SelectionDAGBuilder.cpp revision f056e023189e48d0337c7198d9fed32a9285a434
1//===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements routines for translating from LLVM IR into SelectionDAG IR.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "isel"
15#include "SelectionDAGBuilder.h"
16#include "FunctionLoweringInfo.h"
17#include "llvm/ADT/BitVector.h"
18#include "llvm/ADT/SmallSet.h"
19#include "llvm/Analysis/AliasAnalysis.h"
20#include "llvm/Analysis/ConstantFolding.h"
21#include "llvm/Constants.h"
22#include "llvm/CallingConv.h"
23#include "llvm/DerivedTypes.h"
24#include "llvm/Function.h"
25#include "llvm/GlobalVariable.h"
26#include "llvm/InlineAsm.h"
27#include "llvm/Instructions.h"
28#include "llvm/Intrinsics.h"
29#include "llvm/IntrinsicInst.h"
30#include "llvm/Module.h"
31#include "llvm/CodeGen/FastISel.h"
32#include "llvm/CodeGen/GCStrategy.h"
33#include "llvm/CodeGen/GCMetadata.h"
34#include "llvm/CodeGen/MachineFunction.h"
35#include "llvm/CodeGen/MachineFrameInfo.h"
36#include "llvm/CodeGen/MachineInstrBuilder.h"
37#include "llvm/CodeGen/MachineJumpTableInfo.h"
38#include "llvm/CodeGen/MachineModuleInfo.h"
39#include "llvm/CodeGen/MachineRegisterInfo.h"
40#include "llvm/CodeGen/PseudoSourceValue.h"
41#include "llvm/CodeGen/SelectionDAG.h"
42#include "llvm/CodeGen/DwarfWriter.h"
43#include "llvm/Analysis/DebugInfo.h"
44#include "llvm/Target/TargetRegisterInfo.h"
45#include "llvm/Target/TargetData.h"
46#include "llvm/Target/TargetFrameInfo.h"
47#include "llvm/Target/TargetInstrInfo.h"
48#include "llvm/Target/TargetIntrinsicInfo.h"
49#include "llvm/Target/TargetLowering.h"
50#include "llvm/Target/TargetOptions.h"
51#include "llvm/Support/Compiler.h"
52#include "llvm/Support/CommandLine.h"
53#include "llvm/Support/Debug.h"
54#include "llvm/Support/ErrorHandling.h"
55#include "llvm/Support/MathExtras.h"
56#include "llvm/Support/raw_ostream.h"
57#include <algorithm>
58using namespace llvm;
59
60/// LimitFloatPrecision - Generate low-precision inline sequences for
61/// some float libcalls (6, 8 or 12 bits).
62static unsigned LimitFloatPrecision;
63
64static cl::opt<unsigned, true>
65LimitFPPrecision("limit-float-precision",
66                 cl::desc("Generate low-precision inline sequences "
67                          "for some float libcalls"),
68                 cl::location(LimitFloatPrecision),
69                 cl::init(0));
70
71namespace {
72  /// RegsForValue - This struct represents the registers (physical or virtual)
73  /// that a particular set of values is assigned, and the type information
74  /// about the value. The most common situation is to represent one value at a
75  /// time, but struct or array values are handled element-wise as multiple
76  /// values.  The splitting of aggregates is performed recursively, so that we
77  /// never have aggregate-typed registers. The values at this point do not
78  /// necessarily have legal types, so each value may require one or more
79  /// registers of some legal type.
80  ///
81  struct RegsForValue {
82    /// TLI - The TargetLowering object.
83    ///
84    const TargetLowering *TLI;
85
86    /// ValueVTs - The value types of the values, which may not be legal, and
87    /// may need be promoted or synthesized from one or more registers.
88    ///
89    SmallVector<EVT, 4> ValueVTs;
90
91    /// RegVTs - The value types of the registers. This is the same size as
92    /// ValueVTs and it records, for each value, what the type of the assigned
93    /// register or registers are. (Individual values are never synthesized
94    /// from more than one type of register.)
95    ///
96    /// With virtual registers, the contents of RegVTs is redundant with TLI's
97    /// getRegisterType member function, however when with physical registers
98    /// it is necessary to have a separate record of the types.
99    ///
100    SmallVector<EVT, 4> RegVTs;
101
102    /// Regs - This list holds the registers assigned to the values.
103    /// Each legal or promoted value requires one register, and each
104    /// expanded value requires multiple registers.
105    ///
106    SmallVector<unsigned, 4> Regs;
107
108    RegsForValue() : TLI(0) {}
109
110    RegsForValue(const TargetLowering &tli,
111                 const SmallVector<unsigned, 4> &regs,
112                 EVT regvt, EVT valuevt)
113      : TLI(&tli),  ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {}
114    RegsForValue(const TargetLowering &tli,
115                 const SmallVector<unsigned, 4> &regs,
116                 const SmallVector<EVT, 4> &regvts,
117                 const SmallVector<EVT, 4> &valuevts)
118      : TLI(&tli), ValueVTs(valuevts), RegVTs(regvts), Regs(regs) {}
119    RegsForValue(LLVMContext &Context, const TargetLowering &tli,
120                 unsigned Reg, const Type *Ty) : TLI(&tli) {
121      ComputeValueVTs(tli, Ty, ValueVTs);
122
123      for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
124        EVT ValueVT = ValueVTs[Value];
125        unsigned NumRegs = TLI->getNumRegisters(Context, ValueVT);
126        EVT RegisterVT = TLI->getRegisterType(Context, ValueVT);
127        for (unsigned i = 0; i != NumRegs; ++i)
128          Regs.push_back(Reg + i);
129        RegVTs.push_back(RegisterVT);
130        Reg += NumRegs;
131      }
132    }
133
134    /// append - Add the specified values to this one.
135    void append(const RegsForValue &RHS) {
136      TLI = RHS.TLI;
137      ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end());
138      RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end());
139      Regs.append(RHS.Regs.begin(), RHS.Regs.end());
140    }
141
142
143    /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
144    /// this value and returns the result as a ValueVTs value.  This uses
145    /// Chain/Flag as the input and updates them for the output Chain/Flag.
146    /// If the Flag pointer is NULL, no flag is used.
147    SDValue getCopyFromRegs(SelectionDAG &DAG, DebugLoc dl, unsigned Order,
148                            SDValue &Chain, SDValue *Flag) const;
149
150    /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
151    /// specified value into the registers specified by this object.  This uses
152    /// Chain/Flag as the input and updates them for the output Chain/Flag.
153    /// If the Flag pointer is NULL, no flag is used.
154    void getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl,
155                       unsigned Order, SDValue &Chain, SDValue *Flag) const;
156
157    /// AddInlineAsmOperands - Add this value to the specified inlineasm node
158    /// operand list.  This adds the code marker, matching input operand index
159    /// (if applicable), and includes the number of values added into it.
160    void AddInlineAsmOperands(unsigned Code,
161                              bool HasMatching, unsigned MatchingIdx,
162                              SelectionDAG &DAG, unsigned Order,
163                              std::vector<SDValue> &Ops) const;
164  };
165}
166
167/// getCopyFromParts - Create a value that contains the specified legal parts
168/// combined into the value they represent.  If the parts combine to a type
169/// larger then ValueVT then AssertOp can be used to specify whether the extra
170/// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
171/// (ISD::AssertSext).
172static SDValue getCopyFromParts(SelectionDAG &DAG, DebugLoc dl, unsigned Order,
173                                const SDValue *Parts,
174                                unsigned NumParts, EVT PartVT, EVT ValueVT,
175                                ISD::NodeType AssertOp = ISD::DELETED_NODE) {
176  assert(NumParts > 0 && "No parts to assemble!");
177  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
178  SDValue Val = Parts[0];
179  if (DisableScheduling) DAG.AssignOrdering(Val.getNode(), Order);
180
181  if (NumParts > 1) {
182    // Assemble the value from multiple parts.
183    if (!ValueVT.isVector() && ValueVT.isInteger()) {
184      unsigned PartBits = PartVT.getSizeInBits();
185      unsigned ValueBits = ValueVT.getSizeInBits();
186
187      // Assemble the power of 2 part.
188      unsigned RoundParts = NumParts & (NumParts - 1) ?
189        1 << Log2_32(NumParts) : NumParts;
190      unsigned RoundBits = PartBits * RoundParts;
191      EVT RoundVT = RoundBits == ValueBits ?
192        ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
193      SDValue Lo, Hi;
194
195      EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
196
197      if (RoundParts > 2) {
198        Lo = getCopyFromParts(DAG, dl, Order, Parts, RoundParts / 2,
199                              PartVT, HalfVT);
200        Hi = getCopyFromParts(DAG, dl, Order, Parts + RoundParts / 2,
201                              RoundParts / 2, PartVT, HalfVT);
202      } else {
203        Lo = DAG.getNode(ISD::BIT_CONVERT, dl, HalfVT, Parts[0]);
204        Hi = DAG.getNode(ISD::BIT_CONVERT, dl, HalfVT, Parts[1]);
205      }
206
207      if (TLI.isBigEndian())
208        std::swap(Lo, Hi);
209
210      Val = DAG.getNode(ISD::BUILD_PAIR, dl, RoundVT, Lo, Hi);
211
212      if (DisableScheduling) {
213        DAG.AssignOrdering(Lo.getNode(), Order);
214        DAG.AssignOrdering(Hi.getNode(), Order);
215        DAG.AssignOrdering(Val.getNode(), Order);
216      }
217
218      if (RoundParts < NumParts) {
219        // Assemble the trailing non-power-of-2 part.
220        unsigned OddParts = NumParts - RoundParts;
221        EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
222        Hi = getCopyFromParts(DAG, dl, Order,
223                              Parts + RoundParts, OddParts, PartVT, OddVT);
224
225        // Combine the round and odd parts.
226        Lo = Val;
227        if (TLI.isBigEndian())
228          std::swap(Lo, Hi);
229        EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
230        Hi = DAG.getNode(ISD::ANY_EXTEND, dl, TotalVT, Hi);
231        if (DisableScheduling) DAG.AssignOrdering(Hi.getNode(), Order);
232        Hi = DAG.getNode(ISD::SHL, dl, TotalVT, Hi,
233                         DAG.getConstant(Lo.getValueType().getSizeInBits(),
234                                         TLI.getPointerTy()));
235        if (DisableScheduling) DAG.AssignOrdering(Hi.getNode(), Order);
236        Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, TotalVT, Lo);
237        if (DisableScheduling) DAG.AssignOrdering(Lo.getNode(), Order);
238        Val = DAG.getNode(ISD::OR, dl, TotalVT, Lo, Hi);
239        if (DisableScheduling) DAG.AssignOrdering(Val.getNode(), Order);
240      }
241    } else if (ValueVT.isVector()) {
242      // Handle a multi-element vector.
243      EVT IntermediateVT, RegisterVT;
244      unsigned NumIntermediates;
245      unsigned NumRegs =
246        TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
247                                   NumIntermediates, RegisterVT);
248      assert(NumRegs == NumParts
249             && "Part count doesn't match vector breakdown!");
250      NumParts = NumRegs; // Silence a compiler warning.
251      assert(RegisterVT == PartVT
252             && "Part type doesn't match vector breakdown!");
253      assert(RegisterVT == Parts[0].getValueType() &&
254             "Part type doesn't match part!");
255
256      // Assemble the parts into intermediate operands.
257      SmallVector<SDValue, 8> Ops(NumIntermediates);
258      if (NumIntermediates == NumParts) {
259        // If the register was not expanded, truncate or copy the value,
260        // as appropriate.
261        for (unsigned i = 0; i != NumParts; ++i)
262          Ops[i] = getCopyFromParts(DAG, dl, Order, &Parts[i], 1,
263                                    PartVT, IntermediateVT);
264      } else if (NumParts > 0) {
265        // If the intermediate type was expanded, build the intermediate
266        // operands from the parts.
267        assert(NumParts % NumIntermediates == 0 &&
268               "Must expand into a divisible number of parts!");
269        unsigned Factor = NumParts / NumIntermediates;
270        for (unsigned i = 0; i != NumIntermediates; ++i)
271          Ops[i] = getCopyFromParts(DAG, dl, Order, &Parts[i * Factor], Factor,
272                                    PartVT, IntermediateVT);
273      }
274
275      // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
276      // intermediate operands.
277      Val = DAG.getNode(IntermediateVT.isVector() ?
278                        ISD::CONCAT_VECTORS : ISD::BUILD_VECTOR, dl,
279                        ValueVT, &Ops[0], NumIntermediates);
280      if (DisableScheduling) DAG.AssignOrdering(Val.getNode(), Order);
281    } else if (PartVT.isFloatingPoint()) {
282      // FP split into multiple FP parts (for ppcf128)
283      assert(ValueVT == EVT(MVT::ppcf128) && PartVT == EVT(MVT::f64) &&
284             "Unexpected split");
285      SDValue Lo, Hi;
286      Lo = DAG.getNode(ISD::BIT_CONVERT, dl, EVT(MVT::f64), Parts[0]);
287      Hi = DAG.getNode(ISD::BIT_CONVERT, dl, EVT(MVT::f64), Parts[1]);
288      if (TLI.isBigEndian())
289        std::swap(Lo, Hi);
290      Val = DAG.getNode(ISD::BUILD_PAIR, dl, ValueVT, Lo, Hi);
291
292      if (DisableScheduling) {
293        DAG.AssignOrdering(Hi.getNode(), Order);
294        DAG.AssignOrdering(Lo.getNode(), Order);
295        DAG.AssignOrdering(Val.getNode(), Order);
296      }
297    } else {
298      // FP split into integer parts (soft fp)
299      assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
300             !PartVT.isVector() && "Unexpected split");
301      EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
302      Val = getCopyFromParts(DAG, dl, Order, Parts, NumParts, PartVT, IntVT);
303    }
304  }
305
306  // There is now one part, held in Val.  Correct it to match ValueVT.
307  PartVT = Val.getValueType();
308
309  if (PartVT == ValueVT)
310    return Val;
311
312  if (PartVT.isVector()) {
313    assert(ValueVT.isVector() && "Unknown vector conversion!");
314    SDValue Res = DAG.getNode(ISD::BIT_CONVERT, dl, ValueVT, Val);
315    if (DisableScheduling)
316      DAG.AssignOrdering(Res.getNode(), Order);
317    return Res;
318  }
319
320  if (ValueVT.isVector()) {
321    assert(ValueVT.getVectorElementType() == PartVT &&
322           ValueVT.getVectorNumElements() == 1 &&
323           "Only trivial scalar-to-vector conversions should get here!");
324    SDValue Res = DAG.getNode(ISD::BUILD_VECTOR, dl, ValueVT, Val);
325    if (DisableScheduling)
326      DAG.AssignOrdering(Res.getNode(), Order);
327    return Res;
328  }
329
330  if (PartVT.isInteger() &&
331      ValueVT.isInteger()) {
332    if (ValueVT.bitsLT(PartVT)) {
333      // For a truncate, see if we have any information to
334      // indicate whether the truncated bits will always be
335      // zero or sign-extension.
336      if (AssertOp != ISD::DELETED_NODE)
337        Val = DAG.getNode(AssertOp, dl, PartVT, Val,
338                          DAG.getValueType(ValueVT));
339      if (DisableScheduling) DAG.AssignOrdering(Val.getNode(), Order);
340      Val = DAG.getNode(ISD::TRUNCATE, dl, ValueVT, Val);
341      if (DisableScheduling) DAG.AssignOrdering(Val.getNode(), Order);
342      return Val;
343    } else {
344      Val = DAG.getNode(ISD::ANY_EXTEND, dl, ValueVT, Val);
345      if (DisableScheduling) DAG.AssignOrdering(Val.getNode(), Order);
346      return Val;
347    }
348  }
349
350  if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
351    if (ValueVT.bitsLT(Val.getValueType())) {
352      // FP_ROUND's are always exact here.
353      Val = DAG.getNode(ISD::FP_ROUND, dl, ValueVT, Val,
354                        DAG.getIntPtrConstant(1));
355      if (DisableScheduling) DAG.AssignOrdering(Val.getNode(), Order);
356      return Val;
357    }
358
359    Val = DAG.getNode(ISD::FP_EXTEND, dl, ValueVT, Val);
360    if (DisableScheduling) DAG.AssignOrdering(Val.getNode(), Order);
361    return Val;
362  }
363
364  if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
365    Val = DAG.getNode(ISD::BIT_CONVERT, dl, ValueVT, Val);
366    if (DisableScheduling) DAG.AssignOrdering(Val.getNode(), Order);
367    return Val;
368  }
369
370  llvm_unreachable("Unknown mismatch!");
371  return SDValue();
372}
373
374/// getCopyToParts - Create a series of nodes that contain the specified value
375/// split into legal parts.  If the parts contain more bits than Val, then, for
376/// integers, ExtendKind can be used to specify how to generate the extra bits.
377static void getCopyToParts(SelectionDAG &DAG, DebugLoc dl, unsigned Order,
378                           SDValue Val, SDValue *Parts, unsigned NumParts,
379                           EVT PartVT,
380                           ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
381  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
382  EVT PtrVT = TLI.getPointerTy();
383  EVT ValueVT = Val.getValueType();
384  unsigned PartBits = PartVT.getSizeInBits();
385  unsigned OrigNumParts = NumParts;
386  assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!");
387
388  if (!NumParts)
389    return;
390
391  if (!ValueVT.isVector()) {
392    if (PartVT == ValueVT) {
393      assert(NumParts == 1 && "No-op copy with multiple parts!");
394      Parts[0] = Val;
395      return;
396    }
397
398    if (NumParts * PartBits > ValueVT.getSizeInBits()) {
399      // If the parts cover more bits than the value has, promote the value.
400      if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
401        assert(NumParts == 1 && "Do not know what to promote to!");
402        Val = DAG.getNode(ISD::FP_EXTEND, dl, PartVT, Val);
403      } else if (PartVT.isInteger() && ValueVT.isInteger()) {
404        ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
405        Val = DAG.getNode(ExtendKind, dl, ValueVT, Val);
406      } else {
407        llvm_unreachable("Unknown mismatch!");
408      }
409    } else if (PartBits == ValueVT.getSizeInBits()) {
410      // Different types of the same size.
411      assert(NumParts == 1 && PartVT != ValueVT);
412      Val = DAG.getNode(ISD::BIT_CONVERT, dl, PartVT, Val);
413    } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
414      // If the parts cover less bits than value has, truncate the value.
415      if (PartVT.isInteger() && ValueVT.isInteger()) {
416        ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
417        Val = DAG.getNode(ISD::TRUNCATE, dl, ValueVT, Val);
418      } else {
419        llvm_unreachable("Unknown mismatch!");
420      }
421    }
422
423    if (DisableScheduling) DAG.AssignOrdering(Val.getNode(), Order);
424
425    // The value may have changed - recompute ValueVT.
426    ValueVT = Val.getValueType();
427    assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
428           "Failed to tile the value with PartVT!");
429
430    if (NumParts == 1) {
431      assert(PartVT == ValueVT && "Type conversion failed!");
432      Parts[0] = Val;
433      return;
434    }
435
436    // Expand the value into multiple parts.
437    if (NumParts & (NumParts - 1)) {
438      // The number of parts is not a power of 2.  Split off and copy the tail.
439      assert(PartVT.isInteger() && ValueVT.isInteger() &&
440             "Do not know what to expand to!");
441      unsigned RoundParts = 1 << Log2_32(NumParts);
442      unsigned RoundBits = RoundParts * PartBits;
443      unsigned OddParts = NumParts - RoundParts;
444      SDValue OddVal = DAG.getNode(ISD::SRL, dl, ValueVT, Val,
445                                   DAG.getConstant(RoundBits,
446                                                   TLI.getPointerTy()));
447      getCopyToParts(DAG, dl, Order, OddVal, Parts + RoundParts,
448                     OddParts, PartVT);
449
450      if (TLI.isBigEndian())
451        // The odd parts were reversed by getCopyToParts - unreverse them.
452        std::reverse(Parts + RoundParts, Parts + NumParts);
453
454      NumParts = RoundParts;
455      ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
456      Val = DAG.getNode(ISD::TRUNCATE, dl, ValueVT, Val);
457
458      if (DisableScheduling) {
459        DAG.AssignOrdering(OddVal.getNode(), Order);
460        DAG.AssignOrdering(Val.getNode(), Order);
461      }
462    }
463
464    // The number of parts is a power of 2.  Repeatedly bisect the value using
465    // EXTRACT_ELEMENT.
466    Parts[0] = DAG.getNode(ISD::BIT_CONVERT, dl,
467                           EVT::getIntegerVT(*DAG.getContext(),
468                                             ValueVT.getSizeInBits()),
469                           Val);
470
471    if (DisableScheduling)
472      DAG.AssignOrdering(Parts[0].getNode(), Order);
473
474    for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
475      for (unsigned i = 0; i < NumParts; i += StepSize) {
476        unsigned ThisBits = StepSize * PartBits / 2;
477        EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
478        SDValue &Part0 = Parts[i];
479        SDValue &Part1 = Parts[i+StepSize/2];
480
481        Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
482                            ThisVT, Part0,
483                            DAG.getConstant(1, PtrVT));
484        Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
485                            ThisVT, Part0,
486                            DAG.getConstant(0, PtrVT));
487
488        if (DisableScheduling) {
489          DAG.AssignOrdering(Part0.getNode(), Order);
490          DAG.AssignOrdering(Part1.getNode(), Order);
491        }
492
493        if (ThisBits == PartBits && ThisVT != PartVT) {
494          Part0 = DAG.getNode(ISD::BIT_CONVERT, dl,
495                                                PartVT, Part0);
496          Part1 = DAG.getNode(ISD::BIT_CONVERT, dl,
497                                                PartVT, Part1);
498          if (DisableScheduling) {
499            DAG.AssignOrdering(Part0.getNode(), Order);
500            DAG.AssignOrdering(Part1.getNode(), Order);
501          }
502        }
503      }
504    }
505
506    if (TLI.isBigEndian())
507      std::reverse(Parts, Parts + OrigNumParts);
508
509    return;
510  }
511
512  // Vector ValueVT.
513  if (NumParts == 1) {
514    if (PartVT != ValueVT) {
515      if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
516        Val = DAG.getNode(ISD::BIT_CONVERT, dl, PartVT, Val);
517      } else {
518        assert(ValueVT.getVectorElementType() == PartVT &&
519               ValueVT.getVectorNumElements() == 1 &&
520               "Only trivial vector-to-scalar conversions should get here!");
521        Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
522                          PartVT, Val,
523                          DAG.getConstant(0, PtrVT));
524      }
525    }
526
527    if (DisableScheduling)
528      DAG.AssignOrdering(Val.getNode(), Order);
529
530    Parts[0] = Val;
531    return;
532  }
533
534  // Handle a multi-element vector.
535  EVT IntermediateVT, RegisterVT;
536  unsigned NumIntermediates;
537  unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT,
538                              IntermediateVT, NumIntermediates, RegisterVT);
539  unsigned NumElements = ValueVT.getVectorNumElements();
540
541  assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
542  NumParts = NumRegs; // Silence a compiler warning.
543  assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
544
545  // Split the vector into intermediate operands.
546  SmallVector<SDValue, 8> Ops(NumIntermediates);
547  for (unsigned i = 0; i != NumIntermediates; ++i) {
548    if (IntermediateVT.isVector())
549      Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl,
550                           IntermediateVT, Val,
551                           DAG.getConstant(i * (NumElements / NumIntermediates),
552                                           PtrVT));
553    else
554      Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
555                           IntermediateVT, Val,
556                           DAG.getConstant(i, PtrVT));
557
558    if (DisableScheduling)
559      DAG.AssignOrdering(Ops[i].getNode(), Order);
560  }
561
562  // Split the intermediate operands into legal parts.
563  if (NumParts == NumIntermediates) {
564    // If the register was not expanded, promote or copy the value,
565    // as appropriate.
566    for (unsigned i = 0; i != NumParts; ++i)
567      getCopyToParts(DAG, dl, Order, Ops[i], &Parts[i], 1, PartVT);
568  } else if (NumParts > 0) {
569    // If the intermediate type was expanded, split each the value into
570    // legal parts.
571    assert(NumParts % NumIntermediates == 0 &&
572           "Must expand into a divisible number of parts!");
573    unsigned Factor = NumParts / NumIntermediates;
574    for (unsigned i = 0; i != NumIntermediates; ++i)
575      getCopyToParts(DAG, dl, Order, Ops[i], &Parts[i*Factor], Factor, PartVT);
576  }
577}
578
579
580void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa) {
581  AA = &aa;
582  GFI = gfi;
583  TD = DAG.getTarget().getTargetData();
584}
585
586/// clear - Clear out the curret SelectionDAG and the associated
587/// state and prepare this SelectionDAGBuilder object to be used
588/// for a new block. This doesn't clear out information about
589/// additional blocks that are needed to complete switch lowering
590/// or PHI node updating; that information is cleared out as it is
591/// consumed.
592void SelectionDAGBuilder::clear() {
593  NodeMap.clear();
594  PendingLoads.clear();
595  PendingExports.clear();
596  EdgeMapping.clear();
597  DAG.clear();
598  CurDebugLoc = DebugLoc::getUnknownLoc();
599  HasTailCall = false;
600}
601
602/// getRoot - Return the current virtual root of the Selection DAG,
603/// flushing any PendingLoad items. This must be done before emitting
604/// a store or any other node that may need to be ordered after any
605/// prior load instructions.
606///
607SDValue SelectionDAGBuilder::getRoot() {
608  if (PendingLoads.empty())
609    return DAG.getRoot();
610
611  if (PendingLoads.size() == 1) {
612    SDValue Root = PendingLoads[0];
613    DAG.setRoot(Root);
614    PendingLoads.clear();
615    return Root;
616  }
617
618  // Otherwise, we have to make a token factor node.
619  SDValue Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
620                               &PendingLoads[0], PendingLoads.size());
621  PendingLoads.clear();
622  DAG.setRoot(Root);
623  return Root;
624}
625
626/// getControlRoot - Similar to getRoot, but instead of flushing all the
627/// PendingLoad items, flush all the PendingExports items. It is necessary
628/// to do this before emitting a terminator instruction.
629///
630SDValue SelectionDAGBuilder::getControlRoot() {
631  SDValue Root = DAG.getRoot();
632
633  if (PendingExports.empty())
634    return Root;
635
636  // Turn all of the CopyToReg chains into one factored node.
637  if (Root.getOpcode() != ISD::EntryToken) {
638    unsigned i = 0, e = PendingExports.size();
639    for (; i != e; ++i) {
640      assert(PendingExports[i].getNode()->getNumOperands() > 1);
641      if (PendingExports[i].getNode()->getOperand(0) == Root)
642        break;  // Don't add the root if we already indirectly depend on it.
643    }
644
645    if (i == e)
646      PendingExports.push_back(Root);
647  }
648
649  Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
650                     &PendingExports[0],
651                     PendingExports.size());
652  PendingExports.clear();
653  DAG.setRoot(Root);
654  return Root;
655}
656
657void SelectionDAGBuilder::visit(Instruction &I) {
658  visit(I.getOpcode(), I);
659}
660
661void SelectionDAGBuilder::visit(unsigned Opcode, User &I) {
662  // We're processing a new instruction.
663  ++SDNodeOrder;
664
665  // Note: this doesn't use InstVisitor, because it has to work with
666  // ConstantExpr's in addition to instructions.
667  switch (Opcode) {
668  default: llvm_unreachable("Unknown instruction type encountered!");
669    // Build the switch statement using the Instruction.def file.
670#define HANDLE_INST(NUM, OPCODE, CLASS) \
671  case Instruction::OPCODE: return visit##OPCODE((CLASS&)I);
672#include "llvm/Instruction.def"
673  }
674}
675
676SDValue SelectionDAGBuilder::getValue(const Value *V) {
677  SDValue &N = NodeMap[V];
678  if (N.getNode()) return N;
679
680  if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(V))) {
681    EVT VT = TLI.getValueType(V->getType(), true);
682
683    if (ConstantInt *CI = dyn_cast<ConstantInt>(C))
684      return N = DAG.getConstant(*CI, VT);
685
686    if (GlobalValue *GV = dyn_cast<GlobalValue>(C))
687      return N = DAG.getGlobalAddress(GV, VT);
688
689    if (isa<ConstantPointerNull>(C))
690      return N = DAG.getConstant(0, TLI.getPointerTy());
691
692    if (ConstantFP *CFP = dyn_cast<ConstantFP>(C))
693      return N = DAG.getConstantFP(*CFP, VT);
694
695    if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
696      return N = DAG.getUNDEF(VT);
697
698    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
699      visit(CE->getOpcode(), *CE);
700      SDValue N1 = NodeMap[V];
701      assert(N1.getNode() && "visit didn't populate the ValueMap!");
702      return N1;
703    }
704
705    if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
706      SmallVector<SDValue, 4> Constants;
707      for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end();
708           OI != OE; ++OI) {
709        SDNode *Val = getValue(*OI).getNode();
710        // If the operand is an empty aggregate, there are no values.
711        if (!Val) continue;
712        // Add each leaf value from the operand to the Constants list
713        // to form a flattened list of all the values.
714        for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
715          Constants.push_back(SDValue(Val, i));
716      }
717
718      SDValue Res = DAG.getMergeValues(&Constants[0], Constants.size(),
719                                       getCurDebugLoc());
720      if (DisableScheduling)
721        DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
722      return Res;
723    }
724
725    if (isa<StructType>(C->getType()) || isa<ArrayType>(C->getType())) {
726      assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
727             "Unknown struct or array constant!");
728
729      SmallVector<EVT, 4> ValueVTs;
730      ComputeValueVTs(TLI, C->getType(), ValueVTs);
731      unsigned NumElts = ValueVTs.size();
732      if (NumElts == 0)
733        return SDValue(); // empty struct
734      SmallVector<SDValue, 4> Constants(NumElts);
735      for (unsigned i = 0; i != NumElts; ++i) {
736        EVT EltVT = ValueVTs[i];
737        if (isa<UndefValue>(C))
738          Constants[i] = DAG.getUNDEF(EltVT);
739        else if (EltVT.isFloatingPoint())
740          Constants[i] = DAG.getConstantFP(0, EltVT);
741        else
742          Constants[i] = DAG.getConstant(0, EltVT);
743      }
744
745      SDValue Res = DAG.getMergeValues(&Constants[0], NumElts,
746                                       getCurDebugLoc());
747      if (DisableScheduling)
748        DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
749      return Res;
750    }
751
752    if (BlockAddress *BA = dyn_cast<BlockAddress>(C))
753      return DAG.getBlockAddress(BA, VT);
754
755    const VectorType *VecTy = cast<VectorType>(V->getType());
756    unsigned NumElements = VecTy->getNumElements();
757
758    // Now that we know the number and type of the elements, get that number of
759    // elements into the Ops array based on what kind of constant it is.
760    SmallVector<SDValue, 16> Ops;
761    if (ConstantVector *CP = dyn_cast<ConstantVector>(C)) {
762      for (unsigned i = 0; i != NumElements; ++i)
763        Ops.push_back(getValue(CP->getOperand(i)));
764    } else {
765      assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!");
766      EVT EltVT = TLI.getValueType(VecTy->getElementType());
767
768      SDValue Op;
769      if (EltVT.isFloatingPoint())
770        Op = DAG.getConstantFP(0, EltVT);
771      else
772        Op = DAG.getConstant(0, EltVT);
773      Ops.assign(NumElements, Op);
774    }
775
776    // Create a BUILD_VECTOR node.
777    SDValue Res = DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(),
778                              VT, &Ops[0], Ops.size());
779    if (DisableScheduling)
780      DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
781
782    return NodeMap[V] = Res;
783  }
784
785  // If this is a static alloca, generate it as the frameindex instead of
786  // computation.
787  if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
788    DenseMap<const AllocaInst*, int>::iterator SI =
789      FuncInfo.StaticAllocaMap.find(AI);
790    if (SI != FuncInfo.StaticAllocaMap.end())
791      return DAG.getFrameIndex(SI->second, TLI.getPointerTy());
792  }
793
794  unsigned InReg = FuncInfo.ValueMap[V];
795  assert(InReg && "Value not in map!");
796
797  RegsForValue RFV(*DAG.getContext(), TLI, InReg, V->getType());
798  SDValue Chain = DAG.getEntryNode();
799  return RFV.getCopyFromRegs(DAG, getCurDebugLoc(),
800                             SDNodeOrder, Chain, NULL);
801}
802
803/// Get the EVTs and ArgFlags collections that represent the legalized return
804/// type of the given function.  This does not require a DAG or a return value,
805/// and is suitable for use before any DAGs for the function are constructed.
806static void getReturnInfo(const Type* ReturnType,
807                   Attributes attr, SmallVectorImpl<EVT> &OutVTs,
808                   SmallVectorImpl<ISD::ArgFlagsTy> &OutFlags,
809                   TargetLowering &TLI,
810                   SmallVectorImpl<uint64_t> *Offsets = 0) {
811  SmallVector<EVT, 4> ValueVTs;
812  ComputeValueVTs(TLI, ReturnType, ValueVTs);
813  unsigned NumValues = ValueVTs.size();
814  if (NumValues == 0) return;
815  unsigned Offset = 0;
816
817  for (unsigned j = 0, f = NumValues; j != f; ++j) {
818    EVT VT = ValueVTs[j];
819    ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
820
821    if (attr & Attribute::SExt)
822      ExtendKind = ISD::SIGN_EXTEND;
823    else if (attr & Attribute::ZExt)
824      ExtendKind = ISD::ZERO_EXTEND;
825
826    // FIXME: C calling convention requires the return type to be promoted to
827    // at least 32-bit. But this is not necessary for non-C calling
828    // conventions. The frontend should mark functions whose return values
829    // require promoting with signext or zeroext attributes.
830    if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) {
831      EVT MinVT = TLI.getRegisterType(ReturnType->getContext(), MVT::i32);
832      if (VT.bitsLT(MinVT))
833        VT = MinVT;
834    }
835
836    unsigned NumParts = TLI.getNumRegisters(ReturnType->getContext(), VT);
837    EVT PartVT = TLI.getRegisterType(ReturnType->getContext(), VT);
838    unsigned PartSize = TLI.getTargetData()->getTypeAllocSize(
839                        PartVT.getTypeForEVT(ReturnType->getContext()));
840
841    // 'inreg' on function refers to return value
842    ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
843    if (attr & Attribute::InReg)
844      Flags.setInReg();
845
846    // Propagate extension type if any
847    if (attr & Attribute::SExt)
848      Flags.setSExt();
849    else if (attr & Attribute::ZExt)
850      Flags.setZExt();
851
852    for (unsigned i = 0; i < NumParts; ++i) {
853      OutVTs.push_back(PartVT);
854      OutFlags.push_back(Flags);
855      if (Offsets)
856      {
857        Offsets->push_back(Offset);
858        Offset += PartSize;
859      }
860    }
861  }
862}
863
864void SelectionDAGBuilder::visitRet(ReturnInst &I) {
865  SDValue Chain = getControlRoot();
866  SmallVector<ISD::OutputArg, 8> Outs;
867  FunctionLoweringInfo &FLI = DAG.getFunctionLoweringInfo();
868
869  if (!FLI.CanLowerReturn) {
870    unsigned DemoteReg = FLI.DemoteRegister;
871    const Function *F = I.getParent()->getParent();
872
873    // Emit a store of the return value through the virtual register.
874    // Leave Outs empty so that LowerReturn won't try to load return
875    // registers the usual way.
876    SmallVector<EVT, 1> PtrValueVTs;
877    ComputeValueVTs(TLI, PointerType::getUnqual(F->getReturnType()),
878                    PtrValueVTs);
879
880    SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]);
881    SDValue RetOp = getValue(I.getOperand(0));
882
883    SmallVector<EVT, 4> ValueVTs;
884    SmallVector<uint64_t, 4> Offsets;
885    ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs, &Offsets);
886    unsigned NumValues = ValueVTs.size();
887
888    SmallVector<SDValue, 4> Chains(NumValues);
889    EVT PtrVT = PtrValueVTs[0];
890    for (unsigned i = 0; i != NumValues; ++i) {
891      SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT, RetPtr,
892                                DAG.getConstant(Offsets[i], PtrVT));
893      Chains[i] =
894        DAG.getStore(Chain, getCurDebugLoc(),
895                     SDValue(RetOp.getNode(), RetOp.getResNo() + i),
896                     Add, NULL, Offsets[i], false, 0);
897
898      if (DisableScheduling) {
899        DAG.AssignOrdering(Add.getNode(), SDNodeOrder);
900        DAG.AssignOrdering(Chains[i].getNode(), SDNodeOrder);
901      }
902    }
903
904    Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
905                        MVT::Other, &Chains[0], NumValues);
906
907    if (DisableScheduling)
908      DAG.AssignOrdering(Chain.getNode(), SDNodeOrder);
909  } else {
910    for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
911      SmallVector<EVT, 4> ValueVTs;
912      ComputeValueVTs(TLI, I.getOperand(i)->getType(), ValueVTs);
913      unsigned NumValues = ValueVTs.size();
914      if (NumValues == 0) continue;
915
916      SDValue RetOp = getValue(I.getOperand(i));
917      for (unsigned j = 0, f = NumValues; j != f; ++j) {
918        EVT VT = ValueVTs[j];
919
920        ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
921
922        const Function *F = I.getParent()->getParent();
923        if (F->paramHasAttr(0, Attribute::SExt))
924          ExtendKind = ISD::SIGN_EXTEND;
925        else if (F->paramHasAttr(0, Attribute::ZExt))
926          ExtendKind = ISD::ZERO_EXTEND;
927
928        // FIXME: C calling convention requires the return type to be promoted
929        // to at least 32-bit. But this is not necessary for non-C calling
930        // conventions. The frontend should mark functions whose return values
931        // require promoting with signext or zeroext attributes.
932        if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) {
933          EVT MinVT = TLI.getRegisterType(*DAG.getContext(), MVT::i32);
934          if (VT.bitsLT(MinVT))
935            VT = MinVT;
936        }
937
938        unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), VT);
939        EVT PartVT = TLI.getRegisterType(*DAG.getContext(), VT);
940        SmallVector<SDValue, 4> Parts(NumParts);
941        getCopyToParts(DAG, getCurDebugLoc(), SDNodeOrder,
942                       SDValue(RetOp.getNode(), RetOp.getResNo() + j),
943                       &Parts[0], NumParts, PartVT, ExtendKind);
944
945        // 'inreg' on function refers to return value
946        ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
947        if (F->paramHasAttr(0, Attribute::InReg))
948          Flags.setInReg();
949
950        // Propagate extension type if any
951        if (F->paramHasAttr(0, Attribute::SExt))
952          Flags.setSExt();
953        else if (F->paramHasAttr(0, Attribute::ZExt))
954          Flags.setZExt();
955
956        for (unsigned i = 0; i < NumParts; ++i)
957          Outs.push_back(ISD::OutputArg(Flags, Parts[i], /*isfixed=*/true));
958      }
959    }
960  }
961
962  bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
963  CallingConv::ID CallConv =
964    DAG.getMachineFunction().getFunction()->getCallingConv();
965  Chain = TLI.LowerReturn(Chain, CallConv, isVarArg,
966                          Outs, getCurDebugLoc(), DAG);
967
968  // Verify that the target's LowerReturn behaved as expected.
969  assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
970         "LowerReturn didn't return a valid chain!");
971
972  // Update the DAG with the new chain value resulting from return lowering.
973  DAG.setRoot(Chain);
974
975  if (DisableScheduling)
976    DAG.AssignOrdering(Chain.getNode(), SDNodeOrder);
977}
978
979/// CopyToExportRegsIfNeeded - If the given value has virtual registers
980/// created for it, emit nodes to copy the value into the virtual
981/// registers.
982void SelectionDAGBuilder::CopyToExportRegsIfNeeded(Value *V) {
983  if (!V->use_empty()) {
984    DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
985    if (VMI != FuncInfo.ValueMap.end())
986      CopyValueToVirtualRegister(V, VMI->second);
987  }
988}
989
990/// ExportFromCurrentBlock - If this condition isn't known to be exported from
991/// the current basic block, add it to ValueMap now so that we'll get a
992/// CopyTo/FromReg.
993void SelectionDAGBuilder::ExportFromCurrentBlock(Value *V) {
994  // No need to export constants.
995  if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
996
997  // Already exported?
998  if (FuncInfo.isExportedInst(V)) return;
999
1000  unsigned Reg = FuncInfo.InitializeRegForValue(V);
1001  CopyValueToVirtualRegister(V, Reg);
1002}
1003
1004bool SelectionDAGBuilder::isExportableFromCurrentBlock(Value *V,
1005                                                     const BasicBlock *FromBB) {
1006  // The operands of the setcc have to be in this block.  We don't know
1007  // how to export them from some other block.
1008  if (Instruction *VI = dyn_cast<Instruction>(V)) {
1009    // Can export from current BB.
1010    if (VI->getParent() == FromBB)
1011      return true;
1012
1013    // Is already exported, noop.
1014    return FuncInfo.isExportedInst(V);
1015  }
1016
1017  // If this is an argument, we can export it if the BB is the entry block or
1018  // if it is already exported.
1019  if (isa<Argument>(V)) {
1020    if (FromBB == &FromBB->getParent()->getEntryBlock())
1021      return true;
1022
1023    // Otherwise, can only export this if it is already exported.
1024    return FuncInfo.isExportedInst(V);
1025  }
1026
1027  // Otherwise, constants can always be exported.
1028  return true;
1029}
1030
1031static bool InBlock(const Value *V, const BasicBlock *BB) {
1032  if (const Instruction *I = dyn_cast<Instruction>(V))
1033    return I->getParent() == BB;
1034  return true;
1035}
1036
1037/// getFCmpCondCode - Return the ISD condition code corresponding to
1038/// the given LLVM IR floating-point condition code.  This includes
1039/// consideration of global floating-point math flags.
1040///
1041static ISD::CondCode getFCmpCondCode(FCmpInst::Predicate Pred) {
1042  ISD::CondCode FPC, FOC;
1043  switch (Pred) {
1044  case FCmpInst::FCMP_FALSE: FOC = FPC = ISD::SETFALSE; break;
1045  case FCmpInst::FCMP_OEQ:   FOC = ISD::SETEQ; FPC = ISD::SETOEQ; break;
1046  case FCmpInst::FCMP_OGT:   FOC = ISD::SETGT; FPC = ISD::SETOGT; break;
1047  case FCmpInst::FCMP_OGE:   FOC = ISD::SETGE; FPC = ISD::SETOGE; break;
1048  case FCmpInst::FCMP_OLT:   FOC = ISD::SETLT; FPC = ISD::SETOLT; break;
1049  case FCmpInst::FCMP_OLE:   FOC = ISD::SETLE; FPC = ISD::SETOLE; break;
1050  case FCmpInst::FCMP_ONE:   FOC = ISD::SETNE; FPC = ISD::SETONE; break;
1051  case FCmpInst::FCMP_ORD:   FOC = FPC = ISD::SETO;   break;
1052  case FCmpInst::FCMP_UNO:   FOC = FPC = ISD::SETUO;  break;
1053  case FCmpInst::FCMP_UEQ:   FOC = ISD::SETEQ; FPC = ISD::SETUEQ; break;
1054  case FCmpInst::FCMP_UGT:   FOC = ISD::SETGT; FPC = ISD::SETUGT; break;
1055  case FCmpInst::FCMP_UGE:   FOC = ISD::SETGE; FPC = ISD::SETUGE; break;
1056  case FCmpInst::FCMP_ULT:   FOC = ISD::SETLT; FPC = ISD::SETULT; break;
1057  case FCmpInst::FCMP_ULE:   FOC = ISD::SETLE; FPC = ISD::SETULE; break;
1058  case FCmpInst::FCMP_UNE:   FOC = ISD::SETNE; FPC = ISD::SETUNE; break;
1059  case FCmpInst::FCMP_TRUE:  FOC = FPC = ISD::SETTRUE; break;
1060  default:
1061    llvm_unreachable("Invalid FCmp predicate opcode!");
1062    FOC = FPC = ISD::SETFALSE;
1063    break;
1064  }
1065  if (FiniteOnlyFPMath())
1066    return FOC;
1067  else
1068    return FPC;
1069}
1070
1071/// getICmpCondCode - Return the ISD condition code corresponding to
1072/// the given LLVM IR integer condition code.
1073///
1074static ISD::CondCode getICmpCondCode(ICmpInst::Predicate Pred) {
1075  switch (Pred) {
1076  case ICmpInst::ICMP_EQ:  return ISD::SETEQ;
1077  case ICmpInst::ICMP_NE:  return ISD::SETNE;
1078  case ICmpInst::ICMP_SLE: return ISD::SETLE;
1079  case ICmpInst::ICMP_ULE: return ISD::SETULE;
1080  case ICmpInst::ICMP_SGE: return ISD::SETGE;
1081  case ICmpInst::ICMP_UGE: return ISD::SETUGE;
1082  case ICmpInst::ICMP_SLT: return ISD::SETLT;
1083  case ICmpInst::ICMP_ULT: return ISD::SETULT;
1084  case ICmpInst::ICMP_SGT: return ISD::SETGT;
1085  case ICmpInst::ICMP_UGT: return ISD::SETUGT;
1086  default:
1087    llvm_unreachable("Invalid ICmp predicate opcode!");
1088    return ISD::SETNE;
1089  }
1090}
1091
1092/// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
1093/// This function emits a branch and is used at the leaves of an OR or an
1094/// AND operator tree.
1095///
1096void
1097SelectionDAGBuilder::EmitBranchForMergedCondition(Value *Cond,
1098                                                  MachineBasicBlock *TBB,
1099                                                  MachineBasicBlock *FBB,
1100                                                  MachineBasicBlock *CurBB) {
1101  const BasicBlock *BB = CurBB->getBasicBlock();
1102
1103  // If the leaf of the tree is a comparison, merge the condition into
1104  // the caseblock.
1105  if (CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
1106    // The operands of the cmp have to be in this block.  We don't know
1107    // how to export them from some other block.  If this is the first block
1108    // of the sequence, no exporting is needed.
1109    if (CurBB == CurMBB ||
1110        (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
1111         isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
1112      ISD::CondCode Condition;
1113      if (ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
1114        Condition = getICmpCondCode(IC->getPredicate());
1115      } else if (FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) {
1116        Condition = getFCmpCondCode(FC->getPredicate());
1117      } else {
1118        Condition = ISD::SETEQ; // silence warning.
1119        llvm_unreachable("Unknown compare instruction");
1120      }
1121
1122      CaseBlock CB(Condition, BOp->getOperand(0),
1123                   BOp->getOperand(1), NULL, TBB, FBB, CurBB);
1124      SwitchCases.push_back(CB);
1125      return;
1126    }
1127  }
1128
1129  // Create a CaseBlock record representing this branch.
1130  CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()),
1131               NULL, TBB, FBB, CurBB);
1132  SwitchCases.push_back(CB);
1133}
1134
1135/// FindMergedConditions - If Cond is an expression like
1136void SelectionDAGBuilder::FindMergedConditions(Value *Cond,
1137                                               MachineBasicBlock *TBB,
1138                                               MachineBasicBlock *FBB,
1139                                               MachineBasicBlock *CurBB,
1140                                               unsigned Opc) {
1141  // If this node is not part of the or/and tree, emit it as a branch.
1142  Instruction *BOp = dyn_cast<Instruction>(Cond);
1143  if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
1144      (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() ||
1145      BOp->getParent() != CurBB->getBasicBlock() ||
1146      !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
1147      !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
1148    EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB);
1149    return;
1150  }
1151
1152  //  Create TmpBB after CurBB.
1153  MachineFunction::iterator BBI = CurBB;
1154  MachineFunction &MF = DAG.getMachineFunction();
1155  MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
1156  CurBB->getParent()->insert(++BBI, TmpBB);
1157
1158  if (Opc == Instruction::Or) {
1159    // Codegen X | Y as:
1160    //   jmp_if_X TBB
1161    //   jmp TmpBB
1162    // TmpBB:
1163    //   jmp_if_Y TBB
1164    //   jmp FBB
1165    //
1166
1167    // Emit the LHS condition.
1168    FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, Opc);
1169
1170    // Emit the RHS condition into TmpBB.
1171    FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, Opc);
1172  } else {
1173    assert(Opc == Instruction::And && "Unknown merge op!");
1174    // Codegen X & Y as:
1175    //   jmp_if_X TmpBB
1176    //   jmp FBB
1177    // TmpBB:
1178    //   jmp_if_Y TBB
1179    //   jmp FBB
1180    //
1181    //  This requires creation of TmpBB after CurBB.
1182
1183    // Emit the LHS condition.
1184    FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, Opc);
1185
1186    // Emit the RHS condition into TmpBB.
1187    FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, Opc);
1188  }
1189}
1190
1191/// If the set of cases should be emitted as a series of branches, return true.
1192/// If we should emit this as a bunch of and/or'd together conditions, return
1193/// false.
1194bool
1195SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases){
1196  if (Cases.size() != 2) return true;
1197
1198  // If this is two comparisons of the same values or'd or and'd together, they
1199  // will get folded into a single comparison, so don't emit two blocks.
1200  if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
1201       Cases[0].CmpRHS == Cases[1].CmpRHS) ||
1202      (Cases[0].CmpRHS == Cases[1].CmpLHS &&
1203       Cases[0].CmpLHS == Cases[1].CmpRHS)) {
1204    return false;
1205  }
1206
1207  // Handle: (X != null) | (Y != null) --> (X|Y) != 0
1208  // Handle: (X == null) & (Y == null) --> (X|Y) == 0
1209  if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
1210      Cases[0].CC == Cases[1].CC &&
1211      isa<Constant>(Cases[0].CmpRHS) &&
1212      cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
1213    if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
1214      return false;
1215    if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
1216      return false;
1217  }
1218
1219  return true;
1220}
1221
1222void SelectionDAGBuilder::visitBr(BranchInst &I) {
1223  // Update machine-CFG edges.
1224  MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
1225
1226  // Figure out which block is immediately after the current one.
1227  MachineBasicBlock *NextBlock = 0;
1228  MachineFunction::iterator BBI = CurMBB;
1229  if (++BBI != FuncInfo.MF->end())
1230    NextBlock = BBI;
1231
1232  if (I.isUnconditional()) {
1233    // Update machine-CFG edges.
1234    CurMBB->addSuccessor(Succ0MBB);
1235
1236    // If this is not a fall-through branch, emit the branch.
1237    if (Succ0MBB != NextBlock) {
1238      SDValue V = DAG.getNode(ISD::BR, getCurDebugLoc(),
1239                              MVT::Other, getControlRoot(),
1240                              DAG.getBasicBlock(Succ0MBB));
1241      DAG.setRoot(V);
1242
1243      if (DisableScheduling)
1244        DAG.AssignOrdering(V.getNode(), SDNodeOrder);
1245    }
1246
1247    return;
1248  }
1249
1250  // If this condition is one of the special cases we handle, do special stuff
1251  // now.
1252  Value *CondVal = I.getCondition();
1253  MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
1254
1255  // If this is a series of conditions that are or'd or and'd together, emit
1256  // this as a sequence of branches instead of setcc's with and/or operations.
1257  // For example, instead of something like:
1258  //     cmp A, B
1259  //     C = seteq
1260  //     cmp D, E
1261  //     F = setle
1262  //     or C, F
1263  //     jnz foo
1264  // Emit:
1265  //     cmp A, B
1266  //     je foo
1267  //     cmp D, E
1268  //     jle foo
1269  //
1270  if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
1271    if (BOp->hasOneUse() &&
1272        (BOp->getOpcode() == Instruction::And ||
1273         BOp->getOpcode() == Instruction::Or)) {
1274      FindMergedConditions(BOp, Succ0MBB, Succ1MBB, CurMBB, BOp->getOpcode());
1275      // If the compares in later blocks need to use values not currently
1276      // exported from this block, export them now.  This block should always
1277      // be the first entry.
1278      assert(SwitchCases[0].ThisBB == CurMBB && "Unexpected lowering!");
1279
1280      // Allow some cases to be rejected.
1281      if (ShouldEmitAsBranches(SwitchCases)) {
1282        for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
1283          ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
1284          ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
1285        }
1286
1287        // Emit the branch for this block.
1288        visitSwitchCase(SwitchCases[0]);
1289        SwitchCases.erase(SwitchCases.begin());
1290        return;
1291      }
1292
1293      // Okay, we decided not to do this, remove any inserted MBB's and clear
1294      // SwitchCases.
1295      for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
1296        FuncInfo.MF->erase(SwitchCases[i].ThisBB);
1297
1298      SwitchCases.clear();
1299    }
1300  }
1301
1302  // Create a CaseBlock record representing this branch.
1303  CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
1304               NULL, Succ0MBB, Succ1MBB, CurMBB);
1305
1306  // Use visitSwitchCase to actually insert the fast branch sequence for this
1307  // cond branch.
1308  visitSwitchCase(CB);
1309}
1310
1311/// visitSwitchCase - Emits the necessary code to represent a single node in
1312/// the binary search tree resulting from lowering a switch instruction.
1313void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB) {
1314  SDValue Cond;
1315  SDValue CondLHS = getValue(CB.CmpLHS);
1316  DebugLoc dl = getCurDebugLoc();
1317
1318  // Build the setcc now.
1319  if (CB.CmpMHS == NULL) {
1320    // Fold "(X == true)" to X and "(X == false)" to !X to
1321    // handle common cases produced by branch lowering.
1322    if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
1323        CB.CC == ISD::SETEQ)
1324      Cond = CondLHS;
1325    else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
1326             CB.CC == ISD::SETEQ) {
1327      SDValue True = DAG.getConstant(1, CondLHS.getValueType());
1328      Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
1329    } else
1330      Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
1331  } else {
1332    assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
1333
1334    const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
1335    const APInt& High  = cast<ConstantInt>(CB.CmpRHS)->getValue();
1336
1337    SDValue CmpOp = getValue(CB.CmpMHS);
1338    EVT VT = CmpOp.getValueType();
1339
1340    if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
1341      Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, VT),
1342                          ISD::SETLE);
1343    } else {
1344      SDValue SUB = DAG.getNode(ISD::SUB, dl,
1345                                VT, CmpOp, DAG.getConstant(Low, VT));
1346      Cond = DAG.getSetCC(dl, MVT::i1, SUB,
1347                          DAG.getConstant(High-Low, VT), ISD::SETULE);
1348    }
1349  }
1350
1351  if (DisableScheduling)
1352    DAG.AssignOrdering(Cond.getNode(), SDNodeOrder);
1353
1354  // Update successor info
1355  CurMBB->addSuccessor(CB.TrueBB);
1356  CurMBB->addSuccessor(CB.FalseBB);
1357
1358  // Set NextBlock to be the MBB immediately after the current one, if any.
1359  // This is used to avoid emitting unnecessary branches to the next block.
1360  MachineBasicBlock *NextBlock = 0;
1361  MachineFunction::iterator BBI = CurMBB;
1362  if (++BBI != FuncInfo.MF->end())
1363    NextBlock = BBI;
1364
1365  // If the lhs block is the next block, invert the condition so that we can
1366  // fall through to the lhs instead of the rhs block.
1367  if (CB.TrueBB == NextBlock) {
1368    std::swap(CB.TrueBB, CB.FalseBB);
1369    SDValue True = DAG.getConstant(1, Cond.getValueType());
1370    Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
1371
1372    if (DisableScheduling)
1373      DAG.AssignOrdering(Cond.getNode(), SDNodeOrder);
1374  }
1375
1376  SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
1377                               MVT::Other, getControlRoot(), Cond,
1378                               DAG.getBasicBlock(CB.TrueBB));
1379
1380  if (DisableScheduling)
1381    DAG.AssignOrdering(BrCond.getNode(), SDNodeOrder);
1382
1383  // If the branch was constant folded, fix up the CFG.
1384  if (BrCond.getOpcode() == ISD::BR) {
1385    CurMBB->removeSuccessor(CB.FalseBB);
1386  } else {
1387    // Otherwise, go ahead and insert the false branch.
1388    if (BrCond == getControlRoot())
1389      CurMBB->removeSuccessor(CB.TrueBB);
1390
1391    if (CB.FalseBB != NextBlock) {
1392      BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
1393                           DAG.getBasicBlock(CB.FalseBB));
1394
1395      if (DisableScheduling)
1396        DAG.AssignOrdering(BrCond.getNode(), SDNodeOrder);
1397    }
1398  }
1399
1400  DAG.setRoot(BrCond);
1401}
1402
1403/// visitJumpTable - Emit JumpTable node in the current MBB
1404void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) {
1405  // Emit the code for the jump table
1406  assert(JT.Reg != -1U && "Should lower JT Header first!");
1407  EVT PTy = TLI.getPointerTy();
1408  SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(),
1409                                     JT.Reg, PTy);
1410  SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
1411  SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurDebugLoc(),
1412                                    MVT::Other, Index.getValue(1),
1413                                    Table, Index);
1414  DAG.setRoot(BrJumpTable);
1415
1416  if (DisableScheduling) {
1417    DAG.AssignOrdering(Index.getNode(), SDNodeOrder);
1418    DAG.AssignOrdering(Table.getNode(), SDNodeOrder);
1419    DAG.AssignOrdering(BrJumpTable.getNode(), SDNodeOrder);
1420  }
1421}
1422
1423/// visitJumpTableHeader - This function emits necessary code to produce index
1424/// in the JumpTable from switch case.
1425void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT,
1426                                               JumpTableHeader &JTH) {
1427  // Subtract the lowest switch case value from the value being switched on and
1428  // conditional branch to default mbb if the result is greater than the
1429  // difference between smallest and largest cases.
1430  SDValue SwitchOp = getValue(JTH.SValue);
1431  EVT VT = SwitchOp.getValueType();
1432  SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp,
1433                            DAG.getConstant(JTH.First, VT));
1434
1435  // The SDNode we just created, which holds the value being switched on minus
1436  // the the smallest case value, needs to be copied to a virtual register so it
1437  // can be used as an index into the jump table in a subsequent basic block.
1438  // This value may be smaller or larger than the target's pointer type, and
1439  // therefore require extension or truncating.
1440  SwitchOp = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(), TLI.getPointerTy());
1441
1442  unsigned JumpTableReg = FuncInfo.MakeReg(TLI.getPointerTy());
1443  SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(),
1444                                    JumpTableReg, SwitchOp);
1445  JT.Reg = JumpTableReg;
1446
1447  // Emit the range check for the jump table, and branch to the default block
1448  // for the switch statement if the value being switched on exceeds the largest
1449  // case in the switch.
1450  SDValue CMP = DAG.getSetCC(getCurDebugLoc(),
1451                             TLI.getSetCCResultType(Sub.getValueType()), Sub,
1452                             DAG.getConstant(JTH.Last-JTH.First,VT),
1453                             ISD::SETUGT);
1454
1455  if (DisableScheduling) {
1456    DAG.AssignOrdering(Sub.getNode(), SDNodeOrder);
1457    DAG.AssignOrdering(SwitchOp.getNode(), SDNodeOrder);
1458    DAG.AssignOrdering(CopyTo.getNode(), SDNodeOrder);
1459    DAG.AssignOrdering(CMP.getNode(), SDNodeOrder);
1460  }
1461
1462  // Set NextBlock to be the MBB immediately after the current one, if any.
1463  // This is used to avoid emitting unnecessary branches to the next block.
1464  MachineBasicBlock *NextBlock = 0;
1465  MachineFunction::iterator BBI = CurMBB;
1466
1467  if (++BBI != FuncInfo.MF->end())
1468    NextBlock = BBI;
1469
1470  SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1471                               MVT::Other, CopyTo, CMP,
1472                               DAG.getBasicBlock(JT.Default));
1473
1474  if (DisableScheduling)
1475    DAG.AssignOrdering(BrCond.getNode(), SDNodeOrder);
1476
1477  if (JT.MBB != NextBlock) {
1478    BrCond = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrCond,
1479                         DAG.getBasicBlock(JT.MBB));
1480
1481    if (DisableScheduling)
1482      DAG.AssignOrdering(BrCond.getNode(), SDNodeOrder);
1483  }
1484
1485  DAG.setRoot(BrCond);
1486}
1487
1488/// visitBitTestHeader - This function emits necessary code to produce value
1489/// suitable for "bit tests"
1490void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B) {
1491  // Subtract the minimum value
1492  SDValue SwitchOp = getValue(B.SValue);
1493  EVT VT = SwitchOp.getValueType();
1494  SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp,
1495                            DAG.getConstant(B.First, VT));
1496
1497  // Check range
1498  SDValue RangeCmp = DAG.getSetCC(getCurDebugLoc(),
1499                                  TLI.getSetCCResultType(Sub.getValueType()),
1500                                  Sub, DAG.getConstant(B.Range, VT),
1501                                  ISD::SETUGT);
1502
1503  SDValue ShiftOp = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(),
1504                                       TLI.getPointerTy());
1505
1506  B.Reg = FuncInfo.MakeReg(TLI.getPointerTy());
1507  SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(),
1508                                    B.Reg, ShiftOp);
1509
1510  if (DisableScheduling) {
1511    DAG.AssignOrdering(Sub.getNode(), SDNodeOrder);
1512    DAG.AssignOrdering(RangeCmp.getNode(), SDNodeOrder);
1513    DAG.AssignOrdering(ShiftOp.getNode(), SDNodeOrder);
1514    DAG.AssignOrdering(CopyTo.getNode(), SDNodeOrder);
1515  }
1516
1517  // Set NextBlock to be the MBB immediately after the current one, if any.
1518  // This is used to avoid emitting unnecessary branches to the next block.
1519  MachineBasicBlock *NextBlock = 0;
1520  MachineFunction::iterator BBI = CurMBB;
1521  if (++BBI != FuncInfo.MF->end())
1522    NextBlock = BBI;
1523
1524  MachineBasicBlock* MBB = B.Cases[0].ThisBB;
1525
1526  CurMBB->addSuccessor(B.Default);
1527  CurMBB->addSuccessor(MBB);
1528
1529  SDValue BrRange = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1530                                MVT::Other, CopyTo, RangeCmp,
1531                                DAG.getBasicBlock(B.Default));
1532
1533  if (DisableScheduling)
1534    DAG.AssignOrdering(BrRange.getNode(), SDNodeOrder);
1535
1536  if (MBB != NextBlock) {
1537    BrRange = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, CopyTo,
1538                          DAG.getBasicBlock(MBB));
1539
1540    if (DisableScheduling)
1541      DAG.AssignOrdering(BrRange.getNode(), SDNodeOrder);
1542  }
1543
1544  DAG.setRoot(BrRange);
1545}
1546
1547/// visitBitTestCase - this function produces one "bit test"
1548void SelectionDAGBuilder::visitBitTestCase(MachineBasicBlock* NextMBB,
1549                                           unsigned Reg,
1550                                           BitTestCase &B) {
1551  // Make desired shift
1552  SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(), Reg,
1553                                       TLI.getPointerTy());
1554  SDValue SwitchVal = DAG.getNode(ISD::SHL, getCurDebugLoc(),
1555                                  TLI.getPointerTy(),
1556                                  DAG.getConstant(1, TLI.getPointerTy()),
1557                                  ShiftOp);
1558
1559  // Emit bit tests and jumps
1560  SDValue AndOp = DAG.getNode(ISD::AND, getCurDebugLoc(),
1561                              TLI.getPointerTy(), SwitchVal,
1562                              DAG.getConstant(B.Mask, TLI.getPointerTy()));
1563  SDValue AndCmp = DAG.getSetCC(getCurDebugLoc(),
1564                                TLI.getSetCCResultType(AndOp.getValueType()),
1565                                AndOp, DAG.getConstant(0, TLI.getPointerTy()),
1566                                ISD::SETNE);
1567
1568  if (DisableScheduling) {
1569    DAG.AssignOrdering(ShiftOp.getNode(), SDNodeOrder);
1570    DAG.AssignOrdering(SwitchVal.getNode(), SDNodeOrder);
1571    DAG.AssignOrdering(AndOp.getNode(), SDNodeOrder);
1572    DAG.AssignOrdering(AndCmp.getNode(), SDNodeOrder);
1573  }
1574
1575  CurMBB->addSuccessor(B.TargetBB);
1576  CurMBB->addSuccessor(NextMBB);
1577
1578  SDValue BrAnd = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1579                              MVT::Other, getControlRoot(),
1580                              AndCmp, DAG.getBasicBlock(B.TargetBB));
1581
1582  if (DisableScheduling)
1583    DAG.AssignOrdering(BrAnd.getNode(), SDNodeOrder);
1584
1585  // Set NextBlock to be the MBB immediately after the current one, if any.
1586  // This is used to avoid emitting unnecessary branches to the next block.
1587  MachineBasicBlock *NextBlock = 0;
1588  MachineFunction::iterator BBI = CurMBB;
1589  if (++BBI != FuncInfo.MF->end())
1590    NextBlock = BBI;
1591
1592  if (NextMBB != NextBlock) {
1593    BrAnd = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrAnd,
1594                        DAG.getBasicBlock(NextMBB));
1595
1596    if (DisableScheduling)
1597      DAG.AssignOrdering(BrAnd.getNode(), SDNodeOrder);
1598  }
1599
1600  DAG.setRoot(BrAnd);
1601}
1602
1603void SelectionDAGBuilder::visitInvoke(InvokeInst &I) {
1604  // Retrieve successors.
1605  MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
1606  MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)];
1607
1608  const Value *Callee(I.getCalledValue());
1609  if (isa<InlineAsm>(Callee))
1610    visitInlineAsm(&I);
1611  else
1612    LowerCallTo(&I, getValue(Callee), false, LandingPad);
1613
1614  // If the value of the invoke is used outside of its defining block, make it
1615  // available as a virtual register.
1616  CopyToExportRegsIfNeeded(&I);
1617
1618  // Update successor info
1619  CurMBB->addSuccessor(Return);
1620  CurMBB->addSuccessor(LandingPad);
1621
1622  // Drop into normal successor.
1623  SDValue Branch = DAG.getNode(ISD::BR, getCurDebugLoc(),
1624                               MVT::Other, getControlRoot(),
1625                               DAG.getBasicBlock(Return));
1626  DAG.setRoot(Branch);
1627
1628  if (DisableScheduling)
1629    DAG.AssignOrdering(Branch.getNode(), SDNodeOrder);
1630}
1631
1632void SelectionDAGBuilder::visitUnwind(UnwindInst &I) {
1633}
1634
1635/// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for
1636/// small case ranges).
1637bool SelectionDAGBuilder::handleSmallSwitchRange(CaseRec& CR,
1638                                                 CaseRecVector& WorkList,
1639                                                 Value* SV,
1640                                                 MachineBasicBlock* Default) {
1641  Case& BackCase  = *(CR.Range.second-1);
1642
1643  // Size is the number of Cases represented by this range.
1644  size_t Size = CR.Range.second - CR.Range.first;
1645  if (Size > 3)
1646    return false;
1647
1648  // Get the MachineFunction which holds the current MBB.  This is used when
1649  // inserting any additional MBBs necessary to represent the switch.
1650  MachineFunction *CurMF = FuncInfo.MF;
1651
1652  // Figure out which block is immediately after the current one.
1653  MachineBasicBlock *NextBlock = 0;
1654  MachineFunction::iterator BBI = CR.CaseBB;
1655
1656  if (++BBI != FuncInfo.MF->end())
1657    NextBlock = BBI;
1658
1659  // TODO: If any two of the cases has the same destination, and if one value
1660  // is the same as the other, but has one bit unset that the other has set,
1661  // use bit manipulation to do two compares at once.  For example:
1662  // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
1663
1664  // Rearrange the case blocks so that the last one falls through if possible.
1665  if (NextBlock && Default != NextBlock && BackCase.BB != NextBlock) {
1666    // The last case block won't fall through into 'NextBlock' if we emit the
1667    // branches in this order.  See if rearranging a case value would help.
1668    for (CaseItr I = CR.Range.first, E = CR.Range.second-1; I != E; ++I) {
1669      if (I->BB == NextBlock) {
1670        std::swap(*I, BackCase);
1671        break;
1672      }
1673    }
1674  }
1675
1676  // Create a CaseBlock record representing a conditional branch to
1677  // the Case's target mbb if the value being switched on SV is equal
1678  // to C.
1679  MachineBasicBlock *CurBlock = CR.CaseBB;
1680  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) {
1681    MachineBasicBlock *FallThrough;
1682    if (I != E-1) {
1683      FallThrough = CurMF->CreateMachineBasicBlock(CurBlock->getBasicBlock());
1684      CurMF->insert(BBI, FallThrough);
1685
1686      // Put SV in a virtual register to make it available from the new blocks.
1687      ExportFromCurrentBlock(SV);
1688    } else {
1689      // If the last case doesn't match, go to the default block.
1690      FallThrough = Default;
1691    }
1692
1693    Value *RHS, *LHS, *MHS;
1694    ISD::CondCode CC;
1695    if (I->High == I->Low) {
1696      // This is just small small case range :) containing exactly 1 case
1697      CC = ISD::SETEQ;
1698      LHS = SV; RHS = I->High; MHS = NULL;
1699    } else {
1700      CC = ISD::SETLE;
1701      LHS = I->Low; MHS = SV; RHS = I->High;
1702    }
1703    CaseBlock CB(CC, LHS, RHS, MHS, I->BB, FallThrough, CurBlock);
1704
1705    // If emitting the first comparison, just call visitSwitchCase to emit the
1706    // code into the current block.  Otherwise, push the CaseBlock onto the
1707    // vector to be later processed by SDISel, and insert the node's MBB
1708    // before the next MBB.
1709    if (CurBlock == CurMBB)
1710      visitSwitchCase(CB);
1711    else
1712      SwitchCases.push_back(CB);
1713
1714    CurBlock = FallThrough;
1715  }
1716
1717  return true;
1718}
1719
1720static inline bool areJTsAllowed(const TargetLowering &TLI) {
1721  return !DisableJumpTables &&
1722          (TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) ||
1723           TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other));
1724}
1725
1726static APInt ComputeRange(const APInt &First, const APInt &Last) {
1727  APInt LastExt(Last), FirstExt(First);
1728  uint32_t BitWidth = std::max(Last.getBitWidth(), First.getBitWidth()) + 1;
1729  LastExt.sext(BitWidth); FirstExt.sext(BitWidth);
1730  return (LastExt - FirstExt + 1ULL);
1731}
1732
1733/// handleJTSwitchCase - Emit jumptable for current switch case range
1734bool SelectionDAGBuilder::handleJTSwitchCase(CaseRec& CR,
1735                                             CaseRecVector& WorkList,
1736                                             Value* SV,
1737                                             MachineBasicBlock* Default) {
1738  Case& FrontCase = *CR.Range.first;
1739  Case& BackCase  = *(CR.Range.second-1);
1740
1741  const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue();
1742  const APInt &Last  = cast<ConstantInt>(BackCase.High)->getValue();
1743
1744  APInt TSize(First.getBitWidth(), 0);
1745  for (CaseItr I = CR.Range.first, E = CR.Range.second;
1746       I!=E; ++I)
1747    TSize += I->size();
1748
1749  if (!areJTsAllowed(TLI) || TSize.ult(APInt(First.getBitWidth(), 4)))
1750    return false;
1751
1752  APInt Range = ComputeRange(First, Last);
1753  double Density = TSize.roundToDouble() / Range.roundToDouble();
1754  if (Density < 0.4)
1755    return false;
1756
1757  DEBUG(dbgs() << "Lowering jump table\n"
1758               << "First entry: " << First << ". Last entry: " << Last << '\n'
1759               << "Range: " << Range
1760               << "Size: " << TSize << ". Density: " << Density << "\n\n");
1761
1762  // Get the MachineFunction which holds the current MBB.  This is used when
1763  // inserting any additional MBBs necessary to represent the switch.
1764  MachineFunction *CurMF = FuncInfo.MF;
1765
1766  // Figure out which block is immediately after the current one.
1767  MachineFunction::iterator BBI = CR.CaseBB;
1768  ++BBI;
1769
1770  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
1771
1772  // Create a new basic block to hold the code for loading the address
1773  // of the jump table, and jumping to it.  Update successor information;
1774  // we will either branch to the default case for the switch, or the jump
1775  // table.
1776  MachineBasicBlock *JumpTableBB = CurMF->CreateMachineBasicBlock(LLVMBB);
1777  CurMF->insert(BBI, JumpTableBB);
1778  CR.CaseBB->addSuccessor(Default);
1779  CR.CaseBB->addSuccessor(JumpTableBB);
1780
1781  // Build a vector of destination BBs, corresponding to each target
1782  // of the jump table. If the value of the jump table slot corresponds to
1783  // a case statement, push the case's BB onto the vector, otherwise, push
1784  // the default BB.
1785  std::vector<MachineBasicBlock*> DestBBs;
1786  APInt TEI = First;
1787  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) {
1788    const APInt& Low = cast<ConstantInt>(I->Low)->getValue();
1789    const APInt& High = cast<ConstantInt>(I->High)->getValue();
1790
1791    if (Low.sle(TEI) && TEI.sle(High)) {
1792      DestBBs.push_back(I->BB);
1793      if (TEI==High)
1794        ++I;
1795    } else {
1796      DestBBs.push_back(Default);
1797    }
1798  }
1799
1800  // Update successor info. Add one edge to each unique successor.
1801  BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs());
1802  for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(),
1803         E = DestBBs.end(); I != E; ++I) {
1804    if (!SuccsHandled[(*I)->getNumber()]) {
1805      SuccsHandled[(*I)->getNumber()] = true;
1806      JumpTableBB->addSuccessor(*I);
1807    }
1808  }
1809
1810  // Create a jump table index for this jump table, or return an existing
1811  // one.
1812  unsigned JTI = CurMF->getJumpTableInfo()->getJumpTableIndex(DestBBs);
1813
1814  // Set the jump table information so that we can codegen it as a second
1815  // MachineBasicBlock
1816  JumpTable JT(-1U, JTI, JumpTableBB, Default);
1817  JumpTableHeader JTH(First, Last, SV, CR.CaseBB, (CR.CaseBB == CurMBB));
1818  if (CR.CaseBB == CurMBB)
1819    visitJumpTableHeader(JT, JTH);
1820
1821  JTCases.push_back(JumpTableBlock(JTH, JT));
1822
1823  return true;
1824}
1825
1826/// handleBTSplitSwitchCase - emit comparison and split binary search tree into
1827/// 2 subtrees.
1828bool SelectionDAGBuilder::handleBTSplitSwitchCase(CaseRec& CR,
1829                                                  CaseRecVector& WorkList,
1830                                                  Value* SV,
1831                                                  MachineBasicBlock* Default) {
1832  // Get the MachineFunction which holds the current MBB.  This is used when
1833  // inserting any additional MBBs necessary to represent the switch.
1834  MachineFunction *CurMF = FuncInfo.MF;
1835
1836  // Figure out which block is immediately after the current one.
1837  MachineFunction::iterator BBI = CR.CaseBB;
1838  ++BBI;
1839
1840  Case& FrontCase = *CR.Range.first;
1841  Case& BackCase  = *(CR.Range.second-1);
1842  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
1843
1844  // Size is the number of Cases represented by this range.
1845  unsigned Size = CR.Range.second - CR.Range.first;
1846
1847  const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue();
1848  const APInt &Last  = cast<ConstantInt>(BackCase.High)->getValue();
1849  double FMetric = 0;
1850  CaseItr Pivot = CR.Range.first + Size/2;
1851
1852  // Select optimal pivot, maximizing sum density of LHS and RHS. This will
1853  // (heuristically) allow us to emit JumpTable's later.
1854  APInt TSize(First.getBitWidth(), 0);
1855  for (CaseItr I = CR.Range.first, E = CR.Range.second;
1856       I!=E; ++I)
1857    TSize += I->size();
1858
1859  APInt LSize = FrontCase.size();
1860  APInt RSize = TSize-LSize;
1861  DEBUG(dbgs() << "Selecting best pivot: \n"
1862               << "First: " << First << ", Last: " << Last <<'\n'
1863               << "LSize: " << LSize << ", RSize: " << RSize << '\n');
1864  for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second;
1865       J!=E; ++I, ++J) {
1866    const APInt &LEnd = cast<ConstantInt>(I->High)->getValue();
1867    const APInt &RBegin = cast<ConstantInt>(J->Low)->getValue();
1868    APInt Range = ComputeRange(LEnd, RBegin);
1869    assert((Range - 2ULL).isNonNegative() &&
1870           "Invalid case distance");
1871    double LDensity = (double)LSize.roundToDouble() /
1872                           (LEnd - First + 1ULL).roundToDouble();
1873    double RDensity = (double)RSize.roundToDouble() /
1874                           (Last - RBegin + 1ULL).roundToDouble();
1875    double Metric = Range.logBase2()*(LDensity+RDensity);
1876    // Should always split in some non-trivial place
1877    DEBUG(dbgs() <<"=>Step\n"
1878                 << "LEnd: " << LEnd << ", RBegin: " << RBegin << '\n'
1879                 << "LDensity: " << LDensity
1880                 << ", RDensity: " << RDensity << '\n'
1881                 << "Metric: " << Metric << '\n');
1882    if (FMetric < Metric) {
1883      Pivot = J;
1884      FMetric = Metric;
1885      DEBUG(dbgs() << "Current metric set to: " << FMetric << '\n');
1886    }
1887
1888    LSize += J->size();
1889    RSize -= J->size();
1890  }
1891  if (areJTsAllowed(TLI)) {
1892    // If our case is dense we *really* should handle it earlier!
1893    assert((FMetric > 0) && "Should handle dense range earlier!");
1894  } else {
1895    Pivot = CR.Range.first + Size/2;
1896  }
1897
1898  CaseRange LHSR(CR.Range.first, Pivot);
1899  CaseRange RHSR(Pivot, CR.Range.second);
1900  Constant *C = Pivot->Low;
1901  MachineBasicBlock *FalseBB = 0, *TrueBB = 0;
1902
1903  // We know that we branch to the LHS if the Value being switched on is
1904  // less than the Pivot value, C.  We use this to optimize our binary
1905  // tree a bit, by recognizing that if SV is greater than or equal to the
1906  // LHS's Case Value, and that Case Value is exactly one less than the
1907  // Pivot's Value, then we can branch directly to the LHS's Target,
1908  // rather than creating a leaf node for it.
1909  if ((LHSR.second - LHSR.first) == 1 &&
1910      LHSR.first->High == CR.GE &&
1911      cast<ConstantInt>(C)->getValue() ==
1912      (cast<ConstantInt>(CR.GE)->getValue() + 1LL)) {
1913    TrueBB = LHSR.first->BB;
1914  } else {
1915    TrueBB = CurMF->CreateMachineBasicBlock(LLVMBB);
1916    CurMF->insert(BBI, TrueBB);
1917    WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR));
1918
1919    // Put SV in a virtual register to make it available from the new blocks.
1920    ExportFromCurrentBlock(SV);
1921  }
1922
1923  // Similar to the optimization above, if the Value being switched on is
1924  // known to be less than the Constant CR.LT, and the current Case Value
1925  // is CR.LT - 1, then we can branch directly to the target block for
1926  // the current Case Value, rather than emitting a RHS leaf node for it.
1927  if ((RHSR.second - RHSR.first) == 1 && CR.LT &&
1928      cast<ConstantInt>(RHSR.first->Low)->getValue() ==
1929      (cast<ConstantInt>(CR.LT)->getValue() - 1LL)) {
1930    FalseBB = RHSR.first->BB;
1931  } else {
1932    FalseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
1933    CurMF->insert(BBI, FalseBB);
1934    WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR));
1935
1936    // Put SV in a virtual register to make it available from the new blocks.
1937    ExportFromCurrentBlock(SV);
1938  }
1939
1940  // Create a CaseBlock record representing a conditional branch to
1941  // the LHS node if the value being switched on SV is less than C.
1942  // Otherwise, branch to LHS.
1943  CaseBlock CB(ISD::SETLT, SV, C, NULL, TrueBB, FalseBB, CR.CaseBB);
1944
1945  if (CR.CaseBB == CurMBB)
1946    visitSwitchCase(CB);
1947  else
1948    SwitchCases.push_back(CB);
1949
1950  return true;
1951}
1952
1953/// handleBitTestsSwitchCase - if current case range has few destination and
1954/// range span less, than machine word bitwidth, encode case range into series
1955/// of masks and emit bit tests with these masks.
1956bool SelectionDAGBuilder::handleBitTestsSwitchCase(CaseRec& CR,
1957                                                   CaseRecVector& WorkList,
1958                                                   Value* SV,
1959                                                   MachineBasicBlock* Default){
1960  EVT PTy = TLI.getPointerTy();
1961  unsigned IntPtrBits = PTy.getSizeInBits();
1962
1963  Case& FrontCase = *CR.Range.first;
1964  Case& BackCase  = *(CR.Range.second-1);
1965
1966  // Get the MachineFunction which holds the current MBB.  This is used when
1967  // inserting any additional MBBs necessary to represent the switch.
1968  MachineFunction *CurMF = FuncInfo.MF;
1969
1970  // If target does not have legal shift left, do not emit bit tests at all.
1971  if (!TLI.isOperationLegal(ISD::SHL, TLI.getPointerTy()))
1972    return false;
1973
1974  size_t numCmps = 0;
1975  for (CaseItr I = CR.Range.first, E = CR.Range.second;
1976       I!=E; ++I) {
1977    // Single case counts one, case range - two.
1978    numCmps += (I->Low == I->High ? 1 : 2);
1979  }
1980
1981  // Count unique destinations
1982  SmallSet<MachineBasicBlock*, 4> Dests;
1983  for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
1984    Dests.insert(I->BB);
1985    if (Dests.size() > 3)
1986      // Don't bother the code below, if there are too much unique destinations
1987      return false;
1988  }
1989  DEBUG(dbgs() << "Total number of unique destinations: "
1990        << Dests.size() << '\n'
1991        << "Total number of comparisons: " << numCmps << '\n');
1992
1993  // Compute span of values.
1994  const APInt& minValue = cast<ConstantInt>(FrontCase.Low)->getValue();
1995  const APInt& maxValue = cast<ConstantInt>(BackCase.High)->getValue();
1996  APInt cmpRange = maxValue - minValue;
1997
1998  DEBUG(dbgs() << "Compare range: " << cmpRange << '\n'
1999               << "Low bound: " << minValue << '\n'
2000               << "High bound: " << maxValue << '\n');
2001
2002  if (cmpRange.uge(APInt(cmpRange.getBitWidth(), IntPtrBits)) ||
2003      (!(Dests.size() == 1 && numCmps >= 3) &&
2004       !(Dests.size() == 2 && numCmps >= 5) &&
2005       !(Dests.size() >= 3 && numCmps >= 6)))
2006    return false;
2007
2008  DEBUG(dbgs() << "Emitting bit tests\n");
2009  APInt lowBound = APInt::getNullValue(cmpRange.getBitWidth());
2010
2011  // Optimize the case where all the case values fit in a
2012  // word without having to subtract minValue. In this case,
2013  // we can optimize away the subtraction.
2014  if (minValue.isNonNegative() &&
2015      maxValue.slt(APInt(maxValue.getBitWidth(), IntPtrBits))) {
2016    cmpRange = maxValue;
2017  } else {
2018    lowBound = minValue;
2019  }
2020
2021  CaseBitsVector CasesBits;
2022  unsigned i, count = 0;
2023
2024  for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
2025    MachineBasicBlock* Dest = I->BB;
2026    for (i = 0; i < count; ++i)
2027      if (Dest == CasesBits[i].BB)
2028        break;
2029
2030    if (i == count) {
2031      assert((count < 3) && "Too much destinations to test!");
2032      CasesBits.push_back(CaseBits(0, Dest, 0));
2033      count++;
2034    }
2035
2036    const APInt& lowValue = cast<ConstantInt>(I->Low)->getValue();
2037    const APInt& highValue = cast<ConstantInt>(I->High)->getValue();
2038
2039    uint64_t lo = (lowValue - lowBound).getZExtValue();
2040    uint64_t hi = (highValue - lowBound).getZExtValue();
2041
2042    for (uint64_t j = lo; j <= hi; j++) {
2043      CasesBits[i].Mask |=  1ULL << j;
2044      CasesBits[i].Bits++;
2045    }
2046
2047  }
2048  std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp());
2049
2050  BitTestInfo BTC;
2051
2052  // Figure out which block is immediately after the current one.
2053  MachineFunction::iterator BBI = CR.CaseBB;
2054  ++BBI;
2055
2056  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2057
2058  DEBUG(dbgs() << "Cases:\n");
2059  for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) {
2060    DEBUG(dbgs() << "Mask: " << CasesBits[i].Mask
2061                 << ", Bits: " << CasesBits[i].Bits
2062                 << ", BB: " << CasesBits[i].BB << '\n');
2063
2064    MachineBasicBlock *CaseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2065    CurMF->insert(BBI, CaseBB);
2066    BTC.push_back(BitTestCase(CasesBits[i].Mask,
2067                              CaseBB,
2068                              CasesBits[i].BB));
2069
2070    // Put SV in a virtual register to make it available from the new blocks.
2071    ExportFromCurrentBlock(SV);
2072  }
2073
2074  BitTestBlock BTB(lowBound, cmpRange, SV,
2075                   -1U, (CR.CaseBB == CurMBB),
2076                   CR.CaseBB, Default, BTC);
2077
2078  if (CR.CaseBB == CurMBB)
2079    visitBitTestHeader(BTB);
2080
2081  BitTestCases.push_back(BTB);
2082
2083  return true;
2084}
2085
2086/// Clusterify - Transform simple list of Cases into list of CaseRange's
2087size_t SelectionDAGBuilder::Clusterify(CaseVector& Cases,
2088                                       const SwitchInst& SI) {
2089  size_t numCmps = 0;
2090
2091  // Start with "simple" cases
2092  for (size_t i = 1; i < SI.getNumSuccessors(); ++i) {
2093    MachineBasicBlock *SMBB = FuncInfo.MBBMap[SI.getSuccessor(i)];
2094    Cases.push_back(Case(SI.getSuccessorValue(i),
2095                         SI.getSuccessorValue(i),
2096                         SMBB));
2097  }
2098  std::sort(Cases.begin(), Cases.end(), CaseCmp());
2099
2100  // Merge case into clusters
2101  if (Cases.size() >= 2)
2102    // Must recompute end() each iteration because it may be
2103    // invalidated by erase if we hold on to it
2104    for (CaseItr I = Cases.begin(), J = ++(Cases.begin()); J != Cases.end(); ) {
2105      const APInt& nextValue = cast<ConstantInt>(J->Low)->getValue();
2106      const APInt& currentValue = cast<ConstantInt>(I->High)->getValue();
2107      MachineBasicBlock* nextBB = J->BB;
2108      MachineBasicBlock* currentBB = I->BB;
2109
2110      // If the two neighboring cases go to the same destination, merge them
2111      // into a single case.
2112      if ((nextValue - currentValue == 1) && (currentBB == nextBB)) {
2113        I->High = J->High;
2114        J = Cases.erase(J);
2115      } else {
2116        I = J++;
2117      }
2118    }
2119
2120  for (CaseItr I=Cases.begin(), E=Cases.end(); I!=E; ++I, ++numCmps) {
2121    if (I->Low != I->High)
2122      // A range counts double, since it requires two compares.
2123      ++numCmps;
2124  }
2125
2126  return numCmps;
2127}
2128
2129void SelectionDAGBuilder::visitSwitch(SwitchInst &SI) {
2130  // Figure out which block is immediately after the current one.
2131  MachineBasicBlock *NextBlock = 0;
2132  MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()];
2133
2134  // If there is only the default destination, branch to it if it is not the
2135  // next basic block.  Otherwise, just fall through.
2136  if (SI.getNumOperands() == 2) {
2137    // Update machine-CFG edges.
2138
2139    // If this is not a fall-through branch, emit the branch.
2140    CurMBB->addSuccessor(Default);
2141    if (Default != NextBlock) {
2142      SDValue Res = DAG.getNode(ISD::BR, getCurDebugLoc(),
2143                                MVT::Other, getControlRoot(),
2144                                DAG.getBasicBlock(Default));
2145      DAG.setRoot(Res);
2146
2147      if (DisableScheduling)
2148        DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
2149    }
2150
2151    return;
2152  }
2153
2154  // If there are any non-default case statements, create a vector of Cases
2155  // representing each one, and sort the vector so that we can efficiently
2156  // create a binary search tree from them.
2157  CaseVector Cases;
2158  size_t numCmps = Clusterify(Cases, SI);
2159  DEBUG(dbgs() << "Clusterify finished. Total clusters: " << Cases.size()
2160               << ". Total compares: " << numCmps << '\n');
2161  numCmps = 0;
2162
2163  // Get the Value to be switched on and default basic blocks, which will be
2164  // inserted into CaseBlock records, representing basic blocks in the binary
2165  // search tree.
2166  Value *SV = SI.getOperand(0);
2167
2168  // Push the initial CaseRec onto the worklist
2169  CaseRecVector WorkList;
2170  WorkList.push_back(CaseRec(CurMBB,0,0,CaseRange(Cases.begin(),Cases.end())));
2171
2172  while (!WorkList.empty()) {
2173    // Grab a record representing a case range to process off the worklist
2174    CaseRec CR = WorkList.back();
2175    WorkList.pop_back();
2176
2177    if (handleBitTestsSwitchCase(CR, WorkList, SV, Default))
2178      continue;
2179
2180    // If the range has few cases (two or less) emit a series of specific
2181    // tests.
2182    if (handleSmallSwitchRange(CR, WorkList, SV, Default))
2183      continue;
2184
2185    // If the switch has more than 5 blocks, and at least 40% dense, and the
2186    // target supports indirect branches, then emit a jump table rather than
2187    // lowering the switch to a binary tree of conditional branches.
2188    if (handleJTSwitchCase(CR, WorkList, SV, Default))
2189      continue;
2190
2191    // Emit binary tree. We need to pick a pivot, and push left and right ranges
2192    // onto the worklist. Leafs are handled via handleSmallSwitchRange() call.
2193    handleBTSplitSwitchCase(CR, WorkList, SV, Default);
2194  }
2195}
2196
2197void SelectionDAGBuilder::visitIndirectBr(IndirectBrInst &I) {
2198  // Update machine-CFG edges.
2199  for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i)
2200    CurMBB->addSuccessor(FuncInfo.MBBMap[I.getSuccessor(i)]);
2201
2202  SDValue Res = DAG.getNode(ISD::BRIND, getCurDebugLoc(),
2203                            MVT::Other, getControlRoot(),
2204                            getValue(I.getAddress()));
2205  DAG.setRoot(Res);
2206
2207  if (DisableScheduling)
2208    DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
2209}
2210
2211void SelectionDAGBuilder::visitFSub(User &I) {
2212  // -0.0 - X --> fneg
2213  const Type *Ty = I.getType();
2214  if (isa<VectorType>(Ty)) {
2215    if (ConstantVector *CV = dyn_cast<ConstantVector>(I.getOperand(0))) {
2216      const VectorType *DestTy = cast<VectorType>(I.getType());
2217      const Type *ElTy = DestTy->getElementType();
2218      unsigned VL = DestTy->getNumElements();
2219      std::vector<Constant*> NZ(VL, ConstantFP::getNegativeZero(ElTy));
2220      Constant *CNZ = ConstantVector::get(&NZ[0], NZ.size());
2221      if (CV == CNZ) {
2222        SDValue Op2 = getValue(I.getOperand(1));
2223        SDValue Res = DAG.getNode(ISD::FNEG, getCurDebugLoc(),
2224                                  Op2.getValueType(), Op2);
2225        setValue(&I, Res);
2226
2227        if (DisableScheduling)
2228          DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
2229
2230        return;
2231      }
2232    }
2233  }
2234
2235  if (ConstantFP *CFP = dyn_cast<ConstantFP>(I.getOperand(0)))
2236    if (CFP->isExactlyValue(ConstantFP::getNegativeZero(Ty)->getValueAPF())) {
2237      SDValue Op2 = getValue(I.getOperand(1));
2238      SDValue Res = DAG.getNode(ISD::FNEG, getCurDebugLoc(),
2239                                Op2.getValueType(), Op2);
2240      setValue(&I, Res);
2241
2242      if (DisableScheduling)
2243        DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
2244
2245      return;
2246    }
2247
2248  visitBinary(I, ISD::FSUB);
2249}
2250
2251void SelectionDAGBuilder::visitBinary(User &I, unsigned OpCode) {
2252  SDValue Op1 = getValue(I.getOperand(0));
2253  SDValue Op2 = getValue(I.getOperand(1));
2254  SDValue Res = DAG.getNode(OpCode, getCurDebugLoc(),
2255                            Op1.getValueType(), Op1, Op2);
2256  setValue(&I, Res);
2257
2258  if (DisableScheduling)
2259    DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
2260}
2261
2262void SelectionDAGBuilder::visitShift(User &I, unsigned Opcode) {
2263  SDValue Op1 = getValue(I.getOperand(0));
2264  SDValue Op2 = getValue(I.getOperand(1));
2265  if (!isa<VectorType>(I.getType()) &&
2266      Op2.getValueType() != TLI.getShiftAmountTy()) {
2267    // If the operand is smaller than the shift count type, promote it.
2268    EVT PTy = TLI.getPointerTy();
2269    EVT STy = TLI.getShiftAmountTy();
2270    if (STy.bitsGT(Op2.getValueType()))
2271      Op2 = DAG.getNode(ISD::ANY_EXTEND, getCurDebugLoc(),
2272                        TLI.getShiftAmountTy(), Op2);
2273    // If the operand is larger than the shift count type but the shift
2274    // count type has enough bits to represent any shift value, truncate
2275    // it now. This is a common case and it exposes the truncate to
2276    // optimization early.
2277    else if (STy.getSizeInBits() >=
2278             Log2_32_Ceil(Op2.getValueType().getSizeInBits()))
2279      Op2 = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(),
2280                        TLI.getShiftAmountTy(), Op2);
2281    // Otherwise we'll need to temporarily settle for some other
2282    // convenient type; type legalization will make adjustments as
2283    // needed.
2284    else if (PTy.bitsLT(Op2.getValueType()))
2285      Op2 = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(),
2286                        TLI.getPointerTy(), Op2);
2287    else if (PTy.bitsGT(Op2.getValueType()))
2288      Op2 = DAG.getNode(ISD::ANY_EXTEND, getCurDebugLoc(),
2289                        TLI.getPointerTy(), Op2);
2290  }
2291
2292  SDValue Res = DAG.getNode(Opcode, getCurDebugLoc(),
2293                            Op1.getValueType(), Op1, Op2);
2294  setValue(&I, Res);
2295
2296  if (DisableScheduling) {
2297    DAG.AssignOrdering(Op1.getNode(), SDNodeOrder);
2298    DAG.AssignOrdering(Op2.getNode(), SDNodeOrder);
2299    DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
2300  }
2301}
2302
2303void SelectionDAGBuilder::visitICmp(User &I) {
2304  ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
2305  if (ICmpInst *IC = dyn_cast<ICmpInst>(&I))
2306    predicate = IC->getPredicate();
2307  else if (ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
2308    predicate = ICmpInst::Predicate(IC->getPredicate());
2309  SDValue Op1 = getValue(I.getOperand(0));
2310  SDValue Op2 = getValue(I.getOperand(1));
2311  ISD::CondCode Opcode = getICmpCondCode(predicate);
2312
2313  EVT DestVT = TLI.getValueType(I.getType());
2314  SDValue Res = DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Opcode);
2315  setValue(&I, Res);
2316
2317  if (DisableScheduling)
2318    DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
2319}
2320
2321void SelectionDAGBuilder::visitFCmp(User &I) {
2322  FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
2323  if (FCmpInst *FC = dyn_cast<FCmpInst>(&I))
2324    predicate = FC->getPredicate();
2325  else if (ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
2326    predicate = FCmpInst::Predicate(FC->getPredicate());
2327  SDValue Op1 = getValue(I.getOperand(0));
2328  SDValue Op2 = getValue(I.getOperand(1));
2329  ISD::CondCode Condition = getFCmpCondCode(predicate);
2330  EVT DestVT = TLI.getValueType(I.getType());
2331  SDValue Res = DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Condition);
2332  setValue(&I, Res);
2333
2334  if (DisableScheduling)
2335    DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
2336}
2337
2338void SelectionDAGBuilder::visitSelect(User &I) {
2339  SmallVector<EVT, 4> ValueVTs;
2340  ComputeValueVTs(TLI, I.getType(), ValueVTs);
2341  unsigned NumValues = ValueVTs.size();
2342  if (NumValues == 0) return;
2343
2344  SmallVector<SDValue, 4> Values(NumValues);
2345  SDValue Cond     = getValue(I.getOperand(0));
2346  SDValue TrueVal  = getValue(I.getOperand(1));
2347  SDValue FalseVal = getValue(I.getOperand(2));
2348
2349  for (unsigned i = 0; i != NumValues; ++i) {
2350    Values[i] = DAG.getNode(ISD::SELECT, getCurDebugLoc(),
2351                            TrueVal.getNode()->getValueType(i), Cond,
2352                            SDValue(TrueVal.getNode(),
2353                                    TrueVal.getResNo() + i),
2354                            SDValue(FalseVal.getNode(),
2355                                    FalseVal.getResNo() + i));
2356
2357    if (DisableScheduling)
2358      DAG.AssignOrdering(Values[i].getNode(), SDNodeOrder);
2359  }
2360
2361  SDValue Res = DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
2362                            DAG.getVTList(&ValueVTs[0], NumValues),
2363                            &Values[0], NumValues);
2364  setValue(&I, Res);
2365
2366  if (DisableScheduling)
2367    DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
2368}
2369
2370void SelectionDAGBuilder::visitTrunc(User &I) {
2371  // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
2372  SDValue N = getValue(I.getOperand(0));
2373  EVT DestVT = TLI.getValueType(I.getType());
2374  SDValue Res = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), DestVT, N);
2375  setValue(&I, Res);
2376
2377  if (DisableScheduling)
2378    DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
2379}
2380
2381void SelectionDAGBuilder::visitZExt(User &I) {
2382  // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2383  // ZExt also can't be a cast to bool for same reason. So, nothing much to do
2384  SDValue N = getValue(I.getOperand(0));
2385  EVT DestVT = TLI.getValueType(I.getType());
2386  SDValue Res = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), DestVT, N);
2387  setValue(&I, Res);
2388
2389  if (DisableScheduling)
2390    DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
2391}
2392
2393void SelectionDAGBuilder::visitSExt(User &I) {
2394  // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2395  // SExt also can't be a cast to bool for same reason. So, nothing much to do
2396  SDValue N = getValue(I.getOperand(0));
2397  EVT DestVT = TLI.getValueType(I.getType());
2398  SDValue Res = DAG.getNode(ISD::SIGN_EXTEND, getCurDebugLoc(), DestVT, N);
2399  setValue(&I, Res);
2400
2401  if (DisableScheduling)
2402    DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
2403}
2404
2405void SelectionDAGBuilder::visitFPTrunc(User &I) {
2406  // FPTrunc is never a no-op cast, no need to check
2407  SDValue N = getValue(I.getOperand(0));
2408  EVT DestVT = TLI.getValueType(I.getType());
2409  SDValue Res = DAG.getNode(ISD::FP_ROUND, getCurDebugLoc(),
2410                            DestVT, N, DAG.getIntPtrConstant(0));
2411  setValue(&I, Res);
2412
2413  if (DisableScheduling)
2414    DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
2415}
2416
2417void SelectionDAGBuilder::visitFPExt(User &I){
2418  // FPTrunc is never a no-op cast, no need to check
2419  SDValue N = getValue(I.getOperand(0));
2420  EVT DestVT = TLI.getValueType(I.getType());
2421  SDValue Res = DAG.getNode(ISD::FP_EXTEND, getCurDebugLoc(), DestVT, N);
2422  setValue(&I, Res);
2423
2424  if (DisableScheduling)
2425    DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
2426}
2427
2428void SelectionDAGBuilder::visitFPToUI(User &I) {
2429  // FPToUI is never a no-op cast, no need to check
2430  SDValue N = getValue(I.getOperand(0));
2431  EVT DestVT = TLI.getValueType(I.getType());
2432  SDValue Res = DAG.getNode(ISD::FP_TO_UINT, getCurDebugLoc(), DestVT, N);
2433  setValue(&I, Res);
2434
2435  if (DisableScheduling)
2436    DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
2437}
2438
2439void SelectionDAGBuilder::visitFPToSI(User &I) {
2440  // FPToSI is never a no-op cast, no need to check
2441  SDValue N = getValue(I.getOperand(0));
2442  EVT DestVT = TLI.getValueType(I.getType());
2443  SDValue Res = DAG.getNode(ISD::FP_TO_SINT, getCurDebugLoc(), DestVT, N);
2444  setValue(&I, Res);
2445
2446  if (DisableScheduling)
2447    DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
2448}
2449
2450void SelectionDAGBuilder::visitUIToFP(User &I) {
2451  // UIToFP is never a no-op cast, no need to check
2452  SDValue N = getValue(I.getOperand(0));
2453  EVT DestVT = TLI.getValueType(I.getType());
2454  SDValue Res = DAG.getNode(ISD::UINT_TO_FP, getCurDebugLoc(), DestVT, N);
2455  setValue(&I, Res);
2456
2457  if (DisableScheduling)
2458    DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
2459}
2460
2461void SelectionDAGBuilder::visitSIToFP(User &I){
2462  // SIToFP is never a no-op cast, no need to check
2463  SDValue N = getValue(I.getOperand(0));
2464  EVT DestVT = TLI.getValueType(I.getType());
2465  SDValue Res = DAG.getNode(ISD::SINT_TO_FP, getCurDebugLoc(), DestVT, N);
2466  setValue(&I, Res);
2467
2468  if (DisableScheduling)
2469    DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
2470}
2471
2472void SelectionDAGBuilder::visitPtrToInt(User &I) {
2473  // What to do depends on the size of the integer and the size of the pointer.
2474  // We can either truncate, zero extend, or no-op, accordingly.
2475  SDValue N = getValue(I.getOperand(0));
2476  EVT SrcVT = N.getValueType();
2477  EVT DestVT = TLI.getValueType(I.getType());
2478  SDValue Res = DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT);
2479  setValue(&I, Res);
2480
2481  if (DisableScheduling)
2482    DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
2483}
2484
2485void SelectionDAGBuilder::visitIntToPtr(User &I) {
2486  // What to do depends on the size of the integer and the size of the pointer.
2487  // We can either truncate, zero extend, or no-op, accordingly.
2488  SDValue N = getValue(I.getOperand(0));
2489  EVT SrcVT = N.getValueType();
2490  EVT DestVT = TLI.getValueType(I.getType());
2491  SDValue Res = DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT);
2492  setValue(&I, Res);
2493
2494  if (DisableScheduling)
2495    DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
2496}
2497
2498void SelectionDAGBuilder::visitBitCast(User &I) {
2499  SDValue N = getValue(I.getOperand(0));
2500  EVT DestVT = TLI.getValueType(I.getType());
2501
2502  // BitCast assures us that source and destination are the same size so this is
2503  // either a BIT_CONVERT or a no-op.
2504  if (DestVT != N.getValueType()) {
2505    SDValue Res = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(),
2506                              DestVT, N); // convert types.
2507    setValue(&I, Res);
2508
2509    if (DisableScheduling)
2510      DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
2511  } else {
2512    setValue(&I, N);            // noop cast.
2513  }
2514}
2515
2516void SelectionDAGBuilder::visitInsertElement(User &I) {
2517  SDValue InVec = getValue(I.getOperand(0));
2518  SDValue InVal = getValue(I.getOperand(1));
2519  SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(),
2520                              TLI.getPointerTy(),
2521                              getValue(I.getOperand(2)));
2522  SDValue Res = DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurDebugLoc(),
2523                            TLI.getValueType(I.getType()),
2524                            InVec, InVal, InIdx);
2525  setValue(&I, Res);
2526
2527  if (DisableScheduling) {
2528    DAG.AssignOrdering(InIdx.getNode(), SDNodeOrder);
2529    DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
2530  }
2531}
2532
2533void SelectionDAGBuilder::visitExtractElement(User &I) {
2534  SDValue InVec = getValue(I.getOperand(0));
2535  SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(),
2536                              TLI.getPointerTy(),
2537                              getValue(I.getOperand(1)));
2538  SDValue Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
2539                            TLI.getValueType(I.getType()), InVec, InIdx);
2540  setValue(&I, Res);
2541
2542  if (DisableScheduling) {
2543    DAG.AssignOrdering(InIdx.getNode(), SDNodeOrder);
2544    DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
2545  }
2546}
2547
2548
2549// Utility for visitShuffleVector - Returns true if the mask is mask starting
2550// from SIndx and increasing to the element length (undefs are allowed).
2551static bool SequentialMask(SmallVectorImpl<int> &Mask, unsigned SIndx) {
2552  unsigned MaskNumElts = Mask.size();
2553  for (unsigned i = 0; i != MaskNumElts; ++i)
2554    if ((Mask[i] >= 0) && (Mask[i] != (int)(i + SIndx)))
2555      return false;
2556  return true;
2557}
2558
2559void SelectionDAGBuilder::visitShuffleVector(User &I) {
2560  SmallVector<int, 8> Mask;
2561  SDValue Src1 = getValue(I.getOperand(0));
2562  SDValue Src2 = getValue(I.getOperand(1));
2563
2564  // Convert the ConstantVector mask operand into an array of ints, with -1
2565  // representing undef values.
2566  SmallVector<Constant*, 8> MaskElts;
2567  cast<Constant>(I.getOperand(2))->getVectorElements(*DAG.getContext(),
2568                                                     MaskElts);
2569  unsigned MaskNumElts = MaskElts.size();
2570  for (unsigned i = 0; i != MaskNumElts; ++i) {
2571    if (isa<UndefValue>(MaskElts[i]))
2572      Mask.push_back(-1);
2573    else
2574      Mask.push_back(cast<ConstantInt>(MaskElts[i])->getSExtValue());
2575  }
2576
2577  EVT VT = TLI.getValueType(I.getType());
2578  EVT SrcVT = Src1.getValueType();
2579  unsigned SrcNumElts = SrcVT.getVectorNumElements();
2580
2581  if (SrcNumElts == MaskNumElts) {
2582    SDValue Res = DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2583                                       &Mask[0]);
2584    setValue(&I, Res);
2585
2586    if (DisableScheduling)
2587      DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
2588
2589    return;
2590  }
2591
2592  // Normalize the shuffle vector since mask and vector length don't match.
2593  if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) {
2594    // Mask is longer than the source vectors and is a multiple of the source
2595    // vectors.  We can use concatenate vector to make the mask and vectors
2596    // lengths match.
2597    if (SrcNumElts*2 == MaskNumElts && SequentialMask(Mask, 0)) {
2598      // The shuffle is concatenating two vectors together.
2599      SDValue Res = DAG.getNode(ISD::CONCAT_VECTORS, getCurDebugLoc(),
2600                                VT, Src1, Src2);
2601      setValue(&I, Res);
2602
2603      if (DisableScheduling)
2604        DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
2605
2606      return;
2607    }
2608
2609    // Pad both vectors with undefs to make them the same length as the mask.
2610    unsigned NumConcat = MaskNumElts / SrcNumElts;
2611    bool Src1U = Src1.getOpcode() == ISD::UNDEF;
2612    bool Src2U = Src2.getOpcode() == ISD::UNDEF;
2613    SDValue UndefVal = DAG.getUNDEF(SrcVT);
2614
2615    SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
2616    SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
2617    MOps1[0] = Src1;
2618    MOps2[0] = Src2;
2619
2620    Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
2621                                                  getCurDebugLoc(), VT,
2622                                                  &MOps1[0], NumConcat);
2623    Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
2624                                                  getCurDebugLoc(), VT,
2625                                                  &MOps2[0], NumConcat);
2626
2627    // Readjust mask for new input vector length.
2628    SmallVector<int, 8> MappedOps;
2629    for (unsigned i = 0; i != MaskNumElts; ++i) {
2630      int Idx = Mask[i];
2631      if (Idx < (int)SrcNumElts)
2632        MappedOps.push_back(Idx);
2633      else
2634        MappedOps.push_back(Idx + MaskNumElts - SrcNumElts);
2635    }
2636
2637    SDValue Res = DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2638                                       &MappedOps[0]);
2639    setValue(&I, Res);
2640
2641    if (DisableScheduling) {
2642      DAG.AssignOrdering(Src1.getNode(), SDNodeOrder);
2643      DAG.AssignOrdering(Src2.getNode(), SDNodeOrder);
2644      DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
2645    }
2646
2647    return;
2648  }
2649
2650  if (SrcNumElts > MaskNumElts) {
2651    // Analyze the access pattern of the vector to see if we can extract
2652    // two subvectors and do the shuffle. The analysis is done by calculating
2653    // the range of elements the mask access on both vectors.
2654    int MinRange[2] = { SrcNumElts+1, SrcNumElts+1};
2655    int MaxRange[2] = {-1, -1};
2656
2657    for (unsigned i = 0; i != MaskNumElts; ++i) {
2658      int Idx = Mask[i];
2659      int Input = 0;
2660      if (Idx < 0)
2661        continue;
2662
2663      if (Idx >= (int)SrcNumElts) {
2664        Input = 1;
2665        Idx -= SrcNumElts;
2666      }
2667      if (Idx > MaxRange[Input])
2668        MaxRange[Input] = Idx;
2669      if (Idx < MinRange[Input])
2670        MinRange[Input] = Idx;
2671    }
2672
2673    // Check if the access is smaller than the vector size and can we find
2674    // a reasonable extract index.
2675    int RangeUse[2] = { 2, 2 };  // 0 = Unused, 1 = Extract, 2 = Can not
2676                                 // Extract.
2677    int StartIdx[2];  // StartIdx to extract from
2678    for (int Input=0; Input < 2; ++Input) {
2679      if (MinRange[Input] == (int)(SrcNumElts+1) && MaxRange[Input] == -1) {
2680        RangeUse[Input] = 0; // Unused
2681        StartIdx[Input] = 0;
2682      } else if (MaxRange[Input] - MinRange[Input] < (int)MaskNumElts) {
2683        // Fits within range but we should see if we can find a good
2684        // start index that is a multiple of the mask length.
2685        if (MaxRange[Input] < (int)MaskNumElts) {
2686          RangeUse[Input] = 1; // Extract from beginning of the vector
2687          StartIdx[Input] = 0;
2688        } else {
2689          StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts;
2690          if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts &&
2691              StartIdx[Input] + MaskNumElts < SrcNumElts)
2692            RangeUse[Input] = 1; // Extract from a multiple of the mask length.
2693        }
2694      }
2695    }
2696
2697    if (RangeUse[0] == 0 && RangeUse[1] == 0) {
2698      SDValue Res = DAG.getUNDEF(VT);
2699      setValue(&I, Res);  // Vectors are not used.
2700
2701      if (DisableScheduling)
2702        DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
2703
2704      return;
2705    }
2706    else if (RangeUse[0] < 2 && RangeUse[1] < 2) {
2707      // Extract appropriate subvector and generate a vector shuffle
2708      for (int Input=0; Input < 2; ++Input) {
2709        SDValue &Src = Input == 0 ? Src1 : Src2;
2710        if (RangeUse[Input] == 0)
2711          Src = DAG.getUNDEF(VT);
2712        else
2713          Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, getCurDebugLoc(), VT,
2714                            Src, DAG.getIntPtrConstant(StartIdx[Input]));
2715
2716        if (DisableScheduling)
2717          DAG.AssignOrdering(Src.getNode(), SDNodeOrder);
2718      }
2719
2720      // Calculate new mask.
2721      SmallVector<int, 8> MappedOps;
2722      for (unsigned i = 0; i != MaskNumElts; ++i) {
2723        int Idx = Mask[i];
2724        if (Idx < 0)
2725          MappedOps.push_back(Idx);
2726        else if (Idx < (int)SrcNumElts)
2727          MappedOps.push_back(Idx - StartIdx[0]);
2728        else
2729          MappedOps.push_back(Idx - SrcNumElts - StartIdx[1] + MaskNumElts);
2730      }
2731
2732      SDValue Res = DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2733                                         &MappedOps[0]);
2734      setValue(&I, Res);
2735
2736      if (DisableScheduling)
2737        DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
2738
2739      return;
2740    }
2741  }
2742
2743  // We can't use either concat vectors or extract subvectors so fall back to
2744  // replacing the shuffle with extract and build vector.
2745  // to insert and build vector.
2746  EVT EltVT = VT.getVectorElementType();
2747  EVT PtrVT = TLI.getPointerTy();
2748  SmallVector<SDValue,8> Ops;
2749  for (unsigned i = 0; i != MaskNumElts; ++i) {
2750    if (Mask[i] < 0) {
2751      Ops.push_back(DAG.getUNDEF(EltVT));
2752    } else {
2753      int Idx = Mask[i];
2754      SDValue Res;
2755
2756      if (Idx < (int)SrcNumElts)
2757        Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
2758                          EltVT, Src1, DAG.getConstant(Idx, PtrVT));
2759      else
2760        Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
2761                          EltVT, Src2,
2762                          DAG.getConstant(Idx - SrcNumElts, PtrVT));
2763
2764      Ops.push_back(Res);
2765
2766      if (DisableScheduling)
2767        DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
2768    }
2769  }
2770
2771  SDValue Res = DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(),
2772                            VT, &Ops[0], Ops.size());
2773  setValue(&I, Res);
2774
2775  if (DisableScheduling)
2776    DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
2777}
2778
2779void SelectionDAGBuilder::visitInsertValue(InsertValueInst &I) {
2780  const Value *Op0 = I.getOperand(0);
2781  const Value *Op1 = I.getOperand(1);
2782  const Type *AggTy = I.getType();
2783  const Type *ValTy = Op1->getType();
2784  bool IntoUndef = isa<UndefValue>(Op0);
2785  bool FromUndef = isa<UndefValue>(Op1);
2786
2787  unsigned LinearIndex = ComputeLinearIndex(TLI, AggTy,
2788                                            I.idx_begin(), I.idx_end());
2789
2790  SmallVector<EVT, 4> AggValueVTs;
2791  ComputeValueVTs(TLI, AggTy, AggValueVTs);
2792  SmallVector<EVT, 4> ValValueVTs;
2793  ComputeValueVTs(TLI, ValTy, ValValueVTs);
2794
2795  unsigned NumAggValues = AggValueVTs.size();
2796  unsigned NumValValues = ValValueVTs.size();
2797  SmallVector<SDValue, 4> Values(NumAggValues);
2798
2799  SDValue Agg = getValue(Op0);
2800  SDValue Val = getValue(Op1);
2801  unsigned i = 0;
2802  // Copy the beginning value(s) from the original aggregate.
2803  for (; i != LinearIndex; ++i)
2804    Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
2805                SDValue(Agg.getNode(), Agg.getResNo() + i);
2806  // Copy values from the inserted value(s).
2807  for (; i != LinearIndex + NumValValues; ++i)
2808    Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
2809                SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
2810  // Copy remaining value(s) from the original aggregate.
2811  for (; i != NumAggValues; ++i)
2812    Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
2813                SDValue(Agg.getNode(), Agg.getResNo() + i);
2814
2815  SDValue Res = DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
2816                            DAG.getVTList(&AggValueVTs[0], NumAggValues),
2817                            &Values[0], NumAggValues);
2818  setValue(&I, Res);
2819
2820  if (DisableScheduling)
2821    DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
2822}
2823
2824void SelectionDAGBuilder::visitExtractValue(ExtractValueInst &I) {
2825  const Value *Op0 = I.getOperand(0);
2826  const Type *AggTy = Op0->getType();
2827  const Type *ValTy = I.getType();
2828  bool OutOfUndef = isa<UndefValue>(Op0);
2829
2830  unsigned LinearIndex = ComputeLinearIndex(TLI, AggTy,
2831                                            I.idx_begin(), I.idx_end());
2832
2833  SmallVector<EVT, 4> ValValueVTs;
2834  ComputeValueVTs(TLI, ValTy, ValValueVTs);
2835
2836  unsigned NumValValues = ValValueVTs.size();
2837  SmallVector<SDValue, 4> Values(NumValValues);
2838
2839  SDValue Agg = getValue(Op0);
2840  // Copy out the selected value(s).
2841  for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
2842    Values[i - LinearIndex] =
2843      OutOfUndef ?
2844        DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
2845        SDValue(Agg.getNode(), Agg.getResNo() + i);
2846
2847  SDValue Res = DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
2848                            DAG.getVTList(&ValValueVTs[0], NumValValues),
2849                            &Values[0], NumValValues);
2850  setValue(&I, Res);
2851
2852  if (DisableScheduling)
2853    DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
2854}
2855
2856void SelectionDAGBuilder::visitGetElementPtr(User &I) {
2857  SDValue N = getValue(I.getOperand(0));
2858  const Type *Ty = I.getOperand(0)->getType();
2859
2860  for (GetElementPtrInst::op_iterator OI = I.op_begin()+1, E = I.op_end();
2861       OI != E; ++OI) {
2862    Value *Idx = *OI;
2863    if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
2864      unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
2865      if (Field) {
2866        // N = N + Offset
2867        uint64_t Offset = TD->getStructLayout(StTy)->getElementOffset(Field);
2868        N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N,
2869                        DAG.getIntPtrConstant(Offset));
2870
2871        if (DisableScheduling)
2872          DAG.AssignOrdering(N.getNode(), SDNodeOrder);
2873      }
2874
2875      Ty = StTy->getElementType(Field);
2876    } else {
2877      Ty = cast<SequentialType>(Ty)->getElementType();
2878
2879      // If this is a constant subscript, handle it quickly.
2880      if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
2881        if (CI->getZExtValue() == 0) continue;
2882        uint64_t Offs =
2883            TD->getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue();
2884        SDValue OffsVal;
2885        EVT PTy = TLI.getPointerTy();
2886        unsigned PtrBits = PTy.getSizeInBits();
2887        if (PtrBits < 64)
2888          OffsVal = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(),
2889                                TLI.getPointerTy(),
2890                                DAG.getConstant(Offs, MVT::i64));
2891        else
2892          OffsVal = DAG.getIntPtrConstant(Offs);
2893
2894        N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N,
2895                        OffsVal);
2896
2897        if (DisableScheduling) {
2898          DAG.AssignOrdering(OffsVal.getNode(), SDNodeOrder);
2899          DAG.AssignOrdering(N.getNode(), SDNodeOrder);
2900        }
2901
2902        continue;
2903      }
2904
2905      // N = N + Idx * ElementSize;
2906      APInt ElementSize = APInt(TLI.getPointerTy().getSizeInBits(),
2907                                TD->getTypeAllocSize(Ty));
2908      SDValue IdxN = getValue(Idx);
2909
2910      // If the index is smaller or larger than intptr_t, truncate or extend
2911      // it.
2912      IdxN = DAG.getSExtOrTrunc(IdxN, getCurDebugLoc(), N.getValueType());
2913
2914      // If this is a multiply by a power of two, turn it into a shl
2915      // immediately.  This is a very common case.
2916      if (ElementSize != 1) {
2917        if (ElementSize.isPowerOf2()) {
2918          unsigned Amt = ElementSize.logBase2();
2919          IdxN = DAG.getNode(ISD::SHL, getCurDebugLoc(),
2920                             N.getValueType(), IdxN,
2921                             DAG.getConstant(Amt, TLI.getPointerTy()));
2922        } else {
2923          SDValue Scale = DAG.getConstant(ElementSize, TLI.getPointerTy());
2924          IdxN = DAG.getNode(ISD::MUL, getCurDebugLoc(),
2925                             N.getValueType(), IdxN, Scale);
2926        }
2927
2928        if (DisableScheduling)
2929          DAG.AssignOrdering(IdxN.getNode(), SDNodeOrder);
2930      }
2931
2932      N = DAG.getNode(ISD::ADD, getCurDebugLoc(),
2933                      N.getValueType(), N, IdxN);
2934
2935      if (DisableScheduling)
2936        DAG.AssignOrdering(N.getNode(), SDNodeOrder);
2937    }
2938  }
2939
2940  setValue(&I, N);
2941}
2942
2943void SelectionDAGBuilder::visitAlloca(AllocaInst &I) {
2944  // If this is a fixed sized alloca in the entry block of the function,
2945  // allocate it statically on the stack.
2946  if (FuncInfo.StaticAllocaMap.count(&I))
2947    return;   // getValue will auto-populate this.
2948
2949  const Type *Ty = I.getAllocatedType();
2950  uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty);
2951  unsigned Align =
2952    std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty),
2953             I.getAlignment());
2954
2955  SDValue AllocSize = getValue(I.getArraySize());
2956
2957  AllocSize = DAG.getNode(ISD::MUL, getCurDebugLoc(), AllocSize.getValueType(),
2958                          AllocSize,
2959                          DAG.getConstant(TySize, AllocSize.getValueType()));
2960
2961  if (DisableScheduling)
2962    DAG.AssignOrdering(AllocSize.getNode(), SDNodeOrder);
2963
2964  EVT IntPtr = TLI.getPointerTy();
2965  AllocSize = DAG.getZExtOrTrunc(AllocSize, getCurDebugLoc(), IntPtr);
2966
2967  if (DisableScheduling)
2968    DAG.AssignOrdering(AllocSize.getNode(), SDNodeOrder);
2969
2970  // Handle alignment.  If the requested alignment is less than or equal to
2971  // the stack alignment, ignore it.  If the size is greater than or equal to
2972  // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
2973  unsigned StackAlign =
2974    TLI.getTargetMachine().getFrameInfo()->getStackAlignment();
2975  if (Align <= StackAlign)
2976    Align = 0;
2977
2978  // Round the size of the allocation up to the stack alignment size
2979  // by add SA-1 to the size.
2980  AllocSize = DAG.getNode(ISD::ADD, getCurDebugLoc(),
2981                          AllocSize.getValueType(), AllocSize,
2982                          DAG.getIntPtrConstant(StackAlign-1));
2983  if (DisableScheduling)
2984    DAG.AssignOrdering(AllocSize.getNode(), SDNodeOrder);
2985
2986  // Mask out the low bits for alignment purposes.
2987  AllocSize = DAG.getNode(ISD::AND, getCurDebugLoc(),
2988                          AllocSize.getValueType(), AllocSize,
2989                          DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1)));
2990  if (DisableScheduling)
2991    DAG.AssignOrdering(AllocSize.getNode(), SDNodeOrder);
2992
2993  SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) };
2994  SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
2995  SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, getCurDebugLoc(),
2996                            VTs, Ops, 3);
2997  setValue(&I, DSA);
2998  DAG.setRoot(DSA.getValue(1));
2999
3000  if (DisableScheduling)
3001    DAG.AssignOrdering(DSA.getNode(), SDNodeOrder);
3002
3003  // Inform the Frame Information that we have just allocated a variable-sized
3004  // object.
3005  FuncInfo.MF->getFrameInfo()->CreateVariableSizedObject();
3006}
3007
3008void SelectionDAGBuilder::visitLoad(LoadInst &I) {
3009  const Value *SV = I.getOperand(0);
3010  SDValue Ptr = getValue(SV);
3011
3012  const Type *Ty = I.getType();
3013  bool isVolatile = I.isVolatile();
3014  unsigned Alignment = I.getAlignment();
3015
3016  SmallVector<EVT, 4> ValueVTs;
3017  SmallVector<uint64_t, 4> Offsets;
3018  ComputeValueVTs(TLI, Ty, ValueVTs, &Offsets);
3019  unsigned NumValues = ValueVTs.size();
3020  if (NumValues == 0)
3021    return;
3022
3023  SDValue Root;
3024  bool ConstantMemory = false;
3025  if (I.isVolatile())
3026    // Serialize volatile loads with other side effects.
3027    Root = getRoot();
3028  else if (AA->pointsToConstantMemory(SV)) {
3029    // Do not serialize (non-volatile) loads of constant memory with anything.
3030    Root = DAG.getEntryNode();
3031    ConstantMemory = true;
3032  } else {
3033    // Do not serialize non-volatile loads against each other.
3034    Root = DAG.getRoot();
3035  }
3036
3037  SmallVector<SDValue, 4> Values(NumValues);
3038  SmallVector<SDValue, 4> Chains(NumValues);
3039  EVT PtrVT = Ptr.getValueType();
3040  for (unsigned i = 0; i != NumValues; ++i) {
3041    SDValue A = DAG.getNode(ISD::ADD, getCurDebugLoc(),
3042                            PtrVT, Ptr,
3043                            DAG.getConstant(Offsets[i], PtrVT));
3044    SDValue L = DAG.getLoad(ValueVTs[i], getCurDebugLoc(), Root,
3045                            A, SV, Offsets[i], isVolatile, Alignment);
3046
3047    Values[i] = L;
3048    Chains[i] = L.getValue(1);
3049
3050    if (DisableScheduling) {
3051      DAG.AssignOrdering(A.getNode(), SDNodeOrder);
3052      DAG.AssignOrdering(L.getNode(), SDNodeOrder);
3053    }
3054  }
3055
3056  if (!ConstantMemory) {
3057    SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
3058                                MVT::Other, &Chains[0], NumValues);
3059    if (isVolatile)
3060      DAG.setRoot(Chain);
3061    else
3062      PendingLoads.push_back(Chain);
3063
3064    if (DisableScheduling)
3065      DAG.AssignOrdering(Chain.getNode(), SDNodeOrder);
3066  }
3067
3068  SDValue Res = DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
3069                            DAG.getVTList(&ValueVTs[0], NumValues),
3070                            &Values[0], NumValues);
3071  setValue(&I, Res);
3072
3073  if (DisableScheduling)
3074    DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
3075}
3076
3077void SelectionDAGBuilder::visitStore(StoreInst &I) {
3078  Value *SrcV = I.getOperand(0);
3079  Value *PtrV = I.getOperand(1);
3080
3081  SmallVector<EVT, 4> ValueVTs;
3082  SmallVector<uint64_t, 4> Offsets;
3083  ComputeValueVTs(TLI, SrcV->getType(), ValueVTs, &Offsets);
3084  unsigned NumValues = ValueVTs.size();
3085  if (NumValues == 0)
3086    return;
3087
3088  // Get the lowered operands. Note that we do this after
3089  // checking if NumResults is zero, because with zero results
3090  // the operands won't have values in the map.
3091  SDValue Src = getValue(SrcV);
3092  SDValue Ptr = getValue(PtrV);
3093
3094  SDValue Root = getRoot();
3095  SmallVector<SDValue, 4> Chains(NumValues);
3096  EVT PtrVT = Ptr.getValueType();
3097  bool isVolatile = I.isVolatile();
3098  unsigned Alignment = I.getAlignment();
3099
3100  for (unsigned i = 0; i != NumValues; ++i) {
3101    SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT, Ptr,
3102                              DAG.getConstant(Offsets[i], PtrVT));
3103    Chains[i] = DAG.getStore(Root, getCurDebugLoc(),
3104                             SDValue(Src.getNode(), Src.getResNo() + i),
3105                             Add, PtrV, Offsets[i], isVolatile, Alignment);
3106
3107    if (DisableScheduling) {
3108      DAG.AssignOrdering(Add.getNode(), SDNodeOrder);
3109      DAG.AssignOrdering(Chains[i].getNode(), SDNodeOrder);
3110    }
3111  }
3112
3113  SDValue Res = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
3114                            MVT::Other, &Chains[0], NumValues);
3115  DAG.setRoot(Res);
3116
3117  if (DisableScheduling)
3118    DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
3119}
3120
3121/// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
3122/// node.
3123void SelectionDAGBuilder::visitTargetIntrinsic(CallInst &I,
3124                                               unsigned Intrinsic) {
3125  bool HasChain = !I.doesNotAccessMemory();
3126  bool OnlyLoad = HasChain && I.onlyReadsMemory();
3127
3128  // Build the operand list.
3129  SmallVector<SDValue, 8> Ops;
3130  if (HasChain) {  // If this intrinsic has side-effects, chainify it.
3131    if (OnlyLoad) {
3132      // We don't need to serialize loads against other loads.
3133      Ops.push_back(DAG.getRoot());
3134    } else {
3135      Ops.push_back(getRoot());
3136    }
3137  }
3138
3139  // Info is set by getTgtMemInstrinsic
3140  TargetLowering::IntrinsicInfo Info;
3141  bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic);
3142
3143  // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
3144  if (!IsTgtIntrinsic)
3145    Ops.push_back(DAG.getConstant(Intrinsic, TLI.getPointerTy()));
3146
3147  // Add all operands of the call to the operand list.
3148  for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) {
3149    SDValue Op = getValue(I.getOperand(i));
3150    assert(TLI.isTypeLegal(Op.getValueType()) &&
3151           "Intrinsic uses a non-legal type?");
3152    Ops.push_back(Op);
3153  }
3154
3155  SmallVector<EVT, 4> ValueVTs;
3156  ComputeValueVTs(TLI, I.getType(), ValueVTs);
3157#ifndef NDEBUG
3158  for (unsigned Val = 0, E = ValueVTs.size(); Val != E; ++Val) {
3159    assert(TLI.isTypeLegal(ValueVTs[Val]) &&
3160           "Intrinsic uses a non-legal type?");
3161  }
3162#endif // NDEBUG
3163
3164  if (HasChain)
3165    ValueVTs.push_back(MVT::Other);
3166
3167  SDVTList VTs = DAG.getVTList(ValueVTs.data(), ValueVTs.size());
3168
3169  // Create the node.
3170  SDValue Result;
3171  if (IsTgtIntrinsic) {
3172    // This is target intrinsic that touches memory
3173    Result = DAG.getMemIntrinsicNode(Info.opc, getCurDebugLoc(),
3174                                     VTs, &Ops[0], Ops.size(),
3175                                     Info.memVT, Info.ptrVal, Info.offset,
3176                                     Info.align, Info.vol,
3177                                     Info.readMem, Info.writeMem);
3178  } else if (!HasChain) {
3179    Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurDebugLoc(),
3180                         VTs, &Ops[0], Ops.size());
3181  } else if (!I.getType()->isVoidTy()) {
3182    Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurDebugLoc(),
3183                         VTs, &Ops[0], Ops.size());
3184  } else {
3185    Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurDebugLoc(),
3186                         VTs, &Ops[0], Ops.size());
3187  }
3188
3189  if (DisableScheduling)
3190    DAG.AssignOrdering(Result.getNode(), SDNodeOrder);
3191
3192  if (HasChain) {
3193    SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
3194    if (OnlyLoad)
3195      PendingLoads.push_back(Chain);
3196    else
3197      DAG.setRoot(Chain);
3198  }
3199
3200  if (!I.getType()->isVoidTy()) {
3201    if (const VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
3202      EVT VT = TLI.getValueType(PTy);
3203      Result = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(), VT, Result);
3204
3205      if (DisableScheduling)
3206        DAG.AssignOrdering(Result.getNode(), SDNodeOrder);
3207    }
3208
3209    setValue(&I, Result);
3210  }
3211}
3212
3213/// GetSignificand - Get the significand and build it into a floating-point
3214/// number with exponent of 1:
3215///
3216///   Op = (Op & 0x007fffff) | 0x3f800000;
3217///
3218/// where Op is the hexidecimal representation of floating point value.
3219static SDValue
3220GetSignificand(SelectionDAG &DAG, SDValue Op, DebugLoc dl, unsigned Order) {
3221  SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
3222                           DAG.getConstant(0x007fffff, MVT::i32));
3223  SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
3224                           DAG.getConstant(0x3f800000, MVT::i32));
3225  SDValue Res = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t2);
3226
3227  if (DisableScheduling) {
3228    DAG.AssignOrdering(t1.getNode(), Order);
3229    DAG.AssignOrdering(t2.getNode(), Order);
3230    DAG.AssignOrdering(Res.getNode(), Order);
3231  }
3232
3233  return Res;
3234}
3235
3236/// GetExponent - Get the exponent:
3237///
3238///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
3239///
3240/// where Op is the hexidecimal representation of floating point value.
3241static SDValue
3242GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI,
3243            DebugLoc dl, unsigned Order) {
3244  SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
3245                           DAG.getConstant(0x7f800000, MVT::i32));
3246  SDValue t1 = DAG.getNode(ISD::SRL, dl, MVT::i32, t0,
3247                           DAG.getConstant(23, TLI.getPointerTy()));
3248  SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
3249                           DAG.getConstant(127, MVT::i32));
3250  SDValue Res = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
3251
3252  if (DisableScheduling) {
3253    DAG.AssignOrdering(t0.getNode(), Order);
3254    DAG.AssignOrdering(t1.getNode(), Order);
3255    DAG.AssignOrdering(t2.getNode(), Order);
3256    DAG.AssignOrdering(Res.getNode(), Order);
3257  }
3258
3259  return Res;
3260}
3261
3262/// getF32Constant - Get 32-bit floating point constant.
3263static SDValue
3264getF32Constant(SelectionDAG &DAG, unsigned Flt) {
3265  return DAG.getConstantFP(APFloat(APInt(32, Flt)), MVT::f32);
3266}
3267
3268/// Inlined utility function to implement binary input atomic intrinsics for
3269/// visitIntrinsicCall: I is a call instruction
3270///                     Op is the associated NodeType for I
3271const char *
3272SelectionDAGBuilder::implVisitBinaryAtomic(CallInst& I, ISD::NodeType Op) {
3273  SDValue Root = getRoot();
3274  SDValue L =
3275    DAG.getAtomic(Op, getCurDebugLoc(),
3276                  getValue(I.getOperand(2)).getValueType().getSimpleVT(),
3277                  Root,
3278                  getValue(I.getOperand(1)),
3279                  getValue(I.getOperand(2)),
3280                  I.getOperand(1));
3281  setValue(&I, L);
3282  DAG.setRoot(L.getValue(1));
3283
3284  if (DisableScheduling)
3285    DAG.AssignOrdering(L.getNode(), SDNodeOrder);
3286
3287  return 0;
3288}
3289
3290// implVisitAluOverflow - Lower arithmetic overflow instrinsics.
3291const char *
3292SelectionDAGBuilder::implVisitAluOverflow(CallInst &I, ISD::NodeType Op) {
3293  SDValue Op1 = getValue(I.getOperand(1));
3294  SDValue Op2 = getValue(I.getOperand(2));
3295
3296  SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1);
3297  SDValue Result = DAG.getNode(Op, getCurDebugLoc(), VTs, Op1, Op2);
3298
3299  setValue(&I, Result);
3300
3301  if (DisableScheduling)
3302    DAG.AssignOrdering(Result.getNode(), SDNodeOrder);
3303
3304  return 0;
3305}
3306
3307/// visitExp - Lower an exp intrinsic. Handles the special sequences for
3308/// limited-precision mode.
3309void
3310SelectionDAGBuilder::visitExp(CallInst &I) {
3311  SDValue result;
3312  DebugLoc dl = getCurDebugLoc();
3313
3314  if (getValue(I.getOperand(1)).getValueType() == MVT::f32 &&
3315      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3316    SDValue Op = getValue(I.getOperand(1));
3317
3318    // Put the exponent in the right bit position for later addition to the
3319    // final result:
3320    //
3321    //   #define LOG2OFe 1.4426950f
3322    //   IntegerPartOfX = ((int32_t)(X * LOG2OFe));
3323    SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
3324                             getF32Constant(DAG, 0x3fb8aa3b));
3325    SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
3326
3327    //   FractionalPartOfX = (X * LOG2OFe) - (float)IntegerPartOfX;
3328    SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
3329    SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
3330
3331    if (DisableScheduling) {
3332      DAG.AssignOrdering(t0.getNode(), SDNodeOrder);
3333      DAG.AssignOrdering(IntegerPartOfX.getNode(), SDNodeOrder);
3334      DAG.AssignOrdering(t1.getNode(), SDNodeOrder);
3335      DAG.AssignOrdering(X.getNode(), SDNodeOrder);
3336    }
3337
3338    //   IntegerPartOfX <<= 23;
3339    IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
3340                                 DAG.getConstant(23, TLI.getPointerTy()));
3341
3342    if (DisableScheduling)
3343      DAG.AssignOrdering(IntegerPartOfX.getNode(), SDNodeOrder);
3344
3345    if (LimitFloatPrecision <= 6) {
3346      // For floating-point precision of 6:
3347      //
3348      //   TwoToFractionalPartOfX =
3349      //     0.997535578f +
3350      //       (0.735607626f + 0.252464424f * x) * x;
3351      //
3352      // error 0.0144103317, which is 6 bits
3353      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3354                               getF32Constant(DAG, 0x3e814304));
3355      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3356                               getF32Constant(DAG, 0x3f3c50c8));
3357      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3358      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3359                               getF32Constant(DAG, 0x3f7f5e7e));
3360      SDValue TwoToFracPartOfX = DAG.getNode(ISD::BIT_CONVERT, dl,MVT::i32, t5);
3361
3362      // Add the exponent into the result in integer domain.
3363      SDValue t6 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3364                               TwoToFracPartOfX, IntegerPartOfX);
3365
3366      result = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t6);
3367
3368      if (DisableScheduling) {
3369        DAG.AssignOrdering(t2.getNode(), SDNodeOrder);
3370        DAG.AssignOrdering(t3.getNode(), SDNodeOrder);
3371        DAG.AssignOrdering(t4.getNode(), SDNodeOrder);
3372        DAG.AssignOrdering(t5.getNode(), SDNodeOrder);
3373        DAG.AssignOrdering(t6.getNode(), SDNodeOrder);
3374        DAG.AssignOrdering(TwoToFracPartOfX.getNode(), SDNodeOrder);
3375        DAG.AssignOrdering(result.getNode(), SDNodeOrder);
3376      }
3377    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3378      // For floating-point precision of 12:
3379      //
3380      //   TwoToFractionalPartOfX =
3381      //     0.999892986f +
3382      //       (0.696457318f +
3383      //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
3384      //
3385      // 0.000107046256 error, which is 13 to 14 bits
3386      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3387                               getF32Constant(DAG, 0x3da235e3));
3388      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3389                               getF32Constant(DAG, 0x3e65b8f3));
3390      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3391      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3392                               getF32Constant(DAG, 0x3f324b07));
3393      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3394      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3395                               getF32Constant(DAG, 0x3f7ff8fd));
3396      SDValue TwoToFracPartOfX = DAG.getNode(ISD::BIT_CONVERT, dl,MVT::i32, t7);
3397
3398      // Add the exponent into the result in integer domain.
3399      SDValue t8 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3400                               TwoToFracPartOfX, IntegerPartOfX);
3401
3402      result = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t8);
3403
3404      if (DisableScheduling) {
3405        DAG.AssignOrdering(t2.getNode(), SDNodeOrder);
3406        DAG.AssignOrdering(t3.getNode(), SDNodeOrder);
3407        DAG.AssignOrdering(t4.getNode(), SDNodeOrder);
3408        DAG.AssignOrdering(t5.getNode(), SDNodeOrder);
3409        DAG.AssignOrdering(t6.getNode(), SDNodeOrder);
3410        DAG.AssignOrdering(t7.getNode(), SDNodeOrder);
3411        DAG.AssignOrdering(t8.getNode(), SDNodeOrder);
3412        DAG.AssignOrdering(TwoToFracPartOfX.getNode(), SDNodeOrder);
3413        DAG.AssignOrdering(result.getNode(), SDNodeOrder);
3414      }
3415    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3416      // For floating-point precision of 18:
3417      //
3418      //   TwoToFractionalPartOfX =
3419      //     0.999999982f +
3420      //       (0.693148872f +
3421      //         (0.240227044f +
3422      //           (0.554906021e-1f +
3423      //             (0.961591928e-2f +
3424      //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
3425      //
3426      // error 2.47208000*10^(-7), which is better than 18 bits
3427      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3428                               getF32Constant(DAG, 0x3924b03e));
3429      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3430                               getF32Constant(DAG, 0x3ab24b87));
3431      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3432      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3433                               getF32Constant(DAG, 0x3c1d8c17));
3434      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3435      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3436                               getF32Constant(DAG, 0x3d634a1d));
3437      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3438      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3439                               getF32Constant(DAG, 0x3e75fe14));
3440      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3441      SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
3442                                getF32Constant(DAG, 0x3f317234));
3443      SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
3444      SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
3445                                getF32Constant(DAG, 0x3f800000));
3446      SDValue TwoToFracPartOfX = DAG.getNode(ISD::BIT_CONVERT, dl,
3447                                             MVT::i32, t13);
3448
3449      // Add the exponent into the result in integer domain.
3450      SDValue t14 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3451                                TwoToFracPartOfX, IntegerPartOfX);
3452
3453      result = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t14);
3454
3455      if (DisableScheduling) {
3456        DAG.AssignOrdering(t2.getNode(), SDNodeOrder);
3457        DAG.AssignOrdering(t3.getNode(), SDNodeOrder);
3458        DAG.AssignOrdering(t4.getNode(), SDNodeOrder);
3459        DAG.AssignOrdering(t5.getNode(), SDNodeOrder);
3460        DAG.AssignOrdering(t6.getNode(), SDNodeOrder);
3461        DAG.AssignOrdering(t7.getNode(), SDNodeOrder);
3462        DAG.AssignOrdering(t8.getNode(), SDNodeOrder);
3463        DAG.AssignOrdering(t9.getNode(), SDNodeOrder);
3464        DAG.AssignOrdering(t10.getNode(), SDNodeOrder);
3465        DAG.AssignOrdering(t11.getNode(), SDNodeOrder);
3466        DAG.AssignOrdering(t12.getNode(), SDNodeOrder);
3467        DAG.AssignOrdering(t13.getNode(), SDNodeOrder);
3468        DAG.AssignOrdering(t14.getNode(), SDNodeOrder);
3469        DAG.AssignOrdering(TwoToFracPartOfX.getNode(), SDNodeOrder);
3470        DAG.AssignOrdering(result.getNode(), SDNodeOrder);
3471      }
3472    }
3473  } else {
3474    // No special expansion.
3475    result = DAG.getNode(ISD::FEXP, dl,
3476                         getValue(I.getOperand(1)).getValueType(),
3477                         getValue(I.getOperand(1)));
3478    if (DisableScheduling)
3479      DAG.AssignOrdering(result.getNode(), SDNodeOrder);
3480  }
3481
3482  setValue(&I, result);
3483}
3484
3485/// visitLog - Lower a log intrinsic. Handles the special sequences for
3486/// limited-precision mode.
3487void
3488SelectionDAGBuilder::visitLog(CallInst &I) {
3489  SDValue result;
3490  DebugLoc dl = getCurDebugLoc();
3491
3492  if (getValue(I.getOperand(1)).getValueType() == MVT::f32 &&
3493      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3494    SDValue Op = getValue(I.getOperand(1));
3495    SDValue Op1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, Op);
3496
3497    if (DisableScheduling)
3498      DAG.AssignOrdering(Op1.getNode(), SDNodeOrder);
3499
3500    // Scale the exponent by log(2) [0.69314718f].
3501    SDValue Exp = GetExponent(DAG, Op1, TLI, dl, SDNodeOrder);
3502    SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
3503                                        getF32Constant(DAG, 0x3f317218));
3504
3505    if (DisableScheduling)
3506      DAG.AssignOrdering(LogOfExponent.getNode(), SDNodeOrder);
3507
3508    // Get the significand and build it into a floating-point number with
3509    // exponent of 1.
3510    SDValue X = GetSignificand(DAG, Op1, dl, SDNodeOrder);
3511
3512    if (LimitFloatPrecision <= 6) {
3513      // For floating-point precision of 6:
3514      //
3515      //   LogofMantissa =
3516      //     -1.1609546f +
3517      //       (1.4034025f - 0.23903021f * x) * x;
3518      //
3519      // error 0.0034276066, which is better than 8 bits
3520      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3521                               getF32Constant(DAG, 0xbe74c456));
3522      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3523                               getF32Constant(DAG, 0x3fb3a2b1));
3524      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3525      SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3526                                          getF32Constant(DAG, 0x3f949a29));
3527
3528      result = DAG.getNode(ISD::FADD, dl,
3529                           MVT::f32, LogOfExponent, LogOfMantissa);
3530
3531      if (DisableScheduling) {
3532        DAG.AssignOrdering(t0.getNode(), SDNodeOrder);
3533        DAG.AssignOrdering(t1.getNode(), SDNodeOrder);
3534        DAG.AssignOrdering(t2.getNode(), SDNodeOrder);
3535        DAG.AssignOrdering(LogOfMantissa.getNode(), SDNodeOrder);
3536        DAG.AssignOrdering(result.getNode(), SDNodeOrder);
3537      }
3538    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3539      // For floating-point precision of 12:
3540      //
3541      //   LogOfMantissa =
3542      //     -1.7417939f +
3543      //       (2.8212026f +
3544      //         (-1.4699568f +
3545      //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
3546      //
3547      // error 0.000061011436, which is 14 bits
3548      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3549                               getF32Constant(DAG, 0xbd67b6d6));
3550      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3551                               getF32Constant(DAG, 0x3ee4f4b8));
3552      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3553      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3554                               getF32Constant(DAG, 0x3fbc278b));
3555      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3556      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3557                               getF32Constant(DAG, 0x40348e95));
3558      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3559      SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3560                                          getF32Constant(DAG, 0x3fdef31a));
3561
3562      result = DAG.getNode(ISD::FADD, dl,
3563                           MVT::f32, LogOfExponent, LogOfMantissa);
3564
3565      if (DisableScheduling) {
3566        DAG.AssignOrdering(t0.getNode(), SDNodeOrder);
3567        DAG.AssignOrdering(t1.getNode(), SDNodeOrder);
3568        DAG.AssignOrdering(t2.getNode(), SDNodeOrder);
3569        DAG.AssignOrdering(t3.getNode(), SDNodeOrder);
3570        DAG.AssignOrdering(t4.getNode(), SDNodeOrder);
3571        DAG.AssignOrdering(t5.getNode(), SDNodeOrder);
3572        DAG.AssignOrdering(t6.getNode(), SDNodeOrder);
3573        DAG.AssignOrdering(LogOfMantissa.getNode(), SDNodeOrder);
3574        DAG.AssignOrdering(result.getNode(), SDNodeOrder);
3575      }
3576    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3577      // For floating-point precision of 18:
3578      //
3579      //   LogOfMantissa =
3580      //     -2.1072184f +
3581      //       (4.2372794f +
3582      //         (-3.7029485f +
3583      //           (2.2781945f +
3584      //             (-0.87823314f +
3585      //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
3586      //
3587      // error 0.0000023660568, which is better than 18 bits
3588      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3589                               getF32Constant(DAG, 0xbc91e5ac));
3590      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3591                               getF32Constant(DAG, 0x3e4350aa));
3592      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3593      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3594                               getF32Constant(DAG, 0x3f60d3e3));
3595      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3596      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3597                               getF32Constant(DAG, 0x4011cdf0));
3598      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3599      SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3600                               getF32Constant(DAG, 0x406cfd1c));
3601      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3602      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3603                               getF32Constant(DAG, 0x408797cb));
3604      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3605      SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
3606                                          getF32Constant(DAG, 0x4006dcab));
3607
3608      result = DAG.getNode(ISD::FADD, dl,
3609                           MVT::f32, LogOfExponent, LogOfMantissa);
3610
3611      if (DisableScheduling) {
3612        DAG.AssignOrdering(t0.getNode(), SDNodeOrder);
3613        DAG.AssignOrdering(t1.getNode(), SDNodeOrder);
3614        DAG.AssignOrdering(t2.getNode(), SDNodeOrder);
3615        DAG.AssignOrdering(t3.getNode(), SDNodeOrder);
3616        DAG.AssignOrdering(t4.getNode(), SDNodeOrder);
3617        DAG.AssignOrdering(t5.getNode(), SDNodeOrder);
3618        DAG.AssignOrdering(t6.getNode(), SDNodeOrder);
3619        DAG.AssignOrdering(t7.getNode(), SDNodeOrder);
3620        DAG.AssignOrdering(t8.getNode(), SDNodeOrder);
3621        DAG.AssignOrdering(t9.getNode(), SDNodeOrder);
3622        DAG.AssignOrdering(t10.getNode(), SDNodeOrder);
3623        DAG.AssignOrdering(LogOfMantissa.getNode(), SDNodeOrder);
3624        DAG.AssignOrdering(result.getNode(), SDNodeOrder);
3625      }
3626    }
3627  } else {
3628    // No special expansion.
3629    result = DAG.getNode(ISD::FLOG, dl,
3630                         getValue(I.getOperand(1)).getValueType(),
3631                         getValue(I.getOperand(1)));
3632
3633    if (DisableScheduling)
3634      DAG.AssignOrdering(result.getNode(), SDNodeOrder);
3635  }
3636
3637  setValue(&I, result);
3638}
3639
3640/// visitLog2 - Lower a log2 intrinsic. Handles the special sequences for
3641/// limited-precision mode.
3642void
3643SelectionDAGBuilder::visitLog2(CallInst &I) {
3644  SDValue result;
3645  DebugLoc dl = getCurDebugLoc();
3646
3647  if (getValue(I.getOperand(1)).getValueType() == MVT::f32 &&
3648      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3649    SDValue Op = getValue(I.getOperand(1));
3650    SDValue Op1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, Op);
3651
3652    if (DisableScheduling)
3653      DAG.AssignOrdering(Op1.getNode(), SDNodeOrder);
3654
3655    // Get the exponent.
3656    SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl, SDNodeOrder);
3657
3658    if (DisableScheduling)
3659      DAG.AssignOrdering(LogOfExponent.getNode(), SDNodeOrder);
3660
3661    // Get the significand and build it into a floating-point number with
3662    // exponent of 1.
3663    SDValue X = GetSignificand(DAG, Op1, dl, SDNodeOrder);
3664
3665    // Different possible minimax approximations of significand in
3666    // floating-point for various degrees of accuracy over [1,2].
3667    if (LimitFloatPrecision <= 6) {
3668      // For floating-point precision of 6:
3669      //
3670      //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
3671      //
3672      // error 0.0049451742, which is more than 7 bits
3673      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3674                               getF32Constant(DAG, 0xbeb08fe0));
3675      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3676                               getF32Constant(DAG, 0x40019463));
3677      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3678      SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3679                                           getF32Constant(DAG, 0x3fd6633d));
3680
3681      result = DAG.getNode(ISD::FADD, dl,
3682                           MVT::f32, LogOfExponent, Log2ofMantissa);
3683
3684      if (DisableScheduling) {
3685        DAG.AssignOrdering(t0.getNode(), SDNodeOrder);
3686        DAG.AssignOrdering(t1.getNode(), SDNodeOrder);
3687        DAG.AssignOrdering(t2.getNode(), SDNodeOrder);
3688        DAG.AssignOrdering(Log2ofMantissa.getNode(), SDNodeOrder);
3689        DAG.AssignOrdering(result.getNode(), SDNodeOrder);
3690      }
3691    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3692      // For floating-point precision of 12:
3693      //
3694      //   Log2ofMantissa =
3695      //     -2.51285454f +
3696      //       (4.07009056f +
3697      //         (-2.12067489f +
3698      //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
3699      //
3700      // error 0.0000876136000, which is better than 13 bits
3701      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3702                               getF32Constant(DAG, 0xbda7262e));
3703      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3704                               getF32Constant(DAG, 0x3f25280b));
3705      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3706      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3707                               getF32Constant(DAG, 0x4007b923));
3708      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3709      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3710                               getF32Constant(DAG, 0x40823e2f));
3711      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3712      SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3713                                           getF32Constant(DAG, 0x4020d29c));
3714
3715      result = DAG.getNode(ISD::FADD, dl,
3716                           MVT::f32, LogOfExponent, Log2ofMantissa);
3717
3718      if (DisableScheduling) {
3719        DAG.AssignOrdering(t0.getNode(), SDNodeOrder);
3720        DAG.AssignOrdering(t1.getNode(), SDNodeOrder);
3721        DAG.AssignOrdering(t2.getNode(), SDNodeOrder);
3722        DAG.AssignOrdering(t3.getNode(), SDNodeOrder);
3723        DAG.AssignOrdering(t4.getNode(), SDNodeOrder);
3724        DAG.AssignOrdering(t5.getNode(), SDNodeOrder);
3725        DAG.AssignOrdering(t6.getNode(), SDNodeOrder);
3726        DAG.AssignOrdering(Log2ofMantissa.getNode(), SDNodeOrder);
3727        DAG.AssignOrdering(result.getNode(), SDNodeOrder);
3728      }
3729    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3730      // For floating-point precision of 18:
3731      //
3732      //   Log2ofMantissa =
3733      //     -3.0400495f +
3734      //       (6.1129976f +
3735      //         (-5.3420409f +
3736      //           (3.2865683f +
3737      //             (-1.2669343f +
3738      //               (0.27515199f -
3739      //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
3740      //
3741      // error 0.0000018516, which is better than 18 bits
3742      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3743                               getF32Constant(DAG, 0xbcd2769e));
3744      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3745                               getF32Constant(DAG, 0x3e8ce0b9));
3746      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3747      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3748                               getF32Constant(DAG, 0x3fa22ae7));
3749      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3750      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3751                               getF32Constant(DAG, 0x40525723));
3752      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3753      SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3754                               getF32Constant(DAG, 0x40aaf200));
3755      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3756      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3757                               getF32Constant(DAG, 0x40c39dad));
3758      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3759      SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
3760                                           getF32Constant(DAG, 0x4042902c));
3761
3762      result = DAG.getNode(ISD::FADD, dl,
3763                           MVT::f32, LogOfExponent, Log2ofMantissa);
3764
3765      if (DisableScheduling) {
3766        DAG.AssignOrdering(t0.getNode(), SDNodeOrder);
3767        DAG.AssignOrdering(t1.getNode(), SDNodeOrder);
3768        DAG.AssignOrdering(t2.getNode(), SDNodeOrder);
3769        DAG.AssignOrdering(t3.getNode(), SDNodeOrder);
3770        DAG.AssignOrdering(t4.getNode(), SDNodeOrder);
3771        DAG.AssignOrdering(t5.getNode(), SDNodeOrder);
3772        DAG.AssignOrdering(t6.getNode(), SDNodeOrder);
3773        DAG.AssignOrdering(t7.getNode(), SDNodeOrder);
3774        DAG.AssignOrdering(t8.getNode(), SDNodeOrder);
3775        DAG.AssignOrdering(t9.getNode(), SDNodeOrder);
3776        DAG.AssignOrdering(t10.getNode(), SDNodeOrder);
3777        DAG.AssignOrdering(Log2ofMantissa.getNode(), SDNodeOrder);
3778        DAG.AssignOrdering(result.getNode(), SDNodeOrder);
3779      }
3780    }
3781  } else {
3782    // No special expansion.
3783    result = DAG.getNode(ISD::FLOG2, dl,
3784                         getValue(I.getOperand(1)).getValueType(),
3785                         getValue(I.getOperand(1)));
3786
3787    if (DisableScheduling)
3788      DAG.AssignOrdering(result.getNode(), SDNodeOrder);
3789  }
3790
3791  setValue(&I, result);
3792}
3793
3794/// visitLog10 - Lower a log10 intrinsic. Handles the special sequences for
3795/// limited-precision mode.
3796void
3797SelectionDAGBuilder::visitLog10(CallInst &I) {
3798  SDValue result;
3799  DebugLoc dl = getCurDebugLoc();
3800
3801  if (getValue(I.getOperand(1)).getValueType() == MVT::f32 &&
3802      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3803    SDValue Op = getValue(I.getOperand(1));
3804    SDValue Op1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, Op);
3805
3806    if (DisableScheduling)
3807      DAG.AssignOrdering(Op1.getNode(), SDNodeOrder);
3808
3809    // Scale the exponent by log10(2) [0.30102999f].
3810    SDValue Exp = GetExponent(DAG, Op1, TLI, dl, SDNodeOrder);
3811    SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
3812                                        getF32Constant(DAG, 0x3e9a209a));
3813
3814    if (DisableScheduling)
3815      DAG.AssignOrdering(LogOfExponent.getNode(), SDNodeOrder);
3816
3817    // Get the significand and build it into a floating-point number with
3818    // exponent of 1.
3819    SDValue X = GetSignificand(DAG, Op1, dl, SDNodeOrder);
3820
3821    if (LimitFloatPrecision <= 6) {
3822      // For floating-point precision of 6:
3823      //
3824      //   Log10ofMantissa =
3825      //     -0.50419619f +
3826      //       (0.60948995f - 0.10380950f * x) * x;
3827      //
3828      // error 0.0014886165, which is 6 bits
3829      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3830                               getF32Constant(DAG, 0xbdd49a13));
3831      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3832                               getF32Constant(DAG, 0x3f1c0789));
3833      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3834      SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3835                                            getF32Constant(DAG, 0x3f011300));
3836
3837      result = DAG.getNode(ISD::FADD, dl,
3838                           MVT::f32, LogOfExponent, Log10ofMantissa);
3839
3840      if (DisableScheduling) {
3841        DAG.AssignOrdering(t0.getNode(), SDNodeOrder);
3842        DAG.AssignOrdering(t1.getNode(), SDNodeOrder);
3843        DAG.AssignOrdering(t2.getNode(), SDNodeOrder);
3844        DAG.AssignOrdering(Log10ofMantissa.getNode(), SDNodeOrder);
3845        DAG.AssignOrdering(result.getNode(), SDNodeOrder);
3846      }
3847    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3848      // For floating-point precision of 12:
3849      //
3850      //   Log10ofMantissa =
3851      //     -0.64831180f +
3852      //       (0.91751397f +
3853      //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
3854      //
3855      // error 0.00019228036, which is better than 12 bits
3856      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3857                               getF32Constant(DAG, 0x3d431f31));
3858      SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
3859                               getF32Constant(DAG, 0x3ea21fb2));
3860      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3861      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3862                               getF32Constant(DAG, 0x3f6ae232));
3863      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3864      SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
3865                                            getF32Constant(DAG, 0x3f25f7c3));
3866
3867      result = DAG.getNode(ISD::FADD, dl,
3868                           MVT::f32, LogOfExponent, Log10ofMantissa);
3869
3870      if (DisableScheduling) {
3871        DAG.AssignOrdering(t0.getNode(), SDNodeOrder);
3872        DAG.AssignOrdering(t1.getNode(), SDNodeOrder);
3873        DAG.AssignOrdering(t2.getNode(), SDNodeOrder);
3874        DAG.AssignOrdering(t3.getNode(), SDNodeOrder);
3875        DAG.AssignOrdering(t4.getNode(), SDNodeOrder);
3876        DAG.AssignOrdering(Log10ofMantissa.getNode(), SDNodeOrder);
3877        DAG.AssignOrdering(result.getNode(), SDNodeOrder);
3878      }
3879    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3880      // For floating-point precision of 18:
3881      //
3882      //   Log10ofMantissa =
3883      //     -0.84299375f +
3884      //       (1.5327582f +
3885      //         (-1.0688956f +
3886      //           (0.49102474f +
3887      //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
3888      //
3889      // error 0.0000037995730, which is better than 18 bits
3890      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3891                               getF32Constant(DAG, 0x3c5d51ce));
3892      SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
3893                               getF32Constant(DAG, 0x3e00685a));
3894      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3895      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3896                               getF32Constant(DAG, 0x3efb6798));
3897      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3898      SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
3899                               getF32Constant(DAG, 0x3f88d192));
3900      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3901      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3902                               getF32Constant(DAG, 0x3fc4316c));
3903      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3904      SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
3905                                            getF32Constant(DAG, 0x3f57ce70));
3906
3907      result = DAG.getNode(ISD::FADD, dl,
3908                           MVT::f32, LogOfExponent, Log10ofMantissa);
3909
3910      if (DisableScheduling) {
3911        DAG.AssignOrdering(t0.getNode(), SDNodeOrder);
3912        DAG.AssignOrdering(t1.getNode(), SDNodeOrder);
3913        DAG.AssignOrdering(t2.getNode(), SDNodeOrder);
3914        DAG.AssignOrdering(t3.getNode(), SDNodeOrder);
3915        DAG.AssignOrdering(t4.getNode(), SDNodeOrder);
3916        DAG.AssignOrdering(t5.getNode(), SDNodeOrder);
3917        DAG.AssignOrdering(t6.getNode(), SDNodeOrder);
3918        DAG.AssignOrdering(t7.getNode(), SDNodeOrder);
3919        DAG.AssignOrdering(t8.getNode(), SDNodeOrder);
3920        DAG.AssignOrdering(Log10ofMantissa.getNode(), SDNodeOrder);
3921        DAG.AssignOrdering(result.getNode(), SDNodeOrder);
3922      }
3923    }
3924  } else {
3925    // No special expansion.
3926    result = DAG.getNode(ISD::FLOG10, dl,
3927                         getValue(I.getOperand(1)).getValueType(),
3928                         getValue(I.getOperand(1)));
3929
3930    if (DisableScheduling)
3931      DAG.AssignOrdering(result.getNode(), SDNodeOrder);
3932  }
3933
3934  setValue(&I, result);
3935}
3936
3937/// visitExp2 - Lower an exp2 intrinsic. Handles the special sequences for
3938/// limited-precision mode.
3939void
3940SelectionDAGBuilder::visitExp2(CallInst &I) {
3941  SDValue result;
3942  DebugLoc dl = getCurDebugLoc();
3943
3944  if (getValue(I.getOperand(1)).getValueType() == MVT::f32 &&
3945      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3946    SDValue Op = getValue(I.getOperand(1));
3947
3948    SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Op);
3949
3950    if (DisableScheduling)
3951      DAG.AssignOrdering(IntegerPartOfX.getNode(), SDNodeOrder);
3952
3953    //   FractionalPartOfX = x - (float)IntegerPartOfX;
3954    SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
3955    SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, Op, t1);
3956
3957    //   IntegerPartOfX <<= 23;
3958    IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
3959                                 DAG.getConstant(23, TLI.getPointerTy()));
3960
3961    if (DisableScheduling) {
3962      DAG.AssignOrdering(t1.getNode(), SDNodeOrder);
3963      DAG.AssignOrdering(X.getNode(), SDNodeOrder);
3964      DAG.AssignOrdering(IntegerPartOfX.getNode(), SDNodeOrder);
3965    }
3966
3967    if (LimitFloatPrecision <= 6) {
3968      // For floating-point precision of 6:
3969      //
3970      //   TwoToFractionalPartOfX =
3971      //     0.997535578f +
3972      //       (0.735607626f + 0.252464424f * x) * x;
3973      //
3974      // error 0.0144103317, which is 6 bits
3975      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3976                               getF32Constant(DAG, 0x3e814304));
3977      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3978                               getF32Constant(DAG, 0x3f3c50c8));
3979      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3980      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3981                               getF32Constant(DAG, 0x3f7f5e7e));
3982      SDValue t6 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t5);
3983      SDValue TwoToFractionalPartOfX =
3984        DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX);
3985
3986      result = DAG.getNode(ISD::BIT_CONVERT, dl,
3987                           MVT::f32, TwoToFractionalPartOfX);
3988
3989      if (DisableScheduling) {
3990        DAG.AssignOrdering(t2.getNode(), SDNodeOrder);
3991        DAG.AssignOrdering(t3.getNode(), SDNodeOrder);
3992        DAG.AssignOrdering(t4.getNode(), SDNodeOrder);
3993        DAG.AssignOrdering(t5.getNode(), SDNodeOrder);
3994        DAG.AssignOrdering(t6.getNode(), SDNodeOrder);
3995        DAG.AssignOrdering(TwoToFractionalPartOfX.getNode(), SDNodeOrder);
3996        DAG.AssignOrdering(result.getNode(), SDNodeOrder);
3997      }
3998    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3999      // For floating-point precision of 12:
4000      //
4001      //   TwoToFractionalPartOfX =
4002      //     0.999892986f +
4003      //       (0.696457318f +
4004      //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
4005      //
4006      // error 0.000107046256, which is 13 to 14 bits
4007      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4008                               getF32Constant(DAG, 0x3da235e3));
4009      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4010                               getF32Constant(DAG, 0x3e65b8f3));
4011      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4012      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4013                               getF32Constant(DAG, 0x3f324b07));
4014      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4015      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4016                               getF32Constant(DAG, 0x3f7ff8fd));
4017      SDValue t8 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t7);
4018      SDValue TwoToFractionalPartOfX =
4019        DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX);
4020
4021      result = DAG.getNode(ISD::BIT_CONVERT, dl,
4022                           MVT::f32, TwoToFractionalPartOfX);
4023
4024      if (DisableScheduling) {
4025        DAG.AssignOrdering(t2.getNode(), SDNodeOrder);
4026        DAG.AssignOrdering(t3.getNode(), SDNodeOrder);
4027        DAG.AssignOrdering(t4.getNode(), SDNodeOrder);
4028        DAG.AssignOrdering(t5.getNode(), SDNodeOrder);
4029        DAG.AssignOrdering(t6.getNode(), SDNodeOrder);
4030        DAG.AssignOrdering(t7.getNode(), SDNodeOrder);
4031        DAG.AssignOrdering(t8.getNode(), SDNodeOrder);
4032        DAG.AssignOrdering(TwoToFractionalPartOfX.getNode(), SDNodeOrder);
4033        DAG.AssignOrdering(result.getNode(), SDNodeOrder);
4034      }
4035    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
4036      // For floating-point precision of 18:
4037      //
4038      //   TwoToFractionalPartOfX =
4039      //     0.999999982f +
4040      //       (0.693148872f +
4041      //         (0.240227044f +
4042      //           (0.554906021e-1f +
4043      //             (0.961591928e-2f +
4044      //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
4045      // error 2.47208000*10^(-7), which is better than 18 bits
4046      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4047                               getF32Constant(DAG, 0x3924b03e));
4048      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4049                               getF32Constant(DAG, 0x3ab24b87));
4050      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4051      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4052                               getF32Constant(DAG, 0x3c1d8c17));
4053      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4054      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4055                               getF32Constant(DAG, 0x3d634a1d));
4056      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4057      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4058                               getF32Constant(DAG, 0x3e75fe14));
4059      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4060      SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
4061                                getF32Constant(DAG, 0x3f317234));
4062      SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
4063      SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
4064                                getF32Constant(DAG, 0x3f800000));
4065      SDValue t14 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t13);
4066      SDValue TwoToFractionalPartOfX =
4067        DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX);
4068
4069      result = DAG.getNode(ISD::BIT_CONVERT, dl,
4070                           MVT::f32, TwoToFractionalPartOfX);
4071
4072      if (DisableScheduling) {
4073        DAG.AssignOrdering(t2.getNode(), SDNodeOrder);
4074        DAG.AssignOrdering(t3.getNode(), SDNodeOrder);
4075        DAG.AssignOrdering(t4.getNode(), SDNodeOrder);
4076        DAG.AssignOrdering(t5.getNode(), SDNodeOrder);
4077        DAG.AssignOrdering(t6.getNode(), SDNodeOrder);
4078        DAG.AssignOrdering(t7.getNode(), SDNodeOrder);
4079        DAG.AssignOrdering(t8.getNode(), SDNodeOrder);
4080        DAG.AssignOrdering(t9.getNode(), SDNodeOrder);
4081        DAG.AssignOrdering(t10.getNode(), SDNodeOrder);
4082        DAG.AssignOrdering(t11.getNode(), SDNodeOrder);
4083        DAG.AssignOrdering(t12.getNode(), SDNodeOrder);
4084        DAG.AssignOrdering(t13.getNode(), SDNodeOrder);
4085        DAG.AssignOrdering(t14.getNode(), SDNodeOrder);
4086        DAG.AssignOrdering(TwoToFractionalPartOfX.getNode(), SDNodeOrder);
4087        DAG.AssignOrdering(result.getNode(), SDNodeOrder);
4088      }
4089    }
4090  } else {
4091    // No special expansion.
4092    result = DAG.getNode(ISD::FEXP2, dl,
4093                         getValue(I.getOperand(1)).getValueType(),
4094                         getValue(I.getOperand(1)));
4095
4096    if (DisableScheduling)
4097      DAG.AssignOrdering(result.getNode(), SDNodeOrder);
4098  }
4099
4100  setValue(&I, result);
4101}
4102
4103/// visitPow - Lower a pow intrinsic. Handles the special sequences for
4104/// limited-precision mode with x == 10.0f.
4105void
4106SelectionDAGBuilder::visitPow(CallInst &I) {
4107  SDValue result;
4108  Value *Val = I.getOperand(1);
4109  DebugLoc dl = getCurDebugLoc();
4110  bool IsExp10 = false;
4111
4112  if (getValue(Val).getValueType() == MVT::f32 &&
4113      getValue(I.getOperand(2)).getValueType() == MVT::f32 &&
4114      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4115    if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(Val))) {
4116      if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
4117        APFloat Ten(10.0f);
4118        IsExp10 = CFP->getValueAPF().bitwiseIsEqual(Ten);
4119      }
4120    }
4121  }
4122
4123  if (IsExp10 && LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4124    SDValue Op = getValue(I.getOperand(2));
4125
4126    // Put the exponent in the right bit position for later addition to the
4127    // final result:
4128    //
4129    //   #define LOG2OF10 3.3219281f
4130    //   IntegerPartOfX = (int32_t)(x * LOG2OF10);
4131    SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
4132                             getF32Constant(DAG, 0x40549a78));
4133    SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
4134
4135    //   FractionalPartOfX = x - (float)IntegerPartOfX;
4136    SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
4137    SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
4138
4139    if (DisableScheduling) {
4140      DAG.AssignOrdering(t0.getNode(), SDNodeOrder);
4141      DAG.AssignOrdering(t1.getNode(), SDNodeOrder);
4142      DAG.AssignOrdering(IntegerPartOfX.getNode(), SDNodeOrder);
4143      DAG.AssignOrdering(X.getNode(), SDNodeOrder);
4144    }
4145
4146    //   IntegerPartOfX <<= 23;
4147    IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
4148                                 DAG.getConstant(23, TLI.getPointerTy()));
4149
4150    if (DisableScheduling)
4151      DAG.AssignOrdering(IntegerPartOfX.getNode(), SDNodeOrder);
4152
4153    if (LimitFloatPrecision <= 6) {
4154      // For floating-point precision of 6:
4155      //
4156      //   twoToFractionalPartOfX =
4157      //     0.997535578f +
4158      //       (0.735607626f + 0.252464424f * x) * x;
4159      //
4160      // error 0.0144103317, which is 6 bits
4161      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4162                               getF32Constant(DAG, 0x3e814304));
4163      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4164                               getF32Constant(DAG, 0x3f3c50c8));
4165      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4166      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4167                               getF32Constant(DAG, 0x3f7f5e7e));
4168      SDValue t6 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t5);
4169      SDValue TwoToFractionalPartOfX =
4170        DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX);
4171
4172      result = DAG.getNode(ISD::BIT_CONVERT, dl,
4173                           MVT::f32, TwoToFractionalPartOfX);
4174
4175      if (DisableScheduling) {
4176        DAG.AssignOrdering(t2.getNode(), SDNodeOrder);
4177        DAG.AssignOrdering(t3.getNode(), SDNodeOrder);
4178        DAG.AssignOrdering(t4.getNode(), SDNodeOrder);
4179        DAG.AssignOrdering(t5.getNode(), SDNodeOrder);
4180        DAG.AssignOrdering(t6.getNode(), SDNodeOrder);
4181        DAG.AssignOrdering(TwoToFractionalPartOfX.getNode(), SDNodeOrder);
4182        DAG.AssignOrdering(result.getNode(), SDNodeOrder);
4183      }
4184    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
4185      // For floating-point precision of 12:
4186      //
4187      //   TwoToFractionalPartOfX =
4188      //     0.999892986f +
4189      //       (0.696457318f +
4190      //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
4191      //
4192      // error 0.000107046256, which is 13 to 14 bits
4193      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4194                               getF32Constant(DAG, 0x3da235e3));
4195      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4196                               getF32Constant(DAG, 0x3e65b8f3));
4197      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4198      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4199                               getF32Constant(DAG, 0x3f324b07));
4200      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4201      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4202                               getF32Constant(DAG, 0x3f7ff8fd));
4203      SDValue t8 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t7);
4204      SDValue TwoToFractionalPartOfX =
4205        DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX);
4206
4207      result = DAG.getNode(ISD::BIT_CONVERT, dl,
4208                           MVT::f32, TwoToFractionalPartOfX);
4209
4210      if (DisableScheduling) {
4211        DAG.AssignOrdering(t2.getNode(), SDNodeOrder);
4212        DAG.AssignOrdering(t3.getNode(), SDNodeOrder);
4213        DAG.AssignOrdering(t4.getNode(), SDNodeOrder);
4214        DAG.AssignOrdering(t5.getNode(), SDNodeOrder);
4215        DAG.AssignOrdering(t6.getNode(), SDNodeOrder);
4216        DAG.AssignOrdering(t7.getNode(), SDNodeOrder);
4217        DAG.AssignOrdering(t8.getNode(), SDNodeOrder);
4218        DAG.AssignOrdering(TwoToFractionalPartOfX.getNode(), SDNodeOrder);
4219        DAG.AssignOrdering(result.getNode(), SDNodeOrder);
4220      }
4221    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
4222      // For floating-point precision of 18:
4223      //
4224      //   TwoToFractionalPartOfX =
4225      //     0.999999982f +
4226      //       (0.693148872f +
4227      //         (0.240227044f +
4228      //           (0.554906021e-1f +
4229      //             (0.961591928e-2f +
4230      //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
4231      // error 2.47208000*10^(-7), which is better than 18 bits
4232      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4233                               getF32Constant(DAG, 0x3924b03e));
4234      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4235                               getF32Constant(DAG, 0x3ab24b87));
4236      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4237      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4238                               getF32Constant(DAG, 0x3c1d8c17));
4239      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4240      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4241                               getF32Constant(DAG, 0x3d634a1d));
4242      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4243      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4244                               getF32Constant(DAG, 0x3e75fe14));
4245      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4246      SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
4247                                getF32Constant(DAG, 0x3f317234));
4248      SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
4249      SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
4250                                getF32Constant(DAG, 0x3f800000));
4251      SDValue t14 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t13);
4252      SDValue TwoToFractionalPartOfX =
4253        DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX);
4254
4255      result = DAG.getNode(ISD::BIT_CONVERT, dl,
4256                           MVT::f32, TwoToFractionalPartOfX);
4257
4258      if (DisableScheduling) {
4259        DAG.AssignOrdering(t2.getNode(), SDNodeOrder);
4260        DAG.AssignOrdering(t3.getNode(), SDNodeOrder);
4261        DAG.AssignOrdering(t4.getNode(), SDNodeOrder);
4262        DAG.AssignOrdering(t5.getNode(), SDNodeOrder);
4263        DAG.AssignOrdering(t6.getNode(), SDNodeOrder);
4264        DAG.AssignOrdering(t7.getNode(), SDNodeOrder);
4265        DAG.AssignOrdering(t8.getNode(), SDNodeOrder);
4266        DAG.AssignOrdering(t9.getNode(), SDNodeOrder);
4267        DAG.AssignOrdering(t10.getNode(), SDNodeOrder);
4268        DAG.AssignOrdering(t11.getNode(), SDNodeOrder);
4269        DAG.AssignOrdering(t12.getNode(), SDNodeOrder);
4270        DAG.AssignOrdering(t13.getNode(), SDNodeOrder);
4271        DAG.AssignOrdering(t14.getNode(), SDNodeOrder);
4272        DAG.AssignOrdering(TwoToFractionalPartOfX.getNode(), SDNodeOrder);
4273        DAG.AssignOrdering(result.getNode(), SDNodeOrder);
4274      }
4275    }
4276  } else {
4277    // No special expansion.
4278    result = DAG.getNode(ISD::FPOW, dl,
4279                         getValue(I.getOperand(1)).getValueType(),
4280                         getValue(I.getOperand(1)),
4281                         getValue(I.getOperand(2)));
4282
4283    if (DisableScheduling)
4284      DAG.AssignOrdering(result.getNode(), SDNodeOrder);
4285  }
4286
4287  setValue(&I, result);
4288}
4289
4290
4291/// ExpandPowI - Expand a llvm.powi intrinsic.
4292static SDValue ExpandPowI(DebugLoc DL, SDValue LHS, SDValue RHS,
4293                          SelectionDAG &DAG) {
4294  // If RHS is a constant, we can expand this out to a multiplication tree,
4295  // otherwise we end up lowering to a call to __powidf2 (for example).  When
4296  // optimizing for size, we only want to do this if the expansion would produce
4297  // a small number of multiplies, otherwise we do the full expansion.
4298  if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
4299    // Get the exponent as a positive value.
4300    unsigned Val = RHSC->getSExtValue();
4301    if ((int)Val < 0) Val = -Val;
4302
4303    // powi(x, 0) -> 1.0
4304    if (Val == 0)
4305      return DAG.getConstantFP(1.0, LHS.getValueType());
4306
4307    Function *F = DAG.getMachineFunction().getFunction();
4308    if (!F->hasFnAttr(Attribute::OptimizeForSize) ||
4309        // If optimizing for size, don't insert too many multiplies.  This
4310        // inserts up to 5 multiplies.
4311        CountPopulation_32(Val)+Log2_32(Val) < 7) {
4312      // We use the simple binary decomposition method to generate the multiply
4313      // sequence.  There are more optimal ways to do this (for example,
4314      // powi(x,15) generates one more multiply than it should), but this has
4315      // the benefit of being both really simple and much better than a libcall.
4316      SDValue Res;  // Logically starts equal to 1.0
4317      SDValue CurSquare = LHS;
4318      while (Val) {
4319        if (Val & 1) {
4320          if (Res.getNode())
4321            Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare);
4322          else
4323            Res = CurSquare;  // 1.0*CurSquare.
4324        }
4325
4326        CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
4327                                CurSquare, CurSquare);
4328        Val >>= 1;
4329      }
4330
4331      // If the original was negative, invert the result, producing 1/(x*x*x).
4332      if (RHSC->getSExtValue() < 0)
4333        Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
4334                          DAG.getConstantFP(1.0, LHS.getValueType()), Res);
4335      return Res;
4336    }
4337  }
4338
4339  // Otherwise, expand to a libcall.
4340  return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
4341}
4342
4343
4344/// visitIntrinsicCall - Lower the call to the specified intrinsic function.  If
4345/// we want to emit this as a call to a named external function, return the name
4346/// otherwise lower it and return null.
4347const char *
4348SelectionDAGBuilder::visitIntrinsicCall(CallInst &I, unsigned Intrinsic) {
4349  DebugLoc dl = getCurDebugLoc();
4350  SDValue Res;
4351
4352  switch (Intrinsic) {
4353  default:
4354    // By default, turn this into a target intrinsic node.
4355    visitTargetIntrinsic(I, Intrinsic);
4356    return 0;
4357  case Intrinsic::vastart:  visitVAStart(I); return 0;
4358  case Intrinsic::vaend:    visitVAEnd(I); return 0;
4359  case Intrinsic::vacopy:   visitVACopy(I); return 0;
4360  case Intrinsic::returnaddress:
4361    Res = DAG.getNode(ISD::RETURNADDR, dl, TLI.getPointerTy(),
4362                      getValue(I.getOperand(1)));
4363    setValue(&I, Res);
4364    if (DisableScheduling)
4365      DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
4366    return 0;
4367  case Intrinsic::frameaddress:
4368    Res = DAG.getNode(ISD::FRAMEADDR, dl, TLI.getPointerTy(),
4369                      getValue(I.getOperand(1)));
4370    setValue(&I, Res);
4371    if (DisableScheduling)
4372      DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
4373    return 0;
4374  case Intrinsic::setjmp:
4375    return "_setjmp"+!TLI.usesUnderscoreSetJmp();
4376  case Intrinsic::longjmp:
4377    return "_longjmp"+!TLI.usesUnderscoreLongJmp();
4378  case Intrinsic::memcpy: {
4379    SDValue Op1 = getValue(I.getOperand(1));
4380    SDValue Op2 = getValue(I.getOperand(2));
4381    SDValue Op3 = getValue(I.getOperand(3));
4382    unsigned Align = cast<ConstantInt>(I.getOperand(4))->getZExtValue();
4383    Res = DAG.getMemcpy(getRoot(), dl, Op1, Op2, Op3, Align, false,
4384                        I.getOperand(1), 0, I.getOperand(2), 0);
4385    DAG.setRoot(Res);
4386    if (DisableScheduling)
4387      DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
4388    return 0;
4389  }
4390  case Intrinsic::memset: {
4391    SDValue Op1 = getValue(I.getOperand(1));
4392    SDValue Op2 = getValue(I.getOperand(2));
4393    SDValue Op3 = getValue(I.getOperand(3));
4394    unsigned Align = cast<ConstantInt>(I.getOperand(4))->getZExtValue();
4395    Res = DAG.getMemset(getRoot(), dl, Op1, Op2, Op3, Align,
4396                        I.getOperand(1), 0);
4397    DAG.setRoot(Res);
4398    if (DisableScheduling)
4399      DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
4400    return 0;
4401  }
4402  case Intrinsic::memmove: {
4403    SDValue Op1 = getValue(I.getOperand(1));
4404    SDValue Op2 = getValue(I.getOperand(2));
4405    SDValue Op3 = getValue(I.getOperand(3));
4406    unsigned Align = cast<ConstantInt>(I.getOperand(4))->getZExtValue();
4407
4408    // If the source and destination are known to not be aliases, we can
4409    // lower memmove as memcpy.
4410    uint64_t Size = -1ULL;
4411    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op3))
4412      Size = C->getZExtValue();
4413    if (AA->alias(I.getOperand(1), Size, I.getOperand(2), Size) ==
4414        AliasAnalysis::NoAlias) {
4415      Res = DAG.getMemcpy(getRoot(), dl, Op1, Op2, Op3, Align, false,
4416                          I.getOperand(1), 0, I.getOperand(2), 0);
4417      DAG.setRoot(Res);
4418      if (DisableScheduling)
4419        DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
4420      return 0;
4421    }
4422
4423    Res = DAG.getMemmove(getRoot(), dl, Op1, Op2, Op3, Align,
4424                         I.getOperand(1), 0, I.getOperand(2), 0);
4425    DAG.setRoot(Res);
4426    if (DisableScheduling)
4427      DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
4428    return 0;
4429  }
4430  case Intrinsic::dbg_declare: {
4431    if (OptLevel != CodeGenOpt::None)
4432      // FIXME: Variable debug info is not supported here.
4433      return 0;
4434    DwarfWriter *DW = DAG.getDwarfWriter();
4435    if (!DW)
4436      return 0;
4437    DbgDeclareInst &DI = cast<DbgDeclareInst>(I);
4438    if (!DIDescriptor::ValidDebugInfo(DI.getVariable(), CodeGenOpt::None))
4439      return 0;
4440
4441    MDNode *Variable = DI.getVariable();
4442    Value *Address = DI.getAddress();
4443    if (BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
4444      Address = BCI->getOperand(0);
4445    AllocaInst *AI = dyn_cast<AllocaInst>(Address);
4446    // Don't handle byval struct arguments or VLAs, for example.
4447    if (!AI)
4448      return 0;
4449    DenseMap<const AllocaInst*, int>::iterator SI =
4450      FuncInfo.StaticAllocaMap.find(AI);
4451    if (SI == FuncInfo.StaticAllocaMap.end())
4452      return 0; // VLAs.
4453    int FI = SI->second;
4454
4455    if (MachineModuleInfo *MMI = DAG.getMachineModuleInfo())
4456      if (MDNode *Dbg = DI.getMetadata("dbg"))
4457        MMI->setVariableDbgInfo(Variable, FI, Dbg);
4458    return 0;
4459  }
4460  case Intrinsic::eh_exception: {
4461    // Insert the EXCEPTIONADDR instruction.
4462    assert(CurMBB->isLandingPad() &&"Call to eh.exception not in landing pad!");
4463    SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
4464    SDValue Ops[1];
4465    Ops[0] = DAG.getRoot();
4466    SDValue Op = DAG.getNode(ISD::EXCEPTIONADDR, dl, VTs, Ops, 1);
4467    setValue(&I, Op);
4468    DAG.setRoot(Op.getValue(1));
4469    if (DisableScheduling)
4470      DAG.AssignOrdering(Op.getNode(), SDNodeOrder);
4471    return 0;
4472  }
4473
4474  case Intrinsic::eh_selector: {
4475    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
4476
4477    if (CurMBB->isLandingPad())
4478      AddCatchInfo(I, MMI, CurMBB);
4479    else {
4480#ifndef NDEBUG
4481      FuncInfo.CatchInfoLost.insert(&I);
4482#endif
4483      // FIXME: Mark exception selector register as live in.  Hack for PR1508.
4484      unsigned Reg = TLI.getExceptionSelectorRegister();
4485      if (Reg) CurMBB->addLiveIn(Reg);
4486    }
4487
4488    // Insert the EHSELECTION instruction.
4489    SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
4490    SDValue Ops[2];
4491    Ops[0] = getValue(I.getOperand(1));
4492    Ops[1] = getRoot();
4493    SDValue Op = DAG.getNode(ISD::EHSELECTION, dl, VTs, Ops, 2);
4494
4495    DAG.setRoot(Op.getValue(1));
4496
4497    Res = DAG.getSExtOrTrunc(Op, dl, MVT::i32);
4498    setValue(&I, Res);
4499    if (DisableScheduling) {
4500      DAG.AssignOrdering(Op.getNode(), SDNodeOrder);
4501      DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
4502    }
4503    return 0;
4504  }
4505
4506  case Intrinsic::eh_typeid_for: {
4507    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
4508
4509    if (MMI) {
4510      // Find the type id for the given typeinfo.
4511      GlobalVariable *GV = ExtractTypeInfo(I.getOperand(1));
4512      unsigned TypeID = MMI->getTypeIDFor(GV);
4513      Res = DAG.getConstant(TypeID, MVT::i32);
4514    } else {
4515      // Return something different to eh_selector.
4516      Res = DAG.getConstant(1, MVT::i32);
4517    }
4518
4519    setValue(&I, Res);
4520    if (DisableScheduling)
4521      DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
4522    return 0;
4523  }
4524
4525  case Intrinsic::eh_return_i32:
4526  case Intrinsic::eh_return_i64:
4527    if (MachineModuleInfo *MMI = DAG.getMachineModuleInfo()) {
4528      MMI->setCallsEHReturn(true);
4529      Res = DAG.getNode(ISD::EH_RETURN, dl,
4530                        MVT::Other,
4531                        getControlRoot(),
4532                        getValue(I.getOperand(1)),
4533                        getValue(I.getOperand(2)));
4534      DAG.setRoot(Res);
4535      if (DisableScheduling)
4536        DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
4537    } else {
4538      setValue(&I, DAG.getConstant(0, TLI.getPointerTy()));
4539    }
4540
4541    return 0;
4542  case Intrinsic::eh_unwind_init:
4543    if (MachineModuleInfo *MMI = DAG.getMachineModuleInfo()) {
4544      MMI->setCallsUnwindInit(true);
4545    }
4546    return 0;
4547  case Intrinsic::eh_dwarf_cfa: {
4548    EVT VT = getValue(I.getOperand(1)).getValueType();
4549    SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), dl,
4550                                        TLI.getPointerTy());
4551    SDValue Offset = DAG.getNode(ISD::ADD, dl,
4552                                 TLI.getPointerTy(),
4553                                 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, dl,
4554                                             TLI.getPointerTy()),
4555                                 CfaArg);
4556    SDValue FA = DAG.getNode(ISD::FRAMEADDR, dl,
4557                             TLI.getPointerTy(),
4558                             DAG.getConstant(0, TLI.getPointerTy()));
4559    Res = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(),
4560                      FA, Offset);
4561    setValue(&I, Res);
4562    if (DisableScheduling) {
4563      DAG.AssignOrdering(CfaArg.getNode(), SDNodeOrder);
4564      DAG.AssignOrdering(Offset.getNode(), SDNodeOrder);
4565      DAG.AssignOrdering(FA.getNode(), SDNodeOrder);
4566      DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
4567    }
4568    return 0;
4569  }
4570  case Intrinsic::convertff:
4571  case Intrinsic::convertfsi:
4572  case Intrinsic::convertfui:
4573  case Intrinsic::convertsif:
4574  case Intrinsic::convertuif:
4575  case Intrinsic::convertss:
4576  case Intrinsic::convertsu:
4577  case Intrinsic::convertus:
4578  case Intrinsic::convertuu: {
4579    ISD::CvtCode Code = ISD::CVT_INVALID;
4580    switch (Intrinsic) {
4581    case Intrinsic::convertff:  Code = ISD::CVT_FF; break;
4582    case Intrinsic::convertfsi: Code = ISD::CVT_FS; break;
4583    case Intrinsic::convertfui: Code = ISD::CVT_FU; break;
4584    case Intrinsic::convertsif: Code = ISD::CVT_SF; break;
4585    case Intrinsic::convertuif: Code = ISD::CVT_UF; break;
4586    case Intrinsic::convertss:  Code = ISD::CVT_SS; break;
4587    case Intrinsic::convertsu:  Code = ISD::CVT_SU; break;
4588    case Intrinsic::convertus:  Code = ISD::CVT_US; break;
4589    case Intrinsic::convertuu:  Code = ISD::CVT_UU; break;
4590    }
4591    EVT DestVT = TLI.getValueType(I.getType());
4592    Value *Op1 = I.getOperand(1);
4593    Res = DAG.getConvertRndSat(DestVT, getCurDebugLoc(), getValue(Op1),
4594                               DAG.getValueType(DestVT),
4595                               DAG.getValueType(getValue(Op1).getValueType()),
4596                               getValue(I.getOperand(2)),
4597                               getValue(I.getOperand(3)),
4598                               Code);
4599    setValue(&I, Res);
4600    if (DisableScheduling)
4601      DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
4602    return 0;
4603  }
4604  case Intrinsic::sqrt:
4605    Res = DAG.getNode(ISD::FSQRT, dl,
4606                      getValue(I.getOperand(1)).getValueType(),
4607                      getValue(I.getOperand(1)));
4608    setValue(&I, Res);
4609    if (DisableScheduling)
4610      DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
4611    return 0;
4612  case Intrinsic::powi:
4613    Res = ExpandPowI(dl, getValue(I.getOperand(1)), getValue(I.getOperand(2)),
4614                     DAG);
4615    setValue(&I, Res);
4616    if (DisableScheduling)
4617      DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
4618    return 0;
4619  case Intrinsic::sin:
4620    Res = DAG.getNode(ISD::FSIN, dl,
4621                      getValue(I.getOperand(1)).getValueType(),
4622                      getValue(I.getOperand(1)));
4623    setValue(&I, Res);
4624    if (DisableScheduling)
4625      DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
4626    return 0;
4627  case Intrinsic::cos:
4628    Res = DAG.getNode(ISD::FCOS, dl,
4629                      getValue(I.getOperand(1)).getValueType(),
4630                      getValue(I.getOperand(1)));
4631    setValue(&I, Res);
4632    if (DisableScheduling)
4633      DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
4634    return 0;
4635  case Intrinsic::log:
4636    visitLog(I);
4637    return 0;
4638  case Intrinsic::log2:
4639    visitLog2(I);
4640    return 0;
4641  case Intrinsic::log10:
4642    visitLog10(I);
4643    return 0;
4644  case Intrinsic::exp:
4645    visitExp(I);
4646    return 0;
4647  case Intrinsic::exp2:
4648    visitExp2(I);
4649    return 0;
4650  case Intrinsic::pow:
4651    visitPow(I);
4652    return 0;
4653  case Intrinsic::pcmarker: {
4654    SDValue Tmp = getValue(I.getOperand(1));
4655    Res = DAG.getNode(ISD::PCMARKER, dl, MVT::Other, getRoot(), Tmp);
4656    DAG.setRoot(Res);
4657    if (DisableScheduling)
4658      DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
4659    return 0;
4660  }
4661  case Intrinsic::readcyclecounter: {
4662    SDValue Op = getRoot();
4663    Res = DAG.getNode(ISD::READCYCLECOUNTER, dl,
4664                      DAG.getVTList(MVT::i64, MVT::Other),
4665                      &Op, 1);
4666    setValue(&I, Res);
4667    DAG.setRoot(Res.getValue(1));
4668    if (DisableScheduling)
4669      DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
4670    return 0;
4671  }
4672  case Intrinsic::bswap:
4673    Res = DAG.getNode(ISD::BSWAP, dl,
4674                      getValue(I.getOperand(1)).getValueType(),
4675                      getValue(I.getOperand(1)));
4676    setValue(&I, Res);
4677    if (DisableScheduling)
4678      DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
4679    return 0;
4680  case Intrinsic::cttz: {
4681    SDValue Arg = getValue(I.getOperand(1));
4682    EVT Ty = Arg.getValueType();
4683    Res = DAG.getNode(ISD::CTTZ, dl, Ty, Arg);
4684    setValue(&I, Res);
4685    if (DisableScheduling)
4686      DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
4687    return 0;
4688  }
4689  case Intrinsic::ctlz: {
4690    SDValue Arg = getValue(I.getOperand(1));
4691    EVT Ty = Arg.getValueType();
4692    Res = DAG.getNode(ISD::CTLZ, dl, Ty, Arg);
4693    setValue(&I, Res);
4694    if (DisableScheduling)
4695      DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
4696    return 0;
4697  }
4698  case Intrinsic::ctpop: {
4699    SDValue Arg = getValue(I.getOperand(1));
4700    EVT Ty = Arg.getValueType();
4701    Res = DAG.getNode(ISD::CTPOP, dl, Ty, Arg);
4702    setValue(&I, Res);
4703    if (DisableScheduling)
4704      DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
4705    return 0;
4706  }
4707  case Intrinsic::stacksave: {
4708    SDValue Op = getRoot();
4709    Res = DAG.getNode(ISD::STACKSAVE, dl,
4710                      DAG.getVTList(TLI.getPointerTy(), MVT::Other), &Op, 1);
4711    setValue(&I, Res);
4712    DAG.setRoot(Res.getValue(1));
4713    if (DisableScheduling)
4714      DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
4715    return 0;
4716  }
4717  case Intrinsic::stackrestore: {
4718    Res = getValue(I.getOperand(1));
4719    Res = DAG.getNode(ISD::STACKRESTORE, dl, MVT::Other, getRoot(), Res);
4720    DAG.setRoot(Res);
4721    if (DisableScheduling)
4722      DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
4723    return 0;
4724  }
4725  case Intrinsic::stackprotector: {
4726    // Emit code into the DAG to store the stack guard onto the stack.
4727    MachineFunction &MF = DAG.getMachineFunction();
4728    MachineFrameInfo *MFI = MF.getFrameInfo();
4729    EVT PtrTy = TLI.getPointerTy();
4730
4731    SDValue Src = getValue(I.getOperand(1));   // The guard's value.
4732    AllocaInst *Slot = cast<AllocaInst>(I.getOperand(2));
4733
4734    int FI = FuncInfo.StaticAllocaMap[Slot];
4735    MFI->setStackProtectorIndex(FI);
4736
4737    SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
4738
4739    // Store the stack protector onto the stack.
4740    Res = DAG.getStore(getRoot(), getCurDebugLoc(), Src, FIN,
4741                       PseudoSourceValue::getFixedStack(FI),
4742                       0, true);
4743    setValue(&I, Res);
4744    DAG.setRoot(Res);
4745    if (DisableScheduling)
4746      DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
4747    return 0;
4748  }
4749  case Intrinsic::objectsize: {
4750    // If we don't know by now, we're never going to know.
4751    ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(2));
4752
4753    assert(CI && "Non-constant type in __builtin_object_size?");
4754
4755    SDValue Arg = getValue(I.getOperand(0));
4756    EVT Ty = Arg.getValueType();
4757
4758    if (CI->getZExtValue() == 0)
4759      Res = DAG.getConstant(-1ULL, Ty);
4760    else
4761      Res = DAG.getConstant(0, Ty);
4762
4763    setValue(&I, Res);
4764    if (DisableScheduling)
4765      DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
4766    return 0;
4767  }
4768  case Intrinsic::var_annotation:
4769    // Discard annotate attributes
4770    return 0;
4771
4772  case Intrinsic::init_trampoline: {
4773    const Function *F = cast<Function>(I.getOperand(2)->stripPointerCasts());
4774
4775    SDValue Ops[6];
4776    Ops[0] = getRoot();
4777    Ops[1] = getValue(I.getOperand(1));
4778    Ops[2] = getValue(I.getOperand(2));
4779    Ops[3] = getValue(I.getOperand(3));
4780    Ops[4] = DAG.getSrcValue(I.getOperand(1));
4781    Ops[5] = DAG.getSrcValue(F);
4782
4783    Res = DAG.getNode(ISD::TRAMPOLINE, dl,
4784                      DAG.getVTList(TLI.getPointerTy(), MVT::Other),
4785                      Ops, 6);
4786
4787    setValue(&I, Res);
4788    DAG.setRoot(Res.getValue(1));
4789    if (DisableScheduling)
4790      DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
4791    return 0;
4792  }
4793  case Intrinsic::gcroot:
4794    if (GFI) {
4795      Value *Alloca = I.getOperand(1);
4796      Constant *TypeMap = cast<Constant>(I.getOperand(2));
4797
4798      FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
4799      GFI->addStackRoot(FI->getIndex(), TypeMap);
4800    }
4801    return 0;
4802  case Intrinsic::gcread:
4803  case Intrinsic::gcwrite:
4804    llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
4805    return 0;
4806  case Intrinsic::flt_rounds:
4807    Res = DAG.getNode(ISD::FLT_ROUNDS_, dl, MVT::i32);
4808    setValue(&I, Res);
4809    if (DisableScheduling)
4810      DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
4811    return 0;
4812  case Intrinsic::trap:
4813    Res = DAG.getNode(ISD::TRAP, dl,MVT::Other, getRoot());
4814    DAG.setRoot(Res);
4815    if (DisableScheduling)
4816      DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
4817    return 0;
4818  case Intrinsic::uadd_with_overflow:
4819    return implVisitAluOverflow(I, ISD::UADDO);
4820  case Intrinsic::sadd_with_overflow:
4821    return implVisitAluOverflow(I, ISD::SADDO);
4822  case Intrinsic::usub_with_overflow:
4823    return implVisitAluOverflow(I, ISD::USUBO);
4824  case Intrinsic::ssub_with_overflow:
4825    return implVisitAluOverflow(I, ISD::SSUBO);
4826  case Intrinsic::umul_with_overflow:
4827    return implVisitAluOverflow(I, ISD::UMULO);
4828  case Intrinsic::smul_with_overflow:
4829    return implVisitAluOverflow(I, ISD::SMULO);
4830
4831  case Intrinsic::prefetch: {
4832    SDValue Ops[4];
4833    Ops[0] = getRoot();
4834    Ops[1] = getValue(I.getOperand(1));
4835    Ops[2] = getValue(I.getOperand(2));
4836    Ops[3] = getValue(I.getOperand(3));
4837    Res = DAG.getNode(ISD::PREFETCH, dl, MVT::Other, &Ops[0], 4);
4838    DAG.setRoot(Res);
4839    if (DisableScheduling)
4840      DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
4841    return 0;
4842  }
4843
4844  case Intrinsic::memory_barrier: {
4845    SDValue Ops[6];
4846    Ops[0] = getRoot();
4847    for (int x = 1; x < 6; ++x)
4848      Ops[x] = getValue(I.getOperand(x));
4849
4850    Res = DAG.getNode(ISD::MEMBARRIER, dl, MVT::Other, &Ops[0], 6);
4851    DAG.setRoot(Res);
4852    if (DisableScheduling)
4853      DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
4854    return 0;
4855  }
4856  case Intrinsic::atomic_cmp_swap: {
4857    SDValue Root = getRoot();
4858    SDValue L =
4859      DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, getCurDebugLoc(),
4860                    getValue(I.getOperand(2)).getValueType().getSimpleVT(),
4861                    Root,
4862                    getValue(I.getOperand(1)),
4863                    getValue(I.getOperand(2)),
4864                    getValue(I.getOperand(3)),
4865                    I.getOperand(1));
4866    setValue(&I, L);
4867    DAG.setRoot(L.getValue(1));
4868    if (DisableScheduling)
4869      DAG.AssignOrdering(L.getNode(), SDNodeOrder);
4870    return 0;
4871  }
4872  case Intrinsic::atomic_load_add:
4873    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_ADD);
4874  case Intrinsic::atomic_load_sub:
4875    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_SUB);
4876  case Intrinsic::atomic_load_or:
4877    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_OR);
4878  case Intrinsic::atomic_load_xor:
4879    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_XOR);
4880  case Intrinsic::atomic_load_and:
4881    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_AND);
4882  case Intrinsic::atomic_load_nand:
4883    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_NAND);
4884  case Intrinsic::atomic_load_max:
4885    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MAX);
4886  case Intrinsic::atomic_load_min:
4887    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MIN);
4888  case Intrinsic::atomic_load_umin:
4889    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMIN);
4890  case Intrinsic::atomic_load_umax:
4891    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMAX);
4892  case Intrinsic::atomic_swap:
4893    return implVisitBinaryAtomic(I, ISD::ATOMIC_SWAP);
4894
4895  case Intrinsic::invariant_start:
4896  case Intrinsic::lifetime_start:
4897    // Discard region information.
4898    Res = DAG.getUNDEF(TLI.getPointerTy());
4899    setValue(&I, Res);
4900    if (DisableScheduling)
4901      DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
4902    return 0;
4903  case Intrinsic::invariant_end:
4904  case Intrinsic::lifetime_end:
4905    // Discard region information.
4906    return 0;
4907  }
4908}
4909
4910/// Test if the given instruction is in a position to be optimized
4911/// with a tail-call. This roughly means that it's in a block with
4912/// a return and there's nothing that needs to be scheduled
4913/// between it and the return.
4914///
4915/// This function only tests target-independent requirements.
4916/// For target-dependent requirements, a target should override
4917/// TargetLowering::IsEligibleForTailCallOptimization.
4918///
4919static bool
4920isInTailCallPosition(const Instruction *I, Attributes CalleeRetAttr,
4921                     const TargetLowering &TLI) {
4922  const BasicBlock *ExitBB = I->getParent();
4923  const TerminatorInst *Term = ExitBB->getTerminator();
4924  const ReturnInst *Ret = dyn_cast<ReturnInst>(Term);
4925  const Function *F = ExitBB->getParent();
4926
4927  // The block must end in a return statement or an unreachable.
4928  if (!Ret && !isa<UnreachableInst>(Term)) return false;
4929
4930  // If I will have a chain, make sure no other instruction that will have a
4931  // chain interposes between I and the return.
4932  if (I->mayHaveSideEffects() || I->mayReadFromMemory() ||
4933      !I->isSafeToSpeculativelyExecute())
4934    for (BasicBlock::const_iterator BBI = prior(prior(ExitBB->end())); ;
4935         --BBI) {
4936      if (&*BBI == I)
4937        break;
4938      if (BBI->mayHaveSideEffects() || BBI->mayReadFromMemory() ||
4939          !BBI->isSafeToSpeculativelyExecute())
4940        return false;
4941    }
4942
4943  // If the block ends with a void return or unreachable, it doesn't matter
4944  // what the call's return type is.
4945  if (!Ret || Ret->getNumOperands() == 0) return true;
4946
4947  // If the return value is undef, it doesn't matter what the call's
4948  // return type is.
4949  if (isa<UndefValue>(Ret->getOperand(0))) return true;
4950
4951  // Conservatively require the attributes of the call to match those of
4952  // the return. Ignore noalias because it doesn't affect the call sequence.
4953  unsigned CallerRetAttr = F->getAttributes().getRetAttributes();
4954  if ((CalleeRetAttr ^ CallerRetAttr) & ~Attribute::NoAlias)
4955    return false;
4956
4957  // Otherwise, make sure the unmodified return value of I is the return value.
4958  for (const Instruction *U = dyn_cast<Instruction>(Ret->getOperand(0)); ;
4959       U = dyn_cast<Instruction>(U->getOperand(0))) {
4960    if (!U)
4961      return false;
4962    if (!U->hasOneUse())
4963      return false;
4964    if (U == I)
4965      break;
4966    // Check for a truly no-op truncate.
4967    if (isa<TruncInst>(U) &&
4968        TLI.isTruncateFree(U->getOperand(0)->getType(), U->getType()))
4969      continue;
4970    // Check for a truly no-op bitcast.
4971    if (isa<BitCastInst>(U) &&
4972        (U->getOperand(0)->getType() == U->getType() ||
4973         (isa<PointerType>(U->getOperand(0)->getType()) &&
4974          isa<PointerType>(U->getType()))))
4975      continue;
4976    // Otherwise it's not a true no-op.
4977    return false;
4978  }
4979
4980  return true;
4981}
4982
4983void SelectionDAGBuilder::LowerCallTo(CallSite CS, SDValue Callee,
4984                                      bool isTailCall,
4985                                      MachineBasicBlock *LandingPad) {
4986  const PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
4987  const FunctionType *FTy = cast<FunctionType>(PT->getElementType());
4988  const Type *RetTy = FTy->getReturnType();
4989  MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
4990  unsigned BeginLabel = 0, EndLabel = 0;
4991
4992  TargetLowering::ArgListTy Args;
4993  TargetLowering::ArgListEntry Entry;
4994  Args.reserve(CS.arg_size());
4995
4996  // Check whether the function can return without sret-demotion.
4997  SmallVector<EVT, 4> OutVTs;
4998  SmallVector<ISD::ArgFlagsTy, 4> OutsFlags;
4999  SmallVector<uint64_t, 4> Offsets;
5000  getReturnInfo(RetTy, CS.getAttributes().getRetAttributes(),
5001                OutVTs, OutsFlags, TLI, &Offsets);
5002
5003  bool CanLowerReturn = TLI.CanLowerReturn(CS.getCallingConv(),
5004                        FTy->isVarArg(), OutVTs, OutsFlags, DAG);
5005
5006  SDValue DemoteStackSlot;
5007
5008  if (!CanLowerReturn) {
5009    uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(
5010                      FTy->getReturnType());
5011    unsigned Align  = TLI.getTargetData()->getPrefTypeAlignment(
5012                      FTy->getReturnType());
5013    MachineFunction &MF = DAG.getMachineFunction();
5014    int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
5015    const Type *StackSlotPtrType = PointerType::getUnqual(FTy->getReturnType());
5016
5017    DemoteStackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy());
5018    Entry.Node = DemoteStackSlot;
5019    Entry.Ty = StackSlotPtrType;
5020    Entry.isSExt = false;
5021    Entry.isZExt = false;
5022    Entry.isInReg = false;
5023    Entry.isSRet = true;
5024    Entry.isNest = false;
5025    Entry.isByVal = false;
5026    Entry.Alignment = Align;
5027    Args.push_back(Entry);
5028    RetTy = Type::getVoidTy(FTy->getContext());
5029  }
5030
5031  for (CallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
5032       i != e; ++i) {
5033    SDValue ArgNode = getValue(*i);
5034    Entry.Node = ArgNode; Entry.Ty = (*i)->getType();
5035
5036    unsigned attrInd = i - CS.arg_begin() + 1;
5037    Entry.isSExt  = CS.paramHasAttr(attrInd, Attribute::SExt);
5038    Entry.isZExt  = CS.paramHasAttr(attrInd, Attribute::ZExt);
5039    Entry.isInReg = CS.paramHasAttr(attrInd, Attribute::InReg);
5040    Entry.isSRet  = CS.paramHasAttr(attrInd, Attribute::StructRet);
5041    Entry.isNest  = CS.paramHasAttr(attrInd, Attribute::Nest);
5042    Entry.isByVal = CS.paramHasAttr(attrInd, Attribute::ByVal);
5043    Entry.Alignment = CS.getParamAlignment(attrInd);
5044    Args.push_back(Entry);
5045  }
5046
5047  if (LandingPad && MMI) {
5048    // Insert a label before the invoke call to mark the try range.  This can be
5049    // used to detect deletion of the invoke via the MachineModuleInfo.
5050    BeginLabel = MMI->NextLabelID();
5051
5052    // Both PendingLoads and PendingExports must be flushed here;
5053    // this call might not return.
5054    (void)getRoot();
5055    DAG.setRoot(DAG.getLabel(ISD::EH_LABEL, getCurDebugLoc(),
5056                             getControlRoot(), BeginLabel));
5057  }
5058
5059  // Check if target-independent constraints permit a tail call here.
5060  // Target-dependent constraints are checked within TLI.LowerCallTo.
5061  if (isTailCall &&
5062      !isInTailCallPosition(CS.getInstruction(),
5063                            CS.getAttributes().getRetAttributes(),
5064                            TLI))
5065    isTailCall = false;
5066
5067  std::pair<SDValue,SDValue> Result =
5068    TLI.LowerCallTo(getRoot(), RetTy,
5069                    CS.paramHasAttr(0, Attribute::SExt),
5070                    CS.paramHasAttr(0, Attribute::ZExt), FTy->isVarArg(),
5071                    CS.paramHasAttr(0, Attribute::InReg), FTy->getNumParams(),
5072                    CS.getCallingConv(),
5073                    isTailCall,
5074                    !CS.getInstruction()->use_empty(),
5075                    Callee, Args, DAG, getCurDebugLoc(), SDNodeOrder);
5076  assert((isTailCall || Result.second.getNode()) &&
5077         "Non-null chain expected with non-tail call!");
5078  assert((Result.second.getNode() || !Result.first.getNode()) &&
5079         "Null value expected with tail call!");
5080  if (Result.first.getNode()) {
5081    setValue(CS.getInstruction(), Result.first);
5082    if (DisableScheduling)
5083      DAG.AssignOrdering(Result.first.getNode(), SDNodeOrder);
5084  } else if (!CanLowerReturn && Result.second.getNode()) {
5085    // The instruction result is the result of loading from the
5086    // hidden sret parameter.
5087    SmallVector<EVT, 1> PVTs;
5088    const Type *PtrRetTy = PointerType::getUnqual(FTy->getReturnType());
5089
5090    ComputeValueVTs(TLI, PtrRetTy, PVTs);
5091    assert(PVTs.size() == 1 && "Pointers should fit in one register");
5092    EVT PtrVT = PVTs[0];
5093    unsigned NumValues = OutVTs.size();
5094    SmallVector<SDValue, 4> Values(NumValues);
5095    SmallVector<SDValue, 4> Chains(NumValues);
5096
5097    for (unsigned i = 0; i < NumValues; ++i) {
5098      SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT,
5099                                DemoteStackSlot,
5100                                DAG.getConstant(Offsets[i], PtrVT));
5101      SDValue L = DAG.getLoad(OutVTs[i], getCurDebugLoc(), Result.second,
5102                              Add, NULL, Offsets[i], false, 1);
5103      Values[i] = L;
5104      Chains[i] = L.getValue(1);
5105    }
5106
5107    SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
5108                                MVT::Other, &Chains[0], NumValues);
5109    PendingLoads.push_back(Chain);
5110
5111    // Collect the legal value parts into potentially illegal values
5112    // that correspond to the original function's return values.
5113    SmallVector<EVT, 4> RetTys;
5114    RetTy = FTy->getReturnType();
5115    ComputeValueVTs(TLI, RetTy, RetTys);
5116    ISD::NodeType AssertOp = ISD::DELETED_NODE;
5117    SmallVector<SDValue, 4> ReturnValues;
5118    unsigned CurReg = 0;
5119    for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
5120      EVT VT = RetTys[I];
5121      EVT RegisterVT = TLI.getRegisterType(RetTy->getContext(), VT);
5122      unsigned NumRegs = TLI.getNumRegisters(RetTy->getContext(), VT);
5123
5124      SDValue ReturnValue =
5125        getCopyFromParts(DAG, getCurDebugLoc(), SDNodeOrder, &Values[CurReg], NumRegs,
5126                         RegisterVT, VT, AssertOp);
5127      ReturnValues.push_back(ReturnValue);
5128      if (DisableScheduling)
5129        DAG.AssignOrdering(ReturnValue.getNode(), SDNodeOrder);
5130      CurReg += NumRegs;
5131    }
5132    SDValue Res = DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
5133                              DAG.getVTList(&RetTys[0], RetTys.size()),
5134                              &ReturnValues[0], ReturnValues.size());
5135
5136    setValue(CS.getInstruction(), Res);
5137
5138    if (DisableScheduling) {
5139      DAG.AssignOrdering(Chain.getNode(), SDNodeOrder);
5140      DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
5141    }
5142  }
5143
5144  // As a special case, a null chain means that a tail call has been emitted and
5145  // the DAG root is already updated.
5146  if (Result.second.getNode()) {
5147    DAG.setRoot(Result.second);
5148    if (DisableScheduling)
5149      DAG.AssignOrdering(Result.second.getNode(), SDNodeOrder);
5150  } else {
5151    HasTailCall = true;
5152  }
5153
5154  if (LandingPad && MMI) {
5155    // Insert a label at the end of the invoke call to mark the try range.  This
5156    // can be used to detect deletion of the invoke via the MachineModuleInfo.
5157    EndLabel = MMI->NextLabelID();
5158    DAG.setRoot(DAG.getLabel(ISD::EH_LABEL, getCurDebugLoc(),
5159                             getRoot(), EndLabel));
5160
5161    // Inform MachineModuleInfo of range.
5162    MMI->addInvoke(LandingPad, BeginLabel, EndLabel);
5163  }
5164}
5165
5166/// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the
5167/// value is equal or not-equal to zero.
5168static bool IsOnlyUsedInZeroEqualityComparison(Value *V) {
5169  for (Value::use_iterator UI = V->use_begin(), E = V->use_end();
5170       UI != E; ++UI) {
5171    if (ICmpInst *IC = dyn_cast<ICmpInst>(*UI))
5172      if (IC->isEquality())
5173        if (Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
5174          if (C->isNullValue())
5175            continue;
5176    // Unknown instruction.
5177    return false;
5178  }
5179  return true;
5180}
5181
5182static SDValue getMemCmpLoad(Value *PtrVal, MVT LoadVT, const Type *LoadTy,
5183                             SelectionDAGBuilder &Builder) {
5184
5185  // Check to see if this load can be trivially constant folded, e.g. if the
5186  // input is from a string literal.
5187  if (Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
5188    // Cast pointer to the type we really want to load.
5189    LoadInput = ConstantExpr::getBitCast(LoadInput,
5190                                         PointerType::getUnqual(LoadTy));
5191
5192    if (Constant *LoadCst = ConstantFoldLoadFromConstPtr(LoadInput, Builder.TD))
5193      return Builder.getValue(LoadCst);
5194  }
5195
5196  // Otherwise, we have to emit the load.  If the pointer is to unfoldable but
5197  // still constant memory, the input chain can be the entry node.
5198  SDValue Root;
5199  bool ConstantMemory = false;
5200
5201  // Do not serialize (non-volatile) loads of constant memory with anything.
5202  if (Builder.AA->pointsToConstantMemory(PtrVal)) {
5203    Root = Builder.DAG.getEntryNode();
5204    ConstantMemory = true;
5205  } else {
5206    // Do not serialize non-volatile loads against each other.
5207    Root = Builder.DAG.getRoot();
5208  }
5209
5210  SDValue Ptr = Builder.getValue(PtrVal);
5211  SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurDebugLoc(), Root,
5212                                        Ptr, PtrVal /*SrcValue*/, 0/*SVOffset*/,
5213                                        false /*volatile*/, 1 /* align=1 */);
5214
5215  if (!ConstantMemory)
5216    Builder.PendingLoads.push_back(LoadVal.getValue(1));
5217  return LoadVal;
5218}
5219
5220
5221/// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form.
5222/// If so, return true and lower it, otherwise return false and it will be
5223/// lowered like a normal call.
5224bool SelectionDAGBuilder::visitMemCmpCall(CallInst &I) {
5225  // Verify that the prototype makes sense.  int memcmp(void*,void*,size_t)
5226  if (I.getNumOperands() != 4)
5227    return false;
5228
5229  Value *LHS = I.getOperand(1), *RHS = I.getOperand(2);
5230  if (!isa<PointerType>(LHS->getType()) || !isa<PointerType>(RHS->getType()) ||
5231      !isa<IntegerType>(I.getOperand(3)->getType()) ||
5232      !isa<IntegerType>(I.getType()))
5233    return false;
5234
5235  ConstantInt *Size = dyn_cast<ConstantInt>(I.getOperand(3));
5236
5237  // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0
5238  // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0
5239  if (Size && IsOnlyUsedInZeroEqualityComparison(&I)) {
5240    bool ActuallyDoIt = true;
5241    MVT LoadVT;
5242    const Type *LoadTy;
5243    switch (Size->getZExtValue()) {
5244    default:
5245      LoadVT = MVT::Other;
5246      LoadTy = 0;
5247      ActuallyDoIt = false;
5248      break;
5249    case 2:
5250      LoadVT = MVT::i16;
5251      LoadTy = Type::getInt16Ty(Size->getContext());
5252      break;
5253    case 4:
5254      LoadVT = MVT::i32;
5255      LoadTy = Type::getInt32Ty(Size->getContext());
5256      break;
5257    case 8:
5258      LoadVT = MVT::i64;
5259      LoadTy = Type::getInt64Ty(Size->getContext());
5260      break;
5261        /*
5262    case 16:
5263      LoadVT = MVT::v4i32;
5264      LoadTy = Type::getInt32Ty(Size->getContext());
5265      LoadTy = VectorType::get(LoadTy, 4);
5266      break;
5267         */
5268    }
5269
5270    // This turns into unaligned loads.  We only do this if the target natively
5271    // supports the MVT we'll be loading or if it is small enough (<= 4) that
5272    // we'll only produce a small number of byte loads.
5273
5274    // Require that we can find a legal MVT, and only do this if the target
5275    // supports unaligned loads of that type.  Expanding into byte loads would
5276    // bloat the code.
5277    if (ActuallyDoIt && Size->getZExtValue() > 4) {
5278      // TODO: Handle 5 byte compare as 4-byte + 1 byte.
5279      // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
5280      if (!TLI.isTypeLegal(LoadVT) ||!TLI.allowsUnalignedMemoryAccesses(LoadVT))
5281        ActuallyDoIt = false;
5282    }
5283
5284    if (ActuallyDoIt) {
5285      SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this);
5286      SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this);
5287
5288      SDValue Res = DAG.getSetCC(getCurDebugLoc(), MVT::i1, LHSVal, RHSVal,
5289                                 ISD::SETNE);
5290      EVT CallVT = TLI.getValueType(I.getType(), true);
5291      setValue(&I, DAG.getZExtOrTrunc(Res, getCurDebugLoc(), CallVT));
5292      return true;
5293    }
5294  }
5295
5296
5297  return false;
5298}
5299
5300
5301void SelectionDAGBuilder::visitCall(CallInst &I) {
5302  const char *RenameFn = 0;
5303  if (Function *F = I.getCalledFunction()) {
5304    if (F->isDeclaration()) {
5305      const TargetIntrinsicInfo *II = TLI.getTargetMachine().getIntrinsicInfo();
5306      if (II) {
5307        if (unsigned IID = II->getIntrinsicID(F)) {
5308          RenameFn = visitIntrinsicCall(I, IID);
5309          if (!RenameFn)
5310            return;
5311        }
5312      }
5313      if (unsigned IID = F->getIntrinsicID()) {
5314        RenameFn = visitIntrinsicCall(I, IID);
5315        if (!RenameFn)
5316          return;
5317      }
5318    }
5319
5320    // Check for well-known libc/libm calls.  If the function is internal, it
5321    // can't be a library call.
5322    if (!F->hasLocalLinkage() && F->hasName()) {
5323      StringRef Name = F->getName();
5324      if (Name == "copysign" || Name == "copysignf") {
5325        if (I.getNumOperands() == 3 &&   // Basic sanity checks.
5326            I.getOperand(1)->getType()->isFloatingPoint() &&
5327            I.getType() == I.getOperand(1)->getType() &&
5328            I.getType() == I.getOperand(2)->getType()) {
5329          SDValue LHS = getValue(I.getOperand(1));
5330          SDValue RHS = getValue(I.getOperand(2));
5331          setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurDebugLoc(),
5332                                   LHS.getValueType(), LHS, RHS));
5333          return;
5334        }
5335      } else if (Name == "fabs" || Name == "fabsf" || Name == "fabsl") {
5336        if (I.getNumOperands() == 2 &&   // Basic sanity checks.
5337            I.getOperand(1)->getType()->isFloatingPoint() &&
5338            I.getType() == I.getOperand(1)->getType()) {
5339          SDValue Tmp = getValue(I.getOperand(1));
5340          setValue(&I, DAG.getNode(ISD::FABS, getCurDebugLoc(),
5341                                   Tmp.getValueType(), Tmp));
5342          return;
5343        }
5344      } else if (Name == "sin" || Name == "sinf" || Name == "sinl") {
5345        if (I.getNumOperands() == 2 &&   // Basic sanity checks.
5346            I.getOperand(1)->getType()->isFloatingPoint() &&
5347            I.getType() == I.getOperand(1)->getType() &&
5348            I.onlyReadsMemory()) {
5349          SDValue Tmp = getValue(I.getOperand(1));
5350          setValue(&I, DAG.getNode(ISD::FSIN, getCurDebugLoc(),
5351                                   Tmp.getValueType(), Tmp));
5352          return;
5353        }
5354      } else if (Name == "cos" || Name == "cosf" || Name == "cosl") {
5355        if (I.getNumOperands() == 2 &&   // Basic sanity checks.
5356            I.getOperand(1)->getType()->isFloatingPoint() &&
5357            I.getType() == I.getOperand(1)->getType() &&
5358            I.onlyReadsMemory()) {
5359          SDValue Tmp = getValue(I.getOperand(1));
5360          setValue(&I, DAG.getNode(ISD::FCOS, getCurDebugLoc(),
5361                                   Tmp.getValueType(), Tmp));
5362          return;
5363        }
5364      } else if (Name == "sqrt" || Name == "sqrtf" || Name == "sqrtl") {
5365        if (I.getNumOperands() == 2 &&   // Basic sanity checks.
5366            I.getOperand(1)->getType()->isFloatingPoint() &&
5367            I.getType() == I.getOperand(1)->getType() &&
5368            I.onlyReadsMemory()) {
5369          SDValue Tmp = getValue(I.getOperand(1));
5370          setValue(&I, DAG.getNode(ISD::FSQRT, getCurDebugLoc(),
5371                                   Tmp.getValueType(), Tmp));
5372          return;
5373        }
5374      } else if (Name == "memcmp") {
5375        if (visitMemCmpCall(I))
5376          return;
5377      }
5378    }
5379  } else if (isa<InlineAsm>(I.getOperand(0))) {
5380    visitInlineAsm(&I);
5381    return;
5382  }
5383
5384  SDValue Callee;
5385  if (!RenameFn)
5386    Callee = getValue(I.getOperand(0));
5387  else
5388    Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy());
5389
5390  // Check if we can potentially perform a tail call. More detailed checking is
5391  // be done within LowerCallTo, after more information about the call is known.
5392  bool isTailCall = PerformTailCallOpt && I.isTailCall();
5393
5394  LowerCallTo(&I, Callee, isTailCall);
5395}
5396
5397/// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
5398/// this value and returns the result as a ValueVT value.  This uses
5399/// Chain/Flag as the input and updates them for the output Chain/Flag.
5400/// If the Flag pointer is NULL, no flag is used.
5401SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, DebugLoc dl,
5402                                      unsigned Order, SDValue &Chain,
5403                                      SDValue *Flag) const {
5404  // Assemble the legal parts into the final values.
5405  SmallVector<SDValue, 4> Values(ValueVTs.size());
5406  SmallVector<SDValue, 8> Parts;
5407  for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
5408    // Copy the legal parts from the registers.
5409    EVT ValueVT = ValueVTs[Value];
5410    unsigned NumRegs = TLI->getNumRegisters(*DAG.getContext(), ValueVT);
5411    EVT RegisterVT = RegVTs[Value];
5412
5413    Parts.resize(NumRegs);
5414    for (unsigned i = 0; i != NumRegs; ++i) {
5415      SDValue P;
5416      if (Flag == 0) {
5417        P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
5418      } else {
5419        P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
5420        *Flag = P.getValue(2);
5421      }
5422
5423      Chain = P.getValue(1);
5424
5425      if (DisableScheduling)
5426        DAG.AssignOrdering(P.getNode(), Order);
5427
5428      // If the source register was virtual and if we know something about it,
5429      // add an assert node.
5430      if (TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) &&
5431          RegisterVT.isInteger() && !RegisterVT.isVector()) {
5432        unsigned SlotNo = Regs[Part+i]-TargetRegisterInfo::FirstVirtualRegister;
5433        FunctionLoweringInfo &FLI = DAG.getFunctionLoweringInfo();
5434        if (FLI.LiveOutRegInfo.size() > SlotNo) {
5435          FunctionLoweringInfo::LiveOutInfo &LOI = FLI.LiveOutRegInfo[SlotNo];
5436
5437          unsigned RegSize = RegisterVT.getSizeInBits();
5438          unsigned NumSignBits = LOI.NumSignBits;
5439          unsigned NumZeroBits = LOI.KnownZero.countLeadingOnes();
5440
5441          // FIXME: We capture more information than the dag can represent.  For
5442          // now, just use the tightest assertzext/assertsext possible.
5443          bool isSExt = true;
5444          EVT FromVT(MVT::Other);
5445          if (NumSignBits == RegSize)
5446            isSExt = true, FromVT = MVT::i1;   // ASSERT SEXT 1
5447          else if (NumZeroBits >= RegSize-1)
5448            isSExt = false, FromVT = MVT::i1;  // ASSERT ZEXT 1
5449          else if (NumSignBits > RegSize-8)
5450            isSExt = true, FromVT = MVT::i8;   // ASSERT SEXT 8
5451          else if (NumZeroBits >= RegSize-8)
5452            isSExt = false, FromVT = MVT::i8;  // ASSERT ZEXT 8
5453          else if (NumSignBits > RegSize-16)
5454            isSExt = true, FromVT = MVT::i16;  // ASSERT SEXT 16
5455          else if (NumZeroBits >= RegSize-16)
5456            isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16
5457          else if (NumSignBits > RegSize-32)
5458            isSExt = true, FromVT = MVT::i32;  // ASSERT SEXT 32
5459          else if (NumZeroBits >= RegSize-32)
5460            isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32
5461
5462          if (FromVT != MVT::Other) {
5463            P = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
5464                            RegisterVT, P, DAG.getValueType(FromVT));
5465
5466            if (DisableScheduling)
5467              DAG.AssignOrdering(P.getNode(), Order);
5468          }
5469        }
5470      }
5471
5472      Parts[i] = P;
5473    }
5474
5475    Values[Value] = getCopyFromParts(DAG, dl, Order, Parts.begin(),
5476                                     NumRegs, RegisterVT, ValueVT);
5477    if (DisableScheduling)
5478      DAG.AssignOrdering(Values[Value].getNode(), Order);
5479    Part += NumRegs;
5480    Parts.clear();
5481  }
5482
5483  SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
5484                            DAG.getVTList(&ValueVTs[0], ValueVTs.size()),
5485                            &Values[0], ValueVTs.size());
5486  if (DisableScheduling)
5487    DAG.AssignOrdering(Res.getNode(), Order);
5488  return Res;
5489}
5490
5491/// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
5492/// specified value into the registers specified by this object.  This uses
5493/// Chain/Flag as the input and updates them for the output Chain/Flag.
5494/// If the Flag pointer is NULL, no flag is used.
5495void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl,
5496                                 unsigned Order, SDValue &Chain,
5497                                 SDValue *Flag) const {
5498  // Get the list of the values's legal parts.
5499  unsigned NumRegs = Regs.size();
5500  SmallVector<SDValue, 8> Parts(NumRegs);
5501  for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
5502    EVT ValueVT = ValueVTs[Value];
5503    unsigned NumParts = TLI->getNumRegisters(*DAG.getContext(), ValueVT);
5504    EVT RegisterVT = RegVTs[Value];
5505
5506    getCopyToParts(DAG, dl, Order,
5507                   Val.getValue(Val.getResNo() + Value),
5508                   &Parts[Part], NumParts, RegisterVT);
5509    Part += NumParts;
5510  }
5511
5512  // Copy the parts into the registers.
5513  SmallVector<SDValue, 8> Chains(NumRegs);
5514  for (unsigned i = 0; i != NumRegs; ++i) {
5515    SDValue Part;
5516    if (Flag == 0) {
5517      Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
5518    } else {
5519      Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
5520      *Flag = Part.getValue(1);
5521    }
5522
5523    Chains[i] = Part.getValue(0);
5524
5525    if (DisableScheduling)
5526      DAG.AssignOrdering(Part.getNode(), Order);
5527  }
5528
5529  if (NumRegs == 1 || Flag)
5530    // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
5531    // flagged to it. That is the CopyToReg nodes and the user are considered
5532    // a single scheduling unit. If we create a TokenFactor and return it as
5533    // chain, then the TokenFactor is both a predecessor (operand) of the
5534    // user as well as a successor (the TF operands are flagged to the user).
5535    // c1, f1 = CopyToReg
5536    // c2, f2 = CopyToReg
5537    // c3     = TokenFactor c1, c2
5538    // ...
5539    //        = op c3, ..., f2
5540    Chain = Chains[NumRegs-1];
5541  else
5542    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0], NumRegs);
5543
5544  if (DisableScheduling)
5545    DAG.AssignOrdering(Chain.getNode(), Order);
5546}
5547
5548/// AddInlineAsmOperands - Add this value to the specified inlineasm node
5549/// operand list.  This adds the code marker and includes the number of
5550/// values added into it.
5551void RegsForValue::AddInlineAsmOperands(unsigned Code,
5552                                        bool HasMatching,unsigned MatchingIdx,
5553                                        SelectionDAG &DAG, unsigned Order,
5554                                        std::vector<SDValue> &Ops) const {
5555  assert(Regs.size() < (1 << 13) && "Too many inline asm outputs!");
5556  unsigned Flag = Code | (Regs.size() << 3);
5557  if (HasMatching)
5558    Flag |= 0x80000000 | (MatchingIdx << 16);
5559  SDValue Res = DAG.getTargetConstant(Flag, MVT::i32);
5560  Ops.push_back(Res);
5561
5562  if (DisableScheduling)
5563    DAG.AssignOrdering(Res.getNode(), Order);
5564
5565  for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
5566    unsigned NumRegs = TLI->getNumRegisters(*DAG.getContext(), ValueVTs[Value]);
5567    EVT RegisterVT = RegVTs[Value];
5568    for (unsigned i = 0; i != NumRegs; ++i) {
5569      assert(Reg < Regs.size() && "Mismatch in # registers expected");
5570      SDValue Res = DAG.getRegister(Regs[Reg++], RegisterVT);
5571      Ops.push_back(Res);
5572
5573      if (DisableScheduling)
5574        DAG.AssignOrdering(Res.getNode(), Order);
5575    }
5576  }
5577}
5578
5579/// isAllocatableRegister - If the specified register is safe to allocate,
5580/// i.e. it isn't a stack pointer or some other special register, return the
5581/// register class for the register.  Otherwise, return null.
5582static const TargetRegisterClass *
5583isAllocatableRegister(unsigned Reg, MachineFunction &MF,
5584                      const TargetLowering &TLI,
5585                      const TargetRegisterInfo *TRI) {
5586  EVT FoundVT = MVT::Other;
5587  const TargetRegisterClass *FoundRC = 0;
5588  for (TargetRegisterInfo::regclass_iterator RCI = TRI->regclass_begin(),
5589       E = TRI->regclass_end(); RCI != E; ++RCI) {
5590    EVT ThisVT = MVT::Other;
5591
5592    const TargetRegisterClass *RC = *RCI;
5593    // If none of the the value types for this register class are valid, we
5594    // can't use it.  For example, 64-bit reg classes on 32-bit targets.
5595    for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
5596         I != E; ++I) {
5597      if (TLI.isTypeLegal(*I)) {
5598        // If we have already found this register in a different register class,
5599        // choose the one with the largest VT specified.  For example, on
5600        // PowerPC, we favor f64 register classes over f32.
5601        if (FoundVT == MVT::Other || FoundVT.bitsLT(*I)) {
5602          ThisVT = *I;
5603          break;
5604        }
5605      }
5606    }
5607
5608    if (ThisVT == MVT::Other) continue;
5609
5610    // NOTE: This isn't ideal.  In particular, this might allocate the
5611    // frame pointer in functions that need it (due to them not being taken
5612    // out of allocation, because a variable sized allocation hasn't been seen
5613    // yet).  This is a slight code pessimization, but should still work.
5614    for (TargetRegisterClass::iterator I = RC->allocation_order_begin(MF),
5615         E = RC->allocation_order_end(MF); I != E; ++I)
5616      if (*I == Reg) {
5617        // We found a matching register class.  Keep looking at others in case
5618        // we find one with larger registers that this physreg is also in.
5619        FoundRC = RC;
5620        FoundVT = ThisVT;
5621        break;
5622      }
5623  }
5624  return FoundRC;
5625}
5626
5627
5628namespace llvm {
5629/// AsmOperandInfo - This contains information for each constraint that we are
5630/// lowering.
5631class VISIBILITY_HIDDEN SDISelAsmOperandInfo :
5632    public TargetLowering::AsmOperandInfo {
5633public:
5634  /// CallOperand - If this is the result output operand or a clobber
5635  /// this is null, otherwise it is the incoming operand to the CallInst.
5636  /// This gets modified as the asm is processed.
5637  SDValue CallOperand;
5638
5639  /// AssignedRegs - If this is a register or register class operand, this
5640  /// contains the set of register corresponding to the operand.
5641  RegsForValue AssignedRegs;
5642
5643  explicit SDISelAsmOperandInfo(const InlineAsm::ConstraintInfo &info)
5644    : TargetLowering::AsmOperandInfo(info), CallOperand(0,0) {
5645  }
5646
5647  /// MarkAllocatedRegs - Once AssignedRegs is set, mark the assigned registers
5648  /// busy in OutputRegs/InputRegs.
5649  void MarkAllocatedRegs(bool isOutReg, bool isInReg,
5650                         std::set<unsigned> &OutputRegs,
5651                         std::set<unsigned> &InputRegs,
5652                         const TargetRegisterInfo &TRI) const {
5653    if (isOutReg) {
5654      for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i)
5655        MarkRegAndAliases(AssignedRegs.Regs[i], OutputRegs, TRI);
5656    }
5657    if (isInReg) {
5658      for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i)
5659        MarkRegAndAliases(AssignedRegs.Regs[i], InputRegs, TRI);
5660    }
5661  }
5662
5663  /// getCallOperandValEVT - Return the EVT of the Value* that this operand
5664  /// corresponds to.  If there is no Value* for this operand, it returns
5665  /// MVT::Other.
5666  EVT getCallOperandValEVT(LLVMContext &Context,
5667                           const TargetLowering &TLI,
5668                           const TargetData *TD) const {
5669    if (CallOperandVal == 0) return MVT::Other;
5670
5671    if (isa<BasicBlock>(CallOperandVal))
5672      return TLI.getPointerTy();
5673
5674    const llvm::Type *OpTy = CallOperandVal->getType();
5675
5676    // If this is an indirect operand, the operand is a pointer to the
5677    // accessed type.
5678    if (isIndirect) {
5679      const llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
5680      if (!PtrTy)
5681        llvm_report_error("Indirect operand for inline asm not a pointer!");
5682      OpTy = PtrTy->getElementType();
5683    }
5684
5685    // If OpTy is not a single value, it may be a struct/union that we
5686    // can tile with integers.
5687    if (!OpTy->isSingleValueType() && OpTy->isSized()) {
5688      unsigned BitSize = TD->getTypeSizeInBits(OpTy);
5689      switch (BitSize) {
5690      default: break;
5691      case 1:
5692      case 8:
5693      case 16:
5694      case 32:
5695      case 64:
5696      case 128:
5697        OpTy = IntegerType::get(Context, BitSize);
5698        break;
5699      }
5700    }
5701
5702    return TLI.getValueType(OpTy, true);
5703  }
5704
5705private:
5706  /// MarkRegAndAliases - Mark the specified register and all aliases in the
5707  /// specified set.
5708  static void MarkRegAndAliases(unsigned Reg, std::set<unsigned> &Regs,
5709                                const TargetRegisterInfo &TRI) {
5710    assert(TargetRegisterInfo::isPhysicalRegister(Reg) && "Isn't a physreg");
5711    Regs.insert(Reg);
5712    if (const unsigned *Aliases = TRI.getAliasSet(Reg))
5713      for (; *Aliases; ++Aliases)
5714        Regs.insert(*Aliases);
5715  }
5716};
5717} // end llvm namespace.
5718
5719
5720/// GetRegistersForValue - Assign registers (virtual or physical) for the
5721/// specified operand.  We prefer to assign virtual registers, to allow the
5722/// register allocator to handle the assignment process.  However, if the asm
5723/// uses features that we can't model on machineinstrs, we have SDISel do the
5724/// allocation.  This produces generally horrible, but correct, code.
5725///
5726///   OpInfo describes the operand.
5727///   Input and OutputRegs are the set of already allocated physical registers.
5728///
5729void SelectionDAGBuilder::
5730GetRegistersForValue(SDISelAsmOperandInfo &OpInfo,
5731                     std::set<unsigned> &OutputRegs,
5732                     std::set<unsigned> &InputRegs) {
5733  LLVMContext &Context = FuncInfo.Fn->getContext();
5734
5735  // Compute whether this value requires an input register, an output register,
5736  // or both.
5737  bool isOutReg = false;
5738  bool isInReg = false;
5739  switch (OpInfo.Type) {
5740  case InlineAsm::isOutput:
5741    isOutReg = true;
5742
5743    // If there is an input constraint that matches this, we need to reserve
5744    // the input register so no other inputs allocate to it.
5745    isInReg = OpInfo.hasMatchingInput();
5746    break;
5747  case InlineAsm::isInput:
5748    isInReg = true;
5749    isOutReg = false;
5750    break;
5751  case InlineAsm::isClobber:
5752    isOutReg = true;
5753    isInReg = true;
5754    break;
5755  }
5756
5757
5758  MachineFunction &MF = DAG.getMachineFunction();
5759  SmallVector<unsigned, 4> Regs;
5760
5761  // If this is a constraint for a single physreg, or a constraint for a
5762  // register class, find it.
5763  std::pair<unsigned, const TargetRegisterClass*> PhysReg =
5764    TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
5765                                     OpInfo.ConstraintVT);
5766
5767  unsigned NumRegs = 1;
5768  if (OpInfo.ConstraintVT != MVT::Other) {
5769    // If this is a FP input in an integer register (or visa versa) insert a bit
5770    // cast of the input value.  More generally, handle any case where the input
5771    // value disagrees with the register class we plan to stick this in.
5772    if (OpInfo.Type == InlineAsm::isInput &&
5773        PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) {
5774      // Try to convert to the first EVT that the reg class contains.  If the
5775      // types are identical size, use a bitcast to convert (e.g. two differing
5776      // vector types).
5777      EVT RegVT = *PhysReg.second->vt_begin();
5778      if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) {
5779        OpInfo.CallOperand = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(),
5780                                         RegVT, OpInfo.CallOperand);
5781        OpInfo.ConstraintVT = RegVT;
5782      } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
5783        // If the input is a FP value and we want it in FP registers, do a
5784        // bitcast to the corresponding integer type.  This turns an f64 value
5785        // into i64, which can be passed with two i32 values on a 32-bit
5786        // machine.
5787        RegVT = EVT::getIntegerVT(Context,
5788                                  OpInfo.ConstraintVT.getSizeInBits());
5789        OpInfo.CallOperand = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(),
5790                                         RegVT, OpInfo.CallOperand);
5791        OpInfo.ConstraintVT = RegVT;
5792      }
5793
5794      if (DisableScheduling)
5795        DAG.AssignOrdering(OpInfo.CallOperand.getNode(), SDNodeOrder);
5796    }
5797
5798    NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT);
5799  }
5800
5801  EVT RegVT;
5802  EVT ValueVT = OpInfo.ConstraintVT;
5803
5804  // If this is a constraint for a specific physical register, like {r17},
5805  // assign it now.
5806  if (unsigned AssignedReg = PhysReg.first) {
5807    const TargetRegisterClass *RC = PhysReg.second;
5808    if (OpInfo.ConstraintVT == MVT::Other)
5809      ValueVT = *RC->vt_begin();
5810
5811    // Get the actual register value type.  This is important, because the user
5812    // may have asked for (e.g.) the AX register in i32 type.  We need to
5813    // remember that AX is actually i16 to get the right extension.
5814    RegVT = *RC->vt_begin();
5815
5816    // This is a explicit reference to a physical register.
5817    Regs.push_back(AssignedReg);
5818
5819    // If this is an expanded reference, add the rest of the regs to Regs.
5820    if (NumRegs != 1) {
5821      TargetRegisterClass::iterator I = RC->begin();
5822      for (; *I != AssignedReg; ++I)
5823        assert(I != RC->end() && "Didn't find reg!");
5824
5825      // Already added the first reg.
5826      --NumRegs; ++I;
5827      for (; NumRegs; --NumRegs, ++I) {
5828        assert(I != RC->end() && "Ran out of registers to allocate!");
5829        Regs.push_back(*I);
5830      }
5831    }
5832
5833    OpInfo.AssignedRegs = RegsForValue(TLI, Regs, RegVT, ValueVT);
5834    const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
5835    OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI);
5836    return;
5837  }
5838
5839  // Otherwise, if this was a reference to an LLVM register class, create vregs
5840  // for this reference.
5841  if (const TargetRegisterClass *RC = PhysReg.second) {
5842    RegVT = *RC->vt_begin();
5843    if (OpInfo.ConstraintVT == MVT::Other)
5844      ValueVT = RegVT;
5845
5846    // Create the appropriate number of virtual registers.
5847    MachineRegisterInfo &RegInfo = MF.getRegInfo();
5848    for (; NumRegs; --NumRegs)
5849      Regs.push_back(RegInfo.createVirtualRegister(RC));
5850
5851    OpInfo.AssignedRegs = RegsForValue(TLI, Regs, RegVT, ValueVT);
5852    return;
5853  }
5854
5855  // This is a reference to a register class that doesn't directly correspond
5856  // to an LLVM register class.  Allocate NumRegs consecutive, available,
5857  // registers from the class.
5858  std::vector<unsigned> RegClassRegs
5859    = TLI.getRegClassForInlineAsmConstraint(OpInfo.ConstraintCode,
5860                                            OpInfo.ConstraintVT);
5861
5862  const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
5863  unsigned NumAllocated = 0;
5864  for (unsigned i = 0, e = RegClassRegs.size(); i != e; ++i) {
5865    unsigned Reg = RegClassRegs[i];
5866    // See if this register is available.
5867    if ((isOutReg && OutputRegs.count(Reg)) ||   // Already used.
5868        (isInReg  && InputRegs.count(Reg))) {    // Already used.
5869      // Make sure we find consecutive registers.
5870      NumAllocated = 0;
5871      continue;
5872    }
5873
5874    // Check to see if this register is allocatable (i.e. don't give out the
5875    // stack pointer).
5876    const TargetRegisterClass *RC = isAllocatableRegister(Reg, MF, TLI, TRI);
5877    if (!RC) {        // Couldn't allocate this register.
5878      // Reset NumAllocated to make sure we return consecutive registers.
5879      NumAllocated = 0;
5880      continue;
5881    }
5882
5883    // Okay, this register is good, we can use it.
5884    ++NumAllocated;
5885
5886    // If we allocated enough consecutive registers, succeed.
5887    if (NumAllocated == NumRegs) {
5888      unsigned RegStart = (i-NumAllocated)+1;
5889      unsigned RegEnd   = i+1;
5890      // Mark all of the allocated registers used.
5891      for (unsigned i = RegStart; i != RegEnd; ++i)
5892        Regs.push_back(RegClassRegs[i]);
5893
5894      OpInfo.AssignedRegs = RegsForValue(TLI, Regs, *RC->vt_begin(),
5895                                         OpInfo.ConstraintVT);
5896      OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI);
5897      return;
5898    }
5899  }
5900
5901  // Otherwise, we couldn't allocate enough registers for this.
5902}
5903
5904/// hasInlineAsmMemConstraint - Return true if the inline asm instruction being
5905/// processed uses a memory 'm' constraint.
5906static bool
5907hasInlineAsmMemConstraint(std::vector<InlineAsm::ConstraintInfo> &CInfos,
5908                          const TargetLowering &TLI) {
5909  for (unsigned i = 0, e = CInfos.size(); i != e; ++i) {
5910    InlineAsm::ConstraintInfo &CI = CInfos[i];
5911    for (unsigned j = 0, ee = CI.Codes.size(); j != ee; ++j) {
5912      TargetLowering::ConstraintType CType = TLI.getConstraintType(CI.Codes[j]);
5913      if (CType == TargetLowering::C_Memory)
5914        return true;
5915    }
5916
5917    // Indirect operand accesses access memory.
5918    if (CI.isIndirect)
5919      return true;
5920  }
5921
5922  return false;
5923}
5924
5925/// visitInlineAsm - Handle a call to an InlineAsm object.
5926///
5927void SelectionDAGBuilder::visitInlineAsm(CallSite CS) {
5928  InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
5929
5930  /// ConstraintOperands - Information about all of the constraints.
5931  std::vector<SDISelAsmOperandInfo> ConstraintOperands;
5932
5933  std::set<unsigned> OutputRegs, InputRegs;
5934
5935  // Do a prepass over the constraints, canonicalizing them, and building up the
5936  // ConstraintOperands list.
5937  std::vector<InlineAsm::ConstraintInfo>
5938    ConstraintInfos = IA->ParseConstraints();
5939
5940  bool hasMemory = hasInlineAsmMemConstraint(ConstraintInfos, TLI);
5941
5942  SDValue Chain, Flag;
5943
5944  // We won't need to flush pending loads if this asm doesn't touch
5945  // memory and is nonvolatile.
5946  if (hasMemory || IA->hasSideEffects())
5947    Chain = getRoot();
5948  else
5949    Chain = DAG.getRoot();
5950
5951  unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
5952  unsigned ResNo = 0;   // ResNo - The result number of the next output.
5953  for (unsigned i = 0, e = ConstraintInfos.size(); i != e; ++i) {
5954    ConstraintOperands.push_back(SDISelAsmOperandInfo(ConstraintInfos[i]));
5955    SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
5956
5957    EVT OpVT = MVT::Other;
5958
5959    // Compute the value type for each operand.
5960    switch (OpInfo.Type) {
5961    case InlineAsm::isOutput:
5962      // Indirect outputs just consume an argument.
5963      if (OpInfo.isIndirect) {
5964        OpInfo.CallOperandVal = CS.getArgument(ArgNo++);
5965        break;
5966      }
5967
5968      // The return value of the call is this value.  As such, there is no
5969      // corresponding argument.
5970      assert(!CS.getType()->isVoidTy() &&
5971             "Bad inline asm!");
5972      if (const StructType *STy = dyn_cast<StructType>(CS.getType())) {
5973        OpVT = TLI.getValueType(STy->getElementType(ResNo));
5974      } else {
5975        assert(ResNo == 0 && "Asm only has one result!");
5976        OpVT = TLI.getValueType(CS.getType());
5977      }
5978      ++ResNo;
5979      break;
5980    case InlineAsm::isInput:
5981      OpInfo.CallOperandVal = CS.getArgument(ArgNo++);
5982      break;
5983    case InlineAsm::isClobber:
5984      // Nothing to do.
5985      break;
5986    }
5987
5988    // If this is an input or an indirect output, process the call argument.
5989    // BasicBlocks are labels, currently appearing only in asm's.
5990    if (OpInfo.CallOperandVal) {
5991      // Strip bitcasts, if any.  This mostly comes up for functions.
5992      OpInfo.CallOperandVal = OpInfo.CallOperandVal->stripPointerCasts();
5993
5994      if (BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) {
5995        OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
5996      } else {
5997        OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
5998      }
5999
6000      OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, TD);
6001    }
6002
6003    OpInfo.ConstraintVT = OpVT;
6004  }
6005
6006  // Second pass over the constraints: compute which constraint option to use
6007  // and assign registers to constraints that want a specific physreg.
6008  for (unsigned i = 0, e = ConstraintInfos.size(); i != e; ++i) {
6009    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
6010
6011    // If this is an output operand with a matching input operand, look up the
6012    // matching input. If their types mismatch, e.g. one is an integer, the
6013    // other is floating point, or their sizes are different, flag it as an
6014    // error.
6015    if (OpInfo.hasMatchingInput()) {
6016      SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
6017      if (OpInfo.ConstraintVT != Input.ConstraintVT) {
6018        if ((OpInfo.ConstraintVT.isInteger() !=
6019             Input.ConstraintVT.isInteger()) ||
6020            (OpInfo.ConstraintVT.getSizeInBits() !=
6021             Input.ConstraintVT.getSizeInBits())) {
6022          llvm_report_error("Unsupported asm: input constraint"
6023                            " with a matching output constraint of incompatible"
6024                            " type!");
6025        }
6026        Input.ConstraintVT = OpInfo.ConstraintVT;
6027      }
6028    }
6029
6030    // Compute the constraint code and ConstraintType to use.
6031    TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, hasMemory, &DAG);
6032
6033    // If this is a memory input, and if the operand is not indirect, do what we
6034    // need to to provide an address for the memory input.
6035    if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
6036        !OpInfo.isIndirect) {
6037      assert(OpInfo.Type == InlineAsm::isInput &&
6038             "Can only indirectify direct input operands!");
6039
6040      // Memory operands really want the address of the value.  If we don't have
6041      // an indirect input, put it in the constpool if we can, otherwise spill
6042      // it to a stack slot.
6043
6044      // If the operand is a float, integer, or vector constant, spill to a
6045      // constant pool entry to get its address.
6046      Value *OpVal = OpInfo.CallOperandVal;
6047      if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
6048          isa<ConstantVector>(OpVal)) {
6049        OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal),
6050                                                 TLI.getPointerTy());
6051      } else {
6052        // Otherwise, create a stack slot and emit a store to it before the
6053        // asm.
6054        const Type *Ty = OpVal->getType();
6055        uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty);
6056        unsigned Align  = TLI.getTargetData()->getPrefTypeAlignment(Ty);
6057        MachineFunction &MF = DAG.getMachineFunction();
6058        int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
6059        SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy());
6060        Chain = DAG.getStore(Chain, getCurDebugLoc(),
6061                             OpInfo.CallOperand, StackSlot, NULL, 0);
6062        OpInfo.CallOperand = StackSlot;
6063      }
6064
6065      // There is no longer a Value* corresponding to this operand.
6066      OpInfo.CallOperandVal = 0;
6067
6068      // It is now an indirect operand.
6069      OpInfo.isIndirect = true;
6070    }
6071
6072    // If this constraint is for a specific register, allocate it before
6073    // anything else.
6074    if (OpInfo.ConstraintType == TargetLowering::C_Register)
6075      GetRegistersForValue(OpInfo, OutputRegs, InputRegs);
6076  }
6077
6078  ConstraintInfos.clear();
6079
6080  // Second pass - Loop over all of the operands, assigning virtual or physregs
6081  // to register class operands.
6082  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
6083    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
6084
6085    // C_Register operands have already been allocated, Other/Memory don't need
6086    // to be.
6087    if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass)
6088      GetRegistersForValue(OpInfo, OutputRegs, InputRegs);
6089  }
6090
6091  // AsmNodeOperands - The operands for the ISD::INLINEASM node.
6092  std::vector<SDValue> AsmNodeOperands;
6093  AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
6094  AsmNodeOperands.push_back(
6095          DAG.getTargetExternalSymbol(IA->getAsmString().c_str(),
6096                                      TLI.getPointerTy()));
6097
6098
6099  // Loop over all of the inputs, copying the operand values into the
6100  // appropriate registers and processing the output regs.
6101  RegsForValue RetValRegs;
6102
6103  // IndirectStoresToEmit - The set of stores to emit after the inline asm node.
6104  std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit;
6105
6106  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
6107    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
6108
6109    switch (OpInfo.Type) {
6110    case InlineAsm::isOutput: {
6111      if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass &&
6112          OpInfo.ConstraintType != TargetLowering::C_Register) {
6113        // Memory output, or 'other' output (e.g. 'X' constraint).
6114        assert(OpInfo.isIndirect && "Memory output must be indirect operand");
6115
6116        // Add information to the INLINEASM node to know about this output.
6117        unsigned ResOpType = 4/*MEM*/ | (1<<3);
6118        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
6119                                                        TLI.getPointerTy()));
6120        AsmNodeOperands.push_back(OpInfo.CallOperand);
6121        break;
6122      }
6123
6124      // Otherwise, this is a register or register class output.
6125
6126      // Copy the output from the appropriate register.  Find a register that
6127      // we can use.
6128      if (OpInfo.AssignedRegs.Regs.empty()) {
6129        llvm_report_error("Couldn't allocate output reg for"
6130                          " constraint '" + OpInfo.ConstraintCode + "'!");
6131      }
6132
6133      // If this is an indirect operand, store through the pointer after the
6134      // asm.
6135      if (OpInfo.isIndirect) {
6136        IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs,
6137                                                      OpInfo.CallOperandVal));
6138      } else {
6139        // This is the result value of the call.
6140        assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
6141        // Concatenate this output onto the outputs list.
6142        RetValRegs.append(OpInfo.AssignedRegs);
6143      }
6144
6145      // Add information to the INLINEASM node to know that this register is
6146      // set.
6147      OpInfo.AssignedRegs.AddInlineAsmOperands(OpInfo.isEarlyClobber ?
6148                                               6 /* EARLYCLOBBER REGDEF */ :
6149                                               2 /* REGDEF */ ,
6150                                               false,
6151                                               0,
6152                                               DAG, SDNodeOrder,
6153                                               AsmNodeOperands);
6154      break;
6155    }
6156    case InlineAsm::isInput: {
6157      SDValue InOperandVal = OpInfo.CallOperand;
6158
6159      if (OpInfo.isMatchingInputConstraint()) {   // Matching constraint?
6160        // If this is required to match an output register we have already set,
6161        // just use its register.
6162        unsigned OperandNo = OpInfo.getMatchedOperand();
6163
6164        // Scan until we find the definition we already emitted of this operand.
6165        // When we find it, create a RegsForValue operand.
6166        unsigned CurOp = 2;  // The first operand.
6167        for (; OperandNo; --OperandNo) {
6168          // Advance to the next operand.
6169          unsigned OpFlag =
6170            cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
6171          assert(((OpFlag & 7) == 2 /*REGDEF*/ ||
6172                  (OpFlag & 7) == 6 /*EARLYCLOBBER REGDEF*/ ||
6173                  (OpFlag & 7) == 4 /*MEM*/) &&
6174                 "Skipped past definitions?");
6175          CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1;
6176        }
6177
6178        unsigned OpFlag =
6179          cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
6180        if ((OpFlag & 7) == 2 /*REGDEF*/
6181            || (OpFlag & 7) == 6 /* EARLYCLOBBER REGDEF */) {
6182          // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
6183          if (OpInfo.isIndirect) {
6184            llvm_report_error("Don't know how to handle tied indirect "
6185                              "register inputs yet!");
6186          }
6187          RegsForValue MatchedRegs;
6188          MatchedRegs.TLI = &TLI;
6189          MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType());
6190          EVT RegVT = AsmNodeOperands[CurOp+1].getValueType();
6191          MatchedRegs.RegVTs.push_back(RegVT);
6192          MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo();
6193          for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag);
6194               i != e; ++i)
6195            MatchedRegs.Regs.push_back
6196              (RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT)));
6197
6198          // Use the produced MatchedRegs object to
6199          MatchedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(),
6200                                    SDNodeOrder, Chain, &Flag);
6201          MatchedRegs.AddInlineAsmOperands(1 /*REGUSE*/,
6202                                           true, OpInfo.getMatchedOperand(),
6203                                           DAG, SDNodeOrder, AsmNodeOperands);
6204          break;
6205        } else {
6206          assert(((OpFlag & 7) == 4) && "Unknown matching constraint!");
6207          assert((InlineAsm::getNumOperandRegisters(OpFlag)) == 1 &&
6208                 "Unexpected number of operands");
6209          // Add information to the INLINEASM node to know about this input.
6210          // See InlineAsm.h isUseOperandTiedToDef.
6211          OpFlag |= 0x80000000 | (OpInfo.getMatchedOperand() << 16);
6212          AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlag,
6213                                                          TLI.getPointerTy()));
6214          AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
6215          break;
6216        }
6217      }
6218
6219      if (OpInfo.ConstraintType == TargetLowering::C_Other) {
6220        assert(!OpInfo.isIndirect &&
6221               "Don't know how to handle indirect other inputs yet!");
6222
6223        std::vector<SDValue> Ops;
6224        TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode[0],
6225                                         hasMemory, Ops, DAG);
6226        if (Ops.empty()) {
6227          llvm_report_error("Invalid operand for inline asm"
6228                            " constraint '" + OpInfo.ConstraintCode + "'!");
6229        }
6230
6231        // Add information to the INLINEASM node to know about this input.
6232        unsigned ResOpType = 3 /*IMM*/ | (Ops.size() << 3);
6233        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
6234                                                        TLI.getPointerTy()));
6235        AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
6236        break;
6237      } else if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
6238        assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
6239        assert(InOperandVal.getValueType() == TLI.getPointerTy() &&
6240               "Memory operands expect pointer values");
6241
6242        // Add information to the INLINEASM node to know about this input.
6243        unsigned ResOpType = 4/*MEM*/ | (1<<3);
6244        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
6245                                                        TLI.getPointerTy()));
6246        AsmNodeOperands.push_back(InOperandVal);
6247        break;
6248      }
6249
6250      assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
6251              OpInfo.ConstraintType == TargetLowering::C_Register) &&
6252             "Unknown constraint type!");
6253      assert(!OpInfo.isIndirect &&
6254             "Don't know how to handle indirect register inputs yet!");
6255
6256      // Copy the input into the appropriate registers.
6257      if (OpInfo.AssignedRegs.Regs.empty()) {
6258        llvm_report_error("Couldn't allocate input reg for"
6259                          " constraint '"+ OpInfo.ConstraintCode +"'!");
6260      }
6261
6262      OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(),
6263                                        SDNodeOrder, Chain, &Flag);
6264
6265      OpInfo.AssignedRegs.AddInlineAsmOperands(1/*REGUSE*/, false, 0,
6266                                               DAG, SDNodeOrder,
6267                                               AsmNodeOperands);
6268      break;
6269    }
6270    case InlineAsm::isClobber: {
6271      // Add the clobbered value to the operand list, so that the register
6272      // allocator is aware that the physreg got clobbered.
6273      if (!OpInfo.AssignedRegs.Regs.empty())
6274        OpInfo.AssignedRegs.AddInlineAsmOperands(6 /* EARLYCLOBBER REGDEF */,
6275                                                 false, 0, DAG, SDNodeOrder,
6276                                                 AsmNodeOperands);
6277      break;
6278    }
6279    }
6280  }
6281
6282  // Finish up input operands.
6283  AsmNodeOperands[0] = Chain;
6284  if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
6285
6286  Chain = DAG.getNode(ISD::INLINEASM, getCurDebugLoc(),
6287                      DAG.getVTList(MVT::Other, MVT::Flag),
6288                      &AsmNodeOperands[0], AsmNodeOperands.size());
6289  Flag = Chain.getValue(1);
6290
6291  // If this asm returns a register value, copy the result from that register
6292  // and set it as the value of the call.
6293  if (!RetValRegs.Regs.empty()) {
6294    SDValue Val = RetValRegs.getCopyFromRegs(DAG, getCurDebugLoc(),
6295                                             SDNodeOrder, Chain, &Flag);
6296
6297    // FIXME: Why don't we do this for inline asms with MRVs?
6298    if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) {
6299      EVT ResultType = TLI.getValueType(CS.getType());
6300
6301      // If any of the results of the inline asm is a vector, it may have the
6302      // wrong width/num elts.  This can happen for register classes that can
6303      // contain multiple different value types.  The preg or vreg allocated may
6304      // not have the same VT as was expected.  Convert it to the right type
6305      // with bit_convert.
6306      if (ResultType != Val.getValueType() && Val.getValueType().isVector()) {
6307        Val = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(),
6308                          ResultType, Val);
6309
6310      } else if (ResultType != Val.getValueType() &&
6311                 ResultType.isInteger() && Val.getValueType().isInteger()) {
6312        // If a result value was tied to an input value, the computed result may
6313        // have a wider width than the expected result.  Extract the relevant
6314        // portion.
6315        Val = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), ResultType, Val);
6316      }
6317
6318      assert(ResultType == Val.getValueType() && "Asm result value mismatch!");
6319    }
6320
6321    setValue(CS.getInstruction(), Val);
6322    // Don't need to use this as a chain in this case.
6323    if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty())
6324      return;
6325  }
6326
6327  std::vector<std::pair<SDValue, Value*> > StoresToEmit;
6328
6329  // Process indirect outputs, first output all of the flagged copies out of
6330  // physregs.
6331  for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
6332    RegsForValue &OutRegs = IndirectStoresToEmit[i].first;
6333    Value *Ptr = IndirectStoresToEmit[i].second;
6334    SDValue OutVal = OutRegs.getCopyFromRegs(DAG, getCurDebugLoc(),
6335                                             SDNodeOrder, Chain, &Flag);
6336    StoresToEmit.push_back(std::make_pair(OutVal, Ptr));
6337
6338  }
6339
6340  // Emit the non-flagged stores from the physregs.
6341  SmallVector<SDValue, 8> OutChains;
6342  for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) {
6343    SDValue Val = DAG.getStore(Chain, getCurDebugLoc(),
6344                               StoresToEmit[i].first,
6345                               getValue(StoresToEmit[i].second),
6346                               StoresToEmit[i].second, 0);
6347    OutChains.push_back(Val);
6348  }
6349
6350  if (!OutChains.empty())
6351    Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
6352                        &OutChains[0], OutChains.size());
6353
6354  DAG.setRoot(Chain);
6355}
6356
6357void SelectionDAGBuilder::visitVAStart(CallInst &I) {
6358  DAG.setRoot(DAG.getNode(ISD::VASTART, getCurDebugLoc(),
6359                          MVT::Other, getRoot(),
6360                          getValue(I.getOperand(1)),
6361                          DAG.getSrcValue(I.getOperand(1))));
6362}
6363
6364void SelectionDAGBuilder::visitVAArg(VAArgInst &I) {
6365  SDValue V = DAG.getVAArg(TLI.getValueType(I.getType()), getCurDebugLoc(),
6366                           getRoot(), getValue(I.getOperand(0)),
6367                           DAG.getSrcValue(I.getOperand(0)));
6368  setValue(&I, V);
6369  DAG.setRoot(V.getValue(1));
6370}
6371
6372void SelectionDAGBuilder::visitVAEnd(CallInst &I) {
6373  DAG.setRoot(DAG.getNode(ISD::VAEND, getCurDebugLoc(),
6374                          MVT::Other, getRoot(),
6375                          getValue(I.getOperand(1)),
6376                          DAG.getSrcValue(I.getOperand(1))));
6377}
6378
6379void SelectionDAGBuilder::visitVACopy(CallInst &I) {
6380  DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurDebugLoc(),
6381                          MVT::Other, getRoot(),
6382                          getValue(I.getOperand(1)),
6383                          getValue(I.getOperand(2)),
6384                          DAG.getSrcValue(I.getOperand(1)),
6385                          DAG.getSrcValue(I.getOperand(2))));
6386}
6387
6388/// TargetLowering::LowerCallTo - This is the default LowerCallTo
6389/// implementation, which just calls LowerCall.
6390/// FIXME: When all targets are
6391/// migrated to using LowerCall, this hook should be integrated into SDISel.
6392std::pair<SDValue, SDValue>
6393TargetLowering::LowerCallTo(SDValue Chain, const Type *RetTy,
6394                            bool RetSExt, bool RetZExt, bool isVarArg,
6395                            bool isInreg, unsigned NumFixedArgs,
6396                            CallingConv::ID CallConv, bool isTailCall,
6397                            bool isReturnValueUsed,
6398                            SDValue Callee,
6399                            ArgListTy &Args, SelectionDAG &DAG, DebugLoc dl,
6400                            unsigned Order) {
6401  assert((!isTailCall || PerformTailCallOpt) &&
6402         "isTailCall set when tail-call optimizations are disabled!");
6403
6404  // Handle all of the outgoing arguments.
6405  SmallVector<ISD::OutputArg, 32> Outs;
6406  for (unsigned i = 0, e = Args.size(); i != e; ++i) {
6407    SmallVector<EVT, 4> ValueVTs;
6408    ComputeValueVTs(*this, Args[i].Ty, ValueVTs);
6409    for (unsigned Value = 0, NumValues = ValueVTs.size();
6410         Value != NumValues; ++Value) {
6411      EVT VT = ValueVTs[Value];
6412      const Type *ArgTy = VT.getTypeForEVT(RetTy->getContext());
6413      SDValue Op = SDValue(Args[i].Node.getNode(),
6414                           Args[i].Node.getResNo() + Value);
6415      ISD::ArgFlagsTy Flags;
6416      unsigned OriginalAlignment =
6417        getTargetData()->getABITypeAlignment(ArgTy);
6418
6419      if (Args[i].isZExt)
6420        Flags.setZExt();
6421      if (Args[i].isSExt)
6422        Flags.setSExt();
6423      if (Args[i].isInReg)
6424        Flags.setInReg();
6425      if (Args[i].isSRet)
6426        Flags.setSRet();
6427      if (Args[i].isByVal) {
6428        Flags.setByVal();
6429        const PointerType *Ty = cast<PointerType>(Args[i].Ty);
6430        const Type *ElementTy = Ty->getElementType();
6431        unsigned FrameAlign = getByValTypeAlignment(ElementTy);
6432        unsigned FrameSize  = getTargetData()->getTypeAllocSize(ElementTy);
6433        // For ByVal, alignment should come from FE.  BE will guess if this
6434        // info is not there but there are cases it cannot get right.
6435        if (Args[i].Alignment)
6436          FrameAlign = Args[i].Alignment;
6437        Flags.setByValAlign(FrameAlign);
6438        Flags.setByValSize(FrameSize);
6439      }
6440      if (Args[i].isNest)
6441        Flags.setNest();
6442      Flags.setOrigAlign(OriginalAlignment);
6443
6444      EVT PartVT = getRegisterType(RetTy->getContext(), VT);
6445      unsigned NumParts = getNumRegisters(RetTy->getContext(), VT);
6446      SmallVector<SDValue, 4> Parts(NumParts);
6447      ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
6448
6449      if (Args[i].isSExt)
6450        ExtendKind = ISD::SIGN_EXTEND;
6451      else if (Args[i].isZExt)
6452        ExtendKind = ISD::ZERO_EXTEND;
6453
6454      getCopyToParts(DAG, dl, Order, Op, &Parts[0], NumParts,
6455                     PartVT, ExtendKind);
6456
6457      for (unsigned j = 0; j != NumParts; ++j) {
6458        // if it isn't first piece, alignment must be 1
6459        ISD::OutputArg MyFlags(Flags, Parts[j], i < NumFixedArgs);
6460        if (NumParts > 1 && j == 0)
6461          MyFlags.Flags.setSplit();
6462        else if (j != 0)
6463          MyFlags.Flags.setOrigAlign(1);
6464
6465        Outs.push_back(MyFlags);
6466      }
6467    }
6468  }
6469
6470  // Handle the incoming return values from the call.
6471  SmallVector<ISD::InputArg, 32> Ins;
6472  SmallVector<EVT, 4> RetTys;
6473  ComputeValueVTs(*this, RetTy, RetTys);
6474  for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
6475    EVT VT = RetTys[I];
6476    EVT RegisterVT = getRegisterType(RetTy->getContext(), VT);
6477    unsigned NumRegs = getNumRegisters(RetTy->getContext(), VT);
6478    for (unsigned i = 0; i != NumRegs; ++i) {
6479      ISD::InputArg MyFlags;
6480      MyFlags.VT = RegisterVT;
6481      MyFlags.Used = isReturnValueUsed;
6482      if (RetSExt)
6483        MyFlags.Flags.setSExt();
6484      if (RetZExt)
6485        MyFlags.Flags.setZExt();
6486      if (isInreg)
6487        MyFlags.Flags.setInReg();
6488      Ins.push_back(MyFlags);
6489    }
6490  }
6491
6492  // Check if target-dependent constraints permit a tail call here.
6493  // Target-independent constraints should be checked by the caller.
6494  if (isTailCall &&
6495      !IsEligibleForTailCallOptimization(Callee, CallConv, isVarArg, Ins, DAG))
6496    isTailCall = false;
6497
6498  SmallVector<SDValue, 4> InVals;
6499  Chain = LowerCall(Chain, Callee, CallConv, isVarArg, isTailCall,
6500                    Outs, Ins, dl, DAG, InVals);
6501
6502  // Verify that the target's LowerCall behaved as expected.
6503  assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
6504         "LowerCall didn't return a valid chain!");
6505  assert((!isTailCall || InVals.empty()) &&
6506         "LowerCall emitted a return value for a tail call!");
6507  assert((isTailCall || InVals.size() == Ins.size()) &&
6508         "LowerCall didn't emit the correct number of values!");
6509  DEBUG(for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
6510          assert(InVals[i].getNode() &&
6511                 "LowerCall emitted a null value!");
6512          assert(Ins[i].VT == InVals[i].getValueType() &&
6513                 "LowerCall emitted a value with the wrong type!");
6514        });
6515
6516  if (DisableScheduling)
6517    DAG.AssignOrdering(Chain.getNode(), Order);
6518
6519  // For a tail call, the return value is merely live-out and there aren't
6520  // any nodes in the DAG representing it. Return a special value to
6521  // indicate that a tail call has been emitted and no more Instructions
6522  // should be processed in the current block.
6523  if (isTailCall) {
6524    DAG.setRoot(Chain);
6525    return std::make_pair(SDValue(), SDValue());
6526  }
6527
6528  // Collect the legal value parts into potentially illegal values
6529  // that correspond to the original function's return values.
6530  ISD::NodeType AssertOp = ISD::DELETED_NODE;
6531  if (RetSExt)
6532    AssertOp = ISD::AssertSext;
6533  else if (RetZExt)
6534    AssertOp = ISD::AssertZext;
6535  SmallVector<SDValue, 4> ReturnValues;
6536  unsigned CurReg = 0;
6537  for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
6538    EVT VT = RetTys[I];
6539    EVT RegisterVT = getRegisterType(RetTy->getContext(), VT);
6540    unsigned NumRegs = getNumRegisters(RetTy->getContext(), VT);
6541
6542    SDValue ReturnValue =
6543      getCopyFromParts(DAG, dl, Order, &InVals[CurReg], NumRegs,
6544                       RegisterVT, VT, AssertOp);
6545    ReturnValues.push_back(ReturnValue);
6546    if (DisableScheduling)
6547      DAG.AssignOrdering(ReturnValue.getNode(), Order);
6548    CurReg += NumRegs;
6549  }
6550
6551  // For a function returning void, there is no return value. We can't create
6552  // such a node, so we just return a null return value in that case. In
6553  // that case, nothing will actualy look at the value.
6554  if (ReturnValues.empty())
6555    return std::make_pair(SDValue(), Chain);
6556
6557  SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
6558                            DAG.getVTList(&RetTys[0], RetTys.size()),
6559                            &ReturnValues[0], ReturnValues.size());
6560  if (DisableScheduling)
6561    DAG.AssignOrdering(Res.getNode(), Order);
6562  return std::make_pair(Res, Chain);
6563}
6564
6565void TargetLowering::LowerOperationWrapper(SDNode *N,
6566                                           SmallVectorImpl<SDValue> &Results,
6567                                           SelectionDAG &DAG) {
6568  SDValue Res = LowerOperation(SDValue(N, 0), DAG);
6569  if (Res.getNode())
6570    Results.push_back(Res);
6571}
6572
6573SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) {
6574  llvm_unreachable("LowerOperation not implemented for this target!");
6575  return SDValue();
6576}
6577
6578void SelectionDAGBuilder::CopyValueToVirtualRegister(Value *V, unsigned Reg) {
6579  SDValue Op = getValue(V);
6580  assert((Op.getOpcode() != ISD::CopyFromReg ||
6581          cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
6582         "Copy from a reg to the same reg!");
6583  assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg");
6584
6585  RegsForValue RFV(V->getContext(), TLI, Reg, V->getType());
6586  SDValue Chain = DAG.getEntryNode();
6587  RFV.getCopyToRegs(Op, DAG, getCurDebugLoc(), SDNodeOrder, Chain, 0);
6588  PendingExports.push_back(Chain);
6589}
6590
6591#include "llvm/CodeGen/SelectionDAGISel.h"
6592
6593void SelectionDAGISel::LowerArguments(BasicBlock *LLVMBB) {
6594  // If this is the entry block, emit arguments.
6595  Function &F = *LLVMBB->getParent();
6596  SelectionDAG &DAG = SDB->DAG;
6597  SDValue OldRoot = DAG.getRoot();
6598  DebugLoc dl = SDB->getCurDebugLoc();
6599  const TargetData *TD = TLI.getTargetData();
6600  SmallVector<ISD::InputArg, 16> Ins;
6601
6602  // Check whether the function can return without sret-demotion.
6603  SmallVector<EVT, 4> OutVTs;
6604  SmallVector<ISD::ArgFlagsTy, 4> OutsFlags;
6605  getReturnInfo(F.getReturnType(), F.getAttributes().getRetAttributes(),
6606                OutVTs, OutsFlags, TLI);
6607  FunctionLoweringInfo &FLI = DAG.getFunctionLoweringInfo();
6608
6609  FLI.CanLowerReturn = TLI.CanLowerReturn(F.getCallingConv(), F.isVarArg(),
6610                                          OutVTs, OutsFlags, DAG);
6611  if (!FLI.CanLowerReturn) {
6612    // Put in an sret pointer parameter before all the other parameters.
6613    SmallVector<EVT, 1> ValueVTs;
6614    ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs);
6615
6616    // NOTE: Assuming that a pointer will never break down to more than one VT
6617    // or one register.
6618    ISD::ArgFlagsTy Flags;
6619    Flags.setSRet();
6620    EVT RegisterVT = TLI.getRegisterType(*CurDAG->getContext(), ValueVTs[0]);
6621    ISD::InputArg RetArg(Flags, RegisterVT, true);
6622    Ins.push_back(RetArg);
6623  }
6624
6625  // Set up the incoming argument description vector.
6626  unsigned Idx = 1;
6627  for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end();
6628       I != E; ++I, ++Idx) {
6629    SmallVector<EVT, 4> ValueVTs;
6630    ComputeValueVTs(TLI, I->getType(), ValueVTs);
6631    bool isArgValueUsed = !I->use_empty();
6632    for (unsigned Value = 0, NumValues = ValueVTs.size();
6633         Value != NumValues; ++Value) {
6634      EVT VT = ValueVTs[Value];
6635      const Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
6636      ISD::ArgFlagsTy Flags;
6637      unsigned OriginalAlignment =
6638        TD->getABITypeAlignment(ArgTy);
6639
6640      if (F.paramHasAttr(Idx, Attribute::ZExt))
6641        Flags.setZExt();
6642      if (F.paramHasAttr(Idx, Attribute::SExt))
6643        Flags.setSExt();
6644      if (F.paramHasAttr(Idx, Attribute::InReg))
6645        Flags.setInReg();
6646      if (F.paramHasAttr(Idx, Attribute::StructRet))
6647        Flags.setSRet();
6648      if (F.paramHasAttr(Idx, Attribute::ByVal)) {
6649        Flags.setByVal();
6650        const PointerType *Ty = cast<PointerType>(I->getType());
6651        const Type *ElementTy = Ty->getElementType();
6652        unsigned FrameAlign = TLI.getByValTypeAlignment(ElementTy);
6653        unsigned FrameSize  = TD->getTypeAllocSize(ElementTy);
6654        // For ByVal, alignment should be passed from FE.  BE will guess if
6655        // this info is not there but there are cases it cannot get right.
6656        if (F.getParamAlignment(Idx))
6657          FrameAlign = F.getParamAlignment(Idx);
6658        Flags.setByValAlign(FrameAlign);
6659        Flags.setByValSize(FrameSize);
6660      }
6661      if (F.paramHasAttr(Idx, Attribute::Nest))
6662        Flags.setNest();
6663      Flags.setOrigAlign(OriginalAlignment);
6664
6665      EVT RegisterVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
6666      unsigned NumRegs = TLI.getNumRegisters(*CurDAG->getContext(), VT);
6667      for (unsigned i = 0; i != NumRegs; ++i) {
6668        ISD::InputArg MyFlags(Flags, RegisterVT, isArgValueUsed);
6669        if (NumRegs > 1 && i == 0)
6670          MyFlags.Flags.setSplit();
6671        // if it isn't first piece, alignment must be 1
6672        else if (i > 0)
6673          MyFlags.Flags.setOrigAlign(1);
6674        Ins.push_back(MyFlags);
6675      }
6676    }
6677  }
6678
6679  // Call the target to set up the argument values.
6680  SmallVector<SDValue, 8> InVals;
6681  SDValue NewRoot = TLI.LowerFormalArguments(DAG.getRoot(), F.getCallingConv(),
6682                                             F.isVarArg(), Ins,
6683                                             dl, DAG, InVals);
6684
6685  // Verify that the target's LowerFormalArguments behaved as expected.
6686  assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
6687         "LowerFormalArguments didn't return a valid chain!");
6688  assert(InVals.size() == Ins.size() &&
6689         "LowerFormalArguments didn't emit the correct number of values!");
6690  DEBUG({
6691      for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
6692        assert(InVals[i].getNode() &&
6693               "LowerFormalArguments emitted a null value!");
6694        assert(Ins[i].VT == InVals[i].getValueType() &&
6695               "LowerFormalArguments emitted a value with the wrong type!");
6696      }
6697    });
6698
6699  // Update the DAG with the new chain value resulting from argument lowering.
6700  DAG.setRoot(NewRoot);
6701
6702  // Set up the argument values.
6703  unsigned i = 0;
6704  Idx = 1;
6705  if (!FLI.CanLowerReturn) {
6706    // Create a virtual register for the sret pointer, and put in a copy
6707    // from the sret argument into it.
6708    SmallVector<EVT, 1> ValueVTs;
6709    ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs);
6710    EVT VT = ValueVTs[0];
6711    EVT RegVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
6712    ISD::NodeType AssertOp = ISD::DELETED_NODE;
6713    SDValue ArgValue = getCopyFromParts(DAG, dl, 0, &InVals[0], 1,
6714                                        RegVT, VT, AssertOp);
6715
6716    MachineFunction& MF = SDB->DAG.getMachineFunction();
6717    MachineRegisterInfo& RegInfo = MF.getRegInfo();
6718    unsigned SRetReg = RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT));
6719    FLI.DemoteRegister = SRetReg;
6720    NewRoot = SDB->DAG.getCopyToReg(NewRoot, SDB->getCurDebugLoc(),
6721                                    SRetReg, ArgValue);
6722    DAG.setRoot(NewRoot);
6723
6724    // i indexes lowered arguments.  Bump it past the hidden sret argument.
6725    // Idx indexes LLVM arguments.  Don't touch it.
6726    ++i;
6727  }
6728
6729  for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E;
6730      ++I, ++Idx) {
6731    SmallVector<SDValue, 4> ArgValues;
6732    SmallVector<EVT, 4> ValueVTs;
6733    ComputeValueVTs(TLI, I->getType(), ValueVTs);
6734    unsigned NumValues = ValueVTs.size();
6735    for (unsigned Value = 0; Value != NumValues; ++Value) {
6736      EVT VT = ValueVTs[Value];
6737      EVT PartVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
6738      unsigned NumParts = TLI.getNumRegisters(*CurDAG->getContext(), VT);
6739
6740      if (!I->use_empty()) {
6741        ISD::NodeType AssertOp = ISD::DELETED_NODE;
6742        if (F.paramHasAttr(Idx, Attribute::SExt))
6743          AssertOp = ISD::AssertSext;
6744        else if (F.paramHasAttr(Idx, Attribute::ZExt))
6745          AssertOp = ISD::AssertZext;
6746
6747        ArgValues.push_back(getCopyFromParts(DAG, dl, 0, &InVals[i],
6748                                             NumParts, PartVT, VT,
6749                                             AssertOp));
6750      }
6751
6752      i += NumParts;
6753    }
6754
6755    if (!I->use_empty()) {
6756      SDValue Res = DAG.getMergeValues(&ArgValues[0], NumValues,
6757                                       SDB->getCurDebugLoc());
6758      SDB->setValue(I, Res);
6759
6760      // If this argument is live outside of the entry block, insert a copy from
6761      // whereever we got it to the vreg that other BB's will reference it as.
6762      SDB->CopyToExportRegsIfNeeded(I);
6763    }
6764  }
6765
6766  assert(i == InVals.size() && "Argument register count mismatch!");
6767
6768  // Finally, if the target has anything special to do, allow it to do so.
6769  // FIXME: this should insert code into the DAG!
6770  EmitFunctionEntryCode(F, SDB->DAG.getMachineFunction());
6771}
6772
6773/// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
6774/// ensure constants are generated when needed.  Remember the virtual registers
6775/// that need to be added to the Machine PHI nodes as input.  We cannot just
6776/// directly add them, because expansion might result in multiple MBB's for one
6777/// BB.  As such, the start of the BB might correspond to a different MBB than
6778/// the end.
6779///
6780void
6781SelectionDAGISel::HandlePHINodesInSuccessorBlocks(BasicBlock *LLVMBB) {
6782  TerminatorInst *TI = LLVMBB->getTerminator();
6783
6784  SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
6785
6786  // Check successor nodes' PHI nodes that expect a constant to be available
6787  // from this block.
6788  for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
6789    BasicBlock *SuccBB = TI->getSuccessor(succ);
6790    if (!isa<PHINode>(SuccBB->begin())) continue;
6791    MachineBasicBlock *SuccMBB = FuncInfo->MBBMap[SuccBB];
6792
6793    // If this terminator has multiple identical successors (common for
6794    // switches), only handle each succ once.
6795    if (!SuccsHandled.insert(SuccMBB)) continue;
6796
6797    MachineBasicBlock::iterator MBBI = SuccMBB->begin();
6798    PHINode *PN;
6799
6800    // At this point we know that there is a 1-1 correspondence between LLVM PHI
6801    // nodes and Machine PHI nodes, but the incoming operands have not been
6802    // emitted yet.
6803    for (BasicBlock::iterator I = SuccBB->begin();
6804         (PN = dyn_cast<PHINode>(I)); ++I) {
6805      // Ignore dead phi's.
6806      if (PN->use_empty()) continue;
6807
6808      unsigned Reg;
6809      Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
6810
6811      if (Constant *C = dyn_cast<Constant>(PHIOp)) {
6812        unsigned &RegOut = SDB->ConstantsOut[C];
6813        if (RegOut == 0) {
6814          RegOut = FuncInfo->CreateRegForValue(C);
6815          SDB->CopyValueToVirtualRegister(C, RegOut);
6816        }
6817        Reg = RegOut;
6818      } else {
6819        Reg = FuncInfo->ValueMap[PHIOp];
6820        if (Reg == 0) {
6821          assert(isa<AllocaInst>(PHIOp) &&
6822                 FuncInfo->StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
6823                 "Didn't codegen value into a register!??");
6824          Reg = FuncInfo->CreateRegForValue(PHIOp);
6825          SDB->CopyValueToVirtualRegister(PHIOp, Reg);
6826        }
6827      }
6828
6829      // Remember that this register needs to added to the machine PHI node as
6830      // the input for this MBB.
6831      SmallVector<EVT, 4> ValueVTs;
6832      ComputeValueVTs(TLI, PN->getType(), ValueVTs);
6833      for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
6834        EVT VT = ValueVTs[vti];
6835        unsigned NumRegisters = TLI.getNumRegisters(*CurDAG->getContext(), VT);
6836        for (unsigned i = 0, e = NumRegisters; i != e; ++i)
6837          SDB->PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i));
6838        Reg += NumRegisters;
6839      }
6840    }
6841  }
6842  SDB->ConstantsOut.clear();
6843}
6844
6845/// This is the Fast-ISel version of HandlePHINodesInSuccessorBlocks. It only
6846/// supports legal types, and it emits MachineInstrs directly instead of
6847/// creating SelectionDAG nodes.
6848///
6849bool
6850SelectionDAGISel::HandlePHINodesInSuccessorBlocksFast(BasicBlock *LLVMBB,
6851                                                      FastISel *F) {
6852  TerminatorInst *TI = LLVMBB->getTerminator();
6853
6854  SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
6855  unsigned OrigNumPHINodesToUpdate = SDB->PHINodesToUpdate.size();
6856
6857  // Check successor nodes' PHI nodes that expect a constant to be available
6858  // from this block.
6859  for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
6860    BasicBlock *SuccBB = TI->getSuccessor(succ);
6861    if (!isa<PHINode>(SuccBB->begin())) continue;
6862    MachineBasicBlock *SuccMBB = FuncInfo->MBBMap[SuccBB];
6863
6864    // If this terminator has multiple identical successors (common for
6865    // switches), only handle each succ once.
6866    if (!SuccsHandled.insert(SuccMBB)) continue;
6867
6868    MachineBasicBlock::iterator MBBI = SuccMBB->begin();
6869    PHINode *PN;
6870
6871    // At this point we know that there is a 1-1 correspondence between LLVM PHI
6872    // nodes and Machine PHI nodes, but the incoming operands have not been
6873    // emitted yet.
6874    for (BasicBlock::iterator I = SuccBB->begin();
6875         (PN = dyn_cast<PHINode>(I)); ++I) {
6876      // Ignore dead phi's.
6877      if (PN->use_empty()) continue;
6878
6879      // Only handle legal types. Two interesting things to note here. First,
6880      // by bailing out early, we may leave behind some dead instructions,
6881      // since SelectionDAG's HandlePHINodesInSuccessorBlocks will insert its
6882      // own moves. Second, this check is necessary becuase FastISel doesn't
6883      // use CreateRegForValue to create registers, so it always creates
6884      // exactly one register for each non-void instruction.
6885      EVT VT = TLI.getValueType(PN->getType(), /*AllowUnknown=*/true);
6886      if (VT == MVT::Other || !TLI.isTypeLegal(VT)) {
6887        // Promote MVT::i1.
6888        if (VT == MVT::i1)
6889          VT = TLI.getTypeToTransformTo(*CurDAG->getContext(), VT);
6890        else {
6891          SDB->PHINodesToUpdate.resize(OrigNumPHINodesToUpdate);
6892          return false;
6893        }
6894      }
6895
6896      Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
6897
6898      unsigned Reg = F->getRegForValue(PHIOp);
6899      if (Reg == 0) {
6900        SDB->PHINodesToUpdate.resize(OrigNumPHINodesToUpdate);
6901        return false;
6902      }
6903      SDB->PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg));
6904    }
6905  }
6906
6907  return true;
6908}
6909