SelectionDAGBuilder.cpp revision fc6d3a49867cd38954dc40936a88f1907252c6d2
1//===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements routines for translating from LLVM IR into SelectionDAG IR.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "isel"
15#include "SDNodeDbgValue.h"
16#include "SelectionDAGBuilder.h"
17#include "llvm/ADT/BitVector.h"
18#include "llvm/ADT/PostOrderIterator.h"
19#include "llvm/ADT/SmallSet.h"
20#include "llvm/Analysis/AliasAnalysis.h"
21#include "llvm/Analysis/ConstantFolding.h"
22#include "llvm/Constants.h"
23#include "llvm/CallingConv.h"
24#include "llvm/DerivedTypes.h"
25#include "llvm/Function.h"
26#include "llvm/GlobalVariable.h"
27#include "llvm/InlineAsm.h"
28#include "llvm/Instructions.h"
29#include "llvm/Intrinsics.h"
30#include "llvm/IntrinsicInst.h"
31#include "llvm/LLVMContext.h"
32#include "llvm/Module.h"
33#include "llvm/CodeGen/Analysis.h"
34#include "llvm/CodeGen/FastISel.h"
35#include "llvm/CodeGen/FunctionLoweringInfo.h"
36#include "llvm/CodeGen/GCStrategy.h"
37#include "llvm/CodeGen/GCMetadata.h"
38#include "llvm/CodeGen/MachineFunction.h"
39#include "llvm/CodeGen/MachineFrameInfo.h"
40#include "llvm/CodeGen/MachineInstrBuilder.h"
41#include "llvm/CodeGen/MachineJumpTableInfo.h"
42#include "llvm/CodeGen/MachineModuleInfo.h"
43#include "llvm/CodeGen/MachineRegisterInfo.h"
44#include "llvm/CodeGen/PseudoSourceValue.h"
45#include "llvm/CodeGen/SelectionDAG.h"
46#include "llvm/Analysis/DebugInfo.h"
47#include "llvm/Target/TargetData.h"
48#include "llvm/Target/TargetFrameLowering.h"
49#include "llvm/Target/TargetInstrInfo.h"
50#include "llvm/Target/TargetIntrinsicInfo.h"
51#include "llvm/Target/TargetLowering.h"
52#include "llvm/Target/TargetOptions.h"
53#include "llvm/Support/CommandLine.h"
54#include "llvm/Support/Debug.h"
55#include "llvm/Support/ErrorHandling.h"
56#include "llvm/Support/MathExtras.h"
57#include "llvm/Support/raw_ostream.h"
58#include <algorithm>
59using namespace llvm;
60
61/// LimitFloatPrecision - Generate low-precision inline sequences for
62/// some float libcalls (6, 8 or 12 bits).
63static unsigned LimitFloatPrecision;
64
65static cl::opt<unsigned, true>
66LimitFPPrecision("limit-float-precision",
67                 cl::desc("Generate low-precision inline sequences "
68                          "for some float libcalls"),
69                 cl::location(LimitFloatPrecision),
70                 cl::init(0));
71
72// Limit the width of DAG chains. This is important in general to prevent
73// prevent DAG-based analysis from blowing up. For example, alias analysis and
74// load clustering may not complete in reasonable time. It is difficult to
75// recognize and avoid this situation within each individual analysis, and
76// future analyses are likely to have the same behavior. Limiting DAG width is
77// the safe approach, and will be especially important with global DAGs.
78//
79// MaxParallelChains default is arbitrarily high to avoid affecting
80// optimization, but could be lowered to improve compile time. Any ld-ld-st-st
81// sequence over this should have been converted to llvm.memcpy by the
82// frontend. It easy to induce this behavior with .ll code such as:
83// %buffer = alloca [4096 x i8]
84// %data = load [4096 x i8]* %argPtr
85// store [4096 x i8] %data, [4096 x i8]* %buffer
86static const unsigned MaxParallelChains = 64;
87
88static SDValue getCopyFromPartsVector(SelectionDAG &DAG, DebugLoc DL,
89                                      const SDValue *Parts, unsigned NumParts,
90                                      EVT PartVT, EVT ValueVT);
91
92/// getCopyFromParts - Create a value that contains the specified legal parts
93/// combined into the value they represent.  If the parts combine to a type
94/// larger then ValueVT then AssertOp can be used to specify whether the extra
95/// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
96/// (ISD::AssertSext).
97static SDValue getCopyFromParts(SelectionDAG &DAG, DebugLoc DL,
98                                const SDValue *Parts,
99                                unsigned NumParts, EVT PartVT, EVT ValueVT,
100                                ISD::NodeType AssertOp = ISD::DELETED_NODE) {
101  if (ValueVT.isVector())
102    return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT);
103
104  assert(NumParts > 0 && "No parts to assemble!");
105  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
106  SDValue Val = Parts[0];
107
108  if (NumParts > 1) {
109    // Assemble the value from multiple parts.
110    if (ValueVT.isInteger()) {
111      unsigned PartBits = PartVT.getSizeInBits();
112      unsigned ValueBits = ValueVT.getSizeInBits();
113
114      // Assemble the power of 2 part.
115      unsigned RoundParts = NumParts & (NumParts - 1) ?
116        1 << Log2_32(NumParts) : NumParts;
117      unsigned RoundBits = PartBits * RoundParts;
118      EVT RoundVT = RoundBits == ValueBits ?
119        ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
120      SDValue Lo, Hi;
121
122      EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
123
124      if (RoundParts > 2) {
125        Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2,
126                              PartVT, HalfVT);
127        Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2,
128                              RoundParts / 2, PartVT, HalfVT);
129      } else {
130        Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
131        Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
132      }
133
134      if (TLI.isBigEndian())
135        std::swap(Lo, Hi);
136
137      Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
138
139      if (RoundParts < NumParts) {
140        // Assemble the trailing non-power-of-2 part.
141        unsigned OddParts = NumParts - RoundParts;
142        EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
143        Hi = getCopyFromParts(DAG, DL,
144                              Parts + RoundParts, OddParts, PartVT, OddVT);
145
146        // Combine the round and odd parts.
147        Lo = Val;
148        if (TLI.isBigEndian())
149          std::swap(Lo, Hi);
150        EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
151        Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
152        Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
153                         DAG.getConstant(Lo.getValueType().getSizeInBits(),
154                                         TLI.getPointerTy()));
155        Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
156        Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
157      }
158    } else if (PartVT.isFloatingPoint()) {
159      // FP split into multiple FP parts (for ppcf128)
160      assert(ValueVT == EVT(MVT::ppcf128) && PartVT == EVT(MVT::f64) &&
161             "Unexpected split");
162      SDValue Lo, Hi;
163      Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
164      Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
165      if (TLI.isBigEndian())
166        std::swap(Lo, Hi);
167      Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
168    } else {
169      // FP split into integer parts (soft fp)
170      assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
171             !PartVT.isVector() && "Unexpected split");
172      EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
173      Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT);
174    }
175  }
176
177  // There is now one part, held in Val.  Correct it to match ValueVT.
178  PartVT = Val.getValueType();
179
180  if (PartVT == ValueVT)
181    return Val;
182
183  if (PartVT.isInteger() && ValueVT.isInteger()) {
184    if (ValueVT.bitsLT(PartVT)) {
185      // For a truncate, see if we have any information to
186      // indicate whether the truncated bits will always be
187      // zero or sign-extension.
188      if (AssertOp != ISD::DELETED_NODE)
189        Val = DAG.getNode(AssertOp, DL, PartVT, Val,
190                          DAG.getValueType(ValueVT));
191      return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
192    }
193    return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
194  }
195
196  if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
197    // FP_ROUND's are always exact here.
198    if (ValueVT.bitsLT(Val.getValueType()))
199      return DAG.getNode(ISD::FP_ROUND, DL, ValueVT, Val,
200                         DAG.getIntPtrConstant(1));
201
202    return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
203  }
204
205  if (PartVT.getSizeInBits() == ValueVT.getSizeInBits())
206    return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
207
208  llvm_unreachable("Unknown mismatch!");
209  return SDValue();
210}
211
212/// getCopyFromParts - Create a value that contains the specified legal parts
213/// combined into the value they represent.  If the parts combine to a type
214/// larger then ValueVT then AssertOp can be used to specify whether the extra
215/// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
216/// (ISD::AssertSext).
217static SDValue getCopyFromPartsVector(SelectionDAG &DAG, DebugLoc DL,
218                                      const SDValue *Parts, unsigned NumParts,
219                                      EVT PartVT, EVT ValueVT) {
220  assert(ValueVT.isVector() && "Not a vector value");
221  assert(NumParts > 0 && "No parts to assemble!");
222  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
223  SDValue Val = Parts[0];
224
225  // Handle a multi-element vector.
226  if (NumParts > 1) {
227    EVT IntermediateVT, RegisterVT;
228    unsigned NumIntermediates;
229    unsigned NumRegs =
230    TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
231                               NumIntermediates, RegisterVT);
232    assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
233    NumParts = NumRegs; // Silence a compiler warning.
234    assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
235    assert(RegisterVT == Parts[0].getValueType() &&
236           "Part type doesn't match part!");
237
238    // Assemble the parts into intermediate operands.
239    SmallVector<SDValue, 8> Ops(NumIntermediates);
240    if (NumIntermediates == NumParts) {
241      // If the register was not expanded, truncate or copy the value,
242      // as appropriate.
243      for (unsigned i = 0; i != NumParts; ++i)
244        Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1,
245                                  PartVT, IntermediateVT);
246    } else if (NumParts > 0) {
247      // If the intermediate type was expanded, build the intermediate
248      // operands from the parts.
249      assert(NumParts % NumIntermediates == 0 &&
250             "Must expand into a divisible number of parts!");
251      unsigned Factor = NumParts / NumIntermediates;
252      for (unsigned i = 0; i != NumIntermediates; ++i)
253        Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor,
254                                  PartVT, IntermediateVT);
255    }
256
257    // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
258    // intermediate operands.
259    Val = DAG.getNode(IntermediateVT.isVector() ?
260                      ISD::CONCAT_VECTORS : ISD::BUILD_VECTOR, DL,
261                      ValueVT, &Ops[0], NumIntermediates);
262  }
263
264  // There is now one part, held in Val.  Correct it to match ValueVT.
265  PartVT = Val.getValueType();
266
267  if (PartVT == ValueVT)
268    return Val;
269
270  if (PartVT.isVector()) {
271    // If the element type of the source/dest vectors are the same, but the
272    // parts vector has more elements than the value vector, then we have a
273    // vector widening case (e.g. <2 x float> -> <4 x float>).  Extract the
274    // elements we want.
275    if (PartVT.getVectorElementType() == ValueVT.getVectorElementType()) {
276      assert(PartVT.getVectorNumElements() > ValueVT.getVectorNumElements() &&
277             "Cannot narrow, it would be a lossy transformation");
278      return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
279                         DAG.getIntPtrConstant(0));
280    }
281
282    // Vector/Vector bitcast.
283    if (ValueVT.getSizeInBits() == PartVT.getSizeInBits())
284      return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
285
286    assert(PartVT.getVectorNumElements() == ValueVT.getVectorNumElements() &&
287      "Cannot handle this kind of promotion");
288    // Promoted vector extract
289    bool Smaller = ValueVT.bitsLE(PartVT);
290    return DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
291                       DL, ValueVT, Val);
292
293  }
294
295  // Trivial bitcast if the types are the same size and the destination
296  // vector type is legal.
297  if (PartVT.getSizeInBits() == ValueVT.getSizeInBits() &&
298      TLI.isTypeLegal(ValueVT))
299    return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
300
301  // Handle cases such as i8 -> <1 x i1>
302  assert(ValueVT.getVectorNumElements() == 1 &&
303         "Only trivial scalar-to-vector conversions should get here!");
304
305  if (ValueVT.getVectorNumElements() == 1 &&
306      ValueVT.getVectorElementType() != PartVT) {
307    bool Smaller = ValueVT.bitsLE(PartVT);
308    Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
309                       DL, ValueVT.getScalarType(), Val);
310  }
311
312  return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val);
313}
314
315
316
317
318static void getCopyToPartsVector(SelectionDAG &DAG, DebugLoc dl,
319                                 SDValue Val, SDValue *Parts, unsigned NumParts,
320                                 EVT PartVT);
321
322/// getCopyToParts - Create a series of nodes that contain the specified value
323/// split into legal parts.  If the parts contain more bits than Val, then, for
324/// integers, ExtendKind can be used to specify how to generate the extra bits.
325static void getCopyToParts(SelectionDAG &DAG, DebugLoc DL,
326                           SDValue Val, SDValue *Parts, unsigned NumParts,
327                           EVT PartVT,
328                           ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
329  EVT ValueVT = Val.getValueType();
330
331  // Handle the vector case separately.
332  if (ValueVT.isVector())
333    return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT);
334
335  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
336  unsigned PartBits = PartVT.getSizeInBits();
337  unsigned OrigNumParts = NumParts;
338  assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!");
339
340  if (NumParts == 0)
341    return;
342
343  assert(!ValueVT.isVector() && "Vector case handled elsewhere");
344  if (PartVT == ValueVT) {
345    assert(NumParts == 1 && "No-op copy with multiple parts!");
346    Parts[0] = Val;
347    return;
348  }
349
350  if (NumParts * PartBits > ValueVT.getSizeInBits()) {
351    // If the parts cover more bits than the value has, promote the value.
352    if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
353      assert(NumParts == 1 && "Do not know what to promote to!");
354      Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
355    } else {
356      assert(PartVT.isInteger() && ValueVT.isInteger() &&
357             "Unknown mismatch!");
358      ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
359      Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
360    }
361  } else if (PartBits == ValueVT.getSizeInBits()) {
362    // Different types of the same size.
363    assert(NumParts == 1 && PartVT != ValueVT);
364    Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
365  } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
366    // If the parts cover less bits than value has, truncate the value.
367    assert(PartVT.isInteger() && ValueVT.isInteger() &&
368           "Unknown mismatch!");
369    ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
370    Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
371  }
372
373  // The value may have changed - recompute ValueVT.
374  ValueVT = Val.getValueType();
375  assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
376         "Failed to tile the value with PartVT!");
377
378  if (NumParts == 1) {
379    assert(PartVT == ValueVT && "Type conversion failed!");
380    Parts[0] = Val;
381    return;
382  }
383
384  // Expand the value into multiple parts.
385  if (NumParts & (NumParts - 1)) {
386    // The number of parts is not a power of 2.  Split off and copy the tail.
387    assert(PartVT.isInteger() && ValueVT.isInteger() &&
388           "Do not know what to expand to!");
389    unsigned RoundParts = 1 << Log2_32(NumParts);
390    unsigned RoundBits = RoundParts * PartBits;
391    unsigned OddParts = NumParts - RoundParts;
392    SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
393                                 DAG.getIntPtrConstant(RoundBits));
394    getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT);
395
396    if (TLI.isBigEndian())
397      // The odd parts were reversed by getCopyToParts - unreverse them.
398      std::reverse(Parts + RoundParts, Parts + NumParts);
399
400    NumParts = RoundParts;
401    ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
402    Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
403  }
404
405  // The number of parts is a power of 2.  Repeatedly bisect the value using
406  // EXTRACT_ELEMENT.
407  Parts[0] = DAG.getNode(ISD::BITCAST, DL,
408                         EVT::getIntegerVT(*DAG.getContext(),
409                                           ValueVT.getSizeInBits()),
410                         Val);
411
412  for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
413    for (unsigned i = 0; i < NumParts; i += StepSize) {
414      unsigned ThisBits = StepSize * PartBits / 2;
415      EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
416      SDValue &Part0 = Parts[i];
417      SDValue &Part1 = Parts[i+StepSize/2];
418
419      Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
420                          ThisVT, Part0, DAG.getIntPtrConstant(1));
421      Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
422                          ThisVT, Part0, DAG.getIntPtrConstant(0));
423
424      if (ThisBits == PartBits && ThisVT != PartVT) {
425        Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
426        Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
427      }
428    }
429  }
430
431  if (TLI.isBigEndian())
432    std::reverse(Parts, Parts + OrigNumParts);
433}
434
435
436/// getCopyToPartsVector - Create a series of nodes that contain the specified
437/// value split into legal parts.
438static void getCopyToPartsVector(SelectionDAG &DAG, DebugLoc DL,
439                                 SDValue Val, SDValue *Parts, unsigned NumParts,
440                                 EVT PartVT) {
441  EVT ValueVT = Val.getValueType();
442  assert(ValueVT.isVector() && "Not a vector");
443  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
444
445  if (NumParts == 1) {
446    if (PartVT == ValueVT) {
447      // Nothing to do.
448    } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
449      // Bitconvert vector->vector case.
450      Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
451    } else if (PartVT.isVector() &&
452               PartVT.getVectorElementType() == ValueVT.getVectorElementType() &&
453               PartVT.getVectorNumElements() > ValueVT.getVectorNumElements()) {
454      EVT ElementVT = PartVT.getVectorElementType();
455      // Vector widening case, e.g. <2 x float> -> <4 x float>.  Shuffle in
456      // undef elements.
457      SmallVector<SDValue, 16> Ops;
458      for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i)
459        Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
460                                  ElementVT, Val, DAG.getIntPtrConstant(i)));
461
462      for (unsigned i = ValueVT.getVectorNumElements(),
463           e = PartVT.getVectorNumElements(); i != e; ++i)
464        Ops.push_back(DAG.getUNDEF(ElementVT));
465
466      Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, &Ops[0], Ops.size());
467
468      // FIXME: Use CONCAT for 2x -> 4x.
469
470      //SDValue UndefElts = DAG.getUNDEF(VectorTy);
471      //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts);
472    } else if (PartVT.isVector() &&
473               PartVT.getVectorElementType().bitsGE(
474                 ValueVT.getVectorElementType()) &&
475               PartVT.getVectorNumElements() == ValueVT.getVectorNumElements()) {
476
477      // Promoted vector extract
478      bool Smaller = PartVT.bitsLE(ValueVT);
479      Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
480                        DL, PartVT, Val);
481    } else{
482      // Vector -> scalar conversion.
483      assert(ValueVT.getVectorNumElements() == 1 &&
484             "Only trivial vector-to-scalar conversions should get here!");
485      Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
486                        PartVT, Val, DAG.getIntPtrConstant(0));
487
488      bool Smaller = ValueVT.bitsLE(PartVT);
489      Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
490                         DL, PartVT, Val);
491    }
492
493    Parts[0] = Val;
494    return;
495  }
496
497  // Handle a multi-element vector.
498  EVT IntermediateVT, RegisterVT;
499  unsigned NumIntermediates;
500  unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT,
501                                                IntermediateVT,
502                                                NumIntermediates, RegisterVT);
503  unsigned NumElements = ValueVT.getVectorNumElements();
504
505  assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
506  NumParts = NumRegs; // Silence a compiler warning.
507  assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
508
509  // Split the vector into intermediate operands.
510  SmallVector<SDValue, 8> Ops(NumIntermediates);
511  for (unsigned i = 0; i != NumIntermediates; ++i) {
512    if (IntermediateVT.isVector())
513      Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL,
514                           IntermediateVT, Val,
515                   DAG.getIntPtrConstant(i * (NumElements / NumIntermediates)));
516    else
517      Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
518                           IntermediateVT, Val, DAG.getIntPtrConstant(i));
519  }
520
521  // Split the intermediate operands into legal parts.
522  if (NumParts == NumIntermediates) {
523    // If the register was not expanded, promote or copy the value,
524    // as appropriate.
525    for (unsigned i = 0; i != NumParts; ++i)
526      getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT);
527  } else if (NumParts > 0) {
528    // If the intermediate type was expanded, split each the value into
529    // legal parts.
530    assert(NumParts % NumIntermediates == 0 &&
531           "Must expand into a divisible number of parts!");
532    unsigned Factor = NumParts / NumIntermediates;
533    for (unsigned i = 0; i != NumIntermediates; ++i)
534      getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT);
535  }
536}
537
538
539
540
541namespace {
542  /// RegsForValue - This struct represents the registers (physical or virtual)
543  /// that a particular set of values is assigned, and the type information
544  /// about the value. The most common situation is to represent one value at a
545  /// time, but struct or array values are handled element-wise as multiple
546  /// values.  The splitting of aggregates is performed recursively, so that we
547  /// never have aggregate-typed registers. The values at this point do not
548  /// necessarily have legal types, so each value may require one or more
549  /// registers of some legal type.
550  ///
551  struct RegsForValue {
552    /// ValueVTs - The value types of the values, which may not be legal, and
553    /// may need be promoted or synthesized from one or more registers.
554    ///
555    SmallVector<EVT, 4> ValueVTs;
556
557    /// RegVTs - The value types of the registers. This is the same size as
558    /// ValueVTs and it records, for each value, what the type of the assigned
559    /// register or registers are. (Individual values are never synthesized
560    /// from more than one type of register.)
561    ///
562    /// With virtual registers, the contents of RegVTs is redundant with TLI's
563    /// getRegisterType member function, however when with physical registers
564    /// it is necessary to have a separate record of the types.
565    ///
566    SmallVector<EVT, 4> RegVTs;
567
568    /// Regs - This list holds the registers assigned to the values.
569    /// Each legal or promoted value requires one register, and each
570    /// expanded value requires multiple registers.
571    ///
572    SmallVector<unsigned, 4> Regs;
573
574    RegsForValue() {}
575
576    RegsForValue(const SmallVector<unsigned, 4> &regs,
577                 EVT regvt, EVT valuevt)
578      : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {}
579
580    RegsForValue(LLVMContext &Context, const TargetLowering &tli,
581                 unsigned Reg, const Type *Ty) {
582      ComputeValueVTs(tli, Ty, ValueVTs);
583
584      for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
585        EVT ValueVT = ValueVTs[Value];
586        unsigned NumRegs = tli.getNumRegisters(Context, ValueVT);
587        EVT RegisterVT = tli.getRegisterType(Context, ValueVT);
588        for (unsigned i = 0; i != NumRegs; ++i)
589          Regs.push_back(Reg + i);
590        RegVTs.push_back(RegisterVT);
591        Reg += NumRegs;
592      }
593    }
594
595    /// areValueTypesLegal - Return true if types of all the values are legal.
596    bool areValueTypesLegal(const TargetLowering &TLI) {
597      for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
598        EVT RegisterVT = RegVTs[Value];
599        if (!TLI.isTypeLegal(RegisterVT))
600          return false;
601      }
602      return true;
603    }
604
605    /// append - Add the specified values to this one.
606    void append(const RegsForValue &RHS) {
607      ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end());
608      RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end());
609      Regs.append(RHS.Regs.begin(), RHS.Regs.end());
610    }
611
612    /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
613    /// this value and returns the result as a ValueVTs value.  This uses
614    /// Chain/Flag as the input and updates them for the output Chain/Flag.
615    /// If the Flag pointer is NULL, no flag is used.
616    SDValue getCopyFromRegs(SelectionDAG &DAG, FunctionLoweringInfo &FuncInfo,
617                            DebugLoc dl,
618                            SDValue &Chain, SDValue *Flag) const;
619
620    /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
621    /// specified value into the registers specified by this object.  This uses
622    /// Chain/Flag as the input and updates them for the output Chain/Flag.
623    /// If the Flag pointer is NULL, no flag is used.
624    void getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl,
625                       SDValue &Chain, SDValue *Flag) const;
626
627    /// AddInlineAsmOperands - Add this value to the specified inlineasm node
628    /// operand list.  This adds the code marker, matching input operand index
629    /// (if applicable), and includes the number of values added into it.
630    void AddInlineAsmOperands(unsigned Kind,
631                              bool HasMatching, unsigned MatchingIdx,
632                              SelectionDAG &DAG,
633                              std::vector<SDValue> &Ops) const;
634  };
635}
636
637/// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
638/// this value and returns the result as a ValueVT value.  This uses
639/// Chain/Flag as the input and updates them for the output Chain/Flag.
640/// If the Flag pointer is NULL, no flag is used.
641SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
642                                      FunctionLoweringInfo &FuncInfo,
643                                      DebugLoc dl,
644                                      SDValue &Chain, SDValue *Flag) const {
645  // A Value with type {} or [0 x %t] needs no registers.
646  if (ValueVTs.empty())
647    return SDValue();
648
649  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
650
651  // Assemble the legal parts into the final values.
652  SmallVector<SDValue, 4> Values(ValueVTs.size());
653  SmallVector<SDValue, 8> Parts;
654  for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
655    // Copy the legal parts from the registers.
656    EVT ValueVT = ValueVTs[Value];
657    unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
658    EVT RegisterVT = RegVTs[Value];
659
660    Parts.resize(NumRegs);
661    for (unsigned i = 0; i != NumRegs; ++i) {
662      SDValue P;
663      if (Flag == 0) {
664        P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
665      } else {
666        P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
667        *Flag = P.getValue(2);
668      }
669
670      Chain = P.getValue(1);
671      Parts[i] = P;
672
673      // If the source register was virtual and if we know something about it,
674      // add an assert node.
675      if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) ||
676          !RegisterVT.isInteger() || RegisterVT.isVector())
677        continue;
678
679      const FunctionLoweringInfo::LiveOutInfo *LOI =
680        FuncInfo.GetLiveOutRegInfo(Regs[Part+i]);
681      if (!LOI)
682        continue;
683
684      unsigned RegSize = RegisterVT.getSizeInBits();
685      unsigned NumSignBits = LOI->NumSignBits;
686      unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes();
687
688      // FIXME: We capture more information than the dag can represent.  For
689      // now, just use the tightest assertzext/assertsext possible.
690      bool isSExt = true;
691      EVT FromVT(MVT::Other);
692      if (NumSignBits == RegSize)
693        isSExt = true, FromVT = MVT::i1;   // ASSERT SEXT 1
694      else if (NumZeroBits >= RegSize-1)
695        isSExt = false, FromVT = MVT::i1;  // ASSERT ZEXT 1
696      else if (NumSignBits > RegSize-8)
697        isSExt = true, FromVT = MVT::i8;   // ASSERT SEXT 8
698      else if (NumZeroBits >= RegSize-8)
699        isSExt = false, FromVT = MVT::i8;  // ASSERT ZEXT 8
700      else if (NumSignBits > RegSize-16)
701        isSExt = true, FromVT = MVT::i16;  // ASSERT SEXT 16
702      else if (NumZeroBits >= RegSize-16)
703        isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16
704      else if (NumSignBits > RegSize-32)
705        isSExt = true, FromVT = MVT::i32;  // ASSERT SEXT 32
706      else if (NumZeroBits >= RegSize-32)
707        isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32
708      else
709        continue;
710
711      // Add an assertion node.
712      assert(FromVT != MVT::Other);
713      Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
714                             RegisterVT, P, DAG.getValueType(FromVT));
715    }
716
717    Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(),
718                                     NumRegs, RegisterVT, ValueVT);
719    Part += NumRegs;
720    Parts.clear();
721  }
722
723  return DAG.getNode(ISD::MERGE_VALUES, dl,
724                     DAG.getVTList(&ValueVTs[0], ValueVTs.size()),
725                     &Values[0], ValueVTs.size());
726}
727
728/// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
729/// specified value into the registers specified by this object.  This uses
730/// Chain/Flag as the input and updates them for the output Chain/Flag.
731/// If the Flag pointer is NULL, no flag is used.
732void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl,
733                                 SDValue &Chain, SDValue *Flag) const {
734  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
735
736  // Get the list of the values's legal parts.
737  unsigned NumRegs = Regs.size();
738  SmallVector<SDValue, 8> Parts(NumRegs);
739  for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
740    EVT ValueVT = ValueVTs[Value];
741    unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
742    EVT RegisterVT = RegVTs[Value];
743
744    getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value),
745                   &Parts[Part], NumParts, RegisterVT);
746    Part += NumParts;
747  }
748
749  // Copy the parts into the registers.
750  SmallVector<SDValue, 8> Chains(NumRegs);
751  for (unsigned i = 0; i != NumRegs; ++i) {
752    SDValue Part;
753    if (Flag == 0) {
754      Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
755    } else {
756      Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
757      *Flag = Part.getValue(1);
758    }
759
760    Chains[i] = Part.getValue(0);
761  }
762
763  if (NumRegs == 1 || Flag)
764    // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
765    // flagged to it. That is the CopyToReg nodes and the user are considered
766    // a single scheduling unit. If we create a TokenFactor and return it as
767    // chain, then the TokenFactor is both a predecessor (operand) of the
768    // user as well as a successor (the TF operands are flagged to the user).
769    // c1, f1 = CopyToReg
770    // c2, f2 = CopyToReg
771    // c3     = TokenFactor c1, c2
772    // ...
773    //        = op c3, ..., f2
774    Chain = Chains[NumRegs-1];
775  else
776    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0], NumRegs);
777}
778
779/// AddInlineAsmOperands - Add this value to the specified inlineasm node
780/// operand list.  This adds the code marker and includes the number of
781/// values added into it.
782void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
783                                        unsigned MatchingIdx,
784                                        SelectionDAG &DAG,
785                                        std::vector<SDValue> &Ops) const {
786  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
787
788  unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
789  if (HasMatching)
790    Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
791  SDValue Res = DAG.getTargetConstant(Flag, MVT::i32);
792  Ops.push_back(Res);
793
794  for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
795    unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]);
796    EVT RegisterVT = RegVTs[Value];
797    for (unsigned i = 0; i != NumRegs; ++i) {
798      assert(Reg < Regs.size() && "Mismatch in # registers expected");
799      Ops.push_back(DAG.getRegister(Regs[Reg++], RegisterVT));
800    }
801  }
802}
803
804void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa) {
805  AA = &aa;
806  GFI = gfi;
807  TD = DAG.getTarget().getTargetData();
808}
809
810/// clear - Clear out the current SelectionDAG and the associated
811/// state and prepare this SelectionDAGBuilder object to be used
812/// for a new block. This doesn't clear out information about
813/// additional blocks that are needed to complete switch lowering
814/// or PHI node updating; that information is cleared out as it is
815/// consumed.
816void SelectionDAGBuilder::clear() {
817  NodeMap.clear();
818  UnusedArgNodeMap.clear();
819  PendingLoads.clear();
820  PendingExports.clear();
821  CurDebugLoc = DebugLoc();
822  HasTailCall = false;
823}
824
825/// clearDanglingDebugInfo - Clear the dangling debug information
826/// map. This function is seperated from the clear so that debug
827/// information that is dangling in a basic block can be properly
828/// resolved in a different basic block. This allows the
829/// SelectionDAG to resolve dangling debug information attached
830/// to PHI nodes.
831void SelectionDAGBuilder::clearDanglingDebugInfo() {
832  DanglingDebugInfoMap.clear();
833}
834
835/// getRoot - Return the current virtual root of the Selection DAG,
836/// flushing any PendingLoad items. This must be done before emitting
837/// a store or any other node that may need to be ordered after any
838/// prior load instructions.
839///
840SDValue SelectionDAGBuilder::getRoot() {
841  if (PendingLoads.empty())
842    return DAG.getRoot();
843
844  if (PendingLoads.size() == 1) {
845    SDValue Root = PendingLoads[0];
846    DAG.setRoot(Root);
847    PendingLoads.clear();
848    return Root;
849  }
850
851  // Otherwise, we have to make a token factor node.
852  SDValue Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
853                               &PendingLoads[0], PendingLoads.size());
854  PendingLoads.clear();
855  DAG.setRoot(Root);
856  return Root;
857}
858
859/// getControlRoot - Similar to getRoot, but instead of flushing all the
860/// PendingLoad items, flush all the PendingExports items. It is necessary
861/// to do this before emitting a terminator instruction.
862///
863SDValue SelectionDAGBuilder::getControlRoot() {
864  SDValue Root = DAG.getRoot();
865
866  if (PendingExports.empty())
867    return Root;
868
869  // Turn all of the CopyToReg chains into one factored node.
870  if (Root.getOpcode() != ISD::EntryToken) {
871    unsigned i = 0, e = PendingExports.size();
872    for (; i != e; ++i) {
873      assert(PendingExports[i].getNode()->getNumOperands() > 1);
874      if (PendingExports[i].getNode()->getOperand(0) == Root)
875        break;  // Don't add the root if we already indirectly depend on it.
876    }
877
878    if (i == e)
879      PendingExports.push_back(Root);
880  }
881
882  Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
883                     &PendingExports[0],
884                     PendingExports.size());
885  PendingExports.clear();
886  DAG.setRoot(Root);
887  return Root;
888}
889
890void SelectionDAGBuilder::AssignOrderingToNode(const SDNode *Node) {
891  if (DAG.GetOrdering(Node) != 0) return; // Already has ordering.
892  DAG.AssignOrdering(Node, SDNodeOrder);
893
894  for (unsigned I = 0, E = Node->getNumOperands(); I != E; ++I)
895    AssignOrderingToNode(Node->getOperand(I).getNode());
896}
897
898void SelectionDAGBuilder::visit(const Instruction &I) {
899  // Set up outgoing PHI node register values before emitting the terminator.
900  if (isa<TerminatorInst>(&I))
901    HandlePHINodesInSuccessorBlocks(I.getParent());
902
903  CurDebugLoc = I.getDebugLoc();
904
905  visit(I.getOpcode(), I);
906
907  if (!isa<TerminatorInst>(&I) && !HasTailCall)
908    CopyToExportRegsIfNeeded(&I);
909
910  CurDebugLoc = DebugLoc();
911}
912
913void SelectionDAGBuilder::visitPHI(const PHINode &) {
914  llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
915}
916
917void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
918  // Note: this doesn't use InstVisitor, because it has to work with
919  // ConstantExpr's in addition to instructions.
920  switch (Opcode) {
921  default: llvm_unreachable("Unknown instruction type encountered!");
922    // Build the switch statement using the Instruction.def file.
923#define HANDLE_INST(NUM, OPCODE, CLASS) \
924    case Instruction::OPCODE: visit##OPCODE((CLASS&)I); break;
925#include "llvm/Instruction.def"
926  }
927
928  // Assign the ordering to the freshly created DAG nodes.
929  if (NodeMap.count(&I)) {
930    ++SDNodeOrder;
931    AssignOrderingToNode(getValue(&I).getNode());
932  }
933}
934
935// resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
936// generate the debug data structures now that we've seen its definition.
937void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
938                                                   SDValue Val) {
939  DanglingDebugInfo &DDI = DanglingDebugInfoMap[V];
940  if (DDI.getDI()) {
941    const DbgValueInst *DI = DDI.getDI();
942    DebugLoc dl = DDI.getdl();
943    unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
944    MDNode *Variable = DI->getVariable();
945    uint64_t Offset = DI->getOffset();
946    SDDbgValue *SDV;
947    if (Val.getNode()) {
948      if (!EmitFuncArgumentDbgValue(V, Variable, Offset, Val)) {
949        SDV = DAG.getDbgValue(Variable, Val.getNode(),
950                              Val.getResNo(), Offset, dl, DbgSDNodeOrder);
951        DAG.AddDbgValue(SDV, Val.getNode(), false);
952      }
953    } else
954      DEBUG(dbgs() << "Dropping debug info for " << DI);
955    DanglingDebugInfoMap[V] = DanglingDebugInfo();
956  }
957}
958
959// getValue - Return an SDValue for the given Value.
960SDValue SelectionDAGBuilder::getValue(const Value *V) {
961  // If we already have an SDValue for this value, use it. It's important
962  // to do this first, so that we don't create a CopyFromReg if we already
963  // have a regular SDValue.
964  SDValue &N = NodeMap[V];
965  if (N.getNode()) return N;
966
967  // If there's a virtual register allocated and initialized for this
968  // value, use it.
969  DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V);
970  if (It != FuncInfo.ValueMap.end()) {
971    unsigned InReg = It->second;
972    RegsForValue RFV(*DAG.getContext(), TLI, InReg, V->getType());
973    SDValue Chain = DAG.getEntryNode();
974    N = RFV.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), Chain,NULL);
975    resolveDanglingDebugInfo(V, N);
976    return N;
977  }
978
979  // Otherwise create a new SDValue and remember it.
980  SDValue Val = getValueImpl(V);
981  NodeMap[V] = Val;
982  resolveDanglingDebugInfo(V, Val);
983  return Val;
984}
985
986/// getNonRegisterValue - Return an SDValue for the given Value, but
987/// don't look in FuncInfo.ValueMap for a virtual register.
988SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
989  // If we already have an SDValue for this value, use it.
990  SDValue &N = NodeMap[V];
991  if (N.getNode()) return N;
992
993  // Otherwise create a new SDValue and remember it.
994  SDValue Val = getValueImpl(V);
995  NodeMap[V] = Val;
996  resolveDanglingDebugInfo(V, Val);
997  return Val;
998}
999
1000/// getValueImpl - Helper function for getValue and getNonRegisterValue.
1001/// Create an SDValue for the given value.
1002SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
1003  if (const Constant *C = dyn_cast<Constant>(V)) {
1004    EVT VT = TLI.getValueType(V->getType(), true);
1005
1006    if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
1007      return DAG.getConstant(*CI, VT);
1008
1009    if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
1010      return DAG.getGlobalAddress(GV, getCurDebugLoc(), VT);
1011
1012    if (isa<ConstantPointerNull>(C))
1013      return DAG.getConstant(0, TLI.getPointerTy());
1014
1015    if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
1016      return DAG.getConstantFP(*CFP, VT);
1017
1018    if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
1019      return DAG.getUNDEF(VT);
1020
1021    if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1022      visit(CE->getOpcode(), *CE);
1023      SDValue N1 = NodeMap[V];
1024      assert(N1.getNode() && "visit didn't populate the NodeMap!");
1025      return N1;
1026    }
1027
1028    if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
1029      SmallVector<SDValue, 4> Constants;
1030      for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end();
1031           OI != OE; ++OI) {
1032        SDNode *Val = getValue(*OI).getNode();
1033        // If the operand is an empty aggregate, there are no values.
1034        if (!Val) continue;
1035        // Add each leaf value from the operand to the Constants list
1036        // to form a flattened list of all the values.
1037        for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1038          Constants.push_back(SDValue(Val, i));
1039      }
1040
1041      return DAG.getMergeValues(&Constants[0], Constants.size(),
1042                                getCurDebugLoc());
1043    }
1044
1045    if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
1046      assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1047             "Unknown struct or array constant!");
1048
1049      SmallVector<EVT, 4> ValueVTs;
1050      ComputeValueVTs(TLI, C->getType(), ValueVTs);
1051      unsigned NumElts = ValueVTs.size();
1052      if (NumElts == 0)
1053        return SDValue(); // empty struct
1054      SmallVector<SDValue, 4> Constants(NumElts);
1055      for (unsigned i = 0; i != NumElts; ++i) {
1056        EVT EltVT = ValueVTs[i];
1057        if (isa<UndefValue>(C))
1058          Constants[i] = DAG.getUNDEF(EltVT);
1059        else if (EltVT.isFloatingPoint())
1060          Constants[i] = DAG.getConstantFP(0, EltVT);
1061        else
1062          Constants[i] = DAG.getConstant(0, EltVT);
1063      }
1064
1065      return DAG.getMergeValues(&Constants[0], NumElts,
1066                                getCurDebugLoc());
1067    }
1068
1069    if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
1070      return DAG.getBlockAddress(BA, VT);
1071
1072    const VectorType *VecTy = cast<VectorType>(V->getType());
1073    unsigned NumElements = VecTy->getNumElements();
1074
1075    // Now that we know the number and type of the elements, get that number of
1076    // elements into the Ops array based on what kind of constant it is.
1077    SmallVector<SDValue, 16> Ops;
1078    if (const ConstantVector *CP = dyn_cast<ConstantVector>(C)) {
1079      for (unsigned i = 0; i != NumElements; ++i)
1080        Ops.push_back(getValue(CP->getOperand(i)));
1081    } else {
1082      assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!");
1083      EVT EltVT = TLI.getValueType(VecTy->getElementType());
1084
1085      SDValue Op;
1086      if (EltVT.isFloatingPoint())
1087        Op = DAG.getConstantFP(0, EltVT);
1088      else
1089        Op = DAG.getConstant(0, EltVT);
1090      Ops.assign(NumElements, Op);
1091    }
1092
1093    // Create a BUILD_VECTOR node.
1094    return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(),
1095                                    VT, &Ops[0], Ops.size());
1096  }
1097
1098  // If this is a static alloca, generate it as the frameindex instead of
1099  // computation.
1100  if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1101    DenseMap<const AllocaInst*, int>::iterator SI =
1102      FuncInfo.StaticAllocaMap.find(AI);
1103    if (SI != FuncInfo.StaticAllocaMap.end())
1104      return DAG.getFrameIndex(SI->second, TLI.getPointerTy());
1105  }
1106
1107  // If this is an instruction which fast-isel has deferred, select it now.
1108  if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
1109    unsigned InReg = FuncInfo.InitializeRegForValue(Inst);
1110    RegsForValue RFV(*DAG.getContext(), TLI, InReg, Inst->getType());
1111    SDValue Chain = DAG.getEntryNode();
1112    return RFV.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), Chain, NULL);
1113  }
1114
1115  llvm_unreachable("Can't get register for value!");
1116  return SDValue();
1117}
1118
1119void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
1120  SDValue Chain = getControlRoot();
1121  SmallVector<ISD::OutputArg, 8> Outs;
1122  SmallVector<SDValue, 8> OutVals;
1123
1124  if (!FuncInfo.CanLowerReturn) {
1125    unsigned DemoteReg = FuncInfo.DemoteRegister;
1126    const Function *F = I.getParent()->getParent();
1127
1128    // Emit a store of the return value through the virtual register.
1129    // Leave Outs empty so that LowerReturn won't try to load return
1130    // registers the usual way.
1131    SmallVector<EVT, 1> PtrValueVTs;
1132    ComputeValueVTs(TLI, PointerType::getUnqual(F->getReturnType()),
1133                    PtrValueVTs);
1134
1135    SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]);
1136    SDValue RetOp = getValue(I.getOperand(0));
1137
1138    SmallVector<EVT, 4> ValueVTs;
1139    SmallVector<uint64_t, 4> Offsets;
1140    ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs, &Offsets);
1141    unsigned NumValues = ValueVTs.size();
1142
1143    SmallVector<SDValue, 4> Chains(NumValues);
1144    for (unsigned i = 0; i != NumValues; ++i) {
1145      SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(),
1146                                RetPtr.getValueType(), RetPtr,
1147                                DAG.getIntPtrConstant(Offsets[i]));
1148      Chains[i] =
1149        DAG.getStore(Chain, getCurDebugLoc(),
1150                     SDValue(RetOp.getNode(), RetOp.getResNo() + i),
1151                     // FIXME: better loc info would be nice.
1152                     Add, MachinePointerInfo(), false, false, 0);
1153    }
1154
1155    Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
1156                        MVT::Other, &Chains[0], NumValues);
1157  } else if (I.getNumOperands() != 0) {
1158    SmallVector<EVT, 4> ValueVTs;
1159    ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs);
1160    unsigned NumValues = ValueVTs.size();
1161    if (NumValues) {
1162      SDValue RetOp = getValue(I.getOperand(0));
1163      for (unsigned j = 0, f = NumValues; j != f; ++j) {
1164        EVT VT = ValueVTs[j];
1165
1166        ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1167
1168        const Function *F = I.getParent()->getParent();
1169        if (F->paramHasAttr(0, Attribute::SExt))
1170          ExtendKind = ISD::SIGN_EXTEND;
1171        else if (F->paramHasAttr(0, Attribute::ZExt))
1172          ExtendKind = ISD::ZERO_EXTEND;
1173
1174        if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
1175          VT = TLI.getTypeForExtArgOrReturn(*DAG.getContext(), VT, ExtendKind);
1176
1177        unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), VT);
1178        EVT PartVT = TLI.getRegisterType(*DAG.getContext(), VT);
1179        SmallVector<SDValue, 4> Parts(NumParts);
1180        getCopyToParts(DAG, getCurDebugLoc(),
1181                       SDValue(RetOp.getNode(), RetOp.getResNo() + j),
1182                       &Parts[0], NumParts, PartVT, ExtendKind);
1183
1184        // 'inreg' on function refers to return value
1185        ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1186        if (F->paramHasAttr(0, Attribute::InReg))
1187          Flags.setInReg();
1188
1189        // Propagate extension type if any
1190        if (ExtendKind == ISD::SIGN_EXTEND)
1191          Flags.setSExt();
1192        else if (ExtendKind == ISD::ZERO_EXTEND)
1193          Flags.setZExt();
1194
1195        for (unsigned i = 0; i < NumParts; ++i) {
1196          Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(),
1197                                        /*isfixed=*/true));
1198          OutVals.push_back(Parts[i]);
1199        }
1200      }
1201    }
1202  }
1203
1204  bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
1205  CallingConv::ID CallConv =
1206    DAG.getMachineFunction().getFunction()->getCallingConv();
1207  Chain = TLI.LowerReturn(Chain, CallConv, isVarArg,
1208                          Outs, OutVals, getCurDebugLoc(), DAG);
1209
1210  // Verify that the target's LowerReturn behaved as expected.
1211  assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
1212         "LowerReturn didn't return a valid chain!");
1213
1214  // Update the DAG with the new chain value resulting from return lowering.
1215  DAG.setRoot(Chain);
1216}
1217
1218/// CopyToExportRegsIfNeeded - If the given value has virtual registers
1219/// created for it, emit nodes to copy the value into the virtual
1220/// registers.
1221void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
1222  // Skip empty types
1223  if (V->getType()->isEmptyTy())
1224    return;
1225
1226  DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
1227  if (VMI != FuncInfo.ValueMap.end()) {
1228    assert(!V->use_empty() && "Unused value assigned virtual registers!");
1229    CopyValueToVirtualRegister(V, VMI->second);
1230  }
1231}
1232
1233/// ExportFromCurrentBlock - If this condition isn't known to be exported from
1234/// the current basic block, add it to ValueMap now so that we'll get a
1235/// CopyTo/FromReg.
1236void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
1237  // No need to export constants.
1238  if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
1239
1240  // Already exported?
1241  if (FuncInfo.isExportedInst(V)) return;
1242
1243  unsigned Reg = FuncInfo.InitializeRegForValue(V);
1244  CopyValueToVirtualRegister(V, Reg);
1245}
1246
1247bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
1248                                                     const BasicBlock *FromBB) {
1249  // The operands of the setcc have to be in this block.  We don't know
1250  // how to export them from some other block.
1251  if (const Instruction *VI = dyn_cast<Instruction>(V)) {
1252    // Can export from current BB.
1253    if (VI->getParent() == FromBB)
1254      return true;
1255
1256    // Is already exported, noop.
1257    return FuncInfo.isExportedInst(V);
1258  }
1259
1260  // If this is an argument, we can export it if the BB is the entry block or
1261  // if it is already exported.
1262  if (isa<Argument>(V)) {
1263    if (FromBB == &FromBB->getParent()->getEntryBlock())
1264      return true;
1265
1266    // Otherwise, can only export this if it is already exported.
1267    return FuncInfo.isExportedInst(V);
1268  }
1269
1270  // Otherwise, constants can always be exported.
1271  return true;
1272}
1273
1274/// Return branch probability calculated by BranchProbabilityInfo for IR blocks.
1275uint32_t SelectionDAGBuilder::getEdgeWeight(MachineBasicBlock *Src,
1276                                            MachineBasicBlock *Dst) {
1277  BranchProbabilityInfo *BPI = FuncInfo.BPI;
1278  if (!BPI)
1279    return 0;
1280  BasicBlock *SrcBB = const_cast<BasicBlock*>(Src->getBasicBlock());
1281  BasicBlock *DstBB = const_cast<BasicBlock*>(Dst->getBasicBlock());
1282  return BPI->getEdgeWeight(SrcBB, DstBB);
1283}
1284
1285void SelectionDAGBuilder::addSuccessorWithWeight(MachineBasicBlock *Src,
1286                                                 MachineBasicBlock *Dst) {
1287  uint32_t weight = getEdgeWeight(Src, Dst);
1288  Src->addSuccessor(Dst, weight);
1289}
1290
1291
1292static bool InBlock(const Value *V, const BasicBlock *BB) {
1293  if (const Instruction *I = dyn_cast<Instruction>(V))
1294    return I->getParent() == BB;
1295  return true;
1296}
1297
1298/// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
1299/// This function emits a branch and is used at the leaves of an OR or an
1300/// AND operator tree.
1301///
1302void
1303SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
1304                                                  MachineBasicBlock *TBB,
1305                                                  MachineBasicBlock *FBB,
1306                                                  MachineBasicBlock *CurBB,
1307                                                  MachineBasicBlock *SwitchBB) {
1308  const BasicBlock *BB = CurBB->getBasicBlock();
1309
1310  // If the leaf of the tree is a comparison, merge the condition into
1311  // the caseblock.
1312  if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
1313    // The operands of the cmp have to be in this block.  We don't know
1314    // how to export them from some other block.  If this is the first block
1315    // of the sequence, no exporting is needed.
1316    if (CurBB == SwitchBB ||
1317        (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
1318         isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
1319      ISD::CondCode Condition;
1320      if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
1321        Condition = getICmpCondCode(IC->getPredicate());
1322      } else if (const FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) {
1323        Condition = getFCmpCondCode(FC->getPredicate());
1324      } else {
1325        Condition = ISD::SETEQ; // silence warning.
1326        llvm_unreachable("Unknown compare instruction");
1327      }
1328
1329      CaseBlock CB(Condition, BOp->getOperand(0),
1330                   BOp->getOperand(1), NULL, TBB, FBB, CurBB);
1331      SwitchCases.push_back(CB);
1332      return;
1333    }
1334  }
1335
1336  // Create a CaseBlock record representing this branch.
1337  CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()),
1338               NULL, TBB, FBB, CurBB);
1339  SwitchCases.push_back(CB);
1340}
1341
1342/// FindMergedConditions - If Cond is an expression like
1343void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
1344                                               MachineBasicBlock *TBB,
1345                                               MachineBasicBlock *FBB,
1346                                               MachineBasicBlock *CurBB,
1347                                               MachineBasicBlock *SwitchBB,
1348                                               unsigned Opc) {
1349  // If this node is not part of the or/and tree, emit it as a branch.
1350  const Instruction *BOp = dyn_cast<Instruction>(Cond);
1351  if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
1352      (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() ||
1353      BOp->getParent() != CurBB->getBasicBlock() ||
1354      !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
1355      !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
1356    EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB);
1357    return;
1358  }
1359
1360  //  Create TmpBB after CurBB.
1361  MachineFunction::iterator BBI = CurBB;
1362  MachineFunction &MF = DAG.getMachineFunction();
1363  MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
1364  CurBB->getParent()->insert(++BBI, TmpBB);
1365
1366  if (Opc == Instruction::Or) {
1367    // Codegen X | Y as:
1368    //   jmp_if_X TBB
1369    //   jmp TmpBB
1370    // TmpBB:
1371    //   jmp_if_Y TBB
1372    //   jmp FBB
1373    //
1374
1375    // Emit the LHS condition.
1376    FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc);
1377
1378    // Emit the RHS condition into TmpBB.
1379    FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc);
1380  } else {
1381    assert(Opc == Instruction::And && "Unknown merge op!");
1382    // Codegen X & Y as:
1383    //   jmp_if_X TmpBB
1384    //   jmp FBB
1385    // TmpBB:
1386    //   jmp_if_Y TBB
1387    //   jmp FBB
1388    //
1389    //  This requires creation of TmpBB after CurBB.
1390
1391    // Emit the LHS condition.
1392    FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc);
1393
1394    // Emit the RHS condition into TmpBB.
1395    FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc);
1396  }
1397}
1398
1399/// If the set of cases should be emitted as a series of branches, return true.
1400/// If we should emit this as a bunch of and/or'd together conditions, return
1401/// false.
1402bool
1403SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases){
1404  if (Cases.size() != 2) return true;
1405
1406  // If this is two comparisons of the same values or'd or and'd together, they
1407  // will get folded into a single comparison, so don't emit two blocks.
1408  if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
1409       Cases[0].CmpRHS == Cases[1].CmpRHS) ||
1410      (Cases[0].CmpRHS == Cases[1].CmpLHS &&
1411       Cases[0].CmpLHS == Cases[1].CmpRHS)) {
1412    return false;
1413  }
1414
1415  // Handle: (X != null) | (Y != null) --> (X|Y) != 0
1416  // Handle: (X == null) & (Y == null) --> (X|Y) == 0
1417  if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
1418      Cases[0].CC == Cases[1].CC &&
1419      isa<Constant>(Cases[0].CmpRHS) &&
1420      cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
1421    if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
1422      return false;
1423    if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
1424      return false;
1425  }
1426
1427  return true;
1428}
1429
1430void SelectionDAGBuilder::visitBr(const BranchInst &I) {
1431  MachineBasicBlock *BrMBB = FuncInfo.MBB;
1432
1433  // Update machine-CFG edges.
1434  MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
1435
1436  // Figure out which block is immediately after the current one.
1437  MachineBasicBlock *NextBlock = 0;
1438  MachineFunction::iterator BBI = BrMBB;
1439  if (++BBI != FuncInfo.MF->end())
1440    NextBlock = BBI;
1441
1442  if (I.isUnconditional()) {
1443    // Update machine-CFG edges.
1444    BrMBB->addSuccessor(Succ0MBB);
1445
1446    // If this is not a fall-through branch, emit the branch.
1447    if (Succ0MBB != NextBlock)
1448      DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
1449                              MVT::Other, getControlRoot(),
1450                              DAG.getBasicBlock(Succ0MBB)));
1451
1452    return;
1453  }
1454
1455  // If this condition is one of the special cases we handle, do special stuff
1456  // now.
1457  const Value *CondVal = I.getCondition();
1458  MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
1459
1460  // If this is a series of conditions that are or'd or and'd together, emit
1461  // this as a sequence of branches instead of setcc's with and/or operations.
1462  // As long as jumps are not expensive, this should improve performance.
1463  // For example, instead of something like:
1464  //     cmp A, B
1465  //     C = seteq
1466  //     cmp D, E
1467  //     F = setle
1468  //     or C, F
1469  //     jnz foo
1470  // Emit:
1471  //     cmp A, B
1472  //     je foo
1473  //     cmp D, E
1474  //     jle foo
1475  //
1476  if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
1477    if (!TLI.isJumpExpensive() &&
1478        BOp->hasOneUse() &&
1479        (BOp->getOpcode() == Instruction::And ||
1480         BOp->getOpcode() == Instruction::Or)) {
1481      FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB,
1482                           BOp->getOpcode());
1483      // If the compares in later blocks need to use values not currently
1484      // exported from this block, export them now.  This block should always
1485      // be the first entry.
1486      assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
1487
1488      // Allow some cases to be rejected.
1489      if (ShouldEmitAsBranches(SwitchCases)) {
1490        for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
1491          ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
1492          ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
1493        }
1494
1495        // Emit the branch for this block.
1496        visitSwitchCase(SwitchCases[0], BrMBB);
1497        SwitchCases.erase(SwitchCases.begin());
1498        return;
1499      }
1500
1501      // Okay, we decided not to do this, remove any inserted MBB's and clear
1502      // SwitchCases.
1503      for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
1504        FuncInfo.MF->erase(SwitchCases[i].ThisBB);
1505
1506      SwitchCases.clear();
1507    }
1508  }
1509
1510  // Create a CaseBlock record representing this branch.
1511  CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
1512               NULL, Succ0MBB, Succ1MBB, BrMBB);
1513
1514  // Use visitSwitchCase to actually insert the fast branch sequence for this
1515  // cond branch.
1516  visitSwitchCase(CB, BrMBB);
1517}
1518
1519/// visitSwitchCase - Emits the necessary code to represent a single node in
1520/// the binary search tree resulting from lowering a switch instruction.
1521void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
1522                                          MachineBasicBlock *SwitchBB) {
1523  SDValue Cond;
1524  SDValue CondLHS = getValue(CB.CmpLHS);
1525  DebugLoc dl = getCurDebugLoc();
1526
1527  // Build the setcc now.
1528  if (CB.CmpMHS == NULL) {
1529    // Fold "(X == true)" to X and "(X == false)" to !X to
1530    // handle common cases produced by branch lowering.
1531    if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
1532        CB.CC == ISD::SETEQ)
1533      Cond = CondLHS;
1534    else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
1535             CB.CC == ISD::SETEQ) {
1536      SDValue True = DAG.getConstant(1, CondLHS.getValueType());
1537      Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
1538    } else
1539      Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
1540  } else {
1541    assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
1542
1543    const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
1544    const APInt& High  = cast<ConstantInt>(CB.CmpRHS)->getValue();
1545
1546    SDValue CmpOp = getValue(CB.CmpMHS);
1547    EVT VT = CmpOp.getValueType();
1548
1549    if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
1550      Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, VT),
1551                          ISD::SETLE);
1552    } else {
1553      SDValue SUB = DAG.getNode(ISD::SUB, dl,
1554                                VT, CmpOp, DAG.getConstant(Low, VT));
1555      Cond = DAG.getSetCC(dl, MVT::i1, SUB,
1556                          DAG.getConstant(High-Low, VT), ISD::SETULE);
1557    }
1558  }
1559
1560  // Update successor info
1561  addSuccessorWithWeight(SwitchBB, CB.TrueBB);
1562  addSuccessorWithWeight(SwitchBB, CB.FalseBB);
1563
1564  // Set NextBlock to be the MBB immediately after the current one, if any.
1565  // This is used to avoid emitting unnecessary branches to the next block.
1566  MachineBasicBlock *NextBlock = 0;
1567  MachineFunction::iterator BBI = SwitchBB;
1568  if (++BBI != FuncInfo.MF->end())
1569    NextBlock = BBI;
1570
1571  // If the lhs block is the next block, invert the condition so that we can
1572  // fall through to the lhs instead of the rhs block.
1573  if (CB.TrueBB == NextBlock) {
1574    std::swap(CB.TrueBB, CB.FalseBB);
1575    SDValue True = DAG.getConstant(1, Cond.getValueType());
1576    Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
1577  }
1578
1579  SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
1580                               MVT::Other, getControlRoot(), Cond,
1581                               DAG.getBasicBlock(CB.TrueBB));
1582
1583  // Insert the false branch. Do this even if it's a fall through branch,
1584  // this makes it easier to do DAG optimizations which require inverting
1585  // the branch condition.
1586  BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
1587                       DAG.getBasicBlock(CB.FalseBB));
1588
1589  DAG.setRoot(BrCond);
1590}
1591
1592/// visitJumpTable - Emit JumpTable node in the current MBB
1593void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) {
1594  // Emit the code for the jump table
1595  assert(JT.Reg != -1U && "Should lower JT Header first!");
1596  EVT PTy = TLI.getPointerTy();
1597  SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(),
1598                                     JT.Reg, PTy);
1599  SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
1600  SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurDebugLoc(),
1601                                    MVT::Other, Index.getValue(1),
1602                                    Table, Index);
1603  DAG.setRoot(BrJumpTable);
1604}
1605
1606/// visitJumpTableHeader - This function emits necessary code to produce index
1607/// in the JumpTable from switch case.
1608void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT,
1609                                               JumpTableHeader &JTH,
1610                                               MachineBasicBlock *SwitchBB) {
1611  // Subtract the lowest switch case value from the value being switched on and
1612  // conditional branch to default mbb if the result is greater than the
1613  // difference between smallest and largest cases.
1614  SDValue SwitchOp = getValue(JTH.SValue);
1615  EVT VT = SwitchOp.getValueType();
1616  SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp,
1617                            DAG.getConstant(JTH.First, VT));
1618
1619  // The SDNode we just created, which holds the value being switched on minus
1620  // the smallest case value, needs to be copied to a virtual register so it
1621  // can be used as an index into the jump table in a subsequent basic block.
1622  // This value may be smaller or larger than the target's pointer type, and
1623  // therefore require extension or truncating.
1624  SwitchOp = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(), TLI.getPointerTy());
1625
1626  unsigned JumpTableReg = FuncInfo.CreateReg(TLI.getPointerTy());
1627  SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(),
1628                                    JumpTableReg, SwitchOp);
1629  JT.Reg = JumpTableReg;
1630
1631  // Emit the range check for the jump table, and branch to the default block
1632  // for the switch statement if the value being switched on exceeds the largest
1633  // case in the switch.
1634  SDValue CMP = DAG.getSetCC(getCurDebugLoc(),
1635                             TLI.getSetCCResultType(Sub.getValueType()), Sub,
1636                             DAG.getConstant(JTH.Last-JTH.First,VT),
1637                             ISD::SETUGT);
1638
1639  // Set NextBlock to be the MBB immediately after the current one, if any.
1640  // This is used to avoid emitting unnecessary branches to the next block.
1641  MachineBasicBlock *NextBlock = 0;
1642  MachineFunction::iterator BBI = SwitchBB;
1643
1644  if (++BBI != FuncInfo.MF->end())
1645    NextBlock = BBI;
1646
1647  SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1648                               MVT::Other, CopyTo, CMP,
1649                               DAG.getBasicBlock(JT.Default));
1650
1651  if (JT.MBB != NextBlock)
1652    BrCond = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrCond,
1653                         DAG.getBasicBlock(JT.MBB));
1654
1655  DAG.setRoot(BrCond);
1656}
1657
1658/// visitBitTestHeader - This function emits necessary code to produce value
1659/// suitable for "bit tests"
1660void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
1661                                             MachineBasicBlock *SwitchBB) {
1662  // Subtract the minimum value
1663  SDValue SwitchOp = getValue(B.SValue);
1664  EVT VT = SwitchOp.getValueType();
1665  SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp,
1666                            DAG.getConstant(B.First, VT));
1667
1668  // Check range
1669  SDValue RangeCmp = DAG.getSetCC(getCurDebugLoc(),
1670                                  TLI.getSetCCResultType(Sub.getValueType()),
1671                                  Sub, DAG.getConstant(B.Range, VT),
1672                                  ISD::SETUGT);
1673
1674  // Determine the type of the test operands.
1675  bool UsePtrType = false;
1676  if (!TLI.isTypeLegal(VT))
1677    UsePtrType = true;
1678  else {
1679    for (unsigned i = 0, e = B.Cases.size(); i != e; ++i)
1680      if ((uint64_t)((int64_t)B.Cases[i].Mask >> VT.getSizeInBits()) + 1 >= 2) {
1681        // Switch table case range are encoded into series of masks.
1682        // Just use pointer type, it's guaranteed to fit.
1683        UsePtrType = true;
1684        break;
1685      }
1686  }
1687  if (UsePtrType) {
1688    VT = TLI.getPointerTy();
1689    Sub = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(), VT);
1690  }
1691
1692  B.RegVT = VT;
1693  B.Reg = FuncInfo.CreateReg(VT);
1694  SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(),
1695                                    B.Reg, Sub);
1696
1697  // Set NextBlock to be the MBB immediately after the current one, if any.
1698  // This is used to avoid emitting unnecessary branches to the next block.
1699  MachineBasicBlock *NextBlock = 0;
1700  MachineFunction::iterator BBI = SwitchBB;
1701  if (++BBI != FuncInfo.MF->end())
1702    NextBlock = BBI;
1703
1704  MachineBasicBlock* MBB = B.Cases[0].ThisBB;
1705
1706  addSuccessorWithWeight(SwitchBB, B.Default);
1707  addSuccessorWithWeight(SwitchBB, MBB);
1708
1709  SDValue BrRange = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1710                                MVT::Other, CopyTo, RangeCmp,
1711                                DAG.getBasicBlock(B.Default));
1712
1713  if (MBB != NextBlock)
1714    BrRange = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, CopyTo,
1715                          DAG.getBasicBlock(MBB));
1716
1717  DAG.setRoot(BrRange);
1718}
1719
1720/// visitBitTestCase - this function produces one "bit test"
1721void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB,
1722                                           MachineBasicBlock* NextMBB,
1723                                           unsigned Reg,
1724                                           BitTestCase &B,
1725                                           MachineBasicBlock *SwitchBB) {
1726  EVT VT = BB.RegVT;
1727  SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(),
1728                                       Reg, VT);
1729  SDValue Cmp;
1730  if (CountPopulation_64(B.Mask) == 1) {
1731    // Testing for a single bit; just compare the shift count with what it
1732    // would need to be to shift a 1 bit in that position.
1733    Cmp = DAG.getSetCC(getCurDebugLoc(),
1734                       TLI.getSetCCResultType(VT),
1735                       ShiftOp,
1736                       DAG.getConstant(CountTrailingZeros_64(B.Mask), VT),
1737                       ISD::SETEQ);
1738  } else {
1739    // Make desired shift
1740    SDValue SwitchVal = DAG.getNode(ISD::SHL, getCurDebugLoc(), VT,
1741                                    DAG.getConstant(1, VT), ShiftOp);
1742
1743    // Emit bit tests and jumps
1744    SDValue AndOp = DAG.getNode(ISD::AND, getCurDebugLoc(),
1745                                VT, SwitchVal, DAG.getConstant(B.Mask, VT));
1746    Cmp = DAG.getSetCC(getCurDebugLoc(),
1747                       TLI.getSetCCResultType(VT),
1748                       AndOp, DAG.getConstant(0, VT),
1749                       ISD::SETNE);
1750  }
1751
1752  addSuccessorWithWeight(SwitchBB, B.TargetBB);
1753  addSuccessorWithWeight(SwitchBB, NextMBB);
1754
1755  SDValue BrAnd = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1756                              MVT::Other, getControlRoot(),
1757                              Cmp, DAG.getBasicBlock(B.TargetBB));
1758
1759  // Set NextBlock to be the MBB immediately after the current one, if any.
1760  // This is used to avoid emitting unnecessary branches to the next block.
1761  MachineBasicBlock *NextBlock = 0;
1762  MachineFunction::iterator BBI = SwitchBB;
1763  if (++BBI != FuncInfo.MF->end())
1764    NextBlock = BBI;
1765
1766  if (NextMBB != NextBlock)
1767    BrAnd = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrAnd,
1768                        DAG.getBasicBlock(NextMBB));
1769
1770  DAG.setRoot(BrAnd);
1771}
1772
1773void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
1774  MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
1775
1776  // Retrieve successors.
1777  MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
1778  MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)];
1779
1780  const Value *Callee(I.getCalledValue());
1781  if (isa<InlineAsm>(Callee))
1782    visitInlineAsm(&I);
1783  else
1784    LowerCallTo(&I, getValue(Callee), false, LandingPad);
1785
1786  // If the value of the invoke is used outside of its defining block, make it
1787  // available as a virtual register.
1788  CopyToExportRegsIfNeeded(&I);
1789
1790  // Update successor info
1791  InvokeMBB->addSuccessor(Return);
1792  InvokeMBB->addSuccessor(LandingPad);
1793
1794  // Drop into normal successor.
1795  DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
1796                          MVT::Other, getControlRoot(),
1797                          DAG.getBasicBlock(Return)));
1798}
1799
1800void SelectionDAGBuilder::visitUnwind(const UnwindInst &I) {
1801}
1802
1803/// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for
1804/// small case ranges).
1805bool SelectionDAGBuilder::handleSmallSwitchRange(CaseRec& CR,
1806                                                 CaseRecVector& WorkList,
1807                                                 const Value* SV,
1808                                                 MachineBasicBlock *Default,
1809                                                 MachineBasicBlock *SwitchBB) {
1810  Case& BackCase  = *(CR.Range.second-1);
1811
1812  // Size is the number of Cases represented by this range.
1813  size_t Size = CR.Range.second - CR.Range.first;
1814  if (Size > 3)
1815    return false;
1816
1817  // Get the MachineFunction which holds the current MBB.  This is used when
1818  // inserting any additional MBBs necessary to represent the switch.
1819  MachineFunction *CurMF = FuncInfo.MF;
1820
1821  // Figure out which block is immediately after the current one.
1822  MachineBasicBlock *NextBlock = 0;
1823  MachineFunction::iterator BBI = CR.CaseBB;
1824
1825  if (++BBI != FuncInfo.MF->end())
1826    NextBlock = BBI;
1827
1828  // If any two of the cases has the same destination, and if one value
1829  // is the same as the other, but has one bit unset that the other has set,
1830  // use bit manipulation to do two compares at once.  For example:
1831  // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
1832  // TODO: This could be extended to merge any 2 cases in switches with 3 cases.
1833  // TODO: Handle cases where CR.CaseBB != SwitchBB.
1834  if (Size == 2 && CR.CaseBB == SwitchBB) {
1835    Case &Small = *CR.Range.first;
1836    Case &Big = *(CR.Range.second-1);
1837
1838    if (Small.Low == Small.High && Big.Low == Big.High && Small.BB == Big.BB) {
1839      const APInt& SmallValue = cast<ConstantInt>(Small.Low)->getValue();
1840      const APInt& BigValue = cast<ConstantInt>(Big.Low)->getValue();
1841
1842      // Check that there is only one bit different.
1843      if (BigValue.countPopulation() == SmallValue.countPopulation() + 1 &&
1844          (SmallValue | BigValue) == BigValue) {
1845        // Isolate the common bit.
1846        APInt CommonBit = BigValue & ~SmallValue;
1847        assert((SmallValue | CommonBit) == BigValue &&
1848               CommonBit.countPopulation() == 1 && "Not a common bit?");
1849
1850        SDValue CondLHS = getValue(SV);
1851        EVT VT = CondLHS.getValueType();
1852        DebugLoc DL = getCurDebugLoc();
1853
1854        SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
1855                                 DAG.getConstant(CommonBit, VT));
1856        SDValue Cond = DAG.getSetCC(DL, MVT::i1,
1857                                    Or, DAG.getConstant(BigValue, VT),
1858                                    ISD::SETEQ);
1859
1860        // Update successor info.
1861        SwitchBB->addSuccessor(Small.BB);
1862        SwitchBB->addSuccessor(Default);
1863
1864        // Insert the true branch.
1865        SDValue BrCond = DAG.getNode(ISD::BRCOND, DL, MVT::Other,
1866                                     getControlRoot(), Cond,
1867                                     DAG.getBasicBlock(Small.BB));
1868
1869        // Insert the false branch.
1870        BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
1871                             DAG.getBasicBlock(Default));
1872
1873        DAG.setRoot(BrCond);
1874        return true;
1875      }
1876    }
1877  }
1878
1879  // Rearrange the case blocks so that the last one falls through if possible.
1880  if (NextBlock && Default != NextBlock && BackCase.BB != NextBlock) {
1881    // The last case block won't fall through into 'NextBlock' if we emit the
1882    // branches in this order.  See if rearranging a case value would help.
1883    for (CaseItr I = CR.Range.first, E = CR.Range.second-1; I != E; ++I) {
1884      if (I->BB == NextBlock) {
1885        std::swap(*I, BackCase);
1886        break;
1887      }
1888    }
1889  }
1890
1891  // Create a CaseBlock record representing a conditional branch to
1892  // the Case's target mbb if the value being switched on SV is equal
1893  // to C.
1894  MachineBasicBlock *CurBlock = CR.CaseBB;
1895  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) {
1896    MachineBasicBlock *FallThrough;
1897    if (I != E-1) {
1898      FallThrough = CurMF->CreateMachineBasicBlock(CurBlock->getBasicBlock());
1899      CurMF->insert(BBI, FallThrough);
1900
1901      // Put SV in a virtual register to make it available from the new blocks.
1902      ExportFromCurrentBlock(SV);
1903    } else {
1904      // If the last case doesn't match, go to the default block.
1905      FallThrough = Default;
1906    }
1907
1908    const Value *RHS, *LHS, *MHS;
1909    ISD::CondCode CC;
1910    if (I->High == I->Low) {
1911      // This is just small small case range :) containing exactly 1 case
1912      CC = ISD::SETEQ;
1913      LHS = SV; RHS = I->High; MHS = NULL;
1914    } else {
1915      CC = ISD::SETLE;
1916      LHS = I->Low; MHS = SV; RHS = I->High;
1917    }
1918    CaseBlock CB(CC, LHS, RHS, MHS, I->BB, FallThrough, CurBlock);
1919
1920    // If emitting the first comparison, just call visitSwitchCase to emit the
1921    // code into the current block.  Otherwise, push the CaseBlock onto the
1922    // vector to be later processed by SDISel, and insert the node's MBB
1923    // before the next MBB.
1924    if (CurBlock == SwitchBB)
1925      visitSwitchCase(CB, SwitchBB);
1926    else
1927      SwitchCases.push_back(CB);
1928
1929    CurBlock = FallThrough;
1930  }
1931
1932  return true;
1933}
1934
1935static inline bool areJTsAllowed(const TargetLowering &TLI) {
1936  return !DisableJumpTables &&
1937          (TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) ||
1938           TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other));
1939}
1940
1941static APInt ComputeRange(const APInt &First, const APInt &Last) {
1942  uint32_t BitWidth = std::max(Last.getBitWidth(), First.getBitWidth()) + 1;
1943  APInt LastExt = Last.sext(BitWidth), FirstExt = First.sext(BitWidth);
1944  return (LastExt - FirstExt + 1ULL);
1945}
1946
1947/// handleJTSwitchCase - Emit jumptable for current switch case range
1948bool SelectionDAGBuilder::handleJTSwitchCase(CaseRec& CR,
1949                                             CaseRecVector& WorkList,
1950                                             const Value* SV,
1951                                             MachineBasicBlock* Default,
1952                                             MachineBasicBlock *SwitchBB) {
1953  Case& FrontCase = *CR.Range.first;
1954  Case& BackCase  = *(CR.Range.second-1);
1955
1956  const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue();
1957  const APInt &Last  = cast<ConstantInt>(BackCase.High)->getValue();
1958
1959  APInt TSize(First.getBitWidth(), 0);
1960  for (CaseItr I = CR.Range.first, E = CR.Range.second;
1961       I!=E; ++I)
1962    TSize += I->size();
1963
1964  if (!areJTsAllowed(TLI) || TSize.ult(4))
1965    return false;
1966
1967  APInt Range = ComputeRange(First, Last);
1968  double Density = TSize.roundToDouble() / Range.roundToDouble();
1969  if (Density < 0.4)
1970    return false;
1971
1972  DEBUG(dbgs() << "Lowering jump table\n"
1973               << "First entry: " << First << ". Last entry: " << Last << '\n'
1974               << "Range: " << Range
1975               << ". Size: " << TSize << ". Density: " << Density << "\n\n");
1976
1977  // Get the MachineFunction which holds the current MBB.  This is used when
1978  // inserting any additional MBBs necessary to represent the switch.
1979  MachineFunction *CurMF = FuncInfo.MF;
1980
1981  // Figure out which block is immediately after the current one.
1982  MachineFunction::iterator BBI = CR.CaseBB;
1983  ++BBI;
1984
1985  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
1986
1987  // Create a new basic block to hold the code for loading the address
1988  // of the jump table, and jumping to it.  Update successor information;
1989  // we will either branch to the default case for the switch, or the jump
1990  // table.
1991  MachineBasicBlock *JumpTableBB = CurMF->CreateMachineBasicBlock(LLVMBB);
1992  CurMF->insert(BBI, JumpTableBB);
1993
1994  addSuccessorWithWeight(CR.CaseBB, Default);
1995  addSuccessorWithWeight(CR.CaseBB, JumpTableBB);
1996
1997  // Build a vector of destination BBs, corresponding to each target
1998  // of the jump table. If the value of the jump table slot corresponds to
1999  // a case statement, push the case's BB onto the vector, otherwise, push
2000  // the default BB.
2001  std::vector<MachineBasicBlock*> DestBBs;
2002  APInt TEI = First;
2003  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) {
2004    const APInt &Low = cast<ConstantInt>(I->Low)->getValue();
2005    const APInt &High = cast<ConstantInt>(I->High)->getValue();
2006
2007    if (Low.sle(TEI) && TEI.sle(High)) {
2008      DestBBs.push_back(I->BB);
2009      if (TEI==High)
2010        ++I;
2011    } else {
2012      DestBBs.push_back(Default);
2013    }
2014  }
2015
2016  // Update successor info. Add one edge to each unique successor.
2017  BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs());
2018  for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(),
2019         E = DestBBs.end(); I != E; ++I) {
2020    if (!SuccsHandled[(*I)->getNumber()]) {
2021      SuccsHandled[(*I)->getNumber()] = true;
2022      addSuccessorWithWeight(JumpTableBB, *I);
2023    }
2024  }
2025
2026  // Create a jump table index for this jump table.
2027  unsigned JTEncoding = TLI.getJumpTableEncoding();
2028  unsigned JTI = CurMF->getOrCreateJumpTableInfo(JTEncoding)
2029                       ->createJumpTableIndex(DestBBs);
2030
2031  // Set the jump table information so that we can codegen it as a second
2032  // MachineBasicBlock
2033  JumpTable JT(-1U, JTI, JumpTableBB, Default);
2034  JumpTableHeader JTH(First, Last, SV, CR.CaseBB, (CR.CaseBB == SwitchBB));
2035  if (CR.CaseBB == SwitchBB)
2036    visitJumpTableHeader(JT, JTH, SwitchBB);
2037
2038  JTCases.push_back(JumpTableBlock(JTH, JT));
2039
2040  return true;
2041}
2042
2043/// handleBTSplitSwitchCase - emit comparison and split binary search tree into
2044/// 2 subtrees.
2045bool SelectionDAGBuilder::handleBTSplitSwitchCase(CaseRec& CR,
2046                                                  CaseRecVector& WorkList,
2047                                                  const Value* SV,
2048                                                  MachineBasicBlock *Default,
2049                                                  MachineBasicBlock *SwitchBB) {
2050  // Get the MachineFunction which holds the current MBB.  This is used when
2051  // inserting any additional MBBs necessary to represent the switch.
2052  MachineFunction *CurMF = FuncInfo.MF;
2053
2054  // Figure out which block is immediately after the current one.
2055  MachineFunction::iterator BBI = CR.CaseBB;
2056  ++BBI;
2057
2058  Case& FrontCase = *CR.Range.first;
2059  Case& BackCase  = *(CR.Range.second-1);
2060  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2061
2062  // Size is the number of Cases represented by this range.
2063  unsigned Size = CR.Range.second - CR.Range.first;
2064
2065  const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue();
2066  const APInt &Last  = cast<ConstantInt>(BackCase.High)->getValue();
2067  double FMetric = 0;
2068  CaseItr Pivot = CR.Range.first + Size/2;
2069
2070  // Select optimal pivot, maximizing sum density of LHS and RHS. This will
2071  // (heuristically) allow us to emit JumpTable's later.
2072  APInt TSize(First.getBitWidth(), 0);
2073  for (CaseItr I = CR.Range.first, E = CR.Range.second;
2074       I!=E; ++I)
2075    TSize += I->size();
2076
2077  APInt LSize = FrontCase.size();
2078  APInt RSize = TSize-LSize;
2079  DEBUG(dbgs() << "Selecting best pivot: \n"
2080               << "First: " << First << ", Last: " << Last <<'\n'
2081               << "LSize: " << LSize << ", RSize: " << RSize << '\n');
2082  for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second;
2083       J!=E; ++I, ++J) {
2084    const APInt &LEnd = cast<ConstantInt>(I->High)->getValue();
2085    const APInt &RBegin = cast<ConstantInt>(J->Low)->getValue();
2086    APInt Range = ComputeRange(LEnd, RBegin);
2087    assert((Range - 2ULL).isNonNegative() &&
2088           "Invalid case distance");
2089    // Use volatile double here to avoid excess precision issues on some hosts,
2090    // e.g. that use 80-bit X87 registers.
2091    volatile double LDensity =
2092       (double)LSize.roundToDouble() /
2093                           (LEnd - First + 1ULL).roundToDouble();
2094    volatile double RDensity =
2095      (double)RSize.roundToDouble() /
2096                           (Last - RBegin + 1ULL).roundToDouble();
2097    double Metric = Range.logBase2()*(LDensity+RDensity);
2098    // Should always split in some non-trivial place
2099    DEBUG(dbgs() <<"=>Step\n"
2100                 << "LEnd: " << LEnd << ", RBegin: " << RBegin << '\n'
2101                 << "LDensity: " << LDensity
2102                 << ", RDensity: " << RDensity << '\n'
2103                 << "Metric: " << Metric << '\n');
2104    if (FMetric < Metric) {
2105      Pivot = J;
2106      FMetric = Metric;
2107      DEBUG(dbgs() << "Current metric set to: " << FMetric << '\n');
2108    }
2109
2110    LSize += J->size();
2111    RSize -= J->size();
2112  }
2113  if (areJTsAllowed(TLI)) {
2114    // If our case is dense we *really* should handle it earlier!
2115    assert((FMetric > 0) && "Should handle dense range earlier!");
2116  } else {
2117    Pivot = CR.Range.first + Size/2;
2118  }
2119
2120  CaseRange LHSR(CR.Range.first, Pivot);
2121  CaseRange RHSR(Pivot, CR.Range.second);
2122  Constant *C = Pivot->Low;
2123  MachineBasicBlock *FalseBB = 0, *TrueBB = 0;
2124
2125  // We know that we branch to the LHS if the Value being switched on is
2126  // less than the Pivot value, C.  We use this to optimize our binary
2127  // tree a bit, by recognizing that if SV is greater than or equal to the
2128  // LHS's Case Value, and that Case Value is exactly one less than the
2129  // Pivot's Value, then we can branch directly to the LHS's Target,
2130  // rather than creating a leaf node for it.
2131  if ((LHSR.second - LHSR.first) == 1 &&
2132      LHSR.first->High == CR.GE &&
2133      cast<ConstantInt>(C)->getValue() ==
2134      (cast<ConstantInt>(CR.GE)->getValue() + 1LL)) {
2135    TrueBB = LHSR.first->BB;
2136  } else {
2137    TrueBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2138    CurMF->insert(BBI, TrueBB);
2139    WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR));
2140
2141    // Put SV in a virtual register to make it available from the new blocks.
2142    ExportFromCurrentBlock(SV);
2143  }
2144
2145  // Similar to the optimization above, if the Value being switched on is
2146  // known to be less than the Constant CR.LT, and the current Case Value
2147  // is CR.LT - 1, then we can branch directly to the target block for
2148  // the current Case Value, rather than emitting a RHS leaf node for it.
2149  if ((RHSR.second - RHSR.first) == 1 && CR.LT &&
2150      cast<ConstantInt>(RHSR.first->Low)->getValue() ==
2151      (cast<ConstantInt>(CR.LT)->getValue() - 1LL)) {
2152    FalseBB = RHSR.first->BB;
2153  } else {
2154    FalseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2155    CurMF->insert(BBI, FalseBB);
2156    WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR));
2157
2158    // Put SV in a virtual register to make it available from the new blocks.
2159    ExportFromCurrentBlock(SV);
2160  }
2161
2162  // Create a CaseBlock record representing a conditional branch to
2163  // the LHS node if the value being switched on SV is less than C.
2164  // Otherwise, branch to LHS.
2165  CaseBlock CB(ISD::SETLT, SV, C, NULL, TrueBB, FalseBB, CR.CaseBB);
2166
2167  if (CR.CaseBB == SwitchBB)
2168    visitSwitchCase(CB, SwitchBB);
2169  else
2170    SwitchCases.push_back(CB);
2171
2172  return true;
2173}
2174
2175/// handleBitTestsSwitchCase - if current case range has few destination and
2176/// range span less, than machine word bitwidth, encode case range into series
2177/// of masks and emit bit tests with these masks.
2178bool SelectionDAGBuilder::handleBitTestsSwitchCase(CaseRec& CR,
2179                                                   CaseRecVector& WorkList,
2180                                                   const Value* SV,
2181                                                   MachineBasicBlock* Default,
2182                                                   MachineBasicBlock *SwitchBB){
2183  EVT PTy = TLI.getPointerTy();
2184  unsigned IntPtrBits = PTy.getSizeInBits();
2185
2186  Case& FrontCase = *CR.Range.first;
2187  Case& BackCase  = *(CR.Range.second-1);
2188
2189  // Get the MachineFunction which holds the current MBB.  This is used when
2190  // inserting any additional MBBs necessary to represent the switch.
2191  MachineFunction *CurMF = FuncInfo.MF;
2192
2193  // If target does not have legal shift left, do not emit bit tests at all.
2194  if (!TLI.isOperationLegal(ISD::SHL, TLI.getPointerTy()))
2195    return false;
2196
2197  size_t numCmps = 0;
2198  for (CaseItr I = CR.Range.first, E = CR.Range.second;
2199       I!=E; ++I) {
2200    // Single case counts one, case range - two.
2201    numCmps += (I->Low == I->High ? 1 : 2);
2202  }
2203
2204  // Count unique destinations
2205  SmallSet<MachineBasicBlock*, 4> Dests;
2206  for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
2207    Dests.insert(I->BB);
2208    if (Dests.size() > 3)
2209      // Don't bother the code below, if there are too much unique destinations
2210      return false;
2211  }
2212  DEBUG(dbgs() << "Total number of unique destinations: "
2213        << Dests.size() << '\n'
2214        << "Total number of comparisons: " << numCmps << '\n');
2215
2216  // Compute span of values.
2217  const APInt& minValue = cast<ConstantInt>(FrontCase.Low)->getValue();
2218  const APInt& maxValue = cast<ConstantInt>(BackCase.High)->getValue();
2219  APInt cmpRange = maxValue - minValue;
2220
2221  DEBUG(dbgs() << "Compare range: " << cmpRange << '\n'
2222               << "Low bound: " << minValue << '\n'
2223               << "High bound: " << maxValue << '\n');
2224
2225  if (cmpRange.uge(IntPtrBits) ||
2226      (!(Dests.size() == 1 && numCmps >= 3) &&
2227       !(Dests.size() == 2 && numCmps >= 5) &&
2228       !(Dests.size() >= 3 && numCmps >= 6)))
2229    return false;
2230
2231  DEBUG(dbgs() << "Emitting bit tests\n");
2232  APInt lowBound = APInt::getNullValue(cmpRange.getBitWidth());
2233
2234  // Optimize the case where all the case values fit in a
2235  // word without having to subtract minValue. In this case,
2236  // we can optimize away the subtraction.
2237  if (minValue.isNonNegative() && maxValue.slt(IntPtrBits)) {
2238    cmpRange = maxValue;
2239  } else {
2240    lowBound = minValue;
2241  }
2242
2243  CaseBitsVector CasesBits;
2244  unsigned i, count = 0;
2245
2246  for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
2247    MachineBasicBlock* Dest = I->BB;
2248    for (i = 0; i < count; ++i)
2249      if (Dest == CasesBits[i].BB)
2250        break;
2251
2252    if (i == count) {
2253      assert((count < 3) && "Too much destinations to test!");
2254      CasesBits.push_back(CaseBits(0, Dest, 0));
2255      count++;
2256    }
2257
2258    const APInt& lowValue = cast<ConstantInt>(I->Low)->getValue();
2259    const APInt& highValue = cast<ConstantInt>(I->High)->getValue();
2260
2261    uint64_t lo = (lowValue - lowBound).getZExtValue();
2262    uint64_t hi = (highValue - lowBound).getZExtValue();
2263
2264    for (uint64_t j = lo; j <= hi; j++) {
2265      CasesBits[i].Mask |=  1ULL << j;
2266      CasesBits[i].Bits++;
2267    }
2268
2269  }
2270  std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp());
2271
2272  BitTestInfo BTC;
2273
2274  // Figure out which block is immediately after the current one.
2275  MachineFunction::iterator BBI = CR.CaseBB;
2276  ++BBI;
2277
2278  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2279
2280  DEBUG(dbgs() << "Cases:\n");
2281  for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) {
2282    DEBUG(dbgs() << "Mask: " << CasesBits[i].Mask
2283                 << ", Bits: " << CasesBits[i].Bits
2284                 << ", BB: " << CasesBits[i].BB << '\n');
2285
2286    MachineBasicBlock *CaseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2287    CurMF->insert(BBI, CaseBB);
2288    BTC.push_back(BitTestCase(CasesBits[i].Mask,
2289                              CaseBB,
2290                              CasesBits[i].BB));
2291
2292    // Put SV in a virtual register to make it available from the new blocks.
2293    ExportFromCurrentBlock(SV);
2294  }
2295
2296  BitTestBlock BTB(lowBound, cmpRange, SV,
2297                   -1U, MVT::Other, (CR.CaseBB == SwitchBB),
2298                   CR.CaseBB, Default, BTC);
2299
2300  if (CR.CaseBB == SwitchBB)
2301    visitBitTestHeader(BTB, SwitchBB);
2302
2303  BitTestCases.push_back(BTB);
2304
2305  return true;
2306}
2307
2308/// Clusterify - Transform simple list of Cases into list of CaseRange's
2309size_t SelectionDAGBuilder::Clusterify(CaseVector& Cases,
2310                                       const SwitchInst& SI) {
2311  size_t numCmps = 0;
2312
2313  // Start with "simple" cases
2314  for (size_t i = 1; i < SI.getNumSuccessors(); ++i) {
2315    MachineBasicBlock *SMBB = FuncInfo.MBBMap[SI.getSuccessor(i)];
2316    Cases.push_back(Case(SI.getSuccessorValue(i),
2317                         SI.getSuccessorValue(i),
2318                         SMBB));
2319  }
2320  std::sort(Cases.begin(), Cases.end(), CaseCmp());
2321
2322  // Merge case into clusters
2323  if (Cases.size() >= 2)
2324    // Must recompute end() each iteration because it may be
2325    // invalidated by erase if we hold on to it
2326    for (CaseItr I = Cases.begin(), J = llvm::next(Cases.begin());
2327         J != Cases.end(); ) {
2328      const APInt& nextValue = cast<ConstantInt>(J->Low)->getValue();
2329      const APInt& currentValue = cast<ConstantInt>(I->High)->getValue();
2330      MachineBasicBlock* nextBB = J->BB;
2331      MachineBasicBlock* currentBB = I->BB;
2332
2333      // If the two neighboring cases go to the same destination, merge them
2334      // into a single case.
2335      if ((nextValue - currentValue == 1) && (currentBB == nextBB)) {
2336        I->High = J->High;
2337        J = Cases.erase(J);
2338      } else {
2339        I = J++;
2340      }
2341    }
2342
2343  for (CaseItr I=Cases.begin(), E=Cases.end(); I!=E; ++I, ++numCmps) {
2344    if (I->Low != I->High)
2345      // A range counts double, since it requires two compares.
2346      ++numCmps;
2347  }
2348
2349  return numCmps;
2350}
2351
2352void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
2353                                           MachineBasicBlock *Last) {
2354  // Update JTCases.
2355  for (unsigned i = 0, e = JTCases.size(); i != e; ++i)
2356    if (JTCases[i].first.HeaderBB == First)
2357      JTCases[i].first.HeaderBB = Last;
2358
2359  // Update BitTestCases.
2360  for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i)
2361    if (BitTestCases[i].Parent == First)
2362      BitTestCases[i].Parent = Last;
2363}
2364
2365void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
2366  MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
2367
2368  // Figure out which block is immediately after the current one.
2369  MachineBasicBlock *NextBlock = 0;
2370  MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()];
2371
2372  // If there is only the default destination, branch to it if it is not the
2373  // next basic block.  Otherwise, just fall through.
2374  if (SI.getNumOperands() == 2) {
2375    // Update machine-CFG edges.
2376
2377    // If this is not a fall-through branch, emit the branch.
2378    SwitchMBB->addSuccessor(Default);
2379    if (Default != NextBlock)
2380      DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
2381                              MVT::Other, getControlRoot(),
2382                              DAG.getBasicBlock(Default)));
2383
2384    return;
2385  }
2386
2387  // If there are any non-default case statements, create a vector of Cases
2388  // representing each one, and sort the vector so that we can efficiently
2389  // create a binary search tree from them.
2390  CaseVector Cases;
2391  size_t numCmps = Clusterify(Cases, SI);
2392  DEBUG(dbgs() << "Clusterify finished. Total clusters: " << Cases.size()
2393               << ". Total compares: " << numCmps << '\n');
2394  numCmps = 0;
2395
2396  // Get the Value to be switched on and default basic blocks, which will be
2397  // inserted into CaseBlock records, representing basic blocks in the binary
2398  // search tree.
2399  const Value *SV = SI.getOperand(0);
2400
2401  // Push the initial CaseRec onto the worklist
2402  CaseRecVector WorkList;
2403  WorkList.push_back(CaseRec(SwitchMBB,0,0,
2404                             CaseRange(Cases.begin(),Cases.end())));
2405
2406  while (!WorkList.empty()) {
2407    // Grab a record representing a case range to process off the worklist
2408    CaseRec CR = WorkList.back();
2409    WorkList.pop_back();
2410
2411    if (handleBitTestsSwitchCase(CR, WorkList, SV, Default, SwitchMBB))
2412      continue;
2413
2414    // If the range has few cases (two or less) emit a series of specific
2415    // tests.
2416    if (handleSmallSwitchRange(CR, WorkList, SV, Default, SwitchMBB))
2417      continue;
2418
2419    // If the switch has more than 5 blocks, and at least 40% dense, and the
2420    // target supports indirect branches, then emit a jump table rather than
2421    // lowering the switch to a binary tree of conditional branches.
2422    if (handleJTSwitchCase(CR, WorkList, SV, Default, SwitchMBB))
2423      continue;
2424
2425    // Emit binary tree. We need to pick a pivot, and push left and right ranges
2426    // onto the worklist. Leafs are handled via handleSmallSwitchRange() call.
2427    handleBTSplitSwitchCase(CR, WorkList, SV, Default, SwitchMBB);
2428  }
2429}
2430
2431void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
2432  MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
2433
2434  // Update machine-CFG edges with unique successors.
2435  SmallVector<BasicBlock*, 32> succs;
2436  succs.reserve(I.getNumSuccessors());
2437  for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i)
2438    succs.push_back(I.getSuccessor(i));
2439  array_pod_sort(succs.begin(), succs.end());
2440  succs.erase(std::unique(succs.begin(), succs.end()), succs.end());
2441  for (unsigned i = 0, e = succs.size(); i != e; ++i) {
2442    MachineBasicBlock *Succ = FuncInfo.MBBMap[succs[i]];
2443    addSuccessorWithWeight(IndirectBrMBB, Succ);
2444  }
2445
2446  DAG.setRoot(DAG.getNode(ISD::BRIND, getCurDebugLoc(),
2447                          MVT::Other, getControlRoot(),
2448                          getValue(I.getAddress())));
2449}
2450
2451void SelectionDAGBuilder::visitFSub(const User &I) {
2452  // -0.0 - X --> fneg
2453  const Type *Ty = I.getType();
2454  if (isa<Constant>(I.getOperand(0)) &&
2455      I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) {
2456    SDValue Op2 = getValue(I.getOperand(1));
2457    setValue(&I, DAG.getNode(ISD::FNEG, getCurDebugLoc(),
2458                             Op2.getValueType(), Op2));
2459    return;
2460  }
2461
2462  visitBinary(I, ISD::FSUB);
2463}
2464
2465void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) {
2466  SDValue Op1 = getValue(I.getOperand(0));
2467  SDValue Op2 = getValue(I.getOperand(1));
2468  setValue(&I, DAG.getNode(OpCode, getCurDebugLoc(),
2469                           Op1.getValueType(), Op1, Op2));
2470}
2471
2472void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
2473  SDValue Op1 = getValue(I.getOperand(0));
2474  SDValue Op2 = getValue(I.getOperand(1));
2475
2476  MVT ShiftTy = TLI.getShiftAmountTy(Op2.getValueType());
2477
2478  // Coerce the shift amount to the right type if we can.
2479  if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
2480    unsigned ShiftSize = ShiftTy.getSizeInBits();
2481    unsigned Op2Size = Op2.getValueType().getSizeInBits();
2482    DebugLoc DL = getCurDebugLoc();
2483
2484    // If the operand is smaller than the shift count type, promote it.
2485    if (ShiftSize > Op2Size)
2486      Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2);
2487
2488    // If the operand is larger than the shift count type but the shift
2489    // count type has enough bits to represent any shift value, truncate
2490    // it now. This is a common case and it exposes the truncate to
2491    // optimization early.
2492    else if (ShiftSize >= Log2_32_Ceil(Op2.getValueType().getSizeInBits()))
2493      Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2);
2494    // Otherwise we'll need to temporarily settle for some other convenient
2495    // type.  Type legalization will make adjustments once the shiftee is split.
2496    else
2497      Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32);
2498  }
2499
2500  setValue(&I, DAG.getNode(Opcode, getCurDebugLoc(),
2501                           Op1.getValueType(), Op1, Op2));
2502}
2503
2504void SelectionDAGBuilder::visitSDiv(const User &I) {
2505  SDValue Op1 = getValue(I.getOperand(0));
2506  SDValue Op2 = getValue(I.getOperand(1));
2507
2508  // Turn exact SDivs into multiplications.
2509  // FIXME: This should be in DAGCombiner, but it doesn't have access to the
2510  // exact bit.
2511  if (isa<BinaryOperator>(&I) && cast<BinaryOperator>(&I)->isExact() &&
2512      !isa<ConstantSDNode>(Op1) &&
2513      isa<ConstantSDNode>(Op2) && !cast<ConstantSDNode>(Op2)->isNullValue())
2514    setValue(&I, TLI.BuildExactSDIV(Op1, Op2, getCurDebugLoc(), DAG));
2515  else
2516    setValue(&I, DAG.getNode(ISD::SDIV, getCurDebugLoc(), Op1.getValueType(),
2517                             Op1, Op2));
2518}
2519
2520void SelectionDAGBuilder::visitICmp(const User &I) {
2521  ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
2522  if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
2523    predicate = IC->getPredicate();
2524  else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
2525    predicate = ICmpInst::Predicate(IC->getPredicate());
2526  SDValue Op1 = getValue(I.getOperand(0));
2527  SDValue Op2 = getValue(I.getOperand(1));
2528  ISD::CondCode Opcode = getICmpCondCode(predicate);
2529
2530  EVT DestVT = TLI.getValueType(I.getType());
2531  setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Opcode));
2532}
2533
2534void SelectionDAGBuilder::visitFCmp(const User &I) {
2535  FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
2536  if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
2537    predicate = FC->getPredicate();
2538  else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
2539    predicate = FCmpInst::Predicate(FC->getPredicate());
2540  SDValue Op1 = getValue(I.getOperand(0));
2541  SDValue Op2 = getValue(I.getOperand(1));
2542  ISD::CondCode Condition = getFCmpCondCode(predicate);
2543  EVT DestVT = TLI.getValueType(I.getType());
2544  setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Condition));
2545}
2546
2547void SelectionDAGBuilder::visitSelect(const User &I) {
2548  SmallVector<EVT, 4> ValueVTs;
2549  ComputeValueVTs(TLI, I.getType(), ValueVTs);
2550  unsigned NumValues = ValueVTs.size();
2551  if (NumValues == 0) return;
2552
2553  SmallVector<SDValue, 4> Values(NumValues);
2554  SDValue Cond     = getValue(I.getOperand(0));
2555  SDValue TrueVal  = getValue(I.getOperand(1));
2556  SDValue FalseVal = getValue(I.getOperand(2));
2557
2558  for (unsigned i = 0; i != NumValues; ++i)
2559    Values[i] = DAG.getNode(ISD::SELECT, getCurDebugLoc(),
2560                          TrueVal.getNode()->getValueType(TrueVal.getResNo()+i),
2561                            Cond,
2562                            SDValue(TrueVal.getNode(),
2563                                    TrueVal.getResNo() + i),
2564                            SDValue(FalseVal.getNode(),
2565                                    FalseVal.getResNo() + i));
2566
2567  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
2568                           DAG.getVTList(&ValueVTs[0], NumValues),
2569                           &Values[0], NumValues));
2570}
2571
2572void SelectionDAGBuilder::visitTrunc(const User &I) {
2573  // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
2574  SDValue N = getValue(I.getOperand(0));
2575  EVT DestVT = TLI.getValueType(I.getType());
2576  setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), DestVT, N));
2577}
2578
2579void SelectionDAGBuilder::visitZExt(const User &I) {
2580  // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2581  // ZExt also can't be a cast to bool for same reason. So, nothing much to do
2582  SDValue N = getValue(I.getOperand(0));
2583  EVT DestVT = TLI.getValueType(I.getType());
2584  setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), DestVT, N));
2585}
2586
2587void SelectionDAGBuilder::visitSExt(const User &I) {
2588  // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2589  // SExt also can't be a cast to bool for same reason. So, nothing much to do
2590  SDValue N = getValue(I.getOperand(0));
2591  EVT DestVT = TLI.getValueType(I.getType());
2592  setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurDebugLoc(), DestVT, N));
2593}
2594
2595void SelectionDAGBuilder::visitFPTrunc(const User &I) {
2596  // FPTrunc is never a no-op cast, no need to check
2597  SDValue N = getValue(I.getOperand(0));
2598  EVT DestVT = TLI.getValueType(I.getType());
2599  setValue(&I, DAG.getNode(ISD::FP_ROUND, getCurDebugLoc(),
2600                           DestVT, N, DAG.getIntPtrConstant(0)));
2601}
2602
2603void SelectionDAGBuilder::visitFPExt(const User &I){
2604  // FPTrunc is never a no-op cast, no need to check
2605  SDValue N = getValue(I.getOperand(0));
2606  EVT DestVT = TLI.getValueType(I.getType());
2607  setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurDebugLoc(), DestVT, N));
2608}
2609
2610void SelectionDAGBuilder::visitFPToUI(const User &I) {
2611  // FPToUI is never a no-op cast, no need to check
2612  SDValue N = getValue(I.getOperand(0));
2613  EVT DestVT = TLI.getValueType(I.getType());
2614  setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurDebugLoc(), DestVT, N));
2615}
2616
2617void SelectionDAGBuilder::visitFPToSI(const User &I) {
2618  // FPToSI is never a no-op cast, no need to check
2619  SDValue N = getValue(I.getOperand(0));
2620  EVT DestVT = TLI.getValueType(I.getType());
2621  setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurDebugLoc(), DestVT, N));
2622}
2623
2624void SelectionDAGBuilder::visitUIToFP(const User &I) {
2625  // UIToFP is never a no-op cast, no need to check
2626  SDValue N = getValue(I.getOperand(0));
2627  EVT DestVT = TLI.getValueType(I.getType());
2628  setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurDebugLoc(), DestVT, N));
2629}
2630
2631void SelectionDAGBuilder::visitSIToFP(const User &I){
2632  // SIToFP is never a no-op cast, no need to check
2633  SDValue N = getValue(I.getOperand(0));
2634  EVT DestVT = TLI.getValueType(I.getType());
2635  setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurDebugLoc(), DestVT, N));
2636}
2637
2638void SelectionDAGBuilder::visitPtrToInt(const User &I) {
2639  // What to do depends on the size of the integer and the size of the pointer.
2640  // We can either truncate, zero extend, or no-op, accordingly.
2641  SDValue N = getValue(I.getOperand(0));
2642  EVT DestVT = TLI.getValueType(I.getType());
2643  setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT));
2644}
2645
2646void SelectionDAGBuilder::visitIntToPtr(const User &I) {
2647  // What to do depends on the size of the integer and the size of the pointer.
2648  // We can either truncate, zero extend, or no-op, accordingly.
2649  SDValue N = getValue(I.getOperand(0));
2650  EVT DestVT = TLI.getValueType(I.getType());
2651  setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT));
2652}
2653
2654void SelectionDAGBuilder::visitBitCast(const User &I) {
2655  SDValue N = getValue(I.getOperand(0));
2656  EVT DestVT = TLI.getValueType(I.getType());
2657
2658  // BitCast assures us that source and destination are the same size so this is
2659  // either a BITCAST or a no-op.
2660  if (DestVT != N.getValueType())
2661    setValue(&I, DAG.getNode(ISD::BITCAST, getCurDebugLoc(),
2662                             DestVT, N)); // convert types.
2663  else
2664    setValue(&I, N);            // noop cast.
2665}
2666
2667void SelectionDAGBuilder::visitInsertElement(const User &I) {
2668  SDValue InVec = getValue(I.getOperand(0));
2669  SDValue InVal = getValue(I.getOperand(1));
2670  SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(),
2671                              TLI.getPointerTy(),
2672                              getValue(I.getOperand(2)));
2673  setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurDebugLoc(),
2674                           TLI.getValueType(I.getType()),
2675                           InVec, InVal, InIdx));
2676}
2677
2678void SelectionDAGBuilder::visitExtractElement(const User &I) {
2679  SDValue InVec = getValue(I.getOperand(0));
2680  SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(),
2681                              TLI.getPointerTy(),
2682                              getValue(I.getOperand(1)));
2683  setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
2684                           TLI.getValueType(I.getType()), InVec, InIdx));
2685}
2686
2687// Utility for visitShuffleVector - Returns true if the mask is mask starting
2688// from SIndx and increasing to the element length (undefs are allowed).
2689static bool SequentialMask(SmallVectorImpl<int> &Mask, unsigned SIndx) {
2690  unsigned MaskNumElts = Mask.size();
2691  for (unsigned i = 0; i != MaskNumElts; ++i)
2692    if ((Mask[i] >= 0) && (Mask[i] != (int)(i + SIndx)))
2693      return false;
2694  return true;
2695}
2696
2697void SelectionDAGBuilder::visitShuffleVector(const User &I) {
2698  SmallVector<int, 8> Mask;
2699  SDValue Src1 = getValue(I.getOperand(0));
2700  SDValue Src2 = getValue(I.getOperand(1));
2701
2702  // Convert the ConstantVector mask operand into an array of ints, with -1
2703  // representing undef values.
2704  SmallVector<Constant*, 8> MaskElts;
2705  cast<Constant>(I.getOperand(2))->getVectorElements(MaskElts);
2706  unsigned MaskNumElts = MaskElts.size();
2707  for (unsigned i = 0; i != MaskNumElts; ++i) {
2708    if (isa<UndefValue>(MaskElts[i]))
2709      Mask.push_back(-1);
2710    else
2711      Mask.push_back(cast<ConstantInt>(MaskElts[i])->getSExtValue());
2712  }
2713
2714  EVT VT = TLI.getValueType(I.getType());
2715  EVT SrcVT = Src1.getValueType();
2716  unsigned SrcNumElts = SrcVT.getVectorNumElements();
2717
2718  if (SrcNumElts == MaskNumElts) {
2719    setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2720                                      &Mask[0]));
2721    return;
2722  }
2723
2724  // Normalize the shuffle vector since mask and vector length don't match.
2725  if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) {
2726    // Mask is longer than the source vectors and is a multiple of the source
2727    // vectors.  We can use concatenate vector to make the mask and vectors
2728    // lengths match.
2729    if (SrcNumElts*2 == MaskNumElts && SequentialMask(Mask, 0)) {
2730      // The shuffle is concatenating two vectors together.
2731      setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurDebugLoc(),
2732                               VT, Src1, Src2));
2733      return;
2734    }
2735
2736    // Pad both vectors with undefs to make them the same length as the mask.
2737    unsigned NumConcat = MaskNumElts / SrcNumElts;
2738    bool Src1U = Src1.getOpcode() == ISD::UNDEF;
2739    bool Src2U = Src2.getOpcode() == ISD::UNDEF;
2740    SDValue UndefVal = DAG.getUNDEF(SrcVT);
2741
2742    SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
2743    SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
2744    MOps1[0] = Src1;
2745    MOps2[0] = Src2;
2746
2747    Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
2748                                                  getCurDebugLoc(), VT,
2749                                                  &MOps1[0], NumConcat);
2750    Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
2751                                                  getCurDebugLoc(), VT,
2752                                                  &MOps2[0], NumConcat);
2753
2754    // Readjust mask for new input vector length.
2755    SmallVector<int, 8> MappedOps;
2756    for (unsigned i = 0; i != MaskNumElts; ++i) {
2757      int Idx = Mask[i];
2758      if (Idx < (int)SrcNumElts)
2759        MappedOps.push_back(Idx);
2760      else
2761        MappedOps.push_back(Idx + MaskNumElts - SrcNumElts);
2762    }
2763
2764    setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2765                                      &MappedOps[0]));
2766    return;
2767  }
2768
2769  if (SrcNumElts > MaskNumElts) {
2770    // Analyze the access pattern of the vector to see if we can extract
2771    // two subvectors and do the shuffle. The analysis is done by calculating
2772    // the range of elements the mask access on both vectors.
2773    int MinRange[2] = { SrcNumElts+1, SrcNumElts+1};
2774    int MaxRange[2] = {-1, -1};
2775
2776    for (unsigned i = 0; i != MaskNumElts; ++i) {
2777      int Idx = Mask[i];
2778      int Input = 0;
2779      if (Idx < 0)
2780        continue;
2781
2782      if (Idx >= (int)SrcNumElts) {
2783        Input = 1;
2784        Idx -= SrcNumElts;
2785      }
2786      if (Idx > MaxRange[Input])
2787        MaxRange[Input] = Idx;
2788      if (Idx < MinRange[Input])
2789        MinRange[Input] = Idx;
2790    }
2791
2792    // Check if the access is smaller than the vector size and can we find
2793    // a reasonable extract index.
2794    int RangeUse[2] = { 2, 2 };  // 0 = Unused, 1 = Extract, 2 = Can not
2795                                 // Extract.
2796    int StartIdx[2];  // StartIdx to extract from
2797    for (int Input=0; Input < 2; ++Input) {
2798      if (MinRange[Input] == (int)(SrcNumElts+1) && MaxRange[Input] == -1) {
2799        RangeUse[Input] = 0; // Unused
2800        StartIdx[Input] = 0;
2801      } else if (MaxRange[Input] - MinRange[Input] < (int)MaskNumElts) {
2802        // Fits within range but we should see if we can find a good
2803        // start index that is a multiple of the mask length.
2804        if (MaxRange[Input] < (int)MaskNumElts) {
2805          RangeUse[Input] = 1; // Extract from beginning of the vector
2806          StartIdx[Input] = 0;
2807        } else {
2808          StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts;
2809          if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts &&
2810              StartIdx[Input] + MaskNumElts <= SrcNumElts)
2811            RangeUse[Input] = 1; // Extract from a multiple of the mask length.
2812        }
2813      }
2814    }
2815
2816    if (RangeUse[0] == 0 && RangeUse[1] == 0) {
2817      setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
2818      return;
2819    }
2820    else if (RangeUse[0] < 2 && RangeUse[1] < 2) {
2821      // Extract appropriate subvector and generate a vector shuffle
2822      for (int Input=0; Input < 2; ++Input) {
2823        SDValue &Src = Input == 0 ? Src1 : Src2;
2824        if (RangeUse[Input] == 0)
2825          Src = DAG.getUNDEF(VT);
2826        else
2827          Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, getCurDebugLoc(), VT,
2828                            Src, DAG.getIntPtrConstant(StartIdx[Input]));
2829      }
2830
2831      // Calculate new mask.
2832      SmallVector<int, 8> MappedOps;
2833      for (unsigned i = 0; i != MaskNumElts; ++i) {
2834        int Idx = Mask[i];
2835        if (Idx < 0)
2836          MappedOps.push_back(Idx);
2837        else if (Idx < (int)SrcNumElts)
2838          MappedOps.push_back(Idx - StartIdx[0]);
2839        else
2840          MappedOps.push_back(Idx - SrcNumElts - StartIdx[1] + MaskNumElts);
2841      }
2842
2843      setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2844                                        &MappedOps[0]));
2845      return;
2846    }
2847  }
2848
2849  // We can't use either concat vectors or extract subvectors so fall back to
2850  // replacing the shuffle with extract and build vector.
2851  // to insert and build vector.
2852  EVT EltVT = VT.getVectorElementType();
2853  EVT PtrVT = TLI.getPointerTy();
2854  SmallVector<SDValue,8> Ops;
2855  for (unsigned i = 0; i != MaskNumElts; ++i) {
2856    if (Mask[i] < 0) {
2857      Ops.push_back(DAG.getUNDEF(EltVT));
2858    } else {
2859      int Idx = Mask[i];
2860      SDValue Res;
2861
2862      if (Idx < (int)SrcNumElts)
2863        Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
2864                          EltVT, Src1, DAG.getConstant(Idx, PtrVT));
2865      else
2866        Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
2867                          EltVT, Src2,
2868                          DAG.getConstant(Idx - SrcNumElts, PtrVT));
2869
2870      Ops.push_back(Res);
2871    }
2872  }
2873
2874  setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(),
2875                           VT, &Ops[0], Ops.size()));
2876}
2877
2878void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) {
2879  const Value *Op0 = I.getOperand(0);
2880  const Value *Op1 = I.getOperand(1);
2881  const Type *AggTy = I.getType();
2882  const Type *ValTy = Op1->getType();
2883  bool IntoUndef = isa<UndefValue>(Op0);
2884  bool FromUndef = isa<UndefValue>(Op1);
2885
2886  unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices());
2887
2888  SmallVector<EVT, 4> AggValueVTs;
2889  ComputeValueVTs(TLI, AggTy, AggValueVTs);
2890  SmallVector<EVT, 4> ValValueVTs;
2891  ComputeValueVTs(TLI, ValTy, ValValueVTs);
2892
2893  unsigned NumAggValues = AggValueVTs.size();
2894  unsigned NumValValues = ValValueVTs.size();
2895  SmallVector<SDValue, 4> Values(NumAggValues);
2896
2897  SDValue Agg = getValue(Op0);
2898  unsigned i = 0;
2899  // Copy the beginning value(s) from the original aggregate.
2900  for (; i != LinearIndex; ++i)
2901    Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
2902                SDValue(Agg.getNode(), Agg.getResNo() + i);
2903  // Copy values from the inserted value(s).
2904  if (NumValValues) {
2905    SDValue Val = getValue(Op1);
2906    for (; i != LinearIndex + NumValValues; ++i)
2907      Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
2908                  SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
2909  }
2910  // Copy remaining value(s) from the original aggregate.
2911  for (; i != NumAggValues; ++i)
2912    Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
2913                SDValue(Agg.getNode(), Agg.getResNo() + i);
2914
2915  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
2916                           DAG.getVTList(&AggValueVTs[0], NumAggValues),
2917                           &Values[0], NumAggValues));
2918}
2919
2920void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) {
2921  const Value *Op0 = I.getOperand(0);
2922  const Type *AggTy = Op0->getType();
2923  const Type *ValTy = I.getType();
2924  bool OutOfUndef = isa<UndefValue>(Op0);
2925
2926  unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices());
2927
2928  SmallVector<EVT, 4> ValValueVTs;
2929  ComputeValueVTs(TLI, ValTy, ValValueVTs);
2930
2931  unsigned NumValValues = ValValueVTs.size();
2932
2933  // Ignore a extractvalue that produces an empty object
2934  if (!NumValValues) {
2935    setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
2936    return;
2937  }
2938
2939  SmallVector<SDValue, 4> Values(NumValValues);
2940
2941  SDValue Agg = getValue(Op0);
2942  // Copy out the selected value(s).
2943  for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
2944    Values[i - LinearIndex] =
2945      OutOfUndef ?
2946        DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
2947        SDValue(Agg.getNode(), Agg.getResNo() + i);
2948
2949  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
2950                           DAG.getVTList(&ValValueVTs[0], NumValValues),
2951                           &Values[0], NumValValues));
2952}
2953
2954void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
2955  SDValue N = getValue(I.getOperand(0));
2956  const Type *Ty = I.getOperand(0)->getType();
2957
2958  for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end();
2959       OI != E; ++OI) {
2960    const Value *Idx = *OI;
2961    if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
2962      unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
2963      if (Field) {
2964        // N = N + Offset
2965        uint64_t Offset = TD->getStructLayout(StTy)->getElementOffset(Field);
2966        N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N,
2967                        DAG.getIntPtrConstant(Offset));
2968      }
2969
2970      Ty = StTy->getElementType(Field);
2971    } else {
2972      Ty = cast<SequentialType>(Ty)->getElementType();
2973
2974      // If this is a constant subscript, handle it quickly.
2975      if (const ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
2976        if (CI->isZero()) continue;
2977        uint64_t Offs =
2978            TD->getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue();
2979        SDValue OffsVal;
2980        EVT PTy = TLI.getPointerTy();
2981        unsigned PtrBits = PTy.getSizeInBits();
2982        if (PtrBits < 64)
2983          OffsVal = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(),
2984                                TLI.getPointerTy(),
2985                                DAG.getConstant(Offs, MVT::i64));
2986        else
2987          OffsVal = DAG.getIntPtrConstant(Offs);
2988
2989        N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N,
2990                        OffsVal);
2991        continue;
2992      }
2993
2994      // N = N + Idx * ElementSize;
2995      APInt ElementSize = APInt(TLI.getPointerTy().getSizeInBits(),
2996                                TD->getTypeAllocSize(Ty));
2997      SDValue IdxN = getValue(Idx);
2998
2999      // If the index is smaller or larger than intptr_t, truncate or extend
3000      // it.
3001      IdxN = DAG.getSExtOrTrunc(IdxN, getCurDebugLoc(), N.getValueType());
3002
3003      // If this is a multiply by a power of two, turn it into a shl
3004      // immediately.  This is a very common case.
3005      if (ElementSize != 1) {
3006        if (ElementSize.isPowerOf2()) {
3007          unsigned Amt = ElementSize.logBase2();
3008          IdxN = DAG.getNode(ISD::SHL, getCurDebugLoc(),
3009                             N.getValueType(), IdxN,
3010                             DAG.getConstant(Amt, TLI.getPointerTy()));
3011        } else {
3012          SDValue Scale = DAG.getConstant(ElementSize, TLI.getPointerTy());
3013          IdxN = DAG.getNode(ISD::MUL, getCurDebugLoc(),
3014                             N.getValueType(), IdxN, Scale);
3015        }
3016      }
3017
3018      N = DAG.getNode(ISD::ADD, getCurDebugLoc(),
3019                      N.getValueType(), N, IdxN);
3020    }
3021  }
3022
3023  setValue(&I, N);
3024}
3025
3026void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
3027  // If this is a fixed sized alloca in the entry block of the function,
3028  // allocate it statically on the stack.
3029  if (FuncInfo.StaticAllocaMap.count(&I))
3030    return;   // getValue will auto-populate this.
3031
3032  const Type *Ty = I.getAllocatedType();
3033  uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty);
3034  unsigned Align =
3035    std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty),
3036             I.getAlignment());
3037
3038  SDValue AllocSize = getValue(I.getArraySize());
3039
3040  EVT IntPtr = TLI.getPointerTy();
3041  if (AllocSize.getValueType() != IntPtr)
3042    AllocSize = DAG.getZExtOrTrunc(AllocSize, getCurDebugLoc(), IntPtr);
3043
3044  AllocSize = DAG.getNode(ISD::MUL, getCurDebugLoc(), IntPtr,
3045                          AllocSize,
3046                          DAG.getConstant(TySize, IntPtr));
3047
3048  // Handle alignment.  If the requested alignment is less than or equal to
3049  // the stack alignment, ignore it.  If the size is greater than or equal to
3050  // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
3051  unsigned StackAlign = TM.getFrameLowering()->getStackAlignment();
3052  if (Align <= StackAlign)
3053    Align = 0;
3054
3055  // Round the size of the allocation up to the stack alignment size
3056  // by add SA-1 to the size.
3057  AllocSize = DAG.getNode(ISD::ADD, getCurDebugLoc(),
3058                          AllocSize.getValueType(), AllocSize,
3059                          DAG.getIntPtrConstant(StackAlign-1));
3060
3061  // Mask out the low bits for alignment purposes.
3062  AllocSize = DAG.getNode(ISD::AND, getCurDebugLoc(),
3063                          AllocSize.getValueType(), AllocSize,
3064                          DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1)));
3065
3066  SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) };
3067  SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
3068  SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, getCurDebugLoc(),
3069                            VTs, Ops, 3);
3070  setValue(&I, DSA);
3071  DAG.setRoot(DSA.getValue(1));
3072
3073  // Inform the Frame Information that we have just allocated a variable-sized
3074  // object.
3075  FuncInfo.MF->getFrameInfo()->CreateVariableSizedObject(Align ? Align : 1);
3076}
3077
3078void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
3079  const Value *SV = I.getOperand(0);
3080  SDValue Ptr = getValue(SV);
3081
3082  const Type *Ty = I.getType();
3083
3084  bool isVolatile = I.isVolatile();
3085  bool isNonTemporal = I.getMetadata("nontemporal") != 0;
3086  unsigned Alignment = I.getAlignment();
3087  const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa);
3088
3089  SmallVector<EVT, 4> ValueVTs;
3090  SmallVector<uint64_t, 4> Offsets;
3091  ComputeValueVTs(TLI, Ty, ValueVTs, &Offsets);
3092  unsigned NumValues = ValueVTs.size();
3093  if (NumValues == 0)
3094    return;
3095
3096  SDValue Root;
3097  bool ConstantMemory = false;
3098  if (I.isVolatile() || NumValues > MaxParallelChains)
3099    // Serialize volatile loads with other side effects.
3100    Root = getRoot();
3101  else if (AA->pointsToConstantMemory(
3102             AliasAnalysis::Location(SV, AA->getTypeStoreSize(Ty), TBAAInfo))) {
3103    // Do not serialize (non-volatile) loads of constant memory with anything.
3104    Root = DAG.getEntryNode();
3105    ConstantMemory = true;
3106  } else {
3107    // Do not serialize non-volatile loads against each other.
3108    Root = DAG.getRoot();
3109  }
3110
3111  SmallVector<SDValue, 4> Values(NumValues);
3112  SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains),
3113                                          NumValues));
3114  EVT PtrVT = Ptr.getValueType();
3115  unsigned ChainI = 0;
3116  for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3117    // Serializing loads here may result in excessive register pressure, and
3118    // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
3119    // could recover a bit by hoisting nodes upward in the chain by recognizing
3120    // they are side-effect free or do not alias. The optimizer should really
3121    // avoid this case by converting large object/array copies to llvm.memcpy
3122    // (MaxParallelChains should always remain as failsafe).
3123    if (ChainI == MaxParallelChains) {
3124      assert(PendingLoads.empty() && "PendingLoads must be serialized first");
3125      SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
3126                                  MVT::Other, &Chains[0], ChainI);
3127      Root = Chain;
3128      ChainI = 0;
3129    }
3130    SDValue A = DAG.getNode(ISD::ADD, getCurDebugLoc(),
3131                            PtrVT, Ptr,
3132                            DAG.getConstant(Offsets[i], PtrVT));
3133    SDValue L = DAG.getLoad(ValueVTs[i], getCurDebugLoc(), Root,
3134                            A, MachinePointerInfo(SV, Offsets[i]), isVolatile,
3135                            isNonTemporal, Alignment, TBAAInfo);
3136
3137    Values[i] = L;
3138    Chains[ChainI] = L.getValue(1);
3139  }
3140
3141  if (!ConstantMemory) {
3142    SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
3143                                MVT::Other, &Chains[0], ChainI);
3144    if (isVolatile)
3145      DAG.setRoot(Chain);
3146    else
3147      PendingLoads.push_back(Chain);
3148  }
3149
3150  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
3151                           DAG.getVTList(&ValueVTs[0], NumValues),
3152                           &Values[0], NumValues));
3153}
3154
3155void SelectionDAGBuilder::visitStore(const StoreInst &I) {
3156  const Value *SrcV = I.getOperand(0);
3157  const Value *PtrV = I.getOperand(1);
3158
3159  SmallVector<EVT, 4> ValueVTs;
3160  SmallVector<uint64_t, 4> Offsets;
3161  ComputeValueVTs(TLI, SrcV->getType(), ValueVTs, &Offsets);
3162  unsigned NumValues = ValueVTs.size();
3163  if (NumValues == 0)
3164    return;
3165
3166  // Get the lowered operands. Note that we do this after
3167  // checking if NumResults is zero, because with zero results
3168  // the operands won't have values in the map.
3169  SDValue Src = getValue(SrcV);
3170  SDValue Ptr = getValue(PtrV);
3171
3172  SDValue Root = getRoot();
3173  SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains),
3174                                          NumValues));
3175  EVT PtrVT = Ptr.getValueType();
3176  bool isVolatile = I.isVolatile();
3177  bool isNonTemporal = I.getMetadata("nontemporal") != 0;
3178  unsigned Alignment = I.getAlignment();
3179  const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa);
3180
3181  unsigned ChainI = 0;
3182  for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3183    // See visitLoad comments.
3184    if (ChainI == MaxParallelChains) {
3185      SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
3186                                  MVT::Other, &Chains[0], ChainI);
3187      Root = Chain;
3188      ChainI = 0;
3189    }
3190    SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT, Ptr,
3191                              DAG.getConstant(Offsets[i], PtrVT));
3192    SDValue St = DAG.getStore(Root, getCurDebugLoc(),
3193                              SDValue(Src.getNode(), Src.getResNo() + i),
3194                              Add, MachinePointerInfo(PtrV, Offsets[i]),
3195                              isVolatile, isNonTemporal, Alignment, TBAAInfo);
3196    Chains[ChainI] = St;
3197  }
3198
3199  SDValue StoreNode = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
3200                                  MVT::Other, &Chains[0], ChainI);
3201  ++SDNodeOrder;
3202  AssignOrderingToNode(StoreNode.getNode());
3203  DAG.setRoot(StoreNode);
3204}
3205
3206/// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
3207/// node.
3208void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
3209                                               unsigned Intrinsic) {
3210  bool HasChain = !I.doesNotAccessMemory();
3211  bool OnlyLoad = HasChain && I.onlyReadsMemory();
3212
3213  // Build the operand list.
3214  SmallVector<SDValue, 8> Ops;
3215  if (HasChain) {  // If this intrinsic has side-effects, chainify it.
3216    if (OnlyLoad) {
3217      // We don't need to serialize loads against other loads.
3218      Ops.push_back(DAG.getRoot());
3219    } else {
3220      Ops.push_back(getRoot());
3221    }
3222  }
3223
3224  // Info is set by getTgtMemInstrinsic
3225  TargetLowering::IntrinsicInfo Info;
3226  bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic);
3227
3228  // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
3229  if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
3230      Info.opc == ISD::INTRINSIC_W_CHAIN)
3231    Ops.push_back(DAG.getConstant(Intrinsic, TLI.getPointerTy()));
3232
3233  // Add all operands of the call to the operand list.
3234  for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
3235    SDValue Op = getValue(I.getArgOperand(i));
3236    assert(TLI.isTypeLegal(Op.getValueType()) &&
3237           "Intrinsic uses a non-legal type?");
3238    Ops.push_back(Op);
3239  }
3240
3241  SmallVector<EVT, 4> ValueVTs;
3242  ComputeValueVTs(TLI, I.getType(), ValueVTs);
3243#ifndef NDEBUG
3244  for (unsigned Val = 0, E = ValueVTs.size(); Val != E; ++Val) {
3245    assert(TLI.isTypeLegal(ValueVTs[Val]) &&
3246           "Intrinsic uses a non-legal type?");
3247  }
3248#endif // NDEBUG
3249
3250  if (HasChain)
3251    ValueVTs.push_back(MVT::Other);
3252
3253  SDVTList VTs = DAG.getVTList(ValueVTs.data(), ValueVTs.size());
3254
3255  // Create the node.
3256  SDValue Result;
3257  if (IsTgtIntrinsic) {
3258    // This is target intrinsic that touches memory
3259    Result = DAG.getMemIntrinsicNode(Info.opc, getCurDebugLoc(),
3260                                     VTs, &Ops[0], Ops.size(),
3261                                     Info.memVT,
3262                                   MachinePointerInfo(Info.ptrVal, Info.offset),
3263                                     Info.align, Info.vol,
3264                                     Info.readMem, Info.writeMem);
3265  } else if (!HasChain) {
3266    Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurDebugLoc(),
3267                         VTs, &Ops[0], Ops.size());
3268  } else if (!I.getType()->isVoidTy()) {
3269    Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurDebugLoc(),
3270                         VTs, &Ops[0], Ops.size());
3271  } else {
3272    Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurDebugLoc(),
3273                         VTs, &Ops[0], Ops.size());
3274  }
3275
3276  if (HasChain) {
3277    SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
3278    if (OnlyLoad)
3279      PendingLoads.push_back(Chain);
3280    else
3281      DAG.setRoot(Chain);
3282  }
3283
3284  if (!I.getType()->isVoidTy()) {
3285    if (const VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
3286      EVT VT = TLI.getValueType(PTy);
3287      Result = DAG.getNode(ISD::BITCAST, getCurDebugLoc(), VT, Result);
3288    }
3289
3290    setValue(&I, Result);
3291  }
3292}
3293
3294/// GetSignificand - Get the significand and build it into a floating-point
3295/// number with exponent of 1:
3296///
3297///   Op = (Op & 0x007fffff) | 0x3f800000;
3298///
3299/// where Op is the hexidecimal representation of floating point value.
3300static SDValue
3301GetSignificand(SelectionDAG &DAG, SDValue Op, DebugLoc dl) {
3302  SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
3303                           DAG.getConstant(0x007fffff, MVT::i32));
3304  SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
3305                           DAG.getConstant(0x3f800000, MVT::i32));
3306  return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
3307}
3308
3309/// GetExponent - Get the exponent:
3310///
3311///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
3312///
3313/// where Op is the hexidecimal representation of floating point value.
3314static SDValue
3315GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI,
3316            DebugLoc dl) {
3317  SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
3318                           DAG.getConstant(0x7f800000, MVT::i32));
3319  SDValue t1 = DAG.getNode(ISD::SRL, dl, MVT::i32, t0,
3320                           DAG.getConstant(23, TLI.getPointerTy()));
3321  SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
3322                           DAG.getConstant(127, MVT::i32));
3323  return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
3324}
3325
3326/// getF32Constant - Get 32-bit floating point constant.
3327static SDValue
3328getF32Constant(SelectionDAG &DAG, unsigned Flt) {
3329  return DAG.getConstantFP(APFloat(APInt(32, Flt)), MVT::f32);
3330}
3331
3332/// Inlined utility function to implement binary input atomic intrinsics for
3333/// visitIntrinsicCall: I is a call instruction
3334///                     Op is the associated NodeType for I
3335const char *
3336SelectionDAGBuilder::implVisitBinaryAtomic(const CallInst& I,
3337                                           ISD::NodeType Op) {
3338  SDValue Root = getRoot();
3339  SDValue L =
3340    DAG.getAtomic(Op, getCurDebugLoc(),
3341                  getValue(I.getArgOperand(1)).getValueType().getSimpleVT(),
3342                  Root,
3343                  getValue(I.getArgOperand(0)),
3344                  getValue(I.getArgOperand(1)),
3345                  I.getArgOperand(0));
3346  setValue(&I, L);
3347  DAG.setRoot(L.getValue(1));
3348  return 0;
3349}
3350
3351// implVisitAluOverflow - Lower arithmetic overflow instrinsics.
3352const char *
3353SelectionDAGBuilder::implVisitAluOverflow(const CallInst &I, ISD::NodeType Op) {
3354  SDValue Op1 = getValue(I.getArgOperand(0));
3355  SDValue Op2 = getValue(I.getArgOperand(1));
3356
3357  SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1);
3358  setValue(&I, DAG.getNode(Op, getCurDebugLoc(), VTs, Op1, Op2));
3359  return 0;
3360}
3361
3362/// visitExp - Lower an exp intrinsic. Handles the special sequences for
3363/// limited-precision mode.
3364void
3365SelectionDAGBuilder::visitExp(const CallInst &I) {
3366  SDValue result;
3367  DebugLoc dl = getCurDebugLoc();
3368
3369  if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3370      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3371    SDValue Op = getValue(I.getArgOperand(0));
3372
3373    // Put the exponent in the right bit position for later addition to the
3374    // final result:
3375    //
3376    //   #define LOG2OFe 1.4426950f
3377    //   IntegerPartOfX = ((int32_t)(X * LOG2OFe));
3378    SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
3379                             getF32Constant(DAG, 0x3fb8aa3b));
3380    SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
3381
3382    //   FractionalPartOfX = (X * LOG2OFe) - (float)IntegerPartOfX;
3383    SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
3384    SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
3385
3386    //   IntegerPartOfX <<= 23;
3387    IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
3388                                 DAG.getConstant(23, TLI.getPointerTy()));
3389
3390    if (LimitFloatPrecision <= 6) {
3391      // For floating-point precision of 6:
3392      //
3393      //   TwoToFractionalPartOfX =
3394      //     0.997535578f +
3395      //       (0.735607626f + 0.252464424f * x) * x;
3396      //
3397      // error 0.0144103317, which is 6 bits
3398      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3399                               getF32Constant(DAG, 0x3e814304));
3400      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3401                               getF32Constant(DAG, 0x3f3c50c8));
3402      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3403      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3404                               getF32Constant(DAG, 0x3f7f5e7e));
3405      SDValue TwoToFracPartOfX = DAG.getNode(ISD::BITCAST, dl,MVT::i32, t5);
3406
3407      // Add the exponent into the result in integer domain.
3408      SDValue t6 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3409                               TwoToFracPartOfX, IntegerPartOfX);
3410
3411      result = DAG.getNode(ISD::BITCAST, dl, MVT::f32, t6);
3412    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3413      // For floating-point precision of 12:
3414      //
3415      //   TwoToFractionalPartOfX =
3416      //     0.999892986f +
3417      //       (0.696457318f +
3418      //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
3419      //
3420      // 0.000107046256 error, which is 13 to 14 bits
3421      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3422                               getF32Constant(DAG, 0x3da235e3));
3423      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3424                               getF32Constant(DAG, 0x3e65b8f3));
3425      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3426      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3427                               getF32Constant(DAG, 0x3f324b07));
3428      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3429      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3430                               getF32Constant(DAG, 0x3f7ff8fd));
3431      SDValue TwoToFracPartOfX = DAG.getNode(ISD::BITCAST, dl,MVT::i32, t7);
3432
3433      // Add the exponent into the result in integer domain.
3434      SDValue t8 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3435                               TwoToFracPartOfX, IntegerPartOfX);
3436
3437      result = DAG.getNode(ISD::BITCAST, dl, MVT::f32, t8);
3438    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3439      // For floating-point precision of 18:
3440      //
3441      //   TwoToFractionalPartOfX =
3442      //     0.999999982f +
3443      //       (0.693148872f +
3444      //         (0.240227044f +
3445      //           (0.554906021e-1f +
3446      //             (0.961591928e-2f +
3447      //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
3448      //
3449      // error 2.47208000*10^(-7), which is better than 18 bits
3450      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3451                               getF32Constant(DAG, 0x3924b03e));
3452      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3453                               getF32Constant(DAG, 0x3ab24b87));
3454      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3455      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3456                               getF32Constant(DAG, 0x3c1d8c17));
3457      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3458      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3459                               getF32Constant(DAG, 0x3d634a1d));
3460      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3461      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3462                               getF32Constant(DAG, 0x3e75fe14));
3463      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3464      SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
3465                                getF32Constant(DAG, 0x3f317234));
3466      SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
3467      SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
3468                                getF32Constant(DAG, 0x3f800000));
3469      SDValue TwoToFracPartOfX = DAG.getNode(ISD::BITCAST, dl,
3470                                             MVT::i32, t13);
3471
3472      // Add the exponent into the result in integer domain.
3473      SDValue t14 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3474                                TwoToFracPartOfX, IntegerPartOfX);
3475
3476      result = DAG.getNode(ISD::BITCAST, dl, MVT::f32, t14);
3477    }
3478  } else {
3479    // No special expansion.
3480    result = DAG.getNode(ISD::FEXP, dl,
3481                         getValue(I.getArgOperand(0)).getValueType(),
3482                         getValue(I.getArgOperand(0)));
3483  }
3484
3485  setValue(&I, result);
3486}
3487
3488/// visitLog - Lower a log intrinsic. Handles the special sequences for
3489/// limited-precision mode.
3490void
3491SelectionDAGBuilder::visitLog(const CallInst &I) {
3492  SDValue result;
3493  DebugLoc dl = getCurDebugLoc();
3494
3495  if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3496      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3497    SDValue Op = getValue(I.getArgOperand(0));
3498    SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
3499
3500    // Scale the exponent by log(2) [0.69314718f].
3501    SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
3502    SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
3503                                        getF32Constant(DAG, 0x3f317218));
3504
3505    // Get the significand and build it into a floating-point number with
3506    // exponent of 1.
3507    SDValue X = GetSignificand(DAG, Op1, dl);
3508
3509    if (LimitFloatPrecision <= 6) {
3510      // For floating-point precision of 6:
3511      //
3512      //   LogofMantissa =
3513      //     -1.1609546f +
3514      //       (1.4034025f - 0.23903021f * x) * x;
3515      //
3516      // error 0.0034276066, which is better than 8 bits
3517      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3518                               getF32Constant(DAG, 0xbe74c456));
3519      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3520                               getF32Constant(DAG, 0x3fb3a2b1));
3521      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3522      SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3523                                          getF32Constant(DAG, 0x3f949a29));
3524
3525      result = DAG.getNode(ISD::FADD, dl,
3526                           MVT::f32, LogOfExponent, LogOfMantissa);
3527    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3528      // For floating-point precision of 12:
3529      //
3530      //   LogOfMantissa =
3531      //     -1.7417939f +
3532      //       (2.8212026f +
3533      //         (-1.4699568f +
3534      //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
3535      //
3536      // error 0.000061011436, which is 14 bits
3537      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3538                               getF32Constant(DAG, 0xbd67b6d6));
3539      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3540                               getF32Constant(DAG, 0x3ee4f4b8));
3541      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3542      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3543                               getF32Constant(DAG, 0x3fbc278b));
3544      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3545      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3546                               getF32Constant(DAG, 0x40348e95));
3547      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3548      SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3549                                          getF32Constant(DAG, 0x3fdef31a));
3550
3551      result = DAG.getNode(ISD::FADD, dl,
3552                           MVT::f32, LogOfExponent, LogOfMantissa);
3553    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3554      // For floating-point precision of 18:
3555      //
3556      //   LogOfMantissa =
3557      //     -2.1072184f +
3558      //       (4.2372794f +
3559      //         (-3.7029485f +
3560      //           (2.2781945f +
3561      //             (-0.87823314f +
3562      //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
3563      //
3564      // error 0.0000023660568, which is better than 18 bits
3565      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3566                               getF32Constant(DAG, 0xbc91e5ac));
3567      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3568                               getF32Constant(DAG, 0x3e4350aa));
3569      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3570      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3571                               getF32Constant(DAG, 0x3f60d3e3));
3572      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3573      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3574                               getF32Constant(DAG, 0x4011cdf0));
3575      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3576      SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3577                               getF32Constant(DAG, 0x406cfd1c));
3578      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3579      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3580                               getF32Constant(DAG, 0x408797cb));
3581      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3582      SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
3583                                          getF32Constant(DAG, 0x4006dcab));
3584
3585      result = DAG.getNode(ISD::FADD, dl,
3586                           MVT::f32, LogOfExponent, LogOfMantissa);
3587    }
3588  } else {
3589    // No special expansion.
3590    result = DAG.getNode(ISD::FLOG, dl,
3591                         getValue(I.getArgOperand(0)).getValueType(),
3592                         getValue(I.getArgOperand(0)));
3593  }
3594
3595  setValue(&I, result);
3596}
3597
3598/// visitLog2 - Lower a log2 intrinsic. Handles the special sequences for
3599/// limited-precision mode.
3600void
3601SelectionDAGBuilder::visitLog2(const CallInst &I) {
3602  SDValue result;
3603  DebugLoc dl = getCurDebugLoc();
3604
3605  if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3606      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3607    SDValue Op = getValue(I.getArgOperand(0));
3608    SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
3609
3610    // Get the exponent.
3611    SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
3612
3613    // Get the significand and build it into a floating-point number with
3614    // exponent of 1.
3615    SDValue X = GetSignificand(DAG, Op1, dl);
3616
3617    // Different possible minimax approximations of significand in
3618    // floating-point for various degrees of accuracy over [1,2].
3619    if (LimitFloatPrecision <= 6) {
3620      // For floating-point precision of 6:
3621      //
3622      //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
3623      //
3624      // error 0.0049451742, which is more than 7 bits
3625      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3626                               getF32Constant(DAG, 0xbeb08fe0));
3627      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3628                               getF32Constant(DAG, 0x40019463));
3629      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3630      SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3631                                           getF32Constant(DAG, 0x3fd6633d));
3632
3633      result = DAG.getNode(ISD::FADD, dl,
3634                           MVT::f32, LogOfExponent, Log2ofMantissa);
3635    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3636      // For floating-point precision of 12:
3637      //
3638      //   Log2ofMantissa =
3639      //     -2.51285454f +
3640      //       (4.07009056f +
3641      //         (-2.12067489f +
3642      //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
3643      //
3644      // error 0.0000876136000, which is better than 13 bits
3645      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3646                               getF32Constant(DAG, 0xbda7262e));
3647      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3648                               getF32Constant(DAG, 0x3f25280b));
3649      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3650      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3651                               getF32Constant(DAG, 0x4007b923));
3652      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3653      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3654                               getF32Constant(DAG, 0x40823e2f));
3655      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3656      SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3657                                           getF32Constant(DAG, 0x4020d29c));
3658
3659      result = DAG.getNode(ISD::FADD, dl,
3660                           MVT::f32, LogOfExponent, Log2ofMantissa);
3661    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3662      // For floating-point precision of 18:
3663      //
3664      //   Log2ofMantissa =
3665      //     -3.0400495f +
3666      //       (6.1129976f +
3667      //         (-5.3420409f +
3668      //           (3.2865683f +
3669      //             (-1.2669343f +
3670      //               (0.27515199f -
3671      //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
3672      //
3673      // error 0.0000018516, which is better than 18 bits
3674      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3675                               getF32Constant(DAG, 0xbcd2769e));
3676      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3677                               getF32Constant(DAG, 0x3e8ce0b9));
3678      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3679      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3680                               getF32Constant(DAG, 0x3fa22ae7));
3681      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3682      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3683                               getF32Constant(DAG, 0x40525723));
3684      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3685      SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3686                               getF32Constant(DAG, 0x40aaf200));
3687      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3688      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3689                               getF32Constant(DAG, 0x40c39dad));
3690      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3691      SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
3692                                           getF32Constant(DAG, 0x4042902c));
3693
3694      result = DAG.getNode(ISD::FADD, dl,
3695                           MVT::f32, LogOfExponent, Log2ofMantissa);
3696    }
3697  } else {
3698    // No special expansion.
3699    result = DAG.getNode(ISD::FLOG2, dl,
3700                         getValue(I.getArgOperand(0)).getValueType(),
3701                         getValue(I.getArgOperand(0)));
3702  }
3703
3704  setValue(&I, result);
3705}
3706
3707/// visitLog10 - Lower a log10 intrinsic. Handles the special sequences for
3708/// limited-precision mode.
3709void
3710SelectionDAGBuilder::visitLog10(const CallInst &I) {
3711  SDValue result;
3712  DebugLoc dl = getCurDebugLoc();
3713
3714  if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3715      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3716    SDValue Op = getValue(I.getArgOperand(0));
3717    SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
3718
3719    // Scale the exponent by log10(2) [0.30102999f].
3720    SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
3721    SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
3722                                        getF32Constant(DAG, 0x3e9a209a));
3723
3724    // Get the significand and build it into a floating-point number with
3725    // exponent of 1.
3726    SDValue X = GetSignificand(DAG, Op1, dl);
3727
3728    if (LimitFloatPrecision <= 6) {
3729      // For floating-point precision of 6:
3730      //
3731      //   Log10ofMantissa =
3732      //     -0.50419619f +
3733      //       (0.60948995f - 0.10380950f * x) * x;
3734      //
3735      // error 0.0014886165, which is 6 bits
3736      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3737                               getF32Constant(DAG, 0xbdd49a13));
3738      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3739                               getF32Constant(DAG, 0x3f1c0789));
3740      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3741      SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3742                                            getF32Constant(DAG, 0x3f011300));
3743
3744      result = DAG.getNode(ISD::FADD, dl,
3745                           MVT::f32, LogOfExponent, Log10ofMantissa);
3746    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3747      // For floating-point precision of 12:
3748      //
3749      //   Log10ofMantissa =
3750      //     -0.64831180f +
3751      //       (0.91751397f +
3752      //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
3753      //
3754      // error 0.00019228036, which is better than 12 bits
3755      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3756                               getF32Constant(DAG, 0x3d431f31));
3757      SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
3758                               getF32Constant(DAG, 0x3ea21fb2));
3759      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3760      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3761                               getF32Constant(DAG, 0x3f6ae232));
3762      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3763      SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
3764                                            getF32Constant(DAG, 0x3f25f7c3));
3765
3766      result = DAG.getNode(ISD::FADD, dl,
3767                           MVT::f32, LogOfExponent, Log10ofMantissa);
3768    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3769      // For floating-point precision of 18:
3770      //
3771      //   Log10ofMantissa =
3772      //     -0.84299375f +
3773      //       (1.5327582f +
3774      //         (-1.0688956f +
3775      //           (0.49102474f +
3776      //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
3777      //
3778      // error 0.0000037995730, which is better than 18 bits
3779      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3780                               getF32Constant(DAG, 0x3c5d51ce));
3781      SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
3782                               getF32Constant(DAG, 0x3e00685a));
3783      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3784      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3785                               getF32Constant(DAG, 0x3efb6798));
3786      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3787      SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
3788                               getF32Constant(DAG, 0x3f88d192));
3789      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3790      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3791                               getF32Constant(DAG, 0x3fc4316c));
3792      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3793      SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
3794                                            getF32Constant(DAG, 0x3f57ce70));
3795
3796      result = DAG.getNode(ISD::FADD, dl,
3797                           MVT::f32, LogOfExponent, Log10ofMantissa);
3798    }
3799  } else {
3800    // No special expansion.
3801    result = DAG.getNode(ISD::FLOG10, dl,
3802                         getValue(I.getArgOperand(0)).getValueType(),
3803                         getValue(I.getArgOperand(0)));
3804  }
3805
3806  setValue(&I, result);
3807}
3808
3809/// visitExp2 - Lower an exp2 intrinsic. Handles the special sequences for
3810/// limited-precision mode.
3811void
3812SelectionDAGBuilder::visitExp2(const CallInst &I) {
3813  SDValue result;
3814  DebugLoc dl = getCurDebugLoc();
3815
3816  if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3817      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3818    SDValue Op = getValue(I.getArgOperand(0));
3819
3820    SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Op);
3821
3822    //   FractionalPartOfX = x - (float)IntegerPartOfX;
3823    SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
3824    SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, Op, t1);
3825
3826    //   IntegerPartOfX <<= 23;
3827    IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
3828                                 DAG.getConstant(23, TLI.getPointerTy()));
3829
3830    if (LimitFloatPrecision <= 6) {
3831      // For floating-point precision of 6:
3832      //
3833      //   TwoToFractionalPartOfX =
3834      //     0.997535578f +
3835      //       (0.735607626f + 0.252464424f * x) * x;
3836      //
3837      // error 0.0144103317, which is 6 bits
3838      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3839                               getF32Constant(DAG, 0x3e814304));
3840      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3841                               getF32Constant(DAG, 0x3f3c50c8));
3842      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3843      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3844                               getF32Constant(DAG, 0x3f7f5e7e));
3845      SDValue t6 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t5);
3846      SDValue TwoToFractionalPartOfX =
3847        DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX);
3848
3849      result = DAG.getNode(ISD::BITCAST, dl,
3850                           MVT::f32, TwoToFractionalPartOfX);
3851    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3852      // For floating-point precision of 12:
3853      //
3854      //   TwoToFractionalPartOfX =
3855      //     0.999892986f +
3856      //       (0.696457318f +
3857      //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
3858      //
3859      // error 0.000107046256, which is 13 to 14 bits
3860      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3861                               getF32Constant(DAG, 0x3da235e3));
3862      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3863                               getF32Constant(DAG, 0x3e65b8f3));
3864      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3865      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3866                               getF32Constant(DAG, 0x3f324b07));
3867      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3868      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3869                               getF32Constant(DAG, 0x3f7ff8fd));
3870      SDValue t8 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t7);
3871      SDValue TwoToFractionalPartOfX =
3872        DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX);
3873
3874      result = DAG.getNode(ISD::BITCAST, dl,
3875                           MVT::f32, TwoToFractionalPartOfX);
3876    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3877      // For floating-point precision of 18:
3878      //
3879      //   TwoToFractionalPartOfX =
3880      //     0.999999982f +
3881      //       (0.693148872f +
3882      //         (0.240227044f +
3883      //           (0.554906021e-1f +
3884      //             (0.961591928e-2f +
3885      //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
3886      // error 2.47208000*10^(-7), which is better than 18 bits
3887      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3888                               getF32Constant(DAG, 0x3924b03e));
3889      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3890                               getF32Constant(DAG, 0x3ab24b87));
3891      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3892      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3893                               getF32Constant(DAG, 0x3c1d8c17));
3894      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3895      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3896                               getF32Constant(DAG, 0x3d634a1d));
3897      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3898      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3899                               getF32Constant(DAG, 0x3e75fe14));
3900      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3901      SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
3902                                getF32Constant(DAG, 0x3f317234));
3903      SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
3904      SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
3905                                getF32Constant(DAG, 0x3f800000));
3906      SDValue t14 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t13);
3907      SDValue TwoToFractionalPartOfX =
3908        DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX);
3909
3910      result = DAG.getNode(ISD::BITCAST, dl,
3911                           MVT::f32, TwoToFractionalPartOfX);
3912    }
3913  } else {
3914    // No special expansion.
3915    result = DAG.getNode(ISD::FEXP2, dl,
3916                         getValue(I.getArgOperand(0)).getValueType(),
3917                         getValue(I.getArgOperand(0)));
3918  }
3919
3920  setValue(&I, result);
3921}
3922
3923/// visitPow - Lower a pow intrinsic. Handles the special sequences for
3924/// limited-precision mode with x == 10.0f.
3925void
3926SelectionDAGBuilder::visitPow(const CallInst &I) {
3927  SDValue result;
3928  const Value *Val = I.getArgOperand(0);
3929  DebugLoc dl = getCurDebugLoc();
3930  bool IsExp10 = false;
3931
3932  if (getValue(Val).getValueType() == MVT::f32 &&
3933      getValue(I.getArgOperand(1)).getValueType() == MVT::f32 &&
3934      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3935    if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(Val))) {
3936      if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
3937        APFloat Ten(10.0f);
3938        IsExp10 = CFP->getValueAPF().bitwiseIsEqual(Ten);
3939      }
3940    }
3941  }
3942
3943  if (IsExp10 && LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3944    SDValue Op = getValue(I.getArgOperand(1));
3945
3946    // Put the exponent in the right bit position for later addition to the
3947    // final result:
3948    //
3949    //   #define LOG2OF10 3.3219281f
3950    //   IntegerPartOfX = (int32_t)(x * LOG2OF10);
3951    SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
3952                             getF32Constant(DAG, 0x40549a78));
3953    SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
3954
3955    //   FractionalPartOfX = x - (float)IntegerPartOfX;
3956    SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
3957    SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
3958
3959    //   IntegerPartOfX <<= 23;
3960    IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
3961                                 DAG.getConstant(23, TLI.getPointerTy()));
3962
3963    if (LimitFloatPrecision <= 6) {
3964      // For floating-point precision of 6:
3965      //
3966      //   twoToFractionalPartOfX =
3967      //     0.997535578f +
3968      //       (0.735607626f + 0.252464424f * x) * x;
3969      //
3970      // error 0.0144103317, which is 6 bits
3971      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3972                               getF32Constant(DAG, 0x3e814304));
3973      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3974                               getF32Constant(DAG, 0x3f3c50c8));
3975      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3976      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3977                               getF32Constant(DAG, 0x3f7f5e7e));
3978      SDValue t6 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t5);
3979      SDValue TwoToFractionalPartOfX =
3980        DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX);
3981
3982      result = DAG.getNode(ISD::BITCAST, dl,
3983                           MVT::f32, TwoToFractionalPartOfX);
3984    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3985      // For floating-point precision of 12:
3986      //
3987      //   TwoToFractionalPartOfX =
3988      //     0.999892986f +
3989      //       (0.696457318f +
3990      //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
3991      //
3992      // error 0.000107046256, which is 13 to 14 bits
3993      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3994                               getF32Constant(DAG, 0x3da235e3));
3995      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3996                               getF32Constant(DAG, 0x3e65b8f3));
3997      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3998      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3999                               getF32Constant(DAG, 0x3f324b07));
4000      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4001      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4002                               getF32Constant(DAG, 0x3f7ff8fd));
4003      SDValue t8 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t7);
4004      SDValue TwoToFractionalPartOfX =
4005        DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX);
4006
4007      result = DAG.getNode(ISD::BITCAST, dl,
4008                           MVT::f32, TwoToFractionalPartOfX);
4009    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
4010      // For floating-point precision of 18:
4011      //
4012      //   TwoToFractionalPartOfX =
4013      //     0.999999982f +
4014      //       (0.693148872f +
4015      //         (0.240227044f +
4016      //           (0.554906021e-1f +
4017      //             (0.961591928e-2f +
4018      //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
4019      // error 2.47208000*10^(-7), which is better than 18 bits
4020      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4021                               getF32Constant(DAG, 0x3924b03e));
4022      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4023                               getF32Constant(DAG, 0x3ab24b87));
4024      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4025      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4026                               getF32Constant(DAG, 0x3c1d8c17));
4027      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4028      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4029                               getF32Constant(DAG, 0x3d634a1d));
4030      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4031      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4032                               getF32Constant(DAG, 0x3e75fe14));
4033      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4034      SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
4035                                getF32Constant(DAG, 0x3f317234));
4036      SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
4037      SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
4038                                getF32Constant(DAG, 0x3f800000));
4039      SDValue t14 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t13);
4040      SDValue TwoToFractionalPartOfX =
4041        DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX);
4042
4043      result = DAG.getNode(ISD::BITCAST, dl,
4044                           MVT::f32, TwoToFractionalPartOfX);
4045    }
4046  } else {
4047    // No special expansion.
4048    result = DAG.getNode(ISD::FPOW, dl,
4049                         getValue(I.getArgOperand(0)).getValueType(),
4050                         getValue(I.getArgOperand(0)),
4051                         getValue(I.getArgOperand(1)));
4052  }
4053
4054  setValue(&I, result);
4055}
4056
4057
4058/// ExpandPowI - Expand a llvm.powi intrinsic.
4059static SDValue ExpandPowI(DebugLoc DL, SDValue LHS, SDValue RHS,
4060                          SelectionDAG &DAG) {
4061  // If RHS is a constant, we can expand this out to a multiplication tree,
4062  // otherwise we end up lowering to a call to __powidf2 (for example).  When
4063  // optimizing for size, we only want to do this if the expansion would produce
4064  // a small number of multiplies, otherwise we do the full expansion.
4065  if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
4066    // Get the exponent as a positive value.
4067    unsigned Val = RHSC->getSExtValue();
4068    if ((int)Val < 0) Val = -Val;
4069
4070    // powi(x, 0) -> 1.0
4071    if (Val == 0)
4072      return DAG.getConstantFP(1.0, LHS.getValueType());
4073
4074    const Function *F = DAG.getMachineFunction().getFunction();
4075    if (!F->hasFnAttr(Attribute::OptimizeForSize) ||
4076        // If optimizing for size, don't insert too many multiplies.  This
4077        // inserts up to 5 multiplies.
4078        CountPopulation_32(Val)+Log2_32(Val) < 7) {
4079      // We use the simple binary decomposition method to generate the multiply
4080      // sequence.  There are more optimal ways to do this (for example,
4081      // powi(x,15) generates one more multiply than it should), but this has
4082      // the benefit of being both really simple and much better than a libcall.
4083      SDValue Res;  // Logically starts equal to 1.0
4084      SDValue CurSquare = LHS;
4085      while (Val) {
4086        if (Val & 1) {
4087          if (Res.getNode())
4088            Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare);
4089          else
4090            Res = CurSquare;  // 1.0*CurSquare.
4091        }
4092
4093        CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
4094                                CurSquare, CurSquare);
4095        Val >>= 1;
4096      }
4097
4098      // If the original was negative, invert the result, producing 1/(x*x*x).
4099      if (RHSC->getSExtValue() < 0)
4100        Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
4101                          DAG.getConstantFP(1.0, LHS.getValueType()), Res);
4102      return Res;
4103    }
4104  }
4105
4106  // Otherwise, expand to a libcall.
4107  return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
4108}
4109
4110// getTruncatedArgReg - Find underlying register used for an truncated
4111// argument.
4112static unsigned getTruncatedArgReg(const SDValue &N) {
4113  if (N.getOpcode() != ISD::TRUNCATE)
4114    return 0;
4115
4116  const SDValue &Ext = N.getOperand(0);
4117  if (Ext.getOpcode() == ISD::AssertZext || Ext.getOpcode() == ISD::AssertSext){
4118    const SDValue &CFR = Ext.getOperand(0);
4119    if (CFR.getOpcode() == ISD::CopyFromReg)
4120      return cast<RegisterSDNode>(CFR.getOperand(1))->getReg();
4121    else
4122      if (CFR.getOpcode() == ISD::TRUNCATE)
4123        return getTruncatedArgReg(CFR);
4124  }
4125  return 0;
4126}
4127
4128/// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function
4129/// argument, create the corresponding DBG_VALUE machine instruction for it now.
4130/// At the end of instruction selection, they will be inserted to the entry BB.
4131bool
4132SelectionDAGBuilder::EmitFuncArgumentDbgValue(const Value *V, MDNode *Variable,
4133                                              int64_t Offset,
4134                                              const SDValue &N) {
4135  const Argument *Arg = dyn_cast<Argument>(V);
4136  if (!Arg)
4137    return false;
4138
4139  MachineFunction &MF = DAG.getMachineFunction();
4140  const TargetInstrInfo *TII = DAG.getTarget().getInstrInfo();
4141  const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
4142
4143  // Ignore inlined function arguments here.
4144  DIVariable DV(Variable);
4145  if (DV.isInlinedFnArgument(MF.getFunction()))
4146    return false;
4147
4148  unsigned Reg = 0;
4149  if (Arg->hasByValAttr()) {
4150    // Byval arguments' frame index is recorded during argument lowering.
4151    // Use this info directly.
4152    Reg = TRI->getFrameRegister(MF);
4153    Offset = FuncInfo.getByValArgumentFrameIndex(Arg);
4154    // If byval argument ofset is not recorded then ignore this.
4155    if (!Offset)
4156      Reg = 0;
4157  }
4158
4159  if (N.getNode()) {
4160    if (N.getOpcode() == ISD::CopyFromReg)
4161      Reg = cast<RegisterSDNode>(N.getOperand(1))->getReg();
4162    else
4163      Reg = getTruncatedArgReg(N);
4164    if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) {
4165      MachineRegisterInfo &RegInfo = MF.getRegInfo();
4166      unsigned PR = RegInfo.getLiveInPhysReg(Reg);
4167      if (PR)
4168        Reg = PR;
4169    }
4170  }
4171
4172  if (!Reg) {
4173    // Check if ValueMap has reg number.
4174    DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
4175    if (VMI != FuncInfo.ValueMap.end())
4176      Reg = VMI->second;
4177  }
4178
4179  if (!Reg && N.getNode()) {
4180    // Check if frame index is available.
4181    if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode()))
4182      if (FrameIndexSDNode *FINode =
4183          dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) {
4184        Reg = TRI->getFrameRegister(MF);
4185        Offset = FINode->getIndex();
4186      }
4187  }
4188
4189  if (!Reg)
4190    return false;
4191
4192  MachineInstrBuilder MIB = BuildMI(MF, getCurDebugLoc(),
4193                                    TII->get(TargetOpcode::DBG_VALUE))
4194    .addReg(Reg, RegState::Debug).addImm(Offset).addMetadata(Variable);
4195  FuncInfo.ArgDbgValues.push_back(&*MIB);
4196  return true;
4197}
4198
4199// VisualStudio defines setjmp as _setjmp
4200#if defined(_MSC_VER) && defined(setjmp) && \
4201                         !defined(setjmp_undefined_for_msvc)
4202#  pragma push_macro("setjmp")
4203#  undef setjmp
4204#  define setjmp_undefined_for_msvc
4205#endif
4206
4207/// visitIntrinsicCall - Lower the call to the specified intrinsic function.  If
4208/// we want to emit this as a call to a named external function, return the name
4209/// otherwise lower it and return null.
4210const char *
4211SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) {
4212  DebugLoc dl = getCurDebugLoc();
4213  SDValue Res;
4214
4215  switch (Intrinsic) {
4216  default:
4217    // By default, turn this into a target intrinsic node.
4218    visitTargetIntrinsic(I, Intrinsic);
4219    return 0;
4220  case Intrinsic::vastart:  visitVAStart(I); return 0;
4221  case Intrinsic::vaend:    visitVAEnd(I); return 0;
4222  case Intrinsic::vacopy:   visitVACopy(I); return 0;
4223  case Intrinsic::returnaddress:
4224    setValue(&I, DAG.getNode(ISD::RETURNADDR, dl, TLI.getPointerTy(),
4225                             getValue(I.getArgOperand(0))));
4226    return 0;
4227  case Intrinsic::frameaddress:
4228    setValue(&I, DAG.getNode(ISD::FRAMEADDR, dl, TLI.getPointerTy(),
4229                             getValue(I.getArgOperand(0))));
4230    return 0;
4231  case Intrinsic::setjmp:
4232    return "_setjmp"+!TLI.usesUnderscoreSetJmp();
4233  case Intrinsic::longjmp:
4234    return "_longjmp"+!TLI.usesUnderscoreLongJmp();
4235  case Intrinsic::memcpy: {
4236    // Assert for address < 256 since we support only user defined address
4237    // spaces.
4238    assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4239           < 256 &&
4240           cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace()
4241           < 256 &&
4242           "Unknown address space");
4243    SDValue Op1 = getValue(I.getArgOperand(0));
4244    SDValue Op2 = getValue(I.getArgOperand(1));
4245    SDValue Op3 = getValue(I.getArgOperand(2));
4246    unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4247    bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4248    DAG.setRoot(DAG.getMemcpy(getRoot(), dl, Op1, Op2, Op3, Align, isVol, false,
4249                              MachinePointerInfo(I.getArgOperand(0)),
4250                              MachinePointerInfo(I.getArgOperand(1))));
4251    return 0;
4252  }
4253  case Intrinsic::memset: {
4254    // Assert for address < 256 since we support only user defined address
4255    // spaces.
4256    assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4257           < 256 &&
4258           "Unknown address space");
4259    SDValue Op1 = getValue(I.getArgOperand(0));
4260    SDValue Op2 = getValue(I.getArgOperand(1));
4261    SDValue Op3 = getValue(I.getArgOperand(2));
4262    unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4263    bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4264    DAG.setRoot(DAG.getMemset(getRoot(), dl, Op1, Op2, Op3, Align, isVol,
4265                              MachinePointerInfo(I.getArgOperand(0))));
4266    return 0;
4267  }
4268  case Intrinsic::memmove: {
4269    // Assert for address < 256 since we support only user defined address
4270    // spaces.
4271    assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4272           < 256 &&
4273           cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace()
4274           < 256 &&
4275           "Unknown address space");
4276    SDValue Op1 = getValue(I.getArgOperand(0));
4277    SDValue Op2 = getValue(I.getArgOperand(1));
4278    SDValue Op3 = getValue(I.getArgOperand(2));
4279    unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4280    bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4281    DAG.setRoot(DAG.getMemmove(getRoot(), dl, Op1, Op2, Op3, Align, isVol,
4282                               MachinePointerInfo(I.getArgOperand(0)),
4283                               MachinePointerInfo(I.getArgOperand(1))));
4284    return 0;
4285  }
4286  case Intrinsic::dbg_declare: {
4287    const DbgDeclareInst &DI = cast<DbgDeclareInst>(I);
4288    MDNode *Variable = DI.getVariable();
4289    const Value *Address = DI.getAddress();
4290    if (!Address || !DIVariable(DI.getVariable()).Verify())
4291      return 0;
4292
4293    // Build an entry in DbgOrdering.  Debug info input nodes get an SDNodeOrder
4294    // but do not always have a corresponding SDNode built.  The SDNodeOrder
4295    // absolute, but not relative, values are different depending on whether
4296    // debug info exists.
4297    ++SDNodeOrder;
4298
4299    // Check if address has undef value.
4300    if (isa<UndefValue>(Address) ||
4301        (Address->use_empty() && !isa<Argument>(Address))) {
4302      DEBUG(dbgs() << "Dropping debug info for " << DI);
4303      return 0;
4304    }
4305
4306    SDValue &N = NodeMap[Address];
4307    if (!N.getNode() && isa<Argument>(Address))
4308      // Check unused arguments map.
4309      N = UnusedArgNodeMap[Address];
4310    SDDbgValue *SDV;
4311    if (N.getNode()) {
4312      // Parameters are handled specially.
4313      bool isParameter =
4314        DIVariable(Variable).getTag() == dwarf::DW_TAG_arg_variable;
4315      if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
4316        Address = BCI->getOperand(0);
4317      const AllocaInst *AI = dyn_cast<AllocaInst>(Address);
4318
4319      if (isParameter && !AI) {
4320        FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
4321        if (FINode)
4322          // Byval parameter.  We have a frame index at this point.
4323          SDV = DAG.getDbgValue(Variable, FINode->getIndex(),
4324                                0, dl, SDNodeOrder);
4325        else {
4326          // Address is an argument, so try to emit its dbg value using
4327          // virtual register info from the FuncInfo.ValueMap.
4328          EmitFuncArgumentDbgValue(Address, Variable, 0, N);
4329          return 0;
4330        }
4331      } else if (AI)
4332        SDV = DAG.getDbgValue(Variable, N.getNode(), N.getResNo(),
4333                              0, dl, SDNodeOrder);
4334      else {
4335        // Can't do anything with other non-AI cases yet.
4336        DEBUG(dbgs() << "Dropping debug info for " << DI);
4337        return 0;
4338      }
4339      DAG.AddDbgValue(SDV, N.getNode(), isParameter);
4340    } else {
4341      // If Address is an argument then try to emit its dbg value using
4342      // virtual register info from the FuncInfo.ValueMap.
4343      if (!EmitFuncArgumentDbgValue(Address, Variable, 0, N)) {
4344        // If variable is pinned by a alloca in dominating bb then
4345        // use StaticAllocaMap.
4346        if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) {
4347          if (AI->getParent() != DI.getParent()) {
4348            DenseMap<const AllocaInst*, int>::iterator SI =
4349              FuncInfo.StaticAllocaMap.find(AI);
4350            if (SI != FuncInfo.StaticAllocaMap.end()) {
4351              SDV = DAG.getDbgValue(Variable, SI->second,
4352                                    0, dl, SDNodeOrder);
4353              DAG.AddDbgValue(SDV, 0, false);
4354              return 0;
4355            }
4356          }
4357        }
4358        DEBUG(dbgs() << "Dropping debug info for " << DI);
4359      }
4360    }
4361    return 0;
4362  }
4363  case Intrinsic::dbg_value: {
4364    const DbgValueInst &DI = cast<DbgValueInst>(I);
4365    if (!DIVariable(DI.getVariable()).Verify())
4366      return 0;
4367
4368    MDNode *Variable = DI.getVariable();
4369    uint64_t Offset = DI.getOffset();
4370    const Value *V = DI.getValue();
4371    if (!V)
4372      return 0;
4373
4374    // Build an entry in DbgOrdering.  Debug info input nodes get an SDNodeOrder
4375    // but do not always have a corresponding SDNode built.  The SDNodeOrder
4376    // absolute, but not relative, values are different depending on whether
4377    // debug info exists.
4378    ++SDNodeOrder;
4379    SDDbgValue *SDV;
4380    if (isa<ConstantInt>(V) || isa<ConstantFP>(V)) {
4381      SDV = DAG.getDbgValue(Variable, V, Offset, dl, SDNodeOrder);
4382      DAG.AddDbgValue(SDV, 0, false);
4383    } else {
4384      // Do not use getValue() in here; we don't want to generate code at
4385      // this point if it hasn't been done yet.
4386      SDValue N = NodeMap[V];
4387      if (!N.getNode() && isa<Argument>(V))
4388        // Check unused arguments map.
4389        N = UnusedArgNodeMap[V];
4390      if (N.getNode()) {
4391        if (!EmitFuncArgumentDbgValue(V, Variable, Offset, N)) {
4392          SDV = DAG.getDbgValue(Variable, N.getNode(),
4393                                N.getResNo(), Offset, dl, SDNodeOrder);
4394          DAG.AddDbgValue(SDV, N.getNode(), false);
4395        }
4396      } else if (!V->use_empty() ) {
4397        // Do not call getValue(V) yet, as we don't want to generate code.
4398        // Remember it for later.
4399        DanglingDebugInfo DDI(&DI, dl, SDNodeOrder);
4400        DanglingDebugInfoMap[V] = DDI;
4401      } else {
4402        // We may expand this to cover more cases.  One case where we have no
4403        // data available is an unreferenced parameter.
4404        DEBUG(dbgs() << "Dropping debug info for " << DI);
4405      }
4406    }
4407
4408    // Build a debug info table entry.
4409    if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V))
4410      V = BCI->getOperand(0);
4411    const AllocaInst *AI = dyn_cast<AllocaInst>(V);
4412    // Don't handle byval struct arguments or VLAs, for example.
4413    if (!AI)
4414      return 0;
4415    DenseMap<const AllocaInst*, int>::iterator SI =
4416      FuncInfo.StaticAllocaMap.find(AI);
4417    if (SI == FuncInfo.StaticAllocaMap.end())
4418      return 0; // VLAs.
4419    int FI = SI->second;
4420
4421    MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4422    if (!DI.getDebugLoc().isUnknown() && MMI.hasDebugInfo())
4423      MMI.setVariableDbgInfo(Variable, FI, DI.getDebugLoc());
4424    return 0;
4425  }
4426  case Intrinsic::eh_exception: {
4427    // Insert the EXCEPTIONADDR instruction.
4428    assert(FuncInfo.MBB->isLandingPad() &&
4429           "Call to eh.exception not in landing pad!");
4430    SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
4431    SDValue Ops[1];
4432    Ops[0] = DAG.getRoot();
4433    SDValue Op = DAG.getNode(ISD::EXCEPTIONADDR, dl, VTs, Ops, 1);
4434    setValue(&I, Op);
4435    DAG.setRoot(Op.getValue(1));
4436    return 0;
4437  }
4438
4439  case Intrinsic::eh_selector: {
4440    MachineBasicBlock *CallMBB = FuncInfo.MBB;
4441    MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4442    if (CallMBB->isLandingPad())
4443      AddCatchInfo(I, &MMI, CallMBB);
4444    else {
4445#ifndef NDEBUG
4446      FuncInfo.CatchInfoLost.insert(&I);
4447#endif
4448      // FIXME: Mark exception selector register as live in.  Hack for PR1508.
4449      unsigned Reg = TLI.getExceptionSelectorRegister();
4450      if (Reg) FuncInfo.MBB->addLiveIn(Reg);
4451    }
4452
4453    // Insert the EHSELECTION instruction.
4454    SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
4455    SDValue Ops[2];
4456    Ops[0] = getValue(I.getArgOperand(0));
4457    Ops[1] = getRoot();
4458    SDValue Op = DAG.getNode(ISD::EHSELECTION, dl, VTs, Ops, 2);
4459    DAG.setRoot(Op.getValue(1));
4460    setValue(&I, DAG.getSExtOrTrunc(Op, dl, MVT::i32));
4461    return 0;
4462  }
4463
4464  case Intrinsic::eh_typeid_for: {
4465    // Find the type id for the given typeinfo.
4466    GlobalVariable *GV = ExtractTypeInfo(I.getArgOperand(0));
4467    unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV);
4468    Res = DAG.getConstant(TypeID, MVT::i32);
4469    setValue(&I, Res);
4470    return 0;
4471  }
4472
4473  case Intrinsic::eh_return_i32:
4474  case Intrinsic::eh_return_i64:
4475    DAG.getMachineFunction().getMMI().setCallsEHReturn(true);
4476    DAG.setRoot(DAG.getNode(ISD::EH_RETURN, dl,
4477                            MVT::Other,
4478                            getControlRoot(),
4479                            getValue(I.getArgOperand(0)),
4480                            getValue(I.getArgOperand(1))));
4481    return 0;
4482  case Intrinsic::eh_unwind_init:
4483    DAG.getMachineFunction().getMMI().setCallsUnwindInit(true);
4484    return 0;
4485  case Intrinsic::eh_dwarf_cfa: {
4486    SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), dl,
4487                                        TLI.getPointerTy());
4488    SDValue Offset = DAG.getNode(ISD::ADD, dl,
4489                                 TLI.getPointerTy(),
4490                                 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, dl,
4491                                             TLI.getPointerTy()),
4492                                 CfaArg);
4493    SDValue FA = DAG.getNode(ISD::FRAMEADDR, dl,
4494                             TLI.getPointerTy(),
4495                             DAG.getConstant(0, TLI.getPointerTy()));
4496    setValue(&I, DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(),
4497                             FA, Offset));
4498    return 0;
4499  }
4500  case Intrinsic::eh_sjlj_callsite: {
4501    MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4502    ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0));
4503    assert(CI && "Non-constant call site value in eh.sjlj.callsite!");
4504    assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
4505
4506    MMI.setCurrentCallSite(CI->getZExtValue());
4507    return 0;
4508  }
4509  case Intrinsic::eh_sjlj_setjmp: {
4510    setValue(&I, DAG.getNode(ISD::EH_SJLJ_SETJMP, dl, MVT::i32, getRoot(),
4511                             getValue(I.getArgOperand(0))));
4512    return 0;
4513  }
4514  case Intrinsic::eh_sjlj_longjmp: {
4515    DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, dl, MVT::Other,
4516                            getRoot(), getValue(I.getArgOperand(0))));
4517    return 0;
4518  }
4519  case Intrinsic::eh_sjlj_dispatch_setup: {
4520    DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_DISPATCHSETUP, dl, MVT::Other,
4521                            getRoot(), getValue(I.getArgOperand(0))));
4522    return 0;
4523  }
4524
4525  case Intrinsic::x86_mmx_pslli_w:
4526  case Intrinsic::x86_mmx_pslli_d:
4527  case Intrinsic::x86_mmx_pslli_q:
4528  case Intrinsic::x86_mmx_psrli_w:
4529  case Intrinsic::x86_mmx_psrli_d:
4530  case Intrinsic::x86_mmx_psrli_q:
4531  case Intrinsic::x86_mmx_psrai_w:
4532  case Intrinsic::x86_mmx_psrai_d: {
4533    SDValue ShAmt = getValue(I.getArgOperand(1));
4534    if (isa<ConstantSDNode>(ShAmt)) {
4535      visitTargetIntrinsic(I, Intrinsic);
4536      return 0;
4537    }
4538    unsigned NewIntrinsic = 0;
4539    EVT ShAmtVT = MVT::v2i32;
4540    switch (Intrinsic) {
4541    case Intrinsic::x86_mmx_pslli_w:
4542      NewIntrinsic = Intrinsic::x86_mmx_psll_w;
4543      break;
4544    case Intrinsic::x86_mmx_pslli_d:
4545      NewIntrinsic = Intrinsic::x86_mmx_psll_d;
4546      break;
4547    case Intrinsic::x86_mmx_pslli_q:
4548      NewIntrinsic = Intrinsic::x86_mmx_psll_q;
4549      break;
4550    case Intrinsic::x86_mmx_psrli_w:
4551      NewIntrinsic = Intrinsic::x86_mmx_psrl_w;
4552      break;
4553    case Intrinsic::x86_mmx_psrli_d:
4554      NewIntrinsic = Intrinsic::x86_mmx_psrl_d;
4555      break;
4556    case Intrinsic::x86_mmx_psrli_q:
4557      NewIntrinsic = Intrinsic::x86_mmx_psrl_q;
4558      break;
4559    case Intrinsic::x86_mmx_psrai_w:
4560      NewIntrinsic = Intrinsic::x86_mmx_psra_w;
4561      break;
4562    case Intrinsic::x86_mmx_psrai_d:
4563      NewIntrinsic = Intrinsic::x86_mmx_psra_d;
4564      break;
4565    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
4566    }
4567
4568    // The vector shift intrinsics with scalars uses 32b shift amounts but
4569    // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
4570    // to be zero.
4571    // We must do this early because v2i32 is not a legal type.
4572    DebugLoc dl = getCurDebugLoc();
4573    SDValue ShOps[2];
4574    ShOps[0] = ShAmt;
4575    ShOps[1] = DAG.getConstant(0, MVT::i32);
4576    ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 2);
4577    EVT DestVT = TLI.getValueType(I.getType());
4578    ShAmt = DAG.getNode(ISD::BITCAST, dl, DestVT, ShAmt);
4579    Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
4580                       DAG.getConstant(NewIntrinsic, MVT::i32),
4581                       getValue(I.getArgOperand(0)), ShAmt);
4582    setValue(&I, Res);
4583    return 0;
4584  }
4585  case Intrinsic::convertff:
4586  case Intrinsic::convertfsi:
4587  case Intrinsic::convertfui:
4588  case Intrinsic::convertsif:
4589  case Intrinsic::convertuif:
4590  case Intrinsic::convertss:
4591  case Intrinsic::convertsu:
4592  case Intrinsic::convertus:
4593  case Intrinsic::convertuu: {
4594    ISD::CvtCode Code = ISD::CVT_INVALID;
4595    switch (Intrinsic) {
4596    case Intrinsic::convertff:  Code = ISD::CVT_FF; break;
4597    case Intrinsic::convertfsi: Code = ISD::CVT_FS; break;
4598    case Intrinsic::convertfui: Code = ISD::CVT_FU; break;
4599    case Intrinsic::convertsif: Code = ISD::CVT_SF; break;
4600    case Intrinsic::convertuif: Code = ISD::CVT_UF; break;
4601    case Intrinsic::convertss:  Code = ISD::CVT_SS; break;
4602    case Intrinsic::convertsu:  Code = ISD::CVT_SU; break;
4603    case Intrinsic::convertus:  Code = ISD::CVT_US; break;
4604    case Intrinsic::convertuu:  Code = ISD::CVT_UU; break;
4605    }
4606    EVT DestVT = TLI.getValueType(I.getType());
4607    const Value *Op1 = I.getArgOperand(0);
4608    Res = DAG.getConvertRndSat(DestVT, getCurDebugLoc(), getValue(Op1),
4609                               DAG.getValueType(DestVT),
4610                               DAG.getValueType(getValue(Op1).getValueType()),
4611                               getValue(I.getArgOperand(1)),
4612                               getValue(I.getArgOperand(2)),
4613                               Code);
4614    setValue(&I, Res);
4615    return 0;
4616  }
4617  case Intrinsic::sqrt:
4618    setValue(&I, DAG.getNode(ISD::FSQRT, dl,
4619                             getValue(I.getArgOperand(0)).getValueType(),
4620                             getValue(I.getArgOperand(0))));
4621    return 0;
4622  case Intrinsic::powi:
4623    setValue(&I, ExpandPowI(dl, getValue(I.getArgOperand(0)),
4624                            getValue(I.getArgOperand(1)), DAG));
4625    return 0;
4626  case Intrinsic::sin:
4627    setValue(&I, DAG.getNode(ISD::FSIN, dl,
4628                             getValue(I.getArgOperand(0)).getValueType(),
4629                             getValue(I.getArgOperand(0))));
4630    return 0;
4631  case Intrinsic::cos:
4632    setValue(&I, DAG.getNode(ISD::FCOS, dl,
4633                             getValue(I.getArgOperand(0)).getValueType(),
4634                             getValue(I.getArgOperand(0))));
4635    return 0;
4636  case Intrinsic::log:
4637    visitLog(I);
4638    return 0;
4639  case Intrinsic::log2:
4640    visitLog2(I);
4641    return 0;
4642  case Intrinsic::log10:
4643    visitLog10(I);
4644    return 0;
4645  case Intrinsic::exp:
4646    visitExp(I);
4647    return 0;
4648  case Intrinsic::exp2:
4649    visitExp2(I);
4650    return 0;
4651  case Intrinsic::pow:
4652    visitPow(I);
4653    return 0;
4654  case Intrinsic::fma:
4655    setValue(&I, DAG.getNode(ISD::FMA, dl,
4656                             getValue(I.getArgOperand(0)).getValueType(),
4657                             getValue(I.getArgOperand(0)),
4658                             getValue(I.getArgOperand(1)),
4659                             getValue(I.getArgOperand(2))));
4660    return 0;
4661  case Intrinsic::convert_to_fp16:
4662    setValue(&I, DAG.getNode(ISD::FP32_TO_FP16, dl,
4663                             MVT::i16, getValue(I.getArgOperand(0))));
4664    return 0;
4665  case Intrinsic::convert_from_fp16:
4666    setValue(&I, DAG.getNode(ISD::FP16_TO_FP32, dl,
4667                             MVT::f32, getValue(I.getArgOperand(0))));
4668    return 0;
4669  case Intrinsic::pcmarker: {
4670    SDValue Tmp = getValue(I.getArgOperand(0));
4671    DAG.setRoot(DAG.getNode(ISD::PCMARKER, dl, MVT::Other, getRoot(), Tmp));
4672    return 0;
4673  }
4674  case Intrinsic::readcyclecounter: {
4675    SDValue Op = getRoot();
4676    Res = DAG.getNode(ISD::READCYCLECOUNTER, dl,
4677                      DAG.getVTList(MVT::i64, MVT::Other),
4678                      &Op, 1);
4679    setValue(&I, Res);
4680    DAG.setRoot(Res.getValue(1));
4681    return 0;
4682  }
4683  case Intrinsic::bswap:
4684    setValue(&I, DAG.getNode(ISD::BSWAP, dl,
4685                             getValue(I.getArgOperand(0)).getValueType(),
4686                             getValue(I.getArgOperand(0))));
4687    return 0;
4688  case Intrinsic::cttz: {
4689    SDValue Arg = getValue(I.getArgOperand(0));
4690    EVT Ty = Arg.getValueType();
4691    setValue(&I, DAG.getNode(ISD::CTTZ, dl, Ty, Arg));
4692    return 0;
4693  }
4694  case Intrinsic::ctlz: {
4695    SDValue Arg = getValue(I.getArgOperand(0));
4696    EVT Ty = Arg.getValueType();
4697    setValue(&I, DAG.getNode(ISD::CTLZ, dl, Ty, Arg));
4698    return 0;
4699  }
4700  case Intrinsic::ctpop: {
4701    SDValue Arg = getValue(I.getArgOperand(0));
4702    EVT Ty = Arg.getValueType();
4703    setValue(&I, DAG.getNode(ISD::CTPOP, dl, Ty, Arg));
4704    return 0;
4705  }
4706  case Intrinsic::stacksave: {
4707    SDValue Op = getRoot();
4708    Res = DAG.getNode(ISD::STACKSAVE, dl,
4709                      DAG.getVTList(TLI.getPointerTy(), MVT::Other), &Op, 1);
4710    setValue(&I, Res);
4711    DAG.setRoot(Res.getValue(1));
4712    return 0;
4713  }
4714  case Intrinsic::stackrestore: {
4715    Res = getValue(I.getArgOperand(0));
4716    DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, dl, MVT::Other, getRoot(), Res));
4717    return 0;
4718  }
4719  case Intrinsic::stackprotector: {
4720    // Emit code into the DAG to store the stack guard onto the stack.
4721    MachineFunction &MF = DAG.getMachineFunction();
4722    MachineFrameInfo *MFI = MF.getFrameInfo();
4723    EVT PtrTy = TLI.getPointerTy();
4724
4725    SDValue Src = getValue(I.getArgOperand(0));   // The guard's value.
4726    AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
4727
4728    int FI = FuncInfo.StaticAllocaMap[Slot];
4729    MFI->setStackProtectorIndex(FI);
4730
4731    SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
4732
4733    // Store the stack protector onto the stack.
4734    Res = DAG.getStore(getRoot(), getCurDebugLoc(), Src, FIN,
4735                       MachinePointerInfo::getFixedStack(FI),
4736                       true, false, 0);
4737    setValue(&I, Res);
4738    DAG.setRoot(Res);
4739    return 0;
4740  }
4741  case Intrinsic::objectsize: {
4742    // If we don't know by now, we're never going to know.
4743    ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1));
4744
4745    assert(CI && "Non-constant type in __builtin_object_size?");
4746
4747    SDValue Arg = getValue(I.getCalledValue());
4748    EVT Ty = Arg.getValueType();
4749
4750    if (CI->isZero())
4751      Res = DAG.getConstant(-1ULL, Ty);
4752    else
4753      Res = DAG.getConstant(0, Ty);
4754
4755    setValue(&I, Res);
4756    return 0;
4757  }
4758  case Intrinsic::var_annotation:
4759    // Discard annotate attributes
4760    return 0;
4761
4762  case Intrinsic::init_trampoline: {
4763    const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
4764
4765    SDValue Ops[6];
4766    Ops[0] = getRoot();
4767    Ops[1] = getValue(I.getArgOperand(0));
4768    Ops[2] = getValue(I.getArgOperand(1));
4769    Ops[3] = getValue(I.getArgOperand(2));
4770    Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
4771    Ops[5] = DAG.getSrcValue(F);
4772
4773    Res = DAG.getNode(ISD::TRAMPOLINE, dl,
4774                      DAG.getVTList(TLI.getPointerTy(), MVT::Other),
4775                      Ops, 6);
4776
4777    setValue(&I, Res);
4778    DAG.setRoot(Res.getValue(1));
4779    return 0;
4780  }
4781  case Intrinsic::gcroot:
4782    if (GFI) {
4783      const Value *Alloca = I.getArgOperand(0);
4784      const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
4785
4786      FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
4787      GFI->addStackRoot(FI->getIndex(), TypeMap);
4788    }
4789    return 0;
4790  case Intrinsic::gcread:
4791  case Intrinsic::gcwrite:
4792    llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
4793    return 0;
4794  case Intrinsic::flt_rounds:
4795    setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, dl, MVT::i32));
4796    return 0;
4797
4798  case Intrinsic::expect: {
4799    // Just replace __builtin_expect(exp, c) with EXP.
4800    setValue(&I, getValue(I.getArgOperand(0)));
4801    return 0;
4802  }
4803
4804  case Intrinsic::trap: {
4805    StringRef TrapFuncName = getTrapFunctionName();
4806    if (TrapFuncName.empty()) {
4807      DAG.setRoot(DAG.getNode(ISD::TRAP, dl,MVT::Other, getRoot()));
4808      return 0;
4809    }
4810    TargetLowering::ArgListTy Args;
4811    std::pair<SDValue, SDValue> Result =
4812      TLI.LowerCallTo(getRoot(), I.getType(),
4813                 false, false, false, false, 0, CallingConv::C,
4814                 /*isTailCall=*/false, /*isReturnValueUsed=*/true,
4815                 DAG.getExternalSymbol(TrapFuncName.data(), TLI.getPointerTy()),
4816                 Args, DAG, getCurDebugLoc());
4817    DAG.setRoot(Result.second);
4818    return 0;
4819  }
4820  case Intrinsic::uadd_with_overflow:
4821    return implVisitAluOverflow(I, ISD::UADDO);
4822  case Intrinsic::sadd_with_overflow:
4823    return implVisitAluOverflow(I, ISD::SADDO);
4824  case Intrinsic::usub_with_overflow:
4825    return implVisitAluOverflow(I, ISD::USUBO);
4826  case Intrinsic::ssub_with_overflow:
4827    return implVisitAluOverflow(I, ISD::SSUBO);
4828  case Intrinsic::umul_with_overflow:
4829    return implVisitAluOverflow(I, ISD::UMULO);
4830  case Intrinsic::smul_with_overflow:
4831    return implVisitAluOverflow(I, ISD::SMULO);
4832
4833  case Intrinsic::prefetch: {
4834    SDValue Ops[5];
4835    unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
4836    Ops[0] = getRoot();
4837    Ops[1] = getValue(I.getArgOperand(0));
4838    Ops[2] = getValue(I.getArgOperand(1));
4839    Ops[3] = getValue(I.getArgOperand(2));
4840    Ops[4] = getValue(I.getArgOperand(3));
4841    DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, dl,
4842                                        DAG.getVTList(MVT::Other),
4843                                        &Ops[0], 5,
4844                                        EVT::getIntegerVT(*Context, 8),
4845                                        MachinePointerInfo(I.getArgOperand(0)),
4846                                        0, /* align */
4847                                        false, /* volatile */
4848                                        rw==0, /* read */
4849                                        rw==1)); /* write */
4850    return 0;
4851  }
4852  case Intrinsic::memory_barrier: {
4853    SDValue Ops[6];
4854    Ops[0] = getRoot();
4855    for (int x = 1; x < 6; ++x)
4856      Ops[x] = getValue(I.getArgOperand(x - 1));
4857
4858    DAG.setRoot(DAG.getNode(ISD::MEMBARRIER, dl, MVT::Other, &Ops[0], 6));
4859    return 0;
4860  }
4861  case Intrinsic::atomic_cmp_swap: {
4862    SDValue Root = getRoot();
4863    SDValue L =
4864      DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, getCurDebugLoc(),
4865                    getValue(I.getArgOperand(1)).getValueType().getSimpleVT(),
4866                    Root,
4867                    getValue(I.getArgOperand(0)),
4868                    getValue(I.getArgOperand(1)),
4869                    getValue(I.getArgOperand(2)),
4870                    MachinePointerInfo(I.getArgOperand(0)));
4871    setValue(&I, L);
4872    DAG.setRoot(L.getValue(1));
4873    return 0;
4874  }
4875  case Intrinsic::atomic_load_add:
4876    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_ADD);
4877  case Intrinsic::atomic_load_sub:
4878    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_SUB);
4879  case Intrinsic::atomic_load_or:
4880    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_OR);
4881  case Intrinsic::atomic_load_xor:
4882    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_XOR);
4883  case Intrinsic::atomic_load_and:
4884    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_AND);
4885  case Intrinsic::atomic_load_nand:
4886    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_NAND);
4887  case Intrinsic::atomic_load_max:
4888    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MAX);
4889  case Intrinsic::atomic_load_min:
4890    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MIN);
4891  case Intrinsic::atomic_load_umin:
4892    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMIN);
4893  case Intrinsic::atomic_load_umax:
4894    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMAX);
4895  case Intrinsic::atomic_swap:
4896    return implVisitBinaryAtomic(I, ISD::ATOMIC_SWAP);
4897
4898  case Intrinsic::invariant_start:
4899  case Intrinsic::lifetime_start:
4900    // Discard region information.
4901    setValue(&I, DAG.getUNDEF(TLI.getPointerTy()));
4902    return 0;
4903  case Intrinsic::invariant_end:
4904  case Intrinsic::lifetime_end:
4905    // Discard region information.
4906    return 0;
4907  }
4908}
4909
4910void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee,
4911                                      bool isTailCall,
4912                                      MachineBasicBlock *LandingPad) {
4913  const PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
4914  const FunctionType *FTy = cast<FunctionType>(PT->getElementType());
4915  const Type *RetTy = FTy->getReturnType();
4916  MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4917  MCSymbol *BeginLabel = 0;
4918
4919  TargetLowering::ArgListTy Args;
4920  TargetLowering::ArgListEntry Entry;
4921  Args.reserve(CS.arg_size());
4922
4923  // Check whether the function can return without sret-demotion.
4924  SmallVector<ISD::OutputArg, 4> Outs;
4925  SmallVector<uint64_t, 4> Offsets;
4926  GetReturnInfo(RetTy, CS.getAttributes().getRetAttributes(),
4927                Outs, TLI, &Offsets);
4928
4929  bool CanLowerReturn = TLI.CanLowerReturn(CS.getCallingConv(),
4930					   DAG.getMachineFunction(),
4931					   FTy->isVarArg(), Outs,
4932					   FTy->getContext());
4933
4934  SDValue DemoteStackSlot;
4935  int DemoteStackIdx = -100;
4936
4937  if (!CanLowerReturn) {
4938    uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(
4939                      FTy->getReturnType());
4940    unsigned Align  = TLI.getTargetData()->getPrefTypeAlignment(
4941                      FTy->getReturnType());
4942    MachineFunction &MF = DAG.getMachineFunction();
4943    DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
4944    const Type *StackSlotPtrType = PointerType::getUnqual(FTy->getReturnType());
4945
4946    DemoteStackSlot = DAG.getFrameIndex(DemoteStackIdx, TLI.getPointerTy());
4947    Entry.Node = DemoteStackSlot;
4948    Entry.Ty = StackSlotPtrType;
4949    Entry.isSExt = false;
4950    Entry.isZExt = false;
4951    Entry.isInReg = false;
4952    Entry.isSRet = true;
4953    Entry.isNest = false;
4954    Entry.isByVal = false;
4955    Entry.Alignment = Align;
4956    Args.push_back(Entry);
4957    RetTy = Type::getVoidTy(FTy->getContext());
4958  }
4959
4960  for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
4961       i != e; ++i) {
4962    const Value *V = *i;
4963
4964    // Skip empty types
4965    if (V->getType()->isEmptyTy())
4966      continue;
4967
4968    SDValue ArgNode = getValue(V);
4969    Entry.Node = ArgNode; Entry.Ty = V->getType();
4970
4971    unsigned attrInd = i - CS.arg_begin() + 1;
4972    Entry.isSExt  = CS.paramHasAttr(attrInd, Attribute::SExt);
4973    Entry.isZExt  = CS.paramHasAttr(attrInd, Attribute::ZExt);
4974    Entry.isInReg = CS.paramHasAttr(attrInd, Attribute::InReg);
4975    Entry.isSRet  = CS.paramHasAttr(attrInd, Attribute::StructRet);
4976    Entry.isNest  = CS.paramHasAttr(attrInd, Attribute::Nest);
4977    Entry.isByVal = CS.paramHasAttr(attrInd, Attribute::ByVal);
4978    Entry.Alignment = CS.getParamAlignment(attrInd);
4979    Args.push_back(Entry);
4980  }
4981
4982  if (LandingPad) {
4983    // Insert a label before the invoke call to mark the try range.  This can be
4984    // used to detect deletion of the invoke via the MachineModuleInfo.
4985    BeginLabel = MMI.getContext().CreateTempSymbol();
4986
4987    // For SjLj, keep track of which landing pads go with which invokes
4988    // so as to maintain the ordering of pads in the LSDA.
4989    unsigned CallSiteIndex = MMI.getCurrentCallSite();
4990    if (CallSiteIndex) {
4991      MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
4992      // Now that the call site is handled, stop tracking it.
4993      MMI.setCurrentCallSite(0);
4994    }
4995
4996    // Both PendingLoads and PendingExports must be flushed here;
4997    // this call might not return.
4998    (void)getRoot();
4999    DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getControlRoot(), BeginLabel));
5000  }
5001
5002  // Check if target-independent constraints permit a tail call here.
5003  // Target-dependent constraints are checked within TLI.LowerCallTo.
5004  if (isTailCall &&
5005      !isInTailCallPosition(CS, CS.getAttributes().getRetAttributes(), TLI))
5006    isTailCall = false;
5007
5008  // If there's a possibility that fast-isel has already selected some amount
5009  // of the current basic block, don't emit a tail call.
5010  if (isTailCall && EnableFastISel)
5011    isTailCall = false;
5012
5013  std::pair<SDValue,SDValue> Result =
5014    TLI.LowerCallTo(getRoot(), RetTy,
5015                    CS.paramHasAttr(0, Attribute::SExt),
5016                    CS.paramHasAttr(0, Attribute::ZExt), FTy->isVarArg(),
5017                    CS.paramHasAttr(0, Attribute::InReg), FTy->getNumParams(),
5018                    CS.getCallingConv(),
5019                    isTailCall,
5020                    !CS.getInstruction()->use_empty(),
5021                    Callee, Args, DAG, getCurDebugLoc());
5022  assert((isTailCall || Result.second.getNode()) &&
5023         "Non-null chain expected with non-tail call!");
5024  assert((Result.second.getNode() || !Result.first.getNode()) &&
5025         "Null value expected with tail call!");
5026  if (Result.first.getNode()) {
5027    setValue(CS.getInstruction(), Result.first);
5028  } else if (!CanLowerReturn && Result.second.getNode()) {
5029    // The instruction result is the result of loading from the
5030    // hidden sret parameter.
5031    SmallVector<EVT, 1> PVTs;
5032    const Type *PtrRetTy = PointerType::getUnqual(FTy->getReturnType());
5033
5034    ComputeValueVTs(TLI, PtrRetTy, PVTs);
5035    assert(PVTs.size() == 1 && "Pointers should fit in one register");
5036    EVT PtrVT = PVTs[0];
5037    unsigned NumValues = Outs.size();
5038    SmallVector<SDValue, 4> Values(NumValues);
5039    SmallVector<SDValue, 4> Chains(NumValues);
5040
5041    for (unsigned i = 0; i < NumValues; ++i) {
5042      SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT,
5043                                DemoteStackSlot,
5044                                DAG.getConstant(Offsets[i], PtrVT));
5045      SDValue L = DAG.getLoad(Outs[i].VT, getCurDebugLoc(), Result.second,
5046                              Add,
5047                  MachinePointerInfo::getFixedStack(DemoteStackIdx, Offsets[i]),
5048                              false, false, 1);
5049      Values[i] = L;
5050      Chains[i] = L.getValue(1);
5051    }
5052
5053    SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
5054                                MVT::Other, &Chains[0], NumValues);
5055    PendingLoads.push_back(Chain);
5056
5057    // Collect the legal value parts into potentially illegal values
5058    // that correspond to the original function's return values.
5059    SmallVector<EVT, 4> RetTys;
5060    RetTy = FTy->getReturnType();
5061    ComputeValueVTs(TLI, RetTy, RetTys);
5062    ISD::NodeType AssertOp = ISD::DELETED_NODE;
5063    SmallVector<SDValue, 4> ReturnValues;
5064    unsigned CurReg = 0;
5065    for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
5066      EVT VT = RetTys[I];
5067      EVT RegisterVT = TLI.getRegisterType(RetTy->getContext(), VT);
5068      unsigned NumRegs = TLI.getNumRegisters(RetTy->getContext(), VT);
5069
5070      SDValue ReturnValue =
5071        getCopyFromParts(DAG, getCurDebugLoc(), &Values[CurReg], NumRegs,
5072                         RegisterVT, VT, AssertOp);
5073      ReturnValues.push_back(ReturnValue);
5074      CurReg += NumRegs;
5075    }
5076
5077    setValue(CS.getInstruction(),
5078             DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
5079                         DAG.getVTList(&RetTys[0], RetTys.size()),
5080                         &ReturnValues[0], ReturnValues.size()));
5081  }
5082
5083  // Assign order to nodes here. If the call does not produce a result, it won't
5084  // be mapped to a SDNode and visit() will not assign it an order number.
5085  if (!Result.second.getNode()) {
5086    // As a special case, a null chain means that a tail call has been emitted and
5087    // the DAG root is already updated.
5088    HasTailCall = true;
5089    ++SDNodeOrder;
5090    AssignOrderingToNode(DAG.getRoot().getNode());
5091  } else {
5092    DAG.setRoot(Result.second);
5093    ++SDNodeOrder;
5094    AssignOrderingToNode(Result.second.getNode());
5095  }
5096
5097  if (LandingPad) {
5098    // Insert a label at the end of the invoke call to mark the try range.  This
5099    // can be used to detect deletion of the invoke via the MachineModuleInfo.
5100    MCSymbol *EndLabel = MMI.getContext().CreateTempSymbol();
5101    DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getRoot(), EndLabel));
5102
5103    // Inform MachineModuleInfo of range.
5104    MMI.addInvoke(LandingPad, BeginLabel, EndLabel);
5105  }
5106}
5107
5108/// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the
5109/// value is equal or not-equal to zero.
5110static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) {
5111  for (Value::const_use_iterator UI = V->use_begin(), E = V->use_end();
5112       UI != E; ++UI) {
5113    if (const ICmpInst *IC = dyn_cast<ICmpInst>(*UI))
5114      if (IC->isEquality())
5115        if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
5116          if (C->isNullValue())
5117            continue;
5118    // Unknown instruction.
5119    return false;
5120  }
5121  return true;
5122}
5123
5124static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
5125                             const Type *LoadTy,
5126                             SelectionDAGBuilder &Builder) {
5127
5128  // Check to see if this load can be trivially constant folded, e.g. if the
5129  // input is from a string literal.
5130  if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
5131    // Cast pointer to the type we really want to load.
5132    LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
5133                                         PointerType::getUnqual(LoadTy));
5134
5135    if (const Constant *LoadCst =
5136          ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput),
5137                                       Builder.TD))
5138      return Builder.getValue(LoadCst);
5139  }
5140
5141  // Otherwise, we have to emit the load.  If the pointer is to unfoldable but
5142  // still constant memory, the input chain can be the entry node.
5143  SDValue Root;
5144  bool ConstantMemory = false;
5145
5146  // Do not serialize (non-volatile) loads of constant memory with anything.
5147  if (Builder.AA->pointsToConstantMemory(PtrVal)) {
5148    Root = Builder.DAG.getEntryNode();
5149    ConstantMemory = true;
5150  } else {
5151    // Do not serialize non-volatile loads against each other.
5152    Root = Builder.DAG.getRoot();
5153  }
5154
5155  SDValue Ptr = Builder.getValue(PtrVal);
5156  SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurDebugLoc(), Root,
5157                                        Ptr, MachinePointerInfo(PtrVal),
5158                                        false /*volatile*/,
5159                                        false /*nontemporal*/, 1 /* align=1 */);
5160
5161  if (!ConstantMemory)
5162    Builder.PendingLoads.push_back(LoadVal.getValue(1));
5163  return LoadVal;
5164}
5165
5166
5167/// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form.
5168/// If so, return true and lower it, otherwise return false and it will be
5169/// lowered like a normal call.
5170bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) {
5171  // Verify that the prototype makes sense.  int memcmp(void*,void*,size_t)
5172  if (I.getNumArgOperands() != 3)
5173    return false;
5174
5175  const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
5176  if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() ||
5177      !I.getArgOperand(2)->getType()->isIntegerTy() ||
5178      !I.getType()->isIntegerTy())
5179    return false;
5180
5181  const ConstantInt *Size = dyn_cast<ConstantInt>(I.getArgOperand(2));
5182
5183  // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0
5184  // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0
5185  if (Size && IsOnlyUsedInZeroEqualityComparison(&I)) {
5186    bool ActuallyDoIt = true;
5187    MVT LoadVT;
5188    const Type *LoadTy;
5189    switch (Size->getZExtValue()) {
5190    default:
5191      LoadVT = MVT::Other;
5192      LoadTy = 0;
5193      ActuallyDoIt = false;
5194      break;
5195    case 2:
5196      LoadVT = MVT::i16;
5197      LoadTy = Type::getInt16Ty(Size->getContext());
5198      break;
5199    case 4:
5200      LoadVT = MVT::i32;
5201      LoadTy = Type::getInt32Ty(Size->getContext());
5202      break;
5203    case 8:
5204      LoadVT = MVT::i64;
5205      LoadTy = Type::getInt64Ty(Size->getContext());
5206      break;
5207        /*
5208    case 16:
5209      LoadVT = MVT::v4i32;
5210      LoadTy = Type::getInt32Ty(Size->getContext());
5211      LoadTy = VectorType::get(LoadTy, 4);
5212      break;
5213         */
5214    }
5215
5216    // This turns into unaligned loads.  We only do this if the target natively
5217    // supports the MVT we'll be loading or if it is small enough (<= 4) that
5218    // we'll only produce a small number of byte loads.
5219
5220    // Require that we can find a legal MVT, and only do this if the target
5221    // supports unaligned loads of that type.  Expanding into byte loads would
5222    // bloat the code.
5223    if (ActuallyDoIt && Size->getZExtValue() > 4) {
5224      // TODO: Handle 5 byte compare as 4-byte + 1 byte.
5225      // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
5226      if (!TLI.isTypeLegal(LoadVT) ||!TLI.allowsUnalignedMemoryAccesses(LoadVT))
5227        ActuallyDoIt = false;
5228    }
5229
5230    if (ActuallyDoIt) {
5231      SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this);
5232      SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this);
5233
5234      SDValue Res = DAG.getSetCC(getCurDebugLoc(), MVT::i1, LHSVal, RHSVal,
5235                                 ISD::SETNE);
5236      EVT CallVT = TLI.getValueType(I.getType(), true);
5237      setValue(&I, DAG.getZExtOrTrunc(Res, getCurDebugLoc(), CallVT));
5238      return true;
5239    }
5240  }
5241
5242
5243  return false;
5244}
5245
5246
5247void SelectionDAGBuilder::visitCall(const CallInst &I) {
5248  // Handle inline assembly differently.
5249  if (isa<InlineAsm>(I.getCalledValue())) {
5250    visitInlineAsm(&I);
5251    return;
5252  }
5253
5254  // See if any floating point values are being passed to this function. This is
5255  // used to emit an undefined reference to fltused on Windows.
5256  const FunctionType *FT =
5257    cast<FunctionType>(I.getCalledValue()->getType()->getContainedType(0));
5258  MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
5259  if (FT->isVarArg() &&
5260      !MMI.callsExternalVAFunctionWithFloatingPointArguments()) {
5261    for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
5262      const Type* T = I.getArgOperand(i)->getType();
5263      for (po_iterator<const Type*> i = po_begin(T), e = po_end(T);
5264           i != e; ++i) {
5265        if (!i->isFloatingPointTy()) continue;
5266        MMI.setCallsExternalVAFunctionWithFloatingPointArguments(true);
5267        break;
5268      }
5269    }
5270  }
5271
5272  const char *RenameFn = 0;
5273  if (Function *F = I.getCalledFunction()) {
5274    if (F->isDeclaration()) {
5275      if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) {
5276        if (unsigned IID = II->getIntrinsicID(F)) {
5277          RenameFn = visitIntrinsicCall(I, IID);
5278          if (!RenameFn)
5279            return;
5280        }
5281      }
5282      if (unsigned IID = F->getIntrinsicID()) {
5283        RenameFn = visitIntrinsicCall(I, IID);
5284        if (!RenameFn)
5285          return;
5286      }
5287    }
5288
5289    // Check for well-known libc/libm calls.  If the function is internal, it
5290    // can't be a library call.
5291    if (!F->hasLocalLinkage() && F->hasName()) {
5292      StringRef Name = F->getName();
5293      if (Name == "copysign" || Name == "copysignf" || Name == "copysignl") {
5294        if (I.getNumArgOperands() == 2 &&   // Basic sanity checks.
5295            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5296            I.getType() == I.getArgOperand(0)->getType() &&
5297            I.getType() == I.getArgOperand(1)->getType()) {
5298          SDValue LHS = getValue(I.getArgOperand(0));
5299          SDValue RHS = getValue(I.getArgOperand(1));
5300          setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurDebugLoc(),
5301                                   LHS.getValueType(), LHS, RHS));
5302          return;
5303        }
5304      } else if (Name == "fabs" || Name == "fabsf" || Name == "fabsl") {
5305        if (I.getNumArgOperands() == 1 &&   // Basic sanity checks.
5306            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5307            I.getType() == I.getArgOperand(0)->getType()) {
5308          SDValue Tmp = getValue(I.getArgOperand(0));
5309          setValue(&I, DAG.getNode(ISD::FABS, getCurDebugLoc(),
5310                                   Tmp.getValueType(), Tmp));
5311          return;
5312        }
5313      } else if (Name == "sin" || Name == "sinf" || Name == "sinl") {
5314        if (I.getNumArgOperands() == 1 &&   // Basic sanity checks.
5315            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5316            I.getType() == I.getArgOperand(0)->getType() &&
5317            I.onlyReadsMemory()) {
5318          SDValue Tmp = getValue(I.getArgOperand(0));
5319          setValue(&I, DAG.getNode(ISD::FSIN, getCurDebugLoc(),
5320                                   Tmp.getValueType(), Tmp));
5321          return;
5322        }
5323      } else if (Name == "cos" || Name == "cosf" || Name == "cosl") {
5324        if (I.getNumArgOperands() == 1 &&   // Basic sanity checks.
5325            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5326            I.getType() == I.getArgOperand(0)->getType() &&
5327            I.onlyReadsMemory()) {
5328          SDValue Tmp = getValue(I.getArgOperand(0));
5329          setValue(&I, DAG.getNode(ISD::FCOS, getCurDebugLoc(),
5330                                   Tmp.getValueType(), Tmp));
5331          return;
5332        }
5333      } else if (Name == "sqrt" || Name == "sqrtf" || Name == "sqrtl") {
5334        if (I.getNumArgOperands() == 1 &&   // Basic sanity checks.
5335            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5336            I.getType() == I.getArgOperand(0)->getType() &&
5337            I.onlyReadsMemory()) {
5338          SDValue Tmp = getValue(I.getArgOperand(0));
5339          setValue(&I, DAG.getNode(ISD::FSQRT, getCurDebugLoc(),
5340                                   Tmp.getValueType(), Tmp));
5341          return;
5342        }
5343      } else if (Name == "memcmp") {
5344        if (visitMemCmpCall(I))
5345          return;
5346      }
5347    }
5348  }
5349
5350  SDValue Callee;
5351  if (!RenameFn)
5352    Callee = getValue(I.getCalledValue());
5353  else
5354    Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy());
5355
5356  // Check if we can potentially perform a tail call. More detailed checking is
5357  // be done within LowerCallTo, after more information about the call is known.
5358  LowerCallTo(&I, Callee, I.isTailCall());
5359}
5360
5361namespace {
5362
5363/// AsmOperandInfo - This contains information for each constraint that we are
5364/// lowering.
5365class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
5366public:
5367  /// CallOperand - If this is the result output operand or a clobber
5368  /// this is null, otherwise it is the incoming operand to the CallInst.
5369  /// This gets modified as the asm is processed.
5370  SDValue CallOperand;
5371
5372  /// AssignedRegs - If this is a register or register class operand, this
5373  /// contains the set of register corresponding to the operand.
5374  RegsForValue AssignedRegs;
5375
5376  explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
5377    : TargetLowering::AsmOperandInfo(info), CallOperand(0,0) {
5378  }
5379
5380  /// MarkAllocatedRegs - Once AssignedRegs is set, mark the assigned registers
5381  /// busy in OutputRegs/InputRegs.
5382  void MarkAllocatedRegs(bool isOutReg, bool isInReg,
5383                         std::set<unsigned> &OutputRegs,
5384                         std::set<unsigned> &InputRegs,
5385                         const TargetRegisterInfo &TRI) const {
5386    if (isOutReg) {
5387      for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i)
5388        MarkRegAndAliases(AssignedRegs.Regs[i], OutputRegs, TRI);
5389    }
5390    if (isInReg) {
5391      for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i)
5392        MarkRegAndAliases(AssignedRegs.Regs[i], InputRegs, TRI);
5393    }
5394  }
5395
5396  /// getCallOperandValEVT - Return the EVT of the Value* that this operand
5397  /// corresponds to.  If there is no Value* for this operand, it returns
5398  /// MVT::Other.
5399  EVT getCallOperandValEVT(LLVMContext &Context,
5400                           const TargetLowering &TLI,
5401                           const TargetData *TD) const {
5402    if (CallOperandVal == 0) return MVT::Other;
5403
5404    if (isa<BasicBlock>(CallOperandVal))
5405      return TLI.getPointerTy();
5406
5407    const llvm::Type *OpTy = CallOperandVal->getType();
5408
5409    // FIXME: code duplicated from TargetLowering::ParseConstraints().
5410    // If this is an indirect operand, the operand is a pointer to the
5411    // accessed type.
5412    if (isIndirect) {
5413      const llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
5414      if (!PtrTy)
5415        report_fatal_error("Indirect operand for inline asm not a pointer!");
5416      OpTy = PtrTy->getElementType();
5417    }
5418
5419    // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
5420    if (const StructType *STy = dyn_cast<StructType>(OpTy))
5421      if (STy->getNumElements() == 1)
5422        OpTy = STy->getElementType(0);
5423
5424    // If OpTy is not a single value, it may be a struct/union that we
5425    // can tile with integers.
5426    if (!OpTy->isSingleValueType() && OpTy->isSized()) {
5427      unsigned BitSize = TD->getTypeSizeInBits(OpTy);
5428      switch (BitSize) {
5429      default: break;
5430      case 1:
5431      case 8:
5432      case 16:
5433      case 32:
5434      case 64:
5435      case 128:
5436        OpTy = IntegerType::get(Context, BitSize);
5437        break;
5438      }
5439    }
5440
5441    return TLI.getValueType(OpTy, true);
5442  }
5443
5444private:
5445  /// MarkRegAndAliases - Mark the specified register and all aliases in the
5446  /// specified set.
5447  static void MarkRegAndAliases(unsigned Reg, std::set<unsigned> &Regs,
5448                                const TargetRegisterInfo &TRI) {
5449    assert(TargetRegisterInfo::isPhysicalRegister(Reg) && "Isn't a physreg");
5450    Regs.insert(Reg);
5451    if (const unsigned *Aliases = TRI.getAliasSet(Reg))
5452      for (; *Aliases; ++Aliases)
5453        Regs.insert(*Aliases);
5454  }
5455};
5456
5457typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector;
5458
5459} // end anonymous namespace
5460
5461/// GetRegistersForValue - Assign registers (virtual or physical) for the
5462/// specified operand.  We prefer to assign virtual registers, to allow the
5463/// register allocator to handle the assignment process.  However, if the asm
5464/// uses features that we can't model on machineinstrs, we have SDISel do the
5465/// allocation.  This produces generally horrible, but correct, code.
5466///
5467///   OpInfo describes the operand.
5468///   Input and OutputRegs are the set of already allocated physical registers.
5469///
5470static void GetRegistersForValue(SelectionDAG &DAG,
5471                                 const TargetLowering &TLI,
5472                                 DebugLoc DL,
5473                                 SDISelAsmOperandInfo &OpInfo,
5474                                 std::set<unsigned> &OutputRegs,
5475                                 std::set<unsigned> &InputRegs) {
5476  LLVMContext &Context = *DAG.getContext();
5477
5478  // Compute whether this value requires an input register, an output register,
5479  // or both.
5480  bool isOutReg = false;
5481  bool isInReg = false;
5482  switch (OpInfo.Type) {
5483  case InlineAsm::isOutput:
5484    isOutReg = true;
5485
5486    // If there is an input constraint that matches this, we need to reserve
5487    // the input register so no other inputs allocate to it.
5488    isInReg = OpInfo.hasMatchingInput();
5489    break;
5490  case InlineAsm::isInput:
5491    isInReg = true;
5492    isOutReg = false;
5493    break;
5494  case InlineAsm::isClobber:
5495    isOutReg = true;
5496    isInReg = true;
5497    break;
5498  }
5499
5500
5501  MachineFunction &MF = DAG.getMachineFunction();
5502  SmallVector<unsigned, 4> Regs;
5503
5504  // If this is a constraint for a single physreg, or a constraint for a
5505  // register class, find it.
5506  std::pair<unsigned, const TargetRegisterClass*> PhysReg =
5507    TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
5508                                     OpInfo.ConstraintVT);
5509
5510  unsigned NumRegs = 1;
5511  if (OpInfo.ConstraintVT != MVT::Other) {
5512    // If this is a FP input in an integer register (or visa versa) insert a bit
5513    // cast of the input value.  More generally, handle any case where the input
5514    // value disagrees with the register class we plan to stick this in.
5515    if (OpInfo.Type == InlineAsm::isInput &&
5516        PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) {
5517      // Try to convert to the first EVT that the reg class contains.  If the
5518      // types are identical size, use a bitcast to convert (e.g. two differing
5519      // vector types).
5520      EVT RegVT = *PhysReg.second->vt_begin();
5521      if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) {
5522        OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL,
5523                                         RegVT, OpInfo.CallOperand);
5524        OpInfo.ConstraintVT = RegVT;
5525      } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
5526        // If the input is a FP value and we want it in FP registers, do a
5527        // bitcast to the corresponding integer type.  This turns an f64 value
5528        // into i64, which can be passed with two i32 values on a 32-bit
5529        // machine.
5530        RegVT = EVT::getIntegerVT(Context,
5531                                  OpInfo.ConstraintVT.getSizeInBits());
5532        OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL,
5533                                         RegVT, OpInfo.CallOperand);
5534        OpInfo.ConstraintVT = RegVT;
5535      }
5536    }
5537
5538    NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT);
5539  }
5540
5541  EVT RegVT;
5542  EVT ValueVT = OpInfo.ConstraintVT;
5543
5544  // If this is a constraint for a specific physical register, like {r17},
5545  // assign it now.
5546  if (unsigned AssignedReg = PhysReg.first) {
5547    const TargetRegisterClass *RC = PhysReg.second;
5548    if (OpInfo.ConstraintVT == MVT::Other)
5549      ValueVT = *RC->vt_begin();
5550
5551    // Get the actual register value type.  This is important, because the user
5552    // may have asked for (e.g.) the AX register in i32 type.  We need to
5553    // remember that AX is actually i16 to get the right extension.
5554    RegVT = *RC->vt_begin();
5555
5556    // This is a explicit reference to a physical register.
5557    Regs.push_back(AssignedReg);
5558
5559    // If this is an expanded reference, add the rest of the regs to Regs.
5560    if (NumRegs != 1) {
5561      TargetRegisterClass::iterator I = RC->begin();
5562      for (; *I != AssignedReg; ++I)
5563        assert(I != RC->end() && "Didn't find reg!");
5564
5565      // Already added the first reg.
5566      --NumRegs; ++I;
5567      for (; NumRegs; --NumRegs, ++I) {
5568        assert(I != RC->end() && "Ran out of registers to allocate!");
5569        Regs.push_back(*I);
5570      }
5571    }
5572
5573    OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
5574    const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
5575    OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI);
5576    return;
5577  }
5578
5579  // Otherwise, if this was a reference to an LLVM register class, create vregs
5580  // for this reference.
5581  if (const TargetRegisterClass *RC = PhysReg.second) {
5582    RegVT = *RC->vt_begin();
5583    if (OpInfo.ConstraintVT == MVT::Other)
5584      ValueVT = RegVT;
5585
5586    // Create the appropriate number of virtual registers.
5587    MachineRegisterInfo &RegInfo = MF.getRegInfo();
5588    for (; NumRegs; --NumRegs)
5589      Regs.push_back(RegInfo.createVirtualRegister(RC));
5590
5591    OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
5592    return;
5593  }
5594
5595  // Otherwise, we couldn't allocate enough registers for this.
5596}
5597
5598/// visitInlineAsm - Handle a call to an InlineAsm object.
5599///
5600void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) {
5601  const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
5602
5603  /// ConstraintOperands - Information about all of the constraints.
5604  SDISelAsmOperandInfoVector ConstraintOperands;
5605
5606  std::set<unsigned> OutputRegs, InputRegs;
5607
5608  TargetLowering::AsmOperandInfoVector
5609    TargetConstraints = TLI.ParseConstraints(CS);
5610
5611  bool hasMemory = false;
5612
5613  unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
5614  unsigned ResNo = 0;   // ResNo - The result number of the next output.
5615  for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
5616    ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i]));
5617    SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
5618
5619    EVT OpVT = MVT::Other;
5620
5621    // Compute the value type for each operand.
5622    switch (OpInfo.Type) {
5623    case InlineAsm::isOutput:
5624      // Indirect outputs just consume an argument.
5625      if (OpInfo.isIndirect) {
5626        OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
5627        break;
5628      }
5629
5630      // The return value of the call is this value.  As such, there is no
5631      // corresponding argument.
5632      assert(!CS.getType()->isVoidTy() &&
5633             "Bad inline asm!");
5634      if (const StructType *STy = dyn_cast<StructType>(CS.getType())) {
5635        OpVT = TLI.getValueType(STy->getElementType(ResNo));
5636      } else {
5637        assert(ResNo == 0 && "Asm only has one result!");
5638        OpVT = TLI.getValueType(CS.getType());
5639      }
5640      ++ResNo;
5641      break;
5642    case InlineAsm::isInput:
5643      OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
5644      break;
5645    case InlineAsm::isClobber:
5646      // Nothing to do.
5647      break;
5648    }
5649
5650    // If this is an input or an indirect output, process the call argument.
5651    // BasicBlocks are labels, currently appearing only in asm's.
5652    if (OpInfo.CallOperandVal) {
5653      if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) {
5654        OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
5655      } else {
5656        OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
5657      }
5658
5659      OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, TD);
5660    }
5661
5662    OpInfo.ConstraintVT = OpVT;
5663
5664    // Indirect operand accesses access memory.
5665    if (OpInfo.isIndirect)
5666      hasMemory = true;
5667    else {
5668      for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) {
5669        TargetLowering::ConstraintType
5670          CType = TLI.getConstraintType(OpInfo.Codes[j]);
5671        if (CType == TargetLowering::C_Memory) {
5672          hasMemory = true;
5673          break;
5674        }
5675      }
5676    }
5677  }
5678
5679  SDValue Chain, Flag;
5680
5681  // We won't need to flush pending loads if this asm doesn't touch
5682  // memory and is nonvolatile.
5683  if (hasMemory || IA->hasSideEffects())
5684    Chain = getRoot();
5685  else
5686    Chain = DAG.getRoot();
5687
5688  // Second pass over the constraints: compute which constraint option to use
5689  // and assign registers to constraints that want a specific physreg.
5690  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
5691    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
5692
5693    // If this is an output operand with a matching input operand, look up the
5694    // matching input. If their types mismatch, e.g. one is an integer, the
5695    // other is floating point, or their sizes are different, flag it as an
5696    // error.
5697    if (OpInfo.hasMatchingInput()) {
5698      SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
5699
5700      if (OpInfo.ConstraintVT != Input.ConstraintVT) {
5701        if ((OpInfo.ConstraintVT.isInteger() !=
5702             Input.ConstraintVT.isInteger()) ||
5703            (OpInfo.ConstraintVT.getSizeInBits() !=
5704             Input.ConstraintVT.getSizeInBits())) {
5705          report_fatal_error("Unsupported asm: input constraint"
5706                             " with a matching output constraint of"
5707                             " incompatible type!");
5708        }
5709        Input.ConstraintVT = OpInfo.ConstraintVT;
5710      }
5711    }
5712
5713    // Compute the constraint code and ConstraintType to use.
5714    TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
5715
5716    // If this is a memory input, and if the operand is not indirect, do what we
5717    // need to to provide an address for the memory input.
5718    if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
5719        !OpInfo.isIndirect) {
5720      assert((OpInfo.isMultipleAlternative ||
5721              (OpInfo.Type == InlineAsm::isInput)) &&
5722             "Can only indirectify direct input operands!");
5723
5724      // Memory operands really want the address of the value.  If we don't have
5725      // an indirect input, put it in the constpool if we can, otherwise spill
5726      // it to a stack slot.
5727      // TODO: This isn't quite right. We need to handle these according to
5728      // the addressing mode that the constraint wants. Also, this may take
5729      // an additional register for the computation and we don't want that
5730      // either.
5731
5732      // If the operand is a float, integer, or vector constant, spill to a
5733      // constant pool entry to get its address.
5734      const Value *OpVal = OpInfo.CallOperandVal;
5735      if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
5736          isa<ConstantVector>(OpVal)) {
5737        OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal),
5738                                                 TLI.getPointerTy());
5739      } else {
5740        // Otherwise, create a stack slot and emit a store to it before the
5741        // asm.
5742        const Type *Ty = OpVal->getType();
5743        uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty);
5744        unsigned Align  = TLI.getTargetData()->getPrefTypeAlignment(Ty);
5745        MachineFunction &MF = DAG.getMachineFunction();
5746        int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
5747        SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy());
5748        Chain = DAG.getStore(Chain, getCurDebugLoc(),
5749                             OpInfo.CallOperand, StackSlot,
5750                             MachinePointerInfo::getFixedStack(SSFI),
5751                             false, false, 0);
5752        OpInfo.CallOperand = StackSlot;
5753      }
5754
5755      // There is no longer a Value* corresponding to this operand.
5756      OpInfo.CallOperandVal = 0;
5757
5758      // It is now an indirect operand.
5759      OpInfo.isIndirect = true;
5760    }
5761
5762    // If this constraint is for a specific register, allocate it before
5763    // anything else.
5764    if (OpInfo.ConstraintType == TargetLowering::C_Register)
5765      GetRegistersForValue(DAG, TLI, getCurDebugLoc(), OpInfo, OutputRegs,
5766                           InputRegs);
5767  }
5768
5769  // Second pass - Loop over all of the operands, assigning virtual or physregs
5770  // to register class operands.
5771  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
5772    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
5773
5774    // C_Register operands have already been allocated, Other/Memory don't need
5775    // to be.
5776    if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass)
5777      GetRegistersForValue(DAG, TLI, getCurDebugLoc(), OpInfo, OutputRegs,
5778                           InputRegs);
5779  }
5780
5781  // AsmNodeOperands - The operands for the ISD::INLINEASM node.
5782  std::vector<SDValue> AsmNodeOperands;
5783  AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
5784  AsmNodeOperands.push_back(
5785          DAG.getTargetExternalSymbol(IA->getAsmString().c_str(),
5786                                      TLI.getPointerTy()));
5787
5788  // If we have a !srcloc metadata node associated with it, we want to attach
5789  // this to the ultimately generated inline asm machineinstr.  To do this, we
5790  // pass in the third operand as this (potentially null) inline asm MDNode.
5791  const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc");
5792  AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
5793
5794  // Remember the HasSideEffect and AlignStack bits as operand 3.
5795  unsigned ExtraInfo = 0;
5796  if (IA->hasSideEffects())
5797    ExtraInfo |= InlineAsm::Extra_HasSideEffects;
5798  if (IA->isAlignStack())
5799    ExtraInfo |= InlineAsm::Extra_IsAlignStack;
5800  AsmNodeOperands.push_back(DAG.getTargetConstant(ExtraInfo,
5801                                                  TLI.getPointerTy()));
5802
5803  // Loop over all of the inputs, copying the operand values into the
5804  // appropriate registers and processing the output regs.
5805  RegsForValue RetValRegs;
5806
5807  // IndirectStoresToEmit - The set of stores to emit after the inline asm node.
5808  std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit;
5809
5810  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
5811    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
5812
5813    switch (OpInfo.Type) {
5814    case InlineAsm::isOutput: {
5815      if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass &&
5816          OpInfo.ConstraintType != TargetLowering::C_Register) {
5817        // Memory output, or 'other' output (e.g. 'X' constraint).
5818        assert(OpInfo.isIndirect && "Memory output must be indirect operand");
5819
5820        // Add information to the INLINEASM node to know about this output.
5821        unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
5822        AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags,
5823                                                        TLI.getPointerTy()));
5824        AsmNodeOperands.push_back(OpInfo.CallOperand);
5825        break;
5826      }
5827
5828      // Otherwise, this is a register or register class output.
5829
5830      // Copy the output from the appropriate register.  Find a register that
5831      // we can use.
5832      if (OpInfo.AssignedRegs.Regs.empty())
5833        report_fatal_error("Couldn't allocate output reg for constraint '" +
5834                           Twine(OpInfo.ConstraintCode) + "'!");
5835
5836      // If this is an indirect operand, store through the pointer after the
5837      // asm.
5838      if (OpInfo.isIndirect) {
5839        IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs,
5840                                                      OpInfo.CallOperandVal));
5841      } else {
5842        // This is the result value of the call.
5843        assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
5844        // Concatenate this output onto the outputs list.
5845        RetValRegs.append(OpInfo.AssignedRegs);
5846      }
5847
5848      // Add information to the INLINEASM node to know that this register is
5849      // set.
5850      OpInfo.AssignedRegs.AddInlineAsmOperands(OpInfo.isEarlyClobber ?
5851                                           InlineAsm::Kind_RegDefEarlyClobber :
5852                                               InlineAsm::Kind_RegDef,
5853                                               false,
5854                                               0,
5855                                               DAG,
5856                                               AsmNodeOperands);
5857      break;
5858    }
5859    case InlineAsm::isInput: {
5860      SDValue InOperandVal = OpInfo.CallOperand;
5861
5862      if (OpInfo.isMatchingInputConstraint()) {   // Matching constraint?
5863        // If this is required to match an output register we have already set,
5864        // just use its register.
5865        unsigned OperandNo = OpInfo.getMatchedOperand();
5866
5867        // Scan until we find the definition we already emitted of this operand.
5868        // When we find it, create a RegsForValue operand.
5869        unsigned CurOp = InlineAsm::Op_FirstOperand;
5870        for (; OperandNo; --OperandNo) {
5871          // Advance to the next operand.
5872          unsigned OpFlag =
5873            cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
5874          assert((InlineAsm::isRegDefKind(OpFlag) ||
5875                  InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||
5876                  InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?");
5877          CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1;
5878        }
5879
5880        unsigned OpFlag =
5881          cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
5882        if (InlineAsm::isRegDefKind(OpFlag) ||
5883            InlineAsm::isRegDefEarlyClobberKind(OpFlag)) {
5884          // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
5885          if (OpInfo.isIndirect) {
5886            // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
5887            LLVMContext &Ctx = *DAG.getContext();
5888            Ctx.emitError(CS.getInstruction(),  "inline asm not supported yet:"
5889                          " don't know how to handle tied "
5890                          "indirect register inputs");
5891          }
5892
5893          RegsForValue MatchedRegs;
5894          MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType());
5895          EVT RegVT = AsmNodeOperands[CurOp+1].getValueType();
5896          MatchedRegs.RegVTs.push_back(RegVT);
5897          MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo();
5898          for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag);
5899               i != e; ++i)
5900            MatchedRegs.Regs.push_back
5901              (RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT)));
5902
5903          // Use the produced MatchedRegs object to
5904          MatchedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(),
5905                                    Chain, &Flag);
5906          MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse,
5907                                           true, OpInfo.getMatchedOperand(),
5908                                           DAG, AsmNodeOperands);
5909          break;
5910        }
5911
5912        assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!");
5913        assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 &&
5914               "Unexpected number of operands");
5915        // Add information to the INLINEASM node to know about this input.
5916        // See InlineAsm.h isUseOperandTiedToDef.
5917        OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
5918                                                    OpInfo.getMatchedOperand());
5919        AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlag,
5920                                                        TLI.getPointerTy()));
5921        AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
5922        break;
5923      }
5924
5925      // Treat indirect 'X' constraint as memory.
5926      if (OpInfo.ConstraintType == TargetLowering::C_Other &&
5927          OpInfo.isIndirect)
5928        OpInfo.ConstraintType = TargetLowering::C_Memory;
5929
5930      if (OpInfo.ConstraintType == TargetLowering::C_Other) {
5931        std::vector<SDValue> Ops;
5932        TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode,
5933                                         Ops, DAG);
5934        if (Ops.empty())
5935          report_fatal_error("Invalid operand for inline asm constraint '" +
5936                             Twine(OpInfo.ConstraintCode) + "'!");
5937
5938        // Add information to the INLINEASM node to know about this input.
5939        unsigned ResOpType =
5940          InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
5941        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
5942                                                        TLI.getPointerTy()));
5943        AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
5944        break;
5945      }
5946
5947      if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
5948        assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
5949        assert(InOperandVal.getValueType() == TLI.getPointerTy() &&
5950               "Memory operands expect pointer values");
5951
5952        // Add information to the INLINEASM node to know about this input.
5953        unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
5954        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
5955                                                        TLI.getPointerTy()));
5956        AsmNodeOperands.push_back(InOperandVal);
5957        break;
5958      }
5959
5960      assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
5961              OpInfo.ConstraintType == TargetLowering::C_Register) &&
5962             "Unknown constraint type!");
5963      assert(!OpInfo.isIndirect &&
5964             "Don't know how to handle indirect register inputs yet!");
5965
5966      // Copy the input into the appropriate registers.
5967      if (OpInfo.AssignedRegs.Regs.empty() ||
5968          !OpInfo.AssignedRegs.areValueTypesLegal(TLI))
5969        report_fatal_error("Couldn't allocate input reg for constraint '" +
5970                           Twine(OpInfo.ConstraintCode) + "'!");
5971
5972      OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(),
5973                                        Chain, &Flag);
5974
5975      OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0,
5976                                               DAG, AsmNodeOperands);
5977      break;
5978    }
5979    case InlineAsm::isClobber: {
5980      // Add the clobbered value to the operand list, so that the register
5981      // allocator is aware that the physreg got clobbered.
5982      if (!OpInfo.AssignedRegs.Regs.empty())
5983        OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber,
5984                                                 false, 0, DAG,
5985                                                 AsmNodeOperands);
5986      break;
5987    }
5988    }
5989  }
5990
5991  // Finish up input operands.  Set the input chain and add the flag last.
5992  AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
5993  if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
5994
5995  Chain = DAG.getNode(ISD::INLINEASM, getCurDebugLoc(),
5996                      DAG.getVTList(MVT::Other, MVT::Glue),
5997                      &AsmNodeOperands[0], AsmNodeOperands.size());
5998  Flag = Chain.getValue(1);
5999
6000  // If this asm returns a register value, copy the result from that register
6001  // and set it as the value of the call.
6002  if (!RetValRegs.Regs.empty()) {
6003    SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(),
6004                                             Chain, &Flag);
6005
6006    // FIXME: Why don't we do this for inline asms with MRVs?
6007    if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) {
6008      EVT ResultType = TLI.getValueType(CS.getType());
6009
6010      // If any of the results of the inline asm is a vector, it may have the
6011      // wrong width/num elts.  This can happen for register classes that can
6012      // contain multiple different value types.  The preg or vreg allocated may
6013      // not have the same VT as was expected.  Convert it to the right type
6014      // with bit_convert.
6015      if (ResultType != Val.getValueType() && Val.getValueType().isVector()) {
6016        Val = DAG.getNode(ISD::BITCAST, getCurDebugLoc(),
6017                          ResultType, Val);
6018
6019      } else if (ResultType != Val.getValueType() &&
6020                 ResultType.isInteger() && Val.getValueType().isInteger()) {
6021        // If a result value was tied to an input value, the computed result may
6022        // have a wider width than the expected result.  Extract the relevant
6023        // portion.
6024        Val = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), ResultType, Val);
6025      }
6026
6027      assert(ResultType == Val.getValueType() && "Asm result value mismatch!");
6028    }
6029
6030    setValue(CS.getInstruction(), Val);
6031    // Don't need to use this as a chain in this case.
6032    if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty())
6033      return;
6034  }
6035
6036  std::vector<std::pair<SDValue, const Value *> > StoresToEmit;
6037
6038  // Process indirect outputs, first output all of the flagged copies out of
6039  // physregs.
6040  for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
6041    RegsForValue &OutRegs = IndirectStoresToEmit[i].first;
6042    const Value *Ptr = IndirectStoresToEmit[i].second;
6043    SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(),
6044                                             Chain, &Flag);
6045    StoresToEmit.push_back(std::make_pair(OutVal, Ptr));
6046  }
6047
6048  // Emit the non-flagged stores from the physregs.
6049  SmallVector<SDValue, 8> OutChains;
6050  for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) {
6051    SDValue Val = DAG.getStore(Chain, getCurDebugLoc(),
6052                               StoresToEmit[i].first,
6053                               getValue(StoresToEmit[i].second),
6054                               MachinePointerInfo(StoresToEmit[i].second),
6055                               false, false, 0);
6056    OutChains.push_back(Val);
6057  }
6058
6059  if (!OutChains.empty())
6060    Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
6061                        &OutChains[0], OutChains.size());
6062
6063  DAG.setRoot(Chain);
6064}
6065
6066void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
6067  DAG.setRoot(DAG.getNode(ISD::VASTART, getCurDebugLoc(),
6068                          MVT::Other, getRoot(),
6069                          getValue(I.getArgOperand(0)),
6070                          DAG.getSrcValue(I.getArgOperand(0))));
6071}
6072
6073void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
6074  const TargetData &TD = *TLI.getTargetData();
6075  SDValue V = DAG.getVAArg(TLI.getValueType(I.getType()), getCurDebugLoc(),
6076                           getRoot(), getValue(I.getOperand(0)),
6077                           DAG.getSrcValue(I.getOperand(0)),
6078                           TD.getABITypeAlignment(I.getType()));
6079  setValue(&I, V);
6080  DAG.setRoot(V.getValue(1));
6081}
6082
6083void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
6084  DAG.setRoot(DAG.getNode(ISD::VAEND, getCurDebugLoc(),
6085                          MVT::Other, getRoot(),
6086                          getValue(I.getArgOperand(0)),
6087                          DAG.getSrcValue(I.getArgOperand(0))));
6088}
6089
6090void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
6091  DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurDebugLoc(),
6092                          MVT::Other, getRoot(),
6093                          getValue(I.getArgOperand(0)),
6094                          getValue(I.getArgOperand(1)),
6095                          DAG.getSrcValue(I.getArgOperand(0)),
6096                          DAG.getSrcValue(I.getArgOperand(1))));
6097}
6098
6099/// TargetLowering::LowerCallTo - This is the default LowerCallTo
6100/// implementation, which just calls LowerCall.
6101/// FIXME: When all targets are
6102/// migrated to using LowerCall, this hook should be integrated into SDISel.
6103std::pair<SDValue, SDValue>
6104TargetLowering::LowerCallTo(SDValue Chain, const Type *RetTy,
6105                            bool RetSExt, bool RetZExt, bool isVarArg,
6106                            bool isInreg, unsigned NumFixedArgs,
6107                            CallingConv::ID CallConv, bool isTailCall,
6108                            bool isReturnValueUsed,
6109                            SDValue Callee,
6110                            ArgListTy &Args, SelectionDAG &DAG,
6111                            DebugLoc dl) const {
6112  // Handle all of the outgoing arguments.
6113  SmallVector<ISD::OutputArg, 32> Outs;
6114  SmallVector<SDValue, 32> OutVals;
6115  for (unsigned i = 0, e = Args.size(); i != e; ++i) {
6116    SmallVector<EVT, 4> ValueVTs;
6117    ComputeValueVTs(*this, Args[i].Ty, ValueVTs);
6118    for (unsigned Value = 0, NumValues = ValueVTs.size();
6119         Value != NumValues; ++Value) {
6120      EVT VT = ValueVTs[Value];
6121      const Type *ArgTy = VT.getTypeForEVT(RetTy->getContext());
6122      SDValue Op = SDValue(Args[i].Node.getNode(),
6123                           Args[i].Node.getResNo() + Value);
6124      ISD::ArgFlagsTy Flags;
6125      unsigned OriginalAlignment =
6126        getTargetData()->getABITypeAlignment(ArgTy);
6127
6128      if (Args[i].isZExt)
6129        Flags.setZExt();
6130      if (Args[i].isSExt)
6131        Flags.setSExt();
6132      if (Args[i].isInReg)
6133        Flags.setInReg();
6134      if (Args[i].isSRet)
6135        Flags.setSRet();
6136      if (Args[i].isByVal) {
6137        Flags.setByVal();
6138        const PointerType *Ty = cast<PointerType>(Args[i].Ty);
6139        const Type *ElementTy = Ty->getElementType();
6140        Flags.setByValSize(getTargetData()->getTypeAllocSize(ElementTy));
6141        // For ByVal, alignment should come from FE.  BE will guess if this
6142        // info is not there but there are cases it cannot get right.
6143        unsigned FrameAlign;
6144        if (Args[i].Alignment)
6145          FrameAlign = Args[i].Alignment;
6146        else
6147          FrameAlign = getByValTypeAlignment(ElementTy);
6148        Flags.setByValAlign(FrameAlign);
6149      }
6150      if (Args[i].isNest)
6151        Flags.setNest();
6152      Flags.setOrigAlign(OriginalAlignment);
6153
6154      EVT PartVT = getRegisterType(RetTy->getContext(), VT);
6155      unsigned NumParts = getNumRegisters(RetTy->getContext(), VT);
6156      SmallVector<SDValue, 4> Parts(NumParts);
6157      ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
6158
6159      if (Args[i].isSExt)
6160        ExtendKind = ISD::SIGN_EXTEND;
6161      else if (Args[i].isZExt)
6162        ExtendKind = ISD::ZERO_EXTEND;
6163
6164      getCopyToParts(DAG, dl, Op, &Parts[0], NumParts,
6165                     PartVT, ExtendKind);
6166
6167      for (unsigned j = 0; j != NumParts; ++j) {
6168        // if it isn't first piece, alignment must be 1
6169        ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(),
6170                               i < NumFixedArgs);
6171        if (NumParts > 1 && j == 0)
6172          MyFlags.Flags.setSplit();
6173        else if (j != 0)
6174          MyFlags.Flags.setOrigAlign(1);
6175
6176        Outs.push_back(MyFlags);
6177        OutVals.push_back(Parts[j]);
6178      }
6179    }
6180  }
6181
6182  // Handle the incoming return values from the call.
6183  SmallVector<ISD::InputArg, 32> Ins;
6184  SmallVector<EVT, 4> RetTys;
6185  ComputeValueVTs(*this, RetTy, RetTys);
6186  for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
6187    EVT VT = RetTys[I];
6188    EVT RegisterVT = getRegisterType(RetTy->getContext(), VT);
6189    unsigned NumRegs = getNumRegisters(RetTy->getContext(), VT);
6190    for (unsigned i = 0; i != NumRegs; ++i) {
6191      ISD::InputArg MyFlags;
6192      MyFlags.VT = RegisterVT.getSimpleVT();
6193      MyFlags.Used = isReturnValueUsed;
6194      if (RetSExt)
6195        MyFlags.Flags.setSExt();
6196      if (RetZExt)
6197        MyFlags.Flags.setZExt();
6198      if (isInreg)
6199        MyFlags.Flags.setInReg();
6200      Ins.push_back(MyFlags);
6201    }
6202  }
6203
6204  SmallVector<SDValue, 4> InVals;
6205  Chain = LowerCall(Chain, Callee, CallConv, isVarArg, isTailCall,
6206                    Outs, OutVals, Ins, dl, DAG, InVals);
6207
6208  // Verify that the target's LowerCall behaved as expected.
6209  assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
6210         "LowerCall didn't return a valid chain!");
6211  assert((!isTailCall || InVals.empty()) &&
6212         "LowerCall emitted a return value for a tail call!");
6213  assert((isTailCall || InVals.size() == Ins.size()) &&
6214         "LowerCall didn't emit the correct number of values!");
6215
6216  // For a tail call, the return value is merely live-out and there aren't
6217  // any nodes in the DAG representing it. Return a special value to
6218  // indicate that a tail call has been emitted and no more Instructions
6219  // should be processed in the current block.
6220  if (isTailCall) {
6221    DAG.setRoot(Chain);
6222    return std::make_pair(SDValue(), SDValue());
6223  }
6224
6225  DEBUG(for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
6226          assert(InVals[i].getNode() &&
6227                 "LowerCall emitted a null value!");
6228          assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
6229                 "LowerCall emitted a value with the wrong type!");
6230        });
6231
6232  // Collect the legal value parts into potentially illegal values
6233  // that correspond to the original function's return values.
6234  ISD::NodeType AssertOp = ISD::DELETED_NODE;
6235  if (RetSExt)
6236    AssertOp = ISD::AssertSext;
6237  else if (RetZExt)
6238    AssertOp = ISD::AssertZext;
6239  SmallVector<SDValue, 4> ReturnValues;
6240  unsigned CurReg = 0;
6241  for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
6242    EVT VT = RetTys[I];
6243    EVT RegisterVT = getRegisterType(RetTy->getContext(), VT);
6244    unsigned NumRegs = getNumRegisters(RetTy->getContext(), VT);
6245
6246    ReturnValues.push_back(getCopyFromParts(DAG, dl, &InVals[CurReg],
6247                                            NumRegs, RegisterVT, VT,
6248                                            AssertOp));
6249    CurReg += NumRegs;
6250  }
6251
6252  // For a function returning void, there is no return value. We can't create
6253  // such a node, so we just return a null return value in that case. In
6254  // that case, nothing will actually look at the value.
6255  if (ReturnValues.empty())
6256    return std::make_pair(SDValue(), Chain);
6257
6258  SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
6259                            DAG.getVTList(&RetTys[0], RetTys.size()),
6260                            &ReturnValues[0], ReturnValues.size());
6261  return std::make_pair(Res, Chain);
6262}
6263
6264void TargetLowering::LowerOperationWrapper(SDNode *N,
6265                                           SmallVectorImpl<SDValue> &Results,
6266                                           SelectionDAG &DAG) const {
6267  SDValue Res = LowerOperation(SDValue(N, 0), DAG);
6268  if (Res.getNode())
6269    Results.push_back(Res);
6270}
6271
6272SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
6273  llvm_unreachable("LowerOperation not implemented for this target!");
6274  return SDValue();
6275}
6276
6277void
6278SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) {
6279  SDValue Op = getNonRegisterValue(V);
6280  assert((Op.getOpcode() != ISD::CopyFromReg ||
6281          cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
6282         "Copy from a reg to the same reg!");
6283  assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg");
6284
6285  RegsForValue RFV(V->getContext(), TLI, Reg, V->getType());
6286  SDValue Chain = DAG.getEntryNode();
6287  RFV.getCopyToRegs(Op, DAG, getCurDebugLoc(), Chain, 0);
6288  PendingExports.push_back(Chain);
6289}
6290
6291#include "llvm/CodeGen/SelectionDAGISel.h"
6292
6293/// isOnlyUsedInEntryBlock - If the specified argument is only used in the
6294/// entry block, return true.  This includes arguments used by switches, since
6295/// the switch may expand into multiple basic blocks.
6296static bool isOnlyUsedInEntryBlock(const Argument *A) {
6297  // With FastISel active, we may be splitting blocks, so force creation
6298  // of virtual registers for all non-dead arguments.
6299  if (EnableFastISel)
6300    return A->use_empty();
6301
6302  const BasicBlock *Entry = A->getParent()->begin();
6303  for (Value::const_use_iterator UI = A->use_begin(), E = A->use_end();
6304       UI != E; ++UI) {
6305    const User *U = *UI;
6306    if (cast<Instruction>(U)->getParent() != Entry || isa<SwitchInst>(U))
6307      return false;  // Use not in entry block.
6308  }
6309  return true;
6310}
6311
6312void SelectionDAGISel::LowerArguments(const BasicBlock *LLVMBB) {
6313  // If this is the entry block, emit arguments.
6314  const Function &F = *LLVMBB->getParent();
6315  SelectionDAG &DAG = SDB->DAG;
6316  DebugLoc dl = SDB->getCurDebugLoc();
6317  const TargetData *TD = TLI.getTargetData();
6318  SmallVector<ISD::InputArg, 16> Ins;
6319
6320  // Check whether the function can return without sret-demotion.
6321  SmallVector<ISD::OutputArg, 4> Outs;
6322  GetReturnInfo(F.getReturnType(), F.getAttributes().getRetAttributes(),
6323                Outs, TLI);
6324
6325  if (!FuncInfo->CanLowerReturn) {
6326    // Put in an sret pointer parameter before all the other parameters.
6327    SmallVector<EVT, 1> ValueVTs;
6328    ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs);
6329
6330    // NOTE: Assuming that a pointer will never break down to more than one VT
6331    // or one register.
6332    ISD::ArgFlagsTy Flags;
6333    Flags.setSRet();
6334    EVT RegisterVT = TLI.getRegisterType(*DAG.getContext(), ValueVTs[0]);
6335    ISD::InputArg RetArg(Flags, RegisterVT, true);
6336    Ins.push_back(RetArg);
6337  }
6338
6339  // Set up the incoming argument description vector.
6340  unsigned Idx = 1;
6341  for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end();
6342       I != E; ++I, ++Idx) {
6343    SmallVector<EVT, 4> ValueVTs;
6344    ComputeValueVTs(TLI, I->getType(), ValueVTs);
6345    bool isArgValueUsed = !I->use_empty();
6346    for (unsigned Value = 0, NumValues = ValueVTs.size();
6347         Value != NumValues; ++Value) {
6348      EVT VT = ValueVTs[Value];
6349      const Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
6350      ISD::ArgFlagsTy Flags;
6351      unsigned OriginalAlignment =
6352        TD->getABITypeAlignment(ArgTy);
6353
6354      if (F.paramHasAttr(Idx, Attribute::ZExt))
6355        Flags.setZExt();
6356      if (F.paramHasAttr(Idx, Attribute::SExt))
6357        Flags.setSExt();
6358      if (F.paramHasAttr(Idx, Attribute::InReg))
6359        Flags.setInReg();
6360      if (F.paramHasAttr(Idx, Attribute::StructRet))
6361        Flags.setSRet();
6362      if (F.paramHasAttr(Idx, Attribute::ByVal)) {
6363        Flags.setByVal();
6364        const PointerType *Ty = cast<PointerType>(I->getType());
6365        const Type *ElementTy = Ty->getElementType();
6366        Flags.setByValSize(TD->getTypeAllocSize(ElementTy));
6367        // For ByVal, alignment should be passed from FE.  BE will guess if
6368        // this info is not there but there are cases it cannot get right.
6369        unsigned FrameAlign;
6370        if (F.getParamAlignment(Idx))
6371          FrameAlign = F.getParamAlignment(Idx);
6372        else
6373          FrameAlign = TLI.getByValTypeAlignment(ElementTy);
6374        Flags.setByValAlign(FrameAlign);
6375      }
6376      if (F.paramHasAttr(Idx, Attribute::Nest))
6377        Flags.setNest();
6378      Flags.setOrigAlign(OriginalAlignment);
6379
6380      EVT RegisterVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
6381      unsigned NumRegs = TLI.getNumRegisters(*CurDAG->getContext(), VT);
6382      for (unsigned i = 0; i != NumRegs; ++i) {
6383        ISD::InputArg MyFlags(Flags, RegisterVT, isArgValueUsed);
6384        if (NumRegs > 1 && i == 0)
6385          MyFlags.Flags.setSplit();
6386        // if it isn't first piece, alignment must be 1
6387        else if (i > 0)
6388          MyFlags.Flags.setOrigAlign(1);
6389        Ins.push_back(MyFlags);
6390      }
6391    }
6392  }
6393
6394  // Call the target to set up the argument values.
6395  SmallVector<SDValue, 8> InVals;
6396  SDValue NewRoot = TLI.LowerFormalArguments(DAG.getRoot(), F.getCallingConv(),
6397                                             F.isVarArg(), Ins,
6398                                             dl, DAG, InVals);
6399
6400  // Verify that the target's LowerFormalArguments behaved as expected.
6401  assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
6402         "LowerFormalArguments didn't return a valid chain!");
6403  assert(InVals.size() == Ins.size() &&
6404         "LowerFormalArguments didn't emit the correct number of values!");
6405  DEBUG({
6406      for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
6407        assert(InVals[i].getNode() &&
6408               "LowerFormalArguments emitted a null value!");
6409        assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
6410               "LowerFormalArguments emitted a value with the wrong type!");
6411      }
6412    });
6413
6414  // Update the DAG with the new chain value resulting from argument lowering.
6415  DAG.setRoot(NewRoot);
6416
6417  // Set up the argument values.
6418  unsigned i = 0;
6419  Idx = 1;
6420  if (!FuncInfo->CanLowerReturn) {
6421    // Create a virtual register for the sret pointer, and put in a copy
6422    // from the sret argument into it.
6423    SmallVector<EVT, 1> ValueVTs;
6424    ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs);
6425    EVT VT = ValueVTs[0];
6426    EVT RegVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
6427    ISD::NodeType AssertOp = ISD::DELETED_NODE;
6428    SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1,
6429                                        RegVT, VT, AssertOp);
6430
6431    MachineFunction& MF = SDB->DAG.getMachineFunction();
6432    MachineRegisterInfo& RegInfo = MF.getRegInfo();
6433    unsigned SRetReg = RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT));
6434    FuncInfo->DemoteRegister = SRetReg;
6435    NewRoot = SDB->DAG.getCopyToReg(NewRoot, SDB->getCurDebugLoc(),
6436                                    SRetReg, ArgValue);
6437    DAG.setRoot(NewRoot);
6438
6439    // i indexes lowered arguments.  Bump it past the hidden sret argument.
6440    // Idx indexes LLVM arguments.  Don't touch it.
6441    ++i;
6442  }
6443
6444  for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E;
6445      ++I, ++Idx) {
6446    SmallVector<SDValue, 4> ArgValues;
6447    SmallVector<EVT, 4> ValueVTs;
6448    ComputeValueVTs(TLI, I->getType(), ValueVTs);
6449    unsigned NumValues = ValueVTs.size();
6450
6451    // If this argument is unused then remember its value. It is used to generate
6452    // debugging information.
6453    if (I->use_empty() && NumValues)
6454      SDB->setUnusedArgValue(I, InVals[i]);
6455
6456    for (unsigned Val = 0; Val != NumValues; ++Val) {
6457      EVT VT = ValueVTs[Val];
6458      EVT PartVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
6459      unsigned NumParts = TLI.getNumRegisters(*CurDAG->getContext(), VT);
6460
6461      if (!I->use_empty()) {
6462        ISD::NodeType AssertOp = ISD::DELETED_NODE;
6463        if (F.paramHasAttr(Idx, Attribute::SExt))
6464          AssertOp = ISD::AssertSext;
6465        else if (F.paramHasAttr(Idx, Attribute::ZExt))
6466          AssertOp = ISD::AssertZext;
6467
6468        ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i],
6469                                             NumParts, PartVT, VT,
6470                                             AssertOp));
6471      }
6472
6473      i += NumParts;
6474    }
6475
6476    // We don't need to do anything else for unused arguments.
6477    if (ArgValues.empty())
6478      continue;
6479
6480    // Note down frame index for byval arguments.
6481    if (I->hasByValAttr())
6482      if (FrameIndexSDNode *FI =
6483          dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
6484        FuncInfo->setByValArgumentFrameIndex(I, FI->getIndex());
6485
6486    SDValue Res = DAG.getMergeValues(&ArgValues[0], NumValues,
6487                                     SDB->getCurDebugLoc());
6488    SDB->setValue(I, Res);
6489
6490    // If this argument is live outside of the entry block, insert a copy from
6491    // wherever we got it to the vreg that other BB's will reference it as.
6492    if (!EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) {
6493      // If we can, though, try to skip creating an unnecessary vreg.
6494      // FIXME: This isn't very clean... it would be nice to make this more
6495      // general.  It's also subtly incompatible with the hacks FastISel
6496      // uses with vregs.
6497      unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
6498      if (TargetRegisterInfo::isVirtualRegister(Reg)) {
6499        FuncInfo->ValueMap[I] = Reg;
6500        continue;
6501      }
6502    }
6503    if (!isOnlyUsedInEntryBlock(I)) {
6504      FuncInfo->InitializeRegForValue(I);
6505      SDB->CopyToExportRegsIfNeeded(I);
6506    }
6507  }
6508
6509  assert(i == InVals.size() && "Argument register count mismatch!");
6510
6511  // Finally, if the target has anything special to do, allow it to do so.
6512  // FIXME: this should insert code into the DAG!
6513  EmitFunctionEntryCode();
6514}
6515
6516/// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
6517/// ensure constants are generated when needed.  Remember the virtual registers
6518/// that need to be added to the Machine PHI nodes as input.  We cannot just
6519/// directly add them, because expansion might result in multiple MBB's for one
6520/// BB.  As such, the start of the BB might correspond to a different MBB than
6521/// the end.
6522///
6523void
6524SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
6525  const TerminatorInst *TI = LLVMBB->getTerminator();
6526
6527  SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
6528
6529  // Check successor nodes' PHI nodes that expect a constant to be available
6530  // from this block.
6531  for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
6532    const BasicBlock *SuccBB = TI->getSuccessor(succ);
6533    if (!isa<PHINode>(SuccBB->begin())) continue;
6534    MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
6535
6536    // If this terminator has multiple identical successors (common for
6537    // switches), only handle each succ once.
6538    if (!SuccsHandled.insert(SuccMBB)) continue;
6539
6540    MachineBasicBlock::iterator MBBI = SuccMBB->begin();
6541
6542    // At this point we know that there is a 1-1 correspondence between LLVM PHI
6543    // nodes and Machine PHI nodes, but the incoming operands have not been
6544    // emitted yet.
6545    for (BasicBlock::const_iterator I = SuccBB->begin();
6546         const PHINode *PN = dyn_cast<PHINode>(I); ++I) {
6547      // Ignore dead phi's.
6548      if (PN->use_empty()) continue;
6549
6550      // Skip empty types
6551      if (PN->getType()->isEmptyTy())
6552        continue;
6553
6554      unsigned Reg;
6555      const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
6556
6557      if (const Constant *C = dyn_cast<Constant>(PHIOp)) {
6558        unsigned &RegOut = ConstantsOut[C];
6559        if (RegOut == 0) {
6560          RegOut = FuncInfo.CreateRegs(C->getType());
6561          CopyValueToVirtualRegister(C, RegOut);
6562        }
6563        Reg = RegOut;
6564      } else {
6565        DenseMap<const Value *, unsigned>::iterator I =
6566          FuncInfo.ValueMap.find(PHIOp);
6567        if (I != FuncInfo.ValueMap.end())
6568          Reg = I->second;
6569        else {
6570          assert(isa<AllocaInst>(PHIOp) &&
6571                 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
6572                 "Didn't codegen value into a register!??");
6573          Reg = FuncInfo.CreateRegs(PHIOp->getType());
6574          CopyValueToVirtualRegister(PHIOp, Reg);
6575        }
6576      }
6577
6578      // Remember that this register needs to added to the machine PHI node as
6579      // the input for this MBB.
6580      SmallVector<EVT, 4> ValueVTs;
6581      ComputeValueVTs(TLI, PN->getType(), ValueVTs);
6582      for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
6583        EVT VT = ValueVTs[vti];
6584        unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
6585        for (unsigned i = 0, e = NumRegisters; i != e; ++i)
6586          FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i));
6587        Reg += NumRegisters;
6588      }
6589    }
6590  }
6591  ConstantsOut.clear();
6592}
6593