SelectionDAGISel.cpp revision 02266e29f9250d74c5ec720aff23add3410ae920
1//===-- SelectionDAGISel.cpp - Implement the SelectionDAGISel class -------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAGISel class.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "isel"
15#include "ScheduleDAGSDNodes.h"
16#include "SelectionDAGBuilder.h"
17#include "llvm/CodeGen/FunctionLoweringInfo.h"
18#include "llvm/CodeGen/SelectionDAGISel.h"
19#include "llvm/Analysis/AliasAnalysis.h"
20#include "llvm/Analysis/DebugInfo.h"
21#include "llvm/Constants.h"
22#include "llvm/Function.h"
23#include "llvm/InlineAsm.h"
24#include "llvm/Instructions.h"
25#include "llvm/Intrinsics.h"
26#include "llvm/IntrinsicInst.h"
27#include "llvm/LLVMContext.h"
28#include "llvm/Module.h"
29#include "llvm/CodeGen/FastISel.h"
30#include "llvm/CodeGen/GCStrategy.h"
31#include "llvm/CodeGen/GCMetadata.h"
32#include "llvm/CodeGen/MachineFrameInfo.h"
33#include "llvm/CodeGen/MachineFunction.h"
34#include "llvm/CodeGen/MachineInstrBuilder.h"
35#include "llvm/CodeGen/MachineModuleInfo.h"
36#include "llvm/CodeGen/MachineRegisterInfo.h"
37#include "llvm/CodeGen/ScheduleHazardRecognizer.h"
38#include "llvm/CodeGen/SchedulerRegistry.h"
39#include "llvm/CodeGen/SelectionDAG.h"
40#include "llvm/Target/TargetRegisterInfo.h"
41#include "llvm/Target/TargetIntrinsicInfo.h"
42#include "llvm/Target/TargetInstrInfo.h"
43#include "llvm/Target/TargetLowering.h"
44#include "llvm/Target/TargetMachine.h"
45#include "llvm/Target/TargetOptions.h"
46#include "llvm/Support/Compiler.h"
47#include "llvm/Support/Debug.h"
48#include "llvm/Support/ErrorHandling.h"
49#include "llvm/Support/Timer.h"
50#include "llvm/Support/raw_ostream.h"
51#include "llvm/ADT/Statistic.h"
52#include <algorithm>
53using namespace llvm;
54
55STATISTIC(NumFastIselFailures, "Number of instructions fast isel failed on");
56STATISTIC(NumDAGIselRetries,"Number of times dag isel has to try another path");
57
58static cl::opt<bool>
59EnableFastISelVerbose("fast-isel-verbose", cl::Hidden,
60          cl::desc("Enable verbose messages in the \"fast\" "
61                   "instruction selector"));
62static cl::opt<bool>
63EnableFastISelAbort("fast-isel-abort", cl::Hidden,
64          cl::desc("Enable abort calls when \"fast\" instruction fails"));
65
66#ifndef NDEBUG
67static cl::opt<bool>
68ViewDAGCombine1("view-dag-combine1-dags", cl::Hidden,
69          cl::desc("Pop up a window to show dags before the first "
70                   "dag combine pass"));
71static cl::opt<bool>
72ViewLegalizeTypesDAGs("view-legalize-types-dags", cl::Hidden,
73          cl::desc("Pop up a window to show dags before legalize types"));
74static cl::opt<bool>
75ViewLegalizeDAGs("view-legalize-dags", cl::Hidden,
76          cl::desc("Pop up a window to show dags before legalize"));
77static cl::opt<bool>
78ViewDAGCombine2("view-dag-combine2-dags", cl::Hidden,
79          cl::desc("Pop up a window to show dags before the second "
80                   "dag combine pass"));
81static cl::opt<bool>
82ViewDAGCombineLT("view-dag-combine-lt-dags", cl::Hidden,
83          cl::desc("Pop up a window to show dags before the post legalize types"
84                   " dag combine pass"));
85static cl::opt<bool>
86ViewISelDAGs("view-isel-dags", cl::Hidden,
87          cl::desc("Pop up a window to show isel dags as they are selected"));
88static cl::opt<bool>
89ViewSchedDAGs("view-sched-dags", cl::Hidden,
90          cl::desc("Pop up a window to show sched dags as they are processed"));
91static cl::opt<bool>
92ViewSUnitDAGs("view-sunit-dags", cl::Hidden,
93      cl::desc("Pop up a window to show SUnit dags after they are processed"));
94#else
95static const bool ViewDAGCombine1 = false,
96                  ViewLegalizeTypesDAGs = false, ViewLegalizeDAGs = false,
97                  ViewDAGCombine2 = false,
98                  ViewDAGCombineLT = false,
99                  ViewISelDAGs = false, ViewSchedDAGs = false,
100                  ViewSUnitDAGs = false;
101#endif
102
103//===---------------------------------------------------------------------===//
104///
105/// RegisterScheduler class - Track the registration of instruction schedulers.
106///
107//===---------------------------------------------------------------------===//
108MachinePassRegistry RegisterScheduler::Registry;
109
110//===---------------------------------------------------------------------===//
111///
112/// ISHeuristic command line option for instruction schedulers.
113///
114//===---------------------------------------------------------------------===//
115static cl::opt<RegisterScheduler::FunctionPassCtor, false,
116               RegisterPassParser<RegisterScheduler> >
117ISHeuristic("pre-RA-sched",
118            cl::init(&createDefaultScheduler),
119            cl::desc("Instruction schedulers available (before register"
120                     " allocation):"));
121
122static RegisterScheduler
123defaultListDAGScheduler("default", "Best scheduler for the target",
124                        createDefaultScheduler);
125
126namespace llvm {
127  //===--------------------------------------------------------------------===//
128  /// createDefaultScheduler - This creates an instruction scheduler appropriate
129  /// for the target.
130  ScheduleDAGSDNodes* createDefaultScheduler(SelectionDAGISel *IS,
131                                             CodeGenOpt::Level OptLevel) {
132    const TargetLowering &TLI = IS->getTargetLowering();
133
134    if (OptLevel == CodeGenOpt::None)
135      return createFastDAGScheduler(IS, OptLevel);
136    if (TLI.getSchedulingPreference() == Sched::Latency)
137      return createTDListDAGScheduler(IS, OptLevel);
138    if (TLI.getSchedulingPreference() == Sched::RegPressure)
139      return createBURRListDAGScheduler(IS, OptLevel);
140    assert(TLI.getSchedulingPreference() == Sched::Hybrid &&
141           "Unknown sched type!");
142    return createHybridListDAGScheduler(IS, OptLevel);
143  }
144}
145
146// EmitInstrWithCustomInserter - This method should be implemented by targets
147// that mark instructions with the 'usesCustomInserter' flag.  These
148// instructions are special in various ways, which require special support to
149// insert.  The specified MachineInstr is created but not inserted into any
150// basic blocks, and this method is called to expand it into a sequence of
151// instructions, potentially also creating new basic blocks and control flow.
152// When new basic blocks are inserted and the edges from MBB to its successors
153// are modified, the method should insert pairs of <OldSucc, NewSucc> into the
154// DenseMap.
155MachineBasicBlock *
156TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
157                                            MachineBasicBlock *MBB) const {
158#ifndef NDEBUG
159  dbgs() << "If a target marks an instruction with "
160          "'usesCustomInserter', it must implement "
161          "TargetLowering::EmitInstrWithCustomInserter!";
162#endif
163  llvm_unreachable(0);
164  return 0;
165}
166
167//===----------------------------------------------------------------------===//
168// SelectionDAGISel code
169//===----------------------------------------------------------------------===//
170
171SelectionDAGISel::SelectionDAGISel(const TargetMachine &tm, CodeGenOpt::Level OL) :
172  MachineFunctionPass(&ID), TM(tm), TLI(*tm.getTargetLowering()),
173  FuncInfo(new FunctionLoweringInfo(TLI)),
174  CurDAG(new SelectionDAG(tm)),
175  SDB(new SelectionDAGBuilder(*CurDAG, *FuncInfo, OL)),
176  GFI(),
177  OptLevel(OL),
178  DAGSize(0)
179{}
180
181SelectionDAGISel::~SelectionDAGISel() {
182  delete SDB;
183  delete CurDAG;
184  delete FuncInfo;
185}
186
187void SelectionDAGISel::getAnalysisUsage(AnalysisUsage &AU) const {
188  AU.addRequired<AliasAnalysis>();
189  AU.addPreserved<AliasAnalysis>();
190  AU.addRequired<GCModuleInfo>();
191  AU.addPreserved<GCModuleInfo>();
192  MachineFunctionPass::getAnalysisUsage(AU);
193}
194
195/// FunctionCallsSetJmp - Return true if the function has a call to setjmp or
196/// other function that gcc recognizes as "returning twice". This is used to
197/// limit code-gen optimizations on the machine function.
198///
199/// FIXME: Remove after <rdar://problem/8031714> is fixed.
200static bool FunctionCallsSetJmp(const Function *F) {
201  const Module *M = F->getParent();
202  static const char *ReturnsTwiceFns[] = {
203    "setjmp",
204    "sigsetjmp",
205    "setjmp_syscall",
206    "savectx",
207    "qsetjmp",
208    "vfork",
209    "getcontext"
210  };
211#define NUM_RETURNS_TWICE_FNS sizeof(ReturnsTwiceFns) / sizeof(const char *)
212
213  for (unsigned I = 0; I < NUM_RETURNS_TWICE_FNS; ++I)
214    if (const Function *Callee = M->getFunction(ReturnsTwiceFns[I])) {
215      if (!Callee->use_empty())
216        for (Value::const_use_iterator
217               I = Callee->use_begin(), E = Callee->use_end();
218             I != E; ++I)
219          if (const CallInst *CI = dyn_cast<CallInst>(I))
220            if (CI->getParent()->getParent() == F)
221              return true;
222    }
223
224  return false;
225#undef NUM_RETURNS_TWICE_FNS
226}
227
228bool SelectionDAGISel::runOnMachineFunction(MachineFunction &mf) {
229  // Do some sanity-checking on the command-line options.
230  assert((!EnableFastISelVerbose || EnableFastISel) &&
231         "-fast-isel-verbose requires -fast-isel");
232  assert((!EnableFastISelAbort || EnableFastISel) &&
233         "-fast-isel-abort requires -fast-isel");
234
235  const Function &Fn = *mf.getFunction();
236  const TargetInstrInfo &TII = *TM.getInstrInfo();
237  const TargetRegisterInfo &TRI = *TM.getRegisterInfo();
238
239  MF = &mf;
240  RegInfo = &MF->getRegInfo();
241  AA = &getAnalysis<AliasAnalysis>();
242  GFI = Fn.hasGC() ? &getAnalysis<GCModuleInfo>().getFunctionInfo(Fn) : 0;
243
244  DEBUG(dbgs() << "\n\n\n=== " << Fn.getName() << "\n");
245
246  CurDAG->init(*MF);
247  FuncInfo->set(Fn, *MF);
248  SDB->init(GFI, *AA);
249
250  SelectAllBasicBlocks(Fn);
251
252  // If the first basic block in the function has live ins that need to be
253  // copied into vregs, emit the copies into the top of the block before
254  // emitting the code for the block.
255  MachineBasicBlock *EntryMBB = MF->begin();
256  RegInfo->EmitLiveInCopies(EntryMBB, TRI, TII);
257
258  DenseMap<unsigned, unsigned> LiveInMap;
259  if (!FuncInfo->ArgDbgValues.empty())
260    for (MachineRegisterInfo::livein_iterator LI = RegInfo->livein_begin(),
261           E = RegInfo->livein_end(); LI != E; ++LI)
262      if (LI->second)
263        LiveInMap.insert(std::make_pair(LI->first, LI->second));
264
265  // Insert DBG_VALUE instructions for function arguments to the entry block.
266  for (unsigned i = 0, e = FuncInfo->ArgDbgValues.size(); i != e; ++i) {
267    MachineInstr *MI = FuncInfo->ArgDbgValues[e-i-1];
268    unsigned Reg = MI->getOperand(0).getReg();
269    if (TargetRegisterInfo::isPhysicalRegister(Reg))
270      EntryMBB->insert(EntryMBB->begin(), MI);
271    else {
272      MachineInstr *Def = RegInfo->getVRegDef(Reg);
273      MachineBasicBlock::iterator InsertPos = Def;
274      // FIXME: VR def may not be in entry block.
275      Def->getParent()->insert(llvm::next(InsertPos), MI);
276    }
277
278    // If Reg is live-in then update debug info to track its copy in a vreg.
279    DenseMap<unsigned, unsigned>::iterator LDI = LiveInMap.find(Reg);
280    if (LDI != LiveInMap.end()) {
281      MachineInstr *Def = RegInfo->getVRegDef(LDI->second);
282      MachineBasicBlock::iterator InsertPos = Def;
283      const MDNode *Variable =
284        MI->getOperand(MI->getNumOperands()-1).getMetadata();
285      unsigned Offset = MI->getOperand(1).getImm();
286      // Def is never a terminator here, so it is ok to increment InsertPos.
287      BuildMI(*EntryMBB, ++InsertPos, MI->getDebugLoc(),
288              TII.get(TargetOpcode::DBG_VALUE))
289        .addReg(LDI->second, RegState::Debug)
290        .addImm(Offset).addMetadata(Variable);
291    }
292  }
293
294  // Determine if there are any calls in this machine function.
295  MachineFrameInfo *MFI = MF->getFrameInfo();
296  if (!MFI->hasCalls()) {
297    for (MachineFunction::const_iterator
298           I = MF->begin(), E = MF->end(); I != E; ++I) {
299      const MachineBasicBlock *MBB = I;
300      for (MachineBasicBlock::const_iterator
301             II = MBB->begin(), IE = MBB->end(); II != IE; ++II) {
302        const TargetInstrDesc &TID = TM.getInstrInfo()->get(II->getOpcode());
303        if ((II->isInlineAsm() && II->getOperand(1).getImm()) ||
304            (TID.isCall() && !TID.isReturn())) {
305          MFI->setHasCalls(true);
306          goto done;
307        }
308      }
309    }
310  done:;
311  }
312
313  // Determine if there is a call to setjmp in the machine function.
314  MF->setCallsSetJmp(FunctionCallsSetJmp(&Fn));
315
316  // Release function-specific state. SDB and CurDAG are already cleared
317  // at this point.
318  FuncInfo->clear();
319
320  return true;
321}
322
323MachineBasicBlock *
324SelectionDAGISel::SelectBasicBlock(MachineBasicBlock *BB,
325                                   BasicBlock::const_iterator Begin,
326                                   BasicBlock::const_iterator End,
327                                   bool &HadTailCall) {
328  // Lower all of the non-terminator instructions. If a call is emitted
329  // as a tail call, cease emitting nodes for this block. Terminators
330  // are handled below.
331  for (BasicBlock::const_iterator I = Begin; I != End && !SDB->HasTailCall; ++I)
332    SDB->visit(*I);
333
334  // Make sure the root of the DAG is up-to-date.
335  CurDAG->setRoot(SDB->getControlRoot());
336  HadTailCall = SDB->HasTailCall;
337  SDB->clear();
338
339  // Final step, emit the lowered DAG as machine code.
340  return CodeGenAndEmitDAG(BB);
341}
342
343namespace {
344/// WorkListRemover - This class is a DAGUpdateListener that removes any deleted
345/// nodes from the worklist.
346class SDOPsWorkListRemover : public SelectionDAG::DAGUpdateListener {
347  SmallVector<SDNode*, 128> &Worklist;
348  SmallPtrSet<SDNode*, 128> &InWorklist;
349public:
350  SDOPsWorkListRemover(SmallVector<SDNode*, 128> &wl,
351                       SmallPtrSet<SDNode*, 128> &inwl)
352    : Worklist(wl), InWorklist(inwl) {}
353
354  void RemoveFromWorklist(SDNode *N) {
355    if (!InWorklist.erase(N)) return;
356
357    SmallVector<SDNode*, 128>::iterator I =
358    std::find(Worklist.begin(), Worklist.end(), N);
359    assert(I != Worklist.end() && "Not in worklist");
360
361    *I = Worklist.back();
362    Worklist.pop_back();
363  }
364
365  virtual void NodeDeleted(SDNode *N, SDNode *E) {
366    RemoveFromWorklist(N);
367  }
368
369  virtual void NodeUpdated(SDNode *N) {
370    // Ignore updates.
371  }
372};
373}
374
375void SelectionDAGISel::ComputeLiveOutVRegInfo() {
376  SmallPtrSet<SDNode*, 128> VisitedNodes;
377  SmallVector<SDNode*, 128> Worklist;
378
379  Worklist.push_back(CurDAG->getRoot().getNode());
380
381  APInt Mask;
382  APInt KnownZero;
383  APInt KnownOne;
384
385  do {
386    SDNode *N = Worklist.pop_back_val();
387
388    // If we've already seen this node, ignore it.
389    if (!VisitedNodes.insert(N))
390      continue;
391
392    // Otherwise, add all chain operands to the worklist.
393    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
394      if (N->getOperand(i).getValueType() == MVT::Other)
395        Worklist.push_back(N->getOperand(i).getNode());
396
397    // If this is a CopyToReg with a vreg dest, process it.
398    if (N->getOpcode() != ISD::CopyToReg)
399      continue;
400
401    unsigned DestReg = cast<RegisterSDNode>(N->getOperand(1))->getReg();
402    if (!TargetRegisterInfo::isVirtualRegister(DestReg))
403      continue;
404
405    // Ignore non-scalar or non-integer values.
406    SDValue Src = N->getOperand(2);
407    EVT SrcVT = Src.getValueType();
408    if (!SrcVT.isInteger() || SrcVT.isVector())
409      continue;
410
411    unsigned NumSignBits = CurDAG->ComputeNumSignBits(Src);
412    Mask = APInt::getAllOnesValue(SrcVT.getSizeInBits());
413    CurDAG->ComputeMaskedBits(Src, Mask, KnownZero, KnownOne);
414
415    // Only install this information if it tells us something.
416    if (NumSignBits != 1 || KnownZero != 0 || KnownOne != 0) {
417      DestReg -= TargetRegisterInfo::FirstVirtualRegister;
418      if (DestReg >= FuncInfo->LiveOutRegInfo.size())
419        FuncInfo->LiveOutRegInfo.resize(DestReg+1);
420      FunctionLoweringInfo::LiveOutInfo &LOI =
421        FuncInfo->LiveOutRegInfo[DestReg];
422      LOI.NumSignBits = NumSignBits;
423      LOI.KnownOne = KnownOne;
424      LOI.KnownZero = KnownZero;
425    }
426  } while (!Worklist.empty());
427}
428
429MachineBasicBlock *SelectionDAGISel::CodeGenAndEmitDAG(MachineBasicBlock *BB) {
430  std::string GroupName;
431  if (TimePassesIsEnabled)
432    GroupName = "Instruction Selection and Scheduling";
433  std::string BlockName;
434  if (ViewDAGCombine1 || ViewLegalizeTypesDAGs || ViewLegalizeDAGs ||
435      ViewDAGCombine2 || ViewDAGCombineLT || ViewISelDAGs || ViewSchedDAGs ||
436      ViewSUnitDAGs)
437    BlockName = MF->getFunction()->getNameStr() + ":" +
438                BB->getBasicBlock()->getNameStr();
439
440  DEBUG(dbgs() << "Initial selection DAG:\n"; CurDAG->dump());
441
442  if (ViewDAGCombine1) CurDAG->viewGraph("dag-combine1 input for " + BlockName);
443
444  // Run the DAG combiner in pre-legalize mode.
445  {
446    NamedRegionTimer T("DAG Combining 1", GroupName, TimePassesIsEnabled);
447    CurDAG->Combine(Unrestricted, *AA, OptLevel);
448  }
449
450  DEBUG(dbgs() << "Optimized lowered selection DAG:\n"; CurDAG->dump());
451
452  // Second step, hack on the DAG until it only uses operations and types that
453  // the target supports.
454  if (ViewLegalizeTypesDAGs) CurDAG->viewGraph("legalize-types input for " +
455                                               BlockName);
456
457  bool Changed;
458  {
459    NamedRegionTimer T("Type Legalization", GroupName, TimePassesIsEnabled);
460    Changed = CurDAG->LegalizeTypes();
461  }
462
463  DEBUG(dbgs() << "Type-legalized selection DAG:\n"; CurDAG->dump());
464
465  if (Changed) {
466    if (ViewDAGCombineLT)
467      CurDAG->viewGraph("dag-combine-lt input for " + BlockName);
468
469    // Run the DAG combiner in post-type-legalize mode.
470    {
471      NamedRegionTimer T("DAG Combining after legalize types", GroupName,
472                         TimePassesIsEnabled);
473      CurDAG->Combine(NoIllegalTypes, *AA, OptLevel);
474    }
475
476    DEBUG(dbgs() << "Optimized type-legalized selection DAG:\n";
477          CurDAG->dump());
478  }
479
480  {
481    NamedRegionTimer T("Vector Legalization", GroupName, TimePassesIsEnabled);
482    Changed = CurDAG->LegalizeVectors();
483  }
484
485  if (Changed) {
486    {
487      NamedRegionTimer T("Type Legalization 2", GroupName, TimePassesIsEnabled);
488      CurDAG->LegalizeTypes();
489    }
490
491    if (ViewDAGCombineLT)
492      CurDAG->viewGraph("dag-combine-lv input for " + BlockName);
493
494    // Run the DAG combiner in post-type-legalize mode.
495    {
496      NamedRegionTimer T("DAG Combining after legalize vectors", GroupName,
497                         TimePassesIsEnabled);
498      CurDAG->Combine(NoIllegalOperations, *AA, OptLevel);
499    }
500
501    DEBUG(dbgs() << "Optimized vector-legalized selection DAG:\n";
502          CurDAG->dump());
503  }
504
505  if (ViewLegalizeDAGs) CurDAG->viewGraph("legalize input for " + BlockName);
506
507  {
508    NamedRegionTimer T("DAG Legalization", GroupName, TimePassesIsEnabled);
509    CurDAG->Legalize(OptLevel);
510  }
511
512  DEBUG(dbgs() << "Legalized selection DAG:\n"; CurDAG->dump());
513
514  if (ViewDAGCombine2) CurDAG->viewGraph("dag-combine2 input for " + BlockName);
515
516  // Run the DAG combiner in post-legalize mode.
517  {
518    NamedRegionTimer T("DAG Combining 2", GroupName, TimePassesIsEnabled);
519    CurDAG->Combine(NoIllegalOperations, *AA, OptLevel);
520  }
521
522  DEBUG(dbgs() << "Optimized legalized selection DAG:\n"; CurDAG->dump());
523
524  if (OptLevel != CodeGenOpt::None)
525    ComputeLiveOutVRegInfo();
526
527  if (ViewISelDAGs) CurDAG->viewGraph("isel input for " + BlockName);
528
529  // Third, instruction select all of the operations to machine code, adding the
530  // code to the MachineBasicBlock.
531  {
532    NamedRegionTimer T("Instruction Selection", GroupName, TimePassesIsEnabled);
533    DoInstructionSelection();
534  }
535
536  DEBUG(dbgs() << "Selected selection DAG:\n"; CurDAG->dump());
537
538  if (ViewSchedDAGs) CurDAG->viewGraph("scheduler input for " + BlockName);
539
540  // Schedule machine code.
541  ScheduleDAGSDNodes *Scheduler = CreateScheduler();
542  {
543    NamedRegionTimer T("Instruction Scheduling", GroupName,
544                       TimePassesIsEnabled);
545    Scheduler->Run(CurDAG, BB, BB->end());
546  }
547
548  if (ViewSUnitDAGs) Scheduler->viewGraph();
549
550  // Emit machine code to BB.  This can change 'BB' to the last block being
551  // inserted into.
552  {
553    NamedRegionTimer T("Instruction Creation", GroupName, TimePassesIsEnabled);
554    BB = Scheduler->EmitSchedule();
555  }
556
557  // Free the scheduler state.
558  {
559    NamedRegionTimer T("Instruction Scheduling Cleanup", GroupName,
560                       TimePassesIsEnabled);
561    delete Scheduler;
562  }
563
564  // Free the SelectionDAG state, now that we're finished with it.
565  CurDAG->clear();
566
567  return BB;
568}
569
570void SelectionDAGISel::DoInstructionSelection() {
571  DEBUG(errs() << "===== Instruction selection begins:\n");
572
573  PreprocessISelDAG();
574
575  // Select target instructions for the DAG.
576  {
577    // Number all nodes with a topological order and set DAGSize.
578    DAGSize = CurDAG->AssignTopologicalOrder();
579
580    // Create a dummy node (which is not added to allnodes), that adds
581    // a reference to the root node, preventing it from being deleted,
582    // and tracking any changes of the root.
583    HandleSDNode Dummy(CurDAG->getRoot());
584    ISelPosition = SelectionDAG::allnodes_iterator(CurDAG->getRoot().getNode());
585    ++ISelPosition;
586
587    // The AllNodes list is now topological-sorted. Visit the
588    // nodes by starting at the end of the list (the root of the
589    // graph) and preceding back toward the beginning (the entry
590    // node).
591    while (ISelPosition != CurDAG->allnodes_begin()) {
592      SDNode *Node = --ISelPosition;
593      // Skip dead nodes. DAGCombiner is expected to eliminate all dead nodes,
594      // but there are currently some corner cases that it misses. Also, this
595      // makes it theoretically possible to disable the DAGCombiner.
596      if (Node->use_empty())
597        continue;
598
599      SDNode *ResNode = Select(Node);
600
601      // FIXME: This is pretty gross.  'Select' should be changed to not return
602      // anything at all and this code should be nuked with a tactical strike.
603
604      // If node should not be replaced, continue with the next one.
605      if (ResNode == Node || Node->getOpcode() == ISD::DELETED_NODE)
606        continue;
607      // Replace node.
608      if (ResNode)
609        ReplaceUses(Node, ResNode);
610
611      // If after the replacement this node is not used any more,
612      // remove this dead node.
613      if (Node->use_empty()) { // Don't delete EntryToken, etc.
614        ISelUpdater ISU(ISelPosition);
615        CurDAG->RemoveDeadNode(Node, &ISU);
616      }
617    }
618
619    CurDAG->setRoot(Dummy.getValue());
620  }
621
622  DEBUG(errs() << "===== Instruction selection ends:\n");
623
624  PostprocessISelDAG();
625}
626
627/// PrepareEHLandingPad - Emit an EH_LABEL, set up live-in registers, and
628/// do other setup for EH landing-pad blocks.
629void SelectionDAGISel::PrepareEHLandingPad(MachineBasicBlock *BB) {
630  // Add a label to mark the beginning of the landing pad.  Deletion of the
631  // landing pad can thus be detected via the MachineModuleInfo.
632  MCSymbol *Label = MF->getMMI().addLandingPad(BB);
633
634  const TargetInstrDesc &II = TM.getInstrInfo()->get(TargetOpcode::EH_LABEL);
635  BuildMI(BB, SDB->getCurDebugLoc(), II).addSym(Label);
636
637  // Mark exception register as live in.
638  unsigned Reg = TLI.getExceptionAddressRegister();
639  if (Reg) BB->addLiveIn(Reg);
640
641  // Mark exception selector register as live in.
642  Reg = TLI.getExceptionSelectorRegister();
643  if (Reg) BB->addLiveIn(Reg);
644
645  // FIXME: Hack around an exception handling flaw (PR1508): the personality
646  // function and list of typeids logically belong to the invoke (or, if you
647  // like, the basic block containing the invoke), and need to be associated
648  // with it in the dwarf exception handling tables.  Currently however the
649  // information is provided by an intrinsic (eh.selector) that can be moved
650  // to unexpected places by the optimizers: if the unwind edge is critical,
651  // then breaking it can result in the intrinsics being in the successor of
652  // the landing pad, not the landing pad itself.  This results
653  // in exceptions not being caught because no typeids are associated with
654  // the invoke.  This may not be the only way things can go wrong, but it
655  // is the only way we try to work around for the moment.
656  const BasicBlock *LLVMBB = BB->getBasicBlock();
657  const BranchInst *Br = dyn_cast<BranchInst>(LLVMBB->getTerminator());
658
659  if (Br && Br->isUnconditional()) { // Critical edge?
660    BasicBlock::const_iterator I, E;
661    for (I = LLVMBB->begin(), E = --LLVMBB->end(); I != E; ++I)
662      if (isa<EHSelectorInst>(I))
663        break;
664
665    if (I == E)
666      // No catch info found - try to extract some from the successor.
667      CopyCatchInfo(Br->getSuccessor(0), LLVMBB, &MF->getMMI(), *FuncInfo);
668  }
669}
670
671void SelectionDAGISel::SelectAllBasicBlocks(const Function &Fn) {
672  // Initialize the Fast-ISel state, if needed.
673  FastISel *FastIS = 0;
674  if (EnableFastISel)
675    FastIS = TLI.createFastISel(*FuncInfo);
676
677  // Iterate over all basic blocks in the function.
678  for (Function::const_iterator I = Fn.begin(), E = Fn.end(); I != E; ++I) {
679    const BasicBlock *LLVMBB = &*I;
680    MachineBasicBlock *BB = FuncInfo->MBBMap[LLVMBB];
681
682    BasicBlock::const_iterator const Begin = LLVMBB->getFirstNonPHI();
683    BasicBlock::const_iterator const End = LLVMBB->end();
684    BasicBlock::const_iterator BI = Begin;
685
686    // Lower any arguments needed in this block if this is the entry block.
687    if (LLVMBB == &Fn.getEntryBlock())
688      LowerArguments(LLVMBB);
689
690    // Setup an EH landing-pad block.
691    if (BB->isLandingPad())
692      PrepareEHLandingPad(BB);
693
694    // Before doing SelectionDAG ISel, see if FastISel has been requested.
695    if (FastIS) {
696      // Emit code for any incoming arguments. This must happen before
697      // beginning FastISel on the entry block.
698      if (LLVMBB == &Fn.getEntryBlock()) {
699        CurDAG->setRoot(SDB->getControlRoot());
700        SDB->clear();
701        BB = CodeGenAndEmitDAG(BB);
702      }
703      FastIS->startNewBlock(BB);
704      // Do FastISel on as many instructions as possible.
705      for (; BI != End; ++BI) {
706#if 0
707        // Defer instructions with no side effects; they'll be emitted
708        // on-demand later.
709        if (BI->isSafeToSpeculativelyExecute() &&
710            !FuncInfo->isExportedInst(BI))
711          continue;
712#endif
713
714        // Try to select the instruction with FastISel.
715        if (FastIS->SelectInstruction(BI))
716          continue;
717
718        // Then handle certain instructions as single-LLVM-Instruction blocks.
719        if (isa<CallInst>(BI)) {
720          ++NumFastIselFailures;
721          if (EnableFastISelVerbose || EnableFastISelAbort) {
722            dbgs() << "FastISel missed call: ";
723            BI->dump();
724          }
725
726          if (!BI->getType()->isVoidTy() && !BI->use_empty()) {
727            unsigned &R = FuncInfo->ValueMap[BI];
728            if (!R)
729              R = FuncInfo->CreateRegs(BI->getType());
730          }
731
732          bool HadTailCall = false;
733          BB = SelectBasicBlock(BB, BI, llvm::next(BI), HadTailCall);
734
735          // If the call was emitted as a tail call, we're done with the block.
736          if (HadTailCall) {
737            BI = End;
738            break;
739          }
740
741          // If the instruction was codegen'd with multiple blocks,
742          // inform the FastISel object where to resume inserting.
743          FastIS->setCurrentBlock(BB);
744          continue;
745        }
746
747        // Otherwise, give up on FastISel for the rest of the block.
748        // For now, be a little lenient about non-branch terminators.
749        if (!isa<TerminatorInst>(BI) || isa<BranchInst>(BI)) {
750          ++NumFastIselFailures;
751          if (EnableFastISelVerbose || EnableFastISelAbort) {
752            dbgs() << "FastISel miss: ";
753            BI->dump();
754          }
755          if (EnableFastISelAbort)
756            // The "fast" selector couldn't handle something and bailed.
757            // For the purpose of debugging, just abort.
758            llvm_unreachable("FastISel didn't select the entire block");
759        }
760        break;
761      }
762    }
763
764    // Run SelectionDAG instruction selection on the remainder of the block
765    // not handled by FastISel. If FastISel is not run, this is the entire
766    // block.
767    if (BI != End) {
768      bool HadTailCall;
769      BB = SelectBasicBlock(BB, BI, End, HadTailCall);
770    }
771
772    FinishBasicBlock(BB);
773    FuncInfo->PHINodesToUpdate.clear();
774  }
775
776  delete FastIS;
777}
778
779void
780SelectionDAGISel::FinishBasicBlock(MachineBasicBlock *BB) {
781
782  DEBUG(dbgs() << "Total amount of phi nodes to update: "
783               << FuncInfo->PHINodesToUpdate.size() << "\n";
784        for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i)
785          dbgs() << "Node " << i << " : ("
786                 << FuncInfo->PHINodesToUpdate[i].first
787                 << ", " << FuncInfo->PHINodesToUpdate[i].second << ")\n");
788
789  // Next, now that we know what the last MBB the LLVM BB expanded is, update
790  // PHI nodes in successors.
791  if (SDB->SwitchCases.empty() &&
792      SDB->JTCases.empty() &&
793      SDB->BitTestCases.empty()) {
794    for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i) {
795      MachineInstr *PHI = FuncInfo->PHINodesToUpdate[i].first;
796      assert(PHI->isPHI() &&
797             "This is not a machine PHI node that we are updating!");
798      if (!BB->isSuccessor(PHI->getParent()))
799        continue;
800      PHI->addOperand(
801        MachineOperand::CreateReg(FuncInfo->PHINodesToUpdate[i].second, false));
802      PHI->addOperand(MachineOperand::CreateMBB(BB));
803    }
804    return;
805  }
806
807  for (unsigned i = 0, e = SDB->BitTestCases.size(); i != e; ++i) {
808    // Lower header first, if it wasn't already lowered
809    if (!SDB->BitTestCases[i].Emitted) {
810      // Set the current basic block to the mbb we wish to insert the code into
811      BB = SDB->BitTestCases[i].Parent;
812      // Emit the code
813      SDB->visitBitTestHeader(SDB->BitTestCases[i], BB);
814      CurDAG->setRoot(SDB->getRoot());
815      SDB->clear();
816      BB = CodeGenAndEmitDAG(BB);
817    }
818
819    for (unsigned j = 0, ej = SDB->BitTestCases[i].Cases.size(); j != ej; ++j) {
820      // Set the current basic block to the mbb we wish to insert the code into
821      BB = SDB->BitTestCases[i].Cases[j].ThisBB;
822      // Emit the code
823      if (j+1 != ej)
824        SDB->visitBitTestCase(SDB->BitTestCases[i].Cases[j+1].ThisBB,
825                              SDB->BitTestCases[i].Reg,
826                              SDB->BitTestCases[i].Cases[j],
827                              BB);
828      else
829        SDB->visitBitTestCase(SDB->BitTestCases[i].Default,
830                              SDB->BitTestCases[i].Reg,
831                              SDB->BitTestCases[i].Cases[j],
832                              BB);
833
834
835      CurDAG->setRoot(SDB->getRoot());
836      SDB->clear();
837      BB = CodeGenAndEmitDAG(BB);
838    }
839
840    // Update PHI Nodes
841    for (unsigned pi = 0, pe = FuncInfo->PHINodesToUpdate.size();
842         pi != pe; ++pi) {
843      MachineInstr *PHI = FuncInfo->PHINodesToUpdate[pi].first;
844      MachineBasicBlock *PHIBB = PHI->getParent();
845      assert(PHI->isPHI() &&
846             "This is not a machine PHI node that we are updating!");
847      // This is "default" BB. We have two jumps to it. From "header" BB and
848      // from last "case" BB.
849      if (PHIBB == SDB->BitTestCases[i].Default) {
850        PHI->addOperand(MachineOperand::
851                        CreateReg(FuncInfo->PHINodesToUpdate[pi].second,
852                                  false));
853        PHI->addOperand(MachineOperand::CreateMBB(SDB->BitTestCases[i].Parent));
854        PHI->addOperand(MachineOperand::
855                        CreateReg(FuncInfo->PHINodesToUpdate[pi].second,
856                                  false));
857        PHI->addOperand(MachineOperand::CreateMBB(SDB->BitTestCases[i].Cases.
858                                                  back().ThisBB));
859      }
860      // One of "cases" BB.
861      for (unsigned j = 0, ej = SDB->BitTestCases[i].Cases.size();
862           j != ej; ++j) {
863        MachineBasicBlock* cBB = SDB->BitTestCases[i].Cases[j].ThisBB;
864        if (cBB->isSuccessor(PHIBB)) {
865          PHI->addOperand(MachineOperand::
866                          CreateReg(FuncInfo->PHINodesToUpdate[pi].second,
867                                    false));
868          PHI->addOperand(MachineOperand::CreateMBB(cBB));
869        }
870      }
871    }
872  }
873  SDB->BitTestCases.clear();
874
875  // If the JumpTable record is filled in, then we need to emit a jump table.
876  // Updating the PHI nodes is tricky in this case, since we need to determine
877  // whether the PHI is a successor of the range check MBB or the jump table MBB
878  for (unsigned i = 0, e = SDB->JTCases.size(); i != e; ++i) {
879    // Lower header first, if it wasn't already lowered
880    if (!SDB->JTCases[i].first.Emitted) {
881      // Set the current basic block to the mbb we wish to insert the code into
882      BB = SDB->JTCases[i].first.HeaderBB;
883      // Emit the code
884      SDB->visitJumpTableHeader(SDB->JTCases[i].second, SDB->JTCases[i].first,
885                                BB);
886      CurDAG->setRoot(SDB->getRoot());
887      SDB->clear();
888      BB = CodeGenAndEmitDAG(BB);
889    }
890
891    // Set the current basic block to the mbb we wish to insert the code into
892    BB = SDB->JTCases[i].second.MBB;
893    // Emit the code
894    SDB->visitJumpTable(SDB->JTCases[i].second);
895    CurDAG->setRoot(SDB->getRoot());
896    SDB->clear();
897    BB = CodeGenAndEmitDAG(BB);
898
899    // Update PHI Nodes
900    for (unsigned pi = 0, pe = FuncInfo->PHINodesToUpdate.size();
901         pi != pe; ++pi) {
902      MachineInstr *PHI = FuncInfo->PHINodesToUpdate[pi].first;
903      MachineBasicBlock *PHIBB = PHI->getParent();
904      assert(PHI->isPHI() &&
905             "This is not a machine PHI node that we are updating!");
906      // "default" BB. We can go there only from header BB.
907      if (PHIBB == SDB->JTCases[i].second.Default) {
908        PHI->addOperand
909          (MachineOperand::CreateReg(FuncInfo->PHINodesToUpdate[pi].second,
910                                     false));
911        PHI->addOperand
912          (MachineOperand::CreateMBB(SDB->JTCases[i].first.HeaderBB));
913      }
914      // JT BB. Just iterate over successors here
915      if (BB->isSuccessor(PHIBB)) {
916        PHI->addOperand
917          (MachineOperand::CreateReg(FuncInfo->PHINodesToUpdate[pi].second,
918                                     false));
919        PHI->addOperand(MachineOperand::CreateMBB(BB));
920      }
921    }
922  }
923  SDB->JTCases.clear();
924
925  // If the switch block involved a branch to one of the actual successors, we
926  // need to update PHI nodes in that block.
927  for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i) {
928    MachineInstr *PHI = FuncInfo->PHINodesToUpdate[i].first;
929    assert(PHI->isPHI() &&
930           "This is not a machine PHI node that we are updating!");
931    if (BB->isSuccessor(PHI->getParent())) {
932      PHI->addOperand(
933        MachineOperand::CreateReg(FuncInfo->PHINodesToUpdate[i].second, false));
934      PHI->addOperand(MachineOperand::CreateMBB(BB));
935    }
936  }
937
938  // If we generated any switch lowering information, build and codegen any
939  // additional DAGs necessary.
940  for (unsigned i = 0, e = SDB->SwitchCases.size(); i != e; ++i) {
941    // Set the current basic block to the mbb we wish to insert the code into
942    MachineBasicBlock *ThisBB = BB = SDB->SwitchCases[i].ThisBB;
943
944    // Determine the unique successors.
945    SmallVector<MachineBasicBlock *, 2> Succs;
946    Succs.push_back(SDB->SwitchCases[i].TrueBB);
947    if (SDB->SwitchCases[i].TrueBB != SDB->SwitchCases[i].FalseBB)
948      Succs.push_back(SDB->SwitchCases[i].FalseBB);
949
950    // Emit the code. Note that this could result in ThisBB being split, so
951    // we need to check for updates.
952    SDB->visitSwitchCase(SDB->SwitchCases[i], BB);
953    CurDAG->setRoot(SDB->getRoot());
954    SDB->clear();
955    ThisBB = CodeGenAndEmitDAG(BB);
956
957    // Handle any PHI nodes in successors of this chunk, as if we were coming
958    // from the original BB before switch expansion.  Note that PHI nodes can
959    // occur multiple times in PHINodesToUpdate.  We have to be very careful to
960    // handle them the right number of times.
961    for (unsigned i = 0, e = Succs.size(); i != e; ++i) {
962      BB = Succs[i];
963      // BB may have been removed from the CFG if a branch was constant folded.
964      if (ThisBB->isSuccessor(BB)) {
965        for (MachineBasicBlock::iterator Phi = BB->begin();
966             Phi != BB->end() && Phi->isPHI();
967             ++Phi) {
968          // This value for this PHI node is recorded in PHINodesToUpdate.
969          for (unsigned pn = 0; ; ++pn) {
970            assert(pn != FuncInfo->PHINodesToUpdate.size() &&
971                   "Didn't find PHI entry!");
972            if (FuncInfo->PHINodesToUpdate[pn].first == Phi) {
973              Phi->addOperand(MachineOperand::
974                              CreateReg(FuncInfo->PHINodesToUpdate[pn].second,
975                                        false));
976              Phi->addOperand(MachineOperand::CreateMBB(ThisBB));
977              break;
978            }
979          }
980        }
981      }
982    }
983  }
984  SDB->SwitchCases.clear();
985}
986
987
988/// Create the scheduler. If a specific scheduler was specified
989/// via the SchedulerRegistry, use it, otherwise select the
990/// one preferred by the target.
991///
992ScheduleDAGSDNodes *SelectionDAGISel::CreateScheduler() {
993  RegisterScheduler::FunctionPassCtor Ctor = RegisterScheduler::getDefault();
994
995  if (!Ctor) {
996    Ctor = ISHeuristic;
997    RegisterScheduler::setDefault(Ctor);
998  }
999
1000  return Ctor(this, OptLevel);
1001}
1002
1003ScheduleHazardRecognizer *SelectionDAGISel::CreateTargetHazardRecognizer() {
1004  return new ScheduleHazardRecognizer();
1005}
1006
1007//===----------------------------------------------------------------------===//
1008// Helper functions used by the generated instruction selector.
1009//===----------------------------------------------------------------------===//
1010// Calls to these methods are generated by tblgen.
1011
1012/// CheckAndMask - The isel is trying to match something like (and X, 255).  If
1013/// the dag combiner simplified the 255, we still want to match.  RHS is the
1014/// actual value in the DAG on the RHS of an AND, and DesiredMaskS is the value
1015/// specified in the .td file (e.g. 255).
1016bool SelectionDAGISel::CheckAndMask(SDValue LHS, ConstantSDNode *RHS,
1017                                    int64_t DesiredMaskS) const {
1018  const APInt &ActualMask = RHS->getAPIntValue();
1019  const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
1020
1021  // If the actual mask exactly matches, success!
1022  if (ActualMask == DesiredMask)
1023    return true;
1024
1025  // If the actual AND mask is allowing unallowed bits, this doesn't match.
1026  if (ActualMask.intersects(~DesiredMask))
1027    return false;
1028
1029  // Otherwise, the DAG Combiner may have proven that the value coming in is
1030  // either already zero or is not demanded.  Check for known zero input bits.
1031  APInt NeededMask = DesiredMask & ~ActualMask;
1032  if (CurDAG->MaskedValueIsZero(LHS, NeededMask))
1033    return true;
1034
1035  // TODO: check to see if missing bits are just not demanded.
1036
1037  // Otherwise, this pattern doesn't match.
1038  return false;
1039}
1040
1041/// CheckOrMask - The isel is trying to match something like (or X, 255).  If
1042/// the dag combiner simplified the 255, we still want to match.  RHS is the
1043/// actual value in the DAG on the RHS of an OR, and DesiredMaskS is the value
1044/// specified in the .td file (e.g. 255).
1045bool SelectionDAGISel::CheckOrMask(SDValue LHS, ConstantSDNode *RHS,
1046                                   int64_t DesiredMaskS) const {
1047  const APInt &ActualMask = RHS->getAPIntValue();
1048  const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
1049
1050  // If the actual mask exactly matches, success!
1051  if (ActualMask == DesiredMask)
1052    return true;
1053
1054  // If the actual AND mask is allowing unallowed bits, this doesn't match.
1055  if (ActualMask.intersects(~DesiredMask))
1056    return false;
1057
1058  // Otherwise, the DAG Combiner may have proven that the value coming in is
1059  // either already zero or is not demanded.  Check for known zero input bits.
1060  APInt NeededMask = DesiredMask & ~ActualMask;
1061
1062  APInt KnownZero, KnownOne;
1063  CurDAG->ComputeMaskedBits(LHS, NeededMask, KnownZero, KnownOne);
1064
1065  // If all the missing bits in the or are already known to be set, match!
1066  if ((NeededMask & KnownOne) == NeededMask)
1067    return true;
1068
1069  // TODO: check to see if missing bits are just not demanded.
1070
1071  // Otherwise, this pattern doesn't match.
1072  return false;
1073}
1074
1075
1076/// SelectInlineAsmMemoryOperands - Calls to this are automatically generated
1077/// by tblgen.  Others should not call it.
1078void SelectionDAGISel::
1079SelectInlineAsmMemoryOperands(std::vector<SDValue> &Ops) {
1080  std::vector<SDValue> InOps;
1081  std::swap(InOps, Ops);
1082
1083  Ops.push_back(InOps[InlineAsm::Op_InputChain]); // 0
1084  Ops.push_back(InOps[InlineAsm::Op_AsmString]);  // 1
1085  Ops.push_back(InOps[InlineAsm::Op_MDNode]);     // 2, !srcloc
1086  Ops.push_back(InOps[InlineAsm::Op_IsAlignStack]);  // 3
1087
1088  unsigned i = InlineAsm::Op_FirstOperand, e = InOps.size();
1089  if (InOps[e-1].getValueType() == MVT::Flag)
1090    --e;  // Don't process a flag operand if it is here.
1091
1092  while (i != e) {
1093    unsigned Flags = cast<ConstantSDNode>(InOps[i])->getZExtValue();
1094    if (!InlineAsm::isMemKind(Flags)) {
1095      // Just skip over this operand, copying the operands verbatim.
1096      Ops.insert(Ops.end(), InOps.begin()+i,
1097                 InOps.begin()+i+InlineAsm::getNumOperandRegisters(Flags) + 1);
1098      i += InlineAsm::getNumOperandRegisters(Flags) + 1;
1099    } else {
1100      assert(InlineAsm::getNumOperandRegisters(Flags) == 1 &&
1101             "Memory operand with multiple values?");
1102      // Otherwise, this is a memory operand.  Ask the target to select it.
1103      std::vector<SDValue> SelOps;
1104      if (SelectInlineAsmMemoryOperand(InOps[i+1], 'm', SelOps))
1105        report_fatal_error("Could not match memory address.  Inline asm"
1106                           " failure!");
1107
1108      // Add this to the output node.
1109      unsigned NewFlags =
1110        InlineAsm::getFlagWord(InlineAsm::Kind_Mem, SelOps.size());
1111      Ops.push_back(CurDAG->getTargetConstant(NewFlags, MVT::i32));
1112      Ops.insert(Ops.end(), SelOps.begin(), SelOps.end());
1113      i += 2;
1114    }
1115  }
1116
1117  // Add the flag input back if present.
1118  if (e != InOps.size())
1119    Ops.push_back(InOps.back());
1120}
1121
1122/// findFlagUse - Return use of EVT::Flag value produced by the specified
1123/// SDNode.
1124///
1125static SDNode *findFlagUse(SDNode *N) {
1126  unsigned FlagResNo = N->getNumValues()-1;
1127  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
1128    SDUse &Use = I.getUse();
1129    if (Use.getResNo() == FlagResNo)
1130      return Use.getUser();
1131  }
1132  return NULL;
1133}
1134
1135/// findNonImmUse - Return true if "Use" is a non-immediate use of "Def".
1136/// This function recursively traverses up the operand chain, ignoring
1137/// certain nodes.
1138static bool findNonImmUse(SDNode *Use, SDNode* Def, SDNode *ImmedUse,
1139                          SDNode *Root, SmallPtrSet<SDNode*, 16> &Visited,
1140                          bool IgnoreChains) {
1141  // The NodeID's are given uniques ID's where a node ID is guaranteed to be
1142  // greater than all of its (recursive) operands.  If we scan to a point where
1143  // 'use' is smaller than the node we're scanning for, then we know we will
1144  // never find it.
1145  //
1146  // The Use may be -1 (unassigned) if it is a newly allocated node.  This can
1147  // happen because we scan down to newly selected nodes in the case of flag
1148  // uses.
1149  if ((Use->getNodeId() < Def->getNodeId() && Use->getNodeId() != -1))
1150    return false;
1151
1152  // Don't revisit nodes if we already scanned it and didn't fail, we know we
1153  // won't fail if we scan it again.
1154  if (!Visited.insert(Use))
1155    return false;
1156
1157  for (unsigned i = 0, e = Use->getNumOperands(); i != e; ++i) {
1158    // Ignore chain uses, they are validated by HandleMergeInputChains.
1159    if (Use->getOperand(i).getValueType() == MVT::Other && IgnoreChains)
1160      continue;
1161
1162    SDNode *N = Use->getOperand(i).getNode();
1163    if (N == Def) {
1164      if (Use == ImmedUse || Use == Root)
1165        continue;  // We are not looking for immediate use.
1166      assert(N != Root);
1167      return true;
1168    }
1169
1170    // Traverse up the operand chain.
1171    if (findNonImmUse(N, Def, ImmedUse, Root, Visited, IgnoreChains))
1172      return true;
1173  }
1174  return false;
1175}
1176
1177/// IsProfitableToFold - Returns true if it's profitable to fold the specific
1178/// operand node N of U during instruction selection that starts at Root.
1179bool SelectionDAGISel::IsProfitableToFold(SDValue N, SDNode *U,
1180                                          SDNode *Root) const {
1181  if (OptLevel == CodeGenOpt::None) return false;
1182  return N.hasOneUse();
1183}
1184
1185/// IsLegalToFold - Returns true if the specific operand node N of
1186/// U can be folded during instruction selection that starts at Root.
1187bool SelectionDAGISel::IsLegalToFold(SDValue N, SDNode *U, SDNode *Root,
1188                                     CodeGenOpt::Level OptLevel,
1189                                     bool IgnoreChains) {
1190  if (OptLevel == CodeGenOpt::None) return false;
1191
1192  // If Root use can somehow reach N through a path that that doesn't contain
1193  // U then folding N would create a cycle. e.g. In the following
1194  // diagram, Root can reach N through X. If N is folded into into Root, then
1195  // X is both a predecessor and a successor of U.
1196  //
1197  //          [N*]           //
1198  //         ^   ^           //
1199  //        /     \          //
1200  //      [U*]    [X]?       //
1201  //        ^     ^          //
1202  //         \   /           //
1203  //          \ /            //
1204  //         [Root*]         //
1205  //
1206  // * indicates nodes to be folded together.
1207  //
1208  // If Root produces a flag, then it gets (even more) interesting. Since it
1209  // will be "glued" together with its flag use in the scheduler, we need to
1210  // check if it might reach N.
1211  //
1212  //          [N*]           //
1213  //         ^   ^           //
1214  //        /     \          //
1215  //      [U*]    [X]?       //
1216  //        ^       ^        //
1217  //         \       \       //
1218  //          \      |       //
1219  //         [Root*] |       //
1220  //          ^      |       //
1221  //          f      |       //
1222  //          |      /       //
1223  //         [Y]    /        //
1224  //           ^   /         //
1225  //           f  /          //
1226  //           | /           //
1227  //          [FU]           //
1228  //
1229  // If FU (flag use) indirectly reaches N (the load), and Root folds N
1230  // (call it Fold), then X is a predecessor of FU and a successor of
1231  // Fold. But since Fold and FU are flagged together, this will create
1232  // a cycle in the scheduling graph.
1233
1234  // If the node has flags, walk down the graph to the "lowest" node in the
1235  // flagged set.
1236  EVT VT = Root->getValueType(Root->getNumValues()-1);
1237  while (VT == MVT::Flag) {
1238    SDNode *FU = findFlagUse(Root);
1239    if (FU == NULL)
1240      break;
1241    Root = FU;
1242    VT = Root->getValueType(Root->getNumValues()-1);
1243
1244    // If our query node has a flag result with a use, we've walked up it.  If
1245    // the user (which has already been selected) has a chain or indirectly uses
1246    // the chain, our WalkChainUsers predicate will not consider it.  Because of
1247    // this, we cannot ignore chains in this predicate.
1248    IgnoreChains = false;
1249  }
1250
1251
1252  SmallPtrSet<SDNode*, 16> Visited;
1253  return !findNonImmUse(Root, N.getNode(), U, Root, Visited, IgnoreChains);
1254}
1255
1256SDNode *SelectionDAGISel::Select_INLINEASM(SDNode *N) {
1257  std::vector<SDValue> Ops(N->op_begin(), N->op_end());
1258  SelectInlineAsmMemoryOperands(Ops);
1259
1260  std::vector<EVT> VTs;
1261  VTs.push_back(MVT::Other);
1262  VTs.push_back(MVT::Flag);
1263  SDValue New = CurDAG->getNode(ISD::INLINEASM, N->getDebugLoc(),
1264                                VTs, &Ops[0], Ops.size());
1265  New->setNodeId(-1);
1266  return New.getNode();
1267}
1268
1269SDNode *SelectionDAGISel::Select_UNDEF(SDNode *N) {
1270  return CurDAG->SelectNodeTo(N, TargetOpcode::IMPLICIT_DEF,N->getValueType(0));
1271}
1272
1273/// GetVBR - decode a vbr encoding whose top bit is set.
1274ALWAYS_INLINE static uint64_t
1275GetVBR(uint64_t Val, const unsigned char *MatcherTable, unsigned &Idx) {
1276  assert(Val >= 128 && "Not a VBR");
1277  Val &= 127;  // Remove first vbr bit.
1278
1279  unsigned Shift = 7;
1280  uint64_t NextBits;
1281  do {
1282    NextBits = MatcherTable[Idx++];
1283    Val |= (NextBits&127) << Shift;
1284    Shift += 7;
1285  } while (NextBits & 128);
1286
1287  return Val;
1288}
1289
1290
1291/// UpdateChainsAndFlags - When a match is complete, this method updates uses of
1292/// interior flag and chain results to use the new flag and chain results.
1293void SelectionDAGISel::
1294UpdateChainsAndFlags(SDNode *NodeToMatch, SDValue InputChain,
1295                     const SmallVectorImpl<SDNode*> &ChainNodesMatched,
1296                     SDValue InputFlag,
1297                     const SmallVectorImpl<SDNode*> &FlagResultNodesMatched,
1298                     bool isMorphNodeTo) {
1299  SmallVector<SDNode*, 4> NowDeadNodes;
1300
1301  ISelUpdater ISU(ISelPosition);
1302
1303  // Now that all the normal results are replaced, we replace the chain and
1304  // flag results if present.
1305  if (!ChainNodesMatched.empty()) {
1306    assert(InputChain.getNode() != 0 &&
1307           "Matched input chains but didn't produce a chain");
1308    // Loop over all of the nodes we matched that produced a chain result.
1309    // Replace all the chain results with the final chain we ended up with.
1310    for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
1311      SDNode *ChainNode = ChainNodesMatched[i];
1312
1313      // If this node was already deleted, don't look at it.
1314      if (ChainNode->getOpcode() == ISD::DELETED_NODE)
1315        continue;
1316
1317      // Don't replace the results of the root node if we're doing a
1318      // MorphNodeTo.
1319      if (ChainNode == NodeToMatch && isMorphNodeTo)
1320        continue;
1321
1322      SDValue ChainVal = SDValue(ChainNode, ChainNode->getNumValues()-1);
1323      if (ChainVal.getValueType() == MVT::Flag)
1324        ChainVal = ChainVal.getValue(ChainVal->getNumValues()-2);
1325      assert(ChainVal.getValueType() == MVT::Other && "Not a chain?");
1326      CurDAG->ReplaceAllUsesOfValueWith(ChainVal, InputChain, &ISU);
1327
1328      // If the node became dead and we haven't already seen it, delete it.
1329      if (ChainNode->use_empty() &&
1330          !std::count(NowDeadNodes.begin(), NowDeadNodes.end(), ChainNode))
1331        NowDeadNodes.push_back(ChainNode);
1332    }
1333  }
1334
1335  // If the result produces a flag, update any flag results in the matched
1336  // pattern with the flag result.
1337  if (InputFlag.getNode() != 0) {
1338    // Handle any interior nodes explicitly marked.
1339    for (unsigned i = 0, e = FlagResultNodesMatched.size(); i != e; ++i) {
1340      SDNode *FRN = FlagResultNodesMatched[i];
1341
1342      // If this node was already deleted, don't look at it.
1343      if (FRN->getOpcode() == ISD::DELETED_NODE)
1344        continue;
1345
1346      assert(FRN->getValueType(FRN->getNumValues()-1) == MVT::Flag &&
1347             "Doesn't have a flag result");
1348      CurDAG->ReplaceAllUsesOfValueWith(SDValue(FRN, FRN->getNumValues()-1),
1349                                        InputFlag, &ISU);
1350
1351      // If the node became dead and we haven't already seen it, delete it.
1352      if (FRN->use_empty() &&
1353          !std::count(NowDeadNodes.begin(), NowDeadNodes.end(), FRN))
1354        NowDeadNodes.push_back(FRN);
1355    }
1356  }
1357
1358  if (!NowDeadNodes.empty())
1359    CurDAG->RemoveDeadNodes(NowDeadNodes, &ISU);
1360
1361  DEBUG(errs() << "ISEL: Match complete!\n");
1362}
1363
1364enum ChainResult {
1365  CR_Simple,
1366  CR_InducesCycle,
1367  CR_LeadsToInteriorNode
1368};
1369
1370/// WalkChainUsers - Walk down the users of the specified chained node that is
1371/// part of the pattern we're matching, looking at all of the users we find.
1372/// This determines whether something is an interior node, whether we have a
1373/// non-pattern node in between two pattern nodes (which prevent folding because
1374/// it would induce a cycle) and whether we have a TokenFactor node sandwiched
1375/// between pattern nodes (in which case the TF becomes part of the pattern).
1376///
1377/// The walk we do here is guaranteed to be small because we quickly get down to
1378/// already selected nodes "below" us.
1379static ChainResult
1380WalkChainUsers(SDNode *ChainedNode,
1381               SmallVectorImpl<SDNode*> &ChainedNodesInPattern,
1382               SmallVectorImpl<SDNode*> &InteriorChainedNodes) {
1383  ChainResult Result = CR_Simple;
1384
1385  for (SDNode::use_iterator UI = ChainedNode->use_begin(),
1386         E = ChainedNode->use_end(); UI != E; ++UI) {
1387    // Make sure the use is of the chain, not some other value we produce.
1388    if (UI.getUse().getValueType() != MVT::Other) continue;
1389
1390    SDNode *User = *UI;
1391
1392    // If we see an already-selected machine node, then we've gone beyond the
1393    // pattern that we're selecting down into the already selected chunk of the
1394    // DAG.
1395    if (User->isMachineOpcode() ||
1396        User->getOpcode() == ISD::HANDLENODE)  // Root of the graph.
1397      continue;
1398
1399    if (User->getOpcode() == ISD::CopyToReg ||
1400        User->getOpcode() == ISD::CopyFromReg ||
1401        User->getOpcode() == ISD::INLINEASM ||
1402        User->getOpcode() == ISD::EH_LABEL) {
1403      // If their node ID got reset to -1 then they've already been selected.
1404      // Treat them like a MachineOpcode.
1405      if (User->getNodeId() == -1)
1406        continue;
1407    }
1408
1409    // If we have a TokenFactor, we handle it specially.
1410    if (User->getOpcode() != ISD::TokenFactor) {
1411      // If the node isn't a token factor and isn't part of our pattern, then it
1412      // must be a random chained node in between two nodes we're selecting.
1413      // This happens when we have something like:
1414      //   x = load ptr
1415      //   call
1416      //   y = x+4
1417      //   store y -> ptr
1418      // Because we structurally match the load/store as a read/modify/write,
1419      // but the call is chained between them.  We cannot fold in this case
1420      // because it would induce a cycle in the graph.
1421      if (!std::count(ChainedNodesInPattern.begin(),
1422                      ChainedNodesInPattern.end(), User))
1423        return CR_InducesCycle;
1424
1425      // Otherwise we found a node that is part of our pattern.  For example in:
1426      //   x = load ptr
1427      //   y = x+4
1428      //   store y -> ptr
1429      // This would happen when we're scanning down from the load and see the
1430      // store as a user.  Record that there is a use of ChainedNode that is
1431      // part of the pattern and keep scanning uses.
1432      Result = CR_LeadsToInteriorNode;
1433      InteriorChainedNodes.push_back(User);
1434      continue;
1435    }
1436
1437    // If we found a TokenFactor, there are two cases to consider: first if the
1438    // TokenFactor is just hanging "below" the pattern we're matching (i.e. no
1439    // uses of the TF are in our pattern) we just want to ignore it.  Second,
1440    // the TokenFactor can be sandwiched in between two chained nodes, like so:
1441    //     [Load chain]
1442    //         ^
1443    //         |
1444    //       [Load]
1445    //       ^    ^
1446    //       |    \                    DAG's like cheese
1447    //      /       \                       do you?
1448    //     /         |
1449    // [TokenFactor] [Op]
1450    //     ^          ^
1451    //     |          |
1452    //      \        /
1453    //       \      /
1454    //       [Store]
1455    //
1456    // In this case, the TokenFactor becomes part of our match and we rewrite it
1457    // as a new TokenFactor.
1458    //
1459    // To distinguish these two cases, do a recursive walk down the uses.
1460    switch (WalkChainUsers(User, ChainedNodesInPattern, InteriorChainedNodes)) {
1461    case CR_Simple:
1462      // If the uses of the TokenFactor are just already-selected nodes, ignore
1463      // it, it is "below" our pattern.
1464      continue;
1465    case CR_InducesCycle:
1466      // If the uses of the TokenFactor lead to nodes that are not part of our
1467      // pattern that are not selected, folding would turn this into a cycle,
1468      // bail out now.
1469      return CR_InducesCycle;
1470    case CR_LeadsToInteriorNode:
1471      break;  // Otherwise, keep processing.
1472    }
1473
1474    // Okay, we know we're in the interesting interior case.  The TokenFactor
1475    // is now going to be considered part of the pattern so that we rewrite its
1476    // uses (it may have uses that are not part of the pattern) with the
1477    // ultimate chain result of the generated code.  We will also add its chain
1478    // inputs as inputs to the ultimate TokenFactor we create.
1479    Result = CR_LeadsToInteriorNode;
1480    ChainedNodesInPattern.push_back(User);
1481    InteriorChainedNodes.push_back(User);
1482    continue;
1483  }
1484
1485  return Result;
1486}
1487
1488/// HandleMergeInputChains - This implements the OPC_EmitMergeInputChains
1489/// operation for when the pattern matched at least one node with a chains.  The
1490/// input vector contains a list of all of the chained nodes that we match.  We
1491/// must determine if this is a valid thing to cover (i.e. matching it won't
1492/// induce cycles in the DAG) and if so, creating a TokenFactor node. that will
1493/// be used as the input node chain for the generated nodes.
1494static SDValue
1495HandleMergeInputChains(SmallVectorImpl<SDNode*> &ChainNodesMatched,
1496                       SelectionDAG *CurDAG) {
1497  // Walk all of the chained nodes we've matched, recursively scanning down the
1498  // users of the chain result. This adds any TokenFactor nodes that are caught
1499  // in between chained nodes to the chained and interior nodes list.
1500  SmallVector<SDNode*, 3> InteriorChainedNodes;
1501  for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
1502    if (WalkChainUsers(ChainNodesMatched[i], ChainNodesMatched,
1503                       InteriorChainedNodes) == CR_InducesCycle)
1504      return SDValue(); // Would induce a cycle.
1505  }
1506
1507  // Okay, we have walked all the matched nodes and collected TokenFactor nodes
1508  // that we are interested in.  Form our input TokenFactor node.
1509  SmallVector<SDValue, 3> InputChains;
1510  for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
1511    // Add the input chain of this node to the InputChains list (which will be
1512    // the operands of the generated TokenFactor) if it's not an interior node.
1513    SDNode *N = ChainNodesMatched[i];
1514    if (N->getOpcode() != ISD::TokenFactor) {
1515      if (std::count(InteriorChainedNodes.begin(),InteriorChainedNodes.end(),N))
1516        continue;
1517
1518      // Otherwise, add the input chain.
1519      SDValue InChain = ChainNodesMatched[i]->getOperand(0);
1520      assert(InChain.getValueType() == MVT::Other && "Not a chain");
1521      InputChains.push_back(InChain);
1522      continue;
1523    }
1524
1525    // If we have a token factor, we want to add all inputs of the token factor
1526    // that are not part of the pattern we're matching.
1527    for (unsigned op = 0, e = N->getNumOperands(); op != e; ++op) {
1528      if (!std::count(ChainNodesMatched.begin(), ChainNodesMatched.end(),
1529                      N->getOperand(op).getNode()))
1530        InputChains.push_back(N->getOperand(op));
1531    }
1532  }
1533
1534  SDValue Res;
1535  if (InputChains.size() == 1)
1536    return InputChains[0];
1537  return CurDAG->getNode(ISD::TokenFactor, ChainNodesMatched[0]->getDebugLoc(),
1538                         MVT::Other, &InputChains[0], InputChains.size());
1539}
1540
1541/// MorphNode - Handle morphing a node in place for the selector.
1542SDNode *SelectionDAGISel::
1543MorphNode(SDNode *Node, unsigned TargetOpc, SDVTList VTList,
1544          const SDValue *Ops, unsigned NumOps, unsigned EmitNodeInfo) {
1545  // It is possible we're using MorphNodeTo to replace a node with no
1546  // normal results with one that has a normal result (or we could be
1547  // adding a chain) and the input could have flags and chains as well.
1548  // In this case we need to shift the operands down.
1549  // FIXME: This is a horrible hack and broken in obscure cases, no worse
1550  // than the old isel though.
1551  int OldFlagResultNo = -1, OldChainResultNo = -1;
1552
1553  unsigned NTMNumResults = Node->getNumValues();
1554  if (Node->getValueType(NTMNumResults-1) == MVT::Flag) {
1555    OldFlagResultNo = NTMNumResults-1;
1556    if (NTMNumResults != 1 &&
1557        Node->getValueType(NTMNumResults-2) == MVT::Other)
1558      OldChainResultNo = NTMNumResults-2;
1559  } else if (Node->getValueType(NTMNumResults-1) == MVT::Other)
1560    OldChainResultNo = NTMNumResults-1;
1561
1562  // Call the underlying SelectionDAG routine to do the transmogrification. Note
1563  // that this deletes operands of the old node that become dead.
1564  SDNode *Res = CurDAG->MorphNodeTo(Node, ~TargetOpc, VTList, Ops, NumOps);
1565
1566  // MorphNodeTo can operate in two ways: if an existing node with the
1567  // specified operands exists, it can just return it.  Otherwise, it
1568  // updates the node in place to have the requested operands.
1569  if (Res == Node) {
1570    // If we updated the node in place, reset the node ID.  To the isel,
1571    // this should be just like a newly allocated machine node.
1572    Res->setNodeId(-1);
1573  }
1574
1575  unsigned ResNumResults = Res->getNumValues();
1576  // Move the flag if needed.
1577  if ((EmitNodeInfo & OPFL_FlagOutput) && OldFlagResultNo != -1 &&
1578      (unsigned)OldFlagResultNo != ResNumResults-1)
1579    CurDAG->ReplaceAllUsesOfValueWith(SDValue(Node, OldFlagResultNo),
1580                                      SDValue(Res, ResNumResults-1));
1581
1582  if ((EmitNodeInfo & OPFL_FlagOutput) != 0)
1583    --ResNumResults;
1584
1585  // Move the chain reference if needed.
1586  if ((EmitNodeInfo & OPFL_Chain) && OldChainResultNo != -1 &&
1587      (unsigned)OldChainResultNo != ResNumResults-1)
1588    CurDAG->ReplaceAllUsesOfValueWith(SDValue(Node, OldChainResultNo),
1589                                      SDValue(Res, ResNumResults-1));
1590
1591  // Otherwise, no replacement happened because the node already exists. Replace
1592  // Uses of the old node with the new one.
1593  if (Res != Node)
1594    CurDAG->ReplaceAllUsesWith(Node, Res);
1595
1596  return Res;
1597}
1598
1599/// CheckPatternPredicate - Implements OP_CheckPatternPredicate.
1600ALWAYS_INLINE static bool
1601CheckSame(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1602          SDValue N, const SmallVectorImpl<SDValue> &RecordedNodes) {
1603  // Accept if it is exactly the same as a previously recorded node.
1604  unsigned RecNo = MatcherTable[MatcherIndex++];
1605  assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
1606  return N == RecordedNodes[RecNo];
1607}
1608
1609/// CheckPatternPredicate - Implements OP_CheckPatternPredicate.
1610ALWAYS_INLINE static bool
1611CheckPatternPredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1612                      SelectionDAGISel &SDISel) {
1613  return SDISel.CheckPatternPredicate(MatcherTable[MatcherIndex++]);
1614}
1615
1616/// CheckNodePredicate - Implements OP_CheckNodePredicate.
1617ALWAYS_INLINE static bool
1618CheckNodePredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1619                   SelectionDAGISel &SDISel, SDNode *N) {
1620  return SDISel.CheckNodePredicate(N, MatcherTable[MatcherIndex++]);
1621}
1622
1623ALWAYS_INLINE static bool
1624CheckOpcode(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1625            SDNode *N) {
1626  uint16_t Opc = MatcherTable[MatcherIndex++];
1627  Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
1628  return N->getOpcode() == Opc;
1629}
1630
1631ALWAYS_INLINE static bool
1632CheckType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1633          SDValue N, const TargetLowering &TLI) {
1634  MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
1635  if (N.getValueType() == VT) return true;
1636
1637  // Handle the case when VT is iPTR.
1638  return VT == MVT::iPTR && N.getValueType() == TLI.getPointerTy();
1639}
1640
1641ALWAYS_INLINE static bool
1642CheckChildType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1643               SDValue N, const TargetLowering &TLI,
1644               unsigned ChildNo) {
1645  if (ChildNo >= N.getNumOperands())
1646    return false;  // Match fails if out of range child #.
1647  return ::CheckType(MatcherTable, MatcherIndex, N.getOperand(ChildNo), TLI);
1648}
1649
1650
1651ALWAYS_INLINE static bool
1652CheckCondCode(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1653              SDValue N) {
1654  return cast<CondCodeSDNode>(N)->get() ==
1655      (ISD::CondCode)MatcherTable[MatcherIndex++];
1656}
1657
1658ALWAYS_INLINE static bool
1659CheckValueType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1660               SDValue N, const TargetLowering &TLI) {
1661  MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
1662  if (cast<VTSDNode>(N)->getVT() == VT)
1663    return true;
1664
1665  // Handle the case when VT is iPTR.
1666  return VT == MVT::iPTR && cast<VTSDNode>(N)->getVT() == TLI.getPointerTy();
1667}
1668
1669ALWAYS_INLINE static bool
1670CheckInteger(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1671             SDValue N) {
1672  int64_t Val = MatcherTable[MatcherIndex++];
1673  if (Val & 128)
1674    Val = GetVBR(Val, MatcherTable, MatcherIndex);
1675
1676  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N);
1677  return C != 0 && C->getSExtValue() == Val;
1678}
1679
1680ALWAYS_INLINE static bool
1681CheckAndImm(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1682            SDValue N, SelectionDAGISel &SDISel) {
1683  int64_t Val = MatcherTable[MatcherIndex++];
1684  if (Val & 128)
1685    Val = GetVBR(Val, MatcherTable, MatcherIndex);
1686
1687  if (N->getOpcode() != ISD::AND) return false;
1688
1689  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
1690  return C != 0 && SDISel.CheckAndMask(N.getOperand(0), C, Val);
1691}
1692
1693ALWAYS_INLINE static bool
1694CheckOrImm(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1695           SDValue N, SelectionDAGISel &SDISel) {
1696  int64_t Val = MatcherTable[MatcherIndex++];
1697  if (Val & 128)
1698    Val = GetVBR(Val, MatcherTable, MatcherIndex);
1699
1700  if (N->getOpcode() != ISD::OR) return false;
1701
1702  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
1703  return C != 0 && SDISel.CheckOrMask(N.getOperand(0), C, Val);
1704}
1705
1706/// IsPredicateKnownToFail - If we know how and can do so without pushing a
1707/// scope, evaluate the current node.  If the current predicate is known to
1708/// fail, set Result=true and return anything.  If the current predicate is
1709/// known to pass, set Result=false and return the MatcherIndex to continue
1710/// with.  If the current predicate is unknown, set Result=false and return the
1711/// MatcherIndex to continue with.
1712static unsigned IsPredicateKnownToFail(const unsigned char *Table,
1713                                       unsigned Index, SDValue N,
1714                                       bool &Result, SelectionDAGISel &SDISel,
1715                                       SmallVectorImpl<SDValue> &RecordedNodes){
1716  switch (Table[Index++]) {
1717  default:
1718    Result = false;
1719    return Index-1;  // Could not evaluate this predicate.
1720  case SelectionDAGISel::OPC_CheckSame:
1721    Result = !::CheckSame(Table, Index, N, RecordedNodes);
1722    return Index;
1723  case SelectionDAGISel::OPC_CheckPatternPredicate:
1724    Result = !::CheckPatternPredicate(Table, Index, SDISel);
1725    return Index;
1726  case SelectionDAGISel::OPC_CheckPredicate:
1727    Result = !::CheckNodePredicate(Table, Index, SDISel, N.getNode());
1728    return Index;
1729  case SelectionDAGISel::OPC_CheckOpcode:
1730    Result = !::CheckOpcode(Table, Index, N.getNode());
1731    return Index;
1732  case SelectionDAGISel::OPC_CheckType:
1733    Result = !::CheckType(Table, Index, N, SDISel.TLI);
1734    return Index;
1735  case SelectionDAGISel::OPC_CheckChild0Type:
1736  case SelectionDAGISel::OPC_CheckChild1Type:
1737  case SelectionDAGISel::OPC_CheckChild2Type:
1738  case SelectionDAGISel::OPC_CheckChild3Type:
1739  case SelectionDAGISel::OPC_CheckChild4Type:
1740  case SelectionDAGISel::OPC_CheckChild5Type:
1741  case SelectionDAGISel::OPC_CheckChild6Type:
1742  case SelectionDAGISel::OPC_CheckChild7Type:
1743    Result = !::CheckChildType(Table, Index, N, SDISel.TLI,
1744                        Table[Index-1] - SelectionDAGISel::OPC_CheckChild0Type);
1745    return Index;
1746  case SelectionDAGISel::OPC_CheckCondCode:
1747    Result = !::CheckCondCode(Table, Index, N);
1748    return Index;
1749  case SelectionDAGISel::OPC_CheckValueType:
1750    Result = !::CheckValueType(Table, Index, N, SDISel.TLI);
1751    return Index;
1752  case SelectionDAGISel::OPC_CheckInteger:
1753    Result = !::CheckInteger(Table, Index, N);
1754    return Index;
1755  case SelectionDAGISel::OPC_CheckAndImm:
1756    Result = !::CheckAndImm(Table, Index, N, SDISel);
1757    return Index;
1758  case SelectionDAGISel::OPC_CheckOrImm:
1759    Result = !::CheckOrImm(Table, Index, N, SDISel);
1760    return Index;
1761  }
1762}
1763
1764namespace {
1765
1766struct MatchScope {
1767  /// FailIndex - If this match fails, this is the index to continue with.
1768  unsigned FailIndex;
1769
1770  /// NodeStack - The node stack when the scope was formed.
1771  SmallVector<SDValue, 4> NodeStack;
1772
1773  /// NumRecordedNodes - The number of recorded nodes when the scope was formed.
1774  unsigned NumRecordedNodes;
1775
1776  /// NumMatchedMemRefs - The number of matched memref entries.
1777  unsigned NumMatchedMemRefs;
1778
1779  /// InputChain/InputFlag - The current chain/flag
1780  SDValue InputChain, InputFlag;
1781
1782  /// HasChainNodesMatched - True if the ChainNodesMatched list is non-empty.
1783  bool HasChainNodesMatched, HasFlagResultNodesMatched;
1784};
1785
1786}
1787
1788SDNode *SelectionDAGISel::
1789SelectCodeCommon(SDNode *NodeToMatch, const unsigned char *MatcherTable,
1790                 unsigned TableSize) {
1791  // FIXME: Should these even be selected?  Handle these cases in the caller?
1792  switch (NodeToMatch->getOpcode()) {
1793  default:
1794    break;
1795  case ISD::EntryToken:       // These nodes remain the same.
1796  case ISD::BasicBlock:
1797  case ISD::Register:
1798  //case ISD::VALUETYPE:
1799  //case ISD::CONDCODE:
1800  case ISD::HANDLENODE:
1801  case ISD::MDNODE_SDNODE:
1802  case ISD::TargetConstant:
1803  case ISD::TargetConstantFP:
1804  case ISD::TargetConstantPool:
1805  case ISD::TargetFrameIndex:
1806  case ISD::TargetExternalSymbol:
1807  case ISD::TargetBlockAddress:
1808  case ISD::TargetJumpTable:
1809  case ISD::TargetGlobalTLSAddress:
1810  case ISD::TargetGlobalAddress:
1811  case ISD::TokenFactor:
1812  case ISD::CopyFromReg:
1813  case ISD::CopyToReg:
1814  case ISD::EH_LABEL:
1815    NodeToMatch->setNodeId(-1); // Mark selected.
1816    return 0;
1817  case ISD::AssertSext:
1818  case ISD::AssertZext:
1819    CurDAG->ReplaceAllUsesOfValueWith(SDValue(NodeToMatch, 0),
1820                                      NodeToMatch->getOperand(0));
1821    return 0;
1822  case ISD::INLINEASM: return Select_INLINEASM(NodeToMatch);
1823  case ISD::UNDEF:     return Select_UNDEF(NodeToMatch);
1824  }
1825
1826  assert(!NodeToMatch->isMachineOpcode() && "Node already selected!");
1827
1828  // Set up the node stack with NodeToMatch as the only node on the stack.
1829  SmallVector<SDValue, 8> NodeStack;
1830  SDValue N = SDValue(NodeToMatch, 0);
1831  NodeStack.push_back(N);
1832
1833  // MatchScopes - Scopes used when matching, if a match failure happens, this
1834  // indicates where to continue checking.
1835  SmallVector<MatchScope, 8> MatchScopes;
1836
1837  // RecordedNodes - This is the set of nodes that have been recorded by the
1838  // state machine.
1839  SmallVector<SDValue, 8> RecordedNodes;
1840
1841  // MatchedMemRefs - This is the set of MemRef's we've seen in the input
1842  // pattern.
1843  SmallVector<MachineMemOperand*, 2> MatchedMemRefs;
1844
1845  // These are the current input chain and flag for use when generating nodes.
1846  // Various Emit operations change these.  For example, emitting a copytoreg
1847  // uses and updates these.
1848  SDValue InputChain, InputFlag;
1849
1850  // ChainNodesMatched - If a pattern matches nodes that have input/output
1851  // chains, the OPC_EmitMergeInputChains operation is emitted which indicates
1852  // which ones they are.  The result is captured into this list so that we can
1853  // update the chain results when the pattern is complete.
1854  SmallVector<SDNode*, 3> ChainNodesMatched;
1855  SmallVector<SDNode*, 3> FlagResultNodesMatched;
1856
1857  DEBUG(errs() << "ISEL: Starting pattern match on root node: ";
1858        NodeToMatch->dump(CurDAG);
1859        errs() << '\n');
1860
1861  // Determine where to start the interpreter.  Normally we start at opcode #0,
1862  // but if the state machine starts with an OPC_SwitchOpcode, then we
1863  // accelerate the first lookup (which is guaranteed to be hot) with the
1864  // OpcodeOffset table.
1865  unsigned MatcherIndex = 0;
1866
1867  if (!OpcodeOffset.empty()) {
1868    // Already computed the OpcodeOffset table, just index into it.
1869    if (N.getOpcode() < OpcodeOffset.size())
1870      MatcherIndex = OpcodeOffset[N.getOpcode()];
1871    DEBUG(errs() << "  Initial Opcode index to " << MatcherIndex << "\n");
1872
1873  } else if (MatcherTable[0] == OPC_SwitchOpcode) {
1874    // Otherwise, the table isn't computed, but the state machine does start
1875    // with an OPC_SwitchOpcode instruction.  Populate the table now, since this
1876    // is the first time we're selecting an instruction.
1877    unsigned Idx = 1;
1878    while (1) {
1879      // Get the size of this case.
1880      unsigned CaseSize = MatcherTable[Idx++];
1881      if (CaseSize & 128)
1882        CaseSize = GetVBR(CaseSize, MatcherTable, Idx);
1883      if (CaseSize == 0) break;
1884
1885      // Get the opcode, add the index to the table.
1886      uint16_t Opc = MatcherTable[Idx++];
1887      Opc |= (unsigned short)MatcherTable[Idx++] << 8;
1888      if (Opc >= OpcodeOffset.size())
1889        OpcodeOffset.resize((Opc+1)*2);
1890      OpcodeOffset[Opc] = Idx;
1891      Idx += CaseSize;
1892    }
1893
1894    // Okay, do the lookup for the first opcode.
1895    if (N.getOpcode() < OpcodeOffset.size())
1896      MatcherIndex = OpcodeOffset[N.getOpcode()];
1897  }
1898
1899  while (1) {
1900    assert(MatcherIndex < TableSize && "Invalid index");
1901#ifndef NDEBUG
1902    unsigned CurrentOpcodeIndex = MatcherIndex;
1903#endif
1904    BuiltinOpcodes Opcode = (BuiltinOpcodes)MatcherTable[MatcherIndex++];
1905    switch (Opcode) {
1906    case OPC_Scope: {
1907      // Okay, the semantics of this operation are that we should push a scope
1908      // then evaluate the first child.  However, pushing a scope only to have
1909      // the first check fail (which then pops it) is inefficient.  If we can
1910      // determine immediately that the first check (or first several) will
1911      // immediately fail, don't even bother pushing a scope for them.
1912      unsigned FailIndex;
1913
1914      while (1) {
1915        unsigned NumToSkip = MatcherTable[MatcherIndex++];
1916        if (NumToSkip & 128)
1917          NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex);
1918        // Found the end of the scope with no match.
1919        if (NumToSkip == 0) {
1920          FailIndex = 0;
1921          break;
1922        }
1923
1924        FailIndex = MatcherIndex+NumToSkip;
1925
1926        unsigned MatcherIndexOfPredicate = MatcherIndex;
1927        (void)MatcherIndexOfPredicate; // silence warning.
1928
1929        // If we can't evaluate this predicate without pushing a scope (e.g. if
1930        // it is a 'MoveParent') or if the predicate succeeds on this node, we
1931        // push the scope and evaluate the full predicate chain.
1932        bool Result;
1933        MatcherIndex = IsPredicateKnownToFail(MatcherTable, MatcherIndex, N,
1934                                              Result, *this, RecordedNodes);
1935        if (!Result)
1936          break;
1937
1938        DEBUG(errs() << "  Skipped scope entry (due to false predicate) at "
1939                     << "index " << MatcherIndexOfPredicate
1940                     << ", continuing at " << FailIndex << "\n");
1941        ++NumDAGIselRetries;
1942
1943        // Otherwise, we know that this case of the Scope is guaranteed to fail,
1944        // move to the next case.
1945        MatcherIndex = FailIndex;
1946      }
1947
1948      // If the whole scope failed to match, bail.
1949      if (FailIndex == 0) break;
1950
1951      // Push a MatchScope which indicates where to go if the first child fails
1952      // to match.
1953      MatchScope NewEntry;
1954      NewEntry.FailIndex = FailIndex;
1955      NewEntry.NodeStack.append(NodeStack.begin(), NodeStack.end());
1956      NewEntry.NumRecordedNodes = RecordedNodes.size();
1957      NewEntry.NumMatchedMemRefs = MatchedMemRefs.size();
1958      NewEntry.InputChain = InputChain;
1959      NewEntry.InputFlag = InputFlag;
1960      NewEntry.HasChainNodesMatched = !ChainNodesMatched.empty();
1961      NewEntry.HasFlagResultNodesMatched = !FlagResultNodesMatched.empty();
1962      MatchScopes.push_back(NewEntry);
1963      continue;
1964    }
1965    case OPC_RecordNode:
1966      // Remember this node, it may end up being an operand in the pattern.
1967      RecordedNodes.push_back(N);
1968      continue;
1969
1970    case OPC_RecordChild0: case OPC_RecordChild1:
1971    case OPC_RecordChild2: case OPC_RecordChild3:
1972    case OPC_RecordChild4: case OPC_RecordChild5:
1973    case OPC_RecordChild6: case OPC_RecordChild7: {
1974      unsigned ChildNo = Opcode-OPC_RecordChild0;
1975      if (ChildNo >= N.getNumOperands())
1976        break;  // Match fails if out of range child #.
1977
1978      RecordedNodes.push_back(N->getOperand(ChildNo));
1979      continue;
1980    }
1981    case OPC_RecordMemRef:
1982      MatchedMemRefs.push_back(cast<MemSDNode>(N)->getMemOperand());
1983      continue;
1984
1985    case OPC_CaptureFlagInput:
1986      // If the current node has an input flag, capture it in InputFlag.
1987      if (N->getNumOperands() != 0 &&
1988          N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Flag)
1989        InputFlag = N->getOperand(N->getNumOperands()-1);
1990      continue;
1991
1992    case OPC_MoveChild: {
1993      unsigned ChildNo = MatcherTable[MatcherIndex++];
1994      if (ChildNo >= N.getNumOperands())
1995        break;  // Match fails if out of range child #.
1996      N = N.getOperand(ChildNo);
1997      NodeStack.push_back(N);
1998      continue;
1999    }
2000
2001    case OPC_MoveParent:
2002      // Pop the current node off the NodeStack.
2003      NodeStack.pop_back();
2004      assert(!NodeStack.empty() && "Node stack imbalance!");
2005      N = NodeStack.back();
2006      continue;
2007
2008    case OPC_CheckSame:
2009      if (!::CheckSame(MatcherTable, MatcherIndex, N, RecordedNodes)) break;
2010      continue;
2011    case OPC_CheckPatternPredicate:
2012      if (!::CheckPatternPredicate(MatcherTable, MatcherIndex, *this)) break;
2013      continue;
2014    case OPC_CheckPredicate:
2015      if (!::CheckNodePredicate(MatcherTable, MatcherIndex, *this,
2016                                N.getNode()))
2017        break;
2018      continue;
2019    case OPC_CheckComplexPat: {
2020      unsigned CPNum = MatcherTable[MatcherIndex++];
2021      unsigned RecNo = MatcherTable[MatcherIndex++];
2022      assert(RecNo < RecordedNodes.size() && "Invalid CheckComplexPat");
2023      if (!CheckComplexPattern(NodeToMatch, RecordedNodes[RecNo], CPNum,
2024                               RecordedNodes))
2025        break;
2026      continue;
2027    }
2028    case OPC_CheckOpcode:
2029      if (!::CheckOpcode(MatcherTable, MatcherIndex, N.getNode())) break;
2030      continue;
2031
2032    case OPC_CheckType:
2033      if (!::CheckType(MatcherTable, MatcherIndex, N, TLI)) break;
2034      continue;
2035
2036    case OPC_SwitchOpcode: {
2037      unsigned CurNodeOpcode = N.getOpcode();
2038      unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart;
2039      unsigned CaseSize;
2040      while (1) {
2041        // Get the size of this case.
2042        CaseSize = MatcherTable[MatcherIndex++];
2043        if (CaseSize & 128)
2044          CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex);
2045        if (CaseSize == 0) break;
2046
2047        uint16_t Opc = MatcherTable[MatcherIndex++];
2048        Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
2049
2050        // If the opcode matches, then we will execute this case.
2051        if (CurNodeOpcode == Opc)
2052          break;
2053
2054        // Otherwise, skip over this case.
2055        MatcherIndex += CaseSize;
2056      }
2057
2058      // If no cases matched, bail out.
2059      if (CaseSize == 0) break;
2060
2061      // Otherwise, execute the case we found.
2062      DEBUG(errs() << "  OpcodeSwitch from " << SwitchStart
2063                   << " to " << MatcherIndex << "\n");
2064      continue;
2065    }
2066
2067    case OPC_SwitchType: {
2068      MVT::SimpleValueType CurNodeVT = N.getValueType().getSimpleVT().SimpleTy;
2069      unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart;
2070      unsigned CaseSize;
2071      while (1) {
2072        // Get the size of this case.
2073        CaseSize = MatcherTable[MatcherIndex++];
2074        if (CaseSize & 128)
2075          CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex);
2076        if (CaseSize == 0) break;
2077
2078        MVT::SimpleValueType CaseVT =
2079          (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2080        if (CaseVT == MVT::iPTR)
2081          CaseVT = TLI.getPointerTy().SimpleTy;
2082
2083        // If the VT matches, then we will execute this case.
2084        if (CurNodeVT == CaseVT)
2085          break;
2086
2087        // Otherwise, skip over this case.
2088        MatcherIndex += CaseSize;
2089      }
2090
2091      // If no cases matched, bail out.
2092      if (CaseSize == 0) break;
2093
2094      // Otherwise, execute the case we found.
2095      DEBUG(errs() << "  TypeSwitch[" << EVT(CurNodeVT).getEVTString()
2096                   << "] from " << SwitchStart << " to " << MatcherIndex<<'\n');
2097      continue;
2098    }
2099    case OPC_CheckChild0Type: case OPC_CheckChild1Type:
2100    case OPC_CheckChild2Type: case OPC_CheckChild3Type:
2101    case OPC_CheckChild4Type: case OPC_CheckChild5Type:
2102    case OPC_CheckChild6Type: case OPC_CheckChild7Type:
2103      if (!::CheckChildType(MatcherTable, MatcherIndex, N, TLI,
2104                            Opcode-OPC_CheckChild0Type))
2105        break;
2106      continue;
2107    case OPC_CheckCondCode:
2108      if (!::CheckCondCode(MatcherTable, MatcherIndex, N)) break;
2109      continue;
2110    case OPC_CheckValueType:
2111      if (!::CheckValueType(MatcherTable, MatcherIndex, N, TLI)) break;
2112      continue;
2113    case OPC_CheckInteger:
2114      if (!::CheckInteger(MatcherTable, MatcherIndex, N)) break;
2115      continue;
2116    case OPC_CheckAndImm:
2117      if (!::CheckAndImm(MatcherTable, MatcherIndex, N, *this)) break;
2118      continue;
2119    case OPC_CheckOrImm:
2120      if (!::CheckOrImm(MatcherTable, MatcherIndex, N, *this)) break;
2121      continue;
2122
2123    case OPC_CheckFoldableChainNode: {
2124      assert(NodeStack.size() != 1 && "No parent node");
2125      // Verify that all intermediate nodes between the root and this one have
2126      // a single use.
2127      bool HasMultipleUses = false;
2128      for (unsigned i = 1, e = NodeStack.size()-1; i != e; ++i)
2129        if (!NodeStack[i].hasOneUse()) {
2130          HasMultipleUses = true;
2131          break;
2132        }
2133      if (HasMultipleUses) break;
2134
2135      // Check to see that the target thinks this is profitable to fold and that
2136      // we can fold it without inducing cycles in the graph.
2137      if (!IsProfitableToFold(N, NodeStack[NodeStack.size()-2].getNode(),
2138                              NodeToMatch) ||
2139          !IsLegalToFold(N, NodeStack[NodeStack.size()-2].getNode(),
2140                         NodeToMatch, OptLevel,
2141                         true/*We validate our own chains*/))
2142        break;
2143
2144      continue;
2145    }
2146    case OPC_EmitInteger: {
2147      MVT::SimpleValueType VT =
2148        (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2149      int64_t Val = MatcherTable[MatcherIndex++];
2150      if (Val & 128)
2151        Val = GetVBR(Val, MatcherTable, MatcherIndex);
2152      RecordedNodes.push_back(CurDAG->getTargetConstant(Val, VT));
2153      continue;
2154    }
2155    case OPC_EmitRegister: {
2156      MVT::SimpleValueType VT =
2157        (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2158      unsigned RegNo = MatcherTable[MatcherIndex++];
2159      RecordedNodes.push_back(CurDAG->getRegister(RegNo, VT));
2160      continue;
2161    }
2162
2163    case OPC_EmitConvertToTarget:  {
2164      // Convert from IMM/FPIMM to target version.
2165      unsigned RecNo = MatcherTable[MatcherIndex++];
2166      assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2167      SDValue Imm = RecordedNodes[RecNo];
2168
2169      if (Imm->getOpcode() == ISD::Constant) {
2170        int64_t Val = cast<ConstantSDNode>(Imm)->getZExtValue();
2171        Imm = CurDAG->getTargetConstant(Val, Imm.getValueType());
2172      } else if (Imm->getOpcode() == ISD::ConstantFP) {
2173        const ConstantFP *Val=cast<ConstantFPSDNode>(Imm)->getConstantFPValue();
2174        Imm = CurDAG->getTargetConstantFP(*Val, Imm.getValueType());
2175      }
2176
2177      RecordedNodes.push_back(Imm);
2178      continue;
2179    }
2180
2181    case OPC_EmitMergeInputChains1_0:    // OPC_EmitMergeInputChains, 1, 0
2182    case OPC_EmitMergeInputChains1_1: {  // OPC_EmitMergeInputChains, 1, 1
2183      // These are space-optimized forms of OPC_EmitMergeInputChains.
2184      assert(InputChain.getNode() == 0 &&
2185             "EmitMergeInputChains should be the first chain producing node");
2186      assert(ChainNodesMatched.empty() &&
2187             "Should only have one EmitMergeInputChains per match");
2188
2189      // Read all of the chained nodes.
2190      unsigned RecNo = Opcode == OPC_EmitMergeInputChains1_1;
2191      assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2192      ChainNodesMatched.push_back(RecordedNodes[RecNo].getNode());
2193
2194      // FIXME: What if other value results of the node have uses not matched
2195      // by this pattern?
2196      if (ChainNodesMatched.back() != NodeToMatch &&
2197          !RecordedNodes[RecNo].hasOneUse()) {
2198        ChainNodesMatched.clear();
2199        break;
2200      }
2201
2202      // Merge the input chains if they are not intra-pattern references.
2203      InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG);
2204
2205      if (InputChain.getNode() == 0)
2206        break;  // Failed to merge.
2207      continue;
2208    }
2209
2210    case OPC_EmitMergeInputChains: {
2211      assert(InputChain.getNode() == 0 &&
2212             "EmitMergeInputChains should be the first chain producing node");
2213      // This node gets a list of nodes we matched in the input that have
2214      // chains.  We want to token factor all of the input chains to these nodes
2215      // together.  However, if any of the input chains is actually one of the
2216      // nodes matched in this pattern, then we have an intra-match reference.
2217      // Ignore these because the newly token factored chain should not refer to
2218      // the old nodes.
2219      unsigned NumChains = MatcherTable[MatcherIndex++];
2220      assert(NumChains != 0 && "Can't TF zero chains");
2221
2222      assert(ChainNodesMatched.empty() &&
2223             "Should only have one EmitMergeInputChains per match");
2224
2225      // Read all of the chained nodes.
2226      for (unsigned i = 0; i != NumChains; ++i) {
2227        unsigned RecNo = MatcherTable[MatcherIndex++];
2228        assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2229        ChainNodesMatched.push_back(RecordedNodes[RecNo].getNode());
2230
2231        // FIXME: What if other value results of the node have uses not matched
2232        // by this pattern?
2233        if (ChainNodesMatched.back() != NodeToMatch &&
2234            !RecordedNodes[RecNo].hasOneUse()) {
2235          ChainNodesMatched.clear();
2236          break;
2237        }
2238      }
2239
2240      // If the inner loop broke out, the match fails.
2241      if (ChainNodesMatched.empty())
2242        break;
2243
2244      // Merge the input chains if they are not intra-pattern references.
2245      InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG);
2246
2247      if (InputChain.getNode() == 0)
2248        break;  // Failed to merge.
2249
2250      continue;
2251    }
2252
2253    case OPC_EmitCopyToReg: {
2254      unsigned RecNo = MatcherTable[MatcherIndex++];
2255      assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2256      unsigned DestPhysReg = MatcherTable[MatcherIndex++];
2257
2258      if (InputChain.getNode() == 0)
2259        InputChain = CurDAG->getEntryNode();
2260
2261      InputChain = CurDAG->getCopyToReg(InputChain, NodeToMatch->getDebugLoc(),
2262                                        DestPhysReg, RecordedNodes[RecNo],
2263                                        InputFlag);
2264
2265      InputFlag = InputChain.getValue(1);
2266      continue;
2267    }
2268
2269    case OPC_EmitNodeXForm: {
2270      unsigned XFormNo = MatcherTable[MatcherIndex++];
2271      unsigned RecNo = MatcherTable[MatcherIndex++];
2272      assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2273      RecordedNodes.push_back(RunSDNodeXForm(RecordedNodes[RecNo], XFormNo));
2274      continue;
2275    }
2276
2277    case OPC_EmitNode:
2278    case OPC_MorphNodeTo: {
2279      uint16_t TargetOpc = MatcherTable[MatcherIndex++];
2280      TargetOpc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
2281      unsigned EmitNodeInfo = MatcherTable[MatcherIndex++];
2282      // Get the result VT list.
2283      unsigned NumVTs = MatcherTable[MatcherIndex++];
2284      SmallVector<EVT, 4> VTs;
2285      for (unsigned i = 0; i != NumVTs; ++i) {
2286        MVT::SimpleValueType VT =
2287          (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2288        if (VT == MVT::iPTR) VT = TLI.getPointerTy().SimpleTy;
2289        VTs.push_back(VT);
2290      }
2291
2292      if (EmitNodeInfo & OPFL_Chain)
2293        VTs.push_back(MVT::Other);
2294      if (EmitNodeInfo & OPFL_FlagOutput)
2295        VTs.push_back(MVT::Flag);
2296
2297      // This is hot code, so optimize the two most common cases of 1 and 2
2298      // results.
2299      SDVTList VTList;
2300      if (VTs.size() == 1)
2301        VTList = CurDAG->getVTList(VTs[0]);
2302      else if (VTs.size() == 2)
2303        VTList = CurDAG->getVTList(VTs[0], VTs[1]);
2304      else
2305        VTList = CurDAG->getVTList(VTs.data(), VTs.size());
2306
2307      // Get the operand list.
2308      unsigned NumOps = MatcherTable[MatcherIndex++];
2309      SmallVector<SDValue, 8> Ops;
2310      for (unsigned i = 0; i != NumOps; ++i) {
2311        unsigned RecNo = MatcherTable[MatcherIndex++];
2312        if (RecNo & 128)
2313          RecNo = GetVBR(RecNo, MatcherTable, MatcherIndex);
2314
2315        assert(RecNo < RecordedNodes.size() && "Invalid EmitNode");
2316        Ops.push_back(RecordedNodes[RecNo]);
2317      }
2318
2319      // If there are variadic operands to add, handle them now.
2320      if (EmitNodeInfo & OPFL_VariadicInfo) {
2321        // Determine the start index to copy from.
2322        unsigned FirstOpToCopy = getNumFixedFromVariadicInfo(EmitNodeInfo);
2323        FirstOpToCopy += (EmitNodeInfo & OPFL_Chain) ? 1 : 0;
2324        assert(NodeToMatch->getNumOperands() >= FirstOpToCopy &&
2325               "Invalid variadic node");
2326        // Copy all of the variadic operands, not including a potential flag
2327        // input.
2328        for (unsigned i = FirstOpToCopy, e = NodeToMatch->getNumOperands();
2329             i != e; ++i) {
2330          SDValue V = NodeToMatch->getOperand(i);
2331          if (V.getValueType() == MVT::Flag) break;
2332          Ops.push_back(V);
2333        }
2334      }
2335
2336      // If this has chain/flag inputs, add them.
2337      if (EmitNodeInfo & OPFL_Chain)
2338        Ops.push_back(InputChain);
2339      if ((EmitNodeInfo & OPFL_FlagInput) && InputFlag.getNode() != 0)
2340        Ops.push_back(InputFlag);
2341
2342      // Create the node.
2343      SDNode *Res = 0;
2344      if (Opcode != OPC_MorphNodeTo) {
2345        // If this is a normal EmitNode command, just create the new node and
2346        // add the results to the RecordedNodes list.
2347        Res = CurDAG->getMachineNode(TargetOpc, NodeToMatch->getDebugLoc(),
2348                                     VTList, Ops.data(), Ops.size());
2349
2350        // Add all the non-flag/non-chain results to the RecordedNodes list.
2351        for (unsigned i = 0, e = VTs.size(); i != e; ++i) {
2352          if (VTs[i] == MVT::Other || VTs[i] == MVT::Flag) break;
2353          RecordedNodes.push_back(SDValue(Res, i));
2354        }
2355
2356      } else {
2357        Res = MorphNode(NodeToMatch, TargetOpc, VTList, Ops.data(), Ops.size(),
2358                        EmitNodeInfo);
2359      }
2360
2361      // If the node had chain/flag results, update our notion of the current
2362      // chain and flag.
2363      if (EmitNodeInfo & OPFL_FlagOutput) {
2364        InputFlag = SDValue(Res, VTs.size()-1);
2365        if (EmitNodeInfo & OPFL_Chain)
2366          InputChain = SDValue(Res, VTs.size()-2);
2367      } else if (EmitNodeInfo & OPFL_Chain)
2368        InputChain = SDValue(Res, VTs.size()-1);
2369
2370      // If the OPFL_MemRefs flag is set on this node, slap all of the
2371      // accumulated memrefs onto it.
2372      //
2373      // FIXME: This is vastly incorrect for patterns with multiple outputs
2374      // instructions that access memory and for ComplexPatterns that match
2375      // loads.
2376      if (EmitNodeInfo & OPFL_MemRefs) {
2377        MachineSDNode::mmo_iterator MemRefs =
2378          MF->allocateMemRefsArray(MatchedMemRefs.size());
2379        std::copy(MatchedMemRefs.begin(), MatchedMemRefs.end(), MemRefs);
2380        cast<MachineSDNode>(Res)
2381          ->setMemRefs(MemRefs, MemRefs + MatchedMemRefs.size());
2382      }
2383
2384      DEBUG(errs() << "  "
2385                   << (Opcode == OPC_MorphNodeTo ? "Morphed" : "Created")
2386                   << " node: "; Res->dump(CurDAG); errs() << "\n");
2387
2388      // If this was a MorphNodeTo then we're completely done!
2389      if (Opcode == OPC_MorphNodeTo) {
2390        // Update chain and flag uses.
2391        UpdateChainsAndFlags(NodeToMatch, InputChain, ChainNodesMatched,
2392                             InputFlag, FlagResultNodesMatched, true);
2393        return Res;
2394      }
2395
2396      continue;
2397    }
2398
2399    case OPC_MarkFlagResults: {
2400      unsigned NumNodes = MatcherTable[MatcherIndex++];
2401
2402      // Read and remember all the flag-result nodes.
2403      for (unsigned i = 0; i != NumNodes; ++i) {
2404        unsigned RecNo = MatcherTable[MatcherIndex++];
2405        if (RecNo & 128)
2406          RecNo = GetVBR(RecNo, MatcherTable, MatcherIndex);
2407
2408        assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2409        FlagResultNodesMatched.push_back(RecordedNodes[RecNo].getNode());
2410      }
2411      continue;
2412    }
2413
2414    case OPC_CompleteMatch: {
2415      // The match has been completed, and any new nodes (if any) have been
2416      // created.  Patch up references to the matched dag to use the newly
2417      // created nodes.
2418      unsigned NumResults = MatcherTable[MatcherIndex++];
2419
2420      for (unsigned i = 0; i != NumResults; ++i) {
2421        unsigned ResSlot = MatcherTable[MatcherIndex++];
2422        if (ResSlot & 128)
2423          ResSlot = GetVBR(ResSlot, MatcherTable, MatcherIndex);
2424
2425        assert(ResSlot < RecordedNodes.size() && "Invalid CheckSame");
2426        SDValue Res = RecordedNodes[ResSlot];
2427
2428        assert(i < NodeToMatch->getNumValues() &&
2429               NodeToMatch->getValueType(i) != MVT::Other &&
2430               NodeToMatch->getValueType(i) != MVT::Flag &&
2431               "Invalid number of results to complete!");
2432        assert((NodeToMatch->getValueType(i) == Res.getValueType() ||
2433                NodeToMatch->getValueType(i) == MVT::iPTR ||
2434                Res.getValueType() == MVT::iPTR ||
2435                NodeToMatch->getValueType(i).getSizeInBits() ==
2436                    Res.getValueType().getSizeInBits()) &&
2437               "invalid replacement");
2438        CurDAG->ReplaceAllUsesOfValueWith(SDValue(NodeToMatch, i), Res);
2439      }
2440
2441      // If the root node defines a flag, add it to the flag nodes to update
2442      // list.
2443      if (NodeToMatch->getValueType(NodeToMatch->getNumValues()-1) == MVT::Flag)
2444        FlagResultNodesMatched.push_back(NodeToMatch);
2445
2446      // Update chain and flag uses.
2447      UpdateChainsAndFlags(NodeToMatch, InputChain, ChainNodesMatched,
2448                           InputFlag, FlagResultNodesMatched, false);
2449
2450      assert(NodeToMatch->use_empty() &&
2451             "Didn't replace all uses of the node?");
2452
2453      // FIXME: We just return here, which interacts correctly with SelectRoot
2454      // above.  We should fix this to not return an SDNode* anymore.
2455      return 0;
2456    }
2457    }
2458
2459    // If the code reached this point, then the match failed.  See if there is
2460    // another child to try in the current 'Scope', otherwise pop it until we
2461    // find a case to check.
2462    DEBUG(errs() << "  Match failed at index " << CurrentOpcodeIndex << "\n");
2463    ++NumDAGIselRetries;
2464    while (1) {
2465      if (MatchScopes.empty()) {
2466        CannotYetSelect(NodeToMatch);
2467        return 0;
2468      }
2469
2470      // Restore the interpreter state back to the point where the scope was
2471      // formed.
2472      MatchScope &LastScope = MatchScopes.back();
2473      RecordedNodes.resize(LastScope.NumRecordedNodes);
2474      NodeStack.clear();
2475      NodeStack.append(LastScope.NodeStack.begin(), LastScope.NodeStack.end());
2476      N = NodeStack.back();
2477
2478      if (LastScope.NumMatchedMemRefs != MatchedMemRefs.size())
2479        MatchedMemRefs.resize(LastScope.NumMatchedMemRefs);
2480      MatcherIndex = LastScope.FailIndex;
2481
2482      DEBUG(errs() << "  Continuing at " << MatcherIndex << "\n");
2483
2484      InputChain = LastScope.InputChain;
2485      InputFlag = LastScope.InputFlag;
2486      if (!LastScope.HasChainNodesMatched)
2487        ChainNodesMatched.clear();
2488      if (!LastScope.HasFlagResultNodesMatched)
2489        FlagResultNodesMatched.clear();
2490
2491      // Check to see what the offset is at the new MatcherIndex.  If it is zero
2492      // we have reached the end of this scope, otherwise we have another child
2493      // in the current scope to try.
2494      unsigned NumToSkip = MatcherTable[MatcherIndex++];
2495      if (NumToSkip & 128)
2496        NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex);
2497
2498      // If we have another child in this scope to match, update FailIndex and
2499      // try it.
2500      if (NumToSkip != 0) {
2501        LastScope.FailIndex = MatcherIndex+NumToSkip;
2502        break;
2503      }
2504
2505      // End of this scope, pop it and try the next child in the containing
2506      // scope.
2507      MatchScopes.pop_back();
2508    }
2509  }
2510}
2511
2512
2513
2514void SelectionDAGISel::CannotYetSelect(SDNode *N) {
2515  std::string msg;
2516  raw_string_ostream Msg(msg);
2517  Msg << "Cannot yet select: ";
2518
2519  if (N->getOpcode() != ISD::INTRINSIC_W_CHAIN &&
2520      N->getOpcode() != ISD::INTRINSIC_WO_CHAIN &&
2521      N->getOpcode() != ISD::INTRINSIC_VOID) {
2522    N->printrFull(Msg, CurDAG);
2523  } else {
2524    bool HasInputChain = N->getOperand(0).getValueType() == MVT::Other;
2525    unsigned iid =
2526      cast<ConstantSDNode>(N->getOperand(HasInputChain))->getZExtValue();
2527    if (iid < Intrinsic::num_intrinsics)
2528      Msg << "intrinsic %" << Intrinsic::getName((Intrinsic::ID)iid);
2529    else if (const TargetIntrinsicInfo *TII = TM.getIntrinsicInfo())
2530      Msg << "target intrinsic %" << TII->getName(iid);
2531    else
2532      Msg << "unknown intrinsic #" << iid;
2533  }
2534  report_fatal_error(Msg.str());
2535}
2536
2537char SelectionDAGISel::ID = 0;
2538