SelectionDAGBuilder.cpp revision fe85e764736f4d87104f3d1508c173f566c8c461
1//===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements routines for translating from LLVM IR into SelectionDAG IR.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "isel"
15#include "SDNodeDbgValue.h"
16#include "SelectionDAGBuilder.h"
17#include "FunctionLoweringInfo.h"
18#include "llvm/ADT/BitVector.h"
19#include "llvm/ADT/SmallSet.h"
20#include "llvm/Analysis/AliasAnalysis.h"
21#include "llvm/Analysis/ConstantFolding.h"
22#include "llvm/Constants.h"
23#include "llvm/CallingConv.h"
24#include "llvm/DerivedTypes.h"
25#include "llvm/Function.h"
26#include "llvm/GlobalVariable.h"
27#include "llvm/InlineAsm.h"
28#include "llvm/Instructions.h"
29#include "llvm/Intrinsics.h"
30#include "llvm/IntrinsicInst.h"
31#include "llvm/LLVMContext.h"
32#include "llvm/Module.h"
33#include "llvm/CodeGen/FastISel.h"
34#include "llvm/CodeGen/GCStrategy.h"
35#include "llvm/CodeGen/GCMetadata.h"
36#include "llvm/CodeGen/MachineFunction.h"
37#include "llvm/CodeGen/MachineFrameInfo.h"
38#include "llvm/CodeGen/MachineInstrBuilder.h"
39#include "llvm/CodeGen/MachineJumpTableInfo.h"
40#include "llvm/CodeGen/MachineModuleInfo.h"
41#include "llvm/CodeGen/MachineRegisterInfo.h"
42#include "llvm/CodeGen/PseudoSourceValue.h"
43#include "llvm/CodeGen/SelectionDAG.h"
44#include "llvm/Analysis/DebugInfo.h"
45#include "llvm/Target/TargetRegisterInfo.h"
46#include "llvm/Target/TargetData.h"
47#include "llvm/Target/TargetFrameInfo.h"
48#include "llvm/Target/TargetInstrInfo.h"
49#include "llvm/Target/TargetIntrinsicInfo.h"
50#include "llvm/Target/TargetLowering.h"
51#include "llvm/Target/TargetOptions.h"
52#include "llvm/Support/Compiler.h"
53#include "llvm/Support/CommandLine.h"
54#include "llvm/Support/Debug.h"
55#include "llvm/Support/ErrorHandling.h"
56#include "llvm/Support/MathExtras.h"
57#include "llvm/Support/raw_ostream.h"
58#include <algorithm>
59using namespace llvm;
60
61/// LimitFloatPrecision - Generate low-precision inline sequences for
62/// some float libcalls (6, 8 or 12 bits).
63static unsigned LimitFloatPrecision;
64
65static cl::opt<unsigned, true>
66LimitFPPrecision("limit-float-precision",
67                 cl::desc("Generate low-precision inline sequences "
68                          "for some float libcalls"),
69                 cl::location(LimitFloatPrecision),
70                 cl::init(0));
71
72namespace {
73  /// RegsForValue - This struct represents the registers (physical or virtual)
74  /// that a particular set of values is assigned, and the type information
75  /// about the value. The most common situation is to represent one value at a
76  /// time, but struct or array values are handled element-wise as multiple
77  /// values.  The splitting of aggregates is performed recursively, so that we
78  /// never have aggregate-typed registers. The values at this point do not
79  /// necessarily have legal types, so each value may require one or more
80  /// registers of some legal type.
81  ///
82  struct RegsForValue {
83    /// TLI - The TargetLowering object.
84    ///
85    const TargetLowering *TLI;
86
87    /// ValueVTs - The value types of the values, which may not be legal, and
88    /// may need be promoted or synthesized from one or more registers.
89    ///
90    SmallVector<EVT, 4> ValueVTs;
91
92    /// RegVTs - The value types of the registers. This is the same size as
93    /// ValueVTs and it records, for each value, what the type of the assigned
94    /// register or registers are. (Individual values are never synthesized
95    /// from more than one type of register.)
96    ///
97    /// With virtual registers, the contents of RegVTs is redundant with TLI's
98    /// getRegisterType member function, however when with physical registers
99    /// it is necessary to have a separate record of the types.
100    ///
101    SmallVector<EVT, 4> RegVTs;
102
103    /// Regs - This list holds the registers assigned to the values.
104    /// Each legal or promoted value requires one register, and each
105    /// expanded value requires multiple registers.
106    ///
107    SmallVector<unsigned, 4> Regs;
108
109    RegsForValue() : TLI(0) {}
110
111    RegsForValue(const TargetLowering &tli,
112                 const SmallVector<unsigned, 4> &regs,
113                 EVT regvt, EVT valuevt)
114      : TLI(&tli),  ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {}
115    RegsForValue(const TargetLowering &tli,
116                 const SmallVector<unsigned, 4> &regs,
117                 const SmallVector<EVT, 4> &regvts,
118                 const SmallVector<EVT, 4> &valuevts)
119      : TLI(&tli), ValueVTs(valuevts), RegVTs(regvts), Regs(regs) {}
120    RegsForValue(LLVMContext &Context, const TargetLowering &tli,
121                 unsigned Reg, const Type *Ty) : TLI(&tli) {
122      ComputeValueVTs(tli, Ty, ValueVTs);
123
124      for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
125        EVT ValueVT = ValueVTs[Value];
126        unsigned NumRegs = TLI->getNumRegisters(Context, ValueVT);
127        EVT RegisterVT = TLI->getRegisterType(Context, ValueVT);
128        for (unsigned i = 0; i != NumRegs; ++i)
129          Regs.push_back(Reg + i);
130        RegVTs.push_back(RegisterVT);
131        Reg += NumRegs;
132      }
133    }
134
135    /// areValueTypesLegal - Return true if types of all the values are legal.
136    bool areValueTypesLegal() {
137      for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
138        EVT RegisterVT = RegVTs[Value];
139        if (!TLI->isTypeLegal(RegisterVT))
140          return false;
141      }
142      return true;
143    }
144
145
146    /// append - Add the specified values to this one.
147    void append(const RegsForValue &RHS) {
148      TLI = RHS.TLI;
149      ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end());
150      RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end());
151      Regs.append(RHS.Regs.begin(), RHS.Regs.end());
152    }
153
154
155    /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
156    /// this value and returns the result as a ValueVTs value.  This uses
157    /// Chain/Flag as the input and updates them for the output Chain/Flag.
158    /// If the Flag pointer is NULL, no flag is used.
159    SDValue getCopyFromRegs(SelectionDAG &DAG, DebugLoc dl,
160                            SDValue &Chain, SDValue *Flag) const;
161
162    /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
163    /// specified value into the registers specified by this object.  This uses
164    /// Chain/Flag as the input and updates them for the output Chain/Flag.
165    /// If the Flag pointer is NULL, no flag is used.
166    void getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl,
167                       SDValue &Chain, SDValue *Flag) const;
168
169    /// AddInlineAsmOperands - Add this value to the specified inlineasm node
170    /// operand list.  This adds the code marker, matching input operand index
171    /// (if applicable), and includes the number of values added into it.
172    void AddInlineAsmOperands(unsigned Kind,
173                              bool HasMatching, unsigned MatchingIdx,
174                              SelectionDAG &DAG,
175                              std::vector<SDValue> &Ops) const;
176  };
177}
178
179/// getCopyFromParts - Create a value that contains the specified legal parts
180/// combined into the value they represent.  If the parts combine to a type
181/// larger then ValueVT then AssertOp can be used to specify whether the extra
182/// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
183/// (ISD::AssertSext).
184static SDValue getCopyFromParts(SelectionDAG &DAG, DebugLoc dl,
185                                const SDValue *Parts,
186                                unsigned NumParts, EVT PartVT, EVT ValueVT,
187                                ISD::NodeType AssertOp = ISD::DELETED_NODE) {
188  assert(NumParts > 0 && "No parts to assemble!");
189  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
190  SDValue Val = Parts[0];
191
192  if (NumParts > 1) {
193    // Assemble the value from multiple parts.
194    if (!ValueVT.isVector() && ValueVT.isInteger()) {
195      unsigned PartBits = PartVT.getSizeInBits();
196      unsigned ValueBits = ValueVT.getSizeInBits();
197
198      // Assemble the power of 2 part.
199      unsigned RoundParts = NumParts & (NumParts - 1) ?
200        1 << Log2_32(NumParts) : NumParts;
201      unsigned RoundBits = PartBits * RoundParts;
202      EVT RoundVT = RoundBits == ValueBits ?
203        ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
204      SDValue Lo, Hi;
205
206      EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
207
208      if (RoundParts > 2) {
209        Lo = getCopyFromParts(DAG, dl, Parts, RoundParts / 2,
210                              PartVT, HalfVT);
211        Hi = getCopyFromParts(DAG, dl, Parts + RoundParts / 2,
212                              RoundParts / 2, PartVT, HalfVT);
213      } else {
214        Lo = DAG.getNode(ISD::BIT_CONVERT, dl, HalfVT, Parts[0]);
215        Hi = DAG.getNode(ISD::BIT_CONVERT, dl, HalfVT, Parts[1]);
216      }
217
218      if (TLI.isBigEndian())
219        std::swap(Lo, Hi);
220
221      Val = DAG.getNode(ISD::BUILD_PAIR, dl, RoundVT, Lo, Hi);
222
223      if (RoundParts < NumParts) {
224        // Assemble the trailing non-power-of-2 part.
225        unsigned OddParts = NumParts - RoundParts;
226        EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
227        Hi = getCopyFromParts(DAG, dl,
228                              Parts + RoundParts, OddParts, PartVT, OddVT);
229
230        // Combine the round and odd parts.
231        Lo = Val;
232        if (TLI.isBigEndian())
233          std::swap(Lo, Hi);
234        EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
235        Hi = DAG.getNode(ISD::ANY_EXTEND, dl, TotalVT, Hi);
236        Hi = DAG.getNode(ISD::SHL, dl, TotalVT, Hi,
237                         DAG.getConstant(Lo.getValueType().getSizeInBits(),
238                                         TLI.getPointerTy()));
239        Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, TotalVT, Lo);
240        Val = DAG.getNode(ISD::OR, dl, TotalVT, Lo, Hi);
241      }
242    } else if (ValueVT.isVector()) {
243      // Handle a multi-element vector.
244      EVT IntermediateVT, RegisterVT;
245      unsigned NumIntermediates;
246      unsigned NumRegs =
247        TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
248                                   NumIntermediates, RegisterVT);
249      assert(NumRegs == NumParts
250             && "Part count doesn't match vector breakdown!");
251      NumParts = NumRegs; // Silence a compiler warning.
252      assert(RegisterVT == PartVT
253             && "Part type doesn't match vector breakdown!");
254      assert(RegisterVT == Parts[0].getValueType() &&
255             "Part type doesn't match part!");
256
257      // Assemble the parts into intermediate operands.
258      SmallVector<SDValue, 8> Ops(NumIntermediates);
259      if (NumIntermediates == NumParts) {
260        // If the register was not expanded, truncate or copy the value,
261        // as appropriate.
262        for (unsigned i = 0; i != NumParts; ++i)
263          Ops[i] = getCopyFromParts(DAG, dl, &Parts[i], 1,
264                                    PartVT, IntermediateVT);
265      } else if (NumParts > 0) {
266        // If the intermediate type was expanded, build the intermediate
267        // operands from the parts.
268        assert(NumParts % NumIntermediates == 0 &&
269               "Must expand into a divisible number of parts!");
270        unsigned Factor = NumParts / NumIntermediates;
271        for (unsigned i = 0; i != NumIntermediates; ++i)
272          Ops[i] = getCopyFromParts(DAG, dl, &Parts[i * Factor], Factor,
273                                    PartVT, IntermediateVT);
274      }
275
276      // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
277      // intermediate operands.
278      Val = DAG.getNode(IntermediateVT.isVector() ?
279                        ISD::CONCAT_VECTORS : ISD::BUILD_VECTOR, dl,
280                        ValueVT, &Ops[0], NumIntermediates);
281    } else if (PartVT.isFloatingPoint()) {
282      // FP split into multiple FP parts (for ppcf128)
283      assert(ValueVT == EVT(MVT::ppcf128) && PartVT == EVT(MVT::f64) &&
284             "Unexpected split");
285      SDValue Lo, Hi;
286      Lo = DAG.getNode(ISD::BIT_CONVERT, dl, EVT(MVT::f64), Parts[0]);
287      Hi = DAG.getNode(ISD::BIT_CONVERT, dl, EVT(MVT::f64), Parts[1]);
288      if (TLI.isBigEndian())
289        std::swap(Lo, Hi);
290      Val = DAG.getNode(ISD::BUILD_PAIR, dl, ValueVT, Lo, Hi);
291    } else {
292      // FP split into integer parts (soft fp)
293      assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
294             !PartVT.isVector() && "Unexpected split");
295      EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
296      Val = getCopyFromParts(DAG, dl, Parts, NumParts, PartVT, IntVT);
297    }
298  }
299
300  // There is now one part, held in Val.  Correct it to match ValueVT.
301  PartVT = Val.getValueType();
302
303  if (PartVT == ValueVT)
304    return Val;
305
306  if (PartVT.isVector()) {
307    assert(ValueVT.isVector() && "Unknown vector conversion!");
308    return DAG.getNode(ISD::BIT_CONVERT, dl, ValueVT, Val);
309  }
310
311  if (ValueVT.isVector()) {
312    assert(ValueVT.getVectorElementType() == PartVT &&
313           ValueVT.getVectorNumElements() == 1 &&
314           "Only trivial scalar-to-vector conversions should get here!");
315    return DAG.getNode(ISD::BUILD_VECTOR, dl, ValueVT, Val);
316  }
317
318  if (PartVT.isInteger() &&
319      ValueVT.isInteger()) {
320    if (ValueVT.bitsLT(PartVT)) {
321      // For a truncate, see if we have any information to
322      // indicate whether the truncated bits will always be
323      // zero or sign-extension.
324      if (AssertOp != ISD::DELETED_NODE)
325        Val = DAG.getNode(AssertOp, dl, PartVT, Val,
326                          DAG.getValueType(ValueVT));
327      return DAG.getNode(ISD::TRUNCATE, dl, ValueVT, Val);
328    } else {
329      return DAG.getNode(ISD::ANY_EXTEND, dl, ValueVT, Val);
330    }
331  }
332
333  if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
334    if (ValueVT.bitsLT(Val.getValueType())) {
335      // FP_ROUND's are always exact here.
336      return DAG.getNode(ISD::FP_ROUND, dl, ValueVT, Val,
337                         DAG.getIntPtrConstant(1));
338    }
339
340    return DAG.getNode(ISD::FP_EXTEND, dl, ValueVT, Val);
341  }
342
343  if (PartVT.getSizeInBits() == ValueVT.getSizeInBits())
344    return DAG.getNode(ISD::BIT_CONVERT, dl, ValueVT, Val);
345
346  llvm_unreachable("Unknown mismatch!");
347  return SDValue();
348}
349
350/// getCopyToParts - Create a series of nodes that contain the specified value
351/// split into legal parts.  If the parts contain more bits than Val, then, for
352/// integers, ExtendKind can be used to specify how to generate the extra bits.
353static void getCopyToParts(SelectionDAG &DAG, DebugLoc dl,
354                           SDValue Val, SDValue *Parts, unsigned NumParts,
355                           EVT PartVT,
356                           ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
357  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
358  EVT PtrVT = TLI.getPointerTy();
359  EVT ValueVT = Val.getValueType();
360  unsigned PartBits = PartVT.getSizeInBits();
361  unsigned OrigNumParts = NumParts;
362  assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!");
363
364  if (!NumParts)
365    return;
366
367  if (!ValueVT.isVector()) {
368    if (PartVT == ValueVT) {
369      assert(NumParts == 1 && "No-op copy with multiple parts!");
370      Parts[0] = Val;
371      return;
372    }
373
374    if (NumParts * PartBits > ValueVT.getSizeInBits()) {
375      // If the parts cover more bits than the value has, promote the value.
376      if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
377        assert(NumParts == 1 && "Do not know what to promote to!");
378        Val = DAG.getNode(ISD::FP_EXTEND, dl, PartVT, Val);
379      } else if (PartVT.isInteger() && ValueVT.isInteger()) {
380        ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
381        Val = DAG.getNode(ExtendKind, dl, ValueVT, Val);
382      } else {
383        llvm_unreachable("Unknown mismatch!");
384      }
385    } else if (PartBits == ValueVT.getSizeInBits()) {
386      // Different types of the same size.
387      assert(NumParts == 1 && PartVT != ValueVT);
388      Val = DAG.getNode(ISD::BIT_CONVERT, dl, PartVT, Val);
389    } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
390      // If the parts cover less bits than value has, truncate the value.
391      if (PartVT.isInteger() && ValueVT.isInteger()) {
392        ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
393        Val = DAG.getNode(ISD::TRUNCATE, dl, ValueVT, Val);
394      } else {
395        llvm_unreachable("Unknown mismatch!");
396      }
397    }
398
399    // The value may have changed - recompute ValueVT.
400    ValueVT = Val.getValueType();
401    assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
402           "Failed to tile the value with PartVT!");
403
404    if (NumParts == 1) {
405      assert(PartVT == ValueVT && "Type conversion failed!");
406      Parts[0] = Val;
407      return;
408    }
409
410    // Expand the value into multiple parts.
411    if (NumParts & (NumParts - 1)) {
412      // The number of parts is not a power of 2.  Split off and copy the tail.
413      assert(PartVT.isInteger() && ValueVT.isInteger() &&
414             "Do not know what to expand to!");
415      unsigned RoundParts = 1 << Log2_32(NumParts);
416      unsigned RoundBits = RoundParts * PartBits;
417      unsigned OddParts = NumParts - RoundParts;
418      SDValue OddVal = DAG.getNode(ISD::SRL, dl, ValueVT, Val,
419                                   DAG.getConstant(RoundBits,
420                                                   TLI.getPointerTy()));
421      getCopyToParts(DAG, dl, OddVal, Parts + RoundParts,
422                     OddParts, PartVT);
423
424      if (TLI.isBigEndian())
425        // The odd parts were reversed by getCopyToParts - unreverse them.
426        std::reverse(Parts + RoundParts, Parts + NumParts);
427
428      NumParts = RoundParts;
429      ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
430      Val = DAG.getNode(ISD::TRUNCATE, dl, ValueVT, Val);
431    }
432
433    // The number of parts is a power of 2.  Repeatedly bisect the value using
434    // EXTRACT_ELEMENT.
435    Parts[0] = DAG.getNode(ISD::BIT_CONVERT, dl,
436                           EVT::getIntegerVT(*DAG.getContext(),
437                                             ValueVT.getSizeInBits()),
438                           Val);
439
440    for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
441      for (unsigned i = 0; i < NumParts; i += StepSize) {
442        unsigned ThisBits = StepSize * PartBits / 2;
443        EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
444        SDValue &Part0 = Parts[i];
445        SDValue &Part1 = Parts[i+StepSize/2];
446
447        Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
448                            ThisVT, Part0,
449                            DAG.getConstant(1, PtrVT));
450        Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
451                            ThisVT, Part0,
452                            DAG.getConstant(0, PtrVT));
453
454        if (ThisBits == PartBits && ThisVT != PartVT) {
455          Part0 = DAG.getNode(ISD::BIT_CONVERT, dl,
456                                                PartVT, Part0);
457          Part1 = DAG.getNode(ISD::BIT_CONVERT, dl,
458                                                PartVT, Part1);
459        }
460      }
461    }
462
463    if (TLI.isBigEndian())
464      std::reverse(Parts, Parts + OrigNumParts);
465
466    return;
467  }
468
469  // Vector ValueVT.
470  if (NumParts == 1) {
471    if (PartVT != ValueVT) {
472      if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
473        Val = DAG.getNode(ISD::BIT_CONVERT, dl, PartVT, Val);
474      } else {
475        assert(ValueVT.getVectorElementType() == PartVT &&
476               ValueVT.getVectorNumElements() == 1 &&
477               "Only trivial vector-to-scalar conversions should get here!");
478        Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
479                          PartVT, Val,
480                          DAG.getConstant(0, PtrVT));
481      }
482    }
483
484    Parts[0] = Val;
485    return;
486  }
487
488  // Handle a multi-element vector.
489  EVT IntermediateVT, RegisterVT;
490  unsigned NumIntermediates;
491  unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT,
492                              IntermediateVT, NumIntermediates, RegisterVT);
493  unsigned NumElements = ValueVT.getVectorNumElements();
494
495  assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
496  NumParts = NumRegs; // Silence a compiler warning.
497  assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
498
499  // Split the vector into intermediate operands.
500  SmallVector<SDValue, 8> Ops(NumIntermediates);
501  for (unsigned i = 0; i != NumIntermediates; ++i) {
502    if (IntermediateVT.isVector())
503      Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl,
504                           IntermediateVT, Val,
505                           DAG.getConstant(i * (NumElements / NumIntermediates),
506                                           PtrVT));
507    else
508      Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
509                           IntermediateVT, Val,
510                           DAG.getConstant(i, PtrVT));
511  }
512
513  // Split the intermediate operands into legal parts.
514  if (NumParts == NumIntermediates) {
515    // If the register was not expanded, promote or copy the value,
516    // as appropriate.
517    for (unsigned i = 0; i != NumParts; ++i)
518      getCopyToParts(DAG, dl, Ops[i], &Parts[i], 1, PartVT);
519  } else if (NumParts > 0) {
520    // If the intermediate type was expanded, split each the value into
521    // legal parts.
522    assert(NumParts % NumIntermediates == 0 &&
523           "Must expand into a divisible number of parts!");
524    unsigned Factor = NumParts / NumIntermediates;
525    for (unsigned i = 0; i != NumIntermediates; ++i)
526      getCopyToParts(DAG, dl, Ops[i], &Parts[i*Factor], Factor, PartVT);
527  }
528}
529
530
531void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa) {
532  AA = &aa;
533  GFI = gfi;
534  TD = DAG.getTarget().getTargetData();
535}
536
537/// clear - Clear out the current SelectionDAG and the associated
538/// state and prepare this SelectionDAGBuilder object to be used
539/// for a new block. This doesn't clear out information about
540/// additional blocks that are needed to complete switch lowering
541/// or PHI node updating; that information is cleared out as it is
542/// consumed.
543void SelectionDAGBuilder::clear() {
544  NodeMap.clear();
545  PendingLoads.clear();
546  PendingExports.clear();
547  EdgeMapping.clear();
548  DAG.clear();
549  CurDebugLoc = DebugLoc();
550  HasTailCall = false;
551}
552
553/// getRoot - Return the current virtual root of the Selection DAG,
554/// flushing any PendingLoad items. This must be done before emitting
555/// a store or any other node that may need to be ordered after any
556/// prior load instructions.
557///
558SDValue SelectionDAGBuilder::getRoot() {
559  if (PendingLoads.empty())
560    return DAG.getRoot();
561
562  if (PendingLoads.size() == 1) {
563    SDValue Root = PendingLoads[0];
564    DAG.setRoot(Root);
565    PendingLoads.clear();
566    return Root;
567  }
568
569  // Otherwise, we have to make a token factor node.
570  SDValue Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
571                               &PendingLoads[0], PendingLoads.size());
572  PendingLoads.clear();
573  DAG.setRoot(Root);
574  return Root;
575}
576
577/// getControlRoot - Similar to getRoot, but instead of flushing all the
578/// PendingLoad items, flush all the PendingExports items. It is necessary
579/// to do this before emitting a terminator instruction.
580///
581SDValue SelectionDAGBuilder::getControlRoot() {
582  SDValue Root = DAG.getRoot();
583
584  if (PendingExports.empty())
585    return Root;
586
587  // Turn all of the CopyToReg chains into one factored node.
588  if (Root.getOpcode() != ISD::EntryToken) {
589    unsigned i = 0, e = PendingExports.size();
590    for (; i != e; ++i) {
591      assert(PendingExports[i].getNode()->getNumOperands() > 1);
592      if (PendingExports[i].getNode()->getOperand(0) == Root)
593        break;  // Don't add the root if we already indirectly depend on it.
594    }
595
596    if (i == e)
597      PendingExports.push_back(Root);
598  }
599
600  Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
601                     &PendingExports[0],
602                     PendingExports.size());
603  PendingExports.clear();
604  DAG.setRoot(Root);
605  return Root;
606}
607
608void SelectionDAGBuilder::AssignOrderingToNode(const SDNode *Node) {
609  if (DAG.GetOrdering(Node) != 0) return; // Already has ordering.
610  DAG.AssignOrdering(Node, SDNodeOrder);
611
612  for (unsigned I = 0, E = Node->getNumOperands(); I != E; ++I)
613    AssignOrderingToNode(Node->getOperand(I).getNode());
614}
615
616void SelectionDAGBuilder::visit(Instruction &I) {
617  visit(I.getOpcode(), I);
618}
619
620void SelectionDAGBuilder::visit(unsigned Opcode, User &I) {
621  // Note: this doesn't use InstVisitor, because it has to work with
622  // ConstantExpr's in addition to instructions.
623  switch (Opcode) {
624  default: llvm_unreachable("Unknown instruction type encountered!");
625    // Build the switch statement using the Instruction.def file.
626#define HANDLE_INST(NUM, OPCODE, CLASS) \
627    case Instruction::OPCODE: visit##OPCODE((CLASS&)I); break;
628#include "llvm/Instruction.def"
629  }
630
631  // Assign the ordering to the freshly created DAG nodes.
632  if (NodeMap.count(&I)) {
633    ++SDNodeOrder;
634    AssignOrderingToNode(getValue(&I).getNode());
635  }
636}
637
638SDValue SelectionDAGBuilder::getValue(const Value *V) {
639  SDValue &N = NodeMap[V];
640  if (N.getNode()) return N;
641
642  if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(V))) {
643    EVT VT = TLI.getValueType(V->getType(), true);
644
645    if (ConstantInt *CI = dyn_cast<ConstantInt>(C))
646      return N = DAG.getConstant(*CI, VT);
647
648    if (GlobalValue *GV = dyn_cast<GlobalValue>(C))
649      return N = DAG.getGlobalAddress(GV, VT);
650
651    if (isa<ConstantPointerNull>(C))
652      return N = DAG.getConstant(0, TLI.getPointerTy());
653
654    if (ConstantFP *CFP = dyn_cast<ConstantFP>(C))
655      return N = DAG.getConstantFP(*CFP, VT);
656
657    if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
658      return N = DAG.getUNDEF(VT);
659
660    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
661      visit(CE->getOpcode(), *CE);
662      SDValue N1 = NodeMap[V];
663      assert(N1.getNode() && "visit didn't populate the ValueMap!");
664      return N1;
665    }
666
667    if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
668      SmallVector<SDValue, 4> Constants;
669      for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end();
670           OI != OE; ++OI) {
671        SDNode *Val = getValue(*OI).getNode();
672        // If the operand is an empty aggregate, there are no values.
673        if (!Val) continue;
674        // Add each leaf value from the operand to the Constants list
675        // to form a flattened list of all the values.
676        for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
677          Constants.push_back(SDValue(Val, i));
678      }
679
680      return DAG.getMergeValues(&Constants[0], Constants.size(),
681                                getCurDebugLoc());
682    }
683
684    if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
685      assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
686             "Unknown struct or array constant!");
687
688      SmallVector<EVT, 4> ValueVTs;
689      ComputeValueVTs(TLI, C->getType(), ValueVTs);
690      unsigned NumElts = ValueVTs.size();
691      if (NumElts == 0)
692        return SDValue(); // empty struct
693      SmallVector<SDValue, 4> Constants(NumElts);
694      for (unsigned i = 0; i != NumElts; ++i) {
695        EVT EltVT = ValueVTs[i];
696        if (isa<UndefValue>(C))
697          Constants[i] = DAG.getUNDEF(EltVT);
698        else if (EltVT.isFloatingPoint())
699          Constants[i] = DAG.getConstantFP(0, EltVT);
700        else
701          Constants[i] = DAG.getConstant(0, EltVT);
702      }
703
704      return DAG.getMergeValues(&Constants[0], NumElts,
705                                getCurDebugLoc());
706    }
707
708    if (BlockAddress *BA = dyn_cast<BlockAddress>(C))
709      return DAG.getBlockAddress(BA, VT);
710
711    const VectorType *VecTy = cast<VectorType>(V->getType());
712    unsigned NumElements = VecTy->getNumElements();
713
714    // Now that we know the number and type of the elements, get that number of
715    // elements into the Ops array based on what kind of constant it is.
716    SmallVector<SDValue, 16> Ops;
717    if (ConstantVector *CP = dyn_cast<ConstantVector>(C)) {
718      for (unsigned i = 0; i != NumElements; ++i)
719        Ops.push_back(getValue(CP->getOperand(i)));
720    } else {
721      assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!");
722      EVT EltVT = TLI.getValueType(VecTy->getElementType());
723
724      SDValue Op;
725      if (EltVT.isFloatingPoint())
726        Op = DAG.getConstantFP(0, EltVT);
727      else
728        Op = DAG.getConstant(0, EltVT);
729      Ops.assign(NumElements, Op);
730    }
731
732    // Create a BUILD_VECTOR node.
733    return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(),
734                                    VT, &Ops[0], Ops.size());
735  }
736
737  // If this is a static alloca, generate it as the frameindex instead of
738  // computation.
739  if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
740    DenseMap<const AllocaInst*, int>::iterator SI =
741      FuncInfo.StaticAllocaMap.find(AI);
742    if (SI != FuncInfo.StaticAllocaMap.end())
743      return DAG.getFrameIndex(SI->second, TLI.getPointerTy());
744  }
745
746  unsigned InReg = FuncInfo.ValueMap[V];
747  assert(InReg && "Value not in map!");
748
749  RegsForValue RFV(*DAG.getContext(), TLI, InReg, V->getType());
750  SDValue Chain = DAG.getEntryNode();
751  return RFV.getCopyFromRegs(DAG, getCurDebugLoc(), Chain, NULL);
752}
753
754/// Get the EVTs and ArgFlags collections that represent the legalized return
755/// type of the given function.  This does not require a DAG or a return value,
756/// and is suitable for use before any DAGs for the function are constructed.
757static void getReturnInfo(const Type* ReturnType,
758                   Attributes attr, SmallVectorImpl<EVT> &OutVTs,
759                   SmallVectorImpl<ISD::ArgFlagsTy> &OutFlags,
760                   TargetLowering &TLI,
761                   SmallVectorImpl<uint64_t> *Offsets = 0) {
762  SmallVector<EVT, 4> ValueVTs;
763  ComputeValueVTs(TLI, ReturnType, ValueVTs);
764  unsigned NumValues = ValueVTs.size();
765  if (NumValues == 0) return;
766  unsigned Offset = 0;
767
768  for (unsigned j = 0, f = NumValues; j != f; ++j) {
769    EVT VT = ValueVTs[j];
770    ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
771
772    if (attr & Attribute::SExt)
773      ExtendKind = ISD::SIGN_EXTEND;
774    else if (attr & Attribute::ZExt)
775      ExtendKind = ISD::ZERO_EXTEND;
776
777    // FIXME: C calling convention requires the return type to be promoted to
778    // at least 32-bit. But this is not necessary for non-C calling
779    // conventions. The frontend should mark functions whose return values
780    // require promoting with signext or zeroext attributes.
781    if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) {
782      EVT MinVT = TLI.getRegisterType(ReturnType->getContext(), MVT::i32);
783      if (VT.bitsLT(MinVT))
784        VT = MinVT;
785    }
786
787    unsigned NumParts = TLI.getNumRegisters(ReturnType->getContext(), VT);
788    EVT PartVT = TLI.getRegisterType(ReturnType->getContext(), VT);
789    unsigned PartSize = TLI.getTargetData()->getTypeAllocSize(
790                        PartVT.getTypeForEVT(ReturnType->getContext()));
791
792    // 'inreg' on function refers to return value
793    ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
794    if (attr & Attribute::InReg)
795      Flags.setInReg();
796
797    // Propagate extension type if any
798    if (attr & Attribute::SExt)
799      Flags.setSExt();
800    else if (attr & Attribute::ZExt)
801      Flags.setZExt();
802
803    for (unsigned i = 0; i < NumParts; ++i) {
804      OutVTs.push_back(PartVT);
805      OutFlags.push_back(Flags);
806      if (Offsets)
807      {
808        Offsets->push_back(Offset);
809        Offset += PartSize;
810      }
811    }
812  }
813}
814
815void SelectionDAGBuilder::visitRet(ReturnInst &I) {
816  SDValue Chain = getControlRoot();
817  SmallVector<ISD::OutputArg, 8> Outs;
818  FunctionLoweringInfo &FLI = DAG.getFunctionLoweringInfo();
819
820  if (!FLI.CanLowerReturn) {
821    unsigned DemoteReg = FLI.DemoteRegister;
822    const Function *F = I.getParent()->getParent();
823
824    // Emit a store of the return value through the virtual register.
825    // Leave Outs empty so that LowerReturn won't try to load return
826    // registers the usual way.
827    SmallVector<EVT, 1> PtrValueVTs;
828    ComputeValueVTs(TLI, PointerType::getUnqual(F->getReturnType()),
829                    PtrValueVTs);
830
831    SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]);
832    SDValue RetOp = getValue(I.getOperand(0));
833
834    SmallVector<EVT, 4> ValueVTs;
835    SmallVector<uint64_t, 4> Offsets;
836    ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs, &Offsets);
837    unsigned NumValues = ValueVTs.size();
838
839    SmallVector<SDValue, 4> Chains(NumValues);
840    EVT PtrVT = PtrValueVTs[0];
841    for (unsigned i = 0; i != NumValues; ++i) {
842      SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT, RetPtr,
843                                DAG.getConstant(Offsets[i], PtrVT));
844      Chains[i] =
845        DAG.getStore(Chain, getCurDebugLoc(),
846                     SDValue(RetOp.getNode(), RetOp.getResNo() + i),
847                     Add, NULL, Offsets[i], false, false, 0);
848    }
849
850    Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
851                        MVT::Other, &Chains[0], NumValues);
852  } else if (I.getNumOperands() != 0) {
853    SmallVector<EVT, 4> ValueVTs;
854    ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs);
855    unsigned NumValues = ValueVTs.size();
856    if (NumValues) {
857      SDValue RetOp = getValue(I.getOperand(0));
858      for (unsigned j = 0, f = NumValues; j != f; ++j) {
859        EVT VT = ValueVTs[j];
860
861        ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
862
863        const Function *F = I.getParent()->getParent();
864        if (F->paramHasAttr(0, Attribute::SExt))
865          ExtendKind = ISD::SIGN_EXTEND;
866        else if (F->paramHasAttr(0, Attribute::ZExt))
867          ExtendKind = ISD::ZERO_EXTEND;
868
869        // FIXME: C calling convention requires the return type to be promoted
870        // to at least 32-bit. But this is not necessary for non-C calling
871        // conventions. The frontend should mark functions whose return values
872        // require promoting with signext or zeroext attributes.
873        if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) {
874          EVT MinVT = TLI.getRegisterType(*DAG.getContext(), MVT::i32);
875          if (VT.bitsLT(MinVT))
876            VT = MinVT;
877        }
878
879        unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), VT);
880        EVT PartVT = TLI.getRegisterType(*DAG.getContext(), VT);
881        SmallVector<SDValue, 4> Parts(NumParts);
882        getCopyToParts(DAG, getCurDebugLoc(),
883                       SDValue(RetOp.getNode(), RetOp.getResNo() + j),
884                       &Parts[0], NumParts, PartVT, ExtendKind);
885
886        // 'inreg' on function refers to return value
887        ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
888        if (F->paramHasAttr(0, Attribute::InReg))
889          Flags.setInReg();
890
891        // Propagate extension type if any
892        if (F->paramHasAttr(0, Attribute::SExt))
893          Flags.setSExt();
894        else if (F->paramHasAttr(0, Attribute::ZExt))
895          Flags.setZExt();
896
897        for (unsigned i = 0; i < NumParts; ++i)
898          Outs.push_back(ISD::OutputArg(Flags, Parts[i], /*isfixed=*/true));
899      }
900    }
901  }
902
903  bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
904  CallingConv::ID CallConv =
905    DAG.getMachineFunction().getFunction()->getCallingConv();
906  Chain = TLI.LowerReturn(Chain, CallConv, isVarArg,
907                          Outs, getCurDebugLoc(), DAG);
908
909  // Verify that the target's LowerReturn behaved as expected.
910  assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
911         "LowerReturn didn't return a valid chain!");
912
913  // Update the DAG with the new chain value resulting from return lowering.
914  DAG.setRoot(Chain);
915}
916
917/// CopyToExportRegsIfNeeded - If the given value has virtual registers
918/// created for it, emit nodes to copy the value into the virtual
919/// registers.
920void SelectionDAGBuilder::CopyToExportRegsIfNeeded(Value *V) {
921  if (!V->use_empty()) {
922    DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
923    if (VMI != FuncInfo.ValueMap.end())
924      CopyValueToVirtualRegister(V, VMI->second);
925  }
926}
927
928/// ExportFromCurrentBlock - If this condition isn't known to be exported from
929/// the current basic block, add it to ValueMap now so that we'll get a
930/// CopyTo/FromReg.
931void SelectionDAGBuilder::ExportFromCurrentBlock(Value *V) {
932  // No need to export constants.
933  if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
934
935  // Already exported?
936  if (FuncInfo.isExportedInst(V)) return;
937
938  unsigned Reg = FuncInfo.InitializeRegForValue(V);
939  CopyValueToVirtualRegister(V, Reg);
940}
941
942bool SelectionDAGBuilder::isExportableFromCurrentBlock(Value *V,
943                                                     const BasicBlock *FromBB) {
944  // The operands of the setcc have to be in this block.  We don't know
945  // how to export them from some other block.
946  if (Instruction *VI = dyn_cast<Instruction>(V)) {
947    // Can export from current BB.
948    if (VI->getParent() == FromBB)
949      return true;
950
951    // Is already exported, noop.
952    return FuncInfo.isExportedInst(V);
953  }
954
955  // If this is an argument, we can export it if the BB is the entry block or
956  // if it is already exported.
957  if (isa<Argument>(V)) {
958    if (FromBB == &FromBB->getParent()->getEntryBlock())
959      return true;
960
961    // Otherwise, can only export this if it is already exported.
962    return FuncInfo.isExportedInst(V);
963  }
964
965  // Otherwise, constants can always be exported.
966  return true;
967}
968
969static bool InBlock(const Value *V, const BasicBlock *BB) {
970  if (const Instruction *I = dyn_cast<Instruction>(V))
971    return I->getParent() == BB;
972  return true;
973}
974
975/// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
976/// This function emits a branch and is used at the leaves of an OR or an
977/// AND operator tree.
978///
979void
980SelectionDAGBuilder::EmitBranchForMergedCondition(Value *Cond,
981                                                  MachineBasicBlock *TBB,
982                                                  MachineBasicBlock *FBB,
983                                                  MachineBasicBlock *CurBB) {
984  const BasicBlock *BB = CurBB->getBasicBlock();
985
986  // If the leaf of the tree is a comparison, merge the condition into
987  // the caseblock.
988  if (CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
989    // The operands of the cmp have to be in this block.  We don't know
990    // how to export them from some other block.  If this is the first block
991    // of the sequence, no exporting is needed.
992    if (CurBB == CurMBB ||
993        (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
994         isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
995      ISD::CondCode Condition;
996      if (ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
997        Condition = getICmpCondCode(IC->getPredicate());
998      } else if (FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) {
999        Condition = getFCmpCondCode(FC->getPredicate());
1000      } else {
1001        Condition = ISD::SETEQ; // silence warning.
1002        llvm_unreachable("Unknown compare instruction");
1003      }
1004
1005      CaseBlock CB(Condition, BOp->getOperand(0),
1006                   BOp->getOperand(1), NULL, TBB, FBB, CurBB);
1007      SwitchCases.push_back(CB);
1008      return;
1009    }
1010  }
1011
1012  // Create a CaseBlock record representing this branch.
1013  CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()),
1014               NULL, TBB, FBB, CurBB);
1015  SwitchCases.push_back(CB);
1016}
1017
1018/// FindMergedConditions - If Cond is an expression like
1019void SelectionDAGBuilder::FindMergedConditions(Value *Cond,
1020                                               MachineBasicBlock *TBB,
1021                                               MachineBasicBlock *FBB,
1022                                               MachineBasicBlock *CurBB,
1023                                               unsigned Opc) {
1024  // If this node is not part of the or/and tree, emit it as a branch.
1025  Instruction *BOp = dyn_cast<Instruction>(Cond);
1026  if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
1027      (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() ||
1028      BOp->getParent() != CurBB->getBasicBlock() ||
1029      !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
1030      !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
1031    EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB);
1032    return;
1033  }
1034
1035  //  Create TmpBB after CurBB.
1036  MachineFunction::iterator BBI = CurBB;
1037  MachineFunction &MF = DAG.getMachineFunction();
1038  MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
1039  CurBB->getParent()->insert(++BBI, TmpBB);
1040
1041  if (Opc == Instruction::Or) {
1042    // Codegen X | Y as:
1043    //   jmp_if_X TBB
1044    //   jmp TmpBB
1045    // TmpBB:
1046    //   jmp_if_Y TBB
1047    //   jmp FBB
1048    //
1049
1050    // Emit the LHS condition.
1051    FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, Opc);
1052
1053    // Emit the RHS condition into TmpBB.
1054    FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, Opc);
1055  } else {
1056    assert(Opc == Instruction::And && "Unknown merge op!");
1057    // Codegen X & Y as:
1058    //   jmp_if_X TmpBB
1059    //   jmp FBB
1060    // TmpBB:
1061    //   jmp_if_Y TBB
1062    //   jmp FBB
1063    //
1064    //  This requires creation of TmpBB after CurBB.
1065
1066    // Emit the LHS condition.
1067    FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, Opc);
1068
1069    // Emit the RHS condition into TmpBB.
1070    FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, Opc);
1071  }
1072}
1073
1074/// If the set of cases should be emitted as a series of branches, return true.
1075/// If we should emit this as a bunch of and/or'd together conditions, return
1076/// false.
1077bool
1078SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases){
1079  if (Cases.size() != 2) return true;
1080
1081  // If this is two comparisons of the same values or'd or and'd together, they
1082  // will get folded into a single comparison, so don't emit two blocks.
1083  if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
1084       Cases[0].CmpRHS == Cases[1].CmpRHS) ||
1085      (Cases[0].CmpRHS == Cases[1].CmpLHS &&
1086       Cases[0].CmpLHS == Cases[1].CmpRHS)) {
1087    return false;
1088  }
1089
1090  // Handle: (X != null) | (Y != null) --> (X|Y) != 0
1091  // Handle: (X == null) & (Y == null) --> (X|Y) == 0
1092  if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
1093      Cases[0].CC == Cases[1].CC &&
1094      isa<Constant>(Cases[0].CmpRHS) &&
1095      cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
1096    if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
1097      return false;
1098    if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
1099      return false;
1100  }
1101
1102  return true;
1103}
1104
1105void SelectionDAGBuilder::visitBr(BranchInst &I) {
1106  // Update machine-CFG edges.
1107  MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
1108
1109  // Figure out which block is immediately after the current one.
1110  MachineBasicBlock *NextBlock = 0;
1111  MachineFunction::iterator BBI = CurMBB;
1112  if (++BBI != FuncInfo.MF->end())
1113    NextBlock = BBI;
1114
1115  if (I.isUnconditional()) {
1116    // Update machine-CFG edges.
1117    CurMBB->addSuccessor(Succ0MBB);
1118
1119    // If this is not a fall-through branch, emit the branch.
1120    if (Succ0MBB != NextBlock)
1121      DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
1122                              MVT::Other, getControlRoot(),
1123                              DAG.getBasicBlock(Succ0MBB)));
1124
1125    return;
1126  }
1127
1128  // If this condition is one of the special cases we handle, do special stuff
1129  // now.
1130  Value *CondVal = I.getCondition();
1131  MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
1132
1133  // If this is a series of conditions that are or'd or and'd together, emit
1134  // this as a sequence of branches instead of setcc's with and/or operations.
1135  // For example, instead of something like:
1136  //     cmp A, B
1137  //     C = seteq
1138  //     cmp D, E
1139  //     F = setle
1140  //     or C, F
1141  //     jnz foo
1142  // Emit:
1143  //     cmp A, B
1144  //     je foo
1145  //     cmp D, E
1146  //     jle foo
1147  //
1148  if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
1149    if (BOp->hasOneUse() &&
1150        (BOp->getOpcode() == Instruction::And ||
1151         BOp->getOpcode() == Instruction::Or)) {
1152      FindMergedConditions(BOp, Succ0MBB, Succ1MBB, CurMBB, BOp->getOpcode());
1153      // If the compares in later blocks need to use values not currently
1154      // exported from this block, export them now.  This block should always
1155      // be the first entry.
1156      assert(SwitchCases[0].ThisBB == CurMBB && "Unexpected lowering!");
1157
1158      // Allow some cases to be rejected.
1159      if (ShouldEmitAsBranches(SwitchCases)) {
1160        for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
1161          ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
1162          ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
1163        }
1164
1165        // Emit the branch for this block.
1166        visitSwitchCase(SwitchCases[0]);
1167        SwitchCases.erase(SwitchCases.begin());
1168        return;
1169      }
1170
1171      // Okay, we decided not to do this, remove any inserted MBB's and clear
1172      // SwitchCases.
1173      for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
1174        FuncInfo.MF->erase(SwitchCases[i].ThisBB);
1175
1176      SwitchCases.clear();
1177    }
1178  }
1179
1180  // Create a CaseBlock record representing this branch.
1181  CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
1182               NULL, Succ0MBB, Succ1MBB, CurMBB);
1183
1184  // Use visitSwitchCase to actually insert the fast branch sequence for this
1185  // cond branch.
1186  visitSwitchCase(CB);
1187}
1188
1189/// visitSwitchCase - Emits the necessary code to represent a single node in
1190/// the binary search tree resulting from lowering a switch instruction.
1191void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB) {
1192  SDValue Cond;
1193  SDValue CondLHS = getValue(CB.CmpLHS);
1194  DebugLoc dl = getCurDebugLoc();
1195
1196  // Build the setcc now.
1197  if (CB.CmpMHS == NULL) {
1198    // Fold "(X == true)" to X and "(X == false)" to !X to
1199    // handle common cases produced by branch lowering.
1200    if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
1201        CB.CC == ISD::SETEQ)
1202      Cond = CondLHS;
1203    else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
1204             CB.CC == ISD::SETEQ) {
1205      SDValue True = DAG.getConstant(1, CondLHS.getValueType());
1206      Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
1207    } else
1208      Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
1209  } else {
1210    assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
1211
1212    const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
1213    const APInt& High  = cast<ConstantInt>(CB.CmpRHS)->getValue();
1214
1215    SDValue CmpOp = getValue(CB.CmpMHS);
1216    EVT VT = CmpOp.getValueType();
1217
1218    if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
1219      Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, VT),
1220                          ISD::SETLE);
1221    } else {
1222      SDValue SUB = DAG.getNode(ISD::SUB, dl,
1223                                VT, CmpOp, DAG.getConstant(Low, VT));
1224      Cond = DAG.getSetCC(dl, MVT::i1, SUB,
1225                          DAG.getConstant(High-Low, VT), ISD::SETULE);
1226    }
1227  }
1228
1229  // Update successor info
1230  CurMBB->addSuccessor(CB.TrueBB);
1231  CurMBB->addSuccessor(CB.FalseBB);
1232
1233  // Set NextBlock to be the MBB immediately after the current one, if any.
1234  // This is used to avoid emitting unnecessary branches to the next block.
1235  MachineBasicBlock *NextBlock = 0;
1236  MachineFunction::iterator BBI = CurMBB;
1237  if (++BBI != FuncInfo.MF->end())
1238    NextBlock = BBI;
1239
1240  // If the lhs block is the next block, invert the condition so that we can
1241  // fall through to the lhs instead of the rhs block.
1242  if (CB.TrueBB == NextBlock) {
1243    std::swap(CB.TrueBB, CB.FalseBB);
1244    SDValue True = DAG.getConstant(1, Cond.getValueType());
1245    Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
1246  }
1247
1248  SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
1249                               MVT::Other, getControlRoot(), Cond,
1250                               DAG.getBasicBlock(CB.TrueBB));
1251
1252  // If the branch was constant folded, fix up the CFG.
1253  if (BrCond.getOpcode() == ISD::BR) {
1254    CurMBB->removeSuccessor(CB.FalseBB);
1255  } else {
1256    // Otherwise, go ahead and insert the false branch.
1257    if (BrCond == getControlRoot())
1258      CurMBB->removeSuccessor(CB.TrueBB);
1259
1260    if (CB.FalseBB != NextBlock)
1261      BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
1262                           DAG.getBasicBlock(CB.FalseBB));
1263  }
1264
1265  DAG.setRoot(BrCond);
1266}
1267
1268/// visitJumpTable - Emit JumpTable node in the current MBB
1269void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) {
1270  // Emit the code for the jump table
1271  assert(JT.Reg != -1U && "Should lower JT Header first!");
1272  EVT PTy = TLI.getPointerTy();
1273  SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(),
1274                                     JT.Reg, PTy);
1275  SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
1276  SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurDebugLoc(),
1277                                    MVT::Other, Index.getValue(1),
1278                                    Table, Index);
1279  DAG.setRoot(BrJumpTable);
1280}
1281
1282/// visitJumpTableHeader - This function emits necessary code to produce index
1283/// in the JumpTable from switch case.
1284void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT,
1285                                               JumpTableHeader &JTH) {
1286  // Subtract the lowest switch case value from the value being switched on and
1287  // conditional branch to default mbb if the result is greater than the
1288  // difference between smallest and largest cases.
1289  SDValue SwitchOp = getValue(JTH.SValue);
1290  EVT VT = SwitchOp.getValueType();
1291  SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp,
1292                            DAG.getConstant(JTH.First, VT));
1293
1294  // The SDNode we just created, which holds the value being switched on minus
1295  // the smallest case value, needs to be copied to a virtual register so it
1296  // can be used as an index into the jump table in a subsequent basic block.
1297  // This value may be smaller or larger than the target's pointer type, and
1298  // therefore require extension or truncating.
1299  SwitchOp = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(), TLI.getPointerTy());
1300
1301  unsigned JumpTableReg = FuncInfo.MakeReg(TLI.getPointerTy());
1302  SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(),
1303                                    JumpTableReg, SwitchOp);
1304  JT.Reg = JumpTableReg;
1305
1306  // Emit the range check for the jump table, and branch to the default block
1307  // for the switch statement if the value being switched on exceeds the largest
1308  // case in the switch.
1309  SDValue CMP = DAG.getSetCC(getCurDebugLoc(),
1310                             TLI.getSetCCResultType(Sub.getValueType()), Sub,
1311                             DAG.getConstant(JTH.Last-JTH.First,VT),
1312                             ISD::SETUGT);
1313
1314  // Set NextBlock to be the MBB immediately after the current one, if any.
1315  // This is used to avoid emitting unnecessary branches to the next block.
1316  MachineBasicBlock *NextBlock = 0;
1317  MachineFunction::iterator BBI = CurMBB;
1318
1319  if (++BBI != FuncInfo.MF->end())
1320    NextBlock = BBI;
1321
1322  SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1323                               MVT::Other, CopyTo, CMP,
1324                               DAG.getBasicBlock(JT.Default));
1325
1326  if (JT.MBB != NextBlock)
1327    BrCond = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrCond,
1328                         DAG.getBasicBlock(JT.MBB));
1329
1330  DAG.setRoot(BrCond);
1331}
1332
1333/// visitBitTestHeader - This function emits necessary code to produce value
1334/// suitable for "bit tests"
1335void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B) {
1336  // Subtract the minimum value
1337  SDValue SwitchOp = getValue(B.SValue);
1338  EVT VT = SwitchOp.getValueType();
1339  SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp,
1340                            DAG.getConstant(B.First, VT));
1341
1342  // Check range
1343  SDValue RangeCmp = DAG.getSetCC(getCurDebugLoc(),
1344                                  TLI.getSetCCResultType(Sub.getValueType()),
1345                                  Sub, DAG.getConstant(B.Range, VT),
1346                                  ISD::SETUGT);
1347
1348  SDValue ShiftOp = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(),
1349                                       TLI.getPointerTy());
1350
1351  B.Reg = FuncInfo.MakeReg(TLI.getPointerTy());
1352  SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(),
1353                                    B.Reg, ShiftOp);
1354
1355  // Set NextBlock to be the MBB immediately after the current one, if any.
1356  // This is used to avoid emitting unnecessary branches to the next block.
1357  MachineBasicBlock *NextBlock = 0;
1358  MachineFunction::iterator BBI = CurMBB;
1359  if (++BBI != FuncInfo.MF->end())
1360    NextBlock = BBI;
1361
1362  MachineBasicBlock* MBB = B.Cases[0].ThisBB;
1363
1364  CurMBB->addSuccessor(B.Default);
1365  CurMBB->addSuccessor(MBB);
1366
1367  SDValue BrRange = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1368                                MVT::Other, CopyTo, RangeCmp,
1369                                DAG.getBasicBlock(B.Default));
1370
1371  if (MBB != NextBlock)
1372    BrRange = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, CopyTo,
1373                          DAG.getBasicBlock(MBB));
1374
1375  DAG.setRoot(BrRange);
1376}
1377
1378/// visitBitTestCase - this function produces one "bit test"
1379void SelectionDAGBuilder::visitBitTestCase(MachineBasicBlock* NextMBB,
1380                                           unsigned Reg,
1381                                           BitTestCase &B) {
1382  // Make desired shift
1383  SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(), Reg,
1384                                       TLI.getPointerTy());
1385  SDValue SwitchVal = DAG.getNode(ISD::SHL, getCurDebugLoc(),
1386                                  TLI.getPointerTy(),
1387                                  DAG.getConstant(1, TLI.getPointerTy()),
1388                                  ShiftOp);
1389
1390  // Emit bit tests and jumps
1391  SDValue AndOp = DAG.getNode(ISD::AND, getCurDebugLoc(),
1392                              TLI.getPointerTy(), SwitchVal,
1393                              DAG.getConstant(B.Mask, TLI.getPointerTy()));
1394  SDValue AndCmp = DAG.getSetCC(getCurDebugLoc(),
1395                                TLI.getSetCCResultType(AndOp.getValueType()),
1396                                AndOp, DAG.getConstant(0, TLI.getPointerTy()),
1397                                ISD::SETNE);
1398
1399  CurMBB->addSuccessor(B.TargetBB);
1400  CurMBB->addSuccessor(NextMBB);
1401
1402  SDValue BrAnd = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1403                              MVT::Other, getControlRoot(),
1404                              AndCmp, DAG.getBasicBlock(B.TargetBB));
1405
1406  // Set NextBlock to be the MBB immediately after the current one, if any.
1407  // This is used to avoid emitting unnecessary branches to the next block.
1408  MachineBasicBlock *NextBlock = 0;
1409  MachineFunction::iterator BBI = CurMBB;
1410  if (++BBI != FuncInfo.MF->end())
1411    NextBlock = BBI;
1412
1413  if (NextMBB != NextBlock)
1414    BrAnd = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrAnd,
1415                        DAG.getBasicBlock(NextMBB));
1416
1417  DAG.setRoot(BrAnd);
1418}
1419
1420void SelectionDAGBuilder::visitInvoke(InvokeInst &I) {
1421  // Retrieve successors.
1422  MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
1423  MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)];
1424
1425  const Value *Callee(I.getCalledValue());
1426  if (isa<InlineAsm>(Callee))
1427    visitInlineAsm(&I);
1428  else
1429    LowerCallTo(&I, getValue(Callee), false, LandingPad);
1430
1431  // If the value of the invoke is used outside of its defining block, make it
1432  // available as a virtual register.
1433  CopyToExportRegsIfNeeded(&I);
1434
1435  // Update successor info
1436  CurMBB->addSuccessor(Return);
1437  CurMBB->addSuccessor(LandingPad);
1438
1439  // Drop into normal successor.
1440  DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
1441                          MVT::Other, getControlRoot(),
1442                          DAG.getBasicBlock(Return)));
1443}
1444
1445void SelectionDAGBuilder::visitUnwind(UnwindInst &I) {
1446}
1447
1448/// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for
1449/// small case ranges).
1450bool SelectionDAGBuilder::handleSmallSwitchRange(CaseRec& CR,
1451                                                 CaseRecVector& WorkList,
1452                                                 Value* SV,
1453                                                 MachineBasicBlock* Default) {
1454  Case& BackCase  = *(CR.Range.second-1);
1455
1456  // Size is the number of Cases represented by this range.
1457  size_t Size = CR.Range.second - CR.Range.first;
1458  if (Size > 3)
1459    return false;
1460
1461  // Get the MachineFunction which holds the current MBB.  This is used when
1462  // inserting any additional MBBs necessary to represent the switch.
1463  MachineFunction *CurMF = FuncInfo.MF;
1464
1465  // Figure out which block is immediately after the current one.
1466  MachineBasicBlock *NextBlock = 0;
1467  MachineFunction::iterator BBI = CR.CaseBB;
1468
1469  if (++BBI != FuncInfo.MF->end())
1470    NextBlock = BBI;
1471
1472  // TODO: If any two of the cases has the same destination, and if one value
1473  // is the same as the other, but has one bit unset that the other has set,
1474  // use bit manipulation to do two compares at once.  For example:
1475  // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
1476
1477  // Rearrange the case blocks so that the last one falls through if possible.
1478  if (NextBlock && Default != NextBlock && BackCase.BB != NextBlock) {
1479    // The last case block won't fall through into 'NextBlock' if we emit the
1480    // branches in this order.  See if rearranging a case value would help.
1481    for (CaseItr I = CR.Range.first, E = CR.Range.second-1; I != E; ++I) {
1482      if (I->BB == NextBlock) {
1483        std::swap(*I, BackCase);
1484        break;
1485      }
1486    }
1487  }
1488
1489  // Create a CaseBlock record representing a conditional branch to
1490  // the Case's target mbb if the value being switched on SV is equal
1491  // to C.
1492  MachineBasicBlock *CurBlock = CR.CaseBB;
1493  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) {
1494    MachineBasicBlock *FallThrough;
1495    if (I != E-1) {
1496      FallThrough = CurMF->CreateMachineBasicBlock(CurBlock->getBasicBlock());
1497      CurMF->insert(BBI, FallThrough);
1498
1499      // Put SV in a virtual register to make it available from the new blocks.
1500      ExportFromCurrentBlock(SV);
1501    } else {
1502      // If the last case doesn't match, go to the default block.
1503      FallThrough = Default;
1504    }
1505
1506    Value *RHS, *LHS, *MHS;
1507    ISD::CondCode CC;
1508    if (I->High == I->Low) {
1509      // This is just small small case range :) containing exactly 1 case
1510      CC = ISD::SETEQ;
1511      LHS = SV; RHS = I->High; MHS = NULL;
1512    } else {
1513      CC = ISD::SETLE;
1514      LHS = I->Low; MHS = SV; RHS = I->High;
1515    }
1516    CaseBlock CB(CC, LHS, RHS, MHS, I->BB, FallThrough, CurBlock);
1517
1518    // If emitting the first comparison, just call visitSwitchCase to emit the
1519    // code into the current block.  Otherwise, push the CaseBlock onto the
1520    // vector to be later processed by SDISel, and insert the node's MBB
1521    // before the next MBB.
1522    if (CurBlock == CurMBB)
1523      visitSwitchCase(CB);
1524    else
1525      SwitchCases.push_back(CB);
1526
1527    CurBlock = FallThrough;
1528  }
1529
1530  return true;
1531}
1532
1533static inline bool areJTsAllowed(const TargetLowering &TLI) {
1534  return !DisableJumpTables &&
1535          (TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) ||
1536           TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other));
1537}
1538
1539static APInt ComputeRange(const APInt &First, const APInt &Last) {
1540  APInt LastExt(Last), FirstExt(First);
1541  uint32_t BitWidth = std::max(Last.getBitWidth(), First.getBitWidth()) + 1;
1542  LastExt.sext(BitWidth); FirstExt.sext(BitWidth);
1543  return (LastExt - FirstExt + 1ULL);
1544}
1545
1546/// handleJTSwitchCase - Emit jumptable for current switch case range
1547bool SelectionDAGBuilder::handleJTSwitchCase(CaseRec& CR,
1548                                             CaseRecVector& WorkList,
1549                                             Value* SV,
1550                                             MachineBasicBlock* Default) {
1551  Case& FrontCase = *CR.Range.first;
1552  Case& BackCase  = *(CR.Range.second-1);
1553
1554  const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue();
1555  const APInt &Last  = cast<ConstantInt>(BackCase.High)->getValue();
1556
1557  APInt TSize(First.getBitWidth(), 0);
1558  for (CaseItr I = CR.Range.first, E = CR.Range.second;
1559       I!=E; ++I)
1560    TSize += I->size();
1561
1562  if (!areJTsAllowed(TLI) || TSize.ult(4))
1563    return false;
1564
1565  APInt Range = ComputeRange(First, Last);
1566  double Density = TSize.roundToDouble() / Range.roundToDouble();
1567  if (Density < 0.4)
1568    return false;
1569
1570  DEBUG(dbgs() << "Lowering jump table\n"
1571               << "First entry: " << First << ". Last entry: " << Last << '\n'
1572               << "Range: " << Range
1573               << "Size: " << TSize << ". Density: " << Density << "\n\n");
1574
1575  // Get the MachineFunction which holds the current MBB.  This is used when
1576  // inserting any additional MBBs necessary to represent the switch.
1577  MachineFunction *CurMF = FuncInfo.MF;
1578
1579  // Figure out which block is immediately after the current one.
1580  MachineFunction::iterator BBI = CR.CaseBB;
1581  ++BBI;
1582
1583  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
1584
1585  // Create a new basic block to hold the code for loading the address
1586  // of the jump table, and jumping to it.  Update successor information;
1587  // we will either branch to the default case for the switch, or the jump
1588  // table.
1589  MachineBasicBlock *JumpTableBB = CurMF->CreateMachineBasicBlock(LLVMBB);
1590  CurMF->insert(BBI, JumpTableBB);
1591  CR.CaseBB->addSuccessor(Default);
1592  CR.CaseBB->addSuccessor(JumpTableBB);
1593
1594  // Build a vector of destination BBs, corresponding to each target
1595  // of the jump table. If the value of the jump table slot corresponds to
1596  // a case statement, push the case's BB onto the vector, otherwise, push
1597  // the default BB.
1598  std::vector<MachineBasicBlock*> DestBBs;
1599  APInt TEI = First;
1600  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) {
1601    const APInt &Low = cast<ConstantInt>(I->Low)->getValue();
1602    const APInt &High = cast<ConstantInt>(I->High)->getValue();
1603
1604    if (Low.sle(TEI) && TEI.sle(High)) {
1605      DestBBs.push_back(I->BB);
1606      if (TEI==High)
1607        ++I;
1608    } else {
1609      DestBBs.push_back(Default);
1610    }
1611  }
1612
1613  // Update successor info. Add one edge to each unique successor.
1614  BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs());
1615  for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(),
1616         E = DestBBs.end(); I != E; ++I) {
1617    if (!SuccsHandled[(*I)->getNumber()]) {
1618      SuccsHandled[(*I)->getNumber()] = true;
1619      JumpTableBB->addSuccessor(*I);
1620    }
1621  }
1622
1623  // Create a jump table index for this jump table.
1624  unsigned JTEncoding = TLI.getJumpTableEncoding();
1625  unsigned JTI = CurMF->getOrCreateJumpTableInfo(JTEncoding)
1626                       ->createJumpTableIndex(DestBBs);
1627
1628  // Set the jump table information so that we can codegen it as a second
1629  // MachineBasicBlock
1630  JumpTable JT(-1U, JTI, JumpTableBB, Default);
1631  JumpTableHeader JTH(First, Last, SV, CR.CaseBB, (CR.CaseBB == CurMBB));
1632  if (CR.CaseBB == CurMBB)
1633    visitJumpTableHeader(JT, JTH);
1634
1635  JTCases.push_back(JumpTableBlock(JTH, JT));
1636
1637  return true;
1638}
1639
1640/// handleBTSplitSwitchCase - emit comparison and split binary search tree into
1641/// 2 subtrees.
1642bool SelectionDAGBuilder::handleBTSplitSwitchCase(CaseRec& CR,
1643                                                  CaseRecVector& WorkList,
1644                                                  Value* SV,
1645                                                  MachineBasicBlock* Default) {
1646  // Get the MachineFunction which holds the current MBB.  This is used when
1647  // inserting any additional MBBs necessary to represent the switch.
1648  MachineFunction *CurMF = FuncInfo.MF;
1649
1650  // Figure out which block is immediately after the current one.
1651  MachineFunction::iterator BBI = CR.CaseBB;
1652  ++BBI;
1653
1654  Case& FrontCase = *CR.Range.first;
1655  Case& BackCase  = *(CR.Range.second-1);
1656  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
1657
1658  // Size is the number of Cases represented by this range.
1659  unsigned Size = CR.Range.second - CR.Range.first;
1660
1661  const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue();
1662  const APInt &Last  = cast<ConstantInt>(BackCase.High)->getValue();
1663  double FMetric = 0;
1664  CaseItr Pivot = CR.Range.first + Size/2;
1665
1666  // Select optimal pivot, maximizing sum density of LHS and RHS. This will
1667  // (heuristically) allow us to emit JumpTable's later.
1668  APInt TSize(First.getBitWidth(), 0);
1669  for (CaseItr I = CR.Range.first, E = CR.Range.second;
1670       I!=E; ++I)
1671    TSize += I->size();
1672
1673  APInt LSize = FrontCase.size();
1674  APInt RSize = TSize-LSize;
1675  DEBUG(dbgs() << "Selecting best pivot: \n"
1676               << "First: " << First << ", Last: " << Last <<'\n'
1677               << "LSize: " << LSize << ", RSize: " << RSize << '\n');
1678  for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second;
1679       J!=E; ++I, ++J) {
1680    const APInt &LEnd = cast<ConstantInt>(I->High)->getValue();
1681    const APInt &RBegin = cast<ConstantInt>(J->Low)->getValue();
1682    APInt Range = ComputeRange(LEnd, RBegin);
1683    assert((Range - 2ULL).isNonNegative() &&
1684           "Invalid case distance");
1685    double LDensity = (double)LSize.roundToDouble() /
1686                           (LEnd - First + 1ULL).roundToDouble();
1687    double RDensity = (double)RSize.roundToDouble() /
1688                           (Last - RBegin + 1ULL).roundToDouble();
1689    double Metric = Range.logBase2()*(LDensity+RDensity);
1690    // Should always split in some non-trivial place
1691    DEBUG(dbgs() <<"=>Step\n"
1692                 << "LEnd: " << LEnd << ", RBegin: " << RBegin << '\n'
1693                 << "LDensity: " << LDensity
1694                 << ", RDensity: " << RDensity << '\n'
1695                 << "Metric: " << Metric << '\n');
1696    if (FMetric < Metric) {
1697      Pivot = J;
1698      FMetric = Metric;
1699      DEBUG(dbgs() << "Current metric set to: " << FMetric << '\n');
1700    }
1701
1702    LSize += J->size();
1703    RSize -= J->size();
1704  }
1705  if (areJTsAllowed(TLI)) {
1706    // If our case is dense we *really* should handle it earlier!
1707    assert((FMetric > 0) && "Should handle dense range earlier!");
1708  } else {
1709    Pivot = CR.Range.first + Size/2;
1710  }
1711
1712  CaseRange LHSR(CR.Range.first, Pivot);
1713  CaseRange RHSR(Pivot, CR.Range.second);
1714  Constant *C = Pivot->Low;
1715  MachineBasicBlock *FalseBB = 0, *TrueBB = 0;
1716
1717  // We know that we branch to the LHS if the Value being switched on is
1718  // less than the Pivot value, C.  We use this to optimize our binary
1719  // tree a bit, by recognizing that if SV is greater than or equal to the
1720  // LHS's Case Value, and that Case Value is exactly one less than the
1721  // Pivot's Value, then we can branch directly to the LHS's Target,
1722  // rather than creating a leaf node for it.
1723  if ((LHSR.second - LHSR.first) == 1 &&
1724      LHSR.first->High == CR.GE &&
1725      cast<ConstantInt>(C)->getValue() ==
1726      (cast<ConstantInt>(CR.GE)->getValue() + 1LL)) {
1727    TrueBB = LHSR.first->BB;
1728  } else {
1729    TrueBB = CurMF->CreateMachineBasicBlock(LLVMBB);
1730    CurMF->insert(BBI, TrueBB);
1731    WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR));
1732
1733    // Put SV in a virtual register to make it available from the new blocks.
1734    ExportFromCurrentBlock(SV);
1735  }
1736
1737  // Similar to the optimization above, if the Value being switched on is
1738  // known to be less than the Constant CR.LT, and the current Case Value
1739  // is CR.LT - 1, then we can branch directly to the target block for
1740  // the current Case Value, rather than emitting a RHS leaf node for it.
1741  if ((RHSR.second - RHSR.first) == 1 && CR.LT &&
1742      cast<ConstantInt>(RHSR.first->Low)->getValue() ==
1743      (cast<ConstantInt>(CR.LT)->getValue() - 1LL)) {
1744    FalseBB = RHSR.first->BB;
1745  } else {
1746    FalseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
1747    CurMF->insert(BBI, FalseBB);
1748    WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR));
1749
1750    // Put SV in a virtual register to make it available from the new blocks.
1751    ExportFromCurrentBlock(SV);
1752  }
1753
1754  // Create a CaseBlock record representing a conditional branch to
1755  // the LHS node if the value being switched on SV is less than C.
1756  // Otherwise, branch to LHS.
1757  CaseBlock CB(ISD::SETLT, SV, C, NULL, TrueBB, FalseBB, CR.CaseBB);
1758
1759  if (CR.CaseBB == CurMBB)
1760    visitSwitchCase(CB);
1761  else
1762    SwitchCases.push_back(CB);
1763
1764  return true;
1765}
1766
1767/// handleBitTestsSwitchCase - if current case range has few destination and
1768/// range span less, than machine word bitwidth, encode case range into series
1769/// of masks and emit bit tests with these masks.
1770bool SelectionDAGBuilder::handleBitTestsSwitchCase(CaseRec& CR,
1771                                                   CaseRecVector& WorkList,
1772                                                   Value* SV,
1773                                                   MachineBasicBlock* Default){
1774  EVT PTy = TLI.getPointerTy();
1775  unsigned IntPtrBits = PTy.getSizeInBits();
1776
1777  Case& FrontCase = *CR.Range.first;
1778  Case& BackCase  = *(CR.Range.second-1);
1779
1780  // Get the MachineFunction which holds the current MBB.  This is used when
1781  // inserting any additional MBBs necessary to represent the switch.
1782  MachineFunction *CurMF = FuncInfo.MF;
1783
1784  // If target does not have legal shift left, do not emit bit tests at all.
1785  if (!TLI.isOperationLegal(ISD::SHL, TLI.getPointerTy()))
1786    return false;
1787
1788  size_t numCmps = 0;
1789  for (CaseItr I = CR.Range.first, E = CR.Range.second;
1790       I!=E; ++I) {
1791    // Single case counts one, case range - two.
1792    numCmps += (I->Low == I->High ? 1 : 2);
1793  }
1794
1795  // Count unique destinations
1796  SmallSet<MachineBasicBlock*, 4> Dests;
1797  for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
1798    Dests.insert(I->BB);
1799    if (Dests.size() > 3)
1800      // Don't bother the code below, if there are too much unique destinations
1801      return false;
1802  }
1803  DEBUG(dbgs() << "Total number of unique destinations: "
1804        << Dests.size() << '\n'
1805        << "Total number of comparisons: " << numCmps << '\n');
1806
1807  // Compute span of values.
1808  const APInt& minValue = cast<ConstantInt>(FrontCase.Low)->getValue();
1809  const APInt& maxValue = cast<ConstantInt>(BackCase.High)->getValue();
1810  APInt cmpRange = maxValue - minValue;
1811
1812  DEBUG(dbgs() << "Compare range: " << cmpRange << '\n'
1813               << "Low bound: " << minValue << '\n'
1814               << "High bound: " << maxValue << '\n');
1815
1816  if (cmpRange.uge(IntPtrBits) ||
1817      (!(Dests.size() == 1 && numCmps >= 3) &&
1818       !(Dests.size() == 2 && numCmps >= 5) &&
1819       !(Dests.size() >= 3 && numCmps >= 6)))
1820    return false;
1821
1822  DEBUG(dbgs() << "Emitting bit tests\n");
1823  APInt lowBound = APInt::getNullValue(cmpRange.getBitWidth());
1824
1825  // Optimize the case where all the case values fit in a
1826  // word without having to subtract minValue. In this case,
1827  // we can optimize away the subtraction.
1828  if (minValue.isNonNegative() && maxValue.slt(IntPtrBits)) {
1829    cmpRange = maxValue;
1830  } else {
1831    lowBound = minValue;
1832  }
1833
1834  CaseBitsVector CasesBits;
1835  unsigned i, count = 0;
1836
1837  for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
1838    MachineBasicBlock* Dest = I->BB;
1839    for (i = 0; i < count; ++i)
1840      if (Dest == CasesBits[i].BB)
1841        break;
1842
1843    if (i == count) {
1844      assert((count < 3) && "Too much destinations to test!");
1845      CasesBits.push_back(CaseBits(0, Dest, 0));
1846      count++;
1847    }
1848
1849    const APInt& lowValue = cast<ConstantInt>(I->Low)->getValue();
1850    const APInt& highValue = cast<ConstantInt>(I->High)->getValue();
1851
1852    uint64_t lo = (lowValue - lowBound).getZExtValue();
1853    uint64_t hi = (highValue - lowBound).getZExtValue();
1854
1855    for (uint64_t j = lo; j <= hi; j++) {
1856      CasesBits[i].Mask |=  1ULL << j;
1857      CasesBits[i].Bits++;
1858    }
1859
1860  }
1861  std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp());
1862
1863  BitTestInfo BTC;
1864
1865  // Figure out which block is immediately after the current one.
1866  MachineFunction::iterator BBI = CR.CaseBB;
1867  ++BBI;
1868
1869  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
1870
1871  DEBUG(dbgs() << "Cases:\n");
1872  for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) {
1873    DEBUG(dbgs() << "Mask: " << CasesBits[i].Mask
1874                 << ", Bits: " << CasesBits[i].Bits
1875                 << ", BB: " << CasesBits[i].BB << '\n');
1876
1877    MachineBasicBlock *CaseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
1878    CurMF->insert(BBI, CaseBB);
1879    BTC.push_back(BitTestCase(CasesBits[i].Mask,
1880                              CaseBB,
1881                              CasesBits[i].BB));
1882
1883    // Put SV in a virtual register to make it available from the new blocks.
1884    ExportFromCurrentBlock(SV);
1885  }
1886
1887  BitTestBlock BTB(lowBound, cmpRange, SV,
1888                   -1U, (CR.CaseBB == CurMBB),
1889                   CR.CaseBB, Default, BTC);
1890
1891  if (CR.CaseBB == CurMBB)
1892    visitBitTestHeader(BTB);
1893
1894  BitTestCases.push_back(BTB);
1895
1896  return true;
1897}
1898
1899/// Clusterify - Transform simple list of Cases into list of CaseRange's
1900size_t SelectionDAGBuilder::Clusterify(CaseVector& Cases,
1901                                       const SwitchInst& SI) {
1902  size_t numCmps = 0;
1903
1904  // Start with "simple" cases
1905  for (size_t i = 1; i < SI.getNumSuccessors(); ++i) {
1906    MachineBasicBlock *SMBB = FuncInfo.MBBMap[SI.getSuccessor(i)];
1907    Cases.push_back(Case(SI.getSuccessorValue(i),
1908                         SI.getSuccessorValue(i),
1909                         SMBB));
1910  }
1911  std::sort(Cases.begin(), Cases.end(), CaseCmp());
1912
1913  // Merge case into clusters
1914  if (Cases.size() >= 2)
1915    // Must recompute end() each iteration because it may be
1916    // invalidated by erase if we hold on to it
1917    for (CaseItr I = Cases.begin(), J = ++(Cases.begin()); J != Cases.end(); ) {
1918      const APInt& nextValue = cast<ConstantInt>(J->Low)->getValue();
1919      const APInt& currentValue = cast<ConstantInt>(I->High)->getValue();
1920      MachineBasicBlock* nextBB = J->BB;
1921      MachineBasicBlock* currentBB = I->BB;
1922
1923      // If the two neighboring cases go to the same destination, merge them
1924      // into a single case.
1925      if ((nextValue - currentValue == 1) && (currentBB == nextBB)) {
1926        I->High = J->High;
1927        J = Cases.erase(J);
1928      } else {
1929        I = J++;
1930      }
1931    }
1932
1933  for (CaseItr I=Cases.begin(), E=Cases.end(); I!=E; ++I, ++numCmps) {
1934    if (I->Low != I->High)
1935      // A range counts double, since it requires two compares.
1936      ++numCmps;
1937  }
1938
1939  return numCmps;
1940}
1941
1942void SelectionDAGBuilder::visitSwitch(SwitchInst &SI) {
1943  // Figure out which block is immediately after the current one.
1944  MachineBasicBlock *NextBlock = 0;
1945  MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()];
1946
1947  // If there is only the default destination, branch to it if it is not the
1948  // next basic block.  Otherwise, just fall through.
1949  if (SI.getNumOperands() == 2) {
1950    // Update machine-CFG edges.
1951
1952    // If this is not a fall-through branch, emit the branch.
1953    CurMBB->addSuccessor(Default);
1954    if (Default != NextBlock)
1955      DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
1956                              MVT::Other, getControlRoot(),
1957                              DAG.getBasicBlock(Default)));
1958
1959    return;
1960  }
1961
1962  // If there are any non-default case statements, create a vector of Cases
1963  // representing each one, and sort the vector so that we can efficiently
1964  // create a binary search tree from them.
1965  CaseVector Cases;
1966  size_t numCmps = Clusterify(Cases, SI);
1967  DEBUG(dbgs() << "Clusterify finished. Total clusters: " << Cases.size()
1968               << ". Total compares: " << numCmps << '\n');
1969  numCmps = 0;
1970
1971  // Get the Value to be switched on and default basic blocks, which will be
1972  // inserted into CaseBlock records, representing basic blocks in the binary
1973  // search tree.
1974  Value *SV = SI.getOperand(0);
1975
1976  // Push the initial CaseRec onto the worklist
1977  CaseRecVector WorkList;
1978  WorkList.push_back(CaseRec(CurMBB,0,0,CaseRange(Cases.begin(),Cases.end())));
1979
1980  while (!WorkList.empty()) {
1981    // Grab a record representing a case range to process off the worklist
1982    CaseRec CR = WorkList.back();
1983    WorkList.pop_back();
1984
1985    if (handleBitTestsSwitchCase(CR, WorkList, SV, Default))
1986      continue;
1987
1988    // If the range has few cases (two or less) emit a series of specific
1989    // tests.
1990    if (handleSmallSwitchRange(CR, WorkList, SV, Default))
1991      continue;
1992
1993    // If the switch has more than 5 blocks, and at least 40% dense, and the
1994    // target supports indirect branches, then emit a jump table rather than
1995    // lowering the switch to a binary tree of conditional branches.
1996    if (handleJTSwitchCase(CR, WorkList, SV, Default))
1997      continue;
1998
1999    // Emit binary tree. We need to pick a pivot, and push left and right ranges
2000    // onto the worklist. Leafs are handled via handleSmallSwitchRange() call.
2001    handleBTSplitSwitchCase(CR, WorkList, SV, Default);
2002  }
2003}
2004
2005void SelectionDAGBuilder::visitIndirectBr(IndirectBrInst &I) {
2006  // Update machine-CFG edges with unique successors.
2007  SmallVector<BasicBlock*, 32> succs;
2008  succs.reserve(I.getNumSuccessors());
2009  for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i)
2010    succs.push_back(I.getSuccessor(i));
2011  array_pod_sort(succs.begin(), succs.end());
2012  succs.erase(std::unique(succs.begin(), succs.end()), succs.end());
2013  for (unsigned i = 0, e = succs.size(); i != e; ++i)
2014    CurMBB->addSuccessor(FuncInfo.MBBMap[succs[i]]);
2015
2016  DAG.setRoot(DAG.getNode(ISD::BRIND, getCurDebugLoc(),
2017                          MVT::Other, getControlRoot(),
2018                          getValue(I.getAddress())));
2019}
2020
2021void SelectionDAGBuilder::visitFSub(User &I) {
2022  // -0.0 - X --> fneg
2023  const Type *Ty = I.getType();
2024  if (Ty->isVectorTy()) {
2025    if (ConstantVector *CV = dyn_cast<ConstantVector>(I.getOperand(0))) {
2026      const VectorType *DestTy = cast<VectorType>(I.getType());
2027      const Type *ElTy = DestTy->getElementType();
2028      unsigned VL = DestTy->getNumElements();
2029      std::vector<Constant*> NZ(VL, ConstantFP::getNegativeZero(ElTy));
2030      Constant *CNZ = ConstantVector::get(&NZ[0], NZ.size());
2031      if (CV == CNZ) {
2032        SDValue Op2 = getValue(I.getOperand(1));
2033        setValue(&I, DAG.getNode(ISD::FNEG, getCurDebugLoc(),
2034                                 Op2.getValueType(), Op2));
2035        return;
2036      }
2037    }
2038  }
2039
2040  if (ConstantFP *CFP = dyn_cast<ConstantFP>(I.getOperand(0)))
2041    if (CFP->isExactlyValue(ConstantFP::getNegativeZero(Ty)->getValueAPF())) {
2042      SDValue Op2 = getValue(I.getOperand(1));
2043      setValue(&I, DAG.getNode(ISD::FNEG, getCurDebugLoc(),
2044                               Op2.getValueType(), Op2));
2045      return;
2046    }
2047
2048  visitBinary(I, ISD::FSUB);
2049}
2050
2051void SelectionDAGBuilder::visitBinary(User &I, unsigned OpCode) {
2052  SDValue Op1 = getValue(I.getOperand(0));
2053  SDValue Op2 = getValue(I.getOperand(1));
2054  setValue(&I, DAG.getNode(OpCode, getCurDebugLoc(),
2055                           Op1.getValueType(), Op1, Op2));
2056}
2057
2058void SelectionDAGBuilder::visitShift(User &I, unsigned Opcode) {
2059  SDValue Op1 = getValue(I.getOperand(0));
2060  SDValue Op2 = getValue(I.getOperand(1));
2061  if (!I.getType()->isVectorTy() &&
2062      Op2.getValueType() != TLI.getShiftAmountTy()) {
2063    // If the operand is smaller than the shift count type, promote it.
2064    EVT PTy = TLI.getPointerTy();
2065    EVT STy = TLI.getShiftAmountTy();
2066    if (STy.bitsGT(Op2.getValueType()))
2067      Op2 = DAG.getNode(ISD::ANY_EXTEND, getCurDebugLoc(),
2068                        TLI.getShiftAmountTy(), Op2);
2069    // If the operand is larger than the shift count type but the shift
2070    // count type has enough bits to represent any shift value, truncate
2071    // it now. This is a common case and it exposes the truncate to
2072    // optimization early.
2073    else if (STy.getSizeInBits() >=
2074             Log2_32_Ceil(Op2.getValueType().getSizeInBits()))
2075      Op2 = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(),
2076                        TLI.getShiftAmountTy(), Op2);
2077    // Otherwise we'll need to temporarily settle for some other
2078    // convenient type; type legalization will make adjustments as
2079    // needed.
2080    else if (PTy.bitsLT(Op2.getValueType()))
2081      Op2 = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(),
2082                        TLI.getPointerTy(), Op2);
2083    else if (PTy.bitsGT(Op2.getValueType()))
2084      Op2 = DAG.getNode(ISD::ANY_EXTEND, getCurDebugLoc(),
2085                        TLI.getPointerTy(), Op2);
2086  }
2087
2088  setValue(&I, DAG.getNode(Opcode, getCurDebugLoc(),
2089                           Op1.getValueType(), Op1, Op2));
2090}
2091
2092void SelectionDAGBuilder::visitICmp(User &I) {
2093  ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
2094  if (ICmpInst *IC = dyn_cast<ICmpInst>(&I))
2095    predicate = IC->getPredicate();
2096  else if (ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
2097    predicate = ICmpInst::Predicate(IC->getPredicate());
2098  SDValue Op1 = getValue(I.getOperand(0));
2099  SDValue Op2 = getValue(I.getOperand(1));
2100  ISD::CondCode Opcode = getICmpCondCode(predicate);
2101
2102  EVT DestVT = TLI.getValueType(I.getType());
2103  setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Opcode));
2104}
2105
2106void SelectionDAGBuilder::visitFCmp(User &I) {
2107  FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
2108  if (FCmpInst *FC = dyn_cast<FCmpInst>(&I))
2109    predicate = FC->getPredicate();
2110  else if (ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
2111    predicate = FCmpInst::Predicate(FC->getPredicate());
2112  SDValue Op1 = getValue(I.getOperand(0));
2113  SDValue Op2 = getValue(I.getOperand(1));
2114  ISD::CondCode Condition = getFCmpCondCode(predicate);
2115  EVT DestVT = TLI.getValueType(I.getType());
2116  setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Condition));
2117}
2118
2119void SelectionDAGBuilder::visitSelect(User &I) {
2120  SmallVector<EVT, 4> ValueVTs;
2121  ComputeValueVTs(TLI, I.getType(), ValueVTs);
2122  unsigned NumValues = ValueVTs.size();
2123  if (NumValues == 0) return;
2124
2125  SmallVector<SDValue, 4> Values(NumValues);
2126  SDValue Cond     = getValue(I.getOperand(0));
2127  SDValue TrueVal  = getValue(I.getOperand(1));
2128  SDValue FalseVal = getValue(I.getOperand(2));
2129
2130  for (unsigned i = 0; i != NumValues; ++i)
2131    Values[i] = DAG.getNode(ISD::SELECT, getCurDebugLoc(),
2132                          TrueVal.getNode()->getValueType(TrueVal.getResNo()+i),
2133                            Cond,
2134                            SDValue(TrueVal.getNode(),
2135                                    TrueVal.getResNo() + i),
2136                            SDValue(FalseVal.getNode(),
2137                                    FalseVal.getResNo() + i));
2138
2139  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
2140                           DAG.getVTList(&ValueVTs[0], NumValues),
2141                           &Values[0], NumValues));
2142}
2143
2144void SelectionDAGBuilder::visitTrunc(User &I) {
2145  // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
2146  SDValue N = getValue(I.getOperand(0));
2147  EVT DestVT = TLI.getValueType(I.getType());
2148  setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), DestVT, N));
2149}
2150
2151void SelectionDAGBuilder::visitZExt(User &I) {
2152  // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2153  // ZExt also can't be a cast to bool for same reason. So, nothing much to do
2154  SDValue N = getValue(I.getOperand(0));
2155  EVT DestVT = TLI.getValueType(I.getType());
2156  setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), DestVT, N));
2157}
2158
2159void SelectionDAGBuilder::visitSExt(User &I) {
2160  // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2161  // SExt also can't be a cast to bool for same reason. So, nothing much to do
2162  SDValue N = getValue(I.getOperand(0));
2163  EVT DestVT = TLI.getValueType(I.getType());
2164  setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurDebugLoc(), DestVT, N));
2165}
2166
2167void SelectionDAGBuilder::visitFPTrunc(User &I) {
2168  // FPTrunc is never a no-op cast, no need to check
2169  SDValue N = getValue(I.getOperand(0));
2170  EVT DestVT = TLI.getValueType(I.getType());
2171  setValue(&I, DAG.getNode(ISD::FP_ROUND, getCurDebugLoc(),
2172                           DestVT, N, DAG.getIntPtrConstant(0)));
2173}
2174
2175void SelectionDAGBuilder::visitFPExt(User &I){
2176  // FPTrunc is never a no-op cast, no need to check
2177  SDValue N = getValue(I.getOperand(0));
2178  EVT DestVT = TLI.getValueType(I.getType());
2179  setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurDebugLoc(), DestVT, N));
2180}
2181
2182void SelectionDAGBuilder::visitFPToUI(User &I) {
2183  // FPToUI is never a no-op cast, no need to check
2184  SDValue N = getValue(I.getOperand(0));
2185  EVT DestVT = TLI.getValueType(I.getType());
2186  setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurDebugLoc(), DestVT, N));
2187}
2188
2189void SelectionDAGBuilder::visitFPToSI(User &I) {
2190  // FPToSI is never a no-op cast, no need to check
2191  SDValue N = getValue(I.getOperand(0));
2192  EVT DestVT = TLI.getValueType(I.getType());
2193  setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurDebugLoc(), DestVT, N));
2194}
2195
2196void SelectionDAGBuilder::visitUIToFP(User &I) {
2197  // UIToFP is never a no-op cast, no need to check
2198  SDValue N = getValue(I.getOperand(0));
2199  EVT DestVT = TLI.getValueType(I.getType());
2200  setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurDebugLoc(), DestVT, N));
2201}
2202
2203void SelectionDAGBuilder::visitSIToFP(User &I){
2204  // SIToFP is never a no-op cast, no need to check
2205  SDValue N = getValue(I.getOperand(0));
2206  EVT DestVT = TLI.getValueType(I.getType());
2207  setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurDebugLoc(), DestVT, N));
2208}
2209
2210void SelectionDAGBuilder::visitPtrToInt(User &I) {
2211  // What to do depends on the size of the integer and the size of the pointer.
2212  // We can either truncate, zero extend, or no-op, accordingly.
2213  SDValue N = getValue(I.getOperand(0));
2214  EVT SrcVT = N.getValueType();
2215  EVT DestVT = TLI.getValueType(I.getType());
2216  setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT));
2217}
2218
2219void SelectionDAGBuilder::visitIntToPtr(User &I) {
2220  // What to do depends on the size of the integer and the size of the pointer.
2221  // We can either truncate, zero extend, or no-op, accordingly.
2222  SDValue N = getValue(I.getOperand(0));
2223  EVT SrcVT = N.getValueType();
2224  EVT DestVT = TLI.getValueType(I.getType());
2225  setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT));
2226}
2227
2228void SelectionDAGBuilder::visitBitCast(User &I) {
2229  SDValue N = getValue(I.getOperand(0));
2230  EVT DestVT = TLI.getValueType(I.getType());
2231
2232  // BitCast assures us that source and destination are the same size so this is
2233  // either a BIT_CONVERT or a no-op.
2234  if (DestVT != N.getValueType())
2235    setValue(&I, DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(),
2236                             DestVT, N)); // convert types.
2237  else
2238    setValue(&I, N);            // noop cast.
2239}
2240
2241void SelectionDAGBuilder::visitInsertElement(User &I) {
2242  SDValue InVec = getValue(I.getOperand(0));
2243  SDValue InVal = getValue(I.getOperand(1));
2244  SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(),
2245                              TLI.getPointerTy(),
2246                              getValue(I.getOperand(2)));
2247  setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurDebugLoc(),
2248                           TLI.getValueType(I.getType()),
2249                           InVec, InVal, InIdx));
2250}
2251
2252void SelectionDAGBuilder::visitExtractElement(User &I) {
2253  SDValue InVec = getValue(I.getOperand(0));
2254  SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(),
2255                              TLI.getPointerTy(),
2256                              getValue(I.getOperand(1)));
2257  setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
2258                           TLI.getValueType(I.getType()), InVec, InIdx));
2259}
2260
2261// Utility for visitShuffleVector - Returns true if the mask is mask starting
2262// from SIndx and increasing to the element length (undefs are allowed).
2263static bool SequentialMask(SmallVectorImpl<int> &Mask, unsigned SIndx) {
2264  unsigned MaskNumElts = Mask.size();
2265  for (unsigned i = 0; i != MaskNumElts; ++i)
2266    if ((Mask[i] >= 0) && (Mask[i] != (int)(i + SIndx)))
2267      return false;
2268  return true;
2269}
2270
2271void SelectionDAGBuilder::visitShuffleVector(User &I) {
2272  SmallVector<int, 8> Mask;
2273  SDValue Src1 = getValue(I.getOperand(0));
2274  SDValue Src2 = getValue(I.getOperand(1));
2275
2276  // Convert the ConstantVector mask operand into an array of ints, with -1
2277  // representing undef values.
2278  SmallVector<Constant*, 8> MaskElts;
2279  cast<Constant>(I.getOperand(2))->getVectorElements(MaskElts);
2280  unsigned MaskNumElts = MaskElts.size();
2281  for (unsigned i = 0; i != MaskNumElts; ++i) {
2282    if (isa<UndefValue>(MaskElts[i]))
2283      Mask.push_back(-1);
2284    else
2285      Mask.push_back(cast<ConstantInt>(MaskElts[i])->getSExtValue());
2286  }
2287
2288  EVT VT = TLI.getValueType(I.getType());
2289  EVT SrcVT = Src1.getValueType();
2290  unsigned SrcNumElts = SrcVT.getVectorNumElements();
2291
2292  if (SrcNumElts == MaskNumElts) {
2293    setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2294                                      &Mask[0]));
2295    return;
2296  }
2297
2298  // Normalize the shuffle vector since mask and vector length don't match.
2299  if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) {
2300    // Mask is longer than the source vectors and is a multiple of the source
2301    // vectors.  We can use concatenate vector to make the mask and vectors
2302    // lengths match.
2303    if (SrcNumElts*2 == MaskNumElts && SequentialMask(Mask, 0)) {
2304      // The shuffle is concatenating two vectors together.
2305      setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurDebugLoc(),
2306                               VT, Src1, Src2));
2307      return;
2308    }
2309
2310    // Pad both vectors with undefs to make them the same length as the mask.
2311    unsigned NumConcat = MaskNumElts / SrcNumElts;
2312    bool Src1U = Src1.getOpcode() == ISD::UNDEF;
2313    bool Src2U = Src2.getOpcode() == ISD::UNDEF;
2314    SDValue UndefVal = DAG.getUNDEF(SrcVT);
2315
2316    SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
2317    SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
2318    MOps1[0] = Src1;
2319    MOps2[0] = Src2;
2320
2321    Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
2322                                                  getCurDebugLoc(), VT,
2323                                                  &MOps1[0], NumConcat);
2324    Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
2325                                                  getCurDebugLoc(), VT,
2326                                                  &MOps2[0], NumConcat);
2327
2328    // Readjust mask for new input vector length.
2329    SmallVector<int, 8> MappedOps;
2330    for (unsigned i = 0; i != MaskNumElts; ++i) {
2331      int Idx = Mask[i];
2332      if (Idx < (int)SrcNumElts)
2333        MappedOps.push_back(Idx);
2334      else
2335        MappedOps.push_back(Idx + MaskNumElts - SrcNumElts);
2336    }
2337
2338    setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2339                                      &MappedOps[0]));
2340    return;
2341  }
2342
2343  if (SrcNumElts > MaskNumElts) {
2344    // Analyze the access pattern of the vector to see if we can extract
2345    // two subvectors and do the shuffle. The analysis is done by calculating
2346    // the range of elements the mask access on both vectors.
2347    int MinRange[2] = { SrcNumElts+1, SrcNumElts+1};
2348    int MaxRange[2] = {-1, -1};
2349
2350    for (unsigned i = 0; i != MaskNumElts; ++i) {
2351      int Idx = Mask[i];
2352      int Input = 0;
2353      if (Idx < 0)
2354        continue;
2355
2356      if (Idx >= (int)SrcNumElts) {
2357        Input = 1;
2358        Idx -= SrcNumElts;
2359      }
2360      if (Idx > MaxRange[Input])
2361        MaxRange[Input] = Idx;
2362      if (Idx < MinRange[Input])
2363        MinRange[Input] = Idx;
2364    }
2365
2366    // Check if the access is smaller than the vector size and can we find
2367    // a reasonable extract index.
2368    int RangeUse[2] = { 2, 2 };  // 0 = Unused, 1 = Extract, 2 = Can not
2369                                 // Extract.
2370    int StartIdx[2];  // StartIdx to extract from
2371    for (int Input=0; Input < 2; ++Input) {
2372      if (MinRange[Input] == (int)(SrcNumElts+1) && MaxRange[Input] == -1) {
2373        RangeUse[Input] = 0; // Unused
2374        StartIdx[Input] = 0;
2375      } else if (MaxRange[Input] - MinRange[Input] < (int)MaskNumElts) {
2376        // Fits within range but we should see if we can find a good
2377        // start index that is a multiple of the mask length.
2378        if (MaxRange[Input] < (int)MaskNumElts) {
2379          RangeUse[Input] = 1; // Extract from beginning of the vector
2380          StartIdx[Input] = 0;
2381        } else {
2382          StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts;
2383          if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts &&
2384              StartIdx[Input] + MaskNumElts < SrcNumElts)
2385            RangeUse[Input] = 1; // Extract from a multiple of the mask length.
2386        }
2387      }
2388    }
2389
2390    if (RangeUse[0] == 0 && RangeUse[1] == 0) {
2391      setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
2392      return;
2393    }
2394    else if (RangeUse[0] < 2 && RangeUse[1] < 2) {
2395      // Extract appropriate subvector and generate a vector shuffle
2396      for (int Input=0; Input < 2; ++Input) {
2397        SDValue &Src = Input == 0 ? Src1 : Src2;
2398        if (RangeUse[Input] == 0)
2399          Src = DAG.getUNDEF(VT);
2400        else
2401          Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, getCurDebugLoc(), VT,
2402                            Src, DAG.getIntPtrConstant(StartIdx[Input]));
2403      }
2404
2405      // Calculate new mask.
2406      SmallVector<int, 8> MappedOps;
2407      for (unsigned i = 0; i != MaskNumElts; ++i) {
2408        int Idx = Mask[i];
2409        if (Idx < 0)
2410          MappedOps.push_back(Idx);
2411        else if (Idx < (int)SrcNumElts)
2412          MappedOps.push_back(Idx - StartIdx[0]);
2413        else
2414          MappedOps.push_back(Idx - SrcNumElts - StartIdx[1] + MaskNumElts);
2415      }
2416
2417      setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2418                                        &MappedOps[0]));
2419      return;
2420    }
2421  }
2422
2423  // We can't use either concat vectors or extract subvectors so fall back to
2424  // replacing the shuffle with extract and build vector.
2425  // to insert and build vector.
2426  EVT EltVT = VT.getVectorElementType();
2427  EVT PtrVT = TLI.getPointerTy();
2428  SmallVector<SDValue,8> Ops;
2429  for (unsigned i = 0; i != MaskNumElts; ++i) {
2430    if (Mask[i] < 0) {
2431      Ops.push_back(DAG.getUNDEF(EltVT));
2432    } else {
2433      int Idx = Mask[i];
2434      SDValue Res;
2435
2436      if (Idx < (int)SrcNumElts)
2437        Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
2438                          EltVT, Src1, DAG.getConstant(Idx, PtrVT));
2439      else
2440        Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
2441                          EltVT, Src2,
2442                          DAG.getConstant(Idx - SrcNumElts, PtrVT));
2443
2444      Ops.push_back(Res);
2445    }
2446  }
2447
2448  setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(),
2449                           VT, &Ops[0], Ops.size()));
2450}
2451
2452void SelectionDAGBuilder::visitInsertValue(InsertValueInst &I) {
2453  const Value *Op0 = I.getOperand(0);
2454  const Value *Op1 = I.getOperand(1);
2455  const Type *AggTy = I.getType();
2456  const Type *ValTy = Op1->getType();
2457  bool IntoUndef = isa<UndefValue>(Op0);
2458  bool FromUndef = isa<UndefValue>(Op1);
2459
2460  unsigned LinearIndex = ComputeLinearIndex(TLI, AggTy,
2461                                            I.idx_begin(), I.idx_end());
2462
2463  SmallVector<EVT, 4> AggValueVTs;
2464  ComputeValueVTs(TLI, AggTy, AggValueVTs);
2465  SmallVector<EVT, 4> ValValueVTs;
2466  ComputeValueVTs(TLI, ValTy, ValValueVTs);
2467
2468  unsigned NumAggValues = AggValueVTs.size();
2469  unsigned NumValValues = ValValueVTs.size();
2470  SmallVector<SDValue, 4> Values(NumAggValues);
2471
2472  SDValue Agg = getValue(Op0);
2473  SDValue Val = getValue(Op1);
2474  unsigned i = 0;
2475  // Copy the beginning value(s) from the original aggregate.
2476  for (; i != LinearIndex; ++i)
2477    Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
2478                SDValue(Agg.getNode(), Agg.getResNo() + i);
2479  // Copy values from the inserted value(s).
2480  for (; i != LinearIndex + NumValValues; ++i)
2481    Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
2482                SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
2483  // Copy remaining value(s) from the original aggregate.
2484  for (; i != NumAggValues; ++i)
2485    Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
2486                SDValue(Agg.getNode(), Agg.getResNo() + i);
2487
2488  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
2489                           DAG.getVTList(&AggValueVTs[0], NumAggValues),
2490                           &Values[0], NumAggValues));
2491}
2492
2493void SelectionDAGBuilder::visitExtractValue(ExtractValueInst &I) {
2494  const Value *Op0 = I.getOperand(0);
2495  const Type *AggTy = Op0->getType();
2496  const Type *ValTy = I.getType();
2497  bool OutOfUndef = isa<UndefValue>(Op0);
2498
2499  unsigned LinearIndex = ComputeLinearIndex(TLI, AggTy,
2500                                            I.idx_begin(), I.idx_end());
2501
2502  SmallVector<EVT, 4> ValValueVTs;
2503  ComputeValueVTs(TLI, ValTy, ValValueVTs);
2504
2505  unsigned NumValValues = ValValueVTs.size();
2506  SmallVector<SDValue, 4> Values(NumValValues);
2507
2508  SDValue Agg = getValue(Op0);
2509  // Copy out the selected value(s).
2510  for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
2511    Values[i - LinearIndex] =
2512      OutOfUndef ?
2513        DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
2514        SDValue(Agg.getNode(), Agg.getResNo() + i);
2515
2516  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
2517                           DAG.getVTList(&ValValueVTs[0], NumValValues),
2518                           &Values[0], NumValValues));
2519}
2520
2521void SelectionDAGBuilder::visitGetElementPtr(User &I) {
2522  SDValue N = getValue(I.getOperand(0));
2523  const Type *Ty = I.getOperand(0)->getType();
2524
2525  for (GetElementPtrInst::op_iterator OI = I.op_begin()+1, E = I.op_end();
2526       OI != E; ++OI) {
2527    Value *Idx = *OI;
2528    if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
2529      unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
2530      if (Field) {
2531        // N = N + Offset
2532        uint64_t Offset = TD->getStructLayout(StTy)->getElementOffset(Field);
2533        N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N,
2534                        DAG.getIntPtrConstant(Offset));
2535      }
2536
2537      Ty = StTy->getElementType(Field);
2538    } else if (const UnionType *UnTy = dyn_cast<UnionType>(Ty)) {
2539      unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
2540
2541      // Offset canonically 0 for unions, but type changes
2542      Ty = UnTy->getElementType(Field);
2543    } else {
2544      Ty = cast<SequentialType>(Ty)->getElementType();
2545
2546      // If this is a constant subscript, handle it quickly.
2547      if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
2548        if (CI->getZExtValue() == 0) continue;
2549        uint64_t Offs =
2550            TD->getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue();
2551        SDValue OffsVal;
2552        EVT PTy = TLI.getPointerTy();
2553        unsigned PtrBits = PTy.getSizeInBits();
2554        if (PtrBits < 64)
2555          OffsVal = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(),
2556                                TLI.getPointerTy(),
2557                                DAG.getConstant(Offs, MVT::i64));
2558        else
2559          OffsVal = DAG.getIntPtrConstant(Offs);
2560
2561        N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N,
2562                        OffsVal);
2563        continue;
2564      }
2565
2566      // N = N + Idx * ElementSize;
2567      APInt ElementSize = APInt(TLI.getPointerTy().getSizeInBits(),
2568                                TD->getTypeAllocSize(Ty));
2569      SDValue IdxN = getValue(Idx);
2570
2571      // If the index is smaller or larger than intptr_t, truncate or extend
2572      // it.
2573      IdxN = DAG.getSExtOrTrunc(IdxN, getCurDebugLoc(), N.getValueType());
2574
2575      // If this is a multiply by a power of two, turn it into a shl
2576      // immediately.  This is a very common case.
2577      if (ElementSize != 1) {
2578        if (ElementSize.isPowerOf2()) {
2579          unsigned Amt = ElementSize.logBase2();
2580          IdxN = DAG.getNode(ISD::SHL, getCurDebugLoc(),
2581                             N.getValueType(), IdxN,
2582                             DAG.getConstant(Amt, TLI.getPointerTy()));
2583        } else {
2584          SDValue Scale = DAG.getConstant(ElementSize, TLI.getPointerTy());
2585          IdxN = DAG.getNode(ISD::MUL, getCurDebugLoc(),
2586                             N.getValueType(), IdxN, Scale);
2587        }
2588      }
2589
2590      N = DAG.getNode(ISD::ADD, getCurDebugLoc(),
2591                      N.getValueType(), N, IdxN);
2592    }
2593  }
2594
2595  setValue(&I, N);
2596}
2597
2598void SelectionDAGBuilder::visitAlloca(AllocaInst &I) {
2599  // If this is a fixed sized alloca in the entry block of the function,
2600  // allocate it statically on the stack.
2601  if (FuncInfo.StaticAllocaMap.count(&I))
2602    return;   // getValue will auto-populate this.
2603
2604  const Type *Ty = I.getAllocatedType();
2605  uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty);
2606  unsigned Align =
2607    std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty),
2608             I.getAlignment());
2609
2610  SDValue AllocSize = getValue(I.getArraySize());
2611
2612  AllocSize = DAG.getNode(ISD::MUL, getCurDebugLoc(), AllocSize.getValueType(),
2613                          AllocSize,
2614                          DAG.getConstant(TySize, AllocSize.getValueType()));
2615
2616  EVT IntPtr = TLI.getPointerTy();
2617  AllocSize = DAG.getZExtOrTrunc(AllocSize, getCurDebugLoc(), IntPtr);
2618
2619  // Handle alignment.  If the requested alignment is less than or equal to
2620  // the stack alignment, ignore it.  If the size is greater than or equal to
2621  // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
2622  unsigned StackAlign =
2623    TLI.getTargetMachine().getFrameInfo()->getStackAlignment();
2624  if (Align <= StackAlign)
2625    Align = 0;
2626
2627  // Round the size of the allocation up to the stack alignment size
2628  // by add SA-1 to the size.
2629  AllocSize = DAG.getNode(ISD::ADD, getCurDebugLoc(),
2630                          AllocSize.getValueType(), AllocSize,
2631                          DAG.getIntPtrConstant(StackAlign-1));
2632
2633  // Mask out the low bits for alignment purposes.
2634  AllocSize = DAG.getNode(ISD::AND, getCurDebugLoc(),
2635                          AllocSize.getValueType(), AllocSize,
2636                          DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1)));
2637
2638  SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) };
2639  SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
2640  SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, getCurDebugLoc(),
2641                            VTs, Ops, 3);
2642  setValue(&I, DSA);
2643  DAG.setRoot(DSA.getValue(1));
2644
2645  // Inform the Frame Information that we have just allocated a variable-sized
2646  // object.
2647  FuncInfo.MF->getFrameInfo()->CreateVariableSizedObject();
2648}
2649
2650void SelectionDAGBuilder::visitLoad(LoadInst &I) {
2651  const Value *SV = I.getOperand(0);
2652  SDValue Ptr = getValue(SV);
2653
2654  const Type *Ty = I.getType();
2655
2656  bool isVolatile = I.isVolatile();
2657  bool isNonTemporal = I.getMetadata("nontemporal") != 0;
2658  unsigned Alignment = I.getAlignment();
2659
2660  SmallVector<EVT, 4> ValueVTs;
2661  SmallVector<uint64_t, 4> Offsets;
2662  ComputeValueVTs(TLI, Ty, ValueVTs, &Offsets);
2663  unsigned NumValues = ValueVTs.size();
2664  if (NumValues == 0)
2665    return;
2666
2667  SDValue Root;
2668  bool ConstantMemory = false;
2669  if (I.isVolatile())
2670    // Serialize volatile loads with other side effects.
2671    Root = getRoot();
2672  else if (AA->pointsToConstantMemory(SV)) {
2673    // Do not serialize (non-volatile) loads of constant memory with anything.
2674    Root = DAG.getEntryNode();
2675    ConstantMemory = true;
2676  } else {
2677    // Do not serialize non-volatile loads against each other.
2678    Root = DAG.getRoot();
2679  }
2680
2681  SmallVector<SDValue, 4> Values(NumValues);
2682  SmallVector<SDValue, 4> Chains(NumValues);
2683  EVT PtrVT = Ptr.getValueType();
2684  for (unsigned i = 0; i != NumValues; ++i) {
2685    SDValue A = DAG.getNode(ISD::ADD, getCurDebugLoc(),
2686                            PtrVT, Ptr,
2687                            DAG.getConstant(Offsets[i], PtrVT));
2688    SDValue L = DAG.getLoad(ValueVTs[i], getCurDebugLoc(), Root,
2689                            A, SV, Offsets[i], isVolatile,
2690                            isNonTemporal, Alignment);
2691
2692    Values[i] = L;
2693    Chains[i] = L.getValue(1);
2694  }
2695
2696  if (!ConstantMemory) {
2697    SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
2698                                MVT::Other, &Chains[0], NumValues);
2699    if (isVolatile)
2700      DAG.setRoot(Chain);
2701    else
2702      PendingLoads.push_back(Chain);
2703  }
2704
2705  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
2706                           DAG.getVTList(&ValueVTs[0], NumValues),
2707                           &Values[0], NumValues));
2708}
2709
2710void SelectionDAGBuilder::visitStore(StoreInst &I) {
2711  Value *SrcV = I.getOperand(0);
2712  Value *PtrV = I.getOperand(1);
2713
2714  SmallVector<EVT, 4> ValueVTs;
2715  SmallVector<uint64_t, 4> Offsets;
2716  ComputeValueVTs(TLI, SrcV->getType(), ValueVTs, &Offsets);
2717  unsigned NumValues = ValueVTs.size();
2718  if (NumValues == 0)
2719    return;
2720
2721  // Get the lowered operands. Note that we do this after
2722  // checking if NumResults is zero, because with zero results
2723  // the operands won't have values in the map.
2724  SDValue Src = getValue(SrcV);
2725  SDValue Ptr = getValue(PtrV);
2726
2727  SDValue Root = getRoot();
2728  SmallVector<SDValue, 4> Chains(NumValues);
2729  EVT PtrVT = Ptr.getValueType();
2730  bool isVolatile = I.isVolatile();
2731  bool isNonTemporal = I.getMetadata("nontemporal") != 0;
2732  unsigned Alignment = I.getAlignment();
2733
2734  for (unsigned i = 0; i != NumValues; ++i) {
2735    SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT, Ptr,
2736                              DAG.getConstant(Offsets[i], PtrVT));
2737    Chains[i] = DAG.getStore(Root, getCurDebugLoc(),
2738                             SDValue(Src.getNode(), Src.getResNo() + i),
2739                             Add, PtrV, Offsets[i], isVolatile,
2740                             isNonTemporal, Alignment);
2741  }
2742
2743  DAG.setRoot(DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
2744                          MVT::Other, &Chains[0], NumValues));
2745}
2746
2747/// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
2748/// node.
2749void SelectionDAGBuilder::visitTargetIntrinsic(CallInst &I,
2750                                               unsigned Intrinsic) {
2751  bool HasChain = !I.doesNotAccessMemory();
2752  bool OnlyLoad = HasChain && I.onlyReadsMemory();
2753
2754  // Build the operand list.
2755  SmallVector<SDValue, 8> Ops;
2756  if (HasChain) {  // If this intrinsic has side-effects, chainify it.
2757    if (OnlyLoad) {
2758      // We don't need to serialize loads against other loads.
2759      Ops.push_back(DAG.getRoot());
2760    } else {
2761      Ops.push_back(getRoot());
2762    }
2763  }
2764
2765  // Info is set by getTgtMemInstrinsic
2766  TargetLowering::IntrinsicInfo Info;
2767  bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic);
2768
2769  // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
2770  if (!IsTgtIntrinsic)
2771    Ops.push_back(DAG.getConstant(Intrinsic, TLI.getPointerTy()));
2772
2773  // Add all operands of the call to the operand list.
2774  for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) {
2775    SDValue Op = getValue(I.getOperand(i));
2776    assert(TLI.isTypeLegal(Op.getValueType()) &&
2777           "Intrinsic uses a non-legal type?");
2778    Ops.push_back(Op);
2779  }
2780
2781  SmallVector<EVT, 4> ValueVTs;
2782  ComputeValueVTs(TLI, I.getType(), ValueVTs);
2783#ifndef NDEBUG
2784  for (unsigned Val = 0, E = ValueVTs.size(); Val != E; ++Val) {
2785    assert(TLI.isTypeLegal(ValueVTs[Val]) &&
2786           "Intrinsic uses a non-legal type?");
2787  }
2788#endif // NDEBUG
2789
2790  if (HasChain)
2791    ValueVTs.push_back(MVT::Other);
2792
2793  SDVTList VTs = DAG.getVTList(ValueVTs.data(), ValueVTs.size());
2794
2795  // Create the node.
2796  SDValue Result;
2797  if (IsTgtIntrinsic) {
2798    // This is target intrinsic that touches memory
2799    Result = DAG.getMemIntrinsicNode(Info.opc, getCurDebugLoc(),
2800                                     VTs, &Ops[0], Ops.size(),
2801                                     Info.memVT, Info.ptrVal, Info.offset,
2802                                     Info.align, Info.vol,
2803                                     Info.readMem, Info.writeMem);
2804  } else if (!HasChain) {
2805    Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurDebugLoc(),
2806                         VTs, &Ops[0], Ops.size());
2807  } else if (!I.getType()->isVoidTy()) {
2808    Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurDebugLoc(),
2809                         VTs, &Ops[0], Ops.size());
2810  } else {
2811    Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurDebugLoc(),
2812                         VTs, &Ops[0], Ops.size());
2813  }
2814
2815  if (HasChain) {
2816    SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
2817    if (OnlyLoad)
2818      PendingLoads.push_back(Chain);
2819    else
2820      DAG.setRoot(Chain);
2821  }
2822
2823  if (!I.getType()->isVoidTy()) {
2824    if (const VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
2825      EVT VT = TLI.getValueType(PTy);
2826      Result = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(), VT, Result);
2827    }
2828
2829    setValue(&I, Result);
2830  }
2831}
2832
2833/// GetSignificand - Get the significand and build it into a floating-point
2834/// number with exponent of 1:
2835///
2836///   Op = (Op & 0x007fffff) | 0x3f800000;
2837///
2838/// where Op is the hexidecimal representation of floating point value.
2839static SDValue
2840GetSignificand(SelectionDAG &DAG, SDValue Op, DebugLoc dl) {
2841  SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
2842                           DAG.getConstant(0x007fffff, MVT::i32));
2843  SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
2844                           DAG.getConstant(0x3f800000, MVT::i32));
2845  return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t2);
2846}
2847
2848/// GetExponent - Get the exponent:
2849///
2850///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
2851///
2852/// where Op is the hexidecimal representation of floating point value.
2853static SDValue
2854GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI,
2855            DebugLoc dl) {
2856  SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
2857                           DAG.getConstant(0x7f800000, MVT::i32));
2858  SDValue t1 = DAG.getNode(ISD::SRL, dl, MVT::i32, t0,
2859                           DAG.getConstant(23, TLI.getPointerTy()));
2860  SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
2861                           DAG.getConstant(127, MVT::i32));
2862  return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
2863}
2864
2865/// getF32Constant - Get 32-bit floating point constant.
2866static SDValue
2867getF32Constant(SelectionDAG &DAG, unsigned Flt) {
2868  return DAG.getConstantFP(APFloat(APInt(32, Flt)), MVT::f32);
2869}
2870
2871/// Inlined utility function to implement binary input atomic intrinsics for
2872/// visitIntrinsicCall: I is a call instruction
2873///                     Op is the associated NodeType for I
2874const char *
2875SelectionDAGBuilder::implVisitBinaryAtomic(CallInst& I, ISD::NodeType Op) {
2876  SDValue Root = getRoot();
2877  SDValue L =
2878    DAG.getAtomic(Op, getCurDebugLoc(),
2879                  getValue(I.getOperand(2)).getValueType().getSimpleVT(),
2880                  Root,
2881                  getValue(I.getOperand(1)),
2882                  getValue(I.getOperand(2)),
2883                  I.getOperand(1));
2884  setValue(&I, L);
2885  DAG.setRoot(L.getValue(1));
2886  return 0;
2887}
2888
2889// implVisitAluOverflow - Lower arithmetic overflow instrinsics.
2890const char *
2891SelectionDAGBuilder::implVisitAluOverflow(CallInst &I, ISD::NodeType Op) {
2892  SDValue Op1 = getValue(I.getOperand(1));
2893  SDValue Op2 = getValue(I.getOperand(2));
2894
2895  SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1);
2896  setValue(&I, DAG.getNode(Op, getCurDebugLoc(), VTs, Op1, Op2));
2897  return 0;
2898}
2899
2900/// visitExp - Lower an exp intrinsic. Handles the special sequences for
2901/// limited-precision mode.
2902void
2903SelectionDAGBuilder::visitExp(CallInst &I) {
2904  SDValue result;
2905  DebugLoc dl = getCurDebugLoc();
2906
2907  if (getValue(I.getOperand(1)).getValueType() == MVT::f32 &&
2908      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
2909    SDValue Op = getValue(I.getOperand(1));
2910
2911    // Put the exponent in the right bit position for later addition to the
2912    // final result:
2913    //
2914    //   #define LOG2OFe 1.4426950f
2915    //   IntegerPartOfX = ((int32_t)(X * LOG2OFe));
2916    SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
2917                             getF32Constant(DAG, 0x3fb8aa3b));
2918    SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
2919
2920    //   FractionalPartOfX = (X * LOG2OFe) - (float)IntegerPartOfX;
2921    SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
2922    SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
2923
2924    //   IntegerPartOfX <<= 23;
2925    IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
2926                                 DAG.getConstant(23, TLI.getPointerTy()));
2927
2928    if (LimitFloatPrecision <= 6) {
2929      // For floating-point precision of 6:
2930      //
2931      //   TwoToFractionalPartOfX =
2932      //     0.997535578f +
2933      //       (0.735607626f + 0.252464424f * x) * x;
2934      //
2935      // error 0.0144103317, which is 6 bits
2936      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
2937                               getF32Constant(DAG, 0x3e814304));
2938      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
2939                               getF32Constant(DAG, 0x3f3c50c8));
2940      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
2941      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
2942                               getF32Constant(DAG, 0x3f7f5e7e));
2943      SDValue TwoToFracPartOfX = DAG.getNode(ISD::BIT_CONVERT, dl,MVT::i32, t5);
2944
2945      // Add the exponent into the result in integer domain.
2946      SDValue t6 = DAG.getNode(ISD::ADD, dl, MVT::i32,
2947                               TwoToFracPartOfX, IntegerPartOfX);
2948
2949      result = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t6);
2950    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
2951      // For floating-point precision of 12:
2952      //
2953      //   TwoToFractionalPartOfX =
2954      //     0.999892986f +
2955      //       (0.696457318f +
2956      //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
2957      //
2958      // 0.000107046256 error, which is 13 to 14 bits
2959      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
2960                               getF32Constant(DAG, 0x3da235e3));
2961      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
2962                               getF32Constant(DAG, 0x3e65b8f3));
2963      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
2964      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
2965                               getF32Constant(DAG, 0x3f324b07));
2966      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
2967      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
2968                               getF32Constant(DAG, 0x3f7ff8fd));
2969      SDValue TwoToFracPartOfX = DAG.getNode(ISD::BIT_CONVERT, dl,MVT::i32, t7);
2970
2971      // Add the exponent into the result in integer domain.
2972      SDValue t8 = DAG.getNode(ISD::ADD, dl, MVT::i32,
2973                               TwoToFracPartOfX, IntegerPartOfX);
2974
2975      result = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t8);
2976    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
2977      // For floating-point precision of 18:
2978      //
2979      //   TwoToFractionalPartOfX =
2980      //     0.999999982f +
2981      //       (0.693148872f +
2982      //         (0.240227044f +
2983      //           (0.554906021e-1f +
2984      //             (0.961591928e-2f +
2985      //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
2986      //
2987      // error 2.47208000*10^(-7), which is better than 18 bits
2988      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
2989                               getF32Constant(DAG, 0x3924b03e));
2990      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
2991                               getF32Constant(DAG, 0x3ab24b87));
2992      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
2993      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
2994                               getF32Constant(DAG, 0x3c1d8c17));
2995      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
2996      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
2997                               getF32Constant(DAG, 0x3d634a1d));
2998      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
2999      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3000                               getF32Constant(DAG, 0x3e75fe14));
3001      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3002      SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
3003                                getF32Constant(DAG, 0x3f317234));
3004      SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
3005      SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
3006                                getF32Constant(DAG, 0x3f800000));
3007      SDValue TwoToFracPartOfX = DAG.getNode(ISD::BIT_CONVERT, dl,
3008                                             MVT::i32, t13);
3009
3010      // Add the exponent into the result in integer domain.
3011      SDValue t14 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3012                                TwoToFracPartOfX, IntegerPartOfX);
3013
3014      result = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t14);
3015    }
3016  } else {
3017    // No special expansion.
3018    result = DAG.getNode(ISD::FEXP, dl,
3019                         getValue(I.getOperand(1)).getValueType(),
3020                         getValue(I.getOperand(1)));
3021  }
3022
3023  setValue(&I, result);
3024}
3025
3026/// visitLog - Lower a log intrinsic. Handles the special sequences for
3027/// limited-precision mode.
3028void
3029SelectionDAGBuilder::visitLog(CallInst &I) {
3030  SDValue result;
3031  DebugLoc dl = getCurDebugLoc();
3032
3033  if (getValue(I.getOperand(1)).getValueType() == MVT::f32 &&
3034      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3035    SDValue Op = getValue(I.getOperand(1));
3036    SDValue Op1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, Op);
3037
3038    // Scale the exponent by log(2) [0.69314718f].
3039    SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
3040    SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
3041                                        getF32Constant(DAG, 0x3f317218));
3042
3043    // Get the significand and build it into a floating-point number with
3044    // exponent of 1.
3045    SDValue X = GetSignificand(DAG, Op1, dl);
3046
3047    if (LimitFloatPrecision <= 6) {
3048      // For floating-point precision of 6:
3049      //
3050      //   LogofMantissa =
3051      //     -1.1609546f +
3052      //       (1.4034025f - 0.23903021f * x) * x;
3053      //
3054      // error 0.0034276066, which is better than 8 bits
3055      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3056                               getF32Constant(DAG, 0xbe74c456));
3057      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3058                               getF32Constant(DAG, 0x3fb3a2b1));
3059      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3060      SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3061                                          getF32Constant(DAG, 0x3f949a29));
3062
3063      result = DAG.getNode(ISD::FADD, dl,
3064                           MVT::f32, LogOfExponent, LogOfMantissa);
3065    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3066      // For floating-point precision of 12:
3067      //
3068      //   LogOfMantissa =
3069      //     -1.7417939f +
3070      //       (2.8212026f +
3071      //         (-1.4699568f +
3072      //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
3073      //
3074      // error 0.000061011436, which is 14 bits
3075      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3076                               getF32Constant(DAG, 0xbd67b6d6));
3077      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3078                               getF32Constant(DAG, 0x3ee4f4b8));
3079      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3080      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3081                               getF32Constant(DAG, 0x3fbc278b));
3082      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3083      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3084                               getF32Constant(DAG, 0x40348e95));
3085      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3086      SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3087                                          getF32Constant(DAG, 0x3fdef31a));
3088
3089      result = DAG.getNode(ISD::FADD, dl,
3090                           MVT::f32, LogOfExponent, LogOfMantissa);
3091    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3092      // For floating-point precision of 18:
3093      //
3094      //   LogOfMantissa =
3095      //     -2.1072184f +
3096      //       (4.2372794f +
3097      //         (-3.7029485f +
3098      //           (2.2781945f +
3099      //             (-0.87823314f +
3100      //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
3101      //
3102      // error 0.0000023660568, which is better than 18 bits
3103      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3104                               getF32Constant(DAG, 0xbc91e5ac));
3105      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3106                               getF32Constant(DAG, 0x3e4350aa));
3107      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3108      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3109                               getF32Constant(DAG, 0x3f60d3e3));
3110      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3111      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3112                               getF32Constant(DAG, 0x4011cdf0));
3113      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3114      SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3115                               getF32Constant(DAG, 0x406cfd1c));
3116      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3117      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3118                               getF32Constant(DAG, 0x408797cb));
3119      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3120      SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
3121                                          getF32Constant(DAG, 0x4006dcab));
3122
3123      result = DAG.getNode(ISD::FADD, dl,
3124                           MVT::f32, LogOfExponent, LogOfMantissa);
3125    }
3126  } else {
3127    // No special expansion.
3128    result = DAG.getNode(ISD::FLOG, dl,
3129                         getValue(I.getOperand(1)).getValueType(),
3130                         getValue(I.getOperand(1)));
3131  }
3132
3133  setValue(&I, result);
3134}
3135
3136/// visitLog2 - Lower a log2 intrinsic. Handles the special sequences for
3137/// limited-precision mode.
3138void
3139SelectionDAGBuilder::visitLog2(CallInst &I) {
3140  SDValue result;
3141  DebugLoc dl = getCurDebugLoc();
3142
3143  if (getValue(I.getOperand(1)).getValueType() == MVT::f32 &&
3144      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3145    SDValue Op = getValue(I.getOperand(1));
3146    SDValue Op1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, Op);
3147
3148    // Get the exponent.
3149    SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
3150
3151    // Get the significand and build it into a floating-point number with
3152    // exponent of 1.
3153    SDValue X = GetSignificand(DAG, Op1, dl);
3154
3155    // Different possible minimax approximations of significand in
3156    // floating-point for various degrees of accuracy over [1,2].
3157    if (LimitFloatPrecision <= 6) {
3158      // For floating-point precision of 6:
3159      //
3160      //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
3161      //
3162      // error 0.0049451742, which is more than 7 bits
3163      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3164                               getF32Constant(DAG, 0xbeb08fe0));
3165      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3166                               getF32Constant(DAG, 0x40019463));
3167      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3168      SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3169                                           getF32Constant(DAG, 0x3fd6633d));
3170
3171      result = DAG.getNode(ISD::FADD, dl,
3172                           MVT::f32, LogOfExponent, Log2ofMantissa);
3173    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3174      // For floating-point precision of 12:
3175      //
3176      //   Log2ofMantissa =
3177      //     -2.51285454f +
3178      //       (4.07009056f +
3179      //         (-2.12067489f +
3180      //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
3181      //
3182      // error 0.0000876136000, which is better than 13 bits
3183      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3184                               getF32Constant(DAG, 0xbda7262e));
3185      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3186                               getF32Constant(DAG, 0x3f25280b));
3187      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3188      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3189                               getF32Constant(DAG, 0x4007b923));
3190      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3191      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3192                               getF32Constant(DAG, 0x40823e2f));
3193      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3194      SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3195                                           getF32Constant(DAG, 0x4020d29c));
3196
3197      result = DAG.getNode(ISD::FADD, dl,
3198                           MVT::f32, LogOfExponent, Log2ofMantissa);
3199    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3200      // For floating-point precision of 18:
3201      //
3202      //   Log2ofMantissa =
3203      //     -3.0400495f +
3204      //       (6.1129976f +
3205      //         (-5.3420409f +
3206      //           (3.2865683f +
3207      //             (-1.2669343f +
3208      //               (0.27515199f -
3209      //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
3210      //
3211      // error 0.0000018516, which is better than 18 bits
3212      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3213                               getF32Constant(DAG, 0xbcd2769e));
3214      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3215                               getF32Constant(DAG, 0x3e8ce0b9));
3216      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3217      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3218                               getF32Constant(DAG, 0x3fa22ae7));
3219      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3220      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3221                               getF32Constant(DAG, 0x40525723));
3222      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3223      SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3224                               getF32Constant(DAG, 0x40aaf200));
3225      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3226      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3227                               getF32Constant(DAG, 0x40c39dad));
3228      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3229      SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
3230                                           getF32Constant(DAG, 0x4042902c));
3231
3232      result = DAG.getNode(ISD::FADD, dl,
3233                           MVT::f32, LogOfExponent, Log2ofMantissa);
3234    }
3235  } else {
3236    // No special expansion.
3237    result = DAG.getNode(ISD::FLOG2, dl,
3238                         getValue(I.getOperand(1)).getValueType(),
3239                         getValue(I.getOperand(1)));
3240  }
3241
3242  setValue(&I, result);
3243}
3244
3245/// visitLog10 - Lower a log10 intrinsic. Handles the special sequences for
3246/// limited-precision mode.
3247void
3248SelectionDAGBuilder::visitLog10(CallInst &I) {
3249  SDValue result;
3250  DebugLoc dl = getCurDebugLoc();
3251
3252  if (getValue(I.getOperand(1)).getValueType() == MVT::f32 &&
3253      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3254    SDValue Op = getValue(I.getOperand(1));
3255    SDValue Op1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, Op);
3256
3257    // Scale the exponent by log10(2) [0.30102999f].
3258    SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
3259    SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
3260                                        getF32Constant(DAG, 0x3e9a209a));
3261
3262    // Get the significand and build it into a floating-point number with
3263    // exponent of 1.
3264    SDValue X = GetSignificand(DAG, Op1, dl);
3265
3266    if (LimitFloatPrecision <= 6) {
3267      // For floating-point precision of 6:
3268      //
3269      //   Log10ofMantissa =
3270      //     -0.50419619f +
3271      //       (0.60948995f - 0.10380950f * x) * x;
3272      //
3273      // error 0.0014886165, which is 6 bits
3274      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3275                               getF32Constant(DAG, 0xbdd49a13));
3276      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3277                               getF32Constant(DAG, 0x3f1c0789));
3278      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3279      SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3280                                            getF32Constant(DAG, 0x3f011300));
3281
3282      result = DAG.getNode(ISD::FADD, dl,
3283                           MVT::f32, LogOfExponent, Log10ofMantissa);
3284    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3285      // For floating-point precision of 12:
3286      //
3287      //   Log10ofMantissa =
3288      //     -0.64831180f +
3289      //       (0.91751397f +
3290      //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
3291      //
3292      // error 0.00019228036, which is better than 12 bits
3293      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3294                               getF32Constant(DAG, 0x3d431f31));
3295      SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
3296                               getF32Constant(DAG, 0x3ea21fb2));
3297      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3298      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3299                               getF32Constant(DAG, 0x3f6ae232));
3300      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3301      SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
3302                                            getF32Constant(DAG, 0x3f25f7c3));
3303
3304      result = DAG.getNode(ISD::FADD, dl,
3305                           MVT::f32, LogOfExponent, Log10ofMantissa);
3306    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3307      // For floating-point precision of 18:
3308      //
3309      //   Log10ofMantissa =
3310      //     -0.84299375f +
3311      //       (1.5327582f +
3312      //         (-1.0688956f +
3313      //           (0.49102474f +
3314      //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
3315      //
3316      // error 0.0000037995730, which is better than 18 bits
3317      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3318                               getF32Constant(DAG, 0x3c5d51ce));
3319      SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
3320                               getF32Constant(DAG, 0x3e00685a));
3321      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3322      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3323                               getF32Constant(DAG, 0x3efb6798));
3324      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3325      SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
3326                               getF32Constant(DAG, 0x3f88d192));
3327      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3328      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3329                               getF32Constant(DAG, 0x3fc4316c));
3330      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3331      SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
3332                                            getF32Constant(DAG, 0x3f57ce70));
3333
3334      result = DAG.getNode(ISD::FADD, dl,
3335                           MVT::f32, LogOfExponent, Log10ofMantissa);
3336    }
3337  } else {
3338    // No special expansion.
3339    result = DAG.getNode(ISD::FLOG10, dl,
3340                         getValue(I.getOperand(1)).getValueType(),
3341                         getValue(I.getOperand(1)));
3342  }
3343
3344  setValue(&I, result);
3345}
3346
3347/// visitExp2 - Lower an exp2 intrinsic. Handles the special sequences for
3348/// limited-precision mode.
3349void
3350SelectionDAGBuilder::visitExp2(CallInst &I) {
3351  SDValue result;
3352  DebugLoc dl = getCurDebugLoc();
3353
3354  if (getValue(I.getOperand(1)).getValueType() == MVT::f32 &&
3355      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3356    SDValue Op = getValue(I.getOperand(1));
3357
3358    SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Op);
3359
3360    //   FractionalPartOfX = x - (float)IntegerPartOfX;
3361    SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
3362    SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, Op, t1);
3363
3364    //   IntegerPartOfX <<= 23;
3365    IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
3366                                 DAG.getConstant(23, TLI.getPointerTy()));
3367
3368    if (LimitFloatPrecision <= 6) {
3369      // For floating-point precision of 6:
3370      //
3371      //   TwoToFractionalPartOfX =
3372      //     0.997535578f +
3373      //       (0.735607626f + 0.252464424f * x) * x;
3374      //
3375      // error 0.0144103317, which is 6 bits
3376      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3377                               getF32Constant(DAG, 0x3e814304));
3378      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3379                               getF32Constant(DAG, 0x3f3c50c8));
3380      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3381      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3382                               getF32Constant(DAG, 0x3f7f5e7e));
3383      SDValue t6 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t5);
3384      SDValue TwoToFractionalPartOfX =
3385        DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX);
3386
3387      result = DAG.getNode(ISD::BIT_CONVERT, dl,
3388                           MVT::f32, TwoToFractionalPartOfX);
3389    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3390      // For floating-point precision of 12:
3391      //
3392      //   TwoToFractionalPartOfX =
3393      //     0.999892986f +
3394      //       (0.696457318f +
3395      //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
3396      //
3397      // error 0.000107046256, which is 13 to 14 bits
3398      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3399                               getF32Constant(DAG, 0x3da235e3));
3400      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3401                               getF32Constant(DAG, 0x3e65b8f3));
3402      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3403      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3404                               getF32Constant(DAG, 0x3f324b07));
3405      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3406      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3407                               getF32Constant(DAG, 0x3f7ff8fd));
3408      SDValue t8 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t7);
3409      SDValue TwoToFractionalPartOfX =
3410        DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX);
3411
3412      result = DAG.getNode(ISD::BIT_CONVERT, dl,
3413                           MVT::f32, TwoToFractionalPartOfX);
3414    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3415      // For floating-point precision of 18:
3416      //
3417      //   TwoToFractionalPartOfX =
3418      //     0.999999982f +
3419      //       (0.693148872f +
3420      //         (0.240227044f +
3421      //           (0.554906021e-1f +
3422      //             (0.961591928e-2f +
3423      //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
3424      // error 2.47208000*10^(-7), which is better than 18 bits
3425      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3426                               getF32Constant(DAG, 0x3924b03e));
3427      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3428                               getF32Constant(DAG, 0x3ab24b87));
3429      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3430      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3431                               getF32Constant(DAG, 0x3c1d8c17));
3432      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3433      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3434                               getF32Constant(DAG, 0x3d634a1d));
3435      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3436      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3437                               getF32Constant(DAG, 0x3e75fe14));
3438      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3439      SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
3440                                getF32Constant(DAG, 0x3f317234));
3441      SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
3442      SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
3443                                getF32Constant(DAG, 0x3f800000));
3444      SDValue t14 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t13);
3445      SDValue TwoToFractionalPartOfX =
3446        DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX);
3447
3448      result = DAG.getNode(ISD::BIT_CONVERT, dl,
3449                           MVT::f32, TwoToFractionalPartOfX);
3450    }
3451  } else {
3452    // No special expansion.
3453    result = DAG.getNode(ISD::FEXP2, dl,
3454                         getValue(I.getOperand(1)).getValueType(),
3455                         getValue(I.getOperand(1)));
3456  }
3457
3458  setValue(&I, result);
3459}
3460
3461/// visitPow - Lower a pow intrinsic. Handles the special sequences for
3462/// limited-precision mode with x == 10.0f.
3463void
3464SelectionDAGBuilder::visitPow(CallInst &I) {
3465  SDValue result;
3466  Value *Val = I.getOperand(1);
3467  DebugLoc dl = getCurDebugLoc();
3468  bool IsExp10 = false;
3469
3470  if (getValue(Val).getValueType() == MVT::f32 &&
3471      getValue(I.getOperand(2)).getValueType() == MVT::f32 &&
3472      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3473    if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(Val))) {
3474      if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
3475        APFloat Ten(10.0f);
3476        IsExp10 = CFP->getValueAPF().bitwiseIsEqual(Ten);
3477      }
3478    }
3479  }
3480
3481  if (IsExp10 && LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3482    SDValue Op = getValue(I.getOperand(2));
3483
3484    // Put the exponent in the right bit position for later addition to the
3485    // final result:
3486    //
3487    //   #define LOG2OF10 3.3219281f
3488    //   IntegerPartOfX = (int32_t)(x * LOG2OF10);
3489    SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
3490                             getF32Constant(DAG, 0x40549a78));
3491    SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
3492
3493    //   FractionalPartOfX = x - (float)IntegerPartOfX;
3494    SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
3495    SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
3496
3497    //   IntegerPartOfX <<= 23;
3498    IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
3499                                 DAG.getConstant(23, TLI.getPointerTy()));
3500
3501    if (LimitFloatPrecision <= 6) {
3502      // For floating-point precision of 6:
3503      //
3504      //   twoToFractionalPartOfX =
3505      //     0.997535578f +
3506      //       (0.735607626f + 0.252464424f * x) * x;
3507      //
3508      // error 0.0144103317, which is 6 bits
3509      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3510                               getF32Constant(DAG, 0x3e814304));
3511      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3512                               getF32Constant(DAG, 0x3f3c50c8));
3513      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3514      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3515                               getF32Constant(DAG, 0x3f7f5e7e));
3516      SDValue t6 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t5);
3517      SDValue TwoToFractionalPartOfX =
3518        DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX);
3519
3520      result = DAG.getNode(ISD::BIT_CONVERT, dl,
3521                           MVT::f32, TwoToFractionalPartOfX);
3522    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3523      // For floating-point precision of 12:
3524      //
3525      //   TwoToFractionalPartOfX =
3526      //     0.999892986f +
3527      //       (0.696457318f +
3528      //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
3529      //
3530      // error 0.000107046256, which is 13 to 14 bits
3531      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3532                               getF32Constant(DAG, 0x3da235e3));
3533      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3534                               getF32Constant(DAG, 0x3e65b8f3));
3535      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3536      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3537                               getF32Constant(DAG, 0x3f324b07));
3538      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3539      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3540                               getF32Constant(DAG, 0x3f7ff8fd));
3541      SDValue t8 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t7);
3542      SDValue TwoToFractionalPartOfX =
3543        DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX);
3544
3545      result = DAG.getNode(ISD::BIT_CONVERT, dl,
3546                           MVT::f32, TwoToFractionalPartOfX);
3547    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3548      // For floating-point precision of 18:
3549      //
3550      //   TwoToFractionalPartOfX =
3551      //     0.999999982f +
3552      //       (0.693148872f +
3553      //         (0.240227044f +
3554      //           (0.554906021e-1f +
3555      //             (0.961591928e-2f +
3556      //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
3557      // error 2.47208000*10^(-7), which is better than 18 bits
3558      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3559                               getF32Constant(DAG, 0x3924b03e));
3560      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3561                               getF32Constant(DAG, 0x3ab24b87));
3562      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3563      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3564                               getF32Constant(DAG, 0x3c1d8c17));
3565      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3566      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3567                               getF32Constant(DAG, 0x3d634a1d));
3568      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3569      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3570                               getF32Constant(DAG, 0x3e75fe14));
3571      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3572      SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
3573                                getF32Constant(DAG, 0x3f317234));
3574      SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
3575      SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
3576                                getF32Constant(DAG, 0x3f800000));
3577      SDValue t14 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t13);
3578      SDValue TwoToFractionalPartOfX =
3579        DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX);
3580
3581      result = DAG.getNode(ISD::BIT_CONVERT, dl,
3582                           MVT::f32, TwoToFractionalPartOfX);
3583    }
3584  } else {
3585    // No special expansion.
3586    result = DAG.getNode(ISD::FPOW, dl,
3587                         getValue(I.getOperand(1)).getValueType(),
3588                         getValue(I.getOperand(1)),
3589                         getValue(I.getOperand(2)));
3590  }
3591
3592  setValue(&I, result);
3593}
3594
3595
3596/// ExpandPowI - Expand a llvm.powi intrinsic.
3597static SDValue ExpandPowI(DebugLoc DL, SDValue LHS, SDValue RHS,
3598                          SelectionDAG &DAG) {
3599  // If RHS is a constant, we can expand this out to a multiplication tree,
3600  // otherwise we end up lowering to a call to __powidf2 (for example).  When
3601  // optimizing for size, we only want to do this if the expansion would produce
3602  // a small number of multiplies, otherwise we do the full expansion.
3603  if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
3604    // Get the exponent as a positive value.
3605    unsigned Val = RHSC->getSExtValue();
3606    if ((int)Val < 0) Val = -Val;
3607
3608    // powi(x, 0) -> 1.0
3609    if (Val == 0)
3610      return DAG.getConstantFP(1.0, LHS.getValueType());
3611
3612    Function *F = DAG.getMachineFunction().getFunction();
3613    if (!F->hasFnAttr(Attribute::OptimizeForSize) ||
3614        // If optimizing for size, don't insert too many multiplies.  This
3615        // inserts up to 5 multiplies.
3616        CountPopulation_32(Val)+Log2_32(Val) < 7) {
3617      // We use the simple binary decomposition method to generate the multiply
3618      // sequence.  There are more optimal ways to do this (for example,
3619      // powi(x,15) generates one more multiply than it should), but this has
3620      // the benefit of being both really simple and much better than a libcall.
3621      SDValue Res;  // Logically starts equal to 1.0
3622      SDValue CurSquare = LHS;
3623      while (Val) {
3624        if (Val & 1) {
3625          if (Res.getNode())
3626            Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare);
3627          else
3628            Res = CurSquare;  // 1.0*CurSquare.
3629        }
3630
3631        CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
3632                                CurSquare, CurSquare);
3633        Val >>= 1;
3634      }
3635
3636      // If the original was negative, invert the result, producing 1/(x*x*x).
3637      if (RHSC->getSExtValue() < 0)
3638        Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
3639                          DAG.getConstantFP(1.0, LHS.getValueType()), Res);
3640      return Res;
3641    }
3642  }
3643
3644  // Otherwise, expand to a libcall.
3645  return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
3646}
3647
3648
3649/// visitIntrinsicCall - Lower the call to the specified intrinsic function.  If
3650/// we want to emit this as a call to a named external function, return the name
3651/// otherwise lower it and return null.
3652const char *
3653SelectionDAGBuilder::visitIntrinsicCall(CallInst &I, unsigned Intrinsic) {
3654  DebugLoc dl = getCurDebugLoc();
3655  SDValue Res;
3656
3657  switch (Intrinsic) {
3658  default:
3659    // By default, turn this into a target intrinsic node.
3660    visitTargetIntrinsic(I, Intrinsic);
3661    return 0;
3662  case Intrinsic::vastart:  visitVAStart(I); return 0;
3663  case Intrinsic::vaend:    visitVAEnd(I); return 0;
3664  case Intrinsic::vacopy:   visitVACopy(I); return 0;
3665  case Intrinsic::returnaddress:
3666    setValue(&I, DAG.getNode(ISD::RETURNADDR, dl, TLI.getPointerTy(),
3667                             getValue(I.getOperand(1))));
3668    return 0;
3669  case Intrinsic::frameaddress:
3670    setValue(&I, DAG.getNode(ISD::FRAMEADDR, dl, TLI.getPointerTy(),
3671                             getValue(I.getOperand(1))));
3672    return 0;
3673  case Intrinsic::setjmp:
3674    return "_setjmp"+!TLI.usesUnderscoreSetJmp();
3675  case Intrinsic::longjmp:
3676    return "_longjmp"+!TLI.usesUnderscoreLongJmp();
3677  case Intrinsic::memcpy: {
3678    // Assert for address < 256 since we support only user defined address
3679    // spaces.
3680    assert(cast<PointerType>(I.getOperand(1)->getType())->getAddressSpace()
3681           < 256 &&
3682           cast<PointerType>(I.getOperand(2)->getType())->getAddressSpace()
3683           < 256 &&
3684           "Unknown address space");
3685    SDValue Op1 = getValue(I.getOperand(1));
3686    SDValue Op2 = getValue(I.getOperand(2));
3687    SDValue Op3 = getValue(I.getOperand(3));
3688    unsigned Align = cast<ConstantInt>(I.getOperand(4))->getZExtValue();
3689    bool isVol = cast<ConstantInt>(I.getOperand(5))->getZExtValue();
3690    DAG.setRoot(DAG.getMemcpy(getRoot(), dl, Op1, Op2, Op3, Align, isVol, false,
3691                              I.getOperand(1), 0, I.getOperand(2), 0));
3692    return 0;
3693  }
3694  case Intrinsic::memset: {
3695    // Assert for address < 256 since we support only user defined address
3696    // spaces.
3697    assert(cast<PointerType>(I.getOperand(1)->getType())->getAddressSpace()
3698           < 256 &&
3699           "Unknown address space");
3700    SDValue Op1 = getValue(I.getOperand(1));
3701    SDValue Op2 = getValue(I.getOperand(2));
3702    SDValue Op3 = getValue(I.getOperand(3));
3703    unsigned Align = cast<ConstantInt>(I.getOperand(4))->getZExtValue();
3704    bool isVol = cast<ConstantInt>(I.getOperand(5))->getZExtValue();
3705    DAG.setRoot(DAG.getMemset(getRoot(), dl, Op1, Op2, Op3, Align, isVol,
3706                              I.getOperand(1), 0));
3707    return 0;
3708  }
3709  case Intrinsic::memmove: {
3710    // Assert for address < 256 since we support only user defined address
3711    // spaces.
3712    assert(cast<PointerType>(I.getOperand(1)->getType())->getAddressSpace()
3713           < 256 &&
3714           cast<PointerType>(I.getOperand(2)->getType())->getAddressSpace()
3715           < 256 &&
3716           "Unknown address space");
3717    SDValue Op1 = getValue(I.getOperand(1));
3718    SDValue Op2 = getValue(I.getOperand(2));
3719    SDValue Op3 = getValue(I.getOperand(3));
3720    unsigned Align = cast<ConstantInt>(I.getOperand(4))->getZExtValue();
3721    bool isVol = cast<ConstantInt>(I.getOperand(5))->getZExtValue();
3722
3723    // If the source and destination are known to not be aliases, we can
3724    // lower memmove as memcpy.
3725    uint64_t Size = -1ULL;
3726    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op3))
3727      Size = C->getZExtValue();
3728    if (AA->alias(I.getOperand(1), Size, I.getOperand(2), Size) ==
3729        AliasAnalysis::NoAlias) {
3730      DAG.setRoot(DAG.getMemcpy(getRoot(), dl, Op1, Op2, Op3, Align, isVol,
3731                                false, I.getOperand(1), 0, I.getOperand(2), 0));
3732      return 0;
3733    }
3734
3735    DAG.setRoot(DAG.getMemmove(getRoot(), dl, Op1, Op2, Op3, Align, isVol,
3736                               I.getOperand(1), 0, I.getOperand(2), 0));
3737    return 0;
3738  }
3739  case Intrinsic::dbg_declare: {
3740    // FIXME: currently, we get here only if OptLevel != CodeGenOpt::None.
3741    // The real handling of this intrinsic is in FastISel.
3742    if (OptLevel != CodeGenOpt::None)
3743      // FIXME: Variable debug info is not supported here.
3744      return 0;
3745    DbgDeclareInst &DI = cast<DbgDeclareInst>(I);
3746    if (!DIDescriptor::ValidDebugInfo(DI.getVariable(), CodeGenOpt::None))
3747      return 0;
3748
3749    MDNode *Variable = DI.getVariable();
3750    Value *Address = DI.getAddress();
3751    if (!Address)
3752      return 0;
3753    if (BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
3754      Address = BCI->getOperand(0);
3755    AllocaInst *AI = dyn_cast<AllocaInst>(Address);
3756    // Don't handle byval struct arguments or VLAs, for example.
3757    if (!AI)
3758      return 0;
3759    DenseMap<const AllocaInst*, int>::iterator SI =
3760      FuncInfo.StaticAllocaMap.find(AI);
3761    if (SI == FuncInfo.StaticAllocaMap.end())
3762      return 0; // VLAs.
3763    int FI = SI->second;
3764
3765    MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
3766    if (!DI.getDebugLoc().isUnknown() && MMI.hasDebugInfo())
3767      MMI.setVariableDbgInfo(Variable, FI, DI.getDebugLoc());
3768    return 0;
3769  }
3770  case Intrinsic::dbg_value: {
3771    DbgValueInst &DI = cast<DbgValueInst>(I);
3772    if (!DIDescriptor::ValidDebugInfo(DI.getVariable(), CodeGenOpt::None))
3773      return 0;
3774
3775    MDNode *Variable = DI.getVariable();
3776    uint64_t Offset = DI.getOffset();
3777    Value *V = DI.getValue();
3778    if (!V)
3779      return 0;
3780
3781    // Build an entry in DbgOrdering.  Debug info input nodes get an SDNodeOrder
3782    // but do not always have a corresponding SDNode built.  The SDNodeOrder
3783    // absolute, but not relative, values are different depending on whether
3784    // debug info exists.
3785    ++SDNodeOrder;
3786    if (isa<ConstantInt>(V) || isa<ConstantFP>(V)) {
3787      DAG.AddDbgValue(DAG.getDbgValue(Variable, V, Offset, dl, SDNodeOrder));
3788    } else {
3789      SDValue &N = NodeMap[V];
3790      if (N.getNode())
3791        DAG.AddDbgValue(DAG.getDbgValue(Variable, N.getNode(),
3792                                        N.getResNo(), Offset, dl, SDNodeOrder),
3793                        N.getNode());
3794      else
3795        // We may expand this to cover more cases.  One case where we have no
3796        // data available is an unreferenced parameter; we need this fallback.
3797        DAG.AddDbgValue(DAG.getDbgValue(Variable,
3798                                        UndefValue::get(V->getType()),
3799                                        Offset, dl, SDNodeOrder));
3800    }
3801
3802    // Build a debug info table entry.
3803    if (BitCastInst *BCI = dyn_cast<BitCastInst>(V))
3804      V = BCI->getOperand(0);
3805    AllocaInst *AI = dyn_cast<AllocaInst>(V);
3806    // Don't handle byval struct arguments or VLAs, for example.
3807    if (!AI)
3808      return 0;
3809    DenseMap<const AllocaInst*, int>::iterator SI =
3810      FuncInfo.StaticAllocaMap.find(AI);
3811    if (SI == FuncInfo.StaticAllocaMap.end())
3812      return 0; // VLAs.
3813    int FI = SI->second;
3814
3815    MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
3816    if (!DI.getDebugLoc().isUnknown() && MMI.hasDebugInfo())
3817      MMI.setVariableDbgInfo(Variable, FI, DI.getDebugLoc());
3818    return 0;
3819  }
3820  case Intrinsic::eh_exception: {
3821    // Insert the EXCEPTIONADDR instruction.
3822    assert(CurMBB->isLandingPad() &&"Call to eh.exception not in landing pad!");
3823    SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
3824    SDValue Ops[1];
3825    Ops[0] = DAG.getRoot();
3826    SDValue Op = DAG.getNode(ISD::EXCEPTIONADDR, dl, VTs, Ops, 1);
3827    setValue(&I, Op);
3828    DAG.setRoot(Op.getValue(1));
3829    return 0;
3830  }
3831
3832  case Intrinsic::eh_selector: {
3833    MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
3834    if (CurMBB->isLandingPad())
3835      AddCatchInfo(I, &MMI, CurMBB);
3836    else {
3837#ifndef NDEBUG
3838      FuncInfo.CatchInfoLost.insert(&I);
3839#endif
3840      // FIXME: Mark exception selector register as live in.  Hack for PR1508.
3841      unsigned Reg = TLI.getExceptionSelectorRegister();
3842      if (Reg) CurMBB->addLiveIn(Reg);
3843    }
3844
3845    // Insert the EHSELECTION instruction.
3846    SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
3847    SDValue Ops[2];
3848    Ops[0] = getValue(I.getOperand(1));
3849    Ops[1] = getRoot();
3850    SDValue Op = DAG.getNode(ISD::EHSELECTION, dl, VTs, Ops, 2);
3851    DAG.setRoot(Op.getValue(1));
3852    setValue(&I, DAG.getSExtOrTrunc(Op, dl, MVT::i32));
3853    return 0;
3854  }
3855
3856  case Intrinsic::eh_typeid_for: {
3857    // Find the type id for the given typeinfo.
3858    GlobalVariable *GV = ExtractTypeInfo(I.getOperand(1));
3859    unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV);
3860    Res = DAG.getConstant(TypeID, MVT::i32);
3861    setValue(&I, Res);
3862    return 0;
3863  }
3864
3865  case Intrinsic::eh_return_i32:
3866  case Intrinsic::eh_return_i64:
3867    DAG.getMachineFunction().getMMI().setCallsEHReturn(true);
3868    DAG.setRoot(DAG.getNode(ISD::EH_RETURN, dl,
3869                            MVT::Other,
3870                            getControlRoot(),
3871                            getValue(I.getOperand(1)),
3872                            getValue(I.getOperand(2))));
3873    return 0;
3874  case Intrinsic::eh_unwind_init:
3875    DAG.getMachineFunction().getMMI().setCallsUnwindInit(true);
3876    return 0;
3877  case Intrinsic::eh_dwarf_cfa: {
3878    EVT VT = getValue(I.getOperand(1)).getValueType();
3879    SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), dl,
3880                                        TLI.getPointerTy());
3881    SDValue Offset = DAG.getNode(ISD::ADD, dl,
3882                                 TLI.getPointerTy(),
3883                                 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, dl,
3884                                             TLI.getPointerTy()),
3885                                 CfaArg);
3886    SDValue FA = DAG.getNode(ISD::FRAMEADDR, dl,
3887                             TLI.getPointerTy(),
3888                             DAG.getConstant(0, TLI.getPointerTy()));
3889    setValue(&I, DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(),
3890                             FA, Offset));
3891    return 0;
3892  }
3893  case Intrinsic::eh_sjlj_callsite: {
3894    MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
3895    ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(1));
3896    assert(CI && "Non-constant call site value in eh.sjlj.callsite!");
3897    assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
3898
3899    MMI.setCurrentCallSite(CI->getZExtValue());
3900    return 0;
3901  }
3902
3903  case Intrinsic::convertff:
3904  case Intrinsic::convertfsi:
3905  case Intrinsic::convertfui:
3906  case Intrinsic::convertsif:
3907  case Intrinsic::convertuif:
3908  case Intrinsic::convertss:
3909  case Intrinsic::convertsu:
3910  case Intrinsic::convertus:
3911  case Intrinsic::convertuu: {
3912    ISD::CvtCode Code = ISD::CVT_INVALID;
3913    switch (Intrinsic) {
3914    case Intrinsic::convertff:  Code = ISD::CVT_FF; break;
3915    case Intrinsic::convertfsi: Code = ISD::CVT_FS; break;
3916    case Intrinsic::convertfui: Code = ISD::CVT_FU; break;
3917    case Intrinsic::convertsif: Code = ISD::CVT_SF; break;
3918    case Intrinsic::convertuif: Code = ISD::CVT_UF; break;
3919    case Intrinsic::convertss:  Code = ISD::CVT_SS; break;
3920    case Intrinsic::convertsu:  Code = ISD::CVT_SU; break;
3921    case Intrinsic::convertus:  Code = ISD::CVT_US; break;
3922    case Intrinsic::convertuu:  Code = ISD::CVT_UU; break;
3923    }
3924    EVT DestVT = TLI.getValueType(I.getType());
3925    Value *Op1 = I.getOperand(1);
3926    Res = DAG.getConvertRndSat(DestVT, getCurDebugLoc(), getValue(Op1),
3927                               DAG.getValueType(DestVT),
3928                               DAG.getValueType(getValue(Op1).getValueType()),
3929                               getValue(I.getOperand(2)),
3930                               getValue(I.getOperand(3)),
3931                               Code);
3932    setValue(&I, Res);
3933    return 0;
3934  }
3935  case Intrinsic::sqrt:
3936    setValue(&I, DAG.getNode(ISD::FSQRT, dl,
3937                             getValue(I.getOperand(1)).getValueType(),
3938                             getValue(I.getOperand(1))));
3939    return 0;
3940  case Intrinsic::powi:
3941    setValue(&I, ExpandPowI(dl, getValue(I.getOperand(1)),
3942                            getValue(I.getOperand(2)), DAG));
3943    return 0;
3944  case Intrinsic::sin:
3945    setValue(&I, DAG.getNode(ISD::FSIN, dl,
3946                             getValue(I.getOperand(1)).getValueType(),
3947                             getValue(I.getOperand(1))));
3948    return 0;
3949  case Intrinsic::cos:
3950    setValue(&I, DAG.getNode(ISD::FCOS, dl,
3951                             getValue(I.getOperand(1)).getValueType(),
3952                             getValue(I.getOperand(1))));
3953    return 0;
3954  case Intrinsic::log:
3955    visitLog(I);
3956    return 0;
3957  case Intrinsic::log2:
3958    visitLog2(I);
3959    return 0;
3960  case Intrinsic::log10:
3961    visitLog10(I);
3962    return 0;
3963  case Intrinsic::exp:
3964    visitExp(I);
3965    return 0;
3966  case Intrinsic::exp2:
3967    visitExp2(I);
3968    return 0;
3969  case Intrinsic::pow:
3970    visitPow(I);
3971    return 0;
3972  case Intrinsic::convert_to_fp16:
3973    setValue(&I, DAG.getNode(ISD::FP32_TO_FP16, dl,
3974                             MVT::i16, getValue(I.getOperand(1))));
3975    return 0;
3976  case Intrinsic::convert_from_fp16:
3977    setValue(&I, DAG.getNode(ISD::FP16_TO_FP32, dl,
3978                             MVT::f32, getValue(I.getOperand(1))));
3979    return 0;
3980  case Intrinsic::pcmarker: {
3981    SDValue Tmp = getValue(I.getOperand(1));
3982    DAG.setRoot(DAG.getNode(ISD::PCMARKER, dl, MVT::Other, getRoot(), Tmp));
3983    return 0;
3984  }
3985  case Intrinsic::readcyclecounter: {
3986    SDValue Op = getRoot();
3987    Res = DAG.getNode(ISD::READCYCLECOUNTER, dl,
3988                      DAG.getVTList(MVT::i64, MVT::Other),
3989                      &Op, 1);
3990    setValue(&I, Res);
3991    DAG.setRoot(Res.getValue(1));
3992    return 0;
3993  }
3994  case Intrinsic::bswap:
3995    setValue(&I, DAG.getNode(ISD::BSWAP, dl,
3996                             getValue(I.getOperand(1)).getValueType(),
3997                             getValue(I.getOperand(1))));
3998    return 0;
3999  case Intrinsic::cttz: {
4000    SDValue Arg = getValue(I.getOperand(1));
4001    EVT Ty = Arg.getValueType();
4002    setValue(&I, DAG.getNode(ISD::CTTZ, dl, Ty, Arg));
4003    return 0;
4004  }
4005  case Intrinsic::ctlz: {
4006    SDValue Arg = getValue(I.getOperand(1));
4007    EVT Ty = Arg.getValueType();
4008    setValue(&I, DAG.getNode(ISD::CTLZ, dl, Ty, Arg));
4009    return 0;
4010  }
4011  case Intrinsic::ctpop: {
4012    SDValue Arg = getValue(I.getOperand(1));
4013    EVT Ty = Arg.getValueType();
4014    setValue(&I, DAG.getNode(ISD::CTPOP, dl, Ty, Arg));
4015    return 0;
4016  }
4017  case Intrinsic::stacksave: {
4018    SDValue Op = getRoot();
4019    Res = DAG.getNode(ISD::STACKSAVE, dl,
4020                      DAG.getVTList(TLI.getPointerTy(), MVT::Other), &Op, 1);
4021    setValue(&I, Res);
4022    DAG.setRoot(Res.getValue(1));
4023    return 0;
4024  }
4025  case Intrinsic::stackrestore: {
4026    Res = getValue(I.getOperand(1));
4027    DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, dl, MVT::Other, getRoot(), Res));
4028    return 0;
4029  }
4030  case Intrinsic::stackprotector: {
4031    // Emit code into the DAG to store the stack guard onto the stack.
4032    MachineFunction &MF = DAG.getMachineFunction();
4033    MachineFrameInfo *MFI = MF.getFrameInfo();
4034    EVT PtrTy = TLI.getPointerTy();
4035
4036    SDValue Src = getValue(I.getOperand(1));   // The guard's value.
4037    AllocaInst *Slot = cast<AllocaInst>(I.getOperand(2));
4038
4039    int FI = FuncInfo.StaticAllocaMap[Slot];
4040    MFI->setStackProtectorIndex(FI);
4041
4042    SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
4043
4044    // Store the stack protector onto the stack.
4045    Res = DAG.getStore(getRoot(), getCurDebugLoc(), Src, FIN,
4046                       PseudoSourceValue::getFixedStack(FI),
4047                       0, true, false, 0);
4048    setValue(&I, Res);
4049    DAG.setRoot(Res);
4050    return 0;
4051  }
4052  case Intrinsic::objectsize: {
4053    // If we don't know by now, we're never going to know.
4054    ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(2));
4055
4056    assert(CI && "Non-constant type in __builtin_object_size?");
4057
4058    SDValue Arg = getValue(I.getOperand(0));
4059    EVT Ty = Arg.getValueType();
4060
4061    if (CI->getZExtValue() == 0)
4062      Res = DAG.getConstant(-1ULL, Ty);
4063    else
4064      Res = DAG.getConstant(0, Ty);
4065
4066    setValue(&I, Res);
4067    return 0;
4068  }
4069  case Intrinsic::var_annotation:
4070    // Discard annotate attributes
4071    return 0;
4072
4073  case Intrinsic::init_trampoline: {
4074    const Function *F = cast<Function>(I.getOperand(2)->stripPointerCasts());
4075
4076    SDValue Ops[6];
4077    Ops[0] = getRoot();
4078    Ops[1] = getValue(I.getOperand(1));
4079    Ops[2] = getValue(I.getOperand(2));
4080    Ops[3] = getValue(I.getOperand(3));
4081    Ops[4] = DAG.getSrcValue(I.getOperand(1));
4082    Ops[5] = DAG.getSrcValue(F);
4083
4084    Res = DAG.getNode(ISD::TRAMPOLINE, dl,
4085                      DAG.getVTList(TLI.getPointerTy(), MVT::Other),
4086                      Ops, 6);
4087
4088    setValue(&I, Res);
4089    DAG.setRoot(Res.getValue(1));
4090    return 0;
4091  }
4092  case Intrinsic::gcroot:
4093    if (GFI) {
4094      Value *Alloca = I.getOperand(1);
4095      Constant *TypeMap = cast<Constant>(I.getOperand(2));
4096
4097      FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
4098      GFI->addStackRoot(FI->getIndex(), TypeMap);
4099    }
4100    return 0;
4101  case Intrinsic::gcread:
4102  case Intrinsic::gcwrite:
4103    llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
4104    return 0;
4105  case Intrinsic::flt_rounds:
4106    setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, dl, MVT::i32));
4107    return 0;
4108  case Intrinsic::trap:
4109    DAG.setRoot(DAG.getNode(ISD::TRAP, dl,MVT::Other, getRoot()));
4110    return 0;
4111  case Intrinsic::uadd_with_overflow:
4112    return implVisitAluOverflow(I, ISD::UADDO);
4113  case Intrinsic::sadd_with_overflow:
4114    return implVisitAluOverflow(I, ISD::SADDO);
4115  case Intrinsic::usub_with_overflow:
4116    return implVisitAluOverflow(I, ISD::USUBO);
4117  case Intrinsic::ssub_with_overflow:
4118    return implVisitAluOverflow(I, ISD::SSUBO);
4119  case Intrinsic::umul_with_overflow:
4120    return implVisitAluOverflow(I, ISD::UMULO);
4121  case Intrinsic::smul_with_overflow:
4122    return implVisitAluOverflow(I, ISD::SMULO);
4123
4124  case Intrinsic::prefetch: {
4125    SDValue Ops[4];
4126    Ops[0] = getRoot();
4127    Ops[1] = getValue(I.getOperand(1));
4128    Ops[2] = getValue(I.getOperand(2));
4129    Ops[3] = getValue(I.getOperand(3));
4130    DAG.setRoot(DAG.getNode(ISD::PREFETCH, dl, MVT::Other, &Ops[0], 4));
4131    return 0;
4132  }
4133
4134  case Intrinsic::memory_barrier: {
4135    SDValue Ops[6];
4136    Ops[0] = getRoot();
4137    for (int x = 1; x < 6; ++x)
4138      Ops[x] = getValue(I.getOperand(x));
4139
4140    DAG.setRoot(DAG.getNode(ISD::MEMBARRIER, dl, MVT::Other, &Ops[0], 6));
4141    return 0;
4142  }
4143  case Intrinsic::atomic_cmp_swap: {
4144    SDValue Root = getRoot();
4145    SDValue L =
4146      DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, getCurDebugLoc(),
4147                    getValue(I.getOperand(2)).getValueType().getSimpleVT(),
4148                    Root,
4149                    getValue(I.getOperand(1)),
4150                    getValue(I.getOperand(2)),
4151                    getValue(I.getOperand(3)),
4152                    I.getOperand(1));
4153    setValue(&I, L);
4154    DAG.setRoot(L.getValue(1));
4155    return 0;
4156  }
4157  case Intrinsic::atomic_load_add:
4158    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_ADD);
4159  case Intrinsic::atomic_load_sub:
4160    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_SUB);
4161  case Intrinsic::atomic_load_or:
4162    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_OR);
4163  case Intrinsic::atomic_load_xor:
4164    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_XOR);
4165  case Intrinsic::atomic_load_and:
4166    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_AND);
4167  case Intrinsic::atomic_load_nand:
4168    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_NAND);
4169  case Intrinsic::atomic_load_max:
4170    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MAX);
4171  case Intrinsic::atomic_load_min:
4172    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MIN);
4173  case Intrinsic::atomic_load_umin:
4174    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMIN);
4175  case Intrinsic::atomic_load_umax:
4176    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMAX);
4177  case Intrinsic::atomic_swap:
4178    return implVisitBinaryAtomic(I, ISD::ATOMIC_SWAP);
4179
4180  case Intrinsic::invariant_start:
4181  case Intrinsic::lifetime_start:
4182    // Discard region information.
4183    setValue(&I, DAG.getUNDEF(TLI.getPointerTy()));
4184    return 0;
4185  case Intrinsic::invariant_end:
4186  case Intrinsic::lifetime_end:
4187    // Discard region information.
4188    return 0;
4189  }
4190}
4191
4192/// Test if the given instruction is in a position to be optimized
4193/// with a tail-call. This roughly means that it's in a block with
4194/// a return and there's nothing that needs to be scheduled
4195/// between it and the return.
4196///
4197/// This function only tests target-independent requirements.
4198static bool
4199isInTailCallPosition(CallSite CS, Attributes CalleeRetAttr,
4200                     const TargetLowering &TLI) {
4201  const Instruction *I = CS.getInstruction();
4202  const BasicBlock *ExitBB = I->getParent();
4203  const TerminatorInst *Term = ExitBB->getTerminator();
4204  const ReturnInst *Ret = dyn_cast<ReturnInst>(Term);
4205  const Function *F = ExitBB->getParent();
4206
4207  // The block must end in a return statement or unreachable.
4208  //
4209  // FIXME: Decline tailcall if it's not guaranteed and if the block ends in
4210  // an unreachable, for now. The way tailcall optimization is currently
4211  // implemented means it will add an epilogue followed by a jump. That is
4212  // not profitable. Also, if the callee is a special function (e.g.
4213  // longjmp on x86), it can end up causing miscompilation that has not
4214  // been fully understood.
4215  if (!Ret &&
4216      (!GuaranteedTailCallOpt || !isa<UnreachableInst>(Term))) return false;
4217
4218  // If I will have a chain, make sure no other instruction that will have a
4219  // chain interposes between I and the return.
4220  if (I->mayHaveSideEffects() || I->mayReadFromMemory() ||
4221      !I->isSafeToSpeculativelyExecute())
4222    for (BasicBlock::const_iterator BBI = prior(prior(ExitBB->end())); ;
4223         --BBI) {
4224      if (&*BBI == I)
4225        break;
4226      // Debug info intrinsics do not get in the way of tail call optimization.
4227      if (isa<DbgInfoIntrinsic>(BBI))
4228        continue;
4229      if (BBI->mayHaveSideEffects() || BBI->mayReadFromMemory() ||
4230          !BBI->isSafeToSpeculativelyExecute())
4231        return false;
4232    }
4233
4234  // If the block ends with a void return or unreachable, it doesn't matter
4235  // what the call's return type is.
4236  if (!Ret || Ret->getNumOperands() == 0) return true;
4237
4238  // If the return value is undef, it doesn't matter what the call's
4239  // return type is.
4240  if (isa<UndefValue>(Ret->getOperand(0))) return true;
4241
4242  // Conservatively require the attributes of the call to match those of
4243  // the return. Ignore noalias because it doesn't affect the call sequence.
4244  unsigned CallerRetAttr = F->getAttributes().getRetAttributes();
4245  if ((CalleeRetAttr ^ CallerRetAttr) & ~Attribute::NoAlias)
4246    return false;
4247
4248  // It's not safe to eliminate the sign / zero extension of the return value.
4249  if ((CallerRetAttr & Attribute::ZExt) || (CallerRetAttr & Attribute::SExt))
4250    return false;
4251
4252  // Otherwise, make sure the unmodified return value of I is the return value.
4253  for (const Instruction *U = dyn_cast<Instruction>(Ret->getOperand(0)); ;
4254       U = dyn_cast<Instruction>(U->getOperand(0))) {
4255    if (!U)
4256      return false;
4257    if (!U->hasOneUse())
4258      return false;
4259    if (U == I)
4260      break;
4261    // Check for a truly no-op truncate.
4262    if (isa<TruncInst>(U) &&
4263        TLI.isTruncateFree(U->getOperand(0)->getType(), U->getType()))
4264      continue;
4265    // Check for a truly no-op bitcast.
4266    if (isa<BitCastInst>(U) &&
4267        (U->getOperand(0)->getType() == U->getType() ||
4268         (U->getOperand(0)->getType()->isPointerTy() &&
4269          U->getType()->isPointerTy())))
4270      continue;
4271    // Otherwise it's not a true no-op.
4272    return false;
4273  }
4274
4275  return true;
4276}
4277
4278void SelectionDAGBuilder::LowerCallTo(CallSite CS, SDValue Callee,
4279                                      bool isTailCall,
4280                                      MachineBasicBlock *LandingPad) {
4281  const PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
4282  const FunctionType *FTy = cast<FunctionType>(PT->getElementType());
4283  const Type *RetTy = FTy->getReturnType();
4284  MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4285  MCSymbol *BeginLabel = 0;
4286
4287  TargetLowering::ArgListTy Args;
4288  TargetLowering::ArgListEntry Entry;
4289  Args.reserve(CS.arg_size());
4290
4291  // Check whether the function can return without sret-demotion.
4292  SmallVector<EVT, 4> OutVTs;
4293  SmallVector<ISD::ArgFlagsTy, 4> OutsFlags;
4294  SmallVector<uint64_t, 4> Offsets;
4295  getReturnInfo(RetTy, CS.getAttributes().getRetAttributes(),
4296                OutVTs, OutsFlags, TLI, &Offsets);
4297
4298  bool CanLowerReturn = TLI.CanLowerReturn(CS.getCallingConv(),
4299                        FTy->isVarArg(), OutVTs, OutsFlags, DAG);
4300
4301  SDValue DemoteStackSlot;
4302
4303  if (!CanLowerReturn) {
4304    uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(
4305                      FTy->getReturnType());
4306    unsigned Align  = TLI.getTargetData()->getPrefTypeAlignment(
4307                      FTy->getReturnType());
4308    MachineFunction &MF = DAG.getMachineFunction();
4309    int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
4310    const Type *StackSlotPtrType = PointerType::getUnqual(FTy->getReturnType());
4311
4312    DemoteStackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy());
4313    Entry.Node = DemoteStackSlot;
4314    Entry.Ty = StackSlotPtrType;
4315    Entry.isSExt = false;
4316    Entry.isZExt = false;
4317    Entry.isInReg = false;
4318    Entry.isSRet = true;
4319    Entry.isNest = false;
4320    Entry.isByVal = false;
4321    Entry.Alignment = Align;
4322    Args.push_back(Entry);
4323    RetTy = Type::getVoidTy(FTy->getContext());
4324  }
4325
4326  for (CallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
4327       i != e; ++i) {
4328    SDValue ArgNode = getValue(*i);
4329    Entry.Node = ArgNode; Entry.Ty = (*i)->getType();
4330
4331    unsigned attrInd = i - CS.arg_begin() + 1;
4332    Entry.isSExt  = CS.paramHasAttr(attrInd, Attribute::SExt);
4333    Entry.isZExt  = CS.paramHasAttr(attrInd, Attribute::ZExt);
4334    Entry.isInReg = CS.paramHasAttr(attrInd, Attribute::InReg);
4335    Entry.isSRet  = CS.paramHasAttr(attrInd, Attribute::StructRet);
4336    Entry.isNest  = CS.paramHasAttr(attrInd, Attribute::Nest);
4337    Entry.isByVal = CS.paramHasAttr(attrInd, Attribute::ByVal);
4338    Entry.Alignment = CS.getParamAlignment(attrInd);
4339    Args.push_back(Entry);
4340  }
4341
4342  if (LandingPad) {
4343    // Insert a label before the invoke call to mark the try range.  This can be
4344    // used to detect deletion of the invoke via the MachineModuleInfo.
4345    BeginLabel = MMI.getContext().CreateTempSymbol();
4346
4347    // For SjLj, keep track of which landing pads go with which invokes
4348    // so as to maintain the ordering of pads in the LSDA.
4349    unsigned CallSiteIndex = MMI.getCurrentCallSite();
4350    if (CallSiteIndex) {
4351      MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
4352      // Now that the call site is handled, stop tracking it.
4353      MMI.setCurrentCallSite(0);
4354    }
4355
4356    // Both PendingLoads and PendingExports must be flushed here;
4357    // this call might not return.
4358    (void)getRoot();
4359    DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getControlRoot(), BeginLabel));
4360  }
4361
4362  // Check if target-independent constraints permit a tail call here.
4363  // Target-dependent constraints are checked within TLI.LowerCallTo.
4364  if (isTailCall &&
4365      !isInTailCallPosition(CS, CS.getAttributes().getRetAttributes(), TLI))
4366    isTailCall = false;
4367
4368  std::pair<SDValue,SDValue> Result =
4369    TLI.LowerCallTo(getRoot(), RetTy,
4370                    CS.paramHasAttr(0, Attribute::SExt),
4371                    CS.paramHasAttr(0, Attribute::ZExt), FTy->isVarArg(),
4372                    CS.paramHasAttr(0, Attribute::InReg), FTy->getNumParams(),
4373                    CS.getCallingConv(),
4374                    isTailCall,
4375                    !CS.getInstruction()->use_empty(),
4376                    Callee, Args, DAG, getCurDebugLoc());
4377  assert((isTailCall || Result.second.getNode()) &&
4378         "Non-null chain expected with non-tail call!");
4379  assert((Result.second.getNode() || !Result.first.getNode()) &&
4380         "Null value expected with tail call!");
4381  if (Result.first.getNode()) {
4382    setValue(CS.getInstruction(), Result.first);
4383  } else if (!CanLowerReturn && Result.second.getNode()) {
4384    // The instruction result is the result of loading from the
4385    // hidden sret parameter.
4386    SmallVector<EVT, 1> PVTs;
4387    const Type *PtrRetTy = PointerType::getUnqual(FTy->getReturnType());
4388
4389    ComputeValueVTs(TLI, PtrRetTy, PVTs);
4390    assert(PVTs.size() == 1 && "Pointers should fit in one register");
4391    EVT PtrVT = PVTs[0];
4392    unsigned NumValues = OutVTs.size();
4393    SmallVector<SDValue, 4> Values(NumValues);
4394    SmallVector<SDValue, 4> Chains(NumValues);
4395
4396    for (unsigned i = 0; i < NumValues; ++i) {
4397      SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT,
4398                                DemoteStackSlot,
4399                                DAG.getConstant(Offsets[i], PtrVT));
4400      SDValue L = DAG.getLoad(OutVTs[i], getCurDebugLoc(), Result.second,
4401                              Add, NULL, Offsets[i], false, false, 1);
4402      Values[i] = L;
4403      Chains[i] = L.getValue(1);
4404    }
4405
4406    SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
4407                                MVT::Other, &Chains[0], NumValues);
4408    PendingLoads.push_back(Chain);
4409
4410    // Collect the legal value parts into potentially illegal values
4411    // that correspond to the original function's return values.
4412    SmallVector<EVT, 4> RetTys;
4413    RetTy = FTy->getReturnType();
4414    ComputeValueVTs(TLI, RetTy, RetTys);
4415    ISD::NodeType AssertOp = ISD::DELETED_NODE;
4416    SmallVector<SDValue, 4> ReturnValues;
4417    unsigned CurReg = 0;
4418    for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
4419      EVT VT = RetTys[I];
4420      EVT RegisterVT = TLI.getRegisterType(RetTy->getContext(), VT);
4421      unsigned NumRegs = TLI.getNumRegisters(RetTy->getContext(), VT);
4422
4423      SDValue ReturnValue =
4424        getCopyFromParts(DAG, getCurDebugLoc(), &Values[CurReg], NumRegs,
4425                         RegisterVT, VT, AssertOp);
4426      ReturnValues.push_back(ReturnValue);
4427      CurReg += NumRegs;
4428    }
4429
4430    setValue(CS.getInstruction(),
4431             DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
4432                         DAG.getVTList(&RetTys[0], RetTys.size()),
4433                         &ReturnValues[0], ReturnValues.size()));
4434
4435  }
4436
4437  // As a special case, a null chain means that a tail call has been emitted and
4438  // the DAG root is already updated.
4439  if (Result.second.getNode())
4440    DAG.setRoot(Result.second);
4441  else
4442    HasTailCall = true;
4443
4444  if (LandingPad) {
4445    // Insert a label at the end of the invoke call to mark the try range.  This
4446    // can be used to detect deletion of the invoke via the MachineModuleInfo.
4447    MCSymbol *EndLabel = MMI.getContext().CreateTempSymbol();
4448    DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getRoot(), EndLabel));
4449
4450    // Inform MachineModuleInfo of range.
4451    MMI.addInvoke(LandingPad, BeginLabel, EndLabel);
4452  }
4453}
4454
4455/// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the
4456/// value is equal or not-equal to zero.
4457static bool IsOnlyUsedInZeroEqualityComparison(Value *V) {
4458  for (Value::use_iterator UI = V->use_begin(), E = V->use_end();
4459       UI != E; ++UI) {
4460    if (ICmpInst *IC = dyn_cast<ICmpInst>(*UI))
4461      if (IC->isEquality())
4462        if (Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
4463          if (C->isNullValue())
4464            continue;
4465    // Unknown instruction.
4466    return false;
4467  }
4468  return true;
4469}
4470
4471static SDValue getMemCmpLoad(Value *PtrVal, MVT LoadVT, const Type *LoadTy,
4472                             SelectionDAGBuilder &Builder) {
4473
4474  // Check to see if this load can be trivially constant folded, e.g. if the
4475  // input is from a string literal.
4476  if (Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
4477    // Cast pointer to the type we really want to load.
4478    LoadInput = ConstantExpr::getBitCast(LoadInput,
4479                                         PointerType::getUnqual(LoadTy));
4480
4481    if (Constant *LoadCst = ConstantFoldLoadFromConstPtr(LoadInput, Builder.TD))
4482      return Builder.getValue(LoadCst);
4483  }
4484
4485  // Otherwise, we have to emit the load.  If the pointer is to unfoldable but
4486  // still constant memory, the input chain can be the entry node.
4487  SDValue Root;
4488  bool ConstantMemory = false;
4489
4490  // Do not serialize (non-volatile) loads of constant memory with anything.
4491  if (Builder.AA->pointsToConstantMemory(PtrVal)) {
4492    Root = Builder.DAG.getEntryNode();
4493    ConstantMemory = true;
4494  } else {
4495    // Do not serialize non-volatile loads against each other.
4496    Root = Builder.DAG.getRoot();
4497  }
4498
4499  SDValue Ptr = Builder.getValue(PtrVal);
4500  SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurDebugLoc(), Root,
4501                                        Ptr, PtrVal /*SrcValue*/, 0/*SVOffset*/,
4502                                        false /*volatile*/,
4503                                        false /*nontemporal*/, 1 /* align=1 */);
4504
4505  if (!ConstantMemory)
4506    Builder.PendingLoads.push_back(LoadVal.getValue(1));
4507  return LoadVal;
4508}
4509
4510
4511/// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form.
4512/// If so, return true and lower it, otherwise return false and it will be
4513/// lowered like a normal call.
4514bool SelectionDAGBuilder::visitMemCmpCall(CallInst &I) {
4515  // Verify that the prototype makes sense.  int memcmp(void*,void*,size_t)
4516  if (I.getNumOperands() != 4)
4517    return false;
4518
4519  Value *LHS = I.getOperand(1), *RHS = I.getOperand(2);
4520  if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() ||
4521      !I.getOperand(3)->getType()->isIntegerTy() ||
4522      !I.getType()->isIntegerTy())
4523    return false;
4524
4525  ConstantInt *Size = dyn_cast<ConstantInt>(I.getOperand(3));
4526
4527  // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0
4528  // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0
4529  if (Size && IsOnlyUsedInZeroEqualityComparison(&I)) {
4530    bool ActuallyDoIt = true;
4531    MVT LoadVT;
4532    const Type *LoadTy;
4533    switch (Size->getZExtValue()) {
4534    default:
4535      LoadVT = MVT::Other;
4536      LoadTy = 0;
4537      ActuallyDoIt = false;
4538      break;
4539    case 2:
4540      LoadVT = MVT::i16;
4541      LoadTy = Type::getInt16Ty(Size->getContext());
4542      break;
4543    case 4:
4544      LoadVT = MVT::i32;
4545      LoadTy = Type::getInt32Ty(Size->getContext());
4546      break;
4547    case 8:
4548      LoadVT = MVT::i64;
4549      LoadTy = Type::getInt64Ty(Size->getContext());
4550      break;
4551        /*
4552    case 16:
4553      LoadVT = MVT::v4i32;
4554      LoadTy = Type::getInt32Ty(Size->getContext());
4555      LoadTy = VectorType::get(LoadTy, 4);
4556      break;
4557         */
4558    }
4559
4560    // This turns into unaligned loads.  We only do this if the target natively
4561    // supports the MVT we'll be loading or if it is small enough (<= 4) that
4562    // we'll only produce a small number of byte loads.
4563
4564    // Require that we can find a legal MVT, and only do this if the target
4565    // supports unaligned loads of that type.  Expanding into byte loads would
4566    // bloat the code.
4567    if (ActuallyDoIt && Size->getZExtValue() > 4) {
4568      // TODO: Handle 5 byte compare as 4-byte + 1 byte.
4569      // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
4570      if (!TLI.isTypeLegal(LoadVT) ||!TLI.allowsUnalignedMemoryAccesses(LoadVT))
4571        ActuallyDoIt = false;
4572    }
4573
4574    if (ActuallyDoIt) {
4575      SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this);
4576      SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this);
4577
4578      SDValue Res = DAG.getSetCC(getCurDebugLoc(), MVT::i1, LHSVal, RHSVal,
4579                                 ISD::SETNE);
4580      EVT CallVT = TLI.getValueType(I.getType(), true);
4581      setValue(&I, DAG.getZExtOrTrunc(Res, getCurDebugLoc(), CallVT));
4582      return true;
4583    }
4584  }
4585
4586
4587  return false;
4588}
4589
4590
4591void SelectionDAGBuilder::visitCall(CallInst &I) {
4592  const char *RenameFn = 0;
4593  if (Function *F = I.getCalledFunction()) {
4594    if (F->isDeclaration()) {
4595      const TargetIntrinsicInfo *II = TLI.getTargetMachine().getIntrinsicInfo();
4596      if (II) {
4597        if (unsigned IID = II->getIntrinsicID(F)) {
4598          RenameFn = visitIntrinsicCall(I, IID);
4599          if (!RenameFn)
4600            return;
4601        }
4602      }
4603      if (unsigned IID = F->getIntrinsicID()) {
4604        RenameFn = visitIntrinsicCall(I, IID);
4605        if (!RenameFn)
4606          return;
4607      }
4608    }
4609
4610    // Check for well-known libc/libm calls.  If the function is internal, it
4611    // can't be a library call.
4612    if (!F->hasLocalLinkage() && F->hasName()) {
4613      StringRef Name = F->getName();
4614      if (Name == "copysign" || Name == "copysignf" || Name == "copysignl") {
4615        if (I.getNumOperands() == 3 &&   // Basic sanity checks.
4616            I.getOperand(1)->getType()->isFloatingPointTy() &&
4617            I.getType() == I.getOperand(1)->getType() &&
4618            I.getType() == I.getOperand(2)->getType()) {
4619          SDValue LHS = getValue(I.getOperand(1));
4620          SDValue RHS = getValue(I.getOperand(2));
4621          setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurDebugLoc(),
4622                                   LHS.getValueType(), LHS, RHS));
4623          return;
4624        }
4625      } else if (Name == "fabs" || Name == "fabsf" || Name == "fabsl") {
4626        if (I.getNumOperands() == 2 &&   // Basic sanity checks.
4627            I.getOperand(1)->getType()->isFloatingPointTy() &&
4628            I.getType() == I.getOperand(1)->getType()) {
4629          SDValue Tmp = getValue(I.getOperand(1));
4630          setValue(&I, DAG.getNode(ISD::FABS, getCurDebugLoc(),
4631                                   Tmp.getValueType(), Tmp));
4632          return;
4633        }
4634      } else if (Name == "sin" || Name == "sinf" || Name == "sinl") {
4635        if (I.getNumOperands() == 2 &&   // Basic sanity checks.
4636            I.getOperand(1)->getType()->isFloatingPointTy() &&
4637            I.getType() == I.getOperand(1)->getType() &&
4638            I.onlyReadsMemory()) {
4639          SDValue Tmp = getValue(I.getOperand(1));
4640          setValue(&I, DAG.getNode(ISD::FSIN, getCurDebugLoc(),
4641                                   Tmp.getValueType(), Tmp));
4642          return;
4643        }
4644      } else if (Name == "cos" || Name == "cosf" || Name == "cosl") {
4645        if (I.getNumOperands() == 2 &&   // Basic sanity checks.
4646            I.getOperand(1)->getType()->isFloatingPointTy() &&
4647            I.getType() == I.getOperand(1)->getType() &&
4648            I.onlyReadsMemory()) {
4649          SDValue Tmp = getValue(I.getOperand(1));
4650          setValue(&I, DAG.getNode(ISD::FCOS, getCurDebugLoc(),
4651                                   Tmp.getValueType(), Tmp));
4652          return;
4653        }
4654      } else if (Name == "sqrt" || Name == "sqrtf" || Name == "sqrtl") {
4655        if (I.getNumOperands() == 2 &&   // Basic sanity checks.
4656            I.getOperand(1)->getType()->isFloatingPointTy() &&
4657            I.getType() == I.getOperand(1)->getType() &&
4658            I.onlyReadsMemory()) {
4659          SDValue Tmp = getValue(I.getOperand(1));
4660          setValue(&I, DAG.getNode(ISD::FSQRT, getCurDebugLoc(),
4661                                   Tmp.getValueType(), Tmp));
4662          return;
4663        }
4664      } else if (Name == "memcmp") {
4665        if (visitMemCmpCall(I))
4666          return;
4667      }
4668    }
4669  } else if (isa<InlineAsm>(I.getOperand(0))) {
4670    visitInlineAsm(&I);
4671    return;
4672  }
4673
4674  SDValue Callee;
4675  if (!RenameFn)
4676    Callee = getValue(I.getOperand(0));
4677  else
4678    Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy());
4679
4680  // Check if we can potentially perform a tail call. More detailed checking is
4681  // be done within LowerCallTo, after more information about the call is known.
4682  LowerCallTo(&I, Callee, I.isTailCall());
4683}
4684
4685/// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
4686/// this value and returns the result as a ValueVT value.  This uses
4687/// Chain/Flag as the input and updates them for the output Chain/Flag.
4688/// If the Flag pointer is NULL, no flag is used.
4689SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, DebugLoc dl,
4690                                      SDValue &Chain, SDValue *Flag) const {
4691  // Assemble the legal parts into the final values.
4692  SmallVector<SDValue, 4> Values(ValueVTs.size());
4693  SmallVector<SDValue, 8> Parts;
4694  for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
4695    // Copy the legal parts from the registers.
4696    EVT ValueVT = ValueVTs[Value];
4697    unsigned NumRegs = TLI->getNumRegisters(*DAG.getContext(), ValueVT);
4698    EVT RegisterVT = RegVTs[Value];
4699
4700    Parts.resize(NumRegs);
4701    for (unsigned i = 0; i != NumRegs; ++i) {
4702      SDValue P;
4703      if (Flag == 0) {
4704        P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
4705      } else {
4706        P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
4707        *Flag = P.getValue(2);
4708      }
4709
4710      Chain = P.getValue(1);
4711
4712      // If the source register was virtual and if we know something about it,
4713      // add an assert node.
4714      if (TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) &&
4715          RegisterVT.isInteger() && !RegisterVT.isVector()) {
4716        unsigned SlotNo = Regs[Part+i]-TargetRegisterInfo::FirstVirtualRegister;
4717        FunctionLoweringInfo &FLI = DAG.getFunctionLoweringInfo();
4718        if (FLI.LiveOutRegInfo.size() > SlotNo) {
4719          FunctionLoweringInfo::LiveOutInfo &LOI = FLI.LiveOutRegInfo[SlotNo];
4720
4721          unsigned RegSize = RegisterVT.getSizeInBits();
4722          unsigned NumSignBits = LOI.NumSignBits;
4723          unsigned NumZeroBits = LOI.KnownZero.countLeadingOnes();
4724
4725          // FIXME: We capture more information than the dag can represent.  For
4726          // now, just use the tightest assertzext/assertsext possible.
4727          bool isSExt = true;
4728          EVT FromVT(MVT::Other);
4729          if (NumSignBits == RegSize)
4730            isSExt = true, FromVT = MVT::i1;   // ASSERT SEXT 1
4731          else if (NumZeroBits >= RegSize-1)
4732            isSExt = false, FromVT = MVT::i1;  // ASSERT ZEXT 1
4733          else if (NumSignBits > RegSize-8)
4734            isSExt = true, FromVT = MVT::i8;   // ASSERT SEXT 8
4735          else if (NumZeroBits >= RegSize-8)
4736            isSExt = false, FromVT = MVT::i8;  // ASSERT ZEXT 8
4737          else if (NumSignBits > RegSize-16)
4738            isSExt = true, FromVT = MVT::i16;  // ASSERT SEXT 16
4739          else if (NumZeroBits >= RegSize-16)
4740            isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16
4741          else if (NumSignBits > RegSize-32)
4742            isSExt = true, FromVT = MVT::i32;  // ASSERT SEXT 32
4743          else if (NumZeroBits >= RegSize-32)
4744            isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32
4745
4746          if (FromVT != MVT::Other)
4747            P = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
4748                            RegisterVT, P, DAG.getValueType(FromVT));
4749        }
4750      }
4751
4752      Parts[i] = P;
4753    }
4754
4755    Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(),
4756                                     NumRegs, RegisterVT, ValueVT);
4757    Part += NumRegs;
4758    Parts.clear();
4759  }
4760
4761  return DAG.getNode(ISD::MERGE_VALUES, dl,
4762                     DAG.getVTList(&ValueVTs[0], ValueVTs.size()),
4763                     &Values[0], ValueVTs.size());
4764}
4765
4766/// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
4767/// specified value into the registers specified by this object.  This uses
4768/// Chain/Flag as the input and updates them for the output Chain/Flag.
4769/// If the Flag pointer is NULL, no flag is used.
4770void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl,
4771                                 SDValue &Chain, SDValue *Flag) const {
4772  // Get the list of the values's legal parts.
4773  unsigned NumRegs = Regs.size();
4774  SmallVector<SDValue, 8> Parts(NumRegs);
4775  for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
4776    EVT ValueVT = ValueVTs[Value];
4777    unsigned NumParts = TLI->getNumRegisters(*DAG.getContext(), ValueVT);
4778    EVT RegisterVT = RegVTs[Value];
4779
4780    getCopyToParts(DAG, dl,
4781                   Val.getValue(Val.getResNo() + Value),
4782                   &Parts[Part], NumParts, RegisterVT);
4783    Part += NumParts;
4784  }
4785
4786  // Copy the parts into the registers.
4787  SmallVector<SDValue, 8> Chains(NumRegs);
4788  for (unsigned i = 0; i != NumRegs; ++i) {
4789    SDValue Part;
4790    if (Flag == 0) {
4791      Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
4792    } else {
4793      Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
4794      *Flag = Part.getValue(1);
4795    }
4796
4797    Chains[i] = Part.getValue(0);
4798  }
4799
4800  if (NumRegs == 1 || Flag)
4801    // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
4802    // flagged to it. That is the CopyToReg nodes and the user are considered
4803    // a single scheduling unit. If we create a TokenFactor and return it as
4804    // chain, then the TokenFactor is both a predecessor (operand) of the
4805    // user as well as a successor (the TF operands are flagged to the user).
4806    // c1, f1 = CopyToReg
4807    // c2, f2 = CopyToReg
4808    // c3     = TokenFactor c1, c2
4809    // ...
4810    //        = op c3, ..., f2
4811    Chain = Chains[NumRegs-1];
4812  else
4813    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0], NumRegs);
4814}
4815
4816/// AddInlineAsmOperands - Add this value to the specified inlineasm node
4817/// operand list.  This adds the code marker and includes the number of
4818/// values added into it.
4819void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
4820                                        unsigned MatchingIdx,
4821                                        SelectionDAG &DAG,
4822                                        std::vector<SDValue> &Ops) const {
4823  unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
4824  if (HasMatching)
4825    Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
4826  SDValue Res = DAG.getTargetConstant(Flag, MVT::i32);
4827  Ops.push_back(Res);
4828
4829  for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
4830    unsigned NumRegs = TLI->getNumRegisters(*DAG.getContext(), ValueVTs[Value]);
4831    EVT RegisterVT = RegVTs[Value];
4832    for (unsigned i = 0; i != NumRegs; ++i) {
4833      assert(Reg < Regs.size() && "Mismatch in # registers expected");
4834      Ops.push_back(DAG.getRegister(Regs[Reg++], RegisterVT));
4835    }
4836  }
4837}
4838
4839/// isAllocatableRegister - If the specified register is safe to allocate,
4840/// i.e. it isn't a stack pointer or some other special register, return the
4841/// register class for the register.  Otherwise, return null.
4842static const TargetRegisterClass *
4843isAllocatableRegister(unsigned Reg, MachineFunction &MF,
4844                      const TargetLowering &TLI,
4845                      const TargetRegisterInfo *TRI) {
4846  EVT FoundVT = MVT::Other;
4847  const TargetRegisterClass *FoundRC = 0;
4848  for (TargetRegisterInfo::regclass_iterator RCI = TRI->regclass_begin(),
4849       E = TRI->regclass_end(); RCI != E; ++RCI) {
4850    EVT ThisVT = MVT::Other;
4851
4852    const TargetRegisterClass *RC = *RCI;
4853    // If none of the value types for this register class are valid, we
4854    // can't use it.  For example, 64-bit reg classes on 32-bit targets.
4855    for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
4856         I != E; ++I) {
4857      if (TLI.isTypeLegal(*I)) {
4858        // If we have already found this register in a different register class,
4859        // choose the one with the largest VT specified.  For example, on
4860        // PowerPC, we favor f64 register classes over f32.
4861        if (FoundVT == MVT::Other || FoundVT.bitsLT(*I)) {
4862          ThisVT = *I;
4863          break;
4864        }
4865      }
4866    }
4867
4868    if (ThisVT == MVT::Other) continue;
4869
4870    // NOTE: This isn't ideal.  In particular, this might allocate the
4871    // frame pointer in functions that need it (due to them not being taken
4872    // out of allocation, because a variable sized allocation hasn't been seen
4873    // yet).  This is a slight code pessimization, but should still work.
4874    for (TargetRegisterClass::iterator I = RC->allocation_order_begin(MF),
4875         E = RC->allocation_order_end(MF); I != E; ++I)
4876      if (*I == Reg) {
4877        // We found a matching register class.  Keep looking at others in case
4878        // we find one with larger registers that this physreg is also in.
4879        FoundRC = RC;
4880        FoundVT = ThisVT;
4881        break;
4882      }
4883  }
4884  return FoundRC;
4885}
4886
4887
4888namespace llvm {
4889/// AsmOperandInfo - This contains information for each constraint that we are
4890/// lowering.
4891class VISIBILITY_HIDDEN SDISelAsmOperandInfo :
4892    public TargetLowering::AsmOperandInfo {
4893public:
4894  /// CallOperand - If this is the result output operand or a clobber
4895  /// this is null, otherwise it is the incoming operand to the CallInst.
4896  /// This gets modified as the asm is processed.
4897  SDValue CallOperand;
4898
4899  /// AssignedRegs - If this is a register or register class operand, this
4900  /// contains the set of register corresponding to the operand.
4901  RegsForValue AssignedRegs;
4902
4903  explicit SDISelAsmOperandInfo(const InlineAsm::ConstraintInfo &info)
4904    : TargetLowering::AsmOperandInfo(info), CallOperand(0,0) {
4905  }
4906
4907  /// MarkAllocatedRegs - Once AssignedRegs is set, mark the assigned registers
4908  /// busy in OutputRegs/InputRegs.
4909  void MarkAllocatedRegs(bool isOutReg, bool isInReg,
4910                         std::set<unsigned> &OutputRegs,
4911                         std::set<unsigned> &InputRegs,
4912                         const TargetRegisterInfo &TRI) const {
4913    if (isOutReg) {
4914      for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i)
4915        MarkRegAndAliases(AssignedRegs.Regs[i], OutputRegs, TRI);
4916    }
4917    if (isInReg) {
4918      for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i)
4919        MarkRegAndAliases(AssignedRegs.Regs[i], InputRegs, TRI);
4920    }
4921  }
4922
4923  /// getCallOperandValEVT - Return the EVT of the Value* that this operand
4924  /// corresponds to.  If there is no Value* for this operand, it returns
4925  /// MVT::Other.
4926  EVT getCallOperandValEVT(LLVMContext &Context,
4927                           const TargetLowering &TLI,
4928                           const TargetData *TD) const {
4929    if (CallOperandVal == 0) return MVT::Other;
4930
4931    if (isa<BasicBlock>(CallOperandVal))
4932      return TLI.getPointerTy();
4933
4934    const llvm::Type *OpTy = CallOperandVal->getType();
4935
4936    // If this is an indirect operand, the operand is a pointer to the
4937    // accessed type.
4938    if (isIndirect) {
4939      const llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
4940      if (!PtrTy)
4941        report_fatal_error("Indirect operand for inline asm not a pointer!");
4942      OpTy = PtrTy->getElementType();
4943    }
4944
4945    // If OpTy is not a single value, it may be a struct/union that we
4946    // can tile with integers.
4947    if (!OpTy->isSingleValueType() && OpTy->isSized()) {
4948      unsigned BitSize = TD->getTypeSizeInBits(OpTy);
4949      switch (BitSize) {
4950      default: break;
4951      case 1:
4952      case 8:
4953      case 16:
4954      case 32:
4955      case 64:
4956      case 128:
4957        OpTy = IntegerType::get(Context, BitSize);
4958        break;
4959      }
4960    }
4961
4962    return TLI.getValueType(OpTy, true);
4963  }
4964
4965private:
4966  /// MarkRegAndAliases - Mark the specified register and all aliases in the
4967  /// specified set.
4968  static void MarkRegAndAliases(unsigned Reg, std::set<unsigned> &Regs,
4969                                const TargetRegisterInfo &TRI) {
4970    assert(TargetRegisterInfo::isPhysicalRegister(Reg) && "Isn't a physreg");
4971    Regs.insert(Reg);
4972    if (const unsigned *Aliases = TRI.getAliasSet(Reg))
4973      for (; *Aliases; ++Aliases)
4974        Regs.insert(*Aliases);
4975  }
4976};
4977} // end llvm namespace.
4978
4979
4980/// GetRegistersForValue - Assign registers (virtual or physical) for the
4981/// specified operand.  We prefer to assign virtual registers, to allow the
4982/// register allocator to handle the assignment process.  However, if the asm
4983/// uses features that we can't model on machineinstrs, we have SDISel do the
4984/// allocation.  This produces generally horrible, but correct, code.
4985///
4986///   OpInfo describes the operand.
4987///   Input and OutputRegs are the set of already allocated physical registers.
4988///
4989void SelectionDAGBuilder::
4990GetRegistersForValue(SDISelAsmOperandInfo &OpInfo,
4991                     std::set<unsigned> &OutputRegs,
4992                     std::set<unsigned> &InputRegs) {
4993  LLVMContext &Context = FuncInfo.Fn->getContext();
4994
4995  // Compute whether this value requires an input register, an output register,
4996  // or both.
4997  bool isOutReg = false;
4998  bool isInReg = false;
4999  switch (OpInfo.Type) {
5000  case InlineAsm::isOutput:
5001    isOutReg = true;
5002
5003    // If there is an input constraint that matches this, we need to reserve
5004    // the input register so no other inputs allocate to it.
5005    isInReg = OpInfo.hasMatchingInput();
5006    break;
5007  case InlineAsm::isInput:
5008    isInReg = true;
5009    isOutReg = false;
5010    break;
5011  case InlineAsm::isClobber:
5012    isOutReg = true;
5013    isInReg = true;
5014    break;
5015  }
5016
5017
5018  MachineFunction &MF = DAG.getMachineFunction();
5019  SmallVector<unsigned, 4> Regs;
5020
5021  // If this is a constraint for a single physreg, or a constraint for a
5022  // register class, find it.
5023  std::pair<unsigned, const TargetRegisterClass*> PhysReg =
5024    TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
5025                                     OpInfo.ConstraintVT);
5026
5027  unsigned NumRegs = 1;
5028  if (OpInfo.ConstraintVT != MVT::Other) {
5029    // If this is a FP input in an integer register (or visa versa) insert a bit
5030    // cast of the input value.  More generally, handle any case where the input
5031    // value disagrees with the register class we plan to stick this in.
5032    if (OpInfo.Type == InlineAsm::isInput &&
5033        PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) {
5034      // Try to convert to the first EVT that the reg class contains.  If the
5035      // types are identical size, use a bitcast to convert (e.g. two differing
5036      // vector types).
5037      EVT RegVT = *PhysReg.second->vt_begin();
5038      if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) {
5039        OpInfo.CallOperand = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(),
5040                                         RegVT, OpInfo.CallOperand);
5041        OpInfo.ConstraintVT = RegVT;
5042      } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
5043        // If the input is a FP value and we want it in FP registers, do a
5044        // bitcast to the corresponding integer type.  This turns an f64 value
5045        // into i64, which can be passed with two i32 values on a 32-bit
5046        // machine.
5047        RegVT = EVT::getIntegerVT(Context,
5048                                  OpInfo.ConstraintVT.getSizeInBits());
5049        OpInfo.CallOperand = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(),
5050                                         RegVT, OpInfo.CallOperand);
5051        OpInfo.ConstraintVT = RegVT;
5052      }
5053    }
5054
5055    NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT);
5056  }
5057
5058  EVT RegVT;
5059  EVT ValueVT = OpInfo.ConstraintVT;
5060
5061  // If this is a constraint for a specific physical register, like {r17},
5062  // assign it now.
5063  if (unsigned AssignedReg = PhysReg.first) {
5064    const TargetRegisterClass *RC = PhysReg.second;
5065    if (OpInfo.ConstraintVT == MVT::Other)
5066      ValueVT = *RC->vt_begin();
5067
5068    // Get the actual register value type.  This is important, because the user
5069    // may have asked for (e.g.) the AX register in i32 type.  We need to
5070    // remember that AX is actually i16 to get the right extension.
5071    RegVT = *RC->vt_begin();
5072
5073    // This is a explicit reference to a physical register.
5074    Regs.push_back(AssignedReg);
5075
5076    // If this is an expanded reference, add the rest of the regs to Regs.
5077    if (NumRegs != 1) {
5078      TargetRegisterClass::iterator I = RC->begin();
5079      for (; *I != AssignedReg; ++I)
5080        assert(I != RC->end() && "Didn't find reg!");
5081
5082      // Already added the first reg.
5083      --NumRegs; ++I;
5084      for (; NumRegs; --NumRegs, ++I) {
5085        assert(I != RC->end() && "Ran out of registers to allocate!");
5086        Regs.push_back(*I);
5087      }
5088    }
5089
5090    OpInfo.AssignedRegs = RegsForValue(TLI, Regs, RegVT, ValueVT);
5091    const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
5092    OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI);
5093    return;
5094  }
5095
5096  // Otherwise, if this was a reference to an LLVM register class, create vregs
5097  // for this reference.
5098  if (const TargetRegisterClass *RC = PhysReg.second) {
5099    RegVT = *RC->vt_begin();
5100    if (OpInfo.ConstraintVT == MVT::Other)
5101      ValueVT = RegVT;
5102
5103    // Create the appropriate number of virtual registers.
5104    MachineRegisterInfo &RegInfo = MF.getRegInfo();
5105    for (; NumRegs; --NumRegs)
5106      Regs.push_back(RegInfo.createVirtualRegister(RC));
5107
5108    OpInfo.AssignedRegs = RegsForValue(TLI, Regs, RegVT, ValueVT);
5109    return;
5110  }
5111
5112  // This is a reference to a register class that doesn't directly correspond
5113  // to an LLVM register class.  Allocate NumRegs consecutive, available,
5114  // registers from the class.
5115  std::vector<unsigned> RegClassRegs
5116    = TLI.getRegClassForInlineAsmConstraint(OpInfo.ConstraintCode,
5117                                            OpInfo.ConstraintVT);
5118
5119  const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
5120  unsigned NumAllocated = 0;
5121  for (unsigned i = 0, e = RegClassRegs.size(); i != e; ++i) {
5122    unsigned Reg = RegClassRegs[i];
5123    // See if this register is available.
5124    if ((isOutReg && OutputRegs.count(Reg)) ||   // Already used.
5125        (isInReg  && InputRegs.count(Reg))) {    // Already used.
5126      // Make sure we find consecutive registers.
5127      NumAllocated = 0;
5128      continue;
5129    }
5130
5131    // Check to see if this register is allocatable (i.e. don't give out the
5132    // stack pointer).
5133    const TargetRegisterClass *RC = isAllocatableRegister(Reg, MF, TLI, TRI);
5134    if (!RC) {        // Couldn't allocate this register.
5135      // Reset NumAllocated to make sure we return consecutive registers.
5136      NumAllocated = 0;
5137      continue;
5138    }
5139
5140    // Okay, this register is good, we can use it.
5141    ++NumAllocated;
5142
5143    // If we allocated enough consecutive registers, succeed.
5144    if (NumAllocated == NumRegs) {
5145      unsigned RegStart = (i-NumAllocated)+1;
5146      unsigned RegEnd   = i+1;
5147      // Mark all of the allocated registers used.
5148      for (unsigned i = RegStart; i != RegEnd; ++i)
5149        Regs.push_back(RegClassRegs[i]);
5150
5151      OpInfo.AssignedRegs = RegsForValue(TLI, Regs, *RC->vt_begin(),
5152                                         OpInfo.ConstraintVT);
5153      OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI);
5154      return;
5155    }
5156  }
5157
5158  // Otherwise, we couldn't allocate enough registers for this.
5159}
5160
5161/// visitInlineAsm - Handle a call to an InlineAsm object.
5162///
5163void SelectionDAGBuilder::visitInlineAsm(CallSite CS) {
5164  InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
5165
5166  /// ConstraintOperands - Information about all of the constraints.
5167  std::vector<SDISelAsmOperandInfo> ConstraintOperands;
5168
5169  std::set<unsigned> OutputRegs, InputRegs;
5170
5171  // Do a prepass over the constraints, canonicalizing them, and building up the
5172  // ConstraintOperands list.
5173  std::vector<InlineAsm::ConstraintInfo>
5174    ConstraintInfos = IA->ParseConstraints();
5175
5176  bool hasMemory = hasInlineAsmMemConstraint(ConstraintInfos, TLI);
5177
5178  SDValue Chain, Flag;
5179
5180  // We won't need to flush pending loads if this asm doesn't touch
5181  // memory and is nonvolatile.
5182  if (hasMemory || IA->hasSideEffects())
5183    Chain = getRoot();
5184  else
5185    Chain = DAG.getRoot();
5186
5187  unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
5188  unsigned ResNo = 0;   // ResNo - The result number of the next output.
5189  for (unsigned i = 0, e = ConstraintInfos.size(); i != e; ++i) {
5190    ConstraintOperands.push_back(SDISelAsmOperandInfo(ConstraintInfos[i]));
5191    SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
5192
5193    EVT OpVT = MVT::Other;
5194
5195    // Compute the value type for each operand.
5196    switch (OpInfo.Type) {
5197    case InlineAsm::isOutput:
5198      // Indirect outputs just consume an argument.
5199      if (OpInfo.isIndirect) {
5200        OpInfo.CallOperandVal = CS.getArgument(ArgNo++);
5201        break;
5202      }
5203
5204      // The return value of the call is this value.  As such, there is no
5205      // corresponding argument.
5206      assert(!CS.getType()->isVoidTy() &&
5207             "Bad inline asm!");
5208      if (const StructType *STy = dyn_cast<StructType>(CS.getType())) {
5209        OpVT = TLI.getValueType(STy->getElementType(ResNo));
5210      } else {
5211        assert(ResNo == 0 && "Asm only has one result!");
5212        OpVT = TLI.getValueType(CS.getType());
5213      }
5214      ++ResNo;
5215      break;
5216    case InlineAsm::isInput:
5217      OpInfo.CallOperandVal = CS.getArgument(ArgNo++);
5218      break;
5219    case InlineAsm::isClobber:
5220      // Nothing to do.
5221      break;
5222    }
5223
5224    // If this is an input or an indirect output, process the call argument.
5225    // BasicBlocks are labels, currently appearing only in asm's.
5226    if (OpInfo.CallOperandVal) {
5227      // Strip bitcasts, if any.  This mostly comes up for functions.
5228      OpInfo.CallOperandVal = OpInfo.CallOperandVal->stripPointerCasts();
5229
5230      if (BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) {
5231        OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
5232      } else {
5233        OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
5234      }
5235
5236      OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, TD);
5237    }
5238
5239    OpInfo.ConstraintVT = OpVT;
5240  }
5241
5242  // Second pass over the constraints: compute which constraint option to use
5243  // and assign registers to constraints that want a specific physreg.
5244  for (unsigned i = 0, e = ConstraintInfos.size(); i != e; ++i) {
5245    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
5246
5247    // If this is an output operand with a matching input operand, look up the
5248    // matching input. If their types mismatch, e.g. one is an integer, the
5249    // other is floating point, or their sizes are different, flag it as an
5250    // error.
5251    if (OpInfo.hasMatchingInput()) {
5252      SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
5253
5254      if (OpInfo.ConstraintVT != Input.ConstraintVT) {
5255        if ((OpInfo.ConstraintVT.isInteger() !=
5256             Input.ConstraintVT.isInteger()) ||
5257            (OpInfo.ConstraintVT.getSizeInBits() !=
5258             Input.ConstraintVT.getSizeInBits())) {
5259          report_fatal_error("Unsupported asm: input constraint"
5260                             " with a matching output constraint of"
5261                             " incompatible type!");
5262        }
5263        Input.ConstraintVT = OpInfo.ConstraintVT;
5264      }
5265    }
5266
5267    // Compute the constraint code and ConstraintType to use.
5268    TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, hasMemory, &DAG);
5269
5270    // If this is a memory input, and if the operand is not indirect, do what we
5271    // need to to provide an address for the memory input.
5272    if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
5273        !OpInfo.isIndirect) {
5274      assert(OpInfo.Type == InlineAsm::isInput &&
5275             "Can only indirectify direct input operands!");
5276
5277      // Memory operands really want the address of the value.  If we don't have
5278      // an indirect input, put it in the constpool if we can, otherwise spill
5279      // it to a stack slot.
5280
5281      // If the operand is a float, integer, or vector constant, spill to a
5282      // constant pool entry to get its address.
5283      Value *OpVal = OpInfo.CallOperandVal;
5284      if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
5285          isa<ConstantVector>(OpVal)) {
5286        OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal),
5287                                                 TLI.getPointerTy());
5288      } else {
5289        // Otherwise, create a stack slot and emit a store to it before the
5290        // asm.
5291        const Type *Ty = OpVal->getType();
5292        uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty);
5293        unsigned Align  = TLI.getTargetData()->getPrefTypeAlignment(Ty);
5294        MachineFunction &MF = DAG.getMachineFunction();
5295        int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
5296        SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy());
5297        Chain = DAG.getStore(Chain, getCurDebugLoc(),
5298                             OpInfo.CallOperand, StackSlot, NULL, 0,
5299                             false, false, 0);
5300        OpInfo.CallOperand = StackSlot;
5301      }
5302
5303      // There is no longer a Value* corresponding to this operand.
5304      OpInfo.CallOperandVal = 0;
5305
5306      // It is now an indirect operand.
5307      OpInfo.isIndirect = true;
5308    }
5309
5310    // If this constraint is for a specific register, allocate it before
5311    // anything else.
5312    if (OpInfo.ConstraintType == TargetLowering::C_Register)
5313      GetRegistersForValue(OpInfo, OutputRegs, InputRegs);
5314  }
5315
5316  ConstraintInfos.clear();
5317
5318  // Second pass - Loop over all of the operands, assigning virtual or physregs
5319  // to register class operands.
5320  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
5321    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
5322
5323    // C_Register operands have already been allocated, Other/Memory don't need
5324    // to be.
5325    if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass)
5326      GetRegistersForValue(OpInfo, OutputRegs, InputRegs);
5327  }
5328
5329  // AsmNodeOperands - The operands for the ISD::INLINEASM node.
5330  std::vector<SDValue> AsmNodeOperands;
5331  AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
5332  AsmNodeOperands.push_back(
5333          DAG.getTargetExternalSymbol(IA->getAsmString().c_str(),
5334                                      TLI.getPointerTy()));
5335
5336  // If we have a !srcloc metadata node associated with it, we want to attach
5337  // this to the ultimately generated inline asm machineinstr.  To do this, we
5338  // pass in the third operand as this (potentially null) inline asm MDNode.
5339  const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc");
5340  AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
5341
5342  // Loop over all of the inputs, copying the operand values into the
5343  // appropriate registers and processing the output regs.
5344  RegsForValue RetValRegs;
5345
5346  // IndirectStoresToEmit - The set of stores to emit after the inline asm node.
5347  std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit;
5348
5349  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
5350    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
5351
5352    switch (OpInfo.Type) {
5353    case InlineAsm::isOutput: {
5354      if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass &&
5355          OpInfo.ConstraintType != TargetLowering::C_Register) {
5356        // Memory output, or 'other' output (e.g. 'X' constraint).
5357        assert(OpInfo.isIndirect && "Memory output must be indirect operand");
5358
5359        // Add information to the INLINEASM node to know about this output.
5360        unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
5361        AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags,
5362                                                        TLI.getPointerTy()));
5363        AsmNodeOperands.push_back(OpInfo.CallOperand);
5364        break;
5365      }
5366
5367      // Otherwise, this is a register or register class output.
5368
5369      // Copy the output from the appropriate register.  Find a register that
5370      // we can use.
5371      if (OpInfo.AssignedRegs.Regs.empty())
5372        report_fatal_error("Couldn't allocate output reg for constraint '" +
5373                           Twine(OpInfo.ConstraintCode) + "'!");
5374
5375      // If this is an indirect operand, store through the pointer after the
5376      // asm.
5377      if (OpInfo.isIndirect) {
5378        IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs,
5379                                                      OpInfo.CallOperandVal));
5380      } else {
5381        // This is the result value of the call.
5382        assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
5383        // Concatenate this output onto the outputs list.
5384        RetValRegs.append(OpInfo.AssignedRegs);
5385      }
5386
5387      // Add information to the INLINEASM node to know that this register is
5388      // set.
5389      OpInfo.AssignedRegs.AddInlineAsmOperands(OpInfo.isEarlyClobber ?
5390                                           InlineAsm::Kind_RegDefEarlyClobber :
5391                                               InlineAsm::Kind_RegDef,
5392                                               false,
5393                                               0,
5394                                               DAG,
5395                                               AsmNodeOperands);
5396      break;
5397    }
5398    case InlineAsm::isInput: {
5399      SDValue InOperandVal = OpInfo.CallOperand;
5400
5401      if (OpInfo.isMatchingInputConstraint()) {   // Matching constraint?
5402        // If this is required to match an output register we have already set,
5403        // just use its register.
5404        unsigned OperandNo = OpInfo.getMatchedOperand();
5405
5406        // Scan until we find the definition we already emitted of this operand.
5407        // When we find it, create a RegsForValue operand.
5408        unsigned CurOp = InlineAsm::Op_FirstOperand;
5409        for (; OperandNo; --OperandNo) {
5410          // Advance to the next operand.
5411          unsigned OpFlag =
5412            cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
5413          assert((InlineAsm::isRegDefKind(OpFlag) ||
5414                  InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||
5415                  InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?");
5416          CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1;
5417        }
5418
5419        unsigned OpFlag =
5420          cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
5421        if (InlineAsm::isRegDefKind(OpFlag) ||
5422            InlineAsm::isRegDefEarlyClobberKind(OpFlag)) {
5423          // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
5424          if (OpInfo.isIndirect) {
5425            // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
5426            LLVMContext &Ctx = CurMBB->getParent()->getFunction()->getContext();
5427            Ctx.emitError(CS.getInstruction(),  "inline asm not supported yet:"
5428                          " don't know how to handle tied "
5429                          "indirect register inputs");
5430          }
5431
5432          RegsForValue MatchedRegs;
5433          MatchedRegs.TLI = &TLI;
5434          MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType());
5435          EVT RegVT = AsmNodeOperands[CurOp+1].getValueType();
5436          MatchedRegs.RegVTs.push_back(RegVT);
5437          MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo();
5438          for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag);
5439               i != e; ++i)
5440            MatchedRegs.Regs.push_back
5441              (RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT)));
5442
5443          // Use the produced MatchedRegs object to
5444          MatchedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(),
5445                                    Chain, &Flag);
5446          MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse,
5447                                           true, OpInfo.getMatchedOperand(),
5448                                           DAG, AsmNodeOperands);
5449          break;
5450        }
5451
5452        assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!");
5453        assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 &&
5454               "Unexpected number of operands");
5455        // Add information to the INLINEASM node to know about this input.
5456        // See InlineAsm.h isUseOperandTiedToDef.
5457        OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
5458                                                    OpInfo.getMatchedOperand());
5459        AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlag,
5460                                                        TLI.getPointerTy()));
5461        AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
5462        break;
5463      }
5464
5465      if (OpInfo.ConstraintType == TargetLowering::C_Other) {
5466        assert(!OpInfo.isIndirect &&
5467               "Don't know how to handle indirect other inputs yet!");
5468
5469        std::vector<SDValue> Ops;
5470        TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode[0],
5471                                         hasMemory, Ops, DAG);
5472        if (Ops.empty())
5473          report_fatal_error("Invalid operand for inline asm constraint '" +
5474                             Twine(OpInfo.ConstraintCode) + "'!");
5475
5476        // Add information to the INLINEASM node to know about this input.
5477        unsigned ResOpType =
5478          InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
5479        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
5480                                                        TLI.getPointerTy()));
5481        AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
5482        break;
5483      }
5484
5485      if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
5486        assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
5487        assert(InOperandVal.getValueType() == TLI.getPointerTy() &&
5488               "Memory operands expect pointer values");
5489
5490        // Add information to the INLINEASM node to know about this input.
5491        unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
5492        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
5493                                                        TLI.getPointerTy()));
5494        AsmNodeOperands.push_back(InOperandVal);
5495        break;
5496      }
5497
5498      assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
5499              OpInfo.ConstraintType == TargetLowering::C_Register) &&
5500             "Unknown constraint type!");
5501      assert(!OpInfo.isIndirect &&
5502             "Don't know how to handle indirect register inputs yet!");
5503
5504      // Copy the input into the appropriate registers.
5505      if (OpInfo.AssignedRegs.Regs.empty() ||
5506          !OpInfo.AssignedRegs.areValueTypesLegal())
5507        report_fatal_error("Couldn't allocate input reg for constraint '" +
5508                           Twine(OpInfo.ConstraintCode) + "'!");
5509
5510      OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(),
5511                                        Chain, &Flag);
5512
5513      OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0,
5514                                               DAG, AsmNodeOperands);
5515      break;
5516    }
5517    case InlineAsm::isClobber: {
5518      // Add the clobbered value to the operand list, so that the register
5519      // allocator is aware that the physreg got clobbered.
5520      if (!OpInfo.AssignedRegs.Regs.empty())
5521        OpInfo.AssignedRegs.AddInlineAsmOperands(
5522                                            InlineAsm::Kind_RegDefEarlyClobber,
5523                                                 false, 0, DAG,
5524                                                 AsmNodeOperands);
5525      break;
5526    }
5527    }
5528  }
5529
5530  // Finish up input operands.  Set the input chain and add the flag last.
5531  AsmNodeOperands[0] = Chain;
5532  if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
5533
5534  Chain = DAG.getNode(ISD::INLINEASM, getCurDebugLoc(),
5535                      DAG.getVTList(MVT::Other, MVT::Flag),
5536                      &AsmNodeOperands[0], AsmNodeOperands.size());
5537  Flag = Chain.getValue(1);
5538
5539  // If this asm returns a register value, copy the result from that register
5540  // and set it as the value of the call.
5541  if (!RetValRegs.Regs.empty()) {
5542    SDValue Val = RetValRegs.getCopyFromRegs(DAG, getCurDebugLoc(),
5543                                             Chain, &Flag);
5544
5545    // FIXME: Why don't we do this for inline asms with MRVs?
5546    if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) {
5547      EVT ResultType = TLI.getValueType(CS.getType());
5548
5549      // If any of the results of the inline asm is a vector, it may have the
5550      // wrong width/num elts.  This can happen for register classes that can
5551      // contain multiple different value types.  The preg or vreg allocated may
5552      // not have the same VT as was expected.  Convert it to the right type
5553      // with bit_convert.
5554      if (ResultType != Val.getValueType() && Val.getValueType().isVector()) {
5555        Val = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(),
5556                          ResultType, Val);
5557
5558      } else if (ResultType != Val.getValueType() &&
5559                 ResultType.isInteger() && Val.getValueType().isInteger()) {
5560        // If a result value was tied to an input value, the computed result may
5561        // have a wider width than the expected result.  Extract the relevant
5562        // portion.
5563        Val = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), ResultType, Val);
5564      }
5565
5566      assert(ResultType == Val.getValueType() && "Asm result value mismatch!");
5567    }
5568
5569    setValue(CS.getInstruction(), Val);
5570    // Don't need to use this as a chain in this case.
5571    if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty())
5572      return;
5573  }
5574
5575  std::vector<std::pair<SDValue, Value*> > StoresToEmit;
5576
5577  // Process indirect outputs, first output all of the flagged copies out of
5578  // physregs.
5579  for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
5580    RegsForValue &OutRegs = IndirectStoresToEmit[i].first;
5581    Value *Ptr = IndirectStoresToEmit[i].second;
5582    SDValue OutVal = OutRegs.getCopyFromRegs(DAG, getCurDebugLoc(),
5583                                             Chain, &Flag);
5584    StoresToEmit.push_back(std::make_pair(OutVal, Ptr));
5585
5586  }
5587
5588  // Emit the non-flagged stores from the physregs.
5589  SmallVector<SDValue, 8> OutChains;
5590  for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) {
5591    SDValue Val = DAG.getStore(Chain, getCurDebugLoc(),
5592                               StoresToEmit[i].first,
5593                               getValue(StoresToEmit[i].second),
5594                               StoresToEmit[i].second, 0,
5595                               false, false, 0);
5596    OutChains.push_back(Val);
5597  }
5598
5599  if (!OutChains.empty())
5600    Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
5601                        &OutChains[0], OutChains.size());
5602
5603  DAG.setRoot(Chain);
5604}
5605
5606void SelectionDAGBuilder::visitVAStart(CallInst &I) {
5607  DAG.setRoot(DAG.getNode(ISD::VASTART, getCurDebugLoc(),
5608                          MVT::Other, getRoot(),
5609                          getValue(I.getOperand(1)),
5610                          DAG.getSrcValue(I.getOperand(1))));
5611}
5612
5613void SelectionDAGBuilder::visitVAArg(VAArgInst &I) {
5614  SDValue V = DAG.getVAArg(TLI.getValueType(I.getType()), getCurDebugLoc(),
5615                           getRoot(), getValue(I.getOperand(0)),
5616                           DAG.getSrcValue(I.getOperand(0)));
5617  setValue(&I, V);
5618  DAG.setRoot(V.getValue(1));
5619}
5620
5621void SelectionDAGBuilder::visitVAEnd(CallInst &I) {
5622  DAG.setRoot(DAG.getNode(ISD::VAEND, getCurDebugLoc(),
5623                          MVT::Other, getRoot(),
5624                          getValue(I.getOperand(1)),
5625                          DAG.getSrcValue(I.getOperand(1))));
5626}
5627
5628void SelectionDAGBuilder::visitVACopy(CallInst &I) {
5629  DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurDebugLoc(),
5630                          MVT::Other, getRoot(),
5631                          getValue(I.getOperand(1)),
5632                          getValue(I.getOperand(2)),
5633                          DAG.getSrcValue(I.getOperand(1)),
5634                          DAG.getSrcValue(I.getOperand(2))));
5635}
5636
5637/// TargetLowering::LowerCallTo - This is the default LowerCallTo
5638/// implementation, which just calls LowerCall.
5639/// FIXME: When all targets are
5640/// migrated to using LowerCall, this hook should be integrated into SDISel.
5641std::pair<SDValue, SDValue>
5642TargetLowering::LowerCallTo(SDValue Chain, const Type *RetTy,
5643                            bool RetSExt, bool RetZExt, bool isVarArg,
5644                            bool isInreg, unsigned NumFixedArgs,
5645                            CallingConv::ID CallConv, bool isTailCall,
5646                            bool isReturnValueUsed,
5647                            SDValue Callee,
5648                            ArgListTy &Args, SelectionDAG &DAG, DebugLoc dl) {
5649  // Handle all of the outgoing arguments.
5650  SmallVector<ISD::OutputArg, 32> Outs;
5651  for (unsigned i = 0, e = Args.size(); i != e; ++i) {
5652    SmallVector<EVT, 4> ValueVTs;
5653    ComputeValueVTs(*this, Args[i].Ty, ValueVTs);
5654    for (unsigned Value = 0, NumValues = ValueVTs.size();
5655         Value != NumValues; ++Value) {
5656      EVT VT = ValueVTs[Value];
5657      const Type *ArgTy = VT.getTypeForEVT(RetTy->getContext());
5658      SDValue Op = SDValue(Args[i].Node.getNode(),
5659                           Args[i].Node.getResNo() + Value);
5660      ISD::ArgFlagsTy Flags;
5661      unsigned OriginalAlignment =
5662        getTargetData()->getABITypeAlignment(ArgTy);
5663
5664      if (Args[i].isZExt)
5665        Flags.setZExt();
5666      if (Args[i].isSExt)
5667        Flags.setSExt();
5668      if (Args[i].isInReg)
5669        Flags.setInReg();
5670      if (Args[i].isSRet)
5671        Flags.setSRet();
5672      if (Args[i].isByVal) {
5673        Flags.setByVal();
5674        const PointerType *Ty = cast<PointerType>(Args[i].Ty);
5675        const Type *ElementTy = Ty->getElementType();
5676        unsigned FrameAlign = getByValTypeAlignment(ElementTy);
5677        unsigned FrameSize  = getTargetData()->getTypeAllocSize(ElementTy);
5678        // For ByVal, alignment should come from FE.  BE will guess if this
5679        // info is not there but there are cases it cannot get right.
5680        if (Args[i].Alignment)
5681          FrameAlign = Args[i].Alignment;
5682        Flags.setByValAlign(FrameAlign);
5683        Flags.setByValSize(FrameSize);
5684      }
5685      if (Args[i].isNest)
5686        Flags.setNest();
5687      Flags.setOrigAlign(OriginalAlignment);
5688
5689      EVT PartVT = getRegisterType(RetTy->getContext(), VT);
5690      unsigned NumParts = getNumRegisters(RetTy->getContext(), VT);
5691      SmallVector<SDValue, 4> Parts(NumParts);
5692      ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
5693
5694      if (Args[i].isSExt)
5695        ExtendKind = ISD::SIGN_EXTEND;
5696      else if (Args[i].isZExt)
5697        ExtendKind = ISD::ZERO_EXTEND;
5698
5699      getCopyToParts(DAG, dl, Op, &Parts[0], NumParts,
5700                     PartVT, ExtendKind);
5701
5702      for (unsigned j = 0; j != NumParts; ++j) {
5703        // if it isn't first piece, alignment must be 1
5704        ISD::OutputArg MyFlags(Flags, Parts[j], i < NumFixedArgs);
5705        if (NumParts > 1 && j == 0)
5706          MyFlags.Flags.setSplit();
5707        else if (j != 0)
5708          MyFlags.Flags.setOrigAlign(1);
5709
5710        Outs.push_back(MyFlags);
5711      }
5712    }
5713  }
5714
5715  // Handle the incoming return values from the call.
5716  SmallVector<ISD::InputArg, 32> Ins;
5717  SmallVector<EVT, 4> RetTys;
5718  ComputeValueVTs(*this, RetTy, RetTys);
5719  for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
5720    EVT VT = RetTys[I];
5721    EVT RegisterVT = getRegisterType(RetTy->getContext(), VT);
5722    unsigned NumRegs = getNumRegisters(RetTy->getContext(), VT);
5723    for (unsigned i = 0; i != NumRegs; ++i) {
5724      ISD::InputArg MyFlags;
5725      MyFlags.VT = RegisterVT;
5726      MyFlags.Used = isReturnValueUsed;
5727      if (RetSExt)
5728        MyFlags.Flags.setSExt();
5729      if (RetZExt)
5730        MyFlags.Flags.setZExt();
5731      if (isInreg)
5732        MyFlags.Flags.setInReg();
5733      Ins.push_back(MyFlags);
5734    }
5735  }
5736
5737  SmallVector<SDValue, 4> InVals;
5738  Chain = LowerCall(Chain, Callee, CallConv, isVarArg, isTailCall,
5739                    Outs, Ins, dl, DAG, InVals);
5740
5741  // Verify that the target's LowerCall behaved as expected.
5742  assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
5743         "LowerCall didn't return a valid chain!");
5744  assert((!isTailCall || InVals.empty()) &&
5745         "LowerCall emitted a return value for a tail call!");
5746  assert((isTailCall || InVals.size() == Ins.size()) &&
5747         "LowerCall didn't emit the correct number of values!");
5748
5749  // For a tail call, the return value is merely live-out and there aren't
5750  // any nodes in the DAG representing it. Return a special value to
5751  // indicate that a tail call has been emitted and no more Instructions
5752  // should be processed in the current block.
5753  if (isTailCall) {
5754    DAG.setRoot(Chain);
5755    return std::make_pair(SDValue(), SDValue());
5756  }
5757
5758  DEBUG(for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
5759          assert(InVals[i].getNode() &&
5760                 "LowerCall emitted a null value!");
5761          assert(Ins[i].VT == InVals[i].getValueType() &&
5762                 "LowerCall emitted a value with the wrong type!");
5763        });
5764
5765  // Collect the legal value parts into potentially illegal values
5766  // that correspond to the original function's return values.
5767  ISD::NodeType AssertOp = ISD::DELETED_NODE;
5768  if (RetSExt)
5769    AssertOp = ISD::AssertSext;
5770  else if (RetZExt)
5771    AssertOp = ISD::AssertZext;
5772  SmallVector<SDValue, 4> ReturnValues;
5773  unsigned CurReg = 0;
5774  for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
5775    EVT VT = RetTys[I];
5776    EVT RegisterVT = getRegisterType(RetTy->getContext(), VT);
5777    unsigned NumRegs = getNumRegisters(RetTy->getContext(), VT);
5778
5779    ReturnValues.push_back(getCopyFromParts(DAG, dl, &InVals[CurReg],
5780                                            NumRegs, RegisterVT, VT,
5781                                            AssertOp));
5782    CurReg += NumRegs;
5783  }
5784
5785  // For a function returning void, there is no return value. We can't create
5786  // such a node, so we just return a null return value in that case. In
5787  // that case, nothing will actualy look at the value.
5788  if (ReturnValues.empty())
5789    return std::make_pair(SDValue(), Chain);
5790
5791  SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
5792                            DAG.getVTList(&RetTys[0], RetTys.size()),
5793                            &ReturnValues[0], ReturnValues.size());
5794  return std::make_pair(Res, Chain);
5795}
5796
5797void TargetLowering::LowerOperationWrapper(SDNode *N,
5798                                           SmallVectorImpl<SDValue> &Results,
5799                                           SelectionDAG &DAG) {
5800  SDValue Res = LowerOperation(SDValue(N, 0), DAG);
5801  if (Res.getNode())
5802    Results.push_back(Res);
5803}
5804
5805SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) {
5806  llvm_unreachable("LowerOperation not implemented for this target!");
5807  return SDValue();
5808}
5809
5810void SelectionDAGBuilder::CopyValueToVirtualRegister(Value *V, unsigned Reg) {
5811  SDValue Op = getValue(V);
5812  assert((Op.getOpcode() != ISD::CopyFromReg ||
5813          cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
5814         "Copy from a reg to the same reg!");
5815  assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg");
5816
5817  RegsForValue RFV(V->getContext(), TLI, Reg, V->getType());
5818  SDValue Chain = DAG.getEntryNode();
5819  RFV.getCopyToRegs(Op, DAG, getCurDebugLoc(), Chain, 0);
5820  PendingExports.push_back(Chain);
5821}
5822
5823#include "llvm/CodeGen/SelectionDAGISel.h"
5824
5825void SelectionDAGISel::LowerArguments(BasicBlock *LLVMBB) {
5826  // If this is the entry block, emit arguments.
5827  Function &F = *LLVMBB->getParent();
5828  SelectionDAG &DAG = SDB->DAG;
5829  SDValue OldRoot = DAG.getRoot();
5830  DebugLoc dl = SDB->getCurDebugLoc();
5831  const TargetData *TD = TLI.getTargetData();
5832  SmallVector<ISD::InputArg, 16> Ins;
5833
5834  // Check whether the function can return without sret-demotion.
5835  SmallVector<EVT, 4> OutVTs;
5836  SmallVector<ISD::ArgFlagsTy, 4> OutsFlags;
5837  getReturnInfo(F.getReturnType(), F.getAttributes().getRetAttributes(),
5838                OutVTs, OutsFlags, TLI);
5839  FunctionLoweringInfo &FLI = DAG.getFunctionLoweringInfo();
5840
5841  FLI.CanLowerReturn = TLI.CanLowerReturn(F.getCallingConv(), F.isVarArg(),
5842                                          OutVTs, OutsFlags, DAG);
5843  if (!FLI.CanLowerReturn) {
5844    // Put in an sret pointer parameter before all the other parameters.
5845    SmallVector<EVT, 1> ValueVTs;
5846    ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs);
5847
5848    // NOTE: Assuming that a pointer will never break down to more than one VT
5849    // or one register.
5850    ISD::ArgFlagsTy Flags;
5851    Flags.setSRet();
5852    EVT RegisterVT = TLI.getRegisterType(*CurDAG->getContext(), ValueVTs[0]);
5853    ISD::InputArg RetArg(Flags, RegisterVT, true);
5854    Ins.push_back(RetArg);
5855  }
5856
5857  // Set up the incoming argument description vector.
5858  unsigned Idx = 1;
5859  for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end();
5860       I != E; ++I, ++Idx) {
5861    SmallVector<EVT, 4> ValueVTs;
5862    ComputeValueVTs(TLI, I->getType(), ValueVTs);
5863    bool isArgValueUsed = !I->use_empty();
5864    for (unsigned Value = 0, NumValues = ValueVTs.size();
5865         Value != NumValues; ++Value) {
5866      EVT VT = ValueVTs[Value];
5867      const Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
5868      ISD::ArgFlagsTy Flags;
5869      unsigned OriginalAlignment =
5870        TD->getABITypeAlignment(ArgTy);
5871
5872      if (F.paramHasAttr(Idx, Attribute::ZExt))
5873        Flags.setZExt();
5874      if (F.paramHasAttr(Idx, Attribute::SExt))
5875        Flags.setSExt();
5876      if (F.paramHasAttr(Idx, Attribute::InReg))
5877        Flags.setInReg();
5878      if (F.paramHasAttr(Idx, Attribute::StructRet))
5879        Flags.setSRet();
5880      if (F.paramHasAttr(Idx, Attribute::ByVal)) {
5881        Flags.setByVal();
5882        const PointerType *Ty = cast<PointerType>(I->getType());
5883        const Type *ElementTy = Ty->getElementType();
5884        unsigned FrameAlign = TLI.getByValTypeAlignment(ElementTy);
5885        unsigned FrameSize  = TD->getTypeAllocSize(ElementTy);
5886        // For ByVal, alignment should be passed from FE.  BE will guess if
5887        // this info is not there but there are cases it cannot get right.
5888        if (F.getParamAlignment(Idx))
5889          FrameAlign = F.getParamAlignment(Idx);
5890        Flags.setByValAlign(FrameAlign);
5891        Flags.setByValSize(FrameSize);
5892      }
5893      if (F.paramHasAttr(Idx, Attribute::Nest))
5894        Flags.setNest();
5895      Flags.setOrigAlign(OriginalAlignment);
5896
5897      EVT RegisterVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
5898      unsigned NumRegs = TLI.getNumRegisters(*CurDAG->getContext(), VT);
5899      for (unsigned i = 0; i != NumRegs; ++i) {
5900        ISD::InputArg MyFlags(Flags, RegisterVT, isArgValueUsed);
5901        if (NumRegs > 1 && i == 0)
5902          MyFlags.Flags.setSplit();
5903        // if it isn't first piece, alignment must be 1
5904        else if (i > 0)
5905          MyFlags.Flags.setOrigAlign(1);
5906        Ins.push_back(MyFlags);
5907      }
5908    }
5909  }
5910
5911  // Call the target to set up the argument values.
5912  SmallVector<SDValue, 8> InVals;
5913  SDValue NewRoot = TLI.LowerFormalArguments(DAG.getRoot(), F.getCallingConv(),
5914                                             F.isVarArg(), Ins,
5915                                             dl, DAG, InVals);
5916
5917  // Verify that the target's LowerFormalArguments behaved as expected.
5918  assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
5919         "LowerFormalArguments didn't return a valid chain!");
5920  assert(InVals.size() == Ins.size() &&
5921         "LowerFormalArguments didn't emit the correct number of values!");
5922  DEBUG({
5923      for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
5924        assert(InVals[i].getNode() &&
5925               "LowerFormalArguments emitted a null value!");
5926        assert(Ins[i].VT == InVals[i].getValueType() &&
5927               "LowerFormalArguments emitted a value with the wrong type!");
5928      }
5929    });
5930
5931  // Update the DAG with the new chain value resulting from argument lowering.
5932  DAG.setRoot(NewRoot);
5933
5934  // Set up the argument values.
5935  unsigned i = 0;
5936  Idx = 1;
5937  if (!FLI.CanLowerReturn) {
5938    // Create a virtual register for the sret pointer, and put in a copy
5939    // from the sret argument into it.
5940    SmallVector<EVT, 1> ValueVTs;
5941    ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs);
5942    EVT VT = ValueVTs[0];
5943    EVT RegVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
5944    ISD::NodeType AssertOp = ISD::DELETED_NODE;
5945    SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1,
5946                                        RegVT, VT, AssertOp);
5947
5948    MachineFunction& MF = SDB->DAG.getMachineFunction();
5949    MachineRegisterInfo& RegInfo = MF.getRegInfo();
5950    unsigned SRetReg = RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT));
5951    FLI.DemoteRegister = SRetReg;
5952    NewRoot = SDB->DAG.getCopyToReg(NewRoot, SDB->getCurDebugLoc(),
5953                                    SRetReg, ArgValue);
5954    DAG.setRoot(NewRoot);
5955
5956    // i indexes lowered arguments.  Bump it past the hidden sret argument.
5957    // Idx indexes LLVM arguments.  Don't touch it.
5958    ++i;
5959  }
5960
5961  for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E;
5962      ++I, ++Idx) {
5963    SmallVector<SDValue, 4> ArgValues;
5964    SmallVector<EVT, 4> ValueVTs;
5965    ComputeValueVTs(TLI, I->getType(), ValueVTs);
5966    unsigned NumValues = ValueVTs.size();
5967    for (unsigned Value = 0; Value != NumValues; ++Value) {
5968      EVT VT = ValueVTs[Value];
5969      EVT PartVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
5970      unsigned NumParts = TLI.getNumRegisters(*CurDAG->getContext(), VT);
5971
5972      if (!I->use_empty()) {
5973        ISD::NodeType AssertOp = ISD::DELETED_NODE;
5974        if (F.paramHasAttr(Idx, Attribute::SExt))
5975          AssertOp = ISD::AssertSext;
5976        else if (F.paramHasAttr(Idx, Attribute::ZExt))
5977          AssertOp = ISD::AssertZext;
5978
5979        ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i],
5980                                             NumParts, PartVT, VT,
5981                                             AssertOp));
5982      }
5983
5984      i += NumParts;
5985    }
5986
5987    if (!I->use_empty()) {
5988      SDValue Res;
5989      if (!ArgValues.empty())
5990        Res = DAG.getMergeValues(&ArgValues[0], NumValues,
5991                                 SDB->getCurDebugLoc());
5992      SDB->setValue(I, Res);
5993
5994      // If this argument is live outside of the entry block, insert a copy from
5995      // whereever we got it to the vreg that other BB's will reference it as.
5996      SDB->CopyToExportRegsIfNeeded(I);
5997    }
5998  }
5999
6000  assert(i == InVals.size() && "Argument register count mismatch!");
6001
6002  // Finally, if the target has anything special to do, allow it to do so.
6003  // FIXME: this should insert code into the DAG!
6004  EmitFunctionEntryCode(F, SDB->DAG.getMachineFunction());
6005}
6006
6007/// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
6008/// ensure constants are generated when needed.  Remember the virtual registers
6009/// that need to be added to the Machine PHI nodes as input.  We cannot just
6010/// directly add them, because expansion might result in multiple MBB's for one
6011/// BB.  As such, the start of the BB might correspond to a different MBB than
6012/// the end.
6013///
6014void
6015SelectionDAGISel::HandlePHINodesInSuccessorBlocks(BasicBlock *LLVMBB) {
6016  TerminatorInst *TI = LLVMBB->getTerminator();
6017
6018  SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
6019
6020  // Check successor nodes' PHI nodes that expect a constant to be available
6021  // from this block.
6022  for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
6023    BasicBlock *SuccBB = TI->getSuccessor(succ);
6024    if (!isa<PHINode>(SuccBB->begin())) continue;
6025    MachineBasicBlock *SuccMBB = FuncInfo->MBBMap[SuccBB];
6026
6027    // If this terminator has multiple identical successors (common for
6028    // switches), only handle each succ once.
6029    if (!SuccsHandled.insert(SuccMBB)) continue;
6030
6031    MachineBasicBlock::iterator MBBI = SuccMBB->begin();
6032    PHINode *PN;
6033
6034    // At this point we know that there is a 1-1 correspondence between LLVM PHI
6035    // nodes and Machine PHI nodes, but the incoming operands have not been
6036    // emitted yet.
6037    for (BasicBlock::iterator I = SuccBB->begin();
6038         (PN = dyn_cast<PHINode>(I)); ++I) {
6039      // Ignore dead phi's.
6040      if (PN->use_empty()) continue;
6041
6042      unsigned Reg;
6043      Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
6044
6045      if (Constant *C = dyn_cast<Constant>(PHIOp)) {
6046        unsigned &RegOut = SDB->ConstantsOut[C];
6047        if (RegOut == 0) {
6048          RegOut = FuncInfo->CreateRegForValue(C);
6049          SDB->CopyValueToVirtualRegister(C, RegOut);
6050        }
6051        Reg = RegOut;
6052      } else {
6053        Reg = FuncInfo->ValueMap[PHIOp];
6054        if (Reg == 0) {
6055          assert(isa<AllocaInst>(PHIOp) &&
6056                 FuncInfo->StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
6057                 "Didn't codegen value into a register!??");
6058          Reg = FuncInfo->CreateRegForValue(PHIOp);
6059          SDB->CopyValueToVirtualRegister(PHIOp, Reg);
6060        }
6061      }
6062
6063      // Remember that this register needs to added to the machine PHI node as
6064      // the input for this MBB.
6065      SmallVector<EVT, 4> ValueVTs;
6066      ComputeValueVTs(TLI, PN->getType(), ValueVTs);
6067      for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
6068        EVT VT = ValueVTs[vti];
6069        unsigned NumRegisters = TLI.getNumRegisters(*CurDAG->getContext(), VT);
6070        for (unsigned i = 0, e = NumRegisters; i != e; ++i)
6071          SDB->PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i));
6072        Reg += NumRegisters;
6073      }
6074    }
6075  }
6076  SDB->ConstantsOut.clear();
6077}
6078
6079/// This is the Fast-ISel version of HandlePHINodesInSuccessorBlocks. It only
6080/// supports legal types, and it emits MachineInstrs directly instead of
6081/// creating SelectionDAG nodes.
6082///
6083bool
6084SelectionDAGISel::HandlePHINodesInSuccessorBlocksFast(BasicBlock *LLVMBB,
6085                                                      FastISel *F) {
6086  TerminatorInst *TI = LLVMBB->getTerminator();
6087
6088  SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
6089  unsigned OrigNumPHINodesToUpdate = SDB->PHINodesToUpdate.size();
6090
6091  // Check successor nodes' PHI nodes that expect a constant to be available
6092  // from this block.
6093  for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
6094    BasicBlock *SuccBB = TI->getSuccessor(succ);
6095    if (!isa<PHINode>(SuccBB->begin())) continue;
6096    MachineBasicBlock *SuccMBB = FuncInfo->MBBMap[SuccBB];
6097
6098    // If this terminator has multiple identical successors (common for
6099    // switches), only handle each succ once.
6100    if (!SuccsHandled.insert(SuccMBB)) continue;
6101
6102    MachineBasicBlock::iterator MBBI = SuccMBB->begin();
6103    PHINode *PN;
6104
6105    // At this point we know that there is a 1-1 correspondence between LLVM PHI
6106    // nodes and Machine PHI nodes, but the incoming operands have not been
6107    // emitted yet.
6108    for (BasicBlock::iterator I = SuccBB->begin();
6109         (PN = dyn_cast<PHINode>(I)); ++I) {
6110      // Ignore dead phi's.
6111      if (PN->use_empty()) continue;
6112
6113      // Only handle legal types. Two interesting things to note here. First,
6114      // by bailing out early, we may leave behind some dead instructions,
6115      // since SelectionDAG's HandlePHINodesInSuccessorBlocks will insert its
6116      // own moves. Second, this check is necessary becuase FastISel doesn't
6117      // use CreateRegForValue to create registers, so it always creates
6118      // exactly one register for each non-void instruction.
6119      EVT VT = TLI.getValueType(PN->getType(), /*AllowUnknown=*/true);
6120      if (VT == MVT::Other || !TLI.isTypeLegal(VT)) {
6121        // Promote MVT::i1.
6122        if (VT == MVT::i1)
6123          VT = TLI.getTypeToTransformTo(*CurDAG->getContext(), VT);
6124        else {
6125          SDB->PHINodesToUpdate.resize(OrigNumPHINodesToUpdate);
6126          return false;
6127        }
6128      }
6129
6130      Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
6131
6132      unsigned Reg = F->getRegForValue(PHIOp);
6133      if (Reg == 0) {
6134        SDB->PHINodesToUpdate.resize(OrigNumPHINodesToUpdate);
6135        return false;
6136      }
6137      SDB->PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg));
6138    }
6139  }
6140
6141  return true;
6142}
6143