SelectionDAGBuilder.cpp revision f22fd3f7b557a967b1edc1fa9ae770006a39e97c
1//===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements routines for translating from LLVM IR into SelectionDAG IR.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "isel"
15#include "SelectionDAGBuilder.h"
16#include "SDNodeDbgValue.h"
17#include "llvm/ADT/BitVector.h"
18#include "llvm/ADT/Optional.h"
19#include "llvm/ADT/SmallSet.h"
20#include "llvm/Analysis/AliasAnalysis.h"
21#include "llvm/Analysis/BranchProbabilityInfo.h"
22#include "llvm/Analysis/ConstantFolding.h"
23#include "llvm/Analysis/ValueTracking.h"
24#include "llvm/CodeGen/Analysis.h"
25#include "llvm/CodeGen/FastISel.h"
26#include "llvm/CodeGen/FunctionLoweringInfo.h"
27#include "llvm/CodeGen/GCMetadata.h"
28#include "llvm/CodeGen/GCStrategy.h"
29#include "llvm/CodeGen/MachineFrameInfo.h"
30#include "llvm/CodeGen/MachineFunction.h"
31#include "llvm/CodeGen/MachineInstrBuilder.h"
32#include "llvm/CodeGen/MachineJumpTableInfo.h"
33#include "llvm/CodeGen/MachineModuleInfo.h"
34#include "llvm/CodeGen/MachineRegisterInfo.h"
35#include "llvm/CodeGen/SelectionDAG.h"
36#include "llvm/DebugInfo.h"
37#include "llvm/IR/CallingConv.h"
38#include "llvm/IR/Constants.h"
39#include "llvm/IR/DataLayout.h"
40#include "llvm/IR/DerivedTypes.h"
41#include "llvm/IR/Function.h"
42#include "llvm/IR/GlobalVariable.h"
43#include "llvm/IR/InlineAsm.h"
44#include "llvm/IR/Instructions.h"
45#include "llvm/IR/IntrinsicInst.h"
46#include "llvm/IR/Intrinsics.h"
47#include "llvm/IR/LLVMContext.h"
48#include "llvm/IR/Module.h"
49#include "llvm/Support/CommandLine.h"
50#include "llvm/Support/Debug.h"
51#include "llvm/Support/ErrorHandling.h"
52#include "llvm/Support/IntegersSubsetMapping.h"
53#include "llvm/Support/MathExtras.h"
54#include "llvm/Support/raw_ostream.h"
55#include "llvm/Target/TargetFrameLowering.h"
56#include "llvm/Target/TargetInstrInfo.h"
57#include "llvm/Target/TargetIntrinsicInfo.h"
58#include "llvm/Target/TargetLibraryInfo.h"
59#include "llvm/Target/TargetLowering.h"
60#include "llvm/Target/TargetOptions.h"
61#include <algorithm>
62using namespace llvm;
63
64/// LimitFloatPrecision - Generate low-precision inline sequences for
65/// some float libcalls (6, 8 or 12 bits).
66static unsigned LimitFloatPrecision;
67
68static cl::opt<unsigned, true>
69LimitFPPrecision("limit-float-precision",
70                 cl::desc("Generate low-precision inline sequences "
71                          "for some float libcalls"),
72                 cl::location(LimitFloatPrecision),
73                 cl::init(0));
74
75// Limit the width of DAG chains. This is important in general to prevent
76// prevent DAG-based analysis from blowing up. For example, alias analysis and
77// load clustering may not complete in reasonable time. It is difficult to
78// recognize and avoid this situation within each individual analysis, and
79// future analyses are likely to have the same behavior. Limiting DAG width is
80// the safe approach, and will be especially important with global DAGs.
81//
82// MaxParallelChains default is arbitrarily high to avoid affecting
83// optimization, but could be lowered to improve compile time. Any ld-ld-st-st
84// sequence over this should have been converted to llvm.memcpy by the
85// frontend. It easy to induce this behavior with .ll code such as:
86// %buffer = alloca [4096 x i8]
87// %data = load [4096 x i8]* %argPtr
88// store [4096 x i8] %data, [4096 x i8]* %buffer
89static const unsigned MaxParallelChains = 64;
90
91static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL,
92                                      const SDValue *Parts, unsigned NumParts,
93                                      MVT PartVT, EVT ValueVT, const Value *V);
94
95/// getCopyFromParts - Create a value that contains the specified legal parts
96/// combined into the value they represent.  If the parts combine to a type
97/// larger then ValueVT then AssertOp can be used to specify whether the extra
98/// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
99/// (ISD::AssertSext).
100static SDValue getCopyFromParts(SelectionDAG &DAG, SDLoc DL,
101                                const SDValue *Parts,
102                                unsigned NumParts, MVT PartVT, EVT ValueVT,
103                                const Value *V,
104                                ISD::NodeType AssertOp = ISD::DELETED_NODE) {
105  if (ValueVT.isVector())
106    return getCopyFromPartsVector(DAG, DL, Parts, NumParts,
107                                  PartVT, ValueVT, V);
108
109  assert(NumParts > 0 && "No parts to assemble!");
110  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
111  SDValue Val = Parts[0];
112
113  if (NumParts > 1) {
114    // Assemble the value from multiple parts.
115    if (ValueVT.isInteger()) {
116      unsigned PartBits = PartVT.getSizeInBits();
117      unsigned ValueBits = ValueVT.getSizeInBits();
118
119      // Assemble the power of 2 part.
120      unsigned RoundParts = NumParts & (NumParts - 1) ?
121        1 << Log2_32(NumParts) : NumParts;
122      unsigned RoundBits = PartBits * RoundParts;
123      EVT RoundVT = RoundBits == ValueBits ?
124        ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
125      SDValue Lo, Hi;
126
127      EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
128
129      if (RoundParts > 2) {
130        Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2,
131                              PartVT, HalfVT, V);
132        Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2,
133                              RoundParts / 2, PartVT, HalfVT, V);
134      } else {
135        Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
136        Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
137      }
138
139      if (TLI.isBigEndian())
140        std::swap(Lo, Hi);
141
142      Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
143
144      if (RoundParts < NumParts) {
145        // Assemble the trailing non-power-of-2 part.
146        unsigned OddParts = NumParts - RoundParts;
147        EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
148        Hi = getCopyFromParts(DAG, DL,
149                              Parts + RoundParts, OddParts, PartVT, OddVT, V);
150
151        // Combine the round and odd parts.
152        Lo = Val;
153        if (TLI.isBigEndian())
154          std::swap(Lo, Hi);
155        EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
156        Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
157        Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
158                         DAG.getConstant(Lo.getValueType().getSizeInBits(),
159                                         TLI.getPointerTy()));
160        Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
161        Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
162      }
163    } else if (PartVT.isFloatingPoint()) {
164      // FP split into multiple FP parts (for ppcf128)
165      assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 &&
166             "Unexpected split");
167      SDValue Lo, Hi;
168      Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
169      Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
170      if (TLI.isBigEndian())
171        std::swap(Lo, Hi);
172      Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
173    } else {
174      // FP split into integer parts (soft fp)
175      assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
176             !PartVT.isVector() && "Unexpected split");
177      EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
178      Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V);
179    }
180  }
181
182  // There is now one part, held in Val.  Correct it to match ValueVT.
183  EVT PartEVT = Val.getValueType();
184
185  if (PartEVT == ValueVT)
186    return Val;
187
188  if (PartEVT.isInteger() && ValueVT.isInteger()) {
189    if (ValueVT.bitsLT(PartEVT)) {
190      // For a truncate, see if we have any information to
191      // indicate whether the truncated bits will always be
192      // zero or sign-extension.
193      if (AssertOp != ISD::DELETED_NODE)
194        Val = DAG.getNode(AssertOp, DL, PartEVT, Val,
195                          DAG.getValueType(ValueVT));
196      return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
197    }
198    return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
199  }
200
201  if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
202    // FP_ROUND's are always exact here.
203    if (ValueVT.bitsLT(Val.getValueType()))
204      return DAG.getNode(ISD::FP_ROUND, DL, ValueVT, Val,
205                         DAG.getTargetConstant(1, TLI.getPointerTy()));
206
207    return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
208  }
209
210  if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits())
211    return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
212
213  llvm_unreachable("Unknown mismatch!");
214}
215
216/// getCopyFromPartsVector - Create a value that contains the specified legal
217/// parts combined into the value they represent.  If the parts combine to a
218/// type larger then ValueVT then AssertOp can be used to specify whether the
219/// extra bits are known to be zero (ISD::AssertZext) or sign extended from
220/// ValueVT (ISD::AssertSext).
221static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL,
222                                      const SDValue *Parts, unsigned NumParts,
223                                      MVT PartVT, EVT ValueVT, const Value *V) {
224  assert(ValueVT.isVector() && "Not a vector value");
225  assert(NumParts > 0 && "No parts to assemble!");
226  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
227  SDValue Val = Parts[0];
228
229  // Handle a multi-element vector.
230  if (NumParts > 1) {
231    EVT IntermediateVT;
232    MVT RegisterVT;
233    unsigned NumIntermediates;
234    unsigned NumRegs =
235    TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
236                               NumIntermediates, RegisterVT);
237    assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
238    NumParts = NumRegs; // Silence a compiler warning.
239    assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
240    assert(RegisterVT == Parts[0].getSimpleValueType() &&
241           "Part type doesn't match part!");
242
243    // Assemble the parts into intermediate operands.
244    SmallVector<SDValue, 8> Ops(NumIntermediates);
245    if (NumIntermediates == NumParts) {
246      // If the register was not expanded, truncate or copy the value,
247      // as appropriate.
248      for (unsigned i = 0; i != NumParts; ++i)
249        Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1,
250                                  PartVT, IntermediateVT, V);
251    } else if (NumParts > 0) {
252      // If the intermediate type was expanded, build the intermediate
253      // operands from the parts.
254      assert(NumParts % NumIntermediates == 0 &&
255             "Must expand into a divisible number of parts!");
256      unsigned Factor = NumParts / NumIntermediates;
257      for (unsigned i = 0; i != NumIntermediates; ++i)
258        Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor,
259                                  PartVT, IntermediateVT, V);
260    }
261
262    // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
263    // intermediate operands.
264    Val = DAG.getNode(IntermediateVT.isVector() ?
265                      ISD::CONCAT_VECTORS : ISD::BUILD_VECTOR, DL,
266                      ValueVT, &Ops[0], NumIntermediates);
267  }
268
269  // There is now one part, held in Val.  Correct it to match ValueVT.
270  EVT PartEVT = Val.getValueType();
271
272  if (PartEVT == ValueVT)
273    return Val;
274
275  if (PartEVT.isVector()) {
276    // If the element type of the source/dest vectors are the same, but the
277    // parts vector has more elements than the value vector, then we have a
278    // vector widening case (e.g. <2 x float> -> <4 x float>).  Extract the
279    // elements we want.
280    if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) {
281      assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() &&
282             "Cannot narrow, it would be a lossy transformation");
283      return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
284                         DAG.getIntPtrConstant(0));
285    }
286
287    // Vector/Vector bitcast.
288    if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits())
289      return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
290
291    assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() &&
292      "Cannot handle this kind of promotion");
293    // Promoted vector extract
294    bool Smaller = ValueVT.bitsLE(PartEVT);
295    return DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
296                       DL, ValueVT, Val);
297
298  }
299
300  // Trivial bitcast if the types are the same size and the destination
301  // vector type is legal.
302  if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() &&
303      TLI.isTypeLegal(ValueVT))
304    return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
305
306  // Handle cases such as i8 -> <1 x i1>
307  if (ValueVT.getVectorNumElements() != 1) {
308    LLVMContext &Ctx = *DAG.getContext();
309    Twine ErrMsg("non-trivial scalar-to-vector conversion");
310    if (const Instruction *I = dyn_cast_or_null<Instruction>(V)) {
311      if (const CallInst *CI = dyn_cast<CallInst>(I))
312        if (isa<InlineAsm>(CI->getCalledValue()))
313          ErrMsg = ErrMsg + ", possible invalid constraint for vector type";
314      Ctx.emitError(I, ErrMsg);
315    } else {
316      Ctx.emitError(ErrMsg);
317    }
318    return DAG.getUNDEF(ValueVT);
319  }
320
321  if (ValueVT.getVectorNumElements() == 1 &&
322      ValueVT.getVectorElementType() != PartEVT) {
323    bool Smaller = ValueVT.bitsLE(PartEVT);
324    Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
325                       DL, ValueVT.getScalarType(), Val);
326  }
327
328  return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val);
329}
330
331static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc dl,
332                                 SDValue Val, SDValue *Parts, unsigned NumParts,
333                                 MVT PartVT, const Value *V);
334
335/// getCopyToParts - Create a series of nodes that contain the specified value
336/// split into legal parts.  If the parts contain more bits than Val, then, for
337/// integers, ExtendKind can be used to specify how to generate the extra bits.
338static void getCopyToParts(SelectionDAG &DAG, SDLoc DL,
339                           SDValue Val, SDValue *Parts, unsigned NumParts,
340                           MVT PartVT, const Value *V,
341                           ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
342  EVT ValueVT = Val.getValueType();
343
344  // Handle the vector case separately.
345  if (ValueVT.isVector())
346    return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V);
347
348  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
349  unsigned PartBits = PartVT.getSizeInBits();
350  unsigned OrigNumParts = NumParts;
351  assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!");
352
353  if (NumParts == 0)
354    return;
355
356  assert(!ValueVT.isVector() && "Vector case handled elsewhere");
357  EVT PartEVT = PartVT;
358  if (PartEVT == ValueVT) {
359    assert(NumParts == 1 && "No-op copy with multiple parts!");
360    Parts[0] = Val;
361    return;
362  }
363
364  if (NumParts * PartBits > ValueVT.getSizeInBits()) {
365    // If the parts cover more bits than the value has, promote the value.
366    if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
367      assert(NumParts == 1 && "Do not know what to promote to!");
368      Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
369    } else {
370      assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
371             ValueVT.isInteger() &&
372             "Unknown mismatch!");
373      ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
374      Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
375      if (PartVT == MVT::x86mmx)
376        Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
377    }
378  } else if (PartBits == ValueVT.getSizeInBits()) {
379    // Different types of the same size.
380    assert(NumParts == 1 && PartEVT != ValueVT);
381    Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
382  } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
383    // If the parts cover less bits than value has, truncate the value.
384    assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
385           ValueVT.isInteger() &&
386           "Unknown mismatch!");
387    ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
388    Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
389    if (PartVT == MVT::x86mmx)
390      Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
391  }
392
393  // The value may have changed - recompute ValueVT.
394  ValueVT = Val.getValueType();
395  assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
396         "Failed to tile the value with PartVT!");
397
398  if (NumParts == 1) {
399    if (PartEVT != ValueVT) {
400      LLVMContext &Ctx = *DAG.getContext();
401      Twine ErrMsg("scalar-to-vector conversion failed");
402      if (const Instruction *I = dyn_cast_or_null<Instruction>(V)) {
403        if (const CallInst *CI = dyn_cast<CallInst>(I))
404          if (isa<InlineAsm>(CI->getCalledValue()))
405            ErrMsg = ErrMsg + ", possible invalid constraint for vector type";
406        Ctx.emitError(I, ErrMsg);
407      } else {
408        Ctx.emitError(ErrMsg);
409      }
410    }
411
412    Parts[0] = Val;
413    return;
414  }
415
416  // Expand the value into multiple parts.
417  if (NumParts & (NumParts - 1)) {
418    // The number of parts is not a power of 2.  Split off and copy the tail.
419    assert(PartVT.isInteger() && ValueVT.isInteger() &&
420           "Do not know what to expand to!");
421    unsigned RoundParts = 1 << Log2_32(NumParts);
422    unsigned RoundBits = RoundParts * PartBits;
423    unsigned OddParts = NumParts - RoundParts;
424    SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
425                                 DAG.getIntPtrConstant(RoundBits));
426    getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V);
427
428    if (TLI.isBigEndian())
429      // The odd parts were reversed by getCopyToParts - unreverse them.
430      std::reverse(Parts + RoundParts, Parts + NumParts);
431
432    NumParts = RoundParts;
433    ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
434    Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
435  }
436
437  // The number of parts is a power of 2.  Repeatedly bisect the value using
438  // EXTRACT_ELEMENT.
439  Parts[0] = DAG.getNode(ISD::BITCAST, DL,
440                         EVT::getIntegerVT(*DAG.getContext(),
441                                           ValueVT.getSizeInBits()),
442                         Val);
443
444  for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
445    for (unsigned i = 0; i < NumParts; i += StepSize) {
446      unsigned ThisBits = StepSize * PartBits / 2;
447      EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
448      SDValue &Part0 = Parts[i];
449      SDValue &Part1 = Parts[i+StepSize/2];
450
451      Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
452                          ThisVT, Part0, DAG.getIntPtrConstant(1));
453      Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
454                          ThisVT, Part0, DAG.getIntPtrConstant(0));
455
456      if (ThisBits == PartBits && ThisVT != PartVT) {
457        Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
458        Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
459      }
460    }
461  }
462
463  if (TLI.isBigEndian())
464    std::reverse(Parts, Parts + OrigNumParts);
465}
466
467
468/// getCopyToPartsVector - Create a series of nodes that contain the specified
469/// value split into legal parts.
470static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc DL,
471                                 SDValue Val, SDValue *Parts, unsigned NumParts,
472                                 MVT PartVT, const Value *V) {
473  EVT ValueVT = Val.getValueType();
474  assert(ValueVT.isVector() && "Not a vector");
475  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
476
477  if (NumParts == 1) {
478    EVT PartEVT = PartVT;
479    if (PartEVT == ValueVT) {
480      // Nothing to do.
481    } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
482      // Bitconvert vector->vector case.
483      Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
484    } else if (PartVT.isVector() &&
485               PartEVT.getVectorElementType() == ValueVT.getVectorElementType() &&
486               PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements()) {
487      EVT ElementVT = PartVT.getVectorElementType();
488      // Vector widening case, e.g. <2 x float> -> <4 x float>.  Shuffle in
489      // undef elements.
490      SmallVector<SDValue, 16> Ops;
491      for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i)
492        Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
493                                  ElementVT, Val, DAG.getIntPtrConstant(i)));
494
495      for (unsigned i = ValueVT.getVectorNumElements(),
496           e = PartVT.getVectorNumElements(); i != e; ++i)
497        Ops.push_back(DAG.getUNDEF(ElementVT));
498
499      Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, &Ops[0], Ops.size());
500
501      // FIXME: Use CONCAT for 2x -> 4x.
502
503      //SDValue UndefElts = DAG.getUNDEF(VectorTy);
504      //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts);
505    } else if (PartVT.isVector() &&
506               PartEVT.getVectorElementType().bitsGE(
507                 ValueVT.getVectorElementType()) &&
508               PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) {
509
510      // Promoted vector extract
511      bool Smaller = PartEVT.bitsLE(ValueVT);
512      Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
513                        DL, PartVT, Val);
514    } else{
515      // Vector -> scalar conversion.
516      assert(ValueVT.getVectorNumElements() == 1 &&
517             "Only trivial vector-to-scalar conversions should get here!");
518      Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
519                        PartVT, Val, DAG.getIntPtrConstant(0));
520
521      bool Smaller = ValueVT.bitsLE(PartVT);
522      Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
523                         DL, PartVT, Val);
524    }
525
526    Parts[0] = Val;
527    return;
528  }
529
530  // Handle a multi-element vector.
531  EVT IntermediateVT;
532  MVT RegisterVT;
533  unsigned NumIntermediates;
534  unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT,
535                                                IntermediateVT,
536                                                NumIntermediates, RegisterVT);
537  unsigned NumElements = ValueVT.getVectorNumElements();
538
539  assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
540  NumParts = NumRegs; // Silence a compiler warning.
541  assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
542
543  // Split the vector into intermediate operands.
544  SmallVector<SDValue, 8> Ops(NumIntermediates);
545  for (unsigned i = 0; i != NumIntermediates; ++i) {
546    if (IntermediateVT.isVector())
547      Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL,
548                           IntermediateVT, Val,
549                   DAG.getIntPtrConstant(i * (NumElements / NumIntermediates)));
550    else
551      Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
552                           IntermediateVT, Val, DAG.getIntPtrConstant(i));
553  }
554
555  // Split the intermediate operands into legal parts.
556  if (NumParts == NumIntermediates) {
557    // If the register was not expanded, promote or copy the value,
558    // as appropriate.
559    for (unsigned i = 0; i != NumParts; ++i)
560      getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V);
561  } else if (NumParts > 0) {
562    // If the intermediate type was expanded, split each the value into
563    // legal parts.
564    assert(NumParts % NumIntermediates == 0 &&
565           "Must expand into a divisible number of parts!");
566    unsigned Factor = NumParts / NumIntermediates;
567    for (unsigned i = 0; i != NumIntermediates; ++i)
568      getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT, V);
569  }
570}
571
572namespace {
573  /// RegsForValue - This struct represents the registers (physical or virtual)
574  /// that a particular set of values is assigned, and the type information
575  /// about the value. The most common situation is to represent one value at a
576  /// time, but struct or array values are handled element-wise as multiple
577  /// values.  The splitting of aggregates is performed recursively, so that we
578  /// never have aggregate-typed registers. The values at this point do not
579  /// necessarily have legal types, so each value may require one or more
580  /// registers of some legal type.
581  ///
582  struct RegsForValue {
583    /// ValueVTs - The value types of the values, which may not be legal, and
584    /// may need be promoted or synthesized from one or more registers.
585    ///
586    SmallVector<EVT, 4> ValueVTs;
587
588    /// RegVTs - The value types of the registers. This is the same size as
589    /// ValueVTs and it records, for each value, what the type of the assigned
590    /// register or registers are. (Individual values are never synthesized
591    /// from more than one type of register.)
592    ///
593    /// With virtual registers, the contents of RegVTs is redundant with TLI's
594    /// getRegisterType member function, however when with physical registers
595    /// it is necessary to have a separate record of the types.
596    ///
597    SmallVector<MVT, 4> RegVTs;
598
599    /// Regs - This list holds the registers assigned to the values.
600    /// Each legal or promoted value requires one register, and each
601    /// expanded value requires multiple registers.
602    ///
603    SmallVector<unsigned, 4> Regs;
604
605    RegsForValue() {}
606
607    RegsForValue(const SmallVector<unsigned, 4> &regs,
608                 MVT regvt, EVT valuevt)
609      : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {}
610
611    RegsForValue(LLVMContext &Context, const TargetLowering &tli,
612                 unsigned Reg, Type *Ty) {
613      ComputeValueVTs(tli, Ty, ValueVTs);
614
615      for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
616        EVT ValueVT = ValueVTs[Value];
617        unsigned NumRegs = tli.getNumRegisters(Context, ValueVT);
618        MVT RegisterVT = tli.getRegisterType(Context, ValueVT);
619        for (unsigned i = 0; i != NumRegs; ++i)
620          Regs.push_back(Reg + i);
621        RegVTs.push_back(RegisterVT);
622        Reg += NumRegs;
623      }
624    }
625
626    /// areValueTypesLegal - Return true if types of all the values are legal.
627    bool areValueTypesLegal(const TargetLowering &TLI) {
628      for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
629        MVT RegisterVT = RegVTs[Value];
630        if (!TLI.isTypeLegal(RegisterVT))
631          return false;
632      }
633      return true;
634    }
635
636    /// append - Add the specified values to this one.
637    void append(const RegsForValue &RHS) {
638      ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end());
639      RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end());
640      Regs.append(RHS.Regs.begin(), RHS.Regs.end());
641    }
642
643    /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
644    /// this value and returns the result as a ValueVTs value.  This uses
645    /// Chain/Flag as the input and updates them for the output Chain/Flag.
646    /// If the Flag pointer is NULL, no flag is used.
647    SDValue getCopyFromRegs(SelectionDAG &DAG, FunctionLoweringInfo &FuncInfo,
648                            SDLoc dl,
649                            SDValue &Chain, SDValue *Flag,
650                            const Value *V = 0) const;
651
652    /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
653    /// specified value into the registers specified by this object.  This uses
654    /// Chain/Flag as the input and updates them for the output Chain/Flag.
655    /// If the Flag pointer is NULL, no flag is used.
656    void getCopyToRegs(SDValue Val, SelectionDAG &DAG, SDLoc dl,
657                       SDValue &Chain, SDValue *Flag, const Value *V) const;
658
659    /// AddInlineAsmOperands - Add this value to the specified inlineasm node
660    /// operand list.  This adds the code marker, matching input operand index
661    /// (if applicable), and includes the number of values added into it.
662    void AddInlineAsmOperands(unsigned Kind,
663                              bool HasMatching, unsigned MatchingIdx,
664                              SelectionDAG &DAG,
665                              std::vector<SDValue> &Ops) const;
666  };
667}
668
669/// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
670/// this value and returns the result as a ValueVT value.  This uses
671/// Chain/Flag as the input and updates them for the output Chain/Flag.
672/// If the Flag pointer is NULL, no flag is used.
673SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
674                                      FunctionLoweringInfo &FuncInfo,
675                                      SDLoc dl,
676                                      SDValue &Chain, SDValue *Flag,
677                                      const Value *V) const {
678  // A Value with type {} or [0 x %t] needs no registers.
679  if (ValueVTs.empty())
680    return SDValue();
681
682  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
683
684  // Assemble the legal parts into the final values.
685  SmallVector<SDValue, 4> Values(ValueVTs.size());
686  SmallVector<SDValue, 8> Parts;
687  for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
688    // Copy the legal parts from the registers.
689    EVT ValueVT = ValueVTs[Value];
690    unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
691    MVT RegisterVT = RegVTs[Value];
692
693    Parts.resize(NumRegs);
694    for (unsigned i = 0; i != NumRegs; ++i) {
695      SDValue P;
696      if (Flag == 0) {
697        P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
698      } else {
699        P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
700        *Flag = P.getValue(2);
701      }
702
703      Chain = P.getValue(1);
704      Parts[i] = P;
705
706      // If the source register was virtual and if we know something about it,
707      // add an assert node.
708      if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) ||
709          !RegisterVT.isInteger() || RegisterVT.isVector())
710        continue;
711
712      const FunctionLoweringInfo::LiveOutInfo *LOI =
713        FuncInfo.GetLiveOutRegInfo(Regs[Part+i]);
714      if (!LOI)
715        continue;
716
717      unsigned RegSize = RegisterVT.getSizeInBits();
718      unsigned NumSignBits = LOI->NumSignBits;
719      unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes();
720
721      if (NumZeroBits == RegSize) {
722        // The current value is a zero.
723        // Explicitly express that as it would be easier for
724        // optimizations to kick in.
725        Parts[i] = DAG.getConstant(0, RegisterVT);
726        continue;
727      }
728
729      // FIXME: We capture more information than the dag can represent.  For
730      // now, just use the tightest assertzext/assertsext possible.
731      bool isSExt = true;
732      EVT FromVT(MVT::Other);
733      if (NumSignBits == RegSize)
734        isSExt = true, FromVT = MVT::i1;   // ASSERT SEXT 1
735      else if (NumZeroBits >= RegSize-1)
736        isSExt = false, FromVT = MVT::i1;  // ASSERT ZEXT 1
737      else if (NumSignBits > RegSize-8)
738        isSExt = true, FromVT = MVT::i8;   // ASSERT SEXT 8
739      else if (NumZeroBits >= RegSize-8)
740        isSExt = false, FromVT = MVT::i8;  // ASSERT ZEXT 8
741      else if (NumSignBits > RegSize-16)
742        isSExt = true, FromVT = MVT::i16;  // ASSERT SEXT 16
743      else if (NumZeroBits >= RegSize-16)
744        isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16
745      else if (NumSignBits > RegSize-32)
746        isSExt = true, FromVT = MVT::i32;  // ASSERT SEXT 32
747      else if (NumZeroBits >= RegSize-32)
748        isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32
749      else
750        continue;
751
752      // Add an assertion node.
753      assert(FromVT != MVT::Other);
754      Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
755                             RegisterVT, P, DAG.getValueType(FromVT));
756    }
757
758    Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(),
759                                     NumRegs, RegisterVT, ValueVT, V);
760    Part += NumRegs;
761    Parts.clear();
762  }
763
764  return DAG.getNode(ISD::MERGE_VALUES, dl,
765                     DAG.getVTList(&ValueVTs[0], ValueVTs.size()),
766                     &Values[0], ValueVTs.size());
767}
768
769/// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
770/// specified value into the registers specified by this object.  This uses
771/// Chain/Flag as the input and updates them for the output Chain/Flag.
772/// If the Flag pointer is NULL, no flag is used.
773void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, SDLoc dl,
774                                 SDValue &Chain, SDValue *Flag,
775                                 const Value *V) const {
776  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
777
778  // Get the list of the values's legal parts.
779  unsigned NumRegs = Regs.size();
780  SmallVector<SDValue, 8> Parts(NumRegs);
781  for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
782    EVT ValueVT = ValueVTs[Value];
783    unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
784    MVT RegisterVT = RegVTs[Value];
785    ISD::NodeType ExtendKind =
786      TLI.isZExtFree(Val, RegisterVT)? ISD::ZERO_EXTEND: ISD::ANY_EXTEND;
787
788    getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value),
789                   &Parts[Part], NumParts, RegisterVT, V, ExtendKind);
790    Part += NumParts;
791  }
792
793  // Copy the parts into the registers.
794  SmallVector<SDValue, 8> Chains(NumRegs);
795  for (unsigned i = 0; i != NumRegs; ++i) {
796    SDValue Part;
797    if (Flag == 0) {
798      Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
799    } else {
800      Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
801      *Flag = Part.getValue(1);
802    }
803
804    Chains[i] = Part.getValue(0);
805  }
806
807  if (NumRegs == 1 || Flag)
808    // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
809    // flagged to it. That is the CopyToReg nodes and the user are considered
810    // a single scheduling unit. If we create a TokenFactor and return it as
811    // chain, then the TokenFactor is both a predecessor (operand) of the
812    // user as well as a successor (the TF operands are flagged to the user).
813    // c1, f1 = CopyToReg
814    // c2, f2 = CopyToReg
815    // c3     = TokenFactor c1, c2
816    // ...
817    //        = op c3, ..., f2
818    Chain = Chains[NumRegs-1];
819  else
820    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0], NumRegs);
821}
822
823/// AddInlineAsmOperands - Add this value to the specified inlineasm node
824/// operand list.  This adds the code marker and includes the number of
825/// values added into it.
826void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
827                                        unsigned MatchingIdx,
828                                        SelectionDAG &DAG,
829                                        std::vector<SDValue> &Ops) const {
830  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
831
832  unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
833  if (HasMatching)
834    Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
835  else if (!Regs.empty() &&
836           TargetRegisterInfo::isVirtualRegister(Regs.front())) {
837    // Put the register class of the virtual registers in the flag word.  That
838    // way, later passes can recompute register class constraints for inline
839    // assembly as well as normal instructions.
840    // Don't do this for tied operands that can use the regclass information
841    // from the def.
842    const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
843    const TargetRegisterClass *RC = MRI.getRegClass(Regs.front());
844    Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID());
845  }
846
847  SDValue Res = DAG.getTargetConstant(Flag, MVT::i32);
848  Ops.push_back(Res);
849
850  for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
851    unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]);
852    MVT RegisterVT = RegVTs[Value];
853    for (unsigned i = 0; i != NumRegs; ++i) {
854      assert(Reg < Regs.size() && "Mismatch in # registers expected");
855      Ops.push_back(DAG.getRegister(Regs[Reg++], RegisterVT));
856    }
857  }
858}
859
860void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa,
861                               const TargetLibraryInfo *li) {
862  AA = &aa;
863  GFI = gfi;
864  LibInfo = li;
865  TD = DAG.getTarget().getDataLayout();
866  Context = DAG.getContext();
867  LPadToCallSiteMap.clear();
868}
869
870/// clear - Clear out the current SelectionDAG and the associated
871/// state and prepare this SelectionDAGBuilder object to be used
872/// for a new block. This doesn't clear out information about
873/// additional blocks that are needed to complete switch lowering
874/// or PHI node updating; that information is cleared out as it is
875/// consumed.
876void SelectionDAGBuilder::clear() {
877  NodeMap.clear();
878  UnusedArgNodeMap.clear();
879  PendingLoads.clear();
880  PendingExports.clear();
881  CurInst = NULL;
882  HasTailCall = false;
883}
884
885/// clearDanglingDebugInfo - Clear the dangling debug information
886/// map. This function is separated from the clear so that debug
887/// information that is dangling in a basic block can be properly
888/// resolved in a different basic block. This allows the
889/// SelectionDAG to resolve dangling debug information attached
890/// to PHI nodes.
891void SelectionDAGBuilder::clearDanglingDebugInfo() {
892  DanglingDebugInfoMap.clear();
893}
894
895/// getRoot - Return the current virtual root of the Selection DAG,
896/// flushing any PendingLoad items. This must be done before emitting
897/// a store or any other node that may need to be ordered after any
898/// prior load instructions.
899///
900SDValue SelectionDAGBuilder::getRoot() {
901  if (PendingLoads.empty())
902    return DAG.getRoot();
903
904  if (PendingLoads.size() == 1) {
905    SDValue Root = PendingLoads[0];
906    DAG.setRoot(Root);
907    PendingLoads.clear();
908    return Root;
909  }
910
911  // Otherwise, we have to make a token factor node.
912  SDValue Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other,
913                               &PendingLoads[0], PendingLoads.size());
914  PendingLoads.clear();
915  DAG.setRoot(Root);
916  return Root;
917}
918
919/// getControlRoot - Similar to getRoot, but instead of flushing all the
920/// PendingLoad items, flush all the PendingExports items. It is necessary
921/// to do this before emitting a terminator instruction.
922///
923SDValue SelectionDAGBuilder::getControlRoot() {
924  SDValue Root = DAG.getRoot();
925
926  if (PendingExports.empty())
927    return Root;
928
929  // Turn all of the CopyToReg chains into one factored node.
930  if (Root.getOpcode() != ISD::EntryToken) {
931    unsigned i = 0, e = PendingExports.size();
932    for (; i != e; ++i) {
933      assert(PendingExports[i].getNode()->getNumOperands() > 1);
934      if (PendingExports[i].getNode()->getOperand(0) == Root)
935        break;  // Don't add the root if we already indirectly depend on it.
936    }
937
938    if (i == e)
939      PendingExports.push_back(Root);
940  }
941
942  Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other,
943                     &PendingExports[0],
944                     PendingExports.size());
945  PendingExports.clear();
946  DAG.setRoot(Root);
947  return Root;
948}
949
950void SelectionDAGBuilder::visit(const Instruction &I) {
951  // Set up outgoing PHI node register values before emitting the terminator.
952  if (isa<TerminatorInst>(&I))
953    HandlePHINodesInSuccessorBlocks(I.getParent());
954
955  ++SDNodeOrder;
956
957  CurInst = &I;
958
959  visit(I.getOpcode(), I);
960
961  if (!isa<TerminatorInst>(&I) && !HasTailCall)
962    CopyToExportRegsIfNeeded(&I);
963
964  CurInst = NULL;
965}
966
967void SelectionDAGBuilder::visitPHI(const PHINode &) {
968  llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
969}
970
971void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
972  // Note: this doesn't use InstVisitor, because it has to work with
973  // ConstantExpr's in addition to instructions.
974  switch (Opcode) {
975  default: llvm_unreachable("Unknown instruction type encountered!");
976    // Build the switch statement using the Instruction.def file.
977#define HANDLE_INST(NUM, OPCODE, CLASS) \
978    case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break;
979#include "llvm/IR/Instruction.def"
980  }
981}
982
983// resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
984// generate the debug data structures now that we've seen its definition.
985void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
986                                                   SDValue Val) {
987  DanglingDebugInfo &DDI = DanglingDebugInfoMap[V];
988  if (DDI.getDI()) {
989    const DbgValueInst *DI = DDI.getDI();
990    DebugLoc dl = DDI.getdl();
991    unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
992    MDNode *Variable = DI->getVariable();
993    uint64_t Offset = DI->getOffset();
994    SDDbgValue *SDV;
995    if (Val.getNode()) {
996      if (!EmitFuncArgumentDbgValue(V, Variable, Offset, Val)) {
997        SDV = DAG.getDbgValue(Variable, Val.getNode(),
998                              Val.getResNo(), Offset, dl, DbgSDNodeOrder);
999        DAG.AddDbgValue(SDV, Val.getNode(), false);
1000      }
1001    } else
1002      DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
1003    DanglingDebugInfoMap[V] = DanglingDebugInfo();
1004  }
1005}
1006
1007/// getValue - Return an SDValue for the given Value.
1008SDValue SelectionDAGBuilder::getValue(const Value *V) {
1009  // If we already have an SDValue for this value, use it. It's important
1010  // to do this first, so that we don't create a CopyFromReg if we already
1011  // have a regular SDValue.
1012  SDValue &N = NodeMap[V];
1013  if (N.getNode()) return N;
1014
1015  // If there's a virtual register allocated and initialized for this
1016  // value, use it.
1017  DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V);
1018  if (It != FuncInfo.ValueMap.end()) {
1019    unsigned InReg = It->second;
1020    RegsForValue RFV(*DAG.getContext(), *TM.getTargetLowering(),
1021                     InReg, V->getType());
1022    SDValue Chain = DAG.getEntryNode();
1023    N = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, NULL, V);
1024    resolveDanglingDebugInfo(V, N);
1025    return N;
1026  }
1027
1028  // Otherwise create a new SDValue and remember it.
1029  SDValue Val = getValueImpl(V);
1030  NodeMap[V] = Val;
1031  resolveDanglingDebugInfo(V, Val);
1032  return Val;
1033}
1034
1035/// getNonRegisterValue - Return an SDValue for the given Value, but
1036/// don't look in FuncInfo.ValueMap for a virtual register.
1037SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
1038  // If we already have an SDValue for this value, use it.
1039  SDValue &N = NodeMap[V];
1040  if (N.getNode()) return N;
1041
1042  // Otherwise create a new SDValue and remember it.
1043  SDValue Val = getValueImpl(V);
1044  NodeMap[V] = Val;
1045  resolveDanglingDebugInfo(V, Val);
1046  return Val;
1047}
1048
1049/// getValueImpl - Helper function for getValue and getNonRegisterValue.
1050/// Create an SDValue for the given value.
1051SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
1052  const TargetLowering *TLI = TM.getTargetLowering();
1053
1054  if (const Constant *C = dyn_cast<Constant>(V)) {
1055    EVT VT = TLI->getValueType(V->getType(), true);
1056
1057    if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
1058      return DAG.getConstant(*CI, VT);
1059
1060    if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
1061      return DAG.getGlobalAddress(GV, getCurSDLoc(), VT);
1062
1063    if (isa<ConstantPointerNull>(C))
1064      return DAG.getConstant(0, TLI->getPointerTy());
1065
1066    if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
1067      return DAG.getConstantFP(*CFP, VT);
1068
1069    if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
1070      return DAG.getUNDEF(VT);
1071
1072    if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1073      visit(CE->getOpcode(), *CE);
1074      SDValue N1 = NodeMap[V];
1075      assert(N1.getNode() && "visit didn't populate the NodeMap!");
1076      return N1;
1077    }
1078
1079    if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
1080      SmallVector<SDValue, 4> Constants;
1081      for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end();
1082           OI != OE; ++OI) {
1083        SDNode *Val = getValue(*OI).getNode();
1084        // If the operand is an empty aggregate, there are no values.
1085        if (!Val) continue;
1086        // Add each leaf value from the operand to the Constants list
1087        // to form a flattened list of all the values.
1088        for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1089          Constants.push_back(SDValue(Val, i));
1090      }
1091
1092      return DAG.getMergeValues(&Constants[0], Constants.size(),
1093                                getCurSDLoc());
1094    }
1095
1096    if (const ConstantDataSequential *CDS =
1097          dyn_cast<ConstantDataSequential>(C)) {
1098      SmallVector<SDValue, 4> Ops;
1099      for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1100        SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode();
1101        // Add each leaf value from the operand to the Constants list
1102        // to form a flattened list of all the values.
1103        for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1104          Ops.push_back(SDValue(Val, i));
1105      }
1106
1107      if (isa<ArrayType>(CDS->getType()))
1108        return DAG.getMergeValues(&Ops[0], Ops.size(), getCurSDLoc());
1109      return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(),
1110                                      VT, &Ops[0], Ops.size());
1111    }
1112
1113    if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
1114      assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1115             "Unknown struct or array constant!");
1116
1117      SmallVector<EVT, 4> ValueVTs;
1118      ComputeValueVTs(*TLI, C->getType(), ValueVTs);
1119      unsigned NumElts = ValueVTs.size();
1120      if (NumElts == 0)
1121        return SDValue(); // empty struct
1122      SmallVector<SDValue, 4> Constants(NumElts);
1123      for (unsigned i = 0; i != NumElts; ++i) {
1124        EVT EltVT = ValueVTs[i];
1125        if (isa<UndefValue>(C))
1126          Constants[i] = DAG.getUNDEF(EltVT);
1127        else if (EltVT.isFloatingPoint())
1128          Constants[i] = DAG.getConstantFP(0, EltVT);
1129        else
1130          Constants[i] = DAG.getConstant(0, EltVT);
1131      }
1132
1133      return DAG.getMergeValues(&Constants[0], NumElts,
1134                                getCurSDLoc());
1135    }
1136
1137    if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
1138      return DAG.getBlockAddress(BA, VT);
1139
1140    VectorType *VecTy = cast<VectorType>(V->getType());
1141    unsigned NumElements = VecTy->getNumElements();
1142
1143    // Now that we know the number and type of the elements, get that number of
1144    // elements into the Ops array based on what kind of constant it is.
1145    SmallVector<SDValue, 16> Ops;
1146    if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
1147      for (unsigned i = 0; i != NumElements; ++i)
1148        Ops.push_back(getValue(CV->getOperand(i)));
1149    } else {
1150      assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!");
1151      EVT EltVT = TLI->getValueType(VecTy->getElementType());
1152
1153      SDValue Op;
1154      if (EltVT.isFloatingPoint())
1155        Op = DAG.getConstantFP(0, EltVT);
1156      else
1157        Op = DAG.getConstant(0, EltVT);
1158      Ops.assign(NumElements, Op);
1159    }
1160
1161    // Create a BUILD_VECTOR node.
1162    return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(),
1163                                    VT, &Ops[0], Ops.size());
1164  }
1165
1166  // If this is a static alloca, generate it as the frameindex instead of
1167  // computation.
1168  if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1169    DenseMap<const AllocaInst*, int>::iterator SI =
1170      FuncInfo.StaticAllocaMap.find(AI);
1171    if (SI != FuncInfo.StaticAllocaMap.end())
1172      return DAG.getFrameIndex(SI->second, TLI->getPointerTy());
1173  }
1174
1175  // If this is an instruction which fast-isel has deferred, select it now.
1176  if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
1177    unsigned InReg = FuncInfo.InitializeRegForValue(Inst);
1178    RegsForValue RFV(*DAG.getContext(), *TLI, InReg, Inst->getType());
1179    SDValue Chain = DAG.getEntryNode();
1180    return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, NULL, V);
1181  }
1182
1183  llvm_unreachable("Can't get register for value!");
1184}
1185
1186void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
1187  const TargetLowering *TLI = TM.getTargetLowering();
1188  SDValue Chain = getControlRoot();
1189  SmallVector<ISD::OutputArg, 8> Outs;
1190  SmallVector<SDValue, 8> OutVals;
1191
1192  if (!FuncInfo.CanLowerReturn) {
1193    unsigned DemoteReg = FuncInfo.DemoteRegister;
1194    const Function *F = I.getParent()->getParent();
1195
1196    // Emit a store of the return value through the virtual register.
1197    // Leave Outs empty so that LowerReturn won't try to load return
1198    // registers the usual way.
1199    SmallVector<EVT, 1> PtrValueVTs;
1200    ComputeValueVTs(*TLI, PointerType::getUnqual(F->getReturnType()),
1201                    PtrValueVTs);
1202
1203    SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]);
1204    SDValue RetOp = getValue(I.getOperand(0));
1205
1206    SmallVector<EVT, 4> ValueVTs;
1207    SmallVector<uint64_t, 4> Offsets;
1208    ComputeValueVTs(*TLI, I.getOperand(0)->getType(), ValueVTs, &Offsets);
1209    unsigned NumValues = ValueVTs.size();
1210
1211    SmallVector<SDValue, 4> Chains(NumValues);
1212    for (unsigned i = 0; i != NumValues; ++i) {
1213      SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(),
1214                                RetPtr.getValueType(), RetPtr,
1215                                DAG.getIntPtrConstant(Offsets[i]));
1216      Chains[i] =
1217        DAG.getStore(Chain, getCurSDLoc(),
1218                     SDValue(RetOp.getNode(), RetOp.getResNo() + i),
1219                     // FIXME: better loc info would be nice.
1220                     Add, MachinePointerInfo(), false, false, 0);
1221    }
1222
1223    Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
1224                        MVT::Other, &Chains[0], NumValues);
1225  } else if (I.getNumOperands() != 0) {
1226    SmallVector<EVT, 4> ValueVTs;
1227    ComputeValueVTs(*TLI, I.getOperand(0)->getType(), ValueVTs);
1228    unsigned NumValues = ValueVTs.size();
1229    if (NumValues) {
1230      SDValue RetOp = getValue(I.getOperand(0));
1231      for (unsigned j = 0, f = NumValues; j != f; ++j) {
1232        EVT VT = ValueVTs[j];
1233
1234        ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1235
1236        const Function *F = I.getParent()->getParent();
1237        if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex,
1238                                            Attribute::SExt))
1239          ExtendKind = ISD::SIGN_EXTEND;
1240        else if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex,
1241                                                 Attribute::ZExt))
1242          ExtendKind = ISD::ZERO_EXTEND;
1243
1244        if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
1245          VT = TLI->getTypeForExtArgOrReturn(VT.getSimpleVT(), ExtendKind);
1246
1247        unsigned NumParts = TLI->getNumRegisters(*DAG.getContext(), VT);
1248        MVT PartVT = TLI->getRegisterType(*DAG.getContext(), VT);
1249        SmallVector<SDValue, 4> Parts(NumParts);
1250        getCopyToParts(DAG, getCurSDLoc(),
1251                       SDValue(RetOp.getNode(), RetOp.getResNo() + j),
1252                       &Parts[0], NumParts, PartVT, &I, ExtendKind);
1253
1254        // 'inreg' on function refers to return value
1255        ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1256        if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex,
1257                                            Attribute::InReg))
1258          Flags.setInReg();
1259
1260        // Propagate extension type if any
1261        if (ExtendKind == ISD::SIGN_EXTEND)
1262          Flags.setSExt();
1263        else if (ExtendKind == ISD::ZERO_EXTEND)
1264          Flags.setZExt();
1265
1266        for (unsigned i = 0; i < NumParts; ++i) {
1267          Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(),
1268                                        /*isfixed=*/true, 0, 0));
1269          OutVals.push_back(Parts[i]);
1270        }
1271      }
1272    }
1273  }
1274
1275  bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
1276  CallingConv::ID CallConv =
1277    DAG.getMachineFunction().getFunction()->getCallingConv();
1278  Chain = TM.getTargetLowering()->LowerReturn(Chain, CallConv, isVarArg,
1279                                              Outs, OutVals, getCurSDLoc(),
1280                                              DAG);
1281
1282  // Verify that the target's LowerReturn behaved as expected.
1283  assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
1284         "LowerReturn didn't return a valid chain!");
1285
1286  // Update the DAG with the new chain value resulting from return lowering.
1287  DAG.setRoot(Chain);
1288}
1289
1290/// CopyToExportRegsIfNeeded - If the given value has virtual registers
1291/// created for it, emit nodes to copy the value into the virtual
1292/// registers.
1293void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
1294  // Skip empty types
1295  if (V->getType()->isEmptyTy())
1296    return;
1297
1298  DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
1299  if (VMI != FuncInfo.ValueMap.end()) {
1300    assert(!V->use_empty() && "Unused value assigned virtual registers!");
1301    CopyValueToVirtualRegister(V, VMI->second);
1302  }
1303}
1304
1305/// ExportFromCurrentBlock - If this condition isn't known to be exported from
1306/// the current basic block, add it to ValueMap now so that we'll get a
1307/// CopyTo/FromReg.
1308void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
1309  // No need to export constants.
1310  if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
1311
1312  // Already exported?
1313  if (FuncInfo.isExportedInst(V)) return;
1314
1315  unsigned Reg = FuncInfo.InitializeRegForValue(V);
1316  CopyValueToVirtualRegister(V, Reg);
1317}
1318
1319bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
1320                                                     const BasicBlock *FromBB) {
1321  // The operands of the setcc have to be in this block.  We don't know
1322  // how to export them from some other block.
1323  if (const Instruction *VI = dyn_cast<Instruction>(V)) {
1324    // Can export from current BB.
1325    if (VI->getParent() == FromBB)
1326      return true;
1327
1328    // Is already exported, noop.
1329    return FuncInfo.isExportedInst(V);
1330  }
1331
1332  // If this is an argument, we can export it if the BB is the entry block or
1333  // if it is already exported.
1334  if (isa<Argument>(V)) {
1335    if (FromBB == &FromBB->getParent()->getEntryBlock())
1336      return true;
1337
1338    // Otherwise, can only export this if it is already exported.
1339    return FuncInfo.isExportedInst(V);
1340  }
1341
1342  // Otherwise, constants can always be exported.
1343  return true;
1344}
1345
1346/// Return branch probability calculated by BranchProbabilityInfo for IR blocks.
1347uint32_t SelectionDAGBuilder::getEdgeWeight(const MachineBasicBlock *Src,
1348                                            const MachineBasicBlock *Dst) const {
1349  BranchProbabilityInfo *BPI = FuncInfo.BPI;
1350  if (!BPI)
1351    return 0;
1352  const BasicBlock *SrcBB = Src->getBasicBlock();
1353  const BasicBlock *DstBB = Dst->getBasicBlock();
1354  return BPI->getEdgeWeight(SrcBB, DstBB);
1355}
1356
1357void SelectionDAGBuilder::
1358addSuccessorWithWeight(MachineBasicBlock *Src, MachineBasicBlock *Dst,
1359                       uint32_t Weight /* = 0 */) {
1360  if (!Weight)
1361    Weight = getEdgeWeight(Src, Dst);
1362  Src->addSuccessor(Dst, Weight);
1363}
1364
1365
1366static bool InBlock(const Value *V, const BasicBlock *BB) {
1367  if (const Instruction *I = dyn_cast<Instruction>(V))
1368    return I->getParent() == BB;
1369  return true;
1370}
1371
1372/// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
1373/// This function emits a branch and is used at the leaves of an OR or an
1374/// AND operator tree.
1375///
1376void
1377SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
1378                                                  MachineBasicBlock *TBB,
1379                                                  MachineBasicBlock *FBB,
1380                                                  MachineBasicBlock *CurBB,
1381                                                  MachineBasicBlock *SwitchBB) {
1382  const BasicBlock *BB = CurBB->getBasicBlock();
1383
1384  // If the leaf of the tree is a comparison, merge the condition into
1385  // the caseblock.
1386  if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
1387    // The operands of the cmp have to be in this block.  We don't know
1388    // how to export them from some other block.  If this is the first block
1389    // of the sequence, no exporting is needed.
1390    if (CurBB == SwitchBB ||
1391        (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
1392         isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
1393      ISD::CondCode Condition;
1394      if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
1395        Condition = getICmpCondCode(IC->getPredicate());
1396      } else if (const FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) {
1397        Condition = getFCmpCondCode(FC->getPredicate());
1398        if (TM.Options.NoNaNsFPMath)
1399          Condition = getFCmpCodeWithoutNaN(Condition);
1400      } else {
1401        Condition = ISD::SETEQ; // silence warning.
1402        llvm_unreachable("Unknown compare instruction");
1403      }
1404
1405      CaseBlock CB(Condition, BOp->getOperand(0),
1406                   BOp->getOperand(1), NULL, TBB, FBB, CurBB);
1407      SwitchCases.push_back(CB);
1408      return;
1409    }
1410  }
1411
1412  // Create a CaseBlock record representing this branch.
1413  CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()),
1414               NULL, TBB, FBB, CurBB);
1415  SwitchCases.push_back(CB);
1416}
1417
1418/// FindMergedConditions - If Cond is an expression like
1419void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
1420                                               MachineBasicBlock *TBB,
1421                                               MachineBasicBlock *FBB,
1422                                               MachineBasicBlock *CurBB,
1423                                               MachineBasicBlock *SwitchBB,
1424                                               unsigned Opc) {
1425  // If this node is not part of the or/and tree, emit it as a branch.
1426  const Instruction *BOp = dyn_cast<Instruction>(Cond);
1427  if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
1428      (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() ||
1429      BOp->getParent() != CurBB->getBasicBlock() ||
1430      !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
1431      !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
1432    EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB);
1433    return;
1434  }
1435
1436  //  Create TmpBB after CurBB.
1437  MachineFunction::iterator BBI = CurBB;
1438  MachineFunction &MF = DAG.getMachineFunction();
1439  MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
1440  CurBB->getParent()->insert(++BBI, TmpBB);
1441
1442  if (Opc == Instruction::Or) {
1443    // Codegen X | Y as:
1444    //   jmp_if_X TBB
1445    //   jmp TmpBB
1446    // TmpBB:
1447    //   jmp_if_Y TBB
1448    //   jmp FBB
1449    //
1450
1451    // Emit the LHS condition.
1452    FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc);
1453
1454    // Emit the RHS condition into TmpBB.
1455    FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc);
1456  } else {
1457    assert(Opc == Instruction::And && "Unknown merge op!");
1458    // Codegen X & Y as:
1459    //   jmp_if_X TmpBB
1460    //   jmp FBB
1461    // TmpBB:
1462    //   jmp_if_Y TBB
1463    //   jmp FBB
1464    //
1465    //  This requires creation of TmpBB after CurBB.
1466
1467    // Emit the LHS condition.
1468    FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc);
1469
1470    // Emit the RHS condition into TmpBB.
1471    FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc);
1472  }
1473}
1474
1475/// If the set of cases should be emitted as a series of branches, return true.
1476/// If we should emit this as a bunch of and/or'd together conditions, return
1477/// false.
1478bool
1479SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases){
1480  if (Cases.size() != 2) return true;
1481
1482  // If this is two comparisons of the same values or'd or and'd together, they
1483  // will get folded into a single comparison, so don't emit two blocks.
1484  if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
1485       Cases[0].CmpRHS == Cases[1].CmpRHS) ||
1486      (Cases[0].CmpRHS == Cases[1].CmpLHS &&
1487       Cases[0].CmpLHS == Cases[1].CmpRHS)) {
1488    return false;
1489  }
1490
1491  // Handle: (X != null) | (Y != null) --> (X|Y) != 0
1492  // Handle: (X == null) & (Y == null) --> (X|Y) == 0
1493  if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
1494      Cases[0].CC == Cases[1].CC &&
1495      isa<Constant>(Cases[0].CmpRHS) &&
1496      cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
1497    if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
1498      return false;
1499    if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
1500      return false;
1501  }
1502
1503  return true;
1504}
1505
1506void SelectionDAGBuilder::visitBr(const BranchInst &I) {
1507  MachineBasicBlock *BrMBB = FuncInfo.MBB;
1508
1509  // Update machine-CFG edges.
1510  MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
1511
1512  // Figure out which block is immediately after the current one.
1513  MachineBasicBlock *NextBlock = 0;
1514  MachineFunction::iterator BBI = BrMBB;
1515  if (++BBI != FuncInfo.MF->end())
1516    NextBlock = BBI;
1517
1518  if (I.isUnconditional()) {
1519    // Update machine-CFG edges.
1520    BrMBB->addSuccessor(Succ0MBB);
1521
1522    // If this is not a fall-through branch, emit the branch.
1523    if (Succ0MBB != NextBlock)
1524      DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
1525                              MVT::Other, getControlRoot(),
1526                              DAG.getBasicBlock(Succ0MBB)));
1527
1528    return;
1529  }
1530
1531  // If this condition is one of the special cases we handle, do special stuff
1532  // now.
1533  const Value *CondVal = I.getCondition();
1534  MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
1535
1536  // If this is a series of conditions that are or'd or and'd together, emit
1537  // this as a sequence of branches instead of setcc's with and/or operations.
1538  // As long as jumps are not expensive, this should improve performance.
1539  // For example, instead of something like:
1540  //     cmp A, B
1541  //     C = seteq
1542  //     cmp D, E
1543  //     F = setle
1544  //     or C, F
1545  //     jnz foo
1546  // Emit:
1547  //     cmp A, B
1548  //     je foo
1549  //     cmp D, E
1550  //     jle foo
1551  //
1552  if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
1553    if (!TM.getTargetLowering()->isJumpExpensive() &&
1554        BOp->hasOneUse() &&
1555        (BOp->getOpcode() == Instruction::And ||
1556         BOp->getOpcode() == Instruction::Or)) {
1557      FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB,
1558                           BOp->getOpcode());
1559      // If the compares in later blocks need to use values not currently
1560      // exported from this block, export them now.  This block should always
1561      // be the first entry.
1562      assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
1563
1564      // Allow some cases to be rejected.
1565      if (ShouldEmitAsBranches(SwitchCases)) {
1566        for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
1567          ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
1568          ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
1569        }
1570
1571        // Emit the branch for this block.
1572        visitSwitchCase(SwitchCases[0], BrMBB);
1573        SwitchCases.erase(SwitchCases.begin());
1574        return;
1575      }
1576
1577      // Okay, we decided not to do this, remove any inserted MBB's and clear
1578      // SwitchCases.
1579      for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
1580        FuncInfo.MF->erase(SwitchCases[i].ThisBB);
1581
1582      SwitchCases.clear();
1583    }
1584  }
1585
1586  // Create a CaseBlock record representing this branch.
1587  CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
1588               NULL, Succ0MBB, Succ1MBB, BrMBB);
1589
1590  // Use visitSwitchCase to actually insert the fast branch sequence for this
1591  // cond branch.
1592  visitSwitchCase(CB, BrMBB);
1593}
1594
1595/// visitSwitchCase - Emits the necessary code to represent a single node in
1596/// the binary search tree resulting from lowering a switch instruction.
1597void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
1598                                          MachineBasicBlock *SwitchBB) {
1599  SDValue Cond;
1600  SDValue CondLHS = getValue(CB.CmpLHS);
1601  SDLoc dl = getCurSDLoc();
1602
1603  // Build the setcc now.
1604  if (CB.CmpMHS == NULL) {
1605    // Fold "(X == true)" to X and "(X == false)" to !X to
1606    // handle common cases produced by branch lowering.
1607    if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
1608        CB.CC == ISD::SETEQ)
1609      Cond = CondLHS;
1610    else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
1611             CB.CC == ISD::SETEQ) {
1612      SDValue True = DAG.getConstant(1, CondLHS.getValueType());
1613      Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
1614    } else
1615      Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
1616  } else {
1617    assert(CB.CC == ISD::SETCC_INVALID &&
1618           "Condition is undefined for to-the-range belonging check.");
1619
1620    const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
1621    const APInt& High  = cast<ConstantInt>(CB.CmpRHS)->getValue();
1622
1623    SDValue CmpOp = getValue(CB.CmpMHS);
1624    EVT VT = CmpOp.getValueType();
1625
1626    if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(false)) {
1627      Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, VT),
1628                          ISD::SETULE);
1629    } else {
1630      SDValue SUB = DAG.getNode(ISD::SUB, dl,
1631                                VT, CmpOp, DAG.getConstant(Low, VT));
1632      Cond = DAG.getSetCC(dl, MVT::i1, SUB,
1633                          DAG.getConstant(High-Low, VT), ISD::SETULE);
1634    }
1635  }
1636
1637  // Update successor info
1638  addSuccessorWithWeight(SwitchBB, CB.TrueBB, CB.TrueWeight);
1639  // TrueBB and FalseBB are always different unless the incoming IR is
1640  // degenerate. This only happens when running llc on weird IR.
1641  if (CB.TrueBB != CB.FalseBB)
1642    addSuccessorWithWeight(SwitchBB, CB.FalseBB, CB.FalseWeight);
1643
1644  // Set NextBlock to be the MBB immediately after the current one, if any.
1645  // This is used to avoid emitting unnecessary branches to the next block.
1646  MachineBasicBlock *NextBlock = 0;
1647  MachineFunction::iterator BBI = SwitchBB;
1648  if (++BBI != FuncInfo.MF->end())
1649    NextBlock = BBI;
1650
1651  // If the lhs block is the next block, invert the condition so that we can
1652  // fall through to the lhs instead of the rhs block.
1653  if (CB.TrueBB == NextBlock) {
1654    std::swap(CB.TrueBB, CB.FalseBB);
1655    SDValue True = DAG.getConstant(1, Cond.getValueType());
1656    Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
1657  }
1658
1659  SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
1660                               MVT::Other, getControlRoot(), Cond,
1661                               DAG.getBasicBlock(CB.TrueBB));
1662
1663  // Insert the false branch. Do this even if it's a fall through branch,
1664  // this makes it easier to do DAG optimizations which require inverting
1665  // the branch condition.
1666  BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
1667                       DAG.getBasicBlock(CB.FalseBB));
1668
1669  DAG.setRoot(BrCond);
1670}
1671
1672/// visitJumpTable - Emit JumpTable node in the current MBB
1673void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) {
1674  // Emit the code for the jump table
1675  assert(JT.Reg != -1U && "Should lower JT Header first!");
1676  EVT PTy = TM.getTargetLowering()->getPointerTy();
1677  SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(),
1678                                     JT.Reg, PTy);
1679  SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
1680  SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(),
1681                                    MVT::Other, Index.getValue(1),
1682                                    Table, Index);
1683  DAG.setRoot(BrJumpTable);
1684}
1685
1686/// visitJumpTableHeader - This function emits necessary code to produce index
1687/// in the JumpTable from switch case.
1688void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT,
1689                                               JumpTableHeader &JTH,
1690                                               MachineBasicBlock *SwitchBB) {
1691  // Subtract the lowest switch case value from the value being switched on and
1692  // conditional branch to default mbb if the result is greater than the
1693  // difference between smallest and largest cases.
1694  SDValue SwitchOp = getValue(JTH.SValue);
1695  EVT VT = SwitchOp.getValueType();
1696  SDValue Sub = DAG.getNode(ISD::SUB, getCurSDLoc(), VT, SwitchOp,
1697                            DAG.getConstant(JTH.First, VT));
1698
1699  // The SDNode we just created, which holds the value being switched on minus
1700  // the smallest case value, needs to be copied to a virtual register so it
1701  // can be used as an index into the jump table in a subsequent basic block.
1702  // This value may be smaller or larger than the target's pointer type, and
1703  // therefore require extension or truncating.
1704  const TargetLowering *TLI = TM.getTargetLowering();
1705  SwitchOp = DAG.getZExtOrTrunc(Sub, getCurSDLoc(), TLI->getPointerTy());
1706
1707  unsigned JumpTableReg = FuncInfo.CreateReg(TLI->getPointerTy());
1708  SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurSDLoc(),
1709                                    JumpTableReg, SwitchOp);
1710  JT.Reg = JumpTableReg;
1711
1712  // Emit the range check for the jump table, and branch to the default block
1713  // for the switch statement if the value being switched on exceeds the largest
1714  // case in the switch.
1715  SDValue CMP = DAG.getSetCC(getCurSDLoc(),
1716                             TLI->getSetCCResultType(*DAG.getContext(),
1717                                                     Sub.getValueType()),
1718                             Sub,
1719                             DAG.getConstant(JTH.Last - JTH.First,VT),
1720                             ISD::SETUGT);
1721
1722  // Set NextBlock to be the MBB immediately after the current one, if any.
1723  // This is used to avoid emitting unnecessary branches to the next block.
1724  MachineBasicBlock *NextBlock = 0;
1725  MachineFunction::iterator BBI = SwitchBB;
1726
1727  if (++BBI != FuncInfo.MF->end())
1728    NextBlock = BBI;
1729
1730  SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurSDLoc(),
1731                               MVT::Other, CopyTo, CMP,
1732                               DAG.getBasicBlock(JT.Default));
1733
1734  if (JT.MBB != NextBlock)
1735    BrCond = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, BrCond,
1736                         DAG.getBasicBlock(JT.MBB));
1737
1738  DAG.setRoot(BrCond);
1739}
1740
1741/// visitBitTestHeader - This function emits necessary code to produce value
1742/// suitable for "bit tests"
1743void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
1744                                             MachineBasicBlock *SwitchBB) {
1745  // Subtract the minimum value
1746  SDValue SwitchOp = getValue(B.SValue);
1747  EVT VT = SwitchOp.getValueType();
1748  SDValue Sub = DAG.getNode(ISD::SUB, getCurSDLoc(), VT, SwitchOp,
1749                            DAG.getConstant(B.First, VT));
1750
1751  // Check range
1752  const TargetLowering *TLI = TM.getTargetLowering();
1753  SDValue RangeCmp = DAG.getSetCC(getCurSDLoc(),
1754                                  TLI->getSetCCResultType(*DAG.getContext(),
1755                                                         Sub.getValueType()),
1756                                  Sub, DAG.getConstant(B.Range, VT),
1757                                  ISD::SETUGT);
1758
1759  // Determine the type of the test operands.
1760  bool UsePtrType = false;
1761  if (!TLI->isTypeLegal(VT))
1762    UsePtrType = true;
1763  else {
1764    for (unsigned i = 0, e = B.Cases.size(); i != e; ++i)
1765      if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) {
1766        // Switch table case range are encoded into series of masks.
1767        // Just use pointer type, it's guaranteed to fit.
1768        UsePtrType = true;
1769        break;
1770      }
1771  }
1772  if (UsePtrType) {
1773    VT = TLI->getPointerTy();
1774    Sub = DAG.getZExtOrTrunc(Sub, getCurSDLoc(), VT);
1775  }
1776
1777  B.RegVT = VT.getSimpleVT();
1778  B.Reg = FuncInfo.CreateReg(B.RegVT);
1779  SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurSDLoc(),
1780                                    B.Reg, Sub);
1781
1782  // Set NextBlock to be the MBB immediately after the current one, if any.
1783  // This is used to avoid emitting unnecessary branches to the next block.
1784  MachineBasicBlock *NextBlock = 0;
1785  MachineFunction::iterator BBI = SwitchBB;
1786  if (++BBI != FuncInfo.MF->end())
1787    NextBlock = BBI;
1788
1789  MachineBasicBlock* MBB = B.Cases[0].ThisBB;
1790
1791  addSuccessorWithWeight(SwitchBB, B.Default);
1792  addSuccessorWithWeight(SwitchBB, MBB);
1793
1794  SDValue BrRange = DAG.getNode(ISD::BRCOND, getCurSDLoc(),
1795                                MVT::Other, CopyTo, RangeCmp,
1796                                DAG.getBasicBlock(B.Default));
1797
1798  if (MBB != NextBlock)
1799    BrRange = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, CopyTo,
1800                          DAG.getBasicBlock(MBB));
1801
1802  DAG.setRoot(BrRange);
1803}
1804
1805/// visitBitTestCase - this function produces one "bit test"
1806void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB,
1807                                           MachineBasicBlock* NextMBB,
1808                                           uint32_t BranchWeightToNext,
1809                                           unsigned Reg,
1810                                           BitTestCase &B,
1811                                           MachineBasicBlock *SwitchBB) {
1812  MVT VT = BB.RegVT;
1813  SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(),
1814                                       Reg, VT);
1815  SDValue Cmp;
1816  unsigned PopCount = CountPopulation_64(B.Mask);
1817  const TargetLowering *TLI = TM.getTargetLowering();
1818  if (PopCount == 1) {
1819    // Testing for a single bit; just compare the shift count with what it
1820    // would need to be to shift a 1 bit in that position.
1821    Cmp = DAG.getSetCC(getCurSDLoc(),
1822                       TLI->getSetCCResultType(*DAG.getContext(), VT),
1823                       ShiftOp,
1824                       DAG.getConstant(countTrailingZeros(B.Mask), VT),
1825                       ISD::SETEQ);
1826  } else if (PopCount == BB.Range) {
1827    // There is only one zero bit in the range, test for it directly.
1828    Cmp = DAG.getSetCC(getCurSDLoc(),
1829                       TLI->getSetCCResultType(*DAG.getContext(), VT),
1830                       ShiftOp,
1831                       DAG.getConstant(CountTrailingOnes_64(B.Mask), VT),
1832                       ISD::SETNE);
1833  } else {
1834    // Make desired shift
1835    SDValue SwitchVal = DAG.getNode(ISD::SHL, getCurSDLoc(), VT,
1836                                    DAG.getConstant(1, VT), ShiftOp);
1837
1838    // Emit bit tests and jumps
1839    SDValue AndOp = DAG.getNode(ISD::AND, getCurSDLoc(),
1840                                VT, SwitchVal, DAG.getConstant(B.Mask, VT));
1841    Cmp = DAG.getSetCC(getCurSDLoc(),
1842                       TLI->getSetCCResultType(*DAG.getContext(), VT),
1843                       AndOp, DAG.getConstant(0, VT),
1844                       ISD::SETNE);
1845  }
1846
1847  // The branch weight from SwitchBB to B.TargetBB is B.ExtraWeight.
1848  addSuccessorWithWeight(SwitchBB, B.TargetBB, B.ExtraWeight);
1849  // The branch weight from SwitchBB to NextMBB is BranchWeightToNext.
1850  addSuccessorWithWeight(SwitchBB, NextMBB, BranchWeightToNext);
1851
1852  SDValue BrAnd = DAG.getNode(ISD::BRCOND, getCurSDLoc(),
1853                              MVT::Other, getControlRoot(),
1854                              Cmp, DAG.getBasicBlock(B.TargetBB));
1855
1856  // Set NextBlock to be the MBB immediately after the current one, if any.
1857  // This is used to avoid emitting unnecessary branches to the next block.
1858  MachineBasicBlock *NextBlock = 0;
1859  MachineFunction::iterator BBI = SwitchBB;
1860  if (++BBI != FuncInfo.MF->end())
1861    NextBlock = BBI;
1862
1863  if (NextMBB != NextBlock)
1864    BrAnd = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, BrAnd,
1865                        DAG.getBasicBlock(NextMBB));
1866
1867  DAG.setRoot(BrAnd);
1868}
1869
1870void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
1871  MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
1872
1873  // Retrieve successors.
1874  MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
1875  MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)];
1876
1877  const Value *Callee(I.getCalledValue());
1878  const Function *Fn = dyn_cast<Function>(Callee);
1879  if (isa<InlineAsm>(Callee))
1880    visitInlineAsm(&I);
1881  else if (Fn && Fn->isIntrinsic()) {
1882    assert(Fn->getIntrinsicID() == Intrinsic::donothing);
1883    // Ignore invokes to @llvm.donothing: jump directly to the next BB.
1884  } else
1885    LowerCallTo(&I, getValue(Callee), false, LandingPad);
1886
1887  // If the value of the invoke is used outside of its defining block, make it
1888  // available as a virtual register.
1889  CopyToExportRegsIfNeeded(&I);
1890
1891  // Update successor info
1892  addSuccessorWithWeight(InvokeMBB, Return);
1893  addSuccessorWithWeight(InvokeMBB, LandingPad);
1894
1895  // Drop into normal successor.
1896  DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
1897                          MVT::Other, getControlRoot(),
1898                          DAG.getBasicBlock(Return)));
1899}
1900
1901void SelectionDAGBuilder::visitResume(const ResumeInst &RI) {
1902  llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!");
1903}
1904
1905void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) {
1906  assert(FuncInfo.MBB->isLandingPad() &&
1907         "Call to landingpad not in landing pad!");
1908
1909  MachineBasicBlock *MBB = FuncInfo.MBB;
1910  MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
1911  AddLandingPadInfo(LP, MMI, MBB);
1912
1913  // If there aren't registers to copy the values into (e.g., during SjLj
1914  // exceptions), then don't bother to create these DAG nodes.
1915  const TargetLowering *TLI = TM.getTargetLowering();
1916  if (TLI->getExceptionPointerRegister() == 0 &&
1917      TLI->getExceptionSelectorRegister() == 0)
1918    return;
1919
1920  SmallVector<EVT, 2> ValueVTs;
1921  ComputeValueVTs(*TLI, LP.getType(), ValueVTs);
1922
1923  // Insert the EXCEPTIONADDR instruction.
1924  assert(FuncInfo.MBB->isLandingPad() &&
1925         "Call to eh.exception not in landing pad!");
1926  SDVTList VTs = DAG.getVTList(TLI->getPointerTy(), MVT::Other);
1927  SDValue Ops[2];
1928  Ops[0] = DAG.getRoot();
1929  SDValue Op1 = DAG.getNode(ISD::EXCEPTIONADDR, getCurSDLoc(), VTs, Ops, 1);
1930  SDValue Chain = Op1.getValue(1);
1931
1932  // Insert the EHSELECTION instruction.
1933  VTs = DAG.getVTList(TLI->getPointerTy(), MVT::Other);
1934  Ops[0] = Op1;
1935  Ops[1] = Chain;
1936  SDValue Op2 = DAG.getNode(ISD::EHSELECTION, getCurSDLoc(), VTs, Ops, 2);
1937  Chain = Op2.getValue(1);
1938  Op2 = DAG.getSExtOrTrunc(Op2, getCurSDLoc(), MVT::i32);
1939
1940  Ops[0] = Op1;
1941  Ops[1] = Op2;
1942  SDValue Res = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
1943                            DAG.getVTList(&ValueVTs[0], ValueVTs.size()),
1944                            &Ops[0], 2);
1945
1946  std::pair<SDValue, SDValue> RetPair = std::make_pair(Res, Chain);
1947  setValue(&LP, RetPair.first);
1948  DAG.setRoot(RetPair.second);
1949}
1950
1951/// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for
1952/// small case ranges).
1953bool SelectionDAGBuilder::handleSmallSwitchRange(CaseRec& CR,
1954                                                 CaseRecVector& WorkList,
1955                                                 const Value* SV,
1956                                                 MachineBasicBlock *Default,
1957                                                 MachineBasicBlock *SwitchBB) {
1958  // Size is the number of Cases represented by this range.
1959  size_t Size = CR.Range.second - CR.Range.first;
1960  if (Size > 3)
1961    return false;
1962
1963  // Get the MachineFunction which holds the current MBB.  This is used when
1964  // inserting any additional MBBs necessary to represent the switch.
1965  MachineFunction *CurMF = FuncInfo.MF;
1966
1967  // Figure out which block is immediately after the current one.
1968  MachineBasicBlock *NextBlock = 0;
1969  MachineFunction::iterator BBI = CR.CaseBB;
1970
1971  if (++BBI != FuncInfo.MF->end())
1972    NextBlock = BBI;
1973
1974  BranchProbabilityInfo *BPI = FuncInfo.BPI;
1975  // If any two of the cases has the same destination, and if one value
1976  // is the same as the other, but has one bit unset that the other has set,
1977  // use bit manipulation to do two compares at once.  For example:
1978  // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
1979  // TODO: This could be extended to merge any 2 cases in switches with 3 cases.
1980  // TODO: Handle cases where CR.CaseBB != SwitchBB.
1981  if (Size == 2 && CR.CaseBB == SwitchBB) {
1982    Case &Small = *CR.Range.first;
1983    Case &Big = *(CR.Range.second-1);
1984
1985    if (Small.Low == Small.High && Big.Low == Big.High && Small.BB == Big.BB) {
1986      const APInt& SmallValue = cast<ConstantInt>(Small.Low)->getValue();
1987      const APInt& BigValue = cast<ConstantInt>(Big.Low)->getValue();
1988
1989      // Check that there is only one bit different.
1990      if (BigValue.countPopulation() == SmallValue.countPopulation() + 1 &&
1991          (SmallValue | BigValue) == BigValue) {
1992        // Isolate the common bit.
1993        APInt CommonBit = BigValue & ~SmallValue;
1994        assert((SmallValue | CommonBit) == BigValue &&
1995               CommonBit.countPopulation() == 1 && "Not a common bit?");
1996
1997        SDValue CondLHS = getValue(SV);
1998        EVT VT = CondLHS.getValueType();
1999        SDLoc DL = getCurSDLoc();
2000
2001        SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
2002                                 DAG.getConstant(CommonBit, VT));
2003        SDValue Cond = DAG.getSetCC(DL, MVT::i1,
2004                                    Or, DAG.getConstant(BigValue, VT),
2005                                    ISD::SETEQ);
2006
2007        // Update successor info.
2008        // Both Small and Big will jump to Small.BB, so we sum up the weights.
2009        addSuccessorWithWeight(SwitchBB, Small.BB,
2010                               Small.ExtraWeight + Big.ExtraWeight);
2011        addSuccessorWithWeight(SwitchBB, Default,
2012          // The default destination is the first successor in IR.
2013          BPI ? BPI->getEdgeWeight(SwitchBB->getBasicBlock(), (unsigned)0) : 0);
2014
2015        // Insert the true branch.
2016        SDValue BrCond = DAG.getNode(ISD::BRCOND, DL, MVT::Other,
2017                                     getControlRoot(), Cond,
2018                                     DAG.getBasicBlock(Small.BB));
2019
2020        // Insert the false branch.
2021        BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
2022                             DAG.getBasicBlock(Default));
2023
2024        DAG.setRoot(BrCond);
2025        return true;
2026      }
2027    }
2028  }
2029
2030  // Order cases by weight so the most likely case will be checked first.
2031  uint32_t UnhandledWeights = 0;
2032  if (BPI) {
2033    for (CaseItr I = CR.Range.first, IE = CR.Range.second; I != IE; ++I) {
2034      uint32_t IWeight = I->ExtraWeight;
2035      UnhandledWeights += IWeight;
2036      for (CaseItr J = CR.Range.first; J < I; ++J) {
2037        uint32_t JWeight = J->ExtraWeight;
2038        if (IWeight > JWeight)
2039          std::swap(*I, *J);
2040      }
2041    }
2042  }
2043  // Rearrange the case blocks so that the last one falls through if possible.
2044  Case &BackCase = *(CR.Range.second-1);
2045  if (Size > 1 &&
2046      NextBlock && Default != NextBlock && BackCase.BB != NextBlock) {
2047    // The last case block won't fall through into 'NextBlock' if we emit the
2048    // branches in this order.  See if rearranging a case value would help.
2049    // We start at the bottom as it's the case with the least weight.
2050    for (Case *I = &*(CR.Range.second-2), *E = &*CR.Range.first-1; I != E; --I){
2051      if (I->BB == NextBlock) {
2052        std::swap(*I, BackCase);
2053        break;
2054      }
2055    }
2056  }
2057
2058  // Create a CaseBlock record representing a conditional branch to
2059  // the Case's target mbb if the value being switched on SV is equal
2060  // to C.
2061  MachineBasicBlock *CurBlock = CR.CaseBB;
2062  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) {
2063    MachineBasicBlock *FallThrough;
2064    if (I != E-1) {
2065      FallThrough = CurMF->CreateMachineBasicBlock(CurBlock->getBasicBlock());
2066      CurMF->insert(BBI, FallThrough);
2067
2068      // Put SV in a virtual register to make it available from the new blocks.
2069      ExportFromCurrentBlock(SV);
2070    } else {
2071      // If the last case doesn't match, go to the default block.
2072      FallThrough = Default;
2073    }
2074
2075    const Value *RHS, *LHS, *MHS;
2076    ISD::CondCode CC;
2077    if (I->High == I->Low) {
2078      // This is just small small case range :) containing exactly 1 case
2079      CC = ISD::SETEQ;
2080      LHS = SV; RHS = I->High; MHS = NULL;
2081    } else {
2082      CC = ISD::SETCC_INVALID;
2083      LHS = I->Low; MHS = SV; RHS = I->High;
2084    }
2085
2086    // The false weight should be sum of all un-handled cases.
2087    UnhandledWeights -= I->ExtraWeight;
2088    CaseBlock CB(CC, LHS, RHS, MHS, /* truebb */ I->BB, /* falsebb */ FallThrough,
2089                 /* me */ CurBlock,
2090                 /* trueweight */ I->ExtraWeight,
2091                 /* falseweight */ UnhandledWeights);
2092
2093    // If emitting the first comparison, just call visitSwitchCase to emit the
2094    // code into the current block.  Otherwise, push the CaseBlock onto the
2095    // vector to be later processed by SDISel, and insert the node's MBB
2096    // before the next MBB.
2097    if (CurBlock == SwitchBB)
2098      visitSwitchCase(CB, SwitchBB);
2099    else
2100      SwitchCases.push_back(CB);
2101
2102    CurBlock = FallThrough;
2103  }
2104
2105  return true;
2106}
2107
2108static inline bool areJTsAllowed(const TargetLowering &TLI) {
2109  return TLI.supportJumpTables() &&
2110          (TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) ||
2111           TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other));
2112}
2113
2114static APInt ComputeRange(const APInt &First, const APInt &Last) {
2115  uint32_t BitWidth = std::max(Last.getBitWidth(), First.getBitWidth()) + 1;
2116  APInt LastExt = Last.zext(BitWidth), FirstExt = First.zext(BitWidth);
2117  return (LastExt - FirstExt + 1ULL);
2118}
2119
2120/// handleJTSwitchCase - Emit jumptable for current switch case range
2121bool SelectionDAGBuilder::handleJTSwitchCase(CaseRec &CR,
2122                                             CaseRecVector &WorkList,
2123                                             const Value *SV,
2124                                             MachineBasicBlock *Default,
2125                                             MachineBasicBlock *SwitchBB) {
2126  Case& FrontCase = *CR.Range.first;
2127  Case& BackCase  = *(CR.Range.second-1);
2128
2129  const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue();
2130  const APInt &Last  = cast<ConstantInt>(BackCase.High)->getValue();
2131
2132  APInt TSize(First.getBitWidth(), 0);
2133  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I)
2134    TSize += I->size();
2135
2136  const TargetLowering *TLI = TM.getTargetLowering();
2137  if (!areJTsAllowed(*TLI) || TSize.ult(TLI->getMinimumJumpTableEntries()))
2138    return false;
2139
2140  APInt Range = ComputeRange(First, Last);
2141  // The density is TSize / Range. Require at least 40%.
2142  // It should not be possible for IntTSize to saturate for sane code, but make
2143  // sure we handle Range saturation correctly.
2144  uint64_t IntRange = Range.getLimitedValue(UINT64_MAX/10);
2145  uint64_t IntTSize = TSize.getLimitedValue(UINT64_MAX/10);
2146  if (IntTSize * 10 < IntRange * 4)
2147    return false;
2148
2149  DEBUG(dbgs() << "Lowering jump table\n"
2150               << "First entry: " << First << ". Last entry: " << Last << '\n'
2151               << "Range: " << Range << ". Size: " << TSize << ".\n\n");
2152
2153  // Get the MachineFunction which holds the current MBB.  This is used when
2154  // inserting any additional MBBs necessary to represent the switch.
2155  MachineFunction *CurMF = FuncInfo.MF;
2156
2157  // Figure out which block is immediately after the current one.
2158  MachineFunction::iterator BBI = CR.CaseBB;
2159  ++BBI;
2160
2161  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2162
2163  // Create a new basic block to hold the code for loading the address
2164  // of the jump table, and jumping to it.  Update successor information;
2165  // we will either branch to the default case for the switch, or the jump
2166  // table.
2167  MachineBasicBlock *JumpTableBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2168  CurMF->insert(BBI, JumpTableBB);
2169
2170  addSuccessorWithWeight(CR.CaseBB, Default);
2171  addSuccessorWithWeight(CR.CaseBB, JumpTableBB);
2172
2173  // Build a vector of destination BBs, corresponding to each target
2174  // of the jump table. If the value of the jump table slot corresponds to
2175  // a case statement, push the case's BB onto the vector, otherwise, push
2176  // the default BB.
2177  std::vector<MachineBasicBlock*> DestBBs;
2178  APInt TEI = First;
2179  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) {
2180    const APInt &Low = cast<ConstantInt>(I->Low)->getValue();
2181    const APInt &High = cast<ConstantInt>(I->High)->getValue();
2182
2183    if (Low.ule(TEI) && TEI.ule(High)) {
2184      DestBBs.push_back(I->BB);
2185      if (TEI==High)
2186        ++I;
2187    } else {
2188      DestBBs.push_back(Default);
2189    }
2190  }
2191
2192  // Calculate weight for each unique destination in CR.
2193  DenseMap<MachineBasicBlock*, uint32_t> DestWeights;
2194  if (FuncInfo.BPI)
2195    for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) {
2196      DenseMap<MachineBasicBlock*, uint32_t>::iterator Itr =
2197          DestWeights.find(I->BB);
2198      if (Itr != DestWeights.end())
2199        Itr->second += I->ExtraWeight;
2200      else
2201        DestWeights[I->BB] = I->ExtraWeight;
2202    }
2203
2204  // Update successor info. Add one edge to each unique successor.
2205  BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs());
2206  for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(),
2207         E = DestBBs.end(); I != E; ++I) {
2208    if (!SuccsHandled[(*I)->getNumber()]) {
2209      SuccsHandled[(*I)->getNumber()] = true;
2210      DenseMap<MachineBasicBlock*, uint32_t>::iterator Itr =
2211          DestWeights.find(*I);
2212      addSuccessorWithWeight(JumpTableBB, *I,
2213                             Itr != DestWeights.end() ? Itr->second : 0);
2214    }
2215  }
2216
2217  // Create a jump table index for this jump table.
2218  unsigned JTEncoding = TLI->getJumpTableEncoding();
2219  unsigned JTI = CurMF->getOrCreateJumpTableInfo(JTEncoding)
2220                       ->createJumpTableIndex(DestBBs);
2221
2222  // Set the jump table information so that we can codegen it as a second
2223  // MachineBasicBlock
2224  JumpTable JT(-1U, JTI, JumpTableBB, Default);
2225  JumpTableHeader JTH(First, Last, SV, CR.CaseBB, (CR.CaseBB == SwitchBB));
2226  if (CR.CaseBB == SwitchBB)
2227    visitJumpTableHeader(JT, JTH, SwitchBB);
2228
2229  JTCases.push_back(JumpTableBlock(JTH, JT));
2230  return true;
2231}
2232
2233/// handleBTSplitSwitchCase - emit comparison and split binary search tree into
2234/// 2 subtrees.
2235bool SelectionDAGBuilder::handleBTSplitSwitchCase(CaseRec& CR,
2236                                                  CaseRecVector& WorkList,
2237                                                  const Value* SV,
2238                                                  MachineBasicBlock *Default,
2239                                                  MachineBasicBlock *SwitchBB) {
2240  // Get the MachineFunction which holds the current MBB.  This is used when
2241  // inserting any additional MBBs necessary to represent the switch.
2242  MachineFunction *CurMF = FuncInfo.MF;
2243
2244  // Figure out which block is immediately after the current one.
2245  MachineFunction::iterator BBI = CR.CaseBB;
2246  ++BBI;
2247
2248  Case& FrontCase = *CR.Range.first;
2249  Case& BackCase  = *(CR.Range.second-1);
2250  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2251
2252  // Size is the number of Cases represented by this range.
2253  unsigned Size = CR.Range.second - CR.Range.first;
2254
2255  const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue();
2256  const APInt &Last  = cast<ConstantInt>(BackCase.High)->getValue();
2257  double FMetric = 0;
2258  CaseItr Pivot = CR.Range.first + Size/2;
2259
2260  // Select optimal pivot, maximizing sum density of LHS and RHS. This will
2261  // (heuristically) allow us to emit JumpTable's later.
2262  APInt TSize(First.getBitWidth(), 0);
2263  for (CaseItr I = CR.Range.first, E = CR.Range.second;
2264       I!=E; ++I)
2265    TSize += I->size();
2266
2267  APInt LSize = FrontCase.size();
2268  APInt RSize = TSize-LSize;
2269  DEBUG(dbgs() << "Selecting best pivot: \n"
2270               << "First: " << First << ", Last: " << Last <<'\n'
2271               << "LSize: " << LSize << ", RSize: " << RSize << '\n');
2272  for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second;
2273       J!=E; ++I, ++J) {
2274    const APInt &LEnd = cast<ConstantInt>(I->High)->getValue();
2275    const APInt &RBegin = cast<ConstantInt>(J->Low)->getValue();
2276    APInt Range = ComputeRange(LEnd, RBegin);
2277    assert((Range - 2ULL).isNonNegative() &&
2278           "Invalid case distance");
2279    // Use volatile double here to avoid excess precision issues on some hosts,
2280    // e.g. that use 80-bit X87 registers.
2281    volatile double LDensity =
2282       (double)LSize.roundToDouble() /
2283                           (LEnd - First + 1ULL).roundToDouble();
2284    volatile double RDensity =
2285      (double)RSize.roundToDouble() /
2286                           (Last - RBegin + 1ULL).roundToDouble();
2287    double Metric = Range.logBase2()*(LDensity+RDensity);
2288    // Should always split in some non-trivial place
2289    DEBUG(dbgs() <<"=>Step\n"
2290                 << "LEnd: " << LEnd << ", RBegin: " << RBegin << '\n'
2291                 << "LDensity: " << LDensity
2292                 << ", RDensity: " << RDensity << '\n'
2293                 << "Metric: " << Metric << '\n');
2294    if (FMetric < Metric) {
2295      Pivot = J;
2296      FMetric = Metric;
2297      DEBUG(dbgs() << "Current metric set to: " << FMetric << '\n');
2298    }
2299
2300    LSize += J->size();
2301    RSize -= J->size();
2302  }
2303
2304  const TargetLowering *TLI = TM.getTargetLowering();
2305  if (areJTsAllowed(*TLI)) {
2306    // If our case is dense we *really* should handle it earlier!
2307    assert((FMetric > 0) && "Should handle dense range earlier!");
2308  } else {
2309    Pivot = CR.Range.first + Size/2;
2310  }
2311
2312  CaseRange LHSR(CR.Range.first, Pivot);
2313  CaseRange RHSR(Pivot, CR.Range.second);
2314  const Constant *C = Pivot->Low;
2315  MachineBasicBlock *FalseBB = 0, *TrueBB = 0;
2316
2317  // We know that we branch to the LHS if the Value being switched on is
2318  // less than the Pivot value, C.  We use this to optimize our binary
2319  // tree a bit, by recognizing that if SV is greater than or equal to the
2320  // LHS's Case Value, and that Case Value is exactly one less than the
2321  // Pivot's Value, then we can branch directly to the LHS's Target,
2322  // rather than creating a leaf node for it.
2323  if ((LHSR.second - LHSR.first) == 1 &&
2324      LHSR.first->High == CR.GE &&
2325      cast<ConstantInt>(C)->getValue() ==
2326      (cast<ConstantInt>(CR.GE)->getValue() + 1LL)) {
2327    TrueBB = LHSR.first->BB;
2328  } else {
2329    TrueBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2330    CurMF->insert(BBI, TrueBB);
2331    WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR));
2332
2333    // Put SV in a virtual register to make it available from the new blocks.
2334    ExportFromCurrentBlock(SV);
2335  }
2336
2337  // Similar to the optimization above, if the Value being switched on is
2338  // known to be less than the Constant CR.LT, and the current Case Value
2339  // is CR.LT - 1, then we can branch directly to the target block for
2340  // the current Case Value, rather than emitting a RHS leaf node for it.
2341  if ((RHSR.second - RHSR.first) == 1 && CR.LT &&
2342      cast<ConstantInt>(RHSR.first->Low)->getValue() ==
2343      (cast<ConstantInt>(CR.LT)->getValue() - 1LL)) {
2344    FalseBB = RHSR.first->BB;
2345  } else {
2346    FalseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2347    CurMF->insert(BBI, FalseBB);
2348    WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR));
2349
2350    // Put SV in a virtual register to make it available from the new blocks.
2351    ExportFromCurrentBlock(SV);
2352  }
2353
2354  // Create a CaseBlock record representing a conditional branch to
2355  // the LHS node if the value being switched on SV is less than C.
2356  // Otherwise, branch to LHS.
2357  CaseBlock CB(ISD::SETULT, SV, C, NULL, TrueBB, FalseBB, CR.CaseBB);
2358
2359  if (CR.CaseBB == SwitchBB)
2360    visitSwitchCase(CB, SwitchBB);
2361  else
2362    SwitchCases.push_back(CB);
2363
2364  return true;
2365}
2366
2367/// handleBitTestsSwitchCase - if current case range has few destination and
2368/// range span less, than machine word bitwidth, encode case range into series
2369/// of masks and emit bit tests with these masks.
2370bool SelectionDAGBuilder::handleBitTestsSwitchCase(CaseRec& CR,
2371                                                   CaseRecVector& WorkList,
2372                                                   const Value* SV,
2373                                                   MachineBasicBlock* Default,
2374                                                   MachineBasicBlock *SwitchBB){
2375  const TargetLowering *TLI = TM.getTargetLowering();
2376  EVT PTy = TLI->getPointerTy();
2377  unsigned IntPtrBits = PTy.getSizeInBits();
2378
2379  Case& FrontCase = *CR.Range.first;
2380  Case& BackCase  = *(CR.Range.second-1);
2381
2382  // Get the MachineFunction which holds the current MBB.  This is used when
2383  // inserting any additional MBBs necessary to represent the switch.
2384  MachineFunction *CurMF = FuncInfo.MF;
2385
2386  // If target does not have legal shift left, do not emit bit tests at all.
2387  if (!TLI->isOperationLegal(ISD::SHL, TLI->getPointerTy()))
2388    return false;
2389
2390  size_t numCmps = 0;
2391  for (CaseItr I = CR.Range.first, E = CR.Range.second;
2392       I!=E; ++I) {
2393    // Single case counts one, case range - two.
2394    numCmps += (I->Low == I->High ? 1 : 2);
2395  }
2396
2397  // Count unique destinations
2398  SmallSet<MachineBasicBlock*, 4> Dests;
2399  for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
2400    Dests.insert(I->BB);
2401    if (Dests.size() > 3)
2402      // Don't bother the code below, if there are too much unique destinations
2403      return false;
2404  }
2405  DEBUG(dbgs() << "Total number of unique destinations: "
2406        << Dests.size() << '\n'
2407        << "Total number of comparisons: " << numCmps << '\n');
2408
2409  // Compute span of values.
2410  const APInt& minValue = cast<ConstantInt>(FrontCase.Low)->getValue();
2411  const APInt& maxValue = cast<ConstantInt>(BackCase.High)->getValue();
2412  APInt cmpRange = maxValue - minValue;
2413
2414  DEBUG(dbgs() << "Compare range: " << cmpRange << '\n'
2415               << "Low bound: " << minValue << '\n'
2416               << "High bound: " << maxValue << '\n');
2417
2418  if (cmpRange.uge(IntPtrBits) ||
2419      (!(Dests.size() == 1 && numCmps >= 3) &&
2420       !(Dests.size() == 2 && numCmps >= 5) &&
2421       !(Dests.size() >= 3 && numCmps >= 6)))
2422    return false;
2423
2424  DEBUG(dbgs() << "Emitting bit tests\n");
2425  APInt lowBound = APInt::getNullValue(cmpRange.getBitWidth());
2426
2427  // Optimize the case where all the case values fit in a
2428  // word without having to subtract minValue. In this case,
2429  // we can optimize away the subtraction.
2430  if (maxValue.ult(IntPtrBits)) {
2431    cmpRange = maxValue;
2432  } else {
2433    lowBound = minValue;
2434  }
2435
2436  CaseBitsVector CasesBits;
2437  unsigned i, count = 0;
2438
2439  for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
2440    MachineBasicBlock* Dest = I->BB;
2441    for (i = 0; i < count; ++i)
2442      if (Dest == CasesBits[i].BB)
2443        break;
2444
2445    if (i == count) {
2446      assert((count < 3) && "Too much destinations to test!");
2447      CasesBits.push_back(CaseBits(0, Dest, 0, 0/*Weight*/));
2448      count++;
2449    }
2450
2451    const APInt& lowValue = cast<ConstantInt>(I->Low)->getValue();
2452    const APInt& highValue = cast<ConstantInt>(I->High)->getValue();
2453
2454    uint64_t lo = (lowValue - lowBound).getZExtValue();
2455    uint64_t hi = (highValue - lowBound).getZExtValue();
2456    CasesBits[i].ExtraWeight += I->ExtraWeight;
2457
2458    for (uint64_t j = lo; j <= hi; j++) {
2459      CasesBits[i].Mask |=  1ULL << j;
2460      CasesBits[i].Bits++;
2461    }
2462
2463  }
2464  std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp());
2465
2466  BitTestInfo BTC;
2467
2468  // Figure out which block is immediately after the current one.
2469  MachineFunction::iterator BBI = CR.CaseBB;
2470  ++BBI;
2471
2472  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2473
2474  DEBUG(dbgs() << "Cases:\n");
2475  for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) {
2476    DEBUG(dbgs() << "Mask: " << CasesBits[i].Mask
2477                 << ", Bits: " << CasesBits[i].Bits
2478                 << ", BB: " << CasesBits[i].BB << '\n');
2479
2480    MachineBasicBlock *CaseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2481    CurMF->insert(BBI, CaseBB);
2482    BTC.push_back(BitTestCase(CasesBits[i].Mask,
2483                              CaseBB,
2484                              CasesBits[i].BB, CasesBits[i].ExtraWeight));
2485
2486    // Put SV in a virtual register to make it available from the new blocks.
2487    ExportFromCurrentBlock(SV);
2488  }
2489
2490  BitTestBlock BTB(lowBound, cmpRange, SV,
2491                   -1U, MVT::Other, (CR.CaseBB == SwitchBB),
2492                   CR.CaseBB, Default, BTC);
2493
2494  if (CR.CaseBB == SwitchBB)
2495    visitBitTestHeader(BTB, SwitchBB);
2496
2497  BitTestCases.push_back(BTB);
2498
2499  return true;
2500}
2501
2502/// Clusterify - Transform simple list of Cases into list of CaseRange's
2503size_t SelectionDAGBuilder::Clusterify(CaseVector& Cases,
2504                                       const SwitchInst& SI) {
2505
2506  /// Use a shorter form of declaration, and also
2507  /// show the we want to use CRSBuilder as Clusterifier.
2508  typedef IntegersSubsetMapping<MachineBasicBlock> Clusterifier;
2509
2510  Clusterifier TheClusterifier;
2511
2512  BranchProbabilityInfo *BPI = FuncInfo.BPI;
2513  // Start with "simple" cases
2514  for (SwitchInst::ConstCaseIt i = SI.case_begin(), e = SI.case_end();
2515       i != e; ++i) {
2516    const BasicBlock *SuccBB = i.getCaseSuccessor();
2517    MachineBasicBlock *SMBB = FuncInfo.MBBMap[SuccBB];
2518
2519    TheClusterifier.add(i.getCaseValueEx(), SMBB,
2520        BPI ? BPI->getEdgeWeight(SI.getParent(), i.getSuccessorIndex()) : 0);
2521  }
2522
2523  TheClusterifier.optimize();
2524
2525  size_t numCmps = 0;
2526  for (Clusterifier::RangeIterator i = TheClusterifier.begin(),
2527       e = TheClusterifier.end(); i != e; ++i, ++numCmps) {
2528    Clusterifier::Cluster &C = *i;
2529    // Update edge weight for the cluster.
2530    unsigned W = C.first.Weight;
2531
2532    // FIXME: Currently work with ConstantInt based numbers.
2533    // Changing it to APInt based is a pretty heavy for this commit.
2534    Cases.push_back(Case(C.first.getLow().toConstantInt(),
2535                         C.first.getHigh().toConstantInt(), C.second, W));
2536
2537    if (C.first.getLow() != C.first.getHigh())
2538    // A range counts double, since it requires two compares.
2539    ++numCmps;
2540  }
2541
2542  return numCmps;
2543}
2544
2545void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
2546                                           MachineBasicBlock *Last) {
2547  // Update JTCases.
2548  for (unsigned i = 0, e = JTCases.size(); i != e; ++i)
2549    if (JTCases[i].first.HeaderBB == First)
2550      JTCases[i].first.HeaderBB = Last;
2551
2552  // Update BitTestCases.
2553  for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i)
2554    if (BitTestCases[i].Parent == First)
2555      BitTestCases[i].Parent = Last;
2556}
2557
2558void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
2559  MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
2560
2561  // Figure out which block is immediately after the current one.
2562  MachineBasicBlock *NextBlock = 0;
2563  MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()];
2564
2565  // If there is only the default destination, branch to it if it is not the
2566  // next basic block.  Otherwise, just fall through.
2567  if (!SI.getNumCases()) {
2568    // Update machine-CFG edges.
2569
2570    // If this is not a fall-through branch, emit the branch.
2571    SwitchMBB->addSuccessor(Default);
2572    if (Default != NextBlock)
2573      DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
2574                              MVT::Other, getControlRoot(),
2575                              DAG.getBasicBlock(Default)));
2576
2577    return;
2578  }
2579
2580  // If there are any non-default case statements, create a vector of Cases
2581  // representing each one, and sort the vector so that we can efficiently
2582  // create a binary search tree from them.
2583  CaseVector Cases;
2584  size_t numCmps = Clusterify(Cases, SI);
2585  DEBUG(dbgs() << "Clusterify finished. Total clusters: " << Cases.size()
2586               << ". Total compares: " << numCmps << '\n');
2587  (void)numCmps;
2588
2589  // Get the Value to be switched on and default basic blocks, which will be
2590  // inserted into CaseBlock records, representing basic blocks in the binary
2591  // search tree.
2592  const Value *SV = SI.getCondition();
2593
2594  // Push the initial CaseRec onto the worklist
2595  CaseRecVector WorkList;
2596  WorkList.push_back(CaseRec(SwitchMBB,0,0,
2597                             CaseRange(Cases.begin(),Cases.end())));
2598
2599  while (!WorkList.empty()) {
2600    // Grab a record representing a case range to process off the worklist
2601    CaseRec CR = WorkList.back();
2602    WorkList.pop_back();
2603
2604    if (handleBitTestsSwitchCase(CR, WorkList, SV, Default, SwitchMBB))
2605      continue;
2606
2607    // If the range has few cases (two or less) emit a series of specific
2608    // tests.
2609    if (handleSmallSwitchRange(CR, WorkList, SV, Default, SwitchMBB))
2610      continue;
2611
2612    // If the switch has more than N blocks, and is at least 40% dense, and the
2613    // target supports indirect branches, then emit a jump table rather than
2614    // lowering the switch to a binary tree of conditional branches.
2615    // N defaults to 4 and is controlled via TLS.getMinimumJumpTableEntries().
2616    if (handleJTSwitchCase(CR, WorkList, SV, Default, SwitchMBB))
2617      continue;
2618
2619    // Emit binary tree. We need to pick a pivot, and push left and right ranges
2620    // onto the worklist. Leafs are handled via handleSmallSwitchRange() call.
2621    handleBTSplitSwitchCase(CR, WorkList, SV, Default, SwitchMBB);
2622  }
2623}
2624
2625void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
2626  MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
2627
2628  // Update machine-CFG edges with unique successors.
2629  SmallSet<BasicBlock*, 32> Done;
2630  for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) {
2631    BasicBlock *BB = I.getSuccessor(i);
2632    bool Inserted = Done.insert(BB);
2633    if (!Inserted)
2634        continue;
2635
2636    MachineBasicBlock *Succ = FuncInfo.MBBMap[BB];
2637    addSuccessorWithWeight(IndirectBrMBB, Succ);
2638  }
2639
2640  DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(),
2641                          MVT::Other, getControlRoot(),
2642                          getValue(I.getAddress())));
2643}
2644
2645void SelectionDAGBuilder::visitFSub(const User &I) {
2646  // -0.0 - X --> fneg
2647  Type *Ty = I.getType();
2648  if (isa<Constant>(I.getOperand(0)) &&
2649      I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) {
2650    SDValue Op2 = getValue(I.getOperand(1));
2651    setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(),
2652                             Op2.getValueType(), Op2));
2653    return;
2654  }
2655
2656  visitBinary(I, ISD::FSUB);
2657}
2658
2659void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) {
2660  SDValue Op1 = getValue(I.getOperand(0));
2661  SDValue Op2 = getValue(I.getOperand(1));
2662  setValue(&I, DAG.getNode(OpCode, getCurSDLoc(),
2663                           Op1.getValueType(), Op1, Op2));
2664}
2665
2666void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
2667  SDValue Op1 = getValue(I.getOperand(0));
2668  SDValue Op2 = getValue(I.getOperand(1));
2669
2670  EVT ShiftTy = TM.getTargetLowering()->getShiftAmountTy(Op2.getValueType());
2671
2672  // Coerce the shift amount to the right type if we can.
2673  if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
2674    unsigned ShiftSize = ShiftTy.getSizeInBits();
2675    unsigned Op2Size = Op2.getValueType().getSizeInBits();
2676    SDLoc DL = getCurSDLoc();
2677
2678    // If the operand is smaller than the shift count type, promote it.
2679    if (ShiftSize > Op2Size)
2680      Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2);
2681
2682    // If the operand is larger than the shift count type but the shift
2683    // count type has enough bits to represent any shift value, truncate
2684    // it now. This is a common case and it exposes the truncate to
2685    // optimization early.
2686    else if (ShiftSize >= Log2_32_Ceil(Op2.getValueType().getSizeInBits()))
2687      Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2);
2688    // Otherwise we'll need to temporarily settle for some other convenient
2689    // type.  Type legalization will make adjustments once the shiftee is split.
2690    else
2691      Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32);
2692  }
2693
2694  setValue(&I, DAG.getNode(Opcode, getCurSDLoc(),
2695                           Op1.getValueType(), Op1, Op2));
2696}
2697
2698void SelectionDAGBuilder::visitSDiv(const User &I) {
2699  SDValue Op1 = getValue(I.getOperand(0));
2700  SDValue Op2 = getValue(I.getOperand(1));
2701
2702  // Turn exact SDivs into multiplications.
2703  // FIXME: This should be in DAGCombiner, but it doesn't have access to the
2704  // exact bit.
2705  if (isa<BinaryOperator>(&I) && cast<BinaryOperator>(&I)->isExact() &&
2706      !isa<ConstantSDNode>(Op1) &&
2707      isa<ConstantSDNode>(Op2) && !cast<ConstantSDNode>(Op2)->isNullValue())
2708    setValue(&I, TM.getTargetLowering()->BuildExactSDIV(Op1, Op2,
2709                                                        getCurSDLoc(), DAG));
2710  else
2711    setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(),
2712                             Op1, Op2));
2713}
2714
2715void SelectionDAGBuilder::visitICmp(const User &I) {
2716  ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
2717  if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
2718    predicate = IC->getPredicate();
2719  else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
2720    predicate = ICmpInst::Predicate(IC->getPredicate());
2721  SDValue Op1 = getValue(I.getOperand(0));
2722  SDValue Op2 = getValue(I.getOperand(1));
2723  ISD::CondCode Opcode = getICmpCondCode(predicate);
2724
2725  EVT DestVT = TM.getTargetLowering()->getValueType(I.getType());
2726  setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode));
2727}
2728
2729void SelectionDAGBuilder::visitFCmp(const User &I) {
2730  FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
2731  if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
2732    predicate = FC->getPredicate();
2733  else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
2734    predicate = FCmpInst::Predicate(FC->getPredicate());
2735  SDValue Op1 = getValue(I.getOperand(0));
2736  SDValue Op2 = getValue(I.getOperand(1));
2737  ISD::CondCode Condition = getFCmpCondCode(predicate);
2738  if (TM.Options.NoNaNsFPMath)
2739    Condition = getFCmpCodeWithoutNaN(Condition);
2740  EVT DestVT = TM.getTargetLowering()->getValueType(I.getType());
2741  setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition));
2742}
2743
2744void SelectionDAGBuilder::visitSelect(const User &I) {
2745  SmallVector<EVT, 4> ValueVTs;
2746  ComputeValueVTs(*TM.getTargetLowering(), I.getType(), ValueVTs);
2747  unsigned NumValues = ValueVTs.size();
2748  if (NumValues == 0) return;
2749
2750  SmallVector<SDValue, 4> Values(NumValues);
2751  SDValue Cond     = getValue(I.getOperand(0));
2752  SDValue TrueVal  = getValue(I.getOperand(1));
2753  SDValue FalseVal = getValue(I.getOperand(2));
2754  ISD::NodeType OpCode = Cond.getValueType().isVector() ?
2755    ISD::VSELECT : ISD::SELECT;
2756
2757  for (unsigned i = 0; i != NumValues; ++i)
2758    Values[i] = DAG.getNode(OpCode, getCurSDLoc(),
2759                            TrueVal.getNode()->getValueType(TrueVal.getResNo()+i),
2760                            Cond,
2761                            SDValue(TrueVal.getNode(),
2762                                    TrueVal.getResNo() + i),
2763                            SDValue(FalseVal.getNode(),
2764                                    FalseVal.getResNo() + i));
2765
2766  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
2767                           DAG.getVTList(&ValueVTs[0], NumValues),
2768                           &Values[0], NumValues));
2769}
2770
2771void SelectionDAGBuilder::visitTrunc(const User &I) {
2772  // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
2773  SDValue N = getValue(I.getOperand(0));
2774  EVT DestVT = TM.getTargetLowering()->getValueType(I.getType());
2775  setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N));
2776}
2777
2778void SelectionDAGBuilder::visitZExt(const User &I) {
2779  // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2780  // ZExt also can't be a cast to bool for same reason. So, nothing much to do
2781  SDValue N = getValue(I.getOperand(0));
2782  EVT DestVT = TM.getTargetLowering()->getValueType(I.getType());
2783  setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N));
2784}
2785
2786void SelectionDAGBuilder::visitSExt(const User &I) {
2787  // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2788  // SExt also can't be a cast to bool for same reason. So, nothing much to do
2789  SDValue N = getValue(I.getOperand(0));
2790  EVT DestVT = TM.getTargetLowering()->getValueType(I.getType());
2791  setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N));
2792}
2793
2794void SelectionDAGBuilder::visitFPTrunc(const User &I) {
2795  // FPTrunc is never a no-op cast, no need to check
2796  SDValue N = getValue(I.getOperand(0));
2797  const TargetLowering *TLI = TM.getTargetLowering();
2798  EVT DestVT = TLI->getValueType(I.getType());
2799  setValue(&I, DAG.getNode(ISD::FP_ROUND, getCurSDLoc(),
2800                           DestVT, N,
2801                           DAG.getTargetConstant(0, TLI->getPointerTy())));
2802}
2803
2804void SelectionDAGBuilder::visitFPExt(const User &I){
2805  // FPExt is never a no-op cast, no need to check
2806  SDValue N = getValue(I.getOperand(0));
2807  EVT DestVT = TM.getTargetLowering()->getValueType(I.getType());
2808  setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N));
2809}
2810
2811void SelectionDAGBuilder::visitFPToUI(const User &I) {
2812  // FPToUI is never a no-op cast, no need to check
2813  SDValue N = getValue(I.getOperand(0));
2814  EVT DestVT = TM.getTargetLowering()->getValueType(I.getType());
2815  setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N));
2816}
2817
2818void SelectionDAGBuilder::visitFPToSI(const User &I) {
2819  // FPToSI is never a no-op cast, no need to check
2820  SDValue N = getValue(I.getOperand(0));
2821  EVT DestVT = TM.getTargetLowering()->getValueType(I.getType());
2822  setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N));
2823}
2824
2825void SelectionDAGBuilder::visitUIToFP(const User &I) {
2826  // UIToFP is never a no-op cast, no need to check
2827  SDValue N = getValue(I.getOperand(0));
2828  EVT DestVT = TM.getTargetLowering()->getValueType(I.getType());
2829  setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N));
2830}
2831
2832void SelectionDAGBuilder::visitSIToFP(const User &I){
2833  // SIToFP is never a no-op cast, no need to check
2834  SDValue N = getValue(I.getOperand(0));
2835  EVT DestVT = TM.getTargetLowering()->getValueType(I.getType());
2836  setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N));
2837}
2838
2839void SelectionDAGBuilder::visitPtrToInt(const User &I) {
2840  // What to do depends on the size of the integer and the size of the pointer.
2841  // We can either truncate, zero extend, or no-op, accordingly.
2842  SDValue N = getValue(I.getOperand(0));
2843  EVT DestVT = TM.getTargetLowering()->getValueType(I.getType());
2844  setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT));
2845}
2846
2847void SelectionDAGBuilder::visitIntToPtr(const User &I) {
2848  // What to do depends on the size of the integer and the size of the pointer.
2849  // We can either truncate, zero extend, or no-op, accordingly.
2850  SDValue N = getValue(I.getOperand(0));
2851  EVT DestVT = TM.getTargetLowering()->getValueType(I.getType());
2852  setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT));
2853}
2854
2855void SelectionDAGBuilder::visitBitCast(const User &I) {
2856  SDValue N = getValue(I.getOperand(0));
2857  EVT DestVT = TM.getTargetLowering()->getValueType(I.getType());
2858
2859  // BitCast assures us that source and destination are the same size so this is
2860  // either a BITCAST or a no-op.
2861  if (DestVT != N.getValueType())
2862    setValue(&I, DAG.getNode(ISD::BITCAST, getCurSDLoc(),
2863                             DestVT, N)); // convert types.
2864  else
2865    setValue(&I, N);            // noop cast.
2866}
2867
2868void SelectionDAGBuilder::visitInsertElement(const User &I) {
2869  SDValue InVec = getValue(I.getOperand(0));
2870  SDValue InVal = getValue(I.getOperand(1));
2871  SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(),
2872                              TM.getTargetLowering()->getPointerTy(),
2873                              getValue(I.getOperand(2)));
2874  setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(),
2875                           TM.getTargetLowering()->getValueType(I.getType()),
2876                           InVec, InVal, InIdx));
2877}
2878
2879void SelectionDAGBuilder::visitExtractElement(const User &I) {
2880  SDValue InVec = getValue(I.getOperand(0));
2881  SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(),
2882                              TM.getTargetLowering()->getPointerTy(),
2883                              getValue(I.getOperand(1)));
2884  setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(),
2885                           TM.getTargetLowering()->getValueType(I.getType()),
2886                           InVec, InIdx));
2887}
2888
2889// Utility for visitShuffleVector - Return true if every element in Mask,
2890// beginning from position Pos and ending in Pos+Size, falls within the
2891// specified sequential range [L, L+Pos). or is undef.
2892static bool isSequentialInRange(const SmallVectorImpl<int> &Mask,
2893                                unsigned Pos, unsigned Size, int Low) {
2894  for (unsigned i = Pos, e = Pos+Size; i != e; ++i, ++Low)
2895    if (Mask[i] >= 0 && Mask[i] != Low)
2896      return false;
2897  return true;
2898}
2899
2900void SelectionDAGBuilder::visitShuffleVector(const User &I) {
2901  SDValue Src1 = getValue(I.getOperand(0));
2902  SDValue Src2 = getValue(I.getOperand(1));
2903
2904  SmallVector<int, 8> Mask;
2905  ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask);
2906  unsigned MaskNumElts = Mask.size();
2907
2908  const TargetLowering *TLI = TM.getTargetLowering();
2909  EVT VT = TLI->getValueType(I.getType());
2910  EVT SrcVT = Src1.getValueType();
2911  unsigned SrcNumElts = SrcVT.getVectorNumElements();
2912
2913  if (SrcNumElts == MaskNumElts) {
2914    setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2,
2915                                      &Mask[0]));
2916    return;
2917  }
2918
2919  // Normalize the shuffle vector since mask and vector length don't match.
2920  if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) {
2921    // Mask is longer than the source vectors and is a multiple of the source
2922    // vectors.  We can use concatenate vector to make the mask and vectors
2923    // lengths match.
2924    if (SrcNumElts*2 == MaskNumElts) {
2925      // First check for Src1 in low and Src2 in high
2926      if (isSequentialInRange(Mask, 0, SrcNumElts, 0) &&
2927          isSequentialInRange(Mask, SrcNumElts, SrcNumElts, SrcNumElts)) {
2928        // The shuffle is concatenating two vectors together.
2929        setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(),
2930                                 VT, Src1, Src2));
2931        return;
2932      }
2933      // Then check for Src2 in low and Src1 in high
2934      if (isSequentialInRange(Mask, 0, SrcNumElts, SrcNumElts) &&
2935          isSequentialInRange(Mask, SrcNumElts, SrcNumElts, 0)) {
2936        // The shuffle is concatenating two vectors together.
2937        setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(),
2938                                 VT, Src2, Src1));
2939        return;
2940      }
2941    }
2942
2943    // Pad both vectors with undefs to make them the same length as the mask.
2944    unsigned NumConcat = MaskNumElts / SrcNumElts;
2945    bool Src1U = Src1.getOpcode() == ISD::UNDEF;
2946    bool Src2U = Src2.getOpcode() == ISD::UNDEF;
2947    SDValue UndefVal = DAG.getUNDEF(SrcVT);
2948
2949    SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
2950    SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
2951    MOps1[0] = Src1;
2952    MOps2[0] = Src2;
2953
2954    Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
2955                                                  getCurSDLoc(), VT,
2956                                                  &MOps1[0], NumConcat);
2957    Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
2958                                                  getCurSDLoc(), VT,
2959                                                  &MOps2[0], NumConcat);
2960
2961    // Readjust mask for new input vector length.
2962    SmallVector<int, 8> MappedOps;
2963    for (unsigned i = 0; i != MaskNumElts; ++i) {
2964      int Idx = Mask[i];
2965      if (Idx >= (int)SrcNumElts)
2966        Idx -= SrcNumElts - MaskNumElts;
2967      MappedOps.push_back(Idx);
2968    }
2969
2970    setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2,
2971                                      &MappedOps[0]));
2972    return;
2973  }
2974
2975  if (SrcNumElts > MaskNumElts) {
2976    // Analyze the access pattern of the vector to see if we can extract
2977    // two subvectors and do the shuffle. The analysis is done by calculating
2978    // the range of elements the mask access on both vectors.
2979    int MinRange[2] = { static_cast<int>(SrcNumElts),
2980                        static_cast<int>(SrcNumElts)};
2981    int MaxRange[2] = {-1, -1};
2982
2983    for (unsigned i = 0; i != MaskNumElts; ++i) {
2984      int Idx = Mask[i];
2985      unsigned Input = 0;
2986      if (Idx < 0)
2987        continue;
2988
2989      if (Idx >= (int)SrcNumElts) {
2990        Input = 1;
2991        Idx -= SrcNumElts;
2992      }
2993      if (Idx > MaxRange[Input])
2994        MaxRange[Input] = Idx;
2995      if (Idx < MinRange[Input])
2996        MinRange[Input] = Idx;
2997    }
2998
2999    // Check if the access is smaller than the vector size and can we find
3000    // a reasonable extract index.
3001    int RangeUse[2] = { -1, -1 };  // 0 = Unused, 1 = Extract, -1 = Can not
3002                                   // Extract.
3003    int StartIdx[2];  // StartIdx to extract from
3004    for (unsigned Input = 0; Input < 2; ++Input) {
3005      if (MinRange[Input] >= (int)SrcNumElts && MaxRange[Input] < 0) {
3006        RangeUse[Input] = 0; // Unused
3007        StartIdx[Input] = 0;
3008        continue;
3009      }
3010
3011      // Find a good start index that is a multiple of the mask length. Then
3012      // see if the rest of the elements are in range.
3013      StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts;
3014      if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts &&
3015          StartIdx[Input] + MaskNumElts <= SrcNumElts)
3016        RangeUse[Input] = 1; // Extract from a multiple of the mask length.
3017    }
3018
3019    if (RangeUse[0] == 0 && RangeUse[1] == 0) {
3020      setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
3021      return;
3022    }
3023    if (RangeUse[0] >= 0 && RangeUse[1] >= 0) {
3024      // Extract appropriate subvector and generate a vector shuffle
3025      for (unsigned Input = 0; Input < 2; ++Input) {
3026        SDValue &Src = Input == 0 ? Src1 : Src2;
3027        if (RangeUse[Input] == 0)
3028          Src = DAG.getUNDEF(VT);
3029        else
3030          Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, getCurSDLoc(), VT,
3031                            Src, DAG.getIntPtrConstant(StartIdx[Input]));
3032      }
3033
3034      // Calculate new mask.
3035      SmallVector<int, 8> MappedOps;
3036      for (unsigned i = 0; i != MaskNumElts; ++i) {
3037        int Idx = Mask[i];
3038        if (Idx >= 0) {
3039          if (Idx < (int)SrcNumElts)
3040            Idx -= StartIdx[0];
3041          else
3042            Idx -= SrcNumElts + StartIdx[1] - MaskNumElts;
3043        }
3044        MappedOps.push_back(Idx);
3045      }
3046
3047      setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2,
3048                                        &MappedOps[0]));
3049      return;
3050    }
3051  }
3052
3053  // We can't use either concat vectors or extract subvectors so fall back to
3054  // replacing the shuffle with extract and build vector.
3055  // to insert and build vector.
3056  EVT EltVT = VT.getVectorElementType();
3057  EVT PtrVT = TLI->getPointerTy();
3058  SmallVector<SDValue,8> Ops;
3059  for (unsigned i = 0; i != MaskNumElts; ++i) {
3060    int Idx = Mask[i];
3061    SDValue Res;
3062
3063    if (Idx < 0) {
3064      Res = DAG.getUNDEF(EltVT);
3065    } else {
3066      SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2;
3067      if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts;
3068
3069      Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(),
3070                        EltVT, Src, DAG.getConstant(Idx, PtrVT));
3071    }
3072
3073    Ops.push_back(Res);
3074  }
3075
3076  setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(),
3077                           VT, &Ops[0], Ops.size()));
3078}
3079
3080void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) {
3081  const Value *Op0 = I.getOperand(0);
3082  const Value *Op1 = I.getOperand(1);
3083  Type *AggTy = I.getType();
3084  Type *ValTy = Op1->getType();
3085  bool IntoUndef = isa<UndefValue>(Op0);
3086  bool FromUndef = isa<UndefValue>(Op1);
3087
3088  unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices());
3089
3090  const TargetLowering *TLI = TM.getTargetLowering();
3091  SmallVector<EVT, 4> AggValueVTs;
3092  ComputeValueVTs(*TLI, AggTy, AggValueVTs);
3093  SmallVector<EVT, 4> ValValueVTs;
3094  ComputeValueVTs(*TLI, ValTy, ValValueVTs);
3095
3096  unsigned NumAggValues = AggValueVTs.size();
3097  unsigned NumValValues = ValValueVTs.size();
3098  SmallVector<SDValue, 4> Values(NumAggValues);
3099
3100  SDValue Agg = getValue(Op0);
3101  unsigned i = 0;
3102  // Copy the beginning value(s) from the original aggregate.
3103  for (; i != LinearIndex; ++i)
3104    Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3105                SDValue(Agg.getNode(), Agg.getResNo() + i);
3106  // Copy values from the inserted value(s).
3107  if (NumValValues) {
3108    SDValue Val = getValue(Op1);
3109    for (; i != LinearIndex + NumValValues; ++i)
3110      Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3111                  SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
3112  }
3113  // Copy remaining value(s) from the original aggregate.
3114  for (; i != NumAggValues; ++i)
3115    Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3116                SDValue(Agg.getNode(), Agg.getResNo() + i);
3117
3118  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3119                           DAG.getVTList(&AggValueVTs[0], NumAggValues),
3120                           &Values[0], NumAggValues));
3121}
3122
3123void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) {
3124  const Value *Op0 = I.getOperand(0);
3125  Type *AggTy = Op0->getType();
3126  Type *ValTy = I.getType();
3127  bool OutOfUndef = isa<UndefValue>(Op0);
3128
3129  unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices());
3130
3131  const TargetLowering *TLI = TM.getTargetLowering();
3132  SmallVector<EVT, 4> ValValueVTs;
3133  ComputeValueVTs(*TLI, ValTy, ValValueVTs);
3134
3135  unsigned NumValValues = ValValueVTs.size();
3136
3137  // Ignore a extractvalue that produces an empty object
3138  if (!NumValValues) {
3139    setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3140    return;
3141  }
3142
3143  SmallVector<SDValue, 4> Values(NumValValues);
3144
3145  SDValue Agg = getValue(Op0);
3146  // Copy out the selected value(s).
3147  for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
3148    Values[i - LinearIndex] =
3149      OutOfUndef ?
3150        DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
3151        SDValue(Agg.getNode(), Agg.getResNo() + i);
3152
3153  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3154                           DAG.getVTList(&ValValueVTs[0], NumValValues),
3155                           &Values[0], NumValValues));
3156}
3157
3158void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
3159  SDValue N = getValue(I.getOperand(0));
3160  // Note that the pointer operand may be a vector of pointers. Take the scalar
3161  // element which holds a pointer.
3162  Type *Ty = I.getOperand(0)->getType()->getScalarType();
3163
3164  for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end();
3165       OI != E; ++OI) {
3166    const Value *Idx = *OI;
3167    if (StructType *StTy = dyn_cast<StructType>(Ty)) {
3168      unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue();
3169      if (Field) {
3170        // N = N + Offset
3171        uint64_t Offset = TD->getStructLayout(StTy)->getElementOffset(Field);
3172        N = DAG.getNode(ISD::ADD, getCurSDLoc(), N.getValueType(), N,
3173                        DAG.getConstant(Offset, N.getValueType()));
3174      }
3175
3176      Ty = StTy->getElementType(Field);
3177    } else {
3178      Ty = cast<SequentialType>(Ty)->getElementType();
3179
3180      // If this is a constant subscript, handle it quickly.
3181      const TargetLowering *TLI = TM.getTargetLowering();
3182      if (const ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
3183        if (CI->isZero()) continue;
3184        uint64_t Offs =
3185            TD->getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue();
3186        SDValue OffsVal;
3187        EVT PTy = TLI->getPointerTy();
3188        unsigned PtrBits = PTy.getSizeInBits();
3189        if (PtrBits < 64)
3190          OffsVal = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(),
3191                                TLI->getPointerTy(),
3192                                DAG.getConstant(Offs, MVT::i64));
3193        else
3194          OffsVal = DAG.getIntPtrConstant(Offs);
3195
3196        N = DAG.getNode(ISD::ADD, getCurSDLoc(), N.getValueType(), N,
3197                        OffsVal);
3198        continue;
3199      }
3200
3201      // N = N + Idx * ElementSize;
3202      APInt ElementSize = APInt(TLI->getPointerTy().getSizeInBits(),
3203                                TD->getTypeAllocSize(Ty));
3204      SDValue IdxN = getValue(Idx);
3205
3206      // If the index is smaller or larger than intptr_t, truncate or extend
3207      // it.
3208      IdxN = DAG.getSExtOrTrunc(IdxN, getCurSDLoc(), N.getValueType());
3209
3210      // If this is a multiply by a power of two, turn it into a shl
3211      // immediately.  This is a very common case.
3212      if (ElementSize != 1) {
3213        if (ElementSize.isPowerOf2()) {
3214          unsigned Amt = ElementSize.logBase2();
3215          IdxN = DAG.getNode(ISD::SHL, getCurSDLoc(),
3216                             N.getValueType(), IdxN,
3217                             DAG.getConstant(Amt, IdxN.getValueType()));
3218        } else {
3219          SDValue Scale = DAG.getConstant(ElementSize, IdxN.getValueType());
3220          IdxN = DAG.getNode(ISD::MUL, getCurSDLoc(),
3221                             N.getValueType(), IdxN, Scale);
3222        }
3223      }
3224
3225      N = DAG.getNode(ISD::ADD, getCurSDLoc(),
3226                      N.getValueType(), N, IdxN);
3227    }
3228  }
3229
3230  setValue(&I, N);
3231}
3232
3233void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
3234  // If this is a fixed sized alloca in the entry block of the function,
3235  // allocate it statically on the stack.
3236  if (FuncInfo.StaticAllocaMap.count(&I))
3237    return;   // getValue will auto-populate this.
3238
3239  Type *Ty = I.getAllocatedType();
3240  const TargetLowering *TLI = TM.getTargetLowering();
3241  uint64_t TySize = TLI->getDataLayout()->getTypeAllocSize(Ty);
3242  unsigned Align =
3243    std::max((unsigned)TLI->getDataLayout()->getPrefTypeAlignment(Ty),
3244             I.getAlignment());
3245
3246  SDValue AllocSize = getValue(I.getArraySize());
3247
3248  EVT IntPtr = TLI->getPointerTy();
3249  if (AllocSize.getValueType() != IntPtr)
3250    AllocSize = DAG.getZExtOrTrunc(AllocSize, getCurSDLoc(), IntPtr);
3251
3252  AllocSize = DAG.getNode(ISD::MUL, getCurSDLoc(), IntPtr,
3253                          AllocSize,
3254                          DAG.getConstant(TySize, IntPtr));
3255
3256  // Handle alignment.  If the requested alignment is less than or equal to
3257  // the stack alignment, ignore it.  If the size is greater than or equal to
3258  // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
3259  unsigned StackAlign = TM.getFrameLowering()->getStackAlignment();
3260  if (Align <= StackAlign)
3261    Align = 0;
3262
3263  // Round the size of the allocation up to the stack alignment size
3264  // by add SA-1 to the size.
3265  AllocSize = DAG.getNode(ISD::ADD, getCurSDLoc(),
3266                          AllocSize.getValueType(), AllocSize,
3267                          DAG.getIntPtrConstant(StackAlign-1));
3268
3269  // Mask out the low bits for alignment purposes.
3270  AllocSize = DAG.getNode(ISD::AND, getCurSDLoc(),
3271                          AllocSize.getValueType(), AllocSize,
3272                          DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1)));
3273
3274  SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) };
3275  SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
3276  SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, getCurSDLoc(),
3277                            VTs, Ops, 3);
3278  setValue(&I, DSA);
3279  DAG.setRoot(DSA.getValue(1));
3280
3281  // Inform the Frame Information that we have just allocated a variable-sized
3282  // object.
3283  FuncInfo.MF->getFrameInfo()->CreateVariableSizedObject(Align ? Align : 1);
3284}
3285
3286void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
3287  if (I.isAtomic())
3288    return visitAtomicLoad(I);
3289
3290  const Value *SV = I.getOperand(0);
3291  SDValue Ptr = getValue(SV);
3292
3293  Type *Ty = I.getType();
3294
3295  bool isVolatile = I.isVolatile();
3296  bool isNonTemporal = I.getMetadata("nontemporal") != 0;
3297  bool isInvariant = I.getMetadata("invariant.load") != 0;
3298  unsigned Alignment = I.getAlignment();
3299  const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa);
3300  const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
3301
3302  SmallVector<EVT, 4> ValueVTs;
3303  SmallVector<uint64_t, 4> Offsets;
3304  ComputeValueVTs(*TM.getTargetLowering(), Ty, ValueVTs, &Offsets);
3305  unsigned NumValues = ValueVTs.size();
3306  if (NumValues == 0)
3307    return;
3308
3309  SDValue Root;
3310  bool ConstantMemory = false;
3311  if (I.isVolatile() || NumValues > MaxParallelChains)
3312    // Serialize volatile loads with other side effects.
3313    Root = getRoot();
3314  else if (AA->pointsToConstantMemory(
3315             AliasAnalysis::Location(SV, AA->getTypeStoreSize(Ty), TBAAInfo))) {
3316    // Do not serialize (non-volatile) loads of constant memory with anything.
3317    Root = DAG.getEntryNode();
3318    ConstantMemory = true;
3319  } else {
3320    // Do not serialize non-volatile loads against each other.
3321    Root = DAG.getRoot();
3322  }
3323
3324  SmallVector<SDValue, 4> Values(NumValues);
3325  SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains),
3326                                          NumValues));
3327  EVT PtrVT = Ptr.getValueType();
3328  unsigned ChainI = 0;
3329  for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3330    // Serializing loads here may result in excessive register pressure, and
3331    // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
3332    // could recover a bit by hoisting nodes upward in the chain by recognizing
3333    // they are side-effect free or do not alias. The optimizer should really
3334    // avoid this case by converting large object/array copies to llvm.memcpy
3335    // (MaxParallelChains should always remain as failsafe).
3336    if (ChainI == MaxParallelChains) {
3337      assert(PendingLoads.empty() && "PendingLoads must be serialized first");
3338      SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
3339                                  MVT::Other, &Chains[0], ChainI);
3340      Root = Chain;
3341      ChainI = 0;
3342    }
3343    SDValue A = DAG.getNode(ISD::ADD, getCurSDLoc(),
3344                            PtrVT, Ptr,
3345                            DAG.getConstant(Offsets[i], PtrVT));
3346    SDValue L = DAG.getLoad(ValueVTs[i], getCurSDLoc(), Root,
3347                            A, MachinePointerInfo(SV, Offsets[i]), isVolatile,
3348                            isNonTemporal, isInvariant, Alignment, TBAAInfo,
3349                            Ranges);
3350
3351    Values[i] = L;
3352    Chains[ChainI] = L.getValue(1);
3353  }
3354
3355  if (!ConstantMemory) {
3356    SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
3357                                MVT::Other, &Chains[0], ChainI);
3358    if (isVolatile)
3359      DAG.setRoot(Chain);
3360    else
3361      PendingLoads.push_back(Chain);
3362  }
3363
3364  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3365                           DAG.getVTList(&ValueVTs[0], NumValues),
3366                           &Values[0], NumValues));
3367}
3368
3369void SelectionDAGBuilder::visitStore(const StoreInst &I) {
3370  if (I.isAtomic())
3371    return visitAtomicStore(I);
3372
3373  const Value *SrcV = I.getOperand(0);
3374  const Value *PtrV = I.getOperand(1);
3375
3376  SmallVector<EVT, 4> ValueVTs;
3377  SmallVector<uint64_t, 4> Offsets;
3378  ComputeValueVTs(*TM.getTargetLowering(), SrcV->getType(), ValueVTs, &Offsets);
3379  unsigned NumValues = ValueVTs.size();
3380  if (NumValues == 0)
3381    return;
3382
3383  // Get the lowered operands. Note that we do this after
3384  // checking if NumResults is zero, because with zero results
3385  // the operands won't have values in the map.
3386  SDValue Src = getValue(SrcV);
3387  SDValue Ptr = getValue(PtrV);
3388
3389  SDValue Root = getRoot();
3390  SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains),
3391                                          NumValues));
3392  EVT PtrVT = Ptr.getValueType();
3393  bool isVolatile = I.isVolatile();
3394  bool isNonTemporal = I.getMetadata("nontemporal") != 0;
3395  unsigned Alignment = I.getAlignment();
3396  const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa);
3397
3398  unsigned ChainI = 0;
3399  for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3400    // See visitLoad comments.
3401    if (ChainI == MaxParallelChains) {
3402      SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
3403                                  MVT::Other, &Chains[0], ChainI);
3404      Root = Chain;
3405      ChainI = 0;
3406    }
3407    SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(), PtrVT, Ptr,
3408                              DAG.getConstant(Offsets[i], PtrVT));
3409    SDValue St = DAG.getStore(Root, getCurSDLoc(),
3410                              SDValue(Src.getNode(), Src.getResNo() + i),
3411                              Add, MachinePointerInfo(PtrV, Offsets[i]),
3412                              isVolatile, isNonTemporal, Alignment, TBAAInfo);
3413    Chains[ChainI] = St;
3414  }
3415
3416  SDValue StoreNode = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
3417                                  MVT::Other, &Chains[0], ChainI);
3418  DAG.setRoot(StoreNode);
3419}
3420
3421static SDValue InsertFenceForAtomic(SDValue Chain, AtomicOrdering Order,
3422                                    SynchronizationScope Scope,
3423                                    bool Before, SDLoc dl,
3424                                    SelectionDAG &DAG,
3425                                    const TargetLowering &TLI) {
3426  // Fence, if necessary
3427  if (Before) {
3428    if (Order == AcquireRelease || Order == SequentiallyConsistent)
3429      Order = Release;
3430    else if (Order == Acquire || Order == Monotonic)
3431      return Chain;
3432  } else {
3433    if (Order == AcquireRelease)
3434      Order = Acquire;
3435    else if (Order == Release || Order == Monotonic)
3436      return Chain;
3437  }
3438  SDValue Ops[3];
3439  Ops[0] = Chain;
3440  Ops[1] = DAG.getConstant(Order, TLI.getPointerTy());
3441  Ops[2] = DAG.getConstant(Scope, TLI.getPointerTy());
3442  return DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops, 3);
3443}
3444
3445void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) {
3446  SDLoc dl = getCurSDLoc();
3447  AtomicOrdering Order = I.getOrdering();
3448  SynchronizationScope Scope = I.getSynchScope();
3449
3450  SDValue InChain = getRoot();
3451
3452  const TargetLowering *TLI = TM.getTargetLowering();
3453  if (TLI->getInsertFencesForAtomic())
3454    InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl,
3455                                   DAG, *TLI);
3456
3457  SDValue L =
3458    DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, dl,
3459                  getValue(I.getCompareOperand()).getValueType().getSimpleVT(),
3460                  InChain,
3461                  getValue(I.getPointerOperand()),
3462                  getValue(I.getCompareOperand()),
3463                  getValue(I.getNewValOperand()),
3464                  MachinePointerInfo(I.getPointerOperand()), 0 /* Alignment */,
3465                  TLI->getInsertFencesForAtomic() ? Monotonic : Order,
3466                  Scope);
3467
3468  SDValue OutChain = L.getValue(1);
3469
3470  if (TLI->getInsertFencesForAtomic())
3471    OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl,
3472                                    DAG, *TLI);
3473
3474  setValue(&I, L);
3475  DAG.setRoot(OutChain);
3476}
3477
3478void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) {
3479  SDLoc dl = getCurSDLoc();
3480  ISD::NodeType NT;
3481  switch (I.getOperation()) {
3482  default: llvm_unreachable("Unknown atomicrmw operation");
3483  case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break;
3484  case AtomicRMWInst::Add:  NT = ISD::ATOMIC_LOAD_ADD; break;
3485  case AtomicRMWInst::Sub:  NT = ISD::ATOMIC_LOAD_SUB; break;
3486  case AtomicRMWInst::And:  NT = ISD::ATOMIC_LOAD_AND; break;
3487  case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break;
3488  case AtomicRMWInst::Or:   NT = ISD::ATOMIC_LOAD_OR; break;
3489  case AtomicRMWInst::Xor:  NT = ISD::ATOMIC_LOAD_XOR; break;
3490  case AtomicRMWInst::Max:  NT = ISD::ATOMIC_LOAD_MAX; break;
3491  case AtomicRMWInst::Min:  NT = ISD::ATOMIC_LOAD_MIN; break;
3492  case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break;
3493  case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break;
3494  }
3495  AtomicOrdering Order = I.getOrdering();
3496  SynchronizationScope Scope = I.getSynchScope();
3497
3498  SDValue InChain = getRoot();
3499
3500  const TargetLowering *TLI = TM.getTargetLowering();
3501  if (TLI->getInsertFencesForAtomic())
3502    InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl,
3503                                   DAG, *TLI);
3504
3505  SDValue L =
3506    DAG.getAtomic(NT, dl,
3507                  getValue(I.getValOperand()).getValueType().getSimpleVT(),
3508                  InChain,
3509                  getValue(I.getPointerOperand()),
3510                  getValue(I.getValOperand()),
3511                  I.getPointerOperand(), 0 /* Alignment */,
3512                  TLI->getInsertFencesForAtomic() ? Monotonic : Order,
3513                  Scope);
3514
3515  SDValue OutChain = L.getValue(1);
3516
3517  if (TLI->getInsertFencesForAtomic())
3518    OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl,
3519                                    DAG, *TLI);
3520
3521  setValue(&I, L);
3522  DAG.setRoot(OutChain);
3523}
3524
3525void SelectionDAGBuilder::visitFence(const FenceInst &I) {
3526  SDLoc dl = getCurSDLoc();
3527  const TargetLowering *TLI = TM.getTargetLowering();
3528  SDValue Ops[3];
3529  Ops[0] = getRoot();
3530  Ops[1] = DAG.getConstant(I.getOrdering(), TLI->getPointerTy());
3531  Ops[2] = DAG.getConstant(I.getSynchScope(), TLI->getPointerTy());
3532  DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops, 3));
3533}
3534
3535void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) {
3536  SDLoc dl = getCurSDLoc();
3537  AtomicOrdering Order = I.getOrdering();
3538  SynchronizationScope Scope = I.getSynchScope();
3539
3540  SDValue InChain = getRoot();
3541
3542  const TargetLowering *TLI = TM.getTargetLowering();
3543  EVT VT = TLI->getValueType(I.getType());
3544
3545  if (I.getAlignment() < VT.getSizeInBits() / 8)
3546    report_fatal_error("Cannot generate unaligned atomic load");
3547
3548  SDValue L =
3549    DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain,
3550                  getValue(I.getPointerOperand()),
3551                  I.getPointerOperand(), I.getAlignment(),
3552                  TLI->getInsertFencesForAtomic() ? Monotonic : Order,
3553                  Scope);
3554
3555  SDValue OutChain = L.getValue(1);
3556
3557  if (TLI->getInsertFencesForAtomic())
3558    OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl,
3559                                    DAG, *TLI);
3560
3561  setValue(&I, L);
3562  DAG.setRoot(OutChain);
3563}
3564
3565void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) {
3566  SDLoc dl = getCurSDLoc();
3567
3568  AtomicOrdering Order = I.getOrdering();
3569  SynchronizationScope Scope = I.getSynchScope();
3570
3571  SDValue InChain = getRoot();
3572
3573  const TargetLowering *TLI = TM.getTargetLowering();
3574  EVT VT = TLI->getValueType(I.getValueOperand()->getType());
3575
3576  if (I.getAlignment() < VT.getSizeInBits() / 8)
3577    report_fatal_error("Cannot generate unaligned atomic store");
3578
3579  if (TLI->getInsertFencesForAtomic())
3580    InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl,
3581                                   DAG, *TLI);
3582
3583  SDValue OutChain =
3584    DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT,
3585                  InChain,
3586                  getValue(I.getPointerOperand()),
3587                  getValue(I.getValueOperand()),
3588                  I.getPointerOperand(), I.getAlignment(),
3589                  TLI->getInsertFencesForAtomic() ? Monotonic : Order,
3590                  Scope);
3591
3592  if (TLI->getInsertFencesForAtomic())
3593    OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl,
3594                                    DAG, *TLI);
3595
3596  DAG.setRoot(OutChain);
3597}
3598
3599/// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
3600/// node.
3601void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
3602                                               unsigned Intrinsic) {
3603  bool HasChain = !I.doesNotAccessMemory();
3604  bool OnlyLoad = HasChain && I.onlyReadsMemory();
3605
3606  // Build the operand list.
3607  SmallVector<SDValue, 8> Ops;
3608  if (HasChain) {  // If this intrinsic has side-effects, chainify it.
3609    if (OnlyLoad) {
3610      // We don't need to serialize loads against other loads.
3611      Ops.push_back(DAG.getRoot());
3612    } else {
3613      Ops.push_back(getRoot());
3614    }
3615  }
3616
3617  // Info is set by getTgtMemInstrinsic
3618  TargetLowering::IntrinsicInfo Info;
3619  const TargetLowering *TLI = TM.getTargetLowering();
3620  bool IsTgtIntrinsic = TLI->getTgtMemIntrinsic(Info, I, Intrinsic);
3621
3622  // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
3623  if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
3624      Info.opc == ISD::INTRINSIC_W_CHAIN)
3625    Ops.push_back(DAG.getTargetConstant(Intrinsic, TLI->getPointerTy()));
3626
3627  // Add all operands of the call to the operand list.
3628  for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
3629    SDValue Op = getValue(I.getArgOperand(i));
3630    Ops.push_back(Op);
3631  }
3632
3633  SmallVector<EVT, 4> ValueVTs;
3634  ComputeValueVTs(*TLI, I.getType(), ValueVTs);
3635
3636  if (HasChain)
3637    ValueVTs.push_back(MVT::Other);
3638
3639  SDVTList VTs = DAG.getVTList(ValueVTs.data(), ValueVTs.size());
3640
3641  // Create the node.
3642  SDValue Result;
3643  if (IsTgtIntrinsic) {
3644    // This is target intrinsic that touches memory
3645    Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(),
3646                                     VTs, &Ops[0], Ops.size(),
3647                                     Info.memVT,
3648                                   MachinePointerInfo(Info.ptrVal, Info.offset),
3649                                     Info.align, Info.vol,
3650                                     Info.readMem, Info.writeMem);
3651  } else if (!HasChain) {
3652    Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(),
3653                         VTs, &Ops[0], Ops.size());
3654  } else if (!I.getType()->isVoidTy()) {
3655    Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(),
3656                         VTs, &Ops[0], Ops.size());
3657  } else {
3658    Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(),
3659                         VTs, &Ops[0], Ops.size());
3660  }
3661
3662  if (HasChain) {
3663    SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
3664    if (OnlyLoad)
3665      PendingLoads.push_back(Chain);
3666    else
3667      DAG.setRoot(Chain);
3668  }
3669
3670  if (!I.getType()->isVoidTy()) {
3671    if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
3672      EVT VT = TLI->getValueType(PTy);
3673      Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result);
3674    }
3675
3676    setValue(&I, Result);
3677  }
3678}
3679
3680/// GetSignificand - Get the significand and build it into a floating-point
3681/// number with exponent of 1:
3682///
3683///   Op = (Op & 0x007fffff) | 0x3f800000;
3684///
3685/// where Op is the hexadecimal representation of floating point value.
3686static SDValue
3687GetSignificand(SelectionDAG &DAG, SDValue Op, SDLoc dl) {
3688  SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
3689                           DAG.getConstant(0x007fffff, MVT::i32));
3690  SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
3691                           DAG.getConstant(0x3f800000, MVT::i32));
3692  return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
3693}
3694
3695/// GetExponent - Get the exponent:
3696///
3697///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
3698///
3699/// where Op is the hexadecimal representation of floating point value.
3700static SDValue
3701GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI,
3702            SDLoc dl) {
3703  SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
3704                           DAG.getConstant(0x7f800000, MVT::i32));
3705  SDValue t1 = DAG.getNode(ISD::SRL, dl, MVT::i32, t0,
3706                           DAG.getConstant(23, TLI.getPointerTy()));
3707  SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
3708                           DAG.getConstant(127, MVT::i32));
3709  return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
3710}
3711
3712/// getF32Constant - Get 32-bit floating point constant.
3713static SDValue
3714getF32Constant(SelectionDAG &DAG, unsigned Flt) {
3715  return DAG.getConstantFP(APFloat(APFloat::IEEEsingle, APInt(32, Flt)),
3716                           MVT::f32);
3717}
3718
3719/// expandExp - Lower an exp intrinsic. Handles the special sequences for
3720/// limited-precision mode.
3721static SDValue expandExp(SDLoc dl, SDValue Op, SelectionDAG &DAG,
3722                         const TargetLowering &TLI) {
3723  if (Op.getValueType() == MVT::f32 &&
3724      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3725
3726    // Put the exponent in the right bit position for later addition to the
3727    // final result:
3728    //
3729    //   #define LOG2OFe 1.4426950f
3730    //   IntegerPartOfX = ((int32_t)(X * LOG2OFe));
3731    SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
3732                             getF32Constant(DAG, 0x3fb8aa3b));
3733    SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
3734
3735    //   FractionalPartOfX = (X * LOG2OFe) - (float)IntegerPartOfX;
3736    SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
3737    SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
3738
3739    //   IntegerPartOfX <<= 23;
3740    IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
3741                                 DAG.getConstant(23, TLI.getPointerTy()));
3742
3743    SDValue TwoToFracPartOfX;
3744    if (LimitFloatPrecision <= 6) {
3745      // For floating-point precision of 6:
3746      //
3747      //   TwoToFractionalPartOfX =
3748      //     0.997535578f +
3749      //       (0.735607626f + 0.252464424f * x) * x;
3750      //
3751      // error 0.0144103317, which is 6 bits
3752      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3753                               getF32Constant(DAG, 0x3e814304));
3754      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3755                               getF32Constant(DAG, 0x3f3c50c8));
3756      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3757      TwoToFracPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3758                                     getF32Constant(DAG, 0x3f7f5e7e));
3759    } else if (LimitFloatPrecision <= 12) {
3760      // For floating-point precision of 12:
3761      //
3762      //   TwoToFractionalPartOfX =
3763      //     0.999892986f +
3764      //       (0.696457318f +
3765      //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
3766      //
3767      // 0.000107046256 error, which is 13 to 14 bits
3768      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3769                               getF32Constant(DAG, 0x3da235e3));
3770      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3771                               getF32Constant(DAG, 0x3e65b8f3));
3772      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3773      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3774                               getF32Constant(DAG, 0x3f324b07));
3775      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3776      TwoToFracPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3777                                     getF32Constant(DAG, 0x3f7ff8fd));
3778    } else { // LimitFloatPrecision <= 18
3779      // For floating-point precision of 18:
3780      //
3781      //   TwoToFractionalPartOfX =
3782      //     0.999999982f +
3783      //       (0.693148872f +
3784      //         (0.240227044f +
3785      //           (0.554906021e-1f +
3786      //             (0.961591928e-2f +
3787      //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
3788      //
3789      // error 2.47208000*10^(-7), which is better than 18 bits
3790      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3791                               getF32Constant(DAG, 0x3924b03e));
3792      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3793                               getF32Constant(DAG, 0x3ab24b87));
3794      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3795      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3796                               getF32Constant(DAG, 0x3c1d8c17));
3797      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3798      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3799                               getF32Constant(DAG, 0x3d634a1d));
3800      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3801      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3802                               getF32Constant(DAG, 0x3e75fe14));
3803      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3804      SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
3805                                getF32Constant(DAG, 0x3f317234));
3806      SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
3807      TwoToFracPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
3808                                     getF32Constant(DAG, 0x3f800000));
3809    }
3810
3811    // Add the exponent into the result in integer domain.
3812    SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFracPartOfX);
3813    return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
3814                       DAG.getNode(ISD::ADD, dl, MVT::i32,
3815                                   t13, IntegerPartOfX));
3816  }
3817
3818  // No special expansion.
3819  return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op);
3820}
3821
3822/// expandLog - Lower a log intrinsic. Handles the special sequences for
3823/// limited-precision mode.
3824static SDValue expandLog(SDLoc dl, SDValue Op, SelectionDAG &DAG,
3825                         const TargetLowering &TLI) {
3826  if (Op.getValueType() == MVT::f32 &&
3827      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3828    SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
3829
3830    // Scale the exponent by log(2) [0.69314718f].
3831    SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
3832    SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
3833                                        getF32Constant(DAG, 0x3f317218));
3834
3835    // Get the significand and build it into a floating-point number with
3836    // exponent of 1.
3837    SDValue X = GetSignificand(DAG, Op1, dl);
3838
3839    SDValue LogOfMantissa;
3840    if (LimitFloatPrecision <= 6) {
3841      // For floating-point precision of 6:
3842      //
3843      //   LogofMantissa =
3844      //     -1.1609546f +
3845      //       (1.4034025f - 0.23903021f * x) * x;
3846      //
3847      // error 0.0034276066, which is better than 8 bits
3848      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3849                               getF32Constant(DAG, 0xbe74c456));
3850      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3851                               getF32Constant(DAG, 0x3fb3a2b1));
3852      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3853      LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3854                                  getF32Constant(DAG, 0x3f949a29));
3855    } else if (LimitFloatPrecision <= 12) {
3856      // For floating-point precision of 12:
3857      //
3858      //   LogOfMantissa =
3859      //     -1.7417939f +
3860      //       (2.8212026f +
3861      //         (-1.4699568f +
3862      //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
3863      //
3864      // error 0.000061011436, which is 14 bits
3865      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3866                               getF32Constant(DAG, 0xbd67b6d6));
3867      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3868                               getF32Constant(DAG, 0x3ee4f4b8));
3869      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3870      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3871                               getF32Constant(DAG, 0x3fbc278b));
3872      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3873      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3874                               getF32Constant(DAG, 0x40348e95));
3875      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3876      LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3877                                  getF32Constant(DAG, 0x3fdef31a));
3878    } else { // LimitFloatPrecision <= 18
3879      // For floating-point precision of 18:
3880      //
3881      //   LogOfMantissa =
3882      //     -2.1072184f +
3883      //       (4.2372794f +
3884      //         (-3.7029485f +
3885      //           (2.2781945f +
3886      //             (-0.87823314f +
3887      //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
3888      //
3889      // error 0.0000023660568, which is better than 18 bits
3890      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3891                               getF32Constant(DAG, 0xbc91e5ac));
3892      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3893                               getF32Constant(DAG, 0x3e4350aa));
3894      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3895      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3896                               getF32Constant(DAG, 0x3f60d3e3));
3897      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3898      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3899                               getF32Constant(DAG, 0x4011cdf0));
3900      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3901      SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3902                               getF32Constant(DAG, 0x406cfd1c));
3903      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3904      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3905                               getF32Constant(DAG, 0x408797cb));
3906      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3907      LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
3908                                  getF32Constant(DAG, 0x4006dcab));
3909    }
3910
3911    return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa);
3912  }
3913
3914  // No special expansion.
3915  return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op);
3916}
3917
3918/// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for
3919/// limited-precision mode.
3920static SDValue expandLog2(SDLoc dl, SDValue Op, SelectionDAG &DAG,
3921                          const TargetLowering &TLI) {
3922  if (Op.getValueType() == MVT::f32 &&
3923      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3924    SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
3925
3926    // Get the exponent.
3927    SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
3928
3929    // Get the significand and build it into a floating-point number with
3930    // exponent of 1.
3931    SDValue X = GetSignificand(DAG, Op1, dl);
3932
3933    // Different possible minimax approximations of significand in
3934    // floating-point for various degrees of accuracy over [1,2].
3935    SDValue Log2ofMantissa;
3936    if (LimitFloatPrecision <= 6) {
3937      // For floating-point precision of 6:
3938      //
3939      //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
3940      //
3941      // error 0.0049451742, which is more than 7 bits
3942      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3943                               getF32Constant(DAG, 0xbeb08fe0));
3944      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3945                               getF32Constant(DAG, 0x40019463));
3946      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3947      Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3948                                   getF32Constant(DAG, 0x3fd6633d));
3949    } else if (LimitFloatPrecision <= 12) {
3950      // For floating-point precision of 12:
3951      //
3952      //   Log2ofMantissa =
3953      //     -2.51285454f +
3954      //       (4.07009056f +
3955      //         (-2.12067489f +
3956      //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
3957      //
3958      // error 0.0000876136000, which is better than 13 bits
3959      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3960                               getF32Constant(DAG, 0xbda7262e));
3961      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3962                               getF32Constant(DAG, 0x3f25280b));
3963      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3964      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3965                               getF32Constant(DAG, 0x4007b923));
3966      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3967      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3968                               getF32Constant(DAG, 0x40823e2f));
3969      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3970      Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3971                                   getF32Constant(DAG, 0x4020d29c));
3972    } else { // LimitFloatPrecision <= 18
3973      // For floating-point precision of 18:
3974      //
3975      //   Log2ofMantissa =
3976      //     -3.0400495f +
3977      //       (6.1129976f +
3978      //         (-5.3420409f +
3979      //           (3.2865683f +
3980      //             (-1.2669343f +
3981      //               (0.27515199f -
3982      //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
3983      //
3984      // error 0.0000018516, which is better than 18 bits
3985      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3986                               getF32Constant(DAG, 0xbcd2769e));
3987      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3988                               getF32Constant(DAG, 0x3e8ce0b9));
3989      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3990      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3991                               getF32Constant(DAG, 0x3fa22ae7));
3992      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3993      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3994                               getF32Constant(DAG, 0x40525723));
3995      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3996      SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3997                               getF32Constant(DAG, 0x40aaf200));
3998      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3999      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4000                               getF32Constant(DAG, 0x40c39dad));
4001      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4002      Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
4003                                   getF32Constant(DAG, 0x4042902c));
4004    }
4005
4006    return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa);
4007  }
4008
4009  // No special expansion.
4010  return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op);
4011}
4012
4013/// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for
4014/// limited-precision mode.
4015static SDValue expandLog10(SDLoc dl, SDValue Op, SelectionDAG &DAG,
4016                           const TargetLowering &TLI) {
4017  if (Op.getValueType() == MVT::f32 &&
4018      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4019    SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
4020
4021    // Scale the exponent by log10(2) [0.30102999f].
4022    SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
4023    SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
4024                                        getF32Constant(DAG, 0x3e9a209a));
4025
4026    // Get the significand and build it into a floating-point number with
4027    // exponent of 1.
4028    SDValue X = GetSignificand(DAG, Op1, dl);
4029
4030    SDValue Log10ofMantissa;
4031    if (LimitFloatPrecision <= 6) {
4032      // For floating-point precision of 6:
4033      //
4034      //   Log10ofMantissa =
4035      //     -0.50419619f +
4036      //       (0.60948995f - 0.10380950f * x) * x;
4037      //
4038      // error 0.0014886165, which is 6 bits
4039      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4040                               getF32Constant(DAG, 0xbdd49a13));
4041      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4042                               getF32Constant(DAG, 0x3f1c0789));
4043      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4044      Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4045                                    getF32Constant(DAG, 0x3f011300));
4046    } else if (LimitFloatPrecision <= 12) {
4047      // For floating-point precision of 12:
4048      //
4049      //   Log10ofMantissa =
4050      //     -0.64831180f +
4051      //       (0.91751397f +
4052      //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
4053      //
4054      // error 0.00019228036, which is better than 12 bits
4055      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4056                               getF32Constant(DAG, 0x3d431f31));
4057      SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
4058                               getF32Constant(DAG, 0x3ea21fb2));
4059      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4060      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4061                               getF32Constant(DAG, 0x3f6ae232));
4062      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4063      Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
4064                                    getF32Constant(DAG, 0x3f25f7c3));
4065    } else { // LimitFloatPrecision <= 18
4066      // For floating-point precision of 18:
4067      //
4068      //   Log10ofMantissa =
4069      //     -0.84299375f +
4070      //       (1.5327582f +
4071      //         (-1.0688956f +
4072      //           (0.49102474f +
4073      //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
4074      //
4075      // error 0.0000037995730, which is better than 18 bits
4076      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4077                               getF32Constant(DAG, 0x3c5d51ce));
4078      SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
4079                               getF32Constant(DAG, 0x3e00685a));
4080      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4081      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4082                               getF32Constant(DAG, 0x3efb6798));
4083      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4084      SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
4085                               getF32Constant(DAG, 0x3f88d192));
4086      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4087      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4088                               getF32Constant(DAG, 0x3fc4316c));
4089      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4090      Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
4091                                    getF32Constant(DAG, 0x3f57ce70));
4092    }
4093
4094    return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa);
4095  }
4096
4097  // No special expansion.
4098  return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op);
4099}
4100
4101/// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for
4102/// limited-precision mode.
4103static SDValue expandExp2(SDLoc dl, SDValue Op, SelectionDAG &DAG,
4104                          const TargetLowering &TLI) {
4105  if (Op.getValueType() == MVT::f32 &&
4106      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4107    SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Op);
4108
4109    //   FractionalPartOfX = x - (float)IntegerPartOfX;
4110    SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
4111    SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, Op, t1);
4112
4113    //   IntegerPartOfX <<= 23;
4114    IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
4115                                 DAG.getConstant(23, TLI.getPointerTy()));
4116
4117    SDValue TwoToFractionalPartOfX;
4118    if (LimitFloatPrecision <= 6) {
4119      // For floating-point precision of 6:
4120      //
4121      //   TwoToFractionalPartOfX =
4122      //     0.997535578f +
4123      //       (0.735607626f + 0.252464424f * x) * x;
4124      //
4125      // error 0.0144103317, which is 6 bits
4126      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4127                               getF32Constant(DAG, 0x3e814304));
4128      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4129                               getF32Constant(DAG, 0x3f3c50c8));
4130      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4131      TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4132                                           getF32Constant(DAG, 0x3f7f5e7e));
4133    } else if (LimitFloatPrecision <= 12) {
4134      // For floating-point precision of 12:
4135      //
4136      //   TwoToFractionalPartOfX =
4137      //     0.999892986f +
4138      //       (0.696457318f +
4139      //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
4140      //
4141      // error 0.000107046256, which is 13 to 14 bits
4142      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4143                               getF32Constant(DAG, 0x3da235e3));
4144      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4145                               getF32Constant(DAG, 0x3e65b8f3));
4146      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4147      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4148                               getF32Constant(DAG, 0x3f324b07));
4149      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4150      TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4151                                           getF32Constant(DAG, 0x3f7ff8fd));
4152    } else { // LimitFloatPrecision <= 18
4153      // For floating-point precision of 18:
4154      //
4155      //   TwoToFractionalPartOfX =
4156      //     0.999999982f +
4157      //       (0.693148872f +
4158      //         (0.240227044f +
4159      //           (0.554906021e-1f +
4160      //             (0.961591928e-2f +
4161      //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
4162      // error 2.47208000*10^(-7), which is better than 18 bits
4163      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4164                               getF32Constant(DAG, 0x3924b03e));
4165      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4166                               getF32Constant(DAG, 0x3ab24b87));
4167      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4168      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4169                               getF32Constant(DAG, 0x3c1d8c17));
4170      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4171      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4172                               getF32Constant(DAG, 0x3d634a1d));
4173      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4174      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4175                               getF32Constant(DAG, 0x3e75fe14));
4176      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4177      SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
4178                                getF32Constant(DAG, 0x3f317234));
4179      SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
4180      TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
4181                                           getF32Constant(DAG, 0x3f800000));
4182    }
4183
4184    // Add the exponent into the result in integer domain.
4185    SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32,
4186                              TwoToFractionalPartOfX);
4187    return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
4188                       DAG.getNode(ISD::ADD, dl, MVT::i32,
4189                                   t13, IntegerPartOfX));
4190  }
4191
4192  // No special expansion.
4193  return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op);
4194}
4195
4196/// visitPow - Lower a pow intrinsic. Handles the special sequences for
4197/// limited-precision mode with x == 10.0f.
4198static SDValue expandPow(SDLoc dl, SDValue LHS, SDValue RHS,
4199                         SelectionDAG &DAG, const TargetLowering &TLI) {
4200  bool IsExp10 = false;
4201  if (LHS.getValueType() == MVT::f32 && LHS.getValueType() == MVT::f32 &&
4202      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4203    if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) {
4204      APFloat Ten(10.0f);
4205      IsExp10 = LHSC->isExactlyValue(Ten);
4206    }
4207  }
4208
4209  if (IsExp10) {
4210    // Put the exponent in the right bit position for later addition to the
4211    // final result:
4212    //
4213    //   #define LOG2OF10 3.3219281f
4214    //   IntegerPartOfX = (int32_t)(x * LOG2OF10);
4215    SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS,
4216                             getF32Constant(DAG, 0x40549a78));
4217    SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
4218
4219    //   FractionalPartOfX = x - (float)IntegerPartOfX;
4220    SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
4221    SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
4222
4223    //   IntegerPartOfX <<= 23;
4224    IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
4225                                 DAG.getConstant(23, TLI.getPointerTy()));
4226
4227    SDValue TwoToFractionalPartOfX;
4228    if (LimitFloatPrecision <= 6) {
4229      // For floating-point precision of 6:
4230      //
4231      //   twoToFractionalPartOfX =
4232      //     0.997535578f +
4233      //       (0.735607626f + 0.252464424f * x) * x;
4234      //
4235      // error 0.0144103317, which is 6 bits
4236      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4237                               getF32Constant(DAG, 0x3e814304));
4238      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4239                               getF32Constant(DAG, 0x3f3c50c8));
4240      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4241      TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4242                                           getF32Constant(DAG, 0x3f7f5e7e));
4243    } else if (LimitFloatPrecision <= 12) {
4244      // For floating-point precision of 12:
4245      //
4246      //   TwoToFractionalPartOfX =
4247      //     0.999892986f +
4248      //       (0.696457318f +
4249      //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
4250      //
4251      // error 0.000107046256, which is 13 to 14 bits
4252      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4253                               getF32Constant(DAG, 0x3da235e3));
4254      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4255                               getF32Constant(DAG, 0x3e65b8f3));
4256      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4257      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4258                               getF32Constant(DAG, 0x3f324b07));
4259      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4260      TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4261                                           getF32Constant(DAG, 0x3f7ff8fd));
4262    } else { // LimitFloatPrecision <= 18
4263      // For floating-point precision of 18:
4264      //
4265      //   TwoToFractionalPartOfX =
4266      //     0.999999982f +
4267      //       (0.693148872f +
4268      //         (0.240227044f +
4269      //           (0.554906021e-1f +
4270      //             (0.961591928e-2f +
4271      //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
4272      // error 2.47208000*10^(-7), which is better than 18 bits
4273      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4274                               getF32Constant(DAG, 0x3924b03e));
4275      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4276                               getF32Constant(DAG, 0x3ab24b87));
4277      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4278      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4279                               getF32Constant(DAG, 0x3c1d8c17));
4280      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4281      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4282                               getF32Constant(DAG, 0x3d634a1d));
4283      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4284      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4285                               getF32Constant(DAG, 0x3e75fe14));
4286      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4287      SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
4288                                getF32Constant(DAG, 0x3f317234));
4289      SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
4290      TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
4291                                           getF32Constant(DAG, 0x3f800000));
4292    }
4293
4294    SDValue t13 = DAG.getNode(ISD::BITCAST, dl,MVT::i32,TwoToFractionalPartOfX);
4295    return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
4296                       DAG.getNode(ISD::ADD, dl, MVT::i32,
4297                                   t13, IntegerPartOfX));
4298  }
4299
4300  // No special expansion.
4301  return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS);
4302}
4303
4304
4305/// ExpandPowI - Expand a llvm.powi intrinsic.
4306static SDValue ExpandPowI(SDLoc DL, SDValue LHS, SDValue RHS,
4307                          SelectionDAG &DAG) {
4308  // If RHS is a constant, we can expand this out to a multiplication tree,
4309  // otherwise we end up lowering to a call to __powidf2 (for example).  When
4310  // optimizing for size, we only want to do this if the expansion would produce
4311  // a small number of multiplies, otherwise we do the full expansion.
4312  if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
4313    // Get the exponent as a positive value.
4314    unsigned Val = RHSC->getSExtValue();
4315    if ((int)Val < 0) Val = -Val;
4316
4317    // powi(x, 0) -> 1.0
4318    if (Val == 0)
4319      return DAG.getConstantFP(1.0, LHS.getValueType());
4320
4321    const Function *F = DAG.getMachineFunction().getFunction();
4322    if (!F->getAttributes().hasAttribute(AttributeSet::FunctionIndex,
4323                                         Attribute::OptimizeForSize) ||
4324        // If optimizing for size, don't insert too many multiplies.  This
4325        // inserts up to 5 multiplies.
4326        CountPopulation_32(Val)+Log2_32(Val) < 7) {
4327      // We use the simple binary decomposition method to generate the multiply
4328      // sequence.  There are more optimal ways to do this (for example,
4329      // powi(x,15) generates one more multiply than it should), but this has
4330      // the benefit of being both really simple and much better than a libcall.
4331      SDValue Res;  // Logically starts equal to 1.0
4332      SDValue CurSquare = LHS;
4333      while (Val) {
4334        if (Val & 1) {
4335          if (Res.getNode())
4336            Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare);
4337          else
4338            Res = CurSquare;  // 1.0*CurSquare.
4339        }
4340
4341        CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
4342                                CurSquare, CurSquare);
4343        Val >>= 1;
4344      }
4345
4346      // If the original was negative, invert the result, producing 1/(x*x*x).
4347      if (RHSC->getSExtValue() < 0)
4348        Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
4349                          DAG.getConstantFP(1.0, LHS.getValueType()), Res);
4350      return Res;
4351    }
4352  }
4353
4354  // Otherwise, expand to a libcall.
4355  return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
4356}
4357
4358// getTruncatedArgReg - Find underlying register used for an truncated
4359// argument.
4360static unsigned getTruncatedArgReg(const SDValue &N) {
4361  if (N.getOpcode() != ISD::TRUNCATE)
4362    return 0;
4363
4364  const SDValue &Ext = N.getOperand(0);
4365  if (Ext.getOpcode() == ISD::AssertZext || Ext.getOpcode() == ISD::AssertSext){
4366    const SDValue &CFR = Ext.getOperand(0);
4367    if (CFR.getOpcode() == ISD::CopyFromReg)
4368      return cast<RegisterSDNode>(CFR.getOperand(1))->getReg();
4369    if (CFR.getOpcode() == ISD::TRUNCATE)
4370      return getTruncatedArgReg(CFR);
4371  }
4372  return 0;
4373}
4374
4375/// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function
4376/// argument, create the corresponding DBG_VALUE machine instruction for it now.
4377/// At the end of instruction selection, they will be inserted to the entry BB.
4378bool
4379SelectionDAGBuilder::EmitFuncArgumentDbgValue(const Value *V, MDNode *Variable,
4380                                              int64_t Offset,
4381                                              const SDValue &N) {
4382  const Argument *Arg = dyn_cast<Argument>(V);
4383  if (!Arg)
4384    return false;
4385
4386  MachineFunction &MF = DAG.getMachineFunction();
4387  const TargetInstrInfo *TII = DAG.getTarget().getInstrInfo();
4388
4389  // Ignore inlined function arguments here.
4390  DIVariable DV(Variable);
4391  if (DV.isInlinedFnArgument(MF.getFunction()))
4392    return false;
4393
4394  Optional<MachineOperand> Op;
4395  // Some arguments' frame index is recorded during argument lowering.
4396  if (int FI = FuncInfo.getArgumentFrameIndex(Arg))
4397    Op = MachineOperand::CreateFI(FI);
4398
4399  if (!Op && N.getNode()) {
4400    unsigned Reg;
4401    if (N.getOpcode() == ISD::CopyFromReg)
4402      Reg = cast<RegisterSDNode>(N.getOperand(1))->getReg();
4403    else
4404      Reg = getTruncatedArgReg(N);
4405    if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) {
4406      MachineRegisterInfo &RegInfo = MF.getRegInfo();
4407      unsigned PR = RegInfo.getLiveInPhysReg(Reg);
4408      if (PR)
4409        Reg = PR;
4410    }
4411    if (Reg)
4412      Op = MachineOperand::CreateReg(Reg, false);
4413  }
4414
4415  if (!Op) {
4416    // Check if ValueMap has reg number.
4417    DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
4418    if (VMI != FuncInfo.ValueMap.end())
4419      Op = MachineOperand::CreateReg(VMI->second, false);
4420  }
4421
4422  if (!Op && N.getNode())
4423    // Check if frame index is available.
4424    if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode()))
4425      if (FrameIndexSDNode *FINode =
4426          dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
4427        Op = MachineOperand::CreateFI(FINode->getIndex());
4428
4429  if (!Op)
4430    return false;
4431
4432  if (Op->isReg())
4433    Op->setIsDebug();
4434
4435  FuncInfo.ArgDbgValues.push_back(
4436      BuildMI(MF, getCurDebugLoc(), TII->get(TargetOpcode::DBG_VALUE))
4437          .addOperand(*Op).addImm(Offset).addMetadata(Variable));
4438  return true;
4439}
4440
4441// VisualStudio defines setjmp as _setjmp
4442#if defined(_MSC_VER) && defined(setjmp) && \
4443                         !defined(setjmp_undefined_for_msvc)
4444#  pragma push_macro("setjmp")
4445#  undef setjmp
4446#  define setjmp_undefined_for_msvc
4447#endif
4448
4449/// visitIntrinsicCall - Lower the call to the specified intrinsic function.  If
4450/// we want to emit this as a call to a named external function, return the name
4451/// otherwise lower it and return null.
4452const char *
4453SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) {
4454  const TargetLowering *TLI = TM.getTargetLowering();
4455  SDLoc sdl = getCurSDLoc();
4456  DebugLoc dl = getCurDebugLoc();
4457  SDValue Res;
4458
4459  switch (Intrinsic) {
4460  default:
4461    // By default, turn this into a target intrinsic node.
4462    visitTargetIntrinsic(I, Intrinsic);
4463    return 0;
4464  case Intrinsic::vastart:  visitVAStart(I); return 0;
4465  case Intrinsic::vaend:    visitVAEnd(I); return 0;
4466  case Intrinsic::vacopy:   visitVACopy(I); return 0;
4467  case Intrinsic::returnaddress:
4468    setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, TLI->getPointerTy(),
4469                             getValue(I.getArgOperand(0))));
4470    return 0;
4471  case Intrinsic::frameaddress:
4472    setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, TLI->getPointerTy(),
4473                             getValue(I.getArgOperand(0))));
4474    return 0;
4475  case Intrinsic::setjmp:
4476    return &"_setjmp"[!TLI->usesUnderscoreSetJmp()];
4477  case Intrinsic::longjmp:
4478    return &"_longjmp"[!TLI->usesUnderscoreLongJmp()];
4479  case Intrinsic::memcpy: {
4480    // Assert for address < 256 since we support only user defined address
4481    // spaces.
4482    assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4483           < 256 &&
4484           cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace()
4485           < 256 &&
4486           "Unknown address space");
4487    SDValue Op1 = getValue(I.getArgOperand(0));
4488    SDValue Op2 = getValue(I.getArgOperand(1));
4489    SDValue Op3 = getValue(I.getArgOperand(2));
4490    unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4491    if (!Align)
4492      Align = 1; // @llvm.memcpy defines 0 and 1 to both mean no alignment.
4493    bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4494    DAG.setRoot(DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, false,
4495                              MachinePointerInfo(I.getArgOperand(0)),
4496                              MachinePointerInfo(I.getArgOperand(1))));
4497    return 0;
4498  }
4499  case Intrinsic::memset: {
4500    // Assert for address < 256 since we support only user defined address
4501    // spaces.
4502    assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4503           < 256 &&
4504           "Unknown address space");
4505    SDValue Op1 = getValue(I.getArgOperand(0));
4506    SDValue Op2 = getValue(I.getArgOperand(1));
4507    SDValue Op3 = getValue(I.getArgOperand(2));
4508    unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4509    if (!Align)
4510      Align = 1; // @llvm.memset defines 0 and 1 to both mean no alignment.
4511    bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4512    DAG.setRoot(DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
4513                              MachinePointerInfo(I.getArgOperand(0))));
4514    return 0;
4515  }
4516  case Intrinsic::memmove: {
4517    // Assert for address < 256 since we support only user defined address
4518    // spaces.
4519    assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4520           < 256 &&
4521           cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace()
4522           < 256 &&
4523           "Unknown address space");
4524    SDValue Op1 = getValue(I.getArgOperand(0));
4525    SDValue Op2 = getValue(I.getArgOperand(1));
4526    SDValue Op3 = getValue(I.getArgOperand(2));
4527    unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4528    if (!Align)
4529      Align = 1; // @llvm.memmove defines 0 and 1 to both mean no alignment.
4530    bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4531    DAG.setRoot(DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
4532                               MachinePointerInfo(I.getArgOperand(0)),
4533                               MachinePointerInfo(I.getArgOperand(1))));
4534    return 0;
4535  }
4536  case Intrinsic::dbg_declare: {
4537    const DbgDeclareInst &DI = cast<DbgDeclareInst>(I);
4538    MDNode *Variable = DI.getVariable();
4539    const Value *Address = DI.getAddress();
4540    DIVariable DIVar(Variable);
4541    assert((!DIVar || DIVar.isVariable()) &&
4542      "Variable in DbgDeclareInst should be either null or a DIVariable.");
4543    if (!Address || !DIVar) {
4544      DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4545      return 0;
4546    }
4547
4548    // Check if address has undef value.
4549    if (isa<UndefValue>(Address) ||
4550        (Address->use_empty() && !isa<Argument>(Address))) {
4551      DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4552      return 0;
4553    }
4554
4555    SDValue &N = NodeMap[Address];
4556    if (!N.getNode() && isa<Argument>(Address))
4557      // Check unused arguments map.
4558      N = UnusedArgNodeMap[Address];
4559    SDDbgValue *SDV;
4560    if (N.getNode()) {
4561      if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
4562        Address = BCI->getOperand(0);
4563      // Parameters are handled specially.
4564      bool isParameter =
4565        (DIVariable(Variable).getTag() == dwarf::DW_TAG_arg_variable ||
4566         isa<Argument>(Address));
4567
4568      const AllocaInst *AI = dyn_cast<AllocaInst>(Address);
4569
4570      if (isParameter && !AI) {
4571        FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
4572        if (FINode)
4573          // Byval parameter.  We have a frame index at this point.
4574          SDV = DAG.getDbgValue(Variable, FINode->getIndex(),
4575                                0, dl, SDNodeOrder);
4576        else {
4577          // Address is an argument, so try to emit its dbg value using
4578          // virtual register info from the FuncInfo.ValueMap.
4579          EmitFuncArgumentDbgValue(Address, Variable, 0, N);
4580          return 0;
4581        }
4582      } else if (AI)
4583        SDV = DAG.getDbgValue(Variable, N.getNode(), N.getResNo(),
4584                              0, dl, SDNodeOrder);
4585      else {
4586        // Can't do anything with other non-AI cases yet.
4587        DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4588        DEBUG(dbgs() << "non-AllocaInst issue for Address: \n\t");
4589        DEBUG(Address->dump());
4590        return 0;
4591      }
4592      DAG.AddDbgValue(SDV, N.getNode(), isParameter);
4593    } else {
4594      // If Address is an argument then try to emit its dbg value using
4595      // virtual register info from the FuncInfo.ValueMap.
4596      if (!EmitFuncArgumentDbgValue(Address, Variable, 0, N)) {
4597        // If variable is pinned by a alloca in dominating bb then
4598        // use StaticAllocaMap.
4599        if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) {
4600          if (AI->getParent() != DI.getParent()) {
4601            DenseMap<const AllocaInst*, int>::iterator SI =
4602              FuncInfo.StaticAllocaMap.find(AI);
4603            if (SI != FuncInfo.StaticAllocaMap.end()) {
4604              SDV = DAG.getDbgValue(Variable, SI->second,
4605                                    0, dl, SDNodeOrder);
4606              DAG.AddDbgValue(SDV, 0, false);
4607              return 0;
4608            }
4609          }
4610        }
4611        DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4612      }
4613    }
4614    return 0;
4615  }
4616  case Intrinsic::dbg_value: {
4617    const DbgValueInst &DI = cast<DbgValueInst>(I);
4618    DIVariable DIVar(DI.getVariable());
4619    assert((!DIVar || DIVar.isVariable()) &&
4620      "Variable in DbgValueInst should be either null or a DIVariable.");
4621    if (!DIVar)
4622      return 0;
4623
4624    MDNode *Variable = DI.getVariable();
4625    uint64_t Offset = DI.getOffset();
4626    const Value *V = DI.getValue();
4627    if (!V)
4628      return 0;
4629
4630    SDDbgValue *SDV;
4631    if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) {
4632      SDV = DAG.getDbgValue(Variable, V, Offset, dl, SDNodeOrder);
4633      DAG.AddDbgValue(SDV, 0, false);
4634    } else {
4635      // Do not use getValue() in here; we don't want to generate code at
4636      // this point if it hasn't been done yet.
4637      SDValue N = NodeMap[V];
4638      if (!N.getNode() && isa<Argument>(V))
4639        // Check unused arguments map.
4640        N = UnusedArgNodeMap[V];
4641      if (N.getNode()) {
4642        if (!EmitFuncArgumentDbgValue(V, Variable, Offset, N)) {
4643          SDV = DAG.getDbgValue(Variable, N.getNode(),
4644                                N.getResNo(), Offset, dl, SDNodeOrder);
4645          DAG.AddDbgValue(SDV, N.getNode(), false);
4646        }
4647      } else if (!V->use_empty() ) {
4648        // Do not call getValue(V) yet, as we don't want to generate code.
4649        // Remember it for later.
4650        DanglingDebugInfo DDI(&DI, dl, SDNodeOrder);
4651        DanglingDebugInfoMap[V] = DDI;
4652      } else {
4653        // We may expand this to cover more cases.  One case where we have no
4654        // data available is an unreferenced parameter.
4655        DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4656      }
4657    }
4658
4659    // Build a debug info table entry.
4660    if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V))
4661      V = BCI->getOperand(0);
4662    const AllocaInst *AI = dyn_cast<AllocaInst>(V);
4663    // Don't handle byval struct arguments or VLAs, for example.
4664    if (!AI) {
4665      DEBUG(dbgs() << "Dropping debug location info for:\n  " << DI << "\n");
4666      DEBUG(dbgs() << "  Last seen at:\n    " << *V << "\n");
4667      return 0;
4668    }
4669    DenseMap<const AllocaInst*, int>::iterator SI =
4670      FuncInfo.StaticAllocaMap.find(AI);
4671    if (SI == FuncInfo.StaticAllocaMap.end())
4672      return 0; // VLAs.
4673    int FI = SI->second;
4674
4675    MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4676    if (!DI.getDebugLoc().isUnknown() && MMI.hasDebugInfo())
4677      MMI.setVariableDbgInfo(Variable, FI, DI.getDebugLoc());
4678    return 0;
4679  }
4680
4681  case Intrinsic::eh_typeid_for: {
4682    // Find the type id for the given typeinfo.
4683    GlobalVariable *GV = ExtractTypeInfo(I.getArgOperand(0));
4684    unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV);
4685    Res = DAG.getConstant(TypeID, MVT::i32);
4686    setValue(&I, Res);
4687    return 0;
4688  }
4689
4690  case Intrinsic::eh_return_i32:
4691  case Intrinsic::eh_return_i64:
4692    DAG.getMachineFunction().getMMI().setCallsEHReturn(true);
4693    DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl,
4694                            MVT::Other,
4695                            getControlRoot(),
4696                            getValue(I.getArgOperand(0)),
4697                            getValue(I.getArgOperand(1))));
4698    return 0;
4699  case Intrinsic::eh_unwind_init:
4700    DAG.getMachineFunction().getMMI().setCallsUnwindInit(true);
4701    return 0;
4702  case Intrinsic::eh_dwarf_cfa: {
4703    SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), sdl,
4704                                        TLI->getPointerTy());
4705    SDValue Offset = DAG.getNode(ISD::ADD, sdl,
4706                                 TLI->getPointerTy(),
4707                                 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, sdl,
4708                                             TLI->getPointerTy()),
4709                                 CfaArg);
4710    SDValue FA = DAG.getNode(ISD::FRAMEADDR, sdl,
4711                             TLI->getPointerTy(),
4712                             DAG.getConstant(0, TLI->getPointerTy()));
4713    setValue(&I, DAG.getNode(ISD::ADD, sdl, TLI->getPointerTy(),
4714                             FA, Offset));
4715    return 0;
4716  }
4717  case Intrinsic::eh_sjlj_callsite: {
4718    MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4719    ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0));
4720    assert(CI && "Non-constant call site value in eh.sjlj.callsite!");
4721    assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
4722
4723    MMI.setCurrentCallSite(CI->getZExtValue());
4724    return 0;
4725  }
4726  case Intrinsic::eh_sjlj_functioncontext: {
4727    // Get and store the index of the function context.
4728    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
4729    AllocaInst *FnCtx =
4730      cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts());
4731    int FI = FuncInfo.StaticAllocaMap[FnCtx];
4732    MFI->setFunctionContextIndex(FI);
4733    return 0;
4734  }
4735  case Intrinsic::eh_sjlj_setjmp: {
4736    SDValue Ops[2];
4737    Ops[0] = getRoot();
4738    Ops[1] = getValue(I.getArgOperand(0));
4739    SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl,
4740                             DAG.getVTList(MVT::i32, MVT::Other),
4741                             Ops, 2);
4742    setValue(&I, Op.getValue(0));
4743    DAG.setRoot(Op.getValue(1));
4744    return 0;
4745  }
4746  case Intrinsic::eh_sjlj_longjmp: {
4747    DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other,
4748                            getRoot(), getValue(I.getArgOperand(0))));
4749    return 0;
4750  }
4751
4752  case Intrinsic::x86_mmx_pslli_w:
4753  case Intrinsic::x86_mmx_pslli_d:
4754  case Intrinsic::x86_mmx_pslli_q:
4755  case Intrinsic::x86_mmx_psrli_w:
4756  case Intrinsic::x86_mmx_psrli_d:
4757  case Intrinsic::x86_mmx_psrli_q:
4758  case Intrinsic::x86_mmx_psrai_w:
4759  case Intrinsic::x86_mmx_psrai_d: {
4760    SDValue ShAmt = getValue(I.getArgOperand(1));
4761    if (isa<ConstantSDNode>(ShAmt)) {
4762      visitTargetIntrinsic(I, Intrinsic);
4763      return 0;
4764    }
4765    unsigned NewIntrinsic = 0;
4766    EVT ShAmtVT = MVT::v2i32;
4767    switch (Intrinsic) {
4768    case Intrinsic::x86_mmx_pslli_w:
4769      NewIntrinsic = Intrinsic::x86_mmx_psll_w;
4770      break;
4771    case Intrinsic::x86_mmx_pslli_d:
4772      NewIntrinsic = Intrinsic::x86_mmx_psll_d;
4773      break;
4774    case Intrinsic::x86_mmx_pslli_q:
4775      NewIntrinsic = Intrinsic::x86_mmx_psll_q;
4776      break;
4777    case Intrinsic::x86_mmx_psrli_w:
4778      NewIntrinsic = Intrinsic::x86_mmx_psrl_w;
4779      break;
4780    case Intrinsic::x86_mmx_psrli_d:
4781      NewIntrinsic = Intrinsic::x86_mmx_psrl_d;
4782      break;
4783    case Intrinsic::x86_mmx_psrli_q:
4784      NewIntrinsic = Intrinsic::x86_mmx_psrl_q;
4785      break;
4786    case Intrinsic::x86_mmx_psrai_w:
4787      NewIntrinsic = Intrinsic::x86_mmx_psra_w;
4788      break;
4789    case Intrinsic::x86_mmx_psrai_d:
4790      NewIntrinsic = Intrinsic::x86_mmx_psra_d;
4791      break;
4792    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
4793    }
4794
4795    // The vector shift intrinsics with scalars uses 32b shift amounts but
4796    // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
4797    // to be zero.
4798    // We must do this early because v2i32 is not a legal type.
4799    SDValue ShOps[2];
4800    ShOps[0] = ShAmt;
4801    ShOps[1] = DAG.getConstant(0, MVT::i32);
4802    ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, sdl, ShAmtVT, &ShOps[0], 2);
4803    EVT DestVT = TLI->getValueType(I.getType());
4804    ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt);
4805    Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT,
4806                       DAG.getConstant(NewIntrinsic, MVT::i32),
4807                       getValue(I.getArgOperand(0)), ShAmt);
4808    setValue(&I, Res);
4809    return 0;
4810  }
4811  case Intrinsic::x86_avx_vinsertf128_pd_256:
4812  case Intrinsic::x86_avx_vinsertf128_ps_256:
4813  case Intrinsic::x86_avx_vinsertf128_si_256:
4814  case Intrinsic::x86_avx2_vinserti128: {
4815    EVT DestVT = TLI->getValueType(I.getType());
4816    EVT ElVT = TLI->getValueType(I.getArgOperand(1)->getType());
4817    uint64_t Idx = (cast<ConstantInt>(I.getArgOperand(2))->getZExtValue() & 1) *
4818                   ElVT.getVectorNumElements();
4819    Res = DAG.getNode(ISD::INSERT_SUBVECTOR, sdl, DestVT,
4820                      getValue(I.getArgOperand(0)),
4821                      getValue(I.getArgOperand(1)),
4822                      DAG.getIntPtrConstant(Idx));
4823    setValue(&I, Res);
4824    return 0;
4825  }
4826  case Intrinsic::x86_avx_vextractf128_pd_256:
4827  case Intrinsic::x86_avx_vextractf128_ps_256:
4828  case Intrinsic::x86_avx_vextractf128_si_256:
4829  case Intrinsic::x86_avx2_vextracti128: {
4830    EVT DestVT = TLI->getValueType(I.getType());
4831    uint64_t Idx = (cast<ConstantInt>(I.getArgOperand(1))->getZExtValue() & 1) *
4832                   DestVT.getVectorNumElements();
4833    Res = DAG.getNode(ISD::EXTRACT_SUBVECTOR, sdl, DestVT,
4834                      getValue(I.getArgOperand(0)),
4835                      DAG.getIntPtrConstant(Idx));
4836    setValue(&I, Res);
4837    return 0;
4838  }
4839  case Intrinsic::convertff:
4840  case Intrinsic::convertfsi:
4841  case Intrinsic::convertfui:
4842  case Intrinsic::convertsif:
4843  case Intrinsic::convertuif:
4844  case Intrinsic::convertss:
4845  case Intrinsic::convertsu:
4846  case Intrinsic::convertus:
4847  case Intrinsic::convertuu: {
4848    ISD::CvtCode Code = ISD::CVT_INVALID;
4849    switch (Intrinsic) {
4850    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
4851    case Intrinsic::convertff:  Code = ISD::CVT_FF; break;
4852    case Intrinsic::convertfsi: Code = ISD::CVT_FS; break;
4853    case Intrinsic::convertfui: Code = ISD::CVT_FU; break;
4854    case Intrinsic::convertsif: Code = ISD::CVT_SF; break;
4855    case Intrinsic::convertuif: Code = ISD::CVT_UF; break;
4856    case Intrinsic::convertss:  Code = ISD::CVT_SS; break;
4857    case Intrinsic::convertsu:  Code = ISD::CVT_SU; break;
4858    case Intrinsic::convertus:  Code = ISD::CVT_US; break;
4859    case Intrinsic::convertuu:  Code = ISD::CVT_UU; break;
4860    }
4861    EVT DestVT = TLI->getValueType(I.getType());
4862    const Value *Op1 = I.getArgOperand(0);
4863    Res = DAG.getConvertRndSat(DestVT, sdl, getValue(Op1),
4864                               DAG.getValueType(DestVT),
4865                               DAG.getValueType(getValue(Op1).getValueType()),
4866                               getValue(I.getArgOperand(1)),
4867                               getValue(I.getArgOperand(2)),
4868                               Code);
4869    setValue(&I, Res);
4870    return 0;
4871  }
4872  case Intrinsic::powi:
4873    setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)),
4874                            getValue(I.getArgOperand(1)), DAG));
4875    return 0;
4876  case Intrinsic::log:
4877    setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, *TLI));
4878    return 0;
4879  case Intrinsic::log2:
4880    setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, *TLI));
4881    return 0;
4882  case Intrinsic::log10:
4883    setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, *TLI));
4884    return 0;
4885  case Intrinsic::exp:
4886    setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, *TLI));
4887    return 0;
4888  case Intrinsic::exp2:
4889    setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, *TLI));
4890    return 0;
4891  case Intrinsic::pow:
4892    setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)),
4893                           getValue(I.getArgOperand(1)), DAG, *TLI));
4894    return 0;
4895  case Intrinsic::sqrt:
4896  case Intrinsic::fabs:
4897  case Intrinsic::sin:
4898  case Intrinsic::cos:
4899  case Intrinsic::floor:
4900  case Intrinsic::ceil:
4901  case Intrinsic::trunc:
4902  case Intrinsic::rint:
4903  case Intrinsic::nearbyint: {
4904    unsigned Opcode;
4905    switch (Intrinsic) {
4906    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
4907    case Intrinsic::sqrt:      Opcode = ISD::FSQRT;      break;
4908    case Intrinsic::fabs:      Opcode = ISD::FABS;       break;
4909    case Intrinsic::sin:       Opcode = ISD::FSIN;       break;
4910    case Intrinsic::cos:       Opcode = ISD::FCOS;       break;
4911    case Intrinsic::floor:     Opcode = ISD::FFLOOR;     break;
4912    case Intrinsic::ceil:      Opcode = ISD::FCEIL;      break;
4913    case Intrinsic::trunc:     Opcode = ISD::FTRUNC;     break;
4914    case Intrinsic::rint:      Opcode = ISD::FRINT;      break;
4915    case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break;
4916    }
4917
4918    setValue(&I, DAG.getNode(Opcode, sdl,
4919                             getValue(I.getArgOperand(0)).getValueType(),
4920                             getValue(I.getArgOperand(0))));
4921    return 0;
4922  }
4923  case Intrinsic::fma:
4924    setValue(&I, DAG.getNode(ISD::FMA, sdl,
4925                             getValue(I.getArgOperand(0)).getValueType(),
4926                             getValue(I.getArgOperand(0)),
4927                             getValue(I.getArgOperand(1)),
4928                             getValue(I.getArgOperand(2))));
4929    return 0;
4930  case Intrinsic::fmuladd: {
4931    EVT VT = TLI->getValueType(I.getType());
4932    if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
4933        TLI->isFMAFasterThanMulAndAdd(VT)){
4934      setValue(&I, DAG.getNode(ISD::FMA, sdl,
4935                               getValue(I.getArgOperand(0)).getValueType(),
4936                               getValue(I.getArgOperand(0)),
4937                               getValue(I.getArgOperand(1)),
4938                               getValue(I.getArgOperand(2))));
4939    } else {
4940      SDValue Mul = DAG.getNode(ISD::FMUL, sdl,
4941                                getValue(I.getArgOperand(0)).getValueType(),
4942                                getValue(I.getArgOperand(0)),
4943                                getValue(I.getArgOperand(1)));
4944      SDValue Add = DAG.getNode(ISD::FADD, sdl,
4945                                getValue(I.getArgOperand(0)).getValueType(),
4946                                Mul,
4947                                getValue(I.getArgOperand(2)));
4948      setValue(&I, Add);
4949    }
4950    return 0;
4951  }
4952  case Intrinsic::convert_to_fp16:
4953    setValue(&I, DAG.getNode(ISD::FP32_TO_FP16, sdl,
4954                             MVT::i16, getValue(I.getArgOperand(0))));
4955    return 0;
4956  case Intrinsic::convert_from_fp16:
4957    setValue(&I, DAG.getNode(ISD::FP16_TO_FP32, sdl,
4958                             MVT::f32, getValue(I.getArgOperand(0))));
4959    return 0;
4960  case Intrinsic::pcmarker: {
4961    SDValue Tmp = getValue(I.getArgOperand(0));
4962    DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp));
4963    return 0;
4964  }
4965  case Intrinsic::readcyclecounter: {
4966    SDValue Op = getRoot();
4967    Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl,
4968                      DAG.getVTList(MVT::i64, MVT::Other),
4969                      &Op, 1);
4970    setValue(&I, Res);
4971    DAG.setRoot(Res.getValue(1));
4972    return 0;
4973  }
4974  case Intrinsic::bswap:
4975    setValue(&I, DAG.getNode(ISD::BSWAP, sdl,
4976                             getValue(I.getArgOperand(0)).getValueType(),
4977                             getValue(I.getArgOperand(0))));
4978    return 0;
4979  case Intrinsic::cttz: {
4980    SDValue Arg = getValue(I.getArgOperand(0));
4981    ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
4982    EVT Ty = Arg.getValueType();
4983    setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF,
4984                             sdl, Ty, Arg));
4985    return 0;
4986  }
4987  case Intrinsic::ctlz: {
4988    SDValue Arg = getValue(I.getArgOperand(0));
4989    ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
4990    EVT Ty = Arg.getValueType();
4991    setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF,
4992                             sdl, Ty, Arg));
4993    return 0;
4994  }
4995  case Intrinsic::ctpop: {
4996    SDValue Arg = getValue(I.getArgOperand(0));
4997    EVT Ty = Arg.getValueType();
4998    setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg));
4999    return 0;
5000  }
5001  case Intrinsic::stacksave: {
5002    SDValue Op = getRoot();
5003    Res = DAG.getNode(ISD::STACKSAVE, sdl,
5004                      DAG.getVTList(TLI->getPointerTy(), MVT::Other), &Op, 1);
5005    setValue(&I, Res);
5006    DAG.setRoot(Res.getValue(1));
5007    return 0;
5008  }
5009  case Intrinsic::stackrestore: {
5010    Res = getValue(I.getArgOperand(0));
5011    DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res));
5012    return 0;
5013  }
5014  case Intrinsic::stackprotector: {
5015    // Emit code into the DAG to store the stack guard onto the stack.
5016    MachineFunction &MF = DAG.getMachineFunction();
5017    MachineFrameInfo *MFI = MF.getFrameInfo();
5018    EVT PtrTy = TLI->getPointerTy();
5019
5020    SDValue Src = getValue(I.getArgOperand(0));   // The guard's value.
5021    AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
5022
5023    int FI = FuncInfo.StaticAllocaMap[Slot];
5024    MFI->setStackProtectorIndex(FI);
5025
5026    SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
5027
5028    // Store the stack protector onto the stack.
5029    Res = DAG.getStore(getRoot(), sdl, Src, FIN,
5030                       MachinePointerInfo::getFixedStack(FI),
5031                       true, false, 0);
5032    setValue(&I, Res);
5033    DAG.setRoot(Res);
5034    return 0;
5035  }
5036  case Intrinsic::objectsize: {
5037    // If we don't know by now, we're never going to know.
5038    ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1));
5039
5040    assert(CI && "Non-constant type in __builtin_object_size?");
5041
5042    SDValue Arg = getValue(I.getCalledValue());
5043    EVT Ty = Arg.getValueType();
5044
5045    if (CI->isZero())
5046      Res = DAG.getConstant(-1ULL, Ty);
5047    else
5048      Res = DAG.getConstant(0, Ty);
5049
5050    setValue(&I, Res);
5051    return 0;
5052  }
5053  case Intrinsic::annotation:
5054  case Intrinsic::ptr_annotation:
5055    // Drop the intrinsic, but forward the value
5056    setValue(&I, getValue(I.getOperand(0)));
5057    return 0;
5058  case Intrinsic::var_annotation:
5059    // Discard annotate attributes
5060    return 0;
5061
5062  case Intrinsic::init_trampoline: {
5063    const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
5064
5065    SDValue Ops[6];
5066    Ops[0] = getRoot();
5067    Ops[1] = getValue(I.getArgOperand(0));
5068    Ops[2] = getValue(I.getArgOperand(1));
5069    Ops[3] = getValue(I.getArgOperand(2));
5070    Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
5071    Ops[5] = DAG.getSrcValue(F);
5072
5073    Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops, 6);
5074
5075    DAG.setRoot(Res);
5076    return 0;
5077  }
5078  case Intrinsic::adjust_trampoline: {
5079    setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl,
5080                             TLI->getPointerTy(),
5081                             getValue(I.getArgOperand(0))));
5082    return 0;
5083  }
5084  case Intrinsic::gcroot:
5085    if (GFI) {
5086      const Value *Alloca = I.getArgOperand(0)->stripPointerCasts();
5087      const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
5088
5089      FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
5090      GFI->addStackRoot(FI->getIndex(), TypeMap);
5091    }
5092    return 0;
5093  case Intrinsic::gcread:
5094  case Intrinsic::gcwrite:
5095    llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
5096  case Intrinsic::flt_rounds:
5097    setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32));
5098    return 0;
5099
5100  case Intrinsic::expect: {
5101    // Just replace __builtin_expect(exp, c) with EXP.
5102    setValue(&I, getValue(I.getArgOperand(0)));
5103    return 0;
5104  }
5105
5106  case Intrinsic::debugtrap:
5107  case Intrinsic::trap: {
5108    StringRef TrapFuncName = TM.Options.getTrapFunctionName();
5109    if (TrapFuncName.empty()) {
5110      ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ?
5111        ISD::TRAP : ISD::DEBUGTRAP;
5112      DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot()));
5113      return 0;
5114    }
5115    TargetLowering::ArgListTy Args;
5116    TargetLowering::
5117    CallLoweringInfo CLI(getRoot(), I.getType(),
5118                 false, false, false, false, 0, CallingConv::C,
5119                 /*isTailCall=*/false,
5120                 /*doesNotRet=*/false, /*isReturnValueUsed=*/true,
5121                 DAG.getExternalSymbol(TrapFuncName.data(),
5122                                       TLI->getPointerTy()),
5123                 Args, DAG, sdl);
5124    std::pair<SDValue, SDValue> Result = TLI->LowerCallTo(CLI);
5125    DAG.setRoot(Result.second);
5126    return 0;
5127  }
5128
5129  case Intrinsic::uadd_with_overflow:
5130  case Intrinsic::sadd_with_overflow:
5131  case Intrinsic::usub_with_overflow:
5132  case Intrinsic::ssub_with_overflow:
5133  case Intrinsic::umul_with_overflow:
5134  case Intrinsic::smul_with_overflow: {
5135    ISD::NodeType Op;
5136    switch (Intrinsic) {
5137    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
5138    case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break;
5139    case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break;
5140    case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break;
5141    case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break;
5142    case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break;
5143    case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break;
5144    }
5145    SDValue Op1 = getValue(I.getArgOperand(0));
5146    SDValue Op2 = getValue(I.getArgOperand(1));
5147
5148    SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1);
5149    setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2));
5150    return 0;
5151  }
5152  case Intrinsic::prefetch: {
5153    SDValue Ops[5];
5154    unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
5155    Ops[0] = getRoot();
5156    Ops[1] = getValue(I.getArgOperand(0));
5157    Ops[2] = getValue(I.getArgOperand(1));
5158    Ops[3] = getValue(I.getArgOperand(2));
5159    Ops[4] = getValue(I.getArgOperand(3));
5160    DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl,
5161                                        DAG.getVTList(MVT::Other),
5162                                        &Ops[0], 5,
5163                                        EVT::getIntegerVT(*Context, 8),
5164                                        MachinePointerInfo(I.getArgOperand(0)),
5165                                        0, /* align */
5166                                        false, /* volatile */
5167                                        rw==0, /* read */
5168                                        rw==1)); /* write */
5169    return 0;
5170  }
5171  case Intrinsic::lifetime_start:
5172  case Intrinsic::lifetime_end: {
5173    bool IsStart = (Intrinsic == Intrinsic::lifetime_start);
5174    // Stack coloring is not enabled in O0, discard region information.
5175    if (TM.getOptLevel() == CodeGenOpt::None)
5176      return 0;
5177
5178    SmallVector<Value *, 4> Allocas;
5179    GetUnderlyingObjects(I.getArgOperand(1), Allocas, TD);
5180
5181    for (SmallVectorImpl<Value*>::iterator Object = Allocas.begin(),
5182           E = Allocas.end(); Object != E; ++Object) {
5183      AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object);
5184
5185      // Could not find an Alloca.
5186      if (!LifetimeObject)
5187        continue;
5188
5189      int FI = FuncInfo.StaticAllocaMap[LifetimeObject];
5190
5191      SDValue Ops[2];
5192      Ops[0] = getRoot();
5193      Ops[1] = DAG.getFrameIndex(FI, TLI->getPointerTy(), true);
5194      unsigned Opcode = (IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END);
5195
5196      Res = DAG.getNode(Opcode, sdl, MVT::Other, Ops, 2);
5197      DAG.setRoot(Res);
5198    }
5199    return 0;
5200  }
5201  case Intrinsic::invariant_start:
5202    // Discard region information.
5203    setValue(&I, DAG.getUNDEF(TLI->getPointerTy()));
5204    return 0;
5205  case Intrinsic::invariant_end:
5206    // Discard region information.
5207    return 0;
5208  case Intrinsic::donothing:
5209    // ignore
5210    return 0;
5211  }
5212}
5213
5214void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee,
5215                                      bool isTailCall,
5216                                      MachineBasicBlock *LandingPad) {
5217  PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
5218  FunctionType *FTy = cast<FunctionType>(PT->getElementType());
5219  Type *RetTy = FTy->getReturnType();
5220  MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
5221  MCSymbol *BeginLabel = 0;
5222
5223  TargetLowering::ArgListTy Args;
5224  TargetLowering::ArgListEntry Entry;
5225  Args.reserve(CS.arg_size());
5226
5227  // Check whether the function can return without sret-demotion.
5228  SmallVector<ISD::OutputArg, 4> Outs;
5229  const TargetLowering *TLI = TM.getTargetLowering();
5230  GetReturnInfo(RetTy, CS.getAttributes(), Outs, *TLI);
5231
5232  bool CanLowerReturn = TLI->CanLowerReturn(CS.getCallingConv(),
5233                                            DAG.getMachineFunction(),
5234                                            FTy->isVarArg(), Outs,
5235                                            FTy->getContext());
5236
5237  SDValue DemoteStackSlot;
5238  int DemoteStackIdx = -100;
5239
5240  if (!CanLowerReturn) {
5241    uint64_t TySize = TLI->getDataLayout()->getTypeAllocSize(
5242                      FTy->getReturnType());
5243    unsigned Align  = TLI->getDataLayout()->getPrefTypeAlignment(
5244                      FTy->getReturnType());
5245    MachineFunction &MF = DAG.getMachineFunction();
5246    DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
5247    Type *StackSlotPtrType = PointerType::getUnqual(FTy->getReturnType());
5248
5249    DemoteStackSlot = DAG.getFrameIndex(DemoteStackIdx, TLI->getPointerTy());
5250    Entry.Node = DemoteStackSlot;
5251    Entry.Ty = StackSlotPtrType;
5252    Entry.isSExt = false;
5253    Entry.isZExt = false;
5254    Entry.isInReg = false;
5255    Entry.isSRet = true;
5256    Entry.isNest = false;
5257    Entry.isByVal = false;
5258    Entry.isReturned = false;
5259    Entry.Alignment = Align;
5260    Args.push_back(Entry);
5261    RetTy = Type::getVoidTy(FTy->getContext());
5262  }
5263
5264  for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
5265       i != e; ++i) {
5266    const Value *V = *i;
5267
5268    // Skip empty types
5269    if (V->getType()->isEmptyTy())
5270      continue;
5271
5272    SDValue ArgNode = getValue(V);
5273    Entry.Node = ArgNode; Entry.Ty = V->getType();
5274
5275    unsigned attrInd = i - CS.arg_begin() + 1;
5276    Entry.isSExt     = CS.paramHasAttr(attrInd, Attribute::SExt);
5277    Entry.isZExt     = CS.paramHasAttr(attrInd, Attribute::ZExt);
5278    Entry.isInReg    = CS.paramHasAttr(attrInd, Attribute::InReg);
5279    Entry.isSRet     = CS.paramHasAttr(attrInd, Attribute::StructRet);
5280    Entry.isNest     = CS.paramHasAttr(attrInd, Attribute::Nest);
5281    Entry.isByVal    = CS.paramHasAttr(attrInd, Attribute::ByVal);
5282    Entry.isReturned = CS.paramHasAttr(attrInd, Attribute::Returned);
5283    Entry.Alignment  = CS.getParamAlignment(attrInd);
5284    Args.push_back(Entry);
5285  }
5286
5287  if (LandingPad) {
5288    // Insert a label before the invoke call to mark the try range.  This can be
5289    // used to detect deletion of the invoke via the MachineModuleInfo.
5290    BeginLabel = MMI.getContext().CreateTempSymbol();
5291
5292    // For SjLj, keep track of which landing pads go with which invokes
5293    // so as to maintain the ordering of pads in the LSDA.
5294    unsigned CallSiteIndex = MMI.getCurrentCallSite();
5295    if (CallSiteIndex) {
5296      MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
5297      LPadToCallSiteMap[LandingPad].push_back(CallSiteIndex);
5298
5299      // Now that the call site is handled, stop tracking it.
5300      MMI.setCurrentCallSite(0);
5301    }
5302
5303    // Both PendingLoads and PendingExports must be flushed here;
5304    // this call might not return.
5305    (void)getRoot();
5306    DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel));
5307  }
5308
5309  // Check if target-independent constraints permit a tail call here.
5310  // Target-dependent constraints are checked within TLI->LowerCallTo.
5311  if (isTailCall && !isInTailCallPosition(CS, *TLI))
5312    isTailCall = false;
5313
5314  TargetLowering::
5315  CallLoweringInfo CLI(getRoot(), RetTy, FTy, isTailCall, Callee, Args, DAG,
5316                       getCurSDLoc(), CS);
5317  std::pair<SDValue,SDValue> Result = TLI->LowerCallTo(CLI);
5318  assert((isTailCall || Result.second.getNode()) &&
5319         "Non-null chain expected with non-tail call!");
5320  assert((Result.second.getNode() || !Result.first.getNode()) &&
5321         "Null value expected with tail call!");
5322  if (Result.first.getNode()) {
5323    setValue(CS.getInstruction(), Result.first);
5324  } else if (!CanLowerReturn && Result.second.getNode()) {
5325    // The instruction result is the result of loading from the
5326    // hidden sret parameter.
5327    SmallVector<EVT, 1> PVTs;
5328    Type *PtrRetTy = PointerType::getUnqual(FTy->getReturnType());
5329
5330    ComputeValueVTs(*TLI, PtrRetTy, PVTs);
5331    assert(PVTs.size() == 1 && "Pointers should fit in one register");
5332    EVT PtrVT = PVTs[0];
5333
5334    SmallVector<EVT, 4> RetTys;
5335    SmallVector<uint64_t, 4> Offsets;
5336    RetTy = FTy->getReturnType();
5337    ComputeValueVTs(*TLI, RetTy, RetTys, &Offsets);
5338
5339    unsigned NumValues = RetTys.size();
5340    SmallVector<SDValue, 4> Values(NumValues);
5341    SmallVector<SDValue, 4> Chains(NumValues);
5342
5343    for (unsigned i = 0; i < NumValues; ++i) {
5344      SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(), PtrVT,
5345                                DemoteStackSlot,
5346                                DAG.getConstant(Offsets[i], PtrVT));
5347      SDValue L = DAG.getLoad(RetTys[i], getCurSDLoc(), Result.second, Add,
5348                  MachinePointerInfo::getFixedStack(DemoteStackIdx, Offsets[i]),
5349                              false, false, false, 1);
5350      Values[i] = L;
5351      Chains[i] = L.getValue(1);
5352    }
5353
5354    SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
5355                                MVT::Other, &Chains[0], NumValues);
5356    PendingLoads.push_back(Chain);
5357
5358    setValue(CS.getInstruction(),
5359             DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
5360                         DAG.getVTList(&RetTys[0], RetTys.size()),
5361                         &Values[0], Values.size()));
5362  }
5363
5364  if (!Result.second.getNode()) {
5365    // As a special case, a null chain means that a tail call has been emitted and
5366    // the DAG root is already updated.
5367    HasTailCall = true;
5368  } else {
5369    DAG.setRoot(Result.second);
5370  }
5371
5372  if (LandingPad) {
5373    // Insert a label at the end of the invoke call to mark the try range.  This
5374    // can be used to detect deletion of the invoke via the MachineModuleInfo.
5375    MCSymbol *EndLabel = MMI.getContext().CreateTempSymbol();
5376    DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel));
5377
5378    // Inform MachineModuleInfo of range.
5379    MMI.addInvoke(LandingPad, BeginLabel, EndLabel);
5380  }
5381}
5382
5383/// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the
5384/// value is equal or not-equal to zero.
5385static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) {
5386  for (Value::const_use_iterator UI = V->use_begin(), E = V->use_end();
5387       UI != E; ++UI) {
5388    if (const ICmpInst *IC = dyn_cast<ICmpInst>(*UI))
5389      if (IC->isEquality())
5390        if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
5391          if (C->isNullValue())
5392            continue;
5393    // Unknown instruction.
5394    return false;
5395  }
5396  return true;
5397}
5398
5399static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
5400                             Type *LoadTy,
5401                             SelectionDAGBuilder &Builder) {
5402
5403  // Check to see if this load can be trivially constant folded, e.g. if the
5404  // input is from a string literal.
5405  if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
5406    // Cast pointer to the type we really want to load.
5407    LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
5408                                         PointerType::getUnqual(LoadTy));
5409
5410    if (const Constant *LoadCst =
5411          ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput),
5412                                       Builder.TD))
5413      return Builder.getValue(LoadCst);
5414  }
5415
5416  // Otherwise, we have to emit the load.  If the pointer is to unfoldable but
5417  // still constant memory, the input chain can be the entry node.
5418  SDValue Root;
5419  bool ConstantMemory = false;
5420
5421  // Do not serialize (non-volatile) loads of constant memory with anything.
5422  if (Builder.AA->pointsToConstantMemory(PtrVal)) {
5423    Root = Builder.DAG.getEntryNode();
5424    ConstantMemory = true;
5425  } else {
5426    // Do not serialize non-volatile loads against each other.
5427    Root = Builder.DAG.getRoot();
5428  }
5429
5430  SDValue Ptr = Builder.getValue(PtrVal);
5431  SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root,
5432                                        Ptr, MachinePointerInfo(PtrVal),
5433                                        false /*volatile*/,
5434                                        false /*nontemporal*/,
5435                                        false /*isinvariant*/, 1 /* align=1 */);
5436
5437  if (!ConstantMemory)
5438    Builder.PendingLoads.push_back(LoadVal.getValue(1));
5439  return LoadVal;
5440}
5441
5442
5443/// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form.
5444/// If so, return true and lower it, otherwise return false and it will be
5445/// lowered like a normal call.
5446bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) {
5447  // Verify that the prototype makes sense.  int memcmp(void*,void*,size_t)
5448  if (I.getNumArgOperands() != 3)
5449    return false;
5450
5451  const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
5452  if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() ||
5453      !I.getArgOperand(2)->getType()->isIntegerTy() ||
5454      !I.getType()->isIntegerTy())
5455    return false;
5456
5457  const ConstantInt *Size = dyn_cast<ConstantInt>(I.getArgOperand(2));
5458
5459  // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0
5460  // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0
5461  if (Size && IsOnlyUsedInZeroEqualityComparison(&I)) {
5462    bool ActuallyDoIt = true;
5463    MVT LoadVT;
5464    Type *LoadTy;
5465    switch (Size->getZExtValue()) {
5466    default:
5467      LoadVT = MVT::Other;
5468      LoadTy = 0;
5469      ActuallyDoIt = false;
5470      break;
5471    case 2:
5472      LoadVT = MVT::i16;
5473      LoadTy = Type::getInt16Ty(Size->getContext());
5474      break;
5475    case 4:
5476      LoadVT = MVT::i32;
5477      LoadTy = Type::getInt32Ty(Size->getContext());
5478      break;
5479    case 8:
5480      LoadVT = MVT::i64;
5481      LoadTy = Type::getInt64Ty(Size->getContext());
5482      break;
5483        /*
5484    case 16:
5485      LoadVT = MVT::v4i32;
5486      LoadTy = Type::getInt32Ty(Size->getContext());
5487      LoadTy = VectorType::get(LoadTy, 4);
5488      break;
5489         */
5490    }
5491
5492    // This turns into unaligned loads.  We only do this if the target natively
5493    // supports the MVT we'll be loading or if it is small enough (<= 4) that
5494    // we'll only produce a small number of byte loads.
5495
5496    // Require that we can find a legal MVT, and only do this if the target
5497    // supports unaligned loads of that type.  Expanding into byte loads would
5498    // bloat the code.
5499    const TargetLowering *TLI = TM.getTargetLowering();
5500    if (ActuallyDoIt && Size->getZExtValue() > 4) {
5501      // TODO: Handle 5 byte compare as 4-byte + 1 byte.
5502      // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
5503      if (!TLI->isTypeLegal(LoadVT) ||!TLI->allowsUnalignedMemoryAccesses(LoadVT))
5504        ActuallyDoIt = false;
5505    }
5506
5507    if (ActuallyDoIt) {
5508      SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this);
5509      SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this);
5510
5511      SDValue Res = DAG.getSetCC(getCurSDLoc(), MVT::i1, LHSVal, RHSVal,
5512                                 ISD::SETNE);
5513      EVT CallVT = TLI->getValueType(I.getType(), true);
5514      setValue(&I, DAG.getZExtOrTrunc(Res, getCurSDLoc(), CallVT));
5515      return true;
5516    }
5517  }
5518
5519
5520  return false;
5521}
5522
5523/// visitUnaryFloatCall - If a call instruction is a unary floating-point
5524/// operation (as expected), translate it to an SDNode with the specified opcode
5525/// and return true.
5526bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I,
5527                                              unsigned Opcode) {
5528  // Sanity check that it really is a unary floating-point call.
5529  if (I.getNumArgOperands() != 1 ||
5530      !I.getArgOperand(0)->getType()->isFloatingPointTy() ||
5531      I.getType() != I.getArgOperand(0)->getType() ||
5532      !I.onlyReadsMemory())
5533    return false;
5534
5535  SDValue Tmp = getValue(I.getArgOperand(0));
5536  setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp));
5537  return true;
5538}
5539
5540void SelectionDAGBuilder::visitCall(const CallInst &I) {
5541  // Handle inline assembly differently.
5542  if (isa<InlineAsm>(I.getCalledValue())) {
5543    visitInlineAsm(&I);
5544    return;
5545  }
5546
5547  MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
5548  ComputeUsesVAFloatArgument(I, &MMI);
5549
5550  const char *RenameFn = 0;
5551  if (Function *F = I.getCalledFunction()) {
5552    if (F->isDeclaration()) {
5553      if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) {
5554        if (unsigned IID = II->getIntrinsicID(F)) {
5555          RenameFn = visitIntrinsicCall(I, IID);
5556          if (!RenameFn)
5557            return;
5558        }
5559      }
5560      if (unsigned IID = F->getIntrinsicID()) {
5561        RenameFn = visitIntrinsicCall(I, IID);
5562        if (!RenameFn)
5563          return;
5564      }
5565    }
5566
5567    // Check for well-known libc/libm calls.  If the function is internal, it
5568    // can't be a library call.
5569    LibFunc::Func Func;
5570    if (!F->hasLocalLinkage() && F->hasName() &&
5571        LibInfo->getLibFunc(F->getName(), Func) &&
5572        LibInfo->hasOptimizedCodeGen(Func)) {
5573      switch (Func) {
5574      default: break;
5575      case LibFunc::copysign:
5576      case LibFunc::copysignf:
5577      case LibFunc::copysignl:
5578        if (I.getNumArgOperands() == 2 &&   // Basic sanity checks.
5579            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5580            I.getType() == I.getArgOperand(0)->getType() &&
5581            I.getType() == I.getArgOperand(1)->getType() &&
5582            I.onlyReadsMemory()) {
5583          SDValue LHS = getValue(I.getArgOperand(0));
5584          SDValue RHS = getValue(I.getArgOperand(1));
5585          setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(),
5586                                   LHS.getValueType(), LHS, RHS));
5587          return;
5588        }
5589        break;
5590      case LibFunc::fabs:
5591      case LibFunc::fabsf:
5592      case LibFunc::fabsl:
5593        if (visitUnaryFloatCall(I, ISD::FABS))
5594          return;
5595        break;
5596      case LibFunc::sin:
5597      case LibFunc::sinf:
5598      case LibFunc::sinl:
5599        if (visitUnaryFloatCall(I, ISD::FSIN))
5600          return;
5601        break;
5602      case LibFunc::cos:
5603      case LibFunc::cosf:
5604      case LibFunc::cosl:
5605        if (visitUnaryFloatCall(I, ISD::FCOS))
5606          return;
5607        break;
5608      case LibFunc::sqrt:
5609      case LibFunc::sqrtf:
5610      case LibFunc::sqrtl:
5611      case LibFunc::sqrt_finite:
5612      case LibFunc::sqrtf_finite:
5613      case LibFunc::sqrtl_finite:
5614        if (visitUnaryFloatCall(I, ISD::FSQRT))
5615          return;
5616        break;
5617      case LibFunc::floor:
5618      case LibFunc::floorf:
5619      case LibFunc::floorl:
5620        if (visitUnaryFloatCall(I, ISD::FFLOOR))
5621          return;
5622        break;
5623      case LibFunc::nearbyint:
5624      case LibFunc::nearbyintf:
5625      case LibFunc::nearbyintl:
5626        if (visitUnaryFloatCall(I, ISD::FNEARBYINT))
5627          return;
5628        break;
5629      case LibFunc::ceil:
5630      case LibFunc::ceilf:
5631      case LibFunc::ceill:
5632        if (visitUnaryFloatCall(I, ISD::FCEIL))
5633          return;
5634        break;
5635      case LibFunc::rint:
5636      case LibFunc::rintf:
5637      case LibFunc::rintl:
5638        if (visitUnaryFloatCall(I, ISD::FRINT))
5639          return;
5640        break;
5641      case LibFunc::trunc:
5642      case LibFunc::truncf:
5643      case LibFunc::truncl:
5644        if (visitUnaryFloatCall(I, ISD::FTRUNC))
5645          return;
5646        break;
5647      case LibFunc::log2:
5648      case LibFunc::log2f:
5649      case LibFunc::log2l:
5650        if (visitUnaryFloatCall(I, ISD::FLOG2))
5651          return;
5652        break;
5653      case LibFunc::exp2:
5654      case LibFunc::exp2f:
5655      case LibFunc::exp2l:
5656        if (visitUnaryFloatCall(I, ISD::FEXP2))
5657          return;
5658        break;
5659      case LibFunc::memcmp:
5660        if (visitMemCmpCall(I))
5661          return;
5662        break;
5663      }
5664    }
5665  }
5666
5667  SDValue Callee;
5668  if (!RenameFn)
5669    Callee = getValue(I.getCalledValue());
5670  else
5671    Callee = DAG.getExternalSymbol(RenameFn,
5672                                   TM.getTargetLowering()->getPointerTy());
5673
5674  // Check if we can potentially perform a tail call. More detailed checking is
5675  // be done within LowerCallTo, after more information about the call is known.
5676  LowerCallTo(&I, Callee, I.isTailCall());
5677}
5678
5679namespace {
5680
5681/// AsmOperandInfo - This contains information for each constraint that we are
5682/// lowering.
5683class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
5684public:
5685  /// CallOperand - If this is the result output operand or a clobber
5686  /// this is null, otherwise it is the incoming operand to the CallInst.
5687  /// This gets modified as the asm is processed.
5688  SDValue CallOperand;
5689
5690  /// AssignedRegs - If this is a register or register class operand, this
5691  /// contains the set of register corresponding to the operand.
5692  RegsForValue AssignedRegs;
5693
5694  explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
5695    : TargetLowering::AsmOperandInfo(info), CallOperand(0,0) {
5696  }
5697
5698  /// getCallOperandValEVT - Return the EVT of the Value* that this operand
5699  /// corresponds to.  If there is no Value* for this operand, it returns
5700  /// MVT::Other.
5701  EVT getCallOperandValEVT(LLVMContext &Context,
5702                           const TargetLowering &TLI,
5703                           const DataLayout *TD) const {
5704    if (CallOperandVal == 0) return MVT::Other;
5705
5706    if (isa<BasicBlock>(CallOperandVal))
5707      return TLI.getPointerTy();
5708
5709    llvm::Type *OpTy = CallOperandVal->getType();
5710
5711    // FIXME: code duplicated from TargetLowering::ParseConstraints().
5712    // If this is an indirect operand, the operand is a pointer to the
5713    // accessed type.
5714    if (isIndirect) {
5715      llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
5716      if (!PtrTy)
5717        report_fatal_error("Indirect operand for inline asm not a pointer!");
5718      OpTy = PtrTy->getElementType();
5719    }
5720
5721    // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
5722    if (StructType *STy = dyn_cast<StructType>(OpTy))
5723      if (STy->getNumElements() == 1)
5724        OpTy = STy->getElementType(0);
5725
5726    // If OpTy is not a single value, it may be a struct/union that we
5727    // can tile with integers.
5728    if (!OpTy->isSingleValueType() && OpTy->isSized()) {
5729      unsigned BitSize = TD->getTypeSizeInBits(OpTy);
5730      switch (BitSize) {
5731      default: break;
5732      case 1:
5733      case 8:
5734      case 16:
5735      case 32:
5736      case 64:
5737      case 128:
5738        OpTy = IntegerType::get(Context, BitSize);
5739        break;
5740      }
5741    }
5742
5743    return TLI.getValueType(OpTy, true);
5744  }
5745};
5746
5747typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector;
5748
5749} // end anonymous namespace
5750
5751/// GetRegistersForValue - Assign registers (virtual or physical) for the
5752/// specified operand.  We prefer to assign virtual registers, to allow the
5753/// register allocator to handle the assignment process.  However, if the asm
5754/// uses features that we can't model on machineinstrs, we have SDISel do the
5755/// allocation.  This produces generally horrible, but correct, code.
5756///
5757///   OpInfo describes the operand.
5758///
5759static void GetRegistersForValue(SelectionDAG &DAG,
5760                                 const TargetLowering &TLI,
5761                                 SDLoc DL,
5762                                 SDISelAsmOperandInfo &OpInfo) {
5763  LLVMContext &Context = *DAG.getContext();
5764
5765  MachineFunction &MF = DAG.getMachineFunction();
5766  SmallVector<unsigned, 4> Regs;
5767
5768  // If this is a constraint for a single physreg, or a constraint for a
5769  // register class, find it.
5770  std::pair<unsigned, const TargetRegisterClass*> PhysReg =
5771    TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
5772                                     OpInfo.ConstraintVT);
5773
5774  unsigned NumRegs = 1;
5775  if (OpInfo.ConstraintVT != MVT::Other) {
5776    // If this is a FP input in an integer register (or visa versa) insert a bit
5777    // cast of the input value.  More generally, handle any case where the input
5778    // value disagrees with the register class we plan to stick this in.
5779    if (OpInfo.Type == InlineAsm::isInput &&
5780        PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) {
5781      // Try to convert to the first EVT that the reg class contains.  If the
5782      // types are identical size, use a bitcast to convert (e.g. two differing
5783      // vector types).
5784      MVT RegVT = *PhysReg.second->vt_begin();
5785      if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) {
5786        OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL,
5787                                         RegVT, OpInfo.CallOperand);
5788        OpInfo.ConstraintVT = RegVT;
5789      } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
5790        // If the input is a FP value and we want it in FP registers, do a
5791        // bitcast to the corresponding integer type.  This turns an f64 value
5792        // into i64, which can be passed with two i32 values on a 32-bit
5793        // machine.
5794        RegVT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits());
5795        OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL,
5796                                         RegVT, OpInfo.CallOperand);
5797        OpInfo.ConstraintVT = RegVT;
5798      }
5799    }
5800
5801    NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT);
5802  }
5803
5804  MVT RegVT;
5805  EVT ValueVT = OpInfo.ConstraintVT;
5806
5807  // If this is a constraint for a specific physical register, like {r17},
5808  // assign it now.
5809  if (unsigned AssignedReg = PhysReg.first) {
5810    const TargetRegisterClass *RC = PhysReg.second;
5811    if (OpInfo.ConstraintVT == MVT::Other)
5812      ValueVT = *RC->vt_begin();
5813
5814    // Get the actual register value type.  This is important, because the user
5815    // may have asked for (e.g.) the AX register in i32 type.  We need to
5816    // remember that AX is actually i16 to get the right extension.
5817    RegVT = *RC->vt_begin();
5818
5819    // This is a explicit reference to a physical register.
5820    Regs.push_back(AssignedReg);
5821
5822    // If this is an expanded reference, add the rest of the regs to Regs.
5823    if (NumRegs != 1) {
5824      TargetRegisterClass::iterator I = RC->begin();
5825      for (; *I != AssignedReg; ++I)
5826        assert(I != RC->end() && "Didn't find reg!");
5827
5828      // Already added the first reg.
5829      --NumRegs; ++I;
5830      for (; NumRegs; --NumRegs, ++I) {
5831        assert(I != RC->end() && "Ran out of registers to allocate!");
5832        Regs.push_back(*I);
5833      }
5834    }
5835
5836    OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
5837    return;
5838  }
5839
5840  // Otherwise, if this was a reference to an LLVM register class, create vregs
5841  // for this reference.
5842  if (const TargetRegisterClass *RC = PhysReg.second) {
5843    RegVT = *RC->vt_begin();
5844    if (OpInfo.ConstraintVT == MVT::Other)
5845      ValueVT = RegVT;
5846
5847    // Create the appropriate number of virtual registers.
5848    MachineRegisterInfo &RegInfo = MF.getRegInfo();
5849    for (; NumRegs; --NumRegs)
5850      Regs.push_back(RegInfo.createVirtualRegister(RC));
5851
5852    OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
5853    return;
5854  }
5855
5856  // Otherwise, we couldn't allocate enough registers for this.
5857}
5858
5859/// visitInlineAsm - Handle a call to an InlineAsm object.
5860///
5861void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) {
5862  const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
5863
5864  /// ConstraintOperands - Information about all of the constraints.
5865  SDISelAsmOperandInfoVector ConstraintOperands;
5866
5867  const TargetLowering *TLI = TM.getTargetLowering();
5868  TargetLowering::AsmOperandInfoVector
5869    TargetConstraints = TLI->ParseConstraints(CS);
5870
5871  bool hasMemory = false;
5872
5873  unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
5874  unsigned ResNo = 0;   // ResNo - The result number of the next output.
5875  for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
5876    ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i]));
5877    SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
5878
5879    MVT OpVT = MVT::Other;
5880
5881    // Compute the value type for each operand.
5882    switch (OpInfo.Type) {
5883    case InlineAsm::isOutput:
5884      // Indirect outputs just consume an argument.
5885      if (OpInfo.isIndirect) {
5886        OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
5887        break;
5888      }
5889
5890      // The return value of the call is this value.  As such, there is no
5891      // corresponding argument.
5892      assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
5893      if (StructType *STy = dyn_cast<StructType>(CS.getType())) {
5894        OpVT = TLI->getSimpleValueType(STy->getElementType(ResNo));
5895      } else {
5896        assert(ResNo == 0 && "Asm only has one result!");
5897        OpVT = TLI->getSimpleValueType(CS.getType());
5898      }
5899      ++ResNo;
5900      break;
5901    case InlineAsm::isInput:
5902      OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
5903      break;
5904    case InlineAsm::isClobber:
5905      // Nothing to do.
5906      break;
5907    }
5908
5909    // If this is an input or an indirect output, process the call argument.
5910    // BasicBlocks are labels, currently appearing only in asm's.
5911    if (OpInfo.CallOperandVal) {
5912      if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) {
5913        OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
5914      } else {
5915        OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
5916      }
5917
5918      OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), *TLI, TD).
5919        getSimpleVT();
5920    }
5921
5922    OpInfo.ConstraintVT = OpVT;
5923
5924    // Indirect operand accesses access memory.
5925    if (OpInfo.isIndirect)
5926      hasMemory = true;
5927    else {
5928      for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) {
5929        TargetLowering::ConstraintType
5930          CType = TLI->getConstraintType(OpInfo.Codes[j]);
5931        if (CType == TargetLowering::C_Memory) {
5932          hasMemory = true;
5933          break;
5934        }
5935      }
5936    }
5937  }
5938
5939  SDValue Chain, Flag;
5940
5941  // We won't need to flush pending loads if this asm doesn't touch
5942  // memory and is nonvolatile.
5943  if (hasMemory || IA->hasSideEffects())
5944    Chain = getRoot();
5945  else
5946    Chain = DAG.getRoot();
5947
5948  // Second pass over the constraints: compute which constraint option to use
5949  // and assign registers to constraints that want a specific physreg.
5950  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
5951    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
5952
5953    // If this is an output operand with a matching input operand, look up the
5954    // matching input. If their types mismatch, e.g. one is an integer, the
5955    // other is floating point, or their sizes are different, flag it as an
5956    // error.
5957    if (OpInfo.hasMatchingInput()) {
5958      SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
5959
5960      if (OpInfo.ConstraintVT != Input.ConstraintVT) {
5961        std::pair<unsigned, const TargetRegisterClass*> MatchRC =
5962          TLI->getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
5963                                            OpInfo.ConstraintVT);
5964        std::pair<unsigned, const TargetRegisterClass*> InputRC =
5965          TLI->getRegForInlineAsmConstraint(Input.ConstraintCode,
5966                                            Input.ConstraintVT);
5967        if ((OpInfo.ConstraintVT.isInteger() !=
5968             Input.ConstraintVT.isInteger()) ||
5969            (MatchRC.second != InputRC.second)) {
5970          report_fatal_error("Unsupported asm: input constraint"
5971                             " with a matching output constraint of"
5972                             " incompatible type!");
5973        }
5974        Input.ConstraintVT = OpInfo.ConstraintVT;
5975      }
5976    }
5977
5978    // Compute the constraint code and ConstraintType to use.
5979    TLI->ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
5980
5981    if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
5982        OpInfo.Type == InlineAsm::isClobber)
5983      continue;
5984
5985    // If this is a memory input, and if the operand is not indirect, do what we
5986    // need to to provide an address for the memory input.
5987    if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
5988        !OpInfo.isIndirect) {
5989      assert((OpInfo.isMultipleAlternative ||
5990              (OpInfo.Type == InlineAsm::isInput)) &&
5991             "Can only indirectify direct input operands!");
5992
5993      // Memory operands really want the address of the value.  If we don't have
5994      // an indirect input, put it in the constpool if we can, otherwise spill
5995      // it to a stack slot.
5996      // TODO: This isn't quite right. We need to handle these according to
5997      // the addressing mode that the constraint wants. Also, this may take
5998      // an additional register for the computation and we don't want that
5999      // either.
6000
6001      // If the operand is a float, integer, or vector constant, spill to a
6002      // constant pool entry to get its address.
6003      const Value *OpVal = OpInfo.CallOperandVal;
6004      if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
6005          isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) {
6006        OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal),
6007                                                 TLI->getPointerTy());
6008      } else {
6009        // Otherwise, create a stack slot and emit a store to it before the
6010        // asm.
6011        Type *Ty = OpVal->getType();
6012        uint64_t TySize = TLI->getDataLayout()->getTypeAllocSize(Ty);
6013        unsigned Align  = TLI->getDataLayout()->getPrefTypeAlignment(Ty);
6014        MachineFunction &MF = DAG.getMachineFunction();
6015        int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
6016        SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI->getPointerTy());
6017        Chain = DAG.getStore(Chain, getCurSDLoc(),
6018                             OpInfo.CallOperand, StackSlot,
6019                             MachinePointerInfo::getFixedStack(SSFI),
6020                             false, false, 0);
6021        OpInfo.CallOperand = StackSlot;
6022      }
6023
6024      // There is no longer a Value* corresponding to this operand.
6025      OpInfo.CallOperandVal = 0;
6026
6027      // It is now an indirect operand.
6028      OpInfo.isIndirect = true;
6029    }
6030
6031    // If this constraint is for a specific register, allocate it before
6032    // anything else.
6033    if (OpInfo.ConstraintType == TargetLowering::C_Register)
6034      GetRegistersForValue(DAG, *TLI, getCurSDLoc(), OpInfo);
6035  }
6036
6037  // Second pass - Loop over all of the operands, assigning virtual or physregs
6038  // to register class operands.
6039  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
6040    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
6041
6042    // C_Register operands have already been allocated, Other/Memory don't need
6043    // to be.
6044    if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass)
6045      GetRegistersForValue(DAG, *TLI, getCurSDLoc(), OpInfo);
6046  }
6047
6048  // AsmNodeOperands - The operands for the ISD::INLINEASM node.
6049  std::vector<SDValue> AsmNodeOperands;
6050  AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
6051  AsmNodeOperands.push_back(
6052          DAG.getTargetExternalSymbol(IA->getAsmString().c_str(),
6053                                      TLI->getPointerTy()));
6054
6055  // If we have a !srcloc metadata node associated with it, we want to attach
6056  // this to the ultimately generated inline asm machineinstr.  To do this, we
6057  // pass in the third operand as this (potentially null) inline asm MDNode.
6058  const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc");
6059  AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
6060
6061  // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore
6062  // bits as operand 3.
6063  unsigned ExtraInfo = 0;
6064  if (IA->hasSideEffects())
6065    ExtraInfo |= InlineAsm::Extra_HasSideEffects;
6066  if (IA->isAlignStack())
6067    ExtraInfo |= InlineAsm::Extra_IsAlignStack;
6068  // Set the asm dialect.
6069  ExtraInfo |= IA->getDialect() * InlineAsm::Extra_AsmDialect;
6070
6071  // Determine if this InlineAsm MayLoad or MayStore based on the constraints.
6072  for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
6073    TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i];
6074
6075    // Compute the constraint code and ConstraintType to use.
6076    TLI->ComputeConstraintToUse(OpInfo, SDValue());
6077
6078    // Ideally, we would only check against memory constraints.  However, the
6079    // meaning of an other constraint can be target-specific and we can't easily
6080    // reason about it.  Therefore, be conservative and set MayLoad/MayStore
6081    // for other constriants as well.
6082    if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
6083        OpInfo.ConstraintType == TargetLowering::C_Other) {
6084      if (OpInfo.Type == InlineAsm::isInput)
6085        ExtraInfo |= InlineAsm::Extra_MayLoad;
6086      else if (OpInfo.Type == InlineAsm::isOutput)
6087        ExtraInfo |= InlineAsm::Extra_MayStore;
6088      else if (OpInfo.Type == InlineAsm::isClobber)
6089        ExtraInfo |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore);
6090    }
6091  }
6092
6093  AsmNodeOperands.push_back(DAG.getTargetConstant(ExtraInfo,
6094                                                  TLI->getPointerTy()));
6095
6096  // Loop over all of the inputs, copying the operand values into the
6097  // appropriate registers and processing the output regs.
6098  RegsForValue RetValRegs;
6099
6100  // IndirectStoresToEmit - The set of stores to emit after the inline asm node.
6101  std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit;
6102
6103  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
6104    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
6105
6106    switch (OpInfo.Type) {
6107    case InlineAsm::isOutput: {
6108      if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass &&
6109          OpInfo.ConstraintType != TargetLowering::C_Register) {
6110        // Memory output, or 'other' output (e.g. 'X' constraint).
6111        assert(OpInfo.isIndirect && "Memory output must be indirect operand");
6112
6113        // Add information to the INLINEASM node to know about this output.
6114        unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
6115        AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags,
6116                                                        TLI->getPointerTy()));
6117        AsmNodeOperands.push_back(OpInfo.CallOperand);
6118        break;
6119      }
6120
6121      // Otherwise, this is a register or register class output.
6122
6123      // Copy the output from the appropriate register.  Find a register that
6124      // we can use.
6125      if (OpInfo.AssignedRegs.Regs.empty()) {
6126        LLVMContext &Ctx = *DAG.getContext();
6127        Ctx.emitError(CS.getInstruction(),
6128                      "couldn't allocate output register for constraint '" +
6129                           Twine(OpInfo.ConstraintCode) + "'");
6130        break;
6131      }
6132
6133      // If this is an indirect operand, store through the pointer after the
6134      // asm.
6135      if (OpInfo.isIndirect) {
6136        IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs,
6137                                                      OpInfo.CallOperandVal));
6138      } else {
6139        // This is the result value of the call.
6140        assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
6141        // Concatenate this output onto the outputs list.
6142        RetValRegs.append(OpInfo.AssignedRegs);
6143      }
6144
6145      // Add information to the INLINEASM node to know that this register is
6146      // set.
6147      OpInfo.AssignedRegs.AddInlineAsmOperands(OpInfo.isEarlyClobber ?
6148                                           InlineAsm::Kind_RegDefEarlyClobber :
6149                                               InlineAsm::Kind_RegDef,
6150                                               false,
6151                                               0,
6152                                               DAG,
6153                                               AsmNodeOperands);
6154      break;
6155    }
6156    case InlineAsm::isInput: {
6157      SDValue InOperandVal = OpInfo.CallOperand;
6158
6159      if (OpInfo.isMatchingInputConstraint()) {   // Matching constraint?
6160        // If this is required to match an output register we have already set,
6161        // just use its register.
6162        unsigned OperandNo = OpInfo.getMatchedOperand();
6163
6164        // Scan until we find the definition we already emitted of this operand.
6165        // When we find it, create a RegsForValue operand.
6166        unsigned CurOp = InlineAsm::Op_FirstOperand;
6167        for (; OperandNo; --OperandNo) {
6168          // Advance to the next operand.
6169          unsigned OpFlag =
6170            cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
6171          assert((InlineAsm::isRegDefKind(OpFlag) ||
6172                  InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||
6173                  InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?");
6174          CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1;
6175        }
6176
6177        unsigned OpFlag =
6178          cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
6179        if (InlineAsm::isRegDefKind(OpFlag) ||
6180            InlineAsm::isRegDefEarlyClobberKind(OpFlag)) {
6181          // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
6182          if (OpInfo.isIndirect) {
6183            // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
6184            LLVMContext &Ctx = *DAG.getContext();
6185            Ctx.emitError(CS.getInstruction(),  "inline asm not supported yet:"
6186                          " don't know how to handle tied "
6187                          "indirect register inputs");
6188            report_fatal_error("Cannot handle indirect register inputs!");
6189          }
6190
6191          RegsForValue MatchedRegs;
6192          MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType());
6193          MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType();
6194          MatchedRegs.RegVTs.push_back(RegVT);
6195          MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo();
6196          for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag);
6197               i != e; ++i) {
6198            if (const TargetRegisterClass *RC = TLI->getRegClassFor(RegVT))
6199              MatchedRegs.Regs.push_back(RegInfo.createVirtualRegister(RC));
6200            else {
6201              LLVMContext &Ctx = *DAG.getContext();
6202              Ctx.emitError(CS.getInstruction(), "inline asm error: This value"
6203                            " type register class is not natively supported!");
6204              report_fatal_error("inline asm error: This value type register "
6205                                 "class is not natively supported!");
6206            }
6207          }
6208          // Use the produced MatchedRegs object to
6209          MatchedRegs.getCopyToRegs(InOperandVal, DAG, getCurSDLoc(),
6210                                    Chain, &Flag, CS.getInstruction());
6211          MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse,
6212                                           true, OpInfo.getMatchedOperand(),
6213                                           DAG, AsmNodeOperands);
6214          break;
6215        }
6216
6217        assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!");
6218        assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 &&
6219               "Unexpected number of operands");
6220        // Add information to the INLINEASM node to know about this input.
6221        // See InlineAsm.h isUseOperandTiedToDef.
6222        OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
6223                                                    OpInfo.getMatchedOperand());
6224        AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlag,
6225                                                        TLI->getPointerTy()));
6226        AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
6227        break;
6228      }
6229
6230      // Treat indirect 'X' constraint as memory.
6231      if (OpInfo.ConstraintType == TargetLowering::C_Other &&
6232          OpInfo.isIndirect)
6233        OpInfo.ConstraintType = TargetLowering::C_Memory;
6234
6235      if (OpInfo.ConstraintType == TargetLowering::C_Other) {
6236        std::vector<SDValue> Ops;
6237        TLI->LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode,
6238                                          Ops, DAG);
6239        if (Ops.empty()) {
6240          LLVMContext &Ctx = *DAG.getContext();
6241          Ctx.emitError(CS.getInstruction(),
6242                        "invalid operand for inline asm constraint '" +
6243                        Twine(OpInfo.ConstraintCode) + "'");
6244          break;
6245        }
6246
6247        // Add information to the INLINEASM node to know about this input.
6248        unsigned ResOpType =
6249          InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
6250        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
6251                                                        TLI->getPointerTy()));
6252        AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
6253        break;
6254      }
6255
6256      if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
6257        assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
6258        assert(InOperandVal.getValueType() == TLI->getPointerTy() &&
6259               "Memory operands expect pointer values");
6260
6261        // Add information to the INLINEASM node to know about this input.
6262        unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
6263        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
6264                                                        TLI->getPointerTy()));
6265        AsmNodeOperands.push_back(InOperandVal);
6266        break;
6267      }
6268
6269      assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
6270              OpInfo.ConstraintType == TargetLowering::C_Register) &&
6271             "Unknown constraint type!");
6272
6273      // TODO: Support this.
6274      if (OpInfo.isIndirect) {
6275        LLVMContext &Ctx = *DAG.getContext();
6276        Ctx.emitError(CS.getInstruction(),
6277                      "Don't know how to handle indirect register inputs yet "
6278                      "for constraint '" + Twine(OpInfo.ConstraintCode) + "'");
6279        break;
6280      }
6281
6282      // Copy the input into the appropriate registers.
6283      if (OpInfo.AssignedRegs.Regs.empty()) {
6284        LLVMContext &Ctx = *DAG.getContext();
6285        Ctx.emitError(CS.getInstruction(),
6286                      "couldn't allocate input reg for constraint '" +
6287                           Twine(OpInfo.ConstraintCode) + "'");
6288        break;
6289      }
6290
6291      OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, getCurSDLoc(),
6292                                        Chain, &Flag, CS.getInstruction());
6293
6294      OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0,
6295                                               DAG, AsmNodeOperands);
6296      break;
6297    }
6298    case InlineAsm::isClobber: {
6299      // Add the clobbered value to the operand list, so that the register
6300      // allocator is aware that the physreg got clobbered.
6301      if (!OpInfo.AssignedRegs.Regs.empty())
6302        OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber,
6303                                                 false, 0, DAG,
6304                                                 AsmNodeOperands);
6305      break;
6306    }
6307    }
6308  }
6309
6310  // Finish up input operands.  Set the input chain and add the flag last.
6311  AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
6312  if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
6313
6314  Chain = DAG.getNode(ISD::INLINEASM, getCurSDLoc(),
6315                      DAG.getVTList(MVT::Other, MVT::Glue),
6316                      &AsmNodeOperands[0], AsmNodeOperands.size());
6317  Flag = Chain.getValue(1);
6318
6319  // If this asm returns a register value, copy the result from that register
6320  // and set it as the value of the call.
6321  if (!RetValRegs.Regs.empty()) {
6322    SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(),
6323                                             Chain, &Flag, CS.getInstruction());
6324
6325    // FIXME: Why don't we do this for inline asms with MRVs?
6326    if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) {
6327      EVT ResultType = TLI->getValueType(CS.getType());
6328
6329      // If any of the results of the inline asm is a vector, it may have the
6330      // wrong width/num elts.  This can happen for register classes that can
6331      // contain multiple different value types.  The preg or vreg allocated may
6332      // not have the same VT as was expected.  Convert it to the right type
6333      // with bit_convert.
6334      if (ResultType != Val.getValueType() && Val.getValueType().isVector()) {
6335        Val = DAG.getNode(ISD::BITCAST, getCurSDLoc(),
6336                          ResultType, Val);
6337
6338      } else if (ResultType != Val.getValueType() &&
6339                 ResultType.isInteger() && Val.getValueType().isInteger()) {
6340        // If a result value was tied to an input value, the computed result may
6341        // have a wider width than the expected result.  Extract the relevant
6342        // portion.
6343        Val = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultType, Val);
6344      }
6345
6346      assert(ResultType == Val.getValueType() && "Asm result value mismatch!");
6347    }
6348
6349    setValue(CS.getInstruction(), Val);
6350    // Don't need to use this as a chain in this case.
6351    if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty())
6352      return;
6353  }
6354
6355  std::vector<std::pair<SDValue, const Value *> > StoresToEmit;
6356
6357  // Process indirect outputs, first output all of the flagged copies out of
6358  // physregs.
6359  for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
6360    RegsForValue &OutRegs = IndirectStoresToEmit[i].first;
6361    const Value *Ptr = IndirectStoresToEmit[i].second;
6362    SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(),
6363                                             Chain, &Flag, IA);
6364    StoresToEmit.push_back(std::make_pair(OutVal, Ptr));
6365  }
6366
6367  // Emit the non-flagged stores from the physregs.
6368  SmallVector<SDValue, 8> OutChains;
6369  for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) {
6370    SDValue Val = DAG.getStore(Chain, getCurSDLoc(),
6371                               StoresToEmit[i].first,
6372                               getValue(StoresToEmit[i].second),
6373                               MachinePointerInfo(StoresToEmit[i].second),
6374                               false, false, 0);
6375    OutChains.push_back(Val);
6376  }
6377
6378  if (!OutChains.empty())
6379    Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other,
6380                        &OutChains[0], OutChains.size());
6381
6382  DAG.setRoot(Chain);
6383}
6384
6385void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
6386  DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(),
6387                          MVT::Other, getRoot(),
6388                          getValue(I.getArgOperand(0)),
6389                          DAG.getSrcValue(I.getArgOperand(0))));
6390}
6391
6392void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
6393  const TargetLowering *TLI = TM.getTargetLowering();
6394  const DataLayout &TD = *TLI->getDataLayout();
6395  SDValue V = DAG.getVAArg(TLI->getValueType(I.getType()), getCurSDLoc(),
6396                           getRoot(), getValue(I.getOperand(0)),
6397                           DAG.getSrcValue(I.getOperand(0)),
6398                           TD.getABITypeAlignment(I.getType()));
6399  setValue(&I, V);
6400  DAG.setRoot(V.getValue(1));
6401}
6402
6403void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
6404  DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(),
6405                          MVT::Other, getRoot(),
6406                          getValue(I.getArgOperand(0)),
6407                          DAG.getSrcValue(I.getArgOperand(0))));
6408}
6409
6410void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
6411  DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(),
6412                          MVT::Other, getRoot(),
6413                          getValue(I.getArgOperand(0)),
6414                          getValue(I.getArgOperand(1)),
6415                          DAG.getSrcValue(I.getArgOperand(0)),
6416                          DAG.getSrcValue(I.getArgOperand(1))));
6417}
6418
6419/// TargetLowering::LowerCallTo - This is the default LowerCallTo
6420/// implementation, which just calls LowerCall.
6421/// FIXME: When all targets are
6422/// migrated to using LowerCall, this hook should be integrated into SDISel.
6423std::pair<SDValue, SDValue>
6424TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const {
6425  // Handle the incoming return values from the call.
6426  CLI.Ins.clear();
6427  SmallVector<EVT, 4> RetTys;
6428  ComputeValueVTs(*this, CLI.RetTy, RetTys);
6429  for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
6430    EVT VT = RetTys[I];
6431    MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT);
6432    unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT);
6433    for (unsigned i = 0; i != NumRegs; ++i) {
6434      ISD::InputArg MyFlags;
6435      MyFlags.VT = RegisterVT;
6436      MyFlags.Used = CLI.IsReturnValueUsed;
6437      if (CLI.RetSExt)
6438        MyFlags.Flags.setSExt();
6439      if (CLI.RetZExt)
6440        MyFlags.Flags.setZExt();
6441      if (CLI.IsInReg)
6442        MyFlags.Flags.setInReg();
6443      CLI.Ins.push_back(MyFlags);
6444    }
6445  }
6446
6447  // Handle all of the outgoing arguments.
6448  CLI.Outs.clear();
6449  CLI.OutVals.clear();
6450  ArgListTy &Args = CLI.Args;
6451  for (unsigned i = 0, e = Args.size(); i != e; ++i) {
6452    SmallVector<EVT, 4> ValueVTs;
6453    ComputeValueVTs(*this, Args[i].Ty, ValueVTs);
6454    for (unsigned Value = 0, NumValues = ValueVTs.size();
6455         Value != NumValues; ++Value) {
6456      EVT VT = ValueVTs[Value];
6457      Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext());
6458      SDValue Op = SDValue(Args[i].Node.getNode(),
6459                           Args[i].Node.getResNo() + Value);
6460      ISD::ArgFlagsTy Flags;
6461      unsigned OriginalAlignment =
6462        getDataLayout()->getABITypeAlignment(ArgTy);
6463
6464      if (Args[i].isZExt)
6465        Flags.setZExt();
6466      if (Args[i].isSExt)
6467        Flags.setSExt();
6468      if (Args[i].isInReg)
6469        Flags.setInReg();
6470      if (Args[i].isSRet)
6471        Flags.setSRet();
6472      if (Args[i].isByVal) {
6473        Flags.setByVal();
6474        PointerType *Ty = cast<PointerType>(Args[i].Ty);
6475        Type *ElementTy = Ty->getElementType();
6476        Flags.setByValSize(getDataLayout()->getTypeAllocSize(ElementTy));
6477        // For ByVal, alignment should come from FE.  BE will guess if this
6478        // info is not there but there are cases it cannot get right.
6479        unsigned FrameAlign;
6480        if (Args[i].Alignment)
6481          FrameAlign = Args[i].Alignment;
6482        else
6483          FrameAlign = getByValTypeAlignment(ElementTy);
6484        Flags.setByValAlign(FrameAlign);
6485      }
6486      if (Args[i].isNest)
6487        Flags.setNest();
6488      Flags.setOrigAlign(OriginalAlignment);
6489
6490      MVT PartVT = getRegisterType(CLI.RetTy->getContext(), VT);
6491      unsigned NumParts = getNumRegisters(CLI.RetTy->getContext(), VT);
6492      SmallVector<SDValue, 4> Parts(NumParts);
6493      ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
6494
6495      if (Args[i].isSExt)
6496        ExtendKind = ISD::SIGN_EXTEND;
6497      else if (Args[i].isZExt)
6498        ExtendKind = ISD::ZERO_EXTEND;
6499
6500      // Conservatively only handle 'returned' on non-vectors for now
6501      if (Args[i].isReturned && !Op.getValueType().isVector()) {
6502        assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues &&
6503               "unexpected use of 'returned'");
6504        // Before passing 'returned' to the target lowering code, ensure that
6505        // either the register MVT and the actual EVT are the same size or that
6506        // the return value and argument are extended in the same way; in these
6507        // cases it's safe to pass the argument register value unchanged as the
6508        // return register value (although it's at the target's option whether
6509        // to do so)
6510        // TODO: allow code generation to take advantage of partially preserved
6511        // registers rather than clobbering the entire register when the
6512        // parameter extension method is not compatible with the return
6513        // extension method
6514        if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) ||
6515            (ExtendKind != ISD::ANY_EXTEND &&
6516             CLI.RetSExt == Args[i].isSExt && CLI.RetZExt == Args[i].isZExt))
6517        Flags.setReturned();
6518      }
6519
6520      getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts,
6521                     PartVT, CLI.CS ? CLI.CS->getInstruction() : 0, ExtendKind);
6522
6523      for (unsigned j = 0; j != NumParts; ++j) {
6524        // if it isn't first piece, alignment must be 1
6525        ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(),
6526                               i < CLI.NumFixedArgs,
6527                               i, j*Parts[j].getValueType().getStoreSize());
6528        if (NumParts > 1 && j == 0)
6529          MyFlags.Flags.setSplit();
6530        else if (j != 0)
6531          MyFlags.Flags.setOrigAlign(1);
6532
6533        CLI.Outs.push_back(MyFlags);
6534        CLI.OutVals.push_back(Parts[j]);
6535      }
6536    }
6537  }
6538
6539  SmallVector<SDValue, 4> InVals;
6540  CLI.Chain = LowerCall(CLI, InVals);
6541
6542  // Verify that the target's LowerCall behaved as expected.
6543  assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other &&
6544         "LowerCall didn't return a valid chain!");
6545  assert((!CLI.IsTailCall || InVals.empty()) &&
6546         "LowerCall emitted a return value for a tail call!");
6547  assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) &&
6548         "LowerCall didn't emit the correct number of values!");
6549
6550  // For a tail call, the return value is merely live-out and there aren't
6551  // any nodes in the DAG representing it. Return a special value to
6552  // indicate that a tail call has been emitted and no more Instructions
6553  // should be processed in the current block.
6554  if (CLI.IsTailCall) {
6555    CLI.DAG.setRoot(CLI.Chain);
6556    return std::make_pair(SDValue(), SDValue());
6557  }
6558
6559  DEBUG(for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) {
6560          assert(InVals[i].getNode() &&
6561                 "LowerCall emitted a null value!");
6562          assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() &&
6563                 "LowerCall emitted a value with the wrong type!");
6564        });
6565
6566  // Collect the legal value parts into potentially illegal values
6567  // that correspond to the original function's return values.
6568  ISD::NodeType AssertOp = ISD::DELETED_NODE;
6569  if (CLI.RetSExt)
6570    AssertOp = ISD::AssertSext;
6571  else if (CLI.RetZExt)
6572    AssertOp = ISD::AssertZext;
6573  SmallVector<SDValue, 4> ReturnValues;
6574  unsigned CurReg = 0;
6575  for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
6576    EVT VT = RetTys[I];
6577    MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT);
6578    unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT);
6579
6580    ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg],
6581                                            NumRegs, RegisterVT, VT, NULL,
6582                                            AssertOp));
6583    CurReg += NumRegs;
6584  }
6585
6586  // For a function returning void, there is no return value. We can't create
6587  // such a node, so we just return a null return value in that case. In
6588  // that case, nothing will actually look at the value.
6589  if (ReturnValues.empty())
6590    return std::make_pair(SDValue(), CLI.Chain);
6591
6592  SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL,
6593                                CLI.DAG.getVTList(&RetTys[0], RetTys.size()),
6594                            &ReturnValues[0], ReturnValues.size());
6595  return std::make_pair(Res, CLI.Chain);
6596}
6597
6598void TargetLowering::LowerOperationWrapper(SDNode *N,
6599                                           SmallVectorImpl<SDValue> &Results,
6600                                           SelectionDAG &DAG) const {
6601  SDValue Res = LowerOperation(SDValue(N, 0), DAG);
6602  if (Res.getNode())
6603    Results.push_back(Res);
6604}
6605
6606SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
6607  llvm_unreachable("LowerOperation not implemented for this target!");
6608}
6609
6610void
6611SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) {
6612  SDValue Op = getNonRegisterValue(V);
6613  assert((Op.getOpcode() != ISD::CopyFromReg ||
6614          cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
6615         "Copy from a reg to the same reg!");
6616  assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg");
6617
6618  const TargetLowering *TLI = TM.getTargetLowering();
6619  RegsForValue RFV(V->getContext(), *TLI, Reg, V->getType());
6620  SDValue Chain = DAG.getEntryNode();
6621  RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, 0, V);
6622  PendingExports.push_back(Chain);
6623}
6624
6625#include "llvm/CodeGen/SelectionDAGISel.h"
6626
6627/// isOnlyUsedInEntryBlock - If the specified argument is only used in the
6628/// entry block, return true.  This includes arguments used by switches, since
6629/// the switch may expand into multiple basic blocks.
6630static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) {
6631  // With FastISel active, we may be splitting blocks, so force creation
6632  // of virtual registers for all non-dead arguments.
6633  if (FastISel)
6634    return A->use_empty();
6635
6636  const BasicBlock *Entry = A->getParent()->begin();
6637  for (Value::const_use_iterator UI = A->use_begin(), E = A->use_end();
6638       UI != E; ++UI) {
6639    const User *U = *UI;
6640    if (cast<Instruction>(U)->getParent() != Entry || isa<SwitchInst>(U))
6641      return false;  // Use not in entry block.
6642  }
6643  return true;
6644}
6645
6646void SelectionDAGISel::LowerArguments(const Function &F) {
6647  SelectionDAG &DAG = SDB->DAG;
6648  SDLoc dl = SDB->getCurSDLoc();
6649  const TargetLowering *TLI = getTargetLowering();
6650  const DataLayout *TD = TLI->getDataLayout();
6651  SmallVector<ISD::InputArg, 16> Ins;
6652
6653  if (!FuncInfo->CanLowerReturn) {
6654    // Put in an sret pointer parameter before all the other parameters.
6655    SmallVector<EVT, 1> ValueVTs;
6656    ComputeValueVTs(*getTargetLowering(),
6657                    PointerType::getUnqual(F.getReturnType()), ValueVTs);
6658
6659    // NOTE: Assuming that a pointer will never break down to more than one VT
6660    // or one register.
6661    ISD::ArgFlagsTy Flags;
6662    Flags.setSRet();
6663    MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]);
6664    ISD::InputArg RetArg(Flags, RegisterVT, true, 0, 0);
6665    Ins.push_back(RetArg);
6666  }
6667
6668  // Set up the incoming argument description vector.
6669  unsigned Idx = 1;
6670  for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end();
6671       I != E; ++I, ++Idx) {
6672    SmallVector<EVT, 4> ValueVTs;
6673    ComputeValueVTs(*TLI, I->getType(), ValueVTs);
6674    bool isArgValueUsed = !I->use_empty();
6675    for (unsigned Value = 0, NumValues = ValueVTs.size();
6676         Value != NumValues; ++Value) {
6677      EVT VT = ValueVTs[Value];
6678      Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
6679      ISD::ArgFlagsTy Flags;
6680      unsigned OriginalAlignment =
6681        TD->getABITypeAlignment(ArgTy);
6682
6683      if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt))
6684        Flags.setZExt();
6685      if (F.getAttributes().hasAttribute(Idx, Attribute::SExt))
6686        Flags.setSExt();
6687      if (F.getAttributes().hasAttribute(Idx, Attribute::InReg))
6688        Flags.setInReg();
6689      if (F.getAttributes().hasAttribute(Idx, Attribute::StructRet))
6690        Flags.setSRet();
6691      if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) {
6692        Flags.setByVal();
6693        PointerType *Ty = cast<PointerType>(I->getType());
6694        Type *ElementTy = Ty->getElementType();
6695        Flags.setByValSize(TD->getTypeAllocSize(ElementTy));
6696        // For ByVal, alignment should be passed from FE.  BE will guess if
6697        // this info is not there but there are cases it cannot get right.
6698        unsigned FrameAlign;
6699        if (F.getParamAlignment(Idx))
6700          FrameAlign = F.getParamAlignment(Idx);
6701        else
6702          FrameAlign = TLI->getByValTypeAlignment(ElementTy);
6703        Flags.setByValAlign(FrameAlign);
6704      }
6705      if (F.getAttributes().hasAttribute(Idx, Attribute::Nest))
6706        Flags.setNest();
6707      Flags.setOrigAlign(OriginalAlignment);
6708
6709      MVT RegisterVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
6710      unsigned NumRegs = TLI->getNumRegisters(*CurDAG->getContext(), VT);
6711      for (unsigned i = 0; i != NumRegs; ++i) {
6712        ISD::InputArg MyFlags(Flags, RegisterVT, isArgValueUsed,
6713                              Idx-1, i*RegisterVT.getStoreSize());
6714        if (NumRegs > 1 && i == 0)
6715          MyFlags.Flags.setSplit();
6716        // if it isn't first piece, alignment must be 1
6717        else if (i > 0)
6718          MyFlags.Flags.setOrigAlign(1);
6719        Ins.push_back(MyFlags);
6720      }
6721    }
6722  }
6723
6724  // Call the target to set up the argument values.
6725  SmallVector<SDValue, 8> InVals;
6726  SDValue NewRoot = TLI->LowerFormalArguments(DAG.getRoot(), F.getCallingConv(),
6727                                              F.isVarArg(), Ins,
6728                                              dl, DAG, InVals);
6729
6730  // Verify that the target's LowerFormalArguments behaved as expected.
6731  assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
6732         "LowerFormalArguments didn't return a valid chain!");
6733  assert(InVals.size() == Ins.size() &&
6734         "LowerFormalArguments didn't emit the correct number of values!");
6735  DEBUG({
6736      for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
6737        assert(InVals[i].getNode() &&
6738               "LowerFormalArguments emitted a null value!");
6739        assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
6740               "LowerFormalArguments emitted a value with the wrong type!");
6741      }
6742    });
6743
6744  // Update the DAG with the new chain value resulting from argument lowering.
6745  DAG.setRoot(NewRoot);
6746
6747  // Set up the argument values.
6748  unsigned i = 0;
6749  Idx = 1;
6750  if (!FuncInfo->CanLowerReturn) {
6751    // Create a virtual register for the sret pointer, and put in a copy
6752    // from the sret argument into it.
6753    SmallVector<EVT, 1> ValueVTs;
6754    ComputeValueVTs(*TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs);
6755    MVT VT = ValueVTs[0].getSimpleVT();
6756    MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
6757    ISD::NodeType AssertOp = ISD::DELETED_NODE;
6758    SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1,
6759                                        RegVT, VT, NULL, AssertOp);
6760
6761    MachineFunction& MF = SDB->DAG.getMachineFunction();
6762    MachineRegisterInfo& RegInfo = MF.getRegInfo();
6763    unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT));
6764    FuncInfo->DemoteRegister = SRetReg;
6765    NewRoot = SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(),
6766                                    SRetReg, ArgValue);
6767    DAG.setRoot(NewRoot);
6768
6769    // i indexes lowered arguments.  Bump it past the hidden sret argument.
6770    // Idx indexes LLVM arguments.  Don't touch it.
6771    ++i;
6772  }
6773
6774  for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E;
6775      ++I, ++Idx) {
6776    SmallVector<SDValue, 4> ArgValues;
6777    SmallVector<EVT, 4> ValueVTs;
6778    ComputeValueVTs(*TLI, I->getType(), ValueVTs);
6779    unsigned NumValues = ValueVTs.size();
6780
6781    // If this argument is unused then remember its value. It is used to generate
6782    // debugging information.
6783    if (I->use_empty() && NumValues) {
6784      SDB->setUnusedArgValue(I, InVals[i]);
6785
6786      // Also remember any frame index for use in FastISel.
6787      if (FrameIndexSDNode *FI =
6788          dyn_cast<FrameIndexSDNode>(InVals[i].getNode()))
6789        FuncInfo->setArgumentFrameIndex(I, FI->getIndex());
6790    }
6791
6792    for (unsigned Val = 0; Val != NumValues; ++Val) {
6793      EVT VT = ValueVTs[Val];
6794      MVT PartVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
6795      unsigned NumParts = TLI->getNumRegisters(*CurDAG->getContext(), VT);
6796
6797      if (!I->use_empty()) {
6798        ISD::NodeType AssertOp = ISD::DELETED_NODE;
6799        if (F.getAttributes().hasAttribute(Idx, Attribute::SExt))
6800          AssertOp = ISD::AssertSext;
6801        else if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt))
6802          AssertOp = ISD::AssertZext;
6803
6804        ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i],
6805                                             NumParts, PartVT, VT,
6806                                             NULL, AssertOp));
6807      }
6808
6809      i += NumParts;
6810    }
6811
6812    // We don't need to do anything else for unused arguments.
6813    if (ArgValues.empty())
6814      continue;
6815
6816    // Note down frame index.
6817    if (FrameIndexSDNode *FI =
6818        dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
6819      FuncInfo->setArgumentFrameIndex(I, FI->getIndex());
6820
6821    SDValue Res = DAG.getMergeValues(&ArgValues[0], NumValues,
6822                                     SDB->getCurSDLoc());
6823
6824    SDB->setValue(I, Res);
6825    if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) {
6826      if (LoadSDNode *LNode =
6827          dyn_cast<LoadSDNode>(Res.getOperand(0).getNode()))
6828        if (FrameIndexSDNode *FI =
6829            dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
6830        FuncInfo->setArgumentFrameIndex(I, FI->getIndex());
6831    }
6832
6833    // If this argument is live outside of the entry block, insert a copy from
6834    // wherever we got it to the vreg that other BB's will reference it as.
6835    if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) {
6836      // If we can, though, try to skip creating an unnecessary vreg.
6837      // FIXME: This isn't very clean... it would be nice to make this more
6838      // general.  It's also subtly incompatible with the hacks FastISel
6839      // uses with vregs.
6840      unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
6841      if (TargetRegisterInfo::isVirtualRegister(Reg)) {
6842        FuncInfo->ValueMap[I] = Reg;
6843        continue;
6844      }
6845    }
6846    if (!isOnlyUsedInEntryBlock(I, TM.Options.EnableFastISel)) {
6847      FuncInfo->InitializeRegForValue(I);
6848      SDB->CopyToExportRegsIfNeeded(I);
6849    }
6850  }
6851
6852  assert(i == InVals.size() && "Argument register count mismatch!");
6853
6854  // Finally, if the target has anything special to do, allow it to do so.
6855  // FIXME: this should insert code into the DAG!
6856  EmitFunctionEntryCode();
6857}
6858
6859/// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
6860/// ensure constants are generated when needed.  Remember the virtual registers
6861/// that need to be added to the Machine PHI nodes as input.  We cannot just
6862/// directly add them, because expansion might result in multiple MBB's for one
6863/// BB.  As such, the start of the BB might correspond to a different MBB than
6864/// the end.
6865///
6866void
6867SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
6868  const TerminatorInst *TI = LLVMBB->getTerminator();
6869
6870  SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
6871
6872  // Check successor nodes' PHI nodes that expect a constant to be available
6873  // from this block.
6874  for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
6875    const BasicBlock *SuccBB = TI->getSuccessor(succ);
6876    if (!isa<PHINode>(SuccBB->begin())) continue;
6877    MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
6878
6879    // If this terminator has multiple identical successors (common for
6880    // switches), only handle each succ once.
6881    if (!SuccsHandled.insert(SuccMBB)) continue;
6882
6883    MachineBasicBlock::iterator MBBI = SuccMBB->begin();
6884
6885    // At this point we know that there is a 1-1 correspondence between LLVM PHI
6886    // nodes and Machine PHI nodes, but the incoming operands have not been
6887    // emitted yet.
6888    for (BasicBlock::const_iterator I = SuccBB->begin();
6889         const PHINode *PN = dyn_cast<PHINode>(I); ++I) {
6890      // Ignore dead phi's.
6891      if (PN->use_empty()) continue;
6892
6893      // Skip empty types
6894      if (PN->getType()->isEmptyTy())
6895        continue;
6896
6897      unsigned Reg;
6898      const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
6899
6900      if (const Constant *C = dyn_cast<Constant>(PHIOp)) {
6901        unsigned &RegOut = ConstantsOut[C];
6902        if (RegOut == 0) {
6903          RegOut = FuncInfo.CreateRegs(C->getType());
6904          CopyValueToVirtualRegister(C, RegOut);
6905        }
6906        Reg = RegOut;
6907      } else {
6908        DenseMap<const Value *, unsigned>::iterator I =
6909          FuncInfo.ValueMap.find(PHIOp);
6910        if (I != FuncInfo.ValueMap.end())
6911          Reg = I->second;
6912        else {
6913          assert(isa<AllocaInst>(PHIOp) &&
6914                 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
6915                 "Didn't codegen value into a register!??");
6916          Reg = FuncInfo.CreateRegs(PHIOp->getType());
6917          CopyValueToVirtualRegister(PHIOp, Reg);
6918        }
6919      }
6920
6921      // Remember that this register needs to added to the machine PHI node as
6922      // the input for this MBB.
6923      SmallVector<EVT, 4> ValueVTs;
6924      const TargetLowering *TLI = TM.getTargetLowering();
6925      ComputeValueVTs(*TLI, PN->getType(), ValueVTs);
6926      for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
6927        EVT VT = ValueVTs[vti];
6928        unsigned NumRegisters = TLI->getNumRegisters(*DAG.getContext(), VT);
6929        for (unsigned i = 0, e = NumRegisters; i != e; ++i)
6930          FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i));
6931        Reg += NumRegisters;
6932      }
6933    }
6934  }
6935
6936  ConstantsOut.clear();
6937}
6938