SelectionDAGBuilder.cpp revision e0b42c02f0764ea9df9c17efffc7838203fb8f16
1//===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements routines for translating from LLVM IR into SelectionDAG IR.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "isel"
15#include "SDNodeDbgValue.h"
16#include "SelectionDAGBuilder.h"
17#include "llvm/ADT/BitVector.h"
18#include "llvm/ADT/PostOrderIterator.h"
19#include "llvm/ADT/SmallSet.h"
20#include "llvm/Analysis/AliasAnalysis.h"
21#include "llvm/Analysis/ConstantFolding.h"
22#include "llvm/Constants.h"
23#include "llvm/CallingConv.h"
24#include "llvm/DerivedTypes.h"
25#include "llvm/Function.h"
26#include "llvm/GlobalVariable.h"
27#include "llvm/InlineAsm.h"
28#include "llvm/Instructions.h"
29#include "llvm/Intrinsics.h"
30#include "llvm/IntrinsicInst.h"
31#include "llvm/LLVMContext.h"
32#include "llvm/Module.h"
33#include "llvm/CodeGen/Analysis.h"
34#include "llvm/CodeGen/FastISel.h"
35#include "llvm/CodeGen/FunctionLoweringInfo.h"
36#include "llvm/CodeGen/GCStrategy.h"
37#include "llvm/CodeGen/GCMetadata.h"
38#include "llvm/CodeGen/MachineFunction.h"
39#include "llvm/CodeGen/MachineFrameInfo.h"
40#include "llvm/CodeGen/MachineInstrBuilder.h"
41#include "llvm/CodeGen/MachineJumpTableInfo.h"
42#include "llvm/CodeGen/MachineModuleInfo.h"
43#include "llvm/CodeGen/MachineRegisterInfo.h"
44#include "llvm/CodeGen/PseudoSourceValue.h"
45#include "llvm/CodeGen/SelectionDAG.h"
46#include "llvm/Analysis/DebugInfo.h"
47#include "llvm/Target/TargetData.h"
48#include "llvm/Target/TargetFrameLowering.h"
49#include "llvm/Target/TargetInstrInfo.h"
50#include "llvm/Target/TargetIntrinsicInfo.h"
51#include "llvm/Target/TargetLowering.h"
52#include "llvm/Target/TargetOptions.h"
53#include "llvm/Support/CommandLine.h"
54#include "llvm/Support/Debug.h"
55#include "llvm/Support/ErrorHandling.h"
56#include "llvm/Support/MathExtras.h"
57#include "llvm/Support/raw_ostream.h"
58#include <algorithm>
59using namespace llvm;
60
61/// LimitFloatPrecision - Generate low-precision inline sequences for
62/// some float libcalls (6, 8 or 12 bits).
63static unsigned LimitFloatPrecision;
64
65static cl::opt<unsigned, true>
66LimitFPPrecision("limit-float-precision",
67                 cl::desc("Generate low-precision inline sequences "
68                          "for some float libcalls"),
69                 cl::location(LimitFloatPrecision),
70                 cl::init(0));
71
72// Limit the width of DAG chains. This is important in general to prevent
73// prevent DAG-based analysis from blowing up. For example, alias analysis and
74// load clustering may not complete in reasonable time. It is difficult to
75// recognize and avoid this situation within each individual analysis, and
76// future analyses are likely to have the same behavior. Limiting DAG width is
77// the safe approach, and will be especially important with global DAGs.
78//
79// MaxParallelChains default is arbitrarily high to avoid affecting
80// optimization, but could be lowered to improve compile time. Any ld-ld-st-st
81// sequence over this should have been converted to llvm.memcpy by the
82// frontend. It easy to induce this behavior with .ll code such as:
83// %buffer = alloca [4096 x i8]
84// %data = load [4096 x i8]* %argPtr
85// store [4096 x i8] %data, [4096 x i8]* %buffer
86static const unsigned MaxParallelChains = 64;
87
88static SDValue getCopyFromPartsVector(SelectionDAG &DAG, DebugLoc DL,
89                                      const SDValue *Parts, unsigned NumParts,
90                                      EVT PartVT, EVT ValueVT);
91
92/// getCopyFromParts - Create a value that contains the specified legal parts
93/// combined into the value they represent.  If the parts combine to a type
94/// larger then ValueVT then AssertOp can be used to specify whether the extra
95/// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
96/// (ISD::AssertSext).
97static SDValue getCopyFromParts(SelectionDAG &DAG, DebugLoc DL,
98                                const SDValue *Parts,
99                                unsigned NumParts, EVT PartVT, EVT ValueVT,
100                                ISD::NodeType AssertOp = ISD::DELETED_NODE) {
101  if (ValueVT.isVector())
102    return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT);
103
104  assert(NumParts > 0 && "No parts to assemble!");
105  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
106  SDValue Val = Parts[0];
107
108  if (NumParts > 1) {
109    // Assemble the value from multiple parts.
110    if (ValueVT.isInteger()) {
111      unsigned PartBits = PartVT.getSizeInBits();
112      unsigned ValueBits = ValueVT.getSizeInBits();
113
114      // Assemble the power of 2 part.
115      unsigned RoundParts = NumParts & (NumParts - 1) ?
116        1 << Log2_32(NumParts) : NumParts;
117      unsigned RoundBits = PartBits * RoundParts;
118      EVT RoundVT = RoundBits == ValueBits ?
119        ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
120      SDValue Lo, Hi;
121
122      EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
123
124      if (RoundParts > 2) {
125        Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2,
126                              PartVT, HalfVT);
127        Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2,
128                              RoundParts / 2, PartVT, HalfVT);
129      } else {
130        Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
131        Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
132      }
133
134      if (TLI.isBigEndian())
135        std::swap(Lo, Hi);
136
137      Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
138
139      if (RoundParts < NumParts) {
140        // Assemble the trailing non-power-of-2 part.
141        unsigned OddParts = NumParts - RoundParts;
142        EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
143        Hi = getCopyFromParts(DAG, DL,
144                              Parts + RoundParts, OddParts, PartVT, OddVT);
145
146        // Combine the round and odd parts.
147        Lo = Val;
148        if (TLI.isBigEndian())
149          std::swap(Lo, Hi);
150        EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
151        Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
152        Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
153                         DAG.getConstant(Lo.getValueType().getSizeInBits(),
154                                         TLI.getPointerTy()));
155        Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
156        Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
157      }
158    } else if (PartVT.isFloatingPoint()) {
159      // FP split into multiple FP parts (for ppcf128)
160      assert(ValueVT == EVT(MVT::ppcf128) && PartVT == EVT(MVT::f64) &&
161             "Unexpected split");
162      SDValue Lo, Hi;
163      Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
164      Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
165      if (TLI.isBigEndian())
166        std::swap(Lo, Hi);
167      Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
168    } else {
169      // FP split into integer parts (soft fp)
170      assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
171             !PartVT.isVector() && "Unexpected split");
172      EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
173      Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT);
174    }
175  }
176
177  // There is now one part, held in Val.  Correct it to match ValueVT.
178  PartVT = Val.getValueType();
179
180  if (PartVT == ValueVT)
181    return Val;
182
183  if (PartVT.isInteger() && ValueVT.isInteger()) {
184    if (ValueVT.bitsLT(PartVT)) {
185      // For a truncate, see if we have any information to
186      // indicate whether the truncated bits will always be
187      // zero or sign-extension.
188      if (AssertOp != ISD::DELETED_NODE)
189        Val = DAG.getNode(AssertOp, DL, PartVT, Val,
190                          DAG.getValueType(ValueVT));
191      return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
192    }
193    return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
194  }
195
196  if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
197    // FP_ROUND's are always exact here.
198    if (ValueVT.bitsLT(Val.getValueType()))
199      return DAG.getNode(ISD::FP_ROUND, DL, ValueVT, Val,
200                         DAG.getIntPtrConstant(1));
201
202    return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
203  }
204
205  if (PartVT.getSizeInBits() == ValueVT.getSizeInBits())
206    return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
207
208  llvm_unreachable("Unknown mismatch!");
209  return SDValue();
210}
211
212/// getCopyFromParts - Create a value that contains the specified legal parts
213/// combined into the value they represent.  If the parts combine to a type
214/// larger then ValueVT then AssertOp can be used to specify whether the extra
215/// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
216/// (ISD::AssertSext).
217static SDValue getCopyFromPartsVector(SelectionDAG &DAG, DebugLoc DL,
218                                      const SDValue *Parts, unsigned NumParts,
219                                      EVT PartVT, EVT ValueVT) {
220  assert(ValueVT.isVector() && "Not a vector value");
221  assert(NumParts > 0 && "No parts to assemble!");
222  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
223  SDValue Val = Parts[0];
224
225  // Handle a multi-element vector.
226  if (NumParts > 1) {
227    EVT IntermediateVT, RegisterVT;
228    unsigned NumIntermediates;
229    unsigned NumRegs =
230    TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
231                               NumIntermediates, RegisterVT);
232    assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
233    NumParts = NumRegs; // Silence a compiler warning.
234    assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
235    assert(RegisterVT == Parts[0].getValueType() &&
236           "Part type doesn't match part!");
237
238    // Assemble the parts into intermediate operands.
239    SmallVector<SDValue, 8> Ops(NumIntermediates);
240    if (NumIntermediates == NumParts) {
241      // If the register was not expanded, truncate or copy the value,
242      // as appropriate.
243      for (unsigned i = 0; i != NumParts; ++i)
244        Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1,
245                                  PartVT, IntermediateVT);
246    } else if (NumParts > 0) {
247      // If the intermediate type was expanded, build the intermediate
248      // operands from the parts.
249      assert(NumParts % NumIntermediates == 0 &&
250             "Must expand into a divisible number of parts!");
251      unsigned Factor = NumParts / NumIntermediates;
252      for (unsigned i = 0; i != NumIntermediates; ++i)
253        Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor,
254                                  PartVT, IntermediateVT);
255    }
256
257    // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
258    // intermediate operands.
259    Val = DAG.getNode(IntermediateVT.isVector() ?
260                      ISD::CONCAT_VECTORS : ISD::BUILD_VECTOR, DL,
261                      ValueVT, &Ops[0], NumIntermediates);
262  }
263
264  // There is now one part, held in Val.  Correct it to match ValueVT.
265  PartVT = Val.getValueType();
266
267  if (PartVT == ValueVT)
268    return Val;
269
270  if (PartVT.isVector()) {
271    // If the element type of the source/dest vectors are the same, but the
272    // parts vector has more elements than the value vector, then we have a
273    // vector widening case (e.g. <2 x float> -> <4 x float>).  Extract the
274    // elements we want.
275    if (PartVT.getVectorElementType() == ValueVT.getVectorElementType()) {
276      assert(PartVT.getVectorNumElements() > ValueVT.getVectorNumElements() &&
277             "Cannot narrow, it would be a lossy transformation");
278      return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
279                         DAG.getIntPtrConstant(0));
280    }
281
282    // Vector/Vector bitcast.
283    return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
284  }
285
286  // Trivial bitcast if the types are the same size and the destination
287  // vector type is legal.
288  if (PartVT.getSizeInBits() == ValueVT.getSizeInBits() &&
289      TLI.isTypeLegal(ValueVT))
290    return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
291
292  assert(ValueVT.getVectorElementType() == PartVT &&
293         ValueVT.getVectorNumElements() == 1 &&
294         "Only trivial scalar-to-vector conversions should get here!");
295  return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val);
296}
297
298
299
300
301static void getCopyToPartsVector(SelectionDAG &DAG, DebugLoc dl,
302                                 SDValue Val, SDValue *Parts, unsigned NumParts,
303                                 EVT PartVT);
304
305/// getCopyToParts - Create a series of nodes that contain the specified value
306/// split into legal parts.  If the parts contain more bits than Val, then, for
307/// integers, ExtendKind can be used to specify how to generate the extra bits.
308static void getCopyToParts(SelectionDAG &DAG, DebugLoc DL,
309                           SDValue Val, SDValue *Parts, unsigned NumParts,
310                           EVT PartVT,
311                           ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
312  EVT ValueVT = Val.getValueType();
313
314  // Handle the vector case separately.
315  if (ValueVT.isVector())
316    return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT);
317
318  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
319  unsigned PartBits = PartVT.getSizeInBits();
320  unsigned OrigNumParts = NumParts;
321  assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!");
322
323  if (NumParts == 0)
324    return;
325
326  assert(!ValueVT.isVector() && "Vector case handled elsewhere");
327  if (PartVT == ValueVT) {
328    assert(NumParts == 1 && "No-op copy with multiple parts!");
329    Parts[0] = Val;
330    return;
331  }
332
333  if (NumParts * PartBits > ValueVT.getSizeInBits()) {
334    // If the parts cover more bits than the value has, promote the value.
335    if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
336      assert(NumParts == 1 && "Do not know what to promote to!");
337      Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
338    } else {
339      assert(PartVT.isInteger() && ValueVT.isInteger() &&
340             "Unknown mismatch!");
341      ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
342      Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
343    }
344  } else if (PartBits == ValueVT.getSizeInBits()) {
345    // Different types of the same size.
346    assert(NumParts == 1 && PartVT != ValueVT);
347    Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
348  } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
349    // If the parts cover less bits than value has, truncate the value.
350    assert(PartVT.isInteger() && ValueVT.isInteger() &&
351           "Unknown mismatch!");
352    ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
353    Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
354  }
355
356  // The value may have changed - recompute ValueVT.
357  ValueVT = Val.getValueType();
358  assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
359         "Failed to tile the value with PartVT!");
360
361  if (NumParts == 1) {
362    assert(PartVT == ValueVT && "Type conversion failed!");
363    Parts[0] = Val;
364    return;
365  }
366
367  // Expand the value into multiple parts.
368  if (NumParts & (NumParts - 1)) {
369    // The number of parts is not a power of 2.  Split off and copy the tail.
370    assert(PartVT.isInteger() && ValueVT.isInteger() &&
371           "Do not know what to expand to!");
372    unsigned RoundParts = 1 << Log2_32(NumParts);
373    unsigned RoundBits = RoundParts * PartBits;
374    unsigned OddParts = NumParts - RoundParts;
375    SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
376                                 DAG.getIntPtrConstant(RoundBits));
377    getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT);
378
379    if (TLI.isBigEndian())
380      // The odd parts were reversed by getCopyToParts - unreverse them.
381      std::reverse(Parts + RoundParts, Parts + NumParts);
382
383    NumParts = RoundParts;
384    ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
385    Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
386  }
387
388  // The number of parts is a power of 2.  Repeatedly bisect the value using
389  // EXTRACT_ELEMENT.
390  Parts[0] = DAG.getNode(ISD::BITCAST, DL,
391                         EVT::getIntegerVT(*DAG.getContext(),
392                                           ValueVT.getSizeInBits()),
393                         Val);
394
395  for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
396    for (unsigned i = 0; i < NumParts; i += StepSize) {
397      unsigned ThisBits = StepSize * PartBits / 2;
398      EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
399      SDValue &Part0 = Parts[i];
400      SDValue &Part1 = Parts[i+StepSize/2];
401
402      Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
403                          ThisVT, Part0, DAG.getIntPtrConstant(1));
404      Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
405                          ThisVT, Part0, DAG.getIntPtrConstant(0));
406
407      if (ThisBits == PartBits && ThisVT != PartVT) {
408        Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
409        Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
410      }
411    }
412  }
413
414  if (TLI.isBigEndian())
415    std::reverse(Parts, Parts + OrigNumParts);
416}
417
418
419/// getCopyToPartsVector - Create a series of nodes that contain the specified
420/// value split into legal parts.
421static void getCopyToPartsVector(SelectionDAG &DAG, DebugLoc DL,
422                                 SDValue Val, SDValue *Parts, unsigned NumParts,
423                                 EVT PartVT) {
424  EVT ValueVT = Val.getValueType();
425  assert(ValueVT.isVector() && "Not a vector");
426  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
427
428  if (NumParts == 1) {
429    if (PartVT == ValueVT) {
430      // Nothing to do.
431    } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
432      // Bitconvert vector->vector case.
433      Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
434    } else if (PartVT.isVector() &&
435               PartVT.getVectorElementType() == ValueVT.getVectorElementType()&&
436               PartVT.getVectorNumElements() > ValueVT.getVectorNumElements()) {
437      EVT ElementVT = PartVT.getVectorElementType();
438      // Vector widening case, e.g. <2 x float> -> <4 x float>.  Shuffle in
439      // undef elements.
440      SmallVector<SDValue, 16> Ops;
441      for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i)
442        Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
443                                  ElementVT, Val, DAG.getIntPtrConstant(i)));
444
445      for (unsigned i = ValueVT.getVectorNumElements(),
446           e = PartVT.getVectorNumElements(); i != e; ++i)
447        Ops.push_back(DAG.getUNDEF(ElementVT));
448
449      Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, &Ops[0], Ops.size());
450
451      // FIXME: Use CONCAT for 2x -> 4x.
452
453      //SDValue UndefElts = DAG.getUNDEF(VectorTy);
454      //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts);
455    } else {
456      // Vector -> scalar conversion.
457      assert(ValueVT.getVectorElementType() == PartVT &&
458             ValueVT.getVectorNumElements() == 1 &&
459             "Only trivial vector-to-scalar conversions should get here!");
460      Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
461                        PartVT, Val, DAG.getIntPtrConstant(0));
462    }
463
464    Parts[0] = Val;
465    return;
466  }
467
468  // Handle a multi-element vector.
469  EVT IntermediateVT, RegisterVT;
470  unsigned NumIntermediates;
471  unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT,
472                                                IntermediateVT,
473                                                NumIntermediates, RegisterVT);
474  unsigned NumElements = ValueVT.getVectorNumElements();
475
476  assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
477  NumParts = NumRegs; // Silence a compiler warning.
478  assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
479
480  // Split the vector into intermediate operands.
481  SmallVector<SDValue, 8> Ops(NumIntermediates);
482  for (unsigned i = 0; i != NumIntermediates; ++i) {
483    if (IntermediateVT.isVector())
484      Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL,
485                           IntermediateVT, Val,
486                   DAG.getIntPtrConstant(i * (NumElements / NumIntermediates)));
487    else
488      Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
489                           IntermediateVT, Val, DAG.getIntPtrConstant(i));
490  }
491
492  // Split the intermediate operands into legal parts.
493  if (NumParts == NumIntermediates) {
494    // If the register was not expanded, promote or copy the value,
495    // as appropriate.
496    for (unsigned i = 0; i != NumParts; ++i)
497      getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT);
498  } else if (NumParts > 0) {
499    // If the intermediate type was expanded, split each the value into
500    // legal parts.
501    assert(NumParts % NumIntermediates == 0 &&
502           "Must expand into a divisible number of parts!");
503    unsigned Factor = NumParts / NumIntermediates;
504    for (unsigned i = 0; i != NumIntermediates; ++i)
505      getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT);
506  }
507}
508
509
510
511
512namespace {
513  /// RegsForValue - This struct represents the registers (physical or virtual)
514  /// that a particular set of values is assigned, and the type information
515  /// about the value. The most common situation is to represent one value at a
516  /// time, but struct or array values are handled element-wise as multiple
517  /// values.  The splitting of aggregates is performed recursively, so that we
518  /// never have aggregate-typed registers. The values at this point do not
519  /// necessarily have legal types, so each value may require one or more
520  /// registers of some legal type.
521  ///
522  struct RegsForValue {
523    /// ValueVTs - The value types of the values, which may not be legal, and
524    /// may need be promoted or synthesized from one or more registers.
525    ///
526    SmallVector<EVT, 4> ValueVTs;
527
528    /// RegVTs - The value types of the registers. This is the same size as
529    /// ValueVTs and it records, for each value, what the type of the assigned
530    /// register or registers are. (Individual values are never synthesized
531    /// from more than one type of register.)
532    ///
533    /// With virtual registers, the contents of RegVTs is redundant with TLI's
534    /// getRegisterType member function, however when with physical registers
535    /// it is necessary to have a separate record of the types.
536    ///
537    SmallVector<EVT, 4> RegVTs;
538
539    /// Regs - This list holds the registers assigned to the values.
540    /// Each legal or promoted value requires one register, and each
541    /// expanded value requires multiple registers.
542    ///
543    SmallVector<unsigned, 4> Regs;
544
545    RegsForValue() {}
546
547    RegsForValue(const SmallVector<unsigned, 4> &regs,
548                 EVT regvt, EVT valuevt)
549      : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {}
550
551    RegsForValue(LLVMContext &Context, const TargetLowering &tli,
552                 unsigned Reg, const Type *Ty) {
553      ComputeValueVTs(tli, Ty, ValueVTs);
554
555      for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
556        EVT ValueVT = ValueVTs[Value];
557        unsigned NumRegs = tli.getNumRegisters(Context, ValueVT);
558        EVT RegisterVT = tli.getRegisterType(Context, ValueVT);
559        for (unsigned i = 0; i != NumRegs; ++i)
560          Regs.push_back(Reg + i);
561        RegVTs.push_back(RegisterVT);
562        Reg += NumRegs;
563      }
564    }
565
566    /// areValueTypesLegal - Return true if types of all the values are legal.
567    bool areValueTypesLegal(const TargetLowering &TLI) {
568      for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
569        EVT RegisterVT = RegVTs[Value];
570        if (!TLI.isTypeLegal(RegisterVT))
571          return false;
572      }
573      return true;
574    }
575
576    /// append - Add the specified values to this one.
577    void append(const RegsForValue &RHS) {
578      ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end());
579      RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end());
580      Regs.append(RHS.Regs.begin(), RHS.Regs.end());
581    }
582
583    /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
584    /// this value and returns the result as a ValueVTs value.  This uses
585    /// Chain/Flag as the input and updates them for the output Chain/Flag.
586    /// If the Flag pointer is NULL, no flag is used.
587    SDValue getCopyFromRegs(SelectionDAG &DAG, FunctionLoweringInfo &FuncInfo,
588                            DebugLoc dl,
589                            SDValue &Chain, SDValue *Flag) const;
590
591    /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
592    /// specified value into the registers specified by this object.  This uses
593    /// Chain/Flag as the input and updates them for the output Chain/Flag.
594    /// If the Flag pointer is NULL, no flag is used.
595    void getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl,
596                       SDValue &Chain, SDValue *Flag) const;
597
598    /// AddInlineAsmOperands - Add this value to the specified inlineasm node
599    /// operand list.  This adds the code marker, matching input operand index
600    /// (if applicable), and includes the number of values added into it.
601    void AddInlineAsmOperands(unsigned Kind,
602                              bool HasMatching, unsigned MatchingIdx,
603                              SelectionDAG &DAG,
604                              std::vector<SDValue> &Ops) const;
605  };
606}
607
608/// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
609/// this value and returns the result as a ValueVT value.  This uses
610/// Chain/Flag as the input and updates them for the output Chain/Flag.
611/// If the Flag pointer is NULL, no flag is used.
612SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
613                                      FunctionLoweringInfo &FuncInfo,
614                                      DebugLoc dl,
615                                      SDValue &Chain, SDValue *Flag) const {
616  // A Value with type {} or [0 x %t] needs no registers.
617  if (ValueVTs.empty())
618    return SDValue();
619
620  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
621
622  // Assemble the legal parts into the final values.
623  SmallVector<SDValue, 4> Values(ValueVTs.size());
624  SmallVector<SDValue, 8> Parts;
625  for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
626    // Copy the legal parts from the registers.
627    EVT ValueVT = ValueVTs[Value];
628    unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
629    EVT RegisterVT = RegVTs[Value];
630
631    Parts.resize(NumRegs);
632    for (unsigned i = 0; i != NumRegs; ++i) {
633      SDValue P;
634      if (Flag == 0) {
635        P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
636      } else {
637        P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
638        *Flag = P.getValue(2);
639      }
640
641      Chain = P.getValue(1);
642      Parts[i] = P;
643
644      // If the source register was virtual and if we know something about it,
645      // add an assert node.
646      if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) ||
647          !RegisterVT.isInteger() || RegisterVT.isVector())
648        continue;
649
650      const FunctionLoweringInfo::LiveOutInfo *LOI =
651        FuncInfo.GetLiveOutRegInfo(Regs[Part+i]);
652      if (!LOI)
653        continue;
654
655      unsigned RegSize = RegisterVT.getSizeInBits();
656      unsigned NumSignBits = LOI->NumSignBits;
657      unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes();
658
659      // FIXME: We capture more information than the dag can represent.  For
660      // now, just use the tightest assertzext/assertsext possible.
661      bool isSExt = true;
662      EVT FromVT(MVT::Other);
663      if (NumSignBits == RegSize)
664        isSExt = true, FromVT = MVT::i1;   // ASSERT SEXT 1
665      else if (NumZeroBits >= RegSize-1)
666        isSExt = false, FromVT = MVT::i1;  // ASSERT ZEXT 1
667      else if (NumSignBits > RegSize-8)
668        isSExt = true, FromVT = MVT::i8;   // ASSERT SEXT 8
669      else if (NumZeroBits >= RegSize-8)
670        isSExt = false, FromVT = MVT::i8;  // ASSERT ZEXT 8
671      else if (NumSignBits > RegSize-16)
672        isSExt = true, FromVT = MVT::i16;  // ASSERT SEXT 16
673      else if (NumZeroBits >= RegSize-16)
674        isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16
675      else if (NumSignBits > RegSize-32)
676        isSExt = true, FromVT = MVT::i32;  // ASSERT SEXT 32
677      else if (NumZeroBits >= RegSize-32)
678        isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32
679      else
680        continue;
681
682      // Add an assertion node.
683      assert(FromVT != MVT::Other);
684      Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
685                             RegisterVT, P, DAG.getValueType(FromVT));
686    }
687
688    Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(),
689                                     NumRegs, RegisterVT, ValueVT);
690    Part += NumRegs;
691    Parts.clear();
692  }
693
694  return DAG.getNode(ISD::MERGE_VALUES, dl,
695                     DAG.getVTList(&ValueVTs[0], ValueVTs.size()),
696                     &Values[0], ValueVTs.size());
697}
698
699/// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
700/// specified value into the registers specified by this object.  This uses
701/// Chain/Flag as the input and updates them for the output Chain/Flag.
702/// If the Flag pointer is NULL, no flag is used.
703void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl,
704                                 SDValue &Chain, SDValue *Flag) const {
705  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
706
707  // Get the list of the values's legal parts.
708  unsigned NumRegs = Regs.size();
709  SmallVector<SDValue, 8> Parts(NumRegs);
710  for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
711    EVT ValueVT = ValueVTs[Value];
712    unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
713    EVT RegisterVT = RegVTs[Value];
714
715    getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value),
716                   &Parts[Part], NumParts, RegisterVT);
717    Part += NumParts;
718  }
719
720  // Copy the parts into the registers.
721  SmallVector<SDValue, 8> Chains(NumRegs);
722  for (unsigned i = 0; i != NumRegs; ++i) {
723    SDValue Part;
724    if (Flag == 0) {
725      Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
726    } else {
727      Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
728      *Flag = Part.getValue(1);
729    }
730
731    Chains[i] = Part.getValue(0);
732  }
733
734  if (NumRegs == 1 || Flag)
735    // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
736    // flagged to it. That is the CopyToReg nodes and the user are considered
737    // a single scheduling unit. If we create a TokenFactor and return it as
738    // chain, then the TokenFactor is both a predecessor (operand) of the
739    // user as well as a successor (the TF operands are flagged to the user).
740    // c1, f1 = CopyToReg
741    // c2, f2 = CopyToReg
742    // c3     = TokenFactor c1, c2
743    // ...
744    //        = op c3, ..., f2
745    Chain = Chains[NumRegs-1];
746  else
747    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0], NumRegs);
748}
749
750/// AddInlineAsmOperands - Add this value to the specified inlineasm node
751/// operand list.  This adds the code marker and includes the number of
752/// values added into it.
753void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
754                                        unsigned MatchingIdx,
755                                        SelectionDAG &DAG,
756                                        std::vector<SDValue> &Ops) const {
757  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
758
759  unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
760  if (HasMatching)
761    Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
762  SDValue Res = DAG.getTargetConstant(Flag, MVT::i32);
763  Ops.push_back(Res);
764
765  for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
766    unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]);
767    EVT RegisterVT = RegVTs[Value];
768    for (unsigned i = 0; i != NumRegs; ++i) {
769      assert(Reg < Regs.size() && "Mismatch in # registers expected");
770      Ops.push_back(DAG.getRegister(Regs[Reg++], RegisterVT));
771    }
772  }
773}
774
775void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa) {
776  AA = &aa;
777  GFI = gfi;
778  TD = DAG.getTarget().getTargetData();
779}
780
781/// clear - Clear out the current SelectionDAG and the associated
782/// state and prepare this SelectionDAGBuilder object to be used
783/// for a new block. This doesn't clear out information about
784/// additional blocks that are needed to complete switch lowering
785/// or PHI node updating; that information is cleared out as it is
786/// consumed.
787void SelectionDAGBuilder::clear() {
788  NodeMap.clear();
789  UnusedArgNodeMap.clear();
790  PendingLoads.clear();
791  PendingExports.clear();
792  CurDebugLoc = DebugLoc();
793  HasTailCall = false;
794}
795
796/// clearDanglingDebugInfo - Clear the dangling debug information
797/// map. This function is seperated from the clear so that debug
798/// information that is dangling in a basic block can be properly
799/// resolved in a different basic block. This allows the
800/// SelectionDAG to resolve dangling debug information attached
801/// to PHI nodes.
802void SelectionDAGBuilder::clearDanglingDebugInfo() {
803  DanglingDebugInfoMap.clear();
804}
805
806/// getRoot - Return the current virtual root of the Selection DAG,
807/// flushing any PendingLoad items. This must be done before emitting
808/// a store or any other node that may need to be ordered after any
809/// prior load instructions.
810///
811SDValue SelectionDAGBuilder::getRoot() {
812  if (PendingLoads.empty())
813    return DAG.getRoot();
814
815  if (PendingLoads.size() == 1) {
816    SDValue Root = PendingLoads[0];
817    DAG.setRoot(Root);
818    PendingLoads.clear();
819    return Root;
820  }
821
822  // Otherwise, we have to make a token factor node.
823  SDValue Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
824                               &PendingLoads[0], PendingLoads.size());
825  PendingLoads.clear();
826  DAG.setRoot(Root);
827  return Root;
828}
829
830/// getControlRoot - Similar to getRoot, but instead of flushing all the
831/// PendingLoad items, flush all the PendingExports items. It is necessary
832/// to do this before emitting a terminator instruction.
833///
834SDValue SelectionDAGBuilder::getControlRoot() {
835  SDValue Root = DAG.getRoot();
836
837  if (PendingExports.empty())
838    return Root;
839
840  // Turn all of the CopyToReg chains into one factored node.
841  if (Root.getOpcode() != ISD::EntryToken) {
842    unsigned i = 0, e = PendingExports.size();
843    for (; i != e; ++i) {
844      assert(PendingExports[i].getNode()->getNumOperands() > 1);
845      if (PendingExports[i].getNode()->getOperand(0) == Root)
846        break;  // Don't add the root if we already indirectly depend on it.
847    }
848
849    if (i == e)
850      PendingExports.push_back(Root);
851  }
852
853  Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
854                     &PendingExports[0],
855                     PendingExports.size());
856  PendingExports.clear();
857  DAG.setRoot(Root);
858  return Root;
859}
860
861void SelectionDAGBuilder::AssignOrderingToNode(const SDNode *Node) {
862  if (DAG.GetOrdering(Node) != 0) return; // Already has ordering.
863  DAG.AssignOrdering(Node, SDNodeOrder);
864
865  for (unsigned I = 0, E = Node->getNumOperands(); I != E; ++I)
866    AssignOrderingToNode(Node->getOperand(I).getNode());
867}
868
869void SelectionDAGBuilder::visit(const Instruction &I) {
870  // Set up outgoing PHI node register values before emitting the terminator.
871  if (isa<TerminatorInst>(&I))
872    HandlePHINodesInSuccessorBlocks(I.getParent());
873
874  CurDebugLoc = I.getDebugLoc();
875
876  visit(I.getOpcode(), I);
877
878  if (!isa<TerminatorInst>(&I) && !HasTailCall)
879    CopyToExportRegsIfNeeded(&I);
880
881  CurDebugLoc = DebugLoc();
882}
883
884void SelectionDAGBuilder::visitPHI(const PHINode &) {
885  llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
886}
887
888void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
889  // Note: this doesn't use InstVisitor, because it has to work with
890  // ConstantExpr's in addition to instructions.
891  switch (Opcode) {
892  default: llvm_unreachable("Unknown instruction type encountered!");
893    // Build the switch statement using the Instruction.def file.
894#define HANDLE_INST(NUM, OPCODE, CLASS) \
895    case Instruction::OPCODE: visit##OPCODE((CLASS&)I); break;
896#include "llvm/Instruction.def"
897  }
898
899  // Assign the ordering to the freshly created DAG nodes.
900  if (NodeMap.count(&I)) {
901    ++SDNodeOrder;
902    AssignOrderingToNode(getValue(&I).getNode());
903  }
904}
905
906// resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
907// generate the debug data structures now that we've seen its definition.
908void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
909                                                   SDValue Val) {
910  DanglingDebugInfo &DDI = DanglingDebugInfoMap[V];
911  if (DDI.getDI()) {
912    const DbgValueInst *DI = DDI.getDI();
913    DebugLoc dl = DDI.getdl();
914    unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
915    MDNode *Variable = DI->getVariable();
916    uint64_t Offset = DI->getOffset();
917    SDDbgValue *SDV;
918    if (Val.getNode()) {
919      if (!EmitFuncArgumentDbgValue(V, Variable, Offset, Val)) {
920        SDV = DAG.getDbgValue(Variable, Val.getNode(),
921                              Val.getResNo(), Offset, dl, DbgSDNodeOrder);
922        DAG.AddDbgValue(SDV, Val.getNode(), false);
923      }
924    } else
925      DEBUG(dbgs() << "Dropping debug info for " << DI);
926    DanglingDebugInfoMap[V] = DanglingDebugInfo();
927  }
928}
929
930// getValue - Return an SDValue for the given Value.
931SDValue SelectionDAGBuilder::getValue(const Value *V) {
932  // If we already have an SDValue for this value, use it. It's important
933  // to do this first, so that we don't create a CopyFromReg if we already
934  // have a regular SDValue.
935  SDValue &N = NodeMap[V];
936  if (N.getNode()) return N;
937
938  // If there's a virtual register allocated and initialized for this
939  // value, use it.
940  DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V);
941  if (It != FuncInfo.ValueMap.end()) {
942    unsigned InReg = It->second;
943    RegsForValue RFV(*DAG.getContext(), TLI, InReg, V->getType());
944    SDValue Chain = DAG.getEntryNode();
945    N = RFV.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), Chain,NULL);
946    resolveDanglingDebugInfo(V, N);
947    return N;
948  }
949
950  // Otherwise create a new SDValue and remember it.
951  SDValue Val = getValueImpl(V);
952  NodeMap[V] = Val;
953  resolveDanglingDebugInfo(V, Val);
954  return Val;
955}
956
957/// getNonRegisterValue - Return an SDValue for the given Value, but
958/// don't look in FuncInfo.ValueMap for a virtual register.
959SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
960  // If we already have an SDValue for this value, use it.
961  SDValue &N = NodeMap[V];
962  if (N.getNode()) return N;
963
964  // Otherwise create a new SDValue and remember it.
965  SDValue Val = getValueImpl(V);
966  NodeMap[V] = Val;
967  resolveDanglingDebugInfo(V, Val);
968  return Val;
969}
970
971/// getValueImpl - Helper function for getValue and getNonRegisterValue.
972/// Create an SDValue for the given value.
973SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
974  if (const Constant *C = dyn_cast<Constant>(V)) {
975    EVT VT = TLI.getValueType(V->getType(), true);
976
977    if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
978      return DAG.getConstant(*CI, VT);
979
980    if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
981      return DAG.getGlobalAddress(GV, getCurDebugLoc(), VT);
982
983    if (isa<ConstantPointerNull>(C))
984      return DAG.getConstant(0, TLI.getPointerTy());
985
986    if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
987      return DAG.getConstantFP(*CFP, VT);
988
989    if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
990      return DAG.getUNDEF(VT);
991
992    if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
993      visit(CE->getOpcode(), *CE);
994      SDValue N1 = NodeMap[V];
995      assert(N1.getNode() && "visit didn't populate the NodeMap!");
996      return N1;
997    }
998
999    if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
1000      SmallVector<SDValue, 4> Constants;
1001      for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end();
1002           OI != OE; ++OI) {
1003        SDNode *Val = getValue(*OI).getNode();
1004        // If the operand is an empty aggregate, there are no values.
1005        if (!Val) continue;
1006        // Add each leaf value from the operand to the Constants list
1007        // to form a flattened list of all the values.
1008        for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1009          Constants.push_back(SDValue(Val, i));
1010      }
1011
1012      return DAG.getMergeValues(&Constants[0], Constants.size(),
1013                                getCurDebugLoc());
1014    }
1015
1016    if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
1017      assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1018             "Unknown struct or array constant!");
1019
1020      SmallVector<EVT, 4> ValueVTs;
1021      ComputeValueVTs(TLI, C->getType(), ValueVTs);
1022      unsigned NumElts = ValueVTs.size();
1023      if (NumElts == 0)
1024        return SDValue(); // empty struct
1025      SmallVector<SDValue, 4> Constants(NumElts);
1026      for (unsigned i = 0; i != NumElts; ++i) {
1027        EVT EltVT = ValueVTs[i];
1028        if (isa<UndefValue>(C))
1029          Constants[i] = DAG.getUNDEF(EltVT);
1030        else if (EltVT.isFloatingPoint())
1031          Constants[i] = DAG.getConstantFP(0, EltVT);
1032        else
1033          Constants[i] = DAG.getConstant(0, EltVT);
1034      }
1035
1036      return DAG.getMergeValues(&Constants[0], NumElts,
1037                                getCurDebugLoc());
1038    }
1039
1040    if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
1041      return DAG.getBlockAddress(BA, VT);
1042
1043    const VectorType *VecTy = cast<VectorType>(V->getType());
1044    unsigned NumElements = VecTy->getNumElements();
1045
1046    // Now that we know the number and type of the elements, get that number of
1047    // elements into the Ops array based on what kind of constant it is.
1048    SmallVector<SDValue, 16> Ops;
1049    if (const ConstantVector *CP = dyn_cast<ConstantVector>(C)) {
1050      for (unsigned i = 0; i != NumElements; ++i)
1051        Ops.push_back(getValue(CP->getOperand(i)));
1052    } else {
1053      assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!");
1054      EVT EltVT = TLI.getValueType(VecTy->getElementType());
1055
1056      SDValue Op;
1057      if (EltVT.isFloatingPoint())
1058        Op = DAG.getConstantFP(0, EltVT);
1059      else
1060        Op = DAG.getConstant(0, EltVT);
1061      Ops.assign(NumElements, Op);
1062    }
1063
1064    // Create a BUILD_VECTOR node.
1065    return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(),
1066                                    VT, &Ops[0], Ops.size());
1067  }
1068
1069  // If this is a static alloca, generate it as the frameindex instead of
1070  // computation.
1071  if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1072    DenseMap<const AllocaInst*, int>::iterator SI =
1073      FuncInfo.StaticAllocaMap.find(AI);
1074    if (SI != FuncInfo.StaticAllocaMap.end())
1075      return DAG.getFrameIndex(SI->second, TLI.getPointerTy());
1076  }
1077
1078  // If this is an instruction which fast-isel has deferred, select it now.
1079  if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
1080    unsigned InReg = FuncInfo.InitializeRegForValue(Inst);
1081    RegsForValue RFV(*DAG.getContext(), TLI, InReg, Inst->getType());
1082    SDValue Chain = DAG.getEntryNode();
1083    return RFV.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), Chain, NULL);
1084  }
1085
1086  llvm_unreachable("Can't get register for value!");
1087  return SDValue();
1088}
1089
1090void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
1091  SDValue Chain = getControlRoot();
1092  SmallVector<ISD::OutputArg, 8> Outs;
1093  SmallVector<SDValue, 8> OutVals;
1094
1095  if (!FuncInfo.CanLowerReturn) {
1096    unsigned DemoteReg = FuncInfo.DemoteRegister;
1097    const Function *F = I.getParent()->getParent();
1098
1099    // Emit a store of the return value through the virtual register.
1100    // Leave Outs empty so that LowerReturn won't try to load return
1101    // registers the usual way.
1102    SmallVector<EVT, 1> PtrValueVTs;
1103    ComputeValueVTs(TLI, PointerType::getUnqual(F->getReturnType()),
1104                    PtrValueVTs);
1105
1106    SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]);
1107    SDValue RetOp = getValue(I.getOperand(0));
1108
1109    SmallVector<EVT, 4> ValueVTs;
1110    SmallVector<uint64_t, 4> Offsets;
1111    ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs, &Offsets);
1112    unsigned NumValues = ValueVTs.size();
1113
1114    SmallVector<SDValue, 4> Chains(NumValues);
1115    for (unsigned i = 0; i != NumValues; ++i) {
1116      SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(),
1117                                RetPtr.getValueType(), RetPtr,
1118                                DAG.getIntPtrConstant(Offsets[i]));
1119      Chains[i] =
1120        DAG.getStore(Chain, getCurDebugLoc(),
1121                     SDValue(RetOp.getNode(), RetOp.getResNo() + i),
1122                     // FIXME: better loc info would be nice.
1123                     Add, MachinePointerInfo(), false, false, 0);
1124    }
1125
1126    Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
1127                        MVT::Other, &Chains[0], NumValues);
1128  } else if (I.getNumOperands() != 0) {
1129    SmallVector<EVT, 4> ValueVTs;
1130    ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs);
1131    unsigned NumValues = ValueVTs.size();
1132    if (NumValues) {
1133      SDValue RetOp = getValue(I.getOperand(0));
1134      for (unsigned j = 0, f = NumValues; j != f; ++j) {
1135        EVT VT = ValueVTs[j];
1136
1137        ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1138
1139        const Function *F = I.getParent()->getParent();
1140        if (F->paramHasAttr(0, Attribute::SExt))
1141          ExtendKind = ISD::SIGN_EXTEND;
1142        else if (F->paramHasAttr(0, Attribute::ZExt))
1143          ExtendKind = ISD::ZERO_EXTEND;
1144
1145        if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
1146          VT = TLI.getTypeForExtArgOrReturn(*DAG.getContext(), VT, ExtendKind);
1147
1148        unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), VT);
1149        EVT PartVT = TLI.getRegisterType(*DAG.getContext(), VT);
1150        SmallVector<SDValue, 4> Parts(NumParts);
1151        getCopyToParts(DAG, getCurDebugLoc(),
1152                       SDValue(RetOp.getNode(), RetOp.getResNo() + j),
1153                       &Parts[0], NumParts, PartVT, ExtendKind);
1154
1155        // 'inreg' on function refers to return value
1156        ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1157        if (F->paramHasAttr(0, Attribute::InReg))
1158          Flags.setInReg();
1159
1160        // Propagate extension type if any
1161        if (ExtendKind == ISD::SIGN_EXTEND)
1162          Flags.setSExt();
1163        else if (ExtendKind == ISD::ZERO_EXTEND)
1164          Flags.setZExt();
1165
1166        for (unsigned i = 0; i < NumParts; ++i) {
1167          Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(),
1168                                        /*isfixed=*/true));
1169          OutVals.push_back(Parts[i]);
1170        }
1171      }
1172    }
1173  }
1174
1175  bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
1176  CallingConv::ID CallConv =
1177    DAG.getMachineFunction().getFunction()->getCallingConv();
1178  Chain = TLI.LowerReturn(Chain, CallConv, isVarArg,
1179                          Outs, OutVals, getCurDebugLoc(), DAG);
1180
1181  // Verify that the target's LowerReturn behaved as expected.
1182  assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
1183         "LowerReturn didn't return a valid chain!");
1184
1185  // Update the DAG with the new chain value resulting from return lowering.
1186  DAG.setRoot(Chain);
1187}
1188
1189/// CopyToExportRegsIfNeeded - If the given value has virtual registers
1190/// created for it, emit nodes to copy the value into the virtual
1191/// registers.
1192void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
1193  // Skip empty types
1194  if (V->getType()->isEmptyTy())
1195    return;
1196
1197  DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
1198  if (VMI != FuncInfo.ValueMap.end()) {
1199    assert(!V->use_empty() && "Unused value assigned virtual registers!");
1200    CopyValueToVirtualRegister(V, VMI->second);
1201  }
1202}
1203
1204/// ExportFromCurrentBlock - If this condition isn't known to be exported from
1205/// the current basic block, add it to ValueMap now so that we'll get a
1206/// CopyTo/FromReg.
1207void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
1208  // No need to export constants.
1209  if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
1210
1211  // Already exported?
1212  if (FuncInfo.isExportedInst(V)) return;
1213
1214  unsigned Reg = FuncInfo.InitializeRegForValue(V);
1215  CopyValueToVirtualRegister(V, Reg);
1216}
1217
1218bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
1219                                                     const BasicBlock *FromBB) {
1220  // The operands of the setcc have to be in this block.  We don't know
1221  // how to export them from some other block.
1222  if (const Instruction *VI = dyn_cast<Instruction>(V)) {
1223    // Can export from current BB.
1224    if (VI->getParent() == FromBB)
1225      return true;
1226
1227    // Is already exported, noop.
1228    return FuncInfo.isExportedInst(V);
1229  }
1230
1231  // If this is an argument, we can export it if the BB is the entry block or
1232  // if it is already exported.
1233  if (isa<Argument>(V)) {
1234    if (FromBB == &FromBB->getParent()->getEntryBlock())
1235      return true;
1236
1237    // Otherwise, can only export this if it is already exported.
1238    return FuncInfo.isExportedInst(V);
1239  }
1240
1241  // Otherwise, constants can always be exported.
1242  return true;
1243}
1244
1245static bool InBlock(const Value *V, const BasicBlock *BB) {
1246  if (const Instruction *I = dyn_cast<Instruction>(V))
1247    return I->getParent() == BB;
1248  return true;
1249}
1250
1251/// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
1252/// This function emits a branch and is used at the leaves of an OR or an
1253/// AND operator tree.
1254///
1255void
1256SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
1257                                                  MachineBasicBlock *TBB,
1258                                                  MachineBasicBlock *FBB,
1259                                                  MachineBasicBlock *CurBB,
1260                                                  MachineBasicBlock *SwitchBB) {
1261  const BasicBlock *BB = CurBB->getBasicBlock();
1262
1263  // If the leaf of the tree is a comparison, merge the condition into
1264  // the caseblock.
1265  if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
1266    // The operands of the cmp have to be in this block.  We don't know
1267    // how to export them from some other block.  If this is the first block
1268    // of the sequence, no exporting is needed.
1269    if (CurBB == SwitchBB ||
1270        (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
1271         isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
1272      ISD::CondCode Condition;
1273      if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
1274        Condition = getICmpCondCode(IC->getPredicate());
1275      } else if (const FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) {
1276        Condition = getFCmpCondCode(FC->getPredicate());
1277      } else {
1278        Condition = ISD::SETEQ; // silence warning.
1279        llvm_unreachable("Unknown compare instruction");
1280      }
1281
1282      CaseBlock CB(Condition, BOp->getOperand(0),
1283                   BOp->getOperand(1), NULL, TBB, FBB, CurBB);
1284      SwitchCases.push_back(CB);
1285      return;
1286    }
1287  }
1288
1289  // Create a CaseBlock record representing this branch.
1290  CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()),
1291               NULL, TBB, FBB, CurBB);
1292  SwitchCases.push_back(CB);
1293}
1294
1295/// FindMergedConditions - If Cond is an expression like
1296void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
1297                                               MachineBasicBlock *TBB,
1298                                               MachineBasicBlock *FBB,
1299                                               MachineBasicBlock *CurBB,
1300                                               MachineBasicBlock *SwitchBB,
1301                                               unsigned Opc) {
1302  // If this node is not part of the or/and tree, emit it as a branch.
1303  const Instruction *BOp = dyn_cast<Instruction>(Cond);
1304  if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
1305      (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() ||
1306      BOp->getParent() != CurBB->getBasicBlock() ||
1307      !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
1308      !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
1309    EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB);
1310    return;
1311  }
1312
1313  //  Create TmpBB after CurBB.
1314  MachineFunction::iterator BBI = CurBB;
1315  MachineFunction &MF = DAG.getMachineFunction();
1316  MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
1317  CurBB->getParent()->insert(++BBI, TmpBB);
1318
1319  if (Opc == Instruction::Or) {
1320    // Codegen X | Y as:
1321    //   jmp_if_X TBB
1322    //   jmp TmpBB
1323    // TmpBB:
1324    //   jmp_if_Y TBB
1325    //   jmp FBB
1326    //
1327
1328    // Emit the LHS condition.
1329    FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc);
1330
1331    // Emit the RHS condition into TmpBB.
1332    FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc);
1333  } else {
1334    assert(Opc == Instruction::And && "Unknown merge op!");
1335    // Codegen X & Y as:
1336    //   jmp_if_X TmpBB
1337    //   jmp FBB
1338    // TmpBB:
1339    //   jmp_if_Y TBB
1340    //   jmp FBB
1341    //
1342    //  This requires creation of TmpBB after CurBB.
1343
1344    // Emit the LHS condition.
1345    FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc);
1346
1347    // Emit the RHS condition into TmpBB.
1348    FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc);
1349  }
1350}
1351
1352/// If the set of cases should be emitted as a series of branches, return true.
1353/// If we should emit this as a bunch of and/or'd together conditions, return
1354/// false.
1355bool
1356SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases){
1357  if (Cases.size() != 2) return true;
1358
1359  // If this is two comparisons of the same values or'd or and'd together, they
1360  // will get folded into a single comparison, so don't emit two blocks.
1361  if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
1362       Cases[0].CmpRHS == Cases[1].CmpRHS) ||
1363      (Cases[0].CmpRHS == Cases[1].CmpLHS &&
1364       Cases[0].CmpLHS == Cases[1].CmpRHS)) {
1365    return false;
1366  }
1367
1368  // Handle: (X != null) | (Y != null) --> (X|Y) != 0
1369  // Handle: (X == null) & (Y == null) --> (X|Y) == 0
1370  if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
1371      Cases[0].CC == Cases[1].CC &&
1372      isa<Constant>(Cases[0].CmpRHS) &&
1373      cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
1374    if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
1375      return false;
1376    if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
1377      return false;
1378  }
1379
1380  return true;
1381}
1382
1383void SelectionDAGBuilder::visitBr(const BranchInst &I) {
1384  MachineBasicBlock *BrMBB = FuncInfo.MBB;
1385
1386  // Update machine-CFG edges.
1387  MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
1388
1389  // Figure out which block is immediately after the current one.
1390  MachineBasicBlock *NextBlock = 0;
1391  MachineFunction::iterator BBI = BrMBB;
1392  if (++BBI != FuncInfo.MF->end())
1393    NextBlock = BBI;
1394
1395  if (I.isUnconditional()) {
1396    // Update machine-CFG edges.
1397    BrMBB->addSuccessor(Succ0MBB);
1398
1399    // If this is not a fall-through branch, emit the branch.
1400    if (Succ0MBB != NextBlock)
1401      DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
1402                              MVT::Other, getControlRoot(),
1403                              DAG.getBasicBlock(Succ0MBB)));
1404
1405    return;
1406  }
1407
1408  // If this condition is one of the special cases we handle, do special stuff
1409  // now.
1410  const Value *CondVal = I.getCondition();
1411  MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
1412
1413  // If this is a series of conditions that are or'd or and'd together, emit
1414  // this as a sequence of branches instead of setcc's with and/or operations.
1415  // As long as jumps are not expensive, this should improve performance.
1416  // For example, instead of something like:
1417  //     cmp A, B
1418  //     C = seteq
1419  //     cmp D, E
1420  //     F = setle
1421  //     or C, F
1422  //     jnz foo
1423  // Emit:
1424  //     cmp A, B
1425  //     je foo
1426  //     cmp D, E
1427  //     jle foo
1428  //
1429  if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
1430    if (!TLI.isJumpExpensive() &&
1431        BOp->hasOneUse() &&
1432        (BOp->getOpcode() == Instruction::And ||
1433         BOp->getOpcode() == Instruction::Or)) {
1434      FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB,
1435                           BOp->getOpcode());
1436      // If the compares in later blocks need to use values not currently
1437      // exported from this block, export them now.  This block should always
1438      // be the first entry.
1439      assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
1440
1441      // Allow some cases to be rejected.
1442      if (ShouldEmitAsBranches(SwitchCases)) {
1443        for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
1444          ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
1445          ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
1446        }
1447
1448        // Emit the branch for this block.
1449        visitSwitchCase(SwitchCases[0], BrMBB);
1450        SwitchCases.erase(SwitchCases.begin());
1451        return;
1452      }
1453
1454      // Okay, we decided not to do this, remove any inserted MBB's and clear
1455      // SwitchCases.
1456      for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
1457        FuncInfo.MF->erase(SwitchCases[i].ThisBB);
1458
1459      SwitchCases.clear();
1460    }
1461  }
1462
1463  // Create a CaseBlock record representing this branch.
1464  CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
1465               NULL, Succ0MBB, Succ1MBB, BrMBB);
1466
1467  // Use visitSwitchCase to actually insert the fast branch sequence for this
1468  // cond branch.
1469  visitSwitchCase(CB, BrMBB);
1470}
1471
1472/// visitSwitchCase - Emits the necessary code to represent a single node in
1473/// the binary search tree resulting from lowering a switch instruction.
1474void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
1475                                          MachineBasicBlock *SwitchBB) {
1476  SDValue Cond;
1477  SDValue CondLHS = getValue(CB.CmpLHS);
1478  DebugLoc dl = getCurDebugLoc();
1479
1480  // Build the setcc now.
1481  if (CB.CmpMHS == NULL) {
1482    // Fold "(X == true)" to X and "(X == false)" to !X to
1483    // handle common cases produced by branch lowering.
1484    if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
1485        CB.CC == ISD::SETEQ)
1486      Cond = CondLHS;
1487    else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
1488             CB.CC == ISD::SETEQ) {
1489      SDValue True = DAG.getConstant(1, CondLHS.getValueType());
1490      Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
1491    } else
1492      Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
1493  } else {
1494    assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
1495
1496    const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
1497    const APInt& High  = cast<ConstantInt>(CB.CmpRHS)->getValue();
1498
1499    SDValue CmpOp = getValue(CB.CmpMHS);
1500    EVT VT = CmpOp.getValueType();
1501
1502    if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
1503      Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, VT),
1504                          ISD::SETLE);
1505    } else {
1506      SDValue SUB = DAG.getNode(ISD::SUB, dl,
1507                                VT, CmpOp, DAG.getConstant(Low, VT));
1508      Cond = DAG.getSetCC(dl, MVT::i1, SUB,
1509                          DAG.getConstant(High-Low, VT), ISD::SETULE);
1510    }
1511  }
1512
1513  // Update successor info
1514  SwitchBB->addSuccessor(CB.TrueBB);
1515  SwitchBB->addSuccessor(CB.FalseBB);
1516
1517  // Set NextBlock to be the MBB immediately after the current one, if any.
1518  // This is used to avoid emitting unnecessary branches to the next block.
1519  MachineBasicBlock *NextBlock = 0;
1520  MachineFunction::iterator BBI = SwitchBB;
1521  if (++BBI != FuncInfo.MF->end())
1522    NextBlock = BBI;
1523
1524  // If the lhs block is the next block, invert the condition so that we can
1525  // fall through to the lhs instead of the rhs block.
1526  if (CB.TrueBB == NextBlock) {
1527    std::swap(CB.TrueBB, CB.FalseBB);
1528    SDValue True = DAG.getConstant(1, Cond.getValueType());
1529    Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
1530  }
1531
1532  SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
1533                               MVT::Other, getControlRoot(), Cond,
1534                               DAG.getBasicBlock(CB.TrueBB));
1535
1536  // Insert the false branch. Do this even if it's a fall through branch,
1537  // this makes it easier to do DAG optimizations which require inverting
1538  // the branch condition.
1539  BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
1540                       DAG.getBasicBlock(CB.FalseBB));
1541
1542  DAG.setRoot(BrCond);
1543}
1544
1545/// visitJumpTable - Emit JumpTable node in the current MBB
1546void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) {
1547  // Emit the code for the jump table
1548  assert(JT.Reg != -1U && "Should lower JT Header first!");
1549  EVT PTy = TLI.getPointerTy();
1550  SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(),
1551                                     JT.Reg, PTy);
1552  SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
1553  SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurDebugLoc(),
1554                                    MVT::Other, Index.getValue(1),
1555                                    Table, Index);
1556  DAG.setRoot(BrJumpTable);
1557}
1558
1559/// visitJumpTableHeader - This function emits necessary code to produce index
1560/// in the JumpTable from switch case.
1561void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT,
1562                                               JumpTableHeader &JTH,
1563                                               MachineBasicBlock *SwitchBB) {
1564  // Subtract the lowest switch case value from the value being switched on and
1565  // conditional branch to default mbb if the result is greater than the
1566  // difference between smallest and largest cases.
1567  SDValue SwitchOp = getValue(JTH.SValue);
1568  EVT VT = SwitchOp.getValueType();
1569  SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp,
1570                            DAG.getConstant(JTH.First, VT));
1571
1572  // The SDNode we just created, which holds the value being switched on minus
1573  // the smallest case value, needs to be copied to a virtual register so it
1574  // can be used as an index into the jump table in a subsequent basic block.
1575  // This value may be smaller or larger than the target's pointer type, and
1576  // therefore require extension or truncating.
1577  SwitchOp = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(), TLI.getPointerTy());
1578
1579  unsigned JumpTableReg = FuncInfo.CreateReg(TLI.getPointerTy());
1580  SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(),
1581                                    JumpTableReg, SwitchOp);
1582  JT.Reg = JumpTableReg;
1583
1584  // Emit the range check for the jump table, and branch to the default block
1585  // for the switch statement if the value being switched on exceeds the largest
1586  // case in the switch.
1587  SDValue CMP = DAG.getSetCC(getCurDebugLoc(),
1588                             TLI.getSetCCResultType(Sub.getValueType()), Sub,
1589                             DAG.getConstant(JTH.Last-JTH.First,VT),
1590                             ISD::SETUGT);
1591
1592  // Set NextBlock to be the MBB immediately after the current one, if any.
1593  // This is used to avoid emitting unnecessary branches to the next block.
1594  MachineBasicBlock *NextBlock = 0;
1595  MachineFunction::iterator BBI = SwitchBB;
1596
1597  if (++BBI != FuncInfo.MF->end())
1598    NextBlock = BBI;
1599
1600  SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1601                               MVT::Other, CopyTo, CMP,
1602                               DAG.getBasicBlock(JT.Default));
1603
1604  if (JT.MBB != NextBlock)
1605    BrCond = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrCond,
1606                         DAG.getBasicBlock(JT.MBB));
1607
1608  DAG.setRoot(BrCond);
1609}
1610
1611/// visitBitTestHeader - This function emits necessary code to produce value
1612/// suitable for "bit tests"
1613void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
1614                                             MachineBasicBlock *SwitchBB) {
1615  // Subtract the minimum value
1616  SDValue SwitchOp = getValue(B.SValue);
1617  EVT VT = SwitchOp.getValueType();
1618  SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp,
1619                            DAG.getConstant(B.First, VT));
1620
1621  // Check range
1622  SDValue RangeCmp = DAG.getSetCC(getCurDebugLoc(),
1623                                  TLI.getSetCCResultType(Sub.getValueType()),
1624                                  Sub, DAG.getConstant(B.Range, VT),
1625                                  ISD::SETUGT);
1626
1627  // Determine the type of the test operands.
1628  bool UsePtrType = false;
1629  if (!TLI.isTypeLegal(VT))
1630    UsePtrType = true;
1631  else {
1632    for (unsigned i = 0, e = B.Cases.size(); i != e; ++i)
1633      if ((uint64_t)((int64_t)B.Cases[i].Mask >> VT.getSizeInBits()) + 1 >= 2) {
1634        // Switch table case range are encoded into series of masks.
1635        // Just use pointer type, it's guaranteed to fit.
1636        UsePtrType = true;
1637        break;
1638      }
1639  }
1640  if (UsePtrType) {
1641    VT = TLI.getPointerTy();
1642    Sub = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(), VT);
1643  }
1644
1645  B.RegVT = VT;
1646  B.Reg = FuncInfo.CreateReg(VT);
1647  SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(),
1648                                    B.Reg, Sub);
1649
1650  // Set NextBlock to be the MBB immediately after the current one, if any.
1651  // This is used to avoid emitting unnecessary branches to the next block.
1652  MachineBasicBlock *NextBlock = 0;
1653  MachineFunction::iterator BBI = SwitchBB;
1654  if (++BBI != FuncInfo.MF->end())
1655    NextBlock = BBI;
1656
1657  MachineBasicBlock* MBB = B.Cases[0].ThisBB;
1658
1659  SwitchBB->addSuccessor(B.Default);
1660  SwitchBB->addSuccessor(MBB);
1661
1662  SDValue BrRange = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1663                                MVT::Other, CopyTo, RangeCmp,
1664                                DAG.getBasicBlock(B.Default));
1665
1666  if (MBB != NextBlock)
1667    BrRange = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, CopyTo,
1668                          DAG.getBasicBlock(MBB));
1669
1670  DAG.setRoot(BrRange);
1671}
1672
1673/// visitBitTestCase - this function produces one "bit test"
1674void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB,
1675                                           MachineBasicBlock* NextMBB,
1676                                           unsigned Reg,
1677                                           BitTestCase &B,
1678                                           MachineBasicBlock *SwitchBB) {
1679  EVT VT = BB.RegVT;
1680  SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(),
1681                                       Reg, VT);
1682  SDValue Cmp;
1683  if (CountPopulation_64(B.Mask) == 1) {
1684    // Testing for a single bit; just compare the shift count with what it
1685    // would need to be to shift a 1 bit in that position.
1686    Cmp = DAG.getSetCC(getCurDebugLoc(),
1687                       TLI.getSetCCResultType(VT),
1688                       ShiftOp,
1689                       DAG.getConstant(CountTrailingZeros_64(B.Mask), VT),
1690                       ISD::SETEQ);
1691  } else {
1692    // Make desired shift
1693    SDValue SwitchVal = DAG.getNode(ISD::SHL, getCurDebugLoc(), VT,
1694                                    DAG.getConstant(1, VT), ShiftOp);
1695
1696    // Emit bit tests and jumps
1697    SDValue AndOp = DAG.getNode(ISD::AND, getCurDebugLoc(),
1698                                VT, SwitchVal, DAG.getConstant(B.Mask, VT));
1699    Cmp = DAG.getSetCC(getCurDebugLoc(),
1700                       TLI.getSetCCResultType(VT),
1701                       AndOp, DAG.getConstant(0, VT),
1702                       ISD::SETNE);
1703  }
1704
1705  SwitchBB->addSuccessor(B.TargetBB);
1706  SwitchBB->addSuccessor(NextMBB);
1707
1708  SDValue BrAnd = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1709                              MVT::Other, getControlRoot(),
1710                              Cmp, DAG.getBasicBlock(B.TargetBB));
1711
1712  // Set NextBlock to be the MBB immediately after the current one, if any.
1713  // This is used to avoid emitting unnecessary branches to the next block.
1714  MachineBasicBlock *NextBlock = 0;
1715  MachineFunction::iterator BBI = SwitchBB;
1716  if (++BBI != FuncInfo.MF->end())
1717    NextBlock = BBI;
1718
1719  if (NextMBB != NextBlock)
1720    BrAnd = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrAnd,
1721                        DAG.getBasicBlock(NextMBB));
1722
1723  DAG.setRoot(BrAnd);
1724}
1725
1726void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
1727  MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
1728
1729  // Retrieve successors.
1730  MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
1731  MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)];
1732
1733  const Value *Callee(I.getCalledValue());
1734  if (isa<InlineAsm>(Callee))
1735    visitInlineAsm(&I);
1736  else
1737    LowerCallTo(&I, getValue(Callee), false, LandingPad);
1738
1739  // If the value of the invoke is used outside of its defining block, make it
1740  // available as a virtual register.
1741  CopyToExportRegsIfNeeded(&I);
1742
1743  // Update successor info
1744  InvokeMBB->addSuccessor(Return);
1745  InvokeMBB->addSuccessor(LandingPad);
1746
1747  // Drop into normal successor.
1748  DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
1749                          MVT::Other, getControlRoot(),
1750                          DAG.getBasicBlock(Return)));
1751}
1752
1753void SelectionDAGBuilder::visitUnwind(const UnwindInst &I) {
1754}
1755
1756/// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for
1757/// small case ranges).
1758bool SelectionDAGBuilder::handleSmallSwitchRange(CaseRec& CR,
1759                                                 CaseRecVector& WorkList,
1760                                                 const Value* SV,
1761                                                 MachineBasicBlock *Default,
1762                                                 MachineBasicBlock *SwitchBB) {
1763  Case& BackCase  = *(CR.Range.second-1);
1764
1765  // Size is the number of Cases represented by this range.
1766  size_t Size = CR.Range.second - CR.Range.first;
1767  if (Size > 3)
1768    return false;
1769
1770  // Get the MachineFunction which holds the current MBB.  This is used when
1771  // inserting any additional MBBs necessary to represent the switch.
1772  MachineFunction *CurMF = FuncInfo.MF;
1773
1774  // Figure out which block is immediately after the current one.
1775  MachineBasicBlock *NextBlock = 0;
1776  MachineFunction::iterator BBI = CR.CaseBB;
1777
1778  if (++BBI != FuncInfo.MF->end())
1779    NextBlock = BBI;
1780
1781  // If any two of the cases has the same destination, and if one value
1782  // is the same as the other, but has one bit unset that the other has set,
1783  // use bit manipulation to do two compares at once.  For example:
1784  // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
1785  // TODO: This could be extended to merge any 2 cases in switches with 3 cases.
1786  // TODO: Handle cases where CR.CaseBB != SwitchBB.
1787  if (Size == 2 && CR.CaseBB == SwitchBB) {
1788    Case &Small = *CR.Range.first;
1789    Case &Big = *(CR.Range.second-1);
1790
1791    if (Small.Low == Small.High && Big.Low == Big.High && Small.BB == Big.BB) {
1792      const APInt& SmallValue = cast<ConstantInt>(Small.Low)->getValue();
1793      const APInt& BigValue = cast<ConstantInt>(Big.Low)->getValue();
1794
1795      // Check that there is only one bit different.
1796      if (BigValue.countPopulation() == SmallValue.countPopulation() + 1 &&
1797          (SmallValue | BigValue) == BigValue) {
1798        // Isolate the common bit.
1799        APInt CommonBit = BigValue & ~SmallValue;
1800        assert((SmallValue | CommonBit) == BigValue &&
1801               CommonBit.countPopulation() == 1 && "Not a common bit?");
1802
1803        SDValue CondLHS = getValue(SV);
1804        EVT VT = CondLHS.getValueType();
1805        DebugLoc DL = getCurDebugLoc();
1806
1807        SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
1808                                 DAG.getConstant(CommonBit, VT));
1809        SDValue Cond = DAG.getSetCC(DL, MVT::i1,
1810                                    Or, DAG.getConstant(BigValue, VT),
1811                                    ISD::SETEQ);
1812
1813        // Update successor info.
1814        SwitchBB->addSuccessor(Small.BB);
1815        SwitchBB->addSuccessor(Default);
1816
1817        // Insert the true branch.
1818        SDValue BrCond = DAG.getNode(ISD::BRCOND, DL, MVT::Other,
1819                                     getControlRoot(), Cond,
1820                                     DAG.getBasicBlock(Small.BB));
1821
1822        // Insert the false branch.
1823        BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
1824                             DAG.getBasicBlock(Default));
1825
1826        DAG.setRoot(BrCond);
1827        return true;
1828      }
1829    }
1830  }
1831
1832  // Rearrange the case blocks so that the last one falls through if possible.
1833  if (NextBlock && Default != NextBlock && BackCase.BB != NextBlock) {
1834    // The last case block won't fall through into 'NextBlock' if we emit the
1835    // branches in this order.  See if rearranging a case value would help.
1836    for (CaseItr I = CR.Range.first, E = CR.Range.second-1; I != E; ++I) {
1837      if (I->BB == NextBlock) {
1838        std::swap(*I, BackCase);
1839        break;
1840      }
1841    }
1842  }
1843
1844  // Create a CaseBlock record representing a conditional branch to
1845  // the Case's target mbb if the value being switched on SV is equal
1846  // to C.
1847  MachineBasicBlock *CurBlock = CR.CaseBB;
1848  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) {
1849    MachineBasicBlock *FallThrough;
1850    if (I != E-1) {
1851      FallThrough = CurMF->CreateMachineBasicBlock(CurBlock->getBasicBlock());
1852      CurMF->insert(BBI, FallThrough);
1853
1854      // Put SV in a virtual register to make it available from the new blocks.
1855      ExportFromCurrentBlock(SV);
1856    } else {
1857      // If the last case doesn't match, go to the default block.
1858      FallThrough = Default;
1859    }
1860
1861    const Value *RHS, *LHS, *MHS;
1862    ISD::CondCode CC;
1863    if (I->High == I->Low) {
1864      // This is just small small case range :) containing exactly 1 case
1865      CC = ISD::SETEQ;
1866      LHS = SV; RHS = I->High; MHS = NULL;
1867    } else {
1868      CC = ISD::SETLE;
1869      LHS = I->Low; MHS = SV; RHS = I->High;
1870    }
1871    CaseBlock CB(CC, LHS, RHS, MHS, I->BB, FallThrough, CurBlock);
1872
1873    // If emitting the first comparison, just call visitSwitchCase to emit the
1874    // code into the current block.  Otherwise, push the CaseBlock onto the
1875    // vector to be later processed by SDISel, and insert the node's MBB
1876    // before the next MBB.
1877    if (CurBlock == SwitchBB)
1878      visitSwitchCase(CB, SwitchBB);
1879    else
1880      SwitchCases.push_back(CB);
1881
1882    CurBlock = FallThrough;
1883  }
1884
1885  return true;
1886}
1887
1888static inline bool areJTsAllowed(const TargetLowering &TLI) {
1889  return !DisableJumpTables &&
1890          (TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) ||
1891           TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other));
1892}
1893
1894static APInt ComputeRange(const APInt &First, const APInt &Last) {
1895  uint32_t BitWidth = std::max(Last.getBitWidth(), First.getBitWidth()) + 1;
1896  APInt LastExt = Last.sext(BitWidth), FirstExt = First.sext(BitWidth);
1897  return (LastExt - FirstExt + 1ULL);
1898}
1899
1900/// handleJTSwitchCase - Emit jumptable for current switch case range
1901bool SelectionDAGBuilder::handleJTSwitchCase(CaseRec& CR,
1902                                             CaseRecVector& WorkList,
1903                                             const Value* SV,
1904                                             MachineBasicBlock* Default,
1905                                             MachineBasicBlock *SwitchBB) {
1906  Case& FrontCase = *CR.Range.first;
1907  Case& BackCase  = *(CR.Range.second-1);
1908
1909  const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue();
1910  const APInt &Last  = cast<ConstantInt>(BackCase.High)->getValue();
1911
1912  APInt TSize(First.getBitWidth(), 0);
1913  for (CaseItr I = CR.Range.first, E = CR.Range.second;
1914       I!=E; ++I)
1915    TSize += I->size();
1916
1917  if (!areJTsAllowed(TLI) || TSize.ult(4))
1918    return false;
1919
1920  APInt Range = ComputeRange(First, Last);
1921  double Density = TSize.roundToDouble() / Range.roundToDouble();
1922  if (Density < 0.4)
1923    return false;
1924
1925  DEBUG(dbgs() << "Lowering jump table\n"
1926               << "First entry: " << First << ". Last entry: " << Last << '\n'
1927               << "Range: " << Range
1928               << ". Size: " << TSize << ". Density: " << Density << "\n\n");
1929
1930  // Get the MachineFunction which holds the current MBB.  This is used when
1931  // inserting any additional MBBs necessary to represent the switch.
1932  MachineFunction *CurMF = FuncInfo.MF;
1933
1934  // Figure out which block is immediately after the current one.
1935  MachineFunction::iterator BBI = CR.CaseBB;
1936  ++BBI;
1937
1938  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
1939
1940  // Create a new basic block to hold the code for loading the address
1941  // of the jump table, and jumping to it.  Update successor information;
1942  // we will either branch to the default case for the switch, or the jump
1943  // table.
1944  MachineBasicBlock *JumpTableBB = CurMF->CreateMachineBasicBlock(LLVMBB);
1945  CurMF->insert(BBI, JumpTableBB);
1946  CR.CaseBB->addSuccessor(Default);
1947  CR.CaseBB->addSuccessor(JumpTableBB);
1948
1949  // Build a vector of destination BBs, corresponding to each target
1950  // of the jump table. If the value of the jump table slot corresponds to
1951  // a case statement, push the case's BB onto the vector, otherwise, push
1952  // the default BB.
1953  std::vector<MachineBasicBlock*> DestBBs;
1954  APInt TEI = First;
1955  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) {
1956    const APInt &Low = cast<ConstantInt>(I->Low)->getValue();
1957    const APInt &High = cast<ConstantInt>(I->High)->getValue();
1958
1959    if (Low.sle(TEI) && TEI.sle(High)) {
1960      DestBBs.push_back(I->BB);
1961      if (TEI==High)
1962        ++I;
1963    } else {
1964      DestBBs.push_back(Default);
1965    }
1966  }
1967
1968  // Update successor info. Add one edge to each unique successor.
1969  BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs());
1970  for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(),
1971         E = DestBBs.end(); I != E; ++I) {
1972    if (!SuccsHandled[(*I)->getNumber()]) {
1973      SuccsHandled[(*I)->getNumber()] = true;
1974      JumpTableBB->addSuccessor(*I);
1975    }
1976  }
1977
1978  // Create a jump table index for this jump table.
1979  unsigned JTEncoding = TLI.getJumpTableEncoding();
1980  unsigned JTI = CurMF->getOrCreateJumpTableInfo(JTEncoding)
1981                       ->createJumpTableIndex(DestBBs);
1982
1983  // Set the jump table information so that we can codegen it as a second
1984  // MachineBasicBlock
1985  JumpTable JT(-1U, JTI, JumpTableBB, Default);
1986  JumpTableHeader JTH(First, Last, SV, CR.CaseBB, (CR.CaseBB == SwitchBB));
1987  if (CR.CaseBB == SwitchBB)
1988    visitJumpTableHeader(JT, JTH, SwitchBB);
1989
1990  JTCases.push_back(JumpTableBlock(JTH, JT));
1991
1992  return true;
1993}
1994
1995/// handleBTSplitSwitchCase - emit comparison and split binary search tree into
1996/// 2 subtrees.
1997bool SelectionDAGBuilder::handleBTSplitSwitchCase(CaseRec& CR,
1998                                                  CaseRecVector& WorkList,
1999                                                  const Value* SV,
2000                                                  MachineBasicBlock *Default,
2001                                                  MachineBasicBlock *SwitchBB) {
2002  // Get the MachineFunction which holds the current MBB.  This is used when
2003  // inserting any additional MBBs necessary to represent the switch.
2004  MachineFunction *CurMF = FuncInfo.MF;
2005
2006  // Figure out which block is immediately after the current one.
2007  MachineFunction::iterator BBI = CR.CaseBB;
2008  ++BBI;
2009
2010  Case& FrontCase = *CR.Range.first;
2011  Case& BackCase  = *(CR.Range.second-1);
2012  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2013
2014  // Size is the number of Cases represented by this range.
2015  unsigned Size = CR.Range.second - CR.Range.first;
2016
2017  const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue();
2018  const APInt &Last  = cast<ConstantInt>(BackCase.High)->getValue();
2019  double FMetric = 0;
2020  CaseItr Pivot = CR.Range.first + Size/2;
2021
2022  // Select optimal pivot, maximizing sum density of LHS and RHS. This will
2023  // (heuristically) allow us to emit JumpTable's later.
2024  APInt TSize(First.getBitWidth(), 0);
2025  for (CaseItr I = CR.Range.first, E = CR.Range.second;
2026       I!=E; ++I)
2027    TSize += I->size();
2028
2029  APInt LSize = FrontCase.size();
2030  APInt RSize = TSize-LSize;
2031  DEBUG(dbgs() << "Selecting best pivot: \n"
2032               << "First: " << First << ", Last: " << Last <<'\n'
2033               << "LSize: " << LSize << ", RSize: " << RSize << '\n');
2034  for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second;
2035       J!=E; ++I, ++J) {
2036    const APInt &LEnd = cast<ConstantInt>(I->High)->getValue();
2037    const APInt &RBegin = cast<ConstantInt>(J->Low)->getValue();
2038    APInt Range = ComputeRange(LEnd, RBegin);
2039    assert((Range - 2ULL).isNonNegative() &&
2040           "Invalid case distance");
2041    // Use volatile double here to avoid excess precision issues on some hosts,
2042    // e.g. that use 80-bit X87 registers.
2043    volatile double LDensity =
2044       (double)LSize.roundToDouble() /
2045                           (LEnd - First + 1ULL).roundToDouble();
2046    volatile double RDensity =
2047      (double)RSize.roundToDouble() /
2048                           (Last - RBegin + 1ULL).roundToDouble();
2049    double Metric = Range.logBase2()*(LDensity+RDensity);
2050    // Should always split in some non-trivial place
2051    DEBUG(dbgs() <<"=>Step\n"
2052                 << "LEnd: " << LEnd << ", RBegin: " << RBegin << '\n'
2053                 << "LDensity: " << LDensity
2054                 << ", RDensity: " << RDensity << '\n'
2055                 << "Metric: " << Metric << '\n');
2056    if (FMetric < Metric) {
2057      Pivot = J;
2058      FMetric = Metric;
2059      DEBUG(dbgs() << "Current metric set to: " << FMetric << '\n');
2060    }
2061
2062    LSize += J->size();
2063    RSize -= J->size();
2064  }
2065  if (areJTsAllowed(TLI)) {
2066    // If our case is dense we *really* should handle it earlier!
2067    assert((FMetric > 0) && "Should handle dense range earlier!");
2068  } else {
2069    Pivot = CR.Range.first + Size/2;
2070  }
2071
2072  CaseRange LHSR(CR.Range.first, Pivot);
2073  CaseRange RHSR(Pivot, CR.Range.second);
2074  Constant *C = Pivot->Low;
2075  MachineBasicBlock *FalseBB = 0, *TrueBB = 0;
2076
2077  // We know that we branch to the LHS if the Value being switched on is
2078  // less than the Pivot value, C.  We use this to optimize our binary
2079  // tree a bit, by recognizing that if SV is greater than or equal to the
2080  // LHS's Case Value, and that Case Value is exactly one less than the
2081  // Pivot's Value, then we can branch directly to the LHS's Target,
2082  // rather than creating a leaf node for it.
2083  if ((LHSR.second - LHSR.first) == 1 &&
2084      LHSR.first->High == CR.GE &&
2085      cast<ConstantInt>(C)->getValue() ==
2086      (cast<ConstantInt>(CR.GE)->getValue() + 1LL)) {
2087    TrueBB = LHSR.first->BB;
2088  } else {
2089    TrueBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2090    CurMF->insert(BBI, TrueBB);
2091    WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR));
2092
2093    // Put SV in a virtual register to make it available from the new blocks.
2094    ExportFromCurrentBlock(SV);
2095  }
2096
2097  // Similar to the optimization above, if the Value being switched on is
2098  // known to be less than the Constant CR.LT, and the current Case Value
2099  // is CR.LT - 1, then we can branch directly to the target block for
2100  // the current Case Value, rather than emitting a RHS leaf node for it.
2101  if ((RHSR.second - RHSR.first) == 1 && CR.LT &&
2102      cast<ConstantInt>(RHSR.first->Low)->getValue() ==
2103      (cast<ConstantInt>(CR.LT)->getValue() - 1LL)) {
2104    FalseBB = RHSR.first->BB;
2105  } else {
2106    FalseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2107    CurMF->insert(BBI, FalseBB);
2108    WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR));
2109
2110    // Put SV in a virtual register to make it available from the new blocks.
2111    ExportFromCurrentBlock(SV);
2112  }
2113
2114  // Create a CaseBlock record representing a conditional branch to
2115  // the LHS node if the value being switched on SV is less than C.
2116  // Otherwise, branch to LHS.
2117  CaseBlock CB(ISD::SETLT, SV, C, NULL, TrueBB, FalseBB, CR.CaseBB);
2118
2119  if (CR.CaseBB == SwitchBB)
2120    visitSwitchCase(CB, SwitchBB);
2121  else
2122    SwitchCases.push_back(CB);
2123
2124  return true;
2125}
2126
2127/// handleBitTestsSwitchCase - if current case range has few destination and
2128/// range span less, than machine word bitwidth, encode case range into series
2129/// of masks and emit bit tests with these masks.
2130bool SelectionDAGBuilder::handleBitTestsSwitchCase(CaseRec& CR,
2131                                                   CaseRecVector& WorkList,
2132                                                   const Value* SV,
2133                                                   MachineBasicBlock* Default,
2134                                                   MachineBasicBlock *SwitchBB){
2135  EVT PTy = TLI.getPointerTy();
2136  unsigned IntPtrBits = PTy.getSizeInBits();
2137
2138  Case& FrontCase = *CR.Range.first;
2139  Case& BackCase  = *(CR.Range.second-1);
2140
2141  // Get the MachineFunction which holds the current MBB.  This is used when
2142  // inserting any additional MBBs necessary to represent the switch.
2143  MachineFunction *CurMF = FuncInfo.MF;
2144
2145  // If target does not have legal shift left, do not emit bit tests at all.
2146  if (!TLI.isOperationLegal(ISD::SHL, TLI.getPointerTy()))
2147    return false;
2148
2149  size_t numCmps = 0;
2150  for (CaseItr I = CR.Range.first, E = CR.Range.second;
2151       I!=E; ++I) {
2152    // Single case counts one, case range - two.
2153    numCmps += (I->Low == I->High ? 1 : 2);
2154  }
2155
2156  // Count unique destinations
2157  SmallSet<MachineBasicBlock*, 4> Dests;
2158  for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
2159    Dests.insert(I->BB);
2160    if (Dests.size() > 3)
2161      // Don't bother the code below, if there are too much unique destinations
2162      return false;
2163  }
2164  DEBUG(dbgs() << "Total number of unique destinations: "
2165        << Dests.size() << '\n'
2166        << "Total number of comparisons: " << numCmps << '\n');
2167
2168  // Compute span of values.
2169  const APInt& minValue = cast<ConstantInt>(FrontCase.Low)->getValue();
2170  const APInt& maxValue = cast<ConstantInt>(BackCase.High)->getValue();
2171  APInt cmpRange = maxValue - minValue;
2172
2173  DEBUG(dbgs() << "Compare range: " << cmpRange << '\n'
2174               << "Low bound: " << minValue << '\n'
2175               << "High bound: " << maxValue << '\n');
2176
2177  if (cmpRange.uge(IntPtrBits) ||
2178      (!(Dests.size() == 1 && numCmps >= 3) &&
2179       !(Dests.size() == 2 && numCmps >= 5) &&
2180       !(Dests.size() >= 3 && numCmps >= 6)))
2181    return false;
2182
2183  DEBUG(dbgs() << "Emitting bit tests\n");
2184  APInt lowBound = APInt::getNullValue(cmpRange.getBitWidth());
2185
2186  // Optimize the case where all the case values fit in a
2187  // word without having to subtract minValue. In this case,
2188  // we can optimize away the subtraction.
2189  if (minValue.isNonNegative() && maxValue.slt(IntPtrBits)) {
2190    cmpRange = maxValue;
2191  } else {
2192    lowBound = minValue;
2193  }
2194
2195  CaseBitsVector CasesBits;
2196  unsigned i, count = 0;
2197
2198  for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
2199    MachineBasicBlock* Dest = I->BB;
2200    for (i = 0; i < count; ++i)
2201      if (Dest == CasesBits[i].BB)
2202        break;
2203
2204    if (i == count) {
2205      assert((count < 3) && "Too much destinations to test!");
2206      CasesBits.push_back(CaseBits(0, Dest, 0));
2207      count++;
2208    }
2209
2210    const APInt& lowValue = cast<ConstantInt>(I->Low)->getValue();
2211    const APInt& highValue = cast<ConstantInt>(I->High)->getValue();
2212
2213    uint64_t lo = (lowValue - lowBound).getZExtValue();
2214    uint64_t hi = (highValue - lowBound).getZExtValue();
2215
2216    for (uint64_t j = lo; j <= hi; j++) {
2217      CasesBits[i].Mask |=  1ULL << j;
2218      CasesBits[i].Bits++;
2219    }
2220
2221  }
2222  std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp());
2223
2224  BitTestInfo BTC;
2225
2226  // Figure out which block is immediately after the current one.
2227  MachineFunction::iterator BBI = CR.CaseBB;
2228  ++BBI;
2229
2230  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2231
2232  DEBUG(dbgs() << "Cases:\n");
2233  for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) {
2234    DEBUG(dbgs() << "Mask: " << CasesBits[i].Mask
2235                 << ", Bits: " << CasesBits[i].Bits
2236                 << ", BB: " << CasesBits[i].BB << '\n');
2237
2238    MachineBasicBlock *CaseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2239    CurMF->insert(BBI, CaseBB);
2240    BTC.push_back(BitTestCase(CasesBits[i].Mask,
2241                              CaseBB,
2242                              CasesBits[i].BB));
2243
2244    // Put SV in a virtual register to make it available from the new blocks.
2245    ExportFromCurrentBlock(SV);
2246  }
2247
2248  BitTestBlock BTB(lowBound, cmpRange, SV,
2249                   -1U, MVT::Other, (CR.CaseBB == SwitchBB),
2250                   CR.CaseBB, Default, BTC);
2251
2252  if (CR.CaseBB == SwitchBB)
2253    visitBitTestHeader(BTB, SwitchBB);
2254
2255  BitTestCases.push_back(BTB);
2256
2257  return true;
2258}
2259
2260/// Clusterify - Transform simple list of Cases into list of CaseRange's
2261size_t SelectionDAGBuilder::Clusterify(CaseVector& Cases,
2262                                       const SwitchInst& SI) {
2263  size_t numCmps = 0;
2264
2265  // Start with "simple" cases
2266  for (size_t i = 1; i < SI.getNumSuccessors(); ++i) {
2267    MachineBasicBlock *SMBB = FuncInfo.MBBMap[SI.getSuccessor(i)];
2268    Cases.push_back(Case(SI.getSuccessorValue(i),
2269                         SI.getSuccessorValue(i),
2270                         SMBB));
2271  }
2272  std::sort(Cases.begin(), Cases.end(), CaseCmp());
2273
2274  // Merge case into clusters
2275  if (Cases.size() >= 2)
2276    // Must recompute end() each iteration because it may be
2277    // invalidated by erase if we hold on to it
2278    for (CaseItr I = Cases.begin(), J = llvm::next(Cases.begin());
2279         J != Cases.end(); ) {
2280      const APInt& nextValue = cast<ConstantInt>(J->Low)->getValue();
2281      const APInt& currentValue = cast<ConstantInt>(I->High)->getValue();
2282      MachineBasicBlock* nextBB = J->BB;
2283      MachineBasicBlock* currentBB = I->BB;
2284
2285      // If the two neighboring cases go to the same destination, merge them
2286      // into a single case.
2287      if ((nextValue - currentValue == 1) && (currentBB == nextBB)) {
2288        I->High = J->High;
2289        J = Cases.erase(J);
2290      } else {
2291        I = J++;
2292      }
2293    }
2294
2295  for (CaseItr I=Cases.begin(), E=Cases.end(); I!=E; ++I, ++numCmps) {
2296    if (I->Low != I->High)
2297      // A range counts double, since it requires two compares.
2298      ++numCmps;
2299  }
2300
2301  return numCmps;
2302}
2303
2304void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
2305                                           MachineBasicBlock *Last) {
2306  // Update JTCases.
2307  for (unsigned i = 0, e = JTCases.size(); i != e; ++i)
2308    if (JTCases[i].first.HeaderBB == First)
2309      JTCases[i].first.HeaderBB = Last;
2310
2311  // Update BitTestCases.
2312  for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i)
2313    if (BitTestCases[i].Parent == First)
2314      BitTestCases[i].Parent = Last;
2315}
2316
2317void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
2318  MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
2319
2320  // Figure out which block is immediately after the current one.
2321  MachineBasicBlock *NextBlock = 0;
2322  MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()];
2323
2324  // If there is only the default destination, branch to it if it is not the
2325  // next basic block.  Otherwise, just fall through.
2326  if (SI.getNumOperands() == 2) {
2327    // Update machine-CFG edges.
2328
2329    // If this is not a fall-through branch, emit the branch.
2330    SwitchMBB->addSuccessor(Default);
2331    if (Default != NextBlock)
2332      DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
2333                              MVT::Other, getControlRoot(),
2334                              DAG.getBasicBlock(Default)));
2335
2336    return;
2337  }
2338
2339  // If there are any non-default case statements, create a vector of Cases
2340  // representing each one, and sort the vector so that we can efficiently
2341  // create a binary search tree from them.
2342  CaseVector Cases;
2343  size_t numCmps = Clusterify(Cases, SI);
2344  DEBUG(dbgs() << "Clusterify finished. Total clusters: " << Cases.size()
2345               << ". Total compares: " << numCmps << '\n');
2346  numCmps = 0;
2347
2348  // Get the Value to be switched on and default basic blocks, which will be
2349  // inserted into CaseBlock records, representing basic blocks in the binary
2350  // search tree.
2351  const Value *SV = SI.getOperand(0);
2352
2353  // Push the initial CaseRec onto the worklist
2354  CaseRecVector WorkList;
2355  WorkList.push_back(CaseRec(SwitchMBB,0,0,
2356                             CaseRange(Cases.begin(),Cases.end())));
2357
2358  while (!WorkList.empty()) {
2359    // Grab a record representing a case range to process off the worklist
2360    CaseRec CR = WorkList.back();
2361    WorkList.pop_back();
2362
2363    if (handleBitTestsSwitchCase(CR, WorkList, SV, Default, SwitchMBB))
2364      continue;
2365
2366    // If the range has few cases (two or less) emit a series of specific
2367    // tests.
2368    if (handleSmallSwitchRange(CR, WorkList, SV, Default, SwitchMBB))
2369      continue;
2370
2371    // If the switch has more than 5 blocks, and at least 40% dense, and the
2372    // target supports indirect branches, then emit a jump table rather than
2373    // lowering the switch to a binary tree of conditional branches.
2374    if (handleJTSwitchCase(CR, WorkList, SV, Default, SwitchMBB))
2375      continue;
2376
2377    // Emit binary tree. We need to pick a pivot, and push left and right ranges
2378    // onto the worklist. Leafs are handled via handleSmallSwitchRange() call.
2379    handleBTSplitSwitchCase(CR, WorkList, SV, Default, SwitchMBB);
2380  }
2381}
2382
2383void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
2384  MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
2385
2386  // Update machine-CFG edges with unique successors.
2387  SmallVector<BasicBlock*, 32> succs;
2388  succs.reserve(I.getNumSuccessors());
2389  for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i)
2390    succs.push_back(I.getSuccessor(i));
2391  array_pod_sort(succs.begin(), succs.end());
2392  succs.erase(std::unique(succs.begin(), succs.end()), succs.end());
2393  for (unsigned i = 0, e = succs.size(); i != e; ++i)
2394    IndirectBrMBB->addSuccessor(FuncInfo.MBBMap[succs[i]]);
2395
2396  DAG.setRoot(DAG.getNode(ISD::BRIND, getCurDebugLoc(),
2397                          MVT::Other, getControlRoot(),
2398                          getValue(I.getAddress())));
2399}
2400
2401void SelectionDAGBuilder::visitFSub(const User &I) {
2402  // -0.0 - X --> fneg
2403  const Type *Ty = I.getType();
2404  if (isa<Constant>(I.getOperand(0)) &&
2405      I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) {
2406    SDValue Op2 = getValue(I.getOperand(1));
2407    setValue(&I, DAG.getNode(ISD::FNEG, getCurDebugLoc(),
2408                             Op2.getValueType(), Op2));
2409    return;
2410  }
2411
2412  visitBinary(I, ISD::FSUB);
2413}
2414
2415void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) {
2416  SDValue Op1 = getValue(I.getOperand(0));
2417  SDValue Op2 = getValue(I.getOperand(1));
2418  setValue(&I, DAG.getNode(OpCode, getCurDebugLoc(),
2419                           Op1.getValueType(), Op1, Op2));
2420}
2421
2422void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
2423  SDValue Op1 = getValue(I.getOperand(0));
2424  SDValue Op2 = getValue(I.getOperand(1));
2425
2426  MVT ShiftTy = TLI.getShiftAmountTy(Op2.getValueType());
2427
2428  // Coerce the shift amount to the right type if we can.
2429  if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
2430    unsigned ShiftSize = ShiftTy.getSizeInBits();
2431    unsigned Op2Size = Op2.getValueType().getSizeInBits();
2432    DebugLoc DL = getCurDebugLoc();
2433
2434    // If the operand is smaller than the shift count type, promote it.
2435    if (ShiftSize > Op2Size)
2436      Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2);
2437
2438    // If the operand is larger than the shift count type but the shift
2439    // count type has enough bits to represent any shift value, truncate
2440    // it now. This is a common case and it exposes the truncate to
2441    // optimization early.
2442    else if (ShiftSize >= Log2_32_Ceil(Op2.getValueType().getSizeInBits()))
2443      Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2);
2444    // Otherwise we'll need to temporarily settle for some other convenient
2445    // type.  Type legalization will make adjustments once the shiftee is split.
2446    else
2447      Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32);
2448  }
2449
2450  setValue(&I, DAG.getNode(Opcode, getCurDebugLoc(),
2451                           Op1.getValueType(), Op1, Op2));
2452}
2453
2454void SelectionDAGBuilder::visitICmp(const User &I) {
2455  ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
2456  if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
2457    predicate = IC->getPredicate();
2458  else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
2459    predicate = ICmpInst::Predicate(IC->getPredicate());
2460  SDValue Op1 = getValue(I.getOperand(0));
2461  SDValue Op2 = getValue(I.getOperand(1));
2462  ISD::CondCode Opcode = getICmpCondCode(predicate);
2463
2464  EVT DestVT = TLI.getValueType(I.getType());
2465  setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Opcode));
2466}
2467
2468void SelectionDAGBuilder::visitFCmp(const User &I) {
2469  FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
2470  if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
2471    predicate = FC->getPredicate();
2472  else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
2473    predicate = FCmpInst::Predicate(FC->getPredicate());
2474  SDValue Op1 = getValue(I.getOperand(0));
2475  SDValue Op2 = getValue(I.getOperand(1));
2476  ISD::CondCode Condition = getFCmpCondCode(predicate);
2477  EVT DestVT = TLI.getValueType(I.getType());
2478  setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Condition));
2479}
2480
2481void SelectionDAGBuilder::visitSelect(const User &I) {
2482  SmallVector<EVT, 4> ValueVTs;
2483  ComputeValueVTs(TLI, I.getType(), ValueVTs);
2484  unsigned NumValues = ValueVTs.size();
2485  if (NumValues == 0) return;
2486
2487  SmallVector<SDValue, 4> Values(NumValues);
2488  SDValue Cond     = getValue(I.getOperand(0));
2489  SDValue TrueVal  = getValue(I.getOperand(1));
2490  SDValue FalseVal = getValue(I.getOperand(2));
2491
2492  for (unsigned i = 0; i != NumValues; ++i)
2493    Values[i] = DAG.getNode(ISD::SELECT, getCurDebugLoc(),
2494                          TrueVal.getNode()->getValueType(TrueVal.getResNo()+i),
2495                            Cond,
2496                            SDValue(TrueVal.getNode(),
2497                                    TrueVal.getResNo() + i),
2498                            SDValue(FalseVal.getNode(),
2499                                    FalseVal.getResNo() + i));
2500
2501  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
2502                           DAG.getVTList(&ValueVTs[0], NumValues),
2503                           &Values[0], NumValues));
2504}
2505
2506void SelectionDAGBuilder::visitTrunc(const User &I) {
2507  // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
2508  SDValue N = getValue(I.getOperand(0));
2509  EVT DestVT = TLI.getValueType(I.getType());
2510  setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), DestVT, N));
2511}
2512
2513void SelectionDAGBuilder::visitZExt(const User &I) {
2514  // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2515  // ZExt also can't be a cast to bool for same reason. So, nothing much to do
2516  SDValue N = getValue(I.getOperand(0));
2517  EVT DestVT = TLI.getValueType(I.getType());
2518  setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), DestVT, N));
2519}
2520
2521void SelectionDAGBuilder::visitSExt(const User &I) {
2522  // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2523  // SExt also can't be a cast to bool for same reason. So, nothing much to do
2524  SDValue N = getValue(I.getOperand(0));
2525  EVT DestVT = TLI.getValueType(I.getType());
2526  setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurDebugLoc(), DestVT, N));
2527}
2528
2529void SelectionDAGBuilder::visitFPTrunc(const User &I) {
2530  // FPTrunc is never a no-op cast, no need to check
2531  SDValue N = getValue(I.getOperand(0));
2532  EVT DestVT = TLI.getValueType(I.getType());
2533  setValue(&I, DAG.getNode(ISD::FP_ROUND, getCurDebugLoc(),
2534                           DestVT, N, DAG.getIntPtrConstant(0)));
2535}
2536
2537void SelectionDAGBuilder::visitFPExt(const User &I){
2538  // FPTrunc is never a no-op cast, no need to check
2539  SDValue N = getValue(I.getOperand(0));
2540  EVT DestVT = TLI.getValueType(I.getType());
2541  setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurDebugLoc(), DestVT, N));
2542}
2543
2544void SelectionDAGBuilder::visitFPToUI(const User &I) {
2545  // FPToUI is never a no-op cast, no need to check
2546  SDValue N = getValue(I.getOperand(0));
2547  EVT DestVT = TLI.getValueType(I.getType());
2548  setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurDebugLoc(), DestVT, N));
2549}
2550
2551void SelectionDAGBuilder::visitFPToSI(const User &I) {
2552  // FPToSI is never a no-op cast, no need to check
2553  SDValue N = getValue(I.getOperand(0));
2554  EVT DestVT = TLI.getValueType(I.getType());
2555  setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurDebugLoc(), DestVT, N));
2556}
2557
2558void SelectionDAGBuilder::visitUIToFP(const User &I) {
2559  // UIToFP is never a no-op cast, no need to check
2560  SDValue N = getValue(I.getOperand(0));
2561  EVT DestVT = TLI.getValueType(I.getType());
2562  setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurDebugLoc(), DestVT, N));
2563}
2564
2565void SelectionDAGBuilder::visitSIToFP(const User &I){
2566  // SIToFP is never a no-op cast, no need to check
2567  SDValue N = getValue(I.getOperand(0));
2568  EVT DestVT = TLI.getValueType(I.getType());
2569  setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurDebugLoc(), DestVT, N));
2570}
2571
2572void SelectionDAGBuilder::visitPtrToInt(const User &I) {
2573  // What to do depends on the size of the integer and the size of the pointer.
2574  // We can either truncate, zero extend, or no-op, accordingly.
2575  SDValue N = getValue(I.getOperand(0));
2576  EVT DestVT = TLI.getValueType(I.getType());
2577  setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT));
2578}
2579
2580void SelectionDAGBuilder::visitIntToPtr(const User &I) {
2581  // What to do depends on the size of the integer and the size of the pointer.
2582  // We can either truncate, zero extend, or no-op, accordingly.
2583  SDValue N = getValue(I.getOperand(0));
2584  EVT DestVT = TLI.getValueType(I.getType());
2585  setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT));
2586}
2587
2588void SelectionDAGBuilder::visitBitCast(const User &I) {
2589  SDValue N = getValue(I.getOperand(0));
2590  EVT DestVT = TLI.getValueType(I.getType());
2591
2592  // BitCast assures us that source and destination are the same size so this is
2593  // either a BITCAST or a no-op.
2594  if (DestVT != N.getValueType())
2595    setValue(&I, DAG.getNode(ISD::BITCAST, getCurDebugLoc(),
2596                             DestVT, N)); // convert types.
2597  else
2598    setValue(&I, N);            // noop cast.
2599}
2600
2601void SelectionDAGBuilder::visitInsertElement(const User &I) {
2602  SDValue InVec = getValue(I.getOperand(0));
2603  SDValue InVal = getValue(I.getOperand(1));
2604  SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(),
2605                              TLI.getPointerTy(),
2606                              getValue(I.getOperand(2)));
2607  setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurDebugLoc(),
2608                           TLI.getValueType(I.getType()),
2609                           InVec, InVal, InIdx));
2610}
2611
2612void SelectionDAGBuilder::visitExtractElement(const User &I) {
2613  SDValue InVec = getValue(I.getOperand(0));
2614  SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(),
2615                              TLI.getPointerTy(),
2616                              getValue(I.getOperand(1)));
2617  setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
2618                           TLI.getValueType(I.getType()), InVec, InIdx));
2619}
2620
2621// Utility for visitShuffleVector - Returns true if the mask is mask starting
2622// from SIndx and increasing to the element length (undefs are allowed).
2623static bool SequentialMask(SmallVectorImpl<int> &Mask, unsigned SIndx) {
2624  unsigned MaskNumElts = Mask.size();
2625  for (unsigned i = 0; i != MaskNumElts; ++i)
2626    if ((Mask[i] >= 0) && (Mask[i] != (int)(i + SIndx)))
2627      return false;
2628  return true;
2629}
2630
2631void SelectionDAGBuilder::visitShuffleVector(const User &I) {
2632  SmallVector<int, 8> Mask;
2633  SDValue Src1 = getValue(I.getOperand(0));
2634  SDValue Src2 = getValue(I.getOperand(1));
2635
2636  // Convert the ConstantVector mask operand into an array of ints, with -1
2637  // representing undef values.
2638  SmallVector<Constant*, 8> MaskElts;
2639  cast<Constant>(I.getOperand(2))->getVectorElements(MaskElts);
2640  unsigned MaskNumElts = MaskElts.size();
2641  for (unsigned i = 0; i != MaskNumElts; ++i) {
2642    if (isa<UndefValue>(MaskElts[i]))
2643      Mask.push_back(-1);
2644    else
2645      Mask.push_back(cast<ConstantInt>(MaskElts[i])->getSExtValue());
2646  }
2647
2648  EVT VT = TLI.getValueType(I.getType());
2649  EVT SrcVT = Src1.getValueType();
2650  unsigned SrcNumElts = SrcVT.getVectorNumElements();
2651
2652  if (SrcNumElts == MaskNumElts) {
2653    setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2654                                      &Mask[0]));
2655    return;
2656  }
2657
2658  // Normalize the shuffle vector since mask and vector length don't match.
2659  if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) {
2660    // Mask is longer than the source vectors and is a multiple of the source
2661    // vectors.  We can use concatenate vector to make the mask and vectors
2662    // lengths match.
2663    if (SrcNumElts*2 == MaskNumElts && SequentialMask(Mask, 0)) {
2664      // The shuffle is concatenating two vectors together.
2665      setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurDebugLoc(),
2666                               VT, Src1, Src2));
2667      return;
2668    }
2669
2670    // Pad both vectors with undefs to make them the same length as the mask.
2671    unsigned NumConcat = MaskNumElts / SrcNumElts;
2672    bool Src1U = Src1.getOpcode() == ISD::UNDEF;
2673    bool Src2U = Src2.getOpcode() == ISD::UNDEF;
2674    SDValue UndefVal = DAG.getUNDEF(SrcVT);
2675
2676    SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
2677    SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
2678    MOps1[0] = Src1;
2679    MOps2[0] = Src2;
2680
2681    Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
2682                                                  getCurDebugLoc(), VT,
2683                                                  &MOps1[0], NumConcat);
2684    Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
2685                                                  getCurDebugLoc(), VT,
2686                                                  &MOps2[0], NumConcat);
2687
2688    // Readjust mask for new input vector length.
2689    SmallVector<int, 8> MappedOps;
2690    for (unsigned i = 0; i != MaskNumElts; ++i) {
2691      int Idx = Mask[i];
2692      if (Idx < (int)SrcNumElts)
2693        MappedOps.push_back(Idx);
2694      else
2695        MappedOps.push_back(Idx + MaskNumElts - SrcNumElts);
2696    }
2697
2698    setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2699                                      &MappedOps[0]));
2700    return;
2701  }
2702
2703  if (SrcNumElts > MaskNumElts) {
2704    // Analyze the access pattern of the vector to see if we can extract
2705    // two subvectors and do the shuffle. The analysis is done by calculating
2706    // the range of elements the mask access on both vectors.
2707    int MinRange[2] = { SrcNumElts+1, SrcNumElts+1};
2708    int MaxRange[2] = {-1, -1};
2709
2710    for (unsigned i = 0; i != MaskNumElts; ++i) {
2711      int Idx = Mask[i];
2712      int Input = 0;
2713      if (Idx < 0)
2714        continue;
2715
2716      if (Idx >= (int)SrcNumElts) {
2717        Input = 1;
2718        Idx -= SrcNumElts;
2719      }
2720      if (Idx > MaxRange[Input])
2721        MaxRange[Input] = Idx;
2722      if (Idx < MinRange[Input])
2723        MinRange[Input] = Idx;
2724    }
2725
2726    // Check if the access is smaller than the vector size and can we find
2727    // a reasonable extract index.
2728    int RangeUse[2] = { 2, 2 };  // 0 = Unused, 1 = Extract, 2 = Can not
2729                                 // Extract.
2730    int StartIdx[2];  // StartIdx to extract from
2731    for (int Input=0; Input < 2; ++Input) {
2732      if (MinRange[Input] == (int)(SrcNumElts+1) && MaxRange[Input] == -1) {
2733        RangeUse[Input] = 0; // Unused
2734        StartIdx[Input] = 0;
2735      } else if (MaxRange[Input] - MinRange[Input] < (int)MaskNumElts) {
2736        // Fits within range but we should see if we can find a good
2737        // start index that is a multiple of the mask length.
2738        if (MaxRange[Input] < (int)MaskNumElts) {
2739          RangeUse[Input] = 1; // Extract from beginning of the vector
2740          StartIdx[Input] = 0;
2741        } else {
2742          StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts;
2743          if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts &&
2744              StartIdx[Input] + MaskNumElts <= SrcNumElts)
2745            RangeUse[Input] = 1; // Extract from a multiple of the mask length.
2746        }
2747      }
2748    }
2749
2750    if (RangeUse[0] == 0 && RangeUse[1] == 0) {
2751      setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
2752      return;
2753    }
2754    else if (RangeUse[0] < 2 && RangeUse[1] < 2) {
2755      // Extract appropriate subvector and generate a vector shuffle
2756      for (int Input=0; Input < 2; ++Input) {
2757        SDValue &Src = Input == 0 ? Src1 : Src2;
2758        if (RangeUse[Input] == 0)
2759          Src = DAG.getUNDEF(VT);
2760        else
2761          Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, getCurDebugLoc(), VT,
2762                            Src, DAG.getIntPtrConstant(StartIdx[Input]));
2763      }
2764
2765      // Calculate new mask.
2766      SmallVector<int, 8> MappedOps;
2767      for (unsigned i = 0; i != MaskNumElts; ++i) {
2768        int Idx = Mask[i];
2769        if (Idx < 0)
2770          MappedOps.push_back(Idx);
2771        else if (Idx < (int)SrcNumElts)
2772          MappedOps.push_back(Idx - StartIdx[0]);
2773        else
2774          MappedOps.push_back(Idx - SrcNumElts - StartIdx[1] + MaskNumElts);
2775      }
2776
2777      setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2778                                        &MappedOps[0]));
2779      return;
2780    }
2781  }
2782
2783  // We can't use either concat vectors or extract subvectors so fall back to
2784  // replacing the shuffle with extract and build vector.
2785  // to insert and build vector.
2786  EVT EltVT = VT.getVectorElementType();
2787  EVT PtrVT = TLI.getPointerTy();
2788  SmallVector<SDValue,8> Ops;
2789  for (unsigned i = 0; i != MaskNumElts; ++i) {
2790    if (Mask[i] < 0) {
2791      Ops.push_back(DAG.getUNDEF(EltVT));
2792    } else {
2793      int Idx = Mask[i];
2794      SDValue Res;
2795
2796      if (Idx < (int)SrcNumElts)
2797        Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
2798                          EltVT, Src1, DAG.getConstant(Idx, PtrVT));
2799      else
2800        Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
2801                          EltVT, Src2,
2802                          DAG.getConstant(Idx - SrcNumElts, PtrVT));
2803
2804      Ops.push_back(Res);
2805    }
2806  }
2807
2808  setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(),
2809                           VT, &Ops[0], Ops.size()));
2810}
2811
2812void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) {
2813  const Value *Op0 = I.getOperand(0);
2814  const Value *Op1 = I.getOperand(1);
2815  const Type *AggTy = I.getType();
2816  const Type *ValTy = Op1->getType();
2817  bool IntoUndef = isa<UndefValue>(Op0);
2818  bool FromUndef = isa<UndefValue>(Op1);
2819
2820  unsigned LinearIndex = ComputeLinearIndex(AggTy, I.idx_begin(), I.idx_end());
2821
2822  SmallVector<EVT, 4> AggValueVTs;
2823  ComputeValueVTs(TLI, AggTy, AggValueVTs);
2824  SmallVector<EVT, 4> ValValueVTs;
2825  ComputeValueVTs(TLI, ValTy, ValValueVTs);
2826
2827  unsigned NumAggValues = AggValueVTs.size();
2828  unsigned NumValValues = ValValueVTs.size();
2829  SmallVector<SDValue, 4> Values(NumAggValues);
2830
2831  SDValue Agg = getValue(Op0);
2832  unsigned i = 0;
2833  // Copy the beginning value(s) from the original aggregate.
2834  for (; i != LinearIndex; ++i)
2835    Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
2836                SDValue(Agg.getNode(), Agg.getResNo() + i);
2837  // Copy values from the inserted value(s).
2838  if (NumValValues) {
2839    SDValue Val = getValue(Op1);
2840    for (; i != LinearIndex + NumValValues; ++i)
2841      Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
2842                  SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
2843  }
2844  // Copy remaining value(s) from the original aggregate.
2845  for (; i != NumAggValues; ++i)
2846    Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
2847                SDValue(Agg.getNode(), Agg.getResNo() + i);
2848
2849  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
2850                           DAG.getVTList(&AggValueVTs[0], NumAggValues),
2851                           &Values[0], NumAggValues));
2852}
2853
2854void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) {
2855  const Value *Op0 = I.getOperand(0);
2856  const Type *AggTy = Op0->getType();
2857  const Type *ValTy = I.getType();
2858  bool OutOfUndef = isa<UndefValue>(Op0);
2859
2860  unsigned LinearIndex = ComputeLinearIndex(AggTy, I.idx_begin(), I.idx_end());
2861
2862  SmallVector<EVT, 4> ValValueVTs;
2863  ComputeValueVTs(TLI, ValTy, ValValueVTs);
2864
2865  unsigned NumValValues = ValValueVTs.size();
2866
2867  // Ignore a extractvalue that produces an empty object
2868  if (!NumValValues) {
2869    setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
2870    return;
2871  }
2872
2873  SmallVector<SDValue, 4> Values(NumValValues);
2874
2875  SDValue Agg = getValue(Op0);
2876  // Copy out the selected value(s).
2877  for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
2878    Values[i - LinearIndex] =
2879      OutOfUndef ?
2880        DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
2881        SDValue(Agg.getNode(), Agg.getResNo() + i);
2882
2883  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
2884                           DAG.getVTList(&ValValueVTs[0], NumValValues),
2885                           &Values[0], NumValValues));
2886}
2887
2888void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
2889  SDValue N = getValue(I.getOperand(0));
2890  const Type *Ty = I.getOperand(0)->getType();
2891
2892  for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end();
2893       OI != E; ++OI) {
2894    const Value *Idx = *OI;
2895    if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
2896      unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
2897      if (Field) {
2898        // N = N + Offset
2899        uint64_t Offset = TD->getStructLayout(StTy)->getElementOffset(Field);
2900        N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N,
2901                        DAG.getIntPtrConstant(Offset));
2902      }
2903
2904      Ty = StTy->getElementType(Field);
2905    } else {
2906      Ty = cast<SequentialType>(Ty)->getElementType();
2907
2908      // If this is a constant subscript, handle it quickly.
2909      if (const ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
2910        if (CI->isZero()) continue;
2911        uint64_t Offs =
2912            TD->getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue();
2913        SDValue OffsVal;
2914        EVT PTy = TLI.getPointerTy();
2915        unsigned PtrBits = PTy.getSizeInBits();
2916        if (PtrBits < 64)
2917          OffsVal = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(),
2918                                TLI.getPointerTy(),
2919                                DAG.getConstant(Offs, MVT::i64));
2920        else
2921          OffsVal = DAG.getIntPtrConstant(Offs);
2922
2923        N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N,
2924                        OffsVal);
2925        continue;
2926      }
2927
2928      // N = N + Idx * ElementSize;
2929      APInt ElementSize = APInt(TLI.getPointerTy().getSizeInBits(),
2930                                TD->getTypeAllocSize(Ty));
2931      SDValue IdxN = getValue(Idx);
2932
2933      // If the index is smaller or larger than intptr_t, truncate or extend
2934      // it.
2935      IdxN = DAG.getSExtOrTrunc(IdxN, getCurDebugLoc(), N.getValueType());
2936
2937      // If this is a multiply by a power of two, turn it into a shl
2938      // immediately.  This is a very common case.
2939      if (ElementSize != 1) {
2940        if (ElementSize.isPowerOf2()) {
2941          unsigned Amt = ElementSize.logBase2();
2942          IdxN = DAG.getNode(ISD::SHL, getCurDebugLoc(),
2943                             N.getValueType(), IdxN,
2944                             DAG.getConstant(Amt, TLI.getPointerTy()));
2945        } else {
2946          SDValue Scale = DAG.getConstant(ElementSize, TLI.getPointerTy());
2947          IdxN = DAG.getNode(ISD::MUL, getCurDebugLoc(),
2948                             N.getValueType(), IdxN, Scale);
2949        }
2950      }
2951
2952      N = DAG.getNode(ISD::ADD, getCurDebugLoc(),
2953                      N.getValueType(), N, IdxN);
2954    }
2955  }
2956
2957  setValue(&I, N);
2958}
2959
2960void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
2961  // If this is a fixed sized alloca in the entry block of the function,
2962  // allocate it statically on the stack.
2963  if (FuncInfo.StaticAllocaMap.count(&I))
2964    return;   // getValue will auto-populate this.
2965
2966  const Type *Ty = I.getAllocatedType();
2967  uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty);
2968  unsigned Align =
2969    std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty),
2970             I.getAlignment());
2971
2972  SDValue AllocSize = getValue(I.getArraySize());
2973
2974  EVT IntPtr = TLI.getPointerTy();
2975  if (AllocSize.getValueType() != IntPtr)
2976    AllocSize = DAG.getZExtOrTrunc(AllocSize, getCurDebugLoc(), IntPtr);
2977
2978  AllocSize = DAG.getNode(ISD::MUL, getCurDebugLoc(), IntPtr,
2979                          AllocSize,
2980                          DAG.getConstant(TySize, IntPtr));
2981
2982  // Handle alignment.  If the requested alignment is less than or equal to
2983  // the stack alignment, ignore it.  If the size is greater than or equal to
2984  // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
2985  unsigned StackAlign = TM.getFrameLowering()->getStackAlignment();
2986  if (Align <= StackAlign)
2987    Align = 0;
2988
2989  // Round the size of the allocation up to the stack alignment size
2990  // by add SA-1 to the size.
2991  AllocSize = DAG.getNode(ISD::ADD, getCurDebugLoc(),
2992                          AllocSize.getValueType(), AllocSize,
2993                          DAG.getIntPtrConstant(StackAlign-1));
2994
2995  // Mask out the low bits for alignment purposes.
2996  AllocSize = DAG.getNode(ISD::AND, getCurDebugLoc(),
2997                          AllocSize.getValueType(), AllocSize,
2998                          DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1)));
2999
3000  SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) };
3001  SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
3002  SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, getCurDebugLoc(),
3003                            VTs, Ops, 3);
3004  setValue(&I, DSA);
3005  DAG.setRoot(DSA.getValue(1));
3006
3007  // Inform the Frame Information that we have just allocated a variable-sized
3008  // object.
3009  FuncInfo.MF->getFrameInfo()->CreateVariableSizedObject(Align ? Align : 1);
3010}
3011
3012void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
3013  const Value *SV = I.getOperand(0);
3014  SDValue Ptr = getValue(SV);
3015
3016  const Type *Ty = I.getType();
3017
3018  bool isVolatile = I.isVolatile();
3019  bool isNonTemporal = I.getMetadata("nontemporal") != 0;
3020  unsigned Alignment = I.getAlignment();
3021  const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa);
3022
3023  SmallVector<EVT, 4> ValueVTs;
3024  SmallVector<uint64_t, 4> Offsets;
3025  ComputeValueVTs(TLI, Ty, ValueVTs, &Offsets);
3026  unsigned NumValues = ValueVTs.size();
3027  if (NumValues == 0)
3028    return;
3029
3030  SDValue Root;
3031  bool ConstantMemory = false;
3032  if (I.isVolatile() || NumValues > MaxParallelChains)
3033    // Serialize volatile loads with other side effects.
3034    Root = getRoot();
3035  else if (AA->pointsToConstantMemory(
3036             AliasAnalysis::Location(SV, AA->getTypeStoreSize(Ty), TBAAInfo))) {
3037    // Do not serialize (non-volatile) loads of constant memory with anything.
3038    Root = DAG.getEntryNode();
3039    ConstantMemory = true;
3040  } else {
3041    // Do not serialize non-volatile loads against each other.
3042    Root = DAG.getRoot();
3043  }
3044
3045  SmallVector<SDValue, 4> Values(NumValues);
3046  SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains),
3047                                          NumValues));
3048  EVT PtrVT = Ptr.getValueType();
3049  unsigned ChainI = 0;
3050  for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3051    // Serializing loads here may result in excessive register pressure, and
3052    // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
3053    // could recover a bit by hoisting nodes upward in the chain by recognizing
3054    // they are side-effect free or do not alias. The optimizer should really
3055    // avoid this case by converting large object/array copies to llvm.memcpy
3056    // (MaxParallelChains should always remain as failsafe).
3057    if (ChainI == MaxParallelChains) {
3058      assert(PendingLoads.empty() && "PendingLoads must be serialized first");
3059      SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
3060                                  MVT::Other, &Chains[0], ChainI);
3061      Root = Chain;
3062      ChainI = 0;
3063    }
3064    SDValue A = DAG.getNode(ISD::ADD, getCurDebugLoc(),
3065                            PtrVT, Ptr,
3066                            DAG.getConstant(Offsets[i], PtrVT));
3067    SDValue L = DAG.getLoad(ValueVTs[i], getCurDebugLoc(), Root,
3068                            A, MachinePointerInfo(SV, Offsets[i]), isVolatile,
3069                            isNonTemporal, Alignment, TBAAInfo);
3070
3071    Values[i] = L;
3072    Chains[ChainI] = L.getValue(1);
3073  }
3074
3075  if (!ConstantMemory) {
3076    SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
3077                                MVT::Other, &Chains[0], ChainI);
3078    if (isVolatile)
3079      DAG.setRoot(Chain);
3080    else
3081      PendingLoads.push_back(Chain);
3082  }
3083
3084  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
3085                           DAG.getVTList(&ValueVTs[0], NumValues),
3086                           &Values[0], NumValues));
3087}
3088
3089void SelectionDAGBuilder::visitStore(const StoreInst &I) {
3090  const Value *SrcV = I.getOperand(0);
3091  const Value *PtrV = I.getOperand(1);
3092
3093  SmallVector<EVT, 4> ValueVTs;
3094  SmallVector<uint64_t, 4> Offsets;
3095  ComputeValueVTs(TLI, SrcV->getType(), ValueVTs, &Offsets);
3096  unsigned NumValues = ValueVTs.size();
3097  if (NumValues == 0)
3098    return;
3099
3100  // Get the lowered operands. Note that we do this after
3101  // checking if NumResults is zero, because with zero results
3102  // the operands won't have values in the map.
3103  SDValue Src = getValue(SrcV);
3104  SDValue Ptr = getValue(PtrV);
3105
3106  SDValue Root = getRoot();
3107  SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains),
3108                                          NumValues));
3109  EVT PtrVT = Ptr.getValueType();
3110  bool isVolatile = I.isVolatile();
3111  bool isNonTemporal = I.getMetadata("nontemporal") != 0;
3112  unsigned Alignment = I.getAlignment();
3113  const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa);
3114
3115  unsigned ChainI = 0;
3116  for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3117    // See visitLoad comments.
3118    if (ChainI == MaxParallelChains) {
3119      SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
3120                                  MVT::Other, &Chains[0], ChainI);
3121      Root = Chain;
3122      ChainI = 0;
3123    }
3124    SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT, Ptr,
3125                              DAG.getConstant(Offsets[i], PtrVT));
3126    SDValue St = DAG.getStore(Root, getCurDebugLoc(),
3127                              SDValue(Src.getNode(), Src.getResNo() + i),
3128                              Add, MachinePointerInfo(PtrV, Offsets[i]),
3129                              isVolatile, isNonTemporal, Alignment, TBAAInfo);
3130    Chains[ChainI] = St;
3131  }
3132
3133  SDValue StoreNode = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
3134                                  MVT::Other, &Chains[0], ChainI);
3135  ++SDNodeOrder;
3136  AssignOrderingToNode(StoreNode.getNode());
3137  DAG.setRoot(StoreNode);
3138}
3139
3140/// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
3141/// node.
3142void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
3143                                               unsigned Intrinsic) {
3144  bool HasChain = !I.doesNotAccessMemory();
3145  bool OnlyLoad = HasChain && I.onlyReadsMemory();
3146
3147  // Build the operand list.
3148  SmallVector<SDValue, 8> Ops;
3149  if (HasChain) {  // If this intrinsic has side-effects, chainify it.
3150    if (OnlyLoad) {
3151      // We don't need to serialize loads against other loads.
3152      Ops.push_back(DAG.getRoot());
3153    } else {
3154      Ops.push_back(getRoot());
3155    }
3156  }
3157
3158  // Info is set by getTgtMemInstrinsic
3159  TargetLowering::IntrinsicInfo Info;
3160  bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic);
3161
3162  // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
3163  if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
3164      Info.opc == ISD::INTRINSIC_W_CHAIN)
3165    Ops.push_back(DAG.getConstant(Intrinsic, TLI.getPointerTy()));
3166
3167  // Add all operands of the call to the operand list.
3168  for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
3169    SDValue Op = getValue(I.getArgOperand(i));
3170    assert(TLI.isTypeLegal(Op.getValueType()) &&
3171           "Intrinsic uses a non-legal type?");
3172    Ops.push_back(Op);
3173  }
3174
3175  SmallVector<EVT, 4> ValueVTs;
3176  ComputeValueVTs(TLI, I.getType(), ValueVTs);
3177#ifndef NDEBUG
3178  for (unsigned Val = 0, E = ValueVTs.size(); Val != E; ++Val) {
3179    assert(TLI.isTypeLegal(ValueVTs[Val]) &&
3180           "Intrinsic uses a non-legal type?");
3181  }
3182#endif // NDEBUG
3183
3184  if (HasChain)
3185    ValueVTs.push_back(MVT::Other);
3186
3187  SDVTList VTs = DAG.getVTList(ValueVTs.data(), ValueVTs.size());
3188
3189  // Create the node.
3190  SDValue Result;
3191  if (IsTgtIntrinsic) {
3192    // This is target intrinsic that touches memory
3193    Result = DAG.getMemIntrinsicNode(Info.opc, getCurDebugLoc(),
3194                                     VTs, &Ops[0], Ops.size(),
3195                                     Info.memVT,
3196                                   MachinePointerInfo(Info.ptrVal, Info.offset),
3197                                     Info.align, Info.vol,
3198                                     Info.readMem, Info.writeMem);
3199  } else if (!HasChain) {
3200    Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurDebugLoc(),
3201                         VTs, &Ops[0], Ops.size());
3202  } else if (!I.getType()->isVoidTy()) {
3203    Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurDebugLoc(),
3204                         VTs, &Ops[0], Ops.size());
3205  } else {
3206    Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurDebugLoc(),
3207                         VTs, &Ops[0], Ops.size());
3208  }
3209
3210  if (HasChain) {
3211    SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
3212    if (OnlyLoad)
3213      PendingLoads.push_back(Chain);
3214    else
3215      DAG.setRoot(Chain);
3216  }
3217
3218  if (!I.getType()->isVoidTy()) {
3219    if (const VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
3220      EVT VT = TLI.getValueType(PTy);
3221      Result = DAG.getNode(ISD::BITCAST, getCurDebugLoc(), VT, Result);
3222    }
3223
3224    setValue(&I, Result);
3225  }
3226}
3227
3228/// GetSignificand - Get the significand and build it into a floating-point
3229/// number with exponent of 1:
3230///
3231///   Op = (Op & 0x007fffff) | 0x3f800000;
3232///
3233/// where Op is the hexidecimal representation of floating point value.
3234static SDValue
3235GetSignificand(SelectionDAG &DAG, SDValue Op, DebugLoc dl) {
3236  SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
3237                           DAG.getConstant(0x007fffff, MVT::i32));
3238  SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
3239                           DAG.getConstant(0x3f800000, MVT::i32));
3240  return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
3241}
3242
3243/// GetExponent - Get the exponent:
3244///
3245///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
3246///
3247/// where Op is the hexidecimal representation of floating point value.
3248static SDValue
3249GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI,
3250            DebugLoc dl) {
3251  SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
3252                           DAG.getConstant(0x7f800000, MVT::i32));
3253  SDValue t1 = DAG.getNode(ISD::SRL, dl, MVT::i32, t0,
3254                           DAG.getConstant(23, TLI.getPointerTy()));
3255  SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
3256                           DAG.getConstant(127, MVT::i32));
3257  return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
3258}
3259
3260/// getF32Constant - Get 32-bit floating point constant.
3261static SDValue
3262getF32Constant(SelectionDAG &DAG, unsigned Flt) {
3263  return DAG.getConstantFP(APFloat(APInt(32, Flt)), MVT::f32);
3264}
3265
3266/// Inlined utility function to implement binary input atomic intrinsics for
3267/// visitIntrinsicCall: I is a call instruction
3268///                     Op is the associated NodeType for I
3269const char *
3270SelectionDAGBuilder::implVisitBinaryAtomic(const CallInst& I,
3271                                           ISD::NodeType Op) {
3272  SDValue Root = getRoot();
3273  SDValue L =
3274    DAG.getAtomic(Op, getCurDebugLoc(),
3275                  getValue(I.getArgOperand(1)).getValueType().getSimpleVT(),
3276                  Root,
3277                  getValue(I.getArgOperand(0)),
3278                  getValue(I.getArgOperand(1)),
3279                  I.getArgOperand(0));
3280  setValue(&I, L);
3281  DAG.setRoot(L.getValue(1));
3282  return 0;
3283}
3284
3285// implVisitAluOverflow - Lower arithmetic overflow instrinsics.
3286const char *
3287SelectionDAGBuilder::implVisitAluOverflow(const CallInst &I, ISD::NodeType Op) {
3288  SDValue Op1 = getValue(I.getArgOperand(0));
3289  SDValue Op2 = getValue(I.getArgOperand(1));
3290
3291  SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1);
3292  setValue(&I, DAG.getNode(Op, getCurDebugLoc(), VTs, Op1, Op2));
3293  return 0;
3294}
3295
3296/// visitExp - Lower an exp intrinsic. Handles the special sequences for
3297/// limited-precision mode.
3298void
3299SelectionDAGBuilder::visitExp(const CallInst &I) {
3300  SDValue result;
3301  DebugLoc dl = getCurDebugLoc();
3302
3303  if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3304      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3305    SDValue Op = getValue(I.getArgOperand(0));
3306
3307    // Put the exponent in the right bit position for later addition to the
3308    // final result:
3309    //
3310    //   #define LOG2OFe 1.4426950f
3311    //   IntegerPartOfX = ((int32_t)(X * LOG2OFe));
3312    SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
3313                             getF32Constant(DAG, 0x3fb8aa3b));
3314    SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
3315
3316    //   FractionalPartOfX = (X * LOG2OFe) - (float)IntegerPartOfX;
3317    SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
3318    SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
3319
3320    //   IntegerPartOfX <<= 23;
3321    IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
3322                                 DAG.getConstant(23, TLI.getPointerTy()));
3323
3324    if (LimitFloatPrecision <= 6) {
3325      // For floating-point precision of 6:
3326      //
3327      //   TwoToFractionalPartOfX =
3328      //     0.997535578f +
3329      //       (0.735607626f + 0.252464424f * x) * x;
3330      //
3331      // error 0.0144103317, which is 6 bits
3332      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3333                               getF32Constant(DAG, 0x3e814304));
3334      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3335                               getF32Constant(DAG, 0x3f3c50c8));
3336      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3337      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3338                               getF32Constant(DAG, 0x3f7f5e7e));
3339      SDValue TwoToFracPartOfX = DAG.getNode(ISD::BITCAST, dl,MVT::i32, t5);
3340
3341      // Add the exponent into the result in integer domain.
3342      SDValue t6 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3343                               TwoToFracPartOfX, IntegerPartOfX);
3344
3345      result = DAG.getNode(ISD::BITCAST, dl, MVT::f32, t6);
3346    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3347      // For floating-point precision of 12:
3348      //
3349      //   TwoToFractionalPartOfX =
3350      //     0.999892986f +
3351      //       (0.696457318f +
3352      //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
3353      //
3354      // 0.000107046256 error, which is 13 to 14 bits
3355      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3356                               getF32Constant(DAG, 0x3da235e3));
3357      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3358                               getF32Constant(DAG, 0x3e65b8f3));
3359      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3360      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3361                               getF32Constant(DAG, 0x3f324b07));
3362      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3363      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3364                               getF32Constant(DAG, 0x3f7ff8fd));
3365      SDValue TwoToFracPartOfX = DAG.getNode(ISD::BITCAST, dl,MVT::i32, t7);
3366
3367      // Add the exponent into the result in integer domain.
3368      SDValue t8 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3369                               TwoToFracPartOfX, IntegerPartOfX);
3370
3371      result = DAG.getNode(ISD::BITCAST, dl, MVT::f32, t8);
3372    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3373      // For floating-point precision of 18:
3374      //
3375      //   TwoToFractionalPartOfX =
3376      //     0.999999982f +
3377      //       (0.693148872f +
3378      //         (0.240227044f +
3379      //           (0.554906021e-1f +
3380      //             (0.961591928e-2f +
3381      //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
3382      //
3383      // error 2.47208000*10^(-7), which is better than 18 bits
3384      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3385                               getF32Constant(DAG, 0x3924b03e));
3386      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3387                               getF32Constant(DAG, 0x3ab24b87));
3388      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3389      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3390                               getF32Constant(DAG, 0x3c1d8c17));
3391      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3392      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3393                               getF32Constant(DAG, 0x3d634a1d));
3394      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3395      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3396                               getF32Constant(DAG, 0x3e75fe14));
3397      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3398      SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
3399                                getF32Constant(DAG, 0x3f317234));
3400      SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
3401      SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
3402                                getF32Constant(DAG, 0x3f800000));
3403      SDValue TwoToFracPartOfX = DAG.getNode(ISD::BITCAST, dl,
3404                                             MVT::i32, t13);
3405
3406      // Add the exponent into the result in integer domain.
3407      SDValue t14 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3408                                TwoToFracPartOfX, IntegerPartOfX);
3409
3410      result = DAG.getNode(ISD::BITCAST, dl, MVT::f32, t14);
3411    }
3412  } else {
3413    // No special expansion.
3414    result = DAG.getNode(ISD::FEXP, dl,
3415                         getValue(I.getArgOperand(0)).getValueType(),
3416                         getValue(I.getArgOperand(0)));
3417  }
3418
3419  setValue(&I, result);
3420}
3421
3422/// visitLog - Lower a log intrinsic. Handles the special sequences for
3423/// limited-precision mode.
3424void
3425SelectionDAGBuilder::visitLog(const CallInst &I) {
3426  SDValue result;
3427  DebugLoc dl = getCurDebugLoc();
3428
3429  if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3430      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3431    SDValue Op = getValue(I.getArgOperand(0));
3432    SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
3433
3434    // Scale the exponent by log(2) [0.69314718f].
3435    SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
3436    SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
3437                                        getF32Constant(DAG, 0x3f317218));
3438
3439    // Get the significand and build it into a floating-point number with
3440    // exponent of 1.
3441    SDValue X = GetSignificand(DAG, Op1, dl);
3442
3443    if (LimitFloatPrecision <= 6) {
3444      // For floating-point precision of 6:
3445      //
3446      //   LogofMantissa =
3447      //     -1.1609546f +
3448      //       (1.4034025f - 0.23903021f * x) * x;
3449      //
3450      // error 0.0034276066, which is better than 8 bits
3451      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3452                               getF32Constant(DAG, 0xbe74c456));
3453      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3454                               getF32Constant(DAG, 0x3fb3a2b1));
3455      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3456      SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3457                                          getF32Constant(DAG, 0x3f949a29));
3458
3459      result = DAG.getNode(ISD::FADD, dl,
3460                           MVT::f32, LogOfExponent, LogOfMantissa);
3461    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3462      // For floating-point precision of 12:
3463      //
3464      //   LogOfMantissa =
3465      //     -1.7417939f +
3466      //       (2.8212026f +
3467      //         (-1.4699568f +
3468      //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
3469      //
3470      // error 0.000061011436, which is 14 bits
3471      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3472                               getF32Constant(DAG, 0xbd67b6d6));
3473      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3474                               getF32Constant(DAG, 0x3ee4f4b8));
3475      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3476      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3477                               getF32Constant(DAG, 0x3fbc278b));
3478      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3479      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3480                               getF32Constant(DAG, 0x40348e95));
3481      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3482      SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3483                                          getF32Constant(DAG, 0x3fdef31a));
3484
3485      result = DAG.getNode(ISD::FADD, dl,
3486                           MVT::f32, LogOfExponent, LogOfMantissa);
3487    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3488      // For floating-point precision of 18:
3489      //
3490      //   LogOfMantissa =
3491      //     -2.1072184f +
3492      //       (4.2372794f +
3493      //         (-3.7029485f +
3494      //           (2.2781945f +
3495      //             (-0.87823314f +
3496      //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
3497      //
3498      // error 0.0000023660568, which is better than 18 bits
3499      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3500                               getF32Constant(DAG, 0xbc91e5ac));
3501      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3502                               getF32Constant(DAG, 0x3e4350aa));
3503      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3504      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3505                               getF32Constant(DAG, 0x3f60d3e3));
3506      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3507      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3508                               getF32Constant(DAG, 0x4011cdf0));
3509      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3510      SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3511                               getF32Constant(DAG, 0x406cfd1c));
3512      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3513      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3514                               getF32Constant(DAG, 0x408797cb));
3515      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3516      SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
3517                                          getF32Constant(DAG, 0x4006dcab));
3518
3519      result = DAG.getNode(ISD::FADD, dl,
3520                           MVT::f32, LogOfExponent, LogOfMantissa);
3521    }
3522  } else {
3523    // No special expansion.
3524    result = DAG.getNode(ISD::FLOG, dl,
3525                         getValue(I.getArgOperand(0)).getValueType(),
3526                         getValue(I.getArgOperand(0)));
3527  }
3528
3529  setValue(&I, result);
3530}
3531
3532/// visitLog2 - Lower a log2 intrinsic. Handles the special sequences for
3533/// limited-precision mode.
3534void
3535SelectionDAGBuilder::visitLog2(const CallInst &I) {
3536  SDValue result;
3537  DebugLoc dl = getCurDebugLoc();
3538
3539  if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3540      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3541    SDValue Op = getValue(I.getArgOperand(0));
3542    SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
3543
3544    // Get the exponent.
3545    SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
3546
3547    // Get the significand and build it into a floating-point number with
3548    // exponent of 1.
3549    SDValue X = GetSignificand(DAG, Op1, dl);
3550
3551    // Different possible minimax approximations of significand in
3552    // floating-point for various degrees of accuracy over [1,2].
3553    if (LimitFloatPrecision <= 6) {
3554      // For floating-point precision of 6:
3555      //
3556      //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
3557      //
3558      // error 0.0049451742, which is more than 7 bits
3559      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3560                               getF32Constant(DAG, 0xbeb08fe0));
3561      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3562                               getF32Constant(DAG, 0x40019463));
3563      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3564      SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3565                                           getF32Constant(DAG, 0x3fd6633d));
3566
3567      result = DAG.getNode(ISD::FADD, dl,
3568                           MVT::f32, LogOfExponent, Log2ofMantissa);
3569    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3570      // For floating-point precision of 12:
3571      //
3572      //   Log2ofMantissa =
3573      //     -2.51285454f +
3574      //       (4.07009056f +
3575      //         (-2.12067489f +
3576      //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
3577      //
3578      // error 0.0000876136000, which is better than 13 bits
3579      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3580                               getF32Constant(DAG, 0xbda7262e));
3581      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3582                               getF32Constant(DAG, 0x3f25280b));
3583      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3584      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3585                               getF32Constant(DAG, 0x4007b923));
3586      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3587      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3588                               getF32Constant(DAG, 0x40823e2f));
3589      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3590      SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3591                                           getF32Constant(DAG, 0x4020d29c));
3592
3593      result = DAG.getNode(ISD::FADD, dl,
3594                           MVT::f32, LogOfExponent, Log2ofMantissa);
3595    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3596      // For floating-point precision of 18:
3597      //
3598      //   Log2ofMantissa =
3599      //     -3.0400495f +
3600      //       (6.1129976f +
3601      //         (-5.3420409f +
3602      //           (3.2865683f +
3603      //             (-1.2669343f +
3604      //               (0.27515199f -
3605      //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
3606      //
3607      // error 0.0000018516, which is better than 18 bits
3608      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3609                               getF32Constant(DAG, 0xbcd2769e));
3610      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3611                               getF32Constant(DAG, 0x3e8ce0b9));
3612      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3613      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3614                               getF32Constant(DAG, 0x3fa22ae7));
3615      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3616      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3617                               getF32Constant(DAG, 0x40525723));
3618      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3619      SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3620                               getF32Constant(DAG, 0x40aaf200));
3621      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3622      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3623                               getF32Constant(DAG, 0x40c39dad));
3624      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3625      SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
3626                                           getF32Constant(DAG, 0x4042902c));
3627
3628      result = DAG.getNode(ISD::FADD, dl,
3629                           MVT::f32, LogOfExponent, Log2ofMantissa);
3630    }
3631  } else {
3632    // No special expansion.
3633    result = DAG.getNode(ISD::FLOG2, dl,
3634                         getValue(I.getArgOperand(0)).getValueType(),
3635                         getValue(I.getArgOperand(0)));
3636  }
3637
3638  setValue(&I, result);
3639}
3640
3641/// visitLog10 - Lower a log10 intrinsic. Handles the special sequences for
3642/// limited-precision mode.
3643void
3644SelectionDAGBuilder::visitLog10(const CallInst &I) {
3645  SDValue result;
3646  DebugLoc dl = getCurDebugLoc();
3647
3648  if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3649      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3650    SDValue Op = getValue(I.getArgOperand(0));
3651    SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
3652
3653    // Scale the exponent by log10(2) [0.30102999f].
3654    SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
3655    SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
3656                                        getF32Constant(DAG, 0x3e9a209a));
3657
3658    // Get the significand and build it into a floating-point number with
3659    // exponent of 1.
3660    SDValue X = GetSignificand(DAG, Op1, dl);
3661
3662    if (LimitFloatPrecision <= 6) {
3663      // For floating-point precision of 6:
3664      //
3665      //   Log10ofMantissa =
3666      //     -0.50419619f +
3667      //       (0.60948995f - 0.10380950f * x) * x;
3668      //
3669      // error 0.0014886165, which is 6 bits
3670      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3671                               getF32Constant(DAG, 0xbdd49a13));
3672      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3673                               getF32Constant(DAG, 0x3f1c0789));
3674      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3675      SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3676                                            getF32Constant(DAG, 0x3f011300));
3677
3678      result = DAG.getNode(ISD::FADD, dl,
3679                           MVT::f32, LogOfExponent, Log10ofMantissa);
3680    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3681      // For floating-point precision of 12:
3682      //
3683      //   Log10ofMantissa =
3684      //     -0.64831180f +
3685      //       (0.91751397f +
3686      //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
3687      //
3688      // error 0.00019228036, which is better than 12 bits
3689      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3690                               getF32Constant(DAG, 0x3d431f31));
3691      SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
3692                               getF32Constant(DAG, 0x3ea21fb2));
3693      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3694      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3695                               getF32Constant(DAG, 0x3f6ae232));
3696      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3697      SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
3698                                            getF32Constant(DAG, 0x3f25f7c3));
3699
3700      result = DAG.getNode(ISD::FADD, dl,
3701                           MVT::f32, LogOfExponent, Log10ofMantissa);
3702    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3703      // For floating-point precision of 18:
3704      //
3705      //   Log10ofMantissa =
3706      //     -0.84299375f +
3707      //       (1.5327582f +
3708      //         (-1.0688956f +
3709      //           (0.49102474f +
3710      //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
3711      //
3712      // error 0.0000037995730, which is better than 18 bits
3713      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3714                               getF32Constant(DAG, 0x3c5d51ce));
3715      SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
3716                               getF32Constant(DAG, 0x3e00685a));
3717      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3718      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3719                               getF32Constant(DAG, 0x3efb6798));
3720      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3721      SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
3722                               getF32Constant(DAG, 0x3f88d192));
3723      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3724      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3725                               getF32Constant(DAG, 0x3fc4316c));
3726      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3727      SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
3728                                            getF32Constant(DAG, 0x3f57ce70));
3729
3730      result = DAG.getNode(ISD::FADD, dl,
3731                           MVT::f32, LogOfExponent, Log10ofMantissa);
3732    }
3733  } else {
3734    // No special expansion.
3735    result = DAG.getNode(ISD::FLOG10, dl,
3736                         getValue(I.getArgOperand(0)).getValueType(),
3737                         getValue(I.getArgOperand(0)));
3738  }
3739
3740  setValue(&I, result);
3741}
3742
3743/// visitExp2 - Lower an exp2 intrinsic. Handles the special sequences for
3744/// limited-precision mode.
3745void
3746SelectionDAGBuilder::visitExp2(const CallInst &I) {
3747  SDValue result;
3748  DebugLoc dl = getCurDebugLoc();
3749
3750  if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3751      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3752    SDValue Op = getValue(I.getArgOperand(0));
3753
3754    SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Op);
3755
3756    //   FractionalPartOfX = x - (float)IntegerPartOfX;
3757    SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
3758    SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, Op, t1);
3759
3760    //   IntegerPartOfX <<= 23;
3761    IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
3762                                 DAG.getConstant(23, TLI.getPointerTy()));
3763
3764    if (LimitFloatPrecision <= 6) {
3765      // For floating-point precision of 6:
3766      //
3767      //   TwoToFractionalPartOfX =
3768      //     0.997535578f +
3769      //       (0.735607626f + 0.252464424f * x) * x;
3770      //
3771      // error 0.0144103317, which is 6 bits
3772      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3773                               getF32Constant(DAG, 0x3e814304));
3774      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3775                               getF32Constant(DAG, 0x3f3c50c8));
3776      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3777      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3778                               getF32Constant(DAG, 0x3f7f5e7e));
3779      SDValue t6 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t5);
3780      SDValue TwoToFractionalPartOfX =
3781        DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX);
3782
3783      result = DAG.getNode(ISD::BITCAST, dl,
3784                           MVT::f32, TwoToFractionalPartOfX);
3785    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3786      // For floating-point precision of 12:
3787      //
3788      //   TwoToFractionalPartOfX =
3789      //     0.999892986f +
3790      //       (0.696457318f +
3791      //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
3792      //
3793      // error 0.000107046256, which is 13 to 14 bits
3794      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3795                               getF32Constant(DAG, 0x3da235e3));
3796      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3797                               getF32Constant(DAG, 0x3e65b8f3));
3798      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3799      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3800                               getF32Constant(DAG, 0x3f324b07));
3801      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3802      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3803                               getF32Constant(DAG, 0x3f7ff8fd));
3804      SDValue t8 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t7);
3805      SDValue TwoToFractionalPartOfX =
3806        DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX);
3807
3808      result = DAG.getNode(ISD::BITCAST, dl,
3809                           MVT::f32, TwoToFractionalPartOfX);
3810    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3811      // For floating-point precision of 18:
3812      //
3813      //   TwoToFractionalPartOfX =
3814      //     0.999999982f +
3815      //       (0.693148872f +
3816      //         (0.240227044f +
3817      //           (0.554906021e-1f +
3818      //             (0.961591928e-2f +
3819      //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
3820      // error 2.47208000*10^(-7), which is better than 18 bits
3821      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3822                               getF32Constant(DAG, 0x3924b03e));
3823      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3824                               getF32Constant(DAG, 0x3ab24b87));
3825      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3826      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3827                               getF32Constant(DAG, 0x3c1d8c17));
3828      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3829      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3830                               getF32Constant(DAG, 0x3d634a1d));
3831      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3832      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3833                               getF32Constant(DAG, 0x3e75fe14));
3834      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3835      SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
3836                                getF32Constant(DAG, 0x3f317234));
3837      SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
3838      SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
3839                                getF32Constant(DAG, 0x3f800000));
3840      SDValue t14 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t13);
3841      SDValue TwoToFractionalPartOfX =
3842        DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX);
3843
3844      result = DAG.getNode(ISD::BITCAST, dl,
3845                           MVT::f32, TwoToFractionalPartOfX);
3846    }
3847  } else {
3848    // No special expansion.
3849    result = DAG.getNode(ISD::FEXP2, dl,
3850                         getValue(I.getArgOperand(0)).getValueType(),
3851                         getValue(I.getArgOperand(0)));
3852  }
3853
3854  setValue(&I, result);
3855}
3856
3857/// visitPow - Lower a pow intrinsic. Handles the special sequences for
3858/// limited-precision mode with x == 10.0f.
3859void
3860SelectionDAGBuilder::visitPow(const CallInst &I) {
3861  SDValue result;
3862  const Value *Val = I.getArgOperand(0);
3863  DebugLoc dl = getCurDebugLoc();
3864  bool IsExp10 = false;
3865
3866  if (getValue(Val).getValueType() == MVT::f32 &&
3867      getValue(I.getArgOperand(1)).getValueType() == MVT::f32 &&
3868      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3869    if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(Val))) {
3870      if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
3871        APFloat Ten(10.0f);
3872        IsExp10 = CFP->getValueAPF().bitwiseIsEqual(Ten);
3873      }
3874    }
3875  }
3876
3877  if (IsExp10 && LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3878    SDValue Op = getValue(I.getArgOperand(1));
3879
3880    // Put the exponent in the right bit position for later addition to the
3881    // final result:
3882    //
3883    //   #define LOG2OF10 3.3219281f
3884    //   IntegerPartOfX = (int32_t)(x * LOG2OF10);
3885    SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
3886                             getF32Constant(DAG, 0x40549a78));
3887    SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
3888
3889    //   FractionalPartOfX = x - (float)IntegerPartOfX;
3890    SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
3891    SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
3892
3893    //   IntegerPartOfX <<= 23;
3894    IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
3895                                 DAG.getConstant(23, TLI.getPointerTy()));
3896
3897    if (LimitFloatPrecision <= 6) {
3898      // For floating-point precision of 6:
3899      //
3900      //   twoToFractionalPartOfX =
3901      //     0.997535578f +
3902      //       (0.735607626f + 0.252464424f * x) * x;
3903      //
3904      // error 0.0144103317, which is 6 bits
3905      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3906                               getF32Constant(DAG, 0x3e814304));
3907      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3908                               getF32Constant(DAG, 0x3f3c50c8));
3909      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3910      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3911                               getF32Constant(DAG, 0x3f7f5e7e));
3912      SDValue t6 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t5);
3913      SDValue TwoToFractionalPartOfX =
3914        DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX);
3915
3916      result = DAG.getNode(ISD::BITCAST, dl,
3917                           MVT::f32, TwoToFractionalPartOfX);
3918    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3919      // For floating-point precision of 12:
3920      //
3921      //   TwoToFractionalPartOfX =
3922      //     0.999892986f +
3923      //       (0.696457318f +
3924      //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
3925      //
3926      // error 0.000107046256, which is 13 to 14 bits
3927      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3928                               getF32Constant(DAG, 0x3da235e3));
3929      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3930                               getF32Constant(DAG, 0x3e65b8f3));
3931      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3932      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3933                               getF32Constant(DAG, 0x3f324b07));
3934      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3935      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3936                               getF32Constant(DAG, 0x3f7ff8fd));
3937      SDValue t8 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t7);
3938      SDValue TwoToFractionalPartOfX =
3939        DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX);
3940
3941      result = DAG.getNode(ISD::BITCAST, dl,
3942                           MVT::f32, TwoToFractionalPartOfX);
3943    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3944      // For floating-point precision of 18:
3945      //
3946      //   TwoToFractionalPartOfX =
3947      //     0.999999982f +
3948      //       (0.693148872f +
3949      //         (0.240227044f +
3950      //           (0.554906021e-1f +
3951      //             (0.961591928e-2f +
3952      //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
3953      // error 2.47208000*10^(-7), which is better than 18 bits
3954      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3955                               getF32Constant(DAG, 0x3924b03e));
3956      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3957                               getF32Constant(DAG, 0x3ab24b87));
3958      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3959      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3960                               getF32Constant(DAG, 0x3c1d8c17));
3961      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3962      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3963                               getF32Constant(DAG, 0x3d634a1d));
3964      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3965      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3966                               getF32Constant(DAG, 0x3e75fe14));
3967      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3968      SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
3969                                getF32Constant(DAG, 0x3f317234));
3970      SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
3971      SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
3972                                getF32Constant(DAG, 0x3f800000));
3973      SDValue t14 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t13);
3974      SDValue TwoToFractionalPartOfX =
3975        DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX);
3976
3977      result = DAG.getNode(ISD::BITCAST, dl,
3978                           MVT::f32, TwoToFractionalPartOfX);
3979    }
3980  } else {
3981    // No special expansion.
3982    result = DAG.getNode(ISD::FPOW, dl,
3983                         getValue(I.getArgOperand(0)).getValueType(),
3984                         getValue(I.getArgOperand(0)),
3985                         getValue(I.getArgOperand(1)));
3986  }
3987
3988  setValue(&I, result);
3989}
3990
3991
3992/// ExpandPowI - Expand a llvm.powi intrinsic.
3993static SDValue ExpandPowI(DebugLoc DL, SDValue LHS, SDValue RHS,
3994                          SelectionDAG &DAG) {
3995  // If RHS is a constant, we can expand this out to a multiplication tree,
3996  // otherwise we end up lowering to a call to __powidf2 (for example).  When
3997  // optimizing for size, we only want to do this if the expansion would produce
3998  // a small number of multiplies, otherwise we do the full expansion.
3999  if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
4000    // Get the exponent as a positive value.
4001    unsigned Val = RHSC->getSExtValue();
4002    if ((int)Val < 0) Val = -Val;
4003
4004    // powi(x, 0) -> 1.0
4005    if (Val == 0)
4006      return DAG.getConstantFP(1.0, LHS.getValueType());
4007
4008    const Function *F = DAG.getMachineFunction().getFunction();
4009    if (!F->hasFnAttr(Attribute::OptimizeForSize) ||
4010        // If optimizing for size, don't insert too many multiplies.  This
4011        // inserts up to 5 multiplies.
4012        CountPopulation_32(Val)+Log2_32(Val) < 7) {
4013      // We use the simple binary decomposition method to generate the multiply
4014      // sequence.  There are more optimal ways to do this (for example,
4015      // powi(x,15) generates one more multiply than it should), but this has
4016      // the benefit of being both really simple and much better than a libcall.
4017      SDValue Res;  // Logically starts equal to 1.0
4018      SDValue CurSquare = LHS;
4019      while (Val) {
4020        if (Val & 1) {
4021          if (Res.getNode())
4022            Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare);
4023          else
4024            Res = CurSquare;  // 1.0*CurSquare.
4025        }
4026
4027        CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
4028                                CurSquare, CurSquare);
4029        Val >>= 1;
4030      }
4031
4032      // If the original was negative, invert the result, producing 1/(x*x*x).
4033      if (RHSC->getSExtValue() < 0)
4034        Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
4035                          DAG.getConstantFP(1.0, LHS.getValueType()), Res);
4036      return Res;
4037    }
4038  }
4039
4040  // Otherwise, expand to a libcall.
4041  return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
4042}
4043
4044// getTruncatedArgReg - Find underlying register used for an truncated
4045// argument.
4046static unsigned getTruncatedArgReg(const SDValue &N) {
4047  if (N.getOpcode() != ISD::TRUNCATE)
4048    return 0;
4049
4050  const SDValue &Ext = N.getOperand(0);
4051  if (Ext.getOpcode() == ISD::AssertZext || Ext.getOpcode() == ISD::AssertSext){
4052    const SDValue &CFR = Ext.getOperand(0);
4053    if (CFR.getOpcode() == ISD::CopyFromReg)
4054      return cast<RegisterSDNode>(CFR.getOperand(1))->getReg();
4055    else
4056      if (CFR.getOpcode() == ISD::TRUNCATE)
4057        return getTruncatedArgReg(CFR);
4058  }
4059  return 0;
4060}
4061
4062/// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function
4063/// argument, create the corresponding DBG_VALUE machine instruction for it now.
4064/// At the end of instruction selection, they will be inserted to the entry BB.
4065bool
4066SelectionDAGBuilder::EmitFuncArgumentDbgValue(const Value *V, MDNode *Variable,
4067                                              int64_t Offset,
4068                                              const SDValue &N) {
4069  const Argument *Arg = dyn_cast<Argument>(V);
4070  if (!Arg)
4071    return false;
4072
4073  MachineFunction &MF = DAG.getMachineFunction();
4074  const TargetInstrInfo *TII = DAG.getTarget().getInstrInfo();
4075  const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
4076
4077  // Ignore inlined function arguments here.
4078  DIVariable DV(Variable);
4079  if (DV.isInlinedFnArgument(MF.getFunction()))
4080    return false;
4081
4082  unsigned Reg = 0;
4083  if (Arg->hasByValAttr()) {
4084    // Byval arguments' frame index is recorded during argument lowering.
4085    // Use this info directly.
4086    Reg = TRI->getFrameRegister(MF);
4087    Offset = FuncInfo.getByValArgumentFrameIndex(Arg);
4088    // If byval argument ofset is not recorded then ignore this.
4089    if (!Offset)
4090      Reg = 0;
4091  }
4092
4093  if (N.getNode()) {
4094    if (N.getOpcode() == ISD::CopyFromReg)
4095      Reg = cast<RegisterSDNode>(N.getOperand(1))->getReg();
4096    else
4097      Reg = getTruncatedArgReg(N);
4098    if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) {
4099      MachineRegisterInfo &RegInfo = MF.getRegInfo();
4100      unsigned PR = RegInfo.getLiveInPhysReg(Reg);
4101      if (PR)
4102        Reg = PR;
4103    }
4104  }
4105
4106  if (!Reg) {
4107    // Check if ValueMap has reg number.
4108    DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
4109    if (VMI != FuncInfo.ValueMap.end())
4110      Reg = VMI->second;
4111  }
4112
4113  if (!Reg && N.getNode()) {
4114    // Check if frame index is available.
4115    if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode()))
4116      if (FrameIndexSDNode *FINode =
4117          dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) {
4118        Reg = TRI->getFrameRegister(MF);
4119        Offset = FINode->getIndex();
4120      }
4121  }
4122
4123  if (!Reg)
4124    return false;
4125
4126  MachineInstrBuilder MIB = BuildMI(MF, getCurDebugLoc(),
4127                                    TII->get(TargetOpcode::DBG_VALUE))
4128    .addReg(Reg, RegState::Debug).addImm(Offset).addMetadata(Variable);
4129  FuncInfo.ArgDbgValues.push_back(&*MIB);
4130  return true;
4131}
4132
4133// VisualStudio defines setjmp as _setjmp
4134#if defined(_MSC_VER) && defined(setjmp) && \
4135                         !defined(setjmp_undefined_for_msvc)
4136#  pragma push_macro("setjmp")
4137#  undef setjmp
4138#  define setjmp_undefined_for_msvc
4139#endif
4140
4141/// visitIntrinsicCall - Lower the call to the specified intrinsic function.  If
4142/// we want to emit this as a call to a named external function, return the name
4143/// otherwise lower it and return null.
4144const char *
4145SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) {
4146  DebugLoc dl = getCurDebugLoc();
4147  SDValue Res;
4148
4149  switch (Intrinsic) {
4150  default:
4151    // By default, turn this into a target intrinsic node.
4152    visitTargetIntrinsic(I, Intrinsic);
4153    return 0;
4154  case Intrinsic::vastart:  visitVAStart(I); return 0;
4155  case Intrinsic::vaend:    visitVAEnd(I); return 0;
4156  case Intrinsic::vacopy:   visitVACopy(I); return 0;
4157  case Intrinsic::returnaddress:
4158    setValue(&I, DAG.getNode(ISD::RETURNADDR, dl, TLI.getPointerTy(),
4159                             getValue(I.getArgOperand(0))));
4160    return 0;
4161  case Intrinsic::frameaddress:
4162    setValue(&I, DAG.getNode(ISD::FRAMEADDR, dl, TLI.getPointerTy(),
4163                             getValue(I.getArgOperand(0))));
4164    return 0;
4165  case Intrinsic::setjmp:
4166    return "_setjmp"+!TLI.usesUnderscoreSetJmp();
4167  case Intrinsic::longjmp:
4168    return "_longjmp"+!TLI.usesUnderscoreLongJmp();
4169  case Intrinsic::memcpy: {
4170    // Assert for address < 256 since we support only user defined address
4171    // spaces.
4172    assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4173           < 256 &&
4174           cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace()
4175           < 256 &&
4176           "Unknown address space");
4177    SDValue Op1 = getValue(I.getArgOperand(0));
4178    SDValue Op2 = getValue(I.getArgOperand(1));
4179    SDValue Op3 = getValue(I.getArgOperand(2));
4180    unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4181    bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4182    DAG.setRoot(DAG.getMemcpy(getRoot(), dl, Op1, Op2, Op3, Align, isVol, false,
4183                              MachinePointerInfo(I.getArgOperand(0)),
4184                              MachinePointerInfo(I.getArgOperand(1))));
4185    return 0;
4186  }
4187  case Intrinsic::memset: {
4188    // Assert for address < 256 since we support only user defined address
4189    // spaces.
4190    assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4191           < 256 &&
4192           "Unknown address space");
4193    SDValue Op1 = getValue(I.getArgOperand(0));
4194    SDValue Op2 = getValue(I.getArgOperand(1));
4195    SDValue Op3 = getValue(I.getArgOperand(2));
4196    unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4197    bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4198    DAG.setRoot(DAG.getMemset(getRoot(), dl, Op1, Op2, Op3, Align, isVol,
4199                              MachinePointerInfo(I.getArgOperand(0))));
4200    return 0;
4201  }
4202  case Intrinsic::memmove: {
4203    // Assert for address < 256 since we support only user defined address
4204    // spaces.
4205    assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4206           < 256 &&
4207           cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace()
4208           < 256 &&
4209           "Unknown address space");
4210    SDValue Op1 = getValue(I.getArgOperand(0));
4211    SDValue Op2 = getValue(I.getArgOperand(1));
4212    SDValue Op3 = getValue(I.getArgOperand(2));
4213    unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4214    bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4215    DAG.setRoot(DAG.getMemmove(getRoot(), dl, Op1, Op2, Op3, Align, isVol,
4216                               MachinePointerInfo(I.getArgOperand(0)),
4217                               MachinePointerInfo(I.getArgOperand(1))));
4218    return 0;
4219  }
4220  case Intrinsic::dbg_declare: {
4221    const DbgDeclareInst &DI = cast<DbgDeclareInst>(I);
4222    MDNode *Variable = DI.getVariable();
4223    const Value *Address = DI.getAddress();
4224    if (!Address || !DIVariable(DI.getVariable()).Verify())
4225      return 0;
4226
4227    // Build an entry in DbgOrdering.  Debug info input nodes get an SDNodeOrder
4228    // but do not always have a corresponding SDNode built.  The SDNodeOrder
4229    // absolute, but not relative, values are different depending on whether
4230    // debug info exists.
4231    ++SDNodeOrder;
4232
4233    // Check if address has undef value.
4234    if (isa<UndefValue>(Address) ||
4235        (Address->use_empty() && !isa<Argument>(Address))) {
4236      DEBUG(dbgs() << "Dropping debug info for " << DI);
4237      return 0;
4238    }
4239
4240    SDValue &N = NodeMap[Address];
4241    if (!N.getNode() && isa<Argument>(Address))
4242      // Check unused arguments map.
4243      N = UnusedArgNodeMap[Address];
4244    SDDbgValue *SDV;
4245    if (N.getNode()) {
4246      // Parameters are handled specially.
4247      bool isParameter =
4248        DIVariable(Variable).getTag() == dwarf::DW_TAG_arg_variable;
4249      if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
4250        Address = BCI->getOperand(0);
4251      const AllocaInst *AI = dyn_cast<AllocaInst>(Address);
4252
4253      if (isParameter && !AI) {
4254        FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
4255        if (FINode)
4256          // Byval parameter.  We have a frame index at this point.
4257          SDV = DAG.getDbgValue(Variable, FINode->getIndex(),
4258                                0, dl, SDNodeOrder);
4259        else {
4260          // Address is an argument, so try to emit its dbg value using
4261          // virtual register info from the FuncInfo.ValueMap.
4262          EmitFuncArgumentDbgValue(Address, Variable, 0, N);
4263          return 0;
4264        }
4265      } else if (AI)
4266        SDV = DAG.getDbgValue(Variable, N.getNode(), N.getResNo(),
4267                              0, dl, SDNodeOrder);
4268      else {
4269        // Can't do anything with other non-AI cases yet.
4270        DEBUG(dbgs() << "Dropping debug info for " << DI);
4271        return 0;
4272      }
4273      DAG.AddDbgValue(SDV, N.getNode(), isParameter);
4274    } else {
4275      // If Address is an argument then try to emit its dbg value using
4276      // virtual register info from the FuncInfo.ValueMap.
4277      if (!EmitFuncArgumentDbgValue(Address, Variable, 0, N)) {
4278        // If variable is pinned by a alloca in dominating bb then
4279        // use StaticAllocaMap.
4280        if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) {
4281          if (AI->getParent() != DI.getParent()) {
4282            DenseMap<const AllocaInst*, int>::iterator SI =
4283              FuncInfo.StaticAllocaMap.find(AI);
4284            if (SI != FuncInfo.StaticAllocaMap.end()) {
4285              SDV = DAG.getDbgValue(Variable, SI->second,
4286                                    0, dl, SDNodeOrder);
4287              DAG.AddDbgValue(SDV, 0, false);
4288              return 0;
4289            }
4290          }
4291        }
4292        DEBUG(dbgs() << "Dropping debug info for " << DI);
4293      }
4294    }
4295    return 0;
4296  }
4297  case Intrinsic::dbg_value: {
4298    const DbgValueInst &DI = cast<DbgValueInst>(I);
4299    if (!DIVariable(DI.getVariable()).Verify())
4300      return 0;
4301
4302    MDNode *Variable = DI.getVariable();
4303    uint64_t Offset = DI.getOffset();
4304    const Value *V = DI.getValue();
4305    if (!V)
4306      return 0;
4307
4308    // Build an entry in DbgOrdering.  Debug info input nodes get an SDNodeOrder
4309    // but do not always have a corresponding SDNode built.  The SDNodeOrder
4310    // absolute, but not relative, values are different depending on whether
4311    // debug info exists.
4312    ++SDNodeOrder;
4313    SDDbgValue *SDV;
4314    if (isa<ConstantInt>(V) || isa<ConstantFP>(V)) {
4315      SDV = DAG.getDbgValue(Variable, V, Offset, dl, SDNodeOrder);
4316      DAG.AddDbgValue(SDV, 0, false);
4317    } else {
4318      // Do not use getValue() in here; we don't want to generate code at
4319      // this point if it hasn't been done yet.
4320      SDValue N = NodeMap[V];
4321      if (!N.getNode() && isa<Argument>(V))
4322        // Check unused arguments map.
4323        N = UnusedArgNodeMap[V];
4324      if (N.getNode()) {
4325        if (!EmitFuncArgumentDbgValue(V, Variable, Offset, N)) {
4326          SDV = DAG.getDbgValue(Variable, N.getNode(),
4327                                N.getResNo(), Offset, dl, SDNodeOrder);
4328          DAG.AddDbgValue(SDV, N.getNode(), false);
4329        }
4330      } else if (!V->use_empty() ) {
4331        // Do not call getValue(V) yet, as we don't want to generate code.
4332        // Remember it for later.
4333        DanglingDebugInfo DDI(&DI, dl, SDNodeOrder);
4334        DanglingDebugInfoMap[V] = DDI;
4335      } else {
4336        // We may expand this to cover more cases.  One case where we have no
4337        // data available is an unreferenced parameter.
4338        DEBUG(dbgs() << "Dropping debug info for " << DI);
4339      }
4340    }
4341
4342    // Build a debug info table entry.
4343    if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V))
4344      V = BCI->getOperand(0);
4345    const AllocaInst *AI = dyn_cast<AllocaInst>(V);
4346    // Don't handle byval struct arguments or VLAs, for example.
4347    if (!AI)
4348      return 0;
4349    DenseMap<const AllocaInst*, int>::iterator SI =
4350      FuncInfo.StaticAllocaMap.find(AI);
4351    if (SI == FuncInfo.StaticAllocaMap.end())
4352      return 0; // VLAs.
4353    int FI = SI->second;
4354
4355    MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4356    if (!DI.getDebugLoc().isUnknown() && MMI.hasDebugInfo())
4357      MMI.setVariableDbgInfo(Variable, FI, DI.getDebugLoc());
4358    return 0;
4359  }
4360  case Intrinsic::eh_exception: {
4361    // Insert the EXCEPTIONADDR instruction.
4362    assert(FuncInfo.MBB->isLandingPad() &&
4363           "Call to eh.exception not in landing pad!");
4364    SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
4365    SDValue Ops[1];
4366    Ops[0] = DAG.getRoot();
4367    SDValue Op = DAG.getNode(ISD::EXCEPTIONADDR, dl, VTs, Ops, 1);
4368    setValue(&I, Op);
4369    DAG.setRoot(Op.getValue(1));
4370    return 0;
4371  }
4372
4373  case Intrinsic::eh_selector: {
4374    MachineBasicBlock *CallMBB = FuncInfo.MBB;
4375    MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4376    if (CallMBB->isLandingPad())
4377      AddCatchInfo(I, &MMI, CallMBB);
4378    else {
4379#ifndef NDEBUG
4380      FuncInfo.CatchInfoLost.insert(&I);
4381#endif
4382      // FIXME: Mark exception selector register as live in.  Hack for PR1508.
4383      unsigned Reg = TLI.getExceptionSelectorRegister();
4384      if (Reg) FuncInfo.MBB->addLiveIn(Reg);
4385    }
4386
4387    // Insert the EHSELECTION instruction.
4388    SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
4389    SDValue Ops[2];
4390    Ops[0] = getValue(I.getArgOperand(0));
4391    Ops[1] = getRoot();
4392    SDValue Op = DAG.getNode(ISD::EHSELECTION, dl, VTs, Ops, 2);
4393    DAG.setRoot(Op.getValue(1));
4394    setValue(&I, DAG.getSExtOrTrunc(Op, dl, MVT::i32));
4395    return 0;
4396  }
4397
4398  case Intrinsic::eh_typeid_for: {
4399    // Find the type id for the given typeinfo.
4400    GlobalVariable *GV = ExtractTypeInfo(I.getArgOperand(0));
4401    unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV);
4402    Res = DAG.getConstant(TypeID, MVT::i32);
4403    setValue(&I, Res);
4404    return 0;
4405  }
4406
4407  case Intrinsic::eh_return_i32:
4408  case Intrinsic::eh_return_i64:
4409    DAG.getMachineFunction().getMMI().setCallsEHReturn(true);
4410    DAG.setRoot(DAG.getNode(ISD::EH_RETURN, dl,
4411                            MVT::Other,
4412                            getControlRoot(),
4413                            getValue(I.getArgOperand(0)),
4414                            getValue(I.getArgOperand(1))));
4415    return 0;
4416  case Intrinsic::eh_unwind_init:
4417    DAG.getMachineFunction().getMMI().setCallsUnwindInit(true);
4418    return 0;
4419  case Intrinsic::eh_dwarf_cfa: {
4420    SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), dl,
4421                                        TLI.getPointerTy());
4422    SDValue Offset = DAG.getNode(ISD::ADD, dl,
4423                                 TLI.getPointerTy(),
4424                                 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, dl,
4425                                             TLI.getPointerTy()),
4426                                 CfaArg);
4427    SDValue FA = DAG.getNode(ISD::FRAMEADDR, dl,
4428                             TLI.getPointerTy(),
4429                             DAG.getConstant(0, TLI.getPointerTy()));
4430    setValue(&I, DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(),
4431                             FA, Offset));
4432    return 0;
4433  }
4434  case Intrinsic::eh_sjlj_callsite: {
4435    MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4436    ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0));
4437    assert(CI && "Non-constant call site value in eh.sjlj.callsite!");
4438    assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
4439
4440    MMI.setCurrentCallSite(CI->getZExtValue());
4441    return 0;
4442  }
4443  case Intrinsic::eh_sjlj_setjmp: {
4444    setValue(&I, DAG.getNode(ISD::EH_SJLJ_SETJMP, dl, MVT::i32, getRoot(),
4445                             getValue(I.getArgOperand(0))));
4446    return 0;
4447  }
4448  case Intrinsic::eh_sjlj_longjmp: {
4449    DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, dl, MVT::Other,
4450                            getRoot(), getValue(I.getArgOperand(0))));
4451    return 0;
4452  }
4453  case Intrinsic::eh_sjlj_dispatch_setup: {
4454    DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_DISPATCHSETUP, dl, MVT::Other,
4455                            getRoot(), getValue(I.getArgOperand(0))));
4456    return 0;
4457  }
4458
4459  case Intrinsic::x86_mmx_pslli_w:
4460  case Intrinsic::x86_mmx_pslli_d:
4461  case Intrinsic::x86_mmx_pslli_q:
4462  case Intrinsic::x86_mmx_psrli_w:
4463  case Intrinsic::x86_mmx_psrli_d:
4464  case Intrinsic::x86_mmx_psrli_q:
4465  case Intrinsic::x86_mmx_psrai_w:
4466  case Intrinsic::x86_mmx_psrai_d: {
4467    SDValue ShAmt = getValue(I.getArgOperand(1));
4468    if (isa<ConstantSDNode>(ShAmt)) {
4469      visitTargetIntrinsic(I, Intrinsic);
4470      return 0;
4471    }
4472    unsigned NewIntrinsic = 0;
4473    EVT ShAmtVT = MVT::v2i32;
4474    switch (Intrinsic) {
4475    case Intrinsic::x86_mmx_pslli_w:
4476      NewIntrinsic = Intrinsic::x86_mmx_psll_w;
4477      break;
4478    case Intrinsic::x86_mmx_pslli_d:
4479      NewIntrinsic = Intrinsic::x86_mmx_psll_d;
4480      break;
4481    case Intrinsic::x86_mmx_pslli_q:
4482      NewIntrinsic = Intrinsic::x86_mmx_psll_q;
4483      break;
4484    case Intrinsic::x86_mmx_psrli_w:
4485      NewIntrinsic = Intrinsic::x86_mmx_psrl_w;
4486      break;
4487    case Intrinsic::x86_mmx_psrli_d:
4488      NewIntrinsic = Intrinsic::x86_mmx_psrl_d;
4489      break;
4490    case Intrinsic::x86_mmx_psrli_q:
4491      NewIntrinsic = Intrinsic::x86_mmx_psrl_q;
4492      break;
4493    case Intrinsic::x86_mmx_psrai_w:
4494      NewIntrinsic = Intrinsic::x86_mmx_psra_w;
4495      break;
4496    case Intrinsic::x86_mmx_psrai_d:
4497      NewIntrinsic = Intrinsic::x86_mmx_psra_d;
4498      break;
4499    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
4500    }
4501
4502    // The vector shift intrinsics with scalars uses 32b shift amounts but
4503    // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
4504    // to be zero.
4505    // We must do this early because v2i32 is not a legal type.
4506    DebugLoc dl = getCurDebugLoc();
4507    SDValue ShOps[2];
4508    ShOps[0] = ShAmt;
4509    ShOps[1] = DAG.getConstant(0, MVT::i32);
4510    ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 2);
4511    EVT DestVT = TLI.getValueType(I.getType());
4512    ShAmt = DAG.getNode(ISD::BITCAST, dl, DestVT, ShAmt);
4513    Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
4514                       DAG.getConstant(NewIntrinsic, MVT::i32),
4515                       getValue(I.getArgOperand(0)), ShAmt);
4516    setValue(&I, Res);
4517    return 0;
4518  }
4519  case Intrinsic::convertff:
4520  case Intrinsic::convertfsi:
4521  case Intrinsic::convertfui:
4522  case Intrinsic::convertsif:
4523  case Intrinsic::convertuif:
4524  case Intrinsic::convertss:
4525  case Intrinsic::convertsu:
4526  case Intrinsic::convertus:
4527  case Intrinsic::convertuu: {
4528    ISD::CvtCode Code = ISD::CVT_INVALID;
4529    switch (Intrinsic) {
4530    case Intrinsic::convertff:  Code = ISD::CVT_FF; break;
4531    case Intrinsic::convertfsi: Code = ISD::CVT_FS; break;
4532    case Intrinsic::convertfui: Code = ISD::CVT_FU; break;
4533    case Intrinsic::convertsif: Code = ISD::CVT_SF; break;
4534    case Intrinsic::convertuif: Code = ISD::CVT_UF; break;
4535    case Intrinsic::convertss:  Code = ISD::CVT_SS; break;
4536    case Intrinsic::convertsu:  Code = ISD::CVT_SU; break;
4537    case Intrinsic::convertus:  Code = ISD::CVT_US; break;
4538    case Intrinsic::convertuu:  Code = ISD::CVT_UU; break;
4539    }
4540    EVT DestVT = TLI.getValueType(I.getType());
4541    const Value *Op1 = I.getArgOperand(0);
4542    Res = DAG.getConvertRndSat(DestVT, getCurDebugLoc(), getValue(Op1),
4543                               DAG.getValueType(DestVT),
4544                               DAG.getValueType(getValue(Op1).getValueType()),
4545                               getValue(I.getArgOperand(1)),
4546                               getValue(I.getArgOperand(2)),
4547                               Code);
4548    setValue(&I, Res);
4549    return 0;
4550  }
4551  case Intrinsic::sqrt:
4552    setValue(&I, DAG.getNode(ISD::FSQRT, dl,
4553                             getValue(I.getArgOperand(0)).getValueType(),
4554                             getValue(I.getArgOperand(0))));
4555    return 0;
4556  case Intrinsic::powi:
4557    setValue(&I, ExpandPowI(dl, getValue(I.getArgOperand(0)),
4558                            getValue(I.getArgOperand(1)), DAG));
4559    return 0;
4560  case Intrinsic::sin:
4561    setValue(&I, DAG.getNode(ISD::FSIN, dl,
4562                             getValue(I.getArgOperand(0)).getValueType(),
4563                             getValue(I.getArgOperand(0))));
4564    return 0;
4565  case Intrinsic::cos:
4566    setValue(&I, DAG.getNode(ISD::FCOS, dl,
4567                             getValue(I.getArgOperand(0)).getValueType(),
4568                             getValue(I.getArgOperand(0))));
4569    return 0;
4570  case Intrinsic::log:
4571    visitLog(I);
4572    return 0;
4573  case Intrinsic::log2:
4574    visitLog2(I);
4575    return 0;
4576  case Intrinsic::log10:
4577    visitLog10(I);
4578    return 0;
4579  case Intrinsic::exp:
4580    visitExp(I);
4581    return 0;
4582  case Intrinsic::exp2:
4583    visitExp2(I);
4584    return 0;
4585  case Intrinsic::pow:
4586    visitPow(I);
4587    return 0;
4588  case Intrinsic::convert_to_fp16:
4589    setValue(&I, DAG.getNode(ISD::FP32_TO_FP16, dl,
4590                             MVT::i16, getValue(I.getArgOperand(0))));
4591    return 0;
4592  case Intrinsic::convert_from_fp16:
4593    setValue(&I, DAG.getNode(ISD::FP16_TO_FP32, dl,
4594                             MVT::f32, getValue(I.getArgOperand(0))));
4595    return 0;
4596  case Intrinsic::pcmarker: {
4597    SDValue Tmp = getValue(I.getArgOperand(0));
4598    DAG.setRoot(DAG.getNode(ISD::PCMARKER, dl, MVT::Other, getRoot(), Tmp));
4599    return 0;
4600  }
4601  case Intrinsic::readcyclecounter: {
4602    SDValue Op = getRoot();
4603    Res = DAG.getNode(ISD::READCYCLECOUNTER, dl,
4604                      DAG.getVTList(MVT::i64, MVT::Other),
4605                      &Op, 1);
4606    setValue(&I, Res);
4607    DAG.setRoot(Res.getValue(1));
4608    return 0;
4609  }
4610  case Intrinsic::bswap:
4611    setValue(&I, DAG.getNode(ISD::BSWAP, dl,
4612                             getValue(I.getArgOperand(0)).getValueType(),
4613                             getValue(I.getArgOperand(0))));
4614    return 0;
4615  case Intrinsic::cttz: {
4616    SDValue Arg = getValue(I.getArgOperand(0));
4617    EVT Ty = Arg.getValueType();
4618    setValue(&I, DAG.getNode(ISD::CTTZ, dl, Ty, Arg));
4619    return 0;
4620  }
4621  case Intrinsic::ctlz: {
4622    SDValue Arg = getValue(I.getArgOperand(0));
4623    EVT Ty = Arg.getValueType();
4624    setValue(&I, DAG.getNode(ISD::CTLZ, dl, Ty, Arg));
4625    return 0;
4626  }
4627  case Intrinsic::ctpop: {
4628    SDValue Arg = getValue(I.getArgOperand(0));
4629    EVT Ty = Arg.getValueType();
4630    setValue(&I, DAG.getNode(ISD::CTPOP, dl, Ty, Arg));
4631    return 0;
4632  }
4633  case Intrinsic::stacksave: {
4634    SDValue Op = getRoot();
4635    Res = DAG.getNode(ISD::STACKSAVE, dl,
4636                      DAG.getVTList(TLI.getPointerTy(), MVT::Other), &Op, 1);
4637    setValue(&I, Res);
4638    DAG.setRoot(Res.getValue(1));
4639    return 0;
4640  }
4641  case Intrinsic::stackrestore: {
4642    Res = getValue(I.getArgOperand(0));
4643    DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, dl, MVT::Other, getRoot(), Res));
4644    return 0;
4645  }
4646  case Intrinsic::stackprotector: {
4647    // Emit code into the DAG to store the stack guard onto the stack.
4648    MachineFunction &MF = DAG.getMachineFunction();
4649    MachineFrameInfo *MFI = MF.getFrameInfo();
4650    EVT PtrTy = TLI.getPointerTy();
4651
4652    SDValue Src = getValue(I.getArgOperand(0));   // The guard's value.
4653    AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
4654
4655    int FI = FuncInfo.StaticAllocaMap[Slot];
4656    MFI->setStackProtectorIndex(FI);
4657
4658    SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
4659
4660    // Store the stack protector onto the stack.
4661    Res = DAG.getStore(getRoot(), getCurDebugLoc(), Src, FIN,
4662                       MachinePointerInfo::getFixedStack(FI),
4663                       true, false, 0);
4664    setValue(&I, Res);
4665    DAG.setRoot(Res);
4666    return 0;
4667  }
4668  case Intrinsic::objectsize: {
4669    // If we don't know by now, we're never going to know.
4670    ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1));
4671
4672    assert(CI && "Non-constant type in __builtin_object_size?");
4673
4674    SDValue Arg = getValue(I.getCalledValue());
4675    EVT Ty = Arg.getValueType();
4676
4677    if (CI->isZero())
4678      Res = DAG.getConstant(-1ULL, Ty);
4679    else
4680      Res = DAG.getConstant(0, Ty);
4681
4682    setValue(&I, Res);
4683    return 0;
4684  }
4685  case Intrinsic::var_annotation:
4686    // Discard annotate attributes
4687    return 0;
4688
4689  case Intrinsic::init_trampoline: {
4690    const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
4691
4692    SDValue Ops[6];
4693    Ops[0] = getRoot();
4694    Ops[1] = getValue(I.getArgOperand(0));
4695    Ops[2] = getValue(I.getArgOperand(1));
4696    Ops[3] = getValue(I.getArgOperand(2));
4697    Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
4698    Ops[5] = DAG.getSrcValue(F);
4699
4700    Res = DAG.getNode(ISD::TRAMPOLINE, dl,
4701                      DAG.getVTList(TLI.getPointerTy(), MVT::Other),
4702                      Ops, 6);
4703
4704    setValue(&I, Res);
4705    DAG.setRoot(Res.getValue(1));
4706    return 0;
4707  }
4708  case Intrinsic::gcroot:
4709    if (GFI) {
4710      const Value *Alloca = I.getArgOperand(0);
4711      const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
4712
4713      FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
4714      GFI->addStackRoot(FI->getIndex(), TypeMap);
4715    }
4716    return 0;
4717  case Intrinsic::gcread:
4718  case Intrinsic::gcwrite:
4719    llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
4720    return 0;
4721  case Intrinsic::flt_rounds:
4722    setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, dl, MVT::i32));
4723    return 0;
4724  case Intrinsic::trap: {
4725    StringRef TrapFuncName = getTrapFunctionName();
4726    if (TrapFuncName.empty()) {
4727      DAG.setRoot(DAG.getNode(ISD::TRAP, dl,MVT::Other, getRoot()));
4728      return 0;
4729    }
4730    TargetLowering::ArgListTy Args;
4731    std::pair<SDValue, SDValue> Result =
4732      TLI.LowerCallTo(getRoot(), I.getType(),
4733                 false, false, false, false, 0, CallingConv::C,
4734                 /*isTailCall=*/false, /*isReturnValueUsed=*/true,
4735                 DAG.getExternalSymbol(TrapFuncName.data(), TLI.getPointerTy()),
4736                 Args, DAG, getCurDebugLoc());
4737    DAG.setRoot(Result.second);
4738    return 0;
4739  }
4740  case Intrinsic::uadd_with_overflow:
4741    return implVisitAluOverflow(I, ISD::UADDO);
4742  case Intrinsic::sadd_with_overflow:
4743    return implVisitAluOverflow(I, ISD::SADDO);
4744  case Intrinsic::usub_with_overflow:
4745    return implVisitAluOverflow(I, ISD::USUBO);
4746  case Intrinsic::ssub_with_overflow:
4747    return implVisitAluOverflow(I, ISD::SSUBO);
4748  case Intrinsic::umul_with_overflow:
4749    return implVisitAluOverflow(I, ISD::UMULO);
4750  case Intrinsic::smul_with_overflow:
4751    return implVisitAluOverflow(I, ISD::SMULO);
4752
4753  case Intrinsic::prefetch: {
4754    SDValue Ops[4];
4755    unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
4756    Ops[0] = getRoot();
4757    Ops[1] = getValue(I.getArgOperand(0));
4758    Ops[2] = getValue(I.getArgOperand(1));
4759    Ops[3] = getValue(I.getArgOperand(2));
4760    DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, dl,
4761                                        DAG.getVTList(MVT::Other),
4762                                        &Ops[0], 4,
4763                                        EVT::getIntegerVT(*Context, 8),
4764                                        MachinePointerInfo(I.getArgOperand(0)),
4765                                        0, /* align */
4766                                        false, /* volatile */
4767                                        rw==0, /* read */
4768                                        rw==1)); /* write */
4769    return 0;
4770  }
4771  case Intrinsic::memory_barrier: {
4772    SDValue Ops[6];
4773    Ops[0] = getRoot();
4774    for (int x = 1; x < 6; ++x)
4775      Ops[x] = getValue(I.getArgOperand(x - 1));
4776
4777    DAG.setRoot(DAG.getNode(ISD::MEMBARRIER, dl, MVT::Other, &Ops[0], 6));
4778    return 0;
4779  }
4780  case Intrinsic::atomic_cmp_swap: {
4781    SDValue Root = getRoot();
4782    SDValue L =
4783      DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, getCurDebugLoc(),
4784                    getValue(I.getArgOperand(1)).getValueType().getSimpleVT(),
4785                    Root,
4786                    getValue(I.getArgOperand(0)),
4787                    getValue(I.getArgOperand(1)),
4788                    getValue(I.getArgOperand(2)),
4789                    MachinePointerInfo(I.getArgOperand(0)));
4790    setValue(&I, L);
4791    DAG.setRoot(L.getValue(1));
4792    return 0;
4793  }
4794  case Intrinsic::atomic_load_add:
4795    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_ADD);
4796  case Intrinsic::atomic_load_sub:
4797    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_SUB);
4798  case Intrinsic::atomic_load_or:
4799    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_OR);
4800  case Intrinsic::atomic_load_xor:
4801    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_XOR);
4802  case Intrinsic::atomic_load_and:
4803    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_AND);
4804  case Intrinsic::atomic_load_nand:
4805    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_NAND);
4806  case Intrinsic::atomic_load_max:
4807    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MAX);
4808  case Intrinsic::atomic_load_min:
4809    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MIN);
4810  case Intrinsic::atomic_load_umin:
4811    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMIN);
4812  case Intrinsic::atomic_load_umax:
4813    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMAX);
4814  case Intrinsic::atomic_swap:
4815    return implVisitBinaryAtomic(I, ISD::ATOMIC_SWAP);
4816
4817  case Intrinsic::invariant_start:
4818  case Intrinsic::lifetime_start:
4819    // Discard region information.
4820    setValue(&I, DAG.getUNDEF(TLI.getPointerTy()));
4821    return 0;
4822  case Intrinsic::invariant_end:
4823  case Intrinsic::lifetime_end:
4824    // Discard region information.
4825    return 0;
4826  }
4827}
4828
4829void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee,
4830                                      bool isTailCall,
4831                                      MachineBasicBlock *LandingPad) {
4832  const PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
4833  const FunctionType *FTy = cast<FunctionType>(PT->getElementType());
4834  const Type *RetTy = FTy->getReturnType();
4835  MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4836  MCSymbol *BeginLabel = 0;
4837
4838  TargetLowering::ArgListTy Args;
4839  TargetLowering::ArgListEntry Entry;
4840  Args.reserve(CS.arg_size());
4841
4842  // Check whether the function can return without sret-demotion.
4843  SmallVector<ISD::OutputArg, 4> Outs;
4844  SmallVector<uint64_t, 4> Offsets;
4845  GetReturnInfo(RetTy, CS.getAttributes().getRetAttributes(),
4846                Outs, TLI, &Offsets);
4847
4848  bool CanLowerReturn = TLI.CanLowerReturn(CS.getCallingConv(),
4849                        FTy->isVarArg(), Outs, FTy->getContext());
4850
4851  SDValue DemoteStackSlot;
4852  int DemoteStackIdx = -100;
4853
4854  if (!CanLowerReturn) {
4855    uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(
4856                      FTy->getReturnType());
4857    unsigned Align  = TLI.getTargetData()->getPrefTypeAlignment(
4858                      FTy->getReturnType());
4859    MachineFunction &MF = DAG.getMachineFunction();
4860    DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
4861    const Type *StackSlotPtrType = PointerType::getUnqual(FTy->getReturnType());
4862
4863    DemoteStackSlot = DAG.getFrameIndex(DemoteStackIdx, TLI.getPointerTy());
4864    Entry.Node = DemoteStackSlot;
4865    Entry.Ty = StackSlotPtrType;
4866    Entry.isSExt = false;
4867    Entry.isZExt = false;
4868    Entry.isInReg = false;
4869    Entry.isSRet = true;
4870    Entry.isNest = false;
4871    Entry.isByVal = false;
4872    Entry.Alignment = Align;
4873    Args.push_back(Entry);
4874    RetTy = Type::getVoidTy(FTy->getContext());
4875  }
4876
4877  for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
4878       i != e; ++i) {
4879    const Value *V = *i;
4880
4881    // Skip empty types
4882    if (V->getType()->isEmptyTy())
4883      continue;
4884
4885    SDValue ArgNode = getValue(V);
4886    Entry.Node = ArgNode; Entry.Ty = V->getType();
4887
4888    unsigned attrInd = i - CS.arg_begin() + 1;
4889    Entry.isSExt  = CS.paramHasAttr(attrInd, Attribute::SExt);
4890    Entry.isZExt  = CS.paramHasAttr(attrInd, Attribute::ZExt);
4891    Entry.isInReg = CS.paramHasAttr(attrInd, Attribute::InReg);
4892    Entry.isSRet  = CS.paramHasAttr(attrInd, Attribute::StructRet);
4893    Entry.isNest  = CS.paramHasAttr(attrInd, Attribute::Nest);
4894    Entry.isByVal = CS.paramHasAttr(attrInd, Attribute::ByVal);
4895    Entry.Alignment = CS.getParamAlignment(attrInd);
4896    Args.push_back(Entry);
4897  }
4898
4899  if (LandingPad) {
4900    // Insert a label before the invoke call to mark the try range.  This can be
4901    // used to detect deletion of the invoke via the MachineModuleInfo.
4902    BeginLabel = MMI.getContext().CreateTempSymbol();
4903
4904    // For SjLj, keep track of which landing pads go with which invokes
4905    // so as to maintain the ordering of pads in the LSDA.
4906    unsigned CallSiteIndex = MMI.getCurrentCallSite();
4907    if (CallSiteIndex) {
4908      MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
4909      // Now that the call site is handled, stop tracking it.
4910      MMI.setCurrentCallSite(0);
4911    }
4912
4913    // Both PendingLoads and PendingExports must be flushed here;
4914    // this call might not return.
4915    (void)getRoot();
4916    DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getControlRoot(), BeginLabel));
4917  }
4918
4919  // Check if target-independent constraints permit a tail call here.
4920  // Target-dependent constraints are checked within TLI.LowerCallTo.
4921  if (isTailCall &&
4922      !isInTailCallPosition(CS, CS.getAttributes().getRetAttributes(), TLI))
4923    isTailCall = false;
4924
4925  // If there's a possibility that fast-isel has already selected some amount
4926  // of the current basic block, don't emit a tail call.
4927  if (isTailCall && EnableFastISel)
4928    isTailCall = false;
4929
4930  std::pair<SDValue,SDValue> Result =
4931    TLI.LowerCallTo(getRoot(), RetTy,
4932                    CS.paramHasAttr(0, Attribute::SExt),
4933                    CS.paramHasAttr(0, Attribute::ZExt), FTy->isVarArg(),
4934                    CS.paramHasAttr(0, Attribute::InReg), FTy->getNumParams(),
4935                    CS.getCallingConv(),
4936                    isTailCall,
4937                    !CS.getInstruction()->use_empty(),
4938                    Callee, Args, DAG, getCurDebugLoc());
4939  assert((isTailCall || Result.second.getNode()) &&
4940         "Non-null chain expected with non-tail call!");
4941  assert((Result.second.getNode() || !Result.first.getNode()) &&
4942         "Null value expected with tail call!");
4943  if (Result.first.getNode()) {
4944    setValue(CS.getInstruction(), Result.first);
4945  } else if (!CanLowerReturn && Result.second.getNode()) {
4946    // The instruction result is the result of loading from the
4947    // hidden sret parameter.
4948    SmallVector<EVT, 1> PVTs;
4949    const Type *PtrRetTy = PointerType::getUnqual(FTy->getReturnType());
4950
4951    ComputeValueVTs(TLI, PtrRetTy, PVTs);
4952    assert(PVTs.size() == 1 && "Pointers should fit in one register");
4953    EVT PtrVT = PVTs[0];
4954    unsigned NumValues = Outs.size();
4955    SmallVector<SDValue, 4> Values(NumValues);
4956    SmallVector<SDValue, 4> Chains(NumValues);
4957
4958    for (unsigned i = 0; i < NumValues; ++i) {
4959      SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT,
4960                                DemoteStackSlot,
4961                                DAG.getConstant(Offsets[i], PtrVT));
4962      SDValue L = DAG.getLoad(Outs[i].VT, getCurDebugLoc(), Result.second,
4963                              Add,
4964                  MachinePointerInfo::getFixedStack(DemoteStackIdx, Offsets[i]),
4965                              false, false, 1);
4966      Values[i] = L;
4967      Chains[i] = L.getValue(1);
4968    }
4969
4970    SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
4971                                MVT::Other, &Chains[0], NumValues);
4972    PendingLoads.push_back(Chain);
4973
4974    // Collect the legal value parts into potentially illegal values
4975    // that correspond to the original function's return values.
4976    SmallVector<EVT, 4> RetTys;
4977    RetTy = FTy->getReturnType();
4978    ComputeValueVTs(TLI, RetTy, RetTys);
4979    ISD::NodeType AssertOp = ISD::DELETED_NODE;
4980    SmallVector<SDValue, 4> ReturnValues;
4981    unsigned CurReg = 0;
4982    for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
4983      EVT VT = RetTys[I];
4984      EVT RegisterVT = TLI.getRegisterType(RetTy->getContext(), VT);
4985      unsigned NumRegs = TLI.getNumRegisters(RetTy->getContext(), VT);
4986
4987      SDValue ReturnValue =
4988        getCopyFromParts(DAG, getCurDebugLoc(), &Values[CurReg], NumRegs,
4989                         RegisterVT, VT, AssertOp);
4990      ReturnValues.push_back(ReturnValue);
4991      CurReg += NumRegs;
4992    }
4993
4994    setValue(CS.getInstruction(),
4995             DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
4996                         DAG.getVTList(&RetTys[0], RetTys.size()),
4997                         &ReturnValues[0], ReturnValues.size()));
4998  }
4999
5000  // Assign order to nodes here. If the call does not produce a result, it won't
5001  // be mapped to a SDNode and visit() will not assign it an order number.
5002  if (!Result.second.getNode()) {
5003    // As a special case, a null chain means that a tail call has been emitted and
5004    // the DAG root is already updated.
5005    HasTailCall = true;
5006    ++SDNodeOrder;
5007    AssignOrderingToNode(DAG.getRoot().getNode());
5008  } else {
5009    DAG.setRoot(Result.second);
5010    ++SDNodeOrder;
5011    AssignOrderingToNode(Result.second.getNode());
5012  }
5013
5014  if (LandingPad) {
5015    // Insert a label at the end of the invoke call to mark the try range.  This
5016    // can be used to detect deletion of the invoke via the MachineModuleInfo.
5017    MCSymbol *EndLabel = MMI.getContext().CreateTempSymbol();
5018    DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getRoot(), EndLabel));
5019
5020    // Inform MachineModuleInfo of range.
5021    MMI.addInvoke(LandingPad, BeginLabel, EndLabel);
5022  }
5023}
5024
5025/// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the
5026/// value is equal or not-equal to zero.
5027static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) {
5028  for (Value::const_use_iterator UI = V->use_begin(), E = V->use_end();
5029       UI != E; ++UI) {
5030    if (const ICmpInst *IC = dyn_cast<ICmpInst>(*UI))
5031      if (IC->isEquality())
5032        if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
5033          if (C->isNullValue())
5034            continue;
5035    // Unknown instruction.
5036    return false;
5037  }
5038  return true;
5039}
5040
5041static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
5042                             const Type *LoadTy,
5043                             SelectionDAGBuilder &Builder) {
5044
5045  // Check to see if this load can be trivially constant folded, e.g. if the
5046  // input is from a string literal.
5047  if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
5048    // Cast pointer to the type we really want to load.
5049    LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
5050                                         PointerType::getUnqual(LoadTy));
5051
5052    if (const Constant *LoadCst =
5053          ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput),
5054                                       Builder.TD))
5055      return Builder.getValue(LoadCst);
5056  }
5057
5058  // Otherwise, we have to emit the load.  If the pointer is to unfoldable but
5059  // still constant memory, the input chain can be the entry node.
5060  SDValue Root;
5061  bool ConstantMemory = false;
5062
5063  // Do not serialize (non-volatile) loads of constant memory with anything.
5064  if (Builder.AA->pointsToConstantMemory(PtrVal)) {
5065    Root = Builder.DAG.getEntryNode();
5066    ConstantMemory = true;
5067  } else {
5068    // Do not serialize non-volatile loads against each other.
5069    Root = Builder.DAG.getRoot();
5070  }
5071
5072  SDValue Ptr = Builder.getValue(PtrVal);
5073  SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurDebugLoc(), Root,
5074                                        Ptr, MachinePointerInfo(PtrVal),
5075                                        false /*volatile*/,
5076                                        false /*nontemporal*/, 1 /* align=1 */);
5077
5078  if (!ConstantMemory)
5079    Builder.PendingLoads.push_back(LoadVal.getValue(1));
5080  return LoadVal;
5081}
5082
5083
5084/// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form.
5085/// If so, return true and lower it, otherwise return false and it will be
5086/// lowered like a normal call.
5087bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) {
5088  // Verify that the prototype makes sense.  int memcmp(void*,void*,size_t)
5089  if (I.getNumArgOperands() != 3)
5090    return false;
5091
5092  const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
5093  if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() ||
5094      !I.getArgOperand(2)->getType()->isIntegerTy() ||
5095      !I.getType()->isIntegerTy())
5096    return false;
5097
5098  const ConstantInt *Size = dyn_cast<ConstantInt>(I.getArgOperand(2));
5099
5100  // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0
5101  // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0
5102  if (Size && IsOnlyUsedInZeroEqualityComparison(&I)) {
5103    bool ActuallyDoIt = true;
5104    MVT LoadVT;
5105    const Type *LoadTy;
5106    switch (Size->getZExtValue()) {
5107    default:
5108      LoadVT = MVT::Other;
5109      LoadTy = 0;
5110      ActuallyDoIt = false;
5111      break;
5112    case 2:
5113      LoadVT = MVT::i16;
5114      LoadTy = Type::getInt16Ty(Size->getContext());
5115      break;
5116    case 4:
5117      LoadVT = MVT::i32;
5118      LoadTy = Type::getInt32Ty(Size->getContext());
5119      break;
5120    case 8:
5121      LoadVT = MVT::i64;
5122      LoadTy = Type::getInt64Ty(Size->getContext());
5123      break;
5124        /*
5125    case 16:
5126      LoadVT = MVT::v4i32;
5127      LoadTy = Type::getInt32Ty(Size->getContext());
5128      LoadTy = VectorType::get(LoadTy, 4);
5129      break;
5130         */
5131    }
5132
5133    // This turns into unaligned loads.  We only do this if the target natively
5134    // supports the MVT we'll be loading or if it is small enough (<= 4) that
5135    // we'll only produce a small number of byte loads.
5136
5137    // Require that we can find a legal MVT, and only do this if the target
5138    // supports unaligned loads of that type.  Expanding into byte loads would
5139    // bloat the code.
5140    if (ActuallyDoIt && Size->getZExtValue() > 4) {
5141      // TODO: Handle 5 byte compare as 4-byte + 1 byte.
5142      // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
5143      if (!TLI.isTypeLegal(LoadVT) ||!TLI.allowsUnalignedMemoryAccesses(LoadVT))
5144        ActuallyDoIt = false;
5145    }
5146
5147    if (ActuallyDoIt) {
5148      SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this);
5149      SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this);
5150
5151      SDValue Res = DAG.getSetCC(getCurDebugLoc(), MVT::i1, LHSVal, RHSVal,
5152                                 ISD::SETNE);
5153      EVT CallVT = TLI.getValueType(I.getType(), true);
5154      setValue(&I, DAG.getZExtOrTrunc(Res, getCurDebugLoc(), CallVT));
5155      return true;
5156    }
5157  }
5158
5159
5160  return false;
5161}
5162
5163
5164void SelectionDAGBuilder::visitCall(const CallInst &I) {
5165  // Handle inline assembly differently.
5166  if (isa<InlineAsm>(I.getCalledValue())) {
5167    visitInlineAsm(&I);
5168    return;
5169  }
5170
5171  // See if any floating point values are being passed to this function. This is
5172  // used to emit an undefined reference to fltused on Windows.
5173  const FunctionType *FT =
5174    cast<FunctionType>(I.getCalledValue()->getType()->getContainedType(0));
5175  MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
5176  if (FT->isVarArg() &&
5177      !MMI.callsExternalVAFunctionWithFloatingPointArguments()) {
5178    for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
5179      const Type* T = I.getArgOperand(i)->getType();
5180      for (po_iterator<const Type*> i = po_begin(T), e = po_end(T);
5181           i != e; ++i) {
5182        if (!i->isFloatingPointTy()) continue;
5183        MMI.setCallsExternalVAFunctionWithFloatingPointArguments(true);
5184        break;
5185      }
5186    }
5187  }
5188
5189  const char *RenameFn = 0;
5190  if (Function *F = I.getCalledFunction()) {
5191    if (F->isDeclaration()) {
5192      if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) {
5193        if (unsigned IID = II->getIntrinsicID(F)) {
5194          RenameFn = visitIntrinsicCall(I, IID);
5195          if (!RenameFn)
5196            return;
5197        }
5198      }
5199      if (unsigned IID = F->getIntrinsicID()) {
5200        RenameFn = visitIntrinsicCall(I, IID);
5201        if (!RenameFn)
5202          return;
5203      }
5204    }
5205
5206    // Check for well-known libc/libm calls.  If the function is internal, it
5207    // can't be a library call.
5208    if (!F->hasLocalLinkage() && F->hasName()) {
5209      StringRef Name = F->getName();
5210      if (Name == "copysign" || Name == "copysignf" || Name == "copysignl") {
5211        if (I.getNumArgOperands() == 2 &&   // Basic sanity checks.
5212            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5213            I.getType() == I.getArgOperand(0)->getType() &&
5214            I.getType() == I.getArgOperand(1)->getType()) {
5215          SDValue LHS = getValue(I.getArgOperand(0));
5216          SDValue RHS = getValue(I.getArgOperand(1));
5217          setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurDebugLoc(),
5218                                   LHS.getValueType(), LHS, RHS));
5219          return;
5220        }
5221      } else if (Name == "fabs" || Name == "fabsf" || Name == "fabsl") {
5222        if (I.getNumArgOperands() == 1 &&   // Basic sanity checks.
5223            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5224            I.getType() == I.getArgOperand(0)->getType()) {
5225          SDValue Tmp = getValue(I.getArgOperand(0));
5226          setValue(&I, DAG.getNode(ISD::FABS, getCurDebugLoc(),
5227                                   Tmp.getValueType(), Tmp));
5228          return;
5229        }
5230      } else if (Name == "sin" || Name == "sinf" || Name == "sinl") {
5231        if (I.getNumArgOperands() == 1 &&   // Basic sanity checks.
5232            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5233            I.getType() == I.getArgOperand(0)->getType() &&
5234            I.onlyReadsMemory()) {
5235          SDValue Tmp = getValue(I.getArgOperand(0));
5236          setValue(&I, DAG.getNode(ISD::FSIN, getCurDebugLoc(),
5237                                   Tmp.getValueType(), Tmp));
5238          return;
5239        }
5240      } else if (Name == "cos" || Name == "cosf" || Name == "cosl") {
5241        if (I.getNumArgOperands() == 1 &&   // Basic sanity checks.
5242            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5243            I.getType() == I.getArgOperand(0)->getType() &&
5244            I.onlyReadsMemory()) {
5245          SDValue Tmp = getValue(I.getArgOperand(0));
5246          setValue(&I, DAG.getNode(ISD::FCOS, getCurDebugLoc(),
5247                                   Tmp.getValueType(), Tmp));
5248          return;
5249        }
5250      } else if (Name == "sqrt" || Name == "sqrtf" || Name == "sqrtl") {
5251        if (I.getNumArgOperands() == 1 &&   // Basic sanity checks.
5252            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5253            I.getType() == I.getArgOperand(0)->getType() &&
5254            I.onlyReadsMemory()) {
5255          SDValue Tmp = getValue(I.getArgOperand(0));
5256          setValue(&I, DAG.getNode(ISD::FSQRT, getCurDebugLoc(),
5257                                   Tmp.getValueType(), Tmp));
5258          return;
5259        }
5260      } else if (Name == "memcmp") {
5261        if (visitMemCmpCall(I))
5262          return;
5263      }
5264    }
5265  }
5266
5267  SDValue Callee;
5268  if (!RenameFn)
5269    Callee = getValue(I.getCalledValue());
5270  else
5271    Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy());
5272
5273  // Check if we can potentially perform a tail call. More detailed checking is
5274  // be done within LowerCallTo, after more information about the call is known.
5275  LowerCallTo(&I, Callee, I.isTailCall());
5276}
5277
5278namespace {
5279
5280/// AsmOperandInfo - This contains information for each constraint that we are
5281/// lowering.
5282class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
5283public:
5284  /// CallOperand - If this is the result output operand or a clobber
5285  /// this is null, otherwise it is the incoming operand to the CallInst.
5286  /// This gets modified as the asm is processed.
5287  SDValue CallOperand;
5288
5289  /// AssignedRegs - If this is a register or register class operand, this
5290  /// contains the set of register corresponding to the operand.
5291  RegsForValue AssignedRegs;
5292
5293  explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
5294    : TargetLowering::AsmOperandInfo(info), CallOperand(0,0) {
5295  }
5296
5297  /// MarkAllocatedRegs - Once AssignedRegs is set, mark the assigned registers
5298  /// busy in OutputRegs/InputRegs.
5299  void MarkAllocatedRegs(bool isOutReg, bool isInReg,
5300                         std::set<unsigned> &OutputRegs,
5301                         std::set<unsigned> &InputRegs,
5302                         const TargetRegisterInfo &TRI) const {
5303    if (isOutReg) {
5304      for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i)
5305        MarkRegAndAliases(AssignedRegs.Regs[i], OutputRegs, TRI);
5306    }
5307    if (isInReg) {
5308      for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i)
5309        MarkRegAndAliases(AssignedRegs.Regs[i], InputRegs, TRI);
5310    }
5311  }
5312
5313  /// getCallOperandValEVT - Return the EVT of the Value* that this operand
5314  /// corresponds to.  If there is no Value* for this operand, it returns
5315  /// MVT::Other.
5316  EVT getCallOperandValEVT(LLVMContext &Context,
5317                           const TargetLowering &TLI,
5318                           const TargetData *TD) const {
5319    if (CallOperandVal == 0) return MVT::Other;
5320
5321    if (isa<BasicBlock>(CallOperandVal))
5322      return TLI.getPointerTy();
5323
5324    const llvm::Type *OpTy = CallOperandVal->getType();
5325
5326    // FIXME: code duplicated from TargetLowering::ParseConstraints().
5327    // If this is an indirect operand, the operand is a pointer to the
5328    // accessed type.
5329    if (isIndirect) {
5330      const llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
5331      if (!PtrTy)
5332        report_fatal_error("Indirect operand for inline asm not a pointer!");
5333      OpTy = PtrTy->getElementType();
5334    }
5335
5336    // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
5337    if (const StructType *STy = dyn_cast<StructType>(OpTy))
5338      if (STy->getNumElements() == 1)
5339        OpTy = STy->getElementType(0);
5340
5341    // If OpTy is not a single value, it may be a struct/union that we
5342    // can tile with integers.
5343    if (!OpTy->isSingleValueType() && OpTy->isSized()) {
5344      unsigned BitSize = TD->getTypeSizeInBits(OpTy);
5345      switch (BitSize) {
5346      default: break;
5347      case 1:
5348      case 8:
5349      case 16:
5350      case 32:
5351      case 64:
5352      case 128:
5353        OpTy = IntegerType::get(Context, BitSize);
5354        break;
5355      }
5356    }
5357
5358    return TLI.getValueType(OpTy, true);
5359  }
5360
5361private:
5362  /// MarkRegAndAliases - Mark the specified register and all aliases in the
5363  /// specified set.
5364  static void MarkRegAndAliases(unsigned Reg, std::set<unsigned> &Regs,
5365                                const TargetRegisterInfo &TRI) {
5366    assert(TargetRegisterInfo::isPhysicalRegister(Reg) && "Isn't a physreg");
5367    Regs.insert(Reg);
5368    if (const unsigned *Aliases = TRI.getAliasSet(Reg))
5369      for (; *Aliases; ++Aliases)
5370        Regs.insert(*Aliases);
5371  }
5372};
5373
5374typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector;
5375
5376} // end anonymous namespace
5377
5378/// isAllocatableRegister - If the specified register is safe to allocate,
5379/// i.e. it isn't a stack pointer or some other special register, return the
5380/// register class for the register.  Otherwise, return null.
5381static const TargetRegisterClass *
5382isAllocatableRegister(unsigned Reg, MachineFunction &MF,
5383                      const TargetLowering &TLI,
5384                      const TargetRegisterInfo *TRI) {
5385  EVT FoundVT = MVT::Other;
5386  const TargetRegisterClass *FoundRC = 0;
5387  for (TargetRegisterInfo::regclass_iterator RCI = TRI->regclass_begin(),
5388       E = TRI->regclass_end(); RCI != E; ++RCI) {
5389    EVT ThisVT = MVT::Other;
5390
5391    const TargetRegisterClass *RC = *RCI;
5392    // If none of the value types for this register class are valid, we
5393    // can't use it.  For example, 64-bit reg classes on 32-bit targets.
5394    for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
5395         I != E; ++I) {
5396      if (TLI.isTypeLegal(*I)) {
5397        // If we have already found this register in a different register class,
5398        // choose the one with the largest VT specified.  For example, on
5399        // PowerPC, we favor f64 register classes over f32.
5400        if (FoundVT == MVT::Other || FoundVT.bitsLT(*I)) {
5401          ThisVT = *I;
5402          break;
5403        }
5404      }
5405    }
5406
5407    if (ThisVT == MVT::Other) continue;
5408
5409    // NOTE: This isn't ideal.  In particular, this might allocate the
5410    // frame pointer in functions that need it (due to them not being taken
5411    // out of allocation, because a variable sized allocation hasn't been seen
5412    // yet).  This is a slight code pessimization, but should still work.
5413    for (TargetRegisterClass::iterator I = RC->allocation_order_begin(MF),
5414         E = RC->allocation_order_end(MF); I != E; ++I)
5415      if (*I == Reg) {
5416        // We found a matching register class.  Keep looking at others in case
5417        // we find one with larger registers that this physreg is also in.
5418        FoundRC = RC;
5419        FoundVT = ThisVT;
5420        break;
5421      }
5422  }
5423  return FoundRC;
5424}
5425
5426/// GetRegistersForValue - Assign registers (virtual or physical) for the
5427/// specified operand.  We prefer to assign virtual registers, to allow the
5428/// register allocator to handle the assignment process.  However, if the asm
5429/// uses features that we can't model on machineinstrs, we have SDISel do the
5430/// allocation.  This produces generally horrible, but correct, code.
5431///
5432///   OpInfo describes the operand.
5433///   Input and OutputRegs are the set of already allocated physical registers.
5434///
5435static void GetRegistersForValue(SelectionDAG &DAG,
5436                                 const TargetLowering &TLI,
5437                                 DebugLoc DL,
5438                                 SDISelAsmOperandInfo &OpInfo,
5439                                 std::set<unsigned> &OutputRegs,
5440                                 std::set<unsigned> &InputRegs) {
5441  LLVMContext &Context = *DAG.getContext();
5442
5443  // Compute whether this value requires an input register, an output register,
5444  // or both.
5445  bool isOutReg = false;
5446  bool isInReg = false;
5447  switch (OpInfo.Type) {
5448  case InlineAsm::isOutput:
5449    isOutReg = true;
5450
5451    // If there is an input constraint that matches this, we need to reserve
5452    // the input register so no other inputs allocate to it.
5453    isInReg = OpInfo.hasMatchingInput();
5454    break;
5455  case InlineAsm::isInput:
5456    isInReg = true;
5457    isOutReg = false;
5458    break;
5459  case InlineAsm::isClobber:
5460    isOutReg = true;
5461    isInReg = true;
5462    break;
5463  }
5464
5465
5466  MachineFunction &MF = DAG.getMachineFunction();
5467  SmallVector<unsigned, 4> Regs;
5468
5469  // If this is a constraint for a single physreg, or a constraint for a
5470  // register class, find it.
5471  std::pair<unsigned, const TargetRegisterClass*> PhysReg =
5472    TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
5473                                     OpInfo.ConstraintVT);
5474
5475  unsigned NumRegs = 1;
5476  if (OpInfo.ConstraintVT != MVT::Other) {
5477    // If this is a FP input in an integer register (or visa versa) insert a bit
5478    // cast of the input value.  More generally, handle any case where the input
5479    // value disagrees with the register class we plan to stick this in.
5480    if (OpInfo.Type == InlineAsm::isInput &&
5481        PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) {
5482      // Try to convert to the first EVT that the reg class contains.  If the
5483      // types are identical size, use a bitcast to convert (e.g. two differing
5484      // vector types).
5485      EVT RegVT = *PhysReg.second->vt_begin();
5486      if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) {
5487        OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL,
5488                                         RegVT, OpInfo.CallOperand);
5489        OpInfo.ConstraintVT = RegVT;
5490      } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
5491        // If the input is a FP value and we want it in FP registers, do a
5492        // bitcast to the corresponding integer type.  This turns an f64 value
5493        // into i64, which can be passed with two i32 values on a 32-bit
5494        // machine.
5495        RegVT = EVT::getIntegerVT(Context,
5496                                  OpInfo.ConstraintVT.getSizeInBits());
5497        OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL,
5498                                         RegVT, OpInfo.CallOperand);
5499        OpInfo.ConstraintVT = RegVT;
5500      }
5501    }
5502
5503    NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT);
5504  }
5505
5506  EVT RegVT;
5507  EVT ValueVT = OpInfo.ConstraintVT;
5508
5509  // If this is a constraint for a specific physical register, like {r17},
5510  // assign it now.
5511  if (unsigned AssignedReg = PhysReg.first) {
5512    const TargetRegisterClass *RC = PhysReg.second;
5513    if (OpInfo.ConstraintVT == MVT::Other)
5514      ValueVT = *RC->vt_begin();
5515
5516    // Get the actual register value type.  This is important, because the user
5517    // may have asked for (e.g.) the AX register in i32 type.  We need to
5518    // remember that AX is actually i16 to get the right extension.
5519    RegVT = *RC->vt_begin();
5520
5521    // This is a explicit reference to a physical register.
5522    Regs.push_back(AssignedReg);
5523
5524    // If this is an expanded reference, add the rest of the regs to Regs.
5525    if (NumRegs != 1) {
5526      TargetRegisterClass::iterator I = RC->begin();
5527      for (; *I != AssignedReg; ++I)
5528        assert(I != RC->end() && "Didn't find reg!");
5529
5530      // Already added the first reg.
5531      --NumRegs; ++I;
5532      for (; NumRegs; --NumRegs, ++I) {
5533        assert(I != RC->end() && "Ran out of registers to allocate!");
5534        Regs.push_back(*I);
5535      }
5536    }
5537
5538    OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
5539    const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
5540    OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI);
5541    return;
5542  }
5543
5544  // Otherwise, if this was a reference to an LLVM register class, create vregs
5545  // for this reference.
5546  if (const TargetRegisterClass *RC = PhysReg.second) {
5547    RegVT = *RC->vt_begin();
5548    if (OpInfo.ConstraintVT == MVT::Other)
5549      ValueVT = RegVT;
5550
5551    // Create the appropriate number of virtual registers.
5552    MachineRegisterInfo &RegInfo = MF.getRegInfo();
5553    for (; NumRegs; --NumRegs)
5554      Regs.push_back(RegInfo.createVirtualRegister(RC));
5555
5556    OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
5557    return;
5558  }
5559
5560  // This is a reference to a register class that doesn't directly correspond
5561  // to an LLVM register class.  Allocate NumRegs consecutive, available,
5562  // registers from the class.
5563  std::vector<unsigned> RegClassRegs
5564    = TLI.getRegClassForInlineAsmConstraint(OpInfo.ConstraintCode,
5565                                            OpInfo.ConstraintVT);
5566
5567  const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
5568  unsigned NumAllocated = 0;
5569  for (unsigned i = 0, e = RegClassRegs.size(); i != e; ++i) {
5570    unsigned Reg = RegClassRegs[i];
5571    // See if this register is available.
5572    if ((isOutReg && OutputRegs.count(Reg)) ||   // Already used.
5573        (isInReg  && InputRegs.count(Reg))) {    // Already used.
5574      // Make sure we find consecutive registers.
5575      NumAllocated = 0;
5576      continue;
5577    }
5578
5579    // Check to see if this register is allocatable (i.e. don't give out the
5580    // stack pointer).
5581    const TargetRegisterClass *RC = isAllocatableRegister(Reg, MF, TLI, TRI);
5582    if (!RC) {        // Couldn't allocate this register.
5583      // Reset NumAllocated to make sure we return consecutive registers.
5584      NumAllocated = 0;
5585      continue;
5586    }
5587
5588    // Okay, this register is good, we can use it.
5589    ++NumAllocated;
5590
5591    // If we allocated enough consecutive registers, succeed.
5592    if (NumAllocated == NumRegs) {
5593      unsigned RegStart = (i-NumAllocated)+1;
5594      unsigned RegEnd   = i+1;
5595      // Mark all of the allocated registers used.
5596      for (unsigned i = RegStart; i != RegEnd; ++i)
5597        Regs.push_back(RegClassRegs[i]);
5598
5599      OpInfo.AssignedRegs = RegsForValue(Regs, *RC->vt_begin(),
5600                                         OpInfo.ConstraintVT);
5601      OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI);
5602      return;
5603    }
5604  }
5605
5606  // Otherwise, we couldn't allocate enough registers for this.
5607}
5608
5609/// visitInlineAsm - Handle a call to an InlineAsm object.
5610///
5611void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) {
5612  const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
5613
5614  /// ConstraintOperands - Information about all of the constraints.
5615  SDISelAsmOperandInfoVector ConstraintOperands;
5616
5617  std::set<unsigned> OutputRegs, InputRegs;
5618
5619  TargetLowering::AsmOperandInfoVector
5620    TargetConstraints = TLI.ParseConstraints(CS);
5621
5622  bool hasMemory = false;
5623
5624  unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
5625  unsigned ResNo = 0;   // ResNo - The result number of the next output.
5626  for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
5627    ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i]));
5628    SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
5629
5630    EVT OpVT = MVT::Other;
5631
5632    // Compute the value type for each operand.
5633    switch (OpInfo.Type) {
5634    case InlineAsm::isOutput:
5635      // Indirect outputs just consume an argument.
5636      if (OpInfo.isIndirect) {
5637        OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
5638        break;
5639      }
5640
5641      // The return value of the call is this value.  As such, there is no
5642      // corresponding argument.
5643      assert(!CS.getType()->isVoidTy() &&
5644             "Bad inline asm!");
5645      if (const StructType *STy = dyn_cast<StructType>(CS.getType())) {
5646        OpVT = TLI.getValueType(STy->getElementType(ResNo));
5647      } else {
5648        assert(ResNo == 0 && "Asm only has one result!");
5649        OpVT = TLI.getValueType(CS.getType());
5650      }
5651      ++ResNo;
5652      break;
5653    case InlineAsm::isInput:
5654      OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
5655      break;
5656    case InlineAsm::isClobber:
5657      // Nothing to do.
5658      break;
5659    }
5660
5661    // If this is an input or an indirect output, process the call argument.
5662    // BasicBlocks are labels, currently appearing only in asm's.
5663    if (OpInfo.CallOperandVal) {
5664      if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) {
5665        OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
5666      } else {
5667        OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
5668      }
5669
5670      OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, TD);
5671    }
5672
5673    OpInfo.ConstraintVT = OpVT;
5674
5675    // Indirect operand accesses access memory.
5676    if (OpInfo.isIndirect)
5677      hasMemory = true;
5678    else {
5679      for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) {
5680        TargetLowering::ConstraintType
5681          CType = TLI.getConstraintType(OpInfo.Codes[j]);
5682        if (CType == TargetLowering::C_Memory) {
5683          hasMemory = true;
5684          break;
5685        }
5686      }
5687    }
5688  }
5689
5690  SDValue Chain, Flag;
5691
5692  // We won't need to flush pending loads if this asm doesn't touch
5693  // memory and is nonvolatile.
5694  if (hasMemory || IA->hasSideEffects())
5695    Chain = getRoot();
5696  else
5697    Chain = DAG.getRoot();
5698
5699  // Second pass over the constraints: compute which constraint option to use
5700  // and assign registers to constraints that want a specific physreg.
5701  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
5702    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
5703
5704    // If this is an output operand with a matching input operand, look up the
5705    // matching input. If their types mismatch, e.g. one is an integer, the
5706    // other is floating point, or their sizes are different, flag it as an
5707    // error.
5708    if (OpInfo.hasMatchingInput()) {
5709      SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
5710
5711      if (OpInfo.ConstraintVT != Input.ConstraintVT) {
5712        if ((OpInfo.ConstraintVT.isInteger() !=
5713             Input.ConstraintVT.isInteger()) ||
5714            (OpInfo.ConstraintVT.getSizeInBits() !=
5715             Input.ConstraintVT.getSizeInBits())) {
5716          report_fatal_error("Unsupported asm: input constraint"
5717                             " with a matching output constraint of"
5718                             " incompatible type!");
5719        }
5720        Input.ConstraintVT = OpInfo.ConstraintVT;
5721      }
5722    }
5723
5724    // Compute the constraint code and ConstraintType to use.
5725    TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
5726
5727    // If this is a memory input, and if the operand is not indirect, do what we
5728    // need to to provide an address for the memory input.
5729    if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
5730        !OpInfo.isIndirect) {
5731      assert((OpInfo.isMultipleAlternative ||
5732              (OpInfo.Type == InlineAsm::isInput)) &&
5733             "Can only indirectify direct input operands!");
5734
5735      // Memory operands really want the address of the value.  If we don't have
5736      // an indirect input, put it in the constpool if we can, otherwise spill
5737      // it to a stack slot.
5738      // TODO: This isn't quite right. We need to handle these according to
5739      // the addressing mode that the constraint wants. Also, this may take
5740      // an additional register for the computation and we don't want that
5741      // either.
5742
5743      // If the operand is a float, integer, or vector constant, spill to a
5744      // constant pool entry to get its address.
5745      const Value *OpVal = OpInfo.CallOperandVal;
5746      if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
5747          isa<ConstantVector>(OpVal)) {
5748        OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal),
5749                                                 TLI.getPointerTy());
5750      } else {
5751        // Otherwise, create a stack slot and emit a store to it before the
5752        // asm.
5753        const Type *Ty = OpVal->getType();
5754        uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty);
5755        unsigned Align  = TLI.getTargetData()->getPrefTypeAlignment(Ty);
5756        MachineFunction &MF = DAG.getMachineFunction();
5757        int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
5758        SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy());
5759        Chain = DAG.getStore(Chain, getCurDebugLoc(),
5760                             OpInfo.CallOperand, StackSlot,
5761                             MachinePointerInfo::getFixedStack(SSFI),
5762                             false, false, 0);
5763        OpInfo.CallOperand = StackSlot;
5764      }
5765
5766      // There is no longer a Value* corresponding to this operand.
5767      OpInfo.CallOperandVal = 0;
5768
5769      // It is now an indirect operand.
5770      OpInfo.isIndirect = true;
5771    }
5772
5773    // If this constraint is for a specific register, allocate it before
5774    // anything else.
5775    if (OpInfo.ConstraintType == TargetLowering::C_Register)
5776      GetRegistersForValue(DAG, TLI, getCurDebugLoc(), OpInfo, OutputRegs,
5777                           InputRegs);
5778  }
5779
5780  // Second pass - Loop over all of the operands, assigning virtual or physregs
5781  // to register class operands.
5782  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
5783    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
5784
5785    // C_Register operands have already been allocated, Other/Memory don't need
5786    // to be.
5787    if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass)
5788      GetRegistersForValue(DAG, TLI, getCurDebugLoc(), OpInfo, OutputRegs,
5789                           InputRegs);
5790  }
5791
5792  // AsmNodeOperands - The operands for the ISD::INLINEASM node.
5793  std::vector<SDValue> AsmNodeOperands;
5794  AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
5795  AsmNodeOperands.push_back(
5796          DAG.getTargetExternalSymbol(IA->getAsmString().c_str(),
5797                                      TLI.getPointerTy()));
5798
5799  // If we have a !srcloc metadata node associated with it, we want to attach
5800  // this to the ultimately generated inline asm machineinstr.  To do this, we
5801  // pass in the third operand as this (potentially null) inline asm MDNode.
5802  const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc");
5803  AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
5804
5805  // Remember the HasSideEffect and AlignStack bits as operand 3.
5806  unsigned ExtraInfo = 0;
5807  if (IA->hasSideEffects())
5808    ExtraInfo |= InlineAsm::Extra_HasSideEffects;
5809  if (IA->isAlignStack())
5810    ExtraInfo |= InlineAsm::Extra_IsAlignStack;
5811  AsmNodeOperands.push_back(DAG.getTargetConstant(ExtraInfo,
5812                                                  TLI.getPointerTy()));
5813
5814  // Loop over all of the inputs, copying the operand values into the
5815  // appropriate registers and processing the output regs.
5816  RegsForValue RetValRegs;
5817
5818  // IndirectStoresToEmit - The set of stores to emit after the inline asm node.
5819  std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit;
5820
5821  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
5822    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
5823
5824    switch (OpInfo.Type) {
5825    case InlineAsm::isOutput: {
5826      if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass &&
5827          OpInfo.ConstraintType != TargetLowering::C_Register) {
5828        // Memory output, or 'other' output (e.g. 'X' constraint).
5829        assert(OpInfo.isIndirect && "Memory output must be indirect operand");
5830
5831        // Add information to the INLINEASM node to know about this output.
5832        unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
5833        AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags,
5834                                                        TLI.getPointerTy()));
5835        AsmNodeOperands.push_back(OpInfo.CallOperand);
5836        break;
5837      }
5838
5839      // Otherwise, this is a register or register class output.
5840
5841      // Copy the output from the appropriate register.  Find a register that
5842      // we can use.
5843      if (OpInfo.AssignedRegs.Regs.empty())
5844        report_fatal_error("Couldn't allocate output reg for constraint '" +
5845                           Twine(OpInfo.ConstraintCode) + "'!");
5846
5847      // If this is an indirect operand, store through the pointer after the
5848      // asm.
5849      if (OpInfo.isIndirect) {
5850        IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs,
5851                                                      OpInfo.CallOperandVal));
5852      } else {
5853        // This is the result value of the call.
5854        assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
5855        // Concatenate this output onto the outputs list.
5856        RetValRegs.append(OpInfo.AssignedRegs);
5857      }
5858
5859      // Add information to the INLINEASM node to know that this register is
5860      // set.
5861      OpInfo.AssignedRegs.AddInlineAsmOperands(OpInfo.isEarlyClobber ?
5862                                           InlineAsm::Kind_RegDefEarlyClobber :
5863                                               InlineAsm::Kind_RegDef,
5864                                               false,
5865                                               0,
5866                                               DAG,
5867                                               AsmNodeOperands);
5868      break;
5869    }
5870    case InlineAsm::isInput: {
5871      SDValue InOperandVal = OpInfo.CallOperand;
5872
5873      if (OpInfo.isMatchingInputConstraint()) {   // Matching constraint?
5874        // If this is required to match an output register we have already set,
5875        // just use its register.
5876        unsigned OperandNo = OpInfo.getMatchedOperand();
5877
5878        // Scan until we find the definition we already emitted of this operand.
5879        // When we find it, create a RegsForValue operand.
5880        unsigned CurOp = InlineAsm::Op_FirstOperand;
5881        for (; OperandNo; --OperandNo) {
5882          // Advance to the next operand.
5883          unsigned OpFlag =
5884            cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
5885          assert((InlineAsm::isRegDefKind(OpFlag) ||
5886                  InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||
5887                  InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?");
5888          CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1;
5889        }
5890
5891        unsigned OpFlag =
5892          cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
5893        if (InlineAsm::isRegDefKind(OpFlag) ||
5894            InlineAsm::isRegDefEarlyClobberKind(OpFlag)) {
5895          // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
5896          if (OpInfo.isIndirect) {
5897            // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
5898            LLVMContext &Ctx = *DAG.getContext();
5899            Ctx.emitError(CS.getInstruction(),  "inline asm not supported yet:"
5900                          " don't know how to handle tied "
5901                          "indirect register inputs");
5902          }
5903
5904          RegsForValue MatchedRegs;
5905          MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType());
5906          EVT RegVT = AsmNodeOperands[CurOp+1].getValueType();
5907          MatchedRegs.RegVTs.push_back(RegVT);
5908          MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo();
5909          for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag);
5910               i != e; ++i)
5911            MatchedRegs.Regs.push_back
5912              (RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT)));
5913
5914          // Use the produced MatchedRegs object to
5915          MatchedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(),
5916                                    Chain, &Flag);
5917          MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse,
5918                                           true, OpInfo.getMatchedOperand(),
5919                                           DAG, AsmNodeOperands);
5920          break;
5921        }
5922
5923        assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!");
5924        assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 &&
5925               "Unexpected number of operands");
5926        // Add information to the INLINEASM node to know about this input.
5927        // See InlineAsm.h isUseOperandTiedToDef.
5928        OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
5929                                                    OpInfo.getMatchedOperand());
5930        AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlag,
5931                                                        TLI.getPointerTy()));
5932        AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
5933        break;
5934      }
5935
5936      // Treat indirect 'X' constraint as memory.
5937      if (OpInfo.ConstraintType == TargetLowering::C_Other &&
5938          OpInfo.isIndirect)
5939        OpInfo.ConstraintType = TargetLowering::C_Memory;
5940
5941      if (OpInfo.ConstraintType == TargetLowering::C_Other) {
5942        std::vector<SDValue> Ops;
5943        TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode,
5944                                         Ops, DAG);
5945        if (Ops.empty())
5946          report_fatal_error("Invalid operand for inline asm constraint '" +
5947                             Twine(OpInfo.ConstraintCode) + "'!");
5948
5949        // Add information to the INLINEASM node to know about this input.
5950        unsigned ResOpType =
5951          InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
5952        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
5953                                                        TLI.getPointerTy()));
5954        AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
5955        break;
5956      }
5957
5958      if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
5959        assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
5960        assert(InOperandVal.getValueType() == TLI.getPointerTy() &&
5961               "Memory operands expect pointer values");
5962
5963        // Add information to the INLINEASM node to know about this input.
5964        unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
5965        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
5966                                                        TLI.getPointerTy()));
5967        AsmNodeOperands.push_back(InOperandVal);
5968        break;
5969      }
5970
5971      assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
5972              OpInfo.ConstraintType == TargetLowering::C_Register) &&
5973             "Unknown constraint type!");
5974      assert(!OpInfo.isIndirect &&
5975             "Don't know how to handle indirect register inputs yet!");
5976
5977      // Copy the input into the appropriate registers.
5978      if (OpInfo.AssignedRegs.Regs.empty() ||
5979          !OpInfo.AssignedRegs.areValueTypesLegal(TLI))
5980        report_fatal_error("Couldn't allocate input reg for constraint '" +
5981                           Twine(OpInfo.ConstraintCode) + "'!");
5982
5983      OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(),
5984                                        Chain, &Flag);
5985
5986      OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0,
5987                                               DAG, AsmNodeOperands);
5988      break;
5989    }
5990    case InlineAsm::isClobber: {
5991      // Add the clobbered value to the operand list, so that the register
5992      // allocator is aware that the physreg got clobbered.
5993      if (!OpInfo.AssignedRegs.Regs.empty())
5994        OpInfo.AssignedRegs.AddInlineAsmOperands(
5995                                            InlineAsm::Kind_RegDefEarlyClobber,
5996                                                 false, 0, DAG,
5997                                                 AsmNodeOperands);
5998      break;
5999    }
6000    }
6001  }
6002
6003  // Finish up input operands.  Set the input chain and add the flag last.
6004  AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
6005  if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
6006
6007  Chain = DAG.getNode(ISD::INLINEASM, getCurDebugLoc(),
6008                      DAG.getVTList(MVT::Other, MVT::Glue),
6009                      &AsmNodeOperands[0], AsmNodeOperands.size());
6010  Flag = Chain.getValue(1);
6011
6012  // If this asm returns a register value, copy the result from that register
6013  // and set it as the value of the call.
6014  if (!RetValRegs.Regs.empty()) {
6015    SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(),
6016                                             Chain, &Flag);
6017
6018    // FIXME: Why don't we do this for inline asms with MRVs?
6019    if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) {
6020      EVT ResultType = TLI.getValueType(CS.getType());
6021
6022      // If any of the results of the inline asm is a vector, it may have the
6023      // wrong width/num elts.  This can happen for register classes that can
6024      // contain multiple different value types.  The preg or vreg allocated may
6025      // not have the same VT as was expected.  Convert it to the right type
6026      // with bit_convert.
6027      if (ResultType != Val.getValueType() && Val.getValueType().isVector()) {
6028        Val = DAG.getNode(ISD::BITCAST, getCurDebugLoc(),
6029                          ResultType, Val);
6030
6031      } else if (ResultType != Val.getValueType() &&
6032                 ResultType.isInteger() && Val.getValueType().isInteger()) {
6033        // If a result value was tied to an input value, the computed result may
6034        // have a wider width than the expected result.  Extract the relevant
6035        // portion.
6036        Val = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), ResultType, Val);
6037      }
6038
6039      assert(ResultType == Val.getValueType() && "Asm result value mismatch!");
6040    }
6041
6042    setValue(CS.getInstruction(), Val);
6043    // Don't need to use this as a chain in this case.
6044    if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty())
6045      return;
6046  }
6047
6048  std::vector<std::pair<SDValue, const Value *> > StoresToEmit;
6049
6050  // Process indirect outputs, first output all of the flagged copies out of
6051  // physregs.
6052  for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
6053    RegsForValue &OutRegs = IndirectStoresToEmit[i].first;
6054    const Value *Ptr = IndirectStoresToEmit[i].second;
6055    SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(),
6056                                             Chain, &Flag);
6057    StoresToEmit.push_back(std::make_pair(OutVal, Ptr));
6058  }
6059
6060  // Emit the non-flagged stores from the physregs.
6061  SmallVector<SDValue, 8> OutChains;
6062  for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) {
6063    SDValue Val = DAG.getStore(Chain, getCurDebugLoc(),
6064                               StoresToEmit[i].first,
6065                               getValue(StoresToEmit[i].second),
6066                               MachinePointerInfo(StoresToEmit[i].second),
6067                               false, false, 0);
6068    OutChains.push_back(Val);
6069  }
6070
6071  if (!OutChains.empty())
6072    Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
6073                        &OutChains[0], OutChains.size());
6074
6075  DAG.setRoot(Chain);
6076}
6077
6078void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
6079  DAG.setRoot(DAG.getNode(ISD::VASTART, getCurDebugLoc(),
6080                          MVT::Other, getRoot(),
6081                          getValue(I.getArgOperand(0)),
6082                          DAG.getSrcValue(I.getArgOperand(0))));
6083}
6084
6085void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
6086  const TargetData &TD = *TLI.getTargetData();
6087  SDValue V = DAG.getVAArg(TLI.getValueType(I.getType()), getCurDebugLoc(),
6088                           getRoot(), getValue(I.getOperand(0)),
6089                           DAG.getSrcValue(I.getOperand(0)),
6090                           TD.getABITypeAlignment(I.getType()));
6091  setValue(&I, V);
6092  DAG.setRoot(V.getValue(1));
6093}
6094
6095void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
6096  DAG.setRoot(DAG.getNode(ISD::VAEND, getCurDebugLoc(),
6097                          MVT::Other, getRoot(),
6098                          getValue(I.getArgOperand(0)),
6099                          DAG.getSrcValue(I.getArgOperand(0))));
6100}
6101
6102void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
6103  DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurDebugLoc(),
6104                          MVT::Other, getRoot(),
6105                          getValue(I.getArgOperand(0)),
6106                          getValue(I.getArgOperand(1)),
6107                          DAG.getSrcValue(I.getArgOperand(0)),
6108                          DAG.getSrcValue(I.getArgOperand(1))));
6109}
6110
6111/// TargetLowering::LowerCallTo - This is the default LowerCallTo
6112/// implementation, which just calls LowerCall.
6113/// FIXME: When all targets are
6114/// migrated to using LowerCall, this hook should be integrated into SDISel.
6115std::pair<SDValue, SDValue>
6116TargetLowering::LowerCallTo(SDValue Chain, const Type *RetTy,
6117                            bool RetSExt, bool RetZExt, bool isVarArg,
6118                            bool isInreg, unsigned NumFixedArgs,
6119                            CallingConv::ID CallConv, bool isTailCall,
6120                            bool isReturnValueUsed,
6121                            SDValue Callee,
6122                            ArgListTy &Args, SelectionDAG &DAG,
6123                            DebugLoc dl) const {
6124  // Handle all of the outgoing arguments.
6125  SmallVector<ISD::OutputArg, 32> Outs;
6126  SmallVector<SDValue, 32> OutVals;
6127  for (unsigned i = 0, e = Args.size(); i != e; ++i) {
6128    SmallVector<EVT, 4> ValueVTs;
6129    ComputeValueVTs(*this, Args[i].Ty, ValueVTs);
6130    for (unsigned Value = 0, NumValues = ValueVTs.size();
6131         Value != NumValues; ++Value) {
6132      EVT VT = ValueVTs[Value];
6133      const Type *ArgTy = VT.getTypeForEVT(RetTy->getContext());
6134      SDValue Op = SDValue(Args[i].Node.getNode(),
6135                           Args[i].Node.getResNo() + Value);
6136      ISD::ArgFlagsTy Flags;
6137      unsigned OriginalAlignment =
6138        getTargetData()->getABITypeAlignment(ArgTy);
6139
6140      if (Args[i].isZExt)
6141        Flags.setZExt();
6142      if (Args[i].isSExt)
6143        Flags.setSExt();
6144      if (Args[i].isInReg)
6145        Flags.setInReg();
6146      if (Args[i].isSRet)
6147        Flags.setSRet();
6148      if (Args[i].isByVal) {
6149        Flags.setByVal();
6150        const PointerType *Ty = cast<PointerType>(Args[i].Ty);
6151        const Type *ElementTy = Ty->getElementType();
6152        Flags.setByValSize(getTargetData()->getTypeAllocSize(ElementTy));
6153        // For ByVal, alignment should come from FE.  BE will guess if this
6154        // info is not there but there are cases it cannot get right.
6155        unsigned FrameAlign;
6156        if (Args[i].Alignment)
6157          FrameAlign = Args[i].Alignment;
6158        else
6159          FrameAlign = getByValTypeAlignment(ElementTy);
6160        Flags.setByValAlign(FrameAlign);
6161      }
6162      if (Args[i].isNest)
6163        Flags.setNest();
6164      Flags.setOrigAlign(OriginalAlignment);
6165
6166      EVT PartVT = getRegisterType(RetTy->getContext(), VT);
6167      unsigned NumParts = getNumRegisters(RetTy->getContext(), VT);
6168      SmallVector<SDValue, 4> Parts(NumParts);
6169      ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
6170
6171      if (Args[i].isSExt)
6172        ExtendKind = ISD::SIGN_EXTEND;
6173      else if (Args[i].isZExt)
6174        ExtendKind = ISD::ZERO_EXTEND;
6175
6176      getCopyToParts(DAG, dl, Op, &Parts[0], NumParts,
6177                     PartVT, ExtendKind);
6178
6179      for (unsigned j = 0; j != NumParts; ++j) {
6180        // if it isn't first piece, alignment must be 1
6181        ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(),
6182                               i < NumFixedArgs);
6183        if (NumParts > 1 && j == 0)
6184          MyFlags.Flags.setSplit();
6185        else if (j != 0)
6186          MyFlags.Flags.setOrigAlign(1);
6187
6188        Outs.push_back(MyFlags);
6189        OutVals.push_back(Parts[j]);
6190      }
6191    }
6192  }
6193
6194  // Handle the incoming return values from the call.
6195  SmallVector<ISD::InputArg, 32> Ins;
6196  SmallVector<EVT, 4> RetTys;
6197  ComputeValueVTs(*this, RetTy, RetTys);
6198  for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
6199    EVT VT = RetTys[I];
6200    EVT RegisterVT = getRegisterType(RetTy->getContext(), VT);
6201    unsigned NumRegs = getNumRegisters(RetTy->getContext(), VT);
6202    for (unsigned i = 0; i != NumRegs; ++i) {
6203      ISD::InputArg MyFlags;
6204      MyFlags.VT = RegisterVT.getSimpleVT();
6205      MyFlags.Used = isReturnValueUsed;
6206      if (RetSExt)
6207        MyFlags.Flags.setSExt();
6208      if (RetZExt)
6209        MyFlags.Flags.setZExt();
6210      if (isInreg)
6211        MyFlags.Flags.setInReg();
6212      Ins.push_back(MyFlags);
6213    }
6214  }
6215
6216  SmallVector<SDValue, 4> InVals;
6217  Chain = LowerCall(Chain, Callee, CallConv, isVarArg, isTailCall,
6218                    Outs, OutVals, Ins, dl, DAG, InVals);
6219
6220  // Verify that the target's LowerCall behaved as expected.
6221  assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
6222         "LowerCall didn't return a valid chain!");
6223  assert((!isTailCall || InVals.empty()) &&
6224         "LowerCall emitted a return value for a tail call!");
6225  assert((isTailCall || InVals.size() == Ins.size()) &&
6226         "LowerCall didn't emit the correct number of values!");
6227
6228  // For a tail call, the return value is merely live-out and there aren't
6229  // any nodes in the DAG representing it. Return a special value to
6230  // indicate that a tail call has been emitted and no more Instructions
6231  // should be processed in the current block.
6232  if (isTailCall) {
6233    DAG.setRoot(Chain);
6234    return std::make_pair(SDValue(), SDValue());
6235  }
6236
6237  DEBUG(for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
6238          assert(InVals[i].getNode() &&
6239                 "LowerCall emitted a null value!");
6240          assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
6241                 "LowerCall emitted a value with the wrong type!");
6242        });
6243
6244  // Collect the legal value parts into potentially illegal values
6245  // that correspond to the original function's return values.
6246  ISD::NodeType AssertOp = ISD::DELETED_NODE;
6247  if (RetSExt)
6248    AssertOp = ISD::AssertSext;
6249  else if (RetZExt)
6250    AssertOp = ISD::AssertZext;
6251  SmallVector<SDValue, 4> ReturnValues;
6252  unsigned CurReg = 0;
6253  for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
6254    EVT VT = RetTys[I];
6255    EVT RegisterVT = getRegisterType(RetTy->getContext(), VT);
6256    unsigned NumRegs = getNumRegisters(RetTy->getContext(), VT);
6257
6258    ReturnValues.push_back(getCopyFromParts(DAG, dl, &InVals[CurReg],
6259                                            NumRegs, RegisterVT, VT,
6260                                            AssertOp));
6261    CurReg += NumRegs;
6262  }
6263
6264  // For a function returning void, there is no return value. We can't create
6265  // such a node, so we just return a null return value in that case. In
6266  // that case, nothing will actually look at the value.
6267  if (ReturnValues.empty())
6268    return std::make_pair(SDValue(), Chain);
6269
6270  SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
6271                            DAG.getVTList(&RetTys[0], RetTys.size()),
6272                            &ReturnValues[0], ReturnValues.size());
6273  return std::make_pair(Res, Chain);
6274}
6275
6276void TargetLowering::LowerOperationWrapper(SDNode *N,
6277                                           SmallVectorImpl<SDValue> &Results,
6278                                           SelectionDAG &DAG) const {
6279  SDValue Res = LowerOperation(SDValue(N, 0), DAG);
6280  if (Res.getNode())
6281    Results.push_back(Res);
6282}
6283
6284SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
6285  llvm_unreachable("LowerOperation not implemented for this target!");
6286  return SDValue();
6287}
6288
6289void
6290SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) {
6291  SDValue Op = getNonRegisterValue(V);
6292  assert((Op.getOpcode() != ISD::CopyFromReg ||
6293          cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
6294         "Copy from a reg to the same reg!");
6295  assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg");
6296
6297  RegsForValue RFV(V->getContext(), TLI, Reg, V->getType());
6298  SDValue Chain = DAG.getEntryNode();
6299  RFV.getCopyToRegs(Op, DAG, getCurDebugLoc(), Chain, 0);
6300  PendingExports.push_back(Chain);
6301}
6302
6303#include "llvm/CodeGen/SelectionDAGISel.h"
6304
6305/// isOnlyUsedInEntryBlock - If the specified argument is only used in the
6306/// entry block, return true.  This includes arguments used by switches, since
6307/// the switch may expand into multiple basic blocks.
6308static bool isOnlyUsedInEntryBlock(const Argument *A) {
6309  // With FastISel active, we may be splitting blocks, so force creation
6310  // of virtual registers for all non-dead arguments.
6311  if (EnableFastISel)
6312    return A->use_empty();
6313
6314  const BasicBlock *Entry = A->getParent()->begin();
6315  for (Value::const_use_iterator UI = A->use_begin(), E = A->use_end();
6316       UI != E; ++UI) {
6317    const User *U = *UI;
6318    if (cast<Instruction>(U)->getParent() != Entry || isa<SwitchInst>(U))
6319      return false;  // Use not in entry block.
6320  }
6321  return true;
6322}
6323
6324void SelectionDAGISel::LowerArguments(const BasicBlock *LLVMBB) {
6325  // If this is the entry block, emit arguments.
6326  const Function &F = *LLVMBB->getParent();
6327  SelectionDAG &DAG = SDB->DAG;
6328  DebugLoc dl = SDB->getCurDebugLoc();
6329  const TargetData *TD = TLI.getTargetData();
6330  SmallVector<ISD::InputArg, 16> Ins;
6331
6332  // Check whether the function can return without sret-demotion.
6333  SmallVector<ISD::OutputArg, 4> Outs;
6334  GetReturnInfo(F.getReturnType(), F.getAttributes().getRetAttributes(),
6335                Outs, TLI);
6336
6337  if (!FuncInfo->CanLowerReturn) {
6338    // Put in an sret pointer parameter before all the other parameters.
6339    SmallVector<EVT, 1> ValueVTs;
6340    ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs);
6341
6342    // NOTE: Assuming that a pointer will never break down to more than one VT
6343    // or one register.
6344    ISD::ArgFlagsTy Flags;
6345    Flags.setSRet();
6346    EVT RegisterVT = TLI.getRegisterType(*DAG.getContext(), ValueVTs[0]);
6347    ISD::InputArg RetArg(Flags, RegisterVT, true);
6348    Ins.push_back(RetArg);
6349  }
6350
6351  // Set up the incoming argument description vector.
6352  unsigned Idx = 1;
6353  for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end();
6354       I != E; ++I, ++Idx) {
6355    SmallVector<EVT, 4> ValueVTs;
6356    ComputeValueVTs(TLI, I->getType(), ValueVTs);
6357    bool isArgValueUsed = !I->use_empty();
6358    for (unsigned Value = 0, NumValues = ValueVTs.size();
6359         Value != NumValues; ++Value) {
6360      EVT VT = ValueVTs[Value];
6361      const Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
6362      ISD::ArgFlagsTy Flags;
6363      unsigned OriginalAlignment =
6364        TD->getABITypeAlignment(ArgTy);
6365
6366      if (F.paramHasAttr(Idx, Attribute::ZExt))
6367        Flags.setZExt();
6368      if (F.paramHasAttr(Idx, Attribute::SExt))
6369        Flags.setSExt();
6370      if (F.paramHasAttr(Idx, Attribute::InReg))
6371        Flags.setInReg();
6372      if (F.paramHasAttr(Idx, Attribute::StructRet))
6373        Flags.setSRet();
6374      if (F.paramHasAttr(Idx, Attribute::ByVal)) {
6375        Flags.setByVal();
6376        const PointerType *Ty = cast<PointerType>(I->getType());
6377        const Type *ElementTy = Ty->getElementType();
6378        Flags.setByValSize(TD->getTypeAllocSize(ElementTy));
6379        // For ByVal, alignment should be passed from FE.  BE will guess if
6380        // this info is not there but there are cases it cannot get right.
6381        unsigned FrameAlign;
6382        if (F.getParamAlignment(Idx))
6383          FrameAlign = F.getParamAlignment(Idx);
6384        else
6385          FrameAlign = TLI.getByValTypeAlignment(ElementTy);
6386        Flags.setByValAlign(FrameAlign);
6387      }
6388      if (F.paramHasAttr(Idx, Attribute::Nest))
6389        Flags.setNest();
6390      Flags.setOrigAlign(OriginalAlignment);
6391
6392      EVT RegisterVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
6393      unsigned NumRegs = TLI.getNumRegisters(*CurDAG->getContext(), VT);
6394      for (unsigned i = 0; i != NumRegs; ++i) {
6395        ISD::InputArg MyFlags(Flags, RegisterVT, isArgValueUsed);
6396        if (NumRegs > 1 && i == 0)
6397          MyFlags.Flags.setSplit();
6398        // if it isn't first piece, alignment must be 1
6399        else if (i > 0)
6400          MyFlags.Flags.setOrigAlign(1);
6401        Ins.push_back(MyFlags);
6402      }
6403    }
6404  }
6405
6406  // Call the target to set up the argument values.
6407  SmallVector<SDValue, 8> InVals;
6408  SDValue NewRoot = TLI.LowerFormalArguments(DAG.getRoot(), F.getCallingConv(),
6409                                             F.isVarArg(), Ins,
6410                                             dl, DAG, InVals);
6411
6412  // Verify that the target's LowerFormalArguments behaved as expected.
6413  assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
6414         "LowerFormalArguments didn't return a valid chain!");
6415  assert(InVals.size() == Ins.size() &&
6416         "LowerFormalArguments didn't emit the correct number of values!");
6417  DEBUG({
6418      for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
6419        assert(InVals[i].getNode() &&
6420               "LowerFormalArguments emitted a null value!");
6421        assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
6422               "LowerFormalArguments emitted a value with the wrong type!");
6423      }
6424    });
6425
6426  // Update the DAG with the new chain value resulting from argument lowering.
6427  DAG.setRoot(NewRoot);
6428
6429  // Set up the argument values.
6430  unsigned i = 0;
6431  Idx = 1;
6432  if (!FuncInfo->CanLowerReturn) {
6433    // Create a virtual register for the sret pointer, and put in a copy
6434    // from the sret argument into it.
6435    SmallVector<EVT, 1> ValueVTs;
6436    ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs);
6437    EVT VT = ValueVTs[0];
6438    EVT RegVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
6439    ISD::NodeType AssertOp = ISD::DELETED_NODE;
6440    SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1,
6441                                        RegVT, VT, AssertOp);
6442
6443    MachineFunction& MF = SDB->DAG.getMachineFunction();
6444    MachineRegisterInfo& RegInfo = MF.getRegInfo();
6445    unsigned SRetReg = RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT));
6446    FuncInfo->DemoteRegister = SRetReg;
6447    NewRoot = SDB->DAG.getCopyToReg(NewRoot, SDB->getCurDebugLoc(),
6448                                    SRetReg, ArgValue);
6449    DAG.setRoot(NewRoot);
6450
6451    // i indexes lowered arguments.  Bump it past the hidden sret argument.
6452    // Idx indexes LLVM arguments.  Don't touch it.
6453    ++i;
6454  }
6455
6456  for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E;
6457      ++I, ++Idx) {
6458    SmallVector<SDValue, 4> ArgValues;
6459    SmallVector<EVT, 4> ValueVTs;
6460    ComputeValueVTs(TLI, I->getType(), ValueVTs);
6461    unsigned NumValues = ValueVTs.size();
6462
6463    // If this argument is unused then remember its value. It is used to generate
6464    // debugging information.
6465    if (I->use_empty() && NumValues)
6466      SDB->setUnusedArgValue(I, InVals[i]);
6467
6468    for (unsigned Val = 0; Val != NumValues; ++Val) {
6469      EVT VT = ValueVTs[Val];
6470      EVT PartVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
6471      unsigned NumParts = TLI.getNumRegisters(*CurDAG->getContext(), VT);
6472
6473      if (!I->use_empty()) {
6474        ISD::NodeType AssertOp = ISD::DELETED_NODE;
6475        if (F.paramHasAttr(Idx, Attribute::SExt))
6476          AssertOp = ISD::AssertSext;
6477        else if (F.paramHasAttr(Idx, Attribute::ZExt))
6478          AssertOp = ISD::AssertZext;
6479
6480        ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i],
6481                                             NumParts, PartVT, VT,
6482                                             AssertOp));
6483      }
6484
6485      i += NumParts;
6486    }
6487
6488    // We don't need to do anything else for unused arguments.
6489    if (ArgValues.empty())
6490      continue;
6491
6492    // Note down frame index for byval arguments.
6493    if (I->hasByValAttr())
6494      if (FrameIndexSDNode *FI =
6495          dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
6496        FuncInfo->setByValArgumentFrameIndex(I, FI->getIndex());
6497
6498    SDValue Res = DAG.getMergeValues(&ArgValues[0], NumValues,
6499                                     SDB->getCurDebugLoc());
6500    SDB->setValue(I, Res);
6501
6502    // If this argument is live outside of the entry block, insert a copy from
6503    // wherever we got it to the vreg that other BB's will reference it as.
6504    if (!EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) {
6505      // If we can, though, try to skip creating an unnecessary vreg.
6506      // FIXME: This isn't very clean... it would be nice to make this more
6507      // general.  It's also subtly incompatible with the hacks FastISel
6508      // uses with vregs.
6509      unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
6510      if (TargetRegisterInfo::isVirtualRegister(Reg)) {
6511        FuncInfo->ValueMap[I] = Reg;
6512        continue;
6513      }
6514    }
6515    if (!isOnlyUsedInEntryBlock(I)) {
6516      FuncInfo->InitializeRegForValue(I);
6517      SDB->CopyToExportRegsIfNeeded(I);
6518    }
6519  }
6520
6521  assert(i == InVals.size() && "Argument register count mismatch!");
6522
6523  // Finally, if the target has anything special to do, allow it to do so.
6524  // FIXME: this should insert code into the DAG!
6525  EmitFunctionEntryCode();
6526}
6527
6528/// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
6529/// ensure constants are generated when needed.  Remember the virtual registers
6530/// that need to be added to the Machine PHI nodes as input.  We cannot just
6531/// directly add them, because expansion might result in multiple MBB's for one
6532/// BB.  As such, the start of the BB might correspond to a different MBB than
6533/// the end.
6534///
6535void
6536SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
6537  const TerminatorInst *TI = LLVMBB->getTerminator();
6538
6539  SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
6540
6541  // Check successor nodes' PHI nodes that expect a constant to be available
6542  // from this block.
6543  for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
6544    const BasicBlock *SuccBB = TI->getSuccessor(succ);
6545    if (!isa<PHINode>(SuccBB->begin())) continue;
6546    MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
6547
6548    // If this terminator has multiple identical successors (common for
6549    // switches), only handle each succ once.
6550    if (!SuccsHandled.insert(SuccMBB)) continue;
6551
6552    MachineBasicBlock::iterator MBBI = SuccMBB->begin();
6553
6554    // At this point we know that there is a 1-1 correspondence between LLVM PHI
6555    // nodes and Machine PHI nodes, but the incoming operands have not been
6556    // emitted yet.
6557    for (BasicBlock::const_iterator I = SuccBB->begin();
6558         const PHINode *PN = dyn_cast<PHINode>(I); ++I) {
6559      // Ignore dead phi's.
6560      if (PN->use_empty()) continue;
6561
6562      // Skip empty types
6563      if (PN->getType()->isEmptyTy())
6564        continue;
6565
6566      unsigned Reg;
6567      const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
6568
6569      if (const Constant *C = dyn_cast<Constant>(PHIOp)) {
6570        unsigned &RegOut = ConstantsOut[C];
6571        if (RegOut == 0) {
6572          RegOut = FuncInfo.CreateRegs(C->getType());
6573          CopyValueToVirtualRegister(C, RegOut);
6574        }
6575        Reg = RegOut;
6576      } else {
6577        DenseMap<const Value *, unsigned>::iterator I =
6578          FuncInfo.ValueMap.find(PHIOp);
6579        if (I != FuncInfo.ValueMap.end())
6580          Reg = I->second;
6581        else {
6582          assert(isa<AllocaInst>(PHIOp) &&
6583                 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
6584                 "Didn't codegen value into a register!??");
6585          Reg = FuncInfo.CreateRegs(PHIOp->getType());
6586          CopyValueToVirtualRegister(PHIOp, Reg);
6587        }
6588      }
6589
6590      // Remember that this register needs to added to the machine PHI node as
6591      // the input for this MBB.
6592      SmallVector<EVT, 4> ValueVTs;
6593      ComputeValueVTs(TLI, PN->getType(), ValueVTs);
6594      for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
6595        EVT VT = ValueVTs[vti];
6596        unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
6597        for (unsigned i = 0, e = NumRegisters; i != e; ++i)
6598          FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i));
6599        Reg += NumRegisters;
6600      }
6601    }
6602  }
6603  ConstantsOut.clear();
6604}
6605