SelectionDAGBuilder.cpp revision ebe8173941238cfbabadb1c63bca7fb7dcf2adbe
1//===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements routines for translating from LLVM IR into SelectionDAG IR.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "isel"
15#include "SDNodeDbgValue.h"
16#include "SelectionDAGBuilder.h"
17#include "llvm/ADT/BitVector.h"
18#include "llvm/ADT/PostOrderIterator.h"
19#include "llvm/ADT/SmallSet.h"
20#include "llvm/Analysis/AliasAnalysis.h"
21#include "llvm/Analysis/ConstantFolding.h"
22#include "llvm/Constants.h"
23#include "llvm/CallingConv.h"
24#include "llvm/DerivedTypes.h"
25#include "llvm/Function.h"
26#include "llvm/GlobalVariable.h"
27#include "llvm/InlineAsm.h"
28#include "llvm/Instructions.h"
29#include "llvm/Intrinsics.h"
30#include "llvm/IntrinsicInst.h"
31#include "llvm/LLVMContext.h"
32#include "llvm/Module.h"
33#include "llvm/CodeGen/Analysis.h"
34#include "llvm/CodeGen/FastISel.h"
35#include "llvm/CodeGen/FunctionLoweringInfo.h"
36#include "llvm/CodeGen/GCStrategy.h"
37#include "llvm/CodeGen/GCMetadata.h"
38#include "llvm/CodeGen/MachineFunction.h"
39#include "llvm/CodeGen/MachineFrameInfo.h"
40#include "llvm/CodeGen/MachineInstrBuilder.h"
41#include "llvm/CodeGen/MachineJumpTableInfo.h"
42#include "llvm/CodeGen/MachineModuleInfo.h"
43#include "llvm/CodeGen/MachineRegisterInfo.h"
44#include "llvm/CodeGen/PseudoSourceValue.h"
45#include "llvm/CodeGen/SelectionDAG.h"
46#include "llvm/Analysis/DebugInfo.h"
47#include "llvm/Target/TargetData.h"
48#include "llvm/Target/TargetFrameLowering.h"
49#include "llvm/Target/TargetInstrInfo.h"
50#include "llvm/Target/TargetIntrinsicInfo.h"
51#include "llvm/Target/TargetLowering.h"
52#include "llvm/Target/TargetOptions.h"
53#include "llvm/Support/Compiler.h"
54#include "llvm/Support/CommandLine.h"
55#include "llvm/Support/Debug.h"
56#include "llvm/Support/ErrorHandling.h"
57#include "llvm/Support/MathExtras.h"
58#include "llvm/Support/raw_ostream.h"
59#include <algorithm>
60using namespace llvm;
61
62/// LimitFloatPrecision - Generate low-precision inline sequences for
63/// some float libcalls (6, 8 or 12 bits).
64static unsigned LimitFloatPrecision;
65
66static cl::opt<unsigned, true>
67LimitFPPrecision("limit-float-precision",
68                 cl::desc("Generate low-precision inline sequences "
69                          "for some float libcalls"),
70                 cl::location(LimitFloatPrecision),
71                 cl::init(0));
72
73// Limit the width of DAG chains. This is important in general to prevent
74// prevent DAG-based analysis from blowing up. For example, alias analysis and
75// load clustering may not complete in reasonable time. It is difficult to
76// recognize and avoid this situation within each individual analysis, and
77// future analyses are likely to have the same behavior. Limiting DAG width is
78// the safe approach, and will be especially important with global DAGs.
79//
80// MaxParallelChains default is arbitrarily high to avoid affecting
81// optimization, but could be lowered to improve compile time. Any ld-ld-st-st
82// sequence over this should have been converted to llvm.memcpy by the
83// frontend. It easy to induce this behavior with .ll code such as:
84// %buffer = alloca [4096 x i8]
85// %data = load [4096 x i8]* %argPtr
86// store [4096 x i8] %data, [4096 x i8]* %buffer
87static const unsigned MaxParallelChains = 64;
88
89static SDValue getCopyFromPartsVector(SelectionDAG &DAG, DebugLoc DL,
90                                      const SDValue *Parts, unsigned NumParts,
91                                      EVT PartVT, EVT ValueVT);
92
93/// getCopyFromParts - Create a value that contains the specified legal parts
94/// combined into the value they represent.  If the parts combine to a type
95/// larger then ValueVT then AssertOp can be used to specify whether the extra
96/// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
97/// (ISD::AssertSext).
98static SDValue getCopyFromParts(SelectionDAG &DAG, DebugLoc DL,
99                                const SDValue *Parts,
100                                unsigned NumParts, EVT PartVT, EVT ValueVT,
101                                ISD::NodeType AssertOp = ISD::DELETED_NODE) {
102  if (ValueVT.isVector())
103    return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT);
104
105  assert(NumParts > 0 && "No parts to assemble!");
106  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
107  SDValue Val = Parts[0];
108
109  if (NumParts > 1) {
110    // Assemble the value from multiple parts.
111    if (ValueVT.isInteger()) {
112      unsigned PartBits = PartVT.getSizeInBits();
113      unsigned ValueBits = ValueVT.getSizeInBits();
114
115      // Assemble the power of 2 part.
116      unsigned RoundParts = NumParts & (NumParts - 1) ?
117        1 << Log2_32(NumParts) : NumParts;
118      unsigned RoundBits = PartBits * RoundParts;
119      EVT RoundVT = RoundBits == ValueBits ?
120        ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
121      SDValue Lo, Hi;
122
123      EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
124
125      if (RoundParts > 2) {
126        Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2,
127                              PartVT, HalfVT);
128        Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2,
129                              RoundParts / 2, PartVT, HalfVT);
130      } else {
131        Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
132        Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
133      }
134
135      if (TLI.isBigEndian())
136        std::swap(Lo, Hi);
137
138      Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
139
140      if (RoundParts < NumParts) {
141        // Assemble the trailing non-power-of-2 part.
142        unsigned OddParts = NumParts - RoundParts;
143        EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
144        Hi = getCopyFromParts(DAG, DL,
145                              Parts + RoundParts, OddParts, PartVT, OddVT);
146
147        // Combine the round and odd parts.
148        Lo = Val;
149        if (TLI.isBigEndian())
150          std::swap(Lo, Hi);
151        EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
152        Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
153        Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
154                         DAG.getConstant(Lo.getValueType().getSizeInBits(),
155                                         TLI.getPointerTy()));
156        Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
157        Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
158      }
159    } else if (PartVT.isFloatingPoint()) {
160      // FP split into multiple FP parts (for ppcf128)
161      assert(ValueVT == EVT(MVT::ppcf128) && PartVT == EVT(MVT::f64) &&
162             "Unexpected split");
163      SDValue Lo, Hi;
164      Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
165      Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
166      if (TLI.isBigEndian())
167        std::swap(Lo, Hi);
168      Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
169    } else {
170      // FP split into integer parts (soft fp)
171      assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
172             !PartVT.isVector() && "Unexpected split");
173      EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
174      Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT);
175    }
176  }
177
178  // There is now one part, held in Val.  Correct it to match ValueVT.
179  PartVT = Val.getValueType();
180
181  if (PartVT == ValueVT)
182    return Val;
183
184  if (PartVT.isInteger() && ValueVT.isInteger()) {
185    if (ValueVT.bitsLT(PartVT)) {
186      // For a truncate, see if we have any information to
187      // indicate whether the truncated bits will always be
188      // zero or sign-extension.
189      if (AssertOp != ISD::DELETED_NODE)
190        Val = DAG.getNode(AssertOp, DL, PartVT, Val,
191                          DAG.getValueType(ValueVT));
192      return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
193    }
194    return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
195  }
196
197  if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
198    // FP_ROUND's are always exact here.
199    if (ValueVT.bitsLT(Val.getValueType()))
200      return DAG.getNode(ISD::FP_ROUND, DL, ValueVT, Val,
201                         DAG.getIntPtrConstant(1));
202
203    return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
204  }
205
206  if (PartVT.getSizeInBits() == ValueVT.getSizeInBits())
207    return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
208
209  llvm_unreachable("Unknown mismatch!");
210  return SDValue();
211}
212
213/// getCopyFromParts - Create a value that contains the specified legal parts
214/// combined into the value they represent.  If the parts combine to a type
215/// larger then ValueVT then AssertOp can be used to specify whether the extra
216/// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
217/// (ISD::AssertSext).
218static SDValue getCopyFromPartsVector(SelectionDAG &DAG, DebugLoc DL,
219                                      const SDValue *Parts, unsigned NumParts,
220                                      EVT PartVT, EVT ValueVT) {
221  assert(ValueVT.isVector() && "Not a vector value");
222  assert(NumParts > 0 && "No parts to assemble!");
223  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
224  SDValue Val = Parts[0];
225
226  // Handle a multi-element vector.
227  if (NumParts > 1) {
228    EVT IntermediateVT, RegisterVT;
229    unsigned NumIntermediates;
230    unsigned NumRegs =
231    TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
232                               NumIntermediates, RegisterVT);
233    assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
234    NumParts = NumRegs; // Silence a compiler warning.
235    assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
236    assert(RegisterVT == Parts[0].getValueType() &&
237           "Part type doesn't match part!");
238
239    // Assemble the parts into intermediate operands.
240    SmallVector<SDValue, 8> Ops(NumIntermediates);
241    if (NumIntermediates == NumParts) {
242      // If the register was not expanded, truncate or copy the value,
243      // as appropriate.
244      for (unsigned i = 0; i != NumParts; ++i)
245        Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1,
246                                  PartVT, IntermediateVT);
247    } else if (NumParts > 0) {
248      // If the intermediate type was expanded, build the intermediate
249      // operands from the parts.
250      assert(NumParts % NumIntermediates == 0 &&
251             "Must expand into a divisible number of parts!");
252      unsigned Factor = NumParts / NumIntermediates;
253      for (unsigned i = 0; i != NumIntermediates; ++i)
254        Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor,
255                                  PartVT, IntermediateVT);
256    }
257
258    // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
259    // intermediate operands.
260    Val = DAG.getNode(IntermediateVT.isVector() ?
261                      ISD::CONCAT_VECTORS : ISD::BUILD_VECTOR, DL,
262                      ValueVT, &Ops[0], NumIntermediates);
263  }
264
265  // There is now one part, held in Val.  Correct it to match ValueVT.
266  PartVT = Val.getValueType();
267
268  if (PartVT == ValueVT)
269    return Val;
270
271  if (PartVT.isVector()) {
272    // If the element type of the source/dest vectors are the same, but the
273    // parts vector has more elements than the value vector, then we have a
274    // vector widening case (e.g. <2 x float> -> <4 x float>).  Extract the
275    // elements we want.
276    if (PartVT.getVectorElementType() == ValueVT.getVectorElementType()) {
277      assert(PartVT.getVectorNumElements() > ValueVT.getVectorNumElements() &&
278             "Cannot narrow, it would be a lossy transformation");
279      return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
280                         DAG.getIntPtrConstant(0));
281    }
282
283    // Vector/Vector bitcast.
284    return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
285  }
286
287  assert(ValueVT.getVectorElementType() == PartVT &&
288         ValueVT.getVectorNumElements() == 1 &&
289         "Only trivial scalar-to-vector conversions should get here!");
290  return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val);
291}
292
293
294
295
296static void getCopyToPartsVector(SelectionDAG &DAG, DebugLoc dl,
297                                 SDValue Val, SDValue *Parts, unsigned NumParts,
298                                 EVT PartVT);
299
300/// getCopyToParts - Create a series of nodes that contain the specified value
301/// split into legal parts.  If the parts contain more bits than Val, then, for
302/// integers, ExtendKind can be used to specify how to generate the extra bits.
303static void getCopyToParts(SelectionDAG &DAG, DebugLoc DL,
304                           SDValue Val, SDValue *Parts, unsigned NumParts,
305                           EVT PartVT,
306                           ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
307  EVT ValueVT = Val.getValueType();
308
309  // Handle the vector case separately.
310  if (ValueVT.isVector())
311    return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT);
312
313  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
314  unsigned PartBits = PartVT.getSizeInBits();
315  unsigned OrigNumParts = NumParts;
316  assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!");
317
318  if (NumParts == 0)
319    return;
320
321  assert(!ValueVT.isVector() && "Vector case handled elsewhere");
322  if (PartVT == ValueVT) {
323    assert(NumParts == 1 && "No-op copy with multiple parts!");
324    Parts[0] = Val;
325    return;
326  }
327
328  if (NumParts * PartBits > ValueVT.getSizeInBits()) {
329    // If the parts cover more bits than the value has, promote the value.
330    if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
331      assert(NumParts == 1 && "Do not know what to promote to!");
332      Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
333    } else {
334      assert(PartVT.isInteger() && ValueVT.isInteger() &&
335             "Unknown mismatch!");
336      ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
337      Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
338    }
339  } else if (PartBits == ValueVT.getSizeInBits()) {
340    // Different types of the same size.
341    assert(NumParts == 1 && PartVT != ValueVT);
342    Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
343  } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
344    // If the parts cover less bits than value has, truncate the value.
345    assert(PartVT.isInteger() && ValueVT.isInteger() &&
346           "Unknown mismatch!");
347    ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
348    Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
349  }
350
351  // The value may have changed - recompute ValueVT.
352  ValueVT = Val.getValueType();
353  assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
354         "Failed to tile the value with PartVT!");
355
356  if (NumParts == 1) {
357    assert(PartVT == ValueVT && "Type conversion failed!");
358    Parts[0] = Val;
359    return;
360  }
361
362  // Expand the value into multiple parts.
363  if (NumParts & (NumParts - 1)) {
364    // The number of parts is not a power of 2.  Split off and copy the tail.
365    assert(PartVT.isInteger() && ValueVT.isInteger() &&
366           "Do not know what to expand to!");
367    unsigned RoundParts = 1 << Log2_32(NumParts);
368    unsigned RoundBits = RoundParts * PartBits;
369    unsigned OddParts = NumParts - RoundParts;
370    SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
371                                 DAG.getIntPtrConstant(RoundBits));
372    getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT);
373
374    if (TLI.isBigEndian())
375      // The odd parts were reversed by getCopyToParts - unreverse them.
376      std::reverse(Parts + RoundParts, Parts + NumParts);
377
378    NumParts = RoundParts;
379    ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
380    Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
381  }
382
383  // The number of parts is a power of 2.  Repeatedly bisect the value using
384  // EXTRACT_ELEMENT.
385  Parts[0] = DAG.getNode(ISD::BITCAST, DL,
386                         EVT::getIntegerVT(*DAG.getContext(),
387                                           ValueVT.getSizeInBits()),
388                         Val);
389
390  for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
391    for (unsigned i = 0; i < NumParts; i += StepSize) {
392      unsigned ThisBits = StepSize * PartBits / 2;
393      EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
394      SDValue &Part0 = Parts[i];
395      SDValue &Part1 = Parts[i+StepSize/2];
396
397      Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
398                          ThisVT, Part0, DAG.getIntPtrConstant(1));
399      Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
400                          ThisVT, Part0, DAG.getIntPtrConstant(0));
401
402      if (ThisBits == PartBits && ThisVT != PartVT) {
403        Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
404        Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
405      }
406    }
407  }
408
409  if (TLI.isBigEndian())
410    std::reverse(Parts, Parts + OrigNumParts);
411}
412
413
414/// getCopyToPartsVector - Create a series of nodes that contain the specified
415/// value split into legal parts.
416static void getCopyToPartsVector(SelectionDAG &DAG, DebugLoc DL,
417                                 SDValue Val, SDValue *Parts, unsigned NumParts,
418                                 EVT PartVT) {
419  EVT ValueVT = Val.getValueType();
420  assert(ValueVT.isVector() && "Not a vector");
421  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
422
423  if (NumParts == 1) {
424    if (PartVT == ValueVT) {
425      // Nothing to do.
426    } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
427      // Bitconvert vector->vector case.
428      Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
429    } else if (PartVT.isVector() &&
430               PartVT.getVectorElementType() == ValueVT.getVectorElementType()&&
431               PartVT.getVectorNumElements() > ValueVT.getVectorNumElements()) {
432      EVT ElementVT = PartVT.getVectorElementType();
433      // Vector widening case, e.g. <2 x float> -> <4 x float>.  Shuffle in
434      // undef elements.
435      SmallVector<SDValue, 16> Ops;
436      for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i)
437        Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
438                                  ElementVT, Val, DAG.getIntPtrConstant(i)));
439
440      for (unsigned i = ValueVT.getVectorNumElements(),
441           e = PartVT.getVectorNumElements(); i != e; ++i)
442        Ops.push_back(DAG.getUNDEF(ElementVT));
443
444      Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, &Ops[0], Ops.size());
445
446      // FIXME: Use CONCAT for 2x -> 4x.
447
448      //SDValue UndefElts = DAG.getUNDEF(VectorTy);
449      //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts);
450    } else {
451      // Vector -> scalar conversion.
452      assert(ValueVT.getVectorElementType() == PartVT &&
453             ValueVT.getVectorNumElements() == 1 &&
454             "Only trivial vector-to-scalar conversions should get here!");
455      Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
456                        PartVT, Val, DAG.getIntPtrConstant(0));
457    }
458
459    Parts[0] = Val;
460    return;
461  }
462
463  // Handle a multi-element vector.
464  EVT IntermediateVT, RegisterVT;
465  unsigned NumIntermediates;
466  unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT,
467                                                IntermediateVT,
468                                                NumIntermediates, RegisterVT);
469  unsigned NumElements = ValueVT.getVectorNumElements();
470
471  assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
472  NumParts = NumRegs; // Silence a compiler warning.
473  assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
474
475  // Split the vector into intermediate operands.
476  SmallVector<SDValue, 8> Ops(NumIntermediates);
477  for (unsigned i = 0; i != NumIntermediates; ++i) {
478    if (IntermediateVT.isVector())
479      Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL,
480                           IntermediateVT, Val,
481                   DAG.getIntPtrConstant(i * (NumElements / NumIntermediates)));
482    else
483      Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
484                           IntermediateVT, Val, DAG.getIntPtrConstant(i));
485  }
486
487  // Split the intermediate operands into legal parts.
488  if (NumParts == NumIntermediates) {
489    // If the register was not expanded, promote or copy the value,
490    // as appropriate.
491    for (unsigned i = 0; i != NumParts; ++i)
492      getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT);
493  } else if (NumParts > 0) {
494    // If the intermediate type was expanded, split each the value into
495    // legal parts.
496    assert(NumParts % NumIntermediates == 0 &&
497           "Must expand into a divisible number of parts!");
498    unsigned Factor = NumParts / NumIntermediates;
499    for (unsigned i = 0; i != NumIntermediates; ++i)
500      getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT);
501  }
502}
503
504
505
506
507namespace {
508  /// RegsForValue - This struct represents the registers (physical or virtual)
509  /// that a particular set of values is assigned, and the type information
510  /// about the value. The most common situation is to represent one value at a
511  /// time, but struct or array values are handled element-wise as multiple
512  /// values.  The splitting of aggregates is performed recursively, so that we
513  /// never have aggregate-typed registers. The values at this point do not
514  /// necessarily have legal types, so each value may require one or more
515  /// registers of some legal type.
516  ///
517  struct RegsForValue {
518    /// ValueVTs - The value types of the values, which may not be legal, and
519    /// may need be promoted or synthesized from one or more registers.
520    ///
521    SmallVector<EVT, 4> ValueVTs;
522
523    /// RegVTs - The value types of the registers. This is the same size as
524    /// ValueVTs and it records, for each value, what the type of the assigned
525    /// register or registers are. (Individual values are never synthesized
526    /// from more than one type of register.)
527    ///
528    /// With virtual registers, the contents of RegVTs is redundant with TLI's
529    /// getRegisterType member function, however when with physical registers
530    /// it is necessary to have a separate record of the types.
531    ///
532    SmallVector<EVT, 4> RegVTs;
533
534    /// Regs - This list holds the registers assigned to the values.
535    /// Each legal or promoted value requires one register, and each
536    /// expanded value requires multiple registers.
537    ///
538    SmallVector<unsigned, 4> Regs;
539
540    RegsForValue() {}
541
542    RegsForValue(const SmallVector<unsigned, 4> &regs,
543                 EVT regvt, EVT valuevt)
544      : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {}
545
546    RegsForValue(LLVMContext &Context, const TargetLowering &tli,
547                 unsigned Reg, const Type *Ty) {
548      ComputeValueVTs(tli, Ty, ValueVTs);
549
550      for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
551        EVT ValueVT = ValueVTs[Value];
552        unsigned NumRegs = tli.getNumRegisters(Context, ValueVT);
553        EVT RegisterVT = tli.getRegisterType(Context, ValueVT);
554        for (unsigned i = 0; i != NumRegs; ++i)
555          Regs.push_back(Reg + i);
556        RegVTs.push_back(RegisterVT);
557        Reg += NumRegs;
558      }
559    }
560
561    /// areValueTypesLegal - Return true if types of all the values are legal.
562    bool areValueTypesLegal(const TargetLowering &TLI) {
563      for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
564        EVT RegisterVT = RegVTs[Value];
565        if (!TLI.isTypeLegal(RegisterVT))
566          return false;
567      }
568      return true;
569    }
570
571    /// append - Add the specified values to this one.
572    void append(const RegsForValue &RHS) {
573      ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end());
574      RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end());
575      Regs.append(RHS.Regs.begin(), RHS.Regs.end());
576    }
577
578    /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
579    /// this value and returns the result as a ValueVTs value.  This uses
580    /// Chain/Flag as the input and updates them for the output Chain/Flag.
581    /// If the Flag pointer is NULL, no flag is used.
582    SDValue getCopyFromRegs(SelectionDAG &DAG, FunctionLoweringInfo &FuncInfo,
583                            DebugLoc dl,
584                            SDValue &Chain, SDValue *Flag) const;
585
586    /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
587    /// specified value into the registers specified by this object.  This uses
588    /// Chain/Flag as the input and updates them for the output Chain/Flag.
589    /// If the Flag pointer is NULL, no flag is used.
590    void getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl,
591                       SDValue &Chain, SDValue *Flag) const;
592
593    /// AddInlineAsmOperands - Add this value to the specified inlineasm node
594    /// operand list.  This adds the code marker, matching input operand index
595    /// (if applicable), and includes the number of values added into it.
596    void AddInlineAsmOperands(unsigned Kind,
597                              bool HasMatching, unsigned MatchingIdx,
598                              SelectionDAG &DAG,
599                              std::vector<SDValue> &Ops) const;
600  };
601}
602
603/// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
604/// this value and returns the result as a ValueVT value.  This uses
605/// Chain/Flag as the input and updates them for the output Chain/Flag.
606/// If the Flag pointer is NULL, no flag is used.
607SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
608                                      FunctionLoweringInfo &FuncInfo,
609                                      DebugLoc dl,
610                                      SDValue &Chain, SDValue *Flag) const {
611  // A Value with type {} or [0 x %t] needs no registers.
612  if (ValueVTs.empty())
613    return SDValue();
614
615  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
616
617  // Assemble the legal parts into the final values.
618  SmallVector<SDValue, 4> Values(ValueVTs.size());
619  SmallVector<SDValue, 8> Parts;
620  for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
621    // Copy the legal parts from the registers.
622    EVT ValueVT = ValueVTs[Value];
623    unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
624    EVT RegisterVT = RegVTs[Value];
625
626    Parts.resize(NumRegs);
627    for (unsigned i = 0; i != NumRegs; ++i) {
628      SDValue P;
629      if (Flag == 0) {
630        P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
631      } else {
632        P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
633        *Flag = P.getValue(2);
634      }
635
636      Chain = P.getValue(1);
637      Parts[i] = P;
638
639      // If the source register was virtual and if we know something about it,
640      // add an assert node.
641      if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) ||
642          !RegisterVT.isInteger() || RegisterVT.isVector())
643        continue;
644
645      const FunctionLoweringInfo::LiveOutInfo *LOI =
646        FuncInfo.GetLiveOutRegInfo(Regs[Part+i]);
647      if (!LOI)
648        continue;
649
650      unsigned RegSize = RegisterVT.getSizeInBits();
651      unsigned NumSignBits = LOI->NumSignBits;
652      unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes();
653
654      // FIXME: We capture more information than the dag can represent.  For
655      // now, just use the tightest assertzext/assertsext possible.
656      bool isSExt = true;
657      EVT FromVT(MVT::Other);
658      if (NumSignBits == RegSize)
659        isSExt = true, FromVT = MVT::i1;   // ASSERT SEXT 1
660      else if (NumZeroBits >= RegSize-1)
661        isSExt = false, FromVT = MVT::i1;  // ASSERT ZEXT 1
662      else if (NumSignBits > RegSize-8)
663        isSExt = true, FromVT = MVT::i8;   // ASSERT SEXT 8
664      else if (NumZeroBits >= RegSize-8)
665        isSExt = false, FromVT = MVT::i8;  // ASSERT ZEXT 8
666      else if (NumSignBits > RegSize-16)
667        isSExt = true, FromVT = MVT::i16;  // ASSERT SEXT 16
668      else if (NumZeroBits >= RegSize-16)
669        isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16
670      else if (NumSignBits > RegSize-32)
671        isSExt = true, FromVT = MVT::i32;  // ASSERT SEXT 32
672      else if (NumZeroBits >= RegSize-32)
673        isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32
674      else
675        continue;
676
677      // Add an assertion node.
678      assert(FromVT != MVT::Other);
679      Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
680                             RegisterVT, P, DAG.getValueType(FromVT));
681    }
682
683    Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(),
684                                     NumRegs, RegisterVT, ValueVT);
685    Part += NumRegs;
686    Parts.clear();
687  }
688
689  return DAG.getNode(ISD::MERGE_VALUES, dl,
690                     DAG.getVTList(&ValueVTs[0], ValueVTs.size()),
691                     &Values[0], ValueVTs.size());
692}
693
694/// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
695/// specified value into the registers specified by this object.  This uses
696/// Chain/Flag as the input and updates them for the output Chain/Flag.
697/// If the Flag pointer is NULL, no flag is used.
698void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl,
699                                 SDValue &Chain, SDValue *Flag) const {
700  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
701
702  // Get the list of the values's legal parts.
703  unsigned NumRegs = Regs.size();
704  SmallVector<SDValue, 8> Parts(NumRegs);
705  for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
706    EVT ValueVT = ValueVTs[Value];
707    unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
708    EVT RegisterVT = RegVTs[Value];
709
710    getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value),
711                   &Parts[Part], NumParts, RegisterVT);
712    Part += NumParts;
713  }
714
715  // Copy the parts into the registers.
716  SmallVector<SDValue, 8> Chains(NumRegs);
717  for (unsigned i = 0; i != NumRegs; ++i) {
718    SDValue Part;
719    if (Flag == 0) {
720      Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
721    } else {
722      Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
723      *Flag = Part.getValue(1);
724    }
725
726    Chains[i] = Part.getValue(0);
727  }
728
729  if (NumRegs == 1 || Flag)
730    // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
731    // flagged to it. That is the CopyToReg nodes and the user are considered
732    // a single scheduling unit. If we create a TokenFactor and return it as
733    // chain, then the TokenFactor is both a predecessor (operand) of the
734    // user as well as a successor (the TF operands are flagged to the user).
735    // c1, f1 = CopyToReg
736    // c2, f2 = CopyToReg
737    // c3     = TokenFactor c1, c2
738    // ...
739    //        = op c3, ..., f2
740    Chain = Chains[NumRegs-1];
741  else
742    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0], NumRegs);
743}
744
745/// AddInlineAsmOperands - Add this value to the specified inlineasm node
746/// operand list.  This adds the code marker and includes the number of
747/// values added into it.
748void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
749                                        unsigned MatchingIdx,
750                                        SelectionDAG &DAG,
751                                        std::vector<SDValue> &Ops) const {
752  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
753
754  unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
755  if (HasMatching)
756    Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
757  SDValue Res = DAG.getTargetConstant(Flag, MVT::i32);
758  Ops.push_back(Res);
759
760  for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
761    unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]);
762    EVT RegisterVT = RegVTs[Value];
763    for (unsigned i = 0; i != NumRegs; ++i) {
764      assert(Reg < Regs.size() && "Mismatch in # registers expected");
765      Ops.push_back(DAG.getRegister(Regs[Reg++], RegisterVT));
766    }
767  }
768}
769
770void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa) {
771  AA = &aa;
772  GFI = gfi;
773  TD = DAG.getTarget().getTargetData();
774}
775
776/// clear - Clear out the current SelectionDAG and the associated
777/// state and prepare this SelectionDAGBuilder object to be used
778/// for a new block. This doesn't clear out information about
779/// additional blocks that are needed to complete switch lowering
780/// or PHI node updating; that information is cleared out as it is
781/// consumed.
782void SelectionDAGBuilder::clear() {
783  NodeMap.clear();
784  UnusedArgNodeMap.clear();
785  PendingLoads.clear();
786  PendingExports.clear();
787  DanglingDebugInfoMap.clear();
788  CurDebugLoc = DebugLoc();
789  HasTailCall = false;
790}
791
792/// getRoot - Return the current virtual root of the Selection DAG,
793/// flushing any PendingLoad items. This must be done before emitting
794/// a store or any other node that may need to be ordered after any
795/// prior load instructions.
796///
797SDValue SelectionDAGBuilder::getRoot() {
798  if (PendingLoads.empty())
799    return DAG.getRoot();
800
801  if (PendingLoads.size() == 1) {
802    SDValue Root = PendingLoads[0];
803    DAG.setRoot(Root);
804    PendingLoads.clear();
805    return Root;
806  }
807
808  // Otherwise, we have to make a token factor node.
809  SDValue Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
810                               &PendingLoads[0], PendingLoads.size());
811  PendingLoads.clear();
812  DAG.setRoot(Root);
813  return Root;
814}
815
816/// getControlRoot - Similar to getRoot, but instead of flushing all the
817/// PendingLoad items, flush all the PendingExports items. It is necessary
818/// to do this before emitting a terminator instruction.
819///
820SDValue SelectionDAGBuilder::getControlRoot() {
821  SDValue Root = DAG.getRoot();
822
823  if (PendingExports.empty())
824    return Root;
825
826  // Turn all of the CopyToReg chains into one factored node.
827  if (Root.getOpcode() != ISD::EntryToken) {
828    unsigned i = 0, e = PendingExports.size();
829    for (; i != e; ++i) {
830      assert(PendingExports[i].getNode()->getNumOperands() > 1);
831      if (PendingExports[i].getNode()->getOperand(0) == Root)
832        break;  // Don't add the root if we already indirectly depend on it.
833    }
834
835    if (i == e)
836      PendingExports.push_back(Root);
837  }
838
839  Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
840                     &PendingExports[0],
841                     PendingExports.size());
842  PendingExports.clear();
843  DAG.setRoot(Root);
844  return Root;
845}
846
847void SelectionDAGBuilder::AssignOrderingToNode(const SDNode *Node) {
848  if (DAG.GetOrdering(Node) != 0) return; // Already has ordering.
849  DAG.AssignOrdering(Node, SDNodeOrder);
850
851  for (unsigned I = 0, E = Node->getNumOperands(); I != E; ++I)
852    AssignOrderingToNode(Node->getOperand(I).getNode());
853}
854
855void SelectionDAGBuilder::visit(const Instruction &I) {
856  // Set up outgoing PHI node register values before emitting the terminator.
857  if (isa<TerminatorInst>(&I))
858    HandlePHINodesInSuccessorBlocks(I.getParent());
859
860  CurDebugLoc = I.getDebugLoc();
861
862  visit(I.getOpcode(), I);
863
864  if (!isa<TerminatorInst>(&I) && !HasTailCall)
865    CopyToExportRegsIfNeeded(&I);
866
867  CurDebugLoc = DebugLoc();
868}
869
870void SelectionDAGBuilder::visitPHI(const PHINode &) {
871  llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
872}
873
874void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
875  // Note: this doesn't use InstVisitor, because it has to work with
876  // ConstantExpr's in addition to instructions.
877  switch (Opcode) {
878  default: llvm_unreachable("Unknown instruction type encountered!");
879    // Build the switch statement using the Instruction.def file.
880#define HANDLE_INST(NUM, OPCODE, CLASS) \
881    case Instruction::OPCODE: visit##OPCODE((CLASS&)I); break;
882#include "llvm/Instruction.def"
883  }
884
885  // Assign the ordering to the freshly created DAG nodes.
886  if (NodeMap.count(&I)) {
887    ++SDNodeOrder;
888    AssignOrderingToNode(getValue(&I).getNode());
889  }
890}
891
892// resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
893// generate the debug data structures now that we've seen its definition.
894void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
895                                                   SDValue Val) {
896  DanglingDebugInfo &DDI = DanglingDebugInfoMap[V];
897  if (DDI.getDI()) {
898    const DbgValueInst *DI = DDI.getDI();
899    DebugLoc dl = DDI.getdl();
900    unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
901    MDNode *Variable = DI->getVariable();
902    uint64_t Offset = DI->getOffset();
903    SDDbgValue *SDV;
904    if (Val.getNode()) {
905      if (!EmitFuncArgumentDbgValue(V, Variable, Offset, Val)) {
906        SDV = DAG.getDbgValue(Variable, Val.getNode(),
907                              Val.getResNo(), Offset, dl, DbgSDNodeOrder);
908        DAG.AddDbgValue(SDV, Val.getNode(), false);
909      }
910    } else
911      DEBUG(dbgs() << "Dropping debug info for " << DI);
912    DanglingDebugInfoMap[V] = DanglingDebugInfo();
913  }
914}
915
916// getValue - Return an SDValue for the given Value.
917SDValue SelectionDAGBuilder::getValue(const Value *V) {
918  // If we already have an SDValue for this value, use it. It's important
919  // to do this first, so that we don't create a CopyFromReg if we already
920  // have a regular SDValue.
921  SDValue &N = NodeMap[V];
922  if (N.getNode()) return N;
923
924  // If there's a virtual register allocated and initialized for this
925  // value, use it.
926  DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V);
927  if (It != FuncInfo.ValueMap.end()) {
928    unsigned InReg = It->second;
929    RegsForValue RFV(*DAG.getContext(), TLI, InReg, V->getType());
930    SDValue Chain = DAG.getEntryNode();
931    N = RFV.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), Chain,NULL);
932    resolveDanglingDebugInfo(V, N);
933    return N;
934  }
935
936  // Otherwise create a new SDValue and remember it.
937  SDValue Val = getValueImpl(V);
938  NodeMap[V] = Val;
939  resolveDanglingDebugInfo(V, Val);
940  return Val;
941}
942
943/// getNonRegisterValue - Return an SDValue for the given Value, but
944/// don't look in FuncInfo.ValueMap for a virtual register.
945SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
946  // If we already have an SDValue for this value, use it.
947  SDValue &N = NodeMap[V];
948  if (N.getNode()) return N;
949
950  // Otherwise create a new SDValue and remember it.
951  SDValue Val = getValueImpl(V);
952  NodeMap[V] = Val;
953  resolveDanglingDebugInfo(V, Val);
954  return Val;
955}
956
957/// getValueImpl - Helper function for getValue and getNonRegisterValue.
958/// Create an SDValue for the given value.
959SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
960  if (const Constant *C = dyn_cast<Constant>(V)) {
961    EVT VT = TLI.getValueType(V->getType(), true);
962
963    if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
964      return DAG.getConstant(*CI, VT);
965
966    if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
967      return DAG.getGlobalAddress(GV, getCurDebugLoc(), VT);
968
969    if (isa<ConstantPointerNull>(C))
970      return DAG.getConstant(0, TLI.getPointerTy());
971
972    if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
973      return DAG.getConstantFP(*CFP, VT);
974
975    if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
976      return DAG.getUNDEF(VT);
977
978    if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
979      visit(CE->getOpcode(), *CE);
980      SDValue N1 = NodeMap[V];
981      assert(N1.getNode() && "visit didn't populate the NodeMap!");
982      return N1;
983    }
984
985    if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
986      SmallVector<SDValue, 4> Constants;
987      for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end();
988           OI != OE; ++OI) {
989        SDNode *Val = getValue(*OI).getNode();
990        // If the operand is an empty aggregate, there are no values.
991        if (!Val) continue;
992        // Add each leaf value from the operand to the Constants list
993        // to form a flattened list of all the values.
994        for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
995          Constants.push_back(SDValue(Val, i));
996      }
997
998      return DAG.getMergeValues(&Constants[0], Constants.size(),
999                                getCurDebugLoc());
1000    }
1001
1002    if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
1003      assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1004             "Unknown struct or array constant!");
1005
1006      SmallVector<EVT, 4> ValueVTs;
1007      ComputeValueVTs(TLI, C->getType(), ValueVTs);
1008      unsigned NumElts = ValueVTs.size();
1009      if (NumElts == 0)
1010        return SDValue(); // empty struct
1011      SmallVector<SDValue, 4> Constants(NumElts);
1012      for (unsigned i = 0; i != NumElts; ++i) {
1013        EVT EltVT = ValueVTs[i];
1014        if (isa<UndefValue>(C))
1015          Constants[i] = DAG.getUNDEF(EltVT);
1016        else if (EltVT.isFloatingPoint())
1017          Constants[i] = DAG.getConstantFP(0, EltVT);
1018        else
1019          Constants[i] = DAG.getConstant(0, EltVT);
1020      }
1021
1022      return DAG.getMergeValues(&Constants[0], NumElts,
1023                                getCurDebugLoc());
1024    }
1025
1026    if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
1027      return DAG.getBlockAddress(BA, VT);
1028
1029    const VectorType *VecTy = cast<VectorType>(V->getType());
1030    unsigned NumElements = VecTy->getNumElements();
1031
1032    // Now that we know the number and type of the elements, get that number of
1033    // elements into the Ops array based on what kind of constant it is.
1034    SmallVector<SDValue, 16> Ops;
1035    if (const ConstantVector *CP = dyn_cast<ConstantVector>(C)) {
1036      for (unsigned i = 0; i != NumElements; ++i)
1037        Ops.push_back(getValue(CP->getOperand(i)));
1038    } else {
1039      assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!");
1040      EVT EltVT = TLI.getValueType(VecTy->getElementType());
1041
1042      SDValue Op;
1043      if (EltVT.isFloatingPoint())
1044        Op = DAG.getConstantFP(0, EltVT);
1045      else
1046        Op = DAG.getConstant(0, EltVT);
1047      Ops.assign(NumElements, Op);
1048    }
1049
1050    // Create a BUILD_VECTOR node.
1051    return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(),
1052                                    VT, &Ops[0], Ops.size());
1053  }
1054
1055  // If this is a static alloca, generate it as the frameindex instead of
1056  // computation.
1057  if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1058    DenseMap<const AllocaInst*, int>::iterator SI =
1059      FuncInfo.StaticAllocaMap.find(AI);
1060    if (SI != FuncInfo.StaticAllocaMap.end())
1061      return DAG.getFrameIndex(SI->second, TLI.getPointerTy());
1062  }
1063
1064  // If this is an instruction which fast-isel has deferred, select it now.
1065  if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
1066    unsigned InReg = FuncInfo.InitializeRegForValue(Inst);
1067    RegsForValue RFV(*DAG.getContext(), TLI, InReg, Inst->getType());
1068    SDValue Chain = DAG.getEntryNode();
1069    return RFV.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), Chain, NULL);
1070  }
1071
1072  llvm_unreachable("Can't get register for value!");
1073  return SDValue();
1074}
1075
1076void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
1077  SDValue Chain = getControlRoot();
1078  SmallVector<ISD::OutputArg, 8> Outs;
1079  SmallVector<SDValue, 8> OutVals;
1080
1081  if (!FuncInfo.CanLowerReturn) {
1082    unsigned DemoteReg = FuncInfo.DemoteRegister;
1083    const Function *F = I.getParent()->getParent();
1084
1085    // Emit a store of the return value through the virtual register.
1086    // Leave Outs empty so that LowerReturn won't try to load return
1087    // registers the usual way.
1088    SmallVector<EVT, 1> PtrValueVTs;
1089    ComputeValueVTs(TLI, PointerType::getUnqual(F->getReturnType()),
1090                    PtrValueVTs);
1091
1092    SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]);
1093    SDValue RetOp = getValue(I.getOperand(0));
1094
1095    SmallVector<EVT, 4> ValueVTs;
1096    SmallVector<uint64_t, 4> Offsets;
1097    ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs, &Offsets);
1098    unsigned NumValues = ValueVTs.size();
1099
1100    SmallVector<SDValue, 4> Chains(NumValues);
1101    for (unsigned i = 0; i != NumValues; ++i) {
1102      SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(),
1103                                RetPtr.getValueType(), RetPtr,
1104                                DAG.getIntPtrConstant(Offsets[i]));
1105      Chains[i] =
1106        DAG.getStore(Chain, getCurDebugLoc(),
1107                     SDValue(RetOp.getNode(), RetOp.getResNo() + i),
1108                     // FIXME: better loc info would be nice.
1109                     Add, MachinePointerInfo(), false, false, 0);
1110    }
1111
1112    Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
1113                        MVT::Other, &Chains[0], NumValues);
1114  } else if (I.getNumOperands() != 0) {
1115    SmallVector<EVT, 4> ValueVTs;
1116    ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs);
1117    unsigned NumValues = ValueVTs.size();
1118    if (NumValues) {
1119      SDValue RetOp = getValue(I.getOperand(0));
1120      for (unsigned j = 0, f = NumValues; j != f; ++j) {
1121        EVT VT = ValueVTs[j];
1122
1123        ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1124
1125        const Function *F = I.getParent()->getParent();
1126        if (F->paramHasAttr(0, Attribute::SExt))
1127          ExtendKind = ISD::SIGN_EXTEND;
1128        else if (F->paramHasAttr(0, Attribute::ZExt))
1129          ExtendKind = ISD::ZERO_EXTEND;
1130
1131        if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) {
1132          MVT ReturnMVT = TLI.getTypeForExtendedInteger(VT, ExtendKind);
1133          EVT MinVT = TLI.getRegisterType(*DAG.getContext(), ReturnMVT);
1134          if (VT.bitsLT(MinVT))
1135            VT = MinVT;
1136        }
1137
1138        unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), VT);
1139        EVT PartVT = TLI.getRegisterType(*DAG.getContext(), VT);
1140        SmallVector<SDValue, 4> Parts(NumParts);
1141        getCopyToParts(DAG, getCurDebugLoc(),
1142                       SDValue(RetOp.getNode(), RetOp.getResNo() + j),
1143                       &Parts[0], NumParts, PartVT, ExtendKind);
1144
1145        // 'inreg' on function refers to return value
1146        ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1147        if (F->paramHasAttr(0, Attribute::InReg))
1148          Flags.setInReg();
1149
1150        // Propagate extension type if any
1151        if (ExtendKind == ISD::SIGN_EXTEND)
1152          Flags.setSExt();
1153        else if (ExtendKind == ISD::ZERO_EXTEND)
1154          Flags.setZExt();
1155
1156        for (unsigned i = 0; i < NumParts; ++i) {
1157          Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(),
1158                                        /*isfixed=*/true));
1159          OutVals.push_back(Parts[i]);
1160        }
1161      }
1162    }
1163  }
1164
1165  bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
1166  CallingConv::ID CallConv =
1167    DAG.getMachineFunction().getFunction()->getCallingConv();
1168  Chain = TLI.LowerReturn(Chain, CallConv, isVarArg,
1169                          Outs, OutVals, getCurDebugLoc(), DAG);
1170
1171  // Verify that the target's LowerReturn behaved as expected.
1172  assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
1173         "LowerReturn didn't return a valid chain!");
1174
1175  // Update the DAG with the new chain value resulting from return lowering.
1176  DAG.setRoot(Chain);
1177}
1178
1179/// CopyToExportRegsIfNeeded - If the given value has virtual registers
1180/// created for it, emit nodes to copy the value into the virtual
1181/// registers.
1182void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
1183  DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
1184  if (VMI != FuncInfo.ValueMap.end()) {
1185    assert(!V->use_empty() && "Unused value assigned virtual registers!");
1186    CopyValueToVirtualRegister(V, VMI->second);
1187  }
1188}
1189
1190/// ExportFromCurrentBlock - If this condition isn't known to be exported from
1191/// the current basic block, add it to ValueMap now so that we'll get a
1192/// CopyTo/FromReg.
1193void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
1194  // No need to export constants.
1195  if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
1196
1197  // Already exported?
1198  if (FuncInfo.isExportedInst(V)) return;
1199
1200  unsigned Reg = FuncInfo.InitializeRegForValue(V);
1201  CopyValueToVirtualRegister(V, Reg);
1202}
1203
1204bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
1205                                                     const BasicBlock *FromBB) {
1206  // The operands of the setcc have to be in this block.  We don't know
1207  // how to export them from some other block.
1208  if (const Instruction *VI = dyn_cast<Instruction>(V)) {
1209    // Can export from current BB.
1210    if (VI->getParent() == FromBB)
1211      return true;
1212
1213    // Is already exported, noop.
1214    return FuncInfo.isExportedInst(V);
1215  }
1216
1217  // If this is an argument, we can export it if the BB is the entry block or
1218  // if it is already exported.
1219  if (isa<Argument>(V)) {
1220    if (FromBB == &FromBB->getParent()->getEntryBlock())
1221      return true;
1222
1223    // Otherwise, can only export this if it is already exported.
1224    return FuncInfo.isExportedInst(V);
1225  }
1226
1227  // Otherwise, constants can always be exported.
1228  return true;
1229}
1230
1231static bool InBlock(const Value *V, const BasicBlock *BB) {
1232  if (const Instruction *I = dyn_cast<Instruction>(V))
1233    return I->getParent() == BB;
1234  return true;
1235}
1236
1237/// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
1238/// This function emits a branch and is used at the leaves of an OR or an
1239/// AND operator tree.
1240///
1241void
1242SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
1243                                                  MachineBasicBlock *TBB,
1244                                                  MachineBasicBlock *FBB,
1245                                                  MachineBasicBlock *CurBB,
1246                                                  MachineBasicBlock *SwitchBB) {
1247  const BasicBlock *BB = CurBB->getBasicBlock();
1248
1249  // If the leaf of the tree is a comparison, merge the condition into
1250  // the caseblock.
1251  if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
1252    // The operands of the cmp have to be in this block.  We don't know
1253    // how to export them from some other block.  If this is the first block
1254    // of the sequence, no exporting is needed.
1255    if (CurBB == SwitchBB ||
1256        (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
1257         isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
1258      ISD::CondCode Condition;
1259      if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
1260        Condition = getICmpCondCode(IC->getPredicate());
1261      } else if (const FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) {
1262        Condition = getFCmpCondCode(FC->getPredicate());
1263      } else {
1264        Condition = ISD::SETEQ; // silence warning.
1265        llvm_unreachable("Unknown compare instruction");
1266      }
1267
1268      CaseBlock CB(Condition, BOp->getOperand(0),
1269                   BOp->getOperand(1), NULL, TBB, FBB, CurBB);
1270      SwitchCases.push_back(CB);
1271      return;
1272    }
1273  }
1274
1275  // Create a CaseBlock record representing this branch.
1276  CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()),
1277               NULL, TBB, FBB, CurBB);
1278  SwitchCases.push_back(CB);
1279}
1280
1281/// FindMergedConditions - If Cond is an expression like
1282void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
1283                                               MachineBasicBlock *TBB,
1284                                               MachineBasicBlock *FBB,
1285                                               MachineBasicBlock *CurBB,
1286                                               MachineBasicBlock *SwitchBB,
1287                                               unsigned Opc) {
1288  // If this node is not part of the or/and tree, emit it as a branch.
1289  const Instruction *BOp = dyn_cast<Instruction>(Cond);
1290  if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
1291      (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() ||
1292      BOp->getParent() != CurBB->getBasicBlock() ||
1293      !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
1294      !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
1295    EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB);
1296    return;
1297  }
1298
1299  //  Create TmpBB after CurBB.
1300  MachineFunction::iterator BBI = CurBB;
1301  MachineFunction &MF = DAG.getMachineFunction();
1302  MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
1303  CurBB->getParent()->insert(++BBI, TmpBB);
1304
1305  if (Opc == Instruction::Or) {
1306    // Codegen X | Y as:
1307    //   jmp_if_X TBB
1308    //   jmp TmpBB
1309    // TmpBB:
1310    //   jmp_if_Y TBB
1311    //   jmp FBB
1312    //
1313
1314    // Emit the LHS condition.
1315    FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc);
1316
1317    // Emit the RHS condition into TmpBB.
1318    FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc);
1319  } else {
1320    assert(Opc == Instruction::And && "Unknown merge op!");
1321    // Codegen X & Y as:
1322    //   jmp_if_X TmpBB
1323    //   jmp FBB
1324    // TmpBB:
1325    //   jmp_if_Y TBB
1326    //   jmp FBB
1327    //
1328    //  This requires creation of TmpBB after CurBB.
1329
1330    // Emit the LHS condition.
1331    FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc);
1332
1333    // Emit the RHS condition into TmpBB.
1334    FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc);
1335  }
1336}
1337
1338/// If the set of cases should be emitted as a series of branches, return true.
1339/// If we should emit this as a bunch of and/or'd together conditions, return
1340/// false.
1341bool
1342SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases){
1343  if (Cases.size() != 2) return true;
1344
1345  // If this is two comparisons of the same values or'd or and'd together, they
1346  // will get folded into a single comparison, so don't emit two blocks.
1347  if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
1348       Cases[0].CmpRHS == Cases[1].CmpRHS) ||
1349      (Cases[0].CmpRHS == Cases[1].CmpLHS &&
1350       Cases[0].CmpLHS == Cases[1].CmpRHS)) {
1351    return false;
1352  }
1353
1354  // Handle: (X != null) | (Y != null) --> (X|Y) != 0
1355  // Handle: (X == null) & (Y == null) --> (X|Y) == 0
1356  if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
1357      Cases[0].CC == Cases[1].CC &&
1358      isa<Constant>(Cases[0].CmpRHS) &&
1359      cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
1360    if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
1361      return false;
1362    if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
1363      return false;
1364  }
1365
1366  return true;
1367}
1368
1369void SelectionDAGBuilder::visitBr(const BranchInst &I) {
1370  MachineBasicBlock *BrMBB = FuncInfo.MBB;
1371
1372  // Update machine-CFG edges.
1373  MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
1374
1375  // Figure out which block is immediately after the current one.
1376  MachineBasicBlock *NextBlock = 0;
1377  MachineFunction::iterator BBI = BrMBB;
1378  if (++BBI != FuncInfo.MF->end())
1379    NextBlock = BBI;
1380
1381  if (I.isUnconditional()) {
1382    // Update machine-CFG edges.
1383    BrMBB->addSuccessor(Succ0MBB);
1384
1385    // If this is not a fall-through branch, emit the branch.
1386    if (Succ0MBB != NextBlock)
1387      DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
1388                              MVT::Other, getControlRoot(),
1389                              DAG.getBasicBlock(Succ0MBB)));
1390
1391    return;
1392  }
1393
1394  // If this condition is one of the special cases we handle, do special stuff
1395  // now.
1396  const Value *CondVal = I.getCondition();
1397  MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
1398
1399  // If this is a series of conditions that are or'd or and'd together, emit
1400  // this as a sequence of branches instead of setcc's with and/or operations.
1401  // As long as jumps are not expensive, this should improve performance.
1402  // For example, instead of something like:
1403  //     cmp A, B
1404  //     C = seteq
1405  //     cmp D, E
1406  //     F = setle
1407  //     or C, F
1408  //     jnz foo
1409  // Emit:
1410  //     cmp A, B
1411  //     je foo
1412  //     cmp D, E
1413  //     jle foo
1414  //
1415  if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
1416    if (!TLI.isJumpExpensive() &&
1417        BOp->hasOneUse() &&
1418        (BOp->getOpcode() == Instruction::And ||
1419         BOp->getOpcode() == Instruction::Or)) {
1420      FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB,
1421                           BOp->getOpcode());
1422      // If the compares in later blocks need to use values not currently
1423      // exported from this block, export them now.  This block should always
1424      // be the first entry.
1425      assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
1426
1427      // Allow some cases to be rejected.
1428      if (ShouldEmitAsBranches(SwitchCases)) {
1429        for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
1430          ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
1431          ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
1432        }
1433
1434        // Emit the branch for this block.
1435        visitSwitchCase(SwitchCases[0], BrMBB);
1436        SwitchCases.erase(SwitchCases.begin());
1437        return;
1438      }
1439
1440      // Okay, we decided not to do this, remove any inserted MBB's and clear
1441      // SwitchCases.
1442      for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
1443        FuncInfo.MF->erase(SwitchCases[i].ThisBB);
1444
1445      SwitchCases.clear();
1446    }
1447  }
1448
1449  // Create a CaseBlock record representing this branch.
1450  CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
1451               NULL, Succ0MBB, Succ1MBB, BrMBB);
1452
1453  // Use visitSwitchCase to actually insert the fast branch sequence for this
1454  // cond branch.
1455  visitSwitchCase(CB, BrMBB);
1456}
1457
1458/// visitSwitchCase - Emits the necessary code to represent a single node in
1459/// the binary search tree resulting from lowering a switch instruction.
1460void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
1461                                          MachineBasicBlock *SwitchBB) {
1462  SDValue Cond;
1463  SDValue CondLHS = getValue(CB.CmpLHS);
1464  DebugLoc dl = getCurDebugLoc();
1465
1466  // Build the setcc now.
1467  if (CB.CmpMHS == NULL) {
1468    // Fold "(X == true)" to X and "(X == false)" to !X to
1469    // handle common cases produced by branch lowering.
1470    if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
1471        CB.CC == ISD::SETEQ)
1472      Cond = CondLHS;
1473    else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
1474             CB.CC == ISD::SETEQ) {
1475      SDValue True = DAG.getConstant(1, CondLHS.getValueType());
1476      Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
1477    } else
1478      Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
1479  } else {
1480    assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
1481
1482    const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
1483    const APInt& High  = cast<ConstantInt>(CB.CmpRHS)->getValue();
1484
1485    SDValue CmpOp = getValue(CB.CmpMHS);
1486    EVT VT = CmpOp.getValueType();
1487
1488    if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
1489      Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, VT),
1490                          ISD::SETLE);
1491    } else {
1492      SDValue SUB = DAG.getNode(ISD::SUB, dl,
1493                                VT, CmpOp, DAG.getConstant(Low, VT));
1494      Cond = DAG.getSetCC(dl, MVT::i1, SUB,
1495                          DAG.getConstant(High-Low, VT), ISD::SETULE);
1496    }
1497  }
1498
1499  // Update successor info
1500  SwitchBB->addSuccessor(CB.TrueBB);
1501  SwitchBB->addSuccessor(CB.FalseBB);
1502
1503  // Set NextBlock to be the MBB immediately after the current one, if any.
1504  // This is used to avoid emitting unnecessary branches to the next block.
1505  MachineBasicBlock *NextBlock = 0;
1506  MachineFunction::iterator BBI = SwitchBB;
1507  if (++BBI != FuncInfo.MF->end())
1508    NextBlock = BBI;
1509
1510  // If the lhs block is the next block, invert the condition so that we can
1511  // fall through to the lhs instead of the rhs block.
1512  if (CB.TrueBB == NextBlock) {
1513    std::swap(CB.TrueBB, CB.FalseBB);
1514    SDValue True = DAG.getConstant(1, Cond.getValueType());
1515    Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
1516  }
1517
1518  SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
1519                               MVT::Other, getControlRoot(), Cond,
1520                               DAG.getBasicBlock(CB.TrueBB));
1521
1522  // Insert the false branch. Do this even if it's a fall through branch,
1523  // this makes it easier to do DAG optimizations which require inverting
1524  // the branch condition.
1525  BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
1526                       DAG.getBasicBlock(CB.FalseBB));
1527
1528  DAG.setRoot(BrCond);
1529}
1530
1531/// visitJumpTable - Emit JumpTable node in the current MBB
1532void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) {
1533  // Emit the code for the jump table
1534  assert(JT.Reg != -1U && "Should lower JT Header first!");
1535  EVT PTy = TLI.getPointerTy();
1536  SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(),
1537                                     JT.Reg, PTy);
1538  SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
1539  SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurDebugLoc(),
1540                                    MVT::Other, Index.getValue(1),
1541                                    Table, Index);
1542  DAG.setRoot(BrJumpTable);
1543}
1544
1545/// visitJumpTableHeader - This function emits necessary code to produce index
1546/// in the JumpTable from switch case.
1547void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT,
1548                                               JumpTableHeader &JTH,
1549                                               MachineBasicBlock *SwitchBB) {
1550  // Subtract the lowest switch case value from the value being switched on and
1551  // conditional branch to default mbb if the result is greater than the
1552  // difference between smallest and largest cases.
1553  SDValue SwitchOp = getValue(JTH.SValue);
1554  EVT VT = SwitchOp.getValueType();
1555  SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp,
1556                            DAG.getConstant(JTH.First, VT));
1557
1558  // The SDNode we just created, which holds the value being switched on minus
1559  // the smallest case value, needs to be copied to a virtual register so it
1560  // can be used as an index into the jump table in a subsequent basic block.
1561  // This value may be smaller or larger than the target's pointer type, and
1562  // therefore require extension or truncating.
1563  SwitchOp = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(), TLI.getPointerTy());
1564
1565  unsigned JumpTableReg = FuncInfo.CreateReg(TLI.getPointerTy());
1566  SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(),
1567                                    JumpTableReg, SwitchOp);
1568  JT.Reg = JumpTableReg;
1569
1570  // Emit the range check for the jump table, and branch to the default block
1571  // for the switch statement if the value being switched on exceeds the largest
1572  // case in the switch.
1573  SDValue CMP = DAG.getSetCC(getCurDebugLoc(),
1574                             TLI.getSetCCResultType(Sub.getValueType()), Sub,
1575                             DAG.getConstant(JTH.Last-JTH.First,VT),
1576                             ISD::SETUGT);
1577
1578  // Set NextBlock to be the MBB immediately after the current one, if any.
1579  // This is used to avoid emitting unnecessary branches to the next block.
1580  MachineBasicBlock *NextBlock = 0;
1581  MachineFunction::iterator BBI = SwitchBB;
1582
1583  if (++BBI != FuncInfo.MF->end())
1584    NextBlock = BBI;
1585
1586  SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1587                               MVT::Other, CopyTo, CMP,
1588                               DAG.getBasicBlock(JT.Default));
1589
1590  if (JT.MBB != NextBlock)
1591    BrCond = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrCond,
1592                         DAG.getBasicBlock(JT.MBB));
1593
1594  DAG.setRoot(BrCond);
1595}
1596
1597/// visitBitTestHeader - This function emits necessary code to produce value
1598/// suitable for "bit tests"
1599void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
1600                                             MachineBasicBlock *SwitchBB) {
1601  // Subtract the minimum value
1602  SDValue SwitchOp = getValue(B.SValue);
1603  EVT VT = SwitchOp.getValueType();
1604  SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp,
1605                            DAG.getConstant(B.First, VT));
1606
1607  // Check range
1608  SDValue RangeCmp = DAG.getSetCC(getCurDebugLoc(),
1609                                  TLI.getSetCCResultType(Sub.getValueType()),
1610                                  Sub, DAG.getConstant(B.Range, VT),
1611                                  ISD::SETUGT);
1612
1613  // Determine the type of the test operands.
1614  bool UsePtrType = false;
1615  if (!TLI.isTypeLegal(VT))
1616    UsePtrType = true;
1617  else {
1618    for (unsigned i = 0, e = B.Cases.size(); i != e; ++i)
1619      if ((uint64_t)((int64_t)B.Cases[i].Mask >> VT.getSizeInBits()) + 1 >= 2) {
1620        // Switch table case range are encoded into series of masks.
1621        // Just use pointer type, it's guaranteed to fit.
1622        UsePtrType = true;
1623        break;
1624      }
1625  }
1626  if (UsePtrType) {
1627    VT = TLI.getPointerTy();
1628    Sub = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(), VT);
1629  }
1630
1631  B.RegVT = VT;
1632  B.Reg = FuncInfo.CreateReg(VT);
1633  SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(),
1634                                    B.Reg, Sub);
1635
1636  // Set NextBlock to be the MBB immediately after the current one, if any.
1637  // This is used to avoid emitting unnecessary branches to the next block.
1638  MachineBasicBlock *NextBlock = 0;
1639  MachineFunction::iterator BBI = SwitchBB;
1640  if (++BBI != FuncInfo.MF->end())
1641    NextBlock = BBI;
1642
1643  MachineBasicBlock* MBB = B.Cases[0].ThisBB;
1644
1645  SwitchBB->addSuccessor(B.Default);
1646  SwitchBB->addSuccessor(MBB);
1647
1648  SDValue BrRange = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1649                                MVT::Other, CopyTo, RangeCmp,
1650                                DAG.getBasicBlock(B.Default));
1651
1652  if (MBB != NextBlock)
1653    BrRange = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, CopyTo,
1654                          DAG.getBasicBlock(MBB));
1655
1656  DAG.setRoot(BrRange);
1657}
1658
1659/// visitBitTestCase - this function produces one "bit test"
1660void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB,
1661                                           MachineBasicBlock* NextMBB,
1662                                           unsigned Reg,
1663                                           BitTestCase &B,
1664                                           MachineBasicBlock *SwitchBB) {
1665  EVT VT = BB.RegVT;
1666  SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(),
1667                                       Reg, VT);
1668  SDValue Cmp;
1669  if (CountPopulation_64(B.Mask) == 1) {
1670    // Testing for a single bit; just compare the shift count with what it
1671    // would need to be to shift a 1 bit in that position.
1672    Cmp = DAG.getSetCC(getCurDebugLoc(),
1673                       TLI.getSetCCResultType(VT),
1674                       ShiftOp,
1675                       DAG.getConstant(CountTrailingZeros_64(B.Mask), VT),
1676                       ISD::SETEQ);
1677  } else {
1678    // Make desired shift
1679    SDValue SwitchVal = DAG.getNode(ISD::SHL, getCurDebugLoc(), VT,
1680                                    DAG.getConstant(1, VT), ShiftOp);
1681
1682    // Emit bit tests and jumps
1683    SDValue AndOp = DAG.getNode(ISD::AND, getCurDebugLoc(),
1684                                VT, SwitchVal, DAG.getConstant(B.Mask, VT));
1685    Cmp = DAG.getSetCC(getCurDebugLoc(),
1686                       TLI.getSetCCResultType(VT),
1687                       AndOp, DAG.getConstant(0, VT),
1688                       ISD::SETNE);
1689  }
1690
1691  SwitchBB->addSuccessor(B.TargetBB);
1692  SwitchBB->addSuccessor(NextMBB);
1693
1694  SDValue BrAnd = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1695                              MVT::Other, getControlRoot(),
1696                              Cmp, DAG.getBasicBlock(B.TargetBB));
1697
1698  // Set NextBlock to be the MBB immediately after the current one, if any.
1699  // This is used to avoid emitting unnecessary branches to the next block.
1700  MachineBasicBlock *NextBlock = 0;
1701  MachineFunction::iterator BBI = SwitchBB;
1702  if (++BBI != FuncInfo.MF->end())
1703    NextBlock = BBI;
1704
1705  if (NextMBB != NextBlock)
1706    BrAnd = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrAnd,
1707                        DAG.getBasicBlock(NextMBB));
1708
1709  DAG.setRoot(BrAnd);
1710}
1711
1712void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
1713  MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
1714
1715  // Retrieve successors.
1716  MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
1717  MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)];
1718
1719  const Value *Callee(I.getCalledValue());
1720  if (isa<InlineAsm>(Callee))
1721    visitInlineAsm(&I);
1722  else
1723    LowerCallTo(&I, getValue(Callee), false, LandingPad);
1724
1725  // If the value of the invoke is used outside of its defining block, make it
1726  // available as a virtual register.
1727  CopyToExportRegsIfNeeded(&I);
1728
1729  // Update successor info
1730  InvokeMBB->addSuccessor(Return);
1731  InvokeMBB->addSuccessor(LandingPad);
1732
1733  // Drop into normal successor.
1734  DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
1735                          MVT::Other, getControlRoot(),
1736                          DAG.getBasicBlock(Return)));
1737}
1738
1739void SelectionDAGBuilder::visitUnwind(const UnwindInst &I) {
1740}
1741
1742/// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for
1743/// small case ranges).
1744bool SelectionDAGBuilder::handleSmallSwitchRange(CaseRec& CR,
1745                                                 CaseRecVector& WorkList,
1746                                                 const Value* SV,
1747                                                 MachineBasicBlock *Default,
1748                                                 MachineBasicBlock *SwitchBB) {
1749  Case& BackCase  = *(CR.Range.second-1);
1750
1751  // Size is the number of Cases represented by this range.
1752  size_t Size = CR.Range.second - CR.Range.first;
1753  if (Size > 3)
1754    return false;
1755
1756  // Get the MachineFunction which holds the current MBB.  This is used when
1757  // inserting any additional MBBs necessary to represent the switch.
1758  MachineFunction *CurMF = FuncInfo.MF;
1759
1760  // Figure out which block is immediately after the current one.
1761  MachineBasicBlock *NextBlock = 0;
1762  MachineFunction::iterator BBI = CR.CaseBB;
1763
1764  if (++BBI != FuncInfo.MF->end())
1765    NextBlock = BBI;
1766
1767  // If any two of the cases has the same destination, and if one value
1768  // is the same as the other, but has one bit unset that the other has set,
1769  // use bit manipulation to do two compares at once.  For example:
1770  // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
1771  // TODO: This could be extended to merge any 2 cases in switches with 3 cases.
1772  // TODO: Handle cases where CR.CaseBB != SwitchBB.
1773  if (Size == 2 && CR.CaseBB == SwitchBB) {
1774    Case &Small = *CR.Range.first;
1775    Case &Big = *(CR.Range.second-1);
1776
1777    if (Small.Low == Small.High && Big.Low == Big.High && Small.BB == Big.BB) {
1778      const APInt& SmallValue = cast<ConstantInt>(Small.Low)->getValue();
1779      const APInt& BigValue = cast<ConstantInt>(Big.Low)->getValue();
1780
1781      // Check that there is only one bit different.
1782      if (BigValue.countPopulation() == SmallValue.countPopulation() + 1 &&
1783          (SmallValue | BigValue) == BigValue) {
1784        // Isolate the common bit.
1785        APInt CommonBit = BigValue & ~SmallValue;
1786        assert((SmallValue | CommonBit) == BigValue &&
1787               CommonBit.countPopulation() == 1 && "Not a common bit?");
1788
1789        SDValue CondLHS = getValue(SV);
1790        EVT VT = CondLHS.getValueType();
1791        DebugLoc DL = getCurDebugLoc();
1792
1793        SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
1794                                 DAG.getConstant(CommonBit, VT));
1795        SDValue Cond = DAG.getSetCC(DL, MVT::i1,
1796                                    Or, DAG.getConstant(BigValue, VT),
1797                                    ISD::SETEQ);
1798
1799        // Update successor info.
1800        SwitchBB->addSuccessor(Small.BB);
1801        SwitchBB->addSuccessor(Default);
1802
1803        // Insert the true branch.
1804        SDValue BrCond = DAG.getNode(ISD::BRCOND, DL, MVT::Other,
1805                                     getControlRoot(), Cond,
1806                                     DAG.getBasicBlock(Small.BB));
1807
1808        // Insert the false branch.
1809        BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
1810                             DAG.getBasicBlock(Default));
1811
1812        DAG.setRoot(BrCond);
1813        return true;
1814      }
1815    }
1816  }
1817
1818  // Rearrange the case blocks so that the last one falls through if possible.
1819  if (NextBlock && Default != NextBlock && BackCase.BB != NextBlock) {
1820    // The last case block won't fall through into 'NextBlock' if we emit the
1821    // branches in this order.  See if rearranging a case value would help.
1822    for (CaseItr I = CR.Range.first, E = CR.Range.second-1; I != E; ++I) {
1823      if (I->BB == NextBlock) {
1824        std::swap(*I, BackCase);
1825        break;
1826      }
1827    }
1828  }
1829
1830  // Create a CaseBlock record representing a conditional branch to
1831  // the Case's target mbb if the value being switched on SV is equal
1832  // to C.
1833  MachineBasicBlock *CurBlock = CR.CaseBB;
1834  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) {
1835    MachineBasicBlock *FallThrough;
1836    if (I != E-1) {
1837      FallThrough = CurMF->CreateMachineBasicBlock(CurBlock->getBasicBlock());
1838      CurMF->insert(BBI, FallThrough);
1839
1840      // Put SV in a virtual register to make it available from the new blocks.
1841      ExportFromCurrentBlock(SV);
1842    } else {
1843      // If the last case doesn't match, go to the default block.
1844      FallThrough = Default;
1845    }
1846
1847    const Value *RHS, *LHS, *MHS;
1848    ISD::CondCode CC;
1849    if (I->High == I->Low) {
1850      // This is just small small case range :) containing exactly 1 case
1851      CC = ISD::SETEQ;
1852      LHS = SV; RHS = I->High; MHS = NULL;
1853    } else {
1854      CC = ISD::SETLE;
1855      LHS = I->Low; MHS = SV; RHS = I->High;
1856    }
1857    CaseBlock CB(CC, LHS, RHS, MHS, I->BB, FallThrough, CurBlock);
1858
1859    // If emitting the first comparison, just call visitSwitchCase to emit the
1860    // code into the current block.  Otherwise, push the CaseBlock onto the
1861    // vector to be later processed by SDISel, and insert the node's MBB
1862    // before the next MBB.
1863    if (CurBlock == SwitchBB)
1864      visitSwitchCase(CB, SwitchBB);
1865    else
1866      SwitchCases.push_back(CB);
1867
1868    CurBlock = FallThrough;
1869  }
1870
1871  return true;
1872}
1873
1874static inline bool areJTsAllowed(const TargetLowering &TLI) {
1875  return !DisableJumpTables &&
1876          (TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) ||
1877           TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other));
1878}
1879
1880static APInt ComputeRange(const APInt &First, const APInt &Last) {
1881  uint32_t BitWidth = std::max(Last.getBitWidth(), First.getBitWidth()) + 1;
1882  APInt LastExt = Last.sext(BitWidth), FirstExt = First.sext(BitWidth);
1883  return (LastExt - FirstExt + 1ULL);
1884}
1885
1886/// handleJTSwitchCase - Emit jumptable for current switch case range
1887bool SelectionDAGBuilder::handleJTSwitchCase(CaseRec& CR,
1888                                             CaseRecVector& WorkList,
1889                                             const Value* SV,
1890                                             MachineBasicBlock* Default,
1891                                             MachineBasicBlock *SwitchBB) {
1892  Case& FrontCase = *CR.Range.first;
1893  Case& BackCase  = *(CR.Range.second-1);
1894
1895  const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue();
1896  const APInt &Last  = cast<ConstantInt>(BackCase.High)->getValue();
1897
1898  APInt TSize(First.getBitWidth(), 0);
1899  for (CaseItr I = CR.Range.first, E = CR.Range.second;
1900       I!=E; ++I)
1901    TSize += I->size();
1902
1903  if (!areJTsAllowed(TLI) || TSize.ult(4))
1904    return false;
1905
1906  APInt Range = ComputeRange(First, Last);
1907  double Density = TSize.roundToDouble() / Range.roundToDouble();
1908  if (Density < 0.4)
1909    return false;
1910
1911  DEBUG(dbgs() << "Lowering jump table\n"
1912               << "First entry: " << First << ". Last entry: " << Last << '\n'
1913               << "Range: " << Range
1914               << ". Size: " << TSize << ". Density: " << Density << "\n\n");
1915
1916  // Get the MachineFunction which holds the current MBB.  This is used when
1917  // inserting any additional MBBs necessary to represent the switch.
1918  MachineFunction *CurMF = FuncInfo.MF;
1919
1920  // Figure out which block is immediately after the current one.
1921  MachineFunction::iterator BBI = CR.CaseBB;
1922  ++BBI;
1923
1924  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
1925
1926  // Create a new basic block to hold the code for loading the address
1927  // of the jump table, and jumping to it.  Update successor information;
1928  // we will either branch to the default case for the switch, or the jump
1929  // table.
1930  MachineBasicBlock *JumpTableBB = CurMF->CreateMachineBasicBlock(LLVMBB);
1931  CurMF->insert(BBI, JumpTableBB);
1932  CR.CaseBB->addSuccessor(Default);
1933  CR.CaseBB->addSuccessor(JumpTableBB);
1934
1935  // Build a vector of destination BBs, corresponding to each target
1936  // of the jump table. If the value of the jump table slot corresponds to
1937  // a case statement, push the case's BB onto the vector, otherwise, push
1938  // the default BB.
1939  std::vector<MachineBasicBlock*> DestBBs;
1940  APInt TEI = First;
1941  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) {
1942    const APInt &Low = cast<ConstantInt>(I->Low)->getValue();
1943    const APInt &High = cast<ConstantInt>(I->High)->getValue();
1944
1945    if (Low.sle(TEI) && TEI.sle(High)) {
1946      DestBBs.push_back(I->BB);
1947      if (TEI==High)
1948        ++I;
1949    } else {
1950      DestBBs.push_back(Default);
1951    }
1952  }
1953
1954  // Update successor info. Add one edge to each unique successor.
1955  BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs());
1956  for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(),
1957         E = DestBBs.end(); I != E; ++I) {
1958    if (!SuccsHandled[(*I)->getNumber()]) {
1959      SuccsHandled[(*I)->getNumber()] = true;
1960      JumpTableBB->addSuccessor(*I);
1961    }
1962  }
1963
1964  // Create a jump table index for this jump table.
1965  unsigned JTEncoding = TLI.getJumpTableEncoding();
1966  unsigned JTI = CurMF->getOrCreateJumpTableInfo(JTEncoding)
1967                       ->createJumpTableIndex(DestBBs);
1968
1969  // Set the jump table information so that we can codegen it as a second
1970  // MachineBasicBlock
1971  JumpTable JT(-1U, JTI, JumpTableBB, Default);
1972  JumpTableHeader JTH(First, Last, SV, CR.CaseBB, (CR.CaseBB == SwitchBB));
1973  if (CR.CaseBB == SwitchBB)
1974    visitJumpTableHeader(JT, JTH, SwitchBB);
1975
1976  JTCases.push_back(JumpTableBlock(JTH, JT));
1977
1978  return true;
1979}
1980
1981/// handleBTSplitSwitchCase - emit comparison and split binary search tree into
1982/// 2 subtrees.
1983bool SelectionDAGBuilder::handleBTSplitSwitchCase(CaseRec& CR,
1984                                                  CaseRecVector& WorkList,
1985                                                  const Value* SV,
1986                                                  MachineBasicBlock *Default,
1987                                                  MachineBasicBlock *SwitchBB) {
1988  // Get the MachineFunction which holds the current MBB.  This is used when
1989  // inserting any additional MBBs necessary to represent the switch.
1990  MachineFunction *CurMF = FuncInfo.MF;
1991
1992  // Figure out which block is immediately after the current one.
1993  MachineFunction::iterator BBI = CR.CaseBB;
1994  ++BBI;
1995
1996  Case& FrontCase = *CR.Range.first;
1997  Case& BackCase  = *(CR.Range.second-1);
1998  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
1999
2000  // Size is the number of Cases represented by this range.
2001  unsigned Size = CR.Range.second - CR.Range.first;
2002
2003  const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue();
2004  const APInt &Last  = cast<ConstantInt>(BackCase.High)->getValue();
2005  double FMetric = 0;
2006  CaseItr Pivot = CR.Range.first + Size/2;
2007
2008  // Select optimal pivot, maximizing sum density of LHS and RHS. This will
2009  // (heuristically) allow us to emit JumpTable's later.
2010  APInt TSize(First.getBitWidth(), 0);
2011  for (CaseItr I = CR.Range.first, E = CR.Range.second;
2012       I!=E; ++I)
2013    TSize += I->size();
2014
2015  APInt LSize = FrontCase.size();
2016  APInt RSize = TSize-LSize;
2017  DEBUG(dbgs() << "Selecting best pivot: \n"
2018               << "First: " << First << ", Last: " << Last <<'\n'
2019               << "LSize: " << LSize << ", RSize: " << RSize << '\n');
2020  for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second;
2021       J!=E; ++I, ++J) {
2022    const APInt &LEnd = cast<ConstantInt>(I->High)->getValue();
2023    const APInt &RBegin = cast<ConstantInt>(J->Low)->getValue();
2024    APInt Range = ComputeRange(LEnd, RBegin);
2025    assert((Range - 2ULL).isNonNegative() &&
2026           "Invalid case distance");
2027    double LDensity = (double)LSize.roundToDouble() /
2028                           (LEnd - First + 1ULL).roundToDouble();
2029    double RDensity = (double)RSize.roundToDouble() /
2030                           (Last - RBegin + 1ULL).roundToDouble();
2031    double Metric = Range.logBase2()*(LDensity+RDensity);
2032    // Should always split in some non-trivial place
2033    DEBUG(dbgs() <<"=>Step\n"
2034                 << "LEnd: " << LEnd << ", RBegin: " << RBegin << '\n'
2035                 << "LDensity: " << LDensity
2036                 << ", RDensity: " << RDensity << '\n'
2037                 << "Metric: " << Metric << '\n');
2038    if (FMetric < Metric) {
2039      Pivot = J;
2040      FMetric = Metric;
2041      DEBUG(dbgs() << "Current metric set to: " << FMetric << '\n');
2042    }
2043
2044    LSize += J->size();
2045    RSize -= J->size();
2046  }
2047  if (areJTsAllowed(TLI)) {
2048    // If our case is dense we *really* should handle it earlier!
2049    assert((FMetric > 0) && "Should handle dense range earlier!");
2050  } else {
2051    Pivot = CR.Range.first + Size/2;
2052  }
2053
2054  CaseRange LHSR(CR.Range.first, Pivot);
2055  CaseRange RHSR(Pivot, CR.Range.second);
2056  Constant *C = Pivot->Low;
2057  MachineBasicBlock *FalseBB = 0, *TrueBB = 0;
2058
2059  // We know that we branch to the LHS if the Value being switched on is
2060  // less than the Pivot value, C.  We use this to optimize our binary
2061  // tree a bit, by recognizing that if SV is greater than or equal to the
2062  // LHS's Case Value, and that Case Value is exactly one less than the
2063  // Pivot's Value, then we can branch directly to the LHS's Target,
2064  // rather than creating a leaf node for it.
2065  if ((LHSR.second - LHSR.first) == 1 &&
2066      LHSR.first->High == CR.GE &&
2067      cast<ConstantInt>(C)->getValue() ==
2068      (cast<ConstantInt>(CR.GE)->getValue() + 1LL)) {
2069    TrueBB = LHSR.first->BB;
2070  } else {
2071    TrueBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2072    CurMF->insert(BBI, TrueBB);
2073    WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR));
2074
2075    // Put SV in a virtual register to make it available from the new blocks.
2076    ExportFromCurrentBlock(SV);
2077  }
2078
2079  // Similar to the optimization above, if the Value being switched on is
2080  // known to be less than the Constant CR.LT, and the current Case Value
2081  // is CR.LT - 1, then we can branch directly to the target block for
2082  // the current Case Value, rather than emitting a RHS leaf node for it.
2083  if ((RHSR.second - RHSR.first) == 1 && CR.LT &&
2084      cast<ConstantInt>(RHSR.first->Low)->getValue() ==
2085      (cast<ConstantInt>(CR.LT)->getValue() - 1LL)) {
2086    FalseBB = RHSR.first->BB;
2087  } else {
2088    FalseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2089    CurMF->insert(BBI, FalseBB);
2090    WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR));
2091
2092    // Put SV in a virtual register to make it available from the new blocks.
2093    ExportFromCurrentBlock(SV);
2094  }
2095
2096  // Create a CaseBlock record representing a conditional branch to
2097  // the LHS node if the value being switched on SV is less than C.
2098  // Otherwise, branch to LHS.
2099  CaseBlock CB(ISD::SETLT, SV, C, NULL, TrueBB, FalseBB, CR.CaseBB);
2100
2101  if (CR.CaseBB == SwitchBB)
2102    visitSwitchCase(CB, SwitchBB);
2103  else
2104    SwitchCases.push_back(CB);
2105
2106  return true;
2107}
2108
2109/// handleBitTestsSwitchCase - if current case range has few destination and
2110/// range span less, than machine word bitwidth, encode case range into series
2111/// of masks and emit bit tests with these masks.
2112bool SelectionDAGBuilder::handleBitTestsSwitchCase(CaseRec& CR,
2113                                                   CaseRecVector& WorkList,
2114                                                   const Value* SV,
2115                                                   MachineBasicBlock* Default,
2116                                                   MachineBasicBlock *SwitchBB){
2117  EVT PTy = TLI.getPointerTy();
2118  unsigned IntPtrBits = PTy.getSizeInBits();
2119
2120  Case& FrontCase = *CR.Range.first;
2121  Case& BackCase  = *(CR.Range.second-1);
2122
2123  // Get the MachineFunction which holds the current MBB.  This is used when
2124  // inserting any additional MBBs necessary to represent the switch.
2125  MachineFunction *CurMF = FuncInfo.MF;
2126
2127  // If target does not have legal shift left, do not emit bit tests at all.
2128  if (!TLI.isOperationLegal(ISD::SHL, TLI.getPointerTy()))
2129    return false;
2130
2131  size_t numCmps = 0;
2132  for (CaseItr I = CR.Range.first, E = CR.Range.second;
2133       I!=E; ++I) {
2134    // Single case counts one, case range - two.
2135    numCmps += (I->Low == I->High ? 1 : 2);
2136  }
2137
2138  // Count unique destinations
2139  SmallSet<MachineBasicBlock*, 4> Dests;
2140  for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
2141    Dests.insert(I->BB);
2142    if (Dests.size() > 3)
2143      // Don't bother the code below, if there are too much unique destinations
2144      return false;
2145  }
2146  DEBUG(dbgs() << "Total number of unique destinations: "
2147        << Dests.size() << '\n'
2148        << "Total number of comparisons: " << numCmps << '\n');
2149
2150  // Compute span of values.
2151  const APInt& minValue = cast<ConstantInt>(FrontCase.Low)->getValue();
2152  const APInt& maxValue = cast<ConstantInt>(BackCase.High)->getValue();
2153  APInt cmpRange = maxValue - minValue;
2154
2155  DEBUG(dbgs() << "Compare range: " << cmpRange << '\n'
2156               << "Low bound: " << minValue << '\n'
2157               << "High bound: " << maxValue << '\n');
2158
2159  if (cmpRange.uge(IntPtrBits) ||
2160      (!(Dests.size() == 1 && numCmps >= 3) &&
2161       !(Dests.size() == 2 && numCmps >= 5) &&
2162       !(Dests.size() >= 3 && numCmps >= 6)))
2163    return false;
2164
2165  DEBUG(dbgs() << "Emitting bit tests\n");
2166  APInt lowBound = APInt::getNullValue(cmpRange.getBitWidth());
2167
2168  // Optimize the case where all the case values fit in a
2169  // word without having to subtract minValue. In this case,
2170  // we can optimize away the subtraction.
2171  if (minValue.isNonNegative() && maxValue.slt(IntPtrBits)) {
2172    cmpRange = maxValue;
2173  } else {
2174    lowBound = minValue;
2175  }
2176
2177  CaseBitsVector CasesBits;
2178  unsigned i, count = 0;
2179
2180  for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
2181    MachineBasicBlock* Dest = I->BB;
2182    for (i = 0; i < count; ++i)
2183      if (Dest == CasesBits[i].BB)
2184        break;
2185
2186    if (i == count) {
2187      assert((count < 3) && "Too much destinations to test!");
2188      CasesBits.push_back(CaseBits(0, Dest, 0));
2189      count++;
2190    }
2191
2192    const APInt& lowValue = cast<ConstantInt>(I->Low)->getValue();
2193    const APInt& highValue = cast<ConstantInt>(I->High)->getValue();
2194
2195    uint64_t lo = (lowValue - lowBound).getZExtValue();
2196    uint64_t hi = (highValue - lowBound).getZExtValue();
2197
2198    for (uint64_t j = lo; j <= hi; j++) {
2199      CasesBits[i].Mask |=  1ULL << j;
2200      CasesBits[i].Bits++;
2201    }
2202
2203  }
2204  std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp());
2205
2206  BitTestInfo BTC;
2207
2208  // Figure out which block is immediately after the current one.
2209  MachineFunction::iterator BBI = CR.CaseBB;
2210  ++BBI;
2211
2212  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2213
2214  DEBUG(dbgs() << "Cases:\n");
2215  for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) {
2216    DEBUG(dbgs() << "Mask: " << CasesBits[i].Mask
2217                 << ", Bits: " << CasesBits[i].Bits
2218                 << ", BB: " << CasesBits[i].BB << '\n');
2219
2220    MachineBasicBlock *CaseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2221    CurMF->insert(BBI, CaseBB);
2222    BTC.push_back(BitTestCase(CasesBits[i].Mask,
2223                              CaseBB,
2224                              CasesBits[i].BB));
2225
2226    // Put SV in a virtual register to make it available from the new blocks.
2227    ExportFromCurrentBlock(SV);
2228  }
2229
2230  BitTestBlock BTB(lowBound, cmpRange, SV,
2231                   -1U, MVT::Other, (CR.CaseBB == SwitchBB),
2232                   CR.CaseBB, Default, BTC);
2233
2234  if (CR.CaseBB == SwitchBB)
2235    visitBitTestHeader(BTB, SwitchBB);
2236
2237  BitTestCases.push_back(BTB);
2238
2239  return true;
2240}
2241
2242/// Clusterify - Transform simple list of Cases into list of CaseRange's
2243size_t SelectionDAGBuilder::Clusterify(CaseVector& Cases,
2244                                       const SwitchInst& SI) {
2245  size_t numCmps = 0;
2246
2247  // Start with "simple" cases
2248  for (size_t i = 1; i < SI.getNumSuccessors(); ++i) {
2249    MachineBasicBlock *SMBB = FuncInfo.MBBMap[SI.getSuccessor(i)];
2250    Cases.push_back(Case(SI.getSuccessorValue(i),
2251                         SI.getSuccessorValue(i),
2252                         SMBB));
2253  }
2254  std::sort(Cases.begin(), Cases.end(), CaseCmp());
2255
2256  // Merge case into clusters
2257  if (Cases.size() >= 2)
2258    // Must recompute end() each iteration because it may be
2259    // invalidated by erase if we hold on to it
2260    for (CaseItr I = Cases.begin(), J = llvm::next(Cases.begin());
2261         J != Cases.end(); ) {
2262      const APInt& nextValue = cast<ConstantInt>(J->Low)->getValue();
2263      const APInt& currentValue = cast<ConstantInt>(I->High)->getValue();
2264      MachineBasicBlock* nextBB = J->BB;
2265      MachineBasicBlock* currentBB = I->BB;
2266
2267      // If the two neighboring cases go to the same destination, merge them
2268      // into a single case.
2269      if ((nextValue - currentValue == 1) && (currentBB == nextBB)) {
2270        I->High = J->High;
2271        J = Cases.erase(J);
2272      } else {
2273        I = J++;
2274      }
2275    }
2276
2277  for (CaseItr I=Cases.begin(), E=Cases.end(); I!=E; ++I, ++numCmps) {
2278    if (I->Low != I->High)
2279      // A range counts double, since it requires two compares.
2280      ++numCmps;
2281  }
2282
2283  return numCmps;
2284}
2285
2286void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
2287                                           MachineBasicBlock *Last) {
2288  // Update JTCases.
2289  for (unsigned i = 0, e = JTCases.size(); i != e; ++i)
2290    if (JTCases[i].first.HeaderBB == First)
2291      JTCases[i].first.HeaderBB = Last;
2292
2293  // Update BitTestCases.
2294  for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i)
2295    if (BitTestCases[i].Parent == First)
2296      BitTestCases[i].Parent = Last;
2297}
2298
2299void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
2300  MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
2301
2302  // Figure out which block is immediately after the current one.
2303  MachineBasicBlock *NextBlock = 0;
2304  MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()];
2305
2306  // If there is only the default destination, branch to it if it is not the
2307  // next basic block.  Otherwise, just fall through.
2308  if (SI.getNumOperands() == 2) {
2309    // Update machine-CFG edges.
2310
2311    // If this is not a fall-through branch, emit the branch.
2312    SwitchMBB->addSuccessor(Default);
2313    if (Default != NextBlock)
2314      DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
2315                              MVT::Other, getControlRoot(),
2316                              DAG.getBasicBlock(Default)));
2317
2318    return;
2319  }
2320
2321  // If there are any non-default case statements, create a vector of Cases
2322  // representing each one, and sort the vector so that we can efficiently
2323  // create a binary search tree from them.
2324  CaseVector Cases;
2325  size_t numCmps = Clusterify(Cases, SI);
2326  DEBUG(dbgs() << "Clusterify finished. Total clusters: " << Cases.size()
2327               << ". Total compares: " << numCmps << '\n');
2328  numCmps = 0;
2329
2330  // Get the Value to be switched on and default basic blocks, which will be
2331  // inserted into CaseBlock records, representing basic blocks in the binary
2332  // search tree.
2333  const Value *SV = SI.getOperand(0);
2334
2335  // Push the initial CaseRec onto the worklist
2336  CaseRecVector WorkList;
2337  WorkList.push_back(CaseRec(SwitchMBB,0,0,
2338                             CaseRange(Cases.begin(),Cases.end())));
2339
2340  while (!WorkList.empty()) {
2341    // Grab a record representing a case range to process off the worklist
2342    CaseRec CR = WorkList.back();
2343    WorkList.pop_back();
2344
2345    if (handleBitTestsSwitchCase(CR, WorkList, SV, Default, SwitchMBB))
2346      continue;
2347
2348    // If the range has few cases (two or less) emit a series of specific
2349    // tests.
2350    if (handleSmallSwitchRange(CR, WorkList, SV, Default, SwitchMBB))
2351      continue;
2352
2353    // If the switch has more than 5 blocks, and at least 40% dense, and the
2354    // target supports indirect branches, then emit a jump table rather than
2355    // lowering the switch to a binary tree of conditional branches.
2356    if (handleJTSwitchCase(CR, WorkList, SV, Default, SwitchMBB))
2357      continue;
2358
2359    // Emit binary tree. We need to pick a pivot, and push left and right ranges
2360    // onto the worklist. Leafs are handled via handleSmallSwitchRange() call.
2361    handleBTSplitSwitchCase(CR, WorkList, SV, Default, SwitchMBB);
2362  }
2363}
2364
2365void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
2366  MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
2367
2368  // Update machine-CFG edges with unique successors.
2369  SmallVector<BasicBlock*, 32> succs;
2370  succs.reserve(I.getNumSuccessors());
2371  for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i)
2372    succs.push_back(I.getSuccessor(i));
2373  array_pod_sort(succs.begin(), succs.end());
2374  succs.erase(std::unique(succs.begin(), succs.end()), succs.end());
2375  for (unsigned i = 0, e = succs.size(); i != e; ++i)
2376    IndirectBrMBB->addSuccessor(FuncInfo.MBBMap[succs[i]]);
2377
2378  DAG.setRoot(DAG.getNode(ISD::BRIND, getCurDebugLoc(),
2379                          MVT::Other, getControlRoot(),
2380                          getValue(I.getAddress())));
2381}
2382
2383void SelectionDAGBuilder::visitFSub(const User &I) {
2384  // -0.0 - X --> fneg
2385  const Type *Ty = I.getType();
2386  if (isa<Constant>(I.getOperand(0)) &&
2387      I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) {
2388    SDValue Op2 = getValue(I.getOperand(1));
2389    setValue(&I, DAG.getNode(ISD::FNEG, getCurDebugLoc(),
2390                             Op2.getValueType(), Op2));
2391    return;
2392  }
2393
2394  visitBinary(I, ISD::FSUB);
2395}
2396
2397void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) {
2398  SDValue Op1 = getValue(I.getOperand(0));
2399  SDValue Op2 = getValue(I.getOperand(1));
2400  setValue(&I, DAG.getNode(OpCode, getCurDebugLoc(),
2401                           Op1.getValueType(), Op1, Op2));
2402}
2403
2404void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
2405  SDValue Op1 = getValue(I.getOperand(0));
2406  SDValue Op2 = getValue(I.getOperand(1));
2407
2408  MVT ShiftTy = TLI.getShiftAmountTy(Op2.getValueType());
2409
2410  // Coerce the shift amount to the right type if we can.
2411  if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
2412    unsigned ShiftSize = ShiftTy.getSizeInBits();
2413    unsigned Op2Size = Op2.getValueType().getSizeInBits();
2414    DebugLoc DL = getCurDebugLoc();
2415
2416    // If the operand is smaller than the shift count type, promote it.
2417    if (ShiftSize > Op2Size)
2418      Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2);
2419
2420    // If the operand is larger than the shift count type but the shift
2421    // count type has enough bits to represent any shift value, truncate
2422    // it now. This is a common case and it exposes the truncate to
2423    // optimization early.
2424    else if (ShiftSize >= Log2_32_Ceil(Op2.getValueType().getSizeInBits()))
2425      Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2);
2426    // Otherwise we'll need to temporarily settle for some other convenient
2427    // type.  Type legalization will make adjustments once the shiftee is split.
2428    else
2429      Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32);
2430  }
2431
2432  setValue(&I, DAG.getNode(Opcode, getCurDebugLoc(),
2433                           Op1.getValueType(), Op1, Op2));
2434}
2435
2436void SelectionDAGBuilder::visitICmp(const User &I) {
2437  ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
2438  if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
2439    predicate = IC->getPredicate();
2440  else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
2441    predicate = ICmpInst::Predicate(IC->getPredicate());
2442  SDValue Op1 = getValue(I.getOperand(0));
2443  SDValue Op2 = getValue(I.getOperand(1));
2444  ISD::CondCode Opcode = getICmpCondCode(predicate);
2445
2446  EVT DestVT = TLI.getValueType(I.getType());
2447  setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Opcode));
2448}
2449
2450void SelectionDAGBuilder::visitFCmp(const User &I) {
2451  FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
2452  if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
2453    predicate = FC->getPredicate();
2454  else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
2455    predicate = FCmpInst::Predicate(FC->getPredicate());
2456  SDValue Op1 = getValue(I.getOperand(0));
2457  SDValue Op2 = getValue(I.getOperand(1));
2458  ISD::CondCode Condition = getFCmpCondCode(predicate);
2459  EVT DestVT = TLI.getValueType(I.getType());
2460  setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Condition));
2461}
2462
2463void SelectionDAGBuilder::visitSelect(const User &I) {
2464  SmallVector<EVT, 4> ValueVTs;
2465  ComputeValueVTs(TLI, I.getType(), ValueVTs);
2466  unsigned NumValues = ValueVTs.size();
2467  if (NumValues == 0) return;
2468
2469  SmallVector<SDValue, 4> Values(NumValues);
2470  SDValue Cond     = getValue(I.getOperand(0));
2471  SDValue TrueVal  = getValue(I.getOperand(1));
2472  SDValue FalseVal = getValue(I.getOperand(2));
2473
2474  for (unsigned i = 0; i != NumValues; ++i)
2475    Values[i] = DAG.getNode(ISD::SELECT, getCurDebugLoc(),
2476                          TrueVal.getNode()->getValueType(TrueVal.getResNo()+i),
2477                            Cond,
2478                            SDValue(TrueVal.getNode(),
2479                                    TrueVal.getResNo() + i),
2480                            SDValue(FalseVal.getNode(),
2481                                    FalseVal.getResNo() + i));
2482
2483  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
2484                           DAG.getVTList(&ValueVTs[0], NumValues),
2485                           &Values[0], NumValues));
2486}
2487
2488void SelectionDAGBuilder::visitTrunc(const User &I) {
2489  // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
2490  SDValue N = getValue(I.getOperand(0));
2491  EVT DestVT = TLI.getValueType(I.getType());
2492  setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), DestVT, N));
2493}
2494
2495void SelectionDAGBuilder::visitZExt(const User &I) {
2496  // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2497  // ZExt also can't be a cast to bool for same reason. So, nothing much to do
2498  SDValue N = getValue(I.getOperand(0));
2499  EVT DestVT = TLI.getValueType(I.getType());
2500  setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), DestVT, N));
2501}
2502
2503void SelectionDAGBuilder::visitSExt(const User &I) {
2504  // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2505  // SExt also can't be a cast to bool for same reason. So, nothing much to do
2506  SDValue N = getValue(I.getOperand(0));
2507  EVT DestVT = TLI.getValueType(I.getType());
2508  setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurDebugLoc(), DestVT, N));
2509}
2510
2511void SelectionDAGBuilder::visitFPTrunc(const User &I) {
2512  // FPTrunc is never a no-op cast, no need to check
2513  SDValue N = getValue(I.getOperand(0));
2514  EVT DestVT = TLI.getValueType(I.getType());
2515  setValue(&I, DAG.getNode(ISD::FP_ROUND, getCurDebugLoc(),
2516                           DestVT, N, DAG.getIntPtrConstant(0)));
2517}
2518
2519void SelectionDAGBuilder::visitFPExt(const User &I){
2520  // FPTrunc is never a no-op cast, no need to check
2521  SDValue N = getValue(I.getOperand(0));
2522  EVT DestVT = TLI.getValueType(I.getType());
2523  setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurDebugLoc(), DestVT, N));
2524}
2525
2526void SelectionDAGBuilder::visitFPToUI(const User &I) {
2527  // FPToUI is never a no-op cast, no need to check
2528  SDValue N = getValue(I.getOperand(0));
2529  EVT DestVT = TLI.getValueType(I.getType());
2530  setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurDebugLoc(), DestVT, N));
2531}
2532
2533void SelectionDAGBuilder::visitFPToSI(const User &I) {
2534  // FPToSI is never a no-op cast, no need to check
2535  SDValue N = getValue(I.getOperand(0));
2536  EVT DestVT = TLI.getValueType(I.getType());
2537  setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurDebugLoc(), DestVT, N));
2538}
2539
2540void SelectionDAGBuilder::visitUIToFP(const User &I) {
2541  // UIToFP is never a no-op cast, no need to check
2542  SDValue N = getValue(I.getOperand(0));
2543  EVT DestVT = TLI.getValueType(I.getType());
2544  setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurDebugLoc(), DestVT, N));
2545}
2546
2547void SelectionDAGBuilder::visitSIToFP(const User &I){
2548  // SIToFP is never a no-op cast, no need to check
2549  SDValue N = getValue(I.getOperand(0));
2550  EVT DestVT = TLI.getValueType(I.getType());
2551  setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurDebugLoc(), DestVT, N));
2552}
2553
2554void SelectionDAGBuilder::visitPtrToInt(const User &I) {
2555  // What to do depends on the size of the integer and the size of the pointer.
2556  // We can either truncate, zero extend, or no-op, accordingly.
2557  SDValue N = getValue(I.getOperand(0));
2558  EVT DestVT = TLI.getValueType(I.getType());
2559  setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT));
2560}
2561
2562void SelectionDAGBuilder::visitIntToPtr(const User &I) {
2563  // What to do depends on the size of the integer and the size of the pointer.
2564  // We can either truncate, zero extend, or no-op, accordingly.
2565  SDValue N = getValue(I.getOperand(0));
2566  EVT DestVT = TLI.getValueType(I.getType());
2567  setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT));
2568}
2569
2570void SelectionDAGBuilder::visitBitCast(const User &I) {
2571  SDValue N = getValue(I.getOperand(0));
2572  EVT DestVT = TLI.getValueType(I.getType());
2573
2574  // BitCast assures us that source and destination are the same size so this is
2575  // either a BITCAST or a no-op.
2576  if (DestVT != N.getValueType())
2577    setValue(&I, DAG.getNode(ISD::BITCAST, getCurDebugLoc(),
2578                             DestVT, N)); // convert types.
2579  else
2580    setValue(&I, N);            // noop cast.
2581}
2582
2583void SelectionDAGBuilder::visitInsertElement(const User &I) {
2584  SDValue InVec = getValue(I.getOperand(0));
2585  SDValue InVal = getValue(I.getOperand(1));
2586  SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(),
2587                              TLI.getPointerTy(),
2588                              getValue(I.getOperand(2)));
2589  setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurDebugLoc(),
2590                           TLI.getValueType(I.getType()),
2591                           InVec, InVal, InIdx));
2592}
2593
2594void SelectionDAGBuilder::visitExtractElement(const User &I) {
2595  SDValue InVec = getValue(I.getOperand(0));
2596  SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(),
2597                              TLI.getPointerTy(),
2598                              getValue(I.getOperand(1)));
2599  setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
2600                           TLI.getValueType(I.getType()), InVec, InIdx));
2601}
2602
2603// Utility for visitShuffleVector - Returns true if the mask is mask starting
2604// from SIndx and increasing to the element length (undefs are allowed).
2605static bool SequentialMask(SmallVectorImpl<int> &Mask, unsigned SIndx) {
2606  unsigned MaskNumElts = Mask.size();
2607  for (unsigned i = 0; i != MaskNumElts; ++i)
2608    if ((Mask[i] >= 0) && (Mask[i] != (int)(i + SIndx)))
2609      return false;
2610  return true;
2611}
2612
2613void SelectionDAGBuilder::visitShuffleVector(const User &I) {
2614  SmallVector<int, 8> Mask;
2615  SDValue Src1 = getValue(I.getOperand(0));
2616  SDValue Src2 = getValue(I.getOperand(1));
2617
2618  // Convert the ConstantVector mask operand into an array of ints, with -1
2619  // representing undef values.
2620  SmallVector<Constant*, 8> MaskElts;
2621  cast<Constant>(I.getOperand(2))->getVectorElements(MaskElts);
2622  unsigned MaskNumElts = MaskElts.size();
2623  for (unsigned i = 0; i != MaskNumElts; ++i) {
2624    if (isa<UndefValue>(MaskElts[i]))
2625      Mask.push_back(-1);
2626    else
2627      Mask.push_back(cast<ConstantInt>(MaskElts[i])->getSExtValue());
2628  }
2629
2630  EVT VT = TLI.getValueType(I.getType());
2631  EVT SrcVT = Src1.getValueType();
2632  unsigned SrcNumElts = SrcVT.getVectorNumElements();
2633
2634  if (SrcNumElts == MaskNumElts) {
2635    setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2636                                      &Mask[0]));
2637    return;
2638  }
2639
2640  // Normalize the shuffle vector since mask and vector length don't match.
2641  if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) {
2642    // Mask is longer than the source vectors and is a multiple of the source
2643    // vectors.  We can use concatenate vector to make the mask and vectors
2644    // lengths match.
2645    if (SrcNumElts*2 == MaskNumElts && SequentialMask(Mask, 0)) {
2646      // The shuffle is concatenating two vectors together.
2647      setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurDebugLoc(),
2648                               VT, Src1, Src2));
2649      return;
2650    }
2651
2652    // Pad both vectors with undefs to make them the same length as the mask.
2653    unsigned NumConcat = MaskNumElts / SrcNumElts;
2654    bool Src1U = Src1.getOpcode() == ISD::UNDEF;
2655    bool Src2U = Src2.getOpcode() == ISD::UNDEF;
2656    SDValue UndefVal = DAG.getUNDEF(SrcVT);
2657
2658    SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
2659    SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
2660    MOps1[0] = Src1;
2661    MOps2[0] = Src2;
2662
2663    Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
2664                                                  getCurDebugLoc(), VT,
2665                                                  &MOps1[0], NumConcat);
2666    Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
2667                                                  getCurDebugLoc(), VT,
2668                                                  &MOps2[0], NumConcat);
2669
2670    // Readjust mask for new input vector length.
2671    SmallVector<int, 8> MappedOps;
2672    for (unsigned i = 0; i != MaskNumElts; ++i) {
2673      int Idx = Mask[i];
2674      if (Idx < (int)SrcNumElts)
2675        MappedOps.push_back(Idx);
2676      else
2677        MappedOps.push_back(Idx + MaskNumElts - SrcNumElts);
2678    }
2679
2680    setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2681                                      &MappedOps[0]));
2682    return;
2683  }
2684
2685  if (SrcNumElts > MaskNumElts) {
2686    // Analyze the access pattern of the vector to see if we can extract
2687    // two subvectors and do the shuffle. The analysis is done by calculating
2688    // the range of elements the mask access on both vectors.
2689    int MinRange[2] = { SrcNumElts+1, SrcNumElts+1};
2690    int MaxRange[2] = {-1, -1};
2691
2692    for (unsigned i = 0; i != MaskNumElts; ++i) {
2693      int Idx = Mask[i];
2694      int Input = 0;
2695      if (Idx < 0)
2696        continue;
2697
2698      if (Idx >= (int)SrcNumElts) {
2699        Input = 1;
2700        Idx -= SrcNumElts;
2701      }
2702      if (Idx > MaxRange[Input])
2703        MaxRange[Input] = Idx;
2704      if (Idx < MinRange[Input])
2705        MinRange[Input] = Idx;
2706    }
2707
2708    // Check if the access is smaller than the vector size and can we find
2709    // a reasonable extract index.
2710    int RangeUse[2] = { 2, 2 };  // 0 = Unused, 1 = Extract, 2 = Can not
2711                                 // Extract.
2712    int StartIdx[2];  // StartIdx to extract from
2713    for (int Input=0; Input < 2; ++Input) {
2714      if (MinRange[Input] == (int)(SrcNumElts+1) && MaxRange[Input] == -1) {
2715        RangeUse[Input] = 0; // Unused
2716        StartIdx[Input] = 0;
2717      } else if (MaxRange[Input] - MinRange[Input] < (int)MaskNumElts) {
2718        // Fits within range but we should see if we can find a good
2719        // start index that is a multiple of the mask length.
2720        if (MaxRange[Input] < (int)MaskNumElts) {
2721          RangeUse[Input] = 1; // Extract from beginning of the vector
2722          StartIdx[Input] = 0;
2723        } else {
2724          StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts;
2725          if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts &&
2726              StartIdx[Input] + MaskNumElts <= SrcNumElts)
2727            RangeUse[Input] = 1; // Extract from a multiple of the mask length.
2728        }
2729      }
2730    }
2731
2732    if (RangeUse[0] == 0 && RangeUse[1] == 0) {
2733      setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
2734      return;
2735    }
2736    else if (RangeUse[0] < 2 && RangeUse[1] < 2) {
2737      // Extract appropriate subvector and generate a vector shuffle
2738      for (int Input=0; Input < 2; ++Input) {
2739        SDValue &Src = Input == 0 ? Src1 : Src2;
2740        if (RangeUse[Input] == 0)
2741          Src = DAG.getUNDEF(VT);
2742        else
2743          Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, getCurDebugLoc(), VT,
2744                            Src, DAG.getIntPtrConstant(StartIdx[Input]));
2745      }
2746
2747      // Calculate new mask.
2748      SmallVector<int, 8> MappedOps;
2749      for (unsigned i = 0; i != MaskNumElts; ++i) {
2750        int Idx = Mask[i];
2751        if (Idx < 0)
2752          MappedOps.push_back(Idx);
2753        else if (Idx < (int)SrcNumElts)
2754          MappedOps.push_back(Idx - StartIdx[0]);
2755        else
2756          MappedOps.push_back(Idx - SrcNumElts - StartIdx[1] + MaskNumElts);
2757      }
2758
2759      setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2760                                        &MappedOps[0]));
2761      return;
2762    }
2763  }
2764
2765  // We can't use either concat vectors or extract subvectors so fall back to
2766  // replacing the shuffle with extract and build vector.
2767  // to insert and build vector.
2768  EVT EltVT = VT.getVectorElementType();
2769  EVT PtrVT = TLI.getPointerTy();
2770  SmallVector<SDValue,8> Ops;
2771  for (unsigned i = 0; i != MaskNumElts; ++i) {
2772    if (Mask[i] < 0) {
2773      Ops.push_back(DAG.getUNDEF(EltVT));
2774    } else {
2775      int Idx = Mask[i];
2776      SDValue Res;
2777
2778      if (Idx < (int)SrcNumElts)
2779        Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
2780                          EltVT, Src1, DAG.getConstant(Idx, PtrVT));
2781      else
2782        Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
2783                          EltVT, Src2,
2784                          DAG.getConstant(Idx - SrcNumElts, PtrVT));
2785
2786      Ops.push_back(Res);
2787    }
2788  }
2789
2790  setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(),
2791                           VT, &Ops[0], Ops.size()));
2792}
2793
2794void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) {
2795  const Value *Op0 = I.getOperand(0);
2796  const Value *Op1 = I.getOperand(1);
2797  const Type *AggTy = I.getType();
2798  const Type *ValTy = Op1->getType();
2799  bool IntoUndef = isa<UndefValue>(Op0);
2800  bool FromUndef = isa<UndefValue>(Op1);
2801
2802  unsigned LinearIndex = ComputeLinearIndex(AggTy, I.idx_begin(), I.idx_end());
2803
2804  SmallVector<EVT, 4> AggValueVTs;
2805  ComputeValueVTs(TLI, AggTy, AggValueVTs);
2806  SmallVector<EVT, 4> ValValueVTs;
2807  ComputeValueVTs(TLI, ValTy, ValValueVTs);
2808
2809  unsigned NumAggValues = AggValueVTs.size();
2810  unsigned NumValValues = ValValueVTs.size();
2811  SmallVector<SDValue, 4> Values(NumAggValues);
2812
2813  SDValue Agg = getValue(Op0);
2814  SDValue Val = getValue(Op1);
2815  unsigned i = 0;
2816  // Copy the beginning value(s) from the original aggregate.
2817  for (; i != LinearIndex; ++i)
2818    Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
2819                SDValue(Agg.getNode(), Agg.getResNo() + i);
2820  // Copy values from the inserted value(s).
2821  for (; i != LinearIndex + NumValValues; ++i)
2822    Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
2823                SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
2824  // Copy remaining value(s) from the original aggregate.
2825  for (; i != NumAggValues; ++i)
2826    Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
2827                SDValue(Agg.getNode(), Agg.getResNo() + i);
2828
2829  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
2830                           DAG.getVTList(&AggValueVTs[0], NumAggValues),
2831                           &Values[0], NumAggValues));
2832}
2833
2834void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) {
2835  const Value *Op0 = I.getOperand(0);
2836  const Type *AggTy = Op0->getType();
2837  const Type *ValTy = I.getType();
2838  bool OutOfUndef = isa<UndefValue>(Op0);
2839
2840  unsigned LinearIndex = ComputeLinearIndex(AggTy, I.idx_begin(), I.idx_end());
2841
2842  SmallVector<EVT, 4> ValValueVTs;
2843  ComputeValueVTs(TLI, ValTy, ValValueVTs);
2844
2845  unsigned NumValValues = ValValueVTs.size();
2846  SmallVector<SDValue, 4> Values(NumValValues);
2847
2848  SDValue Agg = getValue(Op0);
2849  // Copy out the selected value(s).
2850  for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
2851    Values[i - LinearIndex] =
2852      OutOfUndef ?
2853        DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
2854        SDValue(Agg.getNode(), Agg.getResNo() + i);
2855
2856  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
2857                           DAG.getVTList(&ValValueVTs[0], NumValValues),
2858                           &Values[0], NumValValues));
2859}
2860
2861void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
2862  SDValue N = getValue(I.getOperand(0));
2863  const Type *Ty = I.getOperand(0)->getType();
2864
2865  for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end();
2866       OI != E; ++OI) {
2867    const Value *Idx = *OI;
2868    if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
2869      unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
2870      if (Field) {
2871        // N = N + Offset
2872        uint64_t Offset = TD->getStructLayout(StTy)->getElementOffset(Field);
2873        N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N,
2874                        DAG.getIntPtrConstant(Offset));
2875      }
2876
2877      Ty = StTy->getElementType(Field);
2878    } else {
2879      Ty = cast<SequentialType>(Ty)->getElementType();
2880
2881      // If this is a constant subscript, handle it quickly.
2882      if (const ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
2883        if (CI->isZero()) continue;
2884        uint64_t Offs =
2885            TD->getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue();
2886        SDValue OffsVal;
2887        EVT PTy = TLI.getPointerTy();
2888        unsigned PtrBits = PTy.getSizeInBits();
2889        if (PtrBits < 64)
2890          OffsVal = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(),
2891                                TLI.getPointerTy(),
2892                                DAG.getConstant(Offs, MVT::i64));
2893        else
2894          OffsVal = DAG.getIntPtrConstant(Offs);
2895
2896        N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N,
2897                        OffsVal);
2898        continue;
2899      }
2900
2901      // N = N + Idx * ElementSize;
2902      APInt ElementSize = APInt(TLI.getPointerTy().getSizeInBits(),
2903                                TD->getTypeAllocSize(Ty));
2904      SDValue IdxN = getValue(Idx);
2905
2906      // If the index is smaller or larger than intptr_t, truncate or extend
2907      // it.
2908      IdxN = DAG.getSExtOrTrunc(IdxN, getCurDebugLoc(), N.getValueType());
2909
2910      // If this is a multiply by a power of two, turn it into a shl
2911      // immediately.  This is a very common case.
2912      if (ElementSize != 1) {
2913        if (ElementSize.isPowerOf2()) {
2914          unsigned Amt = ElementSize.logBase2();
2915          IdxN = DAG.getNode(ISD::SHL, getCurDebugLoc(),
2916                             N.getValueType(), IdxN,
2917                             DAG.getConstant(Amt, TLI.getPointerTy()));
2918        } else {
2919          SDValue Scale = DAG.getConstant(ElementSize, TLI.getPointerTy());
2920          IdxN = DAG.getNode(ISD::MUL, getCurDebugLoc(),
2921                             N.getValueType(), IdxN, Scale);
2922        }
2923      }
2924
2925      N = DAG.getNode(ISD::ADD, getCurDebugLoc(),
2926                      N.getValueType(), N, IdxN);
2927    }
2928  }
2929
2930  setValue(&I, N);
2931}
2932
2933void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
2934  // If this is a fixed sized alloca in the entry block of the function,
2935  // allocate it statically on the stack.
2936  if (FuncInfo.StaticAllocaMap.count(&I))
2937    return;   // getValue will auto-populate this.
2938
2939  const Type *Ty = I.getAllocatedType();
2940  uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty);
2941  unsigned Align =
2942    std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty),
2943             I.getAlignment());
2944
2945  SDValue AllocSize = getValue(I.getArraySize());
2946
2947  EVT IntPtr = TLI.getPointerTy();
2948  if (AllocSize.getValueType() != IntPtr)
2949    AllocSize = DAG.getZExtOrTrunc(AllocSize, getCurDebugLoc(), IntPtr);
2950
2951  AllocSize = DAG.getNode(ISD::MUL, getCurDebugLoc(), IntPtr,
2952                          AllocSize,
2953                          DAG.getConstant(TySize, IntPtr));
2954
2955  // Handle alignment.  If the requested alignment is less than or equal to
2956  // the stack alignment, ignore it.  If the size is greater than or equal to
2957  // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
2958  unsigned StackAlign = TM.getFrameLowering()->getStackAlignment();
2959  if (Align <= StackAlign)
2960    Align = 0;
2961
2962  // Round the size of the allocation up to the stack alignment size
2963  // by add SA-1 to the size.
2964  AllocSize = DAG.getNode(ISD::ADD, getCurDebugLoc(),
2965                          AllocSize.getValueType(), AllocSize,
2966                          DAG.getIntPtrConstant(StackAlign-1));
2967
2968  // Mask out the low bits for alignment purposes.
2969  AllocSize = DAG.getNode(ISD::AND, getCurDebugLoc(),
2970                          AllocSize.getValueType(), AllocSize,
2971                          DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1)));
2972
2973  SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) };
2974  SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
2975  SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, getCurDebugLoc(),
2976                            VTs, Ops, 3);
2977  setValue(&I, DSA);
2978  DAG.setRoot(DSA.getValue(1));
2979
2980  // Inform the Frame Information that we have just allocated a variable-sized
2981  // object.
2982  FuncInfo.MF->getFrameInfo()->CreateVariableSizedObject(Align ? Align : 1);
2983}
2984
2985void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
2986  const Value *SV = I.getOperand(0);
2987  SDValue Ptr = getValue(SV);
2988
2989  const Type *Ty = I.getType();
2990
2991  bool isVolatile = I.isVolatile();
2992  bool isNonTemporal = I.getMetadata("nontemporal") != 0;
2993  unsigned Alignment = I.getAlignment();
2994  const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa);
2995
2996  SmallVector<EVT, 4> ValueVTs;
2997  SmallVector<uint64_t, 4> Offsets;
2998  ComputeValueVTs(TLI, Ty, ValueVTs, &Offsets);
2999  unsigned NumValues = ValueVTs.size();
3000  if (NumValues == 0)
3001    return;
3002
3003  SDValue Root;
3004  bool ConstantMemory = false;
3005  if (I.isVolatile() || NumValues > MaxParallelChains)
3006    // Serialize volatile loads with other side effects.
3007    Root = getRoot();
3008  else if (AA->pointsToConstantMemory(
3009             AliasAnalysis::Location(SV, AA->getTypeStoreSize(Ty), TBAAInfo))) {
3010    // Do not serialize (non-volatile) loads of constant memory with anything.
3011    Root = DAG.getEntryNode();
3012    ConstantMemory = true;
3013  } else {
3014    // Do not serialize non-volatile loads against each other.
3015    Root = DAG.getRoot();
3016  }
3017
3018  SmallVector<SDValue, 4> Values(NumValues);
3019  SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains),
3020                                          NumValues));
3021  EVT PtrVT = Ptr.getValueType();
3022  unsigned ChainI = 0;
3023  for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3024    // Serializing loads here may result in excessive register pressure, and
3025    // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
3026    // could recover a bit by hoisting nodes upward in the chain by recognizing
3027    // they are side-effect free or do not alias. The optimizer should really
3028    // avoid this case by converting large object/array copies to llvm.memcpy
3029    // (MaxParallelChains should always remain as failsafe).
3030    if (ChainI == MaxParallelChains) {
3031      assert(PendingLoads.empty() && "PendingLoads must be serialized first");
3032      SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
3033                                  MVT::Other, &Chains[0], ChainI);
3034      Root = Chain;
3035      ChainI = 0;
3036    }
3037    SDValue A = DAG.getNode(ISD::ADD, getCurDebugLoc(),
3038                            PtrVT, Ptr,
3039                            DAG.getConstant(Offsets[i], PtrVT));
3040    SDValue L = DAG.getLoad(ValueVTs[i], getCurDebugLoc(), Root,
3041                            A, MachinePointerInfo(SV, Offsets[i]), isVolatile,
3042                            isNonTemporal, Alignment, TBAAInfo);
3043
3044    Values[i] = L;
3045    Chains[ChainI] = L.getValue(1);
3046  }
3047
3048  if (!ConstantMemory) {
3049    SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
3050                                MVT::Other, &Chains[0], ChainI);
3051    if (isVolatile)
3052      DAG.setRoot(Chain);
3053    else
3054      PendingLoads.push_back(Chain);
3055  }
3056
3057  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
3058                           DAG.getVTList(&ValueVTs[0], NumValues),
3059                           &Values[0], NumValues));
3060}
3061
3062void SelectionDAGBuilder::visitStore(const StoreInst &I) {
3063  const Value *SrcV = I.getOperand(0);
3064  const Value *PtrV = I.getOperand(1);
3065
3066  SmallVector<EVT, 4> ValueVTs;
3067  SmallVector<uint64_t, 4> Offsets;
3068  ComputeValueVTs(TLI, SrcV->getType(), ValueVTs, &Offsets);
3069  unsigned NumValues = ValueVTs.size();
3070  if (NumValues == 0)
3071    return;
3072
3073  // Get the lowered operands. Note that we do this after
3074  // checking if NumResults is zero, because with zero results
3075  // the operands won't have values in the map.
3076  SDValue Src = getValue(SrcV);
3077  SDValue Ptr = getValue(PtrV);
3078
3079  SDValue Root = getRoot();
3080  SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains),
3081                                          NumValues));
3082  EVT PtrVT = Ptr.getValueType();
3083  bool isVolatile = I.isVolatile();
3084  bool isNonTemporal = I.getMetadata("nontemporal") != 0;
3085  unsigned Alignment = I.getAlignment();
3086  const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa);
3087
3088  unsigned ChainI = 0;
3089  for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3090    // See visitLoad comments.
3091    if (ChainI == MaxParallelChains) {
3092      SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
3093                                  MVT::Other, &Chains[0], ChainI);
3094      Root = Chain;
3095      ChainI = 0;
3096    }
3097    SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT, Ptr,
3098                              DAG.getConstant(Offsets[i], PtrVT));
3099    SDValue St = DAG.getStore(Root, getCurDebugLoc(),
3100                              SDValue(Src.getNode(), Src.getResNo() + i),
3101                              Add, MachinePointerInfo(PtrV, Offsets[i]),
3102                              isVolatile, isNonTemporal, Alignment, TBAAInfo);
3103    Chains[ChainI] = St;
3104  }
3105
3106  SDValue StoreNode = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
3107                                  MVT::Other, &Chains[0], ChainI);
3108  ++SDNodeOrder;
3109  AssignOrderingToNode(StoreNode.getNode());
3110  DAG.setRoot(StoreNode);
3111}
3112
3113/// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
3114/// node.
3115void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
3116                                               unsigned Intrinsic) {
3117  bool HasChain = !I.doesNotAccessMemory();
3118  bool OnlyLoad = HasChain && I.onlyReadsMemory();
3119
3120  // Build the operand list.
3121  SmallVector<SDValue, 8> Ops;
3122  if (HasChain) {  // If this intrinsic has side-effects, chainify it.
3123    if (OnlyLoad) {
3124      // We don't need to serialize loads against other loads.
3125      Ops.push_back(DAG.getRoot());
3126    } else {
3127      Ops.push_back(getRoot());
3128    }
3129  }
3130
3131  // Info is set by getTgtMemInstrinsic
3132  TargetLowering::IntrinsicInfo Info;
3133  bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic);
3134
3135  // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
3136  if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
3137      Info.opc == ISD::INTRINSIC_W_CHAIN)
3138    Ops.push_back(DAG.getConstant(Intrinsic, TLI.getPointerTy()));
3139
3140  // Add all operands of the call to the operand list.
3141  for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
3142    SDValue Op = getValue(I.getArgOperand(i));
3143    assert(TLI.isTypeLegal(Op.getValueType()) &&
3144           "Intrinsic uses a non-legal type?");
3145    Ops.push_back(Op);
3146  }
3147
3148  SmallVector<EVT, 4> ValueVTs;
3149  ComputeValueVTs(TLI, I.getType(), ValueVTs);
3150#ifndef NDEBUG
3151  for (unsigned Val = 0, E = ValueVTs.size(); Val != E; ++Val) {
3152    assert(TLI.isTypeLegal(ValueVTs[Val]) &&
3153           "Intrinsic uses a non-legal type?");
3154  }
3155#endif // NDEBUG
3156
3157  if (HasChain)
3158    ValueVTs.push_back(MVT::Other);
3159
3160  SDVTList VTs = DAG.getVTList(ValueVTs.data(), ValueVTs.size());
3161
3162  // Create the node.
3163  SDValue Result;
3164  if (IsTgtIntrinsic) {
3165    // This is target intrinsic that touches memory
3166    Result = DAG.getMemIntrinsicNode(Info.opc, getCurDebugLoc(),
3167                                     VTs, &Ops[0], Ops.size(),
3168                                     Info.memVT,
3169                                   MachinePointerInfo(Info.ptrVal, Info.offset),
3170                                     Info.align, Info.vol,
3171                                     Info.readMem, Info.writeMem);
3172  } else if (!HasChain) {
3173    Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurDebugLoc(),
3174                         VTs, &Ops[0], Ops.size());
3175  } else if (!I.getType()->isVoidTy()) {
3176    Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurDebugLoc(),
3177                         VTs, &Ops[0], Ops.size());
3178  } else {
3179    Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurDebugLoc(),
3180                         VTs, &Ops[0], Ops.size());
3181  }
3182
3183  if (HasChain) {
3184    SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
3185    if (OnlyLoad)
3186      PendingLoads.push_back(Chain);
3187    else
3188      DAG.setRoot(Chain);
3189  }
3190
3191  if (!I.getType()->isVoidTy()) {
3192    if (const VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
3193      EVT VT = TLI.getValueType(PTy);
3194      Result = DAG.getNode(ISD::BITCAST, getCurDebugLoc(), VT, Result);
3195    }
3196
3197    setValue(&I, Result);
3198  }
3199}
3200
3201/// GetSignificand - Get the significand and build it into a floating-point
3202/// number with exponent of 1:
3203///
3204///   Op = (Op & 0x007fffff) | 0x3f800000;
3205///
3206/// where Op is the hexidecimal representation of floating point value.
3207static SDValue
3208GetSignificand(SelectionDAG &DAG, SDValue Op, DebugLoc dl) {
3209  SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
3210                           DAG.getConstant(0x007fffff, MVT::i32));
3211  SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
3212                           DAG.getConstant(0x3f800000, MVT::i32));
3213  return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
3214}
3215
3216/// GetExponent - Get the exponent:
3217///
3218///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
3219///
3220/// where Op is the hexidecimal representation of floating point value.
3221static SDValue
3222GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI,
3223            DebugLoc dl) {
3224  SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
3225                           DAG.getConstant(0x7f800000, MVT::i32));
3226  SDValue t1 = DAG.getNode(ISD::SRL, dl, MVT::i32, t0,
3227                           DAG.getConstant(23, TLI.getPointerTy()));
3228  SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
3229                           DAG.getConstant(127, MVT::i32));
3230  return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
3231}
3232
3233/// getF32Constant - Get 32-bit floating point constant.
3234static SDValue
3235getF32Constant(SelectionDAG &DAG, unsigned Flt) {
3236  return DAG.getConstantFP(APFloat(APInt(32, Flt)), MVT::f32);
3237}
3238
3239/// Inlined utility function to implement binary input atomic intrinsics for
3240/// visitIntrinsicCall: I is a call instruction
3241///                     Op is the associated NodeType for I
3242const char *
3243SelectionDAGBuilder::implVisitBinaryAtomic(const CallInst& I,
3244                                           ISD::NodeType Op) {
3245  SDValue Root = getRoot();
3246  SDValue L =
3247    DAG.getAtomic(Op, getCurDebugLoc(),
3248                  getValue(I.getArgOperand(1)).getValueType().getSimpleVT(),
3249                  Root,
3250                  getValue(I.getArgOperand(0)),
3251                  getValue(I.getArgOperand(1)),
3252                  I.getArgOperand(0));
3253  setValue(&I, L);
3254  DAG.setRoot(L.getValue(1));
3255  return 0;
3256}
3257
3258// implVisitAluOverflow - Lower arithmetic overflow instrinsics.
3259const char *
3260SelectionDAGBuilder::implVisitAluOverflow(const CallInst &I, ISD::NodeType Op) {
3261  SDValue Op1 = getValue(I.getArgOperand(0));
3262  SDValue Op2 = getValue(I.getArgOperand(1));
3263
3264  SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1);
3265  setValue(&I, DAG.getNode(Op, getCurDebugLoc(), VTs, Op1, Op2));
3266  return 0;
3267}
3268
3269/// visitExp - Lower an exp intrinsic. Handles the special sequences for
3270/// limited-precision mode.
3271void
3272SelectionDAGBuilder::visitExp(const CallInst &I) {
3273  SDValue result;
3274  DebugLoc dl = getCurDebugLoc();
3275
3276  if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3277      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3278    SDValue Op = getValue(I.getArgOperand(0));
3279
3280    // Put the exponent in the right bit position for later addition to the
3281    // final result:
3282    //
3283    //   #define LOG2OFe 1.4426950f
3284    //   IntegerPartOfX = ((int32_t)(X * LOG2OFe));
3285    SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
3286                             getF32Constant(DAG, 0x3fb8aa3b));
3287    SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
3288
3289    //   FractionalPartOfX = (X * LOG2OFe) - (float)IntegerPartOfX;
3290    SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
3291    SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
3292
3293    //   IntegerPartOfX <<= 23;
3294    IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
3295                                 DAG.getConstant(23, TLI.getPointerTy()));
3296
3297    if (LimitFloatPrecision <= 6) {
3298      // For floating-point precision of 6:
3299      //
3300      //   TwoToFractionalPartOfX =
3301      //     0.997535578f +
3302      //       (0.735607626f + 0.252464424f * x) * x;
3303      //
3304      // error 0.0144103317, which is 6 bits
3305      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3306                               getF32Constant(DAG, 0x3e814304));
3307      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3308                               getF32Constant(DAG, 0x3f3c50c8));
3309      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3310      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3311                               getF32Constant(DAG, 0x3f7f5e7e));
3312      SDValue TwoToFracPartOfX = DAG.getNode(ISD::BITCAST, dl,MVT::i32, t5);
3313
3314      // Add the exponent into the result in integer domain.
3315      SDValue t6 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3316                               TwoToFracPartOfX, IntegerPartOfX);
3317
3318      result = DAG.getNode(ISD::BITCAST, dl, MVT::f32, t6);
3319    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3320      // For floating-point precision of 12:
3321      //
3322      //   TwoToFractionalPartOfX =
3323      //     0.999892986f +
3324      //       (0.696457318f +
3325      //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
3326      //
3327      // 0.000107046256 error, which is 13 to 14 bits
3328      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3329                               getF32Constant(DAG, 0x3da235e3));
3330      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3331                               getF32Constant(DAG, 0x3e65b8f3));
3332      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3333      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3334                               getF32Constant(DAG, 0x3f324b07));
3335      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3336      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3337                               getF32Constant(DAG, 0x3f7ff8fd));
3338      SDValue TwoToFracPartOfX = DAG.getNode(ISD::BITCAST, dl,MVT::i32, t7);
3339
3340      // Add the exponent into the result in integer domain.
3341      SDValue t8 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3342                               TwoToFracPartOfX, IntegerPartOfX);
3343
3344      result = DAG.getNode(ISD::BITCAST, dl, MVT::f32, t8);
3345    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3346      // For floating-point precision of 18:
3347      //
3348      //   TwoToFractionalPartOfX =
3349      //     0.999999982f +
3350      //       (0.693148872f +
3351      //         (0.240227044f +
3352      //           (0.554906021e-1f +
3353      //             (0.961591928e-2f +
3354      //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
3355      //
3356      // error 2.47208000*10^(-7), which is better than 18 bits
3357      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3358                               getF32Constant(DAG, 0x3924b03e));
3359      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3360                               getF32Constant(DAG, 0x3ab24b87));
3361      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3362      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3363                               getF32Constant(DAG, 0x3c1d8c17));
3364      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3365      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3366                               getF32Constant(DAG, 0x3d634a1d));
3367      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3368      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3369                               getF32Constant(DAG, 0x3e75fe14));
3370      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3371      SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
3372                                getF32Constant(DAG, 0x3f317234));
3373      SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
3374      SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
3375                                getF32Constant(DAG, 0x3f800000));
3376      SDValue TwoToFracPartOfX = DAG.getNode(ISD::BITCAST, dl,
3377                                             MVT::i32, t13);
3378
3379      // Add the exponent into the result in integer domain.
3380      SDValue t14 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3381                                TwoToFracPartOfX, IntegerPartOfX);
3382
3383      result = DAG.getNode(ISD::BITCAST, dl, MVT::f32, t14);
3384    }
3385  } else {
3386    // No special expansion.
3387    result = DAG.getNode(ISD::FEXP, dl,
3388                         getValue(I.getArgOperand(0)).getValueType(),
3389                         getValue(I.getArgOperand(0)));
3390  }
3391
3392  setValue(&I, result);
3393}
3394
3395/// visitLog - Lower a log intrinsic. Handles the special sequences for
3396/// limited-precision mode.
3397void
3398SelectionDAGBuilder::visitLog(const CallInst &I) {
3399  SDValue result;
3400  DebugLoc dl = getCurDebugLoc();
3401
3402  if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3403      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3404    SDValue Op = getValue(I.getArgOperand(0));
3405    SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
3406
3407    // Scale the exponent by log(2) [0.69314718f].
3408    SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
3409    SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
3410                                        getF32Constant(DAG, 0x3f317218));
3411
3412    // Get the significand and build it into a floating-point number with
3413    // exponent of 1.
3414    SDValue X = GetSignificand(DAG, Op1, dl);
3415
3416    if (LimitFloatPrecision <= 6) {
3417      // For floating-point precision of 6:
3418      //
3419      //   LogofMantissa =
3420      //     -1.1609546f +
3421      //       (1.4034025f - 0.23903021f * x) * x;
3422      //
3423      // error 0.0034276066, which is better than 8 bits
3424      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3425                               getF32Constant(DAG, 0xbe74c456));
3426      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3427                               getF32Constant(DAG, 0x3fb3a2b1));
3428      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3429      SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3430                                          getF32Constant(DAG, 0x3f949a29));
3431
3432      result = DAG.getNode(ISD::FADD, dl,
3433                           MVT::f32, LogOfExponent, LogOfMantissa);
3434    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3435      // For floating-point precision of 12:
3436      //
3437      //   LogOfMantissa =
3438      //     -1.7417939f +
3439      //       (2.8212026f +
3440      //         (-1.4699568f +
3441      //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
3442      //
3443      // error 0.000061011436, which is 14 bits
3444      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3445                               getF32Constant(DAG, 0xbd67b6d6));
3446      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3447                               getF32Constant(DAG, 0x3ee4f4b8));
3448      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3449      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3450                               getF32Constant(DAG, 0x3fbc278b));
3451      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3452      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3453                               getF32Constant(DAG, 0x40348e95));
3454      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3455      SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3456                                          getF32Constant(DAG, 0x3fdef31a));
3457
3458      result = DAG.getNode(ISD::FADD, dl,
3459                           MVT::f32, LogOfExponent, LogOfMantissa);
3460    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3461      // For floating-point precision of 18:
3462      //
3463      //   LogOfMantissa =
3464      //     -2.1072184f +
3465      //       (4.2372794f +
3466      //         (-3.7029485f +
3467      //           (2.2781945f +
3468      //             (-0.87823314f +
3469      //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
3470      //
3471      // error 0.0000023660568, which is better than 18 bits
3472      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3473                               getF32Constant(DAG, 0xbc91e5ac));
3474      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3475                               getF32Constant(DAG, 0x3e4350aa));
3476      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3477      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3478                               getF32Constant(DAG, 0x3f60d3e3));
3479      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3480      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3481                               getF32Constant(DAG, 0x4011cdf0));
3482      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3483      SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3484                               getF32Constant(DAG, 0x406cfd1c));
3485      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3486      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3487                               getF32Constant(DAG, 0x408797cb));
3488      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3489      SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
3490                                          getF32Constant(DAG, 0x4006dcab));
3491
3492      result = DAG.getNode(ISD::FADD, dl,
3493                           MVT::f32, LogOfExponent, LogOfMantissa);
3494    }
3495  } else {
3496    // No special expansion.
3497    result = DAG.getNode(ISD::FLOG, dl,
3498                         getValue(I.getArgOperand(0)).getValueType(),
3499                         getValue(I.getArgOperand(0)));
3500  }
3501
3502  setValue(&I, result);
3503}
3504
3505/// visitLog2 - Lower a log2 intrinsic. Handles the special sequences for
3506/// limited-precision mode.
3507void
3508SelectionDAGBuilder::visitLog2(const CallInst &I) {
3509  SDValue result;
3510  DebugLoc dl = getCurDebugLoc();
3511
3512  if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3513      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3514    SDValue Op = getValue(I.getArgOperand(0));
3515    SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
3516
3517    // Get the exponent.
3518    SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
3519
3520    // Get the significand and build it into a floating-point number with
3521    // exponent of 1.
3522    SDValue X = GetSignificand(DAG, Op1, dl);
3523
3524    // Different possible minimax approximations of significand in
3525    // floating-point for various degrees of accuracy over [1,2].
3526    if (LimitFloatPrecision <= 6) {
3527      // For floating-point precision of 6:
3528      //
3529      //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
3530      //
3531      // error 0.0049451742, which is more than 7 bits
3532      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3533                               getF32Constant(DAG, 0xbeb08fe0));
3534      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3535                               getF32Constant(DAG, 0x40019463));
3536      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3537      SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3538                                           getF32Constant(DAG, 0x3fd6633d));
3539
3540      result = DAG.getNode(ISD::FADD, dl,
3541                           MVT::f32, LogOfExponent, Log2ofMantissa);
3542    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3543      // For floating-point precision of 12:
3544      //
3545      //   Log2ofMantissa =
3546      //     -2.51285454f +
3547      //       (4.07009056f +
3548      //         (-2.12067489f +
3549      //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
3550      //
3551      // error 0.0000876136000, which is better than 13 bits
3552      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3553                               getF32Constant(DAG, 0xbda7262e));
3554      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3555                               getF32Constant(DAG, 0x3f25280b));
3556      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3557      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3558                               getF32Constant(DAG, 0x4007b923));
3559      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3560      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3561                               getF32Constant(DAG, 0x40823e2f));
3562      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3563      SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3564                                           getF32Constant(DAG, 0x4020d29c));
3565
3566      result = DAG.getNode(ISD::FADD, dl,
3567                           MVT::f32, LogOfExponent, Log2ofMantissa);
3568    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3569      // For floating-point precision of 18:
3570      //
3571      //   Log2ofMantissa =
3572      //     -3.0400495f +
3573      //       (6.1129976f +
3574      //         (-5.3420409f +
3575      //           (3.2865683f +
3576      //             (-1.2669343f +
3577      //               (0.27515199f -
3578      //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
3579      //
3580      // error 0.0000018516, which is better than 18 bits
3581      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3582                               getF32Constant(DAG, 0xbcd2769e));
3583      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3584                               getF32Constant(DAG, 0x3e8ce0b9));
3585      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3586      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3587                               getF32Constant(DAG, 0x3fa22ae7));
3588      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3589      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3590                               getF32Constant(DAG, 0x40525723));
3591      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3592      SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3593                               getF32Constant(DAG, 0x40aaf200));
3594      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3595      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3596                               getF32Constant(DAG, 0x40c39dad));
3597      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3598      SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
3599                                           getF32Constant(DAG, 0x4042902c));
3600
3601      result = DAG.getNode(ISD::FADD, dl,
3602                           MVT::f32, LogOfExponent, Log2ofMantissa);
3603    }
3604  } else {
3605    // No special expansion.
3606    result = DAG.getNode(ISD::FLOG2, dl,
3607                         getValue(I.getArgOperand(0)).getValueType(),
3608                         getValue(I.getArgOperand(0)));
3609  }
3610
3611  setValue(&I, result);
3612}
3613
3614/// visitLog10 - Lower a log10 intrinsic. Handles the special sequences for
3615/// limited-precision mode.
3616void
3617SelectionDAGBuilder::visitLog10(const CallInst &I) {
3618  SDValue result;
3619  DebugLoc dl = getCurDebugLoc();
3620
3621  if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3622      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3623    SDValue Op = getValue(I.getArgOperand(0));
3624    SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
3625
3626    // Scale the exponent by log10(2) [0.30102999f].
3627    SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
3628    SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
3629                                        getF32Constant(DAG, 0x3e9a209a));
3630
3631    // Get the significand and build it into a floating-point number with
3632    // exponent of 1.
3633    SDValue X = GetSignificand(DAG, Op1, dl);
3634
3635    if (LimitFloatPrecision <= 6) {
3636      // For floating-point precision of 6:
3637      //
3638      //   Log10ofMantissa =
3639      //     -0.50419619f +
3640      //       (0.60948995f - 0.10380950f * x) * x;
3641      //
3642      // error 0.0014886165, which is 6 bits
3643      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3644                               getF32Constant(DAG, 0xbdd49a13));
3645      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3646                               getF32Constant(DAG, 0x3f1c0789));
3647      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3648      SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3649                                            getF32Constant(DAG, 0x3f011300));
3650
3651      result = DAG.getNode(ISD::FADD, dl,
3652                           MVT::f32, LogOfExponent, Log10ofMantissa);
3653    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3654      // For floating-point precision of 12:
3655      //
3656      //   Log10ofMantissa =
3657      //     -0.64831180f +
3658      //       (0.91751397f +
3659      //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
3660      //
3661      // error 0.00019228036, which is better than 12 bits
3662      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3663                               getF32Constant(DAG, 0x3d431f31));
3664      SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
3665                               getF32Constant(DAG, 0x3ea21fb2));
3666      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3667      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3668                               getF32Constant(DAG, 0x3f6ae232));
3669      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3670      SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
3671                                            getF32Constant(DAG, 0x3f25f7c3));
3672
3673      result = DAG.getNode(ISD::FADD, dl,
3674                           MVT::f32, LogOfExponent, Log10ofMantissa);
3675    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3676      // For floating-point precision of 18:
3677      //
3678      //   Log10ofMantissa =
3679      //     -0.84299375f +
3680      //       (1.5327582f +
3681      //         (-1.0688956f +
3682      //           (0.49102474f +
3683      //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
3684      //
3685      // error 0.0000037995730, which is better than 18 bits
3686      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3687                               getF32Constant(DAG, 0x3c5d51ce));
3688      SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
3689                               getF32Constant(DAG, 0x3e00685a));
3690      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3691      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3692                               getF32Constant(DAG, 0x3efb6798));
3693      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3694      SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
3695                               getF32Constant(DAG, 0x3f88d192));
3696      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3697      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3698                               getF32Constant(DAG, 0x3fc4316c));
3699      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3700      SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
3701                                            getF32Constant(DAG, 0x3f57ce70));
3702
3703      result = DAG.getNode(ISD::FADD, dl,
3704                           MVT::f32, LogOfExponent, Log10ofMantissa);
3705    }
3706  } else {
3707    // No special expansion.
3708    result = DAG.getNode(ISD::FLOG10, dl,
3709                         getValue(I.getArgOperand(0)).getValueType(),
3710                         getValue(I.getArgOperand(0)));
3711  }
3712
3713  setValue(&I, result);
3714}
3715
3716/// visitExp2 - Lower an exp2 intrinsic. Handles the special sequences for
3717/// limited-precision mode.
3718void
3719SelectionDAGBuilder::visitExp2(const CallInst &I) {
3720  SDValue result;
3721  DebugLoc dl = getCurDebugLoc();
3722
3723  if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3724      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3725    SDValue Op = getValue(I.getArgOperand(0));
3726
3727    SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Op);
3728
3729    //   FractionalPartOfX = x - (float)IntegerPartOfX;
3730    SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
3731    SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, Op, t1);
3732
3733    //   IntegerPartOfX <<= 23;
3734    IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
3735                                 DAG.getConstant(23, TLI.getPointerTy()));
3736
3737    if (LimitFloatPrecision <= 6) {
3738      // For floating-point precision of 6:
3739      //
3740      //   TwoToFractionalPartOfX =
3741      //     0.997535578f +
3742      //       (0.735607626f + 0.252464424f * x) * x;
3743      //
3744      // error 0.0144103317, which is 6 bits
3745      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3746                               getF32Constant(DAG, 0x3e814304));
3747      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3748                               getF32Constant(DAG, 0x3f3c50c8));
3749      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3750      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3751                               getF32Constant(DAG, 0x3f7f5e7e));
3752      SDValue t6 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t5);
3753      SDValue TwoToFractionalPartOfX =
3754        DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX);
3755
3756      result = DAG.getNode(ISD::BITCAST, dl,
3757                           MVT::f32, TwoToFractionalPartOfX);
3758    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3759      // For floating-point precision of 12:
3760      //
3761      //   TwoToFractionalPartOfX =
3762      //     0.999892986f +
3763      //       (0.696457318f +
3764      //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
3765      //
3766      // error 0.000107046256, which is 13 to 14 bits
3767      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3768                               getF32Constant(DAG, 0x3da235e3));
3769      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3770                               getF32Constant(DAG, 0x3e65b8f3));
3771      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3772      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3773                               getF32Constant(DAG, 0x3f324b07));
3774      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3775      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3776                               getF32Constant(DAG, 0x3f7ff8fd));
3777      SDValue t8 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t7);
3778      SDValue TwoToFractionalPartOfX =
3779        DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX);
3780
3781      result = DAG.getNode(ISD::BITCAST, dl,
3782                           MVT::f32, TwoToFractionalPartOfX);
3783    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3784      // For floating-point precision of 18:
3785      //
3786      //   TwoToFractionalPartOfX =
3787      //     0.999999982f +
3788      //       (0.693148872f +
3789      //         (0.240227044f +
3790      //           (0.554906021e-1f +
3791      //             (0.961591928e-2f +
3792      //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
3793      // error 2.47208000*10^(-7), which is better than 18 bits
3794      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3795                               getF32Constant(DAG, 0x3924b03e));
3796      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3797                               getF32Constant(DAG, 0x3ab24b87));
3798      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3799      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3800                               getF32Constant(DAG, 0x3c1d8c17));
3801      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3802      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3803                               getF32Constant(DAG, 0x3d634a1d));
3804      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3805      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3806                               getF32Constant(DAG, 0x3e75fe14));
3807      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3808      SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
3809                                getF32Constant(DAG, 0x3f317234));
3810      SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
3811      SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
3812                                getF32Constant(DAG, 0x3f800000));
3813      SDValue t14 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t13);
3814      SDValue TwoToFractionalPartOfX =
3815        DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX);
3816
3817      result = DAG.getNode(ISD::BITCAST, dl,
3818                           MVT::f32, TwoToFractionalPartOfX);
3819    }
3820  } else {
3821    // No special expansion.
3822    result = DAG.getNode(ISD::FEXP2, dl,
3823                         getValue(I.getArgOperand(0)).getValueType(),
3824                         getValue(I.getArgOperand(0)));
3825  }
3826
3827  setValue(&I, result);
3828}
3829
3830/// visitPow - Lower a pow intrinsic. Handles the special sequences for
3831/// limited-precision mode with x == 10.0f.
3832void
3833SelectionDAGBuilder::visitPow(const CallInst &I) {
3834  SDValue result;
3835  const Value *Val = I.getArgOperand(0);
3836  DebugLoc dl = getCurDebugLoc();
3837  bool IsExp10 = false;
3838
3839  if (getValue(Val).getValueType() == MVT::f32 &&
3840      getValue(I.getArgOperand(1)).getValueType() == MVT::f32 &&
3841      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3842    if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(Val))) {
3843      if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
3844        APFloat Ten(10.0f);
3845        IsExp10 = CFP->getValueAPF().bitwiseIsEqual(Ten);
3846      }
3847    }
3848  }
3849
3850  if (IsExp10 && LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3851    SDValue Op = getValue(I.getArgOperand(1));
3852
3853    // Put the exponent in the right bit position for later addition to the
3854    // final result:
3855    //
3856    //   #define LOG2OF10 3.3219281f
3857    //   IntegerPartOfX = (int32_t)(x * LOG2OF10);
3858    SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
3859                             getF32Constant(DAG, 0x40549a78));
3860    SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
3861
3862    //   FractionalPartOfX = x - (float)IntegerPartOfX;
3863    SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
3864    SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
3865
3866    //   IntegerPartOfX <<= 23;
3867    IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
3868                                 DAG.getConstant(23, TLI.getPointerTy()));
3869
3870    if (LimitFloatPrecision <= 6) {
3871      // For floating-point precision of 6:
3872      //
3873      //   twoToFractionalPartOfX =
3874      //     0.997535578f +
3875      //       (0.735607626f + 0.252464424f * x) * x;
3876      //
3877      // error 0.0144103317, which is 6 bits
3878      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3879                               getF32Constant(DAG, 0x3e814304));
3880      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3881                               getF32Constant(DAG, 0x3f3c50c8));
3882      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3883      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3884                               getF32Constant(DAG, 0x3f7f5e7e));
3885      SDValue t6 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t5);
3886      SDValue TwoToFractionalPartOfX =
3887        DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX);
3888
3889      result = DAG.getNode(ISD::BITCAST, dl,
3890                           MVT::f32, TwoToFractionalPartOfX);
3891    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3892      // For floating-point precision of 12:
3893      //
3894      //   TwoToFractionalPartOfX =
3895      //     0.999892986f +
3896      //       (0.696457318f +
3897      //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
3898      //
3899      // error 0.000107046256, which is 13 to 14 bits
3900      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3901                               getF32Constant(DAG, 0x3da235e3));
3902      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3903                               getF32Constant(DAG, 0x3e65b8f3));
3904      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3905      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3906                               getF32Constant(DAG, 0x3f324b07));
3907      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3908      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3909                               getF32Constant(DAG, 0x3f7ff8fd));
3910      SDValue t8 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t7);
3911      SDValue TwoToFractionalPartOfX =
3912        DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX);
3913
3914      result = DAG.getNode(ISD::BITCAST, dl,
3915                           MVT::f32, TwoToFractionalPartOfX);
3916    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3917      // For floating-point precision of 18:
3918      //
3919      //   TwoToFractionalPartOfX =
3920      //     0.999999982f +
3921      //       (0.693148872f +
3922      //         (0.240227044f +
3923      //           (0.554906021e-1f +
3924      //             (0.961591928e-2f +
3925      //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
3926      // error 2.47208000*10^(-7), which is better than 18 bits
3927      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3928                               getF32Constant(DAG, 0x3924b03e));
3929      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3930                               getF32Constant(DAG, 0x3ab24b87));
3931      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3932      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3933                               getF32Constant(DAG, 0x3c1d8c17));
3934      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3935      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3936                               getF32Constant(DAG, 0x3d634a1d));
3937      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3938      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3939                               getF32Constant(DAG, 0x3e75fe14));
3940      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3941      SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
3942                                getF32Constant(DAG, 0x3f317234));
3943      SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
3944      SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
3945                                getF32Constant(DAG, 0x3f800000));
3946      SDValue t14 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t13);
3947      SDValue TwoToFractionalPartOfX =
3948        DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX);
3949
3950      result = DAG.getNode(ISD::BITCAST, dl,
3951                           MVT::f32, TwoToFractionalPartOfX);
3952    }
3953  } else {
3954    // No special expansion.
3955    result = DAG.getNode(ISD::FPOW, dl,
3956                         getValue(I.getArgOperand(0)).getValueType(),
3957                         getValue(I.getArgOperand(0)),
3958                         getValue(I.getArgOperand(1)));
3959  }
3960
3961  setValue(&I, result);
3962}
3963
3964
3965/// ExpandPowI - Expand a llvm.powi intrinsic.
3966static SDValue ExpandPowI(DebugLoc DL, SDValue LHS, SDValue RHS,
3967                          SelectionDAG &DAG) {
3968  // If RHS is a constant, we can expand this out to a multiplication tree,
3969  // otherwise we end up lowering to a call to __powidf2 (for example).  When
3970  // optimizing for size, we only want to do this if the expansion would produce
3971  // a small number of multiplies, otherwise we do the full expansion.
3972  if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
3973    // Get the exponent as a positive value.
3974    unsigned Val = RHSC->getSExtValue();
3975    if ((int)Val < 0) Val = -Val;
3976
3977    // powi(x, 0) -> 1.0
3978    if (Val == 0)
3979      return DAG.getConstantFP(1.0, LHS.getValueType());
3980
3981    const Function *F = DAG.getMachineFunction().getFunction();
3982    if (!F->hasFnAttr(Attribute::OptimizeForSize) ||
3983        // If optimizing for size, don't insert too many multiplies.  This
3984        // inserts up to 5 multiplies.
3985        CountPopulation_32(Val)+Log2_32(Val) < 7) {
3986      // We use the simple binary decomposition method to generate the multiply
3987      // sequence.  There are more optimal ways to do this (for example,
3988      // powi(x,15) generates one more multiply than it should), but this has
3989      // the benefit of being both really simple and much better than a libcall.
3990      SDValue Res;  // Logically starts equal to 1.0
3991      SDValue CurSquare = LHS;
3992      while (Val) {
3993        if (Val & 1) {
3994          if (Res.getNode())
3995            Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare);
3996          else
3997            Res = CurSquare;  // 1.0*CurSquare.
3998        }
3999
4000        CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
4001                                CurSquare, CurSquare);
4002        Val >>= 1;
4003      }
4004
4005      // If the original was negative, invert the result, producing 1/(x*x*x).
4006      if (RHSC->getSExtValue() < 0)
4007        Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
4008                          DAG.getConstantFP(1.0, LHS.getValueType()), Res);
4009      return Res;
4010    }
4011  }
4012
4013  // Otherwise, expand to a libcall.
4014  return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
4015}
4016
4017/// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function
4018/// argument, create the corresponding DBG_VALUE machine instruction for it now.
4019/// At the end of instruction selection, they will be inserted to the entry BB.
4020bool
4021SelectionDAGBuilder::EmitFuncArgumentDbgValue(const Value *V, MDNode *Variable,
4022                                              int64_t Offset,
4023                                              const SDValue &N) {
4024  const Argument *Arg = dyn_cast<Argument>(V);
4025  if (!Arg)
4026    return false;
4027
4028  MachineFunction &MF = DAG.getMachineFunction();
4029  const TargetInstrInfo *TII = DAG.getTarget().getInstrInfo();
4030  const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
4031
4032  // Ignore inlined function arguments here.
4033  DIVariable DV(Variable);
4034  if (DV.isInlinedFnArgument(MF.getFunction()))
4035    return false;
4036
4037  MachineBasicBlock *MBB = FuncInfo.MBB;
4038  if (MBB != &MF.front())
4039    return false;
4040
4041  unsigned Reg = 0;
4042  if (Arg->hasByValAttr()) {
4043    // Byval arguments' frame index is recorded during argument lowering.
4044    // Use this info directly.
4045    Reg = TRI->getFrameRegister(MF);
4046    Offset = FuncInfo.getByValArgumentFrameIndex(Arg);
4047    // If byval argument ofset is not recorded then ignore this.
4048    if (!Offset)
4049      Reg = 0;
4050  }
4051
4052  if (N.getNode() && N.getOpcode() == ISD::CopyFromReg) {
4053    Reg = cast<RegisterSDNode>(N.getOperand(1))->getReg();
4054    if (TargetRegisterInfo::isVirtualRegister(Reg)) {
4055      MachineRegisterInfo &RegInfo = MF.getRegInfo();
4056      unsigned PR = RegInfo.getLiveInPhysReg(Reg);
4057      if (PR)
4058        Reg = PR;
4059    }
4060  }
4061
4062  if (!Reg) {
4063    // Check if ValueMap has reg number.
4064    DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
4065    if (VMI != FuncInfo.ValueMap.end())
4066      Reg = VMI->second;
4067  }
4068
4069  if (!Reg && N.getNode()) {
4070    // Check if frame index is available.
4071    if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode()))
4072      if (FrameIndexSDNode *FINode =
4073          dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) {
4074        Reg = TRI->getFrameRegister(MF);
4075        Offset = FINode->getIndex();
4076      }
4077  }
4078
4079  if (!Reg)
4080    return false;
4081
4082  MachineInstrBuilder MIB = BuildMI(MF, getCurDebugLoc(),
4083                                    TII->get(TargetOpcode::DBG_VALUE))
4084    .addReg(Reg, RegState::Debug).addImm(Offset).addMetadata(Variable);
4085  FuncInfo.ArgDbgValues.push_back(&*MIB);
4086  return true;
4087}
4088
4089// VisualStudio defines setjmp as _setjmp
4090#if defined(_MSC_VER) && defined(setjmp) && \
4091                         !defined(setjmp_undefined_for_msvc)
4092#  pragma push_macro("setjmp")
4093#  undef setjmp
4094#  define setjmp_undefined_for_msvc
4095#endif
4096
4097/// visitIntrinsicCall - Lower the call to the specified intrinsic function.  If
4098/// we want to emit this as a call to a named external function, return the name
4099/// otherwise lower it and return null.
4100const char *
4101SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) {
4102  DebugLoc dl = getCurDebugLoc();
4103  SDValue Res;
4104
4105  switch (Intrinsic) {
4106  default:
4107    // By default, turn this into a target intrinsic node.
4108    visitTargetIntrinsic(I, Intrinsic);
4109    return 0;
4110  case Intrinsic::vastart:  visitVAStart(I); return 0;
4111  case Intrinsic::vaend:    visitVAEnd(I); return 0;
4112  case Intrinsic::vacopy:   visitVACopy(I); return 0;
4113  case Intrinsic::returnaddress:
4114    setValue(&I, DAG.getNode(ISD::RETURNADDR, dl, TLI.getPointerTy(),
4115                             getValue(I.getArgOperand(0))));
4116    return 0;
4117  case Intrinsic::frameaddress:
4118    setValue(&I, DAG.getNode(ISD::FRAMEADDR, dl, TLI.getPointerTy(),
4119                             getValue(I.getArgOperand(0))));
4120    return 0;
4121  case Intrinsic::setjmp:
4122    return "_setjmp"+!TLI.usesUnderscoreSetJmp();
4123  case Intrinsic::longjmp:
4124    return "_longjmp"+!TLI.usesUnderscoreLongJmp();
4125  case Intrinsic::memcpy: {
4126    // Assert for address < 256 since we support only user defined address
4127    // spaces.
4128    assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4129           < 256 &&
4130           cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace()
4131           < 256 &&
4132           "Unknown address space");
4133    SDValue Op1 = getValue(I.getArgOperand(0));
4134    SDValue Op2 = getValue(I.getArgOperand(1));
4135    SDValue Op3 = getValue(I.getArgOperand(2));
4136    unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4137    bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4138    DAG.setRoot(DAG.getMemcpy(getRoot(), dl, Op1, Op2, Op3, Align, isVol, false,
4139                              MachinePointerInfo(I.getArgOperand(0)),
4140                              MachinePointerInfo(I.getArgOperand(1))));
4141    return 0;
4142  }
4143  case Intrinsic::memset: {
4144    // Assert for address < 256 since we support only user defined address
4145    // spaces.
4146    assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4147           < 256 &&
4148           "Unknown address space");
4149    SDValue Op1 = getValue(I.getArgOperand(0));
4150    SDValue Op2 = getValue(I.getArgOperand(1));
4151    SDValue Op3 = getValue(I.getArgOperand(2));
4152    unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4153    bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4154    DAG.setRoot(DAG.getMemset(getRoot(), dl, Op1, Op2, Op3, Align, isVol,
4155                              MachinePointerInfo(I.getArgOperand(0))));
4156    return 0;
4157  }
4158  case Intrinsic::memmove: {
4159    // Assert for address < 256 since we support only user defined address
4160    // spaces.
4161    assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4162           < 256 &&
4163           cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace()
4164           < 256 &&
4165           "Unknown address space");
4166    SDValue Op1 = getValue(I.getArgOperand(0));
4167    SDValue Op2 = getValue(I.getArgOperand(1));
4168    SDValue Op3 = getValue(I.getArgOperand(2));
4169    unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4170    bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4171    DAG.setRoot(DAG.getMemmove(getRoot(), dl, Op1, Op2, Op3, Align, isVol,
4172                               MachinePointerInfo(I.getArgOperand(0)),
4173                               MachinePointerInfo(I.getArgOperand(1))));
4174    return 0;
4175  }
4176  case Intrinsic::dbg_declare: {
4177    const DbgDeclareInst &DI = cast<DbgDeclareInst>(I);
4178    MDNode *Variable = DI.getVariable();
4179    const Value *Address = DI.getAddress();
4180    if (!Address || !DIVariable(DI.getVariable()).Verify())
4181      return 0;
4182
4183    // Build an entry in DbgOrdering.  Debug info input nodes get an SDNodeOrder
4184    // but do not always have a corresponding SDNode built.  The SDNodeOrder
4185    // absolute, but not relative, values are different depending on whether
4186    // debug info exists.
4187    ++SDNodeOrder;
4188
4189    // Check if address has undef value.
4190    if (isa<UndefValue>(Address) ||
4191        (Address->use_empty() && !isa<Argument>(Address))) {
4192      DEBUG(dbgs() << "Dropping debug info for " << DI);
4193      return 0;
4194    }
4195
4196    SDValue &N = NodeMap[Address];
4197    if (!N.getNode() && isa<Argument>(Address))
4198      // Check unused arguments map.
4199      N = UnusedArgNodeMap[Address];
4200    SDDbgValue *SDV;
4201    if (N.getNode()) {
4202      // Parameters are handled specially.
4203      bool isParameter =
4204        DIVariable(Variable).getTag() == dwarf::DW_TAG_arg_variable;
4205      if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
4206        Address = BCI->getOperand(0);
4207      const AllocaInst *AI = dyn_cast<AllocaInst>(Address);
4208
4209      if (isParameter && !AI) {
4210        FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
4211        if (FINode)
4212          // Byval parameter.  We have a frame index at this point.
4213          SDV = DAG.getDbgValue(Variable, FINode->getIndex(),
4214                                0, dl, SDNodeOrder);
4215        else {
4216          // Can't do anything with other non-AI cases yet.  This might be a
4217          // parameter of a callee function that got inlined, for example.
4218          DEBUG(dbgs() << "Dropping debug info for " << DI);
4219          return 0;
4220        }
4221      } else if (AI)
4222        SDV = DAG.getDbgValue(Variable, N.getNode(), N.getResNo(),
4223                              0, dl, SDNodeOrder);
4224      else {
4225        // Can't do anything with other non-AI cases yet.
4226        DEBUG(dbgs() << "Dropping debug info for " << DI);
4227        return 0;
4228      }
4229      DAG.AddDbgValue(SDV, N.getNode(), isParameter);
4230    } else {
4231      // If Address is an argument then try to emit its dbg value using
4232      // virtual register info from the FuncInfo.ValueMap.
4233      if (!EmitFuncArgumentDbgValue(Address, Variable, 0, N)) {
4234        // If variable is pinned by a alloca in dominating bb then
4235        // use StaticAllocaMap.
4236        if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) {
4237          if (AI->getParent() != DI.getParent()) {
4238            DenseMap<const AllocaInst*, int>::iterator SI =
4239              FuncInfo.StaticAllocaMap.find(AI);
4240            if (SI != FuncInfo.StaticAllocaMap.end()) {
4241              SDV = DAG.getDbgValue(Variable, SI->second,
4242                                    0, dl, SDNodeOrder);
4243              DAG.AddDbgValue(SDV, 0, false);
4244              return 0;
4245            }
4246          }
4247        }
4248        DEBUG(dbgs() << "Dropping debug info for " << DI);
4249      }
4250    }
4251    return 0;
4252  }
4253  case Intrinsic::dbg_value: {
4254    const DbgValueInst &DI = cast<DbgValueInst>(I);
4255    if (!DIVariable(DI.getVariable()).Verify())
4256      return 0;
4257
4258    MDNode *Variable = DI.getVariable();
4259    uint64_t Offset = DI.getOffset();
4260    const Value *V = DI.getValue();
4261    if (!V)
4262      return 0;
4263
4264    // Build an entry in DbgOrdering.  Debug info input nodes get an SDNodeOrder
4265    // but do not always have a corresponding SDNode built.  The SDNodeOrder
4266    // absolute, but not relative, values are different depending on whether
4267    // debug info exists.
4268    ++SDNodeOrder;
4269    SDDbgValue *SDV;
4270    if (isa<ConstantInt>(V) || isa<ConstantFP>(V)) {
4271      SDV = DAG.getDbgValue(Variable, V, Offset, dl, SDNodeOrder);
4272      DAG.AddDbgValue(SDV, 0, false);
4273    } else {
4274      // Do not use getValue() in here; we don't want to generate code at
4275      // this point if it hasn't been done yet.
4276      SDValue N = NodeMap[V];
4277      if (!N.getNode() && isa<Argument>(V))
4278        // Check unused arguments map.
4279        N = UnusedArgNodeMap[V];
4280      if (N.getNode()) {
4281        if (!EmitFuncArgumentDbgValue(V, Variable, Offset, N)) {
4282          SDV = DAG.getDbgValue(Variable, N.getNode(),
4283                                N.getResNo(), Offset, dl, SDNodeOrder);
4284          DAG.AddDbgValue(SDV, N.getNode(), false);
4285        }
4286      } else if (!V->use_empty() ) {
4287        // Do not call getValue(V) yet, as we don't want to generate code.
4288        // Remember it for later.
4289        DanglingDebugInfo DDI(&DI, dl, SDNodeOrder);
4290        DanglingDebugInfoMap[V] = DDI;
4291      } else {
4292        // We may expand this to cover more cases.  One case where we have no
4293        // data available is an unreferenced parameter.
4294        DEBUG(dbgs() << "Dropping debug info for " << DI);
4295      }
4296    }
4297
4298    // Build a debug info table entry.
4299    if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V))
4300      V = BCI->getOperand(0);
4301    const AllocaInst *AI = dyn_cast<AllocaInst>(V);
4302    // Don't handle byval struct arguments or VLAs, for example.
4303    if (!AI)
4304      return 0;
4305    DenseMap<const AllocaInst*, int>::iterator SI =
4306      FuncInfo.StaticAllocaMap.find(AI);
4307    if (SI == FuncInfo.StaticAllocaMap.end())
4308      return 0; // VLAs.
4309    int FI = SI->second;
4310
4311    MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4312    if (!DI.getDebugLoc().isUnknown() && MMI.hasDebugInfo())
4313      MMI.setVariableDbgInfo(Variable, FI, DI.getDebugLoc());
4314    return 0;
4315  }
4316  case Intrinsic::eh_exception: {
4317    // Insert the EXCEPTIONADDR instruction.
4318    assert(FuncInfo.MBB->isLandingPad() &&
4319           "Call to eh.exception not in landing pad!");
4320    SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
4321    SDValue Ops[1];
4322    Ops[0] = DAG.getRoot();
4323    SDValue Op = DAG.getNode(ISD::EXCEPTIONADDR, dl, VTs, Ops, 1);
4324    setValue(&I, Op);
4325    DAG.setRoot(Op.getValue(1));
4326    return 0;
4327  }
4328
4329  case Intrinsic::eh_selector: {
4330    MachineBasicBlock *CallMBB = FuncInfo.MBB;
4331    MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4332    if (CallMBB->isLandingPad())
4333      AddCatchInfo(I, &MMI, CallMBB);
4334    else {
4335#ifndef NDEBUG
4336      FuncInfo.CatchInfoLost.insert(&I);
4337#endif
4338      // FIXME: Mark exception selector register as live in.  Hack for PR1508.
4339      unsigned Reg = TLI.getExceptionSelectorRegister();
4340      if (Reg) FuncInfo.MBB->addLiveIn(Reg);
4341    }
4342
4343    // Insert the EHSELECTION instruction.
4344    SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
4345    SDValue Ops[2];
4346    Ops[0] = getValue(I.getArgOperand(0));
4347    Ops[1] = getRoot();
4348    SDValue Op = DAG.getNode(ISD::EHSELECTION, dl, VTs, Ops, 2);
4349    DAG.setRoot(Op.getValue(1));
4350    setValue(&I, DAG.getSExtOrTrunc(Op, dl, MVT::i32));
4351    return 0;
4352  }
4353
4354  case Intrinsic::eh_typeid_for: {
4355    // Find the type id for the given typeinfo.
4356    GlobalVariable *GV = ExtractTypeInfo(I.getArgOperand(0));
4357    unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV);
4358    Res = DAG.getConstant(TypeID, MVT::i32);
4359    setValue(&I, Res);
4360    return 0;
4361  }
4362
4363  case Intrinsic::eh_return_i32:
4364  case Intrinsic::eh_return_i64:
4365    DAG.getMachineFunction().getMMI().setCallsEHReturn(true);
4366    DAG.setRoot(DAG.getNode(ISD::EH_RETURN, dl,
4367                            MVT::Other,
4368                            getControlRoot(),
4369                            getValue(I.getArgOperand(0)),
4370                            getValue(I.getArgOperand(1))));
4371    return 0;
4372  case Intrinsic::eh_unwind_init:
4373    DAG.getMachineFunction().getMMI().setCallsUnwindInit(true);
4374    return 0;
4375  case Intrinsic::eh_dwarf_cfa: {
4376    SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), dl,
4377                                        TLI.getPointerTy());
4378    SDValue Offset = DAG.getNode(ISD::ADD, dl,
4379                                 TLI.getPointerTy(),
4380                                 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, dl,
4381                                             TLI.getPointerTy()),
4382                                 CfaArg);
4383    SDValue FA = DAG.getNode(ISD::FRAMEADDR, dl,
4384                             TLI.getPointerTy(),
4385                             DAG.getConstant(0, TLI.getPointerTy()));
4386    setValue(&I, DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(),
4387                             FA, Offset));
4388    return 0;
4389  }
4390  case Intrinsic::eh_sjlj_callsite: {
4391    MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4392    ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0));
4393    assert(CI && "Non-constant call site value in eh.sjlj.callsite!");
4394    assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
4395
4396    MMI.setCurrentCallSite(CI->getZExtValue());
4397    return 0;
4398  }
4399  case Intrinsic::eh_sjlj_setjmp: {
4400    setValue(&I, DAG.getNode(ISD::EH_SJLJ_SETJMP, dl, MVT::i32, getRoot(),
4401                             getValue(I.getArgOperand(0))));
4402    return 0;
4403  }
4404  case Intrinsic::eh_sjlj_longjmp: {
4405    DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, dl, MVT::Other,
4406                            getRoot(), getValue(I.getArgOperand(0))));
4407    return 0;
4408  }
4409  case Intrinsic::eh_sjlj_dispatch_setup: {
4410    DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_DISPATCHSETUP, dl, MVT::Other,
4411                            getRoot(), getValue(I.getArgOperand(0))));
4412    return 0;
4413  }
4414
4415  case Intrinsic::x86_mmx_pslli_w:
4416  case Intrinsic::x86_mmx_pslli_d:
4417  case Intrinsic::x86_mmx_pslli_q:
4418  case Intrinsic::x86_mmx_psrli_w:
4419  case Intrinsic::x86_mmx_psrli_d:
4420  case Intrinsic::x86_mmx_psrli_q:
4421  case Intrinsic::x86_mmx_psrai_w:
4422  case Intrinsic::x86_mmx_psrai_d: {
4423    SDValue ShAmt = getValue(I.getArgOperand(1));
4424    if (isa<ConstantSDNode>(ShAmt)) {
4425      visitTargetIntrinsic(I, Intrinsic);
4426      return 0;
4427    }
4428    unsigned NewIntrinsic = 0;
4429    EVT ShAmtVT = MVT::v2i32;
4430    switch (Intrinsic) {
4431    case Intrinsic::x86_mmx_pslli_w:
4432      NewIntrinsic = Intrinsic::x86_mmx_psll_w;
4433      break;
4434    case Intrinsic::x86_mmx_pslli_d:
4435      NewIntrinsic = Intrinsic::x86_mmx_psll_d;
4436      break;
4437    case Intrinsic::x86_mmx_pslli_q:
4438      NewIntrinsic = Intrinsic::x86_mmx_psll_q;
4439      break;
4440    case Intrinsic::x86_mmx_psrli_w:
4441      NewIntrinsic = Intrinsic::x86_mmx_psrl_w;
4442      break;
4443    case Intrinsic::x86_mmx_psrli_d:
4444      NewIntrinsic = Intrinsic::x86_mmx_psrl_d;
4445      break;
4446    case Intrinsic::x86_mmx_psrli_q:
4447      NewIntrinsic = Intrinsic::x86_mmx_psrl_q;
4448      break;
4449    case Intrinsic::x86_mmx_psrai_w:
4450      NewIntrinsic = Intrinsic::x86_mmx_psra_w;
4451      break;
4452    case Intrinsic::x86_mmx_psrai_d:
4453      NewIntrinsic = Intrinsic::x86_mmx_psra_d;
4454      break;
4455    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
4456    }
4457
4458    // The vector shift intrinsics with scalars uses 32b shift amounts but
4459    // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
4460    // to be zero.
4461    // We must do this early because v2i32 is not a legal type.
4462    DebugLoc dl = getCurDebugLoc();
4463    SDValue ShOps[2];
4464    ShOps[0] = ShAmt;
4465    ShOps[1] = DAG.getConstant(0, MVT::i32);
4466    ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 2);
4467    EVT DestVT = TLI.getValueType(I.getType());
4468    ShAmt = DAG.getNode(ISD::BITCAST, dl, DestVT, ShAmt);
4469    Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
4470                       DAG.getConstant(NewIntrinsic, MVT::i32),
4471                       getValue(I.getArgOperand(0)), ShAmt);
4472    setValue(&I, Res);
4473    return 0;
4474  }
4475  case Intrinsic::convertff:
4476  case Intrinsic::convertfsi:
4477  case Intrinsic::convertfui:
4478  case Intrinsic::convertsif:
4479  case Intrinsic::convertuif:
4480  case Intrinsic::convertss:
4481  case Intrinsic::convertsu:
4482  case Intrinsic::convertus:
4483  case Intrinsic::convertuu: {
4484    ISD::CvtCode Code = ISD::CVT_INVALID;
4485    switch (Intrinsic) {
4486    case Intrinsic::convertff:  Code = ISD::CVT_FF; break;
4487    case Intrinsic::convertfsi: Code = ISD::CVT_FS; break;
4488    case Intrinsic::convertfui: Code = ISD::CVT_FU; break;
4489    case Intrinsic::convertsif: Code = ISD::CVT_SF; break;
4490    case Intrinsic::convertuif: Code = ISD::CVT_UF; break;
4491    case Intrinsic::convertss:  Code = ISD::CVT_SS; break;
4492    case Intrinsic::convertsu:  Code = ISD::CVT_SU; break;
4493    case Intrinsic::convertus:  Code = ISD::CVT_US; break;
4494    case Intrinsic::convertuu:  Code = ISD::CVT_UU; break;
4495    }
4496    EVT DestVT = TLI.getValueType(I.getType());
4497    const Value *Op1 = I.getArgOperand(0);
4498    Res = DAG.getConvertRndSat(DestVT, getCurDebugLoc(), getValue(Op1),
4499                               DAG.getValueType(DestVT),
4500                               DAG.getValueType(getValue(Op1).getValueType()),
4501                               getValue(I.getArgOperand(1)),
4502                               getValue(I.getArgOperand(2)),
4503                               Code);
4504    setValue(&I, Res);
4505    return 0;
4506  }
4507  case Intrinsic::sqrt:
4508    setValue(&I, DAG.getNode(ISD::FSQRT, dl,
4509                             getValue(I.getArgOperand(0)).getValueType(),
4510                             getValue(I.getArgOperand(0))));
4511    return 0;
4512  case Intrinsic::powi:
4513    setValue(&I, ExpandPowI(dl, getValue(I.getArgOperand(0)),
4514                            getValue(I.getArgOperand(1)), DAG));
4515    return 0;
4516  case Intrinsic::sin:
4517    setValue(&I, DAG.getNode(ISD::FSIN, dl,
4518                             getValue(I.getArgOperand(0)).getValueType(),
4519                             getValue(I.getArgOperand(0))));
4520    return 0;
4521  case Intrinsic::cos:
4522    setValue(&I, DAG.getNode(ISD::FCOS, dl,
4523                             getValue(I.getArgOperand(0)).getValueType(),
4524                             getValue(I.getArgOperand(0))));
4525    return 0;
4526  case Intrinsic::log:
4527    visitLog(I);
4528    return 0;
4529  case Intrinsic::log2:
4530    visitLog2(I);
4531    return 0;
4532  case Intrinsic::log10:
4533    visitLog10(I);
4534    return 0;
4535  case Intrinsic::exp:
4536    visitExp(I);
4537    return 0;
4538  case Intrinsic::exp2:
4539    visitExp2(I);
4540    return 0;
4541  case Intrinsic::pow:
4542    visitPow(I);
4543    return 0;
4544  case Intrinsic::convert_to_fp16:
4545    setValue(&I, DAG.getNode(ISD::FP32_TO_FP16, dl,
4546                             MVT::i16, getValue(I.getArgOperand(0))));
4547    return 0;
4548  case Intrinsic::convert_from_fp16:
4549    setValue(&I, DAG.getNode(ISD::FP16_TO_FP32, dl,
4550                             MVT::f32, getValue(I.getArgOperand(0))));
4551    return 0;
4552  case Intrinsic::pcmarker: {
4553    SDValue Tmp = getValue(I.getArgOperand(0));
4554    DAG.setRoot(DAG.getNode(ISD::PCMARKER, dl, MVT::Other, getRoot(), Tmp));
4555    return 0;
4556  }
4557  case Intrinsic::readcyclecounter: {
4558    SDValue Op = getRoot();
4559    Res = DAG.getNode(ISD::READCYCLECOUNTER, dl,
4560                      DAG.getVTList(MVT::i64, MVT::Other),
4561                      &Op, 1);
4562    setValue(&I, Res);
4563    DAG.setRoot(Res.getValue(1));
4564    return 0;
4565  }
4566  case Intrinsic::bswap:
4567    setValue(&I, DAG.getNode(ISD::BSWAP, dl,
4568                             getValue(I.getArgOperand(0)).getValueType(),
4569                             getValue(I.getArgOperand(0))));
4570    return 0;
4571  case Intrinsic::cttz: {
4572    SDValue Arg = getValue(I.getArgOperand(0));
4573    EVT Ty = Arg.getValueType();
4574    setValue(&I, DAG.getNode(ISD::CTTZ, dl, Ty, Arg));
4575    return 0;
4576  }
4577  case Intrinsic::ctlz: {
4578    SDValue Arg = getValue(I.getArgOperand(0));
4579    EVT Ty = Arg.getValueType();
4580    setValue(&I, DAG.getNode(ISD::CTLZ, dl, Ty, Arg));
4581    return 0;
4582  }
4583  case Intrinsic::ctpop: {
4584    SDValue Arg = getValue(I.getArgOperand(0));
4585    EVT Ty = Arg.getValueType();
4586    setValue(&I, DAG.getNode(ISD::CTPOP, dl, Ty, Arg));
4587    return 0;
4588  }
4589  case Intrinsic::stacksave: {
4590    SDValue Op = getRoot();
4591    Res = DAG.getNode(ISD::STACKSAVE, dl,
4592                      DAG.getVTList(TLI.getPointerTy(), MVT::Other), &Op, 1);
4593    setValue(&I, Res);
4594    DAG.setRoot(Res.getValue(1));
4595    return 0;
4596  }
4597  case Intrinsic::stackrestore: {
4598    Res = getValue(I.getArgOperand(0));
4599    DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, dl, MVT::Other, getRoot(), Res));
4600    return 0;
4601  }
4602  case Intrinsic::stackprotector: {
4603    // Emit code into the DAG to store the stack guard onto the stack.
4604    MachineFunction &MF = DAG.getMachineFunction();
4605    MachineFrameInfo *MFI = MF.getFrameInfo();
4606    EVT PtrTy = TLI.getPointerTy();
4607
4608    SDValue Src = getValue(I.getArgOperand(0));   // The guard's value.
4609    AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
4610
4611    int FI = FuncInfo.StaticAllocaMap[Slot];
4612    MFI->setStackProtectorIndex(FI);
4613
4614    SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
4615
4616    // Store the stack protector onto the stack.
4617    Res = DAG.getStore(getRoot(), getCurDebugLoc(), Src, FIN,
4618                       MachinePointerInfo::getFixedStack(FI),
4619                       true, false, 0);
4620    setValue(&I, Res);
4621    DAG.setRoot(Res);
4622    return 0;
4623  }
4624  case Intrinsic::objectsize: {
4625    // If we don't know by now, we're never going to know.
4626    ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1));
4627
4628    assert(CI && "Non-constant type in __builtin_object_size?");
4629
4630    SDValue Arg = getValue(I.getCalledValue());
4631    EVT Ty = Arg.getValueType();
4632
4633    if (CI->isZero())
4634      Res = DAG.getConstant(-1ULL, Ty);
4635    else
4636      Res = DAG.getConstant(0, Ty);
4637
4638    setValue(&I, Res);
4639    return 0;
4640  }
4641  case Intrinsic::var_annotation:
4642    // Discard annotate attributes
4643    return 0;
4644
4645  case Intrinsic::init_trampoline: {
4646    const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
4647
4648    SDValue Ops[6];
4649    Ops[0] = getRoot();
4650    Ops[1] = getValue(I.getArgOperand(0));
4651    Ops[2] = getValue(I.getArgOperand(1));
4652    Ops[3] = getValue(I.getArgOperand(2));
4653    Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
4654    Ops[5] = DAG.getSrcValue(F);
4655
4656    Res = DAG.getNode(ISD::TRAMPOLINE, dl,
4657                      DAG.getVTList(TLI.getPointerTy(), MVT::Other),
4658                      Ops, 6);
4659
4660    setValue(&I, Res);
4661    DAG.setRoot(Res.getValue(1));
4662    return 0;
4663  }
4664  case Intrinsic::gcroot:
4665    if (GFI) {
4666      const Value *Alloca = I.getArgOperand(0);
4667      const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
4668
4669      FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
4670      GFI->addStackRoot(FI->getIndex(), TypeMap);
4671    }
4672    return 0;
4673  case Intrinsic::gcread:
4674  case Intrinsic::gcwrite:
4675    llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
4676    return 0;
4677  case Intrinsic::flt_rounds:
4678    setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, dl, MVT::i32));
4679    return 0;
4680  case Intrinsic::trap:
4681    DAG.setRoot(DAG.getNode(ISD::TRAP, dl,MVT::Other, getRoot()));
4682    return 0;
4683  case Intrinsic::uadd_with_overflow:
4684    return implVisitAluOverflow(I, ISD::UADDO);
4685  case Intrinsic::sadd_with_overflow:
4686    return implVisitAluOverflow(I, ISD::SADDO);
4687  case Intrinsic::usub_with_overflow:
4688    return implVisitAluOverflow(I, ISD::USUBO);
4689  case Intrinsic::ssub_with_overflow:
4690    return implVisitAluOverflow(I, ISD::SSUBO);
4691  case Intrinsic::umul_with_overflow:
4692    return implVisitAluOverflow(I, ISD::UMULO);
4693  case Intrinsic::smul_with_overflow:
4694    return implVisitAluOverflow(I, ISD::SMULO);
4695
4696  case Intrinsic::prefetch: {
4697    SDValue Ops[4];
4698    unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
4699    Ops[0] = getRoot();
4700    Ops[1] = getValue(I.getArgOperand(0));
4701    Ops[2] = getValue(I.getArgOperand(1));
4702    Ops[3] = getValue(I.getArgOperand(2));
4703    DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, dl,
4704                                        DAG.getVTList(MVT::Other),
4705                                        &Ops[0], 4,
4706                                        EVT::getIntegerVT(*Context, 8),
4707                                        MachinePointerInfo(I.getArgOperand(0)),
4708                                        0, /* align */
4709                                        false, /* volatile */
4710                                        rw==0, /* read */
4711                                        rw==1)); /* write */
4712    return 0;
4713  }
4714  case Intrinsic::memory_barrier: {
4715    SDValue Ops[6];
4716    Ops[0] = getRoot();
4717    for (int x = 1; x < 6; ++x)
4718      Ops[x] = getValue(I.getArgOperand(x - 1));
4719
4720    DAG.setRoot(DAG.getNode(ISD::MEMBARRIER, dl, MVT::Other, &Ops[0], 6));
4721    return 0;
4722  }
4723  case Intrinsic::atomic_cmp_swap: {
4724    SDValue Root = getRoot();
4725    SDValue L =
4726      DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, getCurDebugLoc(),
4727                    getValue(I.getArgOperand(1)).getValueType().getSimpleVT(),
4728                    Root,
4729                    getValue(I.getArgOperand(0)),
4730                    getValue(I.getArgOperand(1)),
4731                    getValue(I.getArgOperand(2)),
4732                    MachinePointerInfo(I.getArgOperand(0)));
4733    setValue(&I, L);
4734    DAG.setRoot(L.getValue(1));
4735    return 0;
4736  }
4737  case Intrinsic::atomic_load_add:
4738    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_ADD);
4739  case Intrinsic::atomic_load_sub:
4740    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_SUB);
4741  case Intrinsic::atomic_load_or:
4742    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_OR);
4743  case Intrinsic::atomic_load_xor:
4744    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_XOR);
4745  case Intrinsic::atomic_load_and:
4746    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_AND);
4747  case Intrinsic::atomic_load_nand:
4748    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_NAND);
4749  case Intrinsic::atomic_load_max:
4750    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MAX);
4751  case Intrinsic::atomic_load_min:
4752    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MIN);
4753  case Intrinsic::atomic_load_umin:
4754    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMIN);
4755  case Intrinsic::atomic_load_umax:
4756    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMAX);
4757  case Intrinsic::atomic_swap:
4758    return implVisitBinaryAtomic(I, ISD::ATOMIC_SWAP);
4759
4760  case Intrinsic::invariant_start:
4761  case Intrinsic::lifetime_start:
4762    // Discard region information.
4763    setValue(&I, DAG.getUNDEF(TLI.getPointerTy()));
4764    return 0;
4765  case Intrinsic::invariant_end:
4766  case Intrinsic::lifetime_end:
4767    // Discard region information.
4768    return 0;
4769  }
4770}
4771
4772void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee,
4773                                      bool isTailCall,
4774                                      MachineBasicBlock *LandingPad) {
4775  const PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
4776  const FunctionType *FTy = cast<FunctionType>(PT->getElementType());
4777  const Type *RetTy = FTy->getReturnType();
4778  MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4779  MCSymbol *BeginLabel = 0;
4780
4781  TargetLowering::ArgListTy Args;
4782  TargetLowering::ArgListEntry Entry;
4783  Args.reserve(CS.arg_size());
4784
4785  // Check whether the function can return without sret-demotion.
4786  SmallVector<ISD::OutputArg, 4> Outs;
4787  SmallVector<uint64_t, 4> Offsets;
4788  GetReturnInfo(RetTy, CS.getAttributes().getRetAttributes(),
4789                Outs, TLI, &Offsets);
4790
4791  bool CanLowerReturn = TLI.CanLowerReturn(CS.getCallingConv(),
4792                        FTy->isVarArg(), Outs, FTy->getContext());
4793
4794  SDValue DemoteStackSlot;
4795  int DemoteStackIdx = -100;
4796
4797  if (!CanLowerReturn) {
4798    uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(
4799                      FTy->getReturnType());
4800    unsigned Align  = TLI.getTargetData()->getPrefTypeAlignment(
4801                      FTy->getReturnType());
4802    MachineFunction &MF = DAG.getMachineFunction();
4803    DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
4804    const Type *StackSlotPtrType = PointerType::getUnqual(FTy->getReturnType());
4805
4806    DemoteStackSlot = DAG.getFrameIndex(DemoteStackIdx, TLI.getPointerTy());
4807    Entry.Node = DemoteStackSlot;
4808    Entry.Ty = StackSlotPtrType;
4809    Entry.isSExt = false;
4810    Entry.isZExt = false;
4811    Entry.isInReg = false;
4812    Entry.isSRet = true;
4813    Entry.isNest = false;
4814    Entry.isByVal = false;
4815    Entry.Alignment = Align;
4816    Args.push_back(Entry);
4817    RetTy = Type::getVoidTy(FTy->getContext());
4818  }
4819
4820  for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
4821       i != e; ++i) {
4822    SDValue ArgNode = getValue(*i);
4823    Entry.Node = ArgNode; Entry.Ty = (*i)->getType();
4824
4825    unsigned attrInd = i - CS.arg_begin() + 1;
4826    Entry.isSExt  = CS.paramHasAttr(attrInd, Attribute::SExt);
4827    Entry.isZExt  = CS.paramHasAttr(attrInd, Attribute::ZExt);
4828    Entry.isInReg = CS.paramHasAttr(attrInd, Attribute::InReg);
4829    Entry.isSRet  = CS.paramHasAttr(attrInd, Attribute::StructRet);
4830    Entry.isNest  = CS.paramHasAttr(attrInd, Attribute::Nest);
4831    Entry.isByVal = CS.paramHasAttr(attrInd, Attribute::ByVal);
4832    Entry.Alignment = CS.getParamAlignment(attrInd);
4833    Args.push_back(Entry);
4834  }
4835
4836  if (LandingPad) {
4837    // Insert a label before the invoke call to mark the try range.  This can be
4838    // used to detect deletion of the invoke via the MachineModuleInfo.
4839    BeginLabel = MMI.getContext().CreateTempSymbol();
4840
4841    // For SjLj, keep track of which landing pads go with which invokes
4842    // so as to maintain the ordering of pads in the LSDA.
4843    unsigned CallSiteIndex = MMI.getCurrentCallSite();
4844    if (CallSiteIndex) {
4845      MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
4846      // Now that the call site is handled, stop tracking it.
4847      MMI.setCurrentCallSite(0);
4848    }
4849
4850    // Both PendingLoads and PendingExports must be flushed here;
4851    // this call might not return.
4852    (void)getRoot();
4853    DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getControlRoot(), BeginLabel));
4854  }
4855
4856  // Check if target-independent constraints permit a tail call here.
4857  // Target-dependent constraints are checked within TLI.LowerCallTo.
4858  if (isTailCall &&
4859      !isInTailCallPosition(CS, CS.getAttributes().getRetAttributes(), TLI))
4860    isTailCall = false;
4861
4862  // If there's a possibility that fast-isel has already selected some amount
4863  // of the current basic block, don't emit a tail call.
4864  if (isTailCall && EnableFastISel)
4865    isTailCall = false;
4866
4867  std::pair<SDValue,SDValue> Result =
4868    TLI.LowerCallTo(getRoot(), RetTy,
4869                    CS.paramHasAttr(0, Attribute::SExt),
4870                    CS.paramHasAttr(0, Attribute::ZExt), FTy->isVarArg(),
4871                    CS.paramHasAttr(0, Attribute::InReg), FTy->getNumParams(),
4872                    CS.getCallingConv(),
4873                    isTailCall,
4874                    !CS.getInstruction()->use_empty(),
4875                    Callee, Args, DAG, getCurDebugLoc());
4876  assert((isTailCall || Result.second.getNode()) &&
4877         "Non-null chain expected with non-tail call!");
4878  assert((Result.second.getNode() || !Result.first.getNode()) &&
4879         "Null value expected with tail call!");
4880  if (Result.first.getNode()) {
4881    setValue(CS.getInstruction(), Result.first);
4882  } else if (!CanLowerReturn && Result.second.getNode()) {
4883    // The instruction result is the result of loading from the
4884    // hidden sret parameter.
4885    SmallVector<EVT, 1> PVTs;
4886    const Type *PtrRetTy = PointerType::getUnqual(FTy->getReturnType());
4887
4888    ComputeValueVTs(TLI, PtrRetTy, PVTs);
4889    assert(PVTs.size() == 1 && "Pointers should fit in one register");
4890    EVT PtrVT = PVTs[0];
4891    unsigned NumValues = Outs.size();
4892    SmallVector<SDValue, 4> Values(NumValues);
4893    SmallVector<SDValue, 4> Chains(NumValues);
4894
4895    for (unsigned i = 0; i < NumValues; ++i) {
4896      SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT,
4897                                DemoteStackSlot,
4898                                DAG.getConstant(Offsets[i], PtrVT));
4899      SDValue L = DAG.getLoad(Outs[i].VT, getCurDebugLoc(), Result.second,
4900                              Add,
4901                  MachinePointerInfo::getFixedStack(DemoteStackIdx, Offsets[i]),
4902                              false, false, 1);
4903      Values[i] = L;
4904      Chains[i] = L.getValue(1);
4905    }
4906
4907    SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
4908                                MVT::Other, &Chains[0], NumValues);
4909    PendingLoads.push_back(Chain);
4910
4911    // Collect the legal value parts into potentially illegal values
4912    // that correspond to the original function's return values.
4913    SmallVector<EVT, 4> RetTys;
4914    RetTy = FTy->getReturnType();
4915    ComputeValueVTs(TLI, RetTy, RetTys);
4916    ISD::NodeType AssertOp = ISD::DELETED_NODE;
4917    SmallVector<SDValue, 4> ReturnValues;
4918    unsigned CurReg = 0;
4919    for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
4920      EVT VT = RetTys[I];
4921      EVT RegisterVT = TLI.getRegisterType(RetTy->getContext(), VT);
4922      unsigned NumRegs = TLI.getNumRegisters(RetTy->getContext(), VT);
4923
4924      SDValue ReturnValue =
4925        getCopyFromParts(DAG, getCurDebugLoc(), &Values[CurReg], NumRegs,
4926                         RegisterVT, VT, AssertOp);
4927      ReturnValues.push_back(ReturnValue);
4928      CurReg += NumRegs;
4929    }
4930
4931    setValue(CS.getInstruction(),
4932             DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
4933                         DAG.getVTList(&RetTys[0], RetTys.size()),
4934                         &ReturnValues[0], ReturnValues.size()));
4935
4936  }
4937
4938  // As a special case, a null chain means that a tail call has been emitted and
4939  // the DAG root is already updated.
4940  if (Result.second.getNode())
4941    DAG.setRoot(Result.second);
4942  else
4943    HasTailCall = true;
4944
4945  if (LandingPad) {
4946    // Insert a label at the end of the invoke call to mark the try range.  This
4947    // can be used to detect deletion of the invoke via the MachineModuleInfo.
4948    MCSymbol *EndLabel = MMI.getContext().CreateTempSymbol();
4949    DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getRoot(), EndLabel));
4950
4951    // Inform MachineModuleInfo of range.
4952    MMI.addInvoke(LandingPad, BeginLabel, EndLabel);
4953  }
4954}
4955
4956/// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the
4957/// value is equal or not-equal to zero.
4958static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) {
4959  for (Value::const_use_iterator UI = V->use_begin(), E = V->use_end();
4960       UI != E; ++UI) {
4961    if (const ICmpInst *IC = dyn_cast<ICmpInst>(*UI))
4962      if (IC->isEquality())
4963        if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
4964          if (C->isNullValue())
4965            continue;
4966    // Unknown instruction.
4967    return false;
4968  }
4969  return true;
4970}
4971
4972static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
4973                             const Type *LoadTy,
4974                             SelectionDAGBuilder &Builder) {
4975
4976  // Check to see if this load can be trivially constant folded, e.g. if the
4977  // input is from a string literal.
4978  if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
4979    // Cast pointer to the type we really want to load.
4980    LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
4981                                         PointerType::getUnqual(LoadTy));
4982
4983    if (const Constant *LoadCst =
4984          ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput),
4985                                       Builder.TD))
4986      return Builder.getValue(LoadCst);
4987  }
4988
4989  // Otherwise, we have to emit the load.  If the pointer is to unfoldable but
4990  // still constant memory, the input chain can be the entry node.
4991  SDValue Root;
4992  bool ConstantMemory = false;
4993
4994  // Do not serialize (non-volatile) loads of constant memory with anything.
4995  if (Builder.AA->pointsToConstantMemory(PtrVal)) {
4996    Root = Builder.DAG.getEntryNode();
4997    ConstantMemory = true;
4998  } else {
4999    // Do not serialize non-volatile loads against each other.
5000    Root = Builder.DAG.getRoot();
5001  }
5002
5003  SDValue Ptr = Builder.getValue(PtrVal);
5004  SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurDebugLoc(), Root,
5005                                        Ptr, MachinePointerInfo(PtrVal),
5006                                        false /*volatile*/,
5007                                        false /*nontemporal*/, 1 /* align=1 */);
5008
5009  if (!ConstantMemory)
5010    Builder.PendingLoads.push_back(LoadVal.getValue(1));
5011  return LoadVal;
5012}
5013
5014
5015/// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form.
5016/// If so, return true and lower it, otherwise return false and it will be
5017/// lowered like a normal call.
5018bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) {
5019  // Verify that the prototype makes sense.  int memcmp(void*,void*,size_t)
5020  if (I.getNumArgOperands() != 3)
5021    return false;
5022
5023  const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
5024  if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() ||
5025      !I.getArgOperand(2)->getType()->isIntegerTy() ||
5026      !I.getType()->isIntegerTy())
5027    return false;
5028
5029  const ConstantInt *Size = dyn_cast<ConstantInt>(I.getArgOperand(2));
5030
5031  // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0
5032  // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0
5033  if (Size && IsOnlyUsedInZeroEqualityComparison(&I)) {
5034    bool ActuallyDoIt = true;
5035    MVT LoadVT;
5036    const Type *LoadTy;
5037    switch (Size->getZExtValue()) {
5038    default:
5039      LoadVT = MVT::Other;
5040      LoadTy = 0;
5041      ActuallyDoIt = false;
5042      break;
5043    case 2:
5044      LoadVT = MVT::i16;
5045      LoadTy = Type::getInt16Ty(Size->getContext());
5046      break;
5047    case 4:
5048      LoadVT = MVT::i32;
5049      LoadTy = Type::getInt32Ty(Size->getContext());
5050      break;
5051    case 8:
5052      LoadVT = MVT::i64;
5053      LoadTy = Type::getInt64Ty(Size->getContext());
5054      break;
5055        /*
5056    case 16:
5057      LoadVT = MVT::v4i32;
5058      LoadTy = Type::getInt32Ty(Size->getContext());
5059      LoadTy = VectorType::get(LoadTy, 4);
5060      break;
5061         */
5062    }
5063
5064    // This turns into unaligned loads.  We only do this if the target natively
5065    // supports the MVT we'll be loading or if it is small enough (<= 4) that
5066    // we'll only produce a small number of byte loads.
5067
5068    // Require that we can find a legal MVT, and only do this if the target
5069    // supports unaligned loads of that type.  Expanding into byte loads would
5070    // bloat the code.
5071    if (ActuallyDoIt && Size->getZExtValue() > 4) {
5072      // TODO: Handle 5 byte compare as 4-byte + 1 byte.
5073      // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
5074      if (!TLI.isTypeLegal(LoadVT) ||!TLI.allowsUnalignedMemoryAccesses(LoadVT))
5075        ActuallyDoIt = false;
5076    }
5077
5078    if (ActuallyDoIt) {
5079      SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this);
5080      SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this);
5081
5082      SDValue Res = DAG.getSetCC(getCurDebugLoc(), MVT::i1, LHSVal, RHSVal,
5083                                 ISD::SETNE);
5084      EVT CallVT = TLI.getValueType(I.getType(), true);
5085      setValue(&I, DAG.getZExtOrTrunc(Res, getCurDebugLoc(), CallVT));
5086      return true;
5087    }
5088  }
5089
5090
5091  return false;
5092}
5093
5094
5095void SelectionDAGBuilder::visitCall(const CallInst &I) {
5096  // Handle inline assembly differently.
5097  if (isa<InlineAsm>(I.getCalledValue())) {
5098    visitInlineAsm(&I);
5099    return;
5100  }
5101
5102  // See if any floating point values are being passed to this function. This is
5103  // used to emit an undefined reference to fltused on Windows.
5104  const FunctionType *FT =
5105    cast<FunctionType>(I.getCalledValue()->getType()->getContainedType(0));
5106  MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
5107  if (FT->isVarArg() &&
5108      !MMI.callsExternalVAFunctionWithFloatingPointArguments()) {
5109    for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
5110      const Type* T = I.getArgOperand(i)->getType();
5111      for (po_iterator<const Type*> i = po_begin(T), e = po_end(T);
5112           i != e; ++i) {
5113        if (!i->isFloatingPointTy()) continue;
5114        MMI.setCallsExternalVAFunctionWithFloatingPointArguments(true);
5115        break;
5116      }
5117    }
5118  }
5119
5120  const char *RenameFn = 0;
5121  if (Function *F = I.getCalledFunction()) {
5122    if (F->isDeclaration()) {
5123      if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) {
5124        if (unsigned IID = II->getIntrinsicID(F)) {
5125          RenameFn = visitIntrinsicCall(I, IID);
5126          if (!RenameFn)
5127            return;
5128        }
5129      }
5130      if (unsigned IID = F->getIntrinsicID()) {
5131        RenameFn = visitIntrinsicCall(I, IID);
5132        if (!RenameFn)
5133          return;
5134      }
5135    }
5136
5137    // Check for well-known libc/libm calls.  If the function is internal, it
5138    // can't be a library call.
5139    if (!F->hasLocalLinkage() && F->hasName()) {
5140      StringRef Name = F->getName();
5141      if (Name == "copysign" || Name == "copysignf" || Name == "copysignl") {
5142        if (I.getNumArgOperands() == 2 &&   // Basic sanity checks.
5143            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5144            I.getType() == I.getArgOperand(0)->getType() &&
5145            I.getType() == I.getArgOperand(1)->getType()) {
5146          SDValue LHS = getValue(I.getArgOperand(0));
5147          SDValue RHS = getValue(I.getArgOperand(1));
5148          setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurDebugLoc(),
5149                                   LHS.getValueType(), LHS, RHS));
5150          return;
5151        }
5152      } else if (Name == "fabs" || Name == "fabsf" || Name == "fabsl") {
5153        if (I.getNumArgOperands() == 1 &&   // Basic sanity checks.
5154            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5155            I.getType() == I.getArgOperand(0)->getType()) {
5156          SDValue Tmp = getValue(I.getArgOperand(0));
5157          setValue(&I, DAG.getNode(ISD::FABS, getCurDebugLoc(),
5158                                   Tmp.getValueType(), Tmp));
5159          return;
5160        }
5161      } else if (Name == "sin" || Name == "sinf" || Name == "sinl") {
5162        if (I.getNumArgOperands() == 1 &&   // Basic sanity checks.
5163            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5164            I.getType() == I.getArgOperand(0)->getType() &&
5165            I.onlyReadsMemory()) {
5166          SDValue Tmp = getValue(I.getArgOperand(0));
5167          setValue(&I, DAG.getNode(ISD::FSIN, getCurDebugLoc(),
5168                                   Tmp.getValueType(), Tmp));
5169          return;
5170        }
5171      } else if (Name == "cos" || Name == "cosf" || Name == "cosl") {
5172        if (I.getNumArgOperands() == 1 &&   // Basic sanity checks.
5173            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5174            I.getType() == I.getArgOperand(0)->getType() &&
5175            I.onlyReadsMemory()) {
5176          SDValue Tmp = getValue(I.getArgOperand(0));
5177          setValue(&I, DAG.getNode(ISD::FCOS, getCurDebugLoc(),
5178                                   Tmp.getValueType(), Tmp));
5179          return;
5180        }
5181      } else if (Name == "sqrt" || Name == "sqrtf" || Name == "sqrtl") {
5182        if (I.getNumArgOperands() == 1 &&   // Basic sanity checks.
5183            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5184            I.getType() == I.getArgOperand(0)->getType() &&
5185            I.onlyReadsMemory()) {
5186          SDValue Tmp = getValue(I.getArgOperand(0));
5187          setValue(&I, DAG.getNode(ISD::FSQRT, getCurDebugLoc(),
5188                                   Tmp.getValueType(), Tmp));
5189          return;
5190        }
5191      } else if (Name == "memcmp") {
5192        if (visitMemCmpCall(I))
5193          return;
5194      }
5195    }
5196  }
5197
5198  SDValue Callee;
5199  if (!RenameFn)
5200    Callee = getValue(I.getCalledValue());
5201  else
5202    Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy());
5203
5204  // Check if we can potentially perform a tail call. More detailed checking is
5205  // be done within LowerCallTo, after more information about the call is known.
5206  LowerCallTo(&I, Callee, I.isTailCall());
5207}
5208
5209namespace llvm {
5210
5211/// AsmOperandInfo - This contains information for each constraint that we are
5212/// lowering.
5213class LLVM_LIBRARY_VISIBILITY SDISelAsmOperandInfo :
5214    public TargetLowering::AsmOperandInfo {
5215public:
5216  /// CallOperand - If this is the result output operand or a clobber
5217  /// this is null, otherwise it is the incoming operand to the CallInst.
5218  /// This gets modified as the asm is processed.
5219  SDValue CallOperand;
5220
5221  /// AssignedRegs - If this is a register or register class operand, this
5222  /// contains the set of register corresponding to the operand.
5223  RegsForValue AssignedRegs;
5224
5225  explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
5226    : TargetLowering::AsmOperandInfo(info), CallOperand(0,0) {
5227  }
5228
5229  /// MarkAllocatedRegs - Once AssignedRegs is set, mark the assigned registers
5230  /// busy in OutputRegs/InputRegs.
5231  void MarkAllocatedRegs(bool isOutReg, bool isInReg,
5232                         std::set<unsigned> &OutputRegs,
5233                         std::set<unsigned> &InputRegs,
5234                         const TargetRegisterInfo &TRI) const {
5235    if (isOutReg) {
5236      for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i)
5237        MarkRegAndAliases(AssignedRegs.Regs[i], OutputRegs, TRI);
5238    }
5239    if (isInReg) {
5240      for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i)
5241        MarkRegAndAliases(AssignedRegs.Regs[i], InputRegs, TRI);
5242    }
5243  }
5244
5245  /// getCallOperandValEVT - Return the EVT of the Value* that this operand
5246  /// corresponds to.  If there is no Value* for this operand, it returns
5247  /// MVT::Other.
5248  EVT getCallOperandValEVT(LLVMContext &Context,
5249                           const TargetLowering &TLI,
5250                           const TargetData *TD) const {
5251    if (CallOperandVal == 0) return MVT::Other;
5252
5253    if (isa<BasicBlock>(CallOperandVal))
5254      return TLI.getPointerTy();
5255
5256    const llvm::Type *OpTy = CallOperandVal->getType();
5257
5258    // If this is an indirect operand, the operand is a pointer to the
5259    // accessed type.
5260    if (isIndirect) {
5261      const llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
5262      if (!PtrTy)
5263        report_fatal_error("Indirect operand for inline asm not a pointer!");
5264      OpTy = PtrTy->getElementType();
5265    }
5266
5267    // If OpTy is not a single value, it may be a struct/union that we
5268    // can tile with integers.
5269    if (!OpTy->isSingleValueType() && OpTy->isSized()) {
5270      unsigned BitSize = TD->getTypeSizeInBits(OpTy);
5271      switch (BitSize) {
5272      default: break;
5273      case 1:
5274      case 8:
5275      case 16:
5276      case 32:
5277      case 64:
5278      case 128:
5279        OpTy = IntegerType::get(Context, BitSize);
5280        break;
5281      }
5282    }
5283
5284    return TLI.getValueType(OpTy, true);
5285  }
5286
5287private:
5288  /// MarkRegAndAliases - Mark the specified register and all aliases in the
5289  /// specified set.
5290  static void MarkRegAndAliases(unsigned Reg, std::set<unsigned> &Regs,
5291                                const TargetRegisterInfo &TRI) {
5292    assert(TargetRegisterInfo::isPhysicalRegister(Reg) && "Isn't a physreg");
5293    Regs.insert(Reg);
5294    if (const unsigned *Aliases = TRI.getAliasSet(Reg))
5295      for (; *Aliases; ++Aliases)
5296        Regs.insert(*Aliases);
5297  }
5298};
5299
5300typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector;
5301
5302} // end llvm namespace.
5303
5304/// isAllocatableRegister - If the specified register is safe to allocate,
5305/// i.e. it isn't a stack pointer or some other special register, return the
5306/// register class for the register.  Otherwise, return null.
5307static const TargetRegisterClass *
5308isAllocatableRegister(unsigned Reg, MachineFunction &MF,
5309                      const TargetLowering &TLI,
5310                      const TargetRegisterInfo *TRI) {
5311  EVT FoundVT = MVT::Other;
5312  const TargetRegisterClass *FoundRC = 0;
5313  for (TargetRegisterInfo::regclass_iterator RCI = TRI->regclass_begin(),
5314       E = TRI->regclass_end(); RCI != E; ++RCI) {
5315    EVT ThisVT = MVT::Other;
5316
5317    const TargetRegisterClass *RC = *RCI;
5318    // If none of the value types for this register class are valid, we
5319    // can't use it.  For example, 64-bit reg classes on 32-bit targets.
5320    for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
5321         I != E; ++I) {
5322      if (TLI.isTypeLegal(*I)) {
5323        // If we have already found this register in a different register class,
5324        // choose the one with the largest VT specified.  For example, on
5325        // PowerPC, we favor f64 register classes over f32.
5326        if (FoundVT == MVT::Other || FoundVT.bitsLT(*I)) {
5327          ThisVT = *I;
5328          break;
5329        }
5330      }
5331    }
5332
5333    if (ThisVT == MVT::Other) continue;
5334
5335    // NOTE: This isn't ideal.  In particular, this might allocate the
5336    // frame pointer in functions that need it (due to them not being taken
5337    // out of allocation, because a variable sized allocation hasn't been seen
5338    // yet).  This is a slight code pessimization, but should still work.
5339    for (TargetRegisterClass::iterator I = RC->allocation_order_begin(MF),
5340         E = RC->allocation_order_end(MF); I != E; ++I)
5341      if (*I == Reg) {
5342        // We found a matching register class.  Keep looking at others in case
5343        // we find one with larger registers that this physreg is also in.
5344        FoundRC = RC;
5345        FoundVT = ThisVT;
5346        break;
5347      }
5348  }
5349  return FoundRC;
5350}
5351
5352/// GetRegistersForValue - Assign registers (virtual or physical) for the
5353/// specified operand.  We prefer to assign virtual registers, to allow the
5354/// register allocator to handle the assignment process.  However, if the asm
5355/// uses features that we can't model on machineinstrs, we have SDISel do the
5356/// allocation.  This produces generally horrible, but correct, code.
5357///
5358///   OpInfo describes the operand.
5359///   Input and OutputRegs are the set of already allocated physical registers.
5360///
5361void SelectionDAGBuilder::
5362GetRegistersForValue(SDISelAsmOperandInfo &OpInfo,
5363                     std::set<unsigned> &OutputRegs,
5364                     std::set<unsigned> &InputRegs) {
5365  LLVMContext &Context = FuncInfo.Fn->getContext();
5366
5367  // Compute whether this value requires an input register, an output register,
5368  // or both.
5369  bool isOutReg = false;
5370  bool isInReg = false;
5371  switch (OpInfo.Type) {
5372  case InlineAsm::isOutput:
5373    isOutReg = true;
5374
5375    // If there is an input constraint that matches this, we need to reserve
5376    // the input register so no other inputs allocate to it.
5377    isInReg = OpInfo.hasMatchingInput();
5378    break;
5379  case InlineAsm::isInput:
5380    isInReg = true;
5381    isOutReg = false;
5382    break;
5383  case InlineAsm::isClobber:
5384    isOutReg = true;
5385    isInReg = true;
5386    break;
5387  }
5388
5389
5390  MachineFunction &MF = DAG.getMachineFunction();
5391  SmallVector<unsigned, 4> Regs;
5392
5393  // If this is a constraint for a single physreg, or a constraint for a
5394  // register class, find it.
5395  std::pair<unsigned, const TargetRegisterClass*> PhysReg =
5396    TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
5397                                     OpInfo.ConstraintVT);
5398
5399  unsigned NumRegs = 1;
5400  if (OpInfo.ConstraintVT != MVT::Other) {
5401    // If this is a FP input in an integer register (or visa versa) insert a bit
5402    // cast of the input value.  More generally, handle any case where the input
5403    // value disagrees with the register class we plan to stick this in.
5404    if (OpInfo.Type == InlineAsm::isInput &&
5405        PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) {
5406      // Try to convert to the first EVT that the reg class contains.  If the
5407      // types are identical size, use a bitcast to convert (e.g. two differing
5408      // vector types).
5409      EVT RegVT = *PhysReg.second->vt_begin();
5410      if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) {
5411        OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, getCurDebugLoc(),
5412                                         RegVT, OpInfo.CallOperand);
5413        OpInfo.ConstraintVT = RegVT;
5414      } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
5415        // If the input is a FP value and we want it in FP registers, do a
5416        // bitcast to the corresponding integer type.  This turns an f64 value
5417        // into i64, which can be passed with two i32 values on a 32-bit
5418        // machine.
5419        RegVT = EVT::getIntegerVT(Context,
5420                                  OpInfo.ConstraintVT.getSizeInBits());
5421        OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, getCurDebugLoc(),
5422                                         RegVT, OpInfo.CallOperand);
5423        OpInfo.ConstraintVT = RegVT;
5424      }
5425    }
5426
5427    NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT);
5428  }
5429
5430  EVT RegVT;
5431  EVT ValueVT = OpInfo.ConstraintVT;
5432
5433  // If this is a constraint for a specific physical register, like {r17},
5434  // assign it now.
5435  if (unsigned AssignedReg = PhysReg.first) {
5436    const TargetRegisterClass *RC = PhysReg.second;
5437    if (OpInfo.ConstraintVT == MVT::Other)
5438      ValueVT = *RC->vt_begin();
5439
5440    // Get the actual register value type.  This is important, because the user
5441    // may have asked for (e.g.) the AX register in i32 type.  We need to
5442    // remember that AX is actually i16 to get the right extension.
5443    RegVT = *RC->vt_begin();
5444
5445    // This is a explicit reference to a physical register.
5446    Regs.push_back(AssignedReg);
5447
5448    // If this is an expanded reference, add the rest of the regs to Regs.
5449    if (NumRegs != 1) {
5450      TargetRegisterClass::iterator I = RC->begin();
5451      for (; *I != AssignedReg; ++I)
5452        assert(I != RC->end() && "Didn't find reg!");
5453
5454      // Already added the first reg.
5455      --NumRegs; ++I;
5456      for (; NumRegs; --NumRegs, ++I) {
5457        assert(I != RC->end() && "Ran out of registers to allocate!");
5458        Regs.push_back(*I);
5459      }
5460    }
5461
5462    OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
5463    const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
5464    OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI);
5465    return;
5466  }
5467
5468  // Otherwise, if this was a reference to an LLVM register class, create vregs
5469  // for this reference.
5470  if (const TargetRegisterClass *RC = PhysReg.second) {
5471    RegVT = *RC->vt_begin();
5472    if (OpInfo.ConstraintVT == MVT::Other)
5473      ValueVT = RegVT;
5474
5475    // Create the appropriate number of virtual registers.
5476    MachineRegisterInfo &RegInfo = MF.getRegInfo();
5477    for (; NumRegs; --NumRegs)
5478      Regs.push_back(RegInfo.createVirtualRegister(RC));
5479
5480    OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
5481    return;
5482  }
5483
5484  // This is a reference to a register class that doesn't directly correspond
5485  // to an LLVM register class.  Allocate NumRegs consecutive, available,
5486  // registers from the class.
5487  std::vector<unsigned> RegClassRegs
5488    = TLI.getRegClassForInlineAsmConstraint(OpInfo.ConstraintCode,
5489                                            OpInfo.ConstraintVT);
5490
5491  const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
5492  unsigned NumAllocated = 0;
5493  for (unsigned i = 0, e = RegClassRegs.size(); i != e; ++i) {
5494    unsigned Reg = RegClassRegs[i];
5495    // See if this register is available.
5496    if ((isOutReg && OutputRegs.count(Reg)) ||   // Already used.
5497        (isInReg  && InputRegs.count(Reg))) {    // Already used.
5498      // Make sure we find consecutive registers.
5499      NumAllocated = 0;
5500      continue;
5501    }
5502
5503    // Check to see if this register is allocatable (i.e. don't give out the
5504    // stack pointer).
5505    const TargetRegisterClass *RC = isAllocatableRegister(Reg, MF, TLI, TRI);
5506    if (!RC) {        // Couldn't allocate this register.
5507      // Reset NumAllocated to make sure we return consecutive registers.
5508      NumAllocated = 0;
5509      continue;
5510    }
5511
5512    // Okay, this register is good, we can use it.
5513    ++NumAllocated;
5514
5515    // If we allocated enough consecutive registers, succeed.
5516    if (NumAllocated == NumRegs) {
5517      unsigned RegStart = (i-NumAllocated)+1;
5518      unsigned RegEnd   = i+1;
5519      // Mark all of the allocated registers used.
5520      for (unsigned i = RegStart; i != RegEnd; ++i)
5521        Regs.push_back(RegClassRegs[i]);
5522
5523      OpInfo.AssignedRegs = RegsForValue(Regs, *RC->vt_begin(),
5524                                         OpInfo.ConstraintVT);
5525      OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI);
5526      return;
5527    }
5528  }
5529
5530  // Otherwise, we couldn't allocate enough registers for this.
5531}
5532
5533/// visitInlineAsm - Handle a call to an InlineAsm object.
5534///
5535void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) {
5536  const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
5537
5538  /// ConstraintOperands - Information about all of the constraints.
5539  SDISelAsmOperandInfoVector ConstraintOperands;
5540
5541  std::set<unsigned> OutputRegs, InputRegs;
5542
5543  TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints(CS);
5544  bool hasMemory = false;
5545
5546  unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
5547  unsigned ResNo = 0;   // ResNo - The result number of the next output.
5548  for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
5549    ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i]));
5550    SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
5551
5552    EVT OpVT = MVT::Other;
5553
5554    // Compute the value type for each operand.
5555    switch (OpInfo.Type) {
5556    case InlineAsm::isOutput:
5557      // Indirect outputs just consume an argument.
5558      if (OpInfo.isIndirect) {
5559        OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
5560        break;
5561      }
5562
5563      // The return value of the call is this value.  As such, there is no
5564      // corresponding argument.
5565      assert(!CS.getType()->isVoidTy() &&
5566             "Bad inline asm!");
5567      if (const StructType *STy = dyn_cast<StructType>(CS.getType())) {
5568        OpVT = TLI.getValueType(STy->getElementType(ResNo));
5569      } else {
5570        assert(ResNo == 0 && "Asm only has one result!");
5571        OpVT = TLI.getValueType(CS.getType());
5572      }
5573      ++ResNo;
5574      break;
5575    case InlineAsm::isInput:
5576      OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
5577      break;
5578    case InlineAsm::isClobber:
5579      // Nothing to do.
5580      break;
5581    }
5582
5583    // If this is an input or an indirect output, process the call argument.
5584    // BasicBlocks are labels, currently appearing only in asm's.
5585    if (OpInfo.CallOperandVal) {
5586      if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) {
5587        OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
5588      } else {
5589        OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
5590      }
5591
5592      OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, TD);
5593    }
5594
5595    OpInfo.ConstraintVT = OpVT;
5596
5597    // Indirect operand accesses access memory.
5598    if (OpInfo.isIndirect)
5599      hasMemory = true;
5600    else {
5601      for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) {
5602        TargetLowering::ConstraintType CType = TLI.getConstraintType(OpInfo.Codes[j]);
5603        if (CType == TargetLowering::C_Memory) {
5604          hasMemory = true;
5605          break;
5606        }
5607      }
5608    }
5609  }
5610
5611  SDValue Chain, Flag;
5612
5613  // We won't need to flush pending loads if this asm doesn't touch
5614  // memory and is nonvolatile.
5615  if (hasMemory || IA->hasSideEffects())
5616    Chain = getRoot();
5617  else
5618    Chain = DAG.getRoot();
5619
5620  // Second pass over the constraints: compute which constraint option to use
5621  // and assign registers to constraints that want a specific physreg.
5622  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
5623    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
5624
5625    // If this is an output operand with a matching input operand, look up the
5626    // matching input. If their types mismatch, e.g. one is an integer, the
5627    // other is floating point, or their sizes are different, flag it as an
5628    // error.
5629    if (OpInfo.hasMatchingInput()) {
5630      SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
5631
5632      if (OpInfo.ConstraintVT != Input.ConstraintVT) {
5633        if ((OpInfo.ConstraintVT.isInteger() !=
5634             Input.ConstraintVT.isInteger()) ||
5635            (OpInfo.ConstraintVT.getSizeInBits() !=
5636             Input.ConstraintVT.getSizeInBits())) {
5637          report_fatal_error("Unsupported asm: input constraint"
5638                             " with a matching output constraint of"
5639                             " incompatible type!");
5640        }
5641        Input.ConstraintVT = OpInfo.ConstraintVT;
5642      }
5643    }
5644
5645    // Compute the constraint code and ConstraintType to use.
5646    TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
5647
5648    // If this is a memory input, and if the operand is not indirect, do what we
5649    // need to to provide an address for the memory input.
5650    if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
5651        !OpInfo.isIndirect) {
5652      assert((OpInfo.isMultipleAlternative || (OpInfo.Type == InlineAsm::isInput)) &&
5653             "Can only indirectify direct input operands!");
5654
5655      // Memory operands really want the address of the value.  If we don't have
5656      // an indirect input, put it in the constpool if we can, otherwise spill
5657      // it to a stack slot.
5658
5659      // If the operand is a float, integer, or vector constant, spill to a
5660      // constant pool entry to get its address.
5661      const Value *OpVal = OpInfo.CallOperandVal;
5662      if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
5663          isa<ConstantVector>(OpVal)) {
5664        OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal),
5665                                                 TLI.getPointerTy());
5666      } else {
5667        // Otherwise, create a stack slot and emit a store to it before the
5668        // asm.
5669        const Type *Ty = OpVal->getType();
5670        uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty);
5671        unsigned Align  = TLI.getTargetData()->getPrefTypeAlignment(Ty);
5672        MachineFunction &MF = DAG.getMachineFunction();
5673        int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
5674        SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy());
5675        Chain = DAG.getStore(Chain, getCurDebugLoc(),
5676                             OpInfo.CallOperand, StackSlot,
5677                             MachinePointerInfo::getFixedStack(SSFI),
5678                             false, false, 0);
5679        OpInfo.CallOperand = StackSlot;
5680      }
5681
5682      // There is no longer a Value* corresponding to this operand.
5683      OpInfo.CallOperandVal = 0;
5684
5685      // It is now an indirect operand.
5686      OpInfo.isIndirect = true;
5687    }
5688
5689    // If this constraint is for a specific register, allocate it before
5690    // anything else.
5691    if (OpInfo.ConstraintType == TargetLowering::C_Register)
5692      GetRegistersForValue(OpInfo, OutputRegs, InputRegs);
5693  }
5694
5695  // Second pass - Loop over all of the operands, assigning virtual or physregs
5696  // to register class operands.
5697  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
5698    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
5699
5700    // C_Register operands have already been allocated, Other/Memory don't need
5701    // to be.
5702    if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass)
5703      GetRegistersForValue(OpInfo, OutputRegs, InputRegs);
5704  }
5705
5706  // AsmNodeOperands - The operands for the ISD::INLINEASM node.
5707  std::vector<SDValue> AsmNodeOperands;
5708  AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
5709  AsmNodeOperands.push_back(
5710          DAG.getTargetExternalSymbol(IA->getAsmString().c_str(),
5711                                      TLI.getPointerTy()));
5712
5713  // If we have a !srcloc metadata node associated with it, we want to attach
5714  // this to the ultimately generated inline asm machineinstr.  To do this, we
5715  // pass in the third operand as this (potentially null) inline asm MDNode.
5716  const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc");
5717  AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
5718
5719  // Remember the HasSideEffect and AlignStack bits as operand 3.
5720  unsigned ExtraInfo = 0;
5721  if (IA->hasSideEffects())
5722    ExtraInfo |= InlineAsm::Extra_HasSideEffects;
5723  if (IA->isAlignStack())
5724    ExtraInfo |= InlineAsm::Extra_IsAlignStack;
5725  AsmNodeOperands.push_back(DAG.getTargetConstant(ExtraInfo,
5726                                                  TLI.getPointerTy()));
5727
5728  // Loop over all of the inputs, copying the operand values into the
5729  // appropriate registers and processing the output regs.
5730  RegsForValue RetValRegs;
5731
5732  // IndirectStoresToEmit - The set of stores to emit after the inline asm node.
5733  std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit;
5734
5735  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
5736    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
5737
5738    switch (OpInfo.Type) {
5739    case InlineAsm::isOutput: {
5740      if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass &&
5741          OpInfo.ConstraintType != TargetLowering::C_Register) {
5742        // Memory output, or 'other' output (e.g. 'X' constraint).
5743        assert(OpInfo.isIndirect && "Memory output must be indirect operand");
5744
5745        // Add information to the INLINEASM node to know about this output.
5746        unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
5747        AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags,
5748                                                        TLI.getPointerTy()));
5749        AsmNodeOperands.push_back(OpInfo.CallOperand);
5750        break;
5751      }
5752
5753      // Otherwise, this is a register or register class output.
5754
5755      // Copy the output from the appropriate register.  Find a register that
5756      // we can use.
5757      if (OpInfo.AssignedRegs.Regs.empty())
5758        report_fatal_error("Couldn't allocate output reg for constraint '" +
5759                           Twine(OpInfo.ConstraintCode) + "'!");
5760
5761      // If this is an indirect operand, store through the pointer after the
5762      // asm.
5763      if (OpInfo.isIndirect) {
5764        IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs,
5765                                                      OpInfo.CallOperandVal));
5766      } else {
5767        // This is the result value of the call.
5768        assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
5769        // Concatenate this output onto the outputs list.
5770        RetValRegs.append(OpInfo.AssignedRegs);
5771      }
5772
5773      // Add information to the INLINEASM node to know that this register is
5774      // set.
5775      OpInfo.AssignedRegs.AddInlineAsmOperands(OpInfo.isEarlyClobber ?
5776                                           InlineAsm::Kind_RegDefEarlyClobber :
5777                                               InlineAsm::Kind_RegDef,
5778                                               false,
5779                                               0,
5780                                               DAG,
5781                                               AsmNodeOperands);
5782      break;
5783    }
5784    case InlineAsm::isInput: {
5785      SDValue InOperandVal = OpInfo.CallOperand;
5786
5787      if (OpInfo.isMatchingInputConstraint()) {   // Matching constraint?
5788        // If this is required to match an output register we have already set,
5789        // just use its register.
5790        unsigned OperandNo = OpInfo.getMatchedOperand();
5791
5792        // Scan until we find the definition we already emitted of this operand.
5793        // When we find it, create a RegsForValue operand.
5794        unsigned CurOp = InlineAsm::Op_FirstOperand;
5795        for (; OperandNo; --OperandNo) {
5796          // Advance to the next operand.
5797          unsigned OpFlag =
5798            cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
5799          assert((InlineAsm::isRegDefKind(OpFlag) ||
5800                  InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||
5801                  InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?");
5802          CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1;
5803        }
5804
5805        unsigned OpFlag =
5806          cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
5807        if (InlineAsm::isRegDefKind(OpFlag) ||
5808            InlineAsm::isRegDefEarlyClobberKind(OpFlag)) {
5809          // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
5810          if (OpInfo.isIndirect) {
5811            // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
5812            LLVMContext &Ctx = *DAG.getContext();
5813            Ctx.emitError(CS.getInstruction(),  "inline asm not supported yet:"
5814                          " don't know how to handle tied "
5815                          "indirect register inputs");
5816          }
5817
5818          RegsForValue MatchedRegs;
5819          MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType());
5820          EVT RegVT = AsmNodeOperands[CurOp+1].getValueType();
5821          MatchedRegs.RegVTs.push_back(RegVT);
5822          MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo();
5823          for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag);
5824               i != e; ++i)
5825            MatchedRegs.Regs.push_back
5826              (RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT)));
5827
5828          // Use the produced MatchedRegs object to
5829          MatchedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(),
5830                                    Chain, &Flag);
5831          MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse,
5832                                           true, OpInfo.getMatchedOperand(),
5833                                           DAG, AsmNodeOperands);
5834          break;
5835        }
5836
5837        assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!");
5838        assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 &&
5839               "Unexpected number of operands");
5840        // Add information to the INLINEASM node to know about this input.
5841        // See InlineAsm.h isUseOperandTiedToDef.
5842        OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
5843                                                    OpInfo.getMatchedOperand());
5844        AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlag,
5845                                                        TLI.getPointerTy()));
5846        AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
5847        break;
5848      }
5849
5850      // Treat indirect 'X' constraint as memory.
5851      if (OpInfo.ConstraintType == TargetLowering::C_Other &&
5852          OpInfo.isIndirect)
5853        OpInfo.ConstraintType = TargetLowering::C_Memory;
5854
5855      if (OpInfo.ConstraintType == TargetLowering::C_Other) {
5856        std::vector<SDValue> Ops;
5857        TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode[0],
5858                                         Ops, DAG);
5859        if (Ops.empty())
5860          report_fatal_error("Invalid operand for inline asm constraint '" +
5861                             Twine(OpInfo.ConstraintCode) + "'!");
5862
5863        // Add information to the INLINEASM node to know about this input.
5864        unsigned ResOpType =
5865          InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
5866        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
5867                                                        TLI.getPointerTy()));
5868        AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
5869        break;
5870      }
5871
5872      if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
5873        assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
5874        assert(InOperandVal.getValueType() == TLI.getPointerTy() &&
5875               "Memory operands expect pointer values");
5876
5877        // Add information to the INLINEASM node to know about this input.
5878        unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
5879        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
5880                                                        TLI.getPointerTy()));
5881        AsmNodeOperands.push_back(InOperandVal);
5882        break;
5883      }
5884
5885      assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
5886              OpInfo.ConstraintType == TargetLowering::C_Register) &&
5887             "Unknown constraint type!");
5888      assert(!OpInfo.isIndirect &&
5889             "Don't know how to handle indirect register inputs yet!");
5890
5891      // Copy the input into the appropriate registers.
5892      if (OpInfo.AssignedRegs.Regs.empty() ||
5893          !OpInfo.AssignedRegs.areValueTypesLegal(TLI))
5894        report_fatal_error("Couldn't allocate input reg for constraint '" +
5895                           Twine(OpInfo.ConstraintCode) + "'!");
5896
5897      OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(),
5898                                        Chain, &Flag);
5899
5900      OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0,
5901                                               DAG, AsmNodeOperands);
5902      break;
5903    }
5904    case InlineAsm::isClobber: {
5905      // Add the clobbered value to the operand list, so that the register
5906      // allocator is aware that the physreg got clobbered.
5907      if (!OpInfo.AssignedRegs.Regs.empty())
5908        OpInfo.AssignedRegs.AddInlineAsmOperands(
5909                                            InlineAsm::Kind_RegDefEarlyClobber,
5910                                                 false, 0, DAG,
5911                                                 AsmNodeOperands);
5912      break;
5913    }
5914    }
5915  }
5916
5917  // Finish up input operands.  Set the input chain and add the flag last.
5918  AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
5919  if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
5920
5921  Chain = DAG.getNode(ISD::INLINEASM, getCurDebugLoc(),
5922                      DAG.getVTList(MVT::Other, MVT::Glue),
5923                      &AsmNodeOperands[0], AsmNodeOperands.size());
5924  Flag = Chain.getValue(1);
5925
5926  // If this asm returns a register value, copy the result from that register
5927  // and set it as the value of the call.
5928  if (!RetValRegs.Regs.empty()) {
5929    SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(),
5930                                             Chain, &Flag);
5931
5932    // FIXME: Why don't we do this for inline asms with MRVs?
5933    if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) {
5934      EVT ResultType = TLI.getValueType(CS.getType());
5935
5936      // If any of the results of the inline asm is a vector, it may have the
5937      // wrong width/num elts.  This can happen for register classes that can
5938      // contain multiple different value types.  The preg or vreg allocated may
5939      // not have the same VT as was expected.  Convert it to the right type
5940      // with bit_convert.
5941      if (ResultType != Val.getValueType() && Val.getValueType().isVector()) {
5942        Val = DAG.getNode(ISD::BITCAST, getCurDebugLoc(),
5943                          ResultType, Val);
5944
5945      } else if (ResultType != Val.getValueType() &&
5946                 ResultType.isInteger() && Val.getValueType().isInteger()) {
5947        // If a result value was tied to an input value, the computed result may
5948        // have a wider width than the expected result.  Extract the relevant
5949        // portion.
5950        Val = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), ResultType, Val);
5951      }
5952
5953      assert(ResultType == Val.getValueType() && "Asm result value mismatch!");
5954    }
5955
5956    setValue(CS.getInstruction(), Val);
5957    // Don't need to use this as a chain in this case.
5958    if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty())
5959      return;
5960  }
5961
5962  std::vector<std::pair<SDValue, const Value *> > StoresToEmit;
5963
5964  // Process indirect outputs, first output all of the flagged copies out of
5965  // physregs.
5966  for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
5967    RegsForValue &OutRegs = IndirectStoresToEmit[i].first;
5968    const Value *Ptr = IndirectStoresToEmit[i].second;
5969    SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(),
5970                                             Chain, &Flag);
5971    StoresToEmit.push_back(std::make_pair(OutVal, Ptr));
5972  }
5973
5974  // Emit the non-flagged stores from the physregs.
5975  SmallVector<SDValue, 8> OutChains;
5976  for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) {
5977    SDValue Val = DAG.getStore(Chain, getCurDebugLoc(),
5978                               StoresToEmit[i].first,
5979                               getValue(StoresToEmit[i].second),
5980                               MachinePointerInfo(StoresToEmit[i].second),
5981                               false, false, 0);
5982    OutChains.push_back(Val);
5983  }
5984
5985  if (!OutChains.empty())
5986    Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
5987                        &OutChains[0], OutChains.size());
5988
5989  DAG.setRoot(Chain);
5990}
5991
5992void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
5993  DAG.setRoot(DAG.getNode(ISD::VASTART, getCurDebugLoc(),
5994                          MVT::Other, getRoot(),
5995                          getValue(I.getArgOperand(0)),
5996                          DAG.getSrcValue(I.getArgOperand(0))));
5997}
5998
5999void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
6000  const TargetData &TD = *TLI.getTargetData();
6001  SDValue V = DAG.getVAArg(TLI.getValueType(I.getType()), getCurDebugLoc(),
6002                           getRoot(), getValue(I.getOperand(0)),
6003                           DAG.getSrcValue(I.getOperand(0)),
6004                           TD.getABITypeAlignment(I.getType()));
6005  setValue(&I, V);
6006  DAG.setRoot(V.getValue(1));
6007}
6008
6009void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
6010  DAG.setRoot(DAG.getNode(ISD::VAEND, getCurDebugLoc(),
6011                          MVT::Other, getRoot(),
6012                          getValue(I.getArgOperand(0)),
6013                          DAG.getSrcValue(I.getArgOperand(0))));
6014}
6015
6016void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
6017  DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurDebugLoc(),
6018                          MVT::Other, getRoot(),
6019                          getValue(I.getArgOperand(0)),
6020                          getValue(I.getArgOperand(1)),
6021                          DAG.getSrcValue(I.getArgOperand(0)),
6022                          DAG.getSrcValue(I.getArgOperand(1))));
6023}
6024
6025/// TargetLowering::LowerCallTo - This is the default LowerCallTo
6026/// implementation, which just calls LowerCall.
6027/// FIXME: When all targets are
6028/// migrated to using LowerCall, this hook should be integrated into SDISel.
6029std::pair<SDValue, SDValue>
6030TargetLowering::LowerCallTo(SDValue Chain, const Type *RetTy,
6031                            bool RetSExt, bool RetZExt, bool isVarArg,
6032                            bool isInreg, unsigned NumFixedArgs,
6033                            CallingConv::ID CallConv, bool isTailCall,
6034                            bool isReturnValueUsed,
6035                            SDValue Callee,
6036                            ArgListTy &Args, SelectionDAG &DAG,
6037                            DebugLoc dl) const {
6038  // Handle all of the outgoing arguments.
6039  SmallVector<ISD::OutputArg, 32> Outs;
6040  SmallVector<SDValue, 32> OutVals;
6041  for (unsigned i = 0, e = Args.size(); i != e; ++i) {
6042    SmallVector<EVT, 4> ValueVTs;
6043    ComputeValueVTs(*this, Args[i].Ty, ValueVTs);
6044    for (unsigned Value = 0, NumValues = ValueVTs.size();
6045         Value != NumValues; ++Value) {
6046      EVT VT = ValueVTs[Value];
6047      const Type *ArgTy = VT.getTypeForEVT(RetTy->getContext());
6048      SDValue Op = SDValue(Args[i].Node.getNode(),
6049                           Args[i].Node.getResNo() + Value);
6050      ISD::ArgFlagsTy Flags;
6051      unsigned OriginalAlignment =
6052        getTargetData()->getABITypeAlignment(ArgTy);
6053
6054      if (Args[i].isZExt)
6055        Flags.setZExt();
6056      if (Args[i].isSExt)
6057        Flags.setSExt();
6058      if (Args[i].isInReg)
6059        Flags.setInReg();
6060      if (Args[i].isSRet)
6061        Flags.setSRet();
6062      if (Args[i].isByVal) {
6063        Flags.setByVal();
6064        const PointerType *Ty = cast<PointerType>(Args[i].Ty);
6065        const Type *ElementTy = Ty->getElementType();
6066        unsigned FrameAlign = getByValTypeAlignment(ElementTy);
6067        unsigned FrameSize  = getTargetData()->getTypeAllocSize(ElementTy);
6068        // For ByVal, alignment should come from FE.  BE will guess if this
6069        // info is not there but there are cases it cannot get right.
6070        if (Args[i].Alignment)
6071          FrameAlign = Args[i].Alignment;
6072        Flags.setByValAlign(FrameAlign);
6073        Flags.setByValSize(FrameSize);
6074      }
6075      if (Args[i].isNest)
6076        Flags.setNest();
6077      Flags.setOrigAlign(OriginalAlignment);
6078
6079      EVT PartVT = getRegisterType(RetTy->getContext(), VT);
6080      unsigned NumParts = getNumRegisters(RetTy->getContext(), VT);
6081      SmallVector<SDValue, 4> Parts(NumParts);
6082      ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
6083
6084      if (Args[i].isSExt)
6085        ExtendKind = ISD::SIGN_EXTEND;
6086      else if (Args[i].isZExt)
6087        ExtendKind = ISD::ZERO_EXTEND;
6088
6089      getCopyToParts(DAG, dl, Op, &Parts[0], NumParts,
6090                     PartVT, ExtendKind);
6091
6092      for (unsigned j = 0; j != NumParts; ++j) {
6093        // if it isn't first piece, alignment must be 1
6094        ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(),
6095                               i < NumFixedArgs);
6096        if (NumParts > 1 && j == 0)
6097          MyFlags.Flags.setSplit();
6098        else if (j != 0)
6099          MyFlags.Flags.setOrigAlign(1);
6100
6101        Outs.push_back(MyFlags);
6102        OutVals.push_back(Parts[j]);
6103      }
6104    }
6105  }
6106
6107  // Handle the incoming return values from the call.
6108  SmallVector<ISD::InputArg, 32> Ins;
6109  SmallVector<EVT, 4> RetTys;
6110  ComputeValueVTs(*this, RetTy, RetTys);
6111  for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
6112    EVT VT = RetTys[I];
6113    EVT RegisterVT = getRegisterType(RetTy->getContext(), VT);
6114    unsigned NumRegs = getNumRegisters(RetTy->getContext(), VT);
6115    for (unsigned i = 0; i != NumRegs; ++i) {
6116      ISD::InputArg MyFlags;
6117      MyFlags.VT = RegisterVT.getSimpleVT();
6118      MyFlags.Used = isReturnValueUsed;
6119      if (RetSExt)
6120        MyFlags.Flags.setSExt();
6121      if (RetZExt)
6122        MyFlags.Flags.setZExt();
6123      if (isInreg)
6124        MyFlags.Flags.setInReg();
6125      Ins.push_back(MyFlags);
6126    }
6127  }
6128
6129  SmallVector<SDValue, 4> InVals;
6130  Chain = LowerCall(Chain, Callee, CallConv, isVarArg, isTailCall,
6131                    Outs, OutVals, Ins, dl, DAG, InVals);
6132
6133  // Verify that the target's LowerCall behaved as expected.
6134  assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
6135         "LowerCall didn't return a valid chain!");
6136  assert((!isTailCall || InVals.empty()) &&
6137         "LowerCall emitted a return value for a tail call!");
6138  assert((isTailCall || InVals.size() == Ins.size()) &&
6139         "LowerCall didn't emit the correct number of values!");
6140
6141  // For a tail call, the return value is merely live-out and there aren't
6142  // any nodes in the DAG representing it. Return a special value to
6143  // indicate that a tail call has been emitted and no more Instructions
6144  // should be processed in the current block.
6145  if (isTailCall) {
6146    DAG.setRoot(Chain);
6147    return std::make_pair(SDValue(), SDValue());
6148  }
6149
6150  DEBUG(for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
6151          assert(InVals[i].getNode() &&
6152                 "LowerCall emitted a null value!");
6153          assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
6154                 "LowerCall emitted a value with the wrong type!");
6155        });
6156
6157  // Collect the legal value parts into potentially illegal values
6158  // that correspond to the original function's return values.
6159  ISD::NodeType AssertOp = ISD::DELETED_NODE;
6160  if (RetSExt)
6161    AssertOp = ISD::AssertSext;
6162  else if (RetZExt)
6163    AssertOp = ISD::AssertZext;
6164  SmallVector<SDValue, 4> ReturnValues;
6165  unsigned CurReg = 0;
6166  for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
6167    EVT VT = RetTys[I];
6168    EVT RegisterVT = getRegisterType(RetTy->getContext(), VT);
6169    unsigned NumRegs = getNumRegisters(RetTy->getContext(), VT);
6170
6171    ReturnValues.push_back(getCopyFromParts(DAG, dl, &InVals[CurReg],
6172                                            NumRegs, RegisterVT, VT,
6173                                            AssertOp));
6174    CurReg += NumRegs;
6175  }
6176
6177  // For a function returning void, there is no return value. We can't create
6178  // such a node, so we just return a null return value in that case. In
6179  // that case, nothing will actualy look at the value.
6180  if (ReturnValues.empty())
6181    return std::make_pair(SDValue(), Chain);
6182
6183  SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
6184                            DAG.getVTList(&RetTys[0], RetTys.size()),
6185                            &ReturnValues[0], ReturnValues.size());
6186  return std::make_pair(Res, Chain);
6187}
6188
6189void TargetLowering::LowerOperationWrapper(SDNode *N,
6190                                           SmallVectorImpl<SDValue> &Results,
6191                                           SelectionDAG &DAG) const {
6192  SDValue Res = LowerOperation(SDValue(N, 0), DAG);
6193  if (Res.getNode())
6194    Results.push_back(Res);
6195}
6196
6197SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
6198  llvm_unreachable("LowerOperation not implemented for this target!");
6199  return SDValue();
6200}
6201
6202void
6203SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) {
6204  SDValue Op = getNonRegisterValue(V);
6205  assert((Op.getOpcode() != ISD::CopyFromReg ||
6206          cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
6207         "Copy from a reg to the same reg!");
6208  assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg");
6209
6210  RegsForValue RFV(V->getContext(), TLI, Reg, V->getType());
6211  SDValue Chain = DAG.getEntryNode();
6212  RFV.getCopyToRegs(Op, DAG, getCurDebugLoc(), Chain, 0);
6213  PendingExports.push_back(Chain);
6214}
6215
6216#include "llvm/CodeGen/SelectionDAGISel.h"
6217
6218void SelectionDAGISel::LowerArguments(const BasicBlock *LLVMBB) {
6219  // If this is the entry block, emit arguments.
6220  const Function &F = *LLVMBB->getParent();
6221  SelectionDAG &DAG = SDB->DAG;
6222  DebugLoc dl = SDB->getCurDebugLoc();
6223  const TargetData *TD = TLI.getTargetData();
6224  SmallVector<ISD::InputArg, 16> Ins;
6225
6226  // Check whether the function can return without sret-demotion.
6227  SmallVector<ISD::OutputArg, 4> Outs;
6228  GetReturnInfo(F.getReturnType(), F.getAttributes().getRetAttributes(),
6229                Outs, TLI);
6230
6231  if (!FuncInfo->CanLowerReturn) {
6232    // Put in an sret pointer parameter before all the other parameters.
6233    SmallVector<EVT, 1> ValueVTs;
6234    ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs);
6235
6236    // NOTE: Assuming that a pointer will never break down to more than one VT
6237    // or one register.
6238    ISD::ArgFlagsTy Flags;
6239    Flags.setSRet();
6240    EVT RegisterVT = TLI.getRegisterType(*DAG.getContext(), ValueVTs[0]);
6241    ISD::InputArg RetArg(Flags, RegisterVT, true);
6242    Ins.push_back(RetArg);
6243  }
6244
6245  // Set up the incoming argument description vector.
6246  unsigned Idx = 1;
6247  for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end();
6248       I != E; ++I, ++Idx) {
6249    SmallVector<EVT, 4> ValueVTs;
6250    ComputeValueVTs(TLI, I->getType(), ValueVTs);
6251    bool isArgValueUsed = !I->use_empty();
6252    for (unsigned Value = 0, NumValues = ValueVTs.size();
6253         Value != NumValues; ++Value) {
6254      EVT VT = ValueVTs[Value];
6255      const Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
6256      ISD::ArgFlagsTy Flags;
6257      unsigned OriginalAlignment =
6258        TD->getABITypeAlignment(ArgTy);
6259
6260      if (F.paramHasAttr(Idx, Attribute::ZExt))
6261        Flags.setZExt();
6262      if (F.paramHasAttr(Idx, Attribute::SExt))
6263        Flags.setSExt();
6264      if (F.paramHasAttr(Idx, Attribute::InReg))
6265        Flags.setInReg();
6266      if (F.paramHasAttr(Idx, Attribute::StructRet))
6267        Flags.setSRet();
6268      if (F.paramHasAttr(Idx, Attribute::ByVal)) {
6269        Flags.setByVal();
6270        const PointerType *Ty = cast<PointerType>(I->getType());
6271        const Type *ElementTy = Ty->getElementType();
6272        unsigned FrameAlign = TLI.getByValTypeAlignment(ElementTy);
6273        unsigned FrameSize  = TD->getTypeAllocSize(ElementTy);
6274        // For ByVal, alignment should be passed from FE.  BE will guess if
6275        // this info is not there but there are cases it cannot get right.
6276        if (F.getParamAlignment(Idx))
6277          FrameAlign = F.getParamAlignment(Idx);
6278        Flags.setByValAlign(FrameAlign);
6279        Flags.setByValSize(FrameSize);
6280      }
6281      if (F.paramHasAttr(Idx, Attribute::Nest))
6282        Flags.setNest();
6283      Flags.setOrigAlign(OriginalAlignment);
6284
6285      EVT RegisterVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
6286      unsigned NumRegs = TLI.getNumRegisters(*CurDAG->getContext(), VT);
6287      for (unsigned i = 0; i != NumRegs; ++i) {
6288        ISD::InputArg MyFlags(Flags, RegisterVT, isArgValueUsed);
6289        if (NumRegs > 1 && i == 0)
6290          MyFlags.Flags.setSplit();
6291        // if it isn't first piece, alignment must be 1
6292        else if (i > 0)
6293          MyFlags.Flags.setOrigAlign(1);
6294        Ins.push_back(MyFlags);
6295      }
6296    }
6297  }
6298
6299  // Call the target to set up the argument values.
6300  SmallVector<SDValue, 8> InVals;
6301  SDValue NewRoot = TLI.LowerFormalArguments(DAG.getRoot(), F.getCallingConv(),
6302                                             F.isVarArg(), Ins,
6303                                             dl, DAG, InVals);
6304
6305  // Verify that the target's LowerFormalArguments behaved as expected.
6306  assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
6307         "LowerFormalArguments didn't return a valid chain!");
6308  assert(InVals.size() == Ins.size() &&
6309         "LowerFormalArguments didn't emit the correct number of values!");
6310  DEBUG({
6311      for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
6312        assert(InVals[i].getNode() &&
6313               "LowerFormalArguments emitted a null value!");
6314        assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
6315               "LowerFormalArguments emitted a value with the wrong type!");
6316      }
6317    });
6318
6319  // Update the DAG with the new chain value resulting from argument lowering.
6320  DAG.setRoot(NewRoot);
6321
6322  // Set up the argument values.
6323  unsigned i = 0;
6324  Idx = 1;
6325  if (!FuncInfo->CanLowerReturn) {
6326    // Create a virtual register for the sret pointer, and put in a copy
6327    // from the sret argument into it.
6328    SmallVector<EVT, 1> ValueVTs;
6329    ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs);
6330    EVT VT = ValueVTs[0];
6331    EVT RegVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
6332    ISD::NodeType AssertOp = ISD::DELETED_NODE;
6333    SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1,
6334                                        RegVT, VT, AssertOp);
6335
6336    MachineFunction& MF = SDB->DAG.getMachineFunction();
6337    MachineRegisterInfo& RegInfo = MF.getRegInfo();
6338    unsigned SRetReg = RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT));
6339    FuncInfo->DemoteRegister = SRetReg;
6340    NewRoot = SDB->DAG.getCopyToReg(NewRoot, SDB->getCurDebugLoc(),
6341                                    SRetReg, ArgValue);
6342    DAG.setRoot(NewRoot);
6343
6344    // i indexes lowered arguments.  Bump it past the hidden sret argument.
6345    // Idx indexes LLVM arguments.  Don't touch it.
6346    ++i;
6347  }
6348
6349  for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E;
6350      ++I, ++Idx) {
6351    SmallVector<SDValue, 4> ArgValues;
6352    SmallVector<EVT, 4> ValueVTs;
6353    ComputeValueVTs(TLI, I->getType(), ValueVTs);
6354    unsigned NumValues = ValueVTs.size();
6355
6356    // If this argument is unused then remember its value. It is used to generate
6357    // debugging information.
6358    if (I->use_empty() && NumValues)
6359      SDB->setUnusedArgValue(I, InVals[i]);
6360
6361    for (unsigned Value = 0; Value != NumValues; ++Value) {
6362      EVT VT = ValueVTs[Value];
6363      EVT PartVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
6364      unsigned NumParts = TLI.getNumRegisters(*CurDAG->getContext(), VT);
6365
6366      if (!I->use_empty()) {
6367        ISD::NodeType AssertOp = ISD::DELETED_NODE;
6368        if (F.paramHasAttr(Idx, Attribute::SExt))
6369          AssertOp = ISD::AssertSext;
6370        else if (F.paramHasAttr(Idx, Attribute::ZExt))
6371          AssertOp = ISD::AssertZext;
6372
6373        ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i],
6374                                             NumParts, PartVT, VT,
6375                                             AssertOp));
6376      }
6377
6378      i += NumParts;
6379    }
6380
6381    // Note down frame index for byval arguments.
6382    if (I->hasByValAttr() && !ArgValues.empty())
6383      if (FrameIndexSDNode *FI =
6384          dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
6385        FuncInfo->setByValArgumentFrameIndex(I, FI->getIndex());
6386
6387    if (!I->use_empty()) {
6388      SDValue Res;
6389      if (!ArgValues.empty())
6390        Res = DAG.getMergeValues(&ArgValues[0], NumValues,
6391                                 SDB->getCurDebugLoc());
6392      SDB->setValue(I, Res);
6393
6394      // If this argument is live outside of the entry block, insert a copy from
6395      // whereever we got it to the vreg that other BB's will reference it as.
6396      SDB->CopyToExportRegsIfNeeded(I);
6397    }
6398  }
6399
6400  assert(i == InVals.size() && "Argument register count mismatch!");
6401
6402  // Finally, if the target has anything special to do, allow it to do so.
6403  // FIXME: this should insert code into the DAG!
6404  EmitFunctionEntryCode();
6405}
6406
6407/// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
6408/// ensure constants are generated when needed.  Remember the virtual registers
6409/// that need to be added to the Machine PHI nodes as input.  We cannot just
6410/// directly add them, because expansion might result in multiple MBB's for one
6411/// BB.  As such, the start of the BB might correspond to a different MBB than
6412/// the end.
6413///
6414void
6415SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
6416  const TerminatorInst *TI = LLVMBB->getTerminator();
6417
6418  SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
6419
6420  // Check successor nodes' PHI nodes that expect a constant to be available
6421  // from this block.
6422  for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
6423    const BasicBlock *SuccBB = TI->getSuccessor(succ);
6424    if (!isa<PHINode>(SuccBB->begin())) continue;
6425    MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
6426
6427    // If this terminator has multiple identical successors (common for
6428    // switches), only handle each succ once.
6429    if (!SuccsHandled.insert(SuccMBB)) continue;
6430
6431    MachineBasicBlock::iterator MBBI = SuccMBB->begin();
6432
6433    // At this point we know that there is a 1-1 correspondence between LLVM PHI
6434    // nodes and Machine PHI nodes, but the incoming operands have not been
6435    // emitted yet.
6436    for (BasicBlock::const_iterator I = SuccBB->begin();
6437         const PHINode *PN = dyn_cast<PHINode>(I); ++I) {
6438      // Ignore dead phi's.
6439      if (PN->use_empty()) continue;
6440
6441      unsigned Reg;
6442      const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
6443
6444      if (const Constant *C = dyn_cast<Constant>(PHIOp)) {
6445        unsigned &RegOut = ConstantsOut[C];
6446        if (RegOut == 0) {
6447          RegOut = FuncInfo.CreateRegs(C->getType());
6448          CopyValueToVirtualRegister(C, RegOut);
6449        }
6450        Reg = RegOut;
6451      } else {
6452        DenseMap<const Value *, unsigned>::iterator I =
6453          FuncInfo.ValueMap.find(PHIOp);
6454        if (I != FuncInfo.ValueMap.end())
6455          Reg = I->second;
6456        else {
6457          assert(isa<AllocaInst>(PHIOp) &&
6458                 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
6459                 "Didn't codegen value into a register!??");
6460          Reg = FuncInfo.CreateRegs(PHIOp->getType());
6461          CopyValueToVirtualRegister(PHIOp, Reg);
6462        }
6463      }
6464
6465      // Remember that this register needs to added to the machine PHI node as
6466      // the input for this MBB.
6467      SmallVector<EVT, 4> ValueVTs;
6468      ComputeValueVTs(TLI, PN->getType(), ValueVTs);
6469      for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
6470        EVT VT = ValueVTs[vti];
6471        unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
6472        for (unsigned i = 0, e = NumRegisters; i != e; ++i)
6473          FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i));
6474        Reg += NumRegisters;
6475      }
6476    }
6477  }
6478  ConstantsOut.clear();
6479}
6480