SelectionDAGBuilder.cpp revision f69d87ca0cc23a4459e074edb2e4c1b20a5c7a93
1//===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements routines for translating from LLVM IR into SelectionDAG IR.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "isel"
15#include "SelectionDAGBuilder.h"
16#include "FunctionLoweringInfo.h"
17#include "llvm/ADT/BitVector.h"
18#include "llvm/ADT/SmallSet.h"
19#include "llvm/Analysis/AliasAnalysis.h"
20#include "llvm/Analysis/ConstantFolding.h"
21#include "llvm/Constants.h"
22#include "llvm/CallingConv.h"
23#include "llvm/DerivedTypes.h"
24#include "llvm/Function.h"
25#include "llvm/GlobalVariable.h"
26#include "llvm/InlineAsm.h"
27#include "llvm/Instructions.h"
28#include "llvm/Intrinsics.h"
29#include "llvm/IntrinsicInst.h"
30#include "llvm/Module.h"
31#include "llvm/CodeGen/FastISel.h"
32#include "llvm/CodeGen/GCStrategy.h"
33#include "llvm/CodeGen/GCMetadata.h"
34#include "llvm/CodeGen/MachineFunction.h"
35#include "llvm/CodeGen/MachineFrameInfo.h"
36#include "llvm/CodeGen/MachineInstrBuilder.h"
37#include "llvm/CodeGen/MachineJumpTableInfo.h"
38#include "llvm/CodeGen/MachineModuleInfo.h"
39#include "llvm/CodeGen/MachineRegisterInfo.h"
40#include "llvm/CodeGen/PseudoSourceValue.h"
41#include "llvm/CodeGen/SelectionDAG.h"
42#include "llvm/CodeGen/DwarfWriter.h"
43#include "llvm/Analysis/DebugInfo.h"
44#include "llvm/Target/TargetRegisterInfo.h"
45#include "llvm/Target/TargetData.h"
46#include "llvm/Target/TargetFrameInfo.h"
47#include "llvm/Target/TargetInstrInfo.h"
48#include "llvm/Target/TargetIntrinsicInfo.h"
49#include "llvm/Target/TargetLowering.h"
50#include "llvm/Target/TargetOptions.h"
51#include "llvm/Support/Compiler.h"
52#include "llvm/Support/CommandLine.h"
53#include "llvm/Support/Debug.h"
54#include "llvm/Support/ErrorHandling.h"
55#include "llvm/Support/MathExtras.h"
56#include "llvm/Support/raw_ostream.h"
57#include <algorithm>
58using namespace llvm;
59
60/// LimitFloatPrecision - Generate low-precision inline sequences for
61/// some float libcalls (6, 8 or 12 bits).
62static unsigned LimitFloatPrecision;
63
64static cl::opt<unsigned, true>
65LimitFPPrecision("limit-float-precision",
66                 cl::desc("Generate low-precision inline sequences "
67                          "for some float libcalls"),
68                 cl::location(LimitFloatPrecision),
69                 cl::init(0));
70
71namespace {
72  /// RegsForValue - This struct represents the registers (physical or virtual)
73  /// that a particular set of values is assigned, and the type information
74  /// about the value. The most common situation is to represent one value at a
75  /// time, but struct or array values are handled element-wise as multiple
76  /// values.  The splitting of aggregates is performed recursively, so that we
77  /// never have aggregate-typed registers. The values at this point do not
78  /// necessarily have legal types, so each value may require one or more
79  /// registers of some legal type.
80  ///
81  struct RegsForValue {
82    /// TLI - The TargetLowering object.
83    ///
84    const TargetLowering *TLI;
85
86    /// ValueVTs - The value types of the values, which may not be legal, and
87    /// may need be promoted or synthesized from one or more registers.
88    ///
89    SmallVector<EVT, 4> ValueVTs;
90
91    /// RegVTs - The value types of the registers. This is the same size as
92    /// ValueVTs and it records, for each value, what the type of the assigned
93    /// register or registers are. (Individual values are never synthesized
94    /// from more than one type of register.)
95    ///
96    /// With virtual registers, the contents of RegVTs is redundant with TLI's
97    /// getRegisterType member function, however when with physical registers
98    /// it is necessary to have a separate record of the types.
99    ///
100    SmallVector<EVT, 4> RegVTs;
101
102    /// Regs - This list holds the registers assigned to the values.
103    /// Each legal or promoted value requires one register, and each
104    /// expanded value requires multiple registers.
105    ///
106    SmallVector<unsigned, 4> Regs;
107
108    RegsForValue() : TLI(0) {}
109
110    RegsForValue(const TargetLowering &tli,
111                 const SmallVector<unsigned, 4> &regs,
112                 EVT regvt, EVT valuevt)
113      : TLI(&tli),  ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {}
114    RegsForValue(const TargetLowering &tli,
115                 const SmallVector<unsigned, 4> &regs,
116                 const SmallVector<EVT, 4> &regvts,
117                 const SmallVector<EVT, 4> &valuevts)
118      : TLI(&tli), ValueVTs(valuevts), RegVTs(regvts), Regs(regs) {}
119    RegsForValue(LLVMContext &Context, const TargetLowering &tli,
120                 unsigned Reg, const Type *Ty) : TLI(&tli) {
121      ComputeValueVTs(tli, Ty, ValueVTs);
122
123      for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
124        EVT ValueVT = ValueVTs[Value];
125        unsigned NumRegs = TLI->getNumRegisters(Context, ValueVT);
126        EVT RegisterVT = TLI->getRegisterType(Context, ValueVT);
127        for (unsigned i = 0; i != NumRegs; ++i)
128          Regs.push_back(Reg + i);
129        RegVTs.push_back(RegisterVT);
130        Reg += NumRegs;
131      }
132    }
133
134    /// append - Add the specified values to this one.
135    void append(const RegsForValue &RHS) {
136      TLI = RHS.TLI;
137      ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end());
138      RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end());
139      Regs.append(RHS.Regs.begin(), RHS.Regs.end());
140    }
141
142
143    /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
144    /// this value and returns the result as a ValueVTs value.  This uses
145    /// Chain/Flag as the input and updates them for the output Chain/Flag.
146    /// If the Flag pointer is NULL, no flag is used.
147    SDValue getCopyFromRegs(SelectionDAG &DAG, DebugLoc dl, unsigned Order,
148                            SDValue &Chain, SDValue *Flag) const;
149
150    /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
151    /// specified value into the registers specified by this object.  This uses
152    /// Chain/Flag as the input and updates them for the output Chain/Flag.
153    /// If the Flag pointer is NULL, no flag is used.
154    void getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl,
155                       unsigned Order, SDValue &Chain, SDValue *Flag) const;
156
157    /// AddInlineAsmOperands - Add this value to the specified inlineasm node
158    /// operand list.  This adds the code marker, matching input operand index
159    /// (if applicable), and includes the number of values added into it.
160    void AddInlineAsmOperands(unsigned Code,
161                              bool HasMatching, unsigned MatchingIdx,
162                              SelectionDAG &DAG, unsigned Order,
163                              std::vector<SDValue> &Ops) const;
164  };
165}
166
167/// getCopyFromParts - Create a value that contains the specified legal parts
168/// combined into the value they represent.  If the parts combine to a type
169/// larger then ValueVT then AssertOp can be used to specify whether the extra
170/// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
171/// (ISD::AssertSext).
172static SDValue getCopyFromParts(SelectionDAG &DAG, DebugLoc dl, unsigned Order,
173                                const SDValue *Parts,
174                                unsigned NumParts, EVT PartVT, EVT ValueVT,
175                                ISD::NodeType AssertOp = ISD::DELETED_NODE) {
176  assert(NumParts > 0 && "No parts to assemble!");
177  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
178  SDValue Val = Parts[0];
179  DAG.AssignOrdering(Val.getNode(), Order);
180
181  if (NumParts > 1) {
182    // Assemble the value from multiple parts.
183    if (!ValueVT.isVector() && ValueVT.isInteger()) {
184      unsigned PartBits = PartVT.getSizeInBits();
185      unsigned ValueBits = ValueVT.getSizeInBits();
186
187      // Assemble the power of 2 part.
188      unsigned RoundParts = NumParts & (NumParts - 1) ?
189        1 << Log2_32(NumParts) : NumParts;
190      unsigned RoundBits = PartBits * RoundParts;
191      EVT RoundVT = RoundBits == ValueBits ?
192        ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
193      SDValue Lo, Hi;
194
195      EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
196
197      if (RoundParts > 2) {
198        Lo = getCopyFromParts(DAG, dl, Order, Parts, RoundParts / 2,
199                              PartVT, HalfVT);
200        Hi = getCopyFromParts(DAG, dl, Order, Parts + RoundParts / 2,
201                              RoundParts / 2, PartVT, HalfVT);
202      } else {
203        Lo = DAG.getNode(ISD::BIT_CONVERT, dl, HalfVT, Parts[0]);
204        Hi = DAG.getNode(ISD::BIT_CONVERT, dl, HalfVT, Parts[1]);
205      }
206
207      if (TLI.isBigEndian())
208        std::swap(Lo, Hi);
209
210      Val = DAG.getNode(ISD::BUILD_PAIR, dl, RoundVT, Lo, Hi);
211
212      DAG.AssignOrdering(Lo.getNode(), Order);
213      DAG.AssignOrdering(Hi.getNode(), Order);
214      DAG.AssignOrdering(Val.getNode(), Order);
215
216      if (RoundParts < NumParts) {
217        // Assemble the trailing non-power-of-2 part.
218        unsigned OddParts = NumParts - RoundParts;
219        EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
220        Hi = getCopyFromParts(DAG, dl, Order,
221                              Parts + RoundParts, OddParts, PartVT, OddVT);
222
223        // Combine the round and odd parts.
224        Lo = Val;
225        if (TLI.isBigEndian())
226          std::swap(Lo, Hi);
227        EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
228        Hi = DAG.getNode(ISD::ANY_EXTEND, dl, TotalVT, Hi);
229        DAG.AssignOrdering(Hi.getNode(), Order);
230        Hi = DAG.getNode(ISD::SHL, dl, TotalVT, Hi,
231                         DAG.getConstant(Lo.getValueType().getSizeInBits(),
232                                         TLI.getPointerTy()));
233        DAG.AssignOrdering(Hi.getNode(), Order);
234        Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, TotalVT, Lo);
235        DAG.AssignOrdering(Lo.getNode(), Order);
236        Val = DAG.getNode(ISD::OR, dl, TotalVT, Lo, Hi);
237        DAG.AssignOrdering(Val.getNode(), Order);
238      }
239    } else if (ValueVT.isVector()) {
240      // Handle a multi-element vector.
241      EVT IntermediateVT, RegisterVT;
242      unsigned NumIntermediates;
243      unsigned NumRegs =
244        TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
245                                   NumIntermediates, RegisterVT);
246      assert(NumRegs == NumParts
247             && "Part count doesn't match vector breakdown!");
248      NumParts = NumRegs; // Silence a compiler warning.
249      assert(RegisterVT == PartVT
250             && "Part type doesn't match vector breakdown!");
251      assert(RegisterVT == Parts[0].getValueType() &&
252             "Part type doesn't match part!");
253
254      // Assemble the parts into intermediate operands.
255      SmallVector<SDValue, 8> Ops(NumIntermediates);
256      if (NumIntermediates == NumParts) {
257        // If the register was not expanded, truncate or copy the value,
258        // as appropriate.
259        for (unsigned i = 0; i != NumParts; ++i)
260          Ops[i] = getCopyFromParts(DAG, dl, Order, &Parts[i], 1,
261                                    PartVT, IntermediateVT);
262      } else if (NumParts > 0) {
263        // If the intermediate type was expanded, build the intermediate
264        // operands from the parts.
265        assert(NumParts % NumIntermediates == 0 &&
266               "Must expand into a divisible number of parts!");
267        unsigned Factor = NumParts / NumIntermediates;
268        for (unsigned i = 0; i != NumIntermediates; ++i)
269          Ops[i] = getCopyFromParts(DAG, dl, Order, &Parts[i * Factor], Factor,
270                                    PartVT, IntermediateVT);
271      }
272
273      // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
274      // intermediate operands.
275      Val = DAG.getNode(IntermediateVT.isVector() ?
276                        ISD::CONCAT_VECTORS : ISD::BUILD_VECTOR, dl,
277                        ValueVT, &Ops[0], NumIntermediates);
278      DAG.AssignOrdering(Val.getNode(), Order);
279    } else if (PartVT.isFloatingPoint()) {
280      // FP split into multiple FP parts (for ppcf128)
281      assert(ValueVT == EVT(MVT::ppcf128) && PartVT == EVT(MVT::f64) &&
282             "Unexpected split");
283      SDValue Lo, Hi;
284      Lo = DAG.getNode(ISD::BIT_CONVERT, dl, EVT(MVT::f64), Parts[0]);
285      Hi = DAG.getNode(ISD::BIT_CONVERT, dl, EVT(MVT::f64), Parts[1]);
286      if (TLI.isBigEndian())
287        std::swap(Lo, Hi);
288      Val = DAG.getNode(ISD::BUILD_PAIR, dl, ValueVT, Lo, Hi);
289
290      DAG.AssignOrdering(Hi.getNode(), Order);
291      DAG.AssignOrdering(Lo.getNode(), Order);
292      DAG.AssignOrdering(Val.getNode(), Order);
293    } else {
294      // FP split into integer parts (soft fp)
295      assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
296             !PartVT.isVector() && "Unexpected split");
297      EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
298      Val = getCopyFromParts(DAG, dl, Order, Parts, NumParts, PartVT, IntVT);
299    }
300  }
301
302  // There is now one part, held in Val.  Correct it to match ValueVT.
303  PartVT = Val.getValueType();
304
305  if (PartVT == ValueVT)
306    return Val;
307
308  if (PartVT.isVector()) {
309    assert(ValueVT.isVector() && "Unknown vector conversion!");
310    SDValue Res = DAG.getNode(ISD::BIT_CONVERT, dl, ValueVT, Val);
311    DAG.AssignOrdering(Res.getNode(), Order);
312    return Res;
313  }
314
315  if (ValueVT.isVector()) {
316    assert(ValueVT.getVectorElementType() == PartVT &&
317           ValueVT.getVectorNumElements() == 1 &&
318           "Only trivial scalar-to-vector conversions should get here!");
319    SDValue Res = DAG.getNode(ISD::BUILD_VECTOR, dl, ValueVT, Val);
320    DAG.AssignOrdering(Res.getNode(), Order);
321    return Res;
322  }
323
324  if (PartVT.isInteger() &&
325      ValueVT.isInteger()) {
326    if (ValueVT.bitsLT(PartVT)) {
327      // For a truncate, see if we have any information to
328      // indicate whether the truncated bits will always be
329      // zero or sign-extension.
330      if (AssertOp != ISD::DELETED_NODE)
331        Val = DAG.getNode(AssertOp, dl, PartVT, Val,
332                          DAG.getValueType(ValueVT));
333      DAG.AssignOrdering(Val.getNode(), Order);
334      Val = DAG.getNode(ISD::TRUNCATE, dl, ValueVT, Val);
335      DAG.AssignOrdering(Val.getNode(), Order);
336      return Val;
337    } else {
338      Val = DAG.getNode(ISD::ANY_EXTEND, dl, ValueVT, Val);
339      DAG.AssignOrdering(Val.getNode(), Order);
340      return Val;
341    }
342  }
343
344  if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
345    if (ValueVT.bitsLT(Val.getValueType())) {
346      // FP_ROUND's are always exact here.
347      Val = DAG.getNode(ISD::FP_ROUND, dl, ValueVT, Val,
348                        DAG.getIntPtrConstant(1));
349      DAG.AssignOrdering(Val.getNode(), Order);
350      return Val;
351    }
352
353    Val = DAG.getNode(ISD::FP_EXTEND, dl, ValueVT, Val);
354    DAG.AssignOrdering(Val.getNode(), Order);
355    return Val;
356  }
357
358  if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
359    Val = DAG.getNode(ISD::BIT_CONVERT, dl, ValueVT, Val);
360    DAG.AssignOrdering(Val.getNode(), Order);
361    return Val;
362  }
363
364  llvm_unreachable("Unknown mismatch!");
365  return SDValue();
366}
367
368/// getCopyToParts - Create a series of nodes that contain the specified value
369/// split into legal parts.  If the parts contain more bits than Val, then, for
370/// integers, ExtendKind can be used to specify how to generate the extra bits.
371static void getCopyToParts(SelectionDAG &DAG, DebugLoc dl, unsigned Order,
372                           SDValue Val, SDValue *Parts, unsigned NumParts,
373                           EVT PartVT,
374                           ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
375  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
376  EVT PtrVT = TLI.getPointerTy();
377  EVT ValueVT = Val.getValueType();
378  unsigned PartBits = PartVT.getSizeInBits();
379  unsigned OrigNumParts = NumParts;
380  assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!");
381
382  if (!NumParts)
383    return;
384
385  if (!ValueVT.isVector()) {
386    if (PartVT == ValueVT) {
387      assert(NumParts == 1 && "No-op copy with multiple parts!");
388      Parts[0] = Val;
389      return;
390    }
391
392    if (NumParts * PartBits > ValueVT.getSizeInBits()) {
393      // If the parts cover more bits than the value has, promote the value.
394      if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
395        assert(NumParts == 1 && "Do not know what to promote to!");
396        Val = DAG.getNode(ISD::FP_EXTEND, dl, PartVT, Val);
397      } else if (PartVT.isInteger() && ValueVT.isInteger()) {
398        ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
399        Val = DAG.getNode(ExtendKind, dl, ValueVT, Val);
400      } else {
401        llvm_unreachable("Unknown mismatch!");
402      }
403    } else if (PartBits == ValueVT.getSizeInBits()) {
404      // Different types of the same size.
405      assert(NumParts == 1 && PartVT != ValueVT);
406      Val = DAG.getNode(ISD::BIT_CONVERT, dl, PartVT, Val);
407    } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
408      // If the parts cover less bits than value has, truncate the value.
409      if (PartVT.isInteger() && ValueVT.isInteger()) {
410        ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
411        Val = DAG.getNode(ISD::TRUNCATE, dl, ValueVT, Val);
412      } else {
413        llvm_unreachable("Unknown mismatch!");
414      }
415    }
416
417    DAG.AssignOrdering(Val.getNode(), Order);
418
419    // The value may have changed - recompute ValueVT.
420    ValueVT = Val.getValueType();
421    assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
422           "Failed to tile the value with PartVT!");
423
424    if (NumParts == 1) {
425      assert(PartVT == ValueVT && "Type conversion failed!");
426      Parts[0] = Val;
427      return;
428    }
429
430    // Expand the value into multiple parts.
431    if (NumParts & (NumParts - 1)) {
432      // The number of parts is not a power of 2.  Split off and copy the tail.
433      assert(PartVT.isInteger() && ValueVT.isInteger() &&
434             "Do not know what to expand to!");
435      unsigned RoundParts = 1 << Log2_32(NumParts);
436      unsigned RoundBits = RoundParts * PartBits;
437      unsigned OddParts = NumParts - RoundParts;
438      SDValue OddVal = DAG.getNode(ISD::SRL, dl, ValueVT, Val,
439                                   DAG.getConstant(RoundBits,
440                                                   TLI.getPointerTy()));
441      getCopyToParts(DAG, dl, Order, OddVal, Parts + RoundParts,
442                     OddParts, PartVT);
443
444      if (TLI.isBigEndian())
445        // The odd parts were reversed by getCopyToParts - unreverse them.
446        std::reverse(Parts + RoundParts, Parts + NumParts);
447
448      NumParts = RoundParts;
449      ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
450      Val = DAG.getNode(ISD::TRUNCATE, dl, ValueVT, Val);
451
452      DAG.AssignOrdering(OddVal.getNode(), Order);
453      DAG.AssignOrdering(Val.getNode(), Order);
454    }
455
456    // The number of parts is a power of 2.  Repeatedly bisect the value using
457    // EXTRACT_ELEMENT.
458    Parts[0] = DAG.getNode(ISD::BIT_CONVERT, dl,
459                           EVT::getIntegerVT(*DAG.getContext(),
460                                             ValueVT.getSizeInBits()),
461                           Val);
462
463    DAG.AssignOrdering(Parts[0].getNode(), Order);
464
465    for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
466      for (unsigned i = 0; i < NumParts; i += StepSize) {
467        unsigned ThisBits = StepSize * PartBits / 2;
468        EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
469        SDValue &Part0 = Parts[i];
470        SDValue &Part1 = Parts[i+StepSize/2];
471
472        Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
473                            ThisVT, Part0,
474                            DAG.getConstant(1, PtrVT));
475        Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
476                            ThisVT, Part0,
477                            DAG.getConstant(0, PtrVT));
478
479        DAG.AssignOrdering(Part0.getNode(), Order);
480        DAG.AssignOrdering(Part1.getNode(), Order);
481
482        if (ThisBits == PartBits && ThisVT != PartVT) {
483          Part0 = DAG.getNode(ISD::BIT_CONVERT, dl,
484                                                PartVT, Part0);
485          Part1 = DAG.getNode(ISD::BIT_CONVERT, dl,
486                                                PartVT, Part1);
487          DAG.AssignOrdering(Part0.getNode(), Order);
488          DAG.AssignOrdering(Part1.getNode(), Order);
489        }
490      }
491    }
492
493    if (TLI.isBigEndian())
494      std::reverse(Parts, Parts + OrigNumParts);
495
496    return;
497  }
498
499  // Vector ValueVT.
500  if (NumParts == 1) {
501    if (PartVT != ValueVT) {
502      if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
503        Val = DAG.getNode(ISD::BIT_CONVERT, dl, PartVT, Val);
504      } else {
505        assert(ValueVT.getVectorElementType() == PartVT &&
506               ValueVT.getVectorNumElements() == 1 &&
507               "Only trivial vector-to-scalar conversions should get here!");
508        Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
509                          PartVT, Val,
510                          DAG.getConstant(0, PtrVT));
511      }
512    }
513
514    DAG.AssignOrdering(Val.getNode(), Order);
515    Parts[0] = Val;
516    return;
517  }
518
519  // Handle a multi-element vector.
520  EVT IntermediateVT, RegisterVT;
521  unsigned NumIntermediates;
522  unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT,
523                              IntermediateVT, NumIntermediates, RegisterVT);
524  unsigned NumElements = ValueVT.getVectorNumElements();
525
526  assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
527  NumParts = NumRegs; // Silence a compiler warning.
528  assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
529
530  // Split the vector into intermediate operands.
531  SmallVector<SDValue, 8> Ops(NumIntermediates);
532  for (unsigned i = 0; i != NumIntermediates; ++i) {
533    if (IntermediateVT.isVector())
534      Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl,
535                           IntermediateVT, Val,
536                           DAG.getConstant(i * (NumElements / NumIntermediates),
537                                           PtrVT));
538    else
539      Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
540                           IntermediateVT, Val,
541                           DAG.getConstant(i, PtrVT));
542
543    DAG.AssignOrdering(Ops[i].getNode(), Order);
544  }
545
546  // Split the intermediate operands into legal parts.
547  if (NumParts == NumIntermediates) {
548    // If the register was not expanded, promote or copy the value,
549    // as appropriate.
550    for (unsigned i = 0; i != NumParts; ++i)
551      getCopyToParts(DAG, dl, Order, Ops[i], &Parts[i], 1, PartVT);
552  } else if (NumParts > 0) {
553    // If the intermediate type was expanded, split each the value into
554    // legal parts.
555    assert(NumParts % NumIntermediates == 0 &&
556           "Must expand into a divisible number of parts!");
557    unsigned Factor = NumParts / NumIntermediates;
558    for (unsigned i = 0; i != NumIntermediates; ++i)
559      getCopyToParts(DAG, dl, Order, Ops[i], &Parts[i*Factor], Factor, PartVT);
560  }
561}
562
563
564void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa) {
565  AA = &aa;
566  GFI = gfi;
567  TD = DAG.getTarget().getTargetData();
568}
569
570/// clear - Clear out the curret SelectionDAG and the associated
571/// state and prepare this SelectionDAGBuilder object to be used
572/// for a new block. This doesn't clear out information about
573/// additional blocks that are needed to complete switch lowering
574/// or PHI node updating; that information is cleared out as it is
575/// consumed.
576void SelectionDAGBuilder::clear() {
577  NodeMap.clear();
578  PendingLoads.clear();
579  PendingExports.clear();
580  EdgeMapping.clear();
581  DAG.clear();
582  CurDebugLoc = DebugLoc::getUnknownLoc();
583  HasTailCall = false;
584}
585
586/// getRoot - Return the current virtual root of the Selection DAG,
587/// flushing any PendingLoad items. This must be done before emitting
588/// a store or any other node that may need to be ordered after any
589/// prior load instructions.
590///
591SDValue SelectionDAGBuilder::getRoot() {
592  if (PendingLoads.empty())
593    return DAG.getRoot();
594
595  if (PendingLoads.size() == 1) {
596    SDValue Root = PendingLoads[0];
597    DAG.setRoot(Root);
598    PendingLoads.clear();
599    return Root;
600  }
601
602  // Otherwise, we have to make a token factor node.
603  SDValue Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
604                               &PendingLoads[0], PendingLoads.size());
605  PendingLoads.clear();
606  DAG.setRoot(Root);
607  return Root;
608}
609
610/// getControlRoot - Similar to getRoot, but instead of flushing all the
611/// PendingLoad items, flush all the PendingExports items. It is necessary
612/// to do this before emitting a terminator instruction.
613///
614SDValue SelectionDAGBuilder::getControlRoot() {
615  SDValue Root = DAG.getRoot();
616
617  if (PendingExports.empty())
618    return Root;
619
620  // Turn all of the CopyToReg chains into one factored node.
621  if (Root.getOpcode() != ISD::EntryToken) {
622    unsigned i = 0, e = PendingExports.size();
623    for (; i != e; ++i) {
624      assert(PendingExports[i].getNode()->getNumOperands() > 1);
625      if (PendingExports[i].getNode()->getOperand(0) == Root)
626        break;  // Don't add the root if we already indirectly depend on it.
627    }
628
629    if (i == e)
630      PendingExports.push_back(Root);
631  }
632
633  Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
634                     &PendingExports[0],
635                     PendingExports.size());
636  PendingExports.clear();
637  DAG.setRoot(Root);
638  return Root;
639}
640
641void SelectionDAGBuilder::visit(Instruction &I) {
642  visit(I.getOpcode(), I);
643}
644
645void SelectionDAGBuilder::visit(unsigned Opcode, User &I) {
646  // We're processing a new instruction.
647  ++SDNodeOrder;
648
649  // Note: this doesn't use InstVisitor, because it has to work with
650  // ConstantExpr's in addition to instructions.
651  switch (Opcode) {
652  default: llvm_unreachable("Unknown instruction type encountered!");
653    // Build the switch statement using the Instruction.def file.
654#define HANDLE_INST(NUM, OPCODE, CLASS) \
655  case Instruction::OPCODE: return visit##OPCODE((CLASS&)I);
656#include "llvm/Instruction.def"
657  }
658}
659
660SDValue SelectionDAGBuilder::getValue(const Value *V) {
661  SDValue &N = NodeMap[V];
662  if (N.getNode()) return N;
663
664  if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(V))) {
665    EVT VT = TLI.getValueType(V->getType(), true);
666
667    if (ConstantInt *CI = dyn_cast<ConstantInt>(C))
668      return N = DAG.getConstant(*CI, VT);
669
670    if (GlobalValue *GV = dyn_cast<GlobalValue>(C))
671      return N = DAG.getGlobalAddress(GV, VT);
672
673    if (isa<ConstantPointerNull>(C))
674      return N = DAG.getConstant(0, TLI.getPointerTy());
675
676    if (ConstantFP *CFP = dyn_cast<ConstantFP>(C))
677      return N = DAG.getConstantFP(*CFP, VT);
678
679    if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
680      return N = DAG.getUNDEF(VT);
681
682    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
683      visit(CE->getOpcode(), *CE);
684      SDValue N1 = NodeMap[V];
685      assert(N1.getNode() && "visit didn't populate the ValueMap!");
686      return N1;
687    }
688
689    if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
690      SmallVector<SDValue, 4> Constants;
691      for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end();
692           OI != OE; ++OI) {
693        SDNode *Val = getValue(*OI).getNode();
694        // If the operand is an empty aggregate, there are no values.
695        if (!Val) continue;
696        // Add each leaf value from the operand to the Constants list
697        // to form a flattened list of all the values.
698        for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
699          Constants.push_back(SDValue(Val, i));
700      }
701
702      SDValue Res = DAG.getMergeValues(&Constants[0], Constants.size(),
703                                       getCurDebugLoc());
704      DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
705      return Res;
706    }
707
708    if (isa<StructType>(C->getType()) || isa<ArrayType>(C->getType())) {
709      assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
710             "Unknown struct or array constant!");
711
712      SmallVector<EVT, 4> ValueVTs;
713      ComputeValueVTs(TLI, C->getType(), ValueVTs);
714      unsigned NumElts = ValueVTs.size();
715      if (NumElts == 0)
716        return SDValue(); // empty struct
717      SmallVector<SDValue, 4> Constants(NumElts);
718      for (unsigned i = 0; i != NumElts; ++i) {
719        EVT EltVT = ValueVTs[i];
720        if (isa<UndefValue>(C))
721          Constants[i] = DAG.getUNDEF(EltVT);
722        else if (EltVT.isFloatingPoint())
723          Constants[i] = DAG.getConstantFP(0, EltVT);
724        else
725          Constants[i] = DAG.getConstant(0, EltVT);
726      }
727
728      SDValue Res = DAG.getMergeValues(&Constants[0], NumElts,
729                                       getCurDebugLoc());
730      DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
731      return Res;
732    }
733
734    if (BlockAddress *BA = dyn_cast<BlockAddress>(C))
735      return DAG.getBlockAddress(BA, VT);
736
737    const VectorType *VecTy = cast<VectorType>(V->getType());
738    unsigned NumElements = VecTy->getNumElements();
739
740    // Now that we know the number and type of the elements, get that number of
741    // elements into the Ops array based on what kind of constant it is.
742    SmallVector<SDValue, 16> Ops;
743    if (ConstantVector *CP = dyn_cast<ConstantVector>(C)) {
744      for (unsigned i = 0; i != NumElements; ++i)
745        Ops.push_back(getValue(CP->getOperand(i)));
746    } else {
747      assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!");
748      EVT EltVT = TLI.getValueType(VecTy->getElementType());
749
750      SDValue Op;
751      if (EltVT.isFloatingPoint())
752        Op = DAG.getConstantFP(0, EltVT);
753      else
754        Op = DAG.getConstant(0, EltVT);
755      Ops.assign(NumElements, Op);
756    }
757
758    // Create a BUILD_VECTOR node.
759    SDValue Res = DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(),
760                              VT, &Ops[0], Ops.size());
761    DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
762    return NodeMap[V] = Res;
763  }
764
765  // If this is a static alloca, generate it as the frameindex instead of
766  // computation.
767  if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
768    DenseMap<const AllocaInst*, int>::iterator SI =
769      FuncInfo.StaticAllocaMap.find(AI);
770    if (SI != FuncInfo.StaticAllocaMap.end())
771      return DAG.getFrameIndex(SI->second, TLI.getPointerTy());
772  }
773
774  unsigned InReg = FuncInfo.ValueMap[V];
775  assert(InReg && "Value not in map!");
776
777  RegsForValue RFV(*DAG.getContext(), TLI, InReg, V->getType());
778  SDValue Chain = DAG.getEntryNode();
779  return RFV.getCopyFromRegs(DAG, getCurDebugLoc(),
780                             SDNodeOrder, Chain, NULL);
781}
782
783/// Get the EVTs and ArgFlags collections that represent the legalized return
784/// type of the given function.  This does not require a DAG or a return value,
785/// and is suitable for use before any DAGs for the function are constructed.
786static void getReturnInfo(const Type* ReturnType,
787                   Attributes attr, SmallVectorImpl<EVT> &OutVTs,
788                   SmallVectorImpl<ISD::ArgFlagsTy> &OutFlags,
789                   TargetLowering &TLI,
790                   SmallVectorImpl<uint64_t> *Offsets = 0) {
791  SmallVector<EVT, 4> ValueVTs;
792  ComputeValueVTs(TLI, ReturnType, ValueVTs);
793  unsigned NumValues = ValueVTs.size();
794  if (NumValues == 0) return;
795  unsigned Offset = 0;
796
797  for (unsigned j = 0, f = NumValues; j != f; ++j) {
798    EVT VT = ValueVTs[j];
799    ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
800
801    if (attr & Attribute::SExt)
802      ExtendKind = ISD::SIGN_EXTEND;
803    else if (attr & Attribute::ZExt)
804      ExtendKind = ISD::ZERO_EXTEND;
805
806    // FIXME: C calling convention requires the return type to be promoted to
807    // at least 32-bit. But this is not necessary for non-C calling
808    // conventions. The frontend should mark functions whose return values
809    // require promoting with signext or zeroext attributes.
810    if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) {
811      EVT MinVT = TLI.getRegisterType(ReturnType->getContext(), MVT::i32);
812      if (VT.bitsLT(MinVT))
813        VT = MinVT;
814    }
815
816    unsigned NumParts = TLI.getNumRegisters(ReturnType->getContext(), VT);
817    EVT PartVT = TLI.getRegisterType(ReturnType->getContext(), VT);
818    unsigned PartSize = TLI.getTargetData()->getTypeAllocSize(
819                        PartVT.getTypeForEVT(ReturnType->getContext()));
820
821    // 'inreg' on function refers to return value
822    ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
823    if (attr & Attribute::InReg)
824      Flags.setInReg();
825
826    // Propagate extension type if any
827    if (attr & Attribute::SExt)
828      Flags.setSExt();
829    else if (attr & Attribute::ZExt)
830      Flags.setZExt();
831
832    for (unsigned i = 0; i < NumParts; ++i) {
833      OutVTs.push_back(PartVT);
834      OutFlags.push_back(Flags);
835      if (Offsets)
836      {
837        Offsets->push_back(Offset);
838        Offset += PartSize;
839      }
840    }
841  }
842}
843
844void SelectionDAGBuilder::visitRet(ReturnInst &I) {
845  SDValue Chain = getControlRoot();
846  SmallVector<ISD::OutputArg, 8> Outs;
847  FunctionLoweringInfo &FLI = DAG.getFunctionLoweringInfo();
848
849  if (!FLI.CanLowerReturn) {
850    unsigned DemoteReg = FLI.DemoteRegister;
851    const Function *F = I.getParent()->getParent();
852
853    // Emit a store of the return value through the virtual register.
854    // Leave Outs empty so that LowerReturn won't try to load return
855    // registers the usual way.
856    SmallVector<EVT, 1> PtrValueVTs;
857    ComputeValueVTs(TLI, PointerType::getUnqual(F->getReturnType()),
858                    PtrValueVTs);
859
860    SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]);
861    SDValue RetOp = getValue(I.getOperand(0));
862
863    SmallVector<EVT, 4> ValueVTs;
864    SmallVector<uint64_t, 4> Offsets;
865    ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs, &Offsets);
866    unsigned NumValues = ValueVTs.size();
867
868    SmallVector<SDValue, 4> Chains(NumValues);
869    EVT PtrVT = PtrValueVTs[0];
870    for (unsigned i = 0; i != NumValues; ++i) {
871      SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT, RetPtr,
872                                DAG.getConstant(Offsets[i], PtrVT));
873      Chains[i] =
874        DAG.getStore(Chain, getCurDebugLoc(),
875                     SDValue(RetOp.getNode(), RetOp.getResNo() + i),
876                     Add, NULL, Offsets[i], false, 0);
877
878      DAG.AssignOrdering(Add.getNode(), SDNodeOrder);
879      DAG.AssignOrdering(Chains[i].getNode(), SDNodeOrder);
880    }
881
882    Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
883                        MVT::Other, &Chains[0], NumValues);
884
885    DAG.AssignOrdering(Chain.getNode(), SDNodeOrder);
886  } else {
887    for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
888      SmallVector<EVT, 4> ValueVTs;
889      ComputeValueVTs(TLI, I.getOperand(i)->getType(), ValueVTs);
890      unsigned NumValues = ValueVTs.size();
891      if (NumValues == 0) continue;
892
893      SDValue RetOp = getValue(I.getOperand(i));
894      for (unsigned j = 0, f = NumValues; j != f; ++j) {
895        EVT VT = ValueVTs[j];
896
897        ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
898
899        const Function *F = I.getParent()->getParent();
900        if (F->paramHasAttr(0, Attribute::SExt))
901          ExtendKind = ISD::SIGN_EXTEND;
902        else if (F->paramHasAttr(0, Attribute::ZExt))
903          ExtendKind = ISD::ZERO_EXTEND;
904
905        // FIXME: C calling convention requires the return type to be promoted
906        // to at least 32-bit. But this is not necessary for non-C calling
907        // conventions. The frontend should mark functions whose return values
908        // require promoting with signext or zeroext attributes.
909        if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) {
910          EVT MinVT = TLI.getRegisterType(*DAG.getContext(), MVT::i32);
911          if (VT.bitsLT(MinVT))
912            VT = MinVT;
913        }
914
915        unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), VT);
916        EVT PartVT = TLI.getRegisterType(*DAG.getContext(), VT);
917        SmallVector<SDValue, 4> Parts(NumParts);
918        getCopyToParts(DAG, getCurDebugLoc(), SDNodeOrder,
919                       SDValue(RetOp.getNode(), RetOp.getResNo() + j),
920                       &Parts[0], NumParts, PartVT, ExtendKind);
921
922        // 'inreg' on function refers to return value
923        ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
924        if (F->paramHasAttr(0, Attribute::InReg))
925          Flags.setInReg();
926
927        // Propagate extension type if any
928        if (F->paramHasAttr(0, Attribute::SExt))
929          Flags.setSExt();
930        else if (F->paramHasAttr(0, Attribute::ZExt))
931          Flags.setZExt();
932
933        for (unsigned i = 0; i < NumParts; ++i)
934          Outs.push_back(ISD::OutputArg(Flags, Parts[i], /*isfixed=*/true));
935      }
936    }
937  }
938
939  bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
940  CallingConv::ID CallConv =
941    DAG.getMachineFunction().getFunction()->getCallingConv();
942  Chain = TLI.LowerReturn(Chain, CallConv, isVarArg,
943                          Outs, getCurDebugLoc(), DAG);
944
945  // Verify that the target's LowerReturn behaved as expected.
946  assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
947         "LowerReturn didn't return a valid chain!");
948
949  // Update the DAG with the new chain value resulting from return lowering.
950  DAG.setRoot(Chain);
951  DAG.AssignOrdering(Chain.getNode(), SDNodeOrder);
952}
953
954/// CopyToExportRegsIfNeeded - If the given value has virtual registers
955/// created for it, emit nodes to copy the value into the virtual
956/// registers.
957void SelectionDAGBuilder::CopyToExportRegsIfNeeded(Value *V) {
958  if (!V->use_empty()) {
959    DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
960    if (VMI != FuncInfo.ValueMap.end())
961      CopyValueToVirtualRegister(V, VMI->second);
962  }
963}
964
965/// ExportFromCurrentBlock - If this condition isn't known to be exported from
966/// the current basic block, add it to ValueMap now so that we'll get a
967/// CopyTo/FromReg.
968void SelectionDAGBuilder::ExportFromCurrentBlock(Value *V) {
969  // No need to export constants.
970  if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
971
972  // Already exported?
973  if (FuncInfo.isExportedInst(V)) return;
974
975  unsigned Reg = FuncInfo.InitializeRegForValue(V);
976  CopyValueToVirtualRegister(V, Reg);
977}
978
979bool SelectionDAGBuilder::isExportableFromCurrentBlock(Value *V,
980                                                     const BasicBlock *FromBB) {
981  // The operands of the setcc have to be in this block.  We don't know
982  // how to export them from some other block.
983  if (Instruction *VI = dyn_cast<Instruction>(V)) {
984    // Can export from current BB.
985    if (VI->getParent() == FromBB)
986      return true;
987
988    // Is already exported, noop.
989    return FuncInfo.isExportedInst(V);
990  }
991
992  // If this is an argument, we can export it if the BB is the entry block or
993  // if it is already exported.
994  if (isa<Argument>(V)) {
995    if (FromBB == &FromBB->getParent()->getEntryBlock())
996      return true;
997
998    // Otherwise, can only export this if it is already exported.
999    return FuncInfo.isExportedInst(V);
1000  }
1001
1002  // Otherwise, constants can always be exported.
1003  return true;
1004}
1005
1006static bool InBlock(const Value *V, const BasicBlock *BB) {
1007  if (const Instruction *I = dyn_cast<Instruction>(V))
1008    return I->getParent() == BB;
1009  return true;
1010}
1011
1012/// getFCmpCondCode - Return the ISD condition code corresponding to
1013/// the given LLVM IR floating-point condition code.  This includes
1014/// consideration of global floating-point math flags.
1015///
1016static ISD::CondCode getFCmpCondCode(FCmpInst::Predicate Pred) {
1017  ISD::CondCode FPC, FOC;
1018  switch (Pred) {
1019  case FCmpInst::FCMP_FALSE: FOC = FPC = ISD::SETFALSE; break;
1020  case FCmpInst::FCMP_OEQ:   FOC = ISD::SETEQ; FPC = ISD::SETOEQ; break;
1021  case FCmpInst::FCMP_OGT:   FOC = ISD::SETGT; FPC = ISD::SETOGT; break;
1022  case FCmpInst::FCMP_OGE:   FOC = ISD::SETGE; FPC = ISD::SETOGE; break;
1023  case FCmpInst::FCMP_OLT:   FOC = ISD::SETLT; FPC = ISD::SETOLT; break;
1024  case FCmpInst::FCMP_OLE:   FOC = ISD::SETLE; FPC = ISD::SETOLE; break;
1025  case FCmpInst::FCMP_ONE:   FOC = ISD::SETNE; FPC = ISD::SETONE; break;
1026  case FCmpInst::FCMP_ORD:   FOC = FPC = ISD::SETO;   break;
1027  case FCmpInst::FCMP_UNO:   FOC = FPC = ISD::SETUO;  break;
1028  case FCmpInst::FCMP_UEQ:   FOC = ISD::SETEQ; FPC = ISD::SETUEQ; break;
1029  case FCmpInst::FCMP_UGT:   FOC = ISD::SETGT; FPC = ISD::SETUGT; break;
1030  case FCmpInst::FCMP_UGE:   FOC = ISD::SETGE; FPC = ISD::SETUGE; break;
1031  case FCmpInst::FCMP_ULT:   FOC = ISD::SETLT; FPC = ISD::SETULT; break;
1032  case FCmpInst::FCMP_ULE:   FOC = ISD::SETLE; FPC = ISD::SETULE; break;
1033  case FCmpInst::FCMP_UNE:   FOC = ISD::SETNE; FPC = ISD::SETUNE; break;
1034  case FCmpInst::FCMP_TRUE:  FOC = FPC = ISD::SETTRUE; break;
1035  default:
1036    llvm_unreachable("Invalid FCmp predicate opcode!");
1037    FOC = FPC = ISD::SETFALSE;
1038    break;
1039  }
1040  if (FiniteOnlyFPMath())
1041    return FOC;
1042  else
1043    return FPC;
1044}
1045
1046/// getICmpCondCode - Return the ISD condition code corresponding to
1047/// the given LLVM IR integer condition code.
1048///
1049static ISD::CondCode getICmpCondCode(ICmpInst::Predicate Pred) {
1050  switch (Pred) {
1051  case ICmpInst::ICMP_EQ:  return ISD::SETEQ;
1052  case ICmpInst::ICMP_NE:  return ISD::SETNE;
1053  case ICmpInst::ICMP_SLE: return ISD::SETLE;
1054  case ICmpInst::ICMP_ULE: return ISD::SETULE;
1055  case ICmpInst::ICMP_SGE: return ISD::SETGE;
1056  case ICmpInst::ICMP_UGE: return ISD::SETUGE;
1057  case ICmpInst::ICMP_SLT: return ISD::SETLT;
1058  case ICmpInst::ICMP_ULT: return ISD::SETULT;
1059  case ICmpInst::ICMP_SGT: return ISD::SETGT;
1060  case ICmpInst::ICMP_UGT: return ISD::SETUGT;
1061  default:
1062    llvm_unreachable("Invalid ICmp predicate opcode!");
1063    return ISD::SETNE;
1064  }
1065}
1066
1067/// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
1068/// This function emits a branch and is used at the leaves of an OR or an
1069/// AND operator tree.
1070///
1071void
1072SelectionDAGBuilder::EmitBranchForMergedCondition(Value *Cond,
1073                                                  MachineBasicBlock *TBB,
1074                                                  MachineBasicBlock *FBB,
1075                                                  MachineBasicBlock *CurBB) {
1076  const BasicBlock *BB = CurBB->getBasicBlock();
1077
1078  // If the leaf of the tree is a comparison, merge the condition into
1079  // the caseblock.
1080  if (CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
1081    // The operands of the cmp have to be in this block.  We don't know
1082    // how to export them from some other block.  If this is the first block
1083    // of the sequence, no exporting is needed.
1084    if (CurBB == CurMBB ||
1085        (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
1086         isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
1087      ISD::CondCode Condition;
1088      if (ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
1089        Condition = getICmpCondCode(IC->getPredicate());
1090      } else if (FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) {
1091        Condition = getFCmpCondCode(FC->getPredicate());
1092      } else {
1093        Condition = ISD::SETEQ; // silence warning.
1094        llvm_unreachable("Unknown compare instruction");
1095      }
1096
1097      CaseBlock CB(Condition, BOp->getOperand(0),
1098                   BOp->getOperand(1), NULL, TBB, FBB, CurBB);
1099      SwitchCases.push_back(CB);
1100      return;
1101    }
1102  }
1103
1104  // Create a CaseBlock record representing this branch.
1105  CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()),
1106               NULL, TBB, FBB, CurBB);
1107  SwitchCases.push_back(CB);
1108}
1109
1110/// FindMergedConditions - If Cond is an expression like
1111void SelectionDAGBuilder::FindMergedConditions(Value *Cond,
1112                                               MachineBasicBlock *TBB,
1113                                               MachineBasicBlock *FBB,
1114                                               MachineBasicBlock *CurBB,
1115                                               unsigned Opc) {
1116  // If this node is not part of the or/and tree, emit it as a branch.
1117  Instruction *BOp = dyn_cast<Instruction>(Cond);
1118  if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
1119      (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() ||
1120      BOp->getParent() != CurBB->getBasicBlock() ||
1121      !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
1122      !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
1123    EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB);
1124    return;
1125  }
1126
1127  //  Create TmpBB after CurBB.
1128  MachineFunction::iterator BBI = CurBB;
1129  MachineFunction &MF = DAG.getMachineFunction();
1130  MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
1131  CurBB->getParent()->insert(++BBI, TmpBB);
1132
1133  if (Opc == Instruction::Or) {
1134    // Codegen X | Y as:
1135    //   jmp_if_X TBB
1136    //   jmp TmpBB
1137    // TmpBB:
1138    //   jmp_if_Y TBB
1139    //   jmp FBB
1140    //
1141
1142    // Emit the LHS condition.
1143    FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, Opc);
1144
1145    // Emit the RHS condition into TmpBB.
1146    FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, Opc);
1147  } else {
1148    assert(Opc == Instruction::And && "Unknown merge op!");
1149    // Codegen X & Y as:
1150    //   jmp_if_X TmpBB
1151    //   jmp FBB
1152    // TmpBB:
1153    //   jmp_if_Y TBB
1154    //   jmp FBB
1155    //
1156    //  This requires creation of TmpBB after CurBB.
1157
1158    // Emit the LHS condition.
1159    FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, Opc);
1160
1161    // Emit the RHS condition into TmpBB.
1162    FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, Opc);
1163  }
1164}
1165
1166/// If the set of cases should be emitted as a series of branches, return true.
1167/// If we should emit this as a bunch of and/or'd together conditions, return
1168/// false.
1169bool
1170SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases){
1171  if (Cases.size() != 2) return true;
1172
1173  // If this is two comparisons of the same values or'd or and'd together, they
1174  // will get folded into a single comparison, so don't emit two blocks.
1175  if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
1176       Cases[0].CmpRHS == Cases[1].CmpRHS) ||
1177      (Cases[0].CmpRHS == Cases[1].CmpLHS &&
1178       Cases[0].CmpLHS == Cases[1].CmpRHS)) {
1179    return false;
1180  }
1181
1182  // Handle: (X != null) | (Y != null) --> (X|Y) != 0
1183  // Handle: (X == null) & (Y == null) --> (X|Y) == 0
1184  if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
1185      Cases[0].CC == Cases[1].CC &&
1186      isa<Constant>(Cases[0].CmpRHS) &&
1187      cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
1188    if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
1189      return false;
1190    if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
1191      return false;
1192  }
1193
1194  return true;
1195}
1196
1197void SelectionDAGBuilder::visitBr(BranchInst &I) {
1198  // Update machine-CFG edges.
1199  MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
1200
1201  // Figure out which block is immediately after the current one.
1202  MachineBasicBlock *NextBlock = 0;
1203  MachineFunction::iterator BBI = CurMBB;
1204  if (++BBI != FuncInfo.MF->end())
1205    NextBlock = BBI;
1206
1207  if (I.isUnconditional()) {
1208    // Update machine-CFG edges.
1209    CurMBB->addSuccessor(Succ0MBB);
1210
1211    // If this is not a fall-through branch, emit the branch.
1212    if (Succ0MBB != NextBlock) {
1213      SDValue V = DAG.getNode(ISD::BR, getCurDebugLoc(),
1214                              MVT::Other, getControlRoot(),
1215                              DAG.getBasicBlock(Succ0MBB));
1216      DAG.setRoot(V);
1217      DAG.AssignOrdering(V.getNode(), SDNodeOrder);
1218    }
1219
1220    return;
1221  }
1222
1223  // If this condition is one of the special cases we handle, do special stuff
1224  // now.
1225  Value *CondVal = I.getCondition();
1226  MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
1227
1228  // If this is a series of conditions that are or'd or and'd together, emit
1229  // this as a sequence of branches instead of setcc's with and/or operations.
1230  // For example, instead of something like:
1231  //     cmp A, B
1232  //     C = seteq
1233  //     cmp D, E
1234  //     F = setle
1235  //     or C, F
1236  //     jnz foo
1237  // Emit:
1238  //     cmp A, B
1239  //     je foo
1240  //     cmp D, E
1241  //     jle foo
1242  //
1243  if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
1244    if (BOp->hasOneUse() &&
1245        (BOp->getOpcode() == Instruction::And ||
1246         BOp->getOpcode() == Instruction::Or)) {
1247      FindMergedConditions(BOp, Succ0MBB, Succ1MBB, CurMBB, BOp->getOpcode());
1248      // If the compares in later blocks need to use values not currently
1249      // exported from this block, export them now.  This block should always
1250      // be the first entry.
1251      assert(SwitchCases[0].ThisBB == CurMBB && "Unexpected lowering!");
1252
1253      // Allow some cases to be rejected.
1254      if (ShouldEmitAsBranches(SwitchCases)) {
1255        for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
1256          ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
1257          ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
1258        }
1259
1260        // Emit the branch for this block.
1261        visitSwitchCase(SwitchCases[0]);
1262        SwitchCases.erase(SwitchCases.begin());
1263        return;
1264      }
1265
1266      // Okay, we decided not to do this, remove any inserted MBB's and clear
1267      // SwitchCases.
1268      for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
1269        FuncInfo.MF->erase(SwitchCases[i].ThisBB);
1270
1271      SwitchCases.clear();
1272    }
1273  }
1274
1275  // Create a CaseBlock record representing this branch.
1276  CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
1277               NULL, Succ0MBB, Succ1MBB, CurMBB);
1278
1279  // Use visitSwitchCase to actually insert the fast branch sequence for this
1280  // cond branch.
1281  visitSwitchCase(CB);
1282}
1283
1284/// visitSwitchCase - Emits the necessary code to represent a single node in
1285/// the binary search tree resulting from lowering a switch instruction.
1286void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB) {
1287  SDValue Cond;
1288  SDValue CondLHS = getValue(CB.CmpLHS);
1289  DebugLoc dl = getCurDebugLoc();
1290
1291  // Build the setcc now.
1292  if (CB.CmpMHS == NULL) {
1293    // Fold "(X == true)" to X and "(X == false)" to !X to
1294    // handle common cases produced by branch lowering.
1295    if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
1296        CB.CC == ISD::SETEQ)
1297      Cond = CondLHS;
1298    else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
1299             CB.CC == ISD::SETEQ) {
1300      SDValue True = DAG.getConstant(1, CondLHS.getValueType());
1301      Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
1302    } else
1303      Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
1304  } else {
1305    assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
1306
1307    const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
1308    const APInt& High  = cast<ConstantInt>(CB.CmpRHS)->getValue();
1309
1310    SDValue CmpOp = getValue(CB.CmpMHS);
1311    EVT VT = CmpOp.getValueType();
1312
1313    if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
1314      Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, VT),
1315                          ISD::SETLE);
1316    } else {
1317      SDValue SUB = DAG.getNode(ISD::SUB, dl,
1318                                VT, CmpOp, DAG.getConstant(Low, VT));
1319      Cond = DAG.getSetCC(dl, MVT::i1, SUB,
1320                          DAG.getConstant(High-Low, VT), ISD::SETULE);
1321    }
1322  }
1323
1324  DAG.AssignOrdering(Cond.getNode(), SDNodeOrder);
1325
1326  // Update successor info
1327  CurMBB->addSuccessor(CB.TrueBB);
1328  CurMBB->addSuccessor(CB.FalseBB);
1329
1330  // Set NextBlock to be the MBB immediately after the current one, if any.
1331  // This is used to avoid emitting unnecessary branches to the next block.
1332  MachineBasicBlock *NextBlock = 0;
1333  MachineFunction::iterator BBI = CurMBB;
1334  if (++BBI != FuncInfo.MF->end())
1335    NextBlock = BBI;
1336
1337  // If the lhs block is the next block, invert the condition so that we can
1338  // fall through to the lhs instead of the rhs block.
1339  if (CB.TrueBB == NextBlock) {
1340    std::swap(CB.TrueBB, CB.FalseBB);
1341    SDValue True = DAG.getConstant(1, Cond.getValueType());
1342    Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
1343    DAG.AssignOrdering(Cond.getNode(), SDNodeOrder);
1344  }
1345
1346  SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
1347                               MVT::Other, getControlRoot(), Cond,
1348                               DAG.getBasicBlock(CB.TrueBB));
1349  DAG.AssignOrdering(BrCond.getNode(), SDNodeOrder);
1350
1351  // If the branch was constant folded, fix up the CFG.
1352  if (BrCond.getOpcode() == ISD::BR) {
1353    CurMBB->removeSuccessor(CB.FalseBB);
1354  } else {
1355    // Otherwise, go ahead and insert the false branch.
1356    if (BrCond == getControlRoot())
1357      CurMBB->removeSuccessor(CB.TrueBB);
1358
1359    if (CB.FalseBB != NextBlock) {
1360      BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
1361                           DAG.getBasicBlock(CB.FalseBB));
1362
1363      DAG.AssignOrdering(BrCond.getNode(), SDNodeOrder);
1364    }
1365  }
1366
1367  DAG.setRoot(BrCond);
1368}
1369
1370/// visitJumpTable - Emit JumpTable node in the current MBB
1371void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) {
1372  // Emit the code for the jump table
1373  assert(JT.Reg != -1U && "Should lower JT Header first!");
1374  EVT PTy = TLI.getPointerTy();
1375  SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(),
1376                                     JT.Reg, PTy);
1377  SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
1378  SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurDebugLoc(),
1379                                    MVT::Other, Index.getValue(1),
1380                                    Table, Index);
1381  DAG.setRoot(BrJumpTable);
1382
1383  DAG.AssignOrdering(Index.getNode(), SDNodeOrder);
1384  DAG.AssignOrdering(Table.getNode(), SDNodeOrder);
1385  DAG.AssignOrdering(BrJumpTable.getNode(), SDNodeOrder);
1386}
1387
1388/// visitJumpTableHeader - This function emits necessary code to produce index
1389/// in the JumpTable from switch case.
1390void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT,
1391                                               JumpTableHeader &JTH) {
1392  // Subtract the lowest switch case value from the value being switched on and
1393  // conditional branch to default mbb if the result is greater than the
1394  // difference between smallest and largest cases.
1395  SDValue SwitchOp = getValue(JTH.SValue);
1396  EVT VT = SwitchOp.getValueType();
1397  SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp,
1398                            DAG.getConstant(JTH.First, VT));
1399
1400  // The SDNode we just created, which holds the value being switched on minus
1401  // the the smallest case value, needs to be copied to a virtual register so it
1402  // can be used as an index into the jump table in a subsequent basic block.
1403  // This value may be smaller or larger than the target's pointer type, and
1404  // therefore require extension or truncating.
1405  SwitchOp = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(), TLI.getPointerTy());
1406
1407  unsigned JumpTableReg = FuncInfo.MakeReg(TLI.getPointerTy());
1408  SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(),
1409                                    JumpTableReg, SwitchOp);
1410  JT.Reg = JumpTableReg;
1411
1412  // Emit the range check for the jump table, and branch to the default block
1413  // for the switch statement if the value being switched on exceeds the largest
1414  // case in the switch.
1415  SDValue CMP = DAG.getSetCC(getCurDebugLoc(),
1416                             TLI.getSetCCResultType(Sub.getValueType()), Sub,
1417                             DAG.getConstant(JTH.Last-JTH.First,VT),
1418                             ISD::SETUGT);
1419
1420  DAG.AssignOrdering(Sub.getNode(), SDNodeOrder);
1421  DAG.AssignOrdering(SwitchOp.getNode(), SDNodeOrder);
1422  DAG.AssignOrdering(CopyTo.getNode(), SDNodeOrder);
1423  DAG.AssignOrdering(CMP.getNode(), SDNodeOrder);
1424
1425  // Set NextBlock to be the MBB immediately after the current one, if any.
1426  // This is used to avoid emitting unnecessary branches to the next block.
1427  MachineBasicBlock *NextBlock = 0;
1428  MachineFunction::iterator BBI = CurMBB;
1429
1430  if (++BBI != FuncInfo.MF->end())
1431    NextBlock = BBI;
1432
1433  SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1434                               MVT::Other, CopyTo, CMP,
1435                               DAG.getBasicBlock(JT.Default));
1436
1437  DAG.AssignOrdering(BrCond.getNode(), SDNodeOrder);
1438
1439  if (JT.MBB != NextBlock) {
1440    BrCond = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrCond,
1441                         DAG.getBasicBlock(JT.MBB));
1442    DAG.AssignOrdering(BrCond.getNode(), SDNodeOrder);
1443  }
1444
1445  DAG.setRoot(BrCond);
1446}
1447
1448/// visitBitTestHeader - This function emits necessary code to produce value
1449/// suitable for "bit tests"
1450void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B) {
1451  // Subtract the minimum value
1452  SDValue SwitchOp = getValue(B.SValue);
1453  EVT VT = SwitchOp.getValueType();
1454  SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp,
1455                            DAG.getConstant(B.First, VT));
1456
1457  // Check range
1458  SDValue RangeCmp = DAG.getSetCC(getCurDebugLoc(),
1459                                  TLI.getSetCCResultType(Sub.getValueType()),
1460                                  Sub, DAG.getConstant(B.Range, VT),
1461                                  ISD::SETUGT);
1462
1463  SDValue ShiftOp = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(),
1464                                       TLI.getPointerTy());
1465
1466  B.Reg = FuncInfo.MakeReg(TLI.getPointerTy());
1467  SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(),
1468                                    B.Reg, ShiftOp);
1469
1470  DAG.AssignOrdering(Sub.getNode(), SDNodeOrder);
1471  DAG.AssignOrdering(RangeCmp.getNode(), SDNodeOrder);
1472  DAG.AssignOrdering(ShiftOp.getNode(), SDNodeOrder);
1473  DAG.AssignOrdering(CopyTo.getNode(), SDNodeOrder);
1474
1475  // Set NextBlock to be the MBB immediately after the current one, if any.
1476  // This is used to avoid emitting unnecessary branches to the next block.
1477  MachineBasicBlock *NextBlock = 0;
1478  MachineFunction::iterator BBI = CurMBB;
1479  if (++BBI != FuncInfo.MF->end())
1480    NextBlock = BBI;
1481
1482  MachineBasicBlock* MBB = B.Cases[0].ThisBB;
1483
1484  CurMBB->addSuccessor(B.Default);
1485  CurMBB->addSuccessor(MBB);
1486
1487  SDValue BrRange = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1488                                MVT::Other, CopyTo, RangeCmp,
1489                                DAG.getBasicBlock(B.Default));
1490
1491  DAG.AssignOrdering(BrRange.getNode(), SDNodeOrder);
1492
1493  if (MBB != NextBlock) {
1494    BrRange = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, CopyTo,
1495                          DAG.getBasicBlock(MBB));
1496    DAG.AssignOrdering(BrRange.getNode(), SDNodeOrder);
1497  }
1498
1499  DAG.setRoot(BrRange);
1500}
1501
1502/// visitBitTestCase - this function produces one "bit test"
1503void SelectionDAGBuilder::visitBitTestCase(MachineBasicBlock* NextMBB,
1504                                           unsigned Reg,
1505                                           BitTestCase &B) {
1506  // Make desired shift
1507  SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(), Reg,
1508                                       TLI.getPointerTy());
1509  SDValue SwitchVal = DAG.getNode(ISD::SHL, getCurDebugLoc(),
1510                                  TLI.getPointerTy(),
1511                                  DAG.getConstant(1, TLI.getPointerTy()),
1512                                  ShiftOp);
1513
1514  // Emit bit tests and jumps
1515  SDValue AndOp = DAG.getNode(ISD::AND, getCurDebugLoc(),
1516                              TLI.getPointerTy(), SwitchVal,
1517                              DAG.getConstant(B.Mask, TLI.getPointerTy()));
1518  SDValue AndCmp = DAG.getSetCC(getCurDebugLoc(),
1519                                TLI.getSetCCResultType(AndOp.getValueType()),
1520                                AndOp, DAG.getConstant(0, TLI.getPointerTy()),
1521                                ISD::SETNE);
1522
1523  DAG.AssignOrdering(ShiftOp.getNode(), SDNodeOrder);
1524  DAG.AssignOrdering(SwitchVal.getNode(), SDNodeOrder);
1525  DAG.AssignOrdering(AndOp.getNode(), SDNodeOrder);
1526  DAG.AssignOrdering(AndCmp.getNode(), SDNodeOrder);
1527
1528  CurMBB->addSuccessor(B.TargetBB);
1529  CurMBB->addSuccessor(NextMBB);
1530
1531  SDValue BrAnd = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1532                              MVT::Other, getControlRoot(),
1533                              AndCmp, DAG.getBasicBlock(B.TargetBB));
1534
1535  DAG.AssignOrdering(BrAnd.getNode(), SDNodeOrder);
1536
1537  // Set NextBlock to be the MBB immediately after the current one, if any.
1538  // This is used to avoid emitting unnecessary branches to the next block.
1539  MachineBasicBlock *NextBlock = 0;
1540  MachineFunction::iterator BBI = CurMBB;
1541  if (++BBI != FuncInfo.MF->end())
1542    NextBlock = BBI;
1543
1544  if (NextMBB != NextBlock) {
1545    BrAnd = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrAnd,
1546                        DAG.getBasicBlock(NextMBB));
1547    DAG.AssignOrdering(BrAnd.getNode(), SDNodeOrder);
1548  }
1549
1550  DAG.setRoot(BrAnd);
1551}
1552
1553void SelectionDAGBuilder::visitInvoke(InvokeInst &I) {
1554  // Retrieve successors.
1555  MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
1556  MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)];
1557
1558  const Value *Callee(I.getCalledValue());
1559  if (isa<InlineAsm>(Callee))
1560    visitInlineAsm(&I);
1561  else
1562    LowerCallTo(&I, getValue(Callee), false, LandingPad);
1563
1564  // If the value of the invoke is used outside of its defining block, make it
1565  // available as a virtual register.
1566  CopyToExportRegsIfNeeded(&I);
1567
1568  // Update successor info
1569  CurMBB->addSuccessor(Return);
1570  CurMBB->addSuccessor(LandingPad);
1571
1572  // Drop into normal successor.
1573  SDValue Branch = DAG.getNode(ISD::BR, getCurDebugLoc(),
1574                               MVT::Other, getControlRoot(),
1575                               DAG.getBasicBlock(Return));
1576  DAG.setRoot(Branch);
1577  DAG.AssignOrdering(Branch.getNode(), SDNodeOrder);
1578}
1579
1580void SelectionDAGBuilder::visitUnwind(UnwindInst &I) {
1581}
1582
1583/// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for
1584/// small case ranges).
1585bool SelectionDAGBuilder::handleSmallSwitchRange(CaseRec& CR,
1586                                                 CaseRecVector& WorkList,
1587                                                 Value* SV,
1588                                                 MachineBasicBlock* Default) {
1589  Case& BackCase  = *(CR.Range.second-1);
1590
1591  // Size is the number of Cases represented by this range.
1592  size_t Size = CR.Range.second - CR.Range.first;
1593  if (Size > 3)
1594    return false;
1595
1596  // Get the MachineFunction which holds the current MBB.  This is used when
1597  // inserting any additional MBBs necessary to represent the switch.
1598  MachineFunction *CurMF = FuncInfo.MF;
1599
1600  // Figure out which block is immediately after the current one.
1601  MachineBasicBlock *NextBlock = 0;
1602  MachineFunction::iterator BBI = CR.CaseBB;
1603
1604  if (++BBI != FuncInfo.MF->end())
1605    NextBlock = BBI;
1606
1607  // TODO: If any two of the cases has the same destination, and if one value
1608  // is the same as the other, but has one bit unset that the other has set,
1609  // use bit manipulation to do two compares at once.  For example:
1610  // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
1611
1612  // Rearrange the case blocks so that the last one falls through if possible.
1613  if (NextBlock && Default != NextBlock && BackCase.BB != NextBlock) {
1614    // The last case block won't fall through into 'NextBlock' if we emit the
1615    // branches in this order.  See if rearranging a case value would help.
1616    for (CaseItr I = CR.Range.first, E = CR.Range.second-1; I != E; ++I) {
1617      if (I->BB == NextBlock) {
1618        std::swap(*I, BackCase);
1619        break;
1620      }
1621    }
1622  }
1623
1624  // Create a CaseBlock record representing a conditional branch to
1625  // the Case's target mbb if the value being switched on SV is equal
1626  // to C.
1627  MachineBasicBlock *CurBlock = CR.CaseBB;
1628  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) {
1629    MachineBasicBlock *FallThrough;
1630    if (I != E-1) {
1631      FallThrough = CurMF->CreateMachineBasicBlock(CurBlock->getBasicBlock());
1632      CurMF->insert(BBI, FallThrough);
1633
1634      // Put SV in a virtual register to make it available from the new blocks.
1635      ExportFromCurrentBlock(SV);
1636    } else {
1637      // If the last case doesn't match, go to the default block.
1638      FallThrough = Default;
1639    }
1640
1641    Value *RHS, *LHS, *MHS;
1642    ISD::CondCode CC;
1643    if (I->High == I->Low) {
1644      // This is just small small case range :) containing exactly 1 case
1645      CC = ISD::SETEQ;
1646      LHS = SV; RHS = I->High; MHS = NULL;
1647    } else {
1648      CC = ISD::SETLE;
1649      LHS = I->Low; MHS = SV; RHS = I->High;
1650    }
1651    CaseBlock CB(CC, LHS, RHS, MHS, I->BB, FallThrough, CurBlock);
1652
1653    // If emitting the first comparison, just call visitSwitchCase to emit the
1654    // code into the current block.  Otherwise, push the CaseBlock onto the
1655    // vector to be later processed by SDISel, and insert the node's MBB
1656    // before the next MBB.
1657    if (CurBlock == CurMBB)
1658      visitSwitchCase(CB);
1659    else
1660      SwitchCases.push_back(CB);
1661
1662    CurBlock = FallThrough;
1663  }
1664
1665  return true;
1666}
1667
1668static inline bool areJTsAllowed(const TargetLowering &TLI) {
1669  return !DisableJumpTables &&
1670          (TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) ||
1671           TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other));
1672}
1673
1674static APInt ComputeRange(const APInt &First, const APInt &Last) {
1675  APInt LastExt(Last), FirstExt(First);
1676  uint32_t BitWidth = std::max(Last.getBitWidth(), First.getBitWidth()) + 1;
1677  LastExt.sext(BitWidth); FirstExt.sext(BitWidth);
1678  return (LastExt - FirstExt + 1ULL);
1679}
1680
1681/// handleJTSwitchCase - Emit jumptable for current switch case range
1682bool SelectionDAGBuilder::handleJTSwitchCase(CaseRec& CR,
1683                                             CaseRecVector& WorkList,
1684                                             Value* SV,
1685                                             MachineBasicBlock* Default) {
1686  Case& FrontCase = *CR.Range.first;
1687  Case& BackCase  = *(CR.Range.second-1);
1688
1689  const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue();
1690  const APInt &Last  = cast<ConstantInt>(BackCase.High)->getValue();
1691
1692  APInt TSize(First.getBitWidth(), 0);
1693  for (CaseItr I = CR.Range.first, E = CR.Range.second;
1694       I!=E; ++I)
1695    TSize += I->size();
1696
1697  if (!areJTsAllowed(TLI) || TSize.ult(APInt(First.getBitWidth(), 4)))
1698    return false;
1699
1700  APInt Range = ComputeRange(First, Last);
1701  double Density = TSize.roundToDouble() / Range.roundToDouble();
1702  if (Density < 0.4)
1703    return false;
1704
1705  DEBUG(dbgs() << "Lowering jump table\n"
1706               << "First entry: " << First << ". Last entry: " << Last << '\n'
1707               << "Range: " << Range
1708               << "Size: " << TSize << ". Density: " << Density << "\n\n");
1709
1710  // Get the MachineFunction which holds the current MBB.  This is used when
1711  // inserting any additional MBBs necessary to represent the switch.
1712  MachineFunction *CurMF = FuncInfo.MF;
1713
1714  // Figure out which block is immediately after the current one.
1715  MachineFunction::iterator BBI = CR.CaseBB;
1716  ++BBI;
1717
1718  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
1719
1720  // Create a new basic block to hold the code for loading the address
1721  // of the jump table, and jumping to it.  Update successor information;
1722  // we will either branch to the default case for the switch, or the jump
1723  // table.
1724  MachineBasicBlock *JumpTableBB = CurMF->CreateMachineBasicBlock(LLVMBB);
1725  CurMF->insert(BBI, JumpTableBB);
1726  CR.CaseBB->addSuccessor(Default);
1727  CR.CaseBB->addSuccessor(JumpTableBB);
1728
1729  // Build a vector of destination BBs, corresponding to each target
1730  // of the jump table. If the value of the jump table slot corresponds to
1731  // a case statement, push the case's BB onto the vector, otherwise, push
1732  // the default BB.
1733  std::vector<MachineBasicBlock*> DestBBs;
1734  APInt TEI = First;
1735  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) {
1736    const APInt &Low = cast<ConstantInt>(I->Low)->getValue();
1737    const APInt &High = cast<ConstantInt>(I->High)->getValue();
1738
1739    if (Low.sle(TEI) && TEI.sle(High)) {
1740      DestBBs.push_back(I->BB);
1741      if (TEI==High)
1742        ++I;
1743    } else {
1744      DestBBs.push_back(Default);
1745    }
1746  }
1747
1748  // Update successor info. Add one edge to each unique successor.
1749  BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs());
1750  for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(),
1751         E = DestBBs.end(); I != E; ++I) {
1752    if (!SuccsHandled[(*I)->getNumber()]) {
1753      SuccsHandled[(*I)->getNumber()] = true;
1754      JumpTableBB->addSuccessor(*I);
1755    }
1756  }
1757
1758  // Create a jump table index for this jump table, or return an existing
1759  // one.
1760  unsigned JTEncoding = TLI.getJumpTableEncoding();
1761  unsigned JTI = CurMF->getOrCreateJumpTableInfo(JTEncoding)
1762                       ->getJumpTableIndex(DestBBs);
1763
1764  // Set the jump table information so that we can codegen it as a second
1765  // MachineBasicBlock
1766  JumpTable JT(-1U, JTI, JumpTableBB, Default);
1767  JumpTableHeader JTH(First, Last, SV, CR.CaseBB, (CR.CaseBB == CurMBB));
1768  if (CR.CaseBB == CurMBB)
1769    visitJumpTableHeader(JT, JTH);
1770
1771  JTCases.push_back(JumpTableBlock(JTH, JT));
1772
1773  return true;
1774}
1775
1776/// handleBTSplitSwitchCase - emit comparison and split binary search tree into
1777/// 2 subtrees.
1778bool SelectionDAGBuilder::handleBTSplitSwitchCase(CaseRec& CR,
1779                                                  CaseRecVector& WorkList,
1780                                                  Value* SV,
1781                                                  MachineBasicBlock* Default) {
1782  // Get the MachineFunction which holds the current MBB.  This is used when
1783  // inserting any additional MBBs necessary to represent the switch.
1784  MachineFunction *CurMF = FuncInfo.MF;
1785
1786  // Figure out which block is immediately after the current one.
1787  MachineFunction::iterator BBI = CR.CaseBB;
1788  ++BBI;
1789
1790  Case& FrontCase = *CR.Range.first;
1791  Case& BackCase  = *(CR.Range.second-1);
1792  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
1793
1794  // Size is the number of Cases represented by this range.
1795  unsigned Size = CR.Range.second - CR.Range.first;
1796
1797  const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue();
1798  const APInt &Last  = cast<ConstantInt>(BackCase.High)->getValue();
1799  double FMetric = 0;
1800  CaseItr Pivot = CR.Range.first + Size/2;
1801
1802  // Select optimal pivot, maximizing sum density of LHS and RHS. This will
1803  // (heuristically) allow us to emit JumpTable's later.
1804  APInt TSize(First.getBitWidth(), 0);
1805  for (CaseItr I = CR.Range.first, E = CR.Range.second;
1806       I!=E; ++I)
1807    TSize += I->size();
1808
1809  APInt LSize = FrontCase.size();
1810  APInt RSize = TSize-LSize;
1811  DEBUG(dbgs() << "Selecting best pivot: \n"
1812               << "First: " << First << ", Last: " << Last <<'\n'
1813               << "LSize: " << LSize << ", RSize: " << RSize << '\n');
1814  for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second;
1815       J!=E; ++I, ++J) {
1816    const APInt &LEnd = cast<ConstantInt>(I->High)->getValue();
1817    const APInt &RBegin = cast<ConstantInt>(J->Low)->getValue();
1818    APInt Range = ComputeRange(LEnd, RBegin);
1819    assert((Range - 2ULL).isNonNegative() &&
1820           "Invalid case distance");
1821    double LDensity = (double)LSize.roundToDouble() /
1822                           (LEnd - First + 1ULL).roundToDouble();
1823    double RDensity = (double)RSize.roundToDouble() /
1824                           (Last - RBegin + 1ULL).roundToDouble();
1825    double Metric = Range.logBase2()*(LDensity+RDensity);
1826    // Should always split in some non-trivial place
1827    DEBUG(dbgs() <<"=>Step\n"
1828                 << "LEnd: " << LEnd << ", RBegin: " << RBegin << '\n'
1829                 << "LDensity: " << LDensity
1830                 << ", RDensity: " << RDensity << '\n'
1831                 << "Metric: " << Metric << '\n');
1832    if (FMetric < Metric) {
1833      Pivot = J;
1834      FMetric = Metric;
1835      DEBUG(dbgs() << "Current metric set to: " << FMetric << '\n');
1836    }
1837
1838    LSize += J->size();
1839    RSize -= J->size();
1840  }
1841  if (areJTsAllowed(TLI)) {
1842    // If our case is dense we *really* should handle it earlier!
1843    assert((FMetric > 0) && "Should handle dense range earlier!");
1844  } else {
1845    Pivot = CR.Range.first + Size/2;
1846  }
1847
1848  CaseRange LHSR(CR.Range.first, Pivot);
1849  CaseRange RHSR(Pivot, CR.Range.second);
1850  Constant *C = Pivot->Low;
1851  MachineBasicBlock *FalseBB = 0, *TrueBB = 0;
1852
1853  // We know that we branch to the LHS if the Value being switched on is
1854  // less than the Pivot value, C.  We use this to optimize our binary
1855  // tree a bit, by recognizing that if SV is greater than or equal to the
1856  // LHS's Case Value, and that Case Value is exactly one less than the
1857  // Pivot's Value, then we can branch directly to the LHS's Target,
1858  // rather than creating a leaf node for it.
1859  if ((LHSR.second - LHSR.first) == 1 &&
1860      LHSR.first->High == CR.GE &&
1861      cast<ConstantInt>(C)->getValue() ==
1862      (cast<ConstantInt>(CR.GE)->getValue() + 1LL)) {
1863    TrueBB = LHSR.first->BB;
1864  } else {
1865    TrueBB = CurMF->CreateMachineBasicBlock(LLVMBB);
1866    CurMF->insert(BBI, TrueBB);
1867    WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR));
1868
1869    // Put SV in a virtual register to make it available from the new blocks.
1870    ExportFromCurrentBlock(SV);
1871  }
1872
1873  // Similar to the optimization above, if the Value being switched on is
1874  // known to be less than the Constant CR.LT, and the current Case Value
1875  // is CR.LT - 1, then we can branch directly to the target block for
1876  // the current Case Value, rather than emitting a RHS leaf node for it.
1877  if ((RHSR.second - RHSR.first) == 1 && CR.LT &&
1878      cast<ConstantInt>(RHSR.first->Low)->getValue() ==
1879      (cast<ConstantInt>(CR.LT)->getValue() - 1LL)) {
1880    FalseBB = RHSR.first->BB;
1881  } else {
1882    FalseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
1883    CurMF->insert(BBI, FalseBB);
1884    WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR));
1885
1886    // Put SV in a virtual register to make it available from the new blocks.
1887    ExportFromCurrentBlock(SV);
1888  }
1889
1890  // Create a CaseBlock record representing a conditional branch to
1891  // the LHS node if the value being switched on SV is less than C.
1892  // Otherwise, branch to LHS.
1893  CaseBlock CB(ISD::SETLT, SV, C, NULL, TrueBB, FalseBB, CR.CaseBB);
1894
1895  if (CR.CaseBB == CurMBB)
1896    visitSwitchCase(CB);
1897  else
1898    SwitchCases.push_back(CB);
1899
1900  return true;
1901}
1902
1903/// handleBitTestsSwitchCase - if current case range has few destination and
1904/// range span less, than machine word bitwidth, encode case range into series
1905/// of masks and emit bit tests with these masks.
1906bool SelectionDAGBuilder::handleBitTestsSwitchCase(CaseRec& CR,
1907                                                   CaseRecVector& WorkList,
1908                                                   Value* SV,
1909                                                   MachineBasicBlock* Default){
1910  EVT PTy = TLI.getPointerTy();
1911  unsigned IntPtrBits = PTy.getSizeInBits();
1912
1913  Case& FrontCase = *CR.Range.first;
1914  Case& BackCase  = *(CR.Range.second-1);
1915
1916  // Get the MachineFunction which holds the current MBB.  This is used when
1917  // inserting any additional MBBs necessary to represent the switch.
1918  MachineFunction *CurMF = FuncInfo.MF;
1919
1920  // If target does not have legal shift left, do not emit bit tests at all.
1921  if (!TLI.isOperationLegal(ISD::SHL, TLI.getPointerTy()))
1922    return false;
1923
1924  size_t numCmps = 0;
1925  for (CaseItr I = CR.Range.first, E = CR.Range.second;
1926       I!=E; ++I) {
1927    // Single case counts one, case range - two.
1928    numCmps += (I->Low == I->High ? 1 : 2);
1929  }
1930
1931  // Count unique destinations
1932  SmallSet<MachineBasicBlock*, 4> Dests;
1933  for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
1934    Dests.insert(I->BB);
1935    if (Dests.size() > 3)
1936      // Don't bother the code below, if there are too much unique destinations
1937      return false;
1938  }
1939  DEBUG(dbgs() << "Total number of unique destinations: "
1940        << Dests.size() << '\n'
1941        << "Total number of comparisons: " << numCmps << '\n');
1942
1943  // Compute span of values.
1944  const APInt& minValue = cast<ConstantInt>(FrontCase.Low)->getValue();
1945  const APInt& maxValue = cast<ConstantInt>(BackCase.High)->getValue();
1946  APInt cmpRange = maxValue - minValue;
1947
1948  DEBUG(dbgs() << "Compare range: " << cmpRange << '\n'
1949               << "Low bound: " << minValue << '\n'
1950               << "High bound: " << maxValue << '\n');
1951
1952  if (cmpRange.uge(APInt(cmpRange.getBitWidth(), IntPtrBits)) ||
1953      (!(Dests.size() == 1 && numCmps >= 3) &&
1954       !(Dests.size() == 2 && numCmps >= 5) &&
1955       !(Dests.size() >= 3 && numCmps >= 6)))
1956    return false;
1957
1958  DEBUG(dbgs() << "Emitting bit tests\n");
1959  APInt lowBound = APInt::getNullValue(cmpRange.getBitWidth());
1960
1961  // Optimize the case where all the case values fit in a
1962  // word without having to subtract minValue. In this case,
1963  // we can optimize away the subtraction.
1964  if (minValue.isNonNegative() &&
1965      maxValue.slt(APInt(maxValue.getBitWidth(), IntPtrBits))) {
1966    cmpRange = maxValue;
1967  } else {
1968    lowBound = minValue;
1969  }
1970
1971  CaseBitsVector CasesBits;
1972  unsigned i, count = 0;
1973
1974  for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
1975    MachineBasicBlock* Dest = I->BB;
1976    for (i = 0; i < count; ++i)
1977      if (Dest == CasesBits[i].BB)
1978        break;
1979
1980    if (i == count) {
1981      assert((count < 3) && "Too much destinations to test!");
1982      CasesBits.push_back(CaseBits(0, Dest, 0));
1983      count++;
1984    }
1985
1986    const APInt& lowValue = cast<ConstantInt>(I->Low)->getValue();
1987    const APInt& highValue = cast<ConstantInt>(I->High)->getValue();
1988
1989    uint64_t lo = (lowValue - lowBound).getZExtValue();
1990    uint64_t hi = (highValue - lowBound).getZExtValue();
1991
1992    for (uint64_t j = lo; j <= hi; j++) {
1993      CasesBits[i].Mask |=  1ULL << j;
1994      CasesBits[i].Bits++;
1995    }
1996
1997  }
1998  std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp());
1999
2000  BitTestInfo BTC;
2001
2002  // Figure out which block is immediately after the current one.
2003  MachineFunction::iterator BBI = CR.CaseBB;
2004  ++BBI;
2005
2006  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2007
2008  DEBUG(dbgs() << "Cases:\n");
2009  for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) {
2010    DEBUG(dbgs() << "Mask: " << CasesBits[i].Mask
2011                 << ", Bits: " << CasesBits[i].Bits
2012                 << ", BB: " << CasesBits[i].BB << '\n');
2013
2014    MachineBasicBlock *CaseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2015    CurMF->insert(BBI, CaseBB);
2016    BTC.push_back(BitTestCase(CasesBits[i].Mask,
2017                              CaseBB,
2018                              CasesBits[i].BB));
2019
2020    // Put SV in a virtual register to make it available from the new blocks.
2021    ExportFromCurrentBlock(SV);
2022  }
2023
2024  BitTestBlock BTB(lowBound, cmpRange, SV,
2025                   -1U, (CR.CaseBB == CurMBB),
2026                   CR.CaseBB, Default, BTC);
2027
2028  if (CR.CaseBB == CurMBB)
2029    visitBitTestHeader(BTB);
2030
2031  BitTestCases.push_back(BTB);
2032
2033  return true;
2034}
2035
2036/// Clusterify - Transform simple list of Cases into list of CaseRange's
2037size_t SelectionDAGBuilder::Clusterify(CaseVector& Cases,
2038                                       const SwitchInst& SI) {
2039  size_t numCmps = 0;
2040
2041  // Start with "simple" cases
2042  for (size_t i = 1; i < SI.getNumSuccessors(); ++i) {
2043    MachineBasicBlock *SMBB = FuncInfo.MBBMap[SI.getSuccessor(i)];
2044    Cases.push_back(Case(SI.getSuccessorValue(i),
2045                         SI.getSuccessorValue(i),
2046                         SMBB));
2047  }
2048  std::sort(Cases.begin(), Cases.end(), CaseCmp());
2049
2050  // Merge case into clusters
2051  if (Cases.size() >= 2)
2052    // Must recompute end() each iteration because it may be
2053    // invalidated by erase if we hold on to it
2054    for (CaseItr I = Cases.begin(), J = ++(Cases.begin()); J != Cases.end(); ) {
2055      const APInt& nextValue = cast<ConstantInt>(J->Low)->getValue();
2056      const APInt& currentValue = cast<ConstantInt>(I->High)->getValue();
2057      MachineBasicBlock* nextBB = J->BB;
2058      MachineBasicBlock* currentBB = I->BB;
2059
2060      // If the two neighboring cases go to the same destination, merge them
2061      // into a single case.
2062      if ((nextValue - currentValue == 1) && (currentBB == nextBB)) {
2063        I->High = J->High;
2064        J = Cases.erase(J);
2065      } else {
2066        I = J++;
2067      }
2068    }
2069
2070  for (CaseItr I=Cases.begin(), E=Cases.end(); I!=E; ++I, ++numCmps) {
2071    if (I->Low != I->High)
2072      // A range counts double, since it requires two compares.
2073      ++numCmps;
2074  }
2075
2076  return numCmps;
2077}
2078
2079void SelectionDAGBuilder::visitSwitch(SwitchInst &SI) {
2080  // Figure out which block is immediately after the current one.
2081  MachineBasicBlock *NextBlock = 0;
2082  MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()];
2083
2084  // If there is only the default destination, branch to it if it is not the
2085  // next basic block.  Otherwise, just fall through.
2086  if (SI.getNumOperands() == 2) {
2087    // Update machine-CFG edges.
2088
2089    // If this is not a fall-through branch, emit the branch.
2090    CurMBB->addSuccessor(Default);
2091    if (Default != NextBlock) {
2092      SDValue Res = DAG.getNode(ISD::BR, getCurDebugLoc(),
2093                                MVT::Other, getControlRoot(),
2094                                DAG.getBasicBlock(Default));
2095      DAG.setRoot(Res);
2096      DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
2097    }
2098
2099    return;
2100  }
2101
2102  // If there are any non-default case statements, create a vector of Cases
2103  // representing each one, and sort the vector so that we can efficiently
2104  // create a binary search tree from them.
2105  CaseVector Cases;
2106  size_t numCmps = Clusterify(Cases, SI);
2107  DEBUG(dbgs() << "Clusterify finished. Total clusters: " << Cases.size()
2108               << ". Total compares: " << numCmps << '\n');
2109  numCmps = 0;
2110
2111  // Get the Value to be switched on and default basic blocks, which will be
2112  // inserted into CaseBlock records, representing basic blocks in the binary
2113  // search tree.
2114  Value *SV = SI.getOperand(0);
2115
2116  // Push the initial CaseRec onto the worklist
2117  CaseRecVector WorkList;
2118  WorkList.push_back(CaseRec(CurMBB,0,0,CaseRange(Cases.begin(),Cases.end())));
2119
2120  while (!WorkList.empty()) {
2121    // Grab a record representing a case range to process off the worklist
2122    CaseRec CR = WorkList.back();
2123    WorkList.pop_back();
2124
2125    if (handleBitTestsSwitchCase(CR, WorkList, SV, Default))
2126      continue;
2127
2128    // If the range has few cases (two or less) emit a series of specific
2129    // tests.
2130    if (handleSmallSwitchRange(CR, WorkList, SV, Default))
2131      continue;
2132
2133    // If the switch has more than 5 blocks, and at least 40% dense, and the
2134    // target supports indirect branches, then emit a jump table rather than
2135    // lowering the switch to a binary tree of conditional branches.
2136    if (handleJTSwitchCase(CR, WorkList, SV, Default))
2137      continue;
2138
2139    // Emit binary tree. We need to pick a pivot, and push left and right ranges
2140    // onto the worklist. Leafs are handled via handleSmallSwitchRange() call.
2141    handleBTSplitSwitchCase(CR, WorkList, SV, Default);
2142  }
2143}
2144
2145void SelectionDAGBuilder::visitIndirectBr(IndirectBrInst &I) {
2146  // Update machine-CFG edges.
2147  for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i)
2148    CurMBB->addSuccessor(FuncInfo.MBBMap[I.getSuccessor(i)]);
2149
2150  SDValue Res = DAG.getNode(ISD::BRIND, getCurDebugLoc(),
2151                            MVT::Other, getControlRoot(),
2152                            getValue(I.getAddress()));
2153  DAG.setRoot(Res);
2154  DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
2155}
2156
2157void SelectionDAGBuilder::visitFSub(User &I) {
2158  // -0.0 - X --> fneg
2159  const Type *Ty = I.getType();
2160  if (isa<VectorType>(Ty)) {
2161    if (ConstantVector *CV = dyn_cast<ConstantVector>(I.getOperand(0))) {
2162      const VectorType *DestTy = cast<VectorType>(I.getType());
2163      const Type *ElTy = DestTy->getElementType();
2164      unsigned VL = DestTy->getNumElements();
2165      std::vector<Constant*> NZ(VL, ConstantFP::getNegativeZero(ElTy));
2166      Constant *CNZ = ConstantVector::get(&NZ[0], NZ.size());
2167      if (CV == CNZ) {
2168        SDValue Op2 = getValue(I.getOperand(1));
2169        SDValue Res = DAG.getNode(ISD::FNEG, getCurDebugLoc(),
2170                                  Op2.getValueType(), Op2);
2171        setValue(&I, Res);
2172        DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
2173        return;
2174      }
2175    }
2176  }
2177
2178  if (ConstantFP *CFP = dyn_cast<ConstantFP>(I.getOperand(0)))
2179    if (CFP->isExactlyValue(ConstantFP::getNegativeZero(Ty)->getValueAPF())) {
2180      SDValue Op2 = getValue(I.getOperand(1));
2181      SDValue Res = DAG.getNode(ISD::FNEG, getCurDebugLoc(),
2182                                Op2.getValueType(), Op2);
2183      setValue(&I, Res);
2184      DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
2185      return;
2186    }
2187
2188  visitBinary(I, ISD::FSUB);
2189}
2190
2191void SelectionDAGBuilder::visitBinary(User &I, unsigned OpCode) {
2192  SDValue Op1 = getValue(I.getOperand(0));
2193  SDValue Op2 = getValue(I.getOperand(1));
2194  SDValue Res = DAG.getNode(OpCode, getCurDebugLoc(),
2195                            Op1.getValueType(), Op1, Op2);
2196  setValue(&I, Res);
2197  DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
2198}
2199
2200void SelectionDAGBuilder::visitShift(User &I, unsigned Opcode) {
2201  SDValue Op1 = getValue(I.getOperand(0));
2202  SDValue Op2 = getValue(I.getOperand(1));
2203  if (!isa<VectorType>(I.getType()) &&
2204      Op2.getValueType() != TLI.getShiftAmountTy()) {
2205    // If the operand is smaller than the shift count type, promote it.
2206    EVT PTy = TLI.getPointerTy();
2207    EVT STy = TLI.getShiftAmountTy();
2208    if (STy.bitsGT(Op2.getValueType()))
2209      Op2 = DAG.getNode(ISD::ANY_EXTEND, getCurDebugLoc(),
2210                        TLI.getShiftAmountTy(), Op2);
2211    // If the operand is larger than the shift count type but the shift
2212    // count type has enough bits to represent any shift value, truncate
2213    // it now. This is a common case and it exposes the truncate to
2214    // optimization early.
2215    else if (STy.getSizeInBits() >=
2216             Log2_32_Ceil(Op2.getValueType().getSizeInBits()))
2217      Op2 = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(),
2218                        TLI.getShiftAmountTy(), Op2);
2219    // Otherwise we'll need to temporarily settle for some other
2220    // convenient type; type legalization will make adjustments as
2221    // needed.
2222    else if (PTy.bitsLT(Op2.getValueType()))
2223      Op2 = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(),
2224                        TLI.getPointerTy(), Op2);
2225    else if (PTy.bitsGT(Op2.getValueType()))
2226      Op2 = DAG.getNode(ISD::ANY_EXTEND, getCurDebugLoc(),
2227                        TLI.getPointerTy(), Op2);
2228  }
2229
2230  SDValue Res = DAG.getNode(Opcode, getCurDebugLoc(),
2231                            Op1.getValueType(), Op1, Op2);
2232  setValue(&I, Res);
2233  DAG.AssignOrdering(Op1.getNode(), SDNodeOrder);
2234  DAG.AssignOrdering(Op2.getNode(), SDNodeOrder);
2235  DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
2236}
2237
2238void SelectionDAGBuilder::visitICmp(User &I) {
2239  ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
2240  if (ICmpInst *IC = dyn_cast<ICmpInst>(&I))
2241    predicate = IC->getPredicate();
2242  else if (ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
2243    predicate = ICmpInst::Predicate(IC->getPredicate());
2244  SDValue Op1 = getValue(I.getOperand(0));
2245  SDValue Op2 = getValue(I.getOperand(1));
2246  ISD::CondCode Opcode = getICmpCondCode(predicate);
2247
2248  EVT DestVT = TLI.getValueType(I.getType());
2249  SDValue Res = DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Opcode);
2250  setValue(&I, Res);
2251  DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
2252}
2253
2254void SelectionDAGBuilder::visitFCmp(User &I) {
2255  FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
2256  if (FCmpInst *FC = dyn_cast<FCmpInst>(&I))
2257    predicate = FC->getPredicate();
2258  else if (ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
2259    predicate = FCmpInst::Predicate(FC->getPredicate());
2260  SDValue Op1 = getValue(I.getOperand(0));
2261  SDValue Op2 = getValue(I.getOperand(1));
2262  ISD::CondCode Condition = getFCmpCondCode(predicate);
2263  EVT DestVT = TLI.getValueType(I.getType());
2264  SDValue Res = DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Condition);
2265  setValue(&I, Res);
2266  DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
2267}
2268
2269void SelectionDAGBuilder::visitSelect(User &I) {
2270  SmallVector<EVT, 4> ValueVTs;
2271  ComputeValueVTs(TLI, I.getType(), ValueVTs);
2272  unsigned NumValues = ValueVTs.size();
2273  if (NumValues == 0) return;
2274
2275  SmallVector<SDValue, 4> Values(NumValues);
2276  SDValue Cond     = getValue(I.getOperand(0));
2277  SDValue TrueVal  = getValue(I.getOperand(1));
2278  SDValue FalseVal = getValue(I.getOperand(2));
2279
2280  for (unsigned i = 0; i != NumValues; ++i) {
2281    Values[i] = DAG.getNode(ISD::SELECT, getCurDebugLoc(),
2282                            TrueVal.getNode()->getValueType(i), Cond,
2283                            SDValue(TrueVal.getNode(),
2284                                    TrueVal.getResNo() + i),
2285                            SDValue(FalseVal.getNode(),
2286                                    FalseVal.getResNo() + i));
2287
2288    DAG.AssignOrdering(Values[i].getNode(), SDNodeOrder);
2289  }
2290
2291  SDValue Res = DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
2292                            DAG.getVTList(&ValueVTs[0], NumValues),
2293                            &Values[0], NumValues);
2294  setValue(&I, Res);
2295  DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
2296}
2297
2298void SelectionDAGBuilder::visitTrunc(User &I) {
2299  // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
2300  SDValue N = getValue(I.getOperand(0));
2301  EVT DestVT = TLI.getValueType(I.getType());
2302  SDValue Res = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), DestVT, N);
2303  setValue(&I, Res);
2304  DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
2305}
2306
2307void SelectionDAGBuilder::visitZExt(User &I) {
2308  // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2309  // ZExt also can't be a cast to bool for same reason. So, nothing much to do
2310  SDValue N = getValue(I.getOperand(0));
2311  EVT DestVT = TLI.getValueType(I.getType());
2312  SDValue Res = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), DestVT, N);
2313  setValue(&I, Res);
2314  DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
2315}
2316
2317void SelectionDAGBuilder::visitSExt(User &I) {
2318  // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2319  // SExt also can't be a cast to bool for same reason. So, nothing much to do
2320  SDValue N = getValue(I.getOperand(0));
2321  EVT DestVT = TLI.getValueType(I.getType());
2322  SDValue Res = DAG.getNode(ISD::SIGN_EXTEND, getCurDebugLoc(), DestVT, N);
2323  setValue(&I, Res);
2324  DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
2325}
2326
2327void SelectionDAGBuilder::visitFPTrunc(User &I) {
2328  // FPTrunc is never a no-op cast, no need to check
2329  SDValue N = getValue(I.getOperand(0));
2330  EVT DestVT = TLI.getValueType(I.getType());
2331  SDValue Res = DAG.getNode(ISD::FP_ROUND, getCurDebugLoc(),
2332                            DestVT, N, DAG.getIntPtrConstant(0));
2333  setValue(&I, Res);
2334  DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
2335}
2336
2337void SelectionDAGBuilder::visitFPExt(User &I){
2338  // FPTrunc is never a no-op cast, no need to check
2339  SDValue N = getValue(I.getOperand(0));
2340  EVT DestVT = TLI.getValueType(I.getType());
2341  SDValue Res = DAG.getNode(ISD::FP_EXTEND, getCurDebugLoc(), DestVT, N);
2342  setValue(&I, Res);
2343  DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
2344}
2345
2346void SelectionDAGBuilder::visitFPToUI(User &I) {
2347  // FPToUI is never a no-op cast, no need to check
2348  SDValue N = getValue(I.getOperand(0));
2349  EVT DestVT = TLI.getValueType(I.getType());
2350  SDValue Res = DAG.getNode(ISD::FP_TO_UINT, getCurDebugLoc(), DestVT, N);
2351  setValue(&I, Res);
2352  DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
2353}
2354
2355void SelectionDAGBuilder::visitFPToSI(User &I) {
2356  // FPToSI is never a no-op cast, no need to check
2357  SDValue N = getValue(I.getOperand(0));
2358  EVT DestVT = TLI.getValueType(I.getType());
2359  SDValue Res = DAG.getNode(ISD::FP_TO_SINT, getCurDebugLoc(), DestVT, N);
2360  setValue(&I, Res);
2361  DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
2362}
2363
2364void SelectionDAGBuilder::visitUIToFP(User &I) {
2365  // UIToFP is never a no-op cast, no need to check
2366  SDValue N = getValue(I.getOperand(0));
2367  EVT DestVT = TLI.getValueType(I.getType());
2368  SDValue Res = DAG.getNode(ISD::UINT_TO_FP, getCurDebugLoc(), DestVT, N);
2369  setValue(&I, Res);
2370  DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
2371}
2372
2373void SelectionDAGBuilder::visitSIToFP(User &I){
2374  // SIToFP is never a no-op cast, no need to check
2375  SDValue N = getValue(I.getOperand(0));
2376  EVT DestVT = TLI.getValueType(I.getType());
2377  SDValue Res = DAG.getNode(ISD::SINT_TO_FP, getCurDebugLoc(), DestVT, N);
2378  setValue(&I, Res);
2379  DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
2380}
2381
2382void SelectionDAGBuilder::visitPtrToInt(User &I) {
2383  // What to do depends on the size of the integer and the size of the pointer.
2384  // We can either truncate, zero extend, or no-op, accordingly.
2385  SDValue N = getValue(I.getOperand(0));
2386  EVT SrcVT = N.getValueType();
2387  EVT DestVT = TLI.getValueType(I.getType());
2388  SDValue Res = DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT);
2389  setValue(&I, Res);
2390  DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
2391}
2392
2393void SelectionDAGBuilder::visitIntToPtr(User &I) {
2394  // What to do depends on the size of the integer and the size of the pointer.
2395  // We can either truncate, zero extend, or no-op, accordingly.
2396  SDValue N = getValue(I.getOperand(0));
2397  EVT SrcVT = N.getValueType();
2398  EVT DestVT = TLI.getValueType(I.getType());
2399  SDValue Res = DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT);
2400  setValue(&I, Res);
2401  DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
2402}
2403
2404void SelectionDAGBuilder::visitBitCast(User &I) {
2405  SDValue N = getValue(I.getOperand(0));
2406  EVT DestVT = TLI.getValueType(I.getType());
2407
2408  // BitCast assures us that source and destination are the same size so this is
2409  // either a BIT_CONVERT or a no-op.
2410  if (DestVT != N.getValueType()) {
2411    SDValue Res = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(),
2412                              DestVT, N); // convert types.
2413    setValue(&I, Res);
2414    DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
2415  } else {
2416    setValue(&I, N);            // noop cast.
2417  }
2418}
2419
2420void SelectionDAGBuilder::visitInsertElement(User &I) {
2421  SDValue InVec = getValue(I.getOperand(0));
2422  SDValue InVal = getValue(I.getOperand(1));
2423  SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(),
2424                              TLI.getPointerTy(),
2425                              getValue(I.getOperand(2)));
2426  SDValue Res = DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurDebugLoc(),
2427                            TLI.getValueType(I.getType()),
2428                            InVec, InVal, InIdx);
2429  setValue(&I, Res);
2430
2431  DAG.AssignOrdering(InIdx.getNode(), SDNodeOrder);
2432  DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
2433}
2434
2435void SelectionDAGBuilder::visitExtractElement(User &I) {
2436  SDValue InVec = getValue(I.getOperand(0));
2437  SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(),
2438                              TLI.getPointerTy(),
2439                              getValue(I.getOperand(1)));
2440  SDValue Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
2441                            TLI.getValueType(I.getType()), InVec, InIdx);
2442  setValue(&I, Res);
2443
2444  DAG.AssignOrdering(InIdx.getNode(), SDNodeOrder);
2445  DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
2446}
2447
2448
2449// Utility for visitShuffleVector - Returns true if the mask is mask starting
2450// from SIndx and increasing to the element length (undefs are allowed).
2451static bool SequentialMask(SmallVectorImpl<int> &Mask, unsigned SIndx) {
2452  unsigned MaskNumElts = Mask.size();
2453  for (unsigned i = 0; i != MaskNumElts; ++i)
2454    if ((Mask[i] >= 0) && (Mask[i] != (int)(i + SIndx)))
2455      return false;
2456  return true;
2457}
2458
2459void SelectionDAGBuilder::visitShuffleVector(User &I) {
2460  SmallVector<int, 8> Mask;
2461  SDValue Src1 = getValue(I.getOperand(0));
2462  SDValue Src2 = getValue(I.getOperand(1));
2463
2464  // Convert the ConstantVector mask operand into an array of ints, with -1
2465  // representing undef values.
2466  SmallVector<Constant*, 8> MaskElts;
2467  cast<Constant>(I.getOperand(2))->getVectorElements(*DAG.getContext(),
2468                                                     MaskElts);
2469  unsigned MaskNumElts = MaskElts.size();
2470  for (unsigned i = 0; i != MaskNumElts; ++i) {
2471    if (isa<UndefValue>(MaskElts[i]))
2472      Mask.push_back(-1);
2473    else
2474      Mask.push_back(cast<ConstantInt>(MaskElts[i])->getSExtValue());
2475  }
2476
2477  EVT VT = TLI.getValueType(I.getType());
2478  EVT SrcVT = Src1.getValueType();
2479  unsigned SrcNumElts = SrcVT.getVectorNumElements();
2480
2481  if (SrcNumElts == MaskNumElts) {
2482    SDValue Res = DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2483                                       &Mask[0]);
2484    setValue(&I, Res);
2485    DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
2486    return;
2487  }
2488
2489  // Normalize the shuffle vector since mask and vector length don't match.
2490  if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) {
2491    // Mask is longer than the source vectors and is a multiple of the source
2492    // vectors.  We can use concatenate vector to make the mask and vectors
2493    // lengths match.
2494    if (SrcNumElts*2 == MaskNumElts && SequentialMask(Mask, 0)) {
2495      // The shuffle is concatenating two vectors together.
2496      SDValue Res = DAG.getNode(ISD::CONCAT_VECTORS, getCurDebugLoc(),
2497                                VT, Src1, Src2);
2498      setValue(&I, Res);
2499      DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
2500      return;
2501    }
2502
2503    // Pad both vectors with undefs to make them the same length as the mask.
2504    unsigned NumConcat = MaskNumElts / SrcNumElts;
2505    bool Src1U = Src1.getOpcode() == ISD::UNDEF;
2506    bool Src2U = Src2.getOpcode() == ISD::UNDEF;
2507    SDValue UndefVal = DAG.getUNDEF(SrcVT);
2508
2509    SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
2510    SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
2511    MOps1[0] = Src1;
2512    MOps2[0] = Src2;
2513
2514    Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
2515                                                  getCurDebugLoc(), VT,
2516                                                  &MOps1[0], NumConcat);
2517    Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
2518                                                  getCurDebugLoc(), VT,
2519                                                  &MOps2[0], NumConcat);
2520
2521    // Readjust mask for new input vector length.
2522    SmallVector<int, 8> MappedOps;
2523    for (unsigned i = 0; i != MaskNumElts; ++i) {
2524      int Idx = Mask[i];
2525      if (Idx < (int)SrcNumElts)
2526        MappedOps.push_back(Idx);
2527      else
2528        MappedOps.push_back(Idx + MaskNumElts - SrcNumElts);
2529    }
2530
2531    SDValue Res = DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2532                                       &MappedOps[0]);
2533    setValue(&I, Res);
2534    DAG.AssignOrdering(Src1.getNode(), SDNodeOrder);
2535    DAG.AssignOrdering(Src2.getNode(), SDNodeOrder);
2536    DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
2537    return;
2538  }
2539
2540  if (SrcNumElts > MaskNumElts) {
2541    // Analyze the access pattern of the vector to see if we can extract
2542    // two subvectors and do the shuffle. The analysis is done by calculating
2543    // the range of elements the mask access on both vectors.
2544    int MinRange[2] = { SrcNumElts+1, SrcNumElts+1};
2545    int MaxRange[2] = {-1, -1};
2546
2547    for (unsigned i = 0; i != MaskNumElts; ++i) {
2548      int Idx = Mask[i];
2549      int Input = 0;
2550      if (Idx < 0)
2551        continue;
2552
2553      if (Idx >= (int)SrcNumElts) {
2554        Input = 1;
2555        Idx -= SrcNumElts;
2556      }
2557      if (Idx > MaxRange[Input])
2558        MaxRange[Input] = Idx;
2559      if (Idx < MinRange[Input])
2560        MinRange[Input] = Idx;
2561    }
2562
2563    // Check if the access is smaller than the vector size and can we find
2564    // a reasonable extract index.
2565    int RangeUse[2] = { 2, 2 };  // 0 = Unused, 1 = Extract, 2 = Can not
2566                                 // Extract.
2567    int StartIdx[2];  // StartIdx to extract from
2568    for (int Input=0; Input < 2; ++Input) {
2569      if (MinRange[Input] == (int)(SrcNumElts+1) && MaxRange[Input] == -1) {
2570        RangeUse[Input] = 0; // Unused
2571        StartIdx[Input] = 0;
2572      } else if (MaxRange[Input] - MinRange[Input] < (int)MaskNumElts) {
2573        // Fits within range but we should see if we can find a good
2574        // start index that is a multiple of the mask length.
2575        if (MaxRange[Input] < (int)MaskNumElts) {
2576          RangeUse[Input] = 1; // Extract from beginning of the vector
2577          StartIdx[Input] = 0;
2578        } else {
2579          StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts;
2580          if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts &&
2581              StartIdx[Input] + MaskNumElts < SrcNumElts)
2582            RangeUse[Input] = 1; // Extract from a multiple of the mask length.
2583        }
2584      }
2585    }
2586
2587    if (RangeUse[0] == 0 && RangeUse[1] == 0) {
2588      SDValue Res = DAG.getUNDEF(VT);
2589      setValue(&I, Res);  // Vectors are not used.
2590      DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
2591      return;
2592    }
2593    else if (RangeUse[0] < 2 && RangeUse[1] < 2) {
2594      // Extract appropriate subvector and generate a vector shuffle
2595      for (int Input=0; Input < 2; ++Input) {
2596        SDValue &Src = Input == 0 ? Src1 : Src2;
2597        if (RangeUse[Input] == 0)
2598          Src = DAG.getUNDEF(VT);
2599        else
2600          Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, getCurDebugLoc(), VT,
2601                            Src, DAG.getIntPtrConstant(StartIdx[Input]));
2602
2603        DAG.AssignOrdering(Src.getNode(), SDNodeOrder);
2604      }
2605
2606      // Calculate new mask.
2607      SmallVector<int, 8> MappedOps;
2608      for (unsigned i = 0; i != MaskNumElts; ++i) {
2609        int Idx = Mask[i];
2610        if (Idx < 0)
2611          MappedOps.push_back(Idx);
2612        else if (Idx < (int)SrcNumElts)
2613          MappedOps.push_back(Idx - StartIdx[0]);
2614        else
2615          MappedOps.push_back(Idx - SrcNumElts - StartIdx[1] + MaskNumElts);
2616      }
2617
2618      SDValue Res = DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2619                                         &MappedOps[0]);
2620      setValue(&I, Res);
2621      DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
2622      return;
2623    }
2624  }
2625
2626  // We can't use either concat vectors or extract subvectors so fall back to
2627  // replacing the shuffle with extract and build vector.
2628  // to insert and build vector.
2629  EVT EltVT = VT.getVectorElementType();
2630  EVT PtrVT = TLI.getPointerTy();
2631  SmallVector<SDValue,8> Ops;
2632  for (unsigned i = 0; i != MaskNumElts; ++i) {
2633    if (Mask[i] < 0) {
2634      Ops.push_back(DAG.getUNDEF(EltVT));
2635    } else {
2636      int Idx = Mask[i];
2637      SDValue Res;
2638
2639      if (Idx < (int)SrcNumElts)
2640        Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
2641                          EltVT, Src1, DAG.getConstant(Idx, PtrVT));
2642      else
2643        Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
2644                          EltVT, Src2,
2645                          DAG.getConstant(Idx - SrcNumElts, PtrVT));
2646
2647      Ops.push_back(Res);
2648      DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
2649    }
2650  }
2651
2652  SDValue Res = DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(),
2653                            VT, &Ops[0], Ops.size());
2654  setValue(&I, Res);
2655  DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
2656}
2657
2658void SelectionDAGBuilder::visitInsertValue(InsertValueInst &I) {
2659  const Value *Op0 = I.getOperand(0);
2660  const Value *Op1 = I.getOperand(1);
2661  const Type *AggTy = I.getType();
2662  const Type *ValTy = Op1->getType();
2663  bool IntoUndef = isa<UndefValue>(Op0);
2664  bool FromUndef = isa<UndefValue>(Op1);
2665
2666  unsigned LinearIndex = ComputeLinearIndex(TLI, AggTy,
2667                                            I.idx_begin(), I.idx_end());
2668
2669  SmallVector<EVT, 4> AggValueVTs;
2670  ComputeValueVTs(TLI, AggTy, AggValueVTs);
2671  SmallVector<EVT, 4> ValValueVTs;
2672  ComputeValueVTs(TLI, ValTy, ValValueVTs);
2673
2674  unsigned NumAggValues = AggValueVTs.size();
2675  unsigned NumValValues = ValValueVTs.size();
2676  SmallVector<SDValue, 4> Values(NumAggValues);
2677
2678  SDValue Agg = getValue(Op0);
2679  SDValue Val = getValue(Op1);
2680  unsigned i = 0;
2681  // Copy the beginning value(s) from the original aggregate.
2682  for (; i != LinearIndex; ++i)
2683    Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
2684                SDValue(Agg.getNode(), Agg.getResNo() + i);
2685  // Copy values from the inserted value(s).
2686  for (; i != LinearIndex + NumValValues; ++i)
2687    Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
2688                SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
2689  // Copy remaining value(s) from the original aggregate.
2690  for (; i != NumAggValues; ++i)
2691    Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
2692                SDValue(Agg.getNode(), Agg.getResNo() + i);
2693
2694  SDValue Res = DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
2695                            DAG.getVTList(&AggValueVTs[0], NumAggValues),
2696                            &Values[0], NumAggValues);
2697  setValue(&I, Res);
2698  DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
2699}
2700
2701void SelectionDAGBuilder::visitExtractValue(ExtractValueInst &I) {
2702  const Value *Op0 = I.getOperand(0);
2703  const Type *AggTy = Op0->getType();
2704  const Type *ValTy = I.getType();
2705  bool OutOfUndef = isa<UndefValue>(Op0);
2706
2707  unsigned LinearIndex = ComputeLinearIndex(TLI, AggTy,
2708                                            I.idx_begin(), I.idx_end());
2709
2710  SmallVector<EVT, 4> ValValueVTs;
2711  ComputeValueVTs(TLI, ValTy, ValValueVTs);
2712
2713  unsigned NumValValues = ValValueVTs.size();
2714  SmallVector<SDValue, 4> Values(NumValValues);
2715
2716  SDValue Agg = getValue(Op0);
2717  // Copy out the selected value(s).
2718  for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
2719    Values[i - LinearIndex] =
2720      OutOfUndef ?
2721        DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
2722        SDValue(Agg.getNode(), Agg.getResNo() + i);
2723
2724  SDValue Res = DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
2725                            DAG.getVTList(&ValValueVTs[0], NumValValues),
2726                            &Values[0], NumValValues);
2727  setValue(&I, Res);
2728  DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
2729}
2730
2731void SelectionDAGBuilder::visitGetElementPtr(User &I) {
2732  SDValue N = getValue(I.getOperand(0));
2733  const Type *Ty = I.getOperand(0)->getType();
2734
2735  for (GetElementPtrInst::op_iterator OI = I.op_begin()+1, E = I.op_end();
2736       OI != E; ++OI) {
2737    Value *Idx = *OI;
2738    if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
2739      unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
2740      if (Field) {
2741        // N = N + Offset
2742        uint64_t Offset = TD->getStructLayout(StTy)->getElementOffset(Field);
2743        N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N,
2744                        DAG.getIntPtrConstant(Offset));
2745        DAG.AssignOrdering(N.getNode(), SDNodeOrder);
2746      }
2747
2748      Ty = StTy->getElementType(Field);
2749    } else {
2750      Ty = cast<SequentialType>(Ty)->getElementType();
2751
2752      // If this is a constant subscript, handle it quickly.
2753      if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
2754        if (CI->getZExtValue() == 0) continue;
2755        uint64_t Offs =
2756            TD->getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue();
2757        SDValue OffsVal;
2758        EVT PTy = TLI.getPointerTy();
2759        unsigned PtrBits = PTy.getSizeInBits();
2760        if (PtrBits < 64)
2761          OffsVal = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(),
2762                                TLI.getPointerTy(),
2763                                DAG.getConstant(Offs, MVT::i64));
2764        else
2765          OffsVal = DAG.getIntPtrConstant(Offs);
2766
2767        N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N,
2768                        OffsVal);
2769
2770        DAG.AssignOrdering(OffsVal.getNode(), SDNodeOrder);
2771        DAG.AssignOrdering(N.getNode(), SDNodeOrder);
2772        continue;
2773      }
2774
2775      // N = N + Idx * ElementSize;
2776      APInt ElementSize = APInt(TLI.getPointerTy().getSizeInBits(),
2777                                TD->getTypeAllocSize(Ty));
2778      SDValue IdxN = getValue(Idx);
2779
2780      // If the index is smaller or larger than intptr_t, truncate or extend
2781      // it.
2782      IdxN = DAG.getSExtOrTrunc(IdxN, getCurDebugLoc(), N.getValueType());
2783
2784      // If this is a multiply by a power of two, turn it into a shl
2785      // immediately.  This is a very common case.
2786      if (ElementSize != 1) {
2787        if (ElementSize.isPowerOf2()) {
2788          unsigned Amt = ElementSize.logBase2();
2789          IdxN = DAG.getNode(ISD::SHL, getCurDebugLoc(),
2790                             N.getValueType(), IdxN,
2791                             DAG.getConstant(Amt, TLI.getPointerTy()));
2792        } else {
2793          SDValue Scale = DAG.getConstant(ElementSize, TLI.getPointerTy());
2794          IdxN = DAG.getNode(ISD::MUL, getCurDebugLoc(),
2795                             N.getValueType(), IdxN, Scale);
2796        }
2797
2798        DAG.AssignOrdering(IdxN.getNode(), SDNodeOrder);
2799      }
2800
2801      N = DAG.getNode(ISD::ADD, getCurDebugLoc(),
2802                      N.getValueType(), N, IdxN);
2803      DAG.AssignOrdering(N.getNode(), SDNodeOrder);
2804    }
2805  }
2806
2807  setValue(&I, N);
2808}
2809
2810void SelectionDAGBuilder::visitAlloca(AllocaInst &I) {
2811  // If this is a fixed sized alloca in the entry block of the function,
2812  // allocate it statically on the stack.
2813  if (FuncInfo.StaticAllocaMap.count(&I))
2814    return;   // getValue will auto-populate this.
2815
2816  const Type *Ty = I.getAllocatedType();
2817  uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty);
2818  unsigned Align =
2819    std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty),
2820             I.getAlignment());
2821
2822  SDValue AllocSize = getValue(I.getArraySize());
2823
2824  AllocSize = DAG.getNode(ISD::MUL, getCurDebugLoc(), AllocSize.getValueType(),
2825                          AllocSize,
2826                          DAG.getConstant(TySize, AllocSize.getValueType()));
2827
2828  DAG.AssignOrdering(AllocSize.getNode(), SDNodeOrder);
2829
2830  EVT IntPtr = TLI.getPointerTy();
2831  AllocSize = DAG.getZExtOrTrunc(AllocSize, getCurDebugLoc(), IntPtr);
2832  DAG.AssignOrdering(AllocSize.getNode(), SDNodeOrder);
2833
2834  // Handle alignment.  If the requested alignment is less than or equal to
2835  // the stack alignment, ignore it.  If the size is greater than or equal to
2836  // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
2837  unsigned StackAlign =
2838    TLI.getTargetMachine().getFrameInfo()->getStackAlignment();
2839  if (Align <= StackAlign)
2840    Align = 0;
2841
2842  // Round the size of the allocation up to the stack alignment size
2843  // by add SA-1 to the size.
2844  AllocSize = DAG.getNode(ISD::ADD, getCurDebugLoc(),
2845                          AllocSize.getValueType(), AllocSize,
2846                          DAG.getIntPtrConstant(StackAlign-1));
2847  DAG.AssignOrdering(AllocSize.getNode(), SDNodeOrder);
2848
2849  // Mask out the low bits for alignment purposes.
2850  AllocSize = DAG.getNode(ISD::AND, getCurDebugLoc(),
2851                          AllocSize.getValueType(), AllocSize,
2852                          DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1)));
2853  DAG.AssignOrdering(AllocSize.getNode(), SDNodeOrder);
2854
2855  SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) };
2856  SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
2857  SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, getCurDebugLoc(),
2858                            VTs, Ops, 3);
2859  setValue(&I, DSA);
2860  DAG.setRoot(DSA.getValue(1));
2861  DAG.AssignOrdering(DSA.getNode(), SDNodeOrder);
2862
2863  // Inform the Frame Information that we have just allocated a variable-sized
2864  // object.
2865  FuncInfo.MF->getFrameInfo()->CreateVariableSizedObject();
2866}
2867
2868void SelectionDAGBuilder::visitLoad(LoadInst &I) {
2869  const Value *SV = I.getOperand(0);
2870  SDValue Ptr = getValue(SV);
2871
2872  const Type *Ty = I.getType();
2873  bool isVolatile = I.isVolatile();
2874  unsigned Alignment = I.getAlignment();
2875
2876  SmallVector<EVT, 4> ValueVTs;
2877  SmallVector<uint64_t, 4> Offsets;
2878  ComputeValueVTs(TLI, Ty, ValueVTs, &Offsets);
2879  unsigned NumValues = ValueVTs.size();
2880  if (NumValues == 0)
2881    return;
2882
2883  SDValue Root;
2884  bool ConstantMemory = false;
2885  if (I.isVolatile())
2886    // Serialize volatile loads with other side effects.
2887    Root = getRoot();
2888  else if (AA->pointsToConstantMemory(SV)) {
2889    // Do not serialize (non-volatile) loads of constant memory with anything.
2890    Root = DAG.getEntryNode();
2891    ConstantMemory = true;
2892  } else {
2893    // Do not serialize non-volatile loads against each other.
2894    Root = DAG.getRoot();
2895  }
2896
2897  SmallVector<SDValue, 4> Values(NumValues);
2898  SmallVector<SDValue, 4> Chains(NumValues);
2899  EVT PtrVT = Ptr.getValueType();
2900  for (unsigned i = 0; i != NumValues; ++i) {
2901    SDValue A = DAG.getNode(ISD::ADD, getCurDebugLoc(),
2902                            PtrVT, Ptr,
2903                            DAG.getConstant(Offsets[i], PtrVT));
2904    SDValue L = DAG.getLoad(ValueVTs[i], getCurDebugLoc(), Root,
2905                            A, SV, Offsets[i], isVolatile, Alignment);
2906
2907    Values[i] = L;
2908    Chains[i] = L.getValue(1);
2909
2910    DAG.AssignOrdering(A.getNode(), SDNodeOrder);
2911    DAG.AssignOrdering(L.getNode(), SDNodeOrder);
2912  }
2913
2914  if (!ConstantMemory) {
2915    SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
2916                                MVT::Other, &Chains[0], NumValues);
2917    if (isVolatile)
2918      DAG.setRoot(Chain);
2919    else
2920      PendingLoads.push_back(Chain);
2921
2922    DAG.AssignOrdering(Chain.getNode(), SDNodeOrder);
2923  }
2924
2925  SDValue Res = DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
2926                            DAG.getVTList(&ValueVTs[0], NumValues),
2927                            &Values[0], NumValues);
2928  setValue(&I, Res);
2929  DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
2930}
2931
2932void SelectionDAGBuilder::visitStore(StoreInst &I) {
2933  Value *SrcV = I.getOperand(0);
2934  Value *PtrV = I.getOperand(1);
2935
2936  SmallVector<EVT, 4> ValueVTs;
2937  SmallVector<uint64_t, 4> Offsets;
2938  ComputeValueVTs(TLI, SrcV->getType(), ValueVTs, &Offsets);
2939  unsigned NumValues = ValueVTs.size();
2940  if (NumValues == 0)
2941    return;
2942
2943  // Get the lowered operands. Note that we do this after
2944  // checking if NumResults is zero, because with zero results
2945  // the operands won't have values in the map.
2946  SDValue Src = getValue(SrcV);
2947  SDValue Ptr = getValue(PtrV);
2948
2949  SDValue Root = getRoot();
2950  SmallVector<SDValue, 4> Chains(NumValues);
2951  EVT PtrVT = Ptr.getValueType();
2952  bool isVolatile = I.isVolatile();
2953  unsigned Alignment = I.getAlignment();
2954
2955  for (unsigned i = 0; i != NumValues; ++i) {
2956    SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT, Ptr,
2957                              DAG.getConstant(Offsets[i], PtrVT));
2958    Chains[i] = DAG.getStore(Root, getCurDebugLoc(),
2959                             SDValue(Src.getNode(), Src.getResNo() + i),
2960                             Add, PtrV, Offsets[i], isVolatile, Alignment);
2961
2962    DAG.AssignOrdering(Add.getNode(), SDNodeOrder);
2963    DAG.AssignOrdering(Chains[i].getNode(), SDNodeOrder);
2964  }
2965
2966  SDValue Res = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
2967                            MVT::Other, &Chains[0], NumValues);
2968  DAG.setRoot(Res);
2969  DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
2970}
2971
2972/// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
2973/// node.
2974void SelectionDAGBuilder::visitTargetIntrinsic(CallInst &I,
2975                                               unsigned Intrinsic) {
2976  bool HasChain = !I.doesNotAccessMemory();
2977  bool OnlyLoad = HasChain && I.onlyReadsMemory();
2978
2979  // Build the operand list.
2980  SmallVector<SDValue, 8> Ops;
2981  if (HasChain) {  // If this intrinsic has side-effects, chainify it.
2982    if (OnlyLoad) {
2983      // We don't need to serialize loads against other loads.
2984      Ops.push_back(DAG.getRoot());
2985    } else {
2986      Ops.push_back(getRoot());
2987    }
2988  }
2989
2990  // Info is set by getTgtMemInstrinsic
2991  TargetLowering::IntrinsicInfo Info;
2992  bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic);
2993
2994  // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
2995  if (!IsTgtIntrinsic)
2996    Ops.push_back(DAG.getConstant(Intrinsic, TLI.getPointerTy()));
2997
2998  // Add all operands of the call to the operand list.
2999  for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) {
3000    SDValue Op = getValue(I.getOperand(i));
3001    assert(TLI.isTypeLegal(Op.getValueType()) &&
3002           "Intrinsic uses a non-legal type?");
3003    Ops.push_back(Op);
3004  }
3005
3006  SmallVector<EVT, 4> ValueVTs;
3007  ComputeValueVTs(TLI, I.getType(), ValueVTs);
3008#ifndef NDEBUG
3009  for (unsigned Val = 0, E = ValueVTs.size(); Val != E; ++Val) {
3010    assert(TLI.isTypeLegal(ValueVTs[Val]) &&
3011           "Intrinsic uses a non-legal type?");
3012  }
3013#endif // NDEBUG
3014
3015  if (HasChain)
3016    ValueVTs.push_back(MVT::Other);
3017
3018  SDVTList VTs = DAG.getVTList(ValueVTs.data(), ValueVTs.size());
3019
3020  // Create the node.
3021  SDValue Result;
3022  if (IsTgtIntrinsic) {
3023    // This is target intrinsic that touches memory
3024    Result = DAG.getMemIntrinsicNode(Info.opc, getCurDebugLoc(),
3025                                     VTs, &Ops[0], Ops.size(),
3026                                     Info.memVT, Info.ptrVal, Info.offset,
3027                                     Info.align, Info.vol,
3028                                     Info.readMem, Info.writeMem);
3029  } else if (!HasChain) {
3030    Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurDebugLoc(),
3031                         VTs, &Ops[0], Ops.size());
3032  } else if (!I.getType()->isVoidTy()) {
3033    Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurDebugLoc(),
3034                         VTs, &Ops[0], Ops.size());
3035  } else {
3036    Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurDebugLoc(),
3037                         VTs, &Ops[0], Ops.size());
3038  }
3039
3040  DAG.AssignOrdering(Result.getNode(), SDNodeOrder);
3041
3042  if (HasChain) {
3043    SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
3044    if (OnlyLoad)
3045      PendingLoads.push_back(Chain);
3046    else
3047      DAG.setRoot(Chain);
3048  }
3049
3050  if (!I.getType()->isVoidTy()) {
3051    if (const VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
3052      EVT VT = TLI.getValueType(PTy);
3053      Result = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(), VT, Result);
3054      DAG.AssignOrdering(Result.getNode(), SDNodeOrder);
3055    }
3056
3057    setValue(&I, Result);
3058  }
3059}
3060
3061/// GetSignificand - Get the significand and build it into a floating-point
3062/// number with exponent of 1:
3063///
3064///   Op = (Op & 0x007fffff) | 0x3f800000;
3065///
3066/// where Op is the hexidecimal representation of floating point value.
3067static SDValue
3068GetSignificand(SelectionDAG &DAG, SDValue Op, DebugLoc dl, unsigned Order) {
3069  SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
3070                           DAG.getConstant(0x007fffff, MVT::i32));
3071  SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
3072                           DAG.getConstant(0x3f800000, MVT::i32));
3073  SDValue Res = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t2);
3074
3075  DAG.AssignOrdering(t1.getNode(), Order);
3076  DAG.AssignOrdering(t2.getNode(), Order);
3077  DAG.AssignOrdering(Res.getNode(), Order);
3078  return Res;
3079}
3080
3081/// GetExponent - Get the exponent:
3082///
3083///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
3084///
3085/// where Op is the hexidecimal representation of floating point value.
3086static SDValue
3087GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI,
3088            DebugLoc dl, unsigned Order) {
3089  SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
3090                           DAG.getConstant(0x7f800000, MVT::i32));
3091  SDValue t1 = DAG.getNode(ISD::SRL, dl, MVT::i32, t0,
3092                           DAG.getConstant(23, TLI.getPointerTy()));
3093  SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
3094                           DAG.getConstant(127, MVT::i32));
3095  SDValue Res = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
3096
3097  DAG.AssignOrdering(t0.getNode(), Order);
3098  DAG.AssignOrdering(t1.getNode(), Order);
3099  DAG.AssignOrdering(t2.getNode(), Order);
3100  DAG.AssignOrdering(Res.getNode(), Order);
3101  return Res;
3102}
3103
3104/// getF32Constant - Get 32-bit floating point constant.
3105static SDValue
3106getF32Constant(SelectionDAG &DAG, unsigned Flt) {
3107  return DAG.getConstantFP(APFloat(APInt(32, Flt)), MVT::f32);
3108}
3109
3110/// Inlined utility function to implement binary input atomic intrinsics for
3111/// visitIntrinsicCall: I is a call instruction
3112///                     Op is the associated NodeType for I
3113const char *
3114SelectionDAGBuilder::implVisitBinaryAtomic(CallInst& I, ISD::NodeType Op) {
3115  SDValue Root = getRoot();
3116  SDValue L =
3117    DAG.getAtomic(Op, getCurDebugLoc(),
3118                  getValue(I.getOperand(2)).getValueType().getSimpleVT(),
3119                  Root,
3120                  getValue(I.getOperand(1)),
3121                  getValue(I.getOperand(2)),
3122                  I.getOperand(1));
3123  setValue(&I, L);
3124  DAG.setRoot(L.getValue(1));
3125  DAG.AssignOrdering(L.getNode(), SDNodeOrder);
3126  return 0;
3127}
3128
3129// implVisitAluOverflow - Lower arithmetic overflow instrinsics.
3130const char *
3131SelectionDAGBuilder::implVisitAluOverflow(CallInst &I, ISD::NodeType Op) {
3132  SDValue Op1 = getValue(I.getOperand(1));
3133  SDValue Op2 = getValue(I.getOperand(2));
3134
3135  SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1);
3136  SDValue Result = DAG.getNode(Op, getCurDebugLoc(), VTs, Op1, Op2);
3137
3138  setValue(&I, Result);
3139  DAG.AssignOrdering(Result.getNode(), SDNodeOrder);
3140  return 0;
3141}
3142
3143/// visitExp - Lower an exp intrinsic. Handles the special sequences for
3144/// limited-precision mode.
3145void
3146SelectionDAGBuilder::visitExp(CallInst &I) {
3147  SDValue result;
3148  DebugLoc dl = getCurDebugLoc();
3149
3150  if (getValue(I.getOperand(1)).getValueType() == MVT::f32 &&
3151      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3152    SDValue Op = getValue(I.getOperand(1));
3153
3154    // Put the exponent in the right bit position for later addition to the
3155    // final result:
3156    //
3157    //   #define LOG2OFe 1.4426950f
3158    //   IntegerPartOfX = ((int32_t)(X * LOG2OFe));
3159    SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
3160                             getF32Constant(DAG, 0x3fb8aa3b));
3161    SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
3162
3163    //   FractionalPartOfX = (X * LOG2OFe) - (float)IntegerPartOfX;
3164    SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
3165    SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
3166
3167    DAG.AssignOrdering(t0.getNode(), SDNodeOrder);
3168    DAG.AssignOrdering(IntegerPartOfX.getNode(), SDNodeOrder);
3169    DAG.AssignOrdering(t1.getNode(), SDNodeOrder);
3170    DAG.AssignOrdering(X.getNode(), SDNodeOrder);
3171
3172    //   IntegerPartOfX <<= 23;
3173    IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
3174                                 DAG.getConstant(23, TLI.getPointerTy()));
3175    DAG.AssignOrdering(IntegerPartOfX.getNode(), SDNodeOrder);
3176
3177    if (LimitFloatPrecision <= 6) {
3178      // For floating-point precision of 6:
3179      //
3180      //   TwoToFractionalPartOfX =
3181      //     0.997535578f +
3182      //       (0.735607626f + 0.252464424f * x) * x;
3183      //
3184      // error 0.0144103317, which is 6 bits
3185      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3186                               getF32Constant(DAG, 0x3e814304));
3187      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3188                               getF32Constant(DAG, 0x3f3c50c8));
3189      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3190      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3191                               getF32Constant(DAG, 0x3f7f5e7e));
3192      SDValue TwoToFracPartOfX = DAG.getNode(ISD::BIT_CONVERT, dl,MVT::i32, t5);
3193
3194      // Add the exponent into the result in integer domain.
3195      SDValue t6 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3196                               TwoToFracPartOfX, IntegerPartOfX);
3197
3198      result = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t6);
3199
3200      DAG.AssignOrdering(t2.getNode(), SDNodeOrder);
3201      DAG.AssignOrdering(t3.getNode(), SDNodeOrder);
3202      DAG.AssignOrdering(t4.getNode(), SDNodeOrder);
3203      DAG.AssignOrdering(t5.getNode(), SDNodeOrder);
3204      DAG.AssignOrdering(t6.getNode(), SDNodeOrder);
3205      DAG.AssignOrdering(TwoToFracPartOfX.getNode(), SDNodeOrder);
3206      DAG.AssignOrdering(result.getNode(), SDNodeOrder);
3207    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3208      // For floating-point precision of 12:
3209      //
3210      //   TwoToFractionalPartOfX =
3211      //     0.999892986f +
3212      //       (0.696457318f +
3213      //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
3214      //
3215      // 0.000107046256 error, which is 13 to 14 bits
3216      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3217                               getF32Constant(DAG, 0x3da235e3));
3218      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3219                               getF32Constant(DAG, 0x3e65b8f3));
3220      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3221      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3222                               getF32Constant(DAG, 0x3f324b07));
3223      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3224      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3225                               getF32Constant(DAG, 0x3f7ff8fd));
3226      SDValue TwoToFracPartOfX = DAG.getNode(ISD::BIT_CONVERT, dl,MVT::i32, t7);
3227
3228      // Add the exponent into the result in integer domain.
3229      SDValue t8 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3230                               TwoToFracPartOfX, IntegerPartOfX);
3231
3232      result = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t8);
3233
3234      DAG.AssignOrdering(t2.getNode(), SDNodeOrder);
3235      DAG.AssignOrdering(t3.getNode(), SDNodeOrder);
3236      DAG.AssignOrdering(t4.getNode(), SDNodeOrder);
3237      DAG.AssignOrdering(t5.getNode(), SDNodeOrder);
3238      DAG.AssignOrdering(t6.getNode(), SDNodeOrder);
3239      DAG.AssignOrdering(t7.getNode(), SDNodeOrder);
3240      DAG.AssignOrdering(t8.getNode(), SDNodeOrder);
3241      DAG.AssignOrdering(TwoToFracPartOfX.getNode(), SDNodeOrder);
3242      DAG.AssignOrdering(result.getNode(), SDNodeOrder);
3243    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3244      // For floating-point precision of 18:
3245      //
3246      //   TwoToFractionalPartOfX =
3247      //     0.999999982f +
3248      //       (0.693148872f +
3249      //         (0.240227044f +
3250      //           (0.554906021e-1f +
3251      //             (0.961591928e-2f +
3252      //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
3253      //
3254      // error 2.47208000*10^(-7), which is better than 18 bits
3255      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3256                               getF32Constant(DAG, 0x3924b03e));
3257      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3258                               getF32Constant(DAG, 0x3ab24b87));
3259      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3260      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3261                               getF32Constant(DAG, 0x3c1d8c17));
3262      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3263      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3264                               getF32Constant(DAG, 0x3d634a1d));
3265      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3266      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3267                               getF32Constant(DAG, 0x3e75fe14));
3268      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3269      SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
3270                                getF32Constant(DAG, 0x3f317234));
3271      SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
3272      SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
3273                                getF32Constant(DAG, 0x3f800000));
3274      SDValue TwoToFracPartOfX = DAG.getNode(ISD::BIT_CONVERT, dl,
3275                                             MVT::i32, t13);
3276
3277      // Add the exponent into the result in integer domain.
3278      SDValue t14 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3279                                TwoToFracPartOfX, IntegerPartOfX);
3280
3281      result = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t14);
3282
3283      DAG.AssignOrdering(t2.getNode(), SDNodeOrder);
3284      DAG.AssignOrdering(t3.getNode(), SDNodeOrder);
3285      DAG.AssignOrdering(t4.getNode(), SDNodeOrder);
3286      DAG.AssignOrdering(t5.getNode(), SDNodeOrder);
3287      DAG.AssignOrdering(t6.getNode(), SDNodeOrder);
3288      DAG.AssignOrdering(t7.getNode(), SDNodeOrder);
3289      DAG.AssignOrdering(t8.getNode(), SDNodeOrder);
3290      DAG.AssignOrdering(t9.getNode(), SDNodeOrder);
3291      DAG.AssignOrdering(t10.getNode(), SDNodeOrder);
3292      DAG.AssignOrdering(t11.getNode(), SDNodeOrder);
3293      DAG.AssignOrdering(t12.getNode(), SDNodeOrder);
3294      DAG.AssignOrdering(t13.getNode(), SDNodeOrder);
3295      DAG.AssignOrdering(t14.getNode(), SDNodeOrder);
3296      DAG.AssignOrdering(TwoToFracPartOfX.getNode(), SDNodeOrder);
3297      DAG.AssignOrdering(result.getNode(), SDNodeOrder);
3298    }
3299  } else {
3300    // No special expansion.
3301    result = DAG.getNode(ISD::FEXP, dl,
3302                         getValue(I.getOperand(1)).getValueType(),
3303                         getValue(I.getOperand(1)));
3304    DAG.AssignOrdering(result.getNode(), SDNodeOrder);
3305  }
3306
3307  setValue(&I, result);
3308}
3309
3310/// visitLog - Lower a log intrinsic. Handles the special sequences for
3311/// limited-precision mode.
3312void
3313SelectionDAGBuilder::visitLog(CallInst &I) {
3314  SDValue result;
3315  DebugLoc dl = getCurDebugLoc();
3316
3317  if (getValue(I.getOperand(1)).getValueType() == MVT::f32 &&
3318      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3319    SDValue Op = getValue(I.getOperand(1));
3320    SDValue Op1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, Op);
3321
3322    DAG.AssignOrdering(Op1.getNode(), SDNodeOrder);
3323
3324    // Scale the exponent by log(2) [0.69314718f].
3325    SDValue Exp = GetExponent(DAG, Op1, TLI, dl, SDNodeOrder);
3326    SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
3327                                        getF32Constant(DAG, 0x3f317218));
3328
3329    DAG.AssignOrdering(LogOfExponent.getNode(), SDNodeOrder);
3330
3331    // Get the significand and build it into a floating-point number with
3332    // exponent of 1.
3333    SDValue X = GetSignificand(DAG, Op1, dl, SDNodeOrder);
3334
3335    if (LimitFloatPrecision <= 6) {
3336      // For floating-point precision of 6:
3337      //
3338      //   LogofMantissa =
3339      //     -1.1609546f +
3340      //       (1.4034025f - 0.23903021f * x) * x;
3341      //
3342      // error 0.0034276066, which is better than 8 bits
3343      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3344                               getF32Constant(DAG, 0xbe74c456));
3345      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3346                               getF32Constant(DAG, 0x3fb3a2b1));
3347      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3348      SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3349                                          getF32Constant(DAG, 0x3f949a29));
3350
3351      result = DAG.getNode(ISD::FADD, dl,
3352                           MVT::f32, LogOfExponent, LogOfMantissa);
3353
3354      DAG.AssignOrdering(t0.getNode(), SDNodeOrder);
3355      DAG.AssignOrdering(t1.getNode(), SDNodeOrder);
3356      DAG.AssignOrdering(t2.getNode(), SDNodeOrder);
3357      DAG.AssignOrdering(LogOfMantissa.getNode(), SDNodeOrder);
3358      DAG.AssignOrdering(result.getNode(), SDNodeOrder);
3359    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3360      // For floating-point precision of 12:
3361      //
3362      //   LogOfMantissa =
3363      //     -1.7417939f +
3364      //       (2.8212026f +
3365      //         (-1.4699568f +
3366      //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
3367      //
3368      // error 0.000061011436, which is 14 bits
3369      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3370                               getF32Constant(DAG, 0xbd67b6d6));
3371      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3372                               getF32Constant(DAG, 0x3ee4f4b8));
3373      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3374      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3375                               getF32Constant(DAG, 0x3fbc278b));
3376      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3377      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3378                               getF32Constant(DAG, 0x40348e95));
3379      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3380      SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3381                                          getF32Constant(DAG, 0x3fdef31a));
3382
3383      result = DAG.getNode(ISD::FADD, dl,
3384                           MVT::f32, LogOfExponent, LogOfMantissa);
3385
3386      DAG.AssignOrdering(t0.getNode(), SDNodeOrder);
3387      DAG.AssignOrdering(t1.getNode(), SDNodeOrder);
3388      DAG.AssignOrdering(t2.getNode(), SDNodeOrder);
3389      DAG.AssignOrdering(t3.getNode(), SDNodeOrder);
3390      DAG.AssignOrdering(t4.getNode(), SDNodeOrder);
3391      DAG.AssignOrdering(t5.getNode(), SDNodeOrder);
3392      DAG.AssignOrdering(t6.getNode(), SDNodeOrder);
3393      DAG.AssignOrdering(LogOfMantissa.getNode(), SDNodeOrder);
3394      DAG.AssignOrdering(result.getNode(), SDNodeOrder);
3395    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3396      // For floating-point precision of 18:
3397      //
3398      //   LogOfMantissa =
3399      //     -2.1072184f +
3400      //       (4.2372794f +
3401      //         (-3.7029485f +
3402      //           (2.2781945f +
3403      //             (-0.87823314f +
3404      //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
3405      //
3406      // error 0.0000023660568, which is better than 18 bits
3407      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3408                               getF32Constant(DAG, 0xbc91e5ac));
3409      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3410                               getF32Constant(DAG, 0x3e4350aa));
3411      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3412      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3413                               getF32Constant(DAG, 0x3f60d3e3));
3414      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3415      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3416                               getF32Constant(DAG, 0x4011cdf0));
3417      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3418      SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3419                               getF32Constant(DAG, 0x406cfd1c));
3420      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3421      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3422                               getF32Constant(DAG, 0x408797cb));
3423      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3424      SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
3425                                          getF32Constant(DAG, 0x4006dcab));
3426
3427      result = DAG.getNode(ISD::FADD, dl,
3428                           MVT::f32, LogOfExponent, LogOfMantissa);
3429
3430      DAG.AssignOrdering(t0.getNode(), SDNodeOrder);
3431      DAG.AssignOrdering(t1.getNode(), SDNodeOrder);
3432      DAG.AssignOrdering(t2.getNode(), SDNodeOrder);
3433      DAG.AssignOrdering(t3.getNode(), SDNodeOrder);
3434      DAG.AssignOrdering(t4.getNode(), SDNodeOrder);
3435      DAG.AssignOrdering(t5.getNode(), SDNodeOrder);
3436      DAG.AssignOrdering(t6.getNode(), SDNodeOrder);
3437      DAG.AssignOrdering(t7.getNode(), SDNodeOrder);
3438      DAG.AssignOrdering(t8.getNode(), SDNodeOrder);
3439      DAG.AssignOrdering(t9.getNode(), SDNodeOrder);
3440      DAG.AssignOrdering(t10.getNode(), SDNodeOrder);
3441      DAG.AssignOrdering(LogOfMantissa.getNode(), SDNodeOrder);
3442      DAG.AssignOrdering(result.getNode(), SDNodeOrder);
3443    }
3444  } else {
3445    // No special expansion.
3446    result = DAG.getNode(ISD::FLOG, dl,
3447                         getValue(I.getOperand(1)).getValueType(),
3448                         getValue(I.getOperand(1)));
3449    DAG.AssignOrdering(result.getNode(), SDNodeOrder);
3450  }
3451
3452  setValue(&I, result);
3453}
3454
3455/// visitLog2 - Lower a log2 intrinsic. Handles the special sequences for
3456/// limited-precision mode.
3457void
3458SelectionDAGBuilder::visitLog2(CallInst &I) {
3459  SDValue result;
3460  DebugLoc dl = getCurDebugLoc();
3461
3462  if (getValue(I.getOperand(1)).getValueType() == MVT::f32 &&
3463      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3464    SDValue Op = getValue(I.getOperand(1));
3465    SDValue Op1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, Op);
3466
3467    DAG.AssignOrdering(Op1.getNode(), SDNodeOrder);
3468
3469    // Get the exponent.
3470    SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl, SDNodeOrder);
3471
3472    DAG.AssignOrdering(LogOfExponent.getNode(), SDNodeOrder);
3473
3474    // Get the significand and build it into a floating-point number with
3475    // exponent of 1.
3476    SDValue X = GetSignificand(DAG, Op1, dl, SDNodeOrder);
3477
3478    // Different possible minimax approximations of significand in
3479    // floating-point for various degrees of accuracy over [1,2].
3480    if (LimitFloatPrecision <= 6) {
3481      // For floating-point precision of 6:
3482      //
3483      //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
3484      //
3485      // error 0.0049451742, which is more than 7 bits
3486      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3487                               getF32Constant(DAG, 0xbeb08fe0));
3488      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3489                               getF32Constant(DAG, 0x40019463));
3490      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3491      SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3492                                           getF32Constant(DAG, 0x3fd6633d));
3493
3494      result = DAG.getNode(ISD::FADD, dl,
3495                           MVT::f32, LogOfExponent, Log2ofMantissa);
3496
3497      DAG.AssignOrdering(t0.getNode(), SDNodeOrder);
3498      DAG.AssignOrdering(t1.getNode(), SDNodeOrder);
3499      DAG.AssignOrdering(t2.getNode(), SDNodeOrder);
3500      DAG.AssignOrdering(Log2ofMantissa.getNode(), SDNodeOrder);
3501      DAG.AssignOrdering(result.getNode(), SDNodeOrder);
3502    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3503      // For floating-point precision of 12:
3504      //
3505      //   Log2ofMantissa =
3506      //     -2.51285454f +
3507      //       (4.07009056f +
3508      //         (-2.12067489f +
3509      //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
3510      //
3511      // error 0.0000876136000, which is better than 13 bits
3512      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3513                               getF32Constant(DAG, 0xbda7262e));
3514      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3515                               getF32Constant(DAG, 0x3f25280b));
3516      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3517      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3518                               getF32Constant(DAG, 0x4007b923));
3519      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3520      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3521                               getF32Constant(DAG, 0x40823e2f));
3522      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3523      SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3524                                           getF32Constant(DAG, 0x4020d29c));
3525
3526      result = DAG.getNode(ISD::FADD, dl,
3527                           MVT::f32, LogOfExponent, Log2ofMantissa);
3528
3529      DAG.AssignOrdering(t0.getNode(), SDNodeOrder);
3530      DAG.AssignOrdering(t1.getNode(), SDNodeOrder);
3531      DAG.AssignOrdering(t2.getNode(), SDNodeOrder);
3532      DAG.AssignOrdering(t3.getNode(), SDNodeOrder);
3533      DAG.AssignOrdering(t4.getNode(), SDNodeOrder);
3534      DAG.AssignOrdering(t5.getNode(), SDNodeOrder);
3535      DAG.AssignOrdering(t6.getNode(), SDNodeOrder);
3536      DAG.AssignOrdering(Log2ofMantissa.getNode(), SDNodeOrder);
3537      DAG.AssignOrdering(result.getNode(), SDNodeOrder);
3538    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3539      // For floating-point precision of 18:
3540      //
3541      //   Log2ofMantissa =
3542      //     -3.0400495f +
3543      //       (6.1129976f +
3544      //         (-5.3420409f +
3545      //           (3.2865683f +
3546      //             (-1.2669343f +
3547      //               (0.27515199f -
3548      //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
3549      //
3550      // error 0.0000018516, which is better than 18 bits
3551      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3552                               getF32Constant(DAG, 0xbcd2769e));
3553      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3554                               getF32Constant(DAG, 0x3e8ce0b9));
3555      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3556      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3557                               getF32Constant(DAG, 0x3fa22ae7));
3558      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3559      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3560                               getF32Constant(DAG, 0x40525723));
3561      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3562      SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3563                               getF32Constant(DAG, 0x40aaf200));
3564      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3565      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3566                               getF32Constant(DAG, 0x40c39dad));
3567      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3568      SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
3569                                           getF32Constant(DAG, 0x4042902c));
3570
3571      result = DAG.getNode(ISD::FADD, dl,
3572                           MVT::f32, LogOfExponent, Log2ofMantissa);
3573
3574      DAG.AssignOrdering(t0.getNode(), SDNodeOrder);
3575      DAG.AssignOrdering(t1.getNode(), SDNodeOrder);
3576      DAG.AssignOrdering(t2.getNode(), SDNodeOrder);
3577      DAG.AssignOrdering(t3.getNode(), SDNodeOrder);
3578      DAG.AssignOrdering(t4.getNode(), SDNodeOrder);
3579      DAG.AssignOrdering(t5.getNode(), SDNodeOrder);
3580      DAG.AssignOrdering(t6.getNode(), SDNodeOrder);
3581      DAG.AssignOrdering(t7.getNode(), SDNodeOrder);
3582      DAG.AssignOrdering(t8.getNode(), SDNodeOrder);
3583      DAG.AssignOrdering(t9.getNode(), SDNodeOrder);
3584      DAG.AssignOrdering(t10.getNode(), SDNodeOrder);
3585      DAG.AssignOrdering(Log2ofMantissa.getNode(), SDNodeOrder);
3586      DAG.AssignOrdering(result.getNode(), SDNodeOrder);
3587    }
3588  } else {
3589    // No special expansion.
3590    result = DAG.getNode(ISD::FLOG2, dl,
3591                         getValue(I.getOperand(1)).getValueType(),
3592                         getValue(I.getOperand(1)));
3593    DAG.AssignOrdering(result.getNode(), SDNodeOrder);
3594  }
3595
3596  setValue(&I, result);
3597}
3598
3599/// visitLog10 - Lower a log10 intrinsic. Handles the special sequences for
3600/// limited-precision mode.
3601void
3602SelectionDAGBuilder::visitLog10(CallInst &I) {
3603  SDValue result;
3604  DebugLoc dl = getCurDebugLoc();
3605
3606  if (getValue(I.getOperand(1)).getValueType() == MVT::f32 &&
3607      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3608    SDValue Op = getValue(I.getOperand(1));
3609    SDValue Op1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, Op);
3610
3611    DAG.AssignOrdering(Op1.getNode(), SDNodeOrder);
3612
3613    // Scale the exponent by log10(2) [0.30102999f].
3614    SDValue Exp = GetExponent(DAG, Op1, TLI, dl, SDNodeOrder);
3615    SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
3616                                        getF32Constant(DAG, 0x3e9a209a));
3617
3618    DAG.AssignOrdering(LogOfExponent.getNode(), SDNodeOrder);
3619
3620    // Get the significand and build it into a floating-point number with
3621    // exponent of 1.
3622    SDValue X = GetSignificand(DAG, Op1, dl, SDNodeOrder);
3623
3624    if (LimitFloatPrecision <= 6) {
3625      // For floating-point precision of 6:
3626      //
3627      //   Log10ofMantissa =
3628      //     -0.50419619f +
3629      //       (0.60948995f - 0.10380950f * x) * x;
3630      //
3631      // error 0.0014886165, which is 6 bits
3632      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3633                               getF32Constant(DAG, 0xbdd49a13));
3634      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3635                               getF32Constant(DAG, 0x3f1c0789));
3636      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3637      SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3638                                            getF32Constant(DAG, 0x3f011300));
3639
3640      result = DAG.getNode(ISD::FADD, dl,
3641                           MVT::f32, LogOfExponent, Log10ofMantissa);
3642
3643      DAG.AssignOrdering(t0.getNode(), SDNodeOrder);
3644      DAG.AssignOrdering(t1.getNode(), SDNodeOrder);
3645      DAG.AssignOrdering(t2.getNode(), SDNodeOrder);
3646      DAG.AssignOrdering(Log10ofMantissa.getNode(), SDNodeOrder);
3647      DAG.AssignOrdering(result.getNode(), SDNodeOrder);
3648    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3649      // For floating-point precision of 12:
3650      //
3651      //   Log10ofMantissa =
3652      //     -0.64831180f +
3653      //       (0.91751397f +
3654      //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
3655      //
3656      // error 0.00019228036, which is better than 12 bits
3657      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3658                               getF32Constant(DAG, 0x3d431f31));
3659      SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
3660                               getF32Constant(DAG, 0x3ea21fb2));
3661      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3662      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3663                               getF32Constant(DAG, 0x3f6ae232));
3664      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3665      SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
3666                                            getF32Constant(DAG, 0x3f25f7c3));
3667
3668      result = DAG.getNode(ISD::FADD, dl,
3669                           MVT::f32, LogOfExponent, Log10ofMantissa);
3670
3671      DAG.AssignOrdering(t0.getNode(), SDNodeOrder);
3672      DAG.AssignOrdering(t1.getNode(), SDNodeOrder);
3673      DAG.AssignOrdering(t2.getNode(), SDNodeOrder);
3674      DAG.AssignOrdering(t3.getNode(), SDNodeOrder);
3675      DAG.AssignOrdering(t4.getNode(), SDNodeOrder);
3676      DAG.AssignOrdering(Log10ofMantissa.getNode(), SDNodeOrder);
3677      DAG.AssignOrdering(result.getNode(), SDNodeOrder);
3678    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3679      // For floating-point precision of 18:
3680      //
3681      //   Log10ofMantissa =
3682      //     -0.84299375f +
3683      //       (1.5327582f +
3684      //         (-1.0688956f +
3685      //           (0.49102474f +
3686      //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
3687      //
3688      // error 0.0000037995730, which is better than 18 bits
3689      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3690                               getF32Constant(DAG, 0x3c5d51ce));
3691      SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
3692                               getF32Constant(DAG, 0x3e00685a));
3693      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3694      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3695                               getF32Constant(DAG, 0x3efb6798));
3696      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3697      SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
3698                               getF32Constant(DAG, 0x3f88d192));
3699      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3700      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3701                               getF32Constant(DAG, 0x3fc4316c));
3702      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3703      SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
3704                                            getF32Constant(DAG, 0x3f57ce70));
3705
3706      result = DAG.getNode(ISD::FADD, dl,
3707                           MVT::f32, LogOfExponent, Log10ofMantissa);
3708
3709      DAG.AssignOrdering(t0.getNode(), SDNodeOrder);
3710      DAG.AssignOrdering(t1.getNode(), SDNodeOrder);
3711      DAG.AssignOrdering(t2.getNode(), SDNodeOrder);
3712      DAG.AssignOrdering(t3.getNode(), SDNodeOrder);
3713      DAG.AssignOrdering(t4.getNode(), SDNodeOrder);
3714      DAG.AssignOrdering(t5.getNode(), SDNodeOrder);
3715      DAG.AssignOrdering(t6.getNode(), SDNodeOrder);
3716      DAG.AssignOrdering(t7.getNode(), SDNodeOrder);
3717      DAG.AssignOrdering(t8.getNode(), SDNodeOrder);
3718      DAG.AssignOrdering(Log10ofMantissa.getNode(), SDNodeOrder);
3719      DAG.AssignOrdering(result.getNode(), SDNodeOrder);
3720    }
3721  } else {
3722    // No special expansion.
3723    result = DAG.getNode(ISD::FLOG10, dl,
3724                         getValue(I.getOperand(1)).getValueType(),
3725                         getValue(I.getOperand(1)));
3726    DAG.AssignOrdering(result.getNode(), SDNodeOrder);
3727  }
3728
3729  setValue(&I, result);
3730}
3731
3732/// visitExp2 - Lower an exp2 intrinsic. Handles the special sequences for
3733/// limited-precision mode.
3734void
3735SelectionDAGBuilder::visitExp2(CallInst &I) {
3736  SDValue result;
3737  DebugLoc dl = getCurDebugLoc();
3738
3739  if (getValue(I.getOperand(1)).getValueType() == MVT::f32 &&
3740      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3741    SDValue Op = getValue(I.getOperand(1));
3742
3743    SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Op);
3744
3745    DAG.AssignOrdering(IntegerPartOfX.getNode(), SDNodeOrder);
3746
3747    //   FractionalPartOfX = x - (float)IntegerPartOfX;
3748    SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
3749    SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, Op, t1);
3750
3751    //   IntegerPartOfX <<= 23;
3752    IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
3753                                 DAG.getConstant(23, TLI.getPointerTy()));
3754
3755    DAG.AssignOrdering(t1.getNode(), SDNodeOrder);
3756    DAG.AssignOrdering(X.getNode(), SDNodeOrder);
3757    DAG.AssignOrdering(IntegerPartOfX.getNode(), SDNodeOrder);
3758
3759    if (LimitFloatPrecision <= 6) {
3760      // For floating-point precision of 6:
3761      //
3762      //   TwoToFractionalPartOfX =
3763      //     0.997535578f +
3764      //       (0.735607626f + 0.252464424f * x) * x;
3765      //
3766      // error 0.0144103317, which is 6 bits
3767      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3768                               getF32Constant(DAG, 0x3e814304));
3769      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3770                               getF32Constant(DAG, 0x3f3c50c8));
3771      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3772      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3773                               getF32Constant(DAG, 0x3f7f5e7e));
3774      SDValue t6 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t5);
3775      SDValue TwoToFractionalPartOfX =
3776        DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX);
3777
3778      result = DAG.getNode(ISD::BIT_CONVERT, dl,
3779                           MVT::f32, TwoToFractionalPartOfX);
3780
3781      DAG.AssignOrdering(t2.getNode(), SDNodeOrder);
3782      DAG.AssignOrdering(t3.getNode(), SDNodeOrder);
3783      DAG.AssignOrdering(t4.getNode(), SDNodeOrder);
3784      DAG.AssignOrdering(t5.getNode(), SDNodeOrder);
3785      DAG.AssignOrdering(t6.getNode(), SDNodeOrder);
3786      DAG.AssignOrdering(TwoToFractionalPartOfX.getNode(), SDNodeOrder);
3787      DAG.AssignOrdering(result.getNode(), SDNodeOrder);
3788    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3789      // For floating-point precision of 12:
3790      //
3791      //   TwoToFractionalPartOfX =
3792      //     0.999892986f +
3793      //       (0.696457318f +
3794      //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
3795      //
3796      // error 0.000107046256, which is 13 to 14 bits
3797      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3798                               getF32Constant(DAG, 0x3da235e3));
3799      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3800                               getF32Constant(DAG, 0x3e65b8f3));
3801      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3802      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3803                               getF32Constant(DAG, 0x3f324b07));
3804      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3805      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3806                               getF32Constant(DAG, 0x3f7ff8fd));
3807      SDValue t8 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t7);
3808      SDValue TwoToFractionalPartOfX =
3809        DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX);
3810
3811      result = DAG.getNode(ISD::BIT_CONVERT, dl,
3812                           MVT::f32, TwoToFractionalPartOfX);
3813
3814      DAG.AssignOrdering(t2.getNode(), SDNodeOrder);
3815      DAG.AssignOrdering(t3.getNode(), SDNodeOrder);
3816      DAG.AssignOrdering(t4.getNode(), SDNodeOrder);
3817      DAG.AssignOrdering(t5.getNode(), SDNodeOrder);
3818      DAG.AssignOrdering(t6.getNode(), SDNodeOrder);
3819      DAG.AssignOrdering(t7.getNode(), SDNodeOrder);
3820      DAG.AssignOrdering(t8.getNode(), SDNodeOrder);
3821      DAG.AssignOrdering(TwoToFractionalPartOfX.getNode(), SDNodeOrder);
3822      DAG.AssignOrdering(result.getNode(), SDNodeOrder);
3823    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3824      // For floating-point precision of 18:
3825      //
3826      //   TwoToFractionalPartOfX =
3827      //     0.999999982f +
3828      //       (0.693148872f +
3829      //         (0.240227044f +
3830      //           (0.554906021e-1f +
3831      //             (0.961591928e-2f +
3832      //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
3833      // error 2.47208000*10^(-7), which is better than 18 bits
3834      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3835                               getF32Constant(DAG, 0x3924b03e));
3836      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3837                               getF32Constant(DAG, 0x3ab24b87));
3838      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3839      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3840                               getF32Constant(DAG, 0x3c1d8c17));
3841      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3842      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3843                               getF32Constant(DAG, 0x3d634a1d));
3844      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3845      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3846                               getF32Constant(DAG, 0x3e75fe14));
3847      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3848      SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
3849                                getF32Constant(DAG, 0x3f317234));
3850      SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
3851      SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
3852                                getF32Constant(DAG, 0x3f800000));
3853      SDValue t14 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t13);
3854      SDValue TwoToFractionalPartOfX =
3855        DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX);
3856
3857      result = DAG.getNode(ISD::BIT_CONVERT, dl,
3858                           MVT::f32, TwoToFractionalPartOfX);
3859
3860      DAG.AssignOrdering(t2.getNode(), SDNodeOrder);
3861      DAG.AssignOrdering(t3.getNode(), SDNodeOrder);
3862      DAG.AssignOrdering(t4.getNode(), SDNodeOrder);
3863      DAG.AssignOrdering(t5.getNode(), SDNodeOrder);
3864      DAG.AssignOrdering(t6.getNode(), SDNodeOrder);
3865      DAG.AssignOrdering(t7.getNode(), SDNodeOrder);
3866      DAG.AssignOrdering(t8.getNode(), SDNodeOrder);
3867      DAG.AssignOrdering(t9.getNode(), SDNodeOrder);
3868      DAG.AssignOrdering(t10.getNode(), SDNodeOrder);
3869      DAG.AssignOrdering(t11.getNode(), SDNodeOrder);
3870      DAG.AssignOrdering(t12.getNode(), SDNodeOrder);
3871      DAG.AssignOrdering(t13.getNode(), SDNodeOrder);
3872      DAG.AssignOrdering(t14.getNode(), SDNodeOrder);
3873      DAG.AssignOrdering(TwoToFractionalPartOfX.getNode(), SDNodeOrder);
3874      DAG.AssignOrdering(result.getNode(), SDNodeOrder);
3875    }
3876  } else {
3877    // No special expansion.
3878    result = DAG.getNode(ISD::FEXP2, dl,
3879                         getValue(I.getOperand(1)).getValueType(),
3880                         getValue(I.getOperand(1)));
3881    DAG.AssignOrdering(result.getNode(), SDNodeOrder);
3882  }
3883
3884  setValue(&I, result);
3885}
3886
3887/// visitPow - Lower a pow intrinsic. Handles the special sequences for
3888/// limited-precision mode with x == 10.0f.
3889void
3890SelectionDAGBuilder::visitPow(CallInst &I) {
3891  SDValue result;
3892  Value *Val = I.getOperand(1);
3893  DebugLoc dl = getCurDebugLoc();
3894  bool IsExp10 = false;
3895
3896  if (getValue(Val).getValueType() == MVT::f32 &&
3897      getValue(I.getOperand(2)).getValueType() == MVT::f32 &&
3898      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3899    if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(Val))) {
3900      if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
3901        APFloat Ten(10.0f);
3902        IsExp10 = CFP->getValueAPF().bitwiseIsEqual(Ten);
3903      }
3904    }
3905  }
3906
3907  if (IsExp10 && LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3908    SDValue Op = getValue(I.getOperand(2));
3909
3910    // Put the exponent in the right bit position for later addition to the
3911    // final result:
3912    //
3913    //   #define LOG2OF10 3.3219281f
3914    //   IntegerPartOfX = (int32_t)(x * LOG2OF10);
3915    SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
3916                             getF32Constant(DAG, 0x40549a78));
3917    SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
3918
3919    //   FractionalPartOfX = x - (float)IntegerPartOfX;
3920    SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
3921    SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
3922
3923    DAG.AssignOrdering(t0.getNode(), SDNodeOrder);
3924    DAG.AssignOrdering(t1.getNode(), SDNodeOrder);
3925    DAG.AssignOrdering(IntegerPartOfX.getNode(), SDNodeOrder);
3926    DAG.AssignOrdering(X.getNode(), SDNodeOrder);
3927
3928    //   IntegerPartOfX <<= 23;
3929    IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
3930                                 DAG.getConstant(23, TLI.getPointerTy()));
3931
3932    DAG.AssignOrdering(IntegerPartOfX.getNode(), SDNodeOrder);
3933
3934    if (LimitFloatPrecision <= 6) {
3935      // For floating-point precision of 6:
3936      //
3937      //   twoToFractionalPartOfX =
3938      //     0.997535578f +
3939      //       (0.735607626f + 0.252464424f * x) * x;
3940      //
3941      // error 0.0144103317, which is 6 bits
3942      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3943                               getF32Constant(DAG, 0x3e814304));
3944      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3945                               getF32Constant(DAG, 0x3f3c50c8));
3946      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3947      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3948                               getF32Constant(DAG, 0x3f7f5e7e));
3949      SDValue t6 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t5);
3950      SDValue TwoToFractionalPartOfX =
3951        DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX);
3952
3953      result = DAG.getNode(ISD::BIT_CONVERT, dl,
3954                           MVT::f32, TwoToFractionalPartOfX);
3955
3956      DAG.AssignOrdering(t2.getNode(), SDNodeOrder);
3957      DAG.AssignOrdering(t3.getNode(), SDNodeOrder);
3958      DAG.AssignOrdering(t4.getNode(), SDNodeOrder);
3959      DAG.AssignOrdering(t5.getNode(), SDNodeOrder);
3960      DAG.AssignOrdering(t6.getNode(), SDNodeOrder);
3961      DAG.AssignOrdering(TwoToFractionalPartOfX.getNode(), SDNodeOrder);
3962      DAG.AssignOrdering(result.getNode(), SDNodeOrder);
3963    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3964      // For floating-point precision of 12:
3965      //
3966      //   TwoToFractionalPartOfX =
3967      //     0.999892986f +
3968      //       (0.696457318f +
3969      //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
3970      //
3971      // error 0.000107046256, which is 13 to 14 bits
3972      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3973                               getF32Constant(DAG, 0x3da235e3));
3974      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3975                               getF32Constant(DAG, 0x3e65b8f3));
3976      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3977      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3978                               getF32Constant(DAG, 0x3f324b07));
3979      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3980      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3981                               getF32Constant(DAG, 0x3f7ff8fd));
3982      SDValue t8 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t7);
3983      SDValue TwoToFractionalPartOfX =
3984        DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX);
3985
3986      result = DAG.getNode(ISD::BIT_CONVERT, dl,
3987                           MVT::f32, TwoToFractionalPartOfX);
3988
3989      DAG.AssignOrdering(t2.getNode(), SDNodeOrder);
3990      DAG.AssignOrdering(t3.getNode(), SDNodeOrder);
3991      DAG.AssignOrdering(t4.getNode(), SDNodeOrder);
3992      DAG.AssignOrdering(t5.getNode(), SDNodeOrder);
3993      DAG.AssignOrdering(t6.getNode(), SDNodeOrder);
3994      DAG.AssignOrdering(t7.getNode(), SDNodeOrder);
3995      DAG.AssignOrdering(t8.getNode(), SDNodeOrder);
3996      DAG.AssignOrdering(TwoToFractionalPartOfX.getNode(), SDNodeOrder);
3997      DAG.AssignOrdering(result.getNode(), SDNodeOrder);
3998    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3999      // For floating-point precision of 18:
4000      //
4001      //   TwoToFractionalPartOfX =
4002      //     0.999999982f +
4003      //       (0.693148872f +
4004      //         (0.240227044f +
4005      //           (0.554906021e-1f +
4006      //             (0.961591928e-2f +
4007      //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
4008      // error 2.47208000*10^(-7), which is better than 18 bits
4009      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4010                               getF32Constant(DAG, 0x3924b03e));
4011      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4012                               getF32Constant(DAG, 0x3ab24b87));
4013      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4014      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4015                               getF32Constant(DAG, 0x3c1d8c17));
4016      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4017      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4018                               getF32Constant(DAG, 0x3d634a1d));
4019      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4020      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4021                               getF32Constant(DAG, 0x3e75fe14));
4022      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4023      SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
4024                                getF32Constant(DAG, 0x3f317234));
4025      SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
4026      SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
4027                                getF32Constant(DAG, 0x3f800000));
4028      SDValue t14 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t13);
4029      SDValue TwoToFractionalPartOfX =
4030        DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX);
4031
4032      result = DAG.getNode(ISD::BIT_CONVERT, dl,
4033                           MVT::f32, TwoToFractionalPartOfX);
4034
4035      DAG.AssignOrdering(t2.getNode(), SDNodeOrder);
4036      DAG.AssignOrdering(t3.getNode(), SDNodeOrder);
4037      DAG.AssignOrdering(t4.getNode(), SDNodeOrder);
4038      DAG.AssignOrdering(t5.getNode(), SDNodeOrder);
4039      DAG.AssignOrdering(t6.getNode(), SDNodeOrder);
4040      DAG.AssignOrdering(t7.getNode(), SDNodeOrder);
4041      DAG.AssignOrdering(t8.getNode(), SDNodeOrder);
4042      DAG.AssignOrdering(t9.getNode(), SDNodeOrder);
4043      DAG.AssignOrdering(t10.getNode(), SDNodeOrder);
4044      DAG.AssignOrdering(t11.getNode(), SDNodeOrder);
4045      DAG.AssignOrdering(t12.getNode(), SDNodeOrder);
4046      DAG.AssignOrdering(t13.getNode(), SDNodeOrder);
4047      DAG.AssignOrdering(t14.getNode(), SDNodeOrder);
4048      DAG.AssignOrdering(TwoToFractionalPartOfX.getNode(), SDNodeOrder);
4049      DAG.AssignOrdering(result.getNode(), SDNodeOrder);
4050    }
4051  } else {
4052    // No special expansion.
4053    result = DAG.getNode(ISD::FPOW, dl,
4054                         getValue(I.getOperand(1)).getValueType(),
4055                         getValue(I.getOperand(1)),
4056                         getValue(I.getOperand(2)));
4057    DAG.AssignOrdering(result.getNode(), SDNodeOrder);
4058  }
4059
4060  setValue(&I, result);
4061}
4062
4063
4064/// ExpandPowI - Expand a llvm.powi intrinsic.
4065static SDValue ExpandPowI(DebugLoc DL, SDValue LHS, SDValue RHS,
4066                          SelectionDAG &DAG) {
4067  // If RHS is a constant, we can expand this out to a multiplication tree,
4068  // otherwise we end up lowering to a call to __powidf2 (for example).  When
4069  // optimizing for size, we only want to do this if the expansion would produce
4070  // a small number of multiplies, otherwise we do the full expansion.
4071  if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
4072    // Get the exponent as a positive value.
4073    unsigned Val = RHSC->getSExtValue();
4074    if ((int)Val < 0) Val = -Val;
4075
4076    // powi(x, 0) -> 1.0
4077    if (Val == 0)
4078      return DAG.getConstantFP(1.0, LHS.getValueType());
4079
4080    Function *F = DAG.getMachineFunction().getFunction();
4081    if (!F->hasFnAttr(Attribute::OptimizeForSize) ||
4082        // If optimizing for size, don't insert too many multiplies.  This
4083        // inserts up to 5 multiplies.
4084        CountPopulation_32(Val)+Log2_32(Val) < 7) {
4085      // We use the simple binary decomposition method to generate the multiply
4086      // sequence.  There are more optimal ways to do this (for example,
4087      // powi(x,15) generates one more multiply than it should), but this has
4088      // the benefit of being both really simple and much better than a libcall.
4089      SDValue Res;  // Logically starts equal to 1.0
4090      SDValue CurSquare = LHS;
4091      while (Val) {
4092        if (Val & 1) {
4093          if (Res.getNode())
4094            Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare);
4095          else
4096            Res = CurSquare;  // 1.0*CurSquare.
4097        }
4098
4099        CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
4100                                CurSquare, CurSquare);
4101        Val >>= 1;
4102      }
4103
4104      // If the original was negative, invert the result, producing 1/(x*x*x).
4105      if (RHSC->getSExtValue() < 0)
4106        Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
4107                          DAG.getConstantFP(1.0, LHS.getValueType()), Res);
4108      return Res;
4109    }
4110  }
4111
4112  // Otherwise, expand to a libcall.
4113  return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
4114}
4115
4116
4117/// visitIntrinsicCall - Lower the call to the specified intrinsic function.  If
4118/// we want to emit this as a call to a named external function, return the name
4119/// otherwise lower it and return null.
4120const char *
4121SelectionDAGBuilder::visitIntrinsicCall(CallInst &I, unsigned Intrinsic) {
4122  DebugLoc dl = getCurDebugLoc();
4123  SDValue Res;
4124
4125  switch (Intrinsic) {
4126  default:
4127    // By default, turn this into a target intrinsic node.
4128    visitTargetIntrinsic(I, Intrinsic);
4129    return 0;
4130  case Intrinsic::vastart:  visitVAStart(I); return 0;
4131  case Intrinsic::vaend:    visitVAEnd(I); return 0;
4132  case Intrinsic::vacopy:   visitVACopy(I); return 0;
4133  case Intrinsic::returnaddress:
4134    Res = DAG.getNode(ISD::RETURNADDR, dl, TLI.getPointerTy(),
4135                      getValue(I.getOperand(1)));
4136    setValue(&I, Res);
4137    DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
4138    return 0;
4139  case Intrinsic::frameaddress:
4140    Res = DAG.getNode(ISD::FRAMEADDR, dl, TLI.getPointerTy(),
4141                      getValue(I.getOperand(1)));
4142    setValue(&I, Res);
4143    DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
4144    return 0;
4145  case Intrinsic::setjmp:
4146    return "_setjmp"+!TLI.usesUnderscoreSetJmp();
4147  case Intrinsic::longjmp:
4148    return "_longjmp"+!TLI.usesUnderscoreLongJmp();
4149  case Intrinsic::memcpy: {
4150    SDValue Op1 = getValue(I.getOperand(1));
4151    SDValue Op2 = getValue(I.getOperand(2));
4152    SDValue Op3 = getValue(I.getOperand(3));
4153    unsigned Align = cast<ConstantInt>(I.getOperand(4))->getZExtValue();
4154    Res = DAG.getMemcpy(getRoot(), dl, Op1, Op2, Op3, Align, false,
4155                        I.getOperand(1), 0, I.getOperand(2), 0);
4156    DAG.setRoot(Res);
4157    DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
4158    return 0;
4159  }
4160  case Intrinsic::memset: {
4161    SDValue Op1 = getValue(I.getOperand(1));
4162    SDValue Op2 = getValue(I.getOperand(2));
4163    SDValue Op3 = getValue(I.getOperand(3));
4164    unsigned Align = cast<ConstantInt>(I.getOperand(4))->getZExtValue();
4165    Res = DAG.getMemset(getRoot(), dl, Op1, Op2, Op3, Align,
4166                        I.getOperand(1), 0);
4167    DAG.setRoot(Res);
4168    DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
4169    return 0;
4170  }
4171  case Intrinsic::memmove: {
4172    SDValue Op1 = getValue(I.getOperand(1));
4173    SDValue Op2 = getValue(I.getOperand(2));
4174    SDValue Op3 = getValue(I.getOperand(3));
4175    unsigned Align = cast<ConstantInt>(I.getOperand(4))->getZExtValue();
4176
4177    // If the source and destination are known to not be aliases, we can
4178    // lower memmove as memcpy.
4179    uint64_t Size = -1ULL;
4180    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op3))
4181      Size = C->getZExtValue();
4182    if (AA->alias(I.getOperand(1), Size, I.getOperand(2), Size) ==
4183        AliasAnalysis::NoAlias) {
4184      Res = DAG.getMemcpy(getRoot(), dl, Op1, Op2, Op3, Align, false,
4185                          I.getOperand(1), 0, I.getOperand(2), 0);
4186      DAG.setRoot(Res);
4187      DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
4188      return 0;
4189    }
4190
4191    Res = DAG.getMemmove(getRoot(), dl, Op1, Op2, Op3, Align,
4192                         I.getOperand(1), 0, I.getOperand(2), 0);
4193    DAG.setRoot(Res);
4194    DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
4195    return 0;
4196  }
4197  case Intrinsic::dbg_declare: {
4198    if (OptLevel != CodeGenOpt::None)
4199      // FIXME: Variable debug info is not supported here.
4200      return 0;
4201    DwarfWriter *DW = DAG.getDwarfWriter();
4202    if (!DW)
4203      return 0;
4204    DbgDeclareInst &DI = cast<DbgDeclareInst>(I);
4205    if (!DIDescriptor::ValidDebugInfo(DI.getVariable(), CodeGenOpt::None))
4206      return 0;
4207
4208    MDNode *Variable = DI.getVariable();
4209    Value *Address = DI.getAddress();
4210    if (BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
4211      Address = BCI->getOperand(0);
4212    AllocaInst *AI = dyn_cast<AllocaInst>(Address);
4213    // Don't handle byval struct arguments or VLAs, for example.
4214    if (!AI)
4215      return 0;
4216    DenseMap<const AllocaInst*, int>::iterator SI =
4217      FuncInfo.StaticAllocaMap.find(AI);
4218    if (SI == FuncInfo.StaticAllocaMap.end())
4219      return 0; // VLAs.
4220    int FI = SI->second;
4221
4222    if (MachineModuleInfo *MMI = DAG.getMachineModuleInfo())
4223      if (MDNode *Dbg = DI.getMetadata("dbg"))
4224        MMI->setVariableDbgInfo(Variable, FI, Dbg);
4225    return 0;
4226  }
4227  case Intrinsic::eh_exception: {
4228    // Insert the EXCEPTIONADDR instruction.
4229    assert(CurMBB->isLandingPad() &&"Call to eh.exception not in landing pad!");
4230    SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
4231    SDValue Ops[1];
4232    Ops[0] = DAG.getRoot();
4233    SDValue Op = DAG.getNode(ISD::EXCEPTIONADDR, dl, VTs, Ops, 1);
4234    setValue(&I, Op);
4235    DAG.setRoot(Op.getValue(1));
4236    DAG.AssignOrdering(Op.getNode(), SDNodeOrder);
4237    return 0;
4238  }
4239
4240  case Intrinsic::eh_selector: {
4241    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
4242
4243    if (CurMBB->isLandingPad())
4244      AddCatchInfo(I, MMI, CurMBB);
4245    else {
4246#ifndef NDEBUG
4247      FuncInfo.CatchInfoLost.insert(&I);
4248#endif
4249      // FIXME: Mark exception selector register as live in.  Hack for PR1508.
4250      unsigned Reg = TLI.getExceptionSelectorRegister();
4251      if (Reg) CurMBB->addLiveIn(Reg);
4252    }
4253
4254    // Insert the EHSELECTION instruction.
4255    SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
4256    SDValue Ops[2];
4257    Ops[0] = getValue(I.getOperand(1));
4258    Ops[1] = getRoot();
4259    SDValue Op = DAG.getNode(ISD::EHSELECTION, dl, VTs, Ops, 2);
4260
4261    DAG.setRoot(Op.getValue(1));
4262
4263    Res = DAG.getSExtOrTrunc(Op, dl, MVT::i32);
4264    setValue(&I, Res);
4265    DAG.AssignOrdering(Op.getNode(), SDNodeOrder);
4266    DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
4267    return 0;
4268  }
4269
4270  case Intrinsic::eh_typeid_for: {
4271    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
4272
4273    if (MMI) {
4274      // Find the type id for the given typeinfo.
4275      GlobalVariable *GV = ExtractTypeInfo(I.getOperand(1));
4276      unsigned TypeID = MMI->getTypeIDFor(GV);
4277      Res = DAG.getConstant(TypeID, MVT::i32);
4278    } else {
4279      // Return something different to eh_selector.
4280      Res = DAG.getConstant(1, MVT::i32);
4281    }
4282
4283    setValue(&I, Res);
4284    DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
4285    return 0;
4286  }
4287
4288  case Intrinsic::eh_return_i32:
4289  case Intrinsic::eh_return_i64:
4290    if (MachineModuleInfo *MMI = DAG.getMachineModuleInfo()) {
4291      MMI->setCallsEHReturn(true);
4292      Res = DAG.getNode(ISD::EH_RETURN, dl,
4293                        MVT::Other,
4294                        getControlRoot(),
4295                        getValue(I.getOperand(1)),
4296                        getValue(I.getOperand(2)));
4297      DAG.setRoot(Res);
4298      DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
4299    } else {
4300      setValue(&I, DAG.getConstant(0, TLI.getPointerTy()));
4301    }
4302
4303    return 0;
4304  case Intrinsic::eh_unwind_init:
4305    if (MachineModuleInfo *MMI = DAG.getMachineModuleInfo()) {
4306      MMI->setCallsUnwindInit(true);
4307    }
4308    return 0;
4309  case Intrinsic::eh_dwarf_cfa: {
4310    EVT VT = getValue(I.getOperand(1)).getValueType();
4311    SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), dl,
4312                                        TLI.getPointerTy());
4313    SDValue Offset = DAG.getNode(ISD::ADD, dl,
4314                                 TLI.getPointerTy(),
4315                                 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, dl,
4316                                             TLI.getPointerTy()),
4317                                 CfaArg);
4318    SDValue FA = DAG.getNode(ISD::FRAMEADDR, dl,
4319                             TLI.getPointerTy(),
4320                             DAG.getConstant(0, TLI.getPointerTy()));
4321    Res = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(),
4322                      FA, Offset);
4323    setValue(&I, Res);
4324    DAG.AssignOrdering(CfaArg.getNode(), SDNodeOrder);
4325    DAG.AssignOrdering(Offset.getNode(), SDNodeOrder);
4326    DAG.AssignOrdering(FA.getNode(), SDNodeOrder);
4327    DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
4328    return 0;
4329  }
4330  case Intrinsic::convertff:
4331  case Intrinsic::convertfsi:
4332  case Intrinsic::convertfui:
4333  case Intrinsic::convertsif:
4334  case Intrinsic::convertuif:
4335  case Intrinsic::convertss:
4336  case Intrinsic::convertsu:
4337  case Intrinsic::convertus:
4338  case Intrinsic::convertuu: {
4339    ISD::CvtCode Code = ISD::CVT_INVALID;
4340    switch (Intrinsic) {
4341    case Intrinsic::convertff:  Code = ISD::CVT_FF; break;
4342    case Intrinsic::convertfsi: Code = ISD::CVT_FS; break;
4343    case Intrinsic::convertfui: Code = ISD::CVT_FU; break;
4344    case Intrinsic::convertsif: Code = ISD::CVT_SF; break;
4345    case Intrinsic::convertuif: Code = ISD::CVT_UF; break;
4346    case Intrinsic::convertss:  Code = ISD::CVT_SS; break;
4347    case Intrinsic::convertsu:  Code = ISD::CVT_SU; break;
4348    case Intrinsic::convertus:  Code = ISD::CVT_US; break;
4349    case Intrinsic::convertuu:  Code = ISD::CVT_UU; break;
4350    }
4351    EVT DestVT = TLI.getValueType(I.getType());
4352    Value *Op1 = I.getOperand(1);
4353    Res = DAG.getConvertRndSat(DestVT, getCurDebugLoc(), getValue(Op1),
4354                               DAG.getValueType(DestVT),
4355                               DAG.getValueType(getValue(Op1).getValueType()),
4356                               getValue(I.getOperand(2)),
4357                               getValue(I.getOperand(3)),
4358                               Code);
4359    setValue(&I, Res);
4360    DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
4361    return 0;
4362  }
4363  case Intrinsic::sqrt:
4364    Res = DAG.getNode(ISD::FSQRT, dl,
4365                      getValue(I.getOperand(1)).getValueType(),
4366                      getValue(I.getOperand(1)));
4367    setValue(&I, Res);
4368    DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
4369    return 0;
4370  case Intrinsic::powi:
4371    Res = ExpandPowI(dl, getValue(I.getOperand(1)), getValue(I.getOperand(2)),
4372                     DAG);
4373    setValue(&I, Res);
4374    DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
4375    return 0;
4376  case Intrinsic::sin:
4377    Res = DAG.getNode(ISD::FSIN, dl,
4378                      getValue(I.getOperand(1)).getValueType(),
4379                      getValue(I.getOperand(1)));
4380    setValue(&I, Res);
4381    DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
4382    return 0;
4383  case Intrinsic::cos:
4384    Res = DAG.getNode(ISD::FCOS, dl,
4385                      getValue(I.getOperand(1)).getValueType(),
4386                      getValue(I.getOperand(1)));
4387    setValue(&I, Res);
4388    DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
4389    return 0;
4390  case Intrinsic::log:
4391    visitLog(I);
4392    return 0;
4393  case Intrinsic::log2:
4394    visitLog2(I);
4395    return 0;
4396  case Intrinsic::log10:
4397    visitLog10(I);
4398    return 0;
4399  case Intrinsic::exp:
4400    visitExp(I);
4401    return 0;
4402  case Intrinsic::exp2:
4403    visitExp2(I);
4404    return 0;
4405  case Intrinsic::pow:
4406    visitPow(I);
4407    return 0;
4408  case Intrinsic::pcmarker: {
4409    SDValue Tmp = getValue(I.getOperand(1));
4410    Res = DAG.getNode(ISD::PCMARKER, dl, MVT::Other, getRoot(), Tmp);
4411    DAG.setRoot(Res);
4412    DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
4413    return 0;
4414  }
4415  case Intrinsic::readcyclecounter: {
4416    SDValue Op = getRoot();
4417    Res = DAG.getNode(ISD::READCYCLECOUNTER, dl,
4418                      DAG.getVTList(MVT::i64, MVT::Other),
4419                      &Op, 1);
4420    setValue(&I, Res);
4421    DAG.setRoot(Res.getValue(1));
4422    DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
4423    return 0;
4424  }
4425  case Intrinsic::bswap:
4426    Res = DAG.getNode(ISD::BSWAP, dl,
4427                      getValue(I.getOperand(1)).getValueType(),
4428                      getValue(I.getOperand(1)));
4429    setValue(&I, Res);
4430    DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
4431    return 0;
4432  case Intrinsic::cttz: {
4433    SDValue Arg = getValue(I.getOperand(1));
4434    EVT Ty = Arg.getValueType();
4435    Res = DAG.getNode(ISD::CTTZ, dl, Ty, Arg);
4436    setValue(&I, Res);
4437    DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
4438    return 0;
4439  }
4440  case Intrinsic::ctlz: {
4441    SDValue Arg = getValue(I.getOperand(1));
4442    EVT Ty = Arg.getValueType();
4443    Res = DAG.getNode(ISD::CTLZ, dl, Ty, Arg);
4444    setValue(&I, Res);
4445    DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
4446    return 0;
4447  }
4448  case Intrinsic::ctpop: {
4449    SDValue Arg = getValue(I.getOperand(1));
4450    EVT Ty = Arg.getValueType();
4451    Res = DAG.getNode(ISD::CTPOP, dl, Ty, Arg);
4452    setValue(&I, Res);
4453    DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
4454    return 0;
4455  }
4456  case Intrinsic::stacksave: {
4457    SDValue Op = getRoot();
4458    Res = DAG.getNode(ISD::STACKSAVE, dl,
4459                      DAG.getVTList(TLI.getPointerTy(), MVT::Other), &Op, 1);
4460    setValue(&I, Res);
4461    DAG.setRoot(Res.getValue(1));
4462    DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
4463    return 0;
4464  }
4465  case Intrinsic::stackrestore: {
4466    Res = getValue(I.getOperand(1));
4467    Res = DAG.getNode(ISD::STACKRESTORE, dl, MVT::Other, getRoot(), Res);
4468    DAG.setRoot(Res);
4469    DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
4470    return 0;
4471  }
4472  case Intrinsic::stackprotector: {
4473    // Emit code into the DAG to store the stack guard onto the stack.
4474    MachineFunction &MF = DAG.getMachineFunction();
4475    MachineFrameInfo *MFI = MF.getFrameInfo();
4476    EVT PtrTy = TLI.getPointerTy();
4477
4478    SDValue Src = getValue(I.getOperand(1));   // The guard's value.
4479    AllocaInst *Slot = cast<AllocaInst>(I.getOperand(2));
4480
4481    int FI = FuncInfo.StaticAllocaMap[Slot];
4482    MFI->setStackProtectorIndex(FI);
4483
4484    SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
4485
4486    // Store the stack protector onto the stack.
4487    Res = DAG.getStore(getRoot(), getCurDebugLoc(), Src, FIN,
4488                       PseudoSourceValue::getFixedStack(FI),
4489                       0, true);
4490    setValue(&I, Res);
4491    DAG.setRoot(Res);
4492    DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
4493    return 0;
4494  }
4495  case Intrinsic::objectsize: {
4496    // If we don't know by now, we're never going to know.
4497    ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(2));
4498
4499    assert(CI && "Non-constant type in __builtin_object_size?");
4500
4501    SDValue Arg = getValue(I.getOperand(0));
4502    EVT Ty = Arg.getValueType();
4503
4504    if (CI->getZExtValue() == 0)
4505      Res = DAG.getConstant(-1ULL, Ty);
4506    else
4507      Res = DAG.getConstant(0, Ty);
4508
4509    setValue(&I, Res);
4510    DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
4511    return 0;
4512  }
4513  case Intrinsic::var_annotation:
4514    // Discard annotate attributes
4515    return 0;
4516
4517  case Intrinsic::init_trampoline: {
4518    const Function *F = cast<Function>(I.getOperand(2)->stripPointerCasts());
4519
4520    SDValue Ops[6];
4521    Ops[0] = getRoot();
4522    Ops[1] = getValue(I.getOperand(1));
4523    Ops[2] = getValue(I.getOperand(2));
4524    Ops[3] = getValue(I.getOperand(3));
4525    Ops[4] = DAG.getSrcValue(I.getOperand(1));
4526    Ops[5] = DAG.getSrcValue(F);
4527
4528    Res = DAG.getNode(ISD::TRAMPOLINE, dl,
4529                      DAG.getVTList(TLI.getPointerTy(), MVT::Other),
4530                      Ops, 6);
4531
4532    setValue(&I, Res);
4533    DAG.setRoot(Res.getValue(1));
4534    DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
4535    return 0;
4536  }
4537  case Intrinsic::gcroot:
4538    if (GFI) {
4539      Value *Alloca = I.getOperand(1);
4540      Constant *TypeMap = cast<Constant>(I.getOperand(2));
4541
4542      FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
4543      GFI->addStackRoot(FI->getIndex(), TypeMap);
4544    }
4545    return 0;
4546  case Intrinsic::gcread:
4547  case Intrinsic::gcwrite:
4548    llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
4549    return 0;
4550  case Intrinsic::flt_rounds:
4551    Res = DAG.getNode(ISD::FLT_ROUNDS_, dl, MVT::i32);
4552    setValue(&I, Res);
4553    DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
4554    return 0;
4555  case Intrinsic::trap:
4556    Res = DAG.getNode(ISD::TRAP, dl,MVT::Other, getRoot());
4557    DAG.setRoot(Res);
4558    DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
4559    return 0;
4560  case Intrinsic::uadd_with_overflow:
4561    return implVisitAluOverflow(I, ISD::UADDO);
4562  case Intrinsic::sadd_with_overflow:
4563    return implVisitAluOverflow(I, ISD::SADDO);
4564  case Intrinsic::usub_with_overflow:
4565    return implVisitAluOverflow(I, ISD::USUBO);
4566  case Intrinsic::ssub_with_overflow:
4567    return implVisitAluOverflow(I, ISD::SSUBO);
4568  case Intrinsic::umul_with_overflow:
4569    return implVisitAluOverflow(I, ISD::UMULO);
4570  case Intrinsic::smul_with_overflow:
4571    return implVisitAluOverflow(I, ISD::SMULO);
4572
4573  case Intrinsic::prefetch: {
4574    SDValue Ops[4];
4575    Ops[0] = getRoot();
4576    Ops[1] = getValue(I.getOperand(1));
4577    Ops[2] = getValue(I.getOperand(2));
4578    Ops[3] = getValue(I.getOperand(3));
4579    Res = DAG.getNode(ISD::PREFETCH, dl, MVT::Other, &Ops[0], 4);
4580    DAG.setRoot(Res);
4581    DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
4582    return 0;
4583  }
4584
4585  case Intrinsic::memory_barrier: {
4586    SDValue Ops[6];
4587    Ops[0] = getRoot();
4588    for (int x = 1; x < 6; ++x)
4589      Ops[x] = getValue(I.getOperand(x));
4590
4591    Res = DAG.getNode(ISD::MEMBARRIER, dl, MVT::Other, &Ops[0], 6);
4592    DAG.setRoot(Res);
4593    DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
4594    return 0;
4595  }
4596  case Intrinsic::atomic_cmp_swap: {
4597    SDValue Root = getRoot();
4598    SDValue L =
4599      DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, getCurDebugLoc(),
4600                    getValue(I.getOperand(2)).getValueType().getSimpleVT(),
4601                    Root,
4602                    getValue(I.getOperand(1)),
4603                    getValue(I.getOperand(2)),
4604                    getValue(I.getOperand(3)),
4605                    I.getOperand(1));
4606    setValue(&I, L);
4607    DAG.setRoot(L.getValue(1));
4608    DAG.AssignOrdering(L.getNode(), SDNodeOrder);
4609    return 0;
4610  }
4611  case Intrinsic::atomic_load_add:
4612    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_ADD);
4613  case Intrinsic::atomic_load_sub:
4614    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_SUB);
4615  case Intrinsic::atomic_load_or:
4616    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_OR);
4617  case Intrinsic::atomic_load_xor:
4618    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_XOR);
4619  case Intrinsic::atomic_load_and:
4620    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_AND);
4621  case Intrinsic::atomic_load_nand:
4622    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_NAND);
4623  case Intrinsic::atomic_load_max:
4624    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MAX);
4625  case Intrinsic::atomic_load_min:
4626    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MIN);
4627  case Intrinsic::atomic_load_umin:
4628    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMIN);
4629  case Intrinsic::atomic_load_umax:
4630    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMAX);
4631  case Intrinsic::atomic_swap:
4632    return implVisitBinaryAtomic(I, ISD::ATOMIC_SWAP);
4633
4634  case Intrinsic::invariant_start:
4635  case Intrinsic::lifetime_start:
4636    // Discard region information.
4637    Res = DAG.getUNDEF(TLI.getPointerTy());
4638    setValue(&I, Res);
4639    DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
4640    return 0;
4641  case Intrinsic::invariant_end:
4642  case Intrinsic::lifetime_end:
4643    // Discard region information.
4644    return 0;
4645  }
4646}
4647
4648/// Test if the given instruction is in a position to be optimized
4649/// with a tail-call. This roughly means that it's in a block with
4650/// a return and there's nothing that needs to be scheduled
4651/// between it and the return.
4652///
4653/// This function only tests target-independent requirements.
4654/// For target-dependent requirements, a target should override
4655/// TargetLowering::IsEligibleForTailCallOptimization.
4656///
4657static bool
4658isInTailCallPosition(const Instruction *I, Attributes CalleeRetAttr,
4659                     const TargetLowering &TLI) {
4660  const BasicBlock *ExitBB = I->getParent();
4661  const TerminatorInst *Term = ExitBB->getTerminator();
4662  const ReturnInst *Ret = dyn_cast<ReturnInst>(Term);
4663  const Function *F = ExitBB->getParent();
4664
4665  // The block must end in a return statement or an unreachable.
4666  if (!Ret && !isa<UnreachableInst>(Term)) return false;
4667
4668  // If I will have a chain, make sure no other instruction that will have a
4669  // chain interposes between I and the return.
4670  if (I->mayHaveSideEffects() || I->mayReadFromMemory() ||
4671      !I->isSafeToSpeculativelyExecute())
4672    for (BasicBlock::const_iterator BBI = prior(prior(ExitBB->end())); ;
4673         --BBI) {
4674      if (&*BBI == I)
4675        break;
4676      if (BBI->mayHaveSideEffects() || BBI->mayReadFromMemory() ||
4677          !BBI->isSafeToSpeculativelyExecute())
4678        return false;
4679    }
4680
4681  // If the block ends with a void return or unreachable, it doesn't matter
4682  // what the call's return type is.
4683  if (!Ret || Ret->getNumOperands() == 0) return true;
4684
4685  // If the return value is undef, it doesn't matter what the call's
4686  // return type is.
4687  if (isa<UndefValue>(Ret->getOperand(0))) return true;
4688
4689  // Conservatively require the attributes of the call to match those of
4690  // the return. Ignore noalias because it doesn't affect the call sequence.
4691  unsigned CallerRetAttr = F->getAttributes().getRetAttributes();
4692  if ((CalleeRetAttr ^ CallerRetAttr) & ~Attribute::NoAlias)
4693    return false;
4694
4695  // Otherwise, make sure the unmodified return value of I is the return value.
4696  for (const Instruction *U = dyn_cast<Instruction>(Ret->getOperand(0)); ;
4697       U = dyn_cast<Instruction>(U->getOperand(0))) {
4698    if (!U)
4699      return false;
4700    if (!U->hasOneUse())
4701      return false;
4702    if (U == I)
4703      break;
4704    // Check for a truly no-op truncate.
4705    if (isa<TruncInst>(U) &&
4706        TLI.isTruncateFree(U->getOperand(0)->getType(), U->getType()))
4707      continue;
4708    // Check for a truly no-op bitcast.
4709    if (isa<BitCastInst>(U) &&
4710        (U->getOperand(0)->getType() == U->getType() ||
4711         (isa<PointerType>(U->getOperand(0)->getType()) &&
4712          isa<PointerType>(U->getType()))))
4713      continue;
4714    // Otherwise it's not a true no-op.
4715    return false;
4716  }
4717
4718  return true;
4719}
4720
4721void SelectionDAGBuilder::LowerCallTo(CallSite CS, SDValue Callee,
4722                                      bool isTailCall,
4723                                      MachineBasicBlock *LandingPad) {
4724  const PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
4725  const FunctionType *FTy = cast<FunctionType>(PT->getElementType());
4726  const Type *RetTy = FTy->getReturnType();
4727  MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
4728  unsigned BeginLabel = 0, EndLabel = 0;
4729
4730  TargetLowering::ArgListTy Args;
4731  TargetLowering::ArgListEntry Entry;
4732  Args.reserve(CS.arg_size());
4733
4734  // Check whether the function can return without sret-demotion.
4735  SmallVector<EVT, 4> OutVTs;
4736  SmallVector<ISD::ArgFlagsTy, 4> OutsFlags;
4737  SmallVector<uint64_t, 4> Offsets;
4738  getReturnInfo(RetTy, CS.getAttributes().getRetAttributes(),
4739                OutVTs, OutsFlags, TLI, &Offsets);
4740
4741  bool CanLowerReturn = TLI.CanLowerReturn(CS.getCallingConv(),
4742                        FTy->isVarArg(), OutVTs, OutsFlags, DAG);
4743
4744  SDValue DemoteStackSlot;
4745
4746  if (!CanLowerReturn) {
4747    uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(
4748                      FTy->getReturnType());
4749    unsigned Align  = TLI.getTargetData()->getPrefTypeAlignment(
4750                      FTy->getReturnType());
4751    MachineFunction &MF = DAG.getMachineFunction();
4752    int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
4753    const Type *StackSlotPtrType = PointerType::getUnqual(FTy->getReturnType());
4754
4755    DemoteStackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy());
4756    Entry.Node = DemoteStackSlot;
4757    Entry.Ty = StackSlotPtrType;
4758    Entry.isSExt = false;
4759    Entry.isZExt = false;
4760    Entry.isInReg = false;
4761    Entry.isSRet = true;
4762    Entry.isNest = false;
4763    Entry.isByVal = false;
4764    Entry.Alignment = Align;
4765    Args.push_back(Entry);
4766    RetTy = Type::getVoidTy(FTy->getContext());
4767  }
4768
4769  for (CallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
4770       i != e; ++i) {
4771    SDValue ArgNode = getValue(*i);
4772    Entry.Node = ArgNode; Entry.Ty = (*i)->getType();
4773
4774    unsigned attrInd = i - CS.arg_begin() + 1;
4775    Entry.isSExt  = CS.paramHasAttr(attrInd, Attribute::SExt);
4776    Entry.isZExt  = CS.paramHasAttr(attrInd, Attribute::ZExt);
4777    Entry.isInReg = CS.paramHasAttr(attrInd, Attribute::InReg);
4778    Entry.isSRet  = CS.paramHasAttr(attrInd, Attribute::StructRet);
4779    Entry.isNest  = CS.paramHasAttr(attrInd, Attribute::Nest);
4780    Entry.isByVal = CS.paramHasAttr(attrInd, Attribute::ByVal);
4781    Entry.Alignment = CS.getParamAlignment(attrInd);
4782    Args.push_back(Entry);
4783  }
4784
4785  if (LandingPad && MMI) {
4786    // Insert a label before the invoke call to mark the try range.  This can be
4787    // used to detect deletion of the invoke via the MachineModuleInfo.
4788    BeginLabel = MMI->NextLabelID();
4789
4790    // Both PendingLoads and PendingExports must be flushed here;
4791    // this call might not return.
4792    (void)getRoot();
4793    DAG.setRoot(DAG.getLabel(ISD::EH_LABEL, getCurDebugLoc(),
4794                             getControlRoot(), BeginLabel));
4795  }
4796
4797  // Check if target-independent constraints permit a tail call here.
4798  // Target-dependent constraints are checked within TLI.LowerCallTo.
4799  if (isTailCall &&
4800      !isInTailCallPosition(CS.getInstruction(),
4801                            CS.getAttributes().getRetAttributes(),
4802                            TLI))
4803    isTailCall = false;
4804
4805  std::pair<SDValue,SDValue> Result =
4806    TLI.LowerCallTo(getRoot(), RetTy,
4807                    CS.paramHasAttr(0, Attribute::SExt),
4808                    CS.paramHasAttr(0, Attribute::ZExt), FTy->isVarArg(),
4809                    CS.paramHasAttr(0, Attribute::InReg), FTy->getNumParams(),
4810                    CS.getCallingConv(),
4811                    isTailCall,
4812                    !CS.getInstruction()->use_empty(),
4813                    Callee, Args, DAG, getCurDebugLoc(), SDNodeOrder);
4814  assert((isTailCall || Result.second.getNode()) &&
4815         "Non-null chain expected with non-tail call!");
4816  assert((Result.second.getNode() || !Result.first.getNode()) &&
4817         "Null value expected with tail call!");
4818  if (Result.first.getNode()) {
4819    setValue(CS.getInstruction(), Result.first);
4820    DAG.AssignOrdering(Result.first.getNode(), SDNodeOrder);
4821  } else if (!CanLowerReturn && Result.second.getNode()) {
4822    // The instruction result is the result of loading from the
4823    // hidden sret parameter.
4824    SmallVector<EVT, 1> PVTs;
4825    const Type *PtrRetTy = PointerType::getUnqual(FTy->getReturnType());
4826
4827    ComputeValueVTs(TLI, PtrRetTy, PVTs);
4828    assert(PVTs.size() == 1 && "Pointers should fit in one register");
4829    EVT PtrVT = PVTs[0];
4830    unsigned NumValues = OutVTs.size();
4831    SmallVector<SDValue, 4> Values(NumValues);
4832    SmallVector<SDValue, 4> Chains(NumValues);
4833
4834    for (unsigned i = 0; i < NumValues; ++i) {
4835      SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT,
4836                                DemoteStackSlot,
4837                                DAG.getConstant(Offsets[i], PtrVT));
4838      SDValue L = DAG.getLoad(OutVTs[i], getCurDebugLoc(), Result.second,
4839                              Add, NULL, Offsets[i], false, 1);
4840      Values[i] = L;
4841      Chains[i] = L.getValue(1);
4842    }
4843
4844    SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
4845                                MVT::Other, &Chains[0], NumValues);
4846    PendingLoads.push_back(Chain);
4847
4848    // Collect the legal value parts into potentially illegal values
4849    // that correspond to the original function's return values.
4850    SmallVector<EVT, 4> RetTys;
4851    RetTy = FTy->getReturnType();
4852    ComputeValueVTs(TLI, RetTy, RetTys);
4853    ISD::NodeType AssertOp = ISD::DELETED_NODE;
4854    SmallVector<SDValue, 4> ReturnValues;
4855    unsigned CurReg = 0;
4856    for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
4857      EVT VT = RetTys[I];
4858      EVT RegisterVT = TLI.getRegisterType(RetTy->getContext(), VT);
4859      unsigned NumRegs = TLI.getNumRegisters(RetTy->getContext(), VT);
4860
4861      SDValue ReturnValue =
4862        getCopyFromParts(DAG, getCurDebugLoc(), SDNodeOrder, &Values[CurReg], NumRegs,
4863                         RegisterVT, VT, AssertOp);
4864      ReturnValues.push_back(ReturnValue);
4865      DAG.AssignOrdering(ReturnValue.getNode(), SDNodeOrder);
4866      CurReg += NumRegs;
4867    }
4868    SDValue Res = DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
4869                              DAG.getVTList(&RetTys[0], RetTys.size()),
4870                              &ReturnValues[0], ReturnValues.size());
4871
4872    setValue(CS.getInstruction(), Res);
4873
4874    DAG.AssignOrdering(Chain.getNode(), SDNodeOrder);
4875    DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
4876  }
4877
4878  // As a special case, a null chain means that a tail call has been emitted and
4879  // the DAG root is already updated.
4880  if (Result.second.getNode()) {
4881    DAG.setRoot(Result.second);
4882    DAG.AssignOrdering(Result.second.getNode(), SDNodeOrder);
4883  } else {
4884    HasTailCall = true;
4885  }
4886
4887  if (LandingPad && MMI) {
4888    // Insert a label at the end of the invoke call to mark the try range.  This
4889    // can be used to detect deletion of the invoke via the MachineModuleInfo.
4890    EndLabel = MMI->NextLabelID();
4891    DAG.setRoot(DAG.getLabel(ISD::EH_LABEL, getCurDebugLoc(),
4892                             getRoot(), EndLabel));
4893
4894    // Inform MachineModuleInfo of range.
4895    MMI->addInvoke(LandingPad, BeginLabel, EndLabel);
4896  }
4897}
4898
4899/// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the
4900/// value is equal or not-equal to zero.
4901static bool IsOnlyUsedInZeroEqualityComparison(Value *V) {
4902  for (Value::use_iterator UI = V->use_begin(), E = V->use_end();
4903       UI != E; ++UI) {
4904    if (ICmpInst *IC = dyn_cast<ICmpInst>(*UI))
4905      if (IC->isEquality())
4906        if (Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
4907          if (C->isNullValue())
4908            continue;
4909    // Unknown instruction.
4910    return false;
4911  }
4912  return true;
4913}
4914
4915static SDValue getMemCmpLoad(Value *PtrVal, MVT LoadVT, const Type *LoadTy,
4916                             SelectionDAGBuilder &Builder) {
4917
4918  // Check to see if this load can be trivially constant folded, e.g. if the
4919  // input is from a string literal.
4920  if (Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
4921    // Cast pointer to the type we really want to load.
4922    LoadInput = ConstantExpr::getBitCast(LoadInput,
4923                                         PointerType::getUnqual(LoadTy));
4924
4925    if (Constant *LoadCst = ConstantFoldLoadFromConstPtr(LoadInput, Builder.TD))
4926      return Builder.getValue(LoadCst);
4927  }
4928
4929  // Otherwise, we have to emit the load.  If the pointer is to unfoldable but
4930  // still constant memory, the input chain can be the entry node.
4931  SDValue Root;
4932  bool ConstantMemory = false;
4933
4934  // Do not serialize (non-volatile) loads of constant memory with anything.
4935  if (Builder.AA->pointsToConstantMemory(PtrVal)) {
4936    Root = Builder.DAG.getEntryNode();
4937    ConstantMemory = true;
4938  } else {
4939    // Do not serialize non-volatile loads against each other.
4940    Root = Builder.DAG.getRoot();
4941  }
4942
4943  SDValue Ptr = Builder.getValue(PtrVal);
4944  SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurDebugLoc(), Root,
4945                                        Ptr, PtrVal /*SrcValue*/, 0/*SVOffset*/,
4946                                        false /*volatile*/, 1 /* align=1 */);
4947
4948  if (!ConstantMemory)
4949    Builder.PendingLoads.push_back(LoadVal.getValue(1));
4950  return LoadVal;
4951}
4952
4953
4954/// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form.
4955/// If so, return true and lower it, otherwise return false and it will be
4956/// lowered like a normal call.
4957bool SelectionDAGBuilder::visitMemCmpCall(CallInst &I) {
4958  // Verify that the prototype makes sense.  int memcmp(void*,void*,size_t)
4959  if (I.getNumOperands() != 4)
4960    return false;
4961
4962  Value *LHS = I.getOperand(1), *RHS = I.getOperand(2);
4963  if (!isa<PointerType>(LHS->getType()) || !isa<PointerType>(RHS->getType()) ||
4964      !isa<IntegerType>(I.getOperand(3)->getType()) ||
4965      !isa<IntegerType>(I.getType()))
4966    return false;
4967
4968  ConstantInt *Size = dyn_cast<ConstantInt>(I.getOperand(3));
4969
4970  // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0
4971  // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0
4972  if (Size && IsOnlyUsedInZeroEqualityComparison(&I)) {
4973    bool ActuallyDoIt = true;
4974    MVT LoadVT;
4975    const Type *LoadTy;
4976    switch (Size->getZExtValue()) {
4977    default:
4978      LoadVT = MVT::Other;
4979      LoadTy = 0;
4980      ActuallyDoIt = false;
4981      break;
4982    case 2:
4983      LoadVT = MVT::i16;
4984      LoadTy = Type::getInt16Ty(Size->getContext());
4985      break;
4986    case 4:
4987      LoadVT = MVT::i32;
4988      LoadTy = Type::getInt32Ty(Size->getContext());
4989      break;
4990    case 8:
4991      LoadVT = MVT::i64;
4992      LoadTy = Type::getInt64Ty(Size->getContext());
4993      break;
4994        /*
4995    case 16:
4996      LoadVT = MVT::v4i32;
4997      LoadTy = Type::getInt32Ty(Size->getContext());
4998      LoadTy = VectorType::get(LoadTy, 4);
4999      break;
5000         */
5001    }
5002
5003    // This turns into unaligned loads.  We only do this if the target natively
5004    // supports the MVT we'll be loading or if it is small enough (<= 4) that
5005    // we'll only produce a small number of byte loads.
5006
5007    // Require that we can find a legal MVT, and only do this if the target
5008    // supports unaligned loads of that type.  Expanding into byte loads would
5009    // bloat the code.
5010    if (ActuallyDoIt && Size->getZExtValue() > 4) {
5011      // TODO: Handle 5 byte compare as 4-byte + 1 byte.
5012      // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
5013      if (!TLI.isTypeLegal(LoadVT) ||!TLI.allowsUnalignedMemoryAccesses(LoadVT))
5014        ActuallyDoIt = false;
5015    }
5016
5017    if (ActuallyDoIt) {
5018      SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this);
5019      SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this);
5020
5021      SDValue Res = DAG.getSetCC(getCurDebugLoc(), MVT::i1, LHSVal, RHSVal,
5022                                 ISD::SETNE);
5023      EVT CallVT = TLI.getValueType(I.getType(), true);
5024      setValue(&I, DAG.getZExtOrTrunc(Res, getCurDebugLoc(), CallVT));
5025      return true;
5026    }
5027  }
5028
5029
5030  return false;
5031}
5032
5033
5034void SelectionDAGBuilder::visitCall(CallInst &I) {
5035  const char *RenameFn = 0;
5036  if (Function *F = I.getCalledFunction()) {
5037    if (F->isDeclaration()) {
5038      const TargetIntrinsicInfo *II = TLI.getTargetMachine().getIntrinsicInfo();
5039      if (II) {
5040        if (unsigned IID = II->getIntrinsicID(F)) {
5041          RenameFn = visitIntrinsicCall(I, IID);
5042          if (!RenameFn)
5043            return;
5044        }
5045      }
5046      if (unsigned IID = F->getIntrinsicID()) {
5047        RenameFn = visitIntrinsicCall(I, IID);
5048        if (!RenameFn)
5049          return;
5050      }
5051    }
5052
5053    // Check for well-known libc/libm calls.  If the function is internal, it
5054    // can't be a library call.
5055    if (!F->hasLocalLinkage() && F->hasName()) {
5056      StringRef Name = F->getName();
5057      if (Name == "copysign" || Name == "copysignf") {
5058        if (I.getNumOperands() == 3 &&   // Basic sanity checks.
5059            I.getOperand(1)->getType()->isFloatingPoint() &&
5060            I.getType() == I.getOperand(1)->getType() &&
5061            I.getType() == I.getOperand(2)->getType()) {
5062          SDValue LHS = getValue(I.getOperand(1));
5063          SDValue RHS = getValue(I.getOperand(2));
5064          setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurDebugLoc(),
5065                                   LHS.getValueType(), LHS, RHS));
5066          return;
5067        }
5068      } else if (Name == "fabs" || Name == "fabsf" || Name == "fabsl") {
5069        if (I.getNumOperands() == 2 &&   // Basic sanity checks.
5070            I.getOperand(1)->getType()->isFloatingPoint() &&
5071            I.getType() == I.getOperand(1)->getType()) {
5072          SDValue Tmp = getValue(I.getOperand(1));
5073          setValue(&I, DAG.getNode(ISD::FABS, getCurDebugLoc(),
5074                                   Tmp.getValueType(), Tmp));
5075          return;
5076        }
5077      } else if (Name == "sin" || Name == "sinf" || Name == "sinl") {
5078        if (I.getNumOperands() == 2 &&   // Basic sanity checks.
5079            I.getOperand(1)->getType()->isFloatingPoint() &&
5080            I.getType() == I.getOperand(1)->getType() &&
5081            I.onlyReadsMemory()) {
5082          SDValue Tmp = getValue(I.getOperand(1));
5083          setValue(&I, DAG.getNode(ISD::FSIN, getCurDebugLoc(),
5084                                   Tmp.getValueType(), Tmp));
5085          return;
5086        }
5087      } else if (Name == "cos" || Name == "cosf" || Name == "cosl") {
5088        if (I.getNumOperands() == 2 &&   // Basic sanity checks.
5089            I.getOperand(1)->getType()->isFloatingPoint() &&
5090            I.getType() == I.getOperand(1)->getType() &&
5091            I.onlyReadsMemory()) {
5092          SDValue Tmp = getValue(I.getOperand(1));
5093          setValue(&I, DAG.getNode(ISD::FCOS, getCurDebugLoc(),
5094                                   Tmp.getValueType(), Tmp));
5095          return;
5096        }
5097      } else if (Name == "sqrt" || Name == "sqrtf" || Name == "sqrtl") {
5098        if (I.getNumOperands() == 2 &&   // Basic sanity checks.
5099            I.getOperand(1)->getType()->isFloatingPoint() &&
5100            I.getType() == I.getOperand(1)->getType() &&
5101            I.onlyReadsMemory()) {
5102          SDValue Tmp = getValue(I.getOperand(1));
5103          setValue(&I, DAG.getNode(ISD::FSQRT, getCurDebugLoc(),
5104                                   Tmp.getValueType(), Tmp));
5105          return;
5106        }
5107      } else if (Name == "memcmp") {
5108        if (visitMemCmpCall(I))
5109          return;
5110      }
5111    }
5112  } else if (isa<InlineAsm>(I.getOperand(0))) {
5113    visitInlineAsm(&I);
5114    return;
5115  }
5116
5117  SDValue Callee;
5118  if (!RenameFn)
5119    Callee = getValue(I.getOperand(0));
5120  else
5121    Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy());
5122
5123  // Check if we can potentially perform a tail call. More detailed checking is
5124  // be done within LowerCallTo, after more information about the call is known.
5125  LowerCallTo(&I, Callee, I.isTailCall());
5126}
5127
5128/// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
5129/// this value and returns the result as a ValueVT value.  This uses
5130/// Chain/Flag as the input and updates them for the output Chain/Flag.
5131/// If the Flag pointer is NULL, no flag is used.
5132SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, DebugLoc dl,
5133                                      unsigned Order, SDValue &Chain,
5134                                      SDValue *Flag) const {
5135  // Assemble the legal parts into the final values.
5136  SmallVector<SDValue, 4> Values(ValueVTs.size());
5137  SmallVector<SDValue, 8> Parts;
5138  for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
5139    // Copy the legal parts from the registers.
5140    EVT ValueVT = ValueVTs[Value];
5141    unsigned NumRegs = TLI->getNumRegisters(*DAG.getContext(), ValueVT);
5142    EVT RegisterVT = RegVTs[Value];
5143
5144    Parts.resize(NumRegs);
5145    for (unsigned i = 0; i != NumRegs; ++i) {
5146      SDValue P;
5147      if (Flag == 0) {
5148        P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
5149      } else {
5150        P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
5151        *Flag = P.getValue(2);
5152      }
5153
5154      Chain = P.getValue(1);
5155      DAG.AssignOrdering(P.getNode(), Order);
5156
5157      // If the source register was virtual and if we know something about it,
5158      // add an assert node.
5159      if (TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) &&
5160          RegisterVT.isInteger() && !RegisterVT.isVector()) {
5161        unsigned SlotNo = Regs[Part+i]-TargetRegisterInfo::FirstVirtualRegister;
5162        FunctionLoweringInfo &FLI = DAG.getFunctionLoweringInfo();
5163        if (FLI.LiveOutRegInfo.size() > SlotNo) {
5164          FunctionLoweringInfo::LiveOutInfo &LOI = FLI.LiveOutRegInfo[SlotNo];
5165
5166          unsigned RegSize = RegisterVT.getSizeInBits();
5167          unsigned NumSignBits = LOI.NumSignBits;
5168          unsigned NumZeroBits = LOI.KnownZero.countLeadingOnes();
5169
5170          // FIXME: We capture more information than the dag can represent.  For
5171          // now, just use the tightest assertzext/assertsext possible.
5172          bool isSExt = true;
5173          EVT FromVT(MVT::Other);
5174          if (NumSignBits == RegSize)
5175            isSExt = true, FromVT = MVT::i1;   // ASSERT SEXT 1
5176          else if (NumZeroBits >= RegSize-1)
5177            isSExt = false, FromVT = MVT::i1;  // ASSERT ZEXT 1
5178          else if (NumSignBits > RegSize-8)
5179            isSExt = true, FromVT = MVT::i8;   // ASSERT SEXT 8
5180          else if (NumZeroBits >= RegSize-8)
5181            isSExt = false, FromVT = MVT::i8;  // ASSERT ZEXT 8
5182          else if (NumSignBits > RegSize-16)
5183            isSExt = true, FromVT = MVT::i16;  // ASSERT SEXT 16
5184          else if (NumZeroBits >= RegSize-16)
5185            isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16
5186          else if (NumSignBits > RegSize-32)
5187            isSExt = true, FromVT = MVT::i32;  // ASSERT SEXT 32
5188          else if (NumZeroBits >= RegSize-32)
5189            isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32
5190
5191          if (FromVT != MVT::Other) {
5192            P = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
5193                            RegisterVT, P, DAG.getValueType(FromVT));
5194            DAG.AssignOrdering(P.getNode(), Order);
5195          }
5196        }
5197      }
5198
5199      Parts[i] = P;
5200    }
5201
5202    Values[Value] = getCopyFromParts(DAG, dl, Order, Parts.begin(),
5203                                     NumRegs, RegisterVT, ValueVT);
5204    DAG.AssignOrdering(Values[Value].getNode(), Order);
5205    Part += NumRegs;
5206    Parts.clear();
5207  }
5208
5209  SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
5210                            DAG.getVTList(&ValueVTs[0], ValueVTs.size()),
5211                            &Values[0], ValueVTs.size());
5212  DAG.AssignOrdering(Res.getNode(), Order);
5213  return Res;
5214}
5215
5216/// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
5217/// specified value into the registers specified by this object.  This uses
5218/// Chain/Flag as the input and updates them for the output Chain/Flag.
5219/// If the Flag pointer is NULL, no flag is used.
5220void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl,
5221                                 unsigned Order, SDValue &Chain,
5222                                 SDValue *Flag) const {
5223  // Get the list of the values's legal parts.
5224  unsigned NumRegs = Regs.size();
5225  SmallVector<SDValue, 8> Parts(NumRegs);
5226  for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
5227    EVT ValueVT = ValueVTs[Value];
5228    unsigned NumParts = TLI->getNumRegisters(*DAG.getContext(), ValueVT);
5229    EVT RegisterVT = RegVTs[Value];
5230
5231    getCopyToParts(DAG, dl, Order,
5232                   Val.getValue(Val.getResNo() + Value),
5233                   &Parts[Part], NumParts, RegisterVT);
5234    Part += NumParts;
5235  }
5236
5237  // Copy the parts into the registers.
5238  SmallVector<SDValue, 8> Chains(NumRegs);
5239  for (unsigned i = 0; i != NumRegs; ++i) {
5240    SDValue Part;
5241    if (Flag == 0) {
5242      Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
5243    } else {
5244      Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
5245      *Flag = Part.getValue(1);
5246    }
5247
5248    Chains[i] = Part.getValue(0);
5249    DAG.AssignOrdering(Part.getNode(), Order);
5250  }
5251
5252  if (NumRegs == 1 || Flag)
5253    // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
5254    // flagged to it. That is the CopyToReg nodes and the user are considered
5255    // a single scheduling unit. If we create a TokenFactor and return it as
5256    // chain, then the TokenFactor is both a predecessor (operand) of the
5257    // user as well as a successor (the TF operands are flagged to the user).
5258    // c1, f1 = CopyToReg
5259    // c2, f2 = CopyToReg
5260    // c3     = TokenFactor c1, c2
5261    // ...
5262    //        = op c3, ..., f2
5263    Chain = Chains[NumRegs-1];
5264  else
5265    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0], NumRegs);
5266
5267  DAG.AssignOrdering(Chain.getNode(), Order);
5268}
5269
5270/// AddInlineAsmOperands - Add this value to the specified inlineasm node
5271/// operand list.  This adds the code marker and includes the number of
5272/// values added into it.
5273void RegsForValue::AddInlineAsmOperands(unsigned Code,
5274                                        bool HasMatching,unsigned MatchingIdx,
5275                                        SelectionDAG &DAG, unsigned Order,
5276                                        std::vector<SDValue> &Ops) const {
5277  assert(Regs.size() < (1 << 13) && "Too many inline asm outputs!");
5278  unsigned Flag = Code | (Regs.size() << 3);
5279  if (HasMatching)
5280    Flag |= 0x80000000 | (MatchingIdx << 16);
5281  SDValue Res = DAG.getTargetConstant(Flag, MVT::i32);
5282  Ops.push_back(Res);
5283
5284  DAG.AssignOrdering(Res.getNode(), Order);
5285
5286  for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
5287    unsigned NumRegs = TLI->getNumRegisters(*DAG.getContext(), ValueVTs[Value]);
5288    EVT RegisterVT = RegVTs[Value];
5289    for (unsigned i = 0; i != NumRegs; ++i) {
5290      assert(Reg < Regs.size() && "Mismatch in # registers expected");
5291      SDValue Res = DAG.getRegister(Regs[Reg++], RegisterVT);
5292      Ops.push_back(Res);
5293      DAG.AssignOrdering(Res.getNode(), Order);
5294    }
5295  }
5296}
5297
5298/// isAllocatableRegister - If the specified register is safe to allocate,
5299/// i.e. it isn't a stack pointer or some other special register, return the
5300/// register class for the register.  Otherwise, return null.
5301static const TargetRegisterClass *
5302isAllocatableRegister(unsigned Reg, MachineFunction &MF,
5303                      const TargetLowering &TLI,
5304                      const TargetRegisterInfo *TRI) {
5305  EVT FoundVT = MVT::Other;
5306  const TargetRegisterClass *FoundRC = 0;
5307  for (TargetRegisterInfo::regclass_iterator RCI = TRI->regclass_begin(),
5308       E = TRI->regclass_end(); RCI != E; ++RCI) {
5309    EVT ThisVT = MVT::Other;
5310
5311    const TargetRegisterClass *RC = *RCI;
5312    // If none of the the value types for this register class are valid, we
5313    // can't use it.  For example, 64-bit reg classes on 32-bit targets.
5314    for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
5315         I != E; ++I) {
5316      if (TLI.isTypeLegal(*I)) {
5317        // If we have already found this register in a different register class,
5318        // choose the one with the largest VT specified.  For example, on
5319        // PowerPC, we favor f64 register classes over f32.
5320        if (FoundVT == MVT::Other || FoundVT.bitsLT(*I)) {
5321          ThisVT = *I;
5322          break;
5323        }
5324      }
5325    }
5326
5327    if (ThisVT == MVT::Other) continue;
5328
5329    // NOTE: This isn't ideal.  In particular, this might allocate the
5330    // frame pointer in functions that need it (due to them not being taken
5331    // out of allocation, because a variable sized allocation hasn't been seen
5332    // yet).  This is a slight code pessimization, but should still work.
5333    for (TargetRegisterClass::iterator I = RC->allocation_order_begin(MF),
5334         E = RC->allocation_order_end(MF); I != E; ++I)
5335      if (*I == Reg) {
5336        // We found a matching register class.  Keep looking at others in case
5337        // we find one with larger registers that this physreg is also in.
5338        FoundRC = RC;
5339        FoundVT = ThisVT;
5340        break;
5341      }
5342  }
5343  return FoundRC;
5344}
5345
5346
5347namespace llvm {
5348/// AsmOperandInfo - This contains information for each constraint that we are
5349/// lowering.
5350class VISIBILITY_HIDDEN SDISelAsmOperandInfo :
5351    public TargetLowering::AsmOperandInfo {
5352public:
5353  /// CallOperand - If this is the result output operand or a clobber
5354  /// this is null, otherwise it is the incoming operand to the CallInst.
5355  /// This gets modified as the asm is processed.
5356  SDValue CallOperand;
5357
5358  /// AssignedRegs - If this is a register or register class operand, this
5359  /// contains the set of register corresponding to the operand.
5360  RegsForValue AssignedRegs;
5361
5362  explicit SDISelAsmOperandInfo(const InlineAsm::ConstraintInfo &info)
5363    : TargetLowering::AsmOperandInfo(info), CallOperand(0,0) {
5364  }
5365
5366  /// MarkAllocatedRegs - Once AssignedRegs is set, mark the assigned registers
5367  /// busy in OutputRegs/InputRegs.
5368  void MarkAllocatedRegs(bool isOutReg, bool isInReg,
5369                         std::set<unsigned> &OutputRegs,
5370                         std::set<unsigned> &InputRegs,
5371                         const TargetRegisterInfo &TRI) const {
5372    if (isOutReg) {
5373      for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i)
5374        MarkRegAndAliases(AssignedRegs.Regs[i], OutputRegs, TRI);
5375    }
5376    if (isInReg) {
5377      for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i)
5378        MarkRegAndAliases(AssignedRegs.Regs[i], InputRegs, TRI);
5379    }
5380  }
5381
5382  /// getCallOperandValEVT - Return the EVT of the Value* that this operand
5383  /// corresponds to.  If there is no Value* for this operand, it returns
5384  /// MVT::Other.
5385  EVT getCallOperandValEVT(LLVMContext &Context,
5386                           const TargetLowering &TLI,
5387                           const TargetData *TD) const {
5388    if (CallOperandVal == 0) return MVT::Other;
5389
5390    if (isa<BasicBlock>(CallOperandVal))
5391      return TLI.getPointerTy();
5392
5393    const llvm::Type *OpTy = CallOperandVal->getType();
5394
5395    // If this is an indirect operand, the operand is a pointer to the
5396    // accessed type.
5397    if (isIndirect) {
5398      const llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
5399      if (!PtrTy)
5400        llvm_report_error("Indirect operand for inline asm not a pointer!");
5401      OpTy = PtrTy->getElementType();
5402    }
5403
5404    // If OpTy is not a single value, it may be a struct/union that we
5405    // can tile with integers.
5406    if (!OpTy->isSingleValueType() && OpTy->isSized()) {
5407      unsigned BitSize = TD->getTypeSizeInBits(OpTy);
5408      switch (BitSize) {
5409      default: break;
5410      case 1:
5411      case 8:
5412      case 16:
5413      case 32:
5414      case 64:
5415      case 128:
5416        OpTy = IntegerType::get(Context, BitSize);
5417        break;
5418      }
5419    }
5420
5421    return TLI.getValueType(OpTy, true);
5422  }
5423
5424private:
5425  /// MarkRegAndAliases - Mark the specified register and all aliases in the
5426  /// specified set.
5427  static void MarkRegAndAliases(unsigned Reg, std::set<unsigned> &Regs,
5428                                const TargetRegisterInfo &TRI) {
5429    assert(TargetRegisterInfo::isPhysicalRegister(Reg) && "Isn't a physreg");
5430    Regs.insert(Reg);
5431    if (const unsigned *Aliases = TRI.getAliasSet(Reg))
5432      for (; *Aliases; ++Aliases)
5433        Regs.insert(*Aliases);
5434  }
5435};
5436} // end llvm namespace.
5437
5438
5439/// GetRegistersForValue - Assign registers (virtual or physical) for the
5440/// specified operand.  We prefer to assign virtual registers, to allow the
5441/// register allocator to handle the assignment process.  However, if the asm
5442/// uses features that we can't model on machineinstrs, we have SDISel do the
5443/// allocation.  This produces generally horrible, but correct, code.
5444///
5445///   OpInfo describes the operand.
5446///   Input and OutputRegs are the set of already allocated physical registers.
5447///
5448void SelectionDAGBuilder::
5449GetRegistersForValue(SDISelAsmOperandInfo &OpInfo,
5450                     std::set<unsigned> &OutputRegs,
5451                     std::set<unsigned> &InputRegs) {
5452  LLVMContext &Context = FuncInfo.Fn->getContext();
5453
5454  // Compute whether this value requires an input register, an output register,
5455  // or both.
5456  bool isOutReg = false;
5457  bool isInReg = false;
5458  switch (OpInfo.Type) {
5459  case InlineAsm::isOutput:
5460    isOutReg = true;
5461
5462    // If there is an input constraint that matches this, we need to reserve
5463    // the input register so no other inputs allocate to it.
5464    isInReg = OpInfo.hasMatchingInput();
5465    break;
5466  case InlineAsm::isInput:
5467    isInReg = true;
5468    isOutReg = false;
5469    break;
5470  case InlineAsm::isClobber:
5471    isOutReg = true;
5472    isInReg = true;
5473    break;
5474  }
5475
5476
5477  MachineFunction &MF = DAG.getMachineFunction();
5478  SmallVector<unsigned, 4> Regs;
5479
5480  // If this is a constraint for a single physreg, or a constraint for a
5481  // register class, find it.
5482  std::pair<unsigned, const TargetRegisterClass*> PhysReg =
5483    TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
5484                                     OpInfo.ConstraintVT);
5485
5486  unsigned NumRegs = 1;
5487  if (OpInfo.ConstraintVT != MVT::Other) {
5488    // If this is a FP input in an integer register (or visa versa) insert a bit
5489    // cast of the input value.  More generally, handle any case where the input
5490    // value disagrees with the register class we plan to stick this in.
5491    if (OpInfo.Type == InlineAsm::isInput &&
5492        PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) {
5493      // Try to convert to the first EVT that the reg class contains.  If the
5494      // types are identical size, use a bitcast to convert (e.g. two differing
5495      // vector types).
5496      EVT RegVT = *PhysReg.second->vt_begin();
5497      if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) {
5498        OpInfo.CallOperand = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(),
5499                                         RegVT, OpInfo.CallOperand);
5500        OpInfo.ConstraintVT = RegVT;
5501      } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
5502        // If the input is a FP value and we want it in FP registers, do a
5503        // bitcast to the corresponding integer type.  This turns an f64 value
5504        // into i64, which can be passed with two i32 values on a 32-bit
5505        // machine.
5506        RegVT = EVT::getIntegerVT(Context,
5507                                  OpInfo.ConstraintVT.getSizeInBits());
5508        OpInfo.CallOperand = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(),
5509                                         RegVT, OpInfo.CallOperand);
5510        OpInfo.ConstraintVT = RegVT;
5511      }
5512
5513      DAG.AssignOrdering(OpInfo.CallOperand.getNode(), SDNodeOrder);
5514    }
5515
5516    NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT);
5517  }
5518
5519  EVT RegVT;
5520  EVT ValueVT = OpInfo.ConstraintVT;
5521
5522  // If this is a constraint for a specific physical register, like {r17},
5523  // assign it now.
5524  if (unsigned AssignedReg = PhysReg.first) {
5525    const TargetRegisterClass *RC = PhysReg.second;
5526    if (OpInfo.ConstraintVT == MVT::Other)
5527      ValueVT = *RC->vt_begin();
5528
5529    // Get the actual register value type.  This is important, because the user
5530    // may have asked for (e.g.) the AX register in i32 type.  We need to
5531    // remember that AX is actually i16 to get the right extension.
5532    RegVT = *RC->vt_begin();
5533
5534    // This is a explicit reference to a physical register.
5535    Regs.push_back(AssignedReg);
5536
5537    // If this is an expanded reference, add the rest of the regs to Regs.
5538    if (NumRegs != 1) {
5539      TargetRegisterClass::iterator I = RC->begin();
5540      for (; *I != AssignedReg; ++I)
5541        assert(I != RC->end() && "Didn't find reg!");
5542
5543      // Already added the first reg.
5544      --NumRegs; ++I;
5545      for (; NumRegs; --NumRegs, ++I) {
5546        assert(I != RC->end() && "Ran out of registers to allocate!");
5547        Regs.push_back(*I);
5548      }
5549    }
5550
5551    OpInfo.AssignedRegs = RegsForValue(TLI, Regs, RegVT, ValueVT);
5552    const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
5553    OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI);
5554    return;
5555  }
5556
5557  // Otherwise, if this was a reference to an LLVM register class, create vregs
5558  // for this reference.
5559  if (const TargetRegisterClass *RC = PhysReg.second) {
5560    RegVT = *RC->vt_begin();
5561    if (OpInfo.ConstraintVT == MVT::Other)
5562      ValueVT = RegVT;
5563
5564    // Create the appropriate number of virtual registers.
5565    MachineRegisterInfo &RegInfo = MF.getRegInfo();
5566    for (; NumRegs; --NumRegs)
5567      Regs.push_back(RegInfo.createVirtualRegister(RC));
5568
5569    OpInfo.AssignedRegs = RegsForValue(TLI, Regs, RegVT, ValueVT);
5570    return;
5571  }
5572
5573  // This is a reference to a register class that doesn't directly correspond
5574  // to an LLVM register class.  Allocate NumRegs consecutive, available,
5575  // registers from the class.
5576  std::vector<unsigned> RegClassRegs
5577    = TLI.getRegClassForInlineAsmConstraint(OpInfo.ConstraintCode,
5578                                            OpInfo.ConstraintVT);
5579
5580  const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
5581  unsigned NumAllocated = 0;
5582  for (unsigned i = 0, e = RegClassRegs.size(); i != e; ++i) {
5583    unsigned Reg = RegClassRegs[i];
5584    // See if this register is available.
5585    if ((isOutReg && OutputRegs.count(Reg)) ||   // Already used.
5586        (isInReg  && InputRegs.count(Reg))) {    // Already used.
5587      // Make sure we find consecutive registers.
5588      NumAllocated = 0;
5589      continue;
5590    }
5591
5592    // Check to see if this register is allocatable (i.e. don't give out the
5593    // stack pointer).
5594    const TargetRegisterClass *RC = isAllocatableRegister(Reg, MF, TLI, TRI);
5595    if (!RC) {        // Couldn't allocate this register.
5596      // Reset NumAllocated to make sure we return consecutive registers.
5597      NumAllocated = 0;
5598      continue;
5599    }
5600
5601    // Okay, this register is good, we can use it.
5602    ++NumAllocated;
5603
5604    // If we allocated enough consecutive registers, succeed.
5605    if (NumAllocated == NumRegs) {
5606      unsigned RegStart = (i-NumAllocated)+1;
5607      unsigned RegEnd   = i+1;
5608      // Mark all of the allocated registers used.
5609      for (unsigned i = RegStart; i != RegEnd; ++i)
5610        Regs.push_back(RegClassRegs[i]);
5611
5612      OpInfo.AssignedRegs = RegsForValue(TLI, Regs, *RC->vt_begin(),
5613                                         OpInfo.ConstraintVT);
5614      OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI);
5615      return;
5616    }
5617  }
5618
5619  // Otherwise, we couldn't allocate enough registers for this.
5620}
5621
5622/// hasInlineAsmMemConstraint - Return true if the inline asm instruction being
5623/// processed uses a memory 'm' constraint.
5624static bool
5625hasInlineAsmMemConstraint(std::vector<InlineAsm::ConstraintInfo> &CInfos,
5626                          const TargetLowering &TLI) {
5627  for (unsigned i = 0, e = CInfos.size(); i != e; ++i) {
5628    InlineAsm::ConstraintInfo &CI = CInfos[i];
5629    for (unsigned j = 0, ee = CI.Codes.size(); j != ee; ++j) {
5630      TargetLowering::ConstraintType CType = TLI.getConstraintType(CI.Codes[j]);
5631      if (CType == TargetLowering::C_Memory)
5632        return true;
5633    }
5634
5635    // Indirect operand accesses access memory.
5636    if (CI.isIndirect)
5637      return true;
5638  }
5639
5640  return false;
5641}
5642
5643/// visitInlineAsm - Handle a call to an InlineAsm object.
5644///
5645void SelectionDAGBuilder::visitInlineAsm(CallSite CS) {
5646  InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
5647
5648  /// ConstraintOperands - Information about all of the constraints.
5649  std::vector<SDISelAsmOperandInfo> ConstraintOperands;
5650
5651  std::set<unsigned> OutputRegs, InputRegs;
5652
5653  // Do a prepass over the constraints, canonicalizing them, and building up the
5654  // ConstraintOperands list.
5655  std::vector<InlineAsm::ConstraintInfo>
5656    ConstraintInfos = IA->ParseConstraints();
5657
5658  bool hasMemory = hasInlineAsmMemConstraint(ConstraintInfos, TLI);
5659
5660  SDValue Chain, Flag;
5661
5662  // We won't need to flush pending loads if this asm doesn't touch
5663  // memory and is nonvolatile.
5664  if (hasMemory || IA->hasSideEffects())
5665    Chain = getRoot();
5666  else
5667    Chain = DAG.getRoot();
5668
5669  unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
5670  unsigned ResNo = 0;   // ResNo - The result number of the next output.
5671  for (unsigned i = 0, e = ConstraintInfos.size(); i != e; ++i) {
5672    ConstraintOperands.push_back(SDISelAsmOperandInfo(ConstraintInfos[i]));
5673    SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
5674
5675    EVT OpVT = MVT::Other;
5676
5677    // Compute the value type for each operand.
5678    switch (OpInfo.Type) {
5679    case InlineAsm::isOutput:
5680      // Indirect outputs just consume an argument.
5681      if (OpInfo.isIndirect) {
5682        OpInfo.CallOperandVal = CS.getArgument(ArgNo++);
5683        break;
5684      }
5685
5686      // The return value of the call is this value.  As such, there is no
5687      // corresponding argument.
5688      assert(!CS.getType()->isVoidTy() &&
5689             "Bad inline asm!");
5690      if (const StructType *STy = dyn_cast<StructType>(CS.getType())) {
5691        OpVT = TLI.getValueType(STy->getElementType(ResNo));
5692      } else {
5693        assert(ResNo == 0 && "Asm only has one result!");
5694        OpVT = TLI.getValueType(CS.getType());
5695      }
5696      ++ResNo;
5697      break;
5698    case InlineAsm::isInput:
5699      OpInfo.CallOperandVal = CS.getArgument(ArgNo++);
5700      break;
5701    case InlineAsm::isClobber:
5702      // Nothing to do.
5703      break;
5704    }
5705
5706    // If this is an input or an indirect output, process the call argument.
5707    // BasicBlocks are labels, currently appearing only in asm's.
5708    if (OpInfo.CallOperandVal) {
5709      // Strip bitcasts, if any.  This mostly comes up for functions.
5710      OpInfo.CallOperandVal = OpInfo.CallOperandVal->stripPointerCasts();
5711
5712      if (BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) {
5713        OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
5714      } else {
5715        OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
5716      }
5717
5718      OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, TD);
5719    }
5720
5721    OpInfo.ConstraintVT = OpVT;
5722  }
5723
5724  // Second pass over the constraints: compute which constraint option to use
5725  // and assign registers to constraints that want a specific physreg.
5726  for (unsigned i = 0, e = ConstraintInfos.size(); i != e; ++i) {
5727    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
5728
5729    // If this is an output operand with a matching input operand, look up the
5730    // matching input. If their types mismatch, e.g. one is an integer, the
5731    // other is floating point, or their sizes are different, flag it as an
5732    // error.
5733    if (OpInfo.hasMatchingInput()) {
5734      SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
5735      if (OpInfo.ConstraintVT != Input.ConstraintVT) {
5736        if ((OpInfo.ConstraintVT.isInteger() !=
5737             Input.ConstraintVT.isInteger()) ||
5738            (OpInfo.ConstraintVT.getSizeInBits() !=
5739             Input.ConstraintVT.getSizeInBits())) {
5740          llvm_report_error("Unsupported asm: input constraint"
5741                            " with a matching output constraint of incompatible"
5742                            " type!");
5743        }
5744        Input.ConstraintVT = OpInfo.ConstraintVT;
5745      }
5746    }
5747
5748    // Compute the constraint code and ConstraintType to use.
5749    TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, hasMemory, &DAG);
5750
5751    // If this is a memory input, and if the operand is not indirect, do what we
5752    // need to to provide an address for the memory input.
5753    if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
5754        !OpInfo.isIndirect) {
5755      assert(OpInfo.Type == InlineAsm::isInput &&
5756             "Can only indirectify direct input operands!");
5757
5758      // Memory operands really want the address of the value.  If we don't have
5759      // an indirect input, put it in the constpool if we can, otherwise spill
5760      // it to a stack slot.
5761
5762      // If the operand is a float, integer, or vector constant, spill to a
5763      // constant pool entry to get its address.
5764      Value *OpVal = OpInfo.CallOperandVal;
5765      if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
5766          isa<ConstantVector>(OpVal)) {
5767        OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal),
5768                                                 TLI.getPointerTy());
5769      } else {
5770        // Otherwise, create a stack slot and emit a store to it before the
5771        // asm.
5772        const Type *Ty = OpVal->getType();
5773        uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty);
5774        unsigned Align  = TLI.getTargetData()->getPrefTypeAlignment(Ty);
5775        MachineFunction &MF = DAG.getMachineFunction();
5776        int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
5777        SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy());
5778        Chain = DAG.getStore(Chain, getCurDebugLoc(),
5779                             OpInfo.CallOperand, StackSlot, NULL, 0);
5780        OpInfo.CallOperand = StackSlot;
5781      }
5782
5783      // There is no longer a Value* corresponding to this operand.
5784      OpInfo.CallOperandVal = 0;
5785
5786      // It is now an indirect operand.
5787      OpInfo.isIndirect = true;
5788    }
5789
5790    // If this constraint is for a specific register, allocate it before
5791    // anything else.
5792    if (OpInfo.ConstraintType == TargetLowering::C_Register)
5793      GetRegistersForValue(OpInfo, OutputRegs, InputRegs);
5794  }
5795
5796  ConstraintInfos.clear();
5797
5798  // Second pass - Loop over all of the operands, assigning virtual or physregs
5799  // to register class operands.
5800  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
5801    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
5802
5803    // C_Register operands have already been allocated, Other/Memory don't need
5804    // to be.
5805    if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass)
5806      GetRegistersForValue(OpInfo, OutputRegs, InputRegs);
5807  }
5808
5809  // AsmNodeOperands - The operands for the ISD::INLINEASM node.
5810  std::vector<SDValue> AsmNodeOperands;
5811  AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
5812  AsmNodeOperands.push_back(
5813          DAG.getTargetExternalSymbol(IA->getAsmString().c_str(),
5814                                      TLI.getPointerTy()));
5815
5816
5817  // Loop over all of the inputs, copying the operand values into the
5818  // appropriate registers and processing the output regs.
5819  RegsForValue RetValRegs;
5820
5821  // IndirectStoresToEmit - The set of stores to emit after the inline asm node.
5822  std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit;
5823
5824  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
5825    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
5826
5827    switch (OpInfo.Type) {
5828    case InlineAsm::isOutput: {
5829      if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass &&
5830          OpInfo.ConstraintType != TargetLowering::C_Register) {
5831        // Memory output, or 'other' output (e.g. 'X' constraint).
5832        assert(OpInfo.isIndirect && "Memory output must be indirect operand");
5833
5834        // Add information to the INLINEASM node to know about this output.
5835        unsigned ResOpType = 4/*MEM*/ | (1<<3);
5836        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
5837                                                        TLI.getPointerTy()));
5838        AsmNodeOperands.push_back(OpInfo.CallOperand);
5839        break;
5840      }
5841
5842      // Otherwise, this is a register or register class output.
5843
5844      // Copy the output from the appropriate register.  Find a register that
5845      // we can use.
5846      if (OpInfo.AssignedRegs.Regs.empty()) {
5847        llvm_report_error("Couldn't allocate output reg for"
5848                          " constraint '" + OpInfo.ConstraintCode + "'!");
5849      }
5850
5851      // If this is an indirect operand, store through the pointer after the
5852      // asm.
5853      if (OpInfo.isIndirect) {
5854        IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs,
5855                                                      OpInfo.CallOperandVal));
5856      } else {
5857        // This is the result value of the call.
5858        assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
5859        // Concatenate this output onto the outputs list.
5860        RetValRegs.append(OpInfo.AssignedRegs);
5861      }
5862
5863      // Add information to the INLINEASM node to know that this register is
5864      // set.
5865      OpInfo.AssignedRegs.AddInlineAsmOperands(OpInfo.isEarlyClobber ?
5866                                               6 /* EARLYCLOBBER REGDEF */ :
5867                                               2 /* REGDEF */ ,
5868                                               false,
5869                                               0,
5870                                               DAG, SDNodeOrder,
5871                                               AsmNodeOperands);
5872      break;
5873    }
5874    case InlineAsm::isInput: {
5875      SDValue InOperandVal = OpInfo.CallOperand;
5876
5877      if (OpInfo.isMatchingInputConstraint()) {   // Matching constraint?
5878        // If this is required to match an output register we have already set,
5879        // just use its register.
5880        unsigned OperandNo = OpInfo.getMatchedOperand();
5881
5882        // Scan until we find the definition we already emitted of this operand.
5883        // When we find it, create a RegsForValue operand.
5884        unsigned CurOp = 2;  // The first operand.
5885        for (; OperandNo; --OperandNo) {
5886          // Advance to the next operand.
5887          unsigned OpFlag =
5888            cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
5889          assert(((OpFlag & 7) == 2 /*REGDEF*/ ||
5890                  (OpFlag & 7) == 6 /*EARLYCLOBBER REGDEF*/ ||
5891                  (OpFlag & 7) == 4 /*MEM*/) &&
5892                 "Skipped past definitions?");
5893          CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1;
5894        }
5895
5896        unsigned OpFlag =
5897          cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
5898        if ((OpFlag & 7) == 2 /*REGDEF*/
5899            || (OpFlag & 7) == 6 /* EARLYCLOBBER REGDEF */) {
5900          // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
5901          if (OpInfo.isIndirect) {
5902            llvm_report_error("Don't know how to handle tied indirect "
5903                              "register inputs yet!");
5904          }
5905          RegsForValue MatchedRegs;
5906          MatchedRegs.TLI = &TLI;
5907          MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType());
5908          EVT RegVT = AsmNodeOperands[CurOp+1].getValueType();
5909          MatchedRegs.RegVTs.push_back(RegVT);
5910          MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo();
5911          for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag);
5912               i != e; ++i)
5913            MatchedRegs.Regs.push_back
5914              (RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT)));
5915
5916          // Use the produced MatchedRegs object to
5917          MatchedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(),
5918                                    SDNodeOrder, Chain, &Flag);
5919          MatchedRegs.AddInlineAsmOperands(1 /*REGUSE*/,
5920                                           true, OpInfo.getMatchedOperand(),
5921                                           DAG, SDNodeOrder, AsmNodeOperands);
5922          break;
5923        } else {
5924          assert(((OpFlag & 7) == 4) && "Unknown matching constraint!");
5925          assert((InlineAsm::getNumOperandRegisters(OpFlag)) == 1 &&
5926                 "Unexpected number of operands");
5927          // Add information to the INLINEASM node to know about this input.
5928          // See InlineAsm.h isUseOperandTiedToDef.
5929          OpFlag |= 0x80000000 | (OpInfo.getMatchedOperand() << 16);
5930          AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlag,
5931                                                          TLI.getPointerTy()));
5932          AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
5933          break;
5934        }
5935      }
5936
5937      if (OpInfo.ConstraintType == TargetLowering::C_Other) {
5938        assert(!OpInfo.isIndirect &&
5939               "Don't know how to handle indirect other inputs yet!");
5940
5941        std::vector<SDValue> Ops;
5942        TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode[0],
5943                                         hasMemory, Ops, DAG);
5944        if (Ops.empty()) {
5945          llvm_report_error("Invalid operand for inline asm"
5946                            " constraint '" + OpInfo.ConstraintCode + "'!");
5947        }
5948
5949        // Add information to the INLINEASM node to know about this input.
5950        unsigned ResOpType = 3 /*IMM*/ | (Ops.size() << 3);
5951        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
5952                                                        TLI.getPointerTy()));
5953        AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
5954        break;
5955      } else if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
5956        assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
5957        assert(InOperandVal.getValueType() == TLI.getPointerTy() &&
5958               "Memory operands expect pointer values");
5959
5960        // Add information to the INLINEASM node to know about this input.
5961        unsigned ResOpType = 4/*MEM*/ | (1<<3);
5962        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
5963                                                        TLI.getPointerTy()));
5964        AsmNodeOperands.push_back(InOperandVal);
5965        break;
5966      }
5967
5968      assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
5969              OpInfo.ConstraintType == TargetLowering::C_Register) &&
5970             "Unknown constraint type!");
5971      assert(!OpInfo.isIndirect &&
5972             "Don't know how to handle indirect register inputs yet!");
5973
5974      // Copy the input into the appropriate registers.
5975      if (OpInfo.AssignedRegs.Regs.empty()) {
5976        llvm_report_error("Couldn't allocate input reg for"
5977                          " constraint '"+ OpInfo.ConstraintCode +"'!");
5978      }
5979
5980      OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(),
5981                                        SDNodeOrder, Chain, &Flag);
5982
5983      OpInfo.AssignedRegs.AddInlineAsmOperands(1/*REGUSE*/, false, 0,
5984                                               DAG, SDNodeOrder,
5985                                               AsmNodeOperands);
5986      break;
5987    }
5988    case InlineAsm::isClobber: {
5989      // Add the clobbered value to the operand list, so that the register
5990      // allocator is aware that the physreg got clobbered.
5991      if (!OpInfo.AssignedRegs.Regs.empty())
5992        OpInfo.AssignedRegs.AddInlineAsmOperands(6 /* EARLYCLOBBER REGDEF */,
5993                                                 false, 0, DAG, SDNodeOrder,
5994                                                 AsmNodeOperands);
5995      break;
5996    }
5997    }
5998  }
5999
6000  // Finish up input operands.
6001  AsmNodeOperands[0] = Chain;
6002  if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
6003
6004  Chain = DAG.getNode(ISD::INLINEASM, getCurDebugLoc(),
6005                      DAG.getVTList(MVT::Other, MVT::Flag),
6006                      &AsmNodeOperands[0], AsmNodeOperands.size());
6007  Flag = Chain.getValue(1);
6008
6009  // If this asm returns a register value, copy the result from that register
6010  // and set it as the value of the call.
6011  if (!RetValRegs.Regs.empty()) {
6012    SDValue Val = RetValRegs.getCopyFromRegs(DAG, getCurDebugLoc(),
6013                                             SDNodeOrder, Chain, &Flag);
6014
6015    // FIXME: Why don't we do this for inline asms with MRVs?
6016    if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) {
6017      EVT ResultType = TLI.getValueType(CS.getType());
6018
6019      // If any of the results of the inline asm is a vector, it may have the
6020      // wrong width/num elts.  This can happen for register classes that can
6021      // contain multiple different value types.  The preg or vreg allocated may
6022      // not have the same VT as was expected.  Convert it to the right type
6023      // with bit_convert.
6024      if (ResultType != Val.getValueType() && Val.getValueType().isVector()) {
6025        Val = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(),
6026                          ResultType, Val);
6027
6028      } else if (ResultType != Val.getValueType() &&
6029                 ResultType.isInteger() && Val.getValueType().isInteger()) {
6030        // If a result value was tied to an input value, the computed result may
6031        // have a wider width than the expected result.  Extract the relevant
6032        // portion.
6033        Val = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), ResultType, Val);
6034      }
6035
6036      assert(ResultType == Val.getValueType() && "Asm result value mismatch!");
6037    }
6038
6039    setValue(CS.getInstruction(), Val);
6040    // Don't need to use this as a chain in this case.
6041    if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty())
6042      return;
6043  }
6044
6045  std::vector<std::pair<SDValue, Value*> > StoresToEmit;
6046
6047  // Process indirect outputs, first output all of the flagged copies out of
6048  // physregs.
6049  for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
6050    RegsForValue &OutRegs = IndirectStoresToEmit[i].first;
6051    Value *Ptr = IndirectStoresToEmit[i].second;
6052    SDValue OutVal = OutRegs.getCopyFromRegs(DAG, getCurDebugLoc(),
6053                                             SDNodeOrder, Chain, &Flag);
6054    StoresToEmit.push_back(std::make_pair(OutVal, Ptr));
6055
6056  }
6057
6058  // Emit the non-flagged stores from the physregs.
6059  SmallVector<SDValue, 8> OutChains;
6060  for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) {
6061    SDValue Val = DAG.getStore(Chain, getCurDebugLoc(),
6062                               StoresToEmit[i].first,
6063                               getValue(StoresToEmit[i].second),
6064                               StoresToEmit[i].second, 0);
6065    OutChains.push_back(Val);
6066  }
6067
6068  if (!OutChains.empty())
6069    Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
6070                        &OutChains[0], OutChains.size());
6071
6072  DAG.setRoot(Chain);
6073}
6074
6075void SelectionDAGBuilder::visitVAStart(CallInst &I) {
6076  DAG.setRoot(DAG.getNode(ISD::VASTART, getCurDebugLoc(),
6077                          MVT::Other, getRoot(),
6078                          getValue(I.getOperand(1)),
6079                          DAG.getSrcValue(I.getOperand(1))));
6080}
6081
6082void SelectionDAGBuilder::visitVAArg(VAArgInst &I) {
6083  SDValue V = DAG.getVAArg(TLI.getValueType(I.getType()), getCurDebugLoc(),
6084                           getRoot(), getValue(I.getOperand(0)),
6085                           DAG.getSrcValue(I.getOperand(0)));
6086  setValue(&I, V);
6087  DAG.setRoot(V.getValue(1));
6088}
6089
6090void SelectionDAGBuilder::visitVAEnd(CallInst &I) {
6091  DAG.setRoot(DAG.getNode(ISD::VAEND, getCurDebugLoc(),
6092                          MVT::Other, getRoot(),
6093                          getValue(I.getOperand(1)),
6094                          DAG.getSrcValue(I.getOperand(1))));
6095}
6096
6097void SelectionDAGBuilder::visitVACopy(CallInst &I) {
6098  DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurDebugLoc(),
6099                          MVT::Other, getRoot(),
6100                          getValue(I.getOperand(1)),
6101                          getValue(I.getOperand(2)),
6102                          DAG.getSrcValue(I.getOperand(1)),
6103                          DAG.getSrcValue(I.getOperand(2))));
6104}
6105
6106/// TargetLowering::LowerCallTo - This is the default LowerCallTo
6107/// implementation, which just calls LowerCall.
6108/// FIXME: When all targets are
6109/// migrated to using LowerCall, this hook should be integrated into SDISel.
6110std::pair<SDValue, SDValue>
6111TargetLowering::LowerCallTo(SDValue Chain, const Type *RetTy,
6112                            bool RetSExt, bool RetZExt, bool isVarArg,
6113                            bool isInreg, unsigned NumFixedArgs,
6114                            CallingConv::ID CallConv, bool isTailCall,
6115                            bool isReturnValueUsed,
6116                            SDValue Callee,
6117                            ArgListTy &Args, SelectionDAG &DAG, DebugLoc dl,
6118                            unsigned Order) {
6119  // Handle all of the outgoing arguments.
6120  SmallVector<ISD::OutputArg, 32> Outs;
6121  for (unsigned i = 0, e = Args.size(); i != e; ++i) {
6122    SmallVector<EVT, 4> ValueVTs;
6123    ComputeValueVTs(*this, Args[i].Ty, ValueVTs);
6124    for (unsigned Value = 0, NumValues = ValueVTs.size();
6125         Value != NumValues; ++Value) {
6126      EVT VT = ValueVTs[Value];
6127      const Type *ArgTy = VT.getTypeForEVT(RetTy->getContext());
6128      SDValue Op = SDValue(Args[i].Node.getNode(),
6129                           Args[i].Node.getResNo() + Value);
6130      ISD::ArgFlagsTy Flags;
6131      unsigned OriginalAlignment =
6132        getTargetData()->getABITypeAlignment(ArgTy);
6133
6134      if (Args[i].isZExt)
6135        Flags.setZExt();
6136      if (Args[i].isSExt)
6137        Flags.setSExt();
6138      if (Args[i].isInReg)
6139        Flags.setInReg();
6140      if (Args[i].isSRet)
6141        Flags.setSRet();
6142      if (Args[i].isByVal) {
6143        Flags.setByVal();
6144        const PointerType *Ty = cast<PointerType>(Args[i].Ty);
6145        const Type *ElementTy = Ty->getElementType();
6146        unsigned FrameAlign = getByValTypeAlignment(ElementTy);
6147        unsigned FrameSize  = getTargetData()->getTypeAllocSize(ElementTy);
6148        // For ByVal, alignment should come from FE.  BE will guess if this
6149        // info is not there but there are cases it cannot get right.
6150        if (Args[i].Alignment)
6151          FrameAlign = Args[i].Alignment;
6152        Flags.setByValAlign(FrameAlign);
6153        Flags.setByValSize(FrameSize);
6154      }
6155      if (Args[i].isNest)
6156        Flags.setNest();
6157      Flags.setOrigAlign(OriginalAlignment);
6158
6159      EVT PartVT = getRegisterType(RetTy->getContext(), VT);
6160      unsigned NumParts = getNumRegisters(RetTy->getContext(), VT);
6161      SmallVector<SDValue, 4> Parts(NumParts);
6162      ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
6163
6164      if (Args[i].isSExt)
6165        ExtendKind = ISD::SIGN_EXTEND;
6166      else if (Args[i].isZExt)
6167        ExtendKind = ISD::ZERO_EXTEND;
6168
6169      getCopyToParts(DAG, dl, Order, Op, &Parts[0], NumParts,
6170                     PartVT, ExtendKind);
6171
6172      for (unsigned j = 0; j != NumParts; ++j) {
6173        // if it isn't first piece, alignment must be 1
6174        ISD::OutputArg MyFlags(Flags, Parts[j], i < NumFixedArgs);
6175        if (NumParts > 1 && j == 0)
6176          MyFlags.Flags.setSplit();
6177        else if (j != 0)
6178          MyFlags.Flags.setOrigAlign(1);
6179
6180        Outs.push_back(MyFlags);
6181      }
6182    }
6183  }
6184
6185  // Handle the incoming return values from the call.
6186  SmallVector<ISD::InputArg, 32> Ins;
6187  SmallVector<EVT, 4> RetTys;
6188  ComputeValueVTs(*this, RetTy, RetTys);
6189  for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
6190    EVT VT = RetTys[I];
6191    EVT RegisterVT = getRegisterType(RetTy->getContext(), VT);
6192    unsigned NumRegs = getNumRegisters(RetTy->getContext(), VT);
6193    for (unsigned i = 0; i != NumRegs; ++i) {
6194      ISD::InputArg MyFlags;
6195      MyFlags.VT = RegisterVT;
6196      MyFlags.Used = isReturnValueUsed;
6197      if (RetSExt)
6198        MyFlags.Flags.setSExt();
6199      if (RetZExt)
6200        MyFlags.Flags.setZExt();
6201      if (isInreg)
6202        MyFlags.Flags.setInReg();
6203      Ins.push_back(MyFlags);
6204    }
6205  }
6206
6207  // Check if target-dependent constraints permit a tail call here.
6208  // Target-independent constraints should be checked by the caller.
6209  if (isTailCall &&
6210      !IsEligibleForTailCallOptimization(Callee, CallConv, isVarArg, Ins, DAG))
6211    isTailCall = false;
6212
6213  SmallVector<SDValue, 4> InVals;
6214  Chain = LowerCall(Chain, Callee, CallConv, isVarArg, isTailCall,
6215                    Outs, Ins, dl, DAG, InVals);
6216
6217  // Verify that the target's LowerCall behaved as expected.
6218  assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
6219         "LowerCall didn't return a valid chain!");
6220  assert((!isTailCall || InVals.empty()) &&
6221         "LowerCall emitted a return value for a tail call!");
6222  assert((isTailCall || InVals.size() == Ins.size()) &&
6223         "LowerCall didn't emit the correct number of values!");
6224  DEBUG(for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
6225          assert(InVals[i].getNode() &&
6226                 "LowerCall emitted a null value!");
6227          assert(Ins[i].VT == InVals[i].getValueType() &&
6228                 "LowerCall emitted a value with the wrong type!");
6229        });
6230
6231  DAG.AssignOrdering(Chain.getNode(), Order);
6232
6233  // For a tail call, the return value is merely live-out and there aren't
6234  // any nodes in the DAG representing it. Return a special value to
6235  // indicate that a tail call has been emitted and no more Instructions
6236  // should be processed in the current block.
6237  if (isTailCall) {
6238    DAG.setRoot(Chain);
6239    return std::make_pair(SDValue(), SDValue());
6240  }
6241
6242  // Collect the legal value parts into potentially illegal values
6243  // that correspond to the original function's return values.
6244  ISD::NodeType AssertOp = ISD::DELETED_NODE;
6245  if (RetSExt)
6246    AssertOp = ISD::AssertSext;
6247  else if (RetZExt)
6248    AssertOp = ISD::AssertZext;
6249  SmallVector<SDValue, 4> ReturnValues;
6250  unsigned CurReg = 0;
6251  for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
6252    EVT VT = RetTys[I];
6253    EVT RegisterVT = getRegisterType(RetTy->getContext(), VT);
6254    unsigned NumRegs = getNumRegisters(RetTy->getContext(), VT);
6255
6256    SDValue ReturnValue =
6257      getCopyFromParts(DAG, dl, Order, &InVals[CurReg], NumRegs,
6258                       RegisterVT, VT, AssertOp);
6259    ReturnValues.push_back(ReturnValue);
6260    DAG.AssignOrdering(ReturnValue.getNode(), Order);
6261    CurReg += NumRegs;
6262  }
6263
6264  // For a function returning void, there is no return value. We can't create
6265  // such a node, so we just return a null return value in that case. In
6266  // that case, nothing will actualy look at the value.
6267  if (ReturnValues.empty())
6268    return std::make_pair(SDValue(), Chain);
6269
6270  SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
6271                            DAG.getVTList(&RetTys[0], RetTys.size()),
6272                            &ReturnValues[0], ReturnValues.size());
6273  DAG.AssignOrdering(Res.getNode(), Order);
6274  return std::make_pair(Res, Chain);
6275}
6276
6277void TargetLowering::LowerOperationWrapper(SDNode *N,
6278                                           SmallVectorImpl<SDValue> &Results,
6279                                           SelectionDAG &DAG) {
6280  SDValue Res = LowerOperation(SDValue(N, 0), DAG);
6281  if (Res.getNode())
6282    Results.push_back(Res);
6283}
6284
6285SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) {
6286  llvm_unreachable("LowerOperation not implemented for this target!");
6287  return SDValue();
6288}
6289
6290void SelectionDAGBuilder::CopyValueToVirtualRegister(Value *V, unsigned Reg) {
6291  SDValue Op = getValue(V);
6292  assert((Op.getOpcode() != ISD::CopyFromReg ||
6293          cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
6294         "Copy from a reg to the same reg!");
6295  assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg");
6296
6297  RegsForValue RFV(V->getContext(), TLI, Reg, V->getType());
6298  SDValue Chain = DAG.getEntryNode();
6299  RFV.getCopyToRegs(Op, DAG, getCurDebugLoc(), SDNodeOrder, Chain, 0);
6300  PendingExports.push_back(Chain);
6301}
6302
6303#include "llvm/CodeGen/SelectionDAGISel.h"
6304
6305void SelectionDAGISel::LowerArguments(BasicBlock *LLVMBB) {
6306  // If this is the entry block, emit arguments.
6307  Function &F = *LLVMBB->getParent();
6308  SelectionDAG &DAG = SDB->DAG;
6309  SDValue OldRoot = DAG.getRoot();
6310  DebugLoc dl = SDB->getCurDebugLoc();
6311  const TargetData *TD = TLI.getTargetData();
6312  SmallVector<ISD::InputArg, 16> Ins;
6313
6314  // Check whether the function can return without sret-demotion.
6315  SmallVector<EVT, 4> OutVTs;
6316  SmallVector<ISD::ArgFlagsTy, 4> OutsFlags;
6317  getReturnInfo(F.getReturnType(), F.getAttributes().getRetAttributes(),
6318                OutVTs, OutsFlags, TLI);
6319  FunctionLoweringInfo &FLI = DAG.getFunctionLoweringInfo();
6320
6321  FLI.CanLowerReturn = TLI.CanLowerReturn(F.getCallingConv(), F.isVarArg(),
6322                                          OutVTs, OutsFlags, DAG);
6323  if (!FLI.CanLowerReturn) {
6324    // Put in an sret pointer parameter before all the other parameters.
6325    SmallVector<EVT, 1> ValueVTs;
6326    ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs);
6327
6328    // NOTE: Assuming that a pointer will never break down to more than one VT
6329    // or one register.
6330    ISD::ArgFlagsTy Flags;
6331    Flags.setSRet();
6332    EVT RegisterVT = TLI.getRegisterType(*CurDAG->getContext(), ValueVTs[0]);
6333    ISD::InputArg RetArg(Flags, RegisterVT, true);
6334    Ins.push_back(RetArg);
6335  }
6336
6337  // Set up the incoming argument description vector.
6338  unsigned Idx = 1;
6339  for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end();
6340       I != E; ++I, ++Idx) {
6341    SmallVector<EVT, 4> ValueVTs;
6342    ComputeValueVTs(TLI, I->getType(), ValueVTs);
6343    bool isArgValueUsed = !I->use_empty();
6344    for (unsigned Value = 0, NumValues = ValueVTs.size();
6345         Value != NumValues; ++Value) {
6346      EVT VT = ValueVTs[Value];
6347      const Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
6348      ISD::ArgFlagsTy Flags;
6349      unsigned OriginalAlignment =
6350        TD->getABITypeAlignment(ArgTy);
6351
6352      if (F.paramHasAttr(Idx, Attribute::ZExt))
6353        Flags.setZExt();
6354      if (F.paramHasAttr(Idx, Attribute::SExt))
6355        Flags.setSExt();
6356      if (F.paramHasAttr(Idx, Attribute::InReg))
6357        Flags.setInReg();
6358      if (F.paramHasAttr(Idx, Attribute::StructRet))
6359        Flags.setSRet();
6360      if (F.paramHasAttr(Idx, Attribute::ByVal)) {
6361        Flags.setByVal();
6362        const PointerType *Ty = cast<PointerType>(I->getType());
6363        const Type *ElementTy = Ty->getElementType();
6364        unsigned FrameAlign = TLI.getByValTypeAlignment(ElementTy);
6365        unsigned FrameSize  = TD->getTypeAllocSize(ElementTy);
6366        // For ByVal, alignment should be passed from FE.  BE will guess if
6367        // this info is not there but there are cases it cannot get right.
6368        if (F.getParamAlignment(Idx))
6369          FrameAlign = F.getParamAlignment(Idx);
6370        Flags.setByValAlign(FrameAlign);
6371        Flags.setByValSize(FrameSize);
6372      }
6373      if (F.paramHasAttr(Idx, Attribute::Nest))
6374        Flags.setNest();
6375      Flags.setOrigAlign(OriginalAlignment);
6376
6377      EVT RegisterVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
6378      unsigned NumRegs = TLI.getNumRegisters(*CurDAG->getContext(), VT);
6379      for (unsigned i = 0; i != NumRegs; ++i) {
6380        ISD::InputArg MyFlags(Flags, RegisterVT, isArgValueUsed);
6381        if (NumRegs > 1 && i == 0)
6382          MyFlags.Flags.setSplit();
6383        // if it isn't first piece, alignment must be 1
6384        else if (i > 0)
6385          MyFlags.Flags.setOrigAlign(1);
6386        Ins.push_back(MyFlags);
6387      }
6388    }
6389  }
6390
6391  // Call the target to set up the argument values.
6392  SmallVector<SDValue, 8> InVals;
6393  SDValue NewRoot = TLI.LowerFormalArguments(DAG.getRoot(), F.getCallingConv(),
6394                                             F.isVarArg(), Ins,
6395                                             dl, DAG, InVals);
6396
6397  // Verify that the target's LowerFormalArguments behaved as expected.
6398  assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
6399         "LowerFormalArguments didn't return a valid chain!");
6400  assert(InVals.size() == Ins.size() &&
6401         "LowerFormalArguments didn't emit the correct number of values!");
6402  DEBUG({
6403      for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
6404        assert(InVals[i].getNode() &&
6405               "LowerFormalArguments emitted a null value!");
6406        assert(Ins[i].VT == InVals[i].getValueType() &&
6407               "LowerFormalArguments emitted a value with the wrong type!");
6408      }
6409    });
6410
6411  // Update the DAG with the new chain value resulting from argument lowering.
6412  DAG.setRoot(NewRoot);
6413
6414  // Set up the argument values.
6415  unsigned i = 0;
6416  Idx = 1;
6417  if (!FLI.CanLowerReturn) {
6418    // Create a virtual register for the sret pointer, and put in a copy
6419    // from the sret argument into it.
6420    SmallVector<EVT, 1> ValueVTs;
6421    ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs);
6422    EVT VT = ValueVTs[0];
6423    EVT RegVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
6424    ISD::NodeType AssertOp = ISD::DELETED_NODE;
6425    SDValue ArgValue = getCopyFromParts(DAG, dl, 0, &InVals[0], 1,
6426                                        RegVT, VT, AssertOp);
6427
6428    MachineFunction& MF = SDB->DAG.getMachineFunction();
6429    MachineRegisterInfo& RegInfo = MF.getRegInfo();
6430    unsigned SRetReg = RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT));
6431    FLI.DemoteRegister = SRetReg;
6432    NewRoot = SDB->DAG.getCopyToReg(NewRoot, SDB->getCurDebugLoc(),
6433                                    SRetReg, ArgValue);
6434    DAG.setRoot(NewRoot);
6435
6436    // i indexes lowered arguments.  Bump it past the hidden sret argument.
6437    // Idx indexes LLVM arguments.  Don't touch it.
6438    ++i;
6439  }
6440
6441  for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E;
6442      ++I, ++Idx) {
6443    SmallVector<SDValue, 4> ArgValues;
6444    SmallVector<EVT, 4> ValueVTs;
6445    ComputeValueVTs(TLI, I->getType(), ValueVTs);
6446    unsigned NumValues = ValueVTs.size();
6447    for (unsigned Value = 0; Value != NumValues; ++Value) {
6448      EVT VT = ValueVTs[Value];
6449      EVT PartVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
6450      unsigned NumParts = TLI.getNumRegisters(*CurDAG->getContext(), VT);
6451
6452      if (!I->use_empty()) {
6453        ISD::NodeType AssertOp = ISD::DELETED_NODE;
6454        if (F.paramHasAttr(Idx, Attribute::SExt))
6455          AssertOp = ISD::AssertSext;
6456        else if (F.paramHasAttr(Idx, Attribute::ZExt))
6457          AssertOp = ISD::AssertZext;
6458
6459        ArgValues.push_back(getCopyFromParts(DAG, dl, 0, &InVals[i],
6460                                             NumParts, PartVT, VT,
6461                                             AssertOp));
6462      }
6463
6464      i += NumParts;
6465    }
6466
6467    if (!I->use_empty()) {
6468      SDValue Res = DAG.getMergeValues(&ArgValues[0], NumValues,
6469                                       SDB->getCurDebugLoc());
6470      SDB->setValue(I, Res);
6471
6472      // If this argument is live outside of the entry block, insert a copy from
6473      // whereever we got it to the vreg that other BB's will reference it as.
6474      SDB->CopyToExportRegsIfNeeded(I);
6475    }
6476  }
6477
6478  assert(i == InVals.size() && "Argument register count mismatch!");
6479
6480  // Finally, if the target has anything special to do, allow it to do so.
6481  // FIXME: this should insert code into the DAG!
6482  EmitFunctionEntryCode(F, SDB->DAG.getMachineFunction());
6483}
6484
6485/// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
6486/// ensure constants are generated when needed.  Remember the virtual registers
6487/// that need to be added to the Machine PHI nodes as input.  We cannot just
6488/// directly add them, because expansion might result in multiple MBB's for one
6489/// BB.  As such, the start of the BB might correspond to a different MBB than
6490/// the end.
6491///
6492void
6493SelectionDAGISel::HandlePHINodesInSuccessorBlocks(BasicBlock *LLVMBB) {
6494  TerminatorInst *TI = LLVMBB->getTerminator();
6495
6496  SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
6497
6498  // Check successor nodes' PHI nodes that expect a constant to be available
6499  // from this block.
6500  for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
6501    BasicBlock *SuccBB = TI->getSuccessor(succ);
6502    if (!isa<PHINode>(SuccBB->begin())) continue;
6503    MachineBasicBlock *SuccMBB = FuncInfo->MBBMap[SuccBB];
6504
6505    // If this terminator has multiple identical successors (common for
6506    // switches), only handle each succ once.
6507    if (!SuccsHandled.insert(SuccMBB)) continue;
6508
6509    MachineBasicBlock::iterator MBBI = SuccMBB->begin();
6510    PHINode *PN;
6511
6512    // At this point we know that there is a 1-1 correspondence between LLVM PHI
6513    // nodes and Machine PHI nodes, but the incoming operands have not been
6514    // emitted yet.
6515    for (BasicBlock::iterator I = SuccBB->begin();
6516         (PN = dyn_cast<PHINode>(I)); ++I) {
6517      // Ignore dead phi's.
6518      if (PN->use_empty()) continue;
6519
6520      unsigned Reg;
6521      Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
6522
6523      if (Constant *C = dyn_cast<Constant>(PHIOp)) {
6524        unsigned &RegOut = SDB->ConstantsOut[C];
6525        if (RegOut == 0) {
6526          RegOut = FuncInfo->CreateRegForValue(C);
6527          SDB->CopyValueToVirtualRegister(C, RegOut);
6528        }
6529        Reg = RegOut;
6530      } else {
6531        Reg = FuncInfo->ValueMap[PHIOp];
6532        if (Reg == 0) {
6533          assert(isa<AllocaInst>(PHIOp) &&
6534                 FuncInfo->StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
6535                 "Didn't codegen value into a register!??");
6536          Reg = FuncInfo->CreateRegForValue(PHIOp);
6537          SDB->CopyValueToVirtualRegister(PHIOp, Reg);
6538        }
6539      }
6540
6541      // Remember that this register needs to added to the machine PHI node as
6542      // the input for this MBB.
6543      SmallVector<EVT, 4> ValueVTs;
6544      ComputeValueVTs(TLI, PN->getType(), ValueVTs);
6545      for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
6546        EVT VT = ValueVTs[vti];
6547        unsigned NumRegisters = TLI.getNumRegisters(*CurDAG->getContext(), VT);
6548        for (unsigned i = 0, e = NumRegisters; i != e; ++i)
6549          SDB->PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i));
6550        Reg += NumRegisters;
6551      }
6552    }
6553  }
6554  SDB->ConstantsOut.clear();
6555}
6556
6557/// This is the Fast-ISel version of HandlePHINodesInSuccessorBlocks. It only
6558/// supports legal types, and it emits MachineInstrs directly instead of
6559/// creating SelectionDAG nodes.
6560///
6561bool
6562SelectionDAGISel::HandlePHINodesInSuccessorBlocksFast(BasicBlock *LLVMBB,
6563                                                      FastISel *F) {
6564  TerminatorInst *TI = LLVMBB->getTerminator();
6565
6566  SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
6567  unsigned OrigNumPHINodesToUpdate = SDB->PHINodesToUpdate.size();
6568
6569  // Check successor nodes' PHI nodes that expect a constant to be available
6570  // from this block.
6571  for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
6572    BasicBlock *SuccBB = TI->getSuccessor(succ);
6573    if (!isa<PHINode>(SuccBB->begin())) continue;
6574    MachineBasicBlock *SuccMBB = FuncInfo->MBBMap[SuccBB];
6575
6576    // If this terminator has multiple identical successors (common for
6577    // switches), only handle each succ once.
6578    if (!SuccsHandled.insert(SuccMBB)) continue;
6579
6580    MachineBasicBlock::iterator MBBI = SuccMBB->begin();
6581    PHINode *PN;
6582
6583    // At this point we know that there is a 1-1 correspondence between LLVM PHI
6584    // nodes and Machine PHI nodes, but the incoming operands have not been
6585    // emitted yet.
6586    for (BasicBlock::iterator I = SuccBB->begin();
6587         (PN = dyn_cast<PHINode>(I)); ++I) {
6588      // Ignore dead phi's.
6589      if (PN->use_empty()) continue;
6590
6591      // Only handle legal types. Two interesting things to note here. First,
6592      // by bailing out early, we may leave behind some dead instructions,
6593      // since SelectionDAG's HandlePHINodesInSuccessorBlocks will insert its
6594      // own moves. Second, this check is necessary becuase FastISel doesn't
6595      // use CreateRegForValue to create registers, so it always creates
6596      // exactly one register for each non-void instruction.
6597      EVT VT = TLI.getValueType(PN->getType(), /*AllowUnknown=*/true);
6598      if (VT == MVT::Other || !TLI.isTypeLegal(VT)) {
6599        // Promote MVT::i1.
6600        if (VT == MVT::i1)
6601          VT = TLI.getTypeToTransformTo(*CurDAG->getContext(), VT);
6602        else {
6603          SDB->PHINodesToUpdate.resize(OrigNumPHINodesToUpdate);
6604          return false;
6605        }
6606      }
6607
6608      Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
6609
6610      unsigned Reg = F->getRegForValue(PHIOp);
6611      if (Reg == 0) {
6612        SDB->PHINodesToUpdate.resize(OrigNumPHINodesToUpdate);
6613        return false;
6614      }
6615      SDB->PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg));
6616    }
6617  }
6618
6619  return true;
6620}
6621