SelectionDAGBuilder.cpp revision ec52aaa12f57896fc806e849fa21a61603050ac4
1//===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements routines for translating from LLVM IR into SelectionDAG IR.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "isel"
15#include "SDNodeDbgValue.h"
16#include "SelectionDAGBuilder.h"
17#include "llvm/ADT/BitVector.h"
18#include "llvm/ADT/PostOrderIterator.h"
19#include "llvm/ADT/SmallSet.h"
20#include "llvm/Analysis/AliasAnalysis.h"
21#include "llvm/Analysis/ConstantFolding.h"
22#include "llvm/Constants.h"
23#include "llvm/CallingConv.h"
24#include "llvm/DerivedTypes.h"
25#include "llvm/Function.h"
26#include "llvm/GlobalVariable.h"
27#include "llvm/InlineAsm.h"
28#include "llvm/Instructions.h"
29#include "llvm/Intrinsics.h"
30#include "llvm/IntrinsicInst.h"
31#include "llvm/LLVMContext.h"
32#include "llvm/Module.h"
33#include "llvm/CodeGen/Analysis.h"
34#include "llvm/CodeGen/FastISel.h"
35#include "llvm/CodeGen/FunctionLoweringInfo.h"
36#include "llvm/CodeGen/GCStrategy.h"
37#include "llvm/CodeGen/GCMetadata.h"
38#include "llvm/CodeGen/MachineFunction.h"
39#include "llvm/CodeGen/MachineFrameInfo.h"
40#include "llvm/CodeGen/MachineInstrBuilder.h"
41#include "llvm/CodeGen/MachineJumpTableInfo.h"
42#include "llvm/CodeGen/MachineModuleInfo.h"
43#include "llvm/CodeGen/MachineRegisterInfo.h"
44#include "llvm/CodeGen/SelectionDAG.h"
45#include "llvm/Analysis/DebugInfo.h"
46#include "llvm/Target/TargetData.h"
47#include "llvm/Target/TargetFrameLowering.h"
48#include "llvm/Target/TargetInstrInfo.h"
49#include "llvm/Target/TargetIntrinsicInfo.h"
50#include "llvm/Target/TargetLibraryInfo.h"
51#include "llvm/Target/TargetLowering.h"
52#include "llvm/Target/TargetOptions.h"
53#include "llvm/Support/CommandLine.h"
54#include "llvm/Support/Debug.h"
55#include "llvm/Support/ErrorHandling.h"
56#include "llvm/Support/MathExtras.h"
57#include "llvm/Support/raw_ostream.h"
58#include <algorithm>
59using namespace llvm;
60
61/// LimitFloatPrecision - Generate low-precision inline sequences for
62/// some float libcalls (6, 8 or 12 bits).
63static unsigned LimitFloatPrecision;
64
65static cl::opt<unsigned, true>
66LimitFPPrecision("limit-float-precision",
67                 cl::desc("Generate low-precision inline sequences "
68                          "for some float libcalls"),
69                 cl::location(LimitFloatPrecision),
70                 cl::init(0));
71
72// Limit the width of DAG chains. This is important in general to prevent
73// prevent DAG-based analysis from blowing up. For example, alias analysis and
74// load clustering may not complete in reasonable time. It is difficult to
75// recognize and avoid this situation within each individual analysis, and
76// future analyses are likely to have the same behavior. Limiting DAG width is
77// the safe approach, and will be especially important with global DAGs.
78//
79// MaxParallelChains default is arbitrarily high to avoid affecting
80// optimization, but could be lowered to improve compile time. Any ld-ld-st-st
81// sequence over this should have been converted to llvm.memcpy by the
82// frontend. It easy to induce this behavior with .ll code such as:
83// %buffer = alloca [4096 x i8]
84// %data = load [4096 x i8]* %argPtr
85// store [4096 x i8] %data, [4096 x i8]* %buffer
86static const unsigned MaxParallelChains = 64;
87
88static SDValue getCopyFromPartsVector(SelectionDAG &DAG, DebugLoc DL,
89                                      const SDValue *Parts, unsigned NumParts,
90                                      EVT PartVT, EVT ValueVT);
91
92/// getCopyFromParts - Create a value that contains the specified legal parts
93/// combined into the value they represent.  If the parts combine to a type
94/// larger then ValueVT then AssertOp can be used to specify whether the extra
95/// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
96/// (ISD::AssertSext).
97static SDValue getCopyFromParts(SelectionDAG &DAG, DebugLoc DL,
98                                const SDValue *Parts,
99                                unsigned NumParts, EVT PartVT, EVT ValueVT,
100                                ISD::NodeType AssertOp = ISD::DELETED_NODE) {
101  if (ValueVT.isVector())
102    return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT);
103
104  assert(NumParts > 0 && "No parts to assemble!");
105  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
106  SDValue Val = Parts[0];
107
108  if (NumParts > 1) {
109    // Assemble the value from multiple parts.
110    if (ValueVT.isInteger()) {
111      unsigned PartBits = PartVT.getSizeInBits();
112      unsigned ValueBits = ValueVT.getSizeInBits();
113
114      // Assemble the power of 2 part.
115      unsigned RoundParts = NumParts & (NumParts - 1) ?
116        1 << Log2_32(NumParts) : NumParts;
117      unsigned RoundBits = PartBits * RoundParts;
118      EVT RoundVT = RoundBits == ValueBits ?
119        ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
120      SDValue Lo, Hi;
121
122      EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
123
124      if (RoundParts > 2) {
125        Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2,
126                              PartVT, HalfVT);
127        Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2,
128                              RoundParts / 2, PartVT, HalfVT);
129      } else {
130        Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
131        Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
132      }
133
134      if (TLI.isBigEndian())
135        std::swap(Lo, Hi);
136
137      Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
138
139      if (RoundParts < NumParts) {
140        // Assemble the trailing non-power-of-2 part.
141        unsigned OddParts = NumParts - RoundParts;
142        EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
143        Hi = getCopyFromParts(DAG, DL,
144                              Parts + RoundParts, OddParts, PartVT, OddVT);
145
146        // Combine the round and odd parts.
147        Lo = Val;
148        if (TLI.isBigEndian())
149          std::swap(Lo, Hi);
150        EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
151        Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
152        Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
153                         DAG.getConstant(Lo.getValueType().getSizeInBits(),
154                                         TLI.getPointerTy()));
155        Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
156        Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
157      }
158    } else if (PartVT.isFloatingPoint()) {
159      // FP split into multiple FP parts (for ppcf128)
160      assert(ValueVT == EVT(MVT::ppcf128) && PartVT == EVT(MVT::f64) &&
161             "Unexpected split");
162      SDValue Lo, Hi;
163      Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
164      Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
165      if (TLI.isBigEndian())
166        std::swap(Lo, Hi);
167      Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
168    } else {
169      // FP split into integer parts (soft fp)
170      assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
171             !PartVT.isVector() && "Unexpected split");
172      EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
173      Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT);
174    }
175  }
176
177  // There is now one part, held in Val.  Correct it to match ValueVT.
178  PartVT = Val.getValueType();
179
180  if (PartVT == ValueVT)
181    return Val;
182
183  if (PartVT.isInteger() && ValueVT.isInteger()) {
184    if (ValueVT.bitsLT(PartVT)) {
185      // For a truncate, see if we have any information to
186      // indicate whether the truncated bits will always be
187      // zero or sign-extension.
188      if (AssertOp != ISD::DELETED_NODE)
189        Val = DAG.getNode(AssertOp, DL, PartVT, Val,
190                          DAG.getValueType(ValueVT));
191      return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
192    }
193    return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
194  }
195
196  if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
197    // FP_ROUND's are always exact here.
198    if (ValueVT.bitsLT(Val.getValueType()))
199      return DAG.getNode(ISD::FP_ROUND, DL, ValueVT, Val,
200                         DAG.getTargetConstant(1, TLI.getPointerTy()));
201
202    return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
203  }
204
205  if (PartVT.getSizeInBits() == ValueVT.getSizeInBits())
206    return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
207
208  llvm_unreachable("Unknown mismatch!");
209}
210
211/// getCopyFromParts - Create a value that contains the specified legal parts
212/// combined into the value they represent.  If the parts combine to a type
213/// larger then ValueVT then AssertOp can be used to specify whether the extra
214/// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
215/// (ISD::AssertSext).
216static SDValue getCopyFromPartsVector(SelectionDAG &DAG, DebugLoc DL,
217                                      const SDValue *Parts, unsigned NumParts,
218                                      EVT PartVT, EVT ValueVT) {
219  assert(ValueVT.isVector() && "Not a vector value");
220  assert(NumParts > 0 && "No parts to assemble!");
221  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
222  SDValue Val = Parts[0];
223
224  // Handle a multi-element vector.
225  if (NumParts > 1) {
226    EVT IntermediateVT, RegisterVT;
227    unsigned NumIntermediates;
228    unsigned NumRegs =
229    TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
230                               NumIntermediates, RegisterVT);
231    assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
232    NumParts = NumRegs; // Silence a compiler warning.
233    assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
234    assert(RegisterVT == Parts[0].getValueType() &&
235           "Part type doesn't match part!");
236
237    // Assemble the parts into intermediate operands.
238    SmallVector<SDValue, 8> Ops(NumIntermediates);
239    if (NumIntermediates == NumParts) {
240      // If the register was not expanded, truncate or copy the value,
241      // as appropriate.
242      for (unsigned i = 0; i != NumParts; ++i)
243        Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1,
244                                  PartVT, IntermediateVT);
245    } else if (NumParts > 0) {
246      // If the intermediate type was expanded, build the intermediate
247      // operands from the parts.
248      assert(NumParts % NumIntermediates == 0 &&
249             "Must expand into a divisible number of parts!");
250      unsigned Factor = NumParts / NumIntermediates;
251      for (unsigned i = 0; i != NumIntermediates; ++i)
252        Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor,
253                                  PartVT, IntermediateVT);
254    }
255
256    // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
257    // intermediate operands.
258    Val = DAG.getNode(IntermediateVT.isVector() ?
259                      ISD::CONCAT_VECTORS : ISD::BUILD_VECTOR, DL,
260                      ValueVT, &Ops[0], NumIntermediates);
261  }
262
263  // There is now one part, held in Val.  Correct it to match ValueVT.
264  PartVT = Val.getValueType();
265
266  if (PartVT == ValueVT)
267    return Val;
268
269  if (PartVT.isVector()) {
270    // If the element type of the source/dest vectors are the same, but the
271    // parts vector has more elements than the value vector, then we have a
272    // vector widening case (e.g. <2 x float> -> <4 x float>).  Extract the
273    // elements we want.
274    if (PartVT.getVectorElementType() == ValueVT.getVectorElementType()) {
275      assert(PartVT.getVectorNumElements() > ValueVT.getVectorNumElements() &&
276             "Cannot narrow, it would be a lossy transformation");
277      return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
278                         DAG.getIntPtrConstant(0));
279    }
280
281    // Vector/Vector bitcast.
282    if (ValueVT.getSizeInBits() == PartVT.getSizeInBits())
283      return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
284
285    assert(PartVT.getVectorNumElements() == ValueVT.getVectorNumElements() &&
286      "Cannot handle this kind of promotion");
287    // Promoted vector extract
288    bool Smaller = ValueVT.bitsLE(PartVT);
289    return DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
290                       DL, ValueVT, Val);
291
292  }
293
294  // Trivial bitcast if the types are the same size and the destination
295  // vector type is legal.
296  if (PartVT.getSizeInBits() == ValueVT.getSizeInBits() &&
297      TLI.isTypeLegal(ValueVT))
298    return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
299
300  // Handle cases such as i8 -> <1 x i1>
301  assert(ValueVT.getVectorNumElements() == 1 &&
302         "Only trivial scalar-to-vector conversions should get here!");
303
304  if (ValueVT.getVectorNumElements() == 1 &&
305      ValueVT.getVectorElementType() != PartVT) {
306    bool Smaller = ValueVT.bitsLE(PartVT);
307    Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
308                       DL, ValueVT.getScalarType(), Val);
309  }
310
311  return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val);
312}
313
314
315
316
317static void getCopyToPartsVector(SelectionDAG &DAG, DebugLoc dl,
318                                 SDValue Val, SDValue *Parts, unsigned NumParts,
319                                 EVT PartVT);
320
321/// getCopyToParts - Create a series of nodes that contain the specified value
322/// split into legal parts.  If the parts contain more bits than Val, then, for
323/// integers, ExtendKind can be used to specify how to generate the extra bits.
324static void getCopyToParts(SelectionDAG &DAG, DebugLoc DL,
325                           SDValue Val, SDValue *Parts, unsigned NumParts,
326                           EVT PartVT,
327                           ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
328  EVT ValueVT = Val.getValueType();
329
330  // Handle the vector case separately.
331  if (ValueVT.isVector())
332    return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT);
333
334  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
335  unsigned PartBits = PartVT.getSizeInBits();
336  unsigned OrigNumParts = NumParts;
337  assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!");
338
339  if (NumParts == 0)
340    return;
341
342  assert(!ValueVT.isVector() && "Vector case handled elsewhere");
343  if (PartVT == ValueVT) {
344    assert(NumParts == 1 && "No-op copy with multiple parts!");
345    Parts[0] = Val;
346    return;
347  }
348
349  if (NumParts * PartBits > ValueVT.getSizeInBits()) {
350    // If the parts cover more bits than the value has, promote the value.
351    if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
352      assert(NumParts == 1 && "Do not know what to promote to!");
353      Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
354    } else {
355      assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
356             ValueVT.isInteger() &&
357             "Unknown mismatch!");
358      ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
359      Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
360      if (PartVT == MVT::x86mmx)
361        Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
362    }
363  } else if (PartBits == ValueVT.getSizeInBits()) {
364    // Different types of the same size.
365    assert(NumParts == 1 && PartVT != ValueVT);
366    Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
367  } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
368    // If the parts cover less bits than value has, truncate the value.
369    assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
370           ValueVT.isInteger() &&
371           "Unknown mismatch!");
372    ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
373    Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
374    if (PartVT == MVT::x86mmx)
375      Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
376  }
377
378  // The value may have changed - recompute ValueVT.
379  ValueVT = Val.getValueType();
380  assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
381         "Failed to tile the value with PartVT!");
382
383  if (NumParts == 1) {
384    assert(PartVT == ValueVT && "Type conversion failed!");
385    Parts[0] = Val;
386    return;
387  }
388
389  // Expand the value into multiple parts.
390  if (NumParts & (NumParts - 1)) {
391    // The number of parts is not a power of 2.  Split off and copy the tail.
392    assert(PartVT.isInteger() && ValueVT.isInteger() &&
393           "Do not know what to expand to!");
394    unsigned RoundParts = 1 << Log2_32(NumParts);
395    unsigned RoundBits = RoundParts * PartBits;
396    unsigned OddParts = NumParts - RoundParts;
397    SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
398                                 DAG.getIntPtrConstant(RoundBits));
399    getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT);
400
401    if (TLI.isBigEndian())
402      // The odd parts were reversed by getCopyToParts - unreverse them.
403      std::reverse(Parts + RoundParts, Parts + NumParts);
404
405    NumParts = RoundParts;
406    ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
407    Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
408  }
409
410  // The number of parts is a power of 2.  Repeatedly bisect the value using
411  // EXTRACT_ELEMENT.
412  Parts[0] = DAG.getNode(ISD::BITCAST, DL,
413                         EVT::getIntegerVT(*DAG.getContext(),
414                                           ValueVT.getSizeInBits()),
415                         Val);
416
417  for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
418    for (unsigned i = 0; i < NumParts; i += StepSize) {
419      unsigned ThisBits = StepSize * PartBits / 2;
420      EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
421      SDValue &Part0 = Parts[i];
422      SDValue &Part1 = Parts[i+StepSize/2];
423
424      Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
425                          ThisVT, Part0, DAG.getIntPtrConstant(1));
426      Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
427                          ThisVT, Part0, DAG.getIntPtrConstant(0));
428
429      if (ThisBits == PartBits && ThisVT != PartVT) {
430        Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
431        Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
432      }
433    }
434  }
435
436  if (TLI.isBigEndian())
437    std::reverse(Parts, Parts + OrigNumParts);
438}
439
440
441/// getCopyToPartsVector - Create a series of nodes that contain the specified
442/// value split into legal parts.
443static void getCopyToPartsVector(SelectionDAG &DAG, DebugLoc DL,
444                                 SDValue Val, SDValue *Parts, unsigned NumParts,
445                                 EVT PartVT) {
446  EVT ValueVT = Val.getValueType();
447  assert(ValueVT.isVector() && "Not a vector");
448  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
449
450  if (NumParts == 1) {
451    if (PartVT == ValueVT) {
452      // Nothing to do.
453    } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
454      // Bitconvert vector->vector case.
455      Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
456    } else if (PartVT.isVector() &&
457               PartVT.getVectorElementType() == ValueVT.getVectorElementType() &&
458               PartVT.getVectorNumElements() > ValueVT.getVectorNumElements()) {
459      EVT ElementVT = PartVT.getVectorElementType();
460      // Vector widening case, e.g. <2 x float> -> <4 x float>.  Shuffle in
461      // undef elements.
462      SmallVector<SDValue, 16> Ops;
463      for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i)
464        Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
465                                  ElementVT, Val, DAG.getIntPtrConstant(i)));
466
467      for (unsigned i = ValueVT.getVectorNumElements(),
468           e = PartVT.getVectorNumElements(); i != e; ++i)
469        Ops.push_back(DAG.getUNDEF(ElementVT));
470
471      Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, &Ops[0], Ops.size());
472
473      // FIXME: Use CONCAT for 2x -> 4x.
474
475      //SDValue UndefElts = DAG.getUNDEF(VectorTy);
476      //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts);
477    } else if (PartVT.isVector() &&
478               PartVT.getVectorElementType().bitsGE(
479                 ValueVT.getVectorElementType()) &&
480               PartVT.getVectorNumElements() == ValueVT.getVectorNumElements()) {
481
482      // Promoted vector extract
483      bool Smaller = PartVT.bitsLE(ValueVT);
484      Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
485                        DL, PartVT, Val);
486    } else{
487      // Vector -> scalar conversion.
488      assert(ValueVT.getVectorNumElements() == 1 &&
489             "Only trivial vector-to-scalar conversions should get here!");
490      Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
491                        PartVT, Val, DAG.getIntPtrConstant(0));
492
493      bool Smaller = ValueVT.bitsLE(PartVT);
494      Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
495                         DL, PartVT, Val);
496    }
497
498    Parts[0] = Val;
499    return;
500  }
501
502  // Handle a multi-element vector.
503  EVT IntermediateVT, RegisterVT;
504  unsigned NumIntermediates;
505  unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT,
506                                                IntermediateVT,
507                                                NumIntermediates, RegisterVT);
508  unsigned NumElements = ValueVT.getVectorNumElements();
509
510  assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
511  NumParts = NumRegs; // Silence a compiler warning.
512  assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
513
514  // Split the vector into intermediate operands.
515  SmallVector<SDValue, 8> Ops(NumIntermediates);
516  for (unsigned i = 0; i != NumIntermediates; ++i) {
517    if (IntermediateVT.isVector())
518      Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL,
519                           IntermediateVT, Val,
520                   DAG.getIntPtrConstant(i * (NumElements / NumIntermediates)));
521    else
522      Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
523                           IntermediateVT, Val, DAG.getIntPtrConstant(i));
524  }
525
526  // Split the intermediate operands into legal parts.
527  if (NumParts == NumIntermediates) {
528    // If the register was not expanded, promote or copy the value,
529    // as appropriate.
530    for (unsigned i = 0; i != NumParts; ++i)
531      getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT);
532  } else if (NumParts > 0) {
533    // If the intermediate type was expanded, split each the value into
534    // legal parts.
535    assert(NumParts % NumIntermediates == 0 &&
536           "Must expand into a divisible number of parts!");
537    unsigned Factor = NumParts / NumIntermediates;
538    for (unsigned i = 0; i != NumIntermediates; ++i)
539      getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT);
540  }
541}
542
543
544
545
546namespace {
547  /// RegsForValue - This struct represents the registers (physical or virtual)
548  /// that a particular set of values is assigned, and the type information
549  /// about the value. The most common situation is to represent one value at a
550  /// time, but struct or array values are handled element-wise as multiple
551  /// values.  The splitting of aggregates is performed recursively, so that we
552  /// never have aggregate-typed registers. The values at this point do not
553  /// necessarily have legal types, so each value may require one or more
554  /// registers of some legal type.
555  ///
556  struct RegsForValue {
557    /// ValueVTs - The value types of the values, which may not be legal, and
558    /// may need be promoted or synthesized from one or more registers.
559    ///
560    SmallVector<EVT, 4> ValueVTs;
561
562    /// RegVTs - The value types of the registers. This is the same size as
563    /// ValueVTs and it records, for each value, what the type of the assigned
564    /// register or registers are. (Individual values are never synthesized
565    /// from more than one type of register.)
566    ///
567    /// With virtual registers, the contents of RegVTs is redundant with TLI's
568    /// getRegisterType member function, however when with physical registers
569    /// it is necessary to have a separate record of the types.
570    ///
571    SmallVector<EVT, 4> RegVTs;
572
573    /// Regs - This list holds the registers assigned to the values.
574    /// Each legal or promoted value requires one register, and each
575    /// expanded value requires multiple registers.
576    ///
577    SmallVector<unsigned, 4> Regs;
578
579    RegsForValue() {}
580
581    RegsForValue(const SmallVector<unsigned, 4> &regs,
582                 EVT regvt, EVT valuevt)
583      : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {}
584
585    RegsForValue(LLVMContext &Context, const TargetLowering &tli,
586                 unsigned Reg, Type *Ty) {
587      ComputeValueVTs(tli, Ty, ValueVTs);
588
589      for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
590        EVT ValueVT = ValueVTs[Value];
591        unsigned NumRegs = tli.getNumRegisters(Context, ValueVT);
592        EVT RegisterVT = tli.getRegisterType(Context, ValueVT);
593        for (unsigned i = 0; i != NumRegs; ++i)
594          Regs.push_back(Reg + i);
595        RegVTs.push_back(RegisterVT);
596        Reg += NumRegs;
597      }
598    }
599
600    /// areValueTypesLegal - Return true if types of all the values are legal.
601    bool areValueTypesLegal(const TargetLowering &TLI) {
602      for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
603        EVT RegisterVT = RegVTs[Value];
604        if (!TLI.isTypeLegal(RegisterVT))
605          return false;
606      }
607      return true;
608    }
609
610    /// append - Add the specified values to this one.
611    void append(const RegsForValue &RHS) {
612      ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end());
613      RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end());
614      Regs.append(RHS.Regs.begin(), RHS.Regs.end());
615    }
616
617    /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
618    /// this value and returns the result as a ValueVTs value.  This uses
619    /// Chain/Flag as the input and updates them for the output Chain/Flag.
620    /// If the Flag pointer is NULL, no flag is used.
621    SDValue getCopyFromRegs(SelectionDAG &DAG, FunctionLoweringInfo &FuncInfo,
622                            DebugLoc dl,
623                            SDValue &Chain, SDValue *Flag) const;
624
625    /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
626    /// specified value into the registers specified by this object.  This uses
627    /// Chain/Flag as the input and updates them for the output Chain/Flag.
628    /// If the Flag pointer is NULL, no flag is used.
629    void getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl,
630                       SDValue &Chain, SDValue *Flag) const;
631
632    /// AddInlineAsmOperands - Add this value to the specified inlineasm node
633    /// operand list.  This adds the code marker, matching input operand index
634    /// (if applicable), and includes the number of values added into it.
635    void AddInlineAsmOperands(unsigned Kind,
636                              bool HasMatching, unsigned MatchingIdx,
637                              SelectionDAG &DAG,
638                              std::vector<SDValue> &Ops) const;
639  };
640}
641
642/// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
643/// this value and returns the result as a ValueVT value.  This uses
644/// Chain/Flag as the input and updates them for the output Chain/Flag.
645/// If the Flag pointer is NULL, no flag is used.
646SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
647                                      FunctionLoweringInfo &FuncInfo,
648                                      DebugLoc dl,
649                                      SDValue &Chain, SDValue *Flag) const {
650  // A Value with type {} or [0 x %t] needs no registers.
651  if (ValueVTs.empty())
652    return SDValue();
653
654  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
655
656  // Assemble the legal parts into the final values.
657  SmallVector<SDValue, 4> Values(ValueVTs.size());
658  SmallVector<SDValue, 8> Parts;
659  for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
660    // Copy the legal parts from the registers.
661    EVT ValueVT = ValueVTs[Value];
662    unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
663    EVT RegisterVT = RegVTs[Value];
664
665    Parts.resize(NumRegs);
666    for (unsigned i = 0; i != NumRegs; ++i) {
667      SDValue P;
668      if (Flag == 0) {
669        P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
670      } else {
671        P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
672        *Flag = P.getValue(2);
673      }
674
675      Chain = P.getValue(1);
676      Parts[i] = P;
677
678      // If the source register was virtual and if we know something about it,
679      // add an assert node.
680      if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) ||
681          !RegisterVT.isInteger() || RegisterVT.isVector())
682        continue;
683
684      const FunctionLoweringInfo::LiveOutInfo *LOI =
685        FuncInfo.GetLiveOutRegInfo(Regs[Part+i]);
686      if (!LOI)
687        continue;
688
689      unsigned RegSize = RegisterVT.getSizeInBits();
690      unsigned NumSignBits = LOI->NumSignBits;
691      unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes();
692
693      // FIXME: We capture more information than the dag can represent.  For
694      // now, just use the tightest assertzext/assertsext possible.
695      bool isSExt = true;
696      EVT FromVT(MVT::Other);
697      if (NumSignBits == RegSize)
698        isSExt = true, FromVT = MVT::i1;   // ASSERT SEXT 1
699      else if (NumZeroBits >= RegSize-1)
700        isSExt = false, FromVT = MVT::i1;  // ASSERT ZEXT 1
701      else if (NumSignBits > RegSize-8)
702        isSExt = true, FromVT = MVT::i8;   // ASSERT SEXT 8
703      else if (NumZeroBits >= RegSize-8)
704        isSExt = false, FromVT = MVT::i8;  // ASSERT ZEXT 8
705      else if (NumSignBits > RegSize-16)
706        isSExt = true, FromVT = MVT::i16;  // ASSERT SEXT 16
707      else if (NumZeroBits >= RegSize-16)
708        isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16
709      else if (NumSignBits > RegSize-32)
710        isSExt = true, FromVT = MVT::i32;  // ASSERT SEXT 32
711      else if (NumZeroBits >= RegSize-32)
712        isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32
713      else
714        continue;
715
716      // Add an assertion node.
717      assert(FromVT != MVT::Other);
718      Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
719                             RegisterVT, P, DAG.getValueType(FromVT));
720    }
721
722    Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(),
723                                     NumRegs, RegisterVT, ValueVT);
724    Part += NumRegs;
725    Parts.clear();
726  }
727
728  return DAG.getNode(ISD::MERGE_VALUES, dl,
729                     DAG.getVTList(&ValueVTs[0], ValueVTs.size()),
730                     &Values[0], ValueVTs.size());
731}
732
733/// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
734/// specified value into the registers specified by this object.  This uses
735/// Chain/Flag as the input and updates them for the output Chain/Flag.
736/// If the Flag pointer is NULL, no flag is used.
737void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl,
738                                 SDValue &Chain, SDValue *Flag) const {
739  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
740
741  // Get the list of the values's legal parts.
742  unsigned NumRegs = Regs.size();
743  SmallVector<SDValue, 8> Parts(NumRegs);
744  for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
745    EVT ValueVT = ValueVTs[Value];
746    unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
747    EVT RegisterVT = RegVTs[Value];
748
749    getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value),
750                   &Parts[Part], NumParts, RegisterVT);
751    Part += NumParts;
752  }
753
754  // Copy the parts into the registers.
755  SmallVector<SDValue, 8> Chains(NumRegs);
756  for (unsigned i = 0; i != NumRegs; ++i) {
757    SDValue Part;
758    if (Flag == 0) {
759      Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
760    } else {
761      Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
762      *Flag = Part.getValue(1);
763    }
764
765    Chains[i] = Part.getValue(0);
766  }
767
768  if (NumRegs == 1 || Flag)
769    // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
770    // flagged to it. That is the CopyToReg nodes and the user are considered
771    // a single scheduling unit. If we create a TokenFactor and return it as
772    // chain, then the TokenFactor is both a predecessor (operand) of the
773    // user as well as a successor (the TF operands are flagged to the user).
774    // c1, f1 = CopyToReg
775    // c2, f2 = CopyToReg
776    // c3     = TokenFactor c1, c2
777    // ...
778    //        = op c3, ..., f2
779    Chain = Chains[NumRegs-1];
780  else
781    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0], NumRegs);
782}
783
784/// AddInlineAsmOperands - Add this value to the specified inlineasm node
785/// operand list.  This adds the code marker and includes the number of
786/// values added into it.
787void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
788                                        unsigned MatchingIdx,
789                                        SelectionDAG &DAG,
790                                        std::vector<SDValue> &Ops) const {
791  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
792
793  unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
794  if (HasMatching)
795    Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
796  else if (!Regs.empty() &&
797           TargetRegisterInfo::isVirtualRegister(Regs.front())) {
798    // Put the register class of the virtual registers in the flag word.  That
799    // way, later passes can recompute register class constraints for inline
800    // assembly as well as normal instructions.
801    // Don't do this for tied operands that can use the regclass information
802    // from the def.
803    const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
804    const TargetRegisterClass *RC = MRI.getRegClass(Regs.front());
805    Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID());
806  }
807
808  SDValue Res = DAG.getTargetConstant(Flag, MVT::i32);
809  Ops.push_back(Res);
810
811  for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
812    unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]);
813    EVT RegisterVT = RegVTs[Value];
814    for (unsigned i = 0; i != NumRegs; ++i) {
815      assert(Reg < Regs.size() && "Mismatch in # registers expected");
816      Ops.push_back(DAG.getRegister(Regs[Reg++], RegisterVT));
817    }
818  }
819}
820
821void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa,
822                               const TargetLibraryInfo *li) {
823  AA = &aa;
824  GFI = gfi;
825  LibInfo = li;
826  TD = DAG.getTarget().getTargetData();
827  LPadToCallSiteMap.clear();
828}
829
830/// clear - Clear out the current SelectionDAG and the associated
831/// state and prepare this SelectionDAGBuilder object to be used
832/// for a new block. This doesn't clear out information about
833/// additional blocks that are needed to complete switch lowering
834/// or PHI node updating; that information is cleared out as it is
835/// consumed.
836void SelectionDAGBuilder::clear() {
837  NodeMap.clear();
838  UnusedArgNodeMap.clear();
839  PendingLoads.clear();
840  PendingExports.clear();
841  CurDebugLoc = DebugLoc();
842  HasTailCall = false;
843}
844
845/// clearDanglingDebugInfo - Clear the dangling debug information
846/// map. This function is seperated from the clear so that debug
847/// information that is dangling in a basic block can be properly
848/// resolved in a different basic block. This allows the
849/// SelectionDAG to resolve dangling debug information attached
850/// to PHI nodes.
851void SelectionDAGBuilder::clearDanglingDebugInfo() {
852  DanglingDebugInfoMap.clear();
853}
854
855/// getRoot - Return the current virtual root of the Selection DAG,
856/// flushing any PendingLoad items. This must be done before emitting
857/// a store or any other node that may need to be ordered after any
858/// prior load instructions.
859///
860SDValue SelectionDAGBuilder::getRoot() {
861  if (PendingLoads.empty())
862    return DAG.getRoot();
863
864  if (PendingLoads.size() == 1) {
865    SDValue Root = PendingLoads[0];
866    DAG.setRoot(Root);
867    PendingLoads.clear();
868    return Root;
869  }
870
871  // Otherwise, we have to make a token factor node.
872  SDValue Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
873                               &PendingLoads[0], PendingLoads.size());
874  PendingLoads.clear();
875  DAG.setRoot(Root);
876  return Root;
877}
878
879/// getControlRoot - Similar to getRoot, but instead of flushing all the
880/// PendingLoad items, flush all the PendingExports items. It is necessary
881/// to do this before emitting a terminator instruction.
882///
883SDValue SelectionDAGBuilder::getControlRoot() {
884  SDValue Root = DAG.getRoot();
885
886  if (PendingExports.empty())
887    return Root;
888
889  // Turn all of the CopyToReg chains into one factored node.
890  if (Root.getOpcode() != ISD::EntryToken) {
891    unsigned i = 0, e = PendingExports.size();
892    for (; i != e; ++i) {
893      assert(PendingExports[i].getNode()->getNumOperands() > 1);
894      if (PendingExports[i].getNode()->getOperand(0) == Root)
895        break;  // Don't add the root if we already indirectly depend on it.
896    }
897
898    if (i == e)
899      PendingExports.push_back(Root);
900  }
901
902  Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
903                     &PendingExports[0],
904                     PendingExports.size());
905  PendingExports.clear();
906  DAG.setRoot(Root);
907  return Root;
908}
909
910void SelectionDAGBuilder::AssignOrderingToNode(const SDNode *Node) {
911  if (DAG.GetOrdering(Node) != 0) return; // Already has ordering.
912  DAG.AssignOrdering(Node, SDNodeOrder);
913
914  for (unsigned I = 0, E = Node->getNumOperands(); I != E; ++I)
915    AssignOrderingToNode(Node->getOperand(I).getNode());
916}
917
918void SelectionDAGBuilder::visit(const Instruction &I) {
919  // Set up outgoing PHI node register values before emitting the terminator.
920  if (isa<TerminatorInst>(&I))
921    HandlePHINodesInSuccessorBlocks(I.getParent());
922
923  CurDebugLoc = I.getDebugLoc();
924
925  visit(I.getOpcode(), I);
926
927  if (!isa<TerminatorInst>(&I) && !HasTailCall)
928    CopyToExportRegsIfNeeded(&I);
929
930  CurDebugLoc = DebugLoc();
931}
932
933void SelectionDAGBuilder::visitPHI(const PHINode &) {
934  llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
935}
936
937void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
938  // Note: this doesn't use InstVisitor, because it has to work with
939  // ConstantExpr's in addition to instructions.
940  switch (Opcode) {
941  default: llvm_unreachable("Unknown instruction type encountered!");
942    // Build the switch statement using the Instruction.def file.
943#define HANDLE_INST(NUM, OPCODE, CLASS) \
944    case Instruction::OPCODE: visit##OPCODE((CLASS&)I); break;
945#include "llvm/Instruction.def"
946  }
947
948  // Assign the ordering to the freshly created DAG nodes.
949  if (NodeMap.count(&I)) {
950    ++SDNodeOrder;
951    AssignOrderingToNode(getValue(&I).getNode());
952  }
953}
954
955// resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
956// generate the debug data structures now that we've seen its definition.
957void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
958                                                   SDValue Val) {
959  DanglingDebugInfo &DDI = DanglingDebugInfoMap[V];
960  if (DDI.getDI()) {
961    const DbgValueInst *DI = DDI.getDI();
962    DebugLoc dl = DDI.getdl();
963    unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
964    MDNode *Variable = DI->getVariable();
965    uint64_t Offset = DI->getOffset();
966    SDDbgValue *SDV;
967    if (Val.getNode()) {
968      if (!EmitFuncArgumentDbgValue(V, Variable, Offset, Val)) {
969        SDV = DAG.getDbgValue(Variable, Val.getNode(),
970                              Val.getResNo(), Offset, dl, DbgSDNodeOrder);
971        DAG.AddDbgValue(SDV, Val.getNode(), false);
972      }
973    } else
974      DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
975    DanglingDebugInfoMap[V] = DanglingDebugInfo();
976  }
977}
978
979/// getValue - Return an SDValue for the given Value.
980SDValue SelectionDAGBuilder::getValue(const Value *V) {
981  // If we already have an SDValue for this value, use it. It's important
982  // to do this first, so that we don't create a CopyFromReg if we already
983  // have a regular SDValue.
984  SDValue &N = NodeMap[V];
985  if (N.getNode()) return N;
986
987  // If there's a virtual register allocated and initialized for this
988  // value, use it.
989  DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V);
990  if (It != FuncInfo.ValueMap.end()) {
991    unsigned InReg = It->second;
992    RegsForValue RFV(*DAG.getContext(), TLI, InReg, V->getType());
993    SDValue Chain = DAG.getEntryNode();
994    N = RFV.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), Chain, NULL);
995    resolveDanglingDebugInfo(V, N);
996    return N;
997  }
998
999  // Otherwise create a new SDValue and remember it.
1000  SDValue Val = getValueImpl(V);
1001  NodeMap[V] = Val;
1002  resolveDanglingDebugInfo(V, Val);
1003  return Val;
1004}
1005
1006/// getNonRegisterValue - Return an SDValue for the given Value, but
1007/// don't look in FuncInfo.ValueMap for a virtual register.
1008SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
1009  // If we already have an SDValue for this value, use it.
1010  SDValue &N = NodeMap[V];
1011  if (N.getNode()) return N;
1012
1013  // Otherwise create a new SDValue and remember it.
1014  SDValue Val = getValueImpl(V);
1015  NodeMap[V] = Val;
1016  resolveDanglingDebugInfo(V, Val);
1017  return Val;
1018}
1019
1020/// getValueImpl - Helper function for getValue and getNonRegisterValue.
1021/// Create an SDValue for the given value.
1022SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
1023  if (const Constant *C = dyn_cast<Constant>(V)) {
1024    EVT VT = TLI.getValueType(V->getType(), true);
1025
1026    if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
1027      return DAG.getConstant(*CI, VT);
1028
1029    if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
1030      return DAG.getGlobalAddress(GV, getCurDebugLoc(), VT);
1031
1032    if (isa<ConstantPointerNull>(C))
1033      return DAG.getConstant(0, TLI.getPointerTy());
1034
1035    if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
1036      return DAG.getConstantFP(*CFP, VT);
1037
1038    if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
1039      return DAG.getUNDEF(VT);
1040
1041    if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1042      visit(CE->getOpcode(), *CE);
1043      SDValue N1 = NodeMap[V];
1044      assert(N1.getNode() && "visit didn't populate the NodeMap!");
1045      return N1;
1046    }
1047
1048    if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
1049      SmallVector<SDValue, 4> Constants;
1050      for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end();
1051           OI != OE; ++OI) {
1052        SDNode *Val = getValue(*OI).getNode();
1053        // If the operand is an empty aggregate, there are no values.
1054        if (!Val) continue;
1055        // Add each leaf value from the operand to the Constants list
1056        // to form a flattened list of all the values.
1057        for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1058          Constants.push_back(SDValue(Val, i));
1059      }
1060
1061      return DAG.getMergeValues(&Constants[0], Constants.size(),
1062                                getCurDebugLoc());
1063    }
1064
1065    if (const ConstantDataSequential *CDS =
1066          dyn_cast<ConstantDataSequential>(C)) {
1067      SmallVector<SDValue, 4> Ops;
1068      for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1069        SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode();
1070        // Add each leaf value from the operand to the Constants list
1071        // to form a flattened list of all the values.
1072        for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1073          Ops.push_back(SDValue(Val, i));
1074      }
1075
1076      if (isa<ArrayType>(CDS->getType()))
1077        return DAG.getMergeValues(&Ops[0], Ops.size(), getCurDebugLoc());
1078      return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(),
1079                                      VT, &Ops[0], Ops.size());
1080    }
1081
1082    if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
1083      assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1084             "Unknown struct or array constant!");
1085
1086      SmallVector<EVT, 4> ValueVTs;
1087      ComputeValueVTs(TLI, C->getType(), ValueVTs);
1088      unsigned NumElts = ValueVTs.size();
1089      if (NumElts == 0)
1090        return SDValue(); // empty struct
1091      SmallVector<SDValue, 4> Constants(NumElts);
1092      for (unsigned i = 0; i != NumElts; ++i) {
1093        EVT EltVT = ValueVTs[i];
1094        if (isa<UndefValue>(C))
1095          Constants[i] = DAG.getUNDEF(EltVT);
1096        else if (EltVT.isFloatingPoint())
1097          Constants[i] = DAG.getConstantFP(0, EltVT);
1098        else
1099          Constants[i] = DAG.getConstant(0, EltVT);
1100      }
1101
1102      return DAG.getMergeValues(&Constants[0], NumElts,
1103                                getCurDebugLoc());
1104    }
1105
1106    if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
1107      return DAG.getBlockAddress(BA, VT);
1108
1109    VectorType *VecTy = cast<VectorType>(V->getType());
1110    unsigned NumElements = VecTy->getNumElements();
1111
1112    // Now that we know the number and type of the elements, get that number of
1113    // elements into the Ops array based on what kind of constant it is.
1114    SmallVector<SDValue, 16> Ops;
1115    if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
1116      for (unsigned i = 0; i != NumElements; ++i)
1117        Ops.push_back(getValue(CV->getOperand(i)));
1118    } else {
1119      assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!");
1120      EVT EltVT = TLI.getValueType(VecTy->getElementType());
1121
1122      SDValue Op;
1123      if (EltVT.isFloatingPoint())
1124        Op = DAG.getConstantFP(0, EltVT);
1125      else
1126        Op = DAG.getConstant(0, EltVT);
1127      Ops.assign(NumElements, Op);
1128    }
1129
1130    // Create a BUILD_VECTOR node.
1131    return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(),
1132                                    VT, &Ops[0], Ops.size());
1133  }
1134
1135  // If this is a static alloca, generate it as the frameindex instead of
1136  // computation.
1137  if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1138    DenseMap<const AllocaInst*, int>::iterator SI =
1139      FuncInfo.StaticAllocaMap.find(AI);
1140    if (SI != FuncInfo.StaticAllocaMap.end())
1141      return DAG.getFrameIndex(SI->second, TLI.getPointerTy());
1142  }
1143
1144  // If this is an instruction which fast-isel has deferred, select it now.
1145  if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
1146    unsigned InReg = FuncInfo.InitializeRegForValue(Inst);
1147    RegsForValue RFV(*DAG.getContext(), TLI, InReg, Inst->getType());
1148    SDValue Chain = DAG.getEntryNode();
1149    return RFV.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), Chain, NULL);
1150  }
1151
1152  llvm_unreachable("Can't get register for value!");
1153}
1154
1155void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
1156  SDValue Chain = getControlRoot();
1157  SmallVector<ISD::OutputArg, 8> Outs;
1158  SmallVector<SDValue, 8> OutVals;
1159
1160  if (!FuncInfo.CanLowerReturn) {
1161    unsigned DemoteReg = FuncInfo.DemoteRegister;
1162    const Function *F = I.getParent()->getParent();
1163
1164    // Emit a store of the return value through the virtual register.
1165    // Leave Outs empty so that LowerReturn won't try to load return
1166    // registers the usual way.
1167    SmallVector<EVT, 1> PtrValueVTs;
1168    ComputeValueVTs(TLI, PointerType::getUnqual(F->getReturnType()),
1169                    PtrValueVTs);
1170
1171    SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]);
1172    SDValue RetOp = getValue(I.getOperand(0));
1173
1174    SmallVector<EVT, 4> ValueVTs;
1175    SmallVector<uint64_t, 4> Offsets;
1176    ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs, &Offsets);
1177    unsigned NumValues = ValueVTs.size();
1178
1179    SmallVector<SDValue, 4> Chains(NumValues);
1180    for (unsigned i = 0; i != NumValues; ++i) {
1181      SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(),
1182                                RetPtr.getValueType(), RetPtr,
1183                                DAG.getIntPtrConstant(Offsets[i]));
1184      Chains[i] =
1185        DAG.getStore(Chain, getCurDebugLoc(),
1186                     SDValue(RetOp.getNode(), RetOp.getResNo() + i),
1187                     // FIXME: better loc info would be nice.
1188                     Add, MachinePointerInfo(), false, false, 0);
1189    }
1190
1191    Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
1192                        MVT::Other, &Chains[0], NumValues);
1193  } else if (I.getNumOperands() != 0) {
1194    SmallVector<EVT, 4> ValueVTs;
1195    ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs);
1196    unsigned NumValues = ValueVTs.size();
1197    if (NumValues) {
1198      SDValue RetOp = getValue(I.getOperand(0));
1199      for (unsigned j = 0, f = NumValues; j != f; ++j) {
1200        EVT VT = ValueVTs[j];
1201
1202        ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1203
1204        const Function *F = I.getParent()->getParent();
1205        if (F->paramHasAttr(0, Attribute::SExt))
1206          ExtendKind = ISD::SIGN_EXTEND;
1207        else if (F->paramHasAttr(0, Attribute::ZExt))
1208          ExtendKind = ISD::ZERO_EXTEND;
1209
1210        if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
1211          VT = TLI.getTypeForExtArgOrReturn(*DAG.getContext(), VT, ExtendKind);
1212
1213        unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), VT);
1214        EVT PartVT = TLI.getRegisterType(*DAG.getContext(), VT);
1215        SmallVector<SDValue, 4> Parts(NumParts);
1216        getCopyToParts(DAG, getCurDebugLoc(),
1217                       SDValue(RetOp.getNode(), RetOp.getResNo() + j),
1218                       &Parts[0], NumParts, PartVT, ExtendKind);
1219
1220        // 'inreg' on function refers to return value
1221        ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1222        if (F->paramHasAttr(0, Attribute::InReg))
1223          Flags.setInReg();
1224
1225        // Propagate extension type if any
1226        if (ExtendKind == ISD::SIGN_EXTEND)
1227          Flags.setSExt();
1228        else if (ExtendKind == ISD::ZERO_EXTEND)
1229          Flags.setZExt();
1230
1231        for (unsigned i = 0; i < NumParts; ++i) {
1232          Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(),
1233                                        /*isfixed=*/true));
1234          OutVals.push_back(Parts[i]);
1235        }
1236      }
1237    }
1238  }
1239
1240  bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
1241  CallingConv::ID CallConv =
1242    DAG.getMachineFunction().getFunction()->getCallingConv();
1243  Chain = TLI.LowerReturn(Chain, CallConv, isVarArg,
1244                          Outs, OutVals, getCurDebugLoc(), DAG);
1245
1246  // Verify that the target's LowerReturn behaved as expected.
1247  assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
1248         "LowerReturn didn't return a valid chain!");
1249
1250  // Update the DAG with the new chain value resulting from return lowering.
1251  DAG.setRoot(Chain);
1252}
1253
1254/// CopyToExportRegsIfNeeded - If the given value has virtual registers
1255/// created for it, emit nodes to copy the value into the virtual
1256/// registers.
1257void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
1258  // Skip empty types
1259  if (V->getType()->isEmptyTy())
1260    return;
1261
1262  DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
1263  if (VMI != FuncInfo.ValueMap.end()) {
1264    assert(!V->use_empty() && "Unused value assigned virtual registers!");
1265    CopyValueToVirtualRegister(V, VMI->second);
1266  }
1267}
1268
1269/// ExportFromCurrentBlock - If this condition isn't known to be exported from
1270/// the current basic block, add it to ValueMap now so that we'll get a
1271/// CopyTo/FromReg.
1272void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
1273  // No need to export constants.
1274  if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
1275
1276  // Already exported?
1277  if (FuncInfo.isExportedInst(V)) return;
1278
1279  unsigned Reg = FuncInfo.InitializeRegForValue(V);
1280  CopyValueToVirtualRegister(V, Reg);
1281}
1282
1283bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
1284                                                     const BasicBlock *FromBB) {
1285  // The operands of the setcc have to be in this block.  We don't know
1286  // how to export them from some other block.
1287  if (const Instruction *VI = dyn_cast<Instruction>(V)) {
1288    // Can export from current BB.
1289    if (VI->getParent() == FromBB)
1290      return true;
1291
1292    // Is already exported, noop.
1293    return FuncInfo.isExportedInst(V);
1294  }
1295
1296  // If this is an argument, we can export it if the BB is the entry block or
1297  // if it is already exported.
1298  if (isa<Argument>(V)) {
1299    if (FromBB == &FromBB->getParent()->getEntryBlock())
1300      return true;
1301
1302    // Otherwise, can only export this if it is already exported.
1303    return FuncInfo.isExportedInst(V);
1304  }
1305
1306  // Otherwise, constants can always be exported.
1307  return true;
1308}
1309
1310/// Return branch probability calculated by BranchProbabilityInfo for IR blocks.
1311uint32_t SelectionDAGBuilder::getEdgeWeight(const MachineBasicBlock *Src,
1312                                            const MachineBasicBlock *Dst) const {
1313  BranchProbabilityInfo *BPI = FuncInfo.BPI;
1314  if (!BPI)
1315    return 0;
1316  const BasicBlock *SrcBB = Src->getBasicBlock();
1317  const BasicBlock *DstBB = Dst->getBasicBlock();
1318  return BPI->getEdgeWeight(SrcBB, DstBB);
1319}
1320
1321void SelectionDAGBuilder::
1322addSuccessorWithWeight(MachineBasicBlock *Src, MachineBasicBlock *Dst,
1323                       uint32_t Weight /* = 0 */) {
1324  if (!Weight)
1325    Weight = getEdgeWeight(Src, Dst);
1326  Src->addSuccessor(Dst, Weight);
1327}
1328
1329
1330static bool InBlock(const Value *V, const BasicBlock *BB) {
1331  if (const Instruction *I = dyn_cast<Instruction>(V))
1332    return I->getParent() == BB;
1333  return true;
1334}
1335
1336/// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
1337/// This function emits a branch and is used at the leaves of an OR or an
1338/// AND operator tree.
1339///
1340void
1341SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
1342                                                  MachineBasicBlock *TBB,
1343                                                  MachineBasicBlock *FBB,
1344                                                  MachineBasicBlock *CurBB,
1345                                                  MachineBasicBlock *SwitchBB) {
1346  const BasicBlock *BB = CurBB->getBasicBlock();
1347
1348  // If the leaf of the tree is a comparison, merge the condition into
1349  // the caseblock.
1350  if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
1351    // The operands of the cmp have to be in this block.  We don't know
1352    // how to export them from some other block.  If this is the first block
1353    // of the sequence, no exporting is needed.
1354    if (CurBB == SwitchBB ||
1355        (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
1356         isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
1357      ISD::CondCode Condition;
1358      if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
1359        Condition = getICmpCondCode(IC->getPredicate());
1360      } else if (const FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) {
1361        Condition = getFCmpCondCode(FC->getPredicate());
1362        if (TM.Options.NoNaNsFPMath)
1363          Condition = getFCmpCodeWithoutNaN(Condition);
1364      } else {
1365        Condition = ISD::SETEQ; // silence warning.
1366        llvm_unreachable("Unknown compare instruction");
1367      }
1368
1369      CaseBlock CB(Condition, BOp->getOperand(0),
1370                   BOp->getOperand(1), NULL, TBB, FBB, CurBB);
1371      SwitchCases.push_back(CB);
1372      return;
1373    }
1374  }
1375
1376  // Create a CaseBlock record representing this branch.
1377  CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()),
1378               NULL, TBB, FBB, CurBB);
1379  SwitchCases.push_back(CB);
1380}
1381
1382/// FindMergedConditions - If Cond is an expression like
1383void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
1384                                               MachineBasicBlock *TBB,
1385                                               MachineBasicBlock *FBB,
1386                                               MachineBasicBlock *CurBB,
1387                                               MachineBasicBlock *SwitchBB,
1388                                               unsigned Opc) {
1389  // If this node is not part of the or/and tree, emit it as a branch.
1390  const Instruction *BOp = dyn_cast<Instruction>(Cond);
1391  if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
1392      (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() ||
1393      BOp->getParent() != CurBB->getBasicBlock() ||
1394      !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
1395      !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
1396    EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB);
1397    return;
1398  }
1399
1400  //  Create TmpBB after CurBB.
1401  MachineFunction::iterator BBI = CurBB;
1402  MachineFunction &MF = DAG.getMachineFunction();
1403  MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
1404  CurBB->getParent()->insert(++BBI, TmpBB);
1405
1406  if (Opc == Instruction::Or) {
1407    // Codegen X | Y as:
1408    //   jmp_if_X TBB
1409    //   jmp TmpBB
1410    // TmpBB:
1411    //   jmp_if_Y TBB
1412    //   jmp FBB
1413    //
1414
1415    // Emit the LHS condition.
1416    FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc);
1417
1418    // Emit the RHS condition into TmpBB.
1419    FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc);
1420  } else {
1421    assert(Opc == Instruction::And && "Unknown merge op!");
1422    // Codegen X & Y as:
1423    //   jmp_if_X TmpBB
1424    //   jmp FBB
1425    // TmpBB:
1426    //   jmp_if_Y TBB
1427    //   jmp FBB
1428    //
1429    //  This requires creation of TmpBB after CurBB.
1430
1431    // Emit the LHS condition.
1432    FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc);
1433
1434    // Emit the RHS condition into TmpBB.
1435    FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc);
1436  }
1437}
1438
1439/// If the set of cases should be emitted as a series of branches, return true.
1440/// If we should emit this as a bunch of and/or'd together conditions, return
1441/// false.
1442bool
1443SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases){
1444  if (Cases.size() != 2) return true;
1445
1446  // If this is two comparisons of the same values or'd or and'd together, they
1447  // will get folded into a single comparison, so don't emit two blocks.
1448  if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
1449       Cases[0].CmpRHS == Cases[1].CmpRHS) ||
1450      (Cases[0].CmpRHS == Cases[1].CmpLHS &&
1451       Cases[0].CmpLHS == Cases[1].CmpRHS)) {
1452    return false;
1453  }
1454
1455  // Handle: (X != null) | (Y != null) --> (X|Y) != 0
1456  // Handle: (X == null) & (Y == null) --> (X|Y) == 0
1457  if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
1458      Cases[0].CC == Cases[1].CC &&
1459      isa<Constant>(Cases[0].CmpRHS) &&
1460      cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
1461    if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
1462      return false;
1463    if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
1464      return false;
1465  }
1466
1467  return true;
1468}
1469
1470void SelectionDAGBuilder::visitBr(const BranchInst &I) {
1471  MachineBasicBlock *BrMBB = FuncInfo.MBB;
1472
1473  // Update machine-CFG edges.
1474  MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
1475
1476  // Figure out which block is immediately after the current one.
1477  MachineBasicBlock *NextBlock = 0;
1478  MachineFunction::iterator BBI = BrMBB;
1479  if (++BBI != FuncInfo.MF->end())
1480    NextBlock = BBI;
1481
1482  if (I.isUnconditional()) {
1483    // Update machine-CFG edges.
1484    BrMBB->addSuccessor(Succ0MBB);
1485
1486    // If this is not a fall-through branch, emit the branch.
1487    if (Succ0MBB != NextBlock)
1488      DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
1489                              MVT::Other, getControlRoot(),
1490                              DAG.getBasicBlock(Succ0MBB)));
1491
1492    return;
1493  }
1494
1495  // If this condition is one of the special cases we handle, do special stuff
1496  // now.
1497  const Value *CondVal = I.getCondition();
1498  MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
1499
1500  // If this is a series of conditions that are or'd or and'd together, emit
1501  // this as a sequence of branches instead of setcc's with and/or operations.
1502  // As long as jumps are not expensive, this should improve performance.
1503  // For example, instead of something like:
1504  //     cmp A, B
1505  //     C = seteq
1506  //     cmp D, E
1507  //     F = setle
1508  //     or C, F
1509  //     jnz foo
1510  // Emit:
1511  //     cmp A, B
1512  //     je foo
1513  //     cmp D, E
1514  //     jle foo
1515  //
1516  if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
1517    if (!TLI.isJumpExpensive() &&
1518        BOp->hasOneUse() &&
1519        (BOp->getOpcode() == Instruction::And ||
1520         BOp->getOpcode() == Instruction::Or)) {
1521      FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB,
1522                           BOp->getOpcode());
1523      // If the compares in later blocks need to use values not currently
1524      // exported from this block, export them now.  This block should always
1525      // be the first entry.
1526      assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
1527
1528      // Allow some cases to be rejected.
1529      if (ShouldEmitAsBranches(SwitchCases)) {
1530        for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
1531          ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
1532          ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
1533        }
1534
1535        // Emit the branch for this block.
1536        visitSwitchCase(SwitchCases[0], BrMBB);
1537        SwitchCases.erase(SwitchCases.begin());
1538        return;
1539      }
1540
1541      // Okay, we decided not to do this, remove any inserted MBB's and clear
1542      // SwitchCases.
1543      for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
1544        FuncInfo.MF->erase(SwitchCases[i].ThisBB);
1545
1546      SwitchCases.clear();
1547    }
1548  }
1549
1550  // Create a CaseBlock record representing this branch.
1551  CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
1552               NULL, Succ0MBB, Succ1MBB, BrMBB);
1553
1554  // Use visitSwitchCase to actually insert the fast branch sequence for this
1555  // cond branch.
1556  visitSwitchCase(CB, BrMBB);
1557}
1558
1559/// visitSwitchCase - Emits the necessary code to represent a single node in
1560/// the binary search tree resulting from lowering a switch instruction.
1561void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
1562                                          MachineBasicBlock *SwitchBB) {
1563  SDValue Cond;
1564  SDValue CondLHS = getValue(CB.CmpLHS);
1565  DebugLoc dl = getCurDebugLoc();
1566
1567  // Build the setcc now.
1568  if (CB.CmpMHS == NULL) {
1569    // Fold "(X == true)" to X and "(X == false)" to !X to
1570    // handle common cases produced by branch lowering.
1571    if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
1572        CB.CC == ISD::SETEQ)
1573      Cond = CondLHS;
1574    else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
1575             CB.CC == ISD::SETEQ) {
1576      SDValue True = DAG.getConstant(1, CondLHS.getValueType());
1577      Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
1578    } else
1579      Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
1580  } else {
1581    assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
1582
1583    const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
1584    const APInt& High  = cast<ConstantInt>(CB.CmpRHS)->getValue();
1585
1586    SDValue CmpOp = getValue(CB.CmpMHS);
1587    EVT VT = CmpOp.getValueType();
1588
1589    if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
1590      Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, VT),
1591                          ISD::SETLE);
1592    } else {
1593      SDValue SUB = DAG.getNode(ISD::SUB, dl,
1594                                VT, CmpOp, DAG.getConstant(Low, VT));
1595      Cond = DAG.getSetCC(dl, MVT::i1, SUB,
1596                          DAG.getConstant(High-Low, VT), ISD::SETULE);
1597    }
1598  }
1599
1600  // Update successor info
1601  addSuccessorWithWeight(SwitchBB, CB.TrueBB, CB.TrueWeight);
1602  addSuccessorWithWeight(SwitchBB, CB.FalseBB, CB.FalseWeight);
1603
1604  // Set NextBlock to be the MBB immediately after the current one, if any.
1605  // This is used to avoid emitting unnecessary branches to the next block.
1606  MachineBasicBlock *NextBlock = 0;
1607  MachineFunction::iterator BBI = SwitchBB;
1608  if (++BBI != FuncInfo.MF->end())
1609    NextBlock = BBI;
1610
1611  // If the lhs block is the next block, invert the condition so that we can
1612  // fall through to the lhs instead of the rhs block.
1613  if (CB.TrueBB == NextBlock) {
1614    std::swap(CB.TrueBB, CB.FalseBB);
1615    SDValue True = DAG.getConstant(1, Cond.getValueType());
1616    Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
1617  }
1618
1619  SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
1620                               MVT::Other, getControlRoot(), Cond,
1621                               DAG.getBasicBlock(CB.TrueBB));
1622
1623  // Insert the false branch. Do this even if it's a fall through branch,
1624  // this makes it easier to do DAG optimizations which require inverting
1625  // the branch condition.
1626  BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
1627                       DAG.getBasicBlock(CB.FalseBB));
1628
1629  DAG.setRoot(BrCond);
1630}
1631
1632/// visitJumpTable - Emit JumpTable node in the current MBB
1633void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) {
1634  // Emit the code for the jump table
1635  assert(JT.Reg != -1U && "Should lower JT Header first!");
1636  EVT PTy = TLI.getPointerTy();
1637  SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(),
1638                                     JT.Reg, PTy);
1639  SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
1640  SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurDebugLoc(),
1641                                    MVT::Other, Index.getValue(1),
1642                                    Table, Index);
1643  DAG.setRoot(BrJumpTable);
1644}
1645
1646/// visitJumpTableHeader - This function emits necessary code to produce index
1647/// in the JumpTable from switch case.
1648void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT,
1649                                               JumpTableHeader &JTH,
1650                                               MachineBasicBlock *SwitchBB) {
1651  // Subtract the lowest switch case value from the value being switched on and
1652  // conditional branch to default mbb if the result is greater than the
1653  // difference between smallest and largest cases.
1654  SDValue SwitchOp = getValue(JTH.SValue);
1655  EVT VT = SwitchOp.getValueType();
1656  SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp,
1657                            DAG.getConstant(JTH.First, VT));
1658
1659  // The SDNode we just created, which holds the value being switched on minus
1660  // the smallest case value, needs to be copied to a virtual register so it
1661  // can be used as an index into the jump table in a subsequent basic block.
1662  // This value may be smaller or larger than the target's pointer type, and
1663  // therefore require extension or truncating.
1664  SwitchOp = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(), TLI.getPointerTy());
1665
1666  unsigned JumpTableReg = FuncInfo.CreateReg(TLI.getPointerTy());
1667  SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(),
1668                                    JumpTableReg, SwitchOp);
1669  JT.Reg = JumpTableReg;
1670
1671  // Emit the range check for the jump table, and branch to the default block
1672  // for the switch statement if the value being switched on exceeds the largest
1673  // case in the switch.
1674  SDValue CMP = DAG.getSetCC(getCurDebugLoc(),
1675                             TLI.getSetCCResultType(Sub.getValueType()), Sub,
1676                             DAG.getConstant(JTH.Last-JTH.First,VT),
1677                             ISD::SETUGT);
1678
1679  // Set NextBlock to be the MBB immediately after the current one, if any.
1680  // This is used to avoid emitting unnecessary branches to the next block.
1681  MachineBasicBlock *NextBlock = 0;
1682  MachineFunction::iterator BBI = SwitchBB;
1683
1684  if (++BBI != FuncInfo.MF->end())
1685    NextBlock = BBI;
1686
1687  SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1688                               MVT::Other, CopyTo, CMP,
1689                               DAG.getBasicBlock(JT.Default));
1690
1691  if (JT.MBB != NextBlock)
1692    BrCond = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrCond,
1693                         DAG.getBasicBlock(JT.MBB));
1694
1695  DAG.setRoot(BrCond);
1696}
1697
1698/// visitBitTestHeader - This function emits necessary code to produce value
1699/// suitable for "bit tests"
1700void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
1701                                             MachineBasicBlock *SwitchBB) {
1702  // Subtract the minimum value
1703  SDValue SwitchOp = getValue(B.SValue);
1704  EVT VT = SwitchOp.getValueType();
1705  SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp,
1706                            DAG.getConstant(B.First, VT));
1707
1708  // Check range
1709  SDValue RangeCmp = DAG.getSetCC(getCurDebugLoc(),
1710                                  TLI.getSetCCResultType(Sub.getValueType()),
1711                                  Sub, DAG.getConstant(B.Range, VT),
1712                                  ISD::SETUGT);
1713
1714  // Determine the type of the test operands.
1715  bool UsePtrType = false;
1716  if (!TLI.isTypeLegal(VT))
1717    UsePtrType = true;
1718  else {
1719    for (unsigned i = 0, e = B.Cases.size(); i != e; ++i)
1720      if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) {
1721        // Switch table case range are encoded into series of masks.
1722        // Just use pointer type, it's guaranteed to fit.
1723        UsePtrType = true;
1724        break;
1725      }
1726  }
1727  if (UsePtrType) {
1728    VT = TLI.getPointerTy();
1729    Sub = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(), VT);
1730  }
1731
1732  B.RegVT = VT;
1733  B.Reg = FuncInfo.CreateReg(VT);
1734  SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(),
1735                                    B.Reg, Sub);
1736
1737  // Set NextBlock to be the MBB immediately after the current one, if any.
1738  // This is used to avoid emitting unnecessary branches to the next block.
1739  MachineBasicBlock *NextBlock = 0;
1740  MachineFunction::iterator BBI = SwitchBB;
1741  if (++BBI != FuncInfo.MF->end())
1742    NextBlock = BBI;
1743
1744  MachineBasicBlock* MBB = B.Cases[0].ThisBB;
1745
1746  addSuccessorWithWeight(SwitchBB, B.Default);
1747  addSuccessorWithWeight(SwitchBB, MBB);
1748
1749  SDValue BrRange = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1750                                MVT::Other, CopyTo, RangeCmp,
1751                                DAG.getBasicBlock(B.Default));
1752
1753  if (MBB != NextBlock)
1754    BrRange = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, CopyTo,
1755                          DAG.getBasicBlock(MBB));
1756
1757  DAG.setRoot(BrRange);
1758}
1759
1760/// visitBitTestCase - this function produces one "bit test"
1761void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB,
1762                                           MachineBasicBlock* NextMBB,
1763                                           unsigned Reg,
1764                                           BitTestCase &B,
1765                                           MachineBasicBlock *SwitchBB) {
1766  EVT VT = BB.RegVT;
1767  SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(),
1768                                       Reg, VT);
1769  SDValue Cmp;
1770  unsigned PopCount = CountPopulation_64(B.Mask);
1771  if (PopCount == 1) {
1772    // Testing for a single bit; just compare the shift count with what it
1773    // would need to be to shift a 1 bit in that position.
1774    Cmp = DAG.getSetCC(getCurDebugLoc(),
1775                       TLI.getSetCCResultType(VT),
1776                       ShiftOp,
1777                       DAG.getConstant(CountTrailingZeros_64(B.Mask), VT),
1778                       ISD::SETEQ);
1779  } else if (PopCount == BB.Range) {
1780    // There is only one zero bit in the range, test for it directly.
1781    Cmp = DAG.getSetCC(getCurDebugLoc(),
1782                       TLI.getSetCCResultType(VT),
1783                       ShiftOp,
1784                       DAG.getConstant(CountTrailingOnes_64(B.Mask), VT),
1785                       ISD::SETNE);
1786  } else {
1787    // Make desired shift
1788    SDValue SwitchVal = DAG.getNode(ISD::SHL, getCurDebugLoc(), VT,
1789                                    DAG.getConstant(1, VT), ShiftOp);
1790
1791    // Emit bit tests and jumps
1792    SDValue AndOp = DAG.getNode(ISD::AND, getCurDebugLoc(),
1793                                VT, SwitchVal, DAG.getConstant(B.Mask, VT));
1794    Cmp = DAG.getSetCC(getCurDebugLoc(),
1795                       TLI.getSetCCResultType(VT),
1796                       AndOp, DAG.getConstant(0, VT),
1797                       ISD::SETNE);
1798  }
1799
1800  addSuccessorWithWeight(SwitchBB, B.TargetBB);
1801  addSuccessorWithWeight(SwitchBB, NextMBB);
1802
1803  SDValue BrAnd = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1804                              MVT::Other, getControlRoot(),
1805                              Cmp, DAG.getBasicBlock(B.TargetBB));
1806
1807  // Set NextBlock to be the MBB immediately after the current one, if any.
1808  // This is used to avoid emitting unnecessary branches to the next block.
1809  MachineBasicBlock *NextBlock = 0;
1810  MachineFunction::iterator BBI = SwitchBB;
1811  if (++BBI != FuncInfo.MF->end())
1812    NextBlock = BBI;
1813
1814  if (NextMBB != NextBlock)
1815    BrAnd = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrAnd,
1816                        DAG.getBasicBlock(NextMBB));
1817
1818  DAG.setRoot(BrAnd);
1819}
1820
1821void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
1822  MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
1823
1824  // Retrieve successors.
1825  MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
1826  MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)];
1827
1828  const Value *Callee(I.getCalledValue());
1829  if (isa<InlineAsm>(Callee))
1830    visitInlineAsm(&I);
1831  else
1832    LowerCallTo(&I, getValue(Callee), false, LandingPad);
1833
1834  // If the value of the invoke is used outside of its defining block, make it
1835  // available as a virtual register.
1836  CopyToExportRegsIfNeeded(&I);
1837
1838  // Update successor info
1839  addSuccessorWithWeight(InvokeMBB, Return);
1840  addSuccessorWithWeight(InvokeMBB, LandingPad);
1841
1842  // Drop into normal successor.
1843  DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
1844                          MVT::Other, getControlRoot(),
1845                          DAG.getBasicBlock(Return)));
1846}
1847
1848void SelectionDAGBuilder::visitResume(const ResumeInst &RI) {
1849  llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!");
1850}
1851
1852void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) {
1853  assert(FuncInfo.MBB->isLandingPad() &&
1854         "Call to landingpad not in landing pad!");
1855
1856  MachineBasicBlock *MBB = FuncInfo.MBB;
1857  MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
1858  AddLandingPadInfo(LP, MMI, MBB);
1859
1860  // If there aren't registers to copy the values into (e.g., during SjLj
1861  // exceptions), then don't bother to create these DAG nodes.
1862  if (TLI.getExceptionPointerRegister() == 0 &&
1863      TLI.getExceptionSelectorRegister() == 0)
1864    return;
1865
1866  SmallVector<EVT, 2> ValueVTs;
1867  ComputeValueVTs(TLI, LP.getType(), ValueVTs);
1868
1869  // Insert the EXCEPTIONADDR instruction.
1870  assert(FuncInfo.MBB->isLandingPad() &&
1871         "Call to eh.exception not in landing pad!");
1872  SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
1873  SDValue Ops[2];
1874  Ops[0] = DAG.getRoot();
1875  SDValue Op1 = DAG.getNode(ISD::EXCEPTIONADDR, getCurDebugLoc(), VTs, Ops, 1);
1876  SDValue Chain = Op1.getValue(1);
1877
1878  // Insert the EHSELECTION instruction.
1879  VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
1880  Ops[0] = Op1;
1881  Ops[1] = Chain;
1882  SDValue Op2 = DAG.getNode(ISD::EHSELECTION, getCurDebugLoc(), VTs, Ops, 2);
1883  Chain = Op2.getValue(1);
1884  Op2 = DAG.getSExtOrTrunc(Op2, getCurDebugLoc(), MVT::i32);
1885
1886  Ops[0] = Op1;
1887  Ops[1] = Op2;
1888  SDValue Res = DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
1889                            DAG.getVTList(&ValueVTs[0], ValueVTs.size()),
1890                            &Ops[0], 2);
1891
1892  std::pair<SDValue, SDValue> RetPair = std::make_pair(Res, Chain);
1893  setValue(&LP, RetPair.first);
1894  DAG.setRoot(RetPair.second);
1895}
1896
1897/// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for
1898/// small case ranges).
1899bool SelectionDAGBuilder::handleSmallSwitchRange(CaseRec& CR,
1900                                                 CaseRecVector& WorkList,
1901                                                 const Value* SV,
1902                                                 MachineBasicBlock *Default,
1903                                                 MachineBasicBlock *SwitchBB) {
1904  Case& BackCase  = *(CR.Range.second-1);
1905
1906  // Size is the number of Cases represented by this range.
1907  size_t Size = CR.Range.second - CR.Range.first;
1908  if (Size > 3)
1909    return false;
1910
1911  // Get the MachineFunction which holds the current MBB.  This is used when
1912  // inserting any additional MBBs necessary to represent the switch.
1913  MachineFunction *CurMF = FuncInfo.MF;
1914
1915  // Figure out which block is immediately after the current one.
1916  MachineBasicBlock *NextBlock = 0;
1917  MachineFunction::iterator BBI = CR.CaseBB;
1918
1919  if (++BBI != FuncInfo.MF->end())
1920    NextBlock = BBI;
1921
1922  // If any two of the cases has the same destination, and if one value
1923  // is the same as the other, but has one bit unset that the other has set,
1924  // use bit manipulation to do two compares at once.  For example:
1925  // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
1926  // TODO: This could be extended to merge any 2 cases in switches with 3 cases.
1927  // TODO: Handle cases where CR.CaseBB != SwitchBB.
1928  if (Size == 2 && CR.CaseBB == SwitchBB) {
1929    Case &Small = *CR.Range.first;
1930    Case &Big = *(CR.Range.second-1);
1931
1932    if (Small.Low == Small.High && Big.Low == Big.High && Small.BB == Big.BB) {
1933      const APInt& SmallValue = cast<ConstantInt>(Small.Low)->getValue();
1934      const APInt& BigValue = cast<ConstantInt>(Big.Low)->getValue();
1935
1936      // Check that there is only one bit different.
1937      if (BigValue.countPopulation() == SmallValue.countPopulation() + 1 &&
1938          (SmallValue | BigValue) == BigValue) {
1939        // Isolate the common bit.
1940        APInt CommonBit = BigValue & ~SmallValue;
1941        assert((SmallValue | CommonBit) == BigValue &&
1942               CommonBit.countPopulation() == 1 && "Not a common bit?");
1943
1944        SDValue CondLHS = getValue(SV);
1945        EVT VT = CondLHS.getValueType();
1946        DebugLoc DL = getCurDebugLoc();
1947
1948        SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
1949                                 DAG.getConstant(CommonBit, VT));
1950        SDValue Cond = DAG.getSetCC(DL, MVT::i1,
1951                                    Or, DAG.getConstant(BigValue, VT),
1952                                    ISD::SETEQ);
1953
1954        // Update successor info.
1955        addSuccessorWithWeight(SwitchBB, Small.BB);
1956        addSuccessorWithWeight(SwitchBB, Default);
1957
1958        // Insert the true branch.
1959        SDValue BrCond = DAG.getNode(ISD::BRCOND, DL, MVT::Other,
1960                                     getControlRoot(), Cond,
1961                                     DAG.getBasicBlock(Small.BB));
1962
1963        // Insert the false branch.
1964        BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
1965                             DAG.getBasicBlock(Default));
1966
1967        DAG.setRoot(BrCond);
1968        return true;
1969      }
1970    }
1971  }
1972
1973  // Rearrange the case blocks so that the last one falls through if possible.
1974  if (NextBlock && Default != NextBlock && BackCase.BB != NextBlock) {
1975    // The last case block won't fall through into 'NextBlock' if we emit the
1976    // branches in this order.  See if rearranging a case value would help.
1977    for (CaseItr I = CR.Range.first, E = CR.Range.second-1; I != E; ++I) {
1978      if (I->BB == NextBlock) {
1979        std::swap(*I, BackCase);
1980        break;
1981      }
1982    }
1983  }
1984
1985  // Create a CaseBlock record representing a conditional branch to
1986  // the Case's target mbb if the value being switched on SV is equal
1987  // to C.
1988  MachineBasicBlock *CurBlock = CR.CaseBB;
1989  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) {
1990    MachineBasicBlock *FallThrough;
1991    if (I != E-1) {
1992      FallThrough = CurMF->CreateMachineBasicBlock(CurBlock->getBasicBlock());
1993      CurMF->insert(BBI, FallThrough);
1994
1995      // Put SV in a virtual register to make it available from the new blocks.
1996      ExportFromCurrentBlock(SV);
1997    } else {
1998      // If the last case doesn't match, go to the default block.
1999      FallThrough = Default;
2000    }
2001
2002    const Value *RHS, *LHS, *MHS;
2003    ISD::CondCode CC;
2004    if (I->High == I->Low) {
2005      // This is just small small case range :) containing exactly 1 case
2006      CC = ISD::SETEQ;
2007      LHS = SV; RHS = I->High; MHS = NULL;
2008    } else {
2009      CC = ISD::SETLE;
2010      LHS = I->Low; MHS = SV; RHS = I->High;
2011    }
2012
2013    uint32_t ExtraWeight = I->ExtraWeight;
2014    CaseBlock CB(CC, LHS, RHS, MHS, /* truebb */ I->BB, /* falsebb */ FallThrough,
2015                 /* me */ CurBlock,
2016                 /* trueweight */ ExtraWeight / 2, /* falseweight */ ExtraWeight / 2);
2017
2018    // If emitting the first comparison, just call visitSwitchCase to emit the
2019    // code into the current block.  Otherwise, push the CaseBlock onto the
2020    // vector to be later processed by SDISel, and insert the node's MBB
2021    // before the next MBB.
2022    if (CurBlock == SwitchBB)
2023      visitSwitchCase(CB, SwitchBB);
2024    else
2025      SwitchCases.push_back(CB);
2026
2027    CurBlock = FallThrough;
2028  }
2029
2030  return true;
2031}
2032
2033static inline bool areJTsAllowed(const TargetLowering &TLI) {
2034  return !TLI.getTargetMachine().Options.DisableJumpTables &&
2035          (TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) ||
2036           TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other));
2037}
2038
2039static APInt ComputeRange(const APInt &First, const APInt &Last) {
2040  uint32_t BitWidth = std::max(Last.getBitWidth(), First.getBitWidth()) + 1;
2041  APInt LastExt = Last.sext(BitWidth), FirstExt = First.sext(BitWidth);
2042  return (LastExt - FirstExt + 1ULL);
2043}
2044
2045/// handleJTSwitchCase - Emit jumptable for current switch case range
2046bool SelectionDAGBuilder::handleJTSwitchCase(CaseRec &CR,
2047                                             CaseRecVector &WorkList,
2048                                             const Value *SV,
2049                                             MachineBasicBlock *Default,
2050                                             MachineBasicBlock *SwitchBB) {
2051  Case& FrontCase = *CR.Range.first;
2052  Case& BackCase  = *(CR.Range.second-1);
2053
2054  const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue();
2055  const APInt &Last  = cast<ConstantInt>(BackCase.High)->getValue();
2056
2057  APInt TSize(First.getBitWidth(), 0);
2058  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I)
2059    TSize += I->size();
2060
2061  if (!areJTsAllowed(TLI) || TSize.ult(4))
2062    return false;
2063
2064  APInt Range = ComputeRange(First, Last);
2065  // The density is TSize / Range. Require at least 40%.
2066  // It should not be possible for IntTSize to saturate for sane code, but make
2067  // sure we handle Range saturation correctly.
2068  uint64_t IntRange = Range.getLimitedValue(UINT64_MAX/10);
2069  uint64_t IntTSize = TSize.getLimitedValue(UINT64_MAX/10);
2070  if (IntTSize * 10 < IntRange * 4)
2071    return false;
2072
2073  DEBUG(dbgs() << "Lowering jump table\n"
2074               << "First entry: " << First << ". Last entry: " << Last << '\n'
2075               << "Range: " << Range << ". Size: " << TSize << ".\n\n");
2076
2077  // Get the MachineFunction which holds the current MBB.  This is used when
2078  // inserting any additional MBBs necessary to represent the switch.
2079  MachineFunction *CurMF = FuncInfo.MF;
2080
2081  // Figure out which block is immediately after the current one.
2082  MachineFunction::iterator BBI = CR.CaseBB;
2083  ++BBI;
2084
2085  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2086
2087  // Create a new basic block to hold the code for loading the address
2088  // of the jump table, and jumping to it.  Update successor information;
2089  // we will either branch to the default case for the switch, or the jump
2090  // table.
2091  MachineBasicBlock *JumpTableBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2092  CurMF->insert(BBI, JumpTableBB);
2093
2094  addSuccessorWithWeight(CR.CaseBB, Default);
2095  addSuccessorWithWeight(CR.CaseBB, JumpTableBB);
2096
2097  // Build a vector of destination BBs, corresponding to each target
2098  // of the jump table. If the value of the jump table slot corresponds to
2099  // a case statement, push the case's BB onto the vector, otherwise, push
2100  // the default BB.
2101  std::vector<MachineBasicBlock*> DestBBs;
2102  APInt TEI = First;
2103  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) {
2104    const APInt &Low = cast<ConstantInt>(I->Low)->getValue();
2105    const APInt &High = cast<ConstantInt>(I->High)->getValue();
2106
2107    if (Low.sle(TEI) && TEI.sle(High)) {
2108      DestBBs.push_back(I->BB);
2109      if (TEI==High)
2110        ++I;
2111    } else {
2112      DestBBs.push_back(Default);
2113    }
2114  }
2115
2116  // Update successor info. Add one edge to each unique successor.
2117  BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs());
2118  for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(),
2119         E = DestBBs.end(); I != E; ++I) {
2120    if (!SuccsHandled[(*I)->getNumber()]) {
2121      SuccsHandled[(*I)->getNumber()] = true;
2122      addSuccessorWithWeight(JumpTableBB, *I);
2123    }
2124  }
2125
2126  // Create a jump table index for this jump table.
2127  unsigned JTEncoding = TLI.getJumpTableEncoding();
2128  unsigned JTI = CurMF->getOrCreateJumpTableInfo(JTEncoding)
2129                       ->createJumpTableIndex(DestBBs);
2130
2131  // Set the jump table information so that we can codegen it as a second
2132  // MachineBasicBlock
2133  JumpTable JT(-1U, JTI, JumpTableBB, Default);
2134  JumpTableHeader JTH(First, Last, SV, CR.CaseBB, (CR.CaseBB == SwitchBB));
2135  if (CR.CaseBB == SwitchBB)
2136    visitJumpTableHeader(JT, JTH, SwitchBB);
2137
2138  JTCases.push_back(JumpTableBlock(JTH, JT));
2139  return true;
2140}
2141
2142/// handleBTSplitSwitchCase - emit comparison and split binary search tree into
2143/// 2 subtrees.
2144bool SelectionDAGBuilder::handleBTSplitSwitchCase(CaseRec& CR,
2145                                                  CaseRecVector& WorkList,
2146                                                  const Value* SV,
2147                                                  MachineBasicBlock *Default,
2148                                                  MachineBasicBlock *SwitchBB) {
2149  // Get the MachineFunction which holds the current MBB.  This is used when
2150  // inserting any additional MBBs necessary to represent the switch.
2151  MachineFunction *CurMF = FuncInfo.MF;
2152
2153  // Figure out which block is immediately after the current one.
2154  MachineFunction::iterator BBI = CR.CaseBB;
2155  ++BBI;
2156
2157  Case& FrontCase = *CR.Range.first;
2158  Case& BackCase  = *(CR.Range.second-1);
2159  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2160
2161  // Size is the number of Cases represented by this range.
2162  unsigned Size = CR.Range.second - CR.Range.first;
2163
2164  const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue();
2165  const APInt &Last  = cast<ConstantInt>(BackCase.High)->getValue();
2166  double FMetric = 0;
2167  CaseItr Pivot = CR.Range.first + Size/2;
2168
2169  // Select optimal pivot, maximizing sum density of LHS and RHS. This will
2170  // (heuristically) allow us to emit JumpTable's later.
2171  APInt TSize(First.getBitWidth(), 0);
2172  for (CaseItr I = CR.Range.first, E = CR.Range.second;
2173       I!=E; ++I)
2174    TSize += I->size();
2175
2176  APInt LSize = FrontCase.size();
2177  APInt RSize = TSize-LSize;
2178  DEBUG(dbgs() << "Selecting best pivot: \n"
2179               << "First: " << First << ", Last: " << Last <<'\n'
2180               << "LSize: " << LSize << ", RSize: " << RSize << '\n');
2181  for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second;
2182       J!=E; ++I, ++J) {
2183    const APInt &LEnd = cast<ConstantInt>(I->High)->getValue();
2184    const APInt &RBegin = cast<ConstantInt>(J->Low)->getValue();
2185    APInt Range = ComputeRange(LEnd, RBegin);
2186    assert((Range - 2ULL).isNonNegative() &&
2187           "Invalid case distance");
2188    // Use volatile double here to avoid excess precision issues on some hosts,
2189    // e.g. that use 80-bit X87 registers.
2190    volatile double LDensity =
2191       (double)LSize.roundToDouble() /
2192                           (LEnd - First + 1ULL).roundToDouble();
2193    volatile double RDensity =
2194      (double)RSize.roundToDouble() /
2195                           (Last - RBegin + 1ULL).roundToDouble();
2196    double Metric = Range.logBase2()*(LDensity+RDensity);
2197    // Should always split in some non-trivial place
2198    DEBUG(dbgs() <<"=>Step\n"
2199                 << "LEnd: " << LEnd << ", RBegin: " << RBegin << '\n'
2200                 << "LDensity: " << LDensity
2201                 << ", RDensity: " << RDensity << '\n'
2202                 << "Metric: " << Metric << '\n');
2203    if (FMetric < Metric) {
2204      Pivot = J;
2205      FMetric = Metric;
2206      DEBUG(dbgs() << "Current metric set to: " << FMetric << '\n');
2207    }
2208
2209    LSize += J->size();
2210    RSize -= J->size();
2211  }
2212  if (areJTsAllowed(TLI)) {
2213    // If our case is dense we *really* should handle it earlier!
2214    assert((FMetric > 0) && "Should handle dense range earlier!");
2215  } else {
2216    Pivot = CR.Range.first + Size/2;
2217  }
2218
2219  CaseRange LHSR(CR.Range.first, Pivot);
2220  CaseRange RHSR(Pivot, CR.Range.second);
2221  const Constant *C = Pivot->Low;
2222  MachineBasicBlock *FalseBB = 0, *TrueBB = 0;
2223
2224  // We know that we branch to the LHS if the Value being switched on is
2225  // less than the Pivot value, C.  We use this to optimize our binary
2226  // tree a bit, by recognizing that if SV is greater than or equal to the
2227  // LHS's Case Value, and that Case Value is exactly one less than the
2228  // Pivot's Value, then we can branch directly to the LHS's Target,
2229  // rather than creating a leaf node for it.
2230  if ((LHSR.second - LHSR.first) == 1 &&
2231      LHSR.first->High == CR.GE &&
2232      cast<ConstantInt>(C)->getValue() ==
2233      (cast<ConstantInt>(CR.GE)->getValue() + 1LL)) {
2234    TrueBB = LHSR.first->BB;
2235  } else {
2236    TrueBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2237    CurMF->insert(BBI, TrueBB);
2238    WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR));
2239
2240    // Put SV in a virtual register to make it available from the new blocks.
2241    ExportFromCurrentBlock(SV);
2242  }
2243
2244  // Similar to the optimization above, if the Value being switched on is
2245  // known to be less than the Constant CR.LT, and the current Case Value
2246  // is CR.LT - 1, then we can branch directly to the target block for
2247  // the current Case Value, rather than emitting a RHS leaf node for it.
2248  if ((RHSR.second - RHSR.first) == 1 && CR.LT &&
2249      cast<ConstantInt>(RHSR.first->Low)->getValue() ==
2250      (cast<ConstantInt>(CR.LT)->getValue() - 1LL)) {
2251    FalseBB = RHSR.first->BB;
2252  } else {
2253    FalseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2254    CurMF->insert(BBI, FalseBB);
2255    WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR));
2256
2257    // Put SV in a virtual register to make it available from the new blocks.
2258    ExportFromCurrentBlock(SV);
2259  }
2260
2261  // Create a CaseBlock record representing a conditional branch to
2262  // the LHS node if the value being switched on SV is less than C.
2263  // Otherwise, branch to LHS.
2264  CaseBlock CB(ISD::SETLT, SV, C, NULL, TrueBB, FalseBB, CR.CaseBB);
2265
2266  if (CR.CaseBB == SwitchBB)
2267    visitSwitchCase(CB, SwitchBB);
2268  else
2269    SwitchCases.push_back(CB);
2270
2271  return true;
2272}
2273
2274/// handleBitTestsSwitchCase - if current case range has few destination and
2275/// range span less, than machine word bitwidth, encode case range into series
2276/// of masks and emit bit tests with these masks.
2277bool SelectionDAGBuilder::handleBitTestsSwitchCase(CaseRec& CR,
2278                                                   CaseRecVector& WorkList,
2279                                                   const Value* SV,
2280                                                   MachineBasicBlock* Default,
2281                                                   MachineBasicBlock *SwitchBB){
2282  EVT PTy = TLI.getPointerTy();
2283  unsigned IntPtrBits = PTy.getSizeInBits();
2284
2285  Case& FrontCase = *CR.Range.first;
2286  Case& BackCase  = *(CR.Range.second-1);
2287
2288  // Get the MachineFunction which holds the current MBB.  This is used when
2289  // inserting any additional MBBs necessary to represent the switch.
2290  MachineFunction *CurMF = FuncInfo.MF;
2291
2292  // If target does not have legal shift left, do not emit bit tests at all.
2293  if (!TLI.isOperationLegal(ISD::SHL, TLI.getPointerTy()))
2294    return false;
2295
2296  size_t numCmps = 0;
2297  for (CaseItr I = CR.Range.first, E = CR.Range.second;
2298       I!=E; ++I) {
2299    // Single case counts one, case range - two.
2300    numCmps += (I->Low == I->High ? 1 : 2);
2301  }
2302
2303  // Count unique destinations
2304  SmallSet<MachineBasicBlock*, 4> Dests;
2305  for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
2306    Dests.insert(I->BB);
2307    if (Dests.size() > 3)
2308      // Don't bother the code below, if there are too much unique destinations
2309      return false;
2310  }
2311  DEBUG(dbgs() << "Total number of unique destinations: "
2312        << Dests.size() << '\n'
2313        << "Total number of comparisons: " << numCmps << '\n');
2314
2315  // Compute span of values.
2316  const APInt& minValue = cast<ConstantInt>(FrontCase.Low)->getValue();
2317  const APInt& maxValue = cast<ConstantInt>(BackCase.High)->getValue();
2318  APInt cmpRange = maxValue - minValue;
2319
2320  DEBUG(dbgs() << "Compare range: " << cmpRange << '\n'
2321               << "Low bound: " << minValue << '\n'
2322               << "High bound: " << maxValue << '\n');
2323
2324  if (cmpRange.uge(IntPtrBits) ||
2325      (!(Dests.size() == 1 && numCmps >= 3) &&
2326       !(Dests.size() == 2 && numCmps >= 5) &&
2327       !(Dests.size() >= 3 && numCmps >= 6)))
2328    return false;
2329
2330  DEBUG(dbgs() << "Emitting bit tests\n");
2331  APInt lowBound = APInt::getNullValue(cmpRange.getBitWidth());
2332
2333  // Optimize the case where all the case values fit in a
2334  // word without having to subtract minValue. In this case,
2335  // we can optimize away the subtraction.
2336  if (minValue.isNonNegative() && maxValue.slt(IntPtrBits)) {
2337    cmpRange = maxValue;
2338  } else {
2339    lowBound = minValue;
2340  }
2341
2342  CaseBitsVector CasesBits;
2343  unsigned i, count = 0;
2344
2345  for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
2346    MachineBasicBlock* Dest = I->BB;
2347    for (i = 0; i < count; ++i)
2348      if (Dest == CasesBits[i].BB)
2349        break;
2350
2351    if (i == count) {
2352      assert((count < 3) && "Too much destinations to test!");
2353      CasesBits.push_back(CaseBits(0, Dest, 0));
2354      count++;
2355    }
2356
2357    const APInt& lowValue = cast<ConstantInt>(I->Low)->getValue();
2358    const APInt& highValue = cast<ConstantInt>(I->High)->getValue();
2359
2360    uint64_t lo = (lowValue - lowBound).getZExtValue();
2361    uint64_t hi = (highValue - lowBound).getZExtValue();
2362
2363    for (uint64_t j = lo; j <= hi; j++) {
2364      CasesBits[i].Mask |=  1ULL << j;
2365      CasesBits[i].Bits++;
2366    }
2367
2368  }
2369  std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp());
2370
2371  BitTestInfo BTC;
2372
2373  // Figure out which block is immediately after the current one.
2374  MachineFunction::iterator BBI = CR.CaseBB;
2375  ++BBI;
2376
2377  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2378
2379  DEBUG(dbgs() << "Cases:\n");
2380  for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) {
2381    DEBUG(dbgs() << "Mask: " << CasesBits[i].Mask
2382                 << ", Bits: " << CasesBits[i].Bits
2383                 << ", BB: " << CasesBits[i].BB << '\n');
2384
2385    MachineBasicBlock *CaseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2386    CurMF->insert(BBI, CaseBB);
2387    BTC.push_back(BitTestCase(CasesBits[i].Mask,
2388                              CaseBB,
2389                              CasesBits[i].BB));
2390
2391    // Put SV in a virtual register to make it available from the new blocks.
2392    ExportFromCurrentBlock(SV);
2393  }
2394
2395  BitTestBlock BTB(lowBound, cmpRange, SV,
2396                   -1U, MVT::Other, (CR.CaseBB == SwitchBB),
2397                   CR.CaseBB, Default, BTC);
2398
2399  if (CR.CaseBB == SwitchBB)
2400    visitBitTestHeader(BTB, SwitchBB);
2401
2402  BitTestCases.push_back(BTB);
2403
2404  return true;
2405}
2406
2407/// Clusterify - Transform simple list of Cases into list of CaseRange's
2408size_t SelectionDAGBuilder::Clusterify(CaseVector& Cases,
2409                                       const SwitchInst& SI) {
2410  size_t numCmps = 0;
2411
2412  BranchProbabilityInfo *BPI = FuncInfo.BPI;
2413  // Start with "simple" cases
2414  for (size_t i = 0; i < SI.getNumCases(); ++i) {
2415    BasicBlock *SuccBB = SI.getCaseSuccessor(i);
2416    MachineBasicBlock *SMBB = FuncInfo.MBBMap[SuccBB];
2417
2418    uint32_t ExtraWeight = BPI ? BPI->getEdgeWeight(SI.getParent(), SuccBB) : 0;
2419
2420    Cases.push_back(Case(SI.getCaseValue(i),
2421                         SI.getCaseValue(i),
2422                         SMBB, ExtraWeight));
2423  }
2424  std::sort(Cases.begin(), Cases.end(), CaseCmp());
2425
2426  // Merge case into clusters
2427  if (Cases.size() >= 2)
2428    // Must recompute end() each iteration because it may be
2429    // invalidated by erase if we hold on to it
2430    for (CaseItr I = Cases.begin(), J = llvm::next(Cases.begin());
2431         J != Cases.end(); ) {
2432      const APInt& nextValue = cast<ConstantInt>(J->Low)->getValue();
2433      const APInt& currentValue = cast<ConstantInt>(I->High)->getValue();
2434      MachineBasicBlock* nextBB = J->BB;
2435      MachineBasicBlock* currentBB = I->BB;
2436
2437      // If the two neighboring cases go to the same destination, merge them
2438      // into a single case.
2439      if ((nextValue - currentValue == 1) && (currentBB == nextBB)) {
2440        I->High = J->High;
2441        J = Cases.erase(J);
2442
2443        if (BranchProbabilityInfo *BPI = FuncInfo.BPI) {
2444          uint32_t CurWeight = currentBB->getBasicBlock() ?
2445            BPI->getEdgeWeight(SI.getParent(), currentBB->getBasicBlock()) : 16;
2446          uint32_t NextWeight = nextBB->getBasicBlock() ?
2447            BPI->getEdgeWeight(SI.getParent(), nextBB->getBasicBlock()) : 16;
2448
2449          BPI->setEdgeWeight(SI.getParent(), currentBB->getBasicBlock(),
2450                             CurWeight + NextWeight);
2451        }
2452      } else {
2453        I = J++;
2454      }
2455    }
2456
2457  for (CaseItr I=Cases.begin(), E=Cases.end(); I!=E; ++I, ++numCmps) {
2458    if (I->Low != I->High)
2459      // A range counts double, since it requires two compares.
2460      ++numCmps;
2461  }
2462
2463  return numCmps;
2464}
2465
2466void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
2467                                           MachineBasicBlock *Last) {
2468  // Update JTCases.
2469  for (unsigned i = 0, e = JTCases.size(); i != e; ++i)
2470    if (JTCases[i].first.HeaderBB == First)
2471      JTCases[i].first.HeaderBB = Last;
2472
2473  // Update BitTestCases.
2474  for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i)
2475    if (BitTestCases[i].Parent == First)
2476      BitTestCases[i].Parent = Last;
2477}
2478
2479void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
2480  MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
2481
2482  // Figure out which block is immediately after the current one.
2483  MachineBasicBlock *NextBlock = 0;
2484  MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()];
2485
2486  // If there is only the default destination, branch to it if it is not the
2487  // next basic block.  Otherwise, just fall through.
2488  if (!SI.getNumCases()) {
2489    // Update machine-CFG edges.
2490
2491    // If this is not a fall-through branch, emit the branch.
2492    SwitchMBB->addSuccessor(Default);
2493    if (Default != NextBlock)
2494      DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
2495                              MVT::Other, getControlRoot(),
2496                              DAG.getBasicBlock(Default)));
2497
2498    return;
2499  }
2500
2501  // If there are any non-default case statements, create a vector of Cases
2502  // representing each one, and sort the vector so that we can efficiently
2503  // create a binary search tree from them.
2504  CaseVector Cases;
2505  size_t numCmps = Clusterify(Cases, SI);
2506  DEBUG(dbgs() << "Clusterify finished. Total clusters: " << Cases.size()
2507               << ". Total compares: " << numCmps << '\n');
2508  (void)numCmps;
2509
2510  // Get the Value to be switched on and default basic blocks, which will be
2511  // inserted into CaseBlock records, representing basic blocks in the binary
2512  // search tree.
2513  const Value *SV = SI.getCondition();
2514
2515  // Push the initial CaseRec onto the worklist
2516  CaseRecVector WorkList;
2517  WorkList.push_back(CaseRec(SwitchMBB,0,0,
2518                             CaseRange(Cases.begin(),Cases.end())));
2519
2520  while (!WorkList.empty()) {
2521    // Grab a record representing a case range to process off the worklist
2522    CaseRec CR = WorkList.back();
2523    WorkList.pop_back();
2524
2525    if (handleBitTestsSwitchCase(CR, WorkList, SV, Default, SwitchMBB))
2526      continue;
2527
2528    // If the range has few cases (two or less) emit a series of specific
2529    // tests.
2530    if (handleSmallSwitchRange(CR, WorkList, SV, Default, SwitchMBB))
2531      continue;
2532
2533    // If the switch has more than 5 blocks, and at least 40% dense, and the
2534    // target supports indirect branches, then emit a jump table rather than
2535    // lowering the switch to a binary tree of conditional branches.
2536    if (handleJTSwitchCase(CR, WorkList, SV, Default, SwitchMBB))
2537      continue;
2538
2539    // Emit binary tree. We need to pick a pivot, and push left and right ranges
2540    // onto the worklist. Leafs are handled via handleSmallSwitchRange() call.
2541    handleBTSplitSwitchCase(CR, WorkList, SV, Default, SwitchMBB);
2542  }
2543}
2544
2545void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
2546  MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
2547
2548  // Update machine-CFG edges with unique successors.
2549  SmallVector<BasicBlock*, 32> succs;
2550  succs.reserve(I.getNumSuccessors());
2551  for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i)
2552    succs.push_back(I.getSuccessor(i));
2553  array_pod_sort(succs.begin(), succs.end());
2554  succs.erase(std::unique(succs.begin(), succs.end()), succs.end());
2555  for (unsigned i = 0, e = succs.size(); i != e; ++i) {
2556    MachineBasicBlock *Succ = FuncInfo.MBBMap[succs[i]];
2557    addSuccessorWithWeight(IndirectBrMBB, Succ);
2558  }
2559
2560  DAG.setRoot(DAG.getNode(ISD::BRIND, getCurDebugLoc(),
2561                          MVT::Other, getControlRoot(),
2562                          getValue(I.getAddress())));
2563}
2564
2565void SelectionDAGBuilder::visitFSub(const User &I) {
2566  // -0.0 - X --> fneg
2567  Type *Ty = I.getType();
2568  if (isa<Constant>(I.getOperand(0)) &&
2569      I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) {
2570    SDValue Op2 = getValue(I.getOperand(1));
2571    setValue(&I, DAG.getNode(ISD::FNEG, getCurDebugLoc(),
2572                             Op2.getValueType(), Op2));
2573    return;
2574  }
2575
2576  visitBinary(I, ISD::FSUB);
2577}
2578
2579void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) {
2580  SDValue Op1 = getValue(I.getOperand(0));
2581  SDValue Op2 = getValue(I.getOperand(1));
2582  setValue(&I, DAG.getNode(OpCode, getCurDebugLoc(),
2583                           Op1.getValueType(), Op1, Op2));
2584}
2585
2586void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
2587  SDValue Op1 = getValue(I.getOperand(0));
2588  SDValue Op2 = getValue(I.getOperand(1));
2589
2590  MVT ShiftTy = TLI.getShiftAmountTy(Op2.getValueType());
2591
2592  // Coerce the shift amount to the right type if we can.
2593  if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
2594    unsigned ShiftSize = ShiftTy.getSizeInBits();
2595    unsigned Op2Size = Op2.getValueType().getSizeInBits();
2596    DebugLoc DL = getCurDebugLoc();
2597
2598    // If the operand is smaller than the shift count type, promote it.
2599    if (ShiftSize > Op2Size)
2600      Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2);
2601
2602    // If the operand is larger than the shift count type but the shift
2603    // count type has enough bits to represent any shift value, truncate
2604    // it now. This is a common case and it exposes the truncate to
2605    // optimization early.
2606    else if (ShiftSize >= Log2_32_Ceil(Op2.getValueType().getSizeInBits()))
2607      Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2);
2608    // Otherwise we'll need to temporarily settle for some other convenient
2609    // type.  Type legalization will make adjustments once the shiftee is split.
2610    else
2611      Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32);
2612  }
2613
2614  setValue(&I, DAG.getNode(Opcode, getCurDebugLoc(),
2615                           Op1.getValueType(), Op1, Op2));
2616}
2617
2618void SelectionDAGBuilder::visitSDiv(const User &I) {
2619  SDValue Op1 = getValue(I.getOperand(0));
2620  SDValue Op2 = getValue(I.getOperand(1));
2621
2622  // Turn exact SDivs into multiplications.
2623  // FIXME: This should be in DAGCombiner, but it doesn't have access to the
2624  // exact bit.
2625  if (isa<BinaryOperator>(&I) && cast<BinaryOperator>(&I)->isExact() &&
2626      !isa<ConstantSDNode>(Op1) &&
2627      isa<ConstantSDNode>(Op2) && !cast<ConstantSDNode>(Op2)->isNullValue())
2628    setValue(&I, TLI.BuildExactSDIV(Op1, Op2, getCurDebugLoc(), DAG));
2629  else
2630    setValue(&I, DAG.getNode(ISD::SDIV, getCurDebugLoc(), Op1.getValueType(),
2631                             Op1, Op2));
2632}
2633
2634void SelectionDAGBuilder::visitICmp(const User &I) {
2635  ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
2636  if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
2637    predicate = IC->getPredicate();
2638  else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
2639    predicate = ICmpInst::Predicate(IC->getPredicate());
2640  SDValue Op1 = getValue(I.getOperand(0));
2641  SDValue Op2 = getValue(I.getOperand(1));
2642  ISD::CondCode Opcode = getICmpCondCode(predicate);
2643
2644  EVT DestVT = TLI.getValueType(I.getType());
2645  setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Opcode));
2646}
2647
2648void SelectionDAGBuilder::visitFCmp(const User &I) {
2649  FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
2650  if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
2651    predicate = FC->getPredicate();
2652  else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
2653    predicate = FCmpInst::Predicate(FC->getPredicate());
2654  SDValue Op1 = getValue(I.getOperand(0));
2655  SDValue Op2 = getValue(I.getOperand(1));
2656  ISD::CondCode Condition = getFCmpCondCode(predicate);
2657  if (TM.Options.NoNaNsFPMath)
2658    Condition = getFCmpCodeWithoutNaN(Condition);
2659  EVT DestVT = TLI.getValueType(I.getType());
2660  setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Condition));
2661}
2662
2663void SelectionDAGBuilder::visitSelect(const User &I) {
2664  SmallVector<EVT, 4> ValueVTs;
2665  ComputeValueVTs(TLI, I.getType(), ValueVTs);
2666  unsigned NumValues = ValueVTs.size();
2667  if (NumValues == 0) return;
2668
2669  SmallVector<SDValue, 4> Values(NumValues);
2670  SDValue Cond     = getValue(I.getOperand(0));
2671  SDValue TrueVal  = getValue(I.getOperand(1));
2672  SDValue FalseVal = getValue(I.getOperand(2));
2673  ISD::NodeType OpCode = Cond.getValueType().isVector() ?
2674    ISD::VSELECT : ISD::SELECT;
2675
2676  for (unsigned i = 0; i != NumValues; ++i)
2677    Values[i] = DAG.getNode(OpCode, getCurDebugLoc(),
2678                            TrueVal.getNode()->getValueType(TrueVal.getResNo()+i),
2679                            Cond,
2680                            SDValue(TrueVal.getNode(),
2681                                    TrueVal.getResNo() + i),
2682                            SDValue(FalseVal.getNode(),
2683                                    FalseVal.getResNo() + i));
2684
2685  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
2686                           DAG.getVTList(&ValueVTs[0], NumValues),
2687                           &Values[0], NumValues));
2688}
2689
2690void SelectionDAGBuilder::visitTrunc(const User &I) {
2691  // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
2692  SDValue N = getValue(I.getOperand(0));
2693  EVT DestVT = TLI.getValueType(I.getType());
2694  setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), DestVT, N));
2695}
2696
2697void SelectionDAGBuilder::visitZExt(const User &I) {
2698  // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2699  // ZExt also can't be a cast to bool for same reason. So, nothing much to do
2700  SDValue N = getValue(I.getOperand(0));
2701  EVT DestVT = TLI.getValueType(I.getType());
2702  setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), DestVT, N));
2703}
2704
2705void SelectionDAGBuilder::visitSExt(const User &I) {
2706  // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2707  // SExt also can't be a cast to bool for same reason. So, nothing much to do
2708  SDValue N = getValue(I.getOperand(0));
2709  EVT DestVT = TLI.getValueType(I.getType());
2710  setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurDebugLoc(), DestVT, N));
2711}
2712
2713void SelectionDAGBuilder::visitFPTrunc(const User &I) {
2714  // FPTrunc is never a no-op cast, no need to check
2715  SDValue N = getValue(I.getOperand(0));
2716  EVT DestVT = TLI.getValueType(I.getType());
2717  setValue(&I, DAG.getNode(ISD::FP_ROUND, getCurDebugLoc(),
2718                           DestVT, N,
2719                           DAG.getTargetConstant(0, TLI.getPointerTy())));
2720}
2721
2722void SelectionDAGBuilder::visitFPExt(const User &I){
2723  // FPExt is never a no-op cast, no need to check
2724  SDValue N = getValue(I.getOperand(0));
2725  EVT DestVT = TLI.getValueType(I.getType());
2726  setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurDebugLoc(), DestVT, N));
2727}
2728
2729void SelectionDAGBuilder::visitFPToUI(const User &I) {
2730  // FPToUI is never a no-op cast, no need to check
2731  SDValue N = getValue(I.getOperand(0));
2732  EVT DestVT = TLI.getValueType(I.getType());
2733  setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurDebugLoc(), DestVT, N));
2734}
2735
2736void SelectionDAGBuilder::visitFPToSI(const User &I) {
2737  // FPToSI is never a no-op cast, no need to check
2738  SDValue N = getValue(I.getOperand(0));
2739  EVT DestVT = TLI.getValueType(I.getType());
2740  setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurDebugLoc(), DestVT, N));
2741}
2742
2743void SelectionDAGBuilder::visitUIToFP(const User &I) {
2744  // UIToFP is never a no-op cast, no need to check
2745  SDValue N = getValue(I.getOperand(0));
2746  EVT DestVT = TLI.getValueType(I.getType());
2747  setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurDebugLoc(), DestVT, N));
2748}
2749
2750void SelectionDAGBuilder::visitSIToFP(const User &I){
2751  // SIToFP is never a no-op cast, no need to check
2752  SDValue N = getValue(I.getOperand(0));
2753  EVT DestVT = TLI.getValueType(I.getType());
2754  setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurDebugLoc(), DestVT, N));
2755}
2756
2757void SelectionDAGBuilder::visitPtrToInt(const User &I) {
2758  // What to do depends on the size of the integer and the size of the pointer.
2759  // We can either truncate, zero extend, or no-op, accordingly.
2760  SDValue N = getValue(I.getOperand(0));
2761  EVT DestVT = TLI.getValueType(I.getType());
2762  setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT));
2763}
2764
2765void SelectionDAGBuilder::visitIntToPtr(const User &I) {
2766  // What to do depends on the size of the integer and the size of the pointer.
2767  // We can either truncate, zero extend, or no-op, accordingly.
2768  SDValue N = getValue(I.getOperand(0));
2769  EVT DestVT = TLI.getValueType(I.getType());
2770  setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT));
2771}
2772
2773void SelectionDAGBuilder::visitBitCast(const User &I) {
2774  SDValue N = getValue(I.getOperand(0));
2775  EVT DestVT = TLI.getValueType(I.getType());
2776
2777  // BitCast assures us that source and destination are the same size so this is
2778  // either a BITCAST or a no-op.
2779  if (DestVT != N.getValueType())
2780    setValue(&I, DAG.getNode(ISD::BITCAST, getCurDebugLoc(),
2781                             DestVT, N)); // convert types.
2782  else
2783    setValue(&I, N);            // noop cast.
2784}
2785
2786void SelectionDAGBuilder::visitInsertElement(const User &I) {
2787  SDValue InVec = getValue(I.getOperand(0));
2788  SDValue InVal = getValue(I.getOperand(1));
2789  SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(),
2790                              TLI.getPointerTy(),
2791                              getValue(I.getOperand(2)));
2792  setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurDebugLoc(),
2793                           TLI.getValueType(I.getType()),
2794                           InVec, InVal, InIdx));
2795}
2796
2797void SelectionDAGBuilder::visitExtractElement(const User &I) {
2798  SDValue InVec = getValue(I.getOperand(0));
2799  SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(),
2800                              TLI.getPointerTy(),
2801                              getValue(I.getOperand(1)));
2802  setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
2803                           TLI.getValueType(I.getType()), InVec, InIdx));
2804}
2805
2806// Utility for visitShuffleVector - Return true if every element in Mask,
2807// begining // from position Pos and ending in Pos+Size, falls within the
2808// specified sequential range [L, L+Pos). or is undef.
2809static bool isSequentialInRange(const SmallVectorImpl<int> &Mask,
2810                                int Pos, int Size, int Low) {
2811  for (int i = Pos, e = Pos+Size; i != e; ++i, ++Low)
2812    if (Mask[i] >= 0 && Mask[i] != Low)
2813      return false;
2814  return true;
2815}
2816
2817void SelectionDAGBuilder::visitShuffleVector(const User &I) {
2818  SDValue Src1 = getValue(I.getOperand(0));
2819  SDValue Src2 = getValue(I.getOperand(1));
2820
2821  SmallVector<int, 8> Mask;
2822  ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask);
2823  unsigned MaskNumElts = Mask.size();
2824
2825  EVT VT = TLI.getValueType(I.getType());
2826  EVT SrcVT = Src1.getValueType();
2827  unsigned SrcNumElts = SrcVT.getVectorNumElements();
2828
2829  if (SrcNumElts == MaskNumElts) {
2830    setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2831                                      &Mask[0]));
2832    return;
2833  }
2834
2835  // Normalize the shuffle vector since mask and vector length don't match.
2836  if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) {
2837    // Mask is longer than the source vectors and is a multiple of the source
2838    // vectors.  We can use concatenate vector to make the mask and vectors
2839    // lengths match.
2840    if (SrcNumElts*2 == MaskNumElts) {
2841      // First check for Src1 in low and Src2 in high
2842      if (isSequentialInRange(Mask, 0, SrcNumElts, 0) &&
2843          isSequentialInRange(Mask, SrcNumElts, SrcNumElts, SrcNumElts)) {
2844        // The shuffle is concatenating two vectors together.
2845        setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurDebugLoc(),
2846                                 VT, Src1, Src2));
2847        return;
2848      }
2849      // Then check for Src2 in low and Src1 in high
2850      if (isSequentialInRange(Mask, 0, SrcNumElts, SrcNumElts) &&
2851          isSequentialInRange(Mask, SrcNumElts, SrcNumElts, 0)) {
2852        // The shuffle is concatenating two vectors together.
2853        setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurDebugLoc(),
2854                                 VT, Src2, Src1));
2855        return;
2856      }
2857    }
2858
2859    // Pad both vectors with undefs to make them the same length as the mask.
2860    unsigned NumConcat = MaskNumElts / SrcNumElts;
2861    bool Src1U = Src1.getOpcode() == ISD::UNDEF;
2862    bool Src2U = Src2.getOpcode() == ISD::UNDEF;
2863    SDValue UndefVal = DAG.getUNDEF(SrcVT);
2864
2865    SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
2866    SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
2867    MOps1[0] = Src1;
2868    MOps2[0] = Src2;
2869
2870    Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
2871                                                  getCurDebugLoc(), VT,
2872                                                  &MOps1[0], NumConcat);
2873    Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
2874                                                  getCurDebugLoc(), VT,
2875                                                  &MOps2[0], NumConcat);
2876
2877    // Readjust mask for new input vector length.
2878    SmallVector<int, 8> MappedOps;
2879    for (unsigned i = 0; i != MaskNumElts; ++i) {
2880      int Idx = Mask[i];
2881      if (Idx < (int)SrcNumElts)
2882        MappedOps.push_back(Idx);
2883      else
2884        MappedOps.push_back(Idx + MaskNumElts - SrcNumElts);
2885    }
2886
2887    setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2888                                      &MappedOps[0]));
2889    return;
2890  }
2891
2892  if (SrcNumElts > MaskNumElts) {
2893    // Analyze the access pattern of the vector to see if we can extract
2894    // two subvectors and do the shuffle. The analysis is done by calculating
2895    // the range of elements the mask access on both vectors.
2896    int MinRange[2] = { static_cast<int>(SrcNumElts+1),
2897                        static_cast<int>(SrcNumElts+1)};
2898    int MaxRange[2] = {-1, -1};
2899
2900    for (unsigned i = 0; i != MaskNumElts; ++i) {
2901      int Idx = Mask[i];
2902      int Input = 0;
2903      if (Idx < 0)
2904        continue;
2905
2906      if (Idx >= (int)SrcNumElts) {
2907        Input = 1;
2908        Idx -= SrcNumElts;
2909      }
2910      if (Idx > MaxRange[Input])
2911        MaxRange[Input] = Idx;
2912      if (Idx < MinRange[Input])
2913        MinRange[Input] = Idx;
2914    }
2915
2916    // Check if the access is smaller than the vector size and can we find
2917    // a reasonable extract index.
2918    int RangeUse[2] = { 2, 2 };  // 0 = Unused, 1 = Extract, 2 = Can not
2919                                 // Extract.
2920    int StartIdx[2];  // StartIdx to extract from
2921    for (int Input=0; Input < 2; ++Input) {
2922      if (MinRange[Input] == (int)(SrcNumElts+1) && MaxRange[Input] == -1) {
2923        RangeUse[Input] = 0; // Unused
2924        StartIdx[Input] = 0;
2925      } else if (MaxRange[Input] - MinRange[Input] < (int)MaskNumElts) {
2926        // Fits within range but we should see if we can find a good
2927        // start index that is a multiple of the mask length.
2928        if (MaxRange[Input] < (int)MaskNumElts) {
2929          RangeUse[Input] = 1; // Extract from beginning of the vector
2930          StartIdx[Input] = 0;
2931        } else {
2932          StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts;
2933          if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts &&
2934              StartIdx[Input] + MaskNumElts <= SrcNumElts)
2935            RangeUse[Input] = 1; // Extract from a multiple of the mask length.
2936        }
2937      }
2938    }
2939
2940    if (RangeUse[0] == 0 && RangeUse[1] == 0) {
2941      setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
2942      return;
2943    }
2944    else if (RangeUse[0] < 2 && RangeUse[1] < 2) {
2945      // Extract appropriate subvector and generate a vector shuffle
2946      for (int Input=0; Input < 2; ++Input) {
2947        SDValue &Src = Input == 0 ? Src1 : Src2;
2948        if (RangeUse[Input] == 0)
2949          Src = DAG.getUNDEF(VT);
2950        else
2951          Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, getCurDebugLoc(), VT,
2952                            Src, DAG.getIntPtrConstant(StartIdx[Input]));
2953      }
2954
2955      // Calculate new mask.
2956      SmallVector<int, 8> MappedOps;
2957      for (unsigned i = 0; i != MaskNumElts; ++i) {
2958        int Idx = Mask[i];
2959        if (Idx < 0)
2960          MappedOps.push_back(Idx);
2961        else if (Idx < (int)SrcNumElts)
2962          MappedOps.push_back(Idx - StartIdx[0]);
2963        else
2964          MappedOps.push_back(Idx - SrcNumElts - StartIdx[1] + MaskNumElts);
2965      }
2966
2967      setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2968                                        &MappedOps[0]));
2969      return;
2970    }
2971  }
2972
2973  // We can't use either concat vectors or extract subvectors so fall back to
2974  // replacing the shuffle with extract and build vector.
2975  // to insert and build vector.
2976  EVT EltVT = VT.getVectorElementType();
2977  EVT PtrVT = TLI.getPointerTy();
2978  SmallVector<SDValue,8> Ops;
2979  for (unsigned i = 0; i != MaskNumElts; ++i) {
2980    if (Mask[i] < 0) {
2981      Ops.push_back(DAG.getUNDEF(EltVT));
2982    } else {
2983      int Idx = Mask[i];
2984      SDValue Res;
2985
2986      if (Idx < (int)SrcNumElts)
2987        Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
2988                          EltVT, Src1, DAG.getConstant(Idx, PtrVT));
2989      else
2990        Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
2991                          EltVT, Src2,
2992                          DAG.getConstant(Idx - SrcNumElts, PtrVT));
2993
2994      Ops.push_back(Res);
2995    }
2996  }
2997
2998  setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(),
2999                           VT, &Ops[0], Ops.size()));
3000}
3001
3002void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) {
3003  const Value *Op0 = I.getOperand(0);
3004  const Value *Op1 = I.getOperand(1);
3005  Type *AggTy = I.getType();
3006  Type *ValTy = Op1->getType();
3007  bool IntoUndef = isa<UndefValue>(Op0);
3008  bool FromUndef = isa<UndefValue>(Op1);
3009
3010  unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices());
3011
3012  SmallVector<EVT, 4> AggValueVTs;
3013  ComputeValueVTs(TLI, AggTy, AggValueVTs);
3014  SmallVector<EVT, 4> ValValueVTs;
3015  ComputeValueVTs(TLI, ValTy, ValValueVTs);
3016
3017  unsigned NumAggValues = AggValueVTs.size();
3018  unsigned NumValValues = ValValueVTs.size();
3019  SmallVector<SDValue, 4> Values(NumAggValues);
3020
3021  SDValue Agg = getValue(Op0);
3022  unsigned i = 0;
3023  // Copy the beginning value(s) from the original aggregate.
3024  for (; i != LinearIndex; ++i)
3025    Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3026                SDValue(Agg.getNode(), Agg.getResNo() + i);
3027  // Copy values from the inserted value(s).
3028  if (NumValValues) {
3029    SDValue Val = getValue(Op1);
3030    for (; i != LinearIndex + NumValValues; ++i)
3031      Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3032                  SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
3033  }
3034  // Copy remaining value(s) from the original aggregate.
3035  for (; i != NumAggValues; ++i)
3036    Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3037                SDValue(Agg.getNode(), Agg.getResNo() + i);
3038
3039  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
3040                           DAG.getVTList(&AggValueVTs[0], NumAggValues),
3041                           &Values[0], NumAggValues));
3042}
3043
3044void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) {
3045  const Value *Op0 = I.getOperand(0);
3046  Type *AggTy = Op0->getType();
3047  Type *ValTy = I.getType();
3048  bool OutOfUndef = isa<UndefValue>(Op0);
3049
3050  unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices());
3051
3052  SmallVector<EVT, 4> ValValueVTs;
3053  ComputeValueVTs(TLI, ValTy, ValValueVTs);
3054
3055  unsigned NumValValues = ValValueVTs.size();
3056
3057  // Ignore a extractvalue that produces an empty object
3058  if (!NumValValues) {
3059    setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3060    return;
3061  }
3062
3063  SmallVector<SDValue, 4> Values(NumValValues);
3064
3065  SDValue Agg = getValue(Op0);
3066  // Copy out the selected value(s).
3067  for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
3068    Values[i - LinearIndex] =
3069      OutOfUndef ?
3070        DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
3071        SDValue(Agg.getNode(), Agg.getResNo() + i);
3072
3073  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
3074                           DAG.getVTList(&ValValueVTs[0], NumValValues),
3075                           &Values[0], NumValValues));
3076}
3077
3078void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
3079  SDValue N = getValue(I.getOperand(0));
3080  Type *Ty = I.getOperand(0)->getType();
3081
3082  for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end();
3083       OI != E; ++OI) {
3084    const Value *Idx = *OI;
3085    if (StructType *StTy = dyn_cast<StructType>(Ty)) {
3086      unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
3087      if (Field) {
3088        // N = N + Offset
3089        uint64_t Offset = TD->getStructLayout(StTy)->getElementOffset(Field);
3090        N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N,
3091                        DAG.getIntPtrConstant(Offset));
3092      }
3093
3094      Ty = StTy->getElementType(Field);
3095    } else {
3096      Ty = cast<SequentialType>(Ty)->getElementType();
3097
3098      // If this is a constant subscript, handle it quickly.
3099      if (const ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
3100        if (CI->isZero()) continue;
3101        uint64_t Offs =
3102            TD->getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue();
3103        SDValue OffsVal;
3104        EVT PTy = TLI.getPointerTy();
3105        unsigned PtrBits = PTy.getSizeInBits();
3106        if (PtrBits < 64)
3107          OffsVal = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(),
3108                                TLI.getPointerTy(),
3109                                DAG.getConstant(Offs, MVT::i64));
3110        else
3111          OffsVal = DAG.getIntPtrConstant(Offs);
3112
3113        N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N,
3114                        OffsVal);
3115        continue;
3116      }
3117
3118      // N = N + Idx * ElementSize;
3119      APInt ElementSize = APInt(TLI.getPointerTy().getSizeInBits(),
3120                                TD->getTypeAllocSize(Ty));
3121      SDValue IdxN = getValue(Idx);
3122
3123      // If the index is smaller or larger than intptr_t, truncate or extend
3124      // it.
3125      IdxN = DAG.getSExtOrTrunc(IdxN, getCurDebugLoc(), N.getValueType());
3126
3127      // If this is a multiply by a power of two, turn it into a shl
3128      // immediately.  This is a very common case.
3129      if (ElementSize != 1) {
3130        if (ElementSize.isPowerOf2()) {
3131          unsigned Amt = ElementSize.logBase2();
3132          IdxN = DAG.getNode(ISD::SHL, getCurDebugLoc(),
3133                             N.getValueType(), IdxN,
3134                             DAG.getConstant(Amt, IdxN.getValueType()));
3135        } else {
3136          SDValue Scale = DAG.getConstant(ElementSize, TLI.getPointerTy());
3137          IdxN = DAG.getNode(ISD::MUL, getCurDebugLoc(),
3138                             N.getValueType(), IdxN, Scale);
3139        }
3140      }
3141
3142      N = DAG.getNode(ISD::ADD, getCurDebugLoc(),
3143                      N.getValueType(), N, IdxN);
3144    }
3145  }
3146
3147  setValue(&I, N);
3148}
3149
3150void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
3151  // If this is a fixed sized alloca in the entry block of the function,
3152  // allocate it statically on the stack.
3153  if (FuncInfo.StaticAllocaMap.count(&I))
3154    return;   // getValue will auto-populate this.
3155
3156  Type *Ty = I.getAllocatedType();
3157  uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty);
3158  unsigned Align =
3159    std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty),
3160             I.getAlignment());
3161
3162  SDValue AllocSize = getValue(I.getArraySize());
3163
3164  EVT IntPtr = TLI.getPointerTy();
3165  if (AllocSize.getValueType() != IntPtr)
3166    AllocSize = DAG.getZExtOrTrunc(AllocSize, getCurDebugLoc(), IntPtr);
3167
3168  AllocSize = DAG.getNode(ISD::MUL, getCurDebugLoc(), IntPtr,
3169                          AllocSize,
3170                          DAG.getConstant(TySize, IntPtr));
3171
3172  // Handle alignment.  If the requested alignment is less than or equal to
3173  // the stack alignment, ignore it.  If the size is greater than or equal to
3174  // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
3175  unsigned StackAlign = TM.getFrameLowering()->getStackAlignment();
3176  if (Align <= StackAlign)
3177    Align = 0;
3178
3179  // Round the size of the allocation up to the stack alignment size
3180  // by add SA-1 to the size.
3181  AllocSize = DAG.getNode(ISD::ADD, getCurDebugLoc(),
3182                          AllocSize.getValueType(), AllocSize,
3183                          DAG.getIntPtrConstant(StackAlign-1));
3184
3185  // Mask out the low bits for alignment purposes.
3186  AllocSize = DAG.getNode(ISD::AND, getCurDebugLoc(),
3187                          AllocSize.getValueType(), AllocSize,
3188                          DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1)));
3189
3190  SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) };
3191  SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
3192  SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, getCurDebugLoc(),
3193                            VTs, Ops, 3);
3194  setValue(&I, DSA);
3195  DAG.setRoot(DSA.getValue(1));
3196
3197  // Inform the Frame Information that we have just allocated a variable-sized
3198  // object.
3199  FuncInfo.MF->getFrameInfo()->CreateVariableSizedObject(Align ? Align : 1);
3200}
3201
3202void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
3203  if (I.isAtomic())
3204    return visitAtomicLoad(I);
3205
3206  const Value *SV = I.getOperand(0);
3207  SDValue Ptr = getValue(SV);
3208
3209  Type *Ty = I.getType();
3210
3211  bool isVolatile = I.isVolatile();
3212  bool isNonTemporal = I.getMetadata("nontemporal") != 0;
3213  bool isInvariant = I.getMetadata("invariant.load") != 0;
3214  unsigned Alignment = I.getAlignment();
3215  const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa);
3216
3217  SmallVector<EVT, 4> ValueVTs;
3218  SmallVector<uint64_t, 4> Offsets;
3219  ComputeValueVTs(TLI, Ty, ValueVTs, &Offsets);
3220  unsigned NumValues = ValueVTs.size();
3221  if (NumValues == 0)
3222    return;
3223
3224  SDValue Root;
3225  bool ConstantMemory = false;
3226  if (I.isVolatile() || NumValues > MaxParallelChains)
3227    // Serialize volatile loads with other side effects.
3228    Root = getRoot();
3229  else if (AA->pointsToConstantMemory(
3230             AliasAnalysis::Location(SV, AA->getTypeStoreSize(Ty), TBAAInfo))) {
3231    // Do not serialize (non-volatile) loads of constant memory with anything.
3232    Root = DAG.getEntryNode();
3233    ConstantMemory = true;
3234  } else {
3235    // Do not serialize non-volatile loads against each other.
3236    Root = DAG.getRoot();
3237  }
3238
3239  SmallVector<SDValue, 4> Values(NumValues);
3240  SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains),
3241                                          NumValues));
3242  EVT PtrVT = Ptr.getValueType();
3243  unsigned ChainI = 0;
3244  for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3245    // Serializing loads here may result in excessive register pressure, and
3246    // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
3247    // could recover a bit by hoisting nodes upward in the chain by recognizing
3248    // they are side-effect free or do not alias. The optimizer should really
3249    // avoid this case by converting large object/array copies to llvm.memcpy
3250    // (MaxParallelChains should always remain as failsafe).
3251    if (ChainI == MaxParallelChains) {
3252      assert(PendingLoads.empty() && "PendingLoads must be serialized first");
3253      SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
3254                                  MVT::Other, &Chains[0], ChainI);
3255      Root = Chain;
3256      ChainI = 0;
3257    }
3258    SDValue A = DAG.getNode(ISD::ADD, getCurDebugLoc(),
3259                            PtrVT, Ptr,
3260                            DAG.getConstant(Offsets[i], PtrVT));
3261    SDValue L = DAG.getLoad(ValueVTs[i], getCurDebugLoc(), Root,
3262                            A, MachinePointerInfo(SV, Offsets[i]), isVolatile,
3263                            isNonTemporal, isInvariant, Alignment, TBAAInfo);
3264
3265    Values[i] = L;
3266    Chains[ChainI] = L.getValue(1);
3267  }
3268
3269  if (!ConstantMemory) {
3270    SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
3271                                MVT::Other, &Chains[0], ChainI);
3272    if (isVolatile)
3273      DAG.setRoot(Chain);
3274    else
3275      PendingLoads.push_back(Chain);
3276  }
3277
3278  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
3279                           DAG.getVTList(&ValueVTs[0], NumValues),
3280                           &Values[0], NumValues));
3281}
3282
3283void SelectionDAGBuilder::visitStore(const StoreInst &I) {
3284  if (I.isAtomic())
3285    return visitAtomicStore(I);
3286
3287  const Value *SrcV = I.getOperand(0);
3288  const Value *PtrV = I.getOperand(1);
3289
3290  SmallVector<EVT, 4> ValueVTs;
3291  SmallVector<uint64_t, 4> Offsets;
3292  ComputeValueVTs(TLI, SrcV->getType(), ValueVTs, &Offsets);
3293  unsigned NumValues = ValueVTs.size();
3294  if (NumValues == 0)
3295    return;
3296
3297  // Get the lowered operands. Note that we do this after
3298  // checking if NumResults is zero, because with zero results
3299  // the operands won't have values in the map.
3300  SDValue Src = getValue(SrcV);
3301  SDValue Ptr = getValue(PtrV);
3302
3303  SDValue Root = getRoot();
3304  SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains),
3305                                          NumValues));
3306  EVT PtrVT = Ptr.getValueType();
3307  bool isVolatile = I.isVolatile();
3308  bool isNonTemporal = I.getMetadata("nontemporal") != 0;
3309  unsigned Alignment = I.getAlignment();
3310  const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa);
3311
3312  unsigned ChainI = 0;
3313  for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3314    // See visitLoad comments.
3315    if (ChainI == MaxParallelChains) {
3316      SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
3317                                  MVT::Other, &Chains[0], ChainI);
3318      Root = Chain;
3319      ChainI = 0;
3320    }
3321    SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT, Ptr,
3322                              DAG.getConstant(Offsets[i], PtrVT));
3323    SDValue St = DAG.getStore(Root, getCurDebugLoc(),
3324                              SDValue(Src.getNode(), Src.getResNo() + i),
3325                              Add, MachinePointerInfo(PtrV, Offsets[i]),
3326                              isVolatile, isNonTemporal, Alignment, TBAAInfo);
3327    Chains[ChainI] = St;
3328  }
3329
3330  SDValue StoreNode = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
3331                                  MVT::Other, &Chains[0], ChainI);
3332  ++SDNodeOrder;
3333  AssignOrderingToNode(StoreNode.getNode());
3334  DAG.setRoot(StoreNode);
3335}
3336
3337static SDValue InsertFenceForAtomic(SDValue Chain, AtomicOrdering Order,
3338                                    SynchronizationScope Scope,
3339                                    bool Before, DebugLoc dl,
3340                                    SelectionDAG &DAG,
3341                                    const TargetLowering &TLI) {
3342  // Fence, if necessary
3343  if (Before) {
3344    if (Order == AcquireRelease || Order == SequentiallyConsistent)
3345      Order = Release;
3346    else if (Order == Acquire || Order == Monotonic)
3347      return Chain;
3348  } else {
3349    if (Order == AcquireRelease)
3350      Order = Acquire;
3351    else if (Order == Release || Order == Monotonic)
3352      return Chain;
3353  }
3354  SDValue Ops[3];
3355  Ops[0] = Chain;
3356  Ops[1] = DAG.getConstant(Order, TLI.getPointerTy());
3357  Ops[2] = DAG.getConstant(Scope, TLI.getPointerTy());
3358  return DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops, 3);
3359}
3360
3361void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) {
3362  DebugLoc dl = getCurDebugLoc();
3363  AtomicOrdering Order = I.getOrdering();
3364  SynchronizationScope Scope = I.getSynchScope();
3365
3366  SDValue InChain = getRoot();
3367
3368  if (TLI.getInsertFencesForAtomic())
3369    InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl,
3370                                   DAG, TLI);
3371
3372  SDValue L =
3373    DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, dl,
3374                  getValue(I.getCompareOperand()).getValueType().getSimpleVT(),
3375                  InChain,
3376                  getValue(I.getPointerOperand()),
3377                  getValue(I.getCompareOperand()),
3378                  getValue(I.getNewValOperand()),
3379                  MachinePointerInfo(I.getPointerOperand()), 0 /* Alignment */,
3380                  TLI.getInsertFencesForAtomic() ? Monotonic : Order,
3381                  Scope);
3382
3383  SDValue OutChain = L.getValue(1);
3384
3385  if (TLI.getInsertFencesForAtomic())
3386    OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl,
3387                                    DAG, TLI);
3388
3389  setValue(&I, L);
3390  DAG.setRoot(OutChain);
3391}
3392
3393void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) {
3394  DebugLoc dl = getCurDebugLoc();
3395  ISD::NodeType NT;
3396  switch (I.getOperation()) {
3397  default: llvm_unreachable("Unknown atomicrmw operation");
3398  case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break;
3399  case AtomicRMWInst::Add:  NT = ISD::ATOMIC_LOAD_ADD; break;
3400  case AtomicRMWInst::Sub:  NT = ISD::ATOMIC_LOAD_SUB; break;
3401  case AtomicRMWInst::And:  NT = ISD::ATOMIC_LOAD_AND; break;
3402  case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break;
3403  case AtomicRMWInst::Or:   NT = ISD::ATOMIC_LOAD_OR; break;
3404  case AtomicRMWInst::Xor:  NT = ISD::ATOMIC_LOAD_XOR; break;
3405  case AtomicRMWInst::Max:  NT = ISD::ATOMIC_LOAD_MAX; break;
3406  case AtomicRMWInst::Min:  NT = ISD::ATOMIC_LOAD_MIN; break;
3407  case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break;
3408  case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break;
3409  }
3410  AtomicOrdering Order = I.getOrdering();
3411  SynchronizationScope Scope = I.getSynchScope();
3412
3413  SDValue InChain = getRoot();
3414
3415  if (TLI.getInsertFencesForAtomic())
3416    InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl,
3417                                   DAG, TLI);
3418
3419  SDValue L =
3420    DAG.getAtomic(NT, dl,
3421                  getValue(I.getValOperand()).getValueType().getSimpleVT(),
3422                  InChain,
3423                  getValue(I.getPointerOperand()),
3424                  getValue(I.getValOperand()),
3425                  I.getPointerOperand(), 0 /* Alignment */,
3426                  TLI.getInsertFencesForAtomic() ? Monotonic : Order,
3427                  Scope);
3428
3429  SDValue OutChain = L.getValue(1);
3430
3431  if (TLI.getInsertFencesForAtomic())
3432    OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl,
3433                                    DAG, TLI);
3434
3435  setValue(&I, L);
3436  DAG.setRoot(OutChain);
3437}
3438
3439void SelectionDAGBuilder::visitFence(const FenceInst &I) {
3440  DebugLoc dl = getCurDebugLoc();
3441  SDValue Ops[3];
3442  Ops[0] = getRoot();
3443  Ops[1] = DAG.getConstant(I.getOrdering(), TLI.getPointerTy());
3444  Ops[2] = DAG.getConstant(I.getSynchScope(), TLI.getPointerTy());
3445  DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops, 3));
3446}
3447
3448void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) {
3449  DebugLoc dl = getCurDebugLoc();
3450  AtomicOrdering Order = I.getOrdering();
3451  SynchronizationScope Scope = I.getSynchScope();
3452
3453  SDValue InChain = getRoot();
3454
3455  EVT VT = EVT::getEVT(I.getType());
3456
3457  if (I.getAlignment() * 8 < VT.getSizeInBits())
3458    report_fatal_error("Cannot generate unaligned atomic load");
3459
3460  SDValue L =
3461    DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain,
3462                  getValue(I.getPointerOperand()),
3463                  I.getPointerOperand(), I.getAlignment(),
3464                  TLI.getInsertFencesForAtomic() ? Monotonic : Order,
3465                  Scope);
3466
3467  SDValue OutChain = L.getValue(1);
3468
3469  if (TLI.getInsertFencesForAtomic())
3470    OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl,
3471                                    DAG, TLI);
3472
3473  setValue(&I, L);
3474  DAG.setRoot(OutChain);
3475}
3476
3477void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) {
3478  DebugLoc dl = getCurDebugLoc();
3479
3480  AtomicOrdering Order = I.getOrdering();
3481  SynchronizationScope Scope = I.getSynchScope();
3482
3483  SDValue InChain = getRoot();
3484
3485  EVT VT = EVT::getEVT(I.getValueOperand()->getType());
3486
3487  if (I.getAlignment() * 8 < VT.getSizeInBits())
3488    report_fatal_error("Cannot generate unaligned atomic store");
3489
3490  if (TLI.getInsertFencesForAtomic())
3491    InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl,
3492                                   DAG, TLI);
3493
3494  SDValue OutChain =
3495    DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT,
3496                  InChain,
3497                  getValue(I.getPointerOperand()),
3498                  getValue(I.getValueOperand()),
3499                  I.getPointerOperand(), I.getAlignment(),
3500                  TLI.getInsertFencesForAtomic() ? Monotonic : Order,
3501                  Scope);
3502
3503  if (TLI.getInsertFencesForAtomic())
3504    OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl,
3505                                    DAG, TLI);
3506
3507  DAG.setRoot(OutChain);
3508}
3509
3510/// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
3511/// node.
3512void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
3513                                               unsigned Intrinsic) {
3514  bool HasChain = !I.doesNotAccessMemory();
3515  bool OnlyLoad = HasChain && I.onlyReadsMemory();
3516
3517  // Build the operand list.
3518  SmallVector<SDValue, 8> Ops;
3519  if (HasChain) {  // If this intrinsic has side-effects, chainify it.
3520    if (OnlyLoad) {
3521      // We don't need to serialize loads against other loads.
3522      Ops.push_back(DAG.getRoot());
3523    } else {
3524      Ops.push_back(getRoot());
3525    }
3526  }
3527
3528  // Info is set by getTgtMemInstrinsic
3529  TargetLowering::IntrinsicInfo Info;
3530  bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic);
3531
3532  // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
3533  if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
3534      Info.opc == ISD::INTRINSIC_W_CHAIN)
3535    Ops.push_back(DAG.getTargetConstant(Intrinsic, TLI.getPointerTy()));
3536
3537  // Add all operands of the call to the operand list.
3538  for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
3539    SDValue Op = getValue(I.getArgOperand(i));
3540    Ops.push_back(Op);
3541  }
3542
3543  SmallVector<EVT, 4> ValueVTs;
3544  ComputeValueVTs(TLI, I.getType(), ValueVTs);
3545
3546  if (HasChain)
3547    ValueVTs.push_back(MVT::Other);
3548
3549  SDVTList VTs = DAG.getVTList(ValueVTs.data(), ValueVTs.size());
3550
3551  // Create the node.
3552  SDValue Result;
3553  if (IsTgtIntrinsic) {
3554    // This is target intrinsic that touches memory
3555    Result = DAG.getMemIntrinsicNode(Info.opc, getCurDebugLoc(),
3556                                     VTs, &Ops[0], Ops.size(),
3557                                     Info.memVT,
3558                                   MachinePointerInfo(Info.ptrVal, Info.offset),
3559                                     Info.align, Info.vol,
3560                                     Info.readMem, Info.writeMem);
3561  } else if (!HasChain) {
3562    Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurDebugLoc(),
3563                         VTs, &Ops[0], Ops.size());
3564  } else if (!I.getType()->isVoidTy()) {
3565    Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurDebugLoc(),
3566                         VTs, &Ops[0], Ops.size());
3567  } else {
3568    Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurDebugLoc(),
3569                         VTs, &Ops[0], Ops.size());
3570  }
3571
3572  if (HasChain) {
3573    SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
3574    if (OnlyLoad)
3575      PendingLoads.push_back(Chain);
3576    else
3577      DAG.setRoot(Chain);
3578  }
3579
3580  if (!I.getType()->isVoidTy()) {
3581    if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
3582      EVT VT = TLI.getValueType(PTy);
3583      Result = DAG.getNode(ISD::BITCAST, getCurDebugLoc(), VT, Result);
3584    }
3585
3586    setValue(&I, Result);
3587  }
3588}
3589
3590/// GetSignificand - Get the significand and build it into a floating-point
3591/// number with exponent of 1:
3592///
3593///   Op = (Op & 0x007fffff) | 0x3f800000;
3594///
3595/// where Op is the hexidecimal representation of floating point value.
3596static SDValue
3597GetSignificand(SelectionDAG &DAG, SDValue Op, DebugLoc dl) {
3598  SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
3599                           DAG.getConstant(0x007fffff, MVT::i32));
3600  SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
3601                           DAG.getConstant(0x3f800000, MVT::i32));
3602  return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
3603}
3604
3605/// GetExponent - Get the exponent:
3606///
3607///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
3608///
3609/// where Op is the hexidecimal representation of floating point value.
3610static SDValue
3611GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI,
3612            DebugLoc dl) {
3613  SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
3614                           DAG.getConstant(0x7f800000, MVT::i32));
3615  SDValue t1 = DAG.getNode(ISD::SRL, dl, MVT::i32, t0,
3616                           DAG.getConstant(23, TLI.getPointerTy()));
3617  SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
3618                           DAG.getConstant(127, MVT::i32));
3619  return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
3620}
3621
3622/// getF32Constant - Get 32-bit floating point constant.
3623static SDValue
3624getF32Constant(SelectionDAG &DAG, unsigned Flt) {
3625  return DAG.getConstantFP(APFloat(APInt(32, Flt)), MVT::f32);
3626}
3627
3628// implVisitAluOverflow - Lower arithmetic overflow instrinsics.
3629const char *
3630SelectionDAGBuilder::implVisitAluOverflow(const CallInst &I, ISD::NodeType Op) {
3631  SDValue Op1 = getValue(I.getArgOperand(0));
3632  SDValue Op2 = getValue(I.getArgOperand(1));
3633
3634  SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1);
3635  setValue(&I, DAG.getNode(Op, getCurDebugLoc(), VTs, Op1, Op2));
3636  return 0;
3637}
3638
3639/// visitExp - Lower an exp intrinsic. Handles the special sequences for
3640/// limited-precision mode.
3641void
3642SelectionDAGBuilder::visitExp(const CallInst &I) {
3643  SDValue result;
3644  DebugLoc dl = getCurDebugLoc();
3645
3646  if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3647      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3648    SDValue Op = getValue(I.getArgOperand(0));
3649
3650    // Put the exponent in the right bit position for later addition to the
3651    // final result:
3652    //
3653    //   #define LOG2OFe 1.4426950f
3654    //   IntegerPartOfX = ((int32_t)(X * LOG2OFe));
3655    SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
3656                             getF32Constant(DAG, 0x3fb8aa3b));
3657    SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
3658
3659    //   FractionalPartOfX = (X * LOG2OFe) - (float)IntegerPartOfX;
3660    SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
3661    SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
3662
3663    //   IntegerPartOfX <<= 23;
3664    IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
3665                                 DAG.getConstant(23, TLI.getPointerTy()));
3666
3667    if (LimitFloatPrecision <= 6) {
3668      // For floating-point precision of 6:
3669      //
3670      //   TwoToFractionalPartOfX =
3671      //     0.997535578f +
3672      //       (0.735607626f + 0.252464424f * x) * x;
3673      //
3674      // error 0.0144103317, which is 6 bits
3675      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3676                               getF32Constant(DAG, 0x3e814304));
3677      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3678                               getF32Constant(DAG, 0x3f3c50c8));
3679      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3680      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3681                               getF32Constant(DAG, 0x3f7f5e7e));
3682      SDValue TwoToFracPartOfX = DAG.getNode(ISD::BITCAST, dl,MVT::i32, t5);
3683
3684      // Add the exponent into the result in integer domain.
3685      SDValue t6 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3686                               TwoToFracPartOfX, IntegerPartOfX);
3687
3688      result = DAG.getNode(ISD::BITCAST, dl, MVT::f32, t6);
3689    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3690      // For floating-point precision of 12:
3691      //
3692      //   TwoToFractionalPartOfX =
3693      //     0.999892986f +
3694      //       (0.696457318f +
3695      //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
3696      //
3697      // 0.000107046256 error, which is 13 to 14 bits
3698      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3699                               getF32Constant(DAG, 0x3da235e3));
3700      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3701                               getF32Constant(DAG, 0x3e65b8f3));
3702      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3703      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3704                               getF32Constant(DAG, 0x3f324b07));
3705      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3706      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3707                               getF32Constant(DAG, 0x3f7ff8fd));
3708      SDValue TwoToFracPartOfX = DAG.getNode(ISD::BITCAST, dl,MVT::i32, t7);
3709
3710      // Add the exponent into the result in integer domain.
3711      SDValue t8 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3712                               TwoToFracPartOfX, IntegerPartOfX);
3713
3714      result = DAG.getNode(ISD::BITCAST, dl, MVT::f32, t8);
3715    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3716      // For floating-point precision of 18:
3717      //
3718      //   TwoToFractionalPartOfX =
3719      //     0.999999982f +
3720      //       (0.693148872f +
3721      //         (0.240227044f +
3722      //           (0.554906021e-1f +
3723      //             (0.961591928e-2f +
3724      //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
3725      //
3726      // error 2.47208000*10^(-7), which is better than 18 bits
3727      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3728                               getF32Constant(DAG, 0x3924b03e));
3729      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3730                               getF32Constant(DAG, 0x3ab24b87));
3731      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3732      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3733                               getF32Constant(DAG, 0x3c1d8c17));
3734      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3735      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3736                               getF32Constant(DAG, 0x3d634a1d));
3737      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3738      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3739                               getF32Constant(DAG, 0x3e75fe14));
3740      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3741      SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
3742                                getF32Constant(DAG, 0x3f317234));
3743      SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
3744      SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
3745                                getF32Constant(DAG, 0x3f800000));
3746      SDValue TwoToFracPartOfX = DAG.getNode(ISD::BITCAST, dl,
3747                                             MVT::i32, t13);
3748
3749      // Add the exponent into the result in integer domain.
3750      SDValue t14 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3751                                TwoToFracPartOfX, IntegerPartOfX);
3752
3753      result = DAG.getNode(ISD::BITCAST, dl, MVT::f32, t14);
3754    }
3755  } else {
3756    // No special expansion.
3757    result = DAG.getNode(ISD::FEXP, dl,
3758                         getValue(I.getArgOperand(0)).getValueType(),
3759                         getValue(I.getArgOperand(0)));
3760  }
3761
3762  setValue(&I, result);
3763}
3764
3765/// visitLog - Lower a log intrinsic. Handles the special sequences for
3766/// limited-precision mode.
3767void
3768SelectionDAGBuilder::visitLog(const CallInst &I) {
3769  SDValue result;
3770  DebugLoc dl = getCurDebugLoc();
3771
3772  if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3773      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3774    SDValue Op = getValue(I.getArgOperand(0));
3775    SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
3776
3777    // Scale the exponent by log(2) [0.69314718f].
3778    SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
3779    SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
3780                                        getF32Constant(DAG, 0x3f317218));
3781
3782    // Get the significand and build it into a floating-point number with
3783    // exponent of 1.
3784    SDValue X = GetSignificand(DAG, Op1, dl);
3785
3786    if (LimitFloatPrecision <= 6) {
3787      // For floating-point precision of 6:
3788      //
3789      //   LogofMantissa =
3790      //     -1.1609546f +
3791      //       (1.4034025f - 0.23903021f * x) * x;
3792      //
3793      // error 0.0034276066, which is better than 8 bits
3794      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3795                               getF32Constant(DAG, 0xbe74c456));
3796      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3797                               getF32Constant(DAG, 0x3fb3a2b1));
3798      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3799      SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3800                                          getF32Constant(DAG, 0x3f949a29));
3801
3802      result = DAG.getNode(ISD::FADD, dl,
3803                           MVT::f32, LogOfExponent, LogOfMantissa);
3804    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3805      // For floating-point precision of 12:
3806      //
3807      //   LogOfMantissa =
3808      //     -1.7417939f +
3809      //       (2.8212026f +
3810      //         (-1.4699568f +
3811      //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
3812      //
3813      // error 0.000061011436, which is 14 bits
3814      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3815                               getF32Constant(DAG, 0xbd67b6d6));
3816      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3817                               getF32Constant(DAG, 0x3ee4f4b8));
3818      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3819      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3820                               getF32Constant(DAG, 0x3fbc278b));
3821      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3822      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3823                               getF32Constant(DAG, 0x40348e95));
3824      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3825      SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3826                                          getF32Constant(DAG, 0x3fdef31a));
3827
3828      result = DAG.getNode(ISD::FADD, dl,
3829                           MVT::f32, LogOfExponent, LogOfMantissa);
3830    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3831      // For floating-point precision of 18:
3832      //
3833      //   LogOfMantissa =
3834      //     -2.1072184f +
3835      //       (4.2372794f +
3836      //         (-3.7029485f +
3837      //           (2.2781945f +
3838      //             (-0.87823314f +
3839      //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
3840      //
3841      // error 0.0000023660568, which is better than 18 bits
3842      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3843                               getF32Constant(DAG, 0xbc91e5ac));
3844      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3845                               getF32Constant(DAG, 0x3e4350aa));
3846      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3847      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3848                               getF32Constant(DAG, 0x3f60d3e3));
3849      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3850      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3851                               getF32Constant(DAG, 0x4011cdf0));
3852      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3853      SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3854                               getF32Constant(DAG, 0x406cfd1c));
3855      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3856      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3857                               getF32Constant(DAG, 0x408797cb));
3858      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3859      SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
3860                                          getF32Constant(DAG, 0x4006dcab));
3861
3862      result = DAG.getNode(ISD::FADD, dl,
3863                           MVT::f32, LogOfExponent, LogOfMantissa);
3864    }
3865  } else {
3866    // No special expansion.
3867    result = DAG.getNode(ISD::FLOG, dl,
3868                         getValue(I.getArgOperand(0)).getValueType(),
3869                         getValue(I.getArgOperand(0)));
3870  }
3871
3872  setValue(&I, result);
3873}
3874
3875/// visitLog2 - Lower a log2 intrinsic. Handles the special sequences for
3876/// limited-precision mode.
3877void
3878SelectionDAGBuilder::visitLog2(const CallInst &I) {
3879  SDValue result;
3880  DebugLoc dl = getCurDebugLoc();
3881
3882  if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3883      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3884    SDValue Op = getValue(I.getArgOperand(0));
3885    SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
3886
3887    // Get the exponent.
3888    SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
3889
3890    // Get the significand and build it into a floating-point number with
3891    // exponent of 1.
3892    SDValue X = GetSignificand(DAG, Op1, dl);
3893
3894    // Different possible minimax approximations of significand in
3895    // floating-point for various degrees of accuracy over [1,2].
3896    if (LimitFloatPrecision <= 6) {
3897      // For floating-point precision of 6:
3898      //
3899      //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
3900      //
3901      // error 0.0049451742, which is more than 7 bits
3902      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3903                               getF32Constant(DAG, 0xbeb08fe0));
3904      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3905                               getF32Constant(DAG, 0x40019463));
3906      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3907      SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3908                                           getF32Constant(DAG, 0x3fd6633d));
3909
3910      result = DAG.getNode(ISD::FADD, dl,
3911                           MVT::f32, LogOfExponent, Log2ofMantissa);
3912    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3913      // For floating-point precision of 12:
3914      //
3915      //   Log2ofMantissa =
3916      //     -2.51285454f +
3917      //       (4.07009056f +
3918      //         (-2.12067489f +
3919      //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
3920      //
3921      // error 0.0000876136000, which is better than 13 bits
3922      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3923                               getF32Constant(DAG, 0xbda7262e));
3924      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3925                               getF32Constant(DAG, 0x3f25280b));
3926      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3927      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3928                               getF32Constant(DAG, 0x4007b923));
3929      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3930      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3931                               getF32Constant(DAG, 0x40823e2f));
3932      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3933      SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3934                                           getF32Constant(DAG, 0x4020d29c));
3935
3936      result = DAG.getNode(ISD::FADD, dl,
3937                           MVT::f32, LogOfExponent, Log2ofMantissa);
3938    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3939      // For floating-point precision of 18:
3940      //
3941      //   Log2ofMantissa =
3942      //     -3.0400495f +
3943      //       (6.1129976f +
3944      //         (-5.3420409f +
3945      //           (3.2865683f +
3946      //             (-1.2669343f +
3947      //               (0.27515199f -
3948      //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
3949      //
3950      // error 0.0000018516, which is better than 18 bits
3951      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3952                               getF32Constant(DAG, 0xbcd2769e));
3953      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3954                               getF32Constant(DAG, 0x3e8ce0b9));
3955      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3956      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3957                               getF32Constant(DAG, 0x3fa22ae7));
3958      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3959      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3960                               getF32Constant(DAG, 0x40525723));
3961      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3962      SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3963                               getF32Constant(DAG, 0x40aaf200));
3964      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3965      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3966                               getF32Constant(DAG, 0x40c39dad));
3967      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3968      SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
3969                                           getF32Constant(DAG, 0x4042902c));
3970
3971      result = DAG.getNode(ISD::FADD, dl,
3972                           MVT::f32, LogOfExponent, Log2ofMantissa);
3973    }
3974  } else {
3975    // No special expansion.
3976    result = DAG.getNode(ISD::FLOG2, dl,
3977                         getValue(I.getArgOperand(0)).getValueType(),
3978                         getValue(I.getArgOperand(0)));
3979  }
3980
3981  setValue(&I, result);
3982}
3983
3984/// visitLog10 - Lower a log10 intrinsic. Handles the special sequences for
3985/// limited-precision mode.
3986void
3987SelectionDAGBuilder::visitLog10(const CallInst &I) {
3988  SDValue result;
3989  DebugLoc dl = getCurDebugLoc();
3990
3991  if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3992      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3993    SDValue Op = getValue(I.getArgOperand(0));
3994    SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
3995
3996    // Scale the exponent by log10(2) [0.30102999f].
3997    SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
3998    SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
3999                                        getF32Constant(DAG, 0x3e9a209a));
4000
4001    // Get the significand and build it into a floating-point number with
4002    // exponent of 1.
4003    SDValue X = GetSignificand(DAG, Op1, dl);
4004
4005    if (LimitFloatPrecision <= 6) {
4006      // For floating-point precision of 6:
4007      //
4008      //   Log10ofMantissa =
4009      //     -0.50419619f +
4010      //       (0.60948995f - 0.10380950f * x) * x;
4011      //
4012      // error 0.0014886165, which is 6 bits
4013      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4014                               getF32Constant(DAG, 0xbdd49a13));
4015      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4016                               getF32Constant(DAG, 0x3f1c0789));
4017      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4018      SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4019                                            getF32Constant(DAG, 0x3f011300));
4020
4021      result = DAG.getNode(ISD::FADD, dl,
4022                           MVT::f32, LogOfExponent, Log10ofMantissa);
4023    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
4024      // For floating-point precision of 12:
4025      //
4026      //   Log10ofMantissa =
4027      //     -0.64831180f +
4028      //       (0.91751397f +
4029      //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
4030      //
4031      // error 0.00019228036, which is better than 12 bits
4032      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4033                               getF32Constant(DAG, 0x3d431f31));
4034      SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
4035                               getF32Constant(DAG, 0x3ea21fb2));
4036      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4037      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4038                               getF32Constant(DAG, 0x3f6ae232));
4039      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4040      SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
4041                                            getF32Constant(DAG, 0x3f25f7c3));
4042
4043      result = DAG.getNode(ISD::FADD, dl,
4044                           MVT::f32, LogOfExponent, Log10ofMantissa);
4045    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
4046      // For floating-point precision of 18:
4047      //
4048      //   Log10ofMantissa =
4049      //     -0.84299375f +
4050      //       (1.5327582f +
4051      //         (-1.0688956f +
4052      //           (0.49102474f +
4053      //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
4054      //
4055      // error 0.0000037995730, which is better than 18 bits
4056      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4057                               getF32Constant(DAG, 0x3c5d51ce));
4058      SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
4059                               getF32Constant(DAG, 0x3e00685a));
4060      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4061      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4062                               getF32Constant(DAG, 0x3efb6798));
4063      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4064      SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
4065                               getF32Constant(DAG, 0x3f88d192));
4066      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4067      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4068                               getF32Constant(DAG, 0x3fc4316c));
4069      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4070      SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
4071                                            getF32Constant(DAG, 0x3f57ce70));
4072
4073      result = DAG.getNode(ISD::FADD, dl,
4074                           MVT::f32, LogOfExponent, Log10ofMantissa);
4075    }
4076  } else {
4077    // No special expansion.
4078    result = DAG.getNode(ISD::FLOG10, dl,
4079                         getValue(I.getArgOperand(0)).getValueType(),
4080                         getValue(I.getArgOperand(0)));
4081  }
4082
4083  setValue(&I, result);
4084}
4085
4086/// visitExp2 - Lower an exp2 intrinsic. Handles the special sequences for
4087/// limited-precision mode.
4088void
4089SelectionDAGBuilder::visitExp2(const CallInst &I) {
4090  SDValue result;
4091  DebugLoc dl = getCurDebugLoc();
4092
4093  if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
4094      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4095    SDValue Op = getValue(I.getArgOperand(0));
4096
4097    SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Op);
4098
4099    //   FractionalPartOfX = x - (float)IntegerPartOfX;
4100    SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
4101    SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, Op, t1);
4102
4103    //   IntegerPartOfX <<= 23;
4104    IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
4105                                 DAG.getConstant(23, TLI.getPointerTy()));
4106
4107    if (LimitFloatPrecision <= 6) {
4108      // For floating-point precision of 6:
4109      //
4110      //   TwoToFractionalPartOfX =
4111      //     0.997535578f +
4112      //       (0.735607626f + 0.252464424f * x) * x;
4113      //
4114      // error 0.0144103317, which is 6 bits
4115      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4116                               getF32Constant(DAG, 0x3e814304));
4117      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4118                               getF32Constant(DAG, 0x3f3c50c8));
4119      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4120      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4121                               getF32Constant(DAG, 0x3f7f5e7e));
4122      SDValue t6 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t5);
4123      SDValue TwoToFractionalPartOfX =
4124        DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX);
4125
4126      result = DAG.getNode(ISD::BITCAST, dl,
4127                           MVT::f32, TwoToFractionalPartOfX);
4128    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
4129      // For floating-point precision of 12:
4130      //
4131      //   TwoToFractionalPartOfX =
4132      //     0.999892986f +
4133      //       (0.696457318f +
4134      //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
4135      //
4136      // error 0.000107046256, which is 13 to 14 bits
4137      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4138                               getF32Constant(DAG, 0x3da235e3));
4139      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4140                               getF32Constant(DAG, 0x3e65b8f3));
4141      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4142      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4143                               getF32Constant(DAG, 0x3f324b07));
4144      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4145      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4146                               getF32Constant(DAG, 0x3f7ff8fd));
4147      SDValue t8 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t7);
4148      SDValue TwoToFractionalPartOfX =
4149        DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX);
4150
4151      result = DAG.getNode(ISD::BITCAST, dl,
4152                           MVT::f32, TwoToFractionalPartOfX);
4153    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
4154      // For floating-point precision of 18:
4155      //
4156      //   TwoToFractionalPartOfX =
4157      //     0.999999982f +
4158      //       (0.693148872f +
4159      //         (0.240227044f +
4160      //           (0.554906021e-1f +
4161      //             (0.961591928e-2f +
4162      //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
4163      // error 2.47208000*10^(-7), which is better than 18 bits
4164      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4165                               getF32Constant(DAG, 0x3924b03e));
4166      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4167                               getF32Constant(DAG, 0x3ab24b87));
4168      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4169      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4170                               getF32Constant(DAG, 0x3c1d8c17));
4171      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4172      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4173                               getF32Constant(DAG, 0x3d634a1d));
4174      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4175      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4176                               getF32Constant(DAG, 0x3e75fe14));
4177      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4178      SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
4179                                getF32Constant(DAG, 0x3f317234));
4180      SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
4181      SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
4182                                getF32Constant(DAG, 0x3f800000));
4183      SDValue t14 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t13);
4184      SDValue TwoToFractionalPartOfX =
4185        DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX);
4186
4187      result = DAG.getNode(ISD::BITCAST, dl,
4188                           MVT::f32, TwoToFractionalPartOfX);
4189    }
4190  } else {
4191    // No special expansion.
4192    result = DAG.getNode(ISD::FEXP2, dl,
4193                         getValue(I.getArgOperand(0)).getValueType(),
4194                         getValue(I.getArgOperand(0)));
4195  }
4196
4197  setValue(&I, result);
4198}
4199
4200/// visitPow - Lower a pow intrinsic. Handles the special sequences for
4201/// limited-precision mode with x == 10.0f.
4202void
4203SelectionDAGBuilder::visitPow(const CallInst &I) {
4204  SDValue result;
4205  const Value *Val = I.getArgOperand(0);
4206  DebugLoc dl = getCurDebugLoc();
4207  bool IsExp10 = false;
4208
4209  if (getValue(Val).getValueType() == MVT::f32 &&
4210      getValue(I.getArgOperand(1)).getValueType() == MVT::f32 &&
4211      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4212    if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(Val))) {
4213      if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
4214        APFloat Ten(10.0f);
4215        IsExp10 = CFP->getValueAPF().bitwiseIsEqual(Ten);
4216      }
4217    }
4218  }
4219
4220  if (IsExp10 && LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4221    SDValue Op = getValue(I.getArgOperand(1));
4222
4223    // Put the exponent in the right bit position for later addition to the
4224    // final result:
4225    //
4226    //   #define LOG2OF10 3.3219281f
4227    //   IntegerPartOfX = (int32_t)(x * LOG2OF10);
4228    SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
4229                             getF32Constant(DAG, 0x40549a78));
4230    SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
4231
4232    //   FractionalPartOfX = x - (float)IntegerPartOfX;
4233    SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
4234    SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
4235
4236    //   IntegerPartOfX <<= 23;
4237    IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
4238                                 DAG.getConstant(23, TLI.getPointerTy()));
4239
4240    if (LimitFloatPrecision <= 6) {
4241      // For floating-point precision of 6:
4242      //
4243      //   twoToFractionalPartOfX =
4244      //     0.997535578f +
4245      //       (0.735607626f + 0.252464424f * x) * x;
4246      //
4247      // error 0.0144103317, which is 6 bits
4248      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4249                               getF32Constant(DAG, 0x3e814304));
4250      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4251                               getF32Constant(DAG, 0x3f3c50c8));
4252      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4253      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4254                               getF32Constant(DAG, 0x3f7f5e7e));
4255      SDValue t6 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t5);
4256      SDValue TwoToFractionalPartOfX =
4257        DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX);
4258
4259      result = DAG.getNode(ISD::BITCAST, dl,
4260                           MVT::f32, TwoToFractionalPartOfX);
4261    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
4262      // For floating-point precision of 12:
4263      //
4264      //   TwoToFractionalPartOfX =
4265      //     0.999892986f +
4266      //       (0.696457318f +
4267      //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
4268      //
4269      // error 0.000107046256, which is 13 to 14 bits
4270      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4271                               getF32Constant(DAG, 0x3da235e3));
4272      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4273                               getF32Constant(DAG, 0x3e65b8f3));
4274      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4275      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4276                               getF32Constant(DAG, 0x3f324b07));
4277      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4278      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4279                               getF32Constant(DAG, 0x3f7ff8fd));
4280      SDValue t8 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t7);
4281      SDValue TwoToFractionalPartOfX =
4282        DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX);
4283
4284      result = DAG.getNode(ISD::BITCAST, dl,
4285                           MVT::f32, TwoToFractionalPartOfX);
4286    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
4287      // For floating-point precision of 18:
4288      //
4289      //   TwoToFractionalPartOfX =
4290      //     0.999999982f +
4291      //       (0.693148872f +
4292      //         (0.240227044f +
4293      //           (0.554906021e-1f +
4294      //             (0.961591928e-2f +
4295      //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
4296      // error 2.47208000*10^(-7), which is better than 18 bits
4297      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4298                               getF32Constant(DAG, 0x3924b03e));
4299      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4300                               getF32Constant(DAG, 0x3ab24b87));
4301      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4302      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4303                               getF32Constant(DAG, 0x3c1d8c17));
4304      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4305      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4306                               getF32Constant(DAG, 0x3d634a1d));
4307      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4308      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4309                               getF32Constant(DAG, 0x3e75fe14));
4310      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4311      SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
4312                                getF32Constant(DAG, 0x3f317234));
4313      SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
4314      SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
4315                                getF32Constant(DAG, 0x3f800000));
4316      SDValue t14 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t13);
4317      SDValue TwoToFractionalPartOfX =
4318        DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX);
4319
4320      result = DAG.getNode(ISD::BITCAST, dl,
4321                           MVT::f32, TwoToFractionalPartOfX);
4322    }
4323  } else {
4324    // No special expansion.
4325    result = DAG.getNode(ISD::FPOW, dl,
4326                         getValue(I.getArgOperand(0)).getValueType(),
4327                         getValue(I.getArgOperand(0)),
4328                         getValue(I.getArgOperand(1)));
4329  }
4330
4331  setValue(&I, result);
4332}
4333
4334
4335/// ExpandPowI - Expand a llvm.powi intrinsic.
4336static SDValue ExpandPowI(DebugLoc DL, SDValue LHS, SDValue RHS,
4337                          SelectionDAG &DAG) {
4338  // If RHS is a constant, we can expand this out to a multiplication tree,
4339  // otherwise we end up lowering to a call to __powidf2 (for example).  When
4340  // optimizing for size, we only want to do this if the expansion would produce
4341  // a small number of multiplies, otherwise we do the full expansion.
4342  if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
4343    // Get the exponent as a positive value.
4344    unsigned Val = RHSC->getSExtValue();
4345    if ((int)Val < 0) Val = -Val;
4346
4347    // powi(x, 0) -> 1.0
4348    if (Val == 0)
4349      return DAG.getConstantFP(1.0, LHS.getValueType());
4350
4351    const Function *F = DAG.getMachineFunction().getFunction();
4352    if (!F->hasFnAttr(Attribute::OptimizeForSize) ||
4353        // If optimizing for size, don't insert too many multiplies.  This
4354        // inserts up to 5 multiplies.
4355        CountPopulation_32(Val)+Log2_32(Val) < 7) {
4356      // We use the simple binary decomposition method to generate the multiply
4357      // sequence.  There are more optimal ways to do this (for example,
4358      // powi(x,15) generates one more multiply than it should), but this has
4359      // the benefit of being both really simple and much better than a libcall.
4360      SDValue Res;  // Logically starts equal to 1.0
4361      SDValue CurSquare = LHS;
4362      while (Val) {
4363        if (Val & 1) {
4364          if (Res.getNode())
4365            Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare);
4366          else
4367            Res = CurSquare;  // 1.0*CurSquare.
4368        }
4369
4370        CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
4371                                CurSquare, CurSquare);
4372        Val >>= 1;
4373      }
4374
4375      // If the original was negative, invert the result, producing 1/(x*x*x).
4376      if (RHSC->getSExtValue() < 0)
4377        Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
4378                          DAG.getConstantFP(1.0, LHS.getValueType()), Res);
4379      return Res;
4380    }
4381  }
4382
4383  // Otherwise, expand to a libcall.
4384  return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
4385}
4386
4387// getTruncatedArgReg - Find underlying register used for an truncated
4388// argument.
4389static unsigned getTruncatedArgReg(const SDValue &N) {
4390  if (N.getOpcode() != ISD::TRUNCATE)
4391    return 0;
4392
4393  const SDValue &Ext = N.getOperand(0);
4394  if (Ext.getOpcode() == ISD::AssertZext || Ext.getOpcode() == ISD::AssertSext){
4395    const SDValue &CFR = Ext.getOperand(0);
4396    if (CFR.getOpcode() == ISD::CopyFromReg)
4397      return cast<RegisterSDNode>(CFR.getOperand(1))->getReg();
4398    else
4399      if (CFR.getOpcode() == ISD::TRUNCATE)
4400        return getTruncatedArgReg(CFR);
4401  }
4402  return 0;
4403}
4404
4405/// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function
4406/// argument, create the corresponding DBG_VALUE machine instruction for it now.
4407/// At the end of instruction selection, they will be inserted to the entry BB.
4408bool
4409SelectionDAGBuilder::EmitFuncArgumentDbgValue(const Value *V, MDNode *Variable,
4410                                              int64_t Offset,
4411                                              const SDValue &N) {
4412  const Argument *Arg = dyn_cast<Argument>(V);
4413  if (!Arg)
4414    return false;
4415
4416  MachineFunction &MF = DAG.getMachineFunction();
4417  const TargetInstrInfo *TII = DAG.getTarget().getInstrInfo();
4418  const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
4419
4420  // Ignore inlined function arguments here.
4421  DIVariable DV(Variable);
4422  if (DV.isInlinedFnArgument(MF.getFunction()))
4423    return false;
4424
4425  unsigned Reg = 0;
4426  // Some arguments' frame index is recorded during argument lowering.
4427  Offset = FuncInfo.getArgumentFrameIndex(Arg);
4428  if (Offset)
4429      Reg = TRI->getFrameRegister(MF);
4430
4431  if (!Reg && N.getNode()) {
4432    if (N.getOpcode() == ISD::CopyFromReg)
4433      Reg = cast<RegisterSDNode>(N.getOperand(1))->getReg();
4434    else
4435      Reg = getTruncatedArgReg(N);
4436    if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) {
4437      MachineRegisterInfo &RegInfo = MF.getRegInfo();
4438      unsigned PR = RegInfo.getLiveInPhysReg(Reg);
4439      if (PR)
4440        Reg = PR;
4441    }
4442  }
4443
4444  if (!Reg) {
4445    // Check if ValueMap has reg number.
4446    DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
4447    if (VMI != FuncInfo.ValueMap.end())
4448      Reg = VMI->second;
4449  }
4450
4451  if (!Reg && N.getNode()) {
4452    // Check if frame index is available.
4453    if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode()))
4454      if (FrameIndexSDNode *FINode =
4455          dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) {
4456        Reg = TRI->getFrameRegister(MF);
4457        Offset = FINode->getIndex();
4458      }
4459  }
4460
4461  if (!Reg)
4462    return false;
4463
4464  MachineInstrBuilder MIB = BuildMI(MF, getCurDebugLoc(),
4465                                    TII->get(TargetOpcode::DBG_VALUE))
4466    .addReg(Reg, RegState::Debug).addImm(Offset).addMetadata(Variable);
4467  FuncInfo.ArgDbgValues.push_back(&*MIB);
4468  return true;
4469}
4470
4471// VisualStudio defines setjmp as _setjmp
4472#if defined(_MSC_VER) && defined(setjmp) && \
4473                         !defined(setjmp_undefined_for_msvc)
4474#  pragma push_macro("setjmp")
4475#  undef setjmp
4476#  define setjmp_undefined_for_msvc
4477#endif
4478
4479/// visitIntrinsicCall - Lower the call to the specified intrinsic function.  If
4480/// we want to emit this as a call to a named external function, return the name
4481/// otherwise lower it and return null.
4482const char *
4483SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) {
4484  DebugLoc dl = getCurDebugLoc();
4485  SDValue Res;
4486
4487  switch (Intrinsic) {
4488  default:
4489    // By default, turn this into a target intrinsic node.
4490    visitTargetIntrinsic(I, Intrinsic);
4491    return 0;
4492  case Intrinsic::vastart:  visitVAStart(I); return 0;
4493  case Intrinsic::vaend:    visitVAEnd(I); return 0;
4494  case Intrinsic::vacopy:   visitVACopy(I); return 0;
4495  case Intrinsic::returnaddress:
4496    setValue(&I, DAG.getNode(ISD::RETURNADDR, dl, TLI.getPointerTy(),
4497                             getValue(I.getArgOperand(0))));
4498    return 0;
4499  case Intrinsic::frameaddress:
4500    setValue(&I, DAG.getNode(ISD::FRAMEADDR, dl, TLI.getPointerTy(),
4501                             getValue(I.getArgOperand(0))));
4502    return 0;
4503  case Intrinsic::setjmp:
4504    return "_setjmp"+!TLI.usesUnderscoreSetJmp();
4505  case Intrinsic::longjmp:
4506    return "_longjmp"+!TLI.usesUnderscoreLongJmp();
4507  case Intrinsic::memcpy: {
4508    // Assert for address < 256 since we support only user defined address
4509    // spaces.
4510    assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4511           < 256 &&
4512           cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace()
4513           < 256 &&
4514           "Unknown address space");
4515    SDValue Op1 = getValue(I.getArgOperand(0));
4516    SDValue Op2 = getValue(I.getArgOperand(1));
4517    SDValue Op3 = getValue(I.getArgOperand(2));
4518    unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4519    bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4520    DAG.setRoot(DAG.getMemcpy(getRoot(), dl, Op1, Op2, Op3, Align, isVol, false,
4521                              MachinePointerInfo(I.getArgOperand(0)),
4522                              MachinePointerInfo(I.getArgOperand(1))));
4523    return 0;
4524  }
4525  case Intrinsic::memset: {
4526    // Assert for address < 256 since we support only user defined address
4527    // spaces.
4528    assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4529           < 256 &&
4530           "Unknown address space");
4531    SDValue Op1 = getValue(I.getArgOperand(0));
4532    SDValue Op2 = getValue(I.getArgOperand(1));
4533    SDValue Op3 = getValue(I.getArgOperand(2));
4534    unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4535    bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4536    DAG.setRoot(DAG.getMemset(getRoot(), dl, Op1, Op2, Op3, Align, isVol,
4537                              MachinePointerInfo(I.getArgOperand(0))));
4538    return 0;
4539  }
4540  case Intrinsic::memmove: {
4541    // Assert for address < 256 since we support only user defined address
4542    // spaces.
4543    assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4544           < 256 &&
4545           cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace()
4546           < 256 &&
4547           "Unknown address space");
4548    SDValue Op1 = getValue(I.getArgOperand(0));
4549    SDValue Op2 = getValue(I.getArgOperand(1));
4550    SDValue Op3 = getValue(I.getArgOperand(2));
4551    unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4552    bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4553    DAG.setRoot(DAG.getMemmove(getRoot(), dl, Op1, Op2, Op3, Align, isVol,
4554                               MachinePointerInfo(I.getArgOperand(0)),
4555                               MachinePointerInfo(I.getArgOperand(1))));
4556    return 0;
4557  }
4558  case Intrinsic::dbg_declare: {
4559    const DbgDeclareInst &DI = cast<DbgDeclareInst>(I);
4560    MDNode *Variable = DI.getVariable();
4561    const Value *Address = DI.getAddress();
4562    if (!Address || !DIVariable(Variable).Verify())
4563      return 0;
4564
4565    // Build an entry in DbgOrdering.  Debug info input nodes get an SDNodeOrder
4566    // but do not always have a corresponding SDNode built.  The SDNodeOrder
4567    // absolute, but not relative, values are different depending on whether
4568    // debug info exists.
4569    ++SDNodeOrder;
4570
4571    // Check if address has undef value.
4572    if (isa<UndefValue>(Address) ||
4573        (Address->use_empty() && !isa<Argument>(Address))) {
4574      DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4575      return 0;
4576    }
4577
4578    SDValue &N = NodeMap[Address];
4579    if (!N.getNode() && isa<Argument>(Address))
4580      // Check unused arguments map.
4581      N = UnusedArgNodeMap[Address];
4582    SDDbgValue *SDV;
4583    if (N.getNode()) {
4584      if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
4585        Address = BCI->getOperand(0);
4586      // Parameters are handled specially.
4587      bool isParameter =
4588        (DIVariable(Variable).getTag() == dwarf::DW_TAG_arg_variable ||
4589         isa<Argument>(Address));
4590
4591      const AllocaInst *AI = dyn_cast<AllocaInst>(Address);
4592
4593      if (isParameter && !AI) {
4594        FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
4595        if (FINode)
4596          // Byval parameter.  We have a frame index at this point.
4597          SDV = DAG.getDbgValue(Variable, FINode->getIndex(),
4598                                0, dl, SDNodeOrder);
4599        else {
4600          // Address is an argument, so try to emit its dbg value using
4601          // virtual register info from the FuncInfo.ValueMap.
4602          EmitFuncArgumentDbgValue(Address, Variable, 0, N);
4603          return 0;
4604        }
4605      } else if (AI)
4606        SDV = DAG.getDbgValue(Variable, N.getNode(), N.getResNo(),
4607                              0, dl, SDNodeOrder);
4608      else {
4609        // Can't do anything with other non-AI cases yet.
4610        DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4611        DEBUG(dbgs() << "non-AllocaInst issue for Address: \n\t");
4612        DEBUG(Address->dump());
4613        return 0;
4614      }
4615      DAG.AddDbgValue(SDV, N.getNode(), isParameter);
4616    } else {
4617      // If Address is an argument then try to emit its dbg value using
4618      // virtual register info from the FuncInfo.ValueMap.
4619      if (!EmitFuncArgumentDbgValue(Address, Variable, 0, N)) {
4620        // If variable is pinned by a alloca in dominating bb then
4621        // use StaticAllocaMap.
4622        if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) {
4623          if (AI->getParent() != DI.getParent()) {
4624            DenseMap<const AllocaInst*, int>::iterator SI =
4625              FuncInfo.StaticAllocaMap.find(AI);
4626            if (SI != FuncInfo.StaticAllocaMap.end()) {
4627              SDV = DAG.getDbgValue(Variable, SI->second,
4628                                    0, dl, SDNodeOrder);
4629              DAG.AddDbgValue(SDV, 0, false);
4630              return 0;
4631            }
4632          }
4633        }
4634        DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4635      }
4636    }
4637    return 0;
4638  }
4639  case Intrinsic::dbg_value: {
4640    const DbgValueInst &DI = cast<DbgValueInst>(I);
4641    if (!DIVariable(DI.getVariable()).Verify())
4642      return 0;
4643
4644    MDNode *Variable = DI.getVariable();
4645    uint64_t Offset = DI.getOffset();
4646    const Value *V = DI.getValue();
4647    if (!V)
4648      return 0;
4649
4650    // Build an entry in DbgOrdering.  Debug info input nodes get an SDNodeOrder
4651    // but do not always have a corresponding SDNode built.  The SDNodeOrder
4652    // absolute, but not relative, values are different depending on whether
4653    // debug info exists.
4654    ++SDNodeOrder;
4655    SDDbgValue *SDV;
4656    if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) {
4657      SDV = DAG.getDbgValue(Variable, V, Offset, dl, SDNodeOrder);
4658      DAG.AddDbgValue(SDV, 0, false);
4659    } else {
4660      // Do not use getValue() in here; we don't want to generate code at
4661      // this point if it hasn't been done yet.
4662      SDValue N = NodeMap[V];
4663      if (!N.getNode() && isa<Argument>(V))
4664        // Check unused arguments map.
4665        N = UnusedArgNodeMap[V];
4666      if (N.getNode()) {
4667        if (!EmitFuncArgumentDbgValue(V, Variable, Offset, N)) {
4668          SDV = DAG.getDbgValue(Variable, N.getNode(),
4669                                N.getResNo(), Offset, dl, SDNodeOrder);
4670          DAG.AddDbgValue(SDV, N.getNode(), false);
4671        }
4672      } else if (!V->use_empty() ) {
4673        // Do not call getValue(V) yet, as we don't want to generate code.
4674        // Remember it for later.
4675        DanglingDebugInfo DDI(&DI, dl, SDNodeOrder);
4676        DanglingDebugInfoMap[V] = DDI;
4677      } else {
4678        // We may expand this to cover more cases.  One case where we have no
4679        // data available is an unreferenced parameter.
4680        DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4681      }
4682    }
4683
4684    // Build a debug info table entry.
4685    if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V))
4686      V = BCI->getOperand(0);
4687    const AllocaInst *AI = dyn_cast<AllocaInst>(V);
4688    // Don't handle byval struct arguments or VLAs, for example.
4689    if (!AI)
4690      return 0;
4691    DenseMap<const AllocaInst*, int>::iterator SI =
4692      FuncInfo.StaticAllocaMap.find(AI);
4693    if (SI == FuncInfo.StaticAllocaMap.end())
4694      return 0; // VLAs.
4695    int FI = SI->second;
4696
4697    MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4698    if (!DI.getDebugLoc().isUnknown() && MMI.hasDebugInfo())
4699      MMI.setVariableDbgInfo(Variable, FI, DI.getDebugLoc());
4700    return 0;
4701  }
4702
4703  case Intrinsic::eh_typeid_for: {
4704    // Find the type id for the given typeinfo.
4705    GlobalVariable *GV = ExtractTypeInfo(I.getArgOperand(0));
4706    unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV);
4707    Res = DAG.getConstant(TypeID, MVT::i32);
4708    setValue(&I, Res);
4709    return 0;
4710  }
4711
4712  case Intrinsic::eh_return_i32:
4713  case Intrinsic::eh_return_i64:
4714    DAG.getMachineFunction().getMMI().setCallsEHReturn(true);
4715    DAG.setRoot(DAG.getNode(ISD::EH_RETURN, dl,
4716                            MVT::Other,
4717                            getControlRoot(),
4718                            getValue(I.getArgOperand(0)),
4719                            getValue(I.getArgOperand(1))));
4720    return 0;
4721  case Intrinsic::eh_unwind_init:
4722    DAG.getMachineFunction().getMMI().setCallsUnwindInit(true);
4723    return 0;
4724  case Intrinsic::eh_dwarf_cfa: {
4725    SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), dl,
4726                                        TLI.getPointerTy());
4727    SDValue Offset = DAG.getNode(ISD::ADD, dl,
4728                                 TLI.getPointerTy(),
4729                                 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, dl,
4730                                             TLI.getPointerTy()),
4731                                 CfaArg);
4732    SDValue FA = DAG.getNode(ISD::FRAMEADDR, dl,
4733                             TLI.getPointerTy(),
4734                             DAG.getConstant(0, TLI.getPointerTy()));
4735    setValue(&I, DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(),
4736                             FA, Offset));
4737    return 0;
4738  }
4739  case Intrinsic::eh_sjlj_callsite: {
4740    MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4741    ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0));
4742    assert(CI && "Non-constant call site value in eh.sjlj.callsite!");
4743    assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
4744
4745    MMI.setCurrentCallSite(CI->getZExtValue());
4746    return 0;
4747  }
4748  case Intrinsic::eh_sjlj_functioncontext: {
4749    // Get and store the index of the function context.
4750    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
4751    AllocaInst *FnCtx =
4752      cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts());
4753    int FI = FuncInfo.StaticAllocaMap[FnCtx];
4754    MFI->setFunctionContextIndex(FI);
4755    return 0;
4756  }
4757  case Intrinsic::eh_sjlj_setjmp: {
4758    SDValue Ops[2];
4759    Ops[0] = getRoot();
4760    Ops[1] = getValue(I.getArgOperand(0));
4761    SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, dl,
4762                             DAG.getVTList(MVT::i32, MVT::Other),
4763                             Ops, 2);
4764    setValue(&I, Op.getValue(0));
4765    DAG.setRoot(Op.getValue(1));
4766    return 0;
4767  }
4768  case Intrinsic::eh_sjlj_longjmp: {
4769    DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, dl, MVT::Other,
4770                            getRoot(), getValue(I.getArgOperand(0))));
4771    return 0;
4772  }
4773
4774  case Intrinsic::x86_mmx_pslli_w:
4775  case Intrinsic::x86_mmx_pslli_d:
4776  case Intrinsic::x86_mmx_pslli_q:
4777  case Intrinsic::x86_mmx_psrli_w:
4778  case Intrinsic::x86_mmx_psrli_d:
4779  case Intrinsic::x86_mmx_psrli_q:
4780  case Intrinsic::x86_mmx_psrai_w:
4781  case Intrinsic::x86_mmx_psrai_d: {
4782    SDValue ShAmt = getValue(I.getArgOperand(1));
4783    if (isa<ConstantSDNode>(ShAmt)) {
4784      visitTargetIntrinsic(I, Intrinsic);
4785      return 0;
4786    }
4787    unsigned NewIntrinsic = 0;
4788    EVT ShAmtVT = MVT::v2i32;
4789    switch (Intrinsic) {
4790    case Intrinsic::x86_mmx_pslli_w:
4791      NewIntrinsic = Intrinsic::x86_mmx_psll_w;
4792      break;
4793    case Intrinsic::x86_mmx_pslli_d:
4794      NewIntrinsic = Intrinsic::x86_mmx_psll_d;
4795      break;
4796    case Intrinsic::x86_mmx_pslli_q:
4797      NewIntrinsic = Intrinsic::x86_mmx_psll_q;
4798      break;
4799    case Intrinsic::x86_mmx_psrli_w:
4800      NewIntrinsic = Intrinsic::x86_mmx_psrl_w;
4801      break;
4802    case Intrinsic::x86_mmx_psrli_d:
4803      NewIntrinsic = Intrinsic::x86_mmx_psrl_d;
4804      break;
4805    case Intrinsic::x86_mmx_psrli_q:
4806      NewIntrinsic = Intrinsic::x86_mmx_psrl_q;
4807      break;
4808    case Intrinsic::x86_mmx_psrai_w:
4809      NewIntrinsic = Intrinsic::x86_mmx_psra_w;
4810      break;
4811    case Intrinsic::x86_mmx_psrai_d:
4812      NewIntrinsic = Intrinsic::x86_mmx_psra_d;
4813      break;
4814    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
4815    }
4816
4817    // The vector shift intrinsics with scalars uses 32b shift amounts but
4818    // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
4819    // to be zero.
4820    // We must do this early because v2i32 is not a legal type.
4821    DebugLoc dl = getCurDebugLoc();
4822    SDValue ShOps[2];
4823    ShOps[0] = ShAmt;
4824    ShOps[1] = DAG.getConstant(0, MVT::i32);
4825    ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 2);
4826    EVT DestVT = TLI.getValueType(I.getType());
4827    ShAmt = DAG.getNode(ISD::BITCAST, dl, DestVT, ShAmt);
4828    Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
4829                       DAG.getConstant(NewIntrinsic, MVT::i32),
4830                       getValue(I.getArgOperand(0)), ShAmt);
4831    setValue(&I, Res);
4832    return 0;
4833  }
4834  case Intrinsic::x86_avx_vinsertf128_pd_256:
4835  case Intrinsic::x86_avx_vinsertf128_ps_256:
4836  case Intrinsic::x86_avx_vinsertf128_si_256: {
4837    DebugLoc dl = getCurDebugLoc();
4838    EVT DestVT = TLI.getValueType(I.getType());
4839    EVT ElVT = TLI.getValueType(I.getArgOperand(1)->getType());
4840    uint64_t Idx = (cast<ConstantInt>(I.getArgOperand(2))->getZExtValue() & 1) *
4841                   ElVT.getVectorNumElements();
4842    Res = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, DestVT,
4843                      getValue(I.getArgOperand(0)),
4844                      getValue(I.getArgOperand(1)),
4845                      DAG.getConstant(Idx, MVT::i32));
4846    setValue(&I, Res);
4847    return 0;
4848  }
4849  case Intrinsic::convertff:
4850  case Intrinsic::convertfsi:
4851  case Intrinsic::convertfui:
4852  case Intrinsic::convertsif:
4853  case Intrinsic::convertuif:
4854  case Intrinsic::convertss:
4855  case Intrinsic::convertsu:
4856  case Intrinsic::convertus:
4857  case Intrinsic::convertuu: {
4858    ISD::CvtCode Code = ISD::CVT_INVALID;
4859    switch (Intrinsic) {
4860    case Intrinsic::convertff:  Code = ISD::CVT_FF; break;
4861    case Intrinsic::convertfsi: Code = ISD::CVT_FS; break;
4862    case Intrinsic::convertfui: Code = ISD::CVT_FU; break;
4863    case Intrinsic::convertsif: Code = ISD::CVT_SF; break;
4864    case Intrinsic::convertuif: Code = ISD::CVT_UF; break;
4865    case Intrinsic::convertss:  Code = ISD::CVT_SS; break;
4866    case Intrinsic::convertsu:  Code = ISD::CVT_SU; break;
4867    case Intrinsic::convertus:  Code = ISD::CVT_US; break;
4868    case Intrinsic::convertuu:  Code = ISD::CVT_UU; break;
4869    }
4870    EVT DestVT = TLI.getValueType(I.getType());
4871    const Value *Op1 = I.getArgOperand(0);
4872    Res = DAG.getConvertRndSat(DestVT, getCurDebugLoc(), getValue(Op1),
4873                               DAG.getValueType(DestVT),
4874                               DAG.getValueType(getValue(Op1).getValueType()),
4875                               getValue(I.getArgOperand(1)),
4876                               getValue(I.getArgOperand(2)),
4877                               Code);
4878    setValue(&I, Res);
4879    return 0;
4880  }
4881  case Intrinsic::sqrt:
4882    setValue(&I, DAG.getNode(ISD::FSQRT, dl,
4883                             getValue(I.getArgOperand(0)).getValueType(),
4884                             getValue(I.getArgOperand(0))));
4885    return 0;
4886  case Intrinsic::powi:
4887    setValue(&I, ExpandPowI(dl, getValue(I.getArgOperand(0)),
4888                            getValue(I.getArgOperand(1)), DAG));
4889    return 0;
4890  case Intrinsic::sin:
4891    setValue(&I, DAG.getNode(ISD::FSIN, dl,
4892                             getValue(I.getArgOperand(0)).getValueType(),
4893                             getValue(I.getArgOperand(0))));
4894    return 0;
4895  case Intrinsic::cos:
4896    setValue(&I, DAG.getNode(ISD::FCOS, dl,
4897                             getValue(I.getArgOperand(0)).getValueType(),
4898                             getValue(I.getArgOperand(0))));
4899    return 0;
4900  case Intrinsic::log:
4901    visitLog(I);
4902    return 0;
4903  case Intrinsic::log2:
4904    visitLog2(I);
4905    return 0;
4906  case Intrinsic::log10:
4907    visitLog10(I);
4908    return 0;
4909  case Intrinsic::exp:
4910    visitExp(I);
4911    return 0;
4912  case Intrinsic::exp2:
4913    visitExp2(I);
4914    return 0;
4915  case Intrinsic::pow:
4916    visitPow(I);
4917    return 0;
4918  case Intrinsic::fma:
4919    setValue(&I, DAG.getNode(ISD::FMA, dl,
4920                             getValue(I.getArgOperand(0)).getValueType(),
4921                             getValue(I.getArgOperand(0)),
4922                             getValue(I.getArgOperand(1)),
4923                             getValue(I.getArgOperand(2))));
4924    return 0;
4925  case Intrinsic::convert_to_fp16:
4926    setValue(&I, DAG.getNode(ISD::FP32_TO_FP16, dl,
4927                             MVT::i16, getValue(I.getArgOperand(0))));
4928    return 0;
4929  case Intrinsic::convert_from_fp16:
4930    setValue(&I, DAG.getNode(ISD::FP16_TO_FP32, dl,
4931                             MVT::f32, getValue(I.getArgOperand(0))));
4932    return 0;
4933  case Intrinsic::pcmarker: {
4934    SDValue Tmp = getValue(I.getArgOperand(0));
4935    DAG.setRoot(DAG.getNode(ISD::PCMARKER, dl, MVT::Other, getRoot(), Tmp));
4936    return 0;
4937  }
4938  case Intrinsic::readcyclecounter: {
4939    SDValue Op = getRoot();
4940    Res = DAG.getNode(ISD::READCYCLECOUNTER, dl,
4941                      DAG.getVTList(MVT::i64, MVT::Other),
4942                      &Op, 1);
4943    setValue(&I, Res);
4944    DAG.setRoot(Res.getValue(1));
4945    return 0;
4946  }
4947  case Intrinsic::bswap:
4948    setValue(&I, DAG.getNode(ISD::BSWAP, dl,
4949                             getValue(I.getArgOperand(0)).getValueType(),
4950                             getValue(I.getArgOperand(0))));
4951    return 0;
4952  case Intrinsic::cttz: {
4953    SDValue Arg = getValue(I.getArgOperand(0));
4954    ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
4955    EVT Ty = Arg.getValueType();
4956    setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF,
4957                             dl, Ty, Arg));
4958    return 0;
4959  }
4960  case Intrinsic::ctlz: {
4961    SDValue Arg = getValue(I.getArgOperand(0));
4962    ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
4963    EVT Ty = Arg.getValueType();
4964    setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF,
4965                             dl, Ty, Arg));
4966    return 0;
4967  }
4968  case Intrinsic::ctpop: {
4969    SDValue Arg = getValue(I.getArgOperand(0));
4970    EVT Ty = Arg.getValueType();
4971    setValue(&I, DAG.getNode(ISD::CTPOP, dl, Ty, Arg));
4972    return 0;
4973  }
4974  case Intrinsic::stacksave: {
4975    SDValue Op = getRoot();
4976    Res = DAG.getNode(ISD::STACKSAVE, dl,
4977                      DAG.getVTList(TLI.getPointerTy(), MVT::Other), &Op, 1);
4978    setValue(&I, Res);
4979    DAG.setRoot(Res.getValue(1));
4980    return 0;
4981  }
4982  case Intrinsic::stackrestore: {
4983    Res = getValue(I.getArgOperand(0));
4984    DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, dl, MVT::Other, getRoot(), Res));
4985    return 0;
4986  }
4987  case Intrinsic::stackprotector: {
4988    // Emit code into the DAG to store the stack guard onto the stack.
4989    MachineFunction &MF = DAG.getMachineFunction();
4990    MachineFrameInfo *MFI = MF.getFrameInfo();
4991    EVT PtrTy = TLI.getPointerTy();
4992
4993    SDValue Src = getValue(I.getArgOperand(0));   // The guard's value.
4994    AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
4995
4996    int FI = FuncInfo.StaticAllocaMap[Slot];
4997    MFI->setStackProtectorIndex(FI);
4998
4999    SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
5000
5001    // Store the stack protector onto the stack.
5002    Res = DAG.getStore(getRoot(), getCurDebugLoc(), Src, FIN,
5003                       MachinePointerInfo::getFixedStack(FI),
5004                       true, false, 0);
5005    setValue(&I, Res);
5006    DAG.setRoot(Res);
5007    return 0;
5008  }
5009  case Intrinsic::objectsize: {
5010    // If we don't know by now, we're never going to know.
5011    ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1));
5012
5013    assert(CI && "Non-constant type in __builtin_object_size?");
5014
5015    SDValue Arg = getValue(I.getCalledValue());
5016    EVT Ty = Arg.getValueType();
5017
5018    if (CI->isZero())
5019      Res = DAG.getConstant(-1ULL, Ty);
5020    else
5021      Res = DAG.getConstant(0, Ty);
5022
5023    setValue(&I, Res);
5024    return 0;
5025  }
5026  case Intrinsic::var_annotation:
5027    // Discard annotate attributes
5028    return 0;
5029
5030  case Intrinsic::init_trampoline: {
5031    const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
5032
5033    SDValue Ops[6];
5034    Ops[0] = getRoot();
5035    Ops[1] = getValue(I.getArgOperand(0));
5036    Ops[2] = getValue(I.getArgOperand(1));
5037    Ops[3] = getValue(I.getArgOperand(2));
5038    Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
5039    Ops[5] = DAG.getSrcValue(F);
5040
5041    Res = DAG.getNode(ISD::INIT_TRAMPOLINE, dl, MVT::Other, Ops, 6);
5042
5043    DAG.setRoot(Res);
5044    return 0;
5045  }
5046  case Intrinsic::adjust_trampoline: {
5047    setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, dl,
5048                             TLI.getPointerTy(),
5049                             getValue(I.getArgOperand(0))));
5050    return 0;
5051  }
5052  case Intrinsic::gcroot:
5053    if (GFI) {
5054      const Value *Alloca = I.getArgOperand(0);
5055      const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
5056
5057      FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
5058      GFI->addStackRoot(FI->getIndex(), TypeMap);
5059    }
5060    return 0;
5061  case Intrinsic::gcread:
5062  case Intrinsic::gcwrite:
5063    llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
5064  case Intrinsic::flt_rounds:
5065    setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, dl, MVT::i32));
5066    return 0;
5067
5068  case Intrinsic::expect: {
5069    // Just replace __builtin_expect(exp, c) with EXP.
5070    setValue(&I, getValue(I.getArgOperand(0)));
5071    return 0;
5072  }
5073
5074  case Intrinsic::trap: {
5075    StringRef TrapFuncName = TM.Options.getTrapFunctionName();
5076    if (TrapFuncName.empty()) {
5077      DAG.setRoot(DAG.getNode(ISD::TRAP, dl,MVT::Other, getRoot()));
5078      return 0;
5079    }
5080    TargetLowering::ArgListTy Args;
5081    std::pair<SDValue, SDValue> Result =
5082      TLI.LowerCallTo(getRoot(), I.getType(),
5083                 false, false, false, false, 0, CallingConv::C,
5084                 /*isTailCall=*/false,
5085                 /*doesNotRet=*/false, /*isReturnValueUsed=*/true,
5086                 DAG.getExternalSymbol(TrapFuncName.data(), TLI.getPointerTy()),
5087                 Args, DAG, getCurDebugLoc());
5088    DAG.setRoot(Result.second);
5089    return 0;
5090  }
5091  case Intrinsic::uadd_with_overflow:
5092    return implVisitAluOverflow(I, ISD::UADDO);
5093  case Intrinsic::sadd_with_overflow:
5094    return implVisitAluOverflow(I, ISD::SADDO);
5095  case Intrinsic::usub_with_overflow:
5096    return implVisitAluOverflow(I, ISD::USUBO);
5097  case Intrinsic::ssub_with_overflow:
5098    return implVisitAluOverflow(I, ISD::SSUBO);
5099  case Intrinsic::umul_with_overflow:
5100    return implVisitAluOverflow(I, ISD::UMULO);
5101  case Intrinsic::smul_with_overflow:
5102    return implVisitAluOverflow(I, ISD::SMULO);
5103
5104  case Intrinsic::prefetch: {
5105    SDValue Ops[5];
5106    unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
5107    Ops[0] = getRoot();
5108    Ops[1] = getValue(I.getArgOperand(0));
5109    Ops[2] = getValue(I.getArgOperand(1));
5110    Ops[3] = getValue(I.getArgOperand(2));
5111    Ops[4] = getValue(I.getArgOperand(3));
5112    DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, dl,
5113                                        DAG.getVTList(MVT::Other),
5114                                        &Ops[0], 5,
5115                                        EVT::getIntegerVT(*Context, 8),
5116                                        MachinePointerInfo(I.getArgOperand(0)),
5117                                        0, /* align */
5118                                        false, /* volatile */
5119                                        rw==0, /* read */
5120                                        rw==1)); /* write */
5121    return 0;
5122  }
5123
5124  case Intrinsic::invariant_start:
5125  case Intrinsic::lifetime_start:
5126    // Discard region information.
5127    setValue(&I, DAG.getUNDEF(TLI.getPointerTy()));
5128    return 0;
5129  case Intrinsic::invariant_end:
5130  case Intrinsic::lifetime_end:
5131    // Discard region information.
5132    return 0;
5133  }
5134}
5135
5136void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee,
5137                                      bool isTailCall,
5138                                      MachineBasicBlock *LandingPad) {
5139  PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
5140  FunctionType *FTy = cast<FunctionType>(PT->getElementType());
5141  Type *RetTy = FTy->getReturnType();
5142  MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
5143  MCSymbol *BeginLabel = 0;
5144
5145  TargetLowering::ArgListTy Args;
5146  TargetLowering::ArgListEntry Entry;
5147  Args.reserve(CS.arg_size());
5148
5149  // Check whether the function can return without sret-demotion.
5150  SmallVector<ISD::OutputArg, 4> Outs;
5151  SmallVector<uint64_t, 4> Offsets;
5152  GetReturnInfo(RetTy, CS.getAttributes().getRetAttributes(),
5153                Outs, TLI, &Offsets);
5154
5155  bool CanLowerReturn = TLI.CanLowerReturn(CS.getCallingConv(),
5156					   DAG.getMachineFunction(),
5157					   FTy->isVarArg(), Outs,
5158					   FTy->getContext());
5159
5160  SDValue DemoteStackSlot;
5161  int DemoteStackIdx = -100;
5162
5163  if (!CanLowerReturn) {
5164    uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(
5165                      FTy->getReturnType());
5166    unsigned Align  = TLI.getTargetData()->getPrefTypeAlignment(
5167                      FTy->getReturnType());
5168    MachineFunction &MF = DAG.getMachineFunction();
5169    DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
5170    Type *StackSlotPtrType = PointerType::getUnqual(FTy->getReturnType());
5171
5172    DemoteStackSlot = DAG.getFrameIndex(DemoteStackIdx, TLI.getPointerTy());
5173    Entry.Node = DemoteStackSlot;
5174    Entry.Ty = StackSlotPtrType;
5175    Entry.isSExt = false;
5176    Entry.isZExt = false;
5177    Entry.isInReg = false;
5178    Entry.isSRet = true;
5179    Entry.isNest = false;
5180    Entry.isByVal = false;
5181    Entry.Alignment = Align;
5182    Args.push_back(Entry);
5183    RetTy = Type::getVoidTy(FTy->getContext());
5184  }
5185
5186  for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
5187       i != e; ++i) {
5188    const Value *V = *i;
5189
5190    // Skip empty types
5191    if (V->getType()->isEmptyTy())
5192      continue;
5193
5194    SDValue ArgNode = getValue(V);
5195    Entry.Node = ArgNode; Entry.Ty = V->getType();
5196
5197    unsigned attrInd = i - CS.arg_begin() + 1;
5198    Entry.isSExt  = CS.paramHasAttr(attrInd, Attribute::SExt);
5199    Entry.isZExt  = CS.paramHasAttr(attrInd, Attribute::ZExt);
5200    Entry.isInReg = CS.paramHasAttr(attrInd, Attribute::InReg);
5201    Entry.isSRet  = CS.paramHasAttr(attrInd, Attribute::StructRet);
5202    Entry.isNest  = CS.paramHasAttr(attrInd, Attribute::Nest);
5203    Entry.isByVal = CS.paramHasAttr(attrInd, Attribute::ByVal);
5204    Entry.Alignment = CS.getParamAlignment(attrInd);
5205    Args.push_back(Entry);
5206  }
5207
5208  if (LandingPad) {
5209    // Insert a label before the invoke call to mark the try range.  This can be
5210    // used to detect deletion of the invoke via the MachineModuleInfo.
5211    BeginLabel = MMI.getContext().CreateTempSymbol();
5212
5213    // For SjLj, keep track of which landing pads go with which invokes
5214    // so as to maintain the ordering of pads in the LSDA.
5215    unsigned CallSiteIndex = MMI.getCurrentCallSite();
5216    if (CallSiteIndex) {
5217      MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
5218      LPadToCallSiteMap[LandingPad].push_back(CallSiteIndex);
5219
5220      // Now that the call site is handled, stop tracking it.
5221      MMI.setCurrentCallSite(0);
5222    }
5223
5224    // Both PendingLoads and PendingExports must be flushed here;
5225    // this call might not return.
5226    (void)getRoot();
5227    DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getControlRoot(), BeginLabel));
5228  }
5229
5230  // Check if target-independent constraints permit a tail call here.
5231  // Target-dependent constraints are checked within TLI.LowerCallTo.
5232  if (isTailCall &&
5233      !isInTailCallPosition(CS, CS.getAttributes().getRetAttributes(), TLI))
5234    isTailCall = false;
5235
5236  // If there's a possibility that fast-isel has already selected some amount
5237  // of the current basic block, don't emit a tail call.
5238  if (isTailCall && TM.Options.EnableFastISel)
5239    isTailCall = false;
5240
5241  std::pair<SDValue,SDValue> Result =
5242    TLI.LowerCallTo(getRoot(), RetTy,
5243                    CS.paramHasAttr(0, Attribute::SExt),
5244                    CS.paramHasAttr(0, Attribute::ZExt), FTy->isVarArg(),
5245                    CS.paramHasAttr(0, Attribute::InReg), FTy->getNumParams(),
5246                    CS.getCallingConv(),
5247                    isTailCall,
5248                    CS.doesNotReturn(),
5249                    !CS.getInstruction()->use_empty(),
5250                    Callee, Args, DAG, getCurDebugLoc());
5251  assert((isTailCall || Result.second.getNode()) &&
5252         "Non-null chain expected with non-tail call!");
5253  assert((Result.second.getNode() || !Result.first.getNode()) &&
5254         "Null value expected with tail call!");
5255  if (Result.first.getNode()) {
5256    setValue(CS.getInstruction(), Result.first);
5257  } else if (!CanLowerReturn && Result.second.getNode()) {
5258    // The instruction result is the result of loading from the
5259    // hidden sret parameter.
5260    SmallVector<EVT, 1> PVTs;
5261    Type *PtrRetTy = PointerType::getUnqual(FTy->getReturnType());
5262
5263    ComputeValueVTs(TLI, PtrRetTy, PVTs);
5264    assert(PVTs.size() == 1 && "Pointers should fit in one register");
5265    EVT PtrVT = PVTs[0];
5266    unsigned NumValues = Outs.size();
5267    SmallVector<SDValue, 4> Values(NumValues);
5268    SmallVector<SDValue, 4> Chains(NumValues);
5269
5270    for (unsigned i = 0; i < NumValues; ++i) {
5271      SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT,
5272                                DemoteStackSlot,
5273                                DAG.getConstant(Offsets[i], PtrVT));
5274      SDValue L = DAG.getLoad(Outs[i].VT, getCurDebugLoc(), Result.second,
5275                              Add,
5276                  MachinePointerInfo::getFixedStack(DemoteStackIdx, Offsets[i]),
5277                              false, false, false, 1);
5278      Values[i] = L;
5279      Chains[i] = L.getValue(1);
5280    }
5281
5282    SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
5283                                MVT::Other, &Chains[0], NumValues);
5284    PendingLoads.push_back(Chain);
5285
5286    // Collect the legal value parts into potentially illegal values
5287    // that correspond to the original function's return values.
5288    SmallVector<EVT, 4> RetTys;
5289    RetTy = FTy->getReturnType();
5290    ComputeValueVTs(TLI, RetTy, RetTys);
5291    ISD::NodeType AssertOp = ISD::DELETED_NODE;
5292    SmallVector<SDValue, 4> ReturnValues;
5293    unsigned CurReg = 0;
5294    for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
5295      EVT VT = RetTys[I];
5296      EVT RegisterVT = TLI.getRegisterType(RetTy->getContext(), VT);
5297      unsigned NumRegs = TLI.getNumRegisters(RetTy->getContext(), VT);
5298
5299      SDValue ReturnValue =
5300        getCopyFromParts(DAG, getCurDebugLoc(), &Values[CurReg], NumRegs,
5301                         RegisterVT, VT, AssertOp);
5302      ReturnValues.push_back(ReturnValue);
5303      CurReg += NumRegs;
5304    }
5305
5306    setValue(CS.getInstruction(),
5307             DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
5308                         DAG.getVTList(&RetTys[0], RetTys.size()),
5309                         &ReturnValues[0], ReturnValues.size()));
5310  }
5311
5312  // Assign order to nodes here. If the call does not produce a result, it won't
5313  // be mapped to a SDNode and visit() will not assign it an order number.
5314  if (!Result.second.getNode()) {
5315    // As a special case, a null chain means that a tail call has been emitted and
5316    // the DAG root is already updated.
5317    HasTailCall = true;
5318    ++SDNodeOrder;
5319    AssignOrderingToNode(DAG.getRoot().getNode());
5320  } else {
5321    DAG.setRoot(Result.second);
5322    ++SDNodeOrder;
5323    AssignOrderingToNode(Result.second.getNode());
5324  }
5325
5326  if (LandingPad) {
5327    // Insert a label at the end of the invoke call to mark the try range.  This
5328    // can be used to detect deletion of the invoke via the MachineModuleInfo.
5329    MCSymbol *EndLabel = MMI.getContext().CreateTempSymbol();
5330    DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getRoot(), EndLabel));
5331
5332    // Inform MachineModuleInfo of range.
5333    MMI.addInvoke(LandingPad, BeginLabel, EndLabel);
5334  }
5335}
5336
5337/// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the
5338/// value is equal or not-equal to zero.
5339static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) {
5340  for (Value::const_use_iterator UI = V->use_begin(), E = V->use_end();
5341       UI != E; ++UI) {
5342    if (const ICmpInst *IC = dyn_cast<ICmpInst>(*UI))
5343      if (IC->isEquality())
5344        if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
5345          if (C->isNullValue())
5346            continue;
5347    // Unknown instruction.
5348    return false;
5349  }
5350  return true;
5351}
5352
5353static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
5354                             Type *LoadTy,
5355                             SelectionDAGBuilder &Builder) {
5356
5357  // Check to see if this load can be trivially constant folded, e.g. if the
5358  // input is from a string literal.
5359  if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
5360    // Cast pointer to the type we really want to load.
5361    LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
5362                                         PointerType::getUnqual(LoadTy));
5363
5364    if (const Constant *LoadCst =
5365          ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput),
5366                                       Builder.TD))
5367      return Builder.getValue(LoadCst);
5368  }
5369
5370  // Otherwise, we have to emit the load.  If the pointer is to unfoldable but
5371  // still constant memory, the input chain can be the entry node.
5372  SDValue Root;
5373  bool ConstantMemory = false;
5374
5375  // Do not serialize (non-volatile) loads of constant memory with anything.
5376  if (Builder.AA->pointsToConstantMemory(PtrVal)) {
5377    Root = Builder.DAG.getEntryNode();
5378    ConstantMemory = true;
5379  } else {
5380    // Do not serialize non-volatile loads against each other.
5381    Root = Builder.DAG.getRoot();
5382  }
5383
5384  SDValue Ptr = Builder.getValue(PtrVal);
5385  SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurDebugLoc(), Root,
5386                                        Ptr, MachinePointerInfo(PtrVal),
5387                                        false /*volatile*/,
5388                                        false /*nontemporal*/,
5389                                        false /*isinvariant*/, 1 /* align=1 */);
5390
5391  if (!ConstantMemory)
5392    Builder.PendingLoads.push_back(LoadVal.getValue(1));
5393  return LoadVal;
5394}
5395
5396
5397/// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form.
5398/// If so, return true and lower it, otherwise return false and it will be
5399/// lowered like a normal call.
5400bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) {
5401  // Verify that the prototype makes sense.  int memcmp(void*,void*,size_t)
5402  if (I.getNumArgOperands() != 3)
5403    return false;
5404
5405  const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
5406  if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() ||
5407      !I.getArgOperand(2)->getType()->isIntegerTy() ||
5408      !I.getType()->isIntegerTy())
5409    return false;
5410
5411  const ConstantInt *Size = dyn_cast<ConstantInt>(I.getArgOperand(2));
5412
5413  // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0
5414  // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0
5415  if (Size && IsOnlyUsedInZeroEqualityComparison(&I)) {
5416    bool ActuallyDoIt = true;
5417    MVT LoadVT;
5418    Type *LoadTy;
5419    switch (Size->getZExtValue()) {
5420    default:
5421      LoadVT = MVT::Other;
5422      LoadTy = 0;
5423      ActuallyDoIt = false;
5424      break;
5425    case 2:
5426      LoadVT = MVT::i16;
5427      LoadTy = Type::getInt16Ty(Size->getContext());
5428      break;
5429    case 4:
5430      LoadVT = MVT::i32;
5431      LoadTy = Type::getInt32Ty(Size->getContext());
5432      break;
5433    case 8:
5434      LoadVT = MVT::i64;
5435      LoadTy = Type::getInt64Ty(Size->getContext());
5436      break;
5437        /*
5438    case 16:
5439      LoadVT = MVT::v4i32;
5440      LoadTy = Type::getInt32Ty(Size->getContext());
5441      LoadTy = VectorType::get(LoadTy, 4);
5442      break;
5443         */
5444    }
5445
5446    // This turns into unaligned loads.  We only do this if the target natively
5447    // supports the MVT we'll be loading or if it is small enough (<= 4) that
5448    // we'll only produce a small number of byte loads.
5449
5450    // Require that we can find a legal MVT, and only do this if the target
5451    // supports unaligned loads of that type.  Expanding into byte loads would
5452    // bloat the code.
5453    if (ActuallyDoIt && Size->getZExtValue() > 4) {
5454      // TODO: Handle 5 byte compare as 4-byte + 1 byte.
5455      // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
5456      if (!TLI.isTypeLegal(LoadVT) ||!TLI.allowsUnalignedMemoryAccesses(LoadVT))
5457        ActuallyDoIt = false;
5458    }
5459
5460    if (ActuallyDoIt) {
5461      SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this);
5462      SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this);
5463
5464      SDValue Res = DAG.getSetCC(getCurDebugLoc(), MVT::i1, LHSVal, RHSVal,
5465                                 ISD::SETNE);
5466      EVT CallVT = TLI.getValueType(I.getType(), true);
5467      setValue(&I, DAG.getZExtOrTrunc(Res, getCurDebugLoc(), CallVT));
5468      return true;
5469    }
5470  }
5471
5472
5473  return false;
5474}
5475
5476
5477void SelectionDAGBuilder::visitCall(const CallInst &I) {
5478  // Handle inline assembly differently.
5479  if (isa<InlineAsm>(I.getCalledValue())) {
5480    visitInlineAsm(&I);
5481    return;
5482  }
5483
5484  MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
5485  ComputeUsesVAFloatArgument(I, &MMI);
5486
5487  const char *RenameFn = 0;
5488  if (Function *F = I.getCalledFunction()) {
5489    if (F->isDeclaration()) {
5490      if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) {
5491        if (unsigned IID = II->getIntrinsicID(F)) {
5492          RenameFn = visitIntrinsicCall(I, IID);
5493          if (!RenameFn)
5494            return;
5495        }
5496      }
5497      if (unsigned IID = F->getIntrinsicID()) {
5498        RenameFn = visitIntrinsicCall(I, IID);
5499        if (!RenameFn)
5500          return;
5501      }
5502    }
5503
5504    // Check for well-known libc/libm calls.  If the function is internal, it
5505    // can't be a library call.
5506    if (!F->hasLocalLinkage() && F->hasName()) {
5507      StringRef Name = F->getName();
5508      if ((LibInfo->has(LibFunc::copysign) && Name == "copysign") ||
5509          (LibInfo->has(LibFunc::copysignf) && Name == "copysignf") ||
5510          (LibInfo->has(LibFunc::copysignl) && Name == "copysignl")) {
5511        if (I.getNumArgOperands() == 2 &&   // Basic sanity checks.
5512            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5513            I.getType() == I.getArgOperand(0)->getType() &&
5514            I.getType() == I.getArgOperand(1)->getType()) {
5515          SDValue LHS = getValue(I.getArgOperand(0));
5516          SDValue RHS = getValue(I.getArgOperand(1));
5517          setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurDebugLoc(),
5518                                   LHS.getValueType(), LHS, RHS));
5519          return;
5520        }
5521      } else if ((LibInfo->has(LibFunc::fabs) && Name == "fabs") ||
5522                 (LibInfo->has(LibFunc::fabsf) && Name == "fabsf") ||
5523                 (LibInfo->has(LibFunc::fabsl) && Name == "fabsl")) {
5524        if (I.getNumArgOperands() == 1 &&   // Basic sanity checks.
5525            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5526            I.getType() == I.getArgOperand(0)->getType()) {
5527          SDValue Tmp = getValue(I.getArgOperand(0));
5528          setValue(&I, DAG.getNode(ISD::FABS, getCurDebugLoc(),
5529                                   Tmp.getValueType(), Tmp));
5530          return;
5531        }
5532      } else if ((LibInfo->has(LibFunc::sin) && Name == "sin") ||
5533                 (LibInfo->has(LibFunc::sinf) && Name == "sinf") ||
5534                 (LibInfo->has(LibFunc::sinl) && Name == "sinl")) {
5535        if (I.getNumArgOperands() == 1 &&   // Basic sanity checks.
5536            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5537            I.getType() == I.getArgOperand(0)->getType() &&
5538            I.onlyReadsMemory()) {
5539          SDValue Tmp = getValue(I.getArgOperand(0));
5540          setValue(&I, DAG.getNode(ISD::FSIN, getCurDebugLoc(),
5541                                   Tmp.getValueType(), Tmp));
5542          return;
5543        }
5544      } else if ((LibInfo->has(LibFunc::cos) && Name == "cos") ||
5545                 (LibInfo->has(LibFunc::cosf) && Name == "cosf") ||
5546                 (LibInfo->has(LibFunc::cosl) && Name == "cosl")) {
5547        if (I.getNumArgOperands() == 1 &&   // Basic sanity checks.
5548            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5549            I.getType() == I.getArgOperand(0)->getType() &&
5550            I.onlyReadsMemory()) {
5551          SDValue Tmp = getValue(I.getArgOperand(0));
5552          setValue(&I, DAG.getNode(ISD::FCOS, getCurDebugLoc(),
5553                                   Tmp.getValueType(), Tmp));
5554          return;
5555        }
5556      } else if ((LibInfo->has(LibFunc::sqrt) && Name == "sqrt") ||
5557                 (LibInfo->has(LibFunc::sqrtf) && Name == "sqrtf") ||
5558                 (LibInfo->has(LibFunc::sqrtl) && Name == "sqrtl")) {
5559        if (I.getNumArgOperands() == 1 &&   // Basic sanity checks.
5560            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5561            I.getType() == I.getArgOperand(0)->getType() &&
5562            I.onlyReadsMemory()) {
5563          SDValue Tmp = getValue(I.getArgOperand(0));
5564          setValue(&I, DAG.getNode(ISD::FSQRT, getCurDebugLoc(),
5565                                   Tmp.getValueType(), Tmp));
5566          return;
5567        }
5568      } else if ((LibInfo->has(LibFunc::floor) && Name == "floor") ||
5569                 (LibInfo->has(LibFunc::floorf) && Name == "floorf") ||
5570                 (LibInfo->has(LibFunc::floorl) && Name == "floorl")) {
5571        if (I.getNumArgOperands() == 1 && // Basic sanity checks.
5572            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5573            I.getType() == I.getArgOperand(0)->getType()) {
5574          SDValue Tmp = getValue(I.getArgOperand(0));
5575          setValue(&I, DAG.getNode(ISD::FFLOOR, getCurDebugLoc(),
5576                                   Tmp.getValueType(), Tmp));
5577          return;
5578        }
5579      } else if ((LibInfo->has(LibFunc::nearbyint) && Name == "nearbyint") ||
5580                 (LibInfo->has(LibFunc::nearbyintf) && Name == "nearbyintf") ||
5581                 (LibInfo->has(LibFunc::nearbyintl) && Name == "nearbyintl")) {
5582        if (I.getNumArgOperands() == 1 && // Basic sanity checks.
5583            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5584            I.getType() == I.getArgOperand(0)->getType()) {
5585          SDValue Tmp = getValue(I.getArgOperand(0));
5586          setValue(&I, DAG.getNode(ISD::FNEARBYINT, getCurDebugLoc(),
5587                                   Tmp.getValueType(), Tmp));
5588          return;
5589        }
5590      } else if ((LibInfo->has(LibFunc::ceil) && Name == "ceil") ||
5591                 (LibInfo->has(LibFunc::ceilf) && Name == "ceilf") ||
5592                 (LibInfo->has(LibFunc::ceill) && Name == "ceill")) {
5593        if (I.getNumArgOperands() == 1 && // Basic sanity checks.
5594            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5595            I.getType() == I.getArgOperand(0)->getType()) {
5596          SDValue Tmp = getValue(I.getArgOperand(0));
5597          setValue(&I, DAG.getNode(ISD::FCEIL, getCurDebugLoc(),
5598                                   Tmp.getValueType(), Tmp));
5599          return;
5600        }
5601      } else if ((LibInfo->has(LibFunc::rint) && Name == "rint") ||
5602                 (LibInfo->has(LibFunc::rintf) && Name == "rintf") ||
5603                 (LibInfo->has(LibFunc::rintl) && Name == "rintl")) {
5604        if (I.getNumArgOperands() == 1 && // Basic sanity checks.
5605            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5606            I.getType() == I.getArgOperand(0)->getType()) {
5607          SDValue Tmp = getValue(I.getArgOperand(0));
5608          setValue(&I, DAG.getNode(ISD::FRINT, getCurDebugLoc(),
5609                                   Tmp.getValueType(), Tmp));
5610          return;
5611        }
5612      } else if ((LibInfo->has(LibFunc::trunc) && Name == "trunc") ||
5613                 (LibInfo->has(LibFunc::truncf) && Name == "truncf") ||
5614                 (LibInfo->has(LibFunc::truncl) && Name == "truncl")) {
5615        if (I.getNumArgOperands() == 1 && // Basic sanity checks.
5616            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5617            I.getType() == I.getArgOperand(0)->getType()) {
5618          SDValue Tmp = getValue(I.getArgOperand(0));
5619          setValue(&I, DAG.getNode(ISD::FTRUNC, getCurDebugLoc(),
5620                                   Tmp.getValueType(), Tmp));
5621          return;
5622        }
5623      } else if ((LibInfo->has(LibFunc::log2) && Name == "log2") ||
5624                 (LibInfo->has(LibFunc::log2f) && Name == "log2f") ||
5625                 (LibInfo->has(LibFunc::log2l) && Name == "log2l")) {
5626        if (I.getNumArgOperands() == 1 && // Basic sanity checks.
5627            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5628            I.getType() == I.getArgOperand(0)->getType()) {
5629          SDValue Tmp = getValue(I.getArgOperand(0));
5630          setValue(&I, DAG.getNode(ISD::FLOG2, getCurDebugLoc(),
5631                                   Tmp.getValueType(), Tmp));
5632          return;
5633        }
5634      } else if ((LibInfo->has(LibFunc::exp2) && Name == "exp2") ||
5635                 (LibInfo->has(LibFunc::exp2f) && Name == "exp2f") ||
5636                 (LibInfo->has(LibFunc::exp2l) && Name == "exp2l")) {
5637        if (I.getNumArgOperands() == 1 && // Basic sanity checks.
5638            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5639            I.getType() == I.getArgOperand(0)->getType()) {
5640          SDValue Tmp = getValue(I.getArgOperand(0));
5641          setValue(&I, DAG.getNode(ISD::FEXP2, getCurDebugLoc(),
5642                                   Tmp.getValueType(), Tmp));
5643          return;
5644        }
5645      } else if (Name == "memcmp") {
5646        if (visitMemCmpCall(I))
5647          return;
5648      }
5649    }
5650  }
5651
5652  SDValue Callee;
5653  if (!RenameFn)
5654    Callee = getValue(I.getCalledValue());
5655  else
5656    Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy());
5657
5658  // Check if we can potentially perform a tail call. More detailed checking is
5659  // be done within LowerCallTo, after more information about the call is known.
5660  LowerCallTo(&I, Callee, I.isTailCall());
5661}
5662
5663namespace {
5664
5665/// AsmOperandInfo - This contains information for each constraint that we are
5666/// lowering.
5667class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
5668public:
5669  /// CallOperand - If this is the result output operand or a clobber
5670  /// this is null, otherwise it is the incoming operand to the CallInst.
5671  /// This gets modified as the asm is processed.
5672  SDValue CallOperand;
5673
5674  /// AssignedRegs - If this is a register or register class operand, this
5675  /// contains the set of register corresponding to the operand.
5676  RegsForValue AssignedRegs;
5677
5678  explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
5679    : TargetLowering::AsmOperandInfo(info), CallOperand(0,0) {
5680  }
5681
5682  /// getCallOperandValEVT - Return the EVT of the Value* that this operand
5683  /// corresponds to.  If there is no Value* for this operand, it returns
5684  /// MVT::Other.
5685  EVT getCallOperandValEVT(LLVMContext &Context,
5686                           const TargetLowering &TLI,
5687                           const TargetData *TD) const {
5688    if (CallOperandVal == 0) return MVT::Other;
5689
5690    if (isa<BasicBlock>(CallOperandVal))
5691      return TLI.getPointerTy();
5692
5693    llvm::Type *OpTy = CallOperandVal->getType();
5694
5695    // FIXME: code duplicated from TargetLowering::ParseConstraints().
5696    // If this is an indirect operand, the operand is a pointer to the
5697    // accessed type.
5698    if (isIndirect) {
5699      llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
5700      if (!PtrTy)
5701        report_fatal_error("Indirect operand for inline asm not a pointer!");
5702      OpTy = PtrTy->getElementType();
5703    }
5704
5705    // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
5706    if (StructType *STy = dyn_cast<StructType>(OpTy))
5707      if (STy->getNumElements() == 1)
5708        OpTy = STy->getElementType(0);
5709
5710    // If OpTy is not a single value, it may be a struct/union that we
5711    // can tile with integers.
5712    if (!OpTy->isSingleValueType() && OpTy->isSized()) {
5713      unsigned BitSize = TD->getTypeSizeInBits(OpTy);
5714      switch (BitSize) {
5715      default: break;
5716      case 1:
5717      case 8:
5718      case 16:
5719      case 32:
5720      case 64:
5721      case 128:
5722        OpTy = IntegerType::get(Context, BitSize);
5723        break;
5724      }
5725    }
5726
5727    return TLI.getValueType(OpTy, true);
5728  }
5729};
5730
5731typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector;
5732
5733} // end anonymous namespace
5734
5735/// GetRegistersForValue - Assign registers (virtual or physical) for the
5736/// specified operand.  We prefer to assign virtual registers, to allow the
5737/// register allocator to handle the assignment process.  However, if the asm
5738/// uses features that we can't model on machineinstrs, we have SDISel do the
5739/// allocation.  This produces generally horrible, but correct, code.
5740///
5741///   OpInfo describes the operand.
5742///
5743static void GetRegistersForValue(SelectionDAG &DAG,
5744                                 const TargetLowering &TLI,
5745                                 DebugLoc DL,
5746                                 SDISelAsmOperandInfo &OpInfo) {
5747  LLVMContext &Context = *DAG.getContext();
5748
5749  MachineFunction &MF = DAG.getMachineFunction();
5750  SmallVector<unsigned, 4> Regs;
5751
5752  // If this is a constraint for a single physreg, or a constraint for a
5753  // register class, find it.
5754  std::pair<unsigned, const TargetRegisterClass*> PhysReg =
5755    TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
5756                                     OpInfo.ConstraintVT);
5757
5758  unsigned NumRegs = 1;
5759  if (OpInfo.ConstraintVT != MVT::Other) {
5760    // If this is a FP input in an integer register (or visa versa) insert a bit
5761    // cast of the input value.  More generally, handle any case where the input
5762    // value disagrees with the register class we plan to stick this in.
5763    if (OpInfo.Type == InlineAsm::isInput &&
5764        PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) {
5765      // Try to convert to the first EVT that the reg class contains.  If the
5766      // types are identical size, use a bitcast to convert (e.g. two differing
5767      // vector types).
5768      EVT RegVT = *PhysReg.second->vt_begin();
5769      if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) {
5770        OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL,
5771                                         RegVT, OpInfo.CallOperand);
5772        OpInfo.ConstraintVT = RegVT;
5773      } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
5774        // If the input is a FP value and we want it in FP registers, do a
5775        // bitcast to the corresponding integer type.  This turns an f64 value
5776        // into i64, which can be passed with two i32 values on a 32-bit
5777        // machine.
5778        RegVT = EVT::getIntegerVT(Context,
5779                                  OpInfo.ConstraintVT.getSizeInBits());
5780        OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL,
5781                                         RegVT, OpInfo.CallOperand);
5782        OpInfo.ConstraintVT = RegVT;
5783      }
5784    }
5785
5786    NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT);
5787  }
5788
5789  EVT RegVT;
5790  EVT ValueVT = OpInfo.ConstraintVT;
5791
5792  // If this is a constraint for a specific physical register, like {r17},
5793  // assign it now.
5794  if (unsigned AssignedReg = PhysReg.first) {
5795    const TargetRegisterClass *RC = PhysReg.second;
5796    if (OpInfo.ConstraintVT == MVT::Other)
5797      ValueVT = *RC->vt_begin();
5798
5799    // Get the actual register value type.  This is important, because the user
5800    // may have asked for (e.g.) the AX register in i32 type.  We need to
5801    // remember that AX is actually i16 to get the right extension.
5802    RegVT = *RC->vt_begin();
5803
5804    // This is a explicit reference to a physical register.
5805    Regs.push_back(AssignedReg);
5806
5807    // If this is an expanded reference, add the rest of the regs to Regs.
5808    if (NumRegs != 1) {
5809      TargetRegisterClass::iterator I = RC->begin();
5810      for (; *I != AssignedReg; ++I)
5811        assert(I != RC->end() && "Didn't find reg!");
5812
5813      // Already added the first reg.
5814      --NumRegs; ++I;
5815      for (; NumRegs; --NumRegs, ++I) {
5816        assert(I != RC->end() && "Ran out of registers to allocate!");
5817        Regs.push_back(*I);
5818      }
5819    }
5820
5821    OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
5822    return;
5823  }
5824
5825  // Otherwise, if this was a reference to an LLVM register class, create vregs
5826  // for this reference.
5827  if (const TargetRegisterClass *RC = PhysReg.second) {
5828    RegVT = *RC->vt_begin();
5829    if (OpInfo.ConstraintVT == MVT::Other)
5830      ValueVT = RegVT;
5831
5832    // Create the appropriate number of virtual registers.
5833    MachineRegisterInfo &RegInfo = MF.getRegInfo();
5834    for (; NumRegs; --NumRegs)
5835      Regs.push_back(RegInfo.createVirtualRegister(RC));
5836
5837    OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
5838    return;
5839  }
5840
5841  // Otherwise, we couldn't allocate enough registers for this.
5842}
5843
5844/// visitInlineAsm - Handle a call to an InlineAsm object.
5845///
5846void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) {
5847  const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
5848
5849  /// ConstraintOperands - Information about all of the constraints.
5850  SDISelAsmOperandInfoVector ConstraintOperands;
5851
5852  TargetLowering::AsmOperandInfoVector
5853    TargetConstraints = TLI.ParseConstraints(CS);
5854
5855  bool hasMemory = false;
5856
5857  unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
5858  unsigned ResNo = 0;   // ResNo - The result number of the next output.
5859  for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
5860    ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i]));
5861    SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
5862
5863    EVT OpVT = MVT::Other;
5864
5865    // Compute the value type for each operand.
5866    switch (OpInfo.Type) {
5867    case InlineAsm::isOutput:
5868      // Indirect outputs just consume an argument.
5869      if (OpInfo.isIndirect) {
5870        OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
5871        break;
5872      }
5873
5874      // The return value of the call is this value.  As such, there is no
5875      // corresponding argument.
5876      assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
5877      if (StructType *STy = dyn_cast<StructType>(CS.getType())) {
5878        OpVT = TLI.getValueType(STy->getElementType(ResNo));
5879      } else {
5880        assert(ResNo == 0 && "Asm only has one result!");
5881        OpVT = TLI.getValueType(CS.getType());
5882      }
5883      ++ResNo;
5884      break;
5885    case InlineAsm::isInput:
5886      OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
5887      break;
5888    case InlineAsm::isClobber:
5889      // Nothing to do.
5890      break;
5891    }
5892
5893    // If this is an input or an indirect output, process the call argument.
5894    // BasicBlocks are labels, currently appearing only in asm's.
5895    if (OpInfo.CallOperandVal) {
5896      if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) {
5897        OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
5898      } else {
5899        OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
5900      }
5901
5902      OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, TD);
5903    }
5904
5905    OpInfo.ConstraintVT = OpVT;
5906
5907    // Indirect operand accesses access memory.
5908    if (OpInfo.isIndirect)
5909      hasMemory = true;
5910    else {
5911      for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) {
5912        TargetLowering::ConstraintType
5913          CType = TLI.getConstraintType(OpInfo.Codes[j]);
5914        if (CType == TargetLowering::C_Memory) {
5915          hasMemory = true;
5916          break;
5917        }
5918      }
5919    }
5920  }
5921
5922  SDValue Chain, Flag;
5923
5924  // We won't need to flush pending loads if this asm doesn't touch
5925  // memory and is nonvolatile.
5926  if (hasMemory || IA->hasSideEffects())
5927    Chain = getRoot();
5928  else
5929    Chain = DAG.getRoot();
5930
5931  // Second pass over the constraints: compute which constraint option to use
5932  // and assign registers to constraints that want a specific physreg.
5933  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
5934    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
5935
5936    // If this is an output operand with a matching input operand, look up the
5937    // matching input. If their types mismatch, e.g. one is an integer, the
5938    // other is floating point, or their sizes are different, flag it as an
5939    // error.
5940    if (OpInfo.hasMatchingInput()) {
5941      SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
5942
5943      if (OpInfo.ConstraintVT != Input.ConstraintVT) {
5944	std::pair<unsigned, const TargetRegisterClass*> MatchRC =
5945	  TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
5946                                           OpInfo.ConstraintVT);
5947	std::pair<unsigned, const TargetRegisterClass*> InputRC =
5948	  TLI.getRegForInlineAsmConstraint(Input.ConstraintCode,
5949                                           Input.ConstraintVT);
5950        if ((OpInfo.ConstraintVT.isInteger() !=
5951             Input.ConstraintVT.isInteger()) ||
5952            (MatchRC.second != InputRC.second)) {
5953          report_fatal_error("Unsupported asm: input constraint"
5954                             " with a matching output constraint of"
5955                             " incompatible type!");
5956        }
5957        Input.ConstraintVT = OpInfo.ConstraintVT;
5958      }
5959    }
5960
5961    // Compute the constraint code and ConstraintType to use.
5962    TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
5963
5964    // If this is a memory input, and if the operand is not indirect, do what we
5965    // need to to provide an address for the memory input.
5966    if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
5967        !OpInfo.isIndirect) {
5968      assert((OpInfo.isMultipleAlternative ||
5969              (OpInfo.Type == InlineAsm::isInput)) &&
5970             "Can only indirectify direct input operands!");
5971
5972      // Memory operands really want the address of the value.  If we don't have
5973      // an indirect input, put it in the constpool if we can, otherwise spill
5974      // it to a stack slot.
5975      // TODO: This isn't quite right. We need to handle these according to
5976      // the addressing mode that the constraint wants. Also, this may take
5977      // an additional register for the computation and we don't want that
5978      // either.
5979
5980      // If the operand is a float, integer, or vector constant, spill to a
5981      // constant pool entry to get its address.
5982      const Value *OpVal = OpInfo.CallOperandVal;
5983      if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
5984          isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) {
5985        OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal),
5986                                                 TLI.getPointerTy());
5987      } else {
5988        // Otherwise, create a stack slot and emit a store to it before the
5989        // asm.
5990        Type *Ty = OpVal->getType();
5991        uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty);
5992        unsigned Align  = TLI.getTargetData()->getPrefTypeAlignment(Ty);
5993        MachineFunction &MF = DAG.getMachineFunction();
5994        int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
5995        SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy());
5996        Chain = DAG.getStore(Chain, getCurDebugLoc(),
5997                             OpInfo.CallOperand, StackSlot,
5998                             MachinePointerInfo::getFixedStack(SSFI),
5999                             false, false, 0);
6000        OpInfo.CallOperand = StackSlot;
6001      }
6002
6003      // There is no longer a Value* corresponding to this operand.
6004      OpInfo.CallOperandVal = 0;
6005
6006      // It is now an indirect operand.
6007      OpInfo.isIndirect = true;
6008    }
6009
6010    // If this constraint is for a specific register, allocate it before
6011    // anything else.
6012    if (OpInfo.ConstraintType == TargetLowering::C_Register)
6013      GetRegistersForValue(DAG, TLI, getCurDebugLoc(), OpInfo);
6014  }
6015
6016  // Second pass - Loop over all of the operands, assigning virtual or physregs
6017  // to register class operands.
6018  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
6019    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
6020
6021    // C_Register operands have already been allocated, Other/Memory don't need
6022    // to be.
6023    if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass)
6024      GetRegistersForValue(DAG, TLI, getCurDebugLoc(), OpInfo);
6025  }
6026
6027  // AsmNodeOperands - The operands for the ISD::INLINEASM node.
6028  std::vector<SDValue> AsmNodeOperands;
6029  AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
6030  AsmNodeOperands.push_back(
6031          DAG.getTargetExternalSymbol(IA->getAsmString().c_str(),
6032                                      TLI.getPointerTy()));
6033
6034  // If we have a !srcloc metadata node associated with it, we want to attach
6035  // this to the ultimately generated inline asm machineinstr.  To do this, we
6036  // pass in the third operand as this (potentially null) inline asm MDNode.
6037  const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc");
6038  AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
6039
6040  // Remember the HasSideEffect and AlignStack bits as operand 3.
6041  unsigned ExtraInfo = 0;
6042  if (IA->hasSideEffects())
6043    ExtraInfo |= InlineAsm::Extra_HasSideEffects;
6044  if (IA->isAlignStack())
6045    ExtraInfo |= InlineAsm::Extra_IsAlignStack;
6046  AsmNodeOperands.push_back(DAG.getTargetConstant(ExtraInfo,
6047                                                  TLI.getPointerTy()));
6048
6049  // Loop over all of the inputs, copying the operand values into the
6050  // appropriate registers and processing the output regs.
6051  RegsForValue RetValRegs;
6052
6053  // IndirectStoresToEmit - The set of stores to emit after the inline asm node.
6054  std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit;
6055
6056  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
6057    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
6058
6059    switch (OpInfo.Type) {
6060    case InlineAsm::isOutput: {
6061      if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass &&
6062          OpInfo.ConstraintType != TargetLowering::C_Register) {
6063        // Memory output, or 'other' output (e.g. 'X' constraint).
6064        assert(OpInfo.isIndirect && "Memory output must be indirect operand");
6065
6066        // Add information to the INLINEASM node to know about this output.
6067        unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
6068        AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags,
6069                                                        TLI.getPointerTy()));
6070        AsmNodeOperands.push_back(OpInfo.CallOperand);
6071        break;
6072      }
6073
6074      // Otherwise, this is a register or register class output.
6075
6076      // Copy the output from the appropriate register.  Find a register that
6077      // we can use.
6078      if (OpInfo.AssignedRegs.Regs.empty()) {
6079        LLVMContext &Ctx = *DAG.getContext();
6080        Ctx.emitError(CS.getInstruction(),
6081                      "couldn't allocate output register for constraint '" +
6082                           Twine(OpInfo.ConstraintCode) + "'");
6083        break;
6084      }
6085
6086      // If this is an indirect operand, store through the pointer after the
6087      // asm.
6088      if (OpInfo.isIndirect) {
6089        IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs,
6090                                                      OpInfo.CallOperandVal));
6091      } else {
6092        // This is the result value of the call.
6093        assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
6094        // Concatenate this output onto the outputs list.
6095        RetValRegs.append(OpInfo.AssignedRegs);
6096      }
6097
6098      // Add information to the INLINEASM node to know that this register is
6099      // set.
6100      OpInfo.AssignedRegs.AddInlineAsmOperands(OpInfo.isEarlyClobber ?
6101                                           InlineAsm::Kind_RegDefEarlyClobber :
6102                                               InlineAsm::Kind_RegDef,
6103                                               false,
6104                                               0,
6105                                               DAG,
6106                                               AsmNodeOperands);
6107      break;
6108    }
6109    case InlineAsm::isInput: {
6110      SDValue InOperandVal = OpInfo.CallOperand;
6111
6112      if (OpInfo.isMatchingInputConstraint()) {   // Matching constraint?
6113        // If this is required to match an output register we have already set,
6114        // just use its register.
6115        unsigned OperandNo = OpInfo.getMatchedOperand();
6116
6117        // Scan until we find the definition we already emitted of this operand.
6118        // When we find it, create a RegsForValue operand.
6119        unsigned CurOp = InlineAsm::Op_FirstOperand;
6120        for (; OperandNo; --OperandNo) {
6121          // Advance to the next operand.
6122          unsigned OpFlag =
6123            cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
6124          assert((InlineAsm::isRegDefKind(OpFlag) ||
6125                  InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||
6126                  InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?");
6127          CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1;
6128        }
6129
6130        unsigned OpFlag =
6131          cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
6132        if (InlineAsm::isRegDefKind(OpFlag) ||
6133            InlineAsm::isRegDefEarlyClobberKind(OpFlag)) {
6134          // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
6135          if (OpInfo.isIndirect) {
6136            // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
6137            LLVMContext &Ctx = *DAG.getContext();
6138            Ctx.emitError(CS.getInstruction(),  "inline asm not supported yet:"
6139                          " don't know how to handle tied "
6140                          "indirect register inputs");
6141          }
6142
6143          RegsForValue MatchedRegs;
6144          MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType());
6145          EVT RegVT = AsmNodeOperands[CurOp+1].getValueType();
6146          MatchedRegs.RegVTs.push_back(RegVT);
6147          MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo();
6148          for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag);
6149               i != e; ++i)
6150            MatchedRegs.Regs.push_back
6151              (RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT)));
6152
6153          // Use the produced MatchedRegs object to
6154          MatchedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(),
6155                                    Chain, &Flag);
6156          MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse,
6157                                           true, OpInfo.getMatchedOperand(),
6158                                           DAG, AsmNodeOperands);
6159          break;
6160        }
6161
6162        assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!");
6163        assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 &&
6164               "Unexpected number of operands");
6165        // Add information to the INLINEASM node to know about this input.
6166        // See InlineAsm.h isUseOperandTiedToDef.
6167        OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
6168                                                    OpInfo.getMatchedOperand());
6169        AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlag,
6170                                                        TLI.getPointerTy()));
6171        AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
6172        break;
6173      }
6174
6175      // Treat indirect 'X' constraint as memory.
6176      if (OpInfo.ConstraintType == TargetLowering::C_Other &&
6177          OpInfo.isIndirect)
6178        OpInfo.ConstraintType = TargetLowering::C_Memory;
6179
6180      if (OpInfo.ConstraintType == TargetLowering::C_Other) {
6181        std::vector<SDValue> Ops;
6182        TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode,
6183                                         Ops, DAG);
6184        if (Ops.empty()) {
6185          LLVMContext &Ctx = *DAG.getContext();
6186          Ctx.emitError(CS.getInstruction(),
6187                        "invalid operand for inline asm constraint '" +
6188                        Twine(OpInfo.ConstraintCode) + "'");
6189          break;
6190        }
6191
6192        // Add information to the INLINEASM node to know about this input.
6193        unsigned ResOpType =
6194          InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
6195        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
6196                                                        TLI.getPointerTy()));
6197        AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
6198        break;
6199      }
6200
6201      if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
6202        assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
6203        assert(InOperandVal.getValueType() == TLI.getPointerTy() &&
6204               "Memory operands expect pointer values");
6205
6206        // Add information to the INLINEASM node to know about this input.
6207        unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
6208        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
6209                                                        TLI.getPointerTy()));
6210        AsmNodeOperands.push_back(InOperandVal);
6211        break;
6212      }
6213
6214      assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
6215              OpInfo.ConstraintType == TargetLowering::C_Register) &&
6216             "Unknown constraint type!");
6217      assert(!OpInfo.isIndirect &&
6218             "Don't know how to handle indirect register inputs yet!");
6219
6220      // Copy the input into the appropriate registers.
6221      if (OpInfo.AssignedRegs.Regs.empty()) {
6222        LLVMContext &Ctx = *DAG.getContext();
6223        Ctx.emitError(CS.getInstruction(),
6224                      "couldn't allocate input reg for constraint '" +
6225                           Twine(OpInfo.ConstraintCode) + "'");
6226        break;
6227      }
6228
6229      OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(),
6230                                        Chain, &Flag);
6231
6232      OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0,
6233                                               DAG, AsmNodeOperands);
6234      break;
6235    }
6236    case InlineAsm::isClobber: {
6237      // Add the clobbered value to the operand list, so that the register
6238      // allocator is aware that the physreg got clobbered.
6239      if (!OpInfo.AssignedRegs.Regs.empty())
6240        OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber,
6241                                                 false, 0, DAG,
6242                                                 AsmNodeOperands);
6243      break;
6244    }
6245    }
6246  }
6247
6248  // Finish up input operands.  Set the input chain and add the flag last.
6249  AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
6250  if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
6251
6252  Chain = DAG.getNode(ISD::INLINEASM, getCurDebugLoc(),
6253                      DAG.getVTList(MVT::Other, MVT::Glue),
6254                      &AsmNodeOperands[0], AsmNodeOperands.size());
6255  Flag = Chain.getValue(1);
6256
6257  // If this asm returns a register value, copy the result from that register
6258  // and set it as the value of the call.
6259  if (!RetValRegs.Regs.empty()) {
6260    SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(),
6261                                             Chain, &Flag);
6262
6263    // FIXME: Why don't we do this for inline asms with MRVs?
6264    if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) {
6265      EVT ResultType = TLI.getValueType(CS.getType());
6266
6267      // If any of the results of the inline asm is a vector, it may have the
6268      // wrong width/num elts.  This can happen for register classes that can
6269      // contain multiple different value types.  The preg or vreg allocated may
6270      // not have the same VT as was expected.  Convert it to the right type
6271      // with bit_convert.
6272      if (ResultType != Val.getValueType() && Val.getValueType().isVector()) {
6273        Val = DAG.getNode(ISD::BITCAST, getCurDebugLoc(),
6274                          ResultType, Val);
6275
6276      } else if (ResultType != Val.getValueType() &&
6277                 ResultType.isInteger() && Val.getValueType().isInteger()) {
6278        // If a result value was tied to an input value, the computed result may
6279        // have a wider width than the expected result.  Extract the relevant
6280        // portion.
6281        Val = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), ResultType, Val);
6282      }
6283
6284      assert(ResultType == Val.getValueType() && "Asm result value mismatch!");
6285    }
6286
6287    setValue(CS.getInstruction(), Val);
6288    // Don't need to use this as a chain in this case.
6289    if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty())
6290      return;
6291  }
6292
6293  std::vector<std::pair<SDValue, const Value *> > StoresToEmit;
6294
6295  // Process indirect outputs, first output all of the flagged copies out of
6296  // physregs.
6297  for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
6298    RegsForValue &OutRegs = IndirectStoresToEmit[i].first;
6299    const Value *Ptr = IndirectStoresToEmit[i].second;
6300    SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(),
6301                                             Chain, &Flag);
6302    StoresToEmit.push_back(std::make_pair(OutVal, Ptr));
6303  }
6304
6305  // Emit the non-flagged stores from the physregs.
6306  SmallVector<SDValue, 8> OutChains;
6307  for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) {
6308    SDValue Val = DAG.getStore(Chain, getCurDebugLoc(),
6309                               StoresToEmit[i].first,
6310                               getValue(StoresToEmit[i].second),
6311                               MachinePointerInfo(StoresToEmit[i].second),
6312                               false, false, 0);
6313    OutChains.push_back(Val);
6314  }
6315
6316  if (!OutChains.empty())
6317    Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
6318                        &OutChains[0], OutChains.size());
6319
6320  DAG.setRoot(Chain);
6321}
6322
6323void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
6324  DAG.setRoot(DAG.getNode(ISD::VASTART, getCurDebugLoc(),
6325                          MVT::Other, getRoot(),
6326                          getValue(I.getArgOperand(0)),
6327                          DAG.getSrcValue(I.getArgOperand(0))));
6328}
6329
6330void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
6331  const TargetData &TD = *TLI.getTargetData();
6332  SDValue V = DAG.getVAArg(TLI.getValueType(I.getType()), getCurDebugLoc(),
6333                           getRoot(), getValue(I.getOperand(0)),
6334                           DAG.getSrcValue(I.getOperand(0)),
6335                           TD.getABITypeAlignment(I.getType()));
6336  setValue(&I, V);
6337  DAG.setRoot(V.getValue(1));
6338}
6339
6340void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
6341  DAG.setRoot(DAG.getNode(ISD::VAEND, getCurDebugLoc(),
6342                          MVT::Other, getRoot(),
6343                          getValue(I.getArgOperand(0)),
6344                          DAG.getSrcValue(I.getArgOperand(0))));
6345}
6346
6347void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
6348  DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurDebugLoc(),
6349                          MVT::Other, getRoot(),
6350                          getValue(I.getArgOperand(0)),
6351                          getValue(I.getArgOperand(1)),
6352                          DAG.getSrcValue(I.getArgOperand(0)),
6353                          DAG.getSrcValue(I.getArgOperand(1))));
6354}
6355
6356/// TargetLowering::LowerCallTo - This is the default LowerCallTo
6357/// implementation, which just calls LowerCall.
6358/// FIXME: When all targets are
6359/// migrated to using LowerCall, this hook should be integrated into SDISel.
6360std::pair<SDValue, SDValue>
6361TargetLowering::LowerCallTo(SDValue Chain, Type *RetTy,
6362                            bool RetSExt, bool RetZExt, bool isVarArg,
6363                            bool isInreg, unsigned NumFixedArgs,
6364                            CallingConv::ID CallConv, bool isTailCall,
6365                            bool doesNotRet, bool isReturnValueUsed,
6366                            SDValue Callee,
6367                            ArgListTy &Args, SelectionDAG &DAG,
6368                            DebugLoc dl) const {
6369  // Handle all of the outgoing arguments.
6370  SmallVector<ISD::OutputArg, 32> Outs;
6371  SmallVector<SDValue, 32> OutVals;
6372  for (unsigned i = 0, e = Args.size(); i != e; ++i) {
6373    SmallVector<EVT, 4> ValueVTs;
6374    ComputeValueVTs(*this, Args[i].Ty, ValueVTs);
6375    for (unsigned Value = 0, NumValues = ValueVTs.size();
6376         Value != NumValues; ++Value) {
6377      EVT VT = ValueVTs[Value];
6378      Type *ArgTy = VT.getTypeForEVT(RetTy->getContext());
6379      SDValue Op = SDValue(Args[i].Node.getNode(),
6380                           Args[i].Node.getResNo() + Value);
6381      ISD::ArgFlagsTy Flags;
6382      unsigned OriginalAlignment =
6383        getTargetData()->getABITypeAlignment(ArgTy);
6384
6385      if (Args[i].isZExt)
6386        Flags.setZExt();
6387      if (Args[i].isSExt)
6388        Flags.setSExt();
6389      if (Args[i].isInReg)
6390        Flags.setInReg();
6391      if (Args[i].isSRet)
6392        Flags.setSRet();
6393      if (Args[i].isByVal) {
6394        Flags.setByVal();
6395        PointerType *Ty = cast<PointerType>(Args[i].Ty);
6396        Type *ElementTy = Ty->getElementType();
6397        Flags.setByValSize(getTargetData()->getTypeAllocSize(ElementTy));
6398        // For ByVal, alignment should come from FE.  BE will guess if this
6399        // info is not there but there are cases it cannot get right.
6400        unsigned FrameAlign;
6401        if (Args[i].Alignment)
6402          FrameAlign = Args[i].Alignment;
6403        else
6404          FrameAlign = getByValTypeAlignment(ElementTy);
6405        Flags.setByValAlign(FrameAlign);
6406      }
6407      if (Args[i].isNest)
6408        Flags.setNest();
6409      Flags.setOrigAlign(OriginalAlignment);
6410
6411      EVT PartVT = getRegisterType(RetTy->getContext(), VT);
6412      unsigned NumParts = getNumRegisters(RetTy->getContext(), VT);
6413      SmallVector<SDValue, 4> Parts(NumParts);
6414      ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
6415
6416      if (Args[i].isSExt)
6417        ExtendKind = ISD::SIGN_EXTEND;
6418      else if (Args[i].isZExt)
6419        ExtendKind = ISD::ZERO_EXTEND;
6420
6421      getCopyToParts(DAG, dl, Op, &Parts[0], NumParts,
6422                     PartVT, ExtendKind);
6423
6424      for (unsigned j = 0; j != NumParts; ++j) {
6425        // if it isn't first piece, alignment must be 1
6426        ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(),
6427                               i < NumFixedArgs);
6428        if (NumParts > 1 && j == 0)
6429          MyFlags.Flags.setSplit();
6430        else if (j != 0)
6431          MyFlags.Flags.setOrigAlign(1);
6432
6433        Outs.push_back(MyFlags);
6434        OutVals.push_back(Parts[j]);
6435      }
6436    }
6437  }
6438
6439  // Handle the incoming return values from the call.
6440  SmallVector<ISD::InputArg, 32> Ins;
6441  SmallVector<EVT, 4> RetTys;
6442  ComputeValueVTs(*this, RetTy, RetTys);
6443  for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
6444    EVT VT = RetTys[I];
6445    EVT RegisterVT = getRegisterType(RetTy->getContext(), VT);
6446    unsigned NumRegs = getNumRegisters(RetTy->getContext(), VT);
6447    for (unsigned i = 0; i != NumRegs; ++i) {
6448      ISD::InputArg MyFlags;
6449      MyFlags.VT = RegisterVT.getSimpleVT();
6450      MyFlags.Used = isReturnValueUsed;
6451      if (RetSExt)
6452        MyFlags.Flags.setSExt();
6453      if (RetZExt)
6454        MyFlags.Flags.setZExt();
6455      if (isInreg)
6456        MyFlags.Flags.setInReg();
6457      Ins.push_back(MyFlags);
6458    }
6459  }
6460
6461  SmallVector<SDValue, 4> InVals;
6462  Chain = LowerCall(Chain, Callee, CallConv, isVarArg, doesNotRet, isTailCall,
6463                    Outs, OutVals, Ins, dl, DAG, InVals);
6464
6465  // Verify that the target's LowerCall behaved as expected.
6466  assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
6467         "LowerCall didn't return a valid chain!");
6468  assert((!isTailCall || InVals.empty()) &&
6469         "LowerCall emitted a return value for a tail call!");
6470  assert((isTailCall || InVals.size() == Ins.size()) &&
6471         "LowerCall didn't emit the correct number of values!");
6472
6473  // For a tail call, the return value is merely live-out and there aren't
6474  // any nodes in the DAG representing it. Return a special value to
6475  // indicate that a tail call has been emitted and no more Instructions
6476  // should be processed in the current block.
6477  if (isTailCall) {
6478    DAG.setRoot(Chain);
6479    return std::make_pair(SDValue(), SDValue());
6480  }
6481
6482  DEBUG(for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
6483          assert(InVals[i].getNode() &&
6484                 "LowerCall emitted a null value!");
6485          assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
6486                 "LowerCall emitted a value with the wrong type!");
6487        });
6488
6489  // Collect the legal value parts into potentially illegal values
6490  // that correspond to the original function's return values.
6491  ISD::NodeType AssertOp = ISD::DELETED_NODE;
6492  if (RetSExt)
6493    AssertOp = ISD::AssertSext;
6494  else if (RetZExt)
6495    AssertOp = ISD::AssertZext;
6496  SmallVector<SDValue, 4> ReturnValues;
6497  unsigned CurReg = 0;
6498  for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
6499    EVT VT = RetTys[I];
6500    EVT RegisterVT = getRegisterType(RetTy->getContext(), VT);
6501    unsigned NumRegs = getNumRegisters(RetTy->getContext(), VT);
6502
6503    ReturnValues.push_back(getCopyFromParts(DAG, dl, &InVals[CurReg],
6504                                            NumRegs, RegisterVT, VT,
6505                                            AssertOp));
6506    CurReg += NumRegs;
6507  }
6508
6509  // For a function returning void, there is no return value. We can't create
6510  // such a node, so we just return a null return value in that case. In
6511  // that case, nothing will actually look at the value.
6512  if (ReturnValues.empty())
6513    return std::make_pair(SDValue(), Chain);
6514
6515  SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
6516                            DAG.getVTList(&RetTys[0], RetTys.size()),
6517                            &ReturnValues[0], ReturnValues.size());
6518  return std::make_pair(Res, Chain);
6519}
6520
6521void TargetLowering::LowerOperationWrapper(SDNode *N,
6522                                           SmallVectorImpl<SDValue> &Results,
6523                                           SelectionDAG &DAG) const {
6524  SDValue Res = LowerOperation(SDValue(N, 0), DAG);
6525  if (Res.getNode())
6526    Results.push_back(Res);
6527}
6528
6529SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
6530  llvm_unreachable("LowerOperation not implemented for this target!");
6531}
6532
6533void
6534SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) {
6535  SDValue Op = getNonRegisterValue(V);
6536  assert((Op.getOpcode() != ISD::CopyFromReg ||
6537          cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
6538         "Copy from a reg to the same reg!");
6539  assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg");
6540
6541  RegsForValue RFV(V->getContext(), TLI, Reg, V->getType());
6542  SDValue Chain = DAG.getEntryNode();
6543  RFV.getCopyToRegs(Op, DAG, getCurDebugLoc(), Chain, 0);
6544  PendingExports.push_back(Chain);
6545}
6546
6547#include "llvm/CodeGen/SelectionDAGISel.h"
6548
6549/// isOnlyUsedInEntryBlock - If the specified argument is only used in the
6550/// entry block, return true.  This includes arguments used by switches, since
6551/// the switch may expand into multiple basic blocks.
6552static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) {
6553  // With FastISel active, we may be splitting blocks, so force creation
6554  // of virtual registers for all non-dead arguments.
6555  if (FastISel)
6556    return A->use_empty();
6557
6558  const BasicBlock *Entry = A->getParent()->begin();
6559  for (Value::const_use_iterator UI = A->use_begin(), E = A->use_end();
6560       UI != E; ++UI) {
6561    const User *U = *UI;
6562    if (cast<Instruction>(U)->getParent() != Entry || isa<SwitchInst>(U))
6563      return false;  // Use not in entry block.
6564  }
6565  return true;
6566}
6567
6568void SelectionDAGISel::LowerArguments(const BasicBlock *LLVMBB) {
6569  // If this is the entry block, emit arguments.
6570  const Function &F = *LLVMBB->getParent();
6571  SelectionDAG &DAG = SDB->DAG;
6572  DebugLoc dl = SDB->getCurDebugLoc();
6573  const TargetData *TD = TLI.getTargetData();
6574  SmallVector<ISD::InputArg, 16> Ins;
6575
6576  // Check whether the function can return without sret-demotion.
6577  SmallVector<ISD::OutputArg, 4> Outs;
6578  GetReturnInfo(F.getReturnType(), F.getAttributes().getRetAttributes(),
6579                Outs, TLI);
6580
6581  if (!FuncInfo->CanLowerReturn) {
6582    // Put in an sret pointer parameter before all the other parameters.
6583    SmallVector<EVT, 1> ValueVTs;
6584    ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs);
6585
6586    // NOTE: Assuming that a pointer will never break down to more than one VT
6587    // or one register.
6588    ISD::ArgFlagsTy Flags;
6589    Flags.setSRet();
6590    EVT RegisterVT = TLI.getRegisterType(*DAG.getContext(), ValueVTs[0]);
6591    ISD::InputArg RetArg(Flags, RegisterVT, true);
6592    Ins.push_back(RetArg);
6593  }
6594
6595  // Set up the incoming argument description vector.
6596  unsigned Idx = 1;
6597  for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end();
6598       I != E; ++I, ++Idx) {
6599    SmallVector<EVT, 4> ValueVTs;
6600    ComputeValueVTs(TLI, I->getType(), ValueVTs);
6601    bool isArgValueUsed = !I->use_empty();
6602    for (unsigned Value = 0, NumValues = ValueVTs.size();
6603         Value != NumValues; ++Value) {
6604      EVT VT = ValueVTs[Value];
6605      Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
6606      ISD::ArgFlagsTy Flags;
6607      unsigned OriginalAlignment =
6608        TD->getABITypeAlignment(ArgTy);
6609
6610      if (F.paramHasAttr(Idx, Attribute::ZExt))
6611        Flags.setZExt();
6612      if (F.paramHasAttr(Idx, Attribute::SExt))
6613        Flags.setSExt();
6614      if (F.paramHasAttr(Idx, Attribute::InReg))
6615        Flags.setInReg();
6616      if (F.paramHasAttr(Idx, Attribute::StructRet))
6617        Flags.setSRet();
6618      if (F.paramHasAttr(Idx, Attribute::ByVal)) {
6619        Flags.setByVal();
6620        PointerType *Ty = cast<PointerType>(I->getType());
6621        Type *ElementTy = Ty->getElementType();
6622        Flags.setByValSize(TD->getTypeAllocSize(ElementTy));
6623        // For ByVal, alignment should be passed from FE.  BE will guess if
6624        // this info is not there but there are cases it cannot get right.
6625        unsigned FrameAlign;
6626        if (F.getParamAlignment(Idx))
6627          FrameAlign = F.getParamAlignment(Idx);
6628        else
6629          FrameAlign = TLI.getByValTypeAlignment(ElementTy);
6630        Flags.setByValAlign(FrameAlign);
6631      }
6632      if (F.paramHasAttr(Idx, Attribute::Nest))
6633        Flags.setNest();
6634      Flags.setOrigAlign(OriginalAlignment);
6635
6636      EVT RegisterVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
6637      unsigned NumRegs = TLI.getNumRegisters(*CurDAG->getContext(), VT);
6638      for (unsigned i = 0; i != NumRegs; ++i) {
6639        ISD::InputArg MyFlags(Flags, RegisterVT, isArgValueUsed);
6640        if (NumRegs > 1 && i == 0)
6641          MyFlags.Flags.setSplit();
6642        // if it isn't first piece, alignment must be 1
6643        else if (i > 0)
6644          MyFlags.Flags.setOrigAlign(1);
6645        Ins.push_back(MyFlags);
6646      }
6647    }
6648  }
6649
6650  // Call the target to set up the argument values.
6651  SmallVector<SDValue, 8> InVals;
6652  SDValue NewRoot = TLI.LowerFormalArguments(DAG.getRoot(), F.getCallingConv(),
6653                                             F.isVarArg(), Ins,
6654                                             dl, DAG, InVals);
6655
6656  // Verify that the target's LowerFormalArguments behaved as expected.
6657  assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
6658         "LowerFormalArguments didn't return a valid chain!");
6659  assert(InVals.size() == Ins.size() &&
6660         "LowerFormalArguments didn't emit the correct number of values!");
6661  DEBUG({
6662      for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
6663        assert(InVals[i].getNode() &&
6664               "LowerFormalArguments emitted a null value!");
6665        assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
6666               "LowerFormalArguments emitted a value with the wrong type!");
6667      }
6668    });
6669
6670  // Update the DAG with the new chain value resulting from argument lowering.
6671  DAG.setRoot(NewRoot);
6672
6673  // Set up the argument values.
6674  unsigned i = 0;
6675  Idx = 1;
6676  if (!FuncInfo->CanLowerReturn) {
6677    // Create a virtual register for the sret pointer, and put in a copy
6678    // from the sret argument into it.
6679    SmallVector<EVT, 1> ValueVTs;
6680    ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs);
6681    EVT VT = ValueVTs[0];
6682    EVT RegVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
6683    ISD::NodeType AssertOp = ISD::DELETED_NODE;
6684    SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1,
6685                                        RegVT, VT, AssertOp);
6686
6687    MachineFunction& MF = SDB->DAG.getMachineFunction();
6688    MachineRegisterInfo& RegInfo = MF.getRegInfo();
6689    unsigned SRetReg = RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT));
6690    FuncInfo->DemoteRegister = SRetReg;
6691    NewRoot = SDB->DAG.getCopyToReg(NewRoot, SDB->getCurDebugLoc(),
6692                                    SRetReg, ArgValue);
6693    DAG.setRoot(NewRoot);
6694
6695    // i indexes lowered arguments.  Bump it past the hidden sret argument.
6696    // Idx indexes LLVM arguments.  Don't touch it.
6697    ++i;
6698  }
6699
6700  for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E;
6701      ++I, ++Idx) {
6702    SmallVector<SDValue, 4> ArgValues;
6703    SmallVector<EVT, 4> ValueVTs;
6704    ComputeValueVTs(TLI, I->getType(), ValueVTs);
6705    unsigned NumValues = ValueVTs.size();
6706
6707    // If this argument is unused then remember its value. It is used to generate
6708    // debugging information.
6709    if (I->use_empty() && NumValues)
6710      SDB->setUnusedArgValue(I, InVals[i]);
6711
6712    for (unsigned Val = 0; Val != NumValues; ++Val) {
6713      EVT VT = ValueVTs[Val];
6714      EVT PartVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
6715      unsigned NumParts = TLI.getNumRegisters(*CurDAG->getContext(), VT);
6716
6717      if (!I->use_empty()) {
6718        ISD::NodeType AssertOp = ISD::DELETED_NODE;
6719        if (F.paramHasAttr(Idx, Attribute::SExt))
6720          AssertOp = ISD::AssertSext;
6721        else if (F.paramHasAttr(Idx, Attribute::ZExt))
6722          AssertOp = ISD::AssertZext;
6723
6724        ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i],
6725                                             NumParts, PartVT, VT,
6726                                             AssertOp));
6727      }
6728
6729      i += NumParts;
6730    }
6731
6732    // We don't need to do anything else for unused arguments.
6733    if (ArgValues.empty())
6734      continue;
6735
6736    // Note down frame index.
6737    if (FrameIndexSDNode *FI =
6738	dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
6739      FuncInfo->setArgumentFrameIndex(I, FI->getIndex());
6740
6741    SDValue Res = DAG.getMergeValues(&ArgValues[0], NumValues,
6742                                     SDB->getCurDebugLoc());
6743
6744    SDB->setValue(I, Res);
6745    if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) {
6746      if (LoadSDNode *LNode =
6747          dyn_cast<LoadSDNode>(Res.getOperand(0).getNode()))
6748        if (FrameIndexSDNode *FI =
6749            dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
6750        FuncInfo->setArgumentFrameIndex(I, FI->getIndex());
6751    }
6752
6753    // If this argument is live outside of the entry block, insert a copy from
6754    // wherever we got it to the vreg that other BB's will reference it as.
6755    if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) {
6756      // If we can, though, try to skip creating an unnecessary vreg.
6757      // FIXME: This isn't very clean... it would be nice to make this more
6758      // general.  It's also subtly incompatible with the hacks FastISel
6759      // uses with vregs.
6760      unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
6761      if (TargetRegisterInfo::isVirtualRegister(Reg)) {
6762        FuncInfo->ValueMap[I] = Reg;
6763        continue;
6764      }
6765    }
6766    if (!isOnlyUsedInEntryBlock(I, TM.Options.EnableFastISel)) {
6767      FuncInfo->InitializeRegForValue(I);
6768      SDB->CopyToExportRegsIfNeeded(I);
6769    }
6770  }
6771
6772  assert(i == InVals.size() && "Argument register count mismatch!");
6773
6774  // Finally, if the target has anything special to do, allow it to do so.
6775  // FIXME: this should insert code into the DAG!
6776  EmitFunctionEntryCode();
6777}
6778
6779/// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
6780/// ensure constants are generated when needed.  Remember the virtual registers
6781/// that need to be added to the Machine PHI nodes as input.  We cannot just
6782/// directly add them, because expansion might result in multiple MBB's for one
6783/// BB.  As such, the start of the BB might correspond to a different MBB than
6784/// the end.
6785///
6786void
6787SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
6788  const TerminatorInst *TI = LLVMBB->getTerminator();
6789
6790  SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
6791
6792  // Check successor nodes' PHI nodes that expect a constant to be available
6793  // from this block.
6794  for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
6795    const BasicBlock *SuccBB = TI->getSuccessor(succ);
6796    if (!isa<PHINode>(SuccBB->begin())) continue;
6797    MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
6798
6799    // If this terminator has multiple identical successors (common for
6800    // switches), only handle each succ once.
6801    if (!SuccsHandled.insert(SuccMBB)) continue;
6802
6803    MachineBasicBlock::iterator MBBI = SuccMBB->begin();
6804
6805    // At this point we know that there is a 1-1 correspondence between LLVM PHI
6806    // nodes and Machine PHI nodes, but the incoming operands have not been
6807    // emitted yet.
6808    for (BasicBlock::const_iterator I = SuccBB->begin();
6809         const PHINode *PN = dyn_cast<PHINode>(I); ++I) {
6810      // Ignore dead phi's.
6811      if (PN->use_empty()) continue;
6812
6813      // Skip empty types
6814      if (PN->getType()->isEmptyTy())
6815        continue;
6816
6817      unsigned Reg;
6818      const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
6819
6820      if (const Constant *C = dyn_cast<Constant>(PHIOp)) {
6821        unsigned &RegOut = ConstantsOut[C];
6822        if (RegOut == 0) {
6823          RegOut = FuncInfo.CreateRegs(C->getType());
6824          CopyValueToVirtualRegister(C, RegOut);
6825        }
6826        Reg = RegOut;
6827      } else {
6828        DenseMap<const Value *, unsigned>::iterator I =
6829          FuncInfo.ValueMap.find(PHIOp);
6830        if (I != FuncInfo.ValueMap.end())
6831          Reg = I->second;
6832        else {
6833          assert(isa<AllocaInst>(PHIOp) &&
6834                 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
6835                 "Didn't codegen value into a register!??");
6836          Reg = FuncInfo.CreateRegs(PHIOp->getType());
6837          CopyValueToVirtualRegister(PHIOp, Reg);
6838        }
6839      }
6840
6841      // Remember that this register needs to added to the machine PHI node as
6842      // the input for this MBB.
6843      SmallVector<EVT, 4> ValueVTs;
6844      ComputeValueVTs(TLI, PN->getType(), ValueVTs);
6845      for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
6846        EVT VT = ValueVTs[vti];
6847        unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
6848        for (unsigned i = 0, e = NumRegisters; i != e; ++i)
6849          FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i));
6850        Reg += NumRegisters;
6851      }
6852    }
6853  }
6854  ConstantsOut.clear();
6855}
6856