SelectionDAGISel.cpp revision 081ce940e7351e90fff829320b7dc6738a6b3815
1//===-- SelectionDAGISel.cpp - Implement the SelectionDAGISel class -------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAGISel class.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "isel"
15#include "llvm/ADT/BitVector.h"
16#include "llvm/Analysis/AliasAnalysis.h"
17#include "llvm/CodeGen/SelectionDAGISel.h"
18#include "llvm/CodeGen/ScheduleDAG.h"
19#include "llvm/Constants.h"
20#include "llvm/CallingConv.h"
21#include "llvm/DerivedTypes.h"
22#include "llvm/Function.h"
23#include "llvm/GlobalVariable.h"
24#include "llvm/InlineAsm.h"
25#include "llvm/Instructions.h"
26#include "llvm/Intrinsics.h"
27#include "llvm/IntrinsicInst.h"
28#include "llvm/ParameterAttributes.h"
29#include "llvm/CodeGen/MachineModuleInfo.h"
30#include "llvm/CodeGen/MachineFunction.h"
31#include "llvm/CodeGen/MachineFrameInfo.h"
32#include "llvm/CodeGen/MachineJumpTableInfo.h"
33#include "llvm/CodeGen/MachineInstrBuilder.h"
34#include "llvm/CodeGen/SchedulerRegistry.h"
35#include "llvm/CodeGen/SelectionDAG.h"
36#include "llvm/CodeGen/SSARegMap.h"
37#include "llvm/Target/MRegisterInfo.h"
38#include "llvm/Target/TargetData.h"
39#include "llvm/Target/TargetFrameInfo.h"
40#include "llvm/Target/TargetInstrInfo.h"
41#include "llvm/Target/TargetLowering.h"
42#include "llvm/Target/TargetMachine.h"
43#include "llvm/Target/TargetOptions.h"
44#include "llvm/Support/MathExtras.h"
45#include "llvm/Support/Debug.h"
46#include "llvm/Support/Compiler.h"
47#include <algorithm>
48using namespace llvm;
49
50#ifndef NDEBUG
51static cl::opt<bool>
52ViewISelDAGs("view-isel-dags", cl::Hidden,
53          cl::desc("Pop up a window to show isel dags as they are selected"));
54static cl::opt<bool>
55ViewSchedDAGs("view-sched-dags", cl::Hidden,
56          cl::desc("Pop up a window to show sched dags as they are processed"));
57static cl::opt<bool>
58ViewSUnitDAGs("view-sunit-dags", cl::Hidden,
59          cl::desc("Pop up a window to show SUnit dags after they are processed"));
60#else
61static const bool ViewISelDAGs = 0, ViewSchedDAGs = 0, ViewSUnitDAGs = 0;
62#endif
63
64//===---------------------------------------------------------------------===//
65///
66/// RegisterScheduler class - Track the registration of instruction schedulers.
67///
68//===---------------------------------------------------------------------===//
69MachinePassRegistry RegisterScheduler::Registry;
70
71//===---------------------------------------------------------------------===//
72///
73/// ISHeuristic command line option for instruction schedulers.
74///
75//===---------------------------------------------------------------------===//
76namespace {
77  cl::opt<RegisterScheduler::FunctionPassCtor, false,
78          RegisterPassParser<RegisterScheduler> >
79  ISHeuristic("pre-RA-sched",
80              cl::init(&createDefaultScheduler),
81              cl::desc("Instruction schedulers available (before register allocation):"));
82
83  static RegisterScheduler
84  defaultListDAGScheduler("default", "  Best scheduler for the target",
85                          createDefaultScheduler);
86} // namespace
87
88namespace { struct AsmOperandInfo; }
89
90namespace {
91  /// RegsForValue - This struct represents the physical registers that a
92  /// particular value is assigned and the type information about the value.
93  /// This is needed because values can be promoted into larger registers and
94  /// expanded into multiple smaller registers than the value.
95  struct VISIBILITY_HIDDEN RegsForValue {
96    /// Regs - This list holds the register (for legal and promoted values)
97    /// or register set (for expanded values) that the value should be assigned
98    /// to.
99    std::vector<unsigned> Regs;
100
101    /// RegVT - The value type of each register.
102    ///
103    MVT::ValueType RegVT;
104
105    /// ValueVT - The value type of the LLVM value, which may be promoted from
106    /// RegVT or made from merging the two expanded parts.
107    MVT::ValueType ValueVT;
108
109    RegsForValue() : RegVT(MVT::Other), ValueVT(MVT::Other) {}
110
111    RegsForValue(unsigned Reg, MVT::ValueType regvt, MVT::ValueType valuevt)
112      : RegVT(regvt), ValueVT(valuevt) {
113        Regs.push_back(Reg);
114    }
115    RegsForValue(const std::vector<unsigned> &regs,
116                 MVT::ValueType regvt, MVT::ValueType valuevt)
117      : Regs(regs), RegVT(regvt), ValueVT(valuevt) {
118    }
119
120    /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
121    /// this value and returns the result as a ValueVT value.  This uses
122    /// Chain/Flag as the input and updates them for the output Chain/Flag.
123    /// If the Flag pointer is NULL, no flag is used.
124    SDOperand getCopyFromRegs(SelectionDAG &DAG,
125                              SDOperand &Chain, SDOperand *Flag) const;
126
127    /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
128    /// specified value into the registers specified by this object.  This uses
129    /// Chain/Flag as the input and updates them for the output Chain/Flag.
130    /// If the Flag pointer is NULL, no flag is used.
131    void getCopyToRegs(SDOperand Val, SelectionDAG &DAG,
132                       SDOperand &Chain, SDOperand *Flag) const;
133
134    /// AddInlineAsmOperands - Add this value to the specified inlineasm node
135    /// operand list.  This adds the code marker and includes the number of
136    /// values added into it.
137    void AddInlineAsmOperands(unsigned Code, SelectionDAG &DAG,
138                              std::vector<SDOperand> &Ops) const;
139  };
140}
141
142namespace llvm {
143  //===--------------------------------------------------------------------===//
144  /// createDefaultScheduler - This creates an instruction scheduler appropriate
145  /// for the target.
146  ScheduleDAG* createDefaultScheduler(SelectionDAGISel *IS,
147                                      SelectionDAG *DAG,
148                                      MachineBasicBlock *BB) {
149    TargetLowering &TLI = IS->getTargetLowering();
150
151    if (TLI.getSchedulingPreference() == TargetLowering::SchedulingForLatency) {
152      return createTDListDAGScheduler(IS, DAG, BB);
153    } else {
154      assert(TLI.getSchedulingPreference() ==
155           TargetLowering::SchedulingForRegPressure && "Unknown sched type!");
156      return createBURRListDAGScheduler(IS, DAG, BB);
157    }
158  }
159
160
161  //===--------------------------------------------------------------------===//
162  /// FunctionLoweringInfo - This contains information that is global to a
163  /// function that is used when lowering a region of the function.
164  class FunctionLoweringInfo {
165  public:
166    TargetLowering &TLI;
167    Function &Fn;
168    MachineFunction &MF;
169    SSARegMap *RegMap;
170
171    FunctionLoweringInfo(TargetLowering &TLI, Function &Fn,MachineFunction &MF);
172
173    /// MBBMap - A mapping from LLVM basic blocks to their machine code entry.
174    std::map<const BasicBlock*, MachineBasicBlock *> MBBMap;
175
176    /// ValueMap - Since we emit code for the function a basic block at a time,
177    /// we must remember which virtual registers hold the values for
178    /// cross-basic-block values.
179    DenseMap<const Value*, unsigned> ValueMap;
180
181    /// StaticAllocaMap - Keep track of frame indices for fixed sized allocas in
182    /// the entry block.  This allows the allocas to be efficiently referenced
183    /// anywhere in the function.
184    std::map<const AllocaInst*, int> StaticAllocaMap;
185
186#ifndef NDEBUG
187    SmallSet<Instruction*, 8> CatchInfoLost;
188    SmallSet<Instruction*, 8> CatchInfoFound;
189#endif
190
191    unsigned MakeReg(MVT::ValueType VT) {
192      return RegMap->createVirtualRegister(TLI.getRegClassFor(VT));
193    }
194
195    /// isExportedInst - Return true if the specified value is an instruction
196    /// exported from its block.
197    bool isExportedInst(const Value *V) {
198      return ValueMap.count(V);
199    }
200
201    unsigned CreateRegForValue(const Value *V);
202
203    unsigned InitializeRegForValue(const Value *V) {
204      unsigned &R = ValueMap[V];
205      assert(R == 0 && "Already initialized this value register!");
206      return R = CreateRegForValue(V);
207    }
208  };
209}
210
211/// isSelector - Return true if this instruction is a call to the
212/// eh.selector intrinsic.
213static bool isSelector(Instruction *I) {
214  if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
215    return (II->getIntrinsicID() == Intrinsic::eh_selector_i32 ||
216            II->getIntrinsicID() == Intrinsic::eh_selector_i64);
217  return false;
218}
219
220/// isUsedOutsideOfDefiningBlock - Return true if this instruction is used by
221/// PHI nodes or outside of the basic block that defines it, or used by a
222/// switch instruction, which may expand to multiple basic blocks.
223static bool isUsedOutsideOfDefiningBlock(Instruction *I) {
224  if (isa<PHINode>(I)) return true;
225  BasicBlock *BB = I->getParent();
226  for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E; ++UI)
227    if (cast<Instruction>(*UI)->getParent() != BB || isa<PHINode>(*UI) ||
228        // FIXME: Remove switchinst special case.
229        isa<SwitchInst>(*UI))
230      return true;
231  return false;
232}
233
234/// isOnlyUsedInEntryBlock - If the specified argument is only used in the
235/// entry block, return true.  This includes arguments used by switches, since
236/// the switch may expand into multiple basic blocks.
237static bool isOnlyUsedInEntryBlock(Argument *A) {
238  BasicBlock *Entry = A->getParent()->begin();
239  for (Value::use_iterator UI = A->use_begin(), E = A->use_end(); UI != E; ++UI)
240    if (cast<Instruction>(*UI)->getParent() != Entry || isa<SwitchInst>(*UI))
241      return false;  // Use not in entry block.
242  return true;
243}
244
245FunctionLoweringInfo::FunctionLoweringInfo(TargetLowering &tli,
246                                           Function &fn, MachineFunction &mf)
247    : TLI(tli), Fn(fn), MF(mf), RegMap(MF.getSSARegMap()) {
248
249  // Create a vreg for each argument register that is not dead and is used
250  // outside of the entry block for the function.
251  for (Function::arg_iterator AI = Fn.arg_begin(), E = Fn.arg_end();
252       AI != E; ++AI)
253    if (!isOnlyUsedInEntryBlock(AI))
254      InitializeRegForValue(AI);
255
256  // Initialize the mapping of values to registers.  This is only set up for
257  // instruction values that are used outside of the block that defines
258  // them.
259  Function::iterator BB = Fn.begin(), EB = Fn.end();
260  for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
261    if (AllocaInst *AI = dyn_cast<AllocaInst>(I))
262      if (ConstantInt *CUI = dyn_cast<ConstantInt>(AI->getArraySize())) {
263        const Type *Ty = AI->getAllocatedType();
264        uint64_t TySize = TLI.getTargetData()->getABITypeSize(Ty);
265        unsigned Align =
266          std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty),
267                   AI->getAlignment());
268
269        TySize *= CUI->getZExtValue();   // Get total allocated size.
270        if (TySize == 0) TySize = 1; // Don't create zero-sized stack objects.
271        StaticAllocaMap[AI] =
272          MF.getFrameInfo()->CreateStackObject(TySize, Align);
273      }
274
275  for (; BB != EB; ++BB)
276    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
277      if (!I->use_empty() && isUsedOutsideOfDefiningBlock(I))
278        if (!isa<AllocaInst>(I) ||
279            !StaticAllocaMap.count(cast<AllocaInst>(I)))
280          InitializeRegForValue(I);
281
282  // Create an initial MachineBasicBlock for each LLVM BasicBlock in F.  This
283  // also creates the initial PHI MachineInstrs, though none of the input
284  // operands are populated.
285  for (BB = Fn.begin(), EB = Fn.end(); BB != EB; ++BB) {
286    MachineBasicBlock *MBB = new MachineBasicBlock(BB);
287    MBBMap[BB] = MBB;
288    MF.getBasicBlockList().push_back(MBB);
289
290    // Create Machine PHI nodes for LLVM PHI nodes, lowering them as
291    // appropriate.
292    PHINode *PN;
293    for (BasicBlock::iterator I = BB->begin();(PN = dyn_cast<PHINode>(I)); ++I){
294      if (PN->use_empty()) continue;
295
296      MVT::ValueType VT = TLI.getValueType(PN->getType());
297      unsigned NumRegisters = TLI.getNumRegisters(VT);
298      unsigned PHIReg = ValueMap[PN];
299      assert(PHIReg && "PHI node does not have an assigned virtual register!");
300      const TargetInstrInfo *TII = TLI.getTargetMachine().getInstrInfo();
301      for (unsigned i = 0; i != NumRegisters; ++i)
302        BuildMI(MBB, TII->get(TargetInstrInfo::PHI), PHIReg+i);
303    }
304  }
305}
306
307/// CreateRegForValue - Allocate the appropriate number of virtual registers of
308/// the correctly promoted or expanded types.  Assign these registers
309/// consecutive vreg numbers and return the first assigned number.
310unsigned FunctionLoweringInfo::CreateRegForValue(const Value *V) {
311  MVT::ValueType VT = TLI.getValueType(V->getType());
312
313  unsigned NumRegisters = TLI.getNumRegisters(VT);
314  MVT::ValueType RegisterVT = TLI.getRegisterType(VT);
315
316  unsigned R = MakeReg(RegisterVT);
317  for (unsigned i = 1; i != NumRegisters; ++i)
318    MakeReg(RegisterVT);
319
320  return R;
321}
322
323//===----------------------------------------------------------------------===//
324/// SelectionDAGLowering - This is the common target-independent lowering
325/// implementation that is parameterized by a TargetLowering object.
326/// Also, targets can overload any lowering method.
327///
328namespace llvm {
329class SelectionDAGLowering {
330  MachineBasicBlock *CurMBB;
331
332  DenseMap<const Value*, SDOperand> NodeMap;
333
334  /// PendingLoads - Loads are not emitted to the program immediately.  We bunch
335  /// them up and then emit token factor nodes when possible.  This allows us to
336  /// get simple disambiguation between loads without worrying about alias
337  /// analysis.
338  std::vector<SDOperand> PendingLoads;
339
340  /// Case - A struct to record the Value for a switch case, and the
341  /// case's target basic block.
342  struct Case {
343    Constant* Low;
344    Constant* High;
345    MachineBasicBlock* BB;
346
347    Case() : Low(0), High(0), BB(0) { }
348    Case(Constant* low, Constant* high, MachineBasicBlock* bb) :
349      Low(low), High(high), BB(bb) { }
350    uint64_t size() const {
351      uint64_t rHigh = cast<ConstantInt>(High)->getSExtValue();
352      uint64_t rLow  = cast<ConstantInt>(Low)->getSExtValue();
353      return (rHigh - rLow + 1ULL);
354    }
355  };
356
357  struct CaseBits {
358    uint64_t Mask;
359    MachineBasicBlock* BB;
360    unsigned Bits;
361
362    CaseBits(uint64_t mask, MachineBasicBlock* bb, unsigned bits):
363      Mask(mask), BB(bb), Bits(bits) { }
364  };
365
366  typedef std::vector<Case>           CaseVector;
367  typedef std::vector<CaseBits>       CaseBitsVector;
368  typedef CaseVector::iterator        CaseItr;
369  typedef std::pair<CaseItr, CaseItr> CaseRange;
370
371  /// CaseRec - A struct with ctor used in lowering switches to a binary tree
372  /// of conditional branches.
373  struct CaseRec {
374    CaseRec(MachineBasicBlock *bb, Constant *lt, Constant *ge, CaseRange r) :
375    CaseBB(bb), LT(lt), GE(ge), Range(r) {}
376
377    /// CaseBB - The MBB in which to emit the compare and branch
378    MachineBasicBlock *CaseBB;
379    /// LT, GE - If nonzero, we know the current case value must be less-than or
380    /// greater-than-or-equal-to these Constants.
381    Constant *LT;
382    Constant *GE;
383    /// Range - A pair of iterators representing the range of case values to be
384    /// processed at this point in the binary search tree.
385    CaseRange Range;
386  };
387
388  typedef std::vector<CaseRec> CaseRecVector;
389
390  /// The comparison function for sorting the switch case values in the vector.
391  /// WARNING: Case ranges should be disjoint!
392  struct CaseCmp {
393    bool operator () (const Case& C1, const Case& C2) {
394      assert(isa<ConstantInt>(C1.Low) && isa<ConstantInt>(C2.High));
395      const ConstantInt* CI1 = cast<const ConstantInt>(C1.Low);
396      const ConstantInt* CI2 = cast<const ConstantInt>(C2.High);
397      return CI1->getValue().slt(CI2->getValue());
398    }
399  };
400
401  struct CaseBitsCmp {
402    bool operator () (const CaseBits& C1, const CaseBits& C2) {
403      return C1.Bits > C2.Bits;
404    }
405  };
406
407  unsigned Clusterify(CaseVector& Cases, const SwitchInst &SI);
408
409public:
410  // TLI - This is information that describes the available target features we
411  // need for lowering.  This indicates when operations are unavailable,
412  // implemented with a libcall, etc.
413  TargetLowering &TLI;
414  SelectionDAG &DAG;
415  const TargetData *TD;
416  AliasAnalysis &AA;
417
418  /// SwitchCases - Vector of CaseBlock structures used to communicate
419  /// SwitchInst code generation information.
420  std::vector<SelectionDAGISel::CaseBlock> SwitchCases;
421  /// JTCases - Vector of JumpTable structures used to communicate
422  /// SwitchInst code generation information.
423  std::vector<SelectionDAGISel::JumpTableBlock> JTCases;
424  std::vector<SelectionDAGISel::BitTestBlock> BitTestCases;
425
426  /// FuncInfo - Information about the function as a whole.
427  ///
428  FunctionLoweringInfo &FuncInfo;
429
430  SelectionDAGLowering(SelectionDAG &dag, TargetLowering &tli,
431                       AliasAnalysis &aa,
432                       FunctionLoweringInfo &funcinfo)
433    : TLI(tli), DAG(dag), TD(DAG.getTarget().getTargetData()), AA(aa),
434      FuncInfo(funcinfo) {
435  }
436
437  /// getRoot - Return the current virtual root of the Selection DAG.
438  ///
439  SDOperand getRoot() {
440    if (PendingLoads.empty())
441      return DAG.getRoot();
442
443    if (PendingLoads.size() == 1) {
444      SDOperand Root = PendingLoads[0];
445      DAG.setRoot(Root);
446      PendingLoads.clear();
447      return Root;
448    }
449
450    // Otherwise, we have to make a token factor node.
451    SDOperand Root = DAG.getNode(ISD::TokenFactor, MVT::Other,
452                                 &PendingLoads[0], PendingLoads.size());
453    PendingLoads.clear();
454    DAG.setRoot(Root);
455    return Root;
456  }
457
458  SDOperand CopyValueToVirtualRegister(Value *V, unsigned Reg);
459
460  void visit(Instruction &I) { visit(I.getOpcode(), I); }
461
462  void visit(unsigned Opcode, User &I) {
463    // Note: this doesn't use InstVisitor, because it has to work with
464    // ConstantExpr's in addition to instructions.
465    switch (Opcode) {
466    default: assert(0 && "Unknown instruction type encountered!");
467             abort();
468      // Build the switch statement using the Instruction.def file.
469#define HANDLE_INST(NUM, OPCODE, CLASS) \
470    case Instruction::OPCODE:return visit##OPCODE((CLASS&)I);
471#include "llvm/Instruction.def"
472    }
473  }
474
475  void setCurrentBasicBlock(MachineBasicBlock *MBB) { CurMBB = MBB; }
476
477  SDOperand getLoadFrom(const Type *Ty, SDOperand Ptr,
478                        const Value *SV, SDOperand Root,
479                        bool isVolatile, unsigned Alignment);
480
481  SDOperand getIntPtrConstant(uint64_t Val) {
482    return DAG.getConstant(Val, TLI.getPointerTy());
483  }
484
485  SDOperand getValue(const Value *V);
486
487  void setValue(const Value *V, SDOperand NewN) {
488    SDOperand &N = NodeMap[V];
489    assert(N.Val == 0 && "Already set a value for this node!");
490    N = NewN;
491  }
492
493  void GetRegistersForValue(AsmOperandInfo &OpInfo, bool HasEarlyClobber,
494                            std::set<unsigned> &OutputRegs,
495                            std::set<unsigned> &InputRegs);
496
497  void FindMergedConditions(Value *Cond, MachineBasicBlock *TBB,
498                            MachineBasicBlock *FBB, MachineBasicBlock *CurBB,
499                            unsigned Opc);
500  bool isExportableFromCurrentBlock(Value *V, const BasicBlock *FromBB);
501  void ExportFromCurrentBlock(Value *V);
502  void LowerCallTo(CallSite CS, SDOperand Callee, bool IsTailCall,
503                   MachineBasicBlock *LandingPad = NULL);
504
505  // Terminator instructions.
506  void visitRet(ReturnInst &I);
507  void visitBr(BranchInst &I);
508  void visitSwitch(SwitchInst &I);
509  void visitUnreachable(UnreachableInst &I) { /* noop */ }
510
511  // Helpers for visitSwitch
512  bool handleSmallSwitchRange(CaseRec& CR,
513                              CaseRecVector& WorkList,
514                              Value* SV,
515                              MachineBasicBlock* Default);
516  bool handleJTSwitchCase(CaseRec& CR,
517                          CaseRecVector& WorkList,
518                          Value* SV,
519                          MachineBasicBlock* Default);
520  bool handleBTSplitSwitchCase(CaseRec& CR,
521                               CaseRecVector& WorkList,
522                               Value* SV,
523                               MachineBasicBlock* Default);
524  bool handleBitTestsSwitchCase(CaseRec& CR,
525                                CaseRecVector& WorkList,
526                                Value* SV,
527                                MachineBasicBlock* Default);
528  void visitSwitchCase(SelectionDAGISel::CaseBlock &CB);
529  void visitBitTestHeader(SelectionDAGISel::BitTestBlock &B);
530  void visitBitTestCase(MachineBasicBlock* NextMBB,
531                        unsigned Reg,
532                        SelectionDAGISel::BitTestCase &B);
533  void visitJumpTable(SelectionDAGISel::JumpTable &JT);
534  void visitJumpTableHeader(SelectionDAGISel::JumpTable &JT,
535                            SelectionDAGISel::JumpTableHeader &JTH);
536
537  // These all get lowered before this pass.
538  void visitInvoke(InvokeInst &I);
539  void visitUnwind(UnwindInst &I);
540
541  void visitBinary(User &I, unsigned OpCode);
542  void visitShift(User &I, unsigned Opcode);
543  void visitAdd(User &I) {
544    if (I.getType()->isFPOrFPVector())
545      visitBinary(I, ISD::FADD);
546    else
547      visitBinary(I, ISD::ADD);
548  }
549  void visitSub(User &I);
550  void visitMul(User &I) {
551    if (I.getType()->isFPOrFPVector())
552      visitBinary(I, ISD::FMUL);
553    else
554      visitBinary(I, ISD::MUL);
555  }
556  void visitURem(User &I) { visitBinary(I, ISD::UREM); }
557  void visitSRem(User &I) { visitBinary(I, ISD::SREM); }
558  void visitFRem(User &I) { visitBinary(I, ISD::FREM); }
559  void visitUDiv(User &I) { visitBinary(I, ISD::UDIV); }
560  void visitSDiv(User &I) { visitBinary(I, ISD::SDIV); }
561  void visitFDiv(User &I) { visitBinary(I, ISD::FDIV); }
562  void visitAnd (User &I) { visitBinary(I, ISD::AND); }
563  void visitOr  (User &I) { visitBinary(I, ISD::OR); }
564  void visitXor (User &I) { visitBinary(I, ISD::XOR); }
565  void visitShl (User &I) { visitShift(I, ISD::SHL); }
566  void visitLShr(User &I) { visitShift(I, ISD::SRL); }
567  void visitAShr(User &I) { visitShift(I, ISD::SRA); }
568  void visitICmp(User &I);
569  void visitFCmp(User &I);
570  // Visit the conversion instructions
571  void visitTrunc(User &I);
572  void visitZExt(User &I);
573  void visitSExt(User &I);
574  void visitFPTrunc(User &I);
575  void visitFPExt(User &I);
576  void visitFPToUI(User &I);
577  void visitFPToSI(User &I);
578  void visitUIToFP(User &I);
579  void visitSIToFP(User &I);
580  void visitPtrToInt(User &I);
581  void visitIntToPtr(User &I);
582  void visitBitCast(User &I);
583
584  void visitExtractElement(User &I);
585  void visitInsertElement(User &I);
586  void visitShuffleVector(User &I);
587
588  void visitGetElementPtr(User &I);
589  void visitSelect(User &I);
590
591  void visitMalloc(MallocInst &I);
592  void visitFree(FreeInst &I);
593  void visitAlloca(AllocaInst &I);
594  void visitLoad(LoadInst &I);
595  void visitStore(StoreInst &I);
596  void visitPHI(PHINode &I) { } // PHI nodes are handled specially.
597  void visitCall(CallInst &I);
598  void visitInlineAsm(CallSite CS);
599  const char *visitIntrinsicCall(CallInst &I, unsigned Intrinsic);
600  void visitTargetIntrinsic(CallInst &I, unsigned Intrinsic);
601
602  void visitVAStart(CallInst &I);
603  void visitVAArg(VAArgInst &I);
604  void visitVAEnd(CallInst &I);
605  void visitVACopy(CallInst &I);
606
607  void visitMemIntrinsic(CallInst &I, unsigned Op);
608
609  void visitUserOp1(Instruction &I) {
610    assert(0 && "UserOp1 should not exist at instruction selection time!");
611    abort();
612  }
613  void visitUserOp2(Instruction &I) {
614    assert(0 && "UserOp2 should not exist at instruction selection time!");
615    abort();
616  }
617};
618} // end namespace llvm
619
620
621/// getCopyFromParts - Create a value that contains the
622/// specified legal parts combined into the value they represent.
623static SDOperand getCopyFromParts(SelectionDAG &DAG,
624                                  const SDOperand *Parts,
625                                  unsigned NumParts,
626                                  MVT::ValueType PartVT,
627                                  MVT::ValueType ValueVT,
628                                  ISD::NodeType AssertOp = ISD::DELETED_NODE) {
629  if (!MVT::isVector(ValueVT) || NumParts == 1) {
630    SDOperand Val = Parts[0];
631
632    // If the value was expanded, copy from the top part.
633    if (NumParts > 1) {
634      assert(NumParts == 2 &&
635             "Cannot expand to more than 2 elts yet!");
636      SDOperand Hi = Parts[1];
637      if (!DAG.getTargetLoweringInfo().isLittleEndian())
638        std::swap(Val, Hi);
639      return DAG.getNode(ISD::BUILD_PAIR, ValueVT, Val, Hi);
640    }
641
642    // Otherwise, if the value was promoted or extended, truncate it to the
643    // appropriate type.
644    if (PartVT == ValueVT)
645      return Val;
646
647    if (MVT::isVector(PartVT)) {
648      assert(MVT::isVector(ValueVT) && "Unknown vector conversion!");
649      return DAG.getNode(ISD::BIT_CONVERT, ValueVT, Val);
650    }
651
652    if (MVT::isVector(ValueVT)) {
653      assert(NumParts == 1 &&
654             MVT::getVectorElementType(ValueVT) == PartVT &&
655             MVT::getVectorNumElements(ValueVT) == 1 &&
656             "Only trivial scalar-to-vector conversions should get here!");
657      return DAG.getNode(ISD::BUILD_VECTOR, ValueVT, Val);
658    }
659
660    if (MVT::isInteger(PartVT) &&
661        MVT::isInteger(ValueVT)) {
662      if (ValueVT < PartVT) {
663        // For a truncate, see if we have any information to
664        // indicate whether the truncated bits will always be
665        // zero or sign-extension.
666        if (AssertOp != ISD::DELETED_NODE)
667          Val = DAG.getNode(AssertOp, PartVT, Val,
668                            DAG.getValueType(ValueVT));
669        return DAG.getNode(ISD::TRUNCATE, ValueVT, Val);
670      } else {
671        return DAG.getNode(ISD::ANY_EXTEND, ValueVT, Val);
672      }
673    }
674
675    if (MVT::isFloatingPoint(PartVT) &&
676        MVT::isFloatingPoint(ValueVT))
677      return DAG.getNode(ISD::FP_ROUND, ValueVT, Val);
678
679    if (MVT::getSizeInBits(PartVT) ==
680        MVT::getSizeInBits(ValueVT))
681      return DAG.getNode(ISD::BIT_CONVERT, ValueVT, Val);
682
683    assert(0 && "Unknown mismatch!");
684  }
685
686  // Handle a multi-element vector.
687  MVT::ValueType IntermediateVT, RegisterVT;
688  unsigned NumIntermediates;
689  unsigned NumRegs =
690    DAG.getTargetLoweringInfo()
691      .getVectorTypeBreakdown(ValueVT, IntermediateVT, NumIntermediates,
692                              RegisterVT);
693
694  assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
695  assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
696  assert(RegisterVT == Parts[0].getValueType() &&
697         "Part type doesn't match part!");
698
699  // Assemble the parts into intermediate operands.
700  SmallVector<SDOperand, 8> Ops(NumIntermediates);
701  if (NumIntermediates == NumParts) {
702    // If the register was not expanded, truncate or copy the value,
703    // as appropriate.
704    for (unsigned i = 0; i != NumParts; ++i)
705      Ops[i] = getCopyFromParts(DAG, &Parts[i], 1,
706                                PartVT, IntermediateVT);
707  } else if (NumParts > 0) {
708    // If the intermediate type was expanded, build the intermediate operands
709    // from the parts.
710    assert(NumParts % NumIntermediates == 0 &&
711           "Must expand into a divisible number of parts!");
712    unsigned Factor = NumParts / NumIntermediates;
713    for (unsigned i = 0; i != NumIntermediates; ++i)
714      Ops[i] = getCopyFromParts(DAG, &Parts[i * Factor], Factor,
715                                PartVT, IntermediateVT);
716  }
717
718  // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the intermediate
719  // operands.
720  return DAG.getNode(MVT::isVector(IntermediateVT) ?
721                       ISD::CONCAT_VECTORS :
722                       ISD::BUILD_VECTOR,
723                     ValueVT, &Ops[0], NumIntermediates);
724}
725
726/// getCopyToParts - Create a series of nodes that contain the
727/// specified value split into legal parts.
728static void getCopyToParts(SelectionDAG &DAG,
729                           SDOperand Val,
730                           SDOperand *Parts,
731                           unsigned NumParts,
732                           MVT::ValueType PartVT) {
733  TargetLowering &TLI = DAG.getTargetLoweringInfo();
734  MVT::ValueType PtrVT = TLI.getPointerTy();
735  MVT::ValueType ValueVT = Val.getValueType();
736
737  if (!MVT::isVector(ValueVT) || NumParts == 1) {
738    // If the value was expanded, copy from the parts.
739    if (NumParts > 1) {
740      for (unsigned i = 0; i != NumParts; ++i)
741        Parts[i] = DAG.getNode(ISD::EXTRACT_ELEMENT, PartVT, Val,
742                               DAG.getConstant(i, PtrVT));
743      if (!DAG.getTargetLoweringInfo().isLittleEndian())
744        std::reverse(Parts, Parts + NumParts);
745      return;
746    }
747
748    // If there is a single part and the types differ, this must be
749    // a promotion.
750    if (PartVT != ValueVT) {
751      if (MVT::isVector(PartVT)) {
752        assert(MVT::isVector(ValueVT) &&
753               "Not a vector-vector cast?");
754        Val = DAG.getNode(ISD::BIT_CONVERT, PartVT, Val);
755      } else if (MVT::isVector(ValueVT)) {
756        assert(NumParts == 1 &&
757               MVT::getVectorElementType(ValueVT) == PartVT &&
758               MVT::getVectorNumElements(ValueVT) == 1 &&
759               "Only trivial vector-to-scalar conversions should get here!");
760        Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, PartVT, Val,
761                          DAG.getConstant(0, PtrVT));
762      } else if (MVT::isInteger(PartVT) && MVT::isInteger(ValueVT)) {
763        if (PartVT < ValueVT)
764          Val = DAG.getNode(ISD::TRUNCATE, PartVT, Val);
765        else
766          Val = DAG.getNode(ISD::ANY_EXTEND, PartVT, Val);
767      } else if (MVT::isFloatingPoint(PartVT) &&
768                 MVT::isFloatingPoint(ValueVT)) {
769        Val = DAG.getNode(ISD::FP_EXTEND, PartVT, Val);
770      } else if (MVT::getSizeInBits(PartVT) ==
771                 MVT::getSizeInBits(ValueVT)) {
772        Val = DAG.getNode(ISD::BIT_CONVERT, PartVT, Val);
773      } else {
774        assert(0 && "Unknown mismatch!");
775      }
776    }
777    Parts[0] = Val;
778    return;
779  }
780
781  // Handle a multi-element vector.
782  MVT::ValueType IntermediateVT, RegisterVT;
783  unsigned NumIntermediates;
784  unsigned NumRegs =
785    DAG.getTargetLoweringInfo()
786      .getVectorTypeBreakdown(ValueVT, IntermediateVT, NumIntermediates,
787                              RegisterVT);
788  unsigned NumElements = MVT::getVectorNumElements(ValueVT);
789
790  assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
791  assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
792
793  // Split the vector into intermediate operands.
794  SmallVector<SDOperand, 8> Ops(NumIntermediates);
795  for (unsigned i = 0; i != NumIntermediates; ++i)
796    if (MVT::isVector(IntermediateVT))
797      Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR,
798                           IntermediateVT, Val,
799                           DAG.getConstant(i * (NumElements / NumIntermediates),
800                                           PtrVT));
801    else
802      Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT,
803                           IntermediateVT, Val,
804                           DAG.getConstant(i, PtrVT));
805
806  // Split the intermediate operands into legal parts.
807  if (NumParts == NumIntermediates) {
808    // If the register was not expanded, promote or copy the value,
809    // as appropriate.
810    for (unsigned i = 0; i != NumParts; ++i)
811      getCopyToParts(DAG, Ops[i], &Parts[i], 1, PartVT);
812  } else if (NumParts > 0) {
813    // If the intermediate type was expanded, split each the value into
814    // legal parts.
815    assert(NumParts % NumIntermediates == 0 &&
816           "Must expand into a divisible number of parts!");
817    unsigned Factor = NumParts / NumIntermediates;
818    for (unsigned i = 0; i != NumIntermediates; ++i)
819      getCopyToParts(DAG, Ops[i], &Parts[i * Factor], Factor, PartVT);
820  }
821}
822
823
824SDOperand SelectionDAGLowering::getValue(const Value *V) {
825  SDOperand &N = NodeMap[V];
826  if (N.Val) return N;
827
828  const Type *VTy = V->getType();
829  MVT::ValueType VT = TLI.getValueType(VTy);
830  if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(V))) {
831    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
832      visit(CE->getOpcode(), *CE);
833      SDOperand N1 = NodeMap[V];
834      assert(N1.Val && "visit didn't populate the ValueMap!");
835      return N1;
836    } else if (GlobalValue *GV = dyn_cast<GlobalValue>(C)) {
837      return N = DAG.getGlobalAddress(GV, VT);
838    } else if (isa<ConstantPointerNull>(C)) {
839      return N = DAG.getConstant(0, TLI.getPointerTy());
840    } else if (isa<UndefValue>(C)) {
841      if (!isa<VectorType>(VTy))
842        return N = DAG.getNode(ISD::UNDEF, VT);
843
844      // Create a BUILD_VECTOR of undef nodes.
845      const VectorType *PTy = cast<VectorType>(VTy);
846      unsigned NumElements = PTy->getNumElements();
847      MVT::ValueType PVT = TLI.getValueType(PTy->getElementType());
848
849      SmallVector<SDOperand, 8> Ops;
850      Ops.assign(NumElements, DAG.getNode(ISD::UNDEF, PVT));
851
852      // Create a VConstant node with generic Vector type.
853      MVT::ValueType VT = MVT::getVectorType(PVT, NumElements);
854      return N = DAG.getNode(ISD::BUILD_VECTOR, VT,
855                             &Ops[0], Ops.size());
856    } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
857      return N = DAG.getConstantFP(CFP->getValueAPF(), VT);
858    } else if (const VectorType *PTy = dyn_cast<VectorType>(VTy)) {
859      unsigned NumElements = PTy->getNumElements();
860      MVT::ValueType PVT = TLI.getValueType(PTy->getElementType());
861
862      // Now that we know the number and type of the elements, push a
863      // Constant or ConstantFP node onto the ops list for each element of
864      // the vector constant.
865      SmallVector<SDOperand, 8> Ops;
866      if (ConstantVector *CP = dyn_cast<ConstantVector>(C)) {
867        for (unsigned i = 0; i != NumElements; ++i)
868          Ops.push_back(getValue(CP->getOperand(i)));
869      } else {
870        assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!");
871        SDOperand Op;
872        if (MVT::isFloatingPoint(PVT))
873          Op = DAG.getConstantFP(0, PVT);
874        else
875          Op = DAG.getConstant(0, PVT);
876        Ops.assign(NumElements, Op);
877      }
878
879      // Create a BUILD_VECTOR node.
880      MVT::ValueType VT = MVT::getVectorType(PVT, NumElements);
881      return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, VT, &Ops[0],
882                                      Ops.size());
883    } else {
884      // Canonicalize all constant ints to be unsigned.
885      return N = DAG.getConstant(cast<ConstantInt>(C)->getZExtValue(),VT);
886    }
887  }
888
889  if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
890    std::map<const AllocaInst*, int>::iterator SI =
891    FuncInfo.StaticAllocaMap.find(AI);
892    if (SI != FuncInfo.StaticAllocaMap.end())
893      return DAG.getFrameIndex(SI->second, TLI.getPointerTy());
894  }
895
896  unsigned InReg = FuncInfo.ValueMap[V];
897  assert(InReg && "Value not in map!");
898
899  MVT::ValueType RegisterVT = TLI.getRegisterType(VT);
900  unsigned NumRegs = TLI.getNumRegisters(VT);
901
902  std::vector<unsigned> Regs(NumRegs);
903  for (unsigned i = 0; i != NumRegs; ++i)
904    Regs[i] = InReg + i;
905
906  RegsForValue RFV(Regs, RegisterVT, VT);
907  SDOperand Chain = DAG.getEntryNode();
908
909  return RFV.getCopyFromRegs(DAG, Chain, NULL);
910}
911
912
913void SelectionDAGLowering::visitRet(ReturnInst &I) {
914  if (I.getNumOperands() == 0) {
915    DAG.setRoot(DAG.getNode(ISD::RET, MVT::Other, getRoot()));
916    return;
917  }
918  SmallVector<SDOperand, 8> NewValues;
919  NewValues.push_back(getRoot());
920  for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
921    SDOperand RetOp = getValue(I.getOperand(i));
922
923    // If this is an integer return value, we need to promote it ourselves to
924    // the full width of a register, since getCopyToParts and Legalize will use
925    // ANY_EXTEND rather than sign/zero.
926    // FIXME: C calling convention requires the return type to be promoted to
927    // at least 32-bit. But this is not necessary for non-C calling conventions.
928    if (MVT::isInteger(RetOp.getValueType()) &&
929        RetOp.getValueType() < MVT::i64) {
930      MVT::ValueType TmpVT;
931      if (TLI.getTypeAction(MVT::i32) == TargetLowering::Promote)
932        TmpVT = TLI.getTypeToTransformTo(MVT::i32);
933      else
934        TmpVT = MVT::i32;
935      const Function *F = I.getParent()->getParent();
936      ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
937      if (F->paramHasAttr(0, ParamAttr::SExt))
938        ExtendKind = ISD::SIGN_EXTEND;
939      if (F->paramHasAttr(0, ParamAttr::ZExt))
940        ExtendKind = ISD::ZERO_EXTEND;
941      RetOp = DAG.getNode(ExtendKind, TmpVT, RetOp);
942      NewValues.push_back(RetOp);
943      NewValues.push_back(DAG.getConstant(false, MVT::i32));
944    } else {
945      MVT::ValueType VT = RetOp.getValueType();
946      unsigned NumParts = TLI.getNumRegisters(VT);
947      MVT::ValueType PartVT = TLI.getRegisterType(VT);
948      SmallVector<SDOperand, 4> Parts(NumParts);
949      getCopyToParts(DAG, RetOp, &Parts[0], NumParts, PartVT);
950      for (unsigned i = 0; i < NumParts; ++i) {
951        NewValues.push_back(Parts[i]);
952        NewValues.push_back(DAG.getConstant(false, MVT::i32));
953      }
954    }
955  }
956  DAG.setRoot(DAG.getNode(ISD::RET, MVT::Other,
957                          &NewValues[0], NewValues.size()));
958}
959
960/// ExportFromCurrentBlock - If this condition isn't known to be exported from
961/// the current basic block, add it to ValueMap now so that we'll get a
962/// CopyTo/FromReg.
963void SelectionDAGLowering::ExportFromCurrentBlock(Value *V) {
964  // No need to export constants.
965  if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
966
967  // Already exported?
968  if (FuncInfo.isExportedInst(V)) return;
969
970  unsigned Reg = FuncInfo.InitializeRegForValue(V);
971  PendingLoads.push_back(CopyValueToVirtualRegister(V, Reg));
972}
973
974bool SelectionDAGLowering::isExportableFromCurrentBlock(Value *V,
975                                                    const BasicBlock *FromBB) {
976  // The operands of the setcc have to be in this block.  We don't know
977  // how to export them from some other block.
978  if (Instruction *VI = dyn_cast<Instruction>(V)) {
979    // Can export from current BB.
980    if (VI->getParent() == FromBB)
981      return true;
982
983    // Is already exported, noop.
984    return FuncInfo.isExportedInst(V);
985  }
986
987  // If this is an argument, we can export it if the BB is the entry block or
988  // if it is already exported.
989  if (isa<Argument>(V)) {
990    if (FromBB == &FromBB->getParent()->getEntryBlock())
991      return true;
992
993    // Otherwise, can only export this if it is already exported.
994    return FuncInfo.isExportedInst(V);
995  }
996
997  // Otherwise, constants can always be exported.
998  return true;
999}
1000
1001static bool InBlock(const Value *V, const BasicBlock *BB) {
1002  if (const Instruction *I = dyn_cast<Instruction>(V))
1003    return I->getParent() == BB;
1004  return true;
1005}
1006
1007/// FindMergedConditions - If Cond is an expression like
1008void SelectionDAGLowering::FindMergedConditions(Value *Cond,
1009                                                MachineBasicBlock *TBB,
1010                                                MachineBasicBlock *FBB,
1011                                                MachineBasicBlock *CurBB,
1012                                                unsigned Opc) {
1013  // If this node is not part of the or/and tree, emit it as a branch.
1014  Instruction *BOp = dyn_cast<Instruction>(Cond);
1015
1016  if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
1017      (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() ||
1018      BOp->getParent() != CurBB->getBasicBlock() ||
1019      !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
1020      !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
1021    const BasicBlock *BB = CurBB->getBasicBlock();
1022
1023    // If the leaf of the tree is a comparison, merge the condition into
1024    // the caseblock.
1025    if ((isa<ICmpInst>(Cond) || isa<FCmpInst>(Cond)) &&
1026        // The operands of the cmp have to be in this block.  We don't know
1027        // how to export them from some other block.  If this is the first block
1028        // of the sequence, no exporting is needed.
1029        (CurBB == CurMBB ||
1030         (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
1031          isExportableFromCurrentBlock(BOp->getOperand(1), BB)))) {
1032      BOp = cast<Instruction>(Cond);
1033      ISD::CondCode Condition;
1034      if (ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
1035        switch (IC->getPredicate()) {
1036        default: assert(0 && "Unknown icmp predicate opcode!");
1037        case ICmpInst::ICMP_EQ:  Condition = ISD::SETEQ;  break;
1038        case ICmpInst::ICMP_NE:  Condition = ISD::SETNE;  break;
1039        case ICmpInst::ICMP_SLE: Condition = ISD::SETLE;  break;
1040        case ICmpInst::ICMP_ULE: Condition = ISD::SETULE; break;
1041        case ICmpInst::ICMP_SGE: Condition = ISD::SETGE;  break;
1042        case ICmpInst::ICMP_UGE: Condition = ISD::SETUGE; break;
1043        case ICmpInst::ICMP_SLT: Condition = ISD::SETLT;  break;
1044        case ICmpInst::ICMP_ULT: Condition = ISD::SETULT; break;
1045        case ICmpInst::ICMP_SGT: Condition = ISD::SETGT;  break;
1046        case ICmpInst::ICMP_UGT: Condition = ISD::SETUGT; break;
1047        }
1048      } else if (FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) {
1049        ISD::CondCode FPC, FOC;
1050        switch (FC->getPredicate()) {
1051        default: assert(0 && "Unknown fcmp predicate opcode!");
1052        case FCmpInst::FCMP_FALSE: FOC = FPC = ISD::SETFALSE; break;
1053        case FCmpInst::FCMP_OEQ:   FOC = ISD::SETEQ; FPC = ISD::SETOEQ; break;
1054        case FCmpInst::FCMP_OGT:   FOC = ISD::SETGT; FPC = ISD::SETOGT; break;
1055        case FCmpInst::FCMP_OGE:   FOC = ISD::SETGE; FPC = ISD::SETOGE; break;
1056        case FCmpInst::FCMP_OLT:   FOC = ISD::SETLT; FPC = ISD::SETOLT; break;
1057        case FCmpInst::FCMP_OLE:   FOC = ISD::SETLE; FPC = ISD::SETOLE; break;
1058        case FCmpInst::FCMP_ONE:   FOC = ISD::SETNE; FPC = ISD::SETONE; break;
1059        case FCmpInst::FCMP_ORD:   FOC = ISD::SETEQ; FPC = ISD::SETO;   break;
1060        case FCmpInst::FCMP_UNO:   FOC = ISD::SETNE; FPC = ISD::SETUO;  break;
1061        case FCmpInst::FCMP_UEQ:   FOC = ISD::SETEQ; FPC = ISD::SETUEQ; break;
1062        case FCmpInst::FCMP_UGT:   FOC = ISD::SETGT; FPC = ISD::SETUGT; break;
1063        case FCmpInst::FCMP_UGE:   FOC = ISD::SETGE; FPC = ISD::SETUGE; break;
1064        case FCmpInst::FCMP_ULT:   FOC = ISD::SETLT; FPC = ISD::SETULT; break;
1065        case FCmpInst::FCMP_ULE:   FOC = ISD::SETLE; FPC = ISD::SETULE; break;
1066        case FCmpInst::FCMP_UNE:   FOC = ISD::SETNE; FPC = ISD::SETUNE; break;
1067        case FCmpInst::FCMP_TRUE:  FOC = FPC = ISD::SETTRUE; break;
1068        }
1069        if (FiniteOnlyFPMath())
1070          Condition = FOC;
1071        else
1072          Condition = FPC;
1073      } else {
1074        Condition = ISD::SETEQ; // silence warning.
1075        assert(0 && "Unknown compare instruction");
1076      }
1077
1078      SelectionDAGISel::CaseBlock CB(Condition, BOp->getOperand(0),
1079                                     BOp->getOperand(1), NULL, TBB, FBB, CurBB);
1080      SwitchCases.push_back(CB);
1081      return;
1082    }
1083
1084    // Create a CaseBlock record representing this branch.
1085    SelectionDAGISel::CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(),
1086                                   NULL, TBB, FBB, CurBB);
1087    SwitchCases.push_back(CB);
1088    return;
1089  }
1090
1091
1092  //  Create TmpBB after CurBB.
1093  MachineFunction::iterator BBI = CurBB;
1094  MachineBasicBlock *TmpBB = new MachineBasicBlock(CurBB->getBasicBlock());
1095  CurBB->getParent()->getBasicBlockList().insert(++BBI, TmpBB);
1096
1097  if (Opc == Instruction::Or) {
1098    // Codegen X | Y as:
1099    //   jmp_if_X TBB
1100    //   jmp TmpBB
1101    // TmpBB:
1102    //   jmp_if_Y TBB
1103    //   jmp FBB
1104    //
1105
1106    // Emit the LHS condition.
1107    FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, Opc);
1108
1109    // Emit the RHS condition into TmpBB.
1110    FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, Opc);
1111  } else {
1112    assert(Opc == Instruction::And && "Unknown merge op!");
1113    // Codegen X & Y as:
1114    //   jmp_if_X TmpBB
1115    //   jmp FBB
1116    // TmpBB:
1117    //   jmp_if_Y TBB
1118    //   jmp FBB
1119    //
1120    //  This requires creation of TmpBB after CurBB.
1121
1122    // Emit the LHS condition.
1123    FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, Opc);
1124
1125    // Emit the RHS condition into TmpBB.
1126    FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, Opc);
1127  }
1128}
1129
1130/// If the set of cases should be emitted as a series of branches, return true.
1131/// If we should emit this as a bunch of and/or'd together conditions, return
1132/// false.
1133static bool
1134ShouldEmitAsBranches(const std::vector<SelectionDAGISel::CaseBlock> &Cases) {
1135  if (Cases.size() != 2) return true;
1136
1137  // If this is two comparisons of the same values or'd or and'd together, they
1138  // will get folded into a single comparison, so don't emit two blocks.
1139  if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
1140       Cases[0].CmpRHS == Cases[1].CmpRHS) ||
1141      (Cases[0].CmpRHS == Cases[1].CmpLHS &&
1142       Cases[0].CmpLHS == Cases[1].CmpRHS)) {
1143    return false;
1144  }
1145
1146  return true;
1147}
1148
1149void SelectionDAGLowering::visitBr(BranchInst &I) {
1150  // Update machine-CFG edges.
1151  MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
1152
1153  // Figure out which block is immediately after the current one.
1154  MachineBasicBlock *NextBlock = 0;
1155  MachineFunction::iterator BBI = CurMBB;
1156  if (++BBI != CurMBB->getParent()->end())
1157    NextBlock = BBI;
1158
1159  if (I.isUnconditional()) {
1160    // If this is not a fall-through branch, emit the branch.
1161    if (Succ0MBB != NextBlock)
1162      DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, getRoot(),
1163                              DAG.getBasicBlock(Succ0MBB)));
1164
1165    // Update machine-CFG edges.
1166    CurMBB->addSuccessor(Succ0MBB);
1167
1168    return;
1169  }
1170
1171  // If this condition is one of the special cases we handle, do special stuff
1172  // now.
1173  Value *CondVal = I.getCondition();
1174  MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
1175
1176  // If this is a series of conditions that are or'd or and'd together, emit
1177  // this as a sequence of branches instead of setcc's with and/or operations.
1178  // For example, instead of something like:
1179  //     cmp A, B
1180  //     C = seteq
1181  //     cmp D, E
1182  //     F = setle
1183  //     or C, F
1184  //     jnz foo
1185  // Emit:
1186  //     cmp A, B
1187  //     je foo
1188  //     cmp D, E
1189  //     jle foo
1190  //
1191  if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
1192    if (BOp->hasOneUse() &&
1193        (BOp->getOpcode() == Instruction::And ||
1194         BOp->getOpcode() == Instruction::Or)) {
1195      FindMergedConditions(BOp, Succ0MBB, Succ1MBB, CurMBB, BOp->getOpcode());
1196      // If the compares in later blocks need to use values not currently
1197      // exported from this block, export them now.  This block should always
1198      // be the first entry.
1199      assert(SwitchCases[0].ThisBB == CurMBB && "Unexpected lowering!");
1200
1201      // Allow some cases to be rejected.
1202      if (ShouldEmitAsBranches(SwitchCases)) {
1203        for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
1204          ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
1205          ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
1206        }
1207
1208        // Emit the branch for this block.
1209        visitSwitchCase(SwitchCases[0]);
1210        SwitchCases.erase(SwitchCases.begin());
1211        return;
1212      }
1213
1214      // Okay, we decided not to do this, remove any inserted MBB's and clear
1215      // SwitchCases.
1216      for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
1217        CurMBB->getParent()->getBasicBlockList().erase(SwitchCases[i].ThisBB);
1218
1219      SwitchCases.clear();
1220    }
1221  }
1222
1223  // Create a CaseBlock record representing this branch.
1224  SelectionDAGISel::CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(),
1225                                 NULL, Succ0MBB, Succ1MBB, CurMBB);
1226  // Use visitSwitchCase to actually insert the fast branch sequence for this
1227  // cond branch.
1228  visitSwitchCase(CB);
1229}
1230
1231/// visitSwitchCase - Emits the necessary code to represent a single node in
1232/// the binary search tree resulting from lowering a switch instruction.
1233void SelectionDAGLowering::visitSwitchCase(SelectionDAGISel::CaseBlock &CB) {
1234  SDOperand Cond;
1235  SDOperand CondLHS = getValue(CB.CmpLHS);
1236
1237  // Build the setcc now.
1238  if (CB.CmpMHS == NULL) {
1239    // Fold "(X == true)" to X and "(X == false)" to !X to
1240    // handle common cases produced by branch lowering.
1241    if (CB.CmpRHS == ConstantInt::getTrue() && CB.CC == ISD::SETEQ)
1242      Cond = CondLHS;
1243    else if (CB.CmpRHS == ConstantInt::getFalse() && CB.CC == ISD::SETEQ) {
1244      SDOperand True = DAG.getConstant(1, CondLHS.getValueType());
1245      Cond = DAG.getNode(ISD::XOR, CondLHS.getValueType(), CondLHS, True);
1246    } else
1247      Cond = DAG.getSetCC(MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
1248  } else {
1249    assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
1250
1251    uint64_t Low = cast<ConstantInt>(CB.CmpLHS)->getSExtValue();
1252    uint64_t High  = cast<ConstantInt>(CB.CmpRHS)->getSExtValue();
1253
1254    SDOperand CmpOp = getValue(CB.CmpMHS);
1255    MVT::ValueType VT = CmpOp.getValueType();
1256
1257    if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
1258      Cond = DAG.getSetCC(MVT::i1, CmpOp, DAG.getConstant(High, VT), ISD::SETLE);
1259    } else {
1260      SDOperand SUB = DAG.getNode(ISD::SUB, VT, CmpOp, DAG.getConstant(Low, VT));
1261      Cond = DAG.getSetCC(MVT::i1, SUB,
1262                          DAG.getConstant(High-Low, VT), ISD::SETULE);
1263    }
1264
1265  }
1266
1267  // Set NextBlock to be the MBB immediately after the current one, if any.
1268  // This is used to avoid emitting unnecessary branches to the next block.
1269  MachineBasicBlock *NextBlock = 0;
1270  MachineFunction::iterator BBI = CurMBB;
1271  if (++BBI != CurMBB->getParent()->end())
1272    NextBlock = BBI;
1273
1274  // If the lhs block is the next block, invert the condition so that we can
1275  // fall through to the lhs instead of the rhs block.
1276  if (CB.TrueBB == NextBlock) {
1277    std::swap(CB.TrueBB, CB.FalseBB);
1278    SDOperand True = DAG.getConstant(1, Cond.getValueType());
1279    Cond = DAG.getNode(ISD::XOR, Cond.getValueType(), Cond, True);
1280  }
1281  SDOperand BrCond = DAG.getNode(ISD::BRCOND, MVT::Other, getRoot(), Cond,
1282                                 DAG.getBasicBlock(CB.TrueBB));
1283  if (CB.FalseBB == NextBlock)
1284    DAG.setRoot(BrCond);
1285  else
1286    DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, BrCond,
1287                            DAG.getBasicBlock(CB.FalseBB)));
1288  // Update successor info
1289  CurMBB->addSuccessor(CB.TrueBB);
1290  CurMBB->addSuccessor(CB.FalseBB);
1291}
1292
1293/// visitJumpTable - Emit JumpTable node in the current MBB
1294void SelectionDAGLowering::visitJumpTable(SelectionDAGISel::JumpTable &JT) {
1295  // Emit the code for the jump table
1296  assert(JT.Reg != -1U && "Should lower JT Header first!");
1297  MVT::ValueType PTy = TLI.getPointerTy();
1298  SDOperand Index = DAG.getCopyFromReg(getRoot(), JT.Reg, PTy);
1299  SDOperand Table = DAG.getJumpTable(JT.JTI, PTy);
1300  DAG.setRoot(DAG.getNode(ISD::BR_JT, MVT::Other, Index.getValue(1),
1301                          Table, Index));
1302  return;
1303}
1304
1305/// visitJumpTableHeader - This function emits necessary code to produce index
1306/// in the JumpTable from switch case.
1307void SelectionDAGLowering::visitJumpTableHeader(SelectionDAGISel::JumpTable &JT,
1308                                         SelectionDAGISel::JumpTableHeader &JTH) {
1309  // Subtract the lowest switch case value from the value being switched on
1310  // and conditional branch to default mbb if the result is greater than the
1311  // difference between smallest and largest cases.
1312  SDOperand SwitchOp = getValue(JTH.SValue);
1313  MVT::ValueType VT = SwitchOp.getValueType();
1314  SDOperand SUB = DAG.getNode(ISD::SUB, VT, SwitchOp,
1315                              DAG.getConstant(JTH.First, VT));
1316
1317  // The SDNode we just created, which holds the value being switched on
1318  // minus the the smallest case value, needs to be copied to a virtual
1319  // register so it can be used as an index into the jump table in a
1320  // subsequent basic block.  This value may be smaller or larger than the
1321  // target's pointer type, and therefore require extension or truncating.
1322  if (MVT::getSizeInBits(VT) > MVT::getSizeInBits(TLI.getPointerTy()))
1323    SwitchOp = DAG.getNode(ISD::TRUNCATE, TLI.getPointerTy(), SUB);
1324  else
1325    SwitchOp = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(), SUB);
1326
1327  unsigned JumpTableReg = FuncInfo.MakeReg(TLI.getPointerTy());
1328  SDOperand CopyTo = DAG.getCopyToReg(getRoot(), JumpTableReg, SwitchOp);
1329  JT.Reg = JumpTableReg;
1330
1331  // Emit the range check for the jump table, and branch to the default
1332  // block for the switch statement if the value being switched on exceeds
1333  // the largest case in the switch.
1334  SDOperand CMP = DAG.getSetCC(TLI.getSetCCResultTy(), SUB,
1335                               DAG.getConstant(JTH.Last-JTH.First,VT),
1336                               ISD::SETUGT);
1337
1338  // Set NextBlock to be the MBB immediately after the current one, if any.
1339  // This is used to avoid emitting unnecessary branches to the next block.
1340  MachineBasicBlock *NextBlock = 0;
1341  MachineFunction::iterator BBI = CurMBB;
1342  if (++BBI != CurMBB->getParent()->end())
1343    NextBlock = BBI;
1344
1345  SDOperand BrCond = DAG.getNode(ISD::BRCOND, MVT::Other, CopyTo, CMP,
1346                                 DAG.getBasicBlock(JT.Default));
1347
1348  if (JT.MBB == NextBlock)
1349    DAG.setRoot(BrCond);
1350  else
1351    DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, BrCond,
1352                            DAG.getBasicBlock(JT.MBB)));
1353
1354  return;
1355}
1356
1357/// visitBitTestHeader - This function emits necessary code to produce value
1358/// suitable for "bit tests"
1359void SelectionDAGLowering::visitBitTestHeader(SelectionDAGISel::BitTestBlock &B) {
1360  // Subtract the minimum value
1361  SDOperand SwitchOp = getValue(B.SValue);
1362  MVT::ValueType VT = SwitchOp.getValueType();
1363  SDOperand SUB = DAG.getNode(ISD::SUB, VT, SwitchOp,
1364                              DAG.getConstant(B.First, VT));
1365
1366  // Check range
1367  SDOperand RangeCmp = DAG.getSetCC(TLI.getSetCCResultTy(), SUB,
1368                                    DAG.getConstant(B.Range, VT),
1369                                    ISD::SETUGT);
1370
1371  SDOperand ShiftOp;
1372  if (MVT::getSizeInBits(VT) > MVT::getSizeInBits(TLI.getShiftAmountTy()))
1373    ShiftOp = DAG.getNode(ISD::TRUNCATE, TLI.getShiftAmountTy(), SUB);
1374  else
1375    ShiftOp = DAG.getNode(ISD::ZERO_EXTEND, TLI.getShiftAmountTy(), SUB);
1376
1377  // Make desired shift
1378  SDOperand SwitchVal = DAG.getNode(ISD::SHL, TLI.getPointerTy(),
1379                                    DAG.getConstant(1, TLI.getPointerTy()),
1380                                    ShiftOp);
1381
1382  unsigned SwitchReg = FuncInfo.MakeReg(TLI.getPointerTy());
1383  SDOperand CopyTo = DAG.getCopyToReg(getRoot(), SwitchReg, SwitchVal);
1384  B.Reg = SwitchReg;
1385
1386  SDOperand BrRange = DAG.getNode(ISD::BRCOND, MVT::Other, CopyTo, RangeCmp,
1387                                  DAG.getBasicBlock(B.Default));
1388
1389  // Set NextBlock to be the MBB immediately after the current one, if any.
1390  // This is used to avoid emitting unnecessary branches to the next block.
1391  MachineBasicBlock *NextBlock = 0;
1392  MachineFunction::iterator BBI = CurMBB;
1393  if (++BBI != CurMBB->getParent()->end())
1394    NextBlock = BBI;
1395
1396  MachineBasicBlock* MBB = B.Cases[0].ThisBB;
1397  if (MBB == NextBlock)
1398    DAG.setRoot(BrRange);
1399  else
1400    DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, CopyTo,
1401                            DAG.getBasicBlock(MBB)));
1402
1403  CurMBB->addSuccessor(B.Default);
1404  CurMBB->addSuccessor(MBB);
1405
1406  return;
1407}
1408
1409/// visitBitTestCase - this function produces one "bit test"
1410void SelectionDAGLowering::visitBitTestCase(MachineBasicBlock* NextMBB,
1411                                            unsigned Reg,
1412                                            SelectionDAGISel::BitTestCase &B) {
1413  // Emit bit tests and jumps
1414  SDOperand SwitchVal = DAG.getCopyFromReg(getRoot(), Reg, TLI.getPointerTy());
1415
1416  SDOperand AndOp = DAG.getNode(ISD::AND, TLI.getPointerTy(),
1417                                SwitchVal,
1418                                DAG.getConstant(B.Mask,
1419                                                TLI.getPointerTy()));
1420  SDOperand AndCmp = DAG.getSetCC(TLI.getSetCCResultTy(), AndOp,
1421                                  DAG.getConstant(0, TLI.getPointerTy()),
1422                                  ISD::SETNE);
1423  SDOperand BrAnd = DAG.getNode(ISD::BRCOND, MVT::Other, getRoot(),
1424                                AndCmp, DAG.getBasicBlock(B.TargetBB));
1425
1426  // Set NextBlock to be the MBB immediately after the current one, if any.
1427  // This is used to avoid emitting unnecessary branches to the next block.
1428  MachineBasicBlock *NextBlock = 0;
1429  MachineFunction::iterator BBI = CurMBB;
1430  if (++BBI != CurMBB->getParent()->end())
1431    NextBlock = BBI;
1432
1433  if (NextMBB == NextBlock)
1434    DAG.setRoot(BrAnd);
1435  else
1436    DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, BrAnd,
1437                            DAG.getBasicBlock(NextMBB)));
1438
1439  CurMBB->addSuccessor(B.TargetBB);
1440  CurMBB->addSuccessor(NextMBB);
1441
1442  return;
1443}
1444
1445void SelectionDAGLowering::visitInvoke(InvokeInst &I) {
1446  // Retrieve successors.
1447  MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
1448  MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)];
1449
1450  if (isa<InlineAsm>(I.getCalledValue()))
1451    visitInlineAsm(&I);
1452  else
1453    LowerCallTo(&I, getValue(I.getOperand(0)), false, LandingPad);
1454
1455  // If the value of the invoke is used outside of its defining block, make it
1456  // available as a virtual register.
1457  if (!I.use_empty()) {
1458    DenseMap<const Value*, unsigned>::iterator VMI = FuncInfo.ValueMap.find(&I);
1459    if (VMI != FuncInfo.ValueMap.end())
1460      DAG.setRoot(CopyValueToVirtualRegister(&I, VMI->second));
1461  }
1462
1463  // Drop into normal successor.
1464  DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, getRoot(),
1465                          DAG.getBasicBlock(Return)));
1466
1467  // Update successor info
1468  CurMBB->addSuccessor(Return);
1469  CurMBB->addSuccessor(LandingPad);
1470}
1471
1472void SelectionDAGLowering::visitUnwind(UnwindInst &I) {
1473}
1474
1475/// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for
1476/// small case ranges).
1477bool SelectionDAGLowering::handleSmallSwitchRange(CaseRec& CR,
1478                                                  CaseRecVector& WorkList,
1479                                                  Value* SV,
1480                                                  MachineBasicBlock* Default) {
1481  Case& BackCase  = *(CR.Range.second-1);
1482
1483  // Size is the number of Cases represented by this range.
1484  unsigned Size = CR.Range.second - CR.Range.first;
1485  if (Size > 3)
1486    return false;
1487
1488  // Get the MachineFunction which holds the current MBB.  This is used when
1489  // inserting any additional MBBs necessary to represent the switch.
1490  MachineFunction *CurMF = CurMBB->getParent();
1491
1492  // Figure out which block is immediately after the current one.
1493  MachineBasicBlock *NextBlock = 0;
1494  MachineFunction::iterator BBI = CR.CaseBB;
1495
1496  if (++BBI != CurMBB->getParent()->end())
1497    NextBlock = BBI;
1498
1499  // TODO: If any two of the cases has the same destination, and if one value
1500  // is the same as the other, but has one bit unset that the other has set,
1501  // use bit manipulation to do two compares at once.  For example:
1502  // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
1503
1504  // Rearrange the case blocks so that the last one falls through if possible.
1505  if (NextBlock && Default != NextBlock && BackCase.BB != NextBlock) {
1506    // The last case block won't fall through into 'NextBlock' if we emit the
1507    // branches in this order.  See if rearranging a case value would help.
1508    for (CaseItr I = CR.Range.first, E = CR.Range.second-1; I != E; ++I) {
1509      if (I->BB == NextBlock) {
1510        std::swap(*I, BackCase);
1511        break;
1512      }
1513    }
1514  }
1515
1516  // Create a CaseBlock record representing a conditional branch to
1517  // the Case's target mbb if the value being switched on SV is equal
1518  // to C.
1519  MachineBasicBlock *CurBlock = CR.CaseBB;
1520  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) {
1521    MachineBasicBlock *FallThrough;
1522    if (I != E-1) {
1523      FallThrough = new MachineBasicBlock(CurBlock->getBasicBlock());
1524      CurMF->getBasicBlockList().insert(BBI, FallThrough);
1525    } else {
1526      // If the last case doesn't match, go to the default block.
1527      FallThrough = Default;
1528    }
1529
1530    Value *RHS, *LHS, *MHS;
1531    ISD::CondCode CC;
1532    if (I->High == I->Low) {
1533      // This is just small small case range :) containing exactly 1 case
1534      CC = ISD::SETEQ;
1535      LHS = SV; RHS = I->High; MHS = NULL;
1536    } else {
1537      CC = ISD::SETLE;
1538      LHS = I->Low; MHS = SV; RHS = I->High;
1539    }
1540    SelectionDAGISel::CaseBlock CB(CC, LHS, RHS, MHS,
1541                                   I->BB, FallThrough, CurBlock);
1542
1543    // If emitting the first comparison, just call visitSwitchCase to emit the
1544    // code into the current block.  Otherwise, push the CaseBlock onto the
1545    // vector to be later processed by SDISel, and insert the node's MBB
1546    // before the next MBB.
1547    if (CurBlock == CurMBB)
1548      visitSwitchCase(CB);
1549    else
1550      SwitchCases.push_back(CB);
1551
1552    CurBlock = FallThrough;
1553  }
1554
1555  return true;
1556}
1557
1558static inline bool areJTsAllowed(const TargetLowering &TLI) {
1559  return (TLI.isOperationLegal(ISD::BR_JT, MVT::Other) ||
1560          TLI.isOperationLegal(ISD::BRIND, MVT::Other));
1561}
1562
1563/// handleJTSwitchCase - Emit jumptable for current switch case range
1564bool SelectionDAGLowering::handleJTSwitchCase(CaseRec& CR,
1565                                              CaseRecVector& WorkList,
1566                                              Value* SV,
1567                                              MachineBasicBlock* Default) {
1568  Case& FrontCase = *CR.Range.first;
1569  Case& BackCase  = *(CR.Range.second-1);
1570
1571  int64_t First = cast<ConstantInt>(FrontCase.Low)->getSExtValue();
1572  int64_t Last  = cast<ConstantInt>(BackCase.High)->getSExtValue();
1573
1574  uint64_t TSize = 0;
1575  for (CaseItr I = CR.Range.first, E = CR.Range.second;
1576       I!=E; ++I)
1577    TSize += I->size();
1578
1579  if (!areJTsAllowed(TLI) || TSize <= 3)
1580    return false;
1581
1582  double Density = (double)TSize / (double)((Last - First) + 1ULL);
1583  if (Density < 0.4)
1584    return false;
1585
1586  DOUT << "Lowering jump table\n"
1587       << "First entry: " << First << ". Last entry: " << Last << "\n"
1588       << "Size: " << TSize << ". Density: " << Density << "\n\n";
1589
1590  // Get the MachineFunction which holds the current MBB.  This is used when
1591  // inserting any additional MBBs necessary to represent the switch.
1592  MachineFunction *CurMF = CurMBB->getParent();
1593
1594  // Figure out which block is immediately after the current one.
1595  MachineBasicBlock *NextBlock = 0;
1596  MachineFunction::iterator BBI = CR.CaseBB;
1597
1598  if (++BBI != CurMBB->getParent()->end())
1599    NextBlock = BBI;
1600
1601  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
1602
1603  // Create a new basic block to hold the code for loading the address
1604  // of the jump table, and jumping to it.  Update successor information;
1605  // we will either branch to the default case for the switch, or the jump
1606  // table.
1607  MachineBasicBlock *JumpTableBB = new MachineBasicBlock(LLVMBB);
1608  CurMF->getBasicBlockList().insert(BBI, JumpTableBB);
1609  CR.CaseBB->addSuccessor(Default);
1610  CR.CaseBB->addSuccessor(JumpTableBB);
1611
1612  // Build a vector of destination BBs, corresponding to each target
1613  // of the jump table. If the value of the jump table slot corresponds to
1614  // a case statement, push the case's BB onto the vector, otherwise, push
1615  // the default BB.
1616  std::vector<MachineBasicBlock*> DestBBs;
1617  int64_t TEI = First;
1618  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) {
1619    int64_t Low = cast<ConstantInt>(I->Low)->getSExtValue();
1620    int64_t High = cast<ConstantInt>(I->High)->getSExtValue();
1621
1622    if ((Low <= TEI) && (TEI <= High)) {
1623      DestBBs.push_back(I->BB);
1624      if (TEI==High)
1625        ++I;
1626    } else {
1627      DestBBs.push_back(Default);
1628    }
1629  }
1630
1631  // Update successor info. Add one edge to each unique successor.
1632  BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs());
1633  for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(),
1634         E = DestBBs.end(); I != E; ++I) {
1635    if (!SuccsHandled[(*I)->getNumber()]) {
1636      SuccsHandled[(*I)->getNumber()] = true;
1637      JumpTableBB->addSuccessor(*I);
1638    }
1639  }
1640
1641  // Create a jump table index for this jump table, or return an existing
1642  // one.
1643  unsigned JTI = CurMF->getJumpTableInfo()->getJumpTableIndex(DestBBs);
1644
1645  // Set the jump table information so that we can codegen it as a second
1646  // MachineBasicBlock
1647  SelectionDAGISel::JumpTable JT(-1U, JTI, JumpTableBB, Default);
1648  SelectionDAGISel::JumpTableHeader JTH(First, Last, SV, CR.CaseBB,
1649                                        (CR.CaseBB == CurMBB));
1650  if (CR.CaseBB == CurMBB)
1651    visitJumpTableHeader(JT, JTH);
1652
1653  JTCases.push_back(SelectionDAGISel::JumpTableBlock(JTH, JT));
1654
1655  return true;
1656}
1657
1658/// handleBTSplitSwitchCase - emit comparison and split binary search tree into
1659/// 2 subtrees.
1660bool SelectionDAGLowering::handleBTSplitSwitchCase(CaseRec& CR,
1661                                                   CaseRecVector& WorkList,
1662                                                   Value* SV,
1663                                                   MachineBasicBlock* Default) {
1664  // Get the MachineFunction which holds the current MBB.  This is used when
1665  // inserting any additional MBBs necessary to represent the switch.
1666  MachineFunction *CurMF = CurMBB->getParent();
1667
1668  // Figure out which block is immediately after the current one.
1669  MachineBasicBlock *NextBlock = 0;
1670  MachineFunction::iterator BBI = CR.CaseBB;
1671
1672  if (++BBI != CurMBB->getParent()->end())
1673    NextBlock = BBI;
1674
1675  Case& FrontCase = *CR.Range.first;
1676  Case& BackCase  = *(CR.Range.second-1);
1677  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
1678
1679  // Size is the number of Cases represented by this range.
1680  unsigned Size = CR.Range.second - CR.Range.first;
1681
1682  int64_t First = cast<ConstantInt>(FrontCase.Low)->getSExtValue();
1683  int64_t Last  = cast<ConstantInt>(BackCase.High)->getSExtValue();
1684  double FMetric = 0;
1685  CaseItr Pivot = CR.Range.first + Size/2;
1686
1687  // Select optimal pivot, maximizing sum density of LHS and RHS. This will
1688  // (heuristically) allow us to emit JumpTable's later.
1689  uint64_t TSize = 0;
1690  for (CaseItr I = CR.Range.first, E = CR.Range.second;
1691       I!=E; ++I)
1692    TSize += I->size();
1693
1694  uint64_t LSize = FrontCase.size();
1695  uint64_t RSize = TSize-LSize;
1696  DOUT << "Selecting best pivot: \n"
1697       << "First: " << First << ", Last: " << Last <<"\n"
1698       << "LSize: " << LSize << ", RSize: " << RSize << "\n";
1699  for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second;
1700       J!=E; ++I, ++J) {
1701    int64_t LEnd = cast<ConstantInt>(I->High)->getSExtValue();
1702    int64_t RBegin = cast<ConstantInt>(J->Low)->getSExtValue();
1703    assert((RBegin-LEnd>=1) && "Invalid case distance");
1704    double LDensity = (double)LSize / (double)((LEnd - First) + 1ULL);
1705    double RDensity = (double)RSize / (double)((Last - RBegin) + 1ULL);
1706    double Metric = Log2_64(RBegin-LEnd)*(LDensity+RDensity);
1707    // Should always split in some non-trivial place
1708    DOUT <<"=>Step\n"
1709         << "LEnd: " << LEnd << ", RBegin: " << RBegin << "\n"
1710         << "LDensity: " << LDensity << ", RDensity: " << RDensity << "\n"
1711         << "Metric: " << Metric << "\n";
1712    if (FMetric < Metric) {
1713      Pivot = J;
1714      FMetric = Metric;
1715      DOUT << "Current metric set to: " << FMetric << "\n";
1716    }
1717
1718    LSize += J->size();
1719    RSize -= J->size();
1720  }
1721  if (areJTsAllowed(TLI)) {
1722    // If our case is dense we *really* should handle it earlier!
1723    assert((FMetric > 0) && "Should handle dense range earlier!");
1724  } else {
1725    Pivot = CR.Range.first + Size/2;
1726  }
1727
1728  CaseRange LHSR(CR.Range.first, Pivot);
1729  CaseRange RHSR(Pivot, CR.Range.second);
1730  Constant *C = Pivot->Low;
1731  MachineBasicBlock *FalseBB = 0, *TrueBB = 0;
1732
1733  // We know that we branch to the LHS if the Value being switched on is
1734  // less than the Pivot value, C.  We use this to optimize our binary
1735  // tree a bit, by recognizing that if SV is greater than or equal to the
1736  // LHS's Case Value, and that Case Value is exactly one less than the
1737  // Pivot's Value, then we can branch directly to the LHS's Target,
1738  // rather than creating a leaf node for it.
1739  if ((LHSR.second - LHSR.first) == 1 &&
1740      LHSR.first->High == CR.GE &&
1741      cast<ConstantInt>(C)->getSExtValue() ==
1742      (cast<ConstantInt>(CR.GE)->getSExtValue() + 1LL)) {
1743    TrueBB = LHSR.first->BB;
1744  } else {
1745    TrueBB = new MachineBasicBlock(LLVMBB);
1746    CurMF->getBasicBlockList().insert(BBI, TrueBB);
1747    WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR));
1748  }
1749
1750  // Similar to the optimization above, if the Value being switched on is
1751  // known to be less than the Constant CR.LT, and the current Case Value
1752  // is CR.LT - 1, then we can branch directly to the target block for
1753  // the current Case Value, rather than emitting a RHS leaf node for it.
1754  if ((RHSR.second - RHSR.first) == 1 && CR.LT &&
1755      cast<ConstantInt>(RHSR.first->Low)->getSExtValue() ==
1756      (cast<ConstantInt>(CR.LT)->getSExtValue() - 1LL)) {
1757    FalseBB = RHSR.first->BB;
1758  } else {
1759    FalseBB = new MachineBasicBlock(LLVMBB);
1760    CurMF->getBasicBlockList().insert(BBI, FalseBB);
1761    WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR));
1762  }
1763
1764  // Create a CaseBlock record representing a conditional branch to
1765  // the LHS node if the value being switched on SV is less than C.
1766  // Otherwise, branch to LHS.
1767  SelectionDAGISel::CaseBlock CB(ISD::SETLT, SV, C, NULL,
1768                                 TrueBB, FalseBB, CR.CaseBB);
1769
1770  if (CR.CaseBB == CurMBB)
1771    visitSwitchCase(CB);
1772  else
1773    SwitchCases.push_back(CB);
1774
1775  return true;
1776}
1777
1778/// handleBitTestsSwitchCase - if current case range has few destination and
1779/// range span less, than machine word bitwidth, encode case range into series
1780/// of masks and emit bit tests with these masks.
1781bool SelectionDAGLowering::handleBitTestsSwitchCase(CaseRec& CR,
1782                                                    CaseRecVector& WorkList,
1783                                                    Value* SV,
1784                                                    MachineBasicBlock* Default){
1785  unsigned IntPtrBits = MVT::getSizeInBits(TLI.getPointerTy());
1786
1787  Case& FrontCase = *CR.Range.first;
1788  Case& BackCase  = *(CR.Range.second-1);
1789
1790  // Get the MachineFunction which holds the current MBB.  This is used when
1791  // inserting any additional MBBs necessary to represent the switch.
1792  MachineFunction *CurMF = CurMBB->getParent();
1793
1794  unsigned numCmps = 0;
1795  for (CaseItr I = CR.Range.first, E = CR.Range.second;
1796       I!=E; ++I) {
1797    // Single case counts one, case range - two.
1798    if (I->Low == I->High)
1799      numCmps +=1;
1800    else
1801      numCmps +=2;
1802  }
1803
1804  // Count unique destinations
1805  SmallSet<MachineBasicBlock*, 4> Dests;
1806  for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
1807    Dests.insert(I->BB);
1808    if (Dests.size() > 3)
1809      // Don't bother the code below, if there are too much unique destinations
1810      return false;
1811  }
1812  DOUT << "Total number of unique destinations: " << Dests.size() << "\n"
1813       << "Total number of comparisons: " << numCmps << "\n";
1814
1815  // Compute span of values.
1816  Constant* minValue = FrontCase.Low;
1817  Constant* maxValue = BackCase.High;
1818  uint64_t range = cast<ConstantInt>(maxValue)->getSExtValue() -
1819                   cast<ConstantInt>(minValue)->getSExtValue();
1820  DOUT << "Compare range: " << range << "\n"
1821       << "Low bound: " << cast<ConstantInt>(minValue)->getSExtValue() << "\n"
1822       << "High bound: " << cast<ConstantInt>(maxValue)->getSExtValue() << "\n";
1823
1824  if (range>=IntPtrBits ||
1825      (!(Dests.size() == 1 && numCmps >= 3) &&
1826       !(Dests.size() == 2 && numCmps >= 5) &&
1827       !(Dests.size() >= 3 && numCmps >= 6)))
1828    return false;
1829
1830  DOUT << "Emitting bit tests\n";
1831  int64_t lowBound = 0;
1832
1833  // Optimize the case where all the case values fit in a
1834  // word without having to subtract minValue. In this case,
1835  // we can optimize away the subtraction.
1836  if (cast<ConstantInt>(minValue)->getSExtValue() >= 0 &&
1837      cast<ConstantInt>(maxValue)->getSExtValue() <  IntPtrBits) {
1838    range = cast<ConstantInt>(maxValue)->getSExtValue();
1839  } else {
1840    lowBound = cast<ConstantInt>(minValue)->getSExtValue();
1841  }
1842
1843  CaseBitsVector CasesBits;
1844  unsigned i, count = 0;
1845
1846  for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
1847    MachineBasicBlock* Dest = I->BB;
1848    for (i = 0; i < count; ++i)
1849      if (Dest == CasesBits[i].BB)
1850        break;
1851
1852    if (i == count) {
1853      assert((count < 3) && "Too much destinations to test!");
1854      CasesBits.push_back(CaseBits(0, Dest, 0));
1855      count++;
1856    }
1857
1858    uint64_t lo = cast<ConstantInt>(I->Low)->getSExtValue() - lowBound;
1859    uint64_t hi = cast<ConstantInt>(I->High)->getSExtValue() - lowBound;
1860
1861    for (uint64_t j = lo; j <= hi; j++) {
1862      CasesBits[i].Mask |=  1ULL << j;
1863      CasesBits[i].Bits++;
1864    }
1865
1866  }
1867  std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp());
1868
1869  SelectionDAGISel::BitTestInfo BTC;
1870
1871  // Figure out which block is immediately after the current one.
1872  MachineFunction::iterator BBI = CR.CaseBB;
1873  ++BBI;
1874
1875  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
1876
1877  DOUT << "Cases:\n";
1878  for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) {
1879    DOUT << "Mask: " << CasesBits[i].Mask << ", Bits: " << CasesBits[i].Bits
1880         << ", BB: " << CasesBits[i].BB << "\n";
1881
1882    MachineBasicBlock *CaseBB = new MachineBasicBlock(LLVMBB);
1883    CurMF->getBasicBlockList().insert(BBI, CaseBB);
1884    BTC.push_back(SelectionDAGISel::BitTestCase(CasesBits[i].Mask,
1885                                                CaseBB,
1886                                                CasesBits[i].BB));
1887  }
1888
1889  SelectionDAGISel::BitTestBlock BTB(lowBound, range, SV,
1890                                     -1U, (CR.CaseBB == CurMBB),
1891                                     CR.CaseBB, Default, BTC);
1892
1893  if (CR.CaseBB == CurMBB)
1894    visitBitTestHeader(BTB);
1895
1896  BitTestCases.push_back(BTB);
1897
1898  return true;
1899}
1900
1901
1902// Clusterify - Transform simple list of Cases into list of CaseRange's
1903unsigned SelectionDAGLowering::Clusterify(CaseVector& Cases,
1904                                          const SwitchInst& SI) {
1905  unsigned numCmps = 0;
1906
1907  // Start with "simple" cases
1908  for (unsigned i = 1; i < SI.getNumSuccessors(); ++i) {
1909    MachineBasicBlock *SMBB = FuncInfo.MBBMap[SI.getSuccessor(i)];
1910    Cases.push_back(Case(SI.getSuccessorValue(i),
1911                         SI.getSuccessorValue(i),
1912                         SMBB));
1913  }
1914  std::sort(Cases.begin(), Cases.end(), CaseCmp());
1915
1916  // Merge case into clusters
1917  if (Cases.size()>=2)
1918    // Must recompute end() each iteration because it may be
1919    // invalidated by erase if we hold on to it
1920    for (CaseItr I=Cases.begin(), J=++(Cases.begin()); J!=Cases.end(); ) {
1921      int64_t nextValue = cast<ConstantInt>(J->Low)->getSExtValue();
1922      int64_t currentValue = cast<ConstantInt>(I->High)->getSExtValue();
1923      MachineBasicBlock* nextBB = J->BB;
1924      MachineBasicBlock* currentBB = I->BB;
1925
1926      // If the two neighboring cases go to the same destination, merge them
1927      // into a single case.
1928      if ((nextValue-currentValue==1) && (currentBB == nextBB)) {
1929        I->High = J->High;
1930        J = Cases.erase(J);
1931      } else {
1932        I = J++;
1933      }
1934    }
1935
1936  for (CaseItr I=Cases.begin(), E=Cases.end(); I!=E; ++I, ++numCmps) {
1937    if (I->Low != I->High)
1938      // A range counts double, since it requires two compares.
1939      ++numCmps;
1940  }
1941
1942  return numCmps;
1943}
1944
1945void SelectionDAGLowering::visitSwitch(SwitchInst &SI) {
1946  // Figure out which block is immediately after the current one.
1947  MachineBasicBlock *NextBlock = 0;
1948  MachineFunction::iterator BBI = CurMBB;
1949
1950  MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()];
1951
1952  // If there is only the default destination, branch to it if it is not the
1953  // next basic block.  Otherwise, just fall through.
1954  if (SI.getNumOperands() == 2) {
1955    // Update machine-CFG edges.
1956
1957    // If this is not a fall-through branch, emit the branch.
1958    if (Default != NextBlock)
1959      DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, getRoot(),
1960                              DAG.getBasicBlock(Default)));
1961
1962    CurMBB->addSuccessor(Default);
1963    return;
1964  }
1965
1966  // If there are any non-default case statements, create a vector of Cases
1967  // representing each one, and sort the vector so that we can efficiently
1968  // create a binary search tree from them.
1969  CaseVector Cases;
1970  unsigned numCmps = Clusterify(Cases, SI);
1971  DOUT << "Clusterify finished. Total clusters: " << Cases.size()
1972       << ". Total compares: " << numCmps << "\n";
1973
1974  // Get the Value to be switched on and default basic blocks, which will be
1975  // inserted into CaseBlock records, representing basic blocks in the binary
1976  // search tree.
1977  Value *SV = SI.getOperand(0);
1978
1979  // Push the initial CaseRec onto the worklist
1980  CaseRecVector WorkList;
1981  WorkList.push_back(CaseRec(CurMBB,0,0,CaseRange(Cases.begin(),Cases.end())));
1982
1983  while (!WorkList.empty()) {
1984    // Grab a record representing a case range to process off the worklist
1985    CaseRec CR = WorkList.back();
1986    WorkList.pop_back();
1987
1988    if (handleBitTestsSwitchCase(CR, WorkList, SV, Default))
1989      continue;
1990
1991    // If the range has few cases (two or less) emit a series of specific
1992    // tests.
1993    if (handleSmallSwitchRange(CR, WorkList, SV, Default))
1994      continue;
1995
1996    // If the switch has more than 5 blocks, and at least 40% dense, and the
1997    // target supports indirect branches, then emit a jump table rather than
1998    // lowering the switch to a binary tree of conditional branches.
1999    if (handleJTSwitchCase(CR, WorkList, SV, Default))
2000      continue;
2001
2002    // Emit binary tree. We need to pick a pivot, and push left and right ranges
2003    // onto the worklist. Leafs are handled via handleSmallSwitchRange() call.
2004    handleBTSplitSwitchCase(CR, WorkList, SV, Default);
2005  }
2006}
2007
2008
2009void SelectionDAGLowering::visitSub(User &I) {
2010  // -0.0 - X --> fneg
2011  const Type *Ty = I.getType();
2012  if (isa<VectorType>(Ty)) {
2013    if (ConstantVector *CV = dyn_cast<ConstantVector>(I.getOperand(0))) {
2014      const VectorType *DestTy = cast<VectorType>(I.getType());
2015      const Type *ElTy = DestTy->getElementType();
2016      if (ElTy->isFloatingPoint()) {
2017        unsigned VL = DestTy->getNumElements();
2018        std::vector<Constant*> NZ(VL, ConstantFP::getNegativeZero(ElTy));
2019        Constant *CNZ = ConstantVector::get(&NZ[0], NZ.size());
2020        if (CV == CNZ) {
2021          SDOperand Op2 = getValue(I.getOperand(1));
2022          setValue(&I, DAG.getNode(ISD::FNEG, Op2.getValueType(), Op2));
2023          return;
2024        }
2025      }
2026    }
2027  }
2028  if (Ty->isFloatingPoint()) {
2029    if (ConstantFP *CFP = dyn_cast<ConstantFP>(I.getOperand(0)))
2030      if (CFP->isExactlyValue(ConstantFP::getNegativeZero(Ty)->getValueAPF())) {
2031        SDOperand Op2 = getValue(I.getOperand(1));
2032        setValue(&I, DAG.getNode(ISD::FNEG, Op2.getValueType(), Op2));
2033        return;
2034      }
2035  }
2036
2037  visitBinary(I, Ty->isFPOrFPVector() ? ISD::FSUB : ISD::SUB);
2038}
2039
2040void SelectionDAGLowering::visitBinary(User &I, unsigned OpCode) {
2041  SDOperand Op1 = getValue(I.getOperand(0));
2042  SDOperand Op2 = getValue(I.getOperand(1));
2043
2044  setValue(&I, DAG.getNode(OpCode, Op1.getValueType(), Op1, Op2));
2045}
2046
2047void SelectionDAGLowering::visitShift(User &I, unsigned Opcode) {
2048  SDOperand Op1 = getValue(I.getOperand(0));
2049  SDOperand Op2 = getValue(I.getOperand(1));
2050
2051  if (MVT::getSizeInBits(TLI.getShiftAmountTy()) <
2052      MVT::getSizeInBits(Op2.getValueType()))
2053    Op2 = DAG.getNode(ISD::TRUNCATE, TLI.getShiftAmountTy(), Op2);
2054  else if (TLI.getShiftAmountTy() > Op2.getValueType())
2055    Op2 = DAG.getNode(ISD::ANY_EXTEND, TLI.getShiftAmountTy(), Op2);
2056
2057  setValue(&I, DAG.getNode(Opcode, Op1.getValueType(), Op1, Op2));
2058}
2059
2060void SelectionDAGLowering::visitICmp(User &I) {
2061  ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
2062  if (ICmpInst *IC = dyn_cast<ICmpInst>(&I))
2063    predicate = IC->getPredicate();
2064  else if (ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
2065    predicate = ICmpInst::Predicate(IC->getPredicate());
2066  SDOperand Op1 = getValue(I.getOperand(0));
2067  SDOperand Op2 = getValue(I.getOperand(1));
2068  ISD::CondCode Opcode;
2069  switch (predicate) {
2070    case ICmpInst::ICMP_EQ  : Opcode = ISD::SETEQ; break;
2071    case ICmpInst::ICMP_NE  : Opcode = ISD::SETNE; break;
2072    case ICmpInst::ICMP_UGT : Opcode = ISD::SETUGT; break;
2073    case ICmpInst::ICMP_UGE : Opcode = ISD::SETUGE; break;
2074    case ICmpInst::ICMP_ULT : Opcode = ISD::SETULT; break;
2075    case ICmpInst::ICMP_ULE : Opcode = ISD::SETULE; break;
2076    case ICmpInst::ICMP_SGT : Opcode = ISD::SETGT; break;
2077    case ICmpInst::ICMP_SGE : Opcode = ISD::SETGE; break;
2078    case ICmpInst::ICMP_SLT : Opcode = ISD::SETLT; break;
2079    case ICmpInst::ICMP_SLE : Opcode = ISD::SETLE; break;
2080    default:
2081      assert(!"Invalid ICmp predicate value");
2082      Opcode = ISD::SETEQ;
2083      break;
2084  }
2085  setValue(&I, DAG.getSetCC(MVT::i1, Op1, Op2, Opcode));
2086}
2087
2088void SelectionDAGLowering::visitFCmp(User &I) {
2089  FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
2090  if (FCmpInst *FC = dyn_cast<FCmpInst>(&I))
2091    predicate = FC->getPredicate();
2092  else if (ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
2093    predicate = FCmpInst::Predicate(FC->getPredicate());
2094  SDOperand Op1 = getValue(I.getOperand(0));
2095  SDOperand Op2 = getValue(I.getOperand(1));
2096  ISD::CondCode Condition, FOC, FPC;
2097  switch (predicate) {
2098    case FCmpInst::FCMP_FALSE: FOC = FPC = ISD::SETFALSE; break;
2099    case FCmpInst::FCMP_OEQ:   FOC = ISD::SETEQ; FPC = ISD::SETOEQ; break;
2100    case FCmpInst::FCMP_OGT:   FOC = ISD::SETGT; FPC = ISD::SETOGT; break;
2101    case FCmpInst::FCMP_OGE:   FOC = ISD::SETGE; FPC = ISD::SETOGE; break;
2102    case FCmpInst::FCMP_OLT:   FOC = ISD::SETLT; FPC = ISD::SETOLT; break;
2103    case FCmpInst::FCMP_OLE:   FOC = ISD::SETLE; FPC = ISD::SETOLE; break;
2104    case FCmpInst::FCMP_ONE:   FOC = ISD::SETNE; FPC = ISD::SETONE; break;
2105    case FCmpInst::FCMP_ORD:   FOC = ISD::SETEQ; FPC = ISD::SETO;   break;
2106    case FCmpInst::FCMP_UNO:   FOC = ISD::SETNE; FPC = ISD::SETUO;  break;
2107    case FCmpInst::FCMP_UEQ:   FOC = ISD::SETEQ; FPC = ISD::SETUEQ; break;
2108    case FCmpInst::FCMP_UGT:   FOC = ISD::SETGT; FPC = ISD::SETUGT; break;
2109    case FCmpInst::FCMP_UGE:   FOC = ISD::SETGE; FPC = ISD::SETUGE; break;
2110    case FCmpInst::FCMP_ULT:   FOC = ISD::SETLT; FPC = ISD::SETULT; break;
2111    case FCmpInst::FCMP_ULE:   FOC = ISD::SETLE; FPC = ISD::SETULE; break;
2112    case FCmpInst::FCMP_UNE:   FOC = ISD::SETNE; FPC = ISD::SETUNE; break;
2113    case FCmpInst::FCMP_TRUE:  FOC = FPC = ISD::SETTRUE; break;
2114    default:
2115      assert(!"Invalid FCmp predicate value");
2116      FOC = FPC = ISD::SETFALSE;
2117      break;
2118  }
2119  if (FiniteOnlyFPMath())
2120    Condition = FOC;
2121  else
2122    Condition = FPC;
2123  setValue(&I, DAG.getSetCC(MVT::i1, Op1, Op2, Condition));
2124}
2125
2126void SelectionDAGLowering::visitSelect(User &I) {
2127  SDOperand Cond     = getValue(I.getOperand(0));
2128  SDOperand TrueVal  = getValue(I.getOperand(1));
2129  SDOperand FalseVal = getValue(I.getOperand(2));
2130  setValue(&I, DAG.getNode(ISD::SELECT, TrueVal.getValueType(), Cond,
2131                           TrueVal, FalseVal));
2132}
2133
2134
2135void SelectionDAGLowering::visitTrunc(User &I) {
2136  // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
2137  SDOperand N = getValue(I.getOperand(0));
2138  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2139  setValue(&I, DAG.getNode(ISD::TRUNCATE, DestVT, N));
2140}
2141
2142void SelectionDAGLowering::visitZExt(User &I) {
2143  // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2144  // ZExt also can't be a cast to bool for same reason. So, nothing much to do
2145  SDOperand N = getValue(I.getOperand(0));
2146  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2147  setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, DestVT, N));
2148}
2149
2150void SelectionDAGLowering::visitSExt(User &I) {
2151  // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2152  // SExt also can't be a cast to bool for same reason. So, nothing much to do
2153  SDOperand N = getValue(I.getOperand(0));
2154  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2155  setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, DestVT, N));
2156}
2157
2158void SelectionDAGLowering::visitFPTrunc(User &I) {
2159  // FPTrunc is never a no-op cast, no need to check
2160  SDOperand N = getValue(I.getOperand(0));
2161  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2162  setValue(&I, DAG.getNode(ISD::FP_ROUND, DestVT, N));
2163}
2164
2165void SelectionDAGLowering::visitFPExt(User &I){
2166  // FPTrunc is never a no-op cast, no need to check
2167  SDOperand N = getValue(I.getOperand(0));
2168  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2169  setValue(&I, DAG.getNode(ISD::FP_EXTEND, DestVT, N));
2170}
2171
2172void SelectionDAGLowering::visitFPToUI(User &I) {
2173  // FPToUI is never a no-op cast, no need to check
2174  SDOperand N = getValue(I.getOperand(0));
2175  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2176  setValue(&I, DAG.getNode(ISD::FP_TO_UINT, DestVT, N));
2177}
2178
2179void SelectionDAGLowering::visitFPToSI(User &I) {
2180  // FPToSI is never a no-op cast, no need to check
2181  SDOperand N = getValue(I.getOperand(0));
2182  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2183  setValue(&I, DAG.getNode(ISD::FP_TO_SINT, DestVT, N));
2184}
2185
2186void SelectionDAGLowering::visitUIToFP(User &I) {
2187  // UIToFP is never a no-op cast, no need to check
2188  SDOperand N = getValue(I.getOperand(0));
2189  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2190  setValue(&I, DAG.getNode(ISD::UINT_TO_FP, DestVT, N));
2191}
2192
2193void SelectionDAGLowering::visitSIToFP(User &I){
2194  // UIToFP is never a no-op cast, no need to check
2195  SDOperand N = getValue(I.getOperand(0));
2196  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2197  setValue(&I, DAG.getNode(ISD::SINT_TO_FP, DestVT, N));
2198}
2199
2200void SelectionDAGLowering::visitPtrToInt(User &I) {
2201  // What to do depends on the size of the integer and the size of the pointer.
2202  // We can either truncate, zero extend, or no-op, accordingly.
2203  SDOperand N = getValue(I.getOperand(0));
2204  MVT::ValueType SrcVT = N.getValueType();
2205  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2206  SDOperand Result;
2207  if (MVT::getSizeInBits(DestVT) < MVT::getSizeInBits(SrcVT))
2208    Result = DAG.getNode(ISD::TRUNCATE, DestVT, N);
2209  else
2210    // Note: ZERO_EXTEND can handle cases where the sizes are equal too
2211    Result = DAG.getNode(ISD::ZERO_EXTEND, DestVT, N);
2212  setValue(&I, Result);
2213}
2214
2215void SelectionDAGLowering::visitIntToPtr(User &I) {
2216  // What to do depends on the size of the integer and the size of the pointer.
2217  // We can either truncate, zero extend, or no-op, accordingly.
2218  SDOperand N = getValue(I.getOperand(0));
2219  MVT::ValueType SrcVT = N.getValueType();
2220  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2221  if (MVT::getSizeInBits(DestVT) < MVT::getSizeInBits(SrcVT))
2222    setValue(&I, DAG.getNode(ISD::TRUNCATE, DestVT, N));
2223  else
2224    // Note: ZERO_EXTEND can handle cases where the sizes are equal too
2225    setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, DestVT, N));
2226}
2227
2228void SelectionDAGLowering::visitBitCast(User &I) {
2229  SDOperand N = getValue(I.getOperand(0));
2230  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2231
2232  // BitCast assures us that source and destination are the same size so this
2233  // is either a BIT_CONVERT or a no-op.
2234  if (DestVT != N.getValueType())
2235    setValue(&I, DAG.getNode(ISD::BIT_CONVERT, DestVT, N)); // convert types
2236  else
2237    setValue(&I, N); // noop cast.
2238}
2239
2240void SelectionDAGLowering::visitInsertElement(User &I) {
2241  SDOperand InVec = getValue(I.getOperand(0));
2242  SDOperand InVal = getValue(I.getOperand(1));
2243  SDOperand InIdx = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(),
2244                                getValue(I.getOperand(2)));
2245
2246  setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT,
2247                           TLI.getValueType(I.getType()),
2248                           InVec, InVal, InIdx));
2249}
2250
2251void SelectionDAGLowering::visitExtractElement(User &I) {
2252  SDOperand InVec = getValue(I.getOperand(0));
2253  SDOperand InIdx = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(),
2254                                getValue(I.getOperand(1)));
2255  setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT,
2256                           TLI.getValueType(I.getType()), InVec, InIdx));
2257}
2258
2259void SelectionDAGLowering::visitShuffleVector(User &I) {
2260  SDOperand V1   = getValue(I.getOperand(0));
2261  SDOperand V2   = getValue(I.getOperand(1));
2262  SDOperand Mask = getValue(I.getOperand(2));
2263
2264  setValue(&I, DAG.getNode(ISD::VECTOR_SHUFFLE,
2265                           TLI.getValueType(I.getType()),
2266                           V1, V2, Mask));
2267}
2268
2269
2270void SelectionDAGLowering::visitGetElementPtr(User &I) {
2271  SDOperand N = getValue(I.getOperand(0));
2272  const Type *Ty = I.getOperand(0)->getType();
2273
2274  for (GetElementPtrInst::op_iterator OI = I.op_begin()+1, E = I.op_end();
2275       OI != E; ++OI) {
2276    Value *Idx = *OI;
2277    if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
2278      unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
2279      if (Field) {
2280        // N = N + Offset
2281        uint64_t Offset = TD->getStructLayout(StTy)->getElementOffset(Field);
2282        N = DAG.getNode(ISD::ADD, N.getValueType(), N,
2283                        getIntPtrConstant(Offset));
2284      }
2285      Ty = StTy->getElementType(Field);
2286    } else {
2287      Ty = cast<SequentialType>(Ty)->getElementType();
2288
2289      // If this is a constant subscript, handle it quickly.
2290      if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
2291        if (CI->getZExtValue() == 0) continue;
2292        uint64_t Offs =
2293            TD->getABITypeSize(Ty)*cast<ConstantInt>(CI)->getSExtValue();
2294        N = DAG.getNode(ISD::ADD, N.getValueType(), N, getIntPtrConstant(Offs));
2295        continue;
2296      }
2297
2298      // N = N + Idx * ElementSize;
2299      uint64_t ElementSize = TD->getABITypeSize(Ty);
2300      SDOperand IdxN = getValue(Idx);
2301
2302      // If the index is smaller or larger than intptr_t, truncate or extend
2303      // it.
2304      if (IdxN.getValueType() < N.getValueType()) {
2305        IdxN = DAG.getNode(ISD::SIGN_EXTEND, N.getValueType(), IdxN);
2306      } else if (IdxN.getValueType() > N.getValueType())
2307        IdxN = DAG.getNode(ISD::TRUNCATE, N.getValueType(), IdxN);
2308
2309      // If this is a multiply by a power of two, turn it into a shl
2310      // immediately.  This is a very common case.
2311      if (isPowerOf2_64(ElementSize)) {
2312        unsigned Amt = Log2_64(ElementSize);
2313        IdxN = DAG.getNode(ISD::SHL, N.getValueType(), IdxN,
2314                           DAG.getConstant(Amt, TLI.getShiftAmountTy()));
2315        N = DAG.getNode(ISD::ADD, N.getValueType(), N, IdxN);
2316        continue;
2317      }
2318
2319      SDOperand Scale = getIntPtrConstant(ElementSize);
2320      IdxN = DAG.getNode(ISD::MUL, N.getValueType(), IdxN, Scale);
2321      N = DAG.getNode(ISD::ADD, N.getValueType(), N, IdxN);
2322    }
2323  }
2324  setValue(&I, N);
2325}
2326
2327void SelectionDAGLowering::visitAlloca(AllocaInst &I) {
2328  // If this is a fixed sized alloca in the entry block of the function,
2329  // allocate it statically on the stack.
2330  if (FuncInfo.StaticAllocaMap.count(&I))
2331    return;   // getValue will auto-populate this.
2332
2333  const Type *Ty = I.getAllocatedType();
2334  uint64_t TySize = TLI.getTargetData()->getABITypeSize(Ty);
2335  unsigned Align =
2336    std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty),
2337             I.getAlignment());
2338
2339  SDOperand AllocSize = getValue(I.getArraySize());
2340  MVT::ValueType IntPtr = TLI.getPointerTy();
2341  if (IntPtr < AllocSize.getValueType())
2342    AllocSize = DAG.getNode(ISD::TRUNCATE, IntPtr, AllocSize);
2343  else if (IntPtr > AllocSize.getValueType())
2344    AllocSize = DAG.getNode(ISD::ZERO_EXTEND, IntPtr, AllocSize);
2345
2346  AllocSize = DAG.getNode(ISD::MUL, IntPtr, AllocSize,
2347                          getIntPtrConstant(TySize));
2348
2349  // Handle alignment.  If the requested alignment is less than or equal to
2350  // the stack alignment, ignore it.  If the size is greater than or equal to
2351  // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
2352  unsigned StackAlign =
2353    TLI.getTargetMachine().getFrameInfo()->getStackAlignment();
2354  if (Align <= StackAlign)
2355    Align = 0;
2356
2357  // Round the size of the allocation up to the stack alignment size
2358  // by add SA-1 to the size.
2359  AllocSize = DAG.getNode(ISD::ADD, AllocSize.getValueType(), AllocSize,
2360                          getIntPtrConstant(StackAlign-1));
2361  // Mask out the low bits for alignment purposes.
2362  AllocSize = DAG.getNode(ISD::AND, AllocSize.getValueType(), AllocSize,
2363                          getIntPtrConstant(~(uint64_t)(StackAlign-1)));
2364
2365  SDOperand Ops[] = { getRoot(), AllocSize, getIntPtrConstant(Align) };
2366  const MVT::ValueType *VTs = DAG.getNodeValueTypes(AllocSize.getValueType(),
2367                                                    MVT::Other);
2368  SDOperand DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, VTs, 2, Ops, 3);
2369  setValue(&I, DSA);
2370  DAG.setRoot(DSA.getValue(1));
2371
2372  // Inform the Frame Information that we have just allocated a variable-sized
2373  // object.
2374  CurMBB->getParent()->getFrameInfo()->CreateVariableSizedObject();
2375}
2376
2377void SelectionDAGLowering::visitLoad(LoadInst &I) {
2378  SDOperand Ptr = getValue(I.getOperand(0));
2379
2380  SDOperand Root;
2381  if (I.isVolatile())
2382    Root = getRoot();
2383  else {
2384    // Do not serialize non-volatile loads against each other.
2385    Root = DAG.getRoot();
2386  }
2387
2388  setValue(&I, getLoadFrom(I.getType(), Ptr, I.getOperand(0),
2389                           Root, I.isVolatile(), I.getAlignment()));
2390}
2391
2392SDOperand SelectionDAGLowering::getLoadFrom(const Type *Ty, SDOperand Ptr,
2393                                            const Value *SV, SDOperand Root,
2394                                            bool isVolatile,
2395                                            unsigned Alignment) {
2396  SDOperand L =
2397    DAG.getLoad(TLI.getValueType(Ty), Root, Ptr, SV, 0,
2398                isVolatile, Alignment);
2399
2400  if (isVolatile)
2401    DAG.setRoot(L.getValue(1));
2402  else
2403    PendingLoads.push_back(L.getValue(1));
2404
2405  return L;
2406}
2407
2408
2409void SelectionDAGLowering::visitStore(StoreInst &I) {
2410  Value *SrcV = I.getOperand(0);
2411  SDOperand Src = getValue(SrcV);
2412  SDOperand Ptr = getValue(I.getOperand(1));
2413  DAG.setRoot(DAG.getStore(getRoot(), Src, Ptr, I.getOperand(1), 0,
2414                           I.isVolatile(), I.getAlignment()));
2415}
2416
2417/// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
2418/// node.
2419void SelectionDAGLowering::visitTargetIntrinsic(CallInst &I,
2420                                                unsigned Intrinsic) {
2421  bool HasChain = !I.doesNotAccessMemory();
2422  bool OnlyLoad = HasChain && I.onlyReadsMemory();
2423
2424  // Build the operand list.
2425  SmallVector<SDOperand, 8> Ops;
2426  if (HasChain) {  // If this intrinsic has side-effects, chainify it.
2427    if (OnlyLoad) {
2428      // We don't need to serialize loads against other loads.
2429      Ops.push_back(DAG.getRoot());
2430    } else {
2431      Ops.push_back(getRoot());
2432    }
2433  }
2434
2435  // Add the intrinsic ID as an integer operand.
2436  Ops.push_back(DAG.getConstant(Intrinsic, TLI.getPointerTy()));
2437
2438  // Add all operands of the call to the operand list.
2439  for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) {
2440    SDOperand Op = getValue(I.getOperand(i));
2441    assert(TLI.isTypeLegal(Op.getValueType()) &&
2442           "Intrinsic uses a non-legal type?");
2443    Ops.push_back(Op);
2444  }
2445
2446  std::vector<MVT::ValueType> VTs;
2447  if (I.getType() != Type::VoidTy) {
2448    MVT::ValueType VT = TLI.getValueType(I.getType());
2449    if (MVT::isVector(VT)) {
2450      const VectorType *DestTy = cast<VectorType>(I.getType());
2451      MVT::ValueType EltVT = TLI.getValueType(DestTy->getElementType());
2452
2453      VT = MVT::getVectorType(EltVT, DestTy->getNumElements());
2454      assert(VT != MVT::Other && "Intrinsic uses a non-legal type?");
2455    }
2456
2457    assert(TLI.isTypeLegal(VT) && "Intrinsic uses a non-legal type?");
2458    VTs.push_back(VT);
2459  }
2460  if (HasChain)
2461    VTs.push_back(MVT::Other);
2462
2463  const MVT::ValueType *VTList = DAG.getNodeValueTypes(VTs);
2464
2465  // Create the node.
2466  SDOperand Result;
2467  if (!HasChain)
2468    Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, VTList, VTs.size(),
2469                         &Ops[0], Ops.size());
2470  else if (I.getType() != Type::VoidTy)
2471    Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, VTList, VTs.size(),
2472                         &Ops[0], Ops.size());
2473  else
2474    Result = DAG.getNode(ISD::INTRINSIC_VOID, VTList, VTs.size(),
2475                         &Ops[0], Ops.size());
2476
2477  if (HasChain) {
2478    SDOperand Chain = Result.getValue(Result.Val->getNumValues()-1);
2479    if (OnlyLoad)
2480      PendingLoads.push_back(Chain);
2481    else
2482      DAG.setRoot(Chain);
2483  }
2484  if (I.getType() != Type::VoidTy) {
2485    if (const VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
2486      MVT::ValueType VT = TLI.getValueType(PTy);
2487      Result = DAG.getNode(ISD::BIT_CONVERT, VT, Result);
2488    }
2489    setValue(&I, Result);
2490  }
2491}
2492
2493/// ExtractTypeInfo - Returns the type info, possibly bitcast, encoded in V.
2494static GlobalVariable *ExtractTypeInfo (Value *V) {
2495  V = IntrinsicInst::StripPointerCasts(V);
2496  GlobalVariable *GV = dyn_cast<GlobalVariable>(V);
2497  assert (GV || isa<ConstantPointerNull>(V) &&
2498          "TypeInfo must be a global variable or NULL");
2499  return GV;
2500}
2501
2502/// addCatchInfo - Extract the personality and type infos from an eh.selector
2503/// call, and add them to the specified machine basic block.
2504static void addCatchInfo(CallInst &I, MachineModuleInfo *MMI,
2505                         MachineBasicBlock *MBB) {
2506  // Inform the MachineModuleInfo of the personality for this landing pad.
2507  ConstantExpr *CE = cast<ConstantExpr>(I.getOperand(2));
2508  assert(CE->getOpcode() == Instruction::BitCast &&
2509         isa<Function>(CE->getOperand(0)) &&
2510         "Personality should be a function");
2511  MMI->addPersonality(MBB, cast<Function>(CE->getOperand(0)));
2512
2513  // Gather all the type infos for this landing pad and pass them along to
2514  // MachineModuleInfo.
2515  std::vector<GlobalVariable *> TyInfo;
2516  unsigned N = I.getNumOperands();
2517
2518  for (unsigned i = N - 1; i > 2; --i) {
2519    if (ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(i))) {
2520      unsigned FilterLength = CI->getZExtValue();
2521      unsigned FirstCatch = i + FilterLength + !FilterLength;
2522      assert (FirstCatch <= N && "Invalid filter length");
2523
2524      if (FirstCatch < N) {
2525        TyInfo.reserve(N - FirstCatch);
2526        for (unsigned j = FirstCatch; j < N; ++j)
2527          TyInfo.push_back(ExtractTypeInfo(I.getOperand(j)));
2528        MMI->addCatchTypeInfo(MBB, TyInfo);
2529        TyInfo.clear();
2530      }
2531
2532      if (!FilterLength) {
2533        // Cleanup.
2534        MMI->addCleanup(MBB);
2535      } else {
2536        // Filter.
2537        TyInfo.reserve(FilterLength - 1);
2538        for (unsigned j = i + 1; j < FirstCatch; ++j)
2539          TyInfo.push_back(ExtractTypeInfo(I.getOperand(j)));
2540        MMI->addFilterTypeInfo(MBB, TyInfo);
2541        TyInfo.clear();
2542      }
2543
2544      N = i;
2545    }
2546  }
2547
2548  if (N > 3) {
2549    TyInfo.reserve(N - 3);
2550    for (unsigned j = 3; j < N; ++j)
2551      TyInfo.push_back(ExtractTypeInfo(I.getOperand(j)));
2552    MMI->addCatchTypeInfo(MBB, TyInfo);
2553  }
2554}
2555
2556/// visitIntrinsicCall - Lower the call to the specified intrinsic function.  If
2557/// we want to emit this as a call to a named external function, return the name
2558/// otherwise lower it and return null.
2559const char *
2560SelectionDAGLowering::visitIntrinsicCall(CallInst &I, unsigned Intrinsic) {
2561  switch (Intrinsic) {
2562  default:
2563    // By default, turn this into a target intrinsic node.
2564    visitTargetIntrinsic(I, Intrinsic);
2565    return 0;
2566  case Intrinsic::vastart:  visitVAStart(I); return 0;
2567  case Intrinsic::vaend:    visitVAEnd(I); return 0;
2568  case Intrinsic::vacopy:   visitVACopy(I); return 0;
2569  case Intrinsic::returnaddress:
2570    setValue(&I, DAG.getNode(ISD::RETURNADDR, TLI.getPointerTy(),
2571                             getValue(I.getOperand(1))));
2572    return 0;
2573  case Intrinsic::frameaddress:
2574    setValue(&I, DAG.getNode(ISD::FRAMEADDR, TLI.getPointerTy(),
2575                             getValue(I.getOperand(1))));
2576    return 0;
2577  case Intrinsic::setjmp:
2578    return "_setjmp"+!TLI.usesUnderscoreSetJmp();
2579    break;
2580  case Intrinsic::longjmp:
2581    return "_longjmp"+!TLI.usesUnderscoreLongJmp();
2582    break;
2583  case Intrinsic::memcpy_i32:
2584  case Intrinsic::memcpy_i64:
2585    visitMemIntrinsic(I, ISD::MEMCPY);
2586    return 0;
2587  case Intrinsic::memset_i32:
2588  case Intrinsic::memset_i64:
2589    visitMemIntrinsic(I, ISD::MEMSET);
2590    return 0;
2591  case Intrinsic::memmove_i32:
2592  case Intrinsic::memmove_i64:
2593    visitMemIntrinsic(I, ISD::MEMMOVE);
2594    return 0;
2595
2596  case Intrinsic::dbg_stoppoint: {
2597    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2598    DbgStopPointInst &SPI = cast<DbgStopPointInst>(I);
2599    if (MMI && SPI.getContext() && MMI->Verify(SPI.getContext())) {
2600      SDOperand Ops[5];
2601
2602      Ops[0] = getRoot();
2603      Ops[1] = getValue(SPI.getLineValue());
2604      Ops[2] = getValue(SPI.getColumnValue());
2605
2606      DebugInfoDesc *DD = MMI->getDescFor(SPI.getContext());
2607      assert(DD && "Not a debug information descriptor");
2608      CompileUnitDesc *CompileUnit = cast<CompileUnitDesc>(DD);
2609
2610      Ops[3] = DAG.getString(CompileUnit->getFileName());
2611      Ops[4] = DAG.getString(CompileUnit->getDirectory());
2612
2613      DAG.setRoot(DAG.getNode(ISD::LOCATION, MVT::Other, Ops, 5));
2614    }
2615
2616    return 0;
2617  }
2618  case Intrinsic::dbg_region_start: {
2619    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2620    DbgRegionStartInst &RSI = cast<DbgRegionStartInst>(I);
2621    if (MMI && RSI.getContext() && MMI->Verify(RSI.getContext())) {
2622      unsigned LabelID = MMI->RecordRegionStart(RSI.getContext());
2623      DAG.setRoot(DAG.getNode(ISD::LABEL, MVT::Other, getRoot(),
2624                              DAG.getConstant(LabelID, MVT::i32)));
2625    }
2626
2627    return 0;
2628  }
2629  case Intrinsic::dbg_region_end: {
2630    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2631    DbgRegionEndInst &REI = cast<DbgRegionEndInst>(I);
2632    if (MMI && REI.getContext() && MMI->Verify(REI.getContext())) {
2633      unsigned LabelID = MMI->RecordRegionEnd(REI.getContext());
2634      DAG.setRoot(DAG.getNode(ISD::LABEL, MVT::Other,
2635                              getRoot(), DAG.getConstant(LabelID, MVT::i32)));
2636    }
2637
2638    return 0;
2639  }
2640  case Intrinsic::dbg_func_start: {
2641    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2642    DbgFuncStartInst &FSI = cast<DbgFuncStartInst>(I);
2643    if (MMI && FSI.getSubprogram() &&
2644        MMI->Verify(FSI.getSubprogram())) {
2645      unsigned LabelID = MMI->RecordRegionStart(FSI.getSubprogram());
2646      DAG.setRoot(DAG.getNode(ISD::LABEL, MVT::Other,
2647                  getRoot(), DAG.getConstant(LabelID, MVT::i32)));
2648    }
2649
2650    return 0;
2651  }
2652  case Intrinsic::dbg_declare: {
2653    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2654    DbgDeclareInst &DI = cast<DbgDeclareInst>(I);
2655    if (MMI && DI.getVariable() && MMI->Verify(DI.getVariable())) {
2656      SDOperand AddressOp  = getValue(DI.getAddress());
2657      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(AddressOp))
2658        MMI->RecordVariable(DI.getVariable(), FI->getIndex());
2659    }
2660
2661    return 0;
2662  }
2663
2664  case Intrinsic::eh_exception: {
2665    if (ExceptionHandling) {
2666      if (!CurMBB->isLandingPad()) {
2667        // FIXME: Mark exception register as live in.  Hack for PR1508.
2668        unsigned Reg = TLI.getExceptionAddressRegister();
2669        if (Reg) CurMBB->addLiveIn(Reg);
2670      }
2671      // Insert the EXCEPTIONADDR instruction.
2672      SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
2673      SDOperand Ops[1];
2674      Ops[0] = DAG.getRoot();
2675      SDOperand Op = DAG.getNode(ISD::EXCEPTIONADDR, VTs, Ops, 1);
2676      setValue(&I, Op);
2677      DAG.setRoot(Op.getValue(1));
2678    } else {
2679      setValue(&I, DAG.getConstant(0, TLI.getPointerTy()));
2680    }
2681    return 0;
2682  }
2683
2684  case Intrinsic::eh_selector_i32:
2685  case Intrinsic::eh_selector_i64: {
2686    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2687    MVT::ValueType VT = (Intrinsic == Intrinsic::eh_selector_i32 ?
2688                         MVT::i32 : MVT::i64);
2689
2690    if (ExceptionHandling && MMI) {
2691      if (CurMBB->isLandingPad())
2692        addCatchInfo(I, MMI, CurMBB);
2693      else {
2694#ifndef NDEBUG
2695        FuncInfo.CatchInfoLost.insert(&I);
2696#endif
2697        // FIXME: Mark exception selector register as live in.  Hack for PR1508.
2698        unsigned Reg = TLI.getExceptionSelectorRegister();
2699        if (Reg) CurMBB->addLiveIn(Reg);
2700      }
2701
2702      // Insert the EHSELECTION instruction.
2703      SDVTList VTs = DAG.getVTList(VT, MVT::Other);
2704      SDOperand Ops[2];
2705      Ops[0] = getValue(I.getOperand(1));
2706      Ops[1] = getRoot();
2707      SDOperand Op = DAG.getNode(ISD::EHSELECTION, VTs, Ops, 2);
2708      setValue(&I, Op);
2709      DAG.setRoot(Op.getValue(1));
2710    } else {
2711      setValue(&I, DAG.getConstant(0, VT));
2712    }
2713
2714    return 0;
2715  }
2716
2717  case Intrinsic::eh_typeid_for_i32:
2718  case Intrinsic::eh_typeid_for_i64: {
2719    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2720    MVT::ValueType VT = (Intrinsic == Intrinsic::eh_typeid_for_i32 ?
2721                         MVT::i32 : MVT::i64);
2722
2723    if (MMI) {
2724      // Find the type id for the given typeinfo.
2725      GlobalVariable *GV = ExtractTypeInfo(I.getOperand(1));
2726
2727      unsigned TypeID = MMI->getTypeIDFor(GV);
2728      setValue(&I, DAG.getConstant(TypeID, VT));
2729    } else {
2730      // Return something different to eh_selector.
2731      setValue(&I, DAG.getConstant(1, VT));
2732    }
2733
2734    return 0;
2735  }
2736
2737  case Intrinsic::eh_return: {
2738    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2739
2740    if (MMI && ExceptionHandling) {
2741      MMI->setCallsEHReturn(true);
2742      DAG.setRoot(DAG.getNode(ISD::EH_RETURN,
2743                              MVT::Other,
2744                              getRoot(),
2745                              getValue(I.getOperand(1)),
2746                              getValue(I.getOperand(2))));
2747    } else {
2748      setValue(&I, DAG.getConstant(0, TLI.getPointerTy()));
2749    }
2750
2751    return 0;
2752  }
2753
2754   case Intrinsic::eh_unwind_init: {
2755     if (MachineModuleInfo *MMI = DAG.getMachineModuleInfo()) {
2756       MMI->setCallsUnwindInit(true);
2757     }
2758
2759     return 0;
2760   }
2761
2762   case Intrinsic::eh_dwarf_cfa: {
2763     if (ExceptionHandling) {
2764       MVT::ValueType VT = getValue(I.getOperand(1)).getValueType();
2765       SDOperand CfaArg;
2766       if (MVT::getSizeInBits(VT) > MVT::getSizeInBits(TLI.getPointerTy()))
2767         CfaArg = DAG.getNode(ISD::TRUNCATE,
2768                              TLI.getPointerTy(), getValue(I.getOperand(1)));
2769       else
2770         CfaArg = DAG.getNode(ISD::SIGN_EXTEND,
2771                              TLI.getPointerTy(), getValue(I.getOperand(1)));
2772
2773       SDOperand Offset = DAG.getNode(ISD::ADD,
2774                                      TLI.getPointerTy(),
2775                                      DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET,
2776                                                  TLI.getPointerTy()),
2777                                      CfaArg);
2778       setValue(&I, DAG.getNode(ISD::ADD,
2779                                TLI.getPointerTy(),
2780                                DAG.getNode(ISD::FRAMEADDR,
2781                                            TLI.getPointerTy(),
2782                                            DAG.getConstant(0,
2783                                                            TLI.getPointerTy())),
2784                                Offset));
2785     } else {
2786       setValue(&I, DAG.getConstant(0, TLI.getPointerTy()));
2787     }
2788
2789     return 0;
2790  }
2791
2792  case Intrinsic::sqrt:
2793    setValue(&I, DAG.getNode(ISD::FSQRT,
2794                             getValue(I.getOperand(1)).getValueType(),
2795                             getValue(I.getOperand(1))));
2796    return 0;
2797  case Intrinsic::powi:
2798    setValue(&I, DAG.getNode(ISD::FPOWI,
2799                             getValue(I.getOperand(1)).getValueType(),
2800                             getValue(I.getOperand(1)),
2801                             getValue(I.getOperand(2))));
2802    return 0;
2803  case Intrinsic::sin:
2804    setValue(&I, DAG.getNode(ISD::FSIN,
2805                             getValue(I.getOperand(1)).getValueType(),
2806                             getValue(I.getOperand(1))));
2807    return 0;
2808  case Intrinsic::cos:
2809    setValue(&I, DAG.getNode(ISD::FCOS,
2810                             getValue(I.getOperand(1)).getValueType(),
2811                             getValue(I.getOperand(1))));
2812    return 0;
2813  case Intrinsic::pow:
2814    setValue(&I, DAG.getNode(ISD::FPOW,
2815                             getValue(I.getOperand(1)).getValueType(),
2816                             getValue(I.getOperand(1)),
2817                             getValue(I.getOperand(2))));
2818    return 0;
2819  case Intrinsic::pcmarker: {
2820    SDOperand Tmp = getValue(I.getOperand(1));
2821    DAG.setRoot(DAG.getNode(ISD::PCMARKER, MVT::Other, getRoot(), Tmp));
2822    return 0;
2823  }
2824  case Intrinsic::readcyclecounter: {
2825    SDOperand Op = getRoot();
2826    SDOperand Tmp = DAG.getNode(ISD::READCYCLECOUNTER,
2827                                DAG.getNodeValueTypes(MVT::i64, MVT::Other), 2,
2828                                &Op, 1);
2829    setValue(&I, Tmp);
2830    DAG.setRoot(Tmp.getValue(1));
2831    return 0;
2832  }
2833  case Intrinsic::part_select: {
2834    // Currently not implemented: just abort
2835    assert(0 && "part_select intrinsic not implemented");
2836    abort();
2837  }
2838  case Intrinsic::part_set: {
2839    // Currently not implemented: just abort
2840    assert(0 && "part_set intrinsic not implemented");
2841    abort();
2842  }
2843  case Intrinsic::bswap:
2844    setValue(&I, DAG.getNode(ISD::BSWAP,
2845                             getValue(I.getOperand(1)).getValueType(),
2846                             getValue(I.getOperand(1))));
2847    return 0;
2848  case Intrinsic::cttz: {
2849    SDOperand Arg = getValue(I.getOperand(1));
2850    MVT::ValueType Ty = Arg.getValueType();
2851    SDOperand result = DAG.getNode(ISD::CTTZ, Ty, Arg);
2852    setValue(&I, result);
2853    return 0;
2854  }
2855  case Intrinsic::ctlz: {
2856    SDOperand Arg = getValue(I.getOperand(1));
2857    MVT::ValueType Ty = Arg.getValueType();
2858    SDOperand result = DAG.getNode(ISD::CTLZ, Ty, Arg);
2859    setValue(&I, result);
2860    return 0;
2861  }
2862  case Intrinsic::ctpop: {
2863    SDOperand Arg = getValue(I.getOperand(1));
2864    MVT::ValueType Ty = Arg.getValueType();
2865    SDOperand result = DAG.getNode(ISD::CTPOP, Ty, Arg);
2866    setValue(&I, result);
2867    return 0;
2868  }
2869  case Intrinsic::stacksave: {
2870    SDOperand Op = getRoot();
2871    SDOperand Tmp = DAG.getNode(ISD::STACKSAVE,
2872              DAG.getNodeValueTypes(TLI.getPointerTy(), MVT::Other), 2, &Op, 1);
2873    setValue(&I, Tmp);
2874    DAG.setRoot(Tmp.getValue(1));
2875    return 0;
2876  }
2877  case Intrinsic::stackrestore: {
2878    SDOperand Tmp = getValue(I.getOperand(1));
2879    DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, MVT::Other, getRoot(), Tmp));
2880    return 0;
2881  }
2882  case Intrinsic::prefetch:
2883    // FIXME: Currently discarding prefetches.
2884    return 0;
2885
2886  case Intrinsic::var_annotation:
2887    // Discard annotate attributes
2888    return 0;
2889
2890  case Intrinsic::init_trampoline: {
2891    const Function *F =
2892      cast<Function>(IntrinsicInst::StripPointerCasts(I.getOperand(2)));
2893
2894    SDOperand Ops[6];
2895    Ops[0] = getRoot();
2896    Ops[1] = getValue(I.getOperand(1));
2897    Ops[2] = getValue(I.getOperand(2));
2898    Ops[3] = getValue(I.getOperand(3));
2899    Ops[4] = DAG.getSrcValue(I.getOperand(1));
2900    Ops[5] = DAG.getSrcValue(F);
2901
2902    SDOperand Tmp = DAG.getNode(ISD::TRAMPOLINE,
2903                                DAG.getNodeValueTypes(TLI.getPointerTy(),
2904                                                      MVT::Other), 2,
2905                                Ops, 6);
2906
2907    setValue(&I, Tmp);
2908    DAG.setRoot(Tmp.getValue(1));
2909    return 0;
2910  }
2911  case Intrinsic::flt_rounds: {
2912    setValue(&I, DAG.getNode(ISD::FLT_ROUNDS, MVT::i32));
2913    return 0;
2914  }
2915  }
2916}
2917
2918
2919void SelectionDAGLowering::LowerCallTo(CallSite CS, SDOperand Callee,
2920                                       bool IsTailCall,
2921                                       MachineBasicBlock *LandingPad) {
2922  const PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
2923  const FunctionType *FTy = cast<FunctionType>(PT->getElementType());
2924  MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2925  unsigned BeginLabel = 0, EndLabel = 0;
2926
2927  TargetLowering::ArgListTy Args;
2928  TargetLowering::ArgListEntry Entry;
2929  Args.reserve(CS.arg_size());
2930  for (CallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
2931       i != e; ++i) {
2932    SDOperand ArgNode = getValue(*i);
2933    Entry.Node = ArgNode; Entry.Ty = (*i)->getType();
2934
2935    unsigned attrInd = i - CS.arg_begin() + 1;
2936    Entry.isSExt  = CS.paramHasAttr(attrInd, ParamAttr::SExt);
2937    Entry.isZExt  = CS.paramHasAttr(attrInd, ParamAttr::ZExt);
2938    Entry.isInReg = CS.paramHasAttr(attrInd, ParamAttr::InReg);
2939    Entry.isSRet  = CS.paramHasAttr(attrInd, ParamAttr::StructRet);
2940    Entry.isNest  = CS.paramHasAttr(attrInd, ParamAttr::Nest);
2941    Entry.isByVal = CS.paramHasAttr(attrInd, ParamAttr::ByVal);
2942    Args.push_back(Entry);
2943  }
2944
2945  bool MarkTryRange = LandingPad ||
2946    // C++ requires special handling of 'nounwind' calls.
2947    (CS.doesNotThrow());
2948
2949  if (MarkTryRange && ExceptionHandling && MMI) {
2950    // Insert a label before the invoke call to mark the try range.  This can be
2951    // used to detect deletion of the invoke via the MachineModuleInfo.
2952    BeginLabel = MMI->NextLabelID();
2953    DAG.setRoot(DAG.getNode(ISD::LABEL, MVT::Other, getRoot(),
2954                            DAG.getConstant(BeginLabel, MVT::i32)));
2955  }
2956
2957  std::pair<SDOperand,SDOperand> Result =
2958    TLI.LowerCallTo(getRoot(), CS.getType(),
2959                    CS.paramHasAttr(0, ParamAttr::SExt),
2960                    FTy->isVarArg(), CS.getCallingConv(), IsTailCall,
2961                    Callee, Args, DAG);
2962  if (CS.getType() != Type::VoidTy)
2963    setValue(CS.getInstruction(), Result.first);
2964  DAG.setRoot(Result.second);
2965
2966  if (MarkTryRange && ExceptionHandling && MMI) {
2967    // Insert a label at the end of the invoke call to mark the try range.  This
2968    // can be used to detect deletion of the invoke via the MachineModuleInfo.
2969    EndLabel = MMI->NextLabelID();
2970    DAG.setRoot(DAG.getNode(ISD::LABEL, MVT::Other, getRoot(),
2971                            DAG.getConstant(EndLabel, MVT::i32)));
2972
2973    // Inform MachineModuleInfo of range.
2974    MMI->addInvoke(LandingPad, BeginLabel, EndLabel);
2975  }
2976}
2977
2978
2979void SelectionDAGLowering::visitCall(CallInst &I) {
2980  const char *RenameFn = 0;
2981  if (Function *F = I.getCalledFunction()) {
2982    if (F->isDeclaration()) {
2983      if (unsigned IID = F->getIntrinsicID()) {
2984        RenameFn = visitIntrinsicCall(I, IID);
2985        if (!RenameFn)
2986          return;
2987      }
2988    }
2989
2990    // Check for well-known libc/libm calls.  If the function is internal, it
2991    // can't be a library call.
2992    unsigned NameLen = F->getNameLen();
2993    if (!F->hasInternalLinkage() && NameLen) {
2994      const char *NameStr = F->getNameStart();
2995      if (NameStr[0] == 'c' &&
2996          ((NameLen == 8 && !strcmp(NameStr, "copysign")) ||
2997           (NameLen == 9 && !strcmp(NameStr, "copysignf")))) {
2998        if (I.getNumOperands() == 3 &&   // Basic sanity checks.
2999            I.getOperand(1)->getType()->isFloatingPoint() &&
3000            I.getType() == I.getOperand(1)->getType() &&
3001            I.getType() == I.getOperand(2)->getType()) {
3002          SDOperand LHS = getValue(I.getOperand(1));
3003          SDOperand RHS = getValue(I.getOperand(2));
3004          setValue(&I, DAG.getNode(ISD::FCOPYSIGN, LHS.getValueType(),
3005                                   LHS, RHS));
3006          return;
3007        }
3008      } else if (NameStr[0] == 'f' &&
3009                 ((NameLen == 4 && !strcmp(NameStr, "fabs")) ||
3010                  (NameLen == 5 && !strcmp(NameStr, "fabsf")) ||
3011                  (NameLen == 5 && !strcmp(NameStr, "fabsl")))) {
3012        if (I.getNumOperands() == 2 &&   // Basic sanity checks.
3013            I.getOperand(1)->getType()->isFloatingPoint() &&
3014            I.getType() == I.getOperand(1)->getType()) {
3015          SDOperand Tmp = getValue(I.getOperand(1));
3016          setValue(&I, DAG.getNode(ISD::FABS, Tmp.getValueType(), Tmp));
3017          return;
3018        }
3019      } else if (NameStr[0] == 's' &&
3020                 ((NameLen == 3 && !strcmp(NameStr, "sin")) ||
3021                  (NameLen == 4 && !strcmp(NameStr, "sinf")) ||
3022                  (NameLen == 4 && !strcmp(NameStr, "sinl")))) {
3023        if (I.getNumOperands() == 2 &&   // Basic sanity checks.
3024            I.getOperand(1)->getType()->isFloatingPoint() &&
3025            I.getType() == I.getOperand(1)->getType()) {
3026          SDOperand Tmp = getValue(I.getOperand(1));
3027          setValue(&I, DAG.getNode(ISD::FSIN, Tmp.getValueType(), Tmp));
3028          return;
3029        }
3030      } else if (NameStr[0] == 'c' &&
3031                 ((NameLen == 3 && !strcmp(NameStr, "cos")) ||
3032                  (NameLen == 4 && !strcmp(NameStr, "cosf")) ||
3033                  (NameLen == 4 && !strcmp(NameStr, "cosl")))) {
3034        if (I.getNumOperands() == 2 &&   // Basic sanity checks.
3035            I.getOperand(1)->getType()->isFloatingPoint() &&
3036            I.getType() == I.getOperand(1)->getType()) {
3037          SDOperand Tmp = getValue(I.getOperand(1));
3038          setValue(&I, DAG.getNode(ISD::FCOS, Tmp.getValueType(), Tmp));
3039          return;
3040        }
3041      }
3042    }
3043  } else if (isa<InlineAsm>(I.getOperand(0))) {
3044    visitInlineAsm(&I);
3045    return;
3046  }
3047
3048  SDOperand Callee;
3049  if (!RenameFn)
3050    Callee = getValue(I.getOperand(0));
3051  else
3052    Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy());
3053
3054  LowerCallTo(&I, Callee, I.isTailCall());
3055}
3056
3057
3058/// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
3059/// this value and returns the result as a ValueVT value.  This uses
3060/// Chain/Flag as the input and updates them for the output Chain/Flag.
3061/// If the Flag pointer is NULL, no flag is used.
3062SDOperand RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
3063                                        SDOperand &Chain, SDOperand *Flag)const{
3064  // Copy the legal parts from the registers.
3065  unsigned NumParts = Regs.size();
3066  SmallVector<SDOperand, 8> Parts(NumParts);
3067  for (unsigned i = 0; i != NumParts; ++i) {
3068    SDOperand Part = Flag ?
3069                     DAG.getCopyFromReg(Chain, Regs[i], RegVT, *Flag) :
3070                     DAG.getCopyFromReg(Chain, Regs[i], RegVT);
3071    Chain = Part.getValue(1);
3072    if (Flag)
3073      *Flag = Part.getValue(2);
3074    Parts[i] = Part;
3075  }
3076
3077  // Assemble the legal parts into the final value.
3078  return getCopyFromParts(DAG, &Parts[0], NumParts, RegVT, ValueVT);
3079}
3080
3081/// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
3082/// specified value into the registers specified by this object.  This uses
3083/// Chain/Flag as the input and updates them for the output Chain/Flag.
3084/// If the Flag pointer is NULL, no flag is used.
3085void RegsForValue::getCopyToRegs(SDOperand Val, SelectionDAG &DAG,
3086                                 SDOperand &Chain, SDOperand *Flag) const {
3087  // Get the list of the values's legal parts.
3088  unsigned NumParts = Regs.size();
3089  SmallVector<SDOperand, 8> Parts(NumParts);
3090  getCopyToParts(DAG, Val, &Parts[0], NumParts, RegVT);
3091
3092  // Copy the parts into the registers.
3093  for (unsigned i = 0; i != NumParts; ++i) {
3094    SDOperand Part = Flag ?
3095                     DAG.getCopyToReg(Chain, Regs[i], Parts[i], *Flag) :
3096                     DAG.getCopyToReg(Chain, Regs[i], Parts[i]);
3097    Chain = Part.getValue(0);
3098    if (Flag)
3099      *Flag = Part.getValue(1);
3100  }
3101}
3102
3103/// AddInlineAsmOperands - Add this value to the specified inlineasm node
3104/// operand list.  This adds the code marker and includes the number of
3105/// values added into it.
3106void RegsForValue::AddInlineAsmOperands(unsigned Code, SelectionDAG &DAG,
3107                                        std::vector<SDOperand> &Ops) const {
3108  MVT::ValueType IntPtrTy = DAG.getTargetLoweringInfo().getPointerTy();
3109  Ops.push_back(DAG.getTargetConstant(Code | (Regs.size() << 3), IntPtrTy));
3110  for (unsigned i = 0, e = Regs.size(); i != e; ++i)
3111    Ops.push_back(DAG.getRegister(Regs[i], RegVT));
3112}
3113
3114/// isAllocatableRegister - If the specified register is safe to allocate,
3115/// i.e. it isn't a stack pointer or some other special register, return the
3116/// register class for the register.  Otherwise, return null.
3117static const TargetRegisterClass *
3118isAllocatableRegister(unsigned Reg, MachineFunction &MF,
3119                      const TargetLowering &TLI, const MRegisterInfo *MRI) {
3120  MVT::ValueType FoundVT = MVT::Other;
3121  const TargetRegisterClass *FoundRC = 0;
3122  for (MRegisterInfo::regclass_iterator RCI = MRI->regclass_begin(),
3123       E = MRI->regclass_end(); RCI != E; ++RCI) {
3124    MVT::ValueType ThisVT = MVT::Other;
3125
3126    const TargetRegisterClass *RC = *RCI;
3127    // If none of the the value types for this register class are valid, we
3128    // can't use it.  For example, 64-bit reg classes on 32-bit targets.
3129    for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
3130         I != E; ++I) {
3131      if (TLI.isTypeLegal(*I)) {
3132        // If we have already found this register in a different register class,
3133        // choose the one with the largest VT specified.  For example, on
3134        // PowerPC, we favor f64 register classes over f32.
3135        if (FoundVT == MVT::Other ||
3136            MVT::getSizeInBits(FoundVT) < MVT::getSizeInBits(*I)) {
3137          ThisVT = *I;
3138          break;
3139        }
3140      }
3141    }
3142
3143    if (ThisVT == MVT::Other) continue;
3144
3145    // NOTE: This isn't ideal.  In particular, this might allocate the
3146    // frame pointer in functions that need it (due to them not being taken
3147    // out of allocation, because a variable sized allocation hasn't been seen
3148    // yet).  This is a slight code pessimization, but should still work.
3149    for (TargetRegisterClass::iterator I = RC->allocation_order_begin(MF),
3150         E = RC->allocation_order_end(MF); I != E; ++I)
3151      if (*I == Reg) {
3152        // We found a matching register class.  Keep looking at others in case
3153        // we find one with larger registers that this physreg is also in.
3154        FoundRC = RC;
3155        FoundVT = ThisVT;
3156        break;
3157      }
3158  }
3159  return FoundRC;
3160}
3161
3162
3163namespace {
3164/// AsmOperandInfo - This contains information for each constraint that we are
3165/// lowering.
3166struct AsmOperandInfo : public InlineAsm::ConstraintInfo {
3167  /// ConstraintCode - This contains the actual string for the code, like "m".
3168  std::string ConstraintCode;
3169
3170  /// ConstraintType - Information about the constraint code, e.g. Register,
3171  /// RegisterClass, Memory, Other, Unknown.
3172  TargetLowering::ConstraintType ConstraintType;
3173
3174  /// CallOperand/CallOperandval - If this is the result output operand or a
3175  /// clobber, this is null, otherwise it is the incoming operand to the
3176  /// CallInst.  This gets modified as the asm is processed.
3177  SDOperand CallOperand;
3178  Value *CallOperandVal;
3179
3180  /// ConstraintVT - The ValueType for the operand value.
3181  MVT::ValueType ConstraintVT;
3182
3183  /// AssignedRegs - If this is a register or register class operand, this
3184  /// contains the set of register corresponding to the operand.
3185  RegsForValue AssignedRegs;
3186
3187  AsmOperandInfo(const InlineAsm::ConstraintInfo &info)
3188    : InlineAsm::ConstraintInfo(info),
3189      ConstraintType(TargetLowering::C_Unknown),
3190      CallOperand(0,0), CallOperandVal(0), ConstraintVT(MVT::Other) {
3191  }
3192
3193  void ComputeConstraintToUse(const TargetLowering &TLI);
3194
3195  /// MarkAllocatedRegs - Once AssignedRegs is set, mark the assigned registers
3196  /// busy in OutputRegs/InputRegs.
3197  void MarkAllocatedRegs(bool isOutReg, bool isInReg,
3198                         std::set<unsigned> &OutputRegs,
3199                         std::set<unsigned> &InputRegs) const {
3200     if (isOutReg)
3201       OutputRegs.insert(AssignedRegs.Regs.begin(), AssignedRegs.Regs.end());
3202     if (isInReg)
3203       InputRegs.insert(AssignedRegs.Regs.begin(), AssignedRegs.Regs.end());
3204   }
3205};
3206} // end anon namespace.
3207
3208/// getConstraintGenerality - Return an integer indicating how general CT is.
3209static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
3210  switch (CT) {
3211    default: assert(0 && "Unknown constraint type!");
3212    case TargetLowering::C_Other:
3213    case TargetLowering::C_Unknown:
3214      return 0;
3215    case TargetLowering::C_Register:
3216      return 1;
3217    case TargetLowering::C_RegisterClass:
3218      return 2;
3219    case TargetLowering::C_Memory:
3220      return 3;
3221  }
3222}
3223
3224void AsmOperandInfo::ComputeConstraintToUse(const TargetLowering &TLI) {
3225  assert(!Codes.empty() && "Must have at least one constraint");
3226
3227  std::string *Current = &Codes[0];
3228  TargetLowering::ConstraintType CurType = TLI.getConstraintType(*Current);
3229  if (Codes.size() == 1) {   // Single-letter constraints ('r') are very common.
3230    ConstraintCode = *Current;
3231    ConstraintType = CurType;
3232    return;
3233  }
3234
3235  unsigned CurGenerality = getConstraintGenerality(CurType);
3236
3237  // If we have multiple constraints, try to pick the most general one ahead
3238  // of time.  This isn't a wonderful solution, but handles common cases.
3239  for (unsigned j = 1, e = Codes.size(); j != e; ++j) {
3240    TargetLowering::ConstraintType ThisType = TLI.getConstraintType(Codes[j]);
3241    unsigned ThisGenerality = getConstraintGenerality(ThisType);
3242    if (ThisGenerality > CurGenerality) {
3243      // This constraint letter is more general than the previous one,
3244      // use it.
3245      CurType = ThisType;
3246      Current = &Codes[j];
3247      CurGenerality = ThisGenerality;
3248    }
3249  }
3250
3251  ConstraintCode = *Current;
3252  ConstraintType = CurType;
3253}
3254
3255
3256void SelectionDAGLowering::
3257GetRegistersForValue(AsmOperandInfo &OpInfo, bool HasEarlyClobber,
3258                     std::set<unsigned> &OutputRegs,
3259                     std::set<unsigned> &InputRegs) {
3260  // Compute whether this value requires an input register, an output register,
3261  // or both.
3262  bool isOutReg = false;
3263  bool isInReg = false;
3264  switch (OpInfo.Type) {
3265  case InlineAsm::isOutput:
3266    isOutReg = true;
3267
3268    // If this is an early-clobber output, or if there is an input
3269    // constraint that matches this, we need to reserve the input register
3270    // so no other inputs allocate to it.
3271    isInReg = OpInfo.isEarlyClobber || OpInfo.hasMatchingInput;
3272    break;
3273  case InlineAsm::isInput:
3274    isInReg = true;
3275    isOutReg = false;
3276    break;
3277  case InlineAsm::isClobber:
3278    isOutReg = true;
3279    isInReg = true;
3280    break;
3281  }
3282
3283
3284  MachineFunction &MF = DAG.getMachineFunction();
3285  std::vector<unsigned> Regs;
3286
3287  // If this is a constraint for a single physreg, or a constraint for a
3288  // register class, find it.
3289  std::pair<unsigned, const TargetRegisterClass*> PhysReg =
3290    TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
3291                                     OpInfo.ConstraintVT);
3292
3293  unsigned NumRegs = 1;
3294  if (OpInfo.ConstraintVT != MVT::Other)
3295    NumRegs = TLI.getNumRegisters(OpInfo.ConstraintVT);
3296  MVT::ValueType RegVT;
3297  MVT::ValueType ValueVT = OpInfo.ConstraintVT;
3298
3299
3300  // If this is a constraint for a specific physical register, like {r17},
3301  // assign it now.
3302  if (PhysReg.first) {
3303    if (OpInfo.ConstraintVT == MVT::Other)
3304      ValueVT = *PhysReg.second->vt_begin();
3305
3306    // Get the actual register value type.  This is important, because the user
3307    // may have asked for (e.g.) the AX register in i32 type.  We need to
3308    // remember that AX is actually i16 to get the right extension.
3309    RegVT = *PhysReg.second->vt_begin();
3310
3311    // This is a explicit reference to a physical register.
3312    Regs.push_back(PhysReg.first);
3313
3314    // If this is an expanded reference, add the rest of the regs to Regs.
3315    if (NumRegs != 1) {
3316      TargetRegisterClass::iterator I = PhysReg.second->begin();
3317      TargetRegisterClass::iterator E = PhysReg.second->end();
3318      for (; *I != PhysReg.first; ++I)
3319        assert(I != E && "Didn't find reg!");
3320
3321      // Already added the first reg.
3322      --NumRegs; ++I;
3323      for (; NumRegs; --NumRegs, ++I) {
3324        assert(I != E && "Ran out of registers to allocate!");
3325        Regs.push_back(*I);
3326      }
3327    }
3328    OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
3329    OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs);
3330    return;
3331  }
3332
3333  // Otherwise, if this was a reference to an LLVM register class, create vregs
3334  // for this reference.
3335  std::vector<unsigned> RegClassRegs;
3336  const TargetRegisterClass *RC = PhysReg.second;
3337  if (RC) {
3338    // If this is an early clobber or tied register, our regalloc doesn't know
3339    // how to maintain the constraint.  If it isn't, go ahead and create vreg
3340    // and let the regalloc do the right thing.
3341    if (!OpInfo.hasMatchingInput && !OpInfo.isEarlyClobber &&
3342        // If there is some other early clobber and this is an input register,
3343        // then we are forced to pre-allocate the input reg so it doesn't
3344        // conflict with the earlyclobber.
3345        !(OpInfo.Type == InlineAsm::isInput && HasEarlyClobber)) {
3346      RegVT = *PhysReg.second->vt_begin();
3347
3348      if (OpInfo.ConstraintVT == MVT::Other)
3349        ValueVT = RegVT;
3350
3351      // Create the appropriate number of virtual registers.
3352      SSARegMap *RegMap = MF.getSSARegMap();
3353      for (; NumRegs; --NumRegs)
3354        Regs.push_back(RegMap->createVirtualRegister(PhysReg.second));
3355
3356      OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
3357      OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs);
3358      return;
3359    }
3360
3361    // Otherwise, we can't allocate it.  Let the code below figure out how to
3362    // maintain these constraints.
3363    RegClassRegs.assign(PhysReg.second->begin(), PhysReg.second->end());
3364
3365  } else {
3366    // This is a reference to a register class that doesn't directly correspond
3367    // to an LLVM register class.  Allocate NumRegs consecutive, available,
3368    // registers from the class.
3369    RegClassRegs = TLI.getRegClassForInlineAsmConstraint(OpInfo.ConstraintCode,
3370                                                         OpInfo.ConstraintVT);
3371  }
3372
3373  const MRegisterInfo *MRI = DAG.getTarget().getRegisterInfo();
3374  unsigned NumAllocated = 0;
3375  for (unsigned i = 0, e = RegClassRegs.size(); i != e; ++i) {
3376    unsigned Reg = RegClassRegs[i];
3377    // See if this register is available.
3378    if ((isOutReg && OutputRegs.count(Reg)) ||   // Already used.
3379        (isInReg  && InputRegs.count(Reg))) {    // Already used.
3380      // Make sure we find consecutive registers.
3381      NumAllocated = 0;
3382      continue;
3383    }
3384
3385    // Check to see if this register is allocatable (i.e. don't give out the
3386    // stack pointer).
3387    if (RC == 0) {
3388      RC = isAllocatableRegister(Reg, MF, TLI, MRI);
3389      if (!RC) {        // Couldn't allocate this register.
3390        // Reset NumAllocated to make sure we return consecutive registers.
3391        NumAllocated = 0;
3392        continue;
3393      }
3394    }
3395
3396    // Okay, this register is good, we can use it.
3397    ++NumAllocated;
3398
3399    // If we allocated enough consecutive registers, succeed.
3400    if (NumAllocated == NumRegs) {
3401      unsigned RegStart = (i-NumAllocated)+1;
3402      unsigned RegEnd   = i+1;
3403      // Mark all of the allocated registers used.
3404      for (unsigned i = RegStart; i != RegEnd; ++i)
3405        Regs.push_back(RegClassRegs[i]);
3406
3407      OpInfo.AssignedRegs = RegsForValue(Regs, *RC->vt_begin(),
3408                                         OpInfo.ConstraintVT);
3409      OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs);
3410      return;
3411    }
3412  }
3413
3414  // Otherwise, we couldn't allocate enough registers for this.
3415  return;
3416}
3417
3418
3419/// visitInlineAsm - Handle a call to an InlineAsm object.
3420///
3421void SelectionDAGLowering::visitInlineAsm(CallSite CS) {
3422  InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
3423
3424  /// ConstraintOperands - Information about all of the constraints.
3425  std::vector<AsmOperandInfo> ConstraintOperands;
3426
3427  SDOperand Chain = getRoot();
3428  SDOperand Flag;
3429
3430  std::set<unsigned> OutputRegs, InputRegs;
3431
3432  // Do a prepass over the constraints, canonicalizing them, and building up the
3433  // ConstraintOperands list.
3434  std::vector<InlineAsm::ConstraintInfo>
3435    ConstraintInfos = IA->ParseConstraints();
3436
3437  // SawEarlyClobber - Keep track of whether we saw an earlyclobber output
3438  // constraint.  If so, we can't let the register allocator allocate any input
3439  // registers, because it will not know to avoid the earlyclobbered output reg.
3440  bool SawEarlyClobber = false;
3441
3442  unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
3443  for (unsigned i = 0, e = ConstraintInfos.size(); i != e; ++i) {
3444    ConstraintOperands.push_back(AsmOperandInfo(ConstraintInfos[i]));
3445    AsmOperandInfo &OpInfo = ConstraintOperands.back();
3446
3447    MVT::ValueType OpVT = MVT::Other;
3448
3449    // Compute the value type for each operand.
3450    switch (OpInfo.Type) {
3451    case InlineAsm::isOutput:
3452      if (!OpInfo.isIndirect) {
3453        // The return value of the call is this value.  As such, there is no
3454        // corresponding argument.
3455        assert(CS.getType() != Type::VoidTy && "Bad inline asm!");
3456        OpVT = TLI.getValueType(CS.getType());
3457      } else {
3458        OpInfo.CallOperandVal = CS.getArgument(ArgNo++);
3459      }
3460      break;
3461    case InlineAsm::isInput:
3462      OpInfo.CallOperandVal = CS.getArgument(ArgNo++);
3463      break;
3464    case InlineAsm::isClobber:
3465      // Nothing to do.
3466      break;
3467    }
3468
3469    // If this is an input or an indirect output, process the call argument.
3470    // BasicBlocks are labels, currently appearing only in asm's.
3471    if (OpInfo.CallOperandVal) {
3472      if (isa<BasicBlock>(OpInfo.CallOperandVal))
3473        OpInfo.CallOperand =
3474          DAG.getBasicBlock(FuncInfo.MBBMap[cast<BasicBlock>(OpInfo.CallOperandVal)]);
3475      else {
3476        OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
3477        const Type *OpTy = OpInfo.CallOperandVal->getType();
3478        // If this is an indirect operand, the operand is a pointer to the
3479        // accessed type.
3480        if (OpInfo.isIndirect)
3481          OpTy = cast<PointerType>(OpTy)->getElementType();
3482
3483        // If OpTy is not a first-class value, it may be a struct/union that we
3484        // can tile with integers.
3485        if (!OpTy->isFirstClassType() && OpTy->isSized()) {
3486          unsigned BitSize = TD->getTypeSizeInBits(OpTy);
3487          switch (BitSize) {
3488          default: break;
3489          case 1:
3490          case 8:
3491          case 16:
3492          case 32:
3493          case 64:
3494            OpTy = IntegerType::get(BitSize);
3495            break;
3496          }
3497        }
3498
3499        OpVT = TLI.getValueType(OpTy, true);
3500      }
3501    }
3502
3503    OpInfo.ConstraintVT = OpVT;
3504
3505    // Compute the constraint code and ConstraintType to use.
3506    OpInfo.ComputeConstraintToUse(TLI);
3507
3508    // Keep track of whether we see an earlyclobber.
3509    SawEarlyClobber |= OpInfo.isEarlyClobber;
3510
3511    // If this is a memory input, and if the operand is not indirect, do what we
3512    // need to to provide an address for the memory input.
3513    if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
3514        !OpInfo.isIndirect) {
3515      assert(OpInfo.Type == InlineAsm::isInput &&
3516             "Can only indirectify direct input operands!");
3517
3518      // Memory operands really want the address of the value.  If we don't have
3519      // an indirect input, put it in the constpool if we can, otherwise spill
3520      // it to a stack slot.
3521
3522      // If the operand is a float, integer, or vector constant, spill to a
3523      // constant pool entry to get its address.
3524      Value *OpVal = OpInfo.CallOperandVal;
3525      if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
3526          isa<ConstantVector>(OpVal)) {
3527        OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal),
3528                                                 TLI.getPointerTy());
3529      } else {
3530        // Otherwise, create a stack slot and emit a store to it before the
3531        // asm.
3532        const Type *Ty = OpVal->getType();
3533        uint64_t TySize = TLI.getTargetData()->getABITypeSize(Ty);
3534        unsigned Align  = TLI.getTargetData()->getPrefTypeAlignment(Ty);
3535        MachineFunction &MF = DAG.getMachineFunction();
3536        int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align);
3537        SDOperand StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy());
3538        Chain = DAG.getStore(Chain, OpInfo.CallOperand, StackSlot, NULL, 0);
3539        OpInfo.CallOperand = StackSlot;
3540      }
3541
3542      // There is no longer a Value* corresponding to this operand.
3543      OpInfo.CallOperandVal = 0;
3544      // It is now an indirect operand.
3545      OpInfo.isIndirect = true;
3546    }
3547
3548    // If this constraint is for a specific register, allocate it before
3549    // anything else.
3550    if (OpInfo.ConstraintType == TargetLowering::C_Register)
3551      GetRegistersForValue(OpInfo, SawEarlyClobber, OutputRegs, InputRegs);
3552  }
3553  ConstraintInfos.clear();
3554
3555
3556  // Second pass - Loop over all of the operands, assigning virtual or physregs
3557  // to registerclass operands.
3558  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
3559    AsmOperandInfo &OpInfo = ConstraintOperands[i];
3560
3561    // C_Register operands have already been allocated, Other/Memory don't need
3562    // to be.
3563    if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass)
3564      GetRegistersForValue(OpInfo, SawEarlyClobber, OutputRegs, InputRegs);
3565  }
3566
3567  // AsmNodeOperands - The operands for the ISD::INLINEASM node.
3568  std::vector<SDOperand> AsmNodeOperands;
3569  AsmNodeOperands.push_back(SDOperand());  // reserve space for input chain
3570  AsmNodeOperands.push_back(
3571          DAG.getTargetExternalSymbol(IA->getAsmString().c_str(), MVT::Other));
3572
3573
3574  // Loop over all of the inputs, copying the operand values into the
3575  // appropriate registers and processing the output regs.
3576  RegsForValue RetValRegs;
3577
3578  // IndirectStoresToEmit - The set of stores to emit after the inline asm node.
3579  std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit;
3580
3581  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
3582    AsmOperandInfo &OpInfo = ConstraintOperands[i];
3583
3584    switch (OpInfo.Type) {
3585    case InlineAsm::isOutput: {
3586      if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass &&
3587          OpInfo.ConstraintType != TargetLowering::C_Register) {
3588        // Memory output, or 'other' output (e.g. 'X' constraint).
3589        assert(OpInfo.isIndirect && "Memory output must be indirect operand");
3590
3591        // Add information to the INLINEASM node to know about this output.
3592        unsigned ResOpType = 4/*MEM*/ | (1 << 3);
3593        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
3594                                                        TLI.getPointerTy()));
3595        AsmNodeOperands.push_back(OpInfo.CallOperand);
3596        break;
3597      }
3598
3599      // Otherwise, this is a register or register class output.
3600
3601      // Copy the output from the appropriate register.  Find a register that
3602      // we can use.
3603      if (OpInfo.AssignedRegs.Regs.empty()) {
3604        cerr << "Couldn't allocate output reg for contraint '"
3605             << OpInfo.ConstraintCode << "'!\n";
3606        exit(1);
3607      }
3608
3609      if (!OpInfo.isIndirect) {
3610        // This is the result value of the call.
3611        assert(RetValRegs.Regs.empty() &&
3612               "Cannot have multiple output constraints yet!");
3613        assert(CS.getType() != Type::VoidTy && "Bad inline asm!");
3614        RetValRegs = OpInfo.AssignedRegs;
3615      } else {
3616        IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs,
3617                                                      OpInfo.CallOperandVal));
3618      }
3619
3620      // Add information to the INLINEASM node to know that this register is
3621      // set.
3622      OpInfo.AssignedRegs.AddInlineAsmOperands(2 /*REGDEF*/, DAG,
3623                                               AsmNodeOperands);
3624      break;
3625    }
3626    case InlineAsm::isInput: {
3627      SDOperand InOperandVal = OpInfo.CallOperand;
3628
3629      if (isdigit(OpInfo.ConstraintCode[0])) {    // Matching constraint?
3630        // If this is required to match an output register we have already set,
3631        // just use its register.
3632        unsigned OperandNo = atoi(OpInfo.ConstraintCode.c_str());
3633
3634        // Scan until we find the definition we already emitted of this operand.
3635        // When we find it, create a RegsForValue operand.
3636        unsigned CurOp = 2;  // The first operand.
3637        for (; OperandNo; --OperandNo) {
3638          // Advance to the next operand.
3639          unsigned NumOps =
3640            cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getValue();
3641          assert(((NumOps & 7) == 2 /*REGDEF*/ ||
3642                  (NumOps & 7) == 4 /*MEM*/) &&
3643                 "Skipped past definitions?");
3644          CurOp += (NumOps>>3)+1;
3645        }
3646
3647        unsigned NumOps =
3648          cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getValue();
3649        if ((NumOps & 7) == 2 /*REGDEF*/) {
3650          // Add NumOps>>3 registers to MatchedRegs.
3651          RegsForValue MatchedRegs;
3652          MatchedRegs.ValueVT = InOperandVal.getValueType();
3653          MatchedRegs.RegVT   = AsmNodeOperands[CurOp+1].getValueType();
3654          for (unsigned i = 0, e = NumOps>>3; i != e; ++i) {
3655            unsigned Reg =
3656              cast<RegisterSDNode>(AsmNodeOperands[++CurOp])->getReg();
3657            MatchedRegs.Regs.push_back(Reg);
3658          }
3659
3660          // Use the produced MatchedRegs object to
3661          MatchedRegs.getCopyToRegs(InOperandVal, DAG, Chain, &Flag);
3662          MatchedRegs.AddInlineAsmOperands(1 /*REGUSE*/, DAG, AsmNodeOperands);
3663          break;
3664        } else {
3665          assert((NumOps & 7) == 4/*MEM*/ && "Unknown matching constraint!");
3666          assert(0 && "matching constraints for memory operands unimp");
3667        }
3668      }
3669
3670      if (OpInfo.ConstraintType == TargetLowering::C_Other) {
3671        assert(!OpInfo.isIndirect &&
3672               "Don't know how to handle indirect other inputs yet!");
3673
3674        std::vector<SDOperand> Ops;
3675        TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode[0],
3676                                         Ops, DAG);
3677        if (Ops.empty()) {
3678          cerr << "Invalid operand for inline asm constraint '"
3679               << OpInfo.ConstraintCode << "'!\n";
3680          exit(1);
3681        }
3682
3683        // Add information to the INLINEASM node to know about this input.
3684        unsigned ResOpType = 3 /*IMM*/ | (Ops.size() << 3);
3685        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
3686                                                        TLI.getPointerTy()));
3687        AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
3688        break;
3689      } else if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
3690        assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
3691        assert(InOperandVal.getValueType() == TLI.getPointerTy() &&
3692               "Memory operands expect pointer values");
3693
3694        // Add information to the INLINEASM node to know about this input.
3695        unsigned ResOpType = 4/*MEM*/ | (1 << 3);
3696        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
3697                                                        TLI.getPointerTy()));
3698        AsmNodeOperands.push_back(InOperandVal);
3699        break;
3700      }
3701
3702      assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
3703              OpInfo.ConstraintType == TargetLowering::C_Register) &&
3704             "Unknown constraint type!");
3705      assert(!OpInfo.isIndirect &&
3706             "Don't know how to handle indirect register inputs yet!");
3707
3708      // Copy the input into the appropriate registers.
3709      assert(!OpInfo.AssignedRegs.Regs.empty() &&
3710             "Couldn't allocate input reg!");
3711
3712      OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, Chain, &Flag);
3713
3714      OpInfo.AssignedRegs.AddInlineAsmOperands(1/*REGUSE*/, DAG,
3715                                               AsmNodeOperands);
3716      break;
3717    }
3718    case InlineAsm::isClobber: {
3719      // Add the clobbered value to the operand list, so that the register
3720      // allocator is aware that the physreg got clobbered.
3721      if (!OpInfo.AssignedRegs.Regs.empty())
3722        OpInfo.AssignedRegs.AddInlineAsmOperands(2/*REGDEF*/, DAG,
3723                                                 AsmNodeOperands);
3724      break;
3725    }
3726    }
3727  }
3728
3729  // Finish up input operands.
3730  AsmNodeOperands[0] = Chain;
3731  if (Flag.Val) AsmNodeOperands.push_back(Flag);
3732
3733  Chain = DAG.getNode(ISD::INLINEASM,
3734                      DAG.getNodeValueTypes(MVT::Other, MVT::Flag), 2,
3735                      &AsmNodeOperands[0], AsmNodeOperands.size());
3736  Flag = Chain.getValue(1);
3737
3738  // If this asm returns a register value, copy the result from that register
3739  // and set it as the value of the call.
3740  if (!RetValRegs.Regs.empty()) {
3741    SDOperand Val = RetValRegs.getCopyFromRegs(DAG, Chain, &Flag);
3742
3743    // If the result of the inline asm is a vector, it may have the wrong
3744    // width/num elts.  Make sure to convert it to the right type with
3745    // bit_convert.
3746    if (MVT::isVector(Val.getValueType())) {
3747      const VectorType *VTy = cast<VectorType>(CS.getType());
3748      MVT::ValueType DesiredVT = TLI.getValueType(VTy);
3749
3750      Val = DAG.getNode(ISD::BIT_CONVERT, DesiredVT, Val);
3751    }
3752
3753    setValue(CS.getInstruction(), Val);
3754  }
3755
3756  std::vector<std::pair<SDOperand, Value*> > StoresToEmit;
3757
3758  // Process indirect outputs, first output all of the flagged copies out of
3759  // physregs.
3760  for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
3761    RegsForValue &OutRegs = IndirectStoresToEmit[i].first;
3762    Value *Ptr = IndirectStoresToEmit[i].second;
3763    SDOperand OutVal = OutRegs.getCopyFromRegs(DAG, Chain, &Flag);
3764    StoresToEmit.push_back(std::make_pair(OutVal, Ptr));
3765  }
3766
3767  // Emit the non-flagged stores from the physregs.
3768  SmallVector<SDOperand, 8> OutChains;
3769  for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i)
3770    OutChains.push_back(DAG.getStore(Chain, StoresToEmit[i].first,
3771                                    getValue(StoresToEmit[i].second),
3772                                    StoresToEmit[i].second, 0));
3773  if (!OutChains.empty())
3774    Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
3775                        &OutChains[0], OutChains.size());
3776  DAG.setRoot(Chain);
3777}
3778
3779
3780void SelectionDAGLowering::visitMalloc(MallocInst &I) {
3781  SDOperand Src = getValue(I.getOperand(0));
3782
3783  MVT::ValueType IntPtr = TLI.getPointerTy();
3784
3785  if (IntPtr < Src.getValueType())
3786    Src = DAG.getNode(ISD::TRUNCATE, IntPtr, Src);
3787  else if (IntPtr > Src.getValueType())
3788    Src = DAG.getNode(ISD::ZERO_EXTEND, IntPtr, Src);
3789
3790  // Scale the source by the type size.
3791  uint64_t ElementSize = TD->getABITypeSize(I.getType()->getElementType());
3792  Src = DAG.getNode(ISD::MUL, Src.getValueType(),
3793                    Src, getIntPtrConstant(ElementSize));
3794
3795  TargetLowering::ArgListTy Args;
3796  TargetLowering::ArgListEntry Entry;
3797  Entry.Node = Src;
3798  Entry.Ty = TLI.getTargetData()->getIntPtrType();
3799  Args.push_back(Entry);
3800
3801  std::pair<SDOperand,SDOperand> Result =
3802    TLI.LowerCallTo(getRoot(), I.getType(), false, false, CallingConv::C, true,
3803                    DAG.getExternalSymbol("malloc", IntPtr),
3804                    Args, DAG);
3805  setValue(&I, Result.first);  // Pointers always fit in registers
3806  DAG.setRoot(Result.second);
3807}
3808
3809void SelectionDAGLowering::visitFree(FreeInst &I) {
3810  TargetLowering::ArgListTy Args;
3811  TargetLowering::ArgListEntry Entry;
3812  Entry.Node = getValue(I.getOperand(0));
3813  Entry.Ty = TLI.getTargetData()->getIntPtrType();
3814  Args.push_back(Entry);
3815  MVT::ValueType IntPtr = TLI.getPointerTy();
3816  std::pair<SDOperand,SDOperand> Result =
3817    TLI.LowerCallTo(getRoot(), Type::VoidTy, false, false, CallingConv::C, true,
3818                    DAG.getExternalSymbol("free", IntPtr), Args, DAG);
3819  DAG.setRoot(Result.second);
3820}
3821
3822// InsertAtEndOfBasicBlock - This method should be implemented by targets that
3823// mark instructions with the 'usesCustomDAGSchedInserter' flag.  These
3824// instructions are special in various ways, which require special support to
3825// insert.  The specified MachineInstr is created but not inserted into any
3826// basic blocks, and the scheduler passes ownership of it to this method.
3827MachineBasicBlock *TargetLowering::InsertAtEndOfBasicBlock(MachineInstr *MI,
3828                                                       MachineBasicBlock *MBB) {
3829  cerr << "If a target marks an instruction with "
3830       << "'usesCustomDAGSchedInserter', it must implement "
3831       << "TargetLowering::InsertAtEndOfBasicBlock!\n";
3832  abort();
3833  return 0;
3834}
3835
3836void SelectionDAGLowering::visitVAStart(CallInst &I) {
3837  DAG.setRoot(DAG.getNode(ISD::VASTART, MVT::Other, getRoot(),
3838                          getValue(I.getOperand(1)),
3839                          DAG.getSrcValue(I.getOperand(1))));
3840}
3841
3842void SelectionDAGLowering::visitVAArg(VAArgInst &I) {
3843  SDOperand V = DAG.getVAArg(TLI.getValueType(I.getType()), getRoot(),
3844                             getValue(I.getOperand(0)),
3845                             DAG.getSrcValue(I.getOperand(0)));
3846  setValue(&I, V);
3847  DAG.setRoot(V.getValue(1));
3848}
3849
3850void SelectionDAGLowering::visitVAEnd(CallInst &I) {
3851  DAG.setRoot(DAG.getNode(ISD::VAEND, MVT::Other, getRoot(),
3852                          getValue(I.getOperand(1)),
3853                          DAG.getSrcValue(I.getOperand(1))));
3854}
3855
3856void SelectionDAGLowering::visitVACopy(CallInst &I) {
3857  DAG.setRoot(DAG.getNode(ISD::VACOPY, MVT::Other, getRoot(),
3858                          getValue(I.getOperand(1)),
3859                          getValue(I.getOperand(2)),
3860                          DAG.getSrcValue(I.getOperand(1)),
3861                          DAG.getSrcValue(I.getOperand(2))));
3862}
3863
3864/// TargetLowering::LowerArguments - This is the default LowerArguments
3865/// implementation, which just inserts a FORMAL_ARGUMENTS node.  FIXME: When all
3866/// targets are migrated to using FORMAL_ARGUMENTS, this hook should be
3867/// integrated into SDISel.
3868std::vector<SDOperand>
3869TargetLowering::LowerArguments(Function &F, SelectionDAG &DAG) {
3870  // Add CC# and isVararg as operands to the FORMAL_ARGUMENTS node.
3871  std::vector<SDOperand> Ops;
3872  Ops.push_back(DAG.getRoot());
3873  Ops.push_back(DAG.getConstant(F.getCallingConv(), getPointerTy()));
3874  Ops.push_back(DAG.getConstant(F.isVarArg(), getPointerTy()));
3875
3876  // Add one result value for each formal argument.
3877  std::vector<MVT::ValueType> RetVals;
3878  unsigned j = 1;
3879  for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end();
3880       I != E; ++I, ++j) {
3881    MVT::ValueType VT = getValueType(I->getType());
3882    unsigned Flags = ISD::ParamFlags::NoFlagSet;
3883    unsigned OriginalAlignment =
3884      getTargetData()->getABITypeAlignment(I->getType());
3885
3886    // FIXME: Distinguish between a formal with no [sz]ext attribute from one
3887    // that is zero extended!
3888    if (F.paramHasAttr(j, ParamAttr::ZExt))
3889      Flags &= ~(ISD::ParamFlags::SExt);
3890    if (F.paramHasAttr(j, ParamAttr::SExt))
3891      Flags |= ISD::ParamFlags::SExt;
3892    if (F.paramHasAttr(j, ParamAttr::InReg))
3893      Flags |= ISD::ParamFlags::InReg;
3894    if (F.paramHasAttr(j, ParamAttr::StructRet))
3895      Flags |= ISD::ParamFlags::StructReturn;
3896    if (F.paramHasAttr(j, ParamAttr::ByVal)) {
3897      Flags |= ISD::ParamFlags::ByVal;
3898      const PointerType *Ty = cast<PointerType>(I->getType());
3899      const StructType *STy = cast<StructType>(Ty->getElementType());
3900      unsigned StructAlign =
3901          Log2_32(getTargetData()->getCallFrameTypeAlignment(STy));
3902      unsigned StructSize  = getTargetData()->getABITypeSize(STy);
3903      Flags |= (StructAlign << ISD::ParamFlags::ByValAlignOffs);
3904      Flags |= (StructSize  << ISD::ParamFlags::ByValSizeOffs);
3905    }
3906    if (F.paramHasAttr(j, ParamAttr::Nest))
3907      Flags |= ISD::ParamFlags::Nest;
3908    Flags |= (OriginalAlignment << ISD::ParamFlags::OrigAlignmentOffs);
3909
3910    switch (getTypeAction(VT)) {
3911    default: assert(0 && "Unknown type action!");
3912    case Legal:
3913      RetVals.push_back(VT);
3914      Ops.push_back(DAG.getConstant(Flags, MVT::i32));
3915      break;
3916    case Promote:
3917      RetVals.push_back(getTypeToTransformTo(VT));
3918      Ops.push_back(DAG.getConstant(Flags, MVT::i32));
3919      break;
3920    case Expand: {
3921      // If this is an illegal type, it needs to be broken up to fit into
3922      // registers.
3923      MVT::ValueType RegisterVT = getRegisterType(VT);
3924      unsigned NumRegs = getNumRegisters(VT);
3925      for (unsigned i = 0; i != NumRegs; ++i) {
3926        RetVals.push_back(RegisterVT);
3927        // if it isn't first piece, alignment must be 1
3928        if (i > 0)
3929          Flags = (Flags & (~ISD::ParamFlags::OrigAlignment)) |
3930            (1 << ISD::ParamFlags::OrigAlignmentOffs);
3931        Ops.push_back(DAG.getConstant(Flags, MVT::i32));
3932      }
3933      break;
3934    }
3935    }
3936  }
3937
3938  RetVals.push_back(MVT::Other);
3939
3940  // Create the node.
3941  SDNode *Result = DAG.getNode(ISD::FORMAL_ARGUMENTS,
3942                               DAG.getNodeValueTypes(RetVals), RetVals.size(),
3943                               &Ops[0], Ops.size()).Val;
3944  unsigned NumArgRegs = Result->getNumValues() - 1;
3945  DAG.setRoot(SDOperand(Result, NumArgRegs));
3946
3947  // Set up the return result vector.
3948  Ops.clear();
3949  unsigned i = 0;
3950  unsigned Idx = 1;
3951  for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E;
3952      ++I, ++Idx) {
3953    MVT::ValueType VT = getValueType(I->getType());
3954
3955    switch (getTypeAction(VT)) {
3956    default: assert(0 && "Unknown type action!");
3957    case Legal:
3958      Ops.push_back(SDOperand(Result, i++));
3959      break;
3960    case Promote: {
3961      SDOperand Op(Result, i++);
3962      if (MVT::isInteger(VT)) {
3963        if (F.paramHasAttr(Idx, ParamAttr::SExt))
3964          Op = DAG.getNode(ISD::AssertSext, Op.getValueType(), Op,
3965                           DAG.getValueType(VT));
3966        else if (F.paramHasAttr(Idx, ParamAttr::ZExt))
3967          Op = DAG.getNode(ISD::AssertZext, Op.getValueType(), Op,
3968                           DAG.getValueType(VT));
3969        Op = DAG.getNode(ISD::TRUNCATE, VT, Op);
3970      } else {
3971        assert(MVT::isFloatingPoint(VT) && "Not int or FP?");
3972        Op = DAG.getNode(ISD::FP_ROUND, VT, Op);
3973      }
3974      Ops.push_back(Op);
3975      break;
3976    }
3977    case Expand: {
3978      MVT::ValueType PartVT = getRegisterType(VT);
3979      unsigned NumParts = getNumRegisters(VT);
3980      SmallVector<SDOperand, 4> Parts(NumParts);
3981      for (unsigned j = 0; j != NumParts; ++j)
3982        Parts[j] = SDOperand(Result, i++);
3983      Ops.push_back(getCopyFromParts(DAG, &Parts[0], NumParts, PartVT, VT));
3984      break;
3985    }
3986    }
3987  }
3988  assert(i == NumArgRegs && "Argument register count mismatch!");
3989  return Ops;
3990}
3991
3992
3993/// TargetLowering::LowerCallTo - This is the default LowerCallTo
3994/// implementation, which just inserts an ISD::CALL node, which is later custom
3995/// lowered by the target to something concrete.  FIXME: When all targets are
3996/// migrated to using ISD::CALL, this hook should be integrated into SDISel.
3997std::pair<SDOperand, SDOperand>
3998TargetLowering::LowerCallTo(SDOperand Chain, const Type *RetTy,
3999                            bool RetTyIsSigned, bool isVarArg,
4000                            unsigned CallingConv, bool isTailCall,
4001                            SDOperand Callee,
4002                            ArgListTy &Args, SelectionDAG &DAG) {
4003  SmallVector<SDOperand, 32> Ops;
4004  Ops.push_back(Chain);   // Op#0 - Chain
4005  Ops.push_back(DAG.getConstant(CallingConv, getPointerTy())); // Op#1 - CC
4006  Ops.push_back(DAG.getConstant(isVarArg, getPointerTy()));    // Op#2 - VarArg
4007  Ops.push_back(DAG.getConstant(isTailCall, getPointerTy()));  // Op#3 - Tail
4008  Ops.push_back(Callee);
4009
4010  // Handle all of the outgoing arguments.
4011  for (unsigned i = 0, e = Args.size(); i != e; ++i) {
4012    MVT::ValueType VT = getValueType(Args[i].Ty);
4013    SDOperand Op = Args[i].Node;
4014    unsigned Flags = ISD::ParamFlags::NoFlagSet;
4015    unsigned OriginalAlignment =
4016      getTargetData()->getABITypeAlignment(Args[i].Ty);
4017
4018    if (Args[i].isSExt)
4019      Flags |= ISD::ParamFlags::SExt;
4020    if (Args[i].isZExt)
4021      Flags |= ISD::ParamFlags::ZExt;
4022    if (Args[i].isInReg)
4023      Flags |= ISD::ParamFlags::InReg;
4024    if (Args[i].isSRet)
4025      Flags |= ISD::ParamFlags::StructReturn;
4026    if (Args[i].isByVal) {
4027      Flags |= ISD::ParamFlags::ByVal;
4028      const PointerType *Ty = cast<PointerType>(Args[i].Ty);
4029      const StructType *STy = cast<StructType>(Ty->getElementType());
4030      unsigned StructAlign =
4031          Log2_32(getTargetData()->getCallFrameTypeAlignment(STy));
4032      unsigned StructSize  = getTargetData()->getABITypeSize(STy);
4033      Flags |= (StructAlign << ISD::ParamFlags::ByValAlignOffs);
4034      Flags |= (StructSize  << ISD::ParamFlags::ByValSizeOffs);
4035    }
4036    if (Args[i].isNest)
4037      Flags |= ISD::ParamFlags::Nest;
4038    Flags |= OriginalAlignment << ISD::ParamFlags::OrigAlignmentOffs;
4039
4040    switch (getTypeAction(VT)) {
4041    default: assert(0 && "Unknown type action!");
4042    case Legal:
4043      Ops.push_back(Op);
4044      Ops.push_back(DAG.getConstant(Flags, MVT::i32));
4045      break;
4046    case Promote:
4047      if (MVT::isInteger(VT)) {
4048        unsigned ExtOp;
4049        if (Args[i].isSExt)
4050          ExtOp = ISD::SIGN_EXTEND;
4051        else if (Args[i].isZExt)
4052          ExtOp = ISD::ZERO_EXTEND;
4053        else
4054          ExtOp = ISD::ANY_EXTEND;
4055        Op = DAG.getNode(ExtOp, getTypeToTransformTo(VT), Op);
4056      } else {
4057        assert(MVT::isFloatingPoint(VT) && "Not int or FP?");
4058        Op = DAG.getNode(ISD::FP_EXTEND, getTypeToTransformTo(VT), Op);
4059      }
4060      Ops.push_back(Op);
4061      Ops.push_back(DAG.getConstant(Flags, MVT::i32));
4062      break;
4063    case Expand: {
4064      MVT::ValueType PartVT = getRegisterType(VT);
4065      unsigned NumParts = getNumRegisters(VT);
4066      SmallVector<SDOperand, 4> Parts(NumParts);
4067      getCopyToParts(DAG, Op, &Parts[0], NumParts, PartVT);
4068      for (unsigned i = 0; i != NumParts; ++i) {
4069        // if it isn't first piece, alignment must be 1
4070        unsigned MyFlags = Flags;
4071        if (i != 0)
4072          MyFlags = (MyFlags & (~ISD::ParamFlags::OrigAlignment)) |
4073            (1 << ISD::ParamFlags::OrigAlignmentOffs);
4074
4075        Ops.push_back(Parts[i]);
4076        Ops.push_back(DAG.getConstant(MyFlags, MVT::i32));
4077      }
4078      break;
4079    }
4080    }
4081  }
4082
4083  // Figure out the result value types.
4084  MVT::ValueType VT = getValueType(RetTy);
4085  MVT::ValueType RegisterVT = getRegisterType(VT);
4086  unsigned NumRegs = getNumRegisters(VT);
4087  SmallVector<MVT::ValueType, 4> RetTys(NumRegs);
4088  for (unsigned i = 0; i != NumRegs; ++i)
4089    RetTys[i] = RegisterVT;
4090
4091  RetTys.push_back(MVT::Other);  // Always has a chain.
4092
4093  // Create the CALL node.
4094  SDOperand Res = DAG.getNode(ISD::CALL,
4095                              DAG.getVTList(&RetTys[0], NumRegs + 1),
4096                              &Ops[0], Ops.size());
4097  Chain = Res.getValue(NumRegs);
4098
4099  // Gather up the call result into a single value.
4100  if (RetTy != Type::VoidTy) {
4101    ISD::NodeType AssertOp = ISD::AssertSext;
4102    if (!RetTyIsSigned)
4103      AssertOp = ISD::AssertZext;
4104    SmallVector<SDOperand, 4> Results(NumRegs);
4105    for (unsigned i = 0; i != NumRegs; ++i)
4106      Results[i] = Res.getValue(i);
4107    Res = getCopyFromParts(DAG, &Results[0], NumRegs, RegisterVT, VT, AssertOp);
4108  }
4109
4110  return std::make_pair(Res, Chain);
4111}
4112
4113SDOperand TargetLowering::LowerOperation(SDOperand Op, SelectionDAG &DAG) {
4114  assert(0 && "LowerOperation not implemented for this target!");
4115  abort();
4116  return SDOperand();
4117}
4118
4119SDOperand TargetLowering::CustomPromoteOperation(SDOperand Op,
4120                                                 SelectionDAG &DAG) {
4121  assert(0 && "CustomPromoteOperation not implemented for this target!");
4122  abort();
4123  return SDOperand();
4124}
4125
4126/// getMemsetValue - Vectorized representation of the memset value
4127/// operand.
4128static SDOperand getMemsetValue(SDOperand Value, MVT::ValueType VT,
4129                                SelectionDAG &DAG) {
4130  MVT::ValueType CurVT = VT;
4131  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
4132    uint64_t Val   = C->getValue() & 255;
4133    unsigned Shift = 8;
4134    while (CurVT != MVT::i8) {
4135      Val = (Val << Shift) | Val;
4136      Shift <<= 1;
4137      CurVT = (MVT::ValueType)((unsigned)CurVT - 1);
4138    }
4139    return DAG.getConstant(Val, VT);
4140  } else {
4141    Value = DAG.getNode(ISD::ZERO_EXTEND, VT, Value);
4142    unsigned Shift = 8;
4143    while (CurVT != MVT::i8) {
4144      Value =
4145        DAG.getNode(ISD::OR, VT,
4146                    DAG.getNode(ISD::SHL, VT, Value,
4147                                DAG.getConstant(Shift, MVT::i8)), Value);
4148      Shift <<= 1;
4149      CurVT = (MVT::ValueType)((unsigned)CurVT - 1);
4150    }
4151
4152    return Value;
4153  }
4154}
4155
4156/// getMemsetStringVal - Similar to getMemsetValue. Except this is only
4157/// used when a memcpy is turned into a memset when the source is a constant
4158/// string ptr.
4159static SDOperand getMemsetStringVal(MVT::ValueType VT,
4160                                    SelectionDAG &DAG, TargetLowering &TLI,
4161                                    std::string &Str, unsigned Offset) {
4162  uint64_t Val = 0;
4163  unsigned MSB = MVT::getSizeInBits(VT) / 8;
4164  if (TLI.isLittleEndian())
4165    Offset = Offset + MSB - 1;
4166  for (unsigned i = 0; i != MSB; ++i) {
4167    Val = (Val << 8) | (unsigned char)Str[Offset];
4168    Offset += TLI.isLittleEndian() ? -1 : 1;
4169  }
4170  return DAG.getConstant(Val, VT);
4171}
4172
4173/// getMemBasePlusOffset - Returns base and offset node for the
4174static SDOperand getMemBasePlusOffset(SDOperand Base, unsigned Offset,
4175                                      SelectionDAG &DAG, TargetLowering &TLI) {
4176  MVT::ValueType VT = Base.getValueType();
4177  return DAG.getNode(ISD::ADD, VT, Base, DAG.getConstant(Offset, VT));
4178}
4179
4180/// MeetsMaxMemopRequirement - Determines if the number of memory ops required
4181/// to replace the memset / memcpy is below the threshold. It also returns the
4182/// types of the sequence of  memory ops to perform memset / memcpy.
4183static bool MeetsMaxMemopRequirement(std::vector<MVT::ValueType> &MemOps,
4184                                     unsigned Limit, uint64_t Size,
4185                                     unsigned Align, TargetLowering &TLI) {
4186  MVT::ValueType VT;
4187
4188  if (TLI.allowsUnalignedMemoryAccesses()) {
4189    VT = MVT::i64;
4190  } else {
4191    switch (Align & 7) {
4192    case 0:
4193      VT = MVT::i64;
4194      break;
4195    case 4:
4196      VT = MVT::i32;
4197      break;
4198    case 2:
4199      VT = MVT::i16;
4200      break;
4201    default:
4202      VT = MVT::i8;
4203      break;
4204    }
4205  }
4206
4207  MVT::ValueType LVT = MVT::i64;
4208  while (!TLI.isTypeLegal(LVT))
4209    LVT = (MVT::ValueType)((unsigned)LVT - 1);
4210  assert(MVT::isInteger(LVT));
4211
4212  if (VT > LVT)
4213    VT = LVT;
4214
4215  unsigned NumMemOps = 0;
4216  while (Size != 0) {
4217    unsigned VTSize = MVT::getSizeInBits(VT) / 8;
4218    while (VTSize > Size) {
4219      VT = (MVT::ValueType)((unsigned)VT - 1);
4220      VTSize >>= 1;
4221    }
4222    assert(MVT::isInteger(VT));
4223
4224    if (++NumMemOps > Limit)
4225      return false;
4226    MemOps.push_back(VT);
4227    Size -= VTSize;
4228  }
4229
4230  return true;
4231}
4232
4233void SelectionDAGLowering::visitMemIntrinsic(CallInst &I, unsigned Op) {
4234  SDOperand Op1 = getValue(I.getOperand(1));
4235  SDOperand Op2 = getValue(I.getOperand(2));
4236  SDOperand Op3 = getValue(I.getOperand(3));
4237  SDOperand Op4 = getValue(I.getOperand(4));
4238  unsigned Align = (unsigned)cast<ConstantSDNode>(Op4)->getValue();
4239  if (Align == 0) Align = 1;
4240
4241  // If the source and destination are known to not be aliases, we can
4242  // lower memmove as memcpy.
4243  if (Op == ISD::MEMMOVE) {
4244    uint64_t Size = -1ULL;
4245    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op3))
4246      Size = C->getValue();
4247    if (AA.alias(I.getOperand(1), Size, I.getOperand(2), Size) ==
4248        AliasAnalysis::NoAlias)
4249      Op = ISD::MEMCPY;
4250  }
4251
4252  if (ConstantSDNode *Size = dyn_cast<ConstantSDNode>(Op3)) {
4253    std::vector<MVT::ValueType> MemOps;
4254
4255    // Expand memset / memcpy to a series of load / store ops
4256    // if the size operand falls below a certain threshold.
4257    SmallVector<SDOperand, 8> OutChains;
4258    switch (Op) {
4259    default: break;  // Do nothing for now.
4260    case ISD::MEMSET: {
4261      if (MeetsMaxMemopRequirement(MemOps, TLI.getMaxStoresPerMemset(),
4262                                   Size->getValue(), Align, TLI)) {
4263        unsigned NumMemOps = MemOps.size();
4264        unsigned Offset = 0;
4265        for (unsigned i = 0; i < NumMemOps; i++) {
4266          MVT::ValueType VT = MemOps[i];
4267          unsigned VTSize = MVT::getSizeInBits(VT) / 8;
4268          SDOperand Value = getMemsetValue(Op2, VT, DAG);
4269          SDOperand Store = DAG.getStore(getRoot(), Value,
4270                                    getMemBasePlusOffset(Op1, Offset, DAG, TLI),
4271                                         I.getOperand(1), Offset);
4272          OutChains.push_back(Store);
4273          Offset += VTSize;
4274        }
4275      }
4276      break;
4277    }
4278    case ISD::MEMCPY: {
4279      if (MeetsMaxMemopRequirement(MemOps, TLI.getMaxStoresPerMemcpy(),
4280                                   Size->getValue(), Align, TLI)) {
4281        unsigned NumMemOps = MemOps.size();
4282        unsigned SrcOff = 0, DstOff = 0, SrcDelta = 0;
4283        GlobalAddressSDNode *G = NULL;
4284        std::string Str;
4285        bool CopyFromStr = false;
4286
4287        if (Op2.getOpcode() == ISD::GlobalAddress)
4288          G = cast<GlobalAddressSDNode>(Op2);
4289        else if (Op2.getOpcode() == ISD::ADD &&
4290                 Op2.getOperand(0).getOpcode() == ISD::GlobalAddress &&
4291                 Op2.getOperand(1).getOpcode() == ISD::Constant) {
4292          G = cast<GlobalAddressSDNode>(Op2.getOperand(0));
4293          SrcDelta = cast<ConstantSDNode>(Op2.getOperand(1))->getValue();
4294        }
4295        if (G) {
4296          GlobalVariable *GV = dyn_cast<GlobalVariable>(G->getGlobal());
4297          if (GV && GV->isConstant()) {
4298            Str = GV->getStringValue(false);
4299            if (!Str.empty()) {
4300              CopyFromStr = true;
4301              SrcOff += SrcDelta;
4302            }
4303          }
4304        }
4305
4306        for (unsigned i = 0; i < NumMemOps; i++) {
4307          MVT::ValueType VT = MemOps[i];
4308          unsigned VTSize = MVT::getSizeInBits(VT) / 8;
4309          SDOperand Value, Chain, Store;
4310
4311          if (CopyFromStr) {
4312            Value = getMemsetStringVal(VT, DAG, TLI, Str, SrcOff);
4313            Chain = getRoot();
4314            Store =
4315              DAG.getStore(Chain, Value,
4316                           getMemBasePlusOffset(Op1, DstOff, DAG, TLI),
4317                           I.getOperand(1), DstOff);
4318          } else {
4319            Value = DAG.getLoad(VT, getRoot(),
4320                                getMemBasePlusOffset(Op2, SrcOff, DAG, TLI),
4321                                I.getOperand(2), SrcOff, false, Align);
4322            Chain = Value.getValue(1);
4323            Store =
4324              DAG.getStore(Chain, Value,
4325                           getMemBasePlusOffset(Op1, DstOff, DAG, TLI),
4326                           I.getOperand(1), DstOff, false, Align);
4327          }
4328          OutChains.push_back(Store);
4329          SrcOff += VTSize;
4330          DstOff += VTSize;
4331        }
4332      }
4333      break;
4334    }
4335    }
4336
4337    if (!OutChains.empty()) {
4338      DAG.setRoot(DAG.getNode(ISD::TokenFactor, MVT::Other,
4339                  &OutChains[0], OutChains.size()));
4340      return;
4341    }
4342  }
4343
4344  SDOperand AlwaysInline = DAG.getConstant(0, MVT::i1);
4345  SDOperand Node;
4346  switch(Op) {
4347    default:
4348      assert(0 && "Unknown Op");
4349    case ISD::MEMCPY:
4350      Node = DAG.getMemcpy(getRoot(), Op1, Op2, Op3, Op4, AlwaysInline);
4351      break;
4352    case ISD::MEMMOVE:
4353      Node = DAG.getMemmove(getRoot(), Op1, Op2, Op3, Op4, AlwaysInline);
4354      break;
4355    case ISD::MEMSET:
4356      Node = DAG.getMemset(getRoot(), Op1, Op2, Op3, Op4, AlwaysInline);
4357      break;
4358  }
4359  DAG.setRoot(Node);
4360}
4361
4362//===----------------------------------------------------------------------===//
4363// SelectionDAGISel code
4364//===----------------------------------------------------------------------===//
4365
4366unsigned SelectionDAGISel::MakeReg(MVT::ValueType VT) {
4367  return RegMap->createVirtualRegister(TLI.getRegClassFor(VT));
4368}
4369
4370void SelectionDAGISel::getAnalysisUsage(AnalysisUsage &AU) const {
4371  AU.addRequired<AliasAnalysis>();
4372  AU.setPreservesAll();
4373}
4374
4375
4376
4377bool SelectionDAGISel::runOnFunction(Function &Fn) {
4378  // Get alias analysis for load/store combining.
4379  AA = &getAnalysis<AliasAnalysis>();
4380
4381  MachineFunction &MF = MachineFunction::construct(&Fn, TLI.getTargetMachine());
4382  RegMap = MF.getSSARegMap();
4383  DOUT << "\n\n\n=== " << Fn.getName() << "\n";
4384
4385  FunctionLoweringInfo FuncInfo(TLI, Fn, MF);
4386
4387  if (ExceptionHandling)
4388    for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
4389      if (InvokeInst *Invoke = dyn_cast<InvokeInst>(I->getTerminator()))
4390        // Mark landing pad.
4391        FuncInfo.MBBMap[Invoke->getSuccessor(1)]->setIsLandingPad();
4392
4393  for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
4394    SelectBasicBlock(I, MF, FuncInfo);
4395
4396  // Add function live-ins to entry block live-in set.
4397  BasicBlock *EntryBB = &Fn.getEntryBlock();
4398  BB = FuncInfo.MBBMap[EntryBB];
4399  if (!MF.livein_empty())
4400    for (MachineFunction::livein_iterator I = MF.livein_begin(),
4401           E = MF.livein_end(); I != E; ++I)
4402      BB->addLiveIn(I->first);
4403
4404#ifndef NDEBUG
4405  assert(FuncInfo.CatchInfoFound.size() == FuncInfo.CatchInfoLost.size() &&
4406         "Not all catch info was assigned to a landing pad!");
4407#endif
4408
4409  return true;
4410}
4411
4412SDOperand SelectionDAGLowering::CopyValueToVirtualRegister(Value *V,
4413                                                           unsigned Reg) {
4414  SDOperand Op = getValue(V);
4415  assert((Op.getOpcode() != ISD::CopyFromReg ||
4416          cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
4417         "Copy from a reg to the same reg!");
4418
4419  MVT::ValueType SrcVT = Op.getValueType();
4420  MVT::ValueType RegisterVT = TLI.getRegisterType(SrcVT);
4421  unsigned NumRegs = TLI.getNumRegisters(SrcVT);
4422  SmallVector<SDOperand, 8> Regs(NumRegs);
4423  SmallVector<SDOperand, 8> Chains(NumRegs);
4424
4425  // Copy the value by legal parts into sequential virtual registers.
4426  getCopyToParts(DAG, Op, &Regs[0], NumRegs, RegisterVT);
4427  for (unsigned i = 0; i != NumRegs; ++i)
4428    Chains[i] = DAG.getCopyToReg(getRoot(), Reg + i, Regs[i]);
4429  return DAG.getNode(ISD::TokenFactor, MVT::Other, &Chains[0], NumRegs);
4430}
4431
4432void SelectionDAGISel::
4433LowerArguments(BasicBlock *LLVMBB, SelectionDAGLowering &SDL,
4434               std::vector<SDOperand> &UnorderedChains) {
4435  // If this is the entry block, emit arguments.
4436  Function &F = *LLVMBB->getParent();
4437  FunctionLoweringInfo &FuncInfo = SDL.FuncInfo;
4438  SDOperand OldRoot = SDL.DAG.getRoot();
4439  std::vector<SDOperand> Args = TLI.LowerArguments(F, SDL.DAG);
4440
4441  unsigned a = 0;
4442  for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end();
4443       AI != E; ++AI, ++a)
4444    if (!AI->use_empty()) {
4445      SDL.setValue(AI, Args[a]);
4446
4447      // If this argument is live outside of the entry block, insert a copy from
4448      // whereever we got it to the vreg that other BB's will reference it as.
4449      DenseMap<const Value*, unsigned>::iterator VMI=FuncInfo.ValueMap.find(AI);
4450      if (VMI != FuncInfo.ValueMap.end()) {
4451        SDOperand Copy = SDL.CopyValueToVirtualRegister(AI, VMI->second);
4452        UnorderedChains.push_back(Copy);
4453      }
4454    }
4455
4456  // Finally, if the target has anything special to do, allow it to do so.
4457  // FIXME: this should insert code into the DAG!
4458  EmitFunctionEntryCode(F, SDL.DAG.getMachineFunction());
4459}
4460
4461static void copyCatchInfo(BasicBlock *SrcBB, BasicBlock *DestBB,
4462                          MachineModuleInfo *MMI, FunctionLoweringInfo &FLI) {
4463  for (BasicBlock::iterator I = SrcBB->begin(), E = --SrcBB->end(); I != E; ++I)
4464    if (isSelector(I)) {
4465      // Apply the catch info to DestBB.
4466      addCatchInfo(cast<CallInst>(*I), MMI, FLI.MBBMap[DestBB]);
4467#ifndef NDEBUG
4468      if (!FLI.MBBMap[SrcBB]->isLandingPad())
4469        FLI.CatchInfoFound.insert(I);
4470#endif
4471    }
4472}
4473
4474/// CheckDAGForTailCallsAndFixThem - This Function looks for CALL nodes in the
4475/// DAG and fixes their tailcall attribute operand.
4476static void CheckDAGForTailCallsAndFixThem(SelectionDAG &DAG,
4477                                           TargetLowering& TLI) {
4478  SDNode * Ret = NULL;
4479  SDOperand Terminator = DAG.getRoot();
4480
4481  // Find RET node.
4482  if (Terminator.getOpcode() == ISD::RET) {
4483    Ret = Terminator.Val;
4484  }
4485
4486  // Fix tail call attribute of CALL nodes.
4487  for (SelectionDAG::allnodes_iterator BE = DAG.allnodes_begin(),
4488         BI = prior(DAG.allnodes_end()); BI != BE; --BI) {
4489    if (BI->getOpcode() == ISD::CALL) {
4490      SDOperand OpRet(Ret, 0);
4491      SDOperand OpCall(static_cast<SDNode*>(BI), 0);
4492      bool isMarkedTailCall =
4493        cast<ConstantSDNode>(OpCall.getOperand(3))->getValue() != 0;
4494      // If CALL node has tail call attribute set to true and the call is not
4495      // eligible (no RET or the target rejects) the attribute is fixed to
4496      // false. The TargetLowering::IsEligibleForTailCallOptimization function
4497      // must correctly identify tail call optimizable calls.
4498      if (isMarkedTailCall &&
4499          (Ret==NULL ||
4500           !TLI.IsEligibleForTailCallOptimization(OpCall, OpRet, DAG))) {
4501        SmallVector<SDOperand, 32> Ops;
4502        unsigned idx=0;
4503        for(SDNode::op_iterator I =OpCall.Val->op_begin(),
4504              E=OpCall.Val->op_end(); I!=E; I++, idx++) {
4505          if (idx!=3)
4506            Ops.push_back(*I);
4507          else
4508            Ops.push_back(DAG.getConstant(false, TLI.getPointerTy()));
4509        }
4510        DAG.UpdateNodeOperands(OpCall, Ops.begin(), Ops.size());
4511      }
4512    }
4513  }
4514}
4515
4516void SelectionDAGISel::BuildSelectionDAG(SelectionDAG &DAG, BasicBlock *LLVMBB,
4517       std::vector<std::pair<MachineInstr*, unsigned> > &PHINodesToUpdate,
4518                                         FunctionLoweringInfo &FuncInfo) {
4519  SelectionDAGLowering SDL(DAG, TLI, *AA, FuncInfo);
4520
4521  std::vector<SDOperand> UnorderedChains;
4522
4523  // Lower any arguments needed in this block if this is the entry block.
4524  if (LLVMBB == &LLVMBB->getParent()->getEntryBlock())
4525    LowerArguments(LLVMBB, SDL, UnorderedChains);
4526
4527  BB = FuncInfo.MBBMap[LLVMBB];
4528  SDL.setCurrentBasicBlock(BB);
4529
4530  MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
4531
4532  if (ExceptionHandling && MMI && BB->isLandingPad()) {
4533    // Add a label to mark the beginning of the landing pad.  Deletion of the
4534    // landing pad can thus be detected via the MachineModuleInfo.
4535    unsigned LabelID = MMI->addLandingPad(BB);
4536    DAG.setRoot(DAG.getNode(ISD::LABEL, MVT::Other, DAG.getEntryNode(),
4537                            DAG.getConstant(LabelID, MVT::i32)));
4538
4539    // Mark exception register as live in.
4540    unsigned Reg = TLI.getExceptionAddressRegister();
4541    if (Reg) BB->addLiveIn(Reg);
4542
4543    // Mark exception selector register as live in.
4544    Reg = TLI.getExceptionSelectorRegister();
4545    if (Reg) BB->addLiveIn(Reg);
4546
4547    // FIXME: Hack around an exception handling flaw (PR1508): the personality
4548    // function and list of typeids logically belong to the invoke (or, if you
4549    // like, the basic block containing the invoke), and need to be associated
4550    // with it in the dwarf exception handling tables.  Currently however the
4551    // information is provided by an intrinsic (eh.selector) that can be moved
4552    // to unexpected places by the optimizers: if the unwind edge is critical,
4553    // then breaking it can result in the intrinsics being in the successor of
4554    // the landing pad, not the landing pad itself.  This results in exceptions
4555    // not being caught because no typeids are associated with the invoke.
4556    // This may not be the only way things can go wrong, but it is the only way
4557    // we try to work around for the moment.
4558    BranchInst *Br = dyn_cast<BranchInst>(LLVMBB->getTerminator());
4559
4560    if (Br && Br->isUnconditional()) { // Critical edge?
4561      BasicBlock::iterator I, E;
4562      for (I = LLVMBB->begin(), E = --LLVMBB->end(); I != E; ++I)
4563        if (isSelector(I))
4564          break;
4565
4566      if (I == E)
4567        // No catch info found - try to extract some from the successor.
4568        copyCatchInfo(Br->getSuccessor(0), LLVMBB, MMI, FuncInfo);
4569    }
4570  }
4571
4572  // Lower all of the non-terminator instructions.
4573  for (BasicBlock::iterator I = LLVMBB->begin(), E = --LLVMBB->end();
4574       I != E; ++I)
4575    SDL.visit(*I);
4576
4577  // Ensure that all instructions which are used outside of their defining
4578  // blocks are available as virtual registers.  Invoke is handled elsewhere.
4579  for (BasicBlock::iterator I = LLVMBB->begin(), E = LLVMBB->end(); I != E;++I)
4580    if (!I->use_empty() && !isa<PHINode>(I) && !isa<InvokeInst>(I)) {
4581      DenseMap<const Value*, unsigned>::iterator VMI =FuncInfo.ValueMap.find(I);
4582      if (VMI != FuncInfo.ValueMap.end())
4583        UnorderedChains.push_back(
4584                                SDL.CopyValueToVirtualRegister(I, VMI->second));
4585    }
4586
4587  // Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
4588  // ensure constants are generated when needed.  Remember the virtual registers
4589  // that need to be added to the Machine PHI nodes as input.  We cannot just
4590  // directly add them, because expansion might result in multiple MBB's for one
4591  // BB.  As such, the start of the BB might correspond to a different MBB than
4592  // the end.
4593  //
4594  TerminatorInst *TI = LLVMBB->getTerminator();
4595
4596  // Emit constants only once even if used by multiple PHI nodes.
4597  std::map<Constant*, unsigned> ConstantsOut;
4598
4599  // Vector bool would be better, but vector<bool> is really slow.
4600  std::vector<unsigned char> SuccsHandled;
4601  if (TI->getNumSuccessors())
4602    SuccsHandled.resize(BB->getParent()->getNumBlockIDs());
4603
4604  // Check successor nodes' PHI nodes that expect a constant to be available
4605  // from this block.
4606  for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
4607    BasicBlock *SuccBB = TI->getSuccessor(succ);
4608    if (!isa<PHINode>(SuccBB->begin())) continue;
4609    MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
4610
4611    // If this terminator has multiple identical successors (common for
4612    // switches), only handle each succ once.
4613    unsigned SuccMBBNo = SuccMBB->getNumber();
4614    if (SuccsHandled[SuccMBBNo]) continue;
4615    SuccsHandled[SuccMBBNo] = true;
4616
4617    MachineBasicBlock::iterator MBBI = SuccMBB->begin();
4618    PHINode *PN;
4619
4620    // At this point we know that there is a 1-1 correspondence between LLVM PHI
4621    // nodes and Machine PHI nodes, but the incoming operands have not been
4622    // emitted yet.
4623    for (BasicBlock::iterator I = SuccBB->begin();
4624         (PN = dyn_cast<PHINode>(I)); ++I) {
4625      // Ignore dead phi's.
4626      if (PN->use_empty()) continue;
4627
4628      unsigned Reg;
4629      Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
4630
4631      if (Constant *C = dyn_cast<Constant>(PHIOp)) {
4632        unsigned &RegOut = ConstantsOut[C];
4633        if (RegOut == 0) {
4634          RegOut = FuncInfo.CreateRegForValue(C);
4635          UnorderedChains.push_back(
4636                           SDL.CopyValueToVirtualRegister(C, RegOut));
4637        }
4638        Reg = RegOut;
4639      } else {
4640        Reg = FuncInfo.ValueMap[PHIOp];
4641        if (Reg == 0) {
4642          assert(isa<AllocaInst>(PHIOp) &&
4643                 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
4644                 "Didn't codegen value into a register!??");
4645          Reg = FuncInfo.CreateRegForValue(PHIOp);
4646          UnorderedChains.push_back(
4647                           SDL.CopyValueToVirtualRegister(PHIOp, Reg));
4648        }
4649      }
4650
4651      // Remember that this register needs to added to the machine PHI node as
4652      // the input for this MBB.
4653      MVT::ValueType VT = TLI.getValueType(PN->getType());
4654      unsigned NumRegisters = TLI.getNumRegisters(VT);
4655      for (unsigned i = 0, e = NumRegisters; i != e; ++i)
4656        PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i));
4657    }
4658  }
4659  ConstantsOut.clear();
4660
4661  // Turn all of the unordered chains into one factored node.
4662  if (!UnorderedChains.empty()) {
4663    SDOperand Root = SDL.getRoot();
4664    if (Root.getOpcode() != ISD::EntryToken) {
4665      unsigned i = 0, e = UnorderedChains.size();
4666      for (; i != e; ++i) {
4667        assert(UnorderedChains[i].Val->getNumOperands() > 1);
4668        if (UnorderedChains[i].Val->getOperand(0) == Root)
4669          break;  // Don't add the root if we already indirectly depend on it.
4670      }
4671
4672      if (i == e)
4673        UnorderedChains.push_back(Root);
4674    }
4675    DAG.setRoot(DAG.getNode(ISD::TokenFactor, MVT::Other,
4676                            &UnorderedChains[0], UnorderedChains.size()));
4677  }
4678
4679  // Lower the terminator after the copies are emitted.
4680  SDL.visit(*LLVMBB->getTerminator());
4681
4682  // Copy over any CaseBlock records that may now exist due to SwitchInst
4683  // lowering, as well as any jump table information.
4684  SwitchCases.clear();
4685  SwitchCases = SDL.SwitchCases;
4686  JTCases.clear();
4687  JTCases = SDL.JTCases;
4688  BitTestCases.clear();
4689  BitTestCases = SDL.BitTestCases;
4690
4691  // Make sure the root of the DAG is up-to-date.
4692  DAG.setRoot(SDL.getRoot());
4693
4694  // Check whether calls in this block are real tail calls. Fix up CALL nodes
4695  // with correct tailcall attribute so that the target can rely on the tailcall
4696  // attribute indicating whether the call is really eligible for tail call
4697  // optimization.
4698  CheckDAGForTailCallsAndFixThem(DAG, TLI);
4699}
4700
4701void SelectionDAGISel::CodeGenAndEmitDAG(SelectionDAG &DAG) {
4702  DOUT << "Lowered selection DAG:\n";
4703  DEBUG(DAG.dump());
4704
4705  // Run the DAG combiner in pre-legalize mode.
4706  DAG.Combine(false, *AA);
4707
4708  DOUT << "Optimized lowered selection DAG:\n";
4709  DEBUG(DAG.dump());
4710
4711  // Second step, hack on the DAG until it only uses operations and types that
4712  // the target supports.
4713#if 0  // Enable this some day.
4714  DAG.LegalizeTypes();
4715  // Someday even later, enable a dag combine pass here.
4716#endif
4717  DAG.Legalize();
4718
4719  DOUT << "Legalized selection DAG:\n";
4720  DEBUG(DAG.dump());
4721
4722  // Run the DAG combiner in post-legalize mode.
4723  DAG.Combine(true, *AA);
4724
4725  DOUT << "Optimized legalized selection DAG:\n";
4726  DEBUG(DAG.dump());
4727
4728  if (ViewISelDAGs) DAG.viewGraph();
4729
4730  // Third, instruction select all of the operations to machine code, adding the
4731  // code to the MachineBasicBlock.
4732  InstructionSelectBasicBlock(DAG);
4733
4734  DOUT << "Selected machine code:\n";
4735  DEBUG(BB->dump());
4736}
4737
4738void SelectionDAGISel::SelectBasicBlock(BasicBlock *LLVMBB, MachineFunction &MF,
4739                                        FunctionLoweringInfo &FuncInfo) {
4740  std::vector<std::pair<MachineInstr*, unsigned> > PHINodesToUpdate;
4741  {
4742    SelectionDAG DAG(TLI, MF, getAnalysisToUpdate<MachineModuleInfo>());
4743    CurDAG = &DAG;
4744
4745    // First step, lower LLVM code to some DAG.  This DAG may use operations and
4746    // types that are not supported by the target.
4747    BuildSelectionDAG(DAG, LLVMBB, PHINodesToUpdate, FuncInfo);
4748
4749    // Second step, emit the lowered DAG as machine code.
4750    CodeGenAndEmitDAG(DAG);
4751  }
4752
4753  DOUT << "Total amount of phi nodes to update: "
4754       << PHINodesToUpdate.size() << "\n";
4755  DEBUG(for (unsigned i = 0, e = PHINodesToUpdate.size(); i != e; ++i)
4756          DOUT << "Node " << i << " : (" << PHINodesToUpdate[i].first
4757               << ", " << PHINodesToUpdate[i].second << ")\n";);
4758
4759  // Next, now that we know what the last MBB the LLVM BB expanded is, update
4760  // PHI nodes in successors.
4761  if (SwitchCases.empty() && JTCases.empty() && BitTestCases.empty()) {
4762    for (unsigned i = 0, e = PHINodesToUpdate.size(); i != e; ++i) {
4763      MachineInstr *PHI = PHINodesToUpdate[i].first;
4764      assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
4765             "This is not a machine PHI node that we are updating!");
4766      PHI->addRegOperand(PHINodesToUpdate[i].second, false);
4767      PHI->addMachineBasicBlockOperand(BB);
4768    }
4769    return;
4770  }
4771
4772  for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i) {
4773    // Lower header first, if it wasn't already lowered
4774    if (!BitTestCases[i].Emitted) {
4775      SelectionDAG HSDAG(TLI, MF, getAnalysisToUpdate<MachineModuleInfo>());
4776      CurDAG = &HSDAG;
4777      SelectionDAGLowering HSDL(HSDAG, TLI, *AA, FuncInfo);
4778      // Set the current basic block to the mbb we wish to insert the code into
4779      BB = BitTestCases[i].Parent;
4780      HSDL.setCurrentBasicBlock(BB);
4781      // Emit the code
4782      HSDL.visitBitTestHeader(BitTestCases[i]);
4783      HSDAG.setRoot(HSDL.getRoot());
4784      CodeGenAndEmitDAG(HSDAG);
4785    }
4786
4787    for (unsigned j = 0, ej = BitTestCases[i].Cases.size(); j != ej; ++j) {
4788      SelectionDAG BSDAG(TLI, MF, getAnalysisToUpdate<MachineModuleInfo>());
4789      CurDAG = &BSDAG;
4790      SelectionDAGLowering BSDL(BSDAG, TLI, *AA, FuncInfo);
4791      // Set the current basic block to the mbb we wish to insert the code into
4792      BB = BitTestCases[i].Cases[j].ThisBB;
4793      BSDL.setCurrentBasicBlock(BB);
4794      // Emit the code
4795      if (j+1 != ej)
4796        BSDL.visitBitTestCase(BitTestCases[i].Cases[j+1].ThisBB,
4797                              BitTestCases[i].Reg,
4798                              BitTestCases[i].Cases[j]);
4799      else
4800        BSDL.visitBitTestCase(BitTestCases[i].Default,
4801                              BitTestCases[i].Reg,
4802                              BitTestCases[i].Cases[j]);
4803
4804
4805      BSDAG.setRoot(BSDL.getRoot());
4806      CodeGenAndEmitDAG(BSDAG);
4807    }
4808
4809    // Update PHI Nodes
4810    for (unsigned pi = 0, pe = PHINodesToUpdate.size(); pi != pe; ++pi) {
4811      MachineInstr *PHI = PHINodesToUpdate[pi].first;
4812      MachineBasicBlock *PHIBB = PHI->getParent();
4813      assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
4814             "This is not a machine PHI node that we are updating!");
4815      // This is "default" BB. We have two jumps to it. From "header" BB and
4816      // from last "case" BB.
4817      if (PHIBB == BitTestCases[i].Default) {
4818        PHI->addRegOperand(PHINodesToUpdate[pi].second, false);
4819        PHI->addMachineBasicBlockOperand(BitTestCases[i].Parent);
4820        PHI->addRegOperand(PHINodesToUpdate[pi].second, false);
4821        PHI->addMachineBasicBlockOperand(BitTestCases[i].Cases.back().ThisBB);
4822      }
4823      // One of "cases" BB.
4824      for (unsigned j = 0, ej = BitTestCases[i].Cases.size(); j != ej; ++j) {
4825        MachineBasicBlock* cBB = BitTestCases[i].Cases[j].ThisBB;
4826        if (cBB->succ_end() !=
4827            std::find(cBB->succ_begin(),cBB->succ_end(), PHIBB)) {
4828          PHI->addRegOperand(PHINodesToUpdate[pi].second, false);
4829          PHI->addMachineBasicBlockOperand(cBB);
4830        }
4831      }
4832    }
4833  }
4834
4835  // If the JumpTable record is filled in, then we need to emit a jump table.
4836  // Updating the PHI nodes is tricky in this case, since we need to determine
4837  // whether the PHI is a successor of the range check MBB or the jump table MBB
4838  for (unsigned i = 0, e = JTCases.size(); i != e; ++i) {
4839    // Lower header first, if it wasn't already lowered
4840    if (!JTCases[i].first.Emitted) {
4841      SelectionDAG HSDAG(TLI, MF, getAnalysisToUpdate<MachineModuleInfo>());
4842      CurDAG = &HSDAG;
4843      SelectionDAGLowering HSDL(HSDAG, TLI, *AA, FuncInfo);
4844      // Set the current basic block to the mbb we wish to insert the code into
4845      BB = JTCases[i].first.HeaderBB;
4846      HSDL.setCurrentBasicBlock(BB);
4847      // Emit the code
4848      HSDL.visitJumpTableHeader(JTCases[i].second, JTCases[i].first);
4849      HSDAG.setRoot(HSDL.getRoot());
4850      CodeGenAndEmitDAG(HSDAG);
4851    }
4852
4853    SelectionDAG JSDAG(TLI, MF, getAnalysisToUpdate<MachineModuleInfo>());
4854    CurDAG = &JSDAG;
4855    SelectionDAGLowering JSDL(JSDAG, TLI, *AA, FuncInfo);
4856    // Set the current basic block to the mbb we wish to insert the code into
4857    BB = JTCases[i].second.MBB;
4858    JSDL.setCurrentBasicBlock(BB);
4859    // Emit the code
4860    JSDL.visitJumpTable(JTCases[i].second);
4861    JSDAG.setRoot(JSDL.getRoot());
4862    CodeGenAndEmitDAG(JSDAG);
4863
4864    // Update PHI Nodes
4865    for (unsigned pi = 0, pe = PHINodesToUpdate.size(); pi != pe; ++pi) {
4866      MachineInstr *PHI = PHINodesToUpdate[pi].first;
4867      MachineBasicBlock *PHIBB = PHI->getParent();
4868      assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
4869             "This is not a machine PHI node that we are updating!");
4870      // "default" BB. We can go there only from header BB.
4871      if (PHIBB == JTCases[i].second.Default) {
4872        PHI->addRegOperand(PHINodesToUpdate[pi].second, false);
4873        PHI->addMachineBasicBlockOperand(JTCases[i].first.HeaderBB);
4874      }
4875      // JT BB. Just iterate over successors here
4876      if (BB->succ_end() != std::find(BB->succ_begin(),BB->succ_end(), PHIBB)) {
4877        PHI->addRegOperand(PHINodesToUpdate[pi].second, false);
4878        PHI->addMachineBasicBlockOperand(BB);
4879      }
4880    }
4881  }
4882
4883  // If the switch block involved a branch to one of the actual successors, we
4884  // need to update PHI nodes in that block.
4885  for (unsigned i = 0, e = PHINodesToUpdate.size(); i != e; ++i) {
4886    MachineInstr *PHI = PHINodesToUpdate[i].first;
4887    assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
4888           "This is not a machine PHI node that we are updating!");
4889    if (BB->isSuccessor(PHI->getParent())) {
4890      PHI->addRegOperand(PHINodesToUpdate[i].second, false);
4891      PHI->addMachineBasicBlockOperand(BB);
4892    }
4893  }
4894
4895  // If we generated any switch lowering information, build and codegen any
4896  // additional DAGs necessary.
4897  for (unsigned i = 0, e = SwitchCases.size(); i != e; ++i) {
4898    SelectionDAG SDAG(TLI, MF, getAnalysisToUpdate<MachineModuleInfo>());
4899    CurDAG = &SDAG;
4900    SelectionDAGLowering SDL(SDAG, TLI, *AA, FuncInfo);
4901
4902    // Set the current basic block to the mbb we wish to insert the code into
4903    BB = SwitchCases[i].ThisBB;
4904    SDL.setCurrentBasicBlock(BB);
4905
4906    // Emit the code
4907    SDL.visitSwitchCase(SwitchCases[i]);
4908    SDAG.setRoot(SDL.getRoot());
4909    CodeGenAndEmitDAG(SDAG);
4910
4911    // Handle any PHI nodes in successors of this chunk, as if we were coming
4912    // from the original BB before switch expansion.  Note that PHI nodes can
4913    // occur multiple times in PHINodesToUpdate.  We have to be very careful to
4914    // handle them the right number of times.
4915    while ((BB = SwitchCases[i].TrueBB)) {  // Handle LHS and RHS.
4916      for (MachineBasicBlock::iterator Phi = BB->begin();
4917           Phi != BB->end() && Phi->getOpcode() == TargetInstrInfo::PHI; ++Phi){
4918        // This value for this PHI node is recorded in PHINodesToUpdate, get it.
4919        for (unsigned pn = 0; ; ++pn) {
4920          assert(pn != PHINodesToUpdate.size() && "Didn't find PHI entry!");
4921          if (PHINodesToUpdate[pn].first == Phi) {
4922            Phi->addRegOperand(PHINodesToUpdate[pn].second, false);
4923            Phi->addMachineBasicBlockOperand(SwitchCases[i].ThisBB);
4924            break;
4925          }
4926        }
4927      }
4928
4929      // Don't process RHS if same block as LHS.
4930      if (BB == SwitchCases[i].FalseBB)
4931        SwitchCases[i].FalseBB = 0;
4932
4933      // If we haven't handled the RHS, do so now.  Otherwise, we're done.
4934      SwitchCases[i].TrueBB = SwitchCases[i].FalseBB;
4935      SwitchCases[i].FalseBB = 0;
4936    }
4937    assert(SwitchCases[i].TrueBB == 0 && SwitchCases[i].FalseBB == 0);
4938  }
4939}
4940
4941
4942//===----------------------------------------------------------------------===//
4943/// ScheduleAndEmitDAG - Pick a safe ordering and emit instructions for each
4944/// target node in the graph.
4945void SelectionDAGISel::ScheduleAndEmitDAG(SelectionDAG &DAG) {
4946  if (ViewSchedDAGs) DAG.viewGraph();
4947
4948  RegisterScheduler::FunctionPassCtor Ctor = RegisterScheduler::getDefault();
4949
4950  if (!Ctor) {
4951    Ctor = ISHeuristic;
4952    RegisterScheduler::setDefault(Ctor);
4953  }
4954
4955  ScheduleDAG *SL = Ctor(this, &DAG, BB);
4956  BB = SL->Run();
4957
4958  if (ViewSUnitDAGs) SL->viewGraph();
4959
4960  delete SL;
4961}
4962
4963
4964HazardRecognizer *SelectionDAGISel::CreateTargetHazardRecognizer() {
4965  return new HazardRecognizer();
4966}
4967
4968//===----------------------------------------------------------------------===//
4969// Helper functions used by the generated instruction selector.
4970//===----------------------------------------------------------------------===//
4971// Calls to these methods are generated by tblgen.
4972
4973/// CheckAndMask - The isel is trying to match something like (and X, 255).  If
4974/// the dag combiner simplified the 255, we still want to match.  RHS is the
4975/// actual value in the DAG on the RHS of an AND, and DesiredMaskS is the value
4976/// specified in the .td file (e.g. 255).
4977bool SelectionDAGISel::CheckAndMask(SDOperand LHS, ConstantSDNode *RHS,
4978                                    int64_t DesiredMaskS) const {
4979  uint64_t ActualMask = RHS->getValue();
4980  uint64_t DesiredMask =DesiredMaskS & MVT::getIntVTBitMask(LHS.getValueType());
4981
4982  // If the actual mask exactly matches, success!
4983  if (ActualMask == DesiredMask)
4984    return true;
4985
4986  // If the actual AND mask is allowing unallowed bits, this doesn't match.
4987  if (ActualMask & ~DesiredMask)
4988    return false;
4989
4990  // Otherwise, the DAG Combiner may have proven that the value coming in is
4991  // either already zero or is not demanded.  Check for known zero input bits.
4992  uint64_t NeededMask = DesiredMask & ~ActualMask;
4993  if (CurDAG->MaskedValueIsZero(LHS, NeededMask))
4994    return true;
4995
4996  // TODO: check to see if missing bits are just not demanded.
4997
4998  // Otherwise, this pattern doesn't match.
4999  return false;
5000}
5001
5002/// CheckOrMask - The isel is trying to match something like (or X, 255).  If
5003/// the dag combiner simplified the 255, we still want to match.  RHS is the
5004/// actual value in the DAG on the RHS of an OR, and DesiredMaskS is the value
5005/// specified in the .td file (e.g. 255).
5006bool SelectionDAGISel::CheckOrMask(SDOperand LHS, ConstantSDNode *RHS,
5007                                    int64_t DesiredMaskS) const {
5008  uint64_t ActualMask = RHS->getValue();
5009  uint64_t DesiredMask =DesiredMaskS & MVT::getIntVTBitMask(LHS.getValueType());
5010
5011  // If the actual mask exactly matches, success!
5012  if (ActualMask == DesiredMask)
5013    return true;
5014
5015  // If the actual AND mask is allowing unallowed bits, this doesn't match.
5016  if (ActualMask & ~DesiredMask)
5017    return false;
5018
5019  // Otherwise, the DAG Combiner may have proven that the value coming in is
5020  // either already zero or is not demanded.  Check for known zero input bits.
5021  uint64_t NeededMask = DesiredMask & ~ActualMask;
5022
5023  uint64_t KnownZero, KnownOne;
5024  CurDAG->ComputeMaskedBits(LHS, NeededMask, KnownZero, KnownOne);
5025
5026  // If all the missing bits in the or are already known to be set, match!
5027  if ((NeededMask & KnownOne) == NeededMask)
5028    return true;
5029
5030  // TODO: check to see if missing bits are just not demanded.
5031
5032  // Otherwise, this pattern doesn't match.
5033  return false;
5034}
5035
5036
5037/// SelectInlineAsmMemoryOperands - Calls to this are automatically generated
5038/// by tblgen.  Others should not call it.
5039void SelectionDAGISel::
5040SelectInlineAsmMemoryOperands(std::vector<SDOperand> &Ops, SelectionDAG &DAG) {
5041  std::vector<SDOperand> InOps;
5042  std::swap(InOps, Ops);
5043
5044  Ops.push_back(InOps[0]);  // input chain.
5045  Ops.push_back(InOps[1]);  // input asm string.
5046
5047  unsigned i = 2, e = InOps.size();
5048  if (InOps[e-1].getValueType() == MVT::Flag)
5049    --e;  // Don't process a flag operand if it is here.
5050
5051  while (i != e) {
5052    unsigned Flags = cast<ConstantSDNode>(InOps[i])->getValue();
5053    if ((Flags & 7) != 4 /*MEM*/) {
5054      // Just skip over this operand, copying the operands verbatim.
5055      Ops.insert(Ops.end(), InOps.begin()+i, InOps.begin()+i+(Flags >> 3) + 1);
5056      i += (Flags >> 3) + 1;
5057    } else {
5058      assert((Flags >> 3) == 1 && "Memory operand with multiple values?");
5059      // Otherwise, this is a memory operand.  Ask the target to select it.
5060      std::vector<SDOperand> SelOps;
5061      if (SelectInlineAsmMemoryOperand(InOps[i+1], 'm', SelOps, DAG)) {
5062        cerr << "Could not match memory address.  Inline asm failure!\n";
5063        exit(1);
5064      }
5065
5066      // Add this to the output node.
5067      MVT::ValueType IntPtrTy = DAG.getTargetLoweringInfo().getPointerTy();
5068      Ops.push_back(DAG.getTargetConstant(4/*MEM*/ | (SelOps.size() << 3),
5069                                          IntPtrTy));
5070      Ops.insert(Ops.end(), SelOps.begin(), SelOps.end());
5071      i += 2;
5072    }
5073  }
5074
5075  // Add the flag input back if present.
5076  if (e != InOps.size())
5077    Ops.push_back(InOps.back());
5078}
5079
5080char SelectionDAGISel::ID = 0;
5081