SelectionDAGBuilder.cpp revision f09400f3bb920cf6f79dc030f42e8d103e14b5c6
1//===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements routines for translating from LLVM IR into SelectionDAG IR.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "isel"
15#include "SDNodeDbgValue.h"
16#include "SelectionDAGBuilder.h"
17#include "FunctionLoweringInfo.h"
18#include "llvm/ADT/BitVector.h"
19#include "llvm/ADT/SmallSet.h"
20#include "llvm/Analysis/AliasAnalysis.h"
21#include "llvm/Analysis/ConstantFolding.h"
22#include "llvm/Constants.h"
23#include "llvm/CallingConv.h"
24#include "llvm/DerivedTypes.h"
25#include "llvm/Function.h"
26#include "llvm/GlobalVariable.h"
27#include "llvm/InlineAsm.h"
28#include "llvm/Instructions.h"
29#include "llvm/Intrinsics.h"
30#include "llvm/IntrinsicInst.h"
31#include "llvm/LLVMContext.h"
32#include "llvm/Module.h"
33#include "llvm/CodeGen/Analysis.h"
34#include "llvm/CodeGen/FastISel.h"
35#include "llvm/CodeGen/GCStrategy.h"
36#include "llvm/CodeGen/GCMetadata.h"
37#include "llvm/CodeGen/MachineFunction.h"
38#include "llvm/CodeGen/MachineFrameInfo.h"
39#include "llvm/CodeGen/MachineInstrBuilder.h"
40#include "llvm/CodeGen/MachineJumpTableInfo.h"
41#include "llvm/CodeGen/MachineModuleInfo.h"
42#include "llvm/CodeGen/MachineRegisterInfo.h"
43#include "llvm/CodeGen/PseudoSourceValue.h"
44#include "llvm/CodeGen/SelectionDAG.h"
45#include "llvm/Analysis/DebugInfo.h"
46#include "llvm/Target/TargetRegisterInfo.h"
47#include "llvm/Target/TargetData.h"
48#include "llvm/Target/TargetFrameInfo.h"
49#include "llvm/Target/TargetInstrInfo.h"
50#include "llvm/Target/TargetIntrinsicInfo.h"
51#include "llvm/Target/TargetLowering.h"
52#include "llvm/Target/TargetOptions.h"
53#include "llvm/Support/Compiler.h"
54#include "llvm/Support/CommandLine.h"
55#include "llvm/Support/Debug.h"
56#include "llvm/Support/ErrorHandling.h"
57#include "llvm/Support/MathExtras.h"
58#include "llvm/Support/raw_ostream.h"
59#include <algorithm>
60using namespace llvm;
61
62/// LimitFloatPrecision - Generate low-precision inline sequences for
63/// some float libcalls (6, 8 or 12 bits).
64static unsigned LimitFloatPrecision;
65
66static cl::opt<unsigned, true>
67LimitFPPrecision("limit-float-precision",
68                 cl::desc("Generate low-precision inline sequences "
69                          "for some float libcalls"),
70                 cl::location(LimitFloatPrecision),
71                 cl::init(0));
72
73namespace {
74  /// RegsForValue - This struct represents the registers (physical or virtual)
75  /// that a particular set of values is assigned, and the type information
76  /// about the value. The most common situation is to represent one value at a
77  /// time, but struct or array values are handled element-wise as multiple
78  /// values.  The splitting of aggregates is performed recursively, so that we
79  /// never have aggregate-typed registers. The values at this point do not
80  /// necessarily have legal types, so each value may require one or more
81  /// registers of some legal type.
82  ///
83  struct RegsForValue {
84    /// TLI - The TargetLowering object.
85    ///
86    const TargetLowering *TLI;
87
88    /// ValueVTs - The value types of the values, which may not be legal, and
89    /// may need be promoted or synthesized from one or more registers.
90    ///
91    SmallVector<EVT, 4> ValueVTs;
92
93    /// RegVTs - The value types of the registers. This is the same size as
94    /// ValueVTs and it records, for each value, what the type of the assigned
95    /// register or registers are. (Individual values are never synthesized
96    /// from more than one type of register.)
97    ///
98    /// With virtual registers, the contents of RegVTs is redundant with TLI's
99    /// getRegisterType member function, however when with physical registers
100    /// it is necessary to have a separate record of the types.
101    ///
102    SmallVector<EVT, 4> RegVTs;
103
104    /// Regs - This list holds the registers assigned to the values.
105    /// Each legal or promoted value requires one register, and each
106    /// expanded value requires multiple registers.
107    ///
108    SmallVector<unsigned, 4> Regs;
109
110    RegsForValue() : TLI(0) {}
111
112    RegsForValue(const TargetLowering &tli,
113                 const SmallVector<unsigned, 4> &regs,
114                 EVT regvt, EVT valuevt)
115      : TLI(&tli),  ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {}
116    RegsForValue(const TargetLowering &tli,
117                 const SmallVector<unsigned, 4> &regs,
118                 const SmallVector<EVT, 4> &regvts,
119                 const SmallVector<EVT, 4> &valuevts)
120      : TLI(&tli), ValueVTs(valuevts), RegVTs(regvts), Regs(regs) {}
121    RegsForValue(LLVMContext &Context, const TargetLowering &tli,
122                 unsigned Reg, const Type *Ty) : TLI(&tli) {
123      ComputeValueVTs(tli, Ty, ValueVTs);
124
125      for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
126        EVT ValueVT = ValueVTs[Value];
127        unsigned NumRegs = TLI->getNumRegisters(Context, ValueVT);
128        EVT RegisterVT = TLI->getRegisterType(Context, ValueVT);
129        for (unsigned i = 0; i != NumRegs; ++i)
130          Regs.push_back(Reg + i);
131        RegVTs.push_back(RegisterVT);
132        Reg += NumRegs;
133      }
134    }
135
136    /// areValueTypesLegal - Return true if types of all the values are legal.
137    bool areValueTypesLegal() {
138      for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
139        EVT RegisterVT = RegVTs[Value];
140        if (!TLI->isTypeLegal(RegisterVT))
141          return false;
142      }
143      return true;
144    }
145
146
147    /// append - Add the specified values to this one.
148    void append(const RegsForValue &RHS) {
149      TLI = RHS.TLI;
150      ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end());
151      RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end());
152      Regs.append(RHS.Regs.begin(), RHS.Regs.end());
153    }
154
155
156    /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
157    /// this value and returns the result as a ValueVTs value.  This uses
158    /// Chain/Flag as the input and updates them for the output Chain/Flag.
159    /// If the Flag pointer is NULL, no flag is used.
160    SDValue getCopyFromRegs(SelectionDAG &DAG, DebugLoc dl,
161                            SDValue &Chain, SDValue *Flag) const;
162
163    /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
164    /// specified value into the registers specified by this object.  This uses
165    /// Chain/Flag as the input and updates them for the output Chain/Flag.
166    /// If the Flag pointer is NULL, no flag is used.
167    void getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl,
168                       SDValue &Chain, SDValue *Flag) const;
169
170    /// AddInlineAsmOperands - Add this value to the specified inlineasm node
171    /// operand list.  This adds the code marker, matching input operand index
172    /// (if applicable), and includes the number of values added into it.
173    void AddInlineAsmOperands(unsigned Kind,
174                              bool HasMatching, unsigned MatchingIdx,
175                              SelectionDAG &DAG,
176                              std::vector<SDValue> &Ops) const;
177  };
178}
179
180/// getCopyFromParts - Create a value that contains the specified legal parts
181/// combined into the value they represent.  If the parts combine to a type
182/// larger then ValueVT then AssertOp can be used to specify whether the extra
183/// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
184/// (ISD::AssertSext).
185static SDValue getCopyFromParts(SelectionDAG &DAG, DebugLoc dl,
186                                const SDValue *Parts,
187                                unsigned NumParts, EVT PartVT, EVT ValueVT,
188                                ISD::NodeType AssertOp = ISD::DELETED_NODE) {
189  assert(NumParts > 0 && "No parts to assemble!");
190  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
191  SDValue Val = Parts[0];
192
193  if (NumParts > 1) {
194    // Assemble the value from multiple parts.
195    if (!ValueVT.isVector() && ValueVT.isInteger()) {
196      unsigned PartBits = PartVT.getSizeInBits();
197      unsigned ValueBits = ValueVT.getSizeInBits();
198
199      // Assemble the power of 2 part.
200      unsigned RoundParts = NumParts & (NumParts - 1) ?
201        1 << Log2_32(NumParts) : NumParts;
202      unsigned RoundBits = PartBits * RoundParts;
203      EVT RoundVT = RoundBits == ValueBits ?
204        ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
205      SDValue Lo, Hi;
206
207      EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
208
209      if (RoundParts > 2) {
210        Lo = getCopyFromParts(DAG, dl, Parts, RoundParts / 2,
211                              PartVT, HalfVT);
212        Hi = getCopyFromParts(DAG, dl, Parts + RoundParts / 2,
213                              RoundParts / 2, PartVT, HalfVT);
214      } else {
215        Lo = DAG.getNode(ISD::BIT_CONVERT, dl, HalfVT, Parts[0]);
216        Hi = DAG.getNode(ISD::BIT_CONVERT, dl, HalfVT, Parts[1]);
217      }
218
219      if (TLI.isBigEndian())
220        std::swap(Lo, Hi);
221
222      Val = DAG.getNode(ISD::BUILD_PAIR, dl, RoundVT, Lo, Hi);
223
224      if (RoundParts < NumParts) {
225        // Assemble the trailing non-power-of-2 part.
226        unsigned OddParts = NumParts - RoundParts;
227        EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
228        Hi = getCopyFromParts(DAG, dl,
229                              Parts + RoundParts, OddParts, PartVT, OddVT);
230
231        // Combine the round and odd parts.
232        Lo = Val;
233        if (TLI.isBigEndian())
234          std::swap(Lo, Hi);
235        EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
236        Hi = DAG.getNode(ISD::ANY_EXTEND, dl, TotalVT, Hi);
237        Hi = DAG.getNode(ISD::SHL, dl, TotalVT, Hi,
238                         DAG.getConstant(Lo.getValueType().getSizeInBits(),
239                                         TLI.getPointerTy()));
240        Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, TotalVT, Lo);
241        Val = DAG.getNode(ISD::OR, dl, TotalVT, Lo, Hi);
242      }
243    } else if (ValueVT.isVector()) {
244      // Handle a multi-element vector.
245      EVT IntermediateVT, RegisterVT;
246      unsigned NumIntermediates;
247      unsigned NumRegs =
248        TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
249                                   NumIntermediates, RegisterVT);
250      assert(NumRegs == NumParts
251             && "Part count doesn't match vector breakdown!");
252      NumParts = NumRegs; // Silence a compiler warning.
253      assert(RegisterVT == PartVT
254             && "Part type doesn't match vector breakdown!");
255      assert(RegisterVT == Parts[0].getValueType() &&
256             "Part type doesn't match part!");
257
258      // Assemble the parts into intermediate operands.
259      SmallVector<SDValue, 8> Ops(NumIntermediates);
260      if (NumIntermediates == NumParts) {
261        // If the register was not expanded, truncate or copy the value,
262        // as appropriate.
263        for (unsigned i = 0; i != NumParts; ++i)
264          Ops[i] = getCopyFromParts(DAG, dl, &Parts[i], 1,
265                                    PartVT, IntermediateVT);
266      } else if (NumParts > 0) {
267        // If the intermediate type was expanded, build the intermediate
268        // operands from the parts.
269        assert(NumParts % NumIntermediates == 0 &&
270               "Must expand into a divisible number of parts!");
271        unsigned Factor = NumParts / NumIntermediates;
272        for (unsigned i = 0; i != NumIntermediates; ++i)
273          Ops[i] = getCopyFromParts(DAG, dl, &Parts[i * Factor], Factor,
274                                    PartVT, IntermediateVT);
275      }
276
277      // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
278      // intermediate operands.
279      Val = DAG.getNode(IntermediateVT.isVector() ?
280                        ISD::CONCAT_VECTORS : ISD::BUILD_VECTOR, dl,
281                        ValueVT, &Ops[0], NumIntermediates);
282    } else if (PartVT.isFloatingPoint()) {
283      // FP split into multiple FP parts (for ppcf128)
284      assert(ValueVT == EVT(MVT::ppcf128) && PartVT == EVT(MVT::f64) &&
285             "Unexpected split");
286      SDValue Lo, Hi;
287      Lo = DAG.getNode(ISD::BIT_CONVERT, dl, EVT(MVT::f64), Parts[0]);
288      Hi = DAG.getNode(ISD::BIT_CONVERT, dl, EVT(MVT::f64), Parts[1]);
289      if (TLI.isBigEndian())
290        std::swap(Lo, Hi);
291      Val = DAG.getNode(ISD::BUILD_PAIR, dl, ValueVT, Lo, Hi);
292    } else {
293      // FP split into integer parts (soft fp)
294      assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
295             !PartVT.isVector() && "Unexpected split");
296      EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
297      Val = getCopyFromParts(DAG, dl, Parts, NumParts, PartVT, IntVT);
298    }
299  }
300
301  // There is now one part, held in Val.  Correct it to match ValueVT.
302  PartVT = Val.getValueType();
303
304  if (PartVT == ValueVT)
305    return Val;
306
307  if (PartVT.isVector()) {
308    assert(ValueVT.isVector() && "Unknown vector conversion!");
309    return DAG.getNode(ISD::BIT_CONVERT, dl, ValueVT, Val);
310  }
311
312  if (ValueVT.isVector()) {
313    assert(ValueVT.getVectorElementType() == PartVT &&
314           ValueVT.getVectorNumElements() == 1 &&
315           "Only trivial scalar-to-vector conversions should get here!");
316    return DAG.getNode(ISD::BUILD_VECTOR, dl, ValueVT, Val);
317  }
318
319  if (PartVT.isInteger() &&
320      ValueVT.isInteger()) {
321    if (ValueVT.bitsLT(PartVT)) {
322      // For a truncate, see if we have any information to
323      // indicate whether the truncated bits will always be
324      // zero or sign-extension.
325      if (AssertOp != ISD::DELETED_NODE)
326        Val = DAG.getNode(AssertOp, dl, PartVT, Val,
327                          DAG.getValueType(ValueVT));
328      return DAG.getNode(ISD::TRUNCATE, dl, ValueVT, Val);
329    } else {
330      return DAG.getNode(ISD::ANY_EXTEND, dl, ValueVT, Val);
331    }
332  }
333
334  if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
335    if (ValueVT.bitsLT(Val.getValueType())) {
336      // FP_ROUND's are always exact here.
337      return DAG.getNode(ISD::FP_ROUND, dl, ValueVT, Val,
338                         DAG.getIntPtrConstant(1));
339    }
340
341    return DAG.getNode(ISD::FP_EXTEND, dl, ValueVT, Val);
342  }
343
344  if (PartVT.getSizeInBits() == ValueVT.getSizeInBits())
345    return DAG.getNode(ISD::BIT_CONVERT, dl, ValueVT, Val);
346
347  llvm_unreachable("Unknown mismatch!");
348  return SDValue();
349}
350
351/// getCopyToParts - Create a series of nodes that contain the specified value
352/// split into legal parts.  If the parts contain more bits than Val, then, for
353/// integers, ExtendKind can be used to specify how to generate the extra bits.
354static void getCopyToParts(SelectionDAG &DAG, DebugLoc dl,
355                           SDValue Val, SDValue *Parts, unsigned NumParts,
356                           EVT PartVT,
357                           ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
358  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
359  EVT PtrVT = TLI.getPointerTy();
360  EVT ValueVT = Val.getValueType();
361  unsigned PartBits = PartVT.getSizeInBits();
362  unsigned OrigNumParts = NumParts;
363  assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!");
364
365  if (!NumParts)
366    return;
367
368  if (!ValueVT.isVector()) {
369    if (PartVT == ValueVT) {
370      assert(NumParts == 1 && "No-op copy with multiple parts!");
371      Parts[0] = Val;
372      return;
373    }
374
375    if (NumParts * PartBits > ValueVT.getSizeInBits()) {
376      // If the parts cover more bits than the value has, promote the value.
377      if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
378        assert(NumParts == 1 && "Do not know what to promote to!");
379        Val = DAG.getNode(ISD::FP_EXTEND, dl, PartVT, Val);
380      } else if (PartVT.isInteger() && ValueVT.isInteger()) {
381        ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
382        Val = DAG.getNode(ExtendKind, dl, ValueVT, Val);
383      } else {
384        llvm_unreachable("Unknown mismatch!");
385      }
386    } else if (PartBits == ValueVT.getSizeInBits()) {
387      // Different types of the same size.
388      assert(NumParts == 1 && PartVT != ValueVT);
389      Val = DAG.getNode(ISD::BIT_CONVERT, dl, PartVT, Val);
390    } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
391      // If the parts cover less bits than value has, truncate the value.
392      if (PartVT.isInteger() && ValueVT.isInteger()) {
393        ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
394        Val = DAG.getNode(ISD::TRUNCATE, dl, ValueVT, Val);
395      } else {
396        llvm_unreachable("Unknown mismatch!");
397      }
398    }
399
400    // The value may have changed - recompute ValueVT.
401    ValueVT = Val.getValueType();
402    assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
403           "Failed to tile the value with PartVT!");
404
405    if (NumParts == 1) {
406      assert(PartVT == ValueVT && "Type conversion failed!");
407      Parts[0] = Val;
408      return;
409    }
410
411    // Expand the value into multiple parts.
412    if (NumParts & (NumParts - 1)) {
413      // The number of parts is not a power of 2.  Split off and copy the tail.
414      assert(PartVT.isInteger() && ValueVT.isInteger() &&
415             "Do not know what to expand to!");
416      unsigned RoundParts = 1 << Log2_32(NumParts);
417      unsigned RoundBits = RoundParts * PartBits;
418      unsigned OddParts = NumParts - RoundParts;
419      SDValue OddVal = DAG.getNode(ISD::SRL, dl, ValueVT, Val,
420                                   DAG.getConstant(RoundBits,
421                                                   TLI.getPointerTy()));
422      getCopyToParts(DAG, dl, OddVal, Parts + RoundParts,
423                     OddParts, PartVT);
424
425      if (TLI.isBigEndian())
426        // The odd parts were reversed by getCopyToParts - unreverse them.
427        std::reverse(Parts + RoundParts, Parts + NumParts);
428
429      NumParts = RoundParts;
430      ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
431      Val = DAG.getNode(ISD::TRUNCATE, dl, ValueVT, Val);
432    }
433
434    // The number of parts is a power of 2.  Repeatedly bisect the value using
435    // EXTRACT_ELEMENT.
436    Parts[0] = DAG.getNode(ISD::BIT_CONVERT, dl,
437                           EVT::getIntegerVT(*DAG.getContext(),
438                                             ValueVT.getSizeInBits()),
439                           Val);
440
441    for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
442      for (unsigned i = 0; i < NumParts; i += StepSize) {
443        unsigned ThisBits = StepSize * PartBits / 2;
444        EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
445        SDValue &Part0 = Parts[i];
446        SDValue &Part1 = Parts[i+StepSize/2];
447
448        Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
449                            ThisVT, Part0,
450                            DAG.getConstant(1, PtrVT));
451        Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
452                            ThisVT, Part0,
453                            DAG.getConstant(0, PtrVT));
454
455        if (ThisBits == PartBits && ThisVT != PartVT) {
456          Part0 = DAG.getNode(ISD::BIT_CONVERT, dl,
457                                                PartVT, Part0);
458          Part1 = DAG.getNode(ISD::BIT_CONVERT, dl,
459                                                PartVT, Part1);
460        }
461      }
462    }
463
464    if (TLI.isBigEndian())
465      std::reverse(Parts, Parts + OrigNumParts);
466
467    return;
468  }
469
470  // Vector ValueVT.
471  if (NumParts == 1) {
472    if (PartVT != ValueVT) {
473      if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
474        Val = DAG.getNode(ISD::BIT_CONVERT, dl, PartVT, Val);
475      } else {
476        assert(ValueVT.getVectorElementType() == PartVT &&
477               ValueVT.getVectorNumElements() == 1 &&
478               "Only trivial vector-to-scalar conversions should get here!");
479        Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
480                          PartVT, Val,
481                          DAG.getConstant(0, PtrVT));
482      }
483    }
484
485    Parts[0] = Val;
486    return;
487  }
488
489  // Handle a multi-element vector.
490  EVT IntermediateVT, RegisterVT;
491  unsigned NumIntermediates;
492  unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT,
493                              IntermediateVT, NumIntermediates, RegisterVT);
494  unsigned NumElements = ValueVT.getVectorNumElements();
495
496  assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
497  NumParts = NumRegs; // Silence a compiler warning.
498  assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
499
500  // Split the vector into intermediate operands.
501  SmallVector<SDValue, 8> Ops(NumIntermediates);
502  for (unsigned i = 0; i != NumIntermediates; ++i) {
503    if (IntermediateVT.isVector())
504      Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl,
505                           IntermediateVT, Val,
506                           DAG.getConstant(i * (NumElements / NumIntermediates),
507                                           PtrVT));
508    else
509      Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
510                           IntermediateVT, Val,
511                           DAG.getConstant(i, PtrVT));
512  }
513
514  // Split the intermediate operands into legal parts.
515  if (NumParts == NumIntermediates) {
516    // If the register was not expanded, promote or copy the value,
517    // as appropriate.
518    for (unsigned i = 0; i != NumParts; ++i)
519      getCopyToParts(DAG, dl, Ops[i], &Parts[i], 1, PartVT);
520  } else if (NumParts > 0) {
521    // If the intermediate type was expanded, split each the value into
522    // legal parts.
523    assert(NumParts % NumIntermediates == 0 &&
524           "Must expand into a divisible number of parts!");
525    unsigned Factor = NumParts / NumIntermediates;
526    for (unsigned i = 0; i != NumIntermediates; ++i)
527      getCopyToParts(DAG, dl, Ops[i], &Parts[i*Factor], Factor, PartVT);
528  }
529}
530
531
532void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa) {
533  AA = &aa;
534  GFI = gfi;
535  TD = DAG.getTarget().getTargetData();
536}
537
538/// clear - Clear out the current SelectionDAG and the associated
539/// state and prepare this SelectionDAGBuilder object to be used
540/// for a new block. This doesn't clear out information about
541/// additional blocks that are needed to complete switch lowering
542/// or PHI node updating; that information is cleared out as it is
543/// consumed.
544void SelectionDAGBuilder::clear() {
545  NodeMap.clear();
546  PendingLoads.clear();
547  PendingExports.clear();
548  CurDebugLoc = DebugLoc();
549  HasTailCall = false;
550}
551
552/// getRoot - Return the current virtual root of the Selection DAG,
553/// flushing any PendingLoad items. This must be done before emitting
554/// a store or any other node that may need to be ordered after any
555/// prior load instructions.
556///
557SDValue SelectionDAGBuilder::getRoot() {
558  if (PendingLoads.empty())
559    return DAG.getRoot();
560
561  if (PendingLoads.size() == 1) {
562    SDValue Root = PendingLoads[0];
563    DAG.setRoot(Root);
564    PendingLoads.clear();
565    return Root;
566  }
567
568  // Otherwise, we have to make a token factor node.
569  SDValue Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
570                               &PendingLoads[0], PendingLoads.size());
571  PendingLoads.clear();
572  DAG.setRoot(Root);
573  return Root;
574}
575
576/// getControlRoot - Similar to getRoot, but instead of flushing all the
577/// PendingLoad items, flush all the PendingExports items. It is necessary
578/// to do this before emitting a terminator instruction.
579///
580SDValue SelectionDAGBuilder::getControlRoot() {
581  SDValue Root = DAG.getRoot();
582
583  if (PendingExports.empty())
584    return Root;
585
586  // Turn all of the CopyToReg chains into one factored node.
587  if (Root.getOpcode() != ISD::EntryToken) {
588    unsigned i = 0, e = PendingExports.size();
589    for (; i != e; ++i) {
590      assert(PendingExports[i].getNode()->getNumOperands() > 1);
591      if (PendingExports[i].getNode()->getOperand(0) == Root)
592        break;  // Don't add the root if we already indirectly depend on it.
593    }
594
595    if (i == e)
596      PendingExports.push_back(Root);
597  }
598
599  Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
600                     &PendingExports[0],
601                     PendingExports.size());
602  PendingExports.clear();
603  DAG.setRoot(Root);
604  return Root;
605}
606
607void SelectionDAGBuilder::AssignOrderingToNode(const SDNode *Node) {
608  if (DAG.GetOrdering(Node) != 0) return; // Already has ordering.
609  DAG.AssignOrdering(Node, SDNodeOrder);
610
611  for (unsigned I = 0, E = Node->getNumOperands(); I != E; ++I)
612    AssignOrderingToNode(Node->getOperand(I).getNode());
613}
614
615void SelectionDAGBuilder::visit(const Instruction &I) {
616  // Set up outgoing PHI node register values before emitting the terminator.
617  if (isa<TerminatorInst>(&I))
618    HandlePHINodesInSuccessorBlocks(I.getParent());
619
620  CurDebugLoc = I.getDebugLoc();
621
622  visit(I.getOpcode(), I);
623
624  if (!isa<TerminatorInst>(&I) && !HasTailCall)
625    CopyToExportRegsIfNeeded(&I);
626
627  CurDebugLoc = DebugLoc();
628}
629
630void SelectionDAGBuilder::visitPHI(const PHINode &) {
631  llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
632}
633
634void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
635  // Note: this doesn't use InstVisitor, because it has to work with
636  // ConstantExpr's in addition to instructions.
637  switch (Opcode) {
638  default: llvm_unreachable("Unknown instruction type encountered!");
639    // Build the switch statement using the Instruction.def file.
640#define HANDLE_INST(NUM, OPCODE, CLASS) \
641    case Instruction::OPCODE: visit##OPCODE((CLASS&)I); break;
642#include "llvm/Instruction.def"
643  }
644
645  // Assign the ordering to the freshly created DAG nodes.
646  if (NodeMap.count(&I)) {
647    ++SDNodeOrder;
648    AssignOrderingToNode(getValue(&I).getNode());
649  }
650}
651
652SDValue SelectionDAGBuilder::getValue(const Value *V) {
653  SDValue &N = NodeMap[V];
654  if (N.getNode()) return N;
655
656  if (const Constant *C = dyn_cast<Constant>(V)) {
657    EVT VT = TLI.getValueType(V->getType(), true);
658
659    if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
660      return N = DAG.getConstant(*CI, VT);
661
662    if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
663      return N = DAG.getGlobalAddress(GV, VT);
664
665    if (isa<ConstantPointerNull>(C))
666      return N = DAG.getConstant(0, TLI.getPointerTy());
667
668    if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
669      return N = DAG.getConstantFP(*CFP, VT);
670
671    if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
672      return N = DAG.getUNDEF(VT);
673
674    if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
675      visit(CE->getOpcode(), *CE);
676      SDValue N1 = NodeMap[V];
677      assert(N1.getNode() && "visit didn't populate the NodeMap!");
678      return N1;
679    }
680
681    if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
682      SmallVector<SDValue, 4> Constants;
683      for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end();
684           OI != OE; ++OI) {
685        SDNode *Val = getValue(*OI).getNode();
686        // If the operand is an empty aggregate, there are no values.
687        if (!Val) continue;
688        // Add each leaf value from the operand to the Constants list
689        // to form a flattened list of all the values.
690        for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
691          Constants.push_back(SDValue(Val, i));
692      }
693
694      return DAG.getMergeValues(&Constants[0], Constants.size(),
695                                getCurDebugLoc());
696    }
697
698    if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
699      assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
700             "Unknown struct or array constant!");
701
702      SmallVector<EVT, 4> ValueVTs;
703      ComputeValueVTs(TLI, C->getType(), ValueVTs);
704      unsigned NumElts = ValueVTs.size();
705      if (NumElts == 0)
706        return SDValue(); // empty struct
707      SmallVector<SDValue, 4> Constants(NumElts);
708      for (unsigned i = 0; i != NumElts; ++i) {
709        EVT EltVT = ValueVTs[i];
710        if (isa<UndefValue>(C))
711          Constants[i] = DAG.getUNDEF(EltVT);
712        else if (EltVT.isFloatingPoint())
713          Constants[i] = DAG.getConstantFP(0, EltVT);
714        else
715          Constants[i] = DAG.getConstant(0, EltVT);
716      }
717
718      return DAG.getMergeValues(&Constants[0], NumElts,
719                                getCurDebugLoc());
720    }
721
722    if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
723      return DAG.getBlockAddress(BA, VT);
724
725    const VectorType *VecTy = cast<VectorType>(V->getType());
726    unsigned NumElements = VecTy->getNumElements();
727
728    // Now that we know the number and type of the elements, get that number of
729    // elements into the Ops array based on what kind of constant it is.
730    SmallVector<SDValue, 16> Ops;
731    if (const ConstantVector *CP = dyn_cast<ConstantVector>(C)) {
732      for (unsigned i = 0; i != NumElements; ++i)
733        Ops.push_back(getValue(CP->getOperand(i)));
734    } else {
735      assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!");
736      EVT EltVT = TLI.getValueType(VecTy->getElementType());
737
738      SDValue Op;
739      if (EltVT.isFloatingPoint())
740        Op = DAG.getConstantFP(0, EltVT);
741      else
742        Op = DAG.getConstant(0, EltVT);
743      Ops.assign(NumElements, Op);
744    }
745
746    // Create a BUILD_VECTOR node.
747    return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(),
748                                    VT, &Ops[0], Ops.size());
749  }
750
751  // If this is a static alloca, generate it as the frameindex instead of
752  // computation.
753  if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
754    DenseMap<const AllocaInst*, int>::iterator SI =
755      FuncInfo.StaticAllocaMap.find(AI);
756    if (SI != FuncInfo.StaticAllocaMap.end())
757      return DAG.getFrameIndex(SI->second, TLI.getPointerTy());
758  }
759
760  unsigned InReg = FuncInfo.ValueMap[V];
761  assert(InReg && "Value not in map!");
762
763  RegsForValue RFV(*DAG.getContext(), TLI, InReg, V->getType());
764  SDValue Chain = DAG.getEntryNode();
765  return RFV.getCopyFromRegs(DAG, getCurDebugLoc(), Chain, NULL);
766}
767
768/// Get the EVTs and ArgFlags collections that represent the legalized return
769/// type of the given function.  This does not require a DAG or a return value,
770/// and is suitable for use before any DAGs for the function are constructed.
771static void getReturnInfo(const Type* ReturnType,
772                   Attributes attr, SmallVectorImpl<EVT> &OutVTs,
773                   SmallVectorImpl<ISD::ArgFlagsTy> &OutFlags,
774                   const TargetLowering &TLI,
775                   SmallVectorImpl<uint64_t> *Offsets = 0) {
776  SmallVector<EVT, 4> ValueVTs;
777  ComputeValueVTs(TLI, ReturnType, ValueVTs);
778  unsigned NumValues = ValueVTs.size();
779  if (NumValues == 0) return;
780  unsigned Offset = 0;
781
782  for (unsigned j = 0, f = NumValues; j != f; ++j) {
783    EVT VT = ValueVTs[j];
784    ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
785
786    if (attr & Attribute::SExt)
787      ExtendKind = ISD::SIGN_EXTEND;
788    else if (attr & Attribute::ZExt)
789      ExtendKind = ISD::ZERO_EXTEND;
790
791    // FIXME: C calling convention requires the return type to be promoted to
792    // at least 32-bit. But this is not necessary for non-C calling
793    // conventions. The frontend should mark functions whose return values
794    // require promoting with signext or zeroext attributes.
795    if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) {
796      EVT MinVT = TLI.getRegisterType(ReturnType->getContext(), MVT::i32);
797      if (VT.bitsLT(MinVT))
798        VT = MinVT;
799    }
800
801    unsigned NumParts = TLI.getNumRegisters(ReturnType->getContext(), VT);
802    EVT PartVT = TLI.getRegisterType(ReturnType->getContext(), VT);
803    unsigned PartSize = TLI.getTargetData()->getTypeAllocSize(
804                        PartVT.getTypeForEVT(ReturnType->getContext()));
805
806    // 'inreg' on function refers to return value
807    ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
808    if (attr & Attribute::InReg)
809      Flags.setInReg();
810
811    // Propagate extension type if any
812    if (attr & Attribute::SExt)
813      Flags.setSExt();
814    else if (attr & Attribute::ZExt)
815      Flags.setZExt();
816
817    for (unsigned i = 0; i < NumParts; ++i) {
818      OutVTs.push_back(PartVT);
819      OutFlags.push_back(Flags);
820      if (Offsets)
821      {
822        Offsets->push_back(Offset);
823        Offset += PartSize;
824      }
825    }
826  }
827}
828
829void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
830  SDValue Chain = getControlRoot();
831  SmallVector<ISD::OutputArg, 8> Outs;
832  FunctionLoweringInfo &FLI = DAG.getFunctionLoweringInfo();
833
834  if (!FLI.CanLowerReturn) {
835    unsigned DemoteReg = FLI.DemoteRegister;
836    const Function *F = I.getParent()->getParent();
837
838    // Emit a store of the return value through the virtual register.
839    // Leave Outs empty so that LowerReturn won't try to load return
840    // registers the usual way.
841    SmallVector<EVT, 1> PtrValueVTs;
842    ComputeValueVTs(TLI, PointerType::getUnqual(F->getReturnType()),
843                    PtrValueVTs);
844
845    SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]);
846    SDValue RetOp = getValue(I.getOperand(0));
847
848    SmallVector<EVT, 4> ValueVTs;
849    SmallVector<uint64_t, 4> Offsets;
850    ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs, &Offsets);
851    unsigned NumValues = ValueVTs.size();
852
853    SmallVector<SDValue, 4> Chains(NumValues);
854    EVT PtrVT = PtrValueVTs[0];
855    for (unsigned i = 0; i != NumValues; ++i) {
856      SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT, RetPtr,
857                                DAG.getConstant(Offsets[i], PtrVT));
858      Chains[i] =
859        DAG.getStore(Chain, getCurDebugLoc(),
860                     SDValue(RetOp.getNode(), RetOp.getResNo() + i),
861                     Add, NULL, Offsets[i], false, false, 0);
862    }
863
864    Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
865                        MVT::Other, &Chains[0], NumValues);
866  } else if (I.getNumOperands() != 0) {
867    SmallVector<EVT, 4> ValueVTs;
868    ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs);
869    unsigned NumValues = ValueVTs.size();
870    if (NumValues) {
871      SDValue RetOp = getValue(I.getOperand(0));
872      for (unsigned j = 0, f = NumValues; j != f; ++j) {
873        EVT VT = ValueVTs[j];
874
875        ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
876
877        const Function *F = I.getParent()->getParent();
878        if (F->paramHasAttr(0, Attribute::SExt))
879          ExtendKind = ISD::SIGN_EXTEND;
880        else if (F->paramHasAttr(0, Attribute::ZExt))
881          ExtendKind = ISD::ZERO_EXTEND;
882
883        // FIXME: C calling convention requires the return type to be promoted
884        // to at least 32-bit. But this is not necessary for non-C calling
885        // conventions. The frontend should mark functions whose return values
886        // require promoting with signext or zeroext attributes.
887        if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) {
888          EVT MinVT = TLI.getRegisterType(*DAG.getContext(), MVT::i32);
889          if (VT.bitsLT(MinVT))
890            VT = MinVT;
891        }
892
893        unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), VT);
894        EVT PartVT = TLI.getRegisterType(*DAG.getContext(), VT);
895        SmallVector<SDValue, 4> Parts(NumParts);
896        getCopyToParts(DAG, getCurDebugLoc(),
897                       SDValue(RetOp.getNode(), RetOp.getResNo() + j),
898                       &Parts[0], NumParts, PartVT, ExtendKind);
899
900        // 'inreg' on function refers to return value
901        ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
902        if (F->paramHasAttr(0, Attribute::InReg))
903          Flags.setInReg();
904
905        // Propagate extension type if any
906        if (F->paramHasAttr(0, Attribute::SExt))
907          Flags.setSExt();
908        else if (F->paramHasAttr(0, Attribute::ZExt))
909          Flags.setZExt();
910
911        for (unsigned i = 0; i < NumParts; ++i)
912          Outs.push_back(ISD::OutputArg(Flags, Parts[i], /*isfixed=*/true));
913      }
914    }
915  }
916
917  bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
918  CallingConv::ID CallConv =
919    DAG.getMachineFunction().getFunction()->getCallingConv();
920  Chain = TLI.LowerReturn(Chain, CallConv, isVarArg,
921                          Outs, getCurDebugLoc(), DAG);
922
923  // Verify that the target's LowerReturn behaved as expected.
924  assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
925         "LowerReturn didn't return a valid chain!");
926
927  // Update the DAG with the new chain value resulting from return lowering.
928  DAG.setRoot(Chain);
929}
930
931/// CopyToExportRegsIfNeeded - If the given value has virtual registers
932/// created for it, emit nodes to copy the value into the virtual
933/// registers.
934void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
935  DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
936  if (VMI != FuncInfo.ValueMap.end()) {
937    assert(!V->use_empty() && "Unused value assigned virtual registers!");
938    CopyValueToVirtualRegister(V, VMI->second);
939  }
940}
941
942/// ExportFromCurrentBlock - If this condition isn't known to be exported from
943/// the current basic block, add it to ValueMap now so that we'll get a
944/// CopyTo/FromReg.
945void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
946  // No need to export constants.
947  if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
948
949  // Already exported?
950  if (FuncInfo.isExportedInst(V)) return;
951
952  unsigned Reg = FuncInfo.InitializeRegForValue(V);
953  CopyValueToVirtualRegister(V, Reg);
954}
955
956bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
957                                                     const BasicBlock *FromBB) {
958  // The operands of the setcc have to be in this block.  We don't know
959  // how to export them from some other block.
960  if (const Instruction *VI = dyn_cast<Instruction>(V)) {
961    // Can export from current BB.
962    if (VI->getParent() == FromBB)
963      return true;
964
965    // Is already exported, noop.
966    return FuncInfo.isExportedInst(V);
967  }
968
969  // If this is an argument, we can export it if the BB is the entry block or
970  // if it is already exported.
971  if (isa<Argument>(V)) {
972    if (FromBB == &FromBB->getParent()->getEntryBlock())
973      return true;
974
975    // Otherwise, can only export this if it is already exported.
976    return FuncInfo.isExportedInst(V);
977  }
978
979  // Otherwise, constants can always be exported.
980  return true;
981}
982
983static bool InBlock(const Value *V, const BasicBlock *BB) {
984  if (const Instruction *I = dyn_cast<Instruction>(V))
985    return I->getParent() == BB;
986  return true;
987}
988
989/// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
990/// This function emits a branch and is used at the leaves of an OR or an
991/// AND operator tree.
992///
993void
994SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
995                                                  MachineBasicBlock *TBB,
996                                                  MachineBasicBlock *FBB,
997                                                  MachineBasicBlock *CurBB,
998                                                  MachineBasicBlock *SwitchBB) {
999  const BasicBlock *BB = CurBB->getBasicBlock();
1000
1001  // If the leaf of the tree is a comparison, merge the condition into
1002  // the caseblock.
1003  if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
1004    // The operands of the cmp have to be in this block.  We don't know
1005    // how to export them from some other block.  If this is the first block
1006    // of the sequence, no exporting is needed.
1007    if (CurBB == SwitchBB ||
1008        (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
1009         isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
1010      ISD::CondCode Condition;
1011      if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
1012        Condition = getICmpCondCode(IC->getPredicate());
1013      } else if (const FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) {
1014        Condition = getFCmpCondCode(FC->getPredicate());
1015      } else {
1016        Condition = ISD::SETEQ; // silence warning.
1017        llvm_unreachable("Unknown compare instruction");
1018      }
1019
1020      CaseBlock CB(Condition, BOp->getOperand(0),
1021                   BOp->getOperand(1), NULL, TBB, FBB, CurBB);
1022      SwitchCases.push_back(CB);
1023      return;
1024    }
1025  }
1026
1027  // Create a CaseBlock record representing this branch.
1028  CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()),
1029               NULL, TBB, FBB, CurBB);
1030  SwitchCases.push_back(CB);
1031}
1032
1033/// FindMergedConditions - If Cond is an expression like
1034void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
1035                                               MachineBasicBlock *TBB,
1036                                               MachineBasicBlock *FBB,
1037                                               MachineBasicBlock *CurBB,
1038                                               MachineBasicBlock *SwitchBB,
1039                                               unsigned Opc) {
1040  // If this node is not part of the or/and tree, emit it as a branch.
1041  const Instruction *BOp = dyn_cast<Instruction>(Cond);
1042  if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
1043      (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() ||
1044      BOp->getParent() != CurBB->getBasicBlock() ||
1045      !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
1046      !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
1047    EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB);
1048    return;
1049  }
1050
1051  //  Create TmpBB after CurBB.
1052  MachineFunction::iterator BBI = CurBB;
1053  MachineFunction &MF = DAG.getMachineFunction();
1054  MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
1055  CurBB->getParent()->insert(++BBI, TmpBB);
1056
1057  if (Opc == Instruction::Or) {
1058    // Codegen X | Y as:
1059    //   jmp_if_X TBB
1060    //   jmp TmpBB
1061    // TmpBB:
1062    //   jmp_if_Y TBB
1063    //   jmp FBB
1064    //
1065
1066    // Emit the LHS condition.
1067    FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc);
1068
1069    // Emit the RHS condition into TmpBB.
1070    FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc);
1071  } else {
1072    assert(Opc == Instruction::And && "Unknown merge op!");
1073    // Codegen X & Y as:
1074    //   jmp_if_X TmpBB
1075    //   jmp FBB
1076    // TmpBB:
1077    //   jmp_if_Y TBB
1078    //   jmp FBB
1079    //
1080    //  This requires creation of TmpBB after CurBB.
1081
1082    // Emit the LHS condition.
1083    FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc);
1084
1085    // Emit the RHS condition into TmpBB.
1086    FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc);
1087  }
1088}
1089
1090/// If the set of cases should be emitted as a series of branches, return true.
1091/// If we should emit this as a bunch of and/or'd together conditions, return
1092/// false.
1093bool
1094SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases){
1095  if (Cases.size() != 2) return true;
1096
1097  // If this is two comparisons of the same values or'd or and'd together, they
1098  // will get folded into a single comparison, so don't emit two blocks.
1099  if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
1100       Cases[0].CmpRHS == Cases[1].CmpRHS) ||
1101      (Cases[0].CmpRHS == Cases[1].CmpLHS &&
1102       Cases[0].CmpLHS == Cases[1].CmpRHS)) {
1103    return false;
1104  }
1105
1106  // Handle: (X != null) | (Y != null) --> (X|Y) != 0
1107  // Handle: (X == null) & (Y == null) --> (X|Y) == 0
1108  if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
1109      Cases[0].CC == Cases[1].CC &&
1110      isa<Constant>(Cases[0].CmpRHS) &&
1111      cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
1112    if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
1113      return false;
1114    if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
1115      return false;
1116  }
1117
1118  return true;
1119}
1120
1121void SelectionDAGBuilder::visitBr(const BranchInst &I) {
1122  MachineBasicBlock *BrMBB = FuncInfo.MBBMap[I.getParent()];
1123
1124  // Update machine-CFG edges.
1125  MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
1126
1127  // Figure out which block is immediately after the current one.
1128  MachineBasicBlock *NextBlock = 0;
1129  MachineFunction::iterator BBI = BrMBB;
1130  if (++BBI != FuncInfo.MF->end())
1131    NextBlock = BBI;
1132
1133  if (I.isUnconditional()) {
1134    // Update machine-CFG edges.
1135    BrMBB->addSuccessor(Succ0MBB);
1136
1137    // If this is not a fall-through branch, emit the branch.
1138    if (Succ0MBB != NextBlock)
1139      DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
1140                              MVT::Other, getControlRoot(),
1141                              DAG.getBasicBlock(Succ0MBB)));
1142
1143    return;
1144  }
1145
1146  // If this condition is one of the special cases we handle, do special stuff
1147  // now.
1148  const Value *CondVal = I.getCondition();
1149  MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
1150
1151  // If this is a series of conditions that are or'd or and'd together, emit
1152  // this as a sequence of branches instead of setcc's with and/or operations.
1153  // For example, instead of something like:
1154  //     cmp A, B
1155  //     C = seteq
1156  //     cmp D, E
1157  //     F = setle
1158  //     or C, F
1159  //     jnz foo
1160  // Emit:
1161  //     cmp A, B
1162  //     je foo
1163  //     cmp D, E
1164  //     jle foo
1165  //
1166  if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
1167    if (BOp->hasOneUse() &&
1168        (BOp->getOpcode() == Instruction::And ||
1169         BOp->getOpcode() == Instruction::Or)) {
1170      FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB,
1171                           BOp->getOpcode());
1172      // If the compares in later blocks need to use values not currently
1173      // exported from this block, export them now.  This block should always
1174      // be the first entry.
1175      assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
1176
1177      // Allow some cases to be rejected.
1178      if (ShouldEmitAsBranches(SwitchCases)) {
1179        for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
1180          ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
1181          ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
1182        }
1183
1184        // Emit the branch for this block.
1185        visitSwitchCase(SwitchCases[0], BrMBB);
1186        SwitchCases.erase(SwitchCases.begin());
1187        return;
1188      }
1189
1190      // Okay, we decided not to do this, remove any inserted MBB's and clear
1191      // SwitchCases.
1192      for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
1193        FuncInfo.MF->erase(SwitchCases[i].ThisBB);
1194
1195      SwitchCases.clear();
1196    }
1197  }
1198
1199  // Create a CaseBlock record representing this branch.
1200  CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
1201               NULL, Succ0MBB, Succ1MBB, BrMBB);
1202
1203  // Use visitSwitchCase to actually insert the fast branch sequence for this
1204  // cond branch.
1205  visitSwitchCase(CB, BrMBB);
1206}
1207
1208/// visitSwitchCase - Emits the necessary code to represent a single node in
1209/// the binary search tree resulting from lowering a switch instruction.
1210void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
1211                                          MachineBasicBlock *SwitchBB) {
1212  SDValue Cond;
1213  SDValue CondLHS = getValue(CB.CmpLHS);
1214  DebugLoc dl = getCurDebugLoc();
1215
1216  // Build the setcc now.
1217  if (CB.CmpMHS == NULL) {
1218    // Fold "(X == true)" to X and "(X == false)" to !X to
1219    // handle common cases produced by branch lowering.
1220    if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
1221        CB.CC == ISD::SETEQ)
1222      Cond = CondLHS;
1223    else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
1224             CB.CC == ISD::SETEQ) {
1225      SDValue True = DAG.getConstant(1, CondLHS.getValueType());
1226      Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
1227    } else
1228      Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
1229  } else {
1230    assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
1231
1232    const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
1233    const APInt& High  = cast<ConstantInt>(CB.CmpRHS)->getValue();
1234
1235    SDValue CmpOp = getValue(CB.CmpMHS);
1236    EVT VT = CmpOp.getValueType();
1237
1238    if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
1239      Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, VT),
1240                          ISD::SETLE);
1241    } else {
1242      SDValue SUB = DAG.getNode(ISD::SUB, dl,
1243                                VT, CmpOp, DAG.getConstant(Low, VT));
1244      Cond = DAG.getSetCC(dl, MVT::i1, SUB,
1245                          DAG.getConstant(High-Low, VT), ISD::SETULE);
1246    }
1247  }
1248
1249  // Update successor info
1250  SwitchBB->addSuccessor(CB.TrueBB);
1251  SwitchBB->addSuccessor(CB.FalseBB);
1252
1253  // Set NextBlock to be the MBB immediately after the current one, if any.
1254  // This is used to avoid emitting unnecessary branches to the next block.
1255  MachineBasicBlock *NextBlock = 0;
1256  MachineFunction::iterator BBI = SwitchBB;
1257  if (++BBI != FuncInfo.MF->end())
1258    NextBlock = BBI;
1259
1260  // If the lhs block is the next block, invert the condition so that we can
1261  // fall through to the lhs instead of the rhs block.
1262  if (CB.TrueBB == NextBlock) {
1263    std::swap(CB.TrueBB, CB.FalseBB);
1264    SDValue True = DAG.getConstant(1, Cond.getValueType());
1265    Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
1266  }
1267
1268  SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
1269                               MVT::Other, getControlRoot(), Cond,
1270                               DAG.getBasicBlock(CB.TrueBB));
1271
1272  // If the branch was constant folded, fix up the CFG.
1273  if (BrCond.getOpcode() == ISD::BR) {
1274    SwitchBB->removeSuccessor(CB.FalseBB);
1275  } else {
1276    // Otherwise, go ahead and insert the false branch.
1277    if (BrCond == getControlRoot())
1278      SwitchBB->removeSuccessor(CB.TrueBB);
1279
1280    if (CB.FalseBB != NextBlock)
1281      BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
1282                           DAG.getBasicBlock(CB.FalseBB));
1283  }
1284
1285  DAG.setRoot(BrCond);
1286}
1287
1288/// visitJumpTable - Emit JumpTable node in the current MBB
1289void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) {
1290  // Emit the code for the jump table
1291  assert(JT.Reg != -1U && "Should lower JT Header first!");
1292  EVT PTy = TLI.getPointerTy();
1293  SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(),
1294                                     JT.Reg, PTy);
1295  SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
1296  SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurDebugLoc(),
1297                                    MVT::Other, Index.getValue(1),
1298                                    Table, Index);
1299  DAG.setRoot(BrJumpTable);
1300}
1301
1302/// visitJumpTableHeader - This function emits necessary code to produce index
1303/// in the JumpTable from switch case.
1304void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT,
1305                                               JumpTableHeader &JTH,
1306                                               MachineBasicBlock *SwitchBB) {
1307  // Subtract the lowest switch case value from the value being switched on and
1308  // conditional branch to default mbb if the result is greater than the
1309  // difference between smallest and largest cases.
1310  SDValue SwitchOp = getValue(JTH.SValue);
1311  EVT VT = SwitchOp.getValueType();
1312  SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp,
1313                            DAG.getConstant(JTH.First, VT));
1314
1315  // The SDNode we just created, which holds the value being switched on minus
1316  // the smallest case value, needs to be copied to a virtual register so it
1317  // can be used as an index into the jump table in a subsequent basic block.
1318  // This value may be smaller or larger than the target's pointer type, and
1319  // therefore require extension or truncating.
1320  SwitchOp = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(), TLI.getPointerTy());
1321
1322  unsigned JumpTableReg = FuncInfo.MakeReg(TLI.getPointerTy());
1323  SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(),
1324                                    JumpTableReg, SwitchOp);
1325  JT.Reg = JumpTableReg;
1326
1327  // Emit the range check for the jump table, and branch to the default block
1328  // for the switch statement if the value being switched on exceeds the largest
1329  // case in the switch.
1330  SDValue CMP = DAG.getSetCC(getCurDebugLoc(),
1331                             TLI.getSetCCResultType(Sub.getValueType()), Sub,
1332                             DAG.getConstant(JTH.Last-JTH.First,VT),
1333                             ISD::SETUGT);
1334
1335  // Set NextBlock to be the MBB immediately after the current one, if any.
1336  // This is used to avoid emitting unnecessary branches to the next block.
1337  MachineBasicBlock *NextBlock = 0;
1338  MachineFunction::iterator BBI = SwitchBB;
1339
1340  if (++BBI != FuncInfo.MF->end())
1341    NextBlock = BBI;
1342
1343  SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1344                               MVT::Other, CopyTo, CMP,
1345                               DAG.getBasicBlock(JT.Default));
1346
1347  if (JT.MBB != NextBlock)
1348    BrCond = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrCond,
1349                         DAG.getBasicBlock(JT.MBB));
1350
1351  DAG.setRoot(BrCond);
1352}
1353
1354/// visitBitTestHeader - This function emits necessary code to produce value
1355/// suitable for "bit tests"
1356void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
1357                                             MachineBasicBlock *SwitchBB) {
1358  // Subtract the minimum value
1359  SDValue SwitchOp = getValue(B.SValue);
1360  EVT VT = SwitchOp.getValueType();
1361  SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp,
1362                            DAG.getConstant(B.First, VT));
1363
1364  // Check range
1365  SDValue RangeCmp = DAG.getSetCC(getCurDebugLoc(),
1366                                  TLI.getSetCCResultType(Sub.getValueType()),
1367                                  Sub, DAG.getConstant(B.Range, VT),
1368                                  ISD::SETUGT);
1369
1370  SDValue ShiftOp = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(),
1371                                       TLI.getPointerTy());
1372
1373  B.Reg = FuncInfo.MakeReg(TLI.getPointerTy());
1374  SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(),
1375                                    B.Reg, ShiftOp);
1376
1377  // Set NextBlock to be the MBB immediately after the current one, if any.
1378  // This is used to avoid emitting unnecessary branches to the next block.
1379  MachineBasicBlock *NextBlock = 0;
1380  MachineFunction::iterator BBI = SwitchBB;
1381  if (++BBI != FuncInfo.MF->end())
1382    NextBlock = BBI;
1383
1384  MachineBasicBlock* MBB = B.Cases[0].ThisBB;
1385
1386  SwitchBB->addSuccessor(B.Default);
1387  SwitchBB->addSuccessor(MBB);
1388
1389  SDValue BrRange = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1390                                MVT::Other, CopyTo, RangeCmp,
1391                                DAG.getBasicBlock(B.Default));
1392
1393  if (MBB != NextBlock)
1394    BrRange = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, CopyTo,
1395                          DAG.getBasicBlock(MBB));
1396
1397  DAG.setRoot(BrRange);
1398}
1399
1400/// visitBitTestCase - this function produces one "bit test"
1401void SelectionDAGBuilder::visitBitTestCase(MachineBasicBlock* NextMBB,
1402                                           unsigned Reg,
1403                                           BitTestCase &B,
1404                                           MachineBasicBlock *SwitchBB) {
1405  // Make desired shift
1406  SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(), Reg,
1407                                       TLI.getPointerTy());
1408  SDValue SwitchVal = DAG.getNode(ISD::SHL, getCurDebugLoc(),
1409                                  TLI.getPointerTy(),
1410                                  DAG.getConstant(1, TLI.getPointerTy()),
1411                                  ShiftOp);
1412
1413  // Emit bit tests and jumps
1414  SDValue AndOp = DAG.getNode(ISD::AND, getCurDebugLoc(),
1415                              TLI.getPointerTy(), SwitchVal,
1416                              DAG.getConstant(B.Mask, TLI.getPointerTy()));
1417  SDValue AndCmp = DAG.getSetCC(getCurDebugLoc(),
1418                                TLI.getSetCCResultType(AndOp.getValueType()),
1419                                AndOp, DAG.getConstant(0, TLI.getPointerTy()),
1420                                ISD::SETNE);
1421
1422  SwitchBB->addSuccessor(B.TargetBB);
1423  SwitchBB->addSuccessor(NextMBB);
1424
1425  SDValue BrAnd = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1426                              MVT::Other, getControlRoot(),
1427                              AndCmp, DAG.getBasicBlock(B.TargetBB));
1428
1429  // Set NextBlock to be the MBB immediately after the current one, if any.
1430  // This is used to avoid emitting unnecessary branches to the next block.
1431  MachineBasicBlock *NextBlock = 0;
1432  MachineFunction::iterator BBI = SwitchBB;
1433  if (++BBI != FuncInfo.MF->end())
1434    NextBlock = BBI;
1435
1436  if (NextMBB != NextBlock)
1437    BrAnd = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrAnd,
1438                        DAG.getBasicBlock(NextMBB));
1439
1440  DAG.setRoot(BrAnd);
1441}
1442
1443void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
1444  MachineBasicBlock *InvokeMBB = FuncInfo.MBBMap[I.getParent()];
1445
1446  // Retrieve successors.
1447  MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
1448  MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)];
1449
1450  const Value *Callee(I.getCalledValue());
1451  if (isa<InlineAsm>(Callee))
1452    visitInlineAsm(&I);
1453  else
1454    LowerCallTo(&I, getValue(Callee), false, LandingPad);
1455
1456  // If the value of the invoke is used outside of its defining block, make it
1457  // available as a virtual register.
1458  CopyToExportRegsIfNeeded(&I);
1459
1460  // Update successor info
1461  InvokeMBB->addSuccessor(Return);
1462  InvokeMBB->addSuccessor(LandingPad);
1463
1464  // Drop into normal successor.
1465  DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
1466                          MVT::Other, getControlRoot(),
1467                          DAG.getBasicBlock(Return)));
1468}
1469
1470void SelectionDAGBuilder::visitUnwind(const UnwindInst &I) {
1471}
1472
1473/// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for
1474/// small case ranges).
1475bool SelectionDAGBuilder::handleSmallSwitchRange(CaseRec& CR,
1476                                                 CaseRecVector& WorkList,
1477                                                 const Value* SV,
1478                                                 MachineBasicBlock *Default,
1479                                                 MachineBasicBlock *SwitchBB) {
1480  Case& BackCase  = *(CR.Range.second-1);
1481
1482  // Size is the number of Cases represented by this range.
1483  size_t Size = CR.Range.second - CR.Range.first;
1484  if (Size > 3)
1485    return false;
1486
1487  // Get the MachineFunction which holds the current MBB.  This is used when
1488  // inserting any additional MBBs necessary to represent the switch.
1489  MachineFunction *CurMF = FuncInfo.MF;
1490
1491  // Figure out which block is immediately after the current one.
1492  MachineBasicBlock *NextBlock = 0;
1493  MachineFunction::iterator BBI = CR.CaseBB;
1494
1495  if (++BBI != FuncInfo.MF->end())
1496    NextBlock = BBI;
1497
1498  // TODO: If any two of the cases has the same destination, and if one value
1499  // is the same as the other, but has one bit unset that the other has set,
1500  // use bit manipulation to do two compares at once.  For example:
1501  // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
1502
1503  // Rearrange the case blocks so that the last one falls through if possible.
1504  if (NextBlock && Default != NextBlock && BackCase.BB != NextBlock) {
1505    // The last case block won't fall through into 'NextBlock' if we emit the
1506    // branches in this order.  See if rearranging a case value would help.
1507    for (CaseItr I = CR.Range.first, E = CR.Range.second-1; I != E; ++I) {
1508      if (I->BB == NextBlock) {
1509        std::swap(*I, BackCase);
1510        break;
1511      }
1512    }
1513  }
1514
1515  // Create a CaseBlock record representing a conditional branch to
1516  // the Case's target mbb if the value being switched on SV is equal
1517  // to C.
1518  MachineBasicBlock *CurBlock = CR.CaseBB;
1519  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) {
1520    MachineBasicBlock *FallThrough;
1521    if (I != E-1) {
1522      FallThrough = CurMF->CreateMachineBasicBlock(CurBlock->getBasicBlock());
1523      CurMF->insert(BBI, FallThrough);
1524
1525      // Put SV in a virtual register to make it available from the new blocks.
1526      ExportFromCurrentBlock(SV);
1527    } else {
1528      // If the last case doesn't match, go to the default block.
1529      FallThrough = Default;
1530    }
1531
1532    const Value *RHS, *LHS, *MHS;
1533    ISD::CondCode CC;
1534    if (I->High == I->Low) {
1535      // This is just small small case range :) containing exactly 1 case
1536      CC = ISD::SETEQ;
1537      LHS = SV; RHS = I->High; MHS = NULL;
1538    } else {
1539      CC = ISD::SETLE;
1540      LHS = I->Low; MHS = SV; RHS = I->High;
1541    }
1542    CaseBlock CB(CC, LHS, RHS, MHS, I->BB, FallThrough, CurBlock);
1543
1544    // If emitting the first comparison, just call visitSwitchCase to emit the
1545    // code into the current block.  Otherwise, push the CaseBlock onto the
1546    // vector to be later processed by SDISel, and insert the node's MBB
1547    // before the next MBB.
1548    if (CurBlock == SwitchBB)
1549      visitSwitchCase(CB, SwitchBB);
1550    else
1551      SwitchCases.push_back(CB);
1552
1553    CurBlock = FallThrough;
1554  }
1555
1556  return true;
1557}
1558
1559static inline bool areJTsAllowed(const TargetLowering &TLI) {
1560  return !DisableJumpTables &&
1561          (TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) ||
1562           TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other));
1563}
1564
1565static APInt ComputeRange(const APInt &First, const APInt &Last) {
1566  APInt LastExt(Last), FirstExt(First);
1567  uint32_t BitWidth = std::max(Last.getBitWidth(), First.getBitWidth()) + 1;
1568  LastExt.sext(BitWidth); FirstExt.sext(BitWidth);
1569  return (LastExt - FirstExt + 1ULL);
1570}
1571
1572/// handleJTSwitchCase - Emit jumptable for current switch case range
1573bool SelectionDAGBuilder::handleJTSwitchCase(CaseRec& CR,
1574                                             CaseRecVector& WorkList,
1575                                             const Value* SV,
1576                                             MachineBasicBlock* Default,
1577                                             MachineBasicBlock *SwitchBB) {
1578  Case& FrontCase = *CR.Range.first;
1579  Case& BackCase  = *(CR.Range.second-1);
1580
1581  const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue();
1582  const APInt &Last  = cast<ConstantInt>(BackCase.High)->getValue();
1583
1584  APInt TSize(First.getBitWidth(), 0);
1585  for (CaseItr I = CR.Range.first, E = CR.Range.second;
1586       I!=E; ++I)
1587    TSize += I->size();
1588
1589  if (!areJTsAllowed(TLI) || TSize.ult(4))
1590    return false;
1591
1592  APInt Range = ComputeRange(First, Last);
1593  double Density = TSize.roundToDouble() / Range.roundToDouble();
1594  if (Density < 0.4)
1595    return false;
1596
1597  DEBUG(dbgs() << "Lowering jump table\n"
1598               << "First entry: " << First << ". Last entry: " << Last << '\n'
1599               << "Range: " << Range
1600               << "Size: " << TSize << ". Density: " << Density << "\n\n");
1601
1602  // Get the MachineFunction which holds the current MBB.  This is used when
1603  // inserting any additional MBBs necessary to represent the switch.
1604  MachineFunction *CurMF = FuncInfo.MF;
1605
1606  // Figure out which block is immediately after the current one.
1607  MachineFunction::iterator BBI = CR.CaseBB;
1608  ++BBI;
1609
1610  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
1611
1612  // Create a new basic block to hold the code for loading the address
1613  // of the jump table, and jumping to it.  Update successor information;
1614  // we will either branch to the default case for the switch, or the jump
1615  // table.
1616  MachineBasicBlock *JumpTableBB = CurMF->CreateMachineBasicBlock(LLVMBB);
1617  CurMF->insert(BBI, JumpTableBB);
1618  CR.CaseBB->addSuccessor(Default);
1619  CR.CaseBB->addSuccessor(JumpTableBB);
1620
1621  // Build a vector of destination BBs, corresponding to each target
1622  // of the jump table. If the value of the jump table slot corresponds to
1623  // a case statement, push the case's BB onto the vector, otherwise, push
1624  // the default BB.
1625  std::vector<MachineBasicBlock*> DestBBs;
1626  APInt TEI = First;
1627  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) {
1628    const APInt &Low = cast<ConstantInt>(I->Low)->getValue();
1629    const APInt &High = cast<ConstantInt>(I->High)->getValue();
1630
1631    if (Low.sle(TEI) && TEI.sle(High)) {
1632      DestBBs.push_back(I->BB);
1633      if (TEI==High)
1634        ++I;
1635    } else {
1636      DestBBs.push_back(Default);
1637    }
1638  }
1639
1640  // Update successor info. Add one edge to each unique successor.
1641  BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs());
1642  for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(),
1643         E = DestBBs.end(); I != E; ++I) {
1644    if (!SuccsHandled[(*I)->getNumber()]) {
1645      SuccsHandled[(*I)->getNumber()] = true;
1646      JumpTableBB->addSuccessor(*I);
1647    }
1648  }
1649
1650  // Create a jump table index for this jump table.
1651  unsigned JTEncoding = TLI.getJumpTableEncoding();
1652  unsigned JTI = CurMF->getOrCreateJumpTableInfo(JTEncoding)
1653                       ->createJumpTableIndex(DestBBs);
1654
1655  // Set the jump table information so that we can codegen it as a second
1656  // MachineBasicBlock
1657  JumpTable JT(-1U, JTI, JumpTableBB, Default);
1658  JumpTableHeader JTH(First, Last, SV, CR.CaseBB, (CR.CaseBB == SwitchBB));
1659  if (CR.CaseBB == SwitchBB)
1660    visitJumpTableHeader(JT, JTH, SwitchBB);
1661
1662  JTCases.push_back(JumpTableBlock(JTH, JT));
1663
1664  return true;
1665}
1666
1667/// handleBTSplitSwitchCase - emit comparison and split binary search tree into
1668/// 2 subtrees.
1669bool SelectionDAGBuilder::handleBTSplitSwitchCase(CaseRec& CR,
1670                                                  CaseRecVector& WorkList,
1671                                                  const Value* SV,
1672                                                  MachineBasicBlock *Default,
1673                                                  MachineBasicBlock *SwitchBB) {
1674  // Get the MachineFunction which holds the current MBB.  This is used when
1675  // inserting any additional MBBs necessary to represent the switch.
1676  MachineFunction *CurMF = FuncInfo.MF;
1677
1678  // Figure out which block is immediately after the current one.
1679  MachineFunction::iterator BBI = CR.CaseBB;
1680  ++BBI;
1681
1682  Case& FrontCase = *CR.Range.first;
1683  Case& BackCase  = *(CR.Range.second-1);
1684  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
1685
1686  // Size is the number of Cases represented by this range.
1687  unsigned Size = CR.Range.second - CR.Range.first;
1688
1689  const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue();
1690  const APInt &Last  = cast<ConstantInt>(BackCase.High)->getValue();
1691  double FMetric = 0;
1692  CaseItr Pivot = CR.Range.first + Size/2;
1693
1694  // Select optimal pivot, maximizing sum density of LHS and RHS. This will
1695  // (heuristically) allow us to emit JumpTable's later.
1696  APInt TSize(First.getBitWidth(), 0);
1697  for (CaseItr I = CR.Range.first, E = CR.Range.second;
1698       I!=E; ++I)
1699    TSize += I->size();
1700
1701  APInt LSize = FrontCase.size();
1702  APInt RSize = TSize-LSize;
1703  DEBUG(dbgs() << "Selecting best pivot: \n"
1704               << "First: " << First << ", Last: " << Last <<'\n'
1705               << "LSize: " << LSize << ", RSize: " << RSize << '\n');
1706  for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second;
1707       J!=E; ++I, ++J) {
1708    const APInt &LEnd = cast<ConstantInt>(I->High)->getValue();
1709    const APInt &RBegin = cast<ConstantInt>(J->Low)->getValue();
1710    APInt Range = ComputeRange(LEnd, RBegin);
1711    assert((Range - 2ULL).isNonNegative() &&
1712           "Invalid case distance");
1713    double LDensity = (double)LSize.roundToDouble() /
1714                           (LEnd - First + 1ULL).roundToDouble();
1715    double RDensity = (double)RSize.roundToDouble() /
1716                           (Last - RBegin + 1ULL).roundToDouble();
1717    double Metric = Range.logBase2()*(LDensity+RDensity);
1718    // Should always split in some non-trivial place
1719    DEBUG(dbgs() <<"=>Step\n"
1720                 << "LEnd: " << LEnd << ", RBegin: " << RBegin << '\n'
1721                 << "LDensity: " << LDensity
1722                 << ", RDensity: " << RDensity << '\n'
1723                 << "Metric: " << Metric << '\n');
1724    if (FMetric < Metric) {
1725      Pivot = J;
1726      FMetric = Metric;
1727      DEBUG(dbgs() << "Current metric set to: " << FMetric << '\n');
1728    }
1729
1730    LSize += J->size();
1731    RSize -= J->size();
1732  }
1733  if (areJTsAllowed(TLI)) {
1734    // If our case is dense we *really* should handle it earlier!
1735    assert((FMetric > 0) && "Should handle dense range earlier!");
1736  } else {
1737    Pivot = CR.Range.first + Size/2;
1738  }
1739
1740  CaseRange LHSR(CR.Range.first, Pivot);
1741  CaseRange RHSR(Pivot, CR.Range.second);
1742  Constant *C = Pivot->Low;
1743  MachineBasicBlock *FalseBB = 0, *TrueBB = 0;
1744
1745  // We know that we branch to the LHS if the Value being switched on is
1746  // less than the Pivot value, C.  We use this to optimize our binary
1747  // tree a bit, by recognizing that if SV is greater than or equal to the
1748  // LHS's Case Value, and that Case Value is exactly one less than the
1749  // Pivot's Value, then we can branch directly to the LHS's Target,
1750  // rather than creating a leaf node for it.
1751  if ((LHSR.second - LHSR.first) == 1 &&
1752      LHSR.first->High == CR.GE &&
1753      cast<ConstantInt>(C)->getValue() ==
1754      (cast<ConstantInt>(CR.GE)->getValue() + 1LL)) {
1755    TrueBB = LHSR.first->BB;
1756  } else {
1757    TrueBB = CurMF->CreateMachineBasicBlock(LLVMBB);
1758    CurMF->insert(BBI, TrueBB);
1759    WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR));
1760
1761    // Put SV in a virtual register to make it available from the new blocks.
1762    ExportFromCurrentBlock(SV);
1763  }
1764
1765  // Similar to the optimization above, if the Value being switched on is
1766  // known to be less than the Constant CR.LT, and the current Case Value
1767  // is CR.LT - 1, then we can branch directly to the target block for
1768  // the current Case Value, rather than emitting a RHS leaf node for it.
1769  if ((RHSR.second - RHSR.first) == 1 && CR.LT &&
1770      cast<ConstantInt>(RHSR.first->Low)->getValue() ==
1771      (cast<ConstantInt>(CR.LT)->getValue() - 1LL)) {
1772    FalseBB = RHSR.first->BB;
1773  } else {
1774    FalseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
1775    CurMF->insert(BBI, FalseBB);
1776    WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR));
1777
1778    // Put SV in a virtual register to make it available from the new blocks.
1779    ExportFromCurrentBlock(SV);
1780  }
1781
1782  // Create a CaseBlock record representing a conditional branch to
1783  // the LHS node if the value being switched on SV is less than C.
1784  // Otherwise, branch to LHS.
1785  CaseBlock CB(ISD::SETLT, SV, C, NULL, TrueBB, FalseBB, CR.CaseBB);
1786
1787  if (CR.CaseBB == SwitchBB)
1788    visitSwitchCase(CB, SwitchBB);
1789  else
1790    SwitchCases.push_back(CB);
1791
1792  return true;
1793}
1794
1795/// handleBitTestsSwitchCase - if current case range has few destination and
1796/// range span less, than machine word bitwidth, encode case range into series
1797/// of masks and emit bit tests with these masks.
1798bool SelectionDAGBuilder::handleBitTestsSwitchCase(CaseRec& CR,
1799                                                   CaseRecVector& WorkList,
1800                                                   const Value* SV,
1801                                                   MachineBasicBlock* Default,
1802                                                   MachineBasicBlock *SwitchBB){
1803  EVT PTy = TLI.getPointerTy();
1804  unsigned IntPtrBits = PTy.getSizeInBits();
1805
1806  Case& FrontCase = *CR.Range.first;
1807  Case& BackCase  = *(CR.Range.second-1);
1808
1809  // Get the MachineFunction which holds the current MBB.  This is used when
1810  // inserting any additional MBBs necessary to represent the switch.
1811  MachineFunction *CurMF = FuncInfo.MF;
1812
1813  // If target does not have legal shift left, do not emit bit tests at all.
1814  if (!TLI.isOperationLegal(ISD::SHL, TLI.getPointerTy()))
1815    return false;
1816
1817  size_t numCmps = 0;
1818  for (CaseItr I = CR.Range.first, E = CR.Range.second;
1819       I!=E; ++I) {
1820    // Single case counts one, case range - two.
1821    numCmps += (I->Low == I->High ? 1 : 2);
1822  }
1823
1824  // Count unique destinations
1825  SmallSet<MachineBasicBlock*, 4> Dests;
1826  for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
1827    Dests.insert(I->BB);
1828    if (Dests.size() > 3)
1829      // Don't bother the code below, if there are too much unique destinations
1830      return false;
1831  }
1832  DEBUG(dbgs() << "Total number of unique destinations: "
1833        << Dests.size() << '\n'
1834        << "Total number of comparisons: " << numCmps << '\n');
1835
1836  // Compute span of values.
1837  const APInt& minValue = cast<ConstantInt>(FrontCase.Low)->getValue();
1838  const APInt& maxValue = cast<ConstantInt>(BackCase.High)->getValue();
1839  APInt cmpRange = maxValue - minValue;
1840
1841  DEBUG(dbgs() << "Compare range: " << cmpRange << '\n'
1842               << "Low bound: " << minValue << '\n'
1843               << "High bound: " << maxValue << '\n');
1844
1845  if (cmpRange.uge(IntPtrBits) ||
1846      (!(Dests.size() == 1 && numCmps >= 3) &&
1847       !(Dests.size() == 2 && numCmps >= 5) &&
1848       !(Dests.size() >= 3 && numCmps >= 6)))
1849    return false;
1850
1851  DEBUG(dbgs() << "Emitting bit tests\n");
1852  APInt lowBound = APInt::getNullValue(cmpRange.getBitWidth());
1853
1854  // Optimize the case where all the case values fit in a
1855  // word without having to subtract minValue. In this case,
1856  // we can optimize away the subtraction.
1857  if (minValue.isNonNegative() && maxValue.slt(IntPtrBits)) {
1858    cmpRange = maxValue;
1859  } else {
1860    lowBound = minValue;
1861  }
1862
1863  CaseBitsVector CasesBits;
1864  unsigned i, count = 0;
1865
1866  for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
1867    MachineBasicBlock* Dest = I->BB;
1868    for (i = 0; i < count; ++i)
1869      if (Dest == CasesBits[i].BB)
1870        break;
1871
1872    if (i == count) {
1873      assert((count < 3) && "Too much destinations to test!");
1874      CasesBits.push_back(CaseBits(0, Dest, 0));
1875      count++;
1876    }
1877
1878    const APInt& lowValue = cast<ConstantInt>(I->Low)->getValue();
1879    const APInt& highValue = cast<ConstantInt>(I->High)->getValue();
1880
1881    uint64_t lo = (lowValue - lowBound).getZExtValue();
1882    uint64_t hi = (highValue - lowBound).getZExtValue();
1883
1884    for (uint64_t j = lo; j <= hi; j++) {
1885      CasesBits[i].Mask |=  1ULL << j;
1886      CasesBits[i].Bits++;
1887    }
1888
1889  }
1890  std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp());
1891
1892  BitTestInfo BTC;
1893
1894  // Figure out which block is immediately after the current one.
1895  MachineFunction::iterator BBI = CR.CaseBB;
1896  ++BBI;
1897
1898  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
1899
1900  DEBUG(dbgs() << "Cases:\n");
1901  for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) {
1902    DEBUG(dbgs() << "Mask: " << CasesBits[i].Mask
1903                 << ", Bits: " << CasesBits[i].Bits
1904                 << ", BB: " << CasesBits[i].BB << '\n');
1905
1906    MachineBasicBlock *CaseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
1907    CurMF->insert(BBI, CaseBB);
1908    BTC.push_back(BitTestCase(CasesBits[i].Mask,
1909                              CaseBB,
1910                              CasesBits[i].BB));
1911
1912    // Put SV in a virtual register to make it available from the new blocks.
1913    ExportFromCurrentBlock(SV);
1914  }
1915
1916  BitTestBlock BTB(lowBound, cmpRange, SV,
1917                   -1U, (CR.CaseBB == SwitchBB),
1918                   CR.CaseBB, Default, BTC);
1919
1920  if (CR.CaseBB == SwitchBB)
1921    visitBitTestHeader(BTB, SwitchBB);
1922
1923  BitTestCases.push_back(BTB);
1924
1925  return true;
1926}
1927
1928/// Clusterify - Transform simple list of Cases into list of CaseRange's
1929size_t SelectionDAGBuilder::Clusterify(CaseVector& Cases,
1930                                       const SwitchInst& SI) {
1931  size_t numCmps = 0;
1932
1933  // Start with "simple" cases
1934  for (size_t i = 1; i < SI.getNumSuccessors(); ++i) {
1935    MachineBasicBlock *SMBB = FuncInfo.MBBMap[SI.getSuccessor(i)];
1936    Cases.push_back(Case(SI.getSuccessorValue(i),
1937                         SI.getSuccessorValue(i),
1938                         SMBB));
1939  }
1940  std::sort(Cases.begin(), Cases.end(), CaseCmp());
1941
1942  // Merge case into clusters
1943  if (Cases.size() >= 2)
1944    // Must recompute end() each iteration because it may be
1945    // invalidated by erase if we hold on to it
1946    for (CaseItr I = Cases.begin(), J = ++(Cases.begin()); J != Cases.end(); ) {
1947      const APInt& nextValue = cast<ConstantInt>(J->Low)->getValue();
1948      const APInt& currentValue = cast<ConstantInt>(I->High)->getValue();
1949      MachineBasicBlock* nextBB = J->BB;
1950      MachineBasicBlock* currentBB = I->BB;
1951
1952      // If the two neighboring cases go to the same destination, merge them
1953      // into a single case.
1954      if ((nextValue - currentValue == 1) && (currentBB == nextBB)) {
1955        I->High = J->High;
1956        J = Cases.erase(J);
1957      } else {
1958        I = J++;
1959      }
1960    }
1961
1962  for (CaseItr I=Cases.begin(), E=Cases.end(); I!=E; ++I, ++numCmps) {
1963    if (I->Low != I->High)
1964      // A range counts double, since it requires two compares.
1965      ++numCmps;
1966  }
1967
1968  return numCmps;
1969}
1970
1971void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
1972  MachineBasicBlock *SwitchMBB = FuncInfo.MBBMap[SI.getParent()];
1973
1974  // Figure out which block is immediately after the current one.
1975  MachineBasicBlock *NextBlock = 0;
1976  MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()];
1977
1978  // If there is only the default destination, branch to it if it is not the
1979  // next basic block.  Otherwise, just fall through.
1980  if (SI.getNumOperands() == 2) {
1981    // Update machine-CFG edges.
1982
1983    // If this is not a fall-through branch, emit the branch.
1984    SwitchMBB->addSuccessor(Default);
1985    if (Default != NextBlock)
1986      DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
1987                              MVT::Other, getControlRoot(),
1988                              DAG.getBasicBlock(Default)));
1989
1990    return;
1991  }
1992
1993  // If there are any non-default case statements, create a vector of Cases
1994  // representing each one, and sort the vector so that we can efficiently
1995  // create a binary search tree from them.
1996  CaseVector Cases;
1997  size_t numCmps = Clusterify(Cases, SI);
1998  DEBUG(dbgs() << "Clusterify finished. Total clusters: " << Cases.size()
1999               << ". Total compares: " << numCmps << '\n');
2000  numCmps = 0;
2001
2002  // Get the Value to be switched on and default basic blocks, which will be
2003  // inserted into CaseBlock records, representing basic blocks in the binary
2004  // search tree.
2005  const Value *SV = SI.getOperand(0);
2006
2007  // Push the initial CaseRec onto the worklist
2008  CaseRecVector WorkList;
2009  WorkList.push_back(CaseRec(SwitchMBB,0,0,
2010                             CaseRange(Cases.begin(),Cases.end())));
2011
2012  while (!WorkList.empty()) {
2013    // Grab a record representing a case range to process off the worklist
2014    CaseRec CR = WorkList.back();
2015    WorkList.pop_back();
2016
2017    if (handleBitTestsSwitchCase(CR, WorkList, SV, Default, SwitchMBB))
2018      continue;
2019
2020    // If the range has few cases (two or less) emit a series of specific
2021    // tests.
2022    if (handleSmallSwitchRange(CR, WorkList, SV, Default, SwitchMBB))
2023      continue;
2024
2025    // If the switch has more than 5 blocks, and at least 40% dense, and the
2026    // target supports indirect branches, then emit a jump table rather than
2027    // lowering the switch to a binary tree of conditional branches.
2028    if (handleJTSwitchCase(CR, WorkList, SV, Default, SwitchMBB))
2029      continue;
2030
2031    // Emit binary tree. We need to pick a pivot, and push left and right ranges
2032    // onto the worklist. Leafs are handled via handleSmallSwitchRange() call.
2033    handleBTSplitSwitchCase(CR, WorkList, SV, Default, SwitchMBB);
2034  }
2035}
2036
2037void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
2038  MachineBasicBlock *IndirectBrMBB = FuncInfo.MBBMap[I.getParent()];
2039
2040  // Update machine-CFG edges with unique successors.
2041  SmallVector<BasicBlock*, 32> succs;
2042  succs.reserve(I.getNumSuccessors());
2043  for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i)
2044    succs.push_back(I.getSuccessor(i));
2045  array_pod_sort(succs.begin(), succs.end());
2046  succs.erase(std::unique(succs.begin(), succs.end()), succs.end());
2047  for (unsigned i = 0, e = succs.size(); i != e; ++i)
2048    IndirectBrMBB->addSuccessor(FuncInfo.MBBMap[succs[i]]);
2049
2050  DAG.setRoot(DAG.getNode(ISD::BRIND, getCurDebugLoc(),
2051                          MVT::Other, getControlRoot(),
2052                          getValue(I.getAddress())));
2053}
2054
2055void SelectionDAGBuilder::visitFSub(const User &I) {
2056  // -0.0 - X --> fneg
2057  const Type *Ty = I.getType();
2058  if (Ty->isVectorTy()) {
2059    if (ConstantVector *CV = dyn_cast<ConstantVector>(I.getOperand(0))) {
2060      const VectorType *DestTy = cast<VectorType>(I.getType());
2061      const Type *ElTy = DestTy->getElementType();
2062      unsigned VL = DestTy->getNumElements();
2063      std::vector<Constant*> NZ(VL, ConstantFP::getNegativeZero(ElTy));
2064      Constant *CNZ = ConstantVector::get(&NZ[0], NZ.size());
2065      if (CV == CNZ) {
2066        SDValue Op2 = getValue(I.getOperand(1));
2067        setValue(&I, DAG.getNode(ISD::FNEG, getCurDebugLoc(),
2068                                 Op2.getValueType(), Op2));
2069        return;
2070      }
2071    }
2072  }
2073
2074  if (ConstantFP *CFP = dyn_cast<ConstantFP>(I.getOperand(0)))
2075    if (CFP->isExactlyValue(ConstantFP::getNegativeZero(Ty)->getValueAPF())) {
2076      SDValue Op2 = getValue(I.getOperand(1));
2077      setValue(&I, DAG.getNode(ISD::FNEG, getCurDebugLoc(),
2078                               Op2.getValueType(), Op2));
2079      return;
2080    }
2081
2082  visitBinary(I, ISD::FSUB);
2083}
2084
2085void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) {
2086  SDValue Op1 = getValue(I.getOperand(0));
2087  SDValue Op2 = getValue(I.getOperand(1));
2088  setValue(&I, DAG.getNode(OpCode, getCurDebugLoc(),
2089                           Op1.getValueType(), Op1, Op2));
2090}
2091
2092void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
2093  SDValue Op1 = getValue(I.getOperand(0));
2094  SDValue Op2 = getValue(I.getOperand(1));
2095  if (!I.getType()->isVectorTy() &&
2096      Op2.getValueType() != TLI.getShiftAmountTy()) {
2097    // If the operand is smaller than the shift count type, promote it.
2098    EVT PTy = TLI.getPointerTy();
2099    EVT STy = TLI.getShiftAmountTy();
2100    if (STy.bitsGT(Op2.getValueType()))
2101      Op2 = DAG.getNode(ISD::ANY_EXTEND, getCurDebugLoc(),
2102                        TLI.getShiftAmountTy(), Op2);
2103    // If the operand is larger than the shift count type but the shift
2104    // count type has enough bits to represent any shift value, truncate
2105    // it now. This is a common case and it exposes the truncate to
2106    // optimization early.
2107    else if (STy.getSizeInBits() >=
2108             Log2_32_Ceil(Op2.getValueType().getSizeInBits()))
2109      Op2 = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(),
2110                        TLI.getShiftAmountTy(), Op2);
2111    // Otherwise we'll need to temporarily settle for some other
2112    // convenient type; type legalization will make adjustments as
2113    // needed.
2114    else if (PTy.bitsLT(Op2.getValueType()))
2115      Op2 = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(),
2116                        TLI.getPointerTy(), Op2);
2117    else if (PTy.bitsGT(Op2.getValueType()))
2118      Op2 = DAG.getNode(ISD::ANY_EXTEND, getCurDebugLoc(),
2119                        TLI.getPointerTy(), Op2);
2120  }
2121
2122  setValue(&I, DAG.getNode(Opcode, getCurDebugLoc(),
2123                           Op1.getValueType(), Op1, Op2));
2124}
2125
2126void SelectionDAGBuilder::visitICmp(const User &I) {
2127  ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
2128  if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
2129    predicate = IC->getPredicate();
2130  else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
2131    predicate = ICmpInst::Predicate(IC->getPredicate());
2132  SDValue Op1 = getValue(I.getOperand(0));
2133  SDValue Op2 = getValue(I.getOperand(1));
2134  ISD::CondCode Opcode = getICmpCondCode(predicate);
2135
2136  EVT DestVT = TLI.getValueType(I.getType());
2137  setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Opcode));
2138}
2139
2140void SelectionDAGBuilder::visitFCmp(const User &I) {
2141  FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
2142  if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
2143    predicate = FC->getPredicate();
2144  else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
2145    predicate = FCmpInst::Predicate(FC->getPredicate());
2146  SDValue Op1 = getValue(I.getOperand(0));
2147  SDValue Op2 = getValue(I.getOperand(1));
2148  ISD::CondCode Condition = getFCmpCondCode(predicate);
2149  EVT DestVT = TLI.getValueType(I.getType());
2150  setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Condition));
2151}
2152
2153void SelectionDAGBuilder::visitSelect(const User &I) {
2154  SmallVector<EVT, 4> ValueVTs;
2155  ComputeValueVTs(TLI, I.getType(), ValueVTs);
2156  unsigned NumValues = ValueVTs.size();
2157  if (NumValues == 0) return;
2158
2159  SmallVector<SDValue, 4> Values(NumValues);
2160  SDValue Cond     = getValue(I.getOperand(0));
2161  SDValue TrueVal  = getValue(I.getOperand(1));
2162  SDValue FalseVal = getValue(I.getOperand(2));
2163
2164  for (unsigned i = 0; i != NumValues; ++i)
2165    Values[i] = DAG.getNode(ISD::SELECT, getCurDebugLoc(),
2166                          TrueVal.getNode()->getValueType(TrueVal.getResNo()+i),
2167                            Cond,
2168                            SDValue(TrueVal.getNode(),
2169                                    TrueVal.getResNo() + i),
2170                            SDValue(FalseVal.getNode(),
2171                                    FalseVal.getResNo() + i));
2172
2173  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
2174                           DAG.getVTList(&ValueVTs[0], NumValues),
2175                           &Values[0], NumValues));
2176}
2177
2178void SelectionDAGBuilder::visitTrunc(const User &I) {
2179  // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
2180  SDValue N = getValue(I.getOperand(0));
2181  EVT DestVT = TLI.getValueType(I.getType());
2182  setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), DestVT, N));
2183}
2184
2185void SelectionDAGBuilder::visitZExt(const User &I) {
2186  // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2187  // ZExt also can't be a cast to bool for same reason. So, nothing much to do
2188  SDValue N = getValue(I.getOperand(0));
2189  EVT DestVT = TLI.getValueType(I.getType());
2190  setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), DestVT, N));
2191}
2192
2193void SelectionDAGBuilder::visitSExt(const User &I) {
2194  // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2195  // SExt also can't be a cast to bool for same reason. So, nothing much to do
2196  SDValue N = getValue(I.getOperand(0));
2197  EVT DestVT = TLI.getValueType(I.getType());
2198  setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurDebugLoc(), DestVT, N));
2199}
2200
2201void SelectionDAGBuilder::visitFPTrunc(const User &I) {
2202  // FPTrunc is never a no-op cast, no need to check
2203  SDValue N = getValue(I.getOperand(0));
2204  EVT DestVT = TLI.getValueType(I.getType());
2205  setValue(&I, DAG.getNode(ISD::FP_ROUND, getCurDebugLoc(),
2206                           DestVT, N, DAG.getIntPtrConstant(0)));
2207}
2208
2209void SelectionDAGBuilder::visitFPExt(const User &I){
2210  // FPTrunc is never a no-op cast, no need to check
2211  SDValue N = getValue(I.getOperand(0));
2212  EVT DestVT = TLI.getValueType(I.getType());
2213  setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurDebugLoc(), DestVT, N));
2214}
2215
2216void SelectionDAGBuilder::visitFPToUI(const User &I) {
2217  // FPToUI is never a no-op cast, no need to check
2218  SDValue N = getValue(I.getOperand(0));
2219  EVT DestVT = TLI.getValueType(I.getType());
2220  setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurDebugLoc(), DestVT, N));
2221}
2222
2223void SelectionDAGBuilder::visitFPToSI(const User &I) {
2224  // FPToSI is never a no-op cast, no need to check
2225  SDValue N = getValue(I.getOperand(0));
2226  EVT DestVT = TLI.getValueType(I.getType());
2227  setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurDebugLoc(), DestVT, N));
2228}
2229
2230void SelectionDAGBuilder::visitUIToFP(const User &I) {
2231  // UIToFP is never a no-op cast, no need to check
2232  SDValue N = getValue(I.getOperand(0));
2233  EVT DestVT = TLI.getValueType(I.getType());
2234  setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurDebugLoc(), DestVT, N));
2235}
2236
2237void SelectionDAGBuilder::visitSIToFP(const User &I){
2238  // SIToFP is never a no-op cast, no need to check
2239  SDValue N = getValue(I.getOperand(0));
2240  EVT DestVT = TLI.getValueType(I.getType());
2241  setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurDebugLoc(), DestVT, N));
2242}
2243
2244void SelectionDAGBuilder::visitPtrToInt(const User &I) {
2245  // What to do depends on the size of the integer and the size of the pointer.
2246  // We can either truncate, zero extend, or no-op, accordingly.
2247  SDValue N = getValue(I.getOperand(0));
2248  EVT SrcVT = N.getValueType();
2249  EVT DestVT = TLI.getValueType(I.getType());
2250  setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT));
2251}
2252
2253void SelectionDAGBuilder::visitIntToPtr(const User &I) {
2254  // What to do depends on the size of the integer and the size of the pointer.
2255  // We can either truncate, zero extend, or no-op, accordingly.
2256  SDValue N = getValue(I.getOperand(0));
2257  EVT SrcVT = N.getValueType();
2258  EVT DestVT = TLI.getValueType(I.getType());
2259  setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT));
2260}
2261
2262void SelectionDAGBuilder::visitBitCast(const User &I) {
2263  SDValue N = getValue(I.getOperand(0));
2264  EVT DestVT = TLI.getValueType(I.getType());
2265
2266  // BitCast assures us that source and destination are the same size so this is
2267  // either a BIT_CONVERT or a no-op.
2268  if (DestVT != N.getValueType())
2269    setValue(&I, DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(),
2270                             DestVT, N)); // convert types.
2271  else
2272    setValue(&I, N);            // noop cast.
2273}
2274
2275void SelectionDAGBuilder::visitInsertElement(const User &I) {
2276  SDValue InVec = getValue(I.getOperand(0));
2277  SDValue InVal = getValue(I.getOperand(1));
2278  SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(),
2279                              TLI.getPointerTy(),
2280                              getValue(I.getOperand(2)));
2281  setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurDebugLoc(),
2282                           TLI.getValueType(I.getType()),
2283                           InVec, InVal, InIdx));
2284}
2285
2286void SelectionDAGBuilder::visitExtractElement(const User &I) {
2287  SDValue InVec = getValue(I.getOperand(0));
2288  SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(),
2289                              TLI.getPointerTy(),
2290                              getValue(I.getOperand(1)));
2291  setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
2292                           TLI.getValueType(I.getType()), InVec, InIdx));
2293}
2294
2295// Utility for visitShuffleVector - Returns true if the mask is mask starting
2296// from SIndx and increasing to the element length (undefs are allowed).
2297static bool SequentialMask(SmallVectorImpl<int> &Mask, unsigned SIndx) {
2298  unsigned MaskNumElts = Mask.size();
2299  for (unsigned i = 0; i != MaskNumElts; ++i)
2300    if ((Mask[i] >= 0) && (Mask[i] != (int)(i + SIndx)))
2301      return false;
2302  return true;
2303}
2304
2305void SelectionDAGBuilder::visitShuffleVector(const User &I) {
2306  SmallVector<int, 8> Mask;
2307  SDValue Src1 = getValue(I.getOperand(0));
2308  SDValue Src2 = getValue(I.getOperand(1));
2309
2310  // Convert the ConstantVector mask operand into an array of ints, with -1
2311  // representing undef values.
2312  SmallVector<Constant*, 8> MaskElts;
2313  cast<Constant>(I.getOperand(2))->getVectorElements(MaskElts);
2314  unsigned MaskNumElts = MaskElts.size();
2315  for (unsigned i = 0; i != MaskNumElts; ++i) {
2316    if (isa<UndefValue>(MaskElts[i]))
2317      Mask.push_back(-1);
2318    else
2319      Mask.push_back(cast<ConstantInt>(MaskElts[i])->getSExtValue());
2320  }
2321
2322  EVT VT = TLI.getValueType(I.getType());
2323  EVT SrcVT = Src1.getValueType();
2324  unsigned SrcNumElts = SrcVT.getVectorNumElements();
2325
2326  if (SrcNumElts == MaskNumElts) {
2327    setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2328                                      &Mask[0]));
2329    return;
2330  }
2331
2332  // Normalize the shuffle vector since mask and vector length don't match.
2333  if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) {
2334    // Mask is longer than the source vectors and is a multiple of the source
2335    // vectors.  We can use concatenate vector to make the mask and vectors
2336    // lengths match.
2337    if (SrcNumElts*2 == MaskNumElts && SequentialMask(Mask, 0)) {
2338      // The shuffle is concatenating two vectors together.
2339      setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurDebugLoc(),
2340                               VT, Src1, Src2));
2341      return;
2342    }
2343
2344    // Pad both vectors with undefs to make them the same length as the mask.
2345    unsigned NumConcat = MaskNumElts / SrcNumElts;
2346    bool Src1U = Src1.getOpcode() == ISD::UNDEF;
2347    bool Src2U = Src2.getOpcode() == ISD::UNDEF;
2348    SDValue UndefVal = DAG.getUNDEF(SrcVT);
2349
2350    SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
2351    SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
2352    MOps1[0] = Src1;
2353    MOps2[0] = Src2;
2354
2355    Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
2356                                                  getCurDebugLoc(), VT,
2357                                                  &MOps1[0], NumConcat);
2358    Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
2359                                                  getCurDebugLoc(), VT,
2360                                                  &MOps2[0], NumConcat);
2361
2362    // Readjust mask for new input vector length.
2363    SmallVector<int, 8> MappedOps;
2364    for (unsigned i = 0; i != MaskNumElts; ++i) {
2365      int Idx = Mask[i];
2366      if (Idx < (int)SrcNumElts)
2367        MappedOps.push_back(Idx);
2368      else
2369        MappedOps.push_back(Idx + MaskNumElts - SrcNumElts);
2370    }
2371
2372    setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2373                                      &MappedOps[0]));
2374    return;
2375  }
2376
2377  if (SrcNumElts > MaskNumElts) {
2378    // Analyze the access pattern of the vector to see if we can extract
2379    // two subvectors and do the shuffle. The analysis is done by calculating
2380    // the range of elements the mask access on both vectors.
2381    int MinRange[2] = { SrcNumElts+1, SrcNumElts+1};
2382    int MaxRange[2] = {-1, -1};
2383
2384    for (unsigned i = 0; i != MaskNumElts; ++i) {
2385      int Idx = Mask[i];
2386      int Input = 0;
2387      if (Idx < 0)
2388        continue;
2389
2390      if (Idx >= (int)SrcNumElts) {
2391        Input = 1;
2392        Idx -= SrcNumElts;
2393      }
2394      if (Idx > MaxRange[Input])
2395        MaxRange[Input] = Idx;
2396      if (Idx < MinRange[Input])
2397        MinRange[Input] = Idx;
2398    }
2399
2400    // Check if the access is smaller than the vector size and can we find
2401    // a reasonable extract index.
2402    int RangeUse[2] = { 2, 2 };  // 0 = Unused, 1 = Extract, 2 = Can not
2403                                 // Extract.
2404    int StartIdx[2];  // StartIdx to extract from
2405    for (int Input=0; Input < 2; ++Input) {
2406      if (MinRange[Input] == (int)(SrcNumElts+1) && MaxRange[Input] == -1) {
2407        RangeUse[Input] = 0; // Unused
2408        StartIdx[Input] = 0;
2409      } else if (MaxRange[Input] - MinRange[Input] < (int)MaskNumElts) {
2410        // Fits within range but we should see if we can find a good
2411        // start index that is a multiple of the mask length.
2412        if (MaxRange[Input] < (int)MaskNumElts) {
2413          RangeUse[Input] = 1; // Extract from beginning of the vector
2414          StartIdx[Input] = 0;
2415        } else {
2416          StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts;
2417          if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts &&
2418              StartIdx[Input] + MaskNumElts < SrcNumElts)
2419            RangeUse[Input] = 1; // Extract from a multiple of the mask length.
2420        }
2421      }
2422    }
2423
2424    if (RangeUse[0] == 0 && RangeUse[1] == 0) {
2425      setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
2426      return;
2427    }
2428    else if (RangeUse[0] < 2 && RangeUse[1] < 2) {
2429      // Extract appropriate subvector and generate a vector shuffle
2430      for (int Input=0; Input < 2; ++Input) {
2431        SDValue &Src = Input == 0 ? Src1 : Src2;
2432        if (RangeUse[Input] == 0)
2433          Src = DAG.getUNDEF(VT);
2434        else
2435          Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, getCurDebugLoc(), VT,
2436                            Src, DAG.getIntPtrConstant(StartIdx[Input]));
2437      }
2438
2439      // Calculate new mask.
2440      SmallVector<int, 8> MappedOps;
2441      for (unsigned i = 0; i != MaskNumElts; ++i) {
2442        int Idx = Mask[i];
2443        if (Idx < 0)
2444          MappedOps.push_back(Idx);
2445        else if (Idx < (int)SrcNumElts)
2446          MappedOps.push_back(Idx - StartIdx[0]);
2447        else
2448          MappedOps.push_back(Idx - SrcNumElts - StartIdx[1] + MaskNumElts);
2449      }
2450
2451      setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2452                                        &MappedOps[0]));
2453      return;
2454    }
2455  }
2456
2457  // We can't use either concat vectors or extract subvectors so fall back to
2458  // replacing the shuffle with extract and build vector.
2459  // to insert and build vector.
2460  EVT EltVT = VT.getVectorElementType();
2461  EVT PtrVT = TLI.getPointerTy();
2462  SmallVector<SDValue,8> Ops;
2463  for (unsigned i = 0; i != MaskNumElts; ++i) {
2464    if (Mask[i] < 0) {
2465      Ops.push_back(DAG.getUNDEF(EltVT));
2466    } else {
2467      int Idx = Mask[i];
2468      SDValue Res;
2469
2470      if (Idx < (int)SrcNumElts)
2471        Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
2472                          EltVT, Src1, DAG.getConstant(Idx, PtrVT));
2473      else
2474        Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
2475                          EltVT, Src2,
2476                          DAG.getConstant(Idx - SrcNumElts, PtrVT));
2477
2478      Ops.push_back(Res);
2479    }
2480  }
2481
2482  setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(),
2483                           VT, &Ops[0], Ops.size()));
2484}
2485
2486void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) {
2487  const Value *Op0 = I.getOperand(0);
2488  const Value *Op1 = I.getOperand(1);
2489  const Type *AggTy = I.getType();
2490  const Type *ValTy = Op1->getType();
2491  bool IntoUndef = isa<UndefValue>(Op0);
2492  bool FromUndef = isa<UndefValue>(Op1);
2493
2494  unsigned LinearIndex = ComputeLinearIndex(TLI, AggTy,
2495                                            I.idx_begin(), I.idx_end());
2496
2497  SmallVector<EVT, 4> AggValueVTs;
2498  ComputeValueVTs(TLI, AggTy, AggValueVTs);
2499  SmallVector<EVT, 4> ValValueVTs;
2500  ComputeValueVTs(TLI, ValTy, ValValueVTs);
2501
2502  unsigned NumAggValues = AggValueVTs.size();
2503  unsigned NumValValues = ValValueVTs.size();
2504  SmallVector<SDValue, 4> Values(NumAggValues);
2505
2506  SDValue Agg = getValue(Op0);
2507  SDValue Val = getValue(Op1);
2508  unsigned i = 0;
2509  // Copy the beginning value(s) from the original aggregate.
2510  for (; i != LinearIndex; ++i)
2511    Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
2512                SDValue(Agg.getNode(), Agg.getResNo() + i);
2513  // Copy values from the inserted value(s).
2514  for (; i != LinearIndex + NumValValues; ++i)
2515    Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
2516                SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
2517  // Copy remaining value(s) from the original aggregate.
2518  for (; i != NumAggValues; ++i)
2519    Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
2520                SDValue(Agg.getNode(), Agg.getResNo() + i);
2521
2522  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
2523                           DAG.getVTList(&AggValueVTs[0], NumAggValues),
2524                           &Values[0], NumAggValues));
2525}
2526
2527void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) {
2528  const Value *Op0 = I.getOperand(0);
2529  const Type *AggTy = Op0->getType();
2530  const Type *ValTy = I.getType();
2531  bool OutOfUndef = isa<UndefValue>(Op0);
2532
2533  unsigned LinearIndex = ComputeLinearIndex(TLI, AggTy,
2534                                            I.idx_begin(), I.idx_end());
2535
2536  SmallVector<EVT, 4> ValValueVTs;
2537  ComputeValueVTs(TLI, ValTy, ValValueVTs);
2538
2539  unsigned NumValValues = ValValueVTs.size();
2540  SmallVector<SDValue, 4> Values(NumValValues);
2541
2542  SDValue Agg = getValue(Op0);
2543  // Copy out the selected value(s).
2544  for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
2545    Values[i - LinearIndex] =
2546      OutOfUndef ?
2547        DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
2548        SDValue(Agg.getNode(), Agg.getResNo() + i);
2549
2550  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
2551                           DAG.getVTList(&ValValueVTs[0], NumValValues),
2552                           &Values[0], NumValValues));
2553}
2554
2555void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
2556  SDValue N = getValue(I.getOperand(0));
2557  const Type *Ty = I.getOperand(0)->getType();
2558
2559  for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end();
2560       OI != E; ++OI) {
2561    const Value *Idx = *OI;
2562    if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
2563      unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
2564      if (Field) {
2565        // N = N + Offset
2566        uint64_t Offset = TD->getStructLayout(StTy)->getElementOffset(Field);
2567        N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N,
2568                        DAG.getIntPtrConstant(Offset));
2569      }
2570
2571      Ty = StTy->getElementType(Field);
2572    } else if (const UnionType *UnTy = dyn_cast<UnionType>(Ty)) {
2573      unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
2574
2575      // Offset canonically 0 for unions, but type changes
2576      Ty = UnTy->getElementType(Field);
2577    } else {
2578      Ty = cast<SequentialType>(Ty)->getElementType();
2579
2580      // If this is a constant subscript, handle it quickly.
2581      if (const ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
2582        if (CI->getZExtValue() == 0) continue;
2583        uint64_t Offs =
2584            TD->getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue();
2585        SDValue OffsVal;
2586        EVT PTy = TLI.getPointerTy();
2587        unsigned PtrBits = PTy.getSizeInBits();
2588        if (PtrBits < 64)
2589          OffsVal = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(),
2590                                TLI.getPointerTy(),
2591                                DAG.getConstant(Offs, MVT::i64));
2592        else
2593          OffsVal = DAG.getIntPtrConstant(Offs);
2594
2595        N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N,
2596                        OffsVal);
2597        continue;
2598      }
2599
2600      // N = N + Idx * ElementSize;
2601      APInt ElementSize = APInt(TLI.getPointerTy().getSizeInBits(),
2602                                TD->getTypeAllocSize(Ty));
2603      SDValue IdxN = getValue(Idx);
2604
2605      // If the index is smaller or larger than intptr_t, truncate or extend
2606      // it.
2607      IdxN = DAG.getSExtOrTrunc(IdxN, getCurDebugLoc(), N.getValueType());
2608
2609      // If this is a multiply by a power of two, turn it into a shl
2610      // immediately.  This is a very common case.
2611      if (ElementSize != 1) {
2612        if (ElementSize.isPowerOf2()) {
2613          unsigned Amt = ElementSize.logBase2();
2614          IdxN = DAG.getNode(ISD::SHL, getCurDebugLoc(),
2615                             N.getValueType(), IdxN,
2616                             DAG.getConstant(Amt, TLI.getPointerTy()));
2617        } else {
2618          SDValue Scale = DAG.getConstant(ElementSize, TLI.getPointerTy());
2619          IdxN = DAG.getNode(ISD::MUL, getCurDebugLoc(),
2620                             N.getValueType(), IdxN, Scale);
2621        }
2622      }
2623
2624      N = DAG.getNode(ISD::ADD, getCurDebugLoc(),
2625                      N.getValueType(), N, IdxN);
2626    }
2627  }
2628
2629  setValue(&I, N);
2630}
2631
2632void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
2633  // If this is a fixed sized alloca in the entry block of the function,
2634  // allocate it statically on the stack.
2635  if (FuncInfo.StaticAllocaMap.count(&I))
2636    return;   // getValue will auto-populate this.
2637
2638  const Type *Ty = I.getAllocatedType();
2639  uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty);
2640  unsigned Align =
2641    std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty),
2642             I.getAlignment());
2643
2644  SDValue AllocSize = getValue(I.getArraySize());
2645
2646  AllocSize = DAG.getNode(ISD::MUL, getCurDebugLoc(), AllocSize.getValueType(),
2647                          AllocSize,
2648                          DAG.getConstant(TySize, AllocSize.getValueType()));
2649
2650  EVT IntPtr = TLI.getPointerTy();
2651  AllocSize = DAG.getZExtOrTrunc(AllocSize, getCurDebugLoc(), IntPtr);
2652
2653  // Handle alignment.  If the requested alignment is less than or equal to
2654  // the stack alignment, ignore it.  If the size is greater than or equal to
2655  // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
2656  unsigned StackAlign = TM.getFrameInfo()->getStackAlignment();
2657  if (Align <= StackAlign)
2658    Align = 0;
2659
2660  // Round the size of the allocation up to the stack alignment size
2661  // by add SA-1 to the size.
2662  AllocSize = DAG.getNode(ISD::ADD, getCurDebugLoc(),
2663                          AllocSize.getValueType(), AllocSize,
2664                          DAG.getIntPtrConstant(StackAlign-1));
2665
2666  // Mask out the low bits for alignment purposes.
2667  AllocSize = DAG.getNode(ISD::AND, getCurDebugLoc(),
2668                          AllocSize.getValueType(), AllocSize,
2669                          DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1)));
2670
2671  SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) };
2672  SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
2673  SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, getCurDebugLoc(),
2674                            VTs, Ops, 3);
2675  setValue(&I, DSA);
2676  DAG.setRoot(DSA.getValue(1));
2677
2678  // Inform the Frame Information that we have just allocated a variable-sized
2679  // object.
2680  FuncInfo.MF->getFrameInfo()->CreateVariableSizedObject();
2681}
2682
2683void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
2684  const Value *SV = I.getOperand(0);
2685  SDValue Ptr = getValue(SV);
2686
2687  const Type *Ty = I.getType();
2688
2689  bool isVolatile = I.isVolatile();
2690  bool isNonTemporal = I.getMetadata("nontemporal") != 0;
2691  unsigned Alignment = I.getAlignment();
2692
2693  SmallVector<EVT, 4> ValueVTs;
2694  SmallVector<uint64_t, 4> Offsets;
2695  ComputeValueVTs(TLI, Ty, ValueVTs, &Offsets);
2696  unsigned NumValues = ValueVTs.size();
2697  if (NumValues == 0)
2698    return;
2699
2700  SDValue Root;
2701  bool ConstantMemory = false;
2702  if (I.isVolatile())
2703    // Serialize volatile loads with other side effects.
2704    Root = getRoot();
2705  else if (AA->pointsToConstantMemory(SV)) {
2706    // Do not serialize (non-volatile) loads of constant memory with anything.
2707    Root = DAG.getEntryNode();
2708    ConstantMemory = true;
2709  } else {
2710    // Do not serialize non-volatile loads against each other.
2711    Root = DAG.getRoot();
2712  }
2713
2714  SmallVector<SDValue, 4> Values(NumValues);
2715  SmallVector<SDValue, 4> Chains(NumValues);
2716  EVT PtrVT = Ptr.getValueType();
2717  for (unsigned i = 0; i != NumValues; ++i) {
2718    SDValue A = DAG.getNode(ISD::ADD, getCurDebugLoc(),
2719                            PtrVT, Ptr,
2720                            DAG.getConstant(Offsets[i], PtrVT));
2721    SDValue L = DAG.getLoad(ValueVTs[i], getCurDebugLoc(), Root,
2722                            A, SV, Offsets[i], isVolatile,
2723                            isNonTemporal, Alignment);
2724
2725    Values[i] = L;
2726    Chains[i] = L.getValue(1);
2727  }
2728
2729  if (!ConstantMemory) {
2730    SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
2731                                MVT::Other, &Chains[0], NumValues);
2732    if (isVolatile)
2733      DAG.setRoot(Chain);
2734    else
2735      PendingLoads.push_back(Chain);
2736  }
2737
2738  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
2739                           DAG.getVTList(&ValueVTs[0], NumValues),
2740                           &Values[0], NumValues));
2741}
2742
2743void SelectionDAGBuilder::visitStore(const StoreInst &I) {
2744  const Value *SrcV = I.getOperand(0);
2745  const Value *PtrV = I.getOperand(1);
2746
2747  SmallVector<EVT, 4> ValueVTs;
2748  SmallVector<uint64_t, 4> Offsets;
2749  ComputeValueVTs(TLI, SrcV->getType(), ValueVTs, &Offsets);
2750  unsigned NumValues = ValueVTs.size();
2751  if (NumValues == 0)
2752    return;
2753
2754  // Get the lowered operands. Note that we do this after
2755  // checking if NumResults is zero, because with zero results
2756  // the operands won't have values in the map.
2757  SDValue Src = getValue(SrcV);
2758  SDValue Ptr = getValue(PtrV);
2759
2760  SDValue Root = getRoot();
2761  SmallVector<SDValue, 4> Chains(NumValues);
2762  EVT PtrVT = Ptr.getValueType();
2763  bool isVolatile = I.isVolatile();
2764  bool isNonTemporal = I.getMetadata("nontemporal") != 0;
2765  unsigned Alignment = I.getAlignment();
2766
2767  for (unsigned i = 0; i != NumValues; ++i) {
2768    SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT, Ptr,
2769                              DAG.getConstant(Offsets[i], PtrVT));
2770    Chains[i] = DAG.getStore(Root, getCurDebugLoc(),
2771                             SDValue(Src.getNode(), Src.getResNo() + i),
2772                             Add, PtrV, Offsets[i], isVolatile,
2773                             isNonTemporal, Alignment);
2774  }
2775
2776  DAG.setRoot(DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
2777                          MVT::Other, &Chains[0], NumValues));
2778}
2779
2780/// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
2781/// node.
2782void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
2783                                               unsigned Intrinsic) {
2784  bool HasChain = !I.doesNotAccessMemory();
2785  bool OnlyLoad = HasChain && I.onlyReadsMemory();
2786
2787  // Build the operand list.
2788  SmallVector<SDValue, 8> Ops;
2789  if (HasChain) {  // If this intrinsic has side-effects, chainify it.
2790    if (OnlyLoad) {
2791      // We don't need to serialize loads against other loads.
2792      Ops.push_back(DAG.getRoot());
2793    } else {
2794      Ops.push_back(getRoot());
2795    }
2796  }
2797
2798  // Info is set by getTgtMemInstrinsic
2799  TargetLowering::IntrinsicInfo Info;
2800  bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic);
2801
2802  // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
2803  if (!IsTgtIntrinsic)
2804    Ops.push_back(DAG.getConstant(Intrinsic, TLI.getPointerTy()));
2805
2806  // Add all operands of the call to the operand list.
2807  for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) {
2808    SDValue Op = getValue(I.getOperand(i));
2809    assert(TLI.isTypeLegal(Op.getValueType()) &&
2810           "Intrinsic uses a non-legal type?");
2811    Ops.push_back(Op);
2812  }
2813
2814  SmallVector<EVT, 4> ValueVTs;
2815  ComputeValueVTs(TLI, I.getType(), ValueVTs);
2816#ifndef NDEBUG
2817  for (unsigned Val = 0, E = ValueVTs.size(); Val != E; ++Val) {
2818    assert(TLI.isTypeLegal(ValueVTs[Val]) &&
2819           "Intrinsic uses a non-legal type?");
2820  }
2821#endif // NDEBUG
2822
2823  if (HasChain)
2824    ValueVTs.push_back(MVT::Other);
2825
2826  SDVTList VTs = DAG.getVTList(ValueVTs.data(), ValueVTs.size());
2827
2828  // Create the node.
2829  SDValue Result;
2830  if (IsTgtIntrinsic) {
2831    // This is target intrinsic that touches memory
2832    Result = DAG.getMemIntrinsicNode(Info.opc, getCurDebugLoc(),
2833                                     VTs, &Ops[0], Ops.size(),
2834                                     Info.memVT, Info.ptrVal, Info.offset,
2835                                     Info.align, Info.vol,
2836                                     Info.readMem, Info.writeMem);
2837  } else if (!HasChain) {
2838    Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurDebugLoc(),
2839                         VTs, &Ops[0], Ops.size());
2840  } else if (!I.getType()->isVoidTy()) {
2841    Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurDebugLoc(),
2842                         VTs, &Ops[0], Ops.size());
2843  } else {
2844    Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurDebugLoc(),
2845                         VTs, &Ops[0], Ops.size());
2846  }
2847
2848  if (HasChain) {
2849    SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
2850    if (OnlyLoad)
2851      PendingLoads.push_back(Chain);
2852    else
2853      DAG.setRoot(Chain);
2854  }
2855
2856  if (!I.getType()->isVoidTy()) {
2857    if (const VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
2858      EVT VT = TLI.getValueType(PTy);
2859      Result = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(), VT, Result);
2860    }
2861
2862    setValue(&I, Result);
2863  }
2864}
2865
2866/// GetSignificand - Get the significand and build it into a floating-point
2867/// number with exponent of 1:
2868///
2869///   Op = (Op & 0x007fffff) | 0x3f800000;
2870///
2871/// where Op is the hexidecimal representation of floating point value.
2872static SDValue
2873GetSignificand(SelectionDAG &DAG, SDValue Op, DebugLoc dl) {
2874  SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
2875                           DAG.getConstant(0x007fffff, MVT::i32));
2876  SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
2877                           DAG.getConstant(0x3f800000, MVT::i32));
2878  return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t2);
2879}
2880
2881/// GetExponent - Get the exponent:
2882///
2883///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
2884///
2885/// where Op is the hexidecimal representation of floating point value.
2886static SDValue
2887GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI,
2888            DebugLoc dl) {
2889  SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
2890                           DAG.getConstant(0x7f800000, MVT::i32));
2891  SDValue t1 = DAG.getNode(ISD::SRL, dl, MVT::i32, t0,
2892                           DAG.getConstant(23, TLI.getPointerTy()));
2893  SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
2894                           DAG.getConstant(127, MVT::i32));
2895  return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
2896}
2897
2898/// getF32Constant - Get 32-bit floating point constant.
2899static SDValue
2900getF32Constant(SelectionDAG &DAG, unsigned Flt) {
2901  return DAG.getConstantFP(APFloat(APInt(32, Flt)), MVT::f32);
2902}
2903
2904/// Inlined utility function to implement binary input atomic intrinsics for
2905/// visitIntrinsicCall: I is a call instruction
2906///                     Op is the associated NodeType for I
2907const char *
2908SelectionDAGBuilder::implVisitBinaryAtomic(const CallInst& I,
2909                                           ISD::NodeType Op) {
2910  SDValue Root = getRoot();
2911  SDValue L =
2912    DAG.getAtomic(Op, getCurDebugLoc(),
2913                  getValue(I.getOperand(2)).getValueType().getSimpleVT(),
2914                  Root,
2915                  getValue(I.getOperand(1)),
2916                  getValue(I.getOperand(2)),
2917                  I.getOperand(1));
2918  setValue(&I, L);
2919  DAG.setRoot(L.getValue(1));
2920  return 0;
2921}
2922
2923// implVisitAluOverflow - Lower arithmetic overflow instrinsics.
2924const char *
2925SelectionDAGBuilder::implVisitAluOverflow(const CallInst &I, ISD::NodeType Op) {
2926  SDValue Op1 = getValue(I.getOperand(1));
2927  SDValue Op2 = getValue(I.getOperand(2));
2928
2929  SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1);
2930  setValue(&I, DAG.getNode(Op, getCurDebugLoc(), VTs, Op1, Op2));
2931  return 0;
2932}
2933
2934/// visitExp - Lower an exp intrinsic. Handles the special sequences for
2935/// limited-precision mode.
2936void
2937SelectionDAGBuilder::visitExp(const CallInst &I) {
2938  SDValue result;
2939  DebugLoc dl = getCurDebugLoc();
2940
2941  if (getValue(I.getOperand(1)).getValueType() == MVT::f32 &&
2942      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
2943    SDValue Op = getValue(I.getOperand(1));
2944
2945    // Put the exponent in the right bit position for later addition to the
2946    // final result:
2947    //
2948    //   #define LOG2OFe 1.4426950f
2949    //   IntegerPartOfX = ((int32_t)(X * LOG2OFe));
2950    SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
2951                             getF32Constant(DAG, 0x3fb8aa3b));
2952    SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
2953
2954    //   FractionalPartOfX = (X * LOG2OFe) - (float)IntegerPartOfX;
2955    SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
2956    SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
2957
2958    //   IntegerPartOfX <<= 23;
2959    IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
2960                                 DAG.getConstant(23, TLI.getPointerTy()));
2961
2962    if (LimitFloatPrecision <= 6) {
2963      // For floating-point precision of 6:
2964      //
2965      //   TwoToFractionalPartOfX =
2966      //     0.997535578f +
2967      //       (0.735607626f + 0.252464424f * x) * x;
2968      //
2969      // error 0.0144103317, which is 6 bits
2970      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
2971                               getF32Constant(DAG, 0x3e814304));
2972      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
2973                               getF32Constant(DAG, 0x3f3c50c8));
2974      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
2975      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
2976                               getF32Constant(DAG, 0x3f7f5e7e));
2977      SDValue TwoToFracPartOfX = DAG.getNode(ISD::BIT_CONVERT, dl,MVT::i32, t5);
2978
2979      // Add the exponent into the result in integer domain.
2980      SDValue t6 = DAG.getNode(ISD::ADD, dl, MVT::i32,
2981                               TwoToFracPartOfX, IntegerPartOfX);
2982
2983      result = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t6);
2984    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
2985      // For floating-point precision of 12:
2986      //
2987      //   TwoToFractionalPartOfX =
2988      //     0.999892986f +
2989      //       (0.696457318f +
2990      //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
2991      //
2992      // 0.000107046256 error, which is 13 to 14 bits
2993      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
2994                               getF32Constant(DAG, 0x3da235e3));
2995      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
2996                               getF32Constant(DAG, 0x3e65b8f3));
2997      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
2998      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
2999                               getF32Constant(DAG, 0x3f324b07));
3000      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3001      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3002                               getF32Constant(DAG, 0x3f7ff8fd));
3003      SDValue TwoToFracPartOfX = DAG.getNode(ISD::BIT_CONVERT, dl,MVT::i32, t7);
3004
3005      // Add the exponent into the result in integer domain.
3006      SDValue t8 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3007                               TwoToFracPartOfX, IntegerPartOfX);
3008
3009      result = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t8);
3010    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3011      // For floating-point precision of 18:
3012      //
3013      //   TwoToFractionalPartOfX =
3014      //     0.999999982f +
3015      //       (0.693148872f +
3016      //         (0.240227044f +
3017      //           (0.554906021e-1f +
3018      //             (0.961591928e-2f +
3019      //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
3020      //
3021      // error 2.47208000*10^(-7), which is better than 18 bits
3022      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3023                               getF32Constant(DAG, 0x3924b03e));
3024      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3025                               getF32Constant(DAG, 0x3ab24b87));
3026      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3027      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3028                               getF32Constant(DAG, 0x3c1d8c17));
3029      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3030      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3031                               getF32Constant(DAG, 0x3d634a1d));
3032      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3033      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3034                               getF32Constant(DAG, 0x3e75fe14));
3035      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3036      SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
3037                                getF32Constant(DAG, 0x3f317234));
3038      SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
3039      SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
3040                                getF32Constant(DAG, 0x3f800000));
3041      SDValue TwoToFracPartOfX = DAG.getNode(ISD::BIT_CONVERT, dl,
3042                                             MVT::i32, t13);
3043
3044      // Add the exponent into the result in integer domain.
3045      SDValue t14 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3046                                TwoToFracPartOfX, IntegerPartOfX);
3047
3048      result = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t14);
3049    }
3050  } else {
3051    // No special expansion.
3052    result = DAG.getNode(ISD::FEXP, dl,
3053                         getValue(I.getOperand(1)).getValueType(),
3054                         getValue(I.getOperand(1)));
3055  }
3056
3057  setValue(&I, result);
3058}
3059
3060/// visitLog - Lower a log intrinsic. Handles the special sequences for
3061/// limited-precision mode.
3062void
3063SelectionDAGBuilder::visitLog(const CallInst &I) {
3064  SDValue result;
3065  DebugLoc dl = getCurDebugLoc();
3066
3067  if (getValue(I.getOperand(1)).getValueType() == MVT::f32 &&
3068      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3069    SDValue Op = getValue(I.getOperand(1));
3070    SDValue Op1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, Op);
3071
3072    // Scale the exponent by log(2) [0.69314718f].
3073    SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
3074    SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
3075                                        getF32Constant(DAG, 0x3f317218));
3076
3077    // Get the significand and build it into a floating-point number with
3078    // exponent of 1.
3079    SDValue X = GetSignificand(DAG, Op1, dl);
3080
3081    if (LimitFloatPrecision <= 6) {
3082      // For floating-point precision of 6:
3083      //
3084      //   LogofMantissa =
3085      //     -1.1609546f +
3086      //       (1.4034025f - 0.23903021f * x) * x;
3087      //
3088      // error 0.0034276066, which is better than 8 bits
3089      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3090                               getF32Constant(DAG, 0xbe74c456));
3091      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3092                               getF32Constant(DAG, 0x3fb3a2b1));
3093      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3094      SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3095                                          getF32Constant(DAG, 0x3f949a29));
3096
3097      result = DAG.getNode(ISD::FADD, dl,
3098                           MVT::f32, LogOfExponent, LogOfMantissa);
3099    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3100      // For floating-point precision of 12:
3101      //
3102      //   LogOfMantissa =
3103      //     -1.7417939f +
3104      //       (2.8212026f +
3105      //         (-1.4699568f +
3106      //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
3107      //
3108      // error 0.000061011436, which is 14 bits
3109      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3110                               getF32Constant(DAG, 0xbd67b6d6));
3111      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3112                               getF32Constant(DAG, 0x3ee4f4b8));
3113      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3114      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3115                               getF32Constant(DAG, 0x3fbc278b));
3116      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3117      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3118                               getF32Constant(DAG, 0x40348e95));
3119      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3120      SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3121                                          getF32Constant(DAG, 0x3fdef31a));
3122
3123      result = DAG.getNode(ISD::FADD, dl,
3124                           MVT::f32, LogOfExponent, LogOfMantissa);
3125    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3126      // For floating-point precision of 18:
3127      //
3128      //   LogOfMantissa =
3129      //     -2.1072184f +
3130      //       (4.2372794f +
3131      //         (-3.7029485f +
3132      //           (2.2781945f +
3133      //             (-0.87823314f +
3134      //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
3135      //
3136      // error 0.0000023660568, which is better than 18 bits
3137      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3138                               getF32Constant(DAG, 0xbc91e5ac));
3139      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3140                               getF32Constant(DAG, 0x3e4350aa));
3141      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3142      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3143                               getF32Constant(DAG, 0x3f60d3e3));
3144      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3145      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3146                               getF32Constant(DAG, 0x4011cdf0));
3147      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3148      SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3149                               getF32Constant(DAG, 0x406cfd1c));
3150      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3151      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3152                               getF32Constant(DAG, 0x408797cb));
3153      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3154      SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
3155                                          getF32Constant(DAG, 0x4006dcab));
3156
3157      result = DAG.getNode(ISD::FADD, dl,
3158                           MVT::f32, LogOfExponent, LogOfMantissa);
3159    }
3160  } else {
3161    // No special expansion.
3162    result = DAG.getNode(ISD::FLOG, dl,
3163                         getValue(I.getOperand(1)).getValueType(),
3164                         getValue(I.getOperand(1)));
3165  }
3166
3167  setValue(&I, result);
3168}
3169
3170/// visitLog2 - Lower a log2 intrinsic. Handles the special sequences for
3171/// limited-precision mode.
3172void
3173SelectionDAGBuilder::visitLog2(const CallInst &I) {
3174  SDValue result;
3175  DebugLoc dl = getCurDebugLoc();
3176
3177  if (getValue(I.getOperand(1)).getValueType() == MVT::f32 &&
3178      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3179    SDValue Op = getValue(I.getOperand(1));
3180    SDValue Op1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, Op);
3181
3182    // Get the exponent.
3183    SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
3184
3185    // Get the significand and build it into a floating-point number with
3186    // exponent of 1.
3187    SDValue X = GetSignificand(DAG, Op1, dl);
3188
3189    // Different possible minimax approximations of significand in
3190    // floating-point for various degrees of accuracy over [1,2].
3191    if (LimitFloatPrecision <= 6) {
3192      // For floating-point precision of 6:
3193      //
3194      //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
3195      //
3196      // error 0.0049451742, which is more than 7 bits
3197      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3198                               getF32Constant(DAG, 0xbeb08fe0));
3199      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3200                               getF32Constant(DAG, 0x40019463));
3201      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3202      SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3203                                           getF32Constant(DAG, 0x3fd6633d));
3204
3205      result = DAG.getNode(ISD::FADD, dl,
3206                           MVT::f32, LogOfExponent, Log2ofMantissa);
3207    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3208      // For floating-point precision of 12:
3209      //
3210      //   Log2ofMantissa =
3211      //     -2.51285454f +
3212      //       (4.07009056f +
3213      //         (-2.12067489f +
3214      //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
3215      //
3216      // error 0.0000876136000, which is better than 13 bits
3217      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3218                               getF32Constant(DAG, 0xbda7262e));
3219      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3220                               getF32Constant(DAG, 0x3f25280b));
3221      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3222      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3223                               getF32Constant(DAG, 0x4007b923));
3224      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3225      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3226                               getF32Constant(DAG, 0x40823e2f));
3227      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3228      SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3229                                           getF32Constant(DAG, 0x4020d29c));
3230
3231      result = DAG.getNode(ISD::FADD, dl,
3232                           MVT::f32, LogOfExponent, Log2ofMantissa);
3233    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3234      // For floating-point precision of 18:
3235      //
3236      //   Log2ofMantissa =
3237      //     -3.0400495f +
3238      //       (6.1129976f +
3239      //         (-5.3420409f +
3240      //           (3.2865683f +
3241      //             (-1.2669343f +
3242      //               (0.27515199f -
3243      //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
3244      //
3245      // error 0.0000018516, which is better than 18 bits
3246      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3247                               getF32Constant(DAG, 0xbcd2769e));
3248      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3249                               getF32Constant(DAG, 0x3e8ce0b9));
3250      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3251      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3252                               getF32Constant(DAG, 0x3fa22ae7));
3253      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3254      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3255                               getF32Constant(DAG, 0x40525723));
3256      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3257      SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3258                               getF32Constant(DAG, 0x40aaf200));
3259      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3260      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3261                               getF32Constant(DAG, 0x40c39dad));
3262      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3263      SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
3264                                           getF32Constant(DAG, 0x4042902c));
3265
3266      result = DAG.getNode(ISD::FADD, dl,
3267                           MVT::f32, LogOfExponent, Log2ofMantissa);
3268    }
3269  } else {
3270    // No special expansion.
3271    result = DAG.getNode(ISD::FLOG2, dl,
3272                         getValue(I.getOperand(1)).getValueType(),
3273                         getValue(I.getOperand(1)));
3274  }
3275
3276  setValue(&I, result);
3277}
3278
3279/// visitLog10 - Lower a log10 intrinsic. Handles the special sequences for
3280/// limited-precision mode.
3281void
3282SelectionDAGBuilder::visitLog10(const CallInst &I) {
3283  SDValue result;
3284  DebugLoc dl = getCurDebugLoc();
3285
3286  if (getValue(I.getOperand(1)).getValueType() == MVT::f32 &&
3287      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3288    SDValue Op = getValue(I.getOperand(1));
3289    SDValue Op1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, Op);
3290
3291    // Scale the exponent by log10(2) [0.30102999f].
3292    SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
3293    SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
3294                                        getF32Constant(DAG, 0x3e9a209a));
3295
3296    // Get the significand and build it into a floating-point number with
3297    // exponent of 1.
3298    SDValue X = GetSignificand(DAG, Op1, dl);
3299
3300    if (LimitFloatPrecision <= 6) {
3301      // For floating-point precision of 6:
3302      //
3303      //   Log10ofMantissa =
3304      //     -0.50419619f +
3305      //       (0.60948995f - 0.10380950f * x) * x;
3306      //
3307      // error 0.0014886165, which is 6 bits
3308      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3309                               getF32Constant(DAG, 0xbdd49a13));
3310      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3311                               getF32Constant(DAG, 0x3f1c0789));
3312      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3313      SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3314                                            getF32Constant(DAG, 0x3f011300));
3315
3316      result = DAG.getNode(ISD::FADD, dl,
3317                           MVT::f32, LogOfExponent, Log10ofMantissa);
3318    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3319      // For floating-point precision of 12:
3320      //
3321      //   Log10ofMantissa =
3322      //     -0.64831180f +
3323      //       (0.91751397f +
3324      //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
3325      //
3326      // error 0.00019228036, which is better than 12 bits
3327      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3328                               getF32Constant(DAG, 0x3d431f31));
3329      SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
3330                               getF32Constant(DAG, 0x3ea21fb2));
3331      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3332      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3333                               getF32Constant(DAG, 0x3f6ae232));
3334      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3335      SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
3336                                            getF32Constant(DAG, 0x3f25f7c3));
3337
3338      result = DAG.getNode(ISD::FADD, dl,
3339                           MVT::f32, LogOfExponent, Log10ofMantissa);
3340    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3341      // For floating-point precision of 18:
3342      //
3343      //   Log10ofMantissa =
3344      //     -0.84299375f +
3345      //       (1.5327582f +
3346      //         (-1.0688956f +
3347      //           (0.49102474f +
3348      //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
3349      //
3350      // error 0.0000037995730, which is better than 18 bits
3351      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3352                               getF32Constant(DAG, 0x3c5d51ce));
3353      SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
3354                               getF32Constant(DAG, 0x3e00685a));
3355      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3356      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3357                               getF32Constant(DAG, 0x3efb6798));
3358      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3359      SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
3360                               getF32Constant(DAG, 0x3f88d192));
3361      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3362      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3363                               getF32Constant(DAG, 0x3fc4316c));
3364      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3365      SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
3366                                            getF32Constant(DAG, 0x3f57ce70));
3367
3368      result = DAG.getNode(ISD::FADD, dl,
3369                           MVT::f32, LogOfExponent, Log10ofMantissa);
3370    }
3371  } else {
3372    // No special expansion.
3373    result = DAG.getNode(ISD::FLOG10, dl,
3374                         getValue(I.getOperand(1)).getValueType(),
3375                         getValue(I.getOperand(1)));
3376  }
3377
3378  setValue(&I, result);
3379}
3380
3381/// visitExp2 - Lower an exp2 intrinsic. Handles the special sequences for
3382/// limited-precision mode.
3383void
3384SelectionDAGBuilder::visitExp2(const CallInst &I) {
3385  SDValue result;
3386  DebugLoc dl = getCurDebugLoc();
3387
3388  if (getValue(I.getOperand(1)).getValueType() == MVT::f32 &&
3389      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3390    SDValue Op = getValue(I.getOperand(1));
3391
3392    SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Op);
3393
3394    //   FractionalPartOfX = x - (float)IntegerPartOfX;
3395    SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
3396    SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, Op, t1);
3397
3398    //   IntegerPartOfX <<= 23;
3399    IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
3400                                 DAG.getConstant(23, TLI.getPointerTy()));
3401
3402    if (LimitFloatPrecision <= 6) {
3403      // For floating-point precision of 6:
3404      //
3405      //   TwoToFractionalPartOfX =
3406      //     0.997535578f +
3407      //       (0.735607626f + 0.252464424f * x) * x;
3408      //
3409      // error 0.0144103317, which is 6 bits
3410      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3411                               getF32Constant(DAG, 0x3e814304));
3412      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3413                               getF32Constant(DAG, 0x3f3c50c8));
3414      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3415      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3416                               getF32Constant(DAG, 0x3f7f5e7e));
3417      SDValue t6 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t5);
3418      SDValue TwoToFractionalPartOfX =
3419        DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX);
3420
3421      result = DAG.getNode(ISD::BIT_CONVERT, dl,
3422                           MVT::f32, TwoToFractionalPartOfX);
3423    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3424      // For floating-point precision of 12:
3425      //
3426      //   TwoToFractionalPartOfX =
3427      //     0.999892986f +
3428      //       (0.696457318f +
3429      //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
3430      //
3431      // error 0.000107046256, which is 13 to 14 bits
3432      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3433                               getF32Constant(DAG, 0x3da235e3));
3434      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3435                               getF32Constant(DAG, 0x3e65b8f3));
3436      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3437      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3438                               getF32Constant(DAG, 0x3f324b07));
3439      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3440      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3441                               getF32Constant(DAG, 0x3f7ff8fd));
3442      SDValue t8 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t7);
3443      SDValue TwoToFractionalPartOfX =
3444        DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX);
3445
3446      result = DAG.getNode(ISD::BIT_CONVERT, dl,
3447                           MVT::f32, TwoToFractionalPartOfX);
3448    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3449      // For floating-point precision of 18:
3450      //
3451      //   TwoToFractionalPartOfX =
3452      //     0.999999982f +
3453      //       (0.693148872f +
3454      //         (0.240227044f +
3455      //           (0.554906021e-1f +
3456      //             (0.961591928e-2f +
3457      //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
3458      // error 2.47208000*10^(-7), which is better than 18 bits
3459      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3460                               getF32Constant(DAG, 0x3924b03e));
3461      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3462                               getF32Constant(DAG, 0x3ab24b87));
3463      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3464      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3465                               getF32Constant(DAG, 0x3c1d8c17));
3466      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3467      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3468                               getF32Constant(DAG, 0x3d634a1d));
3469      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3470      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3471                               getF32Constant(DAG, 0x3e75fe14));
3472      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3473      SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
3474                                getF32Constant(DAG, 0x3f317234));
3475      SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
3476      SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
3477                                getF32Constant(DAG, 0x3f800000));
3478      SDValue t14 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t13);
3479      SDValue TwoToFractionalPartOfX =
3480        DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX);
3481
3482      result = DAG.getNode(ISD::BIT_CONVERT, dl,
3483                           MVT::f32, TwoToFractionalPartOfX);
3484    }
3485  } else {
3486    // No special expansion.
3487    result = DAG.getNode(ISD::FEXP2, dl,
3488                         getValue(I.getOperand(1)).getValueType(),
3489                         getValue(I.getOperand(1)));
3490  }
3491
3492  setValue(&I, result);
3493}
3494
3495/// visitPow - Lower a pow intrinsic. Handles the special sequences for
3496/// limited-precision mode with x == 10.0f.
3497void
3498SelectionDAGBuilder::visitPow(const CallInst &I) {
3499  SDValue result;
3500  const Value *Val = I.getOperand(1);
3501  DebugLoc dl = getCurDebugLoc();
3502  bool IsExp10 = false;
3503
3504  if (getValue(Val).getValueType() == MVT::f32 &&
3505      getValue(I.getOperand(2)).getValueType() == MVT::f32 &&
3506      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3507    if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(Val))) {
3508      if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
3509        APFloat Ten(10.0f);
3510        IsExp10 = CFP->getValueAPF().bitwiseIsEqual(Ten);
3511      }
3512    }
3513  }
3514
3515  if (IsExp10 && LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3516    SDValue Op = getValue(I.getOperand(2));
3517
3518    // Put the exponent in the right bit position for later addition to the
3519    // final result:
3520    //
3521    //   #define LOG2OF10 3.3219281f
3522    //   IntegerPartOfX = (int32_t)(x * LOG2OF10);
3523    SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
3524                             getF32Constant(DAG, 0x40549a78));
3525    SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
3526
3527    //   FractionalPartOfX = x - (float)IntegerPartOfX;
3528    SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
3529    SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
3530
3531    //   IntegerPartOfX <<= 23;
3532    IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
3533                                 DAG.getConstant(23, TLI.getPointerTy()));
3534
3535    if (LimitFloatPrecision <= 6) {
3536      // For floating-point precision of 6:
3537      //
3538      //   twoToFractionalPartOfX =
3539      //     0.997535578f +
3540      //       (0.735607626f + 0.252464424f * x) * x;
3541      //
3542      // error 0.0144103317, which is 6 bits
3543      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3544                               getF32Constant(DAG, 0x3e814304));
3545      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3546                               getF32Constant(DAG, 0x3f3c50c8));
3547      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3548      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3549                               getF32Constant(DAG, 0x3f7f5e7e));
3550      SDValue t6 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t5);
3551      SDValue TwoToFractionalPartOfX =
3552        DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX);
3553
3554      result = DAG.getNode(ISD::BIT_CONVERT, dl,
3555                           MVT::f32, TwoToFractionalPartOfX);
3556    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3557      // For floating-point precision of 12:
3558      //
3559      //   TwoToFractionalPartOfX =
3560      //     0.999892986f +
3561      //       (0.696457318f +
3562      //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
3563      //
3564      // error 0.000107046256, which is 13 to 14 bits
3565      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3566                               getF32Constant(DAG, 0x3da235e3));
3567      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3568                               getF32Constant(DAG, 0x3e65b8f3));
3569      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3570      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3571                               getF32Constant(DAG, 0x3f324b07));
3572      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3573      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3574                               getF32Constant(DAG, 0x3f7ff8fd));
3575      SDValue t8 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t7);
3576      SDValue TwoToFractionalPartOfX =
3577        DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX);
3578
3579      result = DAG.getNode(ISD::BIT_CONVERT, dl,
3580                           MVT::f32, TwoToFractionalPartOfX);
3581    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3582      // For floating-point precision of 18:
3583      //
3584      //   TwoToFractionalPartOfX =
3585      //     0.999999982f +
3586      //       (0.693148872f +
3587      //         (0.240227044f +
3588      //           (0.554906021e-1f +
3589      //             (0.961591928e-2f +
3590      //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
3591      // error 2.47208000*10^(-7), which is better than 18 bits
3592      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3593                               getF32Constant(DAG, 0x3924b03e));
3594      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3595                               getF32Constant(DAG, 0x3ab24b87));
3596      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3597      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3598                               getF32Constant(DAG, 0x3c1d8c17));
3599      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3600      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3601                               getF32Constant(DAG, 0x3d634a1d));
3602      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3603      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3604                               getF32Constant(DAG, 0x3e75fe14));
3605      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3606      SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
3607                                getF32Constant(DAG, 0x3f317234));
3608      SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
3609      SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
3610                                getF32Constant(DAG, 0x3f800000));
3611      SDValue t14 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t13);
3612      SDValue TwoToFractionalPartOfX =
3613        DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX);
3614
3615      result = DAG.getNode(ISD::BIT_CONVERT, dl,
3616                           MVT::f32, TwoToFractionalPartOfX);
3617    }
3618  } else {
3619    // No special expansion.
3620    result = DAG.getNode(ISD::FPOW, dl,
3621                         getValue(I.getOperand(1)).getValueType(),
3622                         getValue(I.getOperand(1)),
3623                         getValue(I.getOperand(2)));
3624  }
3625
3626  setValue(&I, result);
3627}
3628
3629
3630/// ExpandPowI - Expand a llvm.powi intrinsic.
3631static SDValue ExpandPowI(DebugLoc DL, SDValue LHS, SDValue RHS,
3632                          SelectionDAG &DAG) {
3633  // If RHS is a constant, we can expand this out to a multiplication tree,
3634  // otherwise we end up lowering to a call to __powidf2 (for example).  When
3635  // optimizing for size, we only want to do this if the expansion would produce
3636  // a small number of multiplies, otherwise we do the full expansion.
3637  if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
3638    // Get the exponent as a positive value.
3639    unsigned Val = RHSC->getSExtValue();
3640    if ((int)Val < 0) Val = -Val;
3641
3642    // powi(x, 0) -> 1.0
3643    if (Val == 0)
3644      return DAG.getConstantFP(1.0, LHS.getValueType());
3645
3646    const Function *F = DAG.getMachineFunction().getFunction();
3647    if (!F->hasFnAttr(Attribute::OptimizeForSize) ||
3648        // If optimizing for size, don't insert too many multiplies.  This
3649        // inserts up to 5 multiplies.
3650        CountPopulation_32(Val)+Log2_32(Val) < 7) {
3651      // We use the simple binary decomposition method to generate the multiply
3652      // sequence.  There are more optimal ways to do this (for example,
3653      // powi(x,15) generates one more multiply than it should), but this has
3654      // the benefit of being both really simple and much better than a libcall.
3655      SDValue Res;  // Logically starts equal to 1.0
3656      SDValue CurSquare = LHS;
3657      while (Val) {
3658        if (Val & 1) {
3659          if (Res.getNode())
3660            Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare);
3661          else
3662            Res = CurSquare;  // 1.0*CurSquare.
3663        }
3664
3665        CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
3666                                CurSquare, CurSquare);
3667        Val >>= 1;
3668      }
3669
3670      // If the original was negative, invert the result, producing 1/(x*x*x).
3671      if (RHSC->getSExtValue() < 0)
3672        Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
3673                          DAG.getConstantFP(1.0, LHS.getValueType()), Res);
3674      return Res;
3675    }
3676  }
3677
3678  // Otherwise, expand to a libcall.
3679  return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
3680}
3681
3682/// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function
3683/// argument, create the corresponding DBG_VALUE machine instruction for it now.
3684/// At the end of instruction selection, they will be inserted to the entry BB.
3685bool
3686SelectionDAGBuilder::EmitFuncArgumentDbgValue(const DbgValueInst &DI,
3687                                              const Value *V, MDNode *Variable,
3688                                              uint64_t Offset, SDValue &N) {
3689  if (!isa<Argument>(V))
3690    return false;
3691
3692  MachineFunction &MF = DAG.getMachineFunction();
3693  // Ignore inlined function arguments here.
3694  DIVariable DV(Variable);
3695  if (DV.isInlinedFnArgument(MF.getFunction()))
3696    return false;
3697
3698  MachineBasicBlock *MBB = FuncInfo.MBBMap[DI.getParent()];
3699  if (MBB != &MF.front())
3700    return false;
3701
3702  unsigned Reg = 0;
3703  if (N.getOpcode() == ISD::CopyFromReg) {
3704    Reg = cast<RegisterSDNode>(N.getOperand(1))->getReg();
3705    if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) {
3706      MachineRegisterInfo &RegInfo = MF.getRegInfo();
3707      unsigned PR = RegInfo.getLiveInPhysReg(Reg);
3708      if (PR)
3709        Reg = PR;
3710    }
3711  }
3712
3713  if (!Reg) {
3714    DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
3715    if (VMI == FuncInfo.ValueMap.end())
3716      return false;
3717    Reg = VMI->second;
3718  }
3719
3720  const TargetInstrInfo *TII = DAG.getTarget().getInstrInfo();
3721  MachineInstrBuilder MIB = BuildMI(MF, getCurDebugLoc(),
3722                                    TII->get(TargetOpcode::DBG_VALUE))
3723    .addReg(Reg, RegState::Debug).addImm(Offset).addMetadata(Variable);
3724  FuncInfo.ArgDbgValues.push_back(&*MIB);
3725  return true;
3726}
3727
3728/// visitIntrinsicCall - Lower the call to the specified intrinsic function.  If
3729/// we want to emit this as a call to a named external function, return the name
3730/// otherwise lower it and return null.
3731const char *
3732SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) {
3733  DebugLoc dl = getCurDebugLoc();
3734  SDValue Res;
3735
3736  switch (Intrinsic) {
3737  default:
3738    // By default, turn this into a target intrinsic node.
3739    visitTargetIntrinsic(I, Intrinsic);
3740    return 0;
3741  case Intrinsic::vastart:  visitVAStart(I); return 0;
3742  case Intrinsic::vaend:    visitVAEnd(I); return 0;
3743  case Intrinsic::vacopy:   visitVACopy(I); return 0;
3744  case Intrinsic::returnaddress:
3745    setValue(&I, DAG.getNode(ISD::RETURNADDR, dl, TLI.getPointerTy(),
3746                             getValue(I.getOperand(1))));
3747    return 0;
3748  case Intrinsic::frameaddress:
3749    setValue(&I, DAG.getNode(ISD::FRAMEADDR, dl, TLI.getPointerTy(),
3750                             getValue(I.getOperand(1))));
3751    return 0;
3752  case Intrinsic::setjmp:
3753    return "_setjmp"+!TLI.usesUnderscoreSetJmp();
3754  case Intrinsic::longjmp:
3755    return "_longjmp"+!TLI.usesUnderscoreLongJmp();
3756  case Intrinsic::memcpy: {
3757    // Assert for address < 256 since we support only user defined address
3758    // spaces.
3759    assert(cast<PointerType>(I.getOperand(1)->getType())->getAddressSpace()
3760           < 256 &&
3761           cast<PointerType>(I.getOperand(2)->getType())->getAddressSpace()
3762           < 256 &&
3763           "Unknown address space");
3764    SDValue Op1 = getValue(I.getOperand(1));
3765    SDValue Op2 = getValue(I.getOperand(2));
3766    SDValue Op3 = getValue(I.getOperand(3));
3767    unsigned Align = cast<ConstantInt>(I.getOperand(4))->getZExtValue();
3768    bool isVol = cast<ConstantInt>(I.getOperand(5))->getZExtValue();
3769    DAG.setRoot(DAG.getMemcpy(getRoot(), dl, Op1, Op2, Op3, Align, isVol, false,
3770                              I.getOperand(1), 0, I.getOperand(2), 0));
3771    return 0;
3772  }
3773  case Intrinsic::memset: {
3774    // Assert for address < 256 since we support only user defined address
3775    // spaces.
3776    assert(cast<PointerType>(I.getOperand(1)->getType())->getAddressSpace()
3777           < 256 &&
3778           "Unknown address space");
3779    SDValue Op1 = getValue(I.getOperand(1));
3780    SDValue Op2 = getValue(I.getOperand(2));
3781    SDValue Op3 = getValue(I.getOperand(3));
3782    unsigned Align = cast<ConstantInt>(I.getOperand(4))->getZExtValue();
3783    bool isVol = cast<ConstantInt>(I.getOperand(5))->getZExtValue();
3784    DAG.setRoot(DAG.getMemset(getRoot(), dl, Op1, Op2, Op3, Align, isVol,
3785                              I.getOperand(1), 0));
3786    return 0;
3787  }
3788  case Intrinsic::memmove: {
3789    // Assert for address < 256 since we support only user defined address
3790    // spaces.
3791    assert(cast<PointerType>(I.getOperand(1)->getType())->getAddressSpace()
3792           < 256 &&
3793           cast<PointerType>(I.getOperand(2)->getType())->getAddressSpace()
3794           < 256 &&
3795           "Unknown address space");
3796    SDValue Op1 = getValue(I.getOperand(1));
3797    SDValue Op2 = getValue(I.getOperand(2));
3798    SDValue Op3 = getValue(I.getOperand(3));
3799    unsigned Align = cast<ConstantInt>(I.getOperand(4))->getZExtValue();
3800    bool isVol = cast<ConstantInt>(I.getOperand(5))->getZExtValue();
3801
3802    // If the source and destination are known to not be aliases, we can
3803    // lower memmove as memcpy.
3804    uint64_t Size = -1ULL;
3805    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op3))
3806      Size = C->getZExtValue();
3807    if (AA->alias(I.getOperand(1), Size, I.getOperand(2), Size) ==
3808        AliasAnalysis::NoAlias) {
3809      DAG.setRoot(DAG.getMemcpy(getRoot(), dl, Op1, Op2, Op3, Align, isVol,
3810                                false, I.getOperand(1), 0, I.getOperand(2), 0));
3811      return 0;
3812    }
3813
3814    DAG.setRoot(DAG.getMemmove(getRoot(), dl, Op1, Op2, Op3, Align, isVol,
3815                               I.getOperand(1), 0, I.getOperand(2), 0));
3816    return 0;
3817  }
3818  case Intrinsic::dbg_declare: {
3819    const DbgDeclareInst &DI = cast<DbgDeclareInst>(I);
3820    if (!DIDescriptor::ValidDebugInfo(DI.getVariable(), CodeGenOpt::None))
3821      return 0;
3822
3823    MDNode *Variable = DI.getVariable();
3824    // Parameters are handled specially.
3825    bool isParameter =
3826      DIVariable(Variable).getTag() == dwarf::DW_TAG_arg_variable;
3827    const Value *Address = DI.getAddress();
3828    if (!Address)
3829      return 0;
3830    if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
3831      Address = BCI->getOperand(0);
3832    const AllocaInst *AI = dyn_cast<AllocaInst>(Address);
3833    if (AI) {
3834      // Don't handle byval arguments or VLAs, for example.
3835      // Non-byval arguments are handled here (they refer to the stack temporary
3836      // alloca at this point).
3837      DenseMap<const AllocaInst*, int>::iterator SI =
3838        FuncInfo.StaticAllocaMap.find(AI);
3839      if (SI == FuncInfo.StaticAllocaMap.end())
3840        return 0; // VLAs.
3841      int FI = SI->second;
3842
3843      MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
3844      if (!DI.getDebugLoc().isUnknown() && MMI.hasDebugInfo())
3845        MMI.setVariableDbgInfo(Variable, FI, DI.getDebugLoc());
3846    }
3847
3848    // Build an entry in DbgOrdering.  Debug info input nodes get an SDNodeOrder
3849    // but do not always have a corresponding SDNode built.  The SDNodeOrder
3850    // absolute, but not relative, values are different depending on whether
3851    // debug info exists.
3852    ++SDNodeOrder;
3853    SDValue &N = NodeMap[Address];
3854    SDDbgValue *SDV;
3855    if (N.getNode()) {
3856      if (isParameter && !AI) {
3857        FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
3858        if (FINode)
3859          // Byval parameter.  We have a frame index at this point.
3860          SDV = DAG.getDbgValue(Variable, FINode->getIndex(),
3861                                0, dl, SDNodeOrder);
3862        else
3863          // Can't do anything with other non-AI cases yet.  This might be a
3864          // parameter of a callee function that got inlined, for example.
3865          return 0;
3866      } else if (AI)
3867        SDV = DAG.getDbgValue(Variable, N.getNode(), N.getResNo(),
3868                              0, dl, SDNodeOrder);
3869      else
3870        // Can't do anything with other non-AI cases yet.
3871        return 0;
3872      DAG.AddDbgValue(SDV, N.getNode(), isParameter);
3873    } else {
3874      // This isn't useful, but it shows what we're missing.
3875      SDV = DAG.getDbgValue(Variable, UndefValue::get(Address->getType()),
3876                            0, dl, SDNodeOrder);
3877      DAG.AddDbgValue(SDV, 0, isParameter);
3878    }
3879    return 0;
3880  }
3881  case Intrinsic::dbg_value: {
3882    const DbgValueInst &DI = cast<DbgValueInst>(I);
3883    if (!DIDescriptor::ValidDebugInfo(DI.getVariable(), CodeGenOpt::None))
3884      return 0;
3885
3886    MDNode *Variable = DI.getVariable();
3887    uint64_t Offset = DI.getOffset();
3888    const Value *V = DI.getValue();
3889    if (!V)
3890      return 0;
3891
3892    // Build an entry in DbgOrdering.  Debug info input nodes get an SDNodeOrder
3893    // but do not always have a corresponding SDNode built.  The SDNodeOrder
3894    // absolute, but not relative, values are different depending on whether
3895    // debug info exists.
3896    ++SDNodeOrder;
3897    SDDbgValue *SDV;
3898    if (isa<ConstantInt>(V) || isa<ConstantFP>(V)) {
3899      SDV = DAG.getDbgValue(Variable, V, Offset, dl, SDNodeOrder);
3900      DAG.AddDbgValue(SDV, 0, false);
3901    } else {
3902      SDValue &N = NodeMap[V];
3903      if (N.getNode()) {
3904        if (!EmitFuncArgumentDbgValue(DI, V, Variable, Offset, N)) {
3905          SDV = DAG.getDbgValue(Variable, N.getNode(),
3906                                N.getResNo(), Offset, dl, SDNodeOrder);
3907          DAG.AddDbgValue(SDV, N.getNode(), false);
3908        }
3909      } else {
3910        // We may expand this to cover more cases.  One case where we have no
3911        // data available is an unreferenced parameter; we need this fallback.
3912        SDV = DAG.getDbgValue(Variable, UndefValue::get(V->getType()),
3913                              Offset, dl, SDNodeOrder);
3914        DAG.AddDbgValue(SDV, 0, false);
3915      }
3916    }
3917
3918    // Build a debug info table entry.
3919    if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V))
3920      V = BCI->getOperand(0);
3921    const AllocaInst *AI = dyn_cast<AllocaInst>(V);
3922    // Don't handle byval struct arguments or VLAs, for example.
3923    if (!AI)
3924      return 0;
3925    DenseMap<const AllocaInst*, int>::iterator SI =
3926      FuncInfo.StaticAllocaMap.find(AI);
3927    if (SI == FuncInfo.StaticAllocaMap.end())
3928      return 0; // VLAs.
3929    int FI = SI->second;
3930
3931    MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
3932    if (!DI.getDebugLoc().isUnknown() && MMI.hasDebugInfo())
3933      MMI.setVariableDbgInfo(Variable, FI, DI.getDebugLoc());
3934    return 0;
3935  }
3936  case Intrinsic::eh_exception: {
3937    // Insert the EXCEPTIONADDR instruction.
3938    assert(FuncInfo.MBBMap[I.getParent()]->isLandingPad() &&
3939           "Call to eh.exception not in landing pad!");
3940    SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
3941    SDValue Ops[1];
3942    Ops[0] = DAG.getRoot();
3943    SDValue Op = DAG.getNode(ISD::EXCEPTIONADDR, dl, VTs, Ops, 1);
3944    setValue(&I, Op);
3945    DAG.setRoot(Op.getValue(1));
3946    return 0;
3947  }
3948
3949  case Intrinsic::eh_selector: {
3950    MachineBasicBlock *CallMBB = FuncInfo.MBBMap[I.getParent()];
3951    MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
3952    if (CallMBB->isLandingPad())
3953      AddCatchInfo(I, &MMI, CallMBB);
3954    else {
3955#ifndef NDEBUG
3956      FuncInfo.CatchInfoLost.insert(&I);
3957#endif
3958      // FIXME: Mark exception selector register as live in.  Hack for PR1508.
3959      unsigned Reg = TLI.getExceptionSelectorRegister();
3960      if (Reg) FuncInfo.MBBMap[I.getParent()]->addLiveIn(Reg);
3961    }
3962
3963    // Insert the EHSELECTION instruction.
3964    SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
3965    SDValue Ops[2];
3966    Ops[0] = getValue(I.getOperand(1));
3967    Ops[1] = getRoot();
3968    SDValue Op = DAG.getNode(ISD::EHSELECTION, dl, VTs, Ops, 2);
3969    DAG.setRoot(Op.getValue(1));
3970    setValue(&I, DAG.getSExtOrTrunc(Op, dl, MVT::i32));
3971    return 0;
3972  }
3973
3974  case Intrinsic::eh_typeid_for: {
3975    // Find the type id for the given typeinfo.
3976    GlobalVariable *GV = ExtractTypeInfo(I.getOperand(1));
3977    unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV);
3978    Res = DAG.getConstant(TypeID, MVT::i32);
3979    setValue(&I, Res);
3980    return 0;
3981  }
3982
3983  case Intrinsic::eh_return_i32:
3984  case Intrinsic::eh_return_i64:
3985    DAG.getMachineFunction().getMMI().setCallsEHReturn(true);
3986    DAG.setRoot(DAG.getNode(ISD::EH_RETURN, dl,
3987                            MVT::Other,
3988                            getControlRoot(),
3989                            getValue(I.getOperand(1)),
3990                            getValue(I.getOperand(2))));
3991    return 0;
3992  case Intrinsic::eh_unwind_init:
3993    DAG.getMachineFunction().getMMI().setCallsUnwindInit(true);
3994    return 0;
3995  case Intrinsic::eh_dwarf_cfa: {
3996    EVT VT = getValue(I.getOperand(1)).getValueType();
3997    SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), dl,
3998                                        TLI.getPointerTy());
3999    SDValue Offset = DAG.getNode(ISD::ADD, dl,
4000                                 TLI.getPointerTy(),
4001                                 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, dl,
4002                                             TLI.getPointerTy()),
4003                                 CfaArg);
4004    SDValue FA = DAG.getNode(ISD::FRAMEADDR, dl,
4005                             TLI.getPointerTy(),
4006                             DAG.getConstant(0, TLI.getPointerTy()));
4007    setValue(&I, DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(),
4008                             FA, Offset));
4009    return 0;
4010  }
4011  case Intrinsic::eh_sjlj_callsite: {
4012    MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4013    ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(1));
4014    assert(CI && "Non-constant call site value in eh.sjlj.callsite!");
4015    assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
4016
4017    MMI.setCurrentCallSite(CI->getZExtValue());
4018    return 0;
4019  }
4020
4021  case Intrinsic::convertff:
4022  case Intrinsic::convertfsi:
4023  case Intrinsic::convertfui:
4024  case Intrinsic::convertsif:
4025  case Intrinsic::convertuif:
4026  case Intrinsic::convertss:
4027  case Intrinsic::convertsu:
4028  case Intrinsic::convertus:
4029  case Intrinsic::convertuu: {
4030    ISD::CvtCode Code = ISD::CVT_INVALID;
4031    switch (Intrinsic) {
4032    case Intrinsic::convertff:  Code = ISD::CVT_FF; break;
4033    case Intrinsic::convertfsi: Code = ISD::CVT_FS; break;
4034    case Intrinsic::convertfui: Code = ISD::CVT_FU; break;
4035    case Intrinsic::convertsif: Code = ISD::CVT_SF; break;
4036    case Intrinsic::convertuif: Code = ISD::CVT_UF; break;
4037    case Intrinsic::convertss:  Code = ISD::CVT_SS; break;
4038    case Intrinsic::convertsu:  Code = ISD::CVT_SU; break;
4039    case Intrinsic::convertus:  Code = ISD::CVT_US; break;
4040    case Intrinsic::convertuu:  Code = ISD::CVT_UU; break;
4041    }
4042    EVT DestVT = TLI.getValueType(I.getType());
4043    const Value *Op1 = I.getOperand(1);
4044    Res = DAG.getConvertRndSat(DestVT, getCurDebugLoc(), getValue(Op1),
4045                               DAG.getValueType(DestVT),
4046                               DAG.getValueType(getValue(Op1).getValueType()),
4047                               getValue(I.getOperand(2)),
4048                               getValue(I.getOperand(3)),
4049                               Code);
4050    setValue(&I, Res);
4051    return 0;
4052  }
4053  case Intrinsic::sqrt:
4054    setValue(&I, DAG.getNode(ISD::FSQRT, dl,
4055                             getValue(I.getOperand(1)).getValueType(),
4056                             getValue(I.getOperand(1))));
4057    return 0;
4058  case Intrinsic::powi:
4059    setValue(&I, ExpandPowI(dl, getValue(I.getOperand(1)),
4060                            getValue(I.getOperand(2)), DAG));
4061    return 0;
4062  case Intrinsic::sin:
4063    setValue(&I, DAG.getNode(ISD::FSIN, dl,
4064                             getValue(I.getOperand(1)).getValueType(),
4065                             getValue(I.getOperand(1))));
4066    return 0;
4067  case Intrinsic::cos:
4068    setValue(&I, DAG.getNode(ISD::FCOS, dl,
4069                             getValue(I.getOperand(1)).getValueType(),
4070                             getValue(I.getOperand(1))));
4071    return 0;
4072  case Intrinsic::log:
4073    visitLog(I);
4074    return 0;
4075  case Intrinsic::log2:
4076    visitLog2(I);
4077    return 0;
4078  case Intrinsic::log10:
4079    visitLog10(I);
4080    return 0;
4081  case Intrinsic::exp:
4082    visitExp(I);
4083    return 0;
4084  case Intrinsic::exp2:
4085    visitExp2(I);
4086    return 0;
4087  case Intrinsic::pow:
4088    visitPow(I);
4089    return 0;
4090  case Intrinsic::convert_to_fp16:
4091    setValue(&I, DAG.getNode(ISD::FP32_TO_FP16, dl,
4092                             MVT::i16, getValue(I.getOperand(1))));
4093    return 0;
4094  case Intrinsic::convert_from_fp16:
4095    setValue(&I, DAG.getNode(ISD::FP16_TO_FP32, dl,
4096                             MVT::f32, getValue(I.getOperand(1))));
4097    return 0;
4098  case Intrinsic::pcmarker: {
4099    SDValue Tmp = getValue(I.getOperand(1));
4100    DAG.setRoot(DAG.getNode(ISD::PCMARKER, dl, MVT::Other, getRoot(), Tmp));
4101    return 0;
4102  }
4103  case Intrinsic::readcyclecounter: {
4104    SDValue Op = getRoot();
4105    Res = DAG.getNode(ISD::READCYCLECOUNTER, dl,
4106                      DAG.getVTList(MVT::i64, MVT::Other),
4107                      &Op, 1);
4108    setValue(&I, Res);
4109    DAG.setRoot(Res.getValue(1));
4110    return 0;
4111  }
4112  case Intrinsic::bswap:
4113    setValue(&I, DAG.getNode(ISD::BSWAP, dl,
4114                             getValue(I.getOperand(1)).getValueType(),
4115                             getValue(I.getOperand(1))));
4116    return 0;
4117  case Intrinsic::cttz: {
4118    SDValue Arg = getValue(I.getOperand(1));
4119    EVT Ty = Arg.getValueType();
4120    setValue(&I, DAG.getNode(ISD::CTTZ, dl, Ty, Arg));
4121    return 0;
4122  }
4123  case Intrinsic::ctlz: {
4124    SDValue Arg = getValue(I.getOperand(1));
4125    EVT Ty = Arg.getValueType();
4126    setValue(&I, DAG.getNode(ISD::CTLZ, dl, Ty, Arg));
4127    return 0;
4128  }
4129  case Intrinsic::ctpop: {
4130    SDValue Arg = getValue(I.getOperand(1));
4131    EVT Ty = Arg.getValueType();
4132    setValue(&I, DAG.getNode(ISD::CTPOP, dl, Ty, Arg));
4133    return 0;
4134  }
4135  case Intrinsic::stacksave: {
4136    SDValue Op = getRoot();
4137    Res = DAG.getNode(ISD::STACKSAVE, dl,
4138                      DAG.getVTList(TLI.getPointerTy(), MVT::Other), &Op, 1);
4139    setValue(&I, Res);
4140    DAG.setRoot(Res.getValue(1));
4141    return 0;
4142  }
4143  case Intrinsic::stackrestore: {
4144    Res = getValue(I.getOperand(1));
4145    DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, dl, MVT::Other, getRoot(), Res));
4146    return 0;
4147  }
4148  case Intrinsic::stackprotector: {
4149    // Emit code into the DAG to store the stack guard onto the stack.
4150    MachineFunction &MF = DAG.getMachineFunction();
4151    MachineFrameInfo *MFI = MF.getFrameInfo();
4152    EVT PtrTy = TLI.getPointerTy();
4153
4154    SDValue Src = getValue(I.getOperand(1));   // The guard's value.
4155    AllocaInst *Slot = cast<AllocaInst>(I.getOperand(2));
4156
4157    int FI = FuncInfo.StaticAllocaMap[Slot];
4158    MFI->setStackProtectorIndex(FI);
4159
4160    SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
4161
4162    // Store the stack protector onto the stack.
4163    Res = DAG.getStore(getRoot(), getCurDebugLoc(), Src, FIN,
4164                       PseudoSourceValue::getFixedStack(FI),
4165                       0, true, false, 0);
4166    setValue(&I, Res);
4167    DAG.setRoot(Res);
4168    return 0;
4169  }
4170  case Intrinsic::objectsize: {
4171    // If we don't know by now, we're never going to know.
4172    ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(2));
4173
4174    assert(CI && "Non-constant type in __builtin_object_size?");
4175
4176    SDValue Arg = getValue(I.getOperand(0));
4177    EVT Ty = Arg.getValueType();
4178
4179    if (CI->getZExtValue() == 0)
4180      Res = DAG.getConstant(-1ULL, Ty);
4181    else
4182      Res = DAG.getConstant(0, Ty);
4183
4184    setValue(&I, Res);
4185    return 0;
4186  }
4187  case Intrinsic::var_annotation:
4188    // Discard annotate attributes
4189    return 0;
4190
4191  case Intrinsic::init_trampoline: {
4192    const Function *F = cast<Function>(I.getOperand(2)->stripPointerCasts());
4193
4194    SDValue Ops[6];
4195    Ops[0] = getRoot();
4196    Ops[1] = getValue(I.getOperand(1));
4197    Ops[2] = getValue(I.getOperand(2));
4198    Ops[3] = getValue(I.getOperand(3));
4199    Ops[4] = DAG.getSrcValue(I.getOperand(1));
4200    Ops[5] = DAG.getSrcValue(F);
4201
4202    Res = DAG.getNode(ISD::TRAMPOLINE, dl,
4203                      DAG.getVTList(TLI.getPointerTy(), MVT::Other),
4204                      Ops, 6);
4205
4206    setValue(&I, Res);
4207    DAG.setRoot(Res.getValue(1));
4208    return 0;
4209  }
4210  case Intrinsic::gcroot:
4211    if (GFI) {
4212      const Value *Alloca = I.getOperand(1);
4213      const Constant *TypeMap = cast<Constant>(I.getOperand(2));
4214
4215      FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
4216      GFI->addStackRoot(FI->getIndex(), TypeMap);
4217    }
4218    return 0;
4219  case Intrinsic::gcread:
4220  case Intrinsic::gcwrite:
4221    llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
4222    return 0;
4223  case Intrinsic::flt_rounds:
4224    setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, dl, MVT::i32));
4225    return 0;
4226  case Intrinsic::trap:
4227    DAG.setRoot(DAG.getNode(ISD::TRAP, dl,MVT::Other, getRoot()));
4228    return 0;
4229  case Intrinsic::uadd_with_overflow:
4230    return implVisitAluOverflow(I, ISD::UADDO);
4231  case Intrinsic::sadd_with_overflow:
4232    return implVisitAluOverflow(I, ISD::SADDO);
4233  case Intrinsic::usub_with_overflow:
4234    return implVisitAluOverflow(I, ISD::USUBO);
4235  case Intrinsic::ssub_with_overflow:
4236    return implVisitAluOverflow(I, ISD::SSUBO);
4237  case Intrinsic::umul_with_overflow:
4238    return implVisitAluOverflow(I, ISD::UMULO);
4239  case Intrinsic::smul_with_overflow:
4240    return implVisitAluOverflow(I, ISD::SMULO);
4241
4242  case Intrinsic::prefetch: {
4243    SDValue Ops[4];
4244    Ops[0] = getRoot();
4245    Ops[1] = getValue(I.getOperand(1));
4246    Ops[2] = getValue(I.getOperand(2));
4247    Ops[3] = getValue(I.getOperand(3));
4248    DAG.setRoot(DAG.getNode(ISD::PREFETCH, dl, MVT::Other, &Ops[0], 4));
4249    return 0;
4250  }
4251
4252  case Intrinsic::memory_barrier: {
4253    SDValue Ops[6];
4254    Ops[0] = getRoot();
4255    for (int x = 1; x < 6; ++x)
4256      Ops[x] = getValue(I.getOperand(x));
4257
4258    DAG.setRoot(DAG.getNode(ISD::MEMBARRIER, dl, MVT::Other, &Ops[0], 6));
4259    return 0;
4260  }
4261  case Intrinsic::atomic_cmp_swap: {
4262    SDValue Root = getRoot();
4263    SDValue L =
4264      DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, getCurDebugLoc(),
4265                    getValue(I.getOperand(2)).getValueType().getSimpleVT(),
4266                    Root,
4267                    getValue(I.getOperand(1)),
4268                    getValue(I.getOperand(2)),
4269                    getValue(I.getOperand(3)),
4270                    I.getOperand(1));
4271    setValue(&I, L);
4272    DAG.setRoot(L.getValue(1));
4273    return 0;
4274  }
4275  case Intrinsic::atomic_load_add:
4276    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_ADD);
4277  case Intrinsic::atomic_load_sub:
4278    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_SUB);
4279  case Intrinsic::atomic_load_or:
4280    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_OR);
4281  case Intrinsic::atomic_load_xor:
4282    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_XOR);
4283  case Intrinsic::atomic_load_and:
4284    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_AND);
4285  case Intrinsic::atomic_load_nand:
4286    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_NAND);
4287  case Intrinsic::atomic_load_max:
4288    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MAX);
4289  case Intrinsic::atomic_load_min:
4290    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MIN);
4291  case Intrinsic::atomic_load_umin:
4292    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMIN);
4293  case Intrinsic::atomic_load_umax:
4294    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMAX);
4295  case Intrinsic::atomic_swap:
4296    return implVisitBinaryAtomic(I, ISD::ATOMIC_SWAP);
4297
4298  case Intrinsic::invariant_start:
4299  case Intrinsic::lifetime_start:
4300    // Discard region information.
4301    setValue(&I, DAG.getUNDEF(TLI.getPointerTy()));
4302    return 0;
4303  case Intrinsic::invariant_end:
4304  case Intrinsic::lifetime_end:
4305    // Discard region information.
4306    return 0;
4307  }
4308}
4309
4310void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee,
4311                                      bool isTailCall,
4312                                      MachineBasicBlock *LandingPad) {
4313  const PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
4314  const FunctionType *FTy = cast<FunctionType>(PT->getElementType());
4315  const Type *RetTy = FTy->getReturnType();
4316  MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4317  MCSymbol *BeginLabel = 0;
4318
4319  TargetLowering::ArgListTy Args;
4320  TargetLowering::ArgListEntry Entry;
4321  Args.reserve(CS.arg_size());
4322
4323  // Check whether the function can return without sret-demotion.
4324  SmallVector<EVT, 4> OutVTs;
4325  SmallVector<ISD::ArgFlagsTy, 4> OutsFlags;
4326  SmallVector<uint64_t, 4> Offsets;
4327  getReturnInfo(RetTy, CS.getAttributes().getRetAttributes(),
4328                OutVTs, OutsFlags, TLI, &Offsets);
4329
4330  bool CanLowerReturn = TLI.CanLowerReturn(CS.getCallingConv(),
4331                        FTy->isVarArg(), OutVTs, OutsFlags, DAG);
4332
4333  SDValue DemoteStackSlot;
4334
4335  if (!CanLowerReturn) {
4336    uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(
4337                      FTy->getReturnType());
4338    unsigned Align  = TLI.getTargetData()->getPrefTypeAlignment(
4339                      FTy->getReturnType());
4340    MachineFunction &MF = DAG.getMachineFunction();
4341    int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
4342    const Type *StackSlotPtrType = PointerType::getUnqual(FTy->getReturnType());
4343
4344    DemoteStackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy());
4345    Entry.Node = DemoteStackSlot;
4346    Entry.Ty = StackSlotPtrType;
4347    Entry.isSExt = false;
4348    Entry.isZExt = false;
4349    Entry.isInReg = false;
4350    Entry.isSRet = true;
4351    Entry.isNest = false;
4352    Entry.isByVal = false;
4353    Entry.Alignment = Align;
4354    Args.push_back(Entry);
4355    RetTy = Type::getVoidTy(FTy->getContext());
4356  }
4357
4358  for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
4359       i != e; ++i) {
4360    SDValue ArgNode = getValue(*i);
4361    Entry.Node = ArgNode; Entry.Ty = (*i)->getType();
4362
4363    unsigned attrInd = i - CS.arg_begin() + 1;
4364    Entry.isSExt  = CS.paramHasAttr(attrInd, Attribute::SExt);
4365    Entry.isZExt  = CS.paramHasAttr(attrInd, Attribute::ZExt);
4366    Entry.isInReg = CS.paramHasAttr(attrInd, Attribute::InReg);
4367    Entry.isSRet  = CS.paramHasAttr(attrInd, Attribute::StructRet);
4368    Entry.isNest  = CS.paramHasAttr(attrInd, Attribute::Nest);
4369    Entry.isByVal = CS.paramHasAttr(attrInd, Attribute::ByVal);
4370    Entry.Alignment = CS.getParamAlignment(attrInd);
4371    Args.push_back(Entry);
4372  }
4373
4374  if (LandingPad) {
4375    // Insert a label before the invoke call to mark the try range.  This can be
4376    // used to detect deletion of the invoke via the MachineModuleInfo.
4377    BeginLabel = MMI.getContext().CreateTempSymbol();
4378
4379    // For SjLj, keep track of which landing pads go with which invokes
4380    // so as to maintain the ordering of pads in the LSDA.
4381    unsigned CallSiteIndex = MMI.getCurrentCallSite();
4382    if (CallSiteIndex) {
4383      MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
4384      // Now that the call site is handled, stop tracking it.
4385      MMI.setCurrentCallSite(0);
4386    }
4387
4388    // Both PendingLoads and PendingExports must be flushed here;
4389    // this call might not return.
4390    (void)getRoot();
4391    DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getControlRoot(), BeginLabel));
4392  }
4393
4394  // Check if target-independent constraints permit a tail call here.
4395  // Target-dependent constraints are checked within TLI.LowerCallTo.
4396  if (isTailCall &&
4397      !isInTailCallPosition(CS, CS.getAttributes().getRetAttributes(), TLI))
4398    isTailCall = false;
4399
4400  std::pair<SDValue,SDValue> Result =
4401    TLI.LowerCallTo(getRoot(), RetTy,
4402                    CS.paramHasAttr(0, Attribute::SExt),
4403                    CS.paramHasAttr(0, Attribute::ZExt), FTy->isVarArg(),
4404                    CS.paramHasAttr(0, Attribute::InReg), FTy->getNumParams(),
4405                    CS.getCallingConv(),
4406                    isTailCall,
4407                    !CS.getInstruction()->use_empty(),
4408                    Callee, Args, DAG, getCurDebugLoc());
4409  assert((isTailCall || Result.second.getNode()) &&
4410         "Non-null chain expected with non-tail call!");
4411  assert((Result.second.getNode() || !Result.first.getNode()) &&
4412         "Null value expected with tail call!");
4413  if (Result.first.getNode()) {
4414    setValue(CS.getInstruction(), Result.first);
4415  } else if (!CanLowerReturn && Result.second.getNode()) {
4416    // The instruction result is the result of loading from the
4417    // hidden sret parameter.
4418    SmallVector<EVT, 1> PVTs;
4419    const Type *PtrRetTy = PointerType::getUnqual(FTy->getReturnType());
4420
4421    ComputeValueVTs(TLI, PtrRetTy, PVTs);
4422    assert(PVTs.size() == 1 && "Pointers should fit in one register");
4423    EVT PtrVT = PVTs[0];
4424    unsigned NumValues = OutVTs.size();
4425    SmallVector<SDValue, 4> Values(NumValues);
4426    SmallVector<SDValue, 4> Chains(NumValues);
4427
4428    for (unsigned i = 0; i < NumValues; ++i) {
4429      SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT,
4430                                DemoteStackSlot,
4431                                DAG.getConstant(Offsets[i], PtrVT));
4432      SDValue L = DAG.getLoad(OutVTs[i], getCurDebugLoc(), Result.second,
4433                              Add, NULL, Offsets[i], false, false, 1);
4434      Values[i] = L;
4435      Chains[i] = L.getValue(1);
4436    }
4437
4438    SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
4439                                MVT::Other, &Chains[0], NumValues);
4440    PendingLoads.push_back(Chain);
4441
4442    // Collect the legal value parts into potentially illegal values
4443    // that correspond to the original function's return values.
4444    SmallVector<EVT, 4> RetTys;
4445    RetTy = FTy->getReturnType();
4446    ComputeValueVTs(TLI, RetTy, RetTys);
4447    ISD::NodeType AssertOp = ISD::DELETED_NODE;
4448    SmallVector<SDValue, 4> ReturnValues;
4449    unsigned CurReg = 0;
4450    for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
4451      EVT VT = RetTys[I];
4452      EVT RegisterVT = TLI.getRegisterType(RetTy->getContext(), VT);
4453      unsigned NumRegs = TLI.getNumRegisters(RetTy->getContext(), VT);
4454
4455      SDValue ReturnValue =
4456        getCopyFromParts(DAG, getCurDebugLoc(), &Values[CurReg], NumRegs,
4457                         RegisterVT, VT, AssertOp);
4458      ReturnValues.push_back(ReturnValue);
4459      CurReg += NumRegs;
4460    }
4461
4462    setValue(CS.getInstruction(),
4463             DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
4464                         DAG.getVTList(&RetTys[0], RetTys.size()),
4465                         &ReturnValues[0], ReturnValues.size()));
4466
4467  }
4468
4469  // As a special case, a null chain means that a tail call has been emitted and
4470  // the DAG root is already updated.
4471  if (Result.second.getNode())
4472    DAG.setRoot(Result.second);
4473  else
4474    HasTailCall = true;
4475
4476  if (LandingPad) {
4477    // Insert a label at the end of the invoke call to mark the try range.  This
4478    // can be used to detect deletion of the invoke via the MachineModuleInfo.
4479    MCSymbol *EndLabel = MMI.getContext().CreateTempSymbol();
4480    DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getRoot(), EndLabel));
4481
4482    // Inform MachineModuleInfo of range.
4483    MMI.addInvoke(LandingPad, BeginLabel, EndLabel);
4484  }
4485}
4486
4487/// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the
4488/// value is equal or not-equal to zero.
4489static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) {
4490  for (Value::const_use_iterator UI = V->use_begin(), E = V->use_end();
4491       UI != E; ++UI) {
4492    if (const ICmpInst *IC = dyn_cast<ICmpInst>(*UI))
4493      if (IC->isEquality())
4494        if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
4495          if (C->isNullValue())
4496            continue;
4497    // Unknown instruction.
4498    return false;
4499  }
4500  return true;
4501}
4502
4503static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
4504                             const Type *LoadTy,
4505                             SelectionDAGBuilder &Builder) {
4506
4507  // Check to see if this load can be trivially constant folded, e.g. if the
4508  // input is from a string literal.
4509  if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
4510    // Cast pointer to the type we really want to load.
4511    LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
4512                                         PointerType::getUnqual(LoadTy));
4513
4514    if (const Constant *LoadCst =
4515          ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput),
4516                                       Builder.TD))
4517      return Builder.getValue(LoadCst);
4518  }
4519
4520  // Otherwise, we have to emit the load.  If the pointer is to unfoldable but
4521  // still constant memory, the input chain can be the entry node.
4522  SDValue Root;
4523  bool ConstantMemory = false;
4524
4525  // Do not serialize (non-volatile) loads of constant memory with anything.
4526  if (Builder.AA->pointsToConstantMemory(PtrVal)) {
4527    Root = Builder.DAG.getEntryNode();
4528    ConstantMemory = true;
4529  } else {
4530    // Do not serialize non-volatile loads against each other.
4531    Root = Builder.DAG.getRoot();
4532  }
4533
4534  SDValue Ptr = Builder.getValue(PtrVal);
4535  SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurDebugLoc(), Root,
4536                                        Ptr, PtrVal /*SrcValue*/, 0/*SVOffset*/,
4537                                        false /*volatile*/,
4538                                        false /*nontemporal*/, 1 /* align=1 */);
4539
4540  if (!ConstantMemory)
4541    Builder.PendingLoads.push_back(LoadVal.getValue(1));
4542  return LoadVal;
4543}
4544
4545
4546/// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form.
4547/// If so, return true and lower it, otherwise return false and it will be
4548/// lowered like a normal call.
4549bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) {
4550  // Verify that the prototype makes sense.  int memcmp(void*,void*,size_t)
4551  if (I.getNumOperands() != 4)
4552    return false;
4553
4554  const Value *LHS = I.getOperand(1), *RHS = I.getOperand(2);
4555  if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() ||
4556      !I.getOperand(3)->getType()->isIntegerTy() ||
4557      !I.getType()->isIntegerTy())
4558    return false;
4559
4560  const ConstantInt *Size = dyn_cast<ConstantInt>(I.getOperand(3));
4561
4562  // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0
4563  // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0
4564  if (Size && IsOnlyUsedInZeroEqualityComparison(&I)) {
4565    bool ActuallyDoIt = true;
4566    MVT LoadVT;
4567    const Type *LoadTy;
4568    switch (Size->getZExtValue()) {
4569    default:
4570      LoadVT = MVT::Other;
4571      LoadTy = 0;
4572      ActuallyDoIt = false;
4573      break;
4574    case 2:
4575      LoadVT = MVT::i16;
4576      LoadTy = Type::getInt16Ty(Size->getContext());
4577      break;
4578    case 4:
4579      LoadVT = MVT::i32;
4580      LoadTy = Type::getInt32Ty(Size->getContext());
4581      break;
4582    case 8:
4583      LoadVT = MVT::i64;
4584      LoadTy = Type::getInt64Ty(Size->getContext());
4585      break;
4586        /*
4587    case 16:
4588      LoadVT = MVT::v4i32;
4589      LoadTy = Type::getInt32Ty(Size->getContext());
4590      LoadTy = VectorType::get(LoadTy, 4);
4591      break;
4592         */
4593    }
4594
4595    // This turns into unaligned loads.  We only do this if the target natively
4596    // supports the MVT we'll be loading or if it is small enough (<= 4) that
4597    // we'll only produce a small number of byte loads.
4598
4599    // Require that we can find a legal MVT, and only do this if the target
4600    // supports unaligned loads of that type.  Expanding into byte loads would
4601    // bloat the code.
4602    if (ActuallyDoIt && Size->getZExtValue() > 4) {
4603      // TODO: Handle 5 byte compare as 4-byte + 1 byte.
4604      // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
4605      if (!TLI.isTypeLegal(LoadVT) ||!TLI.allowsUnalignedMemoryAccesses(LoadVT))
4606        ActuallyDoIt = false;
4607    }
4608
4609    if (ActuallyDoIt) {
4610      SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this);
4611      SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this);
4612
4613      SDValue Res = DAG.getSetCC(getCurDebugLoc(), MVT::i1, LHSVal, RHSVal,
4614                                 ISD::SETNE);
4615      EVT CallVT = TLI.getValueType(I.getType(), true);
4616      setValue(&I, DAG.getZExtOrTrunc(Res, getCurDebugLoc(), CallVT));
4617      return true;
4618    }
4619  }
4620
4621
4622  return false;
4623}
4624
4625
4626void SelectionDAGBuilder::visitCall(const CallInst &I) {
4627  const char *RenameFn = 0;
4628  if (Function *F = I.getCalledFunction()) {
4629    if (F->isDeclaration()) {
4630      const TargetIntrinsicInfo *II = TM.getIntrinsicInfo();
4631      if (II) {
4632        if (unsigned IID = II->getIntrinsicID(F)) {
4633          RenameFn = visitIntrinsicCall(I, IID);
4634          if (!RenameFn)
4635            return;
4636        }
4637      }
4638      if (unsigned IID = F->getIntrinsicID()) {
4639        RenameFn = visitIntrinsicCall(I, IID);
4640        if (!RenameFn)
4641          return;
4642      }
4643    }
4644
4645    // Check for well-known libc/libm calls.  If the function is internal, it
4646    // can't be a library call.
4647    if (!F->hasLocalLinkage() && F->hasName()) {
4648      StringRef Name = F->getName();
4649      if (Name == "copysign" || Name == "copysignf" || Name == "copysignl") {
4650        if (I.getNumOperands() == 3 &&   // Basic sanity checks.
4651            I.getOperand(1)->getType()->isFloatingPointTy() &&
4652            I.getType() == I.getOperand(1)->getType() &&
4653            I.getType() == I.getOperand(2)->getType()) {
4654          SDValue LHS = getValue(I.getOperand(1));
4655          SDValue RHS = getValue(I.getOperand(2));
4656          setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurDebugLoc(),
4657                                   LHS.getValueType(), LHS, RHS));
4658          return;
4659        }
4660      } else if (Name == "fabs" || Name == "fabsf" || Name == "fabsl") {
4661        if (I.getNumOperands() == 2 &&   // Basic sanity checks.
4662            I.getOperand(1)->getType()->isFloatingPointTy() &&
4663            I.getType() == I.getOperand(1)->getType()) {
4664          SDValue Tmp = getValue(I.getOperand(1));
4665          setValue(&I, DAG.getNode(ISD::FABS, getCurDebugLoc(),
4666                                   Tmp.getValueType(), Tmp));
4667          return;
4668        }
4669      } else if (Name == "sin" || Name == "sinf" || Name == "sinl") {
4670        if (I.getNumOperands() == 2 &&   // Basic sanity checks.
4671            I.getOperand(1)->getType()->isFloatingPointTy() &&
4672            I.getType() == I.getOperand(1)->getType() &&
4673            I.onlyReadsMemory()) {
4674          SDValue Tmp = getValue(I.getOperand(1));
4675          setValue(&I, DAG.getNode(ISD::FSIN, getCurDebugLoc(),
4676                                   Tmp.getValueType(), Tmp));
4677          return;
4678        }
4679      } else if (Name == "cos" || Name == "cosf" || Name == "cosl") {
4680        if (I.getNumOperands() == 2 &&   // Basic sanity checks.
4681            I.getOperand(1)->getType()->isFloatingPointTy() &&
4682            I.getType() == I.getOperand(1)->getType() &&
4683            I.onlyReadsMemory()) {
4684          SDValue Tmp = getValue(I.getOperand(1));
4685          setValue(&I, DAG.getNode(ISD::FCOS, getCurDebugLoc(),
4686                                   Tmp.getValueType(), Tmp));
4687          return;
4688        }
4689      } else if (Name == "sqrt" || Name == "sqrtf" || Name == "sqrtl") {
4690        if (I.getNumOperands() == 2 &&   // Basic sanity checks.
4691            I.getOperand(1)->getType()->isFloatingPointTy() &&
4692            I.getType() == I.getOperand(1)->getType() &&
4693            I.onlyReadsMemory()) {
4694          SDValue Tmp = getValue(I.getOperand(1));
4695          setValue(&I, DAG.getNode(ISD::FSQRT, getCurDebugLoc(),
4696                                   Tmp.getValueType(), Tmp));
4697          return;
4698        }
4699      } else if (Name == "memcmp") {
4700        if (visitMemCmpCall(I))
4701          return;
4702      }
4703    }
4704  } else if (isa<InlineAsm>(I.getOperand(0))) {
4705    visitInlineAsm(&I);
4706    return;
4707  }
4708
4709  SDValue Callee;
4710  if (!RenameFn)
4711    Callee = getValue(I.getOperand(0));
4712  else
4713    Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy());
4714
4715  // Check if we can potentially perform a tail call. More detailed checking is
4716  // be done within LowerCallTo, after more information about the call is known.
4717  LowerCallTo(&I, Callee, I.isTailCall());
4718}
4719
4720/// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
4721/// this value and returns the result as a ValueVT value.  This uses
4722/// Chain/Flag as the input and updates them for the output Chain/Flag.
4723/// If the Flag pointer is NULL, no flag is used.
4724SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, DebugLoc dl,
4725                                      SDValue &Chain, SDValue *Flag) const {
4726  // Assemble the legal parts into the final values.
4727  SmallVector<SDValue, 4> Values(ValueVTs.size());
4728  SmallVector<SDValue, 8> Parts;
4729  for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
4730    // Copy the legal parts from the registers.
4731    EVT ValueVT = ValueVTs[Value];
4732    unsigned NumRegs = TLI->getNumRegisters(*DAG.getContext(), ValueVT);
4733    EVT RegisterVT = RegVTs[Value];
4734
4735    Parts.resize(NumRegs);
4736    for (unsigned i = 0; i != NumRegs; ++i) {
4737      SDValue P;
4738      if (Flag == 0) {
4739        P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
4740      } else {
4741        P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
4742        *Flag = P.getValue(2);
4743      }
4744
4745      Chain = P.getValue(1);
4746
4747      // If the source register was virtual and if we know something about it,
4748      // add an assert node.
4749      if (TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) &&
4750          RegisterVT.isInteger() && !RegisterVT.isVector()) {
4751        unsigned SlotNo = Regs[Part+i]-TargetRegisterInfo::FirstVirtualRegister;
4752        FunctionLoweringInfo &FLI = DAG.getFunctionLoweringInfo();
4753        if (FLI.LiveOutRegInfo.size() > SlotNo) {
4754          FunctionLoweringInfo::LiveOutInfo &LOI = FLI.LiveOutRegInfo[SlotNo];
4755
4756          unsigned RegSize = RegisterVT.getSizeInBits();
4757          unsigned NumSignBits = LOI.NumSignBits;
4758          unsigned NumZeroBits = LOI.KnownZero.countLeadingOnes();
4759
4760          // FIXME: We capture more information than the dag can represent.  For
4761          // now, just use the tightest assertzext/assertsext possible.
4762          bool isSExt = true;
4763          EVT FromVT(MVT::Other);
4764          if (NumSignBits == RegSize)
4765            isSExt = true, FromVT = MVT::i1;   // ASSERT SEXT 1
4766          else if (NumZeroBits >= RegSize-1)
4767            isSExt = false, FromVT = MVT::i1;  // ASSERT ZEXT 1
4768          else if (NumSignBits > RegSize-8)
4769            isSExt = true, FromVT = MVT::i8;   // ASSERT SEXT 8
4770          else if (NumZeroBits >= RegSize-8)
4771            isSExt = false, FromVT = MVT::i8;  // ASSERT ZEXT 8
4772          else if (NumSignBits > RegSize-16)
4773            isSExt = true, FromVT = MVT::i16;  // ASSERT SEXT 16
4774          else if (NumZeroBits >= RegSize-16)
4775            isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16
4776          else if (NumSignBits > RegSize-32)
4777            isSExt = true, FromVT = MVT::i32;  // ASSERT SEXT 32
4778          else if (NumZeroBits >= RegSize-32)
4779            isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32
4780
4781          if (FromVT != MVT::Other)
4782            P = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
4783                            RegisterVT, P, DAG.getValueType(FromVT));
4784        }
4785      }
4786
4787      Parts[i] = P;
4788    }
4789
4790    Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(),
4791                                     NumRegs, RegisterVT, ValueVT);
4792    Part += NumRegs;
4793    Parts.clear();
4794  }
4795
4796  return DAG.getNode(ISD::MERGE_VALUES, dl,
4797                     DAG.getVTList(&ValueVTs[0], ValueVTs.size()),
4798                     &Values[0], ValueVTs.size());
4799}
4800
4801/// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
4802/// specified value into the registers specified by this object.  This uses
4803/// Chain/Flag as the input and updates them for the output Chain/Flag.
4804/// If the Flag pointer is NULL, no flag is used.
4805void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl,
4806                                 SDValue &Chain, SDValue *Flag) const {
4807  // Get the list of the values's legal parts.
4808  unsigned NumRegs = Regs.size();
4809  SmallVector<SDValue, 8> Parts(NumRegs);
4810  for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
4811    EVT ValueVT = ValueVTs[Value];
4812    unsigned NumParts = TLI->getNumRegisters(*DAG.getContext(), ValueVT);
4813    EVT RegisterVT = RegVTs[Value];
4814
4815    getCopyToParts(DAG, dl,
4816                   Val.getValue(Val.getResNo() + Value),
4817                   &Parts[Part], NumParts, RegisterVT);
4818    Part += NumParts;
4819  }
4820
4821  // Copy the parts into the registers.
4822  SmallVector<SDValue, 8> Chains(NumRegs);
4823  for (unsigned i = 0; i != NumRegs; ++i) {
4824    SDValue Part;
4825    if (Flag == 0) {
4826      Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
4827    } else {
4828      Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
4829      *Flag = Part.getValue(1);
4830    }
4831
4832    Chains[i] = Part.getValue(0);
4833  }
4834
4835  if (NumRegs == 1 || Flag)
4836    // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
4837    // flagged to it. That is the CopyToReg nodes and the user are considered
4838    // a single scheduling unit. If we create a TokenFactor and return it as
4839    // chain, then the TokenFactor is both a predecessor (operand) of the
4840    // user as well as a successor (the TF operands are flagged to the user).
4841    // c1, f1 = CopyToReg
4842    // c2, f2 = CopyToReg
4843    // c3     = TokenFactor c1, c2
4844    // ...
4845    //        = op c3, ..., f2
4846    Chain = Chains[NumRegs-1];
4847  else
4848    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0], NumRegs);
4849}
4850
4851/// AddInlineAsmOperands - Add this value to the specified inlineasm node
4852/// operand list.  This adds the code marker and includes the number of
4853/// values added into it.
4854void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
4855                                        unsigned MatchingIdx,
4856                                        SelectionDAG &DAG,
4857                                        std::vector<SDValue> &Ops) const {
4858  unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
4859  if (HasMatching)
4860    Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
4861  SDValue Res = DAG.getTargetConstant(Flag, MVT::i32);
4862  Ops.push_back(Res);
4863
4864  for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
4865    unsigned NumRegs = TLI->getNumRegisters(*DAG.getContext(), ValueVTs[Value]);
4866    EVT RegisterVT = RegVTs[Value];
4867    for (unsigned i = 0; i != NumRegs; ++i) {
4868      assert(Reg < Regs.size() && "Mismatch in # registers expected");
4869      Ops.push_back(DAG.getRegister(Regs[Reg++], RegisterVT));
4870    }
4871  }
4872}
4873
4874/// isAllocatableRegister - If the specified register is safe to allocate,
4875/// i.e. it isn't a stack pointer or some other special register, return the
4876/// register class for the register.  Otherwise, return null.
4877static const TargetRegisterClass *
4878isAllocatableRegister(unsigned Reg, MachineFunction &MF,
4879                      const TargetLowering &TLI,
4880                      const TargetRegisterInfo *TRI) {
4881  EVT FoundVT = MVT::Other;
4882  const TargetRegisterClass *FoundRC = 0;
4883  for (TargetRegisterInfo::regclass_iterator RCI = TRI->regclass_begin(),
4884       E = TRI->regclass_end(); RCI != E; ++RCI) {
4885    EVT ThisVT = MVT::Other;
4886
4887    const TargetRegisterClass *RC = *RCI;
4888    // If none of the value types for this register class are valid, we
4889    // can't use it.  For example, 64-bit reg classes on 32-bit targets.
4890    for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
4891         I != E; ++I) {
4892      if (TLI.isTypeLegal(*I)) {
4893        // If we have already found this register in a different register class,
4894        // choose the one with the largest VT specified.  For example, on
4895        // PowerPC, we favor f64 register classes over f32.
4896        if (FoundVT == MVT::Other || FoundVT.bitsLT(*I)) {
4897          ThisVT = *I;
4898          break;
4899        }
4900      }
4901    }
4902
4903    if (ThisVT == MVT::Other) continue;
4904
4905    // NOTE: This isn't ideal.  In particular, this might allocate the
4906    // frame pointer in functions that need it (due to them not being taken
4907    // out of allocation, because a variable sized allocation hasn't been seen
4908    // yet).  This is a slight code pessimization, but should still work.
4909    for (TargetRegisterClass::iterator I = RC->allocation_order_begin(MF),
4910         E = RC->allocation_order_end(MF); I != E; ++I)
4911      if (*I == Reg) {
4912        // We found a matching register class.  Keep looking at others in case
4913        // we find one with larger registers that this physreg is also in.
4914        FoundRC = RC;
4915        FoundVT = ThisVT;
4916        break;
4917      }
4918  }
4919  return FoundRC;
4920}
4921
4922
4923namespace llvm {
4924/// AsmOperandInfo - This contains information for each constraint that we are
4925/// lowering.
4926class VISIBILITY_HIDDEN SDISelAsmOperandInfo :
4927    public TargetLowering::AsmOperandInfo {
4928public:
4929  /// CallOperand - If this is the result output operand or a clobber
4930  /// this is null, otherwise it is the incoming operand to the CallInst.
4931  /// This gets modified as the asm is processed.
4932  SDValue CallOperand;
4933
4934  /// AssignedRegs - If this is a register or register class operand, this
4935  /// contains the set of register corresponding to the operand.
4936  RegsForValue AssignedRegs;
4937
4938  explicit SDISelAsmOperandInfo(const InlineAsm::ConstraintInfo &info)
4939    : TargetLowering::AsmOperandInfo(info), CallOperand(0,0) {
4940  }
4941
4942  /// MarkAllocatedRegs - Once AssignedRegs is set, mark the assigned registers
4943  /// busy in OutputRegs/InputRegs.
4944  void MarkAllocatedRegs(bool isOutReg, bool isInReg,
4945                         std::set<unsigned> &OutputRegs,
4946                         std::set<unsigned> &InputRegs,
4947                         const TargetRegisterInfo &TRI) const {
4948    if (isOutReg) {
4949      for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i)
4950        MarkRegAndAliases(AssignedRegs.Regs[i], OutputRegs, TRI);
4951    }
4952    if (isInReg) {
4953      for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i)
4954        MarkRegAndAliases(AssignedRegs.Regs[i], InputRegs, TRI);
4955    }
4956  }
4957
4958  /// getCallOperandValEVT - Return the EVT of the Value* that this operand
4959  /// corresponds to.  If there is no Value* for this operand, it returns
4960  /// MVT::Other.
4961  EVT getCallOperandValEVT(LLVMContext &Context,
4962                           const TargetLowering &TLI,
4963                           const TargetData *TD) const {
4964    if (CallOperandVal == 0) return MVT::Other;
4965
4966    if (isa<BasicBlock>(CallOperandVal))
4967      return TLI.getPointerTy();
4968
4969    const llvm::Type *OpTy = CallOperandVal->getType();
4970
4971    // If this is an indirect operand, the operand is a pointer to the
4972    // accessed type.
4973    if (isIndirect) {
4974      const llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
4975      if (!PtrTy)
4976        report_fatal_error("Indirect operand for inline asm not a pointer!");
4977      OpTy = PtrTy->getElementType();
4978    }
4979
4980    // If OpTy is not a single value, it may be a struct/union that we
4981    // can tile with integers.
4982    if (!OpTy->isSingleValueType() && OpTy->isSized()) {
4983      unsigned BitSize = TD->getTypeSizeInBits(OpTy);
4984      switch (BitSize) {
4985      default: break;
4986      case 1:
4987      case 8:
4988      case 16:
4989      case 32:
4990      case 64:
4991      case 128:
4992        OpTy = IntegerType::get(Context, BitSize);
4993        break;
4994      }
4995    }
4996
4997    return TLI.getValueType(OpTy, true);
4998  }
4999
5000private:
5001  /// MarkRegAndAliases - Mark the specified register and all aliases in the
5002  /// specified set.
5003  static void MarkRegAndAliases(unsigned Reg, std::set<unsigned> &Regs,
5004                                const TargetRegisterInfo &TRI) {
5005    assert(TargetRegisterInfo::isPhysicalRegister(Reg) && "Isn't a physreg");
5006    Regs.insert(Reg);
5007    if (const unsigned *Aliases = TRI.getAliasSet(Reg))
5008      for (; *Aliases; ++Aliases)
5009        Regs.insert(*Aliases);
5010  }
5011};
5012} // end llvm namespace.
5013
5014
5015/// GetRegistersForValue - Assign registers (virtual or physical) for the
5016/// specified operand.  We prefer to assign virtual registers, to allow the
5017/// register allocator to handle the assignment process.  However, if the asm
5018/// uses features that we can't model on machineinstrs, we have SDISel do the
5019/// allocation.  This produces generally horrible, but correct, code.
5020///
5021///   OpInfo describes the operand.
5022///   Input and OutputRegs are the set of already allocated physical registers.
5023///
5024void SelectionDAGBuilder::
5025GetRegistersForValue(SDISelAsmOperandInfo &OpInfo,
5026                     std::set<unsigned> &OutputRegs,
5027                     std::set<unsigned> &InputRegs) {
5028  LLVMContext &Context = FuncInfo.Fn->getContext();
5029
5030  // Compute whether this value requires an input register, an output register,
5031  // or both.
5032  bool isOutReg = false;
5033  bool isInReg = false;
5034  switch (OpInfo.Type) {
5035  case InlineAsm::isOutput:
5036    isOutReg = true;
5037
5038    // If there is an input constraint that matches this, we need to reserve
5039    // the input register so no other inputs allocate to it.
5040    isInReg = OpInfo.hasMatchingInput();
5041    break;
5042  case InlineAsm::isInput:
5043    isInReg = true;
5044    isOutReg = false;
5045    break;
5046  case InlineAsm::isClobber:
5047    isOutReg = true;
5048    isInReg = true;
5049    break;
5050  }
5051
5052
5053  MachineFunction &MF = DAG.getMachineFunction();
5054  SmallVector<unsigned, 4> Regs;
5055
5056  // If this is a constraint for a single physreg, or a constraint for a
5057  // register class, find it.
5058  std::pair<unsigned, const TargetRegisterClass*> PhysReg =
5059    TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
5060                                     OpInfo.ConstraintVT);
5061
5062  unsigned NumRegs = 1;
5063  if (OpInfo.ConstraintVT != MVT::Other) {
5064    // If this is a FP input in an integer register (or visa versa) insert a bit
5065    // cast of the input value.  More generally, handle any case where the input
5066    // value disagrees with the register class we plan to stick this in.
5067    if (OpInfo.Type == InlineAsm::isInput &&
5068        PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) {
5069      // Try to convert to the first EVT that the reg class contains.  If the
5070      // types are identical size, use a bitcast to convert (e.g. two differing
5071      // vector types).
5072      EVT RegVT = *PhysReg.second->vt_begin();
5073      if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) {
5074        OpInfo.CallOperand = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(),
5075                                         RegVT, OpInfo.CallOperand);
5076        OpInfo.ConstraintVT = RegVT;
5077      } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
5078        // If the input is a FP value and we want it in FP registers, do a
5079        // bitcast to the corresponding integer type.  This turns an f64 value
5080        // into i64, which can be passed with two i32 values on a 32-bit
5081        // machine.
5082        RegVT = EVT::getIntegerVT(Context,
5083                                  OpInfo.ConstraintVT.getSizeInBits());
5084        OpInfo.CallOperand = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(),
5085                                         RegVT, OpInfo.CallOperand);
5086        OpInfo.ConstraintVT = RegVT;
5087      }
5088    }
5089
5090    NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT);
5091  }
5092
5093  EVT RegVT;
5094  EVT ValueVT = OpInfo.ConstraintVT;
5095
5096  // If this is a constraint for a specific physical register, like {r17},
5097  // assign it now.
5098  if (unsigned AssignedReg = PhysReg.first) {
5099    const TargetRegisterClass *RC = PhysReg.second;
5100    if (OpInfo.ConstraintVT == MVT::Other)
5101      ValueVT = *RC->vt_begin();
5102
5103    // Get the actual register value type.  This is important, because the user
5104    // may have asked for (e.g.) the AX register in i32 type.  We need to
5105    // remember that AX is actually i16 to get the right extension.
5106    RegVT = *RC->vt_begin();
5107
5108    // This is a explicit reference to a physical register.
5109    Regs.push_back(AssignedReg);
5110
5111    // If this is an expanded reference, add the rest of the regs to Regs.
5112    if (NumRegs != 1) {
5113      TargetRegisterClass::iterator I = RC->begin();
5114      for (; *I != AssignedReg; ++I)
5115        assert(I != RC->end() && "Didn't find reg!");
5116
5117      // Already added the first reg.
5118      --NumRegs; ++I;
5119      for (; NumRegs; --NumRegs, ++I) {
5120        assert(I != RC->end() && "Ran out of registers to allocate!");
5121        Regs.push_back(*I);
5122      }
5123    }
5124
5125    OpInfo.AssignedRegs = RegsForValue(TLI, Regs, RegVT, ValueVT);
5126    const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
5127    OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI);
5128    return;
5129  }
5130
5131  // Otherwise, if this was a reference to an LLVM register class, create vregs
5132  // for this reference.
5133  if (const TargetRegisterClass *RC = PhysReg.second) {
5134    RegVT = *RC->vt_begin();
5135    if (OpInfo.ConstraintVT == MVT::Other)
5136      ValueVT = RegVT;
5137
5138    // Create the appropriate number of virtual registers.
5139    MachineRegisterInfo &RegInfo = MF.getRegInfo();
5140    for (; NumRegs; --NumRegs)
5141      Regs.push_back(RegInfo.createVirtualRegister(RC));
5142
5143    OpInfo.AssignedRegs = RegsForValue(TLI, Regs, RegVT, ValueVT);
5144    return;
5145  }
5146
5147  // This is a reference to a register class that doesn't directly correspond
5148  // to an LLVM register class.  Allocate NumRegs consecutive, available,
5149  // registers from the class.
5150  std::vector<unsigned> RegClassRegs
5151    = TLI.getRegClassForInlineAsmConstraint(OpInfo.ConstraintCode,
5152                                            OpInfo.ConstraintVT);
5153
5154  const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
5155  unsigned NumAllocated = 0;
5156  for (unsigned i = 0, e = RegClassRegs.size(); i != e; ++i) {
5157    unsigned Reg = RegClassRegs[i];
5158    // See if this register is available.
5159    if ((isOutReg && OutputRegs.count(Reg)) ||   // Already used.
5160        (isInReg  && InputRegs.count(Reg))) {    // Already used.
5161      // Make sure we find consecutive registers.
5162      NumAllocated = 0;
5163      continue;
5164    }
5165
5166    // Check to see if this register is allocatable (i.e. don't give out the
5167    // stack pointer).
5168    const TargetRegisterClass *RC = isAllocatableRegister(Reg, MF, TLI, TRI);
5169    if (!RC) {        // Couldn't allocate this register.
5170      // Reset NumAllocated to make sure we return consecutive registers.
5171      NumAllocated = 0;
5172      continue;
5173    }
5174
5175    // Okay, this register is good, we can use it.
5176    ++NumAllocated;
5177
5178    // If we allocated enough consecutive registers, succeed.
5179    if (NumAllocated == NumRegs) {
5180      unsigned RegStart = (i-NumAllocated)+1;
5181      unsigned RegEnd   = i+1;
5182      // Mark all of the allocated registers used.
5183      for (unsigned i = RegStart; i != RegEnd; ++i)
5184        Regs.push_back(RegClassRegs[i]);
5185
5186      OpInfo.AssignedRegs = RegsForValue(TLI, Regs, *RC->vt_begin(),
5187                                         OpInfo.ConstraintVT);
5188      OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI);
5189      return;
5190    }
5191  }
5192
5193  // Otherwise, we couldn't allocate enough registers for this.
5194}
5195
5196/// visitInlineAsm - Handle a call to an InlineAsm object.
5197///
5198void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) {
5199  const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
5200
5201  /// ConstraintOperands - Information about all of the constraints.
5202  std::vector<SDISelAsmOperandInfo> ConstraintOperands;
5203
5204  std::set<unsigned> OutputRegs, InputRegs;
5205
5206  // Do a prepass over the constraints, canonicalizing them, and building up the
5207  // ConstraintOperands list.
5208  std::vector<InlineAsm::ConstraintInfo>
5209    ConstraintInfos = IA->ParseConstraints();
5210
5211  bool hasMemory = hasInlineAsmMemConstraint(ConstraintInfos, TLI);
5212
5213  SDValue Chain, Flag;
5214
5215  // We won't need to flush pending loads if this asm doesn't touch
5216  // memory and is nonvolatile.
5217  if (hasMemory || IA->hasSideEffects())
5218    Chain = getRoot();
5219  else
5220    Chain = DAG.getRoot();
5221
5222  unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
5223  unsigned ResNo = 0;   // ResNo - The result number of the next output.
5224  for (unsigned i = 0, e = ConstraintInfos.size(); i != e; ++i) {
5225    ConstraintOperands.push_back(SDISelAsmOperandInfo(ConstraintInfos[i]));
5226    SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
5227
5228    EVT OpVT = MVT::Other;
5229
5230    // Compute the value type for each operand.
5231    switch (OpInfo.Type) {
5232    case InlineAsm::isOutput:
5233      // Indirect outputs just consume an argument.
5234      if (OpInfo.isIndirect) {
5235        OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
5236        break;
5237      }
5238
5239      // The return value of the call is this value.  As such, there is no
5240      // corresponding argument.
5241      assert(!CS.getType()->isVoidTy() &&
5242             "Bad inline asm!");
5243      if (const StructType *STy = dyn_cast<StructType>(CS.getType())) {
5244        OpVT = TLI.getValueType(STy->getElementType(ResNo));
5245      } else {
5246        assert(ResNo == 0 && "Asm only has one result!");
5247        OpVT = TLI.getValueType(CS.getType());
5248      }
5249      ++ResNo;
5250      break;
5251    case InlineAsm::isInput:
5252      OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
5253      break;
5254    case InlineAsm::isClobber:
5255      // Nothing to do.
5256      break;
5257    }
5258
5259    // If this is an input or an indirect output, process the call argument.
5260    // BasicBlocks are labels, currently appearing only in asm's.
5261    if (OpInfo.CallOperandVal) {
5262      // Strip bitcasts, if any.  This mostly comes up for functions.
5263      OpInfo.CallOperandVal = OpInfo.CallOperandVal->stripPointerCasts();
5264
5265      if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) {
5266        OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
5267      } else {
5268        OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
5269      }
5270
5271      OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, TD);
5272    }
5273
5274    OpInfo.ConstraintVT = OpVT;
5275  }
5276
5277  // Second pass over the constraints: compute which constraint option to use
5278  // and assign registers to constraints that want a specific physreg.
5279  for (unsigned i = 0, e = ConstraintInfos.size(); i != e; ++i) {
5280    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
5281
5282    // If this is an output operand with a matching input operand, look up the
5283    // matching input. If their types mismatch, e.g. one is an integer, the
5284    // other is floating point, or their sizes are different, flag it as an
5285    // error.
5286    if (OpInfo.hasMatchingInput()) {
5287      SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
5288
5289      if (OpInfo.ConstraintVT != Input.ConstraintVT) {
5290        if ((OpInfo.ConstraintVT.isInteger() !=
5291             Input.ConstraintVT.isInteger()) ||
5292            (OpInfo.ConstraintVT.getSizeInBits() !=
5293             Input.ConstraintVT.getSizeInBits())) {
5294          report_fatal_error("Unsupported asm: input constraint"
5295                             " with a matching output constraint of"
5296                             " incompatible type!");
5297        }
5298        Input.ConstraintVT = OpInfo.ConstraintVT;
5299      }
5300    }
5301
5302    // Compute the constraint code and ConstraintType to use.
5303    TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, hasMemory, &DAG);
5304
5305    // If this is a memory input, and if the operand is not indirect, do what we
5306    // need to to provide an address for the memory input.
5307    if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
5308        !OpInfo.isIndirect) {
5309      assert(OpInfo.Type == InlineAsm::isInput &&
5310             "Can only indirectify direct input operands!");
5311
5312      // Memory operands really want the address of the value.  If we don't have
5313      // an indirect input, put it in the constpool if we can, otherwise spill
5314      // it to a stack slot.
5315
5316      // If the operand is a float, integer, or vector constant, spill to a
5317      // constant pool entry to get its address.
5318      const Value *OpVal = OpInfo.CallOperandVal;
5319      if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
5320          isa<ConstantVector>(OpVal)) {
5321        OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal),
5322                                                 TLI.getPointerTy());
5323      } else {
5324        // Otherwise, create a stack slot and emit a store to it before the
5325        // asm.
5326        const Type *Ty = OpVal->getType();
5327        uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty);
5328        unsigned Align  = TLI.getTargetData()->getPrefTypeAlignment(Ty);
5329        MachineFunction &MF = DAG.getMachineFunction();
5330        int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
5331        SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy());
5332        Chain = DAG.getStore(Chain, getCurDebugLoc(),
5333                             OpInfo.CallOperand, StackSlot, NULL, 0,
5334                             false, false, 0);
5335        OpInfo.CallOperand = StackSlot;
5336      }
5337
5338      // There is no longer a Value* corresponding to this operand.
5339      OpInfo.CallOperandVal = 0;
5340
5341      // It is now an indirect operand.
5342      OpInfo.isIndirect = true;
5343    }
5344
5345    // If this constraint is for a specific register, allocate it before
5346    // anything else.
5347    if (OpInfo.ConstraintType == TargetLowering::C_Register)
5348      GetRegistersForValue(OpInfo, OutputRegs, InputRegs);
5349  }
5350
5351  ConstraintInfos.clear();
5352
5353  // Second pass - Loop over all of the operands, assigning virtual or physregs
5354  // to register class operands.
5355  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
5356    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
5357
5358    // C_Register operands have already been allocated, Other/Memory don't need
5359    // to be.
5360    if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass)
5361      GetRegistersForValue(OpInfo, OutputRegs, InputRegs);
5362  }
5363
5364  // AsmNodeOperands - The operands for the ISD::INLINEASM node.
5365  std::vector<SDValue> AsmNodeOperands;
5366  AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
5367  AsmNodeOperands.push_back(
5368          DAG.getTargetExternalSymbol(IA->getAsmString().c_str(),
5369                                      TLI.getPointerTy()));
5370
5371  // If we have a !srcloc metadata node associated with it, we want to attach
5372  // this to the ultimately generated inline asm machineinstr.  To do this, we
5373  // pass in the third operand as this (potentially null) inline asm MDNode.
5374  const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc");
5375  AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
5376
5377  // Loop over all of the inputs, copying the operand values into the
5378  // appropriate registers and processing the output regs.
5379  RegsForValue RetValRegs;
5380
5381  // IndirectStoresToEmit - The set of stores to emit after the inline asm node.
5382  std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit;
5383
5384  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
5385    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
5386
5387    switch (OpInfo.Type) {
5388    case InlineAsm::isOutput: {
5389      if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass &&
5390          OpInfo.ConstraintType != TargetLowering::C_Register) {
5391        // Memory output, or 'other' output (e.g. 'X' constraint).
5392        assert(OpInfo.isIndirect && "Memory output must be indirect operand");
5393
5394        // Add information to the INLINEASM node to know about this output.
5395        unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
5396        AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags,
5397                                                        TLI.getPointerTy()));
5398        AsmNodeOperands.push_back(OpInfo.CallOperand);
5399        break;
5400      }
5401
5402      // Otherwise, this is a register or register class output.
5403
5404      // Copy the output from the appropriate register.  Find a register that
5405      // we can use.
5406      if (OpInfo.AssignedRegs.Regs.empty())
5407        report_fatal_error("Couldn't allocate output reg for constraint '" +
5408                           Twine(OpInfo.ConstraintCode) + "'!");
5409
5410      // If this is an indirect operand, store through the pointer after the
5411      // asm.
5412      if (OpInfo.isIndirect) {
5413        IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs,
5414                                                      OpInfo.CallOperandVal));
5415      } else {
5416        // This is the result value of the call.
5417        assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
5418        // Concatenate this output onto the outputs list.
5419        RetValRegs.append(OpInfo.AssignedRegs);
5420      }
5421
5422      // Add information to the INLINEASM node to know that this register is
5423      // set.
5424      OpInfo.AssignedRegs.AddInlineAsmOperands(OpInfo.isEarlyClobber ?
5425                                           InlineAsm::Kind_RegDefEarlyClobber :
5426                                               InlineAsm::Kind_RegDef,
5427                                               false,
5428                                               0,
5429                                               DAG,
5430                                               AsmNodeOperands);
5431      break;
5432    }
5433    case InlineAsm::isInput: {
5434      SDValue InOperandVal = OpInfo.CallOperand;
5435
5436      if (OpInfo.isMatchingInputConstraint()) {   // Matching constraint?
5437        // If this is required to match an output register we have already set,
5438        // just use its register.
5439        unsigned OperandNo = OpInfo.getMatchedOperand();
5440
5441        // Scan until we find the definition we already emitted of this operand.
5442        // When we find it, create a RegsForValue operand.
5443        unsigned CurOp = InlineAsm::Op_FirstOperand;
5444        for (; OperandNo; --OperandNo) {
5445          // Advance to the next operand.
5446          unsigned OpFlag =
5447            cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
5448          assert((InlineAsm::isRegDefKind(OpFlag) ||
5449                  InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||
5450                  InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?");
5451          CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1;
5452        }
5453
5454        unsigned OpFlag =
5455          cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
5456        if (InlineAsm::isRegDefKind(OpFlag) ||
5457            InlineAsm::isRegDefEarlyClobberKind(OpFlag)) {
5458          // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
5459          if (OpInfo.isIndirect) {
5460            // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
5461            LLVMContext &Ctx = *DAG.getContext();
5462            Ctx.emitError(CS.getInstruction(),  "inline asm not supported yet:"
5463                          " don't know how to handle tied "
5464                          "indirect register inputs");
5465          }
5466
5467          RegsForValue MatchedRegs;
5468          MatchedRegs.TLI = &TLI;
5469          MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType());
5470          EVT RegVT = AsmNodeOperands[CurOp+1].getValueType();
5471          MatchedRegs.RegVTs.push_back(RegVT);
5472          MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo();
5473          for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag);
5474               i != e; ++i)
5475            MatchedRegs.Regs.push_back
5476              (RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT)));
5477
5478          // Use the produced MatchedRegs object to
5479          MatchedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(),
5480                                    Chain, &Flag);
5481          MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse,
5482                                           true, OpInfo.getMatchedOperand(),
5483                                           DAG, AsmNodeOperands);
5484          break;
5485        }
5486
5487        assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!");
5488        assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 &&
5489               "Unexpected number of operands");
5490        // Add information to the INLINEASM node to know about this input.
5491        // See InlineAsm.h isUseOperandTiedToDef.
5492        OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
5493                                                    OpInfo.getMatchedOperand());
5494        AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlag,
5495                                                        TLI.getPointerTy()));
5496        AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
5497        break;
5498      }
5499
5500      if (OpInfo.ConstraintType == TargetLowering::C_Other) {
5501        assert(!OpInfo.isIndirect &&
5502               "Don't know how to handle indirect other inputs yet!");
5503
5504        std::vector<SDValue> Ops;
5505        TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode[0],
5506                                         hasMemory, Ops, DAG);
5507        if (Ops.empty())
5508          report_fatal_error("Invalid operand for inline asm constraint '" +
5509                             Twine(OpInfo.ConstraintCode) + "'!");
5510
5511        // Add information to the INLINEASM node to know about this input.
5512        unsigned ResOpType =
5513          InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
5514        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
5515                                                        TLI.getPointerTy()));
5516        AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
5517        break;
5518      }
5519
5520      if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
5521        assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
5522        assert(InOperandVal.getValueType() == TLI.getPointerTy() &&
5523               "Memory operands expect pointer values");
5524
5525        // Add information to the INLINEASM node to know about this input.
5526        unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
5527        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
5528                                                        TLI.getPointerTy()));
5529        AsmNodeOperands.push_back(InOperandVal);
5530        break;
5531      }
5532
5533      assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
5534              OpInfo.ConstraintType == TargetLowering::C_Register) &&
5535             "Unknown constraint type!");
5536      assert(!OpInfo.isIndirect &&
5537             "Don't know how to handle indirect register inputs yet!");
5538
5539      // Copy the input into the appropriate registers.
5540      if (OpInfo.AssignedRegs.Regs.empty() ||
5541          !OpInfo.AssignedRegs.areValueTypesLegal())
5542        report_fatal_error("Couldn't allocate input reg for constraint '" +
5543                           Twine(OpInfo.ConstraintCode) + "'!");
5544
5545      OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(),
5546                                        Chain, &Flag);
5547
5548      OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0,
5549                                               DAG, AsmNodeOperands);
5550      break;
5551    }
5552    case InlineAsm::isClobber: {
5553      // Add the clobbered value to the operand list, so that the register
5554      // allocator is aware that the physreg got clobbered.
5555      if (!OpInfo.AssignedRegs.Regs.empty())
5556        OpInfo.AssignedRegs.AddInlineAsmOperands(
5557                                            InlineAsm::Kind_RegDefEarlyClobber,
5558                                                 false, 0, DAG,
5559                                                 AsmNodeOperands);
5560      break;
5561    }
5562    }
5563  }
5564
5565  // Finish up input operands.  Set the input chain and add the flag last.
5566  AsmNodeOperands[0] = Chain;
5567  if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
5568
5569  Chain = DAG.getNode(ISD::INLINEASM, getCurDebugLoc(),
5570                      DAG.getVTList(MVT::Other, MVT::Flag),
5571                      &AsmNodeOperands[0], AsmNodeOperands.size());
5572  Flag = Chain.getValue(1);
5573
5574  // If this asm returns a register value, copy the result from that register
5575  // and set it as the value of the call.
5576  if (!RetValRegs.Regs.empty()) {
5577    SDValue Val = RetValRegs.getCopyFromRegs(DAG, getCurDebugLoc(),
5578                                             Chain, &Flag);
5579
5580    // FIXME: Why don't we do this for inline asms with MRVs?
5581    if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) {
5582      EVT ResultType = TLI.getValueType(CS.getType());
5583
5584      // If any of the results of the inline asm is a vector, it may have the
5585      // wrong width/num elts.  This can happen for register classes that can
5586      // contain multiple different value types.  The preg or vreg allocated may
5587      // not have the same VT as was expected.  Convert it to the right type
5588      // with bit_convert.
5589      if (ResultType != Val.getValueType() && Val.getValueType().isVector()) {
5590        Val = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(),
5591                          ResultType, Val);
5592
5593      } else if (ResultType != Val.getValueType() &&
5594                 ResultType.isInteger() && Val.getValueType().isInteger()) {
5595        // If a result value was tied to an input value, the computed result may
5596        // have a wider width than the expected result.  Extract the relevant
5597        // portion.
5598        Val = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), ResultType, Val);
5599      }
5600
5601      assert(ResultType == Val.getValueType() && "Asm result value mismatch!");
5602    }
5603
5604    setValue(CS.getInstruction(), Val);
5605    // Don't need to use this as a chain in this case.
5606    if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty())
5607      return;
5608  }
5609
5610  std::vector<std::pair<SDValue, const Value *> > StoresToEmit;
5611
5612  // Process indirect outputs, first output all of the flagged copies out of
5613  // physregs.
5614  for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
5615    RegsForValue &OutRegs = IndirectStoresToEmit[i].first;
5616    const Value *Ptr = IndirectStoresToEmit[i].second;
5617    SDValue OutVal = OutRegs.getCopyFromRegs(DAG, getCurDebugLoc(),
5618                                             Chain, &Flag);
5619    StoresToEmit.push_back(std::make_pair(OutVal, Ptr));
5620  }
5621
5622  // Emit the non-flagged stores from the physregs.
5623  SmallVector<SDValue, 8> OutChains;
5624  for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) {
5625    SDValue Val = DAG.getStore(Chain, getCurDebugLoc(),
5626                               StoresToEmit[i].first,
5627                               getValue(StoresToEmit[i].second),
5628                               StoresToEmit[i].second, 0,
5629                               false, false, 0);
5630    OutChains.push_back(Val);
5631  }
5632
5633  if (!OutChains.empty())
5634    Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
5635                        &OutChains[0], OutChains.size());
5636
5637  DAG.setRoot(Chain);
5638}
5639
5640void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
5641  DAG.setRoot(DAG.getNode(ISD::VASTART, getCurDebugLoc(),
5642                          MVT::Other, getRoot(),
5643                          getValue(I.getOperand(1)),
5644                          DAG.getSrcValue(I.getOperand(1))));
5645}
5646
5647void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
5648  SDValue V = DAG.getVAArg(TLI.getValueType(I.getType()), getCurDebugLoc(),
5649                           getRoot(), getValue(I.getOperand(0)),
5650                           DAG.getSrcValue(I.getOperand(0)));
5651  setValue(&I, V);
5652  DAG.setRoot(V.getValue(1));
5653}
5654
5655void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
5656  DAG.setRoot(DAG.getNode(ISD::VAEND, getCurDebugLoc(),
5657                          MVT::Other, getRoot(),
5658                          getValue(I.getOperand(1)),
5659                          DAG.getSrcValue(I.getOperand(1))));
5660}
5661
5662void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
5663  DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurDebugLoc(),
5664                          MVT::Other, getRoot(),
5665                          getValue(I.getOperand(1)),
5666                          getValue(I.getOperand(2)),
5667                          DAG.getSrcValue(I.getOperand(1)),
5668                          DAG.getSrcValue(I.getOperand(2))));
5669}
5670
5671/// TargetLowering::LowerCallTo - This is the default LowerCallTo
5672/// implementation, which just calls LowerCall.
5673/// FIXME: When all targets are
5674/// migrated to using LowerCall, this hook should be integrated into SDISel.
5675std::pair<SDValue, SDValue>
5676TargetLowering::LowerCallTo(SDValue Chain, const Type *RetTy,
5677                            bool RetSExt, bool RetZExt, bool isVarArg,
5678                            bool isInreg, unsigned NumFixedArgs,
5679                            CallingConv::ID CallConv, bool isTailCall,
5680                            bool isReturnValueUsed,
5681                            SDValue Callee,
5682                            ArgListTy &Args, SelectionDAG &DAG,
5683                            DebugLoc dl) const {
5684  // Handle all of the outgoing arguments.
5685  SmallVector<ISD::OutputArg, 32> Outs;
5686  for (unsigned i = 0, e = Args.size(); i != e; ++i) {
5687    SmallVector<EVT, 4> ValueVTs;
5688    ComputeValueVTs(*this, Args[i].Ty, ValueVTs);
5689    for (unsigned Value = 0, NumValues = ValueVTs.size();
5690         Value != NumValues; ++Value) {
5691      EVT VT = ValueVTs[Value];
5692      const Type *ArgTy = VT.getTypeForEVT(RetTy->getContext());
5693      SDValue Op = SDValue(Args[i].Node.getNode(),
5694                           Args[i].Node.getResNo() + Value);
5695      ISD::ArgFlagsTy Flags;
5696      unsigned OriginalAlignment =
5697        getTargetData()->getABITypeAlignment(ArgTy);
5698
5699      if (Args[i].isZExt)
5700        Flags.setZExt();
5701      if (Args[i].isSExt)
5702        Flags.setSExt();
5703      if (Args[i].isInReg)
5704        Flags.setInReg();
5705      if (Args[i].isSRet)
5706        Flags.setSRet();
5707      if (Args[i].isByVal) {
5708        Flags.setByVal();
5709        const PointerType *Ty = cast<PointerType>(Args[i].Ty);
5710        const Type *ElementTy = Ty->getElementType();
5711        unsigned FrameAlign = getByValTypeAlignment(ElementTy);
5712        unsigned FrameSize  = getTargetData()->getTypeAllocSize(ElementTy);
5713        // For ByVal, alignment should come from FE.  BE will guess if this
5714        // info is not there but there are cases it cannot get right.
5715        if (Args[i].Alignment)
5716          FrameAlign = Args[i].Alignment;
5717        Flags.setByValAlign(FrameAlign);
5718        Flags.setByValSize(FrameSize);
5719      }
5720      if (Args[i].isNest)
5721        Flags.setNest();
5722      Flags.setOrigAlign(OriginalAlignment);
5723
5724      EVT PartVT = getRegisterType(RetTy->getContext(), VT);
5725      unsigned NumParts = getNumRegisters(RetTy->getContext(), VT);
5726      SmallVector<SDValue, 4> Parts(NumParts);
5727      ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
5728
5729      if (Args[i].isSExt)
5730        ExtendKind = ISD::SIGN_EXTEND;
5731      else if (Args[i].isZExt)
5732        ExtendKind = ISD::ZERO_EXTEND;
5733
5734      getCopyToParts(DAG, dl, Op, &Parts[0], NumParts,
5735                     PartVT, ExtendKind);
5736
5737      for (unsigned j = 0; j != NumParts; ++j) {
5738        // if it isn't first piece, alignment must be 1
5739        ISD::OutputArg MyFlags(Flags, Parts[j], i < NumFixedArgs);
5740        if (NumParts > 1 && j == 0)
5741          MyFlags.Flags.setSplit();
5742        else if (j != 0)
5743          MyFlags.Flags.setOrigAlign(1);
5744
5745        Outs.push_back(MyFlags);
5746      }
5747    }
5748  }
5749
5750  // Handle the incoming return values from the call.
5751  SmallVector<ISD::InputArg, 32> Ins;
5752  SmallVector<EVT, 4> RetTys;
5753  ComputeValueVTs(*this, RetTy, RetTys);
5754  for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
5755    EVT VT = RetTys[I];
5756    EVT RegisterVT = getRegisterType(RetTy->getContext(), VT);
5757    unsigned NumRegs = getNumRegisters(RetTy->getContext(), VT);
5758    for (unsigned i = 0; i != NumRegs; ++i) {
5759      ISD::InputArg MyFlags;
5760      MyFlags.VT = RegisterVT;
5761      MyFlags.Used = isReturnValueUsed;
5762      if (RetSExt)
5763        MyFlags.Flags.setSExt();
5764      if (RetZExt)
5765        MyFlags.Flags.setZExt();
5766      if (isInreg)
5767        MyFlags.Flags.setInReg();
5768      Ins.push_back(MyFlags);
5769    }
5770  }
5771
5772  SmallVector<SDValue, 4> InVals;
5773  Chain = LowerCall(Chain, Callee, CallConv, isVarArg, isTailCall,
5774                    Outs, Ins, dl, DAG, InVals);
5775
5776  // Verify that the target's LowerCall behaved as expected.
5777  assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
5778         "LowerCall didn't return a valid chain!");
5779  assert((!isTailCall || InVals.empty()) &&
5780         "LowerCall emitted a return value for a tail call!");
5781  assert((isTailCall || InVals.size() == Ins.size()) &&
5782         "LowerCall didn't emit the correct number of values!");
5783
5784  // For a tail call, the return value is merely live-out and there aren't
5785  // any nodes in the DAG representing it. Return a special value to
5786  // indicate that a tail call has been emitted and no more Instructions
5787  // should be processed in the current block.
5788  if (isTailCall) {
5789    DAG.setRoot(Chain);
5790    return std::make_pair(SDValue(), SDValue());
5791  }
5792
5793  DEBUG(for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
5794          assert(InVals[i].getNode() &&
5795                 "LowerCall emitted a null value!");
5796          assert(Ins[i].VT == InVals[i].getValueType() &&
5797                 "LowerCall emitted a value with the wrong type!");
5798        });
5799
5800  // Collect the legal value parts into potentially illegal values
5801  // that correspond to the original function's return values.
5802  ISD::NodeType AssertOp = ISD::DELETED_NODE;
5803  if (RetSExt)
5804    AssertOp = ISD::AssertSext;
5805  else if (RetZExt)
5806    AssertOp = ISD::AssertZext;
5807  SmallVector<SDValue, 4> ReturnValues;
5808  unsigned CurReg = 0;
5809  for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
5810    EVT VT = RetTys[I];
5811    EVT RegisterVT = getRegisterType(RetTy->getContext(), VT);
5812    unsigned NumRegs = getNumRegisters(RetTy->getContext(), VT);
5813
5814    ReturnValues.push_back(getCopyFromParts(DAG, dl, &InVals[CurReg],
5815                                            NumRegs, RegisterVT, VT,
5816                                            AssertOp));
5817    CurReg += NumRegs;
5818  }
5819
5820  // For a function returning void, there is no return value. We can't create
5821  // such a node, so we just return a null return value in that case. In
5822  // that case, nothing will actualy look at the value.
5823  if (ReturnValues.empty())
5824    return std::make_pair(SDValue(), Chain);
5825
5826  SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
5827                            DAG.getVTList(&RetTys[0], RetTys.size()),
5828                            &ReturnValues[0], ReturnValues.size());
5829  return std::make_pair(Res, Chain);
5830}
5831
5832void TargetLowering::LowerOperationWrapper(SDNode *N,
5833                                           SmallVectorImpl<SDValue> &Results,
5834                                           SelectionDAG &DAG) const {
5835  SDValue Res = LowerOperation(SDValue(N, 0), DAG);
5836  if (Res.getNode())
5837    Results.push_back(Res);
5838}
5839
5840SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
5841  llvm_unreachable("LowerOperation not implemented for this target!");
5842  return SDValue();
5843}
5844
5845void
5846SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) {
5847  SDValue Op = getValue(V);
5848  assert((Op.getOpcode() != ISD::CopyFromReg ||
5849          cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
5850         "Copy from a reg to the same reg!");
5851  assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg");
5852
5853  RegsForValue RFV(V->getContext(), TLI, Reg, V->getType());
5854  SDValue Chain = DAG.getEntryNode();
5855  RFV.getCopyToRegs(Op, DAG, getCurDebugLoc(), Chain, 0);
5856  PendingExports.push_back(Chain);
5857}
5858
5859#include "llvm/CodeGen/SelectionDAGISel.h"
5860
5861void SelectionDAGISel::LowerArguments(const BasicBlock *LLVMBB) {
5862  // If this is the entry block, emit arguments.
5863  const Function &F = *LLVMBB->getParent();
5864  SelectionDAG &DAG = SDB->DAG;
5865  SDValue OldRoot = DAG.getRoot();
5866  DebugLoc dl = SDB->getCurDebugLoc();
5867  const TargetData *TD = TLI.getTargetData();
5868  SmallVector<ISD::InputArg, 16> Ins;
5869
5870  // Check whether the function can return without sret-demotion.
5871  SmallVector<EVT, 4> OutVTs;
5872  SmallVector<ISD::ArgFlagsTy, 4> OutsFlags;
5873  getReturnInfo(F.getReturnType(), F.getAttributes().getRetAttributes(),
5874                OutVTs, OutsFlags, TLI);
5875  FunctionLoweringInfo &FLI = DAG.getFunctionLoweringInfo();
5876
5877  FLI.CanLowerReturn = TLI.CanLowerReturn(F.getCallingConv(), F.isVarArg(),
5878                                          OutVTs, OutsFlags, DAG);
5879  if (!FLI.CanLowerReturn) {
5880    // Put in an sret pointer parameter before all the other parameters.
5881    SmallVector<EVT, 1> ValueVTs;
5882    ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs);
5883
5884    // NOTE: Assuming that a pointer will never break down to more than one VT
5885    // or one register.
5886    ISD::ArgFlagsTy Flags;
5887    Flags.setSRet();
5888    EVT RegisterVT = TLI.getRegisterType(*DAG.getContext(), ValueVTs[0]);
5889    ISD::InputArg RetArg(Flags, RegisterVT, true);
5890    Ins.push_back(RetArg);
5891  }
5892
5893  // Set up the incoming argument description vector.
5894  unsigned Idx = 1;
5895  for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end();
5896       I != E; ++I, ++Idx) {
5897    SmallVector<EVT, 4> ValueVTs;
5898    ComputeValueVTs(TLI, I->getType(), ValueVTs);
5899    bool isArgValueUsed = !I->use_empty();
5900    for (unsigned Value = 0, NumValues = ValueVTs.size();
5901         Value != NumValues; ++Value) {
5902      EVT VT = ValueVTs[Value];
5903      const Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
5904      ISD::ArgFlagsTy Flags;
5905      unsigned OriginalAlignment =
5906        TD->getABITypeAlignment(ArgTy);
5907
5908      if (F.paramHasAttr(Idx, Attribute::ZExt))
5909        Flags.setZExt();
5910      if (F.paramHasAttr(Idx, Attribute::SExt))
5911        Flags.setSExt();
5912      if (F.paramHasAttr(Idx, Attribute::InReg))
5913        Flags.setInReg();
5914      if (F.paramHasAttr(Idx, Attribute::StructRet))
5915        Flags.setSRet();
5916      if (F.paramHasAttr(Idx, Attribute::ByVal)) {
5917        Flags.setByVal();
5918        const PointerType *Ty = cast<PointerType>(I->getType());
5919        const Type *ElementTy = Ty->getElementType();
5920        unsigned FrameAlign = TLI.getByValTypeAlignment(ElementTy);
5921        unsigned FrameSize  = TD->getTypeAllocSize(ElementTy);
5922        // For ByVal, alignment should be passed from FE.  BE will guess if
5923        // this info is not there but there are cases it cannot get right.
5924        if (F.getParamAlignment(Idx))
5925          FrameAlign = F.getParamAlignment(Idx);
5926        Flags.setByValAlign(FrameAlign);
5927        Flags.setByValSize(FrameSize);
5928      }
5929      if (F.paramHasAttr(Idx, Attribute::Nest))
5930        Flags.setNest();
5931      Flags.setOrigAlign(OriginalAlignment);
5932
5933      EVT RegisterVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
5934      unsigned NumRegs = TLI.getNumRegisters(*CurDAG->getContext(), VT);
5935      for (unsigned i = 0; i != NumRegs; ++i) {
5936        ISD::InputArg MyFlags(Flags, RegisterVT, isArgValueUsed);
5937        if (NumRegs > 1 && i == 0)
5938          MyFlags.Flags.setSplit();
5939        // if it isn't first piece, alignment must be 1
5940        else if (i > 0)
5941          MyFlags.Flags.setOrigAlign(1);
5942        Ins.push_back(MyFlags);
5943      }
5944    }
5945  }
5946
5947  // Call the target to set up the argument values.
5948  SmallVector<SDValue, 8> InVals;
5949  SDValue NewRoot = TLI.LowerFormalArguments(DAG.getRoot(), F.getCallingConv(),
5950                                             F.isVarArg(), Ins,
5951                                             dl, DAG, InVals);
5952
5953  // Verify that the target's LowerFormalArguments behaved as expected.
5954  assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
5955         "LowerFormalArguments didn't return a valid chain!");
5956  assert(InVals.size() == Ins.size() &&
5957         "LowerFormalArguments didn't emit the correct number of values!");
5958  DEBUG({
5959      for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
5960        assert(InVals[i].getNode() &&
5961               "LowerFormalArguments emitted a null value!");
5962        assert(Ins[i].VT == InVals[i].getValueType() &&
5963               "LowerFormalArguments emitted a value with the wrong type!");
5964      }
5965    });
5966
5967  // Update the DAG with the new chain value resulting from argument lowering.
5968  DAG.setRoot(NewRoot);
5969
5970  // Set up the argument values.
5971  unsigned i = 0;
5972  Idx = 1;
5973  if (!FLI.CanLowerReturn) {
5974    // Create a virtual register for the sret pointer, and put in a copy
5975    // from the sret argument into it.
5976    SmallVector<EVT, 1> ValueVTs;
5977    ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs);
5978    EVT VT = ValueVTs[0];
5979    EVT RegVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
5980    ISD::NodeType AssertOp = ISD::DELETED_NODE;
5981    SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1,
5982                                        RegVT, VT, AssertOp);
5983
5984    MachineFunction& MF = SDB->DAG.getMachineFunction();
5985    MachineRegisterInfo& RegInfo = MF.getRegInfo();
5986    unsigned SRetReg = RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT));
5987    FLI.DemoteRegister = SRetReg;
5988    NewRoot = SDB->DAG.getCopyToReg(NewRoot, SDB->getCurDebugLoc(),
5989                                    SRetReg, ArgValue);
5990    DAG.setRoot(NewRoot);
5991
5992    // i indexes lowered arguments.  Bump it past the hidden sret argument.
5993    // Idx indexes LLVM arguments.  Don't touch it.
5994    ++i;
5995  }
5996
5997  for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E;
5998      ++I, ++Idx) {
5999    SmallVector<SDValue, 4> ArgValues;
6000    SmallVector<EVT, 4> ValueVTs;
6001    ComputeValueVTs(TLI, I->getType(), ValueVTs);
6002    unsigned NumValues = ValueVTs.size();
6003    for (unsigned Value = 0; Value != NumValues; ++Value) {
6004      EVT VT = ValueVTs[Value];
6005      EVT PartVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
6006      unsigned NumParts = TLI.getNumRegisters(*CurDAG->getContext(), VT);
6007
6008      if (!I->use_empty()) {
6009        ISD::NodeType AssertOp = ISD::DELETED_NODE;
6010        if (F.paramHasAttr(Idx, Attribute::SExt))
6011          AssertOp = ISD::AssertSext;
6012        else if (F.paramHasAttr(Idx, Attribute::ZExt))
6013          AssertOp = ISD::AssertZext;
6014
6015        ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i],
6016                                             NumParts, PartVT, VT,
6017                                             AssertOp));
6018      }
6019
6020      i += NumParts;
6021    }
6022
6023    if (!I->use_empty()) {
6024      SDValue Res;
6025      if (!ArgValues.empty())
6026        Res = DAG.getMergeValues(&ArgValues[0], NumValues,
6027                                 SDB->getCurDebugLoc());
6028      SDB->setValue(I, Res);
6029
6030      // If this argument is live outside of the entry block, insert a copy from
6031      // whereever we got it to the vreg that other BB's will reference it as.
6032      SDB->CopyToExportRegsIfNeeded(I);
6033    }
6034  }
6035
6036  assert(i == InVals.size() && "Argument register count mismatch!");
6037
6038  // Finally, if the target has anything special to do, allow it to do so.
6039  // FIXME: this should insert code into the DAG!
6040  EmitFunctionEntryCode();
6041}
6042
6043/// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
6044/// ensure constants are generated when needed.  Remember the virtual registers
6045/// that need to be added to the Machine PHI nodes as input.  We cannot just
6046/// directly add them, because expansion might result in multiple MBB's for one
6047/// BB.  As such, the start of the BB might correspond to a different MBB than
6048/// the end.
6049///
6050void
6051SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
6052  const TerminatorInst *TI = LLVMBB->getTerminator();
6053
6054  SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
6055
6056  // Check successor nodes' PHI nodes that expect a constant to be available
6057  // from this block.
6058  for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
6059    const BasicBlock *SuccBB = TI->getSuccessor(succ);
6060    if (!isa<PHINode>(SuccBB->begin())) continue;
6061    MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
6062
6063    // If this terminator has multiple identical successors (common for
6064    // switches), only handle each succ once.
6065    if (!SuccsHandled.insert(SuccMBB)) continue;
6066
6067    MachineBasicBlock::iterator MBBI = SuccMBB->begin();
6068
6069    // At this point we know that there is a 1-1 correspondence between LLVM PHI
6070    // nodes and Machine PHI nodes, but the incoming operands have not been
6071    // emitted yet.
6072    for (BasicBlock::const_iterator I = SuccBB->begin();
6073         const PHINode *PN = dyn_cast<PHINode>(I); ++I) {
6074      // Ignore dead phi's.
6075      if (PN->use_empty()) continue;
6076
6077      unsigned Reg;
6078      const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
6079
6080      if (const Constant *C = dyn_cast<Constant>(PHIOp)) {
6081        unsigned &RegOut = ConstantsOut[C];
6082        if (RegOut == 0) {
6083          RegOut = FuncInfo.CreateRegForValue(C);
6084          CopyValueToVirtualRegister(C, RegOut);
6085        }
6086        Reg = RegOut;
6087      } else {
6088        Reg = FuncInfo.ValueMap[PHIOp];
6089        if (Reg == 0) {
6090          assert(isa<AllocaInst>(PHIOp) &&
6091                 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
6092                 "Didn't codegen value into a register!??");
6093          Reg = FuncInfo.CreateRegForValue(PHIOp);
6094          CopyValueToVirtualRegister(PHIOp, Reg);
6095        }
6096      }
6097
6098      // Remember that this register needs to added to the machine PHI node as
6099      // the input for this MBB.
6100      SmallVector<EVT, 4> ValueVTs;
6101      ComputeValueVTs(TLI, PN->getType(), ValueVTs);
6102      for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
6103        EVT VT = ValueVTs[vti];
6104        unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
6105        for (unsigned i = 0, e = NumRegisters; i != e; ++i)
6106          FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i));
6107        Reg += NumRegisters;
6108      }
6109    }
6110  }
6111  ConstantsOut.clear();
6112}
6113