SelectionDAGBuilder.cpp revision df7096f01384c4e8a8ac9e42c2b784e54c53da8e
1//===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements routines for translating from LLVM IR into SelectionDAG IR.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "isel"
15#include "SDNodeDbgValue.h"
16#include "SelectionDAGBuilder.h"
17#include "llvm/ADT/BitVector.h"
18#include "llvm/ADT/SmallSet.h"
19#include "llvm/Analysis/AliasAnalysis.h"
20#include "llvm/Analysis/ConstantFolding.h"
21#include "llvm/Constants.h"
22#include "llvm/CallingConv.h"
23#include "llvm/DerivedTypes.h"
24#include "llvm/Function.h"
25#include "llvm/GlobalVariable.h"
26#include "llvm/InlineAsm.h"
27#include "llvm/Instructions.h"
28#include "llvm/Intrinsics.h"
29#include "llvm/IntrinsicInst.h"
30#include "llvm/LLVMContext.h"
31#include "llvm/Module.h"
32#include "llvm/CodeGen/Analysis.h"
33#include "llvm/CodeGen/FastISel.h"
34#include "llvm/CodeGen/FunctionLoweringInfo.h"
35#include "llvm/CodeGen/GCStrategy.h"
36#include "llvm/CodeGen/GCMetadata.h"
37#include "llvm/CodeGen/MachineFunction.h"
38#include "llvm/CodeGen/MachineFrameInfo.h"
39#include "llvm/CodeGen/MachineInstrBuilder.h"
40#include "llvm/CodeGen/MachineJumpTableInfo.h"
41#include "llvm/CodeGen/MachineModuleInfo.h"
42#include "llvm/CodeGen/MachineRegisterInfo.h"
43#include "llvm/CodeGen/PseudoSourceValue.h"
44#include "llvm/CodeGen/SelectionDAG.h"
45#include "llvm/Analysis/DebugInfo.h"
46#include "llvm/Target/TargetRegisterInfo.h"
47#include "llvm/Target/TargetData.h"
48#include "llvm/Target/TargetFrameInfo.h"
49#include "llvm/Target/TargetInstrInfo.h"
50#include "llvm/Target/TargetIntrinsicInfo.h"
51#include "llvm/Target/TargetLowering.h"
52#include "llvm/Target/TargetOptions.h"
53#include "llvm/Support/Compiler.h"
54#include "llvm/Support/CommandLine.h"
55#include "llvm/Support/Debug.h"
56#include "llvm/Support/ErrorHandling.h"
57#include "llvm/Support/MathExtras.h"
58#include "llvm/Support/raw_ostream.h"
59#include <algorithm>
60using namespace llvm;
61
62/// LimitFloatPrecision - Generate low-precision inline sequences for
63/// some float libcalls (6, 8 or 12 bits).
64static unsigned LimitFloatPrecision;
65
66static cl::opt<unsigned, true>
67LimitFPPrecision("limit-float-precision",
68                 cl::desc("Generate low-precision inline sequences "
69                          "for some float libcalls"),
70                 cl::location(LimitFloatPrecision),
71                 cl::init(0));
72
73static SDValue getCopyFromPartsVector(SelectionDAG &DAG, DebugLoc DL,
74                                      const SDValue *Parts, unsigned NumParts,
75                                      EVT PartVT, EVT ValueVT);
76
77/// getCopyFromParts - Create a value that contains the specified legal parts
78/// combined into the value they represent.  If the parts combine to a type
79/// larger then ValueVT then AssertOp can be used to specify whether the extra
80/// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
81/// (ISD::AssertSext).
82static SDValue getCopyFromParts(SelectionDAG &DAG, DebugLoc DL,
83                                const SDValue *Parts,
84                                unsigned NumParts, EVT PartVT, EVT ValueVT,
85                                ISD::NodeType AssertOp = ISD::DELETED_NODE) {
86  if (ValueVT.isVector())
87    return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT);
88
89  assert(NumParts > 0 && "No parts to assemble!");
90  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
91  SDValue Val = Parts[0];
92
93  if (NumParts > 1) {
94    // Assemble the value from multiple parts.
95    if (ValueVT.isInteger()) {
96      unsigned PartBits = PartVT.getSizeInBits();
97      unsigned ValueBits = ValueVT.getSizeInBits();
98
99      // Assemble the power of 2 part.
100      unsigned RoundParts = NumParts & (NumParts - 1) ?
101        1 << Log2_32(NumParts) : NumParts;
102      unsigned RoundBits = PartBits * RoundParts;
103      EVT RoundVT = RoundBits == ValueBits ?
104        ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
105      SDValue Lo, Hi;
106
107      EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
108
109      if (RoundParts > 2) {
110        Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2,
111                              PartVT, HalfVT);
112        Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2,
113                              RoundParts / 2, PartVT, HalfVT);
114      } else {
115        Lo = DAG.getNode(ISD::BIT_CONVERT, DL, HalfVT, Parts[0]);
116        Hi = DAG.getNode(ISD::BIT_CONVERT, DL, HalfVT, Parts[1]);
117      }
118
119      if (TLI.isBigEndian())
120        std::swap(Lo, Hi);
121
122      Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
123
124      if (RoundParts < NumParts) {
125        // Assemble the trailing non-power-of-2 part.
126        unsigned OddParts = NumParts - RoundParts;
127        EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
128        Hi = getCopyFromParts(DAG, DL,
129                              Parts + RoundParts, OddParts, PartVT, OddVT);
130
131        // Combine the round and odd parts.
132        Lo = Val;
133        if (TLI.isBigEndian())
134          std::swap(Lo, Hi);
135        EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
136        Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
137        Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
138                         DAG.getConstant(Lo.getValueType().getSizeInBits(),
139                                         TLI.getPointerTy()));
140        Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
141        Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
142      }
143    } else if (PartVT.isFloatingPoint()) {
144      // FP split into multiple FP parts (for ppcf128)
145      assert(ValueVT == EVT(MVT::ppcf128) && PartVT == EVT(MVT::f64) &&
146             "Unexpected split");
147      SDValue Lo, Hi;
148      Lo = DAG.getNode(ISD::BIT_CONVERT, DL, EVT(MVT::f64), Parts[0]);
149      Hi = DAG.getNode(ISD::BIT_CONVERT, DL, EVT(MVT::f64), Parts[1]);
150      if (TLI.isBigEndian())
151        std::swap(Lo, Hi);
152      Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
153    } else {
154      // FP split into integer parts (soft fp)
155      assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
156             !PartVT.isVector() && "Unexpected split");
157      EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
158      Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT);
159    }
160  }
161
162  // There is now one part, held in Val.  Correct it to match ValueVT.
163  PartVT = Val.getValueType();
164
165  if (PartVT == ValueVT)
166    return Val;
167
168  if (PartVT.isInteger() && ValueVT.isInteger()) {
169    if (ValueVT.bitsLT(PartVT)) {
170      // For a truncate, see if we have any information to
171      // indicate whether the truncated bits will always be
172      // zero or sign-extension.
173      if (AssertOp != ISD::DELETED_NODE)
174        Val = DAG.getNode(AssertOp, DL, PartVT, Val,
175                          DAG.getValueType(ValueVT));
176      return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
177    }
178    return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
179  }
180
181  if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
182    // FP_ROUND's are always exact here.
183    if (ValueVT.bitsLT(Val.getValueType()))
184      return DAG.getNode(ISD::FP_ROUND, DL, ValueVT, Val,
185                         DAG.getIntPtrConstant(1));
186
187    return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
188  }
189
190  if (PartVT.getSizeInBits() == ValueVT.getSizeInBits())
191    return DAG.getNode(ISD::BIT_CONVERT, DL, ValueVT, Val);
192
193  llvm_unreachable("Unknown mismatch!");
194  return SDValue();
195}
196
197/// getCopyFromParts - Create a value that contains the specified legal parts
198/// combined into the value they represent.  If the parts combine to a type
199/// larger then ValueVT then AssertOp can be used to specify whether the extra
200/// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
201/// (ISD::AssertSext).
202static SDValue getCopyFromPartsVector(SelectionDAG &DAG, DebugLoc DL,
203                                      const SDValue *Parts, unsigned NumParts,
204                                      EVT PartVT, EVT ValueVT) {
205  assert(ValueVT.isVector() && "Not a vector value");
206  assert(NumParts > 0 && "No parts to assemble!");
207  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
208  SDValue Val = Parts[0];
209
210  // Handle a multi-element vector.
211  if (NumParts > 1) {
212    EVT IntermediateVT, RegisterVT;
213    unsigned NumIntermediates;
214    unsigned NumRegs =
215    TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
216                               NumIntermediates, RegisterVT);
217    assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
218    NumParts = NumRegs; // Silence a compiler warning.
219    assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
220    assert(RegisterVT == Parts[0].getValueType() &&
221           "Part type doesn't match part!");
222
223    // Assemble the parts into intermediate operands.
224    SmallVector<SDValue, 8> Ops(NumIntermediates);
225    if (NumIntermediates == NumParts) {
226      // If the register was not expanded, truncate or copy the value,
227      // as appropriate.
228      for (unsigned i = 0; i != NumParts; ++i)
229        Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1,
230                                  PartVT, IntermediateVT);
231    } else if (NumParts > 0) {
232      // If the intermediate type was expanded, build the intermediate
233      // operands from the parts.
234      assert(NumParts % NumIntermediates == 0 &&
235             "Must expand into a divisible number of parts!");
236      unsigned Factor = NumParts / NumIntermediates;
237      for (unsigned i = 0; i != NumIntermediates; ++i)
238        Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor,
239                                  PartVT, IntermediateVT);
240    }
241
242    // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
243    // intermediate operands.
244    Val = DAG.getNode(IntermediateVT.isVector() ?
245                      ISD::CONCAT_VECTORS : ISD::BUILD_VECTOR, DL,
246                      ValueVT, &Ops[0], NumIntermediates);
247  }
248
249  // There is now one part, held in Val.  Correct it to match ValueVT.
250  PartVT = Val.getValueType();
251
252  if (PartVT == ValueVT)
253    return Val;
254
255  if (PartVT.isVector()) {
256    // If the element type of the source/dest vectors are the same, but the
257    // parts vector has more elements than the value vector, then we have a
258    // vector widening case (e.g. <2 x float> -> <4 x float>).  Extract the
259    // elements we want.
260    if (PartVT.getVectorElementType() == ValueVT.getVectorElementType()) {
261      assert(PartVT.getVectorNumElements() > ValueVT.getVectorNumElements() &&
262             "Cannot narrow, it would be a lossy transformation");
263      return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
264                         DAG.getIntPtrConstant(0));
265    }
266
267    // Vector/Vector bitcast.
268    return DAG.getNode(ISD::BIT_CONVERT, DL, ValueVT, Val);
269  }
270
271  assert(ValueVT.getVectorElementType() == PartVT &&
272         ValueVT.getVectorNumElements() == 1 &&
273         "Only trivial scalar-to-vector conversions should get here!");
274  return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val);
275}
276
277
278
279
280static void getCopyToPartsVector(SelectionDAG &DAG, DebugLoc dl,
281                                 SDValue Val, SDValue *Parts, unsigned NumParts,
282                                 EVT PartVT);
283
284/// getCopyToParts - Create a series of nodes that contain the specified value
285/// split into legal parts.  If the parts contain more bits than Val, then, for
286/// integers, ExtendKind can be used to specify how to generate the extra bits.
287static void getCopyToParts(SelectionDAG &DAG, DebugLoc DL,
288                           SDValue Val, SDValue *Parts, unsigned NumParts,
289                           EVT PartVT,
290                           ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
291  EVT ValueVT = Val.getValueType();
292
293  // Handle the vector case separately.
294  if (ValueVT.isVector())
295    return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT);
296
297  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
298  unsigned PartBits = PartVT.getSizeInBits();
299  unsigned OrigNumParts = NumParts;
300  assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!");
301
302  if (NumParts == 0)
303    return;
304
305  assert(!ValueVT.isVector() && "Vector case handled elsewhere");
306  if (PartVT == ValueVT) {
307    assert(NumParts == 1 && "No-op copy with multiple parts!");
308    Parts[0] = Val;
309    return;
310  }
311
312  if (NumParts * PartBits > ValueVT.getSizeInBits()) {
313    // If the parts cover more bits than the value has, promote the value.
314    if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
315      assert(NumParts == 1 && "Do not know what to promote to!");
316      Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
317    } else {
318      assert(PartVT.isInteger() && ValueVT.isInteger() &&
319             "Unknown mismatch!");
320      ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
321      Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
322    }
323  } else if (PartBits == ValueVT.getSizeInBits()) {
324    // Different types of the same size.
325    assert(NumParts == 1 && PartVT != ValueVT);
326    Val = DAG.getNode(ISD::BIT_CONVERT, DL, PartVT, Val);
327  } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
328    // If the parts cover less bits than value has, truncate the value.
329    assert(PartVT.isInteger() && ValueVT.isInteger() &&
330           "Unknown mismatch!");
331    ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
332    Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
333  }
334
335  // The value may have changed - recompute ValueVT.
336  ValueVT = Val.getValueType();
337  assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
338         "Failed to tile the value with PartVT!");
339
340  if (NumParts == 1) {
341    assert(PartVT == ValueVT && "Type conversion failed!");
342    Parts[0] = Val;
343    return;
344  }
345
346  // Expand the value into multiple parts.
347  if (NumParts & (NumParts - 1)) {
348    // The number of parts is not a power of 2.  Split off and copy the tail.
349    assert(PartVT.isInteger() && ValueVT.isInteger() &&
350           "Do not know what to expand to!");
351    unsigned RoundParts = 1 << Log2_32(NumParts);
352    unsigned RoundBits = RoundParts * PartBits;
353    unsigned OddParts = NumParts - RoundParts;
354    SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
355                                 DAG.getIntPtrConstant(RoundBits));
356    getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT);
357
358    if (TLI.isBigEndian())
359      // The odd parts were reversed by getCopyToParts - unreverse them.
360      std::reverse(Parts + RoundParts, Parts + NumParts);
361
362    NumParts = RoundParts;
363    ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
364    Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
365  }
366
367  // The number of parts is a power of 2.  Repeatedly bisect the value using
368  // EXTRACT_ELEMENT.
369  Parts[0] = DAG.getNode(ISD::BIT_CONVERT, DL,
370                         EVT::getIntegerVT(*DAG.getContext(),
371                                           ValueVT.getSizeInBits()),
372                         Val);
373
374  for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
375    for (unsigned i = 0; i < NumParts; i += StepSize) {
376      unsigned ThisBits = StepSize * PartBits / 2;
377      EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
378      SDValue &Part0 = Parts[i];
379      SDValue &Part1 = Parts[i+StepSize/2];
380
381      Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
382                          ThisVT, Part0, DAG.getIntPtrConstant(1));
383      Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
384                          ThisVT, Part0, DAG.getIntPtrConstant(0));
385
386      if (ThisBits == PartBits && ThisVT != PartVT) {
387        Part0 = DAG.getNode(ISD::BIT_CONVERT, DL, PartVT, Part0);
388        Part1 = DAG.getNode(ISD::BIT_CONVERT, DL, PartVT, Part1);
389      }
390    }
391  }
392
393  if (TLI.isBigEndian())
394    std::reverse(Parts, Parts + OrigNumParts);
395}
396
397
398/// getCopyToPartsVector - Create a series of nodes that contain the specified
399/// value split into legal parts.
400static void getCopyToPartsVector(SelectionDAG &DAG, DebugLoc DL,
401                                 SDValue Val, SDValue *Parts, unsigned NumParts,
402                                 EVT PartVT) {
403  EVT ValueVT = Val.getValueType();
404  assert(ValueVT.isVector() && "Not a vector");
405  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
406
407  if (NumParts == 1) {
408    if (PartVT == ValueVT) {
409      // Nothing to do.
410    } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
411      // Bitconvert vector->vector case.
412      Val = DAG.getNode(ISD::BIT_CONVERT, DL, PartVT, Val);
413    } else if (PartVT.isVector() &&
414               PartVT.getVectorElementType() == ValueVT.getVectorElementType()&&
415               PartVT.getVectorNumElements() > ValueVT.getVectorNumElements()) {
416      EVT ElementVT = PartVT.getVectorElementType();
417      // Vector widening case, e.g. <2 x float> -> <4 x float>.  Shuffle in
418      // undef elements.
419      SmallVector<SDValue, 16> Ops;
420      for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i)
421        Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
422                                  ElementVT, Val, DAG.getIntPtrConstant(i)));
423
424      for (unsigned i = ValueVT.getVectorNumElements(),
425           e = PartVT.getVectorNumElements(); i != e; ++i)
426        Ops.push_back(DAG.getUNDEF(ElementVT));
427
428      Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, &Ops[0], Ops.size());
429
430      // FIXME: Use CONCAT for 2x -> 4x.
431
432      //SDValue UndefElts = DAG.getUNDEF(VectorTy);
433      //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts);
434    } else {
435      // Vector -> scalar conversion.
436      assert(ValueVT.getVectorElementType() == PartVT &&
437             ValueVT.getVectorNumElements() == 1 &&
438             "Only trivial vector-to-scalar conversions should get here!");
439      Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
440                        PartVT, Val, DAG.getIntPtrConstant(0));
441    }
442
443    Parts[0] = Val;
444    return;
445  }
446
447  // Handle a multi-element vector.
448  EVT IntermediateVT, RegisterVT;
449  unsigned NumIntermediates;
450  unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT,
451                                                IntermediateVT,
452                                                NumIntermediates, RegisterVT);
453  unsigned NumElements = ValueVT.getVectorNumElements();
454
455  assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
456  NumParts = NumRegs; // Silence a compiler warning.
457  assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
458
459  // Split the vector into intermediate operands.
460  SmallVector<SDValue, 8> Ops(NumIntermediates);
461  for (unsigned i = 0; i != NumIntermediates; ++i) {
462    if (IntermediateVT.isVector())
463      Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL,
464                           IntermediateVT, Val,
465                   DAG.getIntPtrConstant(i * (NumElements / NumIntermediates)));
466    else
467      Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
468                           IntermediateVT, Val, DAG.getIntPtrConstant(i));
469  }
470
471  // Split the intermediate operands into legal parts.
472  if (NumParts == NumIntermediates) {
473    // If the register was not expanded, promote or copy the value,
474    // as appropriate.
475    for (unsigned i = 0; i != NumParts; ++i)
476      getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT);
477  } else if (NumParts > 0) {
478    // If the intermediate type was expanded, split each the value into
479    // legal parts.
480    assert(NumParts % NumIntermediates == 0 &&
481           "Must expand into a divisible number of parts!");
482    unsigned Factor = NumParts / NumIntermediates;
483    for (unsigned i = 0; i != NumIntermediates; ++i)
484      getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT);
485  }
486}
487
488
489
490
491namespace {
492  /// RegsForValue - This struct represents the registers (physical or virtual)
493  /// that a particular set of values is assigned, and the type information
494  /// about the value. The most common situation is to represent one value at a
495  /// time, but struct or array values are handled element-wise as multiple
496  /// values.  The splitting of aggregates is performed recursively, so that we
497  /// never have aggregate-typed registers. The values at this point do not
498  /// necessarily have legal types, so each value may require one or more
499  /// registers of some legal type.
500  ///
501  struct RegsForValue {
502    /// ValueVTs - The value types of the values, which may not be legal, and
503    /// may need be promoted or synthesized from one or more registers.
504    ///
505    SmallVector<EVT, 4> ValueVTs;
506
507    /// RegVTs - The value types of the registers. This is the same size as
508    /// ValueVTs and it records, for each value, what the type of the assigned
509    /// register or registers are. (Individual values are never synthesized
510    /// from more than one type of register.)
511    ///
512    /// With virtual registers, the contents of RegVTs is redundant with TLI's
513    /// getRegisterType member function, however when with physical registers
514    /// it is necessary to have a separate record of the types.
515    ///
516    SmallVector<EVT, 4> RegVTs;
517
518    /// Regs - This list holds the registers assigned to the values.
519    /// Each legal or promoted value requires one register, and each
520    /// expanded value requires multiple registers.
521    ///
522    SmallVector<unsigned, 4> Regs;
523
524    RegsForValue() {}
525
526    RegsForValue(const SmallVector<unsigned, 4> &regs,
527                 EVT regvt, EVT valuevt)
528      : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {}
529
530    RegsForValue(LLVMContext &Context, const TargetLowering &tli,
531                 unsigned Reg, const Type *Ty) {
532      ComputeValueVTs(tli, Ty, ValueVTs);
533
534      for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
535        EVT ValueVT = ValueVTs[Value];
536        unsigned NumRegs = tli.getNumRegisters(Context, ValueVT);
537        EVT RegisterVT = tli.getRegisterType(Context, ValueVT);
538        for (unsigned i = 0; i != NumRegs; ++i)
539          Regs.push_back(Reg + i);
540        RegVTs.push_back(RegisterVT);
541        Reg += NumRegs;
542      }
543    }
544
545    /// areValueTypesLegal - Return true if types of all the values are legal.
546    bool areValueTypesLegal(const TargetLowering &TLI) {
547      for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
548        EVT RegisterVT = RegVTs[Value];
549        if (!TLI.isTypeLegal(RegisterVT))
550          return false;
551      }
552      return true;
553    }
554
555    /// append - Add the specified values to this one.
556    void append(const RegsForValue &RHS) {
557      ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end());
558      RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end());
559      Regs.append(RHS.Regs.begin(), RHS.Regs.end());
560    }
561
562    /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
563    /// this value and returns the result as a ValueVTs value.  This uses
564    /// Chain/Flag as the input and updates them for the output Chain/Flag.
565    /// If the Flag pointer is NULL, no flag is used.
566    SDValue getCopyFromRegs(SelectionDAG &DAG, FunctionLoweringInfo &FuncInfo,
567                            DebugLoc dl,
568                            SDValue &Chain, SDValue *Flag) const;
569
570    /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
571    /// specified value into the registers specified by this object.  This uses
572    /// Chain/Flag as the input and updates them for the output Chain/Flag.
573    /// If the Flag pointer is NULL, no flag is used.
574    void getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl,
575                       SDValue &Chain, SDValue *Flag) const;
576
577    /// AddInlineAsmOperands - Add this value to the specified inlineasm node
578    /// operand list.  This adds the code marker, matching input operand index
579    /// (if applicable), and includes the number of values added into it.
580    void AddInlineAsmOperands(unsigned Kind,
581                              bool HasMatching, unsigned MatchingIdx,
582                              SelectionDAG &DAG,
583                              std::vector<SDValue> &Ops) const;
584  };
585}
586
587/// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
588/// this value and returns the result as a ValueVT value.  This uses
589/// Chain/Flag as the input and updates them for the output Chain/Flag.
590/// If the Flag pointer is NULL, no flag is used.
591SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
592                                      FunctionLoweringInfo &FuncInfo,
593                                      DebugLoc dl,
594                                      SDValue &Chain, SDValue *Flag) const {
595  // A Value with type {} or [0 x %t] needs no registers.
596  if (ValueVTs.empty())
597    return SDValue();
598
599  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
600
601  // Assemble the legal parts into the final values.
602  SmallVector<SDValue, 4> Values(ValueVTs.size());
603  SmallVector<SDValue, 8> Parts;
604  for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
605    // Copy the legal parts from the registers.
606    EVT ValueVT = ValueVTs[Value];
607    unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
608    EVT RegisterVT = RegVTs[Value];
609
610    Parts.resize(NumRegs);
611    for (unsigned i = 0; i != NumRegs; ++i) {
612      SDValue P;
613      if (Flag == 0) {
614        P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
615      } else {
616        P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
617        *Flag = P.getValue(2);
618      }
619
620      Chain = P.getValue(1);
621
622      // If the source register was virtual and if we know something about it,
623      // add an assert node.
624      if (TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) &&
625          RegisterVT.isInteger() && !RegisterVT.isVector()) {
626        unsigned SlotNo = Regs[Part+i]-TargetRegisterInfo::FirstVirtualRegister;
627        if (FuncInfo.LiveOutRegInfo.size() > SlotNo) {
628          const FunctionLoweringInfo::LiveOutInfo &LOI =
629            FuncInfo.LiveOutRegInfo[SlotNo];
630
631          unsigned RegSize = RegisterVT.getSizeInBits();
632          unsigned NumSignBits = LOI.NumSignBits;
633          unsigned NumZeroBits = LOI.KnownZero.countLeadingOnes();
634
635          // FIXME: We capture more information than the dag can represent.  For
636          // now, just use the tightest assertzext/assertsext possible.
637          bool isSExt = true;
638          EVT FromVT(MVT::Other);
639          if (NumSignBits == RegSize)
640            isSExt = true, FromVT = MVT::i1;   // ASSERT SEXT 1
641          else if (NumZeroBits >= RegSize-1)
642            isSExt = false, FromVT = MVT::i1;  // ASSERT ZEXT 1
643          else if (NumSignBits > RegSize-8)
644            isSExt = true, FromVT = MVT::i8;   // ASSERT SEXT 8
645          else if (NumZeroBits >= RegSize-8)
646            isSExt = false, FromVT = MVT::i8;  // ASSERT ZEXT 8
647          else if (NumSignBits > RegSize-16)
648            isSExt = true, FromVT = MVT::i16;  // ASSERT SEXT 16
649          else if (NumZeroBits >= RegSize-16)
650            isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16
651          else if (NumSignBits > RegSize-32)
652            isSExt = true, FromVT = MVT::i32;  // ASSERT SEXT 32
653          else if (NumZeroBits >= RegSize-32)
654            isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32
655
656          if (FromVT != MVT::Other)
657            P = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
658                            RegisterVT, P, DAG.getValueType(FromVT));
659        }
660      }
661
662      Parts[i] = P;
663    }
664
665    Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(),
666                                     NumRegs, RegisterVT, ValueVT);
667    Part += NumRegs;
668    Parts.clear();
669  }
670
671  return DAG.getNode(ISD::MERGE_VALUES, dl,
672                     DAG.getVTList(&ValueVTs[0], ValueVTs.size()),
673                     &Values[0], ValueVTs.size());
674}
675
676/// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
677/// specified value into the registers specified by this object.  This uses
678/// Chain/Flag as the input and updates them for the output Chain/Flag.
679/// If the Flag pointer is NULL, no flag is used.
680void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl,
681                                 SDValue &Chain, SDValue *Flag) const {
682  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
683
684  // Get the list of the values's legal parts.
685  unsigned NumRegs = Regs.size();
686  SmallVector<SDValue, 8> Parts(NumRegs);
687  for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
688    EVT ValueVT = ValueVTs[Value];
689    unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
690    EVT RegisterVT = RegVTs[Value];
691
692    getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value),
693                   &Parts[Part], NumParts, RegisterVT);
694    Part += NumParts;
695  }
696
697  // Copy the parts into the registers.
698  SmallVector<SDValue, 8> Chains(NumRegs);
699  for (unsigned i = 0; i != NumRegs; ++i) {
700    SDValue Part;
701    if (Flag == 0) {
702      Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
703    } else {
704      Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
705      *Flag = Part.getValue(1);
706    }
707
708    Chains[i] = Part.getValue(0);
709  }
710
711  if (NumRegs == 1 || Flag)
712    // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
713    // flagged to it. That is the CopyToReg nodes and the user are considered
714    // a single scheduling unit. If we create a TokenFactor and return it as
715    // chain, then the TokenFactor is both a predecessor (operand) of the
716    // user as well as a successor (the TF operands are flagged to the user).
717    // c1, f1 = CopyToReg
718    // c2, f2 = CopyToReg
719    // c3     = TokenFactor c1, c2
720    // ...
721    //        = op c3, ..., f2
722    Chain = Chains[NumRegs-1];
723  else
724    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0], NumRegs);
725}
726
727/// AddInlineAsmOperands - Add this value to the specified inlineasm node
728/// operand list.  This adds the code marker and includes the number of
729/// values added into it.
730void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
731                                        unsigned MatchingIdx,
732                                        SelectionDAG &DAG,
733                                        std::vector<SDValue> &Ops) const {
734  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
735
736  unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
737  if (HasMatching)
738    Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
739  SDValue Res = DAG.getTargetConstant(Flag, MVT::i32);
740  Ops.push_back(Res);
741
742  for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
743    unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]);
744    EVT RegisterVT = RegVTs[Value];
745    for (unsigned i = 0; i != NumRegs; ++i) {
746      assert(Reg < Regs.size() && "Mismatch in # registers expected");
747      Ops.push_back(DAG.getRegister(Regs[Reg++], RegisterVT));
748    }
749  }
750}
751
752void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa) {
753  AA = &aa;
754  GFI = gfi;
755  TD = DAG.getTarget().getTargetData();
756}
757
758/// clear - Clear out the current SelectionDAG and the associated
759/// state and prepare this SelectionDAGBuilder object to be used
760/// for a new block. This doesn't clear out information about
761/// additional blocks that are needed to complete switch lowering
762/// or PHI node updating; that information is cleared out as it is
763/// consumed.
764void SelectionDAGBuilder::clear() {
765  NodeMap.clear();
766  UnusedArgNodeMap.clear();
767  PendingLoads.clear();
768  PendingExports.clear();
769  DanglingDebugInfoMap.clear();
770  CurDebugLoc = DebugLoc();
771  HasTailCall = false;
772}
773
774/// getRoot - Return the current virtual root of the Selection DAG,
775/// flushing any PendingLoad items. This must be done before emitting
776/// a store or any other node that may need to be ordered after any
777/// prior load instructions.
778///
779SDValue SelectionDAGBuilder::getRoot() {
780  if (PendingLoads.empty())
781    return DAG.getRoot();
782
783  if (PendingLoads.size() == 1) {
784    SDValue Root = PendingLoads[0];
785    DAG.setRoot(Root);
786    PendingLoads.clear();
787    return Root;
788  }
789
790  // Otherwise, we have to make a token factor node.
791  SDValue Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
792                               &PendingLoads[0], PendingLoads.size());
793  PendingLoads.clear();
794  DAG.setRoot(Root);
795  return Root;
796}
797
798/// getControlRoot - Similar to getRoot, but instead of flushing all the
799/// PendingLoad items, flush all the PendingExports items. It is necessary
800/// to do this before emitting a terminator instruction.
801///
802SDValue SelectionDAGBuilder::getControlRoot() {
803  SDValue Root = DAG.getRoot();
804
805  if (PendingExports.empty())
806    return Root;
807
808  // Turn all of the CopyToReg chains into one factored node.
809  if (Root.getOpcode() != ISD::EntryToken) {
810    unsigned i = 0, e = PendingExports.size();
811    for (; i != e; ++i) {
812      assert(PendingExports[i].getNode()->getNumOperands() > 1);
813      if (PendingExports[i].getNode()->getOperand(0) == Root)
814        break;  // Don't add the root if we already indirectly depend on it.
815    }
816
817    if (i == e)
818      PendingExports.push_back(Root);
819  }
820
821  Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
822                     &PendingExports[0],
823                     PendingExports.size());
824  PendingExports.clear();
825  DAG.setRoot(Root);
826  return Root;
827}
828
829void SelectionDAGBuilder::AssignOrderingToNode(const SDNode *Node) {
830  if (DAG.GetOrdering(Node) != 0) return; // Already has ordering.
831  DAG.AssignOrdering(Node, SDNodeOrder);
832
833  for (unsigned I = 0, E = Node->getNumOperands(); I != E; ++I)
834    AssignOrderingToNode(Node->getOperand(I).getNode());
835}
836
837void SelectionDAGBuilder::visit(const Instruction &I) {
838  // Set up outgoing PHI node register values before emitting the terminator.
839  if (isa<TerminatorInst>(&I))
840    HandlePHINodesInSuccessorBlocks(I.getParent());
841
842  CurDebugLoc = I.getDebugLoc();
843
844  visit(I.getOpcode(), I);
845
846  if (!isa<TerminatorInst>(&I) && !HasTailCall)
847    CopyToExportRegsIfNeeded(&I);
848
849  CurDebugLoc = DebugLoc();
850}
851
852void SelectionDAGBuilder::visitPHI(const PHINode &) {
853  llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
854}
855
856void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
857  // Note: this doesn't use InstVisitor, because it has to work with
858  // ConstantExpr's in addition to instructions.
859  switch (Opcode) {
860  default: llvm_unreachable("Unknown instruction type encountered!");
861    // Build the switch statement using the Instruction.def file.
862#define HANDLE_INST(NUM, OPCODE, CLASS) \
863    case Instruction::OPCODE: visit##OPCODE((CLASS&)I); break;
864#include "llvm/Instruction.def"
865  }
866
867  // Assign the ordering to the freshly created DAG nodes.
868  if (NodeMap.count(&I)) {
869    ++SDNodeOrder;
870    AssignOrderingToNode(getValue(&I).getNode());
871  }
872}
873
874// resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
875// generate the debug data structures now that we've seen its definition.
876void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
877                                                   SDValue Val) {
878  DanglingDebugInfo &DDI = DanglingDebugInfoMap[V];
879  if (DDI.getDI()) {
880    const DbgValueInst *DI = DDI.getDI();
881    DebugLoc dl = DDI.getdl();
882    unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
883    MDNode *Variable = DI->getVariable();
884    uint64_t Offset = DI->getOffset();
885    SDDbgValue *SDV;
886    if (Val.getNode()) {
887      if (!EmitFuncArgumentDbgValue(V, Variable, Offset, Val)) {
888        SDV = DAG.getDbgValue(Variable, Val.getNode(),
889                              Val.getResNo(), Offset, dl, DbgSDNodeOrder);
890        DAG.AddDbgValue(SDV, Val.getNode(), false);
891      }
892    } else {
893      SDV = DAG.getDbgValue(Variable, UndefValue::get(V->getType()),
894                            Offset, dl, SDNodeOrder);
895      DAG.AddDbgValue(SDV, 0, false);
896    }
897    DanglingDebugInfoMap[V] = DanglingDebugInfo();
898  }
899}
900
901// getValue - Return an SDValue for the given Value.
902SDValue SelectionDAGBuilder::getValue(const Value *V) {
903  // If we already have an SDValue for this value, use it. It's important
904  // to do this first, so that we don't create a CopyFromReg if we already
905  // have a regular SDValue.
906  SDValue &N = NodeMap[V];
907  if (N.getNode()) return N;
908
909  // If there's a virtual register allocated and initialized for this
910  // value, use it.
911  DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V);
912  if (It != FuncInfo.ValueMap.end()) {
913    unsigned InReg = It->second;
914    RegsForValue RFV(*DAG.getContext(), TLI, InReg, V->getType());
915    SDValue Chain = DAG.getEntryNode();
916    return N = RFV.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), Chain,NULL);
917  }
918
919  // Otherwise create a new SDValue and remember it.
920  SDValue Val = getValueImpl(V);
921  NodeMap[V] = Val;
922  resolveDanglingDebugInfo(V, Val);
923  return Val;
924}
925
926/// getNonRegisterValue - Return an SDValue for the given Value, but
927/// don't look in FuncInfo.ValueMap for a virtual register.
928SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
929  // If we already have an SDValue for this value, use it.
930  SDValue &N = NodeMap[V];
931  if (N.getNode()) return N;
932
933  // Otherwise create a new SDValue and remember it.
934  SDValue Val = getValueImpl(V);
935  NodeMap[V] = Val;
936  resolveDanglingDebugInfo(V, Val);
937  return Val;
938}
939
940/// getValueImpl - Helper function for getValue and getNonRegisterValue.
941/// Create an SDValue for the given value.
942SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
943  if (const Constant *C = dyn_cast<Constant>(V)) {
944    EVT VT = TLI.getValueType(V->getType(), true);
945
946    if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
947      return DAG.getConstant(*CI, VT);
948
949    if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
950      return DAG.getGlobalAddress(GV, getCurDebugLoc(), VT);
951
952    if (isa<ConstantPointerNull>(C))
953      return DAG.getConstant(0, TLI.getPointerTy());
954
955    if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
956      return DAG.getConstantFP(*CFP, VT);
957
958    if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
959      return DAG.getUNDEF(VT);
960
961    if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
962      visit(CE->getOpcode(), *CE);
963      SDValue N1 = NodeMap[V];
964      assert(N1.getNode() && "visit didn't populate the NodeMap!");
965      return N1;
966    }
967
968    if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
969      SmallVector<SDValue, 4> Constants;
970      for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end();
971           OI != OE; ++OI) {
972        SDNode *Val = getValue(*OI).getNode();
973        // If the operand is an empty aggregate, there are no values.
974        if (!Val) continue;
975        // Add each leaf value from the operand to the Constants list
976        // to form a flattened list of all the values.
977        for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
978          Constants.push_back(SDValue(Val, i));
979      }
980
981      return DAG.getMergeValues(&Constants[0], Constants.size(),
982                                getCurDebugLoc());
983    }
984
985    if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
986      assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
987             "Unknown struct or array constant!");
988
989      SmallVector<EVT, 4> ValueVTs;
990      ComputeValueVTs(TLI, C->getType(), ValueVTs);
991      unsigned NumElts = ValueVTs.size();
992      if (NumElts == 0)
993        return SDValue(); // empty struct
994      SmallVector<SDValue, 4> Constants(NumElts);
995      for (unsigned i = 0; i != NumElts; ++i) {
996        EVT EltVT = ValueVTs[i];
997        if (isa<UndefValue>(C))
998          Constants[i] = DAG.getUNDEF(EltVT);
999        else if (EltVT.isFloatingPoint())
1000          Constants[i] = DAG.getConstantFP(0, EltVT);
1001        else
1002          Constants[i] = DAG.getConstant(0, EltVT);
1003      }
1004
1005      return DAG.getMergeValues(&Constants[0], NumElts,
1006                                getCurDebugLoc());
1007    }
1008
1009    if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
1010      return DAG.getBlockAddress(BA, VT);
1011
1012    const VectorType *VecTy = cast<VectorType>(V->getType());
1013    unsigned NumElements = VecTy->getNumElements();
1014
1015    // Now that we know the number and type of the elements, get that number of
1016    // elements into the Ops array based on what kind of constant it is.
1017    SmallVector<SDValue, 16> Ops;
1018    if (const ConstantVector *CP = dyn_cast<ConstantVector>(C)) {
1019      for (unsigned i = 0; i != NumElements; ++i)
1020        Ops.push_back(getValue(CP->getOperand(i)));
1021    } else {
1022      assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!");
1023      EVT EltVT = TLI.getValueType(VecTy->getElementType());
1024
1025      SDValue Op;
1026      if (EltVT.isFloatingPoint())
1027        Op = DAG.getConstantFP(0, EltVT);
1028      else
1029        Op = DAG.getConstant(0, EltVT);
1030      Ops.assign(NumElements, Op);
1031    }
1032
1033    // Create a BUILD_VECTOR node.
1034    return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(),
1035                                    VT, &Ops[0], Ops.size());
1036  }
1037
1038  // If this is a static alloca, generate it as the frameindex instead of
1039  // computation.
1040  if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1041    DenseMap<const AllocaInst*, int>::iterator SI =
1042      FuncInfo.StaticAllocaMap.find(AI);
1043    if (SI != FuncInfo.StaticAllocaMap.end())
1044      return DAG.getFrameIndex(SI->second, TLI.getPointerTy());
1045  }
1046
1047  // If this is an instruction which fast-isel has deferred, select it now.
1048  if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
1049    unsigned InReg = FuncInfo.InitializeRegForValue(Inst);
1050    RegsForValue RFV(*DAG.getContext(), TLI, InReg, Inst->getType());
1051    SDValue Chain = DAG.getEntryNode();
1052    return RFV.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), Chain, NULL);
1053  }
1054
1055  llvm_unreachable("Can't get register for value!");
1056  return SDValue();
1057}
1058
1059void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
1060  SDValue Chain = getControlRoot();
1061  SmallVector<ISD::OutputArg, 8> Outs;
1062  SmallVector<SDValue, 8> OutVals;
1063
1064  if (!FuncInfo.CanLowerReturn) {
1065    unsigned DemoteReg = FuncInfo.DemoteRegister;
1066    const Function *F = I.getParent()->getParent();
1067
1068    // Emit a store of the return value through the virtual register.
1069    // Leave Outs empty so that LowerReturn won't try to load return
1070    // registers the usual way.
1071    SmallVector<EVT, 1> PtrValueVTs;
1072    ComputeValueVTs(TLI, PointerType::getUnqual(F->getReturnType()),
1073                    PtrValueVTs);
1074
1075    SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]);
1076    SDValue RetOp = getValue(I.getOperand(0));
1077
1078    SmallVector<EVT, 4> ValueVTs;
1079    SmallVector<uint64_t, 4> Offsets;
1080    ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs, &Offsets);
1081    unsigned NumValues = ValueVTs.size();
1082
1083    SmallVector<SDValue, 4> Chains(NumValues);
1084    for (unsigned i = 0; i != NumValues; ++i) {
1085      SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(),
1086                                RetPtr.getValueType(), RetPtr,
1087                                DAG.getIntPtrConstant(Offsets[i]));
1088      Chains[i] =
1089        DAG.getStore(Chain, getCurDebugLoc(),
1090                     SDValue(RetOp.getNode(), RetOp.getResNo() + i),
1091                     Add, NULL, Offsets[i], false, false, 0);
1092    }
1093
1094    Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
1095                        MVT::Other, &Chains[0], NumValues);
1096  } else if (I.getNumOperands() != 0) {
1097    SmallVector<EVT, 4> ValueVTs;
1098    ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs);
1099    unsigned NumValues = ValueVTs.size();
1100    if (NumValues) {
1101      SDValue RetOp = getValue(I.getOperand(0));
1102      for (unsigned j = 0, f = NumValues; j != f; ++j) {
1103        EVT VT = ValueVTs[j];
1104
1105        ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1106
1107        const Function *F = I.getParent()->getParent();
1108        if (F->paramHasAttr(0, Attribute::SExt))
1109          ExtendKind = ISD::SIGN_EXTEND;
1110        else if (F->paramHasAttr(0, Attribute::ZExt))
1111          ExtendKind = ISD::ZERO_EXTEND;
1112
1113        // FIXME: C calling convention requires the return type to be promoted
1114        // to at least 32-bit. But this is not necessary for non-C calling
1115        // conventions. The frontend should mark functions whose return values
1116        // require promoting with signext or zeroext attributes.
1117        if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) {
1118          EVT MinVT = TLI.getRegisterType(*DAG.getContext(), MVT::i32);
1119          if (VT.bitsLT(MinVT))
1120            VT = MinVT;
1121        }
1122
1123        unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), VT);
1124        EVT PartVT = TLI.getRegisterType(*DAG.getContext(), VT);
1125        SmallVector<SDValue, 4> Parts(NumParts);
1126        getCopyToParts(DAG, getCurDebugLoc(),
1127                       SDValue(RetOp.getNode(), RetOp.getResNo() + j),
1128                       &Parts[0], NumParts, PartVT, ExtendKind);
1129
1130        // 'inreg' on function refers to return value
1131        ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1132        if (F->paramHasAttr(0, Attribute::InReg))
1133          Flags.setInReg();
1134
1135        // Propagate extension type if any
1136        if (F->paramHasAttr(0, Attribute::SExt))
1137          Flags.setSExt();
1138        else if (F->paramHasAttr(0, Attribute::ZExt))
1139          Flags.setZExt();
1140
1141        for (unsigned i = 0; i < NumParts; ++i) {
1142          Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(),
1143                                        /*isfixed=*/true));
1144          OutVals.push_back(Parts[i]);
1145        }
1146      }
1147    }
1148  }
1149
1150  bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
1151  CallingConv::ID CallConv =
1152    DAG.getMachineFunction().getFunction()->getCallingConv();
1153  Chain = TLI.LowerReturn(Chain, CallConv, isVarArg,
1154                          Outs, OutVals, getCurDebugLoc(), DAG);
1155
1156  // Verify that the target's LowerReturn behaved as expected.
1157  assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
1158         "LowerReturn didn't return a valid chain!");
1159
1160  // Update the DAG with the new chain value resulting from return lowering.
1161  DAG.setRoot(Chain);
1162}
1163
1164/// CopyToExportRegsIfNeeded - If the given value has virtual registers
1165/// created for it, emit nodes to copy the value into the virtual
1166/// registers.
1167void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
1168  DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
1169  if (VMI != FuncInfo.ValueMap.end()) {
1170    assert(!V->use_empty() && "Unused value assigned virtual registers!");
1171    CopyValueToVirtualRegister(V, VMI->second);
1172  }
1173}
1174
1175/// ExportFromCurrentBlock - If this condition isn't known to be exported from
1176/// the current basic block, add it to ValueMap now so that we'll get a
1177/// CopyTo/FromReg.
1178void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
1179  // No need to export constants.
1180  if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
1181
1182  // Already exported?
1183  if (FuncInfo.isExportedInst(V)) return;
1184
1185  unsigned Reg = FuncInfo.InitializeRegForValue(V);
1186  CopyValueToVirtualRegister(V, Reg);
1187}
1188
1189bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
1190                                                     const BasicBlock *FromBB) {
1191  // The operands of the setcc have to be in this block.  We don't know
1192  // how to export them from some other block.
1193  if (const Instruction *VI = dyn_cast<Instruction>(V)) {
1194    // Can export from current BB.
1195    if (VI->getParent() == FromBB)
1196      return true;
1197
1198    // Is already exported, noop.
1199    return FuncInfo.isExportedInst(V);
1200  }
1201
1202  // If this is an argument, we can export it if the BB is the entry block or
1203  // if it is already exported.
1204  if (isa<Argument>(V)) {
1205    if (FromBB == &FromBB->getParent()->getEntryBlock())
1206      return true;
1207
1208    // Otherwise, can only export this if it is already exported.
1209    return FuncInfo.isExportedInst(V);
1210  }
1211
1212  // Otherwise, constants can always be exported.
1213  return true;
1214}
1215
1216static bool InBlock(const Value *V, const BasicBlock *BB) {
1217  if (const Instruction *I = dyn_cast<Instruction>(V))
1218    return I->getParent() == BB;
1219  return true;
1220}
1221
1222/// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
1223/// This function emits a branch and is used at the leaves of an OR or an
1224/// AND operator tree.
1225///
1226void
1227SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
1228                                                  MachineBasicBlock *TBB,
1229                                                  MachineBasicBlock *FBB,
1230                                                  MachineBasicBlock *CurBB,
1231                                                  MachineBasicBlock *SwitchBB) {
1232  const BasicBlock *BB = CurBB->getBasicBlock();
1233
1234  // If the leaf of the tree is a comparison, merge the condition into
1235  // the caseblock.
1236  if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
1237    // The operands of the cmp have to be in this block.  We don't know
1238    // how to export them from some other block.  If this is the first block
1239    // of the sequence, no exporting is needed.
1240    if (CurBB == SwitchBB ||
1241        (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
1242         isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
1243      ISD::CondCode Condition;
1244      if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
1245        Condition = getICmpCondCode(IC->getPredicate());
1246      } else if (const FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) {
1247        Condition = getFCmpCondCode(FC->getPredicate());
1248      } else {
1249        Condition = ISD::SETEQ; // silence warning.
1250        llvm_unreachable("Unknown compare instruction");
1251      }
1252
1253      CaseBlock CB(Condition, BOp->getOperand(0),
1254                   BOp->getOperand(1), NULL, TBB, FBB, CurBB);
1255      SwitchCases.push_back(CB);
1256      return;
1257    }
1258  }
1259
1260  // Create a CaseBlock record representing this branch.
1261  CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()),
1262               NULL, TBB, FBB, CurBB);
1263  SwitchCases.push_back(CB);
1264}
1265
1266/// FindMergedConditions - If Cond is an expression like
1267void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
1268                                               MachineBasicBlock *TBB,
1269                                               MachineBasicBlock *FBB,
1270                                               MachineBasicBlock *CurBB,
1271                                               MachineBasicBlock *SwitchBB,
1272                                               unsigned Opc) {
1273  // If this node is not part of the or/and tree, emit it as a branch.
1274  const Instruction *BOp = dyn_cast<Instruction>(Cond);
1275  if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
1276      (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() ||
1277      BOp->getParent() != CurBB->getBasicBlock() ||
1278      !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
1279      !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
1280    EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB);
1281    return;
1282  }
1283
1284  //  Create TmpBB after CurBB.
1285  MachineFunction::iterator BBI = CurBB;
1286  MachineFunction &MF = DAG.getMachineFunction();
1287  MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
1288  CurBB->getParent()->insert(++BBI, TmpBB);
1289
1290  if (Opc == Instruction::Or) {
1291    // Codegen X | Y as:
1292    //   jmp_if_X TBB
1293    //   jmp TmpBB
1294    // TmpBB:
1295    //   jmp_if_Y TBB
1296    //   jmp FBB
1297    //
1298
1299    // Emit the LHS condition.
1300    FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc);
1301
1302    // Emit the RHS condition into TmpBB.
1303    FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc);
1304  } else {
1305    assert(Opc == Instruction::And && "Unknown merge op!");
1306    // Codegen X & Y as:
1307    //   jmp_if_X TmpBB
1308    //   jmp FBB
1309    // TmpBB:
1310    //   jmp_if_Y TBB
1311    //   jmp FBB
1312    //
1313    //  This requires creation of TmpBB after CurBB.
1314
1315    // Emit the LHS condition.
1316    FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc);
1317
1318    // Emit the RHS condition into TmpBB.
1319    FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc);
1320  }
1321}
1322
1323/// If the set of cases should be emitted as a series of branches, return true.
1324/// If we should emit this as a bunch of and/or'd together conditions, return
1325/// false.
1326bool
1327SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases){
1328  if (Cases.size() != 2) return true;
1329
1330  // If this is two comparisons of the same values or'd or and'd together, they
1331  // will get folded into a single comparison, so don't emit two blocks.
1332  if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
1333       Cases[0].CmpRHS == Cases[1].CmpRHS) ||
1334      (Cases[0].CmpRHS == Cases[1].CmpLHS &&
1335       Cases[0].CmpLHS == Cases[1].CmpRHS)) {
1336    return false;
1337  }
1338
1339  // Handle: (X != null) | (Y != null) --> (X|Y) != 0
1340  // Handle: (X == null) & (Y == null) --> (X|Y) == 0
1341  if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
1342      Cases[0].CC == Cases[1].CC &&
1343      isa<Constant>(Cases[0].CmpRHS) &&
1344      cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
1345    if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
1346      return false;
1347    if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
1348      return false;
1349  }
1350
1351  return true;
1352}
1353
1354void SelectionDAGBuilder::visitBr(const BranchInst &I) {
1355  MachineBasicBlock *BrMBB = FuncInfo.MBB;
1356
1357  // Update machine-CFG edges.
1358  MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
1359
1360  // Figure out which block is immediately after the current one.
1361  MachineBasicBlock *NextBlock = 0;
1362  MachineFunction::iterator BBI = BrMBB;
1363  if (++BBI != FuncInfo.MF->end())
1364    NextBlock = BBI;
1365
1366  if (I.isUnconditional()) {
1367    // Update machine-CFG edges.
1368    BrMBB->addSuccessor(Succ0MBB);
1369
1370    // If this is not a fall-through branch, emit the branch.
1371    if (Succ0MBB != NextBlock)
1372      DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
1373                              MVT::Other, getControlRoot(),
1374                              DAG.getBasicBlock(Succ0MBB)));
1375
1376    return;
1377  }
1378
1379  // If this condition is one of the special cases we handle, do special stuff
1380  // now.
1381  const Value *CondVal = I.getCondition();
1382  MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
1383
1384  // If this is a series of conditions that are or'd or and'd together, emit
1385  // this as a sequence of branches instead of setcc's with and/or operations.
1386  // For example, instead of something like:
1387  //     cmp A, B
1388  //     C = seteq
1389  //     cmp D, E
1390  //     F = setle
1391  //     or C, F
1392  //     jnz foo
1393  // Emit:
1394  //     cmp A, B
1395  //     je foo
1396  //     cmp D, E
1397  //     jle foo
1398  //
1399  if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
1400    if (BOp->hasOneUse() &&
1401        (BOp->getOpcode() == Instruction::And ||
1402         BOp->getOpcode() == Instruction::Or)) {
1403      FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB,
1404                           BOp->getOpcode());
1405      // If the compares in later blocks need to use values not currently
1406      // exported from this block, export them now.  This block should always
1407      // be the first entry.
1408      assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
1409
1410      // Allow some cases to be rejected.
1411      if (ShouldEmitAsBranches(SwitchCases)) {
1412        for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
1413          ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
1414          ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
1415        }
1416
1417        // Emit the branch for this block.
1418        visitSwitchCase(SwitchCases[0], BrMBB);
1419        SwitchCases.erase(SwitchCases.begin());
1420        return;
1421      }
1422
1423      // Okay, we decided not to do this, remove any inserted MBB's and clear
1424      // SwitchCases.
1425      for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
1426        FuncInfo.MF->erase(SwitchCases[i].ThisBB);
1427
1428      SwitchCases.clear();
1429    }
1430  }
1431
1432  // Create a CaseBlock record representing this branch.
1433  CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
1434               NULL, Succ0MBB, Succ1MBB, BrMBB);
1435
1436  // Use visitSwitchCase to actually insert the fast branch sequence for this
1437  // cond branch.
1438  visitSwitchCase(CB, BrMBB);
1439}
1440
1441/// visitSwitchCase - Emits the necessary code to represent a single node in
1442/// the binary search tree resulting from lowering a switch instruction.
1443void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
1444                                          MachineBasicBlock *SwitchBB) {
1445  SDValue Cond;
1446  SDValue CondLHS = getValue(CB.CmpLHS);
1447  DebugLoc dl = getCurDebugLoc();
1448
1449  // Build the setcc now.
1450  if (CB.CmpMHS == NULL) {
1451    // Fold "(X == true)" to X and "(X == false)" to !X to
1452    // handle common cases produced by branch lowering.
1453    if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
1454        CB.CC == ISD::SETEQ)
1455      Cond = CondLHS;
1456    else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
1457             CB.CC == ISD::SETEQ) {
1458      SDValue True = DAG.getConstant(1, CondLHS.getValueType());
1459      Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
1460    } else
1461      Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
1462  } else {
1463    assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
1464
1465    const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
1466    const APInt& High  = cast<ConstantInt>(CB.CmpRHS)->getValue();
1467
1468    SDValue CmpOp = getValue(CB.CmpMHS);
1469    EVT VT = CmpOp.getValueType();
1470
1471    if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
1472      Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, VT),
1473                          ISD::SETLE);
1474    } else {
1475      SDValue SUB = DAG.getNode(ISD::SUB, dl,
1476                                VT, CmpOp, DAG.getConstant(Low, VT));
1477      Cond = DAG.getSetCC(dl, MVT::i1, SUB,
1478                          DAG.getConstant(High-Low, VT), ISD::SETULE);
1479    }
1480  }
1481
1482  // Update successor info
1483  SwitchBB->addSuccessor(CB.TrueBB);
1484  SwitchBB->addSuccessor(CB.FalseBB);
1485
1486  // Set NextBlock to be the MBB immediately after the current one, if any.
1487  // This is used to avoid emitting unnecessary branches to the next block.
1488  MachineBasicBlock *NextBlock = 0;
1489  MachineFunction::iterator BBI = SwitchBB;
1490  if (++BBI != FuncInfo.MF->end())
1491    NextBlock = BBI;
1492
1493  // If the lhs block is the next block, invert the condition so that we can
1494  // fall through to the lhs instead of the rhs block.
1495  if (CB.TrueBB == NextBlock) {
1496    std::swap(CB.TrueBB, CB.FalseBB);
1497    SDValue True = DAG.getConstant(1, Cond.getValueType());
1498    Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
1499  }
1500
1501  SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
1502                               MVT::Other, getControlRoot(), Cond,
1503                               DAG.getBasicBlock(CB.TrueBB));
1504
1505  // Insert the false branch.
1506  if (CB.FalseBB != NextBlock)
1507    BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
1508                         DAG.getBasicBlock(CB.FalseBB));
1509
1510  DAG.setRoot(BrCond);
1511}
1512
1513/// visitJumpTable - Emit JumpTable node in the current MBB
1514void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) {
1515  // Emit the code for the jump table
1516  assert(JT.Reg != -1U && "Should lower JT Header first!");
1517  EVT PTy = TLI.getPointerTy();
1518  SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(),
1519                                     JT.Reg, PTy);
1520  SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
1521  SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurDebugLoc(),
1522                                    MVT::Other, Index.getValue(1),
1523                                    Table, Index);
1524  DAG.setRoot(BrJumpTable);
1525}
1526
1527/// visitJumpTableHeader - This function emits necessary code to produce index
1528/// in the JumpTable from switch case.
1529void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT,
1530                                               JumpTableHeader &JTH,
1531                                               MachineBasicBlock *SwitchBB) {
1532  // Subtract the lowest switch case value from the value being switched on and
1533  // conditional branch to default mbb if the result is greater than the
1534  // difference between smallest and largest cases.
1535  SDValue SwitchOp = getValue(JTH.SValue);
1536  EVT VT = SwitchOp.getValueType();
1537  SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp,
1538                            DAG.getConstant(JTH.First, VT));
1539
1540  // The SDNode we just created, which holds the value being switched on minus
1541  // the smallest case value, needs to be copied to a virtual register so it
1542  // can be used as an index into the jump table in a subsequent basic block.
1543  // This value may be smaller or larger than the target's pointer type, and
1544  // therefore require extension or truncating.
1545  SwitchOp = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(), TLI.getPointerTy());
1546
1547  unsigned JumpTableReg = FuncInfo.CreateReg(TLI.getPointerTy());
1548  SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(),
1549                                    JumpTableReg, SwitchOp);
1550  JT.Reg = JumpTableReg;
1551
1552  // Emit the range check for the jump table, and branch to the default block
1553  // for the switch statement if the value being switched on exceeds the largest
1554  // case in the switch.
1555  SDValue CMP = DAG.getSetCC(getCurDebugLoc(),
1556                             TLI.getSetCCResultType(Sub.getValueType()), Sub,
1557                             DAG.getConstant(JTH.Last-JTH.First,VT),
1558                             ISD::SETUGT);
1559
1560  // Set NextBlock to be the MBB immediately after the current one, if any.
1561  // This is used to avoid emitting unnecessary branches to the next block.
1562  MachineBasicBlock *NextBlock = 0;
1563  MachineFunction::iterator BBI = SwitchBB;
1564
1565  if (++BBI != FuncInfo.MF->end())
1566    NextBlock = BBI;
1567
1568  SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1569                               MVT::Other, CopyTo, CMP,
1570                               DAG.getBasicBlock(JT.Default));
1571
1572  if (JT.MBB != NextBlock)
1573    BrCond = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrCond,
1574                         DAG.getBasicBlock(JT.MBB));
1575
1576  DAG.setRoot(BrCond);
1577}
1578
1579/// visitBitTestHeader - This function emits necessary code to produce value
1580/// suitable for "bit tests"
1581void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
1582                                             MachineBasicBlock *SwitchBB) {
1583  // Subtract the minimum value
1584  SDValue SwitchOp = getValue(B.SValue);
1585  EVT VT = SwitchOp.getValueType();
1586  SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp,
1587                            DAG.getConstant(B.First, VT));
1588
1589  // Check range
1590  SDValue RangeCmp = DAG.getSetCC(getCurDebugLoc(),
1591                                  TLI.getSetCCResultType(Sub.getValueType()),
1592                                  Sub, DAG.getConstant(B.Range, VT),
1593                                  ISD::SETUGT);
1594
1595  SDValue ShiftOp = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(),
1596                                       TLI.getPointerTy());
1597
1598  B.Reg = FuncInfo.CreateReg(TLI.getPointerTy());
1599  SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(),
1600                                    B.Reg, ShiftOp);
1601
1602  // Set NextBlock to be the MBB immediately after the current one, if any.
1603  // This is used to avoid emitting unnecessary branches to the next block.
1604  MachineBasicBlock *NextBlock = 0;
1605  MachineFunction::iterator BBI = SwitchBB;
1606  if (++BBI != FuncInfo.MF->end())
1607    NextBlock = BBI;
1608
1609  MachineBasicBlock* MBB = B.Cases[0].ThisBB;
1610
1611  SwitchBB->addSuccessor(B.Default);
1612  SwitchBB->addSuccessor(MBB);
1613
1614  SDValue BrRange = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1615                                MVT::Other, CopyTo, RangeCmp,
1616                                DAG.getBasicBlock(B.Default));
1617
1618  if (MBB != NextBlock)
1619    BrRange = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, CopyTo,
1620                          DAG.getBasicBlock(MBB));
1621
1622  DAG.setRoot(BrRange);
1623}
1624
1625/// visitBitTestCase - this function produces one "bit test"
1626void SelectionDAGBuilder::visitBitTestCase(MachineBasicBlock* NextMBB,
1627                                           unsigned Reg,
1628                                           BitTestCase &B,
1629                                           MachineBasicBlock *SwitchBB) {
1630  SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(), Reg,
1631                                       TLI.getPointerTy());
1632  SDValue Cmp;
1633  if (CountPopulation_64(B.Mask) == 1) {
1634    // Testing for a single bit; just compare the shift count with what it
1635    // would need to be to shift a 1 bit in that position.
1636    Cmp = DAG.getSetCC(getCurDebugLoc(),
1637                       TLI.getSetCCResultType(ShiftOp.getValueType()),
1638                       ShiftOp,
1639                       DAG.getConstant(CountTrailingZeros_64(B.Mask),
1640                                       TLI.getPointerTy()),
1641                       ISD::SETEQ);
1642  } else {
1643    // Make desired shift
1644    SDValue SwitchVal = DAG.getNode(ISD::SHL, getCurDebugLoc(),
1645                                    TLI.getPointerTy(),
1646                                    DAG.getConstant(1, TLI.getPointerTy()),
1647                                    ShiftOp);
1648
1649    // Emit bit tests and jumps
1650    SDValue AndOp = DAG.getNode(ISD::AND, getCurDebugLoc(),
1651                                TLI.getPointerTy(), SwitchVal,
1652                                DAG.getConstant(B.Mask, TLI.getPointerTy()));
1653    Cmp = DAG.getSetCC(getCurDebugLoc(),
1654                       TLI.getSetCCResultType(AndOp.getValueType()),
1655                       AndOp, DAG.getConstant(0, TLI.getPointerTy()),
1656                       ISD::SETNE);
1657  }
1658
1659  SwitchBB->addSuccessor(B.TargetBB);
1660  SwitchBB->addSuccessor(NextMBB);
1661
1662  SDValue BrAnd = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1663                              MVT::Other, getControlRoot(),
1664                              Cmp, DAG.getBasicBlock(B.TargetBB));
1665
1666  // Set NextBlock to be the MBB immediately after the current one, if any.
1667  // This is used to avoid emitting unnecessary branches to the next block.
1668  MachineBasicBlock *NextBlock = 0;
1669  MachineFunction::iterator BBI = SwitchBB;
1670  if (++BBI != FuncInfo.MF->end())
1671    NextBlock = BBI;
1672
1673  if (NextMBB != NextBlock)
1674    BrAnd = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrAnd,
1675                        DAG.getBasicBlock(NextMBB));
1676
1677  DAG.setRoot(BrAnd);
1678}
1679
1680void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
1681  MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
1682
1683  // Retrieve successors.
1684  MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
1685  MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)];
1686
1687  const Value *Callee(I.getCalledValue());
1688  if (isa<InlineAsm>(Callee))
1689    visitInlineAsm(&I);
1690  else
1691    LowerCallTo(&I, getValue(Callee), false, LandingPad);
1692
1693  // If the value of the invoke is used outside of its defining block, make it
1694  // available as a virtual register.
1695  CopyToExportRegsIfNeeded(&I);
1696
1697  // Update successor info
1698  InvokeMBB->addSuccessor(Return);
1699  InvokeMBB->addSuccessor(LandingPad);
1700
1701  // Drop into normal successor.
1702  DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
1703                          MVT::Other, getControlRoot(),
1704                          DAG.getBasicBlock(Return)));
1705}
1706
1707void SelectionDAGBuilder::visitUnwind(const UnwindInst &I) {
1708}
1709
1710/// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for
1711/// small case ranges).
1712bool SelectionDAGBuilder::handleSmallSwitchRange(CaseRec& CR,
1713                                                 CaseRecVector& WorkList,
1714                                                 const Value* SV,
1715                                                 MachineBasicBlock *Default,
1716                                                 MachineBasicBlock *SwitchBB) {
1717  Case& BackCase  = *(CR.Range.second-1);
1718
1719  // Size is the number of Cases represented by this range.
1720  size_t Size = CR.Range.second - CR.Range.first;
1721  if (Size > 3)
1722    return false;
1723
1724  // Get the MachineFunction which holds the current MBB.  This is used when
1725  // inserting any additional MBBs necessary to represent the switch.
1726  MachineFunction *CurMF = FuncInfo.MF;
1727
1728  // Figure out which block is immediately after the current one.
1729  MachineBasicBlock *NextBlock = 0;
1730  MachineFunction::iterator BBI = CR.CaseBB;
1731
1732  if (++BBI != FuncInfo.MF->end())
1733    NextBlock = BBI;
1734
1735  // TODO: If any two of the cases has the same destination, and if one value
1736  // is the same as the other, but has one bit unset that the other has set,
1737  // use bit manipulation to do two compares at once.  For example:
1738  // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
1739
1740  // Rearrange the case blocks so that the last one falls through if possible.
1741  if (NextBlock && Default != NextBlock && BackCase.BB != NextBlock) {
1742    // The last case block won't fall through into 'NextBlock' if we emit the
1743    // branches in this order.  See if rearranging a case value would help.
1744    for (CaseItr I = CR.Range.first, E = CR.Range.second-1; I != E; ++I) {
1745      if (I->BB == NextBlock) {
1746        std::swap(*I, BackCase);
1747        break;
1748      }
1749    }
1750  }
1751
1752  // Create a CaseBlock record representing a conditional branch to
1753  // the Case's target mbb if the value being switched on SV is equal
1754  // to C.
1755  MachineBasicBlock *CurBlock = CR.CaseBB;
1756  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) {
1757    MachineBasicBlock *FallThrough;
1758    if (I != E-1) {
1759      FallThrough = CurMF->CreateMachineBasicBlock(CurBlock->getBasicBlock());
1760      CurMF->insert(BBI, FallThrough);
1761
1762      // Put SV in a virtual register to make it available from the new blocks.
1763      ExportFromCurrentBlock(SV);
1764    } else {
1765      // If the last case doesn't match, go to the default block.
1766      FallThrough = Default;
1767    }
1768
1769    const Value *RHS, *LHS, *MHS;
1770    ISD::CondCode CC;
1771    if (I->High == I->Low) {
1772      // This is just small small case range :) containing exactly 1 case
1773      CC = ISD::SETEQ;
1774      LHS = SV; RHS = I->High; MHS = NULL;
1775    } else {
1776      CC = ISD::SETLE;
1777      LHS = I->Low; MHS = SV; RHS = I->High;
1778    }
1779    CaseBlock CB(CC, LHS, RHS, MHS, I->BB, FallThrough, CurBlock);
1780
1781    // If emitting the first comparison, just call visitSwitchCase to emit the
1782    // code into the current block.  Otherwise, push the CaseBlock onto the
1783    // vector to be later processed by SDISel, and insert the node's MBB
1784    // before the next MBB.
1785    if (CurBlock == SwitchBB)
1786      visitSwitchCase(CB, SwitchBB);
1787    else
1788      SwitchCases.push_back(CB);
1789
1790    CurBlock = FallThrough;
1791  }
1792
1793  return true;
1794}
1795
1796static inline bool areJTsAllowed(const TargetLowering &TLI) {
1797  return !DisableJumpTables &&
1798          (TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) ||
1799           TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other));
1800}
1801
1802static APInt ComputeRange(const APInt &First, const APInt &Last) {
1803  APInt LastExt(Last), FirstExt(First);
1804  uint32_t BitWidth = std::max(Last.getBitWidth(), First.getBitWidth()) + 1;
1805  LastExt.sext(BitWidth); FirstExt.sext(BitWidth);
1806  return (LastExt - FirstExt + 1ULL);
1807}
1808
1809/// handleJTSwitchCase - Emit jumptable for current switch case range
1810bool SelectionDAGBuilder::handleJTSwitchCase(CaseRec& CR,
1811                                             CaseRecVector& WorkList,
1812                                             const Value* SV,
1813                                             MachineBasicBlock* Default,
1814                                             MachineBasicBlock *SwitchBB) {
1815  Case& FrontCase = *CR.Range.first;
1816  Case& BackCase  = *(CR.Range.second-1);
1817
1818  const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue();
1819  const APInt &Last  = cast<ConstantInt>(BackCase.High)->getValue();
1820
1821  APInt TSize(First.getBitWidth(), 0);
1822  for (CaseItr I = CR.Range.first, E = CR.Range.second;
1823       I!=E; ++I)
1824    TSize += I->size();
1825
1826  if (!areJTsAllowed(TLI) || TSize.ult(4))
1827    return false;
1828
1829  APInt Range = ComputeRange(First, Last);
1830  double Density = TSize.roundToDouble() / Range.roundToDouble();
1831  if (Density < 0.4)
1832    return false;
1833
1834  DEBUG(dbgs() << "Lowering jump table\n"
1835               << "First entry: " << First << ". Last entry: " << Last << '\n'
1836               << "Range: " << Range
1837               << "Size: " << TSize << ". Density: " << Density << "\n\n");
1838
1839  // Get the MachineFunction which holds the current MBB.  This is used when
1840  // inserting any additional MBBs necessary to represent the switch.
1841  MachineFunction *CurMF = FuncInfo.MF;
1842
1843  // Figure out which block is immediately after the current one.
1844  MachineFunction::iterator BBI = CR.CaseBB;
1845  ++BBI;
1846
1847  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
1848
1849  // Create a new basic block to hold the code for loading the address
1850  // of the jump table, and jumping to it.  Update successor information;
1851  // we will either branch to the default case for the switch, or the jump
1852  // table.
1853  MachineBasicBlock *JumpTableBB = CurMF->CreateMachineBasicBlock(LLVMBB);
1854  CurMF->insert(BBI, JumpTableBB);
1855  CR.CaseBB->addSuccessor(Default);
1856  CR.CaseBB->addSuccessor(JumpTableBB);
1857
1858  // Build a vector of destination BBs, corresponding to each target
1859  // of the jump table. If the value of the jump table slot corresponds to
1860  // a case statement, push the case's BB onto the vector, otherwise, push
1861  // the default BB.
1862  std::vector<MachineBasicBlock*> DestBBs;
1863  APInt TEI = First;
1864  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) {
1865    const APInt &Low = cast<ConstantInt>(I->Low)->getValue();
1866    const APInt &High = cast<ConstantInt>(I->High)->getValue();
1867
1868    if (Low.sle(TEI) && TEI.sle(High)) {
1869      DestBBs.push_back(I->BB);
1870      if (TEI==High)
1871        ++I;
1872    } else {
1873      DestBBs.push_back(Default);
1874    }
1875  }
1876
1877  // Update successor info. Add one edge to each unique successor.
1878  BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs());
1879  for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(),
1880         E = DestBBs.end(); I != E; ++I) {
1881    if (!SuccsHandled[(*I)->getNumber()]) {
1882      SuccsHandled[(*I)->getNumber()] = true;
1883      JumpTableBB->addSuccessor(*I);
1884    }
1885  }
1886
1887  // Create a jump table index for this jump table.
1888  unsigned JTEncoding = TLI.getJumpTableEncoding();
1889  unsigned JTI = CurMF->getOrCreateJumpTableInfo(JTEncoding)
1890                       ->createJumpTableIndex(DestBBs);
1891
1892  // Set the jump table information so that we can codegen it as a second
1893  // MachineBasicBlock
1894  JumpTable JT(-1U, JTI, JumpTableBB, Default);
1895  JumpTableHeader JTH(First, Last, SV, CR.CaseBB, (CR.CaseBB == SwitchBB));
1896  if (CR.CaseBB == SwitchBB)
1897    visitJumpTableHeader(JT, JTH, SwitchBB);
1898
1899  JTCases.push_back(JumpTableBlock(JTH, JT));
1900
1901  return true;
1902}
1903
1904/// handleBTSplitSwitchCase - emit comparison and split binary search tree into
1905/// 2 subtrees.
1906bool SelectionDAGBuilder::handleBTSplitSwitchCase(CaseRec& CR,
1907                                                  CaseRecVector& WorkList,
1908                                                  const Value* SV,
1909                                                  MachineBasicBlock *Default,
1910                                                  MachineBasicBlock *SwitchBB) {
1911  // Get the MachineFunction which holds the current MBB.  This is used when
1912  // inserting any additional MBBs necessary to represent the switch.
1913  MachineFunction *CurMF = FuncInfo.MF;
1914
1915  // Figure out which block is immediately after the current one.
1916  MachineFunction::iterator BBI = CR.CaseBB;
1917  ++BBI;
1918
1919  Case& FrontCase = *CR.Range.first;
1920  Case& BackCase  = *(CR.Range.second-1);
1921  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
1922
1923  // Size is the number of Cases represented by this range.
1924  unsigned Size = CR.Range.second - CR.Range.first;
1925
1926  const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue();
1927  const APInt &Last  = cast<ConstantInt>(BackCase.High)->getValue();
1928  double FMetric = 0;
1929  CaseItr Pivot = CR.Range.first + Size/2;
1930
1931  // Select optimal pivot, maximizing sum density of LHS and RHS. This will
1932  // (heuristically) allow us to emit JumpTable's later.
1933  APInt TSize(First.getBitWidth(), 0);
1934  for (CaseItr I = CR.Range.first, E = CR.Range.second;
1935       I!=E; ++I)
1936    TSize += I->size();
1937
1938  APInt LSize = FrontCase.size();
1939  APInt RSize = TSize-LSize;
1940  DEBUG(dbgs() << "Selecting best pivot: \n"
1941               << "First: " << First << ", Last: " << Last <<'\n'
1942               << "LSize: " << LSize << ", RSize: " << RSize << '\n');
1943  for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second;
1944       J!=E; ++I, ++J) {
1945    const APInt &LEnd = cast<ConstantInt>(I->High)->getValue();
1946    const APInt &RBegin = cast<ConstantInt>(J->Low)->getValue();
1947    APInt Range = ComputeRange(LEnd, RBegin);
1948    assert((Range - 2ULL).isNonNegative() &&
1949           "Invalid case distance");
1950    double LDensity = (double)LSize.roundToDouble() /
1951                           (LEnd - First + 1ULL).roundToDouble();
1952    double RDensity = (double)RSize.roundToDouble() /
1953                           (Last - RBegin + 1ULL).roundToDouble();
1954    double Metric = Range.logBase2()*(LDensity+RDensity);
1955    // Should always split in some non-trivial place
1956    DEBUG(dbgs() <<"=>Step\n"
1957                 << "LEnd: " << LEnd << ", RBegin: " << RBegin << '\n'
1958                 << "LDensity: " << LDensity
1959                 << ", RDensity: " << RDensity << '\n'
1960                 << "Metric: " << Metric << '\n');
1961    if (FMetric < Metric) {
1962      Pivot = J;
1963      FMetric = Metric;
1964      DEBUG(dbgs() << "Current metric set to: " << FMetric << '\n');
1965    }
1966
1967    LSize += J->size();
1968    RSize -= J->size();
1969  }
1970  if (areJTsAllowed(TLI)) {
1971    // If our case is dense we *really* should handle it earlier!
1972    assert((FMetric > 0) && "Should handle dense range earlier!");
1973  } else {
1974    Pivot = CR.Range.first + Size/2;
1975  }
1976
1977  CaseRange LHSR(CR.Range.first, Pivot);
1978  CaseRange RHSR(Pivot, CR.Range.second);
1979  Constant *C = Pivot->Low;
1980  MachineBasicBlock *FalseBB = 0, *TrueBB = 0;
1981
1982  // We know that we branch to the LHS if the Value being switched on is
1983  // less than the Pivot value, C.  We use this to optimize our binary
1984  // tree a bit, by recognizing that if SV is greater than or equal to the
1985  // LHS's Case Value, and that Case Value is exactly one less than the
1986  // Pivot's Value, then we can branch directly to the LHS's Target,
1987  // rather than creating a leaf node for it.
1988  if ((LHSR.second - LHSR.first) == 1 &&
1989      LHSR.first->High == CR.GE &&
1990      cast<ConstantInt>(C)->getValue() ==
1991      (cast<ConstantInt>(CR.GE)->getValue() + 1LL)) {
1992    TrueBB = LHSR.first->BB;
1993  } else {
1994    TrueBB = CurMF->CreateMachineBasicBlock(LLVMBB);
1995    CurMF->insert(BBI, TrueBB);
1996    WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR));
1997
1998    // Put SV in a virtual register to make it available from the new blocks.
1999    ExportFromCurrentBlock(SV);
2000  }
2001
2002  // Similar to the optimization above, if the Value being switched on is
2003  // known to be less than the Constant CR.LT, and the current Case Value
2004  // is CR.LT - 1, then we can branch directly to the target block for
2005  // the current Case Value, rather than emitting a RHS leaf node for it.
2006  if ((RHSR.second - RHSR.first) == 1 && CR.LT &&
2007      cast<ConstantInt>(RHSR.first->Low)->getValue() ==
2008      (cast<ConstantInt>(CR.LT)->getValue() - 1LL)) {
2009    FalseBB = RHSR.first->BB;
2010  } else {
2011    FalseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2012    CurMF->insert(BBI, FalseBB);
2013    WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR));
2014
2015    // Put SV in a virtual register to make it available from the new blocks.
2016    ExportFromCurrentBlock(SV);
2017  }
2018
2019  // Create a CaseBlock record representing a conditional branch to
2020  // the LHS node if the value being switched on SV is less than C.
2021  // Otherwise, branch to LHS.
2022  CaseBlock CB(ISD::SETLT, SV, C, NULL, TrueBB, FalseBB, CR.CaseBB);
2023
2024  if (CR.CaseBB == SwitchBB)
2025    visitSwitchCase(CB, SwitchBB);
2026  else
2027    SwitchCases.push_back(CB);
2028
2029  return true;
2030}
2031
2032/// handleBitTestsSwitchCase - if current case range has few destination and
2033/// range span less, than machine word bitwidth, encode case range into series
2034/// of masks and emit bit tests with these masks.
2035bool SelectionDAGBuilder::handleBitTestsSwitchCase(CaseRec& CR,
2036                                                   CaseRecVector& WorkList,
2037                                                   const Value* SV,
2038                                                   MachineBasicBlock* Default,
2039                                                   MachineBasicBlock *SwitchBB){
2040  EVT PTy = TLI.getPointerTy();
2041  unsigned IntPtrBits = PTy.getSizeInBits();
2042
2043  Case& FrontCase = *CR.Range.first;
2044  Case& BackCase  = *(CR.Range.second-1);
2045
2046  // Get the MachineFunction which holds the current MBB.  This is used when
2047  // inserting any additional MBBs necessary to represent the switch.
2048  MachineFunction *CurMF = FuncInfo.MF;
2049
2050  // If target does not have legal shift left, do not emit bit tests at all.
2051  if (!TLI.isOperationLegal(ISD::SHL, TLI.getPointerTy()))
2052    return false;
2053
2054  size_t numCmps = 0;
2055  for (CaseItr I = CR.Range.first, E = CR.Range.second;
2056       I!=E; ++I) {
2057    // Single case counts one, case range - two.
2058    numCmps += (I->Low == I->High ? 1 : 2);
2059  }
2060
2061  // Count unique destinations
2062  SmallSet<MachineBasicBlock*, 4> Dests;
2063  for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
2064    Dests.insert(I->BB);
2065    if (Dests.size() > 3)
2066      // Don't bother the code below, if there are too much unique destinations
2067      return false;
2068  }
2069  DEBUG(dbgs() << "Total number of unique destinations: "
2070        << Dests.size() << '\n'
2071        << "Total number of comparisons: " << numCmps << '\n');
2072
2073  // Compute span of values.
2074  const APInt& minValue = cast<ConstantInt>(FrontCase.Low)->getValue();
2075  const APInt& maxValue = cast<ConstantInt>(BackCase.High)->getValue();
2076  APInt cmpRange = maxValue - minValue;
2077
2078  DEBUG(dbgs() << "Compare range: " << cmpRange << '\n'
2079               << "Low bound: " << minValue << '\n'
2080               << "High bound: " << maxValue << '\n');
2081
2082  if (cmpRange.uge(IntPtrBits) ||
2083      (!(Dests.size() == 1 && numCmps >= 3) &&
2084       !(Dests.size() == 2 && numCmps >= 5) &&
2085       !(Dests.size() >= 3 && numCmps >= 6)))
2086    return false;
2087
2088  DEBUG(dbgs() << "Emitting bit tests\n");
2089  APInt lowBound = APInt::getNullValue(cmpRange.getBitWidth());
2090
2091  // Optimize the case where all the case values fit in a
2092  // word without having to subtract minValue. In this case,
2093  // we can optimize away the subtraction.
2094  if (minValue.isNonNegative() && maxValue.slt(IntPtrBits)) {
2095    cmpRange = maxValue;
2096  } else {
2097    lowBound = minValue;
2098  }
2099
2100  CaseBitsVector CasesBits;
2101  unsigned i, count = 0;
2102
2103  for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
2104    MachineBasicBlock* Dest = I->BB;
2105    for (i = 0; i < count; ++i)
2106      if (Dest == CasesBits[i].BB)
2107        break;
2108
2109    if (i == count) {
2110      assert((count < 3) && "Too much destinations to test!");
2111      CasesBits.push_back(CaseBits(0, Dest, 0));
2112      count++;
2113    }
2114
2115    const APInt& lowValue = cast<ConstantInt>(I->Low)->getValue();
2116    const APInt& highValue = cast<ConstantInt>(I->High)->getValue();
2117
2118    uint64_t lo = (lowValue - lowBound).getZExtValue();
2119    uint64_t hi = (highValue - lowBound).getZExtValue();
2120
2121    for (uint64_t j = lo; j <= hi; j++) {
2122      CasesBits[i].Mask |=  1ULL << j;
2123      CasesBits[i].Bits++;
2124    }
2125
2126  }
2127  std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp());
2128
2129  BitTestInfo BTC;
2130
2131  // Figure out which block is immediately after the current one.
2132  MachineFunction::iterator BBI = CR.CaseBB;
2133  ++BBI;
2134
2135  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2136
2137  DEBUG(dbgs() << "Cases:\n");
2138  for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) {
2139    DEBUG(dbgs() << "Mask: " << CasesBits[i].Mask
2140                 << ", Bits: " << CasesBits[i].Bits
2141                 << ", BB: " << CasesBits[i].BB << '\n');
2142
2143    MachineBasicBlock *CaseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2144    CurMF->insert(BBI, CaseBB);
2145    BTC.push_back(BitTestCase(CasesBits[i].Mask,
2146                              CaseBB,
2147                              CasesBits[i].BB));
2148
2149    // Put SV in a virtual register to make it available from the new blocks.
2150    ExportFromCurrentBlock(SV);
2151  }
2152
2153  BitTestBlock BTB(lowBound, cmpRange, SV,
2154                   -1U, (CR.CaseBB == SwitchBB),
2155                   CR.CaseBB, Default, BTC);
2156
2157  if (CR.CaseBB == SwitchBB)
2158    visitBitTestHeader(BTB, SwitchBB);
2159
2160  BitTestCases.push_back(BTB);
2161
2162  return true;
2163}
2164
2165/// Clusterify - Transform simple list of Cases into list of CaseRange's
2166size_t SelectionDAGBuilder::Clusterify(CaseVector& Cases,
2167                                       const SwitchInst& SI) {
2168  size_t numCmps = 0;
2169
2170  // Start with "simple" cases
2171  for (size_t i = 1; i < SI.getNumSuccessors(); ++i) {
2172    MachineBasicBlock *SMBB = FuncInfo.MBBMap[SI.getSuccessor(i)];
2173    Cases.push_back(Case(SI.getSuccessorValue(i),
2174                         SI.getSuccessorValue(i),
2175                         SMBB));
2176  }
2177  std::sort(Cases.begin(), Cases.end(), CaseCmp());
2178
2179  // Merge case into clusters
2180  if (Cases.size() >= 2)
2181    // Must recompute end() each iteration because it may be
2182    // invalidated by erase if we hold on to it
2183    for (CaseItr I = Cases.begin(), J = ++(Cases.begin()); J != Cases.end(); ) {
2184      const APInt& nextValue = cast<ConstantInt>(J->Low)->getValue();
2185      const APInt& currentValue = cast<ConstantInt>(I->High)->getValue();
2186      MachineBasicBlock* nextBB = J->BB;
2187      MachineBasicBlock* currentBB = I->BB;
2188
2189      // If the two neighboring cases go to the same destination, merge them
2190      // into a single case.
2191      if ((nextValue - currentValue == 1) && (currentBB == nextBB)) {
2192        I->High = J->High;
2193        J = Cases.erase(J);
2194      } else {
2195        I = J++;
2196      }
2197    }
2198
2199  for (CaseItr I=Cases.begin(), E=Cases.end(); I!=E; ++I, ++numCmps) {
2200    if (I->Low != I->High)
2201      // A range counts double, since it requires two compares.
2202      ++numCmps;
2203  }
2204
2205  return numCmps;
2206}
2207
2208void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
2209  MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
2210
2211  // Figure out which block is immediately after the current one.
2212  MachineBasicBlock *NextBlock = 0;
2213  MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()];
2214
2215  // If there is only the default destination, branch to it if it is not the
2216  // next basic block.  Otherwise, just fall through.
2217  if (SI.getNumOperands() == 2) {
2218    // Update machine-CFG edges.
2219
2220    // If this is not a fall-through branch, emit the branch.
2221    SwitchMBB->addSuccessor(Default);
2222    if (Default != NextBlock)
2223      DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
2224                              MVT::Other, getControlRoot(),
2225                              DAG.getBasicBlock(Default)));
2226
2227    return;
2228  }
2229
2230  // If there are any non-default case statements, create a vector of Cases
2231  // representing each one, and sort the vector so that we can efficiently
2232  // create a binary search tree from them.
2233  CaseVector Cases;
2234  size_t numCmps = Clusterify(Cases, SI);
2235  DEBUG(dbgs() << "Clusterify finished. Total clusters: " << Cases.size()
2236               << ". Total compares: " << numCmps << '\n');
2237  numCmps = 0;
2238
2239  // Get the Value to be switched on and default basic blocks, which will be
2240  // inserted into CaseBlock records, representing basic blocks in the binary
2241  // search tree.
2242  const Value *SV = SI.getOperand(0);
2243
2244  // Push the initial CaseRec onto the worklist
2245  CaseRecVector WorkList;
2246  WorkList.push_back(CaseRec(SwitchMBB,0,0,
2247                             CaseRange(Cases.begin(),Cases.end())));
2248
2249  while (!WorkList.empty()) {
2250    // Grab a record representing a case range to process off the worklist
2251    CaseRec CR = WorkList.back();
2252    WorkList.pop_back();
2253
2254    if (handleBitTestsSwitchCase(CR, WorkList, SV, Default, SwitchMBB))
2255      continue;
2256
2257    // If the range has few cases (two or less) emit a series of specific
2258    // tests.
2259    if (handleSmallSwitchRange(CR, WorkList, SV, Default, SwitchMBB))
2260      continue;
2261
2262    // If the switch has more than 5 blocks, and at least 40% dense, and the
2263    // target supports indirect branches, then emit a jump table rather than
2264    // lowering the switch to a binary tree of conditional branches.
2265    if (handleJTSwitchCase(CR, WorkList, SV, Default, SwitchMBB))
2266      continue;
2267
2268    // Emit binary tree. We need to pick a pivot, and push left and right ranges
2269    // onto the worklist. Leafs are handled via handleSmallSwitchRange() call.
2270    handleBTSplitSwitchCase(CR, WorkList, SV, Default, SwitchMBB);
2271  }
2272}
2273
2274void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
2275  MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
2276
2277  // Update machine-CFG edges with unique successors.
2278  SmallVector<BasicBlock*, 32> succs;
2279  succs.reserve(I.getNumSuccessors());
2280  for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i)
2281    succs.push_back(I.getSuccessor(i));
2282  array_pod_sort(succs.begin(), succs.end());
2283  succs.erase(std::unique(succs.begin(), succs.end()), succs.end());
2284  for (unsigned i = 0, e = succs.size(); i != e; ++i)
2285    IndirectBrMBB->addSuccessor(FuncInfo.MBBMap[succs[i]]);
2286
2287  DAG.setRoot(DAG.getNode(ISD::BRIND, getCurDebugLoc(),
2288                          MVT::Other, getControlRoot(),
2289                          getValue(I.getAddress())));
2290}
2291
2292void SelectionDAGBuilder::visitFSub(const User &I) {
2293  // -0.0 - X --> fneg
2294  const Type *Ty = I.getType();
2295  if (Ty->isVectorTy()) {
2296    if (ConstantVector *CV = dyn_cast<ConstantVector>(I.getOperand(0))) {
2297      const VectorType *DestTy = cast<VectorType>(I.getType());
2298      const Type *ElTy = DestTy->getElementType();
2299      unsigned VL = DestTy->getNumElements();
2300      std::vector<Constant*> NZ(VL, ConstantFP::getNegativeZero(ElTy));
2301      Constant *CNZ = ConstantVector::get(&NZ[0], NZ.size());
2302      if (CV == CNZ) {
2303        SDValue Op2 = getValue(I.getOperand(1));
2304        setValue(&I, DAG.getNode(ISD::FNEG, getCurDebugLoc(),
2305                                 Op2.getValueType(), Op2));
2306        return;
2307      }
2308    }
2309  }
2310
2311  if (ConstantFP *CFP = dyn_cast<ConstantFP>(I.getOperand(0)))
2312    if (CFP->isExactlyValue(ConstantFP::getNegativeZero(Ty)->getValueAPF())) {
2313      SDValue Op2 = getValue(I.getOperand(1));
2314      setValue(&I, DAG.getNode(ISD::FNEG, getCurDebugLoc(),
2315                               Op2.getValueType(), Op2));
2316      return;
2317    }
2318
2319  visitBinary(I, ISD::FSUB);
2320}
2321
2322void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) {
2323  SDValue Op1 = getValue(I.getOperand(0));
2324  SDValue Op2 = getValue(I.getOperand(1));
2325  setValue(&I, DAG.getNode(OpCode, getCurDebugLoc(),
2326                           Op1.getValueType(), Op1, Op2));
2327}
2328
2329void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
2330  SDValue Op1 = getValue(I.getOperand(0));
2331  SDValue Op2 = getValue(I.getOperand(1));
2332  if (!I.getType()->isVectorTy() &&
2333      Op2.getValueType() != TLI.getShiftAmountTy()) {
2334    // If the operand is smaller than the shift count type, promote it.
2335    EVT PTy = TLI.getPointerTy();
2336    EVT STy = TLI.getShiftAmountTy();
2337    if (STy.bitsGT(Op2.getValueType()))
2338      Op2 = DAG.getNode(ISD::ANY_EXTEND, getCurDebugLoc(),
2339                        TLI.getShiftAmountTy(), Op2);
2340    // If the operand is larger than the shift count type but the shift
2341    // count type has enough bits to represent any shift value, truncate
2342    // it now. This is a common case and it exposes the truncate to
2343    // optimization early.
2344    else if (STy.getSizeInBits() >=
2345             Log2_32_Ceil(Op2.getValueType().getSizeInBits()))
2346      Op2 = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(),
2347                        TLI.getShiftAmountTy(), Op2);
2348    // Otherwise we'll need to temporarily settle for some other
2349    // convenient type; type legalization will make adjustments as
2350    // needed.
2351    else if (PTy.bitsLT(Op2.getValueType()))
2352      Op2 = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(),
2353                        TLI.getPointerTy(), Op2);
2354    else if (PTy.bitsGT(Op2.getValueType()))
2355      Op2 = DAG.getNode(ISD::ANY_EXTEND, getCurDebugLoc(),
2356                        TLI.getPointerTy(), Op2);
2357  }
2358
2359  setValue(&I, DAG.getNode(Opcode, getCurDebugLoc(),
2360                           Op1.getValueType(), Op1, Op2));
2361}
2362
2363void SelectionDAGBuilder::visitICmp(const User &I) {
2364  ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
2365  if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
2366    predicate = IC->getPredicate();
2367  else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
2368    predicate = ICmpInst::Predicate(IC->getPredicate());
2369  SDValue Op1 = getValue(I.getOperand(0));
2370  SDValue Op2 = getValue(I.getOperand(1));
2371  ISD::CondCode Opcode = getICmpCondCode(predicate);
2372
2373  EVT DestVT = TLI.getValueType(I.getType());
2374  setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Opcode));
2375}
2376
2377void SelectionDAGBuilder::visitFCmp(const User &I) {
2378  FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
2379  if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
2380    predicate = FC->getPredicate();
2381  else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
2382    predicate = FCmpInst::Predicate(FC->getPredicate());
2383  SDValue Op1 = getValue(I.getOperand(0));
2384  SDValue Op2 = getValue(I.getOperand(1));
2385  ISD::CondCode Condition = getFCmpCondCode(predicate);
2386  EVT DestVT = TLI.getValueType(I.getType());
2387  setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Condition));
2388}
2389
2390void SelectionDAGBuilder::visitSelect(const User &I) {
2391  SmallVector<EVT, 4> ValueVTs;
2392  ComputeValueVTs(TLI, I.getType(), ValueVTs);
2393  unsigned NumValues = ValueVTs.size();
2394  if (NumValues == 0) return;
2395
2396  SmallVector<SDValue, 4> Values(NumValues);
2397  SDValue Cond     = getValue(I.getOperand(0));
2398  SDValue TrueVal  = getValue(I.getOperand(1));
2399  SDValue FalseVal = getValue(I.getOperand(2));
2400
2401  for (unsigned i = 0; i != NumValues; ++i)
2402    Values[i] = DAG.getNode(ISD::SELECT, getCurDebugLoc(),
2403                          TrueVal.getNode()->getValueType(TrueVal.getResNo()+i),
2404                            Cond,
2405                            SDValue(TrueVal.getNode(),
2406                                    TrueVal.getResNo() + i),
2407                            SDValue(FalseVal.getNode(),
2408                                    FalseVal.getResNo() + i));
2409
2410  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
2411                           DAG.getVTList(&ValueVTs[0], NumValues),
2412                           &Values[0], NumValues));
2413}
2414
2415void SelectionDAGBuilder::visitTrunc(const User &I) {
2416  // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
2417  SDValue N = getValue(I.getOperand(0));
2418  EVT DestVT = TLI.getValueType(I.getType());
2419  setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), DestVT, N));
2420}
2421
2422void SelectionDAGBuilder::visitZExt(const User &I) {
2423  // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2424  // ZExt also can't be a cast to bool for same reason. So, nothing much to do
2425  SDValue N = getValue(I.getOperand(0));
2426  EVT DestVT = TLI.getValueType(I.getType());
2427  setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), DestVT, N));
2428}
2429
2430void SelectionDAGBuilder::visitSExt(const User &I) {
2431  // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2432  // SExt also can't be a cast to bool for same reason. So, nothing much to do
2433  SDValue N = getValue(I.getOperand(0));
2434  EVT DestVT = TLI.getValueType(I.getType());
2435  setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurDebugLoc(), DestVT, N));
2436}
2437
2438void SelectionDAGBuilder::visitFPTrunc(const User &I) {
2439  // FPTrunc is never a no-op cast, no need to check
2440  SDValue N = getValue(I.getOperand(0));
2441  EVT DestVT = TLI.getValueType(I.getType());
2442  setValue(&I, DAG.getNode(ISD::FP_ROUND, getCurDebugLoc(),
2443                           DestVT, N, DAG.getIntPtrConstant(0)));
2444}
2445
2446void SelectionDAGBuilder::visitFPExt(const User &I){
2447  // FPTrunc is never a no-op cast, no need to check
2448  SDValue N = getValue(I.getOperand(0));
2449  EVT DestVT = TLI.getValueType(I.getType());
2450  setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurDebugLoc(), DestVT, N));
2451}
2452
2453void SelectionDAGBuilder::visitFPToUI(const User &I) {
2454  // FPToUI is never a no-op cast, no need to check
2455  SDValue N = getValue(I.getOperand(0));
2456  EVT DestVT = TLI.getValueType(I.getType());
2457  setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurDebugLoc(), DestVT, N));
2458}
2459
2460void SelectionDAGBuilder::visitFPToSI(const User &I) {
2461  // FPToSI is never a no-op cast, no need to check
2462  SDValue N = getValue(I.getOperand(0));
2463  EVT DestVT = TLI.getValueType(I.getType());
2464  setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurDebugLoc(), DestVT, N));
2465}
2466
2467void SelectionDAGBuilder::visitUIToFP(const User &I) {
2468  // UIToFP is never a no-op cast, no need to check
2469  SDValue N = getValue(I.getOperand(0));
2470  EVT DestVT = TLI.getValueType(I.getType());
2471  setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurDebugLoc(), DestVT, N));
2472}
2473
2474void SelectionDAGBuilder::visitSIToFP(const User &I){
2475  // SIToFP is never a no-op cast, no need to check
2476  SDValue N = getValue(I.getOperand(0));
2477  EVT DestVT = TLI.getValueType(I.getType());
2478  setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurDebugLoc(), DestVT, N));
2479}
2480
2481void SelectionDAGBuilder::visitPtrToInt(const User &I) {
2482  // What to do depends on the size of the integer and the size of the pointer.
2483  // We can either truncate, zero extend, or no-op, accordingly.
2484  SDValue N = getValue(I.getOperand(0));
2485  EVT DestVT = TLI.getValueType(I.getType());
2486  setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT));
2487}
2488
2489void SelectionDAGBuilder::visitIntToPtr(const User &I) {
2490  // What to do depends on the size of the integer and the size of the pointer.
2491  // We can either truncate, zero extend, or no-op, accordingly.
2492  SDValue N = getValue(I.getOperand(0));
2493  EVT DestVT = TLI.getValueType(I.getType());
2494  setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT));
2495}
2496
2497void SelectionDAGBuilder::visitBitCast(const User &I) {
2498  SDValue N = getValue(I.getOperand(0));
2499  EVT DestVT = TLI.getValueType(I.getType());
2500
2501  // BitCast assures us that source and destination are the same size so this is
2502  // either a BIT_CONVERT or a no-op.
2503  if (DestVT != N.getValueType())
2504    setValue(&I, DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(),
2505                             DestVT, N)); // convert types.
2506  else
2507    setValue(&I, N);            // noop cast.
2508}
2509
2510void SelectionDAGBuilder::visitInsertElement(const User &I) {
2511  SDValue InVec = getValue(I.getOperand(0));
2512  SDValue InVal = getValue(I.getOperand(1));
2513  SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(),
2514                              TLI.getPointerTy(),
2515                              getValue(I.getOperand(2)));
2516  setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurDebugLoc(),
2517                           TLI.getValueType(I.getType()),
2518                           InVec, InVal, InIdx));
2519}
2520
2521void SelectionDAGBuilder::visitExtractElement(const User &I) {
2522  SDValue InVec = getValue(I.getOperand(0));
2523  SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(),
2524                              TLI.getPointerTy(),
2525                              getValue(I.getOperand(1)));
2526  setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
2527                           TLI.getValueType(I.getType()), InVec, InIdx));
2528}
2529
2530// Utility for visitShuffleVector - Returns true if the mask is mask starting
2531// from SIndx and increasing to the element length (undefs are allowed).
2532static bool SequentialMask(SmallVectorImpl<int> &Mask, unsigned SIndx) {
2533  unsigned MaskNumElts = Mask.size();
2534  for (unsigned i = 0; i != MaskNumElts; ++i)
2535    if ((Mask[i] >= 0) && (Mask[i] != (int)(i + SIndx)))
2536      return false;
2537  return true;
2538}
2539
2540void SelectionDAGBuilder::visitShuffleVector(const User &I) {
2541  SmallVector<int, 8> Mask;
2542  SDValue Src1 = getValue(I.getOperand(0));
2543  SDValue Src2 = getValue(I.getOperand(1));
2544
2545  // Convert the ConstantVector mask operand into an array of ints, with -1
2546  // representing undef values.
2547  SmallVector<Constant*, 8> MaskElts;
2548  cast<Constant>(I.getOperand(2))->getVectorElements(MaskElts);
2549  unsigned MaskNumElts = MaskElts.size();
2550  for (unsigned i = 0; i != MaskNumElts; ++i) {
2551    if (isa<UndefValue>(MaskElts[i]))
2552      Mask.push_back(-1);
2553    else
2554      Mask.push_back(cast<ConstantInt>(MaskElts[i])->getSExtValue());
2555  }
2556
2557  EVT VT = TLI.getValueType(I.getType());
2558  EVT SrcVT = Src1.getValueType();
2559  unsigned SrcNumElts = SrcVT.getVectorNumElements();
2560
2561  if (SrcNumElts == MaskNumElts) {
2562    setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2563                                      &Mask[0]));
2564    return;
2565  }
2566
2567  // Normalize the shuffle vector since mask and vector length don't match.
2568  if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) {
2569    // Mask is longer than the source vectors and is a multiple of the source
2570    // vectors.  We can use concatenate vector to make the mask and vectors
2571    // lengths match.
2572    if (SrcNumElts*2 == MaskNumElts && SequentialMask(Mask, 0)) {
2573      // The shuffle is concatenating two vectors together.
2574      setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurDebugLoc(),
2575                               VT, Src1, Src2));
2576      return;
2577    }
2578
2579    // Pad both vectors with undefs to make them the same length as the mask.
2580    unsigned NumConcat = MaskNumElts / SrcNumElts;
2581    bool Src1U = Src1.getOpcode() == ISD::UNDEF;
2582    bool Src2U = Src2.getOpcode() == ISD::UNDEF;
2583    SDValue UndefVal = DAG.getUNDEF(SrcVT);
2584
2585    SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
2586    SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
2587    MOps1[0] = Src1;
2588    MOps2[0] = Src2;
2589
2590    Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
2591                                                  getCurDebugLoc(), VT,
2592                                                  &MOps1[0], NumConcat);
2593    Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
2594                                                  getCurDebugLoc(), VT,
2595                                                  &MOps2[0], NumConcat);
2596
2597    // Readjust mask for new input vector length.
2598    SmallVector<int, 8> MappedOps;
2599    for (unsigned i = 0; i != MaskNumElts; ++i) {
2600      int Idx = Mask[i];
2601      if (Idx < (int)SrcNumElts)
2602        MappedOps.push_back(Idx);
2603      else
2604        MappedOps.push_back(Idx + MaskNumElts - SrcNumElts);
2605    }
2606
2607    setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2608                                      &MappedOps[0]));
2609    return;
2610  }
2611
2612  if (SrcNumElts > MaskNumElts) {
2613    // Analyze the access pattern of the vector to see if we can extract
2614    // two subvectors and do the shuffle. The analysis is done by calculating
2615    // the range of elements the mask access on both vectors.
2616    int MinRange[2] = { SrcNumElts+1, SrcNumElts+1};
2617    int MaxRange[2] = {-1, -1};
2618
2619    for (unsigned i = 0; i != MaskNumElts; ++i) {
2620      int Idx = Mask[i];
2621      int Input = 0;
2622      if (Idx < 0)
2623        continue;
2624
2625      if (Idx >= (int)SrcNumElts) {
2626        Input = 1;
2627        Idx -= SrcNumElts;
2628      }
2629      if (Idx > MaxRange[Input])
2630        MaxRange[Input] = Idx;
2631      if (Idx < MinRange[Input])
2632        MinRange[Input] = Idx;
2633    }
2634
2635    // Check if the access is smaller than the vector size and can we find
2636    // a reasonable extract index.
2637    int RangeUse[2] = { 2, 2 };  // 0 = Unused, 1 = Extract, 2 = Can not
2638                                 // Extract.
2639    int StartIdx[2];  // StartIdx to extract from
2640    for (int Input=0; Input < 2; ++Input) {
2641      if (MinRange[Input] == (int)(SrcNumElts+1) && MaxRange[Input] == -1) {
2642        RangeUse[Input] = 0; // Unused
2643        StartIdx[Input] = 0;
2644      } else if (MaxRange[Input] - MinRange[Input] < (int)MaskNumElts) {
2645        // Fits within range but we should see if we can find a good
2646        // start index that is a multiple of the mask length.
2647        if (MaxRange[Input] < (int)MaskNumElts) {
2648          RangeUse[Input] = 1; // Extract from beginning of the vector
2649          StartIdx[Input] = 0;
2650        } else {
2651          StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts;
2652          if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts &&
2653              StartIdx[Input] + MaskNumElts < SrcNumElts)
2654            RangeUse[Input] = 1; // Extract from a multiple of the mask length.
2655        }
2656      }
2657    }
2658
2659    if (RangeUse[0] == 0 && RangeUse[1] == 0) {
2660      setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
2661      return;
2662    }
2663    else if (RangeUse[0] < 2 && RangeUse[1] < 2) {
2664      // Extract appropriate subvector and generate a vector shuffle
2665      for (int Input=0; Input < 2; ++Input) {
2666        SDValue &Src = Input == 0 ? Src1 : Src2;
2667        if (RangeUse[Input] == 0)
2668          Src = DAG.getUNDEF(VT);
2669        else
2670          Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, getCurDebugLoc(), VT,
2671                            Src, DAG.getIntPtrConstant(StartIdx[Input]));
2672      }
2673
2674      // Calculate new mask.
2675      SmallVector<int, 8> MappedOps;
2676      for (unsigned i = 0; i != MaskNumElts; ++i) {
2677        int Idx = Mask[i];
2678        if (Idx < 0)
2679          MappedOps.push_back(Idx);
2680        else if (Idx < (int)SrcNumElts)
2681          MappedOps.push_back(Idx - StartIdx[0]);
2682        else
2683          MappedOps.push_back(Idx - SrcNumElts - StartIdx[1] + MaskNumElts);
2684      }
2685
2686      setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2687                                        &MappedOps[0]));
2688      return;
2689    }
2690  }
2691
2692  // We can't use either concat vectors or extract subvectors so fall back to
2693  // replacing the shuffle with extract and build vector.
2694  // to insert and build vector.
2695  EVT EltVT = VT.getVectorElementType();
2696  EVT PtrVT = TLI.getPointerTy();
2697  SmallVector<SDValue,8> Ops;
2698  for (unsigned i = 0; i != MaskNumElts; ++i) {
2699    if (Mask[i] < 0) {
2700      Ops.push_back(DAG.getUNDEF(EltVT));
2701    } else {
2702      int Idx = Mask[i];
2703      SDValue Res;
2704
2705      if (Idx < (int)SrcNumElts)
2706        Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
2707                          EltVT, Src1, DAG.getConstant(Idx, PtrVT));
2708      else
2709        Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
2710                          EltVT, Src2,
2711                          DAG.getConstant(Idx - SrcNumElts, PtrVT));
2712
2713      Ops.push_back(Res);
2714    }
2715  }
2716
2717  setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(),
2718                           VT, &Ops[0], Ops.size()));
2719}
2720
2721void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) {
2722  const Value *Op0 = I.getOperand(0);
2723  const Value *Op1 = I.getOperand(1);
2724  const Type *AggTy = I.getType();
2725  const Type *ValTy = Op1->getType();
2726  bool IntoUndef = isa<UndefValue>(Op0);
2727  bool FromUndef = isa<UndefValue>(Op1);
2728
2729  unsigned LinearIndex = ComputeLinearIndex(TLI, AggTy,
2730                                            I.idx_begin(), I.idx_end());
2731
2732  SmallVector<EVT, 4> AggValueVTs;
2733  ComputeValueVTs(TLI, AggTy, AggValueVTs);
2734  SmallVector<EVT, 4> ValValueVTs;
2735  ComputeValueVTs(TLI, ValTy, ValValueVTs);
2736
2737  unsigned NumAggValues = AggValueVTs.size();
2738  unsigned NumValValues = ValValueVTs.size();
2739  SmallVector<SDValue, 4> Values(NumAggValues);
2740
2741  SDValue Agg = getValue(Op0);
2742  SDValue Val = getValue(Op1);
2743  unsigned i = 0;
2744  // Copy the beginning value(s) from the original aggregate.
2745  for (; i != LinearIndex; ++i)
2746    Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
2747                SDValue(Agg.getNode(), Agg.getResNo() + i);
2748  // Copy values from the inserted value(s).
2749  for (; i != LinearIndex + NumValValues; ++i)
2750    Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
2751                SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
2752  // Copy remaining value(s) from the original aggregate.
2753  for (; i != NumAggValues; ++i)
2754    Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
2755                SDValue(Agg.getNode(), Agg.getResNo() + i);
2756
2757  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
2758                           DAG.getVTList(&AggValueVTs[0], NumAggValues),
2759                           &Values[0], NumAggValues));
2760}
2761
2762void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) {
2763  const Value *Op0 = I.getOperand(0);
2764  const Type *AggTy = Op0->getType();
2765  const Type *ValTy = I.getType();
2766  bool OutOfUndef = isa<UndefValue>(Op0);
2767
2768  unsigned LinearIndex = ComputeLinearIndex(TLI, AggTy,
2769                                            I.idx_begin(), I.idx_end());
2770
2771  SmallVector<EVT, 4> ValValueVTs;
2772  ComputeValueVTs(TLI, ValTy, ValValueVTs);
2773
2774  unsigned NumValValues = ValValueVTs.size();
2775  SmallVector<SDValue, 4> Values(NumValValues);
2776
2777  SDValue Agg = getValue(Op0);
2778  // Copy out the selected value(s).
2779  for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
2780    Values[i - LinearIndex] =
2781      OutOfUndef ?
2782        DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
2783        SDValue(Agg.getNode(), Agg.getResNo() + i);
2784
2785  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
2786                           DAG.getVTList(&ValValueVTs[0], NumValValues),
2787                           &Values[0], NumValValues));
2788}
2789
2790void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
2791  SDValue N = getValue(I.getOperand(0));
2792  const Type *Ty = I.getOperand(0)->getType();
2793
2794  for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end();
2795       OI != E; ++OI) {
2796    const Value *Idx = *OI;
2797    if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
2798      unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
2799      if (Field) {
2800        // N = N + Offset
2801        uint64_t Offset = TD->getStructLayout(StTy)->getElementOffset(Field);
2802        N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N,
2803                        DAG.getIntPtrConstant(Offset));
2804      }
2805
2806      Ty = StTy->getElementType(Field);
2807    } else {
2808      Ty = cast<SequentialType>(Ty)->getElementType();
2809
2810      // If this is a constant subscript, handle it quickly.
2811      if (const ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
2812        if (CI->isZero()) continue;
2813        uint64_t Offs =
2814            TD->getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue();
2815        SDValue OffsVal;
2816        EVT PTy = TLI.getPointerTy();
2817        unsigned PtrBits = PTy.getSizeInBits();
2818        if (PtrBits < 64)
2819          OffsVal = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(),
2820                                TLI.getPointerTy(),
2821                                DAG.getConstant(Offs, MVT::i64));
2822        else
2823          OffsVal = DAG.getIntPtrConstant(Offs);
2824
2825        N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N,
2826                        OffsVal);
2827        continue;
2828      }
2829
2830      // N = N + Idx * ElementSize;
2831      APInt ElementSize = APInt(TLI.getPointerTy().getSizeInBits(),
2832                                TD->getTypeAllocSize(Ty));
2833      SDValue IdxN = getValue(Idx);
2834
2835      // If the index is smaller or larger than intptr_t, truncate or extend
2836      // it.
2837      IdxN = DAG.getSExtOrTrunc(IdxN, getCurDebugLoc(), N.getValueType());
2838
2839      // If this is a multiply by a power of two, turn it into a shl
2840      // immediately.  This is a very common case.
2841      if (ElementSize != 1) {
2842        if (ElementSize.isPowerOf2()) {
2843          unsigned Amt = ElementSize.logBase2();
2844          IdxN = DAG.getNode(ISD::SHL, getCurDebugLoc(),
2845                             N.getValueType(), IdxN,
2846                             DAG.getConstant(Amt, TLI.getPointerTy()));
2847        } else {
2848          SDValue Scale = DAG.getConstant(ElementSize, TLI.getPointerTy());
2849          IdxN = DAG.getNode(ISD::MUL, getCurDebugLoc(),
2850                             N.getValueType(), IdxN, Scale);
2851        }
2852      }
2853
2854      N = DAG.getNode(ISD::ADD, getCurDebugLoc(),
2855                      N.getValueType(), N, IdxN);
2856    }
2857  }
2858
2859  setValue(&I, N);
2860}
2861
2862void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
2863  // If this is a fixed sized alloca in the entry block of the function,
2864  // allocate it statically on the stack.
2865  if (FuncInfo.StaticAllocaMap.count(&I))
2866    return;   // getValue will auto-populate this.
2867
2868  const Type *Ty = I.getAllocatedType();
2869  uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty);
2870  unsigned Align =
2871    std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty),
2872             I.getAlignment());
2873
2874  SDValue AllocSize = getValue(I.getArraySize());
2875
2876  EVT IntPtr = TLI.getPointerTy();
2877  if (AllocSize.getValueType() != IntPtr)
2878    AllocSize = DAG.getZExtOrTrunc(AllocSize, getCurDebugLoc(), IntPtr);
2879
2880  AllocSize = DAG.getNode(ISD::MUL, getCurDebugLoc(), IntPtr,
2881                          AllocSize,
2882                          DAG.getConstant(TySize, IntPtr));
2883
2884  // Handle alignment.  If the requested alignment is less than or equal to
2885  // the stack alignment, ignore it.  If the size is greater than or equal to
2886  // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
2887  unsigned StackAlign = TM.getFrameInfo()->getStackAlignment();
2888  if (Align <= StackAlign)
2889    Align = 0;
2890
2891  // Round the size of the allocation up to the stack alignment size
2892  // by add SA-1 to the size.
2893  AllocSize = DAG.getNode(ISD::ADD, getCurDebugLoc(),
2894                          AllocSize.getValueType(), AllocSize,
2895                          DAG.getIntPtrConstant(StackAlign-1));
2896
2897  // Mask out the low bits for alignment purposes.
2898  AllocSize = DAG.getNode(ISD::AND, getCurDebugLoc(),
2899                          AllocSize.getValueType(), AllocSize,
2900                          DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1)));
2901
2902  SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) };
2903  SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
2904  SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, getCurDebugLoc(),
2905                            VTs, Ops, 3);
2906  setValue(&I, DSA);
2907  DAG.setRoot(DSA.getValue(1));
2908
2909  // Inform the Frame Information that we have just allocated a variable-sized
2910  // object.
2911  FuncInfo.MF->getFrameInfo()->CreateVariableSizedObject(Align ? Align : 1);
2912}
2913
2914void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
2915  const Value *SV = I.getOperand(0);
2916  SDValue Ptr = getValue(SV);
2917
2918  const Type *Ty = I.getType();
2919
2920  bool isVolatile = I.isVolatile();
2921  bool isNonTemporal = I.getMetadata("nontemporal") != 0;
2922  unsigned Alignment = I.getAlignment();
2923
2924  SmallVector<EVT, 4> ValueVTs;
2925  SmallVector<uint64_t, 4> Offsets;
2926  ComputeValueVTs(TLI, Ty, ValueVTs, &Offsets);
2927  unsigned NumValues = ValueVTs.size();
2928  if (NumValues == 0)
2929    return;
2930
2931  SDValue Root;
2932  bool ConstantMemory = false;
2933  if (I.isVolatile())
2934    // Serialize volatile loads with other side effects.
2935    Root = getRoot();
2936  else if (AA->pointsToConstantMemory(SV)) {
2937    // Do not serialize (non-volatile) loads of constant memory with anything.
2938    Root = DAG.getEntryNode();
2939    ConstantMemory = true;
2940  } else {
2941    // Do not serialize non-volatile loads against each other.
2942    Root = DAG.getRoot();
2943  }
2944
2945  SmallVector<SDValue, 4> Values(NumValues);
2946  SmallVector<SDValue, 4> Chains(NumValues);
2947  EVT PtrVT = Ptr.getValueType();
2948  for (unsigned i = 0; i != NumValues; ++i) {
2949    SDValue A = DAG.getNode(ISD::ADD, getCurDebugLoc(),
2950                            PtrVT, Ptr,
2951                            DAG.getConstant(Offsets[i], PtrVT));
2952    SDValue L = DAG.getLoad(ValueVTs[i], getCurDebugLoc(), Root,
2953                            A, MachinePointerInfo(SV, Offsets[i]), isVolatile,
2954                            isNonTemporal, Alignment);
2955
2956    Values[i] = L;
2957    Chains[i] = L.getValue(1);
2958  }
2959
2960  if (!ConstantMemory) {
2961    SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
2962                                MVT::Other, &Chains[0], NumValues);
2963    if (isVolatile)
2964      DAG.setRoot(Chain);
2965    else
2966      PendingLoads.push_back(Chain);
2967  }
2968
2969  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
2970                           DAG.getVTList(&ValueVTs[0], NumValues),
2971                           &Values[0], NumValues));
2972}
2973
2974void SelectionDAGBuilder::visitStore(const StoreInst &I) {
2975  const Value *SrcV = I.getOperand(0);
2976  const Value *PtrV = I.getOperand(1);
2977
2978  SmallVector<EVT, 4> ValueVTs;
2979  SmallVector<uint64_t, 4> Offsets;
2980  ComputeValueVTs(TLI, SrcV->getType(), ValueVTs, &Offsets);
2981  unsigned NumValues = ValueVTs.size();
2982  if (NumValues == 0)
2983    return;
2984
2985  // Get the lowered operands. Note that we do this after
2986  // checking if NumResults is zero, because with zero results
2987  // the operands won't have values in the map.
2988  SDValue Src = getValue(SrcV);
2989  SDValue Ptr = getValue(PtrV);
2990
2991  SDValue Root = getRoot();
2992  SmallVector<SDValue, 4> Chains(NumValues);
2993  EVT PtrVT = Ptr.getValueType();
2994  bool isVolatile = I.isVolatile();
2995  bool isNonTemporal = I.getMetadata("nontemporal") != 0;
2996  unsigned Alignment = I.getAlignment();
2997
2998  for (unsigned i = 0; i != NumValues; ++i) {
2999    SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT, Ptr,
3000                              DAG.getConstant(Offsets[i], PtrVT));
3001    Chains[i] = DAG.getStore(Root, getCurDebugLoc(),
3002                             SDValue(Src.getNode(), Src.getResNo() + i),
3003                             Add, PtrV, Offsets[i], isVolatile,
3004                             isNonTemporal, Alignment);
3005  }
3006
3007  DAG.setRoot(DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
3008                          MVT::Other, &Chains[0], NumValues));
3009}
3010
3011/// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
3012/// node.
3013void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
3014                                               unsigned Intrinsic) {
3015  bool HasChain = !I.doesNotAccessMemory();
3016  bool OnlyLoad = HasChain && I.onlyReadsMemory();
3017
3018  // Build the operand list.
3019  SmallVector<SDValue, 8> Ops;
3020  if (HasChain) {  // If this intrinsic has side-effects, chainify it.
3021    if (OnlyLoad) {
3022      // We don't need to serialize loads against other loads.
3023      Ops.push_back(DAG.getRoot());
3024    } else {
3025      Ops.push_back(getRoot());
3026    }
3027  }
3028
3029  // Info is set by getTgtMemInstrinsic
3030  TargetLowering::IntrinsicInfo Info;
3031  bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic);
3032
3033  // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
3034  if (!IsTgtIntrinsic)
3035    Ops.push_back(DAG.getConstant(Intrinsic, TLI.getPointerTy()));
3036
3037  // Add all operands of the call to the operand list.
3038  for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
3039    SDValue Op = getValue(I.getArgOperand(i));
3040    assert(TLI.isTypeLegal(Op.getValueType()) &&
3041           "Intrinsic uses a non-legal type?");
3042    Ops.push_back(Op);
3043  }
3044
3045  SmallVector<EVT, 4> ValueVTs;
3046  ComputeValueVTs(TLI, I.getType(), ValueVTs);
3047#ifndef NDEBUG
3048  for (unsigned Val = 0, E = ValueVTs.size(); Val != E; ++Val) {
3049    assert(TLI.isTypeLegal(ValueVTs[Val]) &&
3050           "Intrinsic uses a non-legal type?");
3051  }
3052#endif // NDEBUG
3053
3054  if (HasChain)
3055    ValueVTs.push_back(MVT::Other);
3056
3057  SDVTList VTs = DAG.getVTList(ValueVTs.data(), ValueVTs.size());
3058
3059  // Create the node.
3060  SDValue Result;
3061  if (IsTgtIntrinsic) {
3062    // This is target intrinsic that touches memory
3063    Result = DAG.getMemIntrinsicNode(Info.opc, getCurDebugLoc(),
3064                                     VTs, &Ops[0], Ops.size(),
3065                                     Info.memVT,
3066                                   MachinePointerInfo(Info.ptrVal, Info.offset),
3067                                     Info.align, Info.vol,
3068                                     Info.readMem, Info.writeMem);
3069  } else if (!HasChain) {
3070    Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurDebugLoc(),
3071                         VTs, &Ops[0], Ops.size());
3072  } else if (!I.getType()->isVoidTy()) {
3073    Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurDebugLoc(),
3074                         VTs, &Ops[0], Ops.size());
3075  } else {
3076    Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurDebugLoc(),
3077                         VTs, &Ops[0], Ops.size());
3078  }
3079
3080  if (HasChain) {
3081    SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
3082    if (OnlyLoad)
3083      PendingLoads.push_back(Chain);
3084    else
3085      DAG.setRoot(Chain);
3086  }
3087
3088  if (!I.getType()->isVoidTy()) {
3089    if (const VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
3090      EVT VT = TLI.getValueType(PTy);
3091      Result = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(), VT, Result);
3092    }
3093
3094    setValue(&I, Result);
3095  }
3096}
3097
3098/// GetSignificand - Get the significand and build it into a floating-point
3099/// number with exponent of 1:
3100///
3101///   Op = (Op & 0x007fffff) | 0x3f800000;
3102///
3103/// where Op is the hexidecimal representation of floating point value.
3104static SDValue
3105GetSignificand(SelectionDAG &DAG, SDValue Op, DebugLoc dl) {
3106  SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
3107                           DAG.getConstant(0x007fffff, MVT::i32));
3108  SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
3109                           DAG.getConstant(0x3f800000, MVT::i32));
3110  return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t2);
3111}
3112
3113/// GetExponent - Get the exponent:
3114///
3115///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
3116///
3117/// where Op is the hexidecimal representation of floating point value.
3118static SDValue
3119GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI,
3120            DebugLoc dl) {
3121  SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
3122                           DAG.getConstant(0x7f800000, MVT::i32));
3123  SDValue t1 = DAG.getNode(ISD::SRL, dl, MVT::i32, t0,
3124                           DAG.getConstant(23, TLI.getPointerTy()));
3125  SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
3126                           DAG.getConstant(127, MVT::i32));
3127  return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
3128}
3129
3130/// getF32Constant - Get 32-bit floating point constant.
3131static SDValue
3132getF32Constant(SelectionDAG &DAG, unsigned Flt) {
3133  return DAG.getConstantFP(APFloat(APInt(32, Flt)), MVT::f32);
3134}
3135
3136/// Inlined utility function to implement binary input atomic intrinsics for
3137/// visitIntrinsicCall: I is a call instruction
3138///                     Op is the associated NodeType for I
3139const char *
3140SelectionDAGBuilder::implVisitBinaryAtomic(const CallInst& I,
3141                                           ISD::NodeType Op) {
3142  SDValue Root = getRoot();
3143  SDValue L =
3144    DAG.getAtomic(Op, getCurDebugLoc(),
3145                  getValue(I.getArgOperand(1)).getValueType().getSimpleVT(),
3146                  Root,
3147                  getValue(I.getArgOperand(0)),
3148                  getValue(I.getArgOperand(1)),
3149                  I.getArgOperand(0));
3150  setValue(&I, L);
3151  DAG.setRoot(L.getValue(1));
3152  return 0;
3153}
3154
3155// implVisitAluOverflow - Lower arithmetic overflow instrinsics.
3156const char *
3157SelectionDAGBuilder::implVisitAluOverflow(const CallInst &I, ISD::NodeType Op) {
3158  SDValue Op1 = getValue(I.getArgOperand(0));
3159  SDValue Op2 = getValue(I.getArgOperand(1));
3160
3161  SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1);
3162  setValue(&I, DAG.getNode(Op, getCurDebugLoc(), VTs, Op1, Op2));
3163  return 0;
3164}
3165
3166/// visitExp - Lower an exp intrinsic. Handles the special sequences for
3167/// limited-precision mode.
3168void
3169SelectionDAGBuilder::visitExp(const CallInst &I) {
3170  SDValue result;
3171  DebugLoc dl = getCurDebugLoc();
3172
3173  if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3174      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3175    SDValue Op = getValue(I.getArgOperand(0));
3176
3177    // Put the exponent in the right bit position for later addition to the
3178    // final result:
3179    //
3180    //   #define LOG2OFe 1.4426950f
3181    //   IntegerPartOfX = ((int32_t)(X * LOG2OFe));
3182    SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
3183                             getF32Constant(DAG, 0x3fb8aa3b));
3184    SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
3185
3186    //   FractionalPartOfX = (X * LOG2OFe) - (float)IntegerPartOfX;
3187    SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
3188    SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
3189
3190    //   IntegerPartOfX <<= 23;
3191    IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
3192                                 DAG.getConstant(23, TLI.getPointerTy()));
3193
3194    if (LimitFloatPrecision <= 6) {
3195      // For floating-point precision of 6:
3196      //
3197      //   TwoToFractionalPartOfX =
3198      //     0.997535578f +
3199      //       (0.735607626f + 0.252464424f * x) * x;
3200      //
3201      // error 0.0144103317, which is 6 bits
3202      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3203                               getF32Constant(DAG, 0x3e814304));
3204      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3205                               getF32Constant(DAG, 0x3f3c50c8));
3206      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3207      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3208                               getF32Constant(DAG, 0x3f7f5e7e));
3209      SDValue TwoToFracPartOfX = DAG.getNode(ISD::BIT_CONVERT, dl,MVT::i32, t5);
3210
3211      // Add the exponent into the result in integer domain.
3212      SDValue t6 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3213                               TwoToFracPartOfX, IntegerPartOfX);
3214
3215      result = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t6);
3216    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3217      // For floating-point precision of 12:
3218      //
3219      //   TwoToFractionalPartOfX =
3220      //     0.999892986f +
3221      //       (0.696457318f +
3222      //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
3223      //
3224      // 0.000107046256 error, which is 13 to 14 bits
3225      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3226                               getF32Constant(DAG, 0x3da235e3));
3227      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3228                               getF32Constant(DAG, 0x3e65b8f3));
3229      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3230      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3231                               getF32Constant(DAG, 0x3f324b07));
3232      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3233      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3234                               getF32Constant(DAG, 0x3f7ff8fd));
3235      SDValue TwoToFracPartOfX = DAG.getNode(ISD::BIT_CONVERT, dl,MVT::i32, t7);
3236
3237      // Add the exponent into the result in integer domain.
3238      SDValue t8 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3239                               TwoToFracPartOfX, IntegerPartOfX);
3240
3241      result = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t8);
3242    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3243      // For floating-point precision of 18:
3244      //
3245      //   TwoToFractionalPartOfX =
3246      //     0.999999982f +
3247      //       (0.693148872f +
3248      //         (0.240227044f +
3249      //           (0.554906021e-1f +
3250      //             (0.961591928e-2f +
3251      //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
3252      //
3253      // error 2.47208000*10^(-7), which is better than 18 bits
3254      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3255                               getF32Constant(DAG, 0x3924b03e));
3256      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3257                               getF32Constant(DAG, 0x3ab24b87));
3258      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3259      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3260                               getF32Constant(DAG, 0x3c1d8c17));
3261      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3262      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3263                               getF32Constant(DAG, 0x3d634a1d));
3264      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3265      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3266                               getF32Constant(DAG, 0x3e75fe14));
3267      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3268      SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
3269                                getF32Constant(DAG, 0x3f317234));
3270      SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
3271      SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
3272                                getF32Constant(DAG, 0x3f800000));
3273      SDValue TwoToFracPartOfX = DAG.getNode(ISD::BIT_CONVERT, dl,
3274                                             MVT::i32, t13);
3275
3276      // Add the exponent into the result in integer domain.
3277      SDValue t14 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3278                                TwoToFracPartOfX, IntegerPartOfX);
3279
3280      result = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t14);
3281    }
3282  } else {
3283    // No special expansion.
3284    result = DAG.getNode(ISD::FEXP, dl,
3285                         getValue(I.getArgOperand(0)).getValueType(),
3286                         getValue(I.getArgOperand(0)));
3287  }
3288
3289  setValue(&I, result);
3290}
3291
3292/// visitLog - Lower a log intrinsic. Handles the special sequences for
3293/// limited-precision mode.
3294void
3295SelectionDAGBuilder::visitLog(const CallInst &I) {
3296  SDValue result;
3297  DebugLoc dl = getCurDebugLoc();
3298
3299  if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3300      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3301    SDValue Op = getValue(I.getArgOperand(0));
3302    SDValue Op1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, Op);
3303
3304    // Scale the exponent by log(2) [0.69314718f].
3305    SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
3306    SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
3307                                        getF32Constant(DAG, 0x3f317218));
3308
3309    // Get the significand and build it into a floating-point number with
3310    // exponent of 1.
3311    SDValue X = GetSignificand(DAG, Op1, dl);
3312
3313    if (LimitFloatPrecision <= 6) {
3314      // For floating-point precision of 6:
3315      //
3316      //   LogofMantissa =
3317      //     -1.1609546f +
3318      //       (1.4034025f - 0.23903021f * x) * x;
3319      //
3320      // error 0.0034276066, which is better than 8 bits
3321      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3322                               getF32Constant(DAG, 0xbe74c456));
3323      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3324                               getF32Constant(DAG, 0x3fb3a2b1));
3325      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3326      SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3327                                          getF32Constant(DAG, 0x3f949a29));
3328
3329      result = DAG.getNode(ISD::FADD, dl,
3330                           MVT::f32, LogOfExponent, LogOfMantissa);
3331    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3332      // For floating-point precision of 12:
3333      //
3334      //   LogOfMantissa =
3335      //     -1.7417939f +
3336      //       (2.8212026f +
3337      //         (-1.4699568f +
3338      //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
3339      //
3340      // error 0.000061011436, which is 14 bits
3341      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3342                               getF32Constant(DAG, 0xbd67b6d6));
3343      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3344                               getF32Constant(DAG, 0x3ee4f4b8));
3345      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3346      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3347                               getF32Constant(DAG, 0x3fbc278b));
3348      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3349      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3350                               getF32Constant(DAG, 0x40348e95));
3351      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3352      SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3353                                          getF32Constant(DAG, 0x3fdef31a));
3354
3355      result = DAG.getNode(ISD::FADD, dl,
3356                           MVT::f32, LogOfExponent, LogOfMantissa);
3357    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3358      // For floating-point precision of 18:
3359      //
3360      //   LogOfMantissa =
3361      //     -2.1072184f +
3362      //       (4.2372794f +
3363      //         (-3.7029485f +
3364      //           (2.2781945f +
3365      //             (-0.87823314f +
3366      //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
3367      //
3368      // error 0.0000023660568, which is better than 18 bits
3369      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3370                               getF32Constant(DAG, 0xbc91e5ac));
3371      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3372                               getF32Constant(DAG, 0x3e4350aa));
3373      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3374      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3375                               getF32Constant(DAG, 0x3f60d3e3));
3376      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3377      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3378                               getF32Constant(DAG, 0x4011cdf0));
3379      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3380      SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3381                               getF32Constant(DAG, 0x406cfd1c));
3382      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3383      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3384                               getF32Constant(DAG, 0x408797cb));
3385      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3386      SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
3387                                          getF32Constant(DAG, 0x4006dcab));
3388
3389      result = DAG.getNode(ISD::FADD, dl,
3390                           MVT::f32, LogOfExponent, LogOfMantissa);
3391    }
3392  } else {
3393    // No special expansion.
3394    result = DAG.getNode(ISD::FLOG, dl,
3395                         getValue(I.getArgOperand(0)).getValueType(),
3396                         getValue(I.getArgOperand(0)));
3397  }
3398
3399  setValue(&I, result);
3400}
3401
3402/// visitLog2 - Lower a log2 intrinsic. Handles the special sequences for
3403/// limited-precision mode.
3404void
3405SelectionDAGBuilder::visitLog2(const CallInst &I) {
3406  SDValue result;
3407  DebugLoc dl = getCurDebugLoc();
3408
3409  if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3410      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3411    SDValue Op = getValue(I.getArgOperand(0));
3412    SDValue Op1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, Op);
3413
3414    // Get the exponent.
3415    SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
3416
3417    // Get the significand and build it into a floating-point number with
3418    // exponent of 1.
3419    SDValue X = GetSignificand(DAG, Op1, dl);
3420
3421    // Different possible minimax approximations of significand in
3422    // floating-point for various degrees of accuracy over [1,2].
3423    if (LimitFloatPrecision <= 6) {
3424      // For floating-point precision of 6:
3425      //
3426      //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
3427      //
3428      // error 0.0049451742, which is more than 7 bits
3429      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3430                               getF32Constant(DAG, 0xbeb08fe0));
3431      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3432                               getF32Constant(DAG, 0x40019463));
3433      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3434      SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3435                                           getF32Constant(DAG, 0x3fd6633d));
3436
3437      result = DAG.getNode(ISD::FADD, dl,
3438                           MVT::f32, LogOfExponent, Log2ofMantissa);
3439    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3440      // For floating-point precision of 12:
3441      //
3442      //   Log2ofMantissa =
3443      //     -2.51285454f +
3444      //       (4.07009056f +
3445      //         (-2.12067489f +
3446      //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
3447      //
3448      // error 0.0000876136000, which is better than 13 bits
3449      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3450                               getF32Constant(DAG, 0xbda7262e));
3451      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3452                               getF32Constant(DAG, 0x3f25280b));
3453      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3454      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3455                               getF32Constant(DAG, 0x4007b923));
3456      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3457      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3458                               getF32Constant(DAG, 0x40823e2f));
3459      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3460      SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3461                                           getF32Constant(DAG, 0x4020d29c));
3462
3463      result = DAG.getNode(ISD::FADD, dl,
3464                           MVT::f32, LogOfExponent, Log2ofMantissa);
3465    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3466      // For floating-point precision of 18:
3467      //
3468      //   Log2ofMantissa =
3469      //     -3.0400495f +
3470      //       (6.1129976f +
3471      //         (-5.3420409f +
3472      //           (3.2865683f +
3473      //             (-1.2669343f +
3474      //               (0.27515199f -
3475      //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
3476      //
3477      // error 0.0000018516, which is better than 18 bits
3478      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3479                               getF32Constant(DAG, 0xbcd2769e));
3480      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3481                               getF32Constant(DAG, 0x3e8ce0b9));
3482      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3483      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3484                               getF32Constant(DAG, 0x3fa22ae7));
3485      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3486      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3487                               getF32Constant(DAG, 0x40525723));
3488      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3489      SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3490                               getF32Constant(DAG, 0x40aaf200));
3491      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3492      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3493                               getF32Constant(DAG, 0x40c39dad));
3494      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3495      SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
3496                                           getF32Constant(DAG, 0x4042902c));
3497
3498      result = DAG.getNode(ISD::FADD, dl,
3499                           MVT::f32, LogOfExponent, Log2ofMantissa);
3500    }
3501  } else {
3502    // No special expansion.
3503    result = DAG.getNode(ISD::FLOG2, dl,
3504                         getValue(I.getArgOperand(0)).getValueType(),
3505                         getValue(I.getArgOperand(0)));
3506  }
3507
3508  setValue(&I, result);
3509}
3510
3511/// visitLog10 - Lower a log10 intrinsic. Handles the special sequences for
3512/// limited-precision mode.
3513void
3514SelectionDAGBuilder::visitLog10(const CallInst &I) {
3515  SDValue result;
3516  DebugLoc dl = getCurDebugLoc();
3517
3518  if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3519      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3520    SDValue Op = getValue(I.getArgOperand(0));
3521    SDValue Op1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, Op);
3522
3523    // Scale the exponent by log10(2) [0.30102999f].
3524    SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
3525    SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
3526                                        getF32Constant(DAG, 0x3e9a209a));
3527
3528    // Get the significand and build it into a floating-point number with
3529    // exponent of 1.
3530    SDValue X = GetSignificand(DAG, Op1, dl);
3531
3532    if (LimitFloatPrecision <= 6) {
3533      // For floating-point precision of 6:
3534      //
3535      //   Log10ofMantissa =
3536      //     -0.50419619f +
3537      //       (0.60948995f - 0.10380950f * x) * x;
3538      //
3539      // error 0.0014886165, which is 6 bits
3540      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3541                               getF32Constant(DAG, 0xbdd49a13));
3542      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3543                               getF32Constant(DAG, 0x3f1c0789));
3544      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3545      SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3546                                            getF32Constant(DAG, 0x3f011300));
3547
3548      result = DAG.getNode(ISD::FADD, dl,
3549                           MVT::f32, LogOfExponent, Log10ofMantissa);
3550    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3551      // For floating-point precision of 12:
3552      //
3553      //   Log10ofMantissa =
3554      //     -0.64831180f +
3555      //       (0.91751397f +
3556      //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
3557      //
3558      // error 0.00019228036, which is better than 12 bits
3559      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3560                               getF32Constant(DAG, 0x3d431f31));
3561      SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
3562                               getF32Constant(DAG, 0x3ea21fb2));
3563      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3564      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3565                               getF32Constant(DAG, 0x3f6ae232));
3566      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3567      SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
3568                                            getF32Constant(DAG, 0x3f25f7c3));
3569
3570      result = DAG.getNode(ISD::FADD, dl,
3571                           MVT::f32, LogOfExponent, Log10ofMantissa);
3572    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3573      // For floating-point precision of 18:
3574      //
3575      //   Log10ofMantissa =
3576      //     -0.84299375f +
3577      //       (1.5327582f +
3578      //         (-1.0688956f +
3579      //           (0.49102474f +
3580      //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
3581      //
3582      // error 0.0000037995730, which is better than 18 bits
3583      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3584                               getF32Constant(DAG, 0x3c5d51ce));
3585      SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
3586                               getF32Constant(DAG, 0x3e00685a));
3587      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3588      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3589                               getF32Constant(DAG, 0x3efb6798));
3590      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3591      SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
3592                               getF32Constant(DAG, 0x3f88d192));
3593      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3594      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3595                               getF32Constant(DAG, 0x3fc4316c));
3596      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3597      SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
3598                                            getF32Constant(DAG, 0x3f57ce70));
3599
3600      result = DAG.getNode(ISD::FADD, dl,
3601                           MVT::f32, LogOfExponent, Log10ofMantissa);
3602    }
3603  } else {
3604    // No special expansion.
3605    result = DAG.getNode(ISD::FLOG10, dl,
3606                         getValue(I.getArgOperand(0)).getValueType(),
3607                         getValue(I.getArgOperand(0)));
3608  }
3609
3610  setValue(&I, result);
3611}
3612
3613/// visitExp2 - Lower an exp2 intrinsic. Handles the special sequences for
3614/// limited-precision mode.
3615void
3616SelectionDAGBuilder::visitExp2(const CallInst &I) {
3617  SDValue result;
3618  DebugLoc dl = getCurDebugLoc();
3619
3620  if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3621      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3622    SDValue Op = getValue(I.getArgOperand(0));
3623
3624    SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Op);
3625
3626    //   FractionalPartOfX = x - (float)IntegerPartOfX;
3627    SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
3628    SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, Op, t1);
3629
3630    //   IntegerPartOfX <<= 23;
3631    IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
3632                                 DAG.getConstant(23, TLI.getPointerTy()));
3633
3634    if (LimitFloatPrecision <= 6) {
3635      // For floating-point precision of 6:
3636      //
3637      //   TwoToFractionalPartOfX =
3638      //     0.997535578f +
3639      //       (0.735607626f + 0.252464424f * x) * x;
3640      //
3641      // error 0.0144103317, which is 6 bits
3642      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3643                               getF32Constant(DAG, 0x3e814304));
3644      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3645                               getF32Constant(DAG, 0x3f3c50c8));
3646      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3647      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3648                               getF32Constant(DAG, 0x3f7f5e7e));
3649      SDValue t6 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t5);
3650      SDValue TwoToFractionalPartOfX =
3651        DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX);
3652
3653      result = DAG.getNode(ISD::BIT_CONVERT, dl,
3654                           MVT::f32, TwoToFractionalPartOfX);
3655    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3656      // For floating-point precision of 12:
3657      //
3658      //   TwoToFractionalPartOfX =
3659      //     0.999892986f +
3660      //       (0.696457318f +
3661      //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
3662      //
3663      // error 0.000107046256, which is 13 to 14 bits
3664      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3665                               getF32Constant(DAG, 0x3da235e3));
3666      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3667                               getF32Constant(DAG, 0x3e65b8f3));
3668      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3669      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3670                               getF32Constant(DAG, 0x3f324b07));
3671      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3672      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3673                               getF32Constant(DAG, 0x3f7ff8fd));
3674      SDValue t8 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t7);
3675      SDValue TwoToFractionalPartOfX =
3676        DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX);
3677
3678      result = DAG.getNode(ISD::BIT_CONVERT, dl,
3679                           MVT::f32, TwoToFractionalPartOfX);
3680    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3681      // For floating-point precision of 18:
3682      //
3683      //   TwoToFractionalPartOfX =
3684      //     0.999999982f +
3685      //       (0.693148872f +
3686      //         (0.240227044f +
3687      //           (0.554906021e-1f +
3688      //             (0.961591928e-2f +
3689      //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
3690      // error 2.47208000*10^(-7), which is better than 18 bits
3691      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3692                               getF32Constant(DAG, 0x3924b03e));
3693      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3694                               getF32Constant(DAG, 0x3ab24b87));
3695      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3696      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3697                               getF32Constant(DAG, 0x3c1d8c17));
3698      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3699      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3700                               getF32Constant(DAG, 0x3d634a1d));
3701      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3702      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3703                               getF32Constant(DAG, 0x3e75fe14));
3704      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3705      SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
3706                                getF32Constant(DAG, 0x3f317234));
3707      SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
3708      SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
3709                                getF32Constant(DAG, 0x3f800000));
3710      SDValue t14 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t13);
3711      SDValue TwoToFractionalPartOfX =
3712        DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX);
3713
3714      result = DAG.getNode(ISD::BIT_CONVERT, dl,
3715                           MVT::f32, TwoToFractionalPartOfX);
3716    }
3717  } else {
3718    // No special expansion.
3719    result = DAG.getNode(ISD::FEXP2, dl,
3720                         getValue(I.getArgOperand(0)).getValueType(),
3721                         getValue(I.getArgOperand(0)));
3722  }
3723
3724  setValue(&I, result);
3725}
3726
3727/// visitPow - Lower a pow intrinsic. Handles the special sequences for
3728/// limited-precision mode with x == 10.0f.
3729void
3730SelectionDAGBuilder::visitPow(const CallInst &I) {
3731  SDValue result;
3732  const Value *Val = I.getArgOperand(0);
3733  DebugLoc dl = getCurDebugLoc();
3734  bool IsExp10 = false;
3735
3736  if (getValue(Val).getValueType() == MVT::f32 &&
3737      getValue(I.getArgOperand(1)).getValueType() == MVT::f32 &&
3738      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3739    if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(Val))) {
3740      if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
3741        APFloat Ten(10.0f);
3742        IsExp10 = CFP->getValueAPF().bitwiseIsEqual(Ten);
3743      }
3744    }
3745  }
3746
3747  if (IsExp10 && LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3748    SDValue Op = getValue(I.getArgOperand(1));
3749
3750    // Put the exponent in the right bit position for later addition to the
3751    // final result:
3752    //
3753    //   #define LOG2OF10 3.3219281f
3754    //   IntegerPartOfX = (int32_t)(x * LOG2OF10);
3755    SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
3756                             getF32Constant(DAG, 0x40549a78));
3757    SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
3758
3759    //   FractionalPartOfX = x - (float)IntegerPartOfX;
3760    SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
3761    SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
3762
3763    //   IntegerPartOfX <<= 23;
3764    IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
3765                                 DAG.getConstant(23, TLI.getPointerTy()));
3766
3767    if (LimitFloatPrecision <= 6) {
3768      // For floating-point precision of 6:
3769      //
3770      //   twoToFractionalPartOfX =
3771      //     0.997535578f +
3772      //       (0.735607626f + 0.252464424f * x) * x;
3773      //
3774      // error 0.0144103317, which is 6 bits
3775      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3776                               getF32Constant(DAG, 0x3e814304));
3777      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3778                               getF32Constant(DAG, 0x3f3c50c8));
3779      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3780      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3781                               getF32Constant(DAG, 0x3f7f5e7e));
3782      SDValue t6 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t5);
3783      SDValue TwoToFractionalPartOfX =
3784        DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX);
3785
3786      result = DAG.getNode(ISD::BIT_CONVERT, dl,
3787                           MVT::f32, TwoToFractionalPartOfX);
3788    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3789      // For floating-point precision of 12:
3790      //
3791      //   TwoToFractionalPartOfX =
3792      //     0.999892986f +
3793      //       (0.696457318f +
3794      //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
3795      //
3796      // error 0.000107046256, which is 13 to 14 bits
3797      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3798                               getF32Constant(DAG, 0x3da235e3));
3799      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3800                               getF32Constant(DAG, 0x3e65b8f3));
3801      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3802      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3803                               getF32Constant(DAG, 0x3f324b07));
3804      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3805      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3806                               getF32Constant(DAG, 0x3f7ff8fd));
3807      SDValue t8 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t7);
3808      SDValue TwoToFractionalPartOfX =
3809        DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX);
3810
3811      result = DAG.getNode(ISD::BIT_CONVERT, dl,
3812                           MVT::f32, TwoToFractionalPartOfX);
3813    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3814      // For floating-point precision of 18:
3815      //
3816      //   TwoToFractionalPartOfX =
3817      //     0.999999982f +
3818      //       (0.693148872f +
3819      //         (0.240227044f +
3820      //           (0.554906021e-1f +
3821      //             (0.961591928e-2f +
3822      //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
3823      // error 2.47208000*10^(-7), which is better than 18 bits
3824      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3825                               getF32Constant(DAG, 0x3924b03e));
3826      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3827                               getF32Constant(DAG, 0x3ab24b87));
3828      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3829      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3830                               getF32Constant(DAG, 0x3c1d8c17));
3831      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3832      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3833                               getF32Constant(DAG, 0x3d634a1d));
3834      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3835      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3836                               getF32Constant(DAG, 0x3e75fe14));
3837      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3838      SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
3839                                getF32Constant(DAG, 0x3f317234));
3840      SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
3841      SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
3842                                getF32Constant(DAG, 0x3f800000));
3843      SDValue t14 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t13);
3844      SDValue TwoToFractionalPartOfX =
3845        DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX);
3846
3847      result = DAG.getNode(ISD::BIT_CONVERT, dl,
3848                           MVT::f32, TwoToFractionalPartOfX);
3849    }
3850  } else {
3851    // No special expansion.
3852    result = DAG.getNode(ISD::FPOW, dl,
3853                         getValue(I.getArgOperand(0)).getValueType(),
3854                         getValue(I.getArgOperand(0)),
3855                         getValue(I.getArgOperand(1)));
3856  }
3857
3858  setValue(&I, result);
3859}
3860
3861
3862/// ExpandPowI - Expand a llvm.powi intrinsic.
3863static SDValue ExpandPowI(DebugLoc DL, SDValue LHS, SDValue RHS,
3864                          SelectionDAG &DAG) {
3865  // If RHS is a constant, we can expand this out to a multiplication tree,
3866  // otherwise we end up lowering to a call to __powidf2 (for example).  When
3867  // optimizing for size, we only want to do this if the expansion would produce
3868  // a small number of multiplies, otherwise we do the full expansion.
3869  if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
3870    // Get the exponent as a positive value.
3871    unsigned Val = RHSC->getSExtValue();
3872    if ((int)Val < 0) Val = -Val;
3873
3874    // powi(x, 0) -> 1.0
3875    if (Val == 0)
3876      return DAG.getConstantFP(1.0, LHS.getValueType());
3877
3878    const Function *F = DAG.getMachineFunction().getFunction();
3879    if (!F->hasFnAttr(Attribute::OptimizeForSize) ||
3880        // If optimizing for size, don't insert too many multiplies.  This
3881        // inserts up to 5 multiplies.
3882        CountPopulation_32(Val)+Log2_32(Val) < 7) {
3883      // We use the simple binary decomposition method to generate the multiply
3884      // sequence.  There are more optimal ways to do this (for example,
3885      // powi(x,15) generates one more multiply than it should), but this has
3886      // the benefit of being both really simple and much better than a libcall.
3887      SDValue Res;  // Logically starts equal to 1.0
3888      SDValue CurSquare = LHS;
3889      while (Val) {
3890        if (Val & 1) {
3891          if (Res.getNode())
3892            Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare);
3893          else
3894            Res = CurSquare;  // 1.0*CurSquare.
3895        }
3896
3897        CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
3898                                CurSquare, CurSquare);
3899        Val >>= 1;
3900      }
3901
3902      // If the original was negative, invert the result, producing 1/(x*x*x).
3903      if (RHSC->getSExtValue() < 0)
3904        Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
3905                          DAG.getConstantFP(1.0, LHS.getValueType()), Res);
3906      return Res;
3907    }
3908  }
3909
3910  // Otherwise, expand to a libcall.
3911  return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
3912}
3913
3914/// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function
3915/// argument, create the corresponding DBG_VALUE machine instruction for it now.
3916/// At the end of instruction selection, they will be inserted to the entry BB.
3917bool
3918SelectionDAGBuilder::EmitFuncArgumentDbgValue(const Value *V, MDNode *Variable,
3919                                              int64_t Offset,
3920                                              const SDValue &N) {
3921  const Argument *Arg = dyn_cast<Argument>(V);
3922  if (!Arg)
3923    return false;
3924
3925  MachineFunction &MF = DAG.getMachineFunction();
3926  // Ignore inlined function arguments here.
3927  DIVariable DV(Variable);
3928  if (DV.isInlinedFnArgument(MF.getFunction()))
3929    return false;
3930
3931  MachineBasicBlock *MBB = FuncInfo.MBB;
3932  if (MBB != &MF.front())
3933    return false;
3934
3935  unsigned Reg = 0;
3936  if (Arg->hasByValAttr()) {
3937    // Byval arguments' frame index is recorded during argument lowering.
3938    // Use this info directly.
3939    const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
3940    Reg = TRI->getFrameRegister(MF);
3941    Offset = FuncInfo.getByValArgumentFrameIndex(Arg);
3942  }
3943
3944  if (N.getNode() && N.getOpcode() == ISD::CopyFromReg) {
3945    Reg = cast<RegisterSDNode>(N.getOperand(1))->getReg();
3946    if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) {
3947      MachineRegisterInfo &RegInfo = MF.getRegInfo();
3948      unsigned PR = RegInfo.getLiveInPhysReg(Reg);
3949      if (PR)
3950        Reg = PR;
3951    }
3952  }
3953
3954  if (!Reg) {
3955    DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
3956    if (VMI == FuncInfo.ValueMap.end())
3957      return false;
3958    Reg = VMI->second;
3959  }
3960
3961  const TargetInstrInfo *TII = DAG.getTarget().getInstrInfo();
3962  MachineInstrBuilder MIB = BuildMI(MF, getCurDebugLoc(),
3963                                    TII->get(TargetOpcode::DBG_VALUE))
3964    .addReg(Reg, RegState::Debug).addImm(Offset).addMetadata(Variable);
3965  FuncInfo.ArgDbgValues.push_back(&*MIB);
3966  return true;
3967}
3968
3969// VisualStudio defines setjmp as _setjmp
3970#if defined(_MSC_VER) && defined(setjmp)
3971#define setjmp_undefined_for_visual_studio
3972#undef setjmp
3973#endif
3974
3975/// visitIntrinsicCall - Lower the call to the specified intrinsic function.  If
3976/// we want to emit this as a call to a named external function, return the name
3977/// otherwise lower it and return null.
3978const char *
3979SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) {
3980  DebugLoc dl = getCurDebugLoc();
3981  SDValue Res;
3982
3983  switch (Intrinsic) {
3984  default:
3985    // By default, turn this into a target intrinsic node.
3986    visitTargetIntrinsic(I, Intrinsic);
3987    return 0;
3988  case Intrinsic::vastart:  visitVAStart(I); return 0;
3989  case Intrinsic::vaend:    visitVAEnd(I); return 0;
3990  case Intrinsic::vacopy:   visitVACopy(I); return 0;
3991  case Intrinsic::returnaddress:
3992    setValue(&I, DAG.getNode(ISD::RETURNADDR, dl, TLI.getPointerTy(),
3993                             getValue(I.getArgOperand(0))));
3994    return 0;
3995  case Intrinsic::frameaddress:
3996    setValue(&I, DAG.getNode(ISD::FRAMEADDR, dl, TLI.getPointerTy(),
3997                             getValue(I.getArgOperand(0))));
3998    return 0;
3999  case Intrinsic::setjmp:
4000    return "_setjmp"+!TLI.usesUnderscoreSetJmp();
4001  case Intrinsic::longjmp:
4002    return "_longjmp"+!TLI.usesUnderscoreLongJmp();
4003  case Intrinsic::memcpy: {
4004    // Assert for address < 256 since we support only user defined address
4005    // spaces.
4006    assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4007           < 256 &&
4008           cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace()
4009           < 256 &&
4010           "Unknown address space");
4011    SDValue Op1 = getValue(I.getArgOperand(0));
4012    SDValue Op2 = getValue(I.getArgOperand(1));
4013    SDValue Op3 = getValue(I.getArgOperand(2));
4014    unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4015    bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4016    DAG.setRoot(DAG.getMemcpy(getRoot(), dl, Op1, Op2, Op3, Align, isVol, false,
4017                              MachinePointerInfo(I.getArgOperand(0)),
4018                              MachinePointerInfo(I.getArgOperand(1))));
4019    return 0;
4020  }
4021  case Intrinsic::memset: {
4022    // Assert for address < 256 since we support only user defined address
4023    // spaces.
4024    assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4025           < 256 &&
4026           "Unknown address space");
4027    SDValue Op1 = getValue(I.getArgOperand(0));
4028    SDValue Op2 = getValue(I.getArgOperand(1));
4029    SDValue Op3 = getValue(I.getArgOperand(2));
4030    unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4031    bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4032    DAG.setRoot(DAG.getMemset(getRoot(), dl, Op1, Op2, Op3, Align, isVol,
4033                              MachinePointerInfo(I.getArgOperand(0))));
4034    return 0;
4035  }
4036  case Intrinsic::memmove: {
4037    // Assert for address < 256 since we support only user defined address
4038    // spaces.
4039    assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4040           < 256 &&
4041           cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace()
4042           < 256 &&
4043           "Unknown address space");
4044    SDValue Op1 = getValue(I.getArgOperand(0));
4045    SDValue Op2 = getValue(I.getArgOperand(1));
4046    SDValue Op3 = getValue(I.getArgOperand(2));
4047    unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4048    bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4049
4050    // If the source and destination are known to not be aliases, we can
4051    // lower memmove as memcpy.
4052    uint64_t Size = -1ULL;
4053    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op3))
4054      Size = C->getZExtValue();
4055    if (AA->alias(I.getArgOperand(0), Size, I.getArgOperand(1), Size) ==
4056        AliasAnalysis::NoAlias) {
4057      DAG.setRoot(DAG.getMemcpy(getRoot(), dl, Op1, Op2, Op3, Align, isVol,
4058                                false, MachinePointerInfo(I.getArgOperand(0)),
4059                                MachinePointerInfo(I.getArgOperand(1))));
4060      return 0;
4061    }
4062
4063    DAG.setRoot(DAG.getMemmove(getRoot(), dl, Op1, Op2, Op3, Align, isVol,
4064                               MachinePointerInfo(I.getArgOperand(0)),
4065                               MachinePointerInfo(I.getArgOperand(1))));
4066    return 0;
4067  }
4068  case Intrinsic::dbg_declare: {
4069    const DbgDeclareInst &DI = cast<DbgDeclareInst>(I);
4070    MDNode *Variable = DI.getVariable();
4071    const Value *Address = DI.getAddress();
4072    if (!Address || !DIVariable(DI.getVariable()).Verify())
4073      return 0;
4074
4075    // Build an entry in DbgOrdering.  Debug info input nodes get an SDNodeOrder
4076    // but do not always have a corresponding SDNode built.  The SDNodeOrder
4077    // absolute, but not relative, values are different depending on whether
4078    // debug info exists.
4079    ++SDNodeOrder;
4080
4081    // Check if address has undef value.
4082    if (isa<UndefValue>(Address) ||
4083        (Address->use_empty() && !isa<Argument>(Address))) {
4084      SDDbgValue*SDV =
4085        DAG.getDbgValue(Variable, UndefValue::get(Address->getType()),
4086                        0, dl, SDNodeOrder);
4087      DAG.AddDbgValue(SDV, 0, false);
4088      return 0;
4089    }
4090
4091    SDValue &N = NodeMap[Address];
4092    if (!N.getNode() && isa<Argument>(Address))
4093      // Check unused arguments map.
4094      N = UnusedArgNodeMap[Address];
4095    SDDbgValue *SDV;
4096    if (N.getNode()) {
4097      // Parameters are handled specially.
4098      bool isParameter =
4099        DIVariable(Variable).getTag() == dwarf::DW_TAG_arg_variable;
4100      if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
4101        Address = BCI->getOperand(0);
4102      const AllocaInst *AI = dyn_cast<AllocaInst>(Address);
4103
4104      if (isParameter && !AI) {
4105        FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
4106        if (FINode)
4107          // Byval parameter.  We have a frame index at this point.
4108          SDV = DAG.getDbgValue(Variable, FINode->getIndex(),
4109                                0, dl, SDNodeOrder);
4110        else
4111          // Can't do anything with other non-AI cases yet.  This might be a
4112          // parameter of a callee function that got inlined, for example.
4113          return 0;
4114      } else if (AI)
4115        SDV = DAG.getDbgValue(Variable, N.getNode(), N.getResNo(),
4116                              0, dl, SDNodeOrder);
4117      else
4118        // Can't do anything with other non-AI cases yet.
4119        return 0;
4120      DAG.AddDbgValue(SDV, N.getNode(), isParameter);
4121    } else {
4122      // If Address is an arugment then try to emits its dbg value using
4123      // virtual register info from the FuncInfo.ValueMap.
4124      if (!EmitFuncArgumentDbgValue(Address, Variable, 0, N)) {
4125        // If variable is pinned by a alloca in dominating bb then
4126        // use StaticAllocaMap.
4127        if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) {
4128          if (AI->getParent() != DI.getParent()) {
4129            DenseMap<const AllocaInst*, int>::iterator SI =
4130              FuncInfo.StaticAllocaMap.find(AI);
4131            if (SI != FuncInfo.StaticAllocaMap.end()) {
4132              SDV = DAG.getDbgValue(Variable, SI->second,
4133                                    0, dl, SDNodeOrder);
4134              DAG.AddDbgValue(SDV, 0, false);
4135              return 0;
4136            }
4137          }
4138        }
4139        // Otherwise add undef to help track missing debug info.
4140        SDV = DAG.getDbgValue(Variable, UndefValue::get(Address->getType()),
4141                              0, dl, SDNodeOrder);
4142        DAG.AddDbgValue(SDV, 0, false);
4143      }
4144    }
4145    return 0;
4146  }
4147  case Intrinsic::dbg_value: {
4148    const DbgValueInst &DI = cast<DbgValueInst>(I);
4149    if (!DIVariable(DI.getVariable()).Verify())
4150      return 0;
4151
4152    MDNode *Variable = DI.getVariable();
4153    uint64_t Offset = DI.getOffset();
4154    const Value *V = DI.getValue();
4155    if (!V)
4156      return 0;
4157
4158    // Build an entry in DbgOrdering.  Debug info input nodes get an SDNodeOrder
4159    // but do not always have a corresponding SDNode built.  The SDNodeOrder
4160    // absolute, but not relative, values are different depending on whether
4161    // debug info exists.
4162    ++SDNodeOrder;
4163    SDDbgValue *SDV;
4164    if (isa<ConstantInt>(V) || isa<ConstantFP>(V)) {
4165      SDV = DAG.getDbgValue(Variable, V, Offset, dl, SDNodeOrder);
4166      DAG.AddDbgValue(SDV, 0, false);
4167    } else {
4168      // Do not use getValue() in here; we don't want to generate code at
4169      // this point if it hasn't been done yet.
4170      SDValue N = NodeMap[V];
4171      if (!N.getNode() && isa<Argument>(V))
4172        // Check unused arguments map.
4173        N = UnusedArgNodeMap[V];
4174      if (N.getNode()) {
4175        if (!EmitFuncArgumentDbgValue(V, Variable, Offset, N)) {
4176          SDV = DAG.getDbgValue(Variable, N.getNode(),
4177                                N.getResNo(), Offset, dl, SDNodeOrder);
4178          DAG.AddDbgValue(SDV, N.getNode(), false);
4179        }
4180      } else if (isa<PHINode>(V) && !V->use_empty() ) {
4181        // Do not call getValue(V) yet, as we don't want to generate code.
4182        // Remember it for later.
4183        DanglingDebugInfo DDI(&DI, dl, SDNodeOrder);
4184        DanglingDebugInfoMap[V] = DDI;
4185      } else {
4186        // We may expand this to cover more cases.  One case where we have no
4187        // data available is an unreferenced parameter; we need this fallback.
4188        SDV = DAG.getDbgValue(Variable, UndefValue::get(V->getType()),
4189                              Offset, dl, SDNodeOrder);
4190        DAG.AddDbgValue(SDV, 0, false);
4191      }
4192    }
4193
4194    // Build a debug info table entry.
4195    if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V))
4196      V = BCI->getOperand(0);
4197    const AllocaInst *AI = dyn_cast<AllocaInst>(V);
4198    // Don't handle byval struct arguments or VLAs, for example.
4199    if (!AI)
4200      return 0;
4201    DenseMap<const AllocaInst*, int>::iterator SI =
4202      FuncInfo.StaticAllocaMap.find(AI);
4203    if (SI == FuncInfo.StaticAllocaMap.end())
4204      return 0; // VLAs.
4205    int FI = SI->second;
4206
4207    MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4208    if (!DI.getDebugLoc().isUnknown() && MMI.hasDebugInfo())
4209      MMI.setVariableDbgInfo(Variable, FI, DI.getDebugLoc());
4210    return 0;
4211  }
4212  case Intrinsic::eh_exception: {
4213    // Insert the EXCEPTIONADDR instruction.
4214    assert(FuncInfo.MBB->isLandingPad() &&
4215           "Call to eh.exception not in landing pad!");
4216    SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
4217    SDValue Ops[1];
4218    Ops[0] = DAG.getRoot();
4219    SDValue Op = DAG.getNode(ISD::EXCEPTIONADDR, dl, VTs, Ops, 1);
4220    setValue(&I, Op);
4221    DAG.setRoot(Op.getValue(1));
4222    return 0;
4223  }
4224
4225  case Intrinsic::eh_selector: {
4226    MachineBasicBlock *CallMBB = FuncInfo.MBB;
4227    MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4228    if (CallMBB->isLandingPad())
4229      AddCatchInfo(I, &MMI, CallMBB);
4230    else {
4231#ifndef NDEBUG
4232      FuncInfo.CatchInfoLost.insert(&I);
4233#endif
4234      // FIXME: Mark exception selector register as live in.  Hack for PR1508.
4235      unsigned Reg = TLI.getExceptionSelectorRegister();
4236      if (Reg) FuncInfo.MBB->addLiveIn(Reg);
4237    }
4238
4239    // Insert the EHSELECTION instruction.
4240    SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
4241    SDValue Ops[2];
4242    Ops[0] = getValue(I.getArgOperand(0));
4243    Ops[1] = getRoot();
4244    SDValue Op = DAG.getNode(ISD::EHSELECTION, dl, VTs, Ops, 2);
4245    DAG.setRoot(Op.getValue(1));
4246    setValue(&I, DAG.getSExtOrTrunc(Op, dl, MVT::i32));
4247    return 0;
4248  }
4249
4250  case Intrinsic::eh_typeid_for: {
4251    // Find the type id for the given typeinfo.
4252    GlobalVariable *GV = ExtractTypeInfo(I.getArgOperand(0));
4253    unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV);
4254    Res = DAG.getConstant(TypeID, MVT::i32);
4255    setValue(&I, Res);
4256    return 0;
4257  }
4258
4259  case Intrinsic::eh_return_i32:
4260  case Intrinsic::eh_return_i64:
4261    DAG.getMachineFunction().getMMI().setCallsEHReturn(true);
4262    DAG.setRoot(DAG.getNode(ISD::EH_RETURN, dl,
4263                            MVT::Other,
4264                            getControlRoot(),
4265                            getValue(I.getArgOperand(0)),
4266                            getValue(I.getArgOperand(1))));
4267    return 0;
4268  case Intrinsic::eh_unwind_init:
4269    DAG.getMachineFunction().getMMI().setCallsUnwindInit(true);
4270    return 0;
4271  case Intrinsic::eh_dwarf_cfa: {
4272    SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), dl,
4273                                        TLI.getPointerTy());
4274    SDValue Offset = DAG.getNode(ISD::ADD, dl,
4275                                 TLI.getPointerTy(),
4276                                 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, dl,
4277                                             TLI.getPointerTy()),
4278                                 CfaArg);
4279    SDValue FA = DAG.getNode(ISD::FRAMEADDR, dl,
4280                             TLI.getPointerTy(),
4281                             DAG.getConstant(0, TLI.getPointerTy()));
4282    setValue(&I, DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(),
4283                             FA, Offset));
4284    return 0;
4285  }
4286  case Intrinsic::eh_sjlj_callsite: {
4287    MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4288    ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0));
4289    assert(CI && "Non-constant call site value in eh.sjlj.callsite!");
4290    assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
4291
4292    MMI.setCurrentCallSite(CI->getZExtValue());
4293    return 0;
4294  }
4295  case Intrinsic::eh_sjlj_setjmp: {
4296    setValue(&I, DAG.getNode(ISD::EH_SJLJ_SETJMP, dl, MVT::i32, getRoot(),
4297                             getValue(I.getArgOperand(0))));
4298    return 0;
4299  }
4300  case Intrinsic::eh_sjlj_longjmp: {
4301    DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, dl, MVT::Other,
4302                            getRoot(),
4303                            getValue(I.getArgOperand(0))));
4304    return 0;
4305  }
4306
4307  case Intrinsic::convertff:
4308  case Intrinsic::convertfsi:
4309  case Intrinsic::convertfui:
4310  case Intrinsic::convertsif:
4311  case Intrinsic::convertuif:
4312  case Intrinsic::convertss:
4313  case Intrinsic::convertsu:
4314  case Intrinsic::convertus:
4315  case Intrinsic::convertuu: {
4316    ISD::CvtCode Code = ISD::CVT_INVALID;
4317    switch (Intrinsic) {
4318    case Intrinsic::convertff:  Code = ISD::CVT_FF; break;
4319    case Intrinsic::convertfsi: Code = ISD::CVT_FS; break;
4320    case Intrinsic::convertfui: Code = ISD::CVT_FU; break;
4321    case Intrinsic::convertsif: Code = ISD::CVT_SF; break;
4322    case Intrinsic::convertuif: Code = ISD::CVT_UF; break;
4323    case Intrinsic::convertss:  Code = ISD::CVT_SS; break;
4324    case Intrinsic::convertsu:  Code = ISD::CVT_SU; break;
4325    case Intrinsic::convertus:  Code = ISD::CVT_US; break;
4326    case Intrinsic::convertuu:  Code = ISD::CVT_UU; break;
4327    }
4328    EVT DestVT = TLI.getValueType(I.getType());
4329    const Value *Op1 = I.getArgOperand(0);
4330    Res = DAG.getConvertRndSat(DestVT, getCurDebugLoc(), getValue(Op1),
4331                               DAG.getValueType(DestVT),
4332                               DAG.getValueType(getValue(Op1).getValueType()),
4333                               getValue(I.getArgOperand(1)),
4334                               getValue(I.getArgOperand(2)),
4335                               Code);
4336    setValue(&I, Res);
4337    return 0;
4338  }
4339  case Intrinsic::sqrt:
4340    setValue(&I, DAG.getNode(ISD::FSQRT, dl,
4341                             getValue(I.getArgOperand(0)).getValueType(),
4342                             getValue(I.getArgOperand(0))));
4343    return 0;
4344  case Intrinsic::powi:
4345    setValue(&I, ExpandPowI(dl, getValue(I.getArgOperand(0)),
4346                            getValue(I.getArgOperand(1)), DAG));
4347    return 0;
4348  case Intrinsic::sin:
4349    setValue(&I, DAG.getNode(ISD::FSIN, dl,
4350                             getValue(I.getArgOperand(0)).getValueType(),
4351                             getValue(I.getArgOperand(0))));
4352    return 0;
4353  case Intrinsic::cos:
4354    setValue(&I, DAG.getNode(ISD::FCOS, dl,
4355                             getValue(I.getArgOperand(0)).getValueType(),
4356                             getValue(I.getArgOperand(0))));
4357    return 0;
4358  case Intrinsic::log:
4359    visitLog(I);
4360    return 0;
4361  case Intrinsic::log2:
4362    visitLog2(I);
4363    return 0;
4364  case Intrinsic::log10:
4365    visitLog10(I);
4366    return 0;
4367  case Intrinsic::exp:
4368    visitExp(I);
4369    return 0;
4370  case Intrinsic::exp2:
4371    visitExp2(I);
4372    return 0;
4373  case Intrinsic::pow:
4374    visitPow(I);
4375    return 0;
4376  case Intrinsic::convert_to_fp16:
4377    setValue(&I, DAG.getNode(ISD::FP32_TO_FP16, dl,
4378                             MVT::i16, getValue(I.getArgOperand(0))));
4379    return 0;
4380  case Intrinsic::convert_from_fp16:
4381    setValue(&I, DAG.getNode(ISD::FP16_TO_FP32, dl,
4382                             MVT::f32, getValue(I.getArgOperand(0))));
4383    return 0;
4384  case Intrinsic::pcmarker: {
4385    SDValue Tmp = getValue(I.getArgOperand(0));
4386    DAG.setRoot(DAG.getNode(ISD::PCMARKER, dl, MVT::Other, getRoot(), Tmp));
4387    return 0;
4388  }
4389  case Intrinsic::readcyclecounter: {
4390    SDValue Op = getRoot();
4391    Res = DAG.getNode(ISD::READCYCLECOUNTER, dl,
4392                      DAG.getVTList(MVT::i64, MVT::Other),
4393                      &Op, 1);
4394    setValue(&I, Res);
4395    DAG.setRoot(Res.getValue(1));
4396    return 0;
4397  }
4398  case Intrinsic::bswap:
4399    setValue(&I, DAG.getNode(ISD::BSWAP, dl,
4400                             getValue(I.getArgOperand(0)).getValueType(),
4401                             getValue(I.getArgOperand(0))));
4402    return 0;
4403  case Intrinsic::cttz: {
4404    SDValue Arg = getValue(I.getArgOperand(0));
4405    EVT Ty = Arg.getValueType();
4406    setValue(&I, DAG.getNode(ISD::CTTZ, dl, Ty, Arg));
4407    return 0;
4408  }
4409  case Intrinsic::ctlz: {
4410    SDValue Arg = getValue(I.getArgOperand(0));
4411    EVT Ty = Arg.getValueType();
4412    setValue(&I, DAG.getNode(ISD::CTLZ, dl, Ty, Arg));
4413    return 0;
4414  }
4415  case Intrinsic::ctpop: {
4416    SDValue Arg = getValue(I.getArgOperand(0));
4417    EVT Ty = Arg.getValueType();
4418    setValue(&I, DAG.getNode(ISD::CTPOP, dl, Ty, Arg));
4419    return 0;
4420  }
4421  case Intrinsic::stacksave: {
4422    SDValue Op = getRoot();
4423    Res = DAG.getNode(ISD::STACKSAVE, dl,
4424                      DAG.getVTList(TLI.getPointerTy(), MVT::Other), &Op, 1);
4425    setValue(&I, Res);
4426    DAG.setRoot(Res.getValue(1));
4427    return 0;
4428  }
4429  case Intrinsic::stackrestore: {
4430    Res = getValue(I.getArgOperand(0));
4431    DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, dl, MVT::Other, getRoot(), Res));
4432    return 0;
4433  }
4434  case Intrinsic::stackprotector: {
4435    // Emit code into the DAG to store the stack guard onto the stack.
4436    MachineFunction &MF = DAG.getMachineFunction();
4437    MachineFrameInfo *MFI = MF.getFrameInfo();
4438    EVT PtrTy = TLI.getPointerTy();
4439
4440    SDValue Src = getValue(I.getArgOperand(0));   // The guard's value.
4441    AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
4442
4443    int FI = FuncInfo.StaticAllocaMap[Slot];
4444    MFI->setStackProtectorIndex(FI);
4445
4446    SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
4447
4448    // Store the stack protector onto the stack.
4449    Res = DAG.getStore(getRoot(), getCurDebugLoc(), Src, FIN,
4450                       PseudoSourceValue::getFixedStack(FI),
4451                       0, true, false, 0);
4452    setValue(&I, Res);
4453    DAG.setRoot(Res);
4454    return 0;
4455  }
4456  case Intrinsic::objectsize: {
4457    // If we don't know by now, we're never going to know.
4458    ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1));
4459
4460    assert(CI && "Non-constant type in __builtin_object_size?");
4461
4462    SDValue Arg = getValue(I.getCalledValue());
4463    EVT Ty = Arg.getValueType();
4464
4465    if (CI->isZero())
4466      Res = DAG.getConstant(-1ULL, Ty);
4467    else
4468      Res = DAG.getConstant(0, Ty);
4469
4470    setValue(&I, Res);
4471    return 0;
4472  }
4473  case Intrinsic::var_annotation:
4474    // Discard annotate attributes
4475    return 0;
4476
4477  case Intrinsic::init_trampoline: {
4478    const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
4479
4480    SDValue Ops[6];
4481    Ops[0] = getRoot();
4482    Ops[1] = getValue(I.getArgOperand(0));
4483    Ops[2] = getValue(I.getArgOperand(1));
4484    Ops[3] = getValue(I.getArgOperand(2));
4485    Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
4486    Ops[5] = DAG.getSrcValue(F);
4487
4488    Res = DAG.getNode(ISD::TRAMPOLINE, dl,
4489                      DAG.getVTList(TLI.getPointerTy(), MVT::Other),
4490                      Ops, 6);
4491
4492    setValue(&I, Res);
4493    DAG.setRoot(Res.getValue(1));
4494    return 0;
4495  }
4496  case Intrinsic::gcroot:
4497    if (GFI) {
4498      const Value *Alloca = I.getArgOperand(0);
4499      const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
4500
4501      FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
4502      GFI->addStackRoot(FI->getIndex(), TypeMap);
4503    }
4504    return 0;
4505  case Intrinsic::gcread:
4506  case Intrinsic::gcwrite:
4507    llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
4508    return 0;
4509  case Intrinsic::flt_rounds:
4510    setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, dl, MVT::i32));
4511    return 0;
4512  case Intrinsic::trap:
4513    DAG.setRoot(DAG.getNode(ISD::TRAP, dl,MVT::Other, getRoot()));
4514    return 0;
4515  case Intrinsic::uadd_with_overflow:
4516    return implVisitAluOverflow(I, ISD::UADDO);
4517  case Intrinsic::sadd_with_overflow:
4518    return implVisitAluOverflow(I, ISD::SADDO);
4519  case Intrinsic::usub_with_overflow:
4520    return implVisitAluOverflow(I, ISD::USUBO);
4521  case Intrinsic::ssub_with_overflow:
4522    return implVisitAluOverflow(I, ISD::SSUBO);
4523  case Intrinsic::umul_with_overflow:
4524    return implVisitAluOverflow(I, ISD::UMULO);
4525  case Intrinsic::smul_with_overflow:
4526    return implVisitAluOverflow(I, ISD::SMULO);
4527
4528  case Intrinsic::prefetch: {
4529    SDValue Ops[4];
4530    Ops[0] = getRoot();
4531    Ops[1] = getValue(I.getArgOperand(0));
4532    Ops[2] = getValue(I.getArgOperand(1));
4533    Ops[3] = getValue(I.getArgOperand(2));
4534    DAG.setRoot(DAG.getNode(ISD::PREFETCH, dl, MVT::Other, &Ops[0], 4));
4535    return 0;
4536  }
4537
4538  case Intrinsic::memory_barrier: {
4539    SDValue Ops[6];
4540    Ops[0] = getRoot();
4541    for (int x = 1; x < 6; ++x)
4542      Ops[x] = getValue(I.getArgOperand(x - 1));
4543
4544    DAG.setRoot(DAG.getNode(ISD::MEMBARRIER, dl, MVT::Other, &Ops[0], 6));
4545    return 0;
4546  }
4547  case Intrinsic::atomic_cmp_swap: {
4548    SDValue Root = getRoot();
4549    SDValue L =
4550      DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, getCurDebugLoc(),
4551                    getValue(I.getArgOperand(1)).getValueType().getSimpleVT(),
4552                    Root,
4553                    getValue(I.getArgOperand(0)),
4554                    getValue(I.getArgOperand(1)),
4555                    getValue(I.getArgOperand(2)),
4556                    MachinePointerInfo(I.getArgOperand(0)));
4557    setValue(&I, L);
4558    DAG.setRoot(L.getValue(1));
4559    return 0;
4560  }
4561  case Intrinsic::atomic_load_add:
4562    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_ADD);
4563  case Intrinsic::atomic_load_sub:
4564    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_SUB);
4565  case Intrinsic::atomic_load_or:
4566    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_OR);
4567  case Intrinsic::atomic_load_xor:
4568    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_XOR);
4569  case Intrinsic::atomic_load_and:
4570    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_AND);
4571  case Intrinsic::atomic_load_nand:
4572    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_NAND);
4573  case Intrinsic::atomic_load_max:
4574    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MAX);
4575  case Intrinsic::atomic_load_min:
4576    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MIN);
4577  case Intrinsic::atomic_load_umin:
4578    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMIN);
4579  case Intrinsic::atomic_load_umax:
4580    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMAX);
4581  case Intrinsic::atomic_swap:
4582    return implVisitBinaryAtomic(I, ISD::ATOMIC_SWAP);
4583
4584  case Intrinsic::invariant_start:
4585  case Intrinsic::lifetime_start:
4586    // Discard region information.
4587    setValue(&I, DAG.getUNDEF(TLI.getPointerTy()));
4588    return 0;
4589  case Intrinsic::invariant_end:
4590  case Intrinsic::lifetime_end:
4591    // Discard region information.
4592    return 0;
4593  }
4594}
4595
4596void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee,
4597                                      bool isTailCall,
4598                                      MachineBasicBlock *LandingPad) {
4599  const PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
4600  const FunctionType *FTy = cast<FunctionType>(PT->getElementType());
4601  const Type *RetTy = FTy->getReturnType();
4602  MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4603  MCSymbol *BeginLabel = 0;
4604
4605  TargetLowering::ArgListTy Args;
4606  TargetLowering::ArgListEntry Entry;
4607  Args.reserve(CS.arg_size());
4608
4609  // Check whether the function can return without sret-demotion.
4610  SmallVector<ISD::OutputArg, 4> Outs;
4611  SmallVector<uint64_t, 4> Offsets;
4612  GetReturnInfo(RetTy, CS.getAttributes().getRetAttributes(),
4613                Outs, TLI, &Offsets);
4614
4615  bool CanLowerReturn = TLI.CanLowerReturn(CS.getCallingConv(),
4616                        FTy->isVarArg(), Outs, FTy->getContext());
4617
4618  SDValue DemoteStackSlot;
4619  int DemoteStackIdx = -100;
4620
4621  if (!CanLowerReturn) {
4622    uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(
4623                      FTy->getReturnType());
4624    unsigned Align  = TLI.getTargetData()->getPrefTypeAlignment(
4625                      FTy->getReturnType());
4626    MachineFunction &MF = DAG.getMachineFunction();
4627    DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
4628    const Type *StackSlotPtrType = PointerType::getUnqual(FTy->getReturnType());
4629
4630    DemoteStackSlot = DAG.getFrameIndex(DemoteStackIdx, TLI.getPointerTy());
4631    Entry.Node = DemoteStackSlot;
4632    Entry.Ty = StackSlotPtrType;
4633    Entry.isSExt = false;
4634    Entry.isZExt = false;
4635    Entry.isInReg = false;
4636    Entry.isSRet = true;
4637    Entry.isNest = false;
4638    Entry.isByVal = false;
4639    Entry.Alignment = Align;
4640    Args.push_back(Entry);
4641    RetTy = Type::getVoidTy(FTy->getContext());
4642  }
4643
4644  for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
4645       i != e; ++i) {
4646    SDValue ArgNode = getValue(*i);
4647    Entry.Node = ArgNode; Entry.Ty = (*i)->getType();
4648
4649    unsigned attrInd = i - CS.arg_begin() + 1;
4650    Entry.isSExt  = CS.paramHasAttr(attrInd, Attribute::SExt);
4651    Entry.isZExt  = CS.paramHasAttr(attrInd, Attribute::ZExt);
4652    Entry.isInReg = CS.paramHasAttr(attrInd, Attribute::InReg);
4653    Entry.isSRet  = CS.paramHasAttr(attrInd, Attribute::StructRet);
4654    Entry.isNest  = CS.paramHasAttr(attrInd, Attribute::Nest);
4655    Entry.isByVal = CS.paramHasAttr(attrInd, Attribute::ByVal);
4656    Entry.Alignment = CS.getParamAlignment(attrInd);
4657    Args.push_back(Entry);
4658  }
4659
4660  if (LandingPad) {
4661    // Insert a label before the invoke call to mark the try range.  This can be
4662    // used to detect deletion of the invoke via the MachineModuleInfo.
4663    BeginLabel = MMI.getContext().CreateTempSymbol();
4664
4665    // For SjLj, keep track of which landing pads go with which invokes
4666    // so as to maintain the ordering of pads in the LSDA.
4667    unsigned CallSiteIndex = MMI.getCurrentCallSite();
4668    if (CallSiteIndex) {
4669      MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
4670      // Now that the call site is handled, stop tracking it.
4671      MMI.setCurrentCallSite(0);
4672    }
4673
4674    // Both PendingLoads and PendingExports must be flushed here;
4675    // this call might not return.
4676    (void)getRoot();
4677    DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getControlRoot(), BeginLabel));
4678  }
4679
4680  // Check if target-independent constraints permit a tail call here.
4681  // Target-dependent constraints are checked within TLI.LowerCallTo.
4682  if (isTailCall &&
4683      !isInTailCallPosition(CS, CS.getAttributes().getRetAttributes(), TLI))
4684    isTailCall = false;
4685
4686  // If there's a possibility that fast-isel has already selected some amount
4687  // of the current basic block, don't emit a tail call.
4688  if (isTailCall && EnableFastISel)
4689    isTailCall = false;
4690
4691  std::pair<SDValue,SDValue> Result =
4692    TLI.LowerCallTo(getRoot(), RetTy,
4693                    CS.paramHasAttr(0, Attribute::SExt),
4694                    CS.paramHasAttr(0, Attribute::ZExt), FTy->isVarArg(),
4695                    CS.paramHasAttr(0, Attribute::InReg), FTy->getNumParams(),
4696                    CS.getCallingConv(),
4697                    isTailCall,
4698                    !CS.getInstruction()->use_empty(),
4699                    Callee, Args, DAG, getCurDebugLoc());
4700  assert((isTailCall || Result.second.getNode()) &&
4701         "Non-null chain expected with non-tail call!");
4702  assert((Result.second.getNode() || !Result.first.getNode()) &&
4703         "Null value expected with tail call!");
4704  if (Result.first.getNode()) {
4705    setValue(CS.getInstruction(), Result.first);
4706  } else if (!CanLowerReturn && Result.second.getNode()) {
4707    // The instruction result is the result of loading from the
4708    // hidden sret parameter.
4709    SmallVector<EVT, 1> PVTs;
4710    const Type *PtrRetTy = PointerType::getUnqual(FTy->getReturnType());
4711
4712    ComputeValueVTs(TLI, PtrRetTy, PVTs);
4713    assert(PVTs.size() == 1 && "Pointers should fit in one register");
4714    EVT PtrVT = PVTs[0];
4715    unsigned NumValues = Outs.size();
4716    SmallVector<SDValue, 4> Values(NumValues);
4717    SmallVector<SDValue, 4> Chains(NumValues);
4718
4719    for (unsigned i = 0; i < NumValues; ++i) {
4720      SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT,
4721                                DemoteStackSlot,
4722                                DAG.getConstant(Offsets[i], PtrVT));
4723      SDValue L = DAG.getLoad(Outs[i].VT, getCurDebugLoc(), Result.second,
4724                              Add,
4725                  MachinePointerInfo::getFixedStack(DemoteStackIdx, Offsets[i]),
4726                              false, false, 1);
4727      Values[i] = L;
4728      Chains[i] = L.getValue(1);
4729    }
4730
4731    SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
4732                                MVT::Other, &Chains[0], NumValues);
4733    PendingLoads.push_back(Chain);
4734
4735    // Collect the legal value parts into potentially illegal values
4736    // that correspond to the original function's return values.
4737    SmallVector<EVT, 4> RetTys;
4738    RetTy = FTy->getReturnType();
4739    ComputeValueVTs(TLI, RetTy, RetTys);
4740    ISD::NodeType AssertOp = ISD::DELETED_NODE;
4741    SmallVector<SDValue, 4> ReturnValues;
4742    unsigned CurReg = 0;
4743    for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
4744      EVT VT = RetTys[I];
4745      EVT RegisterVT = TLI.getRegisterType(RetTy->getContext(), VT);
4746      unsigned NumRegs = TLI.getNumRegisters(RetTy->getContext(), VT);
4747
4748      SDValue ReturnValue =
4749        getCopyFromParts(DAG, getCurDebugLoc(), &Values[CurReg], NumRegs,
4750                         RegisterVT, VT, AssertOp);
4751      ReturnValues.push_back(ReturnValue);
4752      CurReg += NumRegs;
4753    }
4754
4755    setValue(CS.getInstruction(),
4756             DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
4757                         DAG.getVTList(&RetTys[0], RetTys.size()),
4758                         &ReturnValues[0], ReturnValues.size()));
4759
4760  }
4761
4762  // As a special case, a null chain means that a tail call has been emitted and
4763  // the DAG root is already updated.
4764  if (Result.second.getNode())
4765    DAG.setRoot(Result.second);
4766  else
4767    HasTailCall = true;
4768
4769  if (LandingPad) {
4770    // Insert a label at the end of the invoke call to mark the try range.  This
4771    // can be used to detect deletion of the invoke via the MachineModuleInfo.
4772    MCSymbol *EndLabel = MMI.getContext().CreateTempSymbol();
4773    DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getRoot(), EndLabel));
4774
4775    // Inform MachineModuleInfo of range.
4776    MMI.addInvoke(LandingPad, BeginLabel, EndLabel);
4777  }
4778}
4779
4780/// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the
4781/// value is equal or not-equal to zero.
4782static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) {
4783  for (Value::const_use_iterator UI = V->use_begin(), E = V->use_end();
4784       UI != E; ++UI) {
4785    if (const ICmpInst *IC = dyn_cast<ICmpInst>(*UI))
4786      if (IC->isEquality())
4787        if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
4788          if (C->isNullValue())
4789            continue;
4790    // Unknown instruction.
4791    return false;
4792  }
4793  return true;
4794}
4795
4796static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
4797                             const Type *LoadTy,
4798                             SelectionDAGBuilder &Builder) {
4799
4800  // Check to see if this load can be trivially constant folded, e.g. if the
4801  // input is from a string literal.
4802  if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
4803    // Cast pointer to the type we really want to load.
4804    LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
4805                                         PointerType::getUnqual(LoadTy));
4806
4807    if (const Constant *LoadCst =
4808          ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput),
4809                                       Builder.TD))
4810      return Builder.getValue(LoadCst);
4811  }
4812
4813  // Otherwise, we have to emit the load.  If the pointer is to unfoldable but
4814  // still constant memory, the input chain can be the entry node.
4815  SDValue Root;
4816  bool ConstantMemory = false;
4817
4818  // Do not serialize (non-volatile) loads of constant memory with anything.
4819  if (Builder.AA->pointsToConstantMemory(PtrVal)) {
4820    Root = Builder.DAG.getEntryNode();
4821    ConstantMemory = true;
4822  } else {
4823    // Do not serialize non-volatile loads against each other.
4824    Root = Builder.DAG.getRoot();
4825  }
4826
4827  SDValue Ptr = Builder.getValue(PtrVal);
4828  SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurDebugLoc(), Root,
4829                                        Ptr, MachinePointerInfo(PtrVal),
4830                                        false /*volatile*/,
4831                                        false /*nontemporal*/, 1 /* align=1 */);
4832
4833  if (!ConstantMemory)
4834    Builder.PendingLoads.push_back(LoadVal.getValue(1));
4835  return LoadVal;
4836}
4837
4838
4839/// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form.
4840/// If so, return true and lower it, otherwise return false and it will be
4841/// lowered like a normal call.
4842bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) {
4843  // Verify that the prototype makes sense.  int memcmp(void*,void*,size_t)
4844  if (I.getNumArgOperands() != 3)
4845    return false;
4846
4847  const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
4848  if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() ||
4849      !I.getArgOperand(2)->getType()->isIntegerTy() ||
4850      !I.getType()->isIntegerTy())
4851    return false;
4852
4853  const ConstantInt *Size = dyn_cast<ConstantInt>(I.getArgOperand(2));
4854
4855  // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0
4856  // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0
4857  if (Size && IsOnlyUsedInZeroEqualityComparison(&I)) {
4858    bool ActuallyDoIt = true;
4859    MVT LoadVT;
4860    const Type *LoadTy;
4861    switch (Size->getZExtValue()) {
4862    default:
4863      LoadVT = MVT::Other;
4864      LoadTy = 0;
4865      ActuallyDoIt = false;
4866      break;
4867    case 2:
4868      LoadVT = MVT::i16;
4869      LoadTy = Type::getInt16Ty(Size->getContext());
4870      break;
4871    case 4:
4872      LoadVT = MVT::i32;
4873      LoadTy = Type::getInt32Ty(Size->getContext());
4874      break;
4875    case 8:
4876      LoadVT = MVT::i64;
4877      LoadTy = Type::getInt64Ty(Size->getContext());
4878      break;
4879        /*
4880    case 16:
4881      LoadVT = MVT::v4i32;
4882      LoadTy = Type::getInt32Ty(Size->getContext());
4883      LoadTy = VectorType::get(LoadTy, 4);
4884      break;
4885         */
4886    }
4887
4888    // This turns into unaligned loads.  We only do this if the target natively
4889    // supports the MVT we'll be loading or if it is small enough (<= 4) that
4890    // we'll only produce a small number of byte loads.
4891
4892    // Require that we can find a legal MVT, and only do this if the target
4893    // supports unaligned loads of that type.  Expanding into byte loads would
4894    // bloat the code.
4895    if (ActuallyDoIt && Size->getZExtValue() > 4) {
4896      // TODO: Handle 5 byte compare as 4-byte + 1 byte.
4897      // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
4898      if (!TLI.isTypeLegal(LoadVT) ||!TLI.allowsUnalignedMemoryAccesses(LoadVT))
4899        ActuallyDoIt = false;
4900    }
4901
4902    if (ActuallyDoIt) {
4903      SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this);
4904      SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this);
4905
4906      SDValue Res = DAG.getSetCC(getCurDebugLoc(), MVT::i1, LHSVal, RHSVal,
4907                                 ISD::SETNE);
4908      EVT CallVT = TLI.getValueType(I.getType(), true);
4909      setValue(&I, DAG.getZExtOrTrunc(Res, getCurDebugLoc(), CallVT));
4910      return true;
4911    }
4912  }
4913
4914
4915  return false;
4916}
4917
4918
4919void SelectionDAGBuilder::visitCall(const CallInst &I) {
4920  // Handle inline assembly differently.
4921  if (isa<InlineAsm>(I.getCalledValue())) {
4922    visitInlineAsm(&I);
4923    return;
4924  }
4925
4926  const char *RenameFn = 0;
4927  if (Function *F = I.getCalledFunction()) {
4928    if (F->isDeclaration()) {
4929      if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) {
4930        if (unsigned IID = II->getIntrinsicID(F)) {
4931          RenameFn = visitIntrinsicCall(I, IID);
4932          if (!RenameFn)
4933            return;
4934        }
4935      }
4936      if (unsigned IID = F->getIntrinsicID()) {
4937        RenameFn = visitIntrinsicCall(I, IID);
4938        if (!RenameFn)
4939          return;
4940      }
4941    }
4942
4943    // Check for well-known libc/libm calls.  If the function is internal, it
4944    // can't be a library call.
4945    if (!F->hasLocalLinkage() && F->hasName()) {
4946      StringRef Name = F->getName();
4947      if (Name == "copysign" || Name == "copysignf" || Name == "copysignl") {
4948        if (I.getNumArgOperands() == 2 &&   // Basic sanity checks.
4949            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
4950            I.getType() == I.getArgOperand(0)->getType() &&
4951            I.getType() == I.getArgOperand(1)->getType()) {
4952          SDValue LHS = getValue(I.getArgOperand(0));
4953          SDValue RHS = getValue(I.getArgOperand(1));
4954          setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurDebugLoc(),
4955                                   LHS.getValueType(), LHS, RHS));
4956          return;
4957        }
4958      } else if (Name == "fabs" || Name == "fabsf" || Name == "fabsl") {
4959        if (I.getNumArgOperands() == 1 &&   // Basic sanity checks.
4960            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
4961            I.getType() == I.getArgOperand(0)->getType()) {
4962          SDValue Tmp = getValue(I.getArgOperand(0));
4963          setValue(&I, DAG.getNode(ISD::FABS, getCurDebugLoc(),
4964                                   Tmp.getValueType(), Tmp));
4965          return;
4966        }
4967      } else if (Name == "sin" || Name == "sinf" || Name == "sinl") {
4968        if (I.getNumArgOperands() == 1 &&   // Basic sanity checks.
4969            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
4970            I.getType() == I.getArgOperand(0)->getType() &&
4971            I.onlyReadsMemory()) {
4972          SDValue Tmp = getValue(I.getArgOperand(0));
4973          setValue(&I, DAG.getNode(ISD::FSIN, getCurDebugLoc(),
4974                                   Tmp.getValueType(), Tmp));
4975          return;
4976        }
4977      } else if (Name == "cos" || Name == "cosf" || Name == "cosl") {
4978        if (I.getNumArgOperands() == 1 &&   // Basic sanity checks.
4979            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
4980            I.getType() == I.getArgOperand(0)->getType() &&
4981            I.onlyReadsMemory()) {
4982          SDValue Tmp = getValue(I.getArgOperand(0));
4983          setValue(&I, DAG.getNode(ISD::FCOS, getCurDebugLoc(),
4984                                   Tmp.getValueType(), Tmp));
4985          return;
4986        }
4987      } else if (Name == "sqrt" || Name == "sqrtf" || Name == "sqrtl") {
4988        if (I.getNumArgOperands() == 1 &&   // Basic sanity checks.
4989            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
4990            I.getType() == I.getArgOperand(0)->getType() &&
4991            I.onlyReadsMemory()) {
4992          SDValue Tmp = getValue(I.getArgOperand(0));
4993          setValue(&I, DAG.getNode(ISD::FSQRT, getCurDebugLoc(),
4994                                   Tmp.getValueType(), Tmp));
4995          return;
4996        }
4997      } else if (Name == "memcmp") {
4998        if (visitMemCmpCall(I))
4999          return;
5000      }
5001    }
5002  }
5003
5004  SDValue Callee;
5005  if (!RenameFn)
5006    Callee = getValue(I.getCalledValue());
5007  else
5008    Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy());
5009
5010  // Check if we can potentially perform a tail call. More detailed checking is
5011  // be done within LowerCallTo, after more information about the call is known.
5012  LowerCallTo(&I, Callee, I.isTailCall());
5013}
5014
5015namespace llvm {
5016
5017/// AsmOperandInfo - This contains information for each constraint that we are
5018/// lowering.
5019class LLVM_LIBRARY_VISIBILITY SDISelAsmOperandInfo :
5020    public TargetLowering::AsmOperandInfo {
5021public:
5022  /// CallOperand - If this is the result output operand or a clobber
5023  /// this is null, otherwise it is the incoming operand to the CallInst.
5024  /// This gets modified as the asm is processed.
5025  SDValue CallOperand;
5026
5027  /// AssignedRegs - If this is a register or register class operand, this
5028  /// contains the set of register corresponding to the operand.
5029  RegsForValue AssignedRegs;
5030
5031  explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
5032    : TargetLowering::AsmOperandInfo(info), CallOperand(0,0) {
5033  }
5034
5035  /// MarkAllocatedRegs - Once AssignedRegs is set, mark the assigned registers
5036  /// busy in OutputRegs/InputRegs.
5037  void MarkAllocatedRegs(bool isOutReg, bool isInReg,
5038                         std::set<unsigned> &OutputRegs,
5039                         std::set<unsigned> &InputRegs,
5040                         const TargetRegisterInfo &TRI) const {
5041    if (isOutReg) {
5042      for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i)
5043        MarkRegAndAliases(AssignedRegs.Regs[i], OutputRegs, TRI);
5044    }
5045    if (isInReg) {
5046      for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i)
5047        MarkRegAndAliases(AssignedRegs.Regs[i], InputRegs, TRI);
5048    }
5049  }
5050
5051  /// getCallOperandValEVT - Return the EVT of the Value* that this operand
5052  /// corresponds to.  If there is no Value* for this operand, it returns
5053  /// MVT::Other.
5054  EVT getCallOperandValEVT(LLVMContext &Context,
5055                           const TargetLowering &TLI,
5056                           const TargetData *TD) const {
5057    if (CallOperandVal == 0) return MVT::Other;
5058
5059    if (isa<BasicBlock>(CallOperandVal))
5060      return TLI.getPointerTy();
5061
5062    const llvm::Type *OpTy = CallOperandVal->getType();
5063
5064    // If this is an indirect operand, the operand is a pointer to the
5065    // accessed type.
5066    if (isIndirect) {
5067      const llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
5068      if (!PtrTy)
5069        report_fatal_error("Indirect operand for inline asm not a pointer!");
5070      OpTy = PtrTy->getElementType();
5071    }
5072
5073    // If OpTy is not a single value, it may be a struct/union that we
5074    // can tile with integers.
5075    if (!OpTy->isSingleValueType() && OpTy->isSized()) {
5076      unsigned BitSize = TD->getTypeSizeInBits(OpTy);
5077      switch (BitSize) {
5078      default: break;
5079      case 1:
5080      case 8:
5081      case 16:
5082      case 32:
5083      case 64:
5084      case 128:
5085        OpTy = IntegerType::get(Context, BitSize);
5086        break;
5087      }
5088    }
5089
5090    return TLI.getValueType(OpTy, true);
5091  }
5092
5093private:
5094  /// MarkRegAndAliases - Mark the specified register and all aliases in the
5095  /// specified set.
5096  static void MarkRegAndAliases(unsigned Reg, std::set<unsigned> &Regs,
5097                                const TargetRegisterInfo &TRI) {
5098    assert(TargetRegisterInfo::isPhysicalRegister(Reg) && "Isn't a physreg");
5099    Regs.insert(Reg);
5100    if (const unsigned *Aliases = TRI.getAliasSet(Reg))
5101      for (; *Aliases; ++Aliases)
5102        Regs.insert(*Aliases);
5103  }
5104};
5105
5106} // end llvm namespace.
5107
5108/// isAllocatableRegister - If the specified register is safe to allocate,
5109/// i.e. it isn't a stack pointer or some other special register, return the
5110/// register class for the register.  Otherwise, return null.
5111static const TargetRegisterClass *
5112isAllocatableRegister(unsigned Reg, MachineFunction &MF,
5113                      const TargetLowering &TLI,
5114                      const TargetRegisterInfo *TRI) {
5115  EVT FoundVT = MVT::Other;
5116  const TargetRegisterClass *FoundRC = 0;
5117  for (TargetRegisterInfo::regclass_iterator RCI = TRI->regclass_begin(),
5118       E = TRI->regclass_end(); RCI != E; ++RCI) {
5119    EVT ThisVT = MVT::Other;
5120
5121    const TargetRegisterClass *RC = *RCI;
5122    // If none of the value types for this register class are valid, we
5123    // can't use it.  For example, 64-bit reg classes on 32-bit targets.
5124    for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
5125         I != E; ++I) {
5126      if (TLI.isTypeLegal(*I)) {
5127        // If we have already found this register in a different register class,
5128        // choose the one with the largest VT specified.  For example, on
5129        // PowerPC, we favor f64 register classes over f32.
5130        if (FoundVT == MVT::Other || FoundVT.bitsLT(*I)) {
5131          ThisVT = *I;
5132          break;
5133        }
5134      }
5135    }
5136
5137    if (ThisVT == MVT::Other) continue;
5138
5139    // NOTE: This isn't ideal.  In particular, this might allocate the
5140    // frame pointer in functions that need it (due to them not being taken
5141    // out of allocation, because a variable sized allocation hasn't been seen
5142    // yet).  This is a slight code pessimization, but should still work.
5143    for (TargetRegisterClass::iterator I = RC->allocation_order_begin(MF),
5144         E = RC->allocation_order_end(MF); I != E; ++I)
5145      if (*I == Reg) {
5146        // We found a matching register class.  Keep looking at others in case
5147        // we find one with larger registers that this physreg is also in.
5148        FoundRC = RC;
5149        FoundVT = ThisVT;
5150        break;
5151      }
5152  }
5153  return FoundRC;
5154}
5155
5156/// GetRegistersForValue - Assign registers (virtual or physical) for the
5157/// specified operand.  We prefer to assign virtual registers, to allow the
5158/// register allocator to handle the assignment process.  However, if the asm
5159/// uses features that we can't model on machineinstrs, we have SDISel do the
5160/// allocation.  This produces generally horrible, but correct, code.
5161///
5162///   OpInfo describes the operand.
5163///   Input and OutputRegs are the set of already allocated physical registers.
5164///
5165void SelectionDAGBuilder::
5166GetRegistersForValue(SDISelAsmOperandInfo &OpInfo,
5167                     std::set<unsigned> &OutputRegs,
5168                     std::set<unsigned> &InputRegs) {
5169  LLVMContext &Context = FuncInfo.Fn->getContext();
5170
5171  // Compute whether this value requires an input register, an output register,
5172  // or both.
5173  bool isOutReg = false;
5174  bool isInReg = false;
5175  switch (OpInfo.Type) {
5176  case InlineAsm::isOutput:
5177    isOutReg = true;
5178
5179    // If there is an input constraint that matches this, we need to reserve
5180    // the input register so no other inputs allocate to it.
5181    isInReg = OpInfo.hasMatchingInput();
5182    break;
5183  case InlineAsm::isInput:
5184    isInReg = true;
5185    isOutReg = false;
5186    break;
5187  case InlineAsm::isClobber:
5188    isOutReg = true;
5189    isInReg = true;
5190    break;
5191  }
5192
5193
5194  MachineFunction &MF = DAG.getMachineFunction();
5195  SmallVector<unsigned, 4> Regs;
5196
5197  // If this is a constraint for a single physreg, or a constraint for a
5198  // register class, find it.
5199  std::pair<unsigned, const TargetRegisterClass*> PhysReg =
5200    TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
5201                                     OpInfo.ConstraintVT);
5202
5203  unsigned NumRegs = 1;
5204  if (OpInfo.ConstraintVT != MVT::Other) {
5205    // If this is a FP input in an integer register (or visa versa) insert a bit
5206    // cast of the input value.  More generally, handle any case where the input
5207    // value disagrees with the register class we plan to stick this in.
5208    if (OpInfo.Type == InlineAsm::isInput &&
5209        PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) {
5210      // Try to convert to the first EVT that the reg class contains.  If the
5211      // types are identical size, use a bitcast to convert (e.g. two differing
5212      // vector types).
5213      EVT RegVT = *PhysReg.second->vt_begin();
5214      if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) {
5215        OpInfo.CallOperand = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(),
5216                                         RegVT, OpInfo.CallOperand);
5217        OpInfo.ConstraintVT = RegVT;
5218      } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
5219        // If the input is a FP value and we want it in FP registers, do a
5220        // bitcast to the corresponding integer type.  This turns an f64 value
5221        // into i64, which can be passed with two i32 values on a 32-bit
5222        // machine.
5223        RegVT = EVT::getIntegerVT(Context,
5224                                  OpInfo.ConstraintVT.getSizeInBits());
5225        OpInfo.CallOperand = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(),
5226                                         RegVT, OpInfo.CallOperand);
5227        OpInfo.ConstraintVT = RegVT;
5228      }
5229    }
5230
5231    NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT);
5232  }
5233
5234  EVT RegVT;
5235  EVT ValueVT = OpInfo.ConstraintVT;
5236
5237  // If this is a constraint for a specific physical register, like {r17},
5238  // assign it now.
5239  if (unsigned AssignedReg = PhysReg.first) {
5240    const TargetRegisterClass *RC = PhysReg.second;
5241    if (OpInfo.ConstraintVT == MVT::Other)
5242      ValueVT = *RC->vt_begin();
5243
5244    // Get the actual register value type.  This is important, because the user
5245    // may have asked for (e.g.) the AX register in i32 type.  We need to
5246    // remember that AX is actually i16 to get the right extension.
5247    RegVT = *RC->vt_begin();
5248
5249    // This is a explicit reference to a physical register.
5250    Regs.push_back(AssignedReg);
5251
5252    // If this is an expanded reference, add the rest of the regs to Regs.
5253    if (NumRegs != 1) {
5254      TargetRegisterClass::iterator I = RC->begin();
5255      for (; *I != AssignedReg; ++I)
5256        assert(I != RC->end() && "Didn't find reg!");
5257
5258      // Already added the first reg.
5259      --NumRegs; ++I;
5260      for (; NumRegs; --NumRegs, ++I) {
5261        assert(I != RC->end() && "Ran out of registers to allocate!");
5262        Regs.push_back(*I);
5263      }
5264    }
5265
5266    OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
5267    const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
5268    OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI);
5269    return;
5270  }
5271
5272  // Otherwise, if this was a reference to an LLVM register class, create vregs
5273  // for this reference.
5274  if (const TargetRegisterClass *RC = PhysReg.second) {
5275    RegVT = *RC->vt_begin();
5276    if (OpInfo.ConstraintVT == MVT::Other)
5277      ValueVT = RegVT;
5278
5279    // Create the appropriate number of virtual registers.
5280    MachineRegisterInfo &RegInfo = MF.getRegInfo();
5281    for (; NumRegs; --NumRegs)
5282      Regs.push_back(RegInfo.createVirtualRegister(RC));
5283
5284    OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
5285    return;
5286  }
5287
5288  // This is a reference to a register class that doesn't directly correspond
5289  // to an LLVM register class.  Allocate NumRegs consecutive, available,
5290  // registers from the class.
5291  std::vector<unsigned> RegClassRegs
5292    = TLI.getRegClassForInlineAsmConstraint(OpInfo.ConstraintCode,
5293                                            OpInfo.ConstraintVT);
5294
5295  const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
5296  unsigned NumAllocated = 0;
5297  for (unsigned i = 0, e = RegClassRegs.size(); i != e; ++i) {
5298    unsigned Reg = RegClassRegs[i];
5299    // See if this register is available.
5300    if ((isOutReg && OutputRegs.count(Reg)) ||   // Already used.
5301        (isInReg  && InputRegs.count(Reg))) {    // Already used.
5302      // Make sure we find consecutive registers.
5303      NumAllocated = 0;
5304      continue;
5305    }
5306
5307    // Check to see if this register is allocatable (i.e. don't give out the
5308    // stack pointer).
5309    const TargetRegisterClass *RC = isAllocatableRegister(Reg, MF, TLI, TRI);
5310    if (!RC) {        // Couldn't allocate this register.
5311      // Reset NumAllocated to make sure we return consecutive registers.
5312      NumAllocated = 0;
5313      continue;
5314    }
5315
5316    // Okay, this register is good, we can use it.
5317    ++NumAllocated;
5318
5319    // If we allocated enough consecutive registers, succeed.
5320    if (NumAllocated == NumRegs) {
5321      unsigned RegStart = (i-NumAllocated)+1;
5322      unsigned RegEnd   = i+1;
5323      // Mark all of the allocated registers used.
5324      for (unsigned i = RegStart; i != RegEnd; ++i)
5325        Regs.push_back(RegClassRegs[i]);
5326
5327      OpInfo.AssignedRegs = RegsForValue(Regs, *RC->vt_begin(),
5328                                         OpInfo.ConstraintVT);
5329      OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI);
5330      return;
5331    }
5332  }
5333
5334  // Otherwise, we couldn't allocate enough registers for this.
5335}
5336
5337/// visitInlineAsm - Handle a call to an InlineAsm object.
5338///
5339void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) {
5340  const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
5341
5342  /// ConstraintOperands - Information about all of the constraints.
5343  std::vector<SDISelAsmOperandInfo> ConstraintOperands;
5344
5345  std::set<unsigned> OutputRegs, InputRegs;
5346
5347  std::vector<TargetLowering::AsmOperandInfo> TargetConstraints = TLI.ParseConstraints(CS);
5348  bool hasMemory = false;
5349
5350  unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
5351  unsigned ResNo = 0;   // ResNo - The result number of the next output.
5352  for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
5353    ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i]));
5354    SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
5355
5356    EVT OpVT = MVT::Other;
5357
5358    // Compute the value type for each operand.
5359    switch (OpInfo.Type) {
5360    case InlineAsm::isOutput:
5361      // Indirect outputs just consume an argument.
5362      if (OpInfo.isIndirect) {
5363        OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
5364        break;
5365      }
5366
5367      // The return value of the call is this value.  As such, there is no
5368      // corresponding argument.
5369      assert(!CS.getType()->isVoidTy() &&
5370             "Bad inline asm!");
5371      if (const StructType *STy = dyn_cast<StructType>(CS.getType())) {
5372        OpVT = TLI.getValueType(STy->getElementType(ResNo));
5373      } else {
5374        assert(ResNo == 0 && "Asm only has one result!");
5375        OpVT = TLI.getValueType(CS.getType());
5376      }
5377      ++ResNo;
5378      break;
5379    case InlineAsm::isInput:
5380      OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
5381      break;
5382    case InlineAsm::isClobber:
5383      // Nothing to do.
5384      break;
5385    }
5386
5387    // If this is an input or an indirect output, process the call argument.
5388    // BasicBlocks are labels, currently appearing only in asm's.
5389    if (OpInfo.CallOperandVal) {
5390      // Strip bitcasts, if any.  This mostly comes up for functions.
5391      OpInfo.CallOperandVal = OpInfo.CallOperandVal->stripPointerCasts();
5392
5393      if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) {
5394        OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
5395      } else {
5396        OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
5397      }
5398
5399      OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, TD);
5400    }
5401
5402    OpInfo.ConstraintVT = OpVT;
5403
5404    // Indirect operand accesses access memory.
5405    if (OpInfo.isIndirect)
5406      hasMemory = true;
5407    else {
5408      for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) {
5409        TargetLowering::ConstraintType CType = TLI.getConstraintType(OpInfo.Codes[j]);
5410        if (CType == TargetLowering::C_Memory) {
5411          hasMemory = true;
5412          break;
5413        }
5414      }
5415    }
5416  }
5417
5418  SDValue Chain, Flag;
5419
5420  // We won't need to flush pending loads if this asm doesn't touch
5421  // memory and is nonvolatile.
5422  if (hasMemory || IA->hasSideEffects())
5423    Chain = getRoot();
5424  else
5425    Chain = DAG.getRoot();
5426
5427  // Second pass over the constraints: compute which constraint option to use
5428  // and assign registers to constraints that want a specific physreg.
5429  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
5430    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
5431
5432    // Compute the constraint code and ConstraintType to use.
5433    TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
5434
5435    // If this is a memory input, and if the operand is not indirect, do what we
5436    // need to to provide an address for the memory input.
5437    if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
5438        !OpInfo.isIndirect) {
5439      assert((OpInfo.isMultipleAlternative || (OpInfo.Type == InlineAsm::isInput)) &&
5440             "Can only indirectify direct input operands!");
5441
5442      // Memory operands really want the address of the value.  If we don't have
5443      // an indirect input, put it in the constpool if we can, otherwise spill
5444      // it to a stack slot.
5445
5446      // If the operand is a float, integer, or vector constant, spill to a
5447      // constant pool entry to get its address.
5448      const Value *OpVal = OpInfo.CallOperandVal;
5449      if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
5450          isa<ConstantVector>(OpVal)) {
5451        OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal),
5452                                                 TLI.getPointerTy());
5453      } else {
5454        // Otherwise, create a stack slot and emit a store to it before the
5455        // asm.
5456        const Type *Ty = OpVal->getType();
5457        uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty);
5458        unsigned Align  = TLI.getTargetData()->getPrefTypeAlignment(Ty);
5459        MachineFunction &MF = DAG.getMachineFunction();
5460        int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
5461        SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy());
5462        Chain = DAG.getStore(Chain, getCurDebugLoc(),
5463                             OpInfo.CallOperand, StackSlot,
5464                             MachinePointerInfo::getFixedStack(SSFI),
5465                             false, false, 0);
5466        OpInfo.CallOperand = StackSlot;
5467      }
5468
5469      // There is no longer a Value* corresponding to this operand.
5470      OpInfo.CallOperandVal = 0;
5471
5472      // It is now an indirect operand.
5473      OpInfo.isIndirect = true;
5474    }
5475
5476    // If this constraint is for a specific register, allocate it before
5477    // anything else.
5478    if (OpInfo.ConstraintType == TargetLowering::C_Register)
5479      GetRegistersForValue(OpInfo, OutputRegs, InputRegs);
5480  }
5481
5482  // Second pass - Loop over all of the operands, assigning virtual or physregs
5483  // to register class operands.
5484  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
5485    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
5486
5487    // C_Register operands have already been allocated, Other/Memory don't need
5488    // to be.
5489    if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass)
5490      GetRegistersForValue(OpInfo, OutputRegs, InputRegs);
5491  }
5492
5493  // AsmNodeOperands - The operands for the ISD::INLINEASM node.
5494  std::vector<SDValue> AsmNodeOperands;
5495  AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
5496  AsmNodeOperands.push_back(
5497          DAG.getTargetExternalSymbol(IA->getAsmString().c_str(),
5498                                      TLI.getPointerTy()));
5499
5500  // If we have a !srcloc metadata node associated with it, we want to attach
5501  // this to the ultimately generated inline asm machineinstr.  To do this, we
5502  // pass in the third operand as this (potentially null) inline asm MDNode.
5503  const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc");
5504  AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
5505
5506  // Remember the AlignStack bit as operand 3.
5507  AsmNodeOperands.push_back(DAG.getTargetConstant(IA->isAlignStack() ? 1 : 0,
5508                                            MVT::i1));
5509
5510  // Loop over all of the inputs, copying the operand values into the
5511  // appropriate registers and processing the output regs.
5512  RegsForValue RetValRegs;
5513
5514  // IndirectStoresToEmit - The set of stores to emit after the inline asm node.
5515  std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit;
5516
5517  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
5518    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
5519
5520    switch (OpInfo.Type) {
5521    case InlineAsm::isOutput: {
5522      if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass &&
5523          OpInfo.ConstraintType != TargetLowering::C_Register) {
5524        // Memory output, or 'other' output (e.g. 'X' constraint).
5525        assert(OpInfo.isIndirect && "Memory output must be indirect operand");
5526
5527        // Add information to the INLINEASM node to know about this output.
5528        unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
5529        AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags,
5530                                                        TLI.getPointerTy()));
5531        AsmNodeOperands.push_back(OpInfo.CallOperand);
5532        break;
5533      }
5534
5535      // Otherwise, this is a register or register class output.
5536
5537      // Copy the output from the appropriate register.  Find a register that
5538      // we can use.
5539      if (OpInfo.AssignedRegs.Regs.empty())
5540        report_fatal_error("Couldn't allocate output reg for constraint '" +
5541                           Twine(OpInfo.ConstraintCode) + "'!");
5542
5543      // If this is an indirect operand, store through the pointer after the
5544      // asm.
5545      if (OpInfo.isIndirect) {
5546        IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs,
5547                                                      OpInfo.CallOperandVal));
5548      } else {
5549        // This is the result value of the call.
5550        assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
5551        // Concatenate this output onto the outputs list.
5552        RetValRegs.append(OpInfo.AssignedRegs);
5553      }
5554
5555      // Add information to the INLINEASM node to know that this register is
5556      // set.
5557      OpInfo.AssignedRegs.AddInlineAsmOperands(OpInfo.isEarlyClobber ?
5558                                           InlineAsm::Kind_RegDefEarlyClobber :
5559                                               InlineAsm::Kind_RegDef,
5560                                               false,
5561                                               0,
5562                                               DAG,
5563                                               AsmNodeOperands);
5564      break;
5565    }
5566    case InlineAsm::isInput: {
5567      SDValue InOperandVal = OpInfo.CallOperand;
5568
5569      if (OpInfo.isMatchingInputConstraint()) {   // Matching constraint?
5570        // If this is required to match an output register we have already set,
5571        // just use its register.
5572        unsigned OperandNo = OpInfo.getMatchedOperand();
5573
5574        // Scan until we find the definition we already emitted of this operand.
5575        // When we find it, create a RegsForValue operand.
5576        unsigned CurOp = InlineAsm::Op_FirstOperand;
5577        for (; OperandNo; --OperandNo) {
5578          // Advance to the next operand.
5579          unsigned OpFlag =
5580            cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
5581          assert((InlineAsm::isRegDefKind(OpFlag) ||
5582                  InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||
5583                  InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?");
5584          CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1;
5585        }
5586
5587        unsigned OpFlag =
5588          cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
5589        if (InlineAsm::isRegDefKind(OpFlag) ||
5590            InlineAsm::isRegDefEarlyClobberKind(OpFlag)) {
5591          // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
5592          if (OpInfo.isIndirect) {
5593            // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
5594            LLVMContext &Ctx = *DAG.getContext();
5595            Ctx.emitError(CS.getInstruction(),  "inline asm not supported yet:"
5596                          " don't know how to handle tied "
5597                          "indirect register inputs");
5598          }
5599
5600          RegsForValue MatchedRegs;
5601          MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType());
5602          EVT RegVT = AsmNodeOperands[CurOp+1].getValueType();
5603          MatchedRegs.RegVTs.push_back(RegVT);
5604          MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo();
5605          for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag);
5606               i != e; ++i)
5607            MatchedRegs.Regs.push_back
5608              (RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT)));
5609
5610          // Use the produced MatchedRegs object to
5611          MatchedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(),
5612                                    Chain, &Flag);
5613          MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse,
5614                                           true, OpInfo.getMatchedOperand(),
5615                                           DAG, AsmNodeOperands);
5616          break;
5617        }
5618
5619        assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!");
5620        assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 &&
5621               "Unexpected number of operands");
5622        // Add information to the INLINEASM node to know about this input.
5623        // See InlineAsm.h isUseOperandTiedToDef.
5624        OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
5625                                                    OpInfo.getMatchedOperand());
5626        AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlag,
5627                                                        TLI.getPointerTy()));
5628        AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
5629        break;
5630      }
5631
5632      // Treat indirect 'X' constraint as memory.
5633      if (OpInfo.ConstraintType == TargetLowering::C_Other &&
5634          OpInfo.isIndirect)
5635        OpInfo.ConstraintType = TargetLowering::C_Memory;
5636
5637      if (OpInfo.ConstraintType == TargetLowering::C_Other) {
5638        std::vector<SDValue> Ops;
5639        TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode[0],
5640                                         Ops, DAG);
5641        if (Ops.empty())
5642          report_fatal_error("Invalid operand for inline asm constraint '" +
5643                             Twine(OpInfo.ConstraintCode) + "'!");
5644
5645        // Add information to the INLINEASM node to know about this input.
5646        unsigned ResOpType =
5647          InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
5648        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
5649                                                        TLI.getPointerTy()));
5650        AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
5651        break;
5652      }
5653
5654      if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
5655        assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
5656        assert(InOperandVal.getValueType() == TLI.getPointerTy() &&
5657               "Memory operands expect pointer values");
5658
5659        // Add information to the INLINEASM node to know about this input.
5660        unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
5661        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
5662                                                        TLI.getPointerTy()));
5663        AsmNodeOperands.push_back(InOperandVal);
5664        break;
5665      }
5666
5667      assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
5668              OpInfo.ConstraintType == TargetLowering::C_Register) &&
5669             "Unknown constraint type!");
5670      assert(!OpInfo.isIndirect &&
5671             "Don't know how to handle indirect register inputs yet!");
5672
5673      // Copy the input into the appropriate registers.
5674      if (OpInfo.AssignedRegs.Regs.empty() ||
5675          !OpInfo.AssignedRegs.areValueTypesLegal(TLI))
5676        report_fatal_error("Couldn't allocate input reg for constraint '" +
5677                           Twine(OpInfo.ConstraintCode) + "'!");
5678
5679      OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(),
5680                                        Chain, &Flag);
5681
5682      OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0,
5683                                               DAG, AsmNodeOperands);
5684      break;
5685    }
5686    case InlineAsm::isClobber: {
5687      // Add the clobbered value to the operand list, so that the register
5688      // allocator is aware that the physreg got clobbered.
5689      if (!OpInfo.AssignedRegs.Regs.empty())
5690        OpInfo.AssignedRegs.AddInlineAsmOperands(
5691                                            InlineAsm::Kind_RegDefEarlyClobber,
5692                                                 false, 0, DAG,
5693                                                 AsmNodeOperands);
5694      break;
5695    }
5696    }
5697  }
5698
5699  // Finish up input operands.  Set the input chain and add the flag last.
5700  AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
5701  if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
5702
5703  Chain = DAG.getNode(ISD::INLINEASM, getCurDebugLoc(),
5704                      DAG.getVTList(MVT::Other, MVT::Flag),
5705                      &AsmNodeOperands[0], AsmNodeOperands.size());
5706  Flag = Chain.getValue(1);
5707
5708  // If this asm returns a register value, copy the result from that register
5709  // and set it as the value of the call.
5710  if (!RetValRegs.Regs.empty()) {
5711    SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(),
5712                                             Chain, &Flag);
5713
5714    // FIXME: Why don't we do this for inline asms with MRVs?
5715    if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) {
5716      EVT ResultType = TLI.getValueType(CS.getType());
5717
5718      // If any of the results of the inline asm is a vector, it may have the
5719      // wrong width/num elts.  This can happen for register classes that can
5720      // contain multiple different value types.  The preg or vreg allocated may
5721      // not have the same VT as was expected.  Convert it to the right type
5722      // with bit_convert.
5723      if (ResultType != Val.getValueType() && Val.getValueType().isVector()) {
5724        Val = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(),
5725                          ResultType, Val);
5726
5727      } else if (ResultType != Val.getValueType() &&
5728                 ResultType.isInteger() && Val.getValueType().isInteger()) {
5729        // If a result value was tied to an input value, the computed result may
5730        // have a wider width than the expected result.  Extract the relevant
5731        // portion.
5732        Val = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), ResultType, Val);
5733      }
5734
5735      assert(ResultType == Val.getValueType() && "Asm result value mismatch!");
5736    }
5737
5738    setValue(CS.getInstruction(), Val);
5739    // Don't need to use this as a chain in this case.
5740    if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty())
5741      return;
5742  }
5743
5744  std::vector<std::pair<SDValue, const Value *> > StoresToEmit;
5745
5746  // Process indirect outputs, first output all of the flagged copies out of
5747  // physregs.
5748  for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
5749    RegsForValue &OutRegs = IndirectStoresToEmit[i].first;
5750    const Value *Ptr = IndirectStoresToEmit[i].second;
5751    SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(),
5752                                             Chain, &Flag);
5753    StoresToEmit.push_back(std::make_pair(OutVal, Ptr));
5754  }
5755
5756  // Emit the non-flagged stores from the physregs.
5757  SmallVector<SDValue, 8> OutChains;
5758  for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) {
5759    SDValue Val = DAG.getStore(Chain, getCurDebugLoc(),
5760                               StoresToEmit[i].first,
5761                               getValue(StoresToEmit[i].second),
5762                               StoresToEmit[i].second, 0,
5763                               false, false, 0);
5764    OutChains.push_back(Val);
5765  }
5766
5767  if (!OutChains.empty())
5768    Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
5769                        &OutChains[0], OutChains.size());
5770
5771  DAG.setRoot(Chain);
5772}
5773
5774void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
5775  DAG.setRoot(DAG.getNode(ISD::VASTART, getCurDebugLoc(),
5776                          MVT::Other, getRoot(),
5777                          getValue(I.getArgOperand(0)),
5778                          DAG.getSrcValue(I.getArgOperand(0))));
5779}
5780
5781void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
5782  const TargetData &TD = *TLI.getTargetData();
5783  SDValue V = DAG.getVAArg(TLI.getValueType(I.getType()), getCurDebugLoc(),
5784                           getRoot(), getValue(I.getOperand(0)),
5785                           DAG.getSrcValue(I.getOperand(0)),
5786                           TD.getABITypeAlignment(I.getType()));
5787  setValue(&I, V);
5788  DAG.setRoot(V.getValue(1));
5789}
5790
5791void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
5792  DAG.setRoot(DAG.getNode(ISD::VAEND, getCurDebugLoc(),
5793                          MVT::Other, getRoot(),
5794                          getValue(I.getArgOperand(0)),
5795                          DAG.getSrcValue(I.getArgOperand(0))));
5796}
5797
5798void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
5799  DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurDebugLoc(),
5800                          MVT::Other, getRoot(),
5801                          getValue(I.getArgOperand(0)),
5802                          getValue(I.getArgOperand(1)),
5803                          DAG.getSrcValue(I.getArgOperand(0)),
5804                          DAG.getSrcValue(I.getArgOperand(1))));
5805}
5806
5807/// TargetLowering::LowerCallTo - This is the default LowerCallTo
5808/// implementation, which just calls LowerCall.
5809/// FIXME: When all targets are
5810/// migrated to using LowerCall, this hook should be integrated into SDISel.
5811std::pair<SDValue, SDValue>
5812TargetLowering::LowerCallTo(SDValue Chain, const Type *RetTy,
5813                            bool RetSExt, bool RetZExt, bool isVarArg,
5814                            bool isInreg, unsigned NumFixedArgs,
5815                            CallingConv::ID CallConv, bool isTailCall,
5816                            bool isReturnValueUsed,
5817                            SDValue Callee,
5818                            ArgListTy &Args, SelectionDAG &DAG,
5819                            DebugLoc dl) const {
5820  // Handle all of the outgoing arguments.
5821  SmallVector<ISD::OutputArg, 32> Outs;
5822  SmallVector<SDValue, 32> OutVals;
5823  for (unsigned i = 0, e = Args.size(); i != e; ++i) {
5824    SmallVector<EVT, 4> ValueVTs;
5825    ComputeValueVTs(*this, Args[i].Ty, ValueVTs);
5826    for (unsigned Value = 0, NumValues = ValueVTs.size();
5827         Value != NumValues; ++Value) {
5828      EVT VT = ValueVTs[Value];
5829      const Type *ArgTy = VT.getTypeForEVT(RetTy->getContext());
5830      SDValue Op = SDValue(Args[i].Node.getNode(),
5831                           Args[i].Node.getResNo() + Value);
5832      ISD::ArgFlagsTy Flags;
5833      unsigned OriginalAlignment =
5834        getTargetData()->getABITypeAlignment(ArgTy);
5835
5836      if (Args[i].isZExt)
5837        Flags.setZExt();
5838      if (Args[i].isSExt)
5839        Flags.setSExt();
5840      if (Args[i].isInReg)
5841        Flags.setInReg();
5842      if (Args[i].isSRet)
5843        Flags.setSRet();
5844      if (Args[i].isByVal) {
5845        Flags.setByVal();
5846        const PointerType *Ty = cast<PointerType>(Args[i].Ty);
5847        const Type *ElementTy = Ty->getElementType();
5848        unsigned FrameAlign = getByValTypeAlignment(ElementTy);
5849        unsigned FrameSize  = getTargetData()->getTypeAllocSize(ElementTy);
5850        // For ByVal, alignment should come from FE.  BE will guess if this
5851        // info is not there but there are cases it cannot get right.
5852        if (Args[i].Alignment)
5853          FrameAlign = Args[i].Alignment;
5854        Flags.setByValAlign(FrameAlign);
5855        Flags.setByValSize(FrameSize);
5856      }
5857      if (Args[i].isNest)
5858        Flags.setNest();
5859      Flags.setOrigAlign(OriginalAlignment);
5860
5861      EVT PartVT = getRegisterType(RetTy->getContext(), VT);
5862      unsigned NumParts = getNumRegisters(RetTy->getContext(), VT);
5863      SmallVector<SDValue, 4> Parts(NumParts);
5864      ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
5865
5866      if (Args[i].isSExt)
5867        ExtendKind = ISD::SIGN_EXTEND;
5868      else if (Args[i].isZExt)
5869        ExtendKind = ISD::ZERO_EXTEND;
5870
5871      getCopyToParts(DAG, dl, Op, &Parts[0], NumParts,
5872                     PartVT, ExtendKind);
5873
5874      for (unsigned j = 0; j != NumParts; ++j) {
5875        // if it isn't first piece, alignment must be 1
5876        ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(),
5877                               i < NumFixedArgs);
5878        if (NumParts > 1 && j == 0)
5879          MyFlags.Flags.setSplit();
5880        else if (j != 0)
5881          MyFlags.Flags.setOrigAlign(1);
5882
5883        Outs.push_back(MyFlags);
5884        OutVals.push_back(Parts[j]);
5885      }
5886    }
5887  }
5888
5889  // Handle the incoming return values from the call.
5890  SmallVector<ISD::InputArg, 32> Ins;
5891  SmallVector<EVT, 4> RetTys;
5892  ComputeValueVTs(*this, RetTy, RetTys);
5893  for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
5894    EVT VT = RetTys[I];
5895    EVT RegisterVT = getRegisterType(RetTy->getContext(), VT);
5896    unsigned NumRegs = getNumRegisters(RetTy->getContext(), VT);
5897    for (unsigned i = 0; i != NumRegs; ++i) {
5898      ISD::InputArg MyFlags;
5899      MyFlags.VT = RegisterVT;
5900      MyFlags.Used = isReturnValueUsed;
5901      if (RetSExt)
5902        MyFlags.Flags.setSExt();
5903      if (RetZExt)
5904        MyFlags.Flags.setZExt();
5905      if (isInreg)
5906        MyFlags.Flags.setInReg();
5907      Ins.push_back(MyFlags);
5908    }
5909  }
5910
5911  SmallVector<SDValue, 4> InVals;
5912  Chain = LowerCall(Chain, Callee, CallConv, isVarArg, isTailCall,
5913                    Outs, OutVals, Ins, dl, DAG, InVals);
5914
5915  // Verify that the target's LowerCall behaved as expected.
5916  assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
5917         "LowerCall didn't return a valid chain!");
5918  assert((!isTailCall || InVals.empty()) &&
5919         "LowerCall emitted a return value for a tail call!");
5920  assert((isTailCall || InVals.size() == Ins.size()) &&
5921         "LowerCall didn't emit the correct number of values!");
5922
5923  // For a tail call, the return value is merely live-out and there aren't
5924  // any nodes in the DAG representing it. Return a special value to
5925  // indicate that a tail call has been emitted and no more Instructions
5926  // should be processed in the current block.
5927  if (isTailCall) {
5928    DAG.setRoot(Chain);
5929    return std::make_pair(SDValue(), SDValue());
5930  }
5931
5932  DEBUG(for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
5933          assert(InVals[i].getNode() &&
5934                 "LowerCall emitted a null value!");
5935          assert(Ins[i].VT == InVals[i].getValueType() &&
5936                 "LowerCall emitted a value with the wrong type!");
5937        });
5938
5939  // Collect the legal value parts into potentially illegal values
5940  // that correspond to the original function's return values.
5941  ISD::NodeType AssertOp = ISD::DELETED_NODE;
5942  if (RetSExt)
5943    AssertOp = ISD::AssertSext;
5944  else if (RetZExt)
5945    AssertOp = ISD::AssertZext;
5946  SmallVector<SDValue, 4> ReturnValues;
5947  unsigned CurReg = 0;
5948  for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
5949    EVT VT = RetTys[I];
5950    EVT RegisterVT = getRegisterType(RetTy->getContext(), VT);
5951    unsigned NumRegs = getNumRegisters(RetTy->getContext(), VT);
5952
5953    ReturnValues.push_back(getCopyFromParts(DAG, dl, &InVals[CurReg],
5954                                            NumRegs, RegisterVT, VT,
5955                                            AssertOp));
5956    CurReg += NumRegs;
5957  }
5958
5959  // For a function returning void, there is no return value. We can't create
5960  // such a node, so we just return a null return value in that case. In
5961  // that case, nothing will actualy look at the value.
5962  if (ReturnValues.empty())
5963    return std::make_pair(SDValue(), Chain);
5964
5965  SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
5966                            DAG.getVTList(&RetTys[0], RetTys.size()),
5967                            &ReturnValues[0], ReturnValues.size());
5968  return std::make_pair(Res, Chain);
5969}
5970
5971void TargetLowering::LowerOperationWrapper(SDNode *N,
5972                                           SmallVectorImpl<SDValue> &Results,
5973                                           SelectionDAG &DAG) const {
5974  SDValue Res = LowerOperation(SDValue(N, 0), DAG);
5975  if (Res.getNode())
5976    Results.push_back(Res);
5977}
5978
5979SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
5980  llvm_unreachable("LowerOperation not implemented for this target!");
5981  return SDValue();
5982}
5983
5984void
5985SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) {
5986  SDValue Op = getNonRegisterValue(V);
5987  assert((Op.getOpcode() != ISD::CopyFromReg ||
5988          cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
5989         "Copy from a reg to the same reg!");
5990  assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg");
5991
5992  RegsForValue RFV(V->getContext(), TLI, Reg, V->getType());
5993  SDValue Chain = DAG.getEntryNode();
5994  RFV.getCopyToRegs(Op, DAG, getCurDebugLoc(), Chain, 0);
5995  PendingExports.push_back(Chain);
5996}
5997
5998#include "llvm/CodeGen/SelectionDAGISel.h"
5999
6000void SelectionDAGISel::LowerArguments(const BasicBlock *LLVMBB) {
6001  // If this is the entry block, emit arguments.
6002  const Function &F = *LLVMBB->getParent();
6003  SelectionDAG &DAG = SDB->DAG;
6004  DebugLoc dl = SDB->getCurDebugLoc();
6005  const TargetData *TD = TLI.getTargetData();
6006  SmallVector<ISD::InputArg, 16> Ins;
6007
6008  // Check whether the function can return without sret-demotion.
6009  SmallVector<ISD::OutputArg, 4> Outs;
6010  GetReturnInfo(F.getReturnType(), F.getAttributes().getRetAttributes(),
6011                Outs, TLI);
6012
6013  if (!FuncInfo->CanLowerReturn) {
6014    // Put in an sret pointer parameter before all the other parameters.
6015    SmallVector<EVT, 1> ValueVTs;
6016    ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs);
6017
6018    // NOTE: Assuming that a pointer will never break down to more than one VT
6019    // or one register.
6020    ISD::ArgFlagsTy Flags;
6021    Flags.setSRet();
6022    EVT RegisterVT = TLI.getRegisterType(*DAG.getContext(), ValueVTs[0]);
6023    ISD::InputArg RetArg(Flags, RegisterVT, true);
6024    Ins.push_back(RetArg);
6025  }
6026
6027  // Set up the incoming argument description vector.
6028  unsigned Idx = 1;
6029  for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end();
6030       I != E; ++I, ++Idx) {
6031    SmallVector<EVT, 4> ValueVTs;
6032    ComputeValueVTs(TLI, I->getType(), ValueVTs);
6033    bool isArgValueUsed = !I->use_empty();
6034    for (unsigned Value = 0, NumValues = ValueVTs.size();
6035         Value != NumValues; ++Value) {
6036      EVT VT = ValueVTs[Value];
6037      const Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
6038      ISD::ArgFlagsTy Flags;
6039      unsigned OriginalAlignment =
6040        TD->getABITypeAlignment(ArgTy);
6041
6042      if (F.paramHasAttr(Idx, Attribute::ZExt))
6043        Flags.setZExt();
6044      if (F.paramHasAttr(Idx, Attribute::SExt))
6045        Flags.setSExt();
6046      if (F.paramHasAttr(Idx, Attribute::InReg))
6047        Flags.setInReg();
6048      if (F.paramHasAttr(Idx, Attribute::StructRet))
6049        Flags.setSRet();
6050      if (F.paramHasAttr(Idx, Attribute::ByVal)) {
6051        Flags.setByVal();
6052        const PointerType *Ty = cast<PointerType>(I->getType());
6053        const Type *ElementTy = Ty->getElementType();
6054        unsigned FrameAlign = TLI.getByValTypeAlignment(ElementTy);
6055        unsigned FrameSize  = TD->getTypeAllocSize(ElementTy);
6056        // For ByVal, alignment should be passed from FE.  BE will guess if
6057        // this info is not there but there are cases it cannot get right.
6058        if (F.getParamAlignment(Idx))
6059          FrameAlign = F.getParamAlignment(Idx);
6060        Flags.setByValAlign(FrameAlign);
6061        Flags.setByValSize(FrameSize);
6062      }
6063      if (F.paramHasAttr(Idx, Attribute::Nest))
6064        Flags.setNest();
6065      Flags.setOrigAlign(OriginalAlignment);
6066
6067      EVT RegisterVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
6068      unsigned NumRegs = TLI.getNumRegisters(*CurDAG->getContext(), VT);
6069      for (unsigned i = 0; i != NumRegs; ++i) {
6070        ISD::InputArg MyFlags(Flags, RegisterVT, isArgValueUsed);
6071        if (NumRegs > 1 && i == 0)
6072          MyFlags.Flags.setSplit();
6073        // if it isn't first piece, alignment must be 1
6074        else if (i > 0)
6075          MyFlags.Flags.setOrigAlign(1);
6076        Ins.push_back(MyFlags);
6077      }
6078    }
6079  }
6080
6081  // Call the target to set up the argument values.
6082  SmallVector<SDValue, 8> InVals;
6083  SDValue NewRoot = TLI.LowerFormalArguments(DAG.getRoot(), F.getCallingConv(),
6084                                             F.isVarArg(), Ins,
6085                                             dl, DAG, InVals);
6086
6087  // Verify that the target's LowerFormalArguments behaved as expected.
6088  assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
6089         "LowerFormalArguments didn't return a valid chain!");
6090  assert(InVals.size() == Ins.size() &&
6091         "LowerFormalArguments didn't emit the correct number of values!");
6092  DEBUG({
6093      for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
6094        assert(InVals[i].getNode() &&
6095               "LowerFormalArguments emitted a null value!");
6096        assert(Ins[i].VT == InVals[i].getValueType() &&
6097               "LowerFormalArguments emitted a value with the wrong type!");
6098      }
6099    });
6100
6101  // Update the DAG with the new chain value resulting from argument lowering.
6102  DAG.setRoot(NewRoot);
6103
6104  // Set up the argument values.
6105  unsigned i = 0;
6106  Idx = 1;
6107  if (!FuncInfo->CanLowerReturn) {
6108    // Create a virtual register for the sret pointer, and put in a copy
6109    // from the sret argument into it.
6110    SmallVector<EVT, 1> ValueVTs;
6111    ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs);
6112    EVT VT = ValueVTs[0];
6113    EVT RegVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
6114    ISD::NodeType AssertOp = ISD::DELETED_NODE;
6115    SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1,
6116                                        RegVT, VT, AssertOp);
6117
6118    MachineFunction& MF = SDB->DAG.getMachineFunction();
6119    MachineRegisterInfo& RegInfo = MF.getRegInfo();
6120    unsigned SRetReg = RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT));
6121    FuncInfo->DemoteRegister = SRetReg;
6122    NewRoot = SDB->DAG.getCopyToReg(NewRoot, SDB->getCurDebugLoc(),
6123                                    SRetReg, ArgValue);
6124    DAG.setRoot(NewRoot);
6125
6126    // i indexes lowered arguments.  Bump it past the hidden sret argument.
6127    // Idx indexes LLVM arguments.  Don't touch it.
6128    ++i;
6129  }
6130
6131  for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E;
6132      ++I, ++Idx) {
6133    SmallVector<SDValue, 4> ArgValues;
6134    SmallVector<EVT, 4> ValueVTs;
6135    ComputeValueVTs(TLI, I->getType(), ValueVTs);
6136    unsigned NumValues = ValueVTs.size();
6137
6138    // If this argument is unused then remember its value. It is used to generate
6139    // debugging information.
6140    if (I->use_empty() && NumValues)
6141      SDB->setUnusedArgValue(I, InVals[i]);
6142
6143    for (unsigned Value = 0; Value != NumValues; ++Value) {
6144      EVT VT = ValueVTs[Value];
6145      EVT PartVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
6146      unsigned NumParts = TLI.getNumRegisters(*CurDAG->getContext(), VT);
6147
6148      if (!I->use_empty()) {
6149        ISD::NodeType AssertOp = ISD::DELETED_NODE;
6150        if (F.paramHasAttr(Idx, Attribute::SExt))
6151          AssertOp = ISD::AssertSext;
6152        else if (F.paramHasAttr(Idx, Attribute::ZExt))
6153          AssertOp = ISD::AssertZext;
6154
6155        ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i],
6156                                             NumParts, PartVT, VT,
6157                                             AssertOp));
6158      }
6159
6160      i += NumParts;
6161    }
6162
6163    // Note down frame index for byval arguments.
6164    if (I->hasByValAttr() && !ArgValues.empty())
6165      if (FrameIndexSDNode *FI =
6166          dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
6167        FuncInfo->setByValArgumentFrameIndex(I, FI->getIndex());
6168
6169    if (!I->use_empty()) {
6170      SDValue Res;
6171      if (!ArgValues.empty())
6172        Res = DAG.getMergeValues(&ArgValues[0], NumValues,
6173                                 SDB->getCurDebugLoc());
6174      SDB->setValue(I, Res);
6175
6176      // If this argument is live outside of the entry block, insert a copy from
6177      // whereever we got it to the vreg that other BB's will reference it as.
6178      SDB->CopyToExportRegsIfNeeded(I);
6179    }
6180  }
6181
6182  assert(i == InVals.size() && "Argument register count mismatch!");
6183
6184  // Finally, if the target has anything special to do, allow it to do so.
6185  // FIXME: this should insert code into the DAG!
6186  EmitFunctionEntryCode();
6187}
6188
6189/// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
6190/// ensure constants are generated when needed.  Remember the virtual registers
6191/// that need to be added to the Machine PHI nodes as input.  We cannot just
6192/// directly add them, because expansion might result in multiple MBB's for one
6193/// BB.  As such, the start of the BB might correspond to a different MBB than
6194/// the end.
6195///
6196void
6197SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
6198  const TerminatorInst *TI = LLVMBB->getTerminator();
6199
6200  SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
6201
6202  // Check successor nodes' PHI nodes that expect a constant to be available
6203  // from this block.
6204  for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
6205    const BasicBlock *SuccBB = TI->getSuccessor(succ);
6206    if (!isa<PHINode>(SuccBB->begin())) continue;
6207    MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
6208
6209    // If this terminator has multiple identical successors (common for
6210    // switches), only handle each succ once.
6211    if (!SuccsHandled.insert(SuccMBB)) continue;
6212
6213    MachineBasicBlock::iterator MBBI = SuccMBB->begin();
6214
6215    // At this point we know that there is a 1-1 correspondence between LLVM PHI
6216    // nodes and Machine PHI nodes, but the incoming operands have not been
6217    // emitted yet.
6218    for (BasicBlock::const_iterator I = SuccBB->begin();
6219         const PHINode *PN = dyn_cast<PHINode>(I); ++I) {
6220      // Ignore dead phi's.
6221      if (PN->use_empty()) continue;
6222
6223      unsigned Reg;
6224      const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
6225
6226      if (const Constant *C = dyn_cast<Constant>(PHIOp)) {
6227        unsigned &RegOut = ConstantsOut[C];
6228        if (RegOut == 0) {
6229          RegOut = FuncInfo.CreateRegs(C->getType());
6230          CopyValueToVirtualRegister(C, RegOut);
6231        }
6232        Reg = RegOut;
6233      } else {
6234        DenseMap<const Value *, unsigned>::iterator I =
6235          FuncInfo.ValueMap.find(PHIOp);
6236        if (I != FuncInfo.ValueMap.end())
6237          Reg = I->second;
6238        else {
6239          assert(isa<AllocaInst>(PHIOp) &&
6240                 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
6241                 "Didn't codegen value into a register!??");
6242          Reg = FuncInfo.CreateRegs(PHIOp->getType());
6243          CopyValueToVirtualRegister(PHIOp, Reg);
6244        }
6245      }
6246
6247      // Remember that this register needs to added to the machine PHI node as
6248      // the input for this MBB.
6249      SmallVector<EVT, 4> ValueVTs;
6250      ComputeValueVTs(TLI, PN->getType(), ValueVTs);
6251      for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
6252        EVT VT = ValueVTs[vti];
6253        unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
6254        for (unsigned i = 0, e = NumRegisters; i != e; ++i)
6255          FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i));
6256        Reg += NumRegisters;
6257      }
6258    }
6259  }
6260  ConstantsOut.clear();
6261}
6262