SelectionDAGISel.cpp revision 00fee65fd21f9615d1a604b8b7d42cd16a3f6b47
1//===-- SelectionDAGISel.cpp - Implement the SelectionDAGISel class -------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAGISel class.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "isel"
15#include "llvm/ADT/BitVector.h"
16#include "llvm/Analysis/AliasAnalysis.h"
17#include "llvm/CodeGen/SelectionDAGISel.h"
18#include "llvm/CodeGen/ScheduleDAG.h"
19#include "llvm/Constants.h"
20#include "llvm/CallingConv.h"
21#include "llvm/DerivedTypes.h"
22#include "llvm/Function.h"
23#include "llvm/GlobalVariable.h"
24#include "llvm/InlineAsm.h"
25#include "llvm/Instructions.h"
26#include "llvm/Intrinsics.h"
27#include "llvm/IntrinsicInst.h"
28#include "llvm/ParameterAttributes.h"
29#include "llvm/CodeGen/Collector.h"
30#include "llvm/CodeGen/MachineFunction.h"
31#include "llvm/CodeGen/MachineFrameInfo.h"
32#include "llvm/CodeGen/MachineInstrBuilder.h"
33#include "llvm/CodeGen/MachineJumpTableInfo.h"
34#include "llvm/CodeGen/MachineModuleInfo.h"
35#include "llvm/CodeGen/MachineRegisterInfo.h"
36#include "llvm/CodeGen/SchedulerRegistry.h"
37#include "llvm/CodeGen/SelectionDAG.h"
38#include "llvm/Target/TargetRegisterInfo.h"
39#include "llvm/Target/TargetData.h"
40#include "llvm/Target/TargetFrameInfo.h"
41#include "llvm/Target/TargetInstrInfo.h"
42#include "llvm/Target/TargetLowering.h"
43#include "llvm/Target/TargetMachine.h"
44#include "llvm/Target/TargetOptions.h"
45#include "llvm/Support/MathExtras.h"
46#include "llvm/Support/Debug.h"
47#include "llvm/Support/Compiler.h"
48#include <algorithm>
49using namespace llvm;
50
51#ifndef NDEBUG
52static cl::opt<bool>
53ViewISelDAGs("view-isel-dags", cl::Hidden,
54          cl::desc("Pop up a window to show isel dags as they are selected"));
55static cl::opt<bool>
56ViewSchedDAGs("view-sched-dags", cl::Hidden,
57          cl::desc("Pop up a window to show sched dags as they are processed"));
58static cl::opt<bool>
59ViewSUnitDAGs("view-sunit-dags", cl::Hidden,
60      cl::desc("Pop up a window to show SUnit dags after they are processed"));
61#else
62static const bool ViewISelDAGs = 0, ViewSchedDAGs = 0, ViewSUnitDAGs = 0;
63#endif
64
65//===---------------------------------------------------------------------===//
66///
67/// RegisterScheduler class - Track the registration of instruction schedulers.
68///
69//===---------------------------------------------------------------------===//
70MachinePassRegistry RegisterScheduler::Registry;
71
72//===---------------------------------------------------------------------===//
73///
74/// ISHeuristic command line option for instruction schedulers.
75///
76//===---------------------------------------------------------------------===//
77namespace {
78  cl::opt<RegisterScheduler::FunctionPassCtor, false,
79          RegisterPassParser<RegisterScheduler> >
80  ISHeuristic("pre-RA-sched",
81              cl::init(&createDefaultScheduler),
82              cl::desc("Instruction schedulers available (before register"
83                       " allocation):"));
84
85  static RegisterScheduler
86  defaultListDAGScheduler("default", "  Best scheduler for the target",
87                          createDefaultScheduler);
88} // namespace
89
90namespace { struct AsmOperandInfo; }
91
92namespace {
93  /// RegsForValue - This struct represents the physical registers that a
94  /// particular value is assigned and the type information about the value.
95  /// This is needed because values can be promoted into larger registers and
96  /// expanded into multiple smaller registers than the value.
97  struct VISIBILITY_HIDDEN RegsForValue {
98    /// Regs - This list holds the register (for legal and promoted values)
99    /// or register set (for expanded values) that the value should be assigned
100    /// to.
101    std::vector<unsigned> Regs;
102
103    /// RegVT - The value type of each register.
104    ///
105    MVT::ValueType RegVT;
106
107    /// ValueVT - The value type of the LLVM value, which may be promoted from
108    /// RegVT or made from merging the two expanded parts.
109    MVT::ValueType ValueVT;
110
111    RegsForValue() : RegVT(MVT::Other), ValueVT(MVT::Other) {}
112
113    RegsForValue(unsigned Reg, MVT::ValueType regvt, MVT::ValueType valuevt)
114      : RegVT(regvt), ValueVT(valuevt) {
115        Regs.push_back(Reg);
116    }
117    RegsForValue(const std::vector<unsigned> &regs,
118                 MVT::ValueType regvt, MVT::ValueType valuevt)
119      : Regs(regs), RegVT(regvt), ValueVT(valuevt) {
120    }
121
122    /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
123    /// this value and returns the result as a ValueVT value.  This uses
124    /// Chain/Flag as the input and updates them for the output Chain/Flag.
125    /// If the Flag pointer is NULL, no flag is used.
126    SDOperand getCopyFromRegs(SelectionDAG &DAG,
127                              SDOperand &Chain, SDOperand *Flag) const;
128
129    /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
130    /// specified value into the registers specified by this object.  This uses
131    /// Chain/Flag as the input and updates them for the output Chain/Flag.
132    /// If the Flag pointer is NULL, no flag is used.
133    void getCopyToRegs(SDOperand Val, SelectionDAG &DAG,
134                       SDOperand &Chain, SDOperand *Flag) const;
135
136    /// AddInlineAsmOperands - Add this value to the specified inlineasm node
137    /// operand list.  This adds the code marker and includes the number of
138    /// values added into it.
139    void AddInlineAsmOperands(unsigned Code, SelectionDAG &DAG,
140                              std::vector<SDOperand> &Ops) const;
141  };
142}
143
144namespace llvm {
145  //===--------------------------------------------------------------------===//
146  /// createDefaultScheduler - This creates an instruction scheduler appropriate
147  /// for the target.
148  ScheduleDAG* createDefaultScheduler(SelectionDAGISel *IS,
149                                      SelectionDAG *DAG,
150                                      MachineBasicBlock *BB) {
151    TargetLowering &TLI = IS->getTargetLowering();
152
153    if (TLI.getSchedulingPreference() == TargetLowering::SchedulingForLatency) {
154      return createTDListDAGScheduler(IS, DAG, BB);
155    } else {
156      assert(TLI.getSchedulingPreference() ==
157           TargetLowering::SchedulingForRegPressure && "Unknown sched type!");
158      return createBURRListDAGScheduler(IS, DAG, BB);
159    }
160  }
161
162
163  //===--------------------------------------------------------------------===//
164  /// FunctionLoweringInfo - This contains information that is global to a
165  /// function that is used when lowering a region of the function.
166  class FunctionLoweringInfo {
167  public:
168    TargetLowering &TLI;
169    Function &Fn;
170    MachineFunction &MF;
171    MachineRegisterInfo &RegInfo;
172
173    FunctionLoweringInfo(TargetLowering &TLI, Function &Fn,MachineFunction &MF);
174
175    /// MBBMap - A mapping from LLVM basic blocks to their machine code entry.
176    std::map<const BasicBlock*, MachineBasicBlock *> MBBMap;
177
178    /// ValueMap - Since we emit code for the function a basic block at a time,
179    /// we must remember which virtual registers hold the values for
180    /// cross-basic-block values.
181    DenseMap<const Value*, unsigned> ValueMap;
182
183    /// StaticAllocaMap - Keep track of frame indices for fixed sized allocas in
184    /// the entry block.  This allows the allocas to be efficiently referenced
185    /// anywhere in the function.
186    std::map<const AllocaInst*, int> StaticAllocaMap;
187
188#ifndef NDEBUG
189    SmallSet<Instruction*, 8> CatchInfoLost;
190    SmallSet<Instruction*, 8> CatchInfoFound;
191#endif
192
193    unsigned MakeReg(MVT::ValueType VT) {
194      return RegInfo.createVirtualRegister(TLI.getRegClassFor(VT));
195    }
196
197    /// isExportedInst - Return true if the specified value is an instruction
198    /// exported from its block.
199    bool isExportedInst(const Value *V) {
200      return ValueMap.count(V);
201    }
202
203    unsigned CreateRegForValue(const Value *V);
204
205    unsigned InitializeRegForValue(const Value *V) {
206      unsigned &R = ValueMap[V];
207      assert(R == 0 && "Already initialized this value register!");
208      return R = CreateRegForValue(V);
209    }
210  };
211}
212
213/// isSelector - Return true if this instruction is a call to the
214/// eh.selector intrinsic.
215static bool isSelector(Instruction *I) {
216  if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
217    return (II->getIntrinsicID() == Intrinsic::eh_selector_i32 ||
218            II->getIntrinsicID() == Intrinsic::eh_selector_i64);
219  return false;
220}
221
222/// isUsedOutsideOfDefiningBlock - Return true if this instruction is used by
223/// PHI nodes or outside of the basic block that defines it, or used by a
224/// switch instruction, which may expand to multiple basic blocks.
225static bool isUsedOutsideOfDefiningBlock(Instruction *I) {
226  if (isa<PHINode>(I)) return true;
227  BasicBlock *BB = I->getParent();
228  for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E; ++UI)
229    if (cast<Instruction>(*UI)->getParent() != BB || isa<PHINode>(*UI) ||
230        // FIXME: Remove switchinst special case.
231        isa<SwitchInst>(*UI))
232      return true;
233  return false;
234}
235
236/// isOnlyUsedInEntryBlock - If the specified argument is only used in the
237/// entry block, return true.  This includes arguments used by switches, since
238/// the switch may expand into multiple basic blocks.
239static bool isOnlyUsedInEntryBlock(Argument *A) {
240  BasicBlock *Entry = A->getParent()->begin();
241  for (Value::use_iterator UI = A->use_begin(), E = A->use_end(); UI != E; ++UI)
242    if (cast<Instruction>(*UI)->getParent() != Entry || isa<SwitchInst>(*UI))
243      return false;  // Use not in entry block.
244  return true;
245}
246
247FunctionLoweringInfo::FunctionLoweringInfo(TargetLowering &tli,
248                                           Function &fn, MachineFunction &mf)
249    : TLI(tli), Fn(fn), MF(mf), RegInfo(MF.getRegInfo()) {
250
251  // Create a vreg for each argument register that is not dead and is used
252  // outside of the entry block for the function.
253  for (Function::arg_iterator AI = Fn.arg_begin(), E = Fn.arg_end();
254       AI != E; ++AI)
255    if (!isOnlyUsedInEntryBlock(AI))
256      InitializeRegForValue(AI);
257
258  // Initialize the mapping of values to registers.  This is only set up for
259  // instruction values that are used outside of the block that defines
260  // them.
261  Function::iterator BB = Fn.begin(), EB = Fn.end();
262  for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
263    if (AllocaInst *AI = dyn_cast<AllocaInst>(I))
264      if (ConstantInt *CUI = dyn_cast<ConstantInt>(AI->getArraySize())) {
265        const Type *Ty = AI->getAllocatedType();
266        uint64_t TySize = TLI.getTargetData()->getABITypeSize(Ty);
267        unsigned Align =
268          std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty),
269                   AI->getAlignment());
270
271        TySize *= CUI->getZExtValue();   // Get total allocated size.
272        if (TySize == 0) TySize = 1; // Don't create zero-sized stack objects.
273        StaticAllocaMap[AI] =
274          MF.getFrameInfo()->CreateStackObject(TySize, Align);
275      }
276
277  for (; BB != EB; ++BB)
278    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
279      if (!I->use_empty() && isUsedOutsideOfDefiningBlock(I))
280        if (!isa<AllocaInst>(I) ||
281            !StaticAllocaMap.count(cast<AllocaInst>(I)))
282          InitializeRegForValue(I);
283
284  // Create an initial MachineBasicBlock for each LLVM BasicBlock in F.  This
285  // also creates the initial PHI MachineInstrs, though none of the input
286  // operands are populated.
287  for (BB = Fn.begin(), EB = Fn.end(); BB != EB; ++BB) {
288    MachineBasicBlock *MBB = new MachineBasicBlock(BB);
289    MBBMap[BB] = MBB;
290    MF.getBasicBlockList().push_back(MBB);
291
292    // Create Machine PHI nodes for LLVM PHI nodes, lowering them as
293    // appropriate.
294    PHINode *PN;
295    for (BasicBlock::iterator I = BB->begin();(PN = dyn_cast<PHINode>(I)); ++I){
296      if (PN->use_empty()) continue;
297
298      MVT::ValueType VT = TLI.getValueType(PN->getType());
299      unsigned NumRegisters = TLI.getNumRegisters(VT);
300      unsigned PHIReg = ValueMap[PN];
301      assert(PHIReg && "PHI node does not have an assigned virtual register!");
302      const TargetInstrInfo *TII = TLI.getTargetMachine().getInstrInfo();
303      for (unsigned i = 0; i != NumRegisters; ++i)
304        BuildMI(MBB, TII->get(TargetInstrInfo::PHI), PHIReg+i);
305    }
306  }
307}
308
309/// CreateRegForValue - Allocate the appropriate number of virtual registers of
310/// the correctly promoted or expanded types.  Assign these registers
311/// consecutive vreg numbers and return the first assigned number.
312unsigned FunctionLoweringInfo::CreateRegForValue(const Value *V) {
313  MVT::ValueType VT = TLI.getValueType(V->getType());
314
315  unsigned NumRegisters = TLI.getNumRegisters(VT);
316  MVT::ValueType RegisterVT = TLI.getRegisterType(VT);
317
318  unsigned R = MakeReg(RegisterVT);
319  for (unsigned i = 1; i != NumRegisters; ++i)
320    MakeReg(RegisterVT);
321
322  return R;
323}
324
325//===----------------------------------------------------------------------===//
326/// SelectionDAGLowering - This is the common target-independent lowering
327/// implementation that is parameterized by a TargetLowering object.
328/// Also, targets can overload any lowering method.
329///
330namespace llvm {
331class SelectionDAGLowering {
332  MachineBasicBlock *CurMBB;
333
334  DenseMap<const Value*, SDOperand> NodeMap;
335
336  /// PendingLoads - Loads are not emitted to the program immediately.  We bunch
337  /// them up and then emit token factor nodes when possible.  This allows us to
338  /// get simple disambiguation between loads without worrying about alias
339  /// analysis.
340  std::vector<SDOperand> PendingLoads;
341
342  /// Case - A struct to record the Value for a switch case, and the
343  /// case's target basic block.
344  struct Case {
345    Constant* Low;
346    Constant* High;
347    MachineBasicBlock* BB;
348
349    Case() : Low(0), High(0), BB(0) { }
350    Case(Constant* low, Constant* high, MachineBasicBlock* bb) :
351      Low(low), High(high), BB(bb) { }
352    uint64_t size() const {
353      uint64_t rHigh = cast<ConstantInt>(High)->getSExtValue();
354      uint64_t rLow  = cast<ConstantInt>(Low)->getSExtValue();
355      return (rHigh - rLow + 1ULL);
356    }
357  };
358
359  struct CaseBits {
360    uint64_t Mask;
361    MachineBasicBlock* BB;
362    unsigned Bits;
363
364    CaseBits(uint64_t mask, MachineBasicBlock* bb, unsigned bits):
365      Mask(mask), BB(bb), Bits(bits) { }
366  };
367
368  typedef std::vector<Case>           CaseVector;
369  typedef std::vector<CaseBits>       CaseBitsVector;
370  typedef CaseVector::iterator        CaseItr;
371  typedef std::pair<CaseItr, CaseItr> CaseRange;
372
373  /// CaseRec - A struct with ctor used in lowering switches to a binary tree
374  /// of conditional branches.
375  struct CaseRec {
376    CaseRec(MachineBasicBlock *bb, Constant *lt, Constant *ge, CaseRange r) :
377    CaseBB(bb), LT(lt), GE(ge), Range(r) {}
378
379    /// CaseBB - The MBB in which to emit the compare and branch
380    MachineBasicBlock *CaseBB;
381    /// LT, GE - If nonzero, we know the current case value must be less-than or
382    /// greater-than-or-equal-to these Constants.
383    Constant *LT;
384    Constant *GE;
385    /// Range - A pair of iterators representing the range of case values to be
386    /// processed at this point in the binary search tree.
387    CaseRange Range;
388  };
389
390  typedef std::vector<CaseRec> CaseRecVector;
391
392  /// The comparison function for sorting the switch case values in the vector.
393  /// WARNING: Case ranges should be disjoint!
394  struct CaseCmp {
395    bool operator () (const Case& C1, const Case& C2) {
396      assert(isa<ConstantInt>(C1.Low) && isa<ConstantInt>(C2.High));
397      const ConstantInt* CI1 = cast<const ConstantInt>(C1.Low);
398      const ConstantInt* CI2 = cast<const ConstantInt>(C2.High);
399      return CI1->getValue().slt(CI2->getValue());
400    }
401  };
402
403  struct CaseBitsCmp {
404    bool operator () (const CaseBits& C1, const CaseBits& C2) {
405      return C1.Bits > C2.Bits;
406    }
407  };
408
409  unsigned Clusterify(CaseVector& Cases, const SwitchInst &SI);
410
411public:
412  // TLI - This is information that describes the available target features we
413  // need for lowering.  This indicates when operations are unavailable,
414  // implemented with a libcall, etc.
415  TargetLowering &TLI;
416  SelectionDAG &DAG;
417  const TargetData *TD;
418  AliasAnalysis &AA;
419
420  /// SwitchCases - Vector of CaseBlock structures used to communicate
421  /// SwitchInst code generation information.
422  std::vector<SelectionDAGISel::CaseBlock> SwitchCases;
423  /// JTCases - Vector of JumpTable structures used to communicate
424  /// SwitchInst code generation information.
425  std::vector<SelectionDAGISel::JumpTableBlock> JTCases;
426  std::vector<SelectionDAGISel::BitTestBlock> BitTestCases;
427
428  /// FuncInfo - Information about the function as a whole.
429  ///
430  FunctionLoweringInfo &FuncInfo;
431
432  /// GCI - Garbage collection metadata for the function.
433  CollectorMetadata *GCI;
434
435  SelectionDAGLowering(SelectionDAG &dag, TargetLowering &tli,
436                       AliasAnalysis &aa,
437                       FunctionLoweringInfo &funcinfo,
438                       CollectorMetadata *gci)
439    : TLI(tli), DAG(dag), TD(DAG.getTarget().getTargetData()), AA(aa),
440      FuncInfo(funcinfo), GCI(gci) {
441  }
442
443  /// getRoot - Return the current virtual root of the Selection DAG.
444  ///
445  SDOperand getRoot() {
446    if (PendingLoads.empty())
447      return DAG.getRoot();
448
449    if (PendingLoads.size() == 1) {
450      SDOperand Root = PendingLoads[0];
451      DAG.setRoot(Root);
452      PendingLoads.clear();
453      return Root;
454    }
455
456    // Otherwise, we have to make a token factor node.
457    SDOperand Root = DAG.getNode(ISD::TokenFactor, MVT::Other,
458                                 &PendingLoads[0], PendingLoads.size());
459    PendingLoads.clear();
460    DAG.setRoot(Root);
461    return Root;
462  }
463
464  SDOperand CopyValueToVirtualRegister(Value *V, unsigned Reg);
465
466  void visit(Instruction &I) { visit(I.getOpcode(), I); }
467
468  void visit(unsigned Opcode, User &I) {
469    // Note: this doesn't use InstVisitor, because it has to work with
470    // ConstantExpr's in addition to instructions.
471    switch (Opcode) {
472    default: assert(0 && "Unknown instruction type encountered!");
473             abort();
474      // Build the switch statement using the Instruction.def file.
475#define HANDLE_INST(NUM, OPCODE, CLASS) \
476    case Instruction::OPCODE:return visit##OPCODE((CLASS&)I);
477#include "llvm/Instruction.def"
478    }
479  }
480
481  void setCurrentBasicBlock(MachineBasicBlock *MBB) { CurMBB = MBB; }
482
483  SDOperand getLoadFrom(const Type *Ty, SDOperand Ptr,
484                        const Value *SV, SDOperand Root,
485                        bool isVolatile, unsigned Alignment);
486
487  SDOperand getValue(const Value *V);
488
489  void setValue(const Value *V, SDOperand NewN) {
490    SDOperand &N = NodeMap[V];
491    assert(N.Val == 0 && "Already set a value for this node!");
492    N = NewN;
493  }
494
495  void GetRegistersForValue(AsmOperandInfo &OpInfo, bool HasEarlyClobber,
496                            std::set<unsigned> &OutputRegs,
497                            std::set<unsigned> &InputRegs);
498
499  void FindMergedConditions(Value *Cond, MachineBasicBlock *TBB,
500                            MachineBasicBlock *FBB, MachineBasicBlock *CurBB,
501                            unsigned Opc);
502  bool isExportableFromCurrentBlock(Value *V, const BasicBlock *FromBB);
503  void ExportFromCurrentBlock(Value *V);
504  void LowerCallTo(CallSite CS, SDOperand Callee, bool IsTailCall,
505                   MachineBasicBlock *LandingPad = NULL);
506
507  // Terminator instructions.
508  void visitRet(ReturnInst &I);
509  void visitBr(BranchInst &I);
510  void visitSwitch(SwitchInst &I);
511  void visitUnreachable(UnreachableInst &I) { /* noop */ }
512
513  // Helpers for visitSwitch
514  bool handleSmallSwitchRange(CaseRec& CR,
515                              CaseRecVector& WorkList,
516                              Value* SV,
517                              MachineBasicBlock* Default);
518  bool handleJTSwitchCase(CaseRec& CR,
519                          CaseRecVector& WorkList,
520                          Value* SV,
521                          MachineBasicBlock* Default);
522  bool handleBTSplitSwitchCase(CaseRec& CR,
523                               CaseRecVector& WorkList,
524                               Value* SV,
525                               MachineBasicBlock* Default);
526  bool handleBitTestsSwitchCase(CaseRec& CR,
527                                CaseRecVector& WorkList,
528                                Value* SV,
529                                MachineBasicBlock* Default);
530  void visitSwitchCase(SelectionDAGISel::CaseBlock &CB);
531  void visitBitTestHeader(SelectionDAGISel::BitTestBlock &B);
532  void visitBitTestCase(MachineBasicBlock* NextMBB,
533                        unsigned Reg,
534                        SelectionDAGISel::BitTestCase &B);
535  void visitJumpTable(SelectionDAGISel::JumpTable &JT);
536  void visitJumpTableHeader(SelectionDAGISel::JumpTable &JT,
537                            SelectionDAGISel::JumpTableHeader &JTH);
538
539  // These all get lowered before this pass.
540  void visitInvoke(InvokeInst &I);
541  void visitUnwind(UnwindInst &I);
542
543  void visitBinary(User &I, unsigned OpCode);
544  void visitShift(User &I, unsigned Opcode);
545  void visitAdd(User &I) {
546    if (I.getType()->isFPOrFPVector())
547      visitBinary(I, ISD::FADD);
548    else
549      visitBinary(I, ISD::ADD);
550  }
551  void visitSub(User &I);
552  void visitMul(User &I) {
553    if (I.getType()->isFPOrFPVector())
554      visitBinary(I, ISD::FMUL);
555    else
556      visitBinary(I, ISD::MUL);
557  }
558  void visitURem(User &I) { visitBinary(I, ISD::UREM); }
559  void visitSRem(User &I) { visitBinary(I, ISD::SREM); }
560  void visitFRem(User &I) { visitBinary(I, ISD::FREM); }
561  void visitUDiv(User &I) { visitBinary(I, ISD::UDIV); }
562  void visitSDiv(User &I) { visitBinary(I, ISD::SDIV); }
563  void visitFDiv(User &I) { visitBinary(I, ISD::FDIV); }
564  void visitAnd (User &I) { visitBinary(I, ISD::AND); }
565  void visitOr  (User &I) { visitBinary(I, ISD::OR); }
566  void visitXor (User &I) { visitBinary(I, ISD::XOR); }
567  void visitShl (User &I) { visitShift(I, ISD::SHL); }
568  void visitLShr(User &I) { visitShift(I, ISD::SRL); }
569  void visitAShr(User &I) { visitShift(I, ISD::SRA); }
570  void visitICmp(User &I);
571  void visitFCmp(User &I);
572  // Visit the conversion instructions
573  void visitTrunc(User &I);
574  void visitZExt(User &I);
575  void visitSExt(User &I);
576  void visitFPTrunc(User &I);
577  void visitFPExt(User &I);
578  void visitFPToUI(User &I);
579  void visitFPToSI(User &I);
580  void visitUIToFP(User &I);
581  void visitSIToFP(User &I);
582  void visitPtrToInt(User &I);
583  void visitIntToPtr(User &I);
584  void visitBitCast(User &I);
585
586  void visitExtractElement(User &I);
587  void visitInsertElement(User &I);
588  void visitShuffleVector(User &I);
589
590  void visitGetElementPtr(User &I);
591  void visitSelect(User &I);
592
593  void visitMalloc(MallocInst &I);
594  void visitFree(FreeInst &I);
595  void visitAlloca(AllocaInst &I);
596  void visitLoad(LoadInst &I);
597  void visitStore(StoreInst &I);
598  void visitPHI(PHINode &I) { } // PHI nodes are handled specially.
599  void visitCall(CallInst &I);
600  void visitInlineAsm(CallSite CS);
601  const char *visitIntrinsicCall(CallInst &I, unsigned Intrinsic);
602  void visitTargetIntrinsic(CallInst &I, unsigned Intrinsic);
603
604  void visitVAStart(CallInst &I);
605  void visitVAArg(VAArgInst &I);
606  void visitVAEnd(CallInst &I);
607  void visitVACopy(CallInst &I);
608
609  void visitMemIntrinsic(CallInst &I, unsigned Op);
610
611  void visitUserOp1(Instruction &I) {
612    assert(0 && "UserOp1 should not exist at instruction selection time!");
613    abort();
614  }
615  void visitUserOp2(Instruction &I) {
616    assert(0 && "UserOp2 should not exist at instruction selection time!");
617    abort();
618  }
619};
620} // end namespace llvm
621
622
623/// getCopyFromParts - Create a value that contains the specified legal parts
624/// combined into the value they represent.  If the parts combine to a type
625/// larger then ValueVT then AssertOp can be used to specify whether the extra
626/// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
627/// (ISD::AssertSext).  Likewise TruncExact is used for floating point types to
628/// indicate that the extra bits can be discarded without losing precision.
629static SDOperand getCopyFromParts(SelectionDAG &DAG,
630                                  const SDOperand *Parts,
631                                  unsigned NumParts,
632                                  MVT::ValueType PartVT,
633                                  MVT::ValueType ValueVT,
634                                  ISD::NodeType AssertOp = ISD::DELETED_NODE,
635                                  bool TruncExact = false) {
636  assert(NumParts > 0 && "No parts to assemble!");
637  TargetLowering &TLI = DAG.getTargetLoweringInfo();
638  SDOperand Val = Parts[0];
639
640  if (NumParts > 1) {
641    // Assemble the value from multiple parts.
642    if (!MVT::isVector(ValueVT)) {
643      unsigned PartBits = MVT::getSizeInBits(PartVT);
644      unsigned ValueBits = MVT::getSizeInBits(ValueVT);
645
646      // Assemble the power of 2 part.
647      unsigned RoundParts = NumParts & (NumParts - 1) ?
648        1 << Log2_32(NumParts) : NumParts;
649      unsigned RoundBits = PartBits * RoundParts;
650      MVT::ValueType RoundVT = RoundBits == ValueBits ?
651        ValueVT : MVT::getIntegerType(RoundBits);
652      SDOperand Lo, Hi;
653
654      if (RoundParts > 2) {
655        MVT::ValueType HalfVT = MVT::getIntegerType(RoundBits/2);
656        Lo = getCopyFromParts(DAG, Parts, RoundParts/2, PartVT, HalfVT);
657        Hi = getCopyFromParts(DAG, Parts+RoundParts/2, RoundParts/2,
658                              PartVT, HalfVT);
659      } else {
660        Lo = Parts[0];
661        Hi = Parts[1];
662      }
663      if (TLI.isBigEndian())
664        std::swap(Lo, Hi);
665      Val = DAG.getNode(ISD::BUILD_PAIR, RoundVT, Lo, Hi);
666
667      if (RoundParts < NumParts) {
668        // Assemble the trailing non-power-of-2 part.
669        unsigned OddParts = NumParts - RoundParts;
670        MVT::ValueType OddVT = MVT::getIntegerType(OddParts * PartBits);
671        Hi = getCopyFromParts(DAG, Parts+RoundParts, OddParts, PartVT, OddVT);
672
673        // Combine the round and odd parts.
674        Lo = Val;
675        if (TLI.isBigEndian())
676          std::swap(Lo, Hi);
677        MVT::ValueType TotalVT = MVT::getIntegerType(NumParts * PartBits);
678        Hi = DAG.getNode(ISD::ANY_EXTEND, TotalVT, Hi);
679        Hi = DAG.getNode(ISD::SHL, TotalVT, Hi,
680                         DAG.getConstant(MVT::getSizeInBits(Lo.getValueType()),
681                                         TLI.getShiftAmountTy()));
682        Lo = DAG.getNode(ISD::ZERO_EXTEND, TotalVT, Lo);
683        Val = DAG.getNode(ISD::OR, TotalVT, Lo, Hi);
684      }
685    } else {
686      // Handle a multi-element vector.
687      MVT::ValueType IntermediateVT, RegisterVT;
688      unsigned NumIntermediates;
689      unsigned NumRegs =
690        TLI.getVectorTypeBreakdown(ValueVT, IntermediateVT, NumIntermediates,
691                                   RegisterVT);
692
693      assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
694      assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
695      assert(RegisterVT == Parts[0].getValueType() &&
696             "Part type doesn't match part!");
697
698      // Assemble the parts into intermediate operands.
699      SmallVector<SDOperand, 8> Ops(NumIntermediates);
700      if (NumIntermediates == NumParts) {
701        // If the register was not expanded, truncate or copy the value,
702        // as appropriate.
703        for (unsigned i = 0; i != NumParts; ++i)
704          Ops[i] = getCopyFromParts(DAG, &Parts[i], 1,
705                                    PartVT, IntermediateVT);
706      } else if (NumParts > 0) {
707        // If the intermediate type was expanded, build the intermediate operands
708        // from the parts.
709        assert(NumParts % NumIntermediates == 0 &&
710               "Must expand into a divisible number of parts!");
711        unsigned Factor = NumParts / NumIntermediates;
712        for (unsigned i = 0; i != NumIntermediates; ++i)
713          Ops[i] = getCopyFromParts(DAG, &Parts[i * Factor], Factor,
714                                    PartVT, IntermediateVT);
715      }
716
717      // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the intermediate
718      // operands.
719      Val = DAG.getNode(MVT::isVector(IntermediateVT) ?
720                        ISD::CONCAT_VECTORS : ISD::BUILD_VECTOR,
721                        ValueVT, &Ops[0], NumIntermediates);
722    }
723  }
724
725  // There is now one part, held in Val.  Correct it to match ValueVT.
726  PartVT = Val.getValueType();
727
728  if (PartVT == ValueVT)
729    return Val;
730
731  if (MVT::isVector(PartVT)) {
732    assert(MVT::isVector(ValueVT) && "Unknown vector conversion!");
733    return DAG.getNode(ISD::BIT_CONVERT, ValueVT, Val);
734  }
735
736  if (MVT::isVector(ValueVT)) {
737    assert(MVT::getVectorElementType(ValueVT) == PartVT &&
738           MVT::getVectorNumElements(ValueVT) == 1 &&
739           "Only trivial scalar-to-vector conversions should get here!");
740    return DAG.getNode(ISD::BUILD_VECTOR, ValueVT, Val);
741  }
742
743  if (MVT::isInteger(PartVT) &&
744      MVT::isInteger(ValueVT)) {
745    if (MVT::getSizeInBits(ValueVT) < MVT::getSizeInBits(PartVT)) {
746      // For a truncate, see if we have any information to
747      // indicate whether the truncated bits will always be
748      // zero or sign-extension.
749      if (AssertOp != ISD::DELETED_NODE)
750        Val = DAG.getNode(AssertOp, PartVT, Val,
751                          DAG.getValueType(ValueVT));
752      return DAG.getNode(ISD::TRUNCATE, ValueVT, Val);
753    } else {
754      return DAG.getNode(ISD::ANY_EXTEND, ValueVT, Val);
755    }
756  }
757
758  if (MVT::isFloatingPoint(PartVT) && MVT::isFloatingPoint(ValueVT))
759    return DAG.getNode(ISD::FP_ROUND, ValueVT, Val,
760                       DAG.getIntPtrConstant(TruncExact));
761
762  if (MVT::getSizeInBits(PartVT) == MVT::getSizeInBits(ValueVT))
763    return DAG.getNode(ISD::BIT_CONVERT, ValueVT, Val);
764
765  assert(0 && "Unknown mismatch!");
766}
767
768/// getCopyToParts - Create a series of nodes that contain the specified value
769/// split into legal parts.  If the parts contain more bits than Val, then, for
770/// integers, ExtendKind can be used to specify how to generate the extra bits.
771static void getCopyToParts(SelectionDAG &DAG,
772                           SDOperand Val,
773                           SDOperand *Parts,
774                           unsigned NumParts,
775                           MVT::ValueType PartVT,
776                           ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
777  TargetLowering &TLI = DAG.getTargetLoweringInfo();
778  MVT::ValueType PtrVT = TLI.getPointerTy();
779  MVT::ValueType ValueVT = Val.getValueType();
780  unsigned PartBits = MVT::getSizeInBits(PartVT);
781  assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!");
782
783  if (!NumParts)
784    return;
785
786  if (!MVT::isVector(ValueVT)) {
787    if (PartVT == ValueVT) {
788      assert(NumParts == 1 && "No-op copy with multiple parts!");
789      Parts[0] = Val;
790      return;
791    }
792
793    if (NumParts * PartBits > MVT::getSizeInBits(ValueVT)) {
794      // If the parts cover more bits than the value has, promote the value.
795      if (MVT::isFloatingPoint(PartVT) && MVT::isFloatingPoint(ValueVT)) {
796        assert(NumParts == 1 && "Do not know what to promote to!");
797        Val = DAG.getNode(ISD::FP_EXTEND, PartVT, Val);
798      } else if (MVT::isInteger(PartVT) && MVT::isInteger(ValueVT)) {
799        ValueVT = MVT::getIntegerType(NumParts * PartBits);
800        Val = DAG.getNode(ExtendKind, ValueVT, Val);
801      } else {
802        assert(0 && "Unknown mismatch!");
803      }
804    } else if (PartBits == MVT::getSizeInBits(ValueVT)) {
805      // Different types of the same size.
806      assert(NumParts == 1 && PartVT != ValueVT);
807      Val = DAG.getNode(ISD::BIT_CONVERT, PartVT, Val);
808    } else if (NumParts * PartBits < MVT::getSizeInBits(ValueVT)) {
809      // If the parts cover less bits than value has, truncate the value.
810      if (MVT::isInteger(PartVT) && MVT::isInteger(ValueVT)) {
811        ValueVT = MVT::getIntegerType(NumParts * PartBits);
812        Val = DAG.getNode(ISD::TRUNCATE, ValueVT, Val);
813      } else {
814        assert(0 && "Unknown mismatch!");
815      }
816    }
817
818    // The value may have changed - recompute ValueVT.
819    ValueVT = Val.getValueType();
820    assert(NumParts * PartBits == MVT::getSizeInBits(ValueVT) &&
821           "Failed to tile the value with PartVT!");
822
823    if (NumParts == 1) {
824      assert(PartVT == ValueVT && "Type conversion failed!");
825      Parts[0] = Val;
826      return;
827    }
828
829    // Expand the value into multiple parts.
830    if (NumParts & (NumParts - 1)) {
831      // The number of parts is not a power of 2.  Split off and copy the tail.
832      assert(MVT::isInteger(PartVT) && MVT::isInteger(ValueVT) &&
833             "Do not know what to expand to!");
834      unsigned RoundParts = 1 << Log2_32(NumParts);
835      unsigned RoundBits = RoundParts * PartBits;
836      unsigned OddParts = NumParts - RoundParts;
837      SDOperand OddVal = DAG.getNode(ISD::SRL, ValueVT, Val,
838                                     DAG.getConstant(RoundBits,
839                                                     TLI.getShiftAmountTy()));
840      getCopyToParts(DAG, OddVal, Parts + RoundParts, OddParts, PartVT);
841      if (TLI.isBigEndian())
842        // The odd parts were reversed by getCopyToParts - unreverse them.
843        std::reverse(Parts + RoundParts, Parts + NumParts);
844      NumParts = RoundParts;
845      ValueVT = MVT::getIntegerType(NumParts * PartBits);
846      Val = DAG.getNode(ISD::TRUNCATE, ValueVT, Val);
847    }
848
849    // The number of parts is a power of 2.  Repeatedly bisect the value using
850    // EXTRACT_ELEMENT.
851    Parts[0] = Val;
852    for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
853      for (unsigned i = 0; i < NumParts; i += StepSize) {
854        unsigned ThisBits = StepSize * PartBits / 2;
855        MVT::ValueType ThisVT =
856          ThisBits == PartBits ? PartVT : MVT::getIntegerType (ThisBits);
857
858        Parts[i+StepSize/2] =
859          DAG.getNode(ISD::EXTRACT_ELEMENT, ThisVT, Parts[i],
860                      DAG.getConstant(1, PtrVT));
861        Parts[i] =
862          DAG.getNode(ISD::EXTRACT_ELEMENT, ThisVT, Parts[i],
863                      DAG.getConstant(0, PtrVT));
864      }
865    }
866
867    if (TLI.isBigEndian())
868      std::reverse(Parts, Parts + NumParts);
869
870    return;
871  }
872
873  // Vector ValueVT.
874  if (NumParts == 1) {
875    if (PartVT != ValueVT) {
876      if (MVT::isVector(PartVT)) {
877        Val = DAG.getNode(ISD::BIT_CONVERT, PartVT, Val);
878      } else {
879        assert(MVT::getVectorElementType(ValueVT) == PartVT &&
880               MVT::getVectorNumElements(ValueVT) == 1 &&
881               "Only trivial vector-to-scalar conversions should get here!");
882        Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, PartVT, Val,
883                          DAG.getConstant(0, PtrVT));
884      }
885    }
886
887    Parts[0] = Val;
888    return;
889  }
890
891  // Handle a multi-element vector.
892  MVT::ValueType IntermediateVT, RegisterVT;
893  unsigned NumIntermediates;
894  unsigned NumRegs =
895    DAG.getTargetLoweringInfo()
896      .getVectorTypeBreakdown(ValueVT, IntermediateVT, NumIntermediates,
897                              RegisterVT);
898  unsigned NumElements = MVT::getVectorNumElements(ValueVT);
899
900  assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
901  assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
902
903  // Split the vector into intermediate operands.
904  SmallVector<SDOperand, 8> Ops(NumIntermediates);
905  for (unsigned i = 0; i != NumIntermediates; ++i)
906    if (MVT::isVector(IntermediateVT))
907      Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR,
908                           IntermediateVT, Val,
909                           DAG.getConstant(i * (NumElements / NumIntermediates),
910                                           PtrVT));
911    else
912      Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT,
913                           IntermediateVT, Val,
914                           DAG.getConstant(i, PtrVT));
915
916  // Split the intermediate operands into legal parts.
917  if (NumParts == NumIntermediates) {
918    // If the register was not expanded, promote or copy the value,
919    // as appropriate.
920    for (unsigned i = 0; i != NumParts; ++i)
921      getCopyToParts(DAG, Ops[i], &Parts[i], 1, PartVT);
922  } else if (NumParts > 0) {
923    // If the intermediate type was expanded, split each the value into
924    // legal parts.
925    assert(NumParts % NumIntermediates == 0 &&
926           "Must expand into a divisible number of parts!");
927    unsigned Factor = NumParts / NumIntermediates;
928    for (unsigned i = 0; i != NumIntermediates; ++i)
929      getCopyToParts(DAG, Ops[i], &Parts[i * Factor], Factor, PartVT);
930  }
931}
932
933
934SDOperand SelectionDAGLowering::getValue(const Value *V) {
935  SDOperand &N = NodeMap[V];
936  if (N.Val) return N;
937
938  const Type *VTy = V->getType();
939  MVT::ValueType VT = TLI.getValueType(VTy);
940  if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(V))) {
941    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
942      visit(CE->getOpcode(), *CE);
943      SDOperand N1 = NodeMap[V];
944      assert(N1.Val && "visit didn't populate the ValueMap!");
945      return N1;
946    } else if (GlobalValue *GV = dyn_cast<GlobalValue>(C)) {
947      return N = DAG.getGlobalAddress(GV, VT);
948    } else if (isa<ConstantPointerNull>(C)) {
949      return N = DAG.getConstant(0, TLI.getPointerTy());
950    } else if (isa<UndefValue>(C)) {
951      if (!isa<VectorType>(VTy))
952        return N = DAG.getNode(ISD::UNDEF, VT);
953
954      // Create a BUILD_VECTOR of undef nodes.
955      const VectorType *PTy = cast<VectorType>(VTy);
956      unsigned NumElements = PTy->getNumElements();
957      MVT::ValueType PVT = TLI.getValueType(PTy->getElementType());
958
959      SmallVector<SDOperand, 8> Ops;
960      Ops.assign(NumElements, DAG.getNode(ISD::UNDEF, PVT));
961
962      // Create a VConstant node with generic Vector type.
963      MVT::ValueType VT = MVT::getVectorType(PVT, NumElements);
964      return N = DAG.getNode(ISD::BUILD_VECTOR, VT,
965                             &Ops[0], Ops.size());
966    } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
967      return N = DAG.getConstantFP(CFP->getValueAPF(), VT);
968    } else if (const VectorType *PTy = dyn_cast<VectorType>(VTy)) {
969      unsigned NumElements = PTy->getNumElements();
970      MVT::ValueType PVT = TLI.getValueType(PTy->getElementType());
971
972      // Now that we know the number and type of the elements, push a
973      // Constant or ConstantFP node onto the ops list for each element of
974      // the vector constant.
975      SmallVector<SDOperand, 8> Ops;
976      if (ConstantVector *CP = dyn_cast<ConstantVector>(C)) {
977        for (unsigned i = 0; i != NumElements; ++i)
978          Ops.push_back(getValue(CP->getOperand(i)));
979      } else {
980        assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!");
981        SDOperand Op;
982        if (MVT::isFloatingPoint(PVT))
983          Op = DAG.getConstantFP(0, PVT);
984        else
985          Op = DAG.getConstant(0, PVT);
986        Ops.assign(NumElements, Op);
987      }
988
989      // Create a BUILD_VECTOR node.
990      MVT::ValueType VT = MVT::getVectorType(PVT, NumElements);
991      return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, VT, &Ops[0],
992                                      Ops.size());
993    } else {
994      // Canonicalize all constant ints to be unsigned.
995      return N = DAG.getConstant(cast<ConstantInt>(C)->getZExtValue(),VT);
996    }
997  }
998
999  if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1000    std::map<const AllocaInst*, int>::iterator SI =
1001    FuncInfo.StaticAllocaMap.find(AI);
1002    if (SI != FuncInfo.StaticAllocaMap.end())
1003      return DAG.getFrameIndex(SI->second, TLI.getPointerTy());
1004  }
1005
1006  unsigned InReg = FuncInfo.ValueMap[V];
1007  assert(InReg && "Value not in map!");
1008
1009  MVT::ValueType RegisterVT = TLI.getRegisterType(VT);
1010  unsigned NumRegs = TLI.getNumRegisters(VT);
1011
1012  std::vector<unsigned> Regs(NumRegs);
1013  for (unsigned i = 0; i != NumRegs; ++i)
1014    Regs[i] = InReg + i;
1015
1016  RegsForValue RFV(Regs, RegisterVT, VT);
1017  SDOperand Chain = DAG.getEntryNode();
1018
1019  return RFV.getCopyFromRegs(DAG, Chain, NULL);
1020}
1021
1022
1023void SelectionDAGLowering::visitRet(ReturnInst &I) {
1024  if (I.getNumOperands() == 0) {
1025    DAG.setRoot(DAG.getNode(ISD::RET, MVT::Other, getRoot()));
1026    return;
1027  }
1028  SmallVector<SDOperand, 8> NewValues;
1029  NewValues.push_back(getRoot());
1030  for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
1031    SDOperand RetOp = getValue(I.getOperand(i));
1032    MVT::ValueType VT = RetOp.getValueType();
1033
1034    // FIXME: C calling convention requires the return type to be promoted to
1035    // at least 32-bit. But this is not necessary for non-C calling conventions.
1036    if (MVT::isInteger(VT)) {
1037      MVT::ValueType MinVT = TLI.getRegisterType(MVT::i32);
1038      if (MVT::getSizeInBits(VT) < MVT::getSizeInBits(MinVT))
1039        VT = MinVT;
1040    }
1041
1042    unsigned NumParts = TLI.getNumRegisters(VT);
1043    MVT::ValueType PartVT = TLI.getRegisterType(VT);
1044    SmallVector<SDOperand, 4> Parts(NumParts);
1045    ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1046
1047    const Function *F = I.getParent()->getParent();
1048    if (F->paramHasAttr(0, ParamAttr::SExt))
1049      ExtendKind = ISD::SIGN_EXTEND;
1050    else if (F->paramHasAttr(0, ParamAttr::ZExt))
1051      ExtendKind = ISD::ZERO_EXTEND;
1052
1053    getCopyToParts(DAG, RetOp, &Parts[0], NumParts, PartVT, ExtendKind);
1054
1055    for (unsigned i = 0; i < NumParts; ++i) {
1056      NewValues.push_back(Parts[i]);
1057      NewValues.push_back(DAG.getConstant(false, MVT::i32));
1058    }
1059  }
1060  DAG.setRoot(DAG.getNode(ISD::RET, MVT::Other,
1061                          &NewValues[0], NewValues.size()));
1062}
1063
1064/// ExportFromCurrentBlock - If this condition isn't known to be exported from
1065/// the current basic block, add it to ValueMap now so that we'll get a
1066/// CopyTo/FromReg.
1067void SelectionDAGLowering::ExportFromCurrentBlock(Value *V) {
1068  // No need to export constants.
1069  if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
1070
1071  // Already exported?
1072  if (FuncInfo.isExportedInst(V)) return;
1073
1074  unsigned Reg = FuncInfo.InitializeRegForValue(V);
1075  PendingLoads.push_back(CopyValueToVirtualRegister(V, Reg));
1076}
1077
1078bool SelectionDAGLowering::isExportableFromCurrentBlock(Value *V,
1079                                                    const BasicBlock *FromBB) {
1080  // The operands of the setcc have to be in this block.  We don't know
1081  // how to export them from some other block.
1082  if (Instruction *VI = dyn_cast<Instruction>(V)) {
1083    // Can export from current BB.
1084    if (VI->getParent() == FromBB)
1085      return true;
1086
1087    // Is already exported, noop.
1088    return FuncInfo.isExportedInst(V);
1089  }
1090
1091  // If this is an argument, we can export it if the BB is the entry block or
1092  // if it is already exported.
1093  if (isa<Argument>(V)) {
1094    if (FromBB == &FromBB->getParent()->getEntryBlock())
1095      return true;
1096
1097    // Otherwise, can only export this if it is already exported.
1098    return FuncInfo.isExportedInst(V);
1099  }
1100
1101  // Otherwise, constants can always be exported.
1102  return true;
1103}
1104
1105static bool InBlock(const Value *V, const BasicBlock *BB) {
1106  if (const Instruction *I = dyn_cast<Instruction>(V))
1107    return I->getParent() == BB;
1108  return true;
1109}
1110
1111/// FindMergedConditions - If Cond is an expression like
1112void SelectionDAGLowering::FindMergedConditions(Value *Cond,
1113                                                MachineBasicBlock *TBB,
1114                                                MachineBasicBlock *FBB,
1115                                                MachineBasicBlock *CurBB,
1116                                                unsigned Opc) {
1117  // If this node is not part of the or/and tree, emit it as a branch.
1118  Instruction *BOp = dyn_cast<Instruction>(Cond);
1119
1120  if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
1121      (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() ||
1122      BOp->getParent() != CurBB->getBasicBlock() ||
1123      !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
1124      !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
1125    const BasicBlock *BB = CurBB->getBasicBlock();
1126
1127    // If the leaf of the tree is a comparison, merge the condition into
1128    // the caseblock.
1129    if ((isa<ICmpInst>(Cond) || isa<FCmpInst>(Cond)) &&
1130        // The operands of the cmp have to be in this block.  We don't know
1131        // how to export them from some other block.  If this is the first block
1132        // of the sequence, no exporting is needed.
1133        (CurBB == CurMBB ||
1134         (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
1135          isExportableFromCurrentBlock(BOp->getOperand(1), BB)))) {
1136      BOp = cast<Instruction>(Cond);
1137      ISD::CondCode Condition;
1138      if (ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
1139        switch (IC->getPredicate()) {
1140        default: assert(0 && "Unknown icmp predicate opcode!");
1141        case ICmpInst::ICMP_EQ:  Condition = ISD::SETEQ;  break;
1142        case ICmpInst::ICMP_NE:  Condition = ISD::SETNE;  break;
1143        case ICmpInst::ICMP_SLE: Condition = ISD::SETLE;  break;
1144        case ICmpInst::ICMP_ULE: Condition = ISD::SETULE; break;
1145        case ICmpInst::ICMP_SGE: Condition = ISD::SETGE;  break;
1146        case ICmpInst::ICMP_UGE: Condition = ISD::SETUGE; break;
1147        case ICmpInst::ICMP_SLT: Condition = ISD::SETLT;  break;
1148        case ICmpInst::ICMP_ULT: Condition = ISD::SETULT; break;
1149        case ICmpInst::ICMP_SGT: Condition = ISD::SETGT;  break;
1150        case ICmpInst::ICMP_UGT: Condition = ISD::SETUGT; break;
1151        }
1152      } else if (FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) {
1153        ISD::CondCode FPC, FOC;
1154        switch (FC->getPredicate()) {
1155        default: assert(0 && "Unknown fcmp predicate opcode!");
1156        case FCmpInst::FCMP_FALSE: FOC = FPC = ISD::SETFALSE; break;
1157        case FCmpInst::FCMP_OEQ:   FOC = ISD::SETEQ; FPC = ISD::SETOEQ; break;
1158        case FCmpInst::FCMP_OGT:   FOC = ISD::SETGT; FPC = ISD::SETOGT; break;
1159        case FCmpInst::FCMP_OGE:   FOC = ISD::SETGE; FPC = ISD::SETOGE; break;
1160        case FCmpInst::FCMP_OLT:   FOC = ISD::SETLT; FPC = ISD::SETOLT; break;
1161        case FCmpInst::FCMP_OLE:   FOC = ISD::SETLE; FPC = ISD::SETOLE; break;
1162        case FCmpInst::FCMP_ONE:   FOC = ISD::SETNE; FPC = ISD::SETONE; break;
1163        case FCmpInst::FCMP_ORD:   FOC = ISD::SETEQ; FPC = ISD::SETO;   break;
1164        case FCmpInst::FCMP_UNO:   FOC = ISD::SETNE; FPC = ISD::SETUO;  break;
1165        case FCmpInst::FCMP_UEQ:   FOC = ISD::SETEQ; FPC = ISD::SETUEQ; break;
1166        case FCmpInst::FCMP_UGT:   FOC = ISD::SETGT; FPC = ISD::SETUGT; break;
1167        case FCmpInst::FCMP_UGE:   FOC = ISD::SETGE; FPC = ISD::SETUGE; break;
1168        case FCmpInst::FCMP_ULT:   FOC = ISD::SETLT; FPC = ISD::SETULT; break;
1169        case FCmpInst::FCMP_ULE:   FOC = ISD::SETLE; FPC = ISD::SETULE; break;
1170        case FCmpInst::FCMP_UNE:   FOC = ISD::SETNE; FPC = ISD::SETUNE; break;
1171        case FCmpInst::FCMP_TRUE:  FOC = FPC = ISD::SETTRUE; break;
1172        }
1173        if (FiniteOnlyFPMath())
1174          Condition = FOC;
1175        else
1176          Condition = FPC;
1177      } else {
1178        Condition = ISD::SETEQ; // silence warning.
1179        assert(0 && "Unknown compare instruction");
1180      }
1181
1182      SelectionDAGISel::CaseBlock CB(Condition, BOp->getOperand(0),
1183                                     BOp->getOperand(1), NULL, TBB, FBB, CurBB);
1184      SwitchCases.push_back(CB);
1185      return;
1186    }
1187
1188    // Create a CaseBlock record representing this branch.
1189    SelectionDAGISel::CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(),
1190                                   NULL, TBB, FBB, CurBB);
1191    SwitchCases.push_back(CB);
1192    return;
1193  }
1194
1195
1196  //  Create TmpBB after CurBB.
1197  MachineFunction::iterator BBI = CurBB;
1198  MachineBasicBlock *TmpBB = new MachineBasicBlock(CurBB->getBasicBlock());
1199  CurBB->getParent()->getBasicBlockList().insert(++BBI, TmpBB);
1200
1201  if (Opc == Instruction::Or) {
1202    // Codegen X | Y as:
1203    //   jmp_if_X TBB
1204    //   jmp TmpBB
1205    // TmpBB:
1206    //   jmp_if_Y TBB
1207    //   jmp FBB
1208    //
1209
1210    // Emit the LHS condition.
1211    FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, Opc);
1212
1213    // Emit the RHS condition into TmpBB.
1214    FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, Opc);
1215  } else {
1216    assert(Opc == Instruction::And && "Unknown merge op!");
1217    // Codegen X & Y as:
1218    //   jmp_if_X TmpBB
1219    //   jmp FBB
1220    // TmpBB:
1221    //   jmp_if_Y TBB
1222    //   jmp FBB
1223    //
1224    //  This requires creation of TmpBB after CurBB.
1225
1226    // Emit the LHS condition.
1227    FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, Opc);
1228
1229    // Emit the RHS condition into TmpBB.
1230    FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, Opc);
1231  }
1232}
1233
1234/// If the set of cases should be emitted as a series of branches, return true.
1235/// If we should emit this as a bunch of and/or'd together conditions, return
1236/// false.
1237static bool
1238ShouldEmitAsBranches(const std::vector<SelectionDAGISel::CaseBlock> &Cases) {
1239  if (Cases.size() != 2) return true;
1240
1241  // If this is two comparisons of the same values or'd or and'd together, they
1242  // will get folded into a single comparison, so don't emit two blocks.
1243  if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
1244       Cases[0].CmpRHS == Cases[1].CmpRHS) ||
1245      (Cases[0].CmpRHS == Cases[1].CmpLHS &&
1246       Cases[0].CmpLHS == Cases[1].CmpRHS)) {
1247    return false;
1248  }
1249
1250  return true;
1251}
1252
1253void SelectionDAGLowering::visitBr(BranchInst &I) {
1254  // Update machine-CFG edges.
1255  MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
1256
1257  // Figure out which block is immediately after the current one.
1258  MachineBasicBlock *NextBlock = 0;
1259  MachineFunction::iterator BBI = CurMBB;
1260  if (++BBI != CurMBB->getParent()->end())
1261    NextBlock = BBI;
1262
1263  if (I.isUnconditional()) {
1264    // If this is not a fall-through branch, emit the branch.
1265    if (Succ0MBB != NextBlock)
1266      DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, getRoot(),
1267                              DAG.getBasicBlock(Succ0MBB)));
1268
1269    // Update machine-CFG edges.
1270    CurMBB->addSuccessor(Succ0MBB);
1271    return;
1272  }
1273
1274  // If this condition is one of the special cases we handle, do special stuff
1275  // now.
1276  Value *CondVal = I.getCondition();
1277  MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
1278
1279  // If this is a series of conditions that are or'd or and'd together, emit
1280  // this as a sequence of branches instead of setcc's with and/or operations.
1281  // For example, instead of something like:
1282  //     cmp A, B
1283  //     C = seteq
1284  //     cmp D, E
1285  //     F = setle
1286  //     or C, F
1287  //     jnz foo
1288  // Emit:
1289  //     cmp A, B
1290  //     je foo
1291  //     cmp D, E
1292  //     jle foo
1293  //
1294  if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
1295    if (BOp->hasOneUse() &&
1296        (BOp->getOpcode() == Instruction::And ||
1297         BOp->getOpcode() == Instruction::Or)) {
1298      FindMergedConditions(BOp, Succ0MBB, Succ1MBB, CurMBB, BOp->getOpcode());
1299      // If the compares in later blocks need to use values not currently
1300      // exported from this block, export them now.  This block should always
1301      // be the first entry.
1302      assert(SwitchCases[0].ThisBB == CurMBB && "Unexpected lowering!");
1303
1304      // Allow some cases to be rejected.
1305      if (ShouldEmitAsBranches(SwitchCases)) {
1306        for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
1307          ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
1308          ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
1309        }
1310
1311        // Emit the branch for this block.
1312        visitSwitchCase(SwitchCases[0]);
1313        SwitchCases.erase(SwitchCases.begin());
1314        return;
1315      }
1316
1317      // Okay, we decided not to do this, remove any inserted MBB's and clear
1318      // SwitchCases.
1319      for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
1320        CurMBB->getParent()->getBasicBlockList().erase(SwitchCases[i].ThisBB);
1321
1322      SwitchCases.clear();
1323    }
1324  }
1325
1326  // Create a CaseBlock record representing this branch.
1327  SelectionDAGISel::CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(),
1328                                 NULL, Succ0MBB, Succ1MBB, CurMBB);
1329  // Use visitSwitchCase to actually insert the fast branch sequence for this
1330  // cond branch.
1331  visitSwitchCase(CB);
1332}
1333
1334/// visitSwitchCase - Emits the necessary code to represent a single node in
1335/// the binary search tree resulting from lowering a switch instruction.
1336void SelectionDAGLowering::visitSwitchCase(SelectionDAGISel::CaseBlock &CB) {
1337  SDOperand Cond;
1338  SDOperand CondLHS = getValue(CB.CmpLHS);
1339
1340  // Build the setcc now.
1341  if (CB.CmpMHS == NULL) {
1342    // Fold "(X == true)" to X and "(X == false)" to !X to
1343    // handle common cases produced by branch lowering.
1344    if (CB.CmpRHS == ConstantInt::getTrue() && CB.CC == ISD::SETEQ)
1345      Cond = CondLHS;
1346    else if (CB.CmpRHS == ConstantInt::getFalse() && CB.CC == ISD::SETEQ) {
1347      SDOperand True = DAG.getConstant(1, CondLHS.getValueType());
1348      Cond = DAG.getNode(ISD::XOR, CondLHS.getValueType(), CondLHS, True);
1349    } else
1350      Cond = DAG.getSetCC(MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
1351  } else {
1352    assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
1353
1354    uint64_t Low = cast<ConstantInt>(CB.CmpLHS)->getSExtValue();
1355    uint64_t High  = cast<ConstantInt>(CB.CmpRHS)->getSExtValue();
1356
1357    SDOperand CmpOp = getValue(CB.CmpMHS);
1358    MVT::ValueType VT = CmpOp.getValueType();
1359
1360    if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
1361      Cond = DAG.getSetCC(MVT::i1, CmpOp, DAG.getConstant(High, VT), ISD::SETLE);
1362    } else {
1363      SDOperand SUB = DAG.getNode(ISD::SUB, VT, CmpOp, DAG.getConstant(Low, VT));
1364      Cond = DAG.getSetCC(MVT::i1, SUB,
1365                          DAG.getConstant(High-Low, VT), ISD::SETULE);
1366    }
1367
1368  }
1369
1370  // Set NextBlock to be the MBB immediately after the current one, if any.
1371  // This is used to avoid emitting unnecessary branches to the next block.
1372  MachineBasicBlock *NextBlock = 0;
1373  MachineFunction::iterator BBI = CurMBB;
1374  if (++BBI != CurMBB->getParent()->end())
1375    NextBlock = BBI;
1376
1377  // If the lhs block is the next block, invert the condition so that we can
1378  // fall through to the lhs instead of the rhs block.
1379  if (CB.TrueBB == NextBlock) {
1380    std::swap(CB.TrueBB, CB.FalseBB);
1381    SDOperand True = DAG.getConstant(1, Cond.getValueType());
1382    Cond = DAG.getNode(ISD::XOR, Cond.getValueType(), Cond, True);
1383  }
1384  SDOperand BrCond = DAG.getNode(ISD::BRCOND, MVT::Other, getRoot(), Cond,
1385                                 DAG.getBasicBlock(CB.TrueBB));
1386  if (CB.FalseBB == NextBlock)
1387    DAG.setRoot(BrCond);
1388  else
1389    DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, BrCond,
1390                            DAG.getBasicBlock(CB.FalseBB)));
1391  // Update successor info
1392  CurMBB->addSuccessor(CB.TrueBB);
1393  CurMBB->addSuccessor(CB.FalseBB);
1394}
1395
1396/// visitJumpTable - Emit JumpTable node in the current MBB
1397void SelectionDAGLowering::visitJumpTable(SelectionDAGISel::JumpTable &JT) {
1398  // Emit the code for the jump table
1399  assert(JT.Reg != -1U && "Should lower JT Header first!");
1400  MVT::ValueType PTy = TLI.getPointerTy();
1401  SDOperand Index = DAG.getCopyFromReg(getRoot(), JT.Reg, PTy);
1402  SDOperand Table = DAG.getJumpTable(JT.JTI, PTy);
1403  DAG.setRoot(DAG.getNode(ISD::BR_JT, MVT::Other, Index.getValue(1),
1404                          Table, Index));
1405  return;
1406}
1407
1408/// visitJumpTableHeader - This function emits necessary code to produce index
1409/// in the JumpTable from switch case.
1410void SelectionDAGLowering::visitJumpTableHeader(SelectionDAGISel::JumpTable &JT,
1411                                         SelectionDAGISel::JumpTableHeader &JTH) {
1412  // Subtract the lowest switch case value from the value being switched on
1413  // and conditional branch to default mbb if the result is greater than the
1414  // difference between smallest and largest cases.
1415  SDOperand SwitchOp = getValue(JTH.SValue);
1416  MVT::ValueType VT = SwitchOp.getValueType();
1417  SDOperand SUB = DAG.getNode(ISD::SUB, VT, SwitchOp,
1418                              DAG.getConstant(JTH.First, VT));
1419
1420  // The SDNode we just created, which holds the value being switched on
1421  // minus the the smallest case value, needs to be copied to a virtual
1422  // register so it can be used as an index into the jump table in a
1423  // subsequent basic block.  This value may be smaller or larger than the
1424  // target's pointer type, and therefore require extension or truncating.
1425  if (MVT::getSizeInBits(VT) > MVT::getSizeInBits(TLI.getPointerTy()))
1426    SwitchOp = DAG.getNode(ISD::TRUNCATE, TLI.getPointerTy(), SUB);
1427  else
1428    SwitchOp = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(), SUB);
1429
1430  unsigned JumpTableReg = FuncInfo.MakeReg(TLI.getPointerTy());
1431  SDOperand CopyTo = DAG.getCopyToReg(getRoot(), JumpTableReg, SwitchOp);
1432  JT.Reg = JumpTableReg;
1433
1434  // Emit the range check for the jump table, and branch to the default
1435  // block for the switch statement if the value being switched on exceeds
1436  // the largest case in the switch.
1437  SDOperand CMP = DAG.getSetCC(TLI.getSetCCResultTy(), SUB,
1438                               DAG.getConstant(JTH.Last-JTH.First,VT),
1439                               ISD::SETUGT);
1440
1441  // Set NextBlock to be the MBB immediately after the current one, if any.
1442  // This is used to avoid emitting unnecessary branches to the next block.
1443  MachineBasicBlock *NextBlock = 0;
1444  MachineFunction::iterator BBI = CurMBB;
1445  if (++BBI != CurMBB->getParent()->end())
1446    NextBlock = BBI;
1447
1448  SDOperand BrCond = DAG.getNode(ISD::BRCOND, MVT::Other, CopyTo, CMP,
1449                                 DAG.getBasicBlock(JT.Default));
1450
1451  if (JT.MBB == NextBlock)
1452    DAG.setRoot(BrCond);
1453  else
1454    DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, BrCond,
1455                            DAG.getBasicBlock(JT.MBB)));
1456
1457  return;
1458}
1459
1460/// visitBitTestHeader - This function emits necessary code to produce value
1461/// suitable for "bit tests"
1462void SelectionDAGLowering::visitBitTestHeader(SelectionDAGISel::BitTestBlock &B) {
1463  // Subtract the minimum value
1464  SDOperand SwitchOp = getValue(B.SValue);
1465  MVT::ValueType VT = SwitchOp.getValueType();
1466  SDOperand SUB = DAG.getNode(ISD::SUB, VT, SwitchOp,
1467                              DAG.getConstant(B.First, VT));
1468
1469  // Check range
1470  SDOperand RangeCmp = DAG.getSetCC(TLI.getSetCCResultTy(), SUB,
1471                                    DAG.getConstant(B.Range, VT),
1472                                    ISD::SETUGT);
1473
1474  SDOperand ShiftOp;
1475  if (MVT::getSizeInBits(VT) > MVT::getSizeInBits(TLI.getShiftAmountTy()))
1476    ShiftOp = DAG.getNode(ISD::TRUNCATE, TLI.getShiftAmountTy(), SUB);
1477  else
1478    ShiftOp = DAG.getNode(ISD::ZERO_EXTEND, TLI.getShiftAmountTy(), SUB);
1479
1480  // Make desired shift
1481  SDOperand SwitchVal = DAG.getNode(ISD::SHL, TLI.getPointerTy(),
1482                                    DAG.getConstant(1, TLI.getPointerTy()),
1483                                    ShiftOp);
1484
1485  unsigned SwitchReg = FuncInfo.MakeReg(TLI.getPointerTy());
1486  SDOperand CopyTo = DAG.getCopyToReg(getRoot(), SwitchReg, SwitchVal);
1487  B.Reg = SwitchReg;
1488
1489  SDOperand BrRange = DAG.getNode(ISD::BRCOND, MVT::Other, CopyTo, RangeCmp,
1490                                  DAG.getBasicBlock(B.Default));
1491
1492  // Set NextBlock to be the MBB immediately after the current one, if any.
1493  // This is used to avoid emitting unnecessary branches to the next block.
1494  MachineBasicBlock *NextBlock = 0;
1495  MachineFunction::iterator BBI = CurMBB;
1496  if (++BBI != CurMBB->getParent()->end())
1497    NextBlock = BBI;
1498
1499  MachineBasicBlock* MBB = B.Cases[0].ThisBB;
1500  if (MBB == NextBlock)
1501    DAG.setRoot(BrRange);
1502  else
1503    DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, CopyTo,
1504                            DAG.getBasicBlock(MBB)));
1505
1506  CurMBB->addSuccessor(B.Default);
1507  CurMBB->addSuccessor(MBB);
1508
1509  return;
1510}
1511
1512/// visitBitTestCase - this function produces one "bit test"
1513void SelectionDAGLowering::visitBitTestCase(MachineBasicBlock* NextMBB,
1514                                            unsigned Reg,
1515                                            SelectionDAGISel::BitTestCase &B) {
1516  // Emit bit tests and jumps
1517  SDOperand SwitchVal = DAG.getCopyFromReg(getRoot(), Reg, TLI.getPointerTy());
1518
1519  SDOperand AndOp = DAG.getNode(ISD::AND, TLI.getPointerTy(),
1520                                SwitchVal,
1521                                DAG.getConstant(B.Mask,
1522                                                TLI.getPointerTy()));
1523  SDOperand AndCmp = DAG.getSetCC(TLI.getSetCCResultTy(), AndOp,
1524                                  DAG.getConstant(0, TLI.getPointerTy()),
1525                                  ISD::SETNE);
1526  SDOperand BrAnd = DAG.getNode(ISD::BRCOND, MVT::Other, getRoot(),
1527                                AndCmp, DAG.getBasicBlock(B.TargetBB));
1528
1529  // Set NextBlock to be the MBB immediately after the current one, if any.
1530  // This is used to avoid emitting unnecessary branches to the next block.
1531  MachineBasicBlock *NextBlock = 0;
1532  MachineFunction::iterator BBI = CurMBB;
1533  if (++BBI != CurMBB->getParent()->end())
1534    NextBlock = BBI;
1535
1536  if (NextMBB == NextBlock)
1537    DAG.setRoot(BrAnd);
1538  else
1539    DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, BrAnd,
1540                            DAG.getBasicBlock(NextMBB)));
1541
1542  CurMBB->addSuccessor(B.TargetBB);
1543  CurMBB->addSuccessor(NextMBB);
1544
1545  return;
1546}
1547
1548void SelectionDAGLowering::visitInvoke(InvokeInst &I) {
1549  // Retrieve successors.
1550  MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
1551  MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)];
1552
1553  if (isa<InlineAsm>(I.getCalledValue()))
1554    visitInlineAsm(&I);
1555  else
1556    LowerCallTo(&I, getValue(I.getOperand(0)), false, LandingPad);
1557
1558  // If the value of the invoke is used outside of its defining block, make it
1559  // available as a virtual register.
1560  if (!I.use_empty()) {
1561    DenseMap<const Value*, unsigned>::iterator VMI = FuncInfo.ValueMap.find(&I);
1562    if (VMI != FuncInfo.ValueMap.end())
1563      DAG.setRoot(CopyValueToVirtualRegister(&I, VMI->second));
1564  }
1565
1566  // Drop into normal successor.
1567  DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, getRoot(),
1568                          DAG.getBasicBlock(Return)));
1569
1570  // Update successor info
1571  CurMBB->addSuccessor(Return);
1572  CurMBB->addSuccessor(LandingPad);
1573}
1574
1575void SelectionDAGLowering::visitUnwind(UnwindInst &I) {
1576}
1577
1578/// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for
1579/// small case ranges).
1580bool SelectionDAGLowering::handleSmallSwitchRange(CaseRec& CR,
1581                                                  CaseRecVector& WorkList,
1582                                                  Value* SV,
1583                                                  MachineBasicBlock* Default) {
1584  Case& BackCase  = *(CR.Range.second-1);
1585
1586  // Size is the number of Cases represented by this range.
1587  unsigned Size = CR.Range.second - CR.Range.first;
1588  if (Size > 3)
1589    return false;
1590
1591  // Get the MachineFunction which holds the current MBB.  This is used when
1592  // inserting any additional MBBs necessary to represent the switch.
1593  MachineFunction *CurMF = CurMBB->getParent();
1594
1595  // Figure out which block is immediately after the current one.
1596  MachineBasicBlock *NextBlock = 0;
1597  MachineFunction::iterator BBI = CR.CaseBB;
1598
1599  if (++BBI != CurMBB->getParent()->end())
1600    NextBlock = BBI;
1601
1602  // TODO: If any two of the cases has the same destination, and if one value
1603  // is the same as the other, but has one bit unset that the other has set,
1604  // use bit manipulation to do two compares at once.  For example:
1605  // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
1606
1607  // Rearrange the case blocks so that the last one falls through if possible.
1608  if (NextBlock && Default != NextBlock && BackCase.BB != NextBlock) {
1609    // The last case block won't fall through into 'NextBlock' if we emit the
1610    // branches in this order.  See if rearranging a case value would help.
1611    for (CaseItr I = CR.Range.first, E = CR.Range.second-1; I != E; ++I) {
1612      if (I->BB == NextBlock) {
1613        std::swap(*I, BackCase);
1614        break;
1615      }
1616    }
1617  }
1618
1619  // Create a CaseBlock record representing a conditional branch to
1620  // the Case's target mbb if the value being switched on SV is equal
1621  // to C.
1622  MachineBasicBlock *CurBlock = CR.CaseBB;
1623  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) {
1624    MachineBasicBlock *FallThrough;
1625    if (I != E-1) {
1626      FallThrough = new MachineBasicBlock(CurBlock->getBasicBlock());
1627      CurMF->getBasicBlockList().insert(BBI, FallThrough);
1628    } else {
1629      // If the last case doesn't match, go to the default block.
1630      FallThrough = Default;
1631    }
1632
1633    Value *RHS, *LHS, *MHS;
1634    ISD::CondCode CC;
1635    if (I->High == I->Low) {
1636      // This is just small small case range :) containing exactly 1 case
1637      CC = ISD::SETEQ;
1638      LHS = SV; RHS = I->High; MHS = NULL;
1639    } else {
1640      CC = ISD::SETLE;
1641      LHS = I->Low; MHS = SV; RHS = I->High;
1642    }
1643    SelectionDAGISel::CaseBlock CB(CC, LHS, RHS, MHS,
1644                                   I->BB, FallThrough, CurBlock);
1645
1646    // If emitting the first comparison, just call visitSwitchCase to emit the
1647    // code into the current block.  Otherwise, push the CaseBlock onto the
1648    // vector to be later processed by SDISel, and insert the node's MBB
1649    // before the next MBB.
1650    if (CurBlock == CurMBB)
1651      visitSwitchCase(CB);
1652    else
1653      SwitchCases.push_back(CB);
1654
1655    CurBlock = FallThrough;
1656  }
1657
1658  return true;
1659}
1660
1661static inline bool areJTsAllowed(const TargetLowering &TLI) {
1662  return (TLI.isOperationLegal(ISD::BR_JT, MVT::Other) ||
1663          TLI.isOperationLegal(ISD::BRIND, MVT::Other));
1664}
1665
1666/// handleJTSwitchCase - Emit jumptable for current switch case range
1667bool SelectionDAGLowering::handleJTSwitchCase(CaseRec& CR,
1668                                              CaseRecVector& WorkList,
1669                                              Value* SV,
1670                                              MachineBasicBlock* Default) {
1671  Case& FrontCase = *CR.Range.first;
1672  Case& BackCase  = *(CR.Range.second-1);
1673
1674  int64_t First = cast<ConstantInt>(FrontCase.Low)->getSExtValue();
1675  int64_t Last  = cast<ConstantInt>(BackCase.High)->getSExtValue();
1676
1677  uint64_t TSize = 0;
1678  for (CaseItr I = CR.Range.first, E = CR.Range.second;
1679       I!=E; ++I)
1680    TSize += I->size();
1681
1682  if (!areJTsAllowed(TLI) || TSize <= 3)
1683    return false;
1684
1685  double Density = (double)TSize / (double)((Last - First) + 1ULL);
1686  if (Density < 0.4)
1687    return false;
1688
1689  DOUT << "Lowering jump table\n"
1690       << "First entry: " << First << ". Last entry: " << Last << "\n"
1691       << "Size: " << TSize << ". Density: " << Density << "\n\n";
1692
1693  // Get the MachineFunction which holds the current MBB.  This is used when
1694  // inserting any additional MBBs necessary to represent the switch.
1695  MachineFunction *CurMF = CurMBB->getParent();
1696
1697  // Figure out which block is immediately after the current one.
1698  MachineBasicBlock *NextBlock = 0;
1699  MachineFunction::iterator BBI = CR.CaseBB;
1700
1701  if (++BBI != CurMBB->getParent()->end())
1702    NextBlock = BBI;
1703
1704  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
1705
1706  // Create a new basic block to hold the code for loading the address
1707  // of the jump table, and jumping to it.  Update successor information;
1708  // we will either branch to the default case for the switch, or the jump
1709  // table.
1710  MachineBasicBlock *JumpTableBB = new MachineBasicBlock(LLVMBB);
1711  CurMF->getBasicBlockList().insert(BBI, JumpTableBB);
1712  CR.CaseBB->addSuccessor(Default);
1713  CR.CaseBB->addSuccessor(JumpTableBB);
1714
1715  // Build a vector of destination BBs, corresponding to each target
1716  // of the jump table. If the value of the jump table slot corresponds to
1717  // a case statement, push the case's BB onto the vector, otherwise, push
1718  // the default BB.
1719  std::vector<MachineBasicBlock*> DestBBs;
1720  int64_t TEI = First;
1721  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) {
1722    int64_t Low = cast<ConstantInt>(I->Low)->getSExtValue();
1723    int64_t High = cast<ConstantInt>(I->High)->getSExtValue();
1724
1725    if ((Low <= TEI) && (TEI <= High)) {
1726      DestBBs.push_back(I->BB);
1727      if (TEI==High)
1728        ++I;
1729    } else {
1730      DestBBs.push_back(Default);
1731    }
1732  }
1733
1734  // Update successor info. Add one edge to each unique successor.
1735  BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs());
1736  for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(),
1737         E = DestBBs.end(); I != E; ++I) {
1738    if (!SuccsHandled[(*I)->getNumber()]) {
1739      SuccsHandled[(*I)->getNumber()] = true;
1740      JumpTableBB->addSuccessor(*I);
1741    }
1742  }
1743
1744  // Create a jump table index for this jump table, or return an existing
1745  // one.
1746  unsigned JTI = CurMF->getJumpTableInfo()->getJumpTableIndex(DestBBs);
1747
1748  // Set the jump table information so that we can codegen it as a second
1749  // MachineBasicBlock
1750  SelectionDAGISel::JumpTable JT(-1U, JTI, JumpTableBB, Default);
1751  SelectionDAGISel::JumpTableHeader JTH(First, Last, SV, CR.CaseBB,
1752                                        (CR.CaseBB == CurMBB));
1753  if (CR.CaseBB == CurMBB)
1754    visitJumpTableHeader(JT, JTH);
1755
1756  JTCases.push_back(SelectionDAGISel::JumpTableBlock(JTH, JT));
1757
1758  return true;
1759}
1760
1761/// handleBTSplitSwitchCase - emit comparison and split binary search tree into
1762/// 2 subtrees.
1763bool SelectionDAGLowering::handleBTSplitSwitchCase(CaseRec& CR,
1764                                                   CaseRecVector& WorkList,
1765                                                   Value* SV,
1766                                                   MachineBasicBlock* Default) {
1767  // Get the MachineFunction which holds the current MBB.  This is used when
1768  // inserting any additional MBBs necessary to represent the switch.
1769  MachineFunction *CurMF = CurMBB->getParent();
1770
1771  // Figure out which block is immediately after the current one.
1772  MachineBasicBlock *NextBlock = 0;
1773  MachineFunction::iterator BBI = CR.CaseBB;
1774
1775  if (++BBI != CurMBB->getParent()->end())
1776    NextBlock = BBI;
1777
1778  Case& FrontCase = *CR.Range.first;
1779  Case& BackCase  = *(CR.Range.second-1);
1780  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
1781
1782  // Size is the number of Cases represented by this range.
1783  unsigned Size = CR.Range.second - CR.Range.first;
1784
1785  int64_t First = cast<ConstantInt>(FrontCase.Low)->getSExtValue();
1786  int64_t Last  = cast<ConstantInt>(BackCase.High)->getSExtValue();
1787  double FMetric = 0;
1788  CaseItr Pivot = CR.Range.first + Size/2;
1789
1790  // Select optimal pivot, maximizing sum density of LHS and RHS. This will
1791  // (heuristically) allow us to emit JumpTable's later.
1792  uint64_t TSize = 0;
1793  for (CaseItr I = CR.Range.first, E = CR.Range.second;
1794       I!=E; ++I)
1795    TSize += I->size();
1796
1797  uint64_t LSize = FrontCase.size();
1798  uint64_t RSize = TSize-LSize;
1799  DOUT << "Selecting best pivot: \n"
1800       << "First: " << First << ", Last: " << Last <<"\n"
1801       << "LSize: " << LSize << ", RSize: " << RSize << "\n";
1802  for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second;
1803       J!=E; ++I, ++J) {
1804    int64_t LEnd = cast<ConstantInt>(I->High)->getSExtValue();
1805    int64_t RBegin = cast<ConstantInt>(J->Low)->getSExtValue();
1806    assert((RBegin-LEnd>=1) && "Invalid case distance");
1807    double LDensity = (double)LSize / (double)((LEnd - First) + 1ULL);
1808    double RDensity = (double)RSize / (double)((Last - RBegin) + 1ULL);
1809    double Metric = Log2_64(RBegin-LEnd)*(LDensity+RDensity);
1810    // Should always split in some non-trivial place
1811    DOUT <<"=>Step\n"
1812         << "LEnd: " << LEnd << ", RBegin: " << RBegin << "\n"
1813         << "LDensity: " << LDensity << ", RDensity: " << RDensity << "\n"
1814         << "Metric: " << Metric << "\n";
1815    if (FMetric < Metric) {
1816      Pivot = J;
1817      FMetric = Metric;
1818      DOUT << "Current metric set to: " << FMetric << "\n";
1819    }
1820
1821    LSize += J->size();
1822    RSize -= J->size();
1823  }
1824  if (areJTsAllowed(TLI)) {
1825    // If our case is dense we *really* should handle it earlier!
1826    assert((FMetric > 0) && "Should handle dense range earlier!");
1827  } else {
1828    Pivot = CR.Range.first + Size/2;
1829  }
1830
1831  CaseRange LHSR(CR.Range.first, Pivot);
1832  CaseRange RHSR(Pivot, CR.Range.second);
1833  Constant *C = Pivot->Low;
1834  MachineBasicBlock *FalseBB = 0, *TrueBB = 0;
1835
1836  // We know that we branch to the LHS if the Value being switched on is
1837  // less than the Pivot value, C.  We use this to optimize our binary
1838  // tree a bit, by recognizing that if SV is greater than or equal to the
1839  // LHS's Case Value, and that Case Value is exactly one less than the
1840  // Pivot's Value, then we can branch directly to the LHS's Target,
1841  // rather than creating a leaf node for it.
1842  if ((LHSR.second - LHSR.first) == 1 &&
1843      LHSR.first->High == CR.GE &&
1844      cast<ConstantInt>(C)->getSExtValue() ==
1845      (cast<ConstantInt>(CR.GE)->getSExtValue() + 1LL)) {
1846    TrueBB = LHSR.first->BB;
1847  } else {
1848    TrueBB = new MachineBasicBlock(LLVMBB);
1849    CurMF->getBasicBlockList().insert(BBI, TrueBB);
1850    WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR));
1851  }
1852
1853  // Similar to the optimization above, if the Value being switched on is
1854  // known to be less than the Constant CR.LT, and the current Case Value
1855  // is CR.LT - 1, then we can branch directly to the target block for
1856  // the current Case Value, rather than emitting a RHS leaf node for it.
1857  if ((RHSR.second - RHSR.first) == 1 && CR.LT &&
1858      cast<ConstantInt>(RHSR.first->Low)->getSExtValue() ==
1859      (cast<ConstantInt>(CR.LT)->getSExtValue() - 1LL)) {
1860    FalseBB = RHSR.first->BB;
1861  } else {
1862    FalseBB = new MachineBasicBlock(LLVMBB);
1863    CurMF->getBasicBlockList().insert(BBI, FalseBB);
1864    WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR));
1865  }
1866
1867  // Create a CaseBlock record representing a conditional branch to
1868  // the LHS node if the value being switched on SV is less than C.
1869  // Otherwise, branch to LHS.
1870  SelectionDAGISel::CaseBlock CB(ISD::SETLT, SV, C, NULL,
1871                                 TrueBB, FalseBB, CR.CaseBB);
1872
1873  if (CR.CaseBB == CurMBB)
1874    visitSwitchCase(CB);
1875  else
1876    SwitchCases.push_back(CB);
1877
1878  return true;
1879}
1880
1881/// handleBitTestsSwitchCase - if current case range has few destination and
1882/// range span less, than machine word bitwidth, encode case range into series
1883/// of masks and emit bit tests with these masks.
1884bool SelectionDAGLowering::handleBitTestsSwitchCase(CaseRec& CR,
1885                                                    CaseRecVector& WorkList,
1886                                                    Value* SV,
1887                                                    MachineBasicBlock* Default){
1888  unsigned IntPtrBits = MVT::getSizeInBits(TLI.getPointerTy());
1889
1890  Case& FrontCase = *CR.Range.first;
1891  Case& BackCase  = *(CR.Range.second-1);
1892
1893  // Get the MachineFunction which holds the current MBB.  This is used when
1894  // inserting any additional MBBs necessary to represent the switch.
1895  MachineFunction *CurMF = CurMBB->getParent();
1896
1897  unsigned numCmps = 0;
1898  for (CaseItr I = CR.Range.first, E = CR.Range.second;
1899       I!=E; ++I) {
1900    // Single case counts one, case range - two.
1901    if (I->Low == I->High)
1902      numCmps +=1;
1903    else
1904      numCmps +=2;
1905  }
1906
1907  // Count unique destinations
1908  SmallSet<MachineBasicBlock*, 4> Dests;
1909  for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
1910    Dests.insert(I->BB);
1911    if (Dests.size() > 3)
1912      // Don't bother the code below, if there are too much unique destinations
1913      return false;
1914  }
1915  DOUT << "Total number of unique destinations: " << Dests.size() << "\n"
1916       << "Total number of comparisons: " << numCmps << "\n";
1917
1918  // Compute span of values.
1919  Constant* minValue = FrontCase.Low;
1920  Constant* maxValue = BackCase.High;
1921  uint64_t range = cast<ConstantInt>(maxValue)->getSExtValue() -
1922                   cast<ConstantInt>(minValue)->getSExtValue();
1923  DOUT << "Compare range: " << range << "\n"
1924       << "Low bound: " << cast<ConstantInt>(minValue)->getSExtValue() << "\n"
1925       << "High bound: " << cast<ConstantInt>(maxValue)->getSExtValue() << "\n";
1926
1927  if (range>=IntPtrBits ||
1928      (!(Dests.size() == 1 && numCmps >= 3) &&
1929       !(Dests.size() == 2 && numCmps >= 5) &&
1930       !(Dests.size() >= 3 && numCmps >= 6)))
1931    return false;
1932
1933  DOUT << "Emitting bit tests\n";
1934  int64_t lowBound = 0;
1935
1936  // Optimize the case where all the case values fit in a
1937  // word without having to subtract minValue. In this case,
1938  // we can optimize away the subtraction.
1939  if (cast<ConstantInt>(minValue)->getSExtValue() >= 0 &&
1940      cast<ConstantInt>(maxValue)->getSExtValue() <  IntPtrBits) {
1941    range = cast<ConstantInt>(maxValue)->getSExtValue();
1942  } else {
1943    lowBound = cast<ConstantInt>(minValue)->getSExtValue();
1944  }
1945
1946  CaseBitsVector CasesBits;
1947  unsigned i, count = 0;
1948
1949  for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
1950    MachineBasicBlock* Dest = I->BB;
1951    for (i = 0; i < count; ++i)
1952      if (Dest == CasesBits[i].BB)
1953        break;
1954
1955    if (i == count) {
1956      assert((count < 3) && "Too much destinations to test!");
1957      CasesBits.push_back(CaseBits(0, Dest, 0));
1958      count++;
1959    }
1960
1961    uint64_t lo = cast<ConstantInt>(I->Low)->getSExtValue() - lowBound;
1962    uint64_t hi = cast<ConstantInt>(I->High)->getSExtValue() - lowBound;
1963
1964    for (uint64_t j = lo; j <= hi; j++) {
1965      CasesBits[i].Mask |=  1ULL << j;
1966      CasesBits[i].Bits++;
1967    }
1968
1969  }
1970  std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp());
1971
1972  SelectionDAGISel::BitTestInfo BTC;
1973
1974  // Figure out which block is immediately after the current one.
1975  MachineFunction::iterator BBI = CR.CaseBB;
1976  ++BBI;
1977
1978  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
1979
1980  DOUT << "Cases:\n";
1981  for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) {
1982    DOUT << "Mask: " << CasesBits[i].Mask << ", Bits: " << CasesBits[i].Bits
1983         << ", BB: " << CasesBits[i].BB << "\n";
1984
1985    MachineBasicBlock *CaseBB = new MachineBasicBlock(LLVMBB);
1986    CurMF->getBasicBlockList().insert(BBI, CaseBB);
1987    BTC.push_back(SelectionDAGISel::BitTestCase(CasesBits[i].Mask,
1988                                                CaseBB,
1989                                                CasesBits[i].BB));
1990  }
1991
1992  SelectionDAGISel::BitTestBlock BTB(lowBound, range, SV,
1993                                     -1U, (CR.CaseBB == CurMBB),
1994                                     CR.CaseBB, Default, BTC);
1995
1996  if (CR.CaseBB == CurMBB)
1997    visitBitTestHeader(BTB);
1998
1999  BitTestCases.push_back(BTB);
2000
2001  return true;
2002}
2003
2004
2005// Clusterify - Transform simple list of Cases into list of CaseRange's
2006unsigned SelectionDAGLowering::Clusterify(CaseVector& Cases,
2007                                          const SwitchInst& SI) {
2008  unsigned numCmps = 0;
2009
2010  // Start with "simple" cases
2011  for (unsigned i = 1; i < SI.getNumSuccessors(); ++i) {
2012    MachineBasicBlock *SMBB = FuncInfo.MBBMap[SI.getSuccessor(i)];
2013    Cases.push_back(Case(SI.getSuccessorValue(i),
2014                         SI.getSuccessorValue(i),
2015                         SMBB));
2016  }
2017  std::sort(Cases.begin(), Cases.end(), CaseCmp());
2018
2019  // Merge case into clusters
2020  if (Cases.size()>=2)
2021    // Must recompute end() each iteration because it may be
2022    // invalidated by erase if we hold on to it
2023    for (CaseItr I=Cases.begin(), J=++(Cases.begin()); J!=Cases.end(); ) {
2024      int64_t nextValue = cast<ConstantInt>(J->Low)->getSExtValue();
2025      int64_t currentValue = cast<ConstantInt>(I->High)->getSExtValue();
2026      MachineBasicBlock* nextBB = J->BB;
2027      MachineBasicBlock* currentBB = I->BB;
2028
2029      // If the two neighboring cases go to the same destination, merge them
2030      // into a single case.
2031      if ((nextValue-currentValue==1) && (currentBB == nextBB)) {
2032        I->High = J->High;
2033        J = Cases.erase(J);
2034      } else {
2035        I = J++;
2036      }
2037    }
2038
2039  for (CaseItr I=Cases.begin(), E=Cases.end(); I!=E; ++I, ++numCmps) {
2040    if (I->Low != I->High)
2041      // A range counts double, since it requires two compares.
2042      ++numCmps;
2043  }
2044
2045  return numCmps;
2046}
2047
2048void SelectionDAGLowering::visitSwitch(SwitchInst &SI) {
2049  // Figure out which block is immediately after the current one.
2050  MachineBasicBlock *NextBlock = 0;
2051  MachineFunction::iterator BBI = CurMBB;
2052
2053  MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()];
2054
2055  // If there is only the default destination, branch to it if it is not the
2056  // next basic block.  Otherwise, just fall through.
2057  if (SI.getNumOperands() == 2) {
2058    // Update machine-CFG edges.
2059
2060    // If this is not a fall-through branch, emit the branch.
2061    if (Default != NextBlock)
2062      DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, getRoot(),
2063                              DAG.getBasicBlock(Default)));
2064
2065    CurMBB->addSuccessor(Default);
2066    return;
2067  }
2068
2069  // If there are any non-default case statements, create a vector of Cases
2070  // representing each one, and sort the vector so that we can efficiently
2071  // create a binary search tree from them.
2072  CaseVector Cases;
2073  unsigned numCmps = Clusterify(Cases, SI);
2074  DOUT << "Clusterify finished. Total clusters: " << Cases.size()
2075       << ". Total compares: " << numCmps << "\n";
2076
2077  // Get the Value to be switched on and default basic blocks, which will be
2078  // inserted into CaseBlock records, representing basic blocks in the binary
2079  // search tree.
2080  Value *SV = SI.getOperand(0);
2081
2082  // Push the initial CaseRec onto the worklist
2083  CaseRecVector WorkList;
2084  WorkList.push_back(CaseRec(CurMBB,0,0,CaseRange(Cases.begin(),Cases.end())));
2085
2086  while (!WorkList.empty()) {
2087    // Grab a record representing a case range to process off the worklist
2088    CaseRec CR = WorkList.back();
2089    WorkList.pop_back();
2090
2091    if (handleBitTestsSwitchCase(CR, WorkList, SV, Default))
2092      continue;
2093
2094    // If the range has few cases (two or less) emit a series of specific
2095    // tests.
2096    if (handleSmallSwitchRange(CR, WorkList, SV, Default))
2097      continue;
2098
2099    // If the switch has more than 5 blocks, and at least 40% dense, and the
2100    // target supports indirect branches, then emit a jump table rather than
2101    // lowering the switch to a binary tree of conditional branches.
2102    if (handleJTSwitchCase(CR, WorkList, SV, Default))
2103      continue;
2104
2105    // Emit binary tree. We need to pick a pivot, and push left and right ranges
2106    // onto the worklist. Leafs are handled via handleSmallSwitchRange() call.
2107    handleBTSplitSwitchCase(CR, WorkList, SV, Default);
2108  }
2109}
2110
2111
2112void SelectionDAGLowering::visitSub(User &I) {
2113  // -0.0 - X --> fneg
2114  const Type *Ty = I.getType();
2115  if (isa<VectorType>(Ty)) {
2116    if (ConstantVector *CV = dyn_cast<ConstantVector>(I.getOperand(0))) {
2117      const VectorType *DestTy = cast<VectorType>(I.getType());
2118      const Type *ElTy = DestTy->getElementType();
2119      if (ElTy->isFloatingPoint()) {
2120        unsigned VL = DestTy->getNumElements();
2121        std::vector<Constant*> NZ(VL, ConstantFP::getNegativeZero(ElTy));
2122        Constant *CNZ = ConstantVector::get(&NZ[0], NZ.size());
2123        if (CV == CNZ) {
2124          SDOperand Op2 = getValue(I.getOperand(1));
2125          setValue(&I, DAG.getNode(ISD::FNEG, Op2.getValueType(), Op2));
2126          return;
2127        }
2128      }
2129    }
2130  }
2131  if (Ty->isFloatingPoint()) {
2132    if (ConstantFP *CFP = dyn_cast<ConstantFP>(I.getOperand(0)))
2133      if (CFP->isExactlyValue(ConstantFP::getNegativeZero(Ty)->getValueAPF())) {
2134        SDOperand Op2 = getValue(I.getOperand(1));
2135        setValue(&I, DAG.getNode(ISD::FNEG, Op2.getValueType(), Op2));
2136        return;
2137      }
2138  }
2139
2140  visitBinary(I, Ty->isFPOrFPVector() ? ISD::FSUB : ISD::SUB);
2141}
2142
2143void SelectionDAGLowering::visitBinary(User &I, unsigned OpCode) {
2144  SDOperand Op1 = getValue(I.getOperand(0));
2145  SDOperand Op2 = getValue(I.getOperand(1));
2146
2147  setValue(&I, DAG.getNode(OpCode, Op1.getValueType(), Op1, Op2));
2148}
2149
2150void SelectionDAGLowering::visitShift(User &I, unsigned Opcode) {
2151  SDOperand Op1 = getValue(I.getOperand(0));
2152  SDOperand Op2 = getValue(I.getOperand(1));
2153
2154  if (MVT::getSizeInBits(TLI.getShiftAmountTy()) <
2155      MVT::getSizeInBits(Op2.getValueType()))
2156    Op2 = DAG.getNode(ISD::TRUNCATE, TLI.getShiftAmountTy(), Op2);
2157  else if (TLI.getShiftAmountTy() > Op2.getValueType())
2158    Op2 = DAG.getNode(ISD::ANY_EXTEND, TLI.getShiftAmountTy(), Op2);
2159
2160  setValue(&I, DAG.getNode(Opcode, Op1.getValueType(), Op1, Op2));
2161}
2162
2163void SelectionDAGLowering::visitICmp(User &I) {
2164  ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
2165  if (ICmpInst *IC = dyn_cast<ICmpInst>(&I))
2166    predicate = IC->getPredicate();
2167  else if (ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
2168    predicate = ICmpInst::Predicate(IC->getPredicate());
2169  SDOperand Op1 = getValue(I.getOperand(0));
2170  SDOperand Op2 = getValue(I.getOperand(1));
2171  ISD::CondCode Opcode;
2172  switch (predicate) {
2173    case ICmpInst::ICMP_EQ  : Opcode = ISD::SETEQ; break;
2174    case ICmpInst::ICMP_NE  : Opcode = ISD::SETNE; break;
2175    case ICmpInst::ICMP_UGT : Opcode = ISD::SETUGT; break;
2176    case ICmpInst::ICMP_UGE : Opcode = ISD::SETUGE; break;
2177    case ICmpInst::ICMP_ULT : Opcode = ISD::SETULT; break;
2178    case ICmpInst::ICMP_ULE : Opcode = ISD::SETULE; break;
2179    case ICmpInst::ICMP_SGT : Opcode = ISD::SETGT; break;
2180    case ICmpInst::ICMP_SGE : Opcode = ISD::SETGE; break;
2181    case ICmpInst::ICMP_SLT : Opcode = ISD::SETLT; break;
2182    case ICmpInst::ICMP_SLE : Opcode = ISD::SETLE; break;
2183    default:
2184      assert(!"Invalid ICmp predicate value");
2185      Opcode = ISD::SETEQ;
2186      break;
2187  }
2188  setValue(&I, DAG.getSetCC(MVT::i1, Op1, Op2, Opcode));
2189}
2190
2191void SelectionDAGLowering::visitFCmp(User &I) {
2192  FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
2193  if (FCmpInst *FC = dyn_cast<FCmpInst>(&I))
2194    predicate = FC->getPredicate();
2195  else if (ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
2196    predicate = FCmpInst::Predicate(FC->getPredicate());
2197  SDOperand Op1 = getValue(I.getOperand(0));
2198  SDOperand Op2 = getValue(I.getOperand(1));
2199  ISD::CondCode Condition, FOC, FPC;
2200  switch (predicate) {
2201    case FCmpInst::FCMP_FALSE: FOC = FPC = ISD::SETFALSE; break;
2202    case FCmpInst::FCMP_OEQ:   FOC = ISD::SETEQ; FPC = ISD::SETOEQ; break;
2203    case FCmpInst::FCMP_OGT:   FOC = ISD::SETGT; FPC = ISD::SETOGT; break;
2204    case FCmpInst::FCMP_OGE:   FOC = ISD::SETGE; FPC = ISD::SETOGE; break;
2205    case FCmpInst::FCMP_OLT:   FOC = ISD::SETLT; FPC = ISD::SETOLT; break;
2206    case FCmpInst::FCMP_OLE:   FOC = ISD::SETLE; FPC = ISD::SETOLE; break;
2207    case FCmpInst::FCMP_ONE:   FOC = ISD::SETNE; FPC = ISD::SETONE; break;
2208    case FCmpInst::FCMP_ORD:   FOC = ISD::SETEQ; FPC = ISD::SETO;   break;
2209    case FCmpInst::FCMP_UNO:   FOC = ISD::SETNE; FPC = ISD::SETUO;  break;
2210    case FCmpInst::FCMP_UEQ:   FOC = ISD::SETEQ; FPC = ISD::SETUEQ; break;
2211    case FCmpInst::FCMP_UGT:   FOC = ISD::SETGT; FPC = ISD::SETUGT; break;
2212    case FCmpInst::FCMP_UGE:   FOC = ISD::SETGE; FPC = ISD::SETUGE; break;
2213    case FCmpInst::FCMP_ULT:   FOC = ISD::SETLT; FPC = ISD::SETULT; break;
2214    case FCmpInst::FCMP_ULE:   FOC = ISD::SETLE; FPC = ISD::SETULE; break;
2215    case FCmpInst::FCMP_UNE:   FOC = ISD::SETNE; FPC = ISD::SETUNE; break;
2216    case FCmpInst::FCMP_TRUE:  FOC = FPC = ISD::SETTRUE; break;
2217    default:
2218      assert(!"Invalid FCmp predicate value");
2219      FOC = FPC = ISD::SETFALSE;
2220      break;
2221  }
2222  if (FiniteOnlyFPMath())
2223    Condition = FOC;
2224  else
2225    Condition = FPC;
2226  setValue(&I, DAG.getSetCC(MVT::i1, Op1, Op2, Condition));
2227}
2228
2229void SelectionDAGLowering::visitSelect(User &I) {
2230  SDOperand Cond     = getValue(I.getOperand(0));
2231  SDOperand TrueVal  = getValue(I.getOperand(1));
2232  SDOperand FalseVal = getValue(I.getOperand(2));
2233  setValue(&I, DAG.getNode(ISD::SELECT, TrueVal.getValueType(), Cond,
2234                           TrueVal, FalseVal));
2235}
2236
2237
2238void SelectionDAGLowering::visitTrunc(User &I) {
2239  // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
2240  SDOperand N = getValue(I.getOperand(0));
2241  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2242  setValue(&I, DAG.getNode(ISD::TRUNCATE, DestVT, N));
2243}
2244
2245void SelectionDAGLowering::visitZExt(User &I) {
2246  // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2247  // ZExt also can't be a cast to bool for same reason. So, nothing much to do
2248  SDOperand N = getValue(I.getOperand(0));
2249  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2250  setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, DestVT, N));
2251}
2252
2253void SelectionDAGLowering::visitSExt(User &I) {
2254  // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2255  // SExt also can't be a cast to bool for same reason. So, nothing much to do
2256  SDOperand N = getValue(I.getOperand(0));
2257  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2258  setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, DestVT, N));
2259}
2260
2261void SelectionDAGLowering::visitFPTrunc(User &I) {
2262  // FPTrunc is never a no-op cast, no need to check
2263  SDOperand N = getValue(I.getOperand(0));
2264  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2265  setValue(&I, DAG.getNode(ISD::FP_ROUND, DestVT, N, DAG.getIntPtrConstant(0)));
2266}
2267
2268void SelectionDAGLowering::visitFPExt(User &I){
2269  // FPTrunc is never a no-op cast, no need to check
2270  SDOperand N = getValue(I.getOperand(0));
2271  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2272  setValue(&I, DAG.getNode(ISD::FP_EXTEND, DestVT, N));
2273}
2274
2275void SelectionDAGLowering::visitFPToUI(User &I) {
2276  // FPToUI is never a no-op cast, no need to check
2277  SDOperand N = getValue(I.getOperand(0));
2278  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2279  setValue(&I, DAG.getNode(ISD::FP_TO_UINT, DestVT, N));
2280}
2281
2282void SelectionDAGLowering::visitFPToSI(User &I) {
2283  // FPToSI is never a no-op cast, no need to check
2284  SDOperand N = getValue(I.getOperand(0));
2285  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2286  setValue(&I, DAG.getNode(ISD::FP_TO_SINT, DestVT, N));
2287}
2288
2289void SelectionDAGLowering::visitUIToFP(User &I) {
2290  // UIToFP is never a no-op cast, no need to check
2291  SDOperand N = getValue(I.getOperand(0));
2292  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2293  setValue(&I, DAG.getNode(ISD::UINT_TO_FP, DestVT, N));
2294}
2295
2296void SelectionDAGLowering::visitSIToFP(User &I){
2297  // UIToFP is never a no-op cast, no need to check
2298  SDOperand N = getValue(I.getOperand(0));
2299  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2300  setValue(&I, DAG.getNode(ISD::SINT_TO_FP, DestVT, N));
2301}
2302
2303void SelectionDAGLowering::visitPtrToInt(User &I) {
2304  // What to do depends on the size of the integer and the size of the pointer.
2305  // We can either truncate, zero extend, or no-op, accordingly.
2306  SDOperand N = getValue(I.getOperand(0));
2307  MVT::ValueType SrcVT = N.getValueType();
2308  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2309  SDOperand Result;
2310  if (MVT::getSizeInBits(DestVT) < MVT::getSizeInBits(SrcVT))
2311    Result = DAG.getNode(ISD::TRUNCATE, DestVT, N);
2312  else
2313    // Note: ZERO_EXTEND can handle cases where the sizes are equal too
2314    Result = DAG.getNode(ISD::ZERO_EXTEND, DestVT, N);
2315  setValue(&I, Result);
2316}
2317
2318void SelectionDAGLowering::visitIntToPtr(User &I) {
2319  // What to do depends on the size of the integer and the size of the pointer.
2320  // We can either truncate, zero extend, or no-op, accordingly.
2321  SDOperand N = getValue(I.getOperand(0));
2322  MVT::ValueType SrcVT = N.getValueType();
2323  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2324  if (MVT::getSizeInBits(DestVT) < MVT::getSizeInBits(SrcVT))
2325    setValue(&I, DAG.getNode(ISD::TRUNCATE, DestVT, N));
2326  else
2327    // Note: ZERO_EXTEND can handle cases where the sizes are equal too
2328    setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, DestVT, N));
2329}
2330
2331void SelectionDAGLowering::visitBitCast(User &I) {
2332  SDOperand N = getValue(I.getOperand(0));
2333  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2334
2335  // BitCast assures us that source and destination are the same size so this
2336  // is either a BIT_CONVERT or a no-op.
2337  if (DestVT != N.getValueType())
2338    setValue(&I, DAG.getNode(ISD::BIT_CONVERT, DestVT, N)); // convert types
2339  else
2340    setValue(&I, N); // noop cast.
2341}
2342
2343void SelectionDAGLowering::visitInsertElement(User &I) {
2344  SDOperand InVec = getValue(I.getOperand(0));
2345  SDOperand InVal = getValue(I.getOperand(1));
2346  SDOperand InIdx = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(),
2347                                getValue(I.getOperand(2)));
2348
2349  setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT,
2350                           TLI.getValueType(I.getType()),
2351                           InVec, InVal, InIdx));
2352}
2353
2354void SelectionDAGLowering::visitExtractElement(User &I) {
2355  SDOperand InVec = getValue(I.getOperand(0));
2356  SDOperand InIdx = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(),
2357                                getValue(I.getOperand(1)));
2358  setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT,
2359                           TLI.getValueType(I.getType()), InVec, InIdx));
2360}
2361
2362void SelectionDAGLowering::visitShuffleVector(User &I) {
2363  SDOperand V1   = getValue(I.getOperand(0));
2364  SDOperand V2   = getValue(I.getOperand(1));
2365  SDOperand Mask = getValue(I.getOperand(2));
2366
2367  setValue(&I, DAG.getNode(ISD::VECTOR_SHUFFLE,
2368                           TLI.getValueType(I.getType()),
2369                           V1, V2, Mask));
2370}
2371
2372
2373void SelectionDAGLowering::visitGetElementPtr(User &I) {
2374  SDOperand N = getValue(I.getOperand(0));
2375  const Type *Ty = I.getOperand(0)->getType();
2376
2377  for (GetElementPtrInst::op_iterator OI = I.op_begin()+1, E = I.op_end();
2378       OI != E; ++OI) {
2379    Value *Idx = *OI;
2380    if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
2381      unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
2382      if (Field) {
2383        // N = N + Offset
2384        uint64_t Offset = TD->getStructLayout(StTy)->getElementOffset(Field);
2385        N = DAG.getNode(ISD::ADD, N.getValueType(), N,
2386                        DAG.getIntPtrConstant(Offset));
2387      }
2388      Ty = StTy->getElementType(Field);
2389    } else {
2390      Ty = cast<SequentialType>(Ty)->getElementType();
2391
2392      // If this is a constant subscript, handle it quickly.
2393      if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
2394        if (CI->getZExtValue() == 0) continue;
2395        uint64_t Offs =
2396            TD->getABITypeSize(Ty)*cast<ConstantInt>(CI)->getSExtValue();
2397        N = DAG.getNode(ISD::ADD, N.getValueType(), N,
2398                        DAG.getIntPtrConstant(Offs));
2399        continue;
2400      }
2401
2402      // N = N + Idx * ElementSize;
2403      uint64_t ElementSize = TD->getABITypeSize(Ty);
2404      SDOperand IdxN = getValue(Idx);
2405
2406      // If the index is smaller or larger than intptr_t, truncate or extend
2407      // it.
2408      if (IdxN.getValueType() < N.getValueType()) {
2409        IdxN = DAG.getNode(ISD::SIGN_EXTEND, N.getValueType(), IdxN);
2410      } else if (IdxN.getValueType() > N.getValueType())
2411        IdxN = DAG.getNode(ISD::TRUNCATE, N.getValueType(), IdxN);
2412
2413      // If this is a multiply by a power of two, turn it into a shl
2414      // immediately.  This is a very common case.
2415      if (isPowerOf2_64(ElementSize)) {
2416        unsigned Amt = Log2_64(ElementSize);
2417        IdxN = DAG.getNode(ISD::SHL, N.getValueType(), IdxN,
2418                           DAG.getConstant(Amt, TLI.getShiftAmountTy()));
2419        N = DAG.getNode(ISD::ADD, N.getValueType(), N, IdxN);
2420        continue;
2421      }
2422
2423      SDOperand Scale = DAG.getIntPtrConstant(ElementSize);
2424      IdxN = DAG.getNode(ISD::MUL, N.getValueType(), IdxN, Scale);
2425      N = DAG.getNode(ISD::ADD, N.getValueType(), N, IdxN);
2426    }
2427  }
2428  setValue(&I, N);
2429}
2430
2431void SelectionDAGLowering::visitAlloca(AllocaInst &I) {
2432  // If this is a fixed sized alloca in the entry block of the function,
2433  // allocate it statically on the stack.
2434  if (FuncInfo.StaticAllocaMap.count(&I))
2435    return;   // getValue will auto-populate this.
2436
2437  const Type *Ty = I.getAllocatedType();
2438  uint64_t TySize = TLI.getTargetData()->getABITypeSize(Ty);
2439  unsigned Align =
2440    std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty),
2441             I.getAlignment());
2442
2443  SDOperand AllocSize = getValue(I.getArraySize());
2444  MVT::ValueType IntPtr = TLI.getPointerTy();
2445  if (IntPtr < AllocSize.getValueType())
2446    AllocSize = DAG.getNode(ISD::TRUNCATE, IntPtr, AllocSize);
2447  else if (IntPtr > AllocSize.getValueType())
2448    AllocSize = DAG.getNode(ISD::ZERO_EXTEND, IntPtr, AllocSize);
2449
2450  AllocSize = DAG.getNode(ISD::MUL, IntPtr, AllocSize,
2451                          DAG.getIntPtrConstant(TySize));
2452
2453  // Handle alignment.  If the requested alignment is less than or equal to
2454  // the stack alignment, ignore it.  If the size is greater than or equal to
2455  // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
2456  unsigned StackAlign =
2457    TLI.getTargetMachine().getFrameInfo()->getStackAlignment();
2458  if (Align <= StackAlign)
2459    Align = 0;
2460
2461  // Round the size of the allocation up to the stack alignment size
2462  // by add SA-1 to the size.
2463  AllocSize = DAG.getNode(ISD::ADD, AllocSize.getValueType(), AllocSize,
2464                          DAG.getIntPtrConstant(StackAlign-1));
2465  // Mask out the low bits for alignment purposes.
2466  AllocSize = DAG.getNode(ISD::AND, AllocSize.getValueType(), AllocSize,
2467                          DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1)));
2468
2469  SDOperand Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) };
2470  const MVT::ValueType *VTs = DAG.getNodeValueTypes(AllocSize.getValueType(),
2471                                                    MVT::Other);
2472  SDOperand DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, VTs, 2, Ops, 3);
2473  setValue(&I, DSA);
2474  DAG.setRoot(DSA.getValue(1));
2475
2476  // Inform the Frame Information that we have just allocated a variable-sized
2477  // object.
2478  CurMBB->getParent()->getFrameInfo()->CreateVariableSizedObject();
2479}
2480
2481void SelectionDAGLowering::visitLoad(LoadInst &I) {
2482  SDOperand Ptr = getValue(I.getOperand(0));
2483
2484  SDOperand Root;
2485  if (I.isVolatile())
2486    Root = getRoot();
2487  else {
2488    // Do not serialize non-volatile loads against each other.
2489    Root = DAG.getRoot();
2490  }
2491
2492  setValue(&I, getLoadFrom(I.getType(), Ptr, I.getOperand(0),
2493                           Root, I.isVolatile(), I.getAlignment()));
2494}
2495
2496SDOperand SelectionDAGLowering::getLoadFrom(const Type *Ty, SDOperand Ptr,
2497                                            const Value *SV, SDOperand Root,
2498                                            bool isVolatile,
2499                                            unsigned Alignment) {
2500  SDOperand L =
2501    DAG.getLoad(TLI.getValueType(Ty), Root, Ptr, SV, 0,
2502                isVolatile, Alignment);
2503
2504  if (isVolatile)
2505    DAG.setRoot(L.getValue(1));
2506  else
2507    PendingLoads.push_back(L.getValue(1));
2508
2509  return L;
2510}
2511
2512
2513void SelectionDAGLowering::visitStore(StoreInst &I) {
2514  Value *SrcV = I.getOperand(0);
2515  SDOperand Src = getValue(SrcV);
2516  SDOperand Ptr = getValue(I.getOperand(1));
2517  DAG.setRoot(DAG.getStore(getRoot(), Src, Ptr, I.getOperand(1), 0,
2518                           I.isVolatile(), I.getAlignment()));
2519}
2520
2521/// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
2522/// node.
2523void SelectionDAGLowering::visitTargetIntrinsic(CallInst &I,
2524                                                unsigned Intrinsic) {
2525  bool HasChain = !I.doesNotAccessMemory();
2526  bool OnlyLoad = HasChain && I.onlyReadsMemory();
2527
2528  // Build the operand list.
2529  SmallVector<SDOperand, 8> Ops;
2530  if (HasChain) {  // If this intrinsic has side-effects, chainify it.
2531    if (OnlyLoad) {
2532      // We don't need to serialize loads against other loads.
2533      Ops.push_back(DAG.getRoot());
2534    } else {
2535      Ops.push_back(getRoot());
2536    }
2537  }
2538
2539  // Add the intrinsic ID as an integer operand.
2540  Ops.push_back(DAG.getConstant(Intrinsic, TLI.getPointerTy()));
2541
2542  // Add all operands of the call to the operand list.
2543  for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) {
2544    SDOperand Op = getValue(I.getOperand(i));
2545    assert(TLI.isTypeLegal(Op.getValueType()) &&
2546           "Intrinsic uses a non-legal type?");
2547    Ops.push_back(Op);
2548  }
2549
2550  std::vector<MVT::ValueType> VTs;
2551  if (I.getType() != Type::VoidTy) {
2552    MVT::ValueType VT = TLI.getValueType(I.getType());
2553    if (MVT::isVector(VT)) {
2554      const VectorType *DestTy = cast<VectorType>(I.getType());
2555      MVT::ValueType EltVT = TLI.getValueType(DestTy->getElementType());
2556
2557      VT = MVT::getVectorType(EltVT, DestTy->getNumElements());
2558      assert(VT != MVT::Other && "Intrinsic uses a non-legal type?");
2559    }
2560
2561    assert(TLI.isTypeLegal(VT) && "Intrinsic uses a non-legal type?");
2562    VTs.push_back(VT);
2563  }
2564  if (HasChain)
2565    VTs.push_back(MVT::Other);
2566
2567  const MVT::ValueType *VTList = DAG.getNodeValueTypes(VTs);
2568
2569  // Create the node.
2570  SDOperand Result;
2571  if (!HasChain)
2572    Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, VTList, VTs.size(),
2573                         &Ops[0], Ops.size());
2574  else if (I.getType() != Type::VoidTy)
2575    Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, VTList, VTs.size(),
2576                         &Ops[0], Ops.size());
2577  else
2578    Result = DAG.getNode(ISD::INTRINSIC_VOID, VTList, VTs.size(),
2579                         &Ops[0], Ops.size());
2580
2581  if (HasChain) {
2582    SDOperand Chain = Result.getValue(Result.Val->getNumValues()-1);
2583    if (OnlyLoad)
2584      PendingLoads.push_back(Chain);
2585    else
2586      DAG.setRoot(Chain);
2587  }
2588  if (I.getType() != Type::VoidTy) {
2589    if (const VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
2590      MVT::ValueType VT = TLI.getValueType(PTy);
2591      Result = DAG.getNode(ISD::BIT_CONVERT, VT, Result);
2592    }
2593    setValue(&I, Result);
2594  }
2595}
2596
2597/// ExtractTypeInfo - Returns the type info, possibly bitcast, encoded in V.
2598static GlobalVariable *ExtractTypeInfo (Value *V) {
2599  V = IntrinsicInst::StripPointerCasts(V);
2600  GlobalVariable *GV = dyn_cast<GlobalVariable>(V);
2601  assert (GV || isa<ConstantPointerNull>(V) &&
2602          "TypeInfo must be a global variable or NULL");
2603  return GV;
2604}
2605
2606/// addCatchInfo - Extract the personality and type infos from an eh.selector
2607/// call, and add them to the specified machine basic block.
2608static void addCatchInfo(CallInst &I, MachineModuleInfo *MMI,
2609                         MachineBasicBlock *MBB) {
2610  // Inform the MachineModuleInfo of the personality for this landing pad.
2611  ConstantExpr *CE = cast<ConstantExpr>(I.getOperand(2));
2612  assert(CE->getOpcode() == Instruction::BitCast &&
2613         isa<Function>(CE->getOperand(0)) &&
2614         "Personality should be a function");
2615  MMI->addPersonality(MBB, cast<Function>(CE->getOperand(0)));
2616
2617  // Gather all the type infos for this landing pad and pass them along to
2618  // MachineModuleInfo.
2619  std::vector<GlobalVariable *> TyInfo;
2620  unsigned N = I.getNumOperands();
2621
2622  for (unsigned i = N - 1; i > 2; --i) {
2623    if (ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(i))) {
2624      unsigned FilterLength = CI->getZExtValue();
2625      unsigned FirstCatch = i + FilterLength + !FilterLength;
2626      assert (FirstCatch <= N && "Invalid filter length");
2627
2628      if (FirstCatch < N) {
2629        TyInfo.reserve(N - FirstCatch);
2630        for (unsigned j = FirstCatch; j < N; ++j)
2631          TyInfo.push_back(ExtractTypeInfo(I.getOperand(j)));
2632        MMI->addCatchTypeInfo(MBB, TyInfo);
2633        TyInfo.clear();
2634      }
2635
2636      if (!FilterLength) {
2637        // Cleanup.
2638        MMI->addCleanup(MBB);
2639      } else {
2640        // Filter.
2641        TyInfo.reserve(FilterLength - 1);
2642        for (unsigned j = i + 1; j < FirstCatch; ++j)
2643          TyInfo.push_back(ExtractTypeInfo(I.getOperand(j)));
2644        MMI->addFilterTypeInfo(MBB, TyInfo);
2645        TyInfo.clear();
2646      }
2647
2648      N = i;
2649    }
2650  }
2651
2652  if (N > 3) {
2653    TyInfo.reserve(N - 3);
2654    for (unsigned j = 3; j < N; ++j)
2655      TyInfo.push_back(ExtractTypeInfo(I.getOperand(j)));
2656    MMI->addCatchTypeInfo(MBB, TyInfo);
2657  }
2658}
2659
2660/// visitIntrinsicCall - Lower the call to the specified intrinsic function.  If
2661/// we want to emit this as a call to a named external function, return the name
2662/// otherwise lower it and return null.
2663const char *
2664SelectionDAGLowering::visitIntrinsicCall(CallInst &I, unsigned Intrinsic) {
2665  switch (Intrinsic) {
2666  default:
2667    // By default, turn this into a target intrinsic node.
2668    visitTargetIntrinsic(I, Intrinsic);
2669    return 0;
2670  case Intrinsic::vastart:  visitVAStart(I); return 0;
2671  case Intrinsic::vaend:    visitVAEnd(I); return 0;
2672  case Intrinsic::vacopy:   visitVACopy(I); return 0;
2673  case Intrinsic::returnaddress:
2674    setValue(&I, DAG.getNode(ISD::RETURNADDR, TLI.getPointerTy(),
2675                             getValue(I.getOperand(1))));
2676    return 0;
2677  case Intrinsic::frameaddress:
2678    setValue(&I, DAG.getNode(ISD::FRAMEADDR, TLI.getPointerTy(),
2679                             getValue(I.getOperand(1))));
2680    return 0;
2681  case Intrinsic::setjmp:
2682    return "_setjmp"+!TLI.usesUnderscoreSetJmp();
2683    break;
2684  case Intrinsic::longjmp:
2685    return "_longjmp"+!TLI.usesUnderscoreLongJmp();
2686    break;
2687  case Intrinsic::memcpy_i32:
2688  case Intrinsic::memcpy_i64:
2689    visitMemIntrinsic(I, ISD::MEMCPY);
2690    return 0;
2691  case Intrinsic::memset_i32:
2692  case Intrinsic::memset_i64:
2693    visitMemIntrinsic(I, ISD::MEMSET);
2694    return 0;
2695  case Intrinsic::memmove_i32:
2696  case Intrinsic::memmove_i64:
2697    visitMemIntrinsic(I, ISD::MEMMOVE);
2698    return 0;
2699
2700  case Intrinsic::dbg_stoppoint: {
2701    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2702    DbgStopPointInst &SPI = cast<DbgStopPointInst>(I);
2703    if (MMI && SPI.getContext() && MMI->Verify(SPI.getContext())) {
2704      SDOperand Ops[5];
2705
2706      Ops[0] = getRoot();
2707      Ops[1] = getValue(SPI.getLineValue());
2708      Ops[2] = getValue(SPI.getColumnValue());
2709
2710      DebugInfoDesc *DD = MMI->getDescFor(SPI.getContext());
2711      assert(DD && "Not a debug information descriptor");
2712      CompileUnitDesc *CompileUnit = cast<CompileUnitDesc>(DD);
2713
2714      Ops[3] = DAG.getString(CompileUnit->getFileName());
2715      Ops[4] = DAG.getString(CompileUnit->getDirectory());
2716
2717      DAG.setRoot(DAG.getNode(ISD::LOCATION, MVT::Other, Ops, 5));
2718    }
2719
2720    return 0;
2721  }
2722  case Intrinsic::dbg_region_start: {
2723    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2724    DbgRegionStartInst &RSI = cast<DbgRegionStartInst>(I);
2725    if (MMI && RSI.getContext() && MMI->Verify(RSI.getContext())) {
2726      unsigned LabelID = MMI->RecordRegionStart(RSI.getContext());
2727      DAG.setRoot(DAG.getNode(ISD::LABEL, MVT::Other, getRoot(),
2728                              DAG.getConstant(LabelID, MVT::i32),
2729                              DAG.getConstant(0, MVT::i32)));
2730    }
2731
2732    return 0;
2733  }
2734  case Intrinsic::dbg_region_end: {
2735    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2736    DbgRegionEndInst &REI = cast<DbgRegionEndInst>(I);
2737    if (MMI && REI.getContext() && MMI->Verify(REI.getContext())) {
2738      unsigned LabelID = MMI->RecordRegionEnd(REI.getContext());
2739      DAG.setRoot(DAG.getNode(ISD::LABEL, MVT::Other, getRoot(),
2740                              DAG.getConstant(LabelID, MVT::i32),
2741                              DAG.getConstant(0, MVT::i32)));
2742    }
2743
2744    return 0;
2745  }
2746  case Intrinsic::dbg_func_start: {
2747    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2748    if (!MMI) return 0;
2749    DbgFuncStartInst &FSI = cast<DbgFuncStartInst>(I);
2750    Value *SP = FSI.getSubprogram();
2751    if (SP && MMI->Verify(SP)) {
2752      // llvm.dbg.func.start implicitly defines a dbg_stoppoint which is
2753      // what (most?) gdb expects.
2754      DebugInfoDesc *DD = MMI->getDescFor(SP);
2755      assert(DD && "Not a debug information descriptor");
2756      SubprogramDesc *Subprogram = cast<SubprogramDesc>(DD);
2757      const CompileUnitDesc *CompileUnit = Subprogram->getFile();
2758      unsigned SrcFile = MMI->RecordSource(CompileUnit->getDirectory(),
2759                                           CompileUnit->getFileName());
2760      // Record the source line but does create a label. It will be emitted
2761      // at asm emission time.
2762      MMI->RecordSourceLine(Subprogram->getLine(), 0, SrcFile);
2763    }
2764
2765    return 0;
2766  }
2767  case Intrinsic::dbg_declare: {
2768    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2769    DbgDeclareInst &DI = cast<DbgDeclareInst>(I);
2770    Value *Variable = DI.getVariable();
2771    if (MMI && Variable && MMI->Verify(Variable))
2772      DAG.setRoot(DAG.getNode(ISD::DECLARE, MVT::Other, getRoot(),
2773                              getValue(DI.getAddress()), getValue(Variable)));
2774    return 0;
2775  }
2776
2777  case Intrinsic::eh_exception: {
2778    if (ExceptionHandling) {
2779      if (!CurMBB->isLandingPad()) {
2780        // FIXME: Mark exception register as live in.  Hack for PR1508.
2781        unsigned Reg = TLI.getExceptionAddressRegister();
2782        if (Reg) CurMBB->addLiveIn(Reg);
2783      }
2784      // Insert the EXCEPTIONADDR instruction.
2785      SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
2786      SDOperand Ops[1];
2787      Ops[0] = DAG.getRoot();
2788      SDOperand Op = DAG.getNode(ISD::EXCEPTIONADDR, VTs, Ops, 1);
2789      setValue(&I, Op);
2790      DAG.setRoot(Op.getValue(1));
2791    } else {
2792      setValue(&I, DAG.getConstant(0, TLI.getPointerTy()));
2793    }
2794    return 0;
2795  }
2796
2797  case Intrinsic::eh_selector_i32:
2798  case Intrinsic::eh_selector_i64: {
2799    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2800    MVT::ValueType VT = (Intrinsic == Intrinsic::eh_selector_i32 ?
2801                         MVT::i32 : MVT::i64);
2802
2803    if (ExceptionHandling && MMI) {
2804      if (CurMBB->isLandingPad())
2805        addCatchInfo(I, MMI, CurMBB);
2806      else {
2807#ifndef NDEBUG
2808        FuncInfo.CatchInfoLost.insert(&I);
2809#endif
2810        // FIXME: Mark exception selector register as live in.  Hack for PR1508.
2811        unsigned Reg = TLI.getExceptionSelectorRegister();
2812        if (Reg) CurMBB->addLiveIn(Reg);
2813      }
2814
2815      // Insert the EHSELECTION instruction.
2816      SDVTList VTs = DAG.getVTList(VT, MVT::Other);
2817      SDOperand Ops[2];
2818      Ops[0] = getValue(I.getOperand(1));
2819      Ops[1] = getRoot();
2820      SDOperand Op = DAG.getNode(ISD::EHSELECTION, VTs, Ops, 2);
2821      setValue(&I, Op);
2822      DAG.setRoot(Op.getValue(1));
2823    } else {
2824      setValue(&I, DAG.getConstant(0, VT));
2825    }
2826
2827    return 0;
2828  }
2829
2830  case Intrinsic::eh_typeid_for_i32:
2831  case Intrinsic::eh_typeid_for_i64: {
2832    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2833    MVT::ValueType VT = (Intrinsic == Intrinsic::eh_typeid_for_i32 ?
2834                         MVT::i32 : MVT::i64);
2835
2836    if (MMI) {
2837      // Find the type id for the given typeinfo.
2838      GlobalVariable *GV = ExtractTypeInfo(I.getOperand(1));
2839
2840      unsigned TypeID = MMI->getTypeIDFor(GV);
2841      setValue(&I, DAG.getConstant(TypeID, VT));
2842    } else {
2843      // Return something different to eh_selector.
2844      setValue(&I, DAG.getConstant(1, VT));
2845    }
2846
2847    return 0;
2848  }
2849
2850  case Intrinsic::eh_return: {
2851    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2852
2853    if (MMI && ExceptionHandling) {
2854      MMI->setCallsEHReturn(true);
2855      DAG.setRoot(DAG.getNode(ISD::EH_RETURN,
2856                              MVT::Other,
2857                              getRoot(),
2858                              getValue(I.getOperand(1)),
2859                              getValue(I.getOperand(2))));
2860    } else {
2861      setValue(&I, DAG.getConstant(0, TLI.getPointerTy()));
2862    }
2863
2864    return 0;
2865  }
2866
2867   case Intrinsic::eh_unwind_init: {
2868     if (MachineModuleInfo *MMI = DAG.getMachineModuleInfo()) {
2869       MMI->setCallsUnwindInit(true);
2870     }
2871
2872     return 0;
2873   }
2874
2875   case Intrinsic::eh_dwarf_cfa: {
2876     if (ExceptionHandling) {
2877       MVT::ValueType VT = getValue(I.getOperand(1)).getValueType();
2878       SDOperand CfaArg;
2879       if (MVT::getSizeInBits(VT) > MVT::getSizeInBits(TLI.getPointerTy()))
2880         CfaArg = DAG.getNode(ISD::TRUNCATE,
2881                              TLI.getPointerTy(), getValue(I.getOperand(1)));
2882       else
2883         CfaArg = DAG.getNode(ISD::SIGN_EXTEND,
2884                              TLI.getPointerTy(), getValue(I.getOperand(1)));
2885
2886       SDOperand Offset = DAG.getNode(ISD::ADD,
2887                                      TLI.getPointerTy(),
2888                                      DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET,
2889                                                  TLI.getPointerTy()),
2890                                      CfaArg);
2891       setValue(&I, DAG.getNode(ISD::ADD,
2892                                TLI.getPointerTy(),
2893                                DAG.getNode(ISD::FRAMEADDR,
2894                                            TLI.getPointerTy(),
2895                                            DAG.getConstant(0,
2896                                                            TLI.getPointerTy())),
2897                                Offset));
2898     } else {
2899       setValue(&I, DAG.getConstant(0, TLI.getPointerTy()));
2900     }
2901
2902     return 0;
2903  }
2904
2905  case Intrinsic::sqrt:
2906    setValue(&I, DAG.getNode(ISD::FSQRT,
2907                             getValue(I.getOperand(1)).getValueType(),
2908                             getValue(I.getOperand(1))));
2909    return 0;
2910  case Intrinsic::powi:
2911    setValue(&I, DAG.getNode(ISD::FPOWI,
2912                             getValue(I.getOperand(1)).getValueType(),
2913                             getValue(I.getOperand(1)),
2914                             getValue(I.getOperand(2))));
2915    return 0;
2916  case Intrinsic::sin:
2917    setValue(&I, DAG.getNode(ISD::FSIN,
2918                             getValue(I.getOperand(1)).getValueType(),
2919                             getValue(I.getOperand(1))));
2920    return 0;
2921  case Intrinsic::cos:
2922    setValue(&I, DAG.getNode(ISD::FCOS,
2923                             getValue(I.getOperand(1)).getValueType(),
2924                             getValue(I.getOperand(1))));
2925    return 0;
2926  case Intrinsic::pow:
2927    setValue(&I, DAG.getNode(ISD::FPOW,
2928                             getValue(I.getOperand(1)).getValueType(),
2929                             getValue(I.getOperand(1)),
2930                             getValue(I.getOperand(2))));
2931    return 0;
2932  case Intrinsic::pcmarker: {
2933    SDOperand Tmp = getValue(I.getOperand(1));
2934    DAG.setRoot(DAG.getNode(ISD::PCMARKER, MVT::Other, getRoot(), Tmp));
2935    return 0;
2936  }
2937  case Intrinsic::readcyclecounter: {
2938    SDOperand Op = getRoot();
2939    SDOperand Tmp = DAG.getNode(ISD::READCYCLECOUNTER,
2940                                DAG.getNodeValueTypes(MVT::i64, MVT::Other), 2,
2941                                &Op, 1);
2942    setValue(&I, Tmp);
2943    DAG.setRoot(Tmp.getValue(1));
2944    return 0;
2945  }
2946  case Intrinsic::part_select: {
2947    // Currently not implemented: just abort
2948    assert(0 && "part_select intrinsic not implemented");
2949    abort();
2950  }
2951  case Intrinsic::part_set: {
2952    // Currently not implemented: just abort
2953    assert(0 && "part_set intrinsic not implemented");
2954    abort();
2955  }
2956  case Intrinsic::bswap:
2957    setValue(&I, DAG.getNode(ISD::BSWAP,
2958                             getValue(I.getOperand(1)).getValueType(),
2959                             getValue(I.getOperand(1))));
2960    return 0;
2961  case Intrinsic::cttz: {
2962    SDOperand Arg = getValue(I.getOperand(1));
2963    MVT::ValueType Ty = Arg.getValueType();
2964    SDOperand result = DAG.getNode(ISD::CTTZ, Ty, Arg);
2965    setValue(&I, result);
2966    return 0;
2967  }
2968  case Intrinsic::ctlz: {
2969    SDOperand Arg = getValue(I.getOperand(1));
2970    MVT::ValueType Ty = Arg.getValueType();
2971    SDOperand result = DAG.getNode(ISD::CTLZ, Ty, Arg);
2972    setValue(&I, result);
2973    return 0;
2974  }
2975  case Intrinsic::ctpop: {
2976    SDOperand Arg = getValue(I.getOperand(1));
2977    MVT::ValueType Ty = Arg.getValueType();
2978    SDOperand result = DAG.getNode(ISD::CTPOP, Ty, Arg);
2979    setValue(&I, result);
2980    return 0;
2981  }
2982  case Intrinsic::stacksave: {
2983    SDOperand Op = getRoot();
2984    SDOperand Tmp = DAG.getNode(ISD::STACKSAVE,
2985              DAG.getNodeValueTypes(TLI.getPointerTy(), MVT::Other), 2, &Op, 1);
2986    setValue(&I, Tmp);
2987    DAG.setRoot(Tmp.getValue(1));
2988    return 0;
2989  }
2990  case Intrinsic::stackrestore: {
2991    SDOperand Tmp = getValue(I.getOperand(1));
2992    DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, MVT::Other, getRoot(), Tmp));
2993    return 0;
2994  }
2995  case Intrinsic::prefetch:
2996    // FIXME: Currently discarding prefetches.
2997    return 0;
2998
2999  case Intrinsic::var_annotation:
3000    // Discard annotate attributes
3001    return 0;
3002
3003  case Intrinsic::init_trampoline: {
3004    const Function *F =
3005      cast<Function>(IntrinsicInst::StripPointerCasts(I.getOperand(2)));
3006
3007    SDOperand Ops[6];
3008    Ops[0] = getRoot();
3009    Ops[1] = getValue(I.getOperand(1));
3010    Ops[2] = getValue(I.getOperand(2));
3011    Ops[3] = getValue(I.getOperand(3));
3012    Ops[4] = DAG.getSrcValue(I.getOperand(1));
3013    Ops[5] = DAG.getSrcValue(F);
3014
3015    SDOperand Tmp = DAG.getNode(ISD::TRAMPOLINE,
3016                                DAG.getNodeValueTypes(TLI.getPointerTy(),
3017                                                      MVT::Other), 2,
3018                                Ops, 6);
3019
3020    setValue(&I, Tmp);
3021    DAG.setRoot(Tmp.getValue(1));
3022    return 0;
3023  }
3024
3025  case Intrinsic::gcroot:
3026    if (GCI) {
3027      Value *Alloca = I.getOperand(1);
3028      Constant *TypeMap = cast<Constant>(I.getOperand(2));
3029
3030      FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).Val);
3031      GCI->addStackRoot(FI->getIndex(), TypeMap);
3032    }
3033    return 0;
3034
3035  case Intrinsic::gcread:
3036  case Intrinsic::gcwrite:
3037    assert(0 && "Collector failed to lower gcread/gcwrite intrinsics!");
3038    return 0;
3039
3040  case Intrinsic::flt_rounds: {
3041    setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, MVT::i32));
3042    return 0;
3043  }
3044
3045  case Intrinsic::trap: {
3046    DAG.setRoot(DAG.getNode(ISD::TRAP, MVT::Other, getRoot()));
3047    return 0;
3048  }
3049  }
3050}
3051
3052
3053void SelectionDAGLowering::LowerCallTo(CallSite CS, SDOperand Callee,
3054                                       bool IsTailCall,
3055                                       MachineBasicBlock *LandingPad) {
3056  const PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
3057  const FunctionType *FTy = cast<FunctionType>(PT->getElementType());
3058  MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
3059  unsigned BeginLabel = 0, EndLabel = 0;
3060
3061  TargetLowering::ArgListTy Args;
3062  TargetLowering::ArgListEntry Entry;
3063  Args.reserve(CS.arg_size());
3064  for (CallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
3065       i != e; ++i) {
3066    SDOperand ArgNode = getValue(*i);
3067    Entry.Node = ArgNode; Entry.Ty = (*i)->getType();
3068
3069    unsigned attrInd = i - CS.arg_begin() + 1;
3070    Entry.isSExt  = CS.paramHasAttr(attrInd, ParamAttr::SExt);
3071    Entry.isZExt  = CS.paramHasAttr(attrInd, ParamAttr::ZExt);
3072    Entry.isInReg = CS.paramHasAttr(attrInd, ParamAttr::InReg);
3073    Entry.isSRet  = CS.paramHasAttr(attrInd, ParamAttr::StructRet);
3074    Entry.isNest  = CS.paramHasAttr(attrInd, ParamAttr::Nest);
3075    Entry.isByVal = CS.paramHasAttr(attrInd, ParamAttr::ByVal);
3076    Args.push_back(Entry);
3077  }
3078
3079  bool MarkTryRange = LandingPad ||
3080    // C++ requires special handling of 'nounwind' calls.
3081    (CS.doesNotThrow());
3082
3083  if (MarkTryRange && ExceptionHandling && MMI) {
3084    // Insert a label before the invoke call to mark the try range.  This can be
3085    // used to detect deletion of the invoke via the MachineModuleInfo.
3086    BeginLabel = MMI->NextLabelID();
3087    DAG.setRoot(DAG.getNode(ISD::LABEL, MVT::Other, getRoot(),
3088                            DAG.getConstant(BeginLabel, MVT::i32),
3089                            DAG.getConstant(1, MVT::i32)));
3090  }
3091
3092  std::pair<SDOperand,SDOperand> Result =
3093    TLI.LowerCallTo(getRoot(), CS.getType(),
3094                    CS.paramHasAttr(0, ParamAttr::SExt),
3095                    CS.paramHasAttr(0, ParamAttr::ZExt),
3096                    FTy->isVarArg(), CS.getCallingConv(), IsTailCall,
3097                    Callee, Args, DAG);
3098  if (CS.getType() != Type::VoidTy)
3099    setValue(CS.getInstruction(), Result.first);
3100  DAG.setRoot(Result.second);
3101
3102  if (MarkTryRange && ExceptionHandling && MMI) {
3103    // Insert a label at the end of the invoke call to mark the try range.  This
3104    // can be used to detect deletion of the invoke via the MachineModuleInfo.
3105    EndLabel = MMI->NextLabelID();
3106    DAG.setRoot(DAG.getNode(ISD::LABEL, MVT::Other, getRoot(),
3107                            DAG.getConstant(EndLabel, MVT::i32),
3108                            DAG.getConstant(1, MVT::i32)));
3109
3110    // Inform MachineModuleInfo of range.
3111    MMI->addInvoke(LandingPad, BeginLabel, EndLabel);
3112  }
3113}
3114
3115
3116void SelectionDAGLowering::visitCall(CallInst &I) {
3117  const char *RenameFn = 0;
3118  if (Function *F = I.getCalledFunction()) {
3119    if (F->isDeclaration()) {
3120      if (unsigned IID = F->getIntrinsicID()) {
3121        RenameFn = visitIntrinsicCall(I, IID);
3122        if (!RenameFn)
3123          return;
3124      }
3125    }
3126
3127    // Check for well-known libc/libm calls.  If the function is internal, it
3128    // can't be a library call.
3129    unsigned NameLen = F->getNameLen();
3130    if (!F->hasInternalLinkage() && NameLen) {
3131      const char *NameStr = F->getNameStart();
3132      if (NameStr[0] == 'c' &&
3133          ((NameLen == 8 && !strcmp(NameStr, "copysign")) ||
3134           (NameLen == 9 && !strcmp(NameStr, "copysignf")))) {
3135        if (I.getNumOperands() == 3 &&   // Basic sanity checks.
3136            I.getOperand(1)->getType()->isFloatingPoint() &&
3137            I.getType() == I.getOperand(1)->getType() &&
3138            I.getType() == I.getOperand(2)->getType()) {
3139          SDOperand LHS = getValue(I.getOperand(1));
3140          SDOperand RHS = getValue(I.getOperand(2));
3141          setValue(&I, DAG.getNode(ISD::FCOPYSIGN, LHS.getValueType(),
3142                                   LHS, RHS));
3143          return;
3144        }
3145      } else if (NameStr[0] == 'f' &&
3146                 ((NameLen == 4 && !strcmp(NameStr, "fabs")) ||
3147                  (NameLen == 5 && !strcmp(NameStr, "fabsf")) ||
3148                  (NameLen == 5 && !strcmp(NameStr, "fabsl")))) {
3149        if (I.getNumOperands() == 2 &&   // Basic sanity checks.
3150            I.getOperand(1)->getType()->isFloatingPoint() &&
3151            I.getType() == I.getOperand(1)->getType()) {
3152          SDOperand Tmp = getValue(I.getOperand(1));
3153          setValue(&I, DAG.getNode(ISD::FABS, Tmp.getValueType(), Tmp));
3154          return;
3155        }
3156      } else if (NameStr[0] == 's' &&
3157                 ((NameLen == 3 && !strcmp(NameStr, "sin")) ||
3158                  (NameLen == 4 && !strcmp(NameStr, "sinf")) ||
3159                  (NameLen == 4 && !strcmp(NameStr, "sinl")))) {
3160        if (I.getNumOperands() == 2 &&   // Basic sanity checks.
3161            I.getOperand(1)->getType()->isFloatingPoint() &&
3162            I.getType() == I.getOperand(1)->getType()) {
3163          SDOperand Tmp = getValue(I.getOperand(1));
3164          setValue(&I, DAG.getNode(ISD::FSIN, Tmp.getValueType(), Tmp));
3165          return;
3166        }
3167      } else if (NameStr[0] == 'c' &&
3168                 ((NameLen == 3 && !strcmp(NameStr, "cos")) ||
3169                  (NameLen == 4 && !strcmp(NameStr, "cosf")) ||
3170                  (NameLen == 4 && !strcmp(NameStr, "cosl")))) {
3171        if (I.getNumOperands() == 2 &&   // Basic sanity checks.
3172            I.getOperand(1)->getType()->isFloatingPoint() &&
3173            I.getType() == I.getOperand(1)->getType()) {
3174          SDOperand Tmp = getValue(I.getOperand(1));
3175          setValue(&I, DAG.getNode(ISD::FCOS, Tmp.getValueType(), Tmp));
3176          return;
3177        }
3178      }
3179    }
3180  } else if (isa<InlineAsm>(I.getOperand(0))) {
3181    visitInlineAsm(&I);
3182    return;
3183  }
3184
3185  SDOperand Callee;
3186  if (!RenameFn)
3187    Callee = getValue(I.getOperand(0));
3188  else
3189    Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy());
3190
3191  LowerCallTo(&I, Callee, I.isTailCall());
3192}
3193
3194
3195/// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
3196/// this value and returns the result as a ValueVT value.  This uses
3197/// Chain/Flag as the input and updates them for the output Chain/Flag.
3198/// If the Flag pointer is NULL, no flag is used.
3199SDOperand RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
3200                                        SDOperand &Chain, SDOperand *Flag)const{
3201  // Copy the legal parts from the registers.
3202  unsigned NumParts = Regs.size();
3203  SmallVector<SDOperand, 8> Parts(NumParts);
3204  for (unsigned i = 0; i != NumParts; ++i) {
3205    SDOperand Part = Flag ?
3206                     DAG.getCopyFromReg(Chain, Regs[i], RegVT, *Flag) :
3207                     DAG.getCopyFromReg(Chain, Regs[i], RegVT);
3208    Chain = Part.getValue(1);
3209    if (Flag)
3210      *Flag = Part.getValue(2);
3211    Parts[i] = Part;
3212  }
3213
3214  // Assemble the legal parts into the final value.
3215  return getCopyFromParts(DAG, &Parts[0], NumParts, RegVT, ValueVT);
3216}
3217
3218/// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
3219/// specified value into the registers specified by this object.  This uses
3220/// Chain/Flag as the input and updates them for the output Chain/Flag.
3221/// If the Flag pointer is NULL, no flag is used.
3222void RegsForValue::getCopyToRegs(SDOperand Val, SelectionDAG &DAG,
3223                                 SDOperand &Chain, SDOperand *Flag) const {
3224  // Get the list of the values's legal parts.
3225  unsigned NumParts = Regs.size();
3226  SmallVector<SDOperand, 8> Parts(NumParts);
3227  getCopyToParts(DAG, Val, &Parts[0], NumParts, RegVT);
3228
3229  // Copy the parts into the registers.
3230  for (unsigned i = 0; i != NumParts; ++i) {
3231    SDOperand Part = Flag ?
3232                     DAG.getCopyToReg(Chain, Regs[i], Parts[i], *Flag) :
3233                     DAG.getCopyToReg(Chain, Regs[i], Parts[i]);
3234    Chain = Part.getValue(0);
3235    if (Flag)
3236      *Flag = Part.getValue(1);
3237  }
3238}
3239
3240/// AddInlineAsmOperands - Add this value to the specified inlineasm node
3241/// operand list.  This adds the code marker and includes the number of
3242/// values added into it.
3243void RegsForValue::AddInlineAsmOperands(unsigned Code, SelectionDAG &DAG,
3244                                        std::vector<SDOperand> &Ops) const {
3245  MVT::ValueType IntPtrTy = DAG.getTargetLoweringInfo().getPointerTy();
3246  Ops.push_back(DAG.getTargetConstant(Code | (Regs.size() << 3), IntPtrTy));
3247  for (unsigned i = 0, e = Regs.size(); i != e; ++i)
3248    Ops.push_back(DAG.getRegister(Regs[i], RegVT));
3249}
3250
3251/// isAllocatableRegister - If the specified register is safe to allocate,
3252/// i.e. it isn't a stack pointer or some other special register, return the
3253/// register class for the register.  Otherwise, return null.
3254static const TargetRegisterClass *
3255isAllocatableRegister(unsigned Reg, MachineFunction &MF,
3256                      const TargetLowering &TLI,
3257                      const TargetRegisterInfo *TRI) {
3258  MVT::ValueType FoundVT = MVT::Other;
3259  const TargetRegisterClass *FoundRC = 0;
3260  for (TargetRegisterInfo::regclass_iterator RCI = TRI->regclass_begin(),
3261       E = TRI->regclass_end(); RCI != E; ++RCI) {
3262    MVT::ValueType ThisVT = MVT::Other;
3263
3264    const TargetRegisterClass *RC = *RCI;
3265    // If none of the the value types for this register class are valid, we
3266    // can't use it.  For example, 64-bit reg classes on 32-bit targets.
3267    for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
3268         I != E; ++I) {
3269      if (TLI.isTypeLegal(*I)) {
3270        // If we have already found this register in a different register class,
3271        // choose the one with the largest VT specified.  For example, on
3272        // PowerPC, we favor f64 register classes over f32.
3273        if (FoundVT == MVT::Other ||
3274            MVT::getSizeInBits(FoundVT) < MVT::getSizeInBits(*I)) {
3275          ThisVT = *I;
3276          break;
3277        }
3278      }
3279    }
3280
3281    if (ThisVT == MVT::Other) continue;
3282
3283    // NOTE: This isn't ideal.  In particular, this might allocate the
3284    // frame pointer in functions that need it (due to them not being taken
3285    // out of allocation, because a variable sized allocation hasn't been seen
3286    // yet).  This is a slight code pessimization, but should still work.
3287    for (TargetRegisterClass::iterator I = RC->allocation_order_begin(MF),
3288         E = RC->allocation_order_end(MF); I != E; ++I)
3289      if (*I == Reg) {
3290        // We found a matching register class.  Keep looking at others in case
3291        // we find one with larger registers that this physreg is also in.
3292        FoundRC = RC;
3293        FoundVT = ThisVT;
3294        break;
3295      }
3296  }
3297  return FoundRC;
3298}
3299
3300
3301namespace {
3302/// AsmOperandInfo - This contains information for each constraint that we are
3303/// lowering.
3304struct AsmOperandInfo : public InlineAsm::ConstraintInfo {
3305  /// ConstraintCode - This contains the actual string for the code, like "m".
3306  std::string ConstraintCode;
3307
3308  /// ConstraintType - Information about the constraint code, e.g. Register,
3309  /// RegisterClass, Memory, Other, Unknown.
3310  TargetLowering::ConstraintType ConstraintType;
3311
3312  /// CallOperand/CallOperandval - If this is the result output operand or a
3313  /// clobber, this is null, otherwise it is the incoming operand to the
3314  /// CallInst.  This gets modified as the asm is processed.
3315  SDOperand CallOperand;
3316  Value *CallOperandVal;
3317
3318  /// ConstraintVT - The ValueType for the operand value.
3319  MVT::ValueType ConstraintVT;
3320
3321  /// AssignedRegs - If this is a register or register class operand, this
3322  /// contains the set of register corresponding to the operand.
3323  RegsForValue AssignedRegs;
3324
3325  AsmOperandInfo(const InlineAsm::ConstraintInfo &info)
3326    : InlineAsm::ConstraintInfo(info),
3327      ConstraintType(TargetLowering::C_Unknown),
3328      CallOperand(0,0), CallOperandVal(0), ConstraintVT(MVT::Other) {
3329  }
3330
3331  void ComputeConstraintToUse(const TargetLowering &TLI);
3332
3333  /// MarkAllocatedRegs - Once AssignedRegs is set, mark the assigned registers
3334  /// busy in OutputRegs/InputRegs.
3335  void MarkAllocatedRegs(bool isOutReg, bool isInReg,
3336                         std::set<unsigned> &OutputRegs,
3337                         std::set<unsigned> &InputRegs) const {
3338     if (isOutReg)
3339       OutputRegs.insert(AssignedRegs.Regs.begin(), AssignedRegs.Regs.end());
3340     if (isInReg)
3341       InputRegs.insert(AssignedRegs.Regs.begin(), AssignedRegs.Regs.end());
3342   }
3343};
3344} // end anon namespace.
3345
3346/// getConstraintGenerality - Return an integer indicating how general CT is.
3347static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
3348  switch (CT) {
3349    default: assert(0 && "Unknown constraint type!");
3350    case TargetLowering::C_Other:
3351    case TargetLowering::C_Unknown:
3352      return 0;
3353    case TargetLowering::C_Register:
3354      return 1;
3355    case TargetLowering::C_RegisterClass:
3356      return 2;
3357    case TargetLowering::C_Memory:
3358      return 3;
3359  }
3360}
3361
3362void AsmOperandInfo::ComputeConstraintToUse(const TargetLowering &TLI) {
3363  assert(!Codes.empty() && "Must have at least one constraint");
3364
3365  std::string *Current = &Codes[0];
3366  TargetLowering::ConstraintType CurType = TLI.getConstraintType(*Current);
3367  if (Codes.size() == 1) {   // Single-letter constraints ('r') are very common.
3368    ConstraintCode = *Current;
3369    ConstraintType = CurType;
3370  } else {
3371    unsigned CurGenerality = getConstraintGenerality(CurType);
3372
3373    // If we have multiple constraints, try to pick the most general one ahead
3374    // of time.  This isn't a wonderful solution, but handles common cases.
3375    for (unsigned j = 1, e = Codes.size(); j != e; ++j) {
3376      TargetLowering::ConstraintType ThisType = TLI.getConstraintType(Codes[j]);
3377      unsigned ThisGenerality = getConstraintGenerality(ThisType);
3378      if (ThisGenerality > CurGenerality) {
3379        // This constraint letter is more general than the previous one,
3380        // use it.
3381        CurType = ThisType;
3382        Current = &Codes[j];
3383        CurGenerality = ThisGenerality;
3384      }
3385    }
3386
3387    ConstraintCode = *Current;
3388    ConstraintType = CurType;
3389  }
3390
3391  if (ConstraintCode == "X") {
3392    if (isa<BasicBlock>(CallOperandVal) || isa<ConstantInt>(CallOperandVal))
3393      return;
3394    // This matches anything.  Labels and constants we handle elsewhere
3395    // ('X' is the only thing that matches labels).  Otherwise, try to
3396    // resolve it to something we know about by looking at the actual
3397    // operand type.
3398    std::string s = "";
3399    TLI.lowerXConstraint(ConstraintVT, s);
3400    if (s!="") {
3401      ConstraintCode = s;
3402      ConstraintType = TLI.getConstraintType(ConstraintCode);
3403    }
3404  }
3405}
3406
3407
3408void SelectionDAGLowering::
3409GetRegistersForValue(AsmOperandInfo &OpInfo, bool HasEarlyClobber,
3410                     std::set<unsigned> &OutputRegs,
3411                     std::set<unsigned> &InputRegs) {
3412  // Compute whether this value requires an input register, an output register,
3413  // or both.
3414  bool isOutReg = false;
3415  bool isInReg = false;
3416  switch (OpInfo.Type) {
3417  case InlineAsm::isOutput:
3418    isOutReg = true;
3419
3420    // If this is an early-clobber output, or if there is an input
3421    // constraint that matches this, we need to reserve the input register
3422    // so no other inputs allocate to it.
3423    isInReg = OpInfo.isEarlyClobber || OpInfo.hasMatchingInput;
3424    break;
3425  case InlineAsm::isInput:
3426    isInReg = true;
3427    isOutReg = false;
3428    break;
3429  case InlineAsm::isClobber:
3430    isOutReg = true;
3431    isInReg = true;
3432    break;
3433  }
3434
3435
3436  MachineFunction &MF = DAG.getMachineFunction();
3437  std::vector<unsigned> Regs;
3438
3439  // If this is a constraint for a single physreg, or a constraint for a
3440  // register class, find it.
3441  std::pair<unsigned, const TargetRegisterClass*> PhysReg =
3442    TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
3443                                     OpInfo.ConstraintVT);
3444
3445  unsigned NumRegs = 1;
3446  if (OpInfo.ConstraintVT != MVT::Other)
3447    NumRegs = TLI.getNumRegisters(OpInfo.ConstraintVT);
3448  MVT::ValueType RegVT;
3449  MVT::ValueType ValueVT = OpInfo.ConstraintVT;
3450
3451
3452  // If this is a constraint for a specific physical register, like {r17},
3453  // assign it now.
3454  if (PhysReg.first) {
3455    if (OpInfo.ConstraintVT == MVT::Other)
3456      ValueVT = *PhysReg.second->vt_begin();
3457
3458    // Get the actual register value type.  This is important, because the user
3459    // may have asked for (e.g.) the AX register in i32 type.  We need to
3460    // remember that AX is actually i16 to get the right extension.
3461    RegVT = *PhysReg.second->vt_begin();
3462
3463    // This is a explicit reference to a physical register.
3464    Regs.push_back(PhysReg.first);
3465
3466    // If this is an expanded reference, add the rest of the regs to Regs.
3467    if (NumRegs != 1) {
3468      TargetRegisterClass::iterator I = PhysReg.second->begin();
3469      TargetRegisterClass::iterator E = PhysReg.second->end();
3470      for (; *I != PhysReg.first; ++I)
3471        assert(I != E && "Didn't find reg!");
3472
3473      // Already added the first reg.
3474      --NumRegs; ++I;
3475      for (; NumRegs; --NumRegs, ++I) {
3476        assert(I != E && "Ran out of registers to allocate!");
3477        Regs.push_back(*I);
3478      }
3479    }
3480    OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
3481    OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs);
3482    return;
3483  }
3484
3485  // Otherwise, if this was a reference to an LLVM register class, create vregs
3486  // for this reference.
3487  std::vector<unsigned> RegClassRegs;
3488  const TargetRegisterClass *RC = PhysReg.second;
3489  if (RC) {
3490    // If this is an early clobber or tied register, our regalloc doesn't know
3491    // how to maintain the constraint.  If it isn't, go ahead and create vreg
3492    // and let the regalloc do the right thing.
3493    if (!OpInfo.hasMatchingInput && !OpInfo.isEarlyClobber &&
3494        // If there is some other early clobber and this is an input register,
3495        // then we are forced to pre-allocate the input reg so it doesn't
3496        // conflict with the earlyclobber.
3497        !(OpInfo.Type == InlineAsm::isInput && HasEarlyClobber)) {
3498      RegVT = *PhysReg.second->vt_begin();
3499
3500      if (OpInfo.ConstraintVT == MVT::Other)
3501        ValueVT = RegVT;
3502
3503      // Create the appropriate number of virtual registers.
3504      MachineRegisterInfo &RegInfo = MF.getRegInfo();
3505      for (; NumRegs; --NumRegs)
3506        Regs.push_back(RegInfo.createVirtualRegister(PhysReg.second));
3507
3508      OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
3509      OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs);
3510      return;
3511    }
3512
3513    // Otherwise, we can't allocate it.  Let the code below figure out how to
3514    // maintain these constraints.
3515    RegClassRegs.assign(PhysReg.second->begin(), PhysReg.second->end());
3516
3517  } else {
3518    // This is a reference to a register class that doesn't directly correspond
3519    // to an LLVM register class.  Allocate NumRegs consecutive, available,
3520    // registers from the class.
3521    RegClassRegs = TLI.getRegClassForInlineAsmConstraint(OpInfo.ConstraintCode,
3522                                                         OpInfo.ConstraintVT);
3523  }
3524
3525  const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
3526  unsigned NumAllocated = 0;
3527  for (unsigned i = 0, e = RegClassRegs.size(); i != e; ++i) {
3528    unsigned Reg = RegClassRegs[i];
3529    // See if this register is available.
3530    if ((isOutReg && OutputRegs.count(Reg)) ||   // Already used.
3531        (isInReg  && InputRegs.count(Reg))) {    // Already used.
3532      // Make sure we find consecutive registers.
3533      NumAllocated = 0;
3534      continue;
3535    }
3536
3537    // Check to see if this register is allocatable (i.e. don't give out the
3538    // stack pointer).
3539    if (RC == 0) {
3540      RC = isAllocatableRegister(Reg, MF, TLI, TRI);
3541      if (!RC) {        // Couldn't allocate this register.
3542        // Reset NumAllocated to make sure we return consecutive registers.
3543        NumAllocated = 0;
3544        continue;
3545      }
3546    }
3547
3548    // Okay, this register is good, we can use it.
3549    ++NumAllocated;
3550
3551    // If we allocated enough consecutive registers, succeed.
3552    if (NumAllocated == NumRegs) {
3553      unsigned RegStart = (i-NumAllocated)+1;
3554      unsigned RegEnd   = i+1;
3555      // Mark all of the allocated registers used.
3556      for (unsigned i = RegStart; i != RegEnd; ++i)
3557        Regs.push_back(RegClassRegs[i]);
3558
3559      OpInfo.AssignedRegs = RegsForValue(Regs, *RC->vt_begin(),
3560                                         OpInfo.ConstraintVT);
3561      OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs);
3562      return;
3563    }
3564  }
3565
3566  // Otherwise, we couldn't allocate enough registers for this.
3567  return;
3568}
3569
3570
3571/// visitInlineAsm - Handle a call to an InlineAsm object.
3572///
3573void SelectionDAGLowering::visitInlineAsm(CallSite CS) {
3574  InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
3575
3576  /// ConstraintOperands - Information about all of the constraints.
3577  std::vector<AsmOperandInfo> ConstraintOperands;
3578
3579  SDOperand Chain = getRoot();
3580  SDOperand Flag;
3581
3582  std::set<unsigned> OutputRegs, InputRegs;
3583
3584  // Do a prepass over the constraints, canonicalizing them, and building up the
3585  // ConstraintOperands list.
3586  std::vector<InlineAsm::ConstraintInfo>
3587    ConstraintInfos = IA->ParseConstraints();
3588
3589  // SawEarlyClobber - Keep track of whether we saw an earlyclobber output
3590  // constraint.  If so, we can't let the register allocator allocate any input
3591  // registers, because it will not know to avoid the earlyclobbered output reg.
3592  bool SawEarlyClobber = false;
3593
3594  unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
3595  for (unsigned i = 0, e = ConstraintInfos.size(); i != e; ++i) {
3596    ConstraintOperands.push_back(AsmOperandInfo(ConstraintInfos[i]));
3597    AsmOperandInfo &OpInfo = ConstraintOperands.back();
3598
3599    MVT::ValueType OpVT = MVT::Other;
3600
3601    // Compute the value type for each operand.
3602    switch (OpInfo.Type) {
3603    case InlineAsm::isOutput:
3604      if (!OpInfo.isIndirect) {
3605        // The return value of the call is this value.  As such, there is no
3606        // corresponding argument.
3607        assert(CS.getType() != Type::VoidTy && "Bad inline asm!");
3608        OpVT = TLI.getValueType(CS.getType());
3609      } else {
3610        OpInfo.CallOperandVal = CS.getArgument(ArgNo++);
3611      }
3612      break;
3613    case InlineAsm::isInput:
3614      OpInfo.CallOperandVal = CS.getArgument(ArgNo++);
3615      break;
3616    case InlineAsm::isClobber:
3617      // Nothing to do.
3618      break;
3619    }
3620
3621    // If this is an input or an indirect output, process the call argument.
3622    // BasicBlocks are labels, currently appearing only in asm's.
3623    if (OpInfo.CallOperandVal) {
3624      if (isa<BasicBlock>(OpInfo.CallOperandVal))
3625        OpInfo.CallOperand =
3626          DAG.getBasicBlock(FuncInfo.MBBMap[cast<BasicBlock>(
3627                                                 OpInfo.CallOperandVal)]);
3628      else {
3629        OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
3630        const Type *OpTy = OpInfo.CallOperandVal->getType();
3631        // If this is an indirect operand, the operand is a pointer to the
3632        // accessed type.
3633        if (OpInfo.isIndirect)
3634          OpTy = cast<PointerType>(OpTy)->getElementType();
3635
3636        // If OpTy is not a first-class value, it may be a struct/union that we
3637        // can tile with integers.
3638        if (!OpTy->isFirstClassType() && OpTy->isSized()) {
3639          unsigned BitSize = TD->getTypeSizeInBits(OpTy);
3640          switch (BitSize) {
3641          default: break;
3642          case 1:
3643          case 8:
3644          case 16:
3645          case 32:
3646          case 64:
3647            OpTy = IntegerType::get(BitSize);
3648            break;
3649          }
3650        }
3651
3652        OpVT = TLI.getValueType(OpTy, true);
3653      }
3654    }
3655
3656    OpInfo.ConstraintVT = OpVT;
3657
3658    // Compute the constraint code and ConstraintType to use.
3659    OpInfo.ComputeConstraintToUse(TLI);
3660
3661    // Keep track of whether we see an earlyclobber.
3662    SawEarlyClobber |= OpInfo.isEarlyClobber;
3663
3664    // If this is a memory input, and if the operand is not indirect, do what we
3665    // need to to provide an address for the memory input.
3666    if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
3667        !OpInfo.isIndirect) {
3668      assert(OpInfo.Type == InlineAsm::isInput &&
3669             "Can only indirectify direct input operands!");
3670
3671      // Memory operands really want the address of the value.  If we don't have
3672      // an indirect input, put it in the constpool if we can, otherwise spill
3673      // it to a stack slot.
3674
3675      // If the operand is a float, integer, or vector constant, spill to a
3676      // constant pool entry to get its address.
3677      Value *OpVal = OpInfo.CallOperandVal;
3678      if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
3679          isa<ConstantVector>(OpVal)) {
3680        OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal),
3681                                                 TLI.getPointerTy());
3682      } else {
3683        // Otherwise, create a stack slot and emit a store to it before the
3684        // asm.
3685        const Type *Ty = OpVal->getType();
3686        uint64_t TySize = TLI.getTargetData()->getABITypeSize(Ty);
3687        unsigned Align  = TLI.getTargetData()->getPrefTypeAlignment(Ty);
3688        MachineFunction &MF = DAG.getMachineFunction();
3689        int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align);
3690        SDOperand StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy());
3691        Chain = DAG.getStore(Chain, OpInfo.CallOperand, StackSlot, NULL, 0);
3692        OpInfo.CallOperand = StackSlot;
3693      }
3694
3695      // There is no longer a Value* corresponding to this operand.
3696      OpInfo.CallOperandVal = 0;
3697      // It is now an indirect operand.
3698      OpInfo.isIndirect = true;
3699    }
3700
3701    // If this constraint is for a specific register, allocate it before
3702    // anything else.
3703    if (OpInfo.ConstraintType == TargetLowering::C_Register)
3704      GetRegistersForValue(OpInfo, SawEarlyClobber, OutputRegs, InputRegs);
3705  }
3706  ConstraintInfos.clear();
3707
3708
3709  // Second pass - Loop over all of the operands, assigning virtual or physregs
3710  // to registerclass operands.
3711  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
3712    AsmOperandInfo &OpInfo = ConstraintOperands[i];
3713
3714    // C_Register operands have already been allocated, Other/Memory don't need
3715    // to be.
3716    if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass)
3717      GetRegistersForValue(OpInfo, SawEarlyClobber, OutputRegs, InputRegs);
3718  }
3719
3720  // AsmNodeOperands - The operands for the ISD::INLINEASM node.
3721  std::vector<SDOperand> AsmNodeOperands;
3722  AsmNodeOperands.push_back(SDOperand());  // reserve space for input chain
3723  AsmNodeOperands.push_back(
3724          DAG.getTargetExternalSymbol(IA->getAsmString().c_str(), MVT::Other));
3725
3726
3727  // Loop over all of the inputs, copying the operand values into the
3728  // appropriate registers and processing the output regs.
3729  RegsForValue RetValRegs;
3730
3731  // IndirectStoresToEmit - The set of stores to emit after the inline asm node.
3732  std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit;
3733
3734  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
3735    AsmOperandInfo &OpInfo = ConstraintOperands[i];
3736
3737    switch (OpInfo.Type) {
3738    case InlineAsm::isOutput: {
3739      if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass &&
3740          OpInfo.ConstraintType != TargetLowering::C_Register) {
3741        // Memory output, or 'other' output (e.g. 'X' constraint).
3742        assert(OpInfo.isIndirect && "Memory output must be indirect operand");
3743
3744        // Add information to the INLINEASM node to know about this output.
3745        unsigned ResOpType = 4/*MEM*/ | (1 << 3);
3746        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
3747                                                        TLI.getPointerTy()));
3748        AsmNodeOperands.push_back(OpInfo.CallOperand);
3749        break;
3750      }
3751
3752      // Otherwise, this is a register or register class output.
3753
3754      // Copy the output from the appropriate register.  Find a register that
3755      // we can use.
3756      if (OpInfo.AssignedRegs.Regs.empty()) {
3757        cerr << "Couldn't allocate output reg for contraint '"
3758             << OpInfo.ConstraintCode << "'!\n";
3759        exit(1);
3760      }
3761
3762      if (!OpInfo.isIndirect) {
3763        // This is the result value of the call.
3764        assert(RetValRegs.Regs.empty() &&
3765               "Cannot have multiple output constraints yet!");
3766        assert(CS.getType() != Type::VoidTy && "Bad inline asm!");
3767        RetValRegs = OpInfo.AssignedRegs;
3768      } else {
3769        IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs,
3770                                                      OpInfo.CallOperandVal));
3771      }
3772
3773      // Add information to the INLINEASM node to know that this register is
3774      // set.
3775      OpInfo.AssignedRegs.AddInlineAsmOperands(2 /*REGDEF*/, DAG,
3776                                               AsmNodeOperands);
3777      break;
3778    }
3779    case InlineAsm::isInput: {
3780      SDOperand InOperandVal = OpInfo.CallOperand;
3781
3782      if (isdigit(OpInfo.ConstraintCode[0])) {    // Matching constraint?
3783        // If this is required to match an output register we have already set,
3784        // just use its register.
3785        unsigned OperandNo = atoi(OpInfo.ConstraintCode.c_str());
3786
3787        // Scan until we find the definition we already emitted of this operand.
3788        // When we find it, create a RegsForValue operand.
3789        unsigned CurOp = 2;  // The first operand.
3790        for (; OperandNo; --OperandNo) {
3791          // Advance to the next operand.
3792          unsigned NumOps =
3793            cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getValue();
3794          assert(((NumOps & 7) == 2 /*REGDEF*/ ||
3795                  (NumOps & 7) == 4 /*MEM*/) &&
3796                 "Skipped past definitions?");
3797          CurOp += (NumOps>>3)+1;
3798        }
3799
3800        unsigned NumOps =
3801          cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getValue();
3802        if ((NumOps & 7) == 2 /*REGDEF*/) {
3803          // Add NumOps>>3 registers to MatchedRegs.
3804          RegsForValue MatchedRegs;
3805          MatchedRegs.ValueVT = InOperandVal.getValueType();
3806          MatchedRegs.RegVT   = AsmNodeOperands[CurOp+1].getValueType();
3807          for (unsigned i = 0, e = NumOps>>3; i != e; ++i) {
3808            unsigned Reg =
3809              cast<RegisterSDNode>(AsmNodeOperands[++CurOp])->getReg();
3810            MatchedRegs.Regs.push_back(Reg);
3811          }
3812
3813          // Use the produced MatchedRegs object to
3814          MatchedRegs.getCopyToRegs(InOperandVal, DAG, Chain, &Flag);
3815          MatchedRegs.AddInlineAsmOperands(1 /*REGUSE*/, DAG, AsmNodeOperands);
3816          break;
3817        } else {
3818          assert((NumOps & 7) == 4/*MEM*/ && "Unknown matching constraint!");
3819          assert(0 && "matching constraints for memory operands unimp");
3820        }
3821      }
3822
3823      if (OpInfo.ConstraintType == TargetLowering::C_Other) {
3824        assert(!OpInfo.isIndirect &&
3825               "Don't know how to handle indirect other inputs yet!");
3826
3827        std::vector<SDOperand> Ops;
3828        TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode[0],
3829                                         Ops, DAG);
3830        if (Ops.empty()) {
3831          cerr << "Invalid operand for inline asm constraint '"
3832               << OpInfo.ConstraintCode << "'!\n";
3833          exit(1);
3834        }
3835
3836        // Add information to the INLINEASM node to know about this input.
3837        unsigned ResOpType = 3 /*IMM*/ | (Ops.size() << 3);
3838        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
3839                                                        TLI.getPointerTy()));
3840        AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
3841        break;
3842      } else if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
3843        assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
3844        assert(InOperandVal.getValueType() == TLI.getPointerTy() &&
3845               "Memory operands expect pointer values");
3846
3847        // Add information to the INLINEASM node to know about this input.
3848        unsigned ResOpType = 4/*MEM*/ | (1 << 3);
3849        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
3850                                                        TLI.getPointerTy()));
3851        AsmNodeOperands.push_back(InOperandVal);
3852        break;
3853      }
3854
3855      assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
3856              OpInfo.ConstraintType == TargetLowering::C_Register) &&
3857             "Unknown constraint type!");
3858      assert(!OpInfo.isIndirect &&
3859             "Don't know how to handle indirect register inputs yet!");
3860
3861      // Copy the input into the appropriate registers.
3862      assert(!OpInfo.AssignedRegs.Regs.empty() &&
3863             "Couldn't allocate input reg!");
3864
3865      OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, Chain, &Flag);
3866
3867      OpInfo.AssignedRegs.AddInlineAsmOperands(1/*REGUSE*/, DAG,
3868                                               AsmNodeOperands);
3869      break;
3870    }
3871    case InlineAsm::isClobber: {
3872      // Add the clobbered value to the operand list, so that the register
3873      // allocator is aware that the physreg got clobbered.
3874      if (!OpInfo.AssignedRegs.Regs.empty())
3875        OpInfo.AssignedRegs.AddInlineAsmOperands(2/*REGDEF*/, DAG,
3876                                                 AsmNodeOperands);
3877      break;
3878    }
3879    }
3880  }
3881
3882  // Finish up input operands.
3883  AsmNodeOperands[0] = Chain;
3884  if (Flag.Val) AsmNodeOperands.push_back(Flag);
3885
3886  Chain = DAG.getNode(ISD::INLINEASM,
3887                      DAG.getNodeValueTypes(MVT::Other, MVT::Flag), 2,
3888                      &AsmNodeOperands[0], AsmNodeOperands.size());
3889  Flag = Chain.getValue(1);
3890
3891  // If this asm returns a register value, copy the result from that register
3892  // and set it as the value of the call.
3893  if (!RetValRegs.Regs.empty()) {
3894    SDOperand Val = RetValRegs.getCopyFromRegs(DAG, Chain, &Flag);
3895
3896    // If the result of the inline asm is a vector, it may have the wrong
3897    // width/num elts.  Make sure to convert it to the right type with
3898    // bit_convert.
3899    if (MVT::isVector(Val.getValueType())) {
3900      const VectorType *VTy = cast<VectorType>(CS.getType());
3901      MVT::ValueType DesiredVT = TLI.getValueType(VTy);
3902
3903      Val = DAG.getNode(ISD::BIT_CONVERT, DesiredVT, Val);
3904    }
3905
3906    setValue(CS.getInstruction(), Val);
3907  }
3908
3909  std::vector<std::pair<SDOperand, Value*> > StoresToEmit;
3910
3911  // Process indirect outputs, first output all of the flagged copies out of
3912  // physregs.
3913  for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
3914    RegsForValue &OutRegs = IndirectStoresToEmit[i].first;
3915    Value *Ptr = IndirectStoresToEmit[i].second;
3916    SDOperand OutVal = OutRegs.getCopyFromRegs(DAG, Chain, &Flag);
3917    StoresToEmit.push_back(std::make_pair(OutVal, Ptr));
3918  }
3919
3920  // Emit the non-flagged stores from the physregs.
3921  SmallVector<SDOperand, 8> OutChains;
3922  for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i)
3923    OutChains.push_back(DAG.getStore(Chain, StoresToEmit[i].first,
3924                                    getValue(StoresToEmit[i].second),
3925                                    StoresToEmit[i].second, 0));
3926  if (!OutChains.empty())
3927    Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
3928                        &OutChains[0], OutChains.size());
3929  DAG.setRoot(Chain);
3930}
3931
3932
3933void SelectionDAGLowering::visitMalloc(MallocInst &I) {
3934  SDOperand Src = getValue(I.getOperand(0));
3935
3936  MVT::ValueType IntPtr = TLI.getPointerTy();
3937
3938  if (IntPtr < Src.getValueType())
3939    Src = DAG.getNode(ISD::TRUNCATE, IntPtr, Src);
3940  else if (IntPtr > Src.getValueType())
3941    Src = DAG.getNode(ISD::ZERO_EXTEND, IntPtr, Src);
3942
3943  // Scale the source by the type size.
3944  uint64_t ElementSize = TD->getABITypeSize(I.getType()->getElementType());
3945  Src = DAG.getNode(ISD::MUL, Src.getValueType(),
3946                    Src, DAG.getIntPtrConstant(ElementSize));
3947
3948  TargetLowering::ArgListTy Args;
3949  TargetLowering::ArgListEntry Entry;
3950  Entry.Node = Src;
3951  Entry.Ty = TLI.getTargetData()->getIntPtrType();
3952  Args.push_back(Entry);
3953
3954  std::pair<SDOperand,SDOperand> Result =
3955    TLI.LowerCallTo(getRoot(), I.getType(), false, false, false, CallingConv::C,
3956                    true, DAG.getExternalSymbol("malloc", IntPtr), Args, DAG);
3957  setValue(&I, Result.first);  // Pointers always fit in registers
3958  DAG.setRoot(Result.second);
3959}
3960
3961void SelectionDAGLowering::visitFree(FreeInst &I) {
3962  TargetLowering::ArgListTy Args;
3963  TargetLowering::ArgListEntry Entry;
3964  Entry.Node = getValue(I.getOperand(0));
3965  Entry.Ty = TLI.getTargetData()->getIntPtrType();
3966  Args.push_back(Entry);
3967  MVT::ValueType IntPtr = TLI.getPointerTy();
3968  std::pair<SDOperand,SDOperand> Result =
3969    TLI.LowerCallTo(getRoot(), Type::VoidTy, false, false, false,
3970                    CallingConv::C, true,
3971                    DAG.getExternalSymbol("free", IntPtr), Args, DAG);
3972  DAG.setRoot(Result.second);
3973}
3974
3975// EmitInstrWithCustomInserter - This method should be implemented by targets
3976// that mark instructions with the 'usesCustomDAGSchedInserter' flag.  These
3977// instructions are special in various ways, which require special support to
3978// insert.  The specified MachineInstr is created but not inserted into any
3979// basic blocks, and the scheduler passes ownership of it to this method.
3980MachineBasicBlock *TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
3981                                                       MachineBasicBlock *MBB) {
3982  cerr << "If a target marks an instruction with "
3983       << "'usesCustomDAGSchedInserter', it must implement "
3984       << "TargetLowering::EmitInstrWithCustomInserter!\n";
3985  abort();
3986  return 0;
3987}
3988
3989void SelectionDAGLowering::visitVAStart(CallInst &I) {
3990  DAG.setRoot(DAG.getNode(ISD::VASTART, MVT::Other, getRoot(),
3991                          getValue(I.getOperand(1)),
3992                          DAG.getSrcValue(I.getOperand(1))));
3993}
3994
3995void SelectionDAGLowering::visitVAArg(VAArgInst &I) {
3996  SDOperand V = DAG.getVAArg(TLI.getValueType(I.getType()), getRoot(),
3997                             getValue(I.getOperand(0)),
3998                             DAG.getSrcValue(I.getOperand(0)));
3999  setValue(&I, V);
4000  DAG.setRoot(V.getValue(1));
4001}
4002
4003void SelectionDAGLowering::visitVAEnd(CallInst &I) {
4004  DAG.setRoot(DAG.getNode(ISD::VAEND, MVT::Other, getRoot(),
4005                          getValue(I.getOperand(1)),
4006                          DAG.getSrcValue(I.getOperand(1))));
4007}
4008
4009void SelectionDAGLowering::visitVACopy(CallInst &I) {
4010  DAG.setRoot(DAG.getNode(ISD::VACOPY, MVT::Other, getRoot(),
4011                          getValue(I.getOperand(1)),
4012                          getValue(I.getOperand(2)),
4013                          DAG.getSrcValue(I.getOperand(1)),
4014                          DAG.getSrcValue(I.getOperand(2))));
4015}
4016
4017/// TargetLowering::LowerArguments - This is the default LowerArguments
4018/// implementation, which just inserts a FORMAL_ARGUMENTS node.  FIXME: When all
4019/// targets are migrated to using FORMAL_ARGUMENTS, this hook should be
4020/// integrated into SDISel.
4021std::vector<SDOperand>
4022TargetLowering::LowerArguments(Function &F, SelectionDAG &DAG) {
4023  // Add CC# and isVararg as operands to the FORMAL_ARGUMENTS node.
4024  std::vector<SDOperand> Ops;
4025  Ops.push_back(DAG.getRoot());
4026  Ops.push_back(DAG.getConstant(F.getCallingConv(), getPointerTy()));
4027  Ops.push_back(DAG.getConstant(F.isVarArg(), getPointerTy()));
4028
4029  // Add one result value for each formal argument.
4030  std::vector<MVT::ValueType> RetVals;
4031  unsigned j = 1;
4032  for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end();
4033       I != E; ++I, ++j) {
4034    MVT::ValueType VT = getValueType(I->getType());
4035    unsigned Flags = ISD::ParamFlags::NoFlagSet;
4036    unsigned OriginalAlignment =
4037      getTargetData()->getABITypeAlignment(I->getType());
4038
4039    // FIXME: Distinguish between a formal with no [sz]ext attribute from one
4040    // that is zero extended!
4041    if (F.paramHasAttr(j, ParamAttr::ZExt))
4042      Flags &= ~(ISD::ParamFlags::SExt);
4043    if (F.paramHasAttr(j, ParamAttr::SExt))
4044      Flags |= ISD::ParamFlags::SExt;
4045    if (F.paramHasAttr(j, ParamAttr::InReg))
4046      Flags |= ISD::ParamFlags::InReg;
4047    if (F.paramHasAttr(j, ParamAttr::StructRet))
4048      Flags |= ISD::ParamFlags::StructReturn;
4049    if (F.paramHasAttr(j, ParamAttr::ByVal)) {
4050      Flags |= ISD::ParamFlags::ByVal;
4051      const PointerType *Ty = cast<PointerType>(I->getType());
4052      const Type *ElementTy = Ty->getElementType();
4053      unsigned FrameAlign = Log2_32(getByValTypeAlignment(ElementTy));
4054      unsigned FrameSize  = getTargetData()->getABITypeSize(ElementTy);
4055      Flags |= (FrameAlign << ISD::ParamFlags::ByValAlignOffs);
4056      Flags |= (FrameSize  << ISD::ParamFlags::ByValSizeOffs);
4057    }
4058    if (F.paramHasAttr(j, ParamAttr::Nest))
4059      Flags |= ISD::ParamFlags::Nest;
4060    Flags |= (OriginalAlignment << ISD::ParamFlags::OrigAlignmentOffs);
4061
4062    MVT::ValueType RegisterVT = getRegisterType(VT);
4063    unsigned NumRegs = getNumRegisters(VT);
4064    for (unsigned i = 0; i != NumRegs; ++i) {
4065      RetVals.push_back(RegisterVT);
4066      // if it isn't first piece, alignment must be 1
4067      if (i > 0)
4068        Flags = (Flags & (~ISD::ParamFlags::OrigAlignment)) |
4069          (1 << ISD::ParamFlags::OrigAlignmentOffs);
4070      Ops.push_back(DAG.getConstant(Flags, MVT::i32));
4071    }
4072  }
4073
4074  RetVals.push_back(MVT::Other);
4075
4076  // Create the node.
4077  SDNode *Result = DAG.getNode(ISD::FORMAL_ARGUMENTS,
4078                               DAG.getVTList(&RetVals[0], RetVals.size()),
4079                               &Ops[0], Ops.size()).Val;
4080
4081  // Prelower FORMAL_ARGUMENTS.  This isn't required for functionality, but
4082  // allows exposing the loads that may be part of the argument access to the
4083  // first DAGCombiner pass.
4084  SDOperand TmpRes = LowerOperation(SDOperand(Result, 0), DAG);
4085
4086  // The number of results should match up, except that the lowered one may have
4087  // an extra flag result.
4088  assert((Result->getNumValues() == TmpRes.Val->getNumValues() ||
4089          (Result->getNumValues()+1 == TmpRes.Val->getNumValues() &&
4090           TmpRes.getValue(Result->getNumValues()).getValueType() == MVT::Flag))
4091         && "Lowering produced unexpected number of results!");
4092  Result = TmpRes.Val;
4093
4094  unsigned NumArgRegs = Result->getNumValues() - 1;
4095  DAG.setRoot(SDOperand(Result, NumArgRegs));
4096
4097  // Set up the return result vector.
4098  Ops.clear();
4099  unsigned i = 0;
4100  unsigned Idx = 1;
4101  for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E;
4102      ++I, ++Idx) {
4103    MVT::ValueType VT = getValueType(I->getType());
4104    MVT::ValueType PartVT = getRegisterType(VT);
4105
4106    unsigned NumParts = getNumRegisters(VT);
4107    SmallVector<SDOperand, 4> Parts(NumParts);
4108    for (unsigned j = 0; j != NumParts; ++j)
4109      Parts[j] = SDOperand(Result, i++);
4110
4111    ISD::NodeType AssertOp = ISD::DELETED_NODE;
4112    if (F.paramHasAttr(Idx, ParamAttr::SExt))
4113      AssertOp = ISD::AssertSext;
4114    else if (F.paramHasAttr(Idx, ParamAttr::ZExt))
4115      AssertOp = ISD::AssertZext;
4116
4117    Ops.push_back(getCopyFromParts(DAG, &Parts[0], NumParts, PartVT, VT,
4118                                   AssertOp, true));
4119  }
4120  assert(i == NumArgRegs && "Argument register count mismatch!");
4121  return Ops;
4122}
4123
4124
4125/// TargetLowering::LowerCallTo - This is the default LowerCallTo
4126/// implementation, which just inserts an ISD::CALL node, which is later custom
4127/// lowered by the target to something concrete.  FIXME: When all targets are
4128/// migrated to using ISD::CALL, this hook should be integrated into SDISel.
4129std::pair<SDOperand, SDOperand>
4130TargetLowering::LowerCallTo(SDOperand Chain, const Type *RetTy,
4131                            bool RetSExt, bool RetZExt, bool isVarArg,
4132                            unsigned CallingConv, bool isTailCall,
4133                            SDOperand Callee,
4134                            ArgListTy &Args, SelectionDAG &DAG) {
4135  SmallVector<SDOperand, 32> Ops;
4136  Ops.push_back(Chain);   // Op#0 - Chain
4137  Ops.push_back(DAG.getConstant(CallingConv, getPointerTy())); // Op#1 - CC
4138  Ops.push_back(DAG.getConstant(isVarArg, getPointerTy()));    // Op#2 - VarArg
4139  Ops.push_back(DAG.getConstant(isTailCall, getPointerTy()));  // Op#3 - Tail
4140  Ops.push_back(Callee);
4141
4142  // Handle all of the outgoing arguments.
4143  for (unsigned i = 0, e = Args.size(); i != e; ++i) {
4144    MVT::ValueType VT = getValueType(Args[i].Ty);
4145    SDOperand Op = Args[i].Node;
4146    unsigned Flags = ISD::ParamFlags::NoFlagSet;
4147    unsigned OriginalAlignment =
4148      getTargetData()->getABITypeAlignment(Args[i].Ty);
4149
4150    if (Args[i].isSExt)
4151      Flags |= ISD::ParamFlags::SExt;
4152    if (Args[i].isZExt)
4153      Flags |= ISD::ParamFlags::ZExt;
4154    if (Args[i].isInReg)
4155      Flags |= ISD::ParamFlags::InReg;
4156    if (Args[i].isSRet)
4157      Flags |= ISD::ParamFlags::StructReturn;
4158    if (Args[i].isByVal) {
4159      Flags |= ISD::ParamFlags::ByVal;
4160      const PointerType *Ty = cast<PointerType>(Args[i].Ty);
4161      const Type *ElementTy = Ty->getElementType();
4162      unsigned FrameAlign = Log2_32(getByValTypeAlignment(ElementTy));
4163      unsigned FrameSize  = getTargetData()->getABITypeSize(ElementTy);
4164      Flags |= (FrameAlign << ISD::ParamFlags::ByValAlignOffs);
4165      Flags |= (FrameSize  << ISD::ParamFlags::ByValSizeOffs);
4166    }
4167    if (Args[i].isNest)
4168      Flags |= ISD::ParamFlags::Nest;
4169    Flags |= OriginalAlignment << ISD::ParamFlags::OrigAlignmentOffs;
4170
4171    MVT::ValueType PartVT = getRegisterType(VT);
4172    unsigned NumParts = getNumRegisters(VT);
4173    SmallVector<SDOperand, 4> Parts(NumParts);
4174    ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
4175
4176    if (Args[i].isSExt)
4177      ExtendKind = ISD::SIGN_EXTEND;
4178    else if (Args[i].isZExt)
4179      ExtendKind = ISD::ZERO_EXTEND;
4180
4181    getCopyToParts(DAG, Op, &Parts[0], NumParts, PartVT, ExtendKind);
4182
4183    for (unsigned i = 0; i != NumParts; ++i) {
4184      // if it isn't first piece, alignment must be 1
4185      unsigned MyFlags = Flags;
4186      if (i != 0)
4187        MyFlags = (MyFlags & (~ISD::ParamFlags::OrigAlignment)) |
4188          (1 << ISD::ParamFlags::OrigAlignmentOffs);
4189
4190      Ops.push_back(Parts[i]);
4191      Ops.push_back(DAG.getConstant(MyFlags, MVT::i32));
4192    }
4193  }
4194
4195  // Figure out the result value types.
4196  MVT::ValueType VT = getValueType(RetTy);
4197  MVT::ValueType RegisterVT = getRegisterType(VT);
4198  unsigned NumRegs = getNumRegisters(VT);
4199  SmallVector<MVT::ValueType, 4> RetTys(NumRegs);
4200  for (unsigned i = 0; i != NumRegs; ++i)
4201    RetTys[i] = RegisterVT;
4202
4203  RetTys.push_back(MVT::Other);  // Always has a chain.
4204
4205  // Create the CALL node.
4206  SDOperand Res = DAG.getNode(ISD::CALL,
4207                              DAG.getVTList(&RetTys[0], NumRegs + 1),
4208                              &Ops[0], Ops.size());
4209  Chain = Res.getValue(NumRegs);
4210
4211  // Gather up the call result into a single value.
4212  if (RetTy != Type::VoidTy) {
4213    ISD::NodeType AssertOp = ISD::DELETED_NODE;
4214
4215    if (RetSExt)
4216      AssertOp = ISD::AssertSext;
4217    else if (RetZExt)
4218      AssertOp = ISD::AssertZext;
4219
4220    SmallVector<SDOperand, 4> Results(NumRegs);
4221    for (unsigned i = 0; i != NumRegs; ++i)
4222      Results[i] = Res.getValue(i);
4223    Res = getCopyFromParts(DAG, &Results[0], NumRegs, RegisterVT, VT,
4224                           AssertOp, true);
4225  }
4226
4227  return std::make_pair(Res, Chain);
4228}
4229
4230SDOperand TargetLowering::LowerOperation(SDOperand Op, SelectionDAG &DAG) {
4231  assert(0 && "LowerOperation not implemented for this target!");
4232  abort();
4233  return SDOperand();
4234}
4235
4236SDOperand TargetLowering::CustomPromoteOperation(SDOperand Op,
4237                                                 SelectionDAG &DAG) {
4238  assert(0 && "CustomPromoteOperation not implemented for this target!");
4239  abort();
4240  return SDOperand();
4241}
4242
4243/// getMemsetValue - Vectorized representation of the memset value
4244/// operand.
4245static SDOperand getMemsetValue(SDOperand Value, MVT::ValueType VT,
4246                                SelectionDAG &DAG) {
4247  MVT::ValueType CurVT = VT;
4248  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
4249    uint64_t Val   = C->getValue() & 255;
4250    unsigned Shift = 8;
4251    while (CurVT != MVT::i8) {
4252      Val = (Val << Shift) | Val;
4253      Shift <<= 1;
4254      CurVT = (MVT::ValueType)((unsigned)CurVT - 1);
4255    }
4256    return DAG.getConstant(Val, VT);
4257  } else {
4258    Value = DAG.getNode(ISD::ZERO_EXTEND, VT, Value);
4259    unsigned Shift = 8;
4260    while (CurVT != MVT::i8) {
4261      Value =
4262        DAG.getNode(ISD::OR, VT,
4263                    DAG.getNode(ISD::SHL, VT, Value,
4264                                DAG.getConstant(Shift, MVT::i8)), Value);
4265      Shift <<= 1;
4266      CurVT = (MVT::ValueType)((unsigned)CurVT - 1);
4267    }
4268
4269    return Value;
4270  }
4271}
4272
4273/// getMemsetStringVal - Similar to getMemsetValue. Except this is only
4274/// used when a memcpy is turned into a memset when the source is a constant
4275/// string ptr.
4276static SDOperand getMemsetStringVal(MVT::ValueType VT,
4277                                    SelectionDAG &DAG, TargetLowering &TLI,
4278                                    std::string &Str, unsigned Offset) {
4279  uint64_t Val = 0;
4280  unsigned MSB = MVT::getSizeInBits(VT) / 8;
4281  if (TLI.isLittleEndian())
4282    Offset = Offset + MSB - 1;
4283  for (unsigned i = 0; i != MSB; ++i) {
4284    Val = (Val << 8) | (unsigned char)Str[Offset];
4285    Offset += TLI.isLittleEndian() ? -1 : 1;
4286  }
4287  return DAG.getConstant(Val, VT);
4288}
4289
4290/// getMemBasePlusOffset - Returns base and offset node for the
4291static SDOperand getMemBasePlusOffset(SDOperand Base, unsigned Offset,
4292                                      SelectionDAG &DAG, TargetLowering &TLI) {
4293  MVT::ValueType VT = Base.getValueType();
4294  return DAG.getNode(ISD::ADD, VT, Base, DAG.getConstant(Offset, VT));
4295}
4296
4297/// MeetsMaxMemopRequirement - Determines if the number of memory ops required
4298/// to replace the memset / memcpy is below the threshold. It also returns the
4299/// types of the sequence of  memory ops to perform memset / memcpy.
4300static bool MeetsMaxMemopRequirement(std::vector<MVT::ValueType> &MemOps,
4301                                     unsigned Limit, uint64_t Size,
4302                                     unsigned Align, TargetLowering &TLI) {
4303  MVT::ValueType VT;
4304
4305  if (TLI.allowsUnalignedMemoryAccesses()) {
4306    VT = MVT::i64;
4307  } else {
4308    switch (Align & 7) {
4309    case 0:
4310      VT = MVT::i64;
4311      break;
4312    case 4:
4313      VT = MVT::i32;
4314      break;
4315    case 2:
4316      VT = MVT::i16;
4317      break;
4318    default:
4319      VT = MVT::i8;
4320      break;
4321    }
4322  }
4323
4324  MVT::ValueType LVT = MVT::i64;
4325  while (!TLI.isTypeLegal(LVT))
4326    LVT = (MVT::ValueType)((unsigned)LVT - 1);
4327  assert(MVT::isInteger(LVT));
4328
4329  if (VT > LVT)
4330    VT = LVT;
4331
4332  unsigned NumMemOps = 0;
4333  while (Size != 0) {
4334    unsigned VTSize = MVT::getSizeInBits(VT) / 8;
4335    while (VTSize > Size) {
4336      VT = (MVT::ValueType)((unsigned)VT - 1);
4337      VTSize >>= 1;
4338    }
4339    assert(MVT::isInteger(VT));
4340
4341    if (++NumMemOps > Limit)
4342      return false;
4343    MemOps.push_back(VT);
4344    Size -= VTSize;
4345  }
4346
4347  return true;
4348}
4349
4350void SelectionDAGLowering::visitMemIntrinsic(CallInst &I, unsigned Op) {
4351  SDOperand Op1 = getValue(I.getOperand(1));
4352  SDOperand Op2 = getValue(I.getOperand(2));
4353  SDOperand Op3 = getValue(I.getOperand(3));
4354  SDOperand Op4 = getValue(I.getOperand(4));
4355  unsigned Align = (unsigned)cast<ConstantSDNode>(Op4)->getValue();
4356  if (Align == 0) Align = 1;
4357
4358  // If the source and destination are known to not be aliases, we can
4359  // lower memmove as memcpy.
4360  if (Op == ISD::MEMMOVE) {
4361    uint64_t Size = -1ULL;
4362    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op3))
4363      Size = C->getValue();
4364    if (AA.alias(I.getOperand(1), Size, I.getOperand(2), Size) ==
4365        AliasAnalysis::NoAlias)
4366      Op = ISD::MEMCPY;
4367  }
4368
4369  if (ConstantSDNode *Size = dyn_cast<ConstantSDNode>(Op3)) {
4370    std::vector<MVT::ValueType> MemOps;
4371
4372    // Expand memset / memcpy to a series of load / store ops
4373    // if the size operand falls below a certain threshold.
4374    SmallVector<SDOperand, 8> OutChains;
4375    switch (Op) {
4376    default: break;  // Do nothing for now.
4377    case ISD::MEMSET: {
4378      if (MeetsMaxMemopRequirement(MemOps, TLI.getMaxStoresPerMemset(),
4379                                   Size->getValue(), Align, TLI)) {
4380        unsigned NumMemOps = MemOps.size();
4381        unsigned Offset = 0;
4382        for (unsigned i = 0; i < NumMemOps; i++) {
4383          MVT::ValueType VT = MemOps[i];
4384          unsigned VTSize = MVT::getSizeInBits(VT) / 8;
4385          SDOperand Value = getMemsetValue(Op2, VT, DAG);
4386          SDOperand Store = DAG.getStore(getRoot(), Value,
4387                                    getMemBasePlusOffset(Op1, Offset, DAG, TLI),
4388                                         I.getOperand(1), Offset);
4389          OutChains.push_back(Store);
4390          Offset += VTSize;
4391        }
4392      }
4393      break;
4394    }
4395    case ISD::MEMCPY: {
4396      if (MeetsMaxMemopRequirement(MemOps, TLI.getMaxStoresPerMemcpy(),
4397                                   Size->getValue(), Align, TLI)) {
4398        unsigned NumMemOps = MemOps.size();
4399        unsigned SrcOff = 0, DstOff = 0, SrcDelta = 0;
4400        GlobalAddressSDNode *G = NULL;
4401        std::string Str;
4402        bool CopyFromStr = false;
4403
4404        if (Op2.getOpcode() == ISD::GlobalAddress)
4405          G = cast<GlobalAddressSDNode>(Op2);
4406        else if (Op2.getOpcode() == ISD::ADD &&
4407                 Op2.getOperand(0).getOpcode() == ISD::GlobalAddress &&
4408                 Op2.getOperand(1).getOpcode() == ISD::Constant) {
4409          G = cast<GlobalAddressSDNode>(Op2.getOperand(0));
4410          SrcDelta = cast<ConstantSDNode>(Op2.getOperand(1))->getValue();
4411        }
4412        if (G) {
4413          GlobalVariable *GV = dyn_cast<GlobalVariable>(G->getGlobal());
4414          if (GV && GV->isConstant()) {
4415            Str = GV->getStringValue(false);
4416            if (!Str.empty()) {
4417              CopyFromStr = true;
4418              SrcOff += SrcDelta;
4419            }
4420          }
4421        }
4422
4423        for (unsigned i = 0; i < NumMemOps; i++) {
4424          MVT::ValueType VT = MemOps[i];
4425          unsigned VTSize = MVT::getSizeInBits(VT) / 8;
4426          SDOperand Value, Chain, Store;
4427
4428          if (CopyFromStr) {
4429            Value = getMemsetStringVal(VT, DAG, TLI, Str, SrcOff);
4430            Chain = getRoot();
4431            Store =
4432              DAG.getStore(Chain, Value,
4433                           getMemBasePlusOffset(Op1, DstOff, DAG, TLI),
4434                           I.getOperand(1), DstOff);
4435          } else {
4436            Value = DAG.getLoad(VT, getRoot(),
4437                                getMemBasePlusOffset(Op2, SrcOff, DAG, TLI),
4438                                I.getOperand(2), SrcOff, false, Align);
4439            Chain = Value.getValue(1);
4440            Store =
4441              DAG.getStore(Chain, Value,
4442                           getMemBasePlusOffset(Op1, DstOff, DAG, TLI),
4443                           I.getOperand(1), DstOff, false, Align);
4444          }
4445          OutChains.push_back(Store);
4446          SrcOff += VTSize;
4447          DstOff += VTSize;
4448        }
4449      }
4450      break;
4451    }
4452    }
4453
4454    if (!OutChains.empty()) {
4455      DAG.setRoot(DAG.getNode(ISD::TokenFactor, MVT::Other,
4456                  &OutChains[0], OutChains.size()));
4457      return;
4458    }
4459  }
4460
4461  SDOperand AlwaysInline = DAG.getConstant(0, MVT::i1);
4462  SDOperand Node;
4463  switch(Op) {
4464    default:
4465      assert(0 && "Unknown Op");
4466    case ISD::MEMCPY:
4467      Node = DAG.getMemcpy(getRoot(), Op1, Op2, Op3, Op4, AlwaysInline);
4468      break;
4469    case ISD::MEMMOVE:
4470      Node = DAG.getMemmove(getRoot(), Op1, Op2, Op3, Op4, AlwaysInline);
4471      break;
4472    case ISD::MEMSET:
4473      Node = DAG.getMemset(getRoot(), Op1, Op2, Op3, Op4, AlwaysInline);
4474      break;
4475  }
4476  DAG.setRoot(Node);
4477}
4478
4479//===----------------------------------------------------------------------===//
4480// SelectionDAGISel code
4481//===----------------------------------------------------------------------===//
4482
4483unsigned SelectionDAGISel::MakeReg(MVT::ValueType VT) {
4484  return RegInfo->createVirtualRegister(TLI.getRegClassFor(VT));
4485}
4486
4487void SelectionDAGISel::getAnalysisUsage(AnalysisUsage &AU) const {
4488  AU.addRequired<AliasAnalysis>();
4489  AU.addRequired<CollectorModuleMetadata>();
4490  AU.setPreservesAll();
4491}
4492
4493
4494
4495bool SelectionDAGISel::runOnFunction(Function &Fn) {
4496  // Get alias analysis for load/store combining.
4497  AA = &getAnalysis<AliasAnalysis>();
4498
4499  MachineFunction &MF = MachineFunction::construct(&Fn, TLI.getTargetMachine());
4500  if (MF.getFunction()->hasCollector())
4501    GCI = &getAnalysis<CollectorModuleMetadata>().get(*MF.getFunction());
4502  else
4503    GCI = 0;
4504  RegInfo = &MF.getRegInfo();
4505  DOUT << "\n\n\n=== " << Fn.getName() << "\n";
4506
4507  FunctionLoweringInfo FuncInfo(TLI, Fn, MF);
4508
4509  if (ExceptionHandling)
4510    for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
4511      if (InvokeInst *Invoke = dyn_cast<InvokeInst>(I->getTerminator()))
4512        // Mark landing pad.
4513        FuncInfo.MBBMap[Invoke->getSuccessor(1)]->setIsLandingPad();
4514
4515  for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
4516    SelectBasicBlock(I, MF, FuncInfo);
4517
4518  // Add function live-ins to entry block live-in set.
4519  BasicBlock *EntryBB = &Fn.getEntryBlock();
4520  BB = FuncInfo.MBBMap[EntryBB];
4521  if (!RegInfo->livein_empty())
4522    for (MachineRegisterInfo::livein_iterator I = RegInfo->livein_begin(),
4523           E = RegInfo->livein_end(); I != E; ++I)
4524      BB->addLiveIn(I->first);
4525
4526#ifndef NDEBUG
4527  assert(FuncInfo.CatchInfoFound.size() == FuncInfo.CatchInfoLost.size() &&
4528         "Not all catch info was assigned to a landing pad!");
4529#endif
4530
4531  return true;
4532}
4533
4534SDOperand SelectionDAGLowering::CopyValueToVirtualRegister(Value *V,
4535                                                           unsigned Reg) {
4536  SDOperand Op = getValue(V);
4537  assert((Op.getOpcode() != ISD::CopyFromReg ||
4538          cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
4539         "Copy from a reg to the same reg!");
4540
4541  MVT::ValueType SrcVT = Op.getValueType();
4542  MVT::ValueType RegisterVT = TLI.getRegisterType(SrcVT);
4543  unsigned NumRegs = TLI.getNumRegisters(SrcVT);
4544  SmallVector<SDOperand, 8> Regs(NumRegs);
4545  SmallVector<SDOperand, 8> Chains(NumRegs);
4546
4547  // Copy the value by legal parts into sequential virtual registers.
4548  getCopyToParts(DAG, Op, &Regs[0], NumRegs, RegisterVT);
4549  for (unsigned i = 0; i != NumRegs; ++i)
4550    Chains[i] = DAG.getCopyToReg(getRoot(), Reg + i, Regs[i]);
4551  return DAG.getNode(ISD::TokenFactor, MVT::Other, &Chains[0], NumRegs);
4552}
4553
4554void SelectionDAGISel::
4555LowerArguments(BasicBlock *LLVMBB, SelectionDAGLowering &SDL,
4556               std::vector<SDOperand> &UnorderedChains) {
4557  // If this is the entry block, emit arguments.
4558  Function &F = *LLVMBB->getParent();
4559  FunctionLoweringInfo &FuncInfo = SDL.FuncInfo;
4560  SDOperand OldRoot = SDL.DAG.getRoot();
4561  std::vector<SDOperand> Args = TLI.LowerArguments(F, SDL.DAG);
4562
4563  unsigned a = 0;
4564  for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end();
4565       AI != E; ++AI, ++a)
4566    if (!AI->use_empty()) {
4567      SDL.setValue(AI, Args[a]);
4568
4569      // If this argument is live outside of the entry block, insert a copy from
4570      // whereever we got it to the vreg that other BB's will reference it as.
4571      DenseMap<const Value*, unsigned>::iterator VMI=FuncInfo.ValueMap.find(AI);
4572      if (VMI != FuncInfo.ValueMap.end()) {
4573        SDOperand Copy = SDL.CopyValueToVirtualRegister(AI, VMI->second);
4574        UnorderedChains.push_back(Copy);
4575      }
4576    }
4577
4578  // Finally, if the target has anything special to do, allow it to do so.
4579  // FIXME: this should insert code into the DAG!
4580  EmitFunctionEntryCode(F, SDL.DAG.getMachineFunction());
4581}
4582
4583static void copyCatchInfo(BasicBlock *SrcBB, BasicBlock *DestBB,
4584                          MachineModuleInfo *MMI, FunctionLoweringInfo &FLI) {
4585  for (BasicBlock::iterator I = SrcBB->begin(), E = --SrcBB->end(); I != E; ++I)
4586    if (isSelector(I)) {
4587      // Apply the catch info to DestBB.
4588      addCatchInfo(cast<CallInst>(*I), MMI, FLI.MBBMap[DestBB]);
4589#ifndef NDEBUG
4590      if (!FLI.MBBMap[SrcBB]->isLandingPad())
4591        FLI.CatchInfoFound.insert(I);
4592#endif
4593    }
4594}
4595
4596/// CheckDAGForTailCallsAndFixThem - This Function looks for CALL nodes in the
4597/// DAG and fixes their tailcall attribute operand.
4598static void CheckDAGForTailCallsAndFixThem(SelectionDAG &DAG,
4599                                           TargetLowering& TLI) {
4600  SDNode * Ret = NULL;
4601  SDOperand Terminator = DAG.getRoot();
4602
4603  // Find RET node.
4604  if (Terminator.getOpcode() == ISD::RET) {
4605    Ret = Terminator.Val;
4606  }
4607
4608  // Fix tail call attribute of CALL nodes.
4609  for (SelectionDAG::allnodes_iterator BE = DAG.allnodes_begin(),
4610         BI = prior(DAG.allnodes_end()); BI != BE; --BI) {
4611    if (BI->getOpcode() == ISD::CALL) {
4612      SDOperand OpRet(Ret, 0);
4613      SDOperand OpCall(static_cast<SDNode*>(BI), 0);
4614      bool isMarkedTailCall =
4615        cast<ConstantSDNode>(OpCall.getOperand(3))->getValue() != 0;
4616      // If CALL node has tail call attribute set to true and the call is not
4617      // eligible (no RET or the target rejects) the attribute is fixed to
4618      // false. The TargetLowering::IsEligibleForTailCallOptimization function
4619      // must correctly identify tail call optimizable calls.
4620      if (isMarkedTailCall &&
4621          (Ret==NULL ||
4622           !TLI.IsEligibleForTailCallOptimization(OpCall, OpRet, DAG))) {
4623        SmallVector<SDOperand, 32> Ops;
4624        unsigned idx=0;
4625        for(SDNode::op_iterator I =OpCall.Val->op_begin(),
4626              E=OpCall.Val->op_end(); I!=E; I++, idx++) {
4627          if (idx!=3)
4628            Ops.push_back(*I);
4629          else
4630            Ops.push_back(DAG.getConstant(false, TLI.getPointerTy()));
4631        }
4632        DAG.UpdateNodeOperands(OpCall, Ops.begin(), Ops.size());
4633      }
4634    }
4635  }
4636}
4637
4638void SelectionDAGISel::BuildSelectionDAG(SelectionDAG &DAG, BasicBlock *LLVMBB,
4639       std::vector<std::pair<MachineInstr*, unsigned> > &PHINodesToUpdate,
4640                                         FunctionLoweringInfo &FuncInfo) {
4641  SelectionDAGLowering SDL(DAG, TLI, *AA, FuncInfo, GCI);
4642
4643  std::vector<SDOperand> UnorderedChains;
4644
4645  // Lower any arguments needed in this block if this is the entry block.
4646  if (LLVMBB == &LLVMBB->getParent()->getEntryBlock())
4647    LowerArguments(LLVMBB, SDL, UnorderedChains);
4648
4649  BB = FuncInfo.MBBMap[LLVMBB];
4650  SDL.setCurrentBasicBlock(BB);
4651
4652  MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
4653
4654  if (ExceptionHandling && MMI && BB->isLandingPad()) {
4655    // Add a label to mark the beginning of the landing pad.  Deletion of the
4656    // landing pad can thus be detected via the MachineModuleInfo.
4657    unsigned LabelID = MMI->addLandingPad(BB);
4658    DAG.setRoot(DAG.getNode(ISD::LABEL, MVT::Other, DAG.getEntryNode(),
4659                            DAG.getConstant(LabelID, MVT::i32),
4660                            DAG.getConstant(1, MVT::i32)));
4661
4662    // Mark exception register as live in.
4663    unsigned Reg = TLI.getExceptionAddressRegister();
4664    if (Reg) BB->addLiveIn(Reg);
4665
4666    // Mark exception selector register as live in.
4667    Reg = TLI.getExceptionSelectorRegister();
4668    if (Reg) BB->addLiveIn(Reg);
4669
4670    // FIXME: Hack around an exception handling flaw (PR1508): the personality
4671    // function and list of typeids logically belong to the invoke (or, if you
4672    // like, the basic block containing the invoke), and need to be associated
4673    // with it in the dwarf exception handling tables.  Currently however the
4674    // information is provided by an intrinsic (eh.selector) that can be moved
4675    // to unexpected places by the optimizers: if the unwind edge is critical,
4676    // then breaking it can result in the intrinsics being in the successor of
4677    // the landing pad, not the landing pad itself.  This results in exceptions
4678    // not being caught because no typeids are associated with the invoke.
4679    // This may not be the only way things can go wrong, but it is the only way
4680    // we try to work around for the moment.
4681    BranchInst *Br = dyn_cast<BranchInst>(LLVMBB->getTerminator());
4682
4683    if (Br && Br->isUnconditional()) { // Critical edge?
4684      BasicBlock::iterator I, E;
4685      for (I = LLVMBB->begin(), E = --LLVMBB->end(); I != E; ++I)
4686        if (isSelector(I))
4687          break;
4688
4689      if (I == E)
4690        // No catch info found - try to extract some from the successor.
4691        copyCatchInfo(Br->getSuccessor(0), LLVMBB, MMI, FuncInfo);
4692    }
4693  }
4694
4695  // Lower all of the non-terminator instructions.
4696  for (BasicBlock::iterator I = LLVMBB->begin(), E = --LLVMBB->end();
4697       I != E; ++I)
4698    SDL.visit(*I);
4699
4700  // Ensure that all instructions which are used outside of their defining
4701  // blocks are available as virtual registers.  Invoke is handled elsewhere.
4702  for (BasicBlock::iterator I = LLVMBB->begin(), E = LLVMBB->end(); I != E;++I)
4703    if (!I->use_empty() && !isa<PHINode>(I) && !isa<InvokeInst>(I)) {
4704      DenseMap<const Value*, unsigned>::iterator VMI =FuncInfo.ValueMap.find(I);
4705      if (VMI != FuncInfo.ValueMap.end())
4706        UnorderedChains.push_back(
4707                                SDL.CopyValueToVirtualRegister(I, VMI->second));
4708    }
4709
4710  // Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
4711  // ensure constants are generated when needed.  Remember the virtual registers
4712  // that need to be added to the Machine PHI nodes as input.  We cannot just
4713  // directly add them, because expansion might result in multiple MBB's for one
4714  // BB.  As such, the start of the BB might correspond to a different MBB than
4715  // the end.
4716  //
4717  TerminatorInst *TI = LLVMBB->getTerminator();
4718
4719  // Emit constants only once even if used by multiple PHI nodes.
4720  std::map<Constant*, unsigned> ConstantsOut;
4721
4722  // Vector bool would be better, but vector<bool> is really slow.
4723  std::vector<unsigned char> SuccsHandled;
4724  if (TI->getNumSuccessors())
4725    SuccsHandled.resize(BB->getParent()->getNumBlockIDs());
4726
4727  // Check successor nodes' PHI nodes that expect a constant to be available
4728  // from this block.
4729  for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
4730    BasicBlock *SuccBB = TI->getSuccessor(succ);
4731    if (!isa<PHINode>(SuccBB->begin())) continue;
4732    MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
4733
4734    // If this terminator has multiple identical successors (common for
4735    // switches), only handle each succ once.
4736    unsigned SuccMBBNo = SuccMBB->getNumber();
4737    if (SuccsHandled[SuccMBBNo]) continue;
4738    SuccsHandled[SuccMBBNo] = true;
4739
4740    MachineBasicBlock::iterator MBBI = SuccMBB->begin();
4741    PHINode *PN;
4742
4743    // At this point we know that there is a 1-1 correspondence between LLVM PHI
4744    // nodes and Machine PHI nodes, but the incoming operands have not been
4745    // emitted yet.
4746    for (BasicBlock::iterator I = SuccBB->begin();
4747         (PN = dyn_cast<PHINode>(I)); ++I) {
4748      // Ignore dead phi's.
4749      if (PN->use_empty()) continue;
4750
4751      unsigned Reg;
4752      Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
4753
4754      if (Constant *C = dyn_cast<Constant>(PHIOp)) {
4755        unsigned &RegOut = ConstantsOut[C];
4756        if (RegOut == 0) {
4757          RegOut = FuncInfo.CreateRegForValue(C);
4758          UnorderedChains.push_back(
4759                           SDL.CopyValueToVirtualRegister(C, RegOut));
4760        }
4761        Reg = RegOut;
4762      } else {
4763        Reg = FuncInfo.ValueMap[PHIOp];
4764        if (Reg == 0) {
4765          assert(isa<AllocaInst>(PHIOp) &&
4766                 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
4767                 "Didn't codegen value into a register!??");
4768          Reg = FuncInfo.CreateRegForValue(PHIOp);
4769          UnorderedChains.push_back(
4770                           SDL.CopyValueToVirtualRegister(PHIOp, Reg));
4771        }
4772      }
4773
4774      // Remember that this register needs to added to the machine PHI node as
4775      // the input for this MBB.
4776      MVT::ValueType VT = TLI.getValueType(PN->getType());
4777      unsigned NumRegisters = TLI.getNumRegisters(VT);
4778      for (unsigned i = 0, e = NumRegisters; i != e; ++i)
4779        PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i));
4780    }
4781  }
4782  ConstantsOut.clear();
4783
4784  // Turn all of the unordered chains into one factored node.
4785  if (!UnorderedChains.empty()) {
4786    SDOperand Root = SDL.getRoot();
4787    if (Root.getOpcode() != ISD::EntryToken) {
4788      unsigned i = 0, e = UnorderedChains.size();
4789      for (; i != e; ++i) {
4790        assert(UnorderedChains[i].Val->getNumOperands() > 1);
4791        if (UnorderedChains[i].Val->getOperand(0) == Root)
4792          break;  // Don't add the root if we already indirectly depend on it.
4793      }
4794
4795      if (i == e)
4796        UnorderedChains.push_back(Root);
4797    }
4798    DAG.setRoot(DAG.getNode(ISD::TokenFactor, MVT::Other,
4799                            &UnorderedChains[0], UnorderedChains.size()));
4800  }
4801
4802  // Lower the terminator after the copies are emitted.
4803  SDL.visit(*LLVMBB->getTerminator());
4804
4805  // Copy over any CaseBlock records that may now exist due to SwitchInst
4806  // lowering, as well as any jump table information.
4807  SwitchCases.clear();
4808  SwitchCases = SDL.SwitchCases;
4809  JTCases.clear();
4810  JTCases = SDL.JTCases;
4811  BitTestCases.clear();
4812  BitTestCases = SDL.BitTestCases;
4813
4814  // Make sure the root of the DAG is up-to-date.
4815  DAG.setRoot(SDL.getRoot());
4816
4817  // Check whether calls in this block are real tail calls. Fix up CALL nodes
4818  // with correct tailcall attribute so that the target can rely on the tailcall
4819  // attribute indicating whether the call is really eligible for tail call
4820  // optimization.
4821  CheckDAGForTailCallsAndFixThem(DAG, TLI);
4822}
4823
4824void SelectionDAGISel::CodeGenAndEmitDAG(SelectionDAG &DAG) {
4825  DOUT << "Lowered selection DAG:\n";
4826  DEBUG(DAG.dump());
4827
4828  // Run the DAG combiner in pre-legalize mode.
4829  DAG.Combine(false, *AA);
4830
4831  DOUT << "Optimized lowered selection DAG:\n";
4832  DEBUG(DAG.dump());
4833
4834  // Second step, hack on the DAG until it only uses operations and types that
4835  // the target supports.
4836#if 0  // Enable this some day.
4837  DAG.LegalizeTypes();
4838  // Someday even later, enable a dag combine pass here.
4839#endif
4840  DAG.Legalize();
4841
4842  DOUT << "Legalized selection DAG:\n";
4843  DEBUG(DAG.dump());
4844
4845  // Run the DAG combiner in post-legalize mode.
4846  DAG.Combine(true, *AA);
4847
4848  DOUT << "Optimized legalized selection DAG:\n";
4849  DEBUG(DAG.dump());
4850
4851  if (ViewISelDAGs) DAG.viewGraph();
4852
4853  // Third, instruction select all of the operations to machine code, adding the
4854  // code to the MachineBasicBlock.
4855  InstructionSelectBasicBlock(DAG);
4856
4857  DOUT << "Selected machine code:\n";
4858  DEBUG(BB->dump());
4859}
4860
4861void SelectionDAGISel::SelectBasicBlock(BasicBlock *LLVMBB, MachineFunction &MF,
4862                                        FunctionLoweringInfo &FuncInfo) {
4863  std::vector<std::pair<MachineInstr*, unsigned> > PHINodesToUpdate;
4864  {
4865    SelectionDAG DAG(TLI, MF, getAnalysisToUpdate<MachineModuleInfo>());
4866    CurDAG = &DAG;
4867
4868    // First step, lower LLVM code to some DAG.  This DAG may use operations and
4869    // types that are not supported by the target.
4870    BuildSelectionDAG(DAG, LLVMBB, PHINodesToUpdate, FuncInfo);
4871
4872    // Second step, emit the lowered DAG as machine code.
4873    CodeGenAndEmitDAG(DAG);
4874  }
4875
4876  DOUT << "Total amount of phi nodes to update: "
4877       << PHINodesToUpdate.size() << "\n";
4878  DEBUG(for (unsigned i = 0, e = PHINodesToUpdate.size(); i != e; ++i)
4879          DOUT << "Node " << i << " : (" << PHINodesToUpdate[i].first
4880               << ", " << PHINodesToUpdate[i].second << ")\n";);
4881
4882  // Next, now that we know what the last MBB the LLVM BB expanded is, update
4883  // PHI nodes in successors.
4884  if (SwitchCases.empty() && JTCases.empty() && BitTestCases.empty()) {
4885    for (unsigned i = 0, e = PHINodesToUpdate.size(); i != e; ++i) {
4886      MachineInstr *PHI = PHINodesToUpdate[i].first;
4887      assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
4888             "This is not a machine PHI node that we are updating!");
4889      PHI->addOperand(MachineOperand::CreateReg(PHINodesToUpdate[i].second,
4890                                                false));
4891      PHI->addOperand(MachineOperand::CreateMBB(BB));
4892    }
4893    return;
4894  }
4895
4896  for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i) {
4897    // Lower header first, if it wasn't already lowered
4898    if (!BitTestCases[i].Emitted) {
4899      SelectionDAG HSDAG(TLI, MF, getAnalysisToUpdate<MachineModuleInfo>());
4900      CurDAG = &HSDAG;
4901      SelectionDAGLowering HSDL(HSDAG, TLI, *AA, FuncInfo, GCI);
4902      // Set the current basic block to the mbb we wish to insert the code into
4903      BB = BitTestCases[i].Parent;
4904      HSDL.setCurrentBasicBlock(BB);
4905      // Emit the code
4906      HSDL.visitBitTestHeader(BitTestCases[i]);
4907      HSDAG.setRoot(HSDL.getRoot());
4908      CodeGenAndEmitDAG(HSDAG);
4909    }
4910
4911    for (unsigned j = 0, ej = BitTestCases[i].Cases.size(); j != ej; ++j) {
4912      SelectionDAG BSDAG(TLI, MF, getAnalysisToUpdate<MachineModuleInfo>());
4913      CurDAG = &BSDAG;
4914      SelectionDAGLowering BSDL(BSDAG, TLI, *AA, FuncInfo, GCI);
4915      // Set the current basic block to the mbb we wish to insert the code into
4916      BB = BitTestCases[i].Cases[j].ThisBB;
4917      BSDL.setCurrentBasicBlock(BB);
4918      // Emit the code
4919      if (j+1 != ej)
4920        BSDL.visitBitTestCase(BitTestCases[i].Cases[j+1].ThisBB,
4921                              BitTestCases[i].Reg,
4922                              BitTestCases[i].Cases[j]);
4923      else
4924        BSDL.visitBitTestCase(BitTestCases[i].Default,
4925                              BitTestCases[i].Reg,
4926                              BitTestCases[i].Cases[j]);
4927
4928
4929      BSDAG.setRoot(BSDL.getRoot());
4930      CodeGenAndEmitDAG(BSDAG);
4931    }
4932
4933    // Update PHI Nodes
4934    for (unsigned pi = 0, pe = PHINodesToUpdate.size(); pi != pe; ++pi) {
4935      MachineInstr *PHI = PHINodesToUpdate[pi].first;
4936      MachineBasicBlock *PHIBB = PHI->getParent();
4937      assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
4938             "This is not a machine PHI node that we are updating!");
4939      // This is "default" BB. We have two jumps to it. From "header" BB and
4940      // from last "case" BB.
4941      if (PHIBB == BitTestCases[i].Default) {
4942        PHI->addOperand(MachineOperand::CreateReg(PHINodesToUpdate[pi].second,
4943                                                  false));
4944        PHI->addOperand(MachineOperand::CreateMBB(BitTestCases[i].Parent));
4945        PHI->addOperand(MachineOperand::CreateReg(PHINodesToUpdate[pi].second,
4946                                                  false));
4947        PHI->addOperand(MachineOperand::CreateMBB(BitTestCases[i].Cases.
4948                                                  back().ThisBB));
4949      }
4950      // One of "cases" BB.
4951      for (unsigned j = 0, ej = BitTestCases[i].Cases.size(); j != ej; ++j) {
4952        MachineBasicBlock* cBB = BitTestCases[i].Cases[j].ThisBB;
4953        if (cBB->succ_end() !=
4954            std::find(cBB->succ_begin(),cBB->succ_end(), PHIBB)) {
4955          PHI->addOperand(MachineOperand::CreateReg(PHINodesToUpdate[pi].second,
4956                                                    false));
4957          PHI->addOperand(MachineOperand::CreateMBB(cBB));
4958        }
4959      }
4960    }
4961  }
4962
4963  // If the JumpTable record is filled in, then we need to emit a jump table.
4964  // Updating the PHI nodes is tricky in this case, since we need to determine
4965  // whether the PHI is a successor of the range check MBB or the jump table MBB
4966  for (unsigned i = 0, e = JTCases.size(); i != e; ++i) {
4967    // Lower header first, if it wasn't already lowered
4968    if (!JTCases[i].first.Emitted) {
4969      SelectionDAG HSDAG(TLI, MF, getAnalysisToUpdate<MachineModuleInfo>());
4970      CurDAG = &HSDAG;
4971      SelectionDAGLowering HSDL(HSDAG, TLI, *AA, FuncInfo, GCI);
4972      // Set the current basic block to the mbb we wish to insert the code into
4973      BB = JTCases[i].first.HeaderBB;
4974      HSDL.setCurrentBasicBlock(BB);
4975      // Emit the code
4976      HSDL.visitJumpTableHeader(JTCases[i].second, JTCases[i].first);
4977      HSDAG.setRoot(HSDL.getRoot());
4978      CodeGenAndEmitDAG(HSDAG);
4979    }
4980
4981    SelectionDAG JSDAG(TLI, MF, getAnalysisToUpdate<MachineModuleInfo>());
4982    CurDAG = &JSDAG;
4983    SelectionDAGLowering JSDL(JSDAG, TLI, *AA, FuncInfo, GCI);
4984    // Set the current basic block to the mbb we wish to insert the code into
4985    BB = JTCases[i].second.MBB;
4986    JSDL.setCurrentBasicBlock(BB);
4987    // Emit the code
4988    JSDL.visitJumpTable(JTCases[i].second);
4989    JSDAG.setRoot(JSDL.getRoot());
4990    CodeGenAndEmitDAG(JSDAG);
4991
4992    // Update PHI Nodes
4993    for (unsigned pi = 0, pe = PHINodesToUpdate.size(); pi != pe; ++pi) {
4994      MachineInstr *PHI = PHINodesToUpdate[pi].first;
4995      MachineBasicBlock *PHIBB = PHI->getParent();
4996      assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
4997             "This is not a machine PHI node that we are updating!");
4998      // "default" BB. We can go there only from header BB.
4999      if (PHIBB == JTCases[i].second.Default) {
5000        PHI->addOperand(MachineOperand::CreateReg(PHINodesToUpdate[pi].second,
5001                                                  false));
5002        PHI->addOperand(MachineOperand::CreateMBB(JTCases[i].first.HeaderBB));
5003      }
5004      // JT BB. Just iterate over successors here
5005      if (BB->succ_end() != std::find(BB->succ_begin(),BB->succ_end(), PHIBB)) {
5006        PHI->addOperand(MachineOperand::CreateReg(PHINodesToUpdate[pi].second,
5007                                                  false));
5008        PHI->addOperand(MachineOperand::CreateMBB(BB));
5009      }
5010    }
5011  }
5012
5013  // If the switch block involved a branch to one of the actual successors, we
5014  // need to update PHI nodes in that block.
5015  for (unsigned i = 0, e = PHINodesToUpdate.size(); i != e; ++i) {
5016    MachineInstr *PHI = PHINodesToUpdate[i].first;
5017    assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
5018           "This is not a machine PHI node that we are updating!");
5019    if (BB->isSuccessor(PHI->getParent())) {
5020      PHI->addOperand(MachineOperand::CreateReg(PHINodesToUpdate[i].second,
5021                                                false));
5022      PHI->addOperand(MachineOperand::CreateMBB(BB));
5023    }
5024  }
5025
5026  // If we generated any switch lowering information, build and codegen any
5027  // additional DAGs necessary.
5028  for (unsigned i = 0, e = SwitchCases.size(); i != e; ++i) {
5029    SelectionDAG SDAG(TLI, MF, getAnalysisToUpdate<MachineModuleInfo>());
5030    CurDAG = &SDAG;
5031    SelectionDAGLowering SDL(SDAG, TLI, *AA, FuncInfo, GCI);
5032
5033    // Set the current basic block to the mbb we wish to insert the code into
5034    BB = SwitchCases[i].ThisBB;
5035    SDL.setCurrentBasicBlock(BB);
5036
5037    // Emit the code
5038    SDL.visitSwitchCase(SwitchCases[i]);
5039    SDAG.setRoot(SDL.getRoot());
5040    CodeGenAndEmitDAG(SDAG);
5041
5042    // Handle any PHI nodes in successors of this chunk, as if we were coming
5043    // from the original BB before switch expansion.  Note that PHI nodes can
5044    // occur multiple times in PHINodesToUpdate.  We have to be very careful to
5045    // handle them the right number of times.
5046    while ((BB = SwitchCases[i].TrueBB)) {  // Handle LHS and RHS.
5047      for (MachineBasicBlock::iterator Phi = BB->begin();
5048           Phi != BB->end() && Phi->getOpcode() == TargetInstrInfo::PHI; ++Phi){
5049        // This value for this PHI node is recorded in PHINodesToUpdate, get it.
5050        for (unsigned pn = 0; ; ++pn) {
5051          assert(pn != PHINodesToUpdate.size() && "Didn't find PHI entry!");
5052          if (PHINodesToUpdate[pn].first == Phi) {
5053            Phi->addOperand(MachineOperand::CreateReg(PHINodesToUpdate[pn].
5054                                                      second, false));
5055            Phi->addOperand(MachineOperand::CreateMBB(SwitchCases[i].ThisBB));
5056            break;
5057          }
5058        }
5059      }
5060
5061      // Don't process RHS if same block as LHS.
5062      if (BB == SwitchCases[i].FalseBB)
5063        SwitchCases[i].FalseBB = 0;
5064
5065      // If we haven't handled the RHS, do so now.  Otherwise, we're done.
5066      SwitchCases[i].TrueBB = SwitchCases[i].FalseBB;
5067      SwitchCases[i].FalseBB = 0;
5068    }
5069    assert(SwitchCases[i].TrueBB == 0 && SwitchCases[i].FalseBB == 0);
5070  }
5071}
5072
5073
5074//===----------------------------------------------------------------------===//
5075/// ScheduleAndEmitDAG - Pick a safe ordering and emit instructions for each
5076/// target node in the graph.
5077void SelectionDAGISel::ScheduleAndEmitDAG(SelectionDAG &DAG) {
5078  if (ViewSchedDAGs) DAG.viewGraph();
5079
5080  RegisterScheduler::FunctionPassCtor Ctor = RegisterScheduler::getDefault();
5081
5082  if (!Ctor) {
5083    Ctor = ISHeuristic;
5084    RegisterScheduler::setDefault(Ctor);
5085  }
5086
5087  ScheduleDAG *SL = Ctor(this, &DAG, BB);
5088  BB = SL->Run();
5089
5090  if (ViewSUnitDAGs) SL->viewGraph();
5091
5092  delete SL;
5093}
5094
5095
5096HazardRecognizer *SelectionDAGISel::CreateTargetHazardRecognizer() {
5097  return new HazardRecognizer();
5098}
5099
5100//===----------------------------------------------------------------------===//
5101// Helper functions used by the generated instruction selector.
5102//===----------------------------------------------------------------------===//
5103// Calls to these methods are generated by tblgen.
5104
5105/// CheckAndMask - The isel is trying to match something like (and X, 255).  If
5106/// the dag combiner simplified the 255, we still want to match.  RHS is the
5107/// actual value in the DAG on the RHS of an AND, and DesiredMaskS is the value
5108/// specified in the .td file (e.g. 255).
5109bool SelectionDAGISel::CheckAndMask(SDOperand LHS, ConstantSDNode *RHS,
5110                                    int64_t DesiredMaskS) const {
5111  uint64_t ActualMask = RHS->getValue();
5112  uint64_t DesiredMask =DesiredMaskS & MVT::getIntVTBitMask(LHS.getValueType());
5113
5114  // If the actual mask exactly matches, success!
5115  if (ActualMask == DesiredMask)
5116    return true;
5117
5118  // If the actual AND mask is allowing unallowed bits, this doesn't match.
5119  if (ActualMask & ~DesiredMask)
5120    return false;
5121
5122  // Otherwise, the DAG Combiner may have proven that the value coming in is
5123  // either already zero or is not demanded.  Check for known zero input bits.
5124  uint64_t NeededMask = DesiredMask & ~ActualMask;
5125  if (CurDAG->MaskedValueIsZero(LHS, NeededMask))
5126    return true;
5127
5128  // TODO: check to see if missing bits are just not demanded.
5129
5130  // Otherwise, this pattern doesn't match.
5131  return false;
5132}
5133
5134/// CheckOrMask - The isel is trying to match something like (or X, 255).  If
5135/// the dag combiner simplified the 255, we still want to match.  RHS is the
5136/// actual value in the DAG on the RHS of an OR, and DesiredMaskS is the value
5137/// specified in the .td file (e.g. 255).
5138bool SelectionDAGISel::CheckOrMask(SDOperand LHS, ConstantSDNode *RHS,
5139                                    int64_t DesiredMaskS) const {
5140  uint64_t ActualMask = RHS->getValue();
5141  uint64_t DesiredMask =DesiredMaskS & MVT::getIntVTBitMask(LHS.getValueType());
5142
5143  // If the actual mask exactly matches, success!
5144  if (ActualMask == DesiredMask)
5145    return true;
5146
5147  // If the actual AND mask is allowing unallowed bits, this doesn't match.
5148  if (ActualMask & ~DesiredMask)
5149    return false;
5150
5151  // Otherwise, the DAG Combiner may have proven that the value coming in is
5152  // either already zero or is not demanded.  Check for known zero input bits.
5153  uint64_t NeededMask = DesiredMask & ~ActualMask;
5154
5155  uint64_t KnownZero, KnownOne;
5156  CurDAG->ComputeMaskedBits(LHS, NeededMask, KnownZero, KnownOne);
5157
5158  // If all the missing bits in the or are already known to be set, match!
5159  if ((NeededMask & KnownOne) == NeededMask)
5160    return true;
5161
5162  // TODO: check to see if missing bits are just not demanded.
5163
5164  // Otherwise, this pattern doesn't match.
5165  return false;
5166}
5167
5168
5169/// SelectInlineAsmMemoryOperands - Calls to this are automatically generated
5170/// by tblgen.  Others should not call it.
5171void SelectionDAGISel::
5172SelectInlineAsmMemoryOperands(std::vector<SDOperand> &Ops, SelectionDAG &DAG) {
5173  std::vector<SDOperand> InOps;
5174  std::swap(InOps, Ops);
5175
5176  Ops.push_back(InOps[0]);  // input chain.
5177  Ops.push_back(InOps[1]);  // input asm string.
5178
5179  unsigned i = 2, e = InOps.size();
5180  if (InOps[e-1].getValueType() == MVT::Flag)
5181    --e;  // Don't process a flag operand if it is here.
5182
5183  while (i != e) {
5184    unsigned Flags = cast<ConstantSDNode>(InOps[i])->getValue();
5185    if ((Flags & 7) != 4 /*MEM*/) {
5186      // Just skip over this operand, copying the operands verbatim.
5187      Ops.insert(Ops.end(), InOps.begin()+i, InOps.begin()+i+(Flags >> 3) + 1);
5188      i += (Flags >> 3) + 1;
5189    } else {
5190      assert((Flags >> 3) == 1 && "Memory operand with multiple values?");
5191      // Otherwise, this is a memory operand.  Ask the target to select it.
5192      std::vector<SDOperand> SelOps;
5193      if (SelectInlineAsmMemoryOperand(InOps[i+1], 'm', SelOps, DAG)) {
5194        cerr << "Could not match memory address.  Inline asm failure!\n";
5195        exit(1);
5196      }
5197
5198      // Add this to the output node.
5199      MVT::ValueType IntPtrTy = DAG.getTargetLoweringInfo().getPointerTy();
5200      Ops.push_back(DAG.getTargetConstant(4/*MEM*/ | (SelOps.size() << 3),
5201                                          IntPtrTy));
5202      Ops.insert(Ops.end(), SelOps.begin(), SelOps.end());
5203      i += 2;
5204    }
5205  }
5206
5207  // Add the flag input back if present.
5208  if (e != InOps.size())
5209    Ops.push_back(InOps.back());
5210}
5211
5212char SelectionDAGISel::ID = 0;
5213