SelectionDAGBuilder.cpp revision e70c526d59e92048c89281d1b7011af0b1d9ee95
1//===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements routines for translating from LLVM IR into SelectionDAG IR.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "isel"
15#include "SDNodeDbgValue.h"
16#include "SelectionDAGBuilder.h"
17#include "llvm/ADT/BitVector.h"
18#include "llvm/ADT/SmallSet.h"
19#include "llvm/Analysis/AliasAnalysis.h"
20#include "llvm/Analysis/ConstantFolding.h"
21#include "llvm/Constants.h"
22#include "llvm/CallingConv.h"
23#include "llvm/DerivedTypes.h"
24#include "llvm/Function.h"
25#include "llvm/GlobalVariable.h"
26#include "llvm/InlineAsm.h"
27#include "llvm/Instructions.h"
28#include "llvm/Intrinsics.h"
29#include "llvm/IntrinsicInst.h"
30#include "llvm/LLVMContext.h"
31#include "llvm/Module.h"
32#include "llvm/CodeGen/Analysis.h"
33#include "llvm/CodeGen/FastISel.h"
34#include "llvm/CodeGen/FunctionLoweringInfo.h"
35#include "llvm/CodeGen/GCStrategy.h"
36#include "llvm/CodeGen/GCMetadata.h"
37#include "llvm/CodeGen/MachineFunction.h"
38#include "llvm/CodeGen/MachineFrameInfo.h"
39#include "llvm/CodeGen/MachineInstrBuilder.h"
40#include "llvm/CodeGen/MachineJumpTableInfo.h"
41#include "llvm/CodeGen/MachineModuleInfo.h"
42#include "llvm/CodeGen/MachineRegisterInfo.h"
43#include "llvm/CodeGen/PseudoSourceValue.h"
44#include "llvm/CodeGen/SelectionDAG.h"
45#include "llvm/Analysis/DebugInfo.h"
46#include "llvm/Target/TargetRegisterInfo.h"
47#include "llvm/Target/TargetData.h"
48#include "llvm/Target/TargetFrameInfo.h"
49#include "llvm/Target/TargetInstrInfo.h"
50#include "llvm/Target/TargetIntrinsicInfo.h"
51#include "llvm/Target/TargetLowering.h"
52#include "llvm/Target/TargetOptions.h"
53#include "llvm/Support/Compiler.h"
54#include "llvm/Support/CommandLine.h"
55#include "llvm/Support/Debug.h"
56#include "llvm/Support/ErrorHandling.h"
57#include "llvm/Support/MathExtras.h"
58#include "llvm/Support/raw_ostream.h"
59#include <algorithm>
60using namespace llvm;
61
62/// LimitFloatPrecision - Generate low-precision inline sequences for
63/// some float libcalls (6, 8 or 12 bits).
64static unsigned LimitFloatPrecision;
65
66static cl::opt<unsigned, true>
67LimitFPPrecision("limit-float-precision",
68                 cl::desc("Generate low-precision inline sequences "
69                          "for some float libcalls"),
70                 cl::location(LimitFloatPrecision),
71                 cl::init(0));
72
73static SDValue getCopyFromPartsVector(SelectionDAG &DAG, DebugLoc DL,
74                                      const SDValue *Parts, unsigned NumParts,
75                                      EVT PartVT, EVT ValueVT);
76
77/// getCopyFromParts - Create a value that contains the specified legal parts
78/// combined into the value they represent.  If the parts combine to a type
79/// larger then ValueVT then AssertOp can be used to specify whether the extra
80/// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
81/// (ISD::AssertSext).
82static SDValue getCopyFromParts(SelectionDAG &DAG, DebugLoc DL,
83                                const SDValue *Parts,
84                                unsigned NumParts, EVT PartVT, EVT ValueVT,
85                                ISD::NodeType AssertOp = ISD::DELETED_NODE) {
86  if (ValueVT.isVector())
87    return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT);
88
89  assert(NumParts > 0 && "No parts to assemble!");
90  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
91  SDValue Val = Parts[0];
92
93  if (NumParts > 1) {
94    // Assemble the value from multiple parts.
95    if (ValueVT.isInteger()) {
96      unsigned PartBits = PartVT.getSizeInBits();
97      unsigned ValueBits = ValueVT.getSizeInBits();
98
99      // Assemble the power of 2 part.
100      unsigned RoundParts = NumParts & (NumParts - 1) ?
101        1 << Log2_32(NumParts) : NumParts;
102      unsigned RoundBits = PartBits * RoundParts;
103      EVT RoundVT = RoundBits == ValueBits ?
104        ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
105      SDValue Lo, Hi;
106
107      EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
108
109      if (RoundParts > 2) {
110        Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2,
111                              PartVT, HalfVT);
112        Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2,
113                              RoundParts / 2, PartVT, HalfVT);
114      } else {
115        Lo = DAG.getNode(ISD::BIT_CONVERT, DL, HalfVT, Parts[0]);
116        Hi = DAG.getNode(ISD::BIT_CONVERT, DL, HalfVT, Parts[1]);
117      }
118
119      if (TLI.isBigEndian())
120        std::swap(Lo, Hi);
121
122      Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
123
124      if (RoundParts < NumParts) {
125        // Assemble the trailing non-power-of-2 part.
126        unsigned OddParts = NumParts - RoundParts;
127        EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
128        Hi = getCopyFromParts(DAG, DL,
129                              Parts + RoundParts, OddParts, PartVT, OddVT);
130
131        // Combine the round and odd parts.
132        Lo = Val;
133        if (TLI.isBigEndian())
134          std::swap(Lo, Hi);
135        EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
136        Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
137        Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
138                         DAG.getConstant(Lo.getValueType().getSizeInBits(),
139                                         TLI.getPointerTy()));
140        Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
141        Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
142      }
143    } else if (PartVT.isFloatingPoint()) {
144      // FP split into multiple FP parts (for ppcf128)
145      assert(ValueVT == EVT(MVT::ppcf128) && PartVT == EVT(MVT::f64) &&
146             "Unexpected split");
147      SDValue Lo, Hi;
148      Lo = DAG.getNode(ISD::BIT_CONVERT, DL, EVT(MVT::f64), Parts[0]);
149      Hi = DAG.getNode(ISD::BIT_CONVERT, DL, EVT(MVT::f64), Parts[1]);
150      if (TLI.isBigEndian())
151        std::swap(Lo, Hi);
152      Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
153    } else {
154      // FP split into integer parts (soft fp)
155      assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
156             !PartVT.isVector() && "Unexpected split");
157      EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
158      Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT);
159    }
160  }
161
162  // There is now one part, held in Val.  Correct it to match ValueVT.
163  PartVT = Val.getValueType();
164
165  if (PartVT == ValueVT)
166    return Val;
167
168  if (PartVT.isInteger() && ValueVT.isInteger()) {
169    if (ValueVT.bitsLT(PartVT)) {
170      // For a truncate, see if we have any information to
171      // indicate whether the truncated bits will always be
172      // zero or sign-extension.
173      if (AssertOp != ISD::DELETED_NODE)
174        Val = DAG.getNode(AssertOp, DL, PartVT, Val,
175                          DAG.getValueType(ValueVT));
176      return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
177    }
178    return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
179  }
180
181  if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
182    // FP_ROUND's are always exact here.
183    if (ValueVT.bitsLT(Val.getValueType()))
184      return DAG.getNode(ISD::FP_ROUND, DL, ValueVT, Val,
185                         DAG.getIntPtrConstant(1));
186
187    return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
188  }
189
190  if (PartVT.getSizeInBits() == ValueVT.getSizeInBits())
191    return DAG.getNode(ISD::BIT_CONVERT, DL, ValueVT, Val);
192
193  llvm_unreachable("Unknown mismatch!");
194  return SDValue();
195}
196
197/// getCopyFromParts - Create a value that contains the specified legal parts
198/// combined into the value they represent.  If the parts combine to a type
199/// larger then ValueVT then AssertOp can be used to specify whether the extra
200/// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
201/// (ISD::AssertSext).
202static SDValue getCopyFromPartsVector(SelectionDAG &DAG, DebugLoc DL,
203                                      const SDValue *Parts, unsigned NumParts,
204                                      EVT PartVT, EVT ValueVT) {
205  assert(ValueVT.isVector() && "Not a vector value");
206  assert(NumParts > 0 && "No parts to assemble!");
207  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
208  SDValue Val = Parts[0];
209
210  // Handle a multi-element vector.
211  if (NumParts > 1) {
212    EVT IntermediateVT, RegisterVT;
213    unsigned NumIntermediates;
214    unsigned NumRegs =
215    TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
216                               NumIntermediates, RegisterVT);
217    assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
218    NumParts = NumRegs; // Silence a compiler warning.
219    assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
220    assert(RegisterVT == Parts[0].getValueType() &&
221           "Part type doesn't match part!");
222
223    // Assemble the parts into intermediate operands.
224    SmallVector<SDValue, 8> Ops(NumIntermediates);
225    if (NumIntermediates == NumParts) {
226      // If the register was not expanded, truncate or copy the value,
227      // as appropriate.
228      for (unsigned i = 0; i != NumParts; ++i)
229        Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1,
230                                  PartVT, IntermediateVT);
231    } else if (NumParts > 0) {
232      // If the intermediate type was expanded, build the intermediate
233      // operands from the parts.
234      assert(NumParts % NumIntermediates == 0 &&
235             "Must expand into a divisible number of parts!");
236      unsigned Factor = NumParts / NumIntermediates;
237      for (unsigned i = 0; i != NumIntermediates; ++i)
238        Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor,
239                                  PartVT, IntermediateVT);
240    }
241
242    // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
243    // intermediate operands.
244    Val = DAG.getNode(IntermediateVT.isVector() ?
245                      ISD::CONCAT_VECTORS : ISD::BUILD_VECTOR, DL,
246                      ValueVT, &Ops[0], NumIntermediates);
247  }
248
249  // There is now one part, held in Val.  Correct it to match ValueVT.
250  PartVT = Val.getValueType();
251
252  if (PartVT == ValueVT)
253    return Val;
254
255  if (PartVT.isVector()) {
256    // If the element type of the source/dest vectors are the same, but the
257    // parts vector has more elements than the value vector, then we have a
258    // vector widening case (e.g. <2 x float> -> <4 x float>).  Extract the
259    // elements we want.
260    if (PartVT.getVectorElementType() == ValueVT.getVectorElementType()) {
261      assert(PartVT.getVectorNumElements() > ValueVT.getVectorNumElements() &&
262             "Cannot narrow, it would be a lossy transformation");
263      return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
264                         DAG.getIntPtrConstant(0));
265    }
266
267    // Vector/Vector bitcast.
268    return DAG.getNode(ISD::BIT_CONVERT, DL, ValueVT, Val);
269  }
270
271  assert(ValueVT.getVectorElementType() == PartVT &&
272         ValueVT.getVectorNumElements() == 1 &&
273         "Only trivial scalar-to-vector conversions should get here!");
274  return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val);
275}
276
277
278
279
280static void getCopyToPartsVector(SelectionDAG &DAG, DebugLoc dl,
281                                 SDValue Val, SDValue *Parts, unsigned NumParts,
282                                 EVT PartVT);
283
284/// getCopyToParts - Create a series of nodes that contain the specified value
285/// split into legal parts.  If the parts contain more bits than Val, then, for
286/// integers, ExtendKind can be used to specify how to generate the extra bits.
287static void getCopyToParts(SelectionDAG &DAG, DebugLoc DL,
288                           SDValue Val, SDValue *Parts, unsigned NumParts,
289                           EVT PartVT,
290                           ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
291  EVT ValueVT = Val.getValueType();
292
293  // Handle the vector case separately.
294  if (ValueVT.isVector())
295    return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT);
296
297  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
298  unsigned PartBits = PartVT.getSizeInBits();
299  unsigned OrigNumParts = NumParts;
300  assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!");
301
302  if (NumParts == 0)
303    return;
304
305  assert(!ValueVT.isVector() && "Vector case handled elsewhere");
306  if (PartVT == ValueVT) {
307    assert(NumParts == 1 && "No-op copy with multiple parts!");
308    Parts[0] = Val;
309    return;
310  }
311
312  if (NumParts * PartBits > ValueVT.getSizeInBits()) {
313    // If the parts cover more bits than the value has, promote the value.
314    if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
315      assert(NumParts == 1 && "Do not know what to promote to!");
316      Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
317    } else {
318      assert(PartVT.isInteger() && ValueVT.isInteger() &&
319             "Unknown mismatch!");
320      ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
321      Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
322    }
323  } else if (PartBits == ValueVT.getSizeInBits()) {
324    // Different types of the same size.
325    assert(NumParts == 1 && PartVT != ValueVT);
326    Val = DAG.getNode(ISD::BIT_CONVERT, DL, PartVT, Val);
327  } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
328    // If the parts cover less bits than value has, truncate the value.
329    assert(PartVT.isInteger() && ValueVT.isInteger() &&
330           "Unknown mismatch!");
331    ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
332    Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
333  }
334
335  // The value may have changed - recompute ValueVT.
336  ValueVT = Val.getValueType();
337  assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
338         "Failed to tile the value with PartVT!");
339
340  if (NumParts == 1) {
341    assert(PartVT == ValueVT && "Type conversion failed!");
342    Parts[0] = Val;
343    return;
344  }
345
346  // Expand the value into multiple parts.
347  if (NumParts & (NumParts - 1)) {
348    // The number of parts is not a power of 2.  Split off and copy the tail.
349    assert(PartVT.isInteger() && ValueVT.isInteger() &&
350           "Do not know what to expand to!");
351    unsigned RoundParts = 1 << Log2_32(NumParts);
352    unsigned RoundBits = RoundParts * PartBits;
353    unsigned OddParts = NumParts - RoundParts;
354    SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
355                                 DAG.getIntPtrConstant(RoundBits));
356    getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT);
357
358    if (TLI.isBigEndian())
359      // The odd parts were reversed by getCopyToParts - unreverse them.
360      std::reverse(Parts + RoundParts, Parts + NumParts);
361
362    NumParts = RoundParts;
363    ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
364    Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
365  }
366
367  // The number of parts is a power of 2.  Repeatedly bisect the value using
368  // EXTRACT_ELEMENT.
369  Parts[0] = DAG.getNode(ISD::BIT_CONVERT, DL,
370                         EVT::getIntegerVT(*DAG.getContext(),
371                                           ValueVT.getSizeInBits()),
372                         Val);
373
374  for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
375    for (unsigned i = 0; i < NumParts; i += StepSize) {
376      unsigned ThisBits = StepSize * PartBits / 2;
377      EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
378      SDValue &Part0 = Parts[i];
379      SDValue &Part1 = Parts[i+StepSize/2];
380
381      Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
382                          ThisVT, Part0, DAG.getIntPtrConstant(1));
383      Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
384                          ThisVT, Part0, DAG.getIntPtrConstant(0));
385
386      if (ThisBits == PartBits && ThisVT != PartVT) {
387        Part0 = DAG.getNode(ISD::BIT_CONVERT, DL, PartVT, Part0);
388        Part1 = DAG.getNode(ISD::BIT_CONVERT, DL, PartVT, Part1);
389      }
390    }
391  }
392
393  if (TLI.isBigEndian())
394    std::reverse(Parts, Parts + OrigNumParts);
395}
396
397
398/// getCopyToPartsVector - Create a series of nodes that contain the specified
399/// value split into legal parts.
400static void getCopyToPartsVector(SelectionDAG &DAG, DebugLoc DL,
401                                 SDValue Val, SDValue *Parts, unsigned NumParts,
402                                 EVT PartVT) {
403  EVT ValueVT = Val.getValueType();
404  assert(ValueVT.isVector() && "Not a vector");
405  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
406
407  if (NumParts == 1) {
408    if (PartVT == ValueVT) {
409      // Nothing to do.
410    } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
411      // Bitconvert vector->vector case.
412      Val = DAG.getNode(ISD::BIT_CONVERT, DL, PartVT, Val);
413    } else if (PartVT.isVector() &&
414               PartVT.getVectorElementType() == ValueVT.getVectorElementType()&&
415               PartVT.getVectorNumElements() > ValueVT.getVectorNumElements()) {
416      EVT ElementVT = PartVT.getVectorElementType();
417      // Vector widening case, e.g. <2 x float> -> <4 x float>.  Shuffle in
418      // undef elements.
419      SmallVector<SDValue, 16> Ops;
420      for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i)
421        Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
422                                  ElementVT, Val, DAG.getIntPtrConstant(i)));
423
424      for (unsigned i = ValueVT.getVectorNumElements(),
425           e = PartVT.getVectorNumElements(); i != e; ++i)
426        Ops.push_back(DAG.getUNDEF(ElementVT));
427
428      Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, &Ops[0], Ops.size());
429
430      // FIXME: Use CONCAT for 2x -> 4x.
431
432      //SDValue UndefElts = DAG.getUNDEF(VectorTy);
433      //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts);
434    } else {
435      // Vector -> scalar conversion.
436      assert(ValueVT.getVectorElementType() == PartVT &&
437             ValueVT.getVectorNumElements() == 1 &&
438             "Only trivial vector-to-scalar conversions should get here!");
439      Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
440                        PartVT, Val, DAG.getIntPtrConstant(0));
441    }
442
443    Parts[0] = Val;
444    return;
445  }
446
447  // Handle a multi-element vector.
448  EVT IntermediateVT, RegisterVT;
449  unsigned NumIntermediates;
450  unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT,
451                                                IntermediateVT,
452                                                NumIntermediates, RegisterVT);
453  unsigned NumElements = ValueVT.getVectorNumElements();
454
455  assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
456  NumParts = NumRegs; // Silence a compiler warning.
457  assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
458
459  // Split the vector into intermediate operands.
460  SmallVector<SDValue, 8> Ops(NumIntermediates);
461  for (unsigned i = 0; i != NumIntermediates; ++i) {
462    if (IntermediateVT.isVector())
463      Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL,
464                           IntermediateVT, Val,
465                   DAG.getIntPtrConstant(i * (NumElements / NumIntermediates)));
466    else
467      Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
468                           IntermediateVT, Val, DAG.getIntPtrConstant(i));
469  }
470
471  // Split the intermediate operands into legal parts.
472  if (NumParts == NumIntermediates) {
473    // If the register was not expanded, promote or copy the value,
474    // as appropriate.
475    for (unsigned i = 0; i != NumParts; ++i)
476      getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT);
477  } else if (NumParts > 0) {
478    // If the intermediate type was expanded, split each the value into
479    // legal parts.
480    assert(NumParts % NumIntermediates == 0 &&
481           "Must expand into a divisible number of parts!");
482    unsigned Factor = NumParts / NumIntermediates;
483    for (unsigned i = 0; i != NumIntermediates; ++i)
484      getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT);
485  }
486}
487
488
489
490
491namespace {
492  /// RegsForValue - This struct represents the registers (physical or virtual)
493  /// that a particular set of values is assigned, and the type information
494  /// about the value. The most common situation is to represent one value at a
495  /// time, but struct or array values are handled element-wise as multiple
496  /// values.  The splitting of aggregates is performed recursively, so that we
497  /// never have aggregate-typed registers. The values at this point do not
498  /// necessarily have legal types, so each value may require one or more
499  /// registers of some legal type.
500  ///
501  struct RegsForValue {
502    /// ValueVTs - The value types of the values, which may not be legal, and
503    /// may need be promoted or synthesized from one or more registers.
504    ///
505    SmallVector<EVT, 4> ValueVTs;
506
507    /// RegVTs - The value types of the registers. This is the same size as
508    /// ValueVTs and it records, for each value, what the type of the assigned
509    /// register or registers are. (Individual values are never synthesized
510    /// from more than one type of register.)
511    ///
512    /// With virtual registers, the contents of RegVTs is redundant with TLI's
513    /// getRegisterType member function, however when with physical registers
514    /// it is necessary to have a separate record of the types.
515    ///
516    SmallVector<EVT, 4> RegVTs;
517
518    /// Regs - This list holds the registers assigned to the values.
519    /// Each legal or promoted value requires one register, and each
520    /// expanded value requires multiple registers.
521    ///
522    SmallVector<unsigned, 4> Regs;
523
524    RegsForValue() {}
525
526    RegsForValue(const SmallVector<unsigned, 4> &regs,
527                 EVT regvt, EVT valuevt)
528      : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {}
529
530    RegsForValue(LLVMContext &Context, const TargetLowering &tli,
531                 unsigned Reg, const Type *Ty) {
532      ComputeValueVTs(tli, Ty, ValueVTs);
533
534      for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
535        EVT ValueVT = ValueVTs[Value];
536        unsigned NumRegs = tli.getNumRegisters(Context, ValueVT);
537        EVT RegisterVT = tli.getRegisterType(Context, ValueVT);
538        for (unsigned i = 0; i != NumRegs; ++i)
539          Regs.push_back(Reg + i);
540        RegVTs.push_back(RegisterVT);
541        Reg += NumRegs;
542      }
543    }
544
545    /// areValueTypesLegal - Return true if types of all the values are legal.
546    bool areValueTypesLegal(const TargetLowering &TLI) {
547      for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
548        EVT RegisterVT = RegVTs[Value];
549        if (!TLI.isTypeLegal(RegisterVT))
550          return false;
551      }
552      return true;
553    }
554
555    /// append - Add the specified values to this one.
556    void append(const RegsForValue &RHS) {
557      ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end());
558      RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end());
559      Regs.append(RHS.Regs.begin(), RHS.Regs.end());
560    }
561
562    /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
563    /// this value and returns the result as a ValueVTs value.  This uses
564    /// Chain/Flag as the input and updates them for the output Chain/Flag.
565    /// If the Flag pointer is NULL, no flag is used.
566    SDValue getCopyFromRegs(SelectionDAG &DAG, FunctionLoweringInfo &FuncInfo,
567                            DebugLoc dl,
568                            SDValue &Chain, SDValue *Flag) const;
569
570    /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
571    /// specified value into the registers specified by this object.  This uses
572    /// Chain/Flag as the input and updates them for the output Chain/Flag.
573    /// If the Flag pointer is NULL, no flag is used.
574    void getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl,
575                       SDValue &Chain, SDValue *Flag) const;
576
577    /// AddInlineAsmOperands - Add this value to the specified inlineasm node
578    /// operand list.  This adds the code marker, matching input operand index
579    /// (if applicable), and includes the number of values added into it.
580    void AddInlineAsmOperands(unsigned Kind,
581                              bool HasMatching, unsigned MatchingIdx,
582                              SelectionDAG &DAG,
583                              std::vector<SDValue> &Ops) const;
584  };
585}
586
587/// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
588/// this value and returns the result as a ValueVT value.  This uses
589/// Chain/Flag as the input and updates them for the output Chain/Flag.
590/// If the Flag pointer is NULL, no flag is used.
591SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
592                                      FunctionLoweringInfo &FuncInfo,
593                                      DebugLoc dl,
594                                      SDValue &Chain, SDValue *Flag) const {
595  // A Value with type {} or [0 x %t] needs no registers.
596  if (ValueVTs.empty())
597    return SDValue();
598
599  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
600
601  // Assemble the legal parts into the final values.
602  SmallVector<SDValue, 4> Values(ValueVTs.size());
603  SmallVector<SDValue, 8> Parts;
604  for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
605    // Copy the legal parts from the registers.
606    EVT ValueVT = ValueVTs[Value];
607    unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
608    EVT RegisterVT = RegVTs[Value];
609
610    Parts.resize(NumRegs);
611    for (unsigned i = 0; i != NumRegs; ++i) {
612      SDValue P;
613      if (Flag == 0) {
614        P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
615      } else {
616        P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
617        *Flag = P.getValue(2);
618      }
619
620      Chain = P.getValue(1);
621
622      // If the source register was virtual and if we know something about it,
623      // add an assert node.
624      if (TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) &&
625          RegisterVT.isInteger() && !RegisterVT.isVector()) {
626        unsigned SlotNo = Regs[Part+i]-TargetRegisterInfo::FirstVirtualRegister;
627        if (FuncInfo.LiveOutRegInfo.size() > SlotNo) {
628          const FunctionLoweringInfo::LiveOutInfo &LOI =
629            FuncInfo.LiveOutRegInfo[SlotNo];
630
631          unsigned RegSize = RegisterVT.getSizeInBits();
632          unsigned NumSignBits = LOI.NumSignBits;
633          unsigned NumZeroBits = LOI.KnownZero.countLeadingOnes();
634
635          // FIXME: We capture more information than the dag can represent.  For
636          // now, just use the tightest assertzext/assertsext possible.
637          bool isSExt = true;
638          EVT FromVT(MVT::Other);
639          if (NumSignBits == RegSize)
640            isSExt = true, FromVT = MVT::i1;   // ASSERT SEXT 1
641          else if (NumZeroBits >= RegSize-1)
642            isSExt = false, FromVT = MVT::i1;  // ASSERT ZEXT 1
643          else if (NumSignBits > RegSize-8)
644            isSExt = true, FromVT = MVT::i8;   // ASSERT SEXT 8
645          else if (NumZeroBits >= RegSize-8)
646            isSExt = false, FromVT = MVT::i8;  // ASSERT ZEXT 8
647          else if (NumSignBits > RegSize-16)
648            isSExt = true, FromVT = MVT::i16;  // ASSERT SEXT 16
649          else if (NumZeroBits >= RegSize-16)
650            isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16
651          else if (NumSignBits > RegSize-32)
652            isSExt = true, FromVT = MVT::i32;  // ASSERT SEXT 32
653          else if (NumZeroBits >= RegSize-32)
654            isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32
655
656          if (FromVT != MVT::Other)
657            P = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
658                            RegisterVT, P, DAG.getValueType(FromVT));
659        }
660      }
661
662      Parts[i] = P;
663    }
664
665    Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(),
666                                     NumRegs, RegisterVT, ValueVT);
667    Part += NumRegs;
668    Parts.clear();
669  }
670
671  return DAG.getNode(ISD::MERGE_VALUES, dl,
672                     DAG.getVTList(&ValueVTs[0], ValueVTs.size()),
673                     &Values[0], ValueVTs.size());
674}
675
676/// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
677/// specified value into the registers specified by this object.  This uses
678/// Chain/Flag as the input and updates them for the output Chain/Flag.
679/// If the Flag pointer is NULL, no flag is used.
680void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl,
681                                 SDValue &Chain, SDValue *Flag) const {
682  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
683
684  // Get the list of the values's legal parts.
685  unsigned NumRegs = Regs.size();
686  SmallVector<SDValue, 8> Parts(NumRegs);
687  for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
688    EVT ValueVT = ValueVTs[Value];
689    unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
690    EVT RegisterVT = RegVTs[Value];
691
692    getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value),
693                   &Parts[Part], NumParts, RegisterVT);
694    Part += NumParts;
695  }
696
697  // Copy the parts into the registers.
698  SmallVector<SDValue, 8> Chains(NumRegs);
699  for (unsigned i = 0; i != NumRegs; ++i) {
700    SDValue Part;
701    if (Flag == 0) {
702      Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
703    } else {
704      Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
705      *Flag = Part.getValue(1);
706    }
707
708    Chains[i] = Part.getValue(0);
709  }
710
711  if (NumRegs == 1 || Flag)
712    // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
713    // flagged to it. That is the CopyToReg nodes and the user are considered
714    // a single scheduling unit. If we create a TokenFactor and return it as
715    // chain, then the TokenFactor is both a predecessor (operand) of the
716    // user as well as a successor (the TF operands are flagged to the user).
717    // c1, f1 = CopyToReg
718    // c2, f2 = CopyToReg
719    // c3     = TokenFactor c1, c2
720    // ...
721    //        = op c3, ..., f2
722    Chain = Chains[NumRegs-1];
723  else
724    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0], NumRegs);
725}
726
727/// AddInlineAsmOperands - Add this value to the specified inlineasm node
728/// operand list.  This adds the code marker and includes the number of
729/// values added into it.
730void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
731                                        unsigned MatchingIdx,
732                                        SelectionDAG &DAG,
733                                        std::vector<SDValue> &Ops) const {
734  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
735
736  unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
737  if (HasMatching)
738    Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
739  SDValue Res = DAG.getTargetConstant(Flag, MVT::i32);
740  Ops.push_back(Res);
741
742  for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
743    unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]);
744    EVT RegisterVT = RegVTs[Value];
745    for (unsigned i = 0; i != NumRegs; ++i) {
746      assert(Reg < Regs.size() && "Mismatch in # registers expected");
747      Ops.push_back(DAG.getRegister(Regs[Reg++], RegisterVT));
748    }
749  }
750}
751
752void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa) {
753  AA = &aa;
754  GFI = gfi;
755  TD = DAG.getTarget().getTargetData();
756}
757
758/// clear - Clear out the current SelectionDAG and the associated
759/// state and prepare this SelectionDAGBuilder object to be used
760/// for a new block. This doesn't clear out information about
761/// additional blocks that are needed to complete switch lowering
762/// or PHI node updating; that information is cleared out as it is
763/// consumed.
764void SelectionDAGBuilder::clear() {
765  NodeMap.clear();
766  UnusedArgNodeMap.clear();
767  PendingLoads.clear();
768  PendingExports.clear();
769  DanglingDebugInfoMap.clear();
770  CurDebugLoc = DebugLoc();
771  HasTailCall = false;
772}
773
774/// getRoot - Return the current virtual root of the Selection DAG,
775/// flushing any PendingLoad items. This must be done before emitting
776/// a store or any other node that may need to be ordered after any
777/// prior load instructions.
778///
779SDValue SelectionDAGBuilder::getRoot() {
780  if (PendingLoads.empty())
781    return DAG.getRoot();
782
783  if (PendingLoads.size() == 1) {
784    SDValue Root = PendingLoads[0];
785    DAG.setRoot(Root);
786    PendingLoads.clear();
787    return Root;
788  }
789
790  // Otherwise, we have to make a token factor node.
791  SDValue Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
792                               &PendingLoads[0], PendingLoads.size());
793  PendingLoads.clear();
794  DAG.setRoot(Root);
795  return Root;
796}
797
798/// getControlRoot - Similar to getRoot, but instead of flushing all the
799/// PendingLoad items, flush all the PendingExports items. It is necessary
800/// to do this before emitting a terminator instruction.
801///
802SDValue SelectionDAGBuilder::getControlRoot() {
803  SDValue Root = DAG.getRoot();
804
805  if (PendingExports.empty())
806    return Root;
807
808  // Turn all of the CopyToReg chains into one factored node.
809  if (Root.getOpcode() != ISD::EntryToken) {
810    unsigned i = 0, e = PendingExports.size();
811    for (; i != e; ++i) {
812      assert(PendingExports[i].getNode()->getNumOperands() > 1);
813      if (PendingExports[i].getNode()->getOperand(0) == Root)
814        break;  // Don't add the root if we already indirectly depend on it.
815    }
816
817    if (i == e)
818      PendingExports.push_back(Root);
819  }
820
821  Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
822                     &PendingExports[0],
823                     PendingExports.size());
824  PendingExports.clear();
825  DAG.setRoot(Root);
826  return Root;
827}
828
829void SelectionDAGBuilder::AssignOrderingToNode(const SDNode *Node) {
830  if (DAG.GetOrdering(Node) != 0) return; // Already has ordering.
831  DAG.AssignOrdering(Node, SDNodeOrder);
832
833  for (unsigned I = 0, E = Node->getNumOperands(); I != E; ++I)
834    AssignOrderingToNode(Node->getOperand(I).getNode());
835}
836
837void SelectionDAGBuilder::visit(const Instruction &I) {
838  // Set up outgoing PHI node register values before emitting the terminator.
839  if (isa<TerminatorInst>(&I))
840    HandlePHINodesInSuccessorBlocks(I.getParent());
841
842  CurDebugLoc = I.getDebugLoc();
843
844  visit(I.getOpcode(), I);
845
846  if (!isa<TerminatorInst>(&I) && !HasTailCall)
847    CopyToExportRegsIfNeeded(&I);
848
849  CurDebugLoc = DebugLoc();
850}
851
852void SelectionDAGBuilder::visitPHI(const PHINode &) {
853  llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
854}
855
856void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
857  // Note: this doesn't use InstVisitor, because it has to work with
858  // ConstantExpr's in addition to instructions.
859  switch (Opcode) {
860  default: llvm_unreachable("Unknown instruction type encountered!");
861    // Build the switch statement using the Instruction.def file.
862#define HANDLE_INST(NUM, OPCODE, CLASS) \
863    case Instruction::OPCODE: visit##OPCODE((CLASS&)I); break;
864#include "llvm/Instruction.def"
865  }
866
867  // Assign the ordering to the freshly created DAG nodes.
868  if (NodeMap.count(&I)) {
869    ++SDNodeOrder;
870    AssignOrderingToNode(getValue(&I).getNode());
871  }
872}
873
874// resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
875// generate the debug data structures now that we've seen its definition.
876void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
877                                                   SDValue Val) {
878  DanglingDebugInfo &DDI = DanglingDebugInfoMap[V];
879  if (DDI.getDI()) {
880    const DbgValueInst *DI = DDI.getDI();
881    DebugLoc dl = DDI.getdl();
882    unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
883    MDNode *Variable = DI->getVariable();
884    uint64_t Offset = DI->getOffset();
885    SDDbgValue *SDV;
886    if (Val.getNode()) {
887      if (!EmitFuncArgumentDbgValue(V, Variable, Offset, Val)) {
888        SDV = DAG.getDbgValue(Variable, Val.getNode(),
889                              Val.getResNo(), Offset, dl, DbgSDNodeOrder);
890        DAG.AddDbgValue(SDV, Val.getNode(), false);
891      }
892    } else {
893      SDV = DAG.getDbgValue(Variable, UndefValue::get(V->getType()),
894                            Offset, dl, SDNodeOrder);
895      DAG.AddDbgValue(SDV, 0, false);
896    }
897    DanglingDebugInfoMap[V] = DanglingDebugInfo();
898  }
899}
900
901// getValue - Return an SDValue for the given Value.
902SDValue SelectionDAGBuilder::getValue(const Value *V) {
903  // If we already have an SDValue for this value, use it. It's important
904  // to do this first, so that we don't create a CopyFromReg if we already
905  // have a regular SDValue.
906  SDValue &N = NodeMap[V];
907  if (N.getNode()) return N;
908
909  // If there's a virtual register allocated and initialized for this
910  // value, use it.
911  DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V);
912  if (It != FuncInfo.ValueMap.end()) {
913    unsigned InReg = It->second;
914    RegsForValue RFV(*DAG.getContext(), TLI, InReg, V->getType());
915    SDValue Chain = DAG.getEntryNode();
916    return N = RFV.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), Chain,NULL);
917  }
918
919  // Otherwise create a new SDValue and remember it.
920  SDValue Val = getValueImpl(V);
921  NodeMap[V] = Val;
922  resolveDanglingDebugInfo(V, Val);
923  return Val;
924}
925
926/// getNonRegisterValue - Return an SDValue for the given Value, but
927/// don't look in FuncInfo.ValueMap for a virtual register.
928SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
929  // If we already have an SDValue for this value, use it.
930  SDValue &N = NodeMap[V];
931  if (N.getNode()) return N;
932
933  // Otherwise create a new SDValue and remember it.
934  SDValue Val = getValueImpl(V);
935  NodeMap[V] = Val;
936  resolveDanglingDebugInfo(V, Val);
937  return Val;
938}
939
940/// getValueImpl - Helper function for getValue and getNonRegisterValue.
941/// Create an SDValue for the given value.
942SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
943  if (const Constant *C = dyn_cast<Constant>(V)) {
944    EVT VT = TLI.getValueType(V->getType(), true);
945
946    if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
947      return DAG.getConstant(*CI, VT);
948
949    if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
950      return DAG.getGlobalAddress(GV, getCurDebugLoc(), VT);
951
952    if (isa<ConstantPointerNull>(C))
953      return DAG.getConstant(0, TLI.getPointerTy());
954
955    if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
956      return DAG.getConstantFP(*CFP, VT);
957
958    if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
959      return DAG.getUNDEF(VT);
960
961    if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
962      visit(CE->getOpcode(), *CE);
963      SDValue N1 = NodeMap[V];
964      assert(N1.getNode() && "visit didn't populate the NodeMap!");
965      return N1;
966    }
967
968    if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
969      SmallVector<SDValue, 4> Constants;
970      for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end();
971           OI != OE; ++OI) {
972        SDNode *Val = getValue(*OI).getNode();
973        // If the operand is an empty aggregate, there are no values.
974        if (!Val) continue;
975        // Add each leaf value from the operand to the Constants list
976        // to form a flattened list of all the values.
977        for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
978          Constants.push_back(SDValue(Val, i));
979      }
980
981      return DAG.getMergeValues(&Constants[0], Constants.size(),
982                                getCurDebugLoc());
983    }
984
985    if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
986      assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
987             "Unknown struct or array constant!");
988
989      SmallVector<EVT, 4> ValueVTs;
990      ComputeValueVTs(TLI, C->getType(), ValueVTs);
991      unsigned NumElts = ValueVTs.size();
992      if (NumElts == 0)
993        return SDValue(); // empty struct
994      SmallVector<SDValue, 4> Constants(NumElts);
995      for (unsigned i = 0; i != NumElts; ++i) {
996        EVT EltVT = ValueVTs[i];
997        if (isa<UndefValue>(C))
998          Constants[i] = DAG.getUNDEF(EltVT);
999        else if (EltVT.isFloatingPoint())
1000          Constants[i] = DAG.getConstantFP(0, EltVT);
1001        else
1002          Constants[i] = DAG.getConstant(0, EltVT);
1003      }
1004
1005      return DAG.getMergeValues(&Constants[0], NumElts,
1006                                getCurDebugLoc());
1007    }
1008
1009    if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
1010      return DAG.getBlockAddress(BA, VT);
1011
1012    const VectorType *VecTy = cast<VectorType>(V->getType());
1013    unsigned NumElements = VecTy->getNumElements();
1014
1015    // Now that we know the number and type of the elements, get that number of
1016    // elements into the Ops array based on what kind of constant it is.
1017    SmallVector<SDValue, 16> Ops;
1018    if (const ConstantVector *CP = dyn_cast<ConstantVector>(C)) {
1019      for (unsigned i = 0; i != NumElements; ++i)
1020        Ops.push_back(getValue(CP->getOperand(i)));
1021    } else {
1022      assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!");
1023      EVT EltVT = TLI.getValueType(VecTy->getElementType());
1024
1025      SDValue Op;
1026      if (EltVT.isFloatingPoint())
1027        Op = DAG.getConstantFP(0, EltVT);
1028      else
1029        Op = DAG.getConstant(0, EltVT);
1030      Ops.assign(NumElements, Op);
1031    }
1032
1033    // Create a BUILD_VECTOR node.
1034    return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(),
1035                                    VT, &Ops[0], Ops.size());
1036  }
1037
1038  // If this is a static alloca, generate it as the frameindex instead of
1039  // computation.
1040  if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1041    DenseMap<const AllocaInst*, int>::iterator SI =
1042      FuncInfo.StaticAllocaMap.find(AI);
1043    if (SI != FuncInfo.StaticAllocaMap.end())
1044      return DAG.getFrameIndex(SI->second, TLI.getPointerTy());
1045  }
1046
1047  // If this is an instruction which fast-isel has deferred, select it now.
1048  if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
1049    unsigned InReg = FuncInfo.InitializeRegForValue(Inst);
1050    RegsForValue RFV(*DAG.getContext(), TLI, InReg, Inst->getType());
1051    SDValue Chain = DAG.getEntryNode();
1052    return RFV.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), Chain, NULL);
1053  }
1054
1055  llvm_unreachable("Can't get register for value!");
1056  return SDValue();
1057}
1058
1059void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
1060  SDValue Chain = getControlRoot();
1061  SmallVector<ISD::OutputArg, 8> Outs;
1062  SmallVector<SDValue, 8> OutVals;
1063
1064  if (!FuncInfo.CanLowerReturn) {
1065    unsigned DemoteReg = FuncInfo.DemoteRegister;
1066    const Function *F = I.getParent()->getParent();
1067
1068    // Emit a store of the return value through the virtual register.
1069    // Leave Outs empty so that LowerReturn won't try to load return
1070    // registers the usual way.
1071    SmallVector<EVT, 1> PtrValueVTs;
1072    ComputeValueVTs(TLI, PointerType::getUnqual(F->getReturnType()),
1073                    PtrValueVTs);
1074
1075    SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]);
1076    SDValue RetOp = getValue(I.getOperand(0));
1077
1078    SmallVector<EVT, 4> ValueVTs;
1079    SmallVector<uint64_t, 4> Offsets;
1080    ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs, &Offsets);
1081    unsigned NumValues = ValueVTs.size();
1082
1083    SmallVector<SDValue, 4> Chains(NumValues);
1084    for (unsigned i = 0; i != NumValues; ++i) {
1085      SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(),
1086                                RetPtr.getValueType(), RetPtr,
1087                                DAG.getIntPtrConstant(Offsets[i]));
1088      Chains[i] =
1089        DAG.getStore(Chain, getCurDebugLoc(),
1090                     SDValue(RetOp.getNode(), RetOp.getResNo() + i),
1091                     // FIXME: better loc info would be nice.
1092                     Add, MachinePointerInfo(), false, false, 0);
1093    }
1094
1095    Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
1096                        MVT::Other, &Chains[0], NumValues);
1097  } else if (I.getNumOperands() != 0) {
1098    SmallVector<EVT, 4> ValueVTs;
1099    ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs);
1100    unsigned NumValues = ValueVTs.size();
1101    if (NumValues) {
1102      SDValue RetOp = getValue(I.getOperand(0));
1103      for (unsigned j = 0, f = NumValues; j != f; ++j) {
1104        EVT VT = ValueVTs[j];
1105
1106        ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1107
1108        const Function *F = I.getParent()->getParent();
1109        if (F->paramHasAttr(0, Attribute::SExt))
1110          ExtendKind = ISD::SIGN_EXTEND;
1111        else if (F->paramHasAttr(0, Attribute::ZExt))
1112          ExtendKind = ISD::ZERO_EXTEND;
1113
1114        // FIXME: C calling convention requires the return type to be promoted
1115        // to at least 32-bit. But this is not necessary for non-C calling
1116        // conventions. The frontend should mark functions whose return values
1117        // require promoting with signext or zeroext attributes.
1118        if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) {
1119          EVT MinVT = TLI.getRegisterType(*DAG.getContext(), MVT::i32);
1120          if (VT.bitsLT(MinVT))
1121            VT = MinVT;
1122        }
1123
1124        unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), VT);
1125        EVT PartVT = TLI.getRegisterType(*DAG.getContext(), VT);
1126        SmallVector<SDValue, 4> Parts(NumParts);
1127        getCopyToParts(DAG, getCurDebugLoc(),
1128                       SDValue(RetOp.getNode(), RetOp.getResNo() + j),
1129                       &Parts[0], NumParts, PartVT, ExtendKind);
1130
1131        // 'inreg' on function refers to return value
1132        ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1133        if (F->paramHasAttr(0, Attribute::InReg))
1134          Flags.setInReg();
1135
1136        // Propagate extension type if any
1137        if (F->paramHasAttr(0, Attribute::SExt))
1138          Flags.setSExt();
1139        else if (F->paramHasAttr(0, Attribute::ZExt))
1140          Flags.setZExt();
1141
1142        for (unsigned i = 0; i < NumParts; ++i) {
1143          Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(),
1144                                        /*isfixed=*/true));
1145          OutVals.push_back(Parts[i]);
1146        }
1147      }
1148    }
1149  }
1150
1151  bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
1152  CallingConv::ID CallConv =
1153    DAG.getMachineFunction().getFunction()->getCallingConv();
1154  Chain = TLI.LowerReturn(Chain, CallConv, isVarArg,
1155                          Outs, OutVals, getCurDebugLoc(), DAG);
1156
1157  // Verify that the target's LowerReturn behaved as expected.
1158  assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
1159         "LowerReturn didn't return a valid chain!");
1160
1161  // Update the DAG with the new chain value resulting from return lowering.
1162  DAG.setRoot(Chain);
1163}
1164
1165/// CopyToExportRegsIfNeeded - If the given value has virtual registers
1166/// created for it, emit nodes to copy the value into the virtual
1167/// registers.
1168void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
1169  DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
1170  if (VMI != FuncInfo.ValueMap.end()) {
1171    assert(!V->use_empty() && "Unused value assigned virtual registers!");
1172    CopyValueToVirtualRegister(V, VMI->second);
1173  }
1174}
1175
1176/// ExportFromCurrentBlock - If this condition isn't known to be exported from
1177/// the current basic block, add it to ValueMap now so that we'll get a
1178/// CopyTo/FromReg.
1179void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
1180  // No need to export constants.
1181  if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
1182
1183  // Already exported?
1184  if (FuncInfo.isExportedInst(V)) return;
1185
1186  unsigned Reg = FuncInfo.InitializeRegForValue(V);
1187  CopyValueToVirtualRegister(V, Reg);
1188}
1189
1190bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
1191                                                     const BasicBlock *FromBB) {
1192  // The operands of the setcc have to be in this block.  We don't know
1193  // how to export them from some other block.
1194  if (const Instruction *VI = dyn_cast<Instruction>(V)) {
1195    // Can export from current BB.
1196    if (VI->getParent() == FromBB)
1197      return true;
1198
1199    // Is already exported, noop.
1200    return FuncInfo.isExportedInst(V);
1201  }
1202
1203  // If this is an argument, we can export it if the BB is the entry block or
1204  // if it is already exported.
1205  if (isa<Argument>(V)) {
1206    if (FromBB == &FromBB->getParent()->getEntryBlock())
1207      return true;
1208
1209    // Otherwise, can only export this if it is already exported.
1210    return FuncInfo.isExportedInst(V);
1211  }
1212
1213  // Otherwise, constants can always be exported.
1214  return true;
1215}
1216
1217static bool InBlock(const Value *V, const BasicBlock *BB) {
1218  if (const Instruction *I = dyn_cast<Instruction>(V))
1219    return I->getParent() == BB;
1220  return true;
1221}
1222
1223/// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
1224/// This function emits a branch and is used at the leaves of an OR or an
1225/// AND operator tree.
1226///
1227void
1228SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
1229                                                  MachineBasicBlock *TBB,
1230                                                  MachineBasicBlock *FBB,
1231                                                  MachineBasicBlock *CurBB,
1232                                                  MachineBasicBlock *SwitchBB) {
1233  const BasicBlock *BB = CurBB->getBasicBlock();
1234
1235  // If the leaf of the tree is a comparison, merge the condition into
1236  // the caseblock.
1237  if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
1238    // The operands of the cmp have to be in this block.  We don't know
1239    // how to export them from some other block.  If this is the first block
1240    // of the sequence, no exporting is needed.
1241    if (CurBB == SwitchBB ||
1242        (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
1243         isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
1244      ISD::CondCode Condition;
1245      if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
1246        Condition = getICmpCondCode(IC->getPredicate());
1247      } else if (const FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) {
1248        Condition = getFCmpCondCode(FC->getPredicate());
1249      } else {
1250        Condition = ISD::SETEQ; // silence warning.
1251        llvm_unreachable("Unknown compare instruction");
1252      }
1253
1254      CaseBlock CB(Condition, BOp->getOperand(0),
1255                   BOp->getOperand(1), NULL, TBB, FBB, CurBB);
1256      SwitchCases.push_back(CB);
1257      return;
1258    }
1259  }
1260
1261  // Create a CaseBlock record representing this branch.
1262  CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()),
1263               NULL, TBB, FBB, CurBB);
1264  SwitchCases.push_back(CB);
1265}
1266
1267/// FindMergedConditions - If Cond is an expression like
1268void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
1269                                               MachineBasicBlock *TBB,
1270                                               MachineBasicBlock *FBB,
1271                                               MachineBasicBlock *CurBB,
1272                                               MachineBasicBlock *SwitchBB,
1273                                               unsigned Opc) {
1274  // If this node is not part of the or/and tree, emit it as a branch.
1275  const Instruction *BOp = dyn_cast<Instruction>(Cond);
1276  if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
1277      (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() ||
1278      BOp->getParent() != CurBB->getBasicBlock() ||
1279      !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
1280      !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
1281    EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB);
1282    return;
1283  }
1284
1285  //  Create TmpBB after CurBB.
1286  MachineFunction::iterator BBI = CurBB;
1287  MachineFunction &MF = DAG.getMachineFunction();
1288  MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
1289  CurBB->getParent()->insert(++BBI, TmpBB);
1290
1291  if (Opc == Instruction::Or) {
1292    // Codegen X | Y as:
1293    //   jmp_if_X TBB
1294    //   jmp TmpBB
1295    // TmpBB:
1296    //   jmp_if_Y TBB
1297    //   jmp FBB
1298    //
1299
1300    // Emit the LHS condition.
1301    FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc);
1302
1303    // Emit the RHS condition into TmpBB.
1304    FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc);
1305  } else {
1306    assert(Opc == Instruction::And && "Unknown merge op!");
1307    // Codegen X & Y as:
1308    //   jmp_if_X TmpBB
1309    //   jmp FBB
1310    // TmpBB:
1311    //   jmp_if_Y TBB
1312    //   jmp FBB
1313    //
1314    //  This requires creation of TmpBB after CurBB.
1315
1316    // Emit the LHS condition.
1317    FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc);
1318
1319    // Emit the RHS condition into TmpBB.
1320    FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc);
1321  }
1322}
1323
1324/// If the set of cases should be emitted as a series of branches, return true.
1325/// If we should emit this as a bunch of and/or'd together conditions, return
1326/// false.
1327bool
1328SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases){
1329  if (Cases.size() != 2) return true;
1330
1331  // If this is two comparisons of the same values or'd or and'd together, they
1332  // will get folded into a single comparison, so don't emit two blocks.
1333  if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
1334       Cases[0].CmpRHS == Cases[1].CmpRHS) ||
1335      (Cases[0].CmpRHS == Cases[1].CmpLHS &&
1336       Cases[0].CmpLHS == Cases[1].CmpRHS)) {
1337    return false;
1338  }
1339
1340  // Handle: (X != null) | (Y != null) --> (X|Y) != 0
1341  // Handle: (X == null) & (Y == null) --> (X|Y) == 0
1342  if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
1343      Cases[0].CC == Cases[1].CC &&
1344      isa<Constant>(Cases[0].CmpRHS) &&
1345      cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
1346    if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
1347      return false;
1348    if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
1349      return false;
1350  }
1351
1352  return true;
1353}
1354
1355void SelectionDAGBuilder::visitBr(const BranchInst &I) {
1356  MachineBasicBlock *BrMBB = FuncInfo.MBB;
1357
1358  // Update machine-CFG edges.
1359  MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
1360
1361  // Figure out which block is immediately after the current one.
1362  MachineBasicBlock *NextBlock = 0;
1363  MachineFunction::iterator BBI = BrMBB;
1364  if (++BBI != FuncInfo.MF->end())
1365    NextBlock = BBI;
1366
1367  if (I.isUnconditional()) {
1368    // Update machine-CFG edges.
1369    BrMBB->addSuccessor(Succ0MBB);
1370
1371    // If this is not a fall-through branch, emit the branch.
1372    if (Succ0MBB != NextBlock)
1373      DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
1374                              MVT::Other, getControlRoot(),
1375                              DAG.getBasicBlock(Succ0MBB)));
1376
1377    return;
1378  }
1379
1380  // If this condition is one of the special cases we handle, do special stuff
1381  // now.
1382  const Value *CondVal = I.getCondition();
1383  MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
1384
1385  // If this is a series of conditions that are or'd or and'd together, emit
1386  // this as a sequence of branches instead of setcc's with and/or operations.
1387  // For example, instead of something like:
1388  //     cmp A, B
1389  //     C = seteq
1390  //     cmp D, E
1391  //     F = setle
1392  //     or C, F
1393  //     jnz foo
1394  // Emit:
1395  //     cmp A, B
1396  //     je foo
1397  //     cmp D, E
1398  //     jle foo
1399  //
1400  if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
1401    if (BOp->hasOneUse() &&
1402        (BOp->getOpcode() == Instruction::And ||
1403         BOp->getOpcode() == Instruction::Or)) {
1404      FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB,
1405                           BOp->getOpcode());
1406      // If the compares in later blocks need to use values not currently
1407      // exported from this block, export them now.  This block should always
1408      // be the first entry.
1409      assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
1410
1411      // Allow some cases to be rejected.
1412      if (ShouldEmitAsBranches(SwitchCases)) {
1413        for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
1414          ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
1415          ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
1416        }
1417
1418        // Emit the branch for this block.
1419        visitSwitchCase(SwitchCases[0], BrMBB);
1420        SwitchCases.erase(SwitchCases.begin());
1421        return;
1422      }
1423
1424      // Okay, we decided not to do this, remove any inserted MBB's and clear
1425      // SwitchCases.
1426      for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
1427        FuncInfo.MF->erase(SwitchCases[i].ThisBB);
1428
1429      SwitchCases.clear();
1430    }
1431  }
1432
1433  // Create a CaseBlock record representing this branch.
1434  CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
1435               NULL, Succ0MBB, Succ1MBB, BrMBB);
1436
1437  // Use visitSwitchCase to actually insert the fast branch sequence for this
1438  // cond branch.
1439  visitSwitchCase(CB, BrMBB);
1440}
1441
1442/// visitSwitchCase - Emits the necessary code to represent a single node in
1443/// the binary search tree resulting from lowering a switch instruction.
1444void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
1445                                          MachineBasicBlock *SwitchBB) {
1446  SDValue Cond;
1447  SDValue CondLHS = getValue(CB.CmpLHS);
1448  DebugLoc dl = getCurDebugLoc();
1449
1450  // Build the setcc now.
1451  if (CB.CmpMHS == NULL) {
1452    // Fold "(X == true)" to X and "(X == false)" to !X to
1453    // handle common cases produced by branch lowering.
1454    if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
1455        CB.CC == ISD::SETEQ)
1456      Cond = CondLHS;
1457    else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
1458             CB.CC == ISD::SETEQ) {
1459      SDValue True = DAG.getConstant(1, CondLHS.getValueType());
1460      Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
1461    } else
1462      Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
1463  } else {
1464    assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
1465
1466    const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
1467    const APInt& High  = cast<ConstantInt>(CB.CmpRHS)->getValue();
1468
1469    SDValue CmpOp = getValue(CB.CmpMHS);
1470    EVT VT = CmpOp.getValueType();
1471
1472    if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
1473      Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, VT),
1474                          ISD::SETLE);
1475    } else {
1476      SDValue SUB = DAG.getNode(ISD::SUB, dl,
1477                                VT, CmpOp, DAG.getConstant(Low, VT));
1478      Cond = DAG.getSetCC(dl, MVT::i1, SUB,
1479                          DAG.getConstant(High-Low, VT), ISD::SETULE);
1480    }
1481  }
1482
1483  // Update successor info
1484  SwitchBB->addSuccessor(CB.TrueBB);
1485  SwitchBB->addSuccessor(CB.FalseBB);
1486
1487  // Set NextBlock to be the MBB immediately after the current one, if any.
1488  // This is used to avoid emitting unnecessary branches to the next block.
1489  MachineBasicBlock *NextBlock = 0;
1490  MachineFunction::iterator BBI = SwitchBB;
1491  if (++BBI != FuncInfo.MF->end())
1492    NextBlock = BBI;
1493
1494  // If the lhs block is the next block, invert the condition so that we can
1495  // fall through to the lhs instead of the rhs block.
1496  if (CB.TrueBB == NextBlock) {
1497    std::swap(CB.TrueBB, CB.FalseBB);
1498    SDValue True = DAG.getConstant(1, Cond.getValueType());
1499    Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
1500  }
1501
1502  SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
1503                               MVT::Other, getControlRoot(), Cond,
1504                               DAG.getBasicBlock(CB.TrueBB));
1505
1506  // Insert the false branch. Do this even if it's a fall through branch,
1507  // this makes it easier to do DAG optimizations which require inverting
1508  // the branch condition.
1509  BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
1510                       DAG.getBasicBlock(CB.FalseBB));
1511
1512  DAG.setRoot(BrCond);
1513}
1514
1515/// visitJumpTable - Emit JumpTable node in the current MBB
1516void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) {
1517  // Emit the code for the jump table
1518  assert(JT.Reg != -1U && "Should lower JT Header first!");
1519  EVT PTy = TLI.getPointerTy();
1520  SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(),
1521                                     JT.Reg, PTy);
1522  SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
1523  SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurDebugLoc(),
1524                                    MVT::Other, Index.getValue(1),
1525                                    Table, Index);
1526  DAG.setRoot(BrJumpTable);
1527}
1528
1529/// visitJumpTableHeader - This function emits necessary code to produce index
1530/// in the JumpTable from switch case.
1531void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT,
1532                                               JumpTableHeader &JTH,
1533                                               MachineBasicBlock *SwitchBB) {
1534  // Subtract the lowest switch case value from the value being switched on and
1535  // conditional branch to default mbb if the result is greater than the
1536  // difference between smallest and largest cases.
1537  SDValue SwitchOp = getValue(JTH.SValue);
1538  EVT VT = SwitchOp.getValueType();
1539  SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp,
1540                            DAG.getConstant(JTH.First, VT));
1541
1542  // The SDNode we just created, which holds the value being switched on minus
1543  // the smallest case value, needs to be copied to a virtual register so it
1544  // can be used as an index into the jump table in a subsequent basic block.
1545  // This value may be smaller or larger than the target's pointer type, and
1546  // therefore require extension or truncating.
1547  SwitchOp = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(), TLI.getPointerTy());
1548
1549  unsigned JumpTableReg = FuncInfo.CreateReg(TLI.getPointerTy());
1550  SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(),
1551                                    JumpTableReg, SwitchOp);
1552  JT.Reg = JumpTableReg;
1553
1554  // Emit the range check for the jump table, and branch to the default block
1555  // for the switch statement if the value being switched on exceeds the largest
1556  // case in the switch.
1557  SDValue CMP = DAG.getSetCC(getCurDebugLoc(),
1558                             TLI.getSetCCResultType(Sub.getValueType()), Sub,
1559                             DAG.getConstant(JTH.Last-JTH.First,VT),
1560                             ISD::SETUGT);
1561
1562  // Set NextBlock to be the MBB immediately after the current one, if any.
1563  // This is used to avoid emitting unnecessary branches to the next block.
1564  MachineBasicBlock *NextBlock = 0;
1565  MachineFunction::iterator BBI = SwitchBB;
1566
1567  if (++BBI != FuncInfo.MF->end())
1568    NextBlock = BBI;
1569
1570  SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1571                               MVT::Other, CopyTo, CMP,
1572                               DAG.getBasicBlock(JT.Default));
1573
1574  if (JT.MBB != NextBlock)
1575    BrCond = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrCond,
1576                         DAG.getBasicBlock(JT.MBB));
1577
1578  DAG.setRoot(BrCond);
1579}
1580
1581/// visitBitTestHeader - This function emits necessary code to produce value
1582/// suitable for "bit tests"
1583void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
1584                                             MachineBasicBlock *SwitchBB) {
1585  // Subtract the minimum value
1586  SDValue SwitchOp = getValue(B.SValue);
1587  EVT VT = SwitchOp.getValueType();
1588  SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp,
1589                            DAG.getConstant(B.First, VT));
1590
1591  // Check range
1592  SDValue RangeCmp = DAG.getSetCC(getCurDebugLoc(),
1593                                  TLI.getSetCCResultType(Sub.getValueType()),
1594                                  Sub, DAG.getConstant(B.Range, VT),
1595                                  ISD::SETUGT);
1596
1597  SDValue ShiftOp = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(),
1598                                       TLI.getPointerTy());
1599
1600  B.Reg = FuncInfo.CreateReg(TLI.getPointerTy());
1601  SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(),
1602                                    B.Reg, ShiftOp);
1603
1604  // Set NextBlock to be the MBB immediately after the current one, if any.
1605  // This is used to avoid emitting unnecessary branches to the next block.
1606  MachineBasicBlock *NextBlock = 0;
1607  MachineFunction::iterator BBI = SwitchBB;
1608  if (++BBI != FuncInfo.MF->end())
1609    NextBlock = BBI;
1610
1611  MachineBasicBlock* MBB = B.Cases[0].ThisBB;
1612
1613  SwitchBB->addSuccessor(B.Default);
1614  SwitchBB->addSuccessor(MBB);
1615
1616  SDValue BrRange = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1617                                MVT::Other, CopyTo, RangeCmp,
1618                                DAG.getBasicBlock(B.Default));
1619
1620  if (MBB != NextBlock)
1621    BrRange = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, CopyTo,
1622                          DAG.getBasicBlock(MBB));
1623
1624  DAG.setRoot(BrRange);
1625}
1626
1627/// visitBitTestCase - this function produces one "bit test"
1628void SelectionDAGBuilder::visitBitTestCase(MachineBasicBlock* NextMBB,
1629                                           unsigned Reg,
1630                                           BitTestCase &B,
1631                                           MachineBasicBlock *SwitchBB) {
1632  SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(), Reg,
1633                                       TLI.getPointerTy());
1634  SDValue Cmp;
1635  if (CountPopulation_64(B.Mask) == 1) {
1636    // Testing for a single bit; just compare the shift count with what it
1637    // would need to be to shift a 1 bit in that position.
1638    Cmp = DAG.getSetCC(getCurDebugLoc(),
1639                       TLI.getSetCCResultType(ShiftOp.getValueType()),
1640                       ShiftOp,
1641                       DAG.getConstant(CountTrailingZeros_64(B.Mask),
1642                                       TLI.getPointerTy()),
1643                       ISD::SETEQ);
1644  } else {
1645    // Make desired shift
1646    SDValue SwitchVal = DAG.getNode(ISD::SHL, getCurDebugLoc(),
1647                                    TLI.getPointerTy(),
1648                                    DAG.getConstant(1, TLI.getPointerTy()),
1649                                    ShiftOp);
1650
1651    // Emit bit tests and jumps
1652    SDValue AndOp = DAG.getNode(ISD::AND, getCurDebugLoc(),
1653                                TLI.getPointerTy(), SwitchVal,
1654                                DAG.getConstant(B.Mask, TLI.getPointerTy()));
1655    Cmp = DAG.getSetCC(getCurDebugLoc(),
1656                       TLI.getSetCCResultType(AndOp.getValueType()),
1657                       AndOp, DAG.getConstant(0, TLI.getPointerTy()),
1658                       ISD::SETNE);
1659  }
1660
1661  SwitchBB->addSuccessor(B.TargetBB);
1662  SwitchBB->addSuccessor(NextMBB);
1663
1664  SDValue BrAnd = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1665                              MVT::Other, getControlRoot(),
1666                              Cmp, DAG.getBasicBlock(B.TargetBB));
1667
1668  // Set NextBlock to be the MBB immediately after the current one, if any.
1669  // This is used to avoid emitting unnecessary branches to the next block.
1670  MachineBasicBlock *NextBlock = 0;
1671  MachineFunction::iterator BBI = SwitchBB;
1672  if (++BBI != FuncInfo.MF->end())
1673    NextBlock = BBI;
1674
1675  if (NextMBB != NextBlock)
1676    BrAnd = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrAnd,
1677                        DAG.getBasicBlock(NextMBB));
1678
1679  DAG.setRoot(BrAnd);
1680}
1681
1682void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
1683  MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
1684
1685  // Retrieve successors.
1686  MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
1687  MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)];
1688
1689  const Value *Callee(I.getCalledValue());
1690  if (isa<InlineAsm>(Callee))
1691    visitInlineAsm(&I);
1692  else
1693    LowerCallTo(&I, getValue(Callee), false, LandingPad);
1694
1695  // If the value of the invoke is used outside of its defining block, make it
1696  // available as a virtual register.
1697  CopyToExportRegsIfNeeded(&I);
1698
1699  // Update successor info
1700  InvokeMBB->addSuccessor(Return);
1701  InvokeMBB->addSuccessor(LandingPad);
1702
1703  // Drop into normal successor.
1704  DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
1705                          MVT::Other, getControlRoot(),
1706                          DAG.getBasicBlock(Return)));
1707}
1708
1709void SelectionDAGBuilder::visitUnwind(const UnwindInst &I) {
1710}
1711
1712/// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for
1713/// small case ranges).
1714bool SelectionDAGBuilder::handleSmallSwitchRange(CaseRec& CR,
1715                                                 CaseRecVector& WorkList,
1716                                                 const Value* SV,
1717                                                 MachineBasicBlock *Default,
1718                                                 MachineBasicBlock *SwitchBB) {
1719  Case& BackCase  = *(CR.Range.second-1);
1720
1721  // Size is the number of Cases represented by this range.
1722  size_t Size = CR.Range.second - CR.Range.first;
1723  if (Size > 3)
1724    return false;
1725
1726  // Get the MachineFunction which holds the current MBB.  This is used when
1727  // inserting any additional MBBs necessary to represent the switch.
1728  MachineFunction *CurMF = FuncInfo.MF;
1729
1730  // Figure out which block is immediately after the current one.
1731  MachineBasicBlock *NextBlock = 0;
1732  MachineFunction::iterator BBI = CR.CaseBB;
1733
1734  if (++BBI != FuncInfo.MF->end())
1735    NextBlock = BBI;
1736
1737  // TODO: If any two of the cases has the same destination, and if one value
1738  // is the same as the other, but has one bit unset that the other has set,
1739  // use bit manipulation to do two compares at once.  For example:
1740  // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
1741
1742  // Rearrange the case blocks so that the last one falls through if possible.
1743  if (NextBlock && Default != NextBlock && BackCase.BB != NextBlock) {
1744    // The last case block won't fall through into 'NextBlock' if we emit the
1745    // branches in this order.  See if rearranging a case value would help.
1746    for (CaseItr I = CR.Range.first, E = CR.Range.second-1; I != E; ++I) {
1747      if (I->BB == NextBlock) {
1748        std::swap(*I, BackCase);
1749        break;
1750      }
1751    }
1752  }
1753
1754  // Create a CaseBlock record representing a conditional branch to
1755  // the Case's target mbb if the value being switched on SV is equal
1756  // to C.
1757  MachineBasicBlock *CurBlock = CR.CaseBB;
1758  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) {
1759    MachineBasicBlock *FallThrough;
1760    if (I != E-1) {
1761      FallThrough = CurMF->CreateMachineBasicBlock(CurBlock->getBasicBlock());
1762      CurMF->insert(BBI, FallThrough);
1763
1764      // Put SV in a virtual register to make it available from the new blocks.
1765      ExportFromCurrentBlock(SV);
1766    } else {
1767      // If the last case doesn't match, go to the default block.
1768      FallThrough = Default;
1769    }
1770
1771    const Value *RHS, *LHS, *MHS;
1772    ISD::CondCode CC;
1773    if (I->High == I->Low) {
1774      // This is just small small case range :) containing exactly 1 case
1775      CC = ISD::SETEQ;
1776      LHS = SV; RHS = I->High; MHS = NULL;
1777    } else {
1778      CC = ISD::SETLE;
1779      LHS = I->Low; MHS = SV; RHS = I->High;
1780    }
1781    CaseBlock CB(CC, LHS, RHS, MHS, I->BB, FallThrough, CurBlock);
1782
1783    // If emitting the first comparison, just call visitSwitchCase to emit the
1784    // code into the current block.  Otherwise, push the CaseBlock onto the
1785    // vector to be later processed by SDISel, and insert the node's MBB
1786    // before the next MBB.
1787    if (CurBlock == SwitchBB)
1788      visitSwitchCase(CB, SwitchBB);
1789    else
1790      SwitchCases.push_back(CB);
1791
1792    CurBlock = FallThrough;
1793  }
1794
1795  return true;
1796}
1797
1798static inline bool areJTsAllowed(const TargetLowering &TLI) {
1799  return !DisableJumpTables &&
1800          (TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) ||
1801           TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other));
1802}
1803
1804static APInt ComputeRange(const APInt &First, const APInt &Last) {
1805  APInt LastExt(Last), FirstExt(First);
1806  uint32_t BitWidth = std::max(Last.getBitWidth(), First.getBitWidth()) + 1;
1807  LastExt.sext(BitWidth); FirstExt.sext(BitWidth);
1808  return (LastExt - FirstExt + 1ULL);
1809}
1810
1811/// handleJTSwitchCase - Emit jumptable for current switch case range
1812bool SelectionDAGBuilder::handleJTSwitchCase(CaseRec& CR,
1813                                             CaseRecVector& WorkList,
1814                                             const Value* SV,
1815                                             MachineBasicBlock* Default,
1816                                             MachineBasicBlock *SwitchBB) {
1817  Case& FrontCase = *CR.Range.first;
1818  Case& BackCase  = *(CR.Range.second-1);
1819
1820  const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue();
1821  const APInt &Last  = cast<ConstantInt>(BackCase.High)->getValue();
1822
1823  APInt TSize(First.getBitWidth(), 0);
1824  for (CaseItr I = CR.Range.first, E = CR.Range.second;
1825       I!=E; ++I)
1826    TSize += I->size();
1827
1828  if (!areJTsAllowed(TLI) || TSize.ult(4))
1829    return false;
1830
1831  APInt Range = ComputeRange(First, Last);
1832  double Density = TSize.roundToDouble() / Range.roundToDouble();
1833  if (Density < 0.4)
1834    return false;
1835
1836  DEBUG(dbgs() << "Lowering jump table\n"
1837               << "First entry: " << First << ". Last entry: " << Last << '\n'
1838               << "Range: " << Range
1839               << "Size: " << TSize << ". Density: " << Density << "\n\n");
1840
1841  // Get the MachineFunction which holds the current MBB.  This is used when
1842  // inserting any additional MBBs necessary to represent the switch.
1843  MachineFunction *CurMF = FuncInfo.MF;
1844
1845  // Figure out which block is immediately after the current one.
1846  MachineFunction::iterator BBI = CR.CaseBB;
1847  ++BBI;
1848
1849  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
1850
1851  // Create a new basic block to hold the code for loading the address
1852  // of the jump table, and jumping to it.  Update successor information;
1853  // we will either branch to the default case for the switch, or the jump
1854  // table.
1855  MachineBasicBlock *JumpTableBB = CurMF->CreateMachineBasicBlock(LLVMBB);
1856  CurMF->insert(BBI, JumpTableBB);
1857  CR.CaseBB->addSuccessor(Default);
1858  CR.CaseBB->addSuccessor(JumpTableBB);
1859
1860  // Build a vector of destination BBs, corresponding to each target
1861  // of the jump table. If the value of the jump table slot corresponds to
1862  // a case statement, push the case's BB onto the vector, otherwise, push
1863  // the default BB.
1864  std::vector<MachineBasicBlock*> DestBBs;
1865  APInt TEI = First;
1866  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) {
1867    const APInt &Low = cast<ConstantInt>(I->Low)->getValue();
1868    const APInt &High = cast<ConstantInt>(I->High)->getValue();
1869
1870    if (Low.sle(TEI) && TEI.sle(High)) {
1871      DestBBs.push_back(I->BB);
1872      if (TEI==High)
1873        ++I;
1874    } else {
1875      DestBBs.push_back(Default);
1876    }
1877  }
1878
1879  // Update successor info. Add one edge to each unique successor.
1880  BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs());
1881  for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(),
1882         E = DestBBs.end(); I != E; ++I) {
1883    if (!SuccsHandled[(*I)->getNumber()]) {
1884      SuccsHandled[(*I)->getNumber()] = true;
1885      JumpTableBB->addSuccessor(*I);
1886    }
1887  }
1888
1889  // Create a jump table index for this jump table.
1890  unsigned JTEncoding = TLI.getJumpTableEncoding();
1891  unsigned JTI = CurMF->getOrCreateJumpTableInfo(JTEncoding)
1892                       ->createJumpTableIndex(DestBBs);
1893
1894  // Set the jump table information so that we can codegen it as a second
1895  // MachineBasicBlock
1896  JumpTable JT(-1U, JTI, JumpTableBB, Default);
1897  JumpTableHeader JTH(First, Last, SV, CR.CaseBB, (CR.CaseBB == SwitchBB));
1898  if (CR.CaseBB == SwitchBB)
1899    visitJumpTableHeader(JT, JTH, SwitchBB);
1900
1901  JTCases.push_back(JumpTableBlock(JTH, JT));
1902
1903  return true;
1904}
1905
1906/// handleBTSplitSwitchCase - emit comparison and split binary search tree into
1907/// 2 subtrees.
1908bool SelectionDAGBuilder::handleBTSplitSwitchCase(CaseRec& CR,
1909                                                  CaseRecVector& WorkList,
1910                                                  const Value* SV,
1911                                                  MachineBasicBlock *Default,
1912                                                  MachineBasicBlock *SwitchBB) {
1913  // Get the MachineFunction which holds the current MBB.  This is used when
1914  // inserting any additional MBBs necessary to represent the switch.
1915  MachineFunction *CurMF = FuncInfo.MF;
1916
1917  // Figure out which block is immediately after the current one.
1918  MachineFunction::iterator BBI = CR.CaseBB;
1919  ++BBI;
1920
1921  Case& FrontCase = *CR.Range.first;
1922  Case& BackCase  = *(CR.Range.second-1);
1923  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
1924
1925  // Size is the number of Cases represented by this range.
1926  unsigned Size = CR.Range.second - CR.Range.first;
1927
1928  const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue();
1929  const APInt &Last  = cast<ConstantInt>(BackCase.High)->getValue();
1930  double FMetric = 0;
1931  CaseItr Pivot = CR.Range.first + Size/2;
1932
1933  // Select optimal pivot, maximizing sum density of LHS and RHS. This will
1934  // (heuristically) allow us to emit JumpTable's later.
1935  APInt TSize(First.getBitWidth(), 0);
1936  for (CaseItr I = CR.Range.first, E = CR.Range.second;
1937       I!=E; ++I)
1938    TSize += I->size();
1939
1940  APInt LSize = FrontCase.size();
1941  APInt RSize = TSize-LSize;
1942  DEBUG(dbgs() << "Selecting best pivot: \n"
1943               << "First: " << First << ", Last: " << Last <<'\n'
1944               << "LSize: " << LSize << ", RSize: " << RSize << '\n');
1945  for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second;
1946       J!=E; ++I, ++J) {
1947    const APInt &LEnd = cast<ConstantInt>(I->High)->getValue();
1948    const APInt &RBegin = cast<ConstantInt>(J->Low)->getValue();
1949    APInt Range = ComputeRange(LEnd, RBegin);
1950    assert((Range - 2ULL).isNonNegative() &&
1951           "Invalid case distance");
1952    double LDensity = (double)LSize.roundToDouble() /
1953                           (LEnd - First + 1ULL).roundToDouble();
1954    double RDensity = (double)RSize.roundToDouble() /
1955                           (Last - RBegin + 1ULL).roundToDouble();
1956    double Metric = Range.logBase2()*(LDensity+RDensity);
1957    // Should always split in some non-trivial place
1958    DEBUG(dbgs() <<"=>Step\n"
1959                 << "LEnd: " << LEnd << ", RBegin: " << RBegin << '\n'
1960                 << "LDensity: " << LDensity
1961                 << ", RDensity: " << RDensity << '\n'
1962                 << "Metric: " << Metric << '\n');
1963    if (FMetric < Metric) {
1964      Pivot = J;
1965      FMetric = Metric;
1966      DEBUG(dbgs() << "Current metric set to: " << FMetric << '\n');
1967    }
1968
1969    LSize += J->size();
1970    RSize -= J->size();
1971  }
1972  if (areJTsAllowed(TLI)) {
1973    // If our case is dense we *really* should handle it earlier!
1974    assert((FMetric > 0) && "Should handle dense range earlier!");
1975  } else {
1976    Pivot = CR.Range.first + Size/2;
1977  }
1978
1979  CaseRange LHSR(CR.Range.first, Pivot);
1980  CaseRange RHSR(Pivot, CR.Range.second);
1981  Constant *C = Pivot->Low;
1982  MachineBasicBlock *FalseBB = 0, *TrueBB = 0;
1983
1984  // We know that we branch to the LHS if the Value being switched on is
1985  // less than the Pivot value, C.  We use this to optimize our binary
1986  // tree a bit, by recognizing that if SV is greater than or equal to the
1987  // LHS's Case Value, and that Case Value is exactly one less than the
1988  // Pivot's Value, then we can branch directly to the LHS's Target,
1989  // rather than creating a leaf node for it.
1990  if ((LHSR.second - LHSR.first) == 1 &&
1991      LHSR.first->High == CR.GE &&
1992      cast<ConstantInt>(C)->getValue() ==
1993      (cast<ConstantInt>(CR.GE)->getValue() + 1LL)) {
1994    TrueBB = LHSR.first->BB;
1995  } else {
1996    TrueBB = CurMF->CreateMachineBasicBlock(LLVMBB);
1997    CurMF->insert(BBI, TrueBB);
1998    WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR));
1999
2000    // Put SV in a virtual register to make it available from the new blocks.
2001    ExportFromCurrentBlock(SV);
2002  }
2003
2004  // Similar to the optimization above, if the Value being switched on is
2005  // known to be less than the Constant CR.LT, and the current Case Value
2006  // is CR.LT - 1, then we can branch directly to the target block for
2007  // the current Case Value, rather than emitting a RHS leaf node for it.
2008  if ((RHSR.second - RHSR.first) == 1 && CR.LT &&
2009      cast<ConstantInt>(RHSR.first->Low)->getValue() ==
2010      (cast<ConstantInt>(CR.LT)->getValue() - 1LL)) {
2011    FalseBB = RHSR.first->BB;
2012  } else {
2013    FalseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2014    CurMF->insert(BBI, FalseBB);
2015    WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR));
2016
2017    // Put SV in a virtual register to make it available from the new blocks.
2018    ExportFromCurrentBlock(SV);
2019  }
2020
2021  // Create a CaseBlock record representing a conditional branch to
2022  // the LHS node if the value being switched on SV is less than C.
2023  // Otherwise, branch to LHS.
2024  CaseBlock CB(ISD::SETLT, SV, C, NULL, TrueBB, FalseBB, CR.CaseBB);
2025
2026  if (CR.CaseBB == SwitchBB)
2027    visitSwitchCase(CB, SwitchBB);
2028  else
2029    SwitchCases.push_back(CB);
2030
2031  return true;
2032}
2033
2034/// handleBitTestsSwitchCase - if current case range has few destination and
2035/// range span less, than machine word bitwidth, encode case range into series
2036/// of masks and emit bit tests with these masks.
2037bool SelectionDAGBuilder::handleBitTestsSwitchCase(CaseRec& CR,
2038                                                   CaseRecVector& WorkList,
2039                                                   const Value* SV,
2040                                                   MachineBasicBlock* Default,
2041                                                   MachineBasicBlock *SwitchBB){
2042  EVT PTy = TLI.getPointerTy();
2043  unsigned IntPtrBits = PTy.getSizeInBits();
2044
2045  Case& FrontCase = *CR.Range.first;
2046  Case& BackCase  = *(CR.Range.second-1);
2047
2048  // Get the MachineFunction which holds the current MBB.  This is used when
2049  // inserting any additional MBBs necessary to represent the switch.
2050  MachineFunction *CurMF = FuncInfo.MF;
2051
2052  // If target does not have legal shift left, do not emit bit tests at all.
2053  if (!TLI.isOperationLegal(ISD::SHL, TLI.getPointerTy()))
2054    return false;
2055
2056  size_t numCmps = 0;
2057  for (CaseItr I = CR.Range.first, E = CR.Range.second;
2058       I!=E; ++I) {
2059    // Single case counts one, case range - two.
2060    numCmps += (I->Low == I->High ? 1 : 2);
2061  }
2062
2063  // Count unique destinations
2064  SmallSet<MachineBasicBlock*, 4> Dests;
2065  for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
2066    Dests.insert(I->BB);
2067    if (Dests.size() > 3)
2068      // Don't bother the code below, if there are too much unique destinations
2069      return false;
2070  }
2071  DEBUG(dbgs() << "Total number of unique destinations: "
2072        << Dests.size() << '\n'
2073        << "Total number of comparisons: " << numCmps << '\n');
2074
2075  // Compute span of values.
2076  const APInt& minValue = cast<ConstantInt>(FrontCase.Low)->getValue();
2077  const APInt& maxValue = cast<ConstantInt>(BackCase.High)->getValue();
2078  APInt cmpRange = maxValue - minValue;
2079
2080  DEBUG(dbgs() << "Compare range: " << cmpRange << '\n'
2081               << "Low bound: " << minValue << '\n'
2082               << "High bound: " << maxValue << '\n');
2083
2084  if (cmpRange.uge(IntPtrBits) ||
2085      (!(Dests.size() == 1 && numCmps >= 3) &&
2086       !(Dests.size() == 2 && numCmps >= 5) &&
2087       !(Dests.size() >= 3 && numCmps >= 6)))
2088    return false;
2089
2090  DEBUG(dbgs() << "Emitting bit tests\n");
2091  APInt lowBound = APInt::getNullValue(cmpRange.getBitWidth());
2092
2093  // Optimize the case where all the case values fit in a
2094  // word without having to subtract minValue. In this case,
2095  // we can optimize away the subtraction.
2096  if (minValue.isNonNegative() && maxValue.slt(IntPtrBits)) {
2097    cmpRange = maxValue;
2098  } else {
2099    lowBound = minValue;
2100  }
2101
2102  CaseBitsVector CasesBits;
2103  unsigned i, count = 0;
2104
2105  for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
2106    MachineBasicBlock* Dest = I->BB;
2107    for (i = 0; i < count; ++i)
2108      if (Dest == CasesBits[i].BB)
2109        break;
2110
2111    if (i == count) {
2112      assert((count < 3) && "Too much destinations to test!");
2113      CasesBits.push_back(CaseBits(0, Dest, 0));
2114      count++;
2115    }
2116
2117    const APInt& lowValue = cast<ConstantInt>(I->Low)->getValue();
2118    const APInt& highValue = cast<ConstantInt>(I->High)->getValue();
2119
2120    uint64_t lo = (lowValue - lowBound).getZExtValue();
2121    uint64_t hi = (highValue - lowBound).getZExtValue();
2122
2123    for (uint64_t j = lo; j <= hi; j++) {
2124      CasesBits[i].Mask |=  1ULL << j;
2125      CasesBits[i].Bits++;
2126    }
2127
2128  }
2129  std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp());
2130
2131  BitTestInfo BTC;
2132
2133  // Figure out which block is immediately after the current one.
2134  MachineFunction::iterator BBI = CR.CaseBB;
2135  ++BBI;
2136
2137  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2138
2139  DEBUG(dbgs() << "Cases:\n");
2140  for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) {
2141    DEBUG(dbgs() << "Mask: " << CasesBits[i].Mask
2142                 << ", Bits: " << CasesBits[i].Bits
2143                 << ", BB: " << CasesBits[i].BB << '\n');
2144
2145    MachineBasicBlock *CaseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2146    CurMF->insert(BBI, CaseBB);
2147    BTC.push_back(BitTestCase(CasesBits[i].Mask,
2148                              CaseBB,
2149                              CasesBits[i].BB));
2150
2151    // Put SV in a virtual register to make it available from the new blocks.
2152    ExportFromCurrentBlock(SV);
2153  }
2154
2155  BitTestBlock BTB(lowBound, cmpRange, SV,
2156                   -1U, (CR.CaseBB == SwitchBB),
2157                   CR.CaseBB, Default, BTC);
2158
2159  if (CR.CaseBB == SwitchBB)
2160    visitBitTestHeader(BTB, SwitchBB);
2161
2162  BitTestCases.push_back(BTB);
2163
2164  return true;
2165}
2166
2167/// Clusterify - Transform simple list of Cases into list of CaseRange's
2168size_t SelectionDAGBuilder::Clusterify(CaseVector& Cases,
2169                                       const SwitchInst& SI) {
2170  size_t numCmps = 0;
2171
2172  // Start with "simple" cases
2173  for (size_t i = 1; i < SI.getNumSuccessors(); ++i) {
2174    MachineBasicBlock *SMBB = FuncInfo.MBBMap[SI.getSuccessor(i)];
2175    Cases.push_back(Case(SI.getSuccessorValue(i),
2176                         SI.getSuccessorValue(i),
2177                         SMBB));
2178  }
2179  std::sort(Cases.begin(), Cases.end(), CaseCmp());
2180
2181  // Merge case into clusters
2182  if (Cases.size() >= 2)
2183    // Must recompute end() each iteration because it may be
2184    // invalidated by erase if we hold on to it
2185    for (CaseItr I = Cases.begin(), J = ++(Cases.begin()); J != Cases.end(); ) {
2186      const APInt& nextValue = cast<ConstantInt>(J->Low)->getValue();
2187      const APInt& currentValue = cast<ConstantInt>(I->High)->getValue();
2188      MachineBasicBlock* nextBB = J->BB;
2189      MachineBasicBlock* currentBB = I->BB;
2190
2191      // If the two neighboring cases go to the same destination, merge them
2192      // into a single case.
2193      if ((nextValue - currentValue == 1) && (currentBB == nextBB)) {
2194        I->High = J->High;
2195        J = Cases.erase(J);
2196      } else {
2197        I = J++;
2198      }
2199    }
2200
2201  for (CaseItr I=Cases.begin(), E=Cases.end(); I!=E; ++I, ++numCmps) {
2202    if (I->Low != I->High)
2203      // A range counts double, since it requires two compares.
2204      ++numCmps;
2205  }
2206
2207  return numCmps;
2208}
2209
2210void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
2211                                           MachineBasicBlock *Last) {
2212  // Update JTCases.
2213  for (unsigned i = 0, e = JTCases.size(); i != e; ++i)
2214    if (JTCases[i].first.HeaderBB == First)
2215      JTCases[i].first.HeaderBB = Last;
2216
2217  // Update BitTestCases.
2218  for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i)
2219    if (BitTestCases[i].Parent == First)
2220      BitTestCases[i].Parent = Last;
2221}
2222
2223void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
2224  MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
2225
2226  // Figure out which block is immediately after the current one.
2227  MachineBasicBlock *NextBlock = 0;
2228  MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()];
2229
2230  // If there is only the default destination, branch to it if it is not the
2231  // next basic block.  Otherwise, just fall through.
2232  if (SI.getNumOperands() == 2) {
2233    // Update machine-CFG edges.
2234
2235    // If this is not a fall-through branch, emit the branch.
2236    SwitchMBB->addSuccessor(Default);
2237    if (Default != NextBlock)
2238      DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
2239                              MVT::Other, getControlRoot(),
2240                              DAG.getBasicBlock(Default)));
2241
2242    return;
2243  }
2244
2245  // If there are any non-default case statements, create a vector of Cases
2246  // representing each one, and sort the vector so that we can efficiently
2247  // create a binary search tree from them.
2248  CaseVector Cases;
2249  size_t numCmps = Clusterify(Cases, SI);
2250  DEBUG(dbgs() << "Clusterify finished. Total clusters: " << Cases.size()
2251               << ". Total compares: " << numCmps << '\n');
2252  numCmps = 0;
2253
2254  // Get the Value to be switched on and default basic blocks, which will be
2255  // inserted into CaseBlock records, representing basic blocks in the binary
2256  // search tree.
2257  const Value *SV = SI.getOperand(0);
2258
2259  // Push the initial CaseRec onto the worklist
2260  CaseRecVector WorkList;
2261  WorkList.push_back(CaseRec(SwitchMBB,0,0,
2262                             CaseRange(Cases.begin(),Cases.end())));
2263
2264  while (!WorkList.empty()) {
2265    // Grab a record representing a case range to process off the worklist
2266    CaseRec CR = WorkList.back();
2267    WorkList.pop_back();
2268
2269    if (handleBitTestsSwitchCase(CR, WorkList, SV, Default, SwitchMBB))
2270      continue;
2271
2272    // If the range has few cases (two or less) emit a series of specific
2273    // tests.
2274    if (handleSmallSwitchRange(CR, WorkList, SV, Default, SwitchMBB))
2275      continue;
2276
2277    // If the switch has more than 5 blocks, and at least 40% dense, and the
2278    // target supports indirect branches, then emit a jump table rather than
2279    // lowering the switch to a binary tree of conditional branches.
2280    if (handleJTSwitchCase(CR, WorkList, SV, Default, SwitchMBB))
2281      continue;
2282
2283    // Emit binary tree. We need to pick a pivot, and push left and right ranges
2284    // onto the worklist. Leafs are handled via handleSmallSwitchRange() call.
2285    handleBTSplitSwitchCase(CR, WorkList, SV, Default, SwitchMBB);
2286  }
2287}
2288
2289void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
2290  MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
2291
2292  // Update machine-CFG edges with unique successors.
2293  SmallVector<BasicBlock*, 32> succs;
2294  succs.reserve(I.getNumSuccessors());
2295  for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i)
2296    succs.push_back(I.getSuccessor(i));
2297  array_pod_sort(succs.begin(), succs.end());
2298  succs.erase(std::unique(succs.begin(), succs.end()), succs.end());
2299  for (unsigned i = 0, e = succs.size(); i != e; ++i)
2300    IndirectBrMBB->addSuccessor(FuncInfo.MBBMap[succs[i]]);
2301
2302  DAG.setRoot(DAG.getNode(ISD::BRIND, getCurDebugLoc(),
2303                          MVT::Other, getControlRoot(),
2304                          getValue(I.getAddress())));
2305}
2306
2307void SelectionDAGBuilder::visitFSub(const User &I) {
2308  // -0.0 - X --> fneg
2309  const Type *Ty = I.getType();
2310  if (Ty->isVectorTy()) {
2311    if (ConstantVector *CV = dyn_cast<ConstantVector>(I.getOperand(0))) {
2312      const VectorType *DestTy = cast<VectorType>(I.getType());
2313      const Type *ElTy = DestTy->getElementType();
2314      unsigned VL = DestTy->getNumElements();
2315      std::vector<Constant*> NZ(VL, ConstantFP::getNegativeZero(ElTy));
2316      Constant *CNZ = ConstantVector::get(&NZ[0], NZ.size());
2317      if (CV == CNZ) {
2318        SDValue Op2 = getValue(I.getOperand(1));
2319        setValue(&I, DAG.getNode(ISD::FNEG, getCurDebugLoc(),
2320                                 Op2.getValueType(), Op2));
2321        return;
2322      }
2323    }
2324  }
2325
2326  if (ConstantFP *CFP = dyn_cast<ConstantFP>(I.getOperand(0)))
2327    if (CFP->isExactlyValue(ConstantFP::getNegativeZero(Ty)->getValueAPF())) {
2328      SDValue Op2 = getValue(I.getOperand(1));
2329      setValue(&I, DAG.getNode(ISD::FNEG, getCurDebugLoc(),
2330                               Op2.getValueType(), Op2));
2331      return;
2332    }
2333
2334  visitBinary(I, ISD::FSUB);
2335}
2336
2337void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) {
2338  SDValue Op1 = getValue(I.getOperand(0));
2339  SDValue Op2 = getValue(I.getOperand(1));
2340  setValue(&I, DAG.getNode(OpCode, getCurDebugLoc(),
2341                           Op1.getValueType(), Op1, Op2));
2342}
2343
2344void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
2345  SDValue Op1 = getValue(I.getOperand(0));
2346  SDValue Op2 = getValue(I.getOperand(1));
2347  if (!I.getType()->isVectorTy() &&
2348      Op2.getValueType() != TLI.getShiftAmountTy()) {
2349    // If the operand is smaller than the shift count type, promote it.
2350    EVT PTy = TLI.getPointerTy();
2351    EVT STy = TLI.getShiftAmountTy();
2352    if (STy.bitsGT(Op2.getValueType()))
2353      Op2 = DAG.getNode(ISD::ANY_EXTEND, getCurDebugLoc(),
2354                        TLI.getShiftAmountTy(), Op2);
2355    // If the operand is larger than the shift count type but the shift
2356    // count type has enough bits to represent any shift value, truncate
2357    // it now. This is a common case and it exposes the truncate to
2358    // optimization early.
2359    else if (STy.getSizeInBits() >=
2360             Log2_32_Ceil(Op2.getValueType().getSizeInBits()))
2361      Op2 = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(),
2362                        TLI.getShiftAmountTy(), Op2);
2363    // Otherwise we'll need to temporarily settle for some other
2364    // convenient type; type legalization will make adjustments as
2365    // needed.
2366    else if (PTy.bitsLT(Op2.getValueType()))
2367      Op2 = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(),
2368                        TLI.getPointerTy(), Op2);
2369    else if (PTy.bitsGT(Op2.getValueType()))
2370      Op2 = DAG.getNode(ISD::ANY_EXTEND, getCurDebugLoc(),
2371                        TLI.getPointerTy(), Op2);
2372  }
2373
2374  setValue(&I, DAG.getNode(Opcode, getCurDebugLoc(),
2375                           Op1.getValueType(), Op1, Op2));
2376}
2377
2378void SelectionDAGBuilder::visitICmp(const User &I) {
2379  ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
2380  if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
2381    predicate = IC->getPredicate();
2382  else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
2383    predicate = ICmpInst::Predicate(IC->getPredicate());
2384  SDValue Op1 = getValue(I.getOperand(0));
2385  SDValue Op2 = getValue(I.getOperand(1));
2386  ISD::CondCode Opcode = getICmpCondCode(predicate);
2387
2388  EVT DestVT = TLI.getValueType(I.getType());
2389  setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Opcode));
2390}
2391
2392void SelectionDAGBuilder::visitFCmp(const User &I) {
2393  FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
2394  if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
2395    predicate = FC->getPredicate();
2396  else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
2397    predicate = FCmpInst::Predicate(FC->getPredicate());
2398  SDValue Op1 = getValue(I.getOperand(0));
2399  SDValue Op2 = getValue(I.getOperand(1));
2400  ISD::CondCode Condition = getFCmpCondCode(predicate);
2401  EVT DestVT = TLI.getValueType(I.getType());
2402  setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Condition));
2403}
2404
2405void SelectionDAGBuilder::visitSelect(const User &I) {
2406  SmallVector<EVT, 4> ValueVTs;
2407  ComputeValueVTs(TLI, I.getType(), ValueVTs);
2408  unsigned NumValues = ValueVTs.size();
2409  if (NumValues == 0) return;
2410
2411  SmallVector<SDValue, 4> Values(NumValues);
2412  SDValue Cond     = getValue(I.getOperand(0));
2413  SDValue TrueVal  = getValue(I.getOperand(1));
2414  SDValue FalseVal = getValue(I.getOperand(2));
2415
2416  for (unsigned i = 0; i != NumValues; ++i)
2417    Values[i] = DAG.getNode(ISD::SELECT, getCurDebugLoc(),
2418                          TrueVal.getNode()->getValueType(TrueVal.getResNo()+i),
2419                            Cond,
2420                            SDValue(TrueVal.getNode(),
2421                                    TrueVal.getResNo() + i),
2422                            SDValue(FalseVal.getNode(),
2423                                    FalseVal.getResNo() + i));
2424
2425  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
2426                           DAG.getVTList(&ValueVTs[0], NumValues),
2427                           &Values[0], NumValues));
2428}
2429
2430void SelectionDAGBuilder::visitTrunc(const User &I) {
2431  // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
2432  SDValue N = getValue(I.getOperand(0));
2433  EVT DestVT = TLI.getValueType(I.getType());
2434  setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), DestVT, N));
2435}
2436
2437void SelectionDAGBuilder::visitZExt(const User &I) {
2438  // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2439  // ZExt also can't be a cast to bool for same reason. So, nothing much to do
2440  SDValue N = getValue(I.getOperand(0));
2441  EVT DestVT = TLI.getValueType(I.getType());
2442  setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), DestVT, N));
2443}
2444
2445void SelectionDAGBuilder::visitSExt(const User &I) {
2446  // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2447  // SExt also can't be a cast to bool for same reason. So, nothing much to do
2448  SDValue N = getValue(I.getOperand(0));
2449  EVT DestVT = TLI.getValueType(I.getType());
2450  setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurDebugLoc(), DestVT, N));
2451}
2452
2453void SelectionDAGBuilder::visitFPTrunc(const User &I) {
2454  // FPTrunc is never a no-op cast, no need to check
2455  SDValue N = getValue(I.getOperand(0));
2456  EVT DestVT = TLI.getValueType(I.getType());
2457  setValue(&I, DAG.getNode(ISD::FP_ROUND, getCurDebugLoc(),
2458                           DestVT, N, DAG.getIntPtrConstant(0)));
2459}
2460
2461void SelectionDAGBuilder::visitFPExt(const User &I){
2462  // FPTrunc is never a no-op cast, no need to check
2463  SDValue N = getValue(I.getOperand(0));
2464  EVT DestVT = TLI.getValueType(I.getType());
2465  setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurDebugLoc(), DestVT, N));
2466}
2467
2468void SelectionDAGBuilder::visitFPToUI(const User &I) {
2469  // FPToUI is never a no-op cast, no need to check
2470  SDValue N = getValue(I.getOperand(0));
2471  EVT DestVT = TLI.getValueType(I.getType());
2472  setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurDebugLoc(), DestVT, N));
2473}
2474
2475void SelectionDAGBuilder::visitFPToSI(const User &I) {
2476  // FPToSI is never a no-op cast, no need to check
2477  SDValue N = getValue(I.getOperand(0));
2478  EVT DestVT = TLI.getValueType(I.getType());
2479  setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurDebugLoc(), DestVT, N));
2480}
2481
2482void SelectionDAGBuilder::visitUIToFP(const User &I) {
2483  // UIToFP is never a no-op cast, no need to check
2484  SDValue N = getValue(I.getOperand(0));
2485  EVT DestVT = TLI.getValueType(I.getType());
2486  setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurDebugLoc(), DestVT, N));
2487}
2488
2489void SelectionDAGBuilder::visitSIToFP(const User &I){
2490  // SIToFP is never a no-op cast, no need to check
2491  SDValue N = getValue(I.getOperand(0));
2492  EVT DestVT = TLI.getValueType(I.getType());
2493  setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurDebugLoc(), DestVT, N));
2494}
2495
2496void SelectionDAGBuilder::visitPtrToInt(const User &I) {
2497  // What to do depends on the size of the integer and the size of the pointer.
2498  // We can either truncate, zero extend, or no-op, accordingly.
2499  SDValue N = getValue(I.getOperand(0));
2500  EVT DestVT = TLI.getValueType(I.getType());
2501  setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT));
2502}
2503
2504void SelectionDAGBuilder::visitIntToPtr(const User &I) {
2505  // What to do depends on the size of the integer and the size of the pointer.
2506  // We can either truncate, zero extend, or no-op, accordingly.
2507  SDValue N = getValue(I.getOperand(0));
2508  EVT DestVT = TLI.getValueType(I.getType());
2509  setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT));
2510}
2511
2512void SelectionDAGBuilder::visitBitCast(const User &I) {
2513  SDValue N = getValue(I.getOperand(0));
2514  EVT DestVT = TLI.getValueType(I.getType());
2515
2516  // BitCast assures us that source and destination are the same size so this is
2517  // either a BIT_CONVERT or a no-op.
2518  if (DestVT != N.getValueType())
2519    setValue(&I, DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(),
2520                             DestVT, N)); // convert types.
2521  else
2522    setValue(&I, N);            // noop cast.
2523}
2524
2525void SelectionDAGBuilder::visitInsertElement(const User &I) {
2526  SDValue InVec = getValue(I.getOperand(0));
2527  SDValue InVal = getValue(I.getOperand(1));
2528  SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(),
2529                              TLI.getPointerTy(),
2530                              getValue(I.getOperand(2)));
2531  setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurDebugLoc(),
2532                           TLI.getValueType(I.getType()),
2533                           InVec, InVal, InIdx));
2534}
2535
2536void SelectionDAGBuilder::visitExtractElement(const User &I) {
2537  SDValue InVec = getValue(I.getOperand(0));
2538  SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(),
2539                              TLI.getPointerTy(),
2540                              getValue(I.getOperand(1)));
2541  setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
2542                           TLI.getValueType(I.getType()), InVec, InIdx));
2543}
2544
2545// Utility for visitShuffleVector - Returns true if the mask is mask starting
2546// from SIndx and increasing to the element length (undefs are allowed).
2547static bool SequentialMask(SmallVectorImpl<int> &Mask, unsigned SIndx) {
2548  unsigned MaskNumElts = Mask.size();
2549  for (unsigned i = 0; i != MaskNumElts; ++i)
2550    if ((Mask[i] >= 0) && (Mask[i] != (int)(i + SIndx)))
2551      return false;
2552  return true;
2553}
2554
2555void SelectionDAGBuilder::visitShuffleVector(const User &I) {
2556  SmallVector<int, 8> Mask;
2557  SDValue Src1 = getValue(I.getOperand(0));
2558  SDValue Src2 = getValue(I.getOperand(1));
2559
2560  // Convert the ConstantVector mask operand into an array of ints, with -1
2561  // representing undef values.
2562  SmallVector<Constant*, 8> MaskElts;
2563  cast<Constant>(I.getOperand(2))->getVectorElements(MaskElts);
2564  unsigned MaskNumElts = MaskElts.size();
2565  for (unsigned i = 0; i != MaskNumElts; ++i) {
2566    if (isa<UndefValue>(MaskElts[i]))
2567      Mask.push_back(-1);
2568    else
2569      Mask.push_back(cast<ConstantInt>(MaskElts[i])->getSExtValue());
2570  }
2571
2572  EVT VT = TLI.getValueType(I.getType());
2573  EVT SrcVT = Src1.getValueType();
2574  unsigned SrcNumElts = SrcVT.getVectorNumElements();
2575
2576  if (SrcNumElts == MaskNumElts) {
2577    setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2578                                      &Mask[0]));
2579    return;
2580  }
2581
2582  // Normalize the shuffle vector since mask and vector length don't match.
2583  if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) {
2584    // Mask is longer than the source vectors and is a multiple of the source
2585    // vectors.  We can use concatenate vector to make the mask and vectors
2586    // lengths match.
2587    if (SrcNumElts*2 == MaskNumElts && SequentialMask(Mask, 0)) {
2588      // The shuffle is concatenating two vectors together.
2589      setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurDebugLoc(),
2590                               VT, Src1, Src2));
2591      return;
2592    }
2593
2594    // Pad both vectors with undefs to make them the same length as the mask.
2595    unsigned NumConcat = MaskNumElts / SrcNumElts;
2596    bool Src1U = Src1.getOpcode() == ISD::UNDEF;
2597    bool Src2U = Src2.getOpcode() == ISD::UNDEF;
2598    SDValue UndefVal = DAG.getUNDEF(SrcVT);
2599
2600    SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
2601    SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
2602    MOps1[0] = Src1;
2603    MOps2[0] = Src2;
2604
2605    Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
2606                                                  getCurDebugLoc(), VT,
2607                                                  &MOps1[0], NumConcat);
2608    Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
2609                                                  getCurDebugLoc(), VT,
2610                                                  &MOps2[0], NumConcat);
2611
2612    // Readjust mask for new input vector length.
2613    SmallVector<int, 8> MappedOps;
2614    for (unsigned i = 0; i != MaskNumElts; ++i) {
2615      int Idx = Mask[i];
2616      if (Idx < (int)SrcNumElts)
2617        MappedOps.push_back(Idx);
2618      else
2619        MappedOps.push_back(Idx + MaskNumElts - SrcNumElts);
2620    }
2621
2622    setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2623                                      &MappedOps[0]));
2624    return;
2625  }
2626
2627  if (SrcNumElts > MaskNumElts) {
2628    // Analyze the access pattern of the vector to see if we can extract
2629    // two subvectors and do the shuffle. The analysis is done by calculating
2630    // the range of elements the mask access on both vectors.
2631    int MinRange[2] = { SrcNumElts+1, SrcNumElts+1};
2632    int MaxRange[2] = {-1, -1};
2633
2634    for (unsigned i = 0; i != MaskNumElts; ++i) {
2635      int Idx = Mask[i];
2636      int Input = 0;
2637      if (Idx < 0)
2638        continue;
2639
2640      if (Idx >= (int)SrcNumElts) {
2641        Input = 1;
2642        Idx -= SrcNumElts;
2643      }
2644      if (Idx > MaxRange[Input])
2645        MaxRange[Input] = Idx;
2646      if (Idx < MinRange[Input])
2647        MinRange[Input] = Idx;
2648    }
2649
2650    // Check if the access is smaller than the vector size and can we find
2651    // a reasonable extract index.
2652    int RangeUse[2] = { 2, 2 };  // 0 = Unused, 1 = Extract, 2 = Can not
2653                                 // Extract.
2654    int StartIdx[2];  // StartIdx to extract from
2655    for (int Input=0; Input < 2; ++Input) {
2656      if (MinRange[Input] == (int)(SrcNumElts+1) && MaxRange[Input] == -1) {
2657        RangeUse[Input] = 0; // Unused
2658        StartIdx[Input] = 0;
2659      } else if (MaxRange[Input] - MinRange[Input] < (int)MaskNumElts) {
2660        // Fits within range but we should see if we can find a good
2661        // start index that is a multiple of the mask length.
2662        if (MaxRange[Input] < (int)MaskNumElts) {
2663          RangeUse[Input] = 1; // Extract from beginning of the vector
2664          StartIdx[Input] = 0;
2665        } else {
2666          StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts;
2667          if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts &&
2668              StartIdx[Input] + MaskNumElts < SrcNumElts)
2669            RangeUse[Input] = 1; // Extract from a multiple of the mask length.
2670        }
2671      }
2672    }
2673
2674    if (RangeUse[0] == 0 && RangeUse[1] == 0) {
2675      setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
2676      return;
2677    }
2678    else if (RangeUse[0] < 2 && RangeUse[1] < 2) {
2679      // Extract appropriate subvector and generate a vector shuffle
2680      for (int Input=0; Input < 2; ++Input) {
2681        SDValue &Src = Input == 0 ? Src1 : Src2;
2682        if (RangeUse[Input] == 0)
2683          Src = DAG.getUNDEF(VT);
2684        else
2685          Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, getCurDebugLoc(), VT,
2686                            Src, DAG.getIntPtrConstant(StartIdx[Input]));
2687      }
2688
2689      // Calculate new mask.
2690      SmallVector<int, 8> MappedOps;
2691      for (unsigned i = 0; i != MaskNumElts; ++i) {
2692        int Idx = Mask[i];
2693        if (Idx < 0)
2694          MappedOps.push_back(Idx);
2695        else if (Idx < (int)SrcNumElts)
2696          MappedOps.push_back(Idx - StartIdx[0]);
2697        else
2698          MappedOps.push_back(Idx - SrcNumElts - StartIdx[1] + MaskNumElts);
2699      }
2700
2701      setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2702                                        &MappedOps[0]));
2703      return;
2704    }
2705  }
2706
2707  // We can't use either concat vectors or extract subvectors so fall back to
2708  // replacing the shuffle with extract and build vector.
2709  // to insert and build vector.
2710  EVT EltVT = VT.getVectorElementType();
2711  EVT PtrVT = TLI.getPointerTy();
2712  SmallVector<SDValue,8> Ops;
2713  for (unsigned i = 0; i != MaskNumElts; ++i) {
2714    if (Mask[i] < 0) {
2715      Ops.push_back(DAG.getUNDEF(EltVT));
2716    } else {
2717      int Idx = Mask[i];
2718      SDValue Res;
2719
2720      if (Idx < (int)SrcNumElts)
2721        Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
2722                          EltVT, Src1, DAG.getConstant(Idx, PtrVT));
2723      else
2724        Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
2725                          EltVT, Src2,
2726                          DAG.getConstant(Idx - SrcNumElts, PtrVT));
2727
2728      Ops.push_back(Res);
2729    }
2730  }
2731
2732  setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(),
2733                           VT, &Ops[0], Ops.size()));
2734}
2735
2736void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) {
2737  const Value *Op0 = I.getOperand(0);
2738  const Value *Op1 = I.getOperand(1);
2739  const Type *AggTy = I.getType();
2740  const Type *ValTy = Op1->getType();
2741  bool IntoUndef = isa<UndefValue>(Op0);
2742  bool FromUndef = isa<UndefValue>(Op1);
2743
2744  unsigned LinearIndex = ComputeLinearIndex(AggTy, I.idx_begin(), I.idx_end());
2745
2746  SmallVector<EVT, 4> AggValueVTs;
2747  ComputeValueVTs(TLI, AggTy, AggValueVTs);
2748  SmallVector<EVT, 4> ValValueVTs;
2749  ComputeValueVTs(TLI, ValTy, ValValueVTs);
2750
2751  unsigned NumAggValues = AggValueVTs.size();
2752  unsigned NumValValues = ValValueVTs.size();
2753  SmallVector<SDValue, 4> Values(NumAggValues);
2754
2755  SDValue Agg = getValue(Op0);
2756  SDValue Val = getValue(Op1);
2757  unsigned i = 0;
2758  // Copy the beginning value(s) from the original aggregate.
2759  for (; i != LinearIndex; ++i)
2760    Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
2761                SDValue(Agg.getNode(), Agg.getResNo() + i);
2762  // Copy values from the inserted value(s).
2763  for (; i != LinearIndex + NumValValues; ++i)
2764    Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
2765                SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
2766  // Copy remaining value(s) from the original aggregate.
2767  for (; i != NumAggValues; ++i)
2768    Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
2769                SDValue(Agg.getNode(), Agg.getResNo() + i);
2770
2771  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
2772                           DAG.getVTList(&AggValueVTs[0], NumAggValues),
2773                           &Values[0], NumAggValues));
2774}
2775
2776void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) {
2777  const Value *Op0 = I.getOperand(0);
2778  const Type *AggTy = Op0->getType();
2779  const Type *ValTy = I.getType();
2780  bool OutOfUndef = isa<UndefValue>(Op0);
2781
2782  unsigned LinearIndex = ComputeLinearIndex(AggTy, I.idx_begin(), I.idx_end());
2783
2784  SmallVector<EVT, 4> ValValueVTs;
2785  ComputeValueVTs(TLI, ValTy, ValValueVTs);
2786
2787  unsigned NumValValues = ValValueVTs.size();
2788  SmallVector<SDValue, 4> Values(NumValValues);
2789
2790  SDValue Agg = getValue(Op0);
2791  // Copy out the selected value(s).
2792  for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
2793    Values[i - LinearIndex] =
2794      OutOfUndef ?
2795        DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
2796        SDValue(Agg.getNode(), Agg.getResNo() + i);
2797
2798  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
2799                           DAG.getVTList(&ValValueVTs[0], NumValValues),
2800                           &Values[0], NumValValues));
2801}
2802
2803void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
2804  SDValue N = getValue(I.getOperand(0));
2805  const Type *Ty = I.getOperand(0)->getType();
2806
2807  for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end();
2808       OI != E; ++OI) {
2809    const Value *Idx = *OI;
2810    if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
2811      unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
2812      if (Field) {
2813        // N = N + Offset
2814        uint64_t Offset = TD->getStructLayout(StTy)->getElementOffset(Field);
2815        N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N,
2816                        DAG.getIntPtrConstant(Offset));
2817      }
2818
2819      Ty = StTy->getElementType(Field);
2820    } else {
2821      Ty = cast<SequentialType>(Ty)->getElementType();
2822
2823      // If this is a constant subscript, handle it quickly.
2824      if (const ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
2825        if (CI->isZero()) continue;
2826        uint64_t Offs =
2827            TD->getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue();
2828        SDValue OffsVal;
2829        EVT PTy = TLI.getPointerTy();
2830        unsigned PtrBits = PTy.getSizeInBits();
2831        if (PtrBits < 64)
2832          OffsVal = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(),
2833                                TLI.getPointerTy(),
2834                                DAG.getConstant(Offs, MVT::i64));
2835        else
2836          OffsVal = DAG.getIntPtrConstant(Offs);
2837
2838        N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N,
2839                        OffsVal);
2840        continue;
2841      }
2842
2843      // N = N + Idx * ElementSize;
2844      APInt ElementSize = APInt(TLI.getPointerTy().getSizeInBits(),
2845                                TD->getTypeAllocSize(Ty));
2846      SDValue IdxN = getValue(Idx);
2847
2848      // If the index is smaller or larger than intptr_t, truncate or extend
2849      // it.
2850      IdxN = DAG.getSExtOrTrunc(IdxN, getCurDebugLoc(), N.getValueType());
2851
2852      // If this is a multiply by a power of two, turn it into a shl
2853      // immediately.  This is a very common case.
2854      if (ElementSize != 1) {
2855        if (ElementSize.isPowerOf2()) {
2856          unsigned Amt = ElementSize.logBase2();
2857          IdxN = DAG.getNode(ISD::SHL, getCurDebugLoc(),
2858                             N.getValueType(), IdxN,
2859                             DAG.getConstant(Amt, TLI.getPointerTy()));
2860        } else {
2861          SDValue Scale = DAG.getConstant(ElementSize, TLI.getPointerTy());
2862          IdxN = DAG.getNode(ISD::MUL, getCurDebugLoc(),
2863                             N.getValueType(), IdxN, Scale);
2864        }
2865      }
2866
2867      N = DAG.getNode(ISD::ADD, getCurDebugLoc(),
2868                      N.getValueType(), N, IdxN);
2869    }
2870  }
2871
2872  setValue(&I, N);
2873}
2874
2875void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
2876  // If this is a fixed sized alloca in the entry block of the function,
2877  // allocate it statically on the stack.
2878  if (FuncInfo.StaticAllocaMap.count(&I))
2879    return;   // getValue will auto-populate this.
2880
2881  const Type *Ty = I.getAllocatedType();
2882  uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty);
2883  unsigned Align =
2884    std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty),
2885             I.getAlignment());
2886
2887  SDValue AllocSize = getValue(I.getArraySize());
2888
2889  EVT IntPtr = TLI.getPointerTy();
2890  if (AllocSize.getValueType() != IntPtr)
2891    AllocSize = DAG.getZExtOrTrunc(AllocSize, getCurDebugLoc(), IntPtr);
2892
2893  AllocSize = DAG.getNode(ISD::MUL, getCurDebugLoc(), IntPtr,
2894                          AllocSize,
2895                          DAG.getConstant(TySize, IntPtr));
2896
2897  // Handle alignment.  If the requested alignment is less than or equal to
2898  // the stack alignment, ignore it.  If the size is greater than or equal to
2899  // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
2900  unsigned StackAlign = TM.getFrameInfo()->getStackAlignment();
2901  if (Align <= StackAlign)
2902    Align = 0;
2903
2904  // Round the size of the allocation up to the stack alignment size
2905  // by add SA-1 to the size.
2906  AllocSize = DAG.getNode(ISD::ADD, getCurDebugLoc(),
2907                          AllocSize.getValueType(), AllocSize,
2908                          DAG.getIntPtrConstant(StackAlign-1));
2909
2910  // Mask out the low bits for alignment purposes.
2911  AllocSize = DAG.getNode(ISD::AND, getCurDebugLoc(),
2912                          AllocSize.getValueType(), AllocSize,
2913                          DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1)));
2914
2915  SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) };
2916  SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
2917  SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, getCurDebugLoc(),
2918                            VTs, Ops, 3);
2919  setValue(&I, DSA);
2920  DAG.setRoot(DSA.getValue(1));
2921
2922  // Inform the Frame Information that we have just allocated a variable-sized
2923  // object.
2924  FuncInfo.MF->getFrameInfo()->CreateVariableSizedObject(Align ? Align : 1);
2925}
2926
2927void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
2928  const Value *SV = I.getOperand(0);
2929  SDValue Ptr = getValue(SV);
2930
2931  const Type *Ty = I.getType();
2932
2933  bool isVolatile = I.isVolatile();
2934  bool isNonTemporal = I.getMetadata("nontemporal") != 0;
2935  unsigned Alignment = I.getAlignment();
2936
2937  SmallVector<EVT, 4> ValueVTs;
2938  SmallVector<uint64_t, 4> Offsets;
2939  ComputeValueVTs(TLI, Ty, ValueVTs, &Offsets);
2940  unsigned NumValues = ValueVTs.size();
2941  if (NumValues == 0)
2942    return;
2943
2944  SDValue Root;
2945  bool ConstantMemory = false;
2946  if (I.isVolatile())
2947    // Serialize volatile loads with other side effects.
2948    Root = getRoot();
2949  else if (AA->pointsToConstantMemory(SV)) {
2950    // Do not serialize (non-volatile) loads of constant memory with anything.
2951    Root = DAG.getEntryNode();
2952    ConstantMemory = true;
2953  } else {
2954    // Do not serialize non-volatile loads against each other.
2955    Root = DAG.getRoot();
2956  }
2957
2958  SmallVector<SDValue, 4> Values(NumValues);
2959  SmallVector<SDValue, 4> Chains(NumValues);
2960  EVT PtrVT = Ptr.getValueType();
2961  for (unsigned i = 0; i != NumValues; ++i) {
2962    SDValue A = DAG.getNode(ISD::ADD, getCurDebugLoc(),
2963                            PtrVT, Ptr,
2964                            DAG.getConstant(Offsets[i], PtrVT));
2965    SDValue L = DAG.getLoad(ValueVTs[i], getCurDebugLoc(), Root,
2966                            A, MachinePointerInfo(SV, Offsets[i]), isVolatile,
2967                            isNonTemporal, Alignment);
2968
2969    Values[i] = L;
2970    Chains[i] = L.getValue(1);
2971  }
2972
2973  if (!ConstantMemory) {
2974    SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
2975                                MVT::Other, &Chains[0], NumValues);
2976    if (isVolatile)
2977      DAG.setRoot(Chain);
2978    else
2979      PendingLoads.push_back(Chain);
2980  }
2981
2982  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
2983                           DAG.getVTList(&ValueVTs[0], NumValues),
2984                           &Values[0], NumValues));
2985}
2986
2987void SelectionDAGBuilder::visitStore(const StoreInst &I) {
2988  const Value *SrcV = I.getOperand(0);
2989  const Value *PtrV = I.getOperand(1);
2990
2991  SmallVector<EVT, 4> ValueVTs;
2992  SmallVector<uint64_t, 4> Offsets;
2993  ComputeValueVTs(TLI, SrcV->getType(), ValueVTs, &Offsets);
2994  unsigned NumValues = ValueVTs.size();
2995  if (NumValues == 0)
2996    return;
2997
2998  // Get the lowered operands. Note that we do this after
2999  // checking if NumResults is zero, because with zero results
3000  // the operands won't have values in the map.
3001  SDValue Src = getValue(SrcV);
3002  SDValue Ptr = getValue(PtrV);
3003
3004  SDValue Root = getRoot();
3005  SmallVector<SDValue, 4> Chains(NumValues);
3006  EVT PtrVT = Ptr.getValueType();
3007  bool isVolatile = I.isVolatile();
3008  bool isNonTemporal = I.getMetadata("nontemporal") != 0;
3009  unsigned Alignment = I.getAlignment();
3010
3011  for (unsigned i = 0; i != NumValues; ++i) {
3012    SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT, Ptr,
3013                              DAG.getConstant(Offsets[i], PtrVT));
3014    Chains[i] = DAG.getStore(Root, getCurDebugLoc(),
3015                             SDValue(Src.getNode(), Src.getResNo() + i),
3016                             Add, MachinePointerInfo(PtrV, Offsets[i]),
3017                             isVolatile, isNonTemporal, Alignment);
3018  }
3019
3020  DAG.setRoot(DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
3021                          MVT::Other, &Chains[0], NumValues));
3022}
3023
3024/// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
3025/// node.
3026void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
3027                                               unsigned Intrinsic) {
3028  bool HasChain = !I.doesNotAccessMemory();
3029  bool OnlyLoad = HasChain && I.onlyReadsMemory();
3030
3031  // Build the operand list.
3032  SmallVector<SDValue, 8> Ops;
3033  if (HasChain) {  // If this intrinsic has side-effects, chainify it.
3034    if (OnlyLoad) {
3035      // We don't need to serialize loads against other loads.
3036      Ops.push_back(DAG.getRoot());
3037    } else {
3038      Ops.push_back(getRoot());
3039    }
3040  }
3041
3042  // Info is set by getTgtMemInstrinsic
3043  TargetLowering::IntrinsicInfo Info;
3044  bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic);
3045
3046  // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
3047  if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
3048      Info.opc == ISD::INTRINSIC_W_CHAIN)
3049    Ops.push_back(DAG.getConstant(Intrinsic, TLI.getPointerTy()));
3050
3051  // Add all operands of the call to the operand list.
3052  for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
3053    SDValue Op = getValue(I.getArgOperand(i));
3054    assert(TLI.isTypeLegal(Op.getValueType()) &&
3055           "Intrinsic uses a non-legal type?");
3056    Ops.push_back(Op);
3057  }
3058
3059  SmallVector<EVT, 4> ValueVTs;
3060  ComputeValueVTs(TLI, I.getType(), ValueVTs);
3061#ifndef NDEBUG
3062  for (unsigned Val = 0, E = ValueVTs.size(); Val != E; ++Val) {
3063    assert(TLI.isTypeLegal(ValueVTs[Val]) &&
3064           "Intrinsic uses a non-legal type?");
3065  }
3066#endif // NDEBUG
3067
3068  if (HasChain)
3069    ValueVTs.push_back(MVT::Other);
3070
3071  SDVTList VTs = DAG.getVTList(ValueVTs.data(), ValueVTs.size());
3072
3073  // Create the node.
3074  SDValue Result;
3075  if (IsTgtIntrinsic) {
3076    // This is target intrinsic that touches memory
3077    Result = DAG.getMemIntrinsicNode(Info.opc, getCurDebugLoc(),
3078                                     VTs, &Ops[0], Ops.size(),
3079                                     Info.memVT,
3080                                   MachinePointerInfo(Info.ptrVal, Info.offset),
3081                                     Info.align, Info.vol,
3082                                     Info.readMem, Info.writeMem);
3083  } else if (!HasChain) {
3084    Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurDebugLoc(),
3085                         VTs, &Ops[0], Ops.size());
3086  } else if (!I.getType()->isVoidTy()) {
3087    Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurDebugLoc(),
3088                         VTs, &Ops[0], Ops.size());
3089  } else {
3090    Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurDebugLoc(),
3091                         VTs, &Ops[0], Ops.size());
3092  }
3093
3094  if (HasChain) {
3095    SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
3096    if (OnlyLoad)
3097      PendingLoads.push_back(Chain);
3098    else
3099      DAG.setRoot(Chain);
3100  }
3101
3102  if (!I.getType()->isVoidTy()) {
3103    if (const VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
3104      EVT VT = TLI.getValueType(PTy);
3105      Result = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(), VT, Result);
3106    }
3107
3108    setValue(&I, Result);
3109  }
3110}
3111
3112/// GetSignificand - Get the significand and build it into a floating-point
3113/// number with exponent of 1:
3114///
3115///   Op = (Op & 0x007fffff) | 0x3f800000;
3116///
3117/// where Op is the hexidecimal representation of floating point value.
3118static SDValue
3119GetSignificand(SelectionDAG &DAG, SDValue Op, DebugLoc dl) {
3120  SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
3121                           DAG.getConstant(0x007fffff, MVT::i32));
3122  SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
3123                           DAG.getConstant(0x3f800000, MVT::i32));
3124  return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t2);
3125}
3126
3127/// GetExponent - Get the exponent:
3128///
3129///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
3130///
3131/// where Op is the hexidecimal representation of floating point value.
3132static SDValue
3133GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI,
3134            DebugLoc dl) {
3135  SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
3136                           DAG.getConstant(0x7f800000, MVT::i32));
3137  SDValue t1 = DAG.getNode(ISD::SRL, dl, MVT::i32, t0,
3138                           DAG.getConstant(23, TLI.getPointerTy()));
3139  SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
3140                           DAG.getConstant(127, MVT::i32));
3141  return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
3142}
3143
3144/// getF32Constant - Get 32-bit floating point constant.
3145static SDValue
3146getF32Constant(SelectionDAG &DAG, unsigned Flt) {
3147  return DAG.getConstantFP(APFloat(APInt(32, Flt)), MVT::f32);
3148}
3149
3150/// Inlined utility function to implement binary input atomic intrinsics for
3151/// visitIntrinsicCall: I is a call instruction
3152///                     Op is the associated NodeType for I
3153const char *
3154SelectionDAGBuilder::implVisitBinaryAtomic(const CallInst& I,
3155                                           ISD::NodeType Op) {
3156  SDValue Root = getRoot();
3157  SDValue L =
3158    DAG.getAtomic(Op, getCurDebugLoc(),
3159                  getValue(I.getArgOperand(1)).getValueType().getSimpleVT(),
3160                  Root,
3161                  getValue(I.getArgOperand(0)),
3162                  getValue(I.getArgOperand(1)),
3163                  I.getArgOperand(0));
3164  setValue(&I, L);
3165  DAG.setRoot(L.getValue(1));
3166  return 0;
3167}
3168
3169// implVisitAluOverflow - Lower arithmetic overflow instrinsics.
3170const char *
3171SelectionDAGBuilder::implVisitAluOverflow(const CallInst &I, ISD::NodeType Op) {
3172  SDValue Op1 = getValue(I.getArgOperand(0));
3173  SDValue Op2 = getValue(I.getArgOperand(1));
3174
3175  SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1);
3176  setValue(&I, DAG.getNode(Op, getCurDebugLoc(), VTs, Op1, Op2));
3177  return 0;
3178}
3179
3180/// visitExp - Lower an exp intrinsic. Handles the special sequences for
3181/// limited-precision mode.
3182void
3183SelectionDAGBuilder::visitExp(const CallInst &I) {
3184  SDValue result;
3185  DebugLoc dl = getCurDebugLoc();
3186
3187  if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3188      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3189    SDValue Op = getValue(I.getArgOperand(0));
3190
3191    // Put the exponent in the right bit position for later addition to the
3192    // final result:
3193    //
3194    //   #define LOG2OFe 1.4426950f
3195    //   IntegerPartOfX = ((int32_t)(X * LOG2OFe));
3196    SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
3197                             getF32Constant(DAG, 0x3fb8aa3b));
3198    SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
3199
3200    //   FractionalPartOfX = (X * LOG2OFe) - (float)IntegerPartOfX;
3201    SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
3202    SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
3203
3204    //   IntegerPartOfX <<= 23;
3205    IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
3206                                 DAG.getConstant(23, TLI.getPointerTy()));
3207
3208    if (LimitFloatPrecision <= 6) {
3209      // For floating-point precision of 6:
3210      //
3211      //   TwoToFractionalPartOfX =
3212      //     0.997535578f +
3213      //       (0.735607626f + 0.252464424f * x) * x;
3214      //
3215      // error 0.0144103317, which is 6 bits
3216      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3217                               getF32Constant(DAG, 0x3e814304));
3218      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3219                               getF32Constant(DAG, 0x3f3c50c8));
3220      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3221      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3222                               getF32Constant(DAG, 0x3f7f5e7e));
3223      SDValue TwoToFracPartOfX = DAG.getNode(ISD::BIT_CONVERT, dl,MVT::i32, t5);
3224
3225      // Add the exponent into the result in integer domain.
3226      SDValue t6 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3227                               TwoToFracPartOfX, IntegerPartOfX);
3228
3229      result = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t6);
3230    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3231      // For floating-point precision of 12:
3232      //
3233      //   TwoToFractionalPartOfX =
3234      //     0.999892986f +
3235      //       (0.696457318f +
3236      //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
3237      //
3238      // 0.000107046256 error, which is 13 to 14 bits
3239      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3240                               getF32Constant(DAG, 0x3da235e3));
3241      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3242                               getF32Constant(DAG, 0x3e65b8f3));
3243      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3244      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3245                               getF32Constant(DAG, 0x3f324b07));
3246      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3247      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3248                               getF32Constant(DAG, 0x3f7ff8fd));
3249      SDValue TwoToFracPartOfX = DAG.getNode(ISD::BIT_CONVERT, dl,MVT::i32, t7);
3250
3251      // Add the exponent into the result in integer domain.
3252      SDValue t8 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3253                               TwoToFracPartOfX, IntegerPartOfX);
3254
3255      result = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t8);
3256    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3257      // For floating-point precision of 18:
3258      //
3259      //   TwoToFractionalPartOfX =
3260      //     0.999999982f +
3261      //       (0.693148872f +
3262      //         (0.240227044f +
3263      //           (0.554906021e-1f +
3264      //             (0.961591928e-2f +
3265      //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
3266      //
3267      // error 2.47208000*10^(-7), which is better than 18 bits
3268      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3269                               getF32Constant(DAG, 0x3924b03e));
3270      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3271                               getF32Constant(DAG, 0x3ab24b87));
3272      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3273      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3274                               getF32Constant(DAG, 0x3c1d8c17));
3275      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3276      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3277                               getF32Constant(DAG, 0x3d634a1d));
3278      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3279      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3280                               getF32Constant(DAG, 0x3e75fe14));
3281      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3282      SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
3283                                getF32Constant(DAG, 0x3f317234));
3284      SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
3285      SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
3286                                getF32Constant(DAG, 0x3f800000));
3287      SDValue TwoToFracPartOfX = DAG.getNode(ISD::BIT_CONVERT, dl,
3288                                             MVT::i32, t13);
3289
3290      // Add the exponent into the result in integer domain.
3291      SDValue t14 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3292                                TwoToFracPartOfX, IntegerPartOfX);
3293
3294      result = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t14);
3295    }
3296  } else {
3297    // No special expansion.
3298    result = DAG.getNode(ISD::FEXP, dl,
3299                         getValue(I.getArgOperand(0)).getValueType(),
3300                         getValue(I.getArgOperand(0)));
3301  }
3302
3303  setValue(&I, result);
3304}
3305
3306/// visitLog - Lower a log intrinsic. Handles the special sequences for
3307/// limited-precision mode.
3308void
3309SelectionDAGBuilder::visitLog(const CallInst &I) {
3310  SDValue result;
3311  DebugLoc dl = getCurDebugLoc();
3312
3313  if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3314      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3315    SDValue Op = getValue(I.getArgOperand(0));
3316    SDValue Op1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, Op);
3317
3318    // Scale the exponent by log(2) [0.69314718f].
3319    SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
3320    SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
3321                                        getF32Constant(DAG, 0x3f317218));
3322
3323    // Get the significand and build it into a floating-point number with
3324    // exponent of 1.
3325    SDValue X = GetSignificand(DAG, Op1, dl);
3326
3327    if (LimitFloatPrecision <= 6) {
3328      // For floating-point precision of 6:
3329      //
3330      //   LogofMantissa =
3331      //     -1.1609546f +
3332      //       (1.4034025f - 0.23903021f * x) * x;
3333      //
3334      // error 0.0034276066, which is better than 8 bits
3335      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3336                               getF32Constant(DAG, 0xbe74c456));
3337      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3338                               getF32Constant(DAG, 0x3fb3a2b1));
3339      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3340      SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3341                                          getF32Constant(DAG, 0x3f949a29));
3342
3343      result = DAG.getNode(ISD::FADD, dl,
3344                           MVT::f32, LogOfExponent, LogOfMantissa);
3345    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3346      // For floating-point precision of 12:
3347      //
3348      //   LogOfMantissa =
3349      //     -1.7417939f +
3350      //       (2.8212026f +
3351      //         (-1.4699568f +
3352      //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
3353      //
3354      // error 0.000061011436, which is 14 bits
3355      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3356                               getF32Constant(DAG, 0xbd67b6d6));
3357      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3358                               getF32Constant(DAG, 0x3ee4f4b8));
3359      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3360      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3361                               getF32Constant(DAG, 0x3fbc278b));
3362      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3363      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3364                               getF32Constant(DAG, 0x40348e95));
3365      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3366      SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3367                                          getF32Constant(DAG, 0x3fdef31a));
3368
3369      result = DAG.getNode(ISD::FADD, dl,
3370                           MVT::f32, LogOfExponent, LogOfMantissa);
3371    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3372      // For floating-point precision of 18:
3373      //
3374      //   LogOfMantissa =
3375      //     -2.1072184f +
3376      //       (4.2372794f +
3377      //         (-3.7029485f +
3378      //           (2.2781945f +
3379      //             (-0.87823314f +
3380      //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
3381      //
3382      // error 0.0000023660568, which is better than 18 bits
3383      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3384                               getF32Constant(DAG, 0xbc91e5ac));
3385      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3386                               getF32Constant(DAG, 0x3e4350aa));
3387      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3388      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3389                               getF32Constant(DAG, 0x3f60d3e3));
3390      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3391      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3392                               getF32Constant(DAG, 0x4011cdf0));
3393      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3394      SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3395                               getF32Constant(DAG, 0x406cfd1c));
3396      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3397      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3398                               getF32Constant(DAG, 0x408797cb));
3399      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3400      SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
3401                                          getF32Constant(DAG, 0x4006dcab));
3402
3403      result = DAG.getNode(ISD::FADD, dl,
3404                           MVT::f32, LogOfExponent, LogOfMantissa);
3405    }
3406  } else {
3407    // No special expansion.
3408    result = DAG.getNode(ISD::FLOG, dl,
3409                         getValue(I.getArgOperand(0)).getValueType(),
3410                         getValue(I.getArgOperand(0)));
3411  }
3412
3413  setValue(&I, result);
3414}
3415
3416/// visitLog2 - Lower a log2 intrinsic. Handles the special sequences for
3417/// limited-precision mode.
3418void
3419SelectionDAGBuilder::visitLog2(const CallInst &I) {
3420  SDValue result;
3421  DebugLoc dl = getCurDebugLoc();
3422
3423  if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3424      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3425    SDValue Op = getValue(I.getArgOperand(0));
3426    SDValue Op1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, Op);
3427
3428    // Get the exponent.
3429    SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
3430
3431    // Get the significand and build it into a floating-point number with
3432    // exponent of 1.
3433    SDValue X = GetSignificand(DAG, Op1, dl);
3434
3435    // Different possible minimax approximations of significand in
3436    // floating-point for various degrees of accuracy over [1,2].
3437    if (LimitFloatPrecision <= 6) {
3438      // For floating-point precision of 6:
3439      //
3440      //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
3441      //
3442      // error 0.0049451742, which is more than 7 bits
3443      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3444                               getF32Constant(DAG, 0xbeb08fe0));
3445      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3446                               getF32Constant(DAG, 0x40019463));
3447      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3448      SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3449                                           getF32Constant(DAG, 0x3fd6633d));
3450
3451      result = DAG.getNode(ISD::FADD, dl,
3452                           MVT::f32, LogOfExponent, Log2ofMantissa);
3453    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3454      // For floating-point precision of 12:
3455      //
3456      //   Log2ofMantissa =
3457      //     -2.51285454f +
3458      //       (4.07009056f +
3459      //         (-2.12067489f +
3460      //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
3461      //
3462      // error 0.0000876136000, which is better than 13 bits
3463      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3464                               getF32Constant(DAG, 0xbda7262e));
3465      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3466                               getF32Constant(DAG, 0x3f25280b));
3467      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3468      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3469                               getF32Constant(DAG, 0x4007b923));
3470      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3471      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3472                               getF32Constant(DAG, 0x40823e2f));
3473      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3474      SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3475                                           getF32Constant(DAG, 0x4020d29c));
3476
3477      result = DAG.getNode(ISD::FADD, dl,
3478                           MVT::f32, LogOfExponent, Log2ofMantissa);
3479    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3480      // For floating-point precision of 18:
3481      //
3482      //   Log2ofMantissa =
3483      //     -3.0400495f +
3484      //       (6.1129976f +
3485      //         (-5.3420409f +
3486      //           (3.2865683f +
3487      //             (-1.2669343f +
3488      //               (0.27515199f -
3489      //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
3490      //
3491      // error 0.0000018516, which is better than 18 bits
3492      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3493                               getF32Constant(DAG, 0xbcd2769e));
3494      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3495                               getF32Constant(DAG, 0x3e8ce0b9));
3496      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3497      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3498                               getF32Constant(DAG, 0x3fa22ae7));
3499      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3500      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3501                               getF32Constant(DAG, 0x40525723));
3502      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3503      SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3504                               getF32Constant(DAG, 0x40aaf200));
3505      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3506      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3507                               getF32Constant(DAG, 0x40c39dad));
3508      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3509      SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
3510                                           getF32Constant(DAG, 0x4042902c));
3511
3512      result = DAG.getNode(ISD::FADD, dl,
3513                           MVT::f32, LogOfExponent, Log2ofMantissa);
3514    }
3515  } else {
3516    // No special expansion.
3517    result = DAG.getNode(ISD::FLOG2, dl,
3518                         getValue(I.getArgOperand(0)).getValueType(),
3519                         getValue(I.getArgOperand(0)));
3520  }
3521
3522  setValue(&I, result);
3523}
3524
3525/// visitLog10 - Lower a log10 intrinsic. Handles the special sequences for
3526/// limited-precision mode.
3527void
3528SelectionDAGBuilder::visitLog10(const CallInst &I) {
3529  SDValue result;
3530  DebugLoc dl = getCurDebugLoc();
3531
3532  if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3533      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3534    SDValue Op = getValue(I.getArgOperand(0));
3535    SDValue Op1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, Op);
3536
3537    // Scale the exponent by log10(2) [0.30102999f].
3538    SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
3539    SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
3540                                        getF32Constant(DAG, 0x3e9a209a));
3541
3542    // Get the significand and build it into a floating-point number with
3543    // exponent of 1.
3544    SDValue X = GetSignificand(DAG, Op1, dl);
3545
3546    if (LimitFloatPrecision <= 6) {
3547      // For floating-point precision of 6:
3548      //
3549      //   Log10ofMantissa =
3550      //     -0.50419619f +
3551      //       (0.60948995f - 0.10380950f * x) * x;
3552      //
3553      // error 0.0014886165, which is 6 bits
3554      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3555                               getF32Constant(DAG, 0xbdd49a13));
3556      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3557                               getF32Constant(DAG, 0x3f1c0789));
3558      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3559      SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3560                                            getF32Constant(DAG, 0x3f011300));
3561
3562      result = DAG.getNode(ISD::FADD, dl,
3563                           MVT::f32, LogOfExponent, Log10ofMantissa);
3564    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3565      // For floating-point precision of 12:
3566      //
3567      //   Log10ofMantissa =
3568      //     -0.64831180f +
3569      //       (0.91751397f +
3570      //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
3571      //
3572      // error 0.00019228036, which is better than 12 bits
3573      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3574                               getF32Constant(DAG, 0x3d431f31));
3575      SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
3576                               getF32Constant(DAG, 0x3ea21fb2));
3577      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3578      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3579                               getF32Constant(DAG, 0x3f6ae232));
3580      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3581      SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
3582                                            getF32Constant(DAG, 0x3f25f7c3));
3583
3584      result = DAG.getNode(ISD::FADD, dl,
3585                           MVT::f32, LogOfExponent, Log10ofMantissa);
3586    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3587      // For floating-point precision of 18:
3588      //
3589      //   Log10ofMantissa =
3590      //     -0.84299375f +
3591      //       (1.5327582f +
3592      //         (-1.0688956f +
3593      //           (0.49102474f +
3594      //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
3595      //
3596      // error 0.0000037995730, which is better than 18 bits
3597      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3598                               getF32Constant(DAG, 0x3c5d51ce));
3599      SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
3600                               getF32Constant(DAG, 0x3e00685a));
3601      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3602      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3603                               getF32Constant(DAG, 0x3efb6798));
3604      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3605      SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
3606                               getF32Constant(DAG, 0x3f88d192));
3607      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3608      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3609                               getF32Constant(DAG, 0x3fc4316c));
3610      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3611      SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
3612                                            getF32Constant(DAG, 0x3f57ce70));
3613
3614      result = DAG.getNode(ISD::FADD, dl,
3615                           MVT::f32, LogOfExponent, Log10ofMantissa);
3616    }
3617  } else {
3618    // No special expansion.
3619    result = DAG.getNode(ISD::FLOG10, dl,
3620                         getValue(I.getArgOperand(0)).getValueType(),
3621                         getValue(I.getArgOperand(0)));
3622  }
3623
3624  setValue(&I, result);
3625}
3626
3627/// visitExp2 - Lower an exp2 intrinsic. Handles the special sequences for
3628/// limited-precision mode.
3629void
3630SelectionDAGBuilder::visitExp2(const CallInst &I) {
3631  SDValue result;
3632  DebugLoc dl = getCurDebugLoc();
3633
3634  if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3635      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3636    SDValue Op = getValue(I.getArgOperand(0));
3637
3638    SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Op);
3639
3640    //   FractionalPartOfX = x - (float)IntegerPartOfX;
3641    SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
3642    SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, Op, t1);
3643
3644    //   IntegerPartOfX <<= 23;
3645    IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
3646                                 DAG.getConstant(23, TLI.getPointerTy()));
3647
3648    if (LimitFloatPrecision <= 6) {
3649      // For floating-point precision of 6:
3650      //
3651      //   TwoToFractionalPartOfX =
3652      //     0.997535578f +
3653      //       (0.735607626f + 0.252464424f * x) * x;
3654      //
3655      // error 0.0144103317, which is 6 bits
3656      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3657                               getF32Constant(DAG, 0x3e814304));
3658      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3659                               getF32Constant(DAG, 0x3f3c50c8));
3660      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3661      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3662                               getF32Constant(DAG, 0x3f7f5e7e));
3663      SDValue t6 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t5);
3664      SDValue TwoToFractionalPartOfX =
3665        DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX);
3666
3667      result = DAG.getNode(ISD::BIT_CONVERT, dl,
3668                           MVT::f32, TwoToFractionalPartOfX);
3669    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3670      // For floating-point precision of 12:
3671      //
3672      //   TwoToFractionalPartOfX =
3673      //     0.999892986f +
3674      //       (0.696457318f +
3675      //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
3676      //
3677      // error 0.000107046256, which is 13 to 14 bits
3678      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3679                               getF32Constant(DAG, 0x3da235e3));
3680      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3681                               getF32Constant(DAG, 0x3e65b8f3));
3682      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3683      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3684                               getF32Constant(DAG, 0x3f324b07));
3685      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3686      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3687                               getF32Constant(DAG, 0x3f7ff8fd));
3688      SDValue t8 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t7);
3689      SDValue TwoToFractionalPartOfX =
3690        DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX);
3691
3692      result = DAG.getNode(ISD::BIT_CONVERT, dl,
3693                           MVT::f32, TwoToFractionalPartOfX);
3694    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3695      // For floating-point precision of 18:
3696      //
3697      //   TwoToFractionalPartOfX =
3698      //     0.999999982f +
3699      //       (0.693148872f +
3700      //         (0.240227044f +
3701      //           (0.554906021e-1f +
3702      //             (0.961591928e-2f +
3703      //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
3704      // error 2.47208000*10^(-7), which is better than 18 bits
3705      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3706                               getF32Constant(DAG, 0x3924b03e));
3707      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3708                               getF32Constant(DAG, 0x3ab24b87));
3709      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3710      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3711                               getF32Constant(DAG, 0x3c1d8c17));
3712      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3713      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3714                               getF32Constant(DAG, 0x3d634a1d));
3715      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3716      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3717                               getF32Constant(DAG, 0x3e75fe14));
3718      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3719      SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
3720                                getF32Constant(DAG, 0x3f317234));
3721      SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
3722      SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
3723                                getF32Constant(DAG, 0x3f800000));
3724      SDValue t14 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t13);
3725      SDValue TwoToFractionalPartOfX =
3726        DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX);
3727
3728      result = DAG.getNode(ISD::BIT_CONVERT, dl,
3729                           MVT::f32, TwoToFractionalPartOfX);
3730    }
3731  } else {
3732    // No special expansion.
3733    result = DAG.getNode(ISD::FEXP2, dl,
3734                         getValue(I.getArgOperand(0)).getValueType(),
3735                         getValue(I.getArgOperand(0)));
3736  }
3737
3738  setValue(&I, result);
3739}
3740
3741/// visitPow - Lower a pow intrinsic. Handles the special sequences for
3742/// limited-precision mode with x == 10.0f.
3743void
3744SelectionDAGBuilder::visitPow(const CallInst &I) {
3745  SDValue result;
3746  const Value *Val = I.getArgOperand(0);
3747  DebugLoc dl = getCurDebugLoc();
3748  bool IsExp10 = false;
3749
3750  if (getValue(Val).getValueType() == MVT::f32 &&
3751      getValue(I.getArgOperand(1)).getValueType() == MVT::f32 &&
3752      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3753    if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(Val))) {
3754      if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
3755        APFloat Ten(10.0f);
3756        IsExp10 = CFP->getValueAPF().bitwiseIsEqual(Ten);
3757      }
3758    }
3759  }
3760
3761  if (IsExp10 && LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3762    SDValue Op = getValue(I.getArgOperand(1));
3763
3764    // Put the exponent in the right bit position for later addition to the
3765    // final result:
3766    //
3767    //   #define LOG2OF10 3.3219281f
3768    //   IntegerPartOfX = (int32_t)(x * LOG2OF10);
3769    SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
3770                             getF32Constant(DAG, 0x40549a78));
3771    SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
3772
3773    //   FractionalPartOfX = x - (float)IntegerPartOfX;
3774    SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
3775    SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
3776
3777    //   IntegerPartOfX <<= 23;
3778    IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
3779                                 DAG.getConstant(23, TLI.getPointerTy()));
3780
3781    if (LimitFloatPrecision <= 6) {
3782      // For floating-point precision of 6:
3783      //
3784      //   twoToFractionalPartOfX =
3785      //     0.997535578f +
3786      //       (0.735607626f + 0.252464424f * x) * x;
3787      //
3788      // error 0.0144103317, which is 6 bits
3789      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3790                               getF32Constant(DAG, 0x3e814304));
3791      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3792                               getF32Constant(DAG, 0x3f3c50c8));
3793      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3794      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3795                               getF32Constant(DAG, 0x3f7f5e7e));
3796      SDValue t6 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t5);
3797      SDValue TwoToFractionalPartOfX =
3798        DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX);
3799
3800      result = DAG.getNode(ISD::BIT_CONVERT, dl,
3801                           MVT::f32, TwoToFractionalPartOfX);
3802    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3803      // For floating-point precision of 12:
3804      //
3805      //   TwoToFractionalPartOfX =
3806      //     0.999892986f +
3807      //       (0.696457318f +
3808      //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
3809      //
3810      // error 0.000107046256, which is 13 to 14 bits
3811      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3812                               getF32Constant(DAG, 0x3da235e3));
3813      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3814                               getF32Constant(DAG, 0x3e65b8f3));
3815      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3816      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3817                               getF32Constant(DAG, 0x3f324b07));
3818      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3819      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3820                               getF32Constant(DAG, 0x3f7ff8fd));
3821      SDValue t8 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t7);
3822      SDValue TwoToFractionalPartOfX =
3823        DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX);
3824
3825      result = DAG.getNode(ISD::BIT_CONVERT, dl,
3826                           MVT::f32, TwoToFractionalPartOfX);
3827    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3828      // For floating-point precision of 18:
3829      //
3830      //   TwoToFractionalPartOfX =
3831      //     0.999999982f +
3832      //       (0.693148872f +
3833      //         (0.240227044f +
3834      //           (0.554906021e-1f +
3835      //             (0.961591928e-2f +
3836      //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
3837      // error 2.47208000*10^(-7), which is better than 18 bits
3838      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3839                               getF32Constant(DAG, 0x3924b03e));
3840      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3841                               getF32Constant(DAG, 0x3ab24b87));
3842      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3843      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3844                               getF32Constant(DAG, 0x3c1d8c17));
3845      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3846      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3847                               getF32Constant(DAG, 0x3d634a1d));
3848      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3849      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3850                               getF32Constant(DAG, 0x3e75fe14));
3851      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3852      SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
3853                                getF32Constant(DAG, 0x3f317234));
3854      SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
3855      SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
3856                                getF32Constant(DAG, 0x3f800000));
3857      SDValue t14 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t13);
3858      SDValue TwoToFractionalPartOfX =
3859        DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX);
3860
3861      result = DAG.getNode(ISD::BIT_CONVERT, dl,
3862                           MVT::f32, TwoToFractionalPartOfX);
3863    }
3864  } else {
3865    // No special expansion.
3866    result = DAG.getNode(ISD::FPOW, dl,
3867                         getValue(I.getArgOperand(0)).getValueType(),
3868                         getValue(I.getArgOperand(0)),
3869                         getValue(I.getArgOperand(1)));
3870  }
3871
3872  setValue(&I, result);
3873}
3874
3875
3876/// ExpandPowI - Expand a llvm.powi intrinsic.
3877static SDValue ExpandPowI(DebugLoc DL, SDValue LHS, SDValue RHS,
3878                          SelectionDAG &DAG) {
3879  // If RHS is a constant, we can expand this out to a multiplication tree,
3880  // otherwise we end up lowering to a call to __powidf2 (for example).  When
3881  // optimizing for size, we only want to do this if the expansion would produce
3882  // a small number of multiplies, otherwise we do the full expansion.
3883  if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
3884    // Get the exponent as a positive value.
3885    unsigned Val = RHSC->getSExtValue();
3886    if ((int)Val < 0) Val = -Val;
3887
3888    // powi(x, 0) -> 1.0
3889    if (Val == 0)
3890      return DAG.getConstantFP(1.0, LHS.getValueType());
3891
3892    const Function *F = DAG.getMachineFunction().getFunction();
3893    if (!F->hasFnAttr(Attribute::OptimizeForSize) ||
3894        // If optimizing for size, don't insert too many multiplies.  This
3895        // inserts up to 5 multiplies.
3896        CountPopulation_32(Val)+Log2_32(Val) < 7) {
3897      // We use the simple binary decomposition method to generate the multiply
3898      // sequence.  There are more optimal ways to do this (for example,
3899      // powi(x,15) generates one more multiply than it should), but this has
3900      // the benefit of being both really simple and much better than a libcall.
3901      SDValue Res;  // Logically starts equal to 1.0
3902      SDValue CurSquare = LHS;
3903      while (Val) {
3904        if (Val & 1) {
3905          if (Res.getNode())
3906            Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare);
3907          else
3908            Res = CurSquare;  // 1.0*CurSquare.
3909        }
3910
3911        CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
3912                                CurSquare, CurSquare);
3913        Val >>= 1;
3914      }
3915
3916      // If the original was negative, invert the result, producing 1/(x*x*x).
3917      if (RHSC->getSExtValue() < 0)
3918        Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
3919                          DAG.getConstantFP(1.0, LHS.getValueType()), Res);
3920      return Res;
3921    }
3922  }
3923
3924  // Otherwise, expand to a libcall.
3925  return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
3926}
3927
3928/// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function
3929/// argument, create the corresponding DBG_VALUE machine instruction for it now.
3930/// At the end of instruction selection, they will be inserted to the entry BB.
3931bool
3932SelectionDAGBuilder::EmitFuncArgumentDbgValue(const Value *V, MDNode *Variable,
3933                                              int64_t Offset,
3934                                              const SDValue &N) {
3935  const Argument *Arg = dyn_cast<Argument>(V);
3936  if (!Arg)
3937    return false;
3938
3939  MachineFunction &MF = DAG.getMachineFunction();
3940  // Ignore inlined function arguments here.
3941  DIVariable DV(Variable);
3942  if (DV.isInlinedFnArgument(MF.getFunction()))
3943    return false;
3944
3945  MachineBasicBlock *MBB = FuncInfo.MBB;
3946  if (MBB != &MF.front())
3947    return false;
3948
3949  unsigned Reg = 0;
3950  if (Arg->hasByValAttr()) {
3951    // Byval arguments' frame index is recorded during argument lowering.
3952    // Use this info directly.
3953    const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
3954    Reg = TRI->getFrameRegister(MF);
3955    Offset = FuncInfo.getByValArgumentFrameIndex(Arg);
3956    // If byval argument ofset is not recorded then ignore this.
3957    if (!Offset)
3958      Reg = 0;
3959  }
3960
3961  if (N.getNode() && N.getOpcode() == ISD::CopyFromReg) {
3962    Reg = cast<RegisterSDNode>(N.getOperand(1))->getReg();
3963    if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) {
3964      MachineRegisterInfo &RegInfo = MF.getRegInfo();
3965      unsigned PR = RegInfo.getLiveInPhysReg(Reg);
3966      if (PR)
3967        Reg = PR;
3968    }
3969  }
3970
3971  if (!Reg) {
3972    DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
3973    if (VMI == FuncInfo.ValueMap.end())
3974      return false;
3975    Reg = VMI->second;
3976  }
3977
3978  const TargetInstrInfo *TII = DAG.getTarget().getInstrInfo();
3979  MachineInstrBuilder MIB = BuildMI(MF, getCurDebugLoc(),
3980                                    TII->get(TargetOpcode::DBG_VALUE))
3981    .addReg(Reg, RegState::Debug).addImm(Offset).addMetadata(Variable);
3982  FuncInfo.ArgDbgValues.push_back(&*MIB);
3983  return true;
3984}
3985
3986// VisualStudio defines setjmp as _setjmp
3987#if defined(_MSC_VER) && defined(setjmp) && \
3988                         !defined(setjmp_undefined_for_msvc)
3989#  pragma push_macro("setjmp")
3990#  undef setjmp
3991#  define setjmp_undefined_for_msvc
3992#endif
3993
3994/// visitIntrinsicCall - Lower the call to the specified intrinsic function.  If
3995/// we want to emit this as a call to a named external function, return the name
3996/// otherwise lower it and return null.
3997const char *
3998SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) {
3999  DebugLoc dl = getCurDebugLoc();
4000  SDValue Res;
4001
4002  switch (Intrinsic) {
4003  default:
4004    // By default, turn this into a target intrinsic node.
4005    visitTargetIntrinsic(I, Intrinsic);
4006    return 0;
4007  case Intrinsic::vastart:  visitVAStart(I); return 0;
4008  case Intrinsic::vaend:    visitVAEnd(I); return 0;
4009  case Intrinsic::vacopy:   visitVACopy(I); return 0;
4010  case Intrinsic::returnaddress:
4011    setValue(&I, DAG.getNode(ISD::RETURNADDR, dl, TLI.getPointerTy(),
4012                             getValue(I.getArgOperand(0))));
4013    return 0;
4014  case Intrinsic::frameaddress:
4015    setValue(&I, DAG.getNode(ISD::FRAMEADDR, dl, TLI.getPointerTy(),
4016                             getValue(I.getArgOperand(0))));
4017    return 0;
4018  case Intrinsic::setjmp:
4019    return "_setjmp"+!TLI.usesUnderscoreSetJmp();
4020  case Intrinsic::longjmp:
4021    return "_longjmp"+!TLI.usesUnderscoreLongJmp();
4022  case Intrinsic::memcpy: {
4023    // Assert for address < 256 since we support only user defined address
4024    // spaces.
4025    assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4026           < 256 &&
4027           cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace()
4028           < 256 &&
4029           "Unknown address space");
4030    SDValue Op1 = getValue(I.getArgOperand(0));
4031    SDValue Op2 = getValue(I.getArgOperand(1));
4032    SDValue Op3 = getValue(I.getArgOperand(2));
4033    unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4034    bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4035    DAG.setRoot(DAG.getMemcpy(getRoot(), dl, Op1, Op2, Op3, Align, isVol, false,
4036                              MachinePointerInfo(I.getArgOperand(0)),
4037                              MachinePointerInfo(I.getArgOperand(1))));
4038    return 0;
4039  }
4040  case Intrinsic::memset: {
4041    // Assert for address < 256 since we support only user defined address
4042    // spaces.
4043    assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4044           < 256 &&
4045           "Unknown address space");
4046    SDValue Op1 = getValue(I.getArgOperand(0));
4047    SDValue Op2 = getValue(I.getArgOperand(1));
4048    SDValue Op3 = getValue(I.getArgOperand(2));
4049    unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4050    bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4051    DAG.setRoot(DAG.getMemset(getRoot(), dl, Op1, Op2, Op3, Align, isVol,
4052                              MachinePointerInfo(I.getArgOperand(0))));
4053    return 0;
4054  }
4055  case Intrinsic::memmove: {
4056    // Assert for address < 256 since we support only user defined address
4057    // spaces.
4058    assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4059           < 256 &&
4060           cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace()
4061           < 256 &&
4062           "Unknown address space");
4063    SDValue Op1 = getValue(I.getArgOperand(0));
4064    SDValue Op2 = getValue(I.getArgOperand(1));
4065    SDValue Op3 = getValue(I.getArgOperand(2));
4066    unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4067    bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4068
4069    // If the source and destination are known to not be aliases, we can
4070    // lower memmove as memcpy.
4071    uint64_t Size = -1ULL;
4072    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op3))
4073      Size = C->getZExtValue();
4074    if (AA->alias(I.getArgOperand(0), Size, I.getArgOperand(1), Size) ==
4075        AliasAnalysis::NoAlias) {
4076      DAG.setRoot(DAG.getMemcpy(getRoot(), dl, Op1, Op2, Op3, Align, isVol,
4077                                false, MachinePointerInfo(I.getArgOperand(0)),
4078                                MachinePointerInfo(I.getArgOperand(1))));
4079      return 0;
4080    }
4081
4082    DAG.setRoot(DAG.getMemmove(getRoot(), dl, Op1, Op2, Op3, Align, isVol,
4083                               MachinePointerInfo(I.getArgOperand(0)),
4084                               MachinePointerInfo(I.getArgOperand(1))));
4085    return 0;
4086  }
4087  case Intrinsic::dbg_declare: {
4088    const DbgDeclareInst &DI = cast<DbgDeclareInst>(I);
4089    MDNode *Variable = DI.getVariable();
4090    const Value *Address = DI.getAddress();
4091    if (!Address || !DIVariable(DI.getVariable()).Verify())
4092      return 0;
4093
4094    // Build an entry in DbgOrdering.  Debug info input nodes get an SDNodeOrder
4095    // but do not always have a corresponding SDNode built.  The SDNodeOrder
4096    // absolute, but not relative, values are different depending on whether
4097    // debug info exists.
4098    ++SDNodeOrder;
4099
4100    // Check if address has undef value.
4101    if (isa<UndefValue>(Address) ||
4102        (Address->use_empty() && !isa<Argument>(Address))) {
4103      SDDbgValue*SDV =
4104        DAG.getDbgValue(Variable, UndefValue::get(Address->getType()),
4105                        0, dl, SDNodeOrder);
4106      DAG.AddDbgValue(SDV, 0, false);
4107      return 0;
4108    }
4109
4110    SDValue &N = NodeMap[Address];
4111    if (!N.getNode() && isa<Argument>(Address))
4112      // Check unused arguments map.
4113      N = UnusedArgNodeMap[Address];
4114    SDDbgValue *SDV;
4115    if (N.getNode()) {
4116      // Parameters are handled specially.
4117      bool isParameter =
4118        DIVariable(Variable).getTag() == dwarf::DW_TAG_arg_variable;
4119      if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
4120        Address = BCI->getOperand(0);
4121      const AllocaInst *AI = dyn_cast<AllocaInst>(Address);
4122
4123      if (isParameter && !AI) {
4124        FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
4125        if (FINode)
4126          // Byval parameter.  We have a frame index at this point.
4127          SDV = DAG.getDbgValue(Variable, FINode->getIndex(),
4128                                0, dl, SDNodeOrder);
4129        else
4130          // Can't do anything with other non-AI cases yet.  This might be a
4131          // parameter of a callee function that got inlined, for example.
4132          return 0;
4133      } else if (AI)
4134        SDV = DAG.getDbgValue(Variable, N.getNode(), N.getResNo(),
4135                              0, dl, SDNodeOrder);
4136      else
4137        // Can't do anything with other non-AI cases yet.
4138        return 0;
4139      DAG.AddDbgValue(SDV, N.getNode(), isParameter);
4140    } else {
4141      // If Address is an argument then try to emit its dbg value using
4142      // virtual register info from the FuncInfo.ValueMap.
4143      if (!EmitFuncArgumentDbgValue(Address, Variable, 0, N)) {
4144        // If variable is pinned by a alloca in dominating bb then
4145        // use StaticAllocaMap.
4146        if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) {
4147          if (AI->getParent() != DI.getParent()) {
4148            DenseMap<const AllocaInst*, int>::iterator SI =
4149              FuncInfo.StaticAllocaMap.find(AI);
4150            if (SI != FuncInfo.StaticAllocaMap.end()) {
4151              SDV = DAG.getDbgValue(Variable, SI->second,
4152                                    0, dl, SDNodeOrder);
4153              DAG.AddDbgValue(SDV, 0, false);
4154              return 0;
4155            }
4156          }
4157        }
4158        // Otherwise add undef to help track missing debug info.
4159        SDV = DAG.getDbgValue(Variable, UndefValue::get(Address->getType()),
4160                              0, dl, SDNodeOrder);
4161        DAG.AddDbgValue(SDV, 0, false);
4162      }
4163    }
4164    return 0;
4165  }
4166  case Intrinsic::dbg_value: {
4167    const DbgValueInst &DI = cast<DbgValueInst>(I);
4168    if (!DIVariable(DI.getVariable()).Verify())
4169      return 0;
4170
4171    MDNode *Variable = DI.getVariable();
4172    uint64_t Offset = DI.getOffset();
4173    const Value *V = DI.getValue();
4174    if (!V)
4175      return 0;
4176
4177    // Build an entry in DbgOrdering.  Debug info input nodes get an SDNodeOrder
4178    // but do not always have a corresponding SDNode built.  The SDNodeOrder
4179    // absolute, but not relative, values are different depending on whether
4180    // debug info exists.
4181    ++SDNodeOrder;
4182    SDDbgValue *SDV;
4183    if (isa<ConstantInt>(V) || isa<ConstantFP>(V)) {
4184      SDV = DAG.getDbgValue(Variable, V, Offset, dl, SDNodeOrder);
4185      DAG.AddDbgValue(SDV, 0, false);
4186    } else {
4187      // Do not use getValue() in here; we don't want to generate code at
4188      // this point if it hasn't been done yet.
4189      SDValue N = NodeMap[V];
4190      if (!N.getNode() && isa<Argument>(V))
4191        // Check unused arguments map.
4192        N = UnusedArgNodeMap[V];
4193      if (N.getNode()) {
4194        if (!EmitFuncArgumentDbgValue(V, Variable, Offset, N)) {
4195          SDV = DAG.getDbgValue(Variable, N.getNode(),
4196                                N.getResNo(), Offset, dl, SDNodeOrder);
4197          DAG.AddDbgValue(SDV, N.getNode(), false);
4198        }
4199      } else if (isa<PHINode>(V) && !V->use_empty() ) {
4200        // Do not call getValue(V) yet, as we don't want to generate code.
4201        // Remember it for later.
4202        DanglingDebugInfo DDI(&DI, dl, SDNodeOrder);
4203        DanglingDebugInfoMap[V] = DDI;
4204      } else {
4205        // We may expand this to cover more cases.  One case where we have no
4206        // data available is an unreferenced parameter; we need this fallback.
4207        SDV = DAG.getDbgValue(Variable, UndefValue::get(V->getType()),
4208                              Offset, dl, SDNodeOrder);
4209        DAG.AddDbgValue(SDV, 0, false);
4210      }
4211    }
4212
4213    // Build a debug info table entry.
4214    if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V))
4215      V = BCI->getOperand(0);
4216    const AllocaInst *AI = dyn_cast<AllocaInst>(V);
4217    // Don't handle byval struct arguments or VLAs, for example.
4218    if (!AI)
4219      return 0;
4220    DenseMap<const AllocaInst*, int>::iterator SI =
4221      FuncInfo.StaticAllocaMap.find(AI);
4222    if (SI == FuncInfo.StaticAllocaMap.end())
4223      return 0; // VLAs.
4224    int FI = SI->second;
4225
4226    MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4227    if (!DI.getDebugLoc().isUnknown() && MMI.hasDebugInfo())
4228      MMI.setVariableDbgInfo(Variable, FI, DI.getDebugLoc());
4229    return 0;
4230  }
4231  case Intrinsic::eh_exception: {
4232    // Insert the EXCEPTIONADDR instruction.
4233    assert(FuncInfo.MBB->isLandingPad() &&
4234           "Call to eh.exception not in landing pad!");
4235    SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
4236    SDValue Ops[1];
4237    Ops[0] = DAG.getRoot();
4238    SDValue Op = DAG.getNode(ISD::EXCEPTIONADDR, dl, VTs, Ops, 1);
4239    setValue(&I, Op);
4240    DAG.setRoot(Op.getValue(1));
4241    return 0;
4242  }
4243
4244  case Intrinsic::eh_selector: {
4245    MachineBasicBlock *CallMBB = FuncInfo.MBB;
4246    MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4247    if (CallMBB->isLandingPad())
4248      AddCatchInfo(I, &MMI, CallMBB);
4249    else {
4250#ifndef NDEBUG
4251      FuncInfo.CatchInfoLost.insert(&I);
4252#endif
4253      // FIXME: Mark exception selector register as live in.  Hack for PR1508.
4254      unsigned Reg = TLI.getExceptionSelectorRegister();
4255      if (Reg) FuncInfo.MBB->addLiveIn(Reg);
4256    }
4257
4258    // Insert the EHSELECTION instruction.
4259    SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
4260    SDValue Ops[2];
4261    Ops[0] = getValue(I.getArgOperand(0));
4262    Ops[1] = getRoot();
4263    SDValue Op = DAG.getNode(ISD::EHSELECTION, dl, VTs, Ops, 2);
4264    DAG.setRoot(Op.getValue(1));
4265    setValue(&I, DAG.getSExtOrTrunc(Op, dl, MVT::i32));
4266    return 0;
4267  }
4268
4269  case Intrinsic::eh_typeid_for: {
4270    // Find the type id for the given typeinfo.
4271    GlobalVariable *GV = ExtractTypeInfo(I.getArgOperand(0));
4272    unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV);
4273    Res = DAG.getConstant(TypeID, MVT::i32);
4274    setValue(&I, Res);
4275    return 0;
4276  }
4277
4278  case Intrinsic::eh_return_i32:
4279  case Intrinsic::eh_return_i64:
4280    DAG.getMachineFunction().getMMI().setCallsEHReturn(true);
4281    DAG.setRoot(DAG.getNode(ISD::EH_RETURN, dl,
4282                            MVT::Other,
4283                            getControlRoot(),
4284                            getValue(I.getArgOperand(0)),
4285                            getValue(I.getArgOperand(1))));
4286    return 0;
4287  case Intrinsic::eh_unwind_init:
4288    DAG.getMachineFunction().getMMI().setCallsUnwindInit(true);
4289    return 0;
4290  case Intrinsic::eh_dwarf_cfa: {
4291    SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), dl,
4292                                        TLI.getPointerTy());
4293    SDValue Offset = DAG.getNode(ISD::ADD, dl,
4294                                 TLI.getPointerTy(),
4295                                 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, dl,
4296                                             TLI.getPointerTy()),
4297                                 CfaArg);
4298    SDValue FA = DAG.getNode(ISD::FRAMEADDR, dl,
4299                             TLI.getPointerTy(),
4300                             DAG.getConstant(0, TLI.getPointerTy()));
4301    setValue(&I, DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(),
4302                             FA, Offset));
4303    return 0;
4304  }
4305  case Intrinsic::eh_sjlj_callsite: {
4306    MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4307    ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0));
4308    assert(CI && "Non-constant call site value in eh.sjlj.callsite!");
4309    assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
4310
4311    MMI.setCurrentCallSite(CI->getZExtValue());
4312    return 0;
4313  }
4314  case Intrinsic::eh_sjlj_setjmp: {
4315    setValue(&I, DAG.getNode(ISD::EH_SJLJ_SETJMP, dl, MVT::i32, getRoot(),
4316                             getValue(I.getArgOperand(0))));
4317    return 0;
4318  }
4319  case Intrinsic::eh_sjlj_longjmp: {
4320    DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, dl, MVT::Other,
4321                            getRoot(),
4322                            getValue(I.getArgOperand(0))));
4323    return 0;
4324  }
4325
4326  case Intrinsic::x86_mmx_pslli_w:
4327  case Intrinsic::x86_mmx_pslli_d:
4328  case Intrinsic::x86_mmx_pslli_q:
4329  case Intrinsic::x86_mmx_psrli_w:
4330  case Intrinsic::x86_mmx_psrli_d:
4331  case Intrinsic::x86_mmx_psrli_q:
4332  case Intrinsic::x86_mmx_psrai_w:
4333  case Intrinsic::x86_mmx_psrai_d: {
4334    SDValue ShAmt = getValue(I.getArgOperand(1));
4335    if (isa<ConstantSDNode>(ShAmt)) {
4336      visitTargetIntrinsic(I, Intrinsic);
4337      return 0;
4338    }
4339    unsigned NewIntrinsic = 0;
4340    EVT ShAmtVT = MVT::v2i32;
4341    switch (Intrinsic) {
4342    case Intrinsic::x86_mmx_pslli_w:
4343      NewIntrinsic = Intrinsic::x86_mmx_psll_w;
4344      break;
4345    case Intrinsic::x86_mmx_pslli_d:
4346      NewIntrinsic = Intrinsic::x86_mmx_psll_d;
4347      break;
4348    case Intrinsic::x86_mmx_pslli_q:
4349      NewIntrinsic = Intrinsic::x86_mmx_psll_q;
4350      break;
4351    case Intrinsic::x86_mmx_psrli_w:
4352      NewIntrinsic = Intrinsic::x86_mmx_psrl_w;
4353      break;
4354    case Intrinsic::x86_mmx_psrli_d:
4355      NewIntrinsic = Intrinsic::x86_mmx_psrl_d;
4356      break;
4357    case Intrinsic::x86_mmx_psrli_q:
4358      NewIntrinsic = Intrinsic::x86_mmx_psrl_q;
4359      break;
4360    case Intrinsic::x86_mmx_psrai_w:
4361      NewIntrinsic = Intrinsic::x86_mmx_psra_w;
4362      break;
4363    case Intrinsic::x86_mmx_psrai_d:
4364      NewIntrinsic = Intrinsic::x86_mmx_psra_d;
4365      break;
4366    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
4367    }
4368
4369    // The vector shift intrinsics with scalars uses 32b shift amounts but
4370    // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
4371    // to be zero.
4372    // We must do this early because v2i32 is not a legal type.
4373    DebugLoc dl = getCurDebugLoc();
4374    SDValue ShOps[2];
4375    ShOps[0] = ShAmt;
4376    ShOps[1] = DAG.getConstant(0, MVT::i32);
4377    ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 2);
4378    EVT DestVT = TLI.getValueType(I.getType());
4379    ShAmt = DAG.getNode(ISD::BIT_CONVERT, dl, DestVT, ShAmt);
4380    Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
4381                       DAG.getConstant(NewIntrinsic, MVT::i32),
4382                       getValue(I.getArgOperand(0)), ShAmt);
4383    setValue(&I, Res);
4384    return 0;
4385  }
4386  case Intrinsic::convertff:
4387  case Intrinsic::convertfsi:
4388  case Intrinsic::convertfui:
4389  case Intrinsic::convertsif:
4390  case Intrinsic::convertuif:
4391  case Intrinsic::convertss:
4392  case Intrinsic::convertsu:
4393  case Intrinsic::convertus:
4394  case Intrinsic::convertuu: {
4395    ISD::CvtCode Code = ISD::CVT_INVALID;
4396    switch (Intrinsic) {
4397    case Intrinsic::convertff:  Code = ISD::CVT_FF; break;
4398    case Intrinsic::convertfsi: Code = ISD::CVT_FS; break;
4399    case Intrinsic::convertfui: Code = ISD::CVT_FU; break;
4400    case Intrinsic::convertsif: Code = ISD::CVT_SF; break;
4401    case Intrinsic::convertuif: Code = ISD::CVT_UF; break;
4402    case Intrinsic::convertss:  Code = ISD::CVT_SS; break;
4403    case Intrinsic::convertsu:  Code = ISD::CVT_SU; break;
4404    case Intrinsic::convertus:  Code = ISD::CVT_US; break;
4405    case Intrinsic::convertuu:  Code = ISD::CVT_UU; break;
4406    }
4407    EVT DestVT = TLI.getValueType(I.getType());
4408    const Value *Op1 = I.getArgOperand(0);
4409    Res = DAG.getConvertRndSat(DestVT, getCurDebugLoc(), getValue(Op1),
4410                               DAG.getValueType(DestVT),
4411                               DAG.getValueType(getValue(Op1).getValueType()),
4412                               getValue(I.getArgOperand(1)),
4413                               getValue(I.getArgOperand(2)),
4414                               Code);
4415    setValue(&I, Res);
4416    return 0;
4417  }
4418  case Intrinsic::sqrt:
4419    setValue(&I, DAG.getNode(ISD::FSQRT, dl,
4420                             getValue(I.getArgOperand(0)).getValueType(),
4421                             getValue(I.getArgOperand(0))));
4422    return 0;
4423  case Intrinsic::powi:
4424    setValue(&I, ExpandPowI(dl, getValue(I.getArgOperand(0)),
4425                            getValue(I.getArgOperand(1)), DAG));
4426    return 0;
4427  case Intrinsic::sin:
4428    setValue(&I, DAG.getNode(ISD::FSIN, dl,
4429                             getValue(I.getArgOperand(0)).getValueType(),
4430                             getValue(I.getArgOperand(0))));
4431    return 0;
4432  case Intrinsic::cos:
4433    setValue(&I, DAG.getNode(ISD::FCOS, dl,
4434                             getValue(I.getArgOperand(0)).getValueType(),
4435                             getValue(I.getArgOperand(0))));
4436    return 0;
4437  case Intrinsic::log:
4438    visitLog(I);
4439    return 0;
4440  case Intrinsic::log2:
4441    visitLog2(I);
4442    return 0;
4443  case Intrinsic::log10:
4444    visitLog10(I);
4445    return 0;
4446  case Intrinsic::exp:
4447    visitExp(I);
4448    return 0;
4449  case Intrinsic::exp2:
4450    visitExp2(I);
4451    return 0;
4452  case Intrinsic::pow:
4453    visitPow(I);
4454    return 0;
4455  case Intrinsic::convert_to_fp16:
4456    setValue(&I, DAG.getNode(ISD::FP32_TO_FP16, dl,
4457                             MVT::i16, getValue(I.getArgOperand(0))));
4458    return 0;
4459  case Intrinsic::convert_from_fp16:
4460    setValue(&I, DAG.getNode(ISD::FP16_TO_FP32, dl,
4461                             MVT::f32, getValue(I.getArgOperand(0))));
4462    return 0;
4463  case Intrinsic::pcmarker: {
4464    SDValue Tmp = getValue(I.getArgOperand(0));
4465    DAG.setRoot(DAG.getNode(ISD::PCMARKER, dl, MVT::Other, getRoot(), Tmp));
4466    return 0;
4467  }
4468  case Intrinsic::readcyclecounter: {
4469    SDValue Op = getRoot();
4470    Res = DAG.getNode(ISD::READCYCLECOUNTER, dl,
4471                      DAG.getVTList(MVT::i64, MVT::Other),
4472                      &Op, 1);
4473    setValue(&I, Res);
4474    DAG.setRoot(Res.getValue(1));
4475    return 0;
4476  }
4477  case Intrinsic::bswap:
4478    setValue(&I, DAG.getNode(ISD::BSWAP, dl,
4479                             getValue(I.getArgOperand(0)).getValueType(),
4480                             getValue(I.getArgOperand(0))));
4481    return 0;
4482  case Intrinsic::cttz: {
4483    SDValue Arg = getValue(I.getArgOperand(0));
4484    EVT Ty = Arg.getValueType();
4485    setValue(&I, DAG.getNode(ISD::CTTZ, dl, Ty, Arg));
4486    return 0;
4487  }
4488  case Intrinsic::ctlz: {
4489    SDValue Arg = getValue(I.getArgOperand(0));
4490    EVT Ty = Arg.getValueType();
4491    setValue(&I, DAG.getNode(ISD::CTLZ, dl, Ty, Arg));
4492    return 0;
4493  }
4494  case Intrinsic::ctpop: {
4495    SDValue Arg = getValue(I.getArgOperand(0));
4496    EVT Ty = Arg.getValueType();
4497    setValue(&I, DAG.getNode(ISD::CTPOP, dl, Ty, Arg));
4498    return 0;
4499  }
4500  case Intrinsic::stacksave: {
4501    SDValue Op = getRoot();
4502    Res = DAG.getNode(ISD::STACKSAVE, dl,
4503                      DAG.getVTList(TLI.getPointerTy(), MVT::Other), &Op, 1);
4504    setValue(&I, Res);
4505    DAG.setRoot(Res.getValue(1));
4506    return 0;
4507  }
4508  case Intrinsic::stackrestore: {
4509    Res = getValue(I.getArgOperand(0));
4510    DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, dl, MVT::Other, getRoot(), Res));
4511    return 0;
4512  }
4513  case Intrinsic::stackprotector: {
4514    // Emit code into the DAG to store the stack guard onto the stack.
4515    MachineFunction &MF = DAG.getMachineFunction();
4516    MachineFrameInfo *MFI = MF.getFrameInfo();
4517    EVT PtrTy = TLI.getPointerTy();
4518
4519    SDValue Src = getValue(I.getArgOperand(0));   // The guard's value.
4520    AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
4521
4522    int FI = FuncInfo.StaticAllocaMap[Slot];
4523    MFI->setStackProtectorIndex(FI);
4524
4525    SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
4526
4527    // Store the stack protector onto the stack.
4528    Res = DAG.getStore(getRoot(), getCurDebugLoc(), Src, FIN,
4529                       MachinePointerInfo::getFixedStack(FI),
4530                       true, false, 0);
4531    setValue(&I, Res);
4532    DAG.setRoot(Res);
4533    return 0;
4534  }
4535  case Intrinsic::objectsize: {
4536    // If we don't know by now, we're never going to know.
4537    ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1));
4538
4539    assert(CI && "Non-constant type in __builtin_object_size?");
4540
4541    SDValue Arg = getValue(I.getCalledValue());
4542    EVT Ty = Arg.getValueType();
4543
4544    if (CI->isZero())
4545      Res = DAG.getConstant(-1ULL, Ty);
4546    else
4547      Res = DAG.getConstant(0, Ty);
4548
4549    setValue(&I, Res);
4550    return 0;
4551  }
4552  case Intrinsic::var_annotation:
4553    // Discard annotate attributes
4554    return 0;
4555
4556  case Intrinsic::init_trampoline: {
4557    const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
4558
4559    SDValue Ops[6];
4560    Ops[0] = getRoot();
4561    Ops[1] = getValue(I.getArgOperand(0));
4562    Ops[2] = getValue(I.getArgOperand(1));
4563    Ops[3] = getValue(I.getArgOperand(2));
4564    Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
4565    Ops[5] = DAG.getSrcValue(F);
4566
4567    Res = DAG.getNode(ISD::TRAMPOLINE, dl,
4568                      DAG.getVTList(TLI.getPointerTy(), MVT::Other),
4569                      Ops, 6);
4570
4571    setValue(&I, Res);
4572    DAG.setRoot(Res.getValue(1));
4573    return 0;
4574  }
4575  case Intrinsic::gcroot:
4576    if (GFI) {
4577      const Value *Alloca = I.getArgOperand(0);
4578      const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
4579
4580      FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
4581      GFI->addStackRoot(FI->getIndex(), TypeMap);
4582    }
4583    return 0;
4584  case Intrinsic::gcread:
4585  case Intrinsic::gcwrite:
4586    llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
4587    return 0;
4588  case Intrinsic::flt_rounds:
4589    setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, dl, MVT::i32));
4590    return 0;
4591  case Intrinsic::trap:
4592    DAG.setRoot(DAG.getNode(ISD::TRAP, dl,MVT::Other, getRoot()));
4593    return 0;
4594  case Intrinsic::uadd_with_overflow:
4595    return implVisitAluOverflow(I, ISD::UADDO);
4596  case Intrinsic::sadd_with_overflow:
4597    return implVisitAluOverflow(I, ISD::SADDO);
4598  case Intrinsic::usub_with_overflow:
4599    return implVisitAluOverflow(I, ISD::USUBO);
4600  case Intrinsic::ssub_with_overflow:
4601    return implVisitAluOverflow(I, ISD::SSUBO);
4602  case Intrinsic::umul_with_overflow:
4603    return implVisitAluOverflow(I, ISD::UMULO);
4604  case Intrinsic::smul_with_overflow:
4605    return implVisitAluOverflow(I, ISD::SMULO);
4606
4607  case Intrinsic::prefetch: {
4608    SDValue Ops[4];
4609    Ops[0] = getRoot();
4610    Ops[1] = getValue(I.getArgOperand(0));
4611    Ops[2] = getValue(I.getArgOperand(1));
4612    Ops[3] = getValue(I.getArgOperand(2));
4613    DAG.setRoot(DAG.getNode(ISD::PREFETCH, dl, MVT::Other, &Ops[0], 4));
4614    return 0;
4615  }
4616
4617  case Intrinsic::memory_barrier: {
4618    SDValue Ops[6];
4619    Ops[0] = getRoot();
4620    for (int x = 1; x < 6; ++x)
4621      Ops[x] = getValue(I.getArgOperand(x - 1));
4622
4623    DAG.setRoot(DAG.getNode(ISD::MEMBARRIER, dl, MVT::Other, &Ops[0], 6));
4624    return 0;
4625  }
4626  case Intrinsic::atomic_cmp_swap: {
4627    SDValue Root = getRoot();
4628    SDValue L =
4629      DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, getCurDebugLoc(),
4630                    getValue(I.getArgOperand(1)).getValueType().getSimpleVT(),
4631                    Root,
4632                    getValue(I.getArgOperand(0)),
4633                    getValue(I.getArgOperand(1)),
4634                    getValue(I.getArgOperand(2)),
4635                    MachinePointerInfo(I.getArgOperand(0)));
4636    setValue(&I, L);
4637    DAG.setRoot(L.getValue(1));
4638    return 0;
4639  }
4640  case Intrinsic::atomic_load_add:
4641    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_ADD);
4642  case Intrinsic::atomic_load_sub:
4643    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_SUB);
4644  case Intrinsic::atomic_load_or:
4645    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_OR);
4646  case Intrinsic::atomic_load_xor:
4647    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_XOR);
4648  case Intrinsic::atomic_load_and:
4649    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_AND);
4650  case Intrinsic::atomic_load_nand:
4651    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_NAND);
4652  case Intrinsic::atomic_load_max:
4653    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MAX);
4654  case Intrinsic::atomic_load_min:
4655    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MIN);
4656  case Intrinsic::atomic_load_umin:
4657    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMIN);
4658  case Intrinsic::atomic_load_umax:
4659    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMAX);
4660  case Intrinsic::atomic_swap:
4661    return implVisitBinaryAtomic(I, ISD::ATOMIC_SWAP);
4662
4663  case Intrinsic::invariant_start:
4664  case Intrinsic::lifetime_start:
4665    // Discard region information.
4666    setValue(&I, DAG.getUNDEF(TLI.getPointerTy()));
4667    return 0;
4668  case Intrinsic::invariant_end:
4669  case Intrinsic::lifetime_end:
4670    // Discard region information.
4671    return 0;
4672  }
4673}
4674
4675void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee,
4676                                      bool isTailCall,
4677                                      MachineBasicBlock *LandingPad) {
4678  const PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
4679  const FunctionType *FTy = cast<FunctionType>(PT->getElementType());
4680  const Type *RetTy = FTy->getReturnType();
4681  MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4682  MCSymbol *BeginLabel = 0;
4683
4684  TargetLowering::ArgListTy Args;
4685  TargetLowering::ArgListEntry Entry;
4686  Args.reserve(CS.arg_size());
4687
4688  // Check whether the function can return without sret-demotion.
4689  SmallVector<ISD::OutputArg, 4> Outs;
4690  SmallVector<uint64_t, 4> Offsets;
4691  GetReturnInfo(RetTy, CS.getAttributes().getRetAttributes(),
4692                Outs, TLI, &Offsets);
4693
4694  bool CanLowerReturn = TLI.CanLowerReturn(CS.getCallingConv(),
4695                        FTy->isVarArg(), Outs, FTy->getContext());
4696
4697  SDValue DemoteStackSlot;
4698  int DemoteStackIdx = -100;
4699
4700  if (!CanLowerReturn) {
4701    uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(
4702                      FTy->getReturnType());
4703    unsigned Align  = TLI.getTargetData()->getPrefTypeAlignment(
4704                      FTy->getReturnType());
4705    MachineFunction &MF = DAG.getMachineFunction();
4706    DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
4707    const Type *StackSlotPtrType = PointerType::getUnqual(FTy->getReturnType());
4708
4709    DemoteStackSlot = DAG.getFrameIndex(DemoteStackIdx, TLI.getPointerTy());
4710    Entry.Node = DemoteStackSlot;
4711    Entry.Ty = StackSlotPtrType;
4712    Entry.isSExt = false;
4713    Entry.isZExt = false;
4714    Entry.isInReg = false;
4715    Entry.isSRet = true;
4716    Entry.isNest = false;
4717    Entry.isByVal = false;
4718    Entry.Alignment = Align;
4719    Args.push_back(Entry);
4720    RetTy = Type::getVoidTy(FTy->getContext());
4721  }
4722
4723  for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
4724       i != e; ++i) {
4725    SDValue ArgNode = getValue(*i);
4726    Entry.Node = ArgNode; Entry.Ty = (*i)->getType();
4727
4728    unsigned attrInd = i - CS.arg_begin() + 1;
4729    Entry.isSExt  = CS.paramHasAttr(attrInd, Attribute::SExt);
4730    Entry.isZExt  = CS.paramHasAttr(attrInd, Attribute::ZExt);
4731    Entry.isInReg = CS.paramHasAttr(attrInd, Attribute::InReg);
4732    Entry.isSRet  = CS.paramHasAttr(attrInd, Attribute::StructRet);
4733    Entry.isNest  = CS.paramHasAttr(attrInd, Attribute::Nest);
4734    Entry.isByVal = CS.paramHasAttr(attrInd, Attribute::ByVal);
4735    Entry.Alignment = CS.getParamAlignment(attrInd);
4736    Args.push_back(Entry);
4737  }
4738
4739  if (LandingPad) {
4740    // Insert a label before the invoke call to mark the try range.  This can be
4741    // used to detect deletion of the invoke via the MachineModuleInfo.
4742    BeginLabel = MMI.getContext().CreateTempSymbol();
4743
4744    // For SjLj, keep track of which landing pads go with which invokes
4745    // so as to maintain the ordering of pads in the LSDA.
4746    unsigned CallSiteIndex = MMI.getCurrentCallSite();
4747    if (CallSiteIndex) {
4748      MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
4749      // Now that the call site is handled, stop tracking it.
4750      MMI.setCurrentCallSite(0);
4751    }
4752
4753    // Both PendingLoads and PendingExports must be flushed here;
4754    // this call might not return.
4755    (void)getRoot();
4756    DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getControlRoot(), BeginLabel));
4757  }
4758
4759  // Check if target-independent constraints permit a tail call here.
4760  // Target-dependent constraints are checked within TLI.LowerCallTo.
4761  if (isTailCall &&
4762      !isInTailCallPosition(CS, CS.getAttributes().getRetAttributes(), TLI))
4763    isTailCall = false;
4764
4765  // If there's a possibility that fast-isel has already selected some amount
4766  // of the current basic block, don't emit a tail call.
4767  if (isTailCall && EnableFastISel)
4768    isTailCall = false;
4769
4770  std::pair<SDValue,SDValue> Result =
4771    TLI.LowerCallTo(getRoot(), RetTy,
4772                    CS.paramHasAttr(0, Attribute::SExt),
4773                    CS.paramHasAttr(0, Attribute::ZExt), FTy->isVarArg(),
4774                    CS.paramHasAttr(0, Attribute::InReg), FTy->getNumParams(),
4775                    CS.getCallingConv(),
4776                    isTailCall,
4777                    !CS.getInstruction()->use_empty(),
4778                    Callee, Args, DAG, getCurDebugLoc());
4779  assert((isTailCall || Result.second.getNode()) &&
4780         "Non-null chain expected with non-tail call!");
4781  assert((Result.second.getNode() || !Result.first.getNode()) &&
4782         "Null value expected with tail call!");
4783  if (Result.first.getNode()) {
4784    setValue(CS.getInstruction(), Result.first);
4785  } else if (!CanLowerReturn && Result.second.getNode()) {
4786    // The instruction result is the result of loading from the
4787    // hidden sret parameter.
4788    SmallVector<EVT, 1> PVTs;
4789    const Type *PtrRetTy = PointerType::getUnqual(FTy->getReturnType());
4790
4791    ComputeValueVTs(TLI, PtrRetTy, PVTs);
4792    assert(PVTs.size() == 1 && "Pointers should fit in one register");
4793    EVT PtrVT = PVTs[0];
4794    unsigned NumValues = Outs.size();
4795    SmallVector<SDValue, 4> Values(NumValues);
4796    SmallVector<SDValue, 4> Chains(NumValues);
4797
4798    for (unsigned i = 0; i < NumValues; ++i) {
4799      SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT,
4800                                DemoteStackSlot,
4801                                DAG.getConstant(Offsets[i], PtrVT));
4802      SDValue L = DAG.getLoad(Outs[i].VT, getCurDebugLoc(), Result.second,
4803                              Add,
4804                  MachinePointerInfo::getFixedStack(DemoteStackIdx, Offsets[i]),
4805                              false, false, 1);
4806      Values[i] = L;
4807      Chains[i] = L.getValue(1);
4808    }
4809
4810    SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
4811                                MVT::Other, &Chains[0], NumValues);
4812    PendingLoads.push_back(Chain);
4813
4814    // Collect the legal value parts into potentially illegal values
4815    // that correspond to the original function's return values.
4816    SmallVector<EVT, 4> RetTys;
4817    RetTy = FTy->getReturnType();
4818    ComputeValueVTs(TLI, RetTy, RetTys);
4819    ISD::NodeType AssertOp = ISD::DELETED_NODE;
4820    SmallVector<SDValue, 4> ReturnValues;
4821    unsigned CurReg = 0;
4822    for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
4823      EVT VT = RetTys[I];
4824      EVT RegisterVT = TLI.getRegisterType(RetTy->getContext(), VT);
4825      unsigned NumRegs = TLI.getNumRegisters(RetTy->getContext(), VT);
4826
4827      SDValue ReturnValue =
4828        getCopyFromParts(DAG, getCurDebugLoc(), &Values[CurReg], NumRegs,
4829                         RegisterVT, VT, AssertOp);
4830      ReturnValues.push_back(ReturnValue);
4831      CurReg += NumRegs;
4832    }
4833
4834    setValue(CS.getInstruction(),
4835             DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
4836                         DAG.getVTList(&RetTys[0], RetTys.size()),
4837                         &ReturnValues[0], ReturnValues.size()));
4838
4839  }
4840
4841  // As a special case, a null chain means that a tail call has been emitted and
4842  // the DAG root is already updated.
4843  if (Result.second.getNode())
4844    DAG.setRoot(Result.second);
4845  else
4846    HasTailCall = true;
4847
4848  if (LandingPad) {
4849    // Insert a label at the end of the invoke call to mark the try range.  This
4850    // can be used to detect deletion of the invoke via the MachineModuleInfo.
4851    MCSymbol *EndLabel = MMI.getContext().CreateTempSymbol();
4852    DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getRoot(), EndLabel));
4853
4854    // Inform MachineModuleInfo of range.
4855    MMI.addInvoke(LandingPad, BeginLabel, EndLabel);
4856  }
4857}
4858
4859/// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the
4860/// value is equal or not-equal to zero.
4861static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) {
4862  for (Value::const_use_iterator UI = V->use_begin(), E = V->use_end();
4863       UI != E; ++UI) {
4864    if (const ICmpInst *IC = dyn_cast<ICmpInst>(*UI))
4865      if (IC->isEquality())
4866        if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
4867          if (C->isNullValue())
4868            continue;
4869    // Unknown instruction.
4870    return false;
4871  }
4872  return true;
4873}
4874
4875static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
4876                             const Type *LoadTy,
4877                             SelectionDAGBuilder &Builder) {
4878
4879  // Check to see if this load can be trivially constant folded, e.g. if the
4880  // input is from a string literal.
4881  if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
4882    // Cast pointer to the type we really want to load.
4883    LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
4884                                         PointerType::getUnqual(LoadTy));
4885
4886    if (const Constant *LoadCst =
4887          ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput),
4888                                       Builder.TD))
4889      return Builder.getValue(LoadCst);
4890  }
4891
4892  // Otherwise, we have to emit the load.  If the pointer is to unfoldable but
4893  // still constant memory, the input chain can be the entry node.
4894  SDValue Root;
4895  bool ConstantMemory = false;
4896
4897  // Do not serialize (non-volatile) loads of constant memory with anything.
4898  if (Builder.AA->pointsToConstantMemory(PtrVal)) {
4899    Root = Builder.DAG.getEntryNode();
4900    ConstantMemory = true;
4901  } else {
4902    // Do not serialize non-volatile loads against each other.
4903    Root = Builder.DAG.getRoot();
4904  }
4905
4906  SDValue Ptr = Builder.getValue(PtrVal);
4907  SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurDebugLoc(), Root,
4908                                        Ptr, MachinePointerInfo(PtrVal),
4909                                        false /*volatile*/,
4910                                        false /*nontemporal*/, 1 /* align=1 */);
4911
4912  if (!ConstantMemory)
4913    Builder.PendingLoads.push_back(LoadVal.getValue(1));
4914  return LoadVal;
4915}
4916
4917
4918/// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form.
4919/// If so, return true and lower it, otherwise return false and it will be
4920/// lowered like a normal call.
4921bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) {
4922  // Verify that the prototype makes sense.  int memcmp(void*,void*,size_t)
4923  if (I.getNumArgOperands() != 3)
4924    return false;
4925
4926  const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
4927  if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() ||
4928      !I.getArgOperand(2)->getType()->isIntegerTy() ||
4929      !I.getType()->isIntegerTy())
4930    return false;
4931
4932  const ConstantInt *Size = dyn_cast<ConstantInt>(I.getArgOperand(2));
4933
4934  // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0
4935  // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0
4936  if (Size && IsOnlyUsedInZeroEqualityComparison(&I)) {
4937    bool ActuallyDoIt = true;
4938    MVT LoadVT;
4939    const Type *LoadTy;
4940    switch (Size->getZExtValue()) {
4941    default:
4942      LoadVT = MVT::Other;
4943      LoadTy = 0;
4944      ActuallyDoIt = false;
4945      break;
4946    case 2:
4947      LoadVT = MVT::i16;
4948      LoadTy = Type::getInt16Ty(Size->getContext());
4949      break;
4950    case 4:
4951      LoadVT = MVT::i32;
4952      LoadTy = Type::getInt32Ty(Size->getContext());
4953      break;
4954    case 8:
4955      LoadVT = MVT::i64;
4956      LoadTy = Type::getInt64Ty(Size->getContext());
4957      break;
4958        /*
4959    case 16:
4960      LoadVT = MVT::v4i32;
4961      LoadTy = Type::getInt32Ty(Size->getContext());
4962      LoadTy = VectorType::get(LoadTy, 4);
4963      break;
4964         */
4965    }
4966
4967    // This turns into unaligned loads.  We only do this if the target natively
4968    // supports the MVT we'll be loading or if it is small enough (<= 4) that
4969    // we'll only produce a small number of byte loads.
4970
4971    // Require that we can find a legal MVT, and only do this if the target
4972    // supports unaligned loads of that type.  Expanding into byte loads would
4973    // bloat the code.
4974    if (ActuallyDoIt && Size->getZExtValue() > 4) {
4975      // TODO: Handle 5 byte compare as 4-byte + 1 byte.
4976      // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
4977      if (!TLI.isTypeLegal(LoadVT) ||!TLI.allowsUnalignedMemoryAccesses(LoadVT))
4978        ActuallyDoIt = false;
4979    }
4980
4981    if (ActuallyDoIt) {
4982      SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this);
4983      SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this);
4984
4985      SDValue Res = DAG.getSetCC(getCurDebugLoc(), MVT::i1, LHSVal, RHSVal,
4986                                 ISD::SETNE);
4987      EVT CallVT = TLI.getValueType(I.getType(), true);
4988      setValue(&I, DAG.getZExtOrTrunc(Res, getCurDebugLoc(), CallVT));
4989      return true;
4990    }
4991  }
4992
4993
4994  return false;
4995}
4996
4997
4998void SelectionDAGBuilder::visitCall(const CallInst &I) {
4999  // Handle inline assembly differently.
5000  if (isa<InlineAsm>(I.getCalledValue())) {
5001    visitInlineAsm(&I);
5002    return;
5003  }
5004
5005  const char *RenameFn = 0;
5006  if (Function *F = I.getCalledFunction()) {
5007    if (F->isDeclaration()) {
5008      if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) {
5009        if (unsigned IID = II->getIntrinsicID(F)) {
5010          RenameFn = visitIntrinsicCall(I, IID);
5011          if (!RenameFn)
5012            return;
5013        }
5014      }
5015      if (unsigned IID = F->getIntrinsicID()) {
5016        RenameFn = visitIntrinsicCall(I, IID);
5017        if (!RenameFn)
5018          return;
5019      }
5020    }
5021
5022    // Check for well-known libc/libm calls.  If the function is internal, it
5023    // can't be a library call.
5024    if (!F->hasLocalLinkage() && F->hasName()) {
5025      StringRef Name = F->getName();
5026      if (Name == "copysign" || Name == "copysignf" || Name == "copysignl") {
5027        if (I.getNumArgOperands() == 2 &&   // Basic sanity checks.
5028            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5029            I.getType() == I.getArgOperand(0)->getType() &&
5030            I.getType() == I.getArgOperand(1)->getType()) {
5031          SDValue LHS = getValue(I.getArgOperand(0));
5032          SDValue RHS = getValue(I.getArgOperand(1));
5033          setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurDebugLoc(),
5034                                   LHS.getValueType(), LHS, RHS));
5035          return;
5036        }
5037      } else if (Name == "fabs" || Name == "fabsf" || Name == "fabsl") {
5038        if (I.getNumArgOperands() == 1 &&   // Basic sanity checks.
5039            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5040            I.getType() == I.getArgOperand(0)->getType()) {
5041          SDValue Tmp = getValue(I.getArgOperand(0));
5042          setValue(&I, DAG.getNode(ISD::FABS, getCurDebugLoc(),
5043                                   Tmp.getValueType(), Tmp));
5044          return;
5045        }
5046      } else if (Name == "sin" || Name == "sinf" || Name == "sinl") {
5047        if (I.getNumArgOperands() == 1 &&   // Basic sanity checks.
5048            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5049            I.getType() == I.getArgOperand(0)->getType() &&
5050            I.onlyReadsMemory()) {
5051          SDValue Tmp = getValue(I.getArgOperand(0));
5052          setValue(&I, DAG.getNode(ISD::FSIN, getCurDebugLoc(),
5053                                   Tmp.getValueType(), Tmp));
5054          return;
5055        }
5056      } else if (Name == "cos" || Name == "cosf" || Name == "cosl") {
5057        if (I.getNumArgOperands() == 1 &&   // Basic sanity checks.
5058            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5059            I.getType() == I.getArgOperand(0)->getType() &&
5060            I.onlyReadsMemory()) {
5061          SDValue Tmp = getValue(I.getArgOperand(0));
5062          setValue(&I, DAG.getNode(ISD::FCOS, getCurDebugLoc(),
5063                                   Tmp.getValueType(), Tmp));
5064          return;
5065        }
5066      } else if (Name == "sqrt" || Name == "sqrtf" || Name == "sqrtl") {
5067        if (I.getNumArgOperands() == 1 &&   // Basic sanity checks.
5068            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5069            I.getType() == I.getArgOperand(0)->getType() &&
5070            I.onlyReadsMemory()) {
5071          SDValue Tmp = getValue(I.getArgOperand(0));
5072          setValue(&I, DAG.getNode(ISD::FSQRT, getCurDebugLoc(),
5073                                   Tmp.getValueType(), Tmp));
5074          return;
5075        }
5076      } else if (Name == "memcmp") {
5077        if (visitMemCmpCall(I))
5078          return;
5079      }
5080    }
5081  }
5082
5083  SDValue Callee;
5084  if (!RenameFn)
5085    Callee = getValue(I.getCalledValue());
5086  else
5087    Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy());
5088
5089  // Check if we can potentially perform a tail call. More detailed checking is
5090  // be done within LowerCallTo, after more information about the call is known.
5091  LowerCallTo(&I, Callee, I.isTailCall());
5092}
5093
5094namespace llvm {
5095
5096/// AsmOperandInfo - This contains information for each constraint that we are
5097/// lowering.
5098class LLVM_LIBRARY_VISIBILITY SDISelAsmOperandInfo :
5099    public TargetLowering::AsmOperandInfo {
5100public:
5101  /// CallOperand - If this is the result output operand or a clobber
5102  /// this is null, otherwise it is the incoming operand to the CallInst.
5103  /// This gets modified as the asm is processed.
5104  SDValue CallOperand;
5105
5106  /// AssignedRegs - If this is a register or register class operand, this
5107  /// contains the set of register corresponding to the operand.
5108  RegsForValue AssignedRegs;
5109
5110  explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
5111    : TargetLowering::AsmOperandInfo(info), CallOperand(0,0) {
5112  }
5113
5114  /// MarkAllocatedRegs - Once AssignedRegs is set, mark the assigned registers
5115  /// busy in OutputRegs/InputRegs.
5116  void MarkAllocatedRegs(bool isOutReg, bool isInReg,
5117                         std::set<unsigned> &OutputRegs,
5118                         std::set<unsigned> &InputRegs,
5119                         const TargetRegisterInfo &TRI) const {
5120    if (isOutReg) {
5121      for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i)
5122        MarkRegAndAliases(AssignedRegs.Regs[i], OutputRegs, TRI);
5123    }
5124    if (isInReg) {
5125      for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i)
5126        MarkRegAndAliases(AssignedRegs.Regs[i], InputRegs, TRI);
5127    }
5128  }
5129
5130  /// getCallOperandValEVT - Return the EVT of the Value* that this operand
5131  /// corresponds to.  If there is no Value* for this operand, it returns
5132  /// MVT::Other.
5133  EVT getCallOperandValEVT(LLVMContext &Context,
5134                           const TargetLowering &TLI,
5135                           const TargetData *TD) const {
5136    if (CallOperandVal == 0) return MVT::Other;
5137
5138    if (isa<BasicBlock>(CallOperandVal))
5139      return TLI.getPointerTy();
5140
5141    const llvm::Type *OpTy = CallOperandVal->getType();
5142
5143    // If this is an indirect operand, the operand is a pointer to the
5144    // accessed type.
5145    if (isIndirect) {
5146      const llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
5147      if (!PtrTy)
5148        report_fatal_error("Indirect operand for inline asm not a pointer!");
5149      OpTy = PtrTy->getElementType();
5150    }
5151
5152    // If OpTy is not a single value, it may be a struct/union that we
5153    // can tile with integers.
5154    if (!OpTy->isSingleValueType() && OpTy->isSized()) {
5155      unsigned BitSize = TD->getTypeSizeInBits(OpTy);
5156      switch (BitSize) {
5157      default: break;
5158      case 1:
5159      case 8:
5160      case 16:
5161      case 32:
5162      case 64:
5163      case 128:
5164        OpTy = IntegerType::get(Context, BitSize);
5165        break;
5166      }
5167    }
5168
5169    return TLI.getValueType(OpTy, true);
5170  }
5171
5172private:
5173  /// MarkRegAndAliases - Mark the specified register and all aliases in the
5174  /// specified set.
5175  static void MarkRegAndAliases(unsigned Reg, std::set<unsigned> &Regs,
5176                                const TargetRegisterInfo &TRI) {
5177    assert(TargetRegisterInfo::isPhysicalRegister(Reg) && "Isn't a physreg");
5178    Regs.insert(Reg);
5179    if (const unsigned *Aliases = TRI.getAliasSet(Reg))
5180      for (; *Aliases; ++Aliases)
5181        Regs.insert(*Aliases);
5182  }
5183};
5184
5185} // end llvm namespace.
5186
5187/// isAllocatableRegister - If the specified register is safe to allocate,
5188/// i.e. it isn't a stack pointer or some other special register, return the
5189/// register class for the register.  Otherwise, return null.
5190static const TargetRegisterClass *
5191isAllocatableRegister(unsigned Reg, MachineFunction &MF,
5192                      const TargetLowering &TLI,
5193                      const TargetRegisterInfo *TRI) {
5194  EVT FoundVT = MVT::Other;
5195  const TargetRegisterClass *FoundRC = 0;
5196  for (TargetRegisterInfo::regclass_iterator RCI = TRI->regclass_begin(),
5197       E = TRI->regclass_end(); RCI != E; ++RCI) {
5198    EVT ThisVT = MVT::Other;
5199
5200    const TargetRegisterClass *RC = *RCI;
5201    // If none of the value types for this register class are valid, we
5202    // can't use it.  For example, 64-bit reg classes on 32-bit targets.
5203    for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
5204         I != E; ++I) {
5205      if (TLI.isTypeLegal(*I)) {
5206        // If we have already found this register in a different register class,
5207        // choose the one with the largest VT specified.  For example, on
5208        // PowerPC, we favor f64 register classes over f32.
5209        if (FoundVT == MVT::Other || FoundVT.bitsLT(*I)) {
5210          ThisVT = *I;
5211          break;
5212        }
5213      }
5214    }
5215
5216    if (ThisVT == MVT::Other) continue;
5217
5218    // NOTE: This isn't ideal.  In particular, this might allocate the
5219    // frame pointer in functions that need it (due to them not being taken
5220    // out of allocation, because a variable sized allocation hasn't been seen
5221    // yet).  This is a slight code pessimization, but should still work.
5222    for (TargetRegisterClass::iterator I = RC->allocation_order_begin(MF),
5223         E = RC->allocation_order_end(MF); I != E; ++I)
5224      if (*I == Reg) {
5225        // We found a matching register class.  Keep looking at others in case
5226        // we find one with larger registers that this physreg is also in.
5227        FoundRC = RC;
5228        FoundVT = ThisVT;
5229        break;
5230      }
5231  }
5232  return FoundRC;
5233}
5234
5235/// GetRegistersForValue - Assign registers (virtual or physical) for the
5236/// specified operand.  We prefer to assign virtual registers, to allow the
5237/// register allocator to handle the assignment process.  However, if the asm
5238/// uses features that we can't model on machineinstrs, we have SDISel do the
5239/// allocation.  This produces generally horrible, but correct, code.
5240///
5241///   OpInfo describes the operand.
5242///   Input and OutputRegs are the set of already allocated physical registers.
5243///
5244void SelectionDAGBuilder::
5245GetRegistersForValue(SDISelAsmOperandInfo &OpInfo,
5246                     std::set<unsigned> &OutputRegs,
5247                     std::set<unsigned> &InputRegs) {
5248  LLVMContext &Context = FuncInfo.Fn->getContext();
5249
5250  // Compute whether this value requires an input register, an output register,
5251  // or both.
5252  bool isOutReg = false;
5253  bool isInReg = false;
5254  switch (OpInfo.Type) {
5255  case InlineAsm::isOutput:
5256    isOutReg = true;
5257
5258    // If there is an input constraint that matches this, we need to reserve
5259    // the input register so no other inputs allocate to it.
5260    isInReg = OpInfo.hasMatchingInput();
5261    break;
5262  case InlineAsm::isInput:
5263    isInReg = true;
5264    isOutReg = false;
5265    break;
5266  case InlineAsm::isClobber:
5267    isOutReg = true;
5268    isInReg = true;
5269    break;
5270  }
5271
5272
5273  MachineFunction &MF = DAG.getMachineFunction();
5274  SmallVector<unsigned, 4> Regs;
5275
5276  // If this is a constraint for a single physreg, or a constraint for a
5277  // register class, find it.
5278  std::pair<unsigned, const TargetRegisterClass*> PhysReg =
5279    TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
5280                                     OpInfo.ConstraintVT);
5281
5282  unsigned NumRegs = 1;
5283  if (OpInfo.ConstraintVT != MVT::Other) {
5284    // If this is a FP input in an integer register (or visa versa) insert a bit
5285    // cast of the input value.  More generally, handle any case where the input
5286    // value disagrees with the register class we plan to stick this in.
5287    if (OpInfo.Type == InlineAsm::isInput &&
5288        PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) {
5289      // Try to convert to the first EVT that the reg class contains.  If the
5290      // types are identical size, use a bitcast to convert (e.g. two differing
5291      // vector types).
5292      EVT RegVT = *PhysReg.second->vt_begin();
5293      if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) {
5294        OpInfo.CallOperand = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(),
5295                                         RegVT, OpInfo.CallOperand);
5296        OpInfo.ConstraintVT = RegVT;
5297      } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
5298        // If the input is a FP value and we want it in FP registers, do a
5299        // bitcast to the corresponding integer type.  This turns an f64 value
5300        // into i64, which can be passed with two i32 values on a 32-bit
5301        // machine.
5302        RegVT = EVT::getIntegerVT(Context,
5303                                  OpInfo.ConstraintVT.getSizeInBits());
5304        OpInfo.CallOperand = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(),
5305                                         RegVT, OpInfo.CallOperand);
5306        OpInfo.ConstraintVT = RegVT;
5307      }
5308    }
5309
5310    NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT);
5311  }
5312
5313  EVT RegVT;
5314  EVT ValueVT = OpInfo.ConstraintVT;
5315
5316  // If this is a constraint for a specific physical register, like {r17},
5317  // assign it now.
5318  if (unsigned AssignedReg = PhysReg.first) {
5319    const TargetRegisterClass *RC = PhysReg.second;
5320    if (OpInfo.ConstraintVT == MVT::Other)
5321      ValueVT = *RC->vt_begin();
5322
5323    // Get the actual register value type.  This is important, because the user
5324    // may have asked for (e.g.) the AX register in i32 type.  We need to
5325    // remember that AX is actually i16 to get the right extension.
5326    RegVT = *RC->vt_begin();
5327
5328    // This is a explicit reference to a physical register.
5329    Regs.push_back(AssignedReg);
5330
5331    // If this is an expanded reference, add the rest of the regs to Regs.
5332    if (NumRegs != 1) {
5333      TargetRegisterClass::iterator I = RC->begin();
5334      for (; *I != AssignedReg; ++I)
5335        assert(I != RC->end() && "Didn't find reg!");
5336
5337      // Already added the first reg.
5338      --NumRegs; ++I;
5339      for (; NumRegs; --NumRegs, ++I) {
5340        assert(I != RC->end() && "Ran out of registers to allocate!");
5341        Regs.push_back(*I);
5342      }
5343    }
5344
5345    OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
5346    const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
5347    OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI);
5348    return;
5349  }
5350
5351  // Otherwise, if this was a reference to an LLVM register class, create vregs
5352  // for this reference.
5353  if (const TargetRegisterClass *RC = PhysReg.second) {
5354    RegVT = *RC->vt_begin();
5355    if (OpInfo.ConstraintVT == MVT::Other)
5356      ValueVT = RegVT;
5357
5358    // Create the appropriate number of virtual registers.
5359    MachineRegisterInfo &RegInfo = MF.getRegInfo();
5360    for (; NumRegs; --NumRegs)
5361      Regs.push_back(RegInfo.createVirtualRegister(RC));
5362
5363    OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
5364    return;
5365  }
5366
5367  // This is a reference to a register class that doesn't directly correspond
5368  // to an LLVM register class.  Allocate NumRegs consecutive, available,
5369  // registers from the class.
5370  std::vector<unsigned> RegClassRegs
5371    = TLI.getRegClassForInlineAsmConstraint(OpInfo.ConstraintCode,
5372                                            OpInfo.ConstraintVT);
5373
5374  const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
5375  unsigned NumAllocated = 0;
5376  for (unsigned i = 0, e = RegClassRegs.size(); i != e; ++i) {
5377    unsigned Reg = RegClassRegs[i];
5378    // See if this register is available.
5379    if ((isOutReg && OutputRegs.count(Reg)) ||   // Already used.
5380        (isInReg  && InputRegs.count(Reg))) {    // Already used.
5381      // Make sure we find consecutive registers.
5382      NumAllocated = 0;
5383      continue;
5384    }
5385
5386    // Check to see if this register is allocatable (i.e. don't give out the
5387    // stack pointer).
5388    const TargetRegisterClass *RC = isAllocatableRegister(Reg, MF, TLI, TRI);
5389    if (!RC) {        // Couldn't allocate this register.
5390      // Reset NumAllocated to make sure we return consecutive registers.
5391      NumAllocated = 0;
5392      continue;
5393    }
5394
5395    // Okay, this register is good, we can use it.
5396    ++NumAllocated;
5397
5398    // If we allocated enough consecutive registers, succeed.
5399    if (NumAllocated == NumRegs) {
5400      unsigned RegStart = (i-NumAllocated)+1;
5401      unsigned RegEnd   = i+1;
5402      // Mark all of the allocated registers used.
5403      for (unsigned i = RegStart; i != RegEnd; ++i)
5404        Regs.push_back(RegClassRegs[i]);
5405
5406      OpInfo.AssignedRegs = RegsForValue(Regs, *RC->vt_begin(),
5407                                         OpInfo.ConstraintVT);
5408      OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI);
5409      return;
5410    }
5411  }
5412
5413  // Otherwise, we couldn't allocate enough registers for this.
5414}
5415
5416/// visitInlineAsm - Handle a call to an InlineAsm object.
5417///
5418void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) {
5419  const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
5420
5421  /// ConstraintOperands - Information about all of the constraints.
5422  std::vector<SDISelAsmOperandInfo> ConstraintOperands;
5423
5424  std::set<unsigned> OutputRegs, InputRegs;
5425
5426  std::vector<TargetLowering::AsmOperandInfo> TargetConstraints = TLI.ParseConstraints(CS);
5427  bool hasMemory = false;
5428
5429  unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
5430  unsigned ResNo = 0;   // ResNo - The result number of the next output.
5431  for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
5432    ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i]));
5433    SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
5434
5435    EVT OpVT = MVT::Other;
5436
5437    // Compute the value type for each operand.
5438    switch (OpInfo.Type) {
5439    case InlineAsm::isOutput:
5440      // Indirect outputs just consume an argument.
5441      if (OpInfo.isIndirect) {
5442        OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
5443        break;
5444      }
5445
5446      // The return value of the call is this value.  As such, there is no
5447      // corresponding argument.
5448      assert(!CS.getType()->isVoidTy() &&
5449             "Bad inline asm!");
5450      if (const StructType *STy = dyn_cast<StructType>(CS.getType())) {
5451        OpVT = TLI.getValueType(STy->getElementType(ResNo));
5452      } else {
5453        assert(ResNo == 0 && "Asm only has one result!");
5454        OpVT = TLI.getValueType(CS.getType());
5455      }
5456      ++ResNo;
5457      break;
5458    case InlineAsm::isInput:
5459      OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
5460      break;
5461    case InlineAsm::isClobber:
5462      // Nothing to do.
5463      break;
5464    }
5465
5466    // If this is an input or an indirect output, process the call argument.
5467    // BasicBlocks are labels, currently appearing only in asm's.
5468    if (OpInfo.CallOperandVal) {
5469      // Strip bitcasts, if any.  This mostly comes up for functions.
5470      OpInfo.CallOperandVal = OpInfo.CallOperandVal->stripPointerCasts();
5471
5472      if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) {
5473        OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
5474      } else {
5475        OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
5476      }
5477
5478      OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, TD);
5479    }
5480
5481    OpInfo.ConstraintVT = OpVT;
5482
5483    // Indirect operand accesses access memory.
5484    if (OpInfo.isIndirect)
5485      hasMemory = true;
5486    else {
5487      for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) {
5488        TargetLowering::ConstraintType CType = TLI.getConstraintType(OpInfo.Codes[j]);
5489        if (CType == TargetLowering::C_Memory) {
5490          hasMemory = true;
5491          break;
5492        }
5493      }
5494    }
5495  }
5496
5497  SDValue Chain, Flag;
5498
5499  // We won't need to flush pending loads if this asm doesn't touch
5500  // memory and is nonvolatile.
5501  if (hasMemory || IA->hasSideEffects())
5502    Chain = getRoot();
5503  else
5504    Chain = DAG.getRoot();
5505
5506  // Second pass over the constraints: compute which constraint option to use
5507  // and assign registers to constraints that want a specific physreg.
5508  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
5509    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
5510
5511    // If this is an output operand with a matching input operand, look up the
5512    // matching input. If their types mismatch, e.g. one is an integer, the
5513    // other is floating point, or their sizes are different, flag it as an
5514    // error.
5515    if (OpInfo.hasMatchingInput()) {
5516      SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
5517
5518      if (OpInfo.ConstraintVT != Input.ConstraintVT) {
5519        if ((OpInfo.ConstraintVT.isInteger() !=
5520             Input.ConstraintVT.isInteger()) ||
5521            (OpInfo.ConstraintVT.getSizeInBits() !=
5522             Input.ConstraintVT.getSizeInBits())) {
5523          report_fatal_error("Unsupported asm: input constraint"
5524                             " with a matching output constraint of"
5525                             " incompatible type!");
5526        }
5527        Input.ConstraintVT = OpInfo.ConstraintVT;
5528      }
5529    }
5530
5531    // Compute the constraint code and ConstraintType to use.
5532    TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
5533
5534    // If this is a memory input, and if the operand is not indirect, do what we
5535    // need to to provide an address for the memory input.
5536    if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
5537        !OpInfo.isIndirect) {
5538      assert((OpInfo.isMultipleAlternative || (OpInfo.Type == InlineAsm::isInput)) &&
5539             "Can only indirectify direct input operands!");
5540
5541      // Memory operands really want the address of the value.  If we don't have
5542      // an indirect input, put it in the constpool if we can, otherwise spill
5543      // it to a stack slot.
5544
5545      // If the operand is a float, integer, or vector constant, spill to a
5546      // constant pool entry to get its address.
5547      const Value *OpVal = OpInfo.CallOperandVal;
5548      if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
5549          isa<ConstantVector>(OpVal)) {
5550        OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal),
5551                                                 TLI.getPointerTy());
5552      } else {
5553        // Otherwise, create a stack slot and emit a store to it before the
5554        // asm.
5555        const Type *Ty = OpVal->getType();
5556        uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty);
5557        unsigned Align  = TLI.getTargetData()->getPrefTypeAlignment(Ty);
5558        MachineFunction &MF = DAG.getMachineFunction();
5559        int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
5560        SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy());
5561        Chain = DAG.getStore(Chain, getCurDebugLoc(),
5562                             OpInfo.CallOperand, StackSlot,
5563                             MachinePointerInfo::getFixedStack(SSFI),
5564                             false, false, 0);
5565        OpInfo.CallOperand = StackSlot;
5566      }
5567
5568      // There is no longer a Value* corresponding to this operand.
5569      OpInfo.CallOperandVal = 0;
5570
5571      // It is now an indirect operand.
5572      OpInfo.isIndirect = true;
5573    }
5574
5575    // If this constraint is for a specific register, allocate it before
5576    // anything else.
5577    if (OpInfo.ConstraintType == TargetLowering::C_Register)
5578      GetRegistersForValue(OpInfo, OutputRegs, InputRegs);
5579  }
5580
5581  // Second pass - Loop over all of the operands, assigning virtual or physregs
5582  // to register class operands.
5583  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
5584    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
5585
5586    // C_Register operands have already been allocated, Other/Memory don't need
5587    // to be.
5588    if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass)
5589      GetRegistersForValue(OpInfo, OutputRegs, InputRegs);
5590  }
5591
5592  // AsmNodeOperands - The operands for the ISD::INLINEASM node.
5593  std::vector<SDValue> AsmNodeOperands;
5594  AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
5595  AsmNodeOperands.push_back(
5596          DAG.getTargetExternalSymbol(IA->getAsmString().c_str(),
5597                                      TLI.getPointerTy()));
5598
5599  // If we have a !srcloc metadata node associated with it, we want to attach
5600  // this to the ultimately generated inline asm machineinstr.  To do this, we
5601  // pass in the third operand as this (potentially null) inline asm MDNode.
5602  const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc");
5603  AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
5604
5605  // Remember the AlignStack bit as operand 3.
5606  AsmNodeOperands.push_back(DAG.getTargetConstant(IA->isAlignStack() ? 1 : 0,
5607                                            MVT::i1));
5608
5609  // Loop over all of the inputs, copying the operand values into the
5610  // appropriate registers and processing the output regs.
5611  RegsForValue RetValRegs;
5612
5613  // IndirectStoresToEmit - The set of stores to emit after the inline asm node.
5614  std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit;
5615
5616  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
5617    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
5618
5619    switch (OpInfo.Type) {
5620    case InlineAsm::isOutput: {
5621      if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass &&
5622          OpInfo.ConstraintType != TargetLowering::C_Register) {
5623        // Memory output, or 'other' output (e.g. 'X' constraint).
5624        assert(OpInfo.isIndirect && "Memory output must be indirect operand");
5625
5626        // Add information to the INLINEASM node to know about this output.
5627        unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
5628        AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags,
5629                                                        TLI.getPointerTy()));
5630        AsmNodeOperands.push_back(OpInfo.CallOperand);
5631        break;
5632      }
5633
5634      // Otherwise, this is a register or register class output.
5635
5636      // Copy the output from the appropriate register.  Find a register that
5637      // we can use.
5638      if (OpInfo.AssignedRegs.Regs.empty())
5639        report_fatal_error("Couldn't allocate output reg for constraint '" +
5640                           Twine(OpInfo.ConstraintCode) + "'!");
5641
5642      // If this is an indirect operand, store through the pointer after the
5643      // asm.
5644      if (OpInfo.isIndirect) {
5645        IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs,
5646                                                      OpInfo.CallOperandVal));
5647      } else {
5648        // This is the result value of the call.
5649        assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
5650        // Concatenate this output onto the outputs list.
5651        RetValRegs.append(OpInfo.AssignedRegs);
5652      }
5653
5654      // Add information to the INLINEASM node to know that this register is
5655      // set.
5656      OpInfo.AssignedRegs.AddInlineAsmOperands(OpInfo.isEarlyClobber ?
5657                                           InlineAsm::Kind_RegDefEarlyClobber :
5658                                               InlineAsm::Kind_RegDef,
5659                                               false,
5660                                               0,
5661                                               DAG,
5662                                               AsmNodeOperands);
5663      break;
5664    }
5665    case InlineAsm::isInput: {
5666      SDValue InOperandVal = OpInfo.CallOperand;
5667
5668      if (OpInfo.isMatchingInputConstraint()) {   // Matching constraint?
5669        // If this is required to match an output register we have already set,
5670        // just use its register.
5671        unsigned OperandNo = OpInfo.getMatchedOperand();
5672
5673        // Scan until we find the definition we already emitted of this operand.
5674        // When we find it, create a RegsForValue operand.
5675        unsigned CurOp = InlineAsm::Op_FirstOperand;
5676        for (; OperandNo; --OperandNo) {
5677          // Advance to the next operand.
5678          unsigned OpFlag =
5679            cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
5680          assert((InlineAsm::isRegDefKind(OpFlag) ||
5681                  InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||
5682                  InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?");
5683          CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1;
5684        }
5685
5686        unsigned OpFlag =
5687          cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
5688        if (InlineAsm::isRegDefKind(OpFlag) ||
5689            InlineAsm::isRegDefEarlyClobberKind(OpFlag)) {
5690          // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
5691          if (OpInfo.isIndirect) {
5692            // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
5693            LLVMContext &Ctx = *DAG.getContext();
5694            Ctx.emitError(CS.getInstruction(),  "inline asm not supported yet:"
5695                          " don't know how to handle tied "
5696                          "indirect register inputs");
5697          }
5698
5699          RegsForValue MatchedRegs;
5700          MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType());
5701          EVT RegVT = AsmNodeOperands[CurOp+1].getValueType();
5702          MatchedRegs.RegVTs.push_back(RegVT);
5703          MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo();
5704          for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag);
5705               i != e; ++i)
5706            MatchedRegs.Regs.push_back
5707              (RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT)));
5708
5709          // Use the produced MatchedRegs object to
5710          MatchedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(),
5711                                    Chain, &Flag);
5712          MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse,
5713                                           true, OpInfo.getMatchedOperand(),
5714                                           DAG, AsmNodeOperands);
5715          break;
5716        }
5717
5718        assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!");
5719        assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 &&
5720               "Unexpected number of operands");
5721        // Add information to the INLINEASM node to know about this input.
5722        // See InlineAsm.h isUseOperandTiedToDef.
5723        OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
5724                                                    OpInfo.getMatchedOperand());
5725        AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlag,
5726                                                        TLI.getPointerTy()));
5727        AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
5728        break;
5729      }
5730
5731      // Treat indirect 'X' constraint as memory.
5732      if (OpInfo.ConstraintType == TargetLowering::C_Other &&
5733          OpInfo.isIndirect)
5734        OpInfo.ConstraintType = TargetLowering::C_Memory;
5735
5736      if (OpInfo.ConstraintType == TargetLowering::C_Other) {
5737        std::vector<SDValue> Ops;
5738        TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode[0],
5739                                         Ops, DAG);
5740        if (Ops.empty())
5741          report_fatal_error("Invalid operand for inline asm constraint '" +
5742                             Twine(OpInfo.ConstraintCode) + "'!");
5743
5744        // Add information to the INLINEASM node to know about this input.
5745        unsigned ResOpType =
5746          InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
5747        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
5748                                                        TLI.getPointerTy()));
5749        AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
5750        break;
5751      }
5752
5753      if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
5754        assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
5755        assert(InOperandVal.getValueType() == TLI.getPointerTy() &&
5756               "Memory operands expect pointer values");
5757
5758        // Add information to the INLINEASM node to know about this input.
5759        unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
5760        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
5761                                                        TLI.getPointerTy()));
5762        AsmNodeOperands.push_back(InOperandVal);
5763        break;
5764      }
5765
5766      assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
5767              OpInfo.ConstraintType == TargetLowering::C_Register) &&
5768             "Unknown constraint type!");
5769      assert(!OpInfo.isIndirect &&
5770             "Don't know how to handle indirect register inputs yet!");
5771
5772      // Copy the input into the appropriate registers.
5773      if (OpInfo.AssignedRegs.Regs.empty() ||
5774          !OpInfo.AssignedRegs.areValueTypesLegal(TLI))
5775        report_fatal_error("Couldn't allocate input reg for constraint '" +
5776                           Twine(OpInfo.ConstraintCode) + "'!");
5777
5778      OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(),
5779                                        Chain, &Flag);
5780
5781      OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0,
5782                                               DAG, AsmNodeOperands);
5783      break;
5784    }
5785    case InlineAsm::isClobber: {
5786      // Add the clobbered value to the operand list, so that the register
5787      // allocator is aware that the physreg got clobbered.
5788      if (!OpInfo.AssignedRegs.Regs.empty())
5789        OpInfo.AssignedRegs.AddInlineAsmOperands(
5790                                            InlineAsm::Kind_RegDefEarlyClobber,
5791                                                 false, 0, DAG,
5792                                                 AsmNodeOperands);
5793      break;
5794    }
5795    }
5796  }
5797
5798  // Finish up input operands.  Set the input chain and add the flag last.
5799  AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
5800  if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
5801
5802  Chain = DAG.getNode(ISD::INLINEASM, getCurDebugLoc(),
5803                      DAG.getVTList(MVT::Other, MVT::Flag),
5804                      &AsmNodeOperands[0], AsmNodeOperands.size());
5805  Flag = Chain.getValue(1);
5806
5807  // If this asm returns a register value, copy the result from that register
5808  // and set it as the value of the call.
5809  if (!RetValRegs.Regs.empty()) {
5810    SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(),
5811                                             Chain, &Flag);
5812
5813    // FIXME: Why don't we do this for inline asms with MRVs?
5814    if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) {
5815      EVT ResultType = TLI.getValueType(CS.getType());
5816
5817      // If any of the results of the inline asm is a vector, it may have the
5818      // wrong width/num elts.  This can happen for register classes that can
5819      // contain multiple different value types.  The preg or vreg allocated may
5820      // not have the same VT as was expected.  Convert it to the right type
5821      // with bit_convert.
5822      if (ResultType != Val.getValueType() && Val.getValueType().isVector()) {
5823        Val = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(),
5824                          ResultType, Val);
5825
5826      } else if (ResultType != Val.getValueType() &&
5827                 ResultType.isInteger() && Val.getValueType().isInteger()) {
5828        // If a result value was tied to an input value, the computed result may
5829        // have a wider width than the expected result.  Extract the relevant
5830        // portion.
5831        Val = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), ResultType, Val);
5832      }
5833
5834      assert(ResultType == Val.getValueType() && "Asm result value mismatch!");
5835    }
5836
5837    setValue(CS.getInstruction(), Val);
5838    // Don't need to use this as a chain in this case.
5839    if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty())
5840      return;
5841  }
5842
5843  std::vector<std::pair<SDValue, const Value *> > StoresToEmit;
5844
5845  // Process indirect outputs, first output all of the flagged copies out of
5846  // physregs.
5847  for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
5848    RegsForValue &OutRegs = IndirectStoresToEmit[i].first;
5849    const Value *Ptr = IndirectStoresToEmit[i].second;
5850    SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(),
5851                                             Chain, &Flag);
5852    StoresToEmit.push_back(std::make_pair(OutVal, Ptr));
5853  }
5854
5855  // Emit the non-flagged stores from the physregs.
5856  SmallVector<SDValue, 8> OutChains;
5857  for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) {
5858    SDValue Val = DAG.getStore(Chain, getCurDebugLoc(),
5859                               StoresToEmit[i].first,
5860                               getValue(StoresToEmit[i].second),
5861                               MachinePointerInfo(StoresToEmit[i].second),
5862                               false, false, 0);
5863    OutChains.push_back(Val);
5864  }
5865
5866  if (!OutChains.empty())
5867    Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
5868                        &OutChains[0], OutChains.size());
5869
5870  DAG.setRoot(Chain);
5871}
5872
5873void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
5874  DAG.setRoot(DAG.getNode(ISD::VASTART, getCurDebugLoc(),
5875                          MVT::Other, getRoot(),
5876                          getValue(I.getArgOperand(0)),
5877                          DAG.getSrcValue(I.getArgOperand(0))));
5878}
5879
5880void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
5881  const TargetData &TD = *TLI.getTargetData();
5882  SDValue V = DAG.getVAArg(TLI.getValueType(I.getType()), getCurDebugLoc(),
5883                           getRoot(), getValue(I.getOperand(0)),
5884                           DAG.getSrcValue(I.getOperand(0)),
5885                           TD.getABITypeAlignment(I.getType()));
5886  setValue(&I, V);
5887  DAG.setRoot(V.getValue(1));
5888}
5889
5890void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
5891  DAG.setRoot(DAG.getNode(ISD::VAEND, getCurDebugLoc(),
5892                          MVT::Other, getRoot(),
5893                          getValue(I.getArgOperand(0)),
5894                          DAG.getSrcValue(I.getArgOperand(0))));
5895}
5896
5897void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
5898  DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurDebugLoc(),
5899                          MVT::Other, getRoot(),
5900                          getValue(I.getArgOperand(0)),
5901                          getValue(I.getArgOperand(1)),
5902                          DAG.getSrcValue(I.getArgOperand(0)),
5903                          DAG.getSrcValue(I.getArgOperand(1))));
5904}
5905
5906/// TargetLowering::LowerCallTo - This is the default LowerCallTo
5907/// implementation, which just calls LowerCall.
5908/// FIXME: When all targets are
5909/// migrated to using LowerCall, this hook should be integrated into SDISel.
5910std::pair<SDValue, SDValue>
5911TargetLowering::LowerCallTo(SDValue Chain, const Type *RetTy,
5912                            bool RetSExt, bool RetZExt, bool isVarArg,
5913                            bool isInreg, unsigned NumFixedArgs,
5914                            CallingConv::ID CallConv, bool isTailCall,
5915                            bool isReturnValueUsed,
5916                            SDValue Callee,
5917                            ArgListTy &Args, SelectionDAG &DAG,
5918                            DebugLoc dl) const {
5919  // Handle all of the outgoing arguments.
5920  SmallVector<ISD::OutputArg, 32> Outs;
5921  SmallVector<SDValue, 32> OutVals;
5922  for (unsigned i = 0, e = Args.size(); i != e; ++i) {
5923    SmallVector<EVT, 4> ValueVTs;
5924    ComputeValueVTs(*this, Args[i].Ty, ValueVTs);
5925    for (unsigned Value = 0, NumValues = ValueVTs.size();
5926         Value != NumValues; ++Value) {
5927      EVT VT = ValueVTs[Value];
5928      const Type *ArgTy = VT.getTypeForEVT(RetTy->getContext());
5929      SDValue Op = SDValue(Args[i].Node.getNode(),
5930                           Args[i].Node.getResNo() + Value);
5931      ISD::ArgFlagsTy Flags;
5932      unsigned OriginalAlignment =
5933        getTargetData()->getABITypeAlignment(ArgTy);
5934
5935      if (Args[i].isZExt)
5936        Flags.setZExt();
5937      if (Args[i].isSExt)
5938        Flags.setSExt();
5939      if (Args[i].isInReg)
5940        Flags.setInReg();
5941      if (Args[i].isSRet)
5942        Flags.setSRet();
5943      if (Args[i].isByVal) {
5944        Flags.setByVal();
5945        const PointerType *Ty = cast<PointerType>(Args[i].Ty);
5946        const Type *ElementTy = Ty->getElementType();
5947        unsigned FrameAlign = getByValTypeAlignment(ElementTy);
5948        unsigned FrameSize  = getTargetData()->getTypeAllocSize(ElementTy);
5949        // For ByVal, alignment should come from FE.  BE will guess if this
5950        // info is not there but there are cases it cannot get right.
5951        if (Args[i].Alignment)
5952          FrameAlign = Args[i].Alignment;
5953        Flags.setByValAlign(FrameAlign);
5954        Flags.setByValSize(FrameSize);
5955      }
5956      if (Args[i].isNest)
5957        Flags.setNest();
5958      Flags.setOrigAlign(OriginalAlignment);
5959
5960      EVT PartVT = getRegisterType(RetTy->getContext(), VT);
5961      unsigned NumParts = getNumRegisters(RetTy->getContext(), VT);
5962      SmallVector<SDValue, 4> Parts(NumParts);
5963      ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
5964
5965      if (Args[i].isSExt)
5966        ExtendKind = ISD::SIGN_EXTEND;
5967      else if (Args[i].isZExt)
5968        ExtendKind = ISD::ZERO_EXTEND;
5969
5970      getCopyToParts(DAG, dl, Op, &Parts[0], NumParts,
5971                     PartVT, ExtendKind);
5972
5973      for (unsigned j = 0; j != NumParts; ++j) {
5974        // if it isn't first piece, alignment must be 1
5975        ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(),
5976                               i < NumFixedArgs);
5977        if (NumParts > 1 && j == 0)
5978          MyFlags.Flags.setSplit();
5979        else if (j != 0)
5980          MyFlags.Flags.setOrigAlign(1);
5981
5982        Outs.push_back(MyFlags);
5983        OutVals.push_back(Parts[j]);
5984      }
5985    }
5986  }
5987
5988  // Handle the incoming return values from the call.
5989  SmallVector<ISD::InputArg, 32> Ins;
5990  SmallVector<EVT, 4> RetTys;
5991  ComputeValueVTs(*this, RetTy, RetTys);
5992  for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
5993    EVT VT = RetTys[I];
5994    EVT RegisterVT = getRegisterType(RetTy->getContext(), VT);
5995    unsigned NumRegs = getNumRegisters(RetTy->getContext(), VT);
5996    for (unsigned i = 0; i != NumRegs; ++i) {
5997      ISD::InputArg MyFlags;
5998      MyFlags.VT = RegisterVT;
5999      MyFlags.Used = isReturnValueUsed;
6000      if (RetSExt)
6001        MyFlags.Flags.setSExt();
6002      if (RetZExt)
6003        MyFlags.Flags.setZExt();
6004      if (isInreg)
6005        MyFlags.Flags.setInReg();
6006      Ins.push_back(MyFlags);
6007    }
6008  }
6009
6010  SmallVector<SDValue, 4> InVals;
6011  Chain = LowerCall(Chain, Callee, CallConv, isVarArg, isTailCall,
6012                    Outs, OutVals, Ins, dl, DAG, InVals);
6013
6014  // Verify that the target's LowerCall behaved as expected.
6015  assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
6016         "LowerCall didn't return a valid chain!");
6017  assert((!isTailCall || InVals.empty()) &&
6018         "LowerCall emitted a return value for a tail call!");
6019  assert((isTailCall || InVals.size() == Ins.size()) &&
6020         "LowerCall didn't emit the correct number of values!");
6021
6022  // For a tail call, the return value is merely live-out and there aren't
6023  // any nodes in the DAG representing it. Return a special value to
6024  // indicate that a tail call has been emitted and no more Instructions
6025  // should be processed in the current block.
6026  if (isTailCall) {
6027    DAG.setRoot(Chain);
6028    return std::make_pair(SDValue(), SDValue());
6029  }
6030
6031  DEBUG(for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
6032          assert(InVals[i].getNode() &&
6033                 "LowerCall emitted a null value!");
6034          assert(Ins[i].VT == InVals[i].getValueType() &&
6035                 "LowerCall emitted a value with the wrong type!");
6036        });
6037
6038  // Collect the legal value parts into potentially illegal values
6039  // that correspond to the original function's return values.
6040  ISD::NodeType AssertOp = ISD::DELETED_NODE;
6041  if (RetSExt)
6042    AssertOp = ISD::AssertSext;
6043  else if (RetZExt)
6044    AssertOp = ISD::AssertZext;
6045  SmallVector<SDValue, 4> ReturnValues;
6046  unsigned CurReg = 0;
6047  for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
6048    EVT VT = RetTys[I];
6049    EVT RegisterVT = getRegisterType(RetTy->getContext(), VT);
6050    unsigned NumRegs = getNumRegisters(RetTy->getContext(), VT);
6051
6052    ReturnValues.push_back(getCopyFromParts(DAG, dl, &InVals[CurReg],
6053                                            NumRegs, RegisterVT, VT,
6054                                            AssertOp));
6055    CurReg += NumRegs;
6056  }
6057
6058  // For a function returning void, there is no return value. We can't create
6059  // such a node, so we just return a null return value in that case. In
6060  // that case, nothing will actualy look at the value.
6061  if (ReturnValues.empty())
6062    return std::make_pair(SDValue(), Chain);
6063
6064  SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
6065                            DAG.getVTList(&RetTys[0], RetTys.size()),
6066                            &ReturnValues[0], ReturnValues.size());
6067  return std::make_pair(Res, Chain);
6068}
6069
6070void TargetLowering::LowerOperationWrapper(SDNode *N,
6071                                           SmallVectorImpl<SDValue> &Results,
6072                                           SelectionDAG &DAG) const {
6073  SDValue Res = LowerOperation(SDValue(N, 0), DAG);
6074  if (Res.getNode())
6075    Results.push_back(Res);
6076}
6077
6078SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
6079  llvm_unreachable("LowerOperation not implemented for this target!");
6080  return SDValue();
6081}
6082
6083void
6084SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) {
6085  SDValue Op = getNonRegisterValue(V);
6086  assert((Op.getOpcode() != ISD::CopyFromReg ||
6087          cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
6088         "Copy from a reg to the same reg!");
6089  assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg");
6090
6091  RegsForValue RFV(V->getContext(), TLI, Reg, V->getType());
6092  SDValue Chain = DAG.getEntryNode();
6093  RFV.getCopyToRegs(Op, DAG, getCurDebugLoc(), Chain, 0);
6094  PendingExports.push_back(Chain);
6095}
6096
6097#include "llvm/CodeGen/SelectionDAGISel.h"
6098
6099void SelectionDAGISel::LowerArguments(const BasicBlock *LLVMBB) {
6100  // If this is the entry block, emit arguments.
6101  const Function &F = *LLVMBB->getParent();
6102  SelectionDAG &DAG = SDB->DAG;
6103  DebugLoc dl = SDB->getCurDebugLoc();
6104  const TargetData *TD = TLI.getTargetData();
6105  SmallVector<ISD::InputArg, 16> Ins;
6106
6107  // Check whether the function can return without sret-demotion.
6108  SmallVector<ISD::OutputArg, 4> Outs;
6109  GetReturnInfo(F.getReturnType(), F.getAttributes().getRetAttributes(),
6110                Outs, TLI);
6111
6112  if (!FuncInfo->CanLowerReturn) {
6113    // Put in an sret pointer parameter before all the other parameters.
6114    SmallVector<EVT, 1> ValueVTs;
6115    ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs);
6116
6117    // NOTE: Assuming that a pointer will never break down to more than one VT
6118    // or one register.
6119    ISD::ArgFlagsTy Flags;
6120    Flags.setSRet();
6121    EVT RegisterVT = TLI.getRegisterType(*DAG.getContext(), ValueVTs[0]);
6122    ISD::InputArg RetArg(Flags, RegisterVT, true);
6123    Ins.push_back(RetArg);
6124  }
6125
6126  // Set up the incoming argument description vector.
6127  unsigned Idx = 1;
6128  for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end();
6129       I != E; ++I, ++Idx) {
6130    SmallVector<EVT, 4> ValueVTs;
6131    ComputeValueVTs(TLI, I->getType(), ValueVTs);
6132    bool isArgValueUsed = !I->use_empty();
6133    for (unsigned Value = 0, NumValues = ValueVTs.size();
6134         Value != NumValues; ++Value) {
6135      EVT VT = ValueVTs[Value];
6136      const Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
6137      ISD::ArgFlagsTy Flags;
6138      unsigned OriginalAlignment =
6139        TD->getABITypeAlignment(ArgTy);
6140
6141      if (F.paramHasAttr(Idx, Attribute::ZExt))
6142        Flags.setZExt();
6143      if (F.paramHasAttr(Idx, Attribute::SExt))
6144        Flags.setSExt();
6145      if (F.paramHasAttr(Idx, Attribute::InReg))
6146        Flags.setInReg();
6147      if (F.paramHasAttr(Idx, Attribute::StructRet))
6148        Flags.setSRet();
6149      if (F.paramHasAttr(Idx, Attribute::ByVal)) {
6150        Flags.setByVal();
6151        const PointerType *Ty = cast<PointerType>(I->getType());
6152        const Type *ElementTy = Ty->getElementType();
6153        unsigned FrameAlign = TLI.getByValTypeAlignment(ElementTy);
6154        unsigned FrameSize  = TD->getTypeAllocSize(ElementTy);
6155        // For ByVal, alignment should be passed from FE.  BE will guess if
6156        // this info is not there but there are cases it cannot get right.
6157        if (F.getParamAlignment(Idx))
6158          FrameAlign = F.getParamAlignment(Idx);
6159        Flags.setByValAlign(FrameAlign);
6160        Flags.setByValSize(FrameSize);
6161      }
6162      if (F.paramHasAttr(Idx, Attribute::Nest))
6163        Flags.setNest();
6164      Flags.setOrigAlign(OriginalAlignment);
6165
6166      EVT RegisterVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
6167      unsigned NumRegs = TLI.getNumRegisters(*CurDAG->getContext(), VT);
6168      for (unsigned i = 0; i != NumRegs; ++i) {
6169        ISD::InputArg MyFlags(Flags, RegisterVT, isArgValueUsed);
6170        if (NumRegs > 1 && i == 0)
6171          MyFlags.Flags.setSplit();
6172        // if it isn't first piece, alignment must be 1
6173        else if (i > 0)
6174          MyFlags.Flags.setOrigAlign(1);
6175        Ins.push_back(MyFlags);
6176      }
6177    }
6178  }
6179
6180  // Call the target to set up the argument values.
6181  SmallVector<SDValue, 8> InVals;
6182  SDValue NewRoot = TLI.LowerFormalArguments(DAG.getRoot(), F.getCallingConv(),
6183                                             F.isVarArg(), Ins,
6184                                             dl, DAG, InVals);
6185
6186  // Verify that the target's LowerFormalArguments behaved as expected.
6187  assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
6188         "LowerFormalArguments didn't return a valid chain!");
6189  assert(InVals.size() == Ins.size() &&
6190         "LowerFormalArguments didn't emit the correct number of values!");
6191  DEBUG({
6192      for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
6193        assert(InVals[i].getNode() &&
6194               "LowerFormalArguments emitted a null value!");
6195        assert(Ins[i].VT == InVals[i].getValueType() &&
6196               "LowerFormalArguments emitted a value with the wrong type!");
6197      }
6198    });
6199
6200  // Update the DAG with the new chain value resulting from argument lowering.
6201  DAG.setRoot(NewRoot);
6202
6203  // Set up the argument values.
6204  unsigned i = 0;
6205  Idx = 1;
6206  if (!FuncInfo->CanLowerReturn) {
6207    // Create a virtual register for the sret pointer, and put in a copy
6208    // from the sret argument into it.
6209    SmallVector<EVT, 1> ValueVTs;
6210    ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs);
6211    EVT VT = ValueVTs[0];
6212    EVT RegVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
6213    ISD::NodeType AssertOp = ISD::DELETED_NODE;
6214    SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1,
6215                                        RegVT, VT, AssertOp);
6216
6217    MachineFunction& MF = SDB->DAG.getMachineFunction();
6218    MachineRegisterInfo& RegInfo = MF.getRegInfo();
6219    unsigned SRetReg = RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT));
6220    FuncInfo->DemoteRegister = SRetReg;
6221    NewRoot = SDB->DAG.getCopyToReg(NewRoot, SDB->getCurDebugLoc(),
6222                                    SRetReg, ArgValue);
6223    DAG.setRoot(NewRoot);
6224
6225    // i indexes lowered arguments.  Bump it past the hidden sret argument.
6226    // Idx indexes LLVM arguments.  Don't touch it.
6227    ++i;
6228  }
6229
6230  for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E;
6231      ++I, ++Idx) {
6232    SmallVector<SDValue, 4> ArgValues;
6233    SmallVector<EVT, 4> ValueVTs;
6234    ComputeValueVTs(TLI, I->getType(), ValueVTs);
6235    unsigned NumValues = ValueVTs.size();
6236
6237    // If this argument is unused then remember its value. It is used to generate
6238    // debugging information.
6239    if (I->use_empty() && NumValues)
6240      SDB->setUnusedArgValue(I, InVals[i]);
6241
6242    for (unsigned Value = 0; Value != NumValues; ++Value) {
6243      EVT VT = ValueVTs[Value];
6244      EVT PartVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
6245      unsigned NumParts = TLI.getNumRegisters(*CurDAG->getContext(), VT);
6246
6247      if (!I->use_empty()) {
6248        ISD::NodeType AssertOp = ISD::DELETED_NODE;
6249        if (F.paramHasAttr(Idx, Attribute::SExt))
6250          AssertOp = ISD::AssertSext;
6251        else if (F.paramHasAttr(Idx, Attribute::ZExt))
6252          AssertOp = ISD::AssertZext;
6253
6254        ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i],
6255                                             NumParts, PartVT, VT,
6256                                             AssertOp));
6257      }
6258
6259      i += NumParts;
6260    }
6261
6262    // Note down frame index for byval arguments.
6263    if (I->hasByValAttr() && !ArgValues.empty())
6264      if (FrameIndexSDNode *FI =
6265          dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
6266        FuncInfo->setByValArgumentFrameIndex(I, FI->getIndex());
6267
6268    if (!I->use_empty()) {
6269      SDValue Res;
6270      if (!ArgValues.empty())
6271        Res = DAG.getMergeValues(&ArgValues[0], NumValues,
6272                                 SDB->getCurDebugLoc());
6273      SDB->setValue(I, Res);
6274
6275      // If this argument is live outside of the entry block, insert a copy from
6276      // whereever we got it to the vreg that other BB's will reference it as.
6277      SDB->CopyToExportRegsIfNeeded(I);
6278    }
6279  }
6280
6281  assert(i == InVals.size() && "Argument register count mismatch!");
6282
6283  // Finally, if the target has anything special to do, allow it to do so.
6284  // FIXME: this should insert code into the DAG!
6285  EmitFunctionEntryCode();
6286}
6287
6288/// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
6289/// ensure constants are generated when needed.  Remember the virtual registers
6290/// that need to be added to the Machine PHI nodes as input.  We cannot just
6291/// directly add them, because expansion might result in multiple MBB's for one
6292/// BB.  As such, the start of the BB might correspond to a different MBB than
6293/// the end.
6294///
6295void
6296SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
6297  const TerminatorInst *TI = LLVMBB->getTerminator();
6298
6299  SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
6300
6301  // Check successor nodes' PHI nodes that expect a constant to be available
6302  // from this block.
6303  for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
6304    const BasicBlock *SuccBB = TI->getSuccessor(succ);
6305    if (!isa<PHINode>(SuccBB->begin())) continue;
6306    MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
6307
6308    // If this terminator has multiple identical successors (common for
6309    // switches), only handle each succ once.
6310    if (!SuccsHandled.insert(SuccMBB)) continue;
6311
6312    MachineBasicBlock::iterator MBBI = SuccMBB->begin();
6313
6314    // At this point we know that there is a 1-1 correspondence between LLVM PHI
6315    // nodes and Machine PHI nodes, but the incoming operands have not been
6316    // emitted yet.
6317    for (BasicBlock::const_iterator I = SuccBB->begin();
6318         const PHINode *PN = dyn_cast<PHINode>(I); ++I) {
6319      // Ignore dead phi's.
6320      if (PN->use_empty()) continue;
6321
6322      unsigned Reg;
6323      const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
6324
6325      if (const Constant *C = dyn_cast<Constant>(PHIOp)) {
6326        unsigned &RegOut = ConstantsOut[C];
6327        if (RegOut == 0) {
6328          RegOut = FuncInfo.CreateRegs(C->getType());
6329          CopyValueToVirtualRegister(C, RegOut);
6330        }
6331        Reg = RegOut;
6332      } else {
6333        DenseMap<const Value *, unsigned>::iterator I =
6334          FuncInfo.ValueMap.find(PHIOp);
6335        if (I != FuncInfo.ValueMap.end())
6336          Reg = I->second;
6337        else {
6338          assert(isa<AllocaInst>(PHIOp) &&
6339                 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
6340                 "Didn't codegen value into a register!??");
6341          Reg = FuncInfo.CreateRegs(PHIOp->getType());
6342          CopyValueToVirtualRegister(PHIOp, Reg);
6343        }
6344      }
6345
6346      // Remember that this register needs to added to the machine PHI node as
6347      // the input for this MBB.
6348      SmallVector<EVT, 4> ValueVTs;
6349      ComputeValueVTs(TLI, PN->getType(), ValueVTs);
6350      for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
6351        EVT VT = ValueVTs[vti];
6352        unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
6353        for (unsigned i = 0, e = NumRegisters; i != e; ++i)
6354          FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i));
6355        Reg += NumRegisters;
6356      }
6357    }
6358  }
6359  ConstantsOut.clear();
6360}
6361