SelectionDAGBuilder.cpp revision e9bf7e692e56656ef13b33af86624d0fdcd578fb
1//===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements routines for translating from LLVM IR into SelectionDAG IR.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "isel"
15#include "SDNodeDbgValue.h"
16#include "SelectionDAGBuilder.h"
17#include "llvm/ADT/BitVector.h"
18#include "llvm/ADT/SmallSet.h"
19#include "llvm/Analysis/AliasAnalysis.h"
20#include "llvm/Analysis/ConstantFolding.h"
21#include "llvm/Constants.h"
22#include "llvm/CallingConv.h"
23#include "llvm/DerivedTypes.h"
24#include "llvm/Function.h"
25#include "llvm/GlobalVariable.h"
26#include "llvm/InlineAsm.h"
27#include "llvm/Instructions.h"
28#include "llvm/Intrinsics.h"
29#include "llvm/IntrinsicInst.h"
30#include "llvm/LLVMContext.h"
31#include "llvm/Module.h"
32#include "llvm/CodeGen/Analysis.h"
33#include "llvm/CodeGen/FastISel.h"
34#include "llvm/CodeGen/FunctionLoweringInfo.h"
35#include "llvm/CodeGen/GCStrategy.h"
36#include "llvm/CodeGen/GCMetadata.h"
37#include "llvm/CodeGen/MachineFunction.h"
38#include "llvm/CodeGen/MachineFrameInfo.h"
39#include "llvm/CodeGen/MachineInstrBuilder.h"
40#include "llvm/CodeGen/MachineJumpTableInfo.h"
41#include "llvm/CodeGen/MachineModuleInfo.h"
42#include "llvm/CodeGen/MachineRegisterInfo.h"
43#include "llvm/CodeGen/PseudoSourceValue.h"
44#include "llvm/CodeGen/SelectionDAG.h"
45#include "llvm/Analysis/DebugInfo.h"
46#include "llvm/Target/TargetRegisterInfo.h"
47#include "llvm/Target/TargetData.h"
48#include "llvm/Target/TargetFrameInfo.h"
49#include "llvm/Target/TargetInstrInfo.h"
50#include "llvm/Target/TargetIntrinsicInfo.h"
51#include "llvm/Target/TargetLowering.h"
52#include "llvm/Target/TargetOptions.h"
53#include "llvm/Support/Compiler.h"
54#include "llvm/Support/CommandLine.h"
55#include "llvm/Support/Debug.h"
56#include "llvm/Support/ErrorHandling.h"
57#include "llvm/Support/MathExtras.h"
58#include "llvm/Support/raw_ostream.h"
59#include <algorithm>
60using namespace llvm;
61
62/// LimitFloatPrecision - Generate low-precision inline sequences for
63/// some float libcalls (6, 8 or 12 bits).
64static unsigned LimitFloatPrecision;
65
66static cl::opt<unsigned, true>
67LimitFPPrecision("limit-float-precision",
68                 cl::desc("Generate low-precision inline sequences "
69                          "for some float libcalls"),
70                 cl::location(LimitFloatPrecision),
71                 cl::init(0));
72
73/// getCopyFromParts - Create a value that contains the specified legal parts
74/// combined into the value they represent.  If the parts combine to a type
75/// larger then ValueVT then AssertOp can be used to specify whether the extra
76/// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
77/// (ISD::AssertSext).
78static SDValue getCopyFromParts(SelectionDAG &DAG, DebugLoc dl,
79                                const SDValue *Parts,
80                                unsigned NumParts, EVT PartVT, EVT ValueVT,
81                                ISD::NodeType AssertOp = ISD::DELETED_NODE) {
82  assert(NumParts > 0 && "No parts to assemble!");
83  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
84  SDValue Val = Parts[0];
85
86  if (NumParts > 1) {
87    // Assemble the value from multiple parts.
88    if (!ValueVT.isVector() && ValueVT.isInteger()) {
89      unsigned PartBits = PartVT.getSizeInBits();
90      unsigned ValueBits = ValueVT.getSizeInBits();
91
92      // Assemble the power of 2 part.
93      unsigned RoundParts = NumParts & (NumParts - 1) ?
94        1 << Log2_32(NumParts) : NumParts;
95      unsigned RoundBits = PartBits * RoundParts;
96      EVT RoundVT = RoundBits == ValueBits ?
97        ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
98      SDValue Lo, Hi;
99
100      EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
101
102      if (RoundParts > 2) {
103        Lo = getCopyFromParts(DAG, dl, Parts, RoundParts / 2,
104                              PartVT, HalfVT);
105        Hi = getCopyFromParts(DAG, dl, Parts + RoundParts / 2,
106                              RoundParts / 2, PartVT, HalfVT);
107      } else {
108        Lo = DAG.getNode(ISD::BIT_CONVERT, dl, HalfVT, Parts[0]);
109        Hi = DAG.getNode(ISD::BIT_CONVERT, dl, HalfVT, Parts[1]);
110      }
111
112      if (TLI.isBigEndian())
113        std::swap(Lo, Hi);
114
115      Val = DAG.getNode(ISD::BUILD_PAIR, dl, RoundVT, Lo, Hi);
116
117      if (RoundParts < NumParts) {
118        // Assemble the trailing non-power-of-2 part.
119        unsigned OddParts = NumParts - RoundParts;
120        EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
121        Hi = getCopyFromParts(DAG, dl,
122                              Parts + RoundParts, OddParts, PartVT, OddVT);
123
124        // Combine the round and odd parts.
125        Lo = Val;
126        if (TLI.isBigEndian())
127          std::swap(Lo, Hi);
128        EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
129        Hi = DAG.getNode(ISD::ANY_EXTEND, dl, TotalVT, Hi);
130        Hi = DAG.getNode(ISD::SHL, dl, TotalVT, Hi,
131                         DAG.getConstant(Lo.getValueType().getSizeInBits(),
132                                         TLI.getPointerTy()));
133        Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, TotalVT, Lo);
134        Val = DAG.getNode(ISD::OR, dl, TotalVT, Lo, Hi);
135      }
136    } else if (ValueVT.isVector()) {
137      // Handle a multi-element vector.
138      EVT IntermediateVT, RegisterVT;
139      unsigned NumIntermediates;
140      unsigned NumRegs =
141        TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
142                                   NumIntermediates, RegisterVT);
143      assert(NumRegs == NumParts
144             && "Part count doesn't match vector breakdown!");
145      NumParts = NumRegs; // Silence a compiler warning.
146      assert(RegisterVT == PartVT
147             && "Part type doesn't match vector breakdown!");
148      assert(RegisterVT == Parts[0].getValueType() &&
149             "Part type doesn't match part!");
150
151      // Assemble the parts into intermediate operands.
152      SmallVector<SDValue, 8> Ops(NumIntermediates);
153      if (NumIntermediates == NumParts) {
154        // If the register was not expanded, truncate or copy the value,
155        // as appropriate.
156        for (unsigned i = 0; i != NumParts; ++i)
157          Ops[i] = getCopyFromParts(DAG, dl, &Parts[i], 1,
158                                    PartVT, IntermediateVT);
159      } else if (NumParts > 0) {
160        // If the intermediate type was expanded, build the intermediate
161        // operands from the parts.
162        assert(NumParts % NumIntermediates == 0 &&
163               "Must expand into a divisible number of parts!");
164        unsigned Factor = NumParts / NumIntermediates;
165        for (unsigned i = 0; i != NumIntermediates; ++i)
166          Ops[i] = getCopyFromParts(DAG, dl, &Parts[i * Factor], Factor,
167                                    PartVT, IntermediateVT);
168      }
169
170      // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
171      // intermediate operands.
172      Val = DAG.getNode(IntermediateVT.isVector() ?
173                        ISD::CONCAT_VECTORS : ISD::BUILD_VECTOR, dl,
174                        ValueVT, &Ops[0], NumIntermediates);
175    } else if (PartVT.isFloatingPoint()) {
176      // FP split into multiple FP parts (for ppcf128)
177      assert(ValueVT == EVT(MVT::ppcf128) && PartVT == EVT(MVT::f64) &&
178             "Unexpected split");
179      SDValue Lo, Hi;
180      Lo = DAG.getNode(ISD::BIT_CONVERT, dl, EVT(MVT::f64), Parts[0]);
181      Hi = DAG.getNode(ISD::BIT_CONVERT, dl, EVT(MVT::f64), Parts[1]);
182      if (TLI.isBigEndian())
183        std::swap(Lo, Hi);
184      Val = DAG.getNode(ISD::BUILD_PAIR, dl, ValueVT, Lo, Hi);
185    } else {
186      // FP split into integer parts (soft fp)
187      assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
188             !PartVT.isVector() && "Unexpected split");
189      EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
190      Val = getCopyFromParts(DAG, dl, Parts, NumParts, PartVT, IntVT);
191    }
192  }
193
194  // There is now one part, held in Val.  Correct it to match ValueVT.
195  PartVT = Val.getValueType();
196
197  if (PartVT == ValueVT)
198    return Val;
199
200  if (PartVT.isVector()) {
201    assert(ValueVT.isVector() && "Unknown vector conversion!");
202    return DAG.getNode(ISD::BIT_CONVERT, dl, ValueVT, Val);
203  }
204
205  if (ValueVT.isVector()) {
206    assert(ValueVT.getVectorElementType() == PartVT &&
207           ValueVT.getVectorNumElements() == 1 &&
208           "Only trivial scalar-to-vector conversions should get here!");
209    return DAG.getNode(ISD::BUILD_VECTOR, dl, ValueVT, Val);
210  }
211
212  if (PartVT.isInteger() &&
213      ValueVT.isInteger()) {
214    if (ValueVT.bitsLT(PartVT)) {
215      // For a truncate, see if we have any information to
216      // indicate whether the truncated bits will always be
217      // zero or sign-extension.
218      if (AssertOp != ISD::DELETED_NODE)
219        Val = DAG.getNode(AssertOp, dl, PartVT, Val,
220                          DAG.getValueType(ValueVT));
221      return DAG.getNode(ISD::TRUNCATE, dl, ValueVT, Val);
222    } else {
223      return DAG.getNode(ISD::ANY_EXTEND, dl, ValueVT, Val);
224    }
225  }
226
227  if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
228    if (ValueVT.bitsLT(Val.getValueType())) {
229      // FP_ROUND's are always exact here.
230      return DAG.getNode(ISD::FP_ROUND, dl, ValueVT, Val,
231                         DAG.getIntPtrConstant(1));
232    }
233
234    return DAG.getNode(ISD::FP_EXTEND, dl, ValueVT, Val);
235  }
236
237  if (PartVT.getSizeInBits() == ValueVT.getSizeInBits())
238    return DAG.getNode(ISD::BIT_CONVERT, dl, ValueVT, Val);
239
240  llvm_unreachable("Unknown mismatch!");
241  return SDValue();
242}
243
244/// getCopyToParts - Create a series of nodes that contain the specified value
245/// split into legal parts.  If the parts contain more bits than Val, then, for
246/// integers, ExtendKind can be used to specify how to generate the extra bits.
247static void getCopyToParts(SelectionDAG &DAG, DebugLoc dl,
248                           SDValue Val, SDValue *Parts, unsigned NumParts,
249                           EVT PartVT,
250                           ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
251  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
252  EVT PtrVT = TLI.getPointerTy();
253  EVT ValueVT = Val.getValueType();
254  unsigned PartBits = PartVT.getSizeInBits();
255  unsigned OrigNumParts = NumParts;
256  assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!");
257
258  if (!NumParts)
259    return;
260
261  if (!ValueVT.isVector()) {
262    if (PartVT == ValueVT) {
263      assert(NumParts == 1 && "No-op copy with multiple parts!");
264      Parts[0] = Val;
265      return;
266    }
267
268    if (NumParts * PartBits > ValueVT.getSizeInBits()) {
269      // If the parts cover more bits than the value has, promote the value.
270      if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
271        assert(NumParts == 1 && "Do not know what to promote to!");
272        Val = DAG.getNode(ISD::FP_EXTEND, dl, PartVT, Val);
273      } else if (PartVT.isInteger() && ValueVT.isInteger()) {
274        ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
275        Val = DAG.getNode(ExtendKind, dl, ValueVT, Val);
276      } else {
277        llvm_unreachable("Unknown mismatch!");
278      }
279    } else if (PartBits == ValueVT.getSizeInBits()) {
280      // Different types of the same size.
281      assert(NumParts == 1 && PartVT != ValueVT);
282      Val = DAG.getNode(ISD::BIT_CONVERT, dl, PartVT, Val);
283    } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
284      // If the parts cover less bits than value has, truncate the value.
285      if (PartVT.isInteger() && ValueVT.isInteger()) {
286        ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
287        Val = DAG.getNode(ISD::TRUNCATE, dl, ValueVT, Val);
288      } else {
289        llvm_unreachable("Unknown mismatch!");
290      }
291    }
292
293    // The value may have changed - recompute ValueVT.
294    ValueVT = Val.getValueType();
295    assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
296           "Failed to tile the value with PartVT!");
297
298    if (NumParts == 1) {
299      assert(PartVT == ValueVT && "Type conversion failed!");
300      Parts[0] = Val;
301      return;
302    }
303
304    // Expand the value into multiple parts.
305    if (NumParts & (NumParts - 1)) {
306      // The number of parts is not a power of 2.  Split off and copy the tail.
307      assert(PartVT.isInteger() && ValueVT.isInteger() &&
308             "Do not know what to expand to!");
309      unsigned RoundParts = 1 << Log2_32(NumParts);
310      unsigned RoundBits = RoundParts * PartBits;
311      unsigned OddParts = NumParts - RoundParts;
312      SDValue OddVal = DAG.getNode(ISD::SRL, dl, ValueVT, Val,
313                                   DAG.getConstant(RoundBits,
314                                                   TLI.getPointerTy()));
315      getCopyToParts(DAG, dl, OddVal, Parts + RoundParts,
316                     OddParts, PartVT);
317
318      if (TLI.isBigEndian())
319        // The odd parts were reversed by getCopyToParts - unreverse them.
320        std::reverse(Parts + RoundParts, Parts + NumParts);
321
322      NumParts = RoundParts;
323      ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
324      Val = DAG.getNode(ISD::TRUNCATE, dl, ValueVT, Val);
325    }
326
327    // The number of parts is a power of 2.  Repeatedly bisect the value using
328    // EXTRACT_ELEMENT.
329    Parts[0] = DAG.getNode(ISD::BIT_CONVERT, dl,
330                           EVT::getIntegerVT(*DAG.getContext(),
331                                             ValueVT.getSizeInBits()),
332                           Val);
333
334    for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
335      for (unsigned i = 0; i < NumParts; i += StepSize) {
336        unsigned ThisBits = StepSize * PartBits / 2;
337        EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
338        SDValue &Part0 = Parts[i];
339        SDValue &Part1 = Parts[i+StepSize/2];
340
341        Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
342                            ThisVT, Part0,
343                            DAG.getConstant(1, PtrVT));
344        Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
345                            ThisVT, Part0,
346                            DAG.getConstant(0, PtrVT));
347
348        if (ThisBits == PartBits && ThisVT != PartVT) {
349          Part0 = DAG.getNode(ISD::BIT_CONVERT, dl,
350                                                PartVT, Part0);
351          Part1 = DAG.getNode(ISD::BIT_CONVERT, dl,
352                                                PartVT, Part1);
353        }
354      }
355    }
356
357    if (TLI.isBigEndian())
358      std::reverse(Parts, Parts + OrigNumParts);
359
360    return;
361  }
362
363  // Vector ValueVT.
364  if (NumParts == 1) {
365    if (PartVT != ValueVT) {
366      if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
367        Val = DAG.getNode(ISD::BIT_CONVERT, dl, PartVT, Val);
368      } else {
369        assert(ValueVT.getVectorElementType() == PartVT &&
370               ValueVT.getVectorNumElements() == 1 &&
371               "Only trivial vector-to-scalar conversions should get here!");
372        Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
373                          PartVT, Val,
374                          DAG.getConstant(0, PtrVT));
375      }
376    }
377
378    Parts[0] = Val;
379    return;
380  }
381
382  // Handle a multi-element vector.
383  EVT IntermediateVT, RegisterVT;
384  unsigned NumIntermediates;
385  unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT,
386                              IntermediateVT, NumIntermediates, RegisterVT);
387  unsigned NumElements = ValueVT.getVectorNumElements();
388
389  assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
390  NumParts = NumRegs; // Silence a compiler warning.
391  assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
392
393  // Split the vector into intermediate operands.
394  SmallVector<SDValue, 8> Ops(NumIntermediates);
395  for (unsigned i = 0; i != NumIntermediates; ++i) {
396    if (IntermediateVT.isVector())
397      Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl,
398                           IntermediateVT, Val,
399                           DAG.getConstant(i * (NumElements / NumIntermediates),
400                                           PtrVT));
401    else
402      Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
403                           IntermediateVT, Val,
404                           DAG.getConstant(i, PtrVT));
405  }
406
407  // Split the intermediate operands into legal parts.
408  if (NumParts == NumIntermediates) {
409    // If the register was not expanded, promote or copy the value,
410    // as appropriate.
411    for (unsigned i = 0; i != NumParts; ++i)
412      getCopyToParts(DAG, dl, Ops[i], &Parts[i], 1, PartVT);
413  } else if (NumParts > 0) {
414    // If the intermediate type was expanded, split each the value into
415    // legal parts.
416    assert(NumParts % NumIntermediates == 0 &&
417           "Must expand into a divisible number of parts!");
418    unsigned Factor = NumParts / NumIntermediates;
419    for (unsigned i = 0; i != NumIntermediates; ++i)
420      getCopyToParts(DAG, dl, Ops[i], &Parts[i*Factor], Factor, PartVT);
421  }
422}
423
424namespace {
425  /// RegsForValue - This struct represents the registers (physical or virtual)
426  /// that a particular set of values is assigned, and the type information
427  /// about the value. The most common situation is to represent one value at a
428  /// time, but struct or array values are handled element-wise as multiple
429  /// values.  The splitting of aggregates is performed recursively, so that we
430  /// never have aggregate-typed registers. The values at this point do not
431  /// necessarily have legal types, so each value may require one or more
432  /// registers of some legal type.
433  ///
434  struct RegsForValue {
435    /// ValueVTs - The value types of the values, which may not be legal, and
436    /// may need be promoted or synthesized from one or more registers.
437    ///
438    SmallVector<EVT, 4> ValueVTs;
439
440    /// RegVTs - The value types of the registers. This is the same size as
441    /// ValueVTs and it records, for each value, what the type of the assigned
442    /// register or registers are. (Individual values are never synthesized
443    /// from more than one type of register.)
444    ///
445    /// With virtual registers, the contents of RegVTs is redundant with TLI's
446    /// getRegisterType member function, however when with physical registers
447    /// it is necessary to have a separate record of the types.
448    ///
449    SmallVector<EVT, 4> RegVTs;
450
451    /// Regs - This list holds the registers assigned to the values.
452    /// Each legal or promoted value requires one register, and each
453    /// expanded value requires multiple registers.
454    ///
455    SmallVector<unsigned, 4> Regs;
456
457    RegsForValue() {}
458
459    RegsForValue(const SmallVector<unsigned, 4> &regs,
460                 EVT regvt, EVT valuevt)
461      : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {}
462
463    RegsForValue(const SmallVector<unsigned, 4> &regs,
464                 const SmallVector<EVT, 4> &regvts,
465                 const SmallVector<EVT, 4> &valuevts)
466      : ValueVTs(valuevts), RegVTs(regvts), Regs(regs) {}
467
468    RegsForValue(LLVMContext &Context, const TargetLowering &tli,
469                 unsigned Reg, const Type *Ty) {
470      ComputeValueVTs(tli, Ty, ValueVTs);
471
472      for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
473        EVT ValueVT = ValueVTs[Value];
474        unsigned NumRegs = tli.getNumRegisters(Context, ValueVT);
475        EVT RegisterVT = tli.getRegisterType(Context, ValueVT);
476        for (unsigned i = 0; i != NumRegs; ++i)
477          Regs.push_back(Reg + i);
478        RegVTs.push_back(RegisterVT);
479        Reg += NumRegs;
480      }
481    }
482
483    /// areValueTypesLegal - Return true if types of all the values are legal.
484    bool areValueTypesLegal(const TargetLowering &TLI) {
485      for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
486        EVT RegisterVT = RegVTs[Value];
487        if (!TLI.isTypeLegal(RegisterVT))
488          return false;
489      }
490      return true;
491    }
492
493    /// append - Add the specified values to this one.
494    void append(const RegsForValue &RHS) {
495      ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end());
496      RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end());
497      Regs.append(RHS.Regs.begin(), RHS.Regs.end());
498    }
499
500    /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
501    /// this value and returns the result as a ValueVTs value.  This uses
502    /// Chain/Flag as the input and updates them for the output Chain/Flag.
503    /// If the Flag pointer is NULL, no flag is used.
504    SDValue getCopyFromRegs(SelectionDAG &DAG, FunctionLoweringInfo &FuncInfo,
505                            DebugLoc dl,
506                            SDValue &Chain, SDValue *Flag) const;
507
508    /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
509    /// specified value into the registers specified by this object.  This uses
510    /// Chain/Flag as the input and updates them for the output Chain/Flag.
511    /// If the Flag pointer is NULL, no flag is used.
512    void getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl,
513                       SDValue &Chain, SDValue *Flag) const;
514
515    /// AddInlineAsmOperands - Add this value to the specified inlineasm node
516    /// operand list.  This adds the code marker, matching input operand index
517    /// (if applicable), and includes the number of values added into it.
518    void AddInlineAsmOperands(unsigned Kind,
519                              bool HasMatching, unsigned MatchingIdx,
520                              SelectionDAG &DAG,
521                              std::vector<SDValue> &Ops) const;
522  };
523}
524
525/// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
526/// this value and returns the result as a ValueVT value.  This uses
527/// Chain/Flag as the input and updates them for the output Chain/Flag.
528/// If the Flag pointer is NULL, no flag is used.
529SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
530                                      FunctionLoweringInfo &FuncInfo,
531                                      DebugLoc dl,
532                                      SDValue &Chain, SDValue *Flag) const {
533  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
534
535  // Assemble the legal parts into the final values.
536  SmallVector<SDValue, 4> Values(ValueVTs.size());
537  SmallVector<SDValue, 8> Parts;
538  for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
539    // Copy the legal parts from the registers.
540    EVT ValueVT = ValueVTs[Value];
541    unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
542    EVT RegisterVT = RegVTs[Value];
543
544    Parts.resize(NumRegs);
545    for (unsigned i = 0; i != NumRegs; ++i) {
546      SDValue P;
547      if (Flag == 0) {
548        P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
549      } else {
550        P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
551        *Flag = P.getValue(2);
552      }
553
554      Chain = P.getValue(1);
555
556      // If the source register was virtual and if we know something about it,
557      // add an assert node.
558      if (TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) &&
559          RegisterVT.isInteger() && !RegisterVT.isVector()) {
560        unsigned SlotNo = Regs[Part+i]-TargetRegisterInfo::FirstVirtualRegister;
561        if (FuncInfo.LiveOutRegInfo.size() > SlotNo) {
562          const FunctionLoweringInfo::LiveOutInfo &LOI =
563            FuncInfo.LiveOutRegInfo[SlotNo];
564
565          unsigned RegSize = RegisterVT.getSizeInBits();
566          unsigned NumSignBits = LOI.NumSignBits;
567          unsigned NumZeroBits = LOI.KnownZero.countLeadingOnes();
568
569          // FIXME: We capture more information than the dag can represent.  For
570          // now, just use the tightest assertzext/assertsext possible.
571          bool isSExt = true;
572          EVT FromVT(MVT::Other);
573          if (NumSignBits == RegSize)
574            isSExt = true, FromVT = MVT::i1;   // ASSERT SEXT 1
575          else if (NumZeroBits >= RegSize-1)
576            isSExt = false, FromVT = MVT::i1;  // ASSERT ZEXT 1
577          else if (NumSignBits > RegSize-8)
578            isSExt = true, FromVT = MVT::i8;   // ASSERT SEXT 8
579          else if (NumZeroBits >= RegSize-8)
580            isSExt = false, FromVT = MVT::i8;  // ASSERT ZEXT 8
581          else if (NumSignBits > RegSize-16)
582            isSExt = true, FromVT = MVT::i16;  // ASSERT SEXT 16
583          else if (NumZeroBits >= RegSize-16)
584            isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16
585          else if (NumSignBits > RegSize-32)
586            isSExt = true, FromVT = MVT::i32;  // ASSERT SEXT 32
587          else if (NumZeroBits >= RegSize-32)
588            isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32
589
590          if (FromVT != MVT::Other)
591            P = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
592                            RegisterVT, P, DAG.getValueType(FromVT));
593        }
594      }
595
596      Parts[i] = P;
597    }
598
599    Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(),
600                                     NumRegs, RegisterVT, ValueVT);
601    Part += NumRegs;
602    Parts.clear();
603  }
604
605  return DAG.getNode(ISD::MERGE_VALUES, dl,
606                     DAG.getVTList(&ValueVTs[0], ValueVTs.size()),
607                     &Values[0], ValueVTs.size());
608}
609
610/// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
611/// specified value into the registers specified by this object.  This uses
612/// Chain/Flag as the input and updates them for the output Chain/Flag.
613/// If the Flag pointer is NULL, no flag is used.
614void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl,
615                                 SDValue &Chain, SDValue *Flag) const {
616  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
617
618  // Get the list of the values's legal parts.
619  unsigned NumRegs = Regs.size();
620  SmallVector<SDValue, 8> Parts(NumRegs);
621  for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
622    EVT ValueVT = ValueVTs[Value];
623    unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
624    EVT RegisterVT = RegVTs[Value];
625
626    getCopyToParts(DAG, dl,
627                   Val.getValue(Val.getResNo() + Value),
628                   &Parts[Part], NumParts, RegisterVT);
629    Part += NumParts;
630  }
631
632  // Copy the parts into the registers.
633  SmallVector<SDValue, 8> Chains(NumRegs);
634  for (unsigned i = 0; i != NumRegs; ++i) {
635    SDValue Part;
636    if (Flag == 0) {
637      Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
638    } else {
639      Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
640      *Flag = Part.getValue(1);
641    }
642
643    Chains[i] = Part.getValue(0);
644  }
645
646  if (NumRegs == 1 || Flag)
647    // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
648    // flagged to it. That is the CopyToReg nodes and the user are considered
649    // a single scheduling unit. If we create a TokenFactor and return it as
650    // chain, then the TokenFactor is both a predecessor (operand) of the
651    // user as well as a successor (the TF operands are flagged to the user).
652    // c1, f1 = CopyToReg
653    // c2, f2 = CopyToReg
654    // c3     = TokenFactor c1, c2
655    // ...
656    //        = op c3, ..., f2
657    Chain = Chains[NumRegs-1];
658  else
659    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0], NumRegs);
660}
661
662/// AddInlineAsmOperands - Add this value to the specified inlineasm node
663/// operand list.  This adds the code marker and includes the number of
664/// values added into it.
665void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
666                                        unsigned MatchingIdx,
667                                        SelectionDAG &DAG,
668                                        std::vector<SDValue> &Ops) const {
669  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
670
671  unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
672  if (HasMatching)
673    Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
674  SDValue Res = DAG.getTargetConstant(Flag, MVT::i32);
675  Ops.push_back(Res);
676
677  for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
678    unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]);
679    EVT RegisterVT = RegVTs[Value];
680    for (unsigned i = 0; i != NumRegs; ++i) {
681      assert(Reg < Regs.size() && "Mismatch in # registers expected");
682      Ops.push_back(DAG.getRegister(Regs[Reg++], RegisterVT));
683    }
684  }
685}
686
687void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa) {
688  AA = &aa;
689  GFI = gfi;
690  TD = DAG.getTarget().getTargetData();
691}
692
693/// clear - Clear out the current SelectionDAG and the associated
694/// state and prepare this SelectionDAGBuilder object to be used
695/// for a new block. This doesn't clear out information about
696/// additional blocks that are needed to complete switch lowering
697/// or PHI node updating; that information is cleared out as it is
698/// consumed.
699void SelectionDAGBuilder::clear() {
700  NodeMap.clear();
701  UnusedArgNodeMap.clear();
702  PendingLoads.clear();
703  PendingExports.clear();
704  CurDebugLoc = DebugLoc();
705  HasTailCall = false;
706}
707
708/// getRoot - Return the current virtual root of the Selection DAG,
709/// flushing any PendingLoad items. This must be done before emitting
710/// a store or any other node that may need to be ordered after any
711/// prior load instructions.
712///
713SDValue SelectionDAGBuilder::getRoot() {
714  if (PendingLoads.empty())
715    return DAG.getRoot();
716
717  if (PendingLoads.size() == 1) {
718    SDValue Root = PendingLoads[0];
719    DAG.setRoot(Root);
720    PendingLoads.clear();
721    return Root;
722  }
723
724  // Otherwise, we have to make a token factor node.
725  SDValue Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
726                               &PendingLoads[0], PendingLoads.size());
727  PendingLoads.clear();
728  DAG.setRoot(Root);
729  return Root;
730}
731
732/// getControlRoot - Similar to getRoot, but instead of flushing all the
733/// PendingLoad items, flush all the PendingExports items. It is necessary
734/// to do this before emitting a terminator instruction.
735///
736SDValue SelectionDAGBuilder::getControlRoot() {
737  SDValue Root = DAG.getRoot();
738
739  if (PendingExports.empty())
740    return Root;
741
742  // Turn all of the CopyToReg chains into one factored node.
743  if (Root.getOpcode() != ISD::EntryToken) {
744    unsigned i = 0, e = PendingExports.size();
745    for (; i != e; ++i) {
746      assert(PendingExports[i].getNode()->getNumOperands() > 1);
747      if (PendingExports[i].getNode()->getOperand(0) == Root)
748        break;  // Don't add the root if we already indirectly depend on it.
749    }
750
751    if (i == e)
752      PendingExports.push_back(Root);
753  }
754
755  Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
756                     &PendingExports[0],
757                     PendingExports.size());
758  PendingExports.clear();
759  DAG.setRoot(Root);
760  return Root;
761}
762
763void SelectionDAGBuilder::AssignOrderingToNode(const SDNode *Node) {
764  if (DAG.GetOrdering(Node) != 0) return; // Already has ordering.
765  DAG.AssignOrdering(Node, SDNodeOrder);
766
767  for (unsigned I = 0, E = Node->getNumOperands(); I != E; ++I)
768    AssignOrderingToNode(Node->getOperand(I).getNode());
769}
770
771void SelectionDAGBuilder::visit(const Instruction &I) {
772  // Set up outgoing PHI node register values before emitting the terminator.
773  if (isa<TerminatorInst>(&I))
774    HandlePHINodesInSuccessorBlocks(I.getParent());
775
776  CurDebugLoc = I.getDebugLoc();
777
778  visit(I.getOpcode(), I);
779
780  if (!isa<TerminatorInst>(&I) && !HasTailCall)
781    CopyToExportRegsIfNeeded(&I);
782
783  CurDebugLoc = DebugLoc();
784}
785
786void SelectionDAGBuilder::visitPHI(const PHINode &) {
787  llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
788}
789
790void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
791  // Note: this doesn't use InstVisitor, because it has to work with
792  // ConstantExpr's in addition to instructions.
793  switch (Opcode) {
794  default: llvm_unreachable("Unknown instruction type encountered!");
795    // Build the switch statement using the Instruction.def file.
796#define HANDLE_INST(NUM, OPCODE, CLASS) \
797    case Instruction::OPCODE: visit##OPCODE((CLASS&)I); break;
798#include "llvm/Instruction.def"
799#undef HANDLE_INST
800  }
801
802  // Assign the ordering to the freshly created DAG nodes.
803  if (NodeMap.count(&I)) {
804    ++SDNodeOrder;
805    AssignOrderingToNode(getValue(&I).getNode());
806  }
807}
808
809// getValue - Return an SDValue for the given Value.
810SDValue SelectionDAGBuilder::getValue(const Value *V) {
811  // If we already have an SDValue for this value, use it. It's important
812  // to do this first, so that we don't create a CopyFromReg if we already
813  // have a regular SDValue.
814  SDValue &N = NodeMap[V];
815  if (N.getNode()) return N;
816
817  // If there's a virtual register allocated and initialized for this
818  // value, use it.
819  DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V);
820  if (It != FuncInfo.ValueMap.end()) {
821    unsigned InReg = It->second;
822    RegsForValue RFV(*DAG.getContext(), TLI, InReg, V->getType());
823    SDValue Chain = DAG.getEntryNode();
824    return N = RFV.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), Chain,NULL);
825  }
826
827  // Otherwise create a new SDValue and remember it.
828  SDValue Val = getValueImpl(V);
829  NodeMap[V] = Val;
830  return Val;
831}
832
833/// getNonRegisterValue - Return an SDValue for the given Value, but
834/// don't look in FuncInfo.ValueMap for a virtual register.
835SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
836  // If we already have an SDValue for this value, use it.
837  SDValue &N = NodeMap[V];
838  if (N.getNode()) return N;
839
840  // Otherwise create a new SDValue and remember it.
841  SDValue Val = getValueImpl(V);
842  NodeMap[V] = Val;
843  return Val;
844}
845
846/// getValueImpl - Helper function for getValue and getMaterializedValue.
847/// Create an SDValue for the given value.
848SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
849  if (const Constant *C = dyn_cast<Constant>(V)) {
850    EVT VT = TLI.getValueType(V->getType(), true);
851
852    if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
853      return DAG.getConstant(*CI, VT);
854
855    if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
856      return DAG.getGlobalAddress(GV, getCurDebugLoc(), VT);
857
858    if (isa<ConstantPointerNull>(C))
859      return DAG.getConstant(0, TLI.getPointerTy());
860
861    if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
862      return DAG.getConstantFP(*CFP, VT);
863
864    if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
865      return DAG.getUNDEF(VT);
866
867    if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
868      visit(CE->getOpcode(), *CE);
869      SDValue N1 = NodeMap[V];
870      assert(N1.getNode() && "visit didn't populate the NodeMap!");
871      return N1;
872    }
873
874    if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
875      SmallVector<SDValue, 4> Constants;
876      for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end();
877           OI != OE; ++OI) {
878        SDNode *Val = getValue(*OI).getNode();
879        // If the operand is an empty aggregate, there are no values.
880        if (!Val) continue;
881        // Add each leaf value from the operand to the Constants list
882        // to form a flattened list of all the values.
883        for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
884          Constants.push_back(SDValue(Val, i));
885      }
886
887      return DAG.getMergeValues(&Constants[0], Constants.size(),
888                                getCurDebugLoc());
889    }
890
891    if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
892      assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
893             "Unknown struct or array constant!");
894
895      SmallVector<EVT, 4> ValueVTs;
896      ComputeValueVTs(TLI, C->getType(), ValueVTs);
897      unsigned NumElts = ValueVTs.size();
898      if (NumElts == 0)
899        return SDValue(); // empty struct
900      SmallVector<SDValue, 4> Constants(NumElts);
901      for (unsigned i = 0; i != NumElts; ++i) {
902        EVT EltVT = ValueVTs[i];
903        if (isa<UndefValue>(C))
904          Constants[i] = DAG.getUNDEF(EltVT);
905        else if (EltVT.isFloatingPoint())
906          Constants[i] = DAG.getConstantFP(0, EltVT);
907        else
908          Constants[i] = DAG.getConstant(0, EltVT);
909      }
910
911      return DAG.getMergeValues(&Constants[0], NumElts,
912                                getCurDebugLoc());
913    }
914
915    if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
916      return DAG.getBlockAddress(BA, VT);
917
918    const VectorType *VecTy = cast<VectorType>(V->getType());
919    unsigned NumElements = VecTy->getNumElements();
920
921    // Now that we know the number and type of the elements, get that number of
922    // elements into the Ops array based on what kind of constant it is.
923    SmallVector<SDValue, 16> Ops;
924    if (const ConstantVector *CP = dyn_cast<ConstantVector>(C)) {
925      for (unsigned i = 0; i != NumElements; ++i)
926        Ops.push_back(getValue(CP->getOperand(i)));
927    } else {
928      assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!");
929      EVT EltVT = TLI.getValueType(VecTy->getElementType());
930
931      SDValue Op;
932      if (EltVT.isFloatingPoint())
933        Op = DAG.getConstantFP(0, EltVT);
934      else
935        Op = DAG.getConstant(0, EltVT);
936      Ops.assign(NumElements, Op);
937    }
938
939    // Create a BUILD_VECTOR node.
940    return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(),
941                                    VT, &Ops[0], Ops.size());
942  }
943
944  // If this is a static alloca, generate it as the frameindex instead of
945  // computation.
946  if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
947    DenseMap<const AllocaInst*, int>::iterator SI =
948      FuncInfo.StaticAllocaMap.find(AI);
949    if (SI != FuncInfo.StaticAllocaMap.end())
950      return DAG.getFrameIndex(SI->second, TLI.getPointerTy());
951  }
952
953  // If this is an instruction which fast-isel has deferred, select it now.
954  if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
955    unsigned InReg = FuncInfo.InitializeRegForValue(Inst);
956    RegsForValue RFV(*DAG.getContext(), TLI, InReg, Inst->getType());
957    SDValue Chain = DAG.getEntryNode();
958    return RFV.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), Chain, NULL);
959  }
960
961  llvm_unreachable("Can't get register for value!");
962  return SDValue();
963}
964
965void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
966  SDValue Chain = getControlRoot();
967  SmallVector<ISD::OutputArg, 8> Outs;
968  SmallVector<SDValue, 8> OutVals;
969
970  if (!FuncInfo.CanLowerReturn) {
971    unsigned DemoteReg = FuncInfo.DemoteRegister;
972    const Function *F = I.getParent()->getParent();
973
974    // Emit a store of the return value through the virtual register.
975    // Leave Outs empty so that LowerReturn won't try to load return
976    // registers the usual way.
977    SmallVector<EVT, 1> PtrValueVTs;
978    ComputeValueVTs(TLI, PointerType::getUnqual(F->getReturnType()),
979                    PtrValueVTs);
980
981    SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]);
982    SDValue RetOp = getValue(I.getOperand(0));
983
984    SmallVector<EVT, 4> ValueVTs;
985    SmallVector<uint64_t, 4> Offsets;
986    ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs, &Offsets);
987    unsigned NumValues = ValueVTs.size();
988
989    SmallVector<SDValue, 4> Chains(NumValues);
990    EVT PtrVT = PtrValueVTs[0];
991    for (unsigned i = 0; i != NumValues; ++i) {
992      SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT, RetPtr,
993                                DAG.getConstant(Offsets[i], PtrVT));
994      Chains[i] =
995        DAG.getStore(Chain, getCurDebugLoc(),
996                     SDValue(RetOp.getNode(), RetOp.getResNo() + i),
997                     Add, NULL, Offsets[i], false, false, 0);
998    }
999
1000    Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
1001                        MVT::Other, &Chains[0], NumValues);
1002  } else if (I.getNumOperands() != 0) {
1003    SmallVector<EVT, 4> ValueVTs;
1004    ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs);
1005    unsigned NumValues = ValueVTs.size();
1006    if (NumValues) {
1007      SDValue RetOp = getValue(I.getOperand(0));
1008      for (unsigned j = 0, f = NumValues; j != f; ++j) {
1009        EVT VT = ValueVTs[j];
1010
1011        ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1012
1013        const Function *F = I.getParent()->getParent();
1014        if (F->paramHasAttr(0, Attribute::SExt))
1015          ExtendKind = ISD::SIGN_EXTEND;
1016        else if (F->paramHasAttr(0, Attribute::ZExt))
1017          ExtendKind = ISD::ZERO_EXTEND;
1018
1019        // FIXME: C calling convention requires the return type to be promoted
1020        // to at least 32-bit. But this is not necessary for non-C calling
1021        // conventions. The frontend should mark functions whose return values
1022        // require promoting with signext or zeroext attributes.
1023        if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) {
1024          EVT MinVT = TLI.getRegisterType(*DAG.getContext(), MVT::i32);
1025          if (VT.bitsLT(MinVT))
1026            VT = MinVT;
1027        }
1028
1029        unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), VT);
1030        EVT PartVT = TLI.getRegisterType(*DAG.getContext(), VT);
1031        SmallVector<SDValue, 4> Parts(NumParts);
1032        getCopyToParts(DAG, getCurDebugLoc(),
1033                       SDValue(RetOp.getNode(), RetOp.getResNo() + j),
1034                       &Parts[0], NumParts, PartVT, ExtendKind);
1035
1036        // 'inreg' on function refers to return value
1037        ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1038        if (F->paramHasAttr(0, Attribute::InReg))
1039          Flags.setInReg();
1040
1041        // Propagate extension type if any
1042        if (F->paramHasAttr(0, Attribute::SExt))
1043          Flags.setSExt();
1044        else if (F->paramHasAttr(0, Attribute::ZExt))
1045          Flags.setZExt();
1046
1047        for (unsigned i = 0; i < NumParts; ++i) {
1048          Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(),
1049                                        /*isfixed=*/true));
1050          OutVals.push_back(Parts[i]);
1051        }
1052      }
1053    }
1054  }
1055
1056  bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
1057  CallingConv::ID CallConv =
1058    DAG.getMachineFunction().getFunction()->getCallingConv();
1059  Chain = TLI.LowerReturn(Chain, CallConv, isVarArg,
1060                          Outs, OutVals, getCurDebugLoc(), DAG);
1061
1062  // Verify that the target's LowerReturn behaved as expected.
1063  assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
1064         "LowerReturn didn't return a valid chain!");
1065
1066  // Update the DAG with the new chain value resulting from return lowering.
1067  DAG.setRoot(Chain);
1068}
1069
1070/// CopyToExportRegsIfNeeded - If the given value has virtual registers
1071/// created for it, emit nodes to copy the value into the virtual
1072/// registers.
1073void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
1074  DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
1075  if (VMI != FuncInfo.ValueMap.end()) {
1076    assert(!V->use_empty() && "Unused value assigned virtual registers!");
1077    CopyValueToVirtualRegister(V, VMI->second);
1078  }
1079}
1080
1081/// ExportFromCurrentBlock - If this condition isn't known to be exported from
1082/// the current basic block, add it to ValueMap now so that we'll get a
1083/// CopyTo/FromReg.
1084void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
1085  // No need to export constants.
1086  if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
1087
1088  // Already exported?
1089  if (FuncInfo.isExportedInst(V)) return;
1090
1091  unsigned Reg = FuncInfo.InitializeRegForValue(V);
1092  CopyValueToVirtualRegister(V, Reg);
1093}
1094
1095bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
1096                                                     const BasicBlock *FromBB) {
1097  // The operands of the setcc have to be in this block.  We don't know
1098  // how to export them from some other block.
1099  if (const Instruction *VI = dyn_cast<Instruction>(V)) {
1100    // Can export from current BB.
1101    if (VI->getParent() == FromBB)
1102      return true;
1103
1104    // Is already exported, noop.
1105    return FuncInfo.isExportedInst(V);
1106  }
1107
1108  // If this is an argument, we can export it if the BB is the entry block or
1109  // if it is already exported.
1110  if (isa<Argument>(V)) {
1111    if (FromBB == &FromBB->getParent()->getEntryBlock())
1112      return true;
1113
1114    // Otherwise, can only export this if it is already exported.
1115    return FuncInfo.isExportedInst(V);
1116  }
1117
1118  // Otherwise, constants can always be exported.
1119  return true;
1120}
1121
1122static bool InBlock(const Value *V, const BasicBlock *BB) {
1123  if (const Instruction *I = dyn_cast<Instruction>(V))
1124    return I->getParent() == BB;
1125  return true;
1126}
1127
1128/// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
1129/// This function emits a branch and is used at the leaves of an OR or an
1130/// AND operator tree.
1131///
1132void
1133SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
1134                                                  MachineBasicBlock *TBB,
1135                                                  MachineBasicBlock *FBB,
1136                                                  MachineBasicBlock *CurBB,
1137                                                  MachineBasicBlock *SwitchBB) {
1138  const BasicBlock *BB = CurBB->getBasicBlock();
1139
1140  // If the leaf of the tree is a comparison, merge the condition into
1141  // the caseblock.
1142  if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
1143    // The operands of the cmp have to be in this block.  We don't know
1144    // how to export them from some other block.  If this is the first block
1145    // of the sequence, no exporting is needed.
1146    if (CurBB == SwitchBB ||
1147        (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
1148         isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
1149      ISD::CondCode Condition;
1150      if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
1151        Condition = getICmpCondCode(IC->getPredicate());
1152      } else if (const FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) {
1153        Condition = getFCmpCondCode(FC->getPredicate());
1154      } else {
1155        Condition = ISD::SETEQ; // silence warning.
1156        llvm_unreachable("Unknown compare instruction");
1157      }
1158
1159      CaseBlock CB(Condition, BOp->getOperand(0),
1160                   BOp->getOperand(1), NULL, TBB, FBB, CurBB);
1161      SwitchCases.push_back(CB);
1162      return;
1163    }
1164  }
1165
1166  // Create a CaseBlock record representing this branch.
1167  CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()),
1168               NULL, TBB, FBB, CurBB);
1169  SwitchCases.push_back(CB);
1170}
1171
1172/// FindMergedConditions - If Cond is an expression like
1173void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
1174                                               MachineBasicBlock *TBB,
1175                                               MachineBasicBlock *FBB,
1176                                               MachineBasicBlock *CurBB,
1177                                               MachineBasicBlock *SwitchBB,
1178                                               unsigned Opc) {
1179  // If this node is not part of the or/and tree, emit it as a branch.
1180  const Instruction *BOp = dyn_cast<Instruction>(Cond);
1181  if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
1182      (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() ||
1183      BOp->getParent() != CurBB->getBasicBlock() ||
1184      !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
1185      !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
1186    EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB);
1187    return;
1188  }
1189
1190  //  Create TmpBB after CurBB.
1191  MachineFunction::iterator BBI = CurBB;
1192  MachineFunction &MF = DAG.getMachineFunction();
1193  MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
1194  CurBB->getParent()->insert(++BBI, TmpBB);
1195
1196  if (Opc == Instruction::Or) {
1197    // Codegen X | Y as:
1198    //   jmp_if_X TBB
1199    //   jmp TmpBB
1200    // TmpBB:
1201    //   jmp_if_Y TBB
1202    //   jmp FBB
1203    //
1204
1205    // Emit the LHS condition.
1206    FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc);
1207
1208    // Emit the RHS condition into TmpBB.
1209    FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc);
1210  } else {
1211    assert(Opc == Instruction::And && "Unknown merge op!");
1212    // Codegen X & Y as:
1213    //   jmp_if_X TmpBB
1214    //   jmp FBB
1215    // TmpBB:
1216    //   jmp_if_Y TBB
1217    //   jmp FBB
1218    //
1219    //  This requires creation of TmpBB after CurBB.
1220
1221    // Emit the LHS condition.
1222    FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc);
1223
1224    // Emit the RHS condition into TmpBB.
1225    FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc);
1226  }
1227}
1228
1229/// If the set of cases should be emitted as a series of branches, return true.
1230/// If we should emit this as a bunch of and/or'd together conditions, return
1231/// false.
1232bool
1233SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases){
1234  if (Cases.size() != 2) return true;
1235
1236  // If this is two comparisons of the same values or'd or and'd together, they
1237  // will get folded into a single comparison, so don't emit two blocks.
1238  if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
1239       Cases[0].CmpRHS == Cases[1].CmpRHS) ||
1240      (Cases[0].CmpRHS == Cases[1].CmpLHS &&
1241       Cases[0].CmpLHS == Cases[1].CmpRHS)) {
1242    return false;
1243  }
1244
1245  // Handle: (X != null) | (Y != null) --> (X|Y) != 0
1246  // Handle: (X == null) & (Y == null) --> (X|Y) == 0
1247  if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
1248      Cases[0].CC == Cases[1].CC &&
1249      isa<Constant>(Cases[0].CmpRHS) &&
1250      cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
1251    if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
1252      return false;
1253    if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
1254      return false;
1255  }
1256
1257  return true;
1258}
1259
1260void SelectionDAGBuilder::visitBr(const BranchInst &I) {
1261  MachineBasicBlock *BrMBB = FuncInfo.MBB;
1262
1263  // Update machine-CFG edges.
1264  MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
1265
1266  // Figure out which block is immediately after the current one.
1267  MachineBasicBlock *NextBlock = 0;
1268  MachineFunction::iterator BBI = BrMBB;
1269  if (++BBI != FuncInfo.MF->end())
1270    NextBlock = BBI;
1271
1272  if (I.isUnconditional()) {
1273    // Update machine-CFG edges.
1274    BrMBB->addSuccessor(Succ0MBB);
1275
1276    // If this is not a fall-through branch, emit the branch.
1277    if (Succ0MBB != NextBlock)
1278      DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
1279                              MVT::Other, getControlRoot(),
1280                              DAG.getBasicBlock(Succ0MBB)));
1281
1282    return;
1283  }
1284
1285  // If this condition is one of the special cases we handle, do special stuff
1286  // now.
1287  const Value *CondVal = I.getCondition();
1288  MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
1289
1290  // If this is a series of conditions that are or'd or and'd together, emit
1291  // this as a sequence of branches instead of setcc's with and/or operations.
1292  // For example, instead of something like:
1293  //     cmp A, B
1294  //     C = seteq
1295  //     cmp D, E
1296  //     F = setle
1297  //     or C, F
1298  //     jnz foo
1299  // Emit:
1300  //     cmp A, B
1301  //     je foo
1302  //     cmp D, E
1303  //     jle foo
1304  //
1305  if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
1306    if (BOp->hasOneUse() &&
1307        (BOp->getOpcode() == Instruction::And ||
1308         BOp->getOpcode() == Instruction::Or)) {
1309      FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB,
1310                           BOp->getOpcode());
1311      // If the compares in later blocks need to use values not currently
1312      // exported from this block, export them now.  This block should always
1313      // be the first entry.
1314      assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
1315
1316      // Allow some cases to be rejected.
1317      if (ShouldEmitAsBranches(SwitchCases)) {
1318        for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
1319          ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
1320          ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
1321        }
1322
1323        // Emit the branch for this block.
1324        visitSwitchCase(SwitchCases[0], BrMBB);
1325        SwitchCases.erase(SwitchCases.begin());
1326        return;
1327      }
1328
1329      // Okay, we decided not to do this, remove any inserted MBB's and clear
1330      // SwitchCases.
1331      for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
1332        FuncInfo.MF->erase(SwitchCases[i].ThisBB);
1333
1334      SwitchCases.clear();
1335    }
1336  }
1337
1338  // Create a CaseBlock record representing this branch.
1339  CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
1340               NULL, Succ0MBB, Succ1MBB, BrMBB);
1341
1342  // Use visitSwitchCase to actually insert the fast branch sequence for this
1343  // cond branch.
1344  visitSwitchCase(CB, BrMBB);
1345}
1346
1347/// visitSwitchCase - Emits the necessary code to represent a single node in
1348/// the binary search tree resulting from lowering a switch instruction.
1349void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
1350                                          MachineBasicBlock *SwitchBB) {
1351  SDValue Cond;
1352  SDValue CondLHS = getValue(CB.CmpLHS);
1353  DebugLoc dl = getCurDebugLoc();
1354
1355  // Build the setcc now.
1356  if (CB.CmpMHS == NULL) {
1357    // Fold "(X == true)" to X and "(X == false)" to !X to
1358    // handle common cases produced by branch lowering.
1359    if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
1360        CB.CC == ISD::SETEQ)
1361      Cond = CondLHS;
1362    else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
1363             CB.CC == ISD::SETEQ) {
1364      SDValue True = DAG.getConstant(1, CondLHS.getValueType());
1365      Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
1366    } else
1367      Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
1368  } else {
1369    assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
1370
1371    const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
1372    const APInt& High  = cast<ConstantInt>(CB.CmpRHS)->getValue();
1373
1374    SDValue CmpOp = getValue(CB.CmpMHS);
1375    EVT VT = CmpOp.getValueType();
1376
1377    if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
1378      Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, VT),
1379                          ISD::SETLE);
1380    } else {
1381      SDValue SUB = DAG.getNode(ISD::SUB, dl,
1382                                VT, CmpOp, DAG.getConstant(Low, VT));
1383      Cond = DAG.getSetCC(dl, MVT::i1, SUB,
1384                          DAG.getConstant(High-Low, VT), ISD::SETULE);
1385    }
1386  }
1387
1388  // Update successor info
1389  SwitchBB->addSuccessor(CB.TrueBB);
1390  SwitchBB->addSuccessor(CB.FalseBB);
1391
1392  // Set NextBlock to be the MBB immediately after the current one, if any.
1393  // This is used to avoid emitting unnecessary branches to the next block.
1394  MachineBasicBlock *NextBlock = 0;
1395  MachineFunction::iterator BBI = SwitchBB;
1396  if (++BBI != FuncInfo.MF->end())
1397    NextBlock = BBI;
1398
1399  // If the lhs block is the next block, invert the condition so that we can
1400  // fall through to the lhs instead of the rhs block.
1401  if (CB.TrueBB == NextBlock) {
1402    std::swap(CB.TrueBB, CB.FalseBB);
1403    SDValue True = DAG.getConstant(1, Cond.getValueType());
1404    Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
1405  }
1406
1407  SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
1408                               MVT::Other, getControlRoot(), Cond,
1409                               DAG.getBasicBlock(CB.TrueBB));
1410
1411  // Insert the false branch.
1412  if (CB.FalseBB != NextBlock)
1413    BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
1414                         DAG.getBasicBlock(CB.FalseBB));
1415
1416  DAG.setRoot(BrCond);
1417}
1418
1419/// visitJumpTable - Emit JumpTable node in the current MBB
1420void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) {
1421  // Emit the code for the jump table
1422  assert(JT.Reg != -1U && "Should lower JT Header first!");
1423  EVT PTy = TLI.getPointerTy();
1424  SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(),
1425                                     JT.Reg, PTy);
1426  SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
1427  SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurDebugLoc(),
1428                                    MVT::Other, Index.getValue(1),
1429                                    Table, Index);
1430  DAG.setRoot(BrJumpTable);
1431}
1432
1433/// visitJumpTableHeader - This function emits necessary code to produce index
1434/// in the JumpTable from switch case.
1435void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT,
1436                                               JumpTableHeader &JTH,
1437                                               MachineBasicBlock *SwitchBB) {
1438  // Subtract the lowest switch case value from the value being switched on and
1439  // conditional branch to default mbb if the result is greater than the
1440  // difference between smallest and largest cases.
1441  SDValue SwitchOp = getValue(JTH.SValue);
1442  EVT VT = SwitchOp.getValueType();
1443  SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp,
1444                            DAG.getConstant(JTH.First, VT));
1445
1446  // The SDNode we just created, which holds the value being switched on minus
1447  // the smallest case value, needs to be copied to a virtual register so it
1448  // can be used as an index into the jump table in a subsequent basic block.
1449  // This value may be smaller or larger than the target's pointer type, and
1450  // therefore require extension or truncating.
1451  SwitchOp = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(), TLI.getPointerTy());
1452
1453  unsigned JumpTableReg = FuncInfo.CreateReg(TLI.getPointerTy());
1454  SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(),
1455                                    JumpTableReg, SwitchOp);
1456  JT.Reg = JumpTableReg;
1457
1458  // Emit the range check for the jump table, and branch to the default block
1459  // for the switch statement if the value being switched on exceeds the largest
1460  // case in the switch.
1461  SDValue CMP = DAG.getSetCC(getCurDebugLoc(),
1462                             TLI.getSetCCResultType(Sub.getValueType()), Sub,
1463                             DAG.getConstant(JTH.Last-JTH.First,VT),
1464                             ISD::SETUGT);
1465
1466  // Set NextBlock to be the MBB immediately after the current one, if any.
1467  // This is used to avoid emitting unnecessary branches to the next block.
1468  MachineBasicBlock *NextBlock = 0;
1469  MachineFunction::iterator BBI = SwitchBB;
1470
1471  if (++BBI != FuncInfo.MF->end())
1472    NextBlock = BBI;
1473
1474  SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1475                               MVT::Other, CopyTo, CMP,
1476                               DAG.getBasicBlock(JT.Default));
1477
1478  if (JT.MBB != NextBlock)
1479    BrCond = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrCond,
1480                         DAG.getBasicBlock(JT.MBB));
1481
1482  DAG.setRoot(BrCond);
1483}
1484
1485/// visitBitTestHeader - This function emits necessary code to produce value
1486/// suitable for "bit tests"
1487void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
1488                                             MachineBasicBlock *SwitchBB) {
1489  // Subtract the minimum value
1490  SDValue SwitchOp = getValue(B.SValue);
1491  EVT VT = SwitchOp.getValueType();
1492  SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp,
1493                            DAG.getConstant(B.First, VT));
1494
1495  // Check range
1496  SDValue RangeCmp = DAG.getSetCC(getCurDebugLoc(),
1497                                  TLI.getSetCCResultType(Sub.getValueType()),
1498                                  Sub, DAG.getConstant(B.Range, VT),
1499                                  ISD::SETUGT);
1500
1501  SDValue ShiftOp = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(),
1502                                       TLI.getPointerTy());
1503
1504  B.Reg = FuncInfo.CreateReg(TLI.getPointerTy());
1505  SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(),
1506                                    B.Reg, ShiftOp);
1507
1508  // Set NextBlock to be the MBB immediately after the current one, if any.
1509  // This is used to avoid emitting unnecessary branches to the next block.
1510  MachineBasicBlock *NextBlock = 0;
1511  MachineFunction::iterator BBI = SwitchBB;
1512  if (++BBI != FuncInfo.MF->end())
1513    NextBlock = BBI;
1514
1515  MachineBasicBlock* MBB = B.Cases[0].ThisBB;
1516
1517  SwitchBB->addSuccessor(B.Default);
1518  SwitchBB->addSuccessor(MBB);
1519
1520  SDValue BrRange = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1521                                MVT::Other, CopyTo, RangeCmp,
1522                                DAG.getBasicBlock(B.Default));
1523
1524  if (MBB != NextBlock)
1525    BrRange = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, CopyTo,
1526                          DAG.getBasicBlock(MBB));
1527
1528  DAG.setRoot(BrRange);
1529}
1530
1531/// visitBitTestCase - this function produces one "bit test"
1532void SelectionDAGBuilder::visitBitTestCase(MachineBasicBlock* NextMBB,
1533                                           unsigned Reg,
1534                                           BitTestCase &B,
1535                                           MachineBasicBlock *SwitchBB) {
1536  SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(), Reg,
1537                                       TLI.getPointerTy());
1538  SDValue Cmp;
1539  if (CountPopulation_64(B.Mask) == 1) {
1540    // Testing for a single bit; just compare the shift count with what it
1541    // would need to be to shift a 1 bit in that position.
1542    Cmp = DAG.getSetCC(getCurDebugLoc(),
1543                       TLI.getSetCCResultType(ShiftOp.getValueType()),
1544                       ShiftOp,
1545                       DAG.getConstant(CountTrailingZeros_64(B.Mask),
1546                                       TLI.getPointerTy()),
1547                       ISD::SETEQ);
1548  } else {
1549    // Make desired shift
1550    SDValue SwitchVal = DAG.getNode(ISD::SHL, getCurDebugLoc(),
1551                                    TLI.getPointerTy(),
1552                                    DAG.getConstant(1, TLI.getPointerTy()),
1553                                    ShiftOp);
1554
1555    // Emit bit tests and jumps
1556    SDValue AndOp = DAG.getNode(ISD::AND, getCurDebugLoc(),
1557                                TLI.getPointerTy(), SwitchVal,
1558                                DAG.getConstant(B.Mask, TLI.getPointerTy()));
1559    Cmp = DAG.getSetCC(getCurDebugLoc(),
1560                       TLI.getSetCCResultType(AndOp.getValueType()),
1561                       AndOp, DAG.getConstant(0, TLI.getPointerTy()),
1562                       ISD::SETNE);
1563  }
1564
1565  SwitchBB->addSuccessor(B.TargetBB);
1566  SwitchBB->addSuccessor(NextMBB);
1567
1568  SDValue BrAnd = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1569                              MVT::Other, getControlRoot(),
1570                              Cmp, DAG.getBasicBlock(B.TargetBB));
1571
1572  // Set NextBlock to be the MBB immediately after the current one, if any.
1573  // This is used to avoid emitting unnecessary branches to the next block.
1574  MachineBasicBlock *NextBlock = 0;
1575  MachineFunction::iterator BBI = SwitchBB;
1576  if (++BBI != FuncInfo.MF->end())
1577    NextBlock = BBI;
1578
1579  if (NextMBB != NextBlock)
1580    BrAnd = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrAnd,
1581                        DAG.getBasicBlock(NextMBB));
1582
1583  DAG.setRoot(BrAnd);
1584}
1585
1586void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
1587  MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
1588
1589  // Retrieve successors.
1590  MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
1591  MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)];
1592
1593  const Value *Callee(I.getCalledValue());
1594  if (isa<InlineAsm>(Callee))
1595    visitInlineAsm(&I);
1596  else
1597    LowerCallTo(&I, getValue(Callee), false, LandingPad);
1598
1599  // If the value of the invoke is used outside of its defining block, make it
1600  // available as a virtual register.
1601  CopyToExportRegsIfNeeded(&I);
1602
1603  // Update successor info
1604  InvokeMBB->addSuccessor(Return);
1605  InvokeMBB->addSuccessor(LandingPad);
1606
1607  // Drop into normal successor.
1608  DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
1609                          MVT::Other, getControlRoot(),
1610                          DAG.getBasicBlock(Return)));
1611}
1612
1613void SelectionDAGBuilder::visitUnwind(const UnwindInst &I) {
1614}
1615
1616/// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for
1617/// small case ranges).
1618bool SelectionDAGBuilder::handleSmallSwitchRange(CaseRec& CR,
1619                                                 CaseRecVector& WorkList,
1620                                                 const Value* SV,
1621                                                 MachineBasicBlock *Default,
1622                                                 MachineBasicBlock *SwitchBB) {
1623  Case& BackCase  = *(CR.Range.second-1);
1624
1625  // Size is the number of Cases represented by this range.
1626  size_t Size = CR.Range.second - CR.Range.first;
1627  if (Size > 3)
1628    return false;
1629
1630  // Get the MachineFunction which holds the current MBB.  This is used when
1631  // inserting any additional MBBs necessary to represent the switch.
1632  MachineFunction *CurMF = FuncInfo.MF;
1633
1634  // Figure out which block is immediately after the current one.
1635  MachineBasicBlock *NextBlock = 0;
1636  MachineFunction::iterator BBI = CR.CaseBB;
1637
1638  if (++BBI != FuncInfo.MF->end())
1639    NextBlock = BBI;
1640
1641  // TODO: If any two of the cases has the same destination, and if one value
1642  // is the same as the other, but has one bit unset that the other has set,
1643  // use bit manipulation to do two compares at once.  For example:
1644  // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
1645
1646  // Rearrange the case blocks so that the last one falls through if possible.
1647  if (NextBlock && Default != NextBlock && BackCase.BB != NextBlock) {
1648    // The last case block won't fall through into 'NextBlock' if we emit the
1649    // branches in this order.  See if rearranging a case value would help.
1650    for (CaseItr I = CR.Range.first, E = CR.Range.second-1; I != E; ++I) {
1651      if (I->BB == NextBlock) {
1652        std::swap(*I, BackCase);
1653        break;
1654      }
1655    }
1656  }
1657
1658  // Create a CaseBlock record representing a conditional branch to
1659  // the Case's target mbb if the value being switched on SV is equal
1660  // to C.
1661  MachineBasicBlock *CurBlock = CR.CaseBB;
1662  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) {
1663    MachineBasicBlock *FallThrough;
1664    if (I != E-1) {
1665      FallThrough = CurMF->CreateMachineBasicBlock(CurBlock->getBasicBlock());
1666      CurMF->insert(BBI, FallThrough);
1667
1668      // Put SV in a virtual register to make it available from the new blocks.
1669      ExportFromCurrentBlock(SV);
1670    } else {
1671      // If the last case doesn't match, go to the default block.
1672      FallThrough = Default;
1673    }
1674
1675    const Value *RHS, *LHS, *MHS;
1676    ISD::CondCode CC;
1677    if (I->High == I->Low) {
1678      // This is just small small case range :) containing exactly 1 case
1679      CC = ISD::SETEQ;
1680      LHS = SV; RHS = I->High; MHS = NULL;
1681    } else {
1682      CC = ISD::SETLE;
1683      LHS = I->Low; MHS = SV; RHS = I->High;
1684    }
1685    CaseBlock CB(CC, LHS, RHS, MHS, I->BB, FallThrough, CurBlock);
1686
1687    // If emitting the first comparison, just call visitSwitchCase to emit the
1688    // code into the current block.  Otherwise, push the CaseBlock onto the
1689    // vector to be later processed by SDISel, and insert the node's MBB
1690    // before the next MBB.
1691    if (CurBlock == SwitchBB)
1692      visitSwitchCase(CB, SwitchBB);
1693    else
1694      SwitchCases.push_back(CB);
1695
1696    CurBlock = FallThrough;
1697  }
1698
1699  return true;
1700}
1701
1702static inline bool areJTsAllowed(const TargetLowering &TLI) {
1703  return !DisableJumpTables &&
1704          (TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) ||
1705           TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other));
1706}
1707
1708static APInt ComputeRange(const APInt &First, const APInt &Last) {
1709  APInt LastExt(Last), FirstExt(First);
1710  uint32_t BitWidth = std::max(Last.getBitWidth(), First.getBitWidth()) + 1;
1711  LastExt.sext(BitWidth); FirstExt.sext(BitWidth);
1712  return (LastExt - FirstExt + 1ULL);
1713}
1714
1715/// handleJTSwitchCase - Emit jumptable for current switch case range
1716bool SelectionDAGBuilder::handleJTSwitchCase(CaseRec& CR,
1717                                             CaseRecVector& WorkList,
1718                                             const Value* SV,
1719                                             MachineBasicBlock* Default,
1720                                             MachineBasicBlock *SwitchBB) {
1721  Case& FrontCase = *CR.Range.first;
1722  Case& BackCase  = *(CR.Range.second-1);
1723
1724  const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue();
1725  const APInt &Last  = cast<ConstantInt>(BackCase.High)->getValue();
1726
1727  APInt TSize(First.getBitWidth(), 0);
1728  for (CaseItr I = CR.Range.first, E = CR.Range.second;
1729       I!=E; ++I)
1730    TSize += I->size();
1731
1732  if (!areJTsAllowed(TLI) || TSize.ult(4))
1733    return false;
1734
1735  APInt Range = ComputeRange(First, Last);
1736  double Density = TSize.roundToDouble() / Range.roundToDouble();
1737  if (Density < 0.4)
1738    return false;
1739
1740  DEBUG(dbgs() << "Lowering jump table\n"
1741               << "First entry: " << First << ". Last entry: " << Last << '\n'
1742               << "Range: " << Range
1743               << "Size: " << TSize << ". Density: " << Density << "\n\n");
1744
1745  // Get the MachineFunction which holds the current MBB.  This is used when
1746  // inserting any additional MBBs necessary to represent the switch.
1747  MachineFunction *CurMF = FuncInfo.MF;
1748
1749  // Figure out which block is immediately after the current one.
1750  MachineFunction::iterator BBI = CR.CaseBB;
1751  ++BBI;
1752
1753  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
1754
1755  // Create a new basic block to hold the code for loading the address
1756  // of the jump table, and jumping to it.  Update successor information;
1757  // we will either branch to the default case for the switch, or the jump
1758  // table.
1759  MachineBasicBlock *JumpTableBB = CurMF->CreateMachineBasicBlock(LLVMBB);
1760  CurMF->insert(BBI, JumpTableBB);
1761  CR.CaseBB->addSuccessor(Default);
1762  CR.CaseBB->addSuccessor(JumpTableBB);
1763
1764  // Build a vector of destination BBs, corresponding to each target
1765  // of the jump table. If the value of the jump table slot corresponds to
1766  // a case statement, push the case's BB onto the vector, otherwise, push
1767  // the default BB.
1768  std::vector<MachineBasicBlock*> DestBBs;
1769  APInt TEI = First;
1770  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) {
1771    const APInt &Low = cast<ConstantInt>(I->Low)->getValue();
1772    const APInt &High = cast<ConstantInt>(I->High)->getValue();
1773
1774    if (Low.sle(TEI) && TEI.sle(High)) {
1775      DestBBs.push_back(I->BB);
1776      if (TEI==High)
1777        ++I;
1778    } else {
1779      DestBBs.push_back(Default);
1780    }
1781  }
1782
1783  // Update successor info. Add one edge to each unique successor.
1784  BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs());
1785  for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(),
1786         E = DestBBs.end(); I != E; ++I) {
1787    if (!SuccsHandled[(*I)->getNumber()]) {
1788      SuccsHandled[(*I)->getNumber()] = true;
1789      JumpTableBB->addSuccessor(*I);
1790    }
1791  }
1792
1793  // Create a jump table index for this jump table.
1794  unsigned JTEncoding = TLI.getJumpTableEncoding();
1795  unsigned JTI = CurMF->getOrCreateJumpTableInfo(JTEncoding)
1796                       ->createJumpTableIndex(DestBBs);
1797
1798  // Set the jump table information so that we can codegen it as a second
1799  // MachineBasicBlock
1800  JumpTable JT(-1U, JTI, JumpTableBB, Default);
1801  JumpTableHeader JTH(First, Last, SV, CR.CaseBB, (CR.CaseBB == SwitchBB));
1802  if (CR.CaseBB == SwitchBB)
1803    visitJumpTableHeader(JT, JTH, SwitchBB);
1804
1805  JTCases.push_back(JumpTableBlock(JTH, JT));
1806
1807  return true;
1808}
1809
1810/// handleBTSplitSwitchCase - emit comparison and split binary search tree into
1811/// 2 subtrees.
1812bool SelectionDAGBuilder::handleBTSplitSwitchCase(CaseRec& CR,
1813                                                  CaseRecVector& WorkList,
1814                                                  const Value* SV,
1815                                                  MachineBasicBlock *Default,
1816                                                  MachineBasicBlock *SwitchBB) {
1817  // Get the MachineFunction which holds the current MBB.  This is used when
1818  // inserting any additional MBBs necessary to represent the switch.
1819  MachineFunction *CurMF = FuncInfo.MF;
1820
1821  // Figure out which block is immediately after the current one.
1822  MachineFunction::iterator BBI = CR.CaseBB;
1823  ++BBI;
1824
1825  Case& FrontCase = *CR.Range.first;
1826  Case& BackCase  = *(CR.Range.second-1);
1827  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
1828
1829  // Size is the number of Cases represented by this range.
1830  unsigned Size = CR.Range.second - CR.Range.first;
1831
1832  const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue();
1833  const APInt &Last  = cast<ConstantInt>(BackCase.High)->getValue();
1834  double FMetric = 0;
1835  CaseItr Pivot = CR.Range.first + Size/2;
1836
1837  // Select optimal pivot, maximizing sum density of LHS and RHS. This will
1838  // (heuristically) allow us to emit JumpTable's later.
1839  APInt TSize(First.getBitWidth(), 0);
1840  for (CaseItr I = CR.Range.first, E = CR.Range.second;
1841       I!=E; ++I)
1842    TSize += I->size();
1843
1844  APInt LSize = FrontCase.size();
1845  APInt RSize = TSize-LSize;
1846  DEBUG(dbgs() << "Selecting best pivot: \n"
1847               << "First: " << First << ", Last: " << Last <<'\n'
1848               << "LSize: " << LSize << ", RSize: " << RSize << '\n');
1849  for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second;
1850       J!=E; ++I, ++J) {
1851    const APInt &LEnd = cast<ConstantInt>(I->High)->getValue();
1852    const APInt &RBegin = cast<ConstantInt>(J->Low)->getValue();
1853    APInt Range = ComputeRange(LEnd, RBegin);
1854    assert((Range - 2ULL).isNonNegative() &&
1855           "Invalid case distance");
1856    double LDensity = (double)LSize.roundToDouble() /
1857                           (LEnd - First + 1ULL).roundToDouble();
1858    double RDensity = (double)RSize.roundToDouble() /
1859                           (Last - RBegin + 1ULL).roundToDouble();
1860    double Metric = Range.logBase2()*(LDensity+RDensity);
1861    // Should always split in some non-trivial place
1862    DEBUG(dbgs() <<"=>Step\n"
1863                 << "LEnd: " << LEnd << ", RBegin: " << RBegin << '\n'
1864                 << "LDensity: " << LDensity
1865                 << ", RDensity: " << RDensity << '\n'
1866                 << "Metric: " << Metric << '\n');
1867    if (FMetric < Metric) {
1868      Pivot = J;
1869      FMetric = Metric;
1870      DEBUG(dbgs() << "Current metric set to: " << FMetric << '\n');
1871    }
1872
1873    LSize += J->size();
1874    RSize -= J->size();
1875  }
1876  if (areJTsAllowed(TLI)) {
1877    // If our case is dense we *really* should handle it earlier!
1878    assert((FMetric > 0) && "Should handle dense range earlier!");
1879  } else {
1880    Pivot = CR.Range.first + Size/2;
1881  }
1882
1883  CaseRange LHSR(CR.Range.first, Pivot);
1884  CaseRange RHSR(Pivot, CR.Range.second);
1885  Constant *C = Pivot->Low;
1886  MachineBasicBlock *FalseBB = 0, *TrueBB = 0;
1887
1888  // We know that we branch to the LHS if the Value being switched on is
1889  // less than the Pivot value, C.  We use this to optimize our binary
1890  // tree a bit, by recognizing that if SV is greater than or equal to the
1891  // LHS's Case Value, and that Case Value is exactly one less than the
1892  // Pivot's Value, then we can branch directly to the LHS's Target,
1893  // rather than creating a leaf node for it.
1894  if ((LHSR.second - LHSR.first) == 1 &&
1895      LHSR.first->High == CR.GE &&
1896      cast<ConstantInt>(C)->getValue() ==
1897      (cast<ConstantInt>(CR.GE)->getValue() + 1LL)) {
1898    TrueBB = LHSR.first->BB;
1899  } else {
1900    TrueBB = CurMF->CreateMachineBasicBlock(LLVMBB);
1901    CurMF->insert(BBI, TrueBB);
1902    WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR));
1903
1904    // Put SV in a virtual register to make it available from the new blocks.
1905    ExportFromCurrentBlock(SV);
1906  }
1907
1908  // Similar to the optimization above, if the Value being switched on is
1909  // known to be less than the Constant CR.LT, and the current Case Value
1910  // is CR.LT - 1, then we can branch directly to the target block for
1911  // the current Case Value, rather than emitting a RHS leaf node for it.
1912  if ((RHSR.second - RHSR.first) == 1 && CR.LT &&
1913      cast<ConstantInt>(RHSR.first->Low)->getValue() ==
1914      (cast<ConstantInt>(CR.LT)->getValue() - 1LL)) {
1915    FalseBB = RHSR.first->BB;
1916  } else {
1917    FalseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
1918    CurMF->insert(BBI, FalseBB);
1919    WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR));
1920
1921    // Put SV in a virtual register to make it available from the new blocks.
1922    ExportFromCurrentBlock(SV);
1923  }
1924
1925  // Create a CaseBlock record representing a conditional branch to
1926  // the LHS node if the value being switched on SV is less than C.
1927  // Otherwise, branch to LHS.
1928  CaseBlock CB(ISD::SETLT, SV, C, NULL, TrueBB, FalseBB, CR.CaseBB);
1929
1930  if (CR.CaseBB == SwitchBB)
1931    visitSwitchCase(CB, SwitchBB);
1932  else
1933    SwitchCases.push_back(CB);
1934
1935  return true;
1936}
1937
1938/// handleBitTestsSwitchCase - if current case range has few destination and
1939/// range span less, than machine word bitwidth, encode case range into series
1940/// of masks and emit bit tests with these masks.
1941bool SelectionDAGBuilder::handleBitTestsSwitchCase(CaseRec& CR,
1942                                                   CaseRecVector& WorkList,
1943                                                   const Value* SV,
1944                                                   MachineBasicBlock* Default,
1945                                                   MachineBasicBlock *SwitchBB){
1946  EVT PTy = TLI.getPointerTy();
1947  unsigned IntPtrBits = PTy.getSizeInBits();
1948
1949  Case& FrontCase = *CR.Range.first;
1950  Case& BackCase  = *(CR.Range.second-1);
1951
1952  // Get the MachineFunction which holds the current MBB.  This is used when
1953  // inserting any additional MBBs necessary to represent the switch.
1954  MachineFunction *CurMF = FuncInfo.MF;
1955
1956  // If target does not have legal shift left, do not emit bit tests at all.
1957  if (!TLI.isOperationLegal(ISD::SHL, TLI.getPointerTy()))
1958    return false;
1959
1960  size_t numCmps = 0;
1961  for (CaseItr I = CR.Range.first, E = CR.Range.second;
1962       I!=E; ++I) {
1963    // Single case counts one, case range - two.
1964    numCmps += (I->Low == I->High ? 1 : 2);
1965  }
1966
1967  // Count unique destinations
1968  SmallSet<MachineBasicBlock*, 4> Dests;
1969  for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
1970    Dests.insert(I->BB);
1971    if (Dests.size() > 3)
1972      // Don't bother the code below, if there are too much unique destinations
1973      return false;
1974  }
1975  DEBUG(dbgs() << "Total number of unique destinations: "
1976        << Dests.size() << '\n'
1977        << "Total number of comparisons: " << numCmps << '\n');
1978
1979  // Compute span of values.
1980  const APInt& minValue = cast<ConstantInt>(FrontCase.Low)->getValue();
1981  const APInt& maxValue = cast<ConstantInt>(BackCase.High)->getValue();
1982  APInt cmpRange = maxValue - minValue;
1983
1984  DEBUG(dbgs() << "Compare range: " << cmpRange << '\n'
1985               << "Low bound: " << minValue << '\n'
1986               << "High bound: " << maxValue << '\n');
1987
1988  if (cmpRange.uge(IntPtrBits) ||
1989      (!(Dests.size() == 1 && numCmps >= 3) &&
1990       !(Dests.size() == 2 && numCmps >= 5) &&
1991       !(Dests.size() >= 3 && numCmps >= 6)))
1992    return false;
1993
1994  DEBUG(dbgs() << "Emitting bit tests\n");
1995  APInt lowBound = APInt::getNullValue(cmpRange.getBitWidth());
1996
1997  // Optimize the case where all the case values fit in a
1998  // word without having to subtract minValue. In this case,
1999  // we can optimize away the subtraction.
2000  if (minValue.isNonNegative() && maxValue.slt(IntPtrBits)) {
2001    cmpRange = maxValue;
2002  } else {
2003    lowBound = minValue;
2004  }
2005
2006  CaseBitsVector CasesBits;
2007  unsigned i, count = 0;
2008
2009  for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
2010    MachineBasicBlock* Dest = I->BB;
2011    for (i = 0; i < count; ++i)
2012      if (Dest == CasesBits[i].BB)
2013        break;
2014
2015    if (i == count) {
2016      assert((count < 3) && "Too much destinations to test!");
2017      CasesBits.push_back(CaseBits(0, Dest, 0));
2018      count++;
2019    }
2020
2021    const APInt& lowValue = cast<ConstantInt>(I->Low)->getValue();
2022    const APInt& highValue = cast<ConstantInt>(I->High)->getValue();
2023
2024    uint64_t lo = (lowValue - lowBound).getZExtValue();
2025    uint64_t hi = (highValue - lowBound).getZExtValue();
2026
2027    for (uint64_t j = lo; j <= hi; j++) {
2028      CasesBits[i].Mask |=  1ULL << j;
2029      CasesBits[i].Bits++;
2030    }
2031
2032  }
2033  std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp());
2034
2035  BitTestInfo BTC;
2036
2037  // Figure out which block is immediately after the current one.
2038  MachineFunction::iterator BBI = CR.CaseBB;
2039  ++BBI;
2040
2041  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2042
2043  DEBUG(dbgs() << "Cases:\n");
2044  for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) {
2045    DEBUG(dbgs() << "Mask: " << CasesBits[i].Mask
2046                 << ", Bits: " << CasesBits[i].Bits
2047                 << ", BB: " << CasesBits[i].BB << '\n');
2048
2049    MachineBasicBlock *CaseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2050    CurMF->insert(BBI, CaseBB);
2051    BTC.push_back(BitTestCase(CasesBits[i].Mask,
2052                              CaseBB,
2053                              CasesBits[i].BB));
2054
2055    // Put SV in a virtual register to make it available from the new blocks.
2056    ExportFromCurrentBlock(SV);
2057  }
2058
2059  BitTestBlock BTB(lowBound, cmpRange, SV,
2060                   -1U, (CR.CaseBB == SwitchBB),
2061                   CR.CaseBB, Default, BTC);
2062
2063  if (CR.CaseBB == SwitchBB)
2064    visitBitTestHeader(BTB, SwitchBB);
2065
2066  BitTestCases.push_back(BTB);
2067
2068  return true;
2069}
2070
2071/// Clusterify - Transform simple list of Cases into list of CaseRange's
2072size_t SelectionDAGBuilder::Clusterify(CaseVector& Cases,
2073                                       const SwitchInst& SI) {
2074  size_t numCmps = 0;
2075
2076  // Start with "simple" cases
2077  for (size_t i = 1; i < SI.getNumSuccessors(); ++i) {
2078    MachineBasicBlock *SMBB = FuncInfo.MBBMap[SI.getSuccessor(i)];
2079    Cases.push_back(Case(SI.getSuccessorValue(i),
2080                         SI.getSuccessorValue(i),
2081                         SMBB));
2082  }
2083  std::sort(Cases.begin(), Cases.end(), CaseCmp());
2084
2085  // Merge case into clusters
2086  if (Cases.size() >= 2)
2087    // Must recompute end() each iteration because it may be
2088    // invalidated by erase if we hold on to it
2089    for (CaseItr I = Cases.begin(), J = ++(Cases.begin()); J != Cases.end(); ) {
2090      const APInt& nextValue = cast<ConstantInt>(J->Low)->getValue();
2091      const APInt& currentValue = cast<ConstantInt>(I->High)->getValue();
2092      MachineBasicBlock* nextBB = J->BB;
2093      MachineBasicBlock* currentBB = I->BB;
2094
2095      // If the two neighboring cases go to the same destination, merge them
2096      // into a single case.
2097      if ((nextValue - currentValue == 1) && (currentBB == nextBB)) {
2098        I->High = J->High;
2099        J = Cases.erase(J);
2100      } else {
2101        I = J++;
2102      }
2103    }
2104
2105  for (CaseItr I=Cases.begin(), E=Cases.end(); I!=E; ++I, ++numCmps) {
2106    if (I->Low != I->High)
2107      // A range counts double, since it requires two compares.
2108      ++numCmps;
2109  }
2110
2111  return numCmps;
2112}
2113
2114void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
2115  MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
2116
2117  // Figure out which block is immediately after the current one.
2118  MachineBasicBlock *NextBlock = 0;
2119  MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()];
2120
2121  // If there is only the default destination, branch to it if it is not the
2122  // next basic block.  Otherwise, just fall through.
2123  if (SI.getNumOperands() == 2) {
2124    // Update machine-CFG edges.
2125
2126    // If this is not a fall-through branch, emit the branch.
2127    SwitchMBB->addSuccessor(Default);
2128    if (Default != NextBlock)
2129      DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
2130                              MVT::Other, getControlRoot(),
2131                              DAG.getBasicBlock(Default)));
2132
2133    return;
2134  }
2135
2136  // If there are any non-default case statements, create a vector of Cases
2137  // representing each one, and sort the vector so that we can efficiently
2138  // create a binary search tree from them.
2139  CaseVector Cases;
2140  size_t numCmps = Clusterify(Cases, SI);
2141  DEBUG(dbgs() << "Clusterify finished. Total clusters: " << Cases.size()
2142               << ". Total compares: " << numCmps << '\n');
2143  numCmps = 0;
2144
2145  // Get the Value to be switched on and default basic blocks, which will be
2146  // inserted into CaseBlock records, representing basic blocks in the binary
2147  // search tree.
2148  const Value *SV = SI.getOperand(0);
2149
2150  // Push the initial CaseRec onto the worklist
2151  CaseRecVector WorkList;
2152  WorkList.push_back(CaseRec(SwitchMBB,0,0,
2153                             CaseRange(Cases.begin(),Cases.end())));
2154
2155  while (!WorkList.empty()) {
2156    // Grab a record representing a case range to process off the worklist
2157    CaseRec CR = WorkList.back();
2158    WorkList.pop_back();
2159
2160    if (handleBitTestsSwitchCase(CR, WorkList, SV, Default, SwitchMBB))
2161      continue;
2162
2163    // If the range has few cases (two or less) emit a series of specific
2164    // tests.
2165    if (handleSmallSwitchRange(CR, WorkList, SV, Default, SwitchMBB))
2166      continue;
2167
2168    // If the switch has more than 5 blocks, and at least 40% dense, and the
2169    // target supports indirect branches, then emit a jump table rather than
2170    // lowering the switch to a binary tree of conditional branches.
2171    if (handleJTSwitchCase(CR, WorkList, SV, Default, SwitchMBB))
2172      continue;
2173
2174    // Emit binary tree. We need to pick a pivot, and push left and right ranges
2175    // onto the worklist. Leafs are handled via handleSmallSwitchRange() call.
2176    handleBTSplitSwitchCase(CR, WorkList, SV, Default, SwitchMBB);
2177  }
2178}
2179
2180void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
2181  MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
2182
2183  // Update machine-CFG edges with unique successors.
2184  SmallVector<BasicBlock*, 32> succs;
2185  succs.reserve(I.getNumSuccessors());
2186  for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i)
2187    succs.push_back(I.getSuccessor(i));
2188  array_pod_sort(succs.begin(), succs.end());
2189  succs.erase(std::unique(succs.begin(), succs.end()), succs.end());
2190  for (unsigned i = 0, e = succs.size(); i != e; ++i)
2191    IndirectBrMBB->addSuccessor(FuncInfo.MBBMap[succs[i]]);
2192
2193  DAG.setRoot(DAG.getNode(ISD::BRIND, getCurDebugLoc(),
2194                          MVT::Other, getControlRoot(),
2195                          getValue(I.getAddress())));
2196}
2197
2198void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) {
2199  // If the function consists of a single "unreachable" instruction, emit a
2200  // "trap". This prevents the back-ends from generating empty functions or
2201  // functions which have a prologue, but no epilogue.
2202  const BasicBlock *BB = I.getParent();
2203  const Function *F = BB->getParent();
2204
2205  if (F->size() == 1 && BB->size() == 1 &&
2206      isa<UnreachableInst>(BB->getTerminator()))
2207      DAG.setRoot(DAG.getNode(ISD::TRAP, getCurDebugLoc(),
2208                              MVT::Other, getRoot()));
2209}
2210
2211void SelectionDAGBuilder::visitFSub(const User &I) {
2212  // -0.0 - X --> fneg
2213  const Type *Ty = I.getType();
2214  if (Ty->isVectorTy()) {
2215    if (ConstantVector *CV = dyn_cast<ConstantVector>(I.getOperand(0))) {
2216      const VectorType *DestTy = cast<VectorType>(I.getType());
2217      const Type *ElTy = DestTy->getElementType();
2218      unsigned VL = DestTy->getNumElements();
2219      std::vector<Constant*> NZ(VL, ConstantFP::getNegativeZero(ElTy));
2220      Constant *CNZ = ConstantVector::get(&NZ[0], NZ.size());
2221      if (CV == CNZ) {
2222        SDValue Op2 = getValue(I.getOperand(1));
2223        setValue(&I, DAG.getNode(ISD::FNEG, getCurDebugLoc(),
2224                                 Op2.getValueType(), Op2));
2225        return;
2226      }
2227    }
2228  }
2229
2230  if (ConstantFP *CFP = dyn_cast<ConstantFP>(I.getOperand(0)))
2231    if (CFP->isExactlyValue(ConstantFP::getNegativeZero(Ty)->getValueAPF())) {
2232      SDValue Op2 = getValue(I.getOperand(1));
2233      setValue(&I, DAG.getNode(ISD::FNEG, getCurDebugLoc(),
2234                               Op2.getValueType(), Op2));
2235      return;
2236    }
2237
2238  visitBinary(I, ISD::FSUB);
2239}
2240
2241void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) {
2242  SDValue Op1 = getValue(I.getOperand(0));
2243  SDValue Op2 = getValue(I.getOperand(1));
2244  setValue(&I, DAG.getNode(OpCode, getCurDebugLoc(),
2245                           Op1.getValueType(), Op1, Op2));
2246}
2247
2248void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
2249  SDValue Op1 = getValue(I.getOperand(0));
2250  SDValue Op2 = getValue(I.getOperand(1));
2251  if (!I.getType()->isVectorTy() &&
2252      Op2.getValueType() != TLI.getShiftAmountTy()) {
2253    // If the operand is smaller than the shift count type, promote it.
2254    EVT PTy = TLI.getPointerTy();
2255    EVT STy = TLI.getShiftAmountTy();
2256    if (STy.bitsGT(Op2.getValueType()))
2257      Op2 = DAG.getNode(ISD::ANY_EXTEND, getCurDebugLoc(),
2258                        TLI.getShiftAmountTy(), Op2);
2259    // If the operand is larger than the shift count type but the shift
2260    // count type has enough bits to represent any shift value, truncate
2261    // it now. This is a common case and it exposes the truncate to
2262    // optimization early.
2263    else if (STy.getSizeInBits() >=
2264             Log2_32_Ceil(Op2.getValueType().getSizeInBits()))
2265      Op2 = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(),
2266                        TLI.getShiftAmountTy(), Op2);
2267    // Otherwise we'll need to temporarily settle for some other
2268    // convenient type; type legalization will make adjustments as
2269    // needed.
2270    else if (PTy.bitsLT(Op2.getValueType()))
2271      Op2 = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(),
2272                        TLI.getPointerTy(), Op2);
2273    else if (PTy.bitsGT(Op2.getValueType()))
2274      Op2 = DAG.getNode(ISD::ANY_EXTEND, getCurDebugLoc(),
2275                        TLI.getPointerTy(), Op2);
2276  }
2277
2278  setValue(&I, DAG.getNode(Opcode, getCurDebugLoc(),
2279                           Op1.getValueType(), Op1, Op2));
2280}
2281
2282void SelectionDAGBuilder::visitICmp(const User &I) {
2283  ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
2284  if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
2285    predicate = IC->getPredicate();
2286  else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
2287    predicate = ICmpInst::Predicate(IC->getPredicate());
2288  SDValue Op1 = getValue(I.getOperand(0));
2289  SDValue Op2 = getValue(I.getOperand(1));
2290  ISD::CondCode Opcode = getICmpCondCode(predicate);
2291
2292  EVT DestVT = TLI.getValueType(I.getType());
2293  setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Opcode));
2294}
2295
2296void SelectionDAGBuilder::visitFCmp(const User &I) {
2297  FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
2298  if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
2299    predicate = FC->getPredicate();
2300  else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
2301    predicate = FCmpInst::Predicate(FC->getPredicate());
2302  SDValue Op1 = getValue(I.getOperand(0));
2303  SDValue Op2 = getValue(I.getOperand(1));
2304  ISD::CondCode Condition = getFCmpCondCode(predicate);
2305  EVT DestVT = TLI.getValueType(I.getType());
2306  setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Condition));
2307}
2308
2309void SelectionDAGBuilder::visitSelect(const User &I) {
2310  SmallVector<EVT, 4> ValueVTs;
2311  ComputeValueVTs(TLI, I.getType(), ValueVTs);
2312  unsigned NumValues = ValueVTs.size();
2313  if (NumValues == 0) return;
2314
2315  SmallVector<SDValue, 4> Values(NumValues);
2316  SDValue Cond     = getValue(I.getOperand(0));
2317  SDValue TrueVal  = getValue(I.getOperand(1));
2318  SDValue FalseVal = getValue(I.getOperand(2));
2319
2320  for (unsigned i = 0; i != NumValues; ++i)
2321    Values[i] = DAG.getNode(ISD::SELECT, getCurDebugLoc(),
2322                          TrueVal.getNode()->getValueType(TrueVal.getResNo()+i),
2323                            Cond,
2324                            SDValue(TrueVal.getNode(),
2325                                    TrueVal.getResNo() + i),
2326                            SDValue(FalseVal.getNode(),
2327                                    FalseVal.getResNo() + i));
2328
2329  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
2330                           DAG.getVTList(&ValueVTs[0], NumValues),
2331                           &Values[0], NumValues));
2332}
2333
2334void SelectionDAGBuilder::visitTrunc(const User &I) {
2335  // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
2336  SDValue N = getValue(I.getOperand(0));
2337  EVT DestVT = TLI.getValueType(I.getType());
2338  setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), DestVT, N));
2339}
2340
2341void SelectionDAGBuilder::visitZExt(const User &I) {
2342  // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2343  // ZExt also can't be a cast to bool for same reason. So, nothing much to do
2344  SDValue N = getValue(I.getOperand(0));
2345  EVT DestVT = TLI.getValueType(I.getType());
2346  setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), DestVT, N));
2347}
2348
2349void SelectionDAGBuilder::visitSExt(const User &I) {
2350  // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2351  // SExt also can't be a cast to bool for same reason. So, nothing much to do
2352  SDValue N = getValue(I.getOperand(0));
2353  EVT DestVT = TLI.getValueType(I.getType());
2354  setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurDebugLoc(), DestVT, N));
2355}
2356
2357void SelectionDAGBuilder::visitFPTrunc(const User &I) {
2358  // FPTrunc is never a no-op cast, no need to check
2359  SDValue N = getValue(I.getOperand(0));
2360  EVT DestVT = TLI.getValueType(I.getType());
2361  setValue(&I, DAG.getNode(ISD::FP_ROUND, getCurDebugLoc(),
2362                           DestVT, N, DAG.getIntPtrConstant(0)));
2363}
2364
2365void SelectionDAGBuilder::visitFPExt(const User &I){
2366  // FPTrunc is never a no-op cast, no need to check
2367  SDValue N = getValue(I.getOperand(0));
2368  EVT DestVT = TLI.getValueType(I.getType());
2369  setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurDebugLoc(), DestVT, N));
2370}
2371
2372void SelectionDAGBuilder::visitFPToUI(const User &I) {
2373  // FPToUI is never a no-op cast, no need to check
2374  SDValue N = getValue(I.getOperand(0));
2375  EVT DestVT = TLI.getValueType(I.getType());
2376  setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurDebugLoc(), DestVT, N));
2377}
2378
2379void SelectionDAGBuilder::visitFPToSI(const User &I) {
2380  // FPToSI is never a no-op cast, no need to check
2381  SDValue N = getValue(I.getOperand(0));
2382  EVT DestVT = TLI.getValueType(I.getType());
2383  setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurDebugLoc(), DestVT, N));
2384}
2385
2386void SelectionDAGBuilder::visitUIToFP(const User &I) {
2387  // UIToFP is never a no-op cast, no need to check
2388  SDValue N = getValue(I.getOperand(0));
2389  EVT DestVT = TLI.getValueType(I.getType());
2390  setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurDebugLoc(), DestVT, N));
2391}
2392
2393void SelectionDAGBuilder::visitSIToFP(const User &I){
2394  // SIToFP is never a no-op cast, no need to check
2395  SDValue N = getValue(I.getOperand(0));
2396  EVT DestVT = TLI.getValueType(I.getType());
2397  setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurDebugLoc(), DestVT, N));
2398}
2399
2400void SelectionDAGBuilder::visitPtrToInt(const User &I) {
2401  // What to do depends on the size of the integer and the size of the pointer.
2402  // We can either truncate, zero extend, or no-op, accordingly.
2403  SDValue N = getValue(I.getOperand(0));
2404  EVT DestVT = TLI.getValueType(I.getType());
2405  setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT));
2406}
2407
2408void SelectionDAGBuilder::visitIntToPtr(const User &I) {
2409  // What to do depends on the size of the integer and the size of the pointer.
2410  // We can either truncate, zero extend, or no-op, accordingly.
2411  SDValue N = getValue(I.getOperand(0));
2412  EVT DestVT = TLI.getValueType(I.getType());
2413  setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT));
2414}
2415
2416void SelectionDAGBuilder::visitBitCast(const User &I) {
2417  SDValue N = getValue(I.getOperand(0));
2418  EVT DestVT = TLI.getValueType(I.getType());
2419
2420  // BitCast assures us that source and destination are the same size so this is
2421  // either a BIT_CONVERT or a no-op.
2422  if (DestVT != N.getValueType())
2423    setValue(&I, DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(),
2424                             DestVT, N)); // convert types.
2425  else
2426    setValue(&I, N);            // noop cast.
2427}
2428
2429void SelectionDAGBuilder::visitInsertElement(const User &I) {
2430  SDValue InVec = getValue(I.getOperand(0));
2431  SDValue InVal = getValue(I.getOperand(1));
2432  SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(),
2433                              TLI.getPointerTy(),
2434                              getValue(I.getOperand(2)));
2435  setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurDebugLoc(),
2436                           TLI.getValueType(I.getType()),
2437                           InVec, InVal, InIdx));
2438}
2439
2440void SelectionDAGBuilder::visitExtractElement(const User &I) {
2441  SDValue InVec = getValue(I.getOperand(0));
2442  SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(),
2443                              TLI.getPointerTy(),
2444                              getValue(I.getOperand(1)));
2445  setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
2446                           TLI.getValueType(I.getType()), InVec, InIdx));
2447}
2448
2449// Utility for visitShuffleVector - Returns true if the mask is mask starting
2450// from SIndx and increasing to the element length (undefs are allowed).
2451static bool SequentialMask(SmallVectorImpl<int> &Mask, unsigned SIndx) {
2452  unsigned MaskNumElts = Mask.size();
2453  for (unsigned i = 0; i != MaskNumElts; ++i)
2454    if ((Mask[i] >= 0) && (Mask[i] != (int)(i + SIndx)))
2455      return false;
2456  return true;
2457}
2458
2459void SelectionDAGBuilder::visitShuffleVector(const User &I) {
2460  SmallVector<int, 8> Mask;
2461  SDValue Src1 = getValue(I.getOperand(0));
2462  SDValue Src2 = getValue(I.getOperand(1));
2463
2464  // Convert the ConstantVector mask operand into an array of ints, with -1
2465  // representing undef values.
2466  SmallVector<Constant*, 8> MaskElts;
2467  cast<Constant>(I.getOperand(2))->getVectorElements(MaskElts);
2468  unsigned MaskNumElts = MaskElts.size();
2469  for (unsigned i = 0; i != MaskNumElts; ++i) {
2470    if (isa<UndefValue>(MaskElts[i]))
2471      Mask.push_back(-1);
2472    else
2473      Mask.push_back(cast<ConstantInt>(MaskElts[i])->getSExtValue());
2474  }
2475
2476  EVT VT = TLI.getValueType(I.getType());
2477  EVT SrcVT = Src1.getValueType();
2478  unsigned SrcNumElts = SrcVT.getVectorNumElements();
2479
2480  if (SrcNumElts == MaskNumElts) {
2481    setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2482                                      &Mask[0]));
2483    return;
2484  }
2485
2486  // Normalize the shuffle vector since mask and vector length don't match.
2487  if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) {
2488    // Mask is longer than the source vectors and is a multiple of the source
2489    // vectors.  We can use concatenate vector to make the mask and vectors
2490    // lengths match.
2491    if (SrcNumElts*2 == MaskNumElts && SequentialMask(Mask, 0)) {
2492      // The shuffle is concatenating two vectors together.
2493      setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurDebugLoc(),
2494                               VT, Src1, Src2));
2495      return;
2496    }
2497
2498    // Pad both vectors with undefs to make them the same length as the mask.
2499    unsigned NumConcat = MaskNumElts / SrcNumElts;
2500    bool Src1U = Src1.getOpcode() == ISD::UNDEF;
2501    bool Src2U = Src2.getOpcode() == ISD::UNDEF;
2502    SDValue UndefVal = DAG.getUNDEF(SrcVT);
2503
2504    SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
2505    SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
2506    MOps1[0] = Src1;
2507    MOps2[0] = Src2;
2508
2509    Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
2510                                                  getCurDebugLoc(), VT,
2511                                                  &MOps1[0], NumConcat);
2512    Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
2513                                                  getCurDebugLoc(), VT,
2514                                                  &MOps2[0], NumConcat);
2515
2516    // Readjust mask for new input vector length.
2517    SmallVector<int, 8> MappedOps;
2518    for (unsigned i = 0; i != MaskNumElts; ++i) {
2519      int Idx = Mask[i];
2520      if (Idx < (int)SrcNumElts)
2521        MappedOps.push_back(Idx);
2522      else
2523        MappedOps.push_back(Idx + MaskNumElts - SrcNumElts);
2524    }
2525
2526    setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2527                                      &MappedOps[0]));
2528    return;
2529  }
2530
2531  if (SrcNumElts > MaskNumElts) {
2532    // Analyze the access pattern of the vector to see if we can extract
2533    // two subvectors and do the shuffle. The analysis is done by calculating
2534    // the range of elements the mask access on both vectors.
2535    int MinRange[2] = { SrcNumElts+1, SrcNumElts+1};
2536    int MaxRange[2] = {-1, -1};
2537
2538    for (unsigned i = 0; i != MaskNumElts; ++i) {
2539      int Idx = Mask[i];
2540      int Input = 0;
2541      if (Idx < 0)
2542        continue;
2543
2544      if (Idx >= (int)SrcNumElts) {
2545        Input = 1;
2546        Idx -= SrcNumElts;
2547      }
2548      if (Idx > MaxRange[Input])
2549        MaxRange[Input] = Idx;
2550      if (Idx < MinRange[Input])
2551        MinRange[Input] = Idx;
2552    }
2553
2554    // Check if the access is smaller than the vector size and can we find
2555    // a reasonable extract index.
2556    int RangeUse[2] = { 2, 2 };  // 0 = Unused, 1 = Extract, 2 = Can not
2557                                 // Extract.
2558    int StartIdx[2];  // StartIdx to extract from
2559    for (int Input=0; Input < 2; ++Input) {
2560      if (MinRange[Input] == (int)(SrcNumElts+1) && MaxRange[Input] == -1) {
2561        RangeUse[Input] = 0; // Unused
2562        StartIdx[Input] = 0;
2563      } else if (MaxRange[Input] - MinRange[Input] < (int)MaskNumElts) {
2564        // Fits within range but we should see if we can find a good
2565        // start index that is a multiple of the mask length.
2566        if (MaxRange[Input] < (int)MaskNumElts) {
2567          RangeUse[Input] = 1; // Extract from beginning of the vector
2568          StartIdx[Input] = 0;
2569        } else {
2570          StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts;
2571          if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts &&
2572              StartIdx[Input] + MaskNumElts < SrcNumElts)
2573            RangeUse[Input] = 1; // Extract from a multiple of the mask length.
2574        }
2575      }
2576    }
2577
2578    if (RangeUse[0] == 0 && RangeUse[1] == 0) {
2579      setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
2580      return;
2581    }
2582    else if (RangeUse[0] < 2 && RangeUse[1] < 2) {
2583      // Extract appropriate subvector and generate a vector shuffle
2584      for (int Input=0; Input < 2; ++Input) {
2585        SDValue &Src = Input == 0 ? Src1 : Src2;
2586        if (RangeUse[Input] == 0)
2587          Src = DAG.getUNDEF(VT);
2588        else
2589          Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, getCurDebugLoc(), VT,
2590                            Src, DAG.getIntPtrConstant(StartIdx[Input]));
2591      }
2592
2593      // Calculate new mask.
2594      SmallVector<int, 8> MappedOps;
2595      for (unsigned i = 0; i != MaskNumElts; ++i) {
2596        int Idx = Mask[i];
2597        if (Idx < 0)
2598          MappedOps.push_back(Idx);
2599        else if (Idx < (int)SrcNumElts)
2600          MappedOps.push_back(Idx - StartIdx[0]);
2601        else
2602          MappedOps.push_back(Idx - SrcNumElts - StartIdx[1] + MaskNumElts);
2603      }
2604
2605      setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2606                                        &MappedOps[0]));
2607      return;
2608    }
2609  }
2610
2611  // We can't use either concat vectors or extract subvectors so fall back to
2612  // replacing the shuffle with extract and build vector.
2613  // to insert and build vector.
2614  EVT EltVT = VT.getVectorElementType();
2615  EVT PtrVT = TLI.getPointerTy();
2616  SmallVector<SDValue,8> Ops;
2617  for (unsigned i = 0; i != MaskNumElts; ++i) {
2618    if (Mask[i] < 0) {
2619      Ops.push_back(DAG.getUNDEF(EltVT));
2620    } else {
2621      int Idx = Mask[i];
2622      SDValue Res;
2623
2624      if (Idx < (int)SrcNumElts)
2625        Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
2626                          EltVT, Src1, DAG.getConstant(Idx, PtrVT));
2627      else
2628        Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
2629                          EltVT, Src2,
2630                          DAG.getConstant(Idx - SrcNumElts, PtrVT));
2631
2632      Ops.push_back(Res);
2633    }
2634  }
2635
2636  setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(),
2637                           VT, &Ops[0], Ops.size()));
2638}
2639
2640void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) {
2641  const Value *Op0 = I.getOperand(0);
2642  const Value *Op1 = I.getOperand(1);
2643  const Type *AggTy = I.getType();
2644  const Type *ValTy = Op1->getType();
2645  bool IntoUndef = isa<UndefValue>(Op0);
2646  bool FromUndef = isa<UndefValue>(Op1);
2647
2648  unsigned LinearIndex = ComputeLinearIndex(TLI, AggTy,
2649                                            I.idx_begin(), I.idx_end());
2650
2651  SmallVector<EVT, 4> AggValueVTs;
2652  ComputeValueVTs(TLI, AggTy, AggValueVTs);
2653  SmallVector<EVT, 4> ValValueVTs;
2654  ComputeValueVTs(TLI, ValTy, ValValueVTs);
2655
2656  unsigned NumAggValues = AggValueVTs.size();
2657  unsigned NumValValues = ValValueVTs.size();
2658  SmallVector<SDValue, 4> Values(NumAggValues);
2659
2660  SDValue Agg = getValue(Op0);
2661  SDValue Val = getValue(Op1);
2662  unsigned i = 0;
2663  // Copy the beginning value(s) from the original aggregate.
2664  for (; i != LinearIndex; ++i)
2665    Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
2666                SDValue(Agg.getNode(), Agg.getResNo() + i);
2667  // Copy values from the inserted value(s).
2668  for (; i != LinearIndex + NumValValues; ++i)
2669    Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
2670                SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
2671  // Copy remaining value(s) from the original aggregate.
2672  for (; i != NumAggValues; ++i)
2673    Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
2674                SDValue(Agg.getNode(), Agg.getResNo() + i);
2675
2676  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
2677                           DAG.getVTList(&AggValueVTs[0], NumAggValues),
2678                           &Values[0], NumAggValues));
2679}
2680
2681void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) {
2682  const Value *Op0 = I.getOperand(0);
2683  const Type *AggTy = Op0->getType();
2684  const Type *ValTy = I.getType();
2685  bool OutOfUndef = isa<UndefValue>(Op0);
2686
2687  unsigned LinearIndex = ComputeLinearIndex(TLI, AggTy,
2688                                            I.idx_begin(), I.idx_end());
2689
2690  SmallVector<EVT, 4> ValValueVTs;
2691  ComputeValueVTs(TLI, ValTy, ValValueVTs);
2692
2693  unsigned NumValValues = ValValueVTs.size();
2694  SmallVector<SDValue, 4> Values(NumValValues);
2695
2696  SDValue Agg = getValue(Op0);
2697  // Copy out the selected value(s).
2698  for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
2699    Values[i - LinearIndex] =
2700      OutOfUndef ?
2701        DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
2702        SDValue(Agg.getNode(), Agg.getResNo() + i);
2703
2704  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
2705                           DAG.getVTList(&ValValueVTs[0], NumValValues),
2706                           &Values[0], NumValValues));
2707}
2708
2709void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
2710  SDValue N = getValue(I.getOperand(0));
2711  const Type *Ty = I.getOperand(0)->getType();
2712
2713  for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end();
2714       OI != E; ++OI) {
2715    const Value *Idx = *OI;
2716    if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
2717      unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
2718      if (Field) {
2719        // N = N + Offset
2720        uint64_t Offset = TD->getStructLayout(StTy)->getElementOffset(Field);
2721        N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N,
2722                        DAG.getIntPtrConstant(Offset));
2723      }
2724
2725      Ty = StTy->getElementType(Field);
2726    } else if (const UnionType *UnTy = dyn_cast<UnionType>(Ty)) {
2727      unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
2728
2729      // Offset canonically 0 for unions, but type changes
2730      Ty = UnTy->getElementType(Field);
2731    } else {
2732      Ty = cast<SequentialType>(Ty)->getElementType();
2733
2734      // If this is a constant subscript, handle it quickly.
2735      if (const ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
2736        if (CI->isZero()) continue;
2737        uint64_t Offs =
2738            TD->getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue();
2739        SDValue OffsVal;
2740        EVT PTy = TLI.getPointerTy();
2741        unsigned PtrBits = PTy.getSizeInBits();
2742        if (PtrBits < 64)
2743          OffsVal = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(),
2744                                TLI.getPointerTy(),
2745                                DAG.getConstant(Offs, MVT::i64));
2746        else
2747          OffsVal = DAG.getIntPtrConstant(Offs);
2748
2749        N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N,
2750                        OffsVal);
2751        continue;
2752      }
2753
2754      // N = N + Idx * ElementSize;
2755      APInt ElementSize = APInt(TLI.getPointerTy().getSizeInBits(),
2756                                TD->getTypeAllocSize(Ty));
2757      SDValue IdxN = getValue(Idx);
2758
2759      // If the index is smaller or larger than intptr_t, truncate or extend
2760      // it.
2761      IdxN = DAG.getSExtOrTrunc(IdxN, getCurDebugLoc(), N.getValueType());
2762
2763      // If this is a multiply by a power of two, turn it into a shl
2764      // immediately.  This is a very common case.
2765      if (ElementSize != 1) {
2766        if (ElementSize.isPowerOf2()) {
2767          unsigned Amt = ElementSize.logBase2();
2768          IdxN = DAG.getNode(ISD::SHL, getCurDebugLoc(),
2769                             N.getValueType(), IdxN,
2770                             DAG.getConstant(Amt, TLI.getPointerTy()));
2771        } else {
2772          SDValue Scale = DAG.getConstant(ElementSize, TLI.getPointerTy());
2773          IdxN = DAG.getNode(ISD::MUL, getCurDebugLoc(),
2774                             N.getValueType(), IdxN, Scale);
2775        }
2776      }
2777
2778      N = DAG.getNode(ISD::ADD, getCurDebugLoc(),
2779                      N.getValueType(), N, IdxN);
2780    }
2781  }
2782
2783  setValue(&I, N);
2784}
2785
2786void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
2787  // If this is a fixed sized alloca in the entry block of the function,
2788  // allocate it statically on the stack.
2789  if (FuncInfo.StaticAllocaMap.count(&I))
2790    return;   // getValue will auto-populate this.
2791
2792  const Type *Ty = I.getAllocatedType();
2793  uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty);
2794  unsigned Align =
2795    std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty),
2796             I.getAlignment());
2797
2798  SDValue AllocSize = getValue(I.getArraySize());
2799
2800  EVT IntPtr = TLI.getPointerTy();
2801  if (AllocSize.getValueType() != IntPtr)
2802    AllocSize = DAG.getZExtOrTrunc(AllocSize, getCurDebugLoc(), IntPtr);
2803
2804  AllocSize = DAG.getNode(ISD::MUL, getCurDebugLoc(), IntPtr,
2805                          AllocSize,
2806                          DAG.getConstant(TySize, IntPtr));
2807
2808  // Handle alignment.  If the requested alignment is less than or equal to
2809  // the stack alignment, ignore it.  If the size is greater than or equal to
2810  // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
2811  unsigned StackAlign = TM.getFrameInfo()->getStackAlignment();
2812  if (Align <= StackAlign)
2813    Align = 0;
2814
2815  // Round the size of the allocation up to the stack alignment size
2816  // by add SA-1 to the size.
2817  AllocSize = DAG.getNode(ISD::ADD, getCurDebugLoc(),
2818                          AllocSize.getValueType(), AllocSize,
2819                          DAG.getIntPtrConstant(StackAlign-1));
2820
2821  // Mask out the low bits for alignment purposes.
2822  AllocSize = DAG.getNode(ISD::AND, getCurDebugLoc(),
2823                          AllocSize.getValueType(), AllocSize,
2824                          DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1)));
2825
2826  SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) };
2827  SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
2828  SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, getCurDebugLoc(),
2829                            VTs, Ops, 3);
2830  setValue(&I, DSA);
2831  DAG.setRoot(DSA.getValue(1));
2832
2833  // Inform the Frame Information that we have just allocated a variable-sized
2834  // object.
2835  FuncInfo.MF->getFrameInfo()->CreateVariableSizedObject();
2836}
2837
2838void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
2839  const Value *SV = I.getOperand(0);
2840  SDValue Ptr = getValue(SV);
2841
2842  const Type *Ty = I.getType();
2843
2844  bool isVolatile = I.isVolatile();
2845  bool isNonTemporal = I.getMetadata("nontemporal") != 0;
2846  unsigned Alignment = I.getAlignment();
2847
2848  SmallVector<EVT, 4> ValueVTs;
2849  SmallVector<uint64_t, 4> Offsets;
2850  ComputeValueVTs(TLI, Ty, ValueVTs, &Offsets);
2851  unsigned NumValues = ValueVTs.size();
2852  if (NumValues == 0)
2853    return;
2854
2855  SDValue Root;
2856  bool ConstantMemory = false;
2857  if (I.isVolatile())
2858    // Serialize volatile loads with other side effects.
2859    Root = getRoot();
2860  else if (AA->pointsToConstantMemory(SV)) {
2861    // Do not serialize (non-volatile) loads of constant memory with anything.
2862    Root = DAG.getEntryNode();
2863    ConstantMemory = true;
2864  } else {
2865    // Do not serialize non-volatile loads against each other.
2866    Root = DAG.getRoot();
2867  }
2868
2869  SmallVector<SDValue, 4> Values(NumValues);
2870  SmallVector<SDValue, 4> Chains(NumValues);
2871  EVT PtrVT = Ptr.getValueType();
2872  for (unsigned i = 0; i != NumValues; ++i) {
2873    SDValue A = DAG.getNode(ISD::ADD, getCurDebugLoc(),
2874                            PtrVT, Ptr,
2875                            DAG.getConstant(Offsets[i], PtrVT));
2876    SDValue L = DAG.getLoad(ValueVTs[i], getCurDebugLoc(), Root,
2877                            A, SV, Offsets[i], isVolatile,
2878                            isNonTemporal, Alignment);
2879
2880    Values[i] = L;
2881    Chains[i] = L.getValue(1);
2882  }
2883
2884  if (!ConstantMemory) {
2885    SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
2886                                MVT::Other, &Chains[0], NumValues);
2887    if (isVolatile)
2888      DAG.setRoot(Chain);
2889    else
2890      PendingLoads.push_back(Chain);
2891  }
2892
2893  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
2894                           DAG.getVTList(&ValueVTs[0], NumValues),
2895                           &Values[0], NumValues));
2896}
2897
2898void SelectionDAGBuilder::visitStore(const StoreInst &I) {
2899  const Value *SrcV = I.getOperand(0);
2900  const Value *PtrV = I.getOperand(1);
2901
2902  SmallVector<EVT, 4> ValueVTs;
2903  SmallVector<uint64_t, 4> Offsets;
2904  ComputeValueVTs(TLI, SrcV->getType(), ValueVTs, &Offsets);
2905  unsigned NumValues = ValueVTs.size();
2906  if (NumValues == 0)
2907    return;
2908
2909  // Get the lowered operands. Note that we do this after
2910  // checking if NumResults is zero, because with zero results
2911  // the operands won't have values in the map.
2912  SDValue Src = getValue(SrcV);
2913  SDValue Ptr = getValue(PtrV);
2914
2915  SDValue Root = getRoot();
2916  SmallVector<SDValue, 4> Chains(NumValues);
2917  EVT PtrVT = Ptr.getValueType();
2918  bool isVolatile = I.isVolatile();
2919  bool isNonTemporal = I.getMetadata("nontemporal") != 0;
2920  unsigned Alignment = I.getAlignment();
2921
2922  for (unsigned i = 0; i != NumValues; ++i) {
2923    SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT, Ptr,
2924                              DAG.getConstant(Offsets[i], PtrVT));
2925    Chains[i] = DAG.getStore(Root, getCurDebugLoc(),
2926                             SDValue(Src.getNode(), Src.getResNo() + i),
2927                             Add, PtrV, Offsets[i], isVolatile,
2928                             isNonTemporal, Alignment);
2929  }
2930
2931  DAG.setRoot(DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
2932                          MVT::Other, &Chains[0], NumValues));
2933}
2934
2935/// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
2936/// node.
2937void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
2938                                               unsigned Intrinsic) {
2939  bool HasChain = !I.doesNotAccessMemory();
2940  bool OnlyLoad = HasChain && I.onlyReadsMemory();
2941
2942  // Build the operand list.
2943  SmallVector<SDValue, 8> Ops;
2944  if (HasChain) {  // If this intrinsic has side-effects, chainify it.
2945    if (OnlyLoad) {
2946      // We don't need to serialize loads against other loads.
2947      Ops.push_back(DAG.getRoot());
2948    } else {
2949      Ops.push_back(getRoot());
2950    }
2951  }
2952
2953  // Info is set by getTgtMemInstrinsic
2954  TargetLowering::IntrinsicInfo Info;
2955  bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic);
2956
2957  // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
2958  if (!IsTgtIntrinsic)
2959    Ops.push_back(DAG.getConstant(Intrinsic, TLI.getPointerTy()));
2960
2961  // Add all operands of the call to the operand list.
2962  for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
2963    SDValue Op = getValue(I.getArgOperand(i));
2964    assert(TLI.isTypeLegal(Op.getValueType()) &&
2965           "Intrinsic uses a non-legal type?");
2966    Ops.push_back(Op);
2967  }
2968
2969  SmallVector<EVT, 4> ValueVTs;
2970  ComputeValueVTs(TLI, I.getType(), ValueVTs);
2971#ifndef NDEBUG
2972  for (unsigned Val = 0, E = ValueVTs.size(); Val != E; ++Val) {
2973    assert(TLI.isTypeLegal(ValueVTs[Val]) &&
2974           "Intrinsic uses a non-legal type?");
2975  }
2976#endif // NDEBUG
2977
2978  if (HasChain)
2979    ValueVTs.push_back(MVT::Other);
2980
2981  SDVTList VTs = DAG.getVTList(ValueVTs.data(), ValueVTs.size());
2982
2983  // Create the node.
2984  SDValue Result;
2985  if (IsTgtIntrinsic) {
2986    // This is target intrinsic that touches memory
2987    Result = DAG.getMemIntrinsicNode(Info.opc, getCurDebugLoc(),
2988                                     VTs, &Ops[0], Ops.size(),
2989                                     Info.memVT, Info.ptrVal, Info.offset,
2990                                     Info.align, Info.vol,
2991                                     Info.readMem, Info.writeMem);
2992  } else if (!HasChain) {
2993    Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurDebugLoc(),
2994                         VTs, &Ops[0], Ops.size());
2995  } else if (!I.getType()->isVoidTy()) {
2996    Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurDebugLoc(),
2997                         VTs, &Ops[0], Ops.size());
2998  } else {
2999    Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurDebugLoc(),
3000                         VTs, &Ops[0], Ops.size());
3001  }
3002
3003  if (HasChain) {
3004    SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
3005    if (OnlyLoad)
3006      PendingLoads.push_back(Chain);
3007    else
3008      DAG.setRoot(Chain);
3009  }
3010
3011  if (!I.getType()->isVoidTy()) {
3012    if (const VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
3013      EVT VT = TLI.getValueType(PTy);
3014      Result = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(), VT, Result);
3015    }
3016
3017    setValue(&I, Result);
3018  }
3019}
3020
3021/// GetSignificand - Get the significand and build it into a floating-point
3022/// number with exponent of 1:
3023///
3024///   Op = (Op & 0x007fffff) | 0x3f800000;
3025///
3026/// where Op is the hexidecimal representation of floating point value.
3027static SDValue
3028GetSignificand(SelectionDAG &DAG, SDValue Op, DebugLoc dl) {
3029  SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
3030                           DAG.getConstant(0x007fffff, MVT::i32));
3031  SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
3032                           DAG.getConstant(0x3f800000, MVT::i32));
3033  return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t2);
3034}
3035
3036/// GetExponent - Get the exponent:
3037///
3038///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
3039///
3040/// where Op is the hexidecimal representation of floating point value.
3041static SDValue
3042GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI,
3043            DebugLoc dl) {
3044  SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
3045                           DAG.getConstant(0x7f800000, MVT::i32));
3046  SDValue t1 = DAG.getNode(ISD::SRL, dl, MVT::i32, t0,
3047                           DAG.getConstant(23, TLI.getPointerTy()));
3048  SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
3049                           DAG.getConstant(127, MVT::i32));
3050  return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
3051}
3052
3053/// getF32Constant - Get 32-bit floating point constant.
3054static SDValue
3055getF32Constant(SelectionDAG &DAG, unsigned Flt) {
3056  return DAG.getConstantFP(APFloat(APInt(32, Flt)), MVT::f32);
3057}
3058
3059/// Inlined utility function to implement binary input atomic intrinsics for
3060/// visitIntrinsicCall: I is a call instruction
3061///                     Op is the associated NodeType for I
3062const char *
3063SelectionDAGBuilder::implVisitBinaryAtomic(const CallInst& I,
3064                                           ISD::NodeType Op) {
3065  SDValue Root = getRoot();
3066  SDValue L =
3067    DAG.getAtomic(Op, getCurDebugLoc(),
3068                  getValue(I.getArgOperand(1)).getValueType().getSimpleVT(),
3069                  Root,
3070                  getValue(I.getArgOperand(0)),
3071                  getValue(I.getArgOperand(1)),
3072                  I.getArgOperand(0));
3073  setValue(&I, L);
3074  DAG.setRoot(L.getValue(1));
3075  return 0;
3076}
3077
3078// implVisitAluOverflow - Lower arithmetic overflow instrinsics.
3079const char *
3080SelectionDAGBuilder::implVisitAluOverflow(const CallInst &I, ISD::NodeType Op) {
3081  SDValue Op1 = getValue(I.getArgOperand(0));
3082  SDValue Op2 = getValue(I.getArgOperand(1));
3083
3084  SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1);
3085  setValue(&I, DAG.getNode(Op, getCurDebugLoc(), VTs, Op1, Op2));
3086  return 0;
3087}
3088
3089/// visitExp - Lower an exp intrinsic. Handles the special sequences for
3090/// limited-precision mode.
3091void
3092SelectionDAGBuilder::visitExp(const CallInst &I) {
3093  SDValue result;
3094  DebugLoc dl = getCurDebugLoc();
3095
3096  if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3097      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3098    SDValue Op = getValue(I.getArgOperand(0));
3099
3100    // Put the exponent in the right bit position for later addition to the
3101    // final result:
3102    //
3103    //   #define LOG2OFe 1.4426950f
3104    //   IntegerPartOfX = ((int32_t)(X * LOG2OFe));
3105    SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
3106                             getF32Constant(DAG, 0x3fb8aa3b));
3107    SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
3108
3109    //   FractionalPartOfX = (X * LOG2OFe) - (float)IntegerPartOfX;
3110    SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
3111    SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
3112
3113    //   IntegerPartOfX <<= 23;
3114    IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
3115                                 DAG.getConstant(23, TLI.getPointerTy()));
3116
3117    if (LimitFloatPrecision <= 6) {
3118      // For floating-point precision of 6:
3119      //
3120      //   TwoToFractionalPartOfX =
3121      //     0.997535578f +
3122      //       (0.735607626f + 0.252464424f * x) * x;
3123      //
3124      // error 0.0144103317, which is 6 bits
3125      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3126                               getF32Constant(DAG, 0x3e814304));
3127      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3128                               getF32Constant(DAG, 0x3f3c50c8));
3129      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3130      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3131                               getF32Constant(DAG, 0x3f7f5e7e));
3132      SDValue TwoToFracPartOfX = DAG.getNode(ISD::BIT_CONVERT, dl,MVT::i32, t5);
3133
3134      // Add the exponent into the result in integer domain.
3135      SDValue t6 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3136                               TwoToFracPartOfX, IntegerPartOfX);
3137
3138      result = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t6);
3139    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3140      // For floating-point precision of 12:
3141      //
3142      //   TwoToFractionalPartOfX =
3143      //     0.999892986f +
3144      //       (0.696457318f +
3145      //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
3146      //
3147      // 0.000107046256 error, which is 13 to 14 bits
3148      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3149                               getF32Constant(DAG, 0x3da235e3));
3150      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3151                               getF32Constant(DAG, 0x3e65b8f3));
3152      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3153      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3154                               getF32Constant(DAG, 0x3f324b07));
3155      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3156      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3157                               getF32Constant(DAG, 0x3f7ff8fd));
3158      SDValue TwoToFracPartOfX = DAG.getNode(ISD::BIT_CONVERT, dl,MVT::i32, t7);
3159
3160      // Add the exponent into the result in integer domain.
3161      SDValue t8 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3162                               TwoToFracPartOfX, IntegerPartOfX);
3163
3164      result = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t8);
3165    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3166      // For floating-point precision of 18:
3167      //
3168      //   TwoToFractionalPartOfX =
3169      //     0.999999982f +
3170      //       (0.693148872f +
3171      //         (0.240227044f +
3172      //           (0.554906021e-1f +
3173      //             (0.961591928e-2f +
3174      //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
3175      //
3176      // error 2.47208000*10^(-7), which is better than 18 bits
3177      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3178                               getF32Constant(DAG, 0x3924b03e));
3179      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3180                               getF32Constant(DAG, 0x3ab24b87));
3181      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3182      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3183                               getF32Constant(DAG, 0x3c1d8c17));
3184      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3185      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3186                               getF32Constant(DAG, 0x3d634a1d));
3187      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3188      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3189                               getF32Constant(DAG, 0x3e75fe14));
3190      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3191      SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
3192                                getF32Constant(DAG, 0x3f317234));
3193      SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
3194      SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
3195                                getF32Constant(DAG, 0x3f800000));
3196      SDValue TwoToFracPartOfX = DAG.getNode(ISD::BIT_CONVERT, dl,
3197                                             MVT::i32, t13);
3198
3199      // Add the exponent into the result in integer domain.
3200      SDValue t14 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3201                                TwoToFracPartOfX, IntegerPartOfX);
3202
3203      result = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t14);
3204    }
3205  } else {
3206    // No special expansion.
3207    result = DAG.getNode(ISD::FEXP, dl,
3208                         getValue(I.getArgOperand(0)).getValueType(),
3209                         getValue(I.getArgOperand(0)));
3210  }
3211
3212  setValue(&I, result);
3213}
3214
3215/// visitLog - Lower a log intrinsic. Handles the special sequences for
3216/// limited-precision mode.
3217void
3218SelectionDAGBuilder::visitLog(const CallInst &I) {
3219  SDValue result;
3220  DebugLoc dl = getCurDebugLoc();
3221
3222  if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3223      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3224    SDValue Op = getValue(I.getArgOperand(0));
3225    SDValue Op1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, Op);
3226
3227    // Scale the exponent by log(2) [0.69314718f].
3228    SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
3229    SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
3230                                        getF32Constant(DAG, 0x3f317218));
3231
3232    // Get the significand and build it into a floating-point number with
3233    // exponent of 1.
3234    SDValue X = GetSignificand(DAG, Op1, dl);
3235
3236    if (LimitFloatPrecision <= 6) {
3237      // For floating-point precision of 6:
3238      //
3239      //   LogofMantissa =
3240      //     -1.1609546f +
3241      //       (1.4034025f - 0.23903021f * x) * x;
3242      //
3243      // error 0.0034276066, which is better than 8 bits
3244      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3245                               getF32Constant(DAG, 0xbe74c456));
3246      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3247                               getF32Constant(DAG, 0x3fb3a2b1));
3248      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3249      SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3250                                          getF32Constant(DAG, 0x3f949a29));
3251
3252      result = DAG.getNode(ISD::FADD, dl,
3253                           MVT::f32, LogOfExponent, LogOfMantissa);
3254    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3255      // For floating-point precision of 12:
3256      //
3257      //   LogOfMantissa =
3258      //     -1.7417939f +
3259      //       (2.8212026f +
3260      //         (-1.4699568f +
3261      //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
3262      //
3263      // error 0.000061011436, which is 14 bits
3264      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3265                               getF32Constant(DAG, 0xbd67b6d6));
3266      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3267                               getF32Constant(DAG, 0x3ee4f4b8));
3268      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3269      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3270                               getF32Constant(DAG, 0x3fbc278b));
3271      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3272      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3273                               getF32Constant(DAG, 0x40348e95));
3274      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3275      SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3276                                          getF32Constant(DAG, 0x3fdef31a));
3277
3278      result = DAG.getNode(ISD::FADD, dl,
3279                           MVT::f32, LogOfExponent, LogOfMantissa);
3280    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3281      // For floating-point precision of 18:
3282      //
3283      //   LogOfMantissa =
3284      //     -2.1072184f +
3285      //       (4.2372794f +
3286      //         (-3.7029485f +
3287      //           (2.2781945f +
3288      //             (-0.87823314f +
3289      //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
3290      //
3291      // error 0.0000023660568, which is better than 18 bits
3292      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3293                               getF32Constant(DAG, 0xbc91e5ac));
3294      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3295                               getF32Constant(DAG, 0x3e4350aa));
3296      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3297      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3298                               getF32Constant(DAG, 0x3f60d3e3));
3299      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3300      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3301                               getF32Constant(DAG, 0x4011cdf0));
3302      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3303      SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3304                               getF32Constant(DAG, 0x406cfd1c));
3305      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3306      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3307                               getF32Constant(DAG, 0x408797cb));
3308      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3309      SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
3310                                          getF32Constant(DAG, 0x4006dcab));
3311
3312      result = DAG.getNode(ISD::FADD, dl,
3313                           MVT::f32, LogOfExponent, LogOfMantissa);
3314    }
3315  } else {
3316    // No special expansion.
3317    result = DAG.getNode(ISD::FLOG, dl,
3318                         getValue(I.getArgOperand(0)).getValueType(),
3319                         getValue(I.getArgOperand(0)));
3320  }
3321
3322  setValue(&I, result);
3323}
3324
3325/// visitLog2 - Lower a log2 intrinsic. Handles the special sequences for
3326/// limited-precision mode.
3327void
3328SelectionDAGBuilder::visitLog2(const CallInst &I) {
3329  SDValue result;
3330  DebugLoc dl = getCurDebugLoc();
3331
3332  if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3333      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3334    SDValue Op = getValue(I.getArgOperand(0));
3335    SDValue Op1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, Op);
3336
3337    // Get the exponent.
3338    SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
3339
3340    // Get the significand and build it into a floating-point number with
3341    // exponent of 1.
3342    SDValue X = GetSignificand(DAG, Op1, dl);
3343
3344    // Different possible minimax approximations of significand in
3345    // floating-point for various degrees of accuracy over [1,2].
3346    if (LimitFloatPrecision <= 6) {
3347      // For floating-point precision of 6:
3348      //
3349      //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
3350      //
3351      // error 0.0049451742, which is more than 7 bits
3352      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3353                               getF32Constant(DAG, 0xbeb08fe0));
3354      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3355                               getF32Constant(DAG, 0x40019463));
3356      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3357      SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3358                                           getF32Constant(DAG, 0x3fd6633d));
3359
3360      result = DAG.getNode(ISD::FADD, dl,
3361                           MVT::f32, LogOfExponent, Log2ofMantissa);
3362    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3363      // For floating-point precision of 12:
3364      //
3365      //   Log2ofMantissa =
3366      //     -2.51285454f +
3367      //       (4.07009056f +
3368      //         (-2.12067489f +
3369      //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
3370      //
3371      // error 0.0000876136000, which is better than 13 bits
3372      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3373                               getF32Constant(DAG, 0xbda7262e));
3374      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3375                               getF32Constant(DAG, 0x3f25280b));
3376      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3377      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3378                               getF32Constant(DAG, 0x4007b923));
3379      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3380      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3381                               getF32Constant(DAG, 0x40823e2f));
3382      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3383      SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3384                                           getF32Constant(DAG, 0x4020d29c));
3385
3386      result = DAG.getNode(ISD::FADD, dl,
3387                           MVT::f32, LogOfExponent, Log2ofMantissa);
3388    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3389      // For floating-point precision of 18:
3390      //
3391      //   Log2ofMantissa =
3392      //     -3.0400495f +
3393      //       (6.1129976f +
3394      //         (-5.3420409f +
3395      //           (3.2865683f +
3396      //             (-1.2669343f +
3397      //               (0.27515199f -
3398      //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
3399      //
3400      // error 0.0000018516, which is better than 18 bits
3401      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3402                               getF32Constant(DAG, 0xbcd2769e));
3403      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3404                               getF32Constant(DAG, 0x3e8ce0b9));
3405      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3406      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3407                               getF32Constant(DAG, 0x3fa22ae7));
3408      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3409      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3410                               getF32Constant(DAG, 0x40525723));
3411      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3412      SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3413                               getF32Constant(DAG, 0x40aaf200));
3414      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3415      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3416                               getF32Constant(DAG, 0x40c39dad));
3417      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3418      SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
3419                                           getF32Constant(DAG, 0x4042902c));
3420
3421      result = DAG.getNode(ISD::FADD, dl,
3422                           MVT::f32, LogOfExponent, Log2ofMantissa);
3423    }
3424  } else {
3425    // No special expansion.
3426    result = DAG.getNode(ISD::FLOG2, dl,
3427                         getValue(I.getArgOperand(0)).getValueType(),
3428                         getValue(I.getArgOperand(0)));
3429  }
3430
3431  setValue(&I, result);
3432}
3433
3434/// visitLog10 - Lower a log10 intrinsic. Handles the special sequences for
3435/// limited-precision mode.
3436void
3437SelectionDAGBuilder::visitLog10(const CallInst &I) {
3438  SDValue result;
3439  DebugLoc dl = getCurDebugLoc();
3440
3441  if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3442      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3443    SDValue Op = getValue(I.getArgOperand(0));
3444    SDValue Op1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, Op);
3445
3446    // Scale the exponent by log10(2) [0.30102999f].
3447    SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
3448    SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
3449                                        getF32Constant(DAG, 0x3e9a209a));
3450
3451    // Get the significand and build it into a floating-point number with
3452    // exponent of 1.
3453    SDValue X = GetSignificand(DAG, Op1, dl);
3454
3455    if (LimitFloatPrecision <= 6) {
3456      // For floating-point precision of 6:
3457      //
3458      //   Log10ofMantissa =
3459      //     -0.50419619f +
3460      //       (0.60948995f - 0.10380950f * x) * x;
3461      //
3462      // error 0.0014886165, which is 6 bits
3463      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3464                               getF32Constant(DAG, 0xbdd49a13));
3465      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3466                               getF32Constant(DAG, 0x3f1c0789));
3467      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3468      SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3469                                            getF32Constant(DAG, 0x3f011300));
3470
3471      result = DAG.getNode(ISD::FADD, dl,
3472                           MVT::f32, LogOfExponent, Log10ofMantissa);
3473    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3474      // For floating-point precision of 12:
3475      //
3476      //   Log10ofMantissa =
3477      //     -0.64831180f +
3478      //       (0.91751397f +
3479      //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
3480      //
3481      // error 0.00019228036, which is better than 12 bits
3482      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3483                               getF32Constant(DAG, 0x3d431f31));
3484      SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
3485                               getF32Constant(DAG, 0x3ea21fb2));
3486      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3487      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3488                               getF32Constant(DAG, 0x3f6ae232));
3489      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3490      SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
3491                                            getF32Constant(DAG, 0x3f25f7c3));
3492
3493      result = DAG.getNode(ISD::FADD, dl,
3494                           MVT::f32, LogOfExponent, Log10ofMantissa);
3495    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3496      // For floating-point precision of 18:
3497      //
3498      //   Log10ofMantissa =
3499      //     -0.84299375f +
3500      //       (1.5327582f +
3501      //         (-1.0688956f +
3502      //           (0.49102474f +
3503      //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
3504      //
3505      // error 0.0000037995730, which is better than 18 bits
3506      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3507                               getF32Constant(DAG, 0x3c5d51ce));
3508      SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
3509                               getF32Constant(DAG, 0x3e00685a));
3510      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3511      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3512                               getF32Constant(DAG, 0x3efb6798));
3513      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3514      SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
3515                               getF32Constant(DAG, 0x3f88d192));
3516      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3517      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3518                               getF32Constant(DAG, 0x3fc4316c));
3519      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3520      SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
3521                                            getF32Constant(DAG, 0x3f57ce70));
3522
3523      result = DAG.getNode(ISD::FADD, dl,
3524                           MVT::f32, LogOfExponent, Log10ofMantissa);
3525    }
3526  } else {
3527    // No special expansion.
3528    result = DAG.getNode(ISD::FLOG10, dl,
3529                         getValue(I.getArgOperand(0)).getValueType(),
3530                         getValue(I.getArgOperand(0)));
3531  }
3532
3533  setValue(&I, result);
3534}
3535
3536/// visitExp2 - Lower an exp2 intrinsic. Handles the special sequences for
3537/// limited-precision mode.
3538void
3539SelectionDAGBuilder::visitExp2(const CallInst &I) {
3540  SDValue result;
3541  DebugLoc dl = getCurDebugLoc();
3542
3543  if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3544      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3545    SDValue Op = getValue(I.getArgOperand(0));
3546
3547    SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Op);
3548
3549    //   FractionalPartOfX = x - (float)IntegerPartOfX;
3550    SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
3551    SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, Op, t1);
3552
3553    //   IntegerPartOfX <<= 23;
3554    IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
3555                                 DAG.getConstant(23, TLI.getPointerTy()));
3556
3557    if (LimitFloatPrecision <= 6) {
3558      // For floating-point precision of 6:
3559      //
3560      //   TwoToFractionalPartOfX =
3561      //     0.997535578f +
3562      //       (0.735607626f + 0.252464424f * x) * x;
3563      //
3564      // error 0.0144103317, which is 6 bits
3565      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3566                               getF32Constant(DAG, 0x3e814304));
3567      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3568                               getF32Constant(DAG, 0x3f3c50c8));
3569      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3570      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3571                               getF32Constant(DAG, 0x3f7f5e7e));
3572      SDValue t6 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t5);
3573      SDValue TwoToFractionalPartOfX =
3574        DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX);
3575
3576      result = DAG.getNode(ISD::BIT_CONVERT, dl,
3577                           MVT::f32, TwoToFractionalPartOfX);
3578    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3579      // For floating-point precision of 12:
3580      //
3581      //   TwoToFractionalPartOfX =
3582      //     0.999892986f +
3583      //       (0.696457318f +
3584      //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
3585      //
3586      // error 0.000107046256, which is 13 to 14 bits
3587      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3588                               getF32Constant(DAG, 0x3da235e3));
3589      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3590                               getF32Constant(DAG, 0x3e65b8f3));
3591      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3592      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3593                               getF32Constant(DAG, 0x3f324b07));
3594      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3595      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3596                               getF32Constant(DAG, 0x3f7ff8fd));
3597      SDValue t8 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t7);
3598      SDValue TwoToFractionalPartOfX =
3599        DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX);
3600
3601      result = DAG.getNode(ISD::BIT_CONVERT, dl,
3602                           MVT::f32, TwoToFractionalPartOfX);
3603    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3604      // For floating-point precision of 18:
3605      //
3606      //   TwoToFractionalPartOfX =
3607      //     0.999999982f +
3608      //       (0.693148872f +
3609      //         (0.240227044f +
3610      //           (0.554906021e-1f +
3611      //             (0.961591928e-2f +
3612      //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
3613      // error 2.47208000*10^(-7), which is better than 18 bits
3614      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3615                               getF32Constant(DAG, 0x3924b03e));
3616      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3617                               getF32Constant(DAG, 0x3ab24b87));
3618      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3619      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3620                               getF32Constant(DAG, 0x3c1d8c17));
3621      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3622      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3623                               getF32Constant(DAG, 0x3d634a1d));
3624      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3625      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3626                               getF32Constant(DAG, 0x3e75fe14));
3627      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3628      SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
3629                                getF32Constant(DAG, 0x3f317234));
3630      SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
3631      SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
3632                                getF32Constant(DAG, 0x3f800000));
3633      SDValue t14 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t13);
3634      SDValue TwoToFractionalPartOfX =
3635        DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX);
3636
3637      result = DAG.getNode(ISD::BIT_CONVERT, dl,
3638                           MVT::f32, TwoToFractionalPartOfX);
3639    }
3640  } else {
3641    // No special expansion.
3642    result = DAG.getNode(ISD::FEXP2, dl,
3643                         getValue(I.getArgOperand(0)).getValueType(),
3644                         getValue(I.getArgOperand(0)));
3645  }
3646
3647  setValue(&I, result);
3648}
3649
3650/// visitPow - Lower a pow intrinsic. Handles the special sequences for
3651/// limited-precision mode with x == 10.0f.
3652void
3653SelectionDAGBuilder::visitPow(const CallInst &I) {
3654  SDValue result;
3655  const Value *Val = I.getArgOperand(0);
3656  DebugLoc dl = getCurDebugLoc();
3657  bool IsExp10 = false;
3658
3659  if (getValue(Val).getValueType() == MVT::f32 &&
3660      getValue(I.getArgOperand(1)).getValueType() == MVT::f32 &&
3661      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3662    if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(Val))) {
3663      if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
3664        APFloat Ten(10.0f);
3665        IsExp10 = CFP->getValueAPF().bitwiseIsEqual(Ten);
3666      }
3667    }
3668  }
3669
3670  if (IsExp10 && LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3671    SDValue Op = getValue(I.getArgOperand(1));
3672
3673    // Put the exponent in the right bit position for later addition to the
3674    // final result:
3675    //
3676    //   #define LOG2OF10 3.3219281f
3677    //   IntegerPartOfX = (int32_t)(x * LOG2OF10);
3678    SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
3679                             getF32Constant(DAG, 0x40549a78));
3680    SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
3681
3682    //   FractionalPartOfX = x - (float)IntegerPartOfX;
3683    SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
3684    SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
3685
3686    //   IntegerPartOfX <<= 23;
3687    IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
3688                                 DAG.getConstant(23, TLI.getPointerTy()));
3689
3690    if (LimitFloatPrecision <= 6) {
3691      // For floating-point precision of 6:
3692      //
3693      //   twoToFractionalPartOfX =
3694      //     0.997535578f +
3695      //       (0.735607626f + 0.252464424f * x) * x;
3696      //
3697      // error 0.0144103317, which is 6 bits
3698      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3699                               getF32Constant(DAG, 0x3e814304));
3700      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3701                               getF32Constant(DAG, 0x3f3c50c8));
3702      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3703      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3704                               getF32Constant(DAG, 0x3f7f5e7e));
3705      SDValue t6 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t5);
3706      SDValue TwoToFractionalPartOfX =
3707        DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX);
3708
3709      result = DAG.getNode(ISD::BIT_CONVERT, dl,
3710                           MVT::f32, TwoToFractionalPartOfX);
3711    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3712      // For floating-point precision of 12:
3713      //
3714      //   TwoToFractionalPartOfX =
3715      //     0.999892986f +
3716      //       (0.696457318f +
3717      //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
3718      //
3719      // error 0.000107046256, which is 13 to 14 bits
3720      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3721                               getF32Constant(DAG, 0x3da235e3));
3722      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3723                               getF32Constant(DAG, 0x3e65b8f3));
3724      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3725      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3726                               getF32Constant(DAG, 0x3f324b07));
3727      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3728      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3729                               getF32Constant(DAG, 0x3f7ff8fd));
3730      SDValue t8 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t7);
3731      SDValue TwoToFractionalPartOfX =
3732        DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX);
3733
3734      result = DAG.getNode(ISD::BIT_CONVERT, dl,
3735                           MVT::f32, TwoToFractionalPartOfX);
3736    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3737      // For floating-point precision of 18:
3738      //
3739      //   TwoToFractionalPartOfX =
3740      //     0.999999982f +
3741      //       (0.693148872f +
3742      //         (0.240227044f +
3743      //           (0.554906021e-1f +
3744      //             (0.961591928e-2f +
3745      //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
3746      // error 2.47208000*10^(-7), which is better than 18 bits
3747      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3748                               getF32Constant(DAG, 0x3924b03e));
3749      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3750                               getF32Constant(DAG, 0x3ab24b87));
3751      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3752      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3753                               getF32Constant(DAG, 0x3c1d8c17));
3754      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3755      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3756                               getF32Constant(DAG, 0x3d634a1d));
3757      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3758      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3759                               getF32Constant(DAG, 0x3e75fe14));
3760      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3761      SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
3762                                getF32Constant(DAG, 0x3f317234));
3763      SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
3764      SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
3765                                getF32Constant(DAG, 0x3f800000));
3766      SDValue t14 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t13);
3767      SDValue TwoToFractionalPartOfX =
3768        DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX);
3769
3770      result = DAG.getNode(ISD::BIT_CONVERT, dl,
3771                           MVT::f32, TwoToFractionalPartOfX);
3772    }
3773  } else {
3774    // No special expansion.
3775    result = DAG.getNode(ISD::FPOW, dl,
3776                         getValue(I.getArgOperand(0)).getValueType(),
3777                         getValue(I.getArgOperand(0)),
3778                         getValue(I.getArgOperand(1)));
3779  }
3780
3781  setValue(&I, result);
3782}
3783
3784
3785/// ExpandPowI - Expand a llvm.powi intrinsic.
3786static SDValue ExpandPowI(DebugLoc DL, SDValue LHS, SDValue RHS,
3787                          SelectionDAG &DAG) {
3788  // If RHS is a constant, we can expand this out to a multiplication tree,
3789  // otherwise we end up lowering to a call to __powidf2 (for example).  When
3790  // optimizing for size, we only want to do this if the expansion would produce
3791  // a small number of multiplies, otherwise we do the full expansion.
3792  if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
3793    // Get the exponent as a positive value.
3794    unsigned Val = RHSC->getSExtValue();
3795    if ((int)Val < 0) Val = -Val;
3796
3797    // powi(x, 0) -> 1.0
3798    if (Val == 0)
3799      return DAG.getConstantFP(1.0, LHS.getValueType());
3800
3801    const Function *F = DAG.getMachineFunction().getFunction();
3802    if (!F->hasFnAttr(Attribute::OptimizeForSize) ||
3803        // If optimizing for size, don't insert too many multiplies.  This
3804        // inserts up to 5 multiplies.
3805        CountPopulation_32(Val)+Log2_32(Val) < 7) {
3806      // We use the simple binary decomposition method to generate the multiply
3807      // sequence.  There are more optimal ways to do this (for example,
3808      // powi(x,15) generates one more multiply than it should), but this has
3809      // the benefit of being both really simple and much better than a libcall.
3810      SDValue Res;  // Logically starts equal to 1.0
3811      SDValue CurSquare = LHS;
3812      while (Val) {
3813        if (Val & 1) {
3814          if (Res.getNode())
3815            Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare);
3816          else
3817            Res = CurSquare;  // 1.0*CurSquare.
3818        }
3819
3820        CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
3821                                CurSquare, CurSquare);
3822        Val >>= 1;
3823      }
3824
3825      // If the original was negative, invert the result, producing 1/(x*x*x).
3826      if (RHSC->getSExtValue() < 0)
3827        Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
3828                          DAG.getConstantFP(1.0, LHS.getValueType()), Res);
3829      return Res;
3830    }
3831  }
3832
3833  // Otherwise, expand to a libcall.
3834  return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
3835}
3836
3837/// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function
3838/// argument, create the corresponding DBG_VALUE machine instruction for it now.
3839/// At the end of instruction selection, they will be inserted to the entry BB.
3840bool
3841SelectionDAGBuilder::EmitFuncArgumentDbgValue(const DbgValueInst &DI,
3842                                              const Value *V, MDNode *Variable,
3843                                              uint64_t Offset,
3844                                              const SDValue &N) {
3845  if (!isa<Argument>(V))
3846    return false;
3847
3848  MachineFunction &MF = DAG.getMachineFunction();
3849  // Ignore inlined function arguments here.
3850  DIVariable DV(Variable);
3851  if (DV.isInlinedFnArgument(MF.getFunction()))
3852    return false;
3853
3854  MachineBasicBlock *MBB = FuncInfo.MBB;
3855  if (MBB != &MF.front())
3856    return false;
3857
3858  unsigned Reg = 0;
3859  if (N.getOpcode() == ISD::CopyFromReg) {
3860    Reg = cast<RegisterSDNode>(N.getOperand(1))->getReg();
3861    if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) {
3862      MachineRegisterInfo &RegInfo = MF.getRegInfo();
3863      unsigned PR = RegInfo.getLiveInPhysReg(Reg);
3864      if (PR)
3865        Reg = PR;
3866    }
3867  }
3868
3869  if (!Reg) {
3870    DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
3871    if (VMI == FuncInfo.ValueMap.end())
3872      return false;
3873    Reg = VMI->second;
3874  }
3875
3876  const TargetInstrInfo *TII = DAG.getTarget().getInstrInfo();
3877  MachineInstrBuilder MIB = BuildMI(MF, getCurDebugLoc(),
3878                                    TII->get(TargetOpcode::DBG_VALUE))
3879    .addReg(Reg, RegState::Debug).addImm(Offset).addMetadata(Variable);
3880  FuncInfo.ArgDbgValues.push_back(&*MIB);
3881  return true;
3882}
3883
3884// VisualStudio defines setjmp as _setjmp
3885#if defined(_MSC_VER) && defined(setjmp)
3886#define setjmp_undefined_for_visual_studio
3887#undef setjmp
3888#endif
3889
3890/// visitIntrinsicCall - Lower the call to the specified intrinsic function.  If
3891/// we want to emit this as a call to a named external function, return the name
3892/// otherwise lower it and return null.
3893const char *
3894SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) {
3895  DebugLoc dl = getCurDebugLoc();
3896  SDValue Res;
3897
3898  switch (Intrinsic) {
3899  default:
3900    // By default, turn this into a target intrinsic node.
3901    visitTargetIntrinsic(I, Intrinsic);
3902    return 0;
3903  case Intrinsic::vastart:  visitVAStart(I); return 0;
3904  case Intrinsic::vaend:    visitVAEnd(I); return 0;
3905  case Intrinsic::vacopy:   visitVACopy(I); return 0;
3906  case Intrinsic::returnaddress:
3907    setValue(&I, DAG.getNode(ISD::RETURNADDR, dl, TLI.getPointerTy(),
3908                             getValue(I.getArgOperand(0))));
3909    return 0;
3910  case Intrinsic::frameaddress:
3911    setValue(&I, DAG.getNode(ISD::FRAMEADDR, dl, TLI.getPointerTy(),
3912                             getValue(I.getArgOperand(0))));
3913    return 0;
3914  case Intrinsic::setjmp:
3915    return "_setjmp"+!TLI.usesUnderscoreSetJmp();
3916  case Intrinsic::longjmp:
3917    return "_longjmp"+!TLI.usesUnderscoreLongJmp();
3918  case Intrinsic::memcpy: {
3919    // Assert for address < 256 since we support only user defined address
3920    // spaces.
3921    assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
3922           < 256 &&
3923           cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace()
3924           < 256 &&
3925           "Unknown address space");
3926    SDValue Op1 = getValue(I.getArgOperand(0));
3927    SDValue Op2 = getValue(I.getArgOperand(1));
3928    SDValue Op3 = getValue(I.getArgOperand(2));
3929    unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
3930    bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
3931    DAG.setRoot(DAG.getMemcpy(getRoot(), dl, Op1, Op2, Op3, Align, isVol, false,
3932                              I.getArgOperand(0), 0, I.getArgOperand(1), 0));
3933    return 0;
3934  }
3935  case Intrinsic::memset: {
3936    // Assert for address < 256 since we support only user defined address
3937    // spaces.
3938    assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
3939           < 256 &&
3940           "Unknown address space");
3941    SDValue Op1 = getValue(I.getArgOperand(0));
3942    SDValue Op2 = getValue(I.getArgOperand(1));
3943    SDValue Op3 = getValue(I.getArgOperand(2));
3944    unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
3945    bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
3946    DAG.setRoot(DAG.getMemset(getRoot(), dl, Op1, Op2, Op3, Align, isVol,
3947                              I.getArgOperand(0), 0));
3948    return 0;
3949  }
3950  case Intrinsic::memmove: {
3951    // Assert for address < 256 since we support only user defined address
3952    // spaces.
3953    assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
3954           < 256 &&
3955           cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace()
3956           < 256 &&
3957           "Unknown address space");
3958    SDValue Op1 = getValue(I.getArgOperand(0));
3959    SDValue Op2 = getValue(I.getArgOperand(1));
3960    SDValue Op3 = getValue(I.getArgOperand(2));
3961    unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
3962    bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
3963
3964    // If the source and destination are known to not be aliases, we can
3965    // lower memmove as memcpy.
3966    uint64_t Size = -1ULL;
3967    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op3))
3968      Size = C->getZExtValue();
3969    if (AA->alias(I.getArgOperand(0), Size, I.getArgOperand(1), Size) ==
3970        AliasAnalysis::NoAlias) {
3971      DAG.setRoot(DAG.getMemcpy(getRoot(), dl, Op1, Op2, Op3, Align, isVol,
3972                                false, I.getArgOperand(0), 0,
3973                                I.getArgOperand(1), 0));
3974      return 0;
3975    }
3976
3977    DAG.setRoot(DAG.getMemmove(getRoot(), dl, Op1, Op2, Op3, Align, isVol,
3978                               I.getArgOperand(0), 0, I.getArgOperand(1), 0));
3979    return 0;
3980  }
3981  case Intrinsic::dbg_declare: {
3982    const DbgDeclareInst &DI = cast<DbgDeclareInst>(I);
3983    if (!DIVariable(DI.getVariable()).Verify())
3984      return 0;
3985
3986    MDNode *Variable = DI.getVariable();
3987    // Parameters are handled specially.
3988    bool isParameter =
3989      DIVariable(Variable).getTag() == dwarf::DW_TAG_arg_variable;
3990    const Value *Address = DI.getAddress();
3991    if (!Address)
3992      return 0;
3993    if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
3994      Address = BCI->getOperand(0);
3995    const AllocaInst *AI = dyn_cast<AllocaInst>(Address);
3996    if (AI) {
3997      // Don't handle byval arguments or VLAs, for example.
3998      // Non-byval arguments are handled here (they refer to the stack temporary
3999      // alloca at this point).
4000      DenseMap<const AllocaInst*, int>::iterator SI =
4001        FuncInfo.StaticAllocaMap.find(AI);
4002      if (SI == FuncInfo.StaticAllocaMap.end())
4003        return 0; // VLAs.
4004      int FI = SI->second;
4005
4006      MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4007      if (!DI.getDebugLoc().isUnknown() && MMI.hasDebugInfo())
4008        MMI.setVariableDbgInfo(Variable, FI, DI.getDebugLoc());
4009    }
4010
4011    // Build an entry in DbgOrdering.  Debug info input nodes get an SDNodeOrder
4012    // but do not always have a corresponding SDNode built.  The SDNodeOrder
4013    // absolute, but not relative, values are different depending on whether
4014    // debug info exists.
4015    ++SDNodeOrder;
4016    SDValue &N = NodeMap[Address];
4017    SDDbgValue *SDV;
4018    if (N.getNode()) {
4019      if (isParameter && !AI) {
4020        FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
4021        if (FINode)
4022          // Byval parameter.  We have a frame index at this point.
4023          SDV = DAG.getDbgValue(Variable, FINode->getIndex(),
4024                                0, dl, SDNodeOrder);
4025        else
4026          // Can't do anything with other non-AI cases yet.  This might be a
4027          // parameter of a callee function that got inlined, for example.
4028          return 0;
4029      } else if (AI)
4030        SDV = DAG.getDbgValue(Variable, N.getNode(), N.getResNo(),
4031                              0, dl, SDNodeOrder);
4032      else
4033        // Can't do anything with other non-AI cases yet.
4034        return 0;
4035      DAG.AddDbgValue(SDV, N.getNode(), isParameter);
4036    } else {
4037      // This isn't useful, but it shows what we're missing.
4038      SDV = DAG.getDbgValue(Variable, UndefValue::get(Address->getType()),
4039                            0, dl, SDNodeOrder);
4040      DAG.AddDbgValue(SDV, 0, isParameter);
4041    }
4042    return 0;
4043  }
4044  case Intrinsic::dbg_value: {
4045    const DbgValueInst &DI = cast<DbgValueInst>(I);
4046    if (!DIVariable(DI.getVariable()).Verify())
4047      return 0;
4048
4049    MDNode *Variable = DI.getVariable();
4050    uint64_t Offset = DI.getOffset();
4051    const Value *V = DI.getValue();
4052    if (!V)
4053      return 0;
4054
4055    // Build an entry in DbgOrdering.  Debug info input nodes get an SDNodeOrder
4056    // but do not always have a corresponding SDNode built.  The SDNodeOrder
4057    // absolute, but not relative, values are different depending on whether
4058    // debug info exists.
4059    ++SDNodeOrder;
4060    SDDbgValue *SDV;
4061    if (isa<ConstantInt>(V) || isa<ConstantFP>(V)) {
4062      SDV = DAG.getDbgValue(Variable, V, Offset, dl, SDNodeOrder);
4063      DAG.AddDbgValue(SDV, 0, false);
4064    } else {
4065      bool createUndef = false;
4066      // FIXME : Why not use getValue() directly ?
4067      SDValue N = NodeMap[V];
4068      if (!N.getNode() && isa<Argument>(V))
4069        // Check unused arguments map.
4070        N = UnusedArgNodeMap[V];
4071      if (N.getNode()) {
4072        if (!EmitFuncArgumentDbgValue(DI, V, Variable, Offset, N)) {
4073          SDV = DAG.getDbgValue(Variable, N.getNode(),
4074                                N.getResNo(), Offset, dl, SDNodeOrder);
4075          DAG.AddDbgValue(SDV, N.getNode(), false);
4076        }
4077      } else if (isa<PHINode>(V) && !V->use_empty()) {
4078        SDValue N = getValue(V);
4079        if (N.getNode()) {
4080          if (!EmitFuncArgumentDbgValue(DI, V, Variable, Offset, N)) {
4081            SDV = DAG.getDbgValue(Variable, N.getNode(),
4082                                  N.getResNo(), Offset, dl, SDNodeOrder);
4083            DAG.AddDbgValue(SDV, N.getNode(), false);
4084          }
4085        } else
4086          createUndef = true;
4087      } else
4088        createUndef = true;
4089      if (createUndef) {
4090        // We may expand this to cover more cases.  One case where we have no
4091        // data available is an unreferenced parameter; we need this fallback.
4092        SDV = DAG.getDbgValue(Variable, UndefValue::get(V->getType()),
4093                              Offset, dl, SDNodeOrder);
4094        DAG.AddDbgValue(SDV, 0, false);
4095      }
4096    }
4097
4098    // Build a debug info table entry.
4099    if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V))
4100      V = BCI->getOperand(0);
4101    const AllocaInst *AI = dyn_cast<AllocaInst>(V);
4102    // Don't handle byval struct arguments or VLAs, for example.
4103    if (!AI)
4104      return 0;
4105    DenseMap<const AllocaInst*, int>::iterator SI =
4106      FuncInfo.StaticAllocaMap.find(AI);
4107    if (SI == FuncInfo.StaticAllocaMap.end())
4108      return 0; // VLAs.
4109    int FI = SI->second;
4110
4111    MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4112    if (!DI.getDebugLoc().isUnknown() && MMI.hasDebugInfo())
4113      MMI.setVariableDbgInfo(Variable, FI, DI.getDebugLoc());
4114    return 0;
4115  }
4116  case Intrinsic::eh_exception: {
4117    // Insert the EXCEPTIONADDR instruction.
4118    assert(FuncInfo.MBB->isLandingPad() &&
4119           "Call to eh.exception not in landing pad!");
4120    SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
4121    SDValue Ops[1];
4122    Ops[0] = DAG.getRoot();
4123    SDValue Op = DAG.getNode(ISD::EXCEPTIONADDR, dl, VTs, Ops, 1);
4124    setValue(&I, Op);
4125    DAG.setRoot(Op.getValue(1));
4126    return 0;
4127  }
4128
4129  case Intrinsic::eh_selector: {
4130    MachineBasicBlock *CallMBB = FuncInfo.MBB;
4131    MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4132    if (CallMBB->isLandingPad())
4133      AddCatchInfo(I, &MMI, CallMBB);
4134    else {
4135#ifndef NDEBUG
4136      FuncInfo.CatchInfoLost.insert(&I);
4137#endif
4138      // FIXME: Mark exception selector register as live in.  Hack for PR1508.
4139      unsigned Reg = TLI.getExceptionSelectorRegister();
4140      if (Reg) FuncInfo.MBB->addLiveIn(Reg);
4141    }
4142
4143    // Insert the EHSELECTION instruction.
4144    SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
4145    SDValue Ops[2];
4146    Ops[0] = getValue(I.getArgOperand(0));
4147    Ops[1] = getRoot();
4148    SDValue Op = DAG.getNode(ISD::EHSELECTION, dl, VTs, Ops, 2);
4149    DAG.setRoot(Op.getValue(1));
4150    setValue(&I, DAG.getSExtOrTrunc(Op, dl, MVT::i32));
4151    return 0;
4152  }
4153
4154  case Intrinsic::eh_typeid_for: {
4155    // Find the type id for the given typeinfo.
4156    GlobalVariable *GV = ExtractTypeInfo(I.getArgOperand(0));
4157    unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV);
4158    Res = DAG.getConstant(TypeID, MVT::i32);
4159    setValue(&I, Res);
4160    return 0;
4161  }
4162
4163  case Intrinsic::eh_return_i32:
4164  case Intrinsic::eh_return_i64:
4165    DAG.getMachineFunction().getMMI().setCallsEHReturn(true);
4166    DAG.setRoot(DAG.getNode(ISD::EH_RETURN, dl,
4167                            MVT::Other,
4168                            getControlRoot(),
4169                            getValue(I.getArgOperand(0)),
4170                            getValue(I.getArgOperand(1))));
4171    return 0;
4172  case Intrinsic::eh_unwind_init:
4173    DAG.getMachineFunction().getMMI().setCallsUnwindInit(true);
4174    return 0;
4175  case Intrinsic::eh_dwarf_cfa: {
4176    SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), dl,
4177                                        TLI.getPointerTy());
4178    SDValue Offset = DAG.getNode(ISD::ADD, dl,
4179                                 TLI.getPointerTy(),
4180                                 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, dl,
4181                                             TLI.getPointerTy()),
4182                                 CfaArg);
4183    SDValue FA = DAG.getNode(ISD::FRAMEADDR, dl,
4184                             TLI.getPointerTy(),
4185                             DAG.getConstant(0, TLI.getPointerTy()));
4186    setValue(&I, DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(),
4187                             FA, Offset));
4188    return 0;
4189  }
4190  case Intrinsic::eh_sjlj_callsite: {
4191    MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4192    ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0));
4193    assert(CI && "Non-constant call site value in eh.sjlj.callsite!");
4194    assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
4195
4196    MMI.setCurrentCallSite(CI->getZExtValue());
4197    return 0;
4198  }
4199  case Intrinsic::eh_sjlj_setjmp: {
4200    setValue(&I, DAG.getNode(ISD::EH_SJLJ_SETJMP, dl, MVT::i32, getRoot(),
4201                             getValue(I.getArgOperand(0))));
4202    return 0;
4203  }
4204  case Intrinsic::eh_sjlj_longjmp: {
4205    DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, dl, MVT::Other,
4206                            getRoot(),
4207                            getValue(I.getArgOperand(0))));
4208    return 0;
4209  }
4210
4211  case Intrinsic::convertff:
4212  case Intrinsic::convertfsi:
4213  case Intrinsic::convertfui:
4214  case Intrinsic::convertsif:
4215  case Intrinsic::convertuif:
4216  case Intrinsic::convertss:
4217  case Intrinsic::convertsu:
4218  case Intrinsic::convertus:
4219  case Intrinsic::convertuu: {
4220    ISD::CvtCode Code = ISD::CVT_INVALID;
4221    switch (Intrinsic) {
4222    case Intrinsic::convertff:  Code = ISD::CVT_FF; break;
4223    case Intrinsic::convertfsi: Code = ISD::CVT_FS; break;
4224    case Intrinsic::convertfui: Code = ISD::CVT_FU; break;
4225    case Intrinsic::convertsif: Code = ISD::CVT_SF; break;
4226    case Intrinsic::convertuif: Code = ISD::CVT_UF; break;
4227    case Intrinsic::convertss:  Code = ISD::CVT_SS; break;
4228    case Intrinsic::convertsu:  Code = ISD::CVT_SU; break;
4229    case Intrinsic::convertus:  Code = ISD::CVT_US; break;
4230    case Intrinsic::convertuu:  Code = ISD::CVT_UU; break;
4231    }
4232    EVT DestVT = TLI.getValueType(I.getType());
4233    const Value *Op1 = I.getArgOperand(0);
4234    Res = DAG.getConvertRndSat(DestVT, getCurDebugLoc(), getValue(Op1),
4235                               DAG.getValueType(DestVT),
4236                               DAG.getValueType(getValue(Op1).getValueType()),
4237                               getValue(I.getArgOperand(1)),
4238                               getValue(I.getArgOperand(2)),
4239                               Code);
4240    setValue(&I, Res);
4241    return 0;
4242  }
4243  case Intrinsic::sqrt:
4244    setValue(&I, DAG.getNode(ISD::FSQRT, dl,
4245                             getValue(I.getArgOperand(0)).getValueType(),
4246                             getValue(I.getArgOperand(0))));
4247    return 0;
4248  case Intrinsic::powi:
4249    setValue(&I, ExpandPowI(dl, getValue(I.getArgOperand(0)),
4250                            getValue(I.getArgOperand(1)), DAG));
4251    return 0;
4252  case Intrinsic::sin:
4253    setValue(&I, DAG.getNode(ISD::FSIN, dl,
4254                             getValue(I.getArgOperand(0)).getValueType(),
4255                             getValue(I.getArgOperand(0))));
4256    return 0;
4257  case Intrinsic::cos:
4258    setValue(&I, DAG.getNode(ISD::FCOS, dl,
4259                             getValue(I.getArgOperand(0)).getValueType(),
4260                             getValue(I.getArgOperand(0))));
4261    return 0;
4262  case Intrinsic::log:
4263    visitLog(I);
4264    return 0;
4265  case Intrinsic::log2:
4266    visitLog2(I);
4267    return 0;
4268  case Intrinsic::log10:
4269    visitLog10(I);
4270    return 0;
4271  case Intrinsic::exp:
4272    visitExp(I);
4273    return 0;
4274  case Intrinsic::exp2:
4275    visitExp2(I);
4276    return 0;
4277  case Intrinsic::pow:
4278    visitPow(I);
4279    return 0;
4280  case Intrinsic::convert_to_fp16:
4281    setValue(&I, DAG.getNode(ISD::FP32_TO_FP16, dl,
4282                             MVT::i16, getValue(I.getArgOperand(0))));
4283    return 0;
4284  case Intrinsic::convert_from_fp16:
4285    setValue(&I, DAG.getNode(ISD::FP16_TO_FP32, dl,
4286                             MVT::f32, getValue(I.getArgOperand(0))));
4287    return 0;
4288  case Intrinsic::pcmarker: {
4289    SDValue Tmp = getValue(I.getArgOperand(0));
4290    DAG.setRoot(DAG.getNode(ISD::PCMARKER, dl, MVT::Other, getRoot(), Tmp));
4291    return 0;
4292  }
4293  case Intrinsic::readcyclecounter: {
4294    SDValue Op = getRoot();
4295    Res = DAG.getNode(ISD::READCYCLECOUNTER, dl,
4296                      DAG.getVTList(MVT::i64, MVT::Other),
4297                      &Op, 1);
4298    setValue(&I, Res);
4299    DAG.setRoot(Res.getValue(1));
4300    return 0;
4301  }
4302  case Intrinsic::bswap:
4303    setValue(&I, DAG.getNode(ISD::BSWAP, dl,
4304                             getValue(I.getArgOperand(0)).getValueType(),
4305                             getValue(I.getArgOperand(0))));
4306    return 0;
4307  case Intrinsic::cttz: {
4308    SDValue Arg = getValue(I.getArgOperand(0));
4309    EVT Ty = Arg.getValueType();
4310    setValue(&I, DAG.getNode(ISD::CTTZ, dl, Ty, Arg));
4311    return 0;
4312  }
4313  case Intrinsic::ctlz: {
4314    SDValue Arg = getValue(I.getArgOperand(0));
4315    EVT Ty = Arg.getValueType();
4316    setValue(&I, DAG.getNode(ISD::CTLZ, dl, Ty, Arg));
4317    return 0;
4318  }
4319  case Intrinsic::ctpop: {
4320    SDValue Arg = getValue(I.getArgOperand(0));
4321    EVT Ty = Arg.getValueType();
4322    setValue(&I, DAG.getNode(ISD::CTPOP, dl, Ty, Arg));
4323    return 0;
4324  }
4325  case Intrinsic::stacksave: {
4326    SDValue Op = getRoot();
4327    Res = DAG.getNode(ISD::STACKSAVE, dl,
4328                      DAG.getVTList(TLI.getPointerTy(), MVT::Other), &Op, 1);
4329    setValue(&I, Res);
4330    DAG.setRoot(Res.getValue(1));
4331    return 0;
4332  }
4333  case Intrinsic::stackrestore: {
4334    Res = getValue(I.getArgOperand(0));
4335    DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, dl, MVT::Other, getRoot(), Res));
4336    return 0;
4337  }
4338  case Intrinsic::stackprotector: {
4339    // Emit code into the DAG to store the stack guard onto the stack.
4340    MachineFunction &MF = DAG.getMachineFunction();
4341    MachineFrameInfo *MFI = MF.getFrameInfo();
4342    EVT PtrTy = TLI.getPointerTy();
4343
4344    SDValue Src = getValue(I.getArgOperand(0));   // The guard's value.
4345    AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
4346
4347    int FI = FuncInfo.StaticAllocaMap[Slot];
4348    MFI->setStackProtectorIndex(FI);
4349
4350    SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
4351
4352    // Store the stack protector onto the stack.
4353    Res = DAG.getStore(getRoot(), getCurDebugLoc(), Src, FIN,
4354                       PseudoSourceValue::getFixedStack(FI),
4355                       0, true, false, 0);
4356    setValue(&I, Res);
4357    DAG.setRoot(Res);
4358    return 0;
4359  }
4360  case Intrinsic::objectsize: {
4361    // If we don't know by now, we're never going to know.
4362    ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1));
4363
4364    assert(CI && "Non-constant type in __builtin_object_size?");
4365
4366    SDValue Arg = getValue(I.getCalledValue());
4367    EVT Ty = Arg.getValueType();
4368
4369    if (CI->isZero())
4370      Res = DAG.getConstant(-1ULL, Ty);
4371    else
4372      Res = DAG.getConstant(0, Ty);
4373
4374    setValue(&I, Res);
4375    return 0;
4376  }
4377  case Intrinsic::var_annotation:
4378    // Discard annotate attributes
4379    return 0;
4380
4381  case Intrinsic::init_trampoline: {
4382    const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
4383
4384    SDValue Ops[6];
4385    Ops[0] = getRoot();
4386    Ops[1] = getValue(I.getArgOperand(0));
4387    Ops[2] = getValue(I.getArgOperand(1));
4388    Ops[3] = getValue(I.getArgOperand(2));
4389    Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
4390    Ops[5] = DAG.getSrcValue(F);
4391
4392    Res = DAG.getNode(ISD::TRAMPOLINE, dl,
4393                      DAG.getVTList(TLI.getPointerTy(), MVT::Other),
4394                      Ops, 6);
4395
4396    setValue(&I, Res);
4397    DAG.setRoot(Res.getValue(1));
4398    return 0;
4399  }
4400  case Intrinsic::gcroot:
4401    if (GFI) {
4402      const Value *Alloca = I.getArgOperand(0);
4403      const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
4404
4405      FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
4406      GFI->addStackRoot(FI->getIndex(), TypeMap);
4407    }
4408    return 0;
4409  case Intrinsic::gcread:
4410  case Intrinsic::gcwrite:
4411    llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
4412    return 0;
4413  case Intrinsic::flt_rounds:
4414    setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, dl, MVT::i32));
4415    return 0;
4416  case Intrinsic::trap:
4417    DAG.setRoot(DAG.getNode(ISD::TRAP, dl,MVT::Other, getRoot()));
4418    return 0;
4419  case Intrinsic::uadd_with_overflow:
4420    return implVisitAluOverflow(I, ISD::UADDO);
4421  case Intrinsic::sadd_with_overflow:
4422    return implVisitAluOverflow(I, ISD::SADDO);
4423  case Intrinsic::usub_with_overflow:
4424    return implVisitAluOverflow(I, ISD::USUBO);
4425  case Intrinsic::ssub_with_overflow:
4426    return implVisitAluOverflow(I, ISD::SSUBO);
4427  case Intrinsic::umul_with_overflow:
4428    return implVisitAluOverflow(I, ISD::UMULO);
4429  case Intrinsic::smul_with_overflow:
4430    return implVisitAluOverflow(I, ISD::SMULO);
4431
4432  case Intrinsic::prefetch: {
4433    SDValue Ops[4];
4434    Ops[0] = getRoot();
4435    Ops[1] = getValue(I.getArgOperand(0));
4436    Ops[2] = getValue(I.getArgOperand(1));
4437    Ops[3] = getValue(I.getArgOperand(2));
4438    DAG.setRoot(DAG.getNode(ISD::PREFETCH, dl, MVT::Other, &Ops[0], 4));
4439    return 0;
4440  }
4441
4442  case Intrinsic::memory_barrier: {
4443    SDValue Ops[6];
4444    Ops[0] = getRoot();
4445    for (int x = 1; x < 6; ++x)
4446      Ops[x] = getValue(I.getArgOperand(x - 1));
4447
4448    DAG.setRoot(DAG.getNode(ISD::MEMBARRIER, dl, MVT::Other, &Ops[0], 6));
4449    return 0;
4450  }
4451  case Intrinsic::atomic_cmp_swap: {
4452    SDValue Root = getRoot();
4453    SDValue L =
4454      DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, getCurDebugLoc(),
4455                    getValue(I.getArgOperand(1)).getValueType().getSimpleVT(),
4456                    Root,
4457                    getValue(I.getArgOperand(0)),
4458                    getValue(I.getArgOperand(1)),
4459                    getValue(I.getArgOperand(2)),
4460                    I.getArgOperand(0));
4461    setValue(&I, L);
4462    DAG.setRoot(L.getValue(1));
4463    return 0;
4464  }
4465  case Intrinsic::atomic_load_add:
4466    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_ADD);
4467  case Intrinsic::atomic_load_sub:
4468    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_SUB);
4469  case Intrinsic::atomic_load_or:
4470    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_OR);
4471  case Intrinsic::atomic_load_xor:
4472    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_XOR);
4473  case Intrinsic::atomic_load_and:
4474    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_AND);
4475  case Intrinsic::atomic_load_nand:
4476    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_NAND);
4477  case Intrinsic::atomic_load_max:
4478    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MAX);
4479  case Intrinsic::atomic_load_min:
4480    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MIN);
4481  case Intrinsic::atomic_load_umin:
4482    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMIN);
4483  case Intrinsic::atomic_load_umax:
4484    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMAX);
4485  case Intrinsic::atomic_swap:
4486    return implVisitBinaryAtomic(I, ISD::ATOMIC_SWAP);
4487
4488  case Intrinsic::invariant_start:
4489  case Intrinsic::lifetime_start:
4490    // Discard region information.
4491    setValue(&I, DAG.getUNDEF(TLI.getPointerTy()));
4492    return 0;
4493  case Intrinsic::invariant_end:
4494  case Intrinsic::lifetime_end:
4495    // Discard region information.
4496    return 0;
4497  }
4498}
4499
4500void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee,
4501                                      bool isTailCall,
4502                                      MachineBasicBlock *LandingPad) {
4503  const PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
4504  const FunctionType *FTy = cast<FunctionType>(PT->getElementType());
4505  const Type *RetTy = FTy->getReturnType();
4506  MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4507  MCSymbol *BeginLabel = 0;
4508
4509  TargetLowering::ArgListTy Args;
4510  TargetLowering::ArgListEntry Entry;
4511  Args.reserve(CS.arg_size());
4512
4513  // Check whether the function can return without sret-demotion.
4514  SmallVector<ISD::OutputArg, 4> Outs;
4515  SmallVector<uint64_t, 4> Offsets;
4516  GetReturnInfo(RetTy, CS.getAttributes().getRetAttributes(),
4517                Outs, TLI, &Offsets);
4518
4519  bool CanLowerReturn = TLI.CanLowerReturn(CS.getCallingConv(),
4520                        FTy->isVarArg(), Outs, FTy->getContext());
4521
4522  SDValue DemoteStackSlot;
4523
4524  if (!CanLowerReturn) {
4525    uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(
4526                      FTy->getReturnType());
4527    unsigned Align  = TLI.getTargetData()->getPrefTypeAlignment(
4528                      FTy->getReturnType());
4529    MachineFunction &MF = DAG.getMachineFunction();
4530    int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
4531    const Type *StackSlotPtrType = PointerType::getUnqual(FTy->getReturnType());
4532
4533    DemoteStackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy());
4534    Entry.Node = DemoteStackSlot;
4535    Entry.Ty = StackSlotPtrType;
4536    Entry.isSExt = false;
4537    Entry.isZExt = false;
4538    Entry.isInReg = false;
4539    Entry.isSRet = true;
4540    Entry.isNest = false;
4541    Entry.isByVal = false;
4542    Entry.Alignment = Align;
4543    Args.push_back(Entry);
4544    RetTy = Type::getVoidTy(FTy->getContext());
4545  }
4546
4547  for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
4548       i != e; ++i) {
4549    SDValue ArgNode = getValue(*i);
4550    Entry.Node = ArgNode; Entry.Ty = (*i)->getType();
4551
4552    unsigned attrInd = i - CS.arg_begin() + 1;
4553    Entry.isSExt  = CS.paramHasAttr(attrInd, Attribute::SExt);
4554    Entry.isZExt  = CS.paramHasAttr(attrInd, Attribute::ZExt);
4555    Entry.isInReg = CS.paramHasAttr(attrInd, Attribute::InReg);
4556    Entry.isSRet  = CS.paramHasAttr(attrInd, Attribute::StructRet);
4557    Entry.isNest  = CS.paramHasAttr(attrInd, Attribute::Nest);
4558    Entry.isByVal = CS.paramHasAttr(attrInd, Attribute::ByVal);
4559    Entry.Alignment = CS.getParamAlignment(attrInd);
4560    Args.push_back(Entry);
4561  }
4562
4563  if (LandingPad) {
4564    // Insert a label before the invoke call to mark the try range.  This can be
4565    // used to detect deletion of the invoke via the MachineModuleInfo.
4566    BeginLabel = MMI.getContext().CreateTempSymbol();
4567
4568    // For SjLj, keep track of which landing pads go with which invokes
4569    // so as to maintain the ordering of pads in the LSDA.
4570    unsigned CallSiteIndex = MMI.getCurrentCallSite();
4571    if (CallSiteIndex) {
4572      MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
4573      // Now that the call site is handled, stop tracking it.
4574      MMI.setCurrentCallSite(0);
4575    }
4576
4577    // Both PendingLoads and PendingExports must be flushed here;
4578    // this call might not return.
4579    (void)getRoot();
4580    DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getControlRoot(), BeginLabel));
4581  }
4582
4583  // Check if target-independent constraints permit a tail call here.
4584  // Target-dependent constraints are checked within TLI.LowerCallTo.
4585  if (isTailCall &&
4586      !isInTailCallPosition(CS, CS.getAttributes().getRetAttributes(), TLI))
4587    isTailCall = false;
4588
4589  std::pair<SDValue,SDValue> Result =
4590    TLI.LowerCallTo(getRoot(), RetTy,
4591                    CS.paramHasAttr(0, Attribute::SExt),
4592                    CS.paramHasAttr(0, Attribute::ZExt), FTy->isVarArg(),
4593                    CS.paramHasAttr(0, Attribute::InReg), FTy->getNumParams(),
4594                    CS.getCallingConv(),
4595                    isTailCall,
4596                    !CS.getInstruction()->use_empty(),
4597                    Callee, Args, DAG, getCurDebugLoc());
4598  assert((isTailCall || Result.second.getNode()) &&
4599         "Non-null chain expected with non-tail call!");
4600  assert((Result.second.getNode() || !Result.first.getNode()) &&
4601         "Null value expected with tail call!");
4602  if (Result.first.getNode()) {
4603    setValue(CS.getInstruction(), Result.first);
4604  } else if (!CanLowerReturn && Result.second.getNode()) {
4605    // The instruction result is the result of loading from the
4606    // hidden sret parameter.
4607    SmallVector<EVT, 1> PVTs;
4608    const Type *PtrRetTy = PointerType::getUnqual(FTy->getReturnType());
4609
4610    ComputeValueVTs(TLI, PtrRetTy, PVTs);
4611    assert(PVTs.size() == 1 && "Pointers should fit in one register");
4612    EVT PtrVT = PVTs[0];
4613    unsigned NumValues = Outs.size();
4614    SmallVector<SDValue, 4> Values(NumValues);
4615    SmallVector<SDValue, 4> Chains(NumValues);
4616
4617    for (unsigned i = 0; i < NumValues; ++i) {
4618      SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT,
4619                                DemoteStackSlot,
4620                                DAG.getConstant(Offsets[i], PtrVT));
4621      SDValue L = DAG.getLoad(Outs[i].VT, getCurDebugLoc(), Result.second,
4622                              Add, NULL, Offsets[i], false, false, 1);
4623      Values[i] = L;
4624      Chains[i] = L.getValue(1);
4625    }
4626
4627    SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
4628                                MVT::Other, &Chains[0], NumValues);
4629    PendingLoads.push_back(Chain);
4630
4631    // Collect the legal value parts into potentially illegal values
4632    // that correspond to the original function's return values.
4633    SmallVector<EVT, 4> RetTys;
4634    RetTy = FTy->getReturnType();
4635    ComputeValueVTs(TLI, RetTy, RetTys);
4636    ISD::NodeType AssertOp = ISD::DELETED_NODE;
4637    SmallVector<SDValue, 4> ReturnValues;
4638    unsigned CurReg = 0;
4639    for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
4640      EVT VT = RetTys[I];
4641      EVT RegisterVT = TLI.getRegisterType(RetTy->getContext(), VT);
4642      unsigned NumRegs = TLI.getNumRegisters(RetTy->getContext(), VT);
4643
4644      SDValue ReturnValue =
4645        getCopyFromParts(DAG, getCurDebugLoc(), &Values[CurReg], NumRegs,
4646                         RegisterVT, VT, AssertOp);
4647      ReturnValues.push_back(ReturnValue);
4648      CurReg += NumRegs;
4649    }
4650
4651    setValue(CS.getInstruction(),
4652             DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
4653                         DAG.getVTList(&RetTys[0], RetTys.size()),
4654                         &ReturnValues[0], ReturnValues.size()));
4655
4656  }
4657
4658  // As a special case, a null chain means that a tail call has been emitted and
4659  // the DAG root is already updated.
4660  if (Result.second.getNode())
4661    DAG.setRoot(Result.second);
4662  else
4663    HasTailCall = true;
4664
4665  if (LandingPad) {
4666    // Insert a label at the end of the invoke call to mark the try range.  This
4667    // can be used to detect deletion of the invoke via the MachineModuleInfo.
4668    MCSymbol *EndLabel = MMI.getContext().CreateTempSymbol();
4669    DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getRoot(), EndLabel));
4670
4671    // Inform MachineModuleInfo of range.
4672    MMI.addInvoke(LandingPad, BeginLabel, EndLabel);
4673  }
4674}
4675
4676/// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the
4677/// value is equal or not-equal to zero.
4678static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) {
4679  for (Value::const_use_iterator UI = V->use_begin(), E = V->use_end();
4680       UI != E; ++UI) {
4681    if (const ICmpInst *IC = dyn_cast<ICmpInst>(*UI))
4682      if (IC->isEquality())
4683        if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
4684          if (C->isNullValue())
4685            continue;
4686    // Unknown instruction.
4687    return false;
4688  }
4689  return true;
4690}
4691
4692static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
4693                             const Type *LoadTy,
4694                             SelectionDAGBuilder &Builder) {
4695
4696  // Check to see if this load can be trivially constant folded, e.g. if the
4697  // input is from a string literal.
4698  if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
4699    // Cast pointer to the type we really want to load.
4700    LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
4701                                         PointerType::getUnqual(LoadTy));
4702
4703    if (const Constant *LoadCst =
4704          ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput),
4705                                       Builder.TD))
4706      return Builder.getValue(LoadCst);
4707  }
4708
4709  // Otherwise, we have to emit the load.  If the pointer is to unfoldable but
4710  // still constant memory, the input chain can be the entry node.
4711  SDValue Root;
4712  bool ConstantMemory = false;
4713
4714  // Do not serialize (non-volatile) loads of constant memory with anything.
4715  if (Builder.AA->pointsToConstantMemory(PtrVal)) {
4716    Root = Builder.DAG.getEntryNode();
4717    ConstantMemory = true;
4718  } else {
4719    // Do not serialize non-volatile loads against each other.
4720    Root = Builder.DAG.getRoot();
4721  }
4722
4723  SDValue Ptr = Builder.getValue(PtrVal);
4724  SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurDebugLoc(), Root,
4725                                        Ptr, PtrVal /*SrcValue*/, 0/*SVOffset*/,
4726                                        false /*volatile*/,
4727                                        false /*nontemporal*/, 1 /* align=1 */);
4728
4729  if (!ConstantMemory)
4730    Builder.PendingLoads.push_back(LoadVal.getValue(1));
4731  return LoadVal;
4732}
4733
4734
4735/// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form.
4736/// If so, return true and lower it, otherwise return false and it will be
4737/// lowered like a normal call.
4738bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) {
4739  // Verify that the prototype makes sense.  int memcmp(void*,void*,size_t)
4740  if (I.getNumArgOperands() != 3)
4741    return false;
4742
4743  const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
4744  if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() ||
4745      !I.getArgOperand(2)->getType()->isIntegerTy() ||
4746      !I.getType()->isIntegerTy())
4747    return false;
4748
4749  const ConstantInt *Size = dyn_cast<ConstantInt>(I.getArgOperand(2));
4750
4751  // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0
4752  // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0
4753  if (Size && IsOnlyUsedInZeroEqualityComparison(&I)) {
4754    bool ActuallyDoIt = true;
4755    MVT LoadVT;
4756    const Type *LoadTy;
4757    switch (Size->getZExtValue()) {
4758    default:
4759      LoadVT = MVT::Other;
4760      LoadTy = 0;
4761      ActuallyDoIt = false;
4762      break;
4763    case 2:
4764      LoadVT = MVT::i16;
4765      LoadTy = Type::getInt16Ty(Size->getContext());
4766      break;
4767    case 4:
4768      LoadVT = MVT::i32;
4769      LoadTy = Type::getInt32Ty(Size->getContext());
4770      break;
4771    case 8:
4772      LoadVT = MVT::i64;
4773      LoadTy = Type::getInt64Ty(Size->getContext());
4774      break;
4775        /*
4776    case 16:
4777      LoadVT = MVT::v4i32;
4778      LoadTy = Type::getInt32Ty(Size->getContext());
4779      LoadTy = VectorType::get(LoadTy, 4);
4780      break;
4781         */
4782    }
4783
4784    // This turns into unaligned loads.  We only do this if the target natively
4785    // supports the MVT we'll be loading or if it is small enough (<= 4) that
4786    // we'll only produce a small number of byte loads.
4787
4788    // Require that we can find a legal MVT, and only do this if the target
4789    // supports unaligned loads of that type.  Expanding into byte loads would
4790    // bloat the code.
4791    if (ActuallyDoIt && Size->getZExtValue() > 4) {
4792      // TODO: Handle 5 byte compare as 4-byte + 1 byte.
4793      // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
4794      if (!TLI.isTypeLegal(LoadVT) ||!TLI.allowsUnalignedMemoryAccesses(LoadVT))
4795        ActuallyDoIt = false;
4796    }
4797
4798    if (ActuallyDoIt) {
4799      SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this);
4800      SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this);
4801
4802      SDValue Res = DAG.getSetCC(getCurDebugLoc(), MVT::i1, LHSVal, RHSVal,
4803                                 ISD::SETNE);
4804      EVT CallVT = TLI.getValueType(I.getType(), true);
4805      setValue(&I, DAG.getZExtOrTrunc(Res, getCurDebugLoc(), CallVT));
4806      return true;
4807    }
4808  }
4809
4810
4811  return false;
4812}
4813
4814
4815void SelectionDAGBuilder::visitCall(const CallInst &I) {
4816  // Handle inline assembly differently.
4817  if (isa<InlineAsm>(I.getCalledValue())) {
4818    visitInlineAsm(&I);
4819    return;
4820  }
4821
4822  const char *RenameFn = 0;
4823  if (Function *F = I.getCalledFunction()) {
4824    if (F->isDeclaration()) {
4825      if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) {
4826        if (unsigned IID = II->getIntrinsicID(F)) {
4827          RenameFn = visitIntrinsicCall(I, IID);
4828          if (!RenameFn)
4829            return;
4830        }
4831      }
4832      if (unsigned IID = F->getIntrinsicID()) {
4833        RenameFn = visitIntrinsicCall(I, IID);
4834        if (!RenameFn)
4835          return;
4836      }
4837    }
4838
4839    // Check for well-known libc/libm calls.  If the function is internal, it
4840    // can't be a library call.
4841    if (!F->hasLocalLinkage() && F->hasName()) {
4842      StringRef Name = F->getName();
4843      if (Name == "copysign" || Name == "copysignf" || Name == "copysignl") {
4844        if (I.getNumArgOperands() == 2 &&   // Basic sanity checks.
4845            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
4846            I.getType() == I.getArgOperand(0)->getType() &&
4847            I.getType() == I.getArgOperand(1)->getType()) {
4848          SDValue LHS = getValue(I.getArgOperand(0));
4849          SDValue RHS = getValue(I.getArgOperand(1));
4850          setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurDebugLoc(),
4851                                   LHS.getValueType(), LHS, RHS));
4852          return;
4853        }
4854      } else if (Name == "fabs" || Name == "fabsf" || Name == "fabsl") {
4855        if (I.getNumArgOperands() == 1 &&   // Basic sanity checks.
4856            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
4857            I.getType() == I.getArgOperand(0)->getType()) {
4858          SDValue Tmp = getValue(I.getArgOperand(0));
4859          setValue(&I, DAG.getNode(ISD::FABS, getCurDebugLoc(),
4860                                   Tmp.getValueType(), Tmp));
4861          return;
4862        }
4863      } else if (Name == "sin" || Name == "sinf" || Name == "sinl") {
4864        if (I.getNumArgOperands() == 1 &&   // Basic sanity checks.
4865            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
4866            I.getType() == I.getArgOperand(0)->getType() &&
4867            I.onlyReadsMemory()) {
4868          SDValue Tmp = getValue(I.getArgOperand(0));
4869          setValue(&I, DAG.getNode(ISD::FSIN, getCurDebugLoc(),
4870                                   Tmp.getValueType(), Tmp));
4871          return;
4872        }
4873      } else if (Name == "cos" || Name == "cosf" || Name == "cosl") {
4874        if (I.getNumArgOperands() == 1 &&   // Basic sanity checks.
4875            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
4876            I.getType() == I.getArgOperand(0)->getType() &&
4877            I.onlyReadsMemory()) {
4878          SDValue Tmp = getValue(I.getArgOperand(0));
4879          setValue(&I, DAG.getNode(ISD::FCOS, getCurDebugLoc(),
4880                                   Tmp.getValueType(), Tmp));
4881          return;
4882        }
4883      } else if (Name == "sqrt" || Name == "sqrtf" || Name == "sqrtl") {
4884        if (I.getNumArgOperands() == 1 &&   // Basic sanity checks.
4885            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
4886            I.getType() == I.getArgOperand(0)->getType() &&
4887            I.onlyReadsMemory()) {
4888          SDValue Tmp = getValue(I.getArgOperand(0));
4889          setValue(&I, DAG.getNode(ISD::FSQRT, getCurDebugLoc(),
4890                                   Tmp.getValueType(), Tmp));
4891          return;
4892        }
4893      } else if (Name == "memcmp") {
4894        if (visitMemCmpCall(I))
4895          return;
4896      }
4897    }
4898  }
4899
4900  SDValue Callee;
4901  if (!RenameFn)
4902    Callee = getValue(I.getCalledValue());
4903  else
4904    Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy());
4905
4906  // Check if we can potentially perform a tail call. More detailed checking is
4907  // be done within LowerCallTo, after more information about the call is known.
4908  LowerCallTo(&I, Callee, I.isTailCall());
4909}
4910
4911namespace llvm {
4912
4913/// AsmOperandInfo - This contains information for each constraint that we are
4914/// lowering.
4915class LLVM_LIBRARY_VISIBILITY SDISelAsmOperandInfo :
4916    public TargetLowering::AsmOperandInfo {
4917public:
4918  /// CallOperand - If this is the result output operand or a clobber
4919  /// this is null, otherwise it is the incoming operand to the CallInst.
4920  /// This gets modified as the asm is processed.
4921  SDValue CallOperand;
4922
4923  /// AssignedRegs - If this is a register or register class operand, this
4924  /// contains the set of register corresponding to the operand.
4925  RegsForValue AssignedRegs;
4926
4927  explicit SDISelAsmOperandInfo(const InlineAsm::ConstraintInfo &info)
4928    : TargetLowering::AsmOperandInfo(info), CallOperand(0,0) {
4929  }
4930
4931  /// MarkAllocatedRegs - Once AssignedRegs is set, mark the assigned registers
4932  /// busy in OutputRegs/InputRegs.
4933  void MarkAllocatedRegs(bool isOutReg, bool isInReg,
4934                         std::set<unsigned> &OutputRegs,
4935                         std::set<unsigned> &InputRegs,
4936                         const TargetRegisterInfo &TRI) const {
4937    if (isOutReg) {
4938      for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i)
4939        MarkRegAndAliases(AssignedRegs.Regs[i], OutputRegs, TRI);
4940    }
4941    if (isInReg) {
4942      for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i)
4943        MarkRegAndAliases(AssignedRegs.Regs[i], InputRegs, TRI);
4944    }
4945  }
4946
4947  /// getCallOperandValEVT - Return the EVT of the Value* that this operand
4948  /// corresponds to.  If there is no Value* for this operand, it returns
4949  /// MVT::Other.
4950  EVT getCallOperandValEVT(LLVMContext &Context,
4951                           const TargetLowering &TLI,
4952                           const TargetData *TD) const {
4953    if (CallOperandVal == 0) return MVT::Other;
4954
4955    if (isa<BasicBlock>(CallOperandVal))
4956      return TLI.getPointerTy();
4957
4958    const llvm::Type *OpTy = CallOperandVal->getType();
4959
4960    // If this is an indirect operand, the operand is a pointer to the
4961    // accessed type.
4962    if (isIndirect) {
4963      const llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
4964      if (!PtrTy)
4965        report_fatal_error("Indirect operand for inline asm not a pointer!");
4966      OpTy = PtrTy->getElementType();
4967    }
4968
4969    // If OpTy is not a single value, it may be a struct/union that we
4970    // can tile with integers.
4971    if (!OpTy->isSingleValueType() && OpTy->isSized()) {
4972      unsigned BitSize = TD->getTypeSizeInBits(OpTy);
4973      switch (BitSize) {
4974      default: break;
4975      case 1:
4976      case 8:
4977      case 16:
4978      case 32:
4979      case 64:
4980      case 128:
4981        OpTy = IntegerType::get(Context, BitSize);
4982        break;
4983      }
4984    }
4985
4986    return TLI.getValueType(OpTy, true);
4987  }
4988
4989private:
4990  /// MarkRegAndAliases - Mark the specified register and all aliases in the
4991  /// specified set.
4992  static void MarkRegAndAliases(unsigned Reg, std::set<unsigned> &Regs,
4993                                const TargetRegisterInfo &TRI) {
4994    assert(TargetRegisterInfo::isPhysicalRegister(Reg) && "Isn't a physreg");
4995    Regs.insert(Reg);
4996    if (const unsigned *Aliases = TRI.getAliasSet(Reg))
4997      for (; *Aliases; ++Aliases)
4998        Regs.insert(*Aliases);
4999  }
5000};
5001
5002} // end llvm namespace.
5003
5004/// isAllocatableRegister - If the specified register is safe to allocate,
5005/// i.e. it isn't a stack pointer or some other special register, return the
5006/// register class for the register.  Otherwise, return null.
5007static const TargetRegisterClass *
5008isAllocatableRegister(unsigned Reg, MachineFunction &MF,
5009                      const TargetLowering &TLI,
5010                      const TargetRegisterInfo *TRI) {
5011  EVT FoundVT = MVT::Other;
5012  const TargetRegisterClass *FoundRC = 0;
5013  for (TargetRegisterInfo::regclass_iterator RCI = TRI->regclass_begin(),
5014       E = TRI->regclass_end(); RCI != E; ++RCI) {
5015    EVT ThisVT = MVT::Other;
5016
5017    const TargetRegisterClass *RC = *RCI;
5018    // If none of the value types for this register class are valid, we
5019    // can't use it.  For example, 64-bit reg classes on 32-bit targets.
5020    for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
5021         I != E; ++I) {
5022      if (TLI.isTypeLegal(*I)) {
5023        // If we have already found this register in a different register class,
5024        // choose the one with the largest VT specified.  For example, on
5025        // PowerPC, we favor f64 register classes over f32.
5026        if (FoundVT == MVT::Other || FoundVT.bitsLT(*I)) {
5027          ThisVT = *I;
5028          break;
5029        }
5030      }
5031    }
5032
5033    if (ThisVT == MVT::Other) continue;
5034
5035    // NOTE: This isn't ideal.  In particular, this might allocate the
5036    // frame pointer in functions that need it (due to them not being taken
5037    // out of allocation, because a variable sized allocation hasn't been seen
5038    // yet).  This is a slight code pessimization, but should still work.
5039    for (TargetRegisterClass::iterator I = RC->allocation_order_begin(MF),
5040         E = RC->allocation_order_end(MF); I != E; ++I)
5041      if (*I == Reg) {
5042        // We found a matching register class.  Keep looking at others in case
5043        // we find one with larger registers that this physreg is also in.
5044        FoundRC = RC;
5045        FoundVT = ThisVT;
5046        break;
5047      }
5048  }
5049  return FoundRC;
5050}
5051
5052/// GetRegistersForValue - Assign registers (virtual or physical) for the
5053/// specified operand.  We prefer to assign virtual registers, to allow the
5054/// register allocator to handle the assignment process.  However, if the asm
5055/// uses features that we can't model on machineinstrs, we have SDISel do the
5056/// allocation.  This produces generally horrible, but correct, code.
5057///
5058///   OpInfo describes the operand.
5059///   Input and OutputRegs are the set of already allocated physical registers.
5060///
5061void SelectionDAGBuilder::
5062GetRegistersForValue(SDISelAsmOperandInfo &OpInfo,
5063                     std::set<unsigned> &OutputRegs,
5064                     std::set<unsigned> &InputRegs) {
5065  LLVMContext &Context = FuncInfo.Fn->getContext();
5066
5067  // Compute whether this value requires an input register, an output register,
5068  // or both.
5069  bool isOutReg = false;
5070  bool isInReg = false;
5071  switch (OpInfo.Type) {
5072  case InlineAsm::isOutput:
5073    isOutReg = true;
5074
5075    // If there is an input constraint that matches this, we need to reserve
5076    // the input register so no other inputs allocate to it.
5077    isInReg = OpInfo.hasMatchingInput();
5078    break;
5079  case InlineAsm::isInput:
5080    isInReg = true;
5081    isOutReg = false;
5082    break;
5083  case InlineAsm::isClobber:
5084    isOutReg = true;
5085    isInReg = true;
5086    break;
5087  }
5088
5089
5090  MachineFunction &MF = DAG.getMachineFunction();
5091  SmallVector<unsigned, 4> Regs;
5092
5093  // If this is a constraint for a single physreg, or a constraint for a
5094  // register class, find it.
5095  std::pair<unsigned, const TargetRegisterClass*> PhysReg =
5096    TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
5097                                     OpInfo.ConstraintVT);
5098
5099  unsigned NumRegs = 1;
5100  if (OpInfo.ConstraintVT != MVT::Other) {
5101    // If this is a FP input in an integer register (or visa versa) insert a bit
5102    // cast of the input value.  More generally, handle any case where the input
5103    // value disagrees with the register class we plan to stick this in.
5104    if (OpInfo.Type == InlineAsm::isInput &&
5105        PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) {
5106      // Try to convert to the first EVT that the reg class contains.  If the
5107      // types are identical size, use a bitcast to convert (e.g. two differing
5108      // vector types).
5109      EVT RegVT = *PhysReg.second->vt_begin();
5110      if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) {
5111        OpInfo.CallOperand = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(),
5112                                         RegVT, OpInfo.CallOperand);
5113        OpInfo.ConstraintVT = RegVT;
5114      } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
5115        // If the input is a FP value and we want it in FP registers, do a
5116        // bitcast to the corresponding integer type.  This turns an f64 value
5117        // into i64, which can be passed with two i32 values on a 32-bit
5118        // machine.
5119        RegVT = EVT::getIntegerVT(Context,
5120                                  OpInfo.ConstraintVT.getSizeInBits());
5121        OpInfo.CallOperand = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(),
5122                                         RegVT, OpInfo.CallOperand);
5123        OpInfo.ConstraintVT = RegVT;
5124      }
5125    }
5126
5127    NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT);
5128  }
5129
5130  EVT RegVT;
5131  EVT ValueVT = OpInfo.ConstraintVT;
5132
5133  // If this is a constraint for a specific physical register, like {r17},
5134  // assign it now.
5135  if (unsigned AssignedReg = PhysReg.first) {
5136    const TargetRegisterClass *RC = PhysReg.second;
5137    if (OpInfo.ConstraintVT == MVT::Other)
5138      ValueVT = *RC->vt_begin();
5139
5140    // Get the actual register value type.  This is important, because the user
5141    // may have asked for (e.g.) the AX register in i32 type.  We need to
5142    // remember that AX is actually i16 to get the right extension.
5143    RegVT = *RC->vt_begin();
5144
5145    // This is a explicit reference to a physical register.
5146    Regs.push_back(AssignedReg);
5147
5148    // If this is an expanded reference, add the rest of the regs to Regs.
5149    if (NumRegs != 1) {
5150      TargetRegisterClass::iterator I = RC->begin();
5151      for (; *I != AssignedReg; ++I)
5152        assert(I != RC->end() && "Didn't find reg!");
5153
5154      // Already added the first reg.
5155      --NumRegs; ++I;
5156      for (; NumRegs; --NumRegs, ++I) {
5157        assert(I != RC->end() && "Ran out of registers to allocate!");
5158        Regs.push_back(*I);
5159      }
5160    }
5161
5162    OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
5163    const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
5164    OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI);
5165    return;
5166  }
5167
5168  // Otherwise, if this was a reference to an LLVM register class, create vregs
5169  // for this reference.
5170  if (const TargetRegisterClass *RC = PhysReg.second) {
5171    RegVT = *RC->vt_begin();
5172    if (OpInfo.ConstraintVT == MVT::Other)
5173      ValueVT = RegVT;
5174
5175    // Create the appropriate number of virtual registers.
5176    MachineRegisterInfo &RegInfo = MF.getRegInfo();
5177    for (; NumRegs; --NumRegs)
5178      Regs.push_back(RegInfo.createVirtualRegister(RC));
5179
5180    OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
5181    return;
5182  }
5183
5184  // This is a reference to a register class that doesn't directly correspond
5185  // to an LLVM register class.  Allocate NumRegs consecutive, available,
5186  // registers from the class.
5187  std::vector<unsigned> RegClassRegs
5188    = TLI.getRegClassForInlineAsmConstraint(OpInfo.ConstraintCode,
5189                                            OpInfo.ConstraintVT);
5190
5191  const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
5192  unsigned NumAllocated = 0;
5193  for (unsigned i = 0, e = RegClassRegs.size(); i != e; ++i) {
5194    unsigned Reg = RegClassRegs[i];
5195    // See if this register is available.
5196    if ((isOutReg && OutputRegs.count(Reg)) ||   // Already used.
5197        (isInReg  && InputRegs.count(Reg))) {    // Already used.
5198      // Make sure we find consecutive registers.
5199      NumAllocated = 0;
5200      continue;
5201    }
5202
5203    // Check to see if this register is allocatable (i.e. don't give out the
5204    // stack pointer).
5205    const TargetRegisterClass *RC = isAllocatableRegister(Reg, MF, TLI, TRI);
5206    if (!RC) {        // Couldn't allocate this register.
5207      // Reset NumAllocated to make sure we return consecutive registers.
5208      NumAllocated = 0;
5209      continue;
5210    }
5211
5212    // Okay, this register is good, we can use it.
5213    ++NumAllocated;
5214
5215    // If we allocated enough consecutive registers, succeed.
5216    if (NumAllocated == NumRegs) {
5217      unsigned RegStart = (i-NumAllocated)+1;
5218      unsigned RegEnd   = i+1;
5219      // Mark all of the allocated registers used.
5220      for (unsigned i = RegStart; i != RegEnd; ++i)
5221        Regs.push_back(RegClassRegs[i]);
5222
5223      OpInfo.AssignedRegs = RegsForValue(Regs, *RC->vt_begin(),
5224                                         OpInfo.ConstraintVT);
5225      OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI);
5226      return;
5227    }
5228  }
5229
5230  // Otherwise, we couldn't allocate enough registers for this.
5231}
5232
5233/// visitInlineAsm - Handle a call to an InlineAsm object.
5234///
5235void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) {
5236  const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
5237
5238  /// ConstraintOperands - Information about all of the constraints.
5239  std::vector<SDISelAsmOperandInfo> ConstraintOperands;
5240
5241  std::set<unsigned> OutputRegs, InputRegs;
5242
5243  // Do a prepass over the constraints, canonicalizing them, and building up the
5244  // ConstraintOperands list.
5245  std::vector<InlineAsm::ConstraintInfo>
5246    ConstraintInfos = IA->ParseConstraints();
5247
5248  bool hasMemory = hasInlineAsmMemConstraint(ConstraintInfos, TLI);
5249
5250  SDValue Chain, Flag;
5251
5252  // We won't need to flush pending loads if this asm doesn't touch
5253  // memory and is nonvolatile.
5254  if (hasMemory || IA->hasSideEffects())
5255    Chain = getRoot();
5256  else
5257    Chain = DAG.getRoot();
5258
5259  unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
5260  unsigned ResNo = 0;   // ResNo - The result number of the next output.
5261  for (unsigned i = 0, e = ConstraintInfos.size(); i != e; ++i) {
5262    ConstraintOperands.push_back(SDISelAsmOperandInfo(ConstraintInfos[i]));
5263    SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
5264
5265    EVT OpVT = MVT::Other;
5266
5267    // Compute the value type for each operand.
5268    switch (OpInfo.Type) {
5269    case InlineAsm::isOutput:
5270      // Indirect outputs just consume an argument.
5271      if (OpInfo.isIndirect) {
5272        OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
5273        break;
5274      }
5275
5276      // The return value of the call is this value.  As such, there is no
5277      // corresponding argument.
5278      assert(!CS.getType()->isVoidTy() &&
5279             "Bad inline asm!");
5280      if (const StructType *STy = dyn_cast<StructType>(CS.getType())) {
5281        OpVT = TLI.getValueType(STy->getElementType(ResNo));
5282      } else {
5283        assert(ResNo == 0 && "Asm only has one result!");
5284        OpVT = TLI.getValueType(CS.getType());
5285      }
5286      ++ResNo;
5287      break;
5288    case InlineAsm::isInput:
5289      OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
5290      break;
5291    case InlineAsm::isClobber:
5292      // Nothing to do.
5293      break;
5294    }
5295
5296    // If this is an input or an indirect output, process the call argument.
5297    // BasicBlocks are labels, currently appearing only in asm's.
5298    if (OpInfo.CallOperandVal) {
5299      // Strip bitcasts, if any.  This mostly comes up for functions.
5300      OpInfo.CallOperandVal = OpInfo.CallOperandVal->stripPointerCasts();
5301
5302      if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) {
5303        OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
5304      } else {
5305        OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
5306      }
5307
5308      OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, TD);
5309    }
5310
5311    OpInfo.ConstraintVT = OpVT;
5312  }
5313
5314  // Second pass over the constraints: compute which constraint option to use
5315  // and assign registers to constraints that want a specific physreg.
5316  for (unsigned i = 0, e = ConstraintInfos.size(); i != e; ++i) {
5317    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
5318
5319    // If this is an output operand with a matching input operand, look up the
5320    // matching input. If their types mismatch, e.g. one is an integer, the
5321    // other is floating point, or their sizes are different, flag it as an
5322    // error.
5323    if (OpInfo.hasMatchingInput()) {
5324      SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
5325
5326      if (OpInfo.ConstraintVT != Input.ConstraintVT) {
5327        if ((OpInfo.ConstraintVT.isInteger() !=
5328             Input.ConstraintVT.isInteger()) ||
5329            (OpInfo.ConstraintVT.getSizeInBits() !=
5330             Input.ConstraintVT.getSizeInBits())) {
5331          report_fatal_error("Unsupported asm: input constraint"
5332                             " with a matching output constraint of"
5333                             " incompatible type!");
5334        }
5335        Input.ConstraintVT = OpInfo.ConstraintVT;
5336      }
5337    }
5338
5339    // Compute the constraint code and ConstraintType to use.
5340    TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
5341
5342    // If this is a memory input, and if the operand is not indirect, do what we
5343    // need to to provide an address for the memory input.
5344    if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
5345        !OpInfo.isIndirect) {
5346      assert(OpInfo.Type == InlineAsm::isInput &&
5347             "Can only indirectify direct input operands!");
5348
5349      // Memory operands really want the address of the value.  If we don't have
5350      // an indirect input, put it in the constpool if we can, otherwise spill
5351      // it to a stack slot.
5352
5353      // If the operand is a float, integer, or vector constant, spill to a
5354      // constant pool entry to get its address.
5355      const Value *OpVal = OpInfo.CallOperandVal;
5356      if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
5357          isa<ConstantVector>(OpVal)) {
5358        OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal),
5359                                                 TLI.getPointerTy());
5360      } else {
5361        // Otherwise, create a stack slot and emit a store to it before the
5362        // asm.
5363        const Type *Ty = OpVal->getType();
5364        uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty);
5365        unsigned Align  = TLI.getTargetData()->getPrefTypeAlignment(Ty);
5366        MachineFunction &MF = DAG.getMachineFunction();
5367        int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
5368        SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy());
5369        Chain = DAG.getStore(Chain, getCurDebugLoc(),
5370                             OpInfo.CallOperand, StackSlot, NULL, 0,
5371                             false, false, 0);
5372        OpInfo.CallOperand = StackSlot;
5373      }
5374
5375      // There is no longer a Value* corresponding to this operand.
5376      OpInfo.CallOperandVal = 0;
5377
5378      // It is now an indirect operand.
5379      OpInfo.isIndirect = true;
5380    }
5381
5382    // If this constraint is for a specific register, allocate it before
5383    // anything else.
5384    if (OpInfo.ConstraintType == TargetLowering::C_Register)
5385      GetRegistersForValue(OpInfo, OutputRegs, InputRegs);
5386  }
5387
5388  ConstraintInfos.clear();
5389
5390  // Second pass - Loop over all of the operands, assigning virtual or physregs
5391  // to register class operands.
5392  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
5393    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
5394
5395    // C_Register operands have already been allocated, Other/Memory don't need
5396    // to be.
5397    if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass)
5398      GetRegistersForValue(OpInfo, OutputRegs, InputRegs);
5399  }
5400
5401  // AsmNodeOperands - The operands for the ISD::INLINEASM node.
5402  std::vector<SDValue> AsmNodeOperands;
5403  AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
5404  AsmNodeOperands.push_back(
5405          DAG.getTargetExternalSymbol(IA->getAsmString().c_str(),
5406                                      TLI.getPointerTy()));
5407
5408  // If we have a !srcloc metadata node associated with it, we want to attach
5409  // this to the ultimately generated inline asm machineinstr.  To do this, we
5410  // pass in the third operand as this (potentially null) inline asm MDNode.
5411  const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc");
5412  AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
5413
5414  // Remember the AlignStack bit as operand 3.
5415  AsmNodeOperands.push_back(DAG.getTargetConstant(IA->isAlignStack() ? 1 : 0,
5416                                            MVT::i1));
5417
5418  // Loop over all of the inputs, copying the operand values into the
5419  // appropriate registers and processing the output regs.
5420  RegsForValue RetValRegs;
5421
5422  // IndirectStoresToEmit - The set of stores to emit after the inline asm node.
5423  std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit;
5424
5425  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
5426    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
5427
5428    switch (OpInfo.Type) {
5429    case InlineAsm::isOutput: {
5430      if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass &&
5431          OpInfo.ConstraintType != TargetLowering::C_Register) {
5432        // Memory output, or 'other' output (e.g. 'X' constraint).
5433        assert(OpInfo.isIndirect && "Memory output must be indirect operand");
5434
5435        // Add information to the INLINEASM node to know about this output.
5436        unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
5437        AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags,
5438                                                        TLI.getPointerTy()));
5439        AsmNodeOperands.push_back(OpInfo.CallOperand);
5440        break;
5441      }
5442
5443      // Otherwise, this is a register or register class output.
5444
5445      // Copy the output from the appropriate register.  Find a register that
5446      // we can use.
5447      if (OpInfo.AssignedRegs.Regs.empty())
5448        report_fatal_error("Couldn't allocate output reg for constraint '" +
5449                           Twine(OpInfo.ConstraintCode) + "'!");
5450
5451      // If this is an indirect operand, store through the pointer after the
5452      // asm.
5453      if (OpInfo.isIndirect) {
5454        IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs,
5455                                                      OpInfo.CallOperandVal));
5456      } else {
5457        // This is the result value of the call.
5458        assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
5459        // Concatenate this output onto the outputs list.
5460        RetValRegs.append(OpInfo.AssignedRegs);
5461      }
5462
5463      // Add information to the INLINEASM node to know that this register is
5464      // set.
5465      OpInfo.AssignedRegs.AddInlineAsmOperands(OpInfo.isEarlyClobber ?
5466                                           InlineAsm::Kind_RegDefEarlyClobber :
5467                                               InlineAsm::Kind_RegDef,
5468                                               false,
5469                                               0,
5470                                               DAG,
5471                                               AsmNodeOperands);
5472      break;
5473    }
5474    case InlineAsm::isInput: {
5475      SDValue InOperandVal = OpInfo.CallOperand;
5476
5477      if (OpInfo.isMatchingInputConstraint()) {   // Matching constraint?
5478        // If this is required to match an output register we have already set,
5479        // just use its register.
5480        unsigned OperandNo = OpInfo.getMatchedOperand();
5481
5482        // Scan until we find the definition we already emitted of this operand.
5483        // When we find it, create a RegsForValue operand.
5484        unsigned CurOp = InlineAsm::Op_FirstOperand;
5485        for (; OperandNo; --OperandNo) {
5486          // Advance to the next operand.
5487          unsigned OpFlag =
5488            cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
5489          assert((InlineAsm::isRegDefKind(OpFlag) ||
5490                  InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||
5491                  InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?");
5492          CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1;
5493        }
5494
5495        unsigned OpFlag =
5496          cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
5497        if (InlineAsm::isRegDefKind(OpFlag) ||
5498            InlineAsm::isRegDefEarlyClobberKind(OpFlag)) {
5499          // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
5500          if (OpInfo.isIndirect) {
5501            // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
5502            LLVMContext &Ctx = *DAG.getContext();
5503            Ctx.emitError(CS.getInstruction(),  "inline asm not supported yet:"
5504                          " don't know how to handle tied "
5505                          "indirect register inputs");
5506          }
5507
5508          RegsForValue MatchedRegs;
5509          MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType());
5510          EVT RegVT = AsmNodeOperands[CurOp+1].getValueType();
5511          MatchedRegs.RegVTs.push_back(RegVT);
5512          MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo();
5513          for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag);
5514               i != e; ++i)
5515            MatchedRegs.Regs.push_back
5516              (RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT)));
5517
5518          // Use the produced MatchedRegs object to
5519          MatchedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(),
5520                                    Chain, &Flag);
5521          MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse,
5522                                           true, OpInfo.getMatchedOperand(),
5523                                           DAG, AsmNodeOperands);
5524          break;
5525        }
5526
5527        assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!");
5528        assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 &&
5529               "Unexpected number of operands");
5530        // Add information to the INLINEASM node to know about this input.
5531        // See InlineAsm.h isUseOperandTiedToDef.
5532        OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
5533                                                    OpInfo.getMatchedOperand());
5534        AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlag,
5535                                                        TLI.getPointerTy()));
5536        AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
5537        break;
5538      }
5539
5540      // Treat indirect 'X' constraint as memory.
5541      if (OpInfo.ConstraintType == TargetLowering::C_Other &&
5542          OpInfo.isIndirect)
5543        OpInfo.ConstraintType = TargetLowering::C_Memory;
5544
5545      if (OpInfo.ConstraintType == TargetLowering::C_Other) {
5546        std::vector<SDValue> Ops;
5547        TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode[0],
5548                                         Ops, DAG);
5549        if (Ops.empty())
5550          report_fatal_error("Invalid operand for inline asm constraint '" +
5551                             Twine(OpInfo.ConstraintCode) + "'!");
5552
5553        // Add information to the INLINEASM node to know about this input.
5554        unsigned ResOpType =
5555          InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
5556        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
5557                                                        TLI.getPointerTy()));
5558        AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
5559        break;
5560      }
5561
5562      if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
5563        assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
5564        assert(InOperandVal.getValueType() == TLI.getPointerTy() &&
5565               "Memory operands expect pointer values");
5566
5567        // Add information to the INLINEASM node to know about this input.
5568        unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
5569        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
5570                                                        TLI.getPointerTy()));
5571        AsmNodeOperands.push_back(InOperandVal);
5572        break;
5573      }
5574
5575      assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
5576              OpInfo.ConstraintType == TargetLowering::C_Register) &&
5577             "Unknown constraint type!");
5578      assert(!OpInfo.isIndirect &&
5579             "Don't know how to handle indirect register inputs yet!");
5580
5581      // Copy the input into the appropriate registers.
5582      if (OpInfo.AssignedRegs.Regs.empty() ||
5583          !OpInfo.AssignedRegs.areValueTypesLegal(TLI))
5584        report_fatal_error("Couldn't allocate input reg for constraint '" +
5585                           Twine(OpInfo.ConstraintCode) + "'!");
5586
5587      OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(),
5588                                        Chain, &Flag);
5589
5590      OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0,
5591                                               DAG, AsmNodeOperands);
5592      break;
5593    }
5594    case InlineAsm::isClobber: {
5595      // Add the clobbered value to the operand list, so that the register
5596      // allocator is aware that the physreg got clobbered.
5597      if (!OpInfo.AssignedRegs.Regs.empty())
5598        OpInfo.AssignedRegs.AddInlineAsmOperands(
5599                                            InlineAsm::Kind_RegDefEarlyClobber,
5600                                                 false, 0, DAG,
5601                                                 AsmNodeOperands);
5602      break;
5603    }
5604    }
5605  }
5606
5607  // Finish up input operands.  Set the input chain and add the flag last.
5608  AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
5609  if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
5610
5611  Chain = DAG.getNode(ISD::INLINEASM, getCurDebugLoc(),
5612                      DAG.getVTList(MVT::Other, MVT::Flag),
5613                      &AsmNodeOperands[0], AsmNodeOperands.size());
5614  Flag = Chain.getValue(1);
5615
5616  // If this asm returns a register value, copy the result from that register
5617  // and set it as the value of the call.
5618  if (!RetValRegs.Regs.empty()) {
5619    SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(),
5620                                             Chain, &Flag);
5621
5622    // FIXME: Why don't we do this for inline asms with MRVs?
5623    if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) {
5624      EVT ResultType = TLI.getValueType(CS.getType());
5625
5626      // If any of the results of the inline asm is a vector, it may have the
5627      // wrong width/num elts.  This can happen for register classes that can
5628      // contain multiple different value types.  The preg or vreg allocated may
5629      // not have the same VT as was expected.  Convert it to the right type
5630      // with bit_convert.
5631      if (ResultType != Val.getValueType() && Val.getValueType().isVector()) {
5632        Val = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(),
5633                          ResultType, Val);
5634
5635      } else if (ResultType != Val.getValueType() &&
5636                 ResultType.isInteger() && Val.getValueType().isInteger()) {
5637        // If a result value was tied to an input value, the computed result may
5638        // have a wider width than the expected result.  Extract the relevant
5639        // portion.
5640        Val = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), ResultType, Val);
5641      }
5642
5643      assert(ResultType == Val.getValueType() && "Asm result value mismatch!");
5644    }
5645
5646    setValue(CS.getInstruction(), Val);
5647    // Don't need to use this as a chain in this case.
5648    if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty())
5649      return;
5650  }
5651
5652  std::vector<std::pair<SDValue, const Value *> > StoresToEmit;
5653
5654  // Process indirect outputs, first output all of the flagged copies out of
5655  // physregs.
5656  for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
5657    RegsForValue &OutRegs = IndirectStoresToEmit[i].first;
5658    const Value *Ptr = IndirectStoresToEmit[i].second;
5659    SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(),
5660                                             Chain, &Flag);
5661    StoresToEmit.push_back(std::make_pair(OutVal, Ptr));
5662  }
5663
5664  // Emit the non-flagged stores from the physregs.
5665  SmallVector<SDValue, 8> OutChains;
5666  for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) {
5667    SDValue Val = DAG.getStore(Chain, getCurDebugLoc(),
5668                               StoresToEmit[i].first,
5669                               getValue(StoresToEmit[i].second),
5670                               StoresToEmit[i].second, 0,
5671                               false, false, 0);
5672    OutChains.push_back(Val);
5673  }
5674
5675  if (!OutChains.empty())
5676    Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
5677                        &OutChains[0], OutChains.size());
5678
5679  DAG.setRoot(Chain);
5680}
5681
5682void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
5683  DAG.setRoot(DAG.getNode(ISD::VASTART, getCurDebugLoc(),
5684                          MVT::Other, getRoot(),
5685                          getValue(I.getArgOperand(0)),
5686                          DAG.getSrcValue(I.getArgOperand(0))));
5687}
5688
5689void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
5690  const TargetData &TD = *TLI.getTargetData();
5691  SDValue V = DAG.getVAArg(TLI.getValueType(I.getType()), getCurDebugLoc(),
5692                           getRoot(), getValue(I.getOperand(0)),
5693                           DAG.getSrcValue(I.getOperand(0)),
5694                           TD.getABITypeAlignment(I.getType()));
5695  setValue(&I, V);
5696  DAG.setRoot(V.getValue(1));
5697}
5698
5699void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
5700  DAG.setRoot(DAG.getNode(ISD::VAEND, getCurDebugLoc(),
5701                          MVT::Other, getRoot(),
5702                          getValue(I.getArgOperand(0)),
5703                          DAG.getSrcValue(I.getArgOperand(0))));
5704}
5705
5706void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
5707  DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurDebugLoc(),
5708                          MVT::Other, getRoot(),
5709                          getValue(I.getArgOperand(0)),
5710                          getValue(I.getArgOperand(1)),
5711                          DAG.getSrcValue(I.getArgOperand(0)),
5712                          DAG.getSrcValue(I.getArgOperand(1))));
5713}
5714
5715/// TargetLowering::LowerCallTo - This is the default LowerCallTo
5716/// implementation, which just calls LowerCall.
5717/// FIXME: When all targets are
5718/// migrated to using LowerCall, this hook should be integrated into SDISel.
5719std::pair<SDValue, SDValue>
5720TargetLowering::LowerCallTo(SDValue Chain, const Type *RetTy,
5721                            bool RetSExt, bool RetZExt, bool isVarArg,
5722                            bool isInreg, unsigned NumFixedArgs,
5723                            CallingConv::ID CallConv, bool isTailCall,
5724                            bool isReturnValueUsed,
5725                            SDValue Callee,
5726                            ArgListTy &Args, SelectionDAG &DAG,
5727                            DebugLoc dl) const {
5728  // Handle all of the outgoing arguments.
5729  SmallVector<ISD::OutputArg, 32> Outs;
5730  SmallVector<SDValue, 32> OutVals;
5731  for (unsigned i = 0, e = Args.size(); i != e; ++i) {
5732    SmallVector<EVT, 4> ValueVTs;
5733    ComputeValueVTs(*this, Args[i].Ty, ValueVTs);
5734    for (unsigned Value = 0, NumValues = ValueVTs.size();
5735         Value != NumValues; ++Value) {
5736      EVT VT = ValueVTs[Value];
5737      const Type *ArgTy = VT.getTypeForEVT(RetTy->getContext());
5738      SDValue Op = SDValue(Args[i].Node.getNode(),
5739                           Args[i].Node.getResNo() + Value);
5740      ISD::ArgFlagsTy Flags;
5741      unsigned OriginalAlignment =
5742        getTargetData()->getABITypeAlignment(ArgTy);
5743
5744      if (Args[i].isZExt)
5745        Flags.setZExt();
5746      if (Args[i].isSExt)
5747        Flags.setSExt();
5748      if (Args[i].isInReg)
5749        Flags.setInReg();
5750      if (Args[i].isSRet)
5751        Flags.setSRet();
5752      if (Args[i].isByVal) {
5753        Flags.setByVal();
5754        const PointerType *Ty = cast<PointerType>(Args[i].Ty);
5755        const Type *ElementTy = Ty->getElementType();
5756        unsigned FrameAlign = getByValTypeAlignment(ElementTy);
5757        unsigned FrameSize  = getTargetData()->getTypeAllocSize(ElementTy);
5758        // For ByVal, alignment should come from FE.  BE will guess if this
5759        // info is not there but there are cases it cannot get right.
5760        if (Args[i].Alignment)
5761          FrameAlign = Args[i].Alignment;
5762        Flags.setByValAlign(FrameAlign);
5763        Flags.setByValSize(FrameSize);
5764      }
5765      if (Args[i].isNest)
5766        Flags.setNest();
5767      Flags.setOrigAlign(OriginalAlignment);
5768
5769      EVT PartVT = getRegisterType(RetTy->getContext(), VT);
5770      unsigned NumParts = getNumRegisters(RetTy->getContext(), VT);
5771      SmallVector<SDValue, 4> Parts(NumParts);
5772      ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
5773
5774      if (Args[i].isSExt)
5775        ExtendKind = ISD::SIGN_EXTEND;
5776      else if (Args[i].isZExt)
5777        ExtendKind = ISD::ZERO_EXTEND;
5778
5779      getCopyToParts(DAG, dl, Op, &Parts[0], NumParts,
5780                     PartVT, ExtendKind);
5781
5782      for (unsigned j = 0; j != NumParts; ++j) {
5783        // if it isn't first piece, alignment must be 1
5784        ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(),
5785                               i < NumFixedArgs);
5786        if (NumParts > 1 && j == 0)
5787          MyFlags.Flags.setSplit();
5788        else if (j != 0)
5789          MyFlags.Flags.setOrigAlign(1);
5790
5791        Outs.push_back(MyFlags);
5792        OutVals.push_back(Parts[j]);
5793      }
5794    }
5795  }
5796
5797  // Handle the incoming return values from the call.
5798  SmallVector<ISD::InputArg, 32> Ins;
5799  SmallVector<EVT, 4> RetTys;
5800  ComputeValueVTs(*this, RetTy, RetTys);
5801  for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
5802    EVT VT = RetTys[I];
5803    EVT RegisterVT = getRegisterType(RetTy->getContext(), VT);
5804    unsigned NumRegs = getNumRegisters(RetTy->getContext(), VT);
5805    for (unsigned i = 0; i != NumRegs; ++i) {
5806      ISD::InputArg MyFlags;
5807      MyFlags.VT = RegisterVT;
5808      MyFlags.Used = isReturnValueUsed;
5809      if (RetSExt)
5810        MyFlags.Flags.setSExt();
5811      if (RetZExt)
5812        MyFlags.Flags.setZExt();
5813      if (isInreg)
5814        MyFlags.Flags.setInReg();
5815      Ins.push_back(MyFlags);
5816    }
5817  }
5818
5819  SmallVector<SDValue, 4> InVals;
5820  Chain = LowerCall(Chain, Callee, CallConv, isVarArg, isTailCall,
5821                    Outs, OutVals, Ins, dl, DAG, InVals);
5822
5823  // Verify that the target's LowerCall behaved as expected.
5824  assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
5825         "LowerCall didn't return a valid chain!");
5826  assert((!isTailCall || InVals.empty()) &&
5827         "LowerCall emitted a return value for a tail call!");
5828  assert((isTailCall || InVals.size() == Ins.size()) &&
5829         "LowerCall didn't emit the correct number of values!");
5830
5831  // For a tail call, the return value is merely live-out and there aren't
5832  // any nodes in the DAG representing it. Return a special value to
5833  // indicate that a tail call has been emitted and no more Instructions
5834  // should be processed in the current block.
5835  if (isTailCall) {
5836    DAG.setRoot(Chain);
5837    return std::make_pair(SDValue(), SDValue());
5838  }
5839
5840  DEBUG(for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
5841          assert(InVals[i].getNode() &&
5842                 "LowerCall emitted a null value!");
5843          assert(Ins[i].VT == InVals[i].getValueType() &&
5844                 "LowerCall emitted a value with the wrong type!");
5845        });
5846
5847  // Collect the legal value parts into potentially illegal values
5848  // that correspond to the original function's return values.
5849  ISD::NodeType AssertOp = ISD::DELETED_NODE;
5850  if (RetSExt)
5851    AssertOp = ISD::AssertSext;
5852  else if (RetZExt)
5853    AssertOp = ISD::AssertZext;
5854  SmallVector<SDValue, 4> ReturnValues;
5855  unsigned CurReg = 0;
5856  for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
5857    EVT VT = RetTys[I];
5858    EVT RegisterVT = getRegisterType(RetTy->getContext(), VT);
5859    unsigned NumRegs = getNumRegisters(RetTy->getContext(), VT);
5860
5861    ReturnValues.push_back(getCopyFromParts(DAG, dl, &InVals[CurReg],
5862                                            NumRegs, RegisterVT, VT,
5863                                            AssertOp));
5864    CurReg += NumRegs;
5865  }
5866
5867  // For a function returning void, there is no return value. We can't create
5868  // such a node, so we just return a null return value in that case. In
5869  // that case, nothing will actualy look at the value.
5870  if (ReturnValues.empty())
5871    return std::make_pair(SDValue(), Chain);
5872
5873  SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
5874                            DAG.getVTList(&RetTys[0], RetTys.size()),
5875                            &ReturnValues[0], ReturnValues.size());
5876  return std::make_pair(Res, Chain);
5877}
5878
5879void TargetLowering::LowerOperationWrapper(SDNode *N,
5880                                           SmallVectorImpl<SDValue> &Results,
5881                                           SelectionDAG &DAG) const {
5882  SDValue Res = LowerOperation(SDValue(N, 0), DAG);
5883  if (Res.getNode())
5884    Results.push_back(Res);
5885}
5886
5887SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
5888  llvm_unreachable("LowerOperation not implemented for this target!");
5889  return SDValue();
5890}
5891
5892void
5893SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) {
5894  SDValue Op = getNonRegisterValue(V);
5895  assert((Op.getOpcode() != ISD::CopyFromReg ||
5896          cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
5897         "Copy from a reg to the same reg!");
5898  assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg");
5899
5900  RegsForValue RFV(V->getContext(), TLI, Reg, V->getType());
5901  SDValue Chain = DAG.getEntryNode();
5902  RFV.getCopyToRegs(Op, DAG, getCurDebugLoc(), Chain, 0);
5903  PendingExports.push_back(Chain);
5904}
5905
5906#include "llvm/CodeGen/SelectionDAGISel.h"
5907
5908void SelectionDAGISel::LowerArguments(const BasicBlock *LLVMBB) {
5909  // If this is the entry block, emit arguments.
5910  const Function &F = *LLVMBB->getParent();
5911  SelectionDAG &DAG = SDB->DAG;
5912  DebugLoc dl = SDB->getCurDebugLoc();
5913  const TargetData *TD = TLI.getTargetData();
5914  SmallVector<ISD::InputArg, 16> Ins;
5915
5916  // Check whether the function can return without sret-demotion.
5917  SmallVector<ISD::OutputArg, 4> Outs;
5918  GetReturnInfo(F.getReturnType(), F.getAttributes().getRetAttributes(),
5919                Outs, TLI);
5920
5921  if (!FuncInfo->CanLowerReturn) {
5922    // Put in an sret pointer parameter before all the other parameters.
5923    SmallVector<EVT, 1> ValueVTs;
5924    ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs);
5925
5926    // NOTE: Assuming that a pointer will never break down to more than one VT
5927    // or one register.
5928    ISD::ArgFlagsTy Flags;
5929    Flags.setSRet();
5930    EVT RegisterVT = TLI.getRegisterType(*DAG.getContext(), ValueVTs[0]);
5931    ISD::InputArg RetArg(Flags, RegisterVT, true);
5932    Ins.push_back(RetArg);
5933  }
5934
5935  // Set up the incoming argument description vector.
5936  unsigned Idx = 1;
5937  for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end();
5938       I != E; ++I, ++Idx) {
5939    SmallVector<EVT, 4> ValueVTs;
5940    ComputeValueVTs(TLI, I->getType(), ValueVTs);
5941    bool isArgValueUsed = !I->use_empty();
5942    for (unsigned Value = 0, NumValues = ValueVTs.size();
5943         Value != NumValues; ++Value) {
5944      EVT VT = ValueVTs[Value];
5945      const Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
5946      ISD::ArgFlagsTy Flags;
5947      unsigned OriginalAlignment =
5948        TD->getABITypeAlignment(ArgTy);
5949
5950      if (F.paramHasAttr(Idx, Attribute::ZExt))
5951        Flags.setZExt();
5952      if (F.paramHasAttr(Idx, Attribute::SExt))
5953        Flags.setSExt();
5954      if (F.paramHasAttr(Idx, Attribute::InReg))
5955        Flags.setInReg();
5956      if (F.paramHasAttr(Idx, Attribute::StructRet))
5957        Flags.setSRet();
5958      if (F.paramHasAttr(Idx, Attribute::ByVal)) {
5959        Flags.setByVal();
5960        const PointerType *Ty = cast<PointerType>(I->getType());
5961        const Type *ElementTy = Ty->getElementType();
5962        unsigned FrameAlign = TLI.getByValTypeAlignment(ElementTy);
5963        unsigned FrameSize  = TD->getTypeAllocSize(ElementTy);
5964        // For ByVal, alignment should be passed from FE.  BE will guess if
5965        // this info is not there but there are cases it cannot get right.
5966        if (F.getParamAlignment(Idx))
5967          FrameAlign = F.getParamAlignment(Idx);
5968        Flags.setByValAlign(FrameAlign);
5969        Flags.setByValSize(FrameSize);
5970      }
5971      if (F.paramHasAttr(Idx, Attribute::Nest))
5972        Flags.setNest();
5973      Flags.setOrigAlign(OriginalAlignment);
5974
5975      EVT RegisterVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
5976      unsigned NumRegs = TLI.getNumRegisters(*CurDAG->getContext(), VT);
5977      for (unsigned i = 0; i != NumRegs; ++i) {
5978        ISD::InputArg MyFlags(Flags, RegisterVT, isArgValueUsed);
5979        if (NumRegs > 1 && i == 0)
5980          MyFlags.Flags.setSplit();
5981        // if it isn't first piece, alignment must be 1
5982        else if (i > 0)
5983          MyFlags.Flags.setOrigAlign(1);
5984        Ins.push_back(MyFlags);
5985      }
5986    }
5987  }
5988
5989  // Call the target to set up the argument values.
5990  SmallVector<SDValue, 8> InVals;
5991  SDValue NewRoot = TLI.LowerFormalArguments(DAG.getRoot(), F.getCallingConv(),
5992                                             F.isVarArg(), Ins,
5993                                             dl, DAG, InVals);
5994
5995  // Verify that the target's LowerFormalArguments behaved as expected.
5996  assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
5997         "LowerFormalArguments didn't return a valid chain!");
5998  assert(InVals.size() == Ins.size() &&
5999         "LowerFormalArguments didn't emit the correct number of values!");
6000  DEBUG({
6001      for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
6002        assert(InVals[i].getNode() &&
6003               "LowerFormalArguments emitted a null value!");
6004        assert(Ins[i].VT == InVals[i].getValueType() &&
6005               "LowerFormalArguments emitted a value with the wrong type!");
6006      }
6007    });
6008
6009  // Update the DAG with the new chain value resulting from argument lowering.
6010  DAG.setRoot(NewRoot);
6011
6012  // Set up the argument values.
6013  unsigned i = 0;
6014  Idx = 1;
6015  if (!FuncInfo->CanLowerReturn) {
6016    // Create a virtual register for the sret pointer, and put in a copy
6017    // from the sret argument into it.
6018    SmallVector<EVT, 1> ValueVTs;
6019    ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs);
6020    EVT VT = ValueVTs[0];
6021    EVT RegVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
6022    ISD::NodeType AssertOp = ISD::DELETED_NODE;
6023    SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1,
6024                                        RegVT, VT, AssertOp);
6025
6026    MachineFunction& MF = SDB->DAG.getMachineFunction();
6027    MachineRegisterInfo& RegInfo = MF.getRegInfo();
6028    unsigned SRetReg = RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT));
6029    FuncInfo->DemoteRegister = SRetReg;
6030    NewRoot = SDB->DAG.getCopyToReg(NewRoot, SDB->getCurDebugLoc(),
6031                                    SRetReg, ArgValue);
6032    DAG.setRoot(NewRoot);
6033
6034    // i indexes lowered arguments.  Bump it past the hidden sret argument.
6035    // Idx indexes LLVM arguments.  Don't touch it.
6036    ++i;
6037  }
6038
6039  for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E;
6040      ++I, ++Idx) {
6041    SmallVector<SDValue, 4> ArgValues;
6042    SmallVector<EVT, 4> ValueVTs;
6043    ComputeValueVTs(TLI, I->getType(), ValueVTs);
6044    unsigned NumValues = ValueVTs.size();
6045
6046    // If this argument is unused then remember its value. It is used to generate
6047    // debugging information.
6048    if (I->use_empty() && NumValues)
6049      SDB->setUnusedArgValue(I, InVals[i]);
6050
6051    for (unsigned Value = 0; Value != NumValues; ++Value) {
6052      EVT VT = ValueVTs[Value];
6053      EVT PartVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
6054      unsigned NumParts = TLI.getNumRegisters(*CurDAG->getContext(), VT);
6055
6056      if (!I->use_empty()) {
6057        ISD::NodeType AssertOp = ISD::DELETED_NODE;
6058        if (F.paramHasAttr(Idx, Attribute::SExt))
6059          AssertOp = ISD::AssertSext;
6060        else if (F.paramHasAttr(Idx, Attribute::ZExt))
6061          AssertOp = ISD::AssertZext;
6062
6063        ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i],
6064                                             NumParts, PartVT, VT,
6065                                             AssertOp));
6066      }
6067
6068      i += NumParts;
6069    }
6070
6071    if (!I->use_empty()) {
6072      SDValue Res;
6073      if (!ArgValues.empty())
6074        Res = DAG.getMergeValues(&ArgValues[0], NumValues,
6075                                 SDB->getCurDebugLoc());
6076      SDB->setValue(I, Res);
6077
6078      // If this argument is live outside of the entry block, insert a copy from
6079      // whereever we got it to the vreg that other BB's will reference it as.
6080      SDB->CopyToExportRegsIfNeeded(I);
6081    }
6082  }
6083
6084  assert(i == InVals.size() && "Argument register count mismatch!");
6085
6086  // Finally, if the target has anything special to do, allow it to do so.
6087  // FIXME: this should insert code into the DAG!
6088  EmitFunctionEntryCode();
6089}
6090
6091/// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
6092/// ensure constants are generated when needed.  Remember the virtual registers
6093/// that need to be added to the Machine PHI nodes as input.  We cannot just
6094/// directly add them, because expansion might result in multiple MBB's for one
6095/// BB.  As such, the start of the BB might correspond to a different MBB than
6096/// the end.
6097///
6098void
6099SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
6100  const TerminatorInst *TI = LLVMBB->getTerminator();
6101
6102  SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
6103
6104  // Check successor nodes' PHI nodes that expect a constant to be available
6105  // from this block.
6106  for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
6107    const BasicBlock *SuccBB = TI->getSuccessor(succ);
6108    if (!isa<PHINode>(SuccBB->begin())) continue;
6109    MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
6110
6111    // If this terminator has multiple identical successors (common for
6112    // switches), only handle each succ once.
6113    if (!SuccsHandled.insert(SuccMBB)) continue;
6114
6115    MachineBasicBlock::iterator MBBI = SuccMBB->begin();
6116
6117    // At this point we know that there is a 1-1 correspondence between LLVM PHI
6118    // nodes and Machine PHI nodes, but the incoming operands have not been
6119    // emitted yet.
6120    for (BasicBlock::const_iterator I = SuccBB->begin();
6121         const PHINode *PN = dyn_cast<PHINode>(I); ++I) {
6122      // Ignore dead phi's.
6123      if (PN->use_empty()) continue;
6124
6125      unsigned Reg;
6126      const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
6127
6128      if (const Constant *C = dyn_cast<Constant>(PHIOp)) {
6129        unsigned &RegOut = ConstantsOut[C];
6130        if (RegOut == 0) {
6131          RegOut = FuncInfo.CreateRegs(C->getType());
6132          CopyValueToVirtualRegister(C, RegOut);
6133        }
6134        Reg = RegOut;
6135      } else {
6136        DenseMap<const Value *, unsigned>::iterator I =
6137          FuncInfo.ValueMap.find(PHIOp);
6138        if (I != FuncInfo.ValueMap.end())
6139          Reg = I->second;
6140        else {
6141          assert(isa<AllocaInst>(PHIOp) &&
6142                 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
6143                 "Didn't codegen value into a register!??");
6144          Reg = FuncInfo.CreateRegs(PHIOp->getType());
6145          CopyValueToVirtualRegister(PHIOp, Reg);
6146        }
6147      }
6148
6149      // Remember that this register needs to added to the machine PHI node as
6150      // the input for this MBB.
6151      SmallVector<EVT, 4> ValueVTs;
6152      ComputeValueVTs(TLI, PN->getType(), ValueVTs);
6153      for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
6154        EVT VT = ValueVTs[vti];
6155        unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
6156        for (unsigned i = 0, e = NumRegisters; i != e; ++i)
6157          FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i));
6158        Reg += NumRegisters;
6159      }
6160    }
6161  }
6162  ConstantsOut.clear();
6163}
6164