SelectionDAGBuilder.cpp revision ec72e32fb032cdf367f47ed3a953c3aa2fa93197
1//===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements routines for translating from LLVM IR into SelectionDAG IR.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "isel"
15#include "SelectionDAGBuilder.h"
16#include "FunctionLoweringInfo.h"
17#include "llvm/ADT/BitVector.h"
18#include "llvm/ADT/SmallSet.h"
19#include "llvm/Analysis/AliasAnalysis.h"
20#include "llvm/Constants.h"
21#include "llvm/CallingConv.h"
22#include "llvm/DerivedTypes.h"
23#include "llvm/Function.h"
24#include "llvm/GlobalVariable.h"
25#include "llvm/InlineAsm.h"
26#include "llvm/Instructions.h"
27#include "llvm/Intrinsics.h"
28#include "llvm/IntrinsicInst.h"
29#include "llvm/LLVMContext.h"
30#include "llvm/Module.h"
31#include "llvm/CodeGen/FastISel.h"
32#include "llvm/CodeGen/GCStrategy.h"
33#include "llvm/CodeGen/GCMetadata.h"
34#include "llvm/CodeGen/MachineFunction.h"
35#include "llvm/CodeGen/MachineFrameInfo.h"
36#include "llvm/CodeGen/MachineInstrBuilder.h"
37#include "llvm/CodeGen/MachineJumpTableInfo.h"
38#include "llvm/CodeGen/MachineModuleInfo.h"
39#include "llvm/CodeGen/MachineRegisterInfo.h"
40#include "llvm/CodeGen/PseudoSourceValue.h"
41#include "llvm/CodeGen/SelectionDAG.h"
42#include "llvm/CodeGen/DwarfWriter.h"
43#include "llvm/Analysis/DebugInfo.h"
44#include "llvm/Target/TargetRegisterInfo.h"
45#include "llvm/Target/TargetData.h"
46#include "llvm/Target/TargetFrameInfo.h"
47#include "llvm/Target/TargetInstrInfo.h"
48#include "llvm/Target/TargetIntrinsicInfo.h"
49#include "llvm/Target/TargetLowering.h"
50#include "llvm/Target/TargetOptions.h"
51#include "llvm/Support/Compiler.h"
52#include "llvm/Support/CommandLine.h"
53#include "llvm/Support/Debug.h"
54#include "llvm/Support/ErrorHandling.h"
55#include "llvm/Support/MathExtras.h"
56#include "llvm/Support/raw_ostream.h"
57#include <algorithm>
58using namespace llvm;
59
60/// LimitFloatPrecision - Generate low-precision inline sequences for
61/// some float libcalls (6, 8 or 12 bits).
62static unsigned LimitFloatPrecision;
63
64static cl::opt<unsigned, true>
65LimitFPPrecision("limit-float-precision",
66                 cl::desc("Generate low-precision inline sequences "
67                          "for some float libcalls"),
68                 cl::location(LimitFloatPrecision),
69                 cl::init(0));
70
71namespace {
72  /// RegsForValue - This struct represents the registers (physical or virtual)
73  /// that a particular set of values is assigned, and the type information about
74  /// the value. The most common situation is to represent one value at a time,
75  /// but struct or array values are handled element-wise as multiple values.
76  /// The splitting of aggregates is performed recursively, so that we never
77  /// have aggregate-typed registers. The values at this point do not necessarily
78  /// have legal types, so each value may require one or more registers of some
79  /// legal type.
80  ///
81  struct RegsForValue {
82    /// TLI - The TargetLowering object.
83    ///
84    const TargetLowering *TLI;
85
86    /// ValueVTs - The value types of the values, which may not be legal, and
87    /// may need be promoted or synthesized from one or more registers.
88    ///
89    SmallVector<EVT, 4> ValueVTs;
90
91    /// RegVTs - The value types of the registers. This is the same size as
92    /// ValueVTs and it records, for each value, what the type of the assigned
93    /// register or registers are. (Individual values are never synthesized
94    /// from more than one type of register.)
95    ///
96    /// With virtual registers, the contents of RegVTs is redundant with TLI's
97    /// getRegisterType member function, however when with physical registers
98    /// it is necessary to have a separate record of the types.
99    ///
100    SmallVector<EVT, 4> RegVTs;
101
102    /// Regs - This list holds the registers assigned to the values.
103    /// Each legal or promoted value requires one register, and each
104    /// expanded value requires multiple registers.
105    ///
106    SmallVector<unsigned, 4> Regs;
107
108    RegsForValue() : TLI(0) {}
109
110    RegsForValue(const TargetLowering &tli,
111                 const SmallVector<unsigned, 4> &regs,
112                 EVT regvt, EVT valuevt)
113      : TLI(&tli),  ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {}
114    RegsForValue(const TargetLowering &tli,
115                 const SmallVector<unsigned, 4> &regs,
116                 const SmallVector<EVT, 4> &regvts,
117                 const SmallVector<EVT, 4> &valuevts)
118      : TLI(&tli), ValueVTs(valuevts), RegVTs(regvts), Regs(regs) {}
119    RegsForValue(LLVMContext &Context, const TargetLowering &tli,
120                 unsigned Reg, const Type *Ty) : TLI(&tli) {
121      ComputeValueVTs(tli, Ty, ValueVTs);
122
123      for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
124        EVT ValueVT = ValueVTs[Value];
125        unsigned NumRegs = TLI->getNumRegisters(Context, ValueVT);
126        EVT RegisterVT = TLI->getRegisterType(Context, ValueVT);
127        for (unsigned i = 0; i != NumRegs; ++i)
128          Regs.push_back(Reg + i);
129        RegVTs.push_back(RegisterVT);
130        Reg += NumRegs;
131      }
132    }
133
134    /// append - Add the specified values to this one.
135    void append(const RegsForValue &RHS) {
136      TLI = RHS.TLI;
137      ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end());
138      RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end());
139      Regs.append(RHS.Regs.begin(), RHS.Regs.end());
140    }
141
142
143    /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
144    /// this value and returns the result as a ValueVTs value.  This uses
145    /// Chain/Flag as the input and updates them for the output Chain/Flag.
146    /// If the Flag pointer is NULL, no flag is used.
147    SDValue getCopyFromRegs(SelectionDAG &DAG, DebugLoc dl, unsigned Order,
148                            SDValue &Chain, SDValue *Flag) const;
149
150    /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
151    /// specified value into the registers specified by this object.  This uses
152    /// Chain/Flag as the input and updates them for the output Chain/Flag.
153    /// If the Flag pointer is NULL, no flag is used.
154    void getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl,
155                       unsigned Order, SDValue &Chain, SDValue *Flag) const;
156
157    /// AddInlineAsmOperands - Add this value to the specified inlineasm node
158    /// operand list.  This adds the code marker, matching input operand index
159    /// (if applicable), and includes the number of values added into it.
160    void AddInlineAsmOperands(unsigned Code,
161                              bool HasMatching, unsigned MatchingIdx,
162                              SelectionDAG &DAG, std::vector<SDValue> &Ops) const;
163  };
164}
165
166/// getCopyFromParts - Create a value that contains the specified legal parts
167/// combined into the value they represent.  If the parts combine to a type
168/// larger then ValueVT then AssertOp can be used to specify whether the extra
169/// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
170/// (ISD::AssertSext).
171static SDValue getCopyFromParts(SelectionDAG &DAG, DebugLoc dl,
172                                const SDValue *Parts,
173                                unsigned NumParts, EVT PartVT, EVT ValueVT,
174                                ISD::NodeType AssertOp = ISD::DELETED_NODE) {
175  assert(NumParts > 0 && "No parts to assemble!");
176  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
177  SDValue Val = Parts[0];
178
179  if (NumParts > 1) {
180    // Assemble the value from multiple parts.
181    if (!ValueVT.isVector() && ValueVT.isInteger()) {
182      unsigned PartBits = PartVT.getSizeInBits();
183      unsigned ValueBits = ValueVT.getSizeInBits();
184
185      // Assemble the power of 2 part.
186      unsigned RoundParts = NumParts & (NumParts - 1) ?
187        1 << Log2_32(NumParts) : NumParts;
188      unsigned RoundBits = PartBits * RoundParts;
189      EVT RoundVT = RoundBits == ValueBits ?
190        ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
191      SDValue Lo, Hi;
192
193      EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
194
195      if (RoundParts > 2) {
196        Lo = getCopyFromParts(DAG, dl, Parts, RoundParts/2, PartVT, HalfVT);
197        Hi = getCopyFromParts(DAG, dl, Parts+RoundParts/2, RoundParts/2,
198                              PartVT, HalfVT);
199      } else {
200        Lo = DAG.getNode(ISD::BIT_CONVERT, dl, HalfVT, Parts[0]);
201        Hi = DAG.getNode(ISD::BIT_CONVERT, dl, HalfVT, Parts[1]);
202      }
203      if (TLI.isBigEndian())
204        std::swap(Lo, Hi);
205      Val = DAG.getNode(ISD::BUILD_PAIR, dl, RoundVT, Lo, Hi);
206
207      if (RoundParts < NumParts) {
208        // Assemble the trailing non-power-of-2 part.
209        unsigned OddParts = NumParts - RoundParts;
210        EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
211        Hi = getCopyFromParts(DAG, dl,
212                              Parts+RoundParts, OddParts, PartVT, OddVT);
213
214        // Combine the round and odd parts.
215        Lo = Val;
216        if (TLI.isBigEndian())
217          std::swap(Lo, Hi);
218        EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
219        Hi = DAG.getNode(ISD::ANY_EXTEND, dl, TotalVT, Hi);
220        Hi = DAG.getNode(ISD::SHL, dl, TotalVT, Hi,
221                         DAG.getConstant(Lo.getValueType().getSizeInBits(),
222                                         TLI.getPointerTy()));
223        Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, TotalVT, Lo);
224        Val = DAG.getNode(ISD::OR, dl, TotalVT, Lo, Hi);
225      }
226    } else if (ValueVT.isVector()) {
227      // Handle a multi-element vector.
228      EVT IntermediateVT, RegisterVT;
229      unsigned NumIntermediates;
230      unsigned NumRegs =
231        TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
232                                   NumIntermediates, RegisterVT);
233      assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
234      NumParts = NumRegs; // Silence a compiler warning.
235      assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
236      assert(RegisterVT == Parts[0].getValueType() &&
237             "Part type doesn't match part!");
238
239      // Assemble the parts into intermediate operands.
240      SmallVector<SDValue, 8> Ops(NumIntermediates);
241      if (NumIntermediates == NumParts) {
242        // If the register was not expanded, truncate or copy the value,
243        // as appropriate.
244        for (unsigned i = 0; i != NumParts; ++i)
245          Ops[i] = getCopyFromParts(DAG, dl, &Parts[i], 1,
246                                    PartVT, IntermediateVT);
247      } else if (NumParts > 0) {
248        // If the intermediate type was expanded, build the intermediate operands
249        // from the parts.
250        assert(NumParts % NumIntermediates == 0 &&
251               "Must expand into a divisible number of parts!");
252        unsigned Factor = NumParts / NumIntermediates;
253        for (unsigned i = 0; i != NumIntermediates; ++i)
254          Ops[i] = getCopyFromParts(DAG, dl, &Parts[i * Factor], Factor,
255                                    PartVT, IntermediateVT);
256      }
257
258      // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the intermediate
259      // operands.
260      Val = DAG.getNode(IntermediateVT.isVector() ?
261                        ISD::CONCAT_VECTORS : ISD::BUILD_VECTOR, dl,
262                        ValueVT, &Ops[0], NumIntermediates);
263    } else if (PartVT.isFloatingPoint()) {
264      // FP split into multiple FP parts (for ppcf128)
265      assert(ValueVT == EVT(MVT::ppcf128) && PartVT == EVT(MVT::f64) &&
266             "Unexpected split");
267      SDValue Lo, Hi;
268      Lo = DAG.getNode(ISD::BIT_CONVERT, dl, EVT(MVT::f64), Parts[0]);
269      Hi = DAG.getNode(ISD::BIT_CONVERT, dl, EVT(MVT::f64), Parts[1]);
270      if (TLI.isBigEndian())
271        std::swap(Lo, Hi);
272      Val = DAG.getNode(ISD::BUILD_PAIR, dl, ValueVT, Lo, Hi);
273    } else {
274      // FP split into integer parts (soft fp)
275      assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
276             !PartVT.isVector() && "Unexpected split");
277      EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
278      Val = getCopyFromParts(DAG, dl, Parts, NumParts, PartVT, IntVT);
279    }
280  }
281
282  // There is now one part, held in Val.  Correct it to match ValueVT.
283  PartVT = Val.getValueType();
284
285  if (PartVT == ValueVT)
286    return Val;
287
288  if (PartVT.isVector()) {
289    assert(ValueVT.isVector() && "Unknown vector conversion!");
290    return DAG.getNode(ISD::BIT_CONVERT, dl, ValueVT, Val);
291  }
292
293  if (ValueVT.isVector()) {
294    assert(ValueVT.getVectorElementType() == PartVT &&
295           ValueVT.getVectorNumElements() == 1 &&
296           "Only trivial scalar-to-vector conversions should get here!");
297    return DAG.getNode(ISD::BUILD_VECTOR, dl, ValueVT, Val);
298  }
299
300  if (PartVT.isInteger() &&
301      ValueVT.isInteger()) {
302    if (ValueVT.bitsLT(PartVT)) {
303      // For a truncate, see if we have any information to
304      // indicate whether the truncated bits will always be
305      // zero or sign-extension.
306      if (AssertOp != ISD::DELETED_NODE)
307        Val = DAG.getNode(AssertOp, dl, PartVT, Val,
308                          DAG.getValueType(ValueVT));
309      return DAG.getNode(ISD::TRUNCATE, dl, ValueVT, Val);
310    } else {
311      return DAG.getNode(ISD::ANY_EXTEND, dl, ValueVT, Val);
312    }
313  }
314
315  if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
316    if (ValueVT.bitsLT(Val.getValueType()))
317      // FP_ROUND's are always exact here.
318      return DAG.getNode(ISD::FP_ROUND, dl, ValueVT, Val,
319                         DAG.getIntPtrConstant(1));
320    return DAG.getNode(ISD::FP_EXTEND, dl, ValueVT, Val);
321  }
322
323  if (PartVT.getSizeInBits() == ValueVT.getSizeInBits())
324    return DAG.getNode(ISD::BIT_CONVERT, dl, ValueVT, Val);
325
326  llvm_unreachable("Unknown mismatch!");
327  return SDValue();
328}
329
330/// getCopyToParts - Create a series of nodes that contain the specified value
331/// split into legal parts.  If the parts contain more bits than Val, then, for
332/// integers, ExtendKind can be used to specify how to generate the extra bits.
333static void getCopyToParts(SelectionDAG &DAG, DebugLoc dl, SDValue Val,
334                           SDValue *Parts, unsigned NumParts, EVT PartVT,
335                           ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
336  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
337  EVT PtrVT = TLI.getPointerTy();
338  EVT ValueVT = Val.getValueType();
339  unsigned PartBits = PartVT.getSizeInBits();
340  unsigned OrigNumParts = NumParts;
341  assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!");
342
343  if (!NumParts)
344    return;
345
346  if (!ValueVT.isVector()) {
347    if (PartVT == ValueVT) {
348      assert(NumParts == 1 && "No-op copy with multiple parts!");
349      Parts[0] = Val;
350      return;
351    }
352
353    if (NumParts * PartBits > ValueVT.getSizeInBits()) {
354      // If the parts cover more bits than the value has, promote the value.
355      if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
356        assert(NumParts == 1 && "Do not know what to promote to!");
357        Val = DAG.getNode(ISD::FP_EXTEND, dl, PartVT, Val);
358      } else if (PartVT.isInteger() && ValueVT.isInteger()) {
359        ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
360        Val = DAG.getNode(ExtendKind, dl, ValueVT, Val);
361      } else {
362        llvm_unreachable("Unknown mismatch!");
363      }
364    } else if (PartBits == ValueVT.getSizeInBits()) {
365      // Different types of the same size.
366      assert(NumParts == 1 && PartVT != ValueVT);
367      Val = DAG.getNode(ISD::BIT_CONVERT, dl, PartVT, Val);
368    } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
369      // If the parts cover less bits than value has, truncate the value.
370      if (PartVT.isInteger() && ValueVT.isInteger()) {
371        ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
372        Val = DAG.getNode(ISD::TRUNCATE, dl, ValueVT, Val);
373      } else {
374        llvm_unreachable("Unknown mismatch!");
375      }
376    }
377
378    // The value may have changed - recompute ValueVT.
379    ValueVT = Val.getValueType();
380    assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
381           "Failed to tile the value with PartVT!");
382
383    if (NumParts == 1) {
384      assert(PartVT == ValueVT && "Type conversion failed!");
385      Parts[0] = Val;
386      return;
387    }
388
389    // Expand the value into multiple parts.
390    if (NumParts & (NumParts - 1)) {
391      // The number of parts is not a power of 2.  Split off and copy the tail.
392      assert(PartVT.isInteger() && ValueVT.isInteger() &&
393             "Do not know what to expand to!");
394      unsigned RoundParts = 1 << Log2_32(NumParts);
395      unsigned RoundBits = RoundParts * PartBits;
396      unsigned OddParts = NumParts - RoundParts;
397      SDValue OddVal = DAG.getNode(ISD::SRL, dl, ValueVT, Val,
398                                   DAG.getConstant(RoundBits,
399                                                   TLI.getPointerTy()));
400      getCopyToParts(DAG, dl, OddVal, Parts + RoundParts, OddParts, PartVT);
401      if (TLI.isBigEndian())
402        // The odd parts were reversed by getCopyToParts - unreverse them.
403        std::reverse(Parts + RoundParts, Parts + NumParts);
404      NumParts = RoundParts;
405      ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
406      Val = DAG.getNode(ISD::TRUNCATE, dl, ValueVT, Val);
407    }
408
409    // The number of parts is a power of 2.  Repeatedly bisect the value using
410    // EXTRACT_ELEMENT.
411    Parts[0] = DAG.getNode(ISD::BIT_CONVERT, dl,
412                           EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()),
413                           Val);
414    for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
415      for (unsigned i = 0; i < NumParts; i += StepSize) {
416        unsigned ThisBits = StepSize * PartBits / 2;
417        EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
418        SDValue &Part0 = Parts[i];
419        SDValue &Part1 = Parts[i+StepSize/2];
420
421        Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
422                            ThisVT, Part0,
423                            DAG.getConstant(1, PtrVT));
424        Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
425                            ThisVT, Part0,
426                            DAG.getConstant(0, PtrVT));
427
428        if (ThisBits == PartBits && ThisVT != PartVT) {
429          Part0 = DAG.getNode(ISD::BIT_CONVERT, dl,
430                                                PartVT, Part0);
431          Part1 = DAG.getNode(ISD::BIT_CONVERT, dl,
432                                                PartVT, Part1);
433        }
434      }
435    }
436
437    if (TLI.isBigEndian())
438      std::reverse(Parts, Parts + OrigNumParts);
439
440    return;
441  }
442
443  // Vector ValueVT.
444  if (NumParts == 1) {
445    if (PartVT != ValueVT) {
446      if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
447        Val = DAG.getNode(ISD::BIT_CONVERT, dl, PartVT, Val);
448      } else {
449        assert(ValueVT.getVectorElementType() == PartVT &&
450               ValueVT.getVectorNumElements() == 1 &&
451               "Only trivial vector-to-scalar conversions should get here!");
452        Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
453                          PartVT, Val,
454                          DAG.getConstant(0, PtrVT));
455      }
456    }
457
458    Parts[0] = Val;
459    return;
460  }
461
462  // Handle a multi-element vector.
463  EVT IntermediateVT, RegisterVT;
464  unsigned NumIntermediates;
465  unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT,
466                              IntermediateVT, NumIntermediates, RegisterVT);
467  unsigned NumElements = ValueVT.getVectorNumElements();
468
469  assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
470  NumParts = NumRegs; // Silence a compiler warning.
471  assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
472
473  // Split the vector into intermediate operands.
474  SmallVector<SDValue, 8> Ops(NumIntermediates);
475  for (unsigned i = 0; i != NumIntermediates; ++i)
476    if (IntermediateVT.isVector())
477      Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl,
478                           IntermediateVT, Val,
479                           DAG.getConstant(i * (NumElements / NumIntermediates),
480                                           PtrVT));
481    else
482      Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
483                           IntermediateVT, Val,
484                           DAG.getConstant(i, PtrVT));
485
486  // Split the intermediate operands into legal parts.
487  if (NumParts == NumIntermediates) {
488    // If the register was not expanded, promote or copy the value,
489    // as appropriate.
490    for (unsigned i = 0; i != NumParts; ++i)
491      getCopyToParts(DAG, dl, Ops[i], &Parts[i], 1, PartVT);
492  } else if (NumParts > 0) {
493    // If the intermediate type was expanded, split each the value into
494    // legal parts.
495    assert(NumParts % NumIntermediates == 0 &&
496           "Must expand into a divisible number of parts!");
497    unsigned Factor = NumParts / NumIntermediates;
498    for (unsigned i = 0; i != NumIntermediates; ++i)
499      getCopyToParts(DAG, dl, Ops[i], &Parts[i * Factor], Factor, PartVT);
500  }
501}
502
503
504void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa) {
505  AA = &aa;
506  GFI = gfi;
507  TD = DAG.getTarget().getTargetData();
508}
509
510/// clear - Clear out the curret SelectionDAG and the associated
511/// state and prepare this SelectionDAGBuilder object to be used
512/// for a new block. This doesn't clear out information about
513/// additional blocks that are needed to complete switch lowering
514/// or PHI node updating; that information is cleared out as it is
515/// consumed.
516void SelectionDAGBuilder::clear() {
517  NodeMap.clear();
518  PendingLoads.clear();
519  PendingExports.clear();
520  EdgeMapping.clear();
521  DAG.clear();
522  CurDebugLoc = DebugLoc::getUnknownLoc();
523  HasTailCall = false;
524}
525
526/// getRoot - Return the current virtual root of the Selection DAG,
527/// flushing any PendingLoad items. This must be done before emitting
528/// a store or any other node that may need to be ordered after any
529/// prior load instructions.
530///
531SDValue SelectionDAGBuilder::getRoot() {
532  if (PendingLoads.empty())
533    return DAG.getRoot();
534
535  if (PendingLoads.size() == 1) {
536    SDValue Root = PendingLoads[0];
537    DAG.setRoot(Root);
538    PendingLoads.clear();
539    return Root;
540  }
541
542  // Otherwise, we have to make a token factor node.
543  SDValue Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
544                               &PendingLoads[0], PendingLoads.size());
545  PendingLoads.clear();
546  DAG.setRoot(Root);
547  return Root;
548}
549
550/// getControlRoot - Similar to getRoot, but instead of flushing all the
551/// PendingLoad items, flush all the PendingExports items. It is necessary
552/// to do this before emitting a terminator instruction.
553///
554SDValue SelectionDAGBuilder::getControlRoot() {
555  SDValue Root = DAG.getRoot();
556
557  if (PendingExports.empty())
558    return Root;
559
560  // Turn all of the CopyToReg chains into one factored node.
561  if (Root.getOpcode() != ISD::EntryToken) {
562    unsigned i = 0, e = PendingExports.size();
563    for (; i != e; ++i) {
564      assert(PendingExports[i].getNode()->getNumOperands() > 1);
565      if (PendingExports[i].getNode()->getOperand(0) == Root)
566        break;  // Don't add the root if we already indirectly depend on it.
567    }
568
569    if (i == e)
570      PendingExports.push_back(Root);
571  }
572
573  Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
574                     &PendingExports[0],
575                     PendingExports.size());
576  PendingExports.clear();
577  DAG.setRoot(Root);
578  return Root;
579}
580
581void SelectionDAGBuilder::visit(Instruction &I) {
582  visit(I.getOpcode(), I);
583}
584
585void SelectionDAGBuilder::visit(unsigned Opcode, User &I) {
586  // We're processing a new instruction.
587  ++SDNodeOrder;
588
589  // Note: this doesn't use InstVisitor, because it has to work with
590  // ConstantExpr's in addition to instructions.
591  switch (Opcode) {
592  default: llvm_unreachable("Unknown instruction type encountered!");
593    // Build the switch statement using the Instruction.def file.
594#define HANDLE_INST(NUM, OPCODE, CLASS) \
595  case Instruction::OPCODE: return visit##OPCODE((CLASS&)I);
596#include "llvm/Instruction.def"
597  }
598}
599
600SDValue SelectionDAGBuilder::getValue(const Value *V) {
601  SDValue &N = NodeMap[V];
602  if (N.getNode()) return N;
603
604  if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(V))) {
605    EVT VT = TLI.getValueType(V->getType(), true);
606
607    if (ConstantInt *CI = dyn_cast<ConstantInt>(C))
608      return N = DAG.getConstant(*CI, VT);
609
610    if (GlobalValue *GV = dyn_cast<GlobalValue>(C))
611      return N = DAG.getGlobalAddress(GV, VT);
612
613    if (isa<ConstantPointerNull>(C))
614      return N = DAG.getConstant(0, TLI.getPointerTy());
615
616    if (ConstantFP *CFP = dyn_cast<ConstantFP>(C))
617      return N = DAG.getConstantFP(*CFP, VT);
618
619    if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
620      return N = DAG.getUNDEF(VT);
621
622    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
623      visit(CE->getOpcode(), *CE);
624      SDValue N1 = NodeMap[V];
625      assert(N1.getNode() && "visit didn't populate the ValueMap!");
626      return N1;
627    }
628
629    if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
630      SmallVector<SDValue, 4> Constants;
631      for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end();
632           OI != OE; ++OI) {
633        SDNode *Val = getValue(*OI).getNode();
634        // If the operand is an empty aggregate, there are no values.
635        if (!Val) continue;
636        // Add each leaf value from the operand to the Constants list
637        // to form a flattened list of all the values.
638        for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
639          Constants.push_back(SDValue(Val, i));
640      }
641
642      SDValue Res = DAG.getMergeValues(&Constants[0], Constants.size(),
643                                       getCurDebugLoc());
644      if (DisableScheduling)
645        DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
646      return Res;
647    }
648
649    if (isa<StructType>(C->getType()) || isa<ArrayType>(C->getType())) {
650      assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
651             "Unknown struct or array constant!");
652
653      SmallVector<EVT, 4> ValueVTs;
654      ComputeValueVTs(TLI, C->getType(), ValueVTs);
655      unsigned NumElts = ValueVTs.size();
656      if (NumElts == 0)
657        return SDValue(); // empty struct
658      SmallVector<SDValue, 4> Constants(NumElts);
659      for (unsigned i = 0; i != NumElts; ++i) {
660        EVT EltVT = ValueVTs[i];
661        if (isa<UndefValue>(C))
662          Constants[i] = DAG.getUNDEF(EltVT);
663        else if (EltVT.isFloatingPoint())
664          Constants[i] = DAG.getConstantFP(0, EltVT);
665        else
666          Constants[i] = DAG.getConstant(0, EltVT);
667      }
668
669      SDValue Res = DAG.getMergeValues(&Constants[0], NumElts,
670                                       getCurDebugLoc());
671      if (DisableScheduling)
672        DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
673      return Res;
674    }
675
676    if (BlockAddress *BA = dyn_cast<BlockAddress>(C))
677      return DAG.getBlockAddress(BA, VT);
678
679    const VectorType *VecTy = cast<VectorType>(V->getType());
680    unsigned NumElements = VecTy->getNumElements();
681
682    // Now that we know the number and type of the elements, get that number of
683    // elements into the Ops array based on what kind of constant it is.
684    SmallVector<SDValue, 16> Ops;
685    if (ConstantVector *CP = dyn_cast<ConstantVector>(C)) {
686      for (unsigned i = 0; i != NumElements; ++i)
687        Ops.push_back(getValue(CP->getOperand(i)));
688    } else {
689      assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!");
690      EVT EltVT = TLI.getValueType(VecTy->getElementType());
691
692      SDValue Op;
693      if (EltVT.isFloatingPoint())
694        Op = DAG.getConstantFP(0, EltVT);
695      else
696        Op = DAG.getConstant(0, EltVT);
697      Ops.assign(NumElements, Op);
698    }
699
700    // Create a BUILD_VECTOR node.
701    SDValue Res = DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(),
702                              VT, &Ops[0], Ops.size());
703    if (DisableScheduling)
704      DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
705
706    return NodeMap[V] = Res;
707  }
708
709  // If this is a static alloca, generate it as the frameindex instead of
710  // computation.
711  if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
712    DenseMap<const AllocaInst*, int>::iterator SI =
713      FuncInfo.StaticAllocaMap.find(AI);
714    if (SI != FuncInfo.StaticAllocaMap.end())
715      return DAG.getFrameIndex(SI->second, TLI.getPointerTy());
716  }
717
718  unsigned InReg = FuncInfo.ValueMap[V];
719  assert(InReg && "Value not in map!");
720
721  RegsForValue RFV(*DAG.getContext(), TLI, InReg, V->getType());
722  SDValue Chain = DAG.getEntryNode();
723  return RFV.getCopyFromRegs(DAG, getCurDebugLoc(),
724                             SDNodeOrder, Chain, NULL);
725}
726
727/// Get the EVTs and ArgFlags collections that represent the return type
728/// of the given function.  This does not require a DAG or a return value, and
729/// is suitable for use before any DAGs for the function are constructed.
730static void getReturnInfo(const Type* ReturnType,
731                   Attributes attr, SmallVectorImpl<EVT> &OutVTs,
732                   SmallVectorImpl<ISD::ArgFlagsTy> &OutFlags,
733                   TargetLowering &TLI,
734                   SmallVectorImpl<uint64_t> *Offsets = 0) {
735  SmallVector<EVT, 4> ValueVTs;
736  ComputeValueVTs(TLI, ReturnType, ValueVTs, Offsets);
737  unsigned NumValues = ValueVTs.size();
738  if ( NumValues == 0 ) return;
739
740  for (unsigned j = 0, f = NumValues; j != f; ++j) {
741    EVT VT = ValueVTs[j];
742    ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
743
744    if (attr & Attribute::SExt)
745      ExtendKind = ISD::SIGN_EXTEND;
746    else if (attr & Attribute::ZExt)
747      ExtendKind = ISD::ZERO_EXTEND;
748
749    // FIXME: C calling convention requires the return type to be promoted to
750    // at least 32-bit. But this is not necessary for non-C calling
751    // conventions. The frontend should mark functions whose return values
752    // require promoting with signext or zeroext attributes.
753    if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) {
754      EVT MinVT = TLI.getRegisterType(ReturnType->getContext(), MVT::i32);
755      if (VT.bitsLT(MinVT))
756        VT = MinVT;
757    }
758
759    unsigned NumParts = TLI.getNumRegisters(ReturnType->getContext(), VT);
760    EVT PartVT = TLI.getRegisterType(ReturnType->getContext(), VT);
761    // 'inreg' on function refers to return value
762    ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
763    if (attr & Attribute::InReg)
764      Flags.setInReg();
765
766    // Propagate extension type if any
767    if (attr & Attribute::SExt)
768      Flags.setSExt();
769    else if (attr & Attribute::ZExt)
770      Flags.setZExt();
771
772    for (unsigned i = 0; i < NumParts; ++i) {
773      OutVTs.push_back(PartVT);
774      OutFlags.push_back(Flags);
775    }
776  }
777}
778
779void SelectionDAGBuilder::visitRet(ReturnInst &I) {
780  SDValue Chain = getControlRoot();
781  SmallVector<ISD::OutputArg, 8> Outs;
782  FunctionLoweringInfo &FLI = DAG.getFunctionLoweringInfo();
783
784  if (!FLI.CanLowerReturn) {
785    unsigned DemoteReg = FLI.DemoteRegister;
786    const Function *F = I.getParent()->getParent();
787
788    // Emit a store of the return value through the virtual register.
789    // Leave Outs empty so that LowerReturn won't try to load return
790    // registers the usual way.
791    SmallVector<EVT, 1> PtrValueVTs;
792    ComputeValueVTs(TLI, PointerType::getUnqual(F->getReturnType()),
793                    PtrValueVTs);
794
795    SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]);
796    SDValue RetOp = getValue(I.getOperand(0));
797
798    SmallVector<EVT, 4> ValueVTs;
799    SmallVector<uint64_t, 4> Offsets;
800    ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs, &Offsets);
801    unsigned NumValues = ValueVTs.size();
802
803    SmallVector<SDValue, 4> Chains(NumValues);
804    EVT PtrVT = PtrValueVTs[0];
805    for (unsigned i = 0; i != NumValues; ++i) {
806      SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT, RetPtr,
807                                DAG.getConstant(Offsets[i], PtrVT));
808      Chains[i] =
809        DAG.getStore(Chain, getCurDebugLoc(),
810                     SDValue(RetOp.getNode(), RetOp.getResNo() + i),
811                     Add, NULL, Offsets[i], false, 0);
812
813      if (DisableScheduling) {
814        DAG.AssignOrdering(Add.getNode(), SDNodeOrder);
815        DAG.AssignOrdering(Chains[i].getNode(), SDNodeOrder);
816      }
817    }
818
819    Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
820                        MVT::Other, &Chains[0], NumValues);
821
822    if (DisableScheduling)
823      DAG.AssignOrdering(Chain.getNode(), SDNodeOrder);
824  } else {
825    for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
826      SmallVector<EVT, 4> ValueVTs;
827      ComputeValueVTs(TLI, I.getOperand(i)->getType(), ValueVTs);
828      unsigned NumValues = ValueVTs.size();
829      if (NumValues == 0) continue;
830
831      SDValue RetOp = getValue(I.getOperand(i));
832      for (unsigned j = 0, f = NumValues; j != f; ++j) {
833        EVT VT = ValueVTs[j];
834
835        ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
836
837        const Function *F = I.getParent()->getParent();
838        if (F->paramHasAttr(0, Attribute::SExt))
839          ExtendKind = ISD::SIGN_EXTEND;
840        else if (F->paramHasAttr(0, Attribute::ZExt))
841          ExtendKind = ISD::ZERO_EXTEND;
842
843        // FIXME: C calling convention requires the return type to be promoted to
844        // at least 32-bit. But this is not necessary for non-C calling
845        // conventions. The frontend should mark functions whose return values
846        // require promoting with signext or zeroext attributes.
847        if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) {
848          EVT MinVT = TLI.getRegisterType(*DAG.getContext(), MVT::i32);
849          if (VT.bitsLT(MinVT))
850            VT = MinVT;
851        }
852
853        unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), VT);
854        EVT PartVT = TLI.getRegisterType(*DAG.getContext(), VT);
855        SmallVector<SDValue, 4> Parts(NumParts);
856        getCopyToParts(DAG, getCurDebugLoc(),
857                       SDValue(RetOp.getNode(), RetOp.getResNo() + j),
858                       &Parts[0], NumParts, PartVT, ExtendKind);
859
860        // 'inreg' on function refers to return value
861        ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
862        if (F->paramHasAttr(0, Attribute::InReg))
863          Flags.setInReg();
864
865        // Propagate extension type if any
866        if (F->paramHasAttr(0, Attribute::SExt))
867          Flags.setSExt();
868        else if (F->paramHasAttr(0, Attribute::ZExt))
869          Flags.setZExt();
870
871        for (unsigned i = 0; i < NumParts; ++i)
872          Outs.push_back(ISD::OutputArg(Flags, Parts[i], /*isfixed=*/true));
873      }
874    }
875  }
876
877  bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
878  CallingConv::ID CallConv =
879    DAG.getMachineFunction().getFunction()->getCallingConv();
880  Chain = TLI.LowerReturn(Chain, CallConv, isVarArg,
881                          Outs, getCurDebugLoc(), DAG);
882
883  // Verify that the target's LowerReturn behaved as expected.
884  assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
885         "LowerReturn didn't return a valid chain!");
886
887  // Update the DAG with the new chain value resulting from return lowering.
888  DAG.setRoot(Chain);
889
890  if (DisableScheduling)
891    DAG.AssignOrdering(Chain.getNode(), SDNodeOrder);
892}
893
894/// CopyToExportRegsIfNeeded - If the given value has virtual registers
895/// created for it, emit nodes to copy the value into the virtual
896/// registers.
897void SelectionDAGBuilder::CopyToExportRegsIfNeeded(Value *V) {
898  if (!V->use_empty()) {
899    DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
900    if (VMI != FuncInfo.ValueMap.end())
901      CopyValueToVirtualRegister(V, VMI->second);
902  }
903}
904
905/// ExportFromCurrentBlock - If this condition isn't known to be exported from
906/// the current basic block, add it to ValueMap now so that we'll get a
907/// CopyTo/FromReg.
908void SelectionDAGBuilder::ExportFromCurrentBlock(Value *V) {
909  // No need to export constants.
910  if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
911
912  // Already exported?
913  if (FuncInfo.isExportedInst(V)) return;
914
915  unsigned Reg = FuncInfo.InitializeRegForValue(V);
916  CopyValueToVirtualRegister(V, Reg);
917}
918
919bool SelectionDAGBuilder::isExportableFromCurrentBlock(Value *V,
920                                                     const BasicBlock *FromBB) {
921  // The operands of the setcc have to be in this block.  We don't know
922  // how to export them from some other block.
923  if (Instruction *VI = dyn_cast<Instruction>(V)) {
924    // Can export from current BB.
925    if (VI->getParent() == FromBB)
926      return true;
927
928    // Is already exported, noop.
929    return FuncInfo.isExportedInst(V);
930  }
931
932  // If this is an argument, we can export it if the BB is the entry block or
933  // if it is already exported.
934  if (isa<Argument>(V)) {
935    if (FromBB == &FromBB->getParent()->getEntryBlock())
936      return true;
937
938    // Otherwise, can only export this if it is already exported.
939    return FuncInfo.isExportedInst(V);
940  }
941
942  // Otherwise, constants can always be exported.
943  return true;
944}
945
946static bool InBlock(const Value *V, const BasicBlock *BB) {
947  if (const Instruction *I = dyn_cast<Instruction>(V))
948    return I->getParent() == BB;
949  return true;
950}
951
952/// getFCmpCondCode - Return the ISD condition code corresponding to
953/// the given LLVM IR floating-point condition code.  This includes
954/// consideration of global floating-point math flags.
955///
956static ISD::CondCode getFCmpCondCode(FCmpInst::Predicate Pred) {
957  ISD::CondCode FPC, FOC;
958  switch (Pred) {
959  case FCmpInst::FCMP_FALSE: FOC = FPC = ISD::SETFALSE; break;
960  case FCmpInst::FCMP_OEQ:   FOC = ISD::SETEQ; FPC = ISD::SETOEQ; break;
961  case FCmpInst::FCMP_OGT:   FOC = ISD::SETGT; FPC = ISD::SETOGT; break;
962  case FCmpInst::FCMP_OGE:   FOC = ISD::SETGE; FPC = ISD::SETOGE; break;
963  case FCmpInst::FCMP_OLT:   FOC = ISD::SETLT; FPC = ISD::SETOLT; break;
964  case FCmpInst::FCMP_OLE:   FOC = ISD::SETLE; FPC = ISD::SETOLE; break;
965  case FCmpInst::FCMP_ONE:   FOC = ISD::SETNE; FPC = ISD::SETONE; break;
966  case FCmpInst::FCMP_ORD:   FOC = FPC = ISD::SETO;   break;
967  case FCmpInst::FCMP_UNO:   FOC = FPC = ISD::SETUO;  break;
968  case FCmpInst::FCMP_UEQ:   FOC = ISD::SETEQ; FPC = ISD::SETUEQ; break;
969  case FCmpInst::FCMP_UGT:   FOC = ISD::SETGT; FPC = ISD::SETUGT; break;
970  case FCmpInst::FCMP_UGE:   FOC = ISD::SETGE; FPC = ISD::SETUGE; break;
971  case FCmpInst::FCMP_ULT:   FOC = ISD::SETLT; FPC = ISD::SETULT; break;
972  case FCmpInst::FCMP_ULE:   FOC = ISD::SETLE; FPC = ISD::SETULE; break;
973  case FCmpInst::FCMP_UNE:   FOC = ISD::SETNE; FPC = ISD::SETUNE; break;
974  case FCmpInst::FCMP_TRUE:  FOC = FPC = ISD::SETTRUE; break;
975  default:
976    llvm_unreachable("Invalid FCmp predicate opcode!");
977    FOC = FPC = ISD::SETFALSE;
978    break;
979  }
980  if (FiniteOnlyFPMath())
981    return FOC;
982  else
983    return FPC;
984}
985
986/// getICmpCondCode - Return the ISD condition code corresponding to
987/// the given LLVM IR integer condition code.
988///
989static ISD::CondCode getICmpCondCode(ICmpInst::Predicate Pred) {
990  switch (Pred) {
991  case ICmpInst::ICMP_EQ:  return ISD::SETEQ;
992  case ICmpInst::ICMP_NE:  return ISD::SETNE;
993  case ICmpInst::ICMP_SLE: return ISD::SETLE;
994  case ICmpInst::ICMP_ULE: return ISD::SETULE;
995  case ICmpInst::ICMP_SGE: return ISD::SETGE;
996  case ICmpInst::ICMP_UGE: return ISD::SETUGE;
997  case ICmpInst::ICMP_SLT: return ISD::SETLT;
998  case ICmpInst::ICMP_ULT: return ISD::SETULT;
999  case ICmpInst::ICMP_SGT: return ISD::SETGT;
1000  case ICmpInst::ICMP_UGT: return ISD::SETUGT;
1001  default:
1002    llvm_unreachable("Invalid ICmp predicate opcode!");
1003    return ISD::SETNE;
1004  }
1005}
1006
1007/// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
1008/// This function emits a branch and is used at the leaves of an OR or an
1009/// AND operator tree.
1010///
1011void
1012SelectionDAGBuilder::EmitBranchForMergedCondition(Value *Cond,
1013                                                  MachineBasicBlock *TBB,
1014                                                  MachineBasicBlock *FBB,
1015                                                  MachineBasicBlock *CurBB) {
1016  const BasicBlock *BB = CurBB->getBasicBlock();
1017
1018  // If the leaf of the tree is a comparison, merge the condition into
1019  // the caseblock.
1020  if (CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
1021    // The operands of the cmp have to be in this block.  We don't know
1022    // how to export them from some other block.  If this is the first block
1023    // of the sequence, no exporting is needed.
1024    if (CurBB == CurMBB ||
1025        (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
1026         isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
1027      ISD::CondCode Condition;
1028      if (ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
1029        Condition = getICmpCondCode(IC->getPredicate());
1030      } else if (FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) {
1031        Condition = getFCmpCondCode(FC->getPredicate());
1032      } else {
1033        Condition = ISD::SETEQ; // silence warning.
1034        llvm_unreachable("Unknown compare instruction");
1035      }
1036
1037      CaseBlock CB(Condition, BOp->getOperand(0),
1038                   BOp->getOperand(1), NULL, TBB, FBB, CurBB);
1039      SwitchCases.push_back(CB);
1040      return;
1041    }
1042  }
1043
1044  // Create a CaseBlock record representing this branch.
1045  CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()),
1046               NULL, TBB, FBB, CurBB);
1047  SwitchCases.push_back(CB);
1048}
1049
1050/// FindMergedConditions - If Cond is an expression like
1051void SelectionDAGBuilder::FindMergedConditions(Value *Cond,
1052                                               MachineBasicBlock *TBB,
1053                                               MachineBasicBlock *FBB,
1054                                               MachineBasicBlock *CurBB,
1055                                               unsigned Opc) {
1056  // If this node is not part of the or/and tree, emit it as a branch.
1057  Instruction *BOp = dyn_cast<Instruction>(Cond);
1058  if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
1059      (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() ||
1060      BOp->getParent() != CurBB->getBasicBlock() ||
1061      !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
1062      !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
1063    EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB);
1064    return;
1065  }
1066
1067  //  Create TmpBB after CurBB.
1068  MachineFunction::iterator BBI = CurBB;
1069  MachineFunction &MF = DAG.getMachineFunction();
1070  MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
1071  CurBB->getParent()->insert(++BBI, TmpBB);
1072
1073  if (Opc == Instruction::Or) {
1074    // Codegen X | Y as:
1075    //   jmp_if_X TBB
1076    //   jmp TmpBB
1077    // TmpBB:
1078    //   jmp_if_Y TBB
1079    //   jmp FBB
1080    //
1081
1082    // Emit the LHS condition.
1083    FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, Opc);
1084
1085    // Emit the RHS condition into TmpBB.
1086    FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, Opc);
1087  } else {
1088    assert(Opc == Instruction::And && "Unknown merge op!");
1089    // Codegen X & Y as:
1090    //   jmp_if_X TmpBB
1091    //   jmp FBB
1092    // TmpBB:
1093    //   jmp_if_Y TBB
1094    //   jmp FBB
1095    //
1096    //  This requires creation of TmpBB after CurBB.
1097
1098    // Emit the LHS condition.
1099    FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, Opc);
1100
1101    // Emit the RHS condition into TmpBB.
1102    FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, Opc);
1103  }
1104}
1105
1106/// If the set of cases should be emitted as a series of branches, return true.
1107/// If we should emit this as a bunch of and/or'd together conditions, return
1108/// false.
1109bool
1110SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases){
1111  if (Cases.size() != 2) return true;
1112
1113  // If this is two comparisons of the same values or'd or and'd together, they
1114  // will get folded into a single comparison, so don't emit two blocks.
1115  if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
1116       Cases[0].CmpRHS == Cases[1].CmpRHS) ||
1117      (Cases[0].CmpRHS == Cases[1].CmpLHS &&
1118       Cases[0].CmpLHS == Cases[1].CmpRHS)) {
1119    return false;
1120  }
1121
1122  return true;
1123}
1124
1125void SelectionDAGBuilder::visitBr(BranchInst &I) {
1126  // Update machine-CFG edges.
1127  MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
1128
1129  // Figure out which block is immediately after the current one.
1130  MachineBasicBlock *NextBlock = 0;
1131  MachineFunction::iterator BBI = CurMBB;
1132  if (++BBI != FuncInfo.MF->end())
1133    NextBlock = BBI;
1134
1135  if (I.isUnconditional()) {
1136    // Update machine-CFG edges.
1137    CurMBB->addSuccessor(Succ0MBB);
1138
1139    // If this is not a fall-through branch, emit the branch.
1140    if (Succ0MBB != NextBlock) {
1141      SDValue V = DAG.getNode(ISD::BR, getCurDebugLoc(),
1142                              MVT::Other, getControlRoot(),
1143                              DAG.getBasicBlock(Succ0MBB));
1144      DAG.setRoot(V);
1145
1146      if (DisableScheduling)
1147        DAG.AssignOrdering(V.getNode(), SDNodeOrder);
1148    }
1149
1150    return;
1151  }
1152
1153  // If this condition is one of the special cases we handle, do special stuff
1154  // now.
1155  Value *CondVal = I.getCondition();
1156  MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
1157
1158  // If this is a series of conditions that are or'd or and'd together, emit
1159  // this as a sequence of branches instead of setcc's with and/or operations.
1160  // For example, instead of something like:
1161  //     cmp A, B
1162  //     C = seteq
1163  //     cmp D, E
1164  //     F = setle
1165  //     or C, F
1166  //     jnz foo
1167  // Emit:
1168  //     cmp A, B
1169  //     je foo
1170  //     cmp D, E
1171  //     jle foo
1172  //
1173  if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
1174    if (BOp->hasOneUse() &&
1175        (BOp->getOpcode() == Instruction::And ||
1176         BOp->getOpcode() == Instruction::Or)) {
1177      FindMergedConditions(BOp, Succ0MBB, Succ1MBB, CurMBB, BOp->getOpcode());
1178      // If the compares in later blocks need to use values not currently
1179      // exported from this block, export them now.  This block should always
1180      // be the first entry.
1181      assert(SwitchCases[0].ThisBB == CurMBB && "Unexpected lowering!");
1182
1183      // Allow some cases to be rejected.
1184      if (ShouldEmitAsBranches(SwitchCases)) {
1185        for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
1186          ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
1187          ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
1188        }
1189
1190        // Emit the branch for this block.
1191        visitSwitchCase(SwitchCases[0]);
1192        SwitchCases.erase(SwitchCases.begin());
1193        return;
1194      }
1195
1196      // Okay, we decided not to do this, remove any inserted MBB's and clear
1197      // SwitchCases.
1198      for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
1199        FuncInfo.MF->erase(SwitchCases[i].ThisBB);
1200
1201      SwitchCases.clear();
1202    }
1203  }
1204
1205  // Create a CaseBlock record representing this branch.
1206  CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
1207               NULL, Succ0MBB, Succ1MBB, CurMBB);
1208
1209  // Use visitSwitchCase to actually insert the fast branch sequence for this
1210  // cond branch.
1211  visitSwitchCase(CB);
1212}
1213
1214/// visitSwitchCase - Emits the necessary code to represent a single node in
1215/// the binary search tree resulting from lowering a switch instruction.
1216void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB) {
1217  SDValue Cond;
1218  SDValue CondLHS = getValue(CB.CmpLHS);
1219  DebugLoc dl = getCurDebugLoc();
1220
1221  // Build the setcc now.
1222  if (CB.CmpMHS == NULL) {
1223    // Fold "(X == true)" to X and "(X == false)" to !X to
1224    // handle common cases produced by branch lowering.
1225    if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
1226        CB.CC == ISD::SETEQ)
1227      Cond = CondLHS;
1228    else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
1229             CB.CC == ISD::SETEQ) {
1230      SDValue True = DAG.getConstant(1, CondLHS.getValueType());
1231      Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
1232    } else
1233      Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
1234  } else {
1235    assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
1236
1237    const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
1238    const APInt& High  = cast<ConstantInt>(CB.CmpRHS)->getValue();
1239
1240    SDValue CmpOp = getValue(CB.CmpMHS);
1241    EVT VT = CmpOp.getValueType();
1242
1243    if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
1244      Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, VT),
1245                          ISD::SETLE);
1246    } else {
1247      SDValue SUB = DAG.getNode(ISD::SUB, dl,
1248                                VT, CmpOp, DAG.getConstant(Low, VT));
1249      Cond = DAG.getSetCC(dl, MVT::i1, SUB,
1250                          DAG.getConstant(High-Low, VT), ISD::SETULE);
1251    }
1252  }
1253
1254  if (DisableScheduling)
1255    DAG.AssignOrdering(Cond.getNode(), SDNodeOrder);
1256
1257  // Update successor info
1258  CurMBB->addSuccessor(CB.TrueBB);
1259  CurMBB->addSuccessor(CB.FalseBB);
1260
1261  // Set NextBlock to be the MBB immediately after the current one, if any.
1262  // This is used to avoid emitting unnecessary branches to the next block.
1263  MachineBasicBlock *NextBlock = 0;
1264  MachineFunction::iterator BBI = CurMBB;
1265  if (++BBI != FuncInfo.MF->end())
1266    NextBlock = BBI;
1267
1268  // If the lhs block is the next block, invert the condition so that we can
1269  // fall through to the lhs instead of the rhs block.
1270  if (CB.TrueBB == NextBlock) {
1271    std::swap(CB.TrueBB, CB.FalseBB);
1272    SDValue True = DAG.getConstant(1, Cond.getValueType());
1273    Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
1274
1275    if (DisableScheduling)
1276      DAG.AssignOrdering(Cond.getNode(), SDNodeOrder);
1277  }
1278
1279  SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
1280                               MVT::Other, getControlRoot(), Cond,
1281                               DAG.getBasicBlock(CB.TrueBB));
1282
1283  if (DisableScheduling)
1284    DAG.AssignOrdering(BrCond.getNode(), SDNodeOrder);
1285
1286  // If the branch was constant folded, fix up the CFG.
1287  if (BrCond.getOpcode() == ISD::BR) {
1288    CurMBB->removeSuccessor(CB.FalseBB);
1289  } else {
1290    // Otherwise, go ahead and insert the false branch.
1291    if (BrCond == getControlRoot())
1292      CurMBB->removeSuccessor(CB.TrueBB);
1293
1294    if (CB.FalseBB != NextBlock) {
1295      BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
1296                           DAG.getBasicBlock(CB.FalseBB));
1297
1298      if (DisableScheduling)
1299        DAG.AssignOrdering(BrCond.getNode(), SDNodeOrder);
1300    }
1301  }
1302
1303  DAG.setRoot(BrCond);
1304}
1305
1306/// visitJumpTable - Emit JumpTable node in the current MBB
1307void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) {
1308  // Emit the code for the jump table
1309  assert(JT.Reg != -1U && "Should lower JT Header first!");
1310  EVT PTy = TLI.getPointerTy();
1311  SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(),
1312                                     JT.Reg, PTy);
1313  SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
1314  SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurDebugLoc(),
1315                                    MVT::Other, Index.getValue(1),
1316                                    Table, Index);
1317  DAG.setRoot(BrJumpTable);
1318
1319  if (DisableScheduling) {
1320    DAG.AssignOrdering(Index.getNode(), SDNodeOrder);
1321    DAG.AssignOrdering(Table.getNode(), SDNodeOrder);
1322    DAG.AssignOrdering(BrJumpTable.getNode(), SDNodeOrder);
1323  }
1324}
1325
1326/// visitJumpTableHeader - This function emits necessary code to produce index
1327/// in the JumpTable from switch case.
1328void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT,
1329                                               JumpTableHeader &JTH) {
1330  // Subtract the lowest switch case value from the value being switched on and
1331  // conditional branch to default mbb if the result is greater than the
1332  // difference between smallest and largest cases.
1333  SDValue SwitchOp = getValue(JTH.SValue);
1334  EVT VT = SwitchOp.getValueType();
1335  SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp,
1336                            DAG.getConstant(JTH.First, VT));
1337
1338  // The SDNode we just created, which holds the value being switched on minus
1339  // the the smallest case value, needs to be copied to a virtual register so it
1340  // can be used as an index into the jump table in a subsequent basic block.
1341  // This value may be smaller or larger than the target's pointer type, and
1342  // therefore require extension or truncating.
1343  SwitchOp = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(), TLI.getPointerTy());
1344
1345  unsigned JumpTableReg = FuncInfo.MakeReg(TLI.getPointerTy());
1346  SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(),
1347                                    JumpTableReg, SwitchOp);
1348  JT.Reg = JumpTableReg;
1349
1350  // Emit the range check for the jump table, and branch to the default block
1351  // for the switch statement if the value being switched on exceeds the largest
1352  // case in the switch.
1353  SDValue CMP = DAG.getSetCC(getCurDebugLoc(),
1354                             TLI.getSetCCResultType(Sub.getValueType()), Sub,
1355                             DAG.getConstant(JTH.Last-JTH.First,VT),
1356                             ISD::SETUGT);
1357
1358  if (DisableScheduling) {
1359    DAG.AssignOrdering(Sub.getNode(), SDNodeOrder);
1360    DAG.AssignOrdering(SwitchOp.getNode(), SDNodeOrder);
1361    DAG.AssignOrdering(CopyTo.getNode(), SDNodeOrder);
1362    DAG.AssignOrdering(CMP.getNode(), SDNodeOrder);
1363  }
1364
1365  // Set NextBlock to be the MBB immediately after the current one, if any.
1366  // This is used to avoid emitting unnecessary branches to the next block.
1367  MachineBasicBlock *NextBlock = 0;
1368  MachineFunction::iterator BBI = CurMBB;
1369
1370  if (++BBI != FuncInfo.MF->end())
1371    NextBlock = BBI;
1372
1373  SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1374                               MVT::Other, CopyTo, CMP,
1375                               DAG.getBasicBlock(JT.Default));
1376
1377  if (DisableScheduling)
1378    DAG.AssignOrdering(BrCond.getNode(), SDNodeOrder);
1379
1380  if (JT.MBB != NextBlock) {
1381    BrCond = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrCond,
1382                         DAG.getBasicBlock(JT.MBB));
1383
1384    if (DisableScheduling)
1385      DAG.AssignOrdering(BrCond.getNode(), SDNodeOrder);
1386  }
1387
1388  DAG.setRoot(BrCond);
1389}
1390
1391/// visitBitTestHeader - This function emits necessary code to produce value
1392/// suitable for "bit tests"
1393void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B) {
1394  // Subtract the minimum value
1395  SDValue SwitchOp = getValue(B.SValue);
1396  EVT VT = SwitchOp.getValueType();
1397  SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp,
1398                            DAG.getConstant(B.First, VT));
1399
1400  // Check range
1401  SDValue RangeCmp = DAG.getSetCC(getCurDebugLoc(),
1402                                  TLI.getSetCCResultType(Sub.getValueType()),
1403                                  Sub, DAG.getConstant(B.Range, VT),
1404                                  ISD::SETUGT);
1405
1406  SDValue ShiftOp = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(),
1407                                       TLI.getPointerTy());
1408
1409  B.Reg = FuncInfo.MakeReg(TLI.getPointerTy());
1410  SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(),
1411                                    B.Reg, ShiftOp);
1412
1413  if (DisableScheduling) {
1414    DAG.AssignOrdering(Sub.getNode(), SDNodeOrder);
1415    DAG.AssignOrdering(RangeCmp.getNode(), SDNodeOrder);
1416    DAG.AssignOrdering(ShiftOp.getNode(), SDNodeOrder);
1417    DAG.AssignOrdering(CopyTo.getNode(), SDNodeOrder);
1418  }
1419
1420  // Set NextBlock to be the MBB immediately after the current one, if any.
1421  // This is used to avoid emitting unnecessary branches to the next block.
1422  MachineBasicBlock *NextBlock = 0;
1423  MachineFunction::iterator BBI = CurMBB;
1424  if (++BBI != FuncInfo.MF->end())
1425    NextBlock = BBI;
1426
1427  MachineBasicBlock* MBB = B.Cases[0].ThisBB;
1428
1429  CurMBB->addSuccessor(B.Default);
1430  CurMBB->addSuccessor(MBB);
1431
1432  SDValue BrRange = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1433                                MVT::Other, CopyTo, RangeCmp,
1434                                DAG.getBasicBlock(B.Default));
1435
1436  if (DisableScheduling)
1437    DAG.AssignOrdering(BrRange.getNode(), SDNodeOrder);
1438
1439  if (MBB != NextBlock) {
1440    BrRange = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, CopyTo,
1441                          DAG.getBasicBlock(MBB));
1442
1443    if (DisableScheduling)
1444      DAG.AssignOrdering(BrRange.getNode(), SDNodeOrder);
1445  }
1446
1447  DAG.setRoot(BrRange);
1448}
1449
1450/// visitBitTestCase - this function produces one "bit test"
1451void SelectionDAGBuilder::visitBitTestCase(MachineBasicBlock* NextMBB,
1452                                           unsigned Reg,
1453                                           BitTestCase &B) {
1454  // Make desired shift
1455  SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(), Reg,
1456                                       TLI.getPointerTy());
1457  SDValue SwitchVal = DAG.getNode(ISD::SHL, getCurDebugLoc(),
1458                                  TLI.getPointerTy(),
1459                                  DAG.getConstant(1, TLI.getPointerTy()),
1460                                  ShiftOp);
1461
1462  // Emit bit tests and jumps
1463  SDValue AndOp = DAG.getNode(ISD::AND, getCurDebugLoc(),
1464                              TLI.getPointerTy(), SwitchVal,
1465                              DAG.getConstant(B.Mask, TLI.getPointerTy()));
1466  SDValue AndCmp = DAG.getSetCC(getCurDebugLoc(),
1467                                TLI.getSetCCResultType(AndOp.getValueType()),
1468                                AndOp, DAG.getConstant(0, TLI.getPointerTy()),
1469                                ISD::SETNE);
1470
1471  if (DisableScheduling) {
1472    DAG.AssignOrdering(ShiftOp.getNode(), SDNodeOrder);
1473    DAG.AssignOrdering(SwitchVal.getNode(), SDNodeOrder);
1474    DAG.AssignOrdering(AndOp.getNode(), SDNodeOrder);
1475    DAG.AssignOrdering(AndCmp.getNode(), SDNodeOrder);
1476  }
1477
1478  CurMBB->addSuccessor(B.TargetBB);
1479  CurMBB->addSuccessor(NextMBB);
1480
1481  SDValue BrAnd = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1482                              MVT::Other, getControlRoot(),
1483                              AndCmp, DAG.getBasicBlock(B.TargetBB));
1484
1485  if (DisableScheduling)
1486    DAG.AssignOrdering(BrAnd.getNode(), SDNodeOrder);
1487
1488  // Set NextBlock to be the MBB immediately after the current one, if any.
1489  // This is used to avoid emitting unnecessary branches to the next block.
1490  MachineBasicBlock *NextBlock = 0;
1491  MachineFunction::iterator BBI = CurMBB;
1492  if (++BBI != FuncInfo.MF->end())
1493    NextBlock = BBI;
1494
1495  if (NextMBB != NextBlock) {
1496    BrAnd = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrAnd,
1497                        DAG.getBasicBlock(NextMBB));
1498
1499    if (DisableScheduling)
1500      DAG.AssignOrdering(BrAnd.getNode(), SDNodeOrder);
1501  }
1502
1503  DAG.setRoot(BrAnd);
1504}
1505
1506void SelectionDAGBuilder::visitInvoke(InvokeInst &I) {
1507  // Retrieve successors.
1508  MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
1509  MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)];
1510
1511  const Value *Callee(I.getCalledValue());
1512  if (isa<InlineAsm>(Callee))
1513    visitInlineAsm(&I);
1514  else
1515    LowerCallTo(&I, getValue(Callee), false, LandingPad);
1516
1517  // If the value of the invoke is used outside of its defining block, make it
1518  // available as a virtual register.
1519  CopyToExportRegsIfNeeded(&I);
1520
1521  // Update successor info
1522  CurMBB->addSuccessor(Return);
1523  CurMBB->addSuccessor(LandingPad);
1524
1525  // Drop into normal successor.
1526  SDValue Branch = DAG.getNode(ISD::BR, getCurDebugLoc(),
1527                               MVT::Other, getControlRoot(),
1528                               DAG.getBasicBlock(Return));
1529  DAG.setRoot(Branch);
1530
1531  if (DisableScheduling)
1532    DAG.AssignOrdering(Branch.getNode(), SDNodeOrder);
1533}
1534
1535void SelectionDAGBuilder::visitUnwind(UnwindInst &I) {
1536}
1537
1538/// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for
1539/// small case ranges).
1540bool SelectionDAGBuilder::handleSmallSwitchRange(CaseRec& CR,
1541                                                 CaseRecVector& WorkList,
1542                                                 Value* SV,
1543                                                 MachineBasicBlock* Default) {
1544  Case& BackCase  = *(CR.Range.second-1);
1545
1546  // Size is the number of Cases represented by this range.
1547  size_t Size = CR.Range.second - CR.Range.first;
1548  if (Size > 3)
1549    return false;
1550
1551  // Get the MachineFunction which holds the current MBB.  This is used when
1552  // inserting any additional MBBs necessary to represent the switch.
1553  MachineFunction *CurMF = FuncInfo.MF;
1554
1555  // Figure out which block is immediately after the current one.
1556  MachineBasicBlock *NextBlock = 0;
1557  MachineFunction::iterator BBI = CR.CaseBB;
1558
1559  if (++BBI != FuncInfo.MF->end())
1560    NextBlock = BBI;
1561
1562  // TODO: If any two of the cases has the same destination, and if one value
1563  // is the same as the other, but has one bit unset that the other has set,
1564  // use bit manipulation to do two compares at once.  For example:
1565  // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
1566
1567  // Rearrange the case blocks so that the last one falls through if possible.
1568  if (NextBlock && Default != NextBlock && BackCase.BB != NextBlock) {
1569    // The last case block won't fall through into 'NextBlock' if we emit the
1570    // branches in this order.  See if rearranging a case value would help.
1571    for (CaseItr I = CR.Range.first, E = CR.Range.second-1; I != E; ++I) {
1572      if (I->BB == NextBlock) {
1573        std::swap(*I, BackCase);
1574        break;
1575      }
1576    }
1577  }
1578
1579  // Create a CaseBlock record representing a conditional branch to
1580  // the Case's target mbb if the value being switched on SV is equal
1581  // to C.
1582  MachineBasicBlock *CurBlock = CR.CaseBB;
1583  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) {
1584    MachineBasicBlock *FallThrough;
1585    if (I != E-1) {
1586      FallThrough = CurMF->CreateMachineBasicBlock(CurBlock->getBasicBlock());
1587      CurMF->insert(BBI, FallThrough);
1588
1589      // Put SV in a virtual register to make it available from the new blocks.
1590      ExportFromCurrentBlock(SV);
1591    } else {
1592      // If the last case doesn't match, go to the default block.
1593      FallThrough = Default;
1594    }
1595
1596    Value *RHS, *LHS, *MHS;
1597    ISD::CondCode CC;
1598    if (I->High == I->Low) {
1599      // This is just small small case range :) containing exactly 1 case
1600      CC = ISD::SETEQ;
1601      LHS = SV; RHS = I->High; MHS = NULL;
1602    } else {
1603      CC = ISD::SETLE;
1604      LHS = I->Low; MHS = SV; RHS = I->High;
1605    }
1606    CaseBlock CB(CC, LHS, RHS, MHS, I->BB, FallThrough, CurBlock);
1607
1608    // If emitting the first comparison, just call visitSwitchCase to emit the
1609    // code into the current block.  Otherwise, push the CaseBlock onto the
1610    // vector to be later processed by SDISel, and insert the node's MBB
1611    // before the next MBB.
1612    if (CurBlock == CurMBB)
1613      visitSwitchCase(CB);
1614    else
1615      SwitchCases.push_back(CB);
1616
1617    CurBlock = FallThrough;
1618  }
1619
1620  return true;
1621}
1622
1623static inline bool areJTsAllowed(const TargetLowering &TLI) {
1624  return !DisableJumpTables &&
1625          (TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) ||
1626           TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other));
1627}
1628
1629static APInt ComputeRange(const APInt &First, const APInt &Last) {
1630  APInt LastExt(Last), FirstExt(First);
1631  uint32_t BitWidth = std::max(Last.getBitWidth(), First.getBitWidth()) + 1;
1632  LastExt.sext(BitWidth); FirstExt.sext(BitWidth);
1633  return (LastExt - FirstExt + 1ULL);
1634}
1635
1636/// handleJTSwitchCase - Emit jumptable for current switch case range
1637bool SelectionDAGBuilder::handleJTSwitchCase(CaseRec& CR,
1638                                             CaseRecVector& WorkList,
1639                                             Value* SV,
1640                                             MachineBasicBlock* Default) {
1641  Case& FrontCase = *CR.Range.first;
1642  Case& BackCase  = *(CR.Range.second-1);
1643
1644  const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue();
1645  const APInt &Last  = cast<ConstantInt>(BackCase.High)->getValue();
1646
1647  APInt TSize(First.getBitWidth(), 0);
1648  for (CaseItr I = CR.Range.first, E = CR.Range.second;
1649       I!=E; ++I)
1650    TSize += I->size();
1651
1652  if (!areJTsAllowed(TLI) || TSize.ult(APInt(First.getBitWidth(), 4)))
1653    return false;
1654
1655  APInt Range = ComputeRange(First, Last);
1656  double Density = TSize.roundToDouble() / Range.roundToDouble();
1657  if (Density < 0.4)
1658    return false;
1659
1660  DEBUG(errs() << "Lowering jump table\n"
1661               << "First entry: " << First << ". Last entry: " << Last << '\n'
1662               << "Range: " << Range
1663               << "Size: " << TSize << ". Density: " << Density << "\n\n");
1664
1665  // Get the MachineFunction which holds the current MBB.  This is used when
1666  // inserting any additional MBBs necessary to represent the switch.
1667  MachineFunction *CurMF = FuncInfo.MF;
1668
1669  // Figure out which block is immediately after the current one.
1670  MachineFunction::iterator BBI = CR.CaseBB;
1671  ++BBI;
1672
1673  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
1674
1675  // Create a new basic block to hold the code for loading the address
1676  // of the jump table, and jumping to it.  Update successor information;
1677  // we will either branch to the default case for the switch, or the jump
1678  // table.
1679  MachineBasicBlock *JumpTableBB = CurMF->CreateMachineBasicBlock(LLVMBB);
1680  CurMF->insert(BBI, JumpTableBB);
1681  CR.CaseBB->addSuccessor(Default);
1682  CR.CaseBB->addSuccessor(JumpTableBB);
1683
1684  // Build a vector of destination BBs, corresponding to each target
1685  // of the jump table. If the value of the jump table slot corresponds to
1686  // a case statement, push the case's BB onto the vector, otherwise, push
1687  // the default BB.
1688  std::vector<MachineBasicBlock*> DestBBs;
1689  APInt TEI = First;
1690  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) {
1691    const APInt& Low = cast<ConstantInt>(I->Low)->getValue();
1692    const APInt& High = cast<ConstantInt>(I->High)->getValue();
1693
1694    if (Low.sle(TEI) && TEI.sle(High)) {
1695      DestBBs.push_back(I->BB);
1696      if (TEI==High)
1697        ++I;
1698    } else {
1699      DestBBs.push_back(Default);
1700    }
1701  }
1702
1703  // Update successor info. Add one edge to each unique successor.
1704  BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs());
1705  for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(),
1706         E = DestBBs.end(); I != E; ++I) {
1707    if (!SuccsHandled[(*I)->getNumber()]) {
1708      SuccsHandled[(*I)->getNumber()] = true;
1709      JumpTableBB->addSuccessor(*I);
1710    }
1711  }
1712
1713  // Create a jump table index for this jump table, or return an existing
1714  // one.
1715  unsigned JTI = CurMF->getJumpTableInfo()->getJumpTableIndex(DestBBs);
1716
1717  // Set the jump table information so that we can codegen it as a second
1718  // MachineBasicBlock
1719  JumpTable JT(-1U, JTI, JumpTableBB, Default);
1720  JumpTableHeader JTH(First, Last, SV, CR.CaseBB, (CR.CaseBB == CurMBB));
1721  if (CR.CaseBB == CurMBB)
1722    visitJumpTableHeader(JT, JTH);
1723
1724  JTCases.push_back(JumpTableBlock(JTH, JT));
1725
1726  return true;
1727}
1728
1729/// handleBTSplitSwitchCase - emit comparison and split binary search tree into
1730/// 2 subtrees.
1731bool SelectionDAGBuilder::handleBTSplitSwitchCase(CaseRec& CR,
1732                                                  CaseRecVector& WorkList,
1733                                                  Value* SV,
1734                                                  MachineBasicBlock* Default) {
1735  // Get the MachineFunction which holds the current MBB.  This is used when
1736  // inserting any additional MBBs necessary to represent the switch.
1737  MachineFunction *CurMF = FuncInfo.MF;
1738
1739  // Figure out which block is immediately after the current one.
1740  MachineFunction::iterator BBI = CR.CaseBB;
1741  ++BBI;
1742
1743  Case& FrontCase = *CR.Range.first;
1744  Case& BackCase  = *(CR.Range.second-1);
1745  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
1746
1747  // Size is the number of Cases represented by this range.
1748  unsigned Size = CR.Range.second - CR.Range.first;
1749
1750  const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue();
1751  const APInt &Last  = cast<ConstantInt>(BackCase.High)->getValue();
1752  double FMetric = 0;
1753  CaseItr Pivot = CR.Range.first + Size/2;
1754
1755  // Select optimal pivot, maximizing sum density of LHS and RHS. This will
1756  // (heuristically) allow us to emit JumpTable's later.
1757  APInt TSize(First.getBitWidth(), 0);
1758  for (CaseItr I = CR.Range.first, E = CR.Range.second;
1759       I!=E; ++I)
1760    TSize += I->size();
1761
1762  APInt LSize = FrontCase.size();
1763  APInt RSize = TSize-LSize;
1764  DEBUG(errs() << "Selecting best pivot: \n"
1765               << "First: " << First << ", Last: " << Last <<'\n'
1766               << "LSize: " << LSize << ", RSize: " << RSize << '\n');
1767  for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second;
1768       J!=E; ++I, ++J) {
1769    const APInt &LEnd = cast<ConstantInt>(I->High)->getValue();
1770    const APInt &RBegin = cast<ConstantInt>(J->Low)->getValue();
1771    APInt Range = ComputeRange(LEnd, RBegin);
1772    assert((Range - 2ULL).isNonNegative() &&
1773           "Invalid case distance");
1774    double LDensity = (double)LSize.roundToDouble() /
1775                           (LEnd - First + 1ULL).roundToDouble();
1776    double RDensity = (double)RSize.roundToDouble() /
1777                           (Last - RBegin + 1ULL).roundToDouble();
1778    double Metric = Range.logBase2()*(LDensity+RDensity);
1779    // Should always split in some non-trivial place
1780    DEBUG(errs() <<"=>Step\n"
1781                 << "LEnd: " << LEnd << ", RBegin: " << RBegin << '\n'
1782                 << "LDensity: " << LDensity
1783                 << ", RDensity: " << RDensity << '\n'
1784                 << "Metric: " << Metric << '\n');
1785    if (FMetric < Metric) {
1786      Pivot = J;
1787      FMetric = Metric;
1788      DEBUG(errs() << "Current metric set to: " << FMetric << '\n');
1789    }
1790
1791    LSize += J->size();
1792    RSize -= J->size();
1793  }
1794  if (areJTsAllowed(TLI)) {
1795    // If our case is dense we *really* should handle it earlier!
1796    assert((FMetric > 0) && "Should handle dense range earlier!");
1797  } else {
1798    Pivot = CR.Range.first + Size/2;
1799  }
1800
1801  CaseRange LHSR(CR.Range.first, Pivot);
1802  CaseRange RHSR(Pivot, CR.Range.second);
1803  Constant *C = Pivot->Low;
1804  MachineBasicBlock *FalseBB = 0, *TrueBB = 0;
1805
1806  // We know that we branch to the LHS if the Value being switched on is
1807  // less than the Pivot value, C.  We use this to optimize our binary
1808  // tree a bit, by recognizing that if SV is greater than or equal to the
1809  // LHS's Case Value, and that Case Value is exactly one less than the
1810  // Pivot's Value, then we can branch directly to the LHS's Target,
1811  // rather than creating a leaf node for it.
1812  if ((LHSR.second - LHSR.first) == 1 &&
1813      LHSR.first->High == CR.GE &&
1814      cast<ConstantInt>(C)->getValue() ==
1815      (cast<ConstantInt>(CR.GE)->getValue() + 1LL)) {
1816    TrueBB = LHSR.first->BB;
1817  } else {
1818    TrueBB = CurMF->CreateMachineBasicBlock(LLVMBB);
1819    CurMF->insert(BBI, TrueBB);
1820    WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR));
1821
1822    // Put SV in a virtual register to make it available from the new blocks.
1823    ExportFromCurrentBlock(SV);
1824  }
1825
1826  // Similar to the optimization above, if the Value being switched on is
1827  // known to be less than the Constant CR.LT, and the current Case Value
1828  // is CR.LT - 1, then we can branch directly to the target block for
1829  // the current Case Value, rather than emitting a RHS leaf node for it.
1830  if ((RHSR.second - RHSR.first) == 1 && CR.LT &&
1831      cast<ConstantInt>(RHSR.first->Low)->getValue() ==
1832      (cast<ConstantInt>(CR.LT)->getValue() - 1LL)) {
1833    FalseBB = RHSR.first->BB;
1834  } else {
1835    FalseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
1836    CurMF->insert(BBI, FalseBB);
1837    WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR));
1838
1839    // Put SV in a virtual register to make it available from the new blocks.
1840    ExportFromCurrentBlock(SV);
1841  }
1842
1843  // Create a CaseBlock record representing a conditional branch to
1844  // the LHS node if the value being switched on SV is less than C.
1845  // Otherwise, branch to LHS.
1846  CaseBlock CB(ISD::SETLT, SV, C, NULL, TrueBB, FalseBB, CR.CaseBB);
1847
1848  if (CR.CaseBB == CurMBB)
1849    visitSwitchCase(CB);
1850  else
1851    SwitchCases.push_back(CB);
1852
1853  return true;
1854}
1855
1856/// handleBitTestsSwitchCase - if current case range has few destination and
1857/// range span less, than machine word bitwidth, encode case range into series
1858/// of masks and emit bit tests with these masks.
1859bool SelectionDAGBuilder::handleBitTestsSwitchCase(CaseRec& CR,
1860                                                   CaseRecVector& WorkList,
1861                                                   Value* SV,
1862                                                   MachineBasicBlock* Default){
1863  EVT PTy = TLI.getPointerTy();
1864  unsigned IntPtrBits = PTy.getSizeInBits();
1865
1866  Case& FrontCase = *CR.Range.first;
1867  Case& BackCase  = *(CR.Range.second-1);
1868
1869  // Get the MachineFunction which holds the current MBB.  This is used when
1870  // inserting any additional MBBs necessary to represent the switch.
1871  MachineFunction *CurMF = FuncInfo.MF;
1872
1873  // If target does not have legal shift left, do not emit bit tests at all.
1874  if (!TLI.isOperationLegal(ISD::SHL, TLI.getPointerTy()))
1875    return false;
1876
1877  size_t numCmps = 0;
1878  for (CaseItr I = CR.Range.first, E = CR.Range.second;
1879       I!=E; ++I) {
1880    // Single case counts one, case range - two.
1881    numCmps += (I->Low == I->High ? 1 : 2);
1882  }
1883
1884  // Count unique destinations
1885  SmallSet<MachineBasicBlock*, 4> Dests;
1886  for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
1887    Dests.insert(I->BB);
1888    if (Dests.size() > 3)
1889      // Don't bother the code below, if there are too much unique destinations
1890      return false;
1891  }
1892  DEBUG(errs() << "Total number of unique destinations: " << Dests.size() << '\n'
1893               << "Total number of comparisons: " << numCmps << '\n');
1894
1895  // Compute span of values.
1896  const APInt& minValue = cast<ConstantInt>(FrontCase.Low)->getValue();
1897  const APInt& maxValue = cast<ConstantInt>(BackCase.High)->getValue();
1898  APInt cmpRange = maxValue - minValue;
1899
1900  DEBUG(errs() << "Compare range: " << cmpRange << '\n'
1901               << "Low bound: " << minValue << '\n'
1902               << "High bound: " << maxValue << '\n');
1903
1904  if (cmpRange.uge(APInt(cmpRange.getBitWidth(), IntPtrBits)) ||
1905      (!(Dests.size() == 1 && numCmps >= 3) &&
1906       !(Dests.size() == 2 && numCmps >= 5) &&
1907       !(Dests.size() >= 3 && numCmps >= 6)))
1908    return false;
1909
1910  DEBUG(errs() << "Emitting bit tests\n");
1911  APInt lowBound = APInt::getNullValue(cmpRange.getBitWidth());
1912
1913  // Optimize the case where all the case values fit in a
1914  // word without having to subtract minValue. In this case,
1915  // we can optimize away the subtraction.
1916  if (minValue.isNonNegative() &&
1917      maxValue.slt(APInt(maxValue.getBitWidth(), IntPtrBits))) {
1918    cmpRange = maxValue;
1919  } else {
1920    lowBound = minValue;
1921  }
1922
1923  CaseBitsVector CasesBits;
1924  unsigned i, count = 0;
1925
1926  for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
1927    MachineBasicBlock* Dest = I->BB;
1928    for (i = 0; i < count; ++i)
1929      if (Dest == CasesBits[i].BB)
1930        break;
1931
1932    if (i == count) {
1933      assert((count < 3) && "Too much destinations to test!");
1934      CasesBits.push_back(CaseBits(0, Dest, 0));
1935      count++;
1936    }
1937
1938    const APInt& lowValue = cast<ConstantInt>(I->Low)->getValue();
1939    const APInt& highValue = cast<ConstantInt>(I->High)->getValue();
1940
1941    uint64_t lo = (lowValue - lowBound).getZExtValue();
1942    uint64_t hi = (highValue - lowBound).getZExtValue();
1943
1944    for (uint64_t j = lo; j <= hi; j++) {
1945      CasesBits[i].Mask |=  1ULL << j;
1946      CasesBits[i].Bits++;
1947    }
1948
1949  }
1950  std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp());
1951
1952  BitTestInfo BTC;
1953
1954  // Figure out which block is immediately after the current one.
1955  MachineFunction::iterator BBI = CR.CaseBB;
1956  ++BBI;
1957
1958  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
1959
1960  DEBUG(errs() << "Cases:\n");
1961  for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) {
1962    DEBUG(errs() << "Mask: " << CasesBits[i].Mask
1963                 << ", Bits: " << CasesBits[i].Bits
1964                 << ", BB: " << CasesBits[i].BB << '\n');
1965
1966    MachineBasicBlock *CaseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
1967    CurMF->insert(BBI, CaseBB);
1968    BTC.push_back(BitTestCase(CasesBits[i].Mask,
1969                              CaseBB,
1970                              CasesBits[i].BB));
1971
1972    // Put SV in a virtual register to make it available from the new blocks.
1973    ExportFromCurrentBlock(SV);
1974  }
1975
1976  BitTestBlock BTB(lowBound, cmpRange, SV,
1977                   -1U, (CR.CaseBB == CurMBB),
1978                   CR.CaseBB, Default, BTC);
1979
1980  if (CR.CaseBB == CurMBB)
1981    visitBitTestHeader(BTB);
1982
1983  BitTestCases.push_back(BTB);
1984
1985  return true;
1986}
1987
1988/// Clusterify - Transform simple list of Cases into list of CaseRange's
1989size_t SelectionDAGBuilder::Clusterify(CaseVector& Cases,
1990                                       const SwitchInst& SI) {
1991  size_t numCmps = 0;
1992
1993  // Start with "simple" cases
1994  for (size_t i = 1; i < SI.getNumSuccessors(); ++i) {
1995    MachineBasicBlock *SMBB = FuncInfo.MBBMap[SI.getSuccessor(i)];
1996    Cases.push_back(Case(SI.getSuccessorValue(i),
1997                         SI.getSuccessorValue(i),
1998                         SMBB));
1999  }
2000  std::sort(Cases.begin(), Cases.end(), CaseCmp());
2001
2002  // Merge case into clusters
2003  if (Cases.size() >= 2)
2004    // Must recompute end() each iteration because it may be
2005    // invalidated by erase if we hold on to it
2006    for (CaseItr I = Cases.begin(), J = ++(Cases.begin()); J != Cases.end(); ) {
2007      const APInt& nextValue = cast<ConstantInt>(J->Low)->getValue();
2008      const APInt& currentValue = cast<ConstantInt>(I->High)->getValue();
2009      MachineBasicBlock* nextBB = J->BB;
2010      MachineBasicBlock* currentBB = I->BB;
2011
2012      // If the two neighboring cases go to the same destination, merge them
2013      // into a single case.
2014      if ((nextValue - currentValue == 1) && (currentBB == nextBB)) {
2015        I->High = J->High;
2016        J = Cases.erase(J);
2017      } else {
2018        I = J++;
2019      }
2020    }
2021
2022  for (CaseItr I=Cases.begin(), E=Cases.end(); I!=E; ++I, ++numCmps) {
2023    if (I->Low != I->High)
2024      // A range counts double, since it requires two compares.
2025      ++numCmps;
2026  }
2027
2028  return numCmps;
2029}
2030
2031void SelectionDAGBuilder::visitSwitch(SwitchInst &SI) {
2032  // Figure out which block is immediately after the current one.
2033  MachineBasicBlock *NextBlock = 0;
2034  MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()];
2035
2036  // If there is only the default destination, branch to it if it is not the
2037  // next basic block.  Otherwise, just fall through.
2038  if (SI.getNumOperands() == 2) {
2039    // Update machine-CFG edges.
2040
2041    // If this is not a fall-through branch, emit the branch.
2042    CurMBB->addSuccessor(Default);
2043    if (Default != NextBlock) {
2044      SDValue Res = DAG.getNode(ISD::BR, getCurDebugLoc(),
2045                                MVT::Other, getControlRoot(),
2046                                DAG.getBasicBlock(Default));
2047      DAG.setRoot(Res);
2048
2049      if (DisableScheduling)
2050        DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
2051    }
2052
2053    return;
2054  }
2055
2056  // If there are any non-default case statements, create a vector of Cases
2057  // representing each one, and sort the vector so that we can efficiently
2058  // create a binary search tree from them.
2059  CaseVector Cases;
2060  size_t numCmps = Clusterify(Cases, SI);
2061  DEBUG(errs() << "Clusterify finished. Total clusters: " << Cases.size()
2062               << ". Total compares: " << numCmps << '\n');
2063  numCmps = 0;
2064
2065  // Get the Value to be switched on and default basic blocks, which will be
2066  // inserted into CaseBlock records, representing basic blocks in the binary
2067  // search tree.
2068  Value *SV = SI.getOperand(0);
2069
2070  // Push the initial CaseRec onto the worklist
2071  CaseRecVector WorkList;
2072  WorkList.push_back(CaseRec(CurMBB,0,0,CaseRange(Cases.begin(),Cases.end())));
2073
2074  while (!WorkList.empty()) {
2075    // Grab a record representing a case range to process off the worklist
2076    CaseRec CR = WorkList.back();
2077    WorkList.pop_back();
2078
2079    if (handleBitTestsSwitchCase(CR, WorkList, SV, Default))
2080      continue;
2081
2082    // If the range has few cases (two or less) emit a series of specific
2083    // tests.
2084    if (handleSmallSwitchRange(CR, WorkList, SV, Default))
2085      continue;
2086
2087    // If the switch has more than 5 blocks, and at least 40% dense, and the
2088    // target supports indirect branches, then emit a jump table rather than
2089    // lowering the switch to a binary tree of conditional branches.
2090    if (handleJTSwitchCase(CR, WorkList, SV, Default))
2091      continue;
2092
2093    // Emit binary tree. We need to pick a pivot, and push left and right ranges
2094    // onto the worklist. Leafs are handled via handleSmallSwitchRange() call.
2095    handleBTSplitSwitchCase(CR, WorkList, SV, Default);
2096  }
2097}
2098
2099void SelectionDAGBuilder::visitIndirectBr(IndirectBrInst &I) {
2100  // Update machine-CFG edges.
2101  for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i)
2102    CurMBB->addSuccessor(FuncInfo.MBBMap[I.getSuccessor(i)]);
2103
2104  SDValue Res = DAG.getNode(ISD::BRIND, getCurDebugLoc(),
2105                            MVT::Other, getControlRoot(),
2106                            getValue(I.getAddress()));
2107  DAG.setRoot(Res);
2108
2109  if (DisableScheduling)
2110    DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
2111}
2112
2113void SelectionDAGBuilder::visitFSub(User &I) {
2114  // -0.0 - X --> fneg
2115  const Type *Ty = I.getType();
2116  if (isa<VectorType>(Ty)) {
2117    if (ConstantVector *CV = dyn_cast<ConstantVector>(I.getOperand(0))) {
2118      const VectorType *DestTy = cast<VectorType>(I.getType());
2119      const Type *ElTy = DestTy->getElementType();
2120      unsigned VL = DestTy->getNumElements();
2121      std::vector<Constant*> NZ(VL, ConstantFP::getNegativeZero(ElTy));
2122      Constant *CNZ = ConstantVector::get(&NZ[0], NZ.size());
2123      if (CV == CNZ) {
2124        SDValue Op2 = getValue(I.getOperand(1));
2125        SDValue Res = DAG.getNode(ISD::FNEG, getCurDebugLoc(),
2126                                  Op2.getValueType(), Op2);
2127        setValue(&I, Res);
2128
2129        if (DisableScheduling)
2130          DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
2131
2132        return;
2133      }
2134    }
2135  }
2136
2137  if (ConstantFP *CFP = dyn_cast<ConstantFP>(I.getOperand(0)))
2138    if (CFP->isExactlyValue(ConstantFP::getNegativeZero(Ty)->getValueAPF())) {
2139      SDValue Op2 = getValue(I.getOperand(1));
2140      SDValue Res = DAG.getNode(ISD::FNEG, getCurDebugLoc(),
2141                                Op2.getValueType(), Op2);
2142      setValue(&I, Res);
2143
2144      if (DisableScheduling)
2145        DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
2146
2147      return;
2148    }
2149
2150  visitBinary(I, ISD::FSUB);
2151}
2152
2153void SelectionDAGBuilder::visitBinary(User &I, unsigned OpCode) {
2154  SDValue Op1 = getValue(I.getOperand(0));
2155  SDValue Op2 = getValue(I.getOperand(1));
2156  SDValue Res = DAG.getNode(OpCode, getCurDebugLoc(),
2157                            Op1.getValueType(), Op1, Op2);
2158  setValue(&I, Res);
2159
2160  if (DisableScheduling)
2161    DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
2162}
2163
2164void SelectionDAGBuilder::visitShift(User &I, unsigned Opcode) {
2165  SDValue Op1 = getValue(I.getOperand(0));
2166  SDValue Op2 = getValue(I.getOperand(1));
2167  if (!isa<VectorType>(I.getType()) &&
2168      Op2.getValueType() != TLI.getShiftAmountTy()) {
2169    // If the operand is smaller than the shift count type, promote it.
2170    EVT PTy = TLI.getPointerTy();
2171    EVT STy = TLI.getShiftAmountTy();
2172    if (STy.bitsGT(Op2.getValueType()))
2173      Op2 = DAG.getNode(ISD::ANY_EXTEND, getCurDebugLoc(),
2174                        TLI.getShiftAmountTy(), Op2);
2175    // If the operand is larger than the shift count type but the shift
2176    // count type has enough bits to represent any shift value, truncate
2177    // it now. This is a common case and it exposes the truncate to
2178    // optimization early.
2179    else if (STy.getSizeInBits() >=
2180             Log2_32_Ceil(Op2.getValueType().getSizeInBits()))
2181      Op2 = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(),
2182                        TLI.getShiftAmountTy(), Op2);
2183    // Otherwise we'll need to temporarily settle for some other
2184    // convenient type; type legalization will make adjustments as
2185    // needed.
2186    else if (PTy.bitsLT(Op2.getValueType()))
2187      Op2 = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(),
2188                        TLI.getPointerTy(), Op2);
2189    else if (PTy.bitsGT(Op2.getValueType()))
2190      Op2 = DAG.getNode(ISD::ANY_EXTEND, getCurDebugLoc(),
2191                        TLI.getPointerTy(), Op2);
2192  }
2193
2194  SDValue Res = DAG.getNode(Opcode, getCurDebugLoc(),
2195                            Op1.getValueType(), Op1, Op2);
2196  setValue(&I, Res);
2197
2198  if (DisableScheduling) {
2199    DAG.AssignOrdering(Op1.getNode(), SDNodeOrder);
2200    DAG.AssignOrdering(Op2.getNode(), SDNodeOrder);
2201    DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
2202  }
2203}
2204
2205void SelectionDAGBuilder::visitICmp(User &I) {
2206  ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
2207  if (ICmpInst *IC = dyn_cast<ICmpInst>(&I))
2208    predicate = IC->getPredicate();
2209  else if (ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
2210    predicate = ICmpInst::Predicate(IC->getPredicate());
2211  SDValue Op1 = getValue(I.getOperand(0));
2212  SDValue Op2 = getValue(I.getOperand(1));
2213  ISD::CondCode Opcode = getICmpCondCode(predicate);
2214
2215  EVT DestVT = TLI.getValueType(I.getType());
2216  SDValue Res = DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Opcode);
2217  setValue(&I, Res);
2218
2219  if (DisableScheduling)
2220    DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
2221}
2222
2223void SelectionDAGBuilder::visitFCmp(User &I) {
2224  FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
2225  if (FCmpInst *FC = dyn_cast<FCmpInst>(&I))
2226    predicate = FC->getPredicate();
2227  else if (ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
2228    predicate = FCmpInst::Predicate(FC->getPredicate());
2229  SDValue Op1 = getValue(I.getOperand(0));
2230  SDValue Op2 = getValue(I.getOperand(1));
2231  ISD::CondCode Condition = getFCmpCondCode(predicate);
2232  EVT DestVT = TLI.getValueType(I.getType());
2233  SDValue Res = DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Condition);
2234  setValue(&I, Res);
2235
2236  if (DisableScheduling)
2237    DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
2238}
2239
2240void SelectionDAGBuilder::visitSelect(User &I) {
2241  SmallVector<EVT, 4> ValueVTs;
2242  ComputeValueVTs(TLI, I.getType(), ValueVTs);
2243  unsigned NumValues = ValueVTs.size();
2244  if (NumValues == 0) return;
2245
2246  SmallVector<SDValue, 4> Values(NumValues);
2247  SDValue Cond     = getValue(I.getOperand(0));
2248  SDValue TrueVal  = getValue(I.getOperand(1));
2249  SDValue FalseVal = getValue(I.getOperand(2));
2250
2251  for (unsigned i = 0; i != NumValues; ++i) {
2252    Values[i] = DAG.getNode(ISD::SELECT, getCurDebugLoc(),
2253                            TrueVal.getNode()->getValueType(i), Cond,
2254                            SDValue(TrueVal.getNode(),
2255                                    TrueVal.getResNo() + i),
2256                            SDValue(FalseVal.getNode(),
2257                                    FalseVal.getResNo() + i));
2258
2259    if (DisableScheduling)
2260      DAG.AssignOrdering(Values[i].getNode(), SDNodeOrder);
2261  }
2262
2263  SDValue Res = DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
2264                            DAG.getVTList(&ValueVTs[0], NumValues),
2265                            &Values[0], NumValues);
2266  setValue(&I, Res);
2267
2268  if (DisableScheduling)
2269    DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
2270}
2271
2272void SelectionDAGBuilder::visitTrunc(User &I) {
2273  // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
2274  SDValue N = getValue(I.getOperand(0));
2275  EVT DestVT = TLI.getValueType(I.getType());
2276  SDValue Res = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), DestVT, N);
2277  setValue(&I, Res);
2278
2279  if (DisableScheduling)
2280    DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
2281}
2282
2283void SelectionDAGBuilder::visitZExt(User &I) {
2284  // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2285  // ZExt also can't be a cast to bool for same reason. So, nothing much to do
2286  SDValue N = getValue(I.getOperand(0));
2287  EVT DestVT = TLI.getValueType(I.getType());
2288  SDValue Res = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), DestVT, N);
2289  setValue(&I, Res);
2290
2291  if (DisableScheduling)
2292    DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
2293}
2294
2295void SelectionDAGBuilder::visitSExt(User &I) {
2296  // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2297  // SExt also can't be a cast to bool for same reason. So, nothing much to do
2298  SDValue N = getValue(I.getOperand(0));
2299  EVT DestVT = TLI.getValueType(I.getType());
2300  SDValue Res = DAG.getNode(ISD::SIGN_EXTEND, getCurDebugLoc(), DestVT, N);
2301  setValue(&I, Res);
2302
2303  if (DisableScheduling)
2304    DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
2305}
2306
2307void SelectionDAGBuilder::visitFPTrunc(User &I) {
2308  // FPTrunc is never a no-op cast, no need to check
2309  SDValue N = getValue(I.getOperand(0));
2310  EVT DestVT = TLI.getValueType(I.getType());
2311  SDValue Res = DAG.getNode(ISD::FP_ROUND, getCurDebugLoc(),
2312                            DestVT, N, DAG.getIntPtrConstant(0));
2313  setValue(&I, Res);
2314
2315  if (DisableScheduling)
2316    DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
2317}
2318
2319void SelectionDAGBuilder::visitFPExt(User &I){
2320  // FPTrunc is never a no-op cast, no need to check
2321  SDValue N = getValue(I.getOperand(0));
2322  EVT DestVT = TLI.getValueType(I.getType());
2323  SDValue Res = DAG.getNode(ISD::FP_EXTEND, getCurDebugLoc(), DestVT, N);
2324  setValue(&I, Res);
2325
2326  if (DisableScheduling)
2327    DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
2328}
2329
2330void SelectionDAGBuilder::visitFPToUI(User &I) {
2331  // FPToUI is never a no-op cast, no need to check
2332  SDValue N = getValue(I.getOperand(0));
2333  EVT DestVT = TLI.getValueType(I.getType());
2334  SDValue Res = DAG.getNode(ISD::FP_TO_UINT, getCurDebugLoc(), DestVT, N);
2335  setValue(&I, Res);
2336
2337  if (DisableScheduling)
2338    DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
2339}
2340
2341void SelectionDAGBuilder::visitFPToSI(User &I) {
2342  // FPToSI is never a no-op cast, no need to check
2343  SDValue N = getValue(I.getOperand(0));
2344  EVT DestVT = TLI.getValueType(I.getType());
2345  SDValue Res = DAG.getNode(ISD::FP_TO_SINT, getCurDebugLoc(), DestVT, N);
2346  setValue(&I, Res);
2347
2348  if (DisableScheduling)
2349    DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
2350}
2351
2352void SelectionDAGBuilder::visitUIToFP(User &I) {
2353  // UIToFP is never a no-op cast, no need to check
2354  SDValue N = getValue(I.getOperand(0));
2355  EVT DestVT = TLI.getValueType(I.getType());
2356  SDValue Res = DAG.getNode(ISD::UINT_TO_FP, getCurDebugLoc(), DestVT, N);
2357  setValue(&I, Res);
2358
2359  if (DisableScheduling)
2360    DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
2361}
2362
2363void SelectionDAGBuilder::visitSIToFP(User &I){
2364  // SIToFP is never a no-op cast, no need to check
2365  SDValue N = getValue(I.getOperand(0));
2366  EVT DestVT = TLI.getValueType(I.getType());
2367  SDValue Res = DAG.getNode(ISD::SINT_TO_FP, getCurDebugLoc(), DestVT, N);
2368  setValue(&I, Res);
2369
2370  if (DisableScheduling)
2371    DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
2372}
2373
2374void SelectionDAGBuilder::visitPtrToInt(User &I) {
2375  // What to do depends on the size of the integer and the size of the pointer.
2376  // We can either truncate, zero extend, or no-op, accordingly.
2377  SDValue N = getValue(I.getOperand(0));
2378  EVT SrcVT = N.getValueType();
2379  EVT DestVT = TLI.getValueType(I.getType());
2380  SDValue Res = DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT);
2381  setValue(&I, Res);
2382
2383  if (DisableScheduling)
2384    DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
2385}
2386
2387void SelectionDAGBuilder::visitIntToPtr(User &I) {
2388  // What to do depends on the size of the integer and the size of the pointer.
2389  // We can either truncate, zero extend, or no-op, accordingly.
2390  SDValue N = getValue(I.getOperand(0));
2391  EVT SrcVT = N.getValueType();
2392  EVT DestVT = TLI.getValueType(I.getType());
2393  SDValue Res = DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT);
2394  setValue(&I, Res);
2395
2396  if (DisableScheduling)
2397    DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
2398}
2399
2400void SelectionDAGBuilder::visitBitCast(User &I) {
2401  SDValue N = getValue(I.getOperand(0));
2402  EVT DestVT = TLI.getValueType(I.getType());
2403
2404  // BitCast assures us that source and destination are the same size so this is
2405  // either a BIT_CONVERT or a no-op.
2406  if (DestVT != N.getValueType()) {
2407    SDValue Res = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(),
2408                              DestVT, N); // convert types.
2409    setValue(&I, Res);
2410
2411    if (DisableScheduling)
2412      DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
2413  } else {
2414    setValue(&I, N);            // noop cast.
2415  }
2416}
2417
2418void SelectionDAGBuilder::visitInsertElement(User &I) {
2419  SDValue InVec = getValue(I.getOperand(0));
2420  SDValue InVal = getValue(I.getOperand(1));
2421  SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(),
2422                              TLI.getPointerTy(),
2423                              getValue(I.getOperand(2)));
2424  SDValue Res = DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurDebugLoc(),
2425                            TLI.getValueType(I.getType()),
2426                            InVec, InVal, InIdx);
2427  setValue(&I, Res);
2428
2429  if (DisableScheduling) {
2430    DAG.AssignOrdering(InIdx.getNode(), SDNodeOrder);
2431    DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
2432  }
2433}
2434
2435void SelectionDAGBuilder::visitExtractElement(User &I) {
2436  SDValue InVec = getValue(I.getOperand(0));
2437  SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(),
2438                              TLI.getPointerTy(),
2439                              getValue(I.getOperand(1)));
2440  SDValue Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
2441                            TLI.getValueType(I.getType()), InVec, InIdx);
2442  setValue(&I, Res);
2443
2444  if (DisableScheduling) {
2445    DAG.AssignOrdering(InIdx.getNode(), SDNodeOrder);
2446    DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
2447  }
2448}
2449
2450
2451// Utility for visitShuffleVector - Returns true if the mask is mask starting
2452// from SIndx and increasing to the element length (undefs are allowed).
2453static bool SequentialMask(SmallVectorImpl<int> &Mask, unsigned SIndx) {
2454  unsigned MaskNumElts = Mask.size();
2455  for (unsigned i = 0; i != MaskNumElts; ++i)
2456    if ((Mask[i] >= 0) && (Mask[i] != (int)(i + SIndx)))
2457      return false;
2458  return true;
2459}
2460
2461void SelectionDAGBuilder::visitShuffleVector(User &I) {
2462  SmallVector<int, 8> Mask;
2463  SDValue Src1 = getValue(I.getOperand(0));
2464  SDValue Src2 = getValue(I.getOperand(1));
2465
2466  // Convert the ConstantVector mask operand into an array of ints, with -1
2467  // representing undef values.
2468  SmallVector<Constant*, 8> MaskElts;
2469  cast<Constant>(I.getOperand(2))->getVectorElements(*DAG.getContext(),
2470                                                     MaskElts);
2471  unsigned MaskNumElts = MaskElts.size();
2472  for (unsigned i = 0; i != MaskNumElts; ++i) {
2473    if (isa<UndefValue>(MaskElts[i]))
2474      Mask.push_back(-1);
2475    else
2476      Mask.push_back(cast<ConstantInt>(MaskElts[i])->getSExtValue());
2477  }
2478
2479  EVT VT = TLI.getValueType(I.getType());
2480  EVT SrcVT = Src1.getValueType();
2481  unsigned SrcNumElts = SrcVT.getVectorNumElements();
2482
2483  if (SrcNumElts == MaskNumElts) {
2484    SDValue Res = DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2485                                       &Mask[0]);
2486    setValue(&I, Res);
2487
2488    if (DisableScheduling)
2489      DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
2490
2491    return;
2492  }
2493
2494  // Normalize the shuffle vector since mask and vector length don't match.
2495  if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) {
2496    // Mask is longer than the source vectors and is a multiple of the source
2497    // vectors.  We can use concatenate vector to make the mask and vectors
2498    // lengths match.
2499    if (SrcNumElts*2 == MaskNumElts && SequentialMask(Mask, 0)) {
2500      // The shuffle is concatenating two vectors together.
2501      SDValue Res = DAG.getNode(ISD::CONCAT_VECTORS, getCurDebugLoc(),
2502                                VT, Src1, Src2);
2503      setValue(&I, Res);
2504
2505      if (DisableScheduling)
2506        DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
2507
2508      return;
2509    }
2510
2511    // Pad both vectors with undefs to make them the same length as the mask.
2512    unsigned NumConcat = MaskNumElts / SrcNumElts;
2513    bool Src1U = Src1.getOpcode() == ISD::UNDEF;
2514    bool Src2U = Src2.getOpcode() == ISD::UNDEF;
2515    SDValue UndefVal = DAG.getUNDEF(SrcVT);
2516
2517    SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
2518    SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
2519    MOps1[0] = Src1;
2520    MOps2[0] = Src2;
2521
2522    Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
2523                                                  getCurDebugLoc(), VT,
2524                                                  &MOps1[0], NumConcat);
2525    Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
2526                                                  getCurDebugLoc(), VT,
2527                                                  &MOps2[0], NumConcat);
2528
2529    // Readjust mask for new input vector length.
2530    SmallVector<int, 8> MappedOps;
2531    for (unsigned i = 0; i != MaskNumElts; ++i) {
2532      int Idx = Mask[i];
2533      if (Idx < (int)SrcNumElts)
2534        MappedOps.push_back(Idx);
2535      else
2536        MappedOps.push_back(Idx + MaskNumElts - SrcNumElts);
2537    }
2538
2539    SDValue Res = DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2540                                       &MappedOps[0]);
2541    setValue(&I, Res);
2542
2543    if (DisableScheduling) {
2544      DAG.AssignOrdering(Src1.getNode(), SDNodeOrder);
2545      DAG.AssignOrdering(Src2.getNode(), SDNodeOrder);
2546      DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
2547    }
2548
2549    return;
2550  }
2551
2552  if (SrcNumElts > MaskNumElts) {
2553    // Analyze the access pattern of the vector to see if we can extract
2554    // two subvectors and do the shuffle. The analysis is done by calculating
2555    // the range of elements the mask access on both vectors.
2556    int MinRange[2] = { SrcNumElts+1, SrcNumElts+1};
2557    int MaxRange[2] = {-1, -1};
2558
2559    for (unsigned i = 0; i != MaskNumElts; ++i) {
2560      int Idx = Mask[i];
2561      int Input = 0;
2562      if (Idx < 0)
2563        continue;
2564
2565      if (Idx >= (int)SrcNumElts) {
2566        Input = 1;
2567        Idx -= SrcNumElts;
2568      }
2569      if (Idx > MaxRange[Input])
2570        MaxRange[Input] = Idx;
2571      if (Idx < MinRange[Input])
2572        MinRange[Input] = Idx;
2573    }
2574
2575    // Check if the access is smaller than the vector size and can we find
2576    // a reasonable extract index.
2577    int RangeUse[2] = { 2, 2 };  // 0 = Unused, 1 = Extract, 2 = Can not Extract.
2578    int StartIdx[2];  // StartIdx to extract from
2579    for (int Input=0; Input < 2; ++Input) {
2580      if (MinRange[Input] == (int)(SrcNumElts+1) && MaxRange[Input] == -1) {
2581        RangeUse[Input] = 0; // Unused
2582        StartIdx[Input] = 0;
2583      } else if (MaxRange[Input] - MinRange[Input] < (int)MaskNumElts) {
2584        // Fits within range but we should see if we can find a good
2585        // start index that is a multiple of the mask length.
2586        if (MaxRange[Input] < (int)MaskNumElts) {
2587          RangeUse[Input] = 1; // Extract from beginning of the vector
2588          StartIdx[Input] = 0;
2589        } else {
2590          StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts;
2591          if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts &&
2592              StartIdx[Input] + MaskNumElts < SrcNumElts)
2593            RangeUse[Input] = 1; // Extract from a multiple of the mask length.
2594        }
2595      }
2596    }
2597
2598    if (RangeUse[0] == 0 && RangeUse[1] == 0) {
2599      SDValue Res = DAG.getUNDEF(VT);
2600      setValue(&I, Res);  // Vectors are not used.
2601
2602      if (DisableScheduling)
2603        DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
2604
2605      return;
2606    }
2607    else if (RangeUse[0] < 2 && RangeUse[1] < 2) {
2608      // Extract appropriate subvector and generate a vector shuffle
2609      for (int Input=0; Input < 2; ++Input) {
2610        SDValue &Src = Input == 0 ? Src1 : Src2;
2611        if (RangeUse[Input] == 0)
2612          Src = DAG.getUNDEF(VT);
2613        else
2614          Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, getCurDebugLoc(), VT,
2615                            Src, DAG.getIntPtrConstant(StartIdx[Input]));
2616
2617        if (DisableScheduling)
2618          DAG.AssignOrdering(Src.getNode(), SDNodeOrder);
2619      }
2620
2621      // Calculate new mask.
2622      SmallVector<int, 8> MappedOps;
2623      for (unsigned i = 0; i != MaskNumElts; ++i) {
2624        int Idx = Mask[i];
2625        if (Idx < 0)
2626          MappedOps.push_back(Idx);
2627        else if (Idx < (int)SrcNumElts)
2628          MappedOps.push_back(Idx - StartIdx[0]);
2629        else
2630          MappedOps.push_back(Idx - SrcNumElts - StartIdx[1] + MaskNumElts);
2631      }
2632
2633      SDValue Res = DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2634                                         &MappedOps[0]);
2635      setValue(&I, Res);
2636
2637      if (DisableScheduling)
2638        DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
2639
2640      return;
2641    }
2642  }
2643
2644  // We can't use either concat vectors or extract subvectors so fall back to
2645  // replacing the shuffle with extract and build vector.
2646  // to insert and build vector.
2647  EVT EltVT = VT.getVectorElementType();
2648  EVT PtrVT = TLI.getPointerTy();
2649  SmallVector<SDValue,8> Ops;
2650  for (unsigned i = 0; i != MaskNumElts; ++i) {
2651    if (Mask[i] < 0) {
2652      Ops.push_back(DAG.getUNDEF(EltVT));
2653    } else {
2654      int Idx = Mask[i];
2655      SDValue Res;
2656
2657      if (Idx < (int)SrcNumElts)
2658        Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
2659                          EltVT, Src1, DAG.getConstant(Idx, PtrVT));
2660      else
2661        Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
2662                          EltVT, Src2,
2663                          DAG.getConstant(Idx - SrcNumElts, PtrVT));
2664
2665      Ops.push_back(Res);
2666
2667      if (DisableScheduling)
2668        DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
2669    }
2670  }
2671
2672  SDValue Res = DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(),
2673                            VT, &Ops[0], Ops.size());
2674  setValue(&I, Res);
2675
2676  if (DisableScheduling)
2677    DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
2678}
2679
2680void SelectionDAGBuilder::visitInsertValue(InsertValueInst &I) {
2681  const Value *Op0 = I.getOperand(0);
2682  const Value *Op1 = I.getOperand(1);
2683  const Type *AggTy = I.getType();
2684  const Type *ValTy = Op1->getType();
2685  bool IntoUndef = isa<UndefValue>(Op0);
2686  bool FromUndef = isa<UndefValue>(Op1);
2687
2688  unsigned LinearIndex = ComputeLinearIndex(TLI, AggTy,
2689                                            I.idx_begin(), I.idx_end());
2690
2691  SmallVector<EVT, 4> AggValueVTs;
2692  ComputeValueVTs(TLI, AggTy, AggValueVTs);
2693  SmallVector<EVT, 4> ValValueVTs;
2694  ComputeValueVTs(TLI, ValTy, ValValueVTs);
2695
2696  unsigned NumAggValues = AggValueVTs.size();
2697  unsigned NumValValues = ValValueVTs.size();
2698  SmallVector<SDValue, 4> Values(NumAggValues);
2699
2700  SDValue Agg = getValue(Op0);
2701  SDValue Val = getValue(Op1);
2702  unsigned i = 0;
2703  // Copy the beginning value(s) from the original aggregate.
2704  for (; i != LinearIndex; ++i)
2705    Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
2706                SDValue(Agg.getNode(), Agg.getResNo() + i);
2707  // Copy values from the inserted value(s).
2708  for (; i != LinearIndex + NumValValues; ++i)
2709    Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
2710                SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
2711  // Copy remaining value(s) from the original aggregate.
2712  for (; i != NumAggValues; ++i)
2713    Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
2714                SDValue(Agg.getNode(), Agg.getResNo() + i);
2715
2716  SDValue Res = DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
2717                            DAG.getVTList(&AggValueVTs[0], NumAggValues),
2718                            &Values[0], NumAggValues);
2719  setValue(&I, Res);
2720
2721  if (DisableScheduling)
2722    DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
2723}
2724
2725void SelectionDAGBuilder::visitExtractValue(ExtractValueInst &I) {
2726  const Value *Op0 = I.getOperand(0);
2727  const Type *AggTy = Op0->getType();
2728  const Type *ValTy = I.getType();
2729  bool OutOfUndef = isa<UndefValue>(Op0);
2730
2731  unsigned LinearIndex = ComputeLinearIndex(TLI, AggTy,
2732                                            I.idx_begin(), I.idx_end());
2733
2734  SmallVector<EVT, 4> ValValueVTs;
2735  ComputeValueVTs(TLI, ValTy, ValValueVTs);
2736
2737  unsigned NumValValues = ValValueVTs.size();
2738  SmallVector<SDValue, 4> Values(NumValValues);
2739
2740  SDValue Agg = getValue(Op0);
2741  // Copy out the selected value(s).
2742  for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
2743    Values[i - LinearIndex] =
2744      OutOfUndef ?
2745        DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
2746        SDValue(Agg.getNode(), Agg.getResNo() + i);
2747
2748  SDValue Res = DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
2749                            DAG.getVTList(&ValValueVTs[0], NumValValues),
2750                            &Values[0], NumValValues);
2751  setValue(&I, Res);
2752
2753  if (DisableScheduling)
2754    DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
2755}
2756
2757void SelectionDAGBuilder::visitGetElementPtr(User &I) {
2758  SDValue N = getValue(I.getOperand(0));
2759  const Type *Ty = I.getOperand(0)->getType();
2760
2761  for (GetElementPtrInst::op_iterator OI = I.op_begin()+1, E = I.op_end();
2762       OI != E; ++OI) {
2763    Value *Idx = *OI;
2764    if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
2765      unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
2766      if (Field) {
2767        // N = N + Offset
2768        uint64_t Offset = TD->getStructLayout(StTy)->getElementOffset(Field);
2769        N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N,
2770                        DAG.getIntPtrConstant(Offset));
2771
2772        if (DisableScheduling)
2773          DAG.AssignOrdering(N.getNode(), SDNodeOrder);
2774      }
2775
2776      Ty = StTy->getElementType(Field);
2777    } else {
2778      Ty = cast<SequentialType>(Ty)->getElementType();
2779
2780      // If this is a constant subscript, handle it quickly.
2781      if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
2782        if (CI->getZExtValue() == 0) continue;
2783        uint64_t Offs =
2784            TD->getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue();
2785        SDValue OffsVal;
2786        EVT PTy = TLI.getPointerTy();
2787        unsigned PtrBits = PTy.getSizeInBits();
2788        if (PtrBits < 64)
2789          OffsVal = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(),
2790                                TLI.getPointerTy(),
2791                                DAG.getConstant(Offs, MVT::i64));
2792        else
2793          OffsVal = DAG.getIntPtrConstant(Offs);
2794
2795        N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N,
2796                        OffsVal);
2797
2798        if (DisableScheduling) {
2799          DAG.AssignOrdering(OffsVal.getNode(), SDNodeOrder);
2800          DAG.AssignOrdering(N.getNode(), SDNodeOrder);
2801        }
2802
2803        continue;
2804      }
2805
2806      // N = N + Idx * ElementSize;
2807      APInt ElementSize = APInt(TLI.getPointerTy().getSizeInBits(),
2808                                TD->getTypeAllocSize(Ty));
2809      SDValue IdxN = getValue(Idx);
2810
2811      // If the index is smaller or larger than intptr_t, truncate or extend
2812      // it.
2813      IdxN = DAG.getSExtOrTrunc(IdxN, getCurDebugLoc(), N.getValueType());
2814
2815      // If this is a multiply by a power of two, turn it into a shl
2816      // immediately.  This is a very common case.
2817      if (ElementSize != 1) {
2818        if (ElementSize.isPowerOf2()) {
2819          unsigned Amt = ElementSize.logBase2();
2820          IdxN = DAG.getNode(ISD::SHL, getCurDebugLoc(),
2821                             N.getValueType(), IdxN,
2822                             DAG.getConstant(Amt, TLI.getPointerTy()));
2823        } else {
2824          SDValue Scale = DAG.getConstant(ElementSize, TLI.getPointerTy());
2825          IdxN = DAG.getNode(ISD::MUL, getCurDebugLoc(),
2826                             N.getValueType(), IdxN, Scale);
2827        }
2828
2829        if (DisableScheduling)
2830          DAG.AssignOrdering(IdxN.getNode(), SDNodeOrder);
2831      }
2832
2833      N = DAG.getNode(ISD::ADD, getCurDebugLoc(),
2834                      N.getValueType(), N, IdxN);
2835
2836      if (DisableScheduling)
2837        DAG.AssignOrdering(N.getNode(), SDNodeOrder);
2838    }
2839  }
2840
2841  setValue(&I, N);
2842}
2843
2844void SelectionDAGBuilder::visitAlloca(AllocaInst &I) {
2845  // If this is a fixed sized alloca in the entry block of the function,
2846  // allocate it statically on the stack.
2847  if (FuncInfo.StaticAllocaMap.count(&I))
2848    return;   // getValue will auto-populate this.
2849
2850  const Type *Ty = I.getAllocatedType();
2851  uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty);
2852  unsigned Align =
2853    std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty),
2854             I.getAlignment());
2855
2856  SDValue AllocSize = getValue(I.getArraySize());
2857
2858  AllocSize = DAG.getNode(ISD::MUL, getCurDebugLoc(), AllocSize.getValueType(),
2859                          AllocSize,
2860                          DAG.getConstant(TySize, AllocSize.getValueType()));
2861
2862  if (DisableScheduling)
2863    DAG.AssignOrdering(AllocSize.getNode(), SDNodeOrder);
2864
2865  EVT IntPtr = TLI.getPointerTy();
2866  AllocSize = DAG.getZExtOrTrunc(AllocSize, getCurDebugLoc(), IntPtr);
2867
2868  if (DisableScheduling)
2869    DAG.AssignOrdering(AllocSize.getNode(), SDNodeOrder);
2870
2871  // Handle alignment.  If the requested alignment is less than or equal to
2872  // the stack alignment, ignore it.  If the size is greater than or equal to
2873  // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
2874  unsigned StackAlign =
2875    TLI.getTargetMachine().getFrameInfo()->getStackAlignment();
2876  if (Align <= StackAlign)
2877    Align = 0;
2878
2879  // Round the size of the allocation up to the stack alignment size
2880  // by add SA-1 to the size.
2881  AllocSize = DAG.getNode(ISD::ADD, getCurDebugLoc(),
2882                          AllocSize.getValueType(), AllocSize,
2883                          DAG.getIntPtrConstant(StackAlign-1));
2884  if (DisableScheduling)
2885    DAG.AssignOrdering(AllocSize.getNode(), SDNodeOrder);
2886
2887  // Mask out the low bits for alignment purposes.
2888  AllocSize = DAG.getNode(ISD::AND, getCurDebugLoc(),
2889                          AllocSize.getValueType(), AllocSize,
2890                          DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1)));
2891  if (DisableScheduling)
2892    DAG.AssignOrdering(AllocSize.getNode(), SDNodeOrder);
2893
2894  SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) };
2895  SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
2896  SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, getCurDebugLoc(),
2897                            VTs, Ops, 3);
2898  setValue(&I, DSA);
2899  DAG.setRoot(DSA.getValue(1));
2900
2901  if (DisableScheduling)
2902    DAG.AssignOrdering(DSA.getNode(), SDNodeOrder);
2903
2904  // Inform the Frame Information that we have just allocated a variable-sized
2905  // object.
2906  FuncInfo.MF->getFrameInfo()->CreateVariableSizedObject();
2907}
2908
2909void SelectionDAGBuilder::visitLoad(LoadInst &I) {
2910  const Value *SV = I.getOperand(0);
2911  SDValue Ptr = getValue(SV);
2912
2913  const Type *Ty = I.getType();
2914  bool isVolatile = I.isVolatile();
2915  unsigned Alignment = I.getAlignment();
2916
2917  SmallVector<EVT, 4> ValueVTs;
2918  SmallVector<uint64_t, 4> Offsets;
2919  ComputeValueVTs(TLI, Ty, ValueVTs, &Offsets);
2920  unsigned NumValues = ValueVTs.size();
2921  if (NumValues == 0)
2922    return;
2923
2924  SDValue Root;
2925  bool ConstantMemory = false;
2926  if (I.isVolatile())
2927    // Serialize volatile loads with other side effects.
2928    Root = getRoot();
2929  else if (AA->pointsToConstantMemory(SV)) {
2930    // Do not serialize (non-volatile) loads of constant memory with anything.
2931    Root = DAG.getEntryNode();
2932    ConstantMemory = true;
2933  } else {
2934    // Do not serialize non-volatile loads against each other.
2935    Root = DAG.getRoot();
2936  }
2937
2938  SmallVector<SDValue, 4> Values(NumValues);
2939  SmallVector<SDValue, 4> Chains(NumValues);
2940  EVT PtrVT = Ptr.getValueType();
2941  for (unsigned i = 0; i != NumValues; ++i) {
2942    SDValue A = DAG.getNode(ISD::ADD, getCurDebugLoc(),
2943                            PtrVT, Ptr,
2944                            DAG.getConstant(Offsets[i], PtrVT));
2945    SDValue L = DAG.getLoad(ValueVTs[i], getCurDebugLoc(), Root,
2946                            A, SV, Offsets[i], isVolatile, Alignment);
2947
2948    Values[i] = L;
2949    Chains[i] = L.getValue(1);
2950
2951    if (DisableScheduling) {
2952      DAG.AssignOrdering(A.getNode(), SDNodeOrder);
2953      DAG.AssignOrdering(L.getNode(), SDNodeOrder);
2954    }
2955  }
2956
2957  if (!ConstantMemory) {
2958    SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
2959                                MVT::Other, &Chains[0], NumValues);
2960    if (isVolatile)
2961      DAG.setRoot(Chain);
2962    else
2963      PendingLoads.push_back(Chain);
2964
2965    if (DisableScheduling)
2966      DAG.AssignOrdering(Chain.getNode(), SDNodeOrder);
2967  }
2968
2969  SDValue Res = DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
2970                            DAG.getVTList(&ValueVTs[0], NumValues),
2971                            &Values[0], NumValues);
2972  setValue(&I, Res);
2973
2974  if (DisableScheduling)
2975    DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
2976}
2977
2978void SelectionDAGBuilder::visitStore(StoreInst &I) {
2979  Value *SrcV = I.getOperand(0);
2980  Value *PtrV = I.getOperand(1);
2981
2982  SmallVector<EVT, 4> ValueVTs;
2983  SmallVector<uint64_t, 4> Offsets;
2984  ComputeValueVTs(TLI, SrcV->getType(), ValueVTs, &Offsets);
2985  unsigned NumValues = ValueVTs.size();
2986  if (NumValues == 0)
2987    return;
2988
2989  // Get the lowered operands. Note that we do this after
2990  // checking if NumResults is zero, because with zero results
2991  // the operands won't have values in the map.
2992  SDValue Src = getValue(SrcV);
2993  SDValue Ptr = getValue(PtrV);
2994
2995  SDValue Root = getRoot();
2996  SmallVector<SDValue, 4> Chains(NumValues);
2997  EVT PtrVT = Ptr.getValueType();
2998  bool isVolatile = I.isVolatile();
2999  unsigned Alignment = I.getAlignment();
3000
3001  for (unsigned i = 0; i != NumValues; ++i) {
3002    SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT, Ptr,
3003                              DAG.getConstant(Offsets[i], PtrVT));
3004    Chains[i] = DAG.getStore(Root, getCurDebugLoc(),
3005                             SDValue(Src.getNode(), Src.getResNo() + i),
3006                             Add, PtrV, Offsets[i], isVolatile, Alignment);
3007
3008    if (DisableScheduling) {
3009      DAG.AssignOrdering(Add.getNode(), SDNodeOrder);
3010      DAG.AssignOrdering(Chains[i].getNode(), SDNodeOrder);
3011    }
3012  }
3013
3014  SDValue Res = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
3015                            MVT::Other, &Chains[0], NumValues);
3016  DAG.setRoot(Res);
3017
3018  if (DisableScheduling)
3019    DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
3020}
3021
3022/// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
3023/// node.
3024void SelectionDAGBuilder::visitTargetIntrinsic(CallInst &I,
3025                                               unsigned Intrinsic) {
3026  bool HasChain = !I.doesNotAccessMemory();
3027  bool OnlyLoad = HasChain && I.onlyReadsMemory();
3028
3029  // Build the operand list.
3030  SmallVector<SDValue, 8> Ops;
3031  if (HasChain) {  // If this intrinsic has side-effects, chainify it.
3032    if (OnlyLoad) {
3033      // We don't need to serialize loads against other loads.
3034      Ops.push_back(DAG.getRoot());
3035    } else {
3036      Ops.push_back(getRoot());
3037    }
3038  }
3039
3040  // Info is set by getTgtMemInstrinsic
3041  TargetLowering::IntrinsicInfo Info;
3042  bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic);
3043
3044  // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
3045  if (!IsTgtIntrinsic)
3046    Ops.push_back(DAG.getConstant(Intrinsic, TLI.getPointerTy()));
3047
3048  // Add all operands of the call to the operand list.
3049  for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) {
3050    SDValue Op = getValue(I.getOperand(i));
3051    assert(TLI.isTypeLegal(Op.getValueType()) &&
3052           "Intrinsic uses a non-legal type?");
3053    Ops.push_back(Op);
3054  }
3055
3056  SmallVector<EVT, 4> ValueVTs;
3057  ComputeValueVTs(TLI, I.getType(), ValueVTs);
3058#ifndef NDEBUG
3059  for (unsigned Val = 0, E = ValueVTs.size(); Val != E; ++Val) {
3060    assert(TLI.isTypeLegal(ValueVTs[Val]) &&
3061           "Intrinsic uses a non-legal type?");
3062  }
3063#endif // NDEBUG
3064
3065  if (HasChain)
3066    ValueVTs.push_back(MVT::Other);
3067
3068  SDVTList VTs = DAG.getVTList(ValueVTs.data(), ValueVTs.size());
3069
3070  // Create the node.
3071  SDValue Result;
3072  if (IsTgtIntrinsic) {
3073    // This is target intrinsic that touches memory
3074    Result = DAG.getMemIntrinsicNode(Info.opc, getCurDebugLoc(),
3075                                     VTs, &Ops[0], Ops.size(),
3076                                     Info.memVT, Info.ptrVal, Info.offset,
3077                                     Info.align, Info.vol,
3078                                     Info.readMem, Info.writeMem);
3079  } else if (!HasChain) {
3080    Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurDebugLoc(),
3081                         VTs, &Ops[0], Ops.size());
3082  } else if (I.getType() != Type::getVoidTy(*DAG.getContext())) {
3083    Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurDebugLoc(),
3084                         VTs, &Ops[0], Ops.size());
3085  } else {
3086    Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurDebugLoc(),
3087                         VTs, &Ops[0], Ops.size());
3088  }
3089
3090  if (DisableScheduling)
3091    DAG.AssignOrdering(Result.getNode(), SDNodeOrder);
3092
3093  if (HasChain) {
3094    SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
3095    if (OnlyLoad)
3096      PendingLoads.push_back(Chain);
3097    else
3098      DAG.setRoot(Chain);
3099  }
3100
3101  if (I.getType() != Type::getVoidTy(*DAG.getContext())) {
3102    if (const VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
3103      EVT VT = TLI.getValueType(PTy);
3104      Result = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(), VT, Result);
3105
3106      if (DisableScheduling)
3107        DAG.AssignOrdering(Result.getNode(), SDNodeOrder);
3108    }
3109
3110    setValue(&I, Result);
3111  }
3112}
3113
3114/// GetSignificand - Get the significand and build it into a floating-point
3115/// number with exponent of 1:
3116///
3117///   Op = (Op & 0x007fffff) | 0x3f800000;
3118///
3119/// where Op is the hexidecimal representation of floating point value.
3120static SDValue
3121GetSignificand(SelectionDAG &DAG, SDValue Op, DebugLoc dl, unsigned Order) {
3122  SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
3123                           DAG.getConstant(0x007fffff, MVT::i32));
3124  SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
3125                           DAG.getConstant(0x3f800000, MVT::i32));
3126  SDValue Res = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t2);
3127
3128  if (DisableScheduling) {
3129    DAG.AssignOrdering(t1.getNode(), Order);
3130    DAG.AssignOrdering(t2.getNode(), Order);
3131    DAG.AssignOrdering(Res.getNode(), Order);
3132  }
3133
3134  return Res;
3135}
3136
3137/// GetExponent - Get the exponent:
3138///
3139///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
3140///
3141/// where Op is the hexidecimal representation of floating point value.
3142static SDValue
3143GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI,
3144            DebugLoc dl, unsigned Order) {
3145  SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
3146                           DAG.getConstant(0x7f800000, MVT::i32));
3147  SDValue t1 = DAG.getNode(ISD::SRL, dl, MVT::i32, t0,
3148                           DAG.getConstant(23, TLI.getPointerTy()));
3149  SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
3150                           DAG.getConstant(127, MVT::i32));
3151  SDValue Res = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
3152
3153  if (DisableScheduling) {
3154    DAG.AssignOrdering(t0.getNode(), Order);
3155    DAG.AssignOrdering(t1.getNode(), Order);
3156    DAG.AssignOrdering(t2.getNode(), Order);
3157    DAG.AssignOrdering(Res.getNode(), Order);
3158  }
3159
3160  return Res;
3161}
3162
3163/// getF32Constant - Get 32-bit floating point constant.
3164static SDValue
3165getF32Constant(SelectionDAG &DAG, unsigned Flt) {
3166  return DAG.getConstantFP(APFloat(APInt(32, Flt)), MVT::f32);
3167}
3168
3169/// Inlined utility function to implement binary input atomic intrinsics for
3170/// visitIntrinsicCall: I is a call instruction
3171///                     Op is the associated NodeType for I
3172const char *
3173SelectionDAGBuilder::implVisitBinaryAtomic(CallInst& I, ISD::NodeType Op) {
3174  SDValue Root = getRoot();
3175  SDValue L =
3176    DAG.getAtomic(Op, getCurDebugLoc(),
3177                  getValue(I.getOperand(2)).getValueType().getSimpleVT(),
3178                  Root,
3179                  getValue(I.getOperand(1)),
3180                  getValue(I.getOperand(2)),
3181                  I.getOperand(1));
3182  setValue(&I, L);
3183  DAG.setRoot(L.getValue(1));
3184
3185  if (DisableScheduling)
3186    DAG.AssignOrdering(L.getNode(), SDNodeOrder);
3187
3188  return 0;
3189}
3190
3191// implVisitAluOverflow - Lower arithmetic overflow instrinsics.
3192const char *
3193SelectionDAGBuilder::implVisitAluOverflow(CallInst &I, ISD::NodeType Op) {
3194  SDValue Op1 = getValue(I.getOperand(1));
3195  SDValue Op2 = getValue(I.getOperand(2));
3196
3197  SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1);
3198  SDValue Result = DAG.getNode(Op, getCurDebugLoc(), VTs, Op1, Op2);
3199
3200  setValue(&I, Result);
3201
3202  if (DisableScheduling)
3203    DAG.AssignOrdering(Result.getNode(), SDNodeOrder);
3204
3205  return 0;
3206}
3207
3208/// visitExp - Lower an exp intrinsic. Handles the special sequences for
3209/// limited-precision mode.
3210void
3211SelectionDAGBuilder::visitExp(CallInst &I) {
3212  SDValue result;
3213  DebugLoc dl = getCurDebugLoc();
3214
3215  if (getValue(I.getOperand(1)).getValueType() == MVT::f32 &&
3216      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3217    SDValue Op = getValue(I.getOperand(1));
3218
3219    // Put the exponent in the right bit position for later addition to the
3220    // final result:
3221    //
3222    //   #define LOG2OFe 1.4426950f
3223    //   IntegerPartOfX = ((int32_t)(X * LOG2OFe));
3224    SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
3225                             getF32Constant(DAG, 0x3fb8aa3b));
3226    SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
3227
3228    //   FractionalPartOfX = (X * LOG2OFe) - (float)IntegerPartOfX;
3229    SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
3230    SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
3231
3232    if (DisableScheduling) {
3233      DAG.AssignOrdering(t0.getNode(), SDNodeOrder);
3234      DAG.AssignOrdering(IntegerPartOfX.getNode(), SDNodeOrder);
3235      DAG.AssignOrdering(t1.getNode(), SDNodeOrder);
3236      DAG.AssignOrdering(X.getNode(), SDNodeOrder);
3237    }
3238
3239    //   IntegerPartOfX <<= 23;
3240    IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
3241                                 DAG.getConstant(23, TLI.getPointerTy()));
3242
3243    if (DisableScheduling)
3244      DAG.AssignOrdering(IntegerPartOfX.getNode(), SDNodeOrder);
3245
3246    if (LimitFloatPrecision <= 6) {
3247      // For floating-point precision of 6:
3248      //
3249      //   TwoToFractionalPartOfX =
3250      //     0.997535578f +
3251      //       (0.735607626f + 0.252464424f * x) * x;
3252      //
3253      // error 0.0144103317, which is 6 bits
3254      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3255                               getF32Constant(DAG, 0x3e814304));
3256      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3257                               getF32Constant(DAG, 0x3f3c50c8));
3258      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3259      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3260                               getF32Constant(DAG, 0x3f7f5e7e));
3261      SDValue TwoToFracPartOfX = DAG.getNode(ISD::BIT_CONVERT, dl,MVT::i32, t5);
3262
3263      // Add the exponent into the result in integer domain.
3264      SDValue t6 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3265                               TwoToFracPartOfX, IntegerPartOfX);
3266
3267      result = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t6);
3268
3269      if (DisableScheduling) {
3270        DAG.AssignOrdering(t2.getNode(), SDNodeOrder);
3271        DAG.AssignOrdering(t3.getNode(), SDNodeOrder);
3272        DAG.AssignOrdering(t4.getNode(), SDNodeOrder);
3273        DAG.AssignOrdering(t5.getNode(), SDNodeOrder);
3274        DAG.AssignOrdering(t6.getNode(), SDNodeOrder);
3275        DAG.AssignOrdering(TwoToFracPartOfX.getNode(), SDNodeOrder);
3276        DAG.AssignOrdering(result.getNode(), SDNodeOrder);
3277      }
3278    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3279      // For floating-point precision of 12:
3280      //
3281      //   TwoToFractionalPartOfX =
3282      //     0.999892986f +
3283      //       (0.696457318f +
3284      //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
3285      //
3286      // 0.000107046256 error, which is 13 to 14 bits
3287      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3288                               getF32Constant(DAG, 0x3da235e3));
3289      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3290                               getF32Constant(DAG, 0x3e65b8f3));
3291      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3292      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3293                               getF32Constant(DAG, 0x3f324b07));
3294      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3295      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3296                               getF32Constant(DAG, 0x3f7ff8fd));
3297      SDValue TwoToFracPartOfX = DAG.getNode(ISD::BIT_CONVERT, dl,MVT::i32, t7);
3298
3299      // Add the exponent into the result in integer domain.
3300      SDValue t8 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3301                               TwoToFracPartOfX, IntegerPartOfX);
3302
3303      result = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t8);
3304
3305      if (DisableScheduling) {
3306        DAG.AssignOrdering(t2.getNode(), SDNodeOrder);
3307        DAG.AssignOrdering(t3.getNode(), SDNodeOrder);
3308        DAG.AssignOrdering(t4.getNode(), SDNodeOrder);
3309        DAG.AssignOrdering(t5.getNode(), SDNodeOrder);
3310        DAG.AssignOrdering(t6.getNode(), SDNodeOrder);
3311        DAG.AssignOrdering(t7.getNode(), SDNodeOrder);
3312        DAG.AssignOrdering(t8.getNode(), SDNodeOrder);
3313        DAG.AssignOrdering(TwoToFracPartOfX.getNode(), SDNodeOrder);
3314        DAG.AssignOrdering(result.getNode(), SDNodeOrder);
3315      }
3316    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3317      // For floating-point precision of 18:
3318      //
3319      //   TwoToFractionalPartOfX =
3320      //     0.999999982f +
3321      //       (0.693148872f +
3322      //         (0.240227044f +
3323      //           (0.554906021e-1f +
3324      //             (0.961591928e-2f +
3325      //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
3326      //
3327      // error 2.47208000*10^(-7), which is better than 18 bits
3328      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3329                               getF32Constant(DAG, 0x3924b03e));
3330      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3331                               getF32Constant(DAG, 0x3ab24b87));
3332      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3333      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3334                               getF32Constant(DAG, 0x3c1d8c17));
3335      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3336      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3337                               getF32Constant(DAG, 0x3d634a1d));
3338      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3339      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3340                               getF32Constant(DAG, 0x3e75fe14));
3341      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3342      SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
3343                                getF32Constant(DAG, 0x3f317234));
3344      SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
3345      SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
3346                                getF32Constant(DAG, 0x3f800000));
3347      SDValue TwoToFracPartOfX = DAG.getNode(ISD::BIT_CONVERT, dl,
3348                                             MVT::i32, t13);
3349
3350      // Add the exponent into the result in integer domain.
3351      SDValue t14 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3352                                TwoToFracPartOfX, IntegerPartOfX);
3353
3354      result = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t14);
3355
3356      if (DisableScheduling) {
3357        DAG.AssignOrdering(t2.getNode(), SDNodeOrder);
3358        DAG.AssignOrdering(t3.getNode(), SDNodeOrder);
3359        DAG.AssignOrdering(t4.getNode(), SDNodeOrder);
3360        DAG.AssignOrdering(t5.getNode(), SDNodeOrder);
3361        DAG.AssignOrdering(t6.getNode(), SDNodeOrder);
3362        DAG.AssignOrdering(t7.getNode(), SDNodeOrder);
3363        DAG.AssignOrdering(t8.getNode(), SDNodeOrder);
3364        DAG.AssignOrdering(t9.getNode(), SDNodeOrder);
3365        DAG.AssignOrdering(t10.getNode(), SDNodeOrder);
3366        DAG.AssignOrdering(t11.getNode(), SDNodeOrder);
3367        DAG.AssignOrdering(t12.getNode(), SDNodeOrder);
3368        DAG.AssignOrdering(t13.getNode(), SDNodeOrder);
3369        DAG.AssignOrdering(t14.getNode(), SDNodeOrder);
3370        DAG.AssignOrdering(TwoToFracPartOfX.getNode(), SDNodeOrder);
3371        DAG.AssignOrdering(result.getNode(), SDNodeOrder);
3372      }
3373    }
3374  } else {
3375    // No special expansion.
3376    result = DAG.getNode(ISD::FEXP, dl,
3377                         getValue(I.getOperand(1)).getValueType(),
3378                         getValue(I.getOperand(1)));
3379    if (DisableScheduling)
3380      DAG.AssignOrdering(result.getNode(), SDNodeOrder);
3381  }
3382
3383  setValue(&I, result);
3384}
3385
3386/// visitLog - Lower a log intrinsic. Handles the special sequences for
3387/// limited-precision mode.
3388void
3389SelectionDAGBuilder::visitLog(CallInst &I) {
3390  SDValue result;
3391  DebugLoc dl = getCurDebugLoc();
3392
3393  if (getValue(I.getOperand(1)).getValueType() == MVT::f32 &&
3394      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3395    SDValue Op = getValue(I.getOperand(1));
3396    SDValue Op1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, Op);
3397
3398    if (DisableScheduling)
3399      DAG.AssignOrdering(Op1.getNode(), SDNodeOrder);
3400
3401    // Scale the exponent by log(2) [0.69314718f].
3402    SDValue Exp = GetExponent(DAG, Op1, TLI, dl, SDNodeOrder);
3403    SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
3404                                        getF32Constant(DAG, 0x3f317218));
3405
3406    if (DisableScheduling)
3407      DAG.AssignOrdering(LogOfExponent.getNode(), SDNodeOrder);
3408
3409    // Get the significand and build it into a floating-point number with
3410    // exponent of 1.
3411    SDValue X = GetSignificand(DAG, Op1, dl, SDNodeOrder);
3412
3413    if (LimitFloatPrecision <= 6) {
3414      // For floating-point precision of 6:
3415      //
3416      //   LogofMantissa =
3417      //     -1.1609546f +
3418      //       (1.4034025f - 0.23903021f * x) * x;
3419      //
3420      // error 0.0034276066, which is better than 8 bits
3421      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3422                               getF32Constant(DAG, 0xbe74c456));
3423      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3424                               getF32Constant(DAG, 0x3fb3a2b1));
3425      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3426      SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3427                                          getF32Constant(DAG, 0x3f949a29));
3428
3429      result = DAG.getNode(ISD::FADD, dl,
3430                           MVT::f32, LogOfExponent, LogOfMantissa);
3431
3432      if (DisableScheduling) {
3433        DAG.AssignOrdering(t0.getNode(), SDNodeOrder);
3434        DAG.AssignOrdering(t1.getNode(), SDNodeOrder);
3435        DAG.AssignOrdering(t2.getNode(), SDNodeOrder);
3436        DAG.AssignOrdering(LogOfMantissa.getNode(), SDNodeOrder);
3437        DAG.AssignOrdering(result.getNode(), SDNodeOrder);
3438      }
3439    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3440      // For floating-point precision of 12:
3441      //
3442      //   LogOfMantissa =
3443      //     -1.7417939f +
3444      //       (2.8212026f +
3445      //         (-1.4699568f +
3446      //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
3447      //
3448      // error 0.000061011436, which is 14 bits
3449      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3450                               getF32Constant(DAG, 0xbd67b6d6));
3451      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3452                               getF32Constant(DAG, 0x3ee4f4b8));
3453      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3454      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3455                               getF32Constant(DAG, 0x3fbc278b));
3456      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3457      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3458                               getF32Constant(DAG, 0x40348e95));
3459      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3460      SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3461                                          getF32Constant(DAG, 0x3fdef31a));
3462
3463      result = DAG.getNode(ISD::FADD, dl,
3464                           MVT::f32, LogOfExponent, LogOfMantissa);
3465
3466      if (DisableScheduling) {
3467        DAG.AssignOrdering(t0.getNode(), SDNodeOrder);
3468        DAG.AssignOrdering(t1.getNode(), SDNodeOrder);
3469        DAG.AssignOrdering(t2.getNode(), SDNodeOrder);
3470        DAG.AssignOrdering(t3.getNode(), SDNodeOrder);
3471        DAG.AssignOrdering(t4.getNode(), SDNodeOrder);
3472        DAG.AssignOrdering(t5.getNode(), SDNodeOrder);
3473        DAG.AssignOrdering(t6.getNode(), SDNodeOrder);
3474        DAG.AssignOrdering(LogOfMantissa.getNode(), SDNodeOrder);
3475        DAG.AssignOrdering(result.getNode(), SDNodeOrder);
3476      }
3477    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3478      // For floating-point precision of 18:
3479      //
3480      //   LogOfMantissa =
3481      //     -2.1072184f +
3482      //       (4.2372794f +
3483      //         (-3.7029485f +
3484      //           (2.2781945f +
3485      //             (-0.87823314f +
3486      //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
3487      //
3488      // error 0.0000023660568, which is better than 18 bits
3489      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3490                               getF32Constant(DAG, 0xbc91e5ac));
3491      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3492                               getF32Constant(DAG, 0x3e4350aa));
3493      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3494      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3495                               getF32Constant(DAG, 0x3f60d3e3));
3496      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3497      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3498                               getF32Constant(DAG, 0x4011cdf0));
3499      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3500      SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3501                               getF32Constant(DAG, 0x406cfd1c));
3502      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3503      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3504                               getF32Constant(DAG, 0x408797cb));
3505      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3506      SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
3507                                          getF32Constant(DAG, 0x4006dcab));
3508
3509      result = DAG.getNode(ISD::FADD, dl,
3510                           MVT::f32, LogOfExponent, LogOfMantissa);
3511
3512      if (DisableScheduling) {
3513        DAG.AssignOrdering(t0.getNode(), SDNodeOrder);
3514        DAG.AssignOrdering(t1.getNode(), SDNodeOrder);
3515        DAG.AssignOrdering(t2.getNode(), SDNodeOrder);
3516        DAG.AssignOrdering(t3.getNode(), SDNodeOrder);
3517        DAG.AssignOrdering(t4.getNode(), SDNodeOrder);
3518        DAG.AssignOrdering(t5.getNode(), SDNodeOrder);
3519        DAG.AssignOrdering(t6.getNode(), SDNodeOrder);
3520        DAG.AssignOrdering(t7.getNode(), SDNodeOrder);
3521        DAG.AssignOrdering(t8.getNode(), SDNodeOrder);
3522        DAG.AssignOrdering(t9.getNode(), SDNodeOrder);
3523        DAG.AssignOrdering(t10.getNode(), SDNodeOrder);
3524        DAG.AssignOrdering(LogOfMantissa.getNode(), SDNodeOrder);
3525        DAG.AssignOrdering(result.getNode(), SDNodeOrder);
3526      }
3527    }
3528  } else {
3529    // No special expansion.
3530    result = DAG.getNode(ISD::FLOG, dl,
3531                         getValue(I.getOperand(1)).getValueType(),
3532                         getValue(I.getOperand(1)));
3533
3534    if (DisableScheduling)
3535      DAG.AssignOrdering(result.getNode(), SDNodeOrder);
3536  }
3537
3538  setValue(&I, result);
3539}
3540
3541/// visitLog2 - Lower a log2 intrinsic. Handles the special sequences for
3542/// limited-precision mode.
3543void
3544SelectionDAGBuilder::visitLog2(CallInst &I) {
3545  SDValue result;
3546  DebugLoc dl = getCurDebugLoc();
3547
3548  if (getValue(I.getOperand(1)).getValueType() == MVT::f32 &&
3549      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3550    SDValue Op = getValue(I.getOperand(1));
3551    SDValue Op1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, Op);
3552
3553    if (DisableScheduling)
3554      DAG.AssignOrdering(Op1.getNode(), SDNodeOrder);
3555
3556    // Get the exponent.
3557    SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl, SDNodeOrder);
3558
3559    if (DisableScheduling)
3560      DAG.AssignOrdering(LogOfExponent.getNode(), SDNodeOrder);
3561
3562    // Get the significand and build it into a floating-point number with
3563    // exponent of 1.
3564    SDValue X = GetSignificand(DAG, Op1, dl, SDNodeOrder);
3565
3566    // Different possible minimax approximations of significand in
3567    // floating-point for various degrees of accuracy over [1,2].
3568    if (LimitFloatPrecision <= 6) {
3569      // For floating-point precision of 6:
3570      //
3571      //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
3572      //
3573      // error 0.0049451742, which is more than 7 bits
3574      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3575                               getF32Constant(DAG, 0xbeb08fe0));
3576      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3577                               getF32Constant(DAG, 0x40019463));
3578      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3579      SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3580                                           getF32Constant(DAG, 0x3fd6633d));
3581
3582      result = DAG.getNode(ISD::FADD, dl,
3583                           MVT::f32, LogOfExponent, Log2ofMantissa);
3584
3585      if (DisableScheduling) {
3586        DAG.AssignOrdering(t0.getNode(), SDNodeOrder);
3587        DAG.AssignOrdering(t1.getNode(), SDNodeOrder);
3588        DAG.AssignOrdering(t2.getNode(), SDNodeOrder);
3589        DAG.AssignOrdering(Log2ofMantissa.getNode(), SDNodeOrder);
3590        DAG.AssignOrdering(result.getNode(), SDNodeOrder);
3591      }
3592    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3593      // For floating-point precision of 12:
3594      //
3595      //   Log2ofMantissa =
3596      //     -2.51285454f +
3597      //       (4.07009056f +
3598      //         (-2.12067489f +
3599      //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
3600      //
3601      // error 0.0000876136000, which is better than 13 bits
3602      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3603                               getF32Constant(DAG, 0xbda7262e));
3604      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3605                               getF32Constant(DAG, 0x3f25280b));
3606      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3607      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3608                               getF32Constant(DAG, 0x4007b923));
3609      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3610      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3611                               getF32Constant(DAG, 0x40823e2f));
3612      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3613      SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3614                                           getF32Constant(DAG, 0x4020d29c));
3615
3616      result = DAG.getNode(ISD::FADD, dl,
3617                           MVT::f32, LogOfExponent, Log2ofMantissa);
3618
3619      if (DisableScheduling) {
3620        DAG.AssignOrdering(t0.getNode(), SDNodeOrder);
3621        DAG.AssignOrdering(t1.getNode(), SDNodeOrder);
3622        DAG.AssignOrdering(t2.getNode(), SDNodeOrder);
3623        DAG.AssignOrdering(t3.getNode(), SDNodeOrder);
3624        DAG.AssignOrdering(t4.getNode(), SDNodeOrder);
3625        DAG.AssignOrdering(t5.getNode(), SDNodeOrder);
3626        DAG.AssignOrdering(t6.getNode(), SDNodeOrder);
3627        DAG.AssignOrdering(Log2ofMantissa.getNode(), SDNodeOrder);
3628        DAG.AssignOrdering(result.getNode(), SDNodeOrder);
3629      }
3630    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3631      // For floating-point precision of 18:
3632      //
3633      //   Log2ofMantissa =
3634      //     -3.0400495f +
3635      //       (6.1129976f +
3636      //         (-5.3420409f +
3637      //           (3.2865683f +
3638      //             (-1.2669343f +
3639      //               (0.27515199f -
3640      //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
3641      //
3642      // error 0.0000018516, which is better than 18 bits
3643      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3644                               getF32Constant(DAG, 0xbcd2769e));
3645      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3646                               getF32Constant(DAG, 0x3e8ce0b9));
3647      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3648      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3649                               getF32Constant(DAG, 0x3fa22ae7));
3650      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3651      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3652                               getF32Constant(DAG, 0x40525723));
3653      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3654      SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3655                               getF32Constant(DAG, 0x40aaf200));
3656      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3657      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3658                               getF32Constant(DAG, 0x40c39dad));
3659      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3660      SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
3661                                           getF32Constant(DAG, 0x4042902c));
3662
3663      result = DAG.getNode(ISD::FADD, dl,
3664                           MVT::f32, LogOfExponent, Log2ofMantissa);
3665
3666      if (DisableScheduling) {
3667        DAG.AssignOrdering(t0.getNode(), SDNodeOrder);
3668        DAG.AssignOrdering(t1.getNode(), SDNodeOrder);
3669        DAG.AssignOrdering(t2.getNode(), SDNodeOrder);
3670        DAG.AssignOrdering(t3.getNode(), SDNodeOrder);
3671        DAG.AssignOrdering(t4.getNode(), SDNodeOrder);
3672        DAG.AssignOrdering(t5.getNode(), SDNodeOrder);
3673        DAG.AssignOrdering(t6.getNode(), SDNodeOrder);
3674        DAG.AssignOrdering(t7.getNode(), SDNodeOrder);
3675        DAG.AssignOrdering(t8.getNode(), SDNodeOrder);
3676        DAG.AssignOrdering(t9.getNode(), SDNodeOrder);
3677        DAG.AssignOrdering(t10.getNode(), SDNodeOrder);
3678        DAG.AssignOrdering(Log2ofMantissa.getNode(), SDNodeOrder);
3679        DAG.AssignOrdering(result.getNode(), SDNodeOrder);
3680      }
3681    }
3682  } else {
3683    // No special expansion.
3684    result = DAG.getNode(ISD::FLOG2, dl,
3685                         getValue(I.getOperand(1)).getValueType(),
3686                         getValue(I.getOperand(1)));
3687
3688    if (DisableScheduling)
3689      DAG.AssignOrdering(result.getNode(), SDNodeOrder);
3690  }
3691
3692  setValue(&I, result);
3693}
3694
3695/// visitLog10 - Lower a log10 intrinsic. Handles the special sequences for
3696/// limited-precision mode.
3697void
3698SelectionDAGBuilder::visitLog10(CallInst &I) {
3699  SDValue result;
3700  DebugLoc dl = getCurDebugLoc();
3701
3702  if (getValue(I.getOperand(1)).getValueType() == MVT::f32 &&
3703      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3704    SDValue Op = getValue(I.getOperand(1));
3705    SDValue Op1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, Op);
3706
3707    if (DisableScheduling)
3708      DAG.AssignOrdering(Op1.getNode(), SDNodeOrder);
3709
3710    // Scale the exponent by log10(2) [0.30102999f].
3711    SDValue Exp = GetExponent(DAG, Op1, TLI, dl, SDNodeOrder);
3712    SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
3713                                        getF32Constant(DAG, 0x3e9a209a));
3714
3715    if (DisableScheduling)
3716      DAG.AssignOrdering(LogOfExponent.getNode(), SDNodeOrder);
3717
3718    // Get the significand and build it into a floating-point number with
3719    // exponent of 1.
3720    SDValue X = GetSignificand(DAG, Op1, dl, SDNodeOrder);
3721
3722    if (LimitFloatPrecision <= 6) {
3723      // For floating-point precision of 6:
3724      //
3725      //   Log10ofMantissa =
3726      //     -0.50419619f +
3727      //       (0.60948995f - 0.10380950f * x) * x;
3728      //
3729      // error 0.0014886165, which is 6 bits
3730      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3731                               getF32Constant(DAG, 0xbdd49a13));
3732      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3733                               getF32Constant(DAG, 0x3f1c0789));
3734      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3735      SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3736                                            getF32Constant(DAG, 0x3f011300));
3737
3738      result = DAG.getNode(ISD::FADD, dl,
3739                           MVT::f32, LogOfExponent, Log10ofMantissa);
3740
3741      if (DisableScheduling) {
3742        DAG.AssignOrdering(t0.getNode(), SDNodeOrder);
3743        DAG.AssignOrdering(t1.getNode(), SDNodeOrder);
3744        DAG.AssignOrdering(t2.getNode(), SDNodeOrder);
3745        DAG.AssignOrdering(Log10ofMantissa.getNode(), SDNodeOrder);
3746        DAG.AssignOrdering(result.getNode(), SDNodeOrder);
3747      }
3748    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3749      // For floating-point precision of 12:
3750      //
3751      //   Log10ofMantissa =
3752      //     -0.64831180f +
3753      //       (0.91751397f +
3754      //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
3755      //
3756      // error 0.00019228036, which is better than 12 bits
3757      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3758                               getF32Constant(DAG, 0x3d431f31));
3759      SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
3760                               getF32Constant(DAG, 0x3ea21fb2));
3761      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3762      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3763                               getF32Constant(DAG, 0x3f6ae232));
3764      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3765      SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
3766                                            getF32Constant(DAG, 0x3f25f7c3));
3767
3768      result = DAG.getNode(ISD::FADD, dl,
3769                           MVT::f32, LogOfExponent, Log10ofMantissa);
3770
3771      if (DisableScheduling) {
3772        DAG.AssignOrdering(t0.getNode(), SDNodeOrder);
3773        DAG.AssignOrdering(t1.getNode(), SDNodeOrder);
3774        DAG.AssignOrdering(t2.getNode(), SDNodeOrder);
3775        DAG.AssignOrdering(t3.getNode(), SDNodeOrder);
3776        DAG.AssignOrdering(t4.getNode(), SDNodeOrder);
3777        DAG.AssignOrdering(Log10ofMantissa.getNode(), SDNodeOrder);
3778        DAG.AssignOrdering(result.getNode(), SDNodeOrder);
3779      }
3780    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3781      // For floating-point precision of 18:
3782      //
3783      //   Log10ofMantissa =
3784      //     -0.84299375f +
3785      //       (1.5327582f +
3786      //         (-1.0688956f +
3787      //           (0.49102474f +
3788      //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
3789      //
3790      // error 0.0000037995730, which is better than 18 bits
3791      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3792                               getF32Constant(DAG, 0x3c5d51ce));
3793      SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
3794                               getF32Constant(DAG, 0x3e00685a));
3795      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3796      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3797                               getF32Constant(DAG, 0x3efb6798));
3798      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3799      SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
3800                               getF32Constant(DAG, 0x3f88d192));
3801      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3802      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3803                               getF32Constant(DAG, 0x3fc4316c));
3804      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3805      SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
3806                                            getF32Constant(DAG, 0x3f57ce70));
3807
3808      result = DAG.getNode(ISD::FADD, dl,
3809                           MVT::f32, LogOfExponent, Log10ofMantissa);
3810
3811      if (DisableScheduling) {
3812        DAG.AssignOrdering(t0.getNode(), SDNodeOrder);
3813        DAG.AssignOrdering(t1.getNode(), SDNodeOrder);
3814        DAG.AssignOrdering(t2.getNode(), SDNodeOrder);
3815        DAG.AssignOrdering(t3.getNode(), SDNodeOrder);
3816        DAG.AssignOrdering(t4.getNode(), SDNodeOrder);
3817        DAG.AssignOrdering(t5.getNode(), SDNodeOrder);
3818        DAG.AssignOrdering(t6.getNode(), SDNodeOrder);
3819        DAG.AssignOrdering(t7.getNode(), SDNodeOrder);
3820        DAG.AssignOrdering(t8.getNode(), SDNodeOrder);
3821        DAG.AssignOrdering(Log10ofMantissa.getNode(), SDNodeOrder);
3822        DAG.AssignOrdering(result.getNode(), SDNodeOrder);
3823      }
3824    }
3825  } else {
3826    // No special expansion.
3827    result = DAG.getNode(ISD::FLOG10, dl,
3828                         getValue(I.getOperand(1)).getValueType(),
3829                         getValue(I.getOperand(1)));
3830
3831    if (DisableScheduling)
3832      DAG.AssignOrdering(result.getNode(), SDNodeOrder);
3833  }
3834
3835  setValue(&I, result);
3836}
3837
3838/// visitExp2 - Lower an exp2 intrinsic. Handles the special sequences for
3839/// limited-precision mode.
3840void
3841SelectionDAGBuilder::visitExp2(CallInst &I) {
3842  SDValue result;
3843  DebugLoc dl = getCurDebugLoc();
3844
3845  if (getValue(I.getOperand(1)).getValueType() == MVT::f32 &&
3846      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3847    SDValue Op = getValue(I.getOperand(1));
3848
3849    SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Op);
3850
3851    if (DisableScheduling)
3852      DAG.AssignOrdering(IntegerPartOfX.getNode(), SDNodeOrder);
3853
3854    //   FractionalPartOfX = x - (float)IntegerPartOfX;
3855    SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
3856    SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, Op, t1);
3857
3858    //   IntegerPartOfX <<= 23;
3859    IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
3860                                 DAG.getConstant(23, TLI.getPointerTy()));
3861
3862    if (DisableScheduling) {
3863      DAG.AssignOrdering(t1.getNode(), SDNodeOrder);
3864      DAG.AssignOrdering(X.getNode(), SDNodeOrder);
3865      DAG.AssignOrdering(IntegerPartOfX.getNode(), SDNodeOrder);
3866    }
3867
3868    if (LimitFloatPrecision <= 6) {
3869      // For floating-point precision of 6:
3870      //
3871      //   TwoToFractionalPartOfX =
3872      //     0.997535578f +
3873      //       (0.735607626f + 0.252464424f * x) * x;
3874      //
3875      // error 0.0144103317, which is 6 bits
3876      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3877                               getF32Constant(DAG, 0x3e814304));
3878      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3879                               getF32Constant(DAG, 0x3f3c50c8));
3880      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3881      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3882                               getF32Constant(DAG, 0x3f7f5e7e));
3883      SDValue t6 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t5);
3884      SDValue TwoToFractionalPartOfX =
3885        DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX);
3886
3887      result = DAG.getNode(ISD::BIT_CONVERT, dl,
3888                           MVT::f32, TwoToFractionalPartOfX);
3889
3890      if (DisableScheduling) {
3891        DAG.AssignOrdering(t2.getNode(), SDNodeOrder);
3892        DAG.AssignOrdering(t3.getNode(), SDNodeOrder);
3893        DAG.AssignOrdering(t4.getNode(), SDNodeOrder);
3894        DAG.AssignOrdering(t5.getNode(), SDNodeOrder);
3895        DAG.AssignOrdering(t6.getNode(), SDNodeOrder);
3896        DAG.AssignOrdering(TwoToFractionalPartOfX.getNode(), SDNodeOrder);
3897        DAG.AssignOrdering(result.getNode(), SDNodeOrder);
3898      }
3899    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3900      // For floating-point precision of 12:
3901      //
3902      //   TwoToFractionalPartOfX =
3903      //     0.999892986f +
3904      //       (0.696457318f +
3905      //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
3906      //
3907      // error 0.000107046256, which is 13 to 14 bits
3908      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3909                               getF32Constant(DAG, 0x3da235e3));
3910      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3911                               getF32Constant(DAG, 0x3e65b8f3));
3912      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3913      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3914                               getF32Constant(DAG, 0x3f324b07));
3915      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3916      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3917                               getF32Constant(DAG, 0x3f7ff8fd));
3918      SDValue t8 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t7);
3919      SDValue TwoToFractionalPartOfX =
3920        DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX);
3921
3922      result = DAG.getNode(ISD::BIT_CONVERT, dl,
3923                           MVT::f32, TwoToFractionalPartOfX);
3924
3925      if (DisableScheduling) {
3926        DAG.AssignOrdering(t2.getNode(), SDNodeOrder);
3927        DAG.AssignOrdering(t3.getNode(), SDNodeOrder);
3928        DAG.AssignOrdering(t4.getNode(), SDNodeOrder);
3929        DAG.AssignOrdering(t5.getNode(), SDNodeOrder);
3930        DAG.AssignOrdering(t6.getNode(), SDNodeOrder);
3931        DAG.AssignOrdering(t7.getNode(), SDNodeOrder);
3932        DAG.AssignOrdering(t8.getNode(), SDNodeOrder);
3933        DAG.AssignOrdering(TwoToFractionalPartOfX.getNode(), SDNodeOrder);
3934        DAG.AssignOrdering(result.getNode(), SDNodeOrder);
3935      }
3936    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3937      // For floating-point precision of 18:
3938      //
3939      //   TwoToFractionalPartOfX =
3940      //     0.999999982f +
3941      //       (0.693148872f +
3942      //         (0.240227044f +
3943      //           (0.554906021e-1f +
3944      //             (0.961591928e-2f +
3945      //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
3946      // error 2.47208000*10^(-7), which is better than 18 bits
3947      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3948                               getF32Constant(DAG, 0x3924b03e));
3949      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3950                               getF32Constant(DAG, 0x3ab24b87));
3951      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3952      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3953                               getF32Constant(DAG, 0x3c1d8c17));
3954      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3955      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3956                               getF32Constant(DAG, 0x3d634a1d));
3957      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3958      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3959                               getF32Constant(DAG, 0x3e75fe14));
3960      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3961      SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
3962                                getF32Constant(DAG, 0x3f317234));
3963      SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
3964      SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
3965                                getF32Constant(DAG, 0x3f800000));
3966      SDValue t14 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t13);
3967      SDValue TwoToFractionalPartOfX =
3968        DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX);
3969
3970      result = DAG.getNode(ISD::BIT_CONVERT, dl,
3971                           MVT::f32, TwoToFractionalPartOfX);
3972
3973      if (DisableScheduling) {
3974        DAG.AssignOrdering(t2.getNode(), SDNodeOrder);
3975        DAG.AssignOrdering(t3.getNode(), SDNodeOrder);
3976        DAG.AssignOrdering(t4.getNode(), SDNodeOrder);
3977        DAG.AssignOrdering(t5.getNode(), SDNodeOrder);
3978        DAG.AssignOrdering(t6.getNode(), SDNodeOrder);
3979        DAG.AssignOrdering(t7.getNode(), SDNodeOrder);
3980        DAG.AssignOrdering(t8.getNode(), SDNodeOrder);
3981        DAG.AssignOrdering(t9.getNode(), SDNodeOrder);
3982        DAG.AssignOrdering(t10.getNode(), SDNodeOrder);
3983        DAG.AssignOrdering(t11.getNode(), SDNodeOrder);
3984        DAG.AssignOrdering(t12.getNode(), SDNodeOrder);
3985        DAG.AssignOrdering(t13.getNode(), SDNodeOrder);
3986        DAG.AssignOrdering(t14.getNode(), SDNodeOrder);
3987        DAG.AssignOrdering(TwoToFractionalPartOfX.getNode(), SDNodeOrder);
3988        DAG.AssignOrdering(result.getNode(), SDNodeOrder);
3989      }
3990    }
3991  } else {
3992    // No special expansion.
3993    result = DAG.getNode(ISD::FEXP2, dl,
3994                         getValue(I.getOperand(1)).getValueType(),
3995                         getValue(I.getOperand(1)));
3996
3997    if (DisableScheduling)
3998      DAG.AssignOrdering(result.getNode(), SDNodeOrder);
3999  }
4000
4001  setValue(&I, result);
4002}
4003
4004/// visitPow - Lower a pow intrinsic. Handles the special sequences for
4005/// limited-precision mode with x == 10.0f.
4006void
4007SelectionDAGBuilder::visitPow(CallInst &I) {
4008  SDValue result;
4009  Value *Val = I.getOperand(1);
4010  DebugLoc dl = getCurDebugLoc();
4011  bool IsExp10 = false;
4012
4013  if (getValue(Val).getValueType() == MVT::f32 &&
4014      getValue(I.getOperand(2)).getValueType() == MVT::f32 &&
4015      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4016    if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(Val))) {
4017      if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
4018        APFloat Ten(10.0f);
4019        IsExp10 = CFP->getValueAPF().bitwiseIsEqual(Ten);
4020      }
4021    }
4022  }
4023
4024  if (IsExp10 && LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4025    SDValue Op = getValue(I.getOperand(2));
4026
4027    // Put the exponent in the right bit position for later addition to the
4028    // final result:
4029    //
4030    //   #define LOG2OF10 3.3219281f
4031    //   IntegerPartOfX = (int32_t)(x * LOG2OF10);
4032    SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
4033                             getF32Constant(DAG, 0x40549a78));
4034    SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
4035
4036    //   FractionalPartOfX = x - (float)IntegerPartOfX;
4037    SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
4038    SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
4039
4040    if (DisableScheduling) {
4041      DAG.AssignOrdering(t0.getNode(), SDNodeOrder);
4042      DAG.AssignOrdering(t1.getNode(), SDNodeOrder);
4043      DAG.AssignOrdering(IntegerPartOfX.getNode(), SDNodeOrder);
4044      DAG.AssignOrdering(X.getNode(), SDNodeOrder);
4045    }
4046
4047    //   IntegerPartOfX <<= 23;
4048    IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
4049                                 DAG.getConstant(23, TLI.getPointerTy()));
4050
4051    if (DisableScheduling)
4052      DAG.AssignOrdering(IntegerPartOfX.getNode(), SDNodeOrder);
4053
4054    if (LimitFloatPrecision <= 6) {
4055      // For floating-point precision of 6:
4056      //
4057      //   twoToFractionalPartOfX =
4058      //     0.997535578f +
4059      //       (0.735607626f + 0.252464424f * x) * x;
4060      //
4061      // error 0.0144103317, which is 6 bits
4062      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4063                               getF32Constant(DAG, 0x3e814304));
4064      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4065                               getF32Constant(DAG, 0x3f3c50c8));
4066      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4067      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4068                               getF32Constant(DAG, 0x3f7f5e7e));
4069      SDValue t6 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t5);
4070      SDValue TwoToFractionalPartOfX =
4071        DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX);
4072
4073      result = DAG.getNode(ISD::BIT_CONVERT, dl,
4074                           MVT::f32, TwoToFractionalPartOfX);
4075
4076      if (DisableScheduling) {
4077        DAG.AssignOrdering(t2.getNode(), SDNodeOrder);
4078        DAG.AssignOrdering(t3.getNode(), SDNodeOrder);
4079        DAG.AssignOrdering(t4.getNode(), SDNodeOrder);
4080        DAG.AssignOrdering(t5.getNode(), SDNodeOrder);
4081        DAG.AssignOrdering(t6.getNode(), SDNodeOrder);
4082        DAG.AssignOrdering(TwoToFractionalPartOfX.getNode(), SDNodeOrder);
4083        DAG.AssignOrdering(result.getNode(), SDNodeOrder);
4084      }
4085    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
4086      // For floating-point precision of 12:
4087      //
4088      //   TwoToFractionalPartOfX =
4089      //     0.999892986f +
4090      //       (0.696457318f +
4091      //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
4092      //
4093      // error 0.000107046256, which is 13 to 14 bits
4094      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4095                               getF32Constant(DAG, 0x3da235e3));
4096      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4097                               getF32Constant(DAG, 0x3e65b8f3));
4098      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4099      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4100                               getF32Constant(DAG, 0x3f324b07));
4101      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4102      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4103                               getF32Constant(DAG, 0x3f7ff8fd));
4104      SDValue t8 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t7);
4105      SDValue TwoToFractionalPartOfX =
4106        DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX);
4107
4108      result = DAG.getNode(ISD::BIT_CONVERT, dl,
4109                           MVT::f32, TwoToFractionalPartOfX);
4110
4111      if (DisableScheduling) {
4112        DAG.AssignOrdering(t2.getNode(), SDNodeOrder);
4113        DAG.AssignOrdering(t3.getNode(), SDNodeOrder);
4114        DAG.AssignOrdering(t4.getNode(), SDNodeOrder);
4115        DAG.AssignOrdering(t5.getNode(), SDNodeOrder);
4116        DAG.AssignOrdering(t6.getNode(), SDNodeOrder);
4117        DAG.AssignOrdering(t7.getNode(), SDNodeOrder);
4118        DAG.AssignOrdering(t8.getNode(), SDNodeOrder);
4119        DAG.AssignOrdering(TwoToFractionalPartOfX.getNode(), SDNodeOrder);
4120        DAG.AssignOrdering(result.getNode(), SDNodeOrder);
4121      }
4122    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
4123      // For floating-point precision of 18:
4124      //
4125      //   TwoToFractionalPartOfX =
4126      //     0.999999982f +
4127      //       (0.693148872f +
4128      //         (0.240227044f +
4129      //           (0.554906021e-1f +
4130      //             (0.961591928e-2f +
4131      //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
4132      // error 2.47208000*10^(-7), which is better than 18 bits
4133      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4134                               getF32Constant(DAG, 0x3924b03e));
4135      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4136                               getF32Constant(DAG, 0x3ab24b87));
4137      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4138      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4139                               getF32Constant(DAG, 0x3c1d8c17));
4140      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4141      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4142                               getF32Constant(DAG, 0x3d634a1d));
4143      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4144      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4145                               getF32Constant(DAG, 0x3e75fe14));
4146      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4147      SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
4148                                getF32Constant(DAG, 0x3f317234));
4149      SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
4150      SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
4151                                getF32Constant(DAG, 0x3f800000));
4152      SDValue t14 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t13);
4153      SDValue TwoToFractionalPartOfX =
4154        DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX);
4155
4156      result = DAG.getNode(ISD::BIT_CONVERT, dl,
4157                           MVT::f32, TwoToFractionalPartOfX);
4158
4159      if (DisableScheduling) {
4160        DAG.AssignOrdering(t2.getNode(), SDNodeOrder);
4161        DAG.AssignOrdering(t3.getNode(), SDNodeOrder);
4162        DAG.AssignOrdering(t4.getNode(), SDNodeOrder);
4163        DAG.AssignOrdering(t5.getNode(), SDNodeOrder);
4164        DAG.AssignOrdering(t6.getNode(), SDNodeOrder);
4165        DAG.AssignOrdering(t7.getNode(), SDNodeOrder);
4166        DAG.AssignOrdering(t8.getNode(), SDNodeOrder);
4167        DAG.AssignOrdering(t9.getNode(), SDNodeOrder);
4168        DAG.AssignOrdering(t10.getNode(), SDNodeOrder);
4169        DAG.AssignOrdering(t11.getNode(), SDNodeOrder);
4170        DAG.AssignOrdering(t12.getNode(), SDNodeOrder);
4171        DAG.AssignOrdering(t13.getNode(), SDNodeOrder);
4172        DAG.AssignOrdering(t14.getNode(), SDNodeOrder);
4173        DAG.AssignOrdering(TwoToFractionalPartOfX.getNode(), SDNodeOrder);
4174        DAG.AssignOrdering(result.getNode(), SDNodeOrder);
4175      }
4176    }
4177  } else {
4178    // No special expansion.
4179    result = DAG.getNode(ISD::FPOW, dl,
4180                         getValue(I.getOperand(1)).getValueType(),
4181                         getValue(I.getOperand(1)),
4182                         getValue(I.getOperand(2)));
4183
4184    if (DisableScheduling)
4185      DAG.AssignOrdering(result.getNode(), SDNodeOrder);
4186  }
4187
4188  setValue(&I, result);
4189}
4190
4191/// visitIntrinsicCall - Lower the call to the specified intrinsic function.  If
4192/// we want to emit this as a call to a named external function, return the name
4193/// otherwise lower it and return null.
4194const char *
4195SelectionDAGBuilder::visitIntrinsicCall(CallInst &I, unsigned Intrinsic) {
4196  DebugLoc dl = getCurDebugLoc();
4197  SDValue Res;
4198
4199  switch (Intrinsic) {
4200  default:
4201    // By default, turn this into a target intrinsic node.
4202    visitTargetIntrinsic(I, Intrinsic);
4203    return 0;
4204  case Intrinsic::vastart:  visitVAStart(I); return 0;
4205  case Intrinsic::vaend:    visitVAEnd(I); return 0;
4206  case Intrinsic::vacopy:   visitVACopy(I); return 0;
4207  case Intrinsic::returnaddress:
4208    Res = DAG.getNode(ISD::RETURNADDR, dl, TLI.getPointerTy(),
4209                      getValue(I.getOperand(1)));
4210    setValue(&I, Res);
4211    if (DisableScheduling)
4212      DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
4213    return 0;
4214  case Intrinsic::frameaddress:
4215    Res = DAG.getNode(ISD::FRAMEADDR, dl, TLI.getPointerTy(),
4216                      getValue(I.getOperand(1)));
4217    setValue(&I, Res);
4218    if (DisableScheduling)
4219      DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
4220    return 0;
4221  case Intrinsic::setjmp:
4222    return "_setjmp"+!TLI.usesUnderscoreSetJmp();
4223  case Intrinsic::longjmp:
4224    return "_longjmp"+!TLI.usesUnderscoreLongJmp();
4225  case Intrinsic::memcpy: {
4226    SDValue Op1 = getValue(I.getOperand(1));
4227    SDValue Op2 = getValue(I.getOperand(2));
4228    SDValue Op3 = getValue(I.getOperand(3));
4229    unsigned Align = cast<ConstantInt>(I.getOperand(4))->getZExtValue();
4230    Res = DAG.getMemcpy(getRoot(), dl, Op1, Op2, Op3, Align, false,
4231                        I.getOperand(1), 0, I.getOperand(2), 0);
4232    DAG.setRoot(Res);
4233    if (DisableScheduling)
4234      DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
4235    return 0;
4236  }
4237  case Intrinsic::memset: {
4238    SDValue Op1 = getValue(I.getOperand(1));
4239    SDValue Op2 = getValue(I.getOperand(2));
4240    SDValue Op3 = getValue(I.getOperand(3));
4241    unsigned Align = cast<ConstantInt>(I.getOperand(4))->getZExtValue();
4242    Res = DAG.getMemset(getRoot(), dl, Op1, Op2, Op3, Align,
4243                        I.getOperand(1), 0);
4244    DAG.setRoot(Res);
4245    if (DisableScheduling)
4246      DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
4247    return 0;
4248  }
4249  case Intrinsic::memmove: {
4250    SDValue Op1 = getValue(I.getOperand(1));
4251    SDValue Op2 = getValue(I.getOperand(2));
4252    SDValue Op3 = getValue(I.getOperand(3));
4253    unsigned Align = cast<ConstantInt>(I.getOperand(4))->getZExtValue();
4254
4255    // If the source and destination are known to not be aliases, we can
4256    // lower memmove as memcpy.
4257    uint64_t Size = -1ULL;
4258    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op3))
4259      Size = C->getZExtValue();
4260    if (AA->alias(I.getOperand(1), Size, I.getOperand(2), Size) ==
4261        AliasAnalysis::NoAlias) {
4262      Res = DAG.getMemcpy(getRoot(), dl, Op1, Op2, Op3, Align, false,
4263                          I.getOperand(1), 0, I.getOperand(2), 0);
4264      DAG.setRoot(Res);
4265      if (DisableScheduling)
4266        DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
4267      return 0;
4268    }
4269
4270    Res = DAG.getMemmove(getRoot(), dl, Op1, Op2, Op3, Align,
4271                         I.getOperand(1), 0, I.getOperand(2), 0);
4272    DAG.setRoot(Res);
4273    if (DisableScheduling)
4274      DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
4275    return 0;
4276  }
4277  case Intrinsic::dbg_stoppoint:
4278  case Intrinsic::dbg_region_start:
4279  case Intrinsic::dbg_region_end:
4280  case Intrinsic::dbg_func_start:
4281    // FIXME - Remove this instructions once the dust settles.
4282    return 0;
4283  case Intrinsic::dbg_declare: {
4284    if (OptLevel != CodeGenOpt::None)
4285      // FIXME: Variable debug info is not supported here.
4286      return 0;
4287    DwarfWriter *DW = DAG.getDwarfWriter();
4288    if (!DW)
4289      return 0;
4290    DbgDeclareInst &DI = cast<DbgDeclareInst>(I);
4291    if (!isValidDebugInfoIntrinsic(DI, CodeGenOpt::None))
4292      return 0;
4293
4294    MDNode *Variable = DI.getVariable();
4295    Value *Address = DI.getAddress();
4296    if (BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
4297      Address = BCI->getOperand(0);
4298    AllocaInst *AI = dyn_cast<AllocaInst>(Address);
4299    // Don't handle byval struct arguments or VLAs, for example.
4300    if (!AI)
4301      return 0;
4302    DenseMap<const AllocaInst*, int>::iterator SI =
4303      FuncInfo.StaticAllocaMap.find(AI);
4304    if (SI == FuncInfo.StaticAllocaMap.end())
4305      return 0; // VLAs.
4306    int FI = SI->second;
4307
4308    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
4309    if (MMI) {
4310      MetadataContext &TheMetadata =
4311        DI.getParent()->getContext().getMetadata();
4312      unsigned MDDbgKind = TheMetadata.getMDKind("dbg");
4313      MDNode *Dbg = TheMetadata.getMD(MDDbgKind, &DI);
4314      MMI->setVariableDbgInfo(Variable, FI, Dbg);
4315    }
4316    return 0;
4317  }
4318  case Intrinsic::eh_exception: {
4319    // Insert the EXCEPTIONADDR instruction.
4320    assert(CurMBB->isLandingPad() &&"Call to eh.exception not in landing pad!");
4321    SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
4322    SDValue Ops[1];
4323    Ops[0] = DAG.getRoot();
4324    SDValue Op = DAG.getNode(ISD::EXCEPTIONADDR, dl, VTs, Ops, 1);
4325    setValue(&I, Op);
4326    DAG.setRoot(Op.getValue(1));
4327    if (DisableScheduling)
4328      DAG.AssignOrdering(Op.getNode(), SDNodeOrder);
4329    return 0;
4330  }
4331
4332  case Intrinsic::eh_selector: {
4333    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
4334
4335    if (CurMBB->isLandingPad())
4336      AddCatchInfo(I, MMI, CurMBB);
4337    else {
4338#ifndef NDEBUG
4339      FuncInfo.CatchInfoLost.insert(&I);
4340#endif
4341      // FIXME: Mark exception selector register as live in.  Hack for PR1508.
4342      unsigned Reg = TLI.getExceptionSelectorRegister();
4343      if (Reg) CurMBB->addLiveIn(Reg);
4344    }
4345
4346    // Insert the EHSELECTION instruction.
4347    SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
4348    SDValue Ops[2];
4349    Ops[0] = getValue(I.getOperand(1));
4350    Ops[1] = getRoot();
4351    SDValue Op = DAG.getNode(ISD::EHSELECTION, dl, VTs, Ops, 2);
4352
4353    DAG.setRoot(Op.getValue(1));
4354
4355    Res = DAG.getSExtOrTrunc(Op, dl, MVT::i32);
4356    setValue(&I, Res);
4357    if (DisableScheduling) {
4358      DAG.AssignOrdering(Op.getNode(), SDNodeOrder);
4359      DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
4360    }
4361    return 0;
4362  }
4363
4364  case Intrinsic::eh_typeid_for: {
4365    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
4366
4367    if (MMI) {
4368      // Find the type id for the given typeinfo.
4369      GlobalVariable *GV = ExtractTypeInfo(I.getOperand(1));
4370      unsigned TypeID = MMI->getTypeIDFor(GV);
4371      Res = DAG.getConstant(TypeID, MVT::i32);
4372    } else {
4373      // Return something different to eh_selector.
4374      Res = DAG.getConstant(1, MVT::i32);
4375    }
4376
4377    setValue(&I, Res);
4378    if (DisableScheduling)
4379      DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
4380    return 0;
4381  }
4382
4383  case Intrinsic::eh_return_i32:
4384  case Intrinsic::eh_return_i64:
4385    if (MachineModuleInfo *MMI = DAG.getMachineModuleInfo()) {
4386      MMI->setCallsEHReturn(true);
4387      Res = DAG.getNode(ISD::EH_RETURN, dl,
4388                        MVT::Other,
4389                        getControlRoot(),
4390                        getValue(I.getOperand(1)),
4391                        getValue(I.getOperand(2)));
4392      DAG.setRoot(Res);
4393      if (DisableScheduling)
4394        DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
4395    } else {
4396      setValue(&I, DAG.getConstant(0, TLI.getPointerTy()));
4397    }
4398
4399    return 0;
4400  case Intrinsic::eh_unwind_init:
4401    if (MachineModuleInfo *MMI = DAG.getMachineModuleInfo()) {
4402      MMI->setCallsUnwindInit(true);
4403    }
4404    return 0;
4405  case Intrinsic::eh_dwarf_cfa: {
4406    EVT VT = getValue(I.getOperand(1)).getValueType();
4407    SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), dl,
4408                                        TLI.getPointerTy());
4409    SDValue Offset = DAG.getNode(ISD::ADD, dl,
4410                                 TLI.getPointerTy(),
4411                                 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, dl,
4412                                             TLI.getPointerTy()),
4413                                 CfaArg);
4414    SDValue FA = DAG.getNode(ISD::FRAMEADDR, dl,
4415                             TLI.getPointerTy(),
4416                             DAG.getConstant(0, TLI.getPointerTy()));
4417    Res = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(),
4418                      FA, Offset);
4419    setValue(&I, Res);
4420    if (DisableScheduling) {
4421      DAG.AssignOrdering(CfaArg.getNode(), SDNodeOrder);
4422      DAG.AssignOrdering(Offset.getNode(), SDNodeOrder);
4423      DAG.AssignOrdering(FA.getNode(), SDNodeOrder);
4424      DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
4425    }
4426    return 0;
4427  }
4428  case Intrinsic::convertff:
4429  case Intrinsic::convertfsi:
4430  case Intrinsic::convertfui:
4431  case Intrinsic::convertsif:
4432  case Intrinsic::convertuif:
4433  case Intrinsic::convertss:
4434  case Intrinsic::convertsu:
4435  case Intrinsic::convertus:
4436  case Intrinsic::convertuu: {
4437    ISD::CvtCode Code = ISD::CVT_INVALID;
4438    switch (Intrinsic) {
4439    case Intrinsic::convertff:  Code = ISD::CVT_FF; break;
4440    case Intrinsic::convertfsi: Code = ISD::CVT_FS; break;
4441    case Intrinsic::convertfui: Code = ISD::CVT_FU; break;
4442    case Intrinsic::convertsif: Code = ISD::CVT_SF; break;
4443    case Intrinsic::convertuif: Code = ISD::CVT_UF; break;
4444    case Intrinsic::convertss:  Code = ISD::CVT_SS; break;
4445    case Intrinsic::convertsu:  Code = ISD::CVT_SU; break;
4446    case Intrinsic::convertus:  Code = ISD::CVT_US; break;
4447    case Intrinsic::convertuu:  Code = ISD::CVT_UU; break;
4448    }
4449    EVT DestVT = TLI.getValueType(I.getType());
4450    Value *Op1 = I.getOperand(1);
4451    Res = DAG.getConvertRndSat(DestVT, getCurDebugLoc(), getValue(Op1),
4452                               DAG.getValueType(DestVT),
4453                               DAG.getValueType(getValue(Op1).getValueType()),
4454                               getValue(I.getOperand(2)),
4455                               getValue(I.getOperand(3)),
4456                               Code);
4457    setValue(&I, Res);
4458    if (DisableScheduling)
4459      DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
4460    return 0;
4461  }
4462  case Intrinsic::sqrt:
4463    Res = DAG.getNode(ISD::FSQRT, dl,
4464                      getValue(I.getOperand(1)).getValueType(),
4465                      getValue(I.getOperand(1)));
4466    setValue(&I, Res);
4467    if (DisableScheduling)
4468      DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
4469    return 0;
4470  case Intrinsic::powi:
4471    Res = DAG.getNode(ISD::FPOWI, dl,
4472                      getValue(I.getOperand(1)).getValueType(),
4473                      getValue(I.getOperand(1)),
4474                      getValue(I.getOperand(2)));
4475    setValue(&I, Res);
4476    if (DisableScheduling)
4477      DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
4478    return 0;
4479  case Intrinsic::sin:
4480    Res = DAG.getNode(ISD::FSIN, dl,
4481                      getValue(I.getOperand(1)).getValueType(),
4482                      getValue(I.getOperand(1)));
4483    setValue(&I, Res);
4484    if (DisableScheduling)
4485      DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
4486    return 0;
4487  case Intrinsic::cos:
4488    Res = DAG.getNode(ISD::FCOS, dl,
4489                      getValue(I.getOperand(1)).getValueType(),
4490                      getValue(I.getOperand(1)));
4491    setValue(&I, Res);
4492    if (DisableScheduling)
4493      DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
4494    return 0;
4495  case Intrinsic::log:
4496    visitLog(I);
4497    return 0;
4498  case Intrinsic::log2:
4499    visitLog2(I);
4500    return 0;
4501  case Intrinsic::log10:
4502    visitLog10(I);
4503    return 0;
4504  case Intrinsic::exp:
4505    visitExp(I);
4506    return 0;
4507  case Intrinsic::exp2:
4508    visitExp2(I);
4509    return 0;
4510  case Intrinsic::pow:
4511    visitPow(I);
4512    return 0;
4513  case Intrinsic::pcmarker: {
4514    SDValue Tmp = getValue(I.getOperand(1));
4515    Res = DAG.getNode(ISD::PCMARKER, dl, MVT::Other, getRoot(), Tmp);
4516    DAG.setRoot(Res);
4517    if (DisableScheduling)
4518      DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
4519    return 0;
4520  }
4521  case Intrinsic::readcyclecounter: {
4522    SDValue Op = getRoot();
4523    Res = DAG.getNode(ISD::READCYCLECOUNTER, dl,
4524                      DAG.getVTList(MVT::i64, MVT::Other),
4525                      &Op, 1);
4526    setValue(&I, Res);
4527    DAG.setRoot(Res.getValue(1));
4528    if (DisableScheduling)
4529      DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
4530    return 0;
4531  }
4532  case Intrinsic::bswap:
4533    Res = DAG.getNode(ISD::BSWAP, dl,
4534                      getValue(I.getOperand(1)).getValueType(),
4535                      getValue(I.getOperand(1)));
4536    setValue(&I, Res);
4537    if (DisableScheduling)
4538      DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
4539    return 0;
4540  case Intrinsic::cttz: {
4541    SDValue Arg = getValue(I.getOperand(1));
4542    EVT Ty = Arg.getValueType();
4543    Res = DAG.getNode(ISD::CTTZ, dl, Ty, Arg);
4544    setValue(&I, Res);
4545    if (DisableScheduling)
4546      DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
4547    return 0;
4548  }
4549  case Intrinsic::ctlz: {
4550    SDValue Arg = getValue(I.getOperand(1));
4551    EVT Ty = Arg.getValueType();
4552    Res = DAG.getNode(ISD::CTLZ, dl, Ty, Arg);
4553    setValue(&I, Res);
4554    if (DisableScheduling)
4555      DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
4556    return 0;
4557  }
4558  case Intrinsic::ctpop: {
4559    SDValue Arg = getValue(I.getOperand(1));
4560    EVT Ty = Arg.getValueType();
4561    Res = DAG.getNode(ISD::CTPOP, dl, Ty, Arg);
4562    setValue(&I, Res);
4563    if (DisableScheduling)
4564      DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
4565    return 0;
4566  }
4567  case Intrinsic::stacksave: {
4568    SDValue Op = getRoot();
4569    Res = DAG.getNode(ISD::STACKSAVE, dl,
4570                      DAG.getVTList(TLI.getPointerTy(), MVT::Other), &Op, 1);
4571    setValue(&I, Res);
4572    DAG.setRoot(Res.getValue(1));
4573    if (DisableScheduling)
4574      DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
4575    return 0;
4576  }
4577  case Intrinsic::stackrestore: {
4578    Res = getValue(I.getOperand(1));
4579    Res = DAG.getNode(ISD::STACKRESTORE, dl, MVT::Other, getRoot(), Res);
4580    DAG.setRoot(Res);
4581    if (DisableScheduling)
4582      DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
4583    return 0;
4584  }
4585  case Intrinsic::stackprotector: {
4586    // Emit code into the DAG to store the stack guard onto the stack.
4587    MachineFunction &MF = DAG.getMachineFunction();
4588    MachineFrameInfo *MFI = MF.getFrameInfo();
4589    EVT PtrTy = TLI.getPointerTy();
4590
4591    SDValue Src = getValue(I.getOperand(1));   // The guard's value.
4592    AllocaInst *Slot = cast<AllocaInst>(I.getOperand(2));
4593
4594    int FI = FuncInfo.StaticAllocaMap[Slot];
4595    MFI->setStackProtectorIndex(FI);
4596
4597    SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
4598
4599    // Store the stack protector onto the stack.
4600    Res = DAG.getStore(getRoot(), getCurDebugLoc(), Src, FIN,
4601                       PseudoSourceValue::getFixedStack(FI),
4602                       0, true);
4603    setValue(&I, Res);
4604    DAG.setRoot(Res);
4605    if (DisableScheduling)
4606      DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
4607    return 0;
4608  }
4609  case Intrinsic::objectsize: {
4610    // If we don't know by now, we're never going to know.
4611    ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(2));
4612
4613    assert(CI && "Non-constant type in __builtin_object_size?");
4614
4615    SDValue Arg = getValue(I.getOperand(0));
4616    EVT Ty = Arg.getValueType();
4617
4618    if (CI->getZExtValue() < 2)
4619      Res = DAG.getConstant(-1ULL, Ty);
4620    else
4621      Res = DAG.getConstant(0, Ty);
4622
4623    setValue(&I, Res);
4624    if (DisableScheduling)
4625      DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
4626    return 0;
4627  }
4628  case Intrinsic::var_annotation:
4629    // Discard annotate attributes
4630    return 0;
4631
4632  case Intrinsic::init_trampoline: {
4633    const Function *F = cast<Function>(I.getOperand(2)->stripPointerCasts());
4634
4635    SDValue Ops[6];
4636    Ops[0] = getRoot();
4637    Ops[1] = getValue(I.getOperand(1));
4638    Ops[2] = getValue(I.getOperand(2));
4639    Ops[3] = getValue(I.getOperand(3));
4640    Ops[4] = DAG.getSrcValue(I.getOperand(1));
4641    Ops[5] = DAG.getSrcValue(F);
4642
4643    Res = DAG.getNode(ISD::TRAMPOLINE, dl,
4644                      DAG.getVTList(TLI.getPointerTy(), MVT::Other),
4645                      Ops, 6);
4646
4647    setValue(&I, Res);
4648    DAG.setRoot(Res.getValue(1));
4649    if (DisableScheduling)
4650      DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
4651    return 0;
4652  }
4653  case Intrinsic::gcroot:
4654    if (GFI) {
4655      Value *Alloca = I.getOperand(1);
4656      Constant *TypeMap = cast<Constant>(I.getOperand(2));
4657
4658      FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
4659      GFI->addStackRoot(FI->getIndex(), TypeMap);
4660    }
4661    return 0;
4662  case Intrinsic::gcread:
4663  case Intrinsic::gcwrite:
4664    llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
4665    return 0;
4666  case Intrinsic::flt_rounds:
4667    Res = DAG.getNode(ISD::FLT_ROUNDS_, dl, MVT::i32);
4668    setValue(&I, Res);
4669    if (DisableScheduling)
4670      DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
4671    return 0;
4672  case Intrinsic::trap:
4673    Res = DAG.getNode(ISD::TRAP, dl,MVT::Other, getRoot());
4674    DAG.setRoot(Res);
4675    if (DisableScheduling)
4676      DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
4677    return 0;
4678  case Intrinsic::uadd_with_overflow:
4679    return implVisitAluOverflow(I, ISD::UADDO);
4680  case Intrinsic::sadd_with_overflow:
4681    return implVisitAluOverflow(I, ISD::SADDO);
4682  case Intrinsic::usub_with_overflow:
4683    return implVisitAluOverflow(I, ISD::USUBO);
4684  case Intrinsic::ssub_with_overflow:
4685    return implVisitAluOverflow(I, ISD::SSUBO);
4686  case Intrinsic::umul_with_overflow:
4687    return implVisitAluOverflow(I, ISD::UMULO);
4688  case Intrinsic::smul_with_overflow:
4689    return implVisitAluOverflow(I, ISD::SMULO);
4690
4691  case Intrinsic::prefetch: {
4692    SDValue Ops[4];
4693    Ops[0] = getRoot();
4694    Ops[1] = getValue(I.getOperand(1));
4695    Ops[2] = getValue(I.getOperand(2));
4696    Ops[3] = getValue(I.getOperand(3));
4697    Res = DAG.getNode(ISD::PREFETCH, dl, MVT::Other, &Ops[0], 4);
4698    DAG.setRoot(Res);
4699    if (DisableScheduling)
4700      DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
4701    return 0;
4702  }
4703
4704  case Intrinsic::memory_barrier: {
4705    SDValue Ops[6];
4706    Ops[0] = getRoot();
4707    for (int x = 1; x < 6; ++x)
4708      Ops[x] = getValue(I.getOperand(x));
4709
4710    Res = DAG.getNode(ISD::MEMBARRIER, dl, MVT::Other, &Ops[0], 6);
4711    DAG.setRoot(Res);
4712    if (DisableScheduling)
4713      DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
4714    return 0;
4715  }
4716  case Intrinsic::atomic_cmp_swap: {
4717    SDValue Root = getRoot();
4718    SDValue L =
4719      DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, getCurDebugLoc(),
4720                    getValue(I.getOperand(2)).getValueType().getSimpleVT(),
4721                    Root,
4722                    getValue(I.getOperand(1)),
4723                    getValue(I.getOperand(2)),
4724                    getValue(I.getOperand(3)),
4725                    I.getOperand(1));
4726    setValue(&I, L);
4727    DAG.setRoot(L.getValue(1));
4728    if (DisableScheduling)
4729      DAG.AssignOrdering(L.getNode(), SDNodeOrder);
4730    return 0;
4731  }
4732  case Intrinsic::atomic_load_add:
4733    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_ADD);
4734  case Intrinsic::atomic_load_sub:
4735    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_SUB);
4736  case Intrinsic::atomic_load_or:
4737    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_OR);
4738  case Intrinsic::atomic_load_xor:
4739    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_XOR);
4740  case Intrinsic::atomic_load_and:
4741    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_AND);
4742  case Intrinsic::atomic_load_nand:
4743    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_NAND);
4744  case Intrinsic::atomic_load_max:
4745    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MAX);
4746  case Intrinsic::atomic_load_min:
4747    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MIN);
4748  case Intrinsic::atomic_load_umin:
4749    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMIN);
4750  case Intrinsic::atomic_load_umax:
4751    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMAX);
4752  case Intrinsic::atomic_swap:
4753    return implVisitBinaryAtomic(I, ISD::ATOMIC_SWAP);
4754
4755  case Intrinsic::invariant_start:
4756  case Intrinsic::lifetime_start:
4757    // Discard region information.
4758    Res = DAG.getUNDEF(TLI.getPointerTy());
4759    setValue(&I, Res);
4760    if (DisableScheduling)
4761      DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
4762    return 0;
4763  case Intrinsic::invariant_end:
4764  case Intrinsic::lifetime_end:
4765    // Discard region information.
4766    return 0;
4767  }
4768}
4769
4770/// Test if the given instruction is in a position to be optimized
4771/// with a tail-call. This roughly means that it's in a block with
4772/// a return and there's nothing that needs to be scheduled
4773/// between it and the return.
4774///
4775/// This function only tests target-independent requirements.
4776/// For target-dependent requirements, a target should override
4777/// TargetLowering::IsEligibleForTailCallOptimization.
4778///
4779static bool
4780isInTailCallPosition(const Instruction *I, Attributes CalleeRetAttr,
4781                     const TargetLowering &TLI) {
4782  const BasicBlock *ExitBB = I->getParent();
4783  const TerminatorInst *Term = ExitBB->getTerminator();
4784  const ReturnInst *Ret = dyn_cast<ReturnInst>(Term);
4785  const Function *F = ExitBB->getParent();
4786
4787  // The block must end in a return statement or an unreachable.
4788  if (!Ret && !isa<UnreachableInst>(Term)) return false;
4789
4790  // If I will have a chain, make sure no other instruction that will have a
4791  // chain interposes between I and the return.
4792  if (I->mayHaveSideEffects() || I->mayReadFromMemory() ||
4793      !I->isSafeToSpeculativelyExecute())
4794    for (BasicBlock::const_iterator BBI = prior(prior(ExitBB->end())); ;
4795         --BBI) {
4796      if (&*BBI == I)
4797        break;
4798      if (BBI->mayHaveSideEffects() || BBI->mayReadFromMemory() ||
4799          !BBI->isSafeToSpeculativelyExecute())
4800        return false;
4801    }
4802
4803  // If the block ends with a void return or unreachable, it doesn't matter
4804  // what the call's return type is.
4805  if (!Ret || Ret->getNumOperands() == 0) return true;
4806
4807  // If the return value is undef, it doesn't matter what the call's
4808  // return type is.
4809  if (isa<UndefValue>(Ret->getOperand(0))) return true;
4810
4811  // Conservatively require the attributes of the call to match those of
4812  // the return. Ignore noalias because it doesn't affect the call sequence.
4813  unsigned CallerRetAttr = F->getAttributes().getRetAttributes();
4814  if ((CalleeRetAttr ^ CallerRetAttr) & ~Attribute::NoAlias)
4815    return false;
4816
4817  // Otherwise, make sure the unmodified return value of I is the return value.
4818  for (const Instruction *U = dyn_cast<Instruction>(Ret->getOperand(0)); ;
4819       U = dyn_cast<Instruction>(U->getOperand(0))) {
4820    if (!U)
4821      return false;
4822    if (!U->hasOneUse())
4823      return false;
4824    if (U == I)
4825      break;
4826    // Check for a truly no-op truncate.
4827    if (isa<TruncInst>(U) &&
4828        TLI.isTruncateFree(U->getOperand(0)->getType(), U->getType()))
4829      continue;
4830    // Check for a truly no-op bitcast.
4831    if (isa<BitCastInst>(U) &&
4832        (U->getOperand(0)->getType() == U->getType() ||
4833         (isa<PointerType>(U->getOperand(0)->getType()) &&
4834          isa<PointerType>(U->getType()))))
4835      continue;
4836    // Otherwise it's not a true no-op.
4837    return false;
4838  }
4839
4840  return true;
4841}
4842
4843void SelectionDAGBuilder::LowerCallTo(CallSite CS, SDValue Callee,
4844                                      bool isTailCall,
4845                                      MachineBasicBlock *LandingPad) {
4846  const PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
4847  const FunctionType *FTy = cast<FunctionType>(PT->getElementType());
4848  const Type *RetTy = FTy->getReturnType();
4849  MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
4850  unsigned BeginLabel = 0, EndLabel = 0;
4851
4852  TargetLowering::ArgListTy Args;
4853  TargetLowering::ArgListEntry Entry;
4854  Args.reserve(CS.arg_size());
4855
4856  // Check whether the function can return without sret-demotion.
4857  SmallVector<EVT, 4> OutVTs;
4858  SmallVector<ISD::ArgFlagsTy, 4> OutsFlags;
4859  SmallVector<uint64_t, 4> Offsets;
4860  getReturnInfo(RetTy, CS.getAttributes().getRetAttributes(),
4861                OutVTs, OutsFlags, TLI, &Offsets);
4862
4863  bool CanLowerReturn = TLI.CanLowerReturn(CS.getCallingConv(),
4864                        FTy->isVarArg(), OutVTs, OutsFlags, DAG);
4865
4866  SDValue DemoteStackSlot;
4867
4868  if (!CanLowerReturn) {
4869    uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(
4870                      FTy->getReturnType());
4871    unsigned Align  = TLI.getTargetData()->getPrefTypeAlignment(
4872                      FTy->getReturnType());
4873    MachineFunction &MF = DAG.getMachineFunction();
4874    int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
4875    const Type *StackSlotPtrType = PointerType::getUnqual(FTy->getReturnType());
4876
4877    DemoteStackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy());
4878    Entry.Node = DemoteStackSlot;
4879    Entry.Ty = StackSlotPtrType;
4880    Entry.isSExt = false;
4881    Entry.isZExt = false;
4882    Entry.isInReg = false;
4883    Entry.isSRet = true;
4884    Entry.isNest = false;
4885    Entry.isByVal = false;
4886    Entry.Alignment = Align;
4887    Args.push_back(Entry);
4888    RetTy = Type::getVoidTy(FTy->getContext());
4889  }
4890
4891  for (CallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
4892       i != e; ++i) {
4893    SDValue ArgNode = getValue(*i);
4894    Entry.Node = ArgNode; Entry.Ty = (*i)->getType();
4895
4896    unsigned attrInd = i - CS.arg_begin() + 1;
4897    Entry.isSExt  = CS.paramHasAttr(attrInd, Attribute::SExt);
4898    Entry.isZExt  = CS.paramHasAttr(attrInd, Attribute::ZExt);
4899    Entry.isInReg = CS.paramHasAttr(attrInd, Attribute::InReg);
4900    Entry.isSRet  = CS.paramHasAttr(attrInd, Attribute::StructRet);
4901    Entry.isNest  = CS.paramHasAttr(attrInd, Attribute::Nest);
4902    Entry.isByVal = CS.paramHasAttr(attrInd, Attribute::ByVal);
4903    Entry.Alignment = CS.getParamAlignment(attrInd);
4904    Args.push_back(Entry);
4905  }
4906
4907  if (LandingPad && MMI) {
4908    // Insert a label before the invoke call to mark the try range.  This can be
4909    // used to detect deletion of the invoke via the MachineModuleInfo.
4910    BeginLabel = MMI->NextLabelID();
4911
4912    // Both PendingLoads and PendingExports must be flushed here;
4913    // this call might not return.
4914    (void)getRoot();
4915    SDValue Label = DAG.getLabel(ISD::EH_LABEL, getCurDebugLoc(),
4916                                 getControlRoot(), BeginLabel);
4917    DAG.setRoot(Label);
4918    if (DisableScheduling)
4919      DAG.AssignOrdering(Label.getNode(), SDNodeOrder);
4920  }
4921
4922  // Check if target-independent constraints permit a tail call here.
4923  // Target-dependent constraints are checked within TLI.LowerCallTo.
4924  if (isTailCall &&
4925      !isInTailCallPosition(CS.getInstruction(),
4926                            CS.getAttributes().getRetAttributes(),
4927                            TLI))
4928    isTailCall = false;
4929
4930  std::pair<SDValue,SDValue> Result =
4931    TLI.LowerCallTo(getRoot(), RetTy,
4932                    CS.paramHasAttr(0, Attribute::SExt),
4933                    CS.paramHasAttr(0, Attribute::ZExt), FTy->isVarArg(),
4934                    CS.paramHasAttr(0, Attribute::InReg), FTy->getNumParams(),
4935                    CS.getCallingConv(),
4936                    isTailCall,
4937                    !CS.getInstruction()->use_empty(),
4938                    Callee, Args, DAG, getCurDebugLoc());
4939  assert((isTailCall || Result.second.getNode()) &&
4940         "Non-null chain expected with non-tail call!");
4941  assert((Result.second.getNode() || !Result.first.getNode()) &&
4942         "Null value expected with tail call!");
4943  if (Result.first.getNode()) {
4944    setValue(CS.getInstruction(), Result.first);
4945    if (DisableScheduling)
4946      DAG.AssignOrdering(Result.first.getNode(), SDNodeOrder);
4947  } else if (!CanLowerReturn && Result.second.getNode()) {
4948    // The instruction result is the result of loading from the
4949    // hidden sret parameter.
4950    SmallVector<EVT, 1> PVTs;
4951    const Type *PtrRetTy = PointerType::getUnqual(FTy->getReturnType());
4952
4953    ComputeValueVTs(TLI, PtrRetTy, PVTs);
4954    assert(PVTs.size() == 1 && "Pointers should fit in one register");
4955    EVT PtrVT = PVTs[0];
4956    unsigned NumValues = OutVTs.size();
4957    SmallVector<SDValue, 4> Values(NumValues);
4958    SmallVector<SDValue, 4> Chains(NumValues);
4959
4960    for (unsigned i = 0; i < NumValues; ++i) {
4961      SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT,
4962                                DemoteStackSlot,
4963                                DAG.getConstant(Offsets[i], PtrVT));
4964      SDValue L = DAG.getLoad(OutVTs[i], getCurDebugLoc(), Result.second,
4965                              Add, NULL, Offsets[i], false, 1);
4966      Values[i] = L;
4967      Chains[i] = L.getValue(1);
4968
4969      if (DisableScheduling) {
4970        DAG.AssignOrdering(Add.getNode(), SDNodeOrder);
4971        DAG.AssignOrdering(L.getNode(), SDNodeOrder);
4972      }
4973    }
4974
4975    SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
4976                                MVT::Other, &Chains[0], NumValues);
4977    PendingLoads.push_back(Chain);
4978
4979    SDValue MV = DAG.getNode(ISD::MERGE_VALUES,
4980                             getCurDebugLoc(),
4981                             DAG.getVTList(&OutVTs[0], NumValues),
4982                             &Values[0], NumValues);
4983    setValue(CS.getInstruction(), MV);
4984
4985    if (DisableScheduling) {
4986      DAG.AssignOrdering(Chain.getNode(), SDNodeOrder);
4987      DAG.AssignOrdering(MV.getNode(), SDNodeOrder);
4988    }
4989  }
4990
4991  // As a special case, a null chain means that a tail call has been emitted and
4992  // the DAG root is already updated.
4993  if (Result.second.getNode()) {
4994    DAG.setRoot(Result.second);
4995    if (DisableScheduling)
4996      DAG.AssignOrdering(Result.second.getNode(), SDNodeOrder);
4997  } else {
4998    HasTailCall = true;
4999  }
5000
5001  if (LandingPad && MMI) {
5002    // Insert a label at the end of the invoke call to mark the try range.  This
5003    // can be used to detect deletion of the invoke via the MachineModuleInfo.
5004    EndLabel = MMI->NextLabelID();
5005    SDValue Label = DAG.getLabel(ISD::EH_LABEL, getCurDebugLoc(),
5006                                 getRoot(), EndLabel);
5007    DAG.setRoot(Label);
5008
5009    if (DisableScheduling)
5010      DAG.AssignOrdering(Label.getNode(), SDNodeOrder);
5011
5012    // Inform MachineModuleInfo of range.
5013    MMI->addInvoke(LandingPad, BeginLabel, EndLabel);
5014  }
5015}
5016
5017void SelectionDAGBuilder::visitCall(CallInst &I) {
5018  const char *RenameFn = 0;
5019  if (Function *F = I.getCalledFunction()) {
5020    if (F->isDeclaration()) {
5021      const TargetIntrinsicInfo *II = TLI.getTargetMachine().getIntrinsicInfo();
5022      if (II) {
5023        if (unsigned IID = II->getIntrinsicID(F)) {
5024          RenameFn = visitIntrinsicCall(I, IID);
5025          if (!RenameFn)
5026            return;
5027        }
5028      }
5029      if (unsigned IID = F->getIntrinsicID()) {
5030        RenameFn = visitIntrinsicCall(I, IID);
5031        if (!RenameFn)
5032          return;
5033      }
5034    }
5035
5036    // Check for well-known libc/libm calls.  If the function is internal, it
5037    // can't be a library call.
5038    if (!F->hasLocalLinkage() && F->hasName()) {
5039      StringRef Name = F->getName();
5040      if (Name == "copysign" || Name == "copysignf") {
5041        if (I.getNumOperands() == 3 &&   // Basic sanity checks.
5042            I.getOperand(1)->getType()->isFloatingPoint() &&
5043            I.getType() == I.getOperand(1)->getType() &&
5044            I.getType() == I.getOperand(2)->getType()) {
5045          SDValue LHS = getValue(I.getOperand(1));
5046          SDValue RHS = getValue(I.getOperand(2));
5047          SDValue Res = DAG.getNode(ISD::FCOPYSIGN, getCurDebugLoc(),
5048                                    LHS.getValueType(), LHS, RHS);
5049          setValue(&I, Res);
5050          if (DisableScheduling)
5051            DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
5052          return;
5053        }
5054      } else if (Name == "fabs" || Name == "fabsf" || Name == "fabsl") {
5055        if (I.getNumOperands() == 2 &&   // Basic sanity checks.
5056            I.getOperand(1)->getType()->isFloatingPoint() &&
5057            I.getType() == I.getOperand(1)->getType()) {
5058          SDValue Tmp = getValue(I.getOperand(1));
5059          SDValue Res = DAG.getNode(ISD::FABS, getCurDebugLoc(),
5060                                    Tmp.getValueType(), Tmp);
5061          setValue(&I, Res);
5062          if (DisableScheduling)
5063            DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
5064          return;
5065        }
5066      } else if (Name == "sin" || Name == "sinf" || Name == "sinl") {
5067        if (I.getNumOperands() == 2 &&   // Basic sanity checks.
5068            I.getOperand(1)->getType()->isFloatingPoint() &&
5069            I.getType() == I.getOperand(1)->getType() &&
5070            I.onlyReadsMemory()) {
5071          SDValue Tmp = getValue(I.getOperand(1));
5072          SDValue Res = DAG.getNode(ISD::FSIN, getCurDebugLoc(),
5073                                    Tmp.getValueType(), Tmp);
5074          setValue(&I, Res);
5075          if (DisableScheduling)
5076            DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
5077          return;
5078        }
5079      } else if (Name == "cos" || Name == "cosf" || Name == "cosl") {
5080        if (I.getNumOperands() == 2 &&   // Basic sanity checks.
5081            I.getOperand(1)->getType()->isFloatingPoint() &&
5082            I.getType() == I.getOperand(1)->getType() &&
5083            I.onlyReadsMemory()) {
5084          SDValue Tmp = getValue(I.getOperand(1));
5085          SDValue Res = DAG.getNode(ISD::FCOS, getCurDebugLoc(),
5086                                    Tmp.getValueType(), Tmp);
5087          setValue(&I, Res);
5088          if (DisableScheduling)
5089            DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
5090          return;
5091        }
5092      } else if (Name == "sqrt" || Name == "sqrtf" || Name == "sqrtl") {
5093        if (I.getNumOperands() == 2 &&   // Basic sanity checks.
5094            I.getOperand(1)->getType()->isFloatingPoint() &&
5095            I.getType() == I.getOperand(1)->getType() &&
5096            I.onlyReadsMemory()) {
5097          SDValue Tmp = getValue(I.getOperand(1));
5098          SDValue Res = DAG.getNode(ISD::FSQRT, getCurDebugLoc(),
5099                                    Tmp.getValueType(), Tmp);
5100          setValue(&I, Res);
5101          if (DisableScheduling)
5102            DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
5103          return;
5104        }
5105      }
5106    }
5107  } else if (isa<InlineAsm>(I.getOperand(0))) {
5108    visitInlineAsm(&I);
5109    return;
5110  }
5111
5112  SDValue Callee;
5113  if (!RenameFn)
5114    Callee = getValue(I.getOperand(0));
5115  else
5116    Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy());
5117
5118  if (DisableScheduling)
5119    DAG.AssignOrdering(Callee.getNode(), SDNodeOrder);
5120
5121  // Check if we can potentially perform a tail call. More detailed
5122  // checking is be done within LowerCallTo, after more information
5123  // about the call is known.
5124  bool isTailCall = PerformTailCallOpt && I.isTailCall();
5125
5126  LowerCallTo(&I, Callee, isTailCall);
5127}
5128
5129/// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
5130/// this value and returns the result as a ValueVT value.  This uses
5131/// Chain/Flag as the input and updates them for the output Chain/Flag.
5132/// If the Flag pointer is NULL, no flag is used.
5133SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, DebugLoc dl,
5134                                      unsigned Order, SDValue &Chain,
5135                                      SDValue *Flag) const {
5136  // Assemble the legal parts into the final values.
5137  SmallVector<SDValue, 4> Values(ValueVTs.size());
5138  SmallVector<SDValue, 8> Parts;
5139  for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
5140    // Copy the legal parts from the registers.
5141    EVT ValueVT = ValueVTs[Value];
5142    unsigned NumRegs = TLI->getNumRegisters(*DAG.getContext(), ValueVT);
5143    EVT RegisterVT = RegVTs[Value];
5144
5145    Parts.resize(NumRegs);
5146    for (unsigned i = 0; i != NumRegs; ++i) {
5147      SDValue P;
5148      if (Flag == 0) {
5149        P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
5150      } else {
5151        P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
5152        *Flag = P.getValue(2);
5153      }
5154
5155      Chain = P.getValue(1);
5156
5157      if (DisableScheduling)
5158        DAG.AssignOrdering(P.getNode(), Order);
5159
5160      // If the source register was virtual and if we know something about it,
5161      // add an assert node.
5162      if (TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) &&
5163          RegisterVT.isInteger() && !RegisterVT.isVector()) {
5164        unsigned SlotNo = Regs[Part+i]-TargetRegisterInfo::FirstVirtualRegister;
5165        FunctionLoweringInfo &FLI = DAG.getFunctionLoweringInfo();
5166        if (FLI.LiveOutRegInfo.size() > SlotNo) {
5167          FunctionLoweringInfo::LiveOutInfo &LOI = FLI.LiveOutRegInfo[SlotNo];
5168
5169          unsigned RegSize = RegisterVT.getSizeInBits();
5170          unsigned NumSignBits = LOI.NumSignBits;
5171          unsigned NumZeroBits = LOI.KnownZero.countLeadingOnes();
5172
5173          // FIXME: We capture more information than the dag can represent.  For
5174          // now, just use the tightest assertzext/assertsext possible.
5175          bool isSExt = true;
5176          EVT FromVT(MVT::Other);
5177          if (NumSignBits == RegSize)
5178            isSExt = true, FromVT = MVT::i1;   // ASSERT SEXT 1
5179          else if (NumZeroBits >= RegSize-1)
5180            isSExt = false, FromVT = MVT::i1;  // ASSERT ZEXT 1
5181          else if (NumSignBits > RegSize-8)
5182            isSExt = true, FromVT = MVT::i8;   // ASSERT SEXT 8
5183          else if (NumZeroBits >= RegSize-8)
5184            isSExt = false, FromVT = MVT::i8;  // ASSERT ZEXT 8
5185          else if (NumSignBits > RegSize-16)
5186            isSExt = true, FromVT = MVT::i16;  // ASSERT SEXT 16
5187          else if (NumZeroBits >= RegSize-16)
5188            isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16
5189          else if (NumSignBits > RegSize-32)
5190            isSExt = true, FromVT = MVT::i32;  // ASSERT SEXT 32
5191          else if (NumZeroBits >= RegSize-32)
5192            isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32
5193
5194          if (FromVT != MVT::Other) {
5195            P = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
5196                            RegisterVT, P, DAG.getValueType(FromVT));
5197
5198            if (DisableScheduling)
5199              DAG.AssignOrdering(P.getNode(), Order);
5200          }
5201        }
5202      }
5203
5204      Parts[i] = P;
5205    }
5206
5207    Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(),
5208                                     NumRegs, RegisterVT, ValueVT);
5209    if (DisableScheduling)
5210      DAG.AssignOrdering(Values[Value].getNode(), Order);
5211    Part += NumRegs;
5212    Parts.clear();
5213  }
5214
5215  SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
5216                            DAG.getVTList(&ValueVTs[0], ValueVTs.size()),
5217                            &Values[0], ValueVTs.size());
5218  if (DisableScheduling)
5219    DAG.AssignOrdering(Res.getNode(), Order);
5220  return Res;
5221}
5222
5223/// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
5224/// specified value into the registers specified by this object.  This uses
5225/// Chain/Flag as the input and updates them for the output Chain/Flag.
5226/// If the Flag pointer is NULL, no flag is used.
5227void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl,
5228                                 unsigned Order, SDValue &Chain,
5229                                 SDValue *Flag) const {
5230  // Get the list of the values's legal parts.
5231  unsigned NumRegs = Regs.size();
5232  SmallVector<SDValue, 8> Parts(NumRegs);
5233  for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
5234    EVT ValueVT = ValueVTs[Value];
5235    unsigned NumParts = TLI->getNumRegisters(*DAG.getContext(), ValueVT);
5236    EVT RegisterVT = RegVTs[Value];
5237
5238    getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value),
5239                   &Parts[Part], NumParts, RegisterVT);
5240    Part += NumParts;
5241  }
5242
5243  // Copy the parts into the registers.
5244  SmallVector<SDValue, 8> Chains(NumRegs);
5245  for (unsigned i = 0; i != NumRegs; ++i) {
5246    SDValue Part;
5247    if (Flag == 0) {
5248      Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
5249    } else {
5250      Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
5251      *Flag = Part.getValue(1);
5252    }
5253
5254    Chains[i] = Part.getValue(0);
5255
5256    if (DisableScheduling)
5257      DAG.AssignOrdering(Part.getNode(), Order);
5258  }
5259
5260  if (NumRegs == 1 || Flag)
5261    // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
5262    // flagged to it. That is the CopyToReg nodes and the user are considered
5263    // a single scheduling unit. If we create a TokenFactor and return it as
5264    // chain, then the TokenFactor is both a predecessor (operand) of the
5265    // user as well as a successor (the TF operands are flagged to the user).
5266    // c1, f1 = CopyToReg
5267    // c2, f2 = CopyToReg
5268    // c3     = TokenFactor c1, c2
5269    // ...
5270    //        = op c3, ..., f2
5271    Chain = Chains[NumRegs-1];
5272  else
5273    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0], NumRegs);
5274
5275  if (DisableScheduling)
5276    DAG.AssignOrdering(Chain.getNode(), Order);
5277}
5278
5279/// AddInlineAsmOperands - Add this value to the specified inlineasm node
5280/// operand list.  This adds the code marker and includes the number of
5281/// values added into it.
5282void RegsForValue::AddInlineAsmOperands(unsigned Code,
5283                                        bool HasMatching,unsigned MatchingIdx,
5284                                        SelectionDAG &DAG,
5285                                        std::vector<SDValue> &Ops) const {
5286  EVT IntPtrTy = DAG.getTargetLoweringInfo().getPointerTy();
5287  assert(Regs.size() < (1 << 13) && "Too many inline asm outputs!");
5288  unsigned Flag = Code | (Regs.size() << 3);
5289  if (HasMatching)
5290    Flag |= 0x80000000 | (MatchingIdx << 16);
5291  Ops.push_back(DAG.getTargetConstant(Flag, IntPtrTy));
5292  for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
5293    unsigned NumRegs = TLI->getNumRegisters(*DAG.getContext(), ValueVTs[Value]);
5294    EVT RegisterVT = RegVTs[Value];
5295    for (unsigned i = 0; i != NumRegs; ++i) {
5296      assert(Reg < Regs.size() && "Mismatch in # registers expected");
5297      Ops.push_back(DAG.getRegister(Regs[Reg++], RegisterVT));
5298    }
5299  }
5300}
5301
5302/// isAllocatableRegister - If the specified register is safe to allocate,
5303/// i.e. it isn't a stack pointer or some other special register, return the
5304/// register class for the register.  Otherwise, return null.
5305static const TargetRegisterClass *
5306isAllocatableRegister(unsigned Reg, MachineFunction &MF,
5307                      const TargetLowering &TLI,
5308                      const TargetRegisterInfo *TRI) {
5309  EVT FoundVT = MVT::Other;
5310  const TargetRegisterClass *FoundRC = 0;
5311  for (TargetRegisterInfo::regclass_iterator RCI = TRI->regclass_begin(),
5312       E = TRI->regclass_end(); RCI != E; ++RCI) {
5313    EVT ThisVT = MVT::Other;
5314
5315    const TargetRegisterClass *RC = *RCI;
5316    // If none of the the value types for this register class are valid, we
5317    // can't use it.  For example, 64-bit reg classes on 32-bit targets.
5318    for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
5319         I != E; ++I) {
5320      if (TLI.isTypeLegal(*I)) {
5321        // If we have already found this register in a different register class,
5322        // choose the one with the largest VT specified.  For example, on
5323        // PowerPC, we favor f64 register classes over f32.
5324        if (FoundVT == MVT::Other || FoundVT.bitsLT(*I)) {
5325          ThisVT = *I;
5326          break;
5327        }
5328      }
5329    }
5330
5331    if (ThisVT == MVT::Other) continue;
5332
5333    // NOTE: This isn't ideal.  In particular, this might allocate the
5334    // frame pointer in functions that need it (due to them not being taken
5335    // out of allocation, because a variable sized allocation hasn't been seen
5336    // yet).  This is a slight code pessimization, but should still work.
5337    for (TargetRegisterClass::iterator I = RC->allocation_order_begin(MF),
5338         E = RC->allocation_order_end(MF); I != E; ++I)
5339      if (*I == Reg) {
5340        // We found a matching register class.  Keep looking at others in case
5341        // we find one with larger registers that this physreg is also in.
5342        FoundRC = RC;
5343        FoundVT = ThisVT;
5344        break;
5345      }
5346  }
5347  return FoundRC;
5348}
5349
5350
5351namespace llvm {
5352/// AsmOperandInfo - This contains information for each constraint that we are
5353/// lowering.
5354class VISIBILITY_HIDDEN SDISelAsmOperandInfo :
5355    public TargetLowering::AsmOperandInfo {
5356public:
5357  /// CallOperand - If this is the result output operand or a clobber
5358  /// this is null, otherwise it is the incoming operand to the CallInst.
5359  /// This gets modified as the asm is processed.
5360  SDValue CallOperand;
5361
5362  /// AssignedRegs - If this is a register or register class operand, this
5363  /// contains the set of register corresponding to the operand.
5364  RegsForValue AssignedRegs;
5365
5366  explicit SDISelAsmOperandInfo(const InlineAsm::ConstraintInfo &info)
5367    : TargetLowering::AsmOperandInfo(info), CallOperand(0,0) {
5368  }
5369
5370  /// MarkAllocatedRegs - Once AssignedRegs is set, mark the assigned registers
5371  /// busy in OutputRegs/InputRegs.
5372  void MarkAllocatedRegs(bool isOutReg, bool isInReg,
5373                         std::set<unsigned> &OutputRegs,
5374                         std::set<unsigned> &InputRegs,
5375                         const TargetRegisterInfo &TRI) const {
5376    if (isOutReg) {
5377      for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i)
5378        MarkRegAndAliases(AssignedRegs.Regs[i], OutputRegs, TRI);
5379    }
5380    if (isInReg) {
5381      for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i)
5382        MarkRegAndAliases(AssignedRegs.Regs[i], InputRegs, TRI);
5383    }
5384  }
5385
5386  /// getCallOperandValEVT - Return the EVT of the Value* that this operand
5387  /// corresponds to.  If there is no Value* for this operand, it returns
5388  /// MVT::Other.
5389  EVT getCallOperandValEVT(LLVMContext &Context,
5390                           const TargetLowering &TLI,
5391                           const TargetData *TD) const {
5392    if (CallOperandVal == 0) return MVT::Other;
5393
5394    if (isa<BasicBlock>(CallOperandVal))
5395      return TLI.getPointerTy();
5396
5397    const llvm::Type *OpTy = CallOperandVal->getType();
5398
5399    // If this is an indirect operand, the operand is a pointer to the
5400    // accessed type.
5401    if (isIndirect)
5402      OpTy = cast<PointerType>(OpTy)->getElementType();
5403
5404    // If OpTy is not a single value, it may be a struct/union that we
5405    // can tile with integers.
5406    if (!OpTy->isSingleValueType() && OpTy->isSized()) {
5407      unsigned BitSize = TD->getTypeSizeInBits(OpTy);
5408      switch (BitSize) {
5409      default: break;
5410      case 1:
5411      case 8:
5412      case 16:
5413      case 32:
5414      case 64:
5415      case 128:
5416        OpTy = IntegerType::get(Context, BitSize);
5417        break;
5418      }
5419    }
5420
5421    return TLI.getValueType(OpTy, true);
5422  }
5423
5424private:
5425  /// MarkRegAndAliases - Mark the specified register and all aliases in the
5426  /// specified set.
5427  static void MarkRegAndAliases(unsigned Reg, std::set<unsigned> &Regs,
5428                                const TargetRegisterInfo &TRI) {
5429    assert(TargetRegisterInfo::isPhysicalRegister(Reg) && "Isn't a physreg");
5430    Regs.insert(Reg);
5431    if (const unsigned *Aliases = TRI.getAliasSet(Reg))
5432      for (; *Aliases; ++Aliases)
5433        Regs.insert(*Aliases);
5434  }
5435};
5436} // end llvm namespace.
5437
5438
5439/// GetRegistersForValue - Assign registers (virtual or physical) for the
5440/// specified operand.  We prefer to assign virtual registers, to allow the
5441/// register allocator to handle the assignment process.  However, if the asm
5442/// uses features that we can't model on machineinstrs, we have SDISel do the
5443/// allocation.  This produces generally horrible, but correct, code.
5444///
5445///   OpInfo describes the operand.
5446///   Input and OutputRegs are the set of already allocated physical registers.
5447///
5448void SelectionDAGBuilder::
5449GetRegistersForValue(SDISelAsmOperandInfo &OpInfo,
5450                     std::set<unsigned> &OutputRegs,
5451                     std::set<unsigned> &InputRegs) {
5452  LLVMContext &Context = FuncInfo.Fn->getContext();
5453
5454  // Compute whether this value requires an input register, an output register,
5455  // or both.
5456  bool isOutReg = false;
5457  bool isInReg = false;
5458  switch (OpInfo.Type) {
5459  case InlineAsm::isOutput:
5460    isOutReg = true;
5461
5462    // If there is an input constraint that matches this, we need to reserve
5463    // the input register so no other inputs allocate to it.
5464    isInReg = OpInfo.hasMatchingInput();
5465    break;
5466  case InlineAsm::isInput:
5467    isInReg = true;
5468    isOutReg = false;
5469    break;
5470  case InlineAsm::isClobber:
5471    isOutReg = true;
5472    isInReg = true;
5473    break;
5474  }
5475
5476
5477  MachineFunction &MF = DAG.getMachineFunction();
5478  SmallVector<unsigned, 4> Regs;
5479
5480  // If this is a constraint for a single physreg, or a constraint for a
5481  // register class, find it.
5482  std::pair<unsigned, const TargetRegisterClass*> PhysReg =
5483    TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
5484                                     OpInfo.ConstraintVT);
5485
5486  unsigned NumRegs = 1;
5487  if (OpInfo.ConstraintVT != MVT::Other) {
5488    // If this is a FP input in an integer register (or visa versa) insert a bit
5489    // cast of the input value.  More generally, handle any case where the input
5490    // value disagrees with the register class we plan to stick this in.
5491    if (OpInfo.Type == InlineAsm::isInput &&
5492        PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) {
5493      // Try to convert to the first EVT that the reg class contains.  If the
5494      // types are identical size, use a bitcast to convert (e.g. two differing
5495      // vector types).
5496      EVT RegVT = *PhysReg.second->vt_begin();
5497      if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) {
5498        OpInfo.CallOperand = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(),
5499                                         RegVT, OpInfo.CallOperand);
5500        OpInfo.ConstraintVT = RegVT;
5501      } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
5502        // If the input is a FP value and we want it in FP registers, do a
5503        // bitcast to the corresponding integer type.  This turns an f64 value
5504        // into i64, which can be passed with two i32 values on a 32-bit
5505        // machine.
5506        RegVT = EVT::getIntegerVT(Context,
5507                                  OpInfo.ConstraintVT.getSizeInBits());
5508        OpInfo.CallOperand = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(),
5509                                         RegVT, OpInfo.CallOperand);
5510        OpInfo.ConstraintVT = RegVT;
5511      }
5512    }
5513
5514    NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT);
5515  }
5516
5517  EVT RegVT;
5518  EVT ValueVT = OpInfo.ConstraintVT;
5519
5520  // If this is a constraint for a specific physical register, like {r17},
5521  // assign it now.
5522  if (unsigned AssignedReg = PhysReg.first) {
5523    const TargetRegisterClass *RC = PhysReg.second;
5524    if (OpInfo.ConstraintVT == MVT::Other)
5525      ValueVT = *RC->vt_begin();
5526
5527    // Get the actual register value type.  This is important, because the user
5528    // may have asked for (e.g.) the AX register in i32 type.  We need to
5529    // remember that AX is actually i16 to get the right extension.
5530    RegVT = *RC->vt_begin();
5531
5532    // This is a explicit reference to a physical register.
5533    Regs.push_back(AssignedReg);
5534
5535    // If this is an expanded reference, add the rest of the regs to Regs.
5536    if (NumRegs != 1) {
5537      TargetRegisterClass::iterator I = RC->begin();
5538      for (; *I != AssignedReg; ++I)
5539        assert(I != RC->end() && "Didn't find reg!");
5540
5541      // Already added the first reg.
5542      --NumRegs; ++I;
5543      for (; NumRegs; --NumRegs, ++I) {
5544        assert(I != RC->end() && "Ran out of registers to allocate!");
5545        Regs.push_back(*I);
5546      }
5547    }
5548    OpInfo.AssignedRegs = RegsForValue(TLI, Regs, RegVT, ValueVT);
5549    const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
5550    OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI);
5551    return;
5552  }
5553
5554  // Otherwise, if this was a reference to an LLVM register class, create vregs
5555  // for this reference.
5556  if (const TargetRegisterClass *RC = PhysReg.second) {
5557    RegVT = *RC->vt_begin();
5558    if (OpInfo.ConstraintVT == MVT::Other)
5559      ValueVT = RegVT;
5560
5561    // Create the appropriate number of virtual registers.
5562    MachineRegisterInfo &RegInfo = MF.getRegInfo();
5563    for (; NumRegs; --NumRegs)
5564      Regs.push_back(RegInfo.createVirtualRegister(RC));
5565
5566    OpInfo.AssignedRegs = RegsForValue(TLI, Regs, RegVT, ValueVT);
5567    return;
5568  }
5569
5570  // This is a reference to a register class that doesn't directly correspond
5571  // to an LLVM register class.  Allocate NumRegs consecutive, available,
5572  // registers from the class.
5573  std::vector<unsigned> RegClassRegs
5574    = TLI.getRegClassForInlineAsmConstraint(OpInfo.ConstraintCode,
5575                                            OpInfo.ConstraintVT);
5576
5577  const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
5578  unsigned NumAllocated = 0;
5579  for (unsigned i = 0, e = RegClassRegs.size(); i != e; ++i) {
5580    unsigned Reg = RegClassRegs[i];
5581    // See if this register is available.
5582    if ((isOutReg && OutputRegs.count(Reg)) ||   // Already used.
5583        (isInReg  && InputRegs.count(Reg))) {    // Already used.
5584      // Make sure we find consecutive registers.
5585      NumAllocated = 0;
5586      continue;
5587    }
5588
5589    // Check to see if this register is allocatable (i.e. don't give out the
5590    // stack pointer).
5591    const TargetRegisterClass *RC = isAllocatableRegister(Reg, MF, TLI, TRI);
5592    if (!RC) {        // Couldn't allocate this register.
5593      // Reset NumAllocated to make sure we return consecutive registers.
5594      NumAllocated = 0;
5595      continue;
5596    }
5597
5598    // Okay, this register is good, we can use it.
5599    ++NumAllocated;
5600
5601    // If we allocated enough consecutive registers, succeed.
5602    if (NumAllocated == NumRegs) {
5603      unsigned RegStart = (i-NumAllocated)+1;
5604      unsigned RegEnd   = i+1;
5605      // Mark all of the allocated registers used.
5606      for (unsigned i = RegStart; i != RegEnd; ++i)
5607        Regs.push_back(RegClassRegs[i]);
5608
5609      OpInfo.AssignedRegs = RegsForValue(TLI, Regs, *RC->vt_begin(),
5610                                         OpInfo.ConstraintVT);
5611      OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI);
5612      return;
5613    }
5614  }
5615
5616  // Otherwise, we couldn't allocate enough registers for this.
5617}
5618
5619/// hasInlineAsmMemConstraint - Return true if the inline asm instruction being
5620/// processed uses a memory 'm' constraint.
5621static bool
5622hasInlineAsmMemConstraint(std::vector<InlineAsm::ConstraintInfo> &CInfos,
5623                          const TargetLowering &TLI) {
5624  for (unsigned i = 0, e = CInfos.size(); i != e; ++i) {
5625    InlineAsm::ConstraintInfo &CI = CInfos[i];
5626    for (unsigned j = 0, ee = CI.Codes.size(); j != ee; ++j) {
5627      TargetLowering::ConstraintType CType = TLI.getConstraintType(CI.Codes[j]);
5628      if (CType == TargetLowering::C_Memory)
5629        return true;
5630    }
5631
5632    // Indirect operand accesses access memory.
5633    if (CI.isIndirect)
5634      return true;
5635  }
5636
5637  return false;
5638}
5639
5640/// visitInlineAsm - Handle a call to an InlineAsm object.
5641///
5642void SelectionDAGBuilder::visitInlineAsm(CallSite CS) {
5643  InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
5644
5645  /// ConstraintOperands - Information about all of the constraints.
5646  std::vector<SDISelAsmOperandInfo> ConstraintOperands;
5647
5648  std::set<unsigned> OutputRegs, InputRegs;
5649
5650  // Do a prepass over the constraints, canonicalizing them, and building up the
5651  // ConstraintOperands list.
5652  std::vector<InlineAsm::ConstraintInfo>
5653    ConstraintInfos = IA->ParseConstraints();
5654
5655  bool hasMemory = hasInlineAsmMemConstraint(ConstraintInfos, TLI);
5656
5657  SDValue Chain, Flag;
5658
5659  // We won't need to flush pending loads if this asm doesn't touch
5660  // memory and is nonvolatile.
5661  if (hasMemory || IA->hasSideEffects())
5662    Chain = getRoot();
5663  else
5664    Chain = DAG.getRoot();
5665
5666  unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
5667  unsigned ResNo = 0;   // ResNo - The result number of the next output.
5668  for (unsigned i = 0, e = ConstraintInfos.size(); i != e; ++i) {
5669    ConstraintOperands.push_back(SDISelAsmOperandInfo(ConstraintInfos[i]));
5670    SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
5671
5672    EVT OpVT = MVT::Other;
5673
5674    // Compute the value type for each operand.
5675    switch (OpInfo.Type) {
5676    case InlineAsm::isOutput:
5677      // Indirect outputs just consume an argument.
5678      if (OpInfo.isIndirect) {
5679        OpInfo.CallOperandVal = CS.getArgument(ArgNo++);
5680        break;
5681      }
5682
5683      // The return value of the call is this value.  As such, there is no
5684      // corresponding argument.
5685      assert(CS.getType() != Type::getVoidTy(*DAG.getContext()) &&
5686             "Bad inline asm!");
5687      if (const StructType *STy = dyn_cast<StructType>(CS.getType())) {
5688        OpVT = TLI.getValueType(STy->getElementType(ResNo));
5689      } else {
5690        assert(ResNo == 0 && "Asm only has one result!");
5691        OpVT = TLI.getValueType(CS.getType());
5692      }
5693      ++ResNo;
5694      break;
5695    case InlineAsm::isInput:
5696      OpInfo.CallOperandVal = CS.getArgument(ArgNo++);
5697      break;
5698    case InlineAsm::isClobber:
5699      // Nothing to do.
5700      break;
5701    }
5702
5703    // If this is an input or an indirect output, process the call argument.
5704    // BasicBlocks are labels, currently appearing only in asm's.
5705    if (OpInfo.CallOperandVal) {
5706      // Strip bitcasts, if any.  This mostly comes up for functions.
5707      OpInfo.CallOperandVal = OpInfo.CallOperandVal->stripPointerCasts();
5708
5709      if (BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) {
5710        OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
5711      } else {
5712        OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
5713      }
5714
5715      OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, TD);
5716    }
5717
5718    OpInfo.ConstraintVT = OpVT;
5719  }
5720
5721  // Second pass over the constraints: compute which constraint option to use
5722  // and assign registers to constraints that want a specific physreg.
5723  for (unsigned i = 0, e = ConstraintInfos.size(); i != e; ++i) {
5724    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
5725
5726    // If this is an output operand with a matching input operand, look up the
5727    // matching input. If their types mismatch, e.g. one is an integer, the
5728    // other is floating point, or their sizes are different, flag it as an
5729    // error.
5730    if (OpInfo.hasMatchingInput()) {
5731      SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
5732      if (OpInfo.ConstraintVT != Input.ConstraintVT) {
5733        if ((OpInfo.ConstraintVT.isInteger() !=
5734             Input.ConstraintVT.isInteger()) ||
5735            (OpInfo.ConstraintVT.getSizeInBits() !=
5736             Input.ConstraintVT.getSizeInBits())) {
5737          llvm_report_error("Unsupported asm: input constraint"
5738                            " with a matching output constraint of incompatible"
5739                            " type!");
5740        }
5741        Input.ConstraintVT = OpInfo.ConstraintVT;
5742      }
5743    }
5744
5745    // Compute the constraint code and ConstraintType to use.
5746    TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, hasMemory, &DAG);
5747
5748    // If this is a memory input, and if the operand is not indirect, do what we
5749    // need to to provide an address for the memory input.
5750    if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
5751        !OpInfo.isIndirect) {
5752      assert(OpInfo.Type == InlineAsm::isInput &&
5753             "Can only indirectify direct input operands!");
5754
5755      // Memory operands really want the address of the value.  If we don't have
5756      // an indirect input, put it in the constpool if we can, otherwise spill
5757      // it to a stack slot.
5758
5759      // If the operand is a float, integer, or vector constant, spill to a
5760      // constant pool entry to get its address.
5761      Value *OpVal = OpInfo.CallOperandVal;
5762      if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
5763          isa<ConstantVector>(OpVal)) {
5764        OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal),
5765                                                 TLI.getPointerTy());
5766      } else {
5767        // Otherwise, create a stack slot and emit a store to it before the
5768        // asm.
5769        const Type *Ty = OpVal->getType();
5770        uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty);
5771        unsigned Align  = TLI.getTargetData()->getPrefTypeAlignment(Ty);
5772        MachineFunction &MF = DAG.getMachineFunction();
5773        int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
5774        SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy());
5775        Chain = DAG.getStore(Chain, getCurDebugLoc(),
5776                             OpInfo.CallOperand, StackSlot, NULL, 0);
5777        OpInfo.CallOperand = StackSlot;
5778      }
5779
5780      // There is no longer a Value* corresponding to this operand.
5781      OpInfo.CallOperandVal = 0;
5782      // It is now an indirect operand.
5783      OpInfo.isIndirect = true;
5784    }
5785
5786    // If this constraint is for a specific register, allocate it before
5787    // anything else.
5788    if (OpInfo.ConstraintType == TargetLowering::C_Register)
5789      GetRegistersForValue(OpInfo, OutputRegs, InputRegs);
5790  }
5791  ConstraintInfos.clear();
5792
5793
5794  // Second pass - Loop over all of the operands, assigning virtual or physregs
5795  // to register class operands.
5796  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
5797    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
5798
5799    // C_Register operands have already been allocated, Other/Memory don't need
5800    // to be.
5801    if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass)
5802      GetRegistersForValue(OpInfo, OutputRegs, InputRegs);
5803  }
5804
5805  // AsmNodeOperands - The operands for the ISD::INLINEASM node.
5806  std::vector<SDValue> AsmNodeOperands;
5807  AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
5808  AsmNodeOperands.push_back(
5809          DAG.getTargetExternalSymbol(IA->getAsmString().c_str(), MVT::Other));
5810
5811
5812  // Loop over all of the inputs, copying the operand values into the
5813  // appropriate registers and processing the output regs.
5814  RegsForValue RetValRegs;
5815
5816  // IndirectStoresToEmit - The set of stores to emit after the inline asm node.
5817  std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit;
5818
5819  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
5820    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
5821
5822    switch (OpInfo.Type) {
5823    case InlineAsm::isOutput: {
5824      if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass &&
5825          OpInfo.ConstraintType != TargetLowering::C_Register) {
5826        // Memory output, or 'other' output (e.g. 'X' constraint).
5827        assert(OpInfo.isIndirect && "Memory output must be indirect operand");
5828
5829        // Add information to the INLINEASM node to know about this output.
5830        unsigned ResOpType = 4/*MEM*/ | (1<<3);
5831        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
5832                                                        TLI.getPointerTy()));
5833        AsmNodeOperands.push_back(OpInfo.CallOperand);
5834        break;
5835      }
5836
5837      // Otherwise, this is a register or register class output.
5838
5839      // Copy the output from the appropriate register.  Find a register that
5840      // we can use.
5841      if (OpInfo.AssignedRegs.Regs.empty()) {
5842        llvm_report_error("Couldn't allocate output reg for"
5843                          " constraint '" + OpInfo.ConstraintCode + "'!");
5844      }
5845
5846      // If this is an indirect operand, store through the pointer after the
5847      // asm.
5848      if (OpInfo.isIndirect) {
5849        IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs,
5850                                                      OpInfo.CallOperandVal));
5851      } else {
5852        // This is the result value of the call.
5853        assert(CS.getType() != Type::getVoidTy(*DAG.getContext()) &&
5854               "Bad inline asm!");
5855        // Concatenate this output onto the outputs list.
5856        RetValRegs.append(OpInfo.AssignedRegs);
5857      }
5858
5859      // Add information to the INLINEASM node to know that this register is
5860      // set.
5861      OpInfo.AssignedRegs.AddInlineAsmOperands(OpInfo.isEarlyClobber ?
5862                                               6 /* EARLYCLOBBER REGDEF */ :
5863                                               2 /* REGDEF */ ,
5864                                               false,
5865                                               0,
5866                                               DAG, AsmNodeOperands);
5867      break;
5868    }
5869    case InlineAsm::isInput: {
5870      SDValue InOperandVal = OpInfo.CallOperand;
5871
5872      if (OpInfo.isMatchingInputConstraint()) {   // Matching constraint?
5873        // If this is required to match an output register we have already set,
5874        // just use its register.
5875        unsigned OperandNo = OpInfo.getMatchedOperand();
5876
5877        // Scan until we find the definition we already emitted of this operand.
5878        // When we find it, create a RegsForValue operand.
5879        unsigned CurOp = 2;  // The first operand.
5880        for (; OperandNo; --OperandNo) {
5881          // Advance to the next operand.
5882          unsigned OpFlag =
5883            cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
5884          assert(((OpFlag & 7) == 2 /*REGDEF*/ ||
5885                  (OpFlag & 7) == 6 /*EARLYCLOBBER REGDEF*/ ||
5886                  (OpFlag & 7) == 4 /*MEM*/) &&
5887                 "Skipped past definitions?");
5888          CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1;
5889        }
5890
5891        unsigned OpFlag =
5892          cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
5893        if ((OpFlag & 7) == 2 /*REGDEF*/
5894            || (OpFlag & 7) == 6 /* EARLYCLOBBER REGDEF */) {
5895          // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
5896          if (OpInfo.isIndirect) {
5897            llvm_report_error("Don't know how to handle tied indirect "
5898                              "register inputs yet!");
5899          }
5900          RegsForValue MatchedRegs;
5901          MatchedRegs.TLI = &TLI;
5902          MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType());
5903          EVT RegVT = AsmNodeOperands[CurOp+1].getValueType();
5904          MatchedRegs.RegVTs.push_back(RegVT);
5905          MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo();
5906          for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag);
5907               i != e; ++i)
5908            MatchedRegs.Regs.
5909              push_back(RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT)));
5910
5911          // Use the produced MatchedRegs object to
5912          MatchedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(),
5913                                    SDNodeOrder, Chain, &Flag);
5914          MatchedRegs.AddInlineAsmOperands(1 /*REGUSE*/,
5915                                           true, OpInfo.getMatchedOperand(),
5916                                           DAG, AsmNodeOperands);
5917          break;
5918        } else {
5919          assert(((OpFlag & 7) == 4) && "Unknown matching constraint!");
5920          assert((InlineAsm::getNumOperandRegisters(OpFlag)) == 1 &&
5921                 "Unexpected number of operands");
5922          // Add information to the INLINEASM node to know about this input.
5923          // See InlineAsm.h isUseOperandTiedToDef.
5924          OpFlag |= 0x80000000 | (OpInfo.getMatchedOperand() << 16);
5925          AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlag,
5926                                                          TLI.getPointerTy()));
5927          AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
5928          break;
5929        }
5930      }
5931
5932      if (OpInfo.ConstraintType == TargetLowering::C_Other) {
5933        assert(!OpInfo.isIndirect &&
5934               "Don't know how to handle indirect other inputs yet!");
5935
5936        std::vector<SDValue> Ops;
5937        TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode[0],
5938                                         hasMemory, Ops, DAG);
5939        if (Ops.empty()) {
5940          llvm_report_error("Invalid operand for inline asm"
5941                            " constraint '" + OpInfo.ConstraintCode + "'!");
5942        }
5943
5944        // Add information to the INLINEASM node to know about this input.
5945        unsigned ResOpType = 3 /*IMM*/ | (Ops.size() << 3);
5946        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
5947                                                        TLI.getPointerTy()));
5948        AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
5949        break;
5950      } else if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
5951        assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
5952        assert(InOperandVal.getValueType() == TLI.getPointerTy() &&
5953               "Memory operands expect pointer values");
5954
5955        // Add information to the INLINEASM node to know about this input.
5956        unsigned ResOpType = 4/*MEM*/ | (1<<3);
5957        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
5958                                                        TLI.getPointerTy()));
5959        AsmNodeOperands.push_back(InOperandVal);
5960        break;
5961      }
5962
5963      assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
5964              OpInfo.ConstraintType == TargetLowering::C_Register) &&
5965             "Unknown constraint type!");
5966      assert(!OpInfo.isIndirect &&
5967             "Don't know how to handle indirect register inputs yet!");
5968
5969      // Copy the input into the appropriate registers.
5970      if (OpInfo.AssignedRegs.Regs.empty()) {
5971        llvm_report_error("Couldn't allocate input reg for"
5972                          " constraint '"+ OpInfo.ConstraintCode +"'!");
5973      }
5974
5975      OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(),
5976                                        SDNodeOrder, Chain, &Flag);
5977
5978      OpInfo.AssignedRegs.AddInlineAsmOperands(1/*REGUSE*/, false, 0,
5979                                               DAG, AsmNodeOperands);
5980      break;
5981    }
5982    case InlineAsm::isClobber: {
5983      // Add the clobbered value to the operand list, so that the register
5984      // allocator is aware that the physreg got clobbered.
5985      if (!OpInfo.AssignedRegs.Regs.empty())
5986        OpInfo.AssignedRegs.AddInlineAsmOperands(6 /* EARLYCLOBBER REGDEF */,
5987                                                 false, 0, DAG,AsmNodeOperands);
5988      break;
5989    }
5990    }
5991  }
5992
5993  // Finish up input operands.
5994  AsmNodeOperands[0] = Chain;
5995  if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
5996
5997  Chain = DAG.getNode(ISD::INLINEASM, getCurDebugLoc(),
5998                      DAG.getVTList(MVT::Other, MVT::Flag),
5999                      &AsmNodeOperands[0], AsmNodeOperands.size());
6000  Flag = Chain.getValue(1);
6001
6002  // If this asm returns a register value, copy the result from that register
6003  // and set it as the value of the call.
6004  if (!RetValRegs.Regs.empty()) {
6005    SDValue Val = RetValRegs.getCopyFromRegs(DAG, getCurDebugLoc(),
6006                                             SDNodeOrder, Chain, &Flag);
6007
6008    // FIXME: Why don't we do this for inline asms with MRVs?
6009    if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) {
6010      EVT ResultType = TLI.getValueType(CS.getType());
6011
6012      // If any of the results of the inline asm is a vector, it may have the
6013      // wrong width/num elts.  This can happen for register classes that can
6014      // contain multiple different value types.  The preg or vreg allocated may
6015      // not have the same VT as was expected.  Convert it to the right type
6016      // with bit_convert.
6017      if (ResultType != Val.getValueType() && Val.getValueType().isVector()) {
6018        Val = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(),
6019                          ResultType, Val);
6020
6021      } else if (ResultType != Val.getValueType() &&
6022                 ResultType.isInteger() && Val.getValueType().isInteger()) {
6023        // If a result value was tied to an input value, the computed result may
6024        // have a wider width than the expected result.  Extract the relevant
6025        // portion.
6026        Val = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), ResultType, Val);
6027      }
6028
6029      assert(ResultType == Val.getValueType() && "Asm result value mismatch!");
6030    }
6031
6032    setValue(CS.getInstruction(), Val);
6033    // Don't need to use this as a chain in this case.
6034    if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty())
6035      return;
6036  }
6037
6038  std::vector<std::pair<SDValue, Value*> > StoresToEmit;
6039
6040  // Process indirect outputs, first output all of the flagged copies out of
6041  // physregs.
6042  for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
6043    RegsForValue &OutRegs = IndirectStoresToEmit[i].first;
6044    Value *Ptr = IndirectStoresToEmit[i].second;
6045    SDValue OutVal = OutRegs.getCopyFromRegs(DAG, getCurDebugLoc(),
6046                                             SDNodeOrder, Chain, &Flag);
6047    StoresToEmit.push_back(std::make_pair(OutVal, Ptr));
6048
6049  }
6050
6051  // Emit the non-flagged stores from the physregs.
6052  SmallVector<SDValue, 8> OutChains;
6053  for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i)
6054    OutChains.push_back(DAG.getStore(Chain, getCurDebugLoc(),
6055                                    StoresToEmit[i].first,
6056                                    getValue(StoresToEmit[i].second),
6057                                    StoresToEmit[i].second, 0));
6058  if (!OutChains.empty())
6059    Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
6060                        &OutChains[0], OutChains.size());
6061  DAG.setRoot(Chain);
6062}
6063
6064void SelectionDAGBuilder::visitVAStart(CallInst &I) {
6065  DAG.setRoot(DAG.getNode(ISD::VASTART, getCurDebugLoc(),
6066                          MVT::Other, getRoot(),
6067                          getValue(I.getOperand(1)),
6068                          DAG.getSrcValue(I.getOperand(1))));
6069}
6070
6071void SelectionDAGBuilder::visitVAArg(VAArgInst &I) {
6072  SDValue V = DAG.getVAArg(TLI.getValueType(I.getType()), getCurDebugLoc(),
6073                           getRoot(), getValue(I.getOperand(0)),
6074                           DAG.getSrcValue(I.getOperand(0)));
6075  setValue(&I, V);
6076  DAG.setRoot(V.getValue(1));
6077}
6078
6079void SelectionDAGBuilder::visitVAEnd(CallInst &I) {
6080  DAG.setRoot(DAG.getNode(ISD::VAEND, getCurDebugLoc(),
6081                          MVT::Other, getRoot(),
6082                          getValue(I.getOperand(1)),
6083                          DAG.getSrcValue(I.getOperand(1))));
6084}
6085
6086void SelectionDAGBuilder::visitVACopy(CallInst &I) {
6087  DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurDebugLoc(),
6088                          MVT::Other, getRoot(),
6089                          getValue(I.getOperand(1)),
6090                          getValue(I.getOperand(2)),
6091                          DAG.getSrcValue(I.getOperand(1)),
6092                          DAG.getSrcValue(I.getOperand(2))));
6093}
6094
6095/// TargetLowering::LowerCallTo - This is the default LowerCallTo
6096/// implementation, which just calls LowerCall.
6097/// FIXME: When all targets are
6098/// migrated to using LowerCall, this hook should be integrated into SDISel.
6099std::pair<SDValue, SDValue>
6100TargetLowering::LowerCallTo(SDValue Chain, const Type *RetTy,
6101                            bool RetSExt, bool RetZExt, bool isVarArg,
6102                            bool isInreg, unsigned NumFixedArgs,
6103                            CallingConv::ID CallConv, bool isTailCall,
6104                            bool isReturnValueUsed,
6105                            SDValue Callee,
6106                            ArgListTy &Args, SelectionDAG &DAG, DebugLoc dl) {
6107
6108  assert((!isTailCall || PerformTailCallOpt) &&
6109         "isTailCall set when tail-call optimizations are disabled!");
6110
6111  // Handle all of the outgoing arguments.
6112  SmallVector<ISD::OutputArg, 32> Outs;
6113  for (unsigned i = 0, e = Args.size(); i != e; ++i) {
6114    SmallVector<EVT, 4> ValueVTs;
6115    ComputeValueVTs(*this, Args[i].Ty, ValueVTs);
6116    for (unsigned Value = 0, NumValues = ValueVTs.size();
6117         Value != NumValues; ++Value) {
6118      EVT VT = ValueVTs[Value];
6119      const Type *ArgTy = VT.getTypeForEVT(RetTy->getContext());
6120      SDValue Op = SDValue(Args[i].Node.getNode(),
6121                           Args[i].Node.getResNo() + Value);
6122      ISD::ArgFlagsTy Flags;
6123      unsigned OriginalAlignment =
6124        getTargetData()->getABITypeAlignment(ArgTy);
6125
6126      if (Args[i].isZExt)
6127        Flags.setZExt();
6128      if (Args[i].isSExt)
6129        Flags.setSExt();
6130      if (Args[i].isInReg)
6131        Flags.setInReg();
6132      if (Args[i].isSRet)
6133        Flags.setSRet();
6134      if (Args[i].isByVal) {
6135        Flags.setByVal();
6136        const PointerType *Ty = cast<PointerType>(Args[i].Ty);
6137        const Type *ElementTy = Ty->getElementType();
6138        unsigned FrameAlign = getByValTypeAlignment(ElementTy);
6139        unsigned FrameSize  = getTargetData()->getTypeAllocSize(ElementTy);
6140        // For ByVal, alignment should come from FE.  BE will guess if this
6141        // info is not there but there are cases it cannot get right.
6142        if (Args[i].Alignment)
6143          FrameAlign = Args[i].Alignment;
6144        Flags.setByValAlign(FrameAlign);
6145        Flags.setByValSize(FrameSize);
6146      }
6147      if (Args[i].isNest)
6148        Flags.setNest();
6149      Flags.setOrigAlign(OriginalAlignment);
6150
6151      EVT PartVT = getRegisterType(RetTy->getContext(), VT);
6152      unsigned NumParts = getNumRegisters(RetTy->getContext(), VT);
6153      SmallVector<SDValue, 4> Parts(NumParts);
6154      ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
6155
6156      if (Args[i].isSExt)
6157        ExtendKind = ISD::SIGN_EXTEND;
6158      else if (Args[i].isZExt)
6159        ExtendKind = ISD::ZERO_EXTEND;
6160
6161      getCopyToParts(DAG, dl, Op, &Parts[0], NumParts, PartVT, ExtendKind);
6162
6163      for (unsigned j = 0; j != NumParts; ++j) {
6164        // if it isn't first piece, alignment must be 1
6165        ISD::OutputArg MyFlags(Flags, Parts[j], i < NumFixedArgs);
6166        if (NumParts > 1 && j == 0)
6167          MyFlags.Flags.setSplit();
6168        else if (j != 0)
6169          MyFlags.Flags.setOrigAlign(1);
6170
6171        Outs.push_back(MyFlags);
6172      }
6173    }
6174  }
6175
6176  // Handle the incoming return values from the call.
6177  SmallVector<ISD::InputArg, 32> Ins;
6178  SmallVector<EVT, 4> RetTys;
6179  ComputeValueVTs(*this, RetTy, RetTys);
6180  for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
6181    EVT VT = RetTys[I];
6182    EVT RegisterVT = getRegisterType(RetTy->getContext(), VT);
6183    unsigned NumRegs = getNumRegisters(RetTy->getContext(), VT);
6184    for (unsigned i = 0; i != NumRegs; ++i) {
6185      ISD::InputArg MyFlags;
6186      MyFlags.VT = RegisterVT;
6187      MyFlags.Used = isReturnValueUsed;
6188      if (RetSExt)
6189        MyFlags.Flags.setSExt();
6190      if (RetZExt)
6191        MyFlags.Flags.setZExt();
6192      if (isInreg)
6193        MyFlags.Flags.setInReg();
6194      Ins.push_back(MyFlags);
6195    }
6196  }
6197
6198  // Check if target-dependent constraints permit a tail call here.
6199  // Target-independent constraints should be checked by the caller.
6200  if (isTailCall &&
6201      !IsEligibleForTailCallOptimization(Callee, CallConv, isVarArg, Ins, DAG))
6202    isTailCall = false;
6203
6204  SmallVector<SDValue, 4> InVals;
6205  Chain = LowerCall(Chain, Callee, CallConv, isVarArg, isTailCall,
6206                    Outs, Ins, dl, DAG, InVals);
6207
6208  // Verify that the target's LowerCall behaved as expected.
6209  assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
6210         "LowerCall didn't return a valid chain!");
6211  assert((!isTailCall || InVals.empty()) &&
6212         "LowerCall emitted a return value for a tail call!");
6213  assert((isTailCall || InVals.size() == Ins.size()) &&
6214         "LowerCall didn't emit the correct number of values!");
6215  DEBUG(for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
6216          assert(InVals[i].getNode() &&
6217                 "LowerCall emitted a null value!");
6218          assert(Ins[i].VT == InVals[i].getValueType() &&
6219                 "LowerCall emitted a value with the wrong type!");
6220        });
6221
6222  // For a tail call, the return value is merely live-out and there aren't
6223  // any nodes in the DAG representing it. Return a special value to
6224  // indicate that a tail call has been emitted and no more Instructions
6225  // should be processed in the current block.
6226  if (isTailCall) {
6227    DAG.setRoot(Chain);
6228    return std::make_pair(SDValue(), SDValue());
6229  }
6230
6231  // Collect the legal value parts into potentially illegal values
6232  // that correspond to the original function's return values.
6233  ISD::NodeType AssertOp = ISD::DELETED_NODE;
6234  if (RetSExt)
6235    AssertOp = ISD::AssertSext;
6236  else if (RetZExt)
6237    AssertOp = ISD::AssertZext;
6238  SmallVector<SDValue, 4> ReturnValues;
6239  unsigned CurReg = 0;
6240  for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
6241    EVT VT = RetTys[I];
6242    EVT RegisterVT = getRegisterType(RetTy->getContext(), VT);
6243    unsigned NumRegs = getNumRegisters(RetTy->getContext(), VT);
6244
6245    SDValue ReturnValue =
6246      getCopyFromParts(DAG, dl, &InVals[CurReg], NumRegs, RegisterVT, VT,
6247                       AssertOp);
6248    ReturnValues.push_back(ReturnValue);
6249    CurReg += NumRegs;
6250  }
6251
6252  // For a function returning void, there is no return value. We can't create
6253  // such a node, so we just return a null return value in that case. In
6254  // that case, nothing will actualy look at the value.
6255  if (ReturnValues.empty())
6256    return std::make_pair(SDValue(), Chain);
6257
6258  SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
6259                            DAG.getVTList(&RetTys[0], RetTys.size()),
6260                            &ReturnValues[0], ReturnValues.size());
6261
6262  return std::make_pair(Res, Chain);
6263}
6264
6265void TargetLowering::LowerOperationWrapper(SDNode *N,
6266                                           SmallVectorImpl<SDValue> &Results,
6267                                           SelectionDAG &DAG) {
6268  SDValue Res = LowerOperation(SDValue(N, 0), DAG);
6269  if (Res.getNode())
6270    Results.push_back(Res);
6271}
6272
6273SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) {
6274  llvm_unreachable("LowerOperation not implemented for this target!");
6275  return SDValue();
6276}
6277
6278
6279void SelectionDAGBuilder::CopyValueToVirtualRegister(Value *V, unsigned Reg) {
6280  SDValue Op = getValue(V);
6281  assert((Op.getOpcode() != ISD::CopyFromReg ||
6282          cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
6283         "Copy from a reg to the same reg!");
6284  assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg");
6285
6286  RegsForValue RFV(V->getContext(), TLI, Reg, V->getType());
6287  SDValue Chain = DAG.getEntryNode();
6288  RFV.getCopyToRegs(Op, DAG, getCurDebugLoc(), SDNodeOrder, Chain, 0);
6289  PendingExports.push_back(Chain);
6290}
6291
6292#include "llvm/CodeGen/SelectionDAGISel.h"
6293
6294void SelectionDAGISel::LowerArguments(BasicBlock *LLVMBB) {
6295  // If this is the entry block, emit arguments.
6296  Function &F = *LLVMBB->getParent();
6297  SelectionDAG &DAG = SDB->DAG;
6298  SDValue OldRoot = DAG.getRoot();
6299  DebugLoc dl = SDB->getCurDebugLoc();
6300  const TargetData *TD = TLI.getTargetData();
6301  SmallVector<ISD::InputArg, 16> Ins;
6302
6303  // Check whether the function can return without sret-demotion.
6304  SmallVector<EVT, 4> OutVTs;
6305  SmallVector<ISD::ArgFlagsTy, 4> OutsFlags;
6306  getReturnInfo(F.getReturnType(), F.getAttributes().getRetAttributes(),
6307                OutVTs, OutsFlags, TLI);
6308  FunctionLoweringInfo &FLI = DAG.getFunctionLoweringInfo();
6309
6310  FLI.CanLowerReturn = TLI.CanLowerReturn(F.getCallingConv(), F.isVarArg(),
6311    OutVTs, OutsFlags, DAG);
6312  if (!FLI.CanLowerReturn) {
6313    // Put in an sret pointer parameter before all the other parameters.
6314    SmallVector<EVT, 1> ValueVTs;
6315    ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs);
6316
6317    // NOTE: Assuming that a pointer will never break down to more than one VT
6318    // or one register.
6319    ISD::ArgFlagsTy Flags;
6320    Flags.setSRet();
6321    EVT RegisterVT = TLI.getRegisterType(*CurDAG->getContext(), ValueVTs[0]);
6322    ISD::InputArg RetArg(Flags, RegisterVT, true);
6323    Ins.push_back(RetArg);
6324  }
6325
6326  // Set up the incoming argument description vector.
6327  unsigned Idx = 1;
6328  for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end();
6329       I != E; ++I, ++Idx) {
6330    SmallVector<EVT, 4> ValueVTs;
6331    ComputeValueVTs(TLI, I->getType(), ValueVTs);
6332    bool isArgValueUsed = !I->use_empty();
6333    for (unsigned Value = 0, NumValues = ValueVTs.size();
6334         Value != NumValues; ++Value) {
6335      EVT VT = ValueVTs[Value];
6336      const Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
6337      ISD::ArgFlagsTy Flags;
6338      unsigned OriginalAlignment =
6339        TD->getABITypeAlignment(ArgTy);
6340
6341      if (F.paramHasAttr(Idx, Attribute::ZExt))
6342        Flags.setZExt();
6343      if (F.paramHasAttr(Idx, Attribute::SExt))
6344        Flags.setSExt();
6345      if (F.paramHasAttr(Idx, Attribute::InReg))
6346        Flags.setInReg();
6347      if (F.paramHasAttr(Idx, Attribute::StructRet))
6348        Flags.setSRet();
6349      if (F.paramHasAttr(Idx, Attribute::ByVal)) {
6350        Flags.setByVal();
6351        const PointerType *Ty = cast<PointerType>(I->getType());
6352        const Type *ElementTy = Ty->getElementType();
6353        unsigned FrameAlign = TLI.getByValTypeAlignment(ElementTy);
6354        unsigned FrameSize  = TD->getTypeAllocSize(ElementTy);
6355        // For ByVal, alignment should be passed from FE.  BE will guess if
6356        // this info is not there but there are cases it cannot get right.
6357        if (F.getParamAlignment(Idx))
6358          FrameAlign = F.getParamAlignment(Idx);
6359        Flags.setByValAlign(FrameAlign);
6360        Flags.setByValSize(FrameSize);
6361      }
6362      if (F.paramHasAttr(Idx, Attribute::Nest))
6363        Flags.setNest();
6364      Flags.setOrigAlign(OriginalAlignment);
6365
6366      EVT RegisterVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
6367      unsigned NumRegs = TLI.getNumRegisters(*CurDAG->getContext(), VT);
6368      for (unsigned i = 0; i != NumRegs; ++i) {
6369        ISD::InputArg MyFlags(Flags, RegisterVT, isArgValueUsed);
6370        if (NumRegs > 1 && i == 0)
6371          MyFlags.Flags.setSplit();
6372        // if it isn't first piece, alignment must be 1
6373        else if (i > 0)
6374          MyFlags.Flags.setOrigAlign(1);
6375        Ins.push_back(MyFlags);
6376      }
6377    }
6378  }
6379
6380  // Call the target to set up the argument values.
6381  SmallVector<SDValue, 8> InVals;
6382  SDValue NewRoot = TLI.LowerFormalArguments(DAG.getRoot(), F.getCallingConv(),
6383                                             F.isVarArg(), Ins,
6384                                             dl, DAG, InVals);
6385
6386  // Verify that the target's LowerFormalArguments behaved as expected.
6387  assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
6388         "LowerFormalArguments didn't return a valid chain!");
6389  assert(InVals.size() == Ins.size() &&
6390         "LowerFormalArguments didn't emit the correct number of values!");
6391  DEBUG(for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
6392          assert(InVals[i].getNode() &&
6393                 "LowerFormalArguments emitted a null value!");
6394          assert(Ins[i].VT == InVals[i].getValueType() &&
6395                 "LowerFormalArguments emitted a value with the wrong type!");
6396        });
6397
6398  // Update the DAG with the new chain value resulting from argument lowering.
6399  DAG.setRoot(NewRoot);
6400
6401  // Set up the argument values.
6402  unsigned i = 0;
6403  Idx = 1;
6404  if (!FLI.CanLowerReturn) {
6405    // Create a virtual register for the sret pointer, and put in a copy
6406    // from the sret argument into it.
6407    SmallVector<EVT, 1> ValueVTs;
6408    ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs);
6409    EVT VT = ValueVTs[0];
6410    EVT RegVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
6411    ISD::NodeType AssertOp = ISD::DELETED_NODE;
6412    SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT,
6413                                        VT, AssertOp);
6414
6415    MachineFunction& MF = SDB->DAG.getMachineFunction();
6416    MachineRegisterInfo& RegInfo = MF.getRegInfo();
6417    unsigned SRetReg = RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT));
6418    FLI.DemoteRegister = SRetReg;
6419    NewRoot = SDB->DAG.getCopyToReg(NewRoot, SDB->getCurDebugLoc(), SRetReg, ArgValue);
6420    DAG.setRoot(NewRoot);
6421
6422    // i indexes lowered arguments.  Bump it past the hidden sret argument.
6423    // Idx indexes LLVM arguments.  Don't touch it.
6424    ++i;
6425  }
6426  for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E;
6427      ++I, ++Idx) {
6428    SmallVector<SDValue, 4> ArgValues;
6429    SmallVector<EVT, 4> ValueVTs;
6430    ComputeValueVTs(TLI, I->getType(), ValueVTs);
6431    unsigned NumValues = ValueVTs.size();
6432    for (unsigned Value = 0; Value != NumValues; ++Value) {
6433      EVT VT = ValueVTs[Value];
6434      EVT PartVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
6435      unsigned NumParts = TLI.getNumRegisters(*CurDAG->getContext(), VT);
6436
6437      if (!I->use_empty()) {
6438        ISD::NodeType AssertOp = ISD::DELETED_NODE;
6439        if (F.paramHasAttr(Idx, Attribute::SExt))
6440          AssertOp = ISD::AssertSext;
6441        else if (F.paramHasAttr(Idx, Attribute::ZExt))
6442          AssertOp = ISD::AssertZext;
6443
6444        ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts,
6445                                             PartVT, VT, AssertOp));
6446      }
6447      i += NumParts;
6448    }
6449    if (!I->use_empty()) {
6450      SDB->setValue(I, DAG.getMergeValues(&ArgValues[0], NumValues,
6451                                          SDB->getCurDebugLoc()));
6452      // If this argument is live outside of the entry block, insert a copy from
6453      // whereever we got it to the vreg that other BB's will reference it as.
6454      SDB->CopyToExportRegsIfNeeded(I);
6455    }
6456  }
6457  assert(i == InVals.size() && "Argument register count mismatch!");
6458
6459  // Finally, if the target has anything special to do, allow it to do so.
6460  // FIXME: this should insert code into the DAG!
6461  EmitFunctionEntryCode(F, SDB->DAG.getMachineFunction());
6462}
6463
6464/// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
6465/// ensure constants are generated when needed.  Remember the virtual registers
6466/// that need to be added to the Machine PHI nodes as input.  We cannot just
6467/// directly add them, because expansion might result in multiple MBB's for one
6468/// BB.  As such, the start of the BB might correspond to a different MBB than
6469/// the end.
6470///
6471void
6472SelectionDAGISel::HandlePHINodesInSuccessorBlocks(BasicBlock *LLVMBB) {
6473  TerminatorInst *TI = LLVMBB->getTerminator();
6474
6475  SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
6476
6477  // Check successor nodes' PHI nodes that expect a constant to be available
6478  // from this block.
6479  for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
6480    BasicBlock *SuccBB = TI->getSuccessor(succ);
6481    if (!isa<PHINode>(SuccBB->begin())) continue;
6482    MachineBasicBlock *SuccMBB = FuncInfo->MBBMap[SuccBB];
6483
6484    // If this terminator has multiple identical successors (common for
6485    // switches), only handle each succ once.
6486    if (!SuccsHandled.insert(SuccMBB)) continue;
6487
6488    MachineBasicBlock::iterator MBBI = SuccMBB->begin();
6489    PHINode *PN;
6490
6491    // At this point we know that there is a 1-1 correspondence between LLVM PHI
6492    // nodes and Machine PHI nodes, but the incoming operands have not been
6493    // emitted yet.
6494    for (BasicBlock::iterator I = SuccBB->begin();
6495         (PN = dyn_cast<PHINode>(I)); ++I) {
6496      // Ignore dead phi's.
6497      if (PN->use_empty()) continue;
6498
6499      unsigned Reg;
6500      Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
6501
6502      if (Constant *C = dyn_cast<Constant>(PHIOp)) {
6503        unsigned &RegOut = SDB->ConstantsOut[C];
6504        if (RegOut == 0) {
6505          RegOut = FuncInfo->CreateRegForValue(C);
6506          SDB->CopyValueToVirtualRegister(C, RegOut);
6507        }
6508        Reg = RegOut;
6509      } else {
6510        Reg = FuncInfo->ValueMap[PHIOp];
6511        if (Reg == 0) {
6512          assert(isa<AllocaInst>(PHIOp) &&
6513                 FuncInfo->StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
6514                 "Didn't codegen value into a register!??");
6515          Reg = FuncInfo->CreateRegForValue(PHIOp);
6516          SDB->CopyValueToVirtualRegister(PHIOp, Reg);
6517        }
6518      }
6519
6520      // Remember that this register needs to added to the machine PHI node as
6521      // the input for this MBB.
6522      SmallVector<EVT, 4> ValueVTs;
6523      ComputeValueVTs(TLI, PN->getType(), ValueVTs);
6524      for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
6525        EVT VT = ValueVTs[vti];
6526        unsigned NumRegisters = TLI.getNumRegisters(*CurDAG->getContext(), VT);
6527        for (unsigned i = 0, e = NumRegisters; i != e; ++i)
6528          SDB->PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i));
6529        Reg += NumRegisters;
6530      }
6531    }
6532  }
6533  SDB->ConstantsOut.clear();
6534}
6535
6536/// This is the Fast-ISel version of HandlePHINodesInSuccessorBlocks. It only
6537/// supports legal types, and it emits MachineInstrs directly instead of
6538/// creating SelectionDAG nodes.
6539///
6540bool
6541SelectionDAGISel::HandlePHINodesInSuccessorBlocksFast(BasicBlock *LLVMBB,
6542                                                      FastISel *F) {
6543  TerminatorInst *TI = LLVMBB->getTerminator();
6544
6545  SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
6546  unsigned OrigNumPHINodesToUpdate = SDB->PHINodesToUpdate.size();
6547
6548  // Check successor nodes' PHI nodes that expect a constant to be available
6549  // from this block.
6550  for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
6551    BasicBlock *SuccBB = TI->getSuccessor(succ);
6552    if (!isa<PHINode>(SuccBB->begin())) continue;
6553    MachineBasicBlock *SuccMBB = FuncInfo->MBBMap[SuccBB];
6554
6555    // If this terminator has multiple identical successors (common for
6556    // switches), only handle each succ once.
6557    if (!SuccsHandled.insert(SuccMBB)) continue;
6558
6559    MachineBasicBlock::iterator MBBI = SuccMBB->begin();
6560    PHINode *PN;
6561
6562    // At this point we know that there is a 1-1 correspondence between LLVM PHI
6563    // nodes and Machine PHI nodes, but the incoming operands have not been
6564    // emitted yet.
6565    for (BasicBlock::iterator I = SuccBB->begin();
6566         (PN = dyn_cast<PHINode>(I)); ++I) {
6567      // Ignore dead phi's.
6568      if (PN->use_empty()) continue;
6569
6570      // Only handle legal types. Two interesting things to note here. First,
6571      // by bailing out early, we may leave behind some dead instructions,
6572      // since SelectionDAG's HandlePHINodesInSuccessorBlocks will insert its
6573      // own moves. Second, this check is necessary becuase FastISel doesn't
6574      // use CreateRegForValue to create registers, so it always creates
6575      // exactly one register for each non-void instruction.
6576      EVT VT = TLI.getValueType(PN->getType(), /*AllowUnknown=*/true);
6577      if (VT == MVT::Other || !TLI.isTypeLegal(VT)) {
6578        // Promote MVT::i1.
6579        if (VT == MVT::i1)
6580          VT = TLI.getTypeToTransformTo(*CurDAG->getContext(), VT);
6581        else {
6582          SDB->PHINodesToUpdate.resize(OrigNumPHINodesToUpdate);
6583          return false;
6584        }
6585      }
6586
6587      Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
6588
6589      unsigned Reg = F->getRegForValue(PHIOp);
6590      if (Reg == 0) {
6591        SDB->PHINodesToUpdate.resize(OrigNumPHINodesToUpdate);
6592        return false;
6593      }
6594      SDB->PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg));
6595    }
6596  }
6597
6598  return true;
6599}
6600