SelectionDAGBuilder.cpp revision dce4a407a24b04eebc6a376f8e62b41aaa7b071f
1//===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements routines for translating from LLVM IR into SelectionDAG IR.
11//
12//===----------------------------------------------------------------------===//
13
14#include "SelectionDAGBuilder.h"
15#include "SDNodeDbgValue.h"
16#include "llvm/ADT/BitVector.h"
17#include "llvm/ADT/Optional.h"
18#include "llvm/ADT/SmallSet.h"
19#include "llvm/Analysis/AliasAnalysis.h"
20#include "llvm/Analysis/BranchProbabilityInfo.h"
21#include "llvm/Analysis/ConstantFolding.h"
22#include "llvm/Analysis/ValueTracking.h"
23#include "llvm/CodeGen/Analysis.h"
24#include "llvm/CodeGen/FastISel.h"
25#include "llvm/CodeGen/FunctionLoweringInfo.h"
26#include "llvm/CodeGen/GCMetadata.h"
27#include "llvm/CodeGen/GCStrategy.h"
28#include "llvm/CodeGen/MachineFrameInfo.h"
29#include "llvm/CodeGen/MachineFunction.h"
30#include "llvm/CodeGen/MachineInstrBuilder.h"
31#include "llvm/CodeGen/MachineJumpTableInfo.h"
32#include "llvm/CodeGen/MachineModuleInfo.h"
33#include "llvm/CodeGen/MachineRegisterInfo.h"
34#include "llvm/CodeGen/SelectionDAG.h"
35#include "llvm/CodeGen/StackMaps.h"
36#include "llvm/IR/CallingConv.h"
37#include "llvm/IR/Constants.h"
38#include "llvm/IR/DataLayout.h"
39#include "llvm/IR/DebugInfo.h"
40#include "llvm/IR/DerivedTypes.h"
41#include "llvm/IR/Function.h"
42#include "llvm/IR/GlobalVariable.h"
43#include "llvm/IR/InlineAsm.h"
44#include "llvm/IR/Instructions.h"
45#include "llvm/IR/IntrinsicInst.h"
46#include "llvm/IR/Intrinsics.h"
47#include "llvm/IR/LLVMContext.h"
48#include "llvm/IR/Module.h"
49#include "llvm/Support/CommandLine.h"
50#include "llvm/Support/Debug.h"
51#include "llvm/Support/ErrorHandling.h"
52#include "llvm/Support/MathExtras.h"
53#include "llvm/Support/raw_ostream.h"
54#include "llvm/Target/TargetFrameLowering.h"
55#include "llvm/Target/TargetInstrInfo.h"
56#include "llvm/Target/TargetIntrinsicInfo.h"
57#include "llvm/Target/TargetLibraryInfo.h"
58#include "llvm/Target/TargetLowering.h"
59#include "llvm/Target/TargetOptions.h"
60#include "llvm/Target/TargetSelectionDAGInfo.h"
61#include <algorithm>
62using namespace llvm;
63
64#define DEBUG_TYPE "isel"
65
66/// LimitFloatPrecision - Generate low-precision inline sequences for
67/// some float libcalls (6, 8 or 12 bits).
68static unsigned LimitFloatPrecision;
69
70static cl::opt<unsigned, true>
71LimitFPPrecision("limit-float-precision",
72                 cl::desc("Generate low-precision inline sequences "
73                          "for some float libcalls"),
74                 cl::location(LimitFloatPrecision),
75                 cl::init(0));
76
77// Limit the width of DAG chains. This is important in general to prevent
78// prevent DAG-based analysis from blowing up. For example, alias analysis and
79// load clustering may not complete in reasonable time. It is difficult to
80// recognize and avoid this situation within each individual analysis, and
81// future analyses are likely to have the same behavior. Limiting DAG width is
82// the safe approach, and will be especially important with global DAGs.
83//
84// MaxParallelChains default is arbitrarily high to avoid affecting
85// optimization, but could be lowered to improve compile time. Any ld-ld-st-st
86// sequence over this should have been converted to llvm.memcpy by the
87// frontend. It easy to induce this behavior with .ll code such as:
88// %buffer = alloca [4096 x i8]
89// %data = load [4096 x i8]* %argPtr
90// store [4096 x i8] %data, [4096 x i8]* %buffer
91static const unsigned MaxParallelChains = 64;
92
93static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL,
94                                      const SDValue *Parts, unsigned NumParts,
95                                      MVT PartVT, EVT ValueVT, const Value *V);
96
97/// getCopyFromParts - Create a value that contains the specified legal parts
98/// combined into the value they represent.  If the parts combine to a type
99/// larger then ValueVT then AssertOp can be used to specify whether the extra
100/// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
101/// (ISD::AssertSext).
102static SDValue getCopyFromParts(SelectionDAG &DAG, SDLoc DL,
103                                const SDValue *Parts,
104                                unsigned NumParts, MVT PartVT, EVT ValueVT,
105                                const Value *V,
106                                ISD::NodeType AssertOp = ISD::DELETED_NODE) {
107  if (ValueVT.isVector())
108    return getCopyFromPartsVector(DAG, DL, Parts, NumParts,
109                                  PartVT, ValueVT, V);
110
111  assert(NumParts > 0 && "No parts to assemble!");
112  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
113  SDValue Val = Parts[0];
114
115  if (NumParts > 1) {
116    // Assemble the value from multiple parts.
117    if (ValueVT.isInteger()) {
118      unsigned PartBits = PartVT.getSizeInBits();
119      unsigned ValueBits = ValueVT.getSizeInBits();
120
121      // Assemble the power of 2 part.
122      unsigned RoundParts = NumParts & (NumParts - 1) ?
123        1 << Log2_32(NumParts) : NumParts;
124      unsigned RoundBits = PartBits * RoundParts;
125      EVT RoundVT = RoundBits == ValueBits ?
126        ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
127      SDValue Lo, Hi;
128
129      EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
130
131      if (RoundParts > 2) {
132        Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2,
133                              PartVT, HalfVT, V);
134        Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2,
135                              RoundParts / 2, PartVT, HalfVT, V);
136      } else {
137        Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
138        Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
139      }
140
141      if (TLI.isBigEndian())
142        std::swap(Lo, Hi);
143
144      Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
145
146      if (RoundParts < NumParts) {
147        // Assemble the trailing non-power-of-2 part.
148        unsigned OddParts = NumParts - RoundParts;
149        EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
150        Hi = getCopyFromParts(DAG, DL,
151                              Parts + RoundParts, OddParts, PartVT, OddVT, V);
152
153        // Combine the round and odd parts.
154        Lo = Val;
155        if (TLI.isBigEndian())
156          std::swap(Lo, Hi);
157        EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
158        Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
159        Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
160                         DAG.getConstant(Lo.getValueType().getSizeInBits(),
161                                         TLI.getPointerTy()));
162        Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
163        Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
164      }
165    } else if (PartVT.isFloatingPoint()) {
166      // FP split into multiple FP parts (for ppcf128)
167      assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 &&
168             "Unexpected split");
169      SDValue Lo, Hi;
170      Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
171      Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
172      if (TLI.isBigEndian())
173        std::swap(Lo, Hi);
174      Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
175    } else {
176      // FP split into integer parts (soft fp)
177      assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
178             !PartVT.isVector() && "Unexpected split");
179      EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
180      Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V);
181    }
182  }
183
184  // There is now one part, held in Val.  Correct it to match ValueVT.
185  EVT PartEVT = Val.getValueType();
186
187  if (PartEVT == ValueVT)
188    return Val;
189
190  if (PartEVT.isInteger() && ValueVT.isInteger()) {
191    if (ValueVT.bitsLT(PartEVT)) {
192      // For a truncate, see if we have any information to
193      // indicate whether the truncated bits will always be
194      // zero or sign-extension.
195      if (AssertOp != ISD::DELETED_NODE)
196        Val = DAG.getNode(AssertOp, DL, PartEVT, Val,
197                          DAG.getValueType(ValueVT));
198      return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
199    }
200    return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
201  }
202
203  if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
204    // FP_ROUND's are always exact here.
205    if (ValueVT.bitsLT(Val.getValueType()))
206      return DAG.getNode(ISD::FP_ROUND, DL, ValueVT, Val,
207                         DAG.getTargetConstant(1, TLI.getPointerTy()));
208
209    return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
210  }
211
212  if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits())
213    return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
214
215  llvm_unreachable("Unknown mismatch!");
216}
217
218static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V,
219                                              const Twine &ErrMsg) {
220  const Instruction *I = dyn_cast_or_null<Instruction>(V);
221  if (!V)
222    return Ctx.emitError(ErrMsg);
223
224  const char *AsmError = ", possible invalid constraint for vector type";
225  if (const CallInst *CI = dyn_cast<CallInst>(I))
226    if (isa<InlineAsm>(CI->getCalledValue()))
227      return Ctx.emitError(I, ErrMsg + AsmError);
228
229  return Ctx.emitError(I, ErrMsg);
230}
231
232/// getCopyFromPartsVector - Create a value that contains the specified legal
233/// parts combined into the value they represent.  If the parts combine to a
234/// type larger then ValueVT then AssertOp can be used to specify whether the
235/// extra bits are known to be zero (ISD::AssertZext) or sign extended from
236/// ValueVT (ISD::AssertSext).
237static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL,
238                                      const SDValue *Parts, unsigned NumParts,
239                                      MVT PartVT, EVT ValueVT, const Value *V) {
240  assert(ValueVT.isVector() && "Not a vector value");
241  assert(NumParts > 0 && "No parts to assemble!");
242  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
243  SDValue Val = Parts[0];
244
245  // Handle a multi-element vector.
246  if (NumParts > 1) {
247    EVT IntermediateVT;
248    MVT RegisterVT;
249    unsigned NumIntermediates;
250    unsigned NumRegs =
251    TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
252                               NumIntermediates, RegisterVT);
253    assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
254    NumParts = NumRegs; // Silence a compiler warning.
255    assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
256    assert(RegisterVT == Parts[0].getSimpleValueType() &&
257           "Part type doesn't match part!");
258
259    // Assemble the parts into intermediate operands.
260    SmallVector<SDValue, 8> Ops(NumIntermediates);
261    if (NumIntermediates == NumParts) {
262      // If the register was not expanded, truncate or copy the value,
263      // as appropriate.
264      for (unsigned i = 0; i != NumParts; ++i)
265        Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1,
266                                  PartVT, IntermediateVT, V);
267    } else if (NumParts > 0) {
268      // If the intermediate type was expanded, build the intermediate
269      // operands from the parts.
270      assert(NumParts % NumIntermediates == 0 &&
271             "Must expand into a divisible number of parts!");
272      unsigned Factor = NumParts / NumIntermediates;
273      for (unsigned i = 0; i != NumIntermediates; ++i)
274        Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor,
275                                  PartVT, IntermediateVT, V);
276    }
277
278    // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
279    // intermediate operands.
280    Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS
281                                                : ISD::BUILD_VECTOR,
282                      DL, ValueVT, Ops);
283  }
284
285  // There is now one part, held in Val.  Correct it to match ValueVT.
286  EVT PartEVT = Val.getValueType();
287
288  if (PartEVT == ValueVT)
289    return Val;
290
291  if (PartEVT.isVector()) {
292    // If the element type of the source/dest vectors are the same, but the
293    // parts vector has more elements than the value vector, then we have a
294    // vector widening case (e.g. <2 x float> -> <4 x float>).  Extract the
295    // elements we want.
296    if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) {
297      assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() &&
298             "Cannot narrow, it would be a lossy transformation");
299      return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
300                         DAG.getConstant(0, TLI.getVectorIdxTy()));
301    }
302
303    // Vector/Vector bitcast.
304    if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits())
305      return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
306
307    assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() &&
308      "Cannot handle this kind of promotion");
309    // Promoted vector extract
310    bool Smaller = ValueVT.bitsLE(PartEVT);
311    return DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
312                       DL, ValueVT, Val);
313
314  }
315
316  // Trivial bitcast if the types are the same size and the destination
317  // vector type is legal.
318  if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() &&
319      TLI.isTypeLegal(ValueVT))
320    return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
321
322  // Handle cases such as i8 -> <1 x i1>
323  if (ValueVT.getVectorNumElements() != 1) {
324    diagnosePossiblyInvalidConstraint(*DAG.getContext(), V,
325                                      "non-trivial scalar-to-vector conversion");
326    return DAG.getUNDEF(ValueVT);
327  }
328
329  if (ValueVT.getVectorNumElements() == 1 &&
330      ValueVT.getVectorElementType() != PartEVT) {
331    bool Smaller = ValueVT.bitsLE(PartEVT);
332    Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
333                       DL, ValueVT.getScalarType(), Val);
334  }
335
336  return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val);
337}
338
339static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc dl,
340                                 SDValue Val, SDValue *Parts, unsigned NumParts,
341                                 MVT PartVT, const Value *V);
342
343/// getCopyToParts - Create a series of nodes that contain the specified value
344/// split into legal parts.  If the parts contain more bits than Val, then, for
345/// integers, ExtendKind can be used to specify how to generate the extra bits.
346static void getCopyToParts(SelectionDAG &DAG, SDLoc DL,
347                           SDValue Val, SDValue *Parts, unsigned NumParts,
348                           MVT PartVT, const Value *V,
349                           ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
350  EVT ValueVT = Val.getValueType();
351
352  // Handle the vector case separately.
353  if (ValueVT.isVector())
354    return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V);
355
356  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
357  unsigned PartBits = PartVT.getSizeInBits();
358  unsigned OrigNumParts = NumParts;
359  assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!");
360
361  if (NumParts == 0)
362    return;
363
364  assert(!ValueVT.isVector() && "Vector case handled elsewhere");
365  EVT PartEVT = PartVT;
366  if (PartEVT == ValueVT) {
367    assert(NumParts == 1 && "No-op copy with multiple parts!");
368    Parts[0] = Val;
369    return;
370  }
371
372  if (NumParts * PartBits > ValueVT.getSizeInBits()) {
373    // If the parts cover more bits than the value has, promote the value.
374    if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
375      assert(NumParts == 1 && "Do not know what to promote to!");
376      Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
377    } else {
378      assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
379             ValueVT.isInteger() &&
380             "Unknown mismatch!");
381      ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
382      Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
383      if (PartVT == MVT::x86mmx)
384        Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
385    }
386  } else if (PartBits == ValueVT.getSizeInBits()) {
387    // Different types of the same size.
388    assert(NumParts == 1 && PartEVT != ValueVT);
389    Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
390  } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
391    // If the parts cover less bits than value has, truncate the value.
392    assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
393           ValueVT.isInteger() &&
394           "Unknown mismatch!");
395    ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
396    Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
397    if (PartVT == MVT::x86mmx)
398      Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
399  }
400
401  // The value may have changed - recompute ValueVT.
402  ValueVT = Val.getValueType();
403  assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
404         "Failed to tile the value with PartVT!");
405
406  if (NumParts == 1) {
407    if (PartEVT != ValueVT)
408      diagnosePossiblyInvalidConstraint(*DAG.getContext(), V,
409                                        "scalar-to-vector conversion failed");
410
411    Parts[0] = Val;
412    return;
413  }
414
415  // Expand the value into multiple parts.
416  if (NumParts & (NumParts - 1)) {
417    // The number of parts is not a power of 2.  Split off and copy the tail.
418    assert(PartVT.isInteger() && ValueVT.isInteger() &&
419           "Do not know what to expand to!");
420    unsigned RoundParts = 1 << Log2_32(NumParts);
421    unsigned RoundBits = RoundParts * PartBits;
422    unsigned OddParts = NumParts - RoundParts;
423    SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
424                                 DAG.getIntPtrConstant(RoundBits));
425    getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V);
426
427    if (TLI.isBigEndian())
428      // The odd parts were reversed by getCopyToParts - unreverse them.
429      std::reverse(Parts + RoundParts, Parts + NumParts);
430
431    NumParts = RoundParts;
432    ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
433    Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
434  }
435
436  // The number of parts is a power of 2.  Repeatedly bisect the value using
437  // EXTRACT_ELEMENT.
438  Parts[0] = DAG.getNode(ISD::BITCAST, DL,
439                         EVT::getIntegerVT(*DAG.getContext(),
440                                           ValueVT.getSizeInBits()),
441                         Val);
442
443  for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
444    for (unsigned i = 0; i < NumParts; i += StepSize) {
445      unsigned ThisBits = StepSize * PartBits / 2;
446      EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
447      SDValue &Part0 = Parts[i];
448      SDValue &Part1 = Parts[i+StepSize/2];
449
450      Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
451                          ThisVT, Part0, DAG.getIntPtrConstant(1));
452      Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
453                          ThisVT, Part0, DAG.getIntPtrConstant(0));
454
455      if (ThisBits == PartBits && ThisVT != PartVT) {
456        Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
457        Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
458      }
459    }
460  }
461
462  if (TLI.isBigEndian())
463    std::reverse(Parts, Parts + OrigNumParts);
464}
465
466
467/// getCopyToPartsVector - Create a series of nodes that contain the specified
468/// value split into legal parts.
469static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc DL,
470                                 SDValue Val, SDValue *Parts, unsigned NumParts,
471                                 MVT PartVT, const Value *V) {
472  EVT ValueVT = Val.getValueType();
473  assert(ValueVT.isVector() && "Not a vector");
474  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
475
476  if (NumParts == 1) {
477    EVT PartEVT = PartVT;
478    if (PartEVT == ValueVT) {
479      // Nothing to do.
480    } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
481      // Bitconvert vector->vector case.
482      Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
483    } else if (PartVT.isVector() &&
484               PartEVT.getVectorElementType() == ValueVT.getVectorElementType() &&
485               PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements()) {
486      EVT ElementVT = PartVT.getVectorElementType();
487      // Vector widening case, e.g. <2 x float> -> <4 x float>.  Shuffle in
488      // undef elements.
489      SmallVector<SDValue, 16> Ops;
490      for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i)
491        Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
492                                  ElementVT, Val, DAG.getConstant(i,
493                                                  TLI.getVectorIdxTy())));
494
495      for (unsigned i = ValueVT.getVectorNumElements(),
496           e = PartVT.getVectorNumElements(); i != e; ++i)
497        Ops.push_back(DAG.getUNDEF(ElementVT));
498
499      Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, Ops);
500
501      // FIXME: Use CONCAT for 2x -> 4x.
502
503      //SDValue UndefElts = DAG.getUNDEF(VectorTy);
504      //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts);
505    } else if (PartVT.isVector() &&
506               PartEVT.getVectorElementType().bitsGE(
507                 ValueVT.getVectorElementType()) &&
508               PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) {
509
510      // Promoted vector extract
511      bool Smaller = PartEVT.bitsLE(ValueVT);
512      Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
513                        DL, PartVT, Val);
514    } else{
515      // Vector -> scalar conversion.
516      assert(ValueVT.getVectorNumElements() == 1 &&
517             "Only trivial vector-to-scalar conversions should get here!");
518      Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
519                        PartVT, Val, DAG.getConstant(0, TLI.getVectorIdxTy()));
520
521      bool Smaller = ValueVT.bitsLE(PartVT);
522      Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
523                         DL, PartVT, Val);
524    }
525
526    Parts[0] = Val;
527    return;
528  }
529
530  // Handle a multi-element vector.
531  EVT IntermediateVT;
532  MVT RegisterVT;
533  unsigned NumIntermediates;
534  unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT,
535                                                IntermediateVT,
536                                                NumIntermediates, RegisterVT);
537  unsigned NumElements = ValueVT.getVectorNumElements();
538
539  assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
540  NumParts = NumRegs; // Silence a compiler warning.
541  assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
542
543  // Split the vector into intermediate operands.
544  SmallVector<SDValue, 8> Ops(NumIntermediates);
545  for (unsigned i = 0; i != NumIntermediates; ++i) {
546    if (IntermediateVT.isVector())
547      Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL,
548                           IntermediateVT, Val,
549                   DAG.getConstant(i * (NumElements / NumIntermediates),
550                                   TLI.getVectorIdxTy()));
551    else
552      Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
553                           IntermediateVT, Val,
554                           DAG.getConstant(i, TLI.getVectorIdxTy()));
555  }
556
557  // Split the intermediate operands into legal parts.
558  if (NumParts == NumIntermediates) {
559    // If the register was not expanded, promote or copy the value,
560    // as appropriate.
561    for (unsigned i = 0; i != NumParts; ++i)
562      getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V);
563  } else if (NumParts > 0) {
564    // If the intermediate type was expanded, split each the value into
565    // legal parts.
566    assert(NumParts % NumIntermediates == 0 &&
567           "Must expand into a divisible number of parts!");
568    unsigned Factor = NumParts / NumIntermediates;
569    for (unsigned i = 0; i != NumIntermediates; ++i)
570      getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT, V);
571  }
572}
573
574namespace {
575  /// RegsForValue - This struct represents the registers (physical or virtual)
576  /// that a particular set of values is assigned, and the type information
577  /// about the value. The most common situation is to represent one value at a
578  /// time, but struct or array values are handled element-wise as multiple
579  /// values.  The splitting of aggregates is performed recursively, so that we
580  /// never have aggregate-typed registers. The values at this point do not
581  /// necessarily have legal types, so each value may require one or more
582  /// registers of some legal type.
583  ///
584  struct RegsForValue {
585    /// ValueVTs - The value types of the values, which may not be legal, and
586    /// may need be promoted or synthesized from one or more registers.
587    ///
588    SmallVector<EVT, 4> ValueVTs;
589
590    /// RegVTs - The value types of the registers. This is the same size as
591    /// ValueVTs and it records, for each value, what the type of the assigned
592    /// register or registers are. (Individual values are never synthesized
593    /// from more than one type of register.)
594    ///
595    /// With virtual registers, the contents of RegVTs is redundant with TLI's
596    /// getRegisterType member function, however when with physical registers
597    /// it is necessary to have a separate record of the types.
598    ///
599    SmallVector<MVT, 4> RegVTs;
600
601    /// Regs - This list holds the registers assigned to the values.
602    /// Each legal or promoted value requires one register, and each
603    /// expanded value requires multiple registers.
604    ///
605    SmallVector<unsigned, 4> Regs;
606
607    RegsForValue() {}
608
609    RegsForValue(const SmallVector<unsigned, 4> &regs,
610                 MVT regvt, EVT valuevt)
611      : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {}
612
613    RegsForValue(LLVMContext &Context, const TargetLowering &tli,
614                 unsigned Reg, Type *Ty) {
615      ComputeValueVTs(tli, Ty, ValueVTs);
616
617      for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
618        EVT ValueVT = ValueVTs[Value];
619        unsigned NumRegs = tli.getNumRegisters(Context, ValueVT);
620        MVT RegisterVT = tli.getRegisterType(Context, ValueVT);
621        for (unsigned i = 0; i != NumRegs; ++i)
622          Regs.push_back(Reg + i);
623        RegVTs.push_back(RegisterVT);
624        Reg += NumRegs;
625      }
626    }
627
628    /// append - Add the specified values to this one.
629    void append(const RegsForValue &RHS) {
630      ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end());
631      RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end());
632      Regs.append(RHS.Regs.begin(), RHS.Regs.end());
633    }
634
635    /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
636    /// this value and returns the result as a ValueVTs value.  This uses
637    /// Chain/Flag as the input and updates them for the output Chain/Flag.
638    /// If the Flag pointer is NULL, no flag is used.
639    SDValue getCopyFromRegs(SelectionDAG &DAG, FunctionLoweringInfo &FuncInfo,
640                            SDLoc dl,
641                            SDValue &Chain, SDValue *Flag,
642                            const Value *V = nullptr) const;
643
644    /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
645    /// specified value into the registers specified by this object.  This uses
646    /// Chain/Flag as the input and updates them for the output Chain/Flag.
647    /// If the Flag pointer is NULL, no flag is used.
648    void getCopyToRegs(SDValue Val, SelectionDAG &DAG, SDLoc dl,
649                       SDValue &Chain, SDValue *Flag, const Value *V) const;
650
651    /// AddInlineAsmOperands - Add this value to the specified inlineasm node
652    /// operand list.  This adds the code marker, matching input operand index
653    /// (if applicable), and includes the number of values added into it.
654    void AddInlineAsmOperands(unsigned Kind,
655                              bool HasMatching, unsigned MatchingIdx,
656                              SelectionDAG &DAG,
657                              std::vector<SDValue> &Ops) const;
658  };
659}
660
661/// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
662/// this value and returns the result as a ValueVT value.  This uses
663/// Chain/Flag as the input and updates them for the output Chain/Flag.
664/// If the Flag pointer is NULL, no flag is used.
665SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
666                                      FunctionLoweringInfo &FuncInfo,
667                                      SDLoc dl,
668                                      SDValue &Chain, SDValue *Flag,
669                                      const Value *V) const {
670  // A Value with type {} or [0 x %t] needs no registers.
671  if (ValueVTs.empty())
672    return SDValue();
673
674  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
675
676  // Assemble the legal parts into the final values.
677  SmallVector<SDValue, 4> Values(ValueVTs.size());
678  SmallVector<SDValue, 8> Parts;
679  for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
680    // Copy the legal parts from the registers.
681    EVT ValueVT = ValueVTs[Value];
682    unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
683    MVT RegisterVT = RegVTs[Value];
684
685    Parts.resize(NumRegs);
686    for (unsigned i = 0; i != NumRegs; ++i) {
687      SDValue P;
688      if (!Flag) {
689        P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
690      } else {
691        P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
692        *Flag = P.getValue(2);
693      }
694
695      Chain = P.getValue(1);
696      Parts[i] = P;
697
698      // If the source register was virtual and if we know something about it,
699      // add an assert node.
700      if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) ||
701          !RegisterVT.isInteger() || RegisterVT.isVector())
702        continue;
703
704      const FunctionLoweringInfo::LiveOutInfo *LOI =
705        FuncInfo.GetLiveOutRegInfo(Regs[Part+i]);
706      if (!LOI)
707        continue;
708
709      unsigned RegSize = RegisterVT.getSizeInBits();
710      unsigned NumSignBits = LOI->NumSignBits;
711      unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes();
712
713      if (NumZeroBits == RegSize) {
714        // The current value is a zero.
715        // Explicitly express that as it would be easier for
716        // optimizations to kick in.
717        Parts[i] = DAG.getConstant(0, RegisterVT);
718        continue;
719      }
720
721      // FIXME: We capture more information than the dag can represent.  For
722      // now, just use the tightest assertzext/assertsext possible.
723      bool isSExt = true;
724      EVT FromVT(MVT::Other);
725      if (NumSignBits == RegSize)
726        isSExt = true, FromVT = MVT::i1;   // ASSERT SEXT 1
727      else if (NumZeroBits >= RegSize-1)
728        isSExt = false, FromVT = MVT::i1;  // ASSERT ZEXT 1
729      else if (NumSignBits > RegSize-8)
730        isSExt = true, FromVT = MVT::i8;   // ASSERT SEXT 8
731      else if (NumZeroBits >= RegSize-8)
732        isSExt = false, FromVT = MVT::i8;  // ASSERT ZEXT 8
733      else if (NumSignBits > RegSize-16)
734        isSExt = true, FromVT = MVT::i16;  // ASSERT SEXT 16
735      else if (NumZeroBits >= RegSize-16)
736        isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16
737      else if (NumSignBits > RegSize-32)
738        isSExt = true, FromVT = MVT::i32;  // ASSERT SEXT 32
739      else if (NumZeroBits >= RegSize-32)
740        isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32
741      else
742        continue;
743
744      // Add an assertion node.
745      assert(FromVT != MVT::Other);
746      Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
747                             RegisterVT, P, DAG.getValueType(FromVT));
748    }
749
750    Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(),
751                                     NumRegs, RegisterVT, ValueVT, V);
752    Part += NumRegs;
753    Parts.clear();
754  }
755
756  return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values);
757}
758
759/// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
760/// specified value into the registers specified by this object.  This uses
761/// Chain/Flag as the input and updates them for the output Chain/Flag.
762/// If the Flag pointer is NULL, no flag is used.
763void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, SDLoc dl,
764                                 SDValue &Chain, SDValue *Flag,
765                                 const Value *V) const {
766  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
767
768  // Get the list of the values's legal parts.
769  unsigned NumRegs = Regs.size();
770  SmallVector<SDValue, 8> Parts(NumRegs);
771  for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
772    EVT ValueVT = ValueVTs[Value];
773    unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
774    MVT RegisterVT = RegVTs[Value];
775    ISD::NodeType ExtendKind =
776      TLI.isZExtFree(Val, RegisterVT)? ISD::ZERO_EXTEND: ISD::ANY_EXTEND;
777
778    getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value),
779                   &Parts[Part], NumParts, RegisterVT, V, ExtendKind);
780    Part += NumParts;
781  }
782
783  // Copy the parts into the registers.
784  SmallVector<SDValue, 8> Chains(NumRegs);
785  for (unsigned i = 0; i != NumRegs; ++i) {
786    SDValue Part;
787    if (!Flag) {
788      Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
789    } else {
790      Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
791      *Flag = Part.getValue(1);
792    }
793
794    Chains[i] = Part.getValue(0);
795  }
796
797  if (NumRegs == 1 || Flag)
798    // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
799    // flagged to it. That is the CopyToReg nodes and the user are considered
800    // a single scheduling unit. If we create a TokenFactor and return it as
801    // chain, then the TokenFactor is both a predecessor (operand) of the
802    // user as well as a successor (the TF operands are flagged to the user).
803    // c1, f1 = CopyToReg
804    // c2, f2 = CopyToReg
805    // c3     = TokenFactor c1, c2
806    // ...
807    //        = op c3, ..., f2
808    Chain = Chains[NumRegs-1];
809  else
810    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
811}
812
813/// AddInlineAsmOperands - Add this value to the specified inlineasm node
814/// operand list.  This adds the code marker and includes the number of
815/// values added into it.
816void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
817                                        unsigned MatchingIdx,
818                                        SelectionDAG &DAG,
819                                        std::vector<SDValue> &Ops) const {
820  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
821
822  unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
823  if (HasMatching)
824    Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
825  else if (!Regs.empty() &&
826           TargetRegisterInfo::isVirtualRegister(Regs.front())) {
827    // Put the register class of the virtual registers in the flag word.  That
828    // way, later passes can recompute register class constraints for inline
829    // assembly as well as normal instructions.
830    // Don't do this for tied operands that can use the regclass information
831    // from the def.
832    const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
833    const TargetRegisterClass *RC = MRI.getRegClass(Regs.front());
834    Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID());
835  }
836
837  SDValue Res = DAG.getTargetConstant(Flag, MVT::i32);
838  Ops.push_back(Res);
839
840  unsigned SP = TLI.getStackPointerRegisterToSaveRestore();
841  for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
842    unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]);
843    MVT RegisterVT = RegVTs[Value];
844    for (unsigned i = 0; i != NumRegs; ++i) {
845      assert(Reg < Regs.size() && "Mismatch in # registers expected");
846      unsigned TheReg = Regs[Reg++];
847      Ops.push_back(DAG.getRegister(TheReg, RegisterVT));
848
849      if (TheReg == SP && Code == InlineAsm::Kind_Clobber) {
850        // If we clobbered the stack pointer, MFI should know about it.
851        assert(DAG.getMachineFunction().getFrameInfo()->
852            hasInlineAsmWithSPAdjust());
853      }
854    }
855  }
856}
857
858void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa,
859                               const TargetLibraryInfo *li) {
860  AA = &aa;
861  GFI = gfi;
862  LibInfo = li;
863  DL = DAG.getTarget().getDataLayout();
864  Context = DAG.getContext();
865  LPadToCallSiteMap.clear();
866}
867
868/// clear - Clear out the current SelectionDAG and the associated
869/// state and prepare this SelectionDAGBuilder object to be used
870/// for a new block. This doesn't clear out information about
871/// additional blocks that are needed to complete switch lowering
872/// or PHI node updating; that information is cleared out as it is
873/// consumed.
874void SelectionDAGBuilder::clear() {
875  NodeMap.clear();
876  UnusedArgNodeMap.clear();
877  PendingLoads.clear();
878  PendingExports.clear();
879  CurInst = nullptr;
880  HasTailCall = false;
881  SDNodeOrder = LowestSDNodeOrder;
882}
883
884/// clearDanglingDebugInfo - Clear the dangling debug information
885/// map. This function is separated from the clear so that debug
886/// information that is dangling in a basic block can be properly
887/// resolved in a different basic block. This allows the
888/// SelectionDAG to resolve dangling debug information attached
889/// to PHI nodes.
890void SelectionDAGBuilder::clearDanglingDebugInfo() {
891  DanglingDebugInfoMap.clear();
892}
893
894/// getRoot - Return the current virtual root of the Selection DAG,
895/// flushing any PendingLoad items. This must be done before emitting
896/// a store or any other node that may need to be ordered after any
897/// prior load instructions.
898///
899SDValue SelectionDAGBuilder::getRoot() {
900  if (PendingLoads.empty())
901    return DAG.getRoot();
902
903  if (PendingLoads.size() == 1) {
904    SDValue Root = PendingLoads[0];
905    DAG.setRoot(Root);
906    PendingLoads.clear();
907    return Root;
908  }
909
910  // Otherwise, we have to make a token factor node.
911  SDValue Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other,
912                             PendingLoads);
913  PendingLoads.clear();
914  DAG.setRoot(Root);
915  return Root;
916}
917
918/// getControlRoot - Similar to getRoot, but instead of flushing all the
919/// PendingLoad items, flush all the PendingExports items. It is necessary
920/// to do this before emitting a terminator instruction.
921///
922SDValue SelectionDAGBuilder::getControlRoot() {
923  SDValue Root = DAG.getRoot();
924
925  if (PendingExports.empty())
926    return Root;
927
928  // Turn all of the CopyToReg chains into one factored node.
929  if (Root.getOpcode() != ISD::EntryToken) {
930    unsigned i = 0, e = PendingExports.size();
931    for (; i != e; ++i) {
932      assert(PendingExports[i].getNode()->getNumOperands() > 1);
933      if (PendingExports[i].getNode()->getOperand(0) == Root)
934        break;  // Don't add the root if we already indirectly depend on it.
935    }
936
937    if (i == e)
938      PendingExports.push_back(Root);
939  }
940
941  Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other,
942                     PendingExports);
943  PendingExports.clear();
944  DAG.setRoot(Root);
945  return Root;
946}
947
948void SelectionDAGBuilder::visit(const Instruction &I) {
949  // Set up outgoing PHI node register values before emitting the terminator.
950  if (isa<TerminatorInst>(&I))
951    HandlePHINodesInSuccessorBlocks(I.getParent());
952
953  ++SDNodeOrder;
954
955  CurInst = &I;
956
957  visit(I.getOpcode(), I);
958
959  if (!isa<TerminatorInst>(&I) && !HasTailCall)
960    CopyToExportRegsIfNeeded(&I);
961
962  CurInst = nullptr;
963}
964
965void SelectionDAGBuilder::visitPHI(const PHINode &) {
966  llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
967}
968
969void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
970  // Note: this doesn't use InstVisitor, because it has to work with
971  // ConstantExpr's in addition to instructions.
972  switch (Opcode) {
973  default: llvm_unreachable("Unknown instruction type encountered!");
974    // Build the switch statement using the Instruction.def file.
975#define HANDLE_INST(NUM, OPCODE, CLASS) \
976    case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break;
977#include "llvm/IR/Instruction.def"
978  }
979}
980
981// resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
982// generate the debug data structures now that we've seen its definition.
983void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
984                                                   SDValue Val) {
985  DanglingDebugInfo &DDI = DanglingDebugInfoMap[V];
986  if (DDI.getDI()) {
987    const DbgValueInst *DI = DDI.getDI();
988    DebugLoc dl = DDI.getdl();
989    unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
990    MDNode *Variable = DI->getVariable();
991    uint64_t Offset = DI->getOffset();
992    // A dbg.value for an alloca is always indirect.
993    bool IsIndirect = isa<AllocaInst>(V) || Offset != 0;
994    SDDbgValue *SDV;
995    if (Val.getNode()) {
996      if (!EmitFuncArgumentDbgValue(V, Variable, Offset, IsIndirect, Val)) {
997        SDV = DAG.getDbgValue(Variable, Val.getNode(),
998                              Val.getResNo(), IsIndirect,
999			      Offset, dl, DbgSDNodeOrder);
1000        DAG.AddDbgValue(SDV, Val.getNode(), false);
1001      }
1002    } else
1003      DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
1004    DanglingDebugInfoMap[V] = DanglingDebugInfo();
1005  }
1006}
1007
1008/// getValue - Return an SDValue for the given Value.
1009SDValue SelectionDAGBuilder::getValue(const Value *V) {
1010  // If we already have an SDValue for this value, use it. It's important
1011  // to do this first, so that we don't create a CopyFromReg if we already
1012  // have a regular SDValue.
1013  SDValue &N = NodeMap[V];
1014  if (N.getNode()) return N;
1015
1016  // If there's a virtual register allocated and initialized for this
1017  // value, use it.
1018  DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V);
1019  if (It != FuncInfo.ValueMap.end()) {
1020    unsigned InReg = It->second;
1021    RegsForValue RFV(*DAG.getContext(), *TM.getTargetLowering(),
1022                     InReg, V->getType());
1023    SDValue Chain = DAG.getEntryNode();
1024    N = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V);
1025    resolveDanglingDebugInfo(V, N);
1026    return N;
1027  }
1028
1029  // Otherwise create a new SDValue and remember it.
1030  SDValue Val = getValueImpl(V);
1031  NodeMap[V] = Val;
1032  resolveDanglingDebugInfo(V, Val);
1033  return Val;
1034}
1035
1036/// getNonRegisterValue - Return an SDValue for the given Value, but
1037/// don't look in FuncInfo.ValueMap for a virtual register.
1038SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
1039  // If we already have an SDValue for this value, use it.
1040  SDValue &N = NodeMap[V];
1041  if (N.getNode()) return N;
1042
1043  // Otherwise create a new SDValue and remember it.
1044  SDValue Val = getValueImpl(V);
1045  NodeMap[V] = Val;
1046  resolveDanglingDebugInfo(V, Val);
1047  return Val;
1048}
1049
1050/// getValueImpl - Helper function for getValue and getNonRegisterValue.
1051/// Create an SDValue for the given value.
1052SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
1053  const TargetLowering *TLI = TM.getTargetLowering();
1054
1055  if (const Constant *C = dyn_cast<Constant>(V)) {
1056    EVT VT = TLI->getValueType(V->getType(), true);
1057
1058    if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
1059      return DAG.getConstant(*CI, VT);
1060
1061    if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
1062      return DAG.getGlobalAddress(GV, getCurSDLoc(), VT);
1063
1064    if (isa<ConstantPointerNull>(C)) {
1065      unsigned AS = V->getType()->getPointerAddressSpace();
1066      return DAG.getConstant(0, TLI->getPointerTy(AS));
1067    }
1068
1069    if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
1070      return DAG.getConstantFP(*CFP, VT);
1071
1072    if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
1073      return DAG.getUNDEF(VT);
1074
1075    if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1076      visit(CE->getOpcode(), *CE);
1077      SDValue N1 = NodeMap[V];
1078      assert(N1.getNode() && "visit didn't populate the NodeMap!");
1079      return N1;
1080    }
1081
1082    if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
1083      SmallVector<SDValue, 4> Constants;
1084      for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end();
1085           OI != OE; ++OI) {
1086        SDNode *Val = getValue(*OI).getNode();
1087        // If the operand is an empty aggregate, there are no values.
1088        if (!Val) continue;
1089        // Add each leaf value from the operand to the Constants list
1090        // to form a flattened list of all the values.
1091        for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1092          Constants.push_back(SDValue(Val, i));
1093      }
1094
1095      return DAG.getMergeValues(Constants, getCurSDLoc());
1096    }
1097
1098    if (const ConstantDataSequential *CDS =
1099          dyn_cast<ConstantDataSequential>(C)) {
1100      SmallVector<SDValue, 4> Ops;
1101      for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1102        SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode();
1103        // Add each leaf value from the operand to the Constants list
1104        // to form a flattened list of all the values.
1105        for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1106          Ops.push_back(SDValue(Val, i));
1107      }
1108
1109      if (isa<ArrayType>(CDS->getType()))
1110        return DAG.getMergeValues(Ops, getCurSDLoc());
1111      return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(),
1112                                      VT, Ops);
1113    }
1114
1115    if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
1116      assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1117             "Unknown struct or array constant!");
1118
1119      SmallVector<EVT, 4> ValueVTs;
1120      ComputeValueVTs(*TLI, C->getType(), ValueVTs);
1121      unsigned NumElts = ValueVTs.size();
1122      if (NumElts == 0)
1123        return SDValue(); // empty struct
1124      SmallVector<SDValue, 4> Constants(NumElts);
1125      for (unsigned i = 0; i != NumElts; ++i) {
1126        EVT EltVT = ValueVTs[i];
1127        if (isa<UndefValue>(C))
1128          Constants[i] = DAG.getUNDEF(EltVT);
1129        else if (EltVT.isFloatingPoint())
1130          Constants[i] = DAG.getConstantFP(0, EltVT);
1131        else
1132          Constants[i] = DAG.getConstant(0, EltVT);
1133      }
1134
1135      return DAG.getMergeValues(Constants, getCurSDLoc());
1136    }
1137
1138    if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
1139      return DAG.getBlockAddress(BA, VT);
1140
1141    VectorType *VecTy = cast<VectorType>(V->getType());
1142    unsigned NumElements = VecTy->getNumElements();
1143
1144    // Now that we know the number and type of the elements, get that number of
1145    // elements into the Ops array based on what kind of constant it is.
1146    SmallVector<SDValue, 16> Ops;
1147    if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
1148      for (unsigned i = 0; i != NumElements; ++i)
1149        Ops.push_back(getValue(CV->getOperand(i)));
1150    } else {
1151      assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!");
1152      EVT EltVT = TLI->getValueType(VecTy->getElementType());
1153
1154      SDValue Op;
1155      if (EltVT.isFloatingPoint())
1156        Op = DAG.getConstantFP(0, EltVT);
1157      else
1158        Op = DAG.getConstant(0, EltVT);
1159      Ops.assign(NumElements, Op);
1160    }
1161
1162    // Create a BUILD_VECTOR node.
1163    return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), VT, Ops);
1164  }
1165
1166  // If this is a static alloca, generate it as the frameindex instead of
1167  // computation.
1168  if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1169    DenseMap<const AllocaInst*, int>::iterator SI =
1170      FuncInfo.StaticAllocaMap.find(AI);
1171    if (SI != FuncInfo.StaticAllocaMap.end())
1172      return DAG.getFrameIndex(SI->second, TLI->getPointerTy());
1173  }
1174
1175  // If this is an instruction which fast-isel has deferred, select it now.
1176  if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
1177    unsigned InReg = FuncInfo.InitializeRegForValue(Inst);
1178    RegsForValue RFV(*DAG.getContext(), *TLI, InReg, Inst->getType());
1179    SDValue Chain = DAG.getEntryNode();
1180    return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V);
1181  }
1182
1183  llvm_unreachable("Can't get register for value!");
1184}
1185
1186void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
1187  const TargetLowering *TLI = TM.getTargetLowering();
1188  SDValue Chain = getControlRoot();
1189  SmallVector<ISD::OutputArg, 8> Outs;
1190  SmallVector<SDValue, 8> OutVals;
1191
1192  if (!FuncInfo.CanLowerReturn) {
1193    unsigned DemoteReg = FuncInfo.DemoteRegister;
1194    const Function *F = I.getParent()->getParent();
1195
1196    // Emit a store of the return value through the virtual register.
1197    // Leave Outs empty so that LowerReturn won't try to load return
1198    // registers the usual way.
1199    SmallVector<EVT, 1> PtrValueVTs;
1200    ComputeValueVTs(*TLI, PointerType::getUnqual(F->getReturnType()),
1201                    PtrValueVTs);
1202
1203    SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]);
1204    SDValue RetOp = getValue(I.getOperand(0));
1205
1206    SmallVector<EVT, 4> ValueVTs;
1207    SmallVector<uint64_t, 4> Offsets;
1208    ComputeValueVTs(*TLI, I.getOperand(0)->getType(), ValueVTs, &Offsets);
1209    unsigned NumValues = ValueVTs.size();
1210
1211    SmallVector<SDValue, 4> Chains(NumValues);
1212    for (unsigned i = 0; i != NumValues; ++i) {
1213      SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(),
1214                                RetPtr.getValueType(), RetPtr,
1215                                DAG.getIntPtrConstant(Offsets[i]));
1216      Chains[i] =
1217        DAG.getStore(Chain, getCurSDLoc(),
1218                     SDValue(RetOp.getNode(), RetOp.getResNo() + i),
1219                     // FIXME: better loc info would be nice.
1220                     Add, MachinePointerInfo(), false, false, 0);
1221    }
1222
1223    Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
1224                        MVT::Other, Chains);
1225  } else if (I.getNumOperands() != 0) {
1226    SmallVector<EVT, 4> ValueVTs;
1227    ComputeValueVTs(*TLI, I.getOperand(0)->getType(), ValueVTs);
1228    unsigned NumValues = ValueVTs.size();
1229    if (NumValues) {
1230      SDValue RetOp = getValue(I.getOperand(0));
1231      for (unsigned j = 0, f = NumValues; j != f; ++j) {
1232        EVT VT = ValueVTs[j];
1233
1234        ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1235
1236        const Function *F = I.getParent()->getParent();
1237        if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex,
1238                                            Attribute::SExt))
1239          ExtendKind = ISD::SIGN_EXTEND;
1240        else if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex,
1241                                                 Attribute::ZExt))
1242          ExtendKind = ISD::ZERO_EXTEND;
1243
1244        if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
1245          VT = TLI->getTypeForExtArgOrReturn(VT.getSimpleVT(), ExtendKind);
1246
1247        unsigned NumParts = TLI->getNumRegisters(*DAG.getContext(), VT);
1248        MVT PartVT = TLI->getRegisterType(*DAG.getContext(), VT);
1249        SmallVector<SDValue, 4> Parts(NumParts);
1250        getCopyToParts(DAG, getCurSDLoc(),
1251                       SDValue(RetOp.getNode(), RetOp.getResNo() + j),
1252                       &Parts[0], NumParts, PartVT, &I, ExtendKind);
1253
1254        // 'inreg' on function refers to return value
1255        ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1256        if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex,
1257                                            Attribute::InReg))
1258          Flags.setInReg();
1259
1260        // Propagate extension type if any
1261        if (ExtendKind == ISD::SIGN_EXTEND)
1262          Flags.setSExt();
1263        else if (ExtendKind == ISD::ZERO_EXTEND)
1264          Flags.setZExt();
1265
1266        for (unsigned i = 0; i < NumParts; ++i) {
1267          Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(),
1268                                        VT, /*isfixed=*/true, 0, 0));
1269          OutVals.push_back(Parts[i]);
1270        }
1271      }
1272    }
1273  }
1274
1275  bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
1276  CallingConv::ID CallConv =
1277    DAG.getMachineFunction().getFunction()->getCallingConv();
1278  Chain = TM.getTargetLowering()->LowerReturn(Chain, CallConv, isVarArg,
1279                                              Outs, OutVals, getCurSDLoc(),
1280                                              DAG);
1281
1282  // Verify that the target's LowerReturn behaved as expected.
1283  assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
1284         "LowerReturn didn't return a valid chain!");
1285
1286  // Update the DAG with the new chain value resulting from return lowering.
1287  DAG.setRoot(Chain);
1288}
1289
1290/// CopyToExportRegsIfNeeded - If the given value has virtual registers
1291/// created for it, emit nodes to copy the value into the virtual
1292/// registers.
1293void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
1294  // Skip empty types
1295  if (V->getType()->isEmptyTy())
1296    return;
1297
1298  DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
1299  if (VMI != FuncInfo.ValueMap.end()) {
1300    assert(!V->use_empty() && "Unused value assigned virtual registers!");
1301    CopyValueToVirtualRegister(V, VMI->second);
1302  }
1303}
1304
1305/// ExportFromCurrentBlock - If this condition isn't known to be exported from
1306/// the current basic block, add it to ValueMap now so that we'll get a
1307/// CopyTo/FromReg.
1308void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
1309  // No need to export constants.
1310  if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
1311
1312  // Already exported?
1313  if (FuncInfo.isExportedInst(V)) return;
1314
1315  unsigned Reg = FuncInfo.InitializeRegForValue(V);
1316  CopyValueToVirtualRegister(V, Reg);
1317}
1318
1319bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
1320                                                     const BasicBlock *FromBB) {
1321  // The operands of the setcc have to be in this block.  We don't know
1322  // how to export them from some other block.
1323  if (const Instruction *VI = dyn_cast<Instruction>(V)) {
1324    // Can export from current BB.
1325    if (VI->getParent() == FromBB)
1326      return true;
1327
1328    // Is already exported, noop.
1329    return FuncInfo.isExportedInst(V);
1330  }
1331
1332  // If this is an argument, we can export it if the BB is the entry block or
1333  // if it is already exported.
1334  if (isa<Argument>(V)) {
1335    if (FromBB == &FromBB->getParent()->getEntryBlock())
1336      return true;
1337
1338    // Otherwise, can only export this if it is already exported.
1339    return FuncInfo.isExportedInst(V);
1340  }
1341
1342  // Otherwise, constants can always be exported.
1343  return true;
1344}
1345
1346/// Return branch probability calculated by BranchProbabilityInfo for IR blocks.
1347uint32_t SelectionDAGBuilder::getEdgeWeight(const MachineBasicBlock *Src,
1348                                            const MachineBasicBlock *Dst) const {
1349  BranchProbabilityInfo *BPI = FuncInfo.BPI;
1350  if (!BPI)
1351    return 0;
1352  const BasicBlock *SrcBB = Src->getBasicBlock();
1353  const BasicBlock *DstBB = Dst->getBasicBlock();
1354  return BPI->getEdgeWeight(SrcBB, DstBB);
1355}
1356
1357void SelectionDAGBuilder::
1358addSuccessorWithWeight(MachineBasicBlock *Src, MachineBasicBlock *Dst,
1359                       uint32_t Weight /* = 0 */) {
1360  if (!Weight)
1361    Weight = getEdgeWeight(Src, Dst);
1362  Src->addSuccessor(Dst, Weight);
1363}
1364
1365
1366static bool InBlock(const Value *V, const BasicBlock *BB) {
1367  if (const Instruction *I = dyn_cast<Instruction>(V))
1368    return I->getParent() == BB;
1369  return true;
1370}
1371
1372/// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
1373/// This function emits a branch and is used at the leaves of an OR or an
1374/// AND operator tree.
1375///
1376void
1377SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
1378                                                  MachineBasicBlock *TBB,
1379                                                  MachineBasicBlock *FBB,
1380                                                  MachineBasicBlock *CurBB,
1381                                                  MachineBasicBlock *SwitchBB,
1382                                                  uint32_t TWeight,
1383                                                  uint32_t FWeight) {
1384  const BasicBlock *BB = CurBB->getBasicBlock();
1385
1386  // If the leaf of the tree is a comparison, merge the condition into
1387  // the caseblock.
1388  if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
1389    // The operands of the cmp have to be in this block.  We don't know
1390    // how to export them from some other block.  If this is the first block
1391    // of the sequence, no exporting is needed.
1392    if (CurBB == SwitchBB ||
1393        (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
1394         isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
1395      ISD::CondCode Condition;
1396      if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
1397        Condition = getICmpCondCode(IC->getPredicate());
1398      } else if (const FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) {
1399        Condition = getFCmpCondCode(FC->getPredicate());
1400        if (TM.Options.NoNaNsFPMath)
1401          Condition = getFCmpCodeWithoutNaN(Condition);
1402      } else {
1403        Condition = ISD::SETEQ; // silence warning.
1404        llvm_unreachable("Unknown compare instruction");
1405      }
1406
1407      CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr,
1408                   TBB, FBB, CurBB, TWeight, FWeight);
1409      SwitchCases.push_back(CB);
1410      return;
1411    }
1412  }
1413
1414  // Create a CaseBlock record representing this branch.
1415  CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()),
1416               nullptr, TBB, FBB, CurBB, TWeight, FWeight);
1417  SwitchCases.push_back(CB);
1418}
1419
1420/// Scale down both weights to fit into uint32_t.
1421static void ScaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) {
1422  uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse;
1423  uint32_t Scale = (NewMax / UINT32_MAX) + 1;
1424  NewTrue = NewTrue / Scale;
1425  NewFalse = NewFalse / Scale;
1426}
1427
1428/// FindMergedConditions - If Cond is an expression like
1429void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
1430                                               MachineBasicBlock *TBB,
1431                                               MachineBasicBlock *FBB,
1432                                               MachineBasicBlock *CurBB,
1433                                               MachineBasicBlock *SwitchBB,
1434                                               unsigned Opc, uint32_t TWeight,
1435                                               uint32_t FWeight) {
1436  // If this node is not part of the or/and tree, emit it as a branch.
1437  const Instruction *BOp = dyn_cast<Instruction>(Cond);
1438  if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
1439      (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() ||
1440      BOp->getParent() != CurBB->getBasicBlock() ||
1441      !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
1442      !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
1443    EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB,
1444                                 TWeight, FWeight);
1445    return;
1446  }
1447
1448  //  Create TmpBB after CurBB.
1449  MachineFunction::iterator BBI = CurBB;
1450  MachineFunction &MF = DAG.getMachineFunction();
1451  MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
1452  CurBB->getParent()->insert(++BBI, TmpBB);
1453
1454  if (Opc == Instruction::Or) {
1455    // Codegen X | Y as:
1456    // BB1:
1457    //   jmp_if_X TBB
1458    //   jmp TmpBB
1459    // TmpBB:
1460    //   jmp_if_Y TBB
1461    //   jmp FBB
1462    //
1463
1464    // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
1465    // The requirement is that
1466    //   TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
1467    //     = TrueProb for orignal BB.
1468    // Assuming the orignal weights are A and B, one choice is to set BB1's
1469    // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice
1470    // assumes that
1471    //   TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
1472    // Another choice is to assume TrueProb for BB1 equals to TrueProb for
1473    // TmpBB, but the math is more complicated.
1474
1475    uint64_t NewTrueWeight = TWeight;
1476    uint64_t NewFalseWeight = (uint64_t)TWeight + 2 * (uint64_t)FWeight;
1477    ScaleWeights(NewTrueWeight, NewFalseWeight);
1478    // Emit the LHS condition.
1479    FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc,
1480                         NewTrueWeight, NewFalseWeight);
1481
1482    NewTrueWeight = TWeight;
1483    NewFalseWeight = 2 * (uint64_t)FWeight;
1484    ScaleWeights(NewTrueWeight, NewFalseWeight);
1485    // Emit the RHS condition into TmpBB.
1486    FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc,
1487                         NewTrueWeight, NewFalseWeight);
1488  } else {
1489    assert(Opc == Instruction::And && "Unknown merge op!");
1490    // Codegen X & Y as:
1491    // BB1:
1492    //   jmp_if_X TmpBB
1493    //   jmp FBB
1494    // TmpBB:
1495    //   jmp_if_Y TBB
1496    //   jmp FBB
1497    //
1498    //  This requires creation of TmpBB after CurBB.
1499
1500    // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
1501    // The requirement is that
1502    //   FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
1503    //     = FalseProb for orignal BB.
1504    // Assuming the orignal weights are A and B, one choice is to set BB1's
1505    // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice
1506    // assumes that
1507    //   FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB.
1508
1509    uint64_t NewTrueWeight = 2 * (uint64_t)TWeight + (uint64_t)FWeight;
1510    uint64_t NewFalseWeight = FWeight;
1511    ScaleWeights(NewTrueWeight, NewFalseWeight);
1512    // Emit the LHS condition.
1513    FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc,
1514                         NewTrueWeight, NewFalseWeight);
1515
1516    NewTrueWeight = 2 * (uint64_t)TWeight;
1517    NewFalseWeight = FWeight;
1518    ScaleWeights(NewTrueWeight, NewFalseWeight);
1519    // Emit the RHS condition into TmpBB.
1520    FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc,
1521                         NewTrueWeight, NewFalseWeight);
1522  }
1523}
1524
1525/// If the set of cases should be emitted as a series of branches, return true.
1526/// If we should emit this as a bunch of and/or'd together conditions, return
1527/// false.
1528bool
1529SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) {
1530  if (Cases.size() != 2) return true;
1531
1532  // If this is two comparisons of the same values or'd or and'd together, they
1533  // will get folded into a single comparison, so don't emit two blocks.
1534  if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
1535       Cases[0].CmpRHS == Cases[1].CmpRHS) ||
1536      (Cases[0].CmpRHS == Cases[1].CmpLHS &&
1537       Cases[0].CmpLHS == Cases[1].CmpRHS)) {
1538    return false;
1539  }
1540
1541  // Handle: (X != null) | (Y != null) --> (X|Y) != 0
1542  // Handle: (X == null) & (Y == null) --> (X|Y) == 0
1543  if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
1544      Cases[0].CC == Cases[1].CC &&
1545      isa<Constant>(Cases[0].CmpRHS) &&
1546      cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
1547    if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
1548      return false;
1549    if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
1550      return false;
1551  }
1552
1553  return true;
1554}
1555
1556void SelectionDAGBuilder::visitBr(const BranchInst &I) {
1557  MachineBasicBlock *BrMBB = FuncInfo.MBB;
1558
1559  // Update machine-CFG edges.
1560  MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
1561
1562  // Figure out which block is immediately after the current one.
1563  MachineBasicBlock *NextBlock = nullptr;
1564  MachineFunction::iterator BBI = BrMBB;
1565  if (++BBI != FuncInfo.MF->end())
1566    NextBlock = BBI;
1567
1568  if (I.isUnconditional()) {
1569    // Update machine-CFG edges.
1570    BrMBB->addSuccessor(Succ0MBB);
1571
1572    // If this is not a fall-through branch or optimizations are switched off,
1573    // emit the branch.
1574    if (Succ0MBB != NextBlock || TM.getOptLevel() == CodeGenOpt::None)
1575      DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
1576                              MVT::Other, getControlRoot(),
1577                              DAG.getBasicBlock(Succ0MBB)));
1578
1579    return;
1580  }
1581
1582  // If this condition is one of the special cases we handle, do special stuff
1583  // now.
1584  const Value *CondVal = I.getCondition();
1585  MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
1586
1587  // If this is a series of conditions that are or'd or and'd together, emit
1588  // this as a sequence of branches instead of setcc's with and/or operations.
1589  // As long as jumps are not expensive, this should improve performance.
1590  // For example, instead of something like:
1591  //     cmp A, B
1592  //     C = seteq
1593  //     cmp D, E
1594  //     F = setle
1595  //     or C, F
1596  //     jnz foo
1597  // Emit:
1598  //     cmp A, B
1599  //     je foo
1600  //     cmp D, E
1601  //     jle foo
1602  //
1603  if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
1604    if (!TM.getTargetLowering()->isJumpExpensive() &&
1605        BOp->hasOneUse() &&
1606        (BOp->getOpcode() == Instruction::And ||
1607         BOp->getOpcode() == Instruction::Or)) {
1608      FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB,
1609                           BOp->getOpcode(), getEdgeWeight(BrMBB, Succ0MBB),
1610                           getEdgeWeight(BrMBB, Succ1MBB));
1611      // If the compares in later blocks need to use values not currently
1612      // exported from this block, export them now.  This block should always
1613      // be the first entry.
1614      assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
1615
1616      // Allow some cases to be rejected.
1617      if (ShouldEmitAsBranches(SwitchCases)) {
1618        for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
1619          ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
1620          ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
1621        }
1622
1623        // Emit the branch for this block.
1624        visitSwitchCase(SwitchCases[0], BrMBB);
1625        SwitchCases.erase(SwitchCases.begin());
1626        return;
1627      }
1628
1629      // Okay, we decided not to do this, remove any inserted MBB's and clear
1630      // SwitchCases.
1631      for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
1632        FuncInfo.MF->erase(SwitchCases[i].ThisBB);
1633
1634      SwitchCases.clear();
1635    }
1636  }
1637
1638  // Create a CaseBlock record representing this branch.
1639  CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
1640               nullptr, Succ0MBB, Succ1MBB, BrMBB);
1641
1642  // Use visitSwitchCase to actually insert the fast branch sequence for this
1643  // cond branch.
1644  visitSwitchCase(CB, BrMBB);
1645}
1646
1647/// visitSwitchCase - Emits the necessary code to represent a single node in
1648/// the binary search tree resulting from lowering a switch instruction.
1649void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
1650                                          MachineBasicBlock *SwitchBB) {
1651  SDValue Cond;
1652  SDValue CondLHS = getValue(CB.CmpLHS);
1653  SDLoc dl = getCurSDLoc();
1654
1655  // Build the setcc now.
1656  if (!CB.CmpMHS) {
1657    // Fold "(X == true)" to X and "(X == false)" to !X to
1658    // handle common cases produced by branch lowering.
1659    if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
1660        CB.CC == ISD::SETEQ)
1661      Cond = CondLHS;
1662    else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
1663             CB.CC == ISD::SETEQ) {
1664      SDValue True = DAG.getConstant(1, CondLHS.getValueType());
1665      Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
1666    } else
1667      Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
1668  } else {
1669    assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
1670
1671    const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
1672    const APInt& High  = cast<ConstantInt>(CB.CmpRHS)->getValue();
1673
1674    SDValue CmpOp = getValue(CB.CmpMHS);
1675    EVT VT = CmpOp.getValueType();
1676
1677    if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
1678      Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, VT),
1679                          ISD::SETLE);
1680    } else {
1681      SDValue SUB = DAG.getNode(ISD::SUB, dl,
1682                                VT, CmpOp, DAG.getConstant(Low, VT));
1683      Cond = DAG.getSetCC(dl, MVT::i1, SUB,
1684                          DAG.getConstant(High-Low, VT), ISD::SETULE);
1685    }
1686  }
1687
1688  // Update successor info
1689  addSuccessorWithWeight(SwitchBB, CB.TrueBB, CB.TrueWeight);
1690  // TrueBB and FalseBB are always different unless the incoming IR is
1691  // degenerate. This only happens when running llc on weird IR.
1692  if (CB.TrueBB != CB.FalseBB)
1693    addSuccessorWithWeight(SwitchBB, CB.FalseBB, CB.FalseWeight);
1694
1695  // Set NextBlock to be the MBB immediately after the current one, if any.
1696  // This is used to avoid emitting unnecessary branches to the next block.
1697  MachineBasicBlock *NextBlock = nullptr;
1698  MachineFunction::iterator BBI = SwitchBB;
1699  if (++BBI != FuncInfo.MF->end())
1700    NextBlock = BBI;
1701
1702  // If the lhs block is the next block, invert the condition so that we can
1703  // fall through to the lhs instead of the rhs block.
1704  if (CB.TrueBB == NextBlock) {
1705    std::swap(CB.TrueBB, CB.FalseBB);
1706    SDValue True = DAG.getConstant(1, Cond.getValueType());
1707    Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
1708  }
1709
1710  SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
1711                               MVT::Other, getControlRoot(), Cond,
1712                               DAG.getBasicBlock(CB.TrueBB));
1713
1714  // Insert the false branch. Do this even if it's a fall through branch,
1715  // this makes it easier to do DAG optimizations which require inverting
1716  // the branch condition.
1717  BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
1718                       DAG.getBasicBlock(CB.FalseBB));
1719
1720  DAG.setRoot(BrCond);
1721}
1722
1723/// visitJumpTable - Emit JumpTable node in the current MBB
1724void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) {
1725  // Emit the code for the jump table
1726  assert(JT.Reg != -1U && "Should lower JT Header first!");
1727  EVT PTy = TM.getTargetLowering()->getPointerTy();
1728  SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(),
1729                                     JT.Reg, PTy);
1730  SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
1731  SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(),
1732                                    MVT::Other, Index.getValue(1),
1733                                    Table, Index);
1734  DAG.setRoot(BrJumpTable);
1735}
1736
1737/// visitJumpTableHeader - This function emits necessary code to produce index
1738/// in the JumpTable from switch case.
1739void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT,
1740                                               JumpTableHeader &JTH,
1741                                               MachineBasicBlock *SwitchBB) {
1742  // Subtract the lowest switch case value from the value being switched on and
1743  // conditional branch to default mbb if the result is greater than the
1744  // difference between smallest and largest cases.
1745  SDValue SwitchOp = getValue(JTH.SValue);
1746  EVT VT = SwitchOp.getValueType();
1747  SDValue Sub = DAG.getNode(ISD::SUB, getCurSDLoc(), VT, SwitchOp,
1748                            DAG.getConstant(JTH.First, VT));
1749
1750  // The SDNode we just created, which holds the value being switched on minus
1751  // the smallest case value, needs to be copied to a virtual register so it
1752  // can be used as an index into the jump table in a subsequent basic block.
1753  // This value may be smaller or larger than the target's pointer type, and
1754  // therefore require extension or truncating.
1755  const TargetLowering *TLI = TM.getTargetLowering();
1756  SwitchOp = DAG.getZExtOrTrunc(Sub, getCurSDLoc(), TLI->getPointerTy());
1757
1758  unsigned JumpTableReg = FuncInfo.CreateReg(TLI->getPointerTy());
1759  SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurSDLoc(),
1760                                    JumpTableReg, SwitchOp);
1761  JT.Reg = JumpTableReg;
1762
1763  // Emit the range check for the jump table, and branch to the default block
1764  // for the switch statement if the value being switched on exceeds the largest
1765  // case in the switch.
1766  SDValue CMP = DAG.getSetCC(getCurSDLoc(),
1767                             TLI->getSetCCResultType(*DAG.getContext(),
1768                                                     Sub.getValueType()),
1769                             Sub,
1770                             DAG.getConstant(JTH.Last - JTH.First,VT),
1771                             ISD::SETUGT);
1772
1773  // Set NextBlock to be the MBB immediately after the current one, if any.
1774  // This is used to avoid emitting unnecessary branches to the next block.
1775  MachineBasicBlock *NextBlock = nullptr;
1776  MachineFunction::iterator BBI = SwitchBB;
1777
1778  if (++BBI != FuncInfo.MF->end())
1779    NextBlock = BBI;
1780
1781  SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurSDLoc(),
1782                               MVT::Other, CopyTo, CMP,
1783                               DAG.getBasicBlock(JT.Default));
1784
1785  if (JT.MBB != NextBlock)
1786    BrCond = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, BrCond,
1787                         DAG.getBasicBlock(JT.MBB));
1788
1789  DAG.setRoot(BrCond);
1790}
1791
1792/// Codegen a new tail for a stack protector check ParentMBB which has had its
1793/// tail spliced into a stack protector check success bb.
1794///
1795/// For a high level explanation of how this fits into the stack protector
1796/// generation see the comment on the declaration of class
1797/// StackProtectorDescriptor.
1798void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD,
1799                                                  MachineBasicBlock *ParentBB) {
1800
1801  // First create the loads to the guard/stack slot for the comparison.
1802  const TargetLowering *TLI = TM.getTargetLowering();
1803  EVT PtrTy = TLI->getPointerTy();
1804
1805  MachineFrameInfo *MFI = ParentBB->getParent()->getFrameInfo();
1806  int FI = MFI->getStackProtectorIndex();
1807
1808  const Value *IRGuard = SPD.getGuard();
1809  SDValue GuardPtr = getValue(IRGuard);
1810  SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy);
1811
1812  unsigned Align =
1813    TLI->getDataLayout()->getPrefTypeAlignment(IRGuard->getType());
1814  SDValue Guard = DAG.getLoad(PtrTy, getCurSDLoc(), DAG.getEntryNode(),
1815                              GuardPtr, MachinePointerInfo(IRGuard, 0),
1816                              true, false, false, Align);
1817
1818  SDValue StackSlot = DAG.getLoad(PtrTy, getCurSDLoc(), DAG.getEntryNode(),
1819                                  StackSlotPtr,
1820                                  MachinePointerInfo::getFixedStack(FI),
1821                                  true, false, false, Align);
1822
1823  // Perform the comparison via a subtract/getsetcc.
1824  EVT VT = Guard.getValueType();
1825  SDValue Sub = DAG.getNode(ISD::SUB, getCurSDLoc(), VT, Guard, StackSlot);
1826
1827  SDValue Cmp = DAG.getSetCC(getCurSDLoc(),
1828                             TLI->getSetCCResultType(*DAG.getContext(),
1829                                                     Sub.getValueType()),
1830                             Sub, DAG.getConstant(0, VT),
1831                             ISD::SETNE);
1832
1833  // If the sub is not 0, then we know the guard/stackslot do not equal, so
1834  // branch to failure MBB.
1835  SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurSDLoc(),
1836                               MVT::Other, StackSlot.getOperand(0),
1837                               Cmp, DAG.getBasicBlock(SPD.getFailureMBB()));
1838  // Otherwise branch to success MBB.
1839  SDValue Br = DAG.getNode(ISD::BR, getCurSDLoc(),
1840                           MVT::Other, BrCond,
1841                           DAG.getBasicBlock(SPD.getSuccessMBB()));
1842
1843  DAG.setRoot(Br);
1844}
1845
1846/// Codegen the failure basic block for a stack protector check.
1847///
1848/// A failure stack protector machine basic block consists simply of a call to
1849/// __stack_chk_fail().
1850///
1851/// For a high level explanation of how this fits into the stack protector
1852/// generation see the comment on the declaration of class
1853/// StackProtectorDescriptor.
1854void
1855SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) {
1856  const TargetLowering *TLI = TM.getTargetLowering();
1857  SDValue Chain = TLI->makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL,
1858                                   MVT::isVoid, nullptr, 0, false,
1859                                   getCurSDLoc(), false, false).second;
1860  DAG.setRoot(Chain);
1861}
1862
1863/// visitBitTestHeader - This function emits necessary code to produce value
1864/// suitable for "bit tests"
1865void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
1866                                             MachineBasicBlock *SwitchBB) {
1867  // Subtract the minimum value
1868  SDValue SwitchOp = getValue(B.SValue);
1869  EVT VT = SwitchOp.getValueType();
1870  SDValue Sub = DAG.getNode(ISD::SUB, getCurSDLoc(), VT, SwitchOp,
1871                            DAG.getConstant(B.First, VT));
1872
1873  // Check range
1874  const TargetLowering *TLI = TM.getTargetLowering();
1875  SDValue RangeCmp = DAG.getSetCC(getCurSDLoc(),
1876                                  TLI->getSetCCResultType(*DAG.getContext(),
1877                                                         Sub.getValueType()),
1878                                  Sub, DAG.getConstant(B.Range, VT),
1879                                  ISD::SETUGT);
1880
1881  // Determine the type of the test operands.
1882  bool UsePtrType = false;
1883  if (!TLI->isTypeLegal(VT))
1884    UsePtrType = true;
1885  else {
1886    for (unsigned i = 0, e = B.Cases.size(); i != e; ++i)
1887      if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) {
1888        // Switch table case range are encoded into series of masks.
1889        // Just use pointer type, it's guaranteed to fit.
1890        UsePtrType = true;
1891        break;
1892      }
1893  }
1894  if (UsePtrType) {
1895    VT = TLI->getPointerTy();
1896    Sub = DAG.getZExtOrTrunc(Sub, getCurSDLoc(), VT);
1897  }
1898
1899  B.RegVT = VT.getSimpleVT();
1900  B.Reg = FuncInfo.CreateReg(B.RegVT);
1901  SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurSDLoc(),
1902                                    B.Reg, Sub);
1903
1904  // Set NextBlock to be the MBB immediately after the current one, if any.
1905  // This is used to avoid emitting unnecessary branches to the next block.
1906  MachineBasicBlock *NextBlock = nullptr;
1907  MachineFunction::iterator BBI = SwitchBB;
1908  if (++BBI != FuncInfo.MF->end())
1909    NextBlock = BBI;
1910
1911  MachineBasicBlock* MBB = B.Cases[0].ThisBB;
1912
1913  addSuccessorWithWeight(SwitchBB, B.Default);
1914  addSuccessorWithWeight(SwitchBB, MBB);
1915
1916  SDValue BrRange = DAG.getNode(ISD::BRCOND, getCurSDLoc(),
1917                                MVT::Other, CopyTo, RangeCmp,
1918                                DAG.getBasicBlock(B.Default));
1919
1920  if (MBB != NextBlock)
1921    BrRange = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, CopyTo,
1922                          DAG.getBasicBlock(MBB));
1923
1924  DAG.setRoot(BrRange);
1925}
1926
1927/// visitBitTestCase - this function produces one "bit test"
1928void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB,
1929                                           MachineBasicBlock* NextMBB,
1930                                           uint32_t BranchWeightToNext,
1931                                           unsigned Reg,
1932                                           BitTestCase &B,
1933                                           MachineBasicBlock *SwitchBB) {
1934  MVT VT = BB.RegVT;
1935  SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(),
1936                                       Reg, VT);
1937  SDValue Cmp;
1938  unsigned PopCount = CountPopulation_64(B.Mask);
1939  const TargetLowering *TLI = TM.getTargetLowering();
1940  if (PopCount == 1) {
1941    // Testing for a single bit; just compare the shift count with what it
1942    // would need to be to shift a 1 bit in that position.
1943    Cmp = DAG.getSetCC(getCurSDLoc(),
1944                       TLI->getSetCCResultType(*DAG.getContext(), VT),
1945                       ShiftOp,
1946                       DAG.getConstant(countTrailingZeros(B.Mask), VT),
1947                       ISD::SETEQ);
1948  } else if (PopCount == BB.Range) {
1949    // There is only one zero bit in the range, test for it directly.
1950    Cmp = DAG.getSetCC(getCurSDLoc(),
1951                       TLI->getSetCCResultType(*DAG.getContext(), VT),
1952                       ShiftOp,
1953                       DAG.getConstant(CountTrailingOnes_64(B.Mask), VT),
1954                       ISD::SETNE);
1955  } else {
1956    // Make desired shift
1957    SDValue SwitchVal = DAG.getNode(ISD::SHL, getCurSDLoc(), VT,
1958                                    DAG.getConstant(1, VT), ShiftOp);
1959
1960    // Emit bit tests and jumps
1961    SDValue AndOp = DAG.getNode(ISD::AND, getCurSDLoc(),
1962                                VT, SwitchVal, DAG.getConstant(B.Mask, VT));
1963    Cmp = DAG.getSetCC(getCurSDLoc(),
1964                       TLI->getSetCCResultType(*DAG.getContext(), VT),
1965                       AndOp, DAG.getConstant(0, VT),
1966                       ISD::SETNE);
1967  }
1968
1969  // The branch weight from SwitchBB to B.TargetBB is B.ExtraWeight.
1970  addSuccessorWithWeight(SwitchBB, B.TargetBB, B.ExtraWeight);
1971  // The branch weight from SwitchBB to NextMBB is BranchWeightToNext.
1972  addSuccessorWithWeight(SwitchBB, NextMBB, BranchWeightToNext);
1973
1974  SDValue BrAnd = DAG.getNode(ISD::BRCOND, getCurSDLoc(),
1975                              MVT::Other, getControlRoot(),
1976                              Cmp, DAG.getBasicBlock(B.TargetBB));
1977
1978  // Set NextBlock to be the MBB immediately after the current one, if any.
1979  // This is used to avoid emitting unnecessary branches to the next block.
1980  MachineBasicBlock *NextBlock = nullptr;
1981  MachineFunction::iterator BBI = SwitchBB;
1982  if (++BBI != FuncInfo.MF->end())
1983    NextBlock = BBI;
1984
1985  if (NextMBB != NextBlock)
1986    BrAnd = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, BrAnd,
1987                        DAG.getBasicBlock(NextMBB));
1988
1989  DAG.setRoot(BrAnd);
1990}
1991
1992void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
1993  MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
1994
1995  // Retrieve successors.
1996  MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
1997  MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)];
1998
1999  const Value *Callee(I.getCalledValue());
2000  const Function *Fn = dyn_cast<Function>(Callee);
2001  if (isa<InlineAsm>(Callee))
2002    visitInlineAsm(&I);
2003  else if (Fn && Fn->isIntrinsic()) {
2004    assert(Fn->getIntrinsicID() == Intrinsic::donothing);
2005    // Ignore invokes to @llvm.donothing: jump directly to the next BB.
2006  } else
2007    LowerCallTo(&I, getValue(Callee), false, LandingPad);
2008
2009  // If the value of the invoke is used outside of its defining block, make it
2010  // available as a virtual register.
2011  CopyToExportRegsIfNeeded(&I);
2012
2013  // Update successor info
2014  addSuccessorWithWeight(InvokeMBB, Return);
2015  addSuccessorWithWeight(InvokeMBB, LandingPad);
2016
2017  // Drop into normal successor.
2018  DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
2019                          MVT::Other, getControlRoot(),
2020                          DAG.getBasicBlock(Return)));
2021}
2022
2023void SelectionDAGBuilder::visitResume(const ResumeInst &RI) {
2024  llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!");
2025}
2026
2027void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) {
2028  assert(FuncInfo.MBB->isLandingPad() &&
2029         "Call to landingpad not in landing pad!");
2030
2031  MachineBasicBlock *MBB = FuncInfo.MBB;
2032  MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
2033  AddLandingPadInfo(LP, MMI, MBB);
2034
2035  // If there aren't registers to copy the values into (e.g., during SjLj
2036  // exceptions), then don't bother to create these DAG nodes.
2037  const TargetLowering *TLI = TM.getTargetLowering();
2038  if (TLI->getExceptionPointerRegister() == 0 &&
2039      TLI->getExceptionSelectorRegister() == 0)
2040    return;
2041
2042  SmallVector<EVT, 2> ValueVTs;
2043  ComputeValueVTs(*TLI, LP.getType(), ValueVTs);
2044  assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported");
2045
2046  // Get the two live-in registers as SDValues. The physregs have already been
2047  // copied into virtual registers.
2048  SDValue Ops[2];
2049  Ops[0] = DAG.getZExtOrTrunc(
2050    DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(),
2051                       FuncInfo.ExceptionPointerVirtReg, TLI->getPointerTy()),
2052    getCurSDLoc(), ValueVTs[0]);
2053  Ops[1] = DAG.getZExtOrTrunc(
2054    DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(),
2055                       FuncInfo.ExceptionSelectorVirtReg, TLI->getPointerTy()),
2056    getCurSDLoc(), ValueVTs[1]);
2057
2058  // Merge into one.
2059  SDValue Res = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
2060                            DAG.getVTList(ValueVTs), Ops);
2061  setValue(&LP, Res);
2062}
2063
2064/// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for
2065/// small case ranges).
2066bool SelectionDAGBuilder::handleSmallSwitchRange(CaseRec& CR,
2067                                                 CaseRecVector& WorkList,
2068                                                 const Value* SV,
2069                                                 MachineBasicBlock *Default,
2070                                                 MachineBasicBlock *SwitchBB) {
2071  // Size is the number of Cases represented by this range.
2072  size_t Size = CR.Range.second - CR.Range.first;
2073  if (Size > 3)
2074    return false;
2075
2076  // Get the MachineFunction which holds the current MBB.  This is used when
2077  // inserting any additional MBBs necessary to represent the switch.
2078  MachineFunction *CurMF = FuncInfo.MF;
2079
2080  // Figure out which block is immediately after the current one.
2081  MachineBasicBlock *NextBlock = nullptr;
2082  MachineFunction::iterator BBI = CR.CaseBB;
2083
2084  if (++BBI != FuncInfo.MF->end())
2085    NextBlock = BBI;
2086
2087  BranchProbabilityInfo *BPI = FuncInfo.BPI;
2088  // If any two of the cases has the same destination, and if one value
2089  // is the same as the other, but has one bit unset that the other has set,
2090  // use bit manipulation to do two compares at once.  For example:
2091  // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
2092  // TODO: This could be extended to merge any 2 cases in switches with 3 cases.
2093  // TODO: Handle cases where CR.CaseBB != SwitchBB.
2094  if (Size == 2 && CR.CaseBB == SwitchBB) {
2095    Case &Small = *CR.Range.first;
2096    Case &Big = *(CR.Range.second-1);
2097
2098    if (Small.Low == Small.High && Big.Low == Big.High && Small.BB == Big.BB) {
2099      const APInt& SmallValue = cast<ConstantInt>(Small.Low)->getValue();
2100      const APInt& BigValue = cast<ConstantInt>(Big.Low)->getValue();
2101
2102      // Check that there is only one bit different.
2103      if (BigValue.countPopulation() == SmallValue.countPopulation() + 1 &&
2104          (SmallValue | BigValue) == BigValue) {
2105        // Isolate the common bit.
2106        APInt CommonBit = BigValue & ~SmallValue;
2107        assert((SmallValue | CommonBit) == BigValue &&
2108               CommonBit.countPopulation() == 1 && "Not a common bit?");
2109
2110        SDValue CondLHS = getValue(SV);
2111        EVT VT = CondLHS.getValueType();
2112        SDLoc DL = getCurSDLoc();
2113
2114        SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
2115                                 DAG.getConstant(CommonBit, VT));
2116        SDValue Cond = DAG.getSetCC(DL, MVT::i1,
2117                                    Or, DAG.getConstant(BigValue, VT),
2118                                    ISD::SETEQ);
2119
2120        // Update successor info.
2121        // Both Small and Big will jump to Small.BB, so we sum up the weights.
2122        addSuccessorWithWeight(SwitchBB, Small.BB,
2123                               Small.ExtraWeight + Big.ExtraWeight);
2124        addSuccessorWithWeight(SwitchBB, Default,
2125          // The default destination is the first successor in IR.
2126          BPI ? BPI->getEdgeWeight(SwitchBB->getBasicBlock(), (unsigned)0) : 0);
2127
2128        // Insert the true branch.
2129        SDValue BrCond = DAG.getNode(ISD::BRCOND, DL, MVT::Other,
2130                                     getControlRoot(), Cond,
2131                                     DAG.getBasicBlock(Small.BB));
2132
2133        // Insert the false branch.
2134        BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
2135                             DAG.getBasicBlock(Default));
2136
2137        DAG.setRoot(BrCond);
2138        return true;
2139      }
2140    }
2141  }
2142
2143  // Order cases by weight so the most likely case will be checked first.
2144  uint32_t UnhandledWeights = 0;
2145  if (BPI) {
2146    for (CaseItr I = CR.Range.first, IE = CR.Range.second; I != IE; ++I) {
2147      uint32_t IWeight = I->ExtraWeight;
2148      UnhandledWeights += IWeight;
2149      for (CaseItr J = CR.Range.first; J < I; ++J) {
2150        uint32_t JWeight = J->ExtraWeight;
2151        if (IWeight > JWeight)
2152          std::swap(*I, *J);
2153      }
2154    }
2155  }
2156  // Rearrange the case blocks so that the last one falls through if possible.
2157  Case &BackCase = *(CR.Range.second-1);
2158  if (Size > 1 &&
2159      NextBlock && Default != NextBlock && BackCase.BB != NextBlock) {
2160    // The last case block won't fall through into 'NextBlock' if we emit the
2161    // branches in this order.  See if rearranging a case value would help.
2162    // We start at the bottom as it's the case with the least weight.
2163    for (Case *I = &*(CR.Range.second-2), *E = &*CR.Range.first-1; I != E; --I)
2164      if (I->BB == NextBlock) {
2165        std::swap(*I, BackCase);
2166        break;
2167      }
2168  }
2169
2170  // Create a CaseBlock record representing a conditional branch to
2171  // the Case's target mbb if the value being switched on SV is equal
2172  // to C.
2173  MachineBasicBlock *CurBlock = CR.CaseBB;
2174  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) {
2175    MachineBasicBlock *FallThrough;
2176    if (I != E-1) {
2177      FallThrough = CurMF->CreateMachineBasicBlock(CurBlock->getBasicBlock());
2178      CurMF->insert(BBI, FallThrough);
2179
2180      // Put SV in a virtual register to make it available from the new blocks.
2181      ExportFromCurrentBlock(SV);
2182    } else {
2183      // If the last case doesn't match, go to the default block.
2184      FallThrough = Default;
2185    }
2186
2187    const Value *RHS, *LHS, *MHS;
2188    ISD::CondCode CC;
2189    if (I->High == I->Low) {
2190      // This is just small small case range :) containing exactly 1 case
2191      CC = ISD::SETEQ;
2192      LHS = SV; RHS = I->High; MHS = nullptr;
2193    } else {
2194      CC = ISD::SETLE;
2195      LHS = I->Low; MHS = SV; RHS = I->High;
2196    }
2197
2198    // The false weight should be sum of all un-handled cases.
2199    UnhandledWeights -= I->ExtraWeight;
2200    CaseBlock CB(CC, LHS, RHS, MHS, /* truebb */ I->BB, /* falsebb */ FallThrough,
2201                 /* me */ CurBlock,
2202                 /* trueweight */ I->ExtraWeight,
2203                 /* falseweight */ UnhandledWeights);
2204
2205    // If emitting the first comparison, just call visitSwitchCase to emit the
2206    // code into the current block.  Otherwise, push the CaseBlock onto the
2207    // vector to be later processed by SDISel, and insert the node's MBB
2208    // before the next MBB.
2209    if (CurBlock == SwitchBB)
2210      visitSwitchCase(CB, SwitchBB);
2211    else
2212      SwitchCases.push_back(CB);
2213
2214    CurBlock = FallThrough;
2215  }
2216
2217  return true;
2218}
2219
2220static inline bool areJTsAllowed(const TargetLowering &TLI) {
2221  return TLI.supportJumpTables() &&
2222          (TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) ||
2223           TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other));
2224}
2225
2226static APInt ComputeRange(const APInt &First, const APInt &Last) {
2227  uint32_t BitWidth = std::max(Last.getBitWidth(), First.getBitWidth()) + 1;
2228  APInt LastExt = Last.sext(BitWidth), FirstExt = First.sext(BitWidth);
2229  return (LastExt - FirstExt + 1ULL);
2230}
2231
2232/// handleJTSwitchCase - Emit jumptable for current switch case range
2233bool SelectionDAGBuilder::handleJTSwitchCase(CaseRec &CR,
2234                                             CaseRecVector &WorkList,
2235                                             const Value *SV,
2236                                             MachineBasicBlock *Default,
2237                                             MachineBasicBlock *SwitchBB) {
2238  Case& FrontCase = *CR.Range.first;
2239  Case& BackCase  = *(CR.Range.second-1);
2240
2241  const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue();
2242  const APInt &Last  = cast<ConstantInt>(BackCase.High)->getValue();
2243
2244  APInt TSize(First.getBitWidth(), 0);
2245  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I)
2246    TSize += I->size();
2247
2248  const TargetLowering *TLI = TM.getTargetLowering();
2249  if (!areJTsAllowed(*TLI) || TSize.ult(TLI->getMinimumJumpTableEntries()))
2250    return false;
2251
2252  APInt Range = ComputeRange(First, Last);
2253  // The density is TSize / Range. Require at least 40%.
2254  // It should not be possible for IntTSize to saturate for sane code, but make
2255  // sure we handle Range saturation correctly.
2256  uint64_t IntRange = Range.getLimitedValue(UINT64_MAX/10);
2257  uint64_t IntTSize = TSize.getLimitedValue(UINT64_MAX/10);
2258  if (IntTSize * 10 < IntRange * 4)
2259    return false;
2260
2261  DEBUG(dbgs() << "Lowering jump table\n"
2262               << "First entry: " << First << ". Last entry: " << Last << '\n'
2263               << "Range: " << Range << ". Size: " << TSize << ".\n\n");
2264
2265  // Get the MachineFunction which holds the current MBB.  This is used when
2266  // inserting any additional MBBs necessary to represent the switch.
2267  MachineFunction *CurMF = FuncInfo.MF;
2268
2269  // Figure out which block is immediately after the current one.
2270  MachineFunction::iterator BBI = CR.CaseBB;
2271  ++BBI;
2272
2273  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2274
2275  // Create a new basic block to hold the code for loading the address
2276  // of the jump table, and jumping to it.  Update successor information;
2277  // we will either branch to the default case for the switch, or the jump
2278  // table.
2279  MachineBasicBlock *JumpTableBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2280  CurMF->insert(BBI, JumpTableBB);
2281
2282  addSuccessorWithWeight(CR.CaseBB, Default);
2283  addSuccessorWithWeight(CR.CaseBB, JumpTableBB);
2284
2285  // Build a vector of destination BBs, corresponding to each target
2286  // of the jump table. If the value of the jump table slot corresponds to
2287  // a case statement, push the case's BB onto the vector, otherwise, push
2288  // the default BB.
2289  std::vector<MachineBasicBlock*> DestBBs;
2290  APInt TEI = First;
2291  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) {
2292    const APInt &Low = cast<ConstantInt>(I->Low)->getValue();
2293    const APInt &High = cast<ConstantInt>(I->High)->getValue();
2294
2295    if (Low.sle(TEI) && TEI.sle(High)) {
2296      DestBBs.push_back(I->BB);
2297      if (TEI==High)
2298        ++I;
2299    } else {
2300      DestBBs.push_back(Default);
2301    }
2302  }
2303
2304  // Calculate weight for each unique destination in CR.
2305  DenseMap<MachineBasicBlock*, uint32_t> DestWeights;
2306  if (FuncInfo.BPI)
2307    for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) {
2308      DenseMap<MachineBasicBlock*, uint32_t>::iterator Itr =
2309          DestWeights.find(I->BB);
2310      if (Itr != DestWeights.end())
2311        Itr->second += I->ExtraWeight;
2312      else
2313        DestWeights[I->BB] = I->ExtraWeight;
2314    }
2315
2316  // Update successor info. Add one edge to each unique successor.
2317  BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs());
2318  for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(),
2319         E = DestBBs.end(); I != E; ++I) {
2320    if (!SuccsHandled[(*I)->getNumber()]) {
2321      SuccsHandled[(*I)->getNumber()] = true;
2322      DenseMap<MachineBasicBlock*, uint32_t>::iterator Itr =
2323          DestWeights.find(*I);
2324      addSuccessorWithWeight(JumpTableBB, *I,
2325                             Itr != DestWeights.end() ? Itr->second : 0);
2326    }
2327  }
2328
2329  // Create a jump table index for this jump table.
2330  unsigned JTEncoding = TLI->getJumpTableEncoding();
2331  unsigned JTI = CurMF->getOrCreateJumpTableInfo(JTEncoding)
2332                       ->createJumpTableIndex(DestBBs);
2333
2334  // Set the jump table information so that we can codegen it as a second
2335  // MachineBasicBlock
2336  JumpTable JT(-1U, JTI, JumpTableBB, Default);
2337  JumpTableHeader JTH(First, Last, SV, CR.CaseBB, (CR.CaseBB == SwitchBB));
2338  if (CR.CaseBB == SwitchBB)
2339    visitJumpTableHeader(JT, JTH, SwitchBB);
2340
2341  JTCases.push_back(JumpTableBlock(JTH, JT));
2342  return true;
2343}
2344
2345/// handleBTSplitSwitchCase - emit comparison and split binary search tree into
2346/// 2 subtrees.
2347bool SelectionDAGBuilder::handleBTSplitSwitchCase(CaseRec& CR,
2348                                                  CaseRecVector& WorkList,
2349                                                  const Value* SV,
2350                                                  MachineBasicBlock* Default,
2351                                                  MachineBasicBlock* SwitchBB) {
2352  // Get the MachineFunction which holds the current MBB.  This is used when
2353  // inserting any additional MBBs necessary to represent the switch.
2354  MachineFunction *CurMF = FuncInfo.MF;
2355
2356  // Figure out which block is immediately after the current one.
2357  MachineFunction::iterator BBI = CR.CaseBB;
2358  ++BBI;
2359
2360  Case& FrontCase = *CR.Range.first;
2361  Case& BackCase  = *(CR.Range.second-1);
2362  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2363
2364  // Size is the number of Cases represented by this range.
2365  unsigned Size = CR.Range.second - CR.Range.first;
2366
2367  const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue();
2368  const APInt &Last  = cast<ConstantInt>(BackCase.High)->getValue();
2369  double FMetric = 0;
2370  CaseItr Pivot = CR.Range.first + Size/2;
2371
2372  // Select optimal pivot, maximizing sum density of LHS and RHS. This will
2373  // (heuristically) allow us to emit JumpTable's later.
2374  APInt TSize(First.getBitWidth(), 0);
2375  for (CaseItr I = CR.Range.first, E = CR.Range.second;
2376       I!=E; ++I)
2377    TSize += I->size();
2378
2379  APInt LSize = FrontCase.size();
2380  APInt RSize = TSize-LSize;
2381  DEBUG(dbgs() << "Selecting best pivot: \n"
2382               << "First: " << First << ", Last: " << Last <<'\n'
2383               << "LSize: " << LSize << ", RSize: " << RSize << '\n');
2384  for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second;
2385       J!=E; ++I, ++J) {
2386    const APInt &LEnd = cast<ConstantInt>(I->High)->getValue();
2387    const APInt &RBegin = cast<ConstantInt>(J->Low)->getValue();
2388    APInt Range = ComputeRange(LEnd, RBegin);
2389    assert((Range - 2ULL).isNonNegative() &&
2390           "Invalid case distance");
2391    // Use volatile double here to avoid excess precision issues on some hosts,
2392    // e.g. that use 80-bit X87 registers.
2393    volatile double LDensity =
2394       (double)LSize.roundToDouble() /
2395                           (LEnd - First + 1ULL).roundToDouble();
2396    volatile double RDensity =
2397      (double)RSize.roundToDouble() /
2398                           (Last - RBegin + 1ULL).roundToDouble();
2399    volatile double Metric = Range.logBase2()*(LDensity+RDensity);
2400    // Should always split in some non-trivial place
2401    DEBUG(dbgs() <<"=>Step\n"
2402                 << "LEnd: " << LEnd << ", RBegin: " << RBegin << '\n'
2403                 << "LDensity: " << LDensity
2404                 << ", RDensity: " << RDensity << '\n'
2405                 << "Metric: " << Metric << '\n');
2406    if (FMetric < Metric) {
2407      Pivot = J;
2408      FMetric = Metric;
2409      DEBUG(dbgs() << "Current metric set to: " << FMetric << '\n');
2410    }
2411
2412    LSize += J->size();
2413    RSize -= J->size();
2414  }
2415
2416  const TargetLowering *TLI = TM.getTargetLowering();
2417  if (areJTsAllowed(*TLI)) {
2418    // If our case is dense we *really* should handle it earlier!
2419    assert((FMetric > 0) && "Should handle dense range earlier!");
2420  } else {
2421    Pivot = CR.Range.first + Size/2;
2422  }
2423
2424  CaseRange LHSR(CR.Range.first, Pivot);
2425  CaseRange RHSR(Pivot, CR.Range.second);
2426  const Constant *C = Pivot->Low;
2427  MachineBasicBlock *FalseBB = nullptr, *TrueBB = nullptr;
2428
2429  // We know that we branch to the LHS if the Value being switched on is
2430  // less than the Pivot value, C.  We use this to optimize our binary
2431  // tree a bit, by recognizing that if SV is greater than or equal to the
2432  // LHS's Case Value, and that Case Value is exactly one less than the
2433  // Pivot's Value, then we can branch directly to the LHS's Target,
2434  // rather than creating a leaf node for it.
2435  if ((LHSR.second - LHSR.first) == 1 &&
2436      LHSR.first->High == CR.GE &&
2437      cast<ConstantInt>(C)->getValue() ==
2438      (cast<ConstantInt>(CR.GE)->getValue() + 1LL)) {
2439    TrueBB = LHSR.first->BB;
2440  } else {
2441    TrueBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2442    CurMF->insert(BBI, TrueBB);
2443    WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR));
2444
2445    // Put SV in a virtual register to make it available from the new blocks.
2446    ExportFromCurrentBlock(SV);
2447  }
2448
2449  // Similar to the optimization above, if the Value being switched on is
2450  // known to be less than the Constant CR.LT, and the current Case Value
2451  // is CR.LT - 1, then we can branch directly to the target block for
2452  // the current Case Value, rather than emitting a RHS leaf node for it.
2453  if ((RHSR.second - RHSR.first) == 1 && CR.LT &&
2454      cast<ConstantInt>(RHSR.first->Low)->getValue() ==
2455      (cast<ConstantInt>(CR.LT)->getValue() - 1LL)) {
2456    FalseBB = RHSR.first->BB;
2457  } else {
2458    FalseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2459    CurMF->insert(BBI, FalseBB);
2460    WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR));
2461
2462    // Put SV in a virtual register to make it available from the new blocks.
2463    ExportFromCurrentBlock(SV);
2464  }
2465
2466  // Create a CaseBlock record representing a conditional branch to
2467  // the LHS node if the value being switched on SV is less than C.
2468  // Otherwise, branch to LHS.
2469  CaseBlock CB(ISD::SETLT, SV, C, nullptr, TrueBB, FalseBB, CR.CaseBB);
2470
2471  if (CR.CaseBB == SwitchBB)
2472    visitSwitchCase(CB, SwitchBB);
2473  else
2474    SwitchCases.push_back(CB);
2475
2476  return true;
2477}
2478
2479/// handleBitTestsSwitchCase - if current case range has few destination and
2480/// range span less, than machine word bitwidth, encode case range into series
2481/// of masks and emit bit tests with these masks.
2482bool SelectionDAGBuilder::handleBitTestsSwitchCase(CaseRec& CR,
2483                                                   CaseRecVector& WorkList,
2484                                                   const Value* SV,
2485                                                   MachineBasicBlock* Default,
2486                                                   MachineBasicBlock* SwitchBB) {
2487  const TargetLowering *TLI = TM.getTargetLowering();
2488  EVT PTy = TLI->getPointerTy();
2489  unsigned IntPtrBits = PTy.getSizeInBits();
2490
2491  Case& FrontCase = *CR.Range.first;
2492  Case& BackCase  = *(CR.Range.second-1);
2493
2494  // Get the MachineFunction which holds the current MBB.  This is used when
2495  // inserting any additional MBBs necessary to represent the switch.
2496  MachineFunction *CurMF = FuncInfo.MF;
2497
2498  // If target does not have legal shift left, do not emit bit tests at all.
2499  if (!TLI->isOperationLegal(ISD::SHL, PTy))
2500    return false;
2501
2502  size_t numCmps = 0;
2503  for (CaseItr I = CR.Range.first, E = CR.Range.second;
2504       I!=E; ++I) {
2505    // Single case counts one, case range - two.
2506    numCmps += (I->Low == I->High ? 1 : 2);
2507  }
2508
2509  // Count unique destinations
2510  SmallSet<MachineBasicBlock*, 4> Dests;
2511  for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
2512    Dests.insert(I->BB);
2513    if (Dests.size() > 3)
2514      // Don't bother the code below, if there are too much unique destinations
2515      return false;
2516  }
2517  DEBUG(dbgs() << "Total number of unique destinations: "
2518        << Dests.size() << '\n'
2519        << "Total number of comparisons: " << numCmps << '\n');
2520
2521  // Compute span of values.
2522  const APInt& minValue = cast<ConstantInt>(FrontCase.Low)->getValue();
2523  const APInt& maxValue = cast<ConstantInt>(BackCase.High)->getValue();
2524  APInt cmpRange = maxValue - minValue;
2525
2526  DEBUG(dbgs() << "Compare range: " << cmpRange << '\n'
2527               << "Low bound: " << minValue << '\n'
2528               << "High bound: " << maxValue << '\n');
2529
2530  if (cmpRange.uge(IntPtrBits) ||
2531      (!(Dests.size() == 1 && numCmps >= 3) &&
2532       !(Dests.size() == 2 && numCmps >= 5) &&
2533       !(Dests.size() >= 3 && numCmps >= 6)))
2534    return false;
2535
2536  DEBUG(dbgs() << "Emitting bit tests\n");
2537  APInt lowBound = APInt::getNullValue(cmpRange.getBitWidth());
2538
2539  // Optimize the case where all the case values fit in a
2540  // word without having to subtract minValue. In this case,
2541  // we can optimize away the subtraction.
2542  if (minValue.isNonNegative() && maxValue.slt(IntPtrBits)) {
2543    cmpRange = maxValue;
2544  } else {
2545    lowBound = minValue;
2546  }
2547
2548  CaseBitsVector CasesBits;
2549  unsigned i, count = 0;
2550
2551  for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
2552    MachineBasicBlock* Dest = I->BB;
2553    for (i = 0; i < count; ++i)
2554      if (Dest == CasesBits[i].BB)
2555        break;
2556
2557    if (i == count) {
2558      assert((count < 3) && "Too much destinations to test!");
2559      CasesBits.push_back(CaseBits(0, Dest, 0, 0/*Weight*/));
2560      count++;
2561    }
2562
2563    const APInt& lowValue = cast<ConstantInt>(I->Low)->getValue();
2564    const APInt& highValue = cast<ConstantInt>(I->High)->getValue();
2565
2566    uint64_t lo = (lowValue - lowBound).getZExtValue();
2567    uint64_t hi = (highValue - lowBound).getZExtValue();
2568    CasesBits[i].ExtraWeight += I->ExtraWeight;
2569
2570    for (uint64_t j = lo; j <= hi; j++) {
2571      CasesBits[i].Mask |=  1ULL << j;
2572      CasesBits[i].Bits++;
2573    }
2574
2575  }
2576  std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp());
2577
2578  BitTestInfo BTC;
2579
2580  // Figure out which block is immediately after the current one.
2581  MachineFunction::iterator BBI = CR.CaseBB;
2582  ++BBI;
2583
2584  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2585
2586  DEBUG(dbgs() << "Cases:\n");
2587  for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) {
2588    DEBUG(dbgs() << "Mask: " << CasesBits[i].Mask
2589                 << ", Bits: " << CasesBits[i].Bits
2590                 << ", BB: " << CasesBits[i].BB << '\n');
2591
2592    MachineBasicBlock *CaseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2593    CurMF->insert(BBI, CaseBB);
2594    BTC.push_back(BitTestCase(CasesBits[i].Mask,
2595                              CaseBB,
2596                              CasesBits[i].BB, CasesBits[i].ExtraWeight));
2597
2598    // Put SV in a virtual register to make it available from the new blocks.
2599    ExportFromCurrentBlock(SV);
2600  }
2601
2602  BitTestBlock BTB(lowBound, cmpRange, SV,
2603                   -1U, MVT::Other, (CR.CaseBB == SwitchBB),
2604                   CR.CaseBB, Default, BTC);
2605
2606  if (CR.CaseBB == SwitchBB)
2607    visitBitTestHeader(BTB, SwitchBB);
2608
2609  BitTestCases.push_back(BTB);
2610
2611  return true;
2612}
2613
2614/// Clusterify - Transform simple list of Cases into list of CaseRange's
2615size_t SelectionDAGBuilder::Clusterify(CaseVector& Cases,
2616                                       const SwitchInst& SI) {
2617  size_t numCmps = 0;
2618
2619  BranchProbabilityInfo *BPI = FuncInfo.BPI;
2620  // Start with "simple" cases
2621  for (SwitchInst::ConstCaseIt i = SI.case_begin(), e = SI.case_end();
2622       i != e; ++i) {
2623    const BasicBlock *SuccBB = i.getCaseSuccessor();
2624    MachineBasicBlock *SMBB = FuncInfo.MBBMap[SuccBB];
2625
2626    uint32_t ExtraWeight =
2627      BPI ? BPI->getEdgeWeight(SI.getParent(), i.getSuccessorIndex()) : 0;
2628
2629    Cases.push_back(Case(i.getCaseValue(), i.getCaseValue(),
2630                         SMBB, ExtraWeight));
2631  }
2632  std::sort(Cases.begin(), Cases.end(), CaseCmp());
2633
2634  // Merge case into clusters
2635  if (Cases.size() >= 2)
2636    // Must recompute end() each iteration because it may be
2637    // invalidated by erase if we hold on to it
2638    for (CaseItr I = Cases.begin(), J = std::next(Cases.begin());
2639         J != Cases.end(); ) {
2640      const APInt& nextValue = cast<ConstantInt>(J->Low)->getValue();
2641      const APInt& currentValue = cast<ConstantInt>(I->High)->getValue();
2642      MachineBasicBlock* nextBB = J->BB;
2643      MachineBasicBlock* currentBB = I->BB;
2644
2645      // If the two neighboring cases go to the same destination, merge them
2646      // into a single case.
2647      if ((nextValue - currentValue == 1) && (currentBB == nextBB)) {
2648        I->High = J->High;
2649        I->ExtraWeight += J->ExtraWeight;
2650        J = Cases.erase(J);
2651      } else {
2652        I = J++;
2653      }
2654    }
2655
2656  for (CaseItr I=Cases.begin(), E=Cases.end(); I!=E; ++I, ++numCmps) {
2657    if (I->Low != I->High)
2658      // A range counts double, since it requires two compares.
2659      ++numCmps;
2660  }
2661
2662  return numCmps;
2663}
2664
2665void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
2666                                           MachineBasicBlock *Last) {
2667  // Update JTCases.
2668  for (unsigned i = 0, e = JTCases.size(); i != e; ++i)
2669    if (JTCases[i].first.HeaderBB == First)
2670      JTCases[i].first.HeaderBB = Last;
2671
2672  // Update BitTestCases.
2673  for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i)
2674    if (BitTestCases[i].Parent == First)
2675      BitTestCases[i].Parent = Last;
2676}
2677
2678void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
2679  MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
2680
2681  // Figure out which block is immediately after the current one.
2682  MachineBasicBlock *NextBlock = nullptr;
2683  MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()];
2684
2685  // If there is only the default destination, branch to it if it is not the
2686  // next basic block.  Otherwise, just fall through.
2687  if (!SI.getNumCases()) {
2688    // Update machine-CFG edges.
2689
2690    // If this is not a fall-through branch, emit the branch.
2691    SwitchMBB->addSuccessor(Default);
2692    if (Default != NextBlock)
2693      DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
2694                              MVT::Other, getControlRoot(),
2695                              DAG.getBasicBlock(Default)));
2696
2697    return;
2698  }
2699
2700  // If there are any non-default case statements, create a vector of Cases
2701  // representing each one, and sort the vector so that we can efficiently
2702  // create a binary search tree from them.
2703  CaseVector Cases;
2704  size_t numCmps = Clusterify(Cases, SI);
2705  DEBUG(dbgs() << "Clusterify finished. Total clusters: " << Cases.size()
2706               << ". Total compares: " << numCmps << '\n');
2707  (void)numCmps;
2708
2709  // Get the Value to be switched on and default basic blocks, which will be
2710  // inserted into CaseBlock records, representing basic blocks in the binary
2711  // search tree.
2712  const Value *SV = SI.getCondition();
2713
2714  // Push the initial CaseRec onto the worklist
2715  CaseRecVector WorkList;
2716  WorkList.push_back(CaseRec(SwitchMBB,nullptr,nullptr,
2717                             CaseRange(Cases.begin(),Cases.end())));
2718
2719  while (!WorkList.empty()) {
2720    // Grab a record representing a case range to process off the worklist
2721    CaseRec CR = WorkList.back();
2722    WorkList.pop_back();
2723
2724    if (handleBitTestsSwitchCase(CR, WorkList, SV, Default, SwitchMBB))
2725      continue;
2726
2727    // If the range has few cases (two or less) emit a series of specific
2728    // tests.
2729    if (handleSmallSwitchRange(CR, WorkList, SV, Default, SwitchMBB))
2730      continue;
2731
2732    // If the switch has more than N blocks, and is at least 40% dense, and the
2733    // target supports indirect branches, then emit a jump table rather than
2734    // lowering the switch to a binary tree of conditional branches.
2735    // N defaults to 4 and is controlled via TLS.getMinimumJumpTableEntries().
2736    if (handleJTSwitchCase(CR, WorkList, SV, Default, SwitchMBB))
2737      continue;
2738
2739    // Emit binary tree. We need to pick a pivot, and push left and right ranges
2740    // onto the worklist. Leafs are handled via handleSmallSwitchRange() call.
2741    handleBTSplitSwitchCase(CR, WorkList, SV, Default, SwitchMBB);
2742  }
2743}
2744
2745void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
2746  MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
2747
2748  // Update machine-CFG edges with unique successors.
2749  SmallSet<BasicBlock*, 32> Done;
2750  for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) {
2751    BasicBlock *BB = I.getSuccessor(i);
2752    bool Inserted = Done.insert(BB);
2753    if (!Inserted)
2754        continue;
2755
2756    MachineBasicBlock *Succ = FuncInfo.MBBMap[BB];
2757    addSuccessorWithWeight(IndirectBrMBB, Succ);
2758  }
2759
2760  DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(),
2761                          MVT::Other, getControlRoot(),
2762                          getValue(I.getAddress())));
2763}
2764
2765void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) {
2766  if (DAG.getTarget().Options.TrapUnreachable)
2767    DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot()));
2768}
2769
2770void SelectionDAGBuilder::visitFSub(const User &I) {
2771  // -0.0 - X --> fneg
2772  Type *Ty = I.getType();
2773  if (isa<Constant>(I.getOperand(0)) &&
2774      I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) {
2775    SDValue Op2 = getValue(I.getOperand(1));
2776    setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(),
2777                             Op2.getValueType(), Op2));
2778    return;
2779  }
2780
2781  visitBinary(I, ISD::FSUB);
2782}
2783
2784void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) {
2785  SDValue Op1 = getValue(I.getOperand(0));
2786  SDValue Op2 = getValue(I.getOperand(1));
2787  setValue(&I, DAG.getNode(OpCode, getCurSDLoc(),
2788                           Op1.getValueType(), Op1, Op2));
2789}
2790
2791void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
2792  SDValue Op1 = getValue(I.getOperand(0));
2793  SDValue Op2 = getValue(I.getOperand(1));
2794
2795  EVT ShiftTy = TM.getTargetLowering()->getShiftAmountTy(Op2.getValueType());
2796
2797  // Coerce the shift amount to the right type if we can.
2798  if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
2799    unsigned ShiftSize = ShiftTy.getSizeInBits();
2800    unsigned Op2Size = Op2.getValueType().getSizeInBits();
2801    SDLoc DL = getCurSDLoc();
2802
2803    // If the operand is smaller than the shift count type, promote it.
2804    if (ShiftSize > Op2Size)
2805      Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2);
2806
2807    // If the operand is larger than the shift count type but the shift
2808    // count type has enough bits to represent any shift value, truncate
2809    // it now. This is a common case and it exposes the truncate to
2810    // optimization early.
2811    else if (ShiftSize >= Log2_32_Ceil(Op2.getValueType().getSizeInBits()))
2812      Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2);
2813    // Otherwise we'll need to temporarily settle for some other convenient
2814    // type.  Type legalization will make adjustments once the shiftee is split.
2815    else
2816      Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32);
2817  }
2818
2819  setValue(&I, DAG.getNode(Opcode, getCurSDLoc(),
2820                           Op1.getValueType(), Op1, Op2));
2821}
2822
2823void SelectionDAGBuilder::visitSDiv(const User &I) {
2824  SDValue Op1 = getValue(I.getOperand(0));
2825  SDValue Op2 = getValue(I.getOperand(1));
2826
2827  // Turn exact SDivs into multiplications.
2828  // FIXME: This should be in DAGCombiner, but it doesn't have access to the
2829  // exact bit.
2830  if (isa<BinaryOperator>(&I) && cast<BinaryOperator>(&I)->isExact() &&
2831      !isa<ConstantSDNode>(Op1) &&
2832      isa<ConstantSDNode>(Op2) && !cast<ConstantSDNode>(Op2)->isNullValue())
2833    setValue(&I, TM.getTargetLowering()->BuildExactSDIV(Op1, Op2,
2834                                                        getCurSDLoc(), DAG));
2835  else
2836    setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(),
2837                             Op1, Op2));
2838}
2839
2840void SelectionDAGBuilder::visitICmp(const User &I) {
2841  ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
2842  if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
2843    predicate = IC->getPredicate();
2844  else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
2845    predicate = ICmpInst::Predicate(IC->getPredicate());
2846  SDValue Op1 = getValue(I.getOperand(0));
2847  SDValue Op2 = getValue(I.getOperand(1));
2848  ISD::CondCode Opcode = getICmpCondCode(predicate);
2849
2850  EVT DestVT = TM.getTargetLowering()->getValueType(I.getType());
2851  setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode));
2852}
2853
2854void SelectionDAGBuilder::visitFCmp(const User &I) {
2855  FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
2856  if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
2857    predicate = FC->getPredicate();
2858  else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
2859    predicate = FCmpInst::Predicate(FC->getPredicate());
2860  SDValue Op1 = getValue(I.getOperand(0));
2861  SDValue Op2 = getValue(I.getOperand(1));
2862  ISD::CondCode Condition = getFCmpCondCode(predicate);
2863  if (TM.Options.NoNaNsFPMath)
2864    Condition = getFCmpCodeWithoutNaN(Condition);
2865  EVT DestVT = TM.getTargetLowering()->getValueType(I.getType());
2866  setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition));
2867}
2868
2869void SelectionDAGBuilder::visitSelect(const User &I) {
2870  SmallVector<EVT, 4> ValueVTs;
2871  ComputeValueVTs(*TM.getTargetLowering(), I.getType(), ValueVTs);
2872  unsigned NumValues = ValueVTs.size();
2873  if (NumValues == 0) return;
2874
2875  SmallVector<SDValue, 4> Values(NumValues);
2876  SDValue Cond     = getValue(I.getOperand(0));
2877  SDValue TrueVal  = getValue(I.getOperand(1));
2878  SDValue FalseVal = getValue(I.getOperand(2));
2879  ISD::NodeType OpCode = Cond.getValueType().isVector() ?
2880    ISD::VSELECT : ISD::SELECT;
2881
2882  for (unsigned i = 0; i != NumValues; ++i)
2883    Values[i] = DAG.getNode(OpCode, getCurSDLoc(),
2884                            TrueVal.getNode()->getValueType(TrueVal.getResNo()+i),
2885                            Cond,
2886                            SDValue(TrueVal.getNode(),
2887                                    TrueVal.getResNo() + i),
2888                            SDValue(FalseVal.getNode(),
2889                                    FalseVal.getResNo() + i));
2890
2891  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
2892                           DAG.getVTList(ValueVTs), Values));
2893}
2894
2895void SelectionDAGBuilder::visitTrunc(const User &I) {
2896  // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
2897  SDValue N = getValue(I.getOperand(0));
2898  EVT DestVT = TM.getTargetLowering()->getValueType(I.getType());
2899  setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N));
2900}
2901
2902void SelectionDAGBuilder::visitZExt(const User &I) {
2903  // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2904  // ZExt also can't be a cast to bool for same reason. So, nothing much to do
2905  SDValue N = getValue(I.getOperand(0));
2906  EVT DestVT = TM.getTargetLowering()->getValueType(I.getType());
2907  setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N));
2908}
2909
2910void SelectionDAGBuilder::visitSExt(const User &I) {
2911  // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2912  // SExt also can't be a cast to bool for same reason. So, nothing much to do
2913  SDValue N = getValue(I.getOperand(0));
2914  EVT DestVT = TM.getTargetLowering()->getValueType(I.getType());
2915  setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N));
2916}
2917
2918void SelectionDAGBuilder::visitFPTrunc(const User &I) {
2919  // FPTrunc is never a no-op cast, no need to check
2920  SDValue N = getValue(I.getOperand(0));
2921  const TargetLowering *TLI = TM.getTargetLowering();
2922  EVT DestVT = TLI->getValueType(I.getType());
2923  setValue(&I, DAG.getNode(ISD::FP_ROUND, getCurSDLoc(),
2924                           DestVT, N,
2925                           DAG.getTargetConstant(0, TLI->getPointerTy())));
2926}
2927
2928void SelectionDAGBuilder::visitFPExt(const User &I) {
2929  // FPExt is never a no-op cast, no need to check
2930  SDValue N = getValue(I.getOperand(0));
2931  EVT DestVT = TM.getTargetLowering()->getValueType(I.getType());
2932  setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N));
2933}
2934
2935void SelectionDAGBuilder::visitFPToUI(const User &I) {
2936  // FPToUI is never a no-op cast, no need to check
2937  SDValue N = getValue(I.getOperand(0));
2938  EVT DestVT = TM.getTargetLowering()->getValueType(I.getType());
2939  setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N));
2940}
2941
2942void SelectionDAGBuilder::visitFPToSI(const User &I) {
2943  // FPToSI is never a no-op cast, no need to check
2944  SDValue N = getValue(I.getOperand(0));
2945  EVT DestVT = TM.getTargetLowering()->getValueType(I.getType());
2946  setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N));
2947}
2948
2949void SelectionDAGBuilder::visitUIToFP(const User &I) {
2950  // UIToFP is never a no-op cast, no need to check
2951  SDValue N = getValue(I.getOperand(0));
2952  EVT DestVT = TM.getTargetLowering()->getValueType(I.getType());
2953  setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N));
2954}
2955
2956void SelectionDAGBuilder::visitSIToFP(const User &I) {
2957  // SIToFP is never a no-op cast, no need to check
2958  SDValue N = getValue(I.getOperand(0));
2959  EVT DestVT = TM.getTargetLowering()->getValueType(I.getType());
2960  setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N));
2961}
2962
2963void SelectionDAGBuilder::visitPtrToInt(const User &I) {
2964  // What to do depends on the size of the integer and the size of the pointer.
2965  // We can either truncate, zero extend, or no-op, accordingly.
2966  SDValue N = getValue(I.getOperand(0));
2967  EVT DestVT = TM.getTargetLowering()->getValueType(I.getType());
2968  setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT));
2969}
2970
2971void SelectionDAGBuilder::visitIntToPtr(const User &I) {
2972  // What to do depends on the size of the integer and the size of the pointer.
2973  // We can either truncate, zero extend, or no-op, accordingly.
2974  SDValue N = getValue(I.getOperand(0));
2975  EVT DestVT = TM.getTargetLowering()->getValueType(I.getType());
2976  setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT));
2977}
2978
2979void SelectionDAGBuilder::visitBitCast(const User &I) {
2980  SDValue N = getValue(I.getOperand(0));
2981  EVT DestVT = TM.getTargetLowering()->getValueType(I.getType());
2982
2983  // BitCast assures us that source and destination are the same size so this is
2984  // either a BITCAST or a no-op.
2985  if (DestVT != N.getValueType())
2986    setValue(&I, DAG.getNode(ISD::BITCAST, getCurSDLoc(),
2987                             DestVT, N)); // convert types.
2988  // Check if the original LLVM IR Operand was a ConstantInt, because getValue()
2989  // might fold any kind of constant expression to an integer constant and that
2990  // is not what we are looking for. Only regcognize a bitcast of a genuine
2991  // constant integer as an opaque constant.
2992  else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0)))
2993    setValue(&I, DAG.getConstant(C->getValue(), DestVT, /*isTarget=*/false,
2994                                 /*isOpaque*/true));
2995  else
2996    setValue(&I, N);            // noop cast.
2997}
2998
2999void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) {
3000  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3001  const Value *SV = I.getOperand(0);
3002  SDValue N = getValue(SV);
3003  EVT DestVT = TM.getTargetLowering()->getValueType(I.getType());
3004
3005  unsigned SrcAS = SV->getType()->getPointerAddressSpace();
3006  unsigned DestAS = I.getType()->getPointerAddressSpace();
3007
3008  if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS))
3009    N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS);
3010
3011  setValue(&I, N);
3012}
3013
3014void SelectionDAGBuilder::visitInsertElement(const User &I) {
3015  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3016  SDValue InVec = getValue(I.getOperand(0));
3017  SDValue InVal = getValue(I.getOperand(1));
3018  SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)),
3019                                     getCurSDLoc(), TLI.getVectorIdxTy());
3020  setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(),
3021                           TM.getTargetLowering()->getValueType(I.getType()),
3022                           InVec, InVal, InIdx));
3023}
3024
3025void SelectionDAGBuilder::visitExtractElement(const User &I) {
3026  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3027  SDValue InVec = getValue(I.getOperand(0));
3028  SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)),
3029                                     getCurSDLoc(), TLI.getVectorIdxTy());
3030  setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(),
3031                           TM.getTargetLowering()->getValueType(I.getType()),
3032                           InVec, InIdx));
3033}
3034
3035// Utility for visitShuffleVector - Return true if every element in Mask,
3036// beginning from position Pos and ending in Pos+Size, falls within the
3037// specified sequential range [L, L+Pos). or is undef.
3038static bool isSequentialInRange(const SmallVectorImpl<int> &Mask,
3039                                unsigned Pos, unsigned Size, int Low) {
3040  for (unsigned i = Pos, e = Pos+Size; i != e; ++i, ++Low)
3041    if (Mask[i] >= 0 && Mask[i] != Low)
3042      return false;
3043  return true;
3044}
3045
3046void SelectionDAGBuilder::visitShuffleVector(const User &I) {
3047  SDValue Src1 = getValue(I.getOperand(0));
3048  SDValue Src2 = getValue(I.getOperand(1));
3049
3050  SmallVector<int, 8> Mask;
3051  ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask);
3052  unsigned MaskNumElts = Mask.size();
3053
3054  const TargetLowering *TLI = TM.getTargetLowering();
3055  EVT VT = TLI->getValueType(I.getType());
3056  EVT SrcVT = Src1.getValueType();
3057  unsigned SrcNumElts = SrcVT.getVectorNumElements();
3058
3059  if (SrcNumElts == MaskNumElts) {
3060    setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2,
3061                                      &Mask[0]));
3062    return;
3063  }
3064
3065  // Normalize the shuffle vector since mask and vector length don't match.
3066  if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) {
3067    // Mask is longer than the source vectors and is a multiple of the source
3068    // vectors.  We can use concatenate vector to make the mask and vectors
3069    // lengths match.
3070    if (SrcNumElts*2 == MaskNumElts) {
3071      // First check for Src1 in low and Src2 in high
3072      if (isSequentialInRange(Mask, 0, SrcNumElts, 0) &&
3073          isSequentialInRange(Mask, SrcNumElts, SrcNumElts, SrcNumElts)) {
3074        // The shuffle is concatenating two vectors together.
3075        setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(),
3076                                 VT, Src1, Src2));
3077        return;
3078      }
3079      // Then check for Src2 in low and Src1 in high
3080      if (isSequentialInRange(Mask, 0, SrcNumElts, SrcNumElts) &&
3081          isSequentialInRange(Mask, SrcNumElts, SrcNumElts, 0)) {
3082        // The shuffle is concatenating two vectors together.
3083        setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(),
3084                                 VT, Src2, Src1));
3085        return;
3086      }
3087    }
3088
3089    // Pad both vectors with undefs to make them the same length as the mask.
3090    unsigned NumConcat = MaskNumElts / SrcNumElts;
3091    bool Src1U = Src1.getOpcode() == ISD::UNDEF;
3092    bool Src2U = Src2.getOpcode() == ISD::UNDEF;
3093    SDValue UndefVal = DAG.getUNDEF(SrcVT);
3094
3095    SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
3096    SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
3097    MOps1[0] = Src1;
3098    MOps2[0] = Src2;
3099
3100    Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
3101                                                  getCurSDLoc(), VT, MOps1);
3102    Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
3103                                                  getCurSDLoc(), VT, MOps2);
3104
3105    // Readjust mask for new input vector length.
3106    SmallVector<int, 8> MappedOps;
3107    for (unsigned i = 0; i != MaskNumElts; ++i) {
3108      int Idx = Mask[i];
3109      if (Idx >= (int)SrcNumElts)
3110        Idx -= SrcNumElts - MaskNumElts;
3111      MappedOps.push_back(Idx);
3112    }
3113
3114    setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2,
3115                                      &MappedOps[0]));
3116    return;
3117  }
3118
3119  if (SrcNumElts > MaskNumElts) {
3120    // Analyze the access pattern of the vector to see if we can extract
3121    // two subvectors and do the shuffle. The analysis is done by calculating
3122    // the range of elements the mask access on both vectors.
3123    int MinRange[2] = { static_cast<int>(SrcNumElts),
3124                        static_cast<int>(SrcNumElts)};
3125    int MaxRange[2] = {-1, -1};
3126
3127    for (unsigned i = 0; i != MaskNumElts; ++i) {
3128      int Idx = Mask[i];
3129      unsigned Input = 0;
3130      if (Idx < 0)
3131        continue;
3132
3133      if (Idx >= (int)SrcNumElts) {
3134        Input = 1;
3135        Idx -= SrcNumElts;
3136      }
3137      if (Idx > MaxRange[Input])
3138        MaxRange[Input] = Idx;
3139      if (Idx < MinRange[Input])
3140        MinRange[Input] = Idx;
3141    }
3142
3143    // Check if the access is smaller than the vector size and can we find
3144    // a reasonable extract index.
3145    int RangeUse[2] = { -1, -1 };  // 0 = Unused, 1 = Extract, -1 = Can not
3146                                   // Extract.
3147    int StartIdx[2];  // StartIdx to extract from
3148    for (unsigned Input = 0; Input < 2; ++Input) {
3149      if (MinRange[Input] >= (int)SrcNumElts && MaxRange[Input] < 0) {
3150        RangeUse[Input] = 0; // Unused
3151        StartIdx[Input] = 0;
3152        continue;
3153      }
3154
3155      // Find a good start index that is a multiple of the mask length. Then
3156      // see if the rest of the elements are in range.
3157      StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts;
3158      if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts &&
3159          StartIdx[Input] + MaskNumElts <= SrcNumElts)
3160        RangeUse[Input] = 1; // Extract from a multiple of the mask length.
3161    }
3162
3163    if (RangeUse[0] == 0 && RangeUse[1] == 0) {
3164      setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
3165      return;
3166    }
3167    if (RangeUse[0] >= 0 && RangeUse[1] >= 0) {
3168      // Extract appropriate subvector and generate a vector shuffle
3169      for (unsigned Input = 0; Input < 2; ++Input) {
3170        SDValue &Src = Input == 0 ? Src1 : Src2;
3171        if (RangeUse[Input] == 0)
3172          Src = DAG.getUNDEF(VT);
3173        else
3174          Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, getCurSDLoc(), VT,
3175                            Src, DAG.getConstant(StartIdx[Input],
3176                                                 TLI->getVectorIdxTy()));
3177      }
3178
3179      // Calculate new mask.
3180      SmallVector<int, 8> MappedOps;
3181      for (unsigned i = 0; i != MaskNumElts; ++i) {
3182        int Idx = Mask[i];
3183        if (Idx >= 0) {
3184          if (Idx < (int)SrcNumElts)
3185            Idx -= StartIdx[0];
3186          else
3187            Idx -= SrcNumElts + StartIdx[1] - MaskNumElts;
3188        }
3189        MappedOps.push_back(Idx);
3190      }
3191
3192      setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2,
3193                                        &MappedOps[0]));
3194      return;
3195    }
3196  }
3197
3198  // We can't use either concat vectors or extract subvectors so fall back to
3199  // replacing the shuffle with extract and build vector.
3200  // to insert and build vector.
3201  EVT EltVT = VT.getVectorElementType();
3202  EVT IdxVT = TLI->getVectorIdxTy();
3203  SmallVector<SDValue,8> Ops;
3204  for (unsigned i = 0; i != MaskNumElts; ++i) {
3205    int Idx = Mask[i];
3206    SDValue Res;
3207
3208    if (Idx < 0) {
3209      Res = DAG.getUNDEF(EltVT);
3210    } else {
3211      SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2;
3212      if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts;
3213
3214      Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(),
3215                        EltVT, Src, DAG.getConstant(Idx, IdxVT));
3216    }
3217
3218    Ops.push_back(Res);
3219  }
3220
3221  setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), VT, Ops));
3222}
3223
3224void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) {
3225  const Value *Op0 = I.getOperand(0);
3226  const Value *Op1 = I.getOperand(1);
3227  Type *AggTy = I.getType();
3228  Type *ValTy = Op1->getType();
3229  bool IntoUndef = isa<UndefValue>(Op0);
3230  bool FromUndef = isa<UndefValue>(Op1);
3231
3232  unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices());
3233
3234  const TargetLowering *TLI = TM.getTargetLowering();
3235  SmallVector<EVT, 4> AggValueVTs;
3236  ComputeValueVTs(*TLI, AggTy, AggValueVTs);
3237  SmallVector<EVT, 4> ValValueVTs;
3238  ComputeValueVTs(*TLI, ValTy, ValValueVTs);
3239
3240  unsigned NumAggValues = AggValueVTs.size();
3241  unsigned NumValValues = ValValueVTs.size();
3242  SmallVector<SDValue, 4> Values(NumAggValues);
3243
3244  SDValue Agg = getValue(Op0);
3245  unsigned i = 0;
3246  // Copy the beginning value(s) from the original aggregate.
3247  for (; i != LinearIndex; ++i)
3248    Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3249                SDValue(Agg.getNode(), Agg.getResNo() + i);
3250  // Copy values from the inserted value(s).
3251  if (NumValValues) {
3252    SDValue Val = getValue(Op1);
3253    for (; i != LinearIndex + NumValValues; ++i)
3254      Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3255                  SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
3256  }
3257  // Copy remaining value(s) from the original aggregate.
3258  for (; i != NumAggValues; ++i)
3259    Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3260                SDValue(Agg.getNode(), Agg.getResNo() + i);
3261
3262  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3263                           DAG.getVTList(AggValueVTs), Values));
3264}
3265
3266void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) {
3267  const Value *Op0 = I.getOperand(0);
3268  Type *AggTy = Op0->getType();
3269  Type *ValTy = I.getType();
3270  bool OutOfUndef = isa<UndefValue>(Op0);
3271
3272  unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices());
3273
3274  const TargetLowering *TLI = TM.getTargetLowering();
3275  SmallVector<EVT, 4> ValValueVTs;
3276  ComputeValueVTs(*TLI, ValTy, ValValueVTs);
3277
3278  unsigned NumValValues = ValValueVTs.size();
3279
3280  // Ignore a extractvalue that produces an empty object
3281  if (!NumValValues) {
3282    setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3283    return;
3284  }
3285
3286  SmallVector<SDValue, 4> Values(NumValValues);
3287
3288  SDValue Agg = getValue(Op0);
3289  // Copy out the selected value(s).
3290  for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
3291    Values[i - LinearIndex] =
3292      OutOfUndef ?
3293        DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
3294        SDValue(Agg.getNode(), Agg.getResNo() + i);
3295
3296  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3297                           DAG.getVTList(ValValueVTs), Values));
3298}
3299
3300void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
3301  Value *Op0 = I.getOperand(0);
3302  // Note that the pointer operand may be a vector of pointers. Take the scalar
3303  // element which holds a pointer.
3304  Type *Ty = Op0->getType()->getScalarType();
3305  unsigned AS = Ty->getPointerAddressSpace();
3306  SDValue N = getValue(Op0);
3307
3308  for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end();
3309       OI != E; ++OI) {
3310    const Value *Idx = *OI;
3311    if (StructType *StTy = dyn_cast<StructType>(Ty)) {
3312      unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue();
3313      if (Field) {
3314        // N = N + Offset
3315        uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field);
3316        N = DAG.getNode(ISD::ADD, getCurSDLoc(), N.getValueType(), N,
3317                        DAG.getConstant(Offset, N.getValueType()));
3318      }
3319
3320      Ty = StTy->getElementType(Field);
3321    } else {
3322      Ty = cast<SequentialType>(Ty)->getElementType();
3323
3324      // If this is a constant subscript, handle it quickly.
3325      const TargetLowering *TLI = TM.getTargetLowering();
3326      if (const ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
3327        if (CI->isZero()) continue;
3328        uint64_t Offs =
3329            DL->getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue();
3330        SDValue OffsVal;
3331        EVT PTy = TLI->getPointerTy(AS);
3332        unsigned PtrBits = PTy.getSizeInBits();
3333        if (PtrBits < 64)
3334          OffsVal = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), PTy,
3335                                DAG.getConstant(Offs, MVT::i64));
3336        else
3337          OffsVal = DAG.getConstant(Offs, PTy);
3338
3339        N = DAG.getNode(ISD::ADD, getCurSDLoc(), N.getValueType(), N,
3340                        OffsVal);
3341        continue;
3342      }
3343
3344      // N = N + Idx * ElementSize;
3345      APInt ElementSize = APInt(TLI->getPointerSizeInBits(AS),
3346                                DL->getTypeAllocSize(Ty));
3347      SDValue IdxN = getValue(Idx);
3348
3349      // If the index is smaller or larger than intptr_t, truncate or extend
3350      // it.
3351      IdxN = DAG.getSExtOrTrunc(IdxN, getCurSDLoc(), N.getValueType());
3352
3353      // If this is a multiply by a power of two, turn it into a shl
3354      // immediately.  This is a very common case.
3355      if (ElementSize != 1) {
3356        if (ElementSize.isPowerOf2()) {
3357          unsigned Amt = ElementSize.logBase2();
3358          IdxN = DAG.getNode(ISD::SHL, getCurSDLoc(),
3359                             N.getValueType(), IdxN,
3360                             DAG.getConstant(Amt, IdxN.getValueType()));
3361        } else {
3362          SDValue Scale = DAG.getConstant(ElementSize, IdxN.getValueType());
3363          IdxN = DAG.getNode(ISD::MUL, getCurSDLoc(),
3364                             N.getValueType(), IdxN, Scale);
3365        }
3366      }
3367
3368      N = DAG.getNode(ISD::ADD, getCurSDLoc(),
3369                      N.getValueType(), N, IdxN);
3370    }
3371  }
3372
3373  setValue(&I, N);
3374}
3375
3376void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
3377  // If this is a fixed sized alloca in the entry block of the function,
3378  // allocate it statically on the stack.
3379  if (FuncInfo.StaticAllocaMap.count(&I))
3380    return;   // getValue will auto-populate this.
3381
3382  Type *Ty = I.getAllocatedType();
3383  const TargetLowering *TLI = TM.getTargetLowering();
3384  uint64_t TySize = TLI->getDataLayout()->getTypeAllocSize(Ty);
3385  unsigned Align =
3386    std::max((unsigned)TLI->getDataLayout()->getPrefTypeAlignment(Ty),
3387             I.getAlignment());
3388
3389  SDValue AllocSize = getValue(I.getArraySize());
3390
3391  EVT IntPtr = TLI->getPointerTy();
3392  if (AllocSize.getValueType() != IntPtr)
3393    AllocSize = DAG.getZExtOrTrunc(AllocSize, getCurSDLoc(), IntPtr);
3394
3395  AllocSize = DAG.getNode(ISD::MUL, getCurSDLoc(), IntPtr,
3396                          AllocSize,
3397                          DAG.getConstant(TySize, IntPtr));
3398
3399  // Handle alignment.  If the requested alignment is less than or equal to
3400  // the stack alignment, ignore it.  If the size is greater than or equal to
3401  // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
3402  unsigned StackAlign = TM.getFrameLowering()->getStackAlignment();
3403  if (Align <= StackAlign)
3404    Align = 0;
3405
3406  // Round the size of the allocation up to the stack alignment size
3407  // by add SA-1 to the size.
3408  AllocSize = DAG.getNode(ISD::ADD, getCurSDLoc(),
3409                          AllocSize.getValueType(), AllocSize,
3410                          DAG.getIntPtrConstant(StackAlign-1));
3411
3412  // Mask out the low bits for alignment purposes.
3413  AllocSize = DAG.getNode(ISD::AND, getCurSDLoc(),
3414                          AllocSize.getValueType(), AllocSize,
3415                          DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1)));
3416
3417  SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) };
3418  SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
3419  SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, getCurSDLoc(), VTs, Ops);
3420  setValue(&I, DSA);
3421  DAG.setRoot(DSA.getValue(1));
3422
3423  assert(FuncInfo.MF->getFrameInfo()->hasVarSizedObjects());
3424}
3425
3426void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
3427  if (I.isAtomic())
3428    return visitAtomicLoad(I);
3429
3430  const Value *SV = I.getOperand(0);
3431  SDValue Ptr = getValue(SV);
3432
3433  Type *Ty = I.getType();
3434
3435  bool isVolatile = I.isVolatile();
3436  bool isNonTemporal = I.getMetadata("nontemporal") != nullptr;
3437  bool isInvariant = I.getMetadata("invariant.load") != nullptr;
3438  unsigned Alignment = I.getAlignment();
3439  const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa);
3440  const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
3441
3442  SmallVector<EVT, 4> ValueVTs;
3443  SmallVector<uint64_t, 4> Offsets;
3444  ComputeValueVTs(*TM.getTargetLowering(), Ty, ValueVTs, &Offsets);
3445  unsigned NumValues = ValueVTs.size();
3446  if (NumValues == 0)
3447    return;
3448
3449  SDValue Root;
3450  bool ConstantMemory = false;
3451  if (isVolatile || NumValues > MaxParallelChains)
3452    // Serialize volatile loads with other side effects.
3453    Root = getRoot();
3454  else if (AA->pointsToConstantMemory(
3455             AliasAnalysis::Location(SV, AA->getTypeStoreSize(Ty), TBAAInfo))) {
3456    // Do not serialize (non-volatile) loads of constant memory with anything.
3457    Root = DAG.getEntryNode();
3458    ConstantMemory = true;
3459  } else {
3460    // Do not serialize non-volatile loads against each other.
3461    Root = DAG.getRoot();
3462  }
3463
3464  const TargetLowering *TLI = TM.getTargetLowering();
3465  if (isVolatile)
3466    Root = TLI->prepareVolatileOrAtomicLoad(Root, getCurSDLoc(), DAG);
3467
3468  SmallVector<SDValue, 4> Values(NumValues);
3469  SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains),
3470                                          NumValues));
3471  EVT PtrVT = Ptr.getValueType();
3472  unsigned ChainI = 0;
3473  for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3474    // Serializing loads here may result in excessive register pressure, and
3475    // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
3476    // could recover a bit by hoisting nodes upward in the chain by recognizing
3477    // they are side-effect free or do not alias. The optimizer should really
3478    // avoid this case by converting large object/array copies to llvm.memcpy
3479    // (MaxParallelChains should always remain as failsafe).
3480    if (ChainI == MaxParallelChains) {
3481      assert(PendingLoads.empty() && "PendingLoads must be serialized first");
3482      SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other,
3483                                  makeArrayRef(Chains.data(), ChainI));
3484      Root = Chain;
3485      ChainI = 0;
3486    }
3487    SDValue A = DAG.getNode(ISD::ADD, getCurSDLoc(),
3488                            PtrVT, Ptr,
3489                            DAG.getConstant(Offsets[i], PtrVT));
3490    SDValue L = DAG.getLoad(ValueVTs[i], getCurSDLoc(), Root,
3491                            A, MachinePointerInfo(SV, Offsets[i]), isVolatile,
3492                            isNonTemporal, isInvariant, Alignment, TBAAInfo,
3493                            Ranges);
3494
3495    Values[i] = L;
3496    Chains[ChainI] = L.getValue(1);
3497  }
3498
3499  if (!ConstantMemory) {
3500    SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other,
3501                                makeArrayRef(Chains.data(), ChainI));
3502    if (isVolatile)
3503      DAG.setRoot(Chain);
3504    else
3505      PendingLoads.push_back(Chain);
3506  }
3507
3508  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3509                           DAG.getVTList(ValueVTs), Values));
3510}
3511
3512void SelectionDAGBuilder::visitStore(const StoreInst &I) {
3513  if (I.isAtomic())
3514    return visitAtomicStore(I);
3515
3516  const Value *SrcV = I.getOperand(0);
3517  const Value *PtrV = I.getOperand(1);
3518
3519  SmallVector<EVT, 4> ValueVTs;
3520  SmallVector<uint64_t, 4> Offsets;
3521  ComputeValueVTs(*TM.getTargetLowering(), SrcV->getType(), ValueVTs, &Offsets);
3522  unsigned NumValues = ValueVTs.size();
3523  if (NumValues == 0)
3524    return;
3525
3526  // Get the lowered operands. Note that we do this after
3527  // checking if NumResults is zero, because with zero results
3528  // the operands won't have values in the map.
3529  SDValue Src = getValue(SrcV);
3530  SDValue Ptr = getValue(PtrV);
3531
3532  SDValue Root = getRoot();
3533  SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains),
3534                                          NumValues));
3535  EVT PtrVT = Ptr.getValueType();
3536  bool isVolatile = I.isVolatile();
3537  bool isNonTemporal = I.getMetadata("nontemporal") != nullptr;
3538  unsigned Alignment = I.getAlignment();
3539  const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa);
3540
3541  unsigned ChainI = 0;
3542  for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3543    // See visitLoad comments.
3544    if (ChainI == MaxParallelChains) {
3545      SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other,
3546                                  makeArrayRef(Chains.data(), ChainI));
3547      Root = Chain;
3548      ChainI = 0;
3549    }
3550    SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(), PtrVT, Ptr,
3551                              DAG.getConstant(Offsets[i], PtrVT));
3552    SDValue St = DAG.getStore(Root, getCurSDLoc(),
3553                              SDValue(Src.getNode(), Src.getResNo() + i),
3554                              Add, MachinePointerInfo(PtrV, Offsets[i]),
3555                              isVolatile, isNonTemporal, Alignment, TBAAInfo);
3556    Chains[ChainI] = St;
3557  }
3558
3559  SDValue StoreNode = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other,
3560                                  makeArrayRef(Chains.data(), ChainI));
3561  DAG.setRoot(StoreNode);
3562}
3563
3564static SDValue InsertFenceForAtomic(SDValue Chain, AtomicOrdering Order,
3565                                    SynchronizationScope Scope,
3566                                    bool Before, SDLoc dl,
3567                                    SelectionDAG &DAG,
3568                                    const TargetLowering &TLI) {
3569  // Fence, if necessary
3570  if (Before) {
3571    if (Order == AcquireRelease || Order == SequentiallyConsistent)
3572      Order = Release;
3573    else if (Order == Acquire || Order == Monotonic)
3574      return Chain;
3575  } else {
3576    if (Order == AcquireRelease)
3577      Order = Acquire;
3578    else if (Order == Release || Order == Monotonic)
3579      return Chain;
3580  }
3581  SDValue Ops[3];
3582  Ops[0] = Chain;
3583  Ops[1] = DAG.getConstant(Order, TLI.getPointerTy());
3584  Ops[2] = DAG.getConstant(Scope, TLI.getPointerTy());
3585  return DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops);
3586}
3587
3588void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) {
3589  SDLoc dl = getCurSDLoc();
3590  AtomicOrdering SuccessOrder = I.getSuccessOrdering();
3591  AtomicOrdering FailureOrder = I.getFailureOrdering();
3592  SynchronizationScope Scope = I.getSynchScope();
3593
3594  SDValue InChain = getRoot();
3595
3596  const TargetLowering *TLI = TM.getTargetLowering();
3597  if (TLI->getInsertFencesForAtomic())
3598    InChain = InsertFenceForAtomic(InChain, SuccessOrder, Scope, true, dl,
3599                                   DAG, *TLI);
3600
3601  SDValue L =
3602    DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, dl,
3603                  getValue(I.getCompareOperand()).getSimpleValueType(),
3604                  InChain,
3605                  getValue(I.getPointerOperand()),
3606                  getValue(I.getCompareOperand()),
3607                  getValue(I.getNewValOperand()),
3608                  MachinePointerInfo(I.getPointerOperand()), 0 /* Alignment */,
3609                  TLI->getInsertFencesForAtomic() ? Monotonic : SuccessOrder,
3610                  TLI->getInsertFencesForAtomic() ? Monotonic : FailureOrder,
3611                  Scope);
3612
3613  SDValue OutChain = L.getValue(1);
3614
3615  if (TLI->getInsertFencesForAtomic())
3616    OutChain = InsertFenceForAtomic(OutChain, SuccessOrder, Scope, false, dl,
3617                                    DAG, *TLI);
3618
3619  setValue(&I, L);
3620  DAG.setRoot(OutChain);
3621}
3622
3623void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) {
3624  SDLoc dl = getCurSDLoc();
3625  ISD::NodeType NT;
3626  switch (I.getOperation()) {
3627  default: llvm_unreachable("Unknown atomicrmw operation");
3628  case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break;
3629  case AtomicRMWInst::Add:  NT = ISD::ATOMIC_LOAD_ADD; break;
3630  case AtomicRMWInst::Sub:  NT = ISD::ATOMIC_LOAD_SUB; break;
3631  case AtomicRMWInst::And:  NT = ISD::ATOMIC_LOAD_AND; break;
3632  case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break;
3633  case AtomicRMWInst::Or:   NT = ISD::ATOMIC_LOAD_OR; break;
3634  case AtomicRMWInst::Xor:  NT = ISD::ATOMIC_LOAD_XOR; break;
3635  case AtomicRMWInst::Max:  NT = ISD::ATOMIC_LOAD_MAX; break;
3636  case AtomicRMWInst::Min:  NT = ISD::ATOMIC_LOAD_MIN; break;
3637  case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break;
3638  case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break;
3639  }
3640  AtomicOrdering Order = I.getOrdering();
3641  SynchronizationScope Scope = I.getSynchScope();
3642
3643  SDValue InChain = getRoot();
3644
3645  const TargetLowering *TLI = TM.getTargetLowering();
3646  if (TLI->getInsertFencesForAtomic())
3647    InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl,
3648                                   DAG, *TLI);
3649
3650  SDValue L =
3651    DAG.getAtomic(NT, dl,
3652                  getValue(I.getValOperand()).getSimpleValueType(),
3653                  InChain,
3654                  getValue(I.getPointerOperand()),
3655                  getValue(I.getValOperand()),
3656                  I.getPointerOperand(), 0 /* Alignment */,
3657                  TLI->getInsertFencesForAtomic() ? Monotonic : Order,
3658                  Scope);
3659
3660  SDValue OutChain = L.getValue(1);
3661
3662  if (TLI->getInsertFencesForAtomic())
3663    OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl,
3664                                    DAG, *TLI);
3665
3666  setValue(&I, L);
3667  DAG.setRoot(OutChain);
3668}
3669
3670void SelectionDAGBuilder::visitFence(const FenceInst &I) {
3671  SDLoc dl = getCurSDLoc();
3672  const TargetLowering *TLI = TM.getTargetLowering();
3673  SDValue Ops[3];
3674  Ops[0] = getRoot();
3675  Ops[1] = DAG.getConstant(I.getOrdering(), TLI->getPointerTy());
3676  Ops[2] = DAG.getConstant(I.getSynchScope(), TLI->getPointerTy());
3677  DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops));
3678}
3679
3680void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) {
3681  SDLoc dl = getCurSDLoc();
3682  AtomicOrdering Order = I.getOrdering();
3683  SynchronizationScope Scope = I.getSynchScope();
3684
3685  SDValue InChain = getRoot();
3686
3687  const TargetLowering *TLI = TM.getTargetLowering();
3688  EVT VT = TLI->getValueType(I.getType());
3689
3690  if (I.getAlignment() < VT.getSizeInBits() / 8)
3691    report_fatal_error("Cannot generate unaligned atomic load");
3692
3693  MachineMemOperand *MMO =
3694      DAG.getMachineFunction().
3695      getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()),
3696                           MachineMemOperand::MOVolatile |
3697                           MachineMemOperand::MOLoad,
3698                           VT.getStoreSize(),
3699                           I.getAlignment() ? I.getAlignment() :
3700                                              DAG.getEVTAlignment(VT));
3701
3702  InChain = TLI->prepareVolatileOrAtomicLoad(InChain, dl, DAG);
3703  SDValue L =
3704      DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain,
3705                    getValue(I.getPointerOperand()), MMO,
3706                    TLI->getInsertFencesForAtomic() ? Monotonic : Order,
3707                    Scope);
3708
3709  SDValue OutChain = L.getValue(1);
3710
3711  if (TLI->getInsertFencesForAtomic())
3712    OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl,
3713                                    DAG, *TLI);
3714
3715  setValue(&I, L);
3716  DAG.setRoot(OutChain);
3717}
3718
3719void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) {
3720  SDLoc dl = getCurSDLoc();
3721
3722  AtomicOrdering Order = I.getOrdering();
3723  SynchronizationScope Scope = I.getSynchScope();
3724
3725  SDValue InChain = getRoot();
3726
3727  const TargetLowering *TLI = TM.getTargetLowering();
3728  EVT VT = TLI->getValueType(I.getValueOperand()->getType());
3729
3730  if (I.getAlignment() < VT.getSizeInBits() / 8)
3731    report_fatal_error("Cannot generate unaligned atomic store");
3732
3733  if (TLI->getInsertFencesForAtomic())
3734    InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl,
3735                                   DAG, *TLI);
3736
3737  SDValue OutChain =
3738    DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT,
3739                  InChain,
3740                  getValue(I.getPointerOperand()),
3741                  getValue(I.getValueOperand()),
3742                  I.getPointerOperand(), I.getAlignment(),
3743                  TLI->getInsertFencesForAtomic() ? Monotonic : Order,
3744                  Scope);
3745
3746  if (TLI->getInsertFencesForAtomic())
3747    OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl,
3748                                    DAG, *TLI);
3749
3750  DAG.setRoot(OutChain);
3751}
3752
3753/// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
3754/// node.
3755void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
3756                                               unsigned Intrinsic) {
3757  bool HasChain = !I.doesNotAccessMemory();
3758  bool OnlyLoad = HasChain && I.onlyReadsMemory();
3759
3760  // Build the operand list.
3761  SmallVector<SDValue, 8> Ops;
3762  if (HasChain) {  // If this intrinsic has side-effects, chainify it.
3763    if (OnlyLoad) {
3764      // We don't need to serialize loads against other loads.
3765      Ops.push_back(DAG.getRoot());
3766    } else {
3767      Ops.push_back(getRoot());
3768    }
3769  }
3770
3771  // Info is set by getTgtMemInstrinsic
3772  TargetLowering::IntrinsicInfo Info;
3773  const TargetLowering *TLI = TM.getTargetLowering();
3774  bool IsTgtIntrinsic = TLI->getTgtMemIntrinsic(Info, I, Intrinsic);
3775
3776  // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
3777  if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
3778      Info.opc == ISD::INTRINSIC_W_CHAIN)
3779    Ops.push_back(DAG.getTargetConstant(Intrinsic, TLI->getPointerTy()));
3780
3781  // Add all operands of the call to the operand list.
3782  for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
3783    SDValue Op = getValue(I.getArgOperand(i));
3784    Ops.push_back(Op);
3785  }
3786
3787  SmallVector<EVT, 4> ValueVTs;
3788  ComputeValueVTs(*TLI, I.getType(), ValueVTs);
3789
3790  if (HasChain)
3791    ValueVTs.push_back(MVT::Other);
3792
3793  SDVTList VTs = DAG.getVTList(ValueVTs);
3794
3795  // Create the node.
3796  SDValue Result;
3797  if (IsTgtIntrinsic) {
3798    // This is target intrinsic that touches memory
3799    Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(),
3800                                     VTs, Ops, Info.memVT,
3801                                   MachinePointerInfo(Info.ptrVal, Info.offset),
3802                                     Info.align, Info.vol,
3803                                     Info.readMem, Info.writeMem);
3804  } else if (!HasChain) {
3805    Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops);
3806  } else if (!I.getType()->isVoidTy()) {
3807    Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops);
3808  } else {
3809    Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops);
3810  }
3811
3812  if (HasChain) {
3813    SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
3814    if (OnlyLoad)
3815      PendingLoads.push_back(Chain);
3816    else
3817      DAG.setRoot(Chain);
3818  }
3819
3820  if (!I.getType()->isVoidTy()) {
3821    if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
3822      EVT VT = TLI->getValueType(PTy);
3823      Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result);
3824    }
3825
3826    setValue(&I, Result);
3827  }
3828}
3829
3830/// GetSignificand - Get the significand and build it into a floating-point
3831/// number with exponent of 1:
3832///
3833///   Op = (Op & 0x007fffff) | 0x3f800000;
3834///
3835/// where Op is the hexadecimal representation of floating point value.
3836static SDValue
3837GetSignificand(SelectionDAG &DAG, SDValue Op, SDLoc dl) {
3838  SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
3839                           DAG.getConstant(0x007fffff, MVT::i32));
3840  SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
3841                           DAG.getConstant(0x3f800000, MVT::i32));
3842  return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
3843}
3844
3845/// GetExponent - Get the exponent:
3846///
3847///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
3848///
3849/// where Op is the hexadecimal representation of floating point value.
3850static SDValue
3851GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI,
3852            SDLoc dl) {
3853  SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
3854                           DAG.getConstant(0x7f800000, MVT::i32));
3855  SDValue t1 = DAG.getNode(ISD::SRL, dl, MVT::i32, t0,
3856                           DAG.getConstant(23, TLI.getPointerTy()));
3857  SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
3858                           DAG.getConstant(127, MVT::i32));
3859  return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
3860}
3861
3862/// getF32Constant - Get 32-bit floating point constant.
3863static SDValue
3864getF32Constant(SelectionDAG &DAG, unsigned Flt) {
3865  return DAG.getConstantFP(APFloat(APFloat::IEEEsingle, APInt(32, Flt)),
3866                           MVT::f32);
3867}
3868
3869/// expandExp - Lower an exp intrinsic. Handles the special sequences for
3870/// limited-precision mode.
3871static SDValue expandExp(SDLoc dl, SDValue Op, SelectionDAG &DAG,
3872                         const TargetLowering &TLI) {
3873  if (Op.getValueType() == MVT::f32 &&
3874      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3875
3876    // Put the exponent in the right bit position for later addition to the
3877    // final result:
3878    //
3879    //   #define LOG2OFe 1.4426950f
3880    //   IntegerPartOfX = ((int32_t)(X * LOG2OFe));
3881    SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
3882                             getF32Constant(DAG, 0x3fb8aa3b));
3883    SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
3884
3885    //   FractionalPartOfX = (X * LOG2OFe) - (float)IntegerPartOfX;
3886    SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
3887    SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
3888
3889    //   IntegerPartOfX <<= 23;
3890    IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
3891                                 DAG.getConstant(23, TLI.getPointerTy()));
3892
3893    SDValue TwoToFracPartOfX;
3894    if (LimitFloatPrecision <= 6) {
3895      // For floating-point precision of 6:
3896      //
3897      //   TwoToFractionalPartOfX =
3898      //     0.997535578f +
3899      //       (0.735607626f + 0.252464424f * x) * x;
3900      //
3901      // error 0.0144103317, which is 6 bits
3902      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3903                               getF32Constant(DAG, 0x3e814304));
3904      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3905                               getF32Constant(DAG, 0x3f3c50c8));
3906      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3907      TwoToFracPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3908                                     getF32Constant(DAG, 0x3f7f5e7e));
3909    } else if (LimitFloatPrecision <= 12) {
3910      // For floating-point precision of 12:
3911      //
3912      //   TwoToFractionalPartOfX =
3913      //     0.999892986f +
3914      //       (0.696457318f +
3915      //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
3916      //
3917      // 0.000107046256 error, which is 13 to 14 bits
3918      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3919                               getF32Constant(DAG, 0x3da235e3));
3920      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3921                               getF32Constant(DAG, 0x3e65b8f3));
3922      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3923      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3924                               getF32Constant(DAG, 0x3f324b07));
3925      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3926      TwoToFracPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3927                                     getF32Constant(DAG, 0x3f7ff8fd));
3928    } else { // LimitFloatPrecision <= 18
3929      // For floating-point precision of 18:
3930      //
3931      //   TwoToFractionalPartOfX =
3932      //     0.999999982f +
3933      //       (0.693148872f +
3934      //         (0.240227044f +
3935      //           (0.554906021e-1f +
3936      //             (0.961591928e-2f +
3937      //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
3938      //
3939      // error 2.47208000*10^(-7), which is better than 18 bits
3940      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3941                               getF32Constant(DAG, 0x3924b03e));
3942      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3943                               getF32Constant(DAG, 0x3ab24b87));
3944      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3945      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3946                               getF32Constant(DAG, 0x3c1d8c17));
3947      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3948      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3949                               getF32Constant(DAG, 0x3d634a1d));
3950      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3951      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3952                               getF32Constant(DAG, 0x3e75fe14));
3953      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3954      SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
3955                                getF32Constant(DAG, 0x3f317234));
3956      SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
3957      TwoToFracPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
3958                                     getF32Constant(DAG, 0x3f800000));
3959    }
3960
3961    // Add the exponent into the result in integer domain.
3962    SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFracPartOfX);
3963    return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
3964                       DAG.getNode(ISD::ADD, dl, MVT::i32,
3965                                   t13, IntegerPartOfX));
3966  }
3967
3968  // No special expansion.
3969  return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op);
3970}
3971
3972/// expandLog - Lower a log intrinsic. Handles the special sequences for
3973/// limited-precision mode.
3974static SDValue expandLog(SDLoc dl, SDValue Op, SelectionDAG &DAG,
3975                         const TargetLowering &TLI) {
3976  if (Op.getValueType() == MVT::f32 &&
3977      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3978    SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
3979
3980    // Scale the exponent by log(2) [0.69314718f].
3981    SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
3982    SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
3983                                        getF32Constant(DAG, 0x3f317218));
3984
3985    // Get the significand and build it into a floating-point number with
3986    // exponent of 1.
3987    SDValue X = GetSignificand(DAG, Op1, dl);
3988
3989    SDValue LogOfMantissa;
3990    if (LimitFloatPrecision <= 6) {
3991      // For floating-point precision of 6:
3992      //
3993      //   LogofMantissa =
3994      //     -1.1609546f +
3995      //       (1.4034025f - 0.23903021f * x) * x;
3996      //
3997      // error 0.0034276066, which is better than 8 bits
3998      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3999                               getF32Constant(DAG, 0xbe74c456));
4000      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4001                               getF32Constant(DAG, 0x3fb3a2b1));
4002      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4003      LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4004                                  getF32Constant(DAG, 0x3f949a29));
4005    } else if (LimitFloatPrecision <= 12) {
4006      // For floating-point precision of 12:
4007      //
4008      //   LogOfMantissa =
4009      //     -1.7417939f +
4010      //       (2.8212026f +
4011      //         (-1.4699568f +
4012      //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
4013      //
4014      // error 0.000061011436, which is 14 bits
4015      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4016                               getF32Constant(DAG, 0xbd67b6d6));
4017      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4018                               getF32Constant(DAG, 0x3ee4f4b8));
4019      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4020      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4021                               getF32Constant(DAG, 0x3fbc278b));
4022      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4023      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4024                               getF32Constant(DAG, 0x40348e95));
4025      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4026      LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4027                                  getF32Constant(DAG, 0x3fdef31a));
4028    } else { // LimitFloatPrecision <= 18
4029      // For floating-point precision of 18:
4030      //
4031      //   LogOfMantissa =
4032      //     -2.1072184f +
4033      //       (4.2372794f +
4034      //         (-3.7029485f +
4035      //           (2.2781945f +
4036      //             (-0.87823314f +
4037      //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
4038      //
4039      // error 0.0000023660568, which is better than 18 bits
4040      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4041                               getF32Constant(DAG, 0xbc91e5ac));
4042      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4043                               getF32Constant(DAG, 0x3e4350aa));
4044      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4045      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4046                               getF32Constant(DAG, 0x3f60d3e3));
4047      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4048      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4049                               getF32Constant(DAG, 0x4011cdf0));
4050      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4051      SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4052                               getF32Constant(DAG, 0x406cfd1c));
4053      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4054      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4055                               getF32Constant(DAG, 0x408797cb));
4056      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4057      LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
4058                                  getF32Constant(DAG, 0x4006dcab));
4059    }
4060
4061    return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa);
4062  }
4063
4064  // No special expansion.
4065  return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op);
4066}
4067
4068/// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for
4069/// limited-precision mode.
4070static SDValue expandLog2(SDLoc dl, SDValue Op, SelectionDAG &DAG,
4071                          const TargetLowering &TLI) {
4072  if (Op.getValueType() == MVT::f32 &&
4073      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4074    SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
4075
4076    // Get the exponent.
4077    SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
4078
4079    // Get the significand and build it into a floating-point number with
4080    // exponent of 1.
4081    SDValue X = GetSignificand(DAG, Op1, dl);
4082
4083    // Different possible minimax approximations of significand in
4084    // floating-point for various degrees of accuracy over [1,2].
4085    SDValue Log2ofMantissa;
4086    if (LimitFloatPrecision <= 6) {
4087      // For floating-point precision of 6:
4088      //
4089      //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
4090      //
4091      // error 0.0049451742, which is more than 7 bits
4092      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4093                               getF32Constant(DAG, 0xbeb08fe0));
4094      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4095                               getF32Constant(DAG, 0x40019463));
4096      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4097      Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4098                                   getF32Constant(DAG, 0x3fd6633d));
4099    } else if (LimitFloatPrecision <= 12) {
4100      // For floating-point precision of 12:
4101      //
4102      //   Log2ofMantissa =
4103      //     -2.51285454f +
4104      //       (4.07009056f +
4105      //         (-2.12067489f +
4106      //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
4107      //
4108      // error 0.0000876136000, which is better than 13 bits
4109      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4110                               getF32Constant(DAG, 0xbda7262e));
4111      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4112                               getF32Constant(DAG, 0x3f25280b));
4113      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4114      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4115                               getF32Constant(DAG, 0x4007b923));
4116      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4117      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4118                               getF32Constant(DAG, 0x40823e2f));
4119      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4120      Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4121                                   getF32Constant(DAG, 0x4020d29c));
4122    } else { // LimitFloatPrecision <= 18
4123      // For floating-point precision of 18:
4124      //
4125      //   Log2ofMantissa =
4126      //     -3.0400495f +
4127      //       (6.1129976f +
4128      //         (-5.3420409f +
4129      //           (3.2865683f +
4130      //             (-1.2669343f +
4131      //               (0.27515199f -
4132      //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
4133      //
4134      // error 0.0000018516, which is better than 18 bits
4135      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4136                               getF32Constant(DAG, 0xbcd2769e));
4137      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4138                               getF32Constant(DAG, 0x3e8ce0b9));
4139      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4140      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4141                               getF32Constant(DAG, 0x3fa22ae7));
4142      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4143      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4144                               getF32Constant(DAG, 0x40525723));
4145      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4146      SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4147                               getF32Constant(DAG, 0x40aaf200));
4148      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4149      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4150                               getF32Constant(DAG, 0x40c39dad));
4151      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4152      Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
4153                                   getF32Constant(DAG, 0x4042902c));
4154    }
4155
4156    return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa);
4157  }
4158
4159  // No special expansion.
4160  return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op);
4161}
4162
4163/// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for
4164/// limited-precision mode.
4165static SDValue expandLog10(SDLoc dl, SDValue Op, SelectionDAG &DAG,
4166                           const TargetLowering &TLI) {
4167  if (Op.getValueType() == MVT::f32 &&
4168      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4169    SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
4170
4171    // Scale the exponent by log10(2) [0.30102999f].
4172    SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
4173    SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
4174                                        getF32Constant(DAG, 0x3e9a209a));
4175
4176    // Get the significand and build it into a floating-point number with
4177    // exponent of 1.
4178    SDValue X = GetSignificand(DAG, Op1, dl);
4179
4180    SDValue Log10ofMantissa;
4181    if (LimitFloatPrecision <= 6) {
4182      // For floating-point precision of 6:
4183      //
4184      //   Log10ofMantissa =
4185      //     -0.50419619f +
4186      //       (0.60948995f - 0.10380950f * x) * x;
4187      //
4188      // error 0.0014886165, which is 6 bits
4189      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4190                               getF32Constant(DAG, 0xbdd49a13));
4191      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4192                               getF32Constant(DAG, 0x3f1c0789));
4193      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4194      Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4195                                    getF32Constant(DAG, 0x3f011300));
4196    } else if (LimitFloatPrecision <= 12) {
4197      // For floating-point precision of 12:
4198      //
4199      //   Log10ofMantissa =
4200      //     -0.64831180f +
4201      //       (0.91751397f +
4202      //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
4203      //
4204      // error 0.00019228036, which is better than 12 bits
4205      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4206                               getF32Constant(DAG, 0x3d431f31));
4207      SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
4208                               getF32Constant(DAG, 0x3ea21fb2));
4209      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4210      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4211                               getF32Constant(DAG, 0x3f6ae232));
4212      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4213      Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
4214                                    getF32Constant(DAG, 0x3f25f7c3));
4215    } else { // LimitFloatPrecision <= 18
4216      // For floating-point precision of 18:
4217      //
4218      //   Log10ofMantissa =
4219      //     -0.84299375f +
4220      //       (1.5327582f +
4221      //         (-1.0688956f +
4222      //           (0.49102474f +
4223      //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
4224      //
4225      // error 0.0000037995730, which is better than 18 bits
4226      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4227                               getF32Constant(DAG, 0x3c5d51ce));
4228      SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
4229                               getF32Constant(DAG, 0x3e00685a));
4230      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4231      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4232                               getF32Constant(DAG, 0x3efb6798));
4233      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4234      SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
4235                               getF32Constant(DAG, 0x3f88d192));
4236      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4237      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4238                               getF32Constant(DAG, 0x3fc4316c));
4239      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4240      Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
4241                                    getF32Constant(DAG, 0x3f57ce70));
4242    }
4243
4244    return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa);
4245  }
4246
4247  // No special expansion.
4248  return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op);
4249}
4250
4251/// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for
4252/// limited-precision mode.
4253static SDValue expandExp2(SDLoc dl, SDValue Op, SelectionDAG &DAG,
4254                          const TargetLowering &TLI) {
4255  if (Op.getValueType() == MVT::f32 &&
4256      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4257    SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Op);
4258
4259    //   FractionalPartOfX = x - (float)IntegerPartOfX;
4260    SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
4261    SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, Op, t1);
4262
4263    //   IntegerPartOfX <<= 23;
4264    IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
4265                                 DAG.getConstant(23, TLI.getPointerTy()));
4266
4267    SDValue TwoToFractionalPartOfX;
4268    if (LimitFloatPrecision <= 6) {
4269      // For floating-point precision of 6:
4270      //
4271      //   TwoToFractionalPartOfX =
4272      //     0.997535578f +
4273      //       (0.735607626f + 0.252464424f * x) * x;
4274      //
4275      // error 0.0144103317, which is 6 bits
4276      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4277                               getF32Constant(DAG, 0x3e814304));
4278      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4279                               getF32Constant(DAG, 0x3f3c50c8));
4280      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4281      TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4282                                           getF32Constant(DAG, 0x3f7f5e7e));
4283    } else if (LimitFloatPrecision <= 12) {
4284      // For floating-point precision of 12:
4285      //
4286      //   TwoToFractionalPartOfX =
4287      //     0.999892986f +
4288      //       (0.696457318f +
4289      //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
4290      //
4291      // error 0.000107046256, which is 13 to 14 bits
4292      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4293                               getF32Constant(DAG, 0x3da235e3));
4294      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4295                               getF32Constant(DAG, 0x3e65b8f3));
4296      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4297      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4298                               getF32Constant(DAG, 0x3f324b07));
4299      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4300      TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4301                                           getF32Constant(DAG, 0x3f7ff8fd));
4302    } else { // LimitFloatPrecision <= 18
4303      // For floating-point precision of 18:
4304      //
4305      //   TwoToFractionalPartOfX =
4306      //     0.999999982f +
4307      //       (0.693148872f +
4308      //         (0.240227044f +
4309      //           (0.554906021e-1f +
4310      //             (0.961591928e-2f +
4311      //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
4312      // error 2.47208000*10^(-7), which is better than 18 bits
4313      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4314                               getF32Constant(DAG, 0x3924b03e));
4315      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4316                               getF32Constant(DAG, 0x3ab24b87));
4317      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4318      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4319                               getF32Constant(DAG, 0x3c1d8c17));
4320      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4321      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4322                               getF32Constant(DAG, 0x3d634a1d));
4323      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4324      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4325                               getF32Constant(DAG, 0x3e75fe14));
4326      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4327      SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
4328                                getF32Constant(DAG, 0x3f317234));
4329      SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
4330      TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
4331                                           getF32Constant(DAG, 0x3f800000));
4332    }
4333
4334    // Add the exponent into the result in integer domain.
4335    SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32,
4336                              TwoToFractionalPartOfX);
4337    return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
4338                       DAG.getNode(ISD::ADD, dl, MVT::i32,
4339                                   t13, IntegerPartOfX));
4340  }
4341
4342  // No special expansion.
4343  return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op);
4344}
4345
4346/// visitPow - Lower a pow intrinsic. Handles the special sequences for
4347/// limited-precision mode with x == 10.0f.
4348static SDValue expandPow(SDLoc dl, SDValue LHS, SDValue RHS,
4349                         SelectionDAG &DAG, const TargetLowering &TLI) {
4350  bool IsExp10 = false;
4351  if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 &&
4352      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4353    if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) {
4354      APFloat Ten(10.0f);
4355      IsExp10 = LHSC->isExactlyValue(Ten);
4356    }
4357  }
4358
4359  if (IsExp10) {
4360    // Put the exponent in the right bit position for later addition to the
4361    // final result:
4362    //
4363    //   #define LOG2OF10 3.3219281f
4364    //   IntegerPartOfX = (int32_t)(x * LOG2OF10);
4365    SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS,
4366                             getF32Constant(DAG, 0x40549a78));
4367    SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
4368
4369    //   FractionalPartOfX = x - (float)IntegerPartOfX;
4370    SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
4371    SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
4372
4373    //   IntegerPartOfX <<= 23;
4374    IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
4375                                 DAG.getConstant(23, TLI.getPointerTy()));
4376
4377    SDValue TwoToFractionalPartOfX;
4378    if (LimitFloatPrecision <= 6) {
4379      // For floating-point precision of 6:
4380      //
4381      //   twoToFractionalPartOfX =
4382      //     0.997535578f +
4383      //       (0.735607626f + 0.252464424f * x) * x;
4384      //
4385      // error 0.0144103317, which is 6 bits
4386      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4387                               getF32Constant(DAG, 0x3e814304));
4388      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4389                               getF32Constant(DAG, 0x3f3c50c8));
4390      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4391      TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4392                                           getF32Constant(DAG, 0x3f7f5e7e));
4393    } else if (LimitFloatPrecision <= 12) {
4394      // For floating-point precision of 12:
4395      //
4396      //   TwoToFractionalPartOfX =
4397      //     0.999892986f +
4398      //       (0.696457318f +
4399      //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
4400      //
4401      // error 0.000107046256, which is 13 to 14 bits
4402      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4403                               getF32Constant(DAG, 0x3da235e3));
4404      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4405                               getF32Constant(DAG, 0x3e65b8f3));
4406      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4407      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4408                               getF32Constant(DAG, 0x3f324b07));
4409      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4410      TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4411                                           getF32Constant(DAG, 0x3f7ff8fd));
4412    } else { // LimitFloatPrecision <= 18
4413      // For floating-point precision of 18:
4414      //
4415      //   TwoToFractionalPartOfX =
4416      //     0.999999982f +
4417      //       (0.693148872f +
4418      //         (0.240227044f +
4419      //           (0.554906021e-1f +
4420      //             (0.961591928e-2f +
4421      //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
4422      // error 2.47208000*10^(-7), which is better than 18 bits
4423      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4424                               getF32Constant(DAG, 0x3924b03e));
4425      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4426                               getF32Constant(DAG, 0x3ab24b87));
4427      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4428      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4429                               getF32Constant(DAG, 0x3c1d8c17));
4430      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4431      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4432                               getF32Constant(DAG, 0x3d634a1d));
4433      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4434      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4435                               getF32Constant(DAG, 0x3e75fe14));
4436      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4437      SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
4438                                getF32Constant(DAG, 0x3f317234));
4439      SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
4440      TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
4441                                           getF32Constant(DAG, 0x3f800000));
4442    }
4443
4444    SDValue t13 = DAG.getNode(ISD::BITCAST, dl,MVT::i32,TwoToFractionalPartOfX);
4445    return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
4446                       DAG.getNode(ISD::ADD, dl, MVT::i32,
4447                                   t13, IntegerPartOfX));
4448  }
4449
4450  // No special expansion.
4451  return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS);
4452}
4453
4454
4455/// ExpandPowI - Expand a llvm.powi intrinsic.
4456static SDValue ExpandPowI(SDLoc DL, SDValue LHS, SDValue RHS,
4457                          SelectionDAG &DAG) {
4458  // If RHS is a constant, we can expand this out to a multiplication tree,
4459  // otherwise we end up lowering to a call to __powidf2 (for example).  When
4460  // optimizing for size, we only want to do this if the expansion would produce
4461  // a small number of multiplies, otherwise we do the full expansion.
4462  if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
4463    // Get the exponent as a positive value.
4464    unsigned Val = RHSC->getSExtValue();
4465    if ((int)Val < 0) Val = -Val;
4466
4467    // powi(x, 0) -> 1.0
4468    if (Val == 0)
4469      return DAG.getConstantFP(1.0, LHS.getValueType());
4470
4471    const Function *F = DAG.getMachineFunction().getFunction();
4472    if (!F->getAttributes().hasAttribute(AttributeSet::FunctionIndex,
4473                                         Attribute::OptimizeForSize) ||
4474        // If optimizing for size, don't insert too many multiplies.  This
4475        // inserts up to 5 multiplies.
4476        CountPopulation_32(Val)+Log2_32(Val) < 7) {
4477      // We use the simple binary decomposition method to generate the multiply
4478      // sequence.  There are more optimal ways to do this (for example,
4479      // powi(x,15) generates one more multiply than it should), but this has
4480      // the benefit of being both really simple and much better than a libcall.
4481      SDValue Res;  // Logically starts equal to 1.0
4482      SDValue CurSquare = LHS;
4483      while (Val) {
4484        if (Val & 1) {
4485          if (Res.getNode())
4486            Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare);
4487          else
4488            Res = CurSquare;  // 1.0*CurSquare.
4489        }
4490
4491        CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
4492                                CurSquare, CurSquare);
4493        Val >>= 1;
4494      }
4495
4496      // If the original was negative, invert the result, producing 1/(x*x*x).
4497      if (RHSC->getSExtValue() < 0)
4498        Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
4499                          DAG.getConstantFP(1.0, LHS.getValueType()), Res);
4500      return Res;
4501    }
4502  }
4503
4504  // Otherwise, expand to a libcall.
4505  return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
4506}
4507
4508// getTruncatedArgReg - Find underlying register used for an truncated
4509// argument.
4510static unsigned getTruncatedArgReg(const SDValue &N) {
4511  if (N.getOpcode() != ISD::TRUNCATE)
4512    return 0;
4513
4514  const SDValue &Ext = N.getOperand(0);
4515  if (Ext.getOpcode() == ISD::AssertZext ||
4516      Ext.getOpcode() == ISD::AssertSext) {
4517    const SDValue &CFR = Ext.getOperand(0);
4518    if (CFR.getOpcode() == ISD::CopyFromReg)
4519      return cast<RegisterSDNode>(CFR.getOperand(1))->getReg();
4520    if (CFR.getOpcode() == ISD::TRUNCATE)
4521      return getTruncatedArgReg(CFR);
4522  }
4523  return 0;
4524}
4525
4526/// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function
4527/// argument, create the corresponding DBG_VALUE machine instruction for it now.
4528/// At the end of instruction selection, they will be inserted to the entry BB.
4529bool
4530SelectionDAGBuilder::EmitFuncArgumentDbgValue(const Value *V, MDNode *Variable,
4531                                              int64_t Offset, bool IsIndirect,
4532                                              const SDValue &N) {
4533  const Argument *Arg = dyn_cast<Argument>(V);
4534  if (!Arg)
4535    return false;
4536
4537  MachineFunction &MF = DAG.getMachineFunction();
4538  const TargetInstrInfo *TII = DAG.getTarget().getInstrInfo();
4539
4540  // Ignore inlined function arguments here.
4541  DIVariable DV(Variable);
4542  if (DV.isInlinedFnArgument(MF.getFunction()))
4543    return false;
4544
4545  Optional<MachineOperand> Op;
4546  // Some arguments' frame index is recorded during argument lowering.
4547  if (int FI = FuncInfo.getArgumentFrameIndex(Arg))
4548    Op = MachineOperand::CreateFI(FI);
4549
4550  if (!Op && N.getNode()) {
4551    unsigned Reg;
4552    if (N.getOpcode() == ISD::CopyFromReg)
4553      Reg = cast<RegisterSDNode>(N.getOperand(1))->getReg();
4554    else
4555      Reg = getTruncatedArgReg(N);
4556    if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) {
4557      MachineRegisterInfo &RegInfo = MF.getRegInfo();
4558      unsigned PR = RegInfo.getLiveInPhysReg(Reg);
4559      if (PR)
4560        Reg = PR;
4561    }
4562    if (Reg)
4563      Op = MachineOperand::CreateReg(Reg, false);
4564  }
4565
4566  if (!Op) {
4567    // Check if ValueMap has reg number.
4568    DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
4569    if (VMI != FuncInfo.ValueMap.end())
4570      Op = MachineOperand::CreateReg(VMI->second, false);
4571  }
4572
4573  if (!Op && N.getNode())
4574    // Check if frame index is available.
4575    if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode()))
4576      if (FrameIndexSDNode *FINode =
4577          dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
4578        Op = MachineOperand::CreateFI(FINode->getIndex());
4579
4580  if (!Op)
4581    return false;
4582
4583  if (Op->isReg())
4584    FuncInfo.ArgDbgValues.push_back(BuildMI(MF, getCurDebugLoc(),
4585                                            TII->get(TargetOpcode::DBG_VALUE),
4586                                            IsIndirect,
4587                                            Op->getReg(), Offset, Variable));
4588  else
4589    FuncInfo.ArgDbgValues.push_back(
4590      BuildMI(MF, getCurDebugLoc(), TII->get(TargetOpcode::DBG_VALUE))
4591          .addOperand(*Op).addImm(Offset).addMetadata(Variable));
4592
4593  return true;
4594}
4595
4596// VisualStudio defines setjmp as _setjmp
4597#if defined(_MSC_VER) && defined(setjmp) && \
4598                         !defined(setjmp_undefined_for_msvc)
4599#  pragma push_macro("setjmp")
4600#  undef setjmp
4601#  define setjmp_undefined_for_msvc
4602#endif
4603
4604/// visitIntrinsicCall - Lower the call to the specified intrinsic function.  If
4605/// we want to emit this as a call to a named external function, return the name
4606/// otherwise lower it and return null.
4607const char *
4608SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) {
4609  const TargetLowering *TLI = TM.getTargetLowering();
4610  SDLoc sdl = getCurSDLoc();
4611  DebugLoc dl = getCurDebugLoc();
4612  SDValue Res;
4613
4614  switch (Intrinsic) {
4615  default:
4616    // By default, turn this into a target intrinsic node.
4617    visitTargetIntrinsic(I, Intrinsic);
4618    return nullptr;
4619  case Intrinsic::vastart:  visitVAStart(I); return nullptr;
4620  case Intrinsic::vaend:    visitVAEnd(I); return nullptr;
4621  case Intrinsic::vacopy:   visitVACopy(I); return nullptr;
4622  case Intrinsic::returnaddress:
4623    setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, TLI->getPointerTy(),
4624                             getValue(I.getArgOperand(0))));
4625    return nullptr;
4626  case Intrinsic::frameaddress:
4627    setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, TLI->getPointerTy(),
4628                             getValue(I.getArgOperand(0))));
4629    return nullptr;
4630  case Intrinsic::read_register: {
4631    Value *Reg = I.getArgOperand(0);
4632    SDValue RegName = DAG.getMDNode(cast<MDNode>(Reg));
4633    EVT VT = TM.getTargetLowering()->getValueType(I.getType());
4634    setValue(&I, DAG.getNode(ISD::READ_REGISTER, sdl, VT, RegName));
4635    return nullptr;
4636  }
4637  case Intrinsic::write_register: {
4638    Value *Reg = I.getArgOperand(0);
4639    Value *RegValue = I.getArgOperand(1);
4640    SDValue Chain = getValue(RegValue).getOperand(0);
4641    SDValue RegName = DAG.getMDNode(cast<MDNode>(Reg));
4642    DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain,
4643                            RegName, getValue(RegValue)));
4644    return nullptr;
4645  }
4646  case Intrinsic::setjmp:
4647    return &"_setjmp"[!TLI->usesUnderscoreSetJmp()];
4648  case Intrinsic::longjmp:
4649    return &"_longjmp"[!TLI->usesUnderscoreLongJmp()];
4650  case Intrinsic::memcpy: {
4651    // Assert for address < 256 since we support only user defined address
4652    // spaces.
4653    assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4654           < 256 &&
4655           cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace()
4656           < 256 &&
4657           "Unknown address space");
4658    SDValue Op1 = getValue(I.getArgOperand(0));
4659    SDValue Op2 = getValue(I.getArgOperand(1));
4660    SDValue Op3 = getValue(I.getArgOperand(2));
4661    unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4662    if (!Align)
4663      Align = 1; // @llvm.memcpy defines 0 and 1 to both mean no alignment.
4664    bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4665    DAG.setRoot(DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, false,
4666                              MachinePointerInfo(I.getArgOperand(0)),
4667                              MachinePointerInfo(I.getArgOperand(1))));
4668    return nullptr;
4669  }
4670  case Intrinsic::memset: {
4671    // Assert for address < 256 since we support only user defined address
4672    // spaces.
4673    assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4674           < 256 &&
4675           "Unknown address space");
4676    SDValue Op1 = getValue(I.getArgOperand(0));
4677    SDValue Op2 = getValue(I.getArgOperand(1));
4678    SDValue Op3 = getValue(I.getArgOperand(2));
4679    unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4680    if (!Align)
4681      Align = 1; // @llvm.memset defines 0 and 1 to both mean no alignment.
4682    bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4683    DAG.setRoot(DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
4684                              MachinePointerInfo(I.getArgOperand(0))));
4685    return nullptr;
4686  }
4687  case Intrinsic::memmove: {
4688    // Assert for address < 256 since we support only user defined address
4689    // spaces.
4690    assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4691           < 256 &&
4692           cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace()
4693           < 256 &&
4694           "Unknown address space");
4695    SDValue Op1 = getValue(I.getArgOperand(0));
4696    SDValue Op2 = getValue(I.getArgOperand(1));
4697    SDValue Op3 = getValue(I.getArgOperand(2));
4698    unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4699    if (!Align)
4700      Align = 1; // @llvm.memmove defines 0 and 1 to both mean no alignment.
4701    bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4702    DAG.setRoot(DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
4703                               MachinePointerInfo(I.getArgOperand(0)),
4704                               MachinePointerInfo(I.getArgOperand(1))));
4705    return nullptr;
4706  }
4707  case Intrinsic::dbg_declare: {
4708    const DbgDeclareInst &DI = cast<DbgDeclareInst>(I);
4709    MDNode *Variable = DI.getVariable();
4710    const Value *Address = DI.getAddress();
4711    DIVariable DIVar(Variable);
4712    assert((!DIVar || DIVar.isVariable()) &&
4713      "Variable in DbgDeclareInst should be either null or a DIVariable.");
4714    if (!Address || !DIVar) {
4715      DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4716      return nullptr;
4717    }
4718
4719    // Check if address has undef value.
4720    if (isa<UndefValue>(Address) ||
4721        (Address->use_empty() && !isa<Argument>(Address))) {
4722      DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4723      return nullptr;
4724    }
4725
4726    SDValue &N = NodeMap[Address];
4727    if (!N.getNode() && isa<Argument>(Address))
4728      // Check unused arguments map.
4729      N = UnusedArgNodeMap[Address];
4730    SDDbgValue *SDV;
4731    if (N.getNode()) {
4732      if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
4733        Address = BCI->getOperand(0);
4734      // Parameters are handled specially.
4735      bool isParameter =
4736        (DIVariable(Variable).getTag() == dwarf::DW_TAG_arg_variable ||
4737         isa<Argument>(Address));
4738
4739      const AllocaInst *AI = dyn_cast<AllocaInst>(Address);
4740
4741      if (isParameter && !AI) {
4742        FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
4743        if (FINode)
4744          // Byval parameter.  We have a frame index at this point.
4745          SDV = DAG.getFrameIndexDbgValue(Variable, FINode->getIndex(),
4746					  0, dl, SDNodeOrder);
4747        else {
4748          // Address is an argument, so try to emit its dbg value using
4749          // virtual register info from the FuncInfo.ValueMap.
4750          EmitFuncArgumentDbgValue(Address, Variable, 0, false, N);
4751          return nullptr;
4752        }
4753      } else if (AI)
4754        SDV = DAG.getDbgValue(Variable, N.getNode(), N.getResNo(),
4755                              true, 0, dl, SDNodeOrder);
4756      else {
4757        // Can't do anything with other non-AI cases yet.
4758        DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4759        DEBUG(dbgs() << "non-AllocaInst issue for Address: \n\t");
4760        DEBUG(Address->dump());
4761        return nullptr;
4762      }
4763      DAG.AddDbgValue(SDV, N.getNode(), isParameter);
4764    } else {
4765      // If Address is an argument then try to emit its dbg value using
4766      // virtual register info from the FuncInfo.ValueMap.
4767      if (!EmitFuncArgumentDbgValue(Address, Variable, 0, false, N)) {
4768        // If variable is pinned by a alloca in dominating bb then
4769        // use StaticAllocaMap.
4770        if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) {
4771          if (AI->getParent() != DI.getParent()) {
4772            DenseMap<const AllocaInst*, int>::iterator SI =
4773              FuncInfo.StaticAllocaMap.find(AI);
4774            if (SI != FuncInfo.StaticAllocaMap.end()) {
4775              SDV = DAG.getFrameIndexDbgValue(Variable, SI->second,
4776                                              0, dl, SDNodeOrder);
4777              DAG.AddDbgValue(SDV, nullptr, false);
4778              return nullptr;
4779            }
4780          }
4781        }
4782        DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4783      }
4784    }
4785    return nullptr;
4786  }
4787  case Intrinsic::dbg_value: {
4788    const DbgValueInst &DI = cast<DbgValueInst>(I);
4789    DIVariable DIVar(DI.getVariable());
4790    assert((!DIVar || DIVar.isVariable()) &&
4791      "Variable in DbgValueInst should be either null or a DIVariable.");
4792    if (!DIVar)
4793      return nullptr;
4794
4795    MDNode *Variable = DI.getVariable();
4796    uint64_t Offset = DI.getOffset();
4797    const Value *V = DI.getValue();
4798    if (!V)
4799      return nullptr;
4800
4801    SDDbgValue *SDV;
4802    if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) {
4803      SDV = DAG.getConstantDbgValue(Variable, V, Offset, dl, SDNodeOrder);
4804      DAG.AddDbgValue(SDV, nullptr, false);
4805    } else {
4806      // Do not use getValue() in here; we don't want to generate code at
4807      // this point if it hasn't been done yet.
4808      SDValue N = NodeMap[V];
4809      if (!N.getNode() && isa<Argument>(V))
4810        // Check unused arguments map.
4811        N = UnusedArgNodeMap[V];
4812      if (N.getNode()) {
4813        // A dbg.value for an alloca is always indirect.
4814        bool IsIndirect = isa<AllocaInst>(V) || Offset != 0;
4815        if (!EmitFuncArgumentDbgValue(V, Variable, Offset, IsIndirect, N)) {
4816          SDV = DAG.getDbgValue(Variable, N.getNode(),
4817                                N.getResNo(), IsIndirect,
4818				Offset, dl, SDNodeOrder);
4819          DAG.AddDbgValue(SDV, N.getNode(), false);
4820        }
4821      } else if (!V->use_empty() ) {
4822        // Do not call getValue(V) yet, as we don't want to generate code.
4823        // Remember it for later.
4824        DanglingDebugInfo DDI(&DI, dl, SDNodeOrder);
4825        DanglingDebugInfoMap[V] = DDI;
4826      } else {
4827        // We may expand this to cover more cases.  One case where we have no
4828        // data available is an unreferenced parameter.
4829        DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4830      }
4831    }
4832
4833    // Build a debug info table entry.
4834    if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V))
4835      V = BCI->getOperand(0);
4836    const AllocaInst *AI = dyn_cast<AllocaInst>(V);
4837    // Don't handle byval struct arguments or VLAs, for example.
4838    if (!AI) {
4839      DEBUG(dbgs() << "Dropping debug location info for:\n  " << DI << "\n");
4840      DEBUG(dbgs() << "  Last seen at:\n    " << *V << "\n");
4841      return nullptr;
4842    }
4843    DenseMap<const AllocaInst*, int>::iterator SI =
4844      FuncInfo.StaticAllocaMap.find(AI);
4845    if (SI == FuncInfo.StaticAllocaMap.end())
4846      return nullptr; // VLAs.
4847    return nullptr;
4848  }
4849
4850  case Intrinsic::eh_typeid_for: {
4851    // Find the type id for the given typeinfo.
4852    GlobalVariable *GV = ExtractTypeInfo(I.getArgOperand(0));
4853    unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV);
4854    Res = DAG.getConstant(TypeID, MVT::i32);
4855    setValue(&I, Res);
4856    return nullptr;
4857  }
4858
4859  case Intrinsic::eh_return_i32:
4860  case Intrinsic::eh_return_i64:
4861    DAG.getMachineFunction().getMMI().setCallsEHReturn(true);
4862    DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl,
4863                            MVT::Other,
4864                            getControlRoot(),
4865                            getValue(I.getArgOperand(0)),
4866                            getValue(I.getArgOperand(1))));
4867    return nullptr;
4868  case Intrinsic::eh_unwind_init:
4869    DAG.getMachineFunction().getMMI().setCallsUnwindInit(true);
4870    return nullptr;
4871  case Intrinsic::eh_dwarf_cfa: {
4872    SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), sdl,
4873                                        TLI->getPointerTy());
4874    SDValue Offset = DAG.getNode(ISD::ADD, sdl,
4875                                 CfaArg.getValueType(),
4876                                 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, sdl,
4877                                             CfaArg.getValueType()),
4878                                 CfaArg);
4879    SDValue FA = DAG.getNode(ISD::FRAMEADDR, sdl,
4880                             TLI->getPointerTy(),
4881                             DAG.getConstant(0, TLI->getPointerTy()));
4882    setValue(&I, DAG.getNode(ISD::ADD, sdl, FA.getValueType(),
4883                             FA, Offset));
4884    return nullptr;
4885  }
4886  case Intrinsic::eh_sjlj_callsite: {
4887    MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4888    ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0));
4889    assert(CI && "Non-constant call site value in eh.sjlj.callsite!");
4890    assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
4891
4892    MMI.setCurrentCallSite(CI->getZExtValue());
4893    return nullptr;
4894  }
4895  case Intrinsic::eh_sjlj_functioncontext: {
4896    // Get and store the index of the function context.
4897    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
4898    AllocaInst *FnCtx =
4899      cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts());
4900    int FI = FuncInfo.StaticAllocaMap[FnCtx];
4901    MFI->setFunctionContextIndex(FI);
4902    return nullptr;
4903  }
4904  case Intrinsic::eh_sjlj_setjmp: {
4905    SDValue Ops[2];
4906    Ops[0] = getRoot();
4907    Ops[1] = getValue(I.getArgOperand(0));
4908    SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl,
4909                             DAG.getVTList(MVT::i32, MVT::Other), Ops);
4910    setValue(&I, Op.getValue(0));
4911    DAG.setRoot(Op.getValue(1));
4912    return nullptr;
4913  }
4914  case Intrinsic::eh_sjlj_longjmp: {
4915    DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other,
4916                            getRoot(), getValue(I.getArgOperand(0))));
4917    return nullptr;
4918  }
4919
4920  case Intrinsic::x86_mmx_pslli_w:
4921  case Intrinsic::x86_mmx_pslli_d:
4922  case Intrinsic::x86_mmx_pslli_q:
4923  case Intrinsic::x86_mmx_psrli_w:
4924  case Intrinsic::x86_mmx_psrli_d:
4925  case Intrinsic::x86_mmx_psrli_q:
4926  case Intrinsic::x86_mmx_psrai_w:
4927  case Intrinsic::x86_mmx_psrai_d: {
4928    SDValue ShAmt = getValue(I.getArgOperand(1));
4929    if (isa<ConstantSDNode>(ShAmt)) {
4930      visitTargetIntrinsic(I, Intrinsic);
4931      return nullptr;
4932    }
4933    unsigned NewIntrinsic = 0;
4934    EVT ShAmtVT = MVT::v2i32;
4935    switch (Intrinsic) {
4936    case Intrinsic::x86_mmx_pslli_w:
4937      NewIntrinsic = Intrinsic::x86_mmx_psll_w;
4938      break;
4939    case Intrinsic::x86_mmx_pslli_d:
4940      NewIntrinsic = Intrinsic::x86_mmx_psll_d;
4941      break;
4942    case Intrinsic::x86_mmx_pslli_q:
4943      NewIntrinsic = Intrinsic::x86_mmx_psll_q;
4944      break;
4945    case Intrinsic::x86_mmx_psrli_w:
4946      NewIntrinsic = Intrinsic::x86_mmx_psrl_w;
4947      break;
4948    case Intrinsic::x86_mmx_psrli_d:
4949      NewIntrinsic = Intrinsic::x86_mmx_psrl_d;
4950      break;
4951    case Intrinsic::x86_mmx_psrli_q:
4952      NewIntrinsic = Intrinsic::x86_mmx_psrl_q;
4953      break;
4954    case Intrinsic::x86_mmx_psrai_w:
4955      NewIntrinsic = Intrinsic::x86_mmx_psra_w;
4956      break;
4957    case Intrinsic::x86_mmx_psrai_d:
4958      NewIntrinsic = Intrinsic::x86_mmx_psra_d;
4959      break;
4960    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
4961    }
4962
4963    // The vector shift intrinsics with scalars uses 32b shift amounts but
4964    // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
4965    // to be zero.
4966    // We must do this early because v2i32 is not a legal type.
4967    SDValue ShOps[2];
4968    ShOps[0] = ShAmt;
4969    ShOps[1] = DAG.getConstant(0, MVT::i32);
4970    ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, sdl, ShAmtVT, ShOps);
4971    EVT DestVT = TLI->getValueType(I.getType());
4972    ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt);
4973    Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT,
4974                       DAG.getConstant(NewIntrinsic, MVT::i32),
4975                       getValue(I.getArgOperand(0)), ShAmt);
4976    setValue(&I, Res);
4977    return nullptr;
4978  }
4979  case Intrinsic::x86_avx_vinsertf128_pd_256:
4980  case Intrinsic::x86_avx_vinsertf128_ps_256:
4981  case Intrinsic::x86_avx_vinsertf128_si_256:
4982  case Intrinsic::x86_avx2_vinserti128: {
4983    EVT DestVT = TLI->getValueType(I.getType());
4984    EVT ElVT = TLI->getValueType(I.getArgOperand(1)->getType());
4985    uint64_t Idx = (cast<ConstantInt>(I.getArgOperand(2))->getZExtValue() & 1) *
4986                   ElVT.getVectorNumElements();
4987    Res = DAG.getNode(ISD::INSERT_SUBVECTOR, sdl, DestVT,
4988                      getValue(I.getArgOperand(0)),
4989                      getValue(I.getArgOperand(1)),
4990                      DAG.getConstant(Idx, TLI->getVectorIdxTy()));
4991    setValue(&I, Res);
4992    return nullptr;
4993  }
4994  case Intrinsic::x86_avx_vextractf128_pd_256:
4995  case Intrinsic::x86_avx_vextractf128_ps_256:
4996  case Intrinsic::x86_avx_vextractf128_si_256:
4997  case Intrinsic::x86_avx2_vextracti128: {
4998    EVT DestVT = TLI->getValueType(I.getType());
4999    uint64_t Idx = (cast<ConstantInt>(I.getArgOperand(1))->getZExtValue() & 1) *
5000                   DestVT.getVectorNumElements();
5001    Res = DAG.getNode(ISD::EXTRACT_SUBVECTOR, sdl, DestVT,
5002                      getValue(I.getArgOperand(0)),
5003                      DAG.getConstant(Idx, TLI->getVectorIdxTy()));
5004    setValue(&I, Res);
5005    return nullptr;
5006  }
5007  case Intrinsic::convertff:
5008  case Intrinsic::convertfsi:
5009  case Intrinsic::convertfui:
5010  case Intrinsic::convertsif:
5011  case Intrinsic::convertuif:
5012  case Intrinsic::convertss:
5013  case Intrinsic::convertsu:
5014  case Intrinsic::convertus:
5015  case Intrinsic::convertuu: {
5016    ISD::CvtCode Code = ISD::CVT_INVALID;
5017    switch (Intrinsic) {
5018    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
5019    case Intrinsic::convertff:  Code = ISD::CVT_FF; break;
5020    case Intrinsic::convertfsi: Code = ISD::CVT_FS; break;
5021    case Intrinsic::convertfui: Code = ISD::CVT_FU; break;
5022    case Intrinsic::convertsif: Code = ISD::CVT_SF; break;
5023    case Intrinsic::convertuif: Code = ISD::CVT_UF; break;
5024    case Intrinsic::convertss:  Code = ISD::CVT_SS; break;
5025    case Intrinsic::convertsu:  Code = ISD::CVT_SU; break;
5026    case Intrinsic::convertus:  Code = ISD::CVT_US; break;
5027    case Intrinsic::convertuu:  Code = ISD::CVT_UU; break;
5028    }
5029    EVT DestVT = TLI->getValueType(I.getType());
5030    const Value *Op1 = I.getArgOperand(0);
5031    Res = DAG.getConvertRndSat(DestVT, sdl, getValue(Op1),
5032                               DAG.getValueType(DestVT),
5033                               DAG.getValueType(getValue(Op1).getValueType()),
5034                               getValue(I.getArgOperand(1)),
5035                               getValue(I.getArgOperand(2)),
5036                               Code);
5037    setValue(&I, Res);
5038    return nullptr;
5039  }
5040  case Intrinsic::powi:
5041    setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)),
5042                            getValue(I.getArgOperand(1)), DAG));
5043    return nullptr;
5044  case Intrinsic::log:
5045    setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, *TLI));
5046    return nullptr;
5047  case Intrinsic::log2:
5048    setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, *TLI));
5049    return nullptr;
5050  case Intrinsic::log10:
5051    setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, *TLI));
5052    return nullptr;
5053  case Intrinsic::exp:
5054    setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, *TLI));
5055    return nullptr;
5056  case Intrinsic::exp2:
5057    setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, *TLI));
5058    return nullptr;
5059  case Intrinsic::pow:
5060    setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)),
5061                           getValue(I.getArgOperand(1)), DAG, *TLI));
5062    return nullptr;
5063  case Intrinsic::sqrt:
5064  case Intrinsic::fabs:
5065  case Intrinsic::sin:
5066  case Intrinsic::cos:
5067  case Intrinsic::floor:
5068  case Intrinsic::ceil:
5069  case Intrinsic::trunc:
5070  case Intrinsic::rint:
5071  case Intrinsic::nearbyint:
5072  case Intrinsic::round: {
5073    unsigned Opcode;
5074    switch (Intrinsic) {
5075    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
5076    case Intrinsic::sqrt:      Opcode = ISD::FSQRT;      break;
5077    case Intrinsic::fabs:      Opcode = ISD::FABS;       break;
5078    case Intrinsic::sin:       Opcode = ISD::FSIN;       break;
5079    case Intrinsic::cos:       Opcode = ISD::FCOS;       break;
5080    case Intrinsic::floor:     Opcode = ISD::FFLOOR;     break;
5081    case Intrinsic::ceil:      Opcode = ISD::FCEIL;      break;
5082    case Intrinsic::trunc:     Opcode = ISD::FTRUNC;     break;
5083    case Intrinsic::rint:      Opcode = ISD::FRINT;      break;
5084    case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break;
5085    case Intrinsic::round:     Opcode = ISD::FROUND;     break;
5086    }
5087
5088    setValue(&I, DAG.getNode(Opcode, sdl,
5089                             getValue(I.getArgOperand(0)).getValueType(),
5090                             getValue(I.getArgOperand(0))));
5091    return nullptr;
5092  }
5093  case Intrinsic::copysign:
5094    setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl,
5095                             getValue(I.getArgOperand(0)).getValueType(),
5096                             getValue(I.getArgOperand(0)),
5097                             getValue(I.getArgOperand(1))));
5098    return nullptr;
5099  case Intrinsic::fma:
5100    setValue(&I, DAG.getNode(ISD::FMA, sdl,
5101                             getValue(I.getArgOperand(0)).getValueType(),
5102                             getValue(I.getArgOperand(0)),
5103                             getValue(I.getArgOperand(1)),
5104                             getValue(I.getArgOperand(2))));
5105    return nullptr;
5106  case Intrinsic::fmuladd: {
5107    EVT VT = TLI->getValueType(I.getType());
5108    if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
5109        TLI->isFMAFasterThanFMulAndFAdd(VT)) {
5110      setValue(&I, DAG.getNode(ISD::FMA, sdl,
5111                               getValue(I.getArgOperand(0)).getValueType(),
5112                               getValue(I.getArgOperand(0)),
5113                               getValue(I.getArgOperand(1)),
5114                               getValue(I.getArgOperand(2))));
5115    } else {
5116      SDValue Mul = DAG.getNode(ISD::FMUL, sdl,
5117                                getValue(I.getArgOperand(0)).getValueType(),
5118                                getValue(I.getArgOperand(0)),
5119                                getValue(I.getArgOperand(1)));
5120      SDValue Add = DAG.getNode(ISD::FADD, sdl,
5121                                getValue(I.getArgOperand(0)).getValueType(),
5122                                Mul,
5123                                getValue(I.getArgOperand(2)));
5124      setValue(&I, Add);
5125    }
5126    return nullptr;
5127  }
5128  case Intrinsic::convert_to_fp16:
5129    setValue(&I, DAG.getNode(ISD::FP32_TO_FP16, sdl,
5130                             MVT::i16, getValue(I.getArgOperand(0))));
5131    return nullptr;
5132  case Intrinsic::convert_from_fp16:
5133    setValue(&I, DAG.getNode(ISD::FP16_TO_FP32, sdl,
5134                             MVT::f32, getValue(I.getArgOperand(0))));
5135    return nullptr;
5136  case Intrinsic::pcmarker: {
5137    SDValue Tmp = getValue(I.getArgOperand(0));
5138    DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp));
5139    return nullptr;
5140  }
5141  case Intrinsic::readcyclecounter: {
5142    SDValue Op = getRoot();
5143    Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl,
5144                      DAG.getVTList(MVT::i64, MVT::Other), Op);
5145    setValue(&I, Res);
5146    DAG.setRoot(Res.getValue(1));
5147    return nullptr;
5148  }
5149  case Intrinsic::bswap:
5150    setValue(&I, DAG.getNode(ISD::BSWAP, sdl,
5151                             getValue(I.getArgOperand(0)).getValueType(),
5152                             getValue(I.getArgOperand(0))));
5153    return nullptr;
5154  case Intrinsic::cttz: {
5155    SDValue Arg = getValue(I.getArgOperand(0));
5156    ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
5157    EVT Ty = Arg.getValueType();
5158    setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF,
5159                             sdl, Ty, Arg));
5160    return nullptr;
5161  }
5162  case Intrinsic::ctlz: {
5163    SDValue Arg = getValue(I.getArgOperand(0));
5164    ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
5165    EVT Ty = Arg.getValueType();
5166    setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF,
5167                             sdl, Ty, Arg));
5168    return nullptr;
5169  }
5170  case Intrinsic::ctpop: {
5171    SDValue Arg = getValue(I.getArgOperand(0));
5172    EVT Ty = Arg.getValueType();
5173    setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg));
5174    return nullptr;
5175  }
5176  case Intrinsic::stacksave: {
5177    SDValue Op = getRoot();
5178    Res = DAG.getNode(ISD::STACKSAVE, sdl,
5179                      DAG.getVTList(TLI->getPointerTy(), MVT::Other), Op);
5180    setValue(&I, Res);
5181    DAG.setRoot(Res.getValue(1));
5182    return nullptr;
5183  }
5184  case Intrinsic::stackrestore: {
5185    Res = getValue(I.getArgOperand(0));
5186    DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res));
5187    return nullptr;
5188  }
5189  case Intrinsic::stackprotector: {
5190    // Emit code into the DAG to store the stack guard onto the stack.
5191    MachineFunction &MF = DAG.getMachineFunction();
5192    MachineFrameInfo *MFI = MF.getFrameInfo();
5193    EVT PtrTy = TLI->getPointerTy();
5194
5195    SDValue Src = getValue(I.getArgOperand(0));   // The guard's value.
5196    AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
5197
5198    int FI = FuncInfo.StaticAllocaMap[Slot];
5199    MFI->setStackProtectorIndex(FI);
5200
5201    SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
5202
5203    // Store the stack protector onto the stack.
5204    Res = DAG.getStore(getRoot(), sdl, Src, FIN,
5205                       MachinePointerInfo::getFixedStack(FI),
5206                       true, false, 0);
5207    setValue(&I, Res);
5208    DAG.setRoot(Res);
5209    return nullptr;
5210  }
5211  case Intrinsic::objectsize: {
5212    // If we don't know by now, we're never going to know.
5213    ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1));
5214
5215    assert(CI && "Non-constant type in __builtin_object_size?");
5216
5217    SDValue Arg = getValue(I.getCalledValue());
5218    EVT Ty = Arg.getValueType();
5219
5220    if (CI->isZero())
5221      Res = DAG.getConstant(-1ULL, Ty);
5222    else
5223      Res = DAG.getConstant(0, Ty);
5224
5225    setValue(&I, Res);
5226    return nullptr;
5227  }
5228  case Intrinsic::annotation:
5229  case Intrinsic::ptr_annotation:
5230    // Drop the intrinsic, but forward the value
5231    setValue(&I, getValue(I.getOperand(0)));
5232    return nullptr;
5233  case Intrinsic::var_annotation:
5234    // Discard annotate attributes
5235    return nullptr;
5236
5237  case Intrinsic::init_trampoline: {
5238    const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
5239
5240    SDValue Ops[6];
5241    Ops[0] = getRoot();
5242    Ops[1] = getValue(I.getArgOperand(0));
5243    Ops[2] = getValue(I.getArgOperand(1));
5244    Ops[3] = getValue(I.getArgOperand(2));
5245    Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
5246    Ops[5] = DAG.getSrcValue(F);
5247
5248    Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops);
5249
5250    DAG.setRoot(Res);
5251    return nullptr;
5252  }
5253  case Intrinsic::adjust_trampoline: {
5254    setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl,
5255                             TLI->getPointerTy(),
5256                             getValue(I.getArgOperand(0))));
5257    return nullptr;
5258  }
5259  case Intrinsic::gcroot:
5260    if (GFI) {
5261      const Value *Alloca = I.getArgOperand(0)->stripPointerCasts();
5262      const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
5263
5264      FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
5265      GFI->addStackRoot(FI->getIndex(), TypeMap);
5266    }
5267    return nullptr;
5268  case Intrinsic::gcread:
5269  case Intrinsic::gcwrite:
5270    llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
5271  case Intrinsic::flt_rounds:
5272    setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32));
5273    return nullptr;
5274
5275  case Intrinsic::expect: {
5276    // Just replace __builtin_expect(exp, c) with EXP.
5277    setValue(&I, getValue(I.getArgOperand(0)));
5278    return nullptr;
5279  }
5280
5281  case Intrinsic::debugtrap:
5282  case Intrinsic::trap: {
5283    StringRef TrapFuncName = TM.Options.getTrapFunctionName();
5284    if (TrapFuncName.empty()) {
5285      ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ?
5286        ISD::TRAP : ISD::DEBUGTRAP;
5287      DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot()));
5288      return nullptr;
5289    }
5290    TargetLowering::ArgListTy Args;
5291
5292    TargetLowering::CallLoweringInfo CLI(DAG);
5293    CLI.setDebugLoc(sdl).setChain(getRoot())
5294      .setCallee(CallingConv::C, I.getType(),
5295                 DAG.getExternalSymbol(TrapFuncName.data(), TLI->getPointerTy()),
5296                 &Args, 0);
5297
5298    std::pair<SDValue, SDValue> Result = TLI->LowerCallTo(CLI);
5299    DAG.setRoot(Result.second);
5300    return nullptr;
5301  }
5302
5303  case Intrinsic::uadd_with_overflow:
5304  case Intrinsic::sadd_with_overflow:
5305  case Intrinsic::usub_with_overflow:
5306  case Intrinsic::ssub_with_overflow:
5307  case Intrinsic::umul_with_overflow:
5308  case Intrinsic::smul_with_overflow: {
5309    ISD::NodeType Op;
5310    switch (Intrinsic) {
5311    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
5312    case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break;
5313    case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break;
5314    case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break;
5315    case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break;
5316    case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break;
5317    case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break;
5318    }
5319    SDValue Op1 = getValue(I.getArgOperand(0));
5320    SDValue Op2 = getValue(I.getArgOperand(1));
5321
5322    SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1);
5323    setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2));
5324    return nullptr;
5325  }
5326  case Intrinsic::prefetch: {
5327    SDValue Ops[5];
5328    unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
5329    Ops[0] = getRoot();
5330    Ops[1] = getValue(I.getArgOperand(0));
5331    Ops[2] = getValue(I.getArgOperand(1));
5332    Ops[3] = getValue(I.getArgOperand(2));
5333    Ops[4] = getValue(I.getArgOperand(3));
5334    DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl,
5335                                        DAG.getVTList(MVT::Other), Ops,
5336                                        EVT::getIntegerVT(*Context, 8),
5337                                        MachinePointerInfo(I.getArgOperand(0)),
5338                                        0, /* align */
5339                                        false, /* volatile */
5340                                        rw==0, /* read */
5341                                        rw==1)); /* write */
5342    return nullptr;
5343  }
5344  case Intrinsic::lifetime_start:
5345  case Intrinsic::lifetime_end: {
5346    bool IsStart = (Intrinsic == Intrinsic::lifetime_start);
5347    // Stack coloring is not enabled in O0, discard region information.
5348    if (TM.getOptLevel() == CodeGenOpt::None)
5349      return nullptr;
5350
5351    SmallVector<Value *, 4> Allocas;
5352    GetUnderlyingObjects(I.getArgOperand(1), Allocas, DL);
5353
5354    for (SmallVectorImpl<Value*>::iterator Object = Allocas.begin(),
5355           E = Allocas.end(); Object != E; ++Object) {
5356      AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object);
5357
5358      // Could not find an Alloca.
5359      if (!LifetimeObject)
5360        continue;
5361
5362      int FI = FuncInfo.StaticAllocaMap[LifetimeObject];
5363
5364      SDValue Ops[2];
5365      Ops[0] = getRoot();
5366      Ops[1] = DAG.getFrameIndex(FI, TLI->getPointerTy(), true);
5367      unsigned Opcode = (IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END);
5368
5369      Res = DAG.getNode(Opcode, sdl, MVT::Other, Ops);
5370      DAG.setRoot(Res);
5371    }
5372    return nullptr;
5373  }
5374  case Intrinsic::invariant_start:
5375    // Discard region information.
5376    setValue(&I, DAG.getUNDEF(TLI->getPointerTy()));
5377    return nullptr;
5378  case Intrinsic::invariant_end:
5379    // Discard region information.
5380    return nullptr;
5381  case Intrinsic::stackprotectorcheck: {
5382    // Do not actually emit anything for this basic block. Instead we initialize
5383    // the stack protector descriptor and export the guard variable so we can
5384    // access it in FinishBasicBlock.
5385    const BasicBlock *BB = I.getParent();
5386    SPDescriptor.initialize(BB, FuncInfo.MBBMap[BB], I);
5387    ExportFromCurrentBlock(SPDescriptor.getGuard());
5388
5389    // Flush our exports since we are going to process a terminator.
5390    (void)getControlRoot();
5391    return nullptr;
5392  }
5393  case Intrinsic::clear_cache:
5394    return TLI->getClearCacheBuiltinName();
5395  case Intrinsic::donothing:
5396    // ignore
5397    return nullptr;
5398  case Intrinsic::experimental_stackmap: {
5399    visitStackmap(I);
5400    return nullptr;
5401  }
5402  case Intrinsic::experimental_patchpoint_void:
5403  case Intrinsic::experimental_patchpoint_i64: {
5404    visitPatchpoint(I);
5405    return nullptr;
5406  }
5407  }
5408}
5409
5410void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee,
5411                                      bool isTailCall,
5412                                      MachineBasicBlock *LandingPad) {
5413  PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
5414  FunctionType *FTy = cast<FunctionType>(PT->getElementType());
5415  Type *RetTy = FTy->getReturnType();
5416  MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
5417  MCSymbol *BeginLabel = nullptr;
5418
5419  TargetLowering::ArgListTy Args;
5420  TargetLowering::ArgListEntry Entry;
5421  Args.reserve(CS.arg_size());
5422
5423  // Check whether the function can return without sret-demotion.
5424  SmallVector<ISD::OutputArg, 4> Outs;
5425  const TargetLowering *TLI = TM.getTargetLowering();
5426  GetReturnInfo(RetTy, CS.getAttributes(), Outs, *TLI);
5427
5428  bool CanLowerReturn = TLI->CanLowerReturn(CS.getCallingConv(),
5429                                            DAG.getMachineFunction(),
5430                                            FTy->isVarArg(), Outs,
5431                                            FTy->getContext());
5432
5433  SDValue DemoteStackSlot;
5434  int DemoteStackIdx = -100;
5435
5436  if (!CanLowerReturn) {
5437    assert(!CS.hasInAllocaArgument() &&
5438           "sret demotion is incompatible with inalloca");
5439    uint64_t TySize = TLI->getDataLayout()->getTypeAllocSize(
5440                      FTy->getReturnType());
5441    unsigned Align  = TLI->getDataLayout()->getPrefTypeAlignment(
5442                      FTy->getReturnType());
5443    MachineFunction &MF = DAG.getMachineFunction();
5444    DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
5445    Type *StackSlotPtrType = PointerType::getUnqual(FTy->getReturnType());
5446
5447    DemoteStackSlot = DAG.getFrameIndex(DemoteStackIdx, TLI->getPointerTy());
5448    Entry.Node = DemoteStackSlot;
5449    Entry.Ty = StackSlotPtrType;
5450    Entry.isSExt = false;
5451    Entry.isZExt = false;
5452    Entry.isInReg = false;
5453    Entry.isSRet = true;
5454    Entry.isNest = false;
5455    Entry.isByVal = false;
5456    Entry.isReturned = false;
5457    Entry.Alignment = Align;
5458    Args.push_back(Entry);
5459    RetTy = Type::getVoidTy(FTy->getContext());
5460  }
5461
5462  for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
5463       i != e; ++i) {
5464    const Value *V = *i;
5465
5466    // Skip empty types
5467    if (V->getType()->isEmptyTy())
5468      continue;
5469
5470    SDValue ArgNode = getValue(V);
5471    Entry.Node = ArgNode; Entry.Ty = V->getType();
5472
5473    // Skip the first return-type Attribute to get to params.
5474    Entry.setAttributes(&CS, i - CS.arg_begin() + 1);
5475    Args.push_back(Entry);
5476  }
5477
5478  if (LandingPad) {
5479    // Insert a label before the invoke call to mark the try range.  This can be
5480    // used to detect deletion of the invoke via the MachineModuleInfo.
5481    BeginLabel = MMI.getContext().CreateTempSymbol();
5482
5483    // For SjLj, keep track of which landing pads go with which invokes
5484    // so as to maintain the ordering of pads in the LSDA.
5485    unsigned CallSiteIndex = MMI.getCurrentCallSite();
5486    if (CallSiteIndex) {
5487      MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
5488      LPadToCallSiteMap[LandingPad].push_back(CallSiteIndex);
5489
5490      // Now that the call site is handled, stop tracking it.
5491      MMI.setCurrentCallSite(0);
5492    }
5493
5494    // Both PendingLoads and PendingExports must be flushed here;
5495    // this call might not return.
5496    (void)getRoot();
5497    DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel));
5498  }
5499
5500  // Check if target-independent constraints permit a tail call here.
5501  // Target-dependent constraints are checked within TLI->LowerCallTo.
5502  if (isTailCall && !isInTailCallPosition(CS, *TLI))
5503    isTailCall = false;
5504
5505  TargetLowering::CallLoweringInfo CLI(DAG);
5506  CLI.setDebugLoc(getCurSDLoc()).setChain(getRoot())
5507    .setCallee(RetTy, FTy, Callee, &Args, CS).setTailCall(isTailCall);
5508
5509  std::pair<SDValue,SDValue> Result = TLI->LowerCallTo(CLI);
5510  assert((isTailCall || Result.second.getNode()) &&
5511         "Non-null chain expected with non-tail call!");
5512  assert((Result.second.getNode() || !Result.first.getNode()) &&
5513         "Null value expected with tail call!");
5514  if (Result.first.getNode()) {
5515    setValue(CS.getInstruction(), Result.first);
5516  } else if (!CanLowerReturn && Result.second.getNode()) {
5517    // The instruction result is the result of loading from the
5518    // hidden sret parameter.
5519    SmallVector<EVT, 1> PVTs;
5520    Type *PtrRetTy = PointerType::getUnqual(FTy->getReturnType());
5521
5522    ComputeValueVTs(*TLI, PtrRetTy, PVTs);
5523    assert(PVTs.size() == 1 && "Pointers should fit in one register");
5524    EVT PtrVT = PVTs[0];
5525
5526    SmallVector<EVT, 4> RetTys;
5527    SmallVector<uint64_t, 4> Offsets;
5528    RetTy = FTy->getReturnType();
5529    ComputeValueVTs(*TLI, RetTy, RetTys, &Offsets);
5530
5531    unsigned NumValues = RetTys.size();
5532    SmallVector<SDValue, 4> Values(NumValues);
5533    SmallVector<SDValue, 4> Chains(NumValues);
5534
5535    for (unsigned i = 0; i < NumValues; ++i) {
5536      SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(), PtrVT,
5537                                DemoteStackSlot,
5538                                DAG.getConstant(Offsets[i], PtrVT));
5539      SDValue L = DAG.getLoad(RetTys[i], getCurSDLoc(), Result.second, Add,
5540                  MachinePointerInfo::getFixedStack(DemoteStackIdx, Offsets[i]),
5541                              false, false, false, 1);
5542      Values[i] = L;
5543      Chains[i] = L.getValue(1);
5544    }
5545
5546    SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
5547                                MVT::Other, Chains);
5548    PendingLoads.push_back(Chain);
5549
5550    setValue(CS.getInstruction(),
5551             DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
5552                         DAG.getVTList(RetTys), Values));
5553  }
5554
5555  if (!Result.second.getNode()) {
5556    // As a special case, a null chain means that a tail call has been emitted
5557    // and the DAG root is already updated.
5558    HasTailCall = true;
5559
5560    // Since there's no actual continuation from this block, nothing can be
5561    // relying on us setting vregs for them.
5562    PendingExports.clear();
5563  } else {
5564    DAG.setRoot(Result.second);
5565  }
5566
5567  if (LandingPad) {
5568    // Insert a label at the end of the invoke call to mark the try range.  This
5569    // can be used to detect deletion of the invoke via the MachineModuleInfo.
5570    MCSymbol *EndLabel = MMI.getContext().CreateTempSymbol();
5571    DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel));
5572
5573    // Inform MachineModuleInfo of range.
5574    MMI.addInvoke(LandingPad, BeginLabel, EndLabel);
5575  }
5576}
5577
5578/// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the
5579/// value is equal or not-equal to zero.
5580static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) {
5581  for (const User *U : V->users()) {
5582    if (const ICmpInst *IC = dyn_cast<ICmpInst>(U))
5583      if (IC->isEquality())
5584        if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
5585          if (C->isNullValue())
5586            continue;
5587    // Unknown instruction.
5588    return false;
5589  }
5590  return true;
5591}
5592
5593static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
5594                             Type *LoadTy,
5595                             SelectionDAGBuilder &Builder) {
5596
5597  // Check to see if this load can be trivially constant folded, e.g. if the
5598  // input is from a string literal.
5599  if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
5600    // Cast pointer to the type we really want to load.
5601    LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
5602                                         PointerType::getUnqual(LoadTy));
5603
5604    if (const Constant *LoadCst =
5605          ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput),
5606                                       Builder.DL))
5607      return Builder.getValue(LoadCst);
5608  }
5609
5610  // Otherwise, we have to emit the load.  If the pointer is to unfoldable but
5611  // still constant memory, the input chain can be the entry node.
5612  SDValue Root;
5613  bool ConstantMemory = false;
5614
5615  // Do not serialize (non-volatile) loads of constant memory with anything.
5616  if (Builder.AA->pointsToConstantMemory(PtrVal)) {
5617    Root = Builder.DAG.getEntryNode();
5618    ConstantMemory = true;
5619  } else {
5620    // Do not serialize non-volatile loads against each other.
5621    Root = Builder.DAG.getRoot();
5622  }
5623
5624  SDValue Ptr = Builder.getValue(PtrVal);
5625  SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root,
5626                                        Ptr, MachinePointerInfo(PtrVal),
5627                                        false /*volatile*/,
5628                                        false /*nontemporal*/,
5629                                        false /*isinvariant*/, 1 /* align=1 */);
5630
5631  if (!ConstantMemory)
5632    Builder.PendingLoads.push_back(LoadVal.getValue(1));
5633  return LoadVal;
5634}
5635
5636/// processIntegerCallValue - Record the value for an instruction that
5637/// produces an integer result, converting the type where necessary.
5638void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I,
5639                                                  SDValue Value,
5640                                                  bool IsSigned) {
5641  EVT VT = TM.getTargetLowering()->getValueType(I.getType(), true);
5642  if (IsSigned)
5643    Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT);
5644  else
5645    Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT);
5646  setValue(&I, Value);
5647}
5648
5649/// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form.
5650/// If so, return true and lower it, otherwise return false and it will be
5651/// lowered like a normal call.
5652bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) {
5653  // Verify that the prototype makes sense.  int memcmp(void*,void*,size_t)
5654  if (I.getNumArgOperands() != 3)
5655    return false;
5656
5657  const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
5658  if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() ||
5659      !I.getArgOperand(2)->getType()->isIntegerTy() ||
5660      !I.getType()->isIntegerTy())
5661    return false;
5662
5663  const Value *Size = I.getArgOperand(2);
5664  const ConstantInt *CSize = dyn_cast<ConstantInt>(Size);
5665  if (CSize && CSize->getZExtValue() == 0) {
5666    EVT CallVT = TM.getTargetLowering()->getValueType(I.getType(), true);
5667    setValue(&I, DAG.getConstant(0, CallVT));
5668    return true;
5669  }
5670
5671  const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo();
5672  std::pair<SDValue, SDValue> Res =
5673    TSI.EmitTargetCodeForMemcmp(DAG, getCurSDLoc(), DAG.getRoot(),
5674                                getValue(LHS), getValue(RHS), getValue(Size),
5675                                MachinePointerInfo(LHS),
5676                                MachinePointerInfo(RHS));
5677  if (Res.first.getNode()) {
5678    processIntegerCallValue(I, Res.first, true);
5679    PendingLoads.push_back(Res.second);
5680    return true;
5681  }
5682
5683  // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0
5684  // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0
5685  if (CSize && IsOnlyUsedInZeroEqualityComparison(&I)) {
5686    bool ActuallyDoIt = true;
5687    MVT LoadVT;
5688    Type *LoadTy;
5689    switch (CSize->getZExtValue()) {
5690    default:
5691      LoadVT = MVT::Other;
5692      LoadTy = nullptr;
5693      ActuallyDoIt = false;
5694      break;
5695    case 2:
5696      LoadVT = MVT::i16;
5697      LoadTy = Type::getInt16Ty(CSize->getContext());
5698      break;
5699    case 4:
5700      LoadVT = MVT::i32;
5701      LoadTy = Type::getInt32Ty(CSize->getContext());
5702      break;
5703    case 8:
5704      LoadVT = MVT::i64;
5705      LoadTy = Type::getInt64Ty(CSize->getContext());
5706      break;
5707        /*
5708    case 16:
5709      LoadVT = MVT::v4i32;
5710      LoadTy = Type::getInt32Ty(CSize->getContext());
5711      LoadTy = VectorType::get(LoadTy, 4);
5712      break;
5713         */
5714    }
5715
5716    // This turns into unaligned loads.  We only do this if the target natively
5717    // supports the MVT we'll be loading or if it is small enough (<= 4) that
5718    // we'll only produce a small number of byte loads.
5719
5720    // Require that we can find a legal MVT, and only do this if the target
5721    // supports unaligned loads of that type.  Expanding into byte loads would
5722    // bloat the code.
5723    const TargetLowering *TLI = TM.getTargetLowering();
5724    if (ActuallyDoIt && CSize->getZExtValue() > 4) {
5725      unsigned DstAS = LHS->getType()->getPointerAddressSpace();
5726      unsigned SrcAS = RHS->getType()->getPointerAddressSpace();
5727      // TODO: Handle 5 byte compare as 4-byte + 1 byte.
5728      // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
5729      if (!TLI->isTypeLegal(LoadVT) ||
5730          !TLI->allowsUnalignedMemoryAccesses(LoadVT, SrcAS) ||
5731          !TLI->allowsUnalignedMemoryAccesses(LoadVT, DstAS))
5732        ActuallyDoIt = false;
5733    }
5734
5735    if (ActuallyDoIt) {
5736      SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this);
5737      SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this);
5738
5739      SDValue Res = DAG.getSetCC(getCurSDLoc(), MVT::i1, LHSVal, RHSVal,
5740                                 ISD::SETNE);
5741      processIntegerCallValue(I, Res, false);
5742      return true;
5743    }
5744  }
5745
5746
5747  return false;
5748}
5749
5750/// visitMemChrCall -- See if we can lower a memchr call into an optimized
5751/// form.  If so, return true and lower it, otherwise return false and it
5752/// will be lowered like a normal call.
5753bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) {
5754  // Verify that the prototype makes sense.  void *memchr(void *, int, size_t)
5755  if (I.getNumArgOperands() != 3)
5756    return false;
5757
5758  const Value *Src = I.getArgOperand(0);
5759  const Value *Char = I.getArgOperand(1);
5760  const Value *Length = I.getArgOperand(2);
5761  if (!Src->getType()->isPointerTy() ||
5762      !Char->getType()->isIntegerTy() ||
5763      !Length->getType()->isIntegerTy() ||
5764      !I.getType()->isPointerTy())
5765    return false;
5766
5767  const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo();
5768  std::pair<SDValue, SDValue> Res =
5769    TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(),
5770                                getValue(Src), getValue(Char), getValue(Length),
5771                                MachinePointerInfo(Src));
5772  if (Res.first.getNode()) {
5773    setValue(&I, Res.first);
5774    PendingLoads.push_back(Res.second);
5775    return true;
5776  }
5777
5778  return false;
5779}
5780
5781/// visitStrCpyCall -- See if we can lower a strcpy or stpcpy call into an
5782/// optimized form.  If so, return true and lower it, otherwise return false
5783/// and it will be lowered like a normal call.
5784bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) {
5785  // Verify that the prototype makes sense.  char *strcpy(char *, char *)
5786  if (I.getNumArgOperands() != 2)
5787    return false;
5788
5789  const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
5790  if (!Arg0->getType()->isPointerTy() ||
5791      !Arg1->getType()->isPointerTy() ||
5792      !I.getType()->isPointerTy())
5793    return false;
5794
5795  const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo();
5796  std::pair<SDValue, SDValue> Res =
5797    TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(),
5798                                getValue(Arg0), getValue(Arg1),
5799                                MachinePointerInfo(Arg0),
5800                                MachinePointerInfo(Arg1), isStpcpy);
5801  if (Res.first.getNode()) {
5802    setValue(&I, Res.first);
5803    DAG.setRoot(Res.second);
5804    return true;
5805  }
5806
5807  return false;
5808}
5809
5810/// visitStrCmpCall - See if we can lower a call to strcmp in an optimized form.
5811/// If so, return true and lower it, otherwise return false and it will be
5812/// lowered like a normal call.
5813bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) {
5814  // Verify that the prototype makes sense.  int strcmp(void*,void*)
5815  if (I.getNumArgOperands() != 2)
5816    return false;
5817
5818  const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
5819  if (!Arg0->getType()->isPointerTy() ||
5820      !Arg1->getType()->isPointerTy() ||
5821      !I.getType()->isIntegerTy())
5822    return false;
5823
5824  const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo();
5825  std::pair<SDValue, SDValue> Res =
5826    TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(),
5827                                getValue(Arg0), getValue(Arg1),
5828                                MachinePointerInfo(Arg0),
5829                                MachinePointerInfo(Arg1));
5830  if (Res.first.getNode()) {
5831    processIntegerCallValue(I, Res.first, true);
5832    PendingLoads.push_back(Res.second);
5833    return true;
5834  }
5835
5836  return false;
5837}
5838
5839/// visitStrLenCall -- See if we can lower a strlen call into an optimized
5840/// form.  If so, return true and lower it, otherwise return false and it
5841/// will be lowered like a normal call.
5842bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) {
5843  // Verify that the prototype makes sense.  size_t strlen(char *)
5844  if (I.getNumArgOperands() != 1)
5845    return false;
5846
5847  const Value *Arg0 = I.getArgOperand(0);
5848  if (!Arg0->getType()->isPointerTy() || !I.getType()->isIntegerTy())
5849    return false;
5850
5851  const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo();
5852  std::pair<SDValue, SDValue> Res =
5853    TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(),
5854                                getValue(Arg0), MachinePointerInfo(Arg0));
5855  if (Res.first.getNode()) {
5856    processIntegerCallValue(I, Res.first, false);
5857    PendingLoads.push_back(Res.second);
5858    return true;
5859  }
5860
5861  return false;
5862}
5863
5864/// visitStrNLenCall -- See if we can lower a strnlen call into an optimized
5865/// form.  If so, return true and lower it, otherwise return false and it
5866/// will be lowered like a normal call.
5867bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) {
5868  // Verify that the prototype makes sense.  size_t strnlen(char *, size_t)
5869  if (I.getNumArgOperands() != 2)
5870    return false;
5871
5872  const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
5873  if (!Arg0->getType()->isPointerTy() ||
5874      !Arg1->getType()->isIntegerTy() ||
5875      !I.getType()->isIntegerTy())
5876    return false;
5877
5878  const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo();
5879  std::pair<SDValue, SDValue> Res =
5880    TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(),
5881                                 getValue(Arg0), getValue(Arg1),
5882                                 MachinePointerInfo(Arg0));
5883  if (Res.first.getNode()) {
5884    processIntegerCallValue(I, Res.first, false);
5885    PendingLoads.push_back(Res.second);
5886    return true;
5887  }
5888
5889  return false;
5890}
5891
5892/// visitUnaryFloatCall - If a call instruction is a unary floating-point
5893/// operation (as expected), translate it to an SDNode with the specified opcode
5894/// and return true.
5895bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I,
5896                                              unsigned Opcode) {
5897  // Sanity check that it really is a unary floating-point call.
5898  if (I.getNumArgOperands() != 1 ||
5899      !I.getArgOperand(0)->getType()->isFloatingPointTy() ||
5900      I.getType() != I.getArgOperand(0)->getType() ||
5901      !I.onlyReadsMemory())
5902    return false;
5903
5904  SDValue Tmp = getValue(I.getArgOperand(0));
5905  setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp));
5906  return true;
5907}
5908
5909void SelectionDAGBuilder::visitCall(const CallInst &I) {
5910  // Handle inline assembly differently.
5911  if (isa<InlineAsm>(I.getCalledValue())) {
5912    visitInlineAsm(&I);
5913    return;
5914  }
5915
5916  MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
5917  ComputeUsesVAFloatArgument(I, &MMI);
5918
5919  const char *RenameFn = nullptr;
5920  if (Function *F = I.getCalledFunction()) {
5921    if (F->isDeclaration()) {
5922      if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) {
5923        if (unsigned IID = II->getIntrinsicID(F)) {
5924          RenameFn = visitIntrinsicCall(I, IID);
5925          if (!RenameFn)
5926            return;
5927        }
5928      }
5929      if (unsigned IID = F->getIntrinsicID()) {
5930        RenameFn = visitIntrinsicCall(I, IID);
5931        if (!RenameFn)
5932          return;
5933      }
5934    }
5935
5936    // Check for well-known libc/libm calls.  If the function is internal, it
5937    // can't be a library call.
5938    LibFunc::Func Func;
5939    if (!F->hasLocalLinkage() && F->hasName() &&
5940        LibInfo->getLibFunc(F->getName(), Func) &&
5941        LibInfo->hasOptimizedCodeGen(Func)) {
5942      switch (Func) {
5943      default: break;
5944      case LibFunc::copysign:
5945      case LibFunc::copysignf:
5946      case LibFunc::copysignl:
5947        if (I.getNumArgOperands() == 2 &&   // Basic sanity checks.
5948            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5949            I.getType() == I.getArgOperand(0)->getType() &&
5950            I.getType() == I.getArgOperand(1)->getType() &&
5951            I.onlyReadsMemory()) {
5952          SDValue LHS = getValue(I.getArgOperand(0));
5953          SDValue RHS = getValue(I.getArgOperand(1));
5954          setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(),
5955                                   LHS.getValueType(), LHS, RHS));
5956          return;
5957        }
5958        break;
5959      case LibFunc::fabs:
5960      case LibFunc::fabsf:
5961      case LibFunc::fabsl:
5962        if (visitUnaryFloatCall(I, ISD::FABS))
5963          return;
5964        break;
5965      case LibFunc::sin:
5966      case LibFunc::sinf:
5967      case LibFunc::sinl:
5968        if (visitUnaryFloatCall(I, ISD::FSIN))
5969          return;
5970        break;
5971      case LibFunc::cos:
5972      case LibFunc::cosf:
5973      case LibFunc::cosl:
5974        if (visitUnaryFloatCall(I, ISD::FCOS))
5975          return;
5976        break;
5977      case LibFunc::sqrt:
5978      case LibFunc::sqrtf:
5979      case LibFunc::sqrtl:
5980      case LibFunc::sqrt_finite:
5981      case LibFunc::sqrtf_finite:
5982      case LibFunc::sqrtl_finite:
5983        if (visitUnaryFloatCall(I, ISD::FSQRT))
5984          return;
5985        break;
5986      case LibFunc::floor:
5987      case LibFunc::floorf:
5988      case LibFunc::floorl:
5989        if (visitUnaryFloatCall(I, ISD::FFLOOR))
5990          return;
5991        break;
5992      case LibFunc::nearbyint:
5993      case LibFunc::nearbyintf:
5994      case LibFunc::nearbyintl:
5995        if (visitUnaryFloatCall(I, ISD::FNEARBYINT))
5996          return;
5997        break;
5998      case LibFunc::ceil:
5999      case LibFunc::ceilf:
6000      case LibFunc::ceill:
6001        if (visitUnaryFloatCall(I, ISD::FCEIL))
6002          return;
6003        break;
6004      case LibFunc::rint:
6005      case LibFunc::rintf:
6006      case LibFunc::rintl:
6007        if (visitUnaryFloatCall(I, ISD::FRINT))
6008          return;
6009        break;
6010      case LibFunc::round:
6011      case LibFunc::roundf:
6012      case LibFunc::roundl:
6013        if (visitUnaryFloatCall(I, ISD::FROUND))
6014          return;
6015        break;
6016      case LibFunc::trunc:
6017      case LibFunc::truncf:
6018      case LibFunc::truncl:
6019        if (visitUnaryFloatCall(I, ISD::FTRUNC))
6020          return;
6021        break;
6022      case LibFunc::log2:
6023      case LibFunc::log2f:
6024      case LibFunc::log2l:
6025        if (visitUnaryFloatCall(I, ISD::FLOG2))
6026          return;
6027        break;
6028      case LibFunc::exp2:
6029      case LibFunc::exp2f:
6030      case LibFunc::exp2l:
6031        if (visitUnaryFloatCall(I, ISD::FEXP2))
6032          return;
6033        break;
6034      case LibFunc::memcmp:
6035        if (visitMemCmpCall(I))
6036          return;
6037        break;
6038      case LibFunc::memchr:
6039        if (visitMemChrCall(I))
6040          return;
6041        break;
6042      case LibFunc::strcpy:
6043        if (visitStrCpyCall(I, false))
6044          return;
6045        break;
6046      case LibFunc::stpcpy:
6047        if (visitStrCpyCall(I, true))
6048          return;
6049        break;
6050      case LibFunc::strcmp:
6051        if (visitStrCmpCall(I))
6052          return;
6053        break;
6054      case LibFunc::strlen:
6055        if (visitStrLenCall(I))
6056          return;
6057        break;
6058      case LibFunc::strnlen:
6059        if (visitStrNLenCall(I))
6060          return;
6061        break;
6062      }
6063    }
6064  }
6065
6066  SDValue Callee;
6067  if (!RenameFn)
6068    Callee = getValue(I.getCalledValue());
6069  else
6070    Callee = DAG.getExternalSymbol(RenameFn,
6071                                   TM.getTargetLowering()->getPointerTy());
6072
6073  // Check if we can potentially perform a tail call. More detailed checking is
6074  // be done within LowerCallTo, after more information about the call is known.
6075  LowerCallTo(&I, Callee, I.isTailCall());
6076}
6077
6078namespace {
6079
6080/// AsmOperandInfo - This contains information for each constraint that we are
6081/// lowering.
6082class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
6083public:
6084  /// CallOperand - If this is the result output operand or a clobber
6085  /// this is null, otherwise it is the incoming operand to the CallInst.
6086  /// This gets modified as the asm is processed.
6087  SDValue CallOperand;
6088
6089  /// AssignedRegs - If this is a register or register class operand, this
6090  /// contains the set of register corresponding to the operand.
6091  RegsForValue AssignedRegs;
6092
6093  explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
6094    : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr,0) {
6095  }
6096
6097  /// getCallOperandValEVT - Return the EVT of the Value* that this operand
6098  /// corresponds to.  If there is no Value* for this operand, it returns
6099  /// MVT::Other.
6100  EVT getCallOperandValEVT(LLVMContext &Context,
6101                           const TargetLowering &TLI,
6102                           const DataLayout *DL) const {
6103    if (!CallOperandVal) return MVT::Other;
6104
6105    if (isa<BasicBlock>(CallOperandVal))
6106      return TLI.getPointerTy();
6107
6108    llvm::Type *OpTy = CallOperandVal->getType();
6109
6110    // FIXME: code duplicated from TargetLowering::ParseConstraints().
6111    // If this is an indirect operand, the operand is a pointer to the
6112    // accessed type.
6113    if (isIndirect) {
6114      llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
6115      if (!PtrTy)
6116        report_fatal_error("Indirect operand for inline asm not a pointer!");
6117      OpTy = PtrTy->getElementType();
6118    }
6119
6120    // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
6121    if (StructType *STy = dyn_cast<StructType>(OpTy))
6122      if (STy->getNumElements() == 1)
6123        OpTy = STy->getElementType(0);
6124
6125    // If OpTy is not a single value, it may be a struct/union that we
6126    // can tile with integers.
6127    if (!OpTy->isSingleValueType() && OpTy->isSized()) {
6128      unsigned BitSize = DL->getTypeSizeInBits(OpTy);
6129      switch (BitSize) {
6130      default: break;
6131      case 1:
6132      case 8:
6133      case 16:
6134      case 32:
6135      case 64:
6136      case 128:
6137        OpTy = IntegerType::get(Context, BitSize);
6138        break;
6139      }
6140    }
6141
6142    return TLI.getValueType(OpTy, true);
6143  }
6144};
6145
6146typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector;
6147
6148} // end anonymous namespace
6149
6150/// GetRegistersForValue - Assign registers (virtual or physical) for the
6151/// specified operand.  We prefer to assign virtual registers, to allow the
6152/// register allocator to handle the assignment process.  However, if the asm
6153/// uses features that we can't model on machineinstrs, we have SDISel do the
6154/// allocation.  This produces generally horrible, but correct, code.
6155///
6156///   OpInfo describes the operand.
6157///
6158static void GetRegistersForValue(SelectionDAG &DAG,
6159                                 const TargetLowering &TLI,
6160                                 SDLoc DL,
6161                                 SDISelAsmOperandInfo &OpInfo) {
6162  LLVMContext &Context = *DAG.getContext();
6163
6164  MachineFunction &MF = DAG.getMachineFunction();
6165  SmallVector<unsigned, 4> Regs;
6166
6167  // If this is a constraint for a single physreg, or a constraint for a
6168  // register class, find it.
6169  std::pair<unsigned, const TargetRegisterClass*> PhysReg =
6170    TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
6171                                     OpInfo.ConstraintVT);
6172
6173  unsigned NumRegs = 1;
6174  if (OpInfo.ConstraintVT != MVT::Other) {
6175    // If this is a FP input in an integer register (or visa versa) insert a bit
6176    // cast of the input value.  More generally, handle any case where the input
6177    // value disagrees with the register class we plan to stick this in.
6178    if (OpInfo.Type == InlineAsm::isInput &&
6179        PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) {
6180      // Try to convert to the first EVT that the reg class contains.  If the
6181      // types are identical size, use a bitcast to convert (e.g. two differing
6182      // vector types).
6183      MVT RegVT = *PhysReg.second->vt_begin();
6184      if (RegVT.getSizeInBits() == OpInfo.CallOperand.getValueSizeInBits()) {
6185        OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL,
6186                                         RegVT, OpInfo.CallOperand);
6187        OpInfo.ConstraintVT = RegVT;
6188      } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
6189        // If the input is a FP value and we want it in FP registers, do a
6190        // bitcast to the corresponding integer type.  This turns an f64 value
6191        // into i64, which can be passed with two i32 values on a 32-bit
6192        // machine.
6193        RegVT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits());
6194        OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL,
6195                                         RegVT, OpInfo.CallOperand);
6196        OpInfo.ConstraintVT = RegVT;
6197      }
6198    }
6199
6200    NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT);
6201  }
6202
6203  MVT RegVT;
6204  EVT ValueVT = OpInfo.ConstraintVT;
6205
6206  // If this is a constraint for a specific physical register, like {r17},
6207  // assign it now.
6208  if (unsigned AssignedReg = PhysReg.first) {
6209    const TargetRegisterClass *RC = PhysReg.second;
6210    if (OpInfo.ConstraintVT == MVT::Other)
6211      ValueVT = *RC->vt_begin();
6212
6213    // Get the actual register value type.  This is important, because the user
6214    // may have asked for (e.g.) the AX register in i32 type.  We need to
6215    // remember that AX is actually i16 to get the right extension.
6216    RegVT = *RC->vt_begin();
6217
6218    // This is a explicit reference to a physical register.
6219    Regs.push_back(AssignedReg);
6220
6221    // If this is an expanded reference, add the rest of the regs to Regs.
6222    if (NumRegs != 1) {
6223      TargetRegisterClass::iterator I = RC->begin();
6224      for (; *I != AssignedReg; ++I)
6225        assert(I != RC->end() && "Didn't find reg!");
6226
6227      // Already added the first reg.
6228      --NumRegs; ++I;
6229      for (; NumRegs; --NumRegs, ++I) {
6230        assert(I != RC->end() && "Ran out of registers to allocate!");
6231        Regs.push_back(*I);
6232      }
6233    }
6234
6235    OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
6236    return;
6237  }
6238
6239  // Otherwise, if this was a reference to an LLVM register class, create vregs
6240  // for this reference.
6241  if (const TargetRegisterClass *RC = PhysReg.second) {
6242    RegVT = *RC->vt_begin();
6243    if (OpInfo.ConstraintVT == MVT::Other)
6244      ValueVT = RegVT;
6245
6246    // Create the appropriate number of virtual registers.
6247    MachineRegisterInfo &RegInfo = MF.getRegInfo();
6248    for (; NumRegs; --NumRegs)
6249      Regs.push_back(RegInfo.createVirtualRegister(RC));
6250
6251    OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
6252    return;
6253  }
6254
6255  // Otherwise, we couldn't allocate enough registers for this.
6256}
6257
6258/// visitInlineAsm - Handle a call to an InlineAsm object.
6259///
6260void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) {
6261  const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
6262
6263  /// ConstraintOperands - Information about all of the constraints.
6264  SDISelAsmOperandInfoVector ConstraintOperands;
6265
6266  const TargetLowering *TLI = TM.getTargetLowering();
6267  TargetLowering::AsmOperandInfoVector
6268    TargetConstraints = TLI->ParseConstraints(CS);
6269
6270  bool hasMemory = false;
6271
6272  unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
6273  unsigned ResNo = 0;   // ResNo - The result number of the next output.
6274  for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
6275    ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i]));
6276    SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
6277
6278    MVT OpVT = MVT::Other;
6279
6280    // Compute the value type for each operand.
6281    switch (OpInfo.Type) {
6282    case InlineAsm::isOutput:
6283      // Indirect outputs just consume an argument.
6284      if (OpInfo.isIndirect) {
6285        OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
6286        break;
6287      }
6288
6289      // The return value of the call is this value.  As such, there is no
6290      // corresponding argument.
6291      assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
6292      if (StructType *STy = dyn_cast<StructType>(CS.getType())) {
6293        OpVT = TLI->getSimpleValueType(STy->getElementType(ResNo));
6294      } else {
6295        assert(ResNo == 0 && "Asm only has one result!");
6296        OpVT = TLI->getSimpleValueType(CS.getType());
6297      }
6298      ++ResNo;
6299      break;
6300    case InlineAsm::isInput:
6301      OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
6302      break;
6303    case InlineAsm::isClobber:
6304      // Nothing to do.
6305      break;
6306    }
6307
6308    // If this is an input or an indirect output, process the call argument.
6309    // BasicBlocks are labels, currently appearing only in asm's.
6310    if (OpInfo.CallOperandVal) {
6311      if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) {
6312        OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
6313      } else {
6314        OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
6315      }
6316
6317      OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), *TLI, DL).
6318        getSimpleVT();
6319    }
6320
6321    OpInfo.ConstraintVT = OpVT;
6322
6323    // Indirect operand accesses access memory.
6324    if (OpInfo.isIndirect)
6325      hasMemory = true;
6326    else {
6327      for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) {
6328        TargetLowering::ConstraintType
6329          CType = TLI->getConstraintType(OpInfo.Codes[j]);
6330        if (CType == TargetLowering::C_Memory) {
6331          hasMemory = true;
6332          break;
6333        }
6334      }
6335    }
6336  }
6337
6338  SDValue Chain, Flag;
6339
6340  // We won't need to flush pending loads if this asm doesn't touch
6341  // memory and is nonvolatile.
6342  if (hasMemory || IA->hasSideEffects())
6343    Chain = getRoot();
6344  else
6345    Chain = DAG.getRoot();
6346
6347  // Second pass over the constraints: compute which constraint option to use
6348  // and assign registers to constraints that want a specific physreg.
6349  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
6350    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
6351
6352    // If this is an output operand with a matching input operand, look up the
6353    // matching input. If their types mismatch, e.g. one is an integer, the
6354    // other is floating point, or their sizes are different, flag it as an
6355    // error.
6356    if (OpInfo.hasMatchingInput()) {
6357      SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
6358
6359      if (OpInfo.ConstraintVT != Input.ConstraintVT) {
6360        std::pair<unsigned, const TargetRegisterClass*> MatchRC =
6361          TLI->getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
6362                                            OpInfo.ConstraintVT);
6363        std::pair<unsigned, const TargetRegisterClass*> InputRC =
6364          TLI->getRegForInlineAsmConstraint(Input.ConstraintCode,
6365                                            Input.ConstraintVT);
6366        if ((OpInfo.ConstraintVT.isInteger() !=
6367             Input.ConstraintVT.isInteger()) ||
6368            (MatchRC.second != InputRC.second)) {
6369          report_fatal_error("Unsupported asm: input constraint"
6370                             " with a matching output constraint of"
6371                             " incompatible type!");
6372        }
6373        Input.ConstraintVT = OpInfo.ConstraintVT;
6374      }
6375    }
6376
6377    // Compute the constraint code and ConstraintType to use.
6378    TLI->ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
6379
6380    if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
6381        OpInfo.Type == InlineAsm::isClobber)
6382      continue;
6383
6384    // If this is a memory input, and if the operand is not indirect, do what we
6385    // need to to provide an address for the memory input.
6386    if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
6387        !OpInfo.isIndirect) {
6388      assert((OpInfo.isMultipleAlternative ||
6389              (OpInfo.Type == InlineAsm::isInput)) &&
6390             "Can only indirectify direct input operands!");
6391
6392      // Memory operands really want the address of the value.  If we don't have
6393      // an indirect input, put it in the constpool if we can, otherwise spill
6394      // it to a stack slot.
6395      // TODO: This isn't quite right. We need to handle these according to
6396      // the addressing mode that the constraint wants. Also, this may take
6397      // an additional register for the computation and we don't want that
6398      // either.
6399
6400      // If the operand is a float, integer, or vector constant, spill to a
6401      // constant pool entry to get its address.
6402      const Value *OpVal = OpInfo.CallOperandVal;
6403      if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
6404          isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) {
6405        OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal),
6406                                                 TLI->getPointerTy());
6407      } else {
6408        // Otherwise, create a stack slot and emit a store to it before the
6409        // asm.
6410        Type *Ty = OpVal->getType();
6411        uint64_t TySize = TLI->getDataLayout()->getTypeAllocSize(Ty);
6412        unsigned Align  = TLI->getDataLayout()->getPrefTypeAlignment(Ty);
6413        MachineFunction &MF = DAG.getMachineFunction();
6414        int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
6415        SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI->getPointerTy());
6416        Chain = DAG.getStore(Chain, getCurSDLoc(),
6417                             OpInfo.CallOperand, StackSlot,
6418                             MachinePointerInfo::getFixedStack(SSFI),
6419                             false, false, 0);
6420        OpInfo.CallOperand = StackSlot;
6421      }
6422
6423      // There is no longer a Value* corresponding to this operand.
6424      OpInfo.CallOperandVal = nullptr;
6425
6426      // It is now an indirect operand.
6427      OpInfo.isIndirect = true;
6428    }
6429
6430    // If this constraint is for a specific register, allocate it before
6431    // anything else.
6432    if (OpInfo.ConstraintType == TargetLowering::C_Register)
6433      GetRegistersForValue(DAG, *TLI, getCurSDLoc(), OpInfo);
6434  }
6435
6436  // Second pass - Loop over all of the operands, assigning virtual or physregs
6437  // to register class operands.
6438  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
6439    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
6440
6441    // C_Register operands have already been allocated, Other/Memory don't need
6442    // to be.
6443    if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass)
6444      GetRegistersForValue(DAG, *TLI, getCurSDLoc(), OpInfo);
6445  }
6446
6447  // AsmNodeOperands - The operands for the ISD::INLINEASM node.
6448  std::vector<SDValue> AsmNodeOperands;
6449  AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
6450  AsmNodeOperands.push_back(
6451          DAG.getTargetExternalSymbol(IA->getAsmString().c_str(),
6452                                      TLI->getPointerTy()));
6453
6454  // If we have a !srcloc metadata node associated with it, we want to attach
6455  // this to the ultimately generated inline asm machineinstr.  To do this, we
6456  // pass in the third operand as this (potentially null) inline asm MDNode.
6457  const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc");
6458  AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
6459
6460  // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore
6461  // bits as operand 3.
6462  unsigned ExtraInfo = 0;
6463  if (IA->hasSideEffects())
6464    ExtraInfo |= InlineAsm::Extra_HasSideEffects;
6465  if (IA->isAlignStack())
6466    ExtraInfo |= InlineAsm::Extra_IsAlignStack;
6467  // Set the asm dialect.
6468  ExtraInfo |= IA->getDialect() * InlineAsm::Extra_AsmDialect;
6469
6470  // Determine if this InlineAsm MayLoad or MayStore based on the constraints.
6471  for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
6472    TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i];
6473
6474    // Compute the constraint code and ConstraintType to use.
6475    TLI->ComputeConstraintToUse(OpInfo, SDValue());
6476
6477    // Ideally, we would only check against memory constraints.  However, the
6478    // meaning of an other constraint can be target-specific and we can't easily
6479    // reason about it.  Therefore, be conservative and set MayLoad/MayStore
6480    // for other constriants as well.
6481    if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
6482        OpInfo.ConstraintType == TargetLowering::C_Other) {
6483      if (OpInfo.Type == InlineAsm::isInput)
6484        ExtraInfo |= InlineAsm::Extra_MayLoad;
6485      else if (OpInfo.Type == InlineAsm::isOutput)
6486        ExtraInfo |= InlineAsm::Extra_MayStore;
6487      else if (OpInfo.Type == InlineAsm::isClobber)
6488        ExtraInfo |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore);
6489    }
6490  }
6491
6492  AsmNodeOperands.push_back(DAG.getTargetConstant(ExtraInfo,
6493                                                  TLI->getPointerTy()));
6494
6495  // Loop over all of the inputs, copying the operand values into the
6496  // appropriate registers and processing the output regs.
6497  RegsForValue RetValRegs;
6498
6499  // IndirectStoresToEmit - The set of stores to emit after the inline asm node.
6500  std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit;
6501
6502  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
6503    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
6504
6505    switch (OpInfo.Type) {
6506    case InlineAsm::isOutput: {
6507      if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass &&
6508          OpInfo.ConstraintType != TargetLowering::C_Register) {
6509        // Memory output, or 'other' output (e.g. 'X' constraint).
6510        assert(OpInfo.isIndirect && "Memory output must be indirect operand");
6511
6512        // Add information to the INLINEASM node to know about this output.
6513        unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
6514        AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags,
6515                                                        TLI->getPointerTy()));
6516        AsmNodeOperands.push_back(OpInfo.CallOperand);
6517        break;
6518      }
6519
6520      // Otherwise, this is a register or register class output.
6521
6522      // Copy the output from the appropriate register.  Find a register that
6523      // we can use.
6524      if (OpInfo.AssignedRegs.Regs.empty()) {
6525        LLVMContext &Ctx = *DAG.getContext();
6526        Ctx.emitError(CS.getInstruction(),
6527                      "couldn't allocate output register for constraint '" +
6528                          Twine(OpInfo.ConstraintCode) + "'");
6529        return;
6530      }
6531
6532      // If this is an indirect operand, store through the pointer after the
6533      // asm.
6534      if (OpInfo.isIndirect) {
6535        IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs,
6536                                                      OpInfo.CallOperandVal));
6537      } else {
6538        // This is the result value of the call.
6539        assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
6540        // Concatenate this output onto the outputs list.
6541        RetValRegs.append(OpInfo.AssignedRegs);
6542      }
6543
6544      // Add information to the INLINEASM node to know that this register is
6545      // set.
6546      OpInfo.AssignedRegs
6547          .AddInlineAsmOperands(OpInfo.isEarlyClobber
6548                                    ? InlineAsm::Kind_RegDefEarlyClobber
6549                                    : InlineAsm::Kind_RegDef,
6550                                false, 0, DAG, AsmNodeOperands);
6551      break;
6552    }
6553    case InlineAsm::isInput: {
6554      SDValue InOperandVal = OpInfo.CallOperand;
6555
6556      if (OpInfo.isMatchingInputConstraint()) {   // Matching constraint?
6557        // If this is required to match an output register we have already set,
6558        // just use its register.
6559        unsigned OperandNo = OpInfo.getMatchedOperand();
6560
6561        // Scan until we find the definition we already emitted of this operand.
6562        // When we find it, create a RegsForValue operand.
6563        unsigned CurOp = InlineAsm::Op_FirstOperand;
6564        for (; OperandNo; --OperandNo) {
6565          // Advance to the next operand.
6566          unsigned OpFlag =
6567            cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
6568          assert((InlineAsm::isRegDefKind(OpFlag) ||
6569                  InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||
6570                  InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?");
6571          CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1;
6572        }
6573
6574        unsigned OpFlag =
6575          cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
6576        if (InlineAsm::isRegDefKind(OpFlag) ||
6577            InlineAsm::isRegDefEarlyClobberKind(OpFlag)) {
6578          // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
6579          if (OpInfo.isIndirect) {
6580            // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
6581            LLVMContext &Ctx = *DAG.getContext();
6582            Ctx.emitError(CS.getInstruction(), "inline asm not supported yet:"
6583                                               " don't know how to handle tied "
6584                                               "indirect register inputs");
6585            return;
6586          }
6587
6588          RegsForValue MatchedRegs;
6589          MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType());
6590          MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType();
6591          MatchedRegs.RegVTs.push_back(RegVT);
6592          MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo();
6593          for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag);
6594               i != e; ++i) {
6595            if (const TargetRegisterClass *RC = TLI->getRegClassFor(RegVT))
6596              MatchedRegs.Regs.push_back(RegInfo.createVirtualRegister(RC));
6597            else {
6598              LLVMContext &Ctx = *DAG.getContext();
6599              Ctx.emitError(CS.getInstruction(),
6600                            "inline asm error: This value"
6601                            " type register class is not natively supported!");
6602              return;
6603            }
6604          }
6605          // Use the produced MatchedRegs object to
6606          MatchedRegs.getCopyToRegs(InOperandVal, DAG, getCurSDLoc(),
6607                                    Chain, &Flag, CS.getInstruction());
6608          MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse,
6609                                           true, OpInfo.getMatchedOperand(),
6610                                           DAG, AsmNodeOperands);
6611          break;
6612        }
6613
6614        assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!");
6615        assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 &&
6616               "Unexpected number of operands");
6617        // Add information to the INLINEASM node to know about this input.
6618        // See InlineAsm.h isUseOperandTiedToDef.
6619        OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
6620                                                    OpInfo.getMatchedOperand());
6621        AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlag,
6622                                                        TLI->getPointerTy()));
6623        AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
6624        break;
6625      }
6626
6627      // Treat indirect 'X' constraint as memory.
6628      if (OpInfo.ConstraintType == TargetLowering::C_Other &&
6629          OpInfo.isIndirect)
6630        OpInfo.ConstraintType = TargetLowering::C_Memory;
6631
6632      if (OpInfo.ConstraintType == TargetLowering::C_Other) {
6633        std::vector<SDValue> Ops;
6634        TLI->LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode,
6635                                          Ops, DAG);
6636        if (Ops.empty()) {
6637          LLVMContext &Ctx = *DAG.getContext();
6638          Ctx.emitError(CS.getInstruction(),
6639                        "invalid operand for inline asm constraint '" +
6640                            Twine(OpInfo.ConstraintCode) + "'");
6641          return;
6642        }
6643
6644        // Add information to the INLINEASM node to know about this input.
6645        unsigned ResOpType =
6646          InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
6647        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
6648                                                        TLI->getPointerTy()));
6649        AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
6650        break;
6651      }
6652
6653      if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
6654        assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
6655        assert(InOperandVal.getValueType() == TLI->getPointerTy() &&
6656               "Memory operands expect pointer values");
6657
6658        // Add information to the INLINEASM node to know about this input.
6659        unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
6660        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
6661                                                        TLI->getPointerTy()));
6662        AsmNodeOperands.push_back(InOperandVal);
6663        break;
6664      }
6665
6666      assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
6667              OpInfo.ConstraintType == TargetLowering::C_Register) &&
6668             "Unknown constraint type!");
6669
6670      // TODO: Support this.
6671      if (OpInfo.isIndirect) {
6672        LLVMContext &Ctx = *DAG.getContext();
6673        Ctx.emitError(CS.getInstruction(),
6674                      "Don't know how to handle indirect register inputs yet "
6675                      "for constraint '" +
6676                          Twine(OpInfo.ConstraintCode) + "'");
6677        return;
6678      }
6679
6680      // Copy the input into the appropriate registers.
6681      if (OpInfo.AssignedRegs.Regs.empty()) {
6682        LLVMContext &Ctx = *DAG.getContext();
6683        Ctx.emitError(CS.getInstruction(),
6684                      "couldn't allocate input reg for constraint '" +
6685                          Twine(OpInfo.ConstraintCode) + "'");
6686        return;
6687      }
6688
6689      OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, getCurSDLoc(),
6690                                        Chain, &Flag, CS.getInstruction());
6691
6692      OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0,
6693                                               DAG, AsmNodeOperands);
6694      break;
6695    }
6696    case InlineAsm::isClobber: {
6697      // Add the clobbered value to the operand list, so that the register
6698      // allocator is aware that the physreg got clobbered.
6699      if (!OpInfo.AssignedRegs.Regs.empty())
6700        OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber,
6701                                                 false, 0, DAG,
6702                                                 AsmNodeOperands);
6703      break;
6704    }
6705    }
6706  }
6707
6708  // Finish up input operands.  Set the input chain and add the flag last.
6709  AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
6710  if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
6711
6712  Chain = DAG.getNode(ISD::INLINEASM, getCurSDLoc(),
6713                      DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands);
6714  Flag = Chain.getValue(1);
6715
6716  // If this asm returns a register value, copy the result from that register
6717  // and set it as the value of the call.
6718  if (!RetValRegs.Regs.empty()) {
6719    SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(),
6720                                             Chain, &Flag, CS.getInstruction());
6721
6722    // FIXME: Why don't we do this for inline asms with MRVs?
6723    if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) {
6724      EVT ResultType = TLI->getValueType(CS.getType());
6725
6726      // If any of the results of the inline asm is a vector, it may have the
6727      // wrong width/num elts.  This can happen for register classes that can
6728      // contain multiple different value types.  The preg or vreg allocated may
6729      // not have the same VT as was expected.  Convert it to the right type
6730      // with bit_convert.
6731      if (ResultType != Val.getValueType() && Val.getValueType().isVector()) {
6732        Val = DAG.getNode(ISD::BITCAST, getCurSDLoc(),
6733                          ResultType, Val);
6734
6735      } else if (ResultType != Val.getValueType() &&
6736                 ResultType.isInteger() && Val.getValueType().isInteger()) {
6737        // If a result value was tied to an input value, the computed result may
6738        // have a wider width than the expected result.  Extract the relevant
6739        // portion.
6740        Val = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultType, Val);
6741      }
6742
6743      assert(ResultType == Val.getValueType() && "Asm result value mismatch!");
6744    }
6745
6746    setValue(CS.getInstruction(), Val);
6747    // Don't need to use this as a chain in this case.
6748    if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty())
6749      return;
6750  }
6751
6752  std::vector<std::pair<SDValue, const Value *> > StoresToEmit;
6753
6754  // Process indirect outputs, first output all of the flagged copies out of
6755  // physregs.
6756  for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
6757    RegsForValue &OutRegs = IndirectStoresToEmit[i].first;
6758    const Value *Ptr = IndirectStoresToEmit[i].second;
6759    SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(),
6760                                             Chain, &Flag, IA);
6761    StoresToEmit.push_back(std::make_pair(OutVal, Ptr));
6762  }
6763
6764  // Emit the non-flagged stores from the physregs.
6765  SmallVector<SDValue, 8> OutChains;
6766  for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) {
6767    SDValue Val = DAG.getStore(Chain, getCurSDLoc(),
6768                               StoresToEmit[i].first,
6769                               getValue(StoresToEmit[i].second),
6770                               MachinePointerInfo(StoresToEmit[i].second),
6771                               false, false, 0);
6772    OutChains.push_back(Val);
6773  }
6774
6775  if (!OutChains.empty())
6776    Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains);
6777
6778  DAG.setRoot(Chain);
6779}
6780
6781void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
6782  DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(),
6783                          MVT::Other, getRoot(),
6784                          getValue(I.getArgOperand(0)),
6785                          DAG.getSrcValue(I.getArgOperand(0))));
6786}
6787
6788void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
6789  const TargetLowering *TLI = TM.getTargetLowering();
6790  const DataLayout &DL = *TLI->getDataLayout();
6791  SDValue V = DAG.getVAArg(TLI->getValueType(I.getType()), getCurSDLoc(),
6792                           getRoot(), getValue(I.getOperand(0)),
6793                           DAG.getSrcValue(I.getOperand(0)),
6794                           DL.getABITypeAlignment(I.getType()));
6795  setValue(&I, V);
6796  DAG.setRoot(V.getValue(1));
6797}
6798
6799void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
6800  DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(),
6801                          MVT::Other, getRoot(),
6802                          getValue(I.getArgOperand(0)),
6803                          DAG.getSrcValue(I.getArgOperand(0))));
6804}
6805
6806void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
6807  DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(),
6808                          MVT::Other, getRoot(),
6809                          getValue(I.getArgOperand(0)),
6810                          getValue(I.getArgOperand(1)),
6811                          DAG.getSrcValue(I.getArgOperand(0)),
6812                          DAG.getSrcValue(I.getArgOperand(1))));
6813}
6814
6815/// \brief Lower an argument list according to the target calling convention.
6816///
6817/// \return A tuple of <return-value, token-chain>
6818///
6819/// This is a helper for lowering intrinsics that follow a target calling
6820/// convention or require stack pointer adjustment. Only a subset of the
6821/// intrinsic's operands need to participate in the calling convention.
6822std::pair<SDValue, SDValue>
6823SelectionDAGBuilder::LowerCallOperands(const CallInst &CI, unsigned ArgIdx,
6824                                       unsigned NumArgs, SDValue Callee,
6825                                       bool useVoidTy) {
6826  TargetLowering::ArgListTy Args;
6827  Args.reserve(NumArgs);
6828
6829  // Populate the argument list.
6830  // Attributes for args start at offset 1, after the return attribute.
6831  ImmutableCallSite CS(&CI);
6832  for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs, AttrI = ArgIdx + 1;
6833       ArgI != ArgE; ++ArgI) {
6834    const Value *V = CI.getOperand(ArgI);
6835
6836    assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
6837
6838    TargetLowering::ArgListEntry Entry;
6839    Entry.Node = getValue(V);
6840    Entry.Ty = V->getType();
6841    Entry.setAttributes(&CS, AttrI);
6842    Args.push_back(Entry);
6843  }
6844
6845  Type *retTy = useVoidTy ? Type::getVoidTy(*DAG.getContext()) : CI.getType();
6846  TargetLowering::CallLoweringInfo CLI(DAG);
6847  CLI.setDebugLoc(getCurSDLoc()).setChain(getRoot())
6848    .setCallee(CI.getCallingConv(), retTy, Callee, &Args, NumArgs)
6849    .setDiscardResult(!CI.use_empty());
6850
6851  const TargetLowering *TLI = TM.getTargetLowering();
6852  return TLI->LowerCallTo(CLI);
6853}
6854
6855/// \brief Add a stack map intrinsic call's live variable operands to a stackmap
6856/// or patchpoint target node's operand list.
6857///
6858/// Constants are converted to TargetConstants purely as an optimization to
6859/// avoid constant materialization and register allocation.
6860///
6861/// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not
6862/// generate addess computation nodes, and so ExpandISelPseudo can convert the
6863/// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids
6864/// address materialization and register allocation, but may also be required
6865/// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an
6866/// alloca in the entry block, then the runtime may assume that the alloca's
6867/// StackMap location can be read immediately after compilation and that the
6868/// location is valid at any point during execution (this is similar to the
6869/// assumption made by the llvm.gcroot intrinsic). If the alloca's location were
6870/// only available in a register, then the runtime would need to trap when
6871/// execution reaches the StackMap in order to read the alloca's location.
6872static void addStackMapLiveVars(const CallInst &CI, unsigned StartIdx,
6873                                SmallVectorImpl<SDValue> &Ops,
6874                                SelectionDAGBuilder &Builder) {
6875  for (unsigned i = StartIdx, e = CI.getNumArgOperands(); i != e; ++i) {
6876    SDValue OpVal = Builder.getValue(CI.getArgOperand(i));
6877    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) {
6878      Ops.push_back(
6879        Builder.DAG.getTargetConstant(StackMaps::ConstantOp, MVT::i64));
6880      Ops.push_back(
6881        Builder.DAG.getTargetConstant(C->getSExtValue(), MVT::i64));
6882    } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) {
6883      const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo();
6884      Ops.push_back(
6885        Builder.DAG.getTargetFrameIndex(FI->getIndex(), TLI.getPointerTy()));
6886    } else
6887      Ops.push_back(OpVal);
6888  }
6889}
6890
6891/// \brief Lower llvm.experimental.stackmap directly to its target opcode.
6892void SelectionDAGBuilder::visitStackmap(const CallInst &CI) {
6893  // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>,
6894  //                                  [live variables...])
6895
6896  assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value.");
6897
6898  SDValue Chain, InFlag, Callee, NullPtr;
6899  SmallVector<SDValue, 32> Ops;
6900
6901  SDLoc DL = getCurSDLoc();
6902  Callee = getValue(CI.getCalledValue());
6903  NullPtr = DAG.getIntPtrConstant(0, true);
6904
6905  // The stackmap intrinsic only records the live variables (the arguemnts
6906  // passed to it) and emits NOPS (if requested). Unlike the patchpoint
6907  // intrinsic, this won't be lowered to a function call. This means we don't
6908  // have to worry about calling conventions and target specific lowering code.
6909  // Instead we perform the call lowering right here.
6910  //
6911  // chain, flag = CALLSEQ_START(chain, 0)
6912  // chain, flag = STACKMAP(id, nbytes, ..., chain, flag)
6913  // chain, flag = CALLSEQ_END(chain, 0, 0, flag)
6914  //
6915  Chain = DAG.getCALLSEQ_START(getRoot(), NullPtr, DL);
6916  InFlag = Chain.getValue(1);
6917
6918  // Add the <id> and <numBytes> constants.
6919  SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos));
6920  Ops.push_back(DAG.getTargetConstant(
6921                  cast<ConstantSDNode>(IDVal)->getZExtValue(), MVT::i64));
6922  SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos));
6923  Ops.push_back(DAG.getTargetConstant(
6924                  cast<ConstantSDNode>(NBytesVal)->getZExtValue(), MVT::i32));
6925
6926  // Push live variables for the stack map.
6927  addStackMapLiveVars(CI, 2, Ops, *this);
6928
6929  // We are not pushing any register mask info here on the operands list,
6930  // because the stackmap doesn't clobber anything.
6931
6932  // Push the chain and the glue flag.
6933  Ops.push_back(Chain);
6934  Ops.push_back(InFlag);
6935
6936  // Create the STACKMAP node.
6937  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
6938  SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops);
6939  Chain = SDValue(SM, 0);
6940  InFlag = Chain.getValue(1);
6941
6942  Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL);
6943
6944  // Stackmaps don't generate values, so nothing goes into the NodeMap.
6945
6946  // Set the root to the target-lowered call chain.
6947  DAG.setRoot(Chain);
6948
6949  // Inform the Frame Information that we have a stackmap in this function.
6950  FuncInfo.MF->getFrameInfo()->setHasStackMap();
6951}
6952
6953/// \brief Lower llvm.experimental.patchpoint directly to its target opcode.
6954void SelectionDAGBuilder::visitPatchpoint(const CallInst &CI) {
6955  // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>,
6956  //                                                 i32 <numBytes>,
6957  //                                                 i8* <target>,
6958  //                                                 i32 <numArgs>,
6959  //                                                 [Args...],
6960  //                                                 [live variables...])
6961
6962  CallingConv::ID CC = CI.getCallingConv();
6963  bool isAnyRegCC = CC == CallingConv::AnyReg;
6964  bool hasDef = !CI.getType()->isVoidTy();
6965  SDValue Callee = getValue(CI.getOperand(2)); // <target>
6966
6967  // Get the real number of arguments participating in the call <numArgs>
6968  SDValue NArgVal = getValue(CI.getArgOperand(PatchPointOpers::NArgPos));
6969  unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue();
6970
6971  // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs>
6972  // Intrinsics include all meta-operands up to but not including CC.
6973  unsigned NumMetaOpers = PatchPointOpers::CCPos;
6974  assert(CI.getNumArgOperands() >= NumMetaOpers + NumArgs &&
6975         "Not enough arguments provided to the patchpoint intrinsic");
6976
6977  // For AnyRegCC the arguments are lowered later on manually.
6978  unsigned NumCallArgs = isAnyRegCC ? 0 : NumArgs;
6979  std::pair<SDValue, SDValue> Result =
6980    LowerCallOperands(CI, NumMetaOpers, NumCallArgs, Callee, isAnyRegCC);
6981
6982  // Set the root to the target-lowered call chain.
6983  SDValue Chain = Result.second;
6984  DAG.setRoot(Chain);
6985
6986  SDNode *CallEnd = Chain.getNode();
6987  if (hasDef && (CallEnd->getOpcode() == ISD::CopyFromReg))
6988    CallEnd = CallEnd->getOperand(0).getNode();
6989
6990  /// Get a call instruction from the call sequence chain.
6991  /// Tail calls are not allowed.
6992  assert(CallEnd->getOpcode() == ISD::CALLSEQ_END &&
6993         "Expected a callseq node.");
6994  SDNode *Call = CallEnd->getOperand(0).getNode();
6995  bool hasGlue = Call->getGluedNode();
6996
6997  // Replace the target specific call node with the patchable intrinsic.
6998  SmallVector<SDValue, 8> Ops;
6999
7000  // Add the <id> and <numBytes> constants.
7001  SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos));
7002  Ops.push_back(DAG.getTargetConstant(
7003                  cast<ConstantSDNode>(IDVal)->getZExtValue(), MVT::i64));
7004  SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos));
7005  Ops.push_back(DAG.getTargetConstant(
7006                  cast<ConstantSDNode>(NBytesVal)->getZExtValue(), MVT::i32));
7007
7008  // Assume that the Callee is a constant address.
7009  // FIXME: handle function symbols in the future.
7010  Ops.push_back(
7011    DAG.getIntPtrConstant(cast<ConstantSDNode>(Callee)->getZExtValue(),
7012                          /*isTarget=*/true));
7013
7014  // Adjust <numArgs> to account for any arguments that have been passed on the
7015  // stack instead.
7016  // Call Node: Chain, Target, {Args}, RegMask, [Glue]
7017  unsigned NumCallRegArgs = Call->getNumOperands() - (hasGlue ? 4 : 3);
7018  NumCallRegArgs = isAnyRegCC ? NumArgs : NumCallRegArgs;
7019  Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, MVT::i32));
7020
7021  // Add the calling convention
7022  Ops.push_back(DAG.getTargetConstant((unsigned)CC, MVT::i32));
7023
7024  // Add the arguments we omitted previously. The register allocator should
7025  // place these in any free register.
7026  if (isAnyRegCC)
7027    for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i)
7028      Ops.push_back(getValue(CI.getArgOperand(i)));
7029
7030  // Push the arguments from the call instruction up to the register mask.
7031  SDNode::op_iterator e = hasGlue ? Call->op_end()-2 : Call->op_end()-1;
7032  for (SDNode::op_iterator i = Call->op_begin()+2; i != e; ++i)
7033    Ops.push_back(*i);
7034
7035  // Push live variables for the stack map.
7036  addStackMapLiveVars(CI, NumMetaOpers + NumArgs, Ops, *this);
7037
7038  // Push the register mask info.
7039  if (hasGlue)
7040    Ops.push_back(*(Call->op_end()-2));
7041  else
7042    Ops.push_back(*(Call->op_end()-1));
7043
7044  // Push the chain (this is originally the first operand of the call, but
7045  // becomes now the last or second to last operand).
7046  Ops.push_back(*(Call->op_begin()));
7047
7048  // Push the glue flag (last operand).
7049  if (hasGlue)
7050    Ops.push_back(*(Call->op_end()-1));
7051
7052  SDVTList NodeTys;
7053  if (isAnyRegCC && hasDef) {
7054    // Create the return types based on the intrinsic definition
7055    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7056    SmallVector<EVT, 3> ValueVTs;
7057    ComputeValueVTs(TLI, CI.getType(), ValueVTs);
7058    assert(ValueVTs.size() == 1 && "Expected only one return value type.");
7059
7060    // There is always a chain and a glue type at the end
7061    ValueVTs.push_back(MVT::Other);
7062    ValueVTs.push_back(MVT::Glue);
7063    NodeTys = DAG.getVTList(ValueVTs);
7064  } else
7065    NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7066
7067  // Replace the target specific call node with a PATCHPOINT node.
7068  MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT,
7069                                         getCurSDLoc(), NodeTys, Ops);
7070
7071  // Update the NodeMap.
7072  if (hasDef) {
7073    if (isAnyRegCC)
7074      setValue(&CI, SDValue(MN, 0));
7075    else
7076      setValue(&CI, Result.first);
7077  }
7078
7079  // Fixup the consumers of the intrinsic. The chain and glue may be used in the
7080  // call sequence. Furthermore the location of the chain and glue can change
7081  // when the AnyReg calling convention is used and the intrinsic returns a
7082  // value.
7083  if (isAnyRegCC && hasDef) {
7084    SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)};
7085    SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)};
7086    DAG.ReplaceAllUsesOfValuesWith(From, To, 2);
7087  } else
7088    DAG.ReplaceAllUsesWith(Call, MN);
7089  DAG.DeleteNode(Call);
7090
7091  // Inform the Frame Information that we have a patchpoint in this function.
7092  FuncInfo.MF->getFrameInfo()->setHasPatchPoint();
7093}
7094
7095/// TargetLowering::LowerCallTo - This is the default LowerCallTo
7096/// implementation, which just calls LowerCall.
7097/// FIXME: When all targets are
7098/// migrated to using LowerCall, this hook should be integrated into SDISel.
7099std::pair<SDValue, SDValue>
7100TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const {
7101  // Handle the incoming return values from the call.
7102  CLI.Ins.clear();
7103  SmallVector<EVT, 4> RetTys;
7104  ComputeValueVTs(*this, CLI.RetTy, RetTys);
7105  for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
7106    EVT VT = RetTys[I];
7107    MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT);
7108    unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT);
7109    for (unsigned i = 0; i != NumRegs; ++i) {
7110      ISD::InputArg MyFlags;
7111      MyFlags.VT = RegisterVT;
7112      MyFlags.ArgVT = VT;
7113      MyFlags.Used = CLI.IsReturnValueUsed;
7114      if (CLI.RetSExt)
7115        MyFlags.Flags.setSExt();
7116      if (CLI.RetZExt)
7117        MyFlags.Flags.setZExt();
7118      if (CLI.IsInReg)
7119        MyFlags.Flags.setInReg();
7120      CLI.Ins.push_back(MyFlags);
7121    }
7122  }
7123
7124  // Handle all of the outgoing arguments.
7125  CLI.Outs.clear();
7126  CLI.OutVals.clear();
7127  ArgListTy &Args = CLI.getArgs();
7128  for (unsigned i = 0, e = Args.size(); i != e; ++i) {
7129    SmallVector<EVT, 4> ValueVTs;
7130    ComputeValueVTs(*this, Args[i].Ty, ValueVTs);
7131    Type *FinalType = Args[i].Ty;
7132    if (Args[i].isByVal)
7133      FinalType = cast<PointerType>(Args[i].Ty)->getElementType();
7134    bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
7135        FinalType, CLI.CallConv, CLI.IsVarArg);
7136    for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues;
7137         ++Value) {
7138      EVT VT = ValueVTs[Value];
7139      Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext());
7140      SDValue Op = SDValue(Args[i].Node.getNode(),
7141                           Args[i].Node.getResNo() + Value);
7142      ISD::ArgFlagsTy Flags;
7143      unsigned OriginalAlignment = getDataLayout()->getABITypeAlignment(ArgTy);
7144
7145      if (Args[i].isZExt)
7146        Flags.setZExt();
7147      if (Args[i].isSExt)
7148        Flags.setSExt();
7149      if (Args[i].isInReg)
7150        Flags.setInReg();
7151      if (Args[i].isSRet)
7152        Flags.setSRet();
7153      if (Args[i].isByVal)
7154        Flags.setByVal();
7155      if (Args[i].isInAlloca) {
7156        Flags.setInAlloca();
7157        // Set the byval flag for CCAssignFn callbacks that don't know about
7158        // inalloca.  This way we can know how many bytes we should've allocated
7159        // and how many bytes a callee cleanup function will pop.  If we port
7160        // inalloca to more targets, we'll have to add custom inalloca handling
7161        // in the various CC lowering callbacks.
7162        Flags.setByVal();
7163      }
7164      if (Args[i].isByVal || Args[i].isInAlloca) {
7165        PointerType *Ty = cast<PointerType>(Args[i].Ty);
7166        Type *ElementTy = Ty->getElementType();
7167        Flags.setByValSize(getDataLayout()->getTypeAllocSize(ElementTy));
7168        // For ByVal, alignment should come from FE.  BE will guess if this
7169        // info is not there but there are cases it cannot get right.
7170        unsigned FrameAlign;
7171        if (Args[i].Alignment)
7172          FrameAlign = Args[i].Alignment;
7173        else
7174          FrameAlign = getByValTypeAlignment(ElementTy);
7175        Flags.setByValAlign(FrameAlign);
7176      }
7177      if (Args[i].isNest)
7178        Flags.setNest();
7179      if (NeedsRegBlock)
7180        Flags.setInConsecutiveRegs();
7181      Flags.setOrigAlign(OriginalAlignment);
7182
7183      MVT PartVT = getRegisterType(CLI.RetTy->getContext(), VT);
7184      unsigned NumParts = getNumRegisters(CLI.RetTy->getContext(), VT);
7185      SmallVector<SDValue, 4> Parts(NumParts);
7186      ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
7187
7188      if (Args[i].isSExt)
7189        ExtendKind = ISD::SIGN_EXTEND;
7190      else if (Args[i].isZExt)
7191        ExtendKind = ISD::ZERO_EXTEND;
7192
7193      // Conservatively only handle 'returned' on non-vectors for now
7194      if (Args[i].isReturned && !Op.getValueType().isVector()) {
7195        assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues &&
7196               "unexpected use of 'returned'");
7197        // Before passing 'returned' to the target lowering code, ensure that
7198        // either the register MVT and the actual EVT are the same size or that
7199        // the return value and argument are extended in the same way; in these
7200        // cases it's safe to pass the argument register value unchanged as the
7201        // return register value (although it's at the target's option whether
7202        // to do so)
7203        // TODO: allow code generation to take advantage of partially preserved
7204        // registers rather than clobbering the entire register when the
7205        // parameter extension method is not compatible with the return
7206        // extension method
7207        if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) ||
7208            (ExtendKind != ISD::ANY_EXTEND &&
7209             CLI.RetSExt == Args[i].isSExt && CLI.RetZExt == Args[i].isZExt))
7210        Flags.setReturned();
7211      }
7212
7213      getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT,
7214                     CLI.CS ? CLI.CS->getInstruction() : nullptr, ExtendKind);
7215
7216      for (unsigned j = 0; j != NumParts; ++j) {
7217        // if it isn't first piece, alignment must be 1
7218        ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT,
7219                               i < CLI.NumFixedArgs,
7220                               i, j*Parts[j].getValueType().getStoreSize());
7221        if (NumParts > 1 && j == 0)
7222          MyFlags.Flags.setSplit();
7223        else if (j != 0)
7224          MyFlags.Flags.setOrigAlign(1);
7225
7226        // Only mark the end at the last register of the last value.
7227        if (NeedsRegBlock && Value == NumValues - 1 && j == NumParts - 1)
7228          MyFlags.Flags.setInConsecutiveRegsLast();
7229
7230        CLI.Outs.push_back(MyFlags);
7231        CLI.OutVals.push_back(Parts[j]);
7232      }
7233    }
7234  }
7235
7236  SmallVector<SDValue, 4> InVals;
7237  CLI.Chain = LowerCall(CLI, InVals);
7238
7239  // Verify that the target's LowerCall behaved as expected.
7240  assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other &&
7241         "LowerCall didn't return a valid chain!");
7242  assert((!CLI.IsTailCall || InVals.empty()) &&
7243         "LowerCall emitted a return value for a tail call!");
7244  assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) &&
7245         "LowerCall didn't emit the correct number of values!");
7246
7247  // For a tail call, the return value is merely live-out and there aren't
7248  // any nodes in the DAG representing it. Return a special value to
7249  // indicate that a tail call has been emitted and no more Instructions
7250  // should be processed in the current block.
7251  if (CLI.IsTailCall) {
7252    CLI.DAG.setRoot(CLI.Chain);
7253    return std::make_pair(SDValue(), SDValue());
7254  }
7255
7256  DEBUG(for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) {
7257          assert(InVals[i].getNode() &&
7258                 "LowerCall emitted a null value!");
7259          assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() &&
7260                 "LowerCall emitted a value with the wrong type!");
7261        });
7262
7263  // Collect the legal value parts into potentially illegal values
7264  // that correspond to the original function's return values.
7265  ISD::NodeType AssertOp = ISD::DELETED_NODE;
7266  if (CLI.RetSExt)
7267    AssertOp = ISD::AssertSext;
7268  else if (CLI.RetZExt)
7269    AssertOp = ISD::AssertZext;
7270  SmallVector<SDValue, 4> ReturnValues;
7271  unsigned CurReg = 0;
7272  for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
7273    EVT VT = RetTys[I];
7274    MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT);
7275    unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT);
7276
7277    ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg],
7278                                            NumRegs, RegisterVT, VT, nullptr,
7279                                            AssertOp));
7280    CurReg += NumRegs;
7281  }
7282
7283  // For a function returning void, there is no return value. We can't create
7284  // such a node, so we just return a null return value in that case. In
7285  // that case, nothing will actually look at the value.
7286  if (ReturnValues.empty())
7287    return std::make_pair(SDValue(), CLI.Chain);
7288
7289  SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL,
7290                                CLI.DAG.getVTList(RetTys), ReturnValues);
7291  return std::make_pair(Res, CLI.Chain);
7292}
7293
7294void TargetLowering::LowerOperationWrapper(SDNode *N,
7295                                           SmallVectorImpl<SDValue> &Results,
7296                                           SelectionDAG &DAG) const {
7297  SDValue Res = LowerOperation(SDValue(N, 0), DAG);
7298  if (Res.getNode())
7299    Results.push_back(Res);
7300}
7301
7302SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
7303  llvm_unreachable("LowerOperation not implemented for this target!");
7304}
7305
7306void
7307SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) {
7308  SDValue Op = getNonRegisterValue(V);
7309  assert((Op.getOpcode() != ISD::CopyFromReg ||
7310          cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
7311         "Copy from a reg to the same reg!");
7312  assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg");
7313
7314  const TargetLowering *TLI = TM.getTargetLowering();
7315  RegsForValue RFV(V->getContext(), *TLI, Reg, V->getType());
7316  SDValue Chain = DAG.getEntryNode();
7317  RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V);
7318  PendingExports.push_back(Chain);
7319}
7320
7321#include "llvm/CodeGen/SelectionDAGISel.h"
7322
7323/// isOnlyUsedInEntryBlock - If the specified argument is only used in the
7324/// entry block, return true.  This includes arguments used by switches, since
7325/// the switch may expand into multiple basic blocks.
7326static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) {
7327  // With FastISel active, we may be splitting blocks, so force creation
7328  // of virtual registers for all non-dead arguments.
7329  if (FastISel)
7330    return A->use_empty();
7331
7332  const BasicBlock *Entry = A->getParent()->begin();
7333  for (const User *U : A->users())
7334    if (cast<Instruction>(U)->getParent() != Entry || isa<SwitchInst>(U))
7335      return false;  // Use not in entry block.
7336
7337  return true;
7338}
7339
7340void SelectionDAGISel::LowerArguments(const Function &F) {
7341  SelectionDAG &DAG = SDB->DAG;
7342  SDLoc dl = SDB->getCurSDLoc();
7343  const TargetLowering *TLI = getTargetLowering();
7344  const DataLayout *DL = TLI->getDataLayout();
7345  SmallVector<ISD::InputArg, 16> Ins;
7346
7347  if (!FuncInfo->CanLowerReturn) {
7348    // Put in an sret pointer parameter before all the other parameters.
7349    SmallVector<EVT, 1> ValueVTs;
7350    ComputeValueVTs(*getTargetLowering(),
7351                    PointerType::getUnqual(F.getReturnType()), ValueVTs);
7352
7353    // NOTE: Assuming that a pointer will never break down to more than one VT
7354    // or one register.
7355    ISD::ArgFlagsTy Flags;
7356    Flags.setSRet();
7357    MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]);
7358    ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 0, 0);
7359    Ins.push_back(RetArg);
7360  }
7361
7362  // Set up the incoming argument description vector.
7363  unsigned Idx = 1;
7364  for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end();
7365       I != E; ++I, ++Idx) {
7366    SmallVector<EVT, 4> ValueVTs;
7367    ComputeValueVTs(*TLI, I->getType(), ValueVTs);
7368    bool isArgValueUsed = !I->use_empty();
7369    unsigned PartBase = 0;
7370    Type *FinalType = I->getType();
7371    if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal))
7372      FinalType = cast<PointerType>(FinalType)->getElementType();
7373    bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters(
7374        FinalType, F.getCallingConv(), F.isVarArg());
7375    for (unsigned Value = 0, NumValues = ValueVTs.size();
7376         Value != NumValues; ++Value) {
7377      EVT VT = ValueVTs[Value];
7378      Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
7379      ISD::ArgFlagsTy Flags;
7380      unsigned OriginalAlignment = DL->getABITypeAlignment(ArgTy);
7381
7382      if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt))
7383        Flags.setZExt();
7384      if (F.getAttributes().hasAttribute(Idx, Attribute::SExt))
7385        Flags.setSExt();
7386      if (F.getAttributes().hasAttribute(Idx, Attribute::InReg))
7387        Flags.setInReg();
7388      if (F.getAttributes().hasAttribute(Idx, Attribute::StructRet))
7389        Flags.setSRet();
7390      if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal))
7391        Flags.setByVal();
7392      if (F.getAttributes().hasAttribute(Idx, Attribute::InAlloca)) {
7393        Flags.setInAlloca();
7394        // Set the byval flag for CCAssignFn callbacks that don't know about
7395        // inalloca.  This way we can know how many bytes we should've allocated
7396        // and how many bytes a callee cleanup function will pop.  If we port
7397        // inalloca to more targets, we'll have to add custom inalloca handling
7398        // in the various CC lowering callbacks.
7399        Flags.setByVal();
7400      }
7401      if (Flags.isByVal() || Flags.isInAlloca()) {
7402        PointerType *Ty = cast<PointerType>(I->getType());
7403        Type *ElementTy = Ty->getElementType();
7404        Flags.setByValSize(DL->getTypeAllocSize(ElementTy));
7405        // For ByVal, alignment should be passed from FE.  BE will guess if
7406        // this info is not there but there are cases it cannot get right.
7407        unsigned FrameAlign;
7408        if (F.getParamAlignment(Idx))
7409          FrameAlign = F.getParamAlignment(Idx);
7410        else
7411          FrameAlign = TLI->getByValTypeAlignment(ElementTy);
7412        Flags.setByValAlign(FrameAlign);
7413      }
7414      if (F.getAttributes().hasAttribute(Idx, Attribute::Nest))
7415        Flags.setNest();
7416      if (NeedsRegBlock)
7417        Flags.setInConsecutiveRegs();
7418      Flags.setOrigAlign(OriginalAlignment);
7419
7420      MVT RegisterVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
7421      unsigned NumRegs = TLI->getNumRegisters(*CurDAG->getContext(), VT);
7422      for (unsigned i = 0; i != NumRegs; ++i) {
7423        ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed,
7424                              Idx-1, PartBase+i*RegisterVT.getStoreSize());
7425        if (NumRegs > 1 && i == 0)
7426          MyFlags.Flags.setSplit();
7427        // if it isn't first piece, alignment must be 1
7428        else if (i > 0)
7429          MyFlags.Flags.setOrigAlign(1);
7430
7431        // Only mark the end at the last register of the last value.
7432        if (NeedsRegBlock && Value == NumValues - 1 && i == NumRegs - 1)
7433          MyFlags.Flags.setInConsecutiveRegsLast();
7434
7435        Ins.push_back(MyFlags);
7436      }
7437      PartBase += VT.getStoreSize();
7438    }
7439  }
7440
7441  // Call the target to set up the argument values.
7442  SmallVector<SDValue, 8> InVals;
7443  SDValue NewRoot = TLI->LowerFormalArguments(DAG.getRoot(), F.getCallingConv(),
7444                                              F.isVarArg(), Ins,
7445                                              dl, DAG, InVals);
7446
7447  // Verify that the target's LowerFormalArguments behaved as expected.
7448  assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
7449         "LowerFormalArguments didn't return a valid chain!");
7450  assert(InVals.size() == Ins.size() &&
7451         "LowerFormalArguments didn't emit the correct number of values!");
7452  DEBUG({
7453      for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
7454        assert(InVals[i].getNode() &&
7455               "LowerFormalArguments emitted a null value!");
7456        assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
7457               "LowerFormalArguments emitted a value with the wrong type!");
7458      }
7459    });
7460
7461  // Update the DAG with the new chain value resulting from argument lowering.
7462  DAG.setRoot(NewRoot);
7463
7464  // Set up the argument values.
7465  unsigned i = 0;
7466  Idx = 1;
7467  if (!FuncInfo->CanLowerReturn) {
7468    // Create a virtual register for the sret pointer, and put in a copy
7469    // from the sret argument into it.
7470    SmallVector<EVT, 1> ValueVTs;
7471    ComputeValueVTs(*TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs);
7472    MVT VT = ValueVTs[0].getSimpleVT();
7473    MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
7474    ISD::NodeType AssertOp = ISD::DELETED_NODE;
7475    SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1,
7476                                        RegVT, VT, nullptr, AssertOp);
7477
7478    MachineFunction& MF = SDB->DAG.getMachineFunction();
7479    MachineRegisterInfo& RegInfo = MF.getRegInfo();
7480    unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT));
7481    FuncInfo->DemoteRegister = SRetReg;
7482    NewRoot = SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(),
7483                                    SRetReg, ArgValue);
7484    DAG.setRoot(NewRoot);
7485
7486    // i indexes lowered arguments.  Bump it past the hidden sret argument.
7487    // Idx indexes LLVM arguments.  Don't touch it.
7488    ++i;
7489  }
7490
7491  for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E;
7492      ++I, ++Idx) {
7493    SmallVector<SDValue, 4> ArgValues;
7494    SmallVector<EVT, 4> ValueVTs;
7495    ComputeValueVTs(*TLI, I->getType(), ValueVTs);
7496    unsigned NumValues = ValueVTs.size();
7497
7498    // If this argument is unused then remember its value. It is used to generate
7499    // debugging information.
7500    if (I->use_empty() && NumValues) {
7501      SDB->setUnusedArgValue(I, InVals[i]);
7502
7503      // Also remember any frame index for use in FastISel.
7504      if (FrameIndexSDNode *FI =
7505          dyn_cast<FrameIndexSDNode>(InVals[i].getNode()))
7506        FuncInfo->setArgumentFrameIndex(I, FI->getIndex());
7507    }
7508
7509    for (unsigned Val = 0; Val != NumValues; ++Val) {
7510      EVT VT = ValueVTs[Val];
7511      MVT PartVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
7512      unsigned NumParts = TLI->getNumRegisters(*CurDAG->getContext(), VT);
7513
7514      if (!I->use_empty()) {
7515        ISD::NodeType AssertOp = ISD::DELETED_NODE;
7516        if (F.getAttributes().hasAttribute(Idx, Attribute::SExt))
7517          AssertOp = ISD::AssertSext;
7518        else if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt))
7519          AssertOp = ISD::AssertZext;
7520
7521        ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i],
7522                                             NumParts, PartVT, VT,
7523                                             nullptr, AssertOp));
7524      }
7525
7526      i += NumParts;
7527    }
7528
7529    // We don't need to do anything else for unused arguments.
7530    if (ArgValues.empty())
7531      continue;
7532
7533    // Note down frame index.
7534    if (FrameIndexSDNode *FI =
7535        dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
7536      FuncInfo->setArgumentFrameIndex(I, FI->getIndex());
7537
7538    SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues),
7539                                     SDB->getCurSDLoc());
7540
7541    SDB->setValue(I, Res);
7542    if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) {
7543      if (LoadSDNode *LNode =
7544          dyn_cast<LoadSDNode>(Res.getOperand(0).getNode()))
7545        if (FrameIndexSDNode *FI =
7546            dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
7547        FuncInfo->setArgumentFrameIndex(I, FI->getIndex());
7548    }
7549
7550    // If this argument is live outside of the entry block, insert a copy from
7551    // wherever we got it to the vreg that other BB's will reference it as.
7552    if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) {
7553      // If we can, though, try to skip creating an unnecessary vreg.
7554      // FIXME: This isn't very clean... it would be nice to make this more
7555      // general.  It's also subtly incompatible with the hacks FastISel
7556      // uses with vregs.
7557      unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
7558      if (TargetRegisterInfo::isVirtualRegister(Reg)) {
7559        FuncInfo->ValueMap[I] = Reg;
7560        continue;
7561      }
7562    }
7563    if (!isOnlyUsedInEntryBlock(I, TM.Options.EnableFastISel)) {
7564      FuncInfo->InitializeRegForValue(I);
7565      SDB->CopyToExportRegsIfNeeded(I);
7566    }
7567  }
7568
7569  assert(i == InVals.size() && "Argument register count mismatch!");
7570
7571  // Finally, if the target has anything special to do, allow it to do so.
7572  // FIXME: this should insert code into the DAG!
7573  EmitFunctionEntryCode();
7574}
7575
7576/// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
7577/// ensure constants are generated when needed.  Remember the virtual registers
7578/// that need to be added to the Machine PHI nodes as input.  We cannot just
7579/// directly add them, because expansion might result in multiple MBB's for one
7580/// BB.  As such, the start of the BB might correspond to a different MBB than
7581/// the end.
7582///
7583void
7584SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
7585  const TerminatorInst *TI = LLVMBB->getTerminator();
7586
7587  SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
7588
7589  // Check successor nodes' PHI nodes that expect a constant to be available
7590  // from this block.
7591  for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
7592    const BasicBlock *SuccBB = TI->getSuccessor(succ);
7593    if (!isa<PHINode>(SuccBB->begin())) continue;
7594    MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
7595
7596    // If this terminator has multiple identical successors (common for
7597    // switches), only handle each succ once.
7598    if (!SuccsHandled.insert(SuccMBB)) continue;
7599
7600    MachineBasicBlock::iterator MBBI = SuccMBB->begin();
7601
7602    // At this point we know that there is a 1-1 correspondence between LLVM PHI
7603    // nodes and Machine PHI nodes, but the incoming operands have not been
7604    // emitted yet.
7605    for (BasicBlock::const_iterator I = SuccBB->begin();
7606         const PHINode *PN = dyn_cast<PHINode>(I); ++I) {
7607      // Ignore dead phi's.
7608      if (PN->use_empty()) continue;
7609
7610      // Skip empty types
7611      if (PN->getType()->isEmptyTy())
7612        continue;
7613
7614      unsigned Reg;
7615      const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
7616
7617      if (const Constant *C = dyn_cast<Constant>(PHIOp)) {
7618        unsigned &RegOut = ConstantsOut[C];
7619        if (RegOut == 0) {
7620          RegOut = FuncInfo.CreateRegs(C->getType());
7621          CopyValueToVirtualRegister(C, RegOut);
7622        }
7623        Reg = RegOut;
7624      } else {
7625        DenseMap<const Value *, unsigned>::iterator I =
7626          FuncInfo.ValueMap.find(PHIOp);
7627        if (I != FuncInfo.ValueMap.end())
7628          Reg = I->second;
7629        else {
7630          assert(isa<AllocaInst>(PHIOp) &&
7631                 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
7632                 "Didn't codegen value into a register!??");
7633          Reg = FuncInfo.CreateRegs(PHIOp->getType());
7634          CopyValueToVirtualRegister(PHIOp, Reg);
7635        }
7636      }
7637
7638      // Remember that this register needs to added to the machine PHI node as
7639      // the input for this MBB.
7640      SmallVector<EVT, 4> ValueVTs;
7641      const TargetLowering *TLI = TM.getTargetLowering();
7642      ComputeValueVTs(*TLI, PN->getType(), ValueVTs);
7643      for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
7644        EVT VT = ValueVTs[vti];
7645        unsigned NumRegisters = TLI->getNumRegisters(*DAG.getContext(), VT);
7646        for (unsigned i = 0, e = NumRegisters; i != e; ++i)
7647          FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i));
7648        Reg += NumRegisters;
7649      }
7650    }
7651  }
7652
7653  ConstantsOut.clear();
7654}
7655
7656/// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB
7657/// is 0.
7658MachineBasicBlock *
7659SelectionDAGBuilder::StackProtectorDescriptor::
7660AddSuccessorMBB(const BasicBlock *BB,
7661                MachineBasicBlock *ParentMBB,
7662                MachineBasicBlock *SuccMBB) {
7663  // If SuccBB has not been created yet, create it.
7664  if (!SuccMBB) {
7665    MachineFunction *MF = ParentMBB->getParent();
7666    MachineFunction::iterator BBI = ParentMBB;
7667    SuccMBB = MF->CreateMachineBasicBlock(BB);
7668    MF->insert(++BBI, SuccMBB);
7669  }
7670  // Add it as a successor of ParentMBB.
7671  ParentMBB->addSuccessor(SuccMBB);
7672  return SuccMBB;
7673}
7674