getNode(ISD::BITCAST, dl,
4148                           MVT::f32, TwoToFractionalPartOfX);
4149    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
4150      // For floating-point precision of 18:
4151      //
4152      //   TwoToFractionalPartOfX =
4153      //     0.999999982f +
4154      //       (0.693148872f +
4155      //         (0.240227044f +
4156      //           (0.554906021e-1f +
4157      //             (0.961591928e-2f +
4158      //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
4159      // error 2.47208000*10^(-7), which is better than 18 bits
4160      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4161                               getF32Constant(DAG, 0x3924b03e));
4162      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4163                               getF32Constant(DAG, 0x3ab24b87));
4164      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4165      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4166                               getF32Constant(DAG, 0x3c1d8c17));
4167      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4168      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4169                               getF32Constant(DAG, 0x3d634a1d));
4170      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4171      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4172                               getF32Constant(DAG, 0x3e75fe14));
4173      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4174      SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
4175                                getF32Constant(DAG, 0x3f317234));
4176      SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
4177      SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
4178                                getF32Constant(DAG, 0x3f800000));
4179      SDValue t14 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t13);
4180      SDValue TwoToFractionalPartOfX =
4181        DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX);
4182
4183      result = DAG.getNode(ISD::BITCAST, dl,
4184                           MVT::f32, TwoToFractionalPartOfX);
4185    }
4186  } else {
4187    // No special expansion.
4188    result = DAG.getNode(ISD::FEXP2, dl,
4189                         getValue(I.getArgOperand(0)).getValueType(),
4190                         getValue(I.getArgOperand(0)));
4191  }
4192
4193  setValue(&I, result);
4194}
4195
4196/// visitPow - Lower a pow intrinsic. Handles the special sequences for
4197/// limited-precision mode with x == 10.0f.
4198void
4199SelectionDAGBuilder::visitPow(const CallInst &I) {
4200  SDValue result;
4201  const Value *Val = I.getArgOperand(0);
4202  DebugLoc dl = getCurDebugLoc();
4203  bool IsExp10 = false;
4204
4205  if (getValue(Val).getValueType() == MVT::f32 &&
4206      getValue(I.getArgOperand(1)).getValueType() == MVT::f32 &&
4207      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4208    if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(Val))) {
4209      if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
4210        APFloat Ten(10.0f);
4211        IsExp10 = CFP->getValueAPF().bitwiseIsEqual(Ten);
4212      }
4213    }
4214  }
4215
4216  if (IsExp10 && LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4217    SDValue Op = getValue(I.getArgOperand(1));
4218
4219    // Put the exponent in the right bit position for later addition to the
4220    // final result:
4221    //
4222    //   #define LOG2OF10 3.3219281f
4223    //   IntegerPartOfX = (int32_t)(x * LOG2OF10);
4224    SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
4225                             getF32Constant(DAG, 0x40549a78));
4226    SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
4227
4228    //   FractionalPartOfX = x - (float)IntegerPartOfX;
4229    SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
4230    SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
4231
4232    //   IntegerPartOfX <<= 23;
4233    IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
4234                                 DAG.getConstant(23, TLI.getPointerTy()));
4235
4236    if (LimitFloatPrecision <= 6) {
4237      // For floating-point precision of 6:
4238      //
4239      //   twoToFractionalPartOfX =
4240      //     0.997535578f +
4241      //       (0.735607626f + 0.252464424f * x) * x;
4242      //
4243      // error 0.0144103317, which is 6 bits
4244      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4245                               getF32Constant(DAG, 0x3e814304));
4246      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4247                               getF32Constant(DAG, 0x3f3c50c8));
4248      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4249      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4250                               getF32Constant(DAG, 0x3f7f5e7e));
4251      SDValue t6 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t5);
4252      SDValue TwoToFractionalPartOfX =
4253        DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX);
4254
4255      result = DAG.getNode(ISD::BITCAST, dl,
4256                           MVT::f32, TwoToFractionalPartOfX);
4257    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
4258      // For floating-point precision of 12:
4259      //
4260      //   TwoToFractionalPartOfX =
4261      //     0.999892986f +
4262      //       (0.696457318f +
4263      //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
4264      //
4265      // error 0.000107046256, which is 13 to 14 bits
4266      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4267                               getF32Constant(DAG, 0x3da235e3));
4268      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4269                               getF32Constant(DAG, 0x3e65b8f3));
4270      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4271      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4272                               getF32Constant(DAG, 0x3f324b07));
4273      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4274      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4275                               getF32Constant(DAG, 0x3f7ff8fd));
4276      SDValue t8 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t7);
4277      SDValue TwoToFractionalPartOfX =
4278        DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX);
4279
4280      result = DAG.getNode(ISD::BITCAST, dl,
4281                           MVT::f32, TwoToFractionalPartOfX);
4282    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
4283      // For floating-point precision of 18:
4284      //
4285      //   TwoToFractionalPartOfX =
4286      //     0.999999982f +
4287      //       (0.693148872f +
4288      //         (0.240227044f +
4289      //           (0.554906021e-1f +
4290      //             (0.961591928e-2f +
4291      //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
4292      // error 2.47208000*10^(-7), which is better than 18 bits
4293      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4294                               getF32Constant(DAG, 0x3924b03e));
4295      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4296                               getF32Constant(DAG, 0x3ab24b87));
4297      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4298      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4299                               getF32Constant(DAG, 0x3c1d8c17));
4300      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4301      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4302                               getF32Constant(DAG, 0x3d634a1d));
4303      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4304      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4305                               getF32Constant(DAG, 0x3e75fe14));
4306      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4307      SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
4308                                getF32Constant(DAG, 0x3f317234));
4309      SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
4310      SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
4311                                getF32Constant(DAG, 0x3f800000));
4312      SDValue t14 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t13);
4313      SDValue TwoToFractionalPartOfX =
4314        DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX);
4315
4316      result = DAG.getNode(ISD::BITCAST, dl,
4317                           MVT::f32, TwoToFractionalPartOfX);
4318    }
4319  } else {
4320    // No special expansion.
4321    result = DAG.getNode(ISD::FPOW, dl,
4322                         getValue(I.getArgOperand(0)).getValueType(),
4323                         getValue(I.getArgOperand(0)),
4324                         getValue(I.getArgOperand(1)));
4325  }
4326
4327  setValue(&I, result);
4328}
4329
4330
4331/// ExpandPowI - Expand a llvm.powi intrinsic.
4332static SDValue ExpandPowI(DebugLoc DL, SDValue LHS, SDValue RHS,
4333                          SelectionDAG &DAG) {
4334  // If RHS is a constant, we can expand this out to a multiplication tree,
4335  // otherwise we end up lowering to a call to __powidf2 (for example).  When
4336  // optimizing for size, we only want to do this if the expansion would produce
4337  // a small number of multiplies, otherwise we do the full expansion.
4338  if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
4339    // Get the exponent as a positive value.
4340    unsigned Val = RHSC->getSExtValue();
4341    if ((int)Val < 0) Val = -Val;
4342
4343    // powi(x, 0) -> 1.0
4344    if (Val == 0)
4345      return DAG.getConstantFP(1.0, LHS.getValueType());
4346
4347    const Function *F = DAG.getMachineFunction().getFunction();
4348    if (!F->hasFnAttr(Attribute::OptimizeForSize) ||
4349        // If optimizing for size, don't insert too many multiplies.  This
4350        // inserts up to 5 multiplies.
4351        CountPopulation_32(Val)+Log2_32(Val) < 7) {
4352      // We use the simple binary decomposition method to generate the multiply
4353      // sequence.  There are more optimal ways to do this (for example,
4354      // powi(x,15) generates one more multiply than it should), but this has
4355      // the benefit of being both really simple and much better than a libcall.
4356      SDValue Res;  // Logically starts equal to 1.0
4357      SDValue CurSquare = LHS;
4358      while (Val) {
4359        if (Val & 1) {
4360          if (Res.getNode())
4361            Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare);
4362          else
4363            Res = CurSquare;  // 1.0*CurSquare.
4364        }
4365
4366        CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
4367                                CurSquare, CurSquare);
4368        Val >>= 1;
4369      }
4370
4371      // If the original was negative, invert the result, producing 1/(x*x*x).
4372      if (RHSC->getSExtValue() < 0)
4373        Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
4374                          DAG.getConstantFP(1.0, LHS.getValueType()), Res);
4375      return Res;
4376    }
4377  }
4378
4379  // Otherwise, expand to a libcall.
4380  return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
4381}
4382
4383// getTruncatedArgReg - Find underlying register used for an truncated
4384// argument.
4385static unsigned getTruncatedArgReg(const SDValue &N) {
4386  if (N.getOpcode() != ISD::TRUNCATE)
4387    return 0;
4388
4389  const SDValue &Ext = N.getOperand(0);
4390  if (Ext.getOpcode() == ISD::AssertZext || Ext.getOpcode() == ISD::AssertSext){
4391    const SDValue &CFR = Ext.getOperand(0);
4392    if (CFR.getOpcode() == ISD::CopyFromReg)
4393      return cast<RegisterSDNode>(CFR.getOperand(1))->getReg();
4394    if (CFR.getOpcode() == ISD::TRUNCATE)
4395      return getTruncatedArgReg(CFR);
4396  }
4397  return 0;
4398}
4399
4400/// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function
4401/// argument, create the corresponding DBG_VALUE machine instruction for it now.
4402/// At the end of instruction selection, they will be inserted to the entry BB.
4403bool
4404SelectionDAGBuilder::EmitFuncArgumentDbgValue(const Value *V, MDNode *Variable,
4405                                              int64_t Offset,
4406                                              const SDValue &N) {
4407  const Argument *Arg = dyn_cast<Argument>(V);
4408  if (!Arg)
4409    return false;
4410
4411  MachineFunction &MF = DAG.getMachineFunction();
4412  const TargetInstrInfo *TII = DAG.getTarget().getInstrInfo();
4413  const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
4414
4415  // Ignore inlined function arguments here.
4416  DIVariable DV(Variable);
4417  if (DV.isInlinedFnArgument(MF.getFunction()))
4418    return false;
4419
4420  unsigned Reg = 0;
4421  // Some arguments' frame index is recorded during argument lowering.
4422  Offset = FuncInfo.getArgumentFrameIndex(Arg);
4423  if (Offset)
4424    Reg = TRI->getFrameRegister(MF);
4425
4426  if (!Reg && N.getNode()) {
4427    if (N.getOpcode() == ISD::CopyFromReg)
4428      Reg = cast<RegisterSDNode>(N.getOperand(1))->getReg();
4429    else
4430      Reg = getTruncatedArgReg(N);
4431    if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) {
4432      MachineRegisterInfo &RegInfo = MF.getRegInfo();
4433      unsigned PR = RegInfo.getLiveInPhysReg(Reg);
4434      if (PR)
4435        Reg = PR;
4436    }
4437  }
4438
4439  if (!Reg) {
4440    // Check if ValueMap has reg number.
4441    DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
4442    if (VMI != FuncInfo.ValueMap.end())
4443      Reg = VMI->second;
4444  }
4445
4446  if (!Reg && N.getNode()) {
4447    // Check if frame index is available.
4448    if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode()))
4449      if (FrameIndexSDNode *FINode =
4450          dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) {
4451        Reg = TRI->getFrameRegister(MF);
4452        Offset = FINode->getIndex();
4453      }
4454  }
4455
4456  if (!Reg)
4457    return false;
4458
4459  MachineInstrBuilder MIB = BuildMI(MF, getCurDebugLoc(),
4460                                    TII->get(TargetOpcode::DBG_VALUE))
4461    .addReg(Reg, RegState::Debug).addImm(Offset).addMetadata(Variable);
4462  FuncInfo.ArgDbgValues.push_back(&*MIB);
4463  return true;
4464}
4465
4466// VisualStudio defines setjmp as _setjmp
4467#if defined(_MSC_VER) && defined(setjmp) && \
4468                         !defined(setjmp_undefined_for_msvc)
4469#  pragma push_macro("setjmp")
4470#  undef setjmp
4471#  define setjmp_undefined_for_msvc
4472#endif
4473
4474/// visitIntrinsicCall - Lower the call to the specified intrinsic function.  If
4475/// we want to emit this as a call to a named external function, return the name
4476/// otherwise lower it and return null.
4477const char *
4478SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) {
4479  DebugLoc dl = getCurDebugLoc();
4480  SDValue Res;
4481
4482  switch (Intrinsic) {
4483  default:
4484    // By default, turn this into a target intrinsic node.
4485    visitTargetIntrinsic(I, Intrinsic);
4486    return 0;
4487  case Intrinsic::vastart:  visitVAStart(I); return 0;
4488  case Intrinsic::vaend:    visitVAEnd(I); return 0;
4489  case Intrinsic::vacopy:   visitVACopy(I); return 0;
4490  case Intrinsic::returnaddress:
4491    setValue(&I, DAG.getNode(ISD::RETURNADDR, dl, TLI.getPointerTy(),
4492                             getValue(I.getArgOperand(0))));
4493    return 0;
4494  case Intrinsic::frameaddress:
4495    setValue(&I, DAG.getNode(ISD::FRAMEADDR, dl, TLI.getPointerTy(),
4496                             getValue(I.getArgOperand(0))));
4497    return 0;
4498  case Intrinsic::setjmp:
4499    return &"_setjmp"[!TLI.usesUnderscoreSetJmp()];
4500  case Intrinsic::longjmp:
4501    return &"_longjmp"[!TLI.usesUnderscoreLongJmp()];
4502  case Intrinsic::memcpy: {
4503    // Assert for address < 256 since we support only user defined address
4504    // spaces.
4505    assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4506           < 256 &&
4507           cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace()
4508           < 256 &&
4509           "Unknown address space");
4510    SDValue Op1 = getValue(I.getArgOperand(0));
4511    SDValue Op2 = getValue(I.getArgOperand(1));
4512    SDValue Op3 = getValue(I.getArgOperand(2));
4513    unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4514    bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4515    DAG.setRoot(DAG.getMemcpy(getRoot(), dl, Op1, Op2, Op3, Align, isVol, false,
4516                              MachinePointerInfo(I.getArgOperand(0)),
4517                              MachinePointerInfo(I.getArgOperand(1))));
4518    return 0;
4519  }
4520  case Intrinsic::memset: {
4521    // Assert for address < 256 since we support only user defined address
4522    // spaces.
4523    assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4524           < 256 &&
4525           "Unknown address space");
4526    SDValue Op1 = getValue(I.getArgOperand(0));
4527    SDValue Op2 = getValue(I.getArgOperand(1));
4528    SDValue Op3 = getValue(I.getArgOperand(2));
4529    unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4530    bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4531    DAG.setRoot(DAG.getMemset(getRoot(), dl, Op1, Op2, Op3, Align, isVol,
4532                              MachinePointerInfo(I.getArgOperand(0))));
4533    return 0;
4534  }
4535  case Intrinsic::memmove: {
4536    // Assert for address < 256 since we support only user defined address
4537    // spaces.
4538    assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4539           < 256 &&
4540           cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace()
4541           < 256 &&
4542           "Unknown address space");
4543    SDValue Op1 = getValue(I.getArgOperand(0));
4544    SDValue Op2 = getValue(I.getArgOperand(1));
4545    SDValue Op3 = getValue(I.getArgOperand(2));
4546    unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4547    bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4548    DAG.setRoot(DAG.getMemmove(getRoot(), dl, Op1, Op2, Op3, Align, isVol,
4549                               MachinePointerInfo(I.getArgOperand(0)),
4550                               MachinePointerInfo(I.getArgOperand(1))));
4551    return 0;
4552  }
4553  case Intrinsic::dbg_declare: {
4554    const DbgDeclareInst &DI = cast<DbgDeclareInst>(I);
4555    MDNode *Variable = DI.getVariable();
4556    const Value *Address = DI.getAddress();
4557    if (!Address || !DIVariable(Variable).Verify()) {
4558      DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4559      return 0;
4560    }
4561
4562    // Build an entry in DbgOrdering.  Debug info input nodes get an SDNodeOrder
4563    // but do not always have a corresponding SDNode built.  The SDNodeOrder
4564    // absolute, but not relative, values are different depending on whether
4565    // debug info exists.
4566    ++SDNodeOrder;
4567
4568    // Check if address has undef value.
4569    if (isa<UndefValue>(Address) ||
4570        (Address->use_empty() && !isa<Argument>(Address))) {
4571      DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4572      return 0;
4573    }
4574
4575    SDValue &N = NodeMap[Address];
4576    if (!N.getNode() && isa<Argument>(Address))
4577      // Check unused arguments map.
4578      N = UnusedArgNodeMap[Address];
4579    SDDbgValue *SDV;
4580    if (N.getNode()) {
4581      if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
4582        Address = BCI->getOperand(0);
4583      // Parameters are handled specially.
4584      bool isParameter =
4585        (DIVariable(Variable).getTag() == dwarf::DW_TAG_arg_variable ||
4586         isa<Argument>(Address));
4587
4588      const AllocaInst *AI = dyn_cast<AllocaInst>(Address);
4589
4590      if (isParameter && !AI) {
4591        FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
4592        if (FINode)
4593          // Byval parameter.  We have a frame index at this point.
4594          SDV = DAG.getDbgValue(Variable, FINode->getIndex(),
4595                                0, dl, SDNodeOrder);
4596        else {
4597          // Address is an argument, so try to emit its dbg value using
4598          // virtual register info from the FuncInfo.ValueMap.
4599          EmitFuncArgumentDbgValue(Address, Variable, 0, N);
4600          return 0;
4601        }
4602      } else if (AI)
4603        SDV = DAG.getDbgValue(Variable, N.getNode(), N.getResNo(),
4604                              0, dl, SDNodeOrder);
4605      else {
4606        // Can't do anything with other non-AI cases yet.
4607        DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4608        DEBUG(dbgs() << "non-AllocaInst issue for Address: \n\t");
4609        DEBUG(Address->dump());
4610        return 0;
4611      }
4612      DAG.AddDbgValue(SDV, N.getNode(), isParameter);
4613    } else {
4614      // If Address is an argument then try to emit its dbg value using
4615      // virtual register info from the FuncInfo.ValueMap.
4616      if (!EmitFuncArgumentDbgValue(Address, Variable, 0, N)) {
4617        // If variable is pinned by a alloca in dominating bb then
4618        // use StaticAllocaMap.
4619        if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) {
4620          if (AI->getParent() != DI.getParent()) {
4621            DenseMap<const AllocaInst*, int>::iterator SI =
4622              FuncInfo.StaticAllocaMap.find(AI);
4623            if (SI != FuncInfo.StaticAllocaMap.end()) {
4624              SDV = DAG.getDbgValue(Variable, SI->second,
4625                                    0, dl, SDNodeOrder);
4626              DAG.AddDbgValue(SDV, 0, false);
4627              return 0;
4628            }
4629          }
4630        }
4631        DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4632      }
4633    }
4634    return 0;
4635  }
4636  case Intrinsic::dbg_value: {
4637    const DbgValueInst &DI = cast<DbgValueInst>(I);
4638    if (!DIVariable(DI.getVariable()).Verify())
4639      return 0;
4640
4641    MDNode *Variable = DI.getVariable();
4642    uint64_t Offset = DI.getOffset();
4643    const Value *V = DI.getValue();
4644    if (!V)
4645      return 0;
4646
4647    // Build an entry in DbgOrdering.  Debug info input nodes get an SDNodeOrder
4648    // but do not always have a corresponding SDNode built.  The SDNodeOrder
4649    // absolute, but not relative, values are different depending on whether
4650    // debug info exists.
4651    ++SDNodeOrder;
4652    SDDbgValue *SDV;
4653    if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) {
4654      SDV = DAG.getDbgValue(Variable, V, Offset, dl, SDNodeOrder);
4655      DAG.AddDbgValue(SDV, 0, false);
4656    } else {
4657      // Do not use getValue() in here; we don't want to generate code at
4658      // this point if it hasn't been done yet.
4659      SDValue N = NodeMap[V];
4660      if (!N.getNode() && isa<Argument>(V))
4661        // Check unused arguments map.
4662        N = UnusedArgNodeMap[V];
4663      if (N.getNode()) {
4664        if (!EmitFuncArgumentDbgValue(V, Variable, Offset, N)) {
4665          SDV = DAG.getDbgValue(Variable, N.getNode(),
4666                                N.getResNo(), Offset, dl, SDNodeOrder);
4667          DAG.AddDbgValue(SDV, N.getNode(), false);
4668        }
4669      } else if (!V->use_empty() ) {
4670        // Do not call getValue(V) yet, as we don't want to generate code.
4671        // Remember it for later.
4672        DanglingDebugInfo DDI(&DI, dl, SDNodeOrder);
4673        DanglingDebugInfoMap[V] = DDI;
4674      } else {
4675        // We may expand this to cover more cases.  One case where we have no
4676        // data available is an unreferenced parameter.
4677        DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4678      }
4679    }
4680
4681    // Build a debug info table entry.
4682    if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V))
4683      V = BCI->getOperand(0);
4684    const AllocaInst *AI = dyn_cast<AllocaInst>(V);
4685    // Don't handle byval struct arguments or VLAs, for example.
4686    if (!AI) {
4687      DEBUG(dbgs() << "Dropping debug location info for:\n  " << DI << "\n");
4688      DEBUG(dbgs() << "  Last seen at:\n    " << *V << "\n");
4689      return 0;
4690    }
4691    DenseMap<const AllocaInst*, int>::iterator SI =
4692      FuncInfo.StaticAllocaMap.find(AI);
4693    if (SI == FuncInfo.StaticAllocaMap.end())
4694      return 0; // VLAs.
4695    int FI = SI->second;
4696
4697    MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4698    if (!DI.getDebugLoc().isUnknown() && MMI.hasDebugInfo())
4699      MMI.setVariableDbgInfo(Variable, FI, DI.getDebugLoc());
4700    return 0;
4701  }
4702
4703  case Intrinsic::eh_typeid_for: {
4704    // Find the type id for the given typeinfo.
4705    GlobalVariable *GV = ExtractTypeInfo(I.getArgOperand(0));
4706    unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV);
4707    Res = DAG.getConstant(TypeID, MVT::i32);
4708    setValue(&I, Res);
4709    return 0;
4710  }
4711
4712  case Intrinsic::eh_return_i32:
4713  case Intrinsic::eh_return_i64:
4714    DAG.getMachineFunction().getMMI().setCallsEHReturn(true);
4715    DAG.setRoot(DAG.getNode(ISD::EH_RETURN, dl,
4716                            MVT::Other,
4717                            getControlRoot(),
4718                            getValue(I.getArgOperand(0)),
4719                            getValue(I.getArgOperand(1))));
4720    return 0;
4721  case Intrinsic::eh_unwind_init:
4722    DAG.getMachineFunction().getMMI().setCallsUnwindInit(true);
4723    return 0;
4724  case Intrinsic::eh_dwarf_cfa: {
4725    SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), dl,
4726                                        TLI.getPointerTy());
4727    SDValue Offset = DAG.getNode(ISD::ADD, dl,
4728                                 TLI.getPointerTy(),
4729                                 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, dl,
4730                                             TLI.getPointerTy()),
4731                                 CfaArg);
4732    SDValue FA = DAG.getNode(ISD::FRAMEADDR, dl,
4733                             TLI.getPointerTy(),
4734                             DAG.getConstant(0, TLI.getPointerTy()));
4735    setValue(&I, DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(),
4736                             FA, Offset));
4737    return 0;
4738  }
4739  case Intrinsic::eh_sjlj_callsite: {
4740    MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4741    ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0));
4742    assert(CI && "Non-constant call site value in eh.sjlj.callsite!");
4743    assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
4744
4745    MMI.setCurrentCallSite(CI->getZExtValue());
4746    return 0;
4747  }
4748  case Intrinsic::eh_sjlj_functioncontext: {
4749    // Get and store the index of the function context.
4750    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
4751    AllocaInst *FnCtx =
4752      cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts());
4753    int FI = FuncInfo.StaticAllocaMap[FnCtx];
4754    MFI->setFunctionContextIndex(FI);
4755    return 0;
4756  }
4757  case Intrinsic::eh_sjlj_setjmp: {
4758    SDValue Ops[2];
4759    Ops[0] = getRoot();
4760    Ops[1] = getValue(I.getArgOperand(0));
4761    SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, dl,
4762                             DAG.getVTList(MVT::i32, MVT::Other),
4763                             Ops, 2);
4764    setValue(&I, Op.getValue(0));
4765    DAG.setRoot(Op.getValue(1));
4766    return 0;
4767  }
4768  case Intrinsic::eh_sjlj_longjmp: {
4769    DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, dl, MVT::Other,
4770                            getRoot(), getValue(I.getArgOperand(0))));
4771    return 0;
4772  }
4773
4774  case Intrinsic::x86_mmx_pslli_w:
4775  case Intrinsic::x86_mmx_pslli_d:
4776  case Intrinsic::x86_mmx_pslli_q:
4777  case Intrinsic::x86_mmx_psrli_w:
4778  case Intrinsic::x86_mmx_psrli_d:
4779  case Intrinsic::x86_mmx_psrli_q:
4780  case Intrinsic::x86_mmx_psrai_w:
4781  case Intrinsic::x86_mmx_psrai_d: {
4782    SDValue ShAmt = getValue(I.getArgOperand(1));
4783    if (isa<ConstantSDNode>(ShAmt)) {
4784      visitTargetIntrinsic(I, Intrinsic);
4785      return 0;
4786    }
4787    unsigned NewIntrinsic = 0;
4788    EVT ShAmtVT = MVT::v2i32;
4789    switch (Intrinsic) {
4790    case Intrinsic::x86_mmx_pslli_w:
4791      NewIntrinsic = Intrinsic::x86_mmx_psll_w;
4792      break;
4793    case Intrinsic::x86_mmx_pslli_d:
4794      NewIntrinsic = Intrinsic::x86_mmx_psll_d;
4795      break;
4796    case Intrinsic::x86_mmx_pslli_q:
4797      NewIntrinsic = Intrinsic::x86_mmx_psll_q;
4798      break;
4799    case Intrinsic::x86_mmx_psrli_w:
4800      NewIntrinsic = Intrinsic::x86_mmx_psrl_w;
4801      break;
4802    case Intrinsic::x86_mmx_psrli_d:
4803      NewIntrinsic = Intrinsic::x86_mmx_psrl_d;
4804      break;
4805    case Intrinsic::x86_mmx_psrli_q:
4806      NewIntrinsic = Intrinsic::x86_mmx_psrl_q;
4807      break;
4808    case Intrinsic::x86_mmx_psrai_w:
4809      NewIntrinsic = Intrinsic::x86_mmx_psra_w;
4810      break;
4811    case Intrinsic::x86_mmx_psrai_d:
4812      NewIntrinsic = Intrinsic::x86_mmx_psra_d;
4813      break;
4814    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
4815    }
4816
4817    // The vector shift intrinsics with scalars uses 32b shift amounts but
4818    // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
4819    // to be zero.
4820    // We must do this early because v2i32 is not a legal type.
4821    DebugLoc dl = getCurDebugLoc();
4822    SDValue ShOps[2];
4823    ShOps[0] = ShAmt;
4824    ShOps[1] = DAG.getConstant(0, MVT::i32);
4825    ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 2);
4826    EVT DestVT = TLI.getValueType(I.getType());
4827    ShAmt = DAG.getNode(ISD::BITCAST, dl, DestVT, ShAmt);
4828    Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
4829                       DAG.getConstant(NewIntrinsic, MVT::i32),
4830                       getValue(I.getArgOperand(0)), ShAmt);
4831    setValue(&I, Res);
4832    return 0;
4833  }
4834  case Intrinsic::x86_avx_vinsertf128_pd_256:
4835  case Intrinsic::x86_avx_vinsertf128_ps_256:
4836  case Intrinsic::x86_avx_vinsertf128_si_256:
4837  case Intrinsic::x86_avx2_vinserti128: {
4838    DebugLoc dl = getCurDebugLoc();
4839    EVT DestVT = TLI.getValueType(I.getType());
4840    EVT ElVT = TLI.getValueType(I.getArgOperand(1)->getType());
4841    uint64_t Idx = (cast<ConstantInt>(I.getArgOperand(2))->getZExtValue() & 1) *
4842                   ElVT.getVectorNumElements();
4843    Res = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, DestVT,
4844                      getValue(I.getArgOperand(0)),
4845                      getValue(I.getArgOperand(1)),
4846                      DAG.getConstant(Idx, MVT::i32));
4847    setValue(&I, Res);
4848    return 0;
4849  }
4850  case Intrinsic::convertff:
4851  case Intrinsic::convertfsi:
4852  case Intrinsic::convertfui:
4853  case Intrinsic::convertsif:
4854  case Intrinsic::convertuif:
4855  case Intrinsic::convertss:
4856  case Intrinsic::convertsu:
4857  case Intrinsic::convertus:
4858  case Intrinsic::convertuu: {
4859    ISD::CvtCode Code = ISD::CVT_INVALID;
4860    switch (Intrinsic) {
4861    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
4862    case Intrinsic::convertff:  Code = ISD::CVT_FF; break;
4863    case Intrinsic::convertfsi: Code = ISD::CVT_FS; break;
4864    case Intrinsic::convertfui: Code = ISD::CVT_FU; break;
4865    case Intrinsic::convertsif: Code = ISD::CVT_SF; break;
4866    case Intrinsic::convertuif: Code = ISD::CVT_UF; break;
4867    case Intrinsic::convertss:  Code = ISD::CVT_SS; break;
4868    case Intrinsic::convertsu:  Code = ISD::CVT_SU; break;
4869    case Intrinsic::convertus:  Code = ISD::CVT_US; break;
4870    case Intrinsic::convertuu:  Code = ISD::CVT_UU; break;
4871    }
4872    EVT DestVT = TLI.getValueType(I.getType());
4873    const Value *Op1 = I.getArgOperand(0);
4874    Res = DAG.getConvertRndSat(DestVT, getCurDebugLoc(), getValue(Op1),
4875                               DAG.getValueType(DestVT),
4876                               DAG.getValueType(getValue(Op1).getValueType()),
4877                               getValue(I.getArgOperand(1)),
4878                               getValue(I.getArgOperand(2)),
4879                               Code);
4880    setValue(&I, Res);
4881    return 0;
4882  }
4883  case Intrinsic::sqrt:
4884    setValue(&I, DAG.getNode(ISD::FSQRT, dl,
4885                             getValue(I.getArgOperand(0)).getValueType(),
4886                             getValue(I.getArgOperand(0))));
4887    return 0;
4888  case Intrinsic::powi:
4889    setValue(&I, ExpandPowI(dl, getValue(I.getArgOperand(0)),
4890                            getValue(I.getArgOperand(1)), DAG));
4891    return 0;
4892  case Intrinsic::sin:
4893    setValue(&I, DAG.getNode(ISD::FSIN, dl,
4894                             getValue(I.getArgOperand(0)).getValueType(),
4895                             getValue(I.getArgOperand(0))));
4896    return 0;
4897  case Intrinsic::cos:
4898    setValue(&I, DAG.getNode(ISD::FCOS, dl,
4899                             getValue(I.getArgOperand(0)).getValueType(),
4900                             getValue(I.getArgOperand(0))));
4901    return 0;
4902  case Intrinsic::log:
4903    visitLog(I);
4904    return 0;
4905  case Intrinsic::log2:
4906    visitLog2(I);
4907    return 0;
4908  case Intrinsic::log10:
4909    visitLog10(I);
4910    return 0;
4911  case Intrinsic::exp:
4912    visitExp(I);
4913    return 0;
4914  case Intrinsic::exp2:
4915    visitExp2(I);
4916    return 0;
4917  case Intrinsic::pow:
4918    visitPow(I);
4919    return 0;
4920  case Intrinsic::fma:
4921    setValue(&I, DAG.getNode(ISD::FMA, dl,
4922                             getValue(I.getArgOperand(0)).getValueType(),
4923                             getValue(I.getArgOperand(0)),
4924                             getValue(I.getArgOperand(1)),
4925                             getValue(I.getArgOperand(2))));
4926    return 0;
4927  case Intrinsic::convert_to_fp16:
4928    setValue(&I, DAG.getNode(ISD::FP32_TO_FP16, dl,
4929                             MVT::i16, getValue(I.getArgOperand(0))));
4930    return 0;
4931  case Intrinsic::convert_from_fp16:
4932    setValue(&I, DAG.getNode(ISD::FP16_TO_FP32, dl,
4933                             MVT::f32, getValue(I.getArgOperand(0))));
4934    return 0;
4935  case Intrinsic::pcmarker: {
4936    SDValue Tmp = getValue(I.getArgOperand(0));
4937    DAG.setRoot(DAG.getNode(ISD::PCMARKER, dl, MVT::Other, getRoot(), Tmp));
4938    return 0;
4939  }
4940  case Intrinsic::readcyclecounter: {
4941    SDValue Op = getRoot();
4942    Res = DAG.getNode(ISD::READCYCLECOUNTER, dl,
4943                      DAG.getVTList(MVT::i64, MVT::Other),
4944                      &Op, 1);
4945    setValue(&I, Res);
4946    DAG.setRoot(Res.getValue(1));
4947    return 0;
4948  }
4949  case Intrinsic::bswap:
4950    setValue(&I, DAG.getNode(ISD::BSWAP, dl,
4951                             getValue(I.getArgOperand(0)).getValueType(),
4952                             getValue(I.getArgOperand(0))));
4953    return 0;
4954  case Intrinsic::cttz: {
4955    SDValue Arg = getValue(I.getArgOperand(0));
4956    ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
4957    EVT Ty = Arg.getValueType();
4958    setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF,
4959                             dl, Ty, Arg));
4960    return 0;
4961  }
4962  case Intrinsic::ctlz: {
4963    SDValue Arg = getValue(I.getArgOperand(0));
4964    ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
4965    EVT Ty = Arg.getValueType();
4966    setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF,
4967                             dl, Ty, Arg));
4968    return 0;
4969  }
4970  case Intrinsic::ctpop: {
4971    SDValue Arg = getValue(I.getArgOperand(0));
4972    EVT Ty = Arg.getValueType();
4973    setValue(&I, DAG.getNode(ISD::CTPOP, dl, Ty, Arg));
4974    return 0;
4975  }
4976  case Intrinsic::stacksave: {
4977    SDValue Op = getRoot();
4978    Res = DAG.getNode(ISD::STACKSAVE, dl,
4979                      DAG.getVTList(TLI.getPointerTy(), MVT::Other), &Op, 1);
4980    setValue(&I, Res);
4981    DAG.setRoot(Res.getValue(1));
4982    return 0;
4983  }
4984  case Intrinsic::stackrestore: {
4985    Res = getValue(I.getArgOperand(0));
4986    DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, dl, MVT::Other, getRoot(), Res));
4987    return 0;
4988  }
4989  case Intrinsic::stackprotector: {
4990    // Emit code into the DAG to store the stack guard onto the stack.
4991    MachineFunction &MF = DAG.getMachineFunction();
4992    MachineFrameInfo *MFI = MF.getFrameInfo();
4993    EVT PtrTy = TLI.getPointerTy();
4994
4995    SDValue Src = getValue(I.getArgOperand(0));   // The guard's value.
4996    AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
4997
4998    int FI = FuncInfo.StaticAllocaMap[Slot];
4999    MFI->setStackProtectorIndex(FI);
5000
5001    SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
5002
5003    // Store the stack protector onto the stack.
5004    Res = DAG.getStore(getRoot(), getCurDebugLoc(), Src, FIN,
5005                       MachinePointerInfo::getFixedStack(FI),
5006                       true, false, 0);
5007    setValue(&I, Res);
5008    DAG.setRoot(Res);
5009    return 0;
5010  }
5011  case Intrinsic::objectsize: {
5012    // If we don't know by now, we're never going to know.
5013    ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1));
5014
5015    assert(CI && "Non-constant type in __builtin_object_size?");
5016
5017    SDValue Arg = getValue(I.getCalledValue());
5018    EVT Ty = Arg.getValueType();
5019
5020    if (CI->isZero())
5021      Res = DAG.getConstant(-1ULL, Ty);
5022    else
5023      Res = DAG.getConstant(0, Ty);
5024
5025    setValue(&I, Res);
5026    return 0;
5027  }
5028  case Intrinsic::var_annotation:
5029    // Discard annotate attributes
5030    return 0;
5031
5032  case Intrinsic::init_trampoline: {
5033    const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
5034
5035    SDValue Ops[6];
5036    Ops[0] = getRoot();
5037    Ops[1] = getValue(I.getArgOperand(0));
5038    Ops[2] = getValue(I.getArgOperand(1));
5039    Ops[3] = getValue(I.getArgOperand(2));
5040    Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
5041    Ops[5] = DAG.getSrcValue(F);
5042
5043    Res = DAG.getNode(ISD::INIT_TRAMPOLINE, dl, MVT::Other, Ops, 6);
5044
5045    DAG.setRoot(Res);
5046    return 0;
5047  }
5048  case Intrinsic::adjust_trampoline: {
5049    setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, dl,
5050                             TLI.getPointerTy(),
5051                             getValue(I.getArgOperand(0))));
5052    return 0;
5053  }
5054  case Intrinsic::gcroot:
5055    if (GFI) {
5056      const Value *Alloca = I.getArgOperand(0)->stripPointerCasts();
5057      const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
5058
5059      FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
5060      GFI->addStackRoot(FI->getIndex(), TypeMap);
5061    }
5062    return 0;
5063  case Intrinsic::gcread:
5064  case Intrinsic::gcwrite:
5065    llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
5066  case Intrinsic::flt_rounds:
5067    setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, dl, MVT::i32));
5068    return 0;
5069
5070  case Intrinsic::expect: {
5071    // Just replace __builtin_expect(exp, c) with EXP.
5072    setValue(&I, getValue(I.getArgOperand(0)));
5073    return 0;
5074  }
5075
5076  case Intrinsic::trap: {
5077    StringRef TrapFuncName = TM.Options.getTrapFunctionName();
5078    if (TrapFuncName.empty()) {
5079      DAG.setRoot(DAG.getNode(ISD::TRAP, dl,MVT::Other, getRoot()));
5080      return 0;
5081    }
5082    TargetLowering::ArgListTy Args;
5083    TargetLowering::
5084    CallLoweringInfo CLI(getRoot(), I.getType(),
5085                 false, false, false, false, 0, CallingConv::C,
5086                 /*isTailCall=*/false,
5087                 /*doesNotRet=*/false, /*isReturnValueUsed=*/true,
5088                 DAG.getExternalSymbol(TrapFuncName.data(), TLI.getPointerTy()),
5089                 Args, DAG, getCurDebugLoc());
5090    std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
5091    DAG.setRoot(Result.second);
5092    return 0;
5093  }
5094  case Intrinsic::debugtrap: {
5095    DAG.setRoot(DAG.getNode(ISD::DEBUGTRAP, dl,MVT::Other, getRoot()));
5096    return 0;
5097  }
5098  case Intrinsic::uadd_with_overflow:
5099  case Intrinsic::sadd_with_overflow:
5100  case Intrinsic::usub_with_overflow:
5101  case Intrinsic::ssub_with_overflow:
5102  case Intrinsic::umul_with_overflow:
5103  case Intrinsic::smul_with_overflow: {
5104    ISD::NodeType Op;
5105    switch (Intrinsic) {
5106    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
5107    case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break;
5108    case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break;
5109    case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break;
5110    case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break;
5111    case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break;
5112    case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break;
5113    }
5114    SDValue Op1 = getValue(I.getArgOperand(0));
5115    SDValue Op2 = getValue(I.getArgOperand(1));
5116
5117    SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1);
5118    setValue(&I, DAG.getNode(Op, getCurDebugLoc(), VTs, Op1, Op2));
5119    return 0;
5120  }
5121  case Intrinsic::prefetch: {
5122    SDValue Ops[5];
5123    unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
5124    Ops[0] = getRoot();
5125    Ops[1] = getValue(I.getArgOperand(0));
5126    Ops[2] = getValue(I.getArgOperand(1));
5127    Ops[3] = getValue(I.getArgOperand(2));
5128    Ops[4] = getValue(I.getArgOperand(3));
5129    DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, dl,
5130                                        DAG.getVTList(MVT::Other),
5131                                        &Ops[0], 5,
5132                                        EVT::getIntegerVT(*Context, 8),
5133                                        MachinePointerInfo(I.getArgOperand(0)),
5134                                        0, /* align */
5135                                        false, /* volatile */
5136                                        rw==0, /* read */
5137                                        rw==1)); /* write */
5138    return 0;
5139  }
5140
5141  case Intrinsic::invariant_start:
5142  case Intrinsic::lifetime_start:
5143    // Discard region information.
5144    setValue(&I, DAG.getUNDEF(TLI.getPointerTy()));
5145    return 0;
5146  case Intrinsic::invariant_end:
5147  case Intrinsic::lifetime_end:
5148    // Discard region information.
5149    return 0;
5150  }
5151}
5152
5153void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee,
5154                                      bool isTailCall,
5155                                      MachineBasicBlock *LandingPad) {
5156  PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
5157  FunctionType *FTy = cast<FunctionType>(PT->getElementType());
5158  Type *RetTy = FTy->getReturnType();
5159  MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
5160  MCSymbol *BeginLabel = 0;
5161
5162  TargetLowering::ArgListTy Args;
5163  TargetLowering::ArgListEntry Entry;
5164  Args.reserve(CS.arg_size());
5165
5166  // Check whether the function can return without sret-demotion.
5167  SmallVector<ISD::OutputArg, 4> Outs;
5168  GetReturnInfo(RetTy, CS.getAttributes().getRetAttributes(),
5169                Outs, TLI);
5170
5171  bool CanLowerReturn = TLI.CanLowerReturn(CS.getCallingConv(),
5172					   DAG.getMachineFunction(),
5173					   FTy->isVarArg(), Outs,
5174					   FTy->getContext());
5175
5176  SDValue DemoteStackSlot;
5177  int DemoteStackIdx = -100;
5178
5179  if (!CanLowerReturn) {
5180    uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(
5181                      FTy->getReturnType());
5182    unsigned Align  = TLI.getTargetData()->getPrefTypeAlignment(
5183                      FTy->getReturnType());
5184    MachineFunction &MF = DAG.getMachineFunction();
5185    DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
5186    Type *StackSlotPtrType = PointerType::getUnqual(FTy->getReturnType());
5187
5188    DemoteStackSlot = DAG.getFrameIndex(DemoteStackIdx, TLI.getPointerTy());
5189    Entry.Node = DemoteStackSlot;
5190    Entry.Ty = StackSlotPtrType;
5191    Entry.isSExt = false;
5192    Entry.isZExt = false;
5193    Entry.isInReg = false;
5194    Entry.isSRet = true;
5195    Entry.isNest = false;
5196    Entry.isByVal = false;
5197    Entry.Alignment = Align;
5198    Args.push_back(Entry);
5199    RetTy = Type::getVoidTy(FTy->getContext());
5200  }
5201
5202  for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
5203       i != e; ++i) {
5204    const Value *V = *i;
5205
5206    // Skip empty types
5207    if (V->getType()->isEmptyTy())
5208      continue;
5209
5210    SDValue ArgNode = getValue(V);
5211    Entry.Node = ArgNode; Entry.Ty = V->getType();
5212
5213    unsigned attrInd = i - CS.arg_begin() + 1;
5214    Entry.isSExt  = CS.paramHasAttr(attrInd, Attribute::SExt);
5215    Entry.isZExt  = CS.paramHasAttr(attrInd, Attribute::ZExt);
5216    Entry.isInReg = CS.paramHasAttr(attrInd, Attribute::InReg);
5217    Entry.isSRet  = CS.paramHasAttr(attrInd, Attribute::StructRet);
5218    Entry.isNest  = CS.paramHasAttr(attrInd, Attribute::Nest);
5219    Entry.isByVal = CS.paramHasAttr(attrInd, Attribute::ByVal);
5220    Entry.Alignment = CS.getParamAlignment(attrInd);
5221    Args.push_back(Entry);
5222  }
5223
5224  if (LandingPad) {
5225    // Insert a label before the invoke call to mark the try range.  This can be
5226    // used to detect deletion of the invoke via the MachineModuleInfo.
5227    BeginLabel = MMI.getContext().CreateTempSymbol();
5228
5229    // For SjLj, keep track of which landing pads go with which invokes
5230    // so as to maintain the ordering of pads in the LSDA.
5231    unsigned CallSiteIndex = MMI.getCurrentCallSite();
5232    if (CallSiteIndex) {
5233      MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
5234      LPadToCallSiteMap[LandingPad].push_back(CallSiteIndex);
5235
5236      // Now that the call site is handled, stop tracking it.
5237      MMI.setCurrentCallSite(0);
5238    }
5239
5240    // Both PendingLoads and PendingExports must be flushed here;
5241    // this call might not return.
5242    (void)getRoot();
5243    DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getControlRoot(), BeginLabel));
5244  }
5245
5246  // Check if target-independent constraints permit a tail call here.
5247  // Target-dependent constraints are checked within TLI.LowerCallTo.
5248  if (isTailCall &&
5249      !isInTailCallPosition(CS, CS.getAttributes().getRetAttributes(), TLI))
5250    isTailCall = false;
5251
5252  // If there's a possibility that fast-isel has already selected some amount
5253  // of the current basic block, don't emit a tail call.
5254  if (isTailCall && TM.Options.EnableFastISel)
5255    isTailCall = false;
5256
5257  TargetLowering::
5258  CallLoweringInfo CLI(getRoot(), RetTy, FTy, isTailCall, Callee, Args, DAG,
5259                       getCurDebugLoc(), CS);
5260  std::pair<SDValue,SDValue> Result = TLI.LowerCallTo(CLI);
5261  assert((isTailCall || Result.second.getNode()) &&
5262         "Non-null chain expected with non-tail call!");
5263  assert((Result.second.getNode() || !Result.first.getNode()) &&
5264         "Null value expected with tail call!");
5265  if (Result.first.getNode()) {
5266    setValue(CS.getInstruction(), Result.first);
5267  } else if (!CanLowerReturn && Result.second.getNode()) {
5268    // The instruction result is the result of loading from the
5269    // hidden sret parameter.
5270    SmallVector<EVT, 1> PVTs;
5271    Type *PtrRetTy = PointerType::getUnqual(FTy->getReturnType());
5272
5273    ComputeValueVTs(TLI, PtrRetTy, PVTs);
5274    assert(PVTs.size() == 1 && "Pointers should fit in one register");
5275    EVT PtrVT = PVTs[0];
5276
5277    SmallVector<EVT, 4> RetTys;
5278    SmallVector<uint64_t, 4> Offsets;
5279    RetTy = FTy->getReturnType();
5280    ComputeValueVTs(TLI, RetTy, RetTys, &Offsets);
5281
5282    unsigned NumValues = RetTys.size();
5283    SmallVector<SDValue, 4> Values(NumValues);
5284    SmallVector<SDValue, 4> Chains(NumValues);
5285
5286    for (unsigned i = 0; i < NumValues; ++i) {
5287      SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT,
5288                                DemoteStackSlot,
5289                                DAG.getConstant(Offsets[i], PtrVT));
5290      SDValue L = DAG.getLoad(RetTys[i], getCurDebugLoc(), Result.second, Add,
5291                  MachinePointerInfo::getFixedStack(DemoteStackIdx, Offsets[i]),
5292                              false, false, false, 1);
5293      Values[i] = L;
5294      Chains[i] = L.getValue(1);
5295    }
5296
5297    SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
5298                                MVT::Other, &Chains[0], NumValues);
5299    PendingLoads.push_back(Chain);
5300
5301    setValue(CS.getInstruction(),
5302             DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
5303                         DAG.getVTList(&RetTys[0], RetTys.size()),
5304                         &Values[0], Values.size()));
5305  }
5306
5307  // Assign order to nodes here. If the call does not produce a result, it won't
5308  // be mapped to a SDNode and visit() will not assign it an order number.
5309  if (!Result.second.getNode()) {
5310    // As a special case, a null chain means that a tail call has been emitted and
5311    // the DAG root is already updated.
5312    HasTailCall = true;
5313    ++SDNodeOrder;
5314    AssignOrderingToNode(DAG.getRoot().getNode());
5315  } else {
5316    DAG.setRoot(Result.second);
5317    ++SDNodeOrder;
5318    AssignOrderingToNode(Result.second.getNode());
5319  }
5320
5321  if (LandingPad) {
5322    // Insert a label at the end of the invoke call to mark the try range.  This
5323    // can be used to detect deletion of the invoke via the MachineModuleInfo.
5324    MCSymbol *EndLabel = MMI.getContext().CreateTempSymbol();
5325    DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getRoot(), EndLabel));
5326
5327    // Inform MachineModuleInfo of range.
5328    MMI.addInvoke(LandingPad, BeginLabel, EndLabel);
5329  }
5330}
5331
5332/// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the
5333/// value is equal or not-equal to zero.
5334static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) {
5335  for (Value::const_use_iterator UI = V->use_begin(), E = V->use_end();
5336       UI != E; ++UI) {
5337    if (const ICmpInst *IC = dyn_cast<ICmpInst>(*UI))
5338      if (IC->isEquality())
5339        if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
5340          if (C->isNullValue())
5341            continue;
5342    // Unknown instruction.
5343    return false;
5344  }
5345  return true;
5346}
5347
5348static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
5349                             Type *LoadTy,
5350                             SelectionDAGBuilder &Builder) {
5351
5352  // Check to see if this load can be trivially constant folded, e.g. if the
5353  // input is from a string literal.
5354  if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
5355    // Cast pointer to the type we really want to load.
5356    LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
5357                                         PointerType::getUnqual(LoadTy));
5358
5359    if (const Constant *LoadCst =
5360          ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput),
5361                                       Builder.TD))
5362      return Builder.getValue(LoadCst);
5363  }
5364
5365  // Otherwise, we have to emit the load.  If the pointer is to unfoldable but
5366  // still constant memory, the input chain can be the entry node.
5367  SDValue Root;
5368  bool ConstantMemory = false;
5369
5370  // Do not serialize (non-volatile) loads of constant memory with anything.
5371  if (Builder.AA->pointsToConstantMemory(PtrVal)) {
5372    Root = Builder.DAG.getEntryNode();
5373    ConstantMemory = true;
5374  } else {
5375    // Do not serialize non-volatile loads against each other.
5376    Root = Builder.DAG.getRoot();
5377  }
5378
5379  SDValue Ptr = Builder.getValue(PtrVal);
5380  SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurDebugLoc(), Root,
5381                                        Ptr, MachinePointerInfo(PtrVal),
5382                                        false /*volatile*/,
5383                                        false /*nontemporal*/,
5384                                        false /*isinvariant*/, 1 /* align=1 */);
5385
5386  if (!ConstantMemory)
5387    Builder.PendingLoads.push_back(LoadVal.getValue(1));
5388  return LoadVal;
5389}
5390
5391
5392/// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form.
5393/// If so, return true and lower it, otherwise return false and it will be
5394/// lowered like a normal call.
5395bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) {
5396  // Verify that the prototype makes sense.  int memcmp(void*,void*,size_t)
5397  if (I.getNumArgOperands() != 3)
5398    return false;
5399
5400  const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
5401  if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() ||
5402      !I.getArgOperand(2)->getType()->isIntegerTy() ||
5403      !I.getType()->isIntegerTy())
5404    return false;
5405
5406  const ConstantInt *Size = dyn_cast<ConstantInt>(I.getArgOperand(2));
5407
5408  // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0
5409  // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0
5410  if (Size && IsOnlyUsedInZeroEqualityComparison(&I)) {
5411    bool ActuallyDoIt = true;
5412    MVT LoadVT;
5413    Type *LoadTy;
5414    switch (Size->getZExtValue()) {
5415    default:
5416      LoadVT = MVT::Other;
5417      LoadTy = 0;
5418      ActuallyDoIt = false;
5419      break;
5420    case 2:
5421      LoadVT = MVT::i16;
5422      LoadTy = Type::getInt16Ty(Size->getContext());
5423      break;
5424    case 4:
5425      LoadVT = MVT::i32;
5426      LoadTy = Type::getInt32Ty(Size->getContext());
5427      break;
5428    case 8:
5429      LoadVT = MVT::i64;
5430      LoadTy = Type::getInt64Ty(Size->getContext());
5431      break;
5432        /*
5433    case 16:
5434      LoadVT = MVT::v4i32;
5435      LoadTy = Type::getInt32Ty(Size->getContext());
5436      LoadTy = VectorType::get(LoadTy, 4);
5437      break;
5438         */
5439    }
5440
5441    // This turns into unaligned loads.  We only do this if the target natively
5442    // supports the MVT we'll be loading or if it is small enough (<= 4) that
5443    // we'll only produce a small number of byte loads.
5444
5445    // Require that we can find a legal MVT, and only do this if the target
5446    // supports unaligned loads of that type.  Expanding into byte loads would
5447    // bloat the code.
5448    if (ActuallyDoIt && Size->getZExtValue() > 4) {
5449      // TODO: Handle 5 byte compare as 4-byte + 1 byte.
5450      // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
5451      if (!TLI.isTypeLegal(LoadVT) ||!TLI.allowsUnalignedMemoryAccesses(LoadVT))
5452        ActuallyDoIt = false;
5453    }
5454
5455    if (ActuallyDoIt) {
5456      SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this);
5457      SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this);
5458
5459      SDValue Res = DAG.getSetCC(getCurDebugLoc(), MVT::i1, LHSVal, RHSVal,
5460                                 ISD::SETNE);
5461      EVT CallVT = TLI.getValueType(I.getType(), true);
5462      setValue(&I, DAG.getZExtOrTrunc(Res, getCurDebugLoc(), CallVT));
5463      return true;
5464    }
5465  }
5466
5467
5468  return false;
5469}
5470
5471
5472void SelectionDAGBuilder::visitCall(const CallInst &I) {
5473  // Handle inline assembly differently.
5474  if (isa<InlineAsm>(I.getCalledValue())) {
5475    visitInlineAsm(&I);
5476    return;
5477  }
5478
5479  MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
5480  ComputeUsesVAFloatArgument(I, &MMI);
5481
5482  const char *RenameFn = 0;
5483  if (Function *F = I.getCalledFunction()) {
5484    if (F->isDeclaration()) {
5485      if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) {
5486        if (unsigned IID = II->getIntrinsicID(F)) {
5487          RenameFn = visitIntrinsicCall(I, IID);
5488          if (!RenameFn)
5489            return;
5490        }
5491      }
5492      if (unsigned IID = F->getIntrinsicID()) {
5493        RenameFn = visitIntrinsicCall(I, IID);
5494        if (!RenameFn)
5495          return;
5496      }
5497    }
5498
5499    // Check for well-known libc/libm calls.  If the function is internal, it
5500    // can't be a library call.
5501    if (!F->hasLocalLinkage() && F->hasName()) {
5502      StringRef Name = F->getName();
5503      if ((LibInfo->has(LibFunc::copysign) && Name == "copysign") ||
5504          (LibInfo->has(LibFunc::copysignf) && Name == "copysignf") ||
5505          (LibInfo->has(LibFunc::copysignl) && Name == "copysignl")) {
5506        if (I.getNumArgOperands() == 2 &&   // Basic sanity checks.
5507            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5508            I.getType() == I.getArgOperand(0)->getType() &&
5509            I.getType() == I.getArgOperand(1)->getType()) {
5510          SDValue LHS = getValue(I.getArgOperand(0));
5511          SDValue RHS = getValue(I.getArgOperand(1));
5512          setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurDebugLoc(),
5513                                   LHS.getValueType(), LHS, RHS));
5514          return;
5515        }
5516      } else if ((LibInfo->has(LibFunc::fabs) && Name == "fabs") ||
5517                 (LibInfo->has(LibFunc::fabsf) && Name == "fabsf") ||
5518                 (LibInfo->has(LibFunc::fabsl) && Name == "fabsl")) {
5519        if (I.getNumArgOperands() == 1 &&   // Basic sanity checks.
5520            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5521            I.getType() == I.getArgOperand(0)->getType()) {
5522          SDValue Tmp = getValue(I.getArgOperand(0));
5523          setValue(&I, DAG.getNode(ISD::FABS, getCurDebugLoc(),
5524                                   Tmp.getValueType(), Tmp));
5525          return;
5526        }
5527      } else if ((LibInfo->has(LibFunc::sin) && Name == "sin") ||
5528                 (LibInfo->has(LibFunc::sinf) && Name == "sinf") ||
5529                 (LibInfo->has(LibFunc::sinl) && Name == "sinl")) {
5530        if (I.getNumArgOperands() == 1 &&   // Basic sanity checks.
5531            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5532            I.getType() == I.getArgOperand(0)->getType() &&
5533            I.onlyReadsMemory()) {
5534          SDValue Tmp = getValue(I.getArgOperand(0));
5535          setValue(&I, DAG.getNode(ISD::FSIN, getCurDebugLoc(),
5536                                   Tmp.getValueType(), Tmp));
5537          return;
5538        }
5539      } else if ((LibInfo->has(LibFunc::cos) && Name == "cos") ||
5540                 (LibInfo->has(LibFunc::cosf) && Name == "cosf") ||
5541                 (LibInfo->has(LibFunc::cosl) && Name == "cosl")) {
5542        if (I.getNumArgOperands() == 1 &&   // Basic sanity checks.
5543            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5544            I.getType() == I.getArgOperand(0)->getType() &&
5545            I.onlyReadsMemory()) {
5546          SDValue Tmp = getValue(I.getArgOperand(0));
5547          setValue(&I, DAG.getNode(ISD::FCOS, getCurDebugLoc(),
5548                                   Tmp.getValueType(), Tmp));
5549          return;
5550        }
5551      } else if ((LibInfo->has(LibFunc::sqrt) && Name == "sqrt") ||
5552                 (LibInfo->has(LibFunc::sqrtf) && Name == "sqrtf") ||
5553                 (LibInfo->has(LibFunc::sqrtl) && Name == "sqrtl")) {
5554        if (I.getNumArgOperands() == 1 &&   // Basic sanity checks.
5555            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5556            I.getType() == I.getArgOperand(0)->getType() &&
5557            I.onlyReadsMemory()) {
5558          SDValue Tmp = getValue(I.getArgOperand(0));
5559          setValue(&I, DAG.getNode(ISD::FSQRT, getCurDebugLoc(),
5560                                   Tmp.getValueType(), Tmp));
5561          return;
5562        }
5563      } else if ((LibInfo->has(LibFunc::floor) && Name == "floor") ||
5564                 (LibInfo->has(LibFunc::floorf) && Name == "floorf") ||
5565                 (LibInfo->has(LibFunc::floorl) && Name == "floorl")) {
5566        if (I.getNumArgOperands() == 1 && // Basic sanity checks.
5567            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5568            I.getType() == I.getArgOperand(0)->getType()) {
5569          SDValue Tmp = getValue(I.getArgOperand(0));
5570          setValue(&I, DAG.getNode(ISD::FFLOOR, getCurDebugLoc(),
5571                                   Tmp.getValueType(), Tmp));
5572          return;
5573        }
5574      } else if ((LibInfo->has(LibFunc::nearbyint) && Name == "nearbyint") ||
5575                 (LibInfo->has(LibFunc::nearbyintf) && Name == "nearbyintf") ||
5576                 (LibInfo->has(LibFunc::nearbyintl) && Name == "nearbyintl")) {
5577        if (I.getNumArgOperands() == 1 && // Basic sanity checks.
5578            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5579            I.getType() == I.getArgOperand(0)->getType()) {
5580          SDValue Tmp = getValue(I.getArgOperand(0));
5581          setValue(&I, DAG.getNode(ISD::FNEARBYINT, getCurDebugLoc(),
5582                                   Tmp.getValueType(), Tmp));
5583          return;
5584        }
5585      } else if ((LibInfo->has(LibFunc::ceil) && Name == "ceil") ||
5586                 (LibInfo->has(LibFunc::ceilf) && Name == "ceilf") ||
5587                 (LibInfo->has(LibFunc::ceill) && Name == "ceill")) {
5588        if (I.getNumArgOperands() == 1 && // Basic sanity checks.
5589            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5590            I.getType() == I.getArgOperand(0)->getType()) {
5591          SDValue Tmp = getValue(I.getArgOperand(0));
5592          setValue(&I, DAG.getNode(ISD::FCEIL, getCurDebugLoc(),
5593                                   Tmp.getValueType(), Tmp));
5594          return;
5595        }
5596      } else if ((LibInfo->has(LibFunc::rint) && Name == "rint") ||
5597                 (LibInfo->has(LibFunc::rintf) && Name == "rintf") ||
5598                 (LibInfo->has(LibFunc::rintl) && Name == "rintl")) {
5599        if (I.getNumArgOperands() == 1 && // Basic sanity checks.
5600            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5601            I.getType() == I.getArgOperand(0)->getType()) {
5602          SDValue Tmp = getValue(I.getArgOperand(0));
5603          setValue(&I, DAG.getNode(ISD::FRINT, getCurDebugLoc(),
5604                                   Tmp.getValueType(), Tmp));
5605          return;
5606        }
5607      } else if ((LibInfo->has(LibFunc::trunc) && Name == "trunc") ||
5608                 (LibInfo->has(LibFunc::truncf) && Name == "truncf") ||
5609                 (LibInfo->has(LibFunc::truncl) && Name == "truncl")) {
5610        if (I.getNumArgOperands() == 1 && // Basic sanity checks.
5611            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5612            I.getType() == I.getArgOperand(0)->getType()) {
5613          SDValue Tmp = getValue(I.getArgOperand(0));
5614          setValue(&I, DAG.getNode(ISD::FTRUNC, getCurDebugLoc(),
5615                                   Tmp.getValueType(), Tmp));
5616          return;
5617        }
5618      } else if ((LibInfo->has(LibFunc::log2) && Name == "log2") ||
5619                 (LibInfo->has(LibFunc::log2f) && Name == "log2f") ||
5620                 (LibInfo->has(LibFunc::log2l) && Name == "log2l")) {
5621        if (I.getNumArgOperands() == 1 && // Basic sanity checks.
5622            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5623            I.getType() == I.getArgOperand(0)->getType() &&
5624            I.onlyReadsMemory()) {
5625          SDValue Tmp = getValue(I.getArgOperand(0));
5626          setValue(&I, DAG.getNode(ISD::FLOG2, getCurDebugLoc(),
5627                                   Tmp.getValueType(), Tmp));
5628          return;
5629        }
5630      } else if ((LibInfo->has(LibFunc::exp2) && Name == "exp2") ||
5631                 (LibInfo->has(LibFunc::exp2f) && Name == "exp2f") ||
5632                 (LibInfo->has(LibFunc::exp2l) && Name == "exp2l")) {
5633        if (I.getNumArgOperands() == 1 && // Basic sanity checks.
5634            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5635            I.getType() == I.getArgOperand(0)->getType() &&
5636            I.onlyReadsMemory()) {
5637          SDValue Tmp = getValue(I.getArgOperand(0));
5638          setValue(&I, DAG.getNode(ISD::FEXP2, getCurDebugLoc(),
5639                                   Tmp.getValueType(), Tmp));
5640          return;
5641        }
5642      } else if (Name == "memcmp") {
5643        if (visitMemCmpCall(I))
5644          return;
5645      }
5646    }
5647  }
5648
5649  SDValue Callee;
5650  if (!RenameFn)
5651    Callee = getValue(I.getCalledValue());
5652  else
5653    Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy());
5654
5655  // Check if we can potentially perform a tail call. More detailed checking is
5656  // be done within LowerCallTo, after more information about the call is known.
5657  LowerCallTo(&I, Callee, I.isTailCall());
5658}
5659
5660namespace {
5661
5662/// AsmOperandInfo - This contains information for each constraint that we are
5663/// lowering.
5664class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
5665public:
5666  /// CallOperand - If this is the result output operand or a clobber
5667  /// this is null, otherwise it is the incoming operand to the CallInst.
5668  /// This gets modified as the asm is processed.
5669  SDValue CallOperand;
5670
5671  /// AssignedRegs - If this is a register or register class operand, this
5672  /// contains the set of register corresponding to the operand.
5673  RegsForValue AssignedRegs;
5674
5675  explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
5676    : TargetLowering::AsmOperandInfo(info), CallOperand(0,0) {
5677  }
5678
5679  /// getCallOperandValEVT - Return the EVT of the Value* that this operand
5680  /// corresponds to.  If there is no Value* for this operand, it returns
5681  /// MVT::Other.
5682  EVT getCallOperandValEVT(LLVMContext &Context,
5683                           const TargetLowering &TLI,
5684                           const TargetData *TD) const {
5685    if (CallOperandVal == 0) return MVT::Other;
5686
5687    if (isa<BasicBlock>(CallOperandVal))
5688      return TLI.getPointerTy();
5689
5690    llvm::Type *OpTy = CallOperandVal->getType();
5691
5692    // FIXME: code duplicated from TargetLowering::ParseConstraints().
5693    // If this is an indirect operand, the operand is a pointer to the
5694    // accessed type.
5695    if (isIndirect) {
5696      llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
5697      if (!PtrTy)
5698        report_fatal_error("Indirect operand for inline asm not a pointer!");
5699      OpTy = PtrTy->getElementType();
5700    }
5701
5702    // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
5703    if (StructType *STy = dyn_cast<StructType>(OpTy))
5704      if (STy->getNumElements() == 1)
5705        OpTy = STy->getElementType(0);
5706
5707    // If OpTy is not a single value, it may be a struct/union that we
5708    // can tile with integers.
5709    if (!OpTy->isSingleValueType() && OpTy->isSized()) {
5710      unsigned BitSize = TD->getTypeSizeInBits(OpTy);
5711      switch (BitSize) {
5712      default: break;
5713      case 1:
5714      case 8:
5715      case 16:
5716      case 32:
5717      case 64:
5718      case 128:
5719        OpTy = IntegerType::get(Context, BitSize);
5720        break;
5721      }
5722    }
5723
5724    return TLI.getValueType(OpTy, true);
5725  }
5726};
5727
5728typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector;
5729
5730} // end anonymous namespace
5731
5732/// GetRegistersForValue - Assign registers (virtual or physical) for the
5733/// specified operand.  We prefer to assign virtual registers, to allow the
5734/// register allocator to handle the assignment process.  However, if the asm
5735/// uses features that we can't model on machineinstrs, we have SDISel do the
5736/// allocation.  This produces generally horrible, but correct, code.
5737///
5738///   OpInfo describes the operand.
5739///
5740static void GetRegistersForValue(SelectionDAG &DAG,
5741                                 const TargetLowering &TLI,
5742                                 DebugLoc DL,
5743                                 SDISelAsmOperandInfo &OpInfo) {
5744  LLVMContext &Context = *DAG.getContext();
5745
5746  MachineFunction &MF = DAG.getMachineFunction();
5747  SmallVector<unsigned, 4> Regs;
5748
5749  // If this is a constraint for a single physreg, or a constraint for a
5750  // register class, find it.
5751  std::pair<unsigned, const TargetRegisterClass*> PhysReg =
5752    TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
5753                                     OpInfo.ConstraintVT);
5754
5755  unsigned NumRegs = 1;
5756  if (OpInfo.ConstraintVT != MVT::Other) {
5757    // If this is a FP input in an integer register (or visa versa) insert a bit
5758    // cast of the input value.  More generally, handle any case where the input
5759    // value disagrees with the register class we plan to stick this in.
5760    if (OpInfo.Type == InlineAsm::isInput &&
5761        PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) {
5762      // Try to convert to the first EVT that the reg class contains.  If the
5763      // types are identical size, use a bitcast to convert (e.g. two differing
5764      // vector types).
5765      EVT RegVT = *PhysReg.second->vt_begin();
5766      if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) {
5767        OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL,
5768                                         RegVT, OpInfo.CallOperand);
5769        OpInfo.ConstraintVT = RegVT;
5770      } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
5771        // If the input is a FP value and we want it in FP registers, do a
5772        // bitcast to the corresponding integer type.  This turns an f64 value
5773        // into i64, which can be passed with two i32 values on a 32-bit
5774        // machine.
5775        RegVT = EVT::getIntegerVT(Context,
5776                                  OpInfo.ConstraintVT.getSizeInBits());
5777        OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL,
5778                                         RegVT, OpInfo.CallOperand);
5779        OpInfo.ConstraintVT = RegVT;
5780      }
5781    }
5782
5783    NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT);
5784  }
5785
5786  EVT RegVT;
5787  EVT ValueVT = OpInfo.ConstraintVT;
5788
5789  // If this is a constraint for a specific physical register, like {r17},
5790  // assign it now.
5791  if (unsigned AssignedReg = PhysReg.first) {
5792    const TargetRegisterClass *RC = PhysReg.second;
5793    if (OpInfo.ConstraintVT == MVT::Other)
5794      ValueVT = *RC->vt_begin();
5795
5796    // Get the actual register value type.  This is important, because the user
5797    // may have asked for (e.g.) the AX register in i32 type.  We need to
5798    // remember that AX is actually i16 to get the right extension.
5799    RegVT = *RC->vt_begin();
5800
5801    // This is a explicit reference to a physical register.
5802    Regs.push_back(AssignedReg);
5803
5804    // If this is an expanded reference, add the rest of the regs to Regs.
5805    if (NumRegs != 1) {
5806      TargetRegisterClass::iterator I = RC->begin();
5807      for (; *I != AssignedReg; ++I)
5808        assert(I != RC->end() && "Didn't find reg!");
5809
5810      // Already added the first reg.
5811      --NumRegs; ++I;
5812      for (; NumRegs; --NumRegs, ++I) {
5813        assert(I != RC->end() && "Ran out of registers to allocate!");
5814        Regs.push_back(*I);
5815      }
5816    }
5817
5818    OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
5819    return;
5820  }
5821
5822  // Otherwise, if this was a reference to an LLVM register class, create vregs
5823  // for this reference.
5824  if (const TargetRegisterClass *RC = PhysReg.second) {
5825    RegVT = *RC->vt_begin();
5826    if (OpInfo.ConstraintVT == MVT::Other)
5827      ValueVT = RegVT;
5828
5829    // Create the appropriate number of virtual registers.
5830    MachineRegisterInfo &RegInfo = MF.getRegInfo();
5831    for (; NumRegs; --NumRegs)
5832      Regs.push_back(RegInfo.createVirtualRegister(RC));
5833
5834    OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
5835    return;
5836  }
5837
5838  // Otherwise, we couldn't allocate enough registers for this.
5839}
5840
5841/// visitInlineAsm - Handle a call to an InlineAsm object.
5842///
5843void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) {
5844  const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
5845
5846  /// ConstraintOperands - Information about all of the constraints.
5847  SDISelAsmOperandInfoVector ConstraintOperands;
5848
5849  TargetLowering::AsmOperandInfoVector
5850    TargetConstraints = TLI.ParseConstraints(CS);
5851
5852  bool hasMemory = false;
5853
5854  unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
5855  unsigned ResNo = 0;   // ResNo - The result number of the next output.
5856  for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
5857    ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i]));
5858    SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
5859
5860    EVT OpVT = MVT::Other;
5861
5862    // Compute the value type for each operand.
5863    switch (OpInfo.Type) {
5864    case InlineAsm::isOutput:
5865      // Indirect outputs just consume an argument.
5866      if (OpInfo.isIndirect) {
5867        OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
5868        break;
5869      }
5870
5871      // The return value of the call is this value.  As such, there is no
5872      // corresponding argument.
5873      assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
5874      if (StructType *STy = dyn_cast<StructType>(CS.getType())) {
5875        OpVT = TLI.getValueType(STy->getElementType(ResNo));
5876      } else {
5877        assert(ResNo == 0 && "Asm only has one result!");
5878        OpVT = TLI.getValueType(CS.getType());
5879      }
5880      ++ResNo;
5881      break;
5882    case InlineAsm::isInput:
5883      OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
5884      break;
5885    case InlineAsm::isClobber:
5886      // Nothing to do.
5887      break;
5888    }
5889
5890    // If this is an input or an indirect output, process the call argument.
5891    // BasicBlocks are labels, currently appearing only in asm's.
5892    if (OpInfo.CallOperandVal) {
5893      if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) {
5894        OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
5895      } else {
5896        OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
5897      }
5898
5899      OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, TD);
5900    }
5901
5902    OpInfo.ConstraintVT = OpVT;
5903
5904    // Indirect operand accesses access memory.
5905    if (OpInfo.isIndirect)
5906      hasMemory = true;
5907    else {
5908      for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) {
5909        TargetLowering::ConstraintType
5910          CType = TLI.getConstraintType(OpInfo.Codes[j]);
5911        if (CType == TargetLowering::C_Memory) {
5912          hasMemory = true;
5913          break;
5914        }
5915      }
5916    }
5917  }
5918
5919  SDValue Chain, Flag;
5920
5921  // We won't need to flush pending loads if this asm doesn't touch
5922  // memory and is nonvolatile.
5923  if (hasMemory || IA->hasSideEffects())
5924    Chain = getRoot();
5925  else
5926    Chain = DAG.getRoot();
5927
5928  // Second pass over the constraints: compute which constraint option to use
5929  // and assign registers to constraints that want a specific physreg.
5930  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
5931    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
5932
5933    // If this is an output operand with a matching input operand, look up the
5934    // matching input. If their types mismatch, e.g. one is an integer, the
5935    // other is floating point, or their sizes are different, flag it as an
5936    // error.
5937    if (OpInfo.hasMatchingInput()) {
5938      SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
5939
5940      if (OpInfo.ConstraintVT != Input.ConstraintVT) {
5941	std::pair<unsigned, const TargetRegisterClass*> MatchRC =
5942	  TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
5943                                           OpInfo.ConstraintVT);
5944	std::pair<unsigned, const TargetRegisterClass*> InputRC =
5945	  TLI.getRegForInlineAsmConstraint(Input.ConstraintCode,
5946                                           Input.ConstraintVT);
5947        if ((OpInfo.ConstraintVT.isInteger() !=
5948             Input.ConstraintVT.isInteger()) ||
5949            (MatchRC.second != InputRC.second)) {
5950          report_fatal_error("Unsupported asm: input constraint"
5951                             " with a matching output constraint of"
5952                             " incompatible type!");
5953        }
5954        Input.ConstraintVT = OpInfo.ConstraintVT;
5955      }
5956    }
5957
5958    // Compute the constraint code and ConstraintType to use.
5959    TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
5960
5961    // If this is a memory input, and if the operand is not indirect, do what we
5962    // need to to provide an address for the memory input.
5963    if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
5964        !OpInfo.isIndirect) {
5965      assert((OpInfo.isMultipleAlternative ||
5966              (OpInfo.Type == InlineAsm::isInput)) &&
5967             "Can only indirectify direct input operands!");
5968
5969      // Memory operands really want the address of the value.  If we don't have
5970      // an indirect input, put it in the constpool if we can, otherwise spill
5971      // it to a stack slot.
5972      // TODO: This isn't quite right. We need to handle these according to
5973      // the addressing mode that the constraint wants. Also, this may take
5974      // an additional register for the computation and we don't want that
5975      // either.
5976
5977      // If the operand is a float, integer, or vector constant, spill to a
5978      // constant pool entry to get its address.
5979      const Value *OpVal = OpInfo.CallOperandVal;
5980      if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
5981          isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) {
5982        OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal),
5983                                                 TLI.getPointerTy());
5984      } else {
5985        // Otherwise, create a stack slot and emit a store to it before the
5986        // asm.
5987        Type *Ty = OpVal->getType();
5988        uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty);
5989        unsigned Align  = TLI.getTargetData()->getPrefTypeAlignment(Ty);
5990        MachineFunction &MF = DAG.getMachineFunction();
5991        int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
5992        SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy());
5993        Chain = DAG.getStore(Chain, getCurDebugLoc(),
5994                             OpInfo.CallOperand, StackSlot,
5995                             MachinePointerInfo::getFixedStack(SSFI),
5996                             false, false, 0);
5997        OpInfo.CallOperand = StackSlot;
5998      }
5999
6000      // There is no longer a Value* corresponding to this operand.
6001      OpInfo.CallOperandVal = 0;
6002
6003      // It is now an indirect operand.
6004      OpInfo.isIndirect = true;
6005    }
6006
6007    // If this constraint is for a specific register, allocate it before
6008    // anything else.
6009    if (OpInfo.ConstraintType == TargetLowering::C_Register)
6010      GetRegistersForValue(DAG, TLI, getCurDebugLoc(), OpInfo);
6011  }
6012
6013  // Second pass - Loop over all of the operands, assigning virtual or physregs
6014  // to register class operands.
6015  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
6016    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
6017
6018    // C_Register operands have already been allocated, Other/Memory don't need
6019    // to be.
6020    if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass)
6021      GetRegistersForValue(DAG, TLI, getCurDebugLoc(), OpInfo);
6022  }
6023
6024  // AsmNodeOperands - The operands for the ISD::INLINEASM node.
6025  std::vector<SDValue> AsmNodeOperands;
6026  AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
6027  AsmNodeOperands.push_back(
6028          DAG.getTargetExternalSymbol(IA->getAsmString().c_str(),
6029                                      TLI.getPointerTy()));
6030
6031  // If we have a !srcloc metadata node associated with it, we want to attach
6032  // this to the ultimately generated inline asm machineinstr.  To do this, we
6033  // pass in the third operand as this (potentially null) inline asm MDNode.
6034  const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc");
6035  AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
6036
6037  // Remember the HasSideEffect and AlignStack bits as operand 3.
6038  unsigned ExtraInfo = 0;
6039  if (IA->hasSideEffects())
6040    ExtraInfo |= InlineAsm::Extra_HasSideEffects;
6041  if (IA->isAlignStack())
6042    ExtraInfo |= InlineAsm::Extra_IsAlignStack;
6043  AsmNodeOperands.push_back(DAG.getTargetConstant(ExtraInfo,
6044                                                  TLI.getPointerTy()));
6045
6046  // Loop over all of the inputs, copying the operand values into the
6047  // appropriate registers and processing the output regs.
6048  RegsForValue RetValRegs;
6049
6050  // IndirectStoresToEmit - The set of stores to emit after the inline asm node.
6051  std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit;
6052
6053  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
6054    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
6055
6056    switch (OpInfo.Type) {
6057    case InlineAsm::isOutput: {
6058      if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass &&
6059          OpInfo.ConstraintType != TargetLowering::C_Register) {
6060        // Memory output, or 'other' output (e.g. 'X' constraint).
6061        assert(OpInfo.isIndirect && "Memory output must be indirect operand");
6062
6063        // Add information to the INLINEASM node to know about this output.
6064        unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
6065        AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags,
6066                                                        TLI.getPointerTy()));
6067        AsmNodeOperands.push_back(OpInfo.CallOperand);
6068        break;
6069      }
6070
6071      // Otherwise, this is a register or register class output.
6072
6073      // Copy the output from the appropriate register.  Find a register that
6074      // we can use.
6075      if (OpInfo.AssignedRegs.Regs.empty()) {
6076        LLVMContext &Ctx = *DAG.getContext();
6077        Ctx.emitError(CS.getInstruction(),
6078                      "couldn't allocate output register for constraint '" +
6079                           Twine(OpInfo.ConstraintCode) + "'");
6080        break;
6081      }
6082
6083      // If this is an indirect operand, store through the pointer after the
6084      // asm.
6085      if (OpInfo.isIndirect) {
6086        IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs,
6087                                                      OpInfo.CallOperandVal));
6088      } else {
6089        // This is the result value of the call.
6090        assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
6091        // Concatenate this output onto the outputs list.
6092        RetValRegs.append(OpInfo.AssignedRegs);
6093      }
6094
6095      // Add information to the INLINEASM node to know that this register is
6096      // set.
6097      OpInfo.AssignedRegs.AddInlineAsmOperands(OpInfo.isEarlyClobber ?
6098                                           InlineAsm::Kind_RegDefEarlyClobber :
6099                                               InlineAsm::Kind_RegDef,
6100                                               false,
6101                                               0,
6102                                               DAG,
6103                                               AsmNodeOperands);
6104      break;
6105    }
6106    case InlineAsm::isInput: {
6107      SDValue InOperandVal = OpInfo.CallOperand;
6108
6109      if (OpInfo.isMatchingInputConstraint()) {   // Matching constraint?
6110        // If this is required to match an output register we have already set,
6111        // just use its register.
6112        unsigned OperandNo = OpInfo.getMatchedOperand();
6113
6114        // Scan until we find the definition we already emitted of this operand.
6115        // When we find it, create a RegsForValue operand.
6116        unsigned CurOp = InlineAsm::Op_FirstOperand;
6117        for (; OperandNo; --OperandNo) {
6118          // Advance to the next operand.
6119          unsigned OpFlag =
6120            cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
6121          assert((InlineAsm::isRegDefKind(OpFlag) ||
6122                  InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||
6123                  InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?");
6124          CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1;
6125        }
6126
6127        unsigned OpFlag =
6128          cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
6129        if (InlineAsm::isRegDefKind(OpFlag) ||
6130            InlineAsm::isRegDefEarlyClobberKind(OpFlag)) {
6131          // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
6132          if (OpInfo.isIndirect) {
6133            // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
6134            LLVMContext &Ctx = *DAG.getContext();
6135            Ctx.emitError(CS.getInstruction(),  "inline asm not supported yet:"
6136                          " don't know how to handle tied "
6137                          "indirect register inputs");
6138          }
6139
6140          RegsForValue MatchedRegs;
6141          MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType());
6142          EVT RegVT = AsmNodeOperands[CurOp+1].getValueType();
6143          MatchedRegs.RegVTs.push_back(RegVT);
6144          MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo();
6145          for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag);
6146               i != e; ++i)
6147            MatchedRegs.Regs.push_back
6148              (RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT)));
6149
6150          // Use the produced MatchedRegs object to
6151          MatchedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(),
6152                                    Chain, &Flag);
6153          MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse,
6154                                           true, OpInfo.getMatchedOperand(),
6155                                           DAG, AsmNodeOperands);
6156          break;
6157        }
6158
6159        assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!");
6160        assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 &&
6161               "Unexpected number of operands");
6162        // Add information to the INLINEASM node to know about this input.
6163        // See InlineAsm.h isUseOperandTiedToDef.
6164        OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
6165                                                    OpInfo.getMatchedOperand());
6166        AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlag,
6167                                                        TLI.getPointerTy()));
6168        AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
6169        break;
6170      }
6171
6172      // Treat indirect 'X' constraint as memory.
6173      if (OpInfo.ConstraintType == TargetLowering::C_Other &&
6174          OpInfo.isIndirect)
6175        OpInfo.ConstraintType = TargetLowering::C_Memory;
6176
6177      if (OpInfo.ConstraintType == TargetLowering::C_Other) {
6178        std::vector<SDValue> Ops;
6179        TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode,
6180                                         Ops, DAG);
6181        if (Ops.empty()) {
6182          LLVMContext &Ctx = *DAG.getContext();
6183          Ctx.emitError(CS.getInstruction(),
6184                        "invalid operand for inline asm constraint '" +
6185                        Twine(OpInfo.ConstraintCode) + "'");
6186          break;
6187        }
6188
6189        // Add information to the INLINEASM node to know about this input.
6190        unsigned ResOpType =
6191          InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
6192        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
6193                                                        TLI.getPointerTy()));
6194        AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
6195        break;
6196      }
6197
6198      if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
6199        assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
6200        assert(InOperandVal.getValueType() == TLI.getPointerTy() &&
6201               "Memory operands expect pointer values");
6202
6203        // Add information to the INLINEASM node to know about this input.
6204        unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
6205        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
6206                                                        TLI.getPointerTy()));
6207        AsmNodeOperands.push_back(InOperandVal);
6208        break;
6209      }
6210
6211      assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
6212              OpInfo.ConstraintType == TargetLowering::C_Register) &&
6213             "Unknown constraint type!");
6214      assert(!OpInfo.isIndirect &&
6215             "Don't know how to handle indirect register inputs yet!");
6216
6217      // Copy the input into the appropriate registers.
6218      if (OpInfo.AssignedRegs.Regs.empty()) {
6219        LLVMContext &Ctx = *DAG.getContext();
6220        Ctx.emitError(CS.getInstruction(),
6221                      "couldn't allocate input reg for constraint '" +
6222                           Twine(OpInfo.ConstraintCode) + "'");
6223        break;
6224      }
6225
6226      OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(),
6227                                        Chain, &Flag);
6228
6229      OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0,
6230                                               DAG, AsmNodeOperands);
6231      break;
6232    }
6233    case InlineAsm::isClobber: {
6234      // Add the clobbered value to the operand list, so that the register
6235      // allocator is aware that the physreg got clobbered.
6236      if (!OpInfo.AssignedRegs.Regs.empty())
6237        OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber,
6238                                                 false, 0, DAG,
6239                                                 AsmNodeOperands);
6240      break;
6241    }
6242    }
6243  }
6244
6245  // Finish up input operands.  Set the input chain and add the flag last.
6246  AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
6247  if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
6248
6249  Chain = DAG.getNode(ISD::INLINEASM, getCurDebugLoc(),
6250                      DAG.getVTList(MVT::Other, MVT::Glue),
6251                      &AsmNodeOperands[0], AsmNodeOperands.size());
6252  Flag = Chain.getValue(1);
6253
6254  // If this asm returns a register value, copy the result from that register
6255  // and set it as the value of the call.
6256  if (!RetValRegs.Regs.empty()) {
6257    SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(),
6258                                             Chain, &Flag);
6259
6260    // FIXME: Why don't we do this for inline asms with MRVs?
6261    if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) {
6262      EVT ResultType = TLI.getValueType(CS.getType());
6263
6264      // If any of the results of the inline asm is a vector, it may have the
6265      // wrong width/num elts.  This can happen for register classes that can
6266      // contain multiple different value types.  The preg or vreg allocated may
6267      // not have the same VT as was expected.  Convert it to the right type
6268      // with bit_convert.
6269      if (ResultType != Val.getValueType() && Val.getValueType().isVector()) {
6270        Val = DAG.getNode(ISD::BITCAST, getCurDebugLoc(),
6271                          ResultType, Val);
6272
6273      } else if (ResultType != Val.getValueType() &&
6274                 ResultType.isInteger() && Val.getValueType().isInteger()) {
6275        // If a result value was tied to an input value, the computed result may
6276        // have a wider width than the expected result.  Extract the relevant
6277        // portion.
6278        Val = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), ResultType, Val);
6279      }
6280
6281      assert(ResultType == Val.getValueType() && "Asm result value mismatch!");
6282    }
6283
6284    setValue(CS.getInstruction(), Val);
6285    // Don't need to use this as a chain in this case.
6286    if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty())
6287      return;
6288  }
6289
6290  std::vector<std::pair<SDValue, const Value *> > StoresToEmit;
6291
6292  // Process indirect outputs, first output all of the flagged copies out of
6293  // physregs.
6294  for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
6295    RegsForValue &OutRegs = IndirectStoresToEmit[i].first;
6296    const Value *Ptr = IndirectStoresToEmit[i].second;
6297    SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(),
6298                                             Chain, &Flag);
6299    StoresToEmit.push_back(std::make_pair(OutVal, Ptr));
6300  }
6301
6302  // Emit the non-flagged stores from the physregs.
6303  SmallVector<SDValue, 8> OutChains;
6304  for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) {
6305    SDValue Val = DAG.getStore(Chain, getCurDebugLoc(),
6306                               StoresToEmit[i].first,
6307                               getValue(StoresToEmit[i].second),
6308                               MachinePointerInfo(StoresToEmit[i].second),
6309                               false, false, 0);
6310    OutChains.push_back(Val);
6311  }
6312
6313  if (!OutChains.empty())
6314    Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
6315                        &OutChains[0], OutChains.size());
6316
6317  DAG.setRoot(Chain);
6318}
6319
6320void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
6321  DAG.setRoot(DAG.getNode(ISD::VASTART, getCurDebugLoc(),
6322                          MVT::Other, getRoot(),
6323                          getValue(I.getArgOperand(0)),
6324                          DAG.getSrcValue(I.getArgOperand(0))));
6325}
6326
6327void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
6328  const TargetData &TD = *TLI.getTargetData();
6329  SDValue V = DAG.getVAArg(TLI.getValueType(I.getType()), getCurDebugLoc(),
6330                           getRoot(), getValue(I.getOperand(0)),
6331                           DAG.getSrcValue(I.getOperand(0)),
6332                           TD.getABITypeAlignment(I.getType()));
6333  setValue(&I, V);
6334  DAG.setRoot(V.getValue(1));
6335}
6336
6337void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
6338  DAG.setRoot(DAG.getNode(ISD::VAEND, getCurDebugLoc(),
6339                          MVT::Other, getRoot(),
6340                          getValue(I.getArgOperand(0)),
6341                          DAG.getSrcValue(I.getArgOperand(0))));
6342}
6343
6344void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
6345  DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurDebugLoc(),
6346                          MVT::Other, getRoot(),
6347                          getValue(I.getArgOperand(0)),
6348                          getValue(I.getArgOperand(1)),
6349                          DAG.getSrcValue(I.getArgOperand(0)),
6350                          DAG.getSrcValue(I.getArgOperand(1))));
6351}
6352
6353/// TargetLowering::LowerCallTo - This is the default LowerCallTo
6354/// implementation, which just calls LowerCall.
6355/// FIXME: When all targets are
6356/// migrated to using LowerCall, this hook should be integrated into SDISel.
6357std::pair<SDValue, SDValue>
6358TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const {
6359  // Handle all of the outgoing arguments.
6360  CLI.Outs.clear();
6361  CLI.OutVals.clear();
6362  ArgListTy &Args = CLI.Args;
6363  for (unsigned i = 0, e = Args.size(); i != e; ++i) {
6364    SmallVector<EVT, 4> ValueVTs;
6365    ComputeValueVTs(*this, Args[i].Ty, ValueVTs);
6366    for (unsigned Value = 0, NumValues = ValueVTs.size();
6367         Value != NumValues; ++Value) {
6368      EVT VT = ValueVTs[Value];
6369      Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext());
6370      SDValue Op = SDValue(Args[i].Node.getNode(),
6371                           Args[i].Node.getResNo() + Value);
6372      ISD::ArgFlagsTy Flags;
6373      unsigned OriginalAlignment =
6374        getTargetData()->getABITypeAlignment(ArgTy);
6375
6376      if (Args[i].isZExt)
6377        Flags.setZExt();
6378      if (Args[i].isSExt)
6379        Flags.setSExt();
6380      if (Args[i].isInReg)
6381        Flags.setInReg();
6382      if (Args[i].isSRet)
6383        Flags.setSRet();
6384      if (Args[i].isByVal) {
6385        Flags.setByVal();
6386        PointerType *Ty = cast<PointerType>(Args[i].Ty);
6387        Type *ElementTy = Ty->getElementType();
6388        Flags.setByValSize(getTargetData()->getTypeAllocSize(ElementTy));
6389        // For ByVal, alignment should come from FE.  BE will guess if this
6390        // info is not there but there are cases it cannot get right.
6391        unsigned FrameAlign;
6392        if (Args[i].Alignment)
6393          FrameAlign = Args[i].Alignment;
6394        else
6395          FrameAlign = getByValTypeAlignment(ElementTy);
6396        Flags.setByValAlign(FrameAlign);
6397      }
6398      if (Args[i].isNest)
6399        Flags.setNest();
6400      Flags.setOrigAlign(OriginalAlignment);
6401
6402      EVT PartVT = getRegisterType(CLI.RetTy->getContext(), VT);
6403      unsigned NumParts = getNumRegisters(CLI.RetTy->getContext(), VT);
6404      SmallVector<SDValue, 4> Parts(NumParts);
6405      ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
6406
6407      if (Args[i].isSExt)
6408        ExtendKind = ISD::SIGN_EXTEND;
6409      else if (Args[i].isZExt)
6410        ExtendKind = ISD::ZERO_EXTEND;
6411
6412      getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts,
6413                     PartVT, ExtendKind);
6414
6415      for (unsigned j = 0; j != NumParts; ++j) {
6416        // if it isn't first piece, alignment must be 1
6417        ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(),
6418                               i < CLI.NumFixedArgs);
6419        if (NumParts > 1 && j == 0)
6420          MyFlags.Flags.setSplit();
6421        else if (j != 0)
6422          MyFlags.Flags.setOrigAlign(1);
6423
6424        CLI.Outs.push_back(MyFlags);
6425        CLI.OutVals.push_back(Parts[j]);
6426      }
6427    }
6428  }
6429
6430  // Handle the incoming return values from the call.
6431  CLI.Ins.clear();
6432  SmallVector<EVT, 4> RetTys;
6433  ComputeValueVTs(*this, CLI.RetTy, RetTys);
6434  for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
6435    EVT VT = RetTys[I];
6436    EVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT);
6437    unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT);
6438    for (unsigned i = 0; i != NumRegs; ++i) {
6439      ISD::InputArg MyFlags;
6440      MyFlags.VT = RegisterVT.getSimpleVT();
6441      MyFlags.Used = CLI.IsReturnValueUsed;
6442      if (CLI.RetSExt)
6443        MyFlags.Flags.setSExt();
6444      if (CLI.RetZExt)
6445        MyFlags.Flags.setZExt();
6446      if (CLI.IsInReg)
6447        MyFlags.Flags.setInReg();
6448      CLI.Ins.push_back(MyFlags);
6449    }
6450  }
6451
6452  SmallVector<SDValue, 4> InVals;
6453  CLI.Chain = LowerCall(CLI, InVals);
6454
6455  // Verify that the target's LowerCall behaved as expected.
6456  assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other &&
6457         "LowerCall didn't return a valid chain!");
6458  assert((!CLI.IsTailCall || InVals.empty()) &&
6459         "LowerCall emitted a return value for a tail call!");
6460  assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) &&
6461         "LowerCall didn't emit the correct number of values!");
6462
6463  // For a tail call, the return value is merely live-out and there aren't
6464  // any nodes in the DAG representing it. Return a special value to
6465  // indicate that a tail call has been emitted and no more Instructions
6466  // should be processed in the current block.
6467  if (CLI.IsTailCall) {
6468    CLI.DAG.setRoot(CLI.Chain);
6469    return std::make_pair(SDValue(), SDValue());
6470  }
6471
6472  DEBUG(for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) {
6473          assert(InVals[i].getNode() &&
6474                 "LowerCall emitted a null value!");
6475          assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() &&
6476                 "LowerCall emitted a value with the wrong type!");
6477        });
6478
6479  // Collect the legal value parts into potentially illegal values
6480  // that correspond to the original function's return values.
6481  ISD::NodeType AssertOp = ISD::DELETED_NODE;
6482  if (CLI.RetSExt)
6483    AssertOp = ISD::AssertSext;
6484  else if (CLI.RetZExt)
6485    AssertOp = ISD::AssertZext;
6486  SmallVector<SDValue, 4> ReturnValues;
6487  unsigned CurReg = 0;
6488  for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
6489    EVT VT = RetTys[I];
6490    EVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT);
6491    unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT);
6492
6493    ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg],
6494                                            NumRegs, RegisterVT, VT,
6495                                            AssertOp));
6496    CurReg += NumRegs;
6497  }
6498
6499  // For a function returning void, there is no return value. We can't create
6500  // such a node, so we just return a null return value in that case. In
6501  // that case, nothing will actually look at the value.
6502  if (ReturnValues.empty())
6503    return std::make_pair(SDValue(), CLI.Chain);
6504
6505  SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL,
6506                                CLI.DAG.getVTList(&RetTys[0], RetTys.size()),
6507                            &ReturnValues[0], ReturnValues.size());
6508  return std::make_pair(Res, CLI.Chain);
6509}
6510
6511void TargetLowering::LowerOperationWrapper(SDNode *N,
6512                                           SmallVectorImpl<SDValue> &Results,
6513                                           SelectionDAG &DAG) const {
6514  SDValue Res = LowerOperation(SDValue(N, 0), DAG);
6515  if (Res.getNode())
6516    Results.push_back(Res);
6517}
6518
6519SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
6520  llvm_unreachable("LowerOperation not implemented for this target!");
6521}
6522
6523void
6524SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) {
6525  SDValue Op = getNonRegisterValue(V);
6526  assert((Op.getOpcode() != ISD::CopyFromReg ||
6527          cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
6528         "Copy from a reg to the same reg!");
6529  assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg");
6530
6531  RegsForValue RFV(V->getContext(), TLI, Reg, V->getType());
6532  SDValue Chain = DAG.getEntryNode();
6533  RFV.getCopyToRegs(Op, DAG, getCurDebugLoc(), Chain, 0);
6534  PendingExports.push_back(Chain);
6535}
6536
6537#include "llvm/CodeGen/SelectionDAGISel.h"
6538
6539/// isOnlyUsedInEntryBlock - If the specified argument is only used in the
6540/// entry block, return true.  This includes arguments used by switches, since
6541/// the switch may expand into multiple basic blocks.
6542static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) {
6543  // With FastISel active, we may be splitting blocks, so force creation
6544  // of virtual registers for all non-dead arguments.
6545  if (FastISel)
6546    return A->use_empty();
6547
6548  const BasicBlock *Entry = A->getParent()->begin();
6549  for (Value::const_use_iterator UI = A->use_begin(), E = A->use_end();
6550       UI != E; ++UI) {
6551    const User *U = *UI;
6552    if (cast<Instruction>(U)->getParent() != Entry || isa<SwitchInst>(U))
6553      return false;  // Use not in entry block.
6554  }
6555  return true;
6556}
6557
6558void SelectionDAGISel::LowerArguments(const BasicBlock *LLVMBB) {
6559  // If this is the entry block, emit arguments.
6560  const Function &F = *LLVMBB->getParent();
6561  SelectionDAG &DAG = SDB->DAG;
6562  DebugLoc dl = SDB->getCurDebugLoc();
6563  const TargetData *TD = TLI.getTargetData();
6564  SmallVector<ISD::InputArg, 16> Ins;
6565
6566  // Check whether the function can return without sret-demotion.
6567  SmallVector<ISD::OutputArg, 4> Outs;
6568  GetReturnInfo(F.getReturnType(), F.getAttributes().getRetAttributes(),
6569                Outs, TLI);
6570
6571  if (!FuncInfo->CanLowerReturn) {
6572    // Put in an sret pointer parameter before all the other parameters.
6573    SmallVector<EVT, 1> ValueVTs;
6574    ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs);
6575
6576    // NOTE: Assuming that a pointer will never break down to more than one VT
6577    // or one register.
6578    ISD::ArgFlagsTy Flags;
6579    Flags.setSRet();
6580    EVT RegisterVT = TLI.getRegisterType(*DAG.getContext(), ValueVTs[0]);
6581    ISD::InputArg RetArg(Flags, RegisterVT, true);
6582    Ins.push_back(RetArg);
6583  }
6584
6585  // Set up the incoming argument description vector.
6586  unsigned Idx = 1;
6587  for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end();
6588       I != E; ++I, ++Idx) {
6589    SmallVector<EVT, 4> ValueVTs;
6590    ComputeValueVTs(TLI, I->getType(), ValueVTs);
6591    bool isArgValueUsed = !I->use_empty();
6592    for (unsigned Value = 0, NumValues = ValueVTs.size();
6593         Value != NumValues; ++Value) {
6594      EVT VT = ValueVTs[Value];
6595      Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
6596      ISD::ArgFlagsTy Flags;
6597      unsigned OriginalAlignment =
6598        TD->getABITypeAlignment(ArgTy);
6599
6600      if (F.paramHasAttr(Idx, Attribute::ZExt))
6601        Flags.setZExt();
6602      if (F.paramHasAttr(Idx, Attribute::SExt))
6603        Flags.setSExt();
6604      if (F.paramHasAttr(Idx, Attribute::InReg))
6605        Flags.setInReg();
6606      if (F.paramHasAttr(Idx, Attribute::StructRet))
6607        Flags.setSRet();
6608      if (F.paramHasAttr(Idx, Attribute::ByVal)) {
6609        Flags.setByVal();
6610        PointerType *Ty = cast<PointerType>(I->getType());
6611        Type *ElementTy = Ty->getElementType();
6612        Flags.setByValSize(TD->getTypeAllocSize(ElementTy));
6613        // For ByVal, alignment should be passed from FE.  BE will guess if
6614        // this info is not there but there are cases it cannot get right.
6615        unsigned FrameAlign;
6616        if (F.getParamAlignment(Idx))
6617          FrameAlign = F.getParamAlignment(Idx);
6618        else
6619          FrameAlign = TLI.getByValTypeAlignment(ElementTy);
6620        Flags.setByValAlign(FrameAlign);
6621      }
6622      if (F.paramHasAttr(Idx, Attribute::Nest))
6623        Flags.setNest();
6624      Flags.setOrigAlign(OriginalAlignment);
6625
6626      EVT RegisterVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
6627      unsigned NumRegs = TLI.getNumRegisters(*CurDAG->getContext(), VT);
6628      for (unsigned i = 0; i != NumRegs; ++i) {
6629        ISD::InputArg MyFlags(Flags, RegisterVT, isArgValueUsed);
6630        if (NumRegs > 1 && i == 0)
6631          MyFlags.Flags.setSplit();
6632        // if it isn't first piece, alignment must be 1
6633        else if (i > 0)
6634          MyFlags.Flags.setOrigAlign(1);
6635        Ins.push_back(MyFlags);
6636      }
6637    }
6638  }
6639
6640  // Call the target to set up the argument values.
6641  SmallVector<SDValue, 8> InVals;
6642  SDValue NewRoot = TLI.LowerFormalArguments(DAG.getRoot(), F.getCallingConv(),
6643                                             F.isVarArg(), Ins,
6644                                             dl, DAG, InVals);
6645
6646  // Verify that the target's LowerFormalArguments behaved as expected.
6647  assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
6648         "LowerFormalArguments didn't return a valid chain!");
6649  assert(InVals.size() == Ins.size() &&
6650         "LowerFormalArguments didn't emit the correct number of values!");
6651  DEBUG({
6652      for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
6653        assert(InVals[i].getNode() &&
6654               "LowerFormalArguments emitted a null value!");
6655        assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
6656               "LowerFormalArguments emitted a value with the wrong type!");
6657      }
6658    });
6659
6660  // Update the DAG with the new chain value resulting from argument lowering.
6661  DAG.setRoot(NewRoot);
6662
6663  // Set up the argument values.
6664  unsigned i = 0;
6665  Idx = 1;
6666  if (!FuncInfo->CanLowerReturn) {
6667    // Create a virtual register for the sret pointer, and put in a copy
6668    // from the sret argument into it.
6669    SmallVector<EVT, 1> ValueVTs;
6670    ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs);
6671    EVT VT = ValueVTs[0];
6672    EVT RegVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
6673    ISD::NodeType AssertOp = ISD::DELETED_NODE;
6674    SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1,
6675                                        RegVT, VT, AssertOp);
6676
6677    MachineFunction& MF = SDB->DAG.getMachineFunction();
6678    MachineRegisterInfo& RegInfo = MF.getRegInfo();
6679    unsigned SRetReg = RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT));
6680    FuncInfo->DemoteRegister = SRetReg;
6681    NewRoot = SDB->DAG.getCopyToReg(NewRoot, SDB->getCurDebugLoc(),
6682                                    SRetReg, ArgValue);
6683    DAG.setRoot(NewRoot);
6684
6685    // i indexes lowered arguments.  Bump it past the hidden sret argument.
6686    // Idx indexes LLVM arguments.  Don't touch it.
6687    ++i;
6688  }
6689
6690  for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E;
6691      ++I, ++Idx) {
6692    SmallVector<SDValue, 4> ArgValues;
6693    SmallVector<EVT, 4> ValueVTs;
6694    ComputeValueVTs(TLI, I->getType(), ValueVTs);
6695    unsigned NumValues = ValueVTs.size();
6696
6697    // If this argument is unused then remember its value. It is used to generate
6698    // debugging information.
6699    if (I->use_empty() && NumValues)
6700      SDB->setUnusedArgValue(I, InVals[i]);
6701
6702    for (unsigned Val = 0; Val != NumValues; ++Val) {
6703      EVT VT = ValueVTs[Val];
6704      EVT PartVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
6705      unsigned NumParts = TLI.getNumRegisters(*CurDAG->getContext(), VT);
6706
6707      if (!I->use_empty()) {
6708        ISD::NodeType AssertOp = ISD::DELETED_NODE;
6709        if (F.paramHasAttr(Idx, Attribute::SExt))
6710          AssertOp = ISD::AssertSext;
6711        else if (F.paramHasAttr(Idx, Attribute::ZExt))
6712          AssertOp = ISD::AssertZext;
6713
6714        ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i],
6715                                             NumParts, PartVT, VT,
6716                                             AssertOp));
6717      }
6718
6719      i += NumParts;
6720    }
6721
6722    // We don't need to do anything else for unused arguments.
6723    if (ArgValues.empty())
6724      continue;
6725
6726    // Note down frame index.
6727    if (FrameIndexSDNode *FI =
6728	dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
6729      FuncInfo->setArgumentFrameIndex(I, FI->getIndex());
6730
6731    SDValue Res = DAG.getMergeValues(&ArgValues[0], NumValues,
6732                                     SDB->getCurDebugLoc());
6733
6734    SDB->setValue(I, Res);
6735    if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) {
6736      if (LoadSDNode *LNode =
6737          dyn_cast<LoadSDNode>(Res.getOperand(0).getNode()))
6738        if (FrameIndexSDNode *FI =
6739            dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
6740        FuncInfo->setArgumentFrameIndex(I, FI->getIndex());
6741    }
6742
6743    // If this argument is live outside of the entry block, insert a copy from
6744    // wherever we got it to the vreg that other BB's will reference it as.
6745    if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) {
6746      // If we can, though, try to skip creating an unnecessary vreg.
6747      // FIXME: This isn't very clean... it would be nice to make this more
6748      // general.  It's also subtly incompatible with the hacks FastISel
6749      // uses with vregs.
6750      unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
6751      if (TargetRegisterInfo::isVirtualRegister(Reg)) {
6752        FuncInfo->ValueMap[I] = Reg;
6753        continue;
6754      }
6755    }
6756    if (!isOnlyUsedInEntryBlock(I, TM.Options.EnableFastISel)) {
6757      FuncInfo->InitializeRegForValue(I);
6758      SDB->CopyToExportRegsIfNeeded(I);
6759    }
6760  }
6761
6762  assert(i == InVals.size() && "Argument register count mismatch!");
6763
6764  // Finally, if the target has anything special to do, allow it to do so.
6765  // FIXME: this should insert code into the DAG!
6766  EmitFunctionEntryCode();
6767}
6768
6769/// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
6770/// ensure constants are generated when needed.  Remember the virtual registers
6771/// that need to be added to the Machine PHI nodes as input.  We cannot just
6772/// directly add them, because expansion might result in multiple MBB's for one
6773/// BB.  As such, the start of the BB might correspond to a different MBB than
6774/// the end.
6775///
6776void
6777SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
6778  const TerminatorInst *TI = LLVMBB->getTerminator();
6779
6780  SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
6781
6782  // Check successor nodes' PHI nodes that expect a constant to be available
6783  // from this block.
6784  for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
6785    const BasicBlock *SuccBB = TI->getSuccessor(succ);
6786    if (!isa<PHINode>(SuccBB->begin())) continue;
6787    MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
6788
6789    // If this terminator has multiple identical successors (common for
6790    // switches), only handle each succ once.
6791    if (!SuccsHandled.insert(SuccMBB)) continue;
6792
6793    MachineBasicBlock::iterator MBBI = SuccMBB->begin();
6794
6795    // At this point we know that there is a 1-1 correspondence between LLVM PHI
6796    // nodes and Machine PHI nodes, but the incoming operands have not been
6797    // emitted yet.
6798    for (BasicBlock::const_iterator I = SuccBB->begin();
6799         const PHINode *PN = dyn_cast<PHINode>(I); ++I) {
6800      // Ignore dead phi's.
6801      if (PN->use_empty()) continue;
6802
6803      // Skip empty types
6804      if (PN->getType()->isEmptyTy())
6805        continue;
6806
6807      unsigned Reg;
6808      const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
6809
6810      if (const Constant *C = dyn_cast<Constant>(PHIOp)) {
6811        unsigned &RegOut = ConstantsOut[C];
6812        if (RegOut == 0) {
6813          RegOut = FuncInfo.CreateRegs(C->getType());
6814          CopyValueToVirtualRegister(C, RegOut);
6815        }
6816        Reg = RegOut;
6817      } else {
6818        DenseMap<const Value *, unsigned>::iterator I =
6819          FuncInfo.ValueMap.find(PHIOp);
6820        if (I != FuncInfo.ValueMap.end())
6821          Reg = I->second;
6822        else {
6823          assert(isa<AllocaInst>(PHIOp) &&
6824                 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
6825                 "Didn't codegen value into a register!??");
6826          Reg = FuncInfo.CreateRegs(PHIOp->getType());
6827          CopyValueToVirtualRegister(PHIOp, Reg);
6828        }
6829      }
6830
6831      // Remember that this register needs to added to the machine PHI node as
6832      // the input for this MBB.
6833      SmallVector<EVT, 4> ValueVTs;
6834      ComputeValueVTs(TLI, PN->getType(), ValueVTs);
6835      for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
6836        EVT VT = ValueVTs[vti];
6837        unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
6838        for (unsigned i = 0, e = NumRegisters; i != e; ++i)
6839          FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i));
6840        Reg += NumRegisters;
6841      }
6842    }
6843  }
6844  ConstantsOut.clear();
6845}
6846