SelectionDAGBuilder.cpp revision decc2671516e6c52ee2f29f7746f8d02753845ea
1//===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements routines for translating from LLVM IR into SelectionDAG IR.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "isel"
15#include "SDNodeDbgValue.h"
16#include "SelectionDAGBuilder.h"
17#include "FunctionLoweringInfo.h"
18#include "llvm/ADT/BitVector.h"
19#include "llvm/ADT/SmallSet.h"
20#include "llvm/Analysis/AliasAnalysis.h"
21#include "llvm/Analysis/ConstantFolding.h"
22#include "llvm/Constants.h"
23#include "llvm/CallingConv.h"
24#include "llvm/DerivedTypes.h"
25#include "llvm/Function.h"
26#include "llvm/GlobalVariable.h"
27#include "llvm/InlineAsm.h"
28#include "llvm/Instructions.h"
29#include "llvm/Intrinsics.h"
30#include "llvm/IntrinsicInst.h"
31#include "llvm/Module.h"
32#include "llvm/CodeGen/FastISel.h"
33#include "llvm/CodeGen/GCStrategy.h"
34#include "llvm/CodeGen/GCMetadata.h"
35#include "llvm/CodeGen/MachineFunction.h"
36#include "llvm/CodeGen/MachineFrameInfo.h"
37#include "llvm/CodeGen/MachineInstrBuilder.h"
38#include "llvm/CodeGen/MachineJumpTableInfo.h"
39#include "llvm/CodeGen/MachineModuleInfo.h"
40#include "llvm/CodeGen/MachineRegisterInfo.h"
41#include "llvm/CodeGen/PseudoSourceValue.h"
42#include "llvm/CodeGen/SelectionDAG.h"
43#include "llvm/Analysis/DebugInfo.h"
44#include "llvm/Target/TargetRegisterInfo.h"
45#include "llvm/Target/TargetData.h"
46#include "llvm/Target/TargetFrameInfo.h"
47#include "llvm/Target/TargetInstrInfo.h"
48#include "llvm/Target/TargetIntrinsicInfo.h"
49#include "llvm/Target/TargetLowering.h"
50#include "llvm/Target/TargetOptions.h"
51#include "llvm/Support/Compiler.h"
52#include "llvm/Support/CommandLine.h"
53#include "llvm/Support/Debug.h"
54#include "llvm/Support/ErrorHandling.h"
55#include "llvm/Support/MathExtras.h"
56#include "llvm/Support/raw_ostream.h"
57#include <algorithm>
58using namespace llvm;
59
60/// LimitFloatPrecision - Generate low-precision inline sequences for
61/// some float libcalls (6, 8 or 12 bits).
62static unsigned LimitFloatPrecision;
63
64static cl::opt<unsigned, true>
65LimitFPPrecision("limit-float-precision",
66                 cl::desc("Generate low-precision inline sequences "
67                          "for some float libcalls"),
68                 cl::location(LimitFloatPrecision),
69                 cl::init(0));
70
71namespace {
72  /// RegsForValue - This struct represents the registers (physical or virtual)
73  /// that a particular set of values is assigned, and the type information
74  /// about the value. The most common situation is to represent one value at a
75  /// time, but struct or array values are handled element-wise as multiple
76  /// values.  The splitting of aggregates is performed recursively, so that we
77  /// never have aggregate-typed registers. The values at this point do not
78  /// necessarily have legal types, so each value may require one or more
79  /// registers of some legal type.
80  ///
81  struct RegsForValue {
82    /// TLI - The TargetLowering object.
83    ///
84    const TargetLowering *TLI;
85
86    /// ValueVTs - The value types of the values, which may not be legal, and
87    /// may need be promoted or synthesized from one or more registers.
88    ///
89    SmallVector<EVT, 4> ValueVTs;
90
91    /// RegVTs - The value types of the registers. This is the same size as
92    /// ValueVTs and it records, for each value, what the type of the assigned
93    /// register or registers are. (Individual values are never synthesized
94    /// from more than one type of register.)
95    ///
96    /// With virtual registers, the contents of RegVTs is redundant with TLI's
97    /// getRegisterType member function, however when with physical registers
98    /// it is necessary to have a separate record of the types.
99    ///
100    SmallVector<EVT, 4> RegVTs;
101
102    /// Regs - This list holds the registers assigned to the values.
103    /// Each legal or promoted value requires one register, and each
104    /// expanded value requires multiple registers.
105    ///
106    SmallVector<unsigned, 4> Regs;
107
108    RegsForValue() : TLI(0) {}
109
110    RegsForValue(const TargetLowering &tli,
111                 const SmallVector<unsigned, 4> &regs,
112                 EVT regvt, EVT valuevt)
113      : TLI(&tli),  ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {}
114    RegsForValue(const TargetLowering &tli,
115                 const SmallVector<unsigned, 4> &regs,
116                 const SmallVector<EVT, 4> &regvts,
117                 const SmallVector<EVT, 4> &valuevts)
118      : TLI(&tli), ValueVTs(valuevts), RegVTs(regvts), Regs(regs) {}
119    RegsForValue(LLVMContext &Context, const TargetLowering &tli,
120                 unsigned Reg, const Type *Ty) : TLI(&tli) {
121      ComputeValueVTs(tli, Ty, ValueVTs);
122
123      for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
124        EVT ValueVT = ValueVTs[Value];
125        unsigned NumRegs = TLI->getNumRegisters(Context, ValueVT);
126        EVT RegisterVT = TLI->getRegisterType(Context, ValueVT);
127        for (unsigned i = 0; i != NumRegs; ++i)
128          Regs.push_back(Reg + i);
129        RegVTs.push_back(RegisterVT);
130        Reg += NumRegs;
131      }
132    }
133
134    /// areValueTypesLegal - Return true if types of all the values are legal.
135    bool areValueTypesLegal() {
136      for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
137        EVT RegisterVT = RegVTs[Value];
138        if (!TLI->isTypeLegal(RegisterVT))
139          return false;
140      }
141      return true;
142    }
143
144
145    /// append - Add the specified values to this one.
146    void append(const RegsForValue &RHS) {
147      TLI = RHS.TLI;
148      ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end());
149      RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end());
150      Regs.append(RHS.Regs.begin(), RHS.Regs.end());
151    }
152
153
154    /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
155    /// this value and returns the result as a ValueVTs value.  This uses
156    /// Chain/Flag as the input and updates them for the output Chain/Flag.
157    /// If the Flag pointer is NULL, no flag is used.
158    SDValue getCopyFromRegs(SelectionDAG &DAG, DebugLoc dl,
159                            SDValue &Chain, SDValue *Flag) const;
160
161    /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
162    /// specified value into the registers specified by this object.  This uses
163    /// Chain/Flag as the input and updates them for the output Chain/Flag.
164    /// If the Flag pointer is NULL, no flag is used.
165    void getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl,
166                       SDValue &Chain, SDValue *Flag) const;
167
168    /// AddInlineAsmOperands - Add this value to the specified inlineasm node
169    /// operand list.  This adds the code marker, matching input operand index
170    /// (if applicable), and includes the number of values added into it.
171    void AddInlineAsmOperands(unsigned Kind,
172                              bool HasMatching, unsigned MatchingIdx,
173                              SelectionDAG &DAG,
174                              std::vector<SDValue> &Ops) const;
175  };
176}
177
178/// getCopyFromParts - Create a value that contains the specified legal parts
179/// combined into the value they represent.  If the parts combine to a type
180/// larger then ValueVT then AssertOp can be used to specify whether the extra
181/// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
182/// (ISD::AssertSext).
183static SDValue getCopyFromParts(SelectionDAG &DAG, DebugLoc dl,
184                                const SDValue *Parts,
185                                unsigned NumParts, EVT PartVT, EVT ValueVT,
186                                ISD::NodeType AssertOp = ISD::DELETED_NODE) {
187  assert(NumParts > 0 && "No parts to assemble!");
188  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
189  SDValue Val = Parts[0];
190
191  if (NumParts > 1) {
192    // Assemble the value from multiple parts.
193    if (!ValueVT.isVector() && ValueVT.isInteger()) {
194      unsigned PartBits = PartVT.getSizeInBits();
195      unsigned ValueBits = ValueVT.getSizeInBits();
196
197      // Assemble the power of 2 part.
198      unsigned RoundParts = NumParts & (NumParts - 1) ?
199        1 << Log2_32(NumParts) : NumParts;
200      unsigned RoundBits = PartBits * RoundParts;
201      EVT RoundVT = RoundBits == ValueBits ?
202        ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
203      SDValue Lo, Hi;
204
205      EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
206
207      if (RoundParts > 2) {
208        Lo = getCopyFromParts(DAG, dl, Parts, RoundParts / 2,
209                              PartVT, HalfVT);
210        Hi = getCopyFromParts(DAG, dl, Parts + RoundParts / 2,
211                              RoundParts / 2, PartVT, HalfVT);
212      } else {
213        Lo = DAG.getNode(ISD::BIT_CONVERT, dl, HalfVT, Parts[0]);
214        Hi = DAG.getNode(ISD::BIT_CONVERT, dl, HalfVT, Parts[1]);
215      }
216
217      if (TLI.isBigEndian())
218        std::swap(Lo, Hi);
219
220      Val = DAG.getNode(ISD::BUILD_PAIR, dl, RoundVT, Lo, Hi);
221
222      if (RoundParts < NumParts) {
223        // Assemble the trailing non-power-of-2 part.
224        unsigned OddParts = NumParts - RoundParts;
225        EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
226        Hi = getCopyFromParts(DAG, dl,
227                              Parts + RoundParts, OddParts, PartVT, OddVT);
228
229        // Combine the round and odd parts.
230        Lo = Val;
231        if (TLI.isBigEndian())
232          std::swap(Lo, Hi);
233        EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
234        Hi = DAG.getNode(ISD::ANY_EXTEND, dl, TotalVT, Hi);
235        Hi = DAG.getNode(ISD::SHL, dl, TotalVT, Hi,
236                         DAG.getConstant(Lo.getValueType().getSizeInBits(),
237                                         TLI.getPointerTy()));
238        Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, TotalVT, Lo);
239        Val = DAG.getNode(ISD::OR, dl, TotalVT, Lo, Hi);
240      }
241    } else if (ValueVT.isVector()) {
242      // Handle a multi-element vector.
243      EVT IntermediateVT, RegisterVT;
244      unsigned NumIntermediates;
245      unsigned NumRegs =
246        TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
247                                   NumIntermediates, RegisterVT);
248      assert(NumRegs == NumParts
249             && "Part count doesn't match vector breakdown!");
250      NumParts = NumRegs; // Silence a compiler warning.
251      assert(RegisterVT == PartVT
252             && "Part type doesn't match vector breakdown!");
253      assert(RegisterVT == Parts[0].getValueType() &&
254             "Part type doesn't match part!");
255
256      // Assemble the parts into intermediate operands.
257      SmallVector<SDValue, 8> Ops(NumIntermediates);
258      if (NumIntermediates == NumParts) {
259        // If the register was not expanded, truncate or copy the value,
260        // as appropriate.
261        for (unsigned i = 0; i != NumParts; ++i)
262          Ops[i] = getCopyFromParts(DAG, dl, &Parts[i], 1,
263                                    PartVT, IntermediateVT);
264      } else if (NumParts > 0) {
265        // If the intermediate type was expanded, build the intermediate
266        // operands from the parts.
267        assert(NumParts % NumIntermediates == 0 &&
268               "Must expand into a divisible number of parts!");
269        unsigned Factor = NumParts / NumIntermediates;
270        for (unsigned i = 0; i != NumIntermediates; ++i)
271          Ops[i] = getCopyFromParts(DAG, dl, &Parts[i * Factor], Factor,
272                                    PartVT, IntermediateVT);
273      }
274
275      // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
276      // intermediate operands.
277      Val = DAG.getNode(IntermediateVT.isVector() ?
278                        ISD::CONCAT_VECTORS : ISD::BUILD_VECTOR, dl,
279                        ValueVT, &Ops[0], NumIntermediates);
280    } else if (PartVT.isFloatingPoint()) {
281      // FP split into multiple FP parts (for ppcf128)
282      assert(ValueVT == EVT(MVT::ppcf128) && PartVT == EVT(MVT::f64) &&
283             "Unexpected split");
284      SDValue Lo, Hi;
285      Lo = DAG.getNode(ISD::BIT_CONVERT, dl, EVT(MVT::f64), Parts[0]);
286      Hi = DAG.getNode(ISD::BIT_CONVERT, dl, EVT(MVT::f64), Parts[1]);
287      if (TLI.isBigEndian())
288        std::swap(Lo, Hi);
289      Val = DAG.getNode(ISD::BUILD_PAIR, dl, ValueVT, Lo, Hi);
290    } else {
291      // FP split into integer parts (soft fp)
292      assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
293             !PartVT.isVector() && "Unexpected split");
294      EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
295      Val = getCopyFromParts(DAG, dl, Parts, NumParts, PartVT, IntVT);
296    }
297  }
298
299  // There is now one part, held in Val.  Correct it to match ValueVT.
300  PartVT = Val.getValueType();
301
302  if (PartVT == ValueVT)
303    return Val;
304
305  if (PartVT.isVector()) {
306    assert(ValueVT.isVector() && "Unknown vector conversion!");
307    return DAG.getNode(ISD::BIT_CONVERT, dl, ValueVT, Val);
308  }
309
310  if (ValueVT.isVector()) {
311    assert(ValueVT.getVectorElementType() == PartVT &&
312           ValueVT.getVectorNumElements() == 1 &&
313           "Only trivial scalar-to-vector conversions should get here!");
314    return DAG.getNode(ISD::BUILD_VECTOR, dl, ValueVT, Val);
315  }
316
317  if (PartVT.isInteger() &&
318      ValueVT.isInteger()) {
319    if (ValueVT.bitsLT(PartVT)) {
320      // For a truncate, see if we have any information to
321      // indicate whether the truncated bits will always be
322      // zero or sign-extension.
323      if (AssertOp != ISD::DELETED_NODE)
324        Val = DAG.getNode(AssertOp, dl, PartVT, Val,
325                          DAG.getValueType(ValueVT));
326      return DAG.getNode(ISD::TRUNCATE, dl, ValueVT, Val);
327    } else {
328      return DAG.getNode(ISD::ANY_EXTEND, dl, ValueVT, Val);
329    }
330  }
331
332  if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
333    if (ValueVT.bitsLT(Val.getValueType())) {
334      // FP_ROUND's are always exact here.
335      return DAG.getNode(ISD::FP_ROUND, dl, ValueVT, Val,
336                         DAG.getIntPtrConstant(1));
337    }
338
339    return DAG.getNode(ISD::FP_EXTEND, dl, ValueVT, Val);
340  }
341
342  if (PartVT.getSizeInBits() == ValueVT.getSizeInBits())
343    return DAG.getNode(ISD::BIT_CONVERT, dl, ValueVT, Val);
344
345  llvm_unreachable("Unknown mismatch!");
346  return SDValue();
347}
348
349/// getCopyToParts - Create a series of nodes that contain the specified value
350/// split into legal parts.  If the parts contain more bits than Val, then, for
351/// integers, ExtendKind can be used to specify how to generate the extra bits.
352static void getCopyToParts(SelectionDAG &DAG, DebugLoc dl,
353                           SDValue Val, SDValue *Parts, unsigned NumParts,
354                           EVT PartVT,
355                           ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
356  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
357  EVT PtrVT = TLI.getPointerTy();
358  EVT ValueVT = Val.getValueType();
359  unsigned PartBits = PartVT.getSizeInBits();
360  unsigned OrigNumParts = NumParts;
361  assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!");
362
363  if (!NumParts)
364    return;
365
366  if (!ValueVT.isVector()) {
367    if (PartVT == ValueVT) {
368      assert(NumParts == 1 && "No-op copy with multiple parts!");
369      Parts[0] = Val;
370      return;
371    }
372
373    if (NumParts * PartBits > ValueVT.getSizeInBits()) {
374      // If the parts cover more bits than the value has, promote the value.
375      if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
376        assert(NumParts == 1 && "Do not know what to promote to!");
377        Val = DAG.getNode(ISD::FP_EXTEND, dl, PartVT, Val);
378      } else if (PartVT.isInteger() && ValueVT.isInteger()) {
379        ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
380        Val = DAG.getNode(ExtendKind, dl, ValueVT, Val);
381      } else {
382        llvm_unreachable("Unknown mismatch!");
383      }
384    } else if (PartBits == ValueVT.getSizeInBits()) {
385      // Different types of the same size.
386      assert(NumParts == 1 && PartVT != ValueVT);
387      Val = DAG.getNode(ISD::BIT_CONVERT, dl, PartVT, Val);
388    } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
389      // If the parts cover less bits than value has, truncate the value.
390      if (PartVT.isInteger() && ValueVT.isInteger()) {
391        ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
392        Val = DAG.getNode(ISD::TRUNCATE, dl, ValueVT, Val);
393      } else {
394        llvm_unreachable("Unknown mismatch!");
395      }
396    }
397
398    // The value may have changed - recompute ValueVT.
399    ValueVT = Val.getValueType();
400    assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
401           "Failed to tile the value with PartVT!");
402
403    if (NumParts == 1) {
404      assert(PartVT == ValueVT && "Type conversion failed!");
405      Parts[0] = Val;
406      return;
407    }
408
409    // Expand the value into multiple parts.
410    if (NumParts & (NumParts - 1)) {
411      // The number of parts is not a power of 2.  Split off and copy the tail.
412      assert(PartVT.isInteger() && ValueVT.isInteger() &&
413             "Do not know what to expand to!");
414      unsigned RoundParts = 1 << Log2_32(NumParts);
415      unsigned RoundBits = RoundParts * PartBits;
416      unsigned OddParts = NumParts - RoundParts;
417      SDValue OddVal = DAG.getNode(ISD::SRL, dl, ValueVT, Val,
418                                   DAG.getConstant(RoundBits,
419                                                   TLI.getPointerTy()));
420      getCopyToParts(DAG, dl, OddVal, Parts + RoundParts,
421                     OddParts, PartVT);
422
423      if (TLI.isBigEndian())
424        // The odd parts were reversed by getCopyToParts - unreverse them.
425        std::reverse(Parts + RoundParts, Parts + NumParts);
426
427      NumParts = RoundParts;
428      ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
429      Val = DAG.getNode(ISD::TRUNCATE, dl, ValueVT, Val);
430    }
431
432    // The number of parts is a power of 2.  Repeatedly bisect the value using
433    // EXTRACT_ELEMENT.
434    Parts[0] = DAG.getNode(ISD::BIT_CONVERT, dl,
435                           EVT::getIntegerVT(*DAG.getContext(),
436                                             ValueVT.getSizeInBits()),
437                           Val);
438
439    for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
440      for (unsigned i = 0; i < NumParts; i += StepSize) {
441        unsigned ThisBits = StepSize * PartBits / 2;
442        EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
443        SDValue &Part0 = Parts[i];
444        SDValue &Part1 = Parts[i+StepSize/2];
445
446        Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
447                            ThisVT, Part0,
448                            DAG.getConstant(1, PtrVT));
449        Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
450                            ThisVT, Part0,
451                            DAG.getConstant(0, PtrVT));
452
453        if (ThisBits == PartBits && ThisVT != PartVT) {
454          Part0 = DAG.getNode(ISD::BIT_CONVERT, dl,
455                                                PartVT, Part0);
456          Part1 = DAG.getNode(ISD::BIT_CONVERT, dl,
457                                                PartVT, Part1);
458        }
459      }
460    }
461
462    if (TLI.isBigEndian())
463      std::reverse(Parts, Parts + OrigNumParts);
464
465    return;
466  }
467
468  // Vector ValueVT.
469  if (NumParts == 1) {
470    if (PartVT != ValueVT) {
471      if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
472        Val = DAG.getNode(ISD::BIT_CONVERT, dl, PartVT, Val);
473      } else {
474        assert(ValueVT.getVectorElementType() == PartVT &&
475               ValueVT.getVectorNumElements() == 1 &&
476               "Only trivial vector-to-scalar conversions should get here!");
477        Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
478                          PartVT, Val,
479                          DAG.getConstant(0, PtrVT));
480      }
481    }
482
483    Parts[0] = Val;
484    return;
485  }
486
487  // Handle a multi-element vector.
488  EVT IntermediateVT, RegisterVT;
489  unsigned NumIntermediates;
490  unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT,
491                              IntermediateVT, NumIntermediates, RegisterVT);
492  unsigned NumElements = ValueVT.getVectorNumElements();
493
494  assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
495  NumParts = NumRegs; // Silence a compiler warning.
496  assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
497
498  // Split the vector into intermediate operands.
499  SmallVector<SDValue, 8> Ops(NumIntermediates);
500  for (unsigned i = 0; i != NumIntermediates; ++i) {
501    if (IntermediateVT.isVector())
502      Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl,
503                           IntermediateVT, Val,
504                           DAG.getConstant(i * (NumElements / NumIntermediates),
505                                           PtrVT));
506    else
507      Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
508                           IntermediateVT, Val,
509                           DAG.getConstant(i, PtrVT));
510  }
511
512  // Split the intermediate operands into legal parts.
513  if (NumParts == NumIntermediates) {
514    // If the register was not expanded, promote or copy the value,
515    // as appropriate.
516    for (unsigned i = 0; i != NumParts; ++i)
517      getCopyToParts(DAG, dl, Ops[i], &Parts[i], 1, PartVT);
518  } else if (NumParts > 0) {
519    // If the intermediate type was expanded, split each the value into
520    // legal parts.
521    assert(NumParts % NumIntermediates == 0 &&
522           "Must expand into a divisible number of parts!");
523    unsigned Factor = NumParts / NumIntermediates;
524    for (unsigned i = 0; i != NumIntermediates; ++i)
525      getCopyToParts(DAG, dl, Ops[i], &Parts[i*Factor], Factor, PartVT);
526  }
527}
528
529
530void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa) {
531  AA = &aa;
532  GFI = gfi;
533  TD = DAG.getTarget().getTargetData();
534}
535
536/// clear - Clear out the curret SelectionDAG and the associated
537/// state and prepare this SelectionDAGBuilder object to be used
538/// for a new block. This doesn't clear out information about
539/// additional blocks that are needed to complete switch lowering
540/// or PHI node updating; that information is cleared out as it is
541/// consumed.
542void SelectionDAGBuilder::clear() {
543  NodeMap.clear();
544  PendingLoads.clear();
545  PendingExports.clear();
546  EdgeMapping.clear();
547  DAG.clear();
548  CurDebugLoc = DebugLoc();
549  HasTailCall = false;
550}
551
552/// getRoot - Return the current virtual root of the Selection DAG,
553/// flushing any PendingLoad items. This must be done before emitting
554/// a store or any other node that may need to be ordered after any
555/// prior load instructions.
556///
557SDValue SelectionDAGBuilder::getRoot() {
558  if (PendingLoads.empty())
559    return DAG.getRoot();
560
561  if (PendingLoads.size() == 1) {
562    SDValue Root = PendingLoads[0];
563    DAG.setRoot(Root);
564    PendingLoads.clear();
565    return Root;
566  }
567
568  // Otherwise, we have to make a token factor node.
569  SDValue Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
570                               &PendingLoads[0], PendingLoads.size());
571  PendingLoads.clear();
572  DAG.setRoot(Root);
573  return Root;
574}
575
576/// getControlRoot - Similar to getRoot, but instead of flushing all the
577/// PendingLoad items, flush all the PendingExports items. It is necessary
578/// to do this before emitting a terminator instruction.
579///
580SDValue SelectionDAGBuilder::getControlRoot() {
581  SDValue Root = DAG.getRoot();
582
583  if (PendingExports.empty())
584    return Root;
585
586  // Turn all of the CopyToReg chains into one factored node.
587  if (Root.getOpcode() != ISD::EntryToken) {
588    unsigned i = 0, e = PendingExports.size();
589    for (; i != e; ++i) {
590      assert(PendingExports[i].getNode()->getNumOperands() > 1);
591      if (PendingExports[i].getNode()->getOperand(0) == Root)
592        break;  // Don't add the root if we already indirectly depend on it.
593    }
594
595    if (i == e)
596      PendingExports.push_back(Root);
597  }
598
599  Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
600                     &PendingExports[0],
601                     PendingExports.size());
602  PendingExports.clear();
603  DAG.setRoot(Root);
604  return Root;
605}
606
607void SelectionDAGBuilder::AssignOrderingToNode(const SDNode *Node) {
608  if (DAG.GetOrdering(Node) != 0) return; // Already has ordering.
609  DAG.AssignOrdering(Node, SDNodeOrder);
610
611  for (unsigned I = 0, E = Node->getNumOperands(); I != E; ++I)
612    AssignOrderingToNode(Node->getOperand(I).getNode());
613}
614
615void SelectionDAGBuilder::visit(Instruction &I) {
616  visit(I.getOpcode(), I);
617}
618
619void SelectionDAGBuilder::visit(unsigned Opcode, User &I) {
620  // Note: this doesn't use InstVisitor, because it has to work with
621  // ConstantExpr's in addition to instructions.
622  switch (Opcode) {
623  default: llvm_unreachable("Unknown instruction type encountered!");
624    // Build the switch statement using the Instruction.def file.
625#define HANDLE_INST(NUM, OPCODE, CLASS) \
626    case Instruction::OPCODE: visit##OPCODE((CLASS&)I); break;
627#include "llvm/Instruction.def"
628  }
629
630  // Assign the ordering to the freshly created DAG nodes.
631  if (NodeMap.count(&I)) {
632    ++SDNodeOrder;
633    AssignOrderingToNode(getValue(&I).getNode());
634  }
635}
636
637SDValue SelectionDAGBuilder::getValue(const Value *V) {
638  SDValue &N = NodeMap[V];
639  if (N.getNode()) return N;
640
641  if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(V))) {
642    EVT VT = TLI.getValueType(V->getType(), true);
643
644    if (ConstantInt *CI = dyn_cast<ConstantInt>(C))
645      return N = DAG.getConstant(*CI, VT);
646
647    if (GlobalValue *GV = dyn_cast<GlobalValue>(C))
648      return N = DAG.getGlobalAddress(GV, VT);
649
650    if (isa<ConstantPointerNull>(C))
651      return N = DAG.getConstant(0, TLI.getPointerTy());
652
653    if (ConstantFP *CFP = dyn_cast<ConstantFP>(C))
654      return N = DAG.getConstantFP(*CFP, VT);
655
656    if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
657      return N = DAG.getUNDEF(VT);
658
659    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
660      visit(CE->getOpcode(), *CE);
661      SDValue N1 = NodeMap[V];
662      assert(N1.getNode() && "visit didn't populate the ValueMap!");
663      return N1;
664    }
665
666    if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
667      SmallVector<SDValue, 4> Constants;
668      for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end();
669           OI != OE; ++OI) {
670        SDNode *Val = getValue(*OI).getNode();
671        // If the operand is an empty aggregate, there are no values.
672        if (!Val) continue;
673        // Add each leaf value from the operand to the Constants list
674        // to form a flattened list of all the values.
675        for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
676          Constants.push_back(SDValue(Val, i));
677      }
678
679      return DAG.getMergeValues(&Constants[0], Constants.size(),
680                                getCurDebugLoc());
681    }
682
683    if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
684      assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
685             "Unknown struct or array constant!");
686
687      SmallVector<EVT, 4> ValueVTs;
688      ComputeValueVTs(TLI, C->getType(), ValueVTs);
689      unsigned NumElts = ValueVTs.size();
690      if (NumElts == 0)
691        return SDValue(); // empty struct
692      SmallVector<SDValue, 4> Constants(NumElts);
693      for (unsigned i = 0; i != NumElts; ++i) {
694        EVT EltVT = ValueVTs[i];
695        if (isa<UndefValue>(C))
696          Constants[i] = DAG.getUNDEF(EltVT);
697        else if (EltVT.isFloatingPoint())
698          Constants[i] = DAG.getConstantFP(0, EltVT);
699        else
700          Constants[i] = DAG.getConstant(0, EltVT);
701      }
702
703      return DAG.getMergeValues(&Constants[0], NumElts,
704                                getCurDebugLoc());
705    }
706
707    if (BlockAddress *BA = dyn_cast<BlockAddress>(C))
708      return DAG.getBlockAddress(BA, VT);
709
710    const VectorType *VecTy = cast<VectorType>(V->getType());
711    unsigned NumElements = VecTy->getNumElements();
712
713    // Now that we know the number and type of the elements, get that number of
714    // elements into the Ops array based on what kind of constant it is.
715    SmallVector<SDValue, 16> Ops;
716    if (ConstantVector *CP = dyn_cast<ConstantVector>(C)) {
717      for (unsigned i = 0; i != NumElements; ++i)
718        Ops.push_back(getValue(CP->getOperand(i)));
719    } else {
720      assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!");
721      EVT EltVT = TLI.getValueType(VecTy->getElementType());
722
723      SDValue Op;
724      if (EltVT.isFloatingPoint())
725        Op = DAG.getConstantFP(0, EltVT);
726      else
727        Op = DAG.getConstant(0, EltVT);
728      Ops.assign(NumElements, Op);
729    }
730
731    // Create a BUILD_VECTOR node.
732    return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(),
733                                    VT, &Ops[0], Ops.size());
734  }
735
736  // If this is a static alloca, generate it as the frameindex instead of
737  // computation.
738  if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
739    DenseMap<const AllocaInst*, int>::iterator SI =
740      FuncInfo.StaticAllocaMap.find(AI);
741    if (SI != FuncInfo.StaticAllocaMap.end())
742      return DAG.getFrameIndex(SI->second, TLI.getPointerTy());
743  }
744
745  unsigned InReg = FuncInfo.ValueMap[V];
746  assert(InReg && "Value not in map!");
747
748  RegsForValue RFV(*DAG.getContext(), TLI, InReg, V->getType());
749  SDValue Chain = DAG.getEntryNode();
750  return RFV.getCopyFromRegs(DAG, getCurDebugLoc(), Chain, NULL);
751}
752
753/// Get the EVTs and ArgFlags collections that represent the legalized return
754/// type of the given function.  This does not require a DAG or a return value,
755/// and is suitable for use before any DAGs for the function are constructed.
756static void getReturnInfo(const Type* ReturnType,
757                   Attributes attr, SmallVectorImpl<EVT> &OutVTs,
758                   SmallVectorImpl<ISD::ArgFlagsTy> &OutFlags,
759                   TargetLowering &TLI,
760                   SmallVectorImpl<uint64_t> *Offsets = 0) {
761  SmallVector<EVT, 4> ValueVTs;
762  ComputeValueVTs(TLI, ReturnType, ValueVTs);
763  unsigned NumValues = ValueVTs.size();
764  if (NumValues == 0) return;
765  unsigned Offset = 0;
766
767  for (unsigned j = 0, f = NumValues; j != f; ++j) {
768    EVT VT = ValueVTs[j];
769    ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
770
771    if (attr & Attribute::SExt)
772      ExtendKind = ISD::SIGN_EXTEND;
773    else if (attr & Attribute::ZExt)
774      ExtendKind = ISD::ZERO_EXTEND;
775
776    // FIXME: C calling convention requires the return type to be promoted to
777    // at least 32-bit. But this is not necessary for non-C calling
778    // conventions. The frontend should mark functions whose return values
779    // require promoting with signext or zeroext attributes.
780    if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) {
781      EVT MinVT = TLI.getRegisterType(ReturnType->getContext(), MVT::i32);
782      if (VT.bitsLT(MinVT))
783        VT = MinVT;
784    }
785
786    unsigned NumParts = TLI.getNumRegisters(ReturnType->getContext(), VT);
787    EVT PartVT = TLI.getRegisterType(ReturnType->getContext(), VT);
788    unsigned PartSize = TLI.getTargetData()->getTypeAllocSize(
789                        PartVT.getTypeForEVT(ReturnType->getContext()));
790
791    // 'inreg' on function refers to return value
792    ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
793    if (attr & Attribute::InReg)
794      Flags.setInReg();
795
796    // Propagate extension type if any
797    if (attr & Attribute::SExt)
798      Flags.setSExt();
799    else if (attr & Attribute::ZExt)
800      Flags.setZExt();
801
802    for (unsigned i = 0; i < NumParts; ++i) {
803      OutVTs.push_back(PartVT);
804      OutFlags.push_back(Flags);
805      if (Offsets)
806      {
807        Offsets->push_back(Offset);
808        Offset += PartSize;
809      }
810    }
811  }
812}
813
814void SelectionDAGBuilder::visitRet(ReturnInst &I) {
815  SDValue Chain = getControlRoot();
816  SmallVector<ISD::OutputArg, 8> Outs;
817  FunctionLoweringInfo &FLI = DAG.getFunctionLoweringInfo();
818
819  if (!FLI.CanLowerReturn) {
820    unsigned DemoteReg = FLI.DemoteRegister;
821    const Function *F = I.getParent()->getParent();
822
823    // Emit a store of the return value through the virtual register.
824    // Leave Outs empty so that LowerReturn won't try to load return
825    // registers the usual way.
826    SmallVector<EVT, 1> PtrValueVTs;
827    ComputeValueVTs(TLI, PointerType::getUnqual(F->getReturnType()),
828                    PtrValueVTs);
829
830    SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]);
831    SDValue RetOp = getValue(I.getOperand(0));
832
833    SmallVector<EVT, 4> ValueVTs;
834    SmallVector<uint64_t, 4> Offsets;
835    ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs, &Offsets);
836    unsigned NumValues = ValueVTs.size();
837
838    SmallVector<SDValue, 4> Chains(NumValues);
839    EVT PtrVT = PtrValueVTs[0];
840    for (unsigned i = 0; i != NumValues; ++i) {
841      SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT, RetPtr,
842                                DAG.getConstant(Offsets[i], PtrVT));
843      Chains[i] =
844        DAG.getStore(Chain, getCurDebugLoc(),
845                     SDValue(RetOp.getNode(), RetOp.getResNo() + i),
846                     Add, NULL, Offsets[i], false, false, 0);
847    }
848
849    Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
850                        MVT::Other, &Chains[0], NumValues);
851  } else if (I.getNumOperands() != 0) {
852    SmallVector<EVT, 4> ValueVTs;
853    ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs);
854    unsigned NumValues = ValueVTs.size();
855    if (NumValues) {
856      SDValue RetOp = getValue(I.getOperand(0));
857      for (unsigned j = 0, f = NumValues; j != f; ++j) {
858        EVT VT = ValueVTs[j];
859
860        ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
861
862        const Function *F = I.getParent()->getParent();
863        if (F->paramHasAttr(0, Attribute::SExt))
864          ExtendKind = ISD::SIGN_EXTEND;
865        else if (F->paramHasAttr(0, Attribute::ZExt))
866          ExtendKind = ISD::ZERO_EXTEND;
867
868        // FIXME: C calling convention requires the return type to be promoted
869        // to at least 32-bit. But this is not necessary for non-C calling
870        // conventions. The frontend should mark functions whose return values
871        // require promoting with signext or zeroext attributes.
872        if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) {
873          EVT MinVT = TLI.getRegisterType(*DAG.getContext(), MVT::i32);
874          if (VT.bitsLT(MinVT))
875            VT = MinVT;
876        }
877
878        unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), VT);
879        EVT PartVT = TLI.getRegisterType(*DAG.getContext(), VT);
880        SmallVector<SDValue, 4> Parts(NumParts);
881        getCopyToParts(DAG, getCurDebugLoc(),
882                       SDValue(RetOp.getNode(), RetOp.getResNo() + j),
883                       &Parts[0], NumParts, PartVT, ExtendKind);
884
885        // 'inreg' on function refers to return value
886        ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
887        if (F->paramHasAttr(0, Attribute::InReg))
888          Flags.setInReg();
889
890        // Propagate extension type if any
891        if (F->paramHasAttr(0, Attribute::SExt))
892          Flags.setSExt();
893        else if (F->paramHasAttr(0, Attribute::ZExt))
894          Flags.setZExt();
895
896        for (unsigned i = 0; i < NumParts; ++i)
897          Outs.push_back(ISD::OutputArg(Flags, Parts[i], /*isfixed=*/true));
898      }
899    }
900  }
901
902  bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
903  CallingConv::ID CallConv =
904    DAG.getMachineFunction().getFunction()->getCallingConv();
905  Chain = TLI.LowerReturn(Chain, CallConv, isVarArg,
906                          Outs, getCurDebugLoc(), DAG);
907
908  // Verify that the target's LowerReturn behaved as expected.
909  assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
910         "LowerReturn didn't return a valid chain!");
911
912  // Update the DAG with the new chain value resulting from return lowering.
913  DAG.setRoot(Chain);
914}
915
916/// CopyToExportRegsIfNeeded - If the given value has virtual registers
917/// created for it, emit nodes to copy the value into the virtual
918/// registers.
919void SelectionDAGBuilder::CopyToExportRegsIfNeeded(Value *V) {
920  if (!V->use_empty()) {
921    DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
922    if (VMI != FuncInfo.ValueMap.end())
923      CopyValueToVirtualRegister(V, VMI->second);
924  }
925}
926
927/// ExportFromCurrentBlock - If this condition isn't known to be exported from
928/// the current basic block, add it to ValueMap now so that we'll get a
929/// CopyTo/FromReg.
930void SelectionDAGBuilder::ExportFromCurrentBlock(Value *V) {
931  // No need to export constants.
932  if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
933
934  // Already exported?
935  if (FuncInfo.isExportedInst(V)) return;
936
937  unsigned Reg = FuncInfo.InitializeRegForValue(V);
938  CopyValueToVirtualRegister(V, Reg);
939}
940
941bool SelectionDAGBuilder::isExportableFromCurrentBlock(Value *V,
942                                                     const BasicBlock *FromBB) {
943  // The operands of the setcc have to be in this block.  We don't know
944  // how to export them from some other block.
945  if (Instruction *VI = dyn_cast<Instruction>(V)) {
946    // Can export from current BB.
947    if (VI->getParent() == FromBB)
948      return true;
949
950    // Is already exported, noop.
951    return FuncInfo.isExportedInst(V);
952  }
953
954  // If this is an argument, we can export it if the BB is the entry block or
955  // if it is already exported.
956  if (isa<Argument>(V)) {
957    if (FromBB == &FromBB->getParent()->getEntryBlock())
958      return true;
959
960    // Otherwise, can only export this if it is already exported.
961    return FuncInfo.isExportedInst(V);
962  }
963
964  // Otherwise, constants can always be exported.
965  return true;
966}
967
968static bool InBlock(const Value *V, const BasicBlock *BB) {
969  if (const Instruction *I = dyn_cast<Instruction>(V))
970    return I->getParent() == BB;
971  return true;
972}
973
974/// getFCmpCondCode - Return the ISD condition code corresponding to
975/// the given LLVM IR floating-point condition code.  This includes
976/// consideration of global floating-point math flags.
977///
978static ISD::CondCode getFCmpCondCode(FCmpInst::Predicate Pred) {
979  ISD::CondCode FPC, FOC;
980  switch (Pred) {
981  case FCmpInst::FCMP_FALSE: FOC = FPC = ISD::SETFALSE; break;
982  case FCmpInst::FCMP_OEQ:   FOC = ISD::SETEQ; FPC = ISD::SETOEQ; break;
983  case FCmpInst::FCMP_OGT:   FOC = ISD::SETGT; FPC = ISD::SETOGT; break;
984  case FCmpInst::FCMP_OGE:   FOC = ISD::SETGE; FPC = ISD::SETOGE; break;
985  case FCmpInst::FCMP_OLT:   FOC = ISD::SETLT; FPC = ISD::SETOLT; break;
986  case FCmpInst::FCMP_OLE:   FOC = ISD::SETLE; FPC = ISD::SETOLE; break;
987  case FCmpInst::FCMP_ONE:   FOC = ISD::SETNE; FPC = ISD::SETONE; break;
988  case FCmpInst::FCMP_ORD:   FOC = FPC = ISD::SETO;   break;
989  case FCmpInst::FCMP_UNO:   FOC = FPC = ISD::SETUO;  break;
990  case FCmpInst::FCMP_UEQ:   FOC = ISD::SETEQ; FPC = ISD::SETUEQ; break;
991  case FCmpInst::FCMP_UGT:   FOC = ISD::SETGT; FPC = ISD::SETUGT; break;
992  case FCmpInst::FCMP_UGE:   FOC = ISD::SETGE; FPC = ISD::SETUGE; break;
993  case FCmpInst::FCMP_ULT:   FOC = ISD::SETLT; FPC = ISD::SETULT; break;
994  case FCmpInst::FCMP_ULE:   FOC = ISD::SETLE; FPC = ISD::SETULE; break;
995  case FCmpInst::FCMP_UNE:   FOC = ISD::SETNE; FPC = ISD::SETUNE; break;
996  case FCmpInst::FCMP_TRUE:  FOC = FPC = ISD::SETTRUE; break;
997  default:
998    llvm_unreachable("Invalid FCmp predicate opcode!");
999    FOC = FPC = ISD::SETFALSE;
1000    break;
1001  }
1002  if (FiniteOnlyFPMath())
1003    return FOC;
1004  else
1005    return FPC;
1006}
1007
1008/// getICmpCondCode - Return the ISD condition code corresponding to
1009/// the given LLVM IR integer condition code.
1010///
1011static ISD::CondCode getICmpCondCode(ICmpInst::Predicate Pred) {
1012  switch (Pred) {
1013  case ICmpInst::ICMP_EQ:  return ISD::SETEQ;
1014  case ICmpInst::ICMP_NE:  return ISD::SETNE;
1015  case ICmpInst::ICMP_SLE: return ISD::SETLE;
1016  case ICmpInst::ICMP_ULE: return ISD::SETULE;
1017  case ICmpInst::ICMP_SGE: return ISD::SETGE;
1018  case ICmpInst::ICMP_UGE: return ISD::SETUGE;
1019  case ICmpInst::ICMP_SLT: return ISD::SETLT;
1020  case ICmpInst::ICMP_ULT: return ISD::SETULT;
1021  case ICmpInst::ICMP_SGT: return ISD::SETGT;
1022  case ICmpInst::ICMP_UGT: return ISD::SETUGT;
1023  default:
1024    llvm_unreachable("Invalid ICmp predicate opcode!");
1025    return ISD::SETNE;
1026  }
1027}
1028
1029/// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
1030/// This function emits a branch and is used at the leaves of an OR or an
1031/// AND operator tree.
1032///
1033void
1034SelectionDAGBuilder::EmitBranchForMergedCondition(Value *Cond,
1035                                                  MachineBasicBlock *TBB,
1036                                                  MachineBasicBlock *FBB,
1037                                                  MachineBasicBlock *CurBB) {
1038  const BasicBlock *BB = CurBB->getBasicBlock();
1039
1040  // If the leaf of the tree is a comparison, merge the condition into
1041  // the caseblock.
1042  if (CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
1043    // The operands of the cmp have to be in this block.  We don't know
1044    // how to export them from some other block.  If this is the first block
1045    // of the sequence, no exporting is needed.
1046    if (CurBB == CurMBB ||
1047        (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
1048         isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
1049      ISD::CondCode Condition;
1050      if (ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
1051        Condition = getICmpCondCode(IC->getPredicate());
1052      } else if (FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) {
1053        Condition = getFCmpCondCode(FC->getPredicate());
1054      } else {
1055        Condition = ISD::SETEQ; // silence warning.
1056        llvm_unreachable("Unknown compare instruction");
1057      }
1058
1059      CaseBlock CB(Condition, BOp->getOperand(0),
1060                   BOp->getOperand(1), NULL, TBB, FBB, CurBB);
1061      SwitchCases.push_back(CB);
1062      return;
1063    }
1064  }
1065
1066  // Create a CaseBlock record representing this branch.
1067  CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()),
1068               NULL, TBB, FBB, CurBB);
1069  SwitchCases.push_back(CB);
1070}
1071
1072/// FindMergedConditions - If Cond is an expression like
1073void SelectionDAGBuilder::FindMergedConditions(Value *Cond,
1074                                               MachineBasicBlock *TBB,
1075                                               MachineBasicBlock *FBB,
1076                                               MachineBasicBlock *CurBB,
1077                                               unsigned Opc) {
1078  // If this node is not part of the or/and tree, emit it as a branch.
1079  Instruction *BOp = dyn_cast<Instruction>(Cond);
1080  if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
1081      (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() ||
1082      BOp->getParent() != CurBB->getBasicBlock() ||
1083      !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
1084      !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
1085    EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB);
1086    return;
1087  }
1088
1089  //  Create TmpBB after CurBB.
1090  MachineFunction::iterator BBI = CurBB;
1091  MachineFunction &MF = DAG.getMachineFunction();
1092  MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
1093  CurBB->getParent()->insert(++BBI, TmpBB);
1094
1095  if (Opc == Instruction::Or) {
1096    // Codegen X | Y as:
1097    //   jmp_if_X TBB
1098    //   jmp TmpBB
1099    // TmpBB:
1100    //   jmp_if_Y TBB
1101    //   jmp FBB
1102    //
1103
1104    // Emit the LHS condition.
1105    FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, Opc);
1106
1107    // Emit the RHS condition into TmpBB.
1108    FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, Opc);
1109  } else {
1110    assert(Opc == Instruction::And && "Unknown merge op!");
1111    // Codegen X & Y as:
1112    //   jmp_if_X TmpBB
1113    //   jmp FBB
1114    // TmpBB:
1115    //   jmp_if_Y TBB
1116    //   jmp FBB
1117    //
1118    //  This requires creation of TmpBB after CurBB.
1119
1120    // Emit the LHS condition.
1121    FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, Opc);
1122
1123    // Emit the RHS condition into TmpBB.
1124    FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, Opc);
1125  }
1126}
1127
1128/// If the set of cases should be emitted as a series of branches, return true.
1129/// If we should emit this as a bunch of and/or'd together conditions, return
1130/// false.
1131bool
1132SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases){
1133  if (Cases.size() != 2) return true;
1134
1135  // If this is two comparisons of the same values or'd or and'd together, they
1136  // will get folded into a single comparison, so don't emit two blocks.
1137  if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
1138       Cases[0].CmpRHS == Cases[1].CmpRHS) ||
1139      (Cases[0].CmpRHS == Cases[1].CmpLHS &&
1140       Cases[0].CmpLHS == Cases[1].CmpRHS)) {
1141    return false;
1142  }
1143
1144  // Handle: (X != null) | (Y != null) --> (X|Y) != 0
1145  // Handle: (X == null) & (Y == null) --> (X|Y) == 0
1146  if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
1147      Cases[0].CC == Cases[1].CC &&
1148      isa<Constant>(Cases[0].CmpRHS) &&
1149      cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
1150    if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
1151      return false;
1152    if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
1153      return false;
1154  }
1155
1156  return true;
1157}
1158
1159void SelectionDAGBuilder::visitBr(BranchInst &I) {
1160  // Update machine-CFG edges.
1161  MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
1162
1163  // Figure out which block is immediately after the current one.
1164  MachineBasicBlock *NextBlock = 0;
1165  MachineFunction::iterator BBI = CurMBB;
1166  if (++BBI != FuncInfo.MF->end())
1167    NextBlock = BBI;
1168
1169  if (I.isUnconditional()) {
1170    // Update machine-CFG edges.
1171    CurMBB->addSuccessor(Succ0MBB);
1172
1173    // If this is not a fall-through branch, emit the branch.
1174    if (Succ0MBB != NextBlock)
1175      DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
1176                              MVT::Other, getControlRoot(),
1177                              DAG.getBasicBlock(Succ0MBB)));
1178
1179    return;
1180  }
1181
1182  // If this condition is one of the special cases we handle, do special stuff
1183  // now.
1184  Value *CondVal = I.getCondition();
1185  MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
1186
1187  // If this is a series of conditions that are or'd or and'd together, emit
1188  // this as a sequence of branches instead of setcc's with and/or operations.
1189  // For example, instead of something like:
1190  //     cmp A, B
1191  //     C = seteq
1192  //     cmp D, E
1193  //     F = setle
1194  //     or C, F
1195  //     jnz foo
1196  // Emit:
1197  //     cmp A, B
1198  //     je foo
1199  //     cmp D, E
1200  //     jle foo
1201  //
1202  if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
1203    if (BOp->hasOneUse() &&
1204        (BOp->getOpcode() == Instruction::And ||
1205         BOp->getOpcode() == Instruction::Or)) {
1206      FindMergedConditions(BOp, Succ0MBB, Succ1MBB, CurMBB, BOp->getOpcode());
1207      // If the compares in later blocks need to use values not currently
1208      // exported from this block, export them now.  This block should always
1209      // be the first entry.
1210      assert(SwitchCases[0].ThisBB == CurMBB && "Unexpected lowering!");
1211
1212      // Allow some cases to be rejected.
1213      if (ShouldEmitAsBranches(SwitchCases)) {
1214        for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
1215          ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
1216          ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
1217        }
1218
1219        // Emit the branch for this block.
1220        visitSwitchCase(SwitchCases[0]);
1221        SwitchCases.erase(SwitchCases.begin());
1222        return;
1223      }
1224
1225      // Okay, we decided not to do this, remove any inserted MBB's and clear
1226      // SwitchCases.
1227      for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
1228        FuncInfo.MF->erase(SwitchCases[i].ThisBB);
1229
1230      SwitchCases.clear();
1231    }
1232  }
1233
1234  // Create a CaseBlock record representing this branch.
1235  CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
1236               NULL, Succ0MBB, Succ1MBB, CurMBB);
1237
1238  // Use visitSwitchCase to actually insert the fast branch sequence for this
1239  // cond branch.
1240  visitSwitchCase(CB);
1241}
1242
1243/// visitSwitchCase - Emits the necessary code to represent a single node in
1244/// the binary search tree resulting from lowering a switch instruction.
1245void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB) {
1246  SDValue Cond;
1247  SDValue CondLHS = getValue(CB.CmpLHS);
1248  DebugLoc dl = getCurDebugLoc();
1249
1250  // Build the setcc now.
1251  if (CB.CmpMHS == NULL) {
1252    // Fold "(X == true)" to X and "(X == false)" to !X to
1253    // handle common cases produced by branch lowering.
1254    if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
1255        CB.CC == ISD::SETEQ)
1256      Cond = CondLHS;
1257    else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
1258             CB.CC == ISD::SETEQ) {
1259      SDValue True = DAG.getConstant(1, CondLHS.getValueType());
1260      Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
1261    } else
1262      Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
1263  } else {
1264    assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
1265
1266    const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
1267    const APInt& High  = cast<ConstantInt>(CB.CmpRHS)->getValue();
1268
1269    SDValue CmpOp = getValue(CB.CmpMHS);
1270    EVT VT = CmpOp.getValueType();
1271
1272    if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
1273      Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, VT),
1274                          ISD::SETLE);
1275    } else {
1276      SDValue SUB = DAG.getNode(ISD::SUB, dl,
1277                                VT, CmpOp, DAG.getConstant(Low, VT));
1278      Cond = DAG.getSetCC(dl, MVT::i1, SUB,
1279                          DAG.getConstant(High-Low, VT), ISD::SETULE);
1280    }
1281  }
1282
1283  // Update successor info
1284  CurMBB->addSuccessor(CB.TrueBB);
1285  CurMBB->addSuccessor(CB.FalseBB);
1286
1287  // Set NextBlock to be the MBB immediately after the current one, if any.
1288  // This is used to avoid emitting unnecessary branches to the next block.
1289  MachineBasicBlock *NextBlock = 0;
1290  MachineFunction::iterator BBI = CurMBB;
1291  if (++BBI != FuncInfo.MF->end())
1292    NextBlock = BBI;
1293
1294  // If the lhs block is the next block, invert the condition so that we can
1295  // fall through to the lhs instead of the rhs block.
1296  if (CB.TrueBB == NextBlock) {
1297    std::swap(CB.TrueBB, CB.FalseBB);
1298    SDValue True = DAG.getConstant(1, Cond.getValueType());
1299    Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
1300  }
1301
1302  SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
1303                               MVT::Other, getControlRoot(), Cond,
1304                               DAG.getBasicBlock(CB.TrueBB));
1305
1306  // If the branch was constant folded, fix up the CFG.
1307  if (BrCond.getOpcode() == ISD::BR) {
1308    CurMBB->removeSuccessor(CB.FalseBB);
1309  } else {
1310    // Otherwise, go ahead and insert the false branch.
1311    if (BrCond == getControlRoot())
1312      CurMBB->removeSuccessor(CB.TrueBB);
1313
1314    if (CB.FalseBB != NextBlock)
1315      BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
1316                           DAG.getBasicBlock(CB.FalseBB));
1317  }
1318
1319  DAG.setRoot(BrCond);
1320}
1321
1322/// visitJumpTable - Emit JumpTable node in the current MBB
1323void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) {
1324  // Emit the code for the jump table
1325  assert(JT.Reg != -1U && "Should lower JT Header first!");
1326  EVT PTy = TLI.getPointerTy();
1327  SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(),
1328                                     JT.Reg, PTy);
1329  SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
1330  SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurDebugLoc(),
1331                                    MVT::Other, Index.getValue(1),
1332                                    Table, Index);
1333  DAG.setRoot(BrJumpTable);
1334}
1335
1336/// visitJumpTableHeader - This function emits necessary code to produce index
1337/// in the JumpTable from switch case.
1338void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT,
1339                                               JumpTableHeader &JTH) {
1340  // Subtract the lowest switch case value from the value being switched on and
1341  // conditional branch to default mbb if the result is greater than the
1342  // difference between smallest and largest cases.
1343  SDValue SwitchOp = getValue(JTH.SValue);
1344  EVT VT = SwitchOp.getValueType();
1345  SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp,
1346                            DAG.getConstant(JTH.First, VT));
1347
1348  // The SDNode we just created, which holds the value being switched on minus
1349  // the smallest case value, needs to be copied to a virtual register so it
1350  // can be used as an index into the jump table in a subsequent basic block.
1351  // This value may be smaller or larger than the target's pointer type, and
1352  // therefore require extension or truncating.
1353  SwitchOp = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(), TLI.getPointerTy());
1354
1355  unsigned JumpTableReg = FuncInfo.MakeReg(TLI.getPointerTy());
1356  SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(),
1357                                    JumpTableReg, SwitchOp);
1358  JT.Reg = JumpTableReg;
1359
1360  // Emit the range check for the jump table, and branch to the default block
1361  // for the switch statement if the value being switched on exceeds the largest
1362  // case in the switch.
1363  SDValue CMP = DAG.getSetCC(getCurDebugLoc(),
1364                             TLI.getSetCCResultType(Sub.getValueType()), Sub,
1365                             DAG.getConstant(JTH.Last-JTH.First,VT),
1366                             ISD::SETUGT);
1367
1368  // Set NextBlock to be the MBB immediately after the current one, if any.
1369  // This is used to avoid emitting unnecessary branches to the next block.
1370  MachineBasicBlock *NextBlock = 0;
1371  MachineFunction::iterator BBI = CurMBB;
1372
1373  if (++BBI != FuncInfo.MF->end())
1374    NextBlock = BBI;
1375
1376  SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1377                               MVT::Other, CopyTo, CMP,
1378                               DAG.getBasicBlock(JT.Default));
1379
1380  if (JT.MBB != NextBlock)
1381    BrCond = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrCond,
1382                         DAG.getBasicBlock(JT.MBB));
1383
1384  DAG.setRoot(BrCond);
1385}
1386
1387/// visitBitTestHeader - This function emits necessary code to produce value
1388/// suitable for "bit tests"
1389void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B) {
1390  // Subtract the minimum value
1391  SDValue SwitchOp = getValue(B.SValue);
1392  EVT VT = SwitchOp.getValueType();
1393  SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp,
1394                            DAG.getConstant(B.First, VT));
1395
1396  // Check range
1397  SDValue RangeCmp = DAG.getSetCC(getCurDebugLoc(),
1398                                  TLI.getSetCCResultType(Sub.getValueType()),
1399                                  Sub, DAG.getConstant(B.Range, VT),
1400                                  ISD::SETUGT);
1401
1402  SDValue ShiftOp = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(),
1403                                       TLI.getPointerTy());
1404
1405  B.Reg = FuncInfo.MakeReg(TLI.getPointerTy());
1406  SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(),
1407                                    B.Reg, ShiftOp);
1408
1409  // Set NextBlock to be the MBB immediately after the current one, if any.
1410  // This is used to avoid emitting unnecessary branches to the next block.
1411  MachineBasicBlock *NextBlock = 0;
1412  MachineFunction::iterator BBI = CurMBB;
1413  if (++BBI != FuncInfo.MF->end())
1414    NextBlock = BBI;
1415
1416  MachineBasicBlock* MBB = B.Cases[0].ThisBB;
1417
1418  CurMBB->addSuccessor(B.Default);
1419  CurMBB->addSuccessor(MBB);
1420
1421  SDValue BrRange = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1422                                MVT::Other, CopyTo, RangeCmp,
1423                                DAG.getBasicBlock(B.Default));
1424
1425  if (MBB != NextBlock)
1426    BrRange = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, CopyTo,
1427                          DAG.getBasicBlock(MBB));
1428
1429  DAG.setRoot(BrRange);
1430}
1431
1432/// visitBitTestCase - this function produces one "bit test"
1433void SelectionDAGBuilder::visitBitTestCase(MachineBasicBlock* NextMBB,
1434                                           unsigned Reg,
1435                                           BitTestCase &B) {
1436  // Make desired shift
1437  SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(), Reg,
1438                                       TLI.getPointerTy());
1439  SDValue SwitchVal = DAG.getNode(ISD::SHL, getCurDebugLoc(),
1440                                  TLI.getPointerTy(),
1441                                  DAG.getConstant(1, TLI.getPointerTy()),
1442                                  ShiftOp);
1443
1444  // Emit bit tests and jumps
1445  SDValue AndOp = DAG.getNode(ISD::AND, getCurDebugLoc(),
1446                              TLI.getPointerTy(), SwitchVal,
1447                              DAG.getConstant(B.Mask, TLI.getPointerTy()));
1448  SDValue AndCmp = DAG.getSetCC(getCurDebugLoc(),
1449                                TLI.getSetCCResultType(AndOp.getValueType()),
1450                                AndOp, DAG.getConstant(0, TLI.getPointerTy()),
1451                                ISD::SETNE);
1452
1453  CurMBB->addSuccessor(B.TargetBB);
1454  CurMBB->addSuccessor(NextMBB);
1455
1456  SDValue BrAnd = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1457                              MVT::Other, getControlRoot(),
1458                              AndCmp, DAG.getBasicBlock(B.TargetBB));
1459
1460  // Set NextBlock to be the MBB immediately after the current one, if any.
1461  // This is used to avoid emitting unnecessary branches to the next block.
1462  MachineBasicBlock *NextBlock = 0;
1463  MachineFunction::iterator BBI = CurMBB;
1464  if (++BBI != FuncInfo.MF->end())
1465    NextBlock = BBI;
1466
1467  if (NextMBB != NextBlock)
1468    BrAnd = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrAnd,
1469                        DAG.getBasicBlock(NextMBB));
1470
1471  DAG.setRoot(BrAnd);
1472}
1473
1474void SelectionDAGBuilder::visitInvoke(InvokeInst &I) {
1475  // Retrieve successors.
1476  MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
1477  MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)];
1478
1479  const Value *Callee(I.getCalledValue());
1480  if (isa<InlineAsm>(Callee))
1481    visitInlineAsm(&I);
1482  else
1483    LowerCallTo(&I, getValue(Callee), false, LandingPad);
1484
1485  // If the value of the invoke is used outside of its defining block, make it
1486  // available as a virtual register.
1487  CopyToExportRegsIfNeeded(&I);
1488
1489  // Update successor info
1490  CurMBB->addSuccessor(Return);
1491  CurMBB->addSuccessor(LandingPad);
1492
1493  // Drop into normal successor.
1494  DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
1495                          MVT::Other, getControlRoot(),
1496                          DAG.getBasicBlock(Return)));
1497}
1498
1499void SelectionDAGBuilder::visitUnwind(UnwindInst &I) {
1500}
1501
1502/// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for
1503/// small case ranges).
1504bool SelectionDAGBuilder::handleSmallSwitchRange(CaseRec& CR,
1505                                                 CaseRecVector& WorkList,
1506                                                 Value* SV,
1507                                                 MachineBasicBlock* Default) {
1508  Case& BackCase  = *(CR.Range.second-1);
1509
1510  // Size is the number of Cases represented by this range.
1511  size_t Size = CR.Range.second - CR.Range.first;
1512  if (Size > 3)
1513    return false;
1514
1515  // Get the MachineFunction which holds the current MBB.  This is used when
1516  // inserting any additional MBBs necessary to represent the switch.
1517  MachineFunction *CurMF = FuncInfo.MF;
1518
1519  // Figure out which block is immediately after the current one.
1520  MachineBasicBlock *NextBlock = 0;
1521  MachineFunction::iterator BBI = CR.CaseBB;
1522
1523  if (++BBI != FuncInfo.MF->end())
1524    NextBlock = BBI;
1525
1526  // TODO: If any two of the cases has the same destination, and if one value
1527  // is the same as the other, but has one bit unset that the other has set,
1528  // use bit manipulation to do two compares at once.  For example:
1529  // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
1530
1531  // Rearrange the case blocks so that the last one falls through if possible.
1532  if (NextBlock && Default != NextBlock && BackCase.BB != NextBlock) {
1533    // The last case block won't fall through into 'NextBlock' if we emit the
1534    // branches in this order.  See if rearranging a case value would help.
1535    for (CaseItr I = CR.Range.first, E = CR.Range.second-1; I != E; ++I) {
1536      if (I->BB == NextBlock) {
1537        std::swap(*I, BackCase);
1538        break;
1539      }
1540    }
1541  }
1542
1543  // Create a CaseBlock record representing a conditional branch to
1544  // the Case's target mbb if the value being switched on SV is equal
1545  // to C.
1546  MachineBasicBlock *CurBlock = CR.CaseBB;
1547  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) {
1548    MachineBasicBlock *FallThrough;
1549    if (I != E-1) {
1550      FallThrough = CurMF->CreateMachineBasicBlock(CurBlock->getBasicBlock());
1551      CurMF->insert(BBI, FallThrough);
1552
1553      // Put SV in a virtual register to make it available from the new blocks.
1554      ExportFromCurrentBlock(SV);
1555    } else {
1556      // If the last case doesn't match, go to the default block.
1557      FallThrough = Default;
1558    }
1559
1560    Value *RHS, *LHS, *MHS;
1561    ISD::CondCode CC;
1562    if (I->High == I->Low) {
1563      // This is just small small case range :) containing exactly 1 case
1564      CC = ISD::SETEQ;
1565      LHS = SV; RHS = I->High; MHS = NULL;
1566    } else {
1567      CC = ISD::SETLE;
1568      LHS = I->Low; MHS = SV; RHS = I->High;
1569    }
1570    CaseBlock CB(CC, LHS, RHS, MHS, I->BB, FallThrough, CurBlock);
1571
1572    // If emitting the first comparison, just call visitSwitchCase to emit the
1573    // code into the current block.  Otherwise, push the CaseBlock onto the
1574    // vector to be later processed by SDISel, and insert the node's MBB
1575    // before the next MBB.
1576    if (CurBlock == CurMBB)
1577      visitSwitchCase(CB);
1578    else
1579      SwitchCases.push_back(CB);
1580
1581    CurBlock = FallThrough;
1582  }
1583
1584  return true;
1585}
1586
1587static inline bool areJTsAllowed(const TargetLowering &TLI) {
1588  return !DisableJumpTables &&
1589          (TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) ||
1590           TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other));
1591}
1592
1593static APInt ComputeRange(const APInt &First, const APInt &Last) {
1594  APInt LastExt(Last), FirstExt(First);
1595  uint32_t BitWidth = std::max(Last.getBitWidth(), First.getBitWidth()) + 1;
1596  LastExt.sext(BitWidth); FirstExt.sext(BitWidth);
1597  return (LastExt - FirstExt + 1ULL);
1598}
1599
1600/// handleJTSwitchCase - Emit jumptable for current switch case range
1601bool SelectionDAGBuilder::handleJTSwitchCase(CaseRec& CR,
1602                                             CaseRecVector& WorkList,
1603                                             Value* SV,
1604                                             MachineBasicBlock* Default) {
1605  Case& FrontCase = *CR.Range.first;
1606  Case& BackCase  = *(CR.Range.second-1);
1607
1608  const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue();
1609  const APInt &Last  = cast<ConstantInt>(BackCase.High)->getValue();
1610
1611  APInt TSize(First.getBitWidth(), 0);
1612  for (CaseItr I = CR.Range.first, E = CR.Range.second;
1613       I!=E; ++I)
1614    TSize += I->size();
1615
1616  if (!areJTsAllowed(TLI) || TSize.ult(APInt(First.getBitWidth(), 4)))
1617    return false;
1618
1619  APInt Range = ComputeRange(First, Last);
1620  double Density = TSize.roundToDouble() / Range.roundToDouble();
1621  if (Density < 0.4)
1622    return false;
1623
1624  DEBUG(dbgs() << "Lowering jump table\n"
1625               << "First entry: " << First << ". Last entry: " << Last << '\n'
1626               << "Range: " << Range
1627               << "Size: " << TSize << ". Density: " << Density << "\n\n");
1628
1629  // Get the MachineFunction which holds the current MBB.  This is used when
1630  // inserting any additional MBBs necessary to represent the switch.
1631  MachineFunction *CurMF = FuncInfo.MF;
1632
1633  // Figure out which block is immediately after the current one.
1634  MachineFunction::iterator BBI = CR.CaseBB;
1635  ++BBI;
1636
1637  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
1638
1639  // Create a new basic block to hold the code for loading the address
1640  // of the jump table, and jumping to it.  Update successor information;
1641  // we will either branch to the default case for the switch, or the jump
1642  // table.
1643  MachineBasicBlock *JumpTableBB = CurMF->CreateMachineBasicBlock(LLVMBB);
1644  CurMF->insert(BBI, JumpTableBB);
1645  CR.CaseBB->addSuccessor(Default);
1646  CR.CaseBB->addSuccessor(JumpTableBB);
1647
1648  // Build a vector of destination BBs, corresponding to each target
1649  // of the jump table. If the value of the jump table slot corresponds to
1650  // a case statement, push the case's BB onto the vector, otherwise, push
1651  // the default BB.
1652  std::vector<MachineBasicBlock*> DestBBs;
1653  APInt TEI = First;
1654  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) {
1655    const APInt &Low = cast<ConstantInt>(I->Low)->getValue();
1656    const APInt &High = cast<ConstantInt>(I->High)->getValue();
1657
1658    if (Low.sle(TEI) && TEI.sle(High)) {
1659      DestBBs.push_back(I->BB);
1660      if (TEI==High)
1661        ++I;
1662    } else {
1663      DestBBs.push_back(Default);
1664    }
1665  }
1666
1667  // Update successor info. Add one edge to each unique successor.
1668  BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs());
1669  for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(),
1670         E = DestBBs.end(); I != E; ++I) {
1671    if (!SuccsHandled[(*I)->getNumber()]) {
1672      SuccsHandled[(*I)->getNumber()] = true;
1673      JumpTableBB->addSuccessor(*I);
1674    }
1675  }
1676
1677  // Create a jump table index for this jump table.
1678  unsigned JTEncoding = TLI.getJumpTableEncoding();
1679  unsigned JTI = CurMF->getOrCreateJumpTableInfo(JTEncoding)
1680                       ->createJumpTableIndex(DestBBs);
1681
1682  // Set the jump table information so that we can codegen it as a second
1683  // MachineBasicBlock
1684  JumpTable JT(-1U, JTI, JumpTableBB, Default);
1685  JumpTableHeader JTH(First, Last, SV, CR.CaseBB, (CR.CaseBB == CurMBB));
1686  if (CR.CaseBB == CurMBB)
1687    visitJumpTableHeader(JT, JTH);
1688
1689  JTCases.push_back(JumpTableBlock(JTH, JT));
1690
1691  return true;
1692}
1693
1694/// handleBTSplitSwitchCase - emit comparison and split binary search tree into
1695/// 2 subtrees.
1696bool SelectionDAGBuilder::handleBTSplitSwitchCase(CaseRec& CR,
1697                                                  CaseRecVector& WorkList,
1698                                                  Value* SV,
1699                                                  MachineBasicBlock* Default) {
1700  // Get the MachineFunction which holds the current MBB.  This is used when
1701  // inserting any additional MBBs necessary to represent the switch.
1702  MachineFunction *CurMF = FuncInfo.MF;
1703
1704  // Figure out which block is immediately after the current one.
1705  MachineFunction::iterator BBI = CR.CaseBB;
1706  ++BBI;
1707
1708  Case& FrontCase = *CR.Range.first;
1709  Case& BackCase  = *(CR.Range.second-1);
1710  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
1711
1712  // Size is the number of Cases represented by this range.
1713  unsigned Size = CR.Range.second - CR.Range.first;
1714
1715  const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue();
1716  const APInt &Last  = cast<ConstantInt>(BackCase.High)->getValue();
1717  double FMetric = 0;
1718  CaseItr Pivot = CR.Range.first + Size/2;
1719
1720  // Select optimal pivot, maximizing sum density of LHS and RHS. This will
1721  // (heuristically) allow us to emit JumpTable's later.
1722  APInt TSize(First.getBitWidth(), 0);
1723  for (CaseItr I = CR.Range.first, E = CR.Range.second;
1724       I!=E; ++I)
1725    TSize += I->size();
1726
1727  APInt LSize = FrontCase.size();
1728  APInt RSize = TSize-LSize;
1729  DEBUG(dbgs() << "Selecting best pivot: \n"
1730               << "First: " << First << ", Last: " << Last <<'\n'
1731               << "LSize: " << LSize << ", RSize: " << RSize << '\n');
1732  for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second;
1733       J!=E; ++I, ++J) {
1734    const APInt &LEnd = cast<ConstantInt>(I->High)->getValue();
1735    const APInt &RBegin = cast<ConstantInt>(J->Low)->getValue();
1736    APInt Range = ComputeRange(LEnd, RBegin);
1737    assert((Range - 2ULL).isNonNegative() &&
1738           "Invalid case distance");
1739    double LDensity = (double)LSize.roundToDouble() /
1740                           (LEnd - First + 1ULL).roundToDouble();
1741    double RDensity = (double)RSize.roundToDouble() /
1742                           (Last - RBegin + 1ULL).roundToDouble();
1743    double Metric = Range.logBase2()*(LDensity+RDensity);
1744    // Should always split in some non-trivial place
1745    DEBUG(dbgs() <<"=>Step\n"
1746                 << "LEnd: " << LEnd << ", RBegin: " << RBegin << '\n'
1747                 << "LDensity: " << LDensity
1748                 << ", RDensity: " << RDensity << '\n'
1749                 << "Metric: " << Metric << '\n');
1750    if (FMetric < Metric) {
1751      Pivot = J;
1752      FMetric = Metric;
1753      DEBUG(dbgs() << "Current metric set to: " << FMetric << '\n');
1754    }
1755
1756    LSize += J->size();
1757    RSize -= J->size();
1758  }
1759  if (areJTsAllowed(TLI)) {
1760    // If our case is dense we *really* should handle it earlier!
1761    assert((FMetric > 0) && "Should handle dense range earlier!");
1762  } else {
1763    Pivot = CR.Range.first + Size/2;
1764  }
1765
1766  CaseRange LHSR(CR.Range.first, Pivot);
1767  CaseRange RHSR(Pivot, CR.Range.second);
1768  Constant *C = Pivot->Low;
1769  MachineBasicBlock *FalseBB = 0, *TrueBB = 0;
1770
1771  // We know that we branch to the LHS if the Value being switched on is
1772  // less than the Pivot value, C.  We use this to optimize our binary
1773  // tree a bit, by recognizing that if SV is greater than or equal to the
1774  // LHS's Case Value, and that Case Value is exactly one less than the
1775  // Pivot's Value, then we can branch directly to the LHS's Target,
1776  // rather than creating a leaf node for it.
1777  if ((LHSR.second - LHSR.first) == 1 &&
1778      LHSR.first->High == CR.GE &&
1779      cast<ConstantInt>(C)->getValue() ==
1780      (cast<ConstantInt>(CR.GE)->getValue() + 1LL)) {
1781    TrueBB = LHSR.first->BB;
1782  } else {
1783    TrueBB = CurMF->CreateMachineBasicBlock(LLVMBB);
1784    CurMF->insert(BBI, TrueBB);
1785    WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR));
1786
1787    // Put SV in a virtual register to make it available from the new blocks.
1788    ExportFromCurrentBlock(SV);
1789  }
1790
1791  // Similar to the optimization above, if the Value being switched on is
1792  // known to be less than the Constant CR.LT, and the current Case Value
1793  // is CR.LT - 1, then we can branch directly to the target block for
1794  // the current Case Value, rather than emitting a RHS leaf node for it.
1795  if ((RHSR.second - RHSR.first) == 1 && CR.LT &&
1796      cast<ConstantInt>(RHSR.first->Low)->getValue() ==
1797      (cast<ConstantInt>(CR.LT)->getValue() - 1LL)) {
1798    FalseBB = RHSR.first->BB;
1799  } else {
1800    FalseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
1801    CurMF->insert(BBI, FalseBB);
1802    WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR));
1803
1804    // Put SV in a virtual register to make it available from the new blocks.
1805    ExportFromCurrentBlock(SV);
1806  }
1807
1808  // Create a CaseBlock record representing a conditional branch to
1809  // the LHS node if the value being switched on SV is less than C.
1810  // Otherwise, branch to LHS.
1811  CaseBlock CB(ISD::SETLT, SV, C, NULL, TrueBB, FalseBB, CR.CaseBB);
1812
1813  if (CR.CaseBB == CurMBB)
1814    visitSwitchCase(CB);
1815  else
1816    SwitchCases.push_back(CB);
1817
1818  return true;
1819}
1820
1821/// handleBitTestsSwitchCase - if current case range has few destination and
1822/// range span less, than machine word bitwidth, encode case range into series
1823/// of masks and emit bit tests with these masks.
1824bool SelectionDAGBuilder::handleBitTestsSwitchCase(CaseRec& CR,
1825                                                   CaseRecVector& WorkList,
1826                                                   Value* SV,
1827                                                   MachineBasicBlock* Default){
1828  EVT PTy = TLI.getPointerTy();
1829  unsigned IntPtrBits = PTy.getSizeInBits();
1830
1831  Case& FrontCase = *CR.Range.first;
1832  Case& BackCase  = *(CR.Range.second-1);
1833
1834  // Get the MachineFunction which holds the current MBB.  This is used when
1835  // inserting any additional MBBs necessary to represent the switch.
1836  MachineFunction *CurMF = FuncInfo.MF;
1837
1838  // If target does not have legal shift left, do not emit bit tests at all.
1839  if (!TLI.isOperationLegal(ISD::SHL, TLI.getPointerTy()))
1840    return false;
1841
1842  size_t numCmps = 0;
1843  for (CaseItr I = CR.Range.first, E = CR.Range.second;
1844       I!=E; ++I) {
1845    // Single case counts one, case range - two.
1846    numCmps += (I->Low == I->High ? 1 : 2);
1847  }
1848
1849  // Count unique destinations
1850  SmallSet<MachineBasicBlock*, 4> Dests;
1851  for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
1852    Dests.insert(I->BB);
1853    if (Dests.size() > 3)
1854      // Don't bother the code below, if there are too much unique destinations
1855      return false;
1856  }
1857  DEBUG(dbgs() << "Total number of unique destinations: "
1858        << Dests.size() << '\n'
1859        << "Total number of comparisons: " << numCmps << '\n');
1860
1861  // Compute span of values.
1862  const APInt& minValue = cast<ConstantInt>(FrontCase.Low)->getValue();
1863  const APInt& maxValue = cast<ConstantInt>(BackCase.High)->getValue();
1864  APInt cmpRange = maxValue - minValue;
1865
1866  DEBUG(dbgs() << "Compare range: " << cmpRange << '\n'
1867               << "Low bound: " << minValue << '\n'
1868               << "High bound: " << maxValue << '\n');
1869
1870  if (cmpRange.uge(APInt(cmpRange.getBitWidth(), IntPtrBits)) ||
1871      (!(Dests.size() == 1 && numCmps >= 3) &&
1872       !(Dests.size() == 2 && numCmps >= 5) &&
1873       !(Dests.size() >= 3 && numCmps >= 6)))
1874    return false;
1875
1876  DEBUG(dbgs() << "Emitting bit tests\n");
1877  APInt lowBound = APInt::getNullValue(cmpRange.getBitWidth());
1878
1879  // Optimize the case where all the case values fit in a
1880  // word without having to subtract minValue. In this case,
1881  // we can optimize away the subtraction.
1882  if (minValue.isNonNegative() &&
1883      maxValue.slt(APInt(maxValue.getBitWidth(), IntPtrBits))) {
1884    cmpRange = maxValue;
1885  } else {
1886    lowBound = minValue;
1887  }
1888
1889  CaseBitsVector CasesBits;
1890  unsigned i, count = 0;
1891
1892  for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
1893    MachineBasicBlock* Dest = I->BB;
1894    for (i = 0; i < count; ++i)
1895      if (Dest == CasesBits[i].BB)
1896        break;
1897
1898    if (i == count) {
1899      assert((count < 3) && "Too much destinations to test!");
1900      CasesBits.push_back(CaseBits(0, Dest, 0));
1901      count++;
1902    }
1903
1904    const APInt& lowValue = cast<ConstantInt>(I->Low)->getValue();
1905    const APInt& highValue = cast<ConstantInt>(I->High)->getValue();
1906
1907    uint64_t lo = (lowValue - lowBound).getZExtValue();
1908    uint64_t hi = (highValue - lowBound).getZExtValue();
1909
1910    for (uint64_t j = lo; j <= hi; j++) {
1911      CasesBits[i].Mask |=  1ULL << j;
1912      CasesBits[i].Bits++;
1913    }
1914
1915  }
1916  std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp());
1917
1918  BitTestInfo BTC;
1919
1920  // Figure out which block is immediately after the current one.
1921  MachineFunction::iterator BBI = CR.CaseBB;
1922  ++BBI;
1923
1924  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
1925
1926  DEBUG(dbgs() << "Cases:\n");
1927  for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) {
1928    DEBUG(dbgs() << "Mask: " << CasesBits[i].Mask
1929                 << ", Bits: " << CasesBits[i].Bits
1930                 << ", BB: " << CasesBits[i].BB << '\n');
1931
1932    MachineBasicBlock *CaseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
1933    CurMF->insert(BBI, CaseBB);
1934    BTC.push_back(BitTestCase(CasesBits[i].Mask,
1935                              CaseBB,
1936                              CasesBits[i].BB));
1937
1938    // Put SV in a virtual register to make it available from the new blocks.
1939    ExportFromCurrentBlock(SV);
1940  }
1941
1942  BitTestBlock BTB(lowBound, cmpRange, SV,
1943                   -1U, (CR.CaseBB == CurMBB),
1944                   CR.CaseBB, Default, BTC);
1945
1946  if (CR.CaseBB == CurMBB)
1947    visitBitTestHeader(BTB);
1948
1949  BitTestCases.push_back(BTB);
1950
1951  return true;
1952}
1953
1954/// Clusterify - Transform simple list of Cases into list of CaseRange's
1955size_t SelectionDAGBuilder::Clusterify(CaseVector& Cases,
1956                                       const SwitchInst& SI) {
1957  size_t numCmps = 0;
1958
1959  // Start with "simple" cases
1960  for (size_t i = 1; i < SI.getNumSuccessors(); ++i) {
1961    MachineBasicBlock *SMBB = FuncInfo.MBBMap[SI.getSuccessor(i)];
1962    Cases.push_back(Case(SI.getSuccessorValue(i),
1963                         SI.getSuccessorValue(i),
1964                         SMBB));
1965  }
1966  std::sort(Cases.begin(), Cases.end(), CaseCmp());
1967
1968  // Merge case into clusters
1969  if (Cases.size() >= 2)
1970    // Must recompute end() each iteration because it may be
1971    // invalidated by erase if we hold on to it
1972    for (CaseItr I = Cases.begin(), J = ++(Cases.begin()); J != Cases.end(); ) {
1973      const APInt& nextValue = cast<ConstantInt>(J->Low)->getValue();
1974      const APInt& currentValue = cast<ConstantInt>(I->High)->getValue();
1975      MachineBasicBlock* nextBB = J->BB;
1976      MachineBasicBlock* currentBB = I->BB;
1977
1978      // If the two neighboring cases go to the same destination, merge them
1979      // into a single case.
1980      if ((nextValue - currentValue == 1) && (currentBB == nextBB)) {
1981        I->High = J->High;
1982        J = Cases.erase(J);
1983      } else {
1984        I = J++;
1985      }
1986    }
1987
1988  for (CaseItr I=Cases.begin(), E=Cases.end(); I!=E; ++I, ++numCmps) {
1989    if (I->Low != I->High)
1990      // A range counts double, since it requires two compares.
1991      ++numCmps;
1992  }
1993
1994  return numCmps;
1995}
1996
1997void SelectionDAGBuilder::visitSwitch(SwitchInst &SI) {
1998  // Figure out which block is immediately after the current one.
1999  MachineBasicBlock *NextBlock = 0;
2000  MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()];
2001
2002  // If there is only the default destination, branch to it if it is not the
2003  // next basic block.  Otherwise, just fall through.
2004  if (SI.getNumOperands() == 2) {
2005    // Update machine-CFG edges.
2006
2007    // If this is not a fall-through branch, emit the branch.
2008    CurMBB->addSuccessor(Default);
2009    if (Default != NextBlock)
2010      DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
2011                              MVT::Other, getControlRoot(),
2012                              DAG.getBasicBlock(Default)));
2013
2014    return;
2015  }
2016
2017  // If there are any non-default case statements, create a vector of Cases
2018  // representing each one, and sort the vector so that we can efficiently
2019  // create a binary search tree from them.
2020  CaseVector Cases;
2021  size_t numCmps = Clusterify(Cases, SI);
2022  DEBUG(dbgs() << "Clusterify finished. Total clusters: " << Cases.size()
2023               << ". Total compares: " << numCmps << '\n');
2024  numCmps = 0;
2025
2026  // Get the Value to be switched on and default basic blocks, which will be
2027  // inserted into CaseBlock records, representing basic blocks in the binary
2028  // search tree.
2029  Value *SV = SI.getOperand(0);
2030
2031  // Push the initial CaseRec onto the worklist
2032  CaseRecVector WorkList;
2033  WorkList.push_back(CaseRec(CurMBB,0,0,CaseRange(Cases.begin(),Cases.end())));
2034
2035  while (!WorkList.empty()) {
2036    // Grab a record representing a case range to process off the worklist
2037    CaseRec CR = WorkList.back();
2038    WorkList.pop_back();
2039
2040    if (handleBitTestsSwitchCase(CR, WorkList, SV, Default))
2041      continue;
2042
2043    // If the range has few cases (two or less) emit a series of specific
2044    // tests.
2045    if (handleSmallSwitchRange(CR, WorkList, SV, Default))
2046      continue;
2047
2048    // If the switch has more than 5 blocks, and at least 40% dense, and the
2049    // target supports indirect branches, then emit a jump table rather than
2050    // lowering the switch to a binary tree of conditional branches.
2051    if (handleJTSwitchCase(CR, WorkList, SV, Default))
2052      continue;
2053
2054    // Emit binary tree. We need to pick a pivot, and push left and right ranges
2055    // onto the worklist. Leafs are handled via handleSmallSwitchRange() call.
2056    handleBTSplitSwitchCase(CR, WorkList, SV, Default);
2057  }
2058}
2059
2060void SelectionDAGBuilder::visitIndirectBr(IndirectBrInst &I) {
2061  // Update machine-CFG edges with unique successors.
2062  SmallVector<BasicBlock*, 32> succs;
2063  succs.reserve(I.getNumSuccessors());
2064  for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i)
2065    succs.push_back(I.getSuccessor(i));
2066  array_pod_sort(succs.begin(), succs.end());
2067  succs.erase(std::unique(succs.begin(), succs.end()), succs.end());
2068  for (unsigned i = 0, e = succs.size(); i != e; ++i)
2069    CurMBB->addSuccessor(FuncInfo.MBBMap[succs[i]]);
2070
2071  DAG.setRoot(DAG.getNode(ISD::BRIND, getCurDebugLoc(),
2072                          MVT::Other, getControlRoot(),
2073                          getValue(I.getAddress())));
2074}
2075
2076void SelectionDAGBuilder::visitFSub(User &I) {
2077  // -0.0 - X --> fneg
2078  const Type *Ty = I.getType();
2079  if (Ty->isVectorTy()) {
2080    if (ConstantVector *CV = dyn_cast<ConstantVector>(I.getOperand(0))) {
2081      const VectorType *DestTy = cast<VectorType>(I.getType());
2082      const Type *ElTy = DestTy->getElementType();
2083      unsigned VL = DestTy->getNumElements();
2084      std::vector<Constant*> NZ(VL, ConstantFP::getNegativeZero(ElTy));
2085      Constant *CNZ = ConstantVector::get(&NZ[0], NZ.size());
2086      if (CV == CNZ) {
2087        SDValue Op2 = getValue(I.getOperand(1));
2088        setValue(&I, DAG.getNode(ISD::FNEG, getCurDebugLoc(),
2089                                 Op2.getValueType(), Op2));
2090        return;
2091      }
2092    }
2093  }
2094
2095  if (ConstantFP *CFP = dyn_cast<ConstantFP>(I.getOperand(0)))
2096    if (CFP->isExactlyValue(ConstantFP::getNegativeZero(Ty)->getValueAPF())) {
2097      SDValue Op2 = getValue(I.getOperand(1));
2098      setValue(&I, DAG.getNode(ISD::FNEG, getCurDebugLoc(),
2099                               Op2.getValueType(), Op2));
2100      return;
2101    }
2102
2103  visitBinary(I, ISD::FSUB);
2104}
2105
2106void SelectionDAGBuilder::visitBinary(User &I, unsigned OpCode) {
2107  SDValue Op1 = getValue(I.getOperand(0));
2108  SDValue Op2 = getValue(I.getOperand(1));
2109  setValue(&I, DAG.getNode(OpCode, getCurDebugLoc(),
2110                           Op1.getValueType(), Op1, Op2));
2111}
2112
2113void SelectionDAGBuilder::visitShift(User &I, unsigned Opcode) {
2114  SDValue Op1 = getValue(I.getOperand(0));
2115  SDValue Op2 = getValue(I.getOperand(1));
2116  if (!I.getType()->isVectorTy() &&
2117      Op2.getValueType() != TLI.getShiftAmountTy()) {
2118    // If the operand is smaller than the shift count type, promote it.
2119    EVT PTy = TLI.getPointerTy();
2120    EVT STy = TLI.getShiftAmountTy();
2121    if (STy.bitsGT(Op2.getValueType()))
2122      Op2 = DAG.getNode(ISD::ANY_EXTEND, getCurDebugLoc(),
2123                        TLI.getShiftAmountTy(), Op2);
2124    // If the operand is larger than the shift count type but the shift
2125    // count type has enough bits to represent any shift value, truncate
2126    // it now. This is a common case and it exposes the truncate to
2127    // optimization early.
2128    else if (STy.getSizeInBits() >=
2129             Log2_32_Ceil(Op2.getValueType().getSizeInBits()))
2130      Op2 = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(),
2131                        TLI.getShiftAmountTy(), Op2);
2132    // Otherwise we'll need to temporarily settle for some other
2133    // convenient type; type legalization will make adjustments as
2134    // needed.
2135    else if (PTy.bitsLT(Op2.getValueType()))
2136      Op2 = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(),
2137                        TLI.getPointerTy(), Op2);
2138    else if (PTy.bitsGT(Op2.getValueType()))
2139      Op2 = DAG.getNode(ISD::ANY_EXTEND, getCurDebugLoc(),
2140                        TLI.getPointerTy(), Op2);
2141  }
2142
2143  setValue(&I, DAG.getNode(Opcode, getCurDebugLoc(),
2144                           Op1.getValueType(), Op1, Op2));
2145}
2146
2147void SelectionDAGBuilder::visitICmp(User &I) {
2148  ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
2149  if (ICmpInst *IC = dyn_cast<ICmpInst>(&I))
2150    predicate = IC->getPredicate();
2151  else if (ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
2152    predicate = ICmpInst::Predicate(IC->getPredicate());
2153  SDValue Op1 = getValue(I.getOperand(0));
2154  SDValue Op2 = getValue(I.getOperand(1));
2155  ISD::CondCode Opcode = getICmpCondCode(predicate);
2156
2157  EVT DestVT = TLI.getValueType(I.getType());
2158  setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Opcode));
2159}
2160
2161void SelectionDAGBuilder::visitFCmp(User &I) {
2162  FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
2163  if (FCmpInst *FC = dyn_cast<FCmpInst>(&I))
2164    predicate = FC->getPredicate();
2165  else if (ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
2166    predicate = FCmpInst::Predicate(FC->getPredicate());
2167  SDValue Op1 = getValue(I.getOperand(0));
2168  SDValue Op2 = getValue(I.getOperand(1));
2169  ISD::CondCode Condition = getFCmpCondCode(predicate);
2170  EVT DestVT = TLI.getValueType(I.getType());
2171  setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Condition));
2172}
2173
2174void SelectionDAGBuilder::visitSelect(User &I) {
2175  SmallVector<EVT, 4> ValueVTs;
2176  ComputeValueVTs(TLI, I.getType(), ValueVTs);
2177  unsigned NumValues = ValueVTs.size();
2178  if (NumValues == 0) return;
2179
2180  SmallVector<SDValue, 4> Values(NumValues);
2181  SDValue Cond     = getValue(I.getOperand(0));
2182  SDValue TrueVal  = getValue(I.getOperand(1));
2183  SDValue FalseVal = getValue(I.getOperand(2));
2184
2185  for (unsigned i = 0; i != NumValues; ++i)
2186    Values[i] = DAG.getNode(ISD::SELECT, getCurDebugLoc(),
2187                          TrueVal.getNode()->getValueType(TrueVal.getResNo()+i),
2188                            Cond,
2189                            SDValue(TrueVal.getNode(),
2190                                    TrueVal.getResNo() + i),
2191                            SDValue(FalseVal.getNode(),
2192                                    FalseVal.getResNo() + i));
2193
2194  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
2195                           DAG.getVTList(&ValueVTs[0], NumValues),
2196                           &Values[0], NumValues));
2197}
2198
2199void SelectionDAGBuilder::visitTrunc(User &I) {
2200  // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
2201  SDValue N = getValue(I.getOperand(0));
2202  EVT DestVT = TLI.getValueType(I.getType());
2203  setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), DestVT, N));
2204}
2205
2206void SelectionDAGBuilder::visitZExt(User &I) {
2207  // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2208  // ZExt also can't be a cast to bool for same reason. So, nothing much to do
2209  SDValue N = getValue(I.getOperand(0));
2210  EVT DestVT = TLI.getValueType(I.getType());
2211  setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), DestVT, N));
2212}
2213
2214void SelectionDAGBuilder::visitSExt(User &I) {
2215  // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2216  // SExt also can't be a cast to bool for same reason. So, nothing much to do
2217  SDValue N = getValue(I.getOperand(0));
2218  EVT DestVT = TLI.getValueType(I.getType());
2219  setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurDebugLoc(), DestVT, N));
2220}
2221
2222void SelectionDAGBuilder::visitFPTrunc(User &I) {
2223  // FPTrunc is never a no-op cast, no need to check
2224  SDValue N = getValue(I.getOperand(0));
2225  EVT DestVT = TLI.getValueType(I.getType());
2226  setValue(&I, DAG.getNode(ISD::FP_ROUND, getCurDebugLoc(),
2227                           DestVT, N, DAG.getIntPtrConstant(0)));
2228}
2229
2230void SelectionDAGBuilder::visitFPExt(User &I){
2231  // FPTrunc is never a no-op cast, no need to check
2232  SDValue N = getValue(I.getOperand(0));
2233  EVT DestVT = TLI.getValueType(I.getType());
2234  setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurDebugLoc(), DestVT, N));
2235}
2236
2237void SelectionDAGBuilder::visitFPToUI(User &I) {
2238  // FPToUI is never a no-op cast, no need to check
2239  SDValue N = getValue(I.getOperand(0));
2240  EVT DestVT = TLI.getValueType(I.getType());
2241  setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurDebugLoc(), DestVT, N));
2242}
2243
2244void SelectionDAGBuilder::visitFPToSI(User &I) {
2245  // FPToSI is never a no-op cast, no need to check
2246  SDValue N = getValue(I.getOperand(0));
2247  EVT DestVT = TLI.getValueType(I.getType());
2248  setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurDebugLoc(), DestVT, N));
2249}
2250
2251void SelectionDAGBuilder::visitUIToFP(User &I) {
2252  // UIToFP is never a no-op cast, no need to check
2253  SDValue N = getValue(I.getOperand(0));
2254  EVT DestVT = TLI.getValueType(I.getType());
2255  setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurDebugLoc(), DestVT, N));
2256}
2257
2258void SelectionDAGBuilder::visitSIToFP(User &I){
2259  // SIToFP is never a no-op cast, no need to check
2260  SDValue N = getValue(I.getOperand(0));
2261  EVT DestVT = TLI.getValueType(I.getType());
2262  setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurDebugLoc(), DestVT, N));
2263}
2264
2265void SelectionDAGBuilder::visitPtrToInt(User &I) {
2266  // What to do depends on the size of the integer and the size of the pointer.
2267  // We can either truncate, zero extend, or no-op, accordingly.
2268  SDValue N = getValue(I.getOperand(0));
2269  EVT SrcVT = N.getValueType();
2270  EVT DestVT = TLI.getValueType(I.getType());
2271  setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT));
2272}
2273
2274void SelectionDAGBuilder::visitIntToPtr(User &I) {
2275  // What to do depends on the size of the integer and the size of the pointer.
2276  // We can either truncate, zero extend, or no-op, accordingly.
2277  SDValue N = getValue(I.getOperand(0));
2278  EVT SrcVT = N.getValueType();
2279  EVT DestVT = TLI.getValueType(I.getType());
2280  setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT));
2281}
2282
2283void SelectionDAGBuilder::visitBitCast(User &I) {
2284  SDValue N = getValue(I.getOperand(0));
2285  EVT DestVT = TLI.getValueType(I.getType());
2286
2287  // BitCast assures us that source and destination are the same size so this is
2288  // either a BIT_CONVERT or a no-op.
2289  if (DestVT != N.getValueType())
2290    setValue(&I, DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(),
2291                             DestVT, N)); // convert types.
2292  else
2293    setValue(&I, N);            // noop cast.
2294}
2295
2296void SelectionDAGBuilder::visitInsertElement(User &I) {
2297  SDValue InVec = getValue(I.getOperand(0));
2298  SDValue InVal = getValue(I.getOperand(1));
2299  SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(),
2300                              TLI.getPointerTy(),
2301                              getValue(I.getOperand(2)));
2302  setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurDebugLoc(),
2303                           TLI.getValueType(I.getType()),
2304                           InVec, InVal, InIdx));
2305}
2306
2307void SelectionDAGBuilder::visitExtractElement(User &I) {
2308  SDValue InVec = getValue(I.getOperand(0));
2309  SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(),
2310                              TLI.getPointerTy(),
2311                              getValue(I.getOperand(1)));
2312  setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
2313                           TLI.getValueType(I.getType()), InVec, InIdx));
2314}
2315
2316// Utility for visitShuffleVector - Returns true if the mask is mask starting
2317// from SIndx and increasing to the element length (undefs are allowed).
2318static bool SequentialMask(SmallVectorImpl<int> &Mask, unsigned SIndx) {
2319  unsigned MaskNumElts = Mask.size();
2320  for (unsigned i = 0; i != MaskNumElts; ++i)
2321    if ((Mask[i] >= 0) && (Mask[i] != (int)(i + SIndx)))
2322      return false;
2323  return true;
2324}
2325
2326void SelectionDAGBuilder::visitShuffleVector(User &I) {
2327  SmallVector<int, 8> Mask;
2328  SDValue Src1 = getValue(I.getOperand(0));
2329  SDValue Src2 = getValue(I.getOperand(1));
2330
2331  // Convert the ConstantVector mask operand into an array of ints, with -1
2332  // representing undef values.
2333  SmallVector<Constant*, 8> MaskElts;
2334  cast<Constant>(I.getOperand(2))->getVectorElements(MaskElts);
2335  unsigned MaskNumElts = MaskElts.size();
2336  for (unsigned i = 0; i != MaskNumElts; ++i) {
2337    if (isa<UndefValue>(MaskElts[i]))
2338      Mask.push_back(-1);
2339    else
2340      Mask.push_back(cast<ConstantInt>(MaskElts[i])->getSExtValue());
2341  }
2342
2343  EVT VT = TLI.getValueType(I.getType());
2344  EVT SrcVT = Src1.getValueType();
2345  unsigned SrcNumElts = SrcVT.getVectorNumElements();
2346
2347  if (SrcNumElts == MaskNumElts) {
2348    setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2349                                      &Mask[0]));
2350    return;
2351  }
2352
2353  // Normalize the shuffle vector since mask and vector length don't match.
2354  if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) {
2355    // Mask is longer than the source vectors and is a multiple of the source
2356    // vectors.  We can use concatenate vector to make the mask and vectors
2357    // lengths match.
2358    if (SrcNumElts*2 == MaskNumElts && SequentialMask(Mask, 0)) {
2359      // The shuffle is concatenating two vectors together.
2360      setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurDebugLoc(),
2361                               VT, Src1, Src2));
2362      return;
2363    }
2364
2365    // Pad both vectors with undefs to make them the same length as the mask.
2366    unsigned NumConcat = MaskNumElts / SrcNumElts;
2367    bool Src1U = Src1.getOpcode() == ISD::UNDEF;
2368    bool Src2U = Src2.getOpcode() == ISD::UNDEF;
2369    SDValue UndefVal = DAG.getUNDEF(SrcVT);
2370
2371    SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
2372    SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
2373    MOps1[0] = Src1;
2374    MOps2[0] = Src2;
2375
2376    Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
2377                                                  getCurDebugLoc(), VT,
2378                                                  &MOps1[0], NumConcat);
2379    Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
2380                                                  getCurDebugLoc(), VT,
2381                                                  &MOps2[0], NumConcat);
2382
2383    // Readjust mask for new input vector length.
2384    SmallVector<int, 8> MappedOps;
2385    for (unsigned i = 0; i != MaskNumElts; ++i) {
2386      int Idx = Mask[i];
2387      if (Idx < (int)SrcNumElts)
2388        MappedOps.push_back(Idx);
2389      else
2390        MappedOps.push_back(Idx + MaskNumElts - SrcNumElts);
2391    }
2392
2393    setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2394                                      &MappedOps[0]));
2395    return;
2396  }
2397
2398  if (SrcNumElts > MaskNumElts) {
2399    // Analyze the access pattern of the vector to see if we can extract
2400    // two subvectors and do the shuffle. The analysis is done by calculating
2401    // the range of elements the mask access on both vectors.
2402    int MinRange[2] = { SrcNumElts+1, SrcNumElts+1};
2403    int MaxRange[2] = {-1, -1};
2404
2405    for (unsigned i = 0; i != MaskNumElts; ++i) {
2406      int Idx = Mask[i];
2407      int Input = 0;
2408      if (Idx < 0)
2409        continue;
2410
2411      if (Idx >= (int)SrcNumElts) {
2412        Input = 1;
2413        Idx -= SrcNumElts;
2414      }
2415      if (Idx > MaxRange[Input])
2416        MaxRange[Input] = Idx;
2417      if (Idx < MinRange[Input])
2418        MinRange[Input] = Idx;
2419    }
2420
2421    // Check if the access is smaller than the vector size and can we find
2422    // a reasonable extract index.
2423    int RangeUse[2] = { 2, 2 };  // 0 = Unused, 1 = Extract, 2 = Can not
2424                                 // Extract.
2425    int StartIdx[2];  // StartIdx to extract from
2426    for (int Input=0; Input < 2; ++Input) {
2427      if (MinRange[Input] == (int)(SrcNumElts+1) && MaxRange[Input] == -1) {
2428        RangeUse[Input] = 0; // Unused
2429        StartIdx[Input] = 0;
2430      } else if (MaxRange[Input] - MinRange[Input] < (int)MaskNumElts) {
2431        // Fits within range but we should see if we can find a good
2432        // start index that is a multiple of the mask length.
2433        if (MaxRange[Input] < (int)MaskNumElts) {
2434          RangeUse[Input] = 1; // Extract from beginning of the vector
2435          StartIdx[Input] = 0;
2436        } else {
2437          StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts;
2438          if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts &&
2439              StartIdx[Input] + MaskNumElts < SrcNumElts)
2440            RangeUse[Input] = 1; // Extract from a multiple of the mask length.
2441        }
2442      }
2443    }
2444
2445    if (RangeUse[0] == 0 && RangeUse[1] == 0) {
2446      setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
2447      return;
2448    }
2449    else if (RangeUse[0] < 2 && RangeUse[1] < 2) {
2450      // Extract appropriate subvector and generate a vector shuffle
2451      for (int Input=0; Input < 2; ++Input) {
2452        SDValue &Src = Input == 0 ? Src1 : Src2;
2453        if (RangeUse[Input] == 0)
2454          Src = DAG.getUNDEF(VT);
2455        else
2456          Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, getCurDebugLoc(), VT,
2457                            Src, DAG.getIntPtrConstant(StartIdx[Input]));
2458      }
2459
2460      // Calculate new mask.
2461      SmallVector<int, 8> MappedOps;
2462      for (unsigned i = 0; i != MaskNumElts; ++i) {
2463        int Idx = Mask[i];
2464        if (Idx < 0)
2465          MappedOps.push_back(Idx);
2466        else if (Idx < (int)SrcNumElts)
2467          MappedOps.push_back(Idx - StartIdx[0]);
2468        else
2469          MappedOps.push_back(Idx - SrcNumElts - StartIdx[1] + MaskNumElts);
2470      }
2471
2472      setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2473                                        &MappedOps[0]));
2474      return;
2475    }
2476  }
2477
2478  // We can't use either concat vectors or extract subvectors so fall back to
2479  // replacing the shuffle with extract and build vector.
2480  // to insert and build vector.
2481  EVT EltVT = VT.getVectorElementType();
2482  EVT PtrVT = TLI.getPointerTy();
2483  SmallVector<SDValue,8> Ops;
2484  for (unsigned i = 0; i != MaskNumElts; ++i) {
2485    if (Mask[i] < 0) {
2486      Ops.push_back(DAG.getUNDEF(EltVT));
2487    } else {
2488      int Idx = Mask[i];
2489      SDValue Res;
2490
2491      if (Idx < (int)SrcNumElts)
2492        Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
2493                          EltVT, Src1, DAG.getConstant(Idx, PtrVT));
2494      else
2495        Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
2496                          EltVT, Src2,
2497                          DAG.getConstant(Idx - SrcNumElts, PtrVT));
2498
2499      Ops.push_back(Res);
2500    }
2501  }
2502
2503  setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(),
2504                           VT, &Ops[0], Ops.size()));
2505}
2506
2507void SelectionDAGBuilder::visitInsertValue(InsertValueInst &I) {
2508  const Value *Op0 = I.getOperand(0);
2509  const Value *Op1 = I.getOperand(1);
2510  const Type *AggTy = I.getType();
2511  const Type *ValTy = Op1->getType();
2512  bool IntoUndef = isa<UndefValue>(Op0);
2513  bool FromUndef = isa<UndefValue>(Op1);
2514
2515  unsigned LinearIndex = ComputeLinearIndex(TLI, AggTy,
2516                                            I.idx_begin(), I.idx_end());
2517
2518  SmallVector<EVT, 4> AggValueVTs;
2519  ComputeValueVTs(TLI, AggTy, AggValueVTs);
2520  SmallVector<EVT, 4> ValValueVTs;
2521  ComputeValueVTs(TLI, ValTy, ValValueVTs);
2522
2523  unsigned NumAggValues = AggValueVTs.size();
2524  unsigned NumValValues = ValValueVTs.size();
2525  SmallVector<SDValue, 4> Values(NumAggValues);
2526
2527  SDValue Agg = getValue(Op0);
2528  SDValue Val = getValue(Op1);
2529  unsigned i = 0;
2530  // Copy the beginning value(s) from the original aggregate.
2531  for (; i != LinearIndex; ++i)
2532    Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
2533                SDValue(Agg.getNode(), Agg.getResNo() + i);
2534  // Copy values from the inserted value(s).
2535  for (; i != LinearIndex + NumValValues; ++i)
2536    Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
2537                SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
2538  // Copy remaining value(s) from the original aggregate.
2539  for (; i != NumAggValues; ++i)
2540    Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
2541                SDValue(Agg.getNode(), Agg.getResNo() + i);
2542
2543  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
2544                           DAG.getVTList(&AggValueVTs[0], NumAggValues),
2545                           &Values[0], NumAggValues));
2546}
2547
2548void SelectionDAGBuilder::visitExtractValue(ExtractValueInst &I) {
2549  const Value *Op0 = I.getOperand(0);
2550  const Type *AggTy = Op0->getType();
2551  const Type *ValTy = I.getType();
2552  bool OutOfUndef = isa<UndefValue>(Op0);
2553
2554  unsigned LinearIndex = ComputeLinearIndex(TLI, AggTy,
2555                                            I.idx_begin(), I.idx_end());
2556
2557  SmallVector<EVT, 4> ValValueVTs;
2558  ComputeValueVTs(TLI, ValTy, ValValueVTs);
2559
2560  unsigned NumValValues = ValValueVTs.size();
2561  SmallVector<SDValue, 4> Values(NumValValues);
2562
2563  SDValue Agg = getValue(Op0);
2564  // Copy out the selected value(s).
2565  for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
2566    Values[i - LinearIndex] =
2567      OutOfUndef ?
2568        DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
2569        SDValue(Agg.getNode(), Agg.getResNo() + i);
2570
2571  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
2572                           DAG.getVTList(&ValValueVTs[0], NumValValues),
2573                           &Values[0], NumValValues));
2574}
2575
2576void SelectionDAGBuilder::visitGetElementPtr(User &I) {
2577  SDValue N = getValue(I.getOperand(0));
2578  const Type *Ty = I.getOperand(0)->getType();
2579
2580  for (GetElementPtrInst::op_iterator OI = I.op_begin()+1, E = I.op_end();
2581       OI != E; ++OI) {
2582    Value *Idx = *OI;
2583    if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
2584      unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
2585      if (Field) {
2586        // N = N + Offset
2587        uint64_t Offset = TD->getStructLayout(StTy)->getElementOffset(Field);
2588        N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N,
2589                        DAG.getIntPtrConstant(Offset));
2590      }
2591
2592      Ty = StTy->getElementType(Field);
2593    } else if (const UnionType *UnTy = dyn_cast<UnionType>(Ty)) {
2594      unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
2595
2596      // Offset canonically 0 for unions, but type changes
2597      Ty = UnTy->getElementType(Field);
2598    } else {
2599      Ty = cast<SequentialType>(Ty)->getElementType();
2600
2601      // If this is a constant subscript, handle it quickly.
2602      if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
2603        if (CI->getZExtValue() == 0) continue;
2604        uint64_t Offs =
2605            TD->getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue();
2606        SDValue OffsVal;
2607        EVT PTy = TLI.getPointerTy();
2608        unsigned PtrBits = PTy.getSizeInBits();
2609        if (PtrBits < 64)
2610          OffsVal = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(),
2611                                TLI.getPointerTy(),
2612                                DAG.getConstant(Offs, MVT::i64));
2613        else
2614          OffsVal = DAG.getIntPtrConstant(Offs);
2615
2616        N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N,
2617                        OffsVal);
2618        continue;
2619      }
2620
2621      // N = N + Idx * ElementSize;
2622      APInt ElementSize = APInt(TLI.getPointerTy().getSizeInBits(),
2623                                TD->getTypeAllocSize(Ty));
2624      SDValue IdxN = getValue(Idx);
2625
2626      // If the index is smaller or larger than intptr_t, truncate or extend
2627      // it.
2628      IdxN = DAG.getSExtOrTrunc(IdxN, getCurDebugLoc(), N.getValueType());
2629
2630      // If this is a multiply by a power of two, turn it into a shl
2631      // immediately.  This is a very common case.
2632      if (ElementSize != 1) {
2633        if (ElementSize.isPowerOf2()) {
2634          unsigned Amt = ElementSize.logBase2();
2635          IdxN = DAG.getNode(ISD::SHL, getCurDebugLoc(),
2636                             N.getValueType(), IdxN,
2637                             DAG.getConstant(Amt, TLI.getPointerTy()));
2638        } else {
2639          SDValue Scale = DAG.getConstant(ElementSize, TLI.getPointerTy());
2640          IdxN = DAG.getNode(ISD::MUL, getCurDebugLoc(),
2641                             N.getValueType(), IdxN, Scale);
2642        }
2643      }
2644
2645      N = DAG.getNode(ISD::ADD, getCurDebugLoc(),
2646                      N.getValueType(), N, IdxN);
2647    }
2648  }
2649
2650  setValue(&I, N);
2651}
2652
2653void SelectionDAGBuilder::visitAlloca(AllocaInst &I) {
2654  // If this is a fixed sized alloca in the entry block of the function,
2655  // allocate it statically on the stack.
2656  if (FuncInfo.StaticAllocaMap.count(&I))
2657    return;   // getValue will auto-populate this.
2658
2659  const Type *Ty = I.getAllocatedType();
2660  uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty);
2661  unsigned Align =
2662    std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty),
2663             I.getAlignment());
2664
2665  SDValue AllocSize = getValue(I.getArraySize());
2666
2667  AllocSize = DAG.getNode(ISD::MUL, getCurDebugLoc(), AllocSize.getValueType(),
2668                          AllocSize,
2669                          DAG.getConstant(TySize, AllocSize.getValueType()));
2670
2671  EVT IntPtr = TLI.getPointerTy();
2672  AllocSize = DAG.getZExtOrTrunc(AllocSize, getCurDebugLoc(), IntPtr);
2673
2674  // Handle alignment.  If the requested alignment is less than or equal to
2675  // the stack alignment, ignore it.  If the size is greater than or equal to
2676  // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
2677  unsigned StackAlign =
2678    TLI.getTargetMachine().getFrameInfo()->getStackAlignment();
2679  if (Align <= StackAlign)
2680    Align = 0;
2681
2682  // Round the size of the allocation up to the stack alignment size
2683  // by add SA-1 to the size.
2684  AllocSize = DAG.getNode(ISD::ADD, getCurDebugLoc(),
2685                          AllocSize.getValueType(), AllocSize,
2686                          DAG.getIntPtrConstant(StackAlign-1));
2687
2688  // Mask out the low bits for alignment purposes.
2689  AllocSize = DAG.getNode(ISD::AND, getCurDebugLoc(),
2690                          AllocSize.getValueType(), AllocSize,
2691                          DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1)));
2692
2693  SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) };
2694  SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
2695  SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, getCurDebugLoc(),
2696                            VTs, Ops, 3);
2697  setValue(&I, DSA);
2698  DAG.setRoot(DSA.getValue(1));
2699
2700  // Inform the Frame Information that we have just allocated a variable-sized
2701  // object.
2702  FuncInfo.MF->getFrameInfo()->CreateVariableSizedObject();
2703}
2704
2705void SelectionDAGBuilder::visitLoad(LoadInst &I) {
2706  const Value *SV = I.getOperand(0);
2707  SDValue Ptr = getValue(SV);
2708
2709  const Type *Ty = I.getType();
2710
2711  bool isVolatile = I.isVolatile();
2712  bool isNonTemporal = I.getMetadata("nontemporal") != 0;
2713  unsigned Alignment = I.getAlignment();
2714
2715  SmallVector<EVT, 4> ValueVTs;
2716  SmallVector<uint64_t, 4> Offsets;
2717  ComputeValueVTs(TLI, Ty, ValueVTs, &Offsets);
2718  unsigned NumValues = ValueVTs.size();
2719  if (NumValues == 0)
2720    return;
2721
2722  SDValue Root;
2723  bool ConstantMemory = false;
2724  if (I.isVolatile())
2725    // Serialize volatile loads with other side effects.
2726    Root = getRoot();
2727  else if (AA->pointsToConstantMemory(SV)) {
2728    // Do not serialize (non-volatile) loads of constant memory with anything.
2729    Root = DAG.getEntryNode();
2730    ConstantMemory = true;
2731  } else {
2732    // Do not serialize non-volatile loads against each other.
2733    Root = DAG.getRoot();
2734  }
2735
2736  SmallVector<SDValue, 4> Values(NumValues);
2737  SmallVector<SDValue, 4> Chains(NumValues);
2738  EVT PtrVT = Ptr.getValueType();
2739  for (unsigned i = 0; i != NumValues; ++i) {
2740    SDValue A = DAG.getNode(ISD::ADD, getCurDebugLoc(),
2741                            PtrVT, Ptr,
2742                            DAG.getConstant(Offsets[i], PtrVT));
2743    SDValue L = DAG.getLoad(ValueVTs[i], getCurDebugLoc(), Root,
2744                            A, SV, Offsets[i], isVolatile,
2745                            isNonTemporal, Alignment);
2746
2747    Values[i] = L;
2748    Chains[i] = L.getValue(1);
2749  }
2750
2751  if (!ConstantMemory) {
2752    SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
2753                                MVT::Other, &Chains[0], NumValues);
2754    if (isVolatile)
2755      DAG.setRoot(Chain);
2756    else
2757      PendingLoads.push_back(Chain);
2758  }
2759
2760  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
2761                           DAG.getVTList(&ValueVTs[0], NumValues),
2762                           &Values[0], NumValues));
2763}
2764
2765void SelectionDAGBuilder::visitStore(StoreInst &I) {
2766  Value *SrcV = I.getOperand(0);
2767  Value *PtrV = I.getOperand(1);
2768
2769  SmallVector<EVT, 4> ValueVTs;
2770  SmallVector<uint64_t, 4> Offsets;
2771  ComputeValueVTs(TLI, SrcV->getType(), ValueVTs, &Offsets);
2772  unsigned NumValues = ValueVTs.size();
2773  if (NumValues == 0)
2774    return;
2775
2776  // Get the lowered operands. Note that we do this after
2777  // checking if NumResults is zero, because with zero results
2778  // the operands won't have values in the map.
2779  SDValue Src = getValue(SrcV);
2780  SDValue Ptr = getValue(PtrV);
2781
2782  SDValue Root = getRoot();
2783  SmallVector<SDValue, 4> Chains(NumValues);
2784  EVT PtrVT = Ptr.getValueType();
2785  bool isVolatile = I.isVolatile();
2786  bool isNonTemporal = I.getMetadata("nontemporal") != 0;
2787  unsigned Alignment = I.getAlignment();
2788
2789  for (unsigned i = 0; i != NumValues; ++i) {
2790    SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT, Ptr,
2791                              DAG.getConstant(Offsets[i], PtrVT));
2792    Chains[i] = DAG.getStore(Root, getCurDebugLoc(),
2793                             SDValue(Src.getNode(), Src.getResNo() + i),
2794                             Add, PtrV, Offsets[i], isVolatile,
2795                             isNonTemporal, Alignment);
2796  }
2797
2798  DAG.setRoot(DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
2799                          MVT::Other, &Chains[0], NumValues));
2800}
2801
2802/// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
2803/// node.
2804void SelectionDAGBuilder::visitTargetIntrinsic(CallInst &I,
2805                                               unsigned Intrinsic) {
2806  bool HasChain = !I.doesNotAccessMemory();
2807  bool OnlyLoad = HasChain && I.onlyReadsMemory();
2808
2809  // Build the operand list.
2810  SmallVector<SDValue, 8> Ops;
2811  if (HasChain) {  // If this intrinsic has side-effects, chainify it.
2812    if (OnlyLoad) {
2813      // We don't need to serialize loads against other loads.
2814      Ops.push_back(DAG.getRoot());
2815    } else {
2816      Ops.push_back(getRoot());
2817    }
2818  }
2819
2820  // Info is set by getTgtMemInstrinsic
2821  TargetLowering::IntrinsicInfo Info;
2822  bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic);
2823
2824  // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
2825  if (!IsTgtIntrinsic)
2826    Ops.push_back(DAG.getConstant(Intrinsic, TLI.getPointerTy()));
2827
2828  // Add all operands of the call to the operand list.
2829  for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) {
2830    SDValue Op = getValue(I.getOperand(i));
2831    assert(TLI.isTypeLegal(Op.getValueType()) &&
2832           "Intrinsic uses a non-legal type?");
2833    Ops.push_back(Op);
2834  }
2835
2836  SmallVector<EVT, 4> ValueVTs;
2837  ComputeValueVTs(TLI, I.getType(), ValueVTs);
2838#ifndef NDEBUG
2839  for (unsigned Val = 0, E = ValueVTs.size(); Val != E; ++Val) {
2840    assert(TLI.isTypeLegal(ValueVTs[Val]) &&
2841           "Intrinsic uses a non-legal type?");
2842  }
2843#endif // NDEBUG
2844
2845  if (HasChain)
2846    ValueVTs.push_back(MVT::Other);
2847
2848  SDVTList VTs = DAG.getVTList(ValueVTs.data(), ValueVTs.size());
2849
2850  // Create the node.
2851  SDValue Result;
2852  if (IsTgtIntrinsic) {
2853    // This is target intrinsic that touches memory
2854    Result = DAG.getMemIntrinsicNode(Info.opc, getCurDebugLoc(),
2855                                     VTs, &Ops[0], Ops.size(),
2856                                     Info.memVT, Info.ptrVal, Info.offset,
2857                                     Info.align, Info.vol,
2858                                     Info.readMem, Info.writeMem);
2859  } else if (!HasChain) {
2860    Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurDebugLoc(),
2861                         VTs, &Ops[0], Ops.size());
2862  } else if (!I.getType()->isVoidTy()) {
2863    Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurDebugLoc(),
2864                         VTs, &Ops[0], Ops.size());
2865  } else {
2866    Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurDebugLoc(),
2867                         VTs, &Ops[0], Ops.size());
2868  }
2869
2870  if (HasChain) {
2871    SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
2872    if (OnlyLoad)
2873      PendingLoads.push_back(Chain);
2874    else
2875      DAG.setRoot(Chain);
2876  }
2877
2878  if (!I.getType()->isVoidTy()) {
2879    if (const VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
2880      EVT VT = TLI.getValueType(PTy);
2881      Result = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(), VT, Result);
2882    }
2883
2884    setValue(&I, Result);
2885  }
2886}
2887
2888/// GetSignificand - Get the significand and build it into a floating-point
2889/// number with exponent of 1:
2890///
2891///   Op = (Op & 0x007fffff) | 0x3f800000;
2892///
2893/// where Op is the hexidecimal representation of floating point value.
2894static SDValue
2895GetSignificand(SelectionDAG &DAG, SDValue Op, DebugLoc dl) {
2896  SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
2897                           DAG.getConstant(0x007fffff, MVT::i32));
2898  SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
2899                           DAG.getConstant(0x3f800000, MVT::i32));
2900  return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t2);
2901}
2902
2903/// GetExponent - Get the exponent:
2904///
2905///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
2906///
2907/// where Op is the hexidecimal representation of floating point value.
2908static SDValue
2909GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI,
2910            DebugLoc dl) {
2911  SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
2912                           DAG.getConstant(0x7f800000, MVT::i32));
2913  SDValue t1 = DAG.getNode(ISD::SRL, dl, MVT::i32, t0,
2914                           DAG.getConstant(23, TLI.getPointerTy()));
2915  SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
2916                           DAG.getConstant(127, MVT::i32));
2917  return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
2918}
2919
2920/// getF32Constant - Get 32-bit floating point constant.
2921static SDValue
2922getF32Constant(SelectionDAG &DAG, unsigned Flt) {
2923  return DAG.getConstantFP(APFloat(APInt(32, Flt)), MVT::f32);
2924}
2925
2926/// Inlined utility function to implement binary input atomic intrinsics for
2927/// visitIntrinsicCall: I is a call instruction
2928///                     Op is the associated NodeType for I
2929const char *
2930SelectionDAGBuilder::implVisitBinaryAtomic(CallInst& I, ISD::NodeType Op) {
2931  SDValue Root = getRoot();
2932  SDValue L =
2933    DAG.getAtomic(Op, getCurDebugLoc(),
2934                  getValue(I.getOperand(2)).getValueType().getSimpleVT(),
2935                  Root,
2936                  getValue(I.getOperand(1)),
2937                  getValue(I.getOperand(2)),
2938                  I.getOperand(1));
2939  setValue(&I, L);
2940  DAG.setRoot(L.getValue(1));
2941  return 0;
2942}
2943
2944// implVisitAluOverflow - Lower arithmetic overflow instrinsics.
2945const char *
2946SelectionDAGBuilder::implVisitAluOverflow(CallInst &I, ISD::NodeType Op) {
2947  SDValue Op1 = getValue(I.getOperand(1));
2948  SDValue Op2 = getValue(I.getOperand(2));
2949
2950  SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1);
2951  setValue(&I, DAG.getNode(Op, getCurDebugLoc(), VTs, Op1, Op2));
2952  return 0;
2953}
2954
2955/// visitExp - Lower an exp intrinsic. Handles the special sequences for
2956/// limited-precision mode.
2957void
2958SelectionDAGBuilder::visitExp(CallInst &I) {
2959  SDValue result;
2960  DebugLoc dl = getCurDebugLoc();
2961
2962  if (getValue(I.getOperand(1)).getValueType() == MVT::f32 &&
2963      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
2964    SDValue Op = getValue(I.getOperand(1));
2965
2966    // Put the exponent in the right bit position for later addition to the
2967    // final result:
2968    //
2969    //   #define LOG2OFe 1.4426950f
2970    //   IntegerPartOfX = ((int32_t)(X * LOG2OFe));
2971    SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
2972                             getF32Constant(DAG, 0x3fb8aa3b));
2973    SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
2974
2975    //   FractionalPartOfX = (X * LOG2OFe) - (float)IntegerPartOfX;
2976    SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
2977    SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
2978
2979    //   IntegerPartOfX <<= 23;
2980    IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
2981                                 DAG.getConstant(23, TLI.getPointerTy()));
2982
2983    if (LimitFloatPrecision <= 6) {
2984      // For floating-point precision of 6:
2985      //
2986      //   TwoToFractionalPartOfX =
2987      //     0.997535578f +
2988      //       (0.735607626f + 0.252464424f * x) * x;
2989      //
2990      // error 0.0144103317, which is 6 bits
2991      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
2992                               getF32Constant(DAG, 0x3e814304));
2993      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
2994                               getF32Constant(DAG, 0x3f3c50c8));
2995      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
2996      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
2997                               getF32Constant(DAG, 0x3f7f5e7e));
2998      SDValue TwoToFracPartOfX = DAG.getNode(ISD::BIT_CONVERT, dl,MVT::i32, t5);
2999
3000      // Add the exponent into the result in integer domain.
3001      SDValue t6 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3002                               TwoToFracPartOfX, IntegerPartOfX);
3003
3004      result = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t6);
3005    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3006      // For floating-point precision of 12:
3007      //
3008      //   TwoToFractionalPartOfX =
3009      //     0.999892986f +
3010      //       (0.696457318f +
3011      //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
3012      //
3013      // 0.000107046256 error, which is 13 to 14 bits
3014      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3015                               getF32Constant(DAG, 0x3da235e3));
3016      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3017                               getF32Constant(DAG, 0x3e65b8f3));
3018      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3019      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3020                               getF32Constant(DAG, 0x3f324b07));
3021      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3022      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3023                               getF32Constant(DAG, 0x3f7ff8fd));
3024      SDValue TwoToFracPartOfX = DAG.getNode(ISD::BIT_CONVERT, dl,MVT::i32, t7);
3025
3026      // Add the exponent into the result in integer domain.
3027      SDValue t8 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3028                               TwoToFracPartOfX, IntegerPartOfX);
3029
3030      result = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t8);
3031    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3032      // For floating-point precision of 18:
3033      //
3034      //   TwoToFractionalPartOfX =
3035      //     0.999999982f +
3036      //       (0.693148872f +
3037      //         (0.240227044f +
3038      //           (0.554906021e-1f +
3039      //             (0.961591928e-2f +
3040      //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
3041      //
3042      // error 2.47208000*10^(-7), which is better than 18 bits
3043      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3044                               getF32Constant(DAG, 0x3924b03e));
3045      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3046                               getF32Constant(DAG, 0x3ab24b87));
3047      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3048      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3049                               getF32Constant(DAG, 0x3c1d8c17));
3050      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3051      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3052                               getF32Constant(DAG, 0x3d634a1d));
3053      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3054      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3055                               getF32Constant(DAG, 0x3e75fe14));
3056      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3057      SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
3058                                getF32Constant(DAG, 0x3f317234));
3059      SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
3060      SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
3061                                getF32Constant(DAG, 0x3f800000));
3062      SDValue TwoToFracPartOfX = DAG.getNode(ISD::BIT_CONVERT, dl,
3063                                             MVT::i32, t13);
3064
3065      // Add the exponent into the result in integer domain.
3066      SDValue t14 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3067                                TwoToFracPartOfX, IntegerPartOfX);
3068
3069      result = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t14);
3070    }
3071  } else {
3072    // No special expansion.
3073    result = DAG.getNode(ISD::FEXP, dl,
3074                         getValue(I.getOperand(1)).getValueType(),
3075                         getValue(I.getOperand(1)));
3076  }
3077
3078  setValue(&I, result);
3079}
3080
3081/// visitLog - Lower a log intrinsic. Handles the special sequences for
3082/// limited-precision mode.
3083void
3084SelectionDAGBuilder::visitLog(CallInst &I) {
3085  SDValue result;
3086  DebugLoc dl = getCurDebugLoc();
3087
3088  if (getValue(I.getOperand(1)).getValueType() == MVT::f32 &&
3089      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3090    SDValue Op = getValue(I.getOperand(1));
3091    SDValue Op1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, Op);
3092
3093    // Scale the exponent by log(2) [0.69314718f].
3094    SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
3095    SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
3096                                        getF32Constant(DAG, 0x3f317218));
3097
3098    // Get the significand and build it into a floating-point number with
3099    // exponent of 1.
3100    SDValue X = GetSignificand(DAG, Op1, dl);
3101
3102    if (LimitFloatPrecision <= 6) {
3103      // For floating-point precision of 6:
3104      //
3105      //   LogofMantissa =
3106      //     -1.1609546f +
3107      //       (1.4034025f - 0.23903021f * x) * x;
3108      //
3109      // error 0.0034276066, which is better than 8 bits
3110      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3111                               getF32Constant(DAG, 0xbe74c456));
3112      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3113                               getF32Constant(DAG, 0x3fb3a2b1));
3114      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3115      SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3116                                          getF32Constant(DAG, 0x3f949a29));
3117
3118      result = DAG.getNode(ISD::FADD, dl,
3119                           MVT::f32, LogOfExponent, LogOfMantissa);
3120    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3121      // For floating-point precision of 12:
3122      //
3123      //   LogOfMantissa =
3124      //     -1.7417939f +
3125      //       (2.8212026f +
3126      //         (-1.4699568f +
3127      //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
3128      //
3129      // error 0.000061011436, which is 14 bits
3130      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3131                               getF32Constant(DAG, 0xbd67b6d6));
3132      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3133                               getF32Constant(DAG, 0x3ee4f4b8));
3134      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3135      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3136                               getF32Constant(DAG, 0x3fbc278b));
3137      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3138      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3139                               getF32Constant(DAG, 0x40348e95));
3140      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3141      SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3142                                          getF32Constant(DAG, 0x3fdef31a));
3143
3144      result = DAG.getNode(ISD::FADD, dl,
3145                           MVT::f32, LogOfExponent, LogOfMantissa);
3146    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3147      // For floating-point precision of 18:
3148      //
3149      //   LogOfMantissa =
3150      //     -2.1072184f +
3151      //       (4.2372794f +
3152      //         (-3.7029485f +
3153      //           (2.2781945f +
3154      //             (-0.87823314f +
3155      //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
3156      //
3157      // error 0.0000023660568, which is better than 18 bits
3158      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3159                               getF32Constant(DAG, 0xbc91e5ac));
3160      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3161                               getF32Constant(DAG, 0x3e4350aa));
3162      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3163      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3164                               getF32Constant(DAG, 0x3f60d3e3));
3165      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3166      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3167                               getF32Constant(DAG, 0x4011cdf0));
3168      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3169      SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3170                               getF32Constant(DAG, 0x406cfd1c));
3171      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3172      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3173                               getF32Constant(DAG, 0x408797cb));
3174      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3175      SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
3176                                          getF32Constant(DAG, 0x4006dcab));
3177
3178      result = DAG.getNode(ISD::FADD, dl,
3179                           MVT::f32, LogOfExponent, LogOfMantissa);
3180    }
3181  } else {
3182    // No special expansion.
3183    result = DAG.getNode(ISD::FLOG, dl,
3184                         getValue(I.getOperand(1)).getValueType(),
3185                         getValue(I.getOperand(1)));
3186  }
3187
3188  setValue(&I, result);
3189}
3190
3191/// visitLog2 - Lower a log2 intrinsic. Handles the special sequences for
3192/// limited-precision mode.
3193void
3194SelectionDAGBuilder::visitLog2(CallInst &I) {
3195  SDValue result;
3196  DebugLoc dl = getCurDebugLoc();
3197
3198  if (getValue(I.getOperand(1)).getValueType() == MVT::f32 &&
3199      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3200    SDValue Op = getValue(I.getOperand(1));
3201    SDValue Op1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, Op);
3202
3203    // Get the exponent.
3204    SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
3205
3206    // Get the significand and build it into a floating-point number with
3207    // exponent of 1.
3208    SDValue X = GetSignificand(DAG, Op1, dl);
3209
3210    // Different possible minimax approximations of significand in
3211    // floating-point for various degrees of accuracy over [1,2].
3212    if (LimitFloatPrecision <= 6) {
3213      // For floating-point precision of 6:
3214      //
3215      //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
3216      //
3217      // error 0.0049451742, which is more than 7 bits
3218      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3219                               getF32Constant(DAG, 0xbeb08fe0));
3220      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3221                               getF32Constant(DAG, 0x40019463));
3222      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3223      SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3224                                           getF32Constant(DAG, 0x3fd6633d));
3225
3226      result = DAG.getNode(ISD::FADD, dl,
3227                           MVT::f32, LogOfExponent, Log2ofMantissa);
3228    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3229      // For floating-point precision of 12:
3230      //
3231      //   Log2ofMantissa =
3232      //     -2.51285454f +
3233      //       (4.07009056f +
3234      //         (-2.12067489f +
3235      //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
3236      //
3237      // error 0.0000876136000, which is better than 13 bits
3238      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3239                               getF32Constant(DAG, 0xbda7262e));
3240      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3241                               getF32Constant(DAG, 0x3f25280b));
3242      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3243      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3244                               getF32Constant(DAG, 0x4007b923));
3245      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3246      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3247                               getF32Constant(DAG, 0x40823e2f));
3248      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3249      SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3250                                           getF32Constant(DAG, 0x4020d29c));
3251
3252      result = DAG.getNode(ISD::FADD, dl,
3253                           MVT::f32, LogOfExponent, Log2ofMantissa);
3254    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3255      // For floating-point precision of 18:
3256      //
3257      //   Log2ofMantissa =
3258      //     -3.0400495f +
3259      //       (6.1129976f +
3260      //         (-5.3420409f +
3261      //           (3.2865683f +
3262      //             (-1.2669343f +
3263      //               (0.27515199f -
3264      //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
3265      //
3266      // error 0.0000018516, which is better than 18 bits
3267      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3268                               getF32Constant(DAG, 0xbcd2769e));
3269      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3270                               getF32Constant(DAG, 0x3e8ce0b9));
3271      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3272      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3273                               getF32Constant(DAG, 0x3fa22ae7));
3274      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3275      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3276                               getF32Constant(DAG, 0x40525723));
3277      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3278      SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3279                               getF32Constant(DAG, 0x40aaf200));
3280      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3281      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3282                               getF32Constant(DAG, 0x40c39dad));
3283      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3284      SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
3285                                           getF32Constant(DAG, 0x4042902c));
3286
3287      result = DAG.getNode(ISD::FADD, dl,
3288                           MVT::f32, LogOfExponent, Log2ofMantissa);
3289    }
3290  } else {
3291    // No special expansion.
3292    result = DAG.getNode(ISD::FLOG2, dl,
3293                         getValue(I.getOperand(1)).getValueType(),
3294                         getValue(I.getOperand(1)));
3295  }
3296
3297  setValue(&I, result);
3298}
3299
3300/// visitLog10 - Lower a log10 intrinsic. Handles the special sequences for
3301/// limited-precision mode.
3302void
3303SelectionDAGBuilder::visitLog10(CallInst &I) {
3304  SDValue result;
3305  DebugLoc dl = getCurDebugLoc();
3306
3307  if (getValue(I.getOperand(1)).getValueType() == MVT::f32 &&
3308      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3309    SDValue Op = getValue(I.getOperand(1));
3310    SDValue Op1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, Op);
3311
3312    // Scale the exponent by log10(2) [0.30102999f].
3313    SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
3314    SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
3315                                        getF32Constant(DAG, 0x3e9a209a));
3316
3317    // Get the significand and build it into a floating-point number with
3318    // exponent of 1.
3319    SDValue X = GetSignificand(DAG, Op1, dl);
3320
3321    if (LimitFloatPrecision <= 6) {
3322      // For floating-point precision of 6:
3323      //
3324      //   Log10ofMantissa =
3325      //     -0.50419619f +
3326      //       (0.60948995f - 0.10380950f * x) * x;
3327      //
3328      // error 0.0014886165, which is 6 bits
3329      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3330                               getF32Constant(DAG, 0xbdd49a13));
3331      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3332                               getF32Constant(DAG, 0x3f1c0789));
3333      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3334      SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3335                                            getF32Constant(DAG, 0x3f011300));
3336
3337      result = DAG.getNode(ISD::FADD, dl,
3338                           MVT::f32, LogOfExponent, Log10ofMantissa);
3339    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3340      // For floating-point precision of 12:
3341      //
3342      //   Log10ofMantissa =
3343      //     -0.64831180f +
3344      //       (0.91751397f +
3345      //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
3346      //
3347      // error 0.00019228036, which is better than 12 bits
3348      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3349                               getF32Constant(DAG, 0x3d431f31));
3350      SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
3351                               getF32Constant(DAG, 0x3ea21fb2));
3352      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3353      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3354                               getF32Constant(DAG, 0x3f6ae232));
3355      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3356      SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
3357                                            getF32Constant(DAG, 0x3f25f7c3));
3358
3359      result = DAG.getNode(ISD::FADD, dl,
3360                           MVT::f32, LogOfExponent, Log10ofMantissa);
3361    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3362      // For floating-point precision of 18:
3363      //
3364      //   Log10ofMantissa =
3365      //     -0.84299375f +
3366      //       (1.5327582f +
3367      //         (-1.0688956f +
3368      //           (0.49102474f +
3369      //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
3370      //
3371      // error 0.0000037995730, which is better than 18 bits
3372      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3373                               getF32Constant(DAG, 0x3c5d51ce));
3374      SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
3375                               getF32Constant(DAG, 0x3e00685a));
3376      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3377      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3378                               getF32Constant(DAG, 0x3efb6798));
3379      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3380      SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
3381                               getF32Constant(DAG, 0x3f88d192));
3382      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3383      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3384                               getF32Constant(DAG, 0x3fc4316c));
3385      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3386      SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
3387                                            getF32Constant(DAG, 0x3f57ce70));
3388
3389      result = DAG.getNode(ISD::FADD, dl,
3390                           MVT::f32, LogOfExponent, Log10ofMantissa);
3391    }
3392  } else {
3393    // No special expansion.
3394    result = DAG.getNode(ISD::FLOG10, dl,
3395                         getValue(I.getOperand(1)).getValueType(),
3396                         getValue(I.getOperand(1)));
3397  }
3398
3399  setValue(&I, result);
3400}
3401
3402/// visitExp2 - Lower an exp2 intrinsic. Handles the special sequences for
3403/// limited-precision mode.
3404void
3405SelectionDAGBuilder::visitExp2(CallInst &I) {
3406  SDValue result;
3407  DebugLoc dl = getCurDebugLoc();
3408
3409  if (getValue(I.getOperand(1)).getValueType() == MVT::f32 &&
3410      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3411    SDValue Op = getValue(I.getOperand(1));
3412
3413    SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Op);
3414
3415    //   FractionalPartOfX = x - (float)IntegerPartOfX;
3416    SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
3417    SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, Op, t1);
3418
3419    //   IntegerPartOfX <<= 23;
3420    IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
3421                                 DAG.getConstant(23, TLI.getPointerTy()));
3422
3423    if (LimitFloatPrecision <= 6) {
3424      // For floating-point precision of 6:
3425      //
3426      //   TwoToFractionalPartOfX =
3427      //     0.997535578f +
3428      //       (0.735607626f + 0.252464424f * x) * x;
3429      //
3430      // error 0.0144103317, which is 6 bits
3431      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3432                               getF32Constant(DAG, 0x3e814304));
3433      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3434                               getF32Constant(DAG, 0x3f3c50c8));
3435      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3436      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3437                               getF32Constant(DAG, 0x3f7f5e7e));
3438      SDValue t6 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t5);
3439      SDValue TwoToFractionalPartOfX =
3440        DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX);
3441
3442      result = DAG.getNode(ISD::BIT_CONVERT, dl,
3443                           MVT::f32, TwoToFractionalPartOfX);
3444    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3445      // For floating-point precision of 12:
3446      //
3447      //   TwoToFractionalPartOfX =
3448      //     0.999892986f +
3449      //       (0.696457318f +
3450      //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
3451      //
3452      // error 0.000107046256, which is 13 to 14 bits
3453      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3454                               getF32Constant(DAG, 0x3da235e3));
3455      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3456                               getF32Constant(DAG, 0x3e65b8f3));
3457      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3458      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3459                               getF32Constant(DAG, 0x3f324b07));
3460      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3461      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3462                               getF32Constant(DAG, 0x3f7ff8fd));
3463      SDValue t8 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t7);
3464      SDValue TwoToFractionalPartOfX =
3465        DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX);
3466
3467      result = DAG.getNode(ISD::BIT_CONVERT, dl,
3468                           MVT::f32, TwoToFractionalPartOfX);
3469    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3470      // For floating-point precision of 18:
3471      //
3472      //   TwoToFractionalPartOfX =
3473      //     0.999999982f +
3474      //       (0.693148872f +
3475      //         (0.240227044f +
3476      //           (0.554906021e-1f +
3477      //             (0.961591928e-2f +
3478      //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
3479      // error 2.47208000*10^(-7), which is better than 18 bits
3480      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3481                               getF32Constant(DAG, 0x3924b03e));
3482      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3483                               getF32Constant(DAG, 0x3ab24b87));
3484      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3485      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3486                               getF32Constant(DAG, 0x3c1d8c17));
3487      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3488      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3489                               getF32Constant(DAG, 0x3d634a1d));
3490      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3491      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3492                               getF32Constant(DAG, 0x3e75fe14));
3493      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3494      SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
3495                                getF32Constant(DAG, 0x3f317234));
3496      SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
3497      SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
3498                                getF32Constant(DAG, 0x3f800000));
3499      SDValue t14 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t13);
3500      SDValue TwoToFractionalPartOfX =
3501        DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX);
3502
3503      result = DAG.getNode(ISD::BIT_CONVERT, dl,
3504                           MVT::f32, TwoToFractionalPartOfX);
3505    }
3506  } else {
3507    // No special expansion.
3508    result = DAG.getNode(ISD::FEXP2, dl,
3509                         getValue(I.getOperand(1)).getValueType(),
3510                         getValue(I.getOperand(1)));
3511  }
3512
3513  setValue(&I, result);
3514}
3515
3516/// visitPow - Lower a pow intrinsic. Handles the special sequences for
3517/// limited-precision mode with x == 10.0f.
3518void
3519SelectionDAGBuilder::visitPow(CallInst &I) {
3520  SDValue result;
3521  Value *Val = I.getOperand(1);
3522  DebugLoc dl = getCurDebugLoc();
3523  bool IsExp10 = false;
3524
3525  if (getValue(Val).getValueType() == MVT::f32 &&
3526      getValue(I.getOperand(2)).getValueType() == MVT::f32 &&
3527      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3528    if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(Val))) {
3529      if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
3530        APFloat Ten(10.0f);
3531        IsExp10 = CFP->getValueAPF().bitwiseIsEqual(Ten);
3532      }
3533    }
3534  }
3535
3536  if (IsExp10 && LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3537    SDValue Op = getValue(I.getOperand(2));
3538
3539    // Put the exponent in the right bit position for later addition to the
3540    // final result:
3541    //
3542    //   #define LOG2OF10 3.3219281f
3543    //   IntegerPartOfX = (int32_t)(x * LOG2OF10);
3544    SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
3545                             getF32Constant(DAG, 0x40549a78));
3546    SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
3547
3548    //   FractionalPartOfX = x - (float)IntegerPartOfX;
3549    SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
3550    SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
3551
3552    //   IntegerPartOfX <<= 23;
3553    IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
3554                                 DAG.getConstant(23, TLI.getPointerTy()));
3555
3556    if (LimitFloatPrecision <= 6) {
3557      // For floating-point precision of 6:
3558      //
3559      //   twoToFractionalPartOfX =
3560      //     0.997535578f +
3561      //       (0.735607626f + 0.252464424f * x) * x;
3562      //
3563      // error 0.0144103317, which is 6 bits
3564      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3565                               getF32Constant(DAG, 0x3e814304));
3566      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3567                               getF32Constant(DAG, 0x3f3c50c8));
3568      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3569      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3570                               getF32Constant(DAG, 0x3f7f5e7e));
3571      SDValue t6 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t5);
3572      SDValue TwoToFractionalPartOfX =
3573        DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX);
3574
3575      result = DAG.getNode(ISD::BIT_CONVERT, dl,
3576                           MVT::f32, TwoToFractionalPartOfX);
3577    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3578      // For floating-point precision of 12:
3579      //
3580      //   TwoToFractionalPartOfX =
3581      //     0.999892986f +
3582      //       (0.696457318f +
3583      //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
3584      //
3585      // error 0.000107046256, which is 13 to 14 bits
3586      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3587                               getF32Constant(DAG, 0x3da235e3));
3588      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3589                               getF32Constant(DAG, 0x3e65b8f3));
3590      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3591      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3592                               getF32Constant(DAG, 0x3f324b07));
3593      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3594      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3595                               getF32Constant(DAG, 0x3f7ff8fd));
3596      SDValue t8 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t7);
3597      SDValue TwoToFractionalPartOfX =
3598        DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX);
3599
3600      result = DAG.getNode(ISD::BIT_CONVERT, dl,
3601                           MVT::f32, TwoToFractionalPartOfX);
3602    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3603      // For floating-point precision of 18:
3604      //
3605      //   TwoToFractionalPartOfX =
3606      //     0.999999982f +
3607      //       (0.693148872f +
3608      //         (0.240227044f +
3609      //           (0.554906021e-1f +
3610      //             (0.961591928e-2f +
3611      //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
3612      // error 2.47208000*10^(-7), which is better than 18 bits
3613      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3614                               getF32Constant(DAG, 0x3924b03e));
3615      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3616                               getF32Constant(DAG, 0x3ab24b87));
3617      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3618      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3619                               getF32Constant(DAG, 0x3c1d8c17));
3620      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3621      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3622                               getF32Constant(DAG, 0x3d634a1d));
3623      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3624      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3625                               getF32Constant(DAG, 0x3e75fe14));
3626      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3627      SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
3628                                getF32Constant(DAG, 0x3f317234));
3629      SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
3630      SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
3631                                getF32Constant(DAG, 0x3f800000));
3632      SDValue t14 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t13);
3633      SDValue TwoToFractionalPartOfX =
3634        DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX);
3635
3636      result = DAG.getNode(ISD::BIT_CONVERT, dl,
3637                           MVT::f32, TwoToFractionalPartOfX);
3638    }
3639  } else {
3640    // No special expansion.
3641    result = DAG.getNode(ISD::FPOW, dl,
3642                         getValue(I.getOperand(1)).getValueType(),
3643                         getValue(I.getOperand(1)),
3644                         getValue(I.getOperand(2)));
3645  }
3646
3647  setValue(&I, result);
3648}
3649
3650
3651/// ExpandPowI - Expand a llvm.powi intrinsic.
3652static SDValue ExpandPowI(DebugLoc DL, SDValue LHS, SDValue RHS,
3653                          SelectionDAG &DAG) {
3654  // If RHS is a constant, we can expand this out to a multiplication tree,
3655  // otherwise we end up lowering to a call to __powidf2 (for example).  When
3656  // optimizing for size, we only want to do this if the expansion would produce
3657  // a small number of multiplies, otherwise we do the full expansion.
3658  if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
3659    // Get the exponent as a positive value.
3660    unsigned Val = RHSC->getSExtValue();
3661    if ((int)Val < 0) Val = -Val;
3662
3663    // powi(x, 0) -> 1.0
3664    if (Val == 0)
3665      return DAG.getConstantFP(1.0, LHS.getValueType());
3666
3667    Function *F = DAG.getMachineFunction().getFunction();
3668    if (!F->hasFnAttr(Attribute::OptimizeForSize) ||
3669        // If optimizing for size, don't insert too many multiplies.  This
3670        // inserts up to 5 multiplies.
3671        CountPopulation_32(Val)+Log2_32(Val) < 7) {
3672      // We use the simple binary decomposition method to generate the multiply
3673      // sequence.  There are more optimal ways to do this (for example,
3674      // powi(x,15) generates one more multiply than it should), but this has
3675      // the benefit of being both really simple and much better than a libcall.
3676      SDValue Res;  // Logically starts equal to 1.0
3677      SDValue CurSquare = LHS;
3678      while (Val) {
3679        if (Val & 1) {
3680          if (Res.getNode())
3681            Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare);
3682          else
3683            Res = CurSquare;  // 1.0*CurSquare.
3684        }
3685
3686        CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
3687                                CurSquare, CurSquare);
3688        Val >>= 1;
3689      }
3690
3691      // If the original was negative, invert the result, producing 1/(x*x*x).
3692      if (RHSC->getSExtValue() < 0)
3693        Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
3694                          DAG.getConstantFP(1.0, LHS.getValueType()), Res);
3695      return Res;
3696    }
3697  }
3698
3699  // Otherwise, expand to a libcall.
3700  return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
3701}
3702
3703
3704/// visitIntrinsicCall - Lower the call to the specified intrinsic function.  If
3705/// we want to emit this as a call to a named external function, return the name
3706/// otherwise lower it and return null.
3707const char *
3708SelectionDAGBuilder::visitIntrinsicCall(CallInst &I, unsigned Intrinsic) {
3709  DebugLoc dl = getCurDebugLoc();
3710  SDValue Res;
3711
3712  switch (Intrinsic) {
3713  default:
3714    // By default, turn this into a target intrinsic node.
3715    visitTargetIntrinsic(I, Intrinsic);
3716    return 0;
3717  case Intrinsic::vastart:  visitVAStart(I); return 0;
3718  case Intrinsic::vaend:    visitVAEnd(I); return 0;
3719  case Intrinsic::vacopy:   visitVACopy(I); return 0;
3720  case Intrinsic::returnaddress:
3721    setValue(&I, DAG.getNode(ISD::RETURNADDR, dl, TLI.getPointerTy(),
3722                             getValue(I.getOperand(1))));
3723    return 0;
3724  case Intrinsic::frameaddress:
3725    setValue(&I, DAG.getNode(ISD::FRAMEADDR, dl, TLI.getPointerTy(),
3726                             getValue(I.getOperand(1))));
3727    return 0;
3728  case Intrinsic::setjmp:
3729    return "_setjmp"+!TLI.usesUnderscoreSetJmp();
3730  case Intrinsic::longjmp:
3731    return "_longjmp"+!TLI.usesUnderscoreLongJmp();
3732  case Intrinsic::memcpy: {
3733    // Assert for address < 256 since we support only user defined address
3734    // spaces.
3735    assert(cast<PointerType>(I.getOperand(1)->getType())->getAddressSpace()
3736           < 256 &&
3737           cast<PointerType>(I.getOperand(2)->getType())->getAddressSpace()
3738           < 256 &&
3739           "Unknown address space");
3740    SDValue Op1 = getValue(I.getOperand(1));
3741    SDValue Op2 = getValue(I.getOperand(2));
3742    SDValue Op3 = getValue(I.getOperand(3));
3743    unsigned Align = cast<ConstantInt>(I.getOperand(4))->getZExtValue();
3744    bool isVol = cast<ConstantInt>(I.getOperand(5))->getZExtValue();
3745    DAG.setRoot(DAG.getMemcpy(getRoot(), dl, Op1, Op2, Op3, Align, isVol, false,
3746                              I.getOperand(1), 0, I.getOperand(2), 0));
3747    return 0;
3748  }
3749  case Intrinsic::memset: {
3750    // Assert for address < 256 since we support only user defined address
3751    // spaces.
3752    assert(cast<PointerType>(I.getOperand(1)->getType())->getAddressSpace()
3753           < 256 &&
3754           "Unknown address space");
3755    SDValue Op1 = getValue(I.getOperand(1));
3756    SDValue Op2 = getValue(I.getOperand(2));
3757    SDValue Op3 = getValue(I.getOperand(3));
3758    unsigned Align = cast<ConstantInt>(I.getOperand(4))->getZExtValue();
3759    bool isVol = cast<ConstantInt>(I.getOperand(5))->getZExtValue();
3760    DAG.setRoot(DAG.getMemset(getRoot(), dl, Op1, Op2, Op3, Align, isVol,
3761                              I.getOperand(1), 0));
3762    return 0;
3763  }
3764  case Intrinsic::memmove: {
3765    // Assert for address < 256 since we support only user defined address
3766    // spaces.
3767    assert(cast<PointerType>(I.getOperand(1)->getType())->getAddressSpace()
3768           < 256 &&
3769           cast<PointerType>(I.getOperand(2)->getType())->getAddressSpace()
3770           < 256 &&
3771           "Unknown address space");
3772    SDValue Op1 = getValue(I.getOperand(1));
3773    SDValue Op2 = getValue(I.getOperand(2));
3774    SDValue Op3 = getValue(I.getOperand(3));
3775    unsigned Align = cast<ConstantInt>(I.getOperand(4))->getZExtValue();
3776    bool isVol = cast<ConstantInt>(I.getOperand(5))->getZExtValue();
3777
3778    // If the source and destination are known to not be aliases, we can
3779    // lower memmove as memcpy.
3780    uint64_t Size = -1ULL;
3781    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op3))
3782      Size = C->getZExtValue();
3783    if (AA->alias(I.getOperand(1), Size, I.getOperand(2), Size) ==
3784        AliasAnalysis::NoAlias) {
3785      DAG.setRoot(DAG.getMemcpy(getRoot(), dl, Op1, Op2, Op3, Align, isVol,
3786                                false, I.getOperand(1), 0, I.getOperand(2), 0));
3787      return 0;
3788    }
3789
3790    DAG.setRoot(DAG.getMemmove(getRoot(), dl, Op1, Op2, Op3, Align, isVol,
3791                               I.getOperand(1), 0, I.getOperand(2), 0));
3792    return 0;
3793  }
3794  case Intrinsic::dbg_declare: {
3795    // FIXME: currently, we get here only if OptLevel != CodeGenOpt::None.
3796    // The real handling of this intrinsic is in FastISel.
3797    if (OptLevel != CodeGenOpt::None)
3798      // FIXME: Variable debug info is not supported here.
3799      return 0;
3800    DbgDeclareInst &DI = cast<DbgDeclareInst>(I);
3801    if (!DIDescriptor::ValidDebugInfo(DI.getVariable(), CodeGenOpt::None))
3802      return 0;
3803
3804    MDNode *Variable = DI.getVariable();
3805    Value *Address = DI.getAddress();
3806    if (!Address)
3807      return 0;
3808    if (BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
3809      Address = BCI->getOperand(0);
3810    AllocaInst *AI = dyn_cast<AllocaInst>(Address);
3811    // Don't handle byval struct arguments or VLAs, for example.
3812    if (!AI)
3813      return 0;
3814    DenseMap<const AllocaInst*, int>::iterator SI =
3815      FuncInfo.StaticAllocaMap.find(AI);
3816    if (SI == FuncInfo.StaticAllocaMap.end())
3817      return 0; // VLAs.
3818    int FI = SI->second;
3819
3820    MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
3821    if (!DI.getDebugLoc().isUnknown() && MMI.hasDebugInfo())
3822      MMI.setVariableDbgInfo(Variable, FI, DI.getDebugLoc());
3823    return 0;
3824  }
3825  case Intrinsic::dbg_value: {
3826    DbgValueInst &DI = cast<DbgValueInst>(I);
3827    if (!DIDescriptor::ValidDebugInfo(DI.getVariable(), CodeGenOpt::None))
3828      return 0;
3829
3830    MDNode *Variable = DI.getVariable();
3831    uint64_t Offset = DI.getOffset();
3832    Value *V = DI.getValue();
3833    if (!V)
3834      return 0;
3835
3836    // Build an entry in DbgOrdering.  Debug info input nodes get an SDNodeOrder
3837    // but do not always have a corresponding SDNode built.  The SDNodeOrder
3838    // absolute, but not relative, values are different depending on whether
3839    // debug info exists.
3840    ++SDNodeOrder;
3841    if (isa<ConstantInt>(V) || isa<ConstantFP>(V)) {
3842      DAG.AddDbgValue(DAG.getDbgValue(Variable, V, Offset, dl, SDNodeOrder));
3843    } else {
3844      SDValue &N = NodeMap[V];
3845      if (N.getNode())
3846        DAG.AddDbgValue(DAG.getDbgValue(Variable, N.getNode(),
3847                                        N.getResNo(), Offset, dl, SDNodeOrder),
3848                        N.getNode());
3849      else
3850        // We may expand this to cover more cases.  One case where we have no
3851        // data available is an unreferenced parameter; we need this fallback.
3852        DAG.AddDbgValue(DAG.getDbgValue(Variable,
3853                                        UndefValue::get(V->getType()),
3854                                        Offset, dl, SDNodeOrder));
3855    }
3856
3857    // Build a debug info table entry.
3858    if (BitCastInst *BCI = dyn_cast<BitCastInst>(V))
3859      V = BCI->getOperand(0);
3860    AllocaInst *AI = dyn_cast<AllocaInst>(V);
3861    // Don't handle byval struct arguments or VLAs, for example.
3862    if (!AI)
3863      return 0;
3864    DenseMap<const AllocaInst*, int>::iterator SI =
3865      FuncInfo.StaticAllocaMap.find(AI);
3866    if (SI == FuncInfo.StaticAllocaMap.end())
3867      return 0; // VLAs.
3868    int FI = SI->second;
3869
3870    MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
3871    if (!DI.getDebugLoc().isUnknown() && MMI.hasDebugInfo())
3872      MMI.setVariableDbgInfo(Variable, FI, DI.getDebugLoc());
3873    return 0;
3874  }
3875  case Intrinsic::eh_exception: {
3876    // Insert the EXCEPTIONADDR instruction.
3877    assert(CurMBB->isLandingPad() &&"Call to eh.exception not in landing pad!");
3878    SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
3879    SDValue Ops[1];
3880    Ops[0] = DAG.getRoot();
3881    SDValue Op = DAG.getNode(ISD::EXCEPTIONADDR, dl, VTs, Ops, 1);
3882    setValue(&I, Op);
3883    DAG.setRoot(Op.getValue(1));
3884    return 0;
3885  }
3886
3887  case Intrinsic::eh_selector: {
3888    MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
3889    if (CurMBB->isLandingPad())
3890      AddCatchInfo(I, &MMI, CurMBB);
3891    else {
3892#ifndef NDEBUG
3893      FuncInfo.CatchInfoLost.insert(&I);
3894#endif
3895      // FIXME: Mark exception selector register as live in.  Hack for PR1508.
3896      unsigned Reg = TLI.getExceptionSelectorRegister();
3897      if (Reg) CurMBB->addLiveIn(Reg);
3898    }
3899
3900    // Insert the EHSELECTION instruction.
3901    SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
3902    SDValue Ops[2];
3903    Ops[0] = getValue(I.getOperand(1));
3904    Ops[1] = getRoot();
3905    SDValue Op = DAG.getNode(ISD::EHSELECTION, dl, VTs, Ops, 2);
3906    DAG.setRoot(Op.getValue(1));
3907    setValue(&I, DAG.getSExtOrTrunc(Op, dl, MVT::i32));
3908    return 0;
3909  }
3910
3911  case Intrinsic::eh_typeid_for: {
3912    // Find the type id for the given typeinfo.
3913    GlobalVariable *GV = ExtractTypeInfo(I.getOperand(1));
3914    unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV);
3915    Res = DAG.getConstant(TypeID, MVT::i32);
3916    setValue(&I, Res);
3917    return 0;
3918  }
3919
3920  case Intrinsic::eh_return_i32:
3921  case Intrinsic::eh_return_i64:
3922    DAG.getMachineFunction().getMMI().setCallsEHReturn(true);
3923    DAG.setRoot(DAG.getNode(ISD::EH_RETURN, dl,
3924                            MVT::Other,
3925                            getControlRoot(),
3926                            getValue(I.getOperand(1)),
3927                            getValue(I.getOperand(2))));
3928    return 0;
3929  case Intrinsic::eh_unwind_init:
3930    DAG.getMachineFunction().getMMI().setCallsUnwindInit(true);
3931    return 0;
3932  case Intrinsic::eh_dwarf_cfa: {
3933    EVT VT = getValue(I.getOperand(1)).getValueType();
3934    SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), dl,
3935                                        TLI.getPointerTy());
3936    SDValue Offset = DAG.getNode(ISD::ADD, dl,
3937                                 TLI.getPointerTy(),
3938                                 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, dl,
3939                                             TLI.getPointerTy()),
3940                                 CfaArg);
3941    SDValue FA = DAG.getNode(ISD::FRAMEADDR, dl,
3942                             TLI.getPointerTy(),
3943                             DAG.getConstant(0, TLI.getPointerTy()));
3944    setValue(&I, DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(),
3945                             FA, Offset));
3946    return 0;
3947  }
3948  case Intrinsic::eh_sjlj_callsite: {
3949    MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
3950    ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(1));
3951    assert(CI && "Non-constant call site value in eh.sjlj.callsite!");
3952    assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
3953
3954    MMI.setCurrentCallSite(CI->getZExtValue());
3955    return 0;
3956  }
3957
3958  case Intrinsic::convertff:
3959  case Intrinsic::convertfsi:
3960  case Intrinsic::convertfui:
3961  case Intrinsic::convertsif:
3962  case Intrinsic::convertuif:
3963  case Intrinsic::convertss:
3964  case Intrinsic::convertsu:
3965  case Intrinsic::convertus:
3966  case Intrinsic::convertuu: {
3967    ISD::CvtCode Code = ISD::CVT_INVALID;
3968    switch (Intrinsic) {
3969    case Intrinsic::convertff:  Code = ISD::CVT_FF; break;
3970    case Intrinsic::convertfsi: Code = ISD::CVT_FS; break;
3971    case Intrinsic::convertfui: Code = ISD::CVT_FU; break;
3972    case Intrinsic::convertsif: Code = ISD::CVT_SF; break;
3973    case Intrinsic::convertuif: Code = ISD::CVT_UF; break;
3974    case Intrinsic::convertss:  Code = ISD::CVT_SS; break;
3975    case Intrinsic::convertsu:  Code = ISD::CVT_SU; break;
3976    case Intrinsic::convertus:  Code = ISD::CVT_US; break;
3977    case Intrinsic::convertuu:  Code = ISD::CVT_UU; break;
3978    }
3979    EVT DestVT = TLI.getValueType(I.getType());
3980    Value *Op1 = I.getOperand(1);
3981    Res = DAG.getConvertRndSat(DestVT, getCurDebugLoc(), getValue(Op1),
3982                               DAG.getValueType(DestVT),
3983                               DAG.getValueType(getValue(Op1).getValueType()),
3984                               getValue(I.getOperand(2)),
3985                               getValue(I.getOperand(3)),
3986                               Code);
3987    setValue(&I, Res);
3988    return 0;
3989  }
3990  case Intrinsic::sqrt:
3991    setValue(&I, DAG.getNode(ISD::FSQRT, dl,
3992                             getValue(I.getOperand(1)).getValueType(),
3993                             getValue(I.getOperand(1))));
3994    return 0;
3995  case Intrinsic::powi:
3996    setValue(&I, ExpandPowI(dl, getValue(I.getOperand(1)),
3997                            getValue(I.getOperand(2)), DAG));
3998    return 0;
3999  case Intrinsic::sin:
4000    setValue(&I, DAG.getNode(ISD::FSIN, dl,
4001                             getValue(I.getOperand(1)).getValueType(),
4002                             getValue(I.getOperand(1))));
4003    return 0;
4004  case Intrinsic::cos:
4005    setValue(&I, DAG.getNode(ISD::FCOS, dl,
4006                             getValue(I.getOperand(1)).getValueType(),
4007                             getValue(I.getOperand(1))));
4008    return 0;
4009  case Intrinsic::log:
4010    visitLog(I);
4011    return 0;
4012  case Intrinsic::log2:
4013    visitLog2(I);
4014    return 0;
4015  case Intrinsic::log10:
4016    visitLog10(I);
4017    return 0;
4018  case Intrinsic::exp:
4019    visitExp(I);
4020    return 0;
4021  case Intrinsic::exp2:
4022    visitExp2(I);
4023    return 0;
4024  case Intrinsic::pow:
4025    visitPow(I);
4026    return 0;
4027  case Intrinsic::convert_to_fp16:
4028    setValue(&I, DAG.getNode(ISD::FP32_TO_FP16, dl,
4029                             MVT::i16, getValue(I.getOperand(1))));
4030    return 0;
4031  case Intrinsic::convert_from_fp16:
4032    setValue(&I, DAG.getNode(ISD::FP16_TO_FP32, dl,
4033                             MVT::f32, getValue(I.getOperand(1))));
4034    return 0;
4035  case Intrinsic::pcmarker: {
4036    SDValue Tmp = getValue(I.getOperand(1));
4037    DAG.setRoot(DAG.getNode(ISD::PCMARKER, dl, MVT::Other, getRoot(), Tmp));
4038    return 0;
4039  }
4040  case Intrinsic::readcyclecounter: {
4041    SDValue Op = getRoot();
4042    Res = DAG.getNode(ISD::READCYCLECOUNTER, dl,
4043                      DAG.getVTList(MVT::i64, MVT::Other),
4044                      &Op, 1);
4045    setValue(&I, Res);
4046    DAG.setRoot(Res.getValue(1));
4047    return 0;
4048  }
4049  case Intrinsic::bswap:
4050    setValue(&I, DAG.getNode(ISD::BSWAP, dl,
4051                             getValue(I.getOperand(1)).getValueType(),
4052                             getValue(I.getOperand(1))));
4053    return 0;
4054  case Intrinsic::cttz: {
4055    SDValue Arg = getValue(I.getOperand(1));
4056    EVT Ty = Arg.getValueType();
4057    setValue(&I, DAG.getNode(ISD::CTTZ, dl, Ty, Arg));
4058    return 0;
4059  }
4060  case Intrinsic::ctlz: {
4061    SDValue Arg = getValue(I.getOperand(1));
4062    EVT Ty = Arg.getValueType();
4063    setValue(&I, DAG.getNode(ISD::CTLZ, dl, Ty, Arg));
4064    return 0;
4065  }
4066  case Intrinsic::ctpop: {
4067    SDValue Arg = getValue(I.getOperand(1));
4068    EVT Ty = Arg.getValueType();
4069    setValue(&I, DAG.getNode(ISD::CTPOP, dl, Ty, Arg));
4070    return 0;
4071  }
4072  case Intrinsic::stacksave: {
4073    SDValue Op = getRoot();
4074    Res = DAG.getNode(ISD::STACKSAVE, dl,
4075                      DAG.getVTList(TLI.getPointerTy(), MVT::Other), &Op, 1);
4076    setValue(&I, Res);
4077    DAG.setRoot(Res.getValue(1));
4078    return 0;
4079  }
4080  case Intrinsic::stackrestore: {
4081    Res = getValue(I.getOperand(1));
4082    DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, dl, MVT::Other, getRoot(), Res));
4083    return 0;
4084  }
4085  case Intrinsic::stackprotector: {
4086    // Emit code into the DAG to store the stack guard onto the stack.
4087    MachineFunction &MF = DAG.getMachineFunction();
4088    MachineFrameInfo *MFI = MF.getFrameInfo();
4089    EVT PtrTy = TLI.getPointerTy();
4090
4091    SDValue Src = getValue(I.getOperand(1));   // The guard's value.
4092    AllocaInst *Slot = cast<AllocaInst>(I.getOperand(2));
4093
4094    int FI = FuncInfo.StaticAllocaMap[Slot];
4095    MFI->setStackProtectorIndex(FI);
4096
4097    SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
4098
4099    // Store the stack protector onto the stack.
4100    Res = DAG.getStore(getRoot(), getCurDebugLoc(), Src, FIN,
4101                       PseudoSourceValue::getFixedStack(FI),
4102                       0, true, false, 0);
4103    setValue(&I, Res);
4104    DAG.setRoot(Res);
4105    return 0;
4106  }
4107  case Intrinsic::objectsize: {
4108    // If we don't know by now, we're never going to know.
4109    ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(2));
4110
4111    assert(CI && "Non-constant type in __builtin_object_size?");
4112
4113    SDValue Arg = getValue(I.getOperand(0));
4114    EVT Ty = Arg.getValueType();
4115
4116    if (CI->getZExtValue() == 0)
4117      Res = DAG.getConstant(-1ULL, Ty);
4118    else
4119      Res = DAG.getConstant(0, Ty);
4120
4121    setValue(&I, Res);
4122    return 0;
4123  }
4124  case Intrinsic::var_annotation:
4125    // Discard annotate attributes
4126    return 0;
4127
4128  case Intrinsic::init_trampoline: {
4129    const Function *F = cast<Function>(I.getOperand(2)->stripPointerCasts());
4130
4131    SDValue Ops[6];
4132    Ops[0] = getRoot();
4133    Ops[1] = getValue(I.getOperand(1));
4134    Ops[2] = getValue(I.getOperand(2));
4135    Ops[3] = getValue(I.getOperand(3));
4136    Ops[4] = DAG.getSrcValue(I.getOperand(1));
4137    Ops[5] = DAG.getSrcValue(F);
4138
4139    Res = DAG.getNode(ISD::TRAMPOLINE, dl,
4140                      DAG.getVTList(TLI.getPointerTy(), MVT::Other),
4141                      Ops, 6);
4142
4143    setValue(&I, Res);
4144    DAG.setRoot(Res.getValue(1));
4145    return 0;
4146  }
4147  case Intrinsic::gcroot:
4148    if (GFI) {
4149      Value *Alloca = I.getOperand(1);
4150      Constant *TypeMap = cast<Constant>(I.getOperand(2));
4151
4152      FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
4153      GFI->addStackRoot(FI->getIndex(), TypeMap);
4154    }
4155    return 0;
4156  case Intrinsic::gcread:
4157  case Intrinsic::gcwrite:
4158    llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
4159    return 0;
4160  case Intrinsic::flt_rounds:
4161    setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, dl, MVT::i32));
4162    return 0;
4163  case Intrinsic::trap:
4164    DAG.setRoot(DAG.getNode(ISD::TRAP, dl,MVT::Other, getRoot()));
4165    return 0;
4166  case Intrinsic::uadd_with_overflow:
4167    return implVisitAluOverflow(I, ISD::UADDO);
4168  case Intrinsic::sadd_with_overflow:
4169    return implVisitAluOverflow(I, ISD::SADDO);
4170  case Intrinsic::usub_with_overflow:
4171    return implVisitAluOverflow(I, ISD::USUBO);
4172  case Intrinsic::ssub_with_overflow:
4173    return implVisitAluOverflow(I, ISD::SSUBO);
4174  case Intrinsic::umul_with_overflow:
4175    return implVisitAluOverflow(I, ISD::UMULO);
4176  case Intrinsic::smul_with_overflow:
4177    return implVisitAluOverflow(I, ISD::SMULO);
4178
4179  case Intrinsic::prefetch: {
4180    SDValue Ops[4];
4181    Ops[0] = getRoot();
4182    Ops[1] = getValue(I.getOperand(1));
4183    Ops[2] = getValue(I.getOperand(2));
4184    Ops[3] = getValue(I.getOperand(3));
4185    DAG.setRoot(DAG.getNode(ISD::PREFETCH, dl, MVT::Other, &Ops[0], 4));
4186    return 0;
4187  }
4188
4189  case Intrinsic::memory_barrier: {
4190    SDValue Ops[6];
4191    Ops[0] = getRoot();
4192    for (int x = 1; x < 6; ++x)
4193      Ops[x] = getValue(I.getOperand(x));
4194
4195    DAG.setRoot(DAG.getNode(ISD::MEMBARRIER, dl, MVT::Other, &Ops[0], 6));
4196    return 0;
4197  }
4198  case Intrinsic::atomic_cmp_swap: {
4199    SDValue Root = getRoot();
4200    SDValue L =
4201      DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, getCurDebugLoc(),
4202                    getValue(I.getOperand(2)).getValueType().getSimpleVT(),
4203                    Root,
4204                    getValue(I.getOperand(1)),
4205                    getValue(I.getOperand(2)),
4206                    getValue(I.getOperand(3)),
4207                    I.getOperand(1));
4208    setValue(&I, L);
4209    DAG.setRoot(L.getValue(1));
4210    return 0;
4211  }
4212  case Intrinsic::atomic_load_add:
4213    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_ADD);
4214  case Intrinsic::atomic_load_sub:
4215    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_SUB);
4216  case Intrinsic::atomic_load_or:
4217    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_OR);
4218  case Intrinsic::atomic_load_xor:
4219    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_XOR);
4220  case Intrinsic::atomic_load_and:
4221    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_AND);
4222  case Intrinsic::atomic_load_nand:
4223    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_NAND);
4224  case Intrinsic::atomic_load_max:
4225    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MAX);
4226  case Intrinsic::atomic_load_min:
4227    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MIN);
4228  case Intrinsic::atomic_load_umin:
4229    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMIN);
4230  case Intrinsic::atomic_load_umax:
4231    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMAX);
4232  case Intrinsic::atomic_swap:
4233    return implVisitBinaryAtomic(I, ISD::ATOMIC_SWAP);
4234
4235  case Intrinsic::invariant_start:
4236  case Intrinsic::lifetime_start:
4237    // Discard region information.
4238    setValue(&I, DAG.getUNDEF(TLI.getPointerTy()));
4239    return 0;
4240  case Intrinsic::invariant_end:
4241  case Intrinsic::lifetime_end:
4242    // Discard region information.
4243    return 0;
4244  }
4245}
4246
4247/// Test if the given instruction is in a position to be optimized
4248/// with a tail-call. This roughly means that it's in a block with
4249/// a return and there's nothing that needs to be scheduled
4250/// between it and the return.
4251///
4252/// This function only tests target-independent requirements.
4253static bool
4254isInTailCallPosition(CallSite CS, Attributes CalleeRetAttr,
4255                     const TargetLowering &TLI) {
4256  const Instruction *I = CS.getInstruction();
4257  const BasicBlock *ExitBB = I->getParent();
4258  const TerminatorInst *Term = ExitBB->getTerminator();
4259  const ReturnInst *Ret = dyn_cast<ReturnInst>(Term);
4260  const Function *F = ExitBB->getParent();
4261
4262  // The block must end in a return statement or unreachable.
4263  //
4264  // FIXME: Decline tailcall if it's not guaranteed and if the block ends in
4265  // an unreachable, for now. The way tailcall optimization is currently
4266  // implemented means it will add an epilogue followed by a jump. That is
4267  // not profitable. Also, if the callee is a special function (e.g.
4268  // longjmp on x86), it can end up causing miscompilation that has not
4269  // been fully understood.
4270  if (!Ret &&
4271      (!GuaranteedTailCallOpt || !isa<UnreachableInst>(Term))) return false;
4272
4273  // If I will have a chain, make sure no other instruction that will have a
4274  // chain interposes between I and the return.
4275  if (I->mayHaveSideEffects() || I->mayReadFromMemory() ||
4276      !I->isSafeToSpeculativelyExecute())
4277    for (BasicBlock::const_iterator BBI = prior(prior(ExitBB->end())); ;
4278         --BBI) {
4279      if (&*BBI == I)
4280        break;
4281      // Debug info intrinsics do not get in the way of tail call optimization.
4282      if (isa<DbgInfoIntrinsic>(BBI))
4283        continue;
4284      if (BBI->mayHaveSideEffects() || BBI->mayReadFromMemory() ||
4285          !BBI->isSafeToSpeculativelyExecute())
4286        return false;
4287    }
4288
4289  // If the block ends with a void return or unreachable, it doesn't matter
4290  // what the call's return type is.
4291  if (!Ret || Ret->getNumOperands() == 0) return true;
4292
4293  // If the return value is undef, it doesn't matter what the call's
4294  // return type is.
4295  if (isa<UndefValue>(Ret->getOperand(0))) return true;
4296
4297  // Conservatively require the attributes of the call to match those of
4298  // the return. Ignore noalias because it doesn't affect the call sequence.
4299  unsigned CallerRetAttr = F->getAttributes().getRetAttributes();
4300  if ((CalleeRetAttr ^ CallerRetAttr) & ~Attribute::NoAlias)
4301    return false;
4302
4303  // It's not safe to eliminate the sign / zero extension of the return value.
4304  if ((CallerRetAttr & Attribute::ZExt) || (CallerRetAttr & Attribute::SExt))
4305    return false;
4306
4307  // Otherwise, make sure the unmodified return value of I is the return value.
4308  for (const Instruction *U = dyn_cast<Instruction>(Ret->getOperand(0)); ;
4309       U = dyn_cast<Instruction>(U->getOperand(0))) {
4310    if (!U)
4311      return false;
4312    if (!U->hasOneUse())
4313      return false;
4314    if (U == I)
4315      break;
4316    // Check for a truly no-op truncate.
4317    if (isa<TruncInst>(U) &&
4318        TLI.isTruncateFree(U->getOperand(0)->getType(), U->getType()))
4319      continue;
4320    // Check for a truly no-op bitcast.
4321    if (isa<BitCastInst>(U) &&
4322        (U->getOperand(0)->getType() == U->getType() ||
4323         (U->getOperand(0)->getType()->isPointerTy() &&
4324          U->getType()->isPointerTy())))
4325      continue;
4326    // Otherwise it's not a true no-op.
4327    return false;
4328  }
4329
4330  return true;
4331}
4332
4333void SelectionDAGBuilder::LowerCallTo(CallSite CS, SDValue Callee,
4334                                      bool isTailCall,
4335                                      MachineBasicBlock *LandingPad) {
4336  const PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
4337  const FunctionType *FTy = cast<FunctionType>(PT->getElementType());
4338  const Type *RetTy = FTy->getReturnType();
4339  MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4340  MCSymbol *BeginLabel = 0;
4341
4342  TargetLowering::ArgListTy Args;
4343  TargetLowering::ArgListEntry Entry;
4344  Args.reserve(CS.arg_size());
4345
4346  // Check whether the function can return without sret-demotion.
4347  SmallVector<EVT, 4> OutVTs;
4348  SmallVector<ISD::ArgFlagsTy, 4> OutsFlags;
4349  SmallVector<uint64_t, 4> Offsets;
4350  getReturnInfo(RetTy, CS.getAttributes().getRetAttributes(),
4351                OutVTs, OutsFlags, TLI, &Offsets);
4352
4353  bool CanLowerReturn = TLI.CanLowerReturn(CS.getCallingConv(),
4354                        FTy->isVarArg(), OutVTs, OutsFlags, DAG);
4355
4356  SDValue DemoteStackSlot;
4357
4358  if (!CanLowerReturn) {
4359    uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(
4360                      FTy->getReturnType());
4361    unsigned Align  = TLI.getTargetData()->getPrefTypeAlignment(
4362                      FTy->getReturnType());
4363    MachineFunction &MF = DAG.getMachineFunction();
4364    int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
4365    const Type *StackSlotPtrType = PointerType::getUnqual(FTy->getReturnType());
4366
4367    DemoteStackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy());
4368    Entry.Node = DemoteStackSlot;
4369    Entry.Ty = StackSlotPtrType;
4370    Entry.isSExt = false;
4371    Entry.isZExt = false;
4372    Entry.isInReg = false;
4373    Entry.isSRet = true;
4374    Entry.isNest = false;
4375    Entry.isByVal = false;
4376    Entry.Alignment = Align;
4377    Args.push_back(Entry);
4378    RetTy = Type::getVoidTy(FTy->getContext());
4379  }
4380
4381  for (CallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
4382       i != e; ++i) {
4383    SDValue ArgNode = getValue(*i);
4384    Entry.Node = ArgNode; Entry.Ty = (*i)->getType();
4385
4386    unsigned attrInd = i - CS.arg_begin() + 1;
4387    Entry.isSExt  = CS.paramHasAttr(attrInd, Attribute::SExt);
4388    Entry.isZExt  = CS.paramHasAttr(attrInd, Attribute::ZExt);
4389    Entry.isInReg = CS.paramHasAttr(attrInd, Attribute::InReg);
4390    Entry.isSRet  = CS.paramHasAttr(attrInd, Attribute::StructRet);
4391    Entry.isNest  = CS.paramHasAttr(attrInd, Attribute::Nest);
4392    Entry.isByVal = CS.paramHasAttr(attrInd, Attribute::ByVal);
4393    Entry.Alignment = CS.getParamAlignment(attrInd);
4394    Args.push_back(Entry);
4395  }
4396
4397  if (LandingPad) {
4398    // Insert a label before the invoke call to mark the try range.  This can be
4399    // used to detect deletion of the invoke via the MachineModuleInfo.
4400    BeginLabel = MMI.getContext().CreateTempSymbol();
4401
4402    // For SjLj, keep track of which landing pads go with which invokes
4403    // so as to maintain the ordering of pads in the LSDA.
4404    unsigned CallSiteIndex = MMI.getCurrentCallSite();
4405    if (CallSiteIndex) {
4406      MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
4407      // Now that the call site is handled, stop tracking it.
4408      MMI.setCurrentCallSite(0);
4409    }
4410
4411    // Both PendingLoads and PendingExports must be flushed here;
4412    // this call might not return.
4413    (void)getRoot();
4414    DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getControlRoot(), BeginLabel));
4415  }
4416
4417  // Check if target-independent constraints permit a tail call here.
4418  // Target-dependent constraints are checked within TLI.LowerCallTo.
4419  if (isTailCall &&
4420      !isInTailCallPosition(CS, CS.getAttributes().getRetAttributes(), TLI))
4421    isTailCall = false;
4422
4423  std::pair<SDValue,SDValue> Result =
4424    TLI.LowerCallTo(getRoot(), RetTy,
4425                    CS.paramHasAttr(0, Attribute::SExt),
4426                    CS.paramHasAttr(0, Attribute::ZExt), FTy->isVarArg(),
4427                    CS.paramHasAttr(0, Attribute::InReg), FTy->getNumParams(),
4428                    CS.getCallingConv(),
4429                    isTailCall,
4430                    !CS.getInstruction()->use_empty(),
4431                    Callee, Args, DAG, getCurDebugLoc());
4432  assert((isTailCall || Result.second.getNode()) &&
4433         "Non-null chain expected with non-tail call!");
4434  assert((Result.second.getNode() || !Result.first.getNode()) &&
4435         "Null value expected with tail call!");
4436  if (Result.first.getNode()) {
4437    setValue(CS.getInstruction(), Result.first);
4438  } else if (!CanLowerReturn && Result.second.getNode()) {
4439    // The instruction result is the result of loading from the
4440    // hidden sret parameter.
4441    SmallVector<EVT, 1> PVTs;
4442    const Type *PtrRetTy = PointerType::getUnqual(FTy->getReturnType());
4443
4444    ComputeValueVTs(TLI, PtrRetTy, PVTs);
4445    assert(PVTs.size() == 1 && "Pointers should fit in one register");
4446    EVT PtrVT = PVTs[0];
4447    unsigned NumValues = OutVTs.size();
4448    SmallVector<SDValue, 4> Values(NumValues);
4449    SmallVector<SDValue, 4> Chains(NumValues);
4450
4451    for (unsigned i = 0; i < NumValues; ++i) {
4452      SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT,
4453                                DemoteStackSlot,
4454                                DAG.getConstant(Offsets[i], PtrVT));
4455      SDValue L = DAG.getLoad(OutVTs[i], getCurDebugLoc(), Result.second,
4456                              Add, NULL, Offsets[i], false, false, 1);
4457      Values[i] = L;
4458      Chains[i] = L.getValue(1);
4459    }
4460
4461    SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
4462                                MVT::Other, &Chains[0], NumValues);
4463    PendingLoads.push_back(Chain);
4464
4465    // Collect the legal value parts into potentially illegal values
4466    // that correspond to the original function's return values.
4467    SmallVector<EVT, 4> RetTys;
4468    RetTy = FTy->getReturnType();
4469    ComputeValueVTs(TLI, RetTy, RetTys);
4470    ISD::NodeType AssertOp = ISD::DELETED_NODE;
4471    SmallVector<SDValue, 4> ReturnValues;
4472    unsigned CurReg = 0;
4473    for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
4474      EVT VT = RetTys[I];
4475      EVT RegisterVT = TLI.getRegisterType(RetTy->getContext(), VT);
4476      unsigned NumRegs = TLI.getNumRegisters(RetTy->getContext(), VT);
4477
4478      SDValue ReturnValue =
4479        getCopyFromParts(DAG, getCurDebugLoc(), &Values[CurReg], NumRegs,
4480                         RegisterVT, VT, AssertOp);
4481      ReturnValues.push_back(ReturnValue);
4482      CurReg += NumRegs;
4483    }
4484
4485    setValue(CS.getInstruction(),
4486             DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
4487                         DAG.getVTList(&RetTys[0], RetTys.size()),
4488                         &ReturnValues[0], ReturnValues.size()));
4489
4490  }
4491
4492  // As a special case, a null chain means that a tail call has been emitted and
4493  // the DAG root is already updated.
4494  if (Result.second.getNode())
4495    DAG.setRoot(Result.second);
4496  else
4497    HasTailCall = true;
4498
4499  if (LandingPad) {
4500    // Insert a label at the end of the invoke call to mark the try range.  This
4501    // can be used to detect deletion of the invoke via the MachineModuleInfo.
4502    MCSymbol *EndLabel = MMI.getContext().CreateTempSymbol();
4503    DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getRoot(), EndLabel));
4504
4505    // Inform MachineModuleInfo of range.
4506    MMI.addInvoke(LandingPad, BeginLabel, EndLabel);
4507  }
4508}
4509
4510/// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the
4511/// value is equal or not-equal to zero.
4512static bool IsOnlyUsedInZeroEqualityComparison(Value *V) {
4513  for (Value::use_iterator UI = V->use_begin(), E = V->use_end();
4514       UI != E; ++UI) {
4515    if (ICmpInst *IC = dyn_cast<ICmpInst>(*UI))
4516      if (IC->isEquality())
4517        if (Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
4518          if (C->isNullValue())
4519            continue;
4520    // Unknown instruction.
4521    return false;
4522  }
4523  return true;
4524}
4525
4526static SDValue getMemCmpLoad(Value *PtrVal, MVT LoadVT, const Type *LoadTy,
4527                             SelectionDAGBuilder &Builder) {
4528
4529  // Check to see if this load can be trivially constant folded, e.g. if the
4530  // input is from a string literal.
4531  if (Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
4532    // Cast pointer to the type we really want to load.
4533    LoadInput = ConstantExpr::getBitCast(LoadInput,
4534                                         PointerType::getUnqual(LoadTy));
4535
4536    if (Constant *LoadCst = ConstantFoldLoadFromConstPtr(LoadInput, Builder.TD))
4537      return Builder.getValue(LoadCst);
4538  }
4539
4540  // Otherwise, we have to emit the load.  If the pointer is to unfoldable but
4541  // still constant memory, the input chain can be the entry node.
4542  SDValue Root;
4543  bool ConstantMemory = false;
4544
4545  // Do not serialize (non-volatile) loads of constant memory with anything.
4546  if (Builder.AA->pointsToConstantMemory(PtrVal)) {
4547    Root = Builder.DAG.getEntryNode();
4548    ConstantMemory = true;
4549  } else {
4550    // Do not serialize non-volatile loads against each other.
4551    Root = Builder.DAG.getRoot();
4552  }
4553
4554  SDValue Ptr = Builder.getValue(PtrVal);
4555  SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurDebugLoc(), Root,
4556                                        Ptr, PtrVal /*SrcValue*/, 0/*SVOffset*/,
4557                                        false /*volatile*/,
4558                                        false /*nontemporal*/, 1 /* align=1 */);
4559
4560  if (!ConstantMemory)
4561    Builder.PendingLoads.push_back(LoadVal.getValue(1));
4562  return LoadVal;
4563}
4564
4565
4566/// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form.
4567/// If so, return true and lower it, otherwise return false and it will be
4568/// lowered like a normal call.
4569bool SelectionDAGBuilder::visitMemCmpCall(CallInst &I) {
4570  // Verify that the prototype makes sense.  int memcmp(void*,void*,size_t)
4571  if (I.getNumOperands() != 4)
4572    return false;
4573
4574  Value *LHS = I.getOperand(1), *RHS = I.getOperand(2);
4575  if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() ||
4576      !I.getOperand(3)->getType()->isIntegerTy() ||
4577      !I.getType()->isIntegerTy())
4578    return false;
4579
4580  ConstantInt *Size = dyn_cast<ConstantInt>(I.getOperand(3));
4581
4582  // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0
4583  // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0
4584  if (Size && IsOnlyUsedInZeroEqualityComparison(&I)) {
4585    bool ActuallyDoIt = true;
4586    MVT LoadVT;
4587    const Type *LoadTy;
4588    switch (Size->getZExtValue()) {
4589    default:
4590      LoadVT = MVT::Other;
4591      LoadTy = 0;
4592      ActuallyDoIt = false;
4593      break;
4594    case 2:
4595      LoadVT = MVT::i16;
4596      LoadTy = Type::getInt16Ty(Size->getContext());
4597      break;
4598    case 4:
4599      LoadVT = MVT::i32;
4600      LoadTy = Type::getInt32Ty(Size->getContext());
4601      break;
4602    case 8:
4603      LoadVT = MVT::i64;
4604      LoadTy = Type::getInt64Ty(Size->getContext());
4605      break;
4606        /*
4607    case 16:
4608      LoadVT = MVT::v4i32;
4609      LoadTy = Type::getInt32Ty(Size->getContext());
4610      LoadTy = VectorType::get(LoadTy, 4);
4611      break;
4612         */
4613    }
4614
4615    // This turns into unaligned loads.  We only do this if the target natively
4616    // supports the MVT we'll be loading or if it is small enough (<= 4) that
4617    // we'll only produce a small number of byte loads.
4618
4619    // Require that we can find a legal MVT, and only do this if the target
4620    // supports unaligned loads of that type.  Expanding into byte loads would
4621    // bloat the code.
4622    if (ActuallyDoIt && Size->getZExtValue() > 4) {
4623      // TODO: Handle 5 byte compare as 4-byte + 1 byte.
4624      // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
4625      if (!TLI.isTypeLegal(LoadVT) ||!TLI.allowsUnalignedMemoryAccesses(LoadVT))
4626        ActuallyDoIt = false;
4627    }
4628
4629    if (ActuallyDoIt) {
4630      SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this);
4631      SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this);
4632
4633      SDValue Res = DAG.getSetCC(getCurDebugLoc(), MVT::i1, LHSVal, RHSVal,
4634                                 ISD::SETNE);
4635      EVT CallVT = TLI.getValueType(I.getType(), true);
4636      setValue(&I, DAG.getZExtOrTrunc(Res, getCurDebugLoc(), CallVT));
4637      return true;
4638    }
4639  }
4640
4641
4642  return false;
4643}
4644
4645
4646void SelectionDAGBuilder::visitCall(CallInst &I) {
4647  const char *RenameFn = 0;
4648  if (Function *F = I.getCalledFunction()) {
4649    if (F->isDeclaration()) {
4650      const TargetIntrinsicInfo *II = TLI.getTargetMachine().getIntrinsicInfo();
4651      if (II) {
4652        if (unsigned IID = II->getIntrinsicID(F)) {
4653          RenameFn = visitIntrinsicCall(I, IID);
4654          if (!RenameFn)
4655            return;
4656        }
4657      }
4658      if (unsigned IID = F->getIntrinsicID()) {
4659        RenameFn = visitIntrinsicCall(I, IID);
4660        if (!RenameFn)
4661          return;
4662      }
4663    }
4664
4665    // Check for well-known libc/libm calls.  If the function is internal, it
4666    // can't be a library call.
4667    if (!F->hasLocalLinkage() && F->hasName()) {
4668      StringRef Name = F->getName();
4669      if (Name == "copysign" || Name == "copysignf" || Name == "copysignl") {
4670        if (I.getNumOperands() == 3 &&   // Basic sanity checks.
4671            I.getOperand(1)->getType()->isFloatingPointTy() &&
4672            I.getType() == I.getOperand(1)->getType() &&
4673            I.getType() == I.getOperand(2)->getType()) {
4674          SDValue LHS = getValue(I.getOperand(1));
4675          SDValue RHS = getValue(I.getOperand(2));
4676          setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurDebugLoc(),
4677                                   LHS.getValueType(), LHS, RHS));
4678          return;
4679        }
4680      } else if (Name == "fabs" || Name == "fabsf" || Name == "fabsl") {
4681        if (I.getNumOperands() == 2 &&   // Basic sanity checks.
4682            I.getOperand(1)->getType()->isFloatingPointTy() &&
4683            I.getType() == I.getOperand(1)->getType()) {
4684          SDValue Tmp = getValue(I.getOperand(1));
4685          setValue(&I, DAG.getNode(ISD::FABS, getCurDebugLoc(),
4686                                   Tmp.getValueType(), Tmp));
4687          return;
4688        }
4689      } else if (Name == "sin" || Name == "sinf" || Name == "sinl") {
4690        if (I.getNumOperands() == 2 &&   // Basic sanity checks.
4691            I.getOperand(1)->getType()->isFloatingPointTy() &&
4692            I.getType() == I.getOperand(1)->getType() &&
4693            I.onlyReadsMemory()) {
4694          SDValue Tmp = getValue(I.getOperand(1));
4695          setValue(&I, DAG.getNode(ISD::FSIN, getCurDebugLoc(),
4696                                   Tmp.getValueType(), Tmp));
4697          return;
4698        }
4699      } else if (Name == "cos" || Name == "cosf" || Name == "cosl") {
4700        if (I.getNumOperands() == 2 &&   // Basic sanity checks.
4701            I.getOperand(1)->getType()->isFloatingPointTy() &&
4702            I.getType() == I.getOperand(1)->getType() &&
4703            I.onlyReadsMemory()) {
4704          SDValue Tmp = getValue(I.getOperand(1));
4705          setValue(&I, DAG.getNode(ISD::FCOS, getCurDebugLoc(),
4706                                   Tmp.getValueType(), Tmp));
4707          return;
4708        }
4709      } else if (Name == "sqrt" || Name == "sqrtf" || Name == "sqrtl") {
4710        if (I.getNumOperands() == 2 &&   // Basic sanity checks.
4711            I.getOperand(1)->getType()->isFloatingPointTy() &&
4712            I.getType() == I.getOperand(1)->getType() &&
4713            I.onlyReadsMemory()) {
4714          SDValue Tmp = getValue(I.getOperand(1));
4715          setValue(&I, DAG.getNode(ISD::FSQRT, getCurDebugLoc(),
4716                                   Tmp.getValueType(), Tmp));
4717          return;
4718        }
4719      } else if (Name == "memcmp") {
4720        if (visitMemCmpCall(I))
4721          return;
4722      }
4723    }
4724  } else if (isa<InlineAsm>(I.getOperand(0))) {
4725    visitInlineAsm(&I);
4726    return;
4727  }
4728
4729  SDValue Callee;
4730  if (!RenameFn)
4731    Callee = getValue(I.getOperand(0));
4732  else
4733    Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy());
4734
4735  // Check if we can potentially perform a tail call. More detailed checking is
4736  // be done within LowerCallTo, after more information about the call is known.
4737  LowerCallTo(&I, Callee, I.isTailCall());
4738}
4739
4740/// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
4741/// this value and returns the result as a ValueVT value.  This uses
4742/// Chain/Flag as the input and updates them for the output Chain/Flag.
4743/// If the Flag pointer is NULL, no flag is used.
4744SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, DebugLoc dl,
4745                                      SDValue &Chain, SDValue *Flag) const {
4746  // Assemble the legal parts into the final values.
4747  SmallVector<SDValue, 4> Values(ValueVTs.size());
4748  SmallVector<SDValue, 8> Parts;
4749  for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
4750    // Copy the legal parts from the registers.
4751    EVT ValueVT = ValueVTs[Value];
4752    unsigned NumRegs = TLI->getNumRegisters(*DAG.getContext(), ValueVT);
4753    EVT RegisterVT = RegVTs[Value];
4754
4755    Parts.resize(NumRegs);
4756    for (unsigned i = 0; i != NumRegs; ++i) {
4757      SDValue P;
4758      if (Flag == 0) {
4759        P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
4760      } else {
4761        P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
4762        *Flag = P.getValue(2);
4763      }
4764
4765      Chain = P.getValue(1);
4766
4767      // If the source register was virtual and if we know something about it,
4768      // add an assert node.
4769      if (TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) &&
4770          RegisterVT.isInteger() && !RegisterVT.isVector()) {
4771        unsigned SlotNo = Regs[Part+i]-TargetRegisterInfo::FirstVirtualRegister;
4772        FunctionLoweringInfo &FLI = DAG.getFunctionLoweringInfo();
4773        if (FLI.LiveOutRegInfo.size() > SlotNo) {
4774          FunctionLoweringInfo::LiveOutInfo &LOI = FLI.LiveOutRegInfo[SlotNo];
4775
4776          unsigned RegSize = RegisterVT.getSizeInBits();
4777          unsigned NumSignBits = LOI.NumSignBits;
4778          unsigned NumZeroBits = LOI.KnownZero.countLeadingOnes();
4779
4780          // FIXME: We capture more information than the dag can represent.  For
4781          // now, just use the tightest assertzext/assertsext possible.
4782          bool isSExt = true;
4783          EVT FromVT(MVT::Other);
4784          if (NumSignBits == RegSize)
4785            isSExt = true, FromVT = MVT::i1;   // ASSERT SEXT 1
4786          else if (NumZeroBits >= RegSize-1)
4787            isSExt = false, FromVT = MVT::i1;  // ASSERT ZEXT 1
4788          else if (NumSignBits > RegSize-8)
4789            isSExt = true, FromVT = MVT::i8;   // ASSERT SEXT 8
4790          else if (NumZeroBits >= RegSize-8)
4791            isSExt = false, FromVT = MVT::i8;  // ASSERT ZEXT 8
4792          else if (NumSignBits > RegSize-16)
4793            isSExt = true, FromVT = MVT::i16;  // ASSERT SEXT 16
4794          else if (NumZeroBits >= RegSize-16)
4795            isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16
4796          else if (NumSignBits > RegSize-32)
4797            isSExt = true, FromVT = MVT::i32;  // ASSERT SEXT 32
4798          else if (NumZeroBits >= RegSize-32)
4799            isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32
4800
4801          if (FromVT != MVT::Other)
4802            P = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
4803                            RegisterVT, P, DAG.getValueType(FromVT));
4804        }
4805      }
4806
4807      Parts[i] = P;
4808    }
4809
4810    Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(),
4811                                     NumRegs, RegisterVT, ValueVT);
4812    Part += NumRegs;
4813    Parts.clear();
4814  }
4815
4816  return DAG.getNode(ISD::MERGE_VALUES, dl,
4817                     DAG.getVTList(&ValueVTs[0], ValueVTs.size()),
4818                     &Values[0], ValueVTs.size());
4819}
4820
4821/// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
4822/// specified value into the registers specified by this object.  This uses
4823/// Chain/Flag as the input and updates them for the output Chain/Flag.
4824/// If the Flag pointer is NULL, no flag is used.
4825void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl,
4826                                 SDValue &Chain, SDValue *Flag) const {
4827  // Get the list of the values's legal parts.
4828  unsigned NumRegs = Regs.size();
4829  SmallVector<SDValue, 8> Parts(NumRegs);
4830  for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
4831    EVT ValueVT = ValueVTs[Value];
4832    unsigned NumParts = TLI->getNumRegisters(*DAG.getContext(), ValueVT);
4833    EVT RegisterVT = RegVTs[Value];
4834
4835    getCopyToParts(DAG, dl,
4836                   Val.getValue(Val.getResNo() + Value),
4837                   &Parts[Part], NumParts, RegisterVT);
4838    Part += NumParts;
4839  }
4840
4841  // Copy the parts into the registers.
4842  SmallVector<SDValue, 8> Chains(NumRegs);
4843  for (unsigned i = 0; i != NumRegs; ++i) {
4844    SDValue Part;
4845    if (Flag == 0) {
4846      Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
4847    } else {
4848      Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
4849      *Flag = Part.getValue(1);
4850    }
4851
4852    Chains[i] = Part.getValue(0);
4853  }
4854
4855  if (NumRegs == 1 || Flag)
4856    // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
4857    // flagged to it. That is the CopyToReg nodes and the user are considered
4858    // a single scheduling unit. If we create a TokenFactor and return it as
4859    // chain, then the TokenFactor is both a predecessor (operand) of the
4860    // user as well as a successor (the TF operands are flagged to the user).
4861    // c1, f1 = CopyToReg
4862    // c2, f2 = CopyToReg
4863    // c3     = TokenFactor c1, c2
4864    // ...
4865    //        = op c3, ..., f2
4866    Chain = Chains[NumRegs-1];
4867  else
4868    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0], NumRegs);
4869}
4870
4871/// AddInlineAsmOperands - Add this value to the specified inlineasm node
4872/// operand list.  This adds the code marker and includes the number of
4873/// values added into it.
4874void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
4875                                        unsigned MatchingIdx,
4876                                        SelectionDAG &DAG,
4877                                        std::vector<SDValue> &Ops) const {
4878  unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
4879  if (HasMatching)
4880    Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
4881  SDValue Res = DAG.getTargetConstant(Flag, MVT::i32);
4882  Ops.push_back(Res);
4883
4884  for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
4885    unsigned NumRegs = TLI->getNumRegisters(*DAG.getContext(), ValueVTs[Value]);
4886    EVT RegisterVT = RegVTs[Value];
4887    for (unsigned i = 0; i != NumRegs; ++i) {
4888      assert(Reg < Regs.size() && "Mismatch in # registers expected");
4889      Ops.push_back(DAG.getRegister(Regs[Reg++], RegisterVT));
4890    }
4891  }
4892}
4893
4894/// isAllocatableRegister - If the specified register is safe to allocate,
4895/// i.e. it isn't a stack pointer or some other special register, return the
4896/// register class for the register.  Otherwise, return null.
4897static const TargetRegisterClass *
4898isAllocatableRegister(unsigned Reg, MachineFunction &MF,
4899                      const TargetLowering &TLI,
4900                      const TargetRegisterInfo *TRI) {
4901  EVT FoundVT = MVT::Other;
4902  const TargetRegisterClass *FoundRC = 0;
4903  for (TargetRegisterInfo::regclass_iterator RCI = TRI->regclass_begin(),
4904       E = TRI->regclass_end(); RCI != E; ++RCI) {
4905    EVT ThisVT = MVT::Other;
4906
4907    const TargetRegisterClass *RC = *RCI;
4908    // If none of the value types for this register class are valid, we
4909    // can't use it.  For example, 64-bit reg classes on 32-bit targets.
4910    for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
4911         I != E; ++I) {
4912      if (TLI.isTypeLegal(*I)) {
4913        // If we have already found this register in a different register class,
4914        // choose the one with the largest VT specified.  For example, on
4915        // PowerPC, we favor f64 register classes over f32.
4916        if (FoundVT == MVT::Other || FoundVT.bitsLT(*I)) {
4917          ThisVT = *I;
4918          break;
4919        }
4920      }
4921    }
4922
4923    if (ThisVT == MVT::Other) continue;
4924
4925    // NOTE: This isn't ideal.  In particular, this might allocate the
4926    // frame pointer in functions that need it (due to them not being taken
4927    // out of allocation, because a variable sized allocation hasn't been seen
4928    // yet).  This is a slight code pessimization, but should still work.
4929    for (TargetRegisterClass::iterator I = RC->allocation_order_begin(MF),
4930         E = RC->allocation_order_end(MF); I != E; ++I)
4931      if (*I == Reg) {
4932        // We found a matching register class.  Keep looking at others in case
4933        // we find one with larger registers that this physreg is also in.
4934        FoundRC = RC;
4935        FoundVT = ThisVT;
4936        break;
4937      }
4938  }
4939  return FoundRC;
4940}
4941
4942
4943namespace llvm {
4944/// AsmOperandInfo - This contains information for each constraint that we are
4945/// lowering.
4946class VISIBILITY_HIDDEN SDISelAsmOperandInfo :
4947    public TargetLowering::AsmOperandInfo {
4948public:
4949  /// CallOperand - If this is the result output operand or a clobber
4950  /// this is null, otherwise it is the incoming operand to the CallInst.
4951  /// This gets modified as the asm is processed.
4952  SDValue CallOperand;
4953
4954  /// AssignedRegs - If this is a register or register class operand, this
4955  /// contains the set of register corresponding to the operand.
4956  RegsForValue AssignedRegs;
4957
4958  explicit SDISelAsmOperandInfo(const InlineAsm::ConstraintInfo &info)
4959    : TargetLowering::AsmOperandInfo(info), CallOperand(0,0) {
4960  }
4961
4962  /// MarkAllocatedRegs - Once AssignedRegs is set, mark the assigned registers
4963  /// busy in OutputRegs/InputRegs.
4964  void MarkAllocatedRegs(bool isOutReg, bool isInReg,
4965                         std::set<unsigned> &OutputRegs,
4966                         std::set<unsigned> &InputRegs,
4967                         const TargetRegisterInfo &TRI) const {
4968    if (isOutReg) {
4969      for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i)
4970        MarkRegAndAliases(AssignedRegs.Regs[i], OutputRegs, TRI);
4971    }
4972    if (isInReg) {
4973      for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i)
4974        MarkRegAndAliases(AssignedRegs.Regs[i], InputRegs, TRI);
4975    }
4976  }
4977
4978  /// getCallOperandValEVT - Return the EVT of the Value* that this operand
4979  /// corresponds to.  If there is no Value* for this operand, it returns
4980  /// MVT::Other.
4981  EVT getCallOperandValEVT(LLVMContext &Context,
4982                           const TargetLowering &TLI,
4983                           const TargetData *TD) const {
4984    if (CallOperandVal == 0) return MVT::Other;
4985
4986    if (isa<BasicBlock>(CallOperandVal))
4987      return TLI.getPointerTy();
4988
4989    const llvm::Type *OpTy = CallOperandVal->getType();
4990
4991    // If this is an indirect operand, the operand is a pointer to the
4992    // accessed type.
4993    if (isIndirect) {
4994      const llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
4995      if (!PtrTy)
4996        llvm_report_error("Indirect operand for inline asm not a pointer!");
4997      OpTy = PtrTy->getElementType();
4998    }
4999
5000    // If OpTy is not a single value, it may be a struct/union that we
5001    // can tile with integers.
5002    if (!OpTy->isSingleValueType() && OpTy->isSized()) {
5003      unsigned BitSize = TD->getTypeSizeInBits(OpTy);
5004      switch (BitSize) {
5005      default: break;
5006      case 1:
5007      case 8:
5008      case 16:
5009      case 32:
5010      case 64:
5011      case 128:
5012        OpTy = IntegerType::get(Context, BitSize);
5013        break;
5014      }
5015    }
5016
5017    return TLI.getValueType(OpTy, true);
5018  }
5019
5020private:
5021  /// MarkRegAndAliases - Mark the specified register and all aliases in the
5022  /// specified set.
5023  static void MarkRegAndAliases(unsigned Reg, std::set<unsigned> &Regs,
5024                                const TargetRegisterInfo &TRI) {
5025    assert(TargetRegisterInfo::isPhysicalRegister(Reg) && "Isn't a physreg");
5026    Regs.insert(Reg);
5027    if (const unsigned *Aliases = TRI.getAliasSet(Reg))
5028      for (; *Aliases; ++Aliases)
5029        Regs.insert(*Aliases);
5030  }
5031};
5032} // end llvm namespace.
5033
5034
5035/// GetRegistersForValue - Assign registers (virtual or physical) for the
5036/// specified operand.  We prefer to assign virtual registers, to allow the
5037/// register allocator to handle the assignment process.  However, if the asm
5038/// uses features that we can't model on machineinstrs, we have SDISel do the
5039/// allocation.  This produces generally horrible, but correct, code.
5040///
5041///   OpInfo describes the operand.
5042///   Input and OutputRegs are the set of already allocated physical registers.
5043///
5044void SelectionDAGBuilder::
5045GetRegistersForValue(SDISelAsmOperandInfo &OpInfo,
5046                     std::set<unsigned> &OutputRegs,
5047                     std::set<unsigned> &InputRegs) {
5048  LLVMContext &Context = FuncInfo.Fn->getContext();
5049
5050  // Compute whether this value requires an input register, an output register,
5051  // or both.
5052  bool isOutReg = false;
5053  bool isInReg = false;
5054  switch (OpInfo.Type) {
5055  case InlineAsm::isOutput:
5056    isOutReg = true;
5057
5058    // If there is an input constraint that matches this, we need to reserve
5059    // the input register so no other inputs allocate to it.
5060    isInReg = OpInfo.hasMatchingInput();
5061    break;
5062  case InlineAsm::isInput:
5063    isInReg = true;
5064    isOutReg = false;
5065    break;
5066  case InlineAsm::isClobber:
5067    isOutReg = true;
5068    isInReg = true;
5069    break;
5070  }
5071
5072
5073  MachineFunction &MF = DAG.getMachineFunction();
5074  SmallVector<unsigned, 4> Regs;
5075
5076  // If this is a constraint for a single physreg, or a constraint for a
5077  // register class, find it.
5078  std::pair<unsigned, const TargetRegisterClass*> PhysReg =
5079    TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
5080                                     OpInfo.ConstraintVT);
5081
5082  unsigned NumRegs = 1;
5083  if (OpInfo.ConstraintVT != MVT::Other) {
5084    // If this is a FP input in an integer register (or visa versa) insert a bit
5085    // cast of the input value.  More generally, handle any case where the input
5086    // value disagrees with the register class we plan to stick this in.
5087    if (OpInfo.Type == InlineAsm::isInput &&
5088        PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) {
5089      // Try to convert to the first EVT that the reg class contains.  If the
5090      // types are identical size, use a bitcast to convert (e.g. two differing
5091      // vector types).
5092      EVT RegVT = *PhysReg.second->vt_begin();
5093      if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) {
5094        OpInfo.CallOperand = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(),
5095                                         RegVT, OpInfo.CallOperand);
5096        OpInfo.ConstraintVT = RegVT;
5097      } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
5098        // If the input is a FP value and we want it in FP registers, do a
5099        // bitcast to the corresponding integer type.  This turns an f64 value
5100        // into i64, which can be passed with two i32 values on a 32-bit
5101        // machine.
5102        RegVT = EVT::getIntegerVT(Context,
5103                                  OpInfo.ConstraintVT.getSizeInBits());
5104        OpInfo.CallOperand = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(),
5105                                         RegVT, OpInfo.CallOperand);
5106        OpInfo.ConstraintVT = RegVT;
5107      }
5108    }
5109
5110    NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT);
5111  }
5112
5113  EVT RegVT;
5114  EVT ValueVT = OpInfo.ConstraintVT;
5115
5116  // If this is a constraint for a specific physical register, like {r17},
5117  // assign it now.
5118  if (unsigned AssignedReg = PhysReg.first) {
5119    const TargetRegisterClass *RC = PhysReg.second;
5120    if (OpInfo.ConstraintVT == MVT::Other)
5121      ValueVT = *RC->vt_begin();
5122
5123    // Get the actual register value type.  This is important, because the user
5124    // may have asked for (e.g.) the AX register in i32 type.  We need to
5125    // remember that AX is actually i16 to get the right extension.
5126    RegVT = *RC->vt_begin();
5127
5128    // This is a explicit reference to a physical register.
5129    Regs.push_back(AssignedReg);
5130
5131    // If this is an expanded reference, add the rest of the regs to Regs.
5132    if (NumRegs != 1) {
5133      TargetRegisterClass::iterator I = RC->begin();
5134      for (; *I != AssignedReg; ++I)
5135        assert(I != RC->end() && "Didn't find reg!");
5136
5137      // Already added the first reg.
5138      --NumRegs; ++I;
5139      for (; NumRegs; --NumRegs, ++I) {
5140        assert(I != RC->end() && "Ran out of registers to allocate!");
5141        Regs.push_back(*I);
5142      }
5143    }
5144
5145    OpInfo.AssignedRegs = RegsForValue(TLI, Regs, RegVT, ValueVT);
5146    const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
5147    OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI);
5148    return;
5149  }
5150
5151  // Otherwise, if this was a reference to an LLVM register class, create vregs
5152  // for this reference.
5153  if (const TargetRegisterClass *RC = PhysReg.second) {
5154    RegVT = *RC->vt_begin();
5155    if (OpInfo.ConstraintVT == MVT::Other)
5156      ValueVT = RegVT;
5157
5158    // Create the appropriate number of virtual registers.
5159    MachineRegisterInfo &RegInfo = MF.getRegInfo();
5160    for (; NumRegs; --NumRegs)
5161      Regs.push_back(RegInfo.createVirtualRegister(RC));
5162
5163    OpInfo.AssignedRegs = RegsForValue(TLI, Regs, RegVT, ValueVT);
5164    return;
5165  }
5166
5167  // This is a reference to a register class that doesn't directly correspond
5168  // to an LLVM register class.  Allocate NumRegs consecutive, available,
5169  // registers from the class.
5170  std::vector<unsigned> RegClassRegs
5171    = TLI.getRegClassForInlineAsmConstraint(OpInfo.ConstraintCode,
5172                                            OpInfo.ConstraintVT);
5173
5174  const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
5175  unsigned NumAllocated = 0;
5176  for (unsigned i = 0, e = RegClassRegs.size(); i != e; ++i) {
5177    unsigned Reg = RegClassRegs[i];
5178    // See if this register is available.
5179    if ((isOutReg && OutputRegs.count(Reg)) ||   // Already used.
5180        (isInReg  && InputRegs.count(Reg))) {    // Already used.
5181      // Make sure we find consecutive registers.
5182      NumAllocated = 0;
5183      continue;
5184    }
5185
5186    // Check to see if this register is allocatable (i.e. don't give out the
5187    // stack pointer).
5188    const TargetRegisterClass *RC = isAllocatableRegister(Reg, MF, TLI, TRI);
5189    if (!RC) {        // Couldn't allocate this register.
5190      // Reset NumAllocated to make sure we return consecutive registers.
5191      NumAllocated = 0;
5192      continue;
5193    }
5194
5195    // Okay, this register is good, we can use it.
5196    ++NumAllocated;
5197
5198    // If we allocated enough consecutive registers, succeed.
5199    if (NumAllocated == NumRegs) {
5200      unsigned RegStart = (i-NumAllocated)+1;
5201      unsigned RegEnd   = i+1;
5202      // Mark all of the allocated registers used.
5203      for (unsigned i = RegStart; i != RegEnd; ++i)
5204        Regs.push_back(RegClassRegs[i]);
5205
5206      OpInfo.AssignedRegs = RegsForValue(TLI, Regs, *RC->vt_begin(),
5207                                         OpInfo.ConstraintVT);
5208      OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI);
5209      return;
5210    }
5211  }
5212
5213  // Otherwise, we couldn't allocate enough registers for this.
5214}
5215
5216/// hasInlineAsmMemConstraint - Return true if the inline asm instruction being
5217/// processed uses a memory 'm' constraint.
5218static bool
5219hasInlineAsmMemConstraint(std::vector<InlineAsm::ConstraintInfo> &CInfos,
5220                          const TargetLowering &TLI) {
5221  for (unsigned i = 0, e = CInfos.size(); i != e; ++i) {
5222    InlineAsm::ConstraintInfo &CI = CInfos[i];
5223    for (unsigned j = 0, ee = CI.Codes.size(); j != ee; ++j) {
5224      TargetLowering::ConstraintType CType = TLI.getConstraintType(CI.Codes[j]);
5225      if (CType == TargetLowering::C_Memory)
5226        return true;
5227    }
5228
5229    // Indirect operand accesses access memory.
5230    if (CI.isIndirect)
5231      return true;
5232  }
5233
5234  return false;
5235}
5236
5237/// visitInlineAsm - Handle a call to an InlineAsm object.
5238///
5239void SelectionDAGBuilder::visitInlineAsm(CallSite CS) {
5240  InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
5241
5242  /// ConstraintOperands - Information about all of the constraints.
5243  std::vector<SDISelAsmOperandInfo> ConstraintOperands;
5244
5245  std::set<unsigned> OutputRegs, InputRegs;
5246
5247  // Do a prepass over the constraints, canonicalizing them, and building up the
5248  // ConstraintOperands list.
5249  std::vector<InlineAsm::ConstraintInfo>
5250    ConstraintInfos = IA->ParseConstraints();
5251
5252  bool hasMemory = hasInlineAsmMemConstraint(ConstraintInfos, TLI);
5253
5254  SDValue Chain, Flag;
5255
5256  // We won't need to flush pending loads if this asm doesn't touch
5257  // memory and is nonvolatile.
5258  if (hasMemory || IA->hasSideEffects())
5259    Chain = getRoot();
5260  else
5261    Chain = DAG.getRoot();
5262
5263  unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
5264  unsigned ResNo = 0;   // ResNo - The result number of the next output.
5265  for (unsigned i = 0, e = ConstraintInfos.size(); i != e; ++i) {
5266    ConstraintOperands.push_back(SDISelAsmOperandInfo(ConstraintInfos[i]));
5267    SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
5268
5269    EVT OpVT = MVT::Other;
5270
5271    // Compute the value type for each operand.
5272    switch (OpInfo.Type) {
5273    case InlineAsm::isOutput:
5274      // Indirect outputs just consume an argument.
5275      if (OpInfo.isIndirect) {
5276        OpInfo.CallOperandVal = CS.getArgument(ArgNo++);
5277        break;
5278      }
5279
5280      // The return value of the call is this value.  As such, there is no
5281      // corresponding argument.
5282      assert(!CS.getType()->isVoidTy() &&
5283             "Bad inline asm!");
5284      if (const StructType *STy = dyn_cast<StructType>(CS.getType())) {
5285        OpVT = TLI.getValueType(STy->getElementType(ResNo));
5286      } else {
5287        assert(ResNo == 0 && "Asm only has one result!");
5288        OpVT = TLI.getValueType(CS.getType());
5289      }
5290      ++ResNo;
5291      break;
5292    case InlineAsm::isInput:
5293      OpInfo.CallOperandVal = CS.getArgument(ArgNo++);
5294      break;
5295    case InlineAsm::isClobber:
5296      // Nothing to do.
5297      break;
5298    }
5299
5300    // If this is an input or an indirect output, process the call argument.
5301    // BasicBlocks are labels, currently appearing only in asm's.
5302    if (OpInfo.CallOperandVal) {
5303      // Strip bitcasts, if any.  This mostly comes up for functions.
5304      OpInfo.CallOperandVal = OpInfo.CallOperandVal->stripPointerCasts();
5305
5306      if (BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) {
5307        OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
5308      } else {
5309        OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
5310      }
5311
5312      OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, TD);
5313    }
5314
5315    OpInfo.ConstraintVT = OpVT;
5316  }
5317
5318  // Second pass over the constraints: compute which constraint option to use
5319  // and assign registers to constraints that want a specific physreg.
5320  for (unsigned i = 0, e = ConstraintInfos.size(); i != e; ++i) {
5321    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
5322
5323    // If this is an output operand with a matching input operand, look up the
5324    // matching input. If their types mismatch, e.g. one is an integer, the
5325    // other is floating point, or their sizes are different, flag it as an
5326    // error.
5327    if (OpInfo.hasMatchingInput()) {
5328      SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
5329      if (OpInfo.ConstraintVT != Input.ConstraintVT) {
5330        if ((OpInfo.ConstraintVT.isInteger() !=
5331             Input.ConstraintVT.isInteger()) ||
5332            (OpInfo.ConstraintVT.getSizeInBits() !=
5333             Input.ConstraintVT.getSizeInBits())) {
5334          llvm_report_error("Unsupported asm: input constraint"
5335                            " with a matching output constraint of incompatible"
5336                            " type!");
5337        }
5338        Input.ConstraintVT = OpInfo.ConstraintVT;
5339      }
5340    }
5341
5342    // Compute the constraint code and ConstraintType to use.
5343    TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, hasMemory, &DAG);
5344
5345    // If this is a memory input, and if the operand is not indirect, do what we
5346    // need to to provide an address for the memory input.
5347    if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
5348        !OpInfo.isIndirect) {
5349      assert(OpInfo.Type == InlineAsm::isInput &&
5350             "Can only indirectify direct input operands!");
5351
5352      // Memory operands really want the address of the value.  If we don't have
5353      // an indirect input, put it in the constpool if we can, otherwise spill
5354      // it to a stack slot.
5355
5356      // If the operand is a float, integer, or vector constant, spill to a
5357      // constant pool entry to get its address.
5358      Value *OpVal = OpInfo.CallOperandVal;
5359      if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
5360          isa<ConstantVector>(OpVal)) {
5361        OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal),
5362                                                 TLI.getPointerTy());
5363      } else {
5364        // Otherwise, create a stack slot and emit a store to it before the
5365        // asm.
5366        const Type *Ty = OpVal->getType();
5367        uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty);
5368        unsigned Align  = TLI.getTargetData()->getPrefTypeAlignment(Ty);
5369        MachineFunction &MF = DAG.getMachineFunction();
5370        int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
5371        SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy());
5372        Chain = DAG.getStore(Chain, getCurDebugLoc(),
5373                             OpInfo.CallOperand, StackSlot, NULL, 0,
5374                             false, false, 0);
5375        OpInfo.CallOperand = StackSlot;
5376      }
5377
5378      // There is no longer a Value* corresponding to this operand.
5379      OpInfo.CallOperandVal = 0;
5380
5381      // It is now an indirect operand.
5382      OpInfo.isIndirect = true;
5383    }
5384
5385    // If this constraint is for a specific register, allocate it before
5386    // anything else.
5387    if (OpInfo.ConstraintType == TargetLowering::C_Register)
5388      GetRegistersForValue(OpInfo, OutputRegs, InputRegs);
5389  }
5390
5391  ConstraintInfos.clear();
5392
5393  // Second pass - Loop over all of the operands, assigning virtual or physregs
5394  // to register class operands.
5395  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
5396    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
5397
5398    // C_Register operands have already been allocated, Other/Memory don't need
5399    // to be.
5400    if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass)
5401      GetRegistersForValue(OpInfo, OutputRegs, InputRegs);
5402  }
5403
5404  // AsmNodeOperands - The operands for the ISD::INLINEASM node.
5405  std::vector<SDValue> AsmNodeOperands;
5406  AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
5407  AsmNodeOperands.push_back(
5408          DAG.getTargetExternalSymbol(IA->getAsmString().c_str(),
5409                                      TLI.getPointerTy()));
5410
5411  // If we have a !srcloc metadata node associated with it, we want to attach
5412  // this to the ultimately generated inline asm machineinstr.  To do this, we
5413  // pass in the third operand as this (potentially null) inline asm MDNode.
5414  const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc");
5415  AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
5416
5417  // Loop over all of the inputs, copying the operand values into the
5418  // appropriate registers and processing the output regs.
5419  RegsForValue RetValRegs;
5420
5421  // IndirectStoresToEmit - The set of stores to emit after the inline asm node.
5422  std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit;
5423
5424  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
5425    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
5426
5427    switch (OpInfo.Type) {
5428    case InlineAsm::isOutput: {
5429      if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass &&
5430          OpInfo.ConstraintType != TargetLowering::C_Register) {
5431        // Memory output, or 'other' output (e.g. 'X' constraint).
5432        assert(OpInfo.isIndirect && "Memory output must be indirect operand");
5433
5434        // Add information to the INLINEASM node to know about this output.
5435        unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
5436        AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags,
5437                                                        TLI.getPointerTy()));
5438        AsmNodeOperands.push_back(OpInfo.CallOperand);
5439        break;
5440      }
5441
5442      // Otherwise, this is a register or register class output.
5443
5444      // Copy the output from the appropriate register.  Find a register that
5445      // we can use.
5446      if (OpInfo.AssignedRegs.Regs.empty())
5447        llvm_report_error("Couldn't allocate output reg for"
5448                          " constraint '" + OpInfo.ConstraintCode + "'!");
5449
5450      // If this is an indirect operand, store through the pointer after the
5451      // asm.
5452      if (OpInfo.isIndirect) {
5453        IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs,
5454                                                      OpInfo.CallOperandVal));
5455      } else {
5456        // This is the result value of the call.
5457        assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
5458        // Concatenate this output onto the outputs list.
5459        RetValRegs.append(OpInfo.AssignedRegs);
5460      }
5461
5462      // Add information to the INLINEASM node to know that this register is
5463      // set.
5464      OpInfo.AssignedRegs.AddInlineAsmOperands(OpInfo.isEarlyClobber ?
5465                                           InlineAsm::Kind_RegDefEarlyClobber :
5466                                               InlineAsm::Kind_RegDef,
5467                                               false,
5468                                               0,
5469                                               DAG,
5470                                               AsmNodeOperands);
5471      break;
5472    }
5473    case InlineAsm::isInput: {
5474      SDValue InOperandVal = OpInfo.CallOperand;
5475
5476      if (OpInfo.isMatchingInputConstraint()) {   // Matching constraint?
5477        // If this is required to match an output register we have already set,
5478        // just use its register.
5479        unsigned OperandNo = OpInfo.getMatchedOperand();
5480
5481        // Scan until we find the definition we already emitted of this operand.
5482        // When we find it, create a RegsForValue operand.
5483        unsigned CurOp = InlineAsm::Op_FirstOperand;
5484        for (; OperandNo; --OperandNo) {
5485          // Advance to the next operand.
5486          unsigned OpFlag =
5487            cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
5488          assert((InlineAsm::isRegDefKind(OpFlag) ||
5489                  InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||
5490                  InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?");
5491          CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1;
5492        }
5493
5494        unsigned OpFlag =
5495          cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
5496        if (InlineAsm::isRegDefKind(OpFlag) ||
5497            InlineAsm::isRegDefEarlyClobberKind(OpFlag)) {
5498          // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
5499          if (OpInfo.isIndirect)
5500            llvm_report_error("Don't know how to handle tied indirect "
5501                              "register inputs yet!");
5502          RegsForValue MatchedRegs;
5503          MatchedRegs.TLI = &TLI;
5504          MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType());
5505          EVT RegVT = AsmNodeOperands[CurOp+1].getValueType();
5506          MatchedRegs.RegVTs.push_back(RegVT);
5507          MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo();
5508          for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag);
5509               i != e; ++i)
5510            MatchedRegs.Regs.push_back
5511              (RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT)));
5512
5513          // Use the produced MatchedRegs object to
5514          MatchedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(),
5515                                    Chain, &Flag);
5516          MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse,
5517                                           true, OpInfo.getMatchedOperand(),
5518                                           DAG, AsmNodeOperands);
5519          break;
5520        }
5521
5522        assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!");
5523        assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 &&
5524               "Unexpected number of operands");
5525        // Add information to the INLINEASM node to know about this input.
5526        // See InlineAsm.h isUseOperandTiedToDef.
5527        OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
5528                                                    OpInfo.getMatchedOperand());
5529        AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlag,
5530                                                        TLI.getPointerTy()));
5531        AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
5532        break;
5533      }
5534
5535      if (OpInfo.ConstraintType == TargetLowering::C_Other) {
5536        assert(!OpInfo.isIndirect &&
5537               "Don't know how to handle indirect other inputs yet!");
5538
5539        std::vector<SDValue> Ops;
5540        TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode[0],
5541                                         hasMemory, Ops, DAG);
5542        if (Ops.empty()) {
5543          llvm_report_error("Invalid operand for inline asm"
5544                            " constraint '" + OpInfo.ConstraintCode + "'!");
5545        }
5546
5547        // Add information to the INLINEASM node to know about this input.
5548        unsigned ResOpType =
5549          InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
5550        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
5551                                                        TLI.getPointerTy()));
5552        AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
5553        break;
5554      }
5555
5556      if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
5557        assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
5558        assert(InOperandVal.getValueType() == TLI.getPointerTy() &&
5559               "Memory operands expect pointer values");
5560
5561        // Add information to the INLINEASM node to know about this input.
5562        unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
5563        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
5564                                                        TLI.getPointerTy()));
5565        AsmNodeOperands.push_back(InOperandVal);
5566        break;
5567      }
5568
5569      assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
5570              OpInfo.ConstraintType == TargetLowering::C_Register) &&
5571             "Unknown constraint type!");
5572      assert(!OpInfo.isIndirect &&
5573             "Don't know how to handle indirect register inputs yet!");
5574
5575      // Copy the input into the appropriate registers.
5576      if (OpInfo.AssignedRegs.Regs.empty() ||
5577          !OpInfo.AssignedRegs.areValueTypesLegal()) {
5578        llvm_report_error("Couldn't allocate input reg for"
5579                          " constraint '"+ OpInfo.ConstraintCode +"'!");
5580      }
5581
5582      OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(),
5583                                        Chain, &Flag);
5584
5585      OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0,
5586                                               DAG, AsmNodeOperands);
5587      break;
5588    }
5589    case InlineAsm::isClobber: {
5590      // Add the clobbered value to the operand list, so that the register
5591      // allocator is aware that the physreg got clobbered.
5592      if (!OpInfo.AssignedRegs.Regs.empty())
5593        OpInfo.AssignedRegs.AddInlineAsmOperands(
5594                                            InlineAsm::Kind_RegDefEarlyClobber,
5595                                                 false, 0, DAG,
5596                                                 AsmNodeOperands);
5597      break;
5598    }
5599    }
5600  }
5601
5602  // Finish up input operands.  Set the input chain and add the flag last.
5603  AsmNodeOperands[0] = Chain;
5604  if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
5605
5606  Chain = DAG.getNode(ISD::INLINEASM, getCurDebugLoc(),
5607                      DAG.getVTList(MVT::Other, MVT::Flag),
5608                      &AsmNodeOperands[0], AsmNodeOperands.size());
5609  Flag = Chain.getValue(1);
5610
5611  // If this asm returns a register value, copy the result from that register
5612  // and set it as the value of the call.
5613  if (!RetValRegs.Regs.empty()) {
5614    SDValue Val = RetValRegs.getCopyFromRegs(DAG, getCurDebugLoc(),
5615                                             Chain, &Flag);
5616
5617    // FIXME: Why don't we do this for inline asms with MRVs?
5618    if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) {
5619      EVT ResultType = TLI.getValueType(CS.getType());
5620
5621      // If any of the results of the inline asm is a vector, it may have the
5622      // wrong width/num elts.  This can happen for register classes that can
5623      // contain multiple different value types.  The preg or vreg allocated may
5624      // not have the same VT as was expected.  Convert it to the right type
5625      // with bit_convert.
5626      if (ResultType != Val.getValueType() && Val.getValueType().isVector()) {
5627        Val = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(),
5628                          ResultType, Val);
5629
5630      } else if (ResultType != Val.getValueType() &&
5631                 ResultType.isInteger() && Val.getValueType().isInteger()) {
5632        // If a result value was tied to an input value, the computed result may
5633        // have a wider width than the expected result.  Extract the relevant
5634        // portion.
5635        Val = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), ResultType, Val);
5636      }
5637
5638      assert(ResultType == Val.getValueType() && "Asm result value mismatch!");
5639    }
5640
5641    setValue(CS.getInstruction(), Val);
5642    // Don't need to use this as a chain in this case.
5643    if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty())
5644      return;
5645  }
5646
5647  std::vector<std::pair<SDValue, Value*> > StoresToEmit;
5648
5649  // Process indirect outputs, first output all of the flagged copies out of
5650  // physregs.
5651  for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
5652    RegsForValue &OutRegs = IndirectStoresToEmit[i].first;
5653    Value *Ptr = IndirectStoresToEmit[i].second;
5654    SDValue OutVal = OutRegs.getCopyFromRegs(DAG, getCurDebugLoc(),
5655                                             Chain, &Flag);
5656    StoresToEmit.push_back(std::make_pair(OutVal, Ptr));
5657
5658  }
5659
5660  // Emit the non-flagged stores from the physregs.
5661  SmallVector<SDValue, 8> OutChains;
5662  for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) {
5663    SDValue Val = DAG.getStore(Chain, getCurDebugLoc(),
5664                               StoresToEmit[i].first,
5665                               getValue(StoresToEmit[i].second),
5666                               StoresToEmit[i].second, 0,
5667                               false, false, 0);
5668    OutChains.push_back(Val);
5669  }
5670
5671  if (!OutChains.empty())
5672    Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
5673                        &OutChains[0], OutChains.size());
5674
5675  DAG.setRoot(Chain);
5676}
5677
5678void SelectionDAGBuilder::visitVAStart(CallInst &I) {
5679  DAG.setRoot(DAG.getNode(ISD::VASTART, getCurDebugLoc(),
5680                          MVT::Other, getRoot(),
5681                          getValue(I.getOperand(1)),
5682                          DAG.getSrcValue(I.getOperand(1))));
5683}
5684
5685void SelectionDAGBuilder::visitVAArg(VAArgInst &I) {
5686  SDValue V = DAG.getVAArg(TLI.getValueType(I.getType()), getCurDebugLoc(),
5687                           getRoot(), getValue(I.getOperand(0)),
5688                           DAG.getSrcValue(I.getOperand(0)));
5689  setValue(&I, V);
5690  DAG.setRoot(V.getValue(1));
5691}
5692
5693void SelectionDAGBuilder::visitVAEnd(CallInst &I) {
5694  DAG.setRoot(DAG.getNode(ISD::VAEND, getCurDebugLoc(),
5695                          MVT::Other, getRoot(),
5696                          getValue(I.getOperand(1)),
5697                          DAG.getSrcValue(I.getOperand(1))));
5698}
5699
5700void SelectionDAGBuilder::visitVACopy(CallInst &I) {
5701  DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurDebugLoc(),
5702                          MVT::Other, getRoot(),
5703                          getValue(I.getOperand(1)),
5704                          getValue(I.getOperand(2)),
5705                          DAG.getSrcValue(I.getOperand(1)),
5706                          DAG.getSrcValue(I.getOperand(2))));
5707}
5708
5709/// TargetLowering::LowerCallTo - This is the default LowerCallTo
5710/// implementation, which just calls LowerCall.
5711/// FIXME: When all targets are
5712/// migrated to using LowerCall, this hook should be integrated into SDISel.
5713std::pair<SDValue, SDValue>
5714TargetLowering::LowerCallTo(SDValue Chain, const Type *RetTy,
5715                            bool RetSExt, bool RetZExt, bool isVarArg,
5716                            bool isInreg, unsigned NumFixedArgs,
5717                            CallingConv::ID CallConv, bool isTailCall,
5718                            bool isReturnValueUsed,
5719                            SDValue Callee,
5720                            ArgListTy &Args, SelectionDAG &DAG, DebugLoc dl) {
5721  // Handle all of the outgoing arguments.
5722  SmallVector<ISD::OutputArg, 32> Outs;
5723  for (unsigned i = 0, e = Args.size(); i != e; ++i) {
5724    SmallVector<EVT, 4> ValueVTs;
5725    ComputeValueVTs(*this, Args[i].Ty, ValueVTs);
5726    for (unsigned Value = 0, NumValues = ValueVTs.size();
5727         Value != NumValues; ++Value) {
5728      EVT VT = ValueVTs[Value];
5729      const Type *ArgTy = VT.getTypeForEVT(RetTy->getContext());
5730      SDValue Op = SDValue(Args[i].Node.getNode(),
5731                           Args[i].Node.getResNo() + Value);
5732      ISD::ArgFlagsTy Flags;
5733      unsigned OriginalAlignment =
5734        getTargetData()->getABITypeAlignment(ArgTy);
5735
5736      if (Args[i].isZExt)
5737        Flags.setZExt();
5738      if (Args[i].isSExt)
5739        Flags.setSExt();
5740      if (Args[i].isInReg)
5741        Flags.setInReg();
5742      if (Args[i].isSRet)
5743        Flags.setSRet();
5744      if (Args[i].isByVal) {
5745        Flags.setByVal();
5746        const PointerType *Ty = cast<PointerType>(Args[i].Ty);
5747        const Type *ElementTy = Ty->getElementType();
5748        unsigned FrameAlign = getByValTypeAlignment(ElementTy);
5749        unsigned FrameSize  = getTargetData()->getTypeAllocSize(ElementTy);
5750        // For ByVal, alignment should come from FE.  BE will guess if this
5751        // info is not there but there are cases it cannot get right.
5752        if (Args[i].Alignment)
5753          FrameAlign = Args[i].Alignment;
5754        Flags.setByValAlign(FrameAlign);
5755        Flags.setByValSize(FrameSize);
5756      }
5757      if (Args[i].isNest)
5758        Flags.setNest();
5759      Flags.setOrigAlign(OriginalAlignment);
5760
5761      EVT PartVT = getRegisterType(RetTy->getContext(), VT);
5762      unsigned NumParts = getNumRegisters(RetTy->getContext(), VT);
5763      SmallVector<SDValue, 4> Parts(NumParts);
5764      ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
5765
5766      if (Args[i].isSExt)
5767        ExtendKind = ISD::SIGN_EXTEND;
5768      else if (Args[i].isZExt)
5769        ExtendKind = ISD::ZERO_EXTEND;
5770
5771      getCopyToParts(DAG, dl, Op, &Parts[0], NumParts,
5772                     PartVT, ExtendKind);
5773
5774      for (unsigned j = 0; j != NumParts; ++j) {
5775        // if it isn't first piece, alignment must be 1
5776        ISD::OutputArg MyFlags(Flags, Parts[j], i < NumFixedArgs);
5777        if (NumParts > 1 && j == 0)
5778          MyFlags.Flags.setSplit();
5779        else if (j != 0)
5780          MyFlags.Flags.setOrigAlign(1);
5781
5782        Outs.push_back(MyFlags);
5783      }
5784    }
5785  }
5786
5787  // Handle the incoming return values from the call.
5788  SmallVector<ISD::InputArg, 32> Ins;
5789  SmallVector<EVT, 4> RetTys;
5790  ComputeValueVTs(*this, RetTy, RetTys);
5791  for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
5792    EVT VT = RetTys[I];
5793    EVT RegisterVT = getRegisterType(RetTy->getContext(), VT);
5794    unsigned NumRegs = getNumRegisters(RetTy->getContext(), VT);
5795    for (unsigned i = 0; i != NumRegs; ++i) {
5796      ISD::InputArg MyFlags;
5797      MyFlags.VT = RegisterVT;
5798      MyFlags.Used = isReturnValueUsed;
5799      if (RetSExt)
5800        MyFlags.Flags.setSExt();
5801      if (RetZExt)
5802        MyFlags.Flags.setZExt();
5803      if (isInreg)
5804        MyFlags.Flags.setInReg();
5805      Ins.push_back(MyFlags);
5806    }
5807  }
5808
5809  SmallVector<SDValue, 4> InVals;
5810  Chain = LowerCall(Chain, Callee, CallConv, isVarArg, isTailCall,
5811                    Outs, Ins, dl, DAG, InVals);
5812
5813  // Verify that the target's LowerCall behaved as expected.
5814  assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
5815         "LowerCall didn't return a valid chain!");
5816  assert((!isTailCall || InVals.empty()) &&
5817         "LowerCall emitted a return value for a tail call!");
5818  assert((isTailCall || InVals.size() == Ins.size()) &&
5819         "LowerCall didn't emit the correct number of values!");
5820
5821  // For a tail call, the return value is merely live-out and there aren't
5822  // any nodes in the DAG representing it. Return a special value to
5823  // indicate that a tail call has been emitted and no more Instructions
5824  // should be processed in the current block.
5825  if (isTailCall) {
5826    DAG.setRoot(Chain);
5827    return std::make_pair(SDValue(), SDValue());
5828  }
5829
5830  DEBUG(for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
5831          assert(InVals[i].getNode() &&
5832                 "LowerCall emitted a null value!");
5833          assert(Ins[i].VT == InVals[i].getValueType() &&
5834                 "LowerCall emitted a value with the wrong type!");
5835        });
5836
5837  // Collect the legal value parts into potentially illegal values
5838  // that correspond to the original function's return values.
5839  ISD::NodeType AssertOp = ISD::DELETED_NODE;
5840  if (RetSExt)
5841    AssertOp = ISD::AssertSext;
5842  else if (RetZExt)
5843    AssertOp = ISD::AssertZext;
5844  SmallVector<SDValue, 4> ReturnValues;
5845  unsigned CurReg = 0;
5846  for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
5847    EVT VT = RetTys[I];
5848    EVT RegisterVT = getRegisterType(RetTy->getContext(), VT);
5849    unsigned NumRegs = getNumRegisters(RetTy->getContext(), VT);
5850
5851    ReturnValues.push_back(getCopyFromParts(DAG, dl, &InVals[CurReg],
5852                                            NumRegs, RegisterVT, VT,
5853                                            AssertOp));
5854    CurReg += NumRegs;
5855  }
5856
5857  // For a function returning void, there is no return value. We can't create
5858  // such a node, so we just return a null return value in that case. In
5859  // that case, nothing will actualy look at the value.
5860  if (ReturnValues.empty())
5861    return std::make_pair(SDValue(), Chain);
5862
5863  SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
5864                            DAG.getVTList(&RetTys[0], RetTys.size()),
5865                            &ReturnValues[0], ReturnValues.size());
5866  return std::make_pair(Res, Chain);
5867}
5868
5869void TargetLowering::LowerOperationWrapper(SDNode *N,
5870                                           SmallVectorImpl<SDValue> &Results,
5871                                           SelectionDAG &DAG) {
5872  SDValue Res = LowerOperation(SDValue(N, 0), DAG);
5873  if (Res.getNode())
5874    Results.push_back(Res);
5875}
5876
5877SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) {
5878  llvm_unreachable("LowerOperation not implemented for this target!");
5879  return SDValue();
5880}
5881
5882void SelectionDAGBuilder::CopyValueToVirtualRegister(Value *V, unsigned Reg) {
5883  SDValue Op = getValue(V);
5884  assert((Op.getOpcode() != ISD::CopyFromReg ||
5885          cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
5886         "Copy from a reg to the same reg!");
5887  assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg");
5888
5889  RegsForValue RFV(V->getContext(), TLI, Reg, V->getType());
5890  SDValue Chain = DAG.getEntryNode();
5891  RFV.getCopyToRegs(Op, DAG, getCurDebugLoc(), Chain, 0);
5892  PendingExports.push_back(Chain);
5893}
5894
5895#include "llvm/CodeGen/SelectionDAGISel.h"
5896
5897void SelectionDAGISel::LowerArguments(BasicBlock *LLVMBB) {
5898  // If this is the entry block, emit arguments.
5899  Function &F = *LLVMBB->getParent();
5900  SelectionDAG &DAG = SDB->DAG;
5901  SDValue OldRoot = DAG.getRoot();
5902  DebugLoc dl = SDB->getCurDebugLoc();
5903  const TargetData *TD = TLI.getTargetData();
5904  SmallVector<ISD::InputArg, 16> Ins;
5905
5906  // Check whether the function can return without sret-demotion.
5907  SmallVector<EVT, 4> OutVTs;
5908  SmallVector<ISD::ArgFlagsTy, 4> OutsFlags;
5909  getReturnInfo(F.getReturnType(), F.getAttributes().getRetAttributes(),
5910                OutVTs, OutsFlags, TLI);
5911  FunctionLoweringInfo &FLI = DAG.getFunctionLoweringInfo();
5912
5913  FLI.CanLowerReturn = TLI.CanLowerReturn(F.getCallingConv(), F.isVarArg(),
5914                                          OutVTs, OutsFlags, DAG);
5915  if (!FLI.CanLowerReturn) {
5916    // Put in an sret pointer parameter before all the other parameters.
5917    SmallVector<EVT, 1> ValueVTs;
5918    ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs);
5919
5920    // NOTE: Assuming that a pointer will never break down to more than one VT
5921    // or one register.
5922    ISD::ArgFlagsTy Flags;
5923    Flags.setSRet();
5924    EVT RegisterVT = TLI.getRegisterType(*CurDAG->getContext(), ValueVTs[0]);
5925    ISD::InputArg RetArg(Flags, RegisterVT, true);
5926    Ins.push_back(RetArg);
5927  }
5928
5929  // Set up the incoming argument description vector.
5930  unsigned Idx = 1;
5931  for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end();
5932       I != E; ++I, ++Idx) {
5933    SmallVector<EVT, 4> ValueVTs;
5934    ComputeValueVTs(TLI, I->getType(), ValueVTs);
5935    bool isArgValueUsed = !I->use_empty();
5936    for (unsigned Value = 0, NumValues = ValueVTs.size();
5937         Value != NumValues; ++Value) {
5938      EVT VT = ValueVTs[Value];
5939      const Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
5940      ISD::ArgFlagsTy Flags;
5941      unsigned OriginalAlignment =
5942        TD->getABITypeAlignment(ArgTy);
5943
5944      if (F.paramHasAttr(Idx, Attribute::ZExt))
5945        Flags.setZExt();
5946      if (F.paramHasAttr(Idx, Attribute::SExt))
5947        Flags.setSExt();
5948      if (F.paramHasAttr(Idx, Attribute::InReg))
5949        Flags.setInReg();
5950      if (F.paramHasAttr(Idx, Attribute::StructRet))
5951        Flags.setSRet();
5952      if (F.paramHasAttr(Idx, Attribute::ByVal)) {
5953        Flags.setByVal();
5954        const PointerType *Ty = cast<PointerType>(I->getType());
5955        const Type *ElementTy = Ty->getElementType();
5956        unsigned FrameAlign = TLI.getByValTypeAlignment(ElementTy);
5957        unsigned FrameSize  = TD->getTypeAllocSize(ElementTy);
5958        // For ByVal, alignment should be passed from FE.  BE will guess if
5959        // this info is not there but there are cases it cannot get right.
5960        if (F.getParamAlignment(Idx))
5961          FrameAlign = F.getParamAlignment(Idx);
5962        Flags.setByValAlign(FrameAlign);
5963        Flags.setByValSize(FrameSize);
5964      }
5965      if (F.paramHasAttr(Idx, Attribute::Nest))
5966        Flags.setNest();
5967      Flags.setOrigAlign(OriginalAlignment);
5968
5969      EVT RegisterVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
5970      unsigned NumRegs = TLI.getNumRegisters(*CurDAG->getContext(), VT);
5971      for (unsigned i = 0; i != NumRegs; ++i) {
5972        ISD::InputArg MyFlags(Flags, RegisterVT, isArgValueUsed);
5973        if (NumRegs > 1 && i == 0)
5974          MyFlags.Flags.setSplit();
5975        // if it isn't first piece, alignment must be 1
5976        else if (i > 0)
5977          MyFlags.Flags.setOrigAlign(1);
5978        Ins.push_back(MyFlags);
5979      }
5980    }
5981  }
5982
5983  // Call the target to set up the argument values.
5984  SmallVector<SDValue, 8> InVals;
5985  SDValue NewRoot = TLI.LowerFormalArguments(DAG.getRoot(), F.getCallingConv(),
5986                                             F.isVarArg(), Ins,
5987                                             dl, DAG, InVals);
5988
5989  // Verify that the target's LowerFormalArguments behaved as expected.
5990  assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
5991         "LowerFormalArguments didn't return a valid chain!");
5992  assert(InVals.size() == Ins.size() &&
5993         "LowerFormalArguments didn't emit the correct number of values!");
5994  DEBUG({
5995      for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
5996        assert(InVals[i].getNode() &&
5997               "LowerFormalArguments emitted a null value!");
5998        assert(Ins[i].VT == InVals[i].getValueType() &&
5999               "LowerFormalArguments emitted a value with the wrong type!");
6000      }
6001    });
6002
6003  // Update the DAG with the new chain value resulting from argument lowering.
6004  DAG.setRoot(NewRoot);
6005
6006  // Set up the argument values.
6007  unsigned i = 0;
6008  Idx = 1;
6009  if (!FLI.CanLowerReturn) {
6010    // Create a virtual register for the sret pointer, and put in a copy
6011    // from the sret argument into it.
6012    SmallVector<EVT, 1> ValueVTs;
6013    ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs);
6014    EVT VT = ValueVTs[0];
6015    EVT RegVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
6016    ISD::NodeType AssertOp = ISD::DELETED_NODE;
6017    SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1,
6018                                        RegVT, VT, AssertOp);
6019
6020    MachineFunction& MF = SDB->DAG.getMachineFunction();
6021    MachineRegisterInfo& RegInfo = MF.getRegInfo();
6022    unsigned SRetReg = RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT));
6023    FLI.DemoteRegister = SRetReg;
6024    NewRoot = SDB->DAG.getCopyToReg(NewRoot, SDB->getCurDebugLoc(),
6025                                    SRetReg, ArgValue);
6026    DAG.setRoot(NewRoot);
6027
6028    // i indexes lowered arguments.  Bump it past the hidden sret argument.
6029    // Idx indexes LLVM arguments.  Don't touch it.
6030    ++i;
6031  }
6032
6033  for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E;
6034      ++I, ++Idx) {
6035    SmallVector<SDValue, 4> ArgValues;
6036    SmallVector<EVT, 4> ValueVTs;
6037    ComputeValueVTs(TLI, I->getType(), ValueVTs);
6038    unsigned NumValues = ValueVTs.size();
6039    for (unsigned Value = 0; Value != NumValues; ++Value) {
6040      EVT VT = ValueVTs[Value];
6041      EVT PartVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
6042      unsigned NumParts = TLI.getNumRegisters(*CurDAG->getContext(), VT);
6043
6044      if (!I->use_empty()) {
6045        ISD::NodeType AssertOp = ISD::DELETED_NODE;
6046        if (F.paramHasAttr(Idx, Attribute::SExt))
6047          AssertOp = ISD::AssertSext;
6048        else if (F.paramHasAttr(Idx, Attribute::ZExt))
6049          AssertOp = ISD::AssertZext;
6050
6051        ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i],
6052                                             NumParts, PartVT, VT,
6053                                             AssertOp));
6054      }
6055
6056      i += NumParts;
6057    }
6058
6059    if (!I->use_empty()) {
6060      SDValue Res;
6061      if (!ArgValues.empty())
6062        Res = DAG.getMergeValues(&ArgValues[0], NumValues,
6063                                 SDB->getCurDebugLoc());
6064      SDB->setValue(I, Res);
6065
6066      // If this argument is live outside of the entry block, insert a copy from
6067      // whereever we got it to the vreg that other BB's will reference it as.
6068      SDB->CopyToExportRegsIfNeeded(I);
6069    }
6070  }
6071
6072  assert(i == InVals.size() && "Argument register count mismatch!");
6073
6074  // Finally, if the target has anything special to do, allow it to do so.
6075  // FIXME: this should insert code into the DAG!
6076  EmitFunctionEntryCode(F, SDB->DAG.getMachineFunction());
6077}
6078
6079/// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
6080/// ensure constants are generated when needed.  Remember the virtual registers
6081/// that need to be added to the Machine PHI nodes as input.  We cannot just
6082/// directly add them, because expansion might result in multiple MBB's for one
6083/// BB.  As such, the start of the BB might correspond to a different MBB than
6084/// the end.
6085///
6086void
6087SelectionDAGISel::HandlePHINodesInSuccessorBlocks(BasicBlock *LLVMBB) {
6088  TerminatorInst *TI = LLVMBB->getTerminator();
6089
6090  SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
6091
6092  // Check successor nodes' PHI nodes that expect a constant to be available
6093  // from this block.
6094  for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
6095    BasicBlock *SuccBB = TI->getSuccessor(succ);
6096    if (!isa<PHINode>(SuccBB->begin())) continue;
6097    MachineBasicBlock *SuccMBB = FuncInfo->MBBMap[SuccBB];
6098
6099    // If this terminator has multiple identical successors (common for
6100    // switches), only handle each succ once.
6101    if (!SuccsHandled.insert(SuccMBB)) continue;
6102
6103    MachineBasicBlock::iterator MBBI = SuccMBB->begin();
6104    PHINode *PN;
6105
6106    // At this point we know that there is a 1-1 correspondence between LLVM PHI
6107    // nodes and Machine PHI nodes, but the incoming operands have not been
6108    // emitted yet.
6109    for (BasicBlock::iterator I = SuccBB->begin();
6110         (PN = dyn_cast<PHINode>(I)); ++I) {
6111      // Ignore dead phi's.
6112      if (PN->use_empty()) continue;
6113
6114      unsigned Reg;
6115      Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
6116
6117      if (Constant *C = dyn_cast<Constant>(PHIOp)) {
6118        unsigned &RegOut = SDB->ConstantsOut[C];
6119        if (RegOut == 0) {
6120          RegOut = FuncInfo->CreateRegForValue(C);
6121          SDB->CopyValueToVirtualRegister(C, RegOut);
6122        }
6123        Reg = RegOut;
6124      } else {
6125        Reg = FuncInfo->ValueMap[PHIOp];
6126        if (Reg == 0) {
6127          assert(isa<AllocaInst>(PHIOp) &&
6128                 FuncInfo->StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
6129                 "Didn't codegen value into a register!??");
6130          Reg = FuncInfo->CreateRegForValue(PHIOp);
6131          SDB->CopyValueToVirtualRegister(PHIOp, Reg);
6132        }
6133      }
6134
6135      // Remember that this register needs to added to the machine PHI node as
6136      // the input for this MBB.
6137      SmallVector<EVT, 4> ValueVTs;
6138      ComputeValueVTs(TLI, PN->getType(), ValueVTs);
6139      for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
6140        EVT VT = ValueVTs[vti];
6141        unsigned NumRegisters = TLI.getNumRegisters(*CurDAG->getContext(), VT);
6142        for (unsigned i = 0, e = NumRegisters; i != e; ++i)
6143          SDB->PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i));
6144        Reg += NumRegisters;
6145      }
6146    }
6147  }
6148  SDB->ConstantsOut.clear();
6149}
6150
6151/// This is the Fast-ISel version of HandlePHINodesInSuccessorBlocks. It only
6152/// supports legal types, and it emits MachineInstrs directly instead of
6153/// creating SelectionDAG nodes.
6154///
6155bool
6156SelectionDAGISel::HandlePHINodesInSuccessorBlocksFast(BasicBlock *LLVMBB,
6157                                                      FastISel *F) {
6158  TerminatorInst *TI = LLVMBB->getTerminator();
6159
6160  SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
6161  unsigned OrigNumPHINodesToUpdate = SDB->PHINodesToUpdate.size();
6162
6163  // Check successor nodes' PHI nodes that expect a constant to be available
6164  // from this block.
6165  for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
6166    BasicBlock *SuccBB = TI->getSuccessor(succ);
6167    if (!isa<PHINode>(SuccBB->begin())) continue;
6168    MachineBasicBlock *SuccMBB = FuncInfo->MBBMap[SuccBB];
6169
6170    // If this terminator has multiple identical successors (common for
6171    // switches), only handle each succ once.
6172    if (!SuccsHandled.insert(SuccMBB)) continue;
6173
6174    MachineBasicBlock::iterator MBBI = SuccMBB->begin();
6175    PHINode *PN;
6176
6177    // At this point we know that there is a 1-1 correspondence between LLVM PHI
6178    // nodes and Machine PHI nodes, but the incoming operands have not been
6179    // emitted yet.
6180    for (BasicBlock::iterator I = SuccBB->begin();
6181         (PN = dyn_cast<PHINode>(I)); ++I) {
6182      // Ignore dead phi's.
6183      if (PN->use_empty()) continue;
6184
6185      // Only handle legal types. Two interesting things to note here. First,
6186      // by bailing out early, we may leave behind some dead instructions,
6187      // since SelectionDAG's HandlePHINodesInSuccessorBlocks will insert its
6188      // own moves. Second, this check is necessary becuase FastISel doesn't
6189      // use CreateRegForValue to create registers, so it always creates
6190      // exactly one register for each non-void instruction.
6191      EVT VT = TLI.getValueType(PN->getType(), /*AllowUnknown=*/true);
6192      if (VT == MVT::Other || !TLI.isTypeLegal(VT)) {
6193        // Promote MVT::i1.
6194        if (VT == MVT::i1)
6195          VT = TLI.getTypeToTransformTo(*CurDAG->getContext(), VT);
6196        else {
6197          SDB->PHINodesToUpdate.resize(OrigNumPHINodesToUpdate);
6198          return false;
6199        }
6200      }
6201
6202      Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
6203
6204      unsigned Reg = F->getRegForValue(PHIOp);
6205      if (Reg == 0) {
6206        SDB->PHINodesToUpdate.resize(OrigNumPHINodesToUpdate);
6207        return false;
6208      }
6209      SDB->PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg));
6210    }
6211  }
6212
6213  return true;
6214}
6215