SelectionDAGISel.cpp revision 021f3280fe791722c668cb96b02f473f2f76f925
1//===-- SelectionDAGISel.cpp - Implement the SelectionDAGISel class -------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAGISel class.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "isel"
15#include "llvm/CodeGen/SelectionDAGISel.h"
16#include "ScheduleDAGSDNodes.h"
17#include "SelectionDAGBuilder.h"
18#include "llvm/ADT/PostOrderIterator.h"
19#include "llvm/ADT/Statistic.h"
20#include "llvm/Analysis/AliasAnalysis.h"
21#include "llvm/Analysis/BranchProbabilityInfo.h"
22#include "llvm/Analysis/CFG.h"
23#include "llvm/Analysis/TargetTransformInfo.h"
24#include "llvm/CodeGen/FastISel.h"
25#include "llvm/CodeGen/FunctionLoweringInfo.h"
26#include "llvm/CodeGen/GCMetadata.h"
27#include "llvm/CodeGen/GCStrategy.h"
28#include "llvm/CodeGen/MachineFrameInfo.h"
29#include "llvm/CodeGen/MachineFunction.h"
30#include "llvm/CodeGen/MachineInstrBuilder.h"
31#include "llvm/CodeGen/MachineModuleInfo.h"
32#include "llvm/CodeGen/MachineRegisterInfo.h"
33#include "llvm/CodeGen/ScheduleHazardRecognizer.h"
34#include "llvm/CodeGen/SchedulerRegistry.h"
35#include "llvm/CodeGen/SelectionDAG.h"
36#include "llvm/DebugInfo.h"
37#include "llvm/IR/Constants.h"
38#include "llvm/IR/Function.h"
39#include "llvm/IR/InlineAsm.h"
40#include "llvm/IR/Instructions.h"
41#include "llvm/IR/IntrinsicInst.h"
42#include "llvm/IR/Intrinsics.h"
43#include "llvm/IR/LLVMContext.h"
44#include "llvm/IR/Module.h"
45#include "llvm/Support/Compiler.h"
46#include "llvm/Support/Debug.h"
47#include "llvm/Support/ErrorHandling.h"
48#include "llvm/Support/Timer.h"
49#include "llvm/Support/raw_ostream.h"
50#include "llvm/Target/TargetInstrInfo.h"
51#include "llvm/Target/TargetIntrinsicInfo.h"
52#include "llvm/Target/TargetLibraryInfo.h"
53#include "llvm/Target/TargetLowering.h"
54#include "llvm/Target/TargetMachine.h"
55#include "llvm/Target/TargetOptions.h"
56#include "llvm/Target/TargetRegisterInfo.h"
57#include "llvm/Target/TargetSubtargetInfo.h"
58#include "llvm/Transforms/Utils/BasicBlockUtils.h"
59#include <algorithm>
60using namespace llvm;
61
62STATISTIC(NumFastIselFailures, "Number of instructions fast isel failed on");
63STATISTIC(NumFastIselSuccess, "Number of instructions fast isel selected");
64STATISTIC(NumFastIselBlocks, "Number of blocks selected entirely by fast isel");
65STATISTIC(NumDAGBlocks, "Number of blocks selected using DAG");
66STATISTIC(NumDAGIselRetries,"Number of times dag isel has to try another path");
67STATISTIC(NumEntryBlocks, "Number of entry blocks encountered");
68STATISTIC(NumFastIselFailLowerArguments,
69          "Number of entry blocks where fast isel failed to lower arguments");
70
71#ifndef NDEBUG
72static cl::opt<bool>
73EnableFastISelVerbose2("fast-isel-verbose2", cl::Hidden,
74          cl::desc("Enable extra verbose messages in the \"fast\" "
75                   "instruction selector"));
76
77  // Terminators
78STATISTIC(NumFastIselFailRet,"Fast isel fails on Ret");
79STATISTIC(NumFastIselFailBr,"Fast isel fails on Br");
80STATISTIC(NumFastIselFailSwitch,"Fast isel fails on Switch");
81STATISTIC(NumFastIselFailIndirectBr,"Fast isel fails on IndirectBr");
82STATISTIC(NumFastIselFailInvoke,"Fast isel fails on Invoke");
83STATISTIC(NumFastIselFailResume,"Fast isel fails on Resume");
84STATISTIC(NumFastIselFailUnreachable,"Fast isel fails on Unreachable");
85
86  // Standard binary operators...
87STATISTIC(NumFastIselFailAdd,"Fast isel fails on Add");
88STATISTIC(NumFastIselFailFAdd,"Fast isel fails on FAdd");
89STATISTIC(NumFastIselFailSub,"Fast isel fails on Sub");
90STATISTIC(NumFastIselFailFSub,"Fast isel fails on FSub");
91STATISTIC(NumFastIselFailMul,"Fast isel fails on Mul");
92STATISTIC(NumFastIselFailFMul,"Fast isel fails on FMul");
93STATISTIC(NumFastIselFailUDiv,"Fast isel fails on UDiv");
94STATISTIC(NumFastIselFailSDiv,"Fast isel fails on SDiv");
95STATISTIC(NumFastIselFailFDiv,"Fast isel fails on FDiv");
96STATISTIC(NumFastIselFailURem,"Fast isel fails on URem");
97STATISTIC(NumFastIselFailSRem,"Fast isel fails on SRem");
98STATISTIC(NumFastIselFailFRem,"Fast isel fails on FRem");
99
100  // Logical operators...
101STATISTIC(NumFastIselFailAnd,"Fast isel fails on And");
102STATISTIC(NumFastIselFailOr,"Fast isel fails on Or");
103STATISTIC(NumFastIselFailXor,"Fast isel fails on Xor");
104
105  // Memory instructions...
106STATISTIC(NumFastIselFailAlloca,"Fast isel fails on Alloca");
107STATISTIC(NumFastIselFailLoad,"Fast isel fails on Load");
108STATISTIC(NumFastIselFailStore,"Fast isel fails on Store");
109STATISTIC(NumFastIselFailAtomicCmpXchg,"Fast isel fails on AtomicCmpXchg");
110STATISTIC(NumFastIselFailAtomicRMW,"Fast isel fails on AtomicRWM");
111STATISTIC(NumFastIselFailFence,"Fast isel fails on Frence");
112STATISTIC(NumFastIselFailGetElementPtr,"Fast isel fails on GetElementPtr");
113
114  // Convert instructions...
115STATISTIC(NumFastIselFailTrunc,"Fast isel fails on Trunc");
116STATISTIC(NumFastIselFailZExt,"Fast isel fails on ZExt");
117STATISTIC(NumFastIselFailSExt,"Fast isel fails on SExt");
118STATISTIC(NumFastIselFailFPTrunc,"Fast isel fails on FPTrunc");
119STATISTIC(NumFastIselFailFPExt,"Fast isel fails on FPExt");
120STATISTIC(NumFastIselFailFPToUI,"Fast isel fails on FPToUI");
121STATISTIC(NumFastIselFailFPToSI,"Fast isel fails on FPToSI");
122STATISTIC(NumFastIselFailUIToFP,"Fast isel fails on UIToFP");
123STATISTIC(NumFastIselFailSIToFP,"Fast isel fails on SIToFP");
124STATISTIC(NumFastIselFailIntToPtr,"Fast isel fails on IntToPtr");
125STATISTIC(NumFastIselFailPtrToInt,"Fast isel fails on PtrToInt");
126STATISTIC(NumFastIselFailBitCast,"Fast isel fails on BitCast");
127
128  // Other instructions...
129STATISTIC(NumFastIselFailICmp,"Fast isel fails on ICmp");
130STATISTIC(NumFastIselFailFCmp,"Fast isel fails on FCmp");
131STATISTIC(NumFastIselFailPHI,"Fast isel fails on PHI");
132STATISTIC(NumFastIselFailSelect,"Fast isel fails on Select");
133STATISTIC(NumFastIselFailCall,"Fast isel fails on Call");
134STATISTIC(NumFastIselFailShl,"Fast isel fails on Shl");
135STATISTIC(NumFastIselFailLShr,"Fast isel fails on LShr");
136STATISTIC(NumFastIselFailAShr,"Fast isel fails on AShr");
137STATISTIC(NumFastIselFailVAArg,"Fast isel fails on VAArg");
138STATISTIC(NumFastIselFailExtractElement,"Fast isel fails on ExtractElement");
139STATISTIC(NumFastIselFailInsertElement,"Fast isel fails on InsertElement");
140STATISTIC(NumFastIselFailShuffleVector,"Fast isel fails on ShuffleVector");
141STATISTIC(NumFastIselFailExtractValue,"Fast isel fails on ExtractValue");
142STATISTIC(NumFastIselFailInsertValue,"Fast isel fails on InsertValue");
143STATISTIC(NumFastIselFailLandingPad,"Fast isel fails on LandingPad");
144#endif
145
146static cl::opt<bool>
147EnableFastISelVerbose("fast-isel-verbose", cl::Hidden,
148          cl::desc("Enable verbose messages in the \"fast\" "
149                   "instruction selector"));
150static cl::opt<bool>
151EnableFastISelAbort("fast-isel-abort", cl::Hidden,
152          cl::desc("Enable abort calls when \"fast\" instruction selection "
153                   "fails to lower an instruction"));
154static cl::opt<bool>
155EnableFastISelAbortArgs("fast-isel-abort-args", cl::Hidden,
156          cl::desc("Enable abort calls when \"fast\" instruction selection "
157                   "fails to lower a formal argument"));
158
159static cl::opt<bool>
160UseMBPI("use-mbpi",
161        cl::desc("use Machine Branch Probability Info"),
162        cl::init(true), cl::Hidden);
163
164#ifndef NDEBUG
165static cl::opt<bool>
166ViewDAGCombine1("view-dag-combine1-dags", cl::Hidden,
167          cl::desc("Pop up a window to show dags before the first "
168                   "dag combine pass"));
169static cl::opt<bool>
170ViewLegalizeTypesDAGs("view-legalize-types-dags", cl::Hidden,
171          cl::desc("Pop up a window to show dags before legalize types"));
172static cl::opt<bool>
173ViewLegalizeDAGs("view-legalize-dags", cl::Hidden,
174          cl::desc("Pop up a window to show dags before legalize"));
175static cl::opt<bool>
176ViewDAGCombine2("view-dag-combine2-dags", cl::Hidden,
177          cl::desc("Pop up a window to show dags before the second "
178                   "dag combine pass"));
179static cl::opt<bool>
180ViewDAGCombineLT("view-dag-combine-lt-dags", cl::Hidden,
181          cl::desc("Pop up a window to show dags before the post legalize types"
182                   " dag combine pass"));
183static cl::opt<bool>
184ViewISelDAGs("view-isel-dags", cl::Hidden,
185          cl::desc("Pop up a window to show isel dags as they are selected"));
186static cl::opt<bool>
187ViewSchedDAGs("view-sched-dags", cl::Hidden,
188          cl::desc("Pop up a window to show sched dags as they are processed"));
189static cl::opt<bool>
190ViewSUnitDAGs("view-sunit-dags", cl::Hidden,
191      cl::desc("Pop up a window to show SUnit dags after they are processed"));
192#else
193static const bool ViewDAGCombine1 = false,
194                  ViewLegalizeTypesDAGs = false, ViewLegalizeDAGs = false,
195                  ViewDAGCombine2 = false,
196                  ViewDAGCombineLT = false,
197                  ViewISelDAGs = false, ViewSchedDAGs = false,
198                  ViewSUnitDAGs = false;
199#endif
200
201//===---------------------------------------------------------------------===//
202///
203/// RegisterScheduler class - Track the registration of instruction schedulers.
204///
205//===---------------------------------------------------------------------===//
206MachinePassRegistry RegisterScheduler::Registry;
207
208//===---------------------------------------------------------------------===//
209///
210/// ISHeuristic command line option for instruction schedulers.
211///
212//===---------------------------------------------------------------------===//
213static cl::opt<RegisterScheduler::FunctionPassCtor, false,
214               RegisterPassParser<RegisterScheduler> >
215ISHeuristic("pre-RA-sched",
216            cl::init(&createDefaultScheduler),
217            cl::desc("Instruction schedulers available (before register"
218                     " allocation):"));
219
220static RegisterScheduler
221defaultListDAGScheduler("default", "Best scheduler for the target",
222                        createDefaultScheduler);
223
224namespace llvm {
225  //===--------------------------------------------------------------------===//
226  /// createDefaultScheduler - This creates an instruction scheduler appropriate
227  /// for the target.
228  ScheduleDAGSDNodes* createDefaultScheduler(SelectionDAGISel *IS,
229                                             CodeGenOpt::Level OptLevel) {
230    const TargetLowering *TLI = IS->getTargetLowering();
231    const TargetSubtargetInfo &ST = IS->TM.getSubtarget<TargetSubtargetInfo>();
232
233    if (OptLevel == CodeGenOpt::None || ST.enableMachineScheduler() ||
234        TLI->getSchedulingPreference() == Sched::Source)
235      return createSourceListDAGScheduler(IS, OptLevel);
236    if (TLI->getSchedulingPreference() == Sched::RegPressure)
237      return createBURRListDAGScheduler(IS, OptLevel);
238    if (TLI->getSchedulingPreference() == Sched::Hybrid)
239      return createHybridListDAGScheduler(IS, OptLevel);
240    if (TLI->getSchedulingPreference() == Sched::VLIW)
241      return createVLIWDAGScheduler(IS, OptLevel);
242    assert(TLI->getSchedulingPreference() == Sched::ILP &&
243           "Unknown sched type!");
244    return createILPListDAGScheduler(IS, OptLevel);
245  }
246}
247
248// EmitInstrWithCustomInserter - This method should be implemented by targets
249// that mark instructions with the 'usesCustomInserter' flag.  These
250// instructions are special in various ways, which require special support to
251// insert.  The specified MachineInstr is created but not inserted into any
252// basic blocks, and this method is called to expand it into a sequence of
253// instructions, potentially also creating new basic blocks and control flow.
254// When new basic blocks are inserted and the edges from MBB to its successors
255// are modified, the method should insert pairs of <OldSucc, NewSucc> into the
256// DenseMap.
257MachineBasicBlock *
258TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
259                                            MachineBasicBlock *MBB) const {
260#ifndef NDEBUG
261  dbgs() << "If a target marks an instruction with "
262          "'usesCustomInserter', it must implement "
263          "TargetLowering::EmitInstrWithCustomInserter!";
264#endif
265  llvm_unreachable(0);
266}
267
268void TargetLowering::AdjustInstrPostInstrSelection(MachineInstr *MI,
269                                                   SDNode *Node) const {
270  assert(!MI->hasPostISelHook() &&
271         "If a target marks an instruction with 'hasPostISelHook', "
272         "it must implement TargetLowering::AdjustInstrPostInstrSelection!");
273}
274
275//===----------------------------------------------------------------------===//
276// SelectionDAGISel code
277//===----------------------------------------------------------------------===//
278
279SelectionDAGISel::SelectionDAGISel(TargetMachine &tm,
280                                   CodeGenOpt::Level OL) :
281  MachineFunctionPass(ID), TM(tm),
282  FuncInfo(new FunctionLoweringInfo(TM)),
283  CurDAG(new SelectionDAG(tm, OL)),
284  SDB(new SelectionDAGBuilder(*CurDAG, *FuncInfo, OL)),
285  GFI(),
286  OptLevel(OL),
287  DAGSize(0) {
288    initializeGCModuleInfoPass(*PassRegistry::getPassRegistry());
289    initializeAliasAnalysisAnalysisGroup(*PassRegistry::getPassRegistry());
290    initializeBranchProbabilityInfoPass(*PassRegistry::getPassRegistry());
291    initializeTargetLibraryInfoPass(*PassRegistry::getPassRegistry());
292  }
293
294SelectionDAGISel::~SelectionDAGISel() {
295  delete SDB;
296  delete CurDAG;
297  delete FuncInfo;
298}
299
300void SelectionDAGISel::getAnalysisUsage(AnalysisUsage &AU) const {
301  AU.addRequired<AliasAnalysis>();
302  AU.addPreserved<AliasAnalysis>();
303  AU.addRequired<GCModuleInfo>();
304  AU.addPreserved<GCModuleInfo>();
305  AU.addRequired<TargetLibraryInfo>();
306  if (UseMBPI && OptLevel != CodeGenOpt::None)
307    AU.addRequired<BranchProbabilityInfo>();
308  MachineFunctionPass::getAnalysisUsage(AU);
309}
310
311/// SplitCriticalSideEffectEdges - Look for critical edges with a PHI value that
312/// may trap on it.  In this case we have to split the edge so that the path
313/// through the predecessor block that doesn't go to the phi block doesn't
314/// execute the possibly trapping instruction.
315///
316/// This is required for correctness, so it must be done at -O0.
317///
318static void SplitCriticalSideEffectEdges(Function &Fn, Pass *SDISel) {
319  // Loop for blocks with phi nodes.
320  for (Function::iterator BB = Fn.begin(), E = Fn.end(); BB != E; ++BB) {
321    PHINode *PN = dyn_cast<PHINode>(BB->begin());
322    if (PN == 0) continue;
323
324  ReprocessBlock:
325    // For each block with a PHI node, check to see if any of the input values
326    // are potentially trapping constant expressions.  Constant expressions are
327    // the only potentially trapping value that can occur as the argument to a
328    // PHI.
329    for (BasicBlock::iterator I = BB->begin(); (PN = dyn_cast<PHINode>(I)); ++I)
330      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
331        ConstantExpr *CE = dyn_cast<ConstantExpr>(PN->getIncomingValue(i));
332        if (CE == 0 || !CE->canTrap()) continue;
333
334        // The only case we have to worry about is when the edge is critical.
335        // Since this block has a PHI Node, we assume it has multiple input
336        // edges: check to see if the pred has multiple successors.
337        BasicBlock *Pred = PN->getIncomingBlock(i);
338        if (Pred->getTerminator()->getNumSuccessors() == 1)
339          continue;
340
341        // Okay, we have to split this edge.
342        SplitCriticalEdge(Pred->getTerminator(),
343                          GetSuccessorNumber(Pred, BB), SDISel, true);
344        goto ReprocessBlock;
345      }
346  }
347}
348
349bool SelectionDAGISel::runOnMachineFunction(MachineFunction &mf) {
350  // Do some sanity-checking on the command-line options.
351  assert((!EnableFastISelVerbose || TM.Options.EnableFastISel) &&
352         "-fast-isel-verbose requires -fast-isel");
353  assert((!EnableFastISelAbort || TM.Options.EnableFastISel) &&
354         "-fast-isel-abort requires -fast-isel");
355
356  const Function &Fn = *mf.getFunction();
357  const TargetInstrInfo &TII = *TM.getInstrInfo();
358  const TargetRegisterInfo &TRI = *TM.getRegisterInfo();
359
360  MF = &mf;
361  RegInfo = &MF->getRegInfo();
362  AA = &getAnalysis<AliasAnalysis>();
363  LibInfo = &getAnalysis<TargetLibraryInfo>();
364  TTI = getAnalysisIfAvailable<TargetTransformInfo>();
365  GFI = Fn.hasGC() ? &getAnalysis<GCModuleInfo>().getFunctionInfo(Fn) : 0;
366
367  TargetSubtargetInfo &ST =
368    const_cast<TargetSubtargetInfo&>(TM.getSubtarget<TargetSubtargetInfo>());
369  ST.resetSubtargetFeatures(MF);
370  TM.resetTargetOptions(MF);
371
372  DEBUG(dbgs() << "\n\n\n=== " << Fn.getName() << "\n");
373
374  SplitCriticalSideEffectEdges(const_cast<Function&>(Fn), this);
375
376  CurDAG->init(*MF, TTI);
377  FuncInfo->set(Fn, *MF);
378
379  if (UseMBPI && OptLevel != CodeGenOpt::None)
380    FuncInfo->BPI = &getAnalysis<BranchProbabilityInfo>();
381  else
382    FuncInfo->BPI = 0;
383
384  SDB->init(GFI, *AA, LibInfo);
385
386  MF->setHasMSInlineAsm(false);
387  SelectAllBasicBlocks(Fn);
388
389  // If the first basic block in the function has live ins that need to be
390  // copied into vregs, emit the copies into the top of the block before
391  // emitting the code for the block.
392  MachineBasicBlock *EntryMBB = MF->begin();
393  RegInfo->EmitLiveInCopies(EntryMBB, TRI, TII);
394
395  DenseMap<unsigned, unsigned> LiveInMap;
396  if (!FuncInfo->ArgDbgValues.empty())
397    for (MachineRegisterInfo::livein_iterator LI = RegInfo->livein_begin(),
398           E = RegInfo->livein_end(); LI != E; ++LI)
399      if (LI->second)
400        LiveInMap.insert(std::make_pair(LI->first, LI->second));
401
402  // Insert DBG_VALUE instructions for function arguments to the entry block.
403  for (unsigned i = 0, e = FuncInfo->ArgDbgValues.size(); i != e; ++i) {
404    MachineInstr *MI = FuncInfo->ArgDbgValues[e-i-1];
405    bool hasFI = MI->getOperand(0).isFI();
406    unsigned Reg = hasFI ? TRI.getFrameRegister(*MF) : MI->getOperand(0).getReg();
407    if (TargetRegisterInfo::isPhysicalRegister(Reg))
408      EntryMBB->insert(EntryMBB->begin(), MI);
409    else {
410      MachineInstr *Def = RegInfo->getVRegDef(Reg);
411      MachineBasicBlock::iterator InsertPos = Def;
412      // FIXME: VR def may not be in entry block.
413      Def->getParent()->insert(llvm::next(InsertPos), MI);
414    }
415
416    // If Reg is live-in then update debug info to track its copy in a vreg.
417    DenseMap<unsigned, unsigned>::iterator LDI = LiveInMap.find(Reg);
418    if (LDI != LiveInMap.end()) {
419      assert(!hasFI && "There's no handling of frame pointer updating here yet "
420                       "- add if needed");
421      MachineInstr *Def = RegInfo->getVRegDef(LDI->second);
422      MachineBasicBlock::iterator InsertPos = Def;
423      const MDNode *Variable =
424        MI->getOperand(MI->getNumOperands()-1).getMetadata();
425      bool IsIndirect = MI->getOperand(1).isImm();
426      unsigned Offset = IsIndirect ? MI->getOperand(1).getImm() : 0;
427      // Def is never a terminator here, so it is ok to increment InsertPos.
428      BuildMI(*EntryMBB, ++InsertPos, MI->getDebugLoc(),
429              TII.get(TargetOpcode::DBG_VALUE),
430              IsIndirect,
431              LDI->second, Offset, Variable);
432
433      // If this vreg is directly copied into an exported register then
434      // that COPY instructions also need DBG_VALUE, if it is the only
435      // user of LDI->second.
436      MachineInstr *CopyUseMI = NULL;
437      for (MachineRegisterInfo::use_iterator
438             UI = RegInfo->use_begin(LDI->second);
439           MachineInstr *UseMI = UI.skipInstruction();) {
440        if (UseMI->isDebugValue()) continue;
441        if (UseMI->isCopy() && !CopyUseMI && UseMI->getParent() == EntryMBB) {
442          CopyUseMI = UseMI; continue;
443        }
444        // Otherwise this is another use or second copy use.
445        CopyUseMI = NULL; break;
446      }
447      if (CopyUseMI) {
448        MachineInstr *NewMI =
449          BuildMI(*MF, CopyUseMI->getDebugLoc(),
450                  TII.get(TargetOpcode::DBG_VALUE),
451                  IsIndirect,
452                  CopyUseMI->getOperand(0).getReg(),
453                  Offset, Variable);
454        MachineBasicBlock::iterator Pos = CopyUseMI;
455        EntryMBB->insertAfter(Pos, NewMI);
456      }
457    }
458  }
459
460  // Determine if there are any calls in this machine function.
461  MachineFrameInfo *MFI = MF->getFrameInfo();
462  for (MachineFunction::const_iterator I = MF->begin(), E = MF->end(); I != E;
463       ++I) {
464
465    if (MFI->hasCalls() && MF->hasMSInlineAsm())
466      break;
467
468    const MachineBasicBlock *MBB = I;
469    for (MachineBasicBlock::const_iterator II = MBB->begin(), IE = MBB->end();
470         II != IE; ++II) {
471      const MCInstrDesc &MCID = TM.getInstrInfo()->get(II->getOpcode());
472      if ((MCID.isCall() && !MCID.isReturn()) ||
473          II->isStackAligningInlineAsm()) {
474        MFI->setHasCalls(true);
475      }
476      if (II->isMSInlineAsm()) {
477        MF->setHasMSInlineAsm(true);
478      }
479    }
480  }
481
482  // Determine if there is a call to setjmp in the machine function.
483  MF->setExposesReturnsTwice(Fn.callsFunctionThatReturnsTwice());
484
485  // Replace forward-declared registers with the registers containing
486  // the desired value.
487  MachineRegisterInfo &MRI = MF->getRegInfo();
488  for (DenseMap<unsigned, unsigned>::iterator
489       I = FuncInfo->RegFixups.begin(), E = FuncInfo->RegFixups.end();
490       I != E; ++I) {
491    unsigned From = I->first;
492    unsigned To = I->second;
493    // If To is also scheduled to be replaced, find what its ultimate
494    // replacement is.
495    for (;;) {
496      DenseMap<unsigned, unsigned>::iterator J = FuncInfo->RegFixups.find(To);
497      if (J == E) break;
498      To = J->second;
499    }
500    // Make sure the new register has a sufficiently constrained register class.
501    if (TargetRegisterInfo::isVirtualRegister(From) &&
502        TargetRegisterInfo::isVirtualRegister(To))
503      MRI.constrainRegClass(To, MRI.getRegClass(From));
504    // Replace it.
505    MRI.replaceRegWith(From, To);
506  }
507
508  // Freeze the set of reserved registers now that MachineFrameInfo has been
509  // set up. All the information required by getReservedRegs() should be
510  // available now.
511  MRI.freezeReservedRegs(*MF);
512
513  // Release function-specific state. SDB and CurDAG are already cleared
514  // at this point.
515  FuncInfo->clear();
516
517  return true;
518}
519
520void SelectionDAGISel::SelectBasicBlock(BasicBlock::const_iterator Begin,
521                                        BasicBlock::const_iterator End,
522                                        bool &HadTailCall) {
523  // Lower all of the non-terminator instructions. If a call is emitted
524  // as a tail call, cease emitting nodes for this block. Terminators
525  // are handled below.
526  for (BasicBlock::const_iterator I = Begin; I != End && !SDB->HasTailCall; ++I)
527    SDB->visit(*I);
528
529  // Make sure the root of the DAG is up-to-date.
530  CurDAG->setRoot(SDB->getControlRoot());
531  HadTailCall = SDB->HasTailCall;
532  SDB->clear();
533
534  // Final step, emit the lowered DAG as machine code.
535  CodeGenAndEmitDAG();
536}
537
538void SelectionDAGISel::ComputeLiveOutVRegInfo() {
539  SmallPtrSet<SDNode*, 128> VisitedNodes;
540  SmallVector<SDNode*, 128> Worklist;
541
542  Worklist.push_back(CurDAG->getRoot().getNode());
543
544  APInt KnownZero;
545  APInt KnownOne;
546
547  do {
548    SDNode *N = Worklist.pop_back_val();
549
550    // If we've already seen this node, ignore it.
551    if (!VisitedNodes.insert(N))
552      continue;
553
554    // Otherwise, add all chain operands to the worklist.
555    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
556      if (N->getOperand(i).getValueType() == MVT::Other)
557        Worklist.push_back(N->getOperand(i).getNode());
558
559    // If this is a CopyToReg with a vreg dest, process it.
560    if (N->getOpcode() != ISD::CopyToReg)
561      continue;
562
563    unsigned DestReg = cast<RegisterSDNode>(N->getOperand(1))->getReg();
564    if (!TargetRegisterInfo::isVirtualRegister(DestReg))
565      continue;
566
567    // Ignore non-scalar or non-integer values.
568    SDValue Src = N->getOperand(2);
569    EVT SrcVT = Src.getValueType();
570    if (!SrcVT.isInteger() || SrcVT.isVector())
571      continue;
572
573    unsigned NumSignBits = CurDAG->ComputeNumSignBits(Src);
574    CurDAG->ComputeMaskedBits(Src, KnownZero, KnownOne);
575    FuncInfo->AddLiveOutRegInfo(DestReg, NumSignBits, KnownZero, KnownOne);
576  } while (!Worklist.empty());
577}
578
579void SelectionDAGISel::CodeGenAndEmitDAG() {
580  std::string GroupName;
581  if (TimePassesIsEnabled)
582    GroupName = "Instruction Selection and Scheduling";
583  std::string BlockName;
584  int BlockNumber = -1;
585  (void)BlockNumber;
586#ifdef NDEBUG
587  if (ViewDAGCombine1 || ViewLegalizeTypesDAGs || ViewLegalizeDAGs ||
588      ViewDAGCombine2 || ViewDAGCombineLT || ViewISelDAGs || ViewSchedDAGs ||
589      ViewSUnitDAGs)
590#endif
591  {
592    BlockNumber = FuncInfo->MBB->getNumber();
593    BlockName = MF->getName().str() + ":" +
594                FuncInfo->MBB->getBasicBlock()->getName().str();
595  }
596  DEBUG(dbgs() << "Initial selection DAG: BB#" << BlockNumber
597        << " '" << BlockName << "'\n"; CurDAG->dump());
598
599  if (ViewDAGCombine1) CurDAG->viewGraph("dag-combine1 input for " + BlockName);
600
601  // Run the DAG combiner in pre-legalize mode.
602  {
603    NamedRegionTimer T("DAG Combining 1", GroupName, TimePassesIsEnabled);
604    CurDAG->Combine(BeforeLegalizeTypes, *AA, OptLevel);
605  }
606
607  DEBUG(dbgs() << "Optimized lowered selection DAG: BB#" << BlockNumber
608        << " '" << BlockName << "'\n"; CurDAG->dump());
609
610  // Second step, hack on the DAG until it only uses operations and types that
611  // the target supports.
612  if (ViewLegalizeTypesDAGs) CurDAG->viewGraph("legalize-types input for " +
613                                               BlockName);
614
615  bool Changed;
616  {
617    NamedRegionTimer T("Type Legalization", GroupName, TimePassesIsEnabled);
618    Changed = CurDAG->LegalizeTypes();
619  }
620
621  DEBUG(dbgs() << "Type-legalized selection DAG: BB#" << BlockNumber
622        << " '" << BlockName << "'\n"; CurDAG->dump());
623
624  if (Changed) {
625    if (ViewDAGCombineLT)
626      CurDAG->viewGraph("dag-combine-lt input for " + BlockName);
627
628    // Run the DAG combiner in post-type-legalize mode.
629    {
630      NamedRegionTimer T("DAG Combining after legalize types", GroupName,
631                         TimePassesIsEnabled);
632      CurDAG->Combine(AfterLegalizeTypes, *AA, OptLevel);
633    }
634
635    DEBUG(dbgs() << "Optimized type-legalized selection DAG: BB#" << BlockNumber
636          << " '" << BlockName << "'\n"; CurDAG->dump());
637
638  }
639
640  {
641    NamedRegionTimer T("Vector Legalization", GroupName, TimePassesIsEnabled);
642    Changed = CurDAG->LegalizeVectors();
643  }
644
645  if (Changed) {
646    {
647      NamedRegionTimer T("Type Legalization 2", GroupName, TimePassesIsEnabled);
648      CurDAG->LegalizeTypes();
649    }
650
651    if (ViewDAGCombineLT)
652      CurDAG->viewGraph("dag-combine-lv input for " + BlockName);
653
654    // Run the DAG combiner in post-type-legalize mode.
655    {
656      NamedRegionTimer T("DAG Combining after legalize vectors", GroupName,
657                         TimePassesIsEnabled);
658      CurDAG->Combine(AfterLegalizeVectorOps, *AA, OptLevel);
659    }
660
661    DEBUG(dbgs() << "Optimized vector-legalized selection DAG: BB#"
662          << BlockNumber << " '" << BlockName << "'\n"; CurDAG->dump());
663  }
664
665  if (ViewLegalizeDAGs) CurDAG->viewGraph("legalize input for " + BlockName);
666
667  {
668    NamedRegionTimer T("DAG Legalization", GroupName, TimePassesIsEnabled);
669    CurDAG->Legalize();
670  }
671
672  DEBUG(dbgs() << "Legalized selection DAG: BB#" << BlockNumber
673        << " '" << BlockName << "'\n"; CurDAG->dump());
674
675  if (ViewDAGCombine2) CurDAG->viewGraph("dag-combine2 input for " + BlockName);
676
677  // Run the DAG combiner in post-legalize mode.
678  {
679    NamedRegionTimer T("DAG Combining 2", GroupName, TimePassesIsEnabled);
680    CurDAG->Combine(AfterLegalizeDAG, *AA, OptLevel);
681  }
682
683  DEBUG(dbgs() << "Optimized legalized selection DAG: BB#" << BlockNumber
684        << " '" << BlockName << "'\n"; CurDAG->dump());
685
686  if (OptLevel != CodeGenOpt::None)
687    ComputeLiveOutVRegInfo();
688
689  if (ViewISelDAGs) CurDAG->viewGraph("isel input for " + BlockName);
690
691  // Third, instruction select all of the operations to machine code, adding the
692  // code to the MachineBasicBlock.
693  {
694    NamedRegionTimer T("Instruction Selection", GroupName, TimePassesIsEnabled);
695    DoInstructionSelection();
696  }
697
698  DEBUG(dbgs() << "Selected selection DAG: BB#" << BlockNumber
699        << " '" << BlockName << "'\n"; CurDAG->dump());
700
701  if (ViewSchedDAGs) CurDAG->viewGraph("scheduler input for " + BlockName);
702
703  // Schedule machine code.
704  ScheduleDAGSDNodes *Scheduler = CreateScheduler();
705  {
706    NamedRegionTimer T("Instruction Scheduling", GroupName,
707                       TimePassesIsEnabled);
708    Scheduler->Run(CurDAG, FuncInfo->MBB);
709  }
710
711  if (ViewSUnitDAGs) Scheduler->viewGraph();
712
713  // Emit machine code to BB.  This can change 'BB' to the last block being
714  // inserted into.
715  MachineBasicBlock *FirstMBB = FuncInfo->MBB, *LastMBB;
716  {
717    NamedRegionTimer T("Instruction Creation", GroupName, TimePassesIsEnabled);
718
719    // FuncInfo->InsertPt is passed by reference and set to the end of the
720    // scheduled instructions.
721    LastMBB = FuncInfo->MBB = Scheduler->EmitSchedule(FuncInfo->InsertPt);
722  }
723
724  // If the block was split, make sure we update any references that are used to
725  // update PHI nodes later on.
726  if (FirstMBB != LastMBB)
727    SDB->UpdateSplitBlock(FirstMBB, LastMBB);
728
729  // Free the scheduler state.
730  {
731    NamedRegionTimer T("Instruction Scheduling Cleanup", GroupName,
732                       TimePassesIsEnabled);
733    delete Scheduler;
734  }
735
736  // Free the SelectionDAG state, now that we're finished with it.
737  CurDAG->clear();
738}
739
740namespace {
741/// ISelUpdater - helper class to handle updates of the instruction selection
742/// graph.
743class ISelUpdater : public SelectionDAG::DAGUpdateListener {
744  SelectionDAG::allnodes_iterator &ISelPosition;
745public:
746  ISelUpdater(SelectionDAG &DAG, SelectionDAG::allnodes_iterator &isp)
747    : SelectionDAG::DAGUpdateListener(DAG), ISelPosition(isp) {}
748
749  /// NodeDeleted - Handle nodes deleted from the graph. If the node being
750  /// deleted is the current ISelPosition node, update ISelPosition.
751  ///
752  virtual void NodeDeleted(SDNode *N, SDNode *E) {
753    if (ISelPosition == SelectionDAG::allnodes_iterator(N))
754      ++ISelPosition;
755  }
756};
757} // end anonymous namespace
758
759void SelectionDAGISel::DoInstructionSelection() {
760  DEBUG(dbgs() << "===== Instruction selection begins: BB#"
761        << FuncInfo->MBB->getNumber()
762        << " '" << FuncInfo->MBB->getName() << "'\n");
763
764  PreprocessISelDAG();
765
766  // Select target instructions for the DAG.
767  {
768    // Number all nodes with a topological order and set DAGSize.
769    DAGSize = CurDAG->AssignTopologicalOrder();
770
771    // Create a dummy node (which is not added to allnodes), that adds
772    // a reference to the root node, preventing it from being deleted,
773    // and tracking any changes of the root.
774    HandleSDNode Dummy(CurDAG->getRoot());
775    SelectionDAG::allnodes_iterator ISelPosition (CurDAG->getRoot().getNode());
776    ++ISelPosition;
777
778    // Make sure that ISelPosition gets properly updated when nodes are deleted
779    // in calls made from this function.
780    ISelUpdater ISU(*CurDAG, ISelPosition);
781
782    // The AllNodes list is now topological-sorted. Visit the
783    // nodes by starting at the end of the list (the root of the
784    // graph) and preceding back toward the beginning (the entry
785    // node).
786    while (ISelPosition != CurDAG->allnodes_begin()) {
787      SDNode *Node = --ISelPosition;
788      // Skip dead nodes. DAGCombiner is expected to eliminate all dead nodes,
789      // but there are currently some corner cases that it misses. Also, this
790      // makes it theoretically possible to disable the DAGCombiner.
791      if (Node->use_empty())
792        continue;
793
794      SDNode *ResNode = Select(Node);
795
796      // FIXME: This is pretty gross.  'Select' should be changed to not return
797      // anything at all and this code should be nuked with a tactical strike.
798
799      // If node should not be replaced, continue with the next one.
800      if (ResNode == Node || Node->getOpcode() == ISD::DELETED_NODE)
801        continue;
802      // Replace node.
803      if (ResNode) {
804        ReplaceUses(Node, ResNode);
805      }
806
807      // If after the replacement this node is not used any more,
808      // remove this dead node.
809      if (Node->use_empty()) // Don't delete EntryToken, etc.
810        CurDAG->RemoveDeadNode(Node);
811    }
812
813    CurDAG->setRoot(Dummy.getValue());
814  }
815
816  DEBUG(dbgs() << "===== Instruction selection ends:\n");
817
818  PostprocessISelDAG();
819}
820
821/// PrepareEHLandingPad - Emit an EH_LABEL, set up live-in registers, and
822/// do other setup for EH landing-pad blocks.
823void SelectionDAGISel::PrepareEHLandingPad() {
824  MachineBasicBlock *MBB = FuncInfo->MBB;
825
826  // Add a label to mark the beginning of the landing pad.  Deletion of the
827  // landing pad can thus be detected via the MachineModuleInfo.
828  MCSymbol *Label = MF->getMMI().addLandingPad(MBB);
829
830  // Assign the call site to the landing pad's begin label.
831  MF->getMMI().setCallSiteLandingPad(Label, SDB->LPadToCallSiteMap[MBB]);
832
833  const MCInstrDesc &II = TM.getInstrInfo()->get(TargetOpcode::EH_LABEL);
834  BuildMI(*MBB, FuncInfo->InsertPt, SDB->getCurDebugLoc(), II)
835    .addSym(Label);
836
837  // Mark exception register as live in.
838  const TargetLowering *TLI = getTargetLowering();
839  const TargetRegisterClass *PtrRC = TLI->getRegClassFor(TLI->getPointerTy());
840  if (unsigned Reg = TLI->getExceptionPointerRegister())
841    FuncInfo->ExceptionPointerVirtReg = MBB->addLiveIn(Reg, PtrRC);
842
843  // Mark exception selector register as live in.
844  if (unsigned Reg = TLI->getExceptionSelectorRegister())
845    FuncInfo->ExceptionSelectorVirtReg = MBB->addLiveIn(Reg, PtrRC);
846}
847
848/// isFoldedOrDeadInstruction - Return true if the specified instruction is
849/// side-effect free and is either dead or folded into a generated instruction.
850/// Return false if it needs to be emitted.
851static bool isFoldedOrDeadInstruction(const Instruction *I,
852                                      FunctionLoweringInfo *FuncInfo) {
853  return !I->mayWriteToMemory() && // Side-effecting instructions aren't folded.
854         !isa<TerminatorInst>(I) && // Terminators aren't folded.
855         !isa<DbgInfoIntrinsic>(I) &&  // Debug instructions aren't folded.
856         !isa<LandingPadInst>(I) &&    // Landingpad instructions aren't folded.
857         !FuncInfo->isExportedInst(I); // Exported instrs must be computed.
858}
859
860#ifndef NDEBUG
861// Collect per Instruction statistics for fast-isel misses.  Only those
862// instructions that cause the bail are accounted for.  It does not account for
863// instructions higher in the block.  Thus, summing the per instructions stats
864// will not add up to what is reported by NumFastIselFailures.
865static void collectFailStats(const Instruction *I) {
866  switch (I->getOpcode()) {
867  default: assert (0 && "<Invalid operator> ");
868
869  // Terminators
870  case Instruction::Ret:         NumFastIselFailRet++; return;
871  case Instruction::Br:          NumFastIselFailBr++; return;
872  case Instruction::Switch:      NumFastIselFailSwitch++; return;
873  case Instruction::IndirectBr:  NumFastIselFailIndirectBr++; return;
874  case Instruction::Invoke:      NumFastIselFailInvoke++; return;
875  case Instruction::Resume:      NumFastIselFailResume++; return;
876  case Instruction::Unreachable: NumFastIselFailUnreachable++; return;
877
878  // Standard binary operators...
879  case Instruction::Add:  NumFastIselFailAdd++; return;
880  case Instruction::FAdd: NumFastIselFailFAdd++; return;
881  case Instruction::Sub:  NumFastIselFailSub++; return;
882  case Instruction::FSub: NumFastIselFailFSub++; return;
883  case Instruction::Mul:  NumFastIselFailMul++; return;
884  case Instruction::FMul: NumFastIselFailFMul++; return;
885  case Instruction::UDiv: NumFastIselFailUDiv++; return;
886  case Instruction::SDiv: NumFastIselFailSDiv++; return;
887  case Instruction::FDiv: NumFastIselFailFDiv++; return;
888  case Instruction::URem: NumFastIselFailURem++; return;
889  case Instruction::SRem: NumFastIselFailSRem++; return;
890  case Instruction::FRem: NumFastIselFailFRem++; return;
891
892  // Logical operators...
893  case Instruction::And: NumFastIselFailAnd++; return;
894  case Instruction::Or:  NumFastIselFailOr++; return;
895  case Instruction::Xor: NumFastIselFailXor++; return;
896
897  // Memory instructions...
898  case Instruction::Alloca:        NumFastIselFailAlloca++; return;
899  case Instruction::Load:          NumFastIselFailLoad++; return;
900  case Instruction::Store:         NumFastIselFailStore++; return;
901  case Instruction::AtomicCmpXchg: NumFastIselFailAtomicCmpXchg++; return;
902  case Instruction::AtomicRMW:     NumFastIselFailAtomicRMW++; return;
903  case Instruction::Fence:         NumFastIselFailFence++; return;
904  case Instruction::GetElementPtr: NumFastIselFailGetElementPtr++; return;
905
906  // Convert instructions...
907  case Instruction::Trunc:    NumFastIselFailTrunc++; return;
908  case Instruction::ZExt:     NumFastIselFailZExt++; return;
909  case Instruction::SExt:     NumFastIselFailSExt++; return;
910  case Instruction::FPTrunc:  NumFastIselFailFPTrunc++; return;
911  case Instruction::FPExt:    NumFastIselFailFPExt++; return;
912  case Instruction::FPToUI:   NumFastIselFailFPToUI++; return;
913  case Instruction::FPToSI:   NumFastIselFailFPToSI++; return;
914  case Instruction::UIToFP:   NumFastIselFailUIToFP++; return;
915  case Instruction::SIToFP:   NumFastIselFailSIToFP++; return;
916  case Instruction::IntToPtr: NumFastIselFailIntToPtr++; return;
917  case Instruction::PtrToInt: NumFastIselFailPtrToInt++; return;
918  case Instruction::BitCast:  NumFastIselFailBitCast++; return;
919
920  // Other instructions...
921  case Instruction::ICmp:           NumFastIselFailICmp++; return;
922  case Instruction::FCmp:           NumFastIselFailFCmp++; return;
923  case Instruction::PHI:            NumFastIselFailPHI++; return;
924  case Instruction::Select:         NumFastIselFailSelect++; return;
925  case Instruction::Call:           NumFastIselFailCall++; return;
926  case Instruction::Shl:            NumFastIselFailShl++; return;
927  case Instruction::LShr:           NumFastIselFailLShr++; return;
928  case Instruction::AShr:           NumFastIselFailAShr++; return;
929  case Instruction::VAArg:          NumFastIselFailVAArg++; return;
930  case Instruction::ExtractElement: NumFastIselFailExtractElement++; return;
931  case Instruction::InsertElement:  NumFastIselFailInsertElement++; return;
932  case Instruction::ShuffleVector:  NumFastIselFailShuffleVector++; return;
933  case Instruction::ExtractValue:   NumFastIselFailExtractValue++; return;
934  case Instruction::InsertValue:    NumFastIselFailInsertValue++; return;
935  case Instruction::LandingPad:     NumFastIselFailLandingPad++; return;
936  }
937}
938#endif
939
940void SelectionDAGISel::SelectAllBasicBlocks(const Function &Fn) {
941  // Initialize the Fast-ISel state, if needed.
942  FastISel *FastIS = 0;
943  if (TM.Options.EnableFastISel)
944    FastIS = getTargetLowering()->createFastISel(*FuncInfo, LibInfo);
945
946  // Iterate over all basic blocks in the function.
947  ReversePostOrderTraversal<const Function*> RPOT(&Fn);
948  for (ReversePostOrderTraversal<const Function*>::rpo_iterator
949       I = RPOT.begin(), E = RPOT.end(); I != E; ++I) {
950    const BasicBlock *LLVMBB = *I;
951
952    if (OptLevel != CodeGenOpt::None) {
953      bool AllPredsVisited = true;
954      for (const_pred_iterator PI = pred_begin(LLVMBB), PE = pred_end(LLVMBB);
955           PI != PE; ++PI) {
956        if (!FuncInfo->VisitedBBs.count(*PI)) {
957          AllPredsVisited = false;
958          break;
959        }
960      }
961
962      if (AllPredsVisited) {
963        for (BasicBlock::const_iterator I = LLVMBB->begin();
964             const PHINode *PN = dyn_cast<PHINode>(I); ++I)
965          FuncInfo->ComputePHILiveOutRegInfo(PN);
966      } else {
967        for (BasicBlock::const_iterator I = LLVMBB->begin();
968             const PHINode *PN = dyn_cast<PHINode>(I); ++I)
969          FuncInfo->InvalidatePHILiveOutRegInfo(PN);
970      }
971
972      FuncInfo->VisitedBBs.insert(LLVMBB);
973    }
974
975    BasicBlock::const_iterator const Begin = LLVMBB->getFirstNonPHI();
976    BasicBlock::const_iterator const End = LLVMBB->end();
977    BasicBlock::const_iterator BI = End;
978
979    FuncInfo->MBB = FuncInfo->MBBMap[LLVMBB];
980    FuncInfo->InsertPt = FuncInfo->MBB->getFirstNonPHI();
981
982    // Setup an EH landing-pad block.
983    FuncInfo->ExceptionPointerVirtReg = 0;
984    FuncInfo->ExceptionSelectorVirtReg = 0;
985    if (FuncInfo->MBB->isLandingPad())
986      PrepareEHLandingPad();
987
988    // Before doing SelectionDAG ISel, see if FastISel has been requested.
989    if (FastIS) {
990      FastIS->startNewBlock();
991
992      // Emit code for any incoming arguments. This must happen before
993      // beginning FastISel on the entry block.
994      if (LLVMBB == &Fn.getEntryBlock()) {
995        ++NumEntryBlocks;
996
997        // Lower any arguments needed in this block if this is the entry block.
998        if (!FastIS->LowerArguments()) {
999          // Fast isel failed to lower these arguments
1000          ++NumFastIselFailLowerArguments;
1001          if (EnableFastISelAbortArgs)
1002            llvm_unreachable("FastISel didn't lower all arguments");
1003
1004          // Use SelectionDAG argument lowering
1005          LowerArguments(Fn);
1006          CurDAG->setRoot(SDB->getControlRoot());
1007          SDB->clear();
1008          CodeGenAndEmitDAG();
1009        }
1010
1011        // If we inserted any instructions at the beginning, make a note of
1012        // where they are, so we can be sure to emit subsequent instructions
1013        // after them.
1014        if (FuncInfo->InsertPt != FuncInfo->MBB->begin())
1015          FastIS->setLastLocalValue(llvm::prior(FuncInfo->InsertPt));
1016        else
1017          FastIS->setLastLocalValue(0);
1018      }
1019
1020      unsigned NumFastIselRemaining = std::distance(Begin, End);
1021      // Do FastISel on as many instructions as possible.
1022      for (; BI != Begin; --BI) {
1023        const Instruction *Inst = llvm::prior(BI);
1024
1025        // If we no longer require this instruction, skip it.
1026        if (isFoldedOrDeadInstruction(Inst, FuncInfo)) {
1027          --NumFastIselRemaining;
1028          continue;
1029        }
1030
1031        // Bottom-up: reset the insert pos at the top, after any local-value
1032        // instructions.
1033        FastIS->recomputeInsertPt();
1034
1035        // Try to select the instruction with FastISel.
1036        if (FastIS->SelectInstruction(Inst)) {
1037          --NumFastIselRemaining;
1038          ++NumFastIselSuccess;
1039          // If fast isel succeeded, skip over all the folded instructions, and
1040          // then see if there is a load right before the selected instructions.
1041          // Try to fold the load if so.
1042          const Instruction *BeforeInst = Inst;
1043          while (BeforeInst != Begin) {
1044            BeforeInst = llvm::prior(BasicBlock::const_iterator(BeforeInst));
1045            if (!isFoldedOrDeadInstruction(BeforeInst, FuncInfo))
1046              break;
1047          }
1048          if (BeforeInst != Inst && isa<LoadInst>(BeforeInst) &&
1049              BeforeInst->hasOneUse() &&
1050              FastIS->tryToFoldLoad(cast<LoadInst>(BeforeInst), Inst)) {
1051            // If we succeeded, don't re-select the load.
1052            BI = llvm::next(BasicBlock::const_iterator(BeforeInst));
1053            --NumFastIselRemaining;
1054            ++NumFastIselSuccess;
1055          }
1056          continue;
1057        }
1058
1059#ifndef NDEBUG
1060        if (EnableFastISelVerbose2)
1061          collectFailStats(Inst);
1062#endif
1063
1064        // Then handle certain instructions as single-LLVM-Instruction blocks.
1065        if (isa<CallInst>(Inst)) {
1066
1067          if (EnableFastISelVerbose || EnableFastISelAbort) {
1068            dbgs() << "FastISel missed call: ";
1069            Inst->dump();
1070          }
1071
1072          if (!Inst->getType()->isVoidTy() && !Inst->use_empty()) {
1073            unsigned &R = FuncInfo->ValueMap[Inst];
1074            if (!R)
1075              R = FuncInfo->CreateRegs(Inst->getType());
1076          }
1077
1078          bool HadTailCall = false;
1079          MachineBasicBlock::iterator SavedInsertPt = FuncInfo->InsertPt;
1080          SelectBasicBlock(Inst, BI, HadTailCall);
1081
1082          // If the call was emitted as a tail call, we're done with the block.
1083          // We also need to delete any previously emitted instructions.
1084          if (HadTailCall) {
1085            FastIS->removeDeadCode(SavedInsertPt, FuncInfo->MBB->end());
1086            --BI;
1087            break;
1088          }
1089
1090          // Recompute NumFastIselRemaining as Selection DAG instruction
1091          // selection may have handled the call, input args, etc.
1092          unsigned RemainingNow = std::distance(Begin, BI);
1093          NumFastIselFailures += NumFastIselRemaining - RemainingNow;
1094          NumFastIselRemaining = RemainingNow;
1095          continue;
1096        }
1097
1098        if (isa<TerminatorInst>(Inst) && !isa<BranchInst>(Inst)) {
1099          // Don't abort, and use a different message for terminator misses.
1100          NumFastIselFailures += NumFastIselRemaining;
1101          if (EnableFastISelVerbose || EnableFastISelAbort) {
1102            dbgs() << "FastISel missed terminator: ";
1103            Inst->dump();
1104          }
1105        } else {
1106          NumFastIselFailures += NumFastIselRemaining;
1107          if (EnableFastISelVerbose || EnableFastISelAbort) {
1108            dbgs() << "FastISel miss: ";
1109            Inst->dump();
1110          }
1111          if (EnableFastISelAbort)
1112            // The "fast" selector couldn't handle something and bailed.
1113            // For the purpose of debugging, just abort.
1114            llvm_unreachable("FastISel didn't select the entire block");
1115        }
1116        break;
1117      }
1118
1119      FastIS->recomputeInsertPt();
1120    } else {
1121      // Lower any arguments needed in this block if this is the entry block.
1122      if (LLVMBB == &Fn.getEntryBlock()) {
1123        ++NumEntryBlocks;
1124        LowerArguments(Fn);
1125      }
1126    }
1127
1128    if (Begin != BI)
1129      ++NumDAGBlocks;
1130    else
1131      ++NumFastIselBlocks;
1132
1133    if (Begin != BI) {
1134      // Run SelectionDAG instruction selection on the remainder of the block
1135      // not handled by FastISel. If FastISel is not run, this is the entire
1136      // block.
1137      bool HadTailCall;
1138      SelectBasicBlock(Begin, BI, HadTailCall);
1139    }
1140
1141    FinishBasicBlock();
1142    FuncInfo->PHINodesToUpdate.clear();
1143  }
1144
1145  delete FastIS;
1146  SDB->clearDanglingDebugInfo();
1147  SDB->SPDescriptor.resetPerFunctionState();
1148}
1149
1150/// Given that the input MI is before a partial terminator sequence TSeq, return
1151/// true if M + TSeq also a partial terminator sequence.
1152///
1153/// A Terminator sequence is a sequence of MachineInstrs which at this point in
1154/// lowering copy vregs into physical registers, which are then passed into
1155/// terminator instructors so we can satisfy ABI constraints. A partial
1156/// terminator sequence is an improper subset of a terminator sequence (i.e. it
1157/// may be the whole terminator sequence).
1158static bool MIIsInTerminatorSequence(const MachineInstr *MI) {
1159  // If we do not have a copy or an implicit def, we return true if and only if
1160  // MI is a debug value.
1161  if (!MI->isCopy() && !MI->isImplicitDef())
1162    // Sometimes DBG_VALUE MI sneak in between the copies from the vregs to the
1163    // physical registers if there is debug info associated with the terminator
1164    // of our mbb. We want to include said debug info in our terminator
1165    // sequence, so we return true in that case.
1166    return MI->isDebugValue();
1167
1168  // If we are not defining a register that is a physical register via a copy or
1169  // are defining a register via an implicit def, we have left the terminator
1170  // sequence.
1171  MachineInstr::const_mop_iterator OPI = MI->operands_begin();
1172  if (!OPI->isReg() || !OPI->isDef() ||
1173      (!TargetRegisterInfo::isPhysicalRegister(OPI->getReg()) &&
1174       !MI->isImplicitDef()))
1175    return false;
1176
1177  return true;
1178}
1179
1180/// Find the split point at which to splice the end of BB into its success stack
1181/// protector check machine basic block.
1182///
1183/// On many platforms, due to ABI constraints, terminators, even before register
1184/// allocation, use physical registers. This creates an issue for us since
1185/// physical registers at this point can not travel across basic
1186/// blocks. Luckily, selectiondag always moves physical registers into vregs
1187/// when they enter functions and moves them through a sequence of copies back
1188/// into the physical registers right before the terminator creating a
1189/// ``Terminator Sequence''. This function is searching for the beginning of the
1190/// terminator sequence so that we can ensure that we splice off not just the
1191/// terminator, but additionally the copies that move the vregs into the
1192/// physical registers.
1193static MachineBasicBlock::iterator
1194FindSplitPointForStackProtector(MachineBasicBlock *BB, DebugLoc DL) {
1195  MachineBasicBlock::iterator SplitPoint = BB->getFirstTerminator();
1196  //
1197  if (SplitPoint == BB->begin())
1198    return SplitPoint;
1199
1200  MachineBasicBlock::iterator Start = BB->begin();
1201  MachineBasicBlock::iterator Previous = SplitPoint;
1202  --Previous;
1203
1204  while (MIIsInTerminatorSequence(Previous)) {
1205    SplitPoint = Previous;
1206    if (Previous == Start)
1207      break;
1208    --Previous;
1209  }
1210
1211  return SplitPoint;
1212}
1213
1214void
1215SelectionDAGISel::FinishBasicBlock() {
1216
1217  DEBUG(dbgs() << "Total amount of phi nodes to update: "
1218               << FuncInfo->PHINodesToUpdate.size() << "\n";
1219        for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i)
1220          dbgs() << "Node " << i << " : ("
1221                 << FuncInfo->PHINodesToUpdate[i].first
1222                 << ", " << FuncInfo->PHINodesToUpdate[i].second << ")\n");
1223
1224  const bool MustUpdatePHINodes = SDB->SwitchCases.empty() &&
1225                                  SDB->JTCases.empty() &&
1226                                  SDB->BitTestCases.empty();
1227
1228  // Next, now that we know what the last MBB the LLVM BB expanded is, update
1229  // PHI nodes in successors.
1230  if (MustUpdatePHINodes) {
1231    for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i) {
1232      MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[i].first);
1233      assert(PHI->isPHI() &&
1234             "This is not a machine PHI node that we are updating!");
1235      if (!FuncInfo->MBB->isSuccessor(PHI->getParent()))
1236        continue;
1237      PHI.addReg(FuncInfo->PHINodesToUpdate[i].second).addMBB(FuncInfo->MBB);
1238    }
1239  }
1240
1241  // Handle stack protector.
1242  if (SDB->SPDescriptor.shouldEmitStackProtector()) {
1243    MachineBasicBlock *ParentMBB = SDB->SPDescriptor.getParentMBB();
1244    MachineBasicBlock *SuccessMBB = SDB->SPDescriptor.getSuccessMBB();
1245
1246    // Find the split point to split the parent mbb. At the same time copy all
1247    // physical registers used in the tail of parent mbb into virtual registers
1248    // before the split point and back into physical registers after the split
1249    // point. This prevents us needing to deal with Live-ins and many other
1250    // register allocation issues caused by us splitting the parent mbb. The
1251    // register allocator will clean up said virtual copies later on.
1252    MachineBasicBlock::iterator SplitPoint =
1253      FindSplitPointForStackProtector(ParentMBB, SDB->getCurDebugLoc());
1254
1255    // Splice the terminator of ParentMBB into SuccessMBB.
1256    SuccessMBB->splice(SuccessMBB->end(), ParentMBB,
1257                       SplitPoint,
1258                       ParentMBB->end());
1259
1260    // Add compare/jump on neq/jump to the parent BB.
1261    FuncInfo->MBB = ParentMBB;
1262    FuncInfo->InsertPt = ParentMBB->end();
1263    SDB->visitSPDescriptorParent(SDB->SPDescriptor, ParentMBB);
1264    CurDAG->setRoot(SDB->getRoot());
1265    SDB->clear();
1266    CodeGenAndEmitDAG();
1267
1268    // CodeGen Failure MBB if we have not codegened it yet.
1269    MachineBasicBlock *FailureMBB = SDB->SPDescriptor.getFailureMBB();
1270    if (!FailureMBB->size()) {
1271      FuncInfo->MBB = FailureMBB;
1272      FuncInfo->InsertPt = FailureMBB->end();
1273      SDB->visitSPDescriptorFailure(SDB->SPDescriptor);
1274      CurDAG->setRoot(SDB->getRoot());
1275      SDB->clear();
1276      CodeGenAndEmitDAG();
1277    }
1278
1279    // Clear the Per-BB State.
1280    SDB->SPDescriptor.resetPerBBState();
1281  }
1282
1283  // If we updated PHI Nodes, return early.
1284  if (MustUpdatePHINodes)
1285    return;
1286
1287  for (unsigned i = 0, e = SDB->BitTestCases.size(); i != e; ++i) {
1288    // Lower header first, if it wasn't already lowered
1289    if (!SDB->BitTestCases[i].Emitted) {
1290      // Set the current basic block to the mbb we wish to insert the code into
1291      FuncInfo->MBB = SDB->BitTestCases[i].Parent;
1292      FuncInfo->InsertPt = FuncInfo->MBB->end();
1293      // Emit the code
1294      SDB->visitBitTestHeader(SDB->BitTestCases[i], FuncInfo->MBB);
1295      CurDAG->setRoot(SDB->getRoot());
1296      SDB->clear();
1297      CodeGenAndEmitDAG();
1298    }
1299
1300    uint32_t UnhandledWeight = 0;
1301    for (unsigned j = 0, ej = SDB->BitTestCases[i].Cases.size(); j != ej; ++j)
1302      UnhandledWeight += SDB->BitTestCases[i].Cases[j].ExtraWeight;
1303
1304    for (unsigned j = 0, ej = SDB->BitTestCases[i].Cases.size(); j != ej; ++j) {
1305      UnhandledWeight -= SDB->BitTestCases[i].Cases[j].ExtraWeight;
1306      // Set the current basic block to the mbb we wish to insert the code into
1307      FuncInfo->MBB = SDB->BitTestCases[i].Cases[j].ThisBB;
1308      FuncInfo->InsertPt = FuncInfo->MBB->end();
1309      // Emit the code
1310      if (j+1 != ej)
1311        SDB->visitBitTestCase(SDB->BitTestCases[i],
1312                              SDB->BitTestCases[i].Cases[j+1].ThisBB,
1313                              UnhandledWeight,
1314                              SDB->BitTestCases[i].Reg,
1315                              SDB->BitTestCases[i].Cases[j],
1316                              FuncInfo->MBB);
1317      else
1318        SDB->visitBitTestCase(SDB->BitTestCases[i],
1319                              SDB->BitTestCases[i].Default,
1320                              UnhandledWeight,
1321                              SDB->BitTestCases[i].Reg,
1322                              SDB->BitTestCases[i].Cases[j],
1323                              FuncInfo->MBB);
1324
1325
1326      CurDAG->setRoot(SDB->getRoot());
1327      SDB->clear();
1328      CodeGenAndEmitDAG();
1329    }
1330
1331    // Update PHI Nodes
1332    for (unsigned pi = 0, pe = FuncInfo->PHINodesToUpdate.size();
1333         pi != pe; ++pi) {
1334      MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[pi].first);
1335      MachineBasicBlock *PHIBB = PHI->getParent();
1336      assert(PHI->isPHI() &&
1337             "This is not a machine PHI node that we are updating!");
1338      // This is "default" BB. We have two jumps to it. From "header" BB and
1339      // from last "case" BB.
1340      if (PHIBB == SDB->BitTestCases[i].Default)
1341        PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second)
1342           .addMBB(SDB->BitTestCases[i].Parent)
1343           .addReg(FuncInfo->PHINodesToUpdate[pi].second)
1344           .addMBB(SDB->BitTestCases[i].Cases.back().ThisBB);
1345      // One of "cases" BB.
1346      for (unsigned j = 0, ej = SDB->BitTestCases[i].Cases.size();
1347           j != ej; ++j) {
1348        MachineBasicBlock* cBB = SDB->BitTestCases[i].Cases[j].ThisBB;
1349        if (cBB->isSuccessor(PHIBB))
1350          PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second).addMBB(cBB);
1351      }
1352    }
1353  }
1354  SDB->BitTestCases.clear();
1355
1356  // If the JumpTable record is filled in, then we need to emit a jump table.
1357  // Updating the PHI nodes is tricky in this case, since we need to determine
1358  // whether the PHI is a successor of the range check MBB or the jump table MBB
1359  for (unsigned i = 0, e = SDB->JTCases.size(); i != e; ++i) {
1360    // Lower header first, if it wasn't already lowered
1361    if (!SDB->JTCases[i].first.Emitted) {
1362      // Set the current basic block to the mbb we wish to insert the code into
1363      FuncInfo->MBB = SDB->JTCases[i].first.HeaderBB;
1364      FuncInfo->InsertPt = FuncInfo->MBB->end();
1365      // Emit the code
1366      SDB->visitJumpTableHeader(SDB->JTCases[i].second, SDB->JTCases[i].first,
1367                                FuncInfo->MBB);
1368      CurDAG->setRoot(SDB->getRoot());
1369      SDB->clear();
1370      CodeGenAndEmitDAG();
1371    }
1372
1373    // Set the current basic block to the mbb we wish to insert the code into
1374    FuncInfo->MBB = SDB->JTCases[i].second.MBB;
1375    FuncInfo->InsertPt = FuncInfo->MBB->end();
1376    // Emit the code
1377    SDB->visitJumpTable(SDB->JTCases[i].second);
1378    CurDAG->setRoot(SDB->getRoot());
1379    SDB->clear();
1380    CodeGenAndEmitDAG();
1381
1382    // Update PHI Nodes
1383    for (unsigned pi = 0, pe = FuncInfo->PHINodesToUpdate.size();
1384         pi != pe; ++pi) {
1385      MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[pi].first);
1386      MachineBasicBlock *PHIBB = PHI->getParent();
1387      assert(PHI->isPHI() &&
1388             "This is not a machine PHI node that we are updating!");
1389      // "default" BB. We can go there only from header BB.
1390      if (PHIBB == SDB->JTCases[i].second.Default)
1391        PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second)
1392           .addMBB(SDB->JTCases[i].first.HeaderBB);
1393      // JT BB. Just iterate over successors here
1394      if (FuncInfo->MBB->isSuccessor(PHIBB))
1395        PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second).addMBB(FuncInfo->MBB);
1396    }
1397  }
1398  SDB->JTCases.clear();
1399
1400  // If the switch block involved a branch to one of the actual successors, we
1401  // need to update PHI nodes in that block.
1402  for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i) {
1403    MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[i].first);
1404    assert(PHI->isPHI() &&
1405           "This is not a machine PHI node that we are updating!");
1406    if (FuncInfo->MBB->isSuccessor(PHI->getParent()))
1407      PHI.addReg(FuncInfo->PHINodesToUpdate[i].second).addMBB(FuncInfo->MBB);
1408  }
1409
1410  // If we generated any switch lowering information, build and codegen any
1411  // additional DAGs necessary.
1412  for (unsigned i = 0, e = SDB->SwitchCases.size(); i != e; ++i) {
1413    // Set the current basic block to the mbb we wish to insert the code into
1414    FuncInfo->MBB = SDB->SwitchCases[i].ThisBB;
1415    FuncInfo->InsertPt = FuncInfo->MBB->end();
1416
1417    // Determine the unique successors.
1418    SmallVector<MachineBasicBlock *, 2> Succs;
1419    Succs.push_back(SDB->SwitchCases[i].TrueBB);
1420    if (SDB->SwitchCases[i].TrueBB != SDB->SwitchCases[i].FalseBB)
1421      Succs.push_back(SDB->SwitchCases[i].FalseBB);
1422
1423    // Emit the code. Note that this could result in FuncInfo->MBB being split.
1424    SDB->visitSwitchCase(SDB->SwitchCases[i], FuncInfo->MBB);
1425    CurDAG->setRoot(SDB->getRoot());
1426    SDB->clear();
1427    CodeGenAndEmitDAG();
1428
1429    // Remember the last block, now that any splitting is done, for use in
1430    // populating PHI nodes in successors.
1431    MachineBasicBlock *ThisBB = FuncInfo->MBB;
1432
1433    // Handle any PHI nodes in successors of this chunk, as if we were coming
1434    // from the original BB before switch expansion.  Note that PHI nodes can
1435    // occur multiple times in PHINodesToUpdate.  We have to be very careful to
1436    // handle them the right number of times.
1437    for (unsigned i = 0, e = Succs.size(); i != e; ++i) {
1438      FuncInfo->MBB = Succs[i];
1439      FuncInfo->InsertPt = FuncInfo->MBB->end();
1440      // FuncInfo->MBB may have been removed from the CFG if a branch was
1441      // constant folded.
1442      if (ThisBB->isSuccessor(FuncInfo->MBB)) {
1443        for (MachineBasicBlock::iterator
1444             MBBI = FuncInfo->MBB->begin(), MBBE = FuncInfo->MBB->end();
1445             MBBI != MBBE && MBBI->isPHI(); ++MBBI) {
1446          MachineInstrBuilder PHI(*MF, MBBI);
1447          // This value for this PHI node is recorded in PHINodesToUpdate.
1448          for (unsigned pn = 0; ; ++pn) {
1449            assert(pn != FuncInfo->PHINodesToUpdate.size() &&
1450                   "Didn't find PHI entry!");
1451            if (FuncInfo->PHINodesToUpdate[pn].first == PHI) {
1452              PHI.addReg(FuncInfo->PHINodesToUpdate[pn].second).addMBB(ThisBB);
1453              break;
1454            }
1455          }
1456        }
1457      }
1458    }
1459  }
1460  SDB->SwitchCases.clear();
1461}
1462
1463
1464/// Create the scheduler. If a specific scheduler was specified
1465/// via the SchedulerRegistry, use it, otherwise select the
1466/// one preferred by the target.
1467///
1468ScheduleDAGSDNodes *SelectionDAGISel::CreateScheduler() {
1469  RegisterScheduler::FunctionPassCtor Ctor = RegisterScheduler::getDefault();
1470
1471  if (!Ctor) {
1472    Ctor = ISHeuristic;
1473    RegisterScheduler::setDefault(Ctor);
1474  }
1475
1476  return Ctor(this, OptLevel);
1477}
1478
1479//===----------------------------------------------------------------------===//
1480// Helper functions used by the generated instruction selector.
1481//===----------------------------------------------------------------------===//
1482// Calls to these methods are generated by tblgen.
1483
1484/// CheckAndMask - The isel is trying to match something like (and X, 255).  If
1485/// the dag combiner simplified the 255, we still want to match.  RHS is the
1486/// actual value in the DAG on the RHS of an AND, and DesiredMaskS is the value
1487/// specified in the .td file (e.g. 255).
1488bool SelectionDAGISel::CheckAndMask(SDValue LHS, ConstantSDNode *RHS,
1489                                    int64_t DesiredMaskS) const {
1490  const APInt &ActualMask = RHS->getAPIntValue();
1491  const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
1492
1493  // If the actual mask exactly matches, success!
1494  if (ActualMask == DesiredMask)
1495    return true;
1496
1497  // If the actual AND mask is allowing unallowed bits, this doesn't match.
1498  if (ActualMask.intersects(~DesiredMask))
1499    return false;
1500
1501  // Otherwise, the DAG Combiner may have proven that the value coming in is
1502  // either already zero or is not demanded.  Check for known zero input bits.
1503  APInt NeededMask = DesiredMask & ~ActualMask;
1504  if (CurDAG->MaskedValueIsZero(LHS, NeededMask))
1505    return true;
1506
1507  // TODO: check to see if missing bits are just not demanded.
1508
1509  // Otherwise, this pattern doesn't match.
1510  return false;
1511}
1512
1513/// CheckOrMask - The isel is trying to match something like (or X, 255).  If
1514/// the dag combiner simplified the 255, we still want to match.  RHS is the
1515/// actual value in the DAG on the RHS of an OR, and DesiredMaskS is the value
1516/// specified in the .td file (e.g. 255).
1517bool SelectionDAGISel::CheckOrMask(SDValue LHS, ConstantSDNode *RHS,
1518                                   int64_t DesiredMaskS) const {
1519  const APInt &ActualMask = RHS->getAPIntValue();
1520  const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
1521
1522  // If the actual mask exactly matches, success!
1523  if (ActualMask == DesiredMask)
1524    return true;
1525
1526  // If the actual AND mask is allowing unallowed bits, this doesn't match.
1527  if (ActualMask.intersects(~DesiredMask))
1528    return false;
1529
1530  // Otherwise, the DAG Combiner may have proven that the value coming in is
1531  // either already zero or is not demanded.  Check for known zero input bits.
1532  APInt NeededMask = DesiredMask & ~ActualMask;
1533
1534  APInt KnownZero, KnownOne;
1535  CurDAG->ComputeMaskedBits(LHS, KnownZero, KnownOne);
1536
1537  // If all the missing bits in the or are already known to be set, match!
1538  if ((NeededMask & KnownOne) == NeededMask)
1539    return true;
1540
1541  // TODO: check to see if missing bits are just not demanded.
1542
1543  // Otherwise, this pattern doesn't match.
1544  return false;
1545}
1546
1547
1548/// SelectInlineAsmMemoryOperands - Calls to this are automatically generated
1549/// by tblgen.  Others should not call it.
1550void SelectionDAGISel::
1551SelectInlineAsmMemoryOperands(std::vector<SDValue> &Ops) {
1552  std::vector<SDValue> InOps;
1553  std::swap(InOps, Ops);
1554
1555  Ops.push_back(InOps[InlineAsm::Op_InputChain]); // 0
1556  Ops.push_back(InOps[InlineAsm::Op_AsmString]);  // 1
1557  Ops.push_back(InOps[InlineAsm::Op_MDNode]);     // 2, !srcloc
1558  Ops.push_back(InOps[InlineAsm::Op_ExtraInfo]);  // 3 (SideEffect, AlignStack)
1559
1560  unsigned i = InlineAsm::Op_FirstOperand, e = InOps.size();
1561  if (InOps[e-1].getValueType() == MVT::Glue)
1562    --e;  // Don't process a glue operand if it is here.
1563
1564  while (i != e) {
1565    unsigned Flags = cast<ConstantSDNode>(InOps[i])->getZExtValue();
1566    if (!InlineAsm::isMemKind(Flags)) {
1567      // Just skip over this operand, copying the operands verbatim.
1568      Ops.insert(Ops.end(), InOps.begin()+i,
1569                 InOps.begin()+i+InlineAsm::getNumOperandRegisters(Flags) + 1);
1570      i += InlineAsm::getNumOperandRegisters(Flags) + 1;
1571    } else {
1572      assert(InlineAsm::getNumOperandRegisters(Flags) == 1 &&
1573             "Memory operand with multiple values?");
1574      // Otherwise, this is a memory operand.  Ask the target to select it.
1575      std::vector<SDValue> SelOps;
1576      if (SelectInlineAsmMemoryOperand(InOps[i+1], 'm', SelOps))
1577        report_fatal_error("Could not match memory address.  Inline asm"
1578                           " failure!");
1579
1580      // Add this to the output node.
1581      unsigned NewFlags =
1582        InlineAsm::getFlagWord(InlineAsm::Kind_Mem, SelOps.size());
1583      Ops.push_back(CurDAG->getTargetConstant(NewFlags, MVT::i32));
1584      Ops.insert(Ops.end(), SelOps.begin(), SelOps.end());
1585      i += 2;
1586    }
1587  }
1588
1589  // Add the glue input back if present.
1590  if (e != InOps.size())
1591    Ops.push_back(InOps.back());
1592}
1593
1594/// findGlueUse - Return use of MVT::Glue value produced by the specified
1595/// SDNode.
1596///
1597static SDNode *findGlueUse(SDNode *N) {
1598  unsigned FlagResNo = N->getNumValues()-1;
1599  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
1600    SDUse &Use = I.getUse();
1601    if (Use.getResNo() == FlagResNo)
1602      return Use.getUser();
1603  }
1604  return NULL;
1605}
1606
1607/// findNonImmUse - Return true if "Use" is a non-immediate use of "Def".
1608/// This function recursively traverses up the operand chain, ignoring
1609/// certain nodes.
1610static bool findNonImmUse(SDNode *Use, SDNode* Def, SDNode *ImmedUse,
1611                          SDNode *Root, SmallPtrSet<SDNode*, 16> &Visited,
1612                          bool IgnoreChains) {
1613  // The NodeID's are given uniques ID's where a node ID is guaranteed to be
1614  // greater than all of its (recursive) operands.  If we scan to a point where
1615  // 'use' is smaller than the node we're scanning for, then we know we will
1616  // never find it.
1617  //
1618  // The Use may be -1 (unassigned) if it is a newly allocated node.  This can
1619  // happen because we scan down to newly selected nodes in the case of glue
1620  // uses.
1621  if ((Use->getNodeId() < Def->getNodeId() && Use->getNodeId() != -1))
1622    return false;
1623
1624  // Don't revisit nodes if we already scanned it and didn't fail, we know we
1625  // won't fail if we scan it again.
1626  if (!Visited.insert(Use))
1627    return false;
1628
1629  for (unsigned i = 0, e = Use->getNumOperands(); i != e; ++i) {
1630    // Ignore chain uses, they are validated by HandleMergeInputChains.
1631    if (Use->getOperand(i).getValueType() == MVT::Other && IgnoreChains)
1632      continue;
1633
1634    SDNode *N = Use->getOperand(i).getNode();
1635    if (N == Def) {
1636      if (Use == ImmedUse || Use == Root)
1637        continue;  // We are not looking for immediate use.
1638      assert(N != Root);
1639      return true;
1640    }
1641
1642    // Traverse up the operand chain.
1643    if (findNonImmUse(N, Def, ImmedUse, Root, Visited, IgnoreChains))
1644      return true;
1645  }
1646  return false;
1647}
1648
1649/// IsProfitableToFold - Returns true if it's profitable to fold the specific
1650/// operand node N of U during instruction selection that starts at Root.
1651bool SelectionDAGISel::IsProfitableToFold(SDValue N, SDNode *U,
1652                                          SDNode *Root) const {
1653  if (OptLevel == CodeGenOpt::None) return false;
1654  return N.hasOneUse();
1655}
1656
1657/// IsLegalToFold - Returns true if the specific operand node N of
1658/// U can be folded during instruction selection that starts at Root.
1659bool SelectionDAGISel::IsLegalToFold(SDValue N, SDNode *U, SDNode *Root,
1660                                     CodeGenOpt::Level OptLevel,
1661                                     bool IgnoreChains) {
1662  if (OptLevel == CodeGenOpt::None) return false;
1663
1664  // If Root use can somehow reach N through a path that that doesn't contain
1665  // U then folding N would create a cycle. e.g. In the following
1666  // diagram, Root can reach N through X. If N is folded into into Root, then
1667  // X is both a predecessor and a successor of U.
1668  //
1669  //          [N*]           //
1670  //         ^   ^           //
1671  //        /     \          //
1672  //      [U*]    [X]?       //
1673  //        ^     ^          //
1674  //         \   /           //
1675  //          \ /            //
1676  //         [Root*]         //
1677  //
1678  // * indicates nodes to be folded together.
1679  //
1680  // If Root produces glue, then it gets (even more) interesting. Since it
1681  // will be "glued" together with its glue use in the scheduler, we need to
1682  // check if it might reach N.
1683  //
1684  //          [N*]           //
1685  //         ^   ^           //
1686  //        /     \          //
1687  //      [U*]    [X]?       //
1688  //        ^       ^        //
1689  //         \       \       //
1690  //          \      |       //
1691  //         [Root*] |       //
1692  //          ^      |       //
1693  //          f      |       //
1694  //          |      /       //
1695  //         [Y]    /        //
1696  //           ^   /         //
1697  //           f  /          //
1698  //           | /           //
1699  //          [GU]           //
1700  //
1701  // If GU (glue use) indirectly reaches N (the load), and Root folds N
1702  // (call it Fold), then X is a predecessor of GU and a successor of
1703  // Fold. But since Fold and GU are glued together, this will create
1704  // a cycle in the scheduling graph.
1705
1706  // If the node has glue, walk down the graph to the "lowest" node in the
1707  // glueged set.
1708  EVT VT = Root->getValueType(Root->getNumValues()-1);
1709  while (VT == MVT::Glue) {
1710    SDNode *GU = findGlueUse(Root);
1711    if (GU == NULL)
1712      break;
1713    Root = GU;
1714    VT = Root->getValueType(Root->getNumValues()-1);
1715
1716    // If our query node has a glue result with a use, we've walked up it.  If
1717    // the user (which has already been selected) has a chain or indirectly uses
1718    // the chain, our WalkChainUsers predicate will not consider it.  Because of
1719    // this, we cannot ignore chains in this predicate.
1720    IgnoreChains = false;
1721  }
1722
1723
1724  SmallPtrSet<SDNode*, 16> Visited;
1725  return !findNonImmUse(Root, N.getNode(), U, Root, Visited, IgnoreChains);
1726}
1727
1728SDNode *SelectionDAGISel::Select_INLINEASM(SDNode *N) {
1729  std::vector<SDValue> Ops(N->op_begin(), N->op_end());
1730  SelectInlineAsmMemoryOperands(Ops);
1731
1732  EVT VTs[] = { MVT::Other, MVT::Glue };
1733  SDValue New = CurDAG->getNode(ISD::INLINEASM, SDLoc(N),
1734                                VTs, &Ops[0], Ops.size());
1735  New->setNodeId(-1);
1736  return New.getNode();
1737}
1738
1739SDNode *SelectionDAGISel::Select_UNDEF(SDNode *N) {
1740  return CurDAG->SelectNodeTo(N, TargetOpcode::IMPLICIT_DEF,N->getValueType(0));
1741}
1742
1743/// GetVBR - decode a vbr encoding whose top bit is set.
1744LLVM_ATTRIBUTE_ALWAYS_INLINE static uint64_t
1745GetVBR(uint64_t Val, const unsigned char *MatcherTable, unsigned &Idx) {
1746  assert(Val >= 128 && "Not a VBR");
1747  Val &= 127;  // Remove first vbr bit.
1748
1749  unsigned Shift = 7;
1750  uint64_t NextBits;
1751  do {
1752    NextBits = MatcherTable[Idx++];
1753    Val |= (NextBits&127) << Shift;
1754    Shift += 7;
1755  } while (NextBits & 128);
1756
1757  return Val;
1758}
1759
1760
1761/// UpdateChainsAndGlue - When a match is complete, this method updates uses of
1762/// interior glue and chain results to use the new glue and chain results.
1763void SelectionDAGISel::
1764UpdateChainsAndGlue(SDNode *NodeToMatch, SDValue InputChain,
1765                    const SmallVectorImpl<SDNode*> &ChainNodesMatched,
1766                    SDValue InputGlue,
1767                    const SmallVectorImpl<SDNode*> &GlueResultNodesMatched,
1768                    bool isMorphNodeTo) {
1769  SmallVector<SDNode*, 4> NowDeadNodes;
1770
1771  // Now that all the normal results are replaced, we replace the chain and
1772  // glue results if present.
1773  if (!ChainNodesMatched.empty()) {
1774    assert(InputChain.getNode() != 0 &&
1775           "Matched input chains but didn't produce a chain");
1776    // Loop over all of the nodes we matched that produced a chain result.
1777    // Replace all the chain results with the final chain we ended up with.
1778    for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
1779      SDNode *ChainNode = ChainNodesMatched[i];
1780
1781      // If this node was already deleted, don't look at it.
1782      if (ChainNode->getOpcode() == ISD::DELETED_NODE)
1783        continue;
1784
1785      // Don't replace the results of the root node if we're doing a
1786      // MorphNodeTo.
1787      if (ChainNode == NodeToMatch && isMorphNodeTo)
1788        continue;
1789
1790      SDValue ChainVal = SDValue(ChainNode, ChainNode->getNumValues()-1);
1791      if (ChainVal.getValueType() == MVT::Glue)
1792        ChainVal = ChainVal.getValue(ChainVal->getNumValues()-2);
1793      assert(ChainVal.getValueType() == MVT::Other && "Not a chain?");
1794      CurDAG->ReplaceAllUsesOfValueWith(ChainVal, InputChain);
1795
1796      // If the node became dead and we haven't already seen it, delete it.
1797      if (ChainNode->use_empty() &&
1798          !std::count(NowDeadNodes.begin(), NowDeadNodes.end(), ChainNode))
1799        NowDeadNodes.push_back(ChainNode);
1800    }
1801  }
1802
1803  // If the result produces glue, update any glue results in the matched
1804  // pattern with the glue result.
1805  if (InputGlue.getNode() != 0) {
1806    // Handle any interior nodes explicitly marked.
1807    for (unsigned i = 0, e = GlueResultNodesMatched.size(); i != e; ++i) {
1808      SDNode *FRN = GlueResultNodesMatched[i];
1809
1810      // If this node was already deleted, don't look at it.
1811      if (FRN->getOpcode() == ISD::DELETED_NODE)
1812        continue;
1813
1814      assert(FRN->getValueType(FRN->getNumValues()-1) == MVT::Glue &&
1815             "Doesn't have a glue result");
1816      CurDAG->ReplaceAllUsesOfValueWith(SDValue(FRN, FRN->getNumValues()-1),
1817                                        InputGlue);
1818
1819      // If the node became dead and we haven't already seen it, delete it.
1820      if (FRN->use_empty() &&
1821          !std::count(NowDeadNodes.begin(), NowDeadNodes.end(), FRN))
1822        NowDeadNodes.push_back(FRN);
1823    }
1824  }
1825
1826  if (!NowDeadNodes.empty())
1827    CurDAG->RemoveDeadNodes(NowDeadNodes);
1828
1829  DEBUG(dbgs() << "ISEL: Match complete!\n");
1830}
1831
1832enum ChainResult {
1833  CR_Simple,
1834  CR_InducesCycle,
1835  CR_LeadsToInteriorNode
1836};
1837
1838/// WalkChainUsers - Walk down the users of the specified chained node that is
1839/// part of the pattern we're matching, looking at all of the users we find.
1840/// This determines whether something is an interior node, whether we have a
1841/// non-pattern node in between two pattern nodes (which prevent folding because
1842/// it would induce a cycle) and whether we have a TokenFactor node sandwiched
1843/// between pattern nodes (in which case the TF becomes part of the pattern).
1844///
1845/// The walk we do here is guaranteed to be small because we quickly get down to
1846/// already selected nodes "below" us.
1847static ChainResult
1848WalkChainUsers(const SDNode *ChainedNode,
1849               SmallVectorImpl<SDNode*> &ChainedNodesInPattern,
1850               SmallVectorImpl<SDNode*> &InteriorChainedNodes) {
1851  ChainResult Result = CR_Simple;
1852
1853  for (SDNode::use_iterator UI = ChainedNode->use_begin(),
1854         E = ChainedNode->use_end(); UI != E; ++UI) {
1855    // Make sure the use is of the chain, not some other value we produce.
1856    if (UI.getUse().getValueType() != MVT::Other) continue;
1857
1858    SDNode *User = *UI;
1859
1860    // If we see an already-selected machine node, then we've gone beyond the
1861    // pattern that we're selecting down into the already selected chunk of the
1862    // DAG.
1863    if (User->isMachineOpcode() ||
1864        User->getOpcode() == ISD::HANDLENODE)  // Root of the graph.
1865      continue;
1866
1867    unsigned UserOpcode = User->getOpcode();
1868    if (UserOpcode == ISD::CopyToReg ||
1869        UserOpcode == ISD::CopyFromReg ||
1870        UserOpcode == ISD::INLINEASM ||
1871        UserOpcode == ISD::EH_LABEL ||
1872        UserOpcode == ISD::LIFETIME_START ||
1873        UserOpcode == ISD::LIFETIME_END) {
1874      // If their node ID got reset to -1 then they've already been selected.
1875      // Treat them like a MachineOpcode.
1876      if (User->getNodeId() == -1)
1877        continue;
1878    }
1879
1880    // If we have a TokenFactor, we handle it specially.
1881    if (User->getOpcode() != ISD::TokenFactor) {
1882      // If the node isn't a token factor and isn't part of our pattern, then it
1883      // must be a random chained node in between two nodes we're selecting.
1884      // This happens when we have something like:
1885      //   x = load ptr
1886      //   call
1887      //   y = x+4
1888      //   store y -> ptr
1889      // Because we structurally match the load/store as a read/modify/write,
1890      // but the call is chained between them.  We cannot fold in this case
1891      // because it would induce a cycle in the graph.
1892      if (!std::count(ChainedNodesInPattern.begin(),
1893                      ChainedNodesInPattern.end(), User))
1894        return CR_InducesCycle;
1895
1896      // Otherwise we found a node that is part of our pattern.  For example in:
1897      //   x = load ptr
1898      //   y = x+4
1899      //   store y -> ptr
1900      // This would happen when we're scanning down from the load and see the
1901      // store as a user.  Record that there is a use of ChainedNode that is
1902      // part of the pattern and keep scanning uses.
1903      Result = CR_LeadsToInteriorNode;
1904      InteriorChainedNodes.push_back(User);
1905      continue;
1906    }
1907
1908    // If we found a TokenFactor, there are two cases to consider: first if the
1909    // TokenFactor is just hanging "below" the pattern we're matching (i.e. no
1910    // uses of the TF are in our pattern) we just want to ignore it.  Second,
1911    // the TokenFactor can be sandwiched in between two chained nodes, like so:
1912    //     [Load chain]
1913    //         ^
1914    //         |
1915    //       [Load]
1916    //       ^    ^
1917    //       |    \                    DAG's like cheese
1918    //      /       \                       do you?
1919    //     /         |
1920    // [TokenFactor] [Op]
1921    //     ^          ^
1922    //     |          |
1923    //      \        /
1924    //       \      /
1925    //       [Store]
1926    //
1927    // In this case, the TokenFactor becomes part of our match and we rewrite it
1928    // as a new TokenFactor.
1929    //
1930    // To distinguish these two cases, do a recursive walk down the uses.
1931    switch (WalkChainUsers(User, ChainedNodesInPattern, InteriorChainedNodes)) {
1932    case CR_Simple:
1933      // If the uses of the TokenFactor are just already-selected nodes, ignore
1934      // it, it is "below" our pattern.
1935      continue;
1936    case CR_InducesCycle:
1937      // If the uses of the TokenFactor lead to nodes that are not part of our
1938      // pattern that are not selected, folding would turn this into a cycle,
1939      // bail out now.
1940      return CR_InducesCycle;
1941    case CR_LeadsToInteriorNode:
1942      break;  // Otherwise, keep processing.
1943    }
1944
1945    // Okay, we know we're in the interesting interior case.  The TokenFactor
1946    // is now going to be considered part of the pattern so that we rewrite its
1947    // uses (it may have uses that are not part of the pattern) with the
1948    // ultimate chain result of the generated code.  We will also add its chain
1949    // inputs as inputs to the ultimate TokenFactor we create.
1950    Result = CR_LeadsToInteriorNode;
1951    ChainedNodesInPattern.push_back(User);
1952    InteriorChainedNodes.push_back(User);
1953    continue;
1954  }
1955
1956  return Result;
1957}
1958
1959/// HandleMergeInputChains - This implements the OPC_EmitMergeInputChains
1960/// operation for when the pattern matched at least one node with a chains.  The
1961/// input vector contains a list of all of the chained nodes that we match.  We
1962/// must determine if this is a valid thing to cover (i.e. matching it won't
1963/// induce cycles in the DAG) and if so, creating a TokenFactor node. that will
1964/// be used as the input node chain for the generated nodes.
1965static SDValue
1966HandleMergeInputChains(SmallVectorImpl<SDNode*> &ChainNodesMatched,
1967                       SelectionDAG *CurDAG) {
1968  // Walk all of the chained nodes we've matched, recursively scanning down the
1969  // users of the chain result. This adds any TokenFactor nodes that are caught
1970  // in between chained nodes to the chained and interior nodes list.
1971  SmallVector<SDNode*, 3> InteriorChainedNodes;
1972  for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
1973    if (WalkChainUsers(ChainNodesMatched[i], ChainNodesMatched,
1974                       InteriorChainedNodes) == CR_InducesCycle)
1975      return SDValue(); // Would induce a cycle.
1976  }
1977
1978  // Okay, we have walked all the matched nodes and collected TokenFactor nodes
1979  // that we are interested in.  Form our input TokenFactor node.
1980  SmallVector<SDValue, 3> InputChains;
1981  for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
1982    // Add the input chain of this node to the InputChains list (which will be
1983    // the operands of the generated TokenFactor) if it's not an interior node.
1984    SDNode *N = ChainNodesMatched[i];
1985    if (N->getOpcode() != ISD::TokenFactor) {
1986      if (std::count(InteriorChainedNodes.begin(),InteriorChainedNodes.end(),N))
1987        continue;
1988
1989      // Otherwise, add the input chain.
1990      SDValue InChain = ChainNodesMatched[i]->getOperand(0);
1991      assert(InChain.getValueType() == MVT::Other && "Not a chain");
1992      InputChains.push_back(InChain);
1993      continue;
1994    }
1995
1996    // If we have a token factor, we want to add all inputs of the token factor
1997    // that are not part of the pattern we're matching.
1998    for (unsigned op = 0, e = N->getNumOperands(); op != e; ++op) {
1999      if (!std::count(ChainNodesMatched.begin(), ChainNodesMatched.end(),
2000                      N->getOperand(op).getNode()))
2001        InputChains.push_back(N->getOperand(op));
2002    }
2003  }
2004
2005  SDValue Res;
2006  if (InputChains.size() == 1)
2007    return InputChains[0];
2008  return CurDAG->getNode(ISD::TokenFactor, SDLoc(ChainNodesMatched[0]),
2009                         MVT::Other, &InputChains[0], InputChains.size());
2010}
2011
2012/// MorphNode - Handle morphing a node in place for the selector.
2013SDNode *SelectionDAGISel::
2014MorphNode(SDNode *Node, unsigned TargetOpc, SDVTList VTList,
2015          const SDValue *Ops, unsigned NumOps, unsigned EmitNodeInfo) {
2016  // It is possible we're using MorphNodeTo to replace a node with no
2017  // normal results with one that has a normal result (or we could be
2018  // adding a chain) and the input could have glue and chains as well.
2019  // In this case we need to shift the operands down.
2020  // FIXME: This is a horrible hack and broken in obscure cases, no worse
2021  // than the old isel though.
2022  int OldGlueResultNo = -1, OldChainResultNo = -1;
2023
2024  unsigned NTMNumResults = Node->getNumValues();
2025  if (Node->getValueType(NTMNumResults-1) == MVT::Glue) {
2026    OldGlueResultNo = NTMNumResults-1;
2027    if (NTMNumResults != 1 &&
2028        Node->getValueType(NTMNumResults-2) == MVT::Other)
2029      OldChainResultNo = NTMNumResults-2;
2030  } else if (Node->getValueType(NTMNumResults-1) == MVT::Other)
2031    OldChainResultNo = NTMNumResults-1;
2032
2033  // Call the underlying SelectionDAG routine to do the transmogrification. Note
2034  // that this deletes operands of the old node that become dead.
2035  SDNode *Res = CurDAG->MorphNodeTo(Node, ~TargetOpc, VTList, Ops, NumOps);
2036
2037  // MorphNodeTo can operate in two ways: if an existing node with the
2038  // specified operands exists, it can just return it.  Otherwise, it
2039  // updates the node in place to have the requested operands.
2040  if (Res == Node) {
2041    // If we updated the node in place, reset the node ID.  To the isel,
2042    // this should be just like a newly allocated machine node.
2043    Res->setNodeId(-1);
2044  }
2045
2046  unsigned ResNumResults = Res->getNumValues();
2047  // Move the glue if needed.
2048  if ((EmitNodeInfo & OPFL_GlueOutput) && OldGlueResultNo != -1 &&
2049      (unsigned)OldGlueResultNo != ResNumResults-1)
2050    CurDAG->ReplaceAllUsesOfValueWith(SDValue(Node, OldGlueResultNo),
2051                                      SDValue(Res, ResNumResults-1));
2052
2053  if ((EmitNodeInfo & OPFL_GlueOutput) != 0)
2054    --ResNumResults;
2055
2056  // Move the chain reference if needed.
2057  if ((EmitNodeInfo & OPFL_Chain) && OldChainResultNo != -1 &&
2058      (unsigned)OldChainResultNo != ResNumResults-1)
2059    CurDAG->ReplaceAllUsesOfValueWith(SDValue(Node, OldChainResultNo),
2060                                      SDValue(Res, ResNumResults-1));
2061
2062  // Otherwise, no replacement happened because the node already exists. Replace
2063  // Uses of the old node with the new one.
2064  if (Res != Node)
2065    CurDAG->ReplaceAllUsesWith(Node, Res);
2066
2067  return Res;
2068}
2069
2070/// CheckSame - Implements OP_CheckSame.
2071LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2072CheckSame(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2073          SDValue N,
2074          const SmallVectorImpl<std::pair<SDValue, SDNode*> > &RecordedNodes) {
2075  // Accept if it is exactly the same as a previously recorded node.
2076  unsigned RecNo = MatcherTable[MatcherIndex++];
2077  assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2078  return N == RecordedNodes[RecNo].first;
2079}
2080
2081/// CheckPatternPredicate - Implements OP_CheckPatternPredicate.
2082LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2083CheckPatternPredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2084                      const SelectionDAGISel &SDISel) {
2085  return SDISel.CheckPatternPredicate(MatcherTable[MatcherIndex++]);
2086}
2087
2088/// CheckNodePredicate - Implements OP_CheckNodePredicate.
2089LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2090CheckNodePredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2091                   const SelectionDAGISel &SDISel, SDNode *N) {
2092  return SDISel.CheckNodePredicate(N, MatcherTable[MatcherIndex++]);
2093}
2094
2095LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2096CheckOpcode(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2097            SDNode *N) {
2098  uint16_t Opc = MatcherTable[MatcherIndex++];
2099  Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
2100  return N->getOpcode() == Opc;
2101}
2102
2103LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2104CheckType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2105          SDValue N, const TargetLowering *TLI) {
2106  MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2107  if (N.getValueType() == VT) return true;
2108
2109  // Handle the case when VT is iPTR.
2110  return VT == MVT::iPTR && N.getValueType() == TLI->getPointerTy();
2111}
2112
2113LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2114CheckChildType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2115               SDValue N, const TargetLowering *TLI,
2116               unsigned ChildNo) {
2117  if (ChildNo >= N.getNumOperands())
2118    return false;  // Match fails if out of range child #.
2119  return ::CheckType(MatcherTable, MatcherIndex, N.getOperand(ChildNo), TLI);
2120}
2121
2122LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2123CheckCondCode(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2124              SDValue N) {
2125  return cast<CondCodeSDNode>(N)->get() ==
2126      (ISD::CondCode)MatcherTable[MatcherIndex++];
2127}
2128
2129LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2130CheckValueType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2131               SDValue N, const TargetLowering *TLI) {
2132  MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2133  if (cast<VTSDNode>(N)->getVT() == VT)
2134    return true;
2135
2136  // Handle the case when VT is iPTR.
2137  return VT == MVT::iPTR && cast<VTSDNode>(N)->getVT() == TLI->getPointerTy();
2138}
2139
2140LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2141CheckInteger(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2142             SDValue N) {
2143  int64_t Val = MatcherTable[MatcherIndex++];
2144  if (Val & 128)
2145    Val = GetVBR(Val, MatcherTable, MatcherIndex);
2146
2147  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N);
2148  return C != 0 && C->getSExtValue() == Val;
2149}
2150
2151LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2152CheckAndImm(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2153            SDValue N, const SelectionDAGISel &SDISel) {
2154  int64_t Val = MatcherTable[MatcherIndex++];
2155  if (Val & 128)
2156    Val = GetVBR(Val, MatcherTable, MatcherIndex);
2157
2158  if (N->getOpcode() != ISD::AND) return false;
2159
2160  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
2161  return C != 0 && SDISel.CheckAndMask(N.getOperand(0), C, Val);
2162}
2163
2164LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2165CheckOrImm(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2166           SDValue N, const SelectionDAGISel &SDISel) {
2167  int64_t Val = MatcherTable[MatcherIndex++];
2168  if (Val & 128)
2169    Val = GetVBR(Val, MatcherTable, MatcherIndex);
2170
2171  if (N->getOpcode() != ISD::OR) return false;
2172
2173  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
2174  return C != 0 && SDISel.CheckOrMask(N.getOperand(0), C, Val);
2175}
2176
2177/// IsPredicateKnownToFail - If we know how and can do so without pushing a
2178/// scope, evaluate the current node.  If the current predicate is known to
2179/// fail, set Result=true and return anything.  If the current predicate is
2180/// known to pass, set Result=false and return the MatcherIndex to continue
2181/// with.  If the current predicate is unknown, set Result=false and return the
2182/// MatcherIndex to continue with.
2183static unsigned IsPredicateKnownToFail(const unsigned char *Table,
2184                                       unsigned Index, SDValue N,
2185                                       bool &Result,
2186                                       const SelectionDAGISel &SDISel,
2187                 SmallVectorImpl<std::pair<SDValue, SDNode*> > &RecordedNodes) {
2188  switch (Table[Index++]) {
2189  default:
2190    Result = false;
2191    return Index-1;  // Could not evaluate this predicate.
2192  case SelectionDAGISel::OPC_CheckSame:
2193    Result = !::CheckSame(Table, Index, N, RecordedNodes);
2194    return Index;
2195  case SelectionDAGISel::OPC_CheckPatternPredicate:
2196    Result = !::CheckPatternPredicate(Table, Index, SDISel);
2197    return Index;
2198  case SelectionDAGISel::OPC_CheckPredicate:
2199    Result = !::CheckNodePredicate(Table, Index, SDISel, N.getNode());
2200    return Index;
2201  case SelectionDAGISel::OPC_CheckOpcode:
2202    Result = !::CheckOpcode(Table, Index, N.getNode());
2203    return Index;
2204  case SelectionDAGISel::OPC_CheckType:
2205    Result = !::CheckType(Table, Index, N, SDISel.getTargetLowering());
2206    return Index;
2207  case SelectionDAGISel::OPC_CheckChild0Type:
2208  case SelectionDAGISel::OPC_CheckChild1Type:
2209  case SelectionDAGISel::OPC_CheckChild2Type:
2210  case SelectionDAGISel::OPC_CheckChild3Type:
2211  case SelectionDAGISel::OPC_CheckChild4Type:
2212  case SelectionDAGISel::OPC_CheckChild5Type:
2213  case SelectionDAGISel::OPC_CheckChild6Type:
2214  case SelectionDAGISel::OPC_CheckChild7Type:
2215    Result = !::CheckChildType(Table, Index, N, SDISel.getTargetLowering(),
2216                        Table[Index-1] - SelectionDAGISel::OPC_CheckChild0Type);
2217    return Index;
2218  case SelectionDAGISel::OPC_CheckCondCode:
2219    Result = !::CheckCondCode(Table, Index, N);
2220    return Index;
2221  case SelectionDAGISel::OPC_CheckValueType:
2222    Result = !::CheckValueType(Table, Index, N, SDISel.getTargetLowering());
2223    return Index;
2224  case SelectionDAGISel::OPC_CheckInteger:
2225    Result = !::CheckInteger(Table, Index, N);
2226    return Index;
2227  case SelectionDAGISel::OPC_CheckAndImm:
2228    Result = !::CheckAndImm(Table, Index, N, SDISel);
2229    return Index;
2230  case SelectionDAGISel::OPC_CheckOrImm:
2231    Result = !::CheckOrImm(Table, Index, N, SDISel);
2232    return Index;
2233  }
2234}
2235
2236namespace {
2237
2238struct MatchScope {
2239  /// FailIndex - If this match fails, this is the index to continue with.
2240  unsigned FailIndex;
2241
2242  /// NodeStack - The node stack when the scope was formed.
2243  SmallVector<SDValue, 4> NodeStack;
2244
2245  /// NumRecordedNodes - The number of recorded nodes when the scope was formed.
2246  unsigned NumRecordedNodes;
2247
2248  /// NumMatchedMemRefs - The number of matched memref entries.
2249  unsigned NumMatchedMemRefs;
2250
2251  /// InputChain/InputGlue - The current chain/glue
2252  SDValue InputChain, InputGlue;
2253
2254  /// HasChainNodesMatched - True if the ChainNodesMatched list is non-empty.
2255  bool HasChainNodesMatched, HasGlueResultNodesMatched;
2256};
2257
2258}
2259
2260SDNode *SelectionDAGISel::
2261SelectCodeCommon(SDNode *NodeToMatch, const unsigned char *MatcherTable,
2262                 unsigned TableSize) {
2263  // FIXME: Should these even be selected?  Handle these cases in the caller?
2264  switch (NodeToMatch->getOpcode()) {
2265  default:
2266    break;
2267  case ISD::EntryToken:       // These nodes remain the same.
2268  case ISD::BasicBlock:
2269  case ISD::Register:
2270  case ISD::RegisterMask:
2271  //case ISD::VALUETYPE:
2272  //case ISD::CONDCODE:
2273  case ISD::HANDLENODE:
2274  case ISD::MDNODE_SDNODE:
2275  case ISD::TargetConstant:
2276  case ISD::TargetConstantFP:
2277  case ISD::TargetConstantPool:
2278  case ISD::TargetFrameIndex:
2279  case ISD::TargetExternalSymbol:
2280  case ISD::TargetBlockAddress:
2281  case ISD::TargetJumpTable:
2282  case ISD::TargetGlobalTLSAddress:
2283  case ISD::TargetGlobalAddress:
2284  case ISD::TokenFactor:
2285  case ISD::CopyFromReg:
2286  case ISD::CopyToReg:
2287  case ISD::EH_LABEL:
2288  case ISD::LIFETIME_START:
2289  case ISD::LIFETIME_END:
2290    NodeToMatch->setNodeId(-1); // Mark selected.
2291    return 0;
2292  case ISD::AssertSext:
2293  case ISD::AssertZext:
2294    CurDAG->ReplaceAllUsesOfValueWith(SDValue(NodeToMatch, 0),
2295                                      NodeToMatch->getOperand(0));
2296    return 0;
2297  case ISD::INLINEASM: return Select_INLINEASM(NodeToMatch);
2298  case ISD::UNDEF:     return Select_UNDEF(NodeToMatch);
2299  }
2300
2301  assert(!NodeToMatch->isMachineOpcode() && "Node already selected!");
2302
2303  // Set up the node stack with NodeToMatch as the only node on the stack.
2304  SmallVector<SDValue, 8> NodeStack;
2305  SDValue N = SDValue(NodeToMatch, 0);
2306  NodeStack.push_back(N);
2307
2308  // MatchScopes - Scopes used when matching, if a match failure happens, this
2309  // indicates where to continue checking.
2310  SmallVector<MatchScope, 8> MatchScopes;
2311
2312  // RecordedNodes - This is the set of nodes that have been recorded by the
2313  // state machine.  The second value is the parent of the node, or null if the
2314  // root is recorded.
2315  SmallVector<std::pair<SDValue, SDNode*>, 8> RecordedNodes;
2316
2317  // MatchedMemRefs - This is the set of MemRef's we've seen in the input
2318  // pattern.
2319  SmallVector<MachineMemOperand*, 2> MatchedMemRefs;
2320
2321  // These are the current input chain and glue for use when generating nodes.
2322  // Various Emit operations change these.  For example, emitting a copytoreg
2323  // uses and updates these.
2324  SDValue InputChain, InputGlue;
2325
2326  // ChainNodesMatched - If a pattern matches nodes that have input/output
2327  // chains, the OPC_EmitMergeInputChains operation is emitted which indicates
2328  // which ones they are.  The result is captured into this list so that we can
2329  // update the chain results when the pattern is complete.
2330  SmallVector<SDNode*, 3> ChainNodesMatched;
2331  SmallVector<SDNode*, 3> GlueResultNodesMatched;
2332
2333  DEBUG(dbgs() << "ISEL: Starting pattern match on root node: ";
2334        NodeToMatch->dump(CurDAG);
2335        dbgs() << '\n');
2336
2337  // Determine where to start the interpreter.  Normally we start at opcode #0,
2338  // but if the state machine starts with an OPC_SwitchOpcode, then we
2339  // accelerate the first lookup (which is guaranteed to be hot) with the
2340  // OpcodeOffset table.
2341  unsigned MatcherIndex = 0;
2342
2343  if (!OpcodeOffset.empty()) {
2344    // Already computed the OpcodeOffset table, just index into it.
2345    if (N.getOpcode() < OpcodeOffset.size())
2346      MatcherIndex = OpcodeOffset[N.getOpcode()];
2347    DEBUG(dbgs() << "  Initial Opcode index to " << MatcherIndex << "\n");
2348
2349  } else if (MatcherTable[0] == OPC_SwitchOpcode) {
2350    // Otherwise, the table isn't computed, but the state machine does start
2351    // with an OPC_SwitchOpcode instruction.  Populate the table now, since this
2352    // is the first time we're selecting an instruction.
2353    unsigned Idx = 1;
2354    while (1) {
2355      // Get the size of this case.
2356      unsigned CaseSize = MatcherTable[Idx++];
2357      if (CaseSize & 128)
2358        CaseSize = GetVBR(CaseSize, MatcherTable, Idx);
2359      if (CaseSize == 0) break;
2360
2361      // Get the opcode, add the index to the table.
2362      uint16_t Opc = MatcherTable[Idx++];
2363      Opc |= (unsigned short)MatcherTable[Idx++] << 8;
2364      if (Opc >= OpcodeOffset.size())
2365        OpcodeOffset.resize((Opc+1)*2);
2366      OpcodeOffset[Opc] = Idx;
2367      Idx += CaseSize;
2368    }
2369
2370    // Okay, do the lookup for the first opcode.
2371    if (N.getOpcode() < OpcodeOffset.size())
2372      MatcherIndex = OpcodeOffset[N.getOpcode()];
2373  }
2374
2375  while (1) {
2376    assert(MatcherIndex < TableSize && "Invalid index");
2377#ifndef NDEBUG
2378    unsigned CurrentOpcodeIndex = MatcherIndex;
2379#endif
2380    BuiltinOpcodes Opcode = (BuiltinOpcodes)MatcherTable[MatcherIndex++];
2381    switch (Opcode) {
2382    case OPC_Scope: {
2383      // Okay, the semantics of this operation are that we should push a scope
2384      // then evaluate the first child.  However, pushing a scope only to have
2385      // the first check fail (which then pops it) is inefficient.  If we can
2386      // determine immediately that the first check (or first several) will
2387      // immediately fail, don't even bother pushing a scope for them.
2388      unsigned FailIndex;
2389
2390      while (1) {
2391        unsigned NumToSkip = MatcherTable[MatcherIndex++];
2392        if (NumToSkip & 128)
2393          NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex);
2394        // Found the end of the scope with no match.
2395        if (NumToSkip == 0) {
2396          FailIndex = 0;
2397          break;
2398        }
2399
2400        FailIndex = MatcherIndex+NumToSkip;
2401
2402        unsigned MatcherIndexOfPredicate = MatcherIndex;
2403        (void)MatcherIndexOfPredicate; // silence warning.
2404
2405        // If we can't evaluate this predicate without pushing a scope (e.g. if
2406        // it is a 'MoveParent') or if the predicate succeeds on this node, we
2407        // push the scope and evaluate the full predicate chain.
2408        bool Result;
2409        MatcherIndex = IsPredicateKnownToFail(MatcherTable, MatcherIndex, N,
2410                                              Result, *this, RecordedNodes);
2411        if (!Result)
2412          break;
2413
2414        DEBUG(dbgs() << "  Skipped scope entry (due to false predicate) at "
2415                     << "index " << MatcherIndexOfPredicate
2416                     << ", continuing at " << FailIndex << "\n");
2417        ++NumDAGIselRetries;
2418
2419        // Otherwise, we know that this case of the Scope is guaranteed to fail,
2420        // move to the next case.
2421        MatcherIndex = FailIndex;
2422      }
2423
2424      // If the whole scope failed to match, bail.
2425      if (FailIndex == 0) break;
2426
2427      // Push a MatchScope which indicates where to go if the first child fails
2428      // to match.
2429      MatchScope NewEntry;
2430      NewEntry.FailIndex = FailIndex;
2431      NewEntry.NodeStack.append(NodeStack.begin(), NodeStack.end());
2432      NewEntry.NumRecordedNodes = RecordedNodes.size();
2433      NewEntry.NumMatchedMemRefs = MatchedMemRefs.size();
2434      NewEntry.InputChain = InputChain;
2435      NewEntry.InputGlue = InputGlue;
2436      NewEntry.HasChainNodesMatched = !ChainNodesMatched.empty();
2437      NewEntry.HasGlueResultNodesMatched = !GlueResultNodesMatched.empty();
2438      MatchScopes.push_back(NewEntry);
2439      continue;
2440    }
2441    case OPC_RecordNode: {
2442      // Remember this node, it may end up being an operand in the pattern.
2443      SDNode *Parent = 0;
2444      if (NodeStack.size() > 1)
2445        Parent = NodeStack[NodeStack.size()-2].getNode();
2446      RecordedNodes.push_back(std::make_pair(N, Parent));
2447      continue;
2448    }
2449
2450    case OPC_RecordChild0: case OPC_RecordChild1:
2451    case OPC_RecordChild2: case OPC_RecordChild3:
2452    case OPC_RecordChild4: case OPC_RecordChild5:
2453    case OPC_RecordChild6: case OPC_RecordChild7: {
2454      unsigned ChildNo = Opcode-OPC_RecordChild0;
2455      if (ChildNo >= N.getNumOperands())
2456        break;  // Match fails if out of range child #.
2457
2458      RecordedNodes.push_back(std::make_pair(N->getOperand(ChildNo),
2459                                             N.getNode()));
2460      continue;
2461    }
2462    case OPC_RecordMemRef:
2463      MatchedMemRefs.push_back(cast<MemSDNode>(N)->getMemOperand());
2464      continue;
2465
2466    case OPC_CaptureGlueInput:
2467      // If the current node has an input glue, capture it in InputGlue.
2468      if (N->getNumOperands() != 0 &&
2469          N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Glue)
2470        InputGlue = N->getOperand(N->getNumOperands()-1);
2471      continue;
2472
2473    case OPC_MoveChild: {
2474      unsigned ChildNo = MatcherTable[MatcherIndex++];
2475      if (ChildNo >= N.getNumOperands())
2476        break;  // Match fails if out of range child #.
2477      N = N.getOperand(ChildNo);
2478      NodeStack.push_back(N);
2479      continue;
2480    }
2481
2482    case OPC_MoveParent:
2483      // Pop the current node off the NodeStack.
2484      NodeStack.pop_back();
2485      assert(!NodeStack.empty() && "Node stack imbalance!");
2486      N = NodeStack.back();
2487      continue;
2488
2489    case OPC_CheckSame:
2490      if (!::CheckSame(MatcherTable, MatcherIndex, N, RecordedNodes)) break;
2491      continue;
2492    case OPC_CheckPatternPredicate:
2493      if (!::CheckPatternPredicate(MatcherTable, MatcherIndex, *this)) break;
2494      continue;
2495    case OPC_CheckPredicate:
2496      if (!::CheckNodePredicate(MatcherTable, MatcherIndex, *this,
2497                                N.getNode()))
2498        break;
2499      continue;
2500    case OPC_CheckComplexPat: {
2501      unsigned CPNum = MatcherTable[MatcherIndex++];
2502      unsigned RecNo = MatcherTable[MatcherIndex++];
2503      assert(RecNo < RecordedNodes.size() && "Invalid CheckComplexPat");
2504      if (!CheckComplexPattern(NodeToMatch, RecordedNodes[RecNo].second,
2505                               RecordedNodes[RecNo].first, CPNum,
2506                               RecordedNodes))
2507        break;
2508      continue;
2509    }
2510    case OPC_CheckOpcode:
2511      if (!::CheckOpcode(MatcherTable, MatcherIndex, N.getNode())) break;
2512      continue;
2513
2514    case OPC_CheckType:
2515      if (!::CheckType(MatcherTable, MatcherIndex, N, getTargetLowering()))
2516        break;
2517      continue;
2518
2519    case OPC_SwitchOpcode: {
2520      unsigned CurNodeOpcode = N.getOpcode();
2521      unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart;
2522      unsigned CaseSize;
2523      while (1) {
2524        // Get the size of this case.
2525        CaseSize = MatcherTable[MatcherIndex++];
2526        if (CaseSize & 128)
2527          CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex);
2528        if (CaseSize == 0) break;
2529
2530        uint16_t Opc = MatcherTable[MatcherIndex++];
2531        Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
2532
2533        // If the opcode matches, then we will execute this case.
2534        if (CurNodeOpcode == Opc)
2535          break;
2536
2537        // Otherwise, skip over this case.
2538        MatcherIndex += CaseSize;
2539      }
2540
2541      // If no cases matched, bail out.
2542      if (CaseSize == 0) break;
2543
2544      // Otherwise, execute the case we found.
2545      DEBUG(dbgs() << "  OpcodeSwitch from " << SwitchStart
2546                   << " to " << MatcherIndex << "\n");
2547      continue;
2548    }
2549
2550    case OPC_SwitchType: {
2551      MVT CurNodeVT = N.getSimpleValueType();
2552      unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart;
2553      unsigned CaseSize;
2554      while (1) {
2555        // Get the size of this case.
2556        CaseSize = MatcherTable[MatcherIndex++];
2557        if (CaseSize & 128)
2558          CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex);
2559        if (CaseSize == 0) break;
2560
2561        MVT CaseVT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2562        if (CaseVT == MVT::iPTR)
2563          CaseVT = getTargetLowering()->getPointerTy();
2564
2565        // If the VT matches, then we will execute this case.
2566        if (CurNodeVT == CaseVT)
2567          break;
2568
2569        // Otherwise, skip over this case.
2570        MatcherIndex += CaseSize;
2571      }
2572
2573      // If no cases matched, bail out.
2574      if (CaseSize == 0) break;
2575
2576      // Otherwise, execute the case we found.
2577      DEBUG(dbgs() << "  TypeSwitch[" << EVT(CurNodeVT).getEVTString()
2578                   << "] from " << SwitchStart << " to " << MatcherIndex<<'\n');
2579      continue;
2580    }
2581    case OPC_CheckChild0Type: case OPC_CheckChild1Type:
2582    case OPC_CheckChild2Type: case OPC_CheckChild3Type:
2583    case OPC_CheckChild4Type: case OPC_CheckChild5Type:
2584    case OPC_CheckChild6Type: case OPC_CheckChild7Type:
2585      if (!::CheckChildType(MatcherTable, MatcherIndex, N, getTargetLowering(),
2586                            Opcode-OPC_CheckChild0Type))
2587        break;
2588      continue;
2589    case OPC_CheckCondCode:
2590      if (!::CheckCondCode(MatcherTable, MatcherIndex, N)) break;
2591      continue;
2592    case OPC_CheckValueType:
2593      if (!::CheckValueType(MatcherTable, MatcherIndex, N, getTargetLowering()))
2594        break;
2595      continue;
2596    case OPC_CheckInteger:
2597      if (!::CheckInteger(MatcherTable, MatcherIndex, N)) break;
2598      continue;
2599    case OPC_CheckAndImm:
2600      if (!::CheckAndImm(MatcherTable, MatcherIndex, N, *this)) break;
2601      continue;
2602    case OPC_CheckOrImm:
2603      if (!::CheckOrImm(MatcherTable, MatcherIndex, N, *this)) break;
2604      continue;
2605
2606    case OPC_CheckFoldableChainNode: {
2607      assert(NodeStack.size() != 1 && "No parent node");
2608      // Verify that all intermediate nodes between the root and this one have
2609      // a single use.
2610      bool HasMultipleUses = false;
2611      for (unsigned i = 1, e = NodeStack.size()-1; i != e; ++i)
2612        if (!NodeStack[i].hasOneUse()) {
2613          HasMultipleUses = true;
2614          break;
2615        }
2616      if (HasMultipleUses) break;
2617
2618      // Check to see that the target thinks this is profitable to fold and that
2619      // we can fold it without inducing cycles in the graph.
2620      if (!IsProfitableToFold(N, NodeStack[NodeStack.size()-2].getNode(),
2621                              NodeToMatch) ||
2622          !IsLegalToFold(N, NodeStack[NodeStack.size()-2].getNode(),
2623                         NodeToMatch, OptLevel,
2624                         true/*We validate our own chains*/))
2625        break;
2626
2627      continue;
2628    }
2629    case OPC_EmitInteger: {
2630      MVT::SimpleValueType VT =
2631        (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2632      int64_t Val = MatcherTable[MatcherIndex++];
2633      if (Val & 128)
2634        Val = GetVBR(Val, MatcherTable, MatcherIndex);
2635      RecordedNodes.push_back(std::pair<SDValue, SDNode*>(
2636                              CurDAG->getTargetConstant(Val, VT), (SDNode*)0));
2637      continue;
2638    }
2639    case OPC_EmitRegister: {
2640      MVT::SimpleValueType VT =
2641        (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2642      unsigned RegNo = MatcherTable[MatcherIndex++];
2643      RecordedNodes.push_back(std::pair<SDValue, SDNode*>(
2644                              CurDAG->getRegister(RegNo, VT), (SDNode*)0));
2645      continue;
2646    }
2647    case OPC_EmitRegister2: {
2648      // For targets w/ more than 256 register names, the register enum
2649      // values are stored in two bytes in the matcher table (just like
2650      // opcodes).
2651      MVT::SimpleValueType VT =
2652        (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2653      unsigned RegNo = MatcherTable[MatcherIndex++];
2654      RegNo |= MatcherTable[MatcherIndex++] << 8;
2655      RecordedNodes.push_back(std::pair<SDValue, SDNode*>(
2656                              CurDAG->getRegister(RegNo, VT), (SDNode*)0));
2657      continue;
2658    }
2659
2660    case OPC_EmitConvertToTarget:  {
2661      // Convert from IMM/FPIMM to target version.
2662      unsigned RecNo = MatcherTable[MatcherIndex++];
2663      assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2664      SDValue Imm = RecordedNodes[RecNo].first;
2665
2666      if (Imm->getOpcode() == ISD::Constant) {
2667        const ConstantInt *Val=cast<ConstantSDNode>(Imm)->getConstantIntValue();
2668        Imm = CurDAG->getConstant(*Val, Imm.getValueType(), true);
2669      } else if (Imm->getOpcode() == ISD::ConstantFP) {
2670        const ConstantFP *Val=cast<ConstantFPSDNode>(Imm)->getConstantFPValue();
2671        Imm = CurDAG->getConstantFP(*Val, Imm.getValueType(), true);
2672      }
2673
2674      RecordedNodes.push_back(std::make_pair(Imm, RecordedNodes[RecNo].second));
2675      continue;
2676    }
2677
2678    case OPC_EmitMergeInputChains1_0:    // OPC_EmitMergeInputChains, 1, 0
2679    case OPC_EmitMergeInputChains1_1: {  // OPC_EmitMergeInputChains, 1, 1
2680      // These are space-optimized forms of OPC_EmitMergeInputChains.
2681      assert(InputChain.getNode() == 0 &&
2682             "EmitMergeInputChains should be the first chain producing node");
2683      assert(ChainNodesMatched.empty() &&
2684             "Should only have one EmitMergeInputChains per match");
2685
2686      // Read all of the chained nodes.
2687      unsigned RecNo = Opcode == OPC_EmitMergeInputChains1_1;
2688      assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2689      ChainNodesMatched.push_back(RecordedNodes[RecNo].first.getNode());
2690
2691      // FIXME: What if other value results of the node have uses not matched
2692      // by this pattern?
2693      if (ChainNodesMatched.back() != NodeToMatch &&
2694          !RecordedNodes[RecNo].first.hasOneUse()) {
2695        ChainNodesMatched.clear();
2696        break;
2697      }
2698
2699      // Merge the input chains if they are not intra-pattern references.
2700      InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG);
2701
2702      if (InputChain.getNode() == 0)
2703        break;  // Failed to merge.
2704      continue;
2705    }
2706
2707    case OPC_EmitMergeInputChains: {
2708      assert(InputChain.getNode() == 0 &&
2709             "EmitMergeInputChains should be the first chain producing node");
2710      // This node gets a list of nodes we matched in the input that have
2711      // chains.  We want to token factor all of the input chains to these nodes
2712      // together.  However, if any of the input chains is actually one of the
2713      // nodes matched in this pattern, then we have an intra-match reference.
2714      // Ignore these because the newly token factored chain should not refer to
2715      // the old nodes.
2716      unsigned NumChains = MatcherTable[MatcherIndex++];
2717      assert(NumChains != 0 && "Can't TF zero chains");
2718
2719      assert(ChainNodesMatched.empty() &&
2720             "Should only have one EmitMergeInputChains per match");
2721
2722      // Read all of the chained nodes.
2723      for (unsigned i = 0; i != NumChains; ++i) {
2724        unsigned RecNo = MatcherTable[MatcherIndex++];
2725        assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2726        ChainNodesMatched.push_back(RecordedNodes[RecNo].first.getNode());
2727
2728        // FIXME: What if other value results of the node have uses not matched
2729        // by this pattern?
2730        if (ChainNodesMatched.back() != NodeToMatch &&
2731            !RecordedNodes[RecNo].first.hasOneUse()) {
2732          ChainNodesMatched.clear();
2733          break;
2734        }
2735      }
2736
2737      // If the inner loop broke out, the match fails.
2738      if (ChainNodesMatched.empty())
2739        break;
2740
2741      // Merge the input chains if they are not intra-pattern references.
2742      InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG);
2743
2744      if (InputChain.getNode() == 0)
2745        break;  // Failed to merge.
2746
2747      continue;
2748    }
2749
2750    case OPC_EmitCopyToReg: {
2751      unsigned RecNo = MatcherTable[MatcherIndex++];
2752      assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2753      unsigned DestPhysReg = MatcherTable[MatcherIndex++];
2754
2755      if (InputChain.getNode() == 0)
2756        InputChain = CurDAG->getEntryNode();
2757
2758      InputChain = CurDAG->getCopyToReg(InputChain, SDLoc(NodeToMatch),
2759                                        DestPhysReg, RecordedNodes[RecNo].first,
2760                                        InputGlue);
2761
2762      InputGlue = InputChain.getValue(1);
2763      continue;
2764    }
2765
2766    case OPC_EmitNodeXForm: {
2767      unsigned XFormNo = MatcherTable[MatcherIndex++];
2768      unsigned RecNo = MatcherTable[MatcherIndex++];
2769      assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2770      SDValue Res = RunSDNodeXForm(RecordedNodes[RecNo].first, XFormNo);
2771      RecordedNodes.push_back(std::pair<SDValue,SDNode*>(Res, (SDNode*) 0));
2772      continue;
2773    }
2774
2775    case OPC_EmitNode:
2776    case OPC_MorphNodeTo: {
2777      uint16_t TargetOpc = MatcherTable[MatcherIndex++];
2778      TargetOpc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
2779      unsigned EmitNodeInfo = MatcherTable[MatcherIndex++];
2780      // Get the result VT list.
2781      unsigned NumVTs = MatcherTable[MatcherIndex++];
2782      SmallVector<EVT, 4> VTs;
2783      for (unsigned i = 0; i != NumVTs; ++i) {
2784        MVT::SimpleValueType VT =
2785          (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2786        if (VT == MVT::iPTR) VT = getTargetLowering()->getPointerTy().SimpleTy;
2787        VTs.push_back(VT);
2788      }
2789
2790      if (EmitNodeInfo & OPFL_Chain)
2791        VTs.push_back(MVT::Other);
2792      if (EmitNodeInfo & OPFL_GlueOutput)
2793        VTs.push_back(MVT::Glue);
2794
2795      // This is hot code, so optimize the two most common cases of 1 and 2
2796      // results.
2797      SDVTList VTList;
2798      if (VTs.size() == 1)
2799        VTList = CurDAG->getVTList(VTs[0]);
2800      else if (VTs.size() == 2)
2801        VTList = CurDAG->getVTList(VTs[0], VTs[1]);
2802      else
2803        VTList = CurDAG->getVTList(VTs.data(), VTs.size());
2804
2805      // Get the operand list.
2806      unsigned NumOps = MatcherTable[MatcherIndex++];
2807      SmallVector<SDValue, 8> Ops;
2808      for (unsigned i = 0; i != NumOps; ++i) {
2809        unsigned RecNo = MatcherTable[MatcherIndex++];
2810        if (RecNo & 128)
2811          RecNo = GetVBR(RecNo, MatcherTable, MatcherIndex);
2812
2813        assert(RecNo < RecordedNodes.size() && "Invalid EmitNode");
2814        Ops.push_back(RecordedNodes[RecNo].first);
2815      }
2816
2817      // If there are variadic operands to add, handle them now.
2818      if (EmitNodeInfo & OPFL_VariadicInfo) {
2819        // Determine the start index to copy from.
2820        unsigned FirstOpToCopy = getNumFixedFromVariadicInfo(EmitNodeInfo);
2821        FirstOpToCopy += (EmitNodeInfo & OPFL_Chain) ? 1 : 0;
2822        assert(NodeToMatch->getNumOperands() >= FirstOpToCopy &&
2823               "Invalid variadic node");
2824        // Copy all of the variadic operands, not including a potential glue
2825        // input.
2826        for (unsigned i = FirstOpToCopy, e = NodeToMatch->getNumOperands();
2827             i != e; ++i) {
2828          SDValue V = NodeToMatch->getOperand(i);
2829          if (V.getValueType() == MVT::Glue) break;
2830          Ops.push_back(V);
2831        }
2832      }
2833
2834      // If this has chain/glue inputs, add them.
2835      if (EmitNodeInfo & OPFL_Chain)
2836        Ops.push_back(InputChain);
2837      if ((EmitNodeInfo & OPFL_GlueInput) && InputGlue.getNode() != 0)
2838        Ops.push_back(InputGlue);
2839
2840      // Create the node.
2841      SDNode *Res = 0;
2842      if (Opcode != OPC_MorphNodeTo) {
2843        // If this is a normal EmitNode command, just create the new node and
2844        // add the results to the RecordedNodes list.
2845        Res = CurDAG->getMachineNode(TargetOpc, SDLoc(NodeToMatch),
2846                                     VTList, Ops);
2847
2848        // Add all the non-glue/non-chain results to the RecordedNodes list.
2849        for (unsigned i = 0, e = VTs.size(); i != e; ++i) {
2850          if (VTs[i] == MVT::Other || VTs[i] == MVT::Glue) break;
2851          RecordedNodes.push_back(std::pair<SDValue,SDNode*>(SDValue(Res, i),
2852                                                             (SDNode*) 0));
2853        }
2854
2855      } else if (NodeToMatch->getOpcode() != ISD::DELETED_NODE) {
2856        Res = MorphNode(NodeToMatch, TargetOpc, VTList, Ops.data(), Ops.size(),
2857                        EmitNodeInfo);
2858      } else {
2859        // NodeToMatch was eliminated by CSE when the target changed the DAG.
2860        // We will visit the equivalent node later.
2861        DEBUG(dbgs() << "Node was eliminated by CSE\n");
2862        return 0;
2863      }
2864
2865      // If the node had chain/glue results, update our notion of the current
2866      // chain and glue.
2867      if (EmitNodeInfo & OPFL_GlueOutput) {
2868        InputGlue = SDValue(Res, VTs.size()-1);
2869        if (EmitNodeInfo & OPFL_Chain)
2870          InputChain = SDValue(Res, VTs.size()-2);
2871      } else if (EmitNodeInfo & OPFL_Chain)
2872        InputChain = SDValue(Res, VTs.size()-1);
2873
2874      // If the OPFL_MemRefs glue is set on this node, slap all of the
2875      // accumulated memrefs onto it.
2876      //
2877      // FIXME: This is vastly incorrect for patterns with multiple outputs
2878      // instructions that access memory and for ComplexPatterns that match
2879      // loads.
2880      if (EmitNodeInfo & OPFL_MemRefs) {
2881        // Only attach load or store memory operands if the generated
2882        // instruction may load or store.
2883        const MCInstrDesc &MCID = TM.getInstrInfo()->get(TargetOpc);
2884        bool mayLoad = MCID.mayLoad();
2885        bool mayStore = MCID.mayStore();
2886
2887        unsigned NumMemRefs = 0;
2888        for (SmallVectorImpl<MachineMemOperand *>::const_iterator I =
2889               MatchedMemRefs.begin(), E = MatchedMemRefs.end(); I != E; ++I) {
2890          if ((*I)->isLoad()) {
2891            if (mayLoad)
2892              ++NumMemRefs;
2893          } else if ((*I)->isStore()) {
2894            if (mayStore)
2895              ++NumMemRefs;
2896          } else {
2897            ++NumMemRefs;
2898          }
2899        }
2900
2901        MachineSDNode::mmo_iterator MemRefs =
2902          MF->allocateMemRefsArray(NumMemRefs);
2903
2904        MachineSDNode::mmo_iterator MemRefsPos = MemRefs;
2905        for (SmallVectorImpl<MachineMemOperand *>::const_iterator I =
2906               MatchedMemRefs.begin(), E = MatchedMemRefs.end(); I != E; ++I) {
2907          if ((*I)->isLoad()) {
2908            if (mayLoad)
2909              *MemRefsPos++ = *I;
2910          } else if ((*I)->isStore()) {
2911            if (mayStore)
2912              *MemRefsPos++ = *I;
2913          } else {
2914            *MemRefsPos++ = *I;
2915          }
2916        }
2917
2918        cast<MachineSDNode>(Res)
2919          ->setMemRefs(MemRefs, MemRefs + NumMemRefs);
2920      }
2921
2922      DEBUG(dbgs() << "  "
2923                   << (Opcode == OPC_MorphNodeTo ? "Morphed" : "Created")
2924                   << " node: "; Res->dump(CurDAG); dbgs() << "\n");
2925
2926      // If this was a MorphNodeTo then we're completely done!
2927      if (Opcode == OPC_MorphNodeTo) {
2928        // Update chain and glue uses.
2929        UpdateChainsAndGlue(NodeToMatch, InputChain, ChainNodesMatched,
2930                            InputGlue, GlueResultNodesMatched, true);
2931        return Res;
2932      }
2933
2934      continue;
2935    }
2936
2937    case OPC_MarkGlueResults: {
2938      unsigned NumNodes = MatcherTable[MatcherIndex++];
2939
2940      // Read and remember all the glue-result nodes.
2941      for (unsigned i = 0; i != NumNodes; ++i) {
2942        unsigned RecNo = MatcherTable[MatcherIndex++];
2943        if (RecNo & 128)
2944          RecNo = GetVBR(RecNo, MatcherTable, MatcherIndex);
2945
2946        assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2947        GlueResultNodesMatched.push_back(RecordedNodes[RecNo].first.getNode());
2948      }
2949      continue;
2950    }
2951
2952    case OPC_CompleteMatch: {
2953      // The match has been completed, and any new nodes (if any) have been
2954      // created.  Patch up references to the matched dag to use the newly
2955      // created nodes.
2956      unsigned NumResults = MatcherTable[MatcherIndex++];
2957
2958      for (unsigned i = 0; i != NumResults; ++i) {
2959        unsigned ResSlot = MatcherTable[MatcherIndex++];
2960        if (ResSlot & 128)
2961          ResSlot = GetVBR(ResSlot, MatcherTable, MatcherIndex);
2962
2963        assert(ResSlot < RecordedNodes.size() && "Invalid CheckSame");
2964        SDValue Res = RecordedNodes[ResSlot].first;
2965
2966        assert(i < NodeToMatch->getNumValues() &&
2967               NodeToMatch->getValueType(i) != MVT::Other &&
2968               NodeToMatch->getValueType(i) != MVT::Glue &&
2969               "Invalid number of results to complete!");
2970        assert((NodeToMatch->getValueType(i) == Res.getValueType() ||
2971                NodeToMatch->getValueType(i) == MVT::iPTR ||
2972                Res.getValueType() == MVT::iPTR ||
2973                NodeToMatch->getValueType(i).getSizeInBits() ==
2974                    Res.getValueType().getSizeInBits()) &&
2975               "invalid replacement");
2976        CurDAG->ReplaceAllUsesOfValueWith(SDValue(NodeToMatch, i), Res);
2977      }
2978
2979      // If the root node defines glue, add it to the glue nodes to update list.
2980      if (NodeToMatch->getValueType(NodeToMatch->getNumValues()-1) == MVT::Glue)
2981        GlueResultNodesMatched.push_back(NodeToMatch);
2982
2983      // Update chain and glue uses.
2984      UpdateChainsAndGlue(NodeToMatch, InputChain, ChainNodesMatched,
2985                          InputGlue, GlueResultNodesMatched, false);
2986
2987      assert(NodeToMatch->use_empty() &&
2988             "Didn't replace all uses of the node?");
2989
2990      // FIXME: We just return here, which interacts correctly with SelectRoot
2991      // above.  We should fix this to not return an SDNode* anymore.
2992      return 0;
2993    }
2994    }
2995
2996    // If the code reached this point, then the match failed.  See if there is
2997    // another child to try in the current 'Scope', otherwise pop it until we
2998    // find a case to check.
2999    DEBUG(dbgs() << "  Match failed at index " << CurrentOpcodeIndex << "\n");
3000    ++NumDAGIselRetries;
3001    while (1) {
3002      if (MatchScopes.empty()) {
3003        CannotYetSelect(NodeToMatch);
3004        return 0;
3005      }
3006
3007      // Restore the interpreter state back to the point where the scope was
3008      // formed.
3009      MatchScope &LastScope = MatchScopes.back();
3010      RecordedNodes.resize(LastScope.NumRecordedNodes);
3011      NodeStack.clear();
3012      NodeStack.append(LastScope.NodeStack.begin(), LastScope.NodeStack.end());
3013      N = NodeStack.back();
3014
3015      if (LastScope.NumMatchedMemRefs != MatchedMemRefs.size())
3016        MatchedMemRefs.resize(LastScope.NumMatchedMemRefs);
3017      MatcherIndex = LastScope.FailIndex;
3018
3019      DEBUG(dbgs() << "  Continuing at " << MatcherIndex << "\n");
3020
3021      InputChain = LastScope.InputChain;
3022      InputGlue = LastScope.InputGlue;
3023      if (!LastScope.HasChainNodesMatched)
3024        ChainNodesMatched.clear();
3025      if (!LastScope.HasGlueResultNodesMatched)
3026        GlueResultNodesMatched.clear();
3027
3028      // Check to see what the offset is at the new MatcherIndex.  If it is zero
3029      // we have reached the end of this scope, otherwise we have another child
3030      // in the current scope to try.
3031      unsigned NumToSkip = MatcherTable[MatcherIndex++];
3032      if (NumToSkip & 128)
3033        NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex);
3034
3035      // If we have another child in this scope to match, update FailIndex and
3036      // try it.
3037      if (NumToSkip != 0) {
3038        LastScope.FailIndex = MatcherIndex+NumToSkip;
3039        break;
3040      }
3041
3042      // End of this scope, pop it and try the next child in the containing
3043      // scope.
3044      MatchScopes.pop_back();
3045    }
3046  }
3047}
3048
3049
3050
3051void SelectionDAGISel::CannotYetSelect(SDNode *N) {
3052  std::string msg;
3053  raw_string_ostream Msg(msg);
3054  Msg << "Cannot select: ";
3055
3056  if (N->getOpcode() != ISD::INTRINSIC_W_CHAIN &&
3057      N->getOpcode() != ISD::INTRINSIC_WO_CHAIN &&
3058      N->getOpcode() != ISD::INTRINSIC_VOID) {
3059    N->printrFull(Msg, CurDAG);
3060    Msg << "\nIn function: " << MF->getName();
3061  } else {
3062    bool HasInputChain = N->getOperand(0).getValueType() == MVT::Other;
3063    unsigned iid =
3064      cast<ConstantSDNode>(N->getOperand(HasInputChain))->getZExtValue();
3065    if (iid < Intrinsic::num_intrinsics)
3066      Msg << "intrinsic %" << Intrinsic::getName((Intrinsic::ID)iid);
3067    else if (const TargetIntrinsicInfo *TII = TM.getIntrinsicInfo())
3068      Msg << "target intrinsic %" << TII->getName(iid);
3069    else
3070      Msg << "unknown intrinsic #" << iid;
3071  }
3072  report_fatal_error(Msg.str());
3073}
3074
3075char SelectionDAGISel::ID = 0;
3076