SelectionDAGBuilder.cpp revision ed4efd3358c69dc73eea174ac4b252402d17f471
1//===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements routines for translating from LLVM IR into SelectionDAG IR.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "isel"
15#include "SDNodeDbgValue.h"
16#include "SelectionDAGBuilder.h"
17#include "llvm/ADT/BitVector.h"
18#include "llvm/ADT/PostOrderIterator.h"
19#include "llvm/ADT/SmallSet.h"
20#include "llvm/Analysis/AliasAnalysis.h"
21#include "llvm/Analysis/ConstantFolding.h"
22#include "llvm/Constants.h"
23#include "llvm/CallingConv.h"
24#include "llvm/DerivedTypes.h"
25#include "llvm/Function.h"
26#include "llvm/GlobalVariable.h"
27#include "llvm/InlineAsm.h"
28#include "llvm/Instructions.h"
29#include "llvm/Intrinsics.h"
30#include "llvm/IntrinsicInst.h"
31#include "llvm/LLVMContext.h"
32#include "llvm/Module.h"
33#include "llvm/CodeGen/Analysis.h"
34#include "llvm/CodeGen/FastISel.h"
35#include "llvm/CodeGen/FunctionLoweringInfo.h"
36#include "llvm/CodeGen/GCStrategy.h"
37#include "llvm/CodeGen/GCMetadata.h"
38#include "llvm/CodeGen/MachineFunction.h"
39#include "llvm/CodeGen/MachineFrameInfo.h"
40#include "llvm/CodeGen/MachineInstrBuilder.h"
41#include "llvm/CodeGen/MachineJumpTableInfo.h"
42#include "llvm/CodeGen/MachineModuleInfo.h"
43#include "llvm/CodeGen/MachineRegisterInfo.h"
44#include "llvm/CodeGen/PseudoSourceValue.h"
45#include "llvm/CodeGen/SelectionDAG.h"
46#include "llvm/Analysis/DebugInfo.h"
47#include "llvm/Target/TargetData.h"
48#include "llvm/Target/TargetFrameLowering.h"
49#include "llvm/Target/TargetInstrInfo.h"
50#include "llvm/Target/TargetIntrinsicInfo.h"
51#include "llvm/Target/TargetLowering.h"
52#include "llvm/Target/TargetOptions.h"
53#include "llvm/Support/Compiler.h"
54#include "llvm/Support/CommandLine.h"
55#include "llvm/Support/Debug.h"
56#include "llvm/Support/ErrorHandling.h"
57#include "llvm/Support/MathExtras.h"
58#include "llvm/Support/raw_ostream.h"
59#include <algorithm>
60using namespace llvm;
61
62/// LimitFloatPrecision - Generate low-precision inline sequences for
63/// some float libcalls (6, 8 or 12 bits).
64static unsigned LimitFloatPrecision;
65
66static cl::opt<unsigned, true>
67LimitFPPrecision("limit-float-precision",
68                 cl::desc("Generate low-precision inline sequences "
69                          "for some float libcalls"),
70                 cl::location(LimitFloatPrecision),
71                 cl::init(0));
72
73// Limit the width of DAG chains. This is important in general to prevent
74// prevent DAG-based analysis from blowing up. For example, alias analysis and
75// load clustering may not complete in reasonable time. It is difficult to
76// recognize and avoid this situation within each individual analysis, and
77// future analyses are likely to have the same behavior. Limiting DAG width is
78// the safe approach, and will be especially important with global DAGs.
79//
80// MaxParallelChains default is arbitrarily high to avoid affecting
81// optimization, but could be lowered to improve compile time. Any ld-ld-st-st
82// sequence over this should have been converted to llvm.memcpy by the
83// frontend. It easy to induce this behavior with .ll code such as:
84// %buffer = alloca [4096 x i8]
85// %data = load [4096 x i8]* %argPtr
86// store [4096 x i8] %data, [4096 x i8]* %buffer
87static cl::opt<unsigned>
88MaxParallelChains("dag-chain-limit", cl::desc("Max parallel isel dag chains"),
89                  cl::init(64), cl::Hidden);
90
91static SDValue getCopyFromPartsVector(SelectionDAG &DAG, DebugLoc DL,
92                                      const SDValue *Parts, unsigned NumParts,
93                                      EVT PartVT, EVT ValueVT);
94
95/// getCopyFromParts - Create a value that contains the specified legal parts
96/// combined into the value they represent.  If the parts combine to a type
97/// larger then ValueVT then AssertOp can be used to specify whether the extra
98/// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
99/// (ISD::AssertSext).
100static SDValue getCopyFromParts(SelectionDAG &DAG, DebugLoc DL,
101                                const SDValue *Parts,
102                                unsigned NumParts, EVT PartVT, EVT ValueVT,
103                                ISD::NodeType AssertOp = ISD::DELETED_NODE) {
104  if (ValueVT.isVector())
105    return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT);
106
107  assert(NumParts > 0 && "No parts to assemble!");
108  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
109  SDValue Val = Parts[0];
110
111  if (NumParts > 1) {
112    // Assemble the value from multiple parts.
113    if (ValueVT.isInteger()) {
114      unsigned PartBits = PartVT.getSizeInBits();
115      unsigned ValueBits = ValueVT.getSizeInBits();
116
117      // Assemble the power of 2 part.
118      unsigned RoundParts = NumParts & (NumParts - 1) ?
119        1 << Log2_32(NumParts) : NumParts;
120      unsigned RoundBits = PartBits * RoundParts;
121      EVT RoundVT = RoundBits == ValueBits ?
122        ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
123      SDValue Lo, Hi;
124
125      EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
126
127      if (RoundParts > 2) {
128        Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2,
129                              PartVT, HalfVT);
130        Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2,
131                              RoundParts / 2, PartVT, HalfVT);
132      } else {
133        Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
134        Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
135      }
136
137      if (TLI.isBigEndian())
138        std::swap(Lo, Hi);
139
140      Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
141
142      if (RoundParts < NumParts) {
143        // Assemble the trailing non-power-of-2 part.
144        unsigned OddParts = NumParts - RoundParts;
145        EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
146        Hi = getCopyFromParts(DAG, DL,
147                              Parts + RoundParts, OddParts, PartVT, OddVT);
148
149        // Combine the round and odd parts.
150        Lo = Val;
151        if (TLI.isBigEndian())
152          std::swap(Lo, Hi);
153        EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
154        Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
155        Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
156                         DAG.getConstant(Lo.getValueType().getSizeInBits(),
157                                         TLI.getPointerTy()));
158        Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
159        Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
160      }
161    } else if (PartVT.isFloatingPoint()) {
162      // FP split into multiple FP parts (for ppcf128)
163      assert(ValueVT == EVT(MVT::ppcf128) && PartVT == EVT(MVT::f64) &&
164             "Unexpected split");
165      SDValue Lo, Hi;
166      Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
167      Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
168      if (TLI.isBigEndian())
169        std::swap(Lo, Hi);
170      Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
171    } else {
172      // FP split into integer parts (soft fp)
173      assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
174             !PartVT.isVector() && "Unexpected split");
175      EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
176      Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT);
177    }
178  }
179
180  // There is now one part, held in Val.  Correct it to match ValueVT.
181  PartVT = Val.getValueType();
182
183  if (PartVT == ValueVT)
184    return Val;
185
186  if (PartVT.isInteger() && ValueVT.isInteger()) {
187    if (ValueVT.bitsLT(PartVT)) {
188      // For a truncate, see if we have any information to
189      // indicate whether the truncated bits will always be
190      // zero or sign-extension.
191      if (AssertOp != ISD::DELETED_NODE)
192        Val = DAG.getNode(AssertOp, DL, PartVT, Val,
193                          DAG.getValueType(ValueVT));
194      return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
195    }
196    return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
197  }
198
199  if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
200    // FP_ROUND's are always exact here.
201    if (ValueVT.bitsLT(Val.getValueType()))
202      return DAG.getNode(ISD::FP_ROUND, DL, ValueVT, Val,
203                         DAG.getIntPtrConstant(1));
204
205    return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
206  }
207
208  if (PartVT.getSizeInBits() == ValueVT.getSizeInBits())
209    return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
210
211  llvm_unreachable("Unknown mismatch!");
212  return SDValue();
213}
214
215/// getCopyFromParts - Create a value that contains the specified legal parts
216/// combined into the value they represent.  If the parts combine to a type
217/// larger then ValueVT then AssertOp can be used to specify whether the extra
218/// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
219/// (ISD::AssertSext).
220static SDValue getCopyFromPartsVector(SelectionDAG &DAG, DebugLoc DL,
221                                      const SDValue *Parts, unsigned NumParts,
222                                      EVT PartVT, EVT ValueVT) {
223  assert(ValueVT.isVector() && "Not a vector value");
224  assert(NumParts > 0 && "No parts to assemble!");
225  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
226  SDValue Val = Parts[0];
227
228  // Handle a multi-element vector.
229  if (NumParts > 1) {
230    EVT IntermediateVT, RegisterVT;
231    unsigned NumIntermediates;
232    unsigned NumRegs =
233    TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
234                               NumIntermediates, RegisterVT);
235    assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
236    NumParts = NumRegs; // Silence a compiler warning.
237    assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
238    assert(RegisterVT == Parts[0].getValueType() &&
239           "Part type doesn't match part!");
240
241    // Assemble the parts into intermediate operands.
242    SmallVector<SDValue, 8> Ops(NumIntermediates);
243    if (NumIntermediates == NumParts) {
244      // If the register was not expanded, truncate or copy the value,
245      // as appropriate.
246      for (unsigned i = 0; i != NumParts; ++i)
247        Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1,
248                                  PartVT, IntermediateVT);
249    } else if (NumParts > 0) {
250      // If the intermediate type was expanded, build the intermediate
251      // operands from the parts.
252      assert(NumParts % NumIntermediates == 0 &&
253             "Must expand into a divisible number of parts!");
254      unsigned Factor = NumParts / NumIntermediates;
255      for (unsigned i = 0; i != NumIntermediates; ++i)
256        Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor,
257                                  PartVT, IntermediateVT);
258    }
259
260    // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
261    // intermediate operands.
262    Val = DAG.getNode(IntermediateVT.isVector() ?
263                      ISD::CONCAT_VECTORS : ISD::BUILD_VECTOR, DL,
264                      ValueVT, &Ops[0], NumIntermediates);
265  }
266
267  // There is now one part, held in Val.  Correct it to match ValueVT.
268  PartVT = Val.getValueType();
269
270  if (PartVT == ValueVT)
271    return Val;
272
273  if (PartVT.isVector()) {
274    // If the element type of the source/dest vectors are the same, but the
275    // parts vector has more elements than the value vector, then we have a
276    // vector widening case (e.g. <2 x float> -> <4 x float>).  Extract the
277    // elements we want.
278    if (PartVT.getVectorElementType() == ValueVT.getVectorElementType()) {
279      assert(PartVT.getVectorNumElements() > ValueVT.getVectorNumElements() &&
280             "Cannot narrow, it would be a lossy transformation");
281      return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
282                         DAG.getIntPtrConstant(0));
283    }
284
285    // Vector/Vector bitcast.
286    return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
287  }
288
289  assert(ValueVT.getVectorElementType() == PartVT &&
290         ValueVT.getVectorNumElements() == 1 &&
291         "Only trivial scalar-to-vector conversions should get here!");
292  return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val);
293}
294
295
296
297
298static void getCopyToPartsVector(SelectionDAG &DAG, DebugLoc dl,
299                                 SDValue Val, SDValue *Parts, unsigned NumParts,
300                                 EVT PartVT);
301
302/// getCopyToParts - Create a series of nodes that contain the specified value
303/// split into legal parts.  If the parts contain more bits than Val, then, for
304/// integers, ExtendKind can be used to specify how to generate the extra bits.
305static void getCopyToParts(SelectionDAG &DAG, DebugLoc DL,
306                           SDValue Val, SDValue *Parts, unsigned NumParts,
307                           EVT PartVT,
308                           ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
309  EVT ValueVT = Val.getValueType();
310
311  // Handle the vector case separately.
312  if (ValueVT.isVector())
313    return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT);
314
315  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
316  unsigned PartBits = PartVT.getSizeInBits();
317  unsigned OrigNumParts = NumParts;
318  assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!");
319
320  if (NumParts == 0)
321    return;
322
323  assert(!ValueVT.isVector() && "Vector case handled elsewhere");
324  if (PartVT == ValueVT) {
325    assert(NumParts == 1 && "No-op copy with multiple parts!");
326    Parts[0] = Val;
327    return;
328  }
329
330  if (NumParts * PartBits > ValueVT.getSizeInBits()) {
331    // If the parts cover more bits than the value has, promote the value.
332    if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
333      assert(NumParts == 1 && "Do not know what to promote to!");
334      Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
335    } else {
336      assert(PartVT.isInteger() && ValueVT.isInteger() &&
337             "Unknown mismatch!");
338      ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
339      Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
340    }
341  } else if (PartBits == ValueVT.getSizeInBits()) {
342    // Different types of the same size.
343    assert(NumParts == 1 && PartVT != ValueVT);
344    Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
345  } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
346    // If the parts cover less bits than value has, truncate the value.
347    assert(PartVT.isInteger() && ValueVT.isInteger() &&
348           "Unknown mismatch!");
349    ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
350    Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
351  }
352
353  // The value may have changed - recompute ValueVT.
354  ValueVT = Val.getValueType();
355  assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
356         "Failed to tile the value with PartVT!");
357
358  if (NumParts == 1) {
359    assert(PartVT == ValueVT && "Type conversion failed!");
360    Parts[0] = Val;
361    return;
362  }
363
364  // Expand the value into multiple parts.
365  if (NumParts & (NumParts - 1)) {
366    // The number of parts is not a power of 2.  Split off and copy the tail.
367    assert(PartVT.isInteger() && ValueVT.isInteger() &&
368           "Do not know what to expand to!");
369    unsigned RoundParts = 1 << Log2_32(NumParts);
370    unsigned RoundBits = RoundParts * PartBits;
371    unsigned OddParts = NumParts - RoundParts;
372    SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
373                                 DAG.getIntPtrConstant(RoundBits));
374    getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT);
375
376    if (TLI.isBigEndian())
377      // The odd parts were reversed by getCopyToParts - unreverse them.
378      std::reverse(Parts + RoundParts, Parts + NumParts);
379
380    NumParts = RoundParts;
381    ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
382    Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
383  }
384
385  // The number of parts is a power of 2.  Repeatedly bisect the value using
386  // EXTRACT_ELEMENT.
387  Parts[0] = DAG.getNode(ISD::BITCAST, DL,
388                         EVT::getIntegerVT(*DAG.getContext(),
389                                           ValueVT.getSizeInBits()),
390                         Val);
391
392  for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
393    for (unsigned i = 0; i < NumParts; i += StepSize) {
394      unsigned ThisBits = StepSize * PartBits / 2;
395      EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
396      SDValue &Part0 = Parts[i];
397      SDValue &Part1 = Parts[i+StepSize/2];
398
399      Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
400                          ThisVT, Part0, DAG.getIntPtrConstant(1));
401      Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
402                          ThisVT, Part0, DAG.getIntPtrConstant(0));
403
404      if (ThisBits == PartBits && ThisVT != PartVT) {
405        Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
406        Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
407      }
408    }
409  }
410
411  if (TLI.isBigEndian())
412    std::reverse(Parts, Parts + OrigNumParts);
413}
414
415
416/// getCopyToPartsVector - Create a series of nodes that contain the specified
417/// value split into legal parts.
418static void getCopyToPartsVector(SelectionDAG &DAG, DebugLoc DL,
419                                 SDValue Val, SDValue *Parts, unsigned NumParts,
420                                 EVT PartVT) {
421  EVT ValueVT = Val.getValueType();
422  assert(ValueVT.isVector() && "Not a vector");
423  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
424
425  if (NumParts == 1) {
426    if (PartVT == ValueVT) {
427      // Nothing to do.
428    } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
429      // Bitconvert vector->vector case.
430      Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
431    } else if (PartVT.isVector() &&
432               PartVT.getVectorElementType() == ValueVT.getVectorElementType()&&
433               PartVT.getVectorNumElements() > ValueVT.getVectorNumElements()) {
434      EVT ElementVT = PartVT.getVectorElementType();
435      // Vector widening case, e.g. <2 x float> -> <4 x float>.  Shuffle in
436      // undef elements.
437      SmallVector<SDValue, 16> Ops;
438      for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i)
439        Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
440                                  ElementVT, Val, DAG.getIntPtrConstant(i)));
441
442      for (unsigned i = ValueVT.getVectorNumElements(),
443           e = PartVT.getVectorNumElements(); i != e; ++i)
444        Ops.push_back(DAG.getUNDEF(ElementVT));
445
446      Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, &Ops[0], Ops.size());
447
448      // FIXME: Use CONCAT for 2x -> 4x.
449
450      //SDValue UndefElts = DAG.getUNDEF(VectorTy);
451      //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts);
452    } else {
453      // Vector -> scalar conversion.
454      assert(ValueVT.getVectorElementType() == PartVT &&
455             ValueVT.getVectorNumElements() == 1 &&
456             "Only trivial vector-to-scalar conversions should get here!");
457      Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
458                        PartVT, Val, DAG.getIntPtrConstant(0));
459    }
460
461    Parts[0] = Val;
462    return;
463  }
464
465  // Handle a multi-element vector.
466  EVT IntermediateVT, RegisterVT;
467  unsigned NumIntermediates;
468  unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT,
469                                                IntermediateVT,
470                                                NumIntermediates, RegisterVT);
471  unsigned NumElements = ValueVT.getVectorNumElements();
472
473  assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
474  NumParts = NumRegs; // Silence a compiler warning.
475  assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
476
477  // Split the vector into intermediate operands.
478  SmallVector<SDValue, 8> Ops(NumIntermediates);
479  for (unsigned i = 0; i != NumIntermediates; ++i) {
480    if (IntermediateVT.isVector())
481      Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL,
482                           IntermediateVT, Val,
483                   DAG.getIntPtrConstant(i * (NumElements / NumIntermediates)));
484    else
485      Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
486                           IntermediateVT, Val, DAG.getIntPtrConstant(i));
487  }
488
489  // Split the intermediate operands into legal parts.
490  if (NumParts == NumIntermediates) {
491    // If the register was not expanded, promote or copy the value,
492    // as appropriate.
493    for (unsigned i = 0; i != NumParts; ++i)
494      getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT);
495  } else if (NumParts > 0) {
496    // If the intermediate type was expanded, split each the value into
497    // legal parts.
498    assert(NumParts % NumIntermediates == 0 &&
499           "Must expand into a divisible number of parts!");
500    unsigned Factor = NumParts / NumIntermediates;
501    for (unsigned i = 0; i != NumIntermediates; ++i)
502      getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT);
503  }
504}
505
506
507
508
509namespace {
510  /// RegsForValue - This struct represents the registers (physical or virtual)
511  /// that a particular set of values is assigned, and the type information
512  /// about the value. The most common situation is to represent one value at a
513  /// time, but struct or array values are handled element-wise as multiple
514  /// values.  The splitting of aggregates is performed recursively, so that we
515  /// never have aggregate-typed registers. The values at this point do not
516  /// necessarily have legal types, so each value may require one or more
517  /// registers of some legal type.
518  ///
519  struct RegsForValue {
520    /// ValueVTs - The value types of the values, which may not be legal, and
521    /// may need be promoted or synthesized from one or more registers.
522    ///
523    SmallVector<EVT, 4> ValueVTs;
524
525    /// RegVTs - The value types of the registers. This is the same size as
526    /// ValueVTs and it records, for each value, what the type of the assigned
527    /// register or registers are. (Individual values are never synthesized
528    /// from more than one type of register.)
529    ///
530    /// With virtual registers, the contents of RegVTs is redundant with TLI's
531    /// getRegisterType member function, however when with physical registers
532    /// it is necessary to have a separate record of the types.
533    ///
534    SmallVector<EVT, 4> RegVTs;
535
536    /// Regs - This list holds the registers assigned to the values.
537    /// Each legal or promoted value requires one register, and each
538    /// expanded value requires multiple registers.
539    ///
540    SmallVector<unsigned, 4> Regs;
541
542    RegsForValue() {}
543
544    RegsForValue(const SmallVector<unsigned, 4> &regs,
545                 EVT regvt, EVT valuevt)
546      : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {}
547
548    RegsForValue(LLVMContext &Context, const TargetLowering &tli,
549                 unsigned Reg, const Type *Ty) {
550      ComputeValueVTs(tli, Ty, ValueVTs);
551
552      for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
553        EVT ValueVT = ValueVTs[Value];
554        unsigned NumRegs = tli.getNumRegisters(Context, ValueVT);
555        EVT RegisterVT = tli.getRegisterType(Context, ValueVT);
556        for (unsigned i = 0; i != NumRegs; ++i)
557          Regs.push_back(Reg + i);
558        RegVTs.push_back(RegisterVT);
559        Reg += NumRegs;
560      }
561    }
562
563    /// areValueTypesLegal - Return true if types of all the values are legal.
564    bool areValueTypesLegal(const TargetLowering &TLI) {
565      for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
566        EVT RegisterVT = RegVTs[Value];
567        if (!TLI.isTypeLegal(RegisterVT))
568          return false;
569      }
570      return true;
571    }
572
573    /// append - Add the specified values to this one.
574    void append(const RegsForValue &RHS) {
575      ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end());
576      RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end());
577      Regs.append(RHS.Regs.begin(), RHS.Regs.end());
578    }
579
580    /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
581    /// this value and returns the result as a ValueVTs value.  This uses
582    /// Chain/Flag as the input and updates them for the output Chain/Flag.
583    /// If the Flag pointer is NULL, no flag is used.
584    SDValue getCopyFromRegs(SelectionDAG &DAG, FunctionLoweringInfo &FuncInfo,
585                            DebugLoc dl,
586                            SDValue &Chain, SDValue *Flag) const;
587
588    /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
589    /// specified value into the registers specified by this object.  This uses
590    /// Chain/Flag as the input and updates them for the output Chain/Flag.
591    /// If the Flag pointer is NULL, no flag is used.
592    void getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl,
593                       SDValue &Chain, SDValue *Flag) const;
594
595    /// AddInlineAsmOperands - Add this value to the specified inlineasm node
596    /// operand list.  This adds the code marker, matching input operand index
597    /// (if applicable), and includes the number of values added into it.
598    void AddInlineAsmOperands(unsigned Kind,
599                              bool HasMatching, unsigned MatchingIdx,
600                              SelectionDAG &DAG,
601                              std::vector<SDValue> &Ops) const;
602  };
603}
604
605/// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
606/// this value and returns the result as a ValueVT value.  This uses
607/// Chain/Flag as the input and updates them for the output Chain/Flag.
608/// If the Flag pointer is NULL, no flag is used.
609SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
610                                      FunctionLoweringInfo &FuncInfo,
611                                      DebugLoc dl,
612                                      SDValue &Chain, SDValue *Flag) const {
613  // A Value with type {} or [0 x %t] needs no registers.
614  if (ValueVTs.empty())
615    return SDValue();
616
617  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
618
619  // Assemble the legal parts into the final values.
620  SmallVector<SDValue, 4> Values(ValueVTs.size());
621  SmallVector<SDValue, 8> Parts;
622  for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
623    // Copy the legal parts from the registers.
624    EVT ValueVT = ValueVTs[Value];
625    unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
626    EVT RegisterVT = RegVTs[Value];
627
628    Parts.resize(NumRegs);
629    for (unsigned i = 0; i != NumRegs; ++i) {
630      SDValue P;
631      if (Flag == 0) {
632        P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
633      } else {
634        P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
635        *Flag = P.getValue(2);
636      }
637
638      Chain = P.getValue(1);
639      Parts[i] = P;
640
641      // If the source register was virtual and if we know something about it,
642      // add an assert node.
643      if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) ||
644          !RegisterVT.isInteger() || RegisterVT.isVector() ||
645          !FuncInfo.LiveOutRegInfo.inBounds(Regs[Part+i]))
646        continue;
647
648      const FunctionLoweringInfo::LiveOutInfo &LOI =
649        FuncInfo.LiveOutRegInfo[Regs[Part+i]];
650
651      unsigned RegSize = RegisterVT.getSizeInBits();
652      unsigned NumSignBits = LOI.NumSignBits;
653      unsigned NumZeroBits = LOI.KnownZero.countLeadingOnes();
654
655      // FIXME: We capture more information than the dag can represent.  For
656      // now, just use the tightest assertzext/assertsext possible.
657      bool isSExt = true;
658      EVT FromVT(MVT::Other);
659      if (NumSignBits == RegSize)
660        isSExt = true, FromVT = MVT::i1;   // ASSERT SEXT 1
661      else if (NumZeroBits >= RegSize-1)
662        isSExt = false, FromVT = MVT::i1;  // ASSERT ZEXT 1
663      else if (NumSignBits > RegSize-8)
664        isSExt = true, FromVT = MVT::i8;   // ASSERT SEXT 8
665      else if (NumZeroBits >= RegSize-8)
666        isSExt = false, FromVT = MVT::i8;  // ASSERT ZEXT 8
667      else if (NumSignBits > RegSize-16)
668        isSExt = true, FromVT = MVT::i16;  // ASSERT SEXT 16
669      else if (NumZeroBits >= RegSize-16)
670        isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16
671      else if (NumSignBits > RegSize-32)
672        isSExt = true, FromVT = MVT::i32;  // ASSERT SEXT 32
673      else if (NumZeroBits >= RegSize-32)
674        isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32
675      else
676        continue;
677
678      // Add an assertion node.
679      assert(FromVT != MVT::Other);
680      Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
681                             RegisterVT, P, DAG.getValueType(FromVT));
682    }
683
684    Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(),
685                                     NumRegs, RegisterVT, ValueVT);
686    Part += NumRegs;
687    Parts.clear();
688  }
689
690  return DAG.getNode(ISD::MERGE_VALUES, dl,
691                     DAG.getVTList(&ValueVTs[0], ValueVTs.size()),
692                     &Values[0], ValueVTs.size());
693}
694
695/// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
696/// specified value into the registers specified by this object.  This uses
697/// Chain/Flag as the input and updates them for the output Chain/Flag.
698/// If the Flag pointer is NULL, no flag is used.
699void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl,
700                                 SDValue &Chain, SDValue *Flag) const {
701  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
702
703  // Get the list of the values's legal parts.
704  unsigned NumRegs = Regs.size();
705  SmallVector<SDValue, 8> Parts(NumRegs);
706  for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
707    EVT ValueVT = ValueVTs[Value];
708    unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
709    EVT RegisterVT = RegVTs[Value];
710
711    getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value),
712                   &Parts[Part], NumParts, RegisterVT);
713    Part += NumParts;
714  }
715
716  // Copy the parts into the registers.
717  SmallVector<SDValue, 8> Chains(NumRegs);
718  for (unsigned i = 0; i != NumRegs; ++i) {
719    SDValue Part;
720    if (Flag == 0) {
721      Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
722    } else {
723      Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
724      *Flag = Part.getValue(1);
725    }
726
727    Chains[i] = Part.getValue(0);
728  }
729
730  if (NumRegs == 1 || Flag)
731    // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
732    // flagged to it. That is the CopyToReg nodes and the user are considered
733    // a single scheduling unit. If we create a TokenFactor and return it as
734    // chain, then the TokenFactor is both a predecessor (operand) of the
735    // user as well as a successor (the TF operands are flagged to the user).
736    // c1, f1 = CopyToReg
737    // c2, f2 = CopyToReg
738    // c3     = TokenFactor c1, c2
739    // ...
740    //        = op c3, ..., f2
741    Chain = Chains[NumRegs-1];
742  else
743    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0], NumRegs);
744}
745
746/// AddInlineAsmOperands - Add this value to the specified inlineasm node
747/// operand list.  This adds the code marker and includes the number of
748/// values added into it.
749void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
750                                        unsigned MatchingIdx,
751                                        SelectionDAG &DAG,
752                                        std::vector<SDValue> &Ops) const {
753  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
754
755  unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
756  if (HasMatching)
757    Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
758  SDValue Res = DAG.getTargetConstant(Flag, MVT::i32);
759  Ops.push_back(Res);
760
761  for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
762    unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]);
763    EVT RegisterVT = RegVTs[Value];
764    for (unsigned i = 0; i != NumRegs; ++i) {
765      assert(Reg < Regs.size() && "Mismatch in # registers expected");
766      Ops.push_back(DAG.getRegister(Regs[Reg++], RegisterVT));
767    }
768  }
769}
770
771void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa) {
772  AA = &aa;
773  GFI = gfi;
774  TD = DAG.getTarget().getTargetData();
775}
776
777/// clear - Clear out the current SelectionDAG and the associated
778/// state and prepare this SelectionDAGBuilder object to be used
779/// for a new block. This doesn't clear out information about
780/// additional blocks that are needed to complete switch lowering
781/// or PHI node updating; that information is cleared out as it is
782/// consumed.
783void SelectionDAGBuilder::clear() {
784  NodeMap.clear();
785  UnusedArgNodeMap.clear();
786  PendingLoads.clear();
787  PendingExports.clear();
788  DanglingDebugInfoMap.clear();
789  CurDebugLoc = DebugLoc();
790  HasTailCall = false;
791}
792
793/// getRoot - Return the current virtual root of the Selection DAG,
794/// flushing any PendingLoad items. This must be done before emitting
795/// a store or any other node that may need to be ordered after any
796/// prior load instructions.
797///
798SDValue SelectionDAGBuilder::getRoot() {
799  if (PendingLoads.empty())
800    return DAG.getRoot();
801
802  if (PendingLoads.size() == 1) {
803    SDValue Root = PendingLoads[0];
804    DAG.setRoot(Root);
805    PendingLoads.clear();
806    return Root;
807  }
808
809  // Otherwise, we have to make a token factor node.
810  SDValue Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
811                               &PendingLoads[0], PendingLoads.size());
812  PendingLoads.clear();
813  DAG.setRoot(Root);
814  return Root;
815}
816
817/// getControlRoot - Similar to getRoot, but instead of flushing all the
818/// PendingLoad items, flush all the PendingExports items. It is necessary
819/// to do this before emitting a terminator instruction.
820///
821SDValue SelectionDAGBuilder::getControlRoot() {
822  SDValue Root = DAG.getRoot();
823
824  if (PendingExports.empty())
825    return Root;
826
827  // Turn all of the CopyToReg chains into one factored node.
828  if (Root.getOpcode() != ISD::EntryToken) {
829    unsigned i = 0, e = PendingExports.size();
830    for (; i != e; ++i) {
831      assert(PendingExports[i].getNode()->getNumOperands() > 1);
832      if (PendingExports[i].getNode()->getOperand(0) == Root)
833        break;  // Don't add the root if we already indirectly depend on it.
834    }
835
836    if (i == e)
837      PendingExports.push_back(Root);
838  }
839
840  Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
841                     &PendingExports[0],
842                     PendingExports.size());
843  PendingExports.clear();
844  DAG.setRoot(Root);
845  return Root;
846}
847
848void SelectionDAGBuilder::AssignOrderingToNode(const SDNode *Node) {
849  if (DAG.GetOrdering(Node) != 0) return; // Already has ordering.
850  DAG.AssignOrdering(Node, SDNodeOrder);
851
852  for (unsigned I = 0, E = Node->getNumOperands(); I != E; ++I)
853    AssignOrderingToNode(Node->getOperand(I).getNode());
854}
855
856void SelectionDAGBuilder::visit(const Instruction &I) {
857  // Set up outgoing PHI node register values before emitting the terminator.
858  if (isa<TerminatorInst>(&I))
859    HandlePHINodesInSuccessorBlocks(I.getParent());
860
861  CurDebugLoc = I.getDebugLoc();
862
863  visit(I.getOpcode(), I);
864
865  if (!isa<TerminatorInst>(&I) && !HasTailCall)
866    CopyToExportRegsIfNeeded(&I);
867
868  CurDebugLoc = DebugLoc();
869}
870
871void SelectionDAGBuilder::visitPHI(const PHINode &) {
872  llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
873}
874
875void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
876  // Note: this doesn't use InstVisitor, because it has to work with
877  // ConstantExpr's in addition to instructions.
878  switch (Opcode) {
879  default: llvm_unreachable("Unknown instruction type encountered!");
880    // Build the switch statement using the Instruction.def file.
881#define HANDLE_INST(NUM, OPCODE, CLASS) \
882    case Instruction::OPCODE: visit##OPCODE((CLASS&)I); break;
883#include "llvm/Instruction.def"
884  }
885
886  // Assign the ordering to the freshly created DAG nodes.
887  if (NodeMap.count(&I)) {
888    ++SDNodeOrder;
889    AssignOrderingToNode(getValue(&I).getNode());
890  }
891}
892
893// resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
894// generate the debug data structures now that we've seen its definition.
895void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
896                                                   SDValue Val) {
897  DanglingDebugInfo &DDI = DanglingDebugInfoMap[V];
898  if (DDI.getDI()) {
899    const DbgValueInst *DI = DDI.getDI();
900    DebugLoc dl = DDI.getdl();
901    unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
902    MDNode *Variable = DI->getVariable();
903    uint64_t Offset = DI->getOffset();
904    SDDbgValue *SDV;
905    if (Val.getNode()) {
906      if (!EmitFuncArgumentDbgValue(V, Variable, Offset, Val)) {
907        SDV = DAG.getDbgValue(Variable, Val.getNode(),
908                              Val.getResNo(), Offset, dl, DbgSDNodeOrder);
909        DAG.AddDbgValue(SDV, Val.getNode(), false);
910      }
911    } else
912      DEBUG(dbgs() << "Dropping debug info for " << DI);
913    DanglingDebugInfoMap[V] = DanglingDebugInfo();
914  }
915}
916
917// getValue - Return an SDValue for the given Value.
918SDValue SelectionDAGBuilder::getValue(const Value *V) {
919  // If we already have an SDValue for this value, use it. It's important
920  // to do this first, so that we don't create a CopyFromReg if we already
921  // have a regular SDValue.
922  SDValue &N = NodeMap[V];
923  if (N.getNode()) return N;
924
925  // If there's a virtual register allocated and initialized for this
926  // value, use it.
927  DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V);
928  if (It != FuncInfo.ValueMap.end()) {
929    unsigned InReg = It->second;
930    RegsForValue RFV(*DAG.getContext(), TLI, InReg, V->getType());
931    SDValue Chain = DAG.getEntryNode();
932    N = RFV.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), Chain,NULL);
933    resolveDanglingDebugInfo(V, N);
934    return N;
935  }
936
937  // Otherwise create a new SDValue and remember it.
938  SDValue Val = getValueImpl(V);
939  NodeMap[V] = Val;
940  resolveDanglingDebugInfo(V, Val);
941  return Val;
942}
943
944/// getNonRegisterValue - Return an SDValue for the given Value, but
945/// don't look in FuncInfo.ValueMap for a virtual register.
946SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
947  // If we already have an SDValue for this value, use it.
948  SDValue &N = NodeMap[V];
949  if (N.getNode()) return N;
950
951  // Otherwise create a new SDValue and remember it.
952  SDValue Val = getValueImpl(V);
953  NodeMap[V] = Val;
954  resolveDanglingDebugInfo(V, Val);
955  return Val;
956}
957
958/// getValueImpl - Helper function for getValue and getNonRegisterValue.
959/// Create an SDValue for the given value.
960SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
961  if (const Constant *C = dyn_cast<Constant>(V)) {
962    EVT VT = TLI.getValueType(V->getType(), true);
963
964    if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
965      return DAG.getConstant(*CI, VT);
966
967    if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
968      return DAG.getGlobalAddress(GV, getCurDebugLoc(), VT);
969
970    if (isa<ConstantPointerNull>(C))
971      return DAG.getConstant(0, TLI.getPointerTy());
972
973    if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
974      return DAG.getConstantFP(*CFP, VT);
975
976    if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
977      return DAG.getUNDEF(VT);
978
979    if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
980      visit(CE->getOpcode(), *CE);
981      SDValue N1 = NodeMap[V];
982      assert(N1.getNode() && "visit didn't populate the NodeMap!");
983      return N1;
984    }
985
986    if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
987      SmallVector<SDValue, 4> Constants;
988      for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end();
989           OI != OE; ++OI) {
990        SDNode *Val = getValue(*OI).getNode();
991        // If the operand is an empty aggregate, there are no values.
992        if (!Val) continue;
993        // Add each leaf value from the operand to the Constants list
994        // to form a flattened list of all the values.
995        for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
996          Constants.push_back(SDValue(Val, i));
997      }
998
999      return DAG.getMergeValues(&Constants[0], Constants.size(),
1000                                getCurDebugLoc());
1001    }
1002
1003    if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
1004      assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1005             "Unknown struct or array constant!");
1006
1007      SmallVector<EVT, 4> ValueVTs;
1008      ComputeValueVTs(TLI, C->getType(), ValueVTs);
1009      unsigned NumElts = ValueVTs.size();
1010      if (NumElts == 0)
1011        return SDValue(); // empty struct
1012      SmallVector<SDValue, 4> Constants(NumElts);
1013      for (unsigned i = 0; i != NumElts; ++i) {
1014        EVT EltVT = ValueVTs[i];
1015        if (isa<UndefValue>(C))
1016          Constants[i] = DAG.getUNDEF(EltVT);
1017        else if (EltVT.isFloatingPoint())
1018          Constants[i] = DAG.getConstantFP(0, EltVT);
1019        else
1020          Constants[i] = DAG.getConstant(0, EltVT);
1021      }
1022
1023      return DAG.getMergeValues(&Constants[0], NumElts,
1024                                getCurDebugLoc());
1025    }
1026
1027    if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
1028      return DAG.getBlockAddress(BA, VT);
1029
1030    const VectorType *VecTy = cast<VectorType>(V->getType());
1031    unsigned NumElements = VecTy->getNumElements();
1032
1033    // Now that we know the number and type of the elements, get that number of
1034    // elements into the Ops array based on what kind of constant it is.
1035    SmallVector<SDValue, 16> Ops;
1036    if (const ConstantVector *CP = dyn_cast<ConstantVector>(C)) {
1037      for (unsigned i = 0; i != NumElements; ++i)
1038        Ops.push_back(getValue(CP->getOperand(i)));
1039    } else {
1040      assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!");
1041      EVT EltVT = TLI.getValueType(VecTy->getElementType());
1042
1043      SDValue Op;
1044      if (EltVT.isFloatingPoint())
1045        Op = DAG.getConstantFP(0, EltVT);
1046      else
1047        Op = DAG.getConstant(0, EltVT);
1048      Ops.assign(NumElements, Op);
1049    }
1050
1051    // Create a BUILD_VECTOR node.
1052    return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(),
1053                                    VT, &Ops[0], Ops.size());
1054  }
1055
1056  // If this is a static alloca, generate it as the frameindex instead of
1057  // computation.
1058  if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1059    DenseMap<const AllocaInst*, int>::iterator SI =
1060      FuncInfo.StaticAllocaMap.find(AI);
1061    if (SI != FuncInfo.StaticAllocaMap.end())
1062      return DAG.getFrameIndex(SI->second, TLI.getPointerTy());
1063  }
1064
1065  // If this is an instruction which fast-isel has deferred, select it now.
1066  if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
1067    unsigned InReg = FuncInfo.InitializeRegForValue(Inst);
1068    RegsForValue RFV(*DAG.getContext(), TLI, InReg, Inst->getType());
1069    SDValue Chain = DAG.getEntryNode();
1070    return RFV.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), Chain, NULL);
1071  }
1072
1073  llvm_unreachable("Can't get register for value!");
1074  return SDValue();
1075}
1076
1077void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
1078  SDValue Chain = getControlRoot();
1079  SmallVector<ISD::OutputArg, 8> Outs;
1080  SmallVector<SDValue, 8> OutVals;
1081
1082  if (!FuncInfo.CanLowerReturn) {
1083    unsigned DemoteReg = FuncInfo.DemoteRegister;
1084    const Function *F = I.getParent()->getParent();
1085
1086    // Emit a store of the return value through the virtual register.
1087    // Leave Outs empty so that LowerReturn won't try to load return
1088    // registers the usual way.
1089    SmallVector<EVT, 1> PtrValueVTs;
1090    ComputeValueVTs(TLI, PointerType::getUnqual(F->getReturnType()),
1091                    PtrValueVTs);
1092
1093    SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]);
1094    SDValue RetOp = getValue(I.getOperand(0));
1095
1096    SmallVector<EVT, 4> ValueVTs;
1097    SmallVector<uint64_t, 4> Offsets;
1098    ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs, &Offsets);
1099    unsigned NumValues = ValueVTs.size();
1100
1101    SmallVector<SDValue, 4> Chains(NumValues);
1102    for (unsigned i = 0; i != NumValues; ++i) {
1103      SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(),
1104                                RetPtr.getValueType(), RetPtr,
1105                                DAG.getIntPtrConstant(Offsets[i]));
1106      Chains[i] =
1107        DAG.getStore(Chain, getCurDebugLoc(),
1108                     SDValue(RetOp.getNode(), RetOp.getResNo() + i),
1109                     // FIXME: better loc info would be nice.
1110                     Add, MachinePointerInfo(), false, false, 0);
1111    }
1112
1113    Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
1114                        MVT::Other, &Chains[0], NumValues);
1115  } else if (I.getNumOperands() != 0) {
1116    SmallVector<EVT, 4> ValueVTs;
1117    ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs);
1118    unsigned NumValues = ValueVTs.size();
1119    if (NumValues) {
1120      SDValue RetOp = getValue(I.getOperand(0));
1121      for (unsigned j = 0, f = NumValues; j != f; ++j) {
1122        EVT VT = ValueVTs[j];
1123
1124        ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1125
1126        const Function *F = I.getParent()->getParent();
1127        if (F->paramHasAttr(0, Attribute::SExt))
1128          ExtendKind = ISD::SIGN_EXTEND;
1129        else if (F->paramHasAttr(0, Attribute::ZExt))
1130          ExtendKind = ISD::ZERO_EXTEND;
1131
1132        // FIXME: C calling convention requires the return type to be promoted
1133        // to at least 32-bit. But this is not necessary for non-C calling
1134        // conventions. The frontend should mark functions whose return values
1135        // require promoting with signext or zeroext attributes.
1136        if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) {
1137          EVT MinVT = TLI.getRegisterType(*DAG.getContext(), MVT::i32);
1138          if (VT.bitsLT(MinVT))
1139            VT = MinVT;
1140        }
1141
1142        unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), VT);
1143        EVT PartVT = TLI.getRegisterType(*DAG.getContext(), VT);
1144        SmallVector<SDValue, 4> Parts(NumParts);
1145        getCopyToParts(DAG, getCurDebugLoc(),
1146                       SDValue(RetOp.getNode(), RetOp.getResNo() + j),
1147                       &Parts[0], NumParts, PartVT, ExtendKind);
1148
1149        // 'inreg' on function refers to return value
1150        ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1151        if (F->paramHasAttr(0, Attribute::InReg))
1152          Flags.setInReg();
1153
1154        // Propagate extension type if any
1155        if (F->paramHasAttr(0, Attribute::SExt))
1156          Flags.setSExt();
1157        else if (F->paramHasAttr(0, Attribute::ZExt))
1158          Flags.setZExt();
1159
1160        for (unsigned i = 0; i < NumParts; ++i) {
1161          Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(),
1162                                        /*isfixed=*/true));
1163          OutVals.push_back(Parts[i]);
1164        }
1165      }
1166    }
1167  }
1168
1169  bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
1170  CallingConv::ID CallConv =
1171    DAG.getMachineFunction().getFunction()->getCallingConv();
1172  Chain = TLI.LowerReturn(Chain, CallConv, isVarArg,
1173                          Outs, OutVals, getCurDebugLoc(), DAG);
1174
1175  // Verify that the target's LowerReturn behaved as expected.
1176  assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
1177         "LowerReturn didn't return a valid chain!");
1178
1179  // Update the DAG with the new chain value resulting from return lowering.
1180  DAG.setRoot(Chain);
1181}
1182
1183/// CopyToExportRegsIfNeeded - If the given value has virtual registers
1184/// created for it, emit nodes to copy the value into the virtual
1185/// registers.
1186void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
1187  DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
1188  if (VMI != FuncInfo.ValueMap.end()) {
1189    assert(!V->use_empty() && "Unused value assigned virtual registers!");
1190    CopyValueToVirtualRegister(V, VMI->second);
1191  }
1192}
1193
1194/// ExportFromCurrentBlock - If this condition isn't known to be exported from
1195/// the current basic block, add it to ValueMap now so that we'll get a
1196/// CopyTo/FromReg.
1197void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
1198  // No need to export constants.
1199  if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
1200
1201  // Already exported?
1202  if (FuncInfo.isExportedInst(V)) return;
1203
1204  unsigned Reg = FuncInfo.InitializeRegForValue(V);
1205  CopyValueToVirtualRegister(V, Reg);
1206}
1207
1208bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
1209                                                     const BasicBlock *FromBB) {
1210  // The operands of the setcc have to be in this block.  We don't know
1211  // how to export them from some other block.
1212  if (const Instruction *VI = dyn_cast<Instruction>(V)) {
1213    // Can export from current BB.
1214    if (VI->getParent() == FromBB)
1215      return true;
1216
1217    // Is already exported, noop.
1218    return FuncInfo.isExportedInst(V);
1219  }
1220
1221  // If this is an argument, we can export it if the BB is the entry block or
1222  // if it is already exported.
1223  if (isa<Argument>(V)) {
1224    if (FromBB == &FromBB->getParent()->getEntryBlock())
1225      return true;
1226
1227    // Otherwise, can only export this if it is already exported.
1228    return FuncInfo.isExportedInst(V);
1229  }
1230
1231  // Otherwise, constants can always be exported.
1232  return true;
1233}
1234
1235static bool InBlock(const Value *V, const BasicBlock *BB) {
1236  if (const Instruction *I = dyn_cast<Instruction>(V))
1237    return I->getParent() == BB;
1238  return true;
1239}
1240
1241/// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
1242/// This function emits a branch and is used at the leaves of an OR or an
1243/// AND operator tree.
1244///
1245void
1246SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
1247                                                  MachineBasicBlock *TBB,
1248                                                  MachineBasicBlock *FBB,
1249                                                  MachineBasicBlock *CurBB,
1250                                                  MachineBasicBlock *SwitchBB) {
1251  const BasicBlock *BB = CurBB->getBasicBlock();
1252
1253  // If the leaf of the tree is a comparison, merge the condition into
1254  // the caseblock.
1255  if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
1256    // The operands of the cmp have to be in this block.  We don't know
1257    // how to export them from some other block.  If this is the first block
1258    // of the sequence, no exporting is needed.
1259    if (CurBB == SwitchBB ||
1260        (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
1261         isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
1262      ISD::CondCode Condition;
1263      if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
1264        Condition = getICmpCondCode(IC->getPredicate());
1265      } else if (const FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) {
1266        Condition = getFCmpCondCode(FC->getPredicate());
1267      } else {
1268        Condition = ISD::SETEQ; // silence warning.
1269        llvm_unreachable("Unknown compare instruction");
1270      }
1271
1272      CaseBlock CB(Condition, BOp->getOperand(0),
1273                   BOp->getOperand(1), NULL, TBB, FBB, CurBB);
1274      SwitchCases.push_back(CB);
1275      return;
1276    }
1277  }
1278
1279  // Create a CaseBlock record representing this branch.
1280  CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()),
1281               NULL, TBB, FBB, CurBB);
1282  SwitchCases.push_back(CB);
1283}
1284
1285/// FindMergedConditions - If Cond is an expression like
1286void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
1287                                               MachineBasicBlock *TBB,
1288                                               MachineBasicBlock *FBB,
1289                                               MachineBasicBlock *CurBB,
1290                                               MachineBasicBlock *SwitchBB,
1291                                               unsigned Opc) {
1292  // If this node is not part of the or/and tree, emit it as a branch.
1293  const Instruction *BOp = dyn_cast<Instruction>(Cond);
1294  if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
1295      (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() ||
1296      BOp->getParent() != CurBB->getBasicBlock() ||
1297      !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
1298      !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
1299    EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB);
1300    return;
1301  }
1302
1303  //  Create TmpBB after CurBB.
1304  MachineFunction::iterator BBI = CurBB;
1305  MachineFunction &MF = DAG.getMachineFunction();
1306  MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
1307  CurBB->getParent()->insert(++BBI, TmpBB);
1308
1309  if (Opc == Instruction::Or) {
1310    // Codegen X | Y as:
1311    //   jmp_if_X TBB
1312    //   jmp TmpBB
1313    // TmpBB:
1314    //   jmp_if_Y TBB
1315    //   jmp FBB
1316    //
1317
1318    // Emit the LHS condition.
1319    FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc);
1320
1321    // Emit the RHS condition into TmpBB.
1322    FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc);
1323  } else {
1324    assert(Opc == Instruction::And && "Unknown merge op!");
1325    // Codegen X & Y as:
1326    //   jmp_if_X TmpBB
1327    //   jmp FBB
1328    // TmpBB:
1329    //   jmp_if_Y TBB
1330    //   jmp FBB
1331    //
1332    //  This requires creation of TmpBB after CurBB.
1333
1334    // Emit the LHS condition.
1335    FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc);
1336
1337    // Emit the RHS condition into TmpBB.
1338    FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc);
1339  }
1340}
1341
1342/// If the set of cases should be emitted as a series of branches, return true.
1343/// If we should emit this as a bunch of and/or'd together conditions, return
1344/// false.
1345bool
1346SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases){
1347  if (Cases.size() != 2) return true;
1348
1349  // If this is two comparisons of the same values or'd or and'd together, they
1350  // will get folded into a single comparison, so don't emit two blocks.
1351  if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
1352       Cases[0].CmpRHS == Cases[1].CmpRHS) ||
1353      (Cases[0].CmpRHS == Cases[1].CmpLHS &&
1354       Cases[0].CmpLHS == Cases[1].CmpRHS)) {
1355    return false;
1356  }
1357
1358  // Handle: (X != null) | (Y != null) --> (X|Y) != 0
1359  // Handle: (X == null) & (Y == null) --> (X|Y) == 0
1360  if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
1361      Cases[0].CC == Cases[1].CC &&
1362      isa<Constant>(Cases[0].CmpRHS) &&
1363      cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
1364    if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
1365      return false;
1366    if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
1367      return false;
1368  }
1369
1370  return true;
1371}
1372
1373void SelectionDAGBuilder::visitBr(const BranchInst &I) {
1374  MachineBasicBlock *BrMBB = FuncInfo.MBB;
1375
1376  // Update machine-CFG edges.
1377  MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
1378
1379  // Figure out which block is immediately after the current one.
1380  MachineBasicBlock *NextBlock = 0;
1381  MachineFunction::iterator BBI = BrMBB;
1382  if (++BBI != FuncInfo.MF->end())
1383    NextBlock = BBI;
1384
1385  if (I.isUnconditional()) {
1386    // Update machine-CFG edges.
1387    BrMBB->addSuccessor(Succ0MBB);
1388
1389    // If this is not a fall-through branch, emit the branch.
1390    if (Succ0MBB != NextBlock)
1391      DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
1392                              MVT::Other, getControlRoot(),
1393                              DAG.getBasicBlock(Succ0MBB)));
1394
1395    return;
1396  }
1397
1398  // If this condition is one of the special cases we handle, do special stuff
1399  // now.
1400  const Value *CondVal = I.getCondition();
1401  MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
1402
1403  // If this is a series of conditions that are or'd or and'd together, emit
1404  // this as a sequence of branches instead of setcc's with and/or operations.
1405  // As long as jumps are not expensive, this should improve performance.
1406  // For example, instead of something like:
1407  //     cmp A, B
1408  //     C = seteq
1409  //     cmp D, E
1410  //     F = setle
1411  //     or C, F
1412  //     jnz foo
1413  // Emit:
1414  //     cmp A, B
1415  //     je foo
1416  //     cmp D, E
1417  //     jle foo
1418  //
1419  if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
1420    if (!TLI.isJumpExpensive() &&
1421        BOp->hasOneUse() &&
1422        (BOp->getOpcode() == Instruction::And ||
1423         BOp->getOpcode() == Instruction::Or)) {
1424      FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB,
1425                           BOp->getOpcode());
1426      // If the compares in later blocks need to use values not currently
1427      // exported from this block, export them now.  This block should always
1428      // be the first entry.
1429      assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
1430
1431      // Allow some cases to be rejected.
1432      if (ShouldEmitAsBranches(SwitchCases)) {
1433        for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
1434          ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
1435          ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
1436        }
1437
1438        // Emit the branch for this block.
1439        visitSwitchCase(SwitchCases[0], BrMBB);
1440        SwitchCases.erase(SwitchCases.begin());
1441        return;
1442      }
1443
1444      // Okay, we decided not to do this, remove any inserted MBB's and clear
1445      // SwitchCases.
1446      for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
1447        FuncInfo.MF->erase(SwitchCases[i].ThisBB);
1448
1449      SwitchCases.clear();
1450    }
1451  }
1452
1453  // Create a CaseBlock record representing this branch.
1454  CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
1455               NULL, Succ0MBB, Succ1MBB, BrMBB);
1456
1457  // Use visitSwitchCase to actually insert the fast branch sequence for this
1458  // cond branch.
1459  visitSwitchCase(CB, BrMBB);
1460}
1461
1462/// visitSwitchCase - Emits the necessary code to represent a single node in
1463/// the binary search tree resulting from lowering a switch instruction.
1464void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
1465                                          MachineBasicBlock *SwitchBB) {
1466  SDValue Cond;
1467  SDValue CondLHS = getValue(CB.CmpLHS);
1468  DebugLoc dl = getCurDebugLoc();
1469
1470  // Build the setcc now.
1471  if (CB.CmpMHS == NULL) {
1472    // Fold "(X == true)" to X and "(X == false)" to !X to
1473    // handle common cases produced by branch lowering.
1474    if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
1475        CB.CC == ISD::SETEQ)
1476      Cond = CondLHS;
1477    else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
1478             CB.CC == ISD::SETEQ) {
1479      SDValue True = DAG.getConstant(1, CondLHS.getValueType());
1480      Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
1481    } else
1482      Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
1483  } else {
1484    assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
1485
1486    const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
1487    const APInt& High  = cast<ConstantInt>(CB.CmpRHS)->getValue();
1488
1489    SDValue CmpOp = getValue(CB.CmpMHS);
1490    EVT VT = CmpOp.getValueType();
1491
1492    if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
1493      Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, VT),
1494                          ISD::SETLE);
1495    } else {
1496      SDValue SUB = DAG.getNode(ISD::SUB, dl,
1497                                VT, CmpOp, DAG.getConstant(Low, VT));
1498      Cond = DAG.getSetCC(dl, MVT::i1, SUB,
1499                          DAG.getConstant(High-Low, VT), ISD::SETULE);
1500    }
1501  }
1502
1503  // Update successor info
1504  SwitchBB->addSuccessor(CB.TrueBB);
1505  SwitchBB->addSuccessor(CB.FalseBB);
1506
1507  // Set NextBlock to be the MBB immediately after the current one, if any.
1508  // This is used to avoid emitting unnecessary branches to the next block.
1509  MachineBasicBlock *NextBlock = 0;
1510  MachineFunction::iterator BBI = SwitchBB;
1511  if (++BBI != FuncInfo.MF->end())
1512    NextBlock = BBI;
1513
1514  // If the lhs block is the next block, invert the condition so that we can
1515  // fall through to the lhs instead of the rhs block.
1516  if (CB.TrueBB == NextBlock) {
1517    std::swap(CB.TrueBB, CB.FalseBB);
1518    SDValue True = DAG.getConstant(1, Cond.getValueType());
1519    Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
1520  }
1521
1522  SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
1523                               MVT::Other, getControlRoot(), Cond,
1524                               DAG.getBasicBlock(CB.TrueBB));
1525
1526  // Insert the false branch. Do this even if it's a fall through branch,
1527  // this makes it easier to do DAG optimizations which require inverting
1528  // the branch condition.
1529  BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
1530                       DAG.getBasicBlock(CB.FalseBB));
1531
1532  DAG.setRoot(BrCond);
1533}
1534
1535/// visitJumpTable - Emit JumpTable node in the current MBB
1536void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) {
1537  // Emit the code for the jump table
1538  assert(JT.Reg != -1U && "Should lower JT Header first!");
1539  EVT PTy = TLI.getPointerTy();
1540  SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(),
1541                                     JT.Reg, PTy);
1542  SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
1543  SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurDebugLoc(),
1544                                    MVT::Other, Index.getValue(1),
1545                                    Table, Index);
1546  DAG.setRoot(BrJumpTable);
1547}
1548
1549/// visitJumpTableHeader - This function emits necessary code to produce index
1550/// in the JumpTable from switch case.
1551void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT,
1552                                               JumpTableHeader &JTH,
1553                                               MachineBasicBlock *SwitchBB) {
1554  // Subtract the lowest switch case value from the value being switched on and
1555  // conditional branch to default mbb if the result is greater than the
1556  // difference between smallest and largest cases.
1557  SDValue SwitchOp = getValue(JTH.SValue);
1558  EVT VT = SwitchOp.getValueType();
1559  SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp,
1560                            DAG.getConstant(JTH.First, VT));
1561
1562  // The SDNode we just created, which holds the value being switched on minus
1563  // the smallest case value, needs to be copied to a virtual register so it
1564  // can be used as an index into the jump table in a subsequent basic block.
1565  // This value may be smaller or larger than the target's pointer type, and
1566  // therefore require extension or truncating.
1567  SwitchOp = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(), TLI.getPointerTy());
1568
1569  unsigned JumpTableReg = FuncInfo.CreateReg(TLI.getPointerTy());
1570  SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(),
1571                                    JumpTableReg, SwitchOp);
1572  JT.Reg = JumpTableReg;
1573
1574  // Emit the range check for the jump table, and branch to the default block
1575  // for the switch statement if the value being switched on exceeds the largest
1576  // case in the switch.
1577  SDValue CMP = DAG.getSetCC(getCurDebugLoc(),
1578                             TLI.getSetCCResultType(Sub.getValueType()), Sub,
1579                             DAG.getConstant(JTH.Last-JTH.First,VT),
1580                             ISD::SETUGT);
1581
1582  // Set NextBlock to be the MBB immediately after the current one, if any.
1583  // This is used to avoid emitting unnecessary branches to the next block.
1584  MachineBasicBlock *NextBlock = 0;
1585  MachineFunction::iterator BBI = SwitchBB;
1586
1587  if (++BBI != FuncInfo.MF->end())
1588    NextBlock = BBI;
1589
1590  SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1591                               MVT::Other, CopyTo, CMP,
1592                               DAG.getBasicBlock(JT.Default));
1593
1594  if (JT.MBB != NextBlock)
1595    BrCond = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrCond,
1596                         DAG.getBasicBlock(JT.MBB));
1597
1598  DAG.setRoot(BrCond);
1599}
1600
1601/// visitBitTestHeader - This function emits necessary code to produce value
1602/// suitable for "bit tests"
1603void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
1604                                             MachineBasicBlock *SwitchBB) {
1605  // Subtract the minimum value
1606  SDValue SwitchOp = getValue(B.SValue);
1607  EVT VT = SwitchOp.getValueType();
1608  SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp,
1609                            DAG.getConstant(B.First, VT));
1610
1611  // Check range
1612  SDValue RangeCmp = DAG.getSetCC(getCurDebugLoc(),
1613                                  TLI.getSetCCResultType(Sub.getValueType()),
1614                                  Sub, DAG.getConstant(B.Range, VT),
1615                                  ISD::SETUGT);
1616
1617  // Determine the type of the test operands.
1618  bool UsePtrType = false;
1619  if (!TLI.isTypeLegal(VT))
1620    UsePtrType = true;
1621  else {
1622    for (unsigned i = 0, e = B.Cases.size(); i != e; ++i)
1623      if ((uint64_t)((int64_t)B.Cases[i].Mask >> VT.getSizeInBits()) + 1 >= 2) {
1624        // Switch table case range are encoded into series of masks.
1625        // Just use pointer type, it's guaranteed to fit.
1626        UsePtrType = true;
1627        break;
1628      }
1629  }
1630  if (UsePtrType) {
1631    VT = TLI.getPointerTy();
1632    Sub = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(), VT);
1633  }
1634
1635  B.RegVT = VT;
1636  B.Reg = FuncInfo.CreateReg(VT);
1637  SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(),
1638                                    B.Reg, Sub);
1639
1640  // Set NextBlock to be the MBB immediately after the current one, if any.
1641  // This is used to avoid emitting unnecessary branches to the next block.
1642  MachineBasicBlock *NextBlock = 0;
1643  MachineFunction::iterator BBI = SwitchBB;
1644  if (++BBI != FuncInfo.MF->end())
1645    NextBlock = BBI;
1646
1647  MachineBasicBlock* MBB = B.Cases[0].ThisBB;
1648
1649  SwitchBB->addSuccessor(B.Default);
1650  SwitchBB->addSuccessor(MBB);
1651
1652  SDValue BrRange = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1653                                MVT::Other, CopyTo, RangeCmp,
1654                                DAG.getBasicBlock(B.Default));
1655
1656  if (MBB != NextBlock)
1657    BrRange = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, CopyTo,
1658                          DAG.getBasicBlock(MBB));
1659
1660  DAG.setRoot(BrRange);
1661}
1662
1663/// visitBitTestCase - this function produces one "bit test"
1664void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB,
1665                                           MachineBasicBlock* NextMBB,
1666                                           unsigned Reg,
1667                                           BitTestCase &B,
1668                                           MachineBasicBlock *SwitchBB) {
1669  EVT VT = BB.RegVT;
1670  SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(),
1671                                       Reg, VT);
1672  SDValue Cmp;
1673  if (CountPopulation_64(B.Mask) == 1) {
1674    // Testing for a single bit; just compare the shift count with what it
1675    // would need to be to shift a 1 bit in that position.
1676    Cmp = DAG.getSetCC(getCurDebugLoc(),
1677                       TLI.getSetCCResultType(VT),
1678                       ShiftOp,
1679                       DAG.getConstant(CountTrailingZeros_64(B.Mask), VT),
1680                       ISD::SETEQ);
1681  } else {
1682    // Make desired shift
1683    SDValue SwitchVal = DAG.getNode(ISD::SHL, getCurDebugLoc(), VT,
1684                                    DAG.getConstant(1, VT), ShiftOp);
1685
1686    // Emit bit tests and jumps
1687    SDValue AndOp = DAG.getNode(ISD::AND, getCurDebugLoc(),
1688                                VT, SwitchVal, DAG.getConstant(B.Mask, VT));
1689    Cmp = DAG.getSetCC(getCurDebugLoc(),
1690                       TLI.getSetCCResultType(VT),
1691                       AndOp, DAG.getConstant(0, VT),
1692                       ISD::SETNE);
1693  }
1694
1695  SwitchBB->addSuccessor(B.TargetBB);
1696  SwitchBB->addSuccessor(NextMBB);
1697
1698  SDValue BrAnd = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1699                              MVT::Other, getControlRoot(),
1700                              Cmp, DAG.getBasicBlock(B.TargetBB));
1701
1702  // Set NextBlock to be the MBB immediately after the current one, if any.
1703  // This is used to avoid emitting unnecessary branches to the next block.
1704  MachineBasicBlock *NextBlock = 0;
1705  MachineFunction::iterator BBI = SwitchBB;
1706  if (++BBI != FuncInfo.MF->end())
1707    NextBlock = BBI;
1708
1709  if (NextMBB != NextBlock)
1710    BrAnd = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrAnd,
1711                        DAG.getBasicBlock(NextMBB));
1712
1713  DAG.setRoot(BrAnd);
1714}
1715
1716void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
1717  MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
1718
1719  // Retrieve successors.
1720  MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
1721  MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)];
1722
1723  const Value *Callee(I.getCalledValue());
1724  if (isa<InlineAsm>(Callee))
1725    visitInlineAsm(&I);
1726  else
1727    LowerCallTo(&I, getValue(Callee), false, LandingPad);
1728
1729  // If the value of the invoke is used outside of its defining block, make it
1730  // available as a virtual register.
1731  CopyToExportRegsIfNeeded(&I);
1732
1733  // Update successor info
1734  InvokeMBB->addSuccessor(Return);
1735  InvokeMBB->addSuccessor(LandingPad);
1736
1737  // Drop into normal successor.
1738  DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
1739                          MVT::Other, getControlRoot(),
1740                          DAG.getBasicBlock(Return)));
1741}
1742
1743void SelectionDAGBuilder::visitUnwind(const UnwindInst &I) {
1744}
1745
1746/// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for
1747/// small case ranges).
1748bool SelectionDAGBuilder::handleSmallSwitchRange(CaseRec& CR,
1749                                                 CaseRecVector& WorkList,
1750                                                 const Value* SV,
1751                                                 MachineBasicBlock *Default,
1752                                                 MachineBasicBlock *SwitchBB) {
1753  Case& BackCase  = *(CR.Range.second-1);
1754
1755  // Size is the number of Cases represented by this range.
1756  size_t Size = CR.Range.second - CR.Range.first;
1757  if (Size > 3)
1758    return false;
1759
1760  // Get the MachineFunction which holds the current MBB.  This is used when
1761  // inserting any additional MBBs necessary to represent the switch.
1762  MachineFunction *CurMF = FuncInfo.MF;
1763
1764  // Figure out which block is immediately after the current one.
1765  MachineBasicBlock *NextBlock = 0;
1766  MachineFunction::iterator BBI = CR.CaseBB;
1767
1768  if (++BBI != FuncInfo.MF->end())
1769    NextBlock = BBI;
1770
1771  // If any two of the cases has the same destination, and if one value
1772  // is the same as the other, but has one bit unset that the other has set,
1773  // use bit manipulation to do two compares at once.  For example:
1774  // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
1775  // TODO: This could be extended to merge any 2 cases in switches with 3 cases.
1776  // TODO: Handle cases where CR.CaseBB != SwitchBB.
1777  if (Size == 2 && CR.CaseBB == SwitchBB) {
1778    Case &Small = *CR.Range.first;
1779    Case &Big = *(CR.Range.second-1);
1780
1781    if (Small.Low == Small.High && Big.Low == Big.High && Small.BB == Big.BB) {
1782      const APInt& SmallValue = cast<ConstantInt>(Small.Low)->getValue();
1783      const APInt& BigValue = cast<ConstantInt>(Big.Low)->getValue();
1784
1785      // Check that there is only one bit different.
1786      if (BigValue.countPopulation() == SmallValue.countPopulation() + 1 &&
1787          (SmallValue | BigValue) == BigValue) {
1788        // Isolate the common bit.
1789        APInt CommonBit = BigValue & ~SmallValue;
1790        assert((SmallValue | CommonBit) == BigValue &&
1791               CommonBit.countPopulation() == 1 && "Not a common bit?");
1792
1793        SDValue CondLHS = getValue(SV);
1794        EVT VT = CondLHS.getValueType();
1795        DebugLoc DL = getCurDebugLoc();
1796
1797        SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
1798                                 DAG.getConstant(CommonBit, VT));
1799        SDValue Cond = DAG.getSetCC(DL, MVT::i1,
1800                                    Or, DAG.getConstant(BigValue, VT),
1801                                    ISD::SETEQ);
1802
1803        // Update successor info.
1804        SwitchBB->addSuccessor(Small.BB);
1805        SwitchBB->addSuccessor(Default);
1806
1807        // Insert the true branch.
1808        SDValue BrCond = DAG.getNode(ISD::BRCOND, DL, MVT::Other,
1809                                     getControlRoot(), Cond,
1810                                     DAG.getBasicBlock(Small.BB));
1811
1812        // Insert the false branch.
1813        BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
1814                             DAG.getBasicBlock(Default));
1815
1816        DAG.setRoot(BrCond);
1817        return true;
1818      }
1819    }
1820  }
1821
1822  // Rearrange the case blocks so that the last one falls through if possible.
1823  if (NextBlock && Default != NextBlock && BackCase.BB != NextBlock) {
1824    // The last case block won't fall through into 'NextBlock' if we emit the
1825    // branches in this order.  See if rearranging a case value would help.
1826    for (CaseItr I = CR.Range.first, E = CR.Range.second-1; I != E; ++I) {
1827      if (I->BB == NextBlock) {
1828        std::swap(*I, BackCase);
1829        break;
1830      }
1831    }
1832  }
1833
1834  // Create a CaseBlock record representing a conditional branch to
1835  // the Case's target mbb if the value being switched on SV is equal
1836  // to C.
1837  MachineBasicBlock *CurBlock = CR.CaseBB;
1838  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) {
1839    MachineBasicBlock *FallThrough;
1840    if (I != E-1) {
1841      FallThrough = CurMF->CreateMachineBasicBlock(CurBlock->getBasicBlock());
1842      CurMF->insert(BBI, FallThrough);
1843
1844      // Put SV in a virtual register to make it available from the new blocks.
1845      ExportFromCurrentBlock(SV);
1846    } else {
1847      // If the last case doesn't match, go to the default block.
1848      FallThrough = Default;
1849    }
1850
1851    const Value *RHS, *LHS, *MHS;
1852    ISD::CondCode CC;
1853    if (I->High == I->Low) {
1854      // This is just small small case range :) containing exactly 1 case
1855      CC = ISD::SETEQ;
1856      LHS = SV; RHS = I->High; MHS = NULL;
1857    } else {
1858      CC = ISD::SETLE;
1859      LHS = I->Low; MHS = SV; RHS = I->High;
1860    }
1861    CaseBlock CB(CC, LHS, RHS, MHS, I->BB, FallThrough, CurBlock);
1862
1863    // If emitting the first comparison, just call visitSwitchCase to emit the
1864    // code into the current block.  Otherwise, push the CaseBlock onto the
1865    // vector to be later processed by SDISel, and insert the node's MBB
1866    // before the next MBB.
1867    if (CurBlock == SwitchBB)
1868      visitSwitchCase(CB, SwitchBB);
1869    else
1870      SwitchCases.push_back(CB);
1871
1872    CurBlock = FallThrough;
1873  }
1874
1875  return true;
1876}
1877
1878static inline bool areJTsAllowed(const TargetLowering &TLI) {
1879  return !DisableJumpTables &&
1880          (TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) ||
1881           TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other));
1882}
1883
1884static APInt ComputeRange(const APInt &First, const APInt &Last) {
1885  uint32_t BitWidth = std::max(Last.getBitWidth(), First.getBitWidth()) + 1;
1886  APInt LastExt = Last.sext(BitWidth), FirstExt = First.sext(BitWidth);
1887  return (LastExt - FirstExt + 1ULL);
1888}
1889
1890/// handleJTSwitchCase - Emit jumptable for current switch case range
1891bool SelectionDAGBuilder::handleJTSwitchCase(CaseRec& CR,
1892                                             CaseRecVector& WorkList,
1893                                             const Value* SV,
1894                                             MachineBasicBlock* Default,
1895                                             MachineBasicBlock *SwitchBB) {
1896  Case& FrontCase = *CR.Range.first;
1897  Case& BackCase  = *(CR.Range.second-1);
1898
1899  const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue();
1900  const APInt &Last  = cast<ConstantInt>(BackCase.High)->getValue();
1901
1902  APInt TSize(First.getBitWidth(), 0);
1903  for (CaseItr I = CR.Range.first, E = CR.Range.second;
1904       I!=E; ++I)
1905    TSize += I->size();
1906
1907  if (!areJTsAllowed(TLI) || TSize.ult(4))
1908    return false;
1909
1910  APInt Range = ComputeRange(First, Last);
1911  double Density = TSize.roundToDouble() / Range.roundToDouble();
1912  if (Density < 0.4)
1913    return false;
1914
1915  DEBUG(dbgs() << "Lowering jump table\n"
1916               << "First entry: " << First << ". Last entry: " << Last << '\n'
1917               << "Range: " << Range
1918               << "Size: " << TSize << ". Density: " << Density << "\n\n");
1919
1920  // Get the MachineFunction which holds the current MBB.  This is used when
1921  // inserting any additional MBBs necessary to represent the switch.
1922  MachineFunction *CurMF = FuncInfo.MF;
1923
1924  // Figure out which block is immediately after the current one.
1925  MachineFunction::iterator BBI = CR.CaseBB;
1926  ++BBI;
1927
1928  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
1929
1930  // Create a new basic block to hold the code for loading the address
1931  // of the jump table, and jumping to it.  Update successor information;
1932  // we will either branch to the default case for the switch, or the jump
1933  // table.
1934  MachineBasicBlock *JumpTableBB = CurMF->CreateMachineBasicBlock(LLVMBB);
1935  CurMF->insert(BBI, JumpTableBB);
1936  CR.CaseBB->addSuccessor(Default);
1937  CR.CaseBB->addSuccessor(JumpTableBB);
1938
1939  // Build a vector of destination BBs, corresponding to each target
1940  // of the jump table. If the value of the jump table slot corresponds to
1941  // a case statement, push the case's BB onto the vector, otherwise, push
1942  // the default BB.
1943  std::vector<MachineBasicBlock*> DestBBs;
1944  APInt TEI = First;
1945  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) {
1946    const APInt &Low = cast<ConstantInt>(I->Low)->getValue();
1947    const APInt &High = cast<ConstantInt>(I->High)->getValue();
1948
1949    if (Low.sle(TEI) && TEI.sle(High)) {
1950      DestBBs.push_back(I->BB);
1951      if (TEI==High)
1952        ++I;
1953    } else {
1954      DestBBs.push_back(Default);
1955    }
1956  }
1957
1958  // Update successor info. Add one edge to each unique successor.
1959  BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs());
1960  for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(),
1961         E = DestBBs.end(); I != E; ++I) {
1962    if (!SuccsHandled[(*I)->getNumber()]) {
1963      SuccsHandled[(*I)->getNumber()] = true;
1964      JumpTableBB->addSuccessor(*I);
1965    }
1966  }
1967
1968  // Create a jump table index for this jump table.
1969  unsigned JTEncoding = TLI.getJumpTableEncoding();
1970  unsigned JTI = CurMF->getOrCreateJumpTableInfo(JTEncoding)
1971                       ->createJumpTableIndex(DestBBs);
1972
1973  // Set the jump table information so that we can codegen it as a second
1974  // MachineBasicBlock
1975  JumpTable JT(-1U, JTI, JumpTableBB, Default);
1976  JumpTableHeader JTH(First, Last, SV, CR.CaseBB, (CR.CaseBB == SwitchBB));
1977  if (CR.CaseBB == SwitchBB)
1978    visitJumpTableHeader(JT, JTH, SwitchBB);
1979
1980  JTCases.push_back(JumpTableBlock(JTH, JT));
1981
1982  return true;
1983}
1984
1985/// handleBTSplitSwitchCase - emit comparison and split binary search tree into
1986/// 2 subtrees.
1987bool SelectionDAGBuilder::handleBTSplitSwitchCase(CaseRec& CR,
1988                                                  CaseRecVector& WorkList,
1989                                                  const Value* SV,
1990                                                  MachineBasicBlock *Default,
1991                                                  MachineBasicBlock *SwitchBB) {
1992  // Get the MachineFunction which holds the current MBB.  This is used when
1993  // inserting any additional MBBs necessary to represent the switch.
1994  MachineFunction *CurMF = FuncInfo.MF;
1995
1996  // Figure out which block is immediately after the current one.
1997  MachineFunction::iterator BBI = CR.CaseBB;
1998  ++BBI;
1999
2000  Case& FrontCase = *CR.Range.first;
2001  Case& BackCase  = *(CR.Range.second-1);
2002  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2003
2004  // Size is the number of Cases represented by this range.
2005  unsigned Size = CR.Range.second - CR.Range.first;
2006
2007  const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue();
2008  const APInt &Last  = cast<ConstantInt>(BackCase.High)->getValue();
2009  double FMetric = 0;
2010  CaseItr Pivot = CR.Range.first + Size/2;
2011
2012  // Select optimal pivot, maximizing sum density of LHS and RHS. This will
2013  // (heuristically) allow us to emit JumpTable's later.
2014  APInt TSize(First.getBitWidth(), 0);
2015  for (CaseItr I = CR.Range.first, E = CR.Range.second;
2016       I!=E; ++I)
2017    TSize += I->size();
2018
2019  APInt LSize = FrontCase.size();
2020  APInt RSize = TSize-LSize;
2021  DEBUG(dbgs() << "Selecting best pivot: \n"
2022               << "First: " << First << ", Last: " << Last <<'\n'
2023               << "LSize: " << LSize << ", RSize: " << RSize << '\n');
2024  for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second;
2025       J!=E; ++I, ++J) {
2026    const APInt &LEnd = cast<ConstantInt>(I->High)->getValue();
2027    const APInt &RBegin = cast<ConstantInt>(J->Low)->getValue();
2028    APInt Range = ComputeRange(LEnd, RBegin);
2029    assert((Range - 2ULL).isNonNegative() &&
2030           "Invalid case distance");
2031    double LDensity = (double)LSize.roundToDouble() /
2032                           (LEnd - First + 1ULL).roundToDouble();
2033    double RDensity = (double)RSize.roundToDouble() /
2034                           (Last - RBegin + 1ULL).roundToDouble();
2035    double Metric = Range.logBase2()*(LDensity+RDensity);
2036    // Should always split in some non-trivial place
2037    DEBUG(dbgs() <<"=>Step\n"
2038                 << "LEnd: " << LEnd << ", RBegin: " << RBegin << '\n'
2039                 << "LDensity: " << LDensity
2040                 << ", RDensity: " << RDensity << '\n'
2041                 << "Metric: " << Metric << '\n');
2042    if (FMetric < Metric) {
2043      Pivot = J;
2044      FMetric = Metric;
2045      DEBUG(dbgs() << "Current metric set to: " << FMetric << '\n');
2046    }
2047
2048    LSize += J->size();
2049    RSize -= J->size();
2050  }
2051  if (areJTsAllowed(TLI)) {
2052    // If our case is dense we *really* should handle it earlier!
2053    assert((FMetric > 0) && "Should handle dense range earlier!");
2054  } else {
2055    Pivot = CR.Range.first + Size/2;
2056  }
2057
2058  CaseRange LHSR(CR.Range.first, Pivot);
2059  CaseRange RHSR(Pivot, CR.Range.second);
2060  Constant *C = Pivot->Low;
2061  MachineBasicBlock *FalseBB = 0, *TrueBB = 0;
2062
2063  // We know that we branch to the LHS if the Value being switched on is
2064  // less than the Pivot value, C.  We use this to optimize our binary
2065  // tree a bit, by recognizing that if SV is greater than or equal to the
2066  // LHS's Case Value, and that Case Value is exactly one less than the
2067  // Pivot's Value, then we can branch directly to the LHS's Target,
2068  // rather than creating a leaf node for it.
2069  if ((LHSR.second - LHSR.first) == 1 &&
2070      LHSR.first->High == CR.GE &&
2071      cast<ConstantInt>(C)->getValue() ==
2072      (cast<ConstantInt>(CR.GE)->getValue() + 1LL)) {
2073    TrueBB = LHSR.first->BB;
2074  } else {
2075    TrueBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2076    CurMF->insert(BBI, TrueBB);
2077    WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR));
2078
2079    // Put SV in a virtual register to make it available from the new blocks.
2080    ExportFromCurrentBlock(SV);
2081  }
2082
2083  // Similar to the optimization above, if the Value being switched on is
2084  // known to be less than the Constant CR.LT, and the current Case Value
2085  // is CR.LT - 1, then we can branch directly to the target block for
2086  // the current Case Value, rather than emitting a RHS leaf node for it.
2087  if ((RHSR.second - RHSR.first) == 1 && CR.LT &&
2088      cast<ConstantInt>(RHSR.first->Low)->getValue() ==
2089      (cast<ConstantInt>(CR.LT)->getValue() - 1LL)) {
2090    FalseBB = RHSR.first->BB;
2091  } else {
2092    FalseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2093    CurMF->insert(BBI, FalseBB);
2094    WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR));
2095
2096    // Put SV in a virtual register to make it available from the new blocks.
2097    ExportFromCurrentBlock(SV);
2098  }
2099
2100  // Create a CaseBlock record representing a conditional branch to
2101  // the LHS node if the value being switched on SV is less than C.
2102  // Otherwise, branch to LHS.
2103  CaseBlock CB(ISD::SETLT, SV, C, NULL, TrueBB, FalseBB, CR.CaseBB);
2104
2105  if (CR.CaseBB == SwitchBB)
2106    visitSwitchCase(CB, SwitchBB);
2107  else
2108    SwitchCases.push_back(CB);
2109
2110  return true;
2111}
2112
2113/// handleBitTestsSwitchCase - if current case range has few destination and
2114/// range span less, than machine word bitwidth, encode case range into series
2115/// of masks and emit bit tests with these masks.
2116bool SelectionDAGBuilder::handleBitTestsSwitchCase(CaseRec& CR,
2117                                                   CaseRecVector& WorkList,
2118                                                   const Value* SV,
2119                                                   MachineBasicBlock* Default,
2120                                                   MachineBasicBlock *SwitchBB){
2121  EVT PTy = TLI.getPointerTy();
2122  unsigned IntPtrBits = PTy.getSizeInBits();
2123
2124  Case& FrontCase = *CR.Range.first;
2125  Case& BackCase  = *(CR.Range.second-1);
2126
2127  // Get the MachineFunction which holds the current MBB.  This is used when
2128  // inserting any additional MBBs necessary to represent the switch.
2129  MachineFunction *CurMF = FuncInfo.MF;
2130
2131  // If target does not have legal shift left, do not emit bit tests at all.
2132  if (!TLI.isOperationLegal(ISD::SHL, TLI.getPointerTy()))
2133    return false;
2134
2135  size_t numCmps = 0;
2136  for (CaseItr I = CR.Range.first, E = CR.Range.second;
2137       I!=E; ++I) {
2138    // Single case counts one, case range - two.
2139    numCmps += (I->Low == I->High ? 1 : 2);
2140  }
2141
2142  // Count unique destinations
2143  SmallSet<MachineBasicBlock*, 4> Dests;
2144  for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
2145    Dests.insert(I->BB);
2146    if (Dests.size() > 3)
2147      // Don't bother the code below, if there are too much unique destinations
2148      return false;
2149  }
2150  DEBUG(dbgs() << "Total number of unique destinations: "
2151        << Dests.size() << '\n'
2152        << "Total number of comparisons: " << numCmps << '\n');
2153
2154  // Compute span of values.
2155  const APInt& minValue = cast<ConstantInt>(FrontCase.Low)->getValue();
2156  const APInt& maxValue = cast<ConstantInt>(BackCase.High)->getValue();
2157  APInt cmpRange = maxValue - minValue;
2158
2159  DEBUG(dbgs() << "Compare range: " << cmpRange << '\n'
2160               << "Low bound: " << minValue << '\n'
2161               << "High bound: " << maxValue << '\n');
2162
2163  if (cmpRange.uge(IntPtrBits) ||
2164      (!(Dests.size() == 1 && numCmps >= 3) &&
2165       !(Dests.size() == 2 && numCmps >= 5) &&
2166       !(Dests.size() >= 3 && numCmps >= 6)))
2167    return false;
2168
2169  DEBUG(dbgs() << "Emitting bit tests\n");
2170  APInt lowBound = APInt::getNullValue(cmpRange.getBitWidth());
2171
2172  // Optimize the case where all the case values fit in a
2173  // word without having to subtract minValue. In this case,
2174  // we can optimize away the subtraction.
2175  if (minValue.isNonNegative() && maxValue.slt(IntPtrBits)) {
2176    cmpRange = maxValue;
2177  } else {
2178    lowBound = minValue;
2179  }
2180
2181  CaseBitsVector CasesBits;
2182  unsigned i, count = 0;
2183
2184  for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
2185    MachineBasicBlock* Dest = I->BB;
2186    for (i = 0; i < count; ++i)
2187      if (Dest == CasesBits[i].BB)
2188        break;
2189
2190    if (i == count) {
2191      assert((count < 3) && "Too much destinations to test!");
2192      CasesBits.push_back(CaseBits(0, Dest, 0));
2193      count++;
2194    }
2195
2196    const APInt& lowValue = cast<ConstantInt>(I->Low)->getValue();
2197    const APInt& highValue = cast<ConstantInt>(I->High)->getValue();
2198
2199    uint64_t lo = (lowValue - lowBound).getZExtValue();
2200    uint64_t hi = (highValue - lowBound).getZExtValue();
2201
2202    for (uint64_t j = lo; j <= hi; j++) {
2203      CasesBits[i].Mask |=  1ULL << j;
2204      CasesBits[i].Bits++;
2205    }
2206
2207  }
2208  std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp());
2209
2210  BitTestInfo BTC;
2211
2212  // Figure out which block is immediately after the current one.
2213  MachineFunction::iterator BBI = CR.CaseBB;
2214  ++BBI;
2215
2216  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2217
2218  DEBUG(dbgs() << "Cases:\n");
2219  for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) {
2220    DEBUG(dbgs() << "Mask: " << CasesBits[i].Mask
2221                 << ", Bits: " << CasesBits[i].Bits
2222                 << ", BB: " << CasesBits[i].BB << '\n');
2223
2224    MachineBasicBlock *CaseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2225    CurMF->insert(BBI, CaseBB);
2226    BTC.push_back(BitTestCase(CasesBits[i].Mask,
2227                              CaseBB,
2228                              CasesBits[i].BB));
2229
2230    // Put SV in a virtual register to make it available from the new blocks.
2231    ExportFromCurrentBlock(SV);
2232  }
2233
2234  BitTestBlock BTB(lowBound, cmpRange, SV,
2235                   -1U, MVT::Other, (CR.CaseBB == SwitchBB),
2236                   CR.CaseBB, Default, BTC);
2237
2238  if (CR.CaseBB == SwitchBB)
2239    visitBitTestHeader(BTB, SwitchBB);
2240
2241  BitTestCases.push_back(BTB);
2242
2243  return true;
2244}
2245
2246/// Clusterify - Transform simple list of Cases into list of CaseRange's
2247size_t SelectionDAGBuilder::Clusterify(CaseVector& Cases,
2248                                       const SwitchInst& SI) {
2249  size_t numCmps = 0;
2250
2251  // Start with "simple" cases
2252  for (size_t i = 1; i < SI.getNumSuccessors(); ++i) {
2253    MachineBasicBlock *SMBB = FuncInfo.MBBMap[SI.getSuccessor(i)];
2254    Cases.push_back(Case(SI.getSuccessorValue(i),
2255                         SI.getSuccessorValue(i),
2256                         SMBB));
2257  }
2258  std::sort(Cases.begin(), Cases.end(), CaseCmp());
2259
2260  // Merge case into clusters
2261  if (Cases.size() >= 2)
2262    // Must recompute end() each iteration because it may be
2263    // invalidated by erase if we hold on to it
2264    for (CaseItr I = Cases.begin(), J = llvm::next(Cases.begin());
2265         J != Cases.end(); ) {
2266      const APInt& nextValue = cast<ConstantInt>(J->Low)->getValue();
2267      const APInt& currentValue = cast<ConstantInt>(I->High)->getValue();
2268      MachineBasicBlock* nextBB = J->BB;
2269      MachineBasicBlock* currentBB = I->BB;
2270
2271      // If the two neighboring cases go to the same destination, merge them
2272      // into a single case.
2273      if ((nextValue - currentValue == 1) && (currentBB == nextBB)) {
2274        I->High = J->High;
2275        J = Cases.erase(J);
2276      } else {
2277        I = J++;
2278      }
2279    }
2280
2281  for (CaseItr I=Cases.begin(), E=Cases.end(); I!=E; ++I, ++numCmps) {
2282    if (I->Low != I->High)
2283      // A range counts double, since it requires two compares.
2284      ++numCmps;
2285  }
2286
2287  return numCmps;
2288}
2289
2290void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
2291                                           MachineBasicBlock *Last) {
2292  // Update JTCases.
2293  for (unsigned i = 0, e = JTCases.size(); i != e; ++i)
2294    if (JTCases[i].first.HeaderBB == First)
2295      JTCases[i].first.HeaderBB = Last;
2296
2297  // Update BitTestCases.
2298  for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i)
2299    if (BitTestCases[i].Parent == First)
2300      BitTestCases[i].Parent = Last;
2301}
2302
2303void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
2304  MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
2305
2306  // Figure out which block is immediately after the current one.
2307  MachineBasicBlock *NextBlock = 0;
2308  MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()];
2309
2310  // If there is only the default destination, branch to it if it is not the
2311  // next basic block.  Otherwise, just fall through.
2312  if (SI.getNumOperands() == 2) {
2313    // Update machine-CFG edges.
2314
2315    // If this is not a fall-through branch, emit the branch.
2316    SwitchMBB->addSuccessor(Default);
2317    if (Default != NextBlock)
2318      DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
2319                              MVT::Other, getControlRoot(),
2320                              DAG.getBasicBlock(Default)));
2321
2322    return;
2323  }
2324
2325  // If there are any non-default case statements, create a vector of Cases
2326  // representing each one, and sort the vector so that we can efficiently
2327  // create a binary search tree from them.
2328  CaseVector Cases;
2329  size_t numCmps = Clusterify(Cases, SI);
2330  DEBUG(dbgs() << "Clusterify finished. Total clusters: " << Cases.size()
2331               << ". Total compares: " << numCmps << '\n');
2332  numCmps = 0;
2333
2334  // Get the Value to be switched on and default basic blocks, which will be
2335  // inserted into CaseBlock records, representing basic blocks in the binary
2336  // search tree.
2337  const Value *SV = SI.getOperand(0);
2338
2339  // Push the initial CaseRec onto the worklist
2340  CaseRecVector WorkList;
2341  WorkList.push_back(CaseRec(SwitchMBB,0,0,
2342                             CaseRange(Cases.begin(),Cases.end())));
2343
2344  while (!WorkList.empty()) {
2345    // Grab a record representing a case range to process off the worklist
2346    CaseRec CR = WorkList.back();
2347    WorkList.pop_back();
2348
2349    if (handleBitTestsSwitchCase(CR, WorkList, SV, Default, SwitchMBB))
2350      continue;
2351
2352    // If the range has few cases (two or less) emit a series of specific
2353    // tests.
2354    if (handleSmallSwitchRange(CR, WorkList, SV, Default, SwitchMBB))
2355      continue;
2356
2357    // If the switch has more than 5 blocks, and at least 40% dense, and the
2358    // target supports indirect branches, then emit a jump table rather than
2359    // lowering the switch to a binary tree of conditional branches.
2360    if (handleJTSwitchCase(CR, WorkList, SV, Default, SwitchMBB))
2361      continue;
2362
2363    // Emit binary tree. We need to pick a pivot, and push left and right ranges
2364    // onto the worklist. Leafs are handled via handleSmallSwitchRange() call.
2365    handleBTSplitSwitchCase(CR, WorkList, SV, Default, SwitchMBB);
2366  }
2367}
2368
2369void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
2370  MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
2371
2372  // Update machine-CFG edges with unique successors.
2373  SmallVector<BasicBlock*, 32> succs;
2374  succs.reserve(I.getNumSuccessors());
2375  for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i)
2376    succs.push_back(I.getSuccessor(i));
2377  array_pod_sort(succs.begin(), succs.end());
2378  succs.erase(std::unique(succs.begin(), succs.end()), succs.end());
2379  for (unsigned i = 0, e = succs.size(); i != e; ++i)
2380    IndirectBrMBB->addSuccessor(FuncInfo.MBBMap[succs[i]]);
2381
2382  DAG.setRoot(DAG.getNode(ISD::BRIND, getCurDebugLoc(),
2383                          MVT::Other, getControlRoot(),
2384                          getValue(I.getAddress())));
2385}
2386
2387void SelectionDAGBuilder::visitFSub(const User &I) {
2388  // -0.0 - X --> fneg
2389  const Type *Ty = I.getType();
2390  if (Ty->isVectorTy()) {
2391    if (ConstantVector *CV = dyn_cast<ConstantVector>(I.getOperand(0))) {
2392      const VectorType *DestTy = cast<VectorType>(I.getType());
2393      const Type *ElTy = DestTy->getElementType();
2394      unsigned VL = DestTy->getNumElements();
2395      std::vector<Constant*> NZ(VL, ConstantFP::getNegativeZero(ElTy));
2396      Constant *CNZ = ConstantVector::get(&NZ[0], NZ.size());
2397      if (CV == CNZ) {
2398        SDValue Op2 = getValue(I.getOperand(1));
2399        setValue(&I, DAG.getNode(ISD::FNEG, getCurDebugLoc(),
2400                                 Op2.getValueType(), Op2));
2401        return;
2402      }
2403    }
2404  }
2405
2406  if (ConstantFP *CFP = dyn_cast<ConstantFP>(I.getOperand(0)))
2407    if (CFP->isExactlyValue(ConstantFP::getNegativeZero(Ty)->getValueAPF())) {
2408      SDValue Op2 = getValue(I.getOperand(1));
2409      setValue(&I, DAG.getNode(ISD::FNEG, getCurDebugLoc(),
2410                               Op2.getValueType(), Op2));
2411      return;
2412    }
2413
2414  visitBinary(I, ISD::FSUB);
2415}
2416
2417void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) {
2418  SDValue Op1 = getValue(I.getOperand(0));
2419  SDValue Op2 = getValue(I.getOperand(1));
2420  setValue(&I, DAG.getNode(OpCode, getCurDebugLoc(),
2421                           Op1.getValueType(), Op1, Op2));
2422}
2423
2424void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
2425  SDValue Op1 = getValue(I.getOperand(0));
2426  SDValue Op2 = getValue(I.getOperand(1));
2427  if (!I.getType()->isVectorTy() &&
2428      Op2.getValueType() != TLI.getShiftAmountTy()) {
2429    // If the operand is smaller than the shift count type, promote it.
2430    EVT PTy = TLI.getPointerTy();
2431    EVT STy = TLI.getShiftAmountTy();
2432    if (STy.bitsGT(Op2.getValueType()))
2433      Op2 = DAG.getNode(ISD::ANY_EXTEND, getCurDebugLoc(),
2434                        TLI.getShiftAmountTy(), Op2);
2435    // If the operand is larger than the shift count type but the shift
2436    // count type has enough bits to represent any shift value, truncate
2437    // it now. This is a common case and it exposes the truncate to
2438    // optimization early.
2439    else if (STy.getSizeInBits() >=
2440             Log2_32_Ceil(Op2.getValueType().getSizeInBits()))
2441      Op2 = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(),
2442                        TLI.getShiftAmountTy(), Op2);
2443    // Otherwise we'll need to temporarily settle for some other
2444    // convenient type; type legalization will make adjustments as
2445    // needed.
2446    else if (PTy.bitsLT(Op2.getValueType()))
2447      Op2 = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(),
2448                        TLI.getPointerTy(), Op2);
2449    else if (PTy.bitsGT(Op2.getValueType()))
2450      Op2 = DAG.getNode(ISD::ANY_EXTEND, getCurDebugLoc(),
2451                        TLI.getPointerTy(), Op2);
2452  }
2453
2454  setValue(&I, DAG.getNode(Opcode, getCurDebugLoc(),
2455                           Op1.getValueType(), Op1, Op2));
2456}
2457
2458void SelectionDAGBuilder::visitICmp(const User &I) {
2459  ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
2460  if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
2461    predicate = IC->getPredicate();
2462  else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
2463    predicate = ICmpInst::Predicate(IC->getPredicate());
2464  SDValue Op1 = getValue(I.getOperand(0));
2465  SDValue Op2 = getValue(I.getOperand(1));
2466  ISD::CondCode Opcode = getICmpCondCode(predicate);
2467
2468  EVT DestVT = TLI.getValueType(I.getType());
2469  setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Opcode));
2470}
2471
2472void SelectionDAGBuilder::visitFCmp(const User &I) {
2473  FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
2474  if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
2475    predicate = FC->getPredicate();
2476  else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
2477    predicate = FCmpInst::Predicate(FC->getPredicate());
2478  SDValue Op1 = getValue(I.getOperand(0));
2479  SDValue Op2 = getValue(I.getOperand(1));
2480  ISD::CondCode Condition = getFCmpCondCode(predicate);
2481  EVT DestVT = TLI.getValueType(I.getType());
2482  setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Condition));
2483}
2484
2485void SelectionDAGBuilder::visitSelect(const User &I) {
2486  SmallVector<EVT, 4> ValueVTs;
2487  ComputeValueVTs(TLI, I.getType(), ValueVTs);
2488  unsigned NumValues = ValueVTs.size();
2489  if (NumValues == 0) return;
2490
2491  SmallVector<SDValue, 4> Values(NumValues);
2492  SDValue Cond     = getValue(I.getOperand(0));
2493  SDValue TrueVal  = getValue(I.getOperand(1));
2494  SDValue FalseVal = getValue(I.getOperand(2));
2495
2496  for (unsigned i = 0; i != NumValues; ++i)
2497    Values[i] = DAG.getNode(ISD::SELECT, getCurDebugLoc(),
2498                          TrueVal.getNode()->getValueType(TrueVal.getResNo()+i),
2499                            Cond,
2500                            SDValue(TrueVal.getNode(),
2501                                    TrueVal.getResNo() + i),
2502                            SDValue(FalseVal.getNode(),
2503                                    FalseVal.getResNo() + i));
2504
2505  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
2506                           DAG.getVTList(&ValueVTs[0], NumValues),
2507                           &Values[0], NumValues));
2508}
2509
2510void SelectionDAGBuilder::visitTrunc(const User &I) {
2511  // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
2512  SDValue N = getValue(I.getOperand(0));
2513  EVT DestVT = TLI.getValueType(I.getType());
2514  setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), DestVT, N));
2515}
2516
2517void SelectionDAGBuilder::visitZExt(const User &I) {
2518  // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2519  // ZExt also can't be a cast to bool for same reason. So, nothing much to do
2520  SDValue N = getValue(I.getOperand(0));
2521  EVT DestVT = TLI.getValueType(I.getType());
2522  setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), DestVT, N));
2523}
2524
2525void SelectionDAGBuilder::visitSExt(const User &I) {
2526  // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2527  // SExt also can't be a cast to bool for same reason. So, nothing much to do
2528  SDValue N = getValue(I.getOperand(0));
2529  EVT DestVT = TLI.getValueType(I.getType());
2530  setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurDebugLoc(), DestVT, N));
2531}
2532
2533void SelectionDAGBuilder::visitFPTrunc(const User &I) {
2534  // FPTrunc is never a no-op cast, no need to check
2535  SDValue N = getValue(I.getOperand(0));
2536  EVT DestVT = TLI.getValueType(I.getType());
2537  setValue(&I, DAG.getNode(ISD::FP_ROUND, getCurDebugLoc(),
2538                           DestVT, N, DAG.getIntPtrConstant(0)));
2539}
2540
2541void SelectionDAGBuilder::visitFPExt(const User &I){
2542  // FPTrunc is never a no-op cast, no need to check
2543  SDValue N = getValue(I.getOperand(0));
2544  EVT DestVT = TLI.getValueType(I.getType());
2545  setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurDebugLoc(), DestVT, N));
2546}
2547
2548void SelectionDAGBuilder::visitFPToUI(const User &I) {
2549  // FPToUI is never a no-op cast, no need to check
2550  SDValue N = getValue(I.getOperand(0));
2551  EVT DestVT = TLI.getValueType(I.getType());
2552  setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurDebugLoc(), DestVT, N));
2553}
2554
2555void SelectionDAGBuilder::visitFPToSI(const User &I) {
2556  // FPToSI is never a no-op cast, no need to check
2557  SDValue N = getValue(I.getOperand(0));
2558  EVT DestVT = TLI.getValueType(I.getType());
2559  setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurDebugLoc(), DestVT, N));
2560}
2561
2562void SelectionDAGBuilder::visitUIToFP(const User &I) {
2563  // UIToFP is never a no-op cast, no need to check
2564  SDValue N = getValue(I.getOperand(0));
2565  EVT DestVT = TLI.getValueType(I.getType());
2566  setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurDebugLoc(), DestVT, N));
2567}
2568
2569void SelectionDAGBuilder::visitSIToFP(const User &I){
2570  // SIToFP is never a no-op cast, no need to check
2571  SDValue N = getValue(I.getOperand(0));
2572  EVT DestVT = TLI.getValueType(I.getType());
2573  setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurDebugLoc(), DestVT, N));
2574}
2575
2576void SelectionDAGBuilder::visitPtrToInt(const User &I) {
2577  // What to do depends on the size of the integer and the size of the pointer.
2578  // We can either truncate, zero extend, or no-op, accordingly.
2579  SDValue N = getValue(I.getOperand(0));
2580  EVT DestVT = TLI.getValueType(I.getType());
2581  setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT));
2582}
2583
2584void SelectionDAGBuilder::visitIntToPtr(const User &I) {
2585  // What to do depends on the size of the integer and the size of the pointer.
2586  // We can either truncate, zero extend, or no-op, accordingly.
2587  SDValue N = getValue(I.getOperand(0));
2588  EVT DestVT = TLI.getValueType(I.getType());
2589  setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT));
2590}
2591
2592void SelectionDAGBuilder::visitBitCast(const User &I) {
2593  SDValue N = getValue(I.getOperand(0));
2594  EVT DestVT = TLI.getValueType(I.getType());
2595
2596  // BitCast assures us that source and destination are the same size so this is
2597  // either a BITCAST or a no-op.
2598  if (DestVT != N.getValueType())
2599    setValue(&I, DAG.getNode(ISD::BITCAST, getCurDebugLoc(),
2600                             DestVT, N)); // convert types.
2601  else
2602    setValue(&I, N);            // noop cast.
2603}
2604
2605void SelectionDAGBuilder::visitInsertElement(const User &I) {
2606  SDValue InVec = getValue(I.getOperand(0));
2607  SDValue InVal = getValue(I.getOperand(1));
2608  SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(),
2609                              TLI.getPointerTy(),
2610                              getValue(I.getOperand(2)));
2611  setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurDebugLoc(),
2612                           TLI.getValueType(I.getType()),
2613                           InVec, InVal, InIdx));
2614}
2615
2616void SelectionDAGBuilder::visitExtractElement(const User &I) {
2617  SDValue InVec = getValue(I.getOperand(0));
2618  SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(),
2619                              TLI.getPointerTy(),
2620                              getValue(I.getOperand(1)));
2621  setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
2622                           TLI.getValueType(I.getType()), InVec, InIdx));
2623}
2624
2625// Utility for visitShuffleVector - Returns true if the mask is mask starting
2626// from SIndx and increasing to the element length (undefs are allowed).
2627static bool SequentialMask(SmallVectorImpl<int> &Mask, unsigned SIndx) {
2628  unsigned MaskNumElts = Mask.size();
2629  for (unsigned i = 0; i != MaskNumElts; ++i)
2630    if ((Mask[i] >= 0) && (Mask[i] != (int)(i + SIndx)))
2631      return false;
2632  return true;
2633}
2634
2635void SelectionDAGBuilder::visitShuffleVector(const User &I) {
2636  SmallVector<int, 8> Mask;
2637  SDValue Src1 = getValue(I.getOperand(0));
2638  SDValue Src2 = getValue(I.getOperand(1));
2639
2640  // Convert the ConstantVector mask operand into an array of ints, with -1
2641  // representing undef values.
2642  SmallVector<Constant*, 8> MaskElts;
2643  cast<Constant>(I.getOperand(2))->getVectorElements(MaskElts);
2644  unsigned MaskNumElts = MaskElts.size();
2645  for (unsigned i = 0; i != MaskNumElts; ++i) {
2646    if (isa<UndefValue>(MaskElts[i]))
2647      Mask.push_back(-1);
2648    else
2649      Mask.push_back(cast<ConstantInt>(MaskElts[i])->getSExtValue());
2650  }
2651
2652  EVT VT = TLI.getValueType(I.getType());
2653  EVT SrcVT = Src1.getValueType();
2654  unsigned SrcNumElts = SrcVT.getVectorNumElements();
2655
2656  if (SrcNumElts == MaskNumElts) {
2657    setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2658                                      &Mask[0]));
2659    return;
2660  }
2661
2662  // Normalize the shuffle vector since mask and vector length don't match.
2663  if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) {
2664    // Mask is longer than the source vectors and is a multiple of the source
2665    // vectors.  We can use concatenate vector to make the mask and vectors
2666    // lengths match.
2667    if (SrcNumElts*2 == MaskNumElts && SequentialMask(Mask, 0)) {
2668      // The shuffle is concatenating two vectors together.
2669      setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurDebugLoc(),
2670                               VT, Src1, Src2));
2671      return;
2672    }
2673
2674    // Pad both vectors with undefs to make them the same length as the mask.
2675    unsigned NumConcat = MaskNumElts / SrcNumElts;
2676    bool Src1U = Src1.getOpcode() == ISD::UNDEF;
2677    bool Src2U = Src2.getOpcode() == ISD::UNDEF;
2678    SDValue UndefVal = DAG.getUNDEF(SrcVT);
2679
2680    SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
2681    SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
2682    MOps1[0] = Src1;
2683    MOps2[0] = Src2;
2684
2685    Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
2686                                                  getCurDebugLoc(), VT,
2687                                                  &MOps1[0], NumConcat);
2688    Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
2689                                                  getCurDebugLoc(), VT,
2690                                                  &MOps2[0], NumConcat);
2691
2692    // Readjust mask for new input vector length.
2693    SmallVector<int, 8> MappedOps;
2694    for (unsigned i = 0; i != MaskNumElts; ++i) {
2695      int Idx = Mask[i];
2696      if (Idx < (int)SrcNumElts)
2697        MappedOps.push_back(Idx);
2698      else
2699        MappedOps.push_back(Idx + MaskNumElts - SrcNumElts);
2700    }
2701
2702    setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2703                                      &MappedOps[0]));
2704    return;
2705  }
2706
2707  if (SrcNumElts > MaskNumElts) {
2708    // Analyze the access pattern of the vector to see if we can extract
2709    // two subvectors and do the shuffle. The analysis is done by calculating
2710    // the range of elements the mask access on both vectors.
2711    int MinRange[2] = { SrcNumElts+1, SrcNumElts+1};
2712    int MaxRange[2] = {-1, -1};
2713
2714    for (unsigned i = 0; i != MaskNumElts; ++i) {
2715      int Idx = Mask[i];
2716      int Input = 0;
2717      if (Idx < 0)
2718        continue;
2719
2720      if (Idx >= (int)SrcNumElts) {
2721        Input = 1;
2722        Idx -= SrcNumElts;
2723      }
2724      if (Idx > MaxRange[Input])
2725        MaxRange[Input] = Idx;
2726      if (Idx < MinRange[Input])
2727        MinRange[Input] = Idx;
2728    }
2729
2730    // Check if the access is smaller than the vector size and can we find
2731    // a reasonable extract index.
2732    int RangeUse[2] = { 2, 2 };  // 0 = Unused, 1 = Extract, 2 = Can not
2733                                 // Extract.
2734    int StartIdx[2];  // StartIdx to extract from
2735    for (int Input=0; Input < 2; ++Input) {
2736      if (MinRange[Input] == (int)(SrcNumElts+1) && MaxRange[Input] == -1) {
2737        RangeUse[Input] = 0; // Unused
2738        StartIdx[Input] = 0;
2739      } else if (MaxRange[Input] - MinRange[Input] < (int)MaskNumElts) {
2740        // Fits within range but we should see if we can find a good
2741        // start index that is a multiple of the mask length.
2742        if (MaxRange[Input] < (int)MaskNumElts) {
2743          RangeUse[Input] = 1; // Extract from beginning of the vector
2744          StartIdx[Input] = 0;
2745        } else {
2746          StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts;
2747          if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts &&
2748              StartIdx[Input] + MaskNumElts <= SrcNumElts)
2749            RangeUse[Input] = 1; // Extract from a multiple of the mask length.
2750        }
2751      }
2752    }
2753
2754    if (RangeUse[0] == 0 && RangeUse[1] == 0) {
2755      setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
2756      return;
2757    }
2758    else if (RangeUse[0] < 2 && RangeUse[1] < 2) {
2759      // Extract appropriate subvector and generate a vector shuffle
2760      for (int Input=0; Input < 2; ++Input) {
2761        SDValue &Src = Input == 0 ? Src1 : Src2;
2762        if (RangeUse[Input] == 0)
2763          Src = DAG.getUNDEF(VT);
2764        else
2765          Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, getCurDebugLoc(), VT,
2766                            Src, DAG.getIntPtrConstant(StartIdx[Input]));
2767      }
2768
2769      // Calculate new mask.
2770      SmallVector<int, 8> MappedOps;
2771      for (unsigned i = 0; i != MaskNumElts; ++i) {
2772        int Idx = Mask[i];
2773        if (Idx < 0)
2774          MappedOps.push_back(Idx);
2775        else if (Idx < (int)SrcNumElts)
2776          MappedOps.push_back(Idx - StartIdx[0]);
2777        else
2778          MappedOps.push_back(Idx - SrcNumElts - StartIdx[1] + MaskNumElts);
2779      }
2780
2781      setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2782                                        &MappedOps[0]));
2783      return;
2784    }
2785  }
2786
2787  // We can't use either concat vectors or extract subvectors so fall back to
2788  // replacing the shuffle with extract and build vector.
2789  // to insert and build vector.
2790  EVT EltVT = VT.getVectorElementType();
2791  EVT PtrVT = TLI.getPointerTy();
2792  SmallVector<SDValue,8> Ops;
2793  for (unsigned i = 0; i != MaskNumElts; ++i) {
2794    if (Mask[i] < 0) {
2795      Ops.push_back(DAG.getUNDEF(EltVT));
2796    } else {
2797      int Idx = Mask[i];
2798      SDValue Res;
2799
2800      if (Idx < (int)SrcNumElts)
2801        Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
2802                          EltVT, Src1, DAG.getConstant(Idx, PtrVT));
2803      else
2804        Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
2805                          EltVT, Src2,
2806                          DAG.getConstant(Idx - SrcNumElts, PtrVT));
2807
2808      Ops.push_back(Res);
2809    }
2810  }
2811
2812  setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(),
2813                           VT, &Ops[0], Ops.size()));
2814}
2815
2816void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) {
2817  const Value *Op0 = I.getOperand(0);
2818  const Value *Op1 = I.getOperand(1);
2819  const Type *AggTy = I.getType();
2820  const Type *ValTy = Op1->getType();
2821  bool IntoUndef = isa<UndefValue>(Op0);
2822  bool FromUndef = isa<UndefValue>(Op1);
2823
2824  unsigned LinearIndex = ComputeLinearIndex(AggTy, I.idx_begin(), I.idx_end());
2825
2826  SmallVector<EVT, 4> AggValueVTs;
2827  ComputeValueVTs(TLI, AggTy, AggValueVTs);
2828  SmallVector<EVT, 4> ValValueVTs;
2829  ComputeValueVTs(TLI, ValTy, ValValueVTs);
2830
2831  unsigned NumAggValues = AggValueVTs.size();
2832  unsigned NumValValues = ValValueVTs.size();
2833  SmallVector<SDValue, 4> Values(NumAggValues);
2834
2835  SDValue Agg = getValue(Op0);
2836  SDValue Val = getValue(Op1);
2837  unsigned i = 0;
2838  // Copy the beginning value(s) from the original aggregate.
2839  for (; i != LinearIndex; ++i)
2840    Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
2841                SDValue(Agg.getNode(), Agg.getResNo() + i);
2842  // Copy values from the inserted value(s).
2843  for (; i != LinearIndex + NumValValues; ++i)
2844    Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
2845                SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
2846  // Copy remaining value(s) from the original aggregate.
2847  for (; i != NumAggValues; ++i)
2848    Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
2849                SDValue(Agg.getNode(), Agg.getResNo() + i);
2850
2851  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
2852                           DAG.getVTList(&AggValueVTs[0], NumAggValues),
2853                           &Values[0], NumAggValues));
2854}
2855
2856void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) {
2857  const Value *Op0 = I.getOperand(0);
2858  const Type *AggTy = Op0->getType();
2859  const Type *ValTy = I.getType();
2860  bool OutOfUndef = isa<UndefValue>(Op0);
2861
2862  unsigned LinearIndex = ComputeLinearIndex(AggTy, I.idx_begin(), I.idx_end());
2863
2864  SmallVector<EVT, 4> ValValueVTs;
2865  ComputeValueVTs(TLI, ValTy, ValValueVTs);
2866
2867  unsigned NumValValues = ValValueVTs.size();
2868  SmallVector<SDValue, 4> Values(NumValValues);
2869
2870  SDValue Agg = getValue(Op0);
2871  // Copy out the selected value(s).
2872  for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
2873    Values[i - LinearIndex] =
2874      OutOfUndef ?
2875        DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
2876        SDValue(Agg.getNode(), Agg.getResNo() + i);
2877
2878  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
2879                           DAG.getVTList(&ValValueVTs[0], NumValValues),
2880                           &Values[0], NumValValues));
2881}
2882
2883void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
2884  SDValue N = getValue(I.getOperand(0));
2885  const Type *Ty = I.getOperand(0)->getType();
2886
2887  for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end();
2888       OI != E; ++OI) {
2889    const Value *Idx = *OI;
2890    if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
2891      unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
2892      if (Field) {
2893        // N = N + Offset
2894        uint64_t Offset = TD->getStructLayout(StTy)->getElementOffset(Field);
2895        N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N,
2896                        DAG.getIntPtrConstant(Offset));
2897      }
2898
2899      Ty = StTy->getElementType(Field);
2900    } else {
2901      Ty = cast<SequentialType>(Ty)->getElementType();
2902
2903      // If this is a constant subscript, handle it quickly.
2904      if (const ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
2905        if (CI->isZero()) continue;
2906        uint64_t Offs =
2907            TD->getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue();
2908        SDValue OffsVal;
2909        EVT PTy = TLI.getPointerTy();
2910        unsigned PtrBits = PTy.getSizeInBits();
2911        if (PtrBits < 64)
2912          OffsVal = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(),
2913                                TLI.getPointerTy(),
2914                                DAG.getConstant(Offs, MVT::i64));
2915        else
2916          OffsVal = DAG.getIntPtrConstant(Offs);
2917
2918        N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N,
2919                        OffsVal);
2920        continue;
2921      }
2922
2923      // N = N + Idx * ElementSize;
2924      APInt ElementSize = APInt(TLI.getPointerTy().getSizeInBits(),
2925                                TD->getTypeAllocSize(Ty));
2926      SDValue IdxN = getValue(Idx);
2927
2928      // If the index is smaller or larger than intptr_t, truncate or extend
2929      // it.
2930      IdxN = DAG.getSExtOrTrunc(IdxN, getCurDebugLoc(), N.getValueType());
2931
2932      // If this is a multiply by a power of two, turn it into a shl
2933      // immediately.  This is a very common case.
2934      if (ElementSize != 1) {
2935        if (ElementSize.isPowerOf2()) {
2936          unsigned Amt = ElementSize.logBase2();
2937          IdxN = DAG.getNode(ISD::SHL, getCurDebugLoc(),
2938                             N.getValueType(), IdxN,
2939                             DAG.getConstant(Amt, TLI.getPointerTy()));
2940        } else {
2941          SDValue Scale = DAG.getConstant(ElementSize, TLI.getPointerTy());
2942          IdxN = DAG.getNode(ISD::MUL, getCurDebugLoc(),
2943                             N.getValueType(), IdxN, Scale);
2944        }
2945      }
2946
2947      N = DAG.getNode(ISD::ADD, getCurDebugLoc(),
2948                      N.getValueType(), N, IdxN);
2949    }
2950  }
2951
2952  setValue(&I, N);
2953}
2954
2955void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
2956  // If this is a fixed sized alloca in the entry block of the function,
2957  // allocate it statically on the stack.
2958  if (FuncInfo.StaticAllocaMap.count(&I))
2959    return;   // getValue will auto-populate this.
2960
2961  const Type *Ty = I.getAllocatedType();
2962  uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty);
2963  unsigned Align =
2964    std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty),
2965             I.getAlignment());
2966
2967  SDValue AllocSize = getValue(I.getArraySize());
2968
2969  EVT IntPtr = TLI.getPointerTy();
2970  if (AllocSize.getValueType() != IntPtr)
2971    AllocSize = DAG.getZExtOrTrunc(AllocSize, getCurDebugLoc(), IntPtr);
2972
2973  AllocSize = DAG.getNode(ISD::MUL, getCurDebugLoc(), IntPtr,
2974                          AllocSize,
2975                          DAG.getConstant(TySize, IntPtr));
2976
2977  // Handle alignment.  If the requested alignment is less than or equal to
2978  // the stack alignment, ignore it.  If the size is greater than or equal to
2979  // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
2980  unsigned StackAlign = TM.getFrameLowering()->getStackAlignment();
2981  if (Align <= StackAlign)
2982    Align = 0;
2983
2984  // Round the size of the allocation up to the stack alignment size
2985  // by add SA-1 to the size.
2986  AllocSize = DAG.getNode(ISD::ADD, getCurDebugLoc(),
2987                          AllocSize.getValueType(), AllocSize,
2988                          DAG.getIntPtrConstant(StackAlign-1));
2989
2990  // Mask out the low bits for alignment purposes.
2991  AllocSize = DAG.getNode(ISD::AND, getCurDebugLoc(),
2992                          AllocSize.getValueType(), AllocSize,
2993                          DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1)));
2994
2995  SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) };
2996  SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
2997  SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, getCurDebugLoc(),
2998                            VTs, Ops, 3);
2999  setValue(&I, DSA);
3000  DAG.setRoot(DSA.getValue(1));
3001
3002  // Inform the Frame Information that we have just allocated a variable-sized
3003  // object.
3004  FuncInfo.MF->getFrameInfo()->CreateVariableSizedObject(Align ? Align : 1);
3005}
3006
3007void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
3008  const Value *SV = I.getOperand(0);
3009  SDValue Ptr = getValue(SV);
3010
3011  const Type *Ty = I.getType();
3012
3013  bool isVolatile = I.isVolatile();
3014  bool isNonTemporal = I.getMetadata("nontemporal") != 0;
3015  unsigned Alignment = I.getAlignment();
3016  const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa);
3017
3018  SmallVector<EVT, 4> ValueVTs;
3019  SmallVector<uint64_t, 4> Offsets;
3020  ComputeValueVTs(TLI, Ty, ValueVTs, &Offsets);
3021  unsigned NumValues = ValueVTs.size();
3022  if (NumValues == 0)
3023    return;
3024
3025  SDValue Root;
3026  bool ConstantMemory = false;
3027  if (I.isVolatile() || NumValues > MaxParallelChains)
3028    // Serialize volatile loads with other side effects.
3029    Root = getRoot();
3030  else if (AA->pointsToConstantMemory(
3031             AliasAnalysis::Location(SV, AA->getTypeStoreSize(Ty), TBAAInfo))) {
3032    // Do not serialize (non-volatile) loads of constant memory with anything.
3033    Root = DAG.getEntryNode();
3034    ConstantMemory = true;
3035  } else {
3036    // Do not serialize non-volatile loads against each other.
3037    Root = DAG.getRoot();
3038  }
3039
3040  SmallVector<SDValue, 4> Values(NumValues);
3041  SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains),
3042                                          NumValues));
3043  EVT PtrVT = Ptr.getValueType();
3044  unsigned ChainI = 0;
3045  for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3046    // Serializing loads here may result in excessive register pressure, and
3047    // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
3048    // could recover a bit by hoisting nodes upward in the chain by recognizing
3049    // they are side-effect free or do not alias. The optimizer should really
3050    // avoid this case by converting large object/array copies to llvm.memcpy
3051    // (MaxParallelChains should always remain as failsafe).
3052    if (ChainI == MaxParallelChains) {
3053      assert(PendingLoads.empty() && "PendingLoads must be serialized first");
3054      SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
3055                                  MVT::Other, &Chains[0], ChainI);
3056      Root = Chain;
3057      ChainI = 0;
3058    }
3059    SDValue A = DAG.getNode(ISD::ADD, getCurDebugLoc(),
3060                            PtrVT, Ptr,
3061                            DAG.getConstant(Offsets[i], PtrVT));
3062    SDValue L = DAG.getLoad(ValueVTs[i], getCurDebugLoc(), Root,
3063                            A, MachinePointerInfo(SV, Offsets[i]), isVolatile,
3064                            isNonTemporal, Alignment, TBAAInfo);
3065
3066    Values[i] = L;
3067    Chains[ChainI] = L.getValue(1);
3068  }
3069
3070  if (!ConstantMemory) {
3071    SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
3072                                MVT::Other, &Chains[0], ChainI);
3073    if (isVolatile)
3074      DAG.setRoot(Chain);
3075    else
3076      PendingLoads.push_back(Chain);
3077  }
3078
3079  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
3080                           DAG.getVTList(&ValueVTs[0], NumValues),
3081                           &Values[0], NumValues));
3082}
3083
3084void SelectionDAGBuilder::visitStore(const StoreInst &I) {
3085  const Value *SrcV = I.getOperand(0);
3086  const Value *PtrV = I.getOperand(1);
3087
3088  SmallVector<EVT, 4> ValueVTs;
3089  SmallVector<uint64_t, 4> Offsets;
3090  ComputeValueVTs(TLI, SrcV->getType(), ValueVTs, &Offsets);
3091  unsigned NumValues = ValueVTs.size();
3092  if (NumValues == 0)
3093    return;
3094
3095  // Get the lowered operands. Note that we do this after
3096  // checking if NumResults is zero, because with zero results
3097  // the operands won't have values in the map.
3098  SDValue Src = getValue(SrcV);
3099  SDValue Ptr = getValue(PtrV);
3100
3101  SDValue Root = getRoot();
3102  SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains),
3103                                          NumValues));
3104  EVT PtrVT = Ptr.getValueType();
3105  bool isVolatile = I.isVolatile();
3106  bool isNonTemporal = I.getMetadata("nontemporal") != 0;
3107  unsigned Alignment = I.getAlignment();
3108  const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa);
3109
3110  unsigned ChainI = 0;
3111  for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3112    // See visitLoad comments.
3113    if (ChainI == MaxParallelChains) {
3114      SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
3115                                  MVT::Other, &Chains[0], ChainI);
3116      Root = Chain;
3117      ChainI = 0;
3118    }
3119    SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT, Ptr,
3120                              DAG.getConstant(Offsets[i], PtrVT));
3121    SDValue St = DAG.getStore(Root, getCurDebugLoc(),
3122                              SDValue(Src.getNode(), Src.getResNo() + i),
3123                              Add, MachinePointerInfo(PtrV, Offsets[i]),
3124                              isVolatile, isNonTemporal, Alignment, TBAAInfo);
3125    Chains[ChainI] = St;
3126  }
3127
3128  SDValue StoreNode = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
3129                                  MVT::Other, &Chains[0], ChainI);
3130  ++SDNodeOrder;
3131  AssignOrderingToNode(StoreNode.getNode());
3132  DAG.setRoot(StoreNode);
3133}
3134
3135/// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
3136/// node.
3137void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
3138                                               unsigned Intrinsic) {
3139  bool HasChain = !I.doesNotAccessMemory();
3140  bool OnlyLoad = HasChain && I.onlyReadsMemory();
3141
3142  // Build the operand list.
3143  SmallVector<SDValue, 8> Ops;
3144  if (HasChain) {  // If this intrinsic has side-effects, chainify it.
3145    if (OnlyLoad) {
3146      // We don't need to serialize loads against other loads.
3147      Ops.push_back(DAG.getRoot());
3148    } else {
3149      Ops.push_back(getRoot());
3150    }
3151  }
3152
3153  // Info is set by getTgtMemInstrinsic
3154  TargetLowering::IntrinsicInfo Info;
3155  bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic);
3156
3157  // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
3158  if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
3159      Info.opc == ISD::INTRINSIC_W_CHAIN)
3160    Ops.push_back(DAG.getConstant(Intrinsic, TLI.getPointerTy()));
3161
3162  // Add all operands of the call to the operand list.
3163  for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
3164    SDValue Op = getValue(I.getArgOperand(i));
3165    assert(TLI.isTypeLegal(Op.getValueType()) &&
3166           "Intrinsic uses a non-legal type?");
3167    Ops.push_back(Op);
3168  }
3169
3170  SmallVector<EVT, 4> ValueVTs;
3171  ComputeValueVTs(TLI, I.getType(), ValueVTs);
3172#ifndef NDEBUG
3173  for (unsigned Val = 0, E = ValueVTs.size(); Val != E; ++Val) {
3174    assert(TLI.isTypeLegal(ValueVTs[Val]) &&
3175           "Intrinsic uses a non-legal type?");
3176  }
3177#endif // NDEBUG
3178
3179  if (HasChain)
3180    ValueVTs.push_back(MVT::Other);
3181
3182  SDVTList VTs = DAG.getVTList(ValueVTs.data(), ValueVTs.size());
3183
3184  // Create the node.
3185  SDValue Result;
3186  if (IsTgtIntrinsic) {
3187    // This is target intrinsic that touches memory
3188    Result = DAG.getMemIntrinsicNode(Info.opc, getCurDebugLoc(),
3189                                     VTs, &Ops[0], Ops.size(),
3190                                     Info.memVT,
3191                                   MachinePointerInfo(Info.ptrVal, Info.offset),
3192                                     Info.align, Info.vol,
3193                                     Info.readMem, Info.writeMem);
3194  } else if (!HasChain) {
3195    Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurDebugLoc(),
3196                         VTs, &Ops[0], Ops.size());
3197  } else if (!I.getType()->isVoidTy()) {
3198    Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurDebugLoc(),
3199                         VTs, &Ops[0], Ops.size());
3200  } else {
3201    Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurDebugLoc(),
3202                         VTs, &Ops[0], Ops.size());
3203  }
3204
3205  if (HasChain) {
3206    SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
3207    if (OnlyLoad)
3208      PendingLoads.push_back(Chain);
3209    else
3210      DAG.setRoot(Chain);
3211  }
3212
3213  if (!I.getType()->isVoidTy()) {
3214    if (const VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
3215      EVT VT = TLI.getValueType(PTy);
3216      Result = DAG.getNode(ISD::BITCAST, getCurDebugLoc(), VT, Result);
3217    }
3218
3219    setValue(&I, Result);
3220  }
3221}
3222
3223/// GetSignificand - Get the significand and build it into a floating-point
3224/// number with exponent of 1:
3225///
3226///   Op = (Op & 0x007fffff) | 0x3f800000;
3227///
3228/// where Op is the hexidecimal representation of floating point value.
3229static SDValue
3230GetSignificand(SelectionDAG &DAG, SDValue Op, DebugLoc dl) {
3231  SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
3232                           DAG.getConstant(0x007fffff, MVT::i32));
3233  SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
3234                           DAG.getConstant(0x3f800000, MVT::i32));
3235  return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
3236}
3237
3238/// GetExponent - Get the exponent:
3239///
3240///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
3241///
3242/// where Op is the hexidecimal representation of floating point value.
3243static SDValue
3244GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI,
3245            DebugLoc dl) {
3246  SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
3247                           DAG.getConstant(0x7f800000, MVT::i32));
3248  SDValue t1 = DAG.getNode(ISD::SRL, dl, MVT::i32, t0,
3249                           DAG.getConstant(23, TLI.getPointerTy()));
3250  SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
3251                           DAG.getConstant(127, MVT::i32));
3252  return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
3253}
3254
3255/// getF32Constant - Get 32-bit floating point constant.
3256static SDValue
3257getF32Constant(SelectionDAG &DAG, unsigned Flt) {
3258  return DAG.getConstantFP(APFloat(APInt(32, Flt)), MVT::f32);
3259}
3260
3261/// Inlined utility function to implement binary input atomic intrinsics for
3262/// visitIntrinsicCall: I is a call instruction
3263///                     Op is the associated NodeType for I
3264const char *
3265SelectionDAGBuilder::implVisitBinaryAtomic(const CallInst& I,
3266                                           ISD::NodeType Op) {
3267  SDValue Root = getRoot();
3268  SDValue L =
3269    DAG.getAtomic(Op, getCurDebugLoc(),
3270                  getValue(I.getArgOperand(1)).getValueType().getSimpleVT(),
3271                  Root,
3272                  getValue(I.getArgOperand(0)),
3273                  getValue(I.getArgOperand(1)),
3274                  I.getArgOperand(0));
3275  setValue(&I, L);
3276  DAG.setRoot(L.getValue(1));
3277  return 0;
3278}
3279
3280// implVisitAluOverflow - Lower arithmetic overflow instrinsics.
3281const char *
3282SelectionDAGBuilder::implVisitAluOverflow(const CallInst &I, ISD::NodeType Op) {
3283  SDValue Op1 = getValue(I.getArgOperand(0));
3284  SDValue Op2 = getValue(I.getArgOperand(1));
3285
3286  SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1);
3287  setValue(&I, DAG.getNode(Op, getCurDebugLoc(), VTs, Op1, Op2));
3288  return 0;
3289}
3290
3291/// visitExp - Lower an exp intrinsic. Handles the special sequences for
3292/// limited-precision mode.
3293void
3294SelectionDAGBuilder::visitExp(const CallInst &I) {
3295  SDValue result;
3296  DebugLoc dl = getCurDebugLoc();
3297
3298  if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3299      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3300    SDValue Op = getValue(I.getArgOperand(0));
3301
3302    // Put the exponent in the right bit position for later addition to the
3303    // final result:
3304    //
3305    //   #define LOG2OFe 1.4426950f
3306    //   IntegerPartOfX = ((int32_t)(X * LOG2OFe));
3307    SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
3308                             getF32Constant(DAG, 0x3fb8aa3b));
3309    SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
3310
3311    //   FractionalPartOfX = (X * LOG2OFe) - (float)IntegerPartOfX;
3312    SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
3313    SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
3314
3315    //   IntegerPartOfX <<= 23;
3316    IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
3317                                 DAG.getConstant(23, TLI.getPointerTy()));
3318
3319    if (LimitFloatPrecision <= 6) {
3320      // For floating-point precision of 6:
3321      //
3322      //   TwoToFractionalPartOfX =
3323      //     0.997535578f +
3324      //       (0.735607626f + 0.252464424f * x) * x;
3325      //
3326      // error 0.0144103317, which is 6 bits
3327      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3328                               getF32Constant(DAG, 0x3e814304));
3329      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3330                               getF32Constant(DAG, 0x3f3c50c8));
3331      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3332      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3333                               getF32Constant(DAG, 0x3f7f5e7e));
3334      SDValue TwoToFracPartOfX = DAG.getNode(ISD::BITCAST, dl,MVT::i32, t5);
3335
3336      // Add the exponent into the result in integer domain.
3337      SDValue t6 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3338                               TwoToFracPartOfX, IntegerPartOfX);
3339
3340      result = DAG.getNode(ISD::BITCAST, dl, MVT::f32, t6);
3341    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3342      // For floating-point precision of 12:
3343      //
3344      //   TwoToFractionalPartOfX =
3345      //     0.999892986f +
3346      //       (0.696457318f +
3347      //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
3348      //
3349      // 0.000107046256 error, which is 13 to 14 bits
3350      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3351                               getF32Constant(DAG, 0x3da235e3));
3352      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3353                               getF32Constant(DAG, 0x3e65b8f3));
3354      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3355      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3356                               getF32Constant(DAG, 0x3f324b07));
3357      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3358      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3359                               getF32Constant(DAG, 0x3f7ff8fd));
3360      SDValue TwoToFracPartOfX = DAG.getNode(ISD::BITCAST, dl,MVT::i32, t7);
3361
3362      // Add the exponent into the result in integer domain.
3363      SDValue t8 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3364                               TwoToFracPartOfX, IntegerPartOfX);
3365
3366      result = DAG.getNode(ISD::BITCAST, dl, MVT::f32, t8);
3367    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3368      // For floating-point precision of 18:
3369      //
3370      //   TwoToFractionalPartOfX =
3371      //     0.999999982f +
3372      //       (0.693148872f +
3373      //         (0.240227044f +
3374      //           (0.554906021e-1f +
3375      //             (0.961591928e-2f +
3376      //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
3377      //
3378      // error 2.47208000*10^(-7), which is better than 18 bits
3379      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3380                               getF32Constant(DAG, 0x3924b03e));
3381      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3382                               getF32Constant(DAG, 0x3ab24b87));
3383      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3384      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3385                               getF32Constant(DAG, 0x3c1d8c17));
3386      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3387      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3388                               getF32Constant(DAG, 0x3d634a1d));
3389      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3390      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3391                               getF32Constant(DAG, 0x3e75fe14));
3392      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3393      SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
3394                                getF32Constant(DAG, 0x3f317234));
3395      SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
3396      SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
3397                                getF32Constant(DAG, 0x3f800000));
3398      SDValue TwoToFracPartOfX = DAG.getNode(ISD::BITCAST, dl,
3399                                             MVT::i32, t13);
3400
3401      // Add the exponent into the result in integer domain.
3402      SDValue t14 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3403                                TwoToFracPartOfX, IntegerPartOfX);
3404
3405      result = DAG.getNode(ISD::BITCAST, dl, MVT::f32, t14);
3406    }
3407  } else {
3408    // No special expansion.
3409    result = DAG.getNode(ISD::FEXP, dl,
3410                         getValue(I.getArgOperand(0)).getValueType(),
3411                         getValue(I.getArgOperand(0)));
3412  }
3413
3414  setValue(&I, result);
3415}
3416
3417/// visitLog - Lower a log intrinsic. Handles the special sequences for
3418/// limited-precision mode.
3419void
3420SelectionDAGBuilder::visitLog(const CallInst &I) {
3421  SDValue result;
3422  DebugLoc dl = getCurDebugLoc();
3423
3424  if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3425      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3426    SDValue Op = getValue(I.getArgOperand(0));
3427    SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
3428
3429    // Scale the exponent by log(2) [0.69314718f].
3430    SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
3431    SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
3432                                        getF32Constant(DAG, 0x3f317218));
3433
3434    // Get the significand and build it into a floating-point number with
3435    // exponent of 1.
3436    SDValue X = GetSignificand(DAG, Op1, dl);
3437
3438    if (LimitFloatPrecision <= 6) {
3439      // For floating-point precision of 6:
3440      //
3441      //   LogofMantissa =
3442      //     -1.1609546f +
3443      //       (1.4034025f - 0.23903021f * x) * x;
3444      //
3445      // error 0.0034276066, which is better than 8 bits
3446      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3447                               getF32Constant(DAG, 0xbe74c456));
3448      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3449                               getF32Constant(DAG, 0x3fb3a2b1));
3450      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3451      SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3452                                          getF32Constant(DAG, 0x3f949a29));
3453
3454      result = DAG.getNode(ISD::FADD, dl,
3455                           MVT::f32, LogOfExponent, LogOfMantissa);
3456    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3457      // For floating-point precision of 12:
3458      //
3459      //   LogOfMantissa =
3460      //     -1.7417939f +
3461      //       (2.8212026f +
3462      //         (-1.4699568f +
3463      //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
3464      //
3465      // error 0.000061011436, which is 14 bits
3466      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3467                               getF32Constant(DAG, 0xbd67b6d6));
3468      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3469                               getF32Constant(DAG, 0x3ee4f4b8));
3470      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3471      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3472                               getF32Constant(DAG, 0x3fbc278b));
3473      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3474      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3475                               getF32Constant(DAG, 0x40348e95));
3476      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3477      SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3478                                          getF32Constant(DAG, 0x3fdef31a));
3479
3480      result = DAG.getNode(ISD::FADD, dl,
3481                           MVT::f32, LogOfExponent, LogOfMantissa);
3482    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3483      // For floating-point precision of 18:
3484      //
3485      //   LogOfMantissa =
3486      //     -2.1072184f +
3487      //       (4.2372794f +
3488      //         (-3.7029485f +
3489      //           (2.2781945f +
3490      //             (-0.87823314f +
3491      //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
3492      //
3493      // error 0.0000023660568, which is better than 18 bits
3494      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3495                               getF32Constant(DAG, 0xbc91e5ac));
3496      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3497                               getF32Constant(DAG, 0x3e4350aa));
3498      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3499      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3500                               getF32Constant(DAG, 0x3f60d3e3));
3501      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3502      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3503                               getF32Constant(DAG, 0x4011cdf0));
3504      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3505      SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3506                               getF32Constant(DAG, 0x406cfd1c));
3507      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3508      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3509                               getF32Constant(DAG, 0x408797cb));
3510      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3511      SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
3512                                          getF32Constant(DAG, 0x4006dcab));
3513
3514      result = DAG.getNode(ISD::FADD, dl,
3515                           MVT::f32, LogOfExponent, LogOfMantissa);
3516    }
3517  } else {
3518    // No special expansion.
3519    result = DAG.getNode(ISD::FLOG, dl,
3520                         getValue(I.getArgOperand(0)).getValueType(),
3521                         getValue(I.getArgOperand(0)));
3522  }
3523
3524  setValue(&I, result);
3525}
3526
3527/// visitLog2 - Lower a log2 intrinsic. Handles the special sequences for
3528/// limited-precision mode.
3529void
3530SelectionDAGBuilder::visitLog2(const CallInst &I) {
3531  SDValue result;
3532  DebugLoc dl = getCurDebugLoc();
3533
3534  if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3535      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3536    SDValue Op = getValue(I.getArgOperand(0));
3537    SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
3538
3539    // Get the exponent.
3540    SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
3541
3542    // Get the significand and build it into a floating-point number with
3543    // exponent of 1.
3544    SDValue X = GetSignificand(DAG, Op1, dl);
3545
3546    // Different possible minimax approximations of significand in
3547    // floating-point for various degrees of accuracy over [1,2].
3548    if (LimitFloatPrecision <= 6) {
3549      // For floating-point precision of 6:
3550      //
3551      //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
3552      //
3553      // error 0.0049451742, which is more than 7 bits
3554      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3555                               getF32Constant(DAG, 0xbeb08fe0));
3556      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3557                               getF32Constant(DAG, 0x40019463));
3558      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3559      SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3560                                           getF32Constant(DAG, 0x3fd6633d));
3561
3562      result = DAG.getNode(ISD::FADD, dl,
3563                           MVT::f32, LogOfExponent, Log2ofMantissa);
3564    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3565      // For floating-point precision of 12:
3566      //
3567      //   Log2ofMantissa =
3568      //     -2.51285454f +
3569      //       (4.07009056f +
3570      //         (-2.12067489f +
3571      //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
3572      //
3573      // error 0.0000876136000, which is better than 13 bits
3574      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3575                               getF32Constant(DAG, 0xbda7262e));
3576      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3577                               getF32Constant(DAG, 0x3f25280b));
3578      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3579      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3580                               getF32Constant(DAG, 0x4007b923));
3581      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3582      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3583                               getF32Constant(DAG, 0x40823e2f));
3584      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3585      SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3586                                           getF32Constant(DAG, 0x4020d29c));
3587
3588      result = DAG.getNode(ISD::FADD, dl,
3589                           MVT::f32, LogOfExponent, Log2ofMantissa);
3590    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3591      // For floating-point precision of 18:
3592      //
3593      //   Log2ofMantissa =
3594      //     -3.0400495f +
3595      //       (6.1129976f +
3596      //         (-5.3420409f +
3597      //           (3.2865683f +
3598      //             (-1.2669343f +
3599      //               (0.27515199f -
3600      //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
3601      //
3602      // error 0.0000018516, which is better than 18 bits
3603      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3604                               getF32Constant(DAG, 0xbcd2769e));
3605      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3606                               getF32Constant(DAG, 0x3e8ce0b9));
3607      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3608      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3609                               getF32Constant(DAG, 0x3fa22ae7));
3610      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3611      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3612                               getF32Constant(DAG, 0x40525723));
3613      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3614      SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3615                               getF32Constant(DAG, 0x40aaf200));
3616      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3617      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3618                               getF32Constant(DAG, 0x40c39dad));
3619      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3620      SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
3621                                           getF32Constant(DAG, 0x4042902c));
3622
3623      result = DAG.getNode(ISD::FADD, dl,
3624                           MVT::f32, LogOfExponent, Log2ofMantissa);
3625    }
3626  } else {
3627    // No special expansion.
3628    result = DAG.getNode(ISD::FLOG2, dl,
3629                         getValue(I.getArgOperand(0)).getValueType(),
3630                         getValue(I.getArgOperand(0)));
3631  }
3632
3633  setValue(&I, result);
3634}
3635
3636/// visitLog10 - Lower a log10 intrinsic. Handles the special sequences for
3637/// limited-precision mode.
3638void
3639SelectionDAGBuilder::visitLog10(const CallInst &I) {
3640  SDValue result;
3641  DebugLoc dl = getCurDebugLoc();
3642
3643  if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3644      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3645    SDValue Op = getValue(I.getArgOperand(0));
3646    SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
3647
3648    // Scale the exponent by log10(2) [0.30102999f].
3649    SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
3650    SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
3651                                        getF32Constant(DAG, 0x3e9a209a));
3652
3653    // Get the significand and build it into a floating-point number with
3654    // exponent of 1.
3655    SDValue X = GetSignificand(DAG, Op1, dl);
3656
3657    if (LimitFloatPrecision <= 6) {
3658      // For floating-point precision of 6:
3659      //
3660      //   Log10ofMantissa =
3661      //     -0.50419619f +
3662      //       (0.60948995f - 0.10380950f * x) * x;
3663      //
3664      // error 0.0014886165, which is 6 bits
3665      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3666                               getF32Constant(DAG, 0xbdd49a13));
3667      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3668                               getF32Constant(DAG, 0x3f1c0789));
3669      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3670      SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3671                                            getF32Constant(DAG, 0x3f011300));
3672
3673      result = DAG.getNode(ISD::FADD, dl,
3674                           MVT::f32, LogOfExponent, Log10ofMantissa);
3675    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3676      // For floating-point precision of 12:
3677      //
3678      //   Log10ofMantissa =
3679      //     -0.64831180f +
3680      //       (0.91751397f +
3681      //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
3682      //
3683      // error 0.00019228036, which is better than 12 bits
3684      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3685                               getF32Constant(DAG, 0x3d431f31));
3686      SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
3687                               getF32Constant(DAG, 0x3ea21fb2));
3688      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3689      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3690                               getF32Constant(DAG, 0x3f6ae232));
3691      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3692      SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
3693                                            getF32Constant(DAG, 0x3f25f7c3));
3694
3695      result = DAG.getNode(ISD::FADD, dl,
3696                           MVT::f32, LogOfExponent, Log10ofMantissa);
3697    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3698      // For floating-point precision of 18:
3699      //
3700      //   Log10ofMantissa =
3701      //     -0.84299375f +
3702      //       (1.5327582f +
3703      //         (-1.0688956f +
3704      //           (0.49102474f +
3705      //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
3706      //
3707      // error 0.0000037995730, which is better than 18 bits
3708      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3709                               getF32Constant(DAG, 0x3c5d51ce));
3710      SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
3711                               getF32Constant(DAG, 0x3e00685a));
3712      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3713      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3714                               getF32Constant(DAG, 0x3efb6798));
3715      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3716      SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
3717                               getF32Constant(DAG, 0x3f88d192));
3718      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3719      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3720                               getF32Constant(DAG, 0x3fc4316c));
3721      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3722      SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
3723                                            getF32Constant(DAG, 0x3f57ce70));
3724
3725      result = DAG.getNode(ISD::FADD, dl,
3726                           MVT::f32, LogOfExponent, Log10ofMantissa);
3727    }
3728  } else {
3729    // No special expansion.
3730    result = DAG.getNode(ISD::FLOG10, dl,
3731                         getValue(I.getArgOperand(0)).getValueType(),
3732                         getValue(I.getArgOperand(0)));
3733  }
3734
3735  setValue(&I, result);
3736}
3737
3738/// visitExp2 - Lower an exp2 intrinsic. Handles the special sequences for
3739/// limited-precision mode.
3740void
3741SelectionDAGBuilder::visitExp2(const CallInst &I) {
3742  SDValue result;
3743  DebugLoc dl = getCurDebugLoc();
3744
3745  if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3746      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3747    SDValue Op = getValue(I.getArgOperand(0));
3748
3749    SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Op);
3750
3751    //   FractionalPartOfX = x - (float)IntegerPartOfX;
3752    SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
3753    SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, Op, t1);
3754
3755    //   IntegerPartOfX <<= 23;
3756    IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
3757                                 DAG.getConstant(23, TLI.getPointerTy()));
3758
3759    if (LimitFloatPrecision <= 6) {
3760      // For floating-point precision of 6:
3761      //
3762      //   TwoToFractionalPartOfX =
3763      //     0.997535578f +
3764      //       (0.735607626f + 0.252464424f * x) * x;
3765      //
3766      // error 0.0144103317, which is 6 bits
3767      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3768                               getF32Constant(DAG, 0x3e814304));
3769      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3770                               getF32Constant(DAG, 0x3f3c50c8));
3771      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3772      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3773                               getF32Constant(DAG, 0x3f7f5e7e));
3774      SDValue t6 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t5);
3775      SDValue TwoToFractionalPartOfX =
3776        DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX);
3777
3778      result = DAG.getNode(ISD::BITCAST, dl,
3779                           MVT::f32, TwoToFractionalPartOfX);
3780    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3781      // For floating-point precision of 12:
3782      //
3783      //   TwoToFractionalPartOfX =
3784      //     0.999892986f +
3785      //       (0.696457318f +
3786      //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
3787      //
3788      // error 0.000107046256, which is 13 to 14 bits
3789      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3790                               getF32Constant(DAG, 0x3da235e3));
3791      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3792                               getF32Constant(DAG, 0x3e65b8f3));
3793      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3794      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3795                               getF32Constant(DAG, 0x3f324b07));
3796      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3797      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3798                               getF32Constant(DAG, 0x3f7ff8fd));
3799      SDValue t8 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t7);
3800      SDValue TwoToFractionalPartOfX =
3801        DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX);
3802
3803      result = DAG.getNode(ISD::BITCAST, dl,
3804                           MVT::f32, TwoToFractionalPartOfX);
3805    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3806      // For floating-point precision of 18:
3807      //
3808      //   TwoToFractionalPartOfX =
3809      //     0.999999982f +
3810      //       (0.693148872f +
3811      //         (0.240227044f +
3812      //           (0.554906021e-1f +
3813      //             (0.961591928e-2f +
3814      //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
3815      // error 2.47208000*10^(-7), which is better than 18 bits
3816      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3817                               getF32Constant(DAG, 0x3924b03e));
3818      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3819                               getF32Constant(DAG, 0x3ab24b87));
3820      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3821      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3822                               getF32Constant(DAG, 0x3c1d8c17));
3823      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3824      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3825                               getF32Constant(DAG, 0x3d634a1d));
3826      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3827      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3828                               getF32Constant(DAG, 0x3e75fe14));
3829      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3830      SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
3831                                getF32Constant(DAG, 0x3f317234));
3832      SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
3833      SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
3834                                getF32Constant(DAG, 0x3f800000));
3835      SDValue t14 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t13);
3836      SDValue TwoToFractionalPartOfX =
3837        DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX);
3838
3839      result = DAG.getNode(ISD::BITCAST, dl,
3840                           MVT::f32, TwoToFractionalPartOfX);
3841    }
3842  } else {
3843    // No special expansion.
3844    result = DAG.getNode(ISD::FEXP2, dl,
3845                         getValue(I.getArgOperand(0)).getValueType(),
3846                         getValue(I.getArgOperand(0)));
3847  }
3848
3849  setValue(&I, result);
3850}
3851
3852/// visitPow - Lower a pow intrinsic. Handles the special sequences for
3853/// limited-precision mode with x == 10.0f.
3854void
3855SelectionDAGBuilder::visitPow(const CallInst &I) {
3856  SDValue result;
3857  const Value *Val = I.getArgOperand(0);
3858  DebugLoc dl = getCurDebugLoc();
3859  bool IsExp10 = false;
3860
3861  if (getValue(Val).getValueType() == MVT::f32 &&
3862      getValue(I.getArgOperand(1)).getValueType() == MVT::f32 &&
3863      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3864    if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(Val))) {
3865      if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
3866        APFloat Ten(10.0f);
3867        IsExp10 = CFP->getValueAPF().bitwiseIsEqual(Ten);
3868      }
3869    }
3870  }
3871
3872  if (IsExp10 && LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3873    SDValue Op = getValue(I.getArgOperand(1));
3874
3875    // Put the exponent in the right bit position for later addition to the
3876    // final result:
3877    //
3878    //   #define LOG2OF10 3.3219281f
3879    //   IntegerPartOfX = (int32_t)(x * LOG2OF10);
3880    SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
3881                             getF32Constant(DAG, 0x40549a78));
3882    SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
3883
3884    //   FractionalPartOfX = x - (float)IntegerPartOfX;
3885    SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
3886    SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
3887
3888    //   IntegerPartOfX <<= 23;
3889    IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
3890                                 DAG.getConstant(23, TLI.getPointerTy()));
3891
3892    if (LimitFloatPrecision <= 6) {
3893      // For floating-point precision of 6:
3894      //
3895      //   twoToFractionalPartOfX =
3896      //     0.997535578f +
3897      //       (0.735607626f + 0.252464424f * x) * x;
3898      //
3899      // error 0.0144103317, which is 6 bits
3900      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3901                               getF32Constant(DAG, 0x3e814304));
3902      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3903                               getF32Constant(DAG, 0x3f3c50c8));
3904      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3905      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3906                               getF32Constant(DAG, 0x3f7f5e7e));
3907      SDValue t6 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t5);
3908      SDValue TwoToFractionalPartOfX =
3909        DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX);
3910
3911      result = DAG.getNode(ISD::BITCAST, dl,
3912                           MVT::f32, TwoToFractionalPartOfX);
3913    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3914      // For floating-point precision of 12:
3915      //
3916      //   TwoToFractionalPartOfX =
3917      //     0.999892986f +
3918      //       (0.696457318f +
3919      //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
3920      //
3921      // error 0.000107046256, which is 13 to 14 bits
3922      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3923                               getF32Constant(DAG, 0x3da235e3));
3924      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3925                               getF32Constant(DAG, 0x3e65b8f3));
3926      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3927      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3928                               getF32Constant(DAG, 0x3f324b07));
3929      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3930      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3931                               getF32Constant(DAG, 0x3f7ff8fd));
3932      SDValue t8 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t7);
3933      SDValue TwoToFractionalPartOfX =
3934        DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX);
3935
3936      result = DAG.getNode(ISD::BITCAST, dl,
3937                           MVT::f32, TwoToFractionalPartOfX);
3938    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3939      // For floating-point precision of 18:
3940      //
3941      //   TwoToFractionalPartOfX =
3942      //     0.999999982f +
3943      //       (0.693148872f +
3944      //         (0.240227044f +
3945      //           (0.554906021e-1f +
3946      //             (0.961591928e-2f +
3947      //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
3948      // error 2.47208000*10^(-7), which is better than 18 bits
3949      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3950                               getF32Constant(DAG, 0x3924b03e));
3951      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3952                               getF32Constant(DAG, 0x3ab24b87));
3953      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3954      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3955                               getF32Constant(DAG, 0x3c1d8c17));
3956      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3957      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3958                               getF32Constant(DAG, 0x3d634a1d));
3959      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3960      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3961                               getF32Constant(DAG, 0x3e75fe14));
3962      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3963      SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
3964                                getF32Constant(DAG, 0x3f317234));
3965      SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
3966      SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
3967                                getF32Constant(DAG, 0x3f800000));
3968      SDValue t14 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t13);
3969      SDValue TwoToFractionalPartOfX =
3970        DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX);
3971
3972      result = DAG.getNode(ISD::BITCAST, dl,
3973                           MVT::f32, TwoToFractionalPartOfX);
3974    }
3975  } else {
3976    // No special expansion.
3977    result = DAG.getNode(ISD::FPOW, dl,
3978                         getValue(I.getArgOperand(0)).getValueType(),
3979                         getValue(I.getArgOperand(0)),
3980                         getValue(I.getArgOperand(1)));
3981  }
3982
3983  setValue(&I, result);
3984}
3985
3986
3987/// ExpandPowI - Expand a llvm.powi intrinsic.
3988static SDValue ExpandPowI(DebugLoc DL, SDValue LHS, SDValue RHS,
3989                          SelectionDAG &DAG) {
3990  // If RHS is a constant, we can expand this out to a multiplication tree,
3991  // otherwise we end up lowering to a call to __powidf2 (for example).  When
3992  // optimizing for size, we only want to do this if the expansion would produce
3993  // a small number of multiplies, otherwise we do the full expansion.
3994  if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
3995    // Get the exponent as a positive value.
3996    unsigned Val = RHSC->getSExtValue();
3997    if ((int)Val < 0) Val = -Val;
3998
3999    // powi(x, 0) -> 1.0
4000    if (Val == 0)
4001      return DAG.getConstantFP(1.0, LHS.getValueType());
4002
4003    const Function *F = DAG.getMachineFunction().getFunction();
4004    if (!F->hasFnAttr(Attribute::OptimizeForSize) ||
4005        // If optimizing for size, don't insert too many multiplies.  This
4006        // inserts up to 5 multiplies.
4007        CountPopulation_32(Val)+Log2_32(Val) < 7) {
4008      // We use the simple binary decomposition method to generate the multiply
4009      // sequence.  There are more optimal ways to do this (for example,
4010      // powi(x,15) generates one more multiply than it should), but this has
4011      // the benefit of being both really simple and much better than a libcall.
4012      SDValue Res;  // Logically starts equal to 1.0
4013      SDValue CurSquare = LHS;
4014      while (Val) {
4015        if (Val & 1) {
4016          if (Res.getNode())
4017            Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare);
4018          else
4019            Res = CurSquare;  // 1.0*CurSquare.
4020        }
4021
4022        CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
4023                                CurSquare, CurSquare);
4024        Val >>= 1;
4025      }
4026
4027      // If the original was negative, invert the result, producing 1/(x*x*x).
4028      if (RHSC->getSExtValue() < 0)
4029        Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
4030                          DAG.getConstantFP(1.0, LHS.getValueType()), Res);
4031      return Res;
4032    }
4033  }
4034
4035  // Otherwise, expand to a libcall.
4036  return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
4037}
4038
4039/// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function
4040/// argument, create the corresponding DBG_VALUE machine instruction for it now.
4041/// At the end of instruction selection, they will be inserted to the entry BB.
4042bool
4043SelectionDAGBuilder::EmitFuncArgumentDbgValue(const Value *V, MDNode *Variable,
4044                                              int64_t Offset,
4045                                              const SDValue &N) {
4046  const Argument *Arg = dyn_cast<Argument>(V);
4047  if (!Arg)
4048    return false;
4049
4050  MachineFunction &MF = DAG.getMachineFunction();
4051  const TargetInstrInfo *TII = DAG.getTarget().getInstrInfo();
4052  const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
4053
4054  // Ignore inlined function arguments here.
4055  DIVariable DV(Variable);
4056  if (DV.isInlinedFnArgument(MF.getFunction()))
4057    return false;
4058
4059  MachineBasicBlock *MBB = FuncInfo.MBB;
4060  if (MBB != &MF.front())
4061    return false;
4062
4063  unsigned Reg = 0;
4064  if (Arg->hasByValAttr()) {
4065    // Byval arguments' frame index is recorded during argument lowering.
4066    // Use this info directly.
4067    Reg = TRI->getFrameRegister(MF);
4068    Offset = FuncInfo.getByValArgumentFrameIndex(Arg);
4069    // If byval argument ofset is not recorded then ignore this.
4070    if (!Offset)
4071      Reg = 0;
4072  }
4073
4074  if (N.getNode() && N.getOpcode() == ISD::CopyFromReg) {
4075    Reg = cast<RegisterSDNode>(N.getOperand(1))->getReg();
4076    if (TargetRegisterInfo::isVirtualRegister(Reg)) {
4077      MachineRegisterInfo &RegInfo = MF.getRegInfo();
4078      unsigned PR = RegInfo.getLiveInPhysReg(Reg);
4079      if (PR)
4080        Reg = PR;
4081    }
4082  }
4083
4084  if (!Reg) {
4085    // Check if ValueMap has reg number.
4086    DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
4087    if (VMI != FuncInfo.ValueMap.end())
4088      Reg = VMI->second;
4089  }
4090
4091  if (!Reg && N.getNode()) {
4092    // Check if frame index is available.
4093    if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode()))
4094      if (FrameIndexSDNode *FINode =
4095          dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) {
4096        Reg = TRI->getFrameRegister(MF);
4097        Offset = FINode->getIndex();
4098      }
4099  }
4100
4101  if (!Reg)
4102    return false;
4103
4104  MachineInstrBuilder MIB = BuildMI(MF, getCurDebugLoc(),
4105                                    TII->get(TargetOpcode::DBG_VALUE))
4106    .addReg(Reg, RegState::Debug).addImm(Offset).addMetadata(Variable);
4107  FuncInfo.ArgDbgValues.push_back(&*MIB);
4108  return true;
4109}
4110
4111// VisualStudio defines setjmp as _setjmp
4112#if defined(_MSC_VER) && defined(setjmp) && \
4113                         !defined(setjmp_undefined_for_msvc)
4114#  pragma push_macro("setjmp")
4115#  undef setjmp
4116#  define setjmp_undefined_for_msvc
4117#endif
4118
4119/// visitIntrinsicCall - Lower the call to the specified intrinsic function.  If
4120/// we want to emit this as a call to a named external function, return the name
4121/// otherwise lower it and return null.
4122const char *
4123SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) {
4124  DebugLoc dl = getCurDebugLoc();
4125  SDValue Res;
4126
4127  switch (Intrinsic) {
4128  default:
4129    // By default, turn this into a target intrinsic node.
4130    visitTargetIntrinsic(I, Intrinsic);
4131    return 0;
4132  case Intrinsic::vastart:  visitVAStart(I); return 0;
4133  case Intrinsic::vaend:    visitVAEnd(I); return 0;
4134  case Intrinsic::vacopy:   visitVACopy(I); return 0;
4135  case Intrinsic::returnaddress:
4136    setValue(&I, DAG.getNode(ISD::RETURNADDR, dl, TLI.getPointerTy(),
4137                             getValue(I.getArgOperand(0))));
4138    return 0;
4139  case Intrinsic::frameaddress:
4140    setValue(&I, DAG.getNode(ISD::FRAMEADDR, dl, TLI.getPointerTy(),
4141                             getValue(I.getArgOperand(0))));
4142    return 0;
4143  case Intrinsic::setjmp:
4144    return "_setjmp"+!TLI.usesUnderscoreSetJmp();
4145  case Intrinsic::longjmp:
4146    return "_longjmp"+!TLI.usesUnderscoreLongJmp();
4147  case Intrinsic::memcpy: {
4148    // Assert for address < 256 since we support only user defined address
4149    // spaces.
4150    assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4151           < 256 &&
4152           cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace()
4153           < 256 &&
4154           "Unknown address space");
4155    SDValue Op1 = getValue(I.getArgOperand(0));
4156    SDValue Op2 = getValue(I.getArgOperand(1));
4157    SDValue Op3 = getValue(I.getArgOperand(2));
4158    unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4159    bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4160    DAG.setRoot(DAG.getMemcpy(getRoot(), dl, Op1, Op2, Op3, Align, isVol, false,
4161                              MachinePointerInfo(I.getArgOperand(0)),
4162                              MachinePointerInfo(I.getArgOperand(1))));
4163    return 0;
4164  }
4165  case Intrinsic::memset: {
4166    // Assert for address < 256 since we support only user defined address
4167    // spaces.
4168    assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4169           < 256 &&
4170           "Unknown address space");
4171    SDValue Op1 = getValue(I.getArgOperand(0));
4172    SDValue Op2 = getValue(I.getArgOperand(1));
4173    SDValue Op3 = getValue(I.getArgOperand(2));
4174    unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4175    bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4176    DAG.setRoot(DAG.getMemset(getRoot(), dl, Op1, Op2, Op3, Align, isVol,
4177                              MachinePointerInfo(I.getArgOperand(0))));
4178    return 0;
4179  }
4180  case Intrinsic::memmove: {
4181    // Assert for address < 256 since we support only user defined address
4182    // spaces.
4183    assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4184           < 256 &&
4185           cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace()
4186           < 256 &&
4187           "Unknown address space");
4188    SDValue Op1 = getValue(I.getArgOperand(0));
4189    SDValue Op2 = getValue(I.getArgOperand(1));
4190    SDValue Op3 = getValue(I.getArgOperand(2));
4191    unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4192    bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4193    DAG.setRoot(DAG.getMemmove(getRoot(), dl, Op1, Op2, Op3, Align, isVol,
4194                               MachinePointerInfo(I.getArgOperand(0)),
4195                               MachinePointerInfo(I.getArgOperand(1))));
4196    return 0;
4197  }
4198  case Intrinsic::dbg_declare: {
4199    const DbgDeclareInst &DI = cast<DbgDeclareInst>(I);
4200    MDNode *Variable = DI.getVariable();
4201    const Value *Address = DI.getAddress();
4202    if (!Address || !DIVariable(DI.getVariable()).Verify())
4203      return 0;
4204
4205    // Build an entry in DbgOrdering.  Debug info input nodes get an SDNodeOrder
4206    // but do not always have a corresponding SDNode built.  The SDNodeOrder
4207    // absolute, but not relative, values are different depending on whether
4208    // debug info exists.
4209    ++SDNodeOrder;
4210
4211    // Check if address has undef value.
4212    if (isa<UndefValue>(Address) ||
4213        (Address->use_empty() && !isa<Argument>(Address))) {
4214      DEBUG(dbgs() << "Dropping debug info for " << DI);
4215      return 0;
4216    }
4217
4218    SDValue &N = NodeMap[Address];
4219    if (!N.getNode() && isa<Argument>(Address))
4220      // Check unused arguments map.
4221      N = UnusedArgNodeMap[Address];
4222    SDDbgValue *SDV;
4223    if (N.getNode()) {
4224      // Parameters are handled specially.
4225      bool isParameter =
4226        DIVariable(Variable).getTag() == dwarf::DW_TAG_arg_variable;
4227      if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
4228        Address = BCI->getOperand(0);
4229      const AllocaInst *AI = dyn_cast<AllocaInst>(Address);
4230
4231      if (isParameter && !AI) {
4232        FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
4233        if (FINode)
4234          // Byval parameter.  We have a frame index at this point.
4235          SDV = DAG.getDbgValue(Variable, FINode->getIndex(),
4236                                0, dl, SDNodeOrder);
4237        else {
4238          // Can't do anything with other non-AI cases yet.  This might be a
4239          // parameter of a callee function that got inlined, for example.
4240          DEBUG(dbgs() << "Dropping debug info for " << DI);
4241          return 0;
4242        }
4243      } else if (AI)
4244        SDV = DAG.getDbgValue(Variable, N.getNode(), N.getResNo(),
4245                              0, dl, SDNodeOrder);
4246      else {
4247        // Can't do anything with other non-AI cases yet.
4248        DEBUG(dbgs() << "Dropping debug info for " << DI);
4249        return 0;
4250      }
4251      DAG.AddDbgValue(SDV, N.getNode(), isParameter);
4252    } else {
4253      // If Address is an argument then try to emit its dbg value using
4254      // virtual register info from the FuncInfo.ValueMap.
4255      if (!EmitFuncArgumentDbgValue(Address, Variable, 0, N)) {
4256        // If variable is pinned by a alloca in dominating bb then
4257        // use StaticAllocaMap.
4258        if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) {
4259          if (AI->getParent() != DI.getParent()) {
4260            DenseMap<const AllocaInst*, int>::iterator SI =
4261              FuncInfo.StaticAllocaMap.find(AI);
4262            if (SI != FuncInfo.StaticAllocaMap.end()) {
4263              SDV = DAG.getDbgValue(Variable, SI->second,
4264                                    0, dl, SDNodeOrder);
4265              DAG.AddDbgValue(SDV, 0, false);
4266              return 0;
4267            }
4268          }
4269        }
4270        DEBUG(dbgs() << "Dropping debug info for " << DI);
4271      }
4272    }
4273    return 0;
4274  }
4275  case Intrinsic::dbg_value: {
4276    const DbgValueInst &DI = cast<DbgValueInst>(I);
4277    if (!DIVariable(DI.getVariable()).Verify())
4278      return 0;
4279
4280    MDNode *Variable = DI.getVariable();
4281    uint64_t Offset = DI.getOffset();
4282    const Value *V = DI.getValue();
4283    if (!V)
4284      return 0;
4285
4286    // Build an entry in DbgOrdering.  Debug info input nodes get an SDNodeOrder
4287    // but do not always have a corresponding SDNode built.  The SDNodeOrder
4288    // absolute, but not relative, values are different depending on whether
4289    // debug info exists.
4290    ++SDNodeOrder;
4291    SDDbgValue *SDV;
4292    if (isa<ConstantInt>(V) || isa<ConstantFP>(V)) {
4293      SDV = DAG.getDbgValue(Variable, V, Offset, dl, SDNodeOrder);
4294      DAG.AddDbgValue(SDV, 0, false);
4295    } else {
4296      // Do not use getValue() in here; we don't want to generate code at
4297      // this point if it hasn't been done yet.
4298      SDValue N = NodeMap[V];
4299      if (!N.getNode() && isa<Argument>(V))
4300        // Check unused arguments map.
4301        N = UnusedArgNodeMap[V];
4302      if (N.getNode()) {
4303        if (!EmitFuncArgumentDbgValue(V, Variable, Offset, N)) {
4304          SDV = DAG.getDbgValue(Variable, N.getNode(),
4305                                N.getResNo(), Offset, dl, SDNodeOrder);
4306          DAG.AddDbgValue(SDV, N.getNode(), false);
4307        }
4308      } else if (isa<PHINode>(V) && !V->use_empty() ) {
4309        // Do not call getValue(V) yet, as we don't want to generate code.
4310        // Remember it for later.
4311        DanglingDebugInfo DDI(&DI, dl, SDNodeOrder);
4312        DanglingDebugInfoMap[V] = DDI;
4313      } else {
4314        // We may expand this to cover more cases.  One case where we have no
4315        // data available is an unreferenced parameter.
4316        DEBUG(dbgs() << "Dropping debug info for " << DI);
4317      }
4318    }
4319
4320    // Build a debug info table entry.
4321    if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V))
4322      V = BCI->getOperand(0);
4323    const AllocaInst *AI = dyn_cast<AllocaInst>(V);
4324    // Don't handle byval struct arguments or VLAs, for example.
4325    if (!AI)
4326      return 0;
4327    DenseMap<const AllocaInst*, int>::iterator SI =
4328      FuncInfo.StaticAllocaMap.find(AI);
4329    if (SI == FuncInfo.StaticAllocaMap.end())
4330      return 0; // VLAs.
4331    int FI = SI->second;
4332
4333    MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4334    if (!DI.getDebugLoc().isUnknown() && MMI.hasDebugInfo())
4335      MMI.setVariableDbgInfo(Variable, FI, DI.getDebugLoc());
4336    return 0;
4337  }
4338  case Intrinsic::eh_exception: {
4339    // Insert the EXCEPTIONADDR instruction.
4340    assert(FuncInfo.MBB->isLandingPad() &&
4341           "Call to eh.exception not in landing pad!");
4342    SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
4343    SDValue Ops[1];
4344    Ops[0] = DAG.getRoot();
4345    SDValue Op = DAG.getNode(ISD::EXCEPTIONADDR, dl, VTs, Ops, 1);
4346    setValue(&I, Op);
4347    DAG.setRoot(Op.getValue(1));
4348    return 0;
4349  }
4350
4351  case Intrinsic::eh_selector: {
4352    MachineBasicBlock *CallMBB = FuncInfo.MBB;
4353    MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4354    if (CallMBB->isLandingPad())
4355      AddCatchInfo(I, &MMI, CallMBB);
4356    else {
4357#ifndef NDEBUG
4358      FuncInfo.CatchInfoLost.insert(&I);
4359#endif
4360      // FIXME: Mark exception selector register as live in.  Hack for PR1508.
4361      unsigned Reg = TLI.getExceptionSelectorRegister();
4362      if (Reg) FuncInfo.MBB->addLiveIn(Reg);
4363    }
4364
4365    // Insert the EHSELECTION instruction.
4366    SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
4367    SDValue Ops[2];
4368    Ops[0] = getValue(I.getArgOperand(0));
4369    Ops[1] = getRoot();
4370    SDValue Op = DAG.getNode(ISD::EHSELECTION, dl, VTs, Ops, 2);
4371    DAG.setRoot(Op.getValue(1));
4372    setValue(&I, DAG.getSExtOrTrunc(Op, dl, MVT::i32));
4373    return 0;
4374  }
4375
4376  case Intrinsic::eh_typeid_for: {
4377    // Find the type id for the given typeinfo.
4378    GlobalVariable *GV = ExtractTypeInfo(I.getArgOperand(0));
4379    unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV);
4380    Res = DAG.getConstant(TypeID, MVT::i32);
4381    setValue(&I, Res);
4382    return 0;
4383  }
4384
4385  case Intrinsic::eh_return_i32:
4386  case Intrinsic::eh_return_i64:
4387    DAG.getMachineFunction().getMMI().setCallsEHReturn(true);
4388    DAG.setRoot(DAG.getNode(ISD::EH_RETURN, dl,
4389                            MVT::Other,
4390                            getControlRoot(),
4391                            getValue(I.getArgOperand(0)),
4392                            getValue(I.getArgOperand(1))));
4393    return 0;
4394  case Intrinsic::eh_unwind_init:
4395    DAG.getMachineFunction().getMMI().setCallsUnwindInit(true);
4396    return 0;
4397  case Intrinsic::eh_dwarf_cfa: {
4398    SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), dl,
4399                                        TLI.getPointerTy());
4400    SDValue Offset = DAG.getNode(ISD::ADD, dl,
4401                                 TLI.getPointerTy(),
4402                                 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, dl,
4403                                             TLI.getPointerTy()),
4404                                 CfaArg);
4405    SDValue FA = DAG.getNode(ISD::FRAMEADDR, dl,
4406                             TLI.getPointerTy(),
4407                             DAG.getConstant(0, TLI.getPointerTy()));
4408    setValue(&I, DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(),
4409                             FA, Offset));
4410    return 0;
4411  }
4412  case Intrinsic::eh_sjlj_callsite: {
4413    MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4414    ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0));
4415    assert(CI && "Non-constant call site value in eh.sjlj.callsite!");
4416    assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
4417
4418    MMI.setCurrentCallSite(CI->getZExtValue());
4419    return 0;
4420  }
4421  case Intrinsic::eh_sjlj_setjmp: {
4422    setValue(&I, DAG.getNode(ISD::EH_SJLJ_SETJMP, dl, MVT::i32, getRoot(),
4423                             getValue(I.getArgOperand(0))));
4424    return 0;
4425  }
4426  case Intrinsic::eh_sjlj_longjmp: {
4427    DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, dl, MVT::Other,
4428                            getRoot(), getValue(I.getArgOperand(0))));
4429    return 0;
4430  }
4431  case Intrinsic::eh_sjlj_dispatch_setup: {
4432    DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_DISPATCHSETUP, dl, MVT::Other,
4433                            getRoot(), getValue(I.getArgOperand(0))));
4434    return 0;
4435  }
4436
4437  case Intrinsic::x86_mmx_pslli_w:
4438  case Intrinsic::x86_mmx_pslli_d:
4439  case Intrinsic::x86_mmx_pslli_q:
4440  case Intrinsic::x86_mmx_psrli_w:
4441  case Intrinsic::x86_mmx_psrli_d:
4442  case Intrinsic::x86_mmx_psrli_q:
4443  case Intrinsic::x86_mmx_psrai_w:
4444  case Intrinsic::x86_mmx_psrai_d: {
4445    SDValue ShAmt = getValue(I.getArgOperand(1));
4446    if (isa<ConstantSDNode>(ShAmt)) {
4447      visitTargetIntrinsic(I, Intrinsic);
4448      return 0;
4449    }
4450    unsigned NewIntrinsic = 0;
4451    EVT ShAmtVT = MVT::v2i32;
4452    switch (Intrinsic) {
4453    case Intrinsic::x86_mmx_pslli_w:
4454      NewIntrinsic = Intrinsic::x86_mmx_psll_w;
4455      break;
4456    case Intrinsic::x86_mmx_pslli_d:
4457      NewIntrinsic = Intrinsic::x86_mmx_psll_d;
4458      break;
4459    case Intrinsic::x86_mmx_pslli_q:
4460      NewIntrinsic = Intrinsic::x86_mmx_psll_q;
4461      break;
4462    case Intrinsic::x86_mmx_psrli_w:
4463      NewIntrinsic = Intrinsic::x86_mmx_psrl_w;
4464      break;
4465    case Intrinsic::x86_mmx_psrli_d:
4466      NewIntrinsic = Intrinsic::x86_mmx_psrl_d;
4467      break;
4468    case Intrinsic::x86_mmx_psrli_q:
4469      NewIntrinsic = Intrinsic::x86_mmx_psrl_q;
4470      break;
4471    case Intrinsic::x86_mmx_psrai_w:
4472      NewIntrinsic = Intrinsic::x86_mmx_psra_w;
4473      break;
4474    case Intrinsic::x86_mmx_psrai_d:
4475      NewIntrinsic = Intrinsic::x86_mmx_psra_d;
4476      break;
4477    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
4478    }
4479
4480    // The vector shift intrinsics with scalars uses 32b shift amounts but
4481    // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
4482    // to be zero.
4483    // We must do this early because v2i32 is not a legal type.
4484    DebugLoc dl = getCurDebugLoc();
4485    SDValue ShOps[2];
4486    ShOps[0] = ShAmt;
4487    ShOps[1] = DAG.getConstant(0, MVT::i32);
4488    ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 2);
4489    EVT DestVT = TLI.getValueType(I.getType());
4490    ShAmt = DAG.getNode(ISD::BITCAST, dl, DestVT, ShAmt);
4491    Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
4492                       DAG.getConstant(NewIntrinsic, MVT::i32),
4493                       getValue(I.getArgOperand(0)), ShAmt);
4494    setValue(&I, Res);
4495    return 0;
4496  }
4497  case Intrinsic::convertff:
4498  case Intrinsic::convertfsi:
4499  case Intrinsic::convertfui:
4500  case Intrinsic::convertsif:
4501  case Intrinsic::convertuif:
4502  case Intrinsic::convertss:
4503  case Intrinsic::convertsu:
4504  case Intrinsic::convertus:
4505  case Intrinsic::convertuu: {
4506    ISD::CvtCode Code = ISD::CVT_INVALID;
4507    switch (Intrinsic) {
4508    case Intrinsic::convertff:  Code = ISD::CVT_FF; break;
4509    case Intrinsic::convertfsi: Code = ISD::CVT_FS; break;
4510    case Intrinsic::convertfui: Code = ISD::CVT_FU; break;
4511    case Intrinsic::convertsif: Code = ISD::CVT_SF; break;
4512    case Intrinsic::convertuif: Code = ISD::CVT_UF; break;
4513    case Intrinsic::convertss:  Code = ISD::CVT_SS; break;
4514    case Intrinsic::convertsu:  Code = ISD::CVT_SU; break;
4515    case Intrinsic::convertus:  Code = ISD::CVT_US; break;
4516    case Intrinsic::convertuu:  Code = ISD::CVT_UU; break;
4517    }
4518    EVT DestVT = TLI.getValueType(I.getType());
4519    const Value *Op1 = I.getArgOperand(0);
4520    Res = DAG.getConvertRndSat(DestVT, getCurDebugLoc(), getValue(Op1),
4521                               DAG.getValueType(DestVT),
4522                               DAG.getValueType(getValue(Op1).getValueType()),
4523                               getValue(I.getArgOperand(1)),
4524                               getValue(I.getArgOperand(2)),
4525                               Code);
4526    setValue(&I, Res);
4527    return 0;
4528  }
4529  case Intrinsic::sqrt:
4530    setValue(&I, DAG.getNode(ISD::FSQRT, dl,
4531                             getValue(I.getArgOperand(0)).getValueType(),
4532                             getValue(I.getArgOperand(0))));
4533    return 0;
4534  case Intrinsic::powi:
4535    setValue(&I, ExpandPowI(dl, getValue(I.getArgOperand(0)),
4536                            getValue(I.getArgOperand(1)), DAG));
4537    return 0;
4538  case Intrinsic::sin:
4539    setValue(&I, DAG.getNode(ISD::FSIN, dl,
4540                             getValue(I.getArgOperand(0)).getValueType(),
4541                             getValue(I.getArgOperand(0))));
4542    return 0;
4543  case Intrinsic::cos:
4544    setValue(&I, DAG.getNode(ISD::FCOS, dl,
4545                             getValue(I.getArgOperand(0)).getValueType(),
4546                             getValue(I.getArgOperand(0))));
4547    return 0;
4548  case Intrinsic::log:
4549    visitLog(I);
4550    return 0;
4551  case Intrinsic::log2:
4552    visitLog2(I);
4553    return 0;
4554  case Intrinsic::log10:
4555    visitLog10(I);
4556    return 0;
4557  case Intrinsic::exp:
4558    visitExp(I);
4559    return 0;
4560  case Intrinsic::exp2:
4561    visitExp2(I);
4562    return 0;
4563  case Intrinsic::pow:
4564    visitPow(I);
4565    return 0;
4566  case Intrinsic::convert_to_fp16:
4567    setValue(&I, DAG.getNode(ISD::FP32_TO_FP16, dl,
4568                             MVT::i16, getValue(I.getArgOperand(0))));
4569    return 0;
4570  case Intrinsic::convert_from_fp16:
4571    setValue(&I, DAG.getNode(ISD::FP16_TO_FP32, dl,
4572                             MVT::f32, getValue(I.getArgOperand(0))));
4573    return 0;
4574  case Intrinsic::pcmarker: {
4575    SDValue Tmp = getValue(I.getArgOperand(0));
4576    DAG.setRoot(DAG.getNode(ISD::PCMARKER, dl, MVT::Other, getRoot(), Tmp));
4577    return 0;
4578  }
4579  case Intrinsic::readcyclecounter: {
4580    SDValue Op = getRoot();
4581    Res = DAG.getNode(ISD::READCYCLECOUNTER, dl,
4582                      DAG.getVTList(MVT::i64, MVT::Other),
4583                      &Op, 1);
4584    setValue(&I, Res);
4585    DAG.setRoot(Res.getValue(1));
4586    return 0;
4587  }
4588  case Intrinsic::bswap:
4589    setValue(&I, DAG.getNode(ISD::BSWAP, dl,
4590                             getValue(I.getArgOperand(0)).getValueType(),
4591                             getValue(I.getArgOperand(0))));
4592    return 0;
4593  case Intrinsic::cttz: {
4594    SDValue Arg = getValue(I.getArgOperand(0));
4595    EVT Ty = Arg.getValueType();
4596    setValue(&I, DAG.getNode(ISD::CTTZ, dl, Ty, Arg));
4597    return 0;
4598  }
4599  case Intrinsic::ctlz: {
4600    SDValue Arg = getValue(I.getArgOperand(0));
4601    EVT Ty = Arg.getValueType();
4602    setValue(&I, DAG.getNode(ISD::CTLZ, dl, Ty, Arg));
4603    return 0;
4604  }
4605  case Intrinsic::ctpop: {
4606    SDValue Arg = getValue(I.getArgOperand(0));
4607    EVT Ty = Arg.getValueType();
4608    setValue(&I, DAG.getNode(ISD::CTPOP, dl, Ty, Arg));
4609    return 0;
4610  }
4611  case Intrinsic::stacksave: {
4612    SDValue Op = getRoot();
4613    Res = DAG.getNode(ISD::STACKSAVE, dl,
4614                      DAG.getVTList(TLI.getPointerTy(), MVT::Other), &Op, 1);
4615    setValue(&I, Res);
4616    DAG.setRoot(Res.getValue(1));
4617    return 0;
4618  }
4619  case Intrinsic::stackrestore: {
4620    Res = getValue(I.getArgOperand(0));
4621    DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, dl, MVT::Other, getRoot(), Res));
4622    return 0;
4623  }
4624  case Intrinsic::stackprotector: {
4625    // Emit code into the DAG to store the stack guard onto the stack.
4626    MachineFunction &MF = DAG.getMachineFunction();
4627    MachineFrameInfo *MFI = MF.getFrameInfo();
4628    EVT PtrTy = TLI.getPointerTy();
4629
4630    SDValue Src = getValue(I.getArgOperand(0));   // The guard's value.
4631    AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
4632
4633    int FI = FuncInfo.StaticAllocaMap[Slot];
4634    MFI->setStackProtectorIndex(FI);
4635
4636    SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
4637
4638    // Store the stack protector onto the stack.
4639    Res = DAG.getStore(getRoot(), getCurDebugLoc(), Src, FIN,
4640                       MachinePointerInfo::getFixedStack(FI),
4641                       true, false, 0);
4642    setValue(&I, Res);
4643    DAG.setRoot(Res);
4644    return 0;
4645  }
4646  case Intrinsic::objectsize: {
4647    // If we don't know by now, we're never going to know.
4648    ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1));
4649
4650    assert(CI && "Non-constant type in __builtin_object_size?");
4651
4652    SDValue Arg = getValue(I.getCalledValue());
4653    EVT Ty = Arg.getValueType();
4654
4655    if (CI->isZero())
4656      Res = DAG.getConstant(-1ULL, Ty);
4657    else
4658      Res = DAG.getConstant(0, Ty);
4659
4660    setValue(&I, Res);
4661    return 0;
4662  }
4663  case Intrinsic::var_annotation:
4664    // Discard annotate attributes
4665    return 0;
4666
4667  case Intrinsic::init_trampoline: {
4668    const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
4669
4670    SDValue Ops[6];
4671    Ops[0] = getRoot();
4672    Ops[1] = getValue(I.getArgOperand(0));
4673    Ops[2] = getValue(I.getArgOperand(1));
4674    Ops[3] = getValue(I.getArgOperand(2));
4675    Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
4676    Ops[5] = DAG.getSrcValue(F);
4677
4678    Res = DAG.getNode(ISD::TRAMPOLINE, dl,
4679                      DAG.getVTList(TLI.getPointerTy(), MVT::Other),
4680                      Ops, 6);
4681
4682    setValue(&I, Res);
4683    DAG.setRoot(Res.getValue(1));
4684    return 0;
4685  }
4686  case Intrinsic::gcroot:
4687    if (GFI) {
4688      const Value *Alloca = I.getArgOperand(0);
4689      const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
4690
4691      FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
4692      GFI->addStackRoot(FI->getIndex(), TypeMap);
4693    }
4694    return 0;
4695  case Intrinsic::gcread:
4696  case Intrinsic::gcwrite:
4697    llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
4698    return 0;
4699  case Intrinsic::flt_rounds:
4700    setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, dl, MVT::i32));
4701    return 0;
4702  case Intrinsic::trap:
4703    DAG.setRoot(DAG.getNode(ISD::TRAP, dl,MVT::Other, getRoot()));
4704    return 0;
4705  case Intrinsic::uadd_with_overflow:
4706    return implVisitAluOverflow(I, ISD::UADDO);
4707  case Intrinsic::sadd_with_overflow:
4708    return implVisitAluOverflow(I, ISD::SADDO);
4709  case Intrinsic::usub_with_overflow:
4710    return implVisitAluOverflow(I, ISD::USUBO);
4711  case Intrinsic::ssub_with_overflow:
4712    return implVisitAluOverflow(I, ISD::SSUBO);
4713  case Intrinsic::umul_with_overflow:
4714    return implVisitAluOverflow(I, ISD::UMULO);
4715  case Intrinsic::smul_with_overflow:
4716    return implVisitAluOverflow(I, ISD::SMULO);
4717
4718  case Intrinsic::prefetch: {
4719    SDValue Ops[4];
4720    unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
4721    Ops[0] = getRoot();
4722    Ops[1] = getValue(I.getArgOperand(0));
4723    Ops[2] = getValue(I.getArgOperand(1));
4724    Ops[3] = getValue(I.getArgOperand(2));
4725    DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, dl,
4726                                        DAG.getVTList(MVT::Other),
4727                                        &Ops[0], 4,
4728                                        EVT::getIntegerVT(*Context, 8),
4729                                        MachinePointerInfo(I.getArgOperand(0)),
4730                                        0, /* align */
4731                                        false, /* volatile */
4732                                        rw==0, /* read */
4733                                        rw==1)); /* write */
4734    return 0;
4735  }
4736  case Intrinsic::memory_barrier: {
4737    SDValue Ops[6];
4738    Ops[0] = getRoot();
4739    for (int x = 1; x < 6; ++x)
4740      Ops[x] = getValue(I.getArgOperand(x - 1));
4741
4742    DAG.setRoot(DAG.getNode(ISD::MEMBARRIER, dl, MVT::Other, &Ops[0], 6));
4743    return 0;
4744  }
4745  case Intrinsic::atomic_cmp_swap: {
4746    SDValue Root = getRoot();
4747    SDValue L =
4748      DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, getCurDebugLoc(),
4749                    getValue(I.getArgOperand(1)).getValueType().getSimpleVT(),
4750                    Root,
4751                    getValue(I.getArgOperand(0)),
4752                    getValue(I.getArgOperand(1)),
4753                    getValue(I.getArgOperand(2)),
4754                    MachinePointerInfo(I.getArgOperand(0)));
4755    setValue(&I, L);
4756    DAG.setRoot(L.getValue(1));
4757    return 0;
4758  }
4759  case Intrinsic::atomic_load_add:
4760    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_ADD);
4761  case Intrinsic::atomic_load_sub:
4762    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_SUB);
4763  case Intrinsic::atomic_load_or:
4764    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_OR);
4765  case Intrinsic::atomic_load_xor:
4766    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_XOR);
4767  case Intrinsic::atomic_load_and:
4768    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_AND);
4769  case Intrinsic::atomic_load_nand:
4770    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_NAND);
4771  case Intrinsic::atomic_load_max:
4772    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MAX);
4773  case Intrinsic::atomic_load_min:
4774    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MIN);
4775  case Intrinsic::atomic_load_umin:
4776    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMIN);
4777  case Intrinsic::atomic_load_umax:
4778    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMAX);
4779  case Intrinsic::atomic_swap:
4780    return implVisitBinaryAtomic(I, ISD::ATOMIC_SWAP);
4781
4782  case Intrinsic::invariant_start:
4783  case Intrinsic::lifetime_start:
4784    // Discard region information.
4785    setValue(&I, DAG.getUNDEF(TLI.getPointerTy()));
4786    return 0;
4787  case Intrinsic::invariant_end:
4788  case Intrinsic::lifetime_end:
4789    // Discard region information.
4790    return 0;
4791  }
4792}
4793
4794void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee,
4795                                      bool isTailCall,
4796                                      MachineBasicBlock *LandingPad) {
4797  const PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
4798  const FunctionType *FTy = cast<FunctionType>(PT->getElementType());
4799  const Type *RetTy = FTy->getReturnType();
4800  MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4801  MCSymbol *BeginLabel = 0;
4802
4803  TargetLowering::ArgListTy Args;
4804  TargetLowering::ArgListEntry Entry;
4805  Args.reserve(CS.arg_size());
4806
4807  // Check whether the function can return without sret-demotion.
4808  SmallVector<ISD::OutputArg, 4> Outs;
4809  SmallVector<uint64_t, 4> Offsets;
4810  GetReturnInfo(RetTy, CS.getAttributes().getRetAttributes(),
4811                Outs, TLI, &Offsets);
4812
4813  bool CanLowerReturn = TLI.CanLowerReturn(CS.getCallingConv(),
4814                        FTy->isVarArg(), Outs, FTy->getContext());
4815
4816  SDValue DemoteStackSlot;
4817  int DemoteStackIdx = -100;
4818
4819  if (!CanLowerReturn) {
4820    uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(
4821                      FTy->getReturnType());
4822    unsigned Align  = TLI.getTargetData()->getPrefTypeAlignment(
4823                      FTy->getReturnType());
4824    MachineFunction &MF = DAG.getMachineFunction();
4825    DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
4826    const Type *StackSlotPtrType = PointerType::getUnqual(FTy->getReturnType());
4827
4828    DemoteStackSlot = DAG.getFrameIndex(DemoteStackIdx, TLI.getPointerTy());
4829    Entry.Node = DemoteStackSlot;
4830    Entry.Ty = StackSlotPtrType;
4831    Entry.isSExt = false;
4832    Entry.isZExt = false;
4833    Entry.isInReg = false;
4834    Entry.isSRet = true;
4835    Entry.isNest = false;
4836    Entry.isByVal = false;
4837    Entry.Alignment = Align;
4838    Args.push_back(Entry);
4839    RetTy = Type::getVoidTy(FTy->getContext());
4840  }
4841
4842  for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
4843       i != e; ++i) {
4844    SDValue ArgNode = getValue(*i);
4845    Entry.Node = ArgNode; Entry.Ty = (*i)->getType();
4846
4847    unsigned attrInd = i - CS.arg_begin() + 1;
4848    Entry.isSExt  = CS.paramHasAttr(attrInd, Attribute::SExt);
4849    Entry.isZExt  = CS.paramHasAttr(attrInd, Attribute::ZExt);
4850    Entry.isInReg = CS.paramHasAttr(attrInd, Attribute::InReg);
4851    Entry.isSRet  = CS.paramHasAttr(attrInd, Attribute::StructRet);
4852    Entry.isNest  = CS.paramHasAttr(attrInd, Attribute::Nest);
4853    Entry.isByVal = CS.paramHasAttr(attrInd, Attribute::ByVal);
4854    Entry.Alignment = CS.getParamAlignment(attrInd);
4855    Args.push_back(Entry);
4856  }
4857
4858  if (LandingPad) {
4859    // Insert a label before the invoke call to mark the try range.  This can be
4860    // used to detect deletion of the invoke via the MachineModuleInfo.
4861    BeginLabel = MMI.getContext().CreateTempSymbol();
4862
4863    // For SjLj, keep track of which landing pads go with which invokes
4864    // so as to maintain the ordering of pads in the LSDA.
4865    unsigned CallSiteIndex = MMI.getCurrentCallSite();
4866    if (CallSiteIndex) {
4867      MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
4868      // Now that the call site is handled, stop tracking it.
4869      MMI.setCurrentCallSite(0);
4870    }
4871
4872    // Both PendingLoads and PendingExports must be flushed here;
4873    // this call might not return.
4874    (void)getRoot();
4875    DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getControlRoot(), BeginLabel));
4876  }
4877
4878  // Check if target-independent constraints permit a tail call here.
4879  // Target-dependent constraints are checked within TLI.LowerCallTo.
4880  if (isTailCall &&
4881      !isInTailCallPosition(CS, CS.getAttributes().getRetAttributes(), TLI))
4882    isTailCall = false;
4883
4884  // If there's a possibility that fast-isel has already selected some amount
4885  // of the current basic block, don't emit a tail call.
4886  if (isTailCall && EnableFastISel)
4887    isTailCall = false;
4888
4889  std::pair<SDValue,SDValue> Result =
4890    TLI.LowerCallTo(getRoot(), RetTy,
4891                    CS.paramHasAttr(0, Attribute::SExt),
4892                    CS.paramHasAttr(0, Attribute::ZExt), FTy->isVarArg(),
4893                    CS.paramHasAttr(0, Attribute::InReg), FTy->getNumParams(),
4894                    CS.getCallingConv(),
4895                    isTailCall,
4896                    !CS.getInstruction()->use_empty(),
4897                    Callee, Args, DAG, getCurDebugLoc());
4898  assert((isTailCall || Result.second.getNode()) &&
4899         "Non-null chain expected with non-tail call!");
4900  assert((Result.second.getNode() || !Result.first.getNode()) &&
4901         "Null value expected with tail call!");
4902  if (Result.first.getNode()) {
4903    setValue(CS.getInstruction(), Result.first);
4904  } else if (!CanLowerReturn && Result.second.getNode()) {
4905    // The instruction result is the result of loading from the
4906    // hidden sret parameter.
4907    SmallVector<EVT, 1> PVTs;
4908    const Type *PtrRetTy = PointerType::getUnqual(FTy->getReturnType());
4909
4910    ComputeValueVTs(TLI, PtrRetTy, PVTs);
4911    assert(PVTs.size() == 1 && "Pointers should fit in one register");
4912    EVT PtrVT = PVTs[0];
4913    unsigned NumValues = Outs.size();
4914    SmallVector<SDValue, 4> Values(NumValues);
4915    SmallVector<SDValue, 4> Chains(NumValues);
4916
4917    for (unsigned i = 0; i < NumValues; ++i) {
4918      SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT,
4919                                DemoteStackSlot,
4920                                DAG.getConstant(Offsets[i], PtrVT));
4921      SDValue L = DAG.getLoad(Outs[i].VT, getCurDebugLoc(), Result.second,
4922                              Add,
4923                  MachinePointerInfo::getFixedStack(DemoteStackIdx, Offsets[i]),
4924                              false, false, 1);
4925      Values[i] = L;
4926      Chains[i] = L.getValue(1);
4927    }
4928
4929    SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
4930                                MVT::Other, &Chains[0], NumValues);
4931    PendingLoads.push_back(Chain);
4932
4933    // Collect the legal value parts into potentially illegal values
4934    // that correspond to the original function's return values.
4935    SmallVector<EVT, 4> RetTys;
4936    RetTy = FTy->getReturnType();
4937    ComputeValueVTs(TLI, RetTy, RetTys);
4938    ISD::NodeType AssertOp = ISD::DELETED_NODE;
4939    SmallVector<SDValue, 4> ReturnValues;
4940    unsigned CurReg = 0;
4941    for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
4942      EVT VT = RetTys[I];
4943      EVT RegisterVT = TLI.getRegisterType(RetTy->getContext(), VT);
4944      unsigned NumRegs = TLI.getNumRegisters(RetTy->getContext(), VT);
4945
4946      SDValue ReturnValue =
4947        getCopyFromParts(DAG, getCurDebugLoc(), &Values[CurReg], NumRegs,
4948                         RegisterVT, VT, AssertOp);
4949      ReturnValues.push_back(ReturnValue);
4950      CurReg += NumRegs;
4951    }
4952
4953    setValue(CS.getInstruction(),
4954             DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
4955                         DAG.getVTList(&RetTys[0], RetTys.size()),
4956                         &ReturnValues[0], ReturnValues.size()));
4957
4958  }
4959
4960  // As a special case, a null chain means that a tail call has been emitted and
4961  // the DAG root is already updated.
4962  if (Result.second.getNode())
4963    DAG.setRoot(Result.second);
4964  else
4965    HasTailCall = true;
4966
4967  if (LandingPad) {
4968    // Insert a label at the end of the invoke call to mark the try range.  This
4969    // can be used to detect deletion of the invoke via the MachineModuleInfo.
4970    MCSymbol *EndLabel = MMI.getContext().CreateTempSymbol();
4971    DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getRoot(), EndLabel));
4972
4973    // Inform MachineModuleInfo of range.
4974    MMI.addInvoke(LandingPad, BeginLabel, EndLabel);
4975  }
4976}
4977
4978/// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the
4979/// value is equal or not-equal to zero.
4980static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) {
4981  for (Value::const_use_iterator UI = V->use_begin(), E = V->use_end();
4982       UI != E; ++UI) {
4983    if (const ICmpInst *IC = dyn_cast<ICmpInst>(*UI))
4984      if (IC->isEquality())
4985        if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
4986          if (C->isNullValue())
4987            continue;
4988    // Unknown instruction.
4989    return false;
4990  }
4991  return true;
4992}
4993
4994static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
4995                             const Type *LoadTy,
4996                             SelectionDAGBuilder &Builder) {
4997
4998  // Check to see if this load can be trivially constant folded, e.g. if the
4999  // input is from a string literal.
5000  if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
5001    // Cast pointer to the type we really want to load.
5002    LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
5003                                         PointerType::getUnqual(LoadTy));
5004
5005    if (const Constant *LoadCst =
5006          ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput),
5007                                       Builder.TD))
5008      return Builder.getValue(LoadCst);
5009  }
5010
5011  // Otherwise, we have to emit the load.  If the pointer is to unfoldable but
5012  // still constant memory, the input chain can be the entry node.
5013  SDValue Root;
5014  bool ConstantMemory = false;
5015
5016  // Do not serialize (non-volatile) loads of constant memory with anything.
5017  if (Builder.AA->pointsToConstantMemory(PtrVal)) {
5018    Root = Builder.DAG.getEntryNode();
5019    ConstantMemory = true;
5020  } else {
5021    // Do not serialize non-volatile loads against each other.
5022    Root = Builder.DAG.getRoot();
5023  }
5024
5025  SDValue Ptr = Builder.getValue(PtrVal);
5026  SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurDebugLoc(), Root,
5027                                        Ptr, MachinePointerInfo(PtrVal),
5028                                        false /*volatile*/,
5029                                        false /*nontemporal*/, 1 /* align=1 */);
5030
5031  if (!ConstantMemory)
5032    Builder.PendingLoads.push_back(LoadVal.getValue(1));
5033  return LoadVal;
5034}
5035
5036
5037/// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form.
5038/// If so, return true and lower it, otherwise return false and it will be
5039/// lowered like a normal call.
5040bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) {
5041  // Verify that the prototype makes sense.  int memcmp(void*,void*,size_t)
5042  if (I.getNumArgOperands() != 3)
5043    return false;
5044
5045  const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
5046  if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() ||
5047      !I.getArgOperand(2)->getType()->isIntegerTy() ||
5048      !I.getType()->isIntegerTy())
5049    return false;
5050
5051  const ConstantInt *Size = dyn_cast<ConstantInt>(I.getArgOperand(2));
5052
5053  // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0
5054  // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0
5055  if (Size && IsOnlyUsedInZeroEqualityComparison(&I)) {
5056    bool ActuallyDoIt = true;
5057    MVT LoadVT;
5058    const Type *LoadTy;
5059    switch (Size->getZExtValue()) {
5060    default:
5061      LoadVT = MVT::Other;
5062      LoadTy = 0;
5063      ActuallyDoIt = false;
5064      break;
5065    case 2:
5066      LoadVT = MVT::i16;
5067      LoadTy = Type::getInt16Ty(Size->getContext());
5068      break;
5069    case 4:
5070      LoadVT = MVT::i32;
5071      LoadTy = Type::getInt32Ty(Size->getContext());
5072      break;
5073    case 8:
5074      LoadVT = MVT::i64;
5075      LoadTy = Type::getInt64Ty(Size->getContext());
5076      break;
5077        /*
5078    case 16:
5079      LoadVT = MVT::v4i32;
5080      LoadTy = Type::getInt32Ty(Size->getContext());
5081      LoadTy = VectorType::get(LoadTy, 4);
5082      break;
5083         */
5084    }
5085
5086    // This turns into unaligned loads.  We only do this if the target natively
5087    // supports the MVT we'll be loading or if it is small enough (<= 4) that
5088    // we'll only produce a small number of byte loads.
5089
5090    // Require that we can find a legal MVT, and only do this if the target
5091    // supports unaligned loads of that type.  Expanding into byte loads would
5092    // bloat the code.
5093    if (ActuallyDoIt && Size->getZExtValue() > 4) {
5094      // TODO: Handle 5 byte compare as 4-byte + 1 byte.
5095      // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
5096      if (!TLI.isTypeLegal(LoadVT) ||!TLI.allowsUnalignedMemoryAccesses(LoadVT))
5097        ActuallyDoIt = false;
5098    }
5099
5100    if (ActuallyDoIt) {
5101      SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this);
5102      SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this);
5103
5104      SDValue Res = DAG.getSetCC(getCurDebugLoc(), MVT::i1, LHSVal, RHSVal,
5105                                 ISD::SETNE);
5106      EVT CallVT = TLI.getValueType(I.getType(), true);
5107      setValue(&I, DAG.getZExtOrTrunc(Res, getCurDebugLoc(), CallVT));
5108      return true;
5109    }
5110  }
5111
5112
5113  return false;
5114}
5115
5116
5117void SelectionDAGBuilder::visitCall(const CallInst &I) {
5118  // Handle inline assembly differently.
5119  if (isa<InlineAsm>(I.getCalledValue())) {
5120    visitInlineAsm(&I);
5121    return;
5122  }
5123
5124  // See if any floating point values are being passed to this function. This is
5125  // used to emit an undefined reference to fltused on Windows.
5126  const FunctionType *FT =
5127    cast<FunctionType>(I.getCalledValue()->getType()->getContainedType(0));
5128  MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
5129  if (FT->isVarArg() &&
5130      !MMI.callsExternalVAFunctionWithFloatingPointArguments()) {
5131    for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
5132      const Type* T = I.getArgOperand(i)->getType();
5133      for (po_iterator<const Type*> i = po_begin(T), e = po_end(T);
5134           i != e; ++i) {
5135        if (!i->isFloatingPointTy()) continue;
5136        MMI.setCallsExternalVAFunctionWithFloatingPointArguments(true);
5137        break;
5138      }
5139    }
5140  }
5141
5142  const char *RenameFn = 0;
5143  if (Function *F = I.getCalledFunction()) {
5144    if (F->isDeclaration()) {
5145      if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) {
5146        if (unsigned IID = II->getIntrinsicID(F)) {
5147          RenameFn = visitIntrinsicCall(I, IID);
5148          if (!RenameFn)
5149            return;
5150        }
5151      }
5152      if (unsigned IID = F->getIntrinsicID()) {
5153        RenameFn = visitIntrinsicCall(I, IID);
5154        if (!RenameFn)
5155          return;
5156      }
5157    }
5158
5159    // Check for well-known libc/libm calls.  If the function is internal, it
5160    // can't be a library call.
5161    if (!F->hasLocalLinkage() && F->hasName()) {
5162      StringRef Name = F->getName();
5163      if (Name == "copysign" || Name == "copysignf" || Name == "copysignl") {
5164        if (I.getNumArgOperands() == 2 &&   // Basic sanity checks.
5165            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5166            I.getType() == I.getArgOperand(0)->getType() &&
5167            I.getType() == I.getArgOperand(1)->getType()) {
5168          SDValue LHS = getValue(I.getArgOperand(0));
5169          SDValue RHS = getValue(I.getArgOperand(1));
5170          setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurDebugLoc(),
5171                                   LHS.getValueType(), LHS, RHS));
5172          return;
5173        }
5174      } else if (Name == "fabs" || Name == "fabsf" || Name == "fabsl") {
5175        if (I.getNumArgOperands() == 1 &&   // Basic sanity checks.
5176            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5177            I.getType() == I.getArgOperand(0)->getType()) {
5178          SDValue Tmp = getValue(I.getArgOperand(0));
5179          setValue(&I, DAG.getNode(ISD::FABS, getCurDebugLoc(),
5180                                   Tmp.getValueType(), Tmp));
5181          return;
5182        }
5183      } else if (Name == "sin" || Name == "sinf" || Name == "sinl") {
5184        if (I.getNumArgOperands() == 1 &&   // Basic sanity checks.
5185            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5186            I.getType() == I.getArgOperand(0)->getType() &&
5187            I.onlyReadsMemory()) {
5188          SDValue Tmp = getValue(I.getArgOperand(0));
5189          setValue(&I, DAG.getNode(ISD::FSIN, getCurDebugLoc(),
5190                                   Tmp.getValueType(), Tmp));
5191          return;
5192        }
5193      } else if (Name == "cos" || Name == "cosf" || Name == "cosl") {
5194        if (I.getNumArgOperands() == 1 &&   // Basic sanity checks.
5195            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5196            I.getType() == I.getArgOperand(0)->getType() &&
5197            I.onlyReadsMemory()) {
5198          SDValue Tmp = getValue(I.getArgOperand(0));
5199          setValue(&I, DAG.getNode(ISD::FCOS, getCurDebugLoc(),
5200                                   Tmp.getValueType(), Tmp));
5201          return;
5202        }
5203      } else if (Name == "sqrt" || Name == "sqrtf" || Name == "sqrtl") {
5204        if (I.getNumArgOperands() == 1 &&   // Basic sanity checks.
5205            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5206            I.getType() == I.getArgOperand(0)->getType() &&
5207            I.onlyReadsMemory()) {
5208          SDValue Tmp = getValue(I.getArgOperand(0));
5209          setValue(&I, DAG.getNode(ISD::FSQRT, getCurDebugLoc(),
5210                                   Tmp.getValueType(), Tmp));
5211          return;
5212        }
5213      } else if (Name == "memcmp") {
5214        if (visitMemCmpCall(I))
5215          return;
5216      }
5217    }
5218  }
5219
5220  SDValue Callee;
5221  if (!RenameFn)
5222    Callee = getValue(I.getCalledValue());
5223  else
5224    Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy());
5225
5226  // Check if we can potentially perform a tail call. More detailed checking is
5227  // be done within LowerCallTo, after more information about the call is known.
5228  LowerCallTo(&I, Callee, I.isTailCall());
5229}
5230
5231namespace llvm {
5232
5233/// AsmOperandInfo - This contains information for each constraint that we are
5234/// lowering.
5235class LLVM_LIBRARY_VISIBILITY SDISelAsmOperandInfo :
5236    public TargetLowering::AsmOperandInfo {
5237public:
5238  /// CallOperand - If this is the result output operand or a clobber
5239  /// this is null, otherwise it is the incoming operand to the CallInst.
5240  /// This gets modified as the asm is processed.
5241  SDValue CallOperand;
5242
5243  /// AssignedRegs - If this is a register or register class operand, this
5244  /// contains the set of register corresponding to the operand.
5245  RegsForValue AssignedRegs;
5246
5247  explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
5248    : TargetLowering::AsmOperandInfo(info), CallOperand(0,0) {
5249  }
5250
5251  /// MarkAllocatedRegs - Once AssignedRegs is set, mark the assigned registers
5252  /// busy in OutputRegs/InputRegs.
5253  void MarkAllocatedRegs(bool isOutReg, bool isInReg,
5254                         std::set<unsigned> &OutputRegs,
5255                         std::set<unsigned> &InputRegs,
5256                         const TargetRegisterInfo &TRI) const {
5257    if (isOutReg) {
5258      for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i)
5259        MarkRegAndAliases(AssignedRegs.Regs[i], OutputRegs, TRI);
5260    }
5261    if (isInReg) {
5262      for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i)
5263        MarkRegAndAliases(AssignedRegs.Regs[i], InputRegs, TRI);
5264    }
5265  }
5266
5267  /// getCallOperandValEVT - Return the EVT of the Value* that this operand
5268  /// corresponds to.  If there is no Value* for this operand, it returns
5269  /// MVT::Other.
5270  EVT getCallOperandValEVT(LLVMContext &Context,
5271                           const TargetLowering &TLI,
5272                           const TargetData *TD) const {
5273    if (CallOperandVal == 0) return MVT::Other;
5274
5275    if (isa<BasicBlock>(CallOperandVal))
5276      return TLI.getPointerTy();
5277
5278    const llvm::Type *OpTy = CallOperandVal->getType();
5279
5280    // If this is an indirect operand, the operand is a pointer to the
5281    // accessed type.
5282    if (isIndirect) {
5283      const llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
5284      if (!PtrTy)
5285        report_fatal_error("Indirect operand for inline asm not a pointer!");
5286      OpTy = PtrTy->getElementType();
5287    }
5288
5289    // If OpTy is not a single value, it may be a struct/union that we
5290    // can tile with integers.
5291    if (!OpTy->isSingleValueType() && OpTy->isSized()) {
5292      unsigned BitSize = TD->getTypeSizeInBits(OpTy);
5293      switch (BitSize) {
5294      default: break;
5295      case 1:
5296      case 8:
5297      case 16:
5298      case 32:
5299      case 64:
5300      case 128:
5301        OpTy = IntegerType::get(Context, BitSize);
5302        break;
5303      }
5304    }
5305
5306    return TLI.getValueType(OpTy, true);
5307  }
5308
5309private:
5310  /// MarkRegAndAliases - Mark the specified register and all aliases in the
5311  /// specified set.
5312  static void MarkRegAndAliases(unsigned Reg, std::set<unsigned> &Regs,
5313                                const TargetRegisterInfo &TRI) {
5314    assert(TargetRegisterInfo::isPhysicalRegister(Reg) && "Isn't a physreg");
5315    Regs.insert(Reg);
5316    if (const unsigned *Aliases = TRI.getAliasSet(Reg))
5317      for (; *Aliases; ++Aliases)
5318        Regs.insert(*Aliases);
5319  }
5320};
5321
5322typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector;
5323
5324} // end llvm namespace.
5325
5326/// isAllocatableRegister - If the specified register is safe to allocate,
5327/// i.e. it isn't a stack pointer or some other special register, return the
5328/// register class for the register.  Otherwise, return null.
5329static const TargetRegisterClass *
5330isAllocatableRegister(unsigned Reg, MachineFunction &MF,
5331                      const TargetLowering &TLI,
5332                      const TargetRegisterInfo *TRI) {
5333  EVT FoundVT = MVT::Other;
5334  const TargetRegisterClass *FoundRC = 0;
5335  for (TargetRegisterInfo::regclass_iterator RCI = TRI->regclass_begin(),
5336       E = TRI->regclass_end(); RCI != E; ++RCI) {
5337    EVT ThisVT = MVT::Other;
5338
5339    const TargetRegisterClass *RC = *RCI;
5340    // If none of the value types for this register class are valid, we
5341    // can't use it.  For example, 64-bit reg classes on 32-bit targets.
5342    for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
5343         I != E; ++I) {
5344      if (TLI.isTypeLegal(*I)) {
5345        // If we have already found this register in a different register class,
5346        // choose the one with the largest VT specified.  For example, on
5347        // PowerPC, we favor f64 register classes over f32.
5348        if (FoundVT == MVT::Other || FoundVT.bitsLT(*I)) {
5349          ThisVT = *I;
5350          break;
5351        }
5352      }
5353    }
5354
5355    if (ThisVT == MVT::Other) continue;
5356
5357    // NOTE: This isn't ideal.  In particular, this might allocate the
5358    // frame pointer in functions that need it (due to them not being taken
5359    // out of allocation, because a variable sized allocation hasn't been seen
5360    // yet).  This is a slight code pessimization, but should still work.
5361    for (TargetRegisterClass::iterator I = RC->allocation_order_begin(MF),
5362         E = RC->allocation_order_end(MF); I != E; ++I)
5363      if (*I == Reg) {
5364        // We found a matching register class.  Keep looking at others in case
5365        // we find one with larger registers that this physreg is also in.
5366        FoundRC = RC;
5367        FoundVT = ThisVT;
5368        break;
5369      }
5370  }
5371  return FoundRC;
5372}
5373
5374/// GetRegistersForValue - Assign registers (virtual or physical) for the
5375/// specified operand.  We prefer to assign virtual registers, to allow the
5376/// register allocator to handle the assignment process.  However, if the asm
5377/// uses features that we can't model on machineinstrs, we have SDISel do the
5378/// allocation.  This produces generally horrible, but correct, code.
5379///
5380///   OpInfo describes the operand.
5381///   Input and OutputRegs are the set of already allocated physical registers.
5382///
5383void SelectionDAGBuilder::
5384GetRegistersForValue(SDISelAsmOperandInfo &OpInfo,
5385                     std::set<unsigned> &OutputRegs,
5386                     std::set<unsigned> &InputRegs) {
5387  LLVMContext &Context = FuncInfo.Fn->getContext();
5388
5389  // Compute whether this value requires an input register, an output register,
5390  // or both.
5391  bool isOutReg = false;
5392  bool isInReg = false;
5393  switch (OpInfo.Type) {
5394  case InlineAsm::isOutput:
5395    isOutReg = true;
5396
5397    // If there is an input constraint that matches this, we need to reserve
5398    // the input register so no other inputs allocate to it.
5399    isInReg = OpInfo.hasMatchingInput();
5400    break;
5401  case InlineAsm::isInput:
5402    isInReg = true;
5403    isOutReg = false;
5404    break;
5405  case InlineAsm::isClobber:
5406    isOutReg = true;
5407    isInReg = true;
5408    break;
5409  }
5410
5411
5412  MachineFunction &MF = DAG.getMachineFunction();
5413  SmallVector<unsigned, 4> Regs;
5414
5415  // If this is a constraint for a single physreg, or a constraint for a
5416  // register class, find it.
5417  std::pair<unsigned, const TargetRegisterClass*> PhysReg =
5418    TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
5419                                     OpInfo.ConstraintVT);
5420
5421  unsigned NumRegs = 1;
5422  if (OpInfo.ConstraintVT != MVT::Other) {
5423    // If this is a FP input in an integer register (or visa versa) insert a bit
5424    // cast of the input value.  More generally, handle any case where the input
5425    // value disagrees with the register class we plan to stick this in.
5426    if (OpInfo.Type == InlineAsm::isInput &&
5427        PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) {
5428      // Try to convert to the first EVT that the reg class contains.  If the
5429      // types are identical size, use a bitcast to convert (e.g. two differing
5430      // vector types).
5431      EVT RegVT = *PhysReg.second->vt_begin();
5432      if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) {
5433        OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, getCurDebugLoc(),
5434                                         RegVT, OpInfo.CallOperand);
5435        OpInfo.ConstraintVT = RegVT;
5436      } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
5437        // If the input is a FP value and we want it in FP registers, do a
5438        // bitcast to the corresponding integer type.  This turns an f64 value
5439        // into i64, which can be passed with two i32 values on a 32-bit
5440        // machine.
5441        RegVT = EVT::getIntegerVT(Context,
5442                                  OpInfo.ConstraintVT.getSizeInBits());
5443        OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, getCurDebugLoc(),
5444                                         RegVT, OpInfo.CallOperand);
5445        OpInfo.ConstraintVT = RegVT;
5446      }
5447    }
5448
5449    NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT);
5450  }
5451
5452  EVT RegVT;
5453  EVT ValueVT = OpInfo.ConstraintVT;
5454
5455  // If this is a constraint for a specific physical register, like {r17},
5456  // assign it now.
5457  if (unsigned AssignedReg = PhysReg.first) {
5458    const TargetRegisterClass *RC = PhysReg.second;
5459    if (OpInfo.ConstraintVT == MVT::Other)
5460      ValueVT = *RC->vt_begin();
5461
5462    // Get the actual register value type.  This is important, because the user
5463    // may have asked for (e.g.) the AX register in i32 type.  We need to
5464    // remember that AX is actually i16 to get the right extension.
5465    RegVT = *RC->vt_begin();
5466
5467    // This is a explicit reference to a physical register.
5468    Regs.push_back(AssignedReg);
5469
5470    // If this is an expanded reference, add the rest of the regs to Regs.
5471    if (NumRegs != 1) {
5472      TargetRegisterClass::iterator I = RC->begin();
5473      for (; *I != AssignedReg; ++I)
5474        assert(I != RC->end() && "Didn't find reg!");
5475
5476      // Already added the first reg.
5477      --NumRegs; ++I;
5478      for (; NumRegs; --NumRegs, ++I) {
5479        assert(I != RC->end() && "Ran out of registers to allocate!");
5480        Regs.push_back(*I);
5481      }
5482    }
5483
5484    OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
5485    const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
5486    OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI);
5487    return;
5488  }
5489
5490  // Otherwise, if this was a reference to an LLVM register class, create vregs
5491  // for this reference.
5492  if (const TargetRegisterClass *RC = PhysReg.second) {
5493    RegVT = *RC->vt_begin();
5494    if (OpInfo.ConstraintVT == MVT::Other)
5495      ValueVT = RegVT;
5496
5497    // Create the appropriate number of virtual registers.
5498    MachineRegisterInfo &RegInfo = MF.getRegInfo();
5499    for (; NumRegs; --NumRegs)
5500      Regs.push_back(RegInfo.createVirtualRegister(RC));
5501
5502    OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
5503    return;
5504  }
5505
5506  // This is a reference to a register class that doesn't directly correspond
5507  // to an LLVM register class.  Allocate NumRegs consecutive, available,
5508  // registers from the class.
5509  std::vector<unsigned> RegClassRegs
5510    = TLI.getRegClassForInlineAsmConstraint(OpInfo.ConstraintCode,
5511                                            OpInfo.ConstraintVT);
5512
5513  const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
5514  unsigned NumAllocated = 0;
5515  for (unsigned i = 0, e = RegClassRegs.size(); i != e; ++i) {
5516    unsigned Reg = RegClassRegs[i];
5517    // See if this register is available.
5518    if ((isOutReg && OutputRegs.count(Reg)) ||   // Already used.
5519        (isInReg  && InputRegs.count(Reg))) {    // Already used.
5520      // Make sure we find consecutive registers.
5521      NumAllocated = 0;
5522      continue;
5523    }
5524
5525    // Check to see if this register is allocatable (i.e. don't give out the
5526    // stack pointer).
5527    const TargetRegisterClass *RC = isAllocatableRegister(Reg, MF, TLI, TRI);
5528    if (!RC) {        // Couldn't allocate this register.
5529      // Reset NumAllocated to make sure we return consecutive registers.
5530      NumAllocated = 0;
5531      continue;
5532    }
5533
5534    // Okay, this register is good, we can use it.
5535    ++NumAllocated;
5536
5537    // If we allocated enough consecutive registers, succeed.
5538    if (NumAllocated == NumRegs) {
5539      unsigned RegStart = (i-NumAllocated)+1;
5540      unsigned RegEnd   = i+1;
5541      // Mark all of the allocated registers used.
5542      for (unsigned i = RegStart; i != RegEnd; ++i)
5543        Regs.push_back(RegClassRegs[i]);
5544
5545      OpInfo.AssignedRegs = RegsForValue(Regs, *RC->vt_begin(),
5546                                         OpInfo.ConstraintVT);
5547      OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI);
5548      return;
5549    }
5550  }
5551
5552  // Otherwise, we couldn't allocate enough registers for this.
5553}
5554
5555/// visitInlineAsm - Handle a call to an InlineAsm object.
5556///
5557void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) {
5558  const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
5559
5560  /// ConstraintOperands - Information about all of the constraints.
5561  SDISelAsmOperandInfoVector ConstraintOperands;
5562
5563  std::set<unsigned> OutputRegs, InputRegs;
5564
5565  TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints(CS);
5566  bool hasMemory = false;
5567
5568  unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
5569  unsigned ResNo = 0;   // ResNo - The result number of the next output.
5570  for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
5571    ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i]));
5572    SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
5573
5574    EVT OpVT = MVT::Other;
5575
5576    // Compute the value type for each operand.
5577    switch (OpInfo.Type) {
5578    case InlineAsm::isOutput:
5579      // Indirect outputs just consume an argument.
5580      if (OpInfo.isIndirect) {
5581        OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
5582        break;
5583      }
5584
5585      // The return value of the call is this value.  As such, there is no
5586      // corresponding argument.
5587      assert(!CS.getType()->isVoidTy() &&
5588             "Bad inline asm!");
5589      if (const StructType *STy = dyn_cast<StructType>(CS.getType())) {
5590        OpVT = TLI.getValueType(STy->getElementType(ResNo));
5591      } else {
5592        assert(ResNo == 0 && "Asm only has one result!");
5593        OpVT = TLI.getValueType(CS.getType());
5594      }
5595      ++ResNo;
5596      break;
5597    case InlineAsm::isInput:
5598      OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
5599      break;
5600    case InlineAsm::isClobber:
5601      // Nothing to do.
5602      break;
5603    }
5604
5605    // If this is an input or an indirect output, process the call argument.
5606    // BasicBlocks are labels, currently appearing only in asm's.
5607    if (OpInfo.CallOperandVal) {
5608      if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) {
5609        OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
5610      } else {
5611        OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
5612      }
5613
5614      OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, TD);
5615    }
5616
5617    OpInfo.ConstraintVT = OpVT;
5618
5619    // Indirect operand accesses access memory.
5620    if (OpInfo.isIndirect)
5621      hasMemory = true;
5622    else {
5623      for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) {
5624        TargetLowering::ConstraintType CType = TLI.getConstraintType(OpInfo.Codes[j]);
5625        if (CType == TargetLowering::C_Memory) {
5626          hasMemory = true;
5627          break;
5628        }
5629      }
5630    }
5631  }
5632
5633  SDValue Chain, Flag;
5634
5635  // We won't need to flush pending loads if this asm doesn't touch
5636  // memory and is nonvolatile.
5637  if (hasMemory || IA->hasSideEffects())
5638    Chain = getRoot();
5639  else
5640    Chain = DAG.getRoot();
5641
5642  // Second pass over the constraints: compute which constraint option to use
5643  // and assign registers to constraints that want a specific physreg.
5644  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
5645    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
5646
5647    // If this is an output operand with a matching input operand, look up the
5648    // matching input. If their types mismatch, e.g. one is an integer, the
5649    // other is floating point, or their sizes are different, flag it as an
5650    // error.
5651    if (OpInfo.hasMatchingInput()) {
5652      SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
5653
5654      if (OpInfo.ConstraintVT != Input.ConstraintVT) {
5655        if ((OpInfo.ConstraintVT.isInteger() !=
5656             Input.ConstraintVT.isInteger()) ||
5657            (OpInfo.ConstraintVT.getSizeInBits() !=
5658             Input.ConstraintVT.getSizeInBits())) {
5659          report_fatal_error("Unsupported asm: input constraint"
5660                             " with a matching output constraint of"
5661                             " incompatible type!");
5662        }
5663        Input.ConstraintVT = OpInfo.ConstraintVT;
5664      }
5665    }
5666
5667    // Compute the constraint code and ConstraintType to use.
5668    TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
5669
5670    // If this is a memory input, and if the operand is not indirect, do what we
5671    // need to to provide an address for the memory input.
5672    if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
5673        !OpInfo.isIndirect) {
5674      assert((OpInfo.isMultipleAlternative || (OpInfo.Type == InlineAsm::isInput)) &&
5675             "Can only indirectify direct input operands!");
5676
5677      // Memory operands really want the address of the value.  If we don't have
5678      // an indirect input, put it in the constpool if we can, otherwise spill
5679      // it to a stack slot.
5680
5681      // If the operand is a float, integer, or vector constant, spill to a
5682      // constant pool entry to get its address.
5683      const Value *OpVal = OpInfo.CallOperandVal;
5684      if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
5685          isa<ConstantVector>(OpVal)) {
5686        OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal),
5687                                                 TLI.getPointerTy());
5688      } else {
5689        // Otherwise, create a stack slot and emit a store to it before the
5690        // asm.
5691        const Type *Ty = OpVal->getType();
5692        uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty);
5693        unsigned Align  = TLI.getTargetData()->getPrefTypeAlignment(Ty);
5694        MachineFunction &MF = DAG.getMachineFunction();
5695        int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
5696        SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy());
5697        Chain = DAG.getStore(Chain, getCurDebugLoc(),
5698                             OpInfo.CallOperand, StackSlot,
5699                             MachinePointerInfo::getFixedStack(SSFI),
5700                             false, false, 0);
5701        OpInfo.CallOperand = StackSlot;
5702      }
5703
5704      // There is no longer a Value* corresponding to this operand.
5705      OpInfo.CallOperandVal = 0;
5706
5707      // It is now an indirect operand.
5708      OpInfo.isIndirect = true;
5709    }
5710
5711    // If this constraint is for a specific register, allocate it before
5712    // anything else.
5713    if (OpInfo.ConstraintType == TargetLowering::C_Register)
5714      GetRegistersForValue(OpInfo, OutputRegs, InputRegs);
5715  }
5716
5717  // Second pass - Loop over all of the operands, assigning virtual or physregs
5718  // to register class operands.
5719  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
5720    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
5721
5722    // C_Register operands have already been allocated, Other/Memory don't need
5723    // to be.
5724    if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass)
5725      GetRegistersForValue(OpInfo, OutputRegs, InputRegs);
5726  }
5727
5728  // AsmNodeOperands - The operands for the ISD::INLINEASM node.
5729  std::vector<SDValue> AsmNodeOperands;
5730  AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
5731  AsmNodeOperands.push_back(
5732          DAG.getTargetExternalSymbol(IA->getAsmString().c_str(),
5733                                      TLI.getPointerTy()));
5734
5735  // If we have a !srcloc metadata node associated with it, we want to attach
5736  // this to the ultimately generated inline asm machineinstr.  To do this, we
5737  // pass in the third operand as this (potentially null) inline asm MDNode.
5738  const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc");
5739  AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
5740
5741  // Remember the HasSideEffect and AlignStack bits as operand 3.
5742  unsigned ExtraInfo = 0;
5743  if (IA->hasSideEffects())
5744    ExtraInfo |= InlineAsm::Extra_HasSideEffects;
5745  if (IA->isAlignStack())
5746    ExtraInfo |= InlineAsm::Extra_IsAlignStack;
5747  AsmNodeOperands.push_back(DAG.getTargetConstant(ExtraInfo,
5748                                                  TLI.getPointerTy()));
5749
5750  // Loop over all of the inputs, copying the operand values into the
5751  // appropriate registers and processing the output regs.
5752  RegsForValue RetValRegs;
5753
5754  // IndirectStoresToEmit - The set of stores to emit after the inline asm node.
5755  std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit;
5756
5757  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
5758    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
5759
5760    switch (OpInfo.Type) {
5761    case InlineAsm::isOutput: {
5762      if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass &&
5763          OpInfo.ConstraintType != TargetLowering::C_Register) {
5764        // Memory output, or 'other' output (e.g. 'X' constraint).
5765        assert(OpInfo.isIndirect && "Memory output must be indirect operand");
5766
5767        // Add information to the INLINEASM node to know about this output.
5768        unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
5769        AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags,
5770                                                        TLI.getPointerTy()));
5771        AsmNodeOperands.push_back(OpInfo.CallOperand);
5772        break;
5773      }
5774
5775      // Otherwise, this is a register or register class output.
5776
5777      // Copy the output from the appropriate register.  Find a register that
5778      // we can use.
5779      if (OpInfo.AssignedRegs.Regs.empty())
5780        report_fatal_error("Couldn't allocate output reg for constraint '" +
5781                           Twine(OpInfo.ConstraintCode) + "'!");
5782
5783      // If this is an indirect operand, store through the pointer after the
5784      // asm.
5785      if (OpInfo.isIndirect) {
5786        IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs,
5787                                                      OpInfo.CallOperandVal));
5788      } else {
5789        // This is the result value of the call.
5790        assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
5791        // Concatenate this output onto the outputs list.
5792        RetValRegs.append(OpInfo.AssignedRegs);
5793      }
5794
5795      // Add information to the INLINEASM node to know that this register is
5796      // set.
5797      OpInfo.AssignedRegs.AddInlineAsmOperands(OpInfo.isEarlyClobber ?
5798                                           InlineAsm::Kind_RegDefEarlyClobber :
5799                                               InlineAsm::Kind_RegDef,
5800                                               false,
5801                                               0,
5802                                               DAG,
5803                                               AsmNodeOperands);
5804      break;
5805    }
5806    case InlineAsm::isInput: {
5807      SDValue InOperandVal = OpInfo.CallOperand;
5808
5809      if (OpInfo.isMatchingInputConstraint()) {   // Matching constraint?
5810        // If this is required to match an output register we have already set,
5811        // just use its register.
5812        unsigned OperandNo = OpInfo.getMatchedOperand();
5813
5814        // Scan until we find the definition we already emitted of this operand.
5815        // When we find it, create a RegsForValue operand.
5816        unsigned CurOp = InlineAsm::Op_FirstOperand;
5817        for (; OperandNo; --OperandNo) {
5818          // Advance to the next operand.
5819          unsigned OpFlag =
5820            cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
5821          assert((InlineAsm::isRegDefKind(OpFlag) ||
5822                  InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||
5823                  InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?");
5824          CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1;
5825        }
5826
5827        unsigned OpFlag =
5828          cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
5829        if (InlineAsm::isRegDefKind(OpFlag) ||
5830            InlineAsm::isRegDefEarlyClobberKind(OpFlag)) {
5831          // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
5832          if (OpInfo.isIndirect) {
5833            // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
5834            LLVMContext &Ctx = *DAG.getContext();
5835            Ctx.emitError(CS.getInstruction(),  "inline asm not supported yet:"
5836                          " don't know how to handle tied "
5837                          "indirect register inputs");
5838          }
5839
5840          RegsForValue MatchedRegs;
5841          MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType());
5842          EVT RegVT = AsmNodeOperands[CurOp+1].getValueType();
5843          MatchedRegs.RegVTs.push_back(RegVT);
5844          MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo();
5845          for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag);
5846               i != e; ++i)
5847            MatchedRegs.Regs.push_back
5848              (RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT)));
5849
5850          // Use the produced MatchedRegs object to
5851          MatchedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(),
5852                                    Chain, &Flag);
5853          MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse,
5854                                           true, OpInfo.getMatchedOperand(),
5855                                           DAG, AsmNodeOperands);
5856          break;
5857        }
5858
5859        assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!");
5860        assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 &&
5861               "Unexpected number of operands");
5862        // Add information to the INLINEASM node to know about this input.
5863        // See InlineAsm.h isUseOperandTiedToDef.
5864        OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
5865                                                    OpInfo.getMatchedOperand());
5866        AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlag,
5867                                                        TLI.getPointerTy()));
5868        AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
5869        break;
5870      }
5871
5872      // Treat indirect 'X' constraint as memory.
5873      if (OpInfo.ConstraintType == TargetLowering::C_Other &&
5874          OpInfo.isIndirect)
5875        OpInfo.ConstraintType = TargetLowering::C_Memory;
5876
5877      if (OpInfo.ConstraintType == TargetLowering::C_Other) {
5878        std::vector<SDValue> Ops;
5879        TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode[0],
5880                                         Ops, DAG);
5881        if (Ops.empty())
5882          report_fatal_error("Invalid operand for inline asm constraint '" +
5883                             Twine(OpInfo.ConstraintCode) + "'!");
5884
5885        // Add information to the INLINEASM node to know about this input.
5886        unsigned ResOpType =
5887          InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
5888        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
5889                                                        TLI.getPointerTy()));
5890        AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
5891        break;
5892      }
5893
5894      if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
5895        assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
5896        assert(InOperandVal.getValueType() == TLI.getPointerTy() &&
5897               "Memory operands expect pointer values");
5898
5899        // Add information to the INLINEASM node to know about this input.
5900        unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
5901        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
5902                                                        TLI.getPointerTy()));
5903        AsmNodeOperands.push_back(InOperandVal);
5904        break;
5905      }
5906
5907      assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
5908              OpInfo.ConstraintType == TargetLowering::C_Register) &&
5909             "Unknown constraint type!");
5910      assert(!OpInfo.isIndirect &&
5911             "Don't know how to handle indirect register inputs yet!");
5912
5913      // Copy the input into the appropriate registers.
5914      if (OpInfo.AssignedRegs.Regs.empty() ||
5915          !OpInfo.AssignedRegs.areValueTypesLegal(TLI))
5916        report_fatal_error("Couldn't allocate input reg for constraint '" +
5917                           Twine(OpInfo.ConstraintCode) + "'!");
5918
5919      OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(),
5920                                        Chain, &Flag);
5921
5922      OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0,
5923                                               DAG, AsmNodeOperands);
5924      break;
5925    }
5926    case InlineAsm::isClobber: {
5927      // Add the clobbered value to the operand list, so that the register
5928      // allocator is aware that the physreg got clobbered.
5929      if (!OpInfo.AssignedRegs.Regs.empty())
5930        OpInfo.AssignedRegs.AddInlineAsmOperands(
5931                                            InlineAsm::Kind_RegDefEarlyClobber,
5932                                                 false, 0, DAG,
5933                                                 AsmNodeOperands);
5934      break;
5935    }
5936    }
5937  }
5938
5939  // Finish up input operands.  Set the input chain and add the flag last.
5940  AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
5941  if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
5942
5943  Chain = DAG.getNode(ISD::INLINEASM, getCurDebugLoc(),
5944                      DAG.getVTList(MVT::Other, MVT::Glue),
5945                      &AsmNodeOperands[0], AsmNodeOperands.size());
5946  Flag = Chain.getValue(1);
5947
5948  // If this asm returns a register value, copy the result from that register
5949  // and set it as the value of the call.
5950  if (!RetValRegs.Regs.empty()) {
5951    SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(),
5952                                             Chain, &Flag);
5953
5954    // FIXME: Why don't we do this for inline asms with MRVs?
5955    if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) {
5956      EVT ResultType = TLI.getValueType(CS.getType());
5957
5958      // If any of the results of the inline asm is a vector, it may have the
5959      // wrong width/num elts.  This can happen for register classes that can
5960      // contain multiple different value types.  The preg or vreg allocated may
5961      // not have the same VT as was expected.  Convert it to the right type
5962      // with bit_convert.
5963      if (ResultType != Val.getValueType() && Val.getValueType().isVector()) {
5964        Val = DAG.getNode(ISD::BITCAST, getCurDebugLoc(),
5965                          ResultType, Val);
5966
5967      } else if (ResultType != Val.getValueType() &&
5968                 ResultType.isInteger() && Val.getValueType().isInteger()) {
5969        // If a result value was tied to an input value, the computed result may
5970        // have a wider width than the expected result.  Extract the relevant
5971        // portion.
5972        Val = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), ResultType, Val);
5973      }
5974
5975      assert(ResultType == Val.getValueType() && "Asm result value mismatch!");
5976    }
5977
5978    setValue(CS.getInstruction(), Val);
5979    // Don't need to use this as a chain in this case.
5980    if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty())
5981      return;
5982  }
5983
5984  std::vector<std::pair<SDValue, const Value *> > StoresToEmit;
5985
5986  // Process indirect outputs, first output all of the flagged copies out of
5987  // physregs.
5988  for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
5989    RegsForValue &OutRegs = IndirectStoresToEmit[i].first;
5990    const Value *Ptr = IndirectStoresToEmit[i].second;
5991    SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(),
5992                                             Chain, &Flag);
5993    StoresToEmit.push_back(std::make_pair(OutVal, Ptr));
5994  }
5995
5996  // Emit the non-flagged stores from the physregs.
5997  SmallVector<SDValue, 8> OutChains;
5998  for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) {
5999    SDValue Val = DAG.getStore(Chain, getCurDebugLoc(),
6000                               StoresToEmit[i].first,
6001                               getValue(StoresToEmit[i].second),
6002                               MachinePointerInfo(StoresToEmit[i].second),
6003                               false, false, 0);
6004    OutChains.push_back(Val);
6005  }
6006
6007  if (!OutChains.empty())
6008    Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
6009                        &OutChains[0], OutChains.size());
6010
6011  DAG.setRoot(Chain);
6012}
6013
6014void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
6015  DAG.setRoot(DAG.getNode(ISD::VASTART, getCurDebugLoc(),
6016                          MVT::Other, getRoot(),
6017                          getValue(I.getArgOperand(0)),
6018                          DAG.getSrcValue(I.getArgOperand(0))));
6019}
6020
6021void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
6022  const TargetData &TD = *TLI.getTargetData();
6023  SDValue V = DAG.getVAArg(TLI.getValueType(I.getType()), getCurDebugLoc(),
6024                           getRoot(), getValue(I.getOperand(0)),
6025                           DAG.getSrcValue(I.getOperand(0)),
6026                           TD.getABITypeAlignment(I.getType()));
6027  setValue(&I, V);
6028  DAG.setRoot(V.getValue(1));
6029}
6030
6031void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
6032  DAG.setRoot(DAG.getNode(ISD::VAEND, getCurDebugLoc(),
6033                          MVT::Other, getRoot(),
6034                          getValue(I.getArgOperand(0)),
6035                          DAG.getSrcValue(I.getArgOperand(0))));
6036}
6037
6038void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
6039  DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurDebugLoc(),
6040                          MVT::Other, getRoot(),
6041                          getValue(I.getArgOperand(0)),
6042                          getValue(I.getArgOperand(1)),
6043                          DAG.getSrcValue(I.getArgOperand(0)),
6044                          DAG.getSrcValue(I.getArgOperand(1))));
6045}
6046
6047/// TargetLowering::LowerCallTo - This is the default LowerCallTo
6048/// implementation, which just calls LowerCall.
6049/// FIXME: When all targets are
6050/// migrated to using LowerCall, this hook should be integrated into SDISel.
6051std::pair<SDValue, SDValue>
6052TargetLowering::LowerCallTo(SDValue Chain, const Type *RetTy,
6053                            bool RetSExt, bool RetZExt, bool isVarArg,
6054                            bool isInreg, unsigned NumFixedArgs,
6055                            CallingConv::ID CallConv, bool isTailCall,
6056                            bool isReturnValueUsed,
6057                            SDValue Callee,
6058                            ArgListTy &Args, SelectionDAG &DAG,
6059                            DebugLoc dl) const {
6060  // Handle all of the outgoing arguments.
6061  SmallVector<ISD::OutputArg, 32> Outs;
6062  SmallVector<SDValue, 32> OutVals;
6063  for (unsigned i = 0, e = Args.size(); i != e; ++i) {
6064    SmallVector<EVT, 4> ValueVTs;
6065    ComputeValueVTs(*this, Args[i].Ty, ValueVTs);
6066    for (unsigned Value = 0, NumValues = ValueVTs.size();
6067         Value != NumValues; ++Value) {
6068      EVT VT = ValueVTs[Value];
6069      const Type *ArgTy = VT.getTypeForEVT(RetTy->getContext());
6070      SDValue Op = SDValue(Args[i].Node.getNode(),
6071                           Args[i].Node.getResNo() + Value);
6072      ISD::ArgFlagsTy Flags;
6073      unsigned OriginalAlignment =
6074        getTargetData()->getABITypeAlignment(ArgTy);
6075
6076      if (Args[i].isZExt)
6077        Flags.setZExt();
6078      if (Args[i].isSExt)
6079        Flags.setSExt();
6080      if (Args[i].isInReg)
6081        Flags.setInReg();
6082      if (Args[i].isSRet)
6083        Flags.setSRet();
6084      if (Args[i].isByVal) {
6085        Flags.setByVal();
6086        const PointerType *Ty = cast<PointerType>(Args[i].Ty);
6087        const Type *ElementTy = Ty->getElementType();
6088        unsigned FrameAlign = getByValTypeAlignment(ElementTy);
6089        unsigned FrameSize  = getTargetData()->getTypeAllocSize(ElementTy);
6090        // For ByVal, alignment should come from FE.  BE will guess if this
6091        // info is not there but there are cases it cannot get right.
6092        if (Args[i].Alignment)
6093          FrameAlign = Args[i].Alignment;
6094        Flags.setByValAlign(FrameAlign);
6095        Flags.setByValSize(FrameSize);
6096      }
6097      if (Args[i].isNest)
6098        Flags.setNest();
6099      Flags.setOrigAlign(OriginalAlignment);
6100
6101      EVT PartVT = getRegisterType(RetTy->getContext(), VT);
6102      unsigned NumParts = getNumRegisters(RetTy->getContext(), VT);
6103      SmallVector<SDValue, 4> Parts(NumParts);
6104      ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
6105
6106      if (Args[i].isSExt)
6107        ExtendKind = ISD::SIGN_EXTEND;
6108      else if (Args[i].isZExt)
6109        ExtendKind = ISD::ZERO_EXTEND;
6110
6111      getCopyToParts(DAG, dl, Op, &Parts[0], NumParts,
6112                     PartVT, ExtendKind);
6113
6114      for (unsigned j = 0; j != NumParts; ++j) {
6115        // if it isn't first piece, alignment must be 1
6116        ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(),
6117                               i < NumFixedArgs);
6118        if (NumParts > 1 && j == 0)
6119          MyFlags.Flags.setSplit();
6120        else if (j != 0)
6121          MyFlags.Flags.setOrigAlign(1);
6122
6123        Outs.push_back(MyFlags);
6124        OutVals.push_back(Parts[j]);
6125      }
6126    }
6127  }
6128
6129  // Handle the incoming return values from the call.
6130  SmallVector<ISD::InputArg, 32> Ins;
6131  SmallVector<EVT, 4> RetTys;
6132  ComputeValueVTs(*this, RetTy, RetTys);
6133  for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
6134    EVT VT = RetTys[I];
6135    EVT RegisterVT = getRegisterType(RetTy->getContext(), VT);
6136    unsigned NumRegs = getNumRegisters(RetTy->getContext(), VT);
6137    for (unsigned i = 0; i != NumRegs; ++i) {
6138      ISD::InputArg MyFlags;
6139      MyFlags.VT = RegisterVT.getSimpleVT();
6140      MyFlags.Used = isReturnValueUsed;
6141      if (RetSExt)
6142        MyFlags.Flags.setSExt();
6143      if (RetZExt)
6144        MyFlags.Flags.setZExt();
6145      if (isInreg)
6146        MyFlags.Flags.setInReg();
6147      Ins.push_back(MyFlags);
6148    }
6149  }
6150
6151  SmallVector<SDValue, 4> InVals;
6152  Chain = LowerCall(Chain, Callee, CallConv, isVarArg, isTailCall,
6153                    Outs, OutVals, Ins, dl, DAG, InVals);
6154
6155  // Verify that the target's LowerCall behaved as expected.
6156  assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
6157         "LowerCall didn't return a valid chain!");
6158  assert((!isTailCall || InVals.empty()) &&
6159         "LowerCall emitted a return value for a tail call!");
6160  assert((isTailCall || InVals.size() == Ins.size()) &&
6161         "LowerCall didn't emit the correct number of values!");
6162
6163  // For a tail call, the return value is merely live-out and there aren't
6164  // any nodes in the DAG representing it. Return a special value to
6165  // indicate that a tail call has been emitted and no more Instructions
6166  // should be processed in the current block.
6167  if (isTailCall) {
6168    DAG.setRoot(Chain);
6169    return std::make_pair(SDValue(), SDValue());
6170  }
6171
6172  DEBUG(for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
6173          assert(InVals[i].getNode() &&
6174                 "LowerCall emitted a null value!");
6175          assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
6176                 "LowerCall emitted a value with the wrong type!");
6177        });
6178
6179  // Collect the legal value parts into potentially illegal values
6180  // that correspond to the original function's return values.
6181  ISD::NodeType AssertOp = ISD::DELETED_NODE;
6182  if (RetSExt)
6183    AssertOp = ISD::AssertSext;
6184  else if (RetZExt)
6185    AssertOp = ISD::AssertZext;
6186  SmallVector<SDValue, 4> ReturnValues;
6187  unsigned CurReg = 0;
6188  for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
6189    EVT VT = RetTys[I];
6190    EVT RegisterVT = getRegisterType(RetTy->getContext(), VT);
6191    unsigned NumRegs = getNumRegisters(RetTy->getContext(), VT);
6192
6193    ReturnValues.push_back(getCopyFromParts(DAG, dl, &InVals[CurReg],
6194                                            NumRegs, RegisterVT, VT,
6195                                            AssertOp));
6196    CurReg += NumRegs;
6197  }
6198
6199  // For a function returning void, there is no return value. We can't create
6200  // such a node, so we just return a null return value in that case. In
6201  // that case, nothing will actualy look at the value.
6202  if (ReturnValues.empty())
6203    return std::make_pair(SDValue(), Chain);
6204
6205  SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
6206                            DAG.getVTList(&RetTys[0], RetTys.size()),
6207                            &ReturnValues[0], ReturnValues.size());
6208  return std::make_pair(Res, Chain);
6209}
6210
6211void TargetLowering::LowerOperationWrapper(SDNode *N,
6212                                           SmallVectorImpl<SDValue> &Results,
6213                                           SelectionDAG &DAG) const {
6214  SDValue Res = LowerOperation(SDValue(N, 0), DAG);
6215  if (Res.getNode())
6216    Results.push_back(Res);
6217}
6218
6219SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
6220  llvm_unreachable("LowerOperation not implemented for this target!");
6221  return SDValue();
6222}
6223
6224void
6225SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) {
6226  SDValue Op = getNonRegisterValue(V);
6227  assert((Op.getOpcode() != ISD::CopyFromReg ||
6228          cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
6229         "Copy from a reg to the same reg!");
6230  assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg");
6231
6232  RegsForValue RFV(V->getContext(), TLI, Reg, V->getType());
6233  SDValue Chain = DAG.getEntryNode();
6234  RFV.getCopyToRegs(Op, DAG, getCurDebugLoc(), Chain, 0);
6235  PendingExports.push_back(Chain);
6236}
6237
6238#include "llvm/CodeGen/SelectionDAGISel.h"
6239
6240void SelectionDAGISel::LowerArguments(const BasicBlock *LLVMBB) {
6241  // If this is the entry block, emit arguments.
6242  const Function &F = *LLVMBB->getParent();
6243  SelectionDAG &DAG = SDB->DAG;
6244  DebugLoc dl = SDB->getCurDebugLoc();
6245  const TargetData *TD = TLI.getTargetData();
6246  SmallVector<ISD::InputArg, 16> Ins;
6247
6248  // Check whether the function can return without sret-demotion.
6249  SmallVector<ISD::OutputArg, 4> Outs;
6250  GetReturnInfo(F.getReturnType(), F.getAttributes().getRetAttributes(),
6251                Outs, TLI);
6252
6253  if (!FuncInfo->CanLowerReturn) {
6254    // Put in an sret pointer parameter before all the other parameters.
6255    SmallVector<EVT, 1> ValueVTs;
6256    ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs);
6257
6258    // NOTE: Assuming that a pointer will never break down to more than one VT
6259    // or one register.
6260    ISD::ArgFlagsTy Flags;
6261    Flags.setSRet();
6262    EVT RegisterVT = TLI.getRegisterType(*DAG.getContext(), ValueVTs[0]);
6263    ISD::InputArg RetArg(Flags, RegisterVT, true);
6264    Ins.push_back(RetArg);
6265  }
6266
6267  // Set up the incoming argument description vector.
6268  unsigned Idx = 1;
6269  for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end();
6270       I != E; ++I, ++Idx) {
6271    SmallVector<EVT, 4> ValueVTs;
6272    ComputeValueVTs(TLI, I->getType(), ValueVTs);
6273    bool isArgValueUsed = !I->use_empty();
6274    for (unsigned Value = 0, NumValues = ValueVTs.size();
6275         Value != NumValues; ++Value) {
6276      EVT VT = ValueVTs[Value];
6277      const Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
6278      ISD::ArgFlagsTy Flags;
6279      unsigned OriginalAlignment =
6280        TD->getABITypeAlignment(ArgTy);
6281
6282      if (F.paramHasAttr(Idx, Attribute::ZExt))
6283        Flags.setZExt();
6284      if (F.paramHasAttr(Idx, Attribute::SExt))
6285        Flags.setSExt();
6286      if (F.paramHasAttr(Idx, Attribute::InReg))
6287        Flags.setInReg();
6288      if (F.paramHasAttr(Idx, Attribute::StructRet))
6289        Flags.setSRet();
6290      if (F.paramHasAttr(Idx, Attribute::ByVal)) {
6291        Flags.setByVal();
6292        const PointerType *Ty = cast<PointerType>(I->getType());
6293        const Type *ElementTy = Ty->getElementType();
6294        unsigned FrameAlign = TLI.getByValTypeAlignment(ElementTy);
6295        unsigned FrameSize  = TD->getTypeAllocSize(ElementTy);
6296        // For ByVal, alignment should be passed from FE.  BE will guess if
6297        // this info is not there but there are cases it cannot get right.
6298        if (F.getParamAlignment(Idx))
6299          FrameAlign = F.getParamAlignment(Idx);
6300        Flags.setByValAlign(FrameAlign);
6301        Flags.setByValSize(FrameSize);
6302      }
6303      if (F.paramHasAttr(Idx, Attribute::Nest))
6304        Flags.setNest();
6305      Flags.setOrigAlign(OriginalAlignment);
6306
6307      EVT RegisterVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
6308      unsigned NumRegs = TLI.getNumRegisters(*CurDAG->getContext(), VT);
6309      for (unsigned i = 0; i != NumRegs; ++i) {
6310        ISD::InputArg MyFlags(Flags, RegisterVT, isArgValueUsed);
6311        if (NumRegs > 1 && i == 0)
6312          MyFlags.Flags.setSplit();
6313        // if it isn't first piece, alignment must be 1
6314        else if (i > 0)
6315          MyFlags.Flags.setOrigAlign(1);
6316        Ins.push_back(MyFlags);
6317      }
6318    }
6319  }
6320
6321  // Call the target to set up the argument values.
6322  SmallVector<SDValue, 8> InVals;
6323  SDValue NewRoot = TLI.LowerFormalArguments(DAG.getRoot(), F.getCallingConv(),
6324                                             F.isVarArg(), Ins,
6325                                             dl, DAG, InVals);
6326
6327  // Verify that the target's LowerFormalArguments behaved as expected.
6328  assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
6329         "LowerFormalArguments didn't return a valid chain!");
6330  assert(InVals.size() == Ins.size() &&
6331         "LowerFormalArguments didn't emit the correct number of values!");
6332  DEBUG({
6333      for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
6334        assert(InVals[i].getNode() &&
6335               "LowerFormalArguments emitted a null value!");
6336        assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
6337               "LowerFormalArguments emitted a value with the wrong type!");
6338      }
6339    });
6340
6341  // Update the DAG with the new chain value resulting from argument lowering.
6342  DAG.setRoot(NewRoot);
6343
6344  // Set up the argument values.
6345  unsigned i = 0;
6346  Idx = 1;
6347  if (!FuncInfo->CanLowerReturn) {
6348    // Create a virtual register for the sret pointer, and put in a copy
6349    // from the sret argument into it.
6350    SmallVector<EVT, 1> ValueVTs;
6351    ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs);
6352    EVT VT = ValueVTs[0];
6353    EVT RegVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
6354    ISD::NodeType AssertOp = ISD::DELETED_NODE;
6355    SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1,
6356                                        RegVT, VT, AssertOp);
6357
6358    MachineFunction& MF = SDB->DAG.getMachineFunction();
6359    MachineRegisterInfo& RegInfo = MF.getRegInfo();
6360    unsigned SRetReg = RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT));
6361    FuncInfo->DemoteRegister = SRetReg;
6362    NewRoot = SDB->DAG.getCopyToReg(NewRoot, SDB->getCurDebugLoc(),
6363                                    SRetReg, ArgValue);
6364    DAG.setRoot(NewRoot);
6365
6366    // i indexes lowered arguments.  Bump it past the hidden sret argument.
6367    // Idx indexes LLVM arguments.  Don't touch it.
6368    ++i;
6369  }
6370
6371  for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E;
6372      ++I, ++Idx) {
6373    SmallVector<SDValue, 4> ArgValues;
6374    SmallVector<EVT, 4> ValueVTs;
6375    ComputeValueVTs(TLI, I->getType(), ValueVTs);
6376    unsigned NumValues = ValueVTs.size();
6377
6378    // If this argument is unused then remember its value. It is used to generate
6379    // debugging information.
6380    if (I->use_empty() && NumValues)
6381      SDB->setUnusedArgValue(I, InVals[i]);
6382
6383    for (unsigned Value = 0; Value != NumValues; ++Value) {
6384      EVT VT = ValueVTs[Value];
6385      EVT PartVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
6386      unsigned NumParts = TLI.getNumRegisters(*CurDAG->getContext(), VT);
6387
6388      if (!I->use_empty()) {
6389        ISD::NodeType AssertOp = ISD::DELETED_NODE;
6390        if (F.paramHasAttr(Idx, Attribute::SExt))
6391          AssertOp = ISD::AssertSext;
6392        else if (F.paramHasAttr(Idx, Attribute::ZExt))
6393          AssertOp = ISD::AssertZext;
6394
6395        ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i],
6396                                             NumParts, PartVT, VT,
6397                                             AssertOp));
6398      }
6399
6400      i += NumParts;
6401    }
6402
6403    // Note down frame index for byval arguments.
6404    if (I->hasByValAttr() && !ArgValues.empty())
6405      if (FrameIndexSDNode *FI =
6406          dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
6407        FuncInfo->setByValArgumentFrameIndex(I, FI->getIndex());
6408
6409    if (!I->use_empty()) {
6410      SDValue Res;
6411      if (!ArgValues.empty())
6412        Res = DAG.getMergeValues(&ArgValues[0], NumValues,
6413                                 SDB->getCurDebugLoc());
6414      SDB->setValue(I, Res);
6415
6416      // If this argument is live outside of the entry block, insert a copy from
6417      // whereever we got it to the vreg that other BB's will reference it as.
6418      SDB->CopyToExportRegsIfNeeded(I);
6419    }
6420  }
6421
6422  assert(i == InVals.size() && "Argument register count mismatch!");
6423
6424  // Finally, if the target has anything special to do, allow it to do so.
6425  // FIXME: this should insert code into the DAG!
6426  EmitFunctionEntryCode();
6427}
6428
6429/// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
6430/// ensure constants are generated when needed.  Remember the virtual registers
6431/// that need to be added to the Machine PHI nodes as input.  We cannot just
6432/// directly add them, because expansion might result in multiple MBB's for one
6433/// BB.  As such, the start of the BB might correspond to a different MBB than
6434/// the end.
6435///
6436void
6437SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
6438  const TerminatorInst *TI = LLVMBB->getTerminator();
6439
6440  SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
6441
6442  // Check successor nodes' PHI nodes that expect a constant to be available
6443  // from this block.
6444  for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
6445    const BasicBlock *SuccBB = TI->getSuccessor(succ);
6446    if (!isa<PHINode>(SuccBB->begin())) continue;
6447    MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
6448
6449    // If this terminator has multiple identical successors (common for
6450    // switches), only handle each succ once.
6451    if (!SuccsHandled.insert(SuccMBB)) continue;
6452
6453    MachineBasicBlock::iterator MBBI = SuccMBB->begin();
6454
6455    // At this point we know that there is a 1-1 correspondence between LLVM PHI
6456    // nodes and Machine PHI nodes, but the incoming operands have not been
6457    // emitted yet.
6458    for (BasicBlock::const_iterator I = SuccBB->begin();
6459         const PHINode *PN = dyn_cast<PHINode>(I); ++I) {
6460      // Ignore dead phi's.
6461      if (PN->use_empty()) continue;
6462
6463      unsigned Reg;
6464      const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
6465
6466      if (const Constant *C = dyn_cast<Constant>(PHIOp)) {
6467        unsigned &RegOut = ConstantsOut[C];
6468        if (RegOut == 0) {
6469          RegOut = FuncInfo.CreateRegs(C->getType());
6470          CopyValueToVirtualRegister(C, RegOut);
6471        }
6472        Reg = RegOut;
6473      } else {
6474        DenseMap<const Value *, unsigned>::iterator I =
6475          FuncInfo.ValueMap.find(PHIOp);
6476        if (I != FuncInfo.ValueMap.end())
6477          Reg = I->second;
6478        else {
6479          assert(isa<AllocaInst>(PHIOp) &&
6480                 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
6481                 "Didn't codegen value into a register!??");
6482          Reg = FuncInfo.CreateRegs(PHIOp->getType());
6483          CopyValueToVirtualRegister(PHIOp, Reg);
6484        }
6485      }
6486
6487      // Remember that this register needs to added to the machine PHI node as
6488      // the input for this MBB.
6489      SmallVector<EVT, 4> ValueVTs;
6490      ComputeValueVTs(TLI, PN->getType(), ValueVTs);
6491      for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
6492        EVT VT = ValueVTs[vti];
6493        unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
6494        for (unsigned i = 0, e = NumRegisters; i != e; ++i)
6495          FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i));
6496        Reg += NumRegisters;
6497      }
6498    }
6499  }
6500  ConstantsOut.clear();
6501}
6502