SelectionDAGISel.cpp revision 0ab86bed697bb390c97bd73a66cc4945ec75275b
1//===-- SelectionDAGISel.cpp - Implement the SelectionDAGISel class -------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAGISel class.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "isel"
15#include "ScheduleDAGSDNodes.h"
16#include "SelectionDAGBuilder.h"
17#include "FunctionLoweringInfo.h"
18#include "llvm/CodeGen/SelectionDAGISel.h"
19#include "llvm/Analysis/AliasAnalysis.h"
20#include "llvm/Analysis/DebugInfo.h"
21#include "llvm/Constants.h"
22#include "llvm/CallingConv.h"
23#include "llvm/DerivedTypes.h"
24#include "llvm/Function.h"
25#include "llvm/GlobalVariable.h"
26#include "llvm/InlineAsm.h"
27#include "llvm/Instructions.h"
28#include "llvm/Intrinsics.h"
29#include "llvm/IntrinsicInst.h"
30#include "llvm/LLVMContext.h"
31#include "llvm/CodeGen/FastISel.h"
32#include "llvm/CodeGen/GCStrategy.h"
33#include "llvm/CodeGen/GCMetadata.h"
34#include "llvm/CodeGen/MachineFunction.h"
35#include "llvm/CodeGen/MachineFunctionAnalysis.h"
36#include "llvm/CodeGen/MachineFrameInfo.h"
37#include "llvm/CodeGen/MachineInstrBuilder.h"
38#include "llvm/CodeGen/MachineJumpTableInfo.h"
39#include "llvm/CodeGen/MachineModuleInfo.h"
40#include "llvm/CodeGen/MachineRegisterInfo.h"
41#include "llvm/CodeGen/ScheduleHazardRecognizer.h"
42#include "llvm/CodeGen/SchedulerRegistry.h"
43#include "llvm/CodeGen/SelectionDAG.h"
44#include "llvm/CodeGen/DwarfWriter.h"
45#include "llvm/Target/TargetRegisterInfo.h"
46#include "llvm/Target/TargetData.h"
47#include "llvm/Target/TargetFrameInfo.h"
48#include "llvm/Target/TargetIntrinsicInfo.h"
49#include "llvm/Target/TargetInstrInfo.h"
50#include "llvm/Target/TargetLowering.h"
51#include "llvm/Target/TargetMachine.h"
52#include "llvm/Target/TargetOptions.h"
53#include "llvm/Support/Compiler.h"
54#include "llvm/Support/Debug.h"
55#include "llvm/Support/ErrorHandling.h"
56#include "llvm/Support/MathExtras.h"
57#include "llvm/Support/Timer.h"
58#include "llvm/Support/raw_ostream.h"
59#include "llvm/ADT/Statistic.h"
60#include <algorithm>
61using namespace llvm;
62
63STATISTIC(NumFastIselFailures, "Number of instructions fast isel failed on");
64STATISTIC(NumDAGIselRetries,"Number of times dag isel has to try another path");
65
66static cl::opt<bool>
67EnableFastISelVerbose("fast-isel-verbose", cl::Hidden,
68          cl::desc("Enable verbose messages in the \"fast\" "
69                   "instruction selector"));
70static cl::opt<bool>
71EnableFastISelAbort("fast-isel-abort", cl::Hidden,
72          cl::desc("Enable abort calls when \"fast\" instruction fails"));
73static cl::opt<bool>
74SchedLiveInCopies("schedule-livein-copies", cl::Hidden,
75                  cl::desc("Schedule copies of livein registers"),
76                  cl::init(false));
77
78#ifndef NDEBUG
79static cl::opt<bool>
80ViewDAGCombine1("view-dag-combine1-dags", cl::Hidden,
81          cl::desc("Pop up a window to show dags before the first "
82                   "dag combine pass"));
83static cl::opt<bool>
84ViewLegalizeTypesDAGs("view-legalize-types-dags", cl::Hidden,
85          cl::desc("Pop up a window to show dags before legalize types"));
86static cl::opt<bool>
87ViewLegalizeDAGs("view-legalize-dags", cl::Hidden,
88          cl::desc("Pop up a window to show dags before legalize"));
89static cl::opt<bool>
90ViewDAGCombine2("view-dag-combine2-dags", cl::Hidden,
91          cl::desc("Pop up a window to show dags before the second "
92                   "dag combine pass"));
93static cl::opt<bool>
94ViewDAGCombineLT("view-dag-combine-lt-dags", cl::Hidden,
95          cl::desc("Pop up a window to show dags before the post legalize types"
96                   " dag combine pass"));
97static cl::opt<bool>
98ViewISelDAGs("view-isel-dags", cl::Hidden,
99          cl::desc("Pop up a window to show isel dags as they are selected"));
100static cl::opt<bool>
101ViewSchedDAGs("view-sched-dags", cl::Hidden,
102          cl::desc("Pop up a window to show sched dags as they are processed"));
103static cl::opt<bool>
104ViewSUnitDAGs("view-sunit-dags", cl::Hidden,
105      cl::desc("Pop up a window to show SUnit dags after they are processed"));
106#else
107static const bool ViewDAGCombine1 = false,
108                  ViewLegalizeTypesDAGs = false, ViewLegalizeDAGs = false,
109                  ViewDAGCombine2 = false,
110                  ViewDAGCombineLT = false,
111                  ViewISelDAGs = false, ViewSchedDAGs = false,
112                  ViewSUnitDAGs = false;
113#endif
114
115//===---------------------------------------------------------------------===//
116///
117/// RegisterScheduler class - Track the registration of instruction schedulers.
118///
119//===---------------------------------------------------------------------===//
120MachinePassRegistry RegisterScheduler::Registry;
121
122//===---------------------------------------------------------------------===//
123///
124/// ISHeuristic command line option for instruction schedulers.
125///
126//===---------------------------------------------------------------------===//
127static cl::opt<RegisterScheduler::FunctionPassCtor, false,
128               RegisterPassParser<RegisterScheduler> >
129ISHeuristic("pre-RA-sched",
130            cl::init(&createDefaultScheduler),
131            cl::desc("Instruction schedulers available (before register"
132                     " allocation):"));
133
134static RegisterScheduler
135defaultListDAGScheduler("default", "Best scheduler for the target",
136                        createDefaultScheduler);
137
138namespace llvm {
139  //===--------------------------------------------------------------------===//
140  /// createDefaultScheduler - This creates an instruction scheduler appropriate
141  /// for the target.
142  ScheduleDAGSDNodes* createDefaultScheduler(SelectionDAGISel *IS,
143                                             CodeGenOpt::Level OptLevel) {
144    const TargetLowering &TLI = IS->getTargetLowering();
145
146    if (OptLevel == CodeGenOpt::None)
147      return createFastDAGScheduler(IS, OptLevel);
148    if (TLI.getSchedulingPreference() == TargetLowering::SchedulingForLatency)
149      return createTDListDAGScheduler(IS, OptLevel);
150    assert(TLI.getSchedulingPreference() ==
151           TargetLowering::SchedulingForRegPressure && "Unknown sched type!");
152    return createBURRListDAGScheduler(IS, OptLevel);
153  }
154}
155
156// EmitInstrWithCustomInserter - This method should be implemented by targets
157// that mark instructions with the 'usesCustomInserter' flag.  These
158// instructions are special in various ways, which require special support to
159// insert.  The specified MachineInstr is created but not inserted into any
160// basic blocks, and this method is called to expand it into a sequence of
161// instructions, potentially also creating new basic blocks and control flow.
162// When new basic blocks are inserted and the edges from MBB to its successors
163// are modified, the method should insert pairs of <OldSucc, NewSucc> into the
164// DenseMap.
165MachineBasicBlock *TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
166                                                         MachineBasicBlock *MBB,
167                   DenseMap<MachineBasicBlock*, MachineBasicBlock*> *EM) const {
168#ifndef NDEBUG
169  dbgs() << "If a target marks an instruction with "
170          "'usesCustomInserter', it must implement "
171          "TargetLowering::EmitInstrWithCustomInserter!";
172#endif
173  llvm_unreachable(0);
174  return 0;
175}
176
177/// EmitLiveInCopy - Emit a copy for a live in physical register. If the
178/// physical register has only a single copy use, then coalesced the copy
179/// if possible.
180static void EmitLiveInCopy(MachineBasicBlock *MBB,
181                           MachineBasicBlock::iterator &InsertPos,
182                           unsigned VirtReg, unsigned PhysReg,
183                           const TargetRegisterClass *RC,
184                           DenseMap<MachineInstr*, unsigned> &CopyRegMap,
185                           const MachineRegisterInfo &MRI,
186                           const TargetRegisterInfo &TRI,
187                           const TargetInstrInfo &TII) {
188  unsigned NumUses = 0;
189  MachineInstr *UseMI = NULL;
190  for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(VirtReg),
191         UE = MRI.use_end(); UI != UE; ++UI) {
192    UseMI = &*UI;
193    if (++NumUses > 1)
194      break;
195  }
196
197  // If the number of uses is not one, or the use is not a move instruction,
198  // don't coalesce. Also, only coalesce away a virtual register to virtual
199  // register copy.
200  bool Coalesced = false;
201  unsigned SrcReg, DstReg, SrcSubReg, DstSubReg;
202  if (NumUses == 1 &&
203      TII.isMoveInstr(*UseMI, SrcReg, DstReg, SrcSubReg, DstSubReg) &&
204      TargetRegisterInfo::isVirtualRegister(DstReg)) {
205    VirtReg = DstReg;
206    Coalesced = true;
207  }
208
209  // Now find an ideal location to insert the copy.
210  MachineBasicBlock::iterator Pos = InsertPos;
211  while (Pos != MBB->begin()) {
212    MachineInstr *PrevMI = prior(Pos);
213    DenseMap<MachineInstr*, unsigned>::iterator RI = CopyRegMap.find(PrevMI);
214    // copyRegToReg might emit multiple instructions to do a copy.
215    unsigned CopyDstReg = (RI == CopyRegMap.end()) ? 0 : RI->second;
216    if (CopyDstReg && !TRI.regsOverlap(CopyDstReg, PhysReg))
217      // This is what the BB looks like right now:
218      // r1024 = mov r0
219      // ...
220      // r1    = mov r1024
221      //
222      // We want to insert "r1025 = mov r1". Inserting this copy below the
223      // move to r1024 makes it impossible for that move to be coalesced.
224      //
225      // r1025 = mov r1
226      // r1024 = mov r0
227      // ...
228      // r1    = mov 1024
229      // r2    = mov 1025
230      break; // Woot! Found a good location.
231    --Pos;
232  }
233
234  bool Emitted = TII.copyRegToReg(*MBB, Pos, VirtReg, PhysReg, RC, RC);
235  assert(Emitted && "Unable to issue a live-in copy instruction!\n");
236  (void) Emitted;
237
238  CopyRegMap.insert(std::make_pair(prior(Pos), VirtReg));
239  if (Coalesced) {
240    if (&*InsertPos == UseMI) ++InsertPos;
241    MBB->erase(UseMI);
242  }
243}
244
245/// EmitLiveInCopies - If this is the first basic block in the function,
246/// and if it has live ins that need to be copied into vregs, emit the
247/// copies into the block.
248static void EmitLiveInCopies(MachineBasicBlock *EntryMBB,
249                             const MachineRegisterInfo &MRI,
250                             const TargetRegisterInfo &TRI,
251                             const TargetInstrInfo &TII) {
252  if (SchedLiveInCopies) {
253    // Emit the copies at a heuristically-determined location in the block.
254    DenseMap<MachineInstr*, unsigned> CopyRegMap;
255    MachineBasicBlock::iterator InsertPos = EntryMBB->begin();
256    for (MachineRegisterInfo::livein_iterator LI = MRI.livein_begin(),
257           E = MRI.livein_end(); LI != E; ++LI)
258      if (LI->second) {
259        const TargetRegisterClass *RC = MRI.getRegClass(LI->second);
260        EmitLiveInCopy(EntryMBB, InsertPos, LI->second, LI->first,
261                       RC, CopyRegMap, MRI, TRI, TII);
262      }
263  } else {
264    // Emit the copies into the top of the block.
265    for (MachineRegisterInfo::livein_iterator LI = MRI.livein_begin(),
266           E = MRI.livein_end(); LI != E; ++LI)
267      if (LI->second) {
268        const TargetRegisterClass *RC = MRI.getRegClass(LI->second);
269        bool Emitted = TII.copyRegToReg(*EntryMBB, EntryMBB->begin(),
270                                        LI->second, LI->first, RC, RC);
271        assert(Emitted && "Unable to issue a live-in copy instruction!\n");
272        (void) Emitted;
273      }
274  }
275}
276
277//===----------------------------------------------------------------------===//
278// SelectionDAGISel code
279//===----------------------------------------------------------------------===//
280
281SelectionDAGISel::SelectionDAGISel(TargetMachine &tm, CodeGenOpt::Level OL) :
282  MachineFunctionPass(&ID), TM(tm), TLI(*tm.getTargetLowering()),
283  FuncInfo(new FunctionLoweringInfo(TLI)),
284  CurDAG(new SelectionDAG(TLI, *FuncInfo)),
285  SDB(new SelectionDAGBuilder(*CurDAG, TLI, *FuncInfo, OL)),
286  GFI(),
287  OptLevel(OL),
288  DAGSize(0)
289{}
290
291SelectionDAGISel::~SelectionDAGISel() {
292  delete SDB;
293  delete CurDAG;
294  delete FuncInfo;
295}
296
297unsigned SelectionDAGISel::MakeReg(EVT VT) {
298  return RegInfo->createVirtualRegister(TLI.getRegClassFor(VT));
299}
300
301void SelectionDAGISel::getAnalysisUsage(AnalysisUsage &AU) const {
302  AU.addRequired<AliasAnalysis>();
303  AU.addPreserved<AliasAnalysis>();
304  AU.addRequired<GCModuleInfo>();
305  AU.addPreserved<GCModuleInfo>();
306  AU.addRequired<DwarfWriter>();
307  AU.addPreserved<DwarfWriter>();
308  MachineFunctionPass::getAnalysisUsage(AU);
309}
310
311bool SelectionDAGISel::runOnMachineFunction(MachineFunction &mf) {
312  Function &Fn = *mf.getFunction();
313
314  // Do some sanity-checking on the command-line options.
315  assert((!EnableFastISelVerbose || EnableFastISel) &&
316         "-fast-isel-verbose requires -fast-isel");
317  assert((!EnableFastISelAbort || EnableFastISel) &&
318         "-fast-isel-abort requires -fast-isel");
319
320  // Get alias analysis for load/store combining.
321  AA = &getAnalysis<AliasAnalysis>();
322
323  MF = &mf;
324  const TargetInstrInfo &TII = *TM.getInstrInfo();
325  const TargetRegisterInfo &TRI = *TM.getRegisterInfo();
326
327  if (Fn.hasGC())
328    GFI = &getAnalysis<GCModuleInfo>().getFunctionInfo(Fn);
329  else
330    GFI = 0;
331  RegInfo = &MF->getRegInfo();
332  DEBUG(dbgs() << "\n\n\n=== " << Fn.getName() << "\n");
333
334  MachineModuleInfo *MMI = getAnalysisIfAvailable<MachineModuleInfo>();
335  DwarfWriter *DW = getAnalysisIfAvailable<DwarfWriter>();
336  CurDAG->init(*MF, MMI, DW);
337  FuncInfo->set(Fn, *MF, EnableFastISel);
338  SDB->init(GFI, *AA);
339
340  for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
341    if (InvokeInst *Invoke = dyn_cast<InvokeInst>(I->getTerminator()))
342      // Mark landing pad.
343      FuncInfo->MBBMap[Invoke->getSuccessor(1)]->setIsLandingPad();
344
345  SelectAllBasicBlocks(Fn, *MF, MMI, DW, TII);
346
347  // If the first basic block in the function has live ins that need to be
348  // copied into vregs, emit the copies into the top of the block before
349  // emitting the code for the block.
350  EmitLiveInCopies(MF->begin(), *RegInfo, TRI, TII);
351
352  // Add function live-ins to entry block live-in set.
353  for (MachineRegisterInfo::livein_iterator I = RegInfo->livein_begin(),
354         E = RegInfo->livein_end(); I != E; ++I)
355    MF->begin()->addLiveIn(I->first);
356
357#ifndef NDEBUG
358  assert(FuncInfo->CatchInfoFound.size() == FuncInfo->CatchInfoLost.size() &&
359         "Not all catch info was assigned to a landing pad!");
360#endif
361
362  FuncInfo->clear();
363
364  return true;
365}
366
367/// SetDebugLoc - Update MF's and SDB's DebugLocs if debug information is
368/// attached with this instruction.
369static void SetDebugLoc(Instruction *I, SelectionDAGBuilder *SDB,
370                        FastISel *FastIS, MachineFunction *MF) {
371  MDNode *Dbg = I->getDbgMetadata();
372  if (Dbg == 0) return;
373
374  DILocation DILoc(Dbg);
375  DebugLoc Loc = ExtractDebugLocation(DILoc, MF->getDebugLocInfo());
376
377  SDB->setCurDebugLoc(Loc);
378
379  if (FastIS)
380    FastIS->setCurDebugLoc(Loc);
381
382  // If the function doesn't have a default debug location yet, set
383  // it. This is kind of a hack.
384  if (MF->getDefaultDebugLoc().isUnknown())
385    MF->setDefaultDebugLoc(Loc);
386}
387
388/// ResetDebugLoc - Set MF's and SDB's DebugLocs to Unknown.
389static void ResetDebugLoc(SelectionDAGBuilder *SDB, FastISel *FastIS) {
390  SDB->setCurDebugLoc(DebugLoc::getUnknownLoc());
391  if (FastIS)
392    FastIS->setCurDebugLoc(DebugLoc::getUnknownLoc());
393}
394
395void SelectionDAGISel::SelectBasicBlock(BasicBlock *LLVMBB,
396                                        BasicBlock::iterator Begin,
397                                        BasicBlock::iterator End,
398                                        bool &HadTailCall) {
399  SDB->setCurrentBasicBlock(BB);
400
401  // Lower all of the non-terminator instructions. If a call is emitted
402  // as a tail call, cease emitting nodes for this block.
403  for (BasicBlock::iterator I = Begin; I != End && !SDB->HasTailCall; ++I) {
404    SetDebugLoc(I, SDB, 0, MF);
405
406    if (!isa<TerminatorInst>(I)) {
407      SDB->visit(*I);
408
409      // Set the current debug location back to "unknown" so that it doesn't
410      // spuriously apply to subsequent instructions.
411      ResetDebugLoc(SDB, 0);
412    }
413  }
414
415  if (!SDB->HasTailCall) {
416    // Ensure that all instructions which are used outside of their defining
417    // blocks are available as virtual registers.  Invoke is handled elsewhere.
418    for (BasicBlock::iterator I = Begin; I != End; ++I)
419      if (!isa<PHINode>(I) && !isa<InvokeInst>(I))
420        SDB->CopyToExportRegsIfNeeded(I);
421
422    // Handle PHI nodes in successor blocks.
423    if (End == LLVMBB->end()) {
424      HandlePHINodesInSuccessorBlocks(LLVMBB);
425
426      // Lower the terminator after the copies are emitted.
427      SetDebugLoc(LLVMBB->getTerminator(), SDB, 0, MF);
428      SDB->visit(*LLVMBB->getTerminator());
429      ResetDebugLoc(SDB, 0);
430    }
431  }
432
433  // Make sure the root of the DAG is up-to-date.
434  CurDAG->setRoot(SDB->getControlRoot());
435
436  // Final step, emit the lowered DAG as machine code.
437  CodeGenAndEmitDAG();
438  HadTailCall = SDB->HasTailCall;
439  SDB->clear();
440}
441
442namespace {
443/// WorkListRemover - This class is a DAGUpdateListener that removes any deleted
444/// nodes from the worklist.
445class SDOPsWorkListRemover : public SelectionDAG::DAGUpdateListener {
446  SmallVector<SDNode*, 128> &Worklist;
447  SmallPtrSet<SDNode*, 128> &InWorklist;
448public:
449  SDOPsWorkListRemover(SmallVector<SDNode*, 128> &wl,
450                       SmallPtrSet<SDNode*, 128> &inwl)
451    : Worklist(wl), InWorklist(inwl) {}
452
453  void RemoveFromWorklist(SDNode *N) {
454    if (!InWorklist.erase(N)) return;
455
456    SmallVector<SDNode*, 128>::iterator I =
457    std::find(Worklist.begin(), Worklist.end(), N);
458    assert(I != Worklist.end() && "Not in worklist");
459
460    *I = Worklist.back();
461    Worklist.pop_back();
462  }
463
464  virtual void NodeDeleted(SDNode *N, SDNode *E) {
465    RemoveFromWorklist(N);
466  }
467
468  virtual void NodeUpdated(SDNode *N) {
469    // Ignore updates.
470  }
471};
472}
473
474/// TrivialTruncElim - Eliminate some trivial nops that can result from
475/// ShrinkDemandedOps: (trunc (ext n)) -> n.
476static bool TrivialTruncElim(SDValue Op,
477                             TargetLowering::TargetLoweringOpt &TLO) {
478  SDValue N0 = Op.getOperand(0);
479  EVT VT = Op.getValueType();
480  if ((N0.getOpcode() == ISD::ZERO_EXTEND ||
481       N0.getOpcode() == ISD::SIGN_EXTEND ||
482       N0.getOpcode() == ISD::ANY_EXTEND) &&
483      N0.getOperand(0).getValueType() == VT) {
484    return TLO.CombineTo(Op, N0.getOperand(0));
485  }
486  return false;
487}
488
489/// ShrinkDemandedOps - A late transformation pass that shrink expressions
490/// using TargetLowering::TargetLoweringOpt::ShrinkDemandedOp. It converts
491/// x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free.
492void SelectionDAGISel::ShrinkDemandedOps() {
493  SmallVector<SDNode*, 128> Worklist;
494  SmallPtrSet<SDNode*, 128> InWorklist;
495
496  // Add all the dag nodes to the worklist.
497  Worklist.reserve(CurDAG->allnodes_size());
498  for (SelectionDAG::allnodes_iterator I = CurDAG->allnodes_begin(),
499       E = CurDAG->allnodes_end(); I != E; ++I) {
500    Worklist.push_back(I);
501    InWorklist.insert(I);
502  }
503
504  TargetLowering::TargetLoweringOpt TLO(*CurDAG, true);
505  while (!Worklist.empty()) {
506    SDNode *N = Worklist.pop_back_val();
507    InWorklist.erase(N);
508
509    if (N->use_empty() && N != CurDAG->getRoot().getNode()) {
510      // Deleting this node may make its operands dead, add them to the worklist
511      // if they aren't already there.
512      for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
513        if (InWorklist.insert(N->getOperand(i).getNode()))
514          Worklist.push_back(N->getOperand(i).getNode());
515
516      CurDAG->DeleteNode(N);
517      continue;
518    }
519
520    // Run ShrinkDemandedOp on scalar binary operations.
521    if (N->getNumValues() != 1 ||
522        !N->getValueType(0).isSimple() || !N->getValueType(0).isInteger())
523      continue;
524
525    unsigned BitWidth = N->getValueType(0).getScalarType().getSizeInBits();
526    APInt Demanded = APInt::getAllOnesValue(BitWidth);
527    APInt KnownZero, KnownOne;
528    if (!TLI.SimplifyDemandedBits(SDValue(N, 0), Demanded,
529                                  KnownZero, KnownOne, TLO) &&
530        (N->getOpcode() != ISD::TRUNCATE ||
531         !TrivialTruncElim(SDValue(N, 0), TLO)))
532      continue;
533
534    // Revisit the node.
535    assert(!InWorklist.count(N) && "Already in worklist");
536    Worklist.push_back(N);
537    InWorklist.insert(N);
538
539    // Replace the old value with the new one.
540    DEBUG(errs() << "\nShrinkDemandedOps replacing ";
541          TLO.Old.getNode()->dump(CurDAG);
542          errs() << "\nWith: ";
543          TLO.New.getNode()->dump(CurDAG);
544          errs() << '\n');
545
546    if (InWorklist.insert(TLO.New.getNode()))
547      Worklist.push_back(TLO.New.getNode());
548
549    SDOPsWorkListRemover DeadNodes(Worklist, InWorklist);
550    CurDAG->ReplaceAllUsesOfValueWith(TLO.Old, TLO.New, &DeadNodes);
551
552    if (!TLO.Old.getNode()->use_empty()) continue;
553
554    for (unsigned i = 0, e = TLO.Old.getNode()->getNumOperands();
555         i != e; ++i) {
556      SDNode *OpNode = TLO.Old.getNode()->getOperand(i).getNode();
557      if (OpNode->hasOneUse()) {
558        // Add OpNode to the end of the list to revisit.
559        DeadNodes.RemoveFromWorklist(OpNode);
560        Worklist.push_back(OpNode);
561        InWorklist.insert(OpNode);
562      }
563    }
564
565    DeadNodes.RemoveFromWorklist(TLO.Old.getNode());
566    CurDAG->DeleteNode(TLO.Old.getNode());
567  }
568}
569
570void SelectionDAGISel::ComputeLiveOutVRegInfo() {
571  SmallPtrSet<SDNode*, 128> VisitedNodes;
572  SmallVector<SDNode*, 128> Worklist;
573
574  Worklist.push_back(CurDAG->getRoot().getNode());
575
576  APInt Mask;
577  APInt KnownZero;
578  APInt KnownOne;
579
580  do {
581    SDNode *N = Worklist.pop_back_val();
582
583    // If we've already seen this node, ignore it.
584    if (!VisitedNodes.insert(N))
585      continue;
586
587    // Otherwise, add all chain operands to the worklist.
588    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
589      if (N->getOperand(i).getValueType() == MVT::Other)
590        Worklist.push_back(N->getOperand(i).getNode());
591
592    // If this is a CopyToReg with a vreg dest, process it.
593    if (N->getOpcode() != ISD::CopyToReg)
594      continue;
595
596    unsigned DestReg = cast<RegisterSDNode>(N->getOperand(1))->getReg();
597    if (!TargetRegisterInfo::isVirtualRegister(DestReg))
598      continue;
599
600    // Ignore non-scalar or non-integer values.
601    SDValue Src = N->getOperand(2);
602    EVT SrcVT = Src.getValueType();
603    if (!SrcVT.isInteger() || SrcVT.isVector())
604      continue;
605
606    unsigned NumSignBits = CurDAG->ComputeNumSignBits(Src);
607    Mask = APInt::getAllOnesValue(SrcVT.getSizeInBits());
608    CurDAG->ComputeMaskedBits(Src, Mask, KnownZero, KnownOne);
609
610    // Only install this information if it tells us something.
611    if (NumSignBits != 1 || KnownZero != 0 || KnownOne != 0) {
612      DestReg -= TargetRegisterInfo::FirstVirtualRegister;
613      if (DestReg >= FuncInfo->LiveOutRegInfo.size())
614        FuncInfo->LiveOutRegInfo.resize(DestReg+1);
615      FunctionLoweringInfo::LiveOutInfo &LOI =
616        FuncInfo->LiveOutRegInfo[DestReg];
617      LOI.NumSignBits = NumSignBits;
618      LOI.KnownOne = KnownOne;
619      LOI.KnownZero = KnownZero;
620    }
621  } while (!Worklist.empty());
622}
623
624void SelectionDAGISel::CodeGenAndEmitDAG() {
625  std::string GroupName;
626  if (TimePassesIsEnabled)
627    GroupName = "Instruction Selection and Scheduling";
628  std::string BlockName;
629  if (ViewDAGCombine1 || ViewLegalizeTypesDAGs || ViewLegalizeDAGs ||
630      ViewDAGCombine2 || ViewDAGCombineLT || ViewISelDAGs || ViewSchedDAGs ||
631      ViewSUnitDAGs)
632    BlockName = MF->getFunction()->getNameStr() + ":" +
633                BB->getBasicBlock()->getNameStr();
634
635  DEBUG(dbgs() << "Initial selection DAG:\n");
636  DEBUG(CurDAG->dump());
637
638  if (ViewDAGCombine1) CurDAG->viewGraph("dag-combine1 input for " + BlockName);
639
640  // Run the DAG combiner in pre-legalize mode.
641  if (TimePassesIsEnabled) {
642    NamedRegionTimer T("DAG Combining 1", GroupName);
643    CurDAG->Combine(Unrestricted, *AA, OptLevel);
644  } else {
645    CurDAG->Combine(Unrestricted, *AA, OptLevel);
646  }
647
648  DEBUG(dbgs() << "Optimized lowered selection DAG:\n");
649  DEBUG(CurDAG->dump());
650
651  // Second step, hack on the DAG until it only uses operations and types that
652  // the target supports.
653  if (ViewLegalizeTypesDAGs) CurDAG->viewGraph("legalize-types input for " +
654                                               BlockName);
655
656  bool Changed;
657  if (TimePassesIsEnabled) {
658    NamedRegionTimer T("Type Legalization", GroupName);
659    Changed = CurDAG->LegalizeTypes();
660  } else {
661    Changed = CurDAG->LegalizeTypes();
662  }
663
664  DEBUG(dbgs() << "Type-legalized selection DAG:\n");
665  DEBUG(CurDAG->dump());
666
667  if (Changed) {
668    if (ViewDAGCombineLT)
669      CurDAG->viewGraph("dag-combine-lt input for " + BlockName);
670
671    // Run the DAG combiner in post-type-legalize mode.
672    if (TimePassesIsEnabled) {
673      NamedRegionTimer T("DAG Combining after legalize types", GroupName);
674      CurDAG->Combine(NoIllegalTypes, *AA, OptLevel);
675    } else {
676      CurDAG->Combine(NoIllegalTypes, *AA, OptLevel);
677    }
678
679    DEBUG(dbgs() << "Optimized type-legalized selection DAG:\n");
680    DEBUG(CurDAG->dump());
681  }
682
683  if (TimePassesIsEnabled) {
684    NamedRegionTimer T("Vector Legalization", GroupName);
685    Changed = CurDAG->LegalizeVectors();
686  } else {
687    Changed = CurDAG->LegalizeVectors();
688  }
689
690  if (Changed) {
691    if (TimePassesIsEnabled) {
692      NamedRegionTimer T("Type Legalization 2", GroupName);
693      CurDAG->LegalizeTypes();
694    } else {
695      CurDAG->LegalizeTypes();
696    }
697
698    if (ViewDAGCombineLT)
699      CurDAG->viewGraph("dag-combine-lv input for " + BlockName);
700
701    // Run the DAG combiner in post-type-legalize mode.
702    if (TimePassesIsEnabled) {
703      NamedRegionTimer T("DAG Combining after legalize vectors", GroupName);
704      CurDAG->Combine(NoIllegalOperations, *AA, OptLevel);
705    } else {
706      CurDAG->Combine(NoIllegalOperations, *AA, OptLevel);
707    }
708
709    DEBUG(dbgs() << "Optimized vector-legalized selection DAG:\n");
710    DEBUG(CurDAG->dump());
711  }
712
713  if (ViewLegalizeDAGs) CurDAG->viewGraph("legalize input for " + BlockName);
714
715  if (TimePassesIsEnabled) {
716    NamedRegionTimer T("DAG Legalization", GroupName);
717    CurDAG->Legalize(OptLevel);
718  } else {
719    CurDAG->Legalize(OptLevel);
720  }
721
722  DEBUG(dbgs() << "Legalized selection DAG:\n");
723  DEBUG(CurDAG->dump());
724
725  if (ViewDAGCombine2) CurDAG->viewGraph("dag-combine2 input for " + BlockName);
726
727  // Run the DAG combiner in post-legalize mode.
728  if (TimePassesIsEnabled) {
729    NamedRegionTimer T("DAG Combining 2", GroupName);
730    CurDAG->Combine(NoIllegalOperations, *AA, OptLevel);
731  } else {
732    CurDAG->Combine(NoIllegalOperations, *AA, OptLevel);
733  }
734
735  DEBUG(dbgs() << "Optimized legalized selection DAG:\n");
736  DEBUG(CurDAG->dump());
737
738  if (OptLevel != CodeGenOpt::None) {
739    ShrinkDemandedOps();
740    ComputeLiveOutVRegInfo();
741  }
742
743  if (ViewISelDAGs) CurDAG->viewGraph("isel input for " + BlockName);
744
745  // Third, instruction select all of the operations to machine code, adding the
746  // code to the MachineBasicBlock.
747  if (TimePassesIsEnabled) {
748    NamedRegionTimer T("Instruction Selection", GroupName);
749    DoInstructionSelection();
750  } else {
751    DoInstructionSelection();
752  }
753
754  DEBUG(dbgs() << "Selected selection DAG:\n");
755  DEBUG(CurDAG->dump());
756
757  if (ViewSchedDAGs) CurDAG->viewGraph("scheduler input for " + BlockName);
758
759  // Schedule machine code.
760  ScheduleDAGSDNodes *Scheduler = CreateScheduler();
761  if (TimePassesIsEnabled) {
762    NamedRegionTimer T("Instruction Scheduling", GroupName);
763    Scheduler->Run(CurDAG, BB, BB->end());
764  } else {
765    Scheduler->Run(CurDAG, BB, BB->end());
766  }
767
768  if (ViewSUnitDAGs) Scheduler->viewGraph();
769
770  // Emit machine code to BB.  This can change 'BB' to the last block being
771  // inserted into.
772  if (TimePassesIsEnabled) {
773    NamedRegionTimer T("Instruction Creation", GroupName);
774    BB = Scheduler->EmitSchedule(&SDB->EdgeMapping);
775  } else {
776    BB = Scheduler->EmitSchedule(&SDB->EdgeMapping);
777  }
778
779  // Free the scheduler state.
780  if (TimePassesIsEnabled) {
781    NamedRegionTimer T("Instruction Scheduling Cleanup", GroupName);
782    delete Scheduler;
783  } else {
784    delete Scheduler;
785  }
786
787  DEBUG(dbgs() << "Selected machine code:\n");
788  DEBUG(BB->dump());
789}
790
791void SelectionDAGISel::DoInstructionSelection() {
792  DEBUG(errs() << "===== Instruction selection begins:\n");
793
794  PreprocessISelDAG();
795
796  // Select target instructions for the DAG.
797  {
798    // Number all nodes with a topological order and set DAGSize.
799    DAGSize = CurDAG->AssignTopologicalOrder();
800
801    // Create a dummy node (which is not added to allnodes), that adds
802    // a reference to the root node, preventing it from being deleted,
803    // and tracking any changes of the root.
804    HandleSDNode Dummy(CurDAG->getRoot());
805    ISelPosition = SelectionDAG::allnodes_iterator(CurDAG->getRoot().getNode());
806    ++ISelPosition;
807
808    // The AllNodes list is now topological-sorted. Visit the
809    // nodes by starting at the end of the list (the root of the
810    // graph) and preceding back toward the beginning (the entry
811    // node).
812    while (ISelPosition != CurDAG->allnodes_begin()) {
813      SDNode *Node = --ISelPosition;
814      // Skip dead nodes. DAGCombiner is expected to eliminate all dead nodes,
815      // but there are currently some corner cases that it misses. Also, this
816      // makes it theoretically possible to disable the DAGCombiner.
817      if (Node->use_empty())
818        continue;
819
820      SDNode *ResNode = Select(Node);
821
822      // FIXME: This is pretty gross.  'Select' should be changed to not return
823      // anything at all and this code should be nuked with a tactical strike.
824
825      // If node should not be replaced, continue with the next one.
826      if (ResNode == Node || Node->getOpcode() == ISD::DELETED_NODE)
827        continue;
828      // Replace node.
829      if (ResNode)
830        ReplaceUses(Node, ResNode);
831
832      // If after the replacement this node is not used any more,
833      // remove this dead node.
834      if (Node->use_empty()) { // Don't delete EntryToken, etc.
835        ISelUpdater ISU(ISelPosition);
836        CurDAG->RemoveDeadNode(Node, &ISU);
837      }
838    }
839
840    CurDAG->setRoot(Dummy.getValue());
841  }
842  DEBUG(errs() << "===== Instruction selection ends:\n");
843
844  PostprocessISelDAG();
845}
846
847
848void SelectionDAGISel::SelectAllBasicBlocks(Function &Fn,
849                                            MachineFunction &MF,
850                                            MachineModuleInfo *MMI,
851                                            DwarfWriter *DW,
852                                            const TargetInstrInfo &TII) {
853  // Initialize the Fast-ISel state, if needed.
854  FastISel *FastIS = 0;
855  if (EnableFastISel)
856    FastIS = TLI.createFastISel(MF, MMI, DW,
857                                FuncInfo->ValueMap,
858                                FuncInfo->MBBMap,
859                                FuncInfo->StaticAllocaMap
860#ifndef NDEBUG
861                                , FuncInfo->CatchInfoLost
862#endif
863                                );
864
865  // Iterate over all basic blocks in the function.
866  for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I) {
867    BasicBlock *LLVMBB = &*I;
868    BB = FuncInfo->MBBMap[LLVMBB];
869
870    BasicBlock::iterator const Begin = LLVMBB->begin();
871    BasicBlock::iterator const End = LLVMBB->end();
872    BasicBlock::iterator BI = Begin;
873
874    // Lower any arguments needed in this block if this is the entry block.
875    bool SuppressFastISel = false;
876    if (LLVMBB == &Fn.getEntryBlock()) {
877      LowerArguments(LLVMBB);
878
879      // If any of the arguments has the byval attribute, forgo
880      // fast-isel in the entry block.
881      if (FastIS) {
882        unsigned j = 1;
883        for (Function::arg_iterator I = Fn.arg_begin(), E = Fn.arg_end();
884             I != E; ++I, ++j)
885          if (Fn.paramHasAttr(j, Attribute::ByVal)) {
886            if (EnableFastISelVerbose || EnableFastISelAbort)
887              dbgs() << "FastISel skips entry block due to byval argument\n";
888            SuppressFastISel = true;
889            break;
890          }
891      }
892    }
893
894    if (MMI && BB->isLandingPad()) {
895      // Add a label to mark the beginning of the landing pad.  Deletion of the
896      // landing pad can thus be detected via the MachineModuleInfo.
897      MCSymbol *Label = MMI->addLandingPad(BB);
898
899      const TargetInstrDesc &II = TII.get(TargetOpcode::EH_LABEL);
900      BuildMI(BB, SDB->getCurDebugLoc(), II).addSym(Label);
901
902      // Mark exception register as live in.
903      unsigned Reg = TLI.getExceptionAddressRegister();
904      if (Reg) BB->addLiveIn(Reg);
905
906      // Mark exception selector register as live in.
907      Reg = TLI.getExceptionSelectorRegister();
908      if (Reg) BB->addLiveIn(Reg);
909
910      // FIXME: Hack around an exception handling flaw (PR1508): the personality
911      // function and list of typeids logically belong to the invoke (or, if you
912      // like, the basic block containing the invoke), and need to be associated
913      // with it in the dwarf exception handling tables.  Currently however the
914      // information is provided by an intrinsic (eh.selector) that can be moved
915      // to unexpected places by the optimizers: if the unwind edge is critical,
916      // then breaking it can result in the intrinsics being in the successor of
917      // the landing pad, not the landing pad itself.  This results
918      // in exceptions not being caught because no typeids are associated with
919      // the invoke.  This may not be the only way things can go wrong, but it
920      // is the only way we try to work around for the moment.
921      BranchInst *Br = dyn_cast<BranchInst>(LLVMBB->getTerminator());
922
923      if (Br && Br->isUnconditional()) { // Critical edge?
924        BasicBlock::iterator I, E;
925        for (I = LLVMBB->begin(), E = --LLVMBB->end(); I != E; ++I)
926          if (isa<EHSelectorInst>(I))
927            break;
928
929        if (I == E)
930          // No catch info found - try to extract some from the successor.
931          CopyCatchInfo(Br->getSuccessor(0), LLVMBB, MMI, *FuncInfo);
932      }
933    }
934
935    // Before doing SelectionDAG ISel, see if FastISel has been requested.
936    if (FastIS && !SuppressFastISel) {
937      // Emit code for any incoming arguments. This must happen before
938      // beginning FastISel on the entry block.
939      if (LLVMBB == &Fn.getEntryBlock()) {
940        CurDAG->setRoot(SDB->getControlRoot());
941        CodeGenAndEmitDAG();
942        SDB->clear();
943      }
944      FastIS->startNewBlock(BB);
945      // Do FastISel on as many instructions as possible.
946      for (; BI != End; ++BI) {
947        // Just before the terminator instruction, insert instructions to
948        // feed PHI nodes in successor blocks.
949        if (isa<TerminatorInst>(BI))
950          if (!HandlePHINodesInSuccessorBlocksFast(LLVMBB, FastIS)) {
951            ++NumFastIselFailures;
952            ResetDebugLoc(SDB, FastIS);
953            if (EnableFastISelVerbose || EnableFastISelAbort) {
954              dbgs() << "FastISel miss: ";
955              BI->dump();
956            }
957            assert(!EnableFastISelAbort &&
958                   "FastISel didn't handle a PHI in a successor");
959            break;
960          }
961
962        SetDebugLoc(BI, SDB, FastIS, &MF);
963
964        // Try to select the instruction with FastISel.
965        if (FastIS->SelectInstruction(BI)) {
966          ResetDebugLoc(SDB, FastIS);
967          continue;
968        }
969
970        // Clear out the debug location so that it doesn't carry over to
971        // unrelated instructions.
972        ResetDebugLoc(SDB, FastIS);
973
974        // Then handle certain instructions as single-LLVM-Instruction blocks.
975        if (isa<CallInst>(BI)) {
976          ++NumFastIselFailures;
977          if (EnableFastISelVerbose || EnableFastISelAbort) {
978            dbgs() << "FastISel missed call: ";
979            BI->dump();
980          }
981
982          if (!BI->getType()->isVoidTy()) {
983            unsigned &R = FuncInfo->ValueMap[BI];
984            if (!R)
985              R = FuncInfo->CreateRegForValue(BI);
986          }
987
988          bool HadTailCall = false;
989          SelectBasicBlock(LLVMBB, BI, llvm::next(BI), HadTailCall);
990
991          // If the call was emitted as a tail call, we're done with the block.
992          if (HadTailCall) {
993            BI = End;
994            break;
995          }
996
997          // If the instruction was codegen'd with multiple blocks,
998          // inform the FastISel object where to resume inserting.
999          FastIS->setCurrentBlock(BB);
1000          continue;
1001        }
1002
1003        // Otherwise, give up on FastISel for the rest of the block.
1004        // For now, be a little lenient about non-branch terminators.
1005        if (!isa<TerminatorInst>(BI) || isa<BranchInst>(BI)) {
1006          ++NumFastIselFailures;
1007          if (EnableFastISelVerbose || EnableFastISelAbort) {
1008            dbgs() << "FastISel miss: ";
1009            BI->dump();
1010          }
1011          if (EnableFastISelAbort)
1012            // The "fast" selector couldn't handle something and bailed.
1013            // For the purpose of debugging, just abort.
1014            llvm_unreachable("FastISel didn't select the entire block");
1015        }
1016        break;
1017      }
1018    }
1019
1020    // Run SelectionDAG instruction selection on the remainder of the block
1021    // not handled by FastISel. If FastISel is not run, this is the entire
1022    // block.
1023    if (BI != End) {
1024      bool HadTailCall;
1025      SelectBasicBlock(LLVMBB, BI, End, HadTailCall);
1026    }
1027
1028    FinishBasicBlock();
1029  }
1030
1031  delete FastIS;
1032}
1033
1034void
1035SelectionDAGISel::FinishBasicBlock() {
1036
1037  DEBUG(dbgs() << "Target-post-processed machine code:\n");
1038  DEBUG(BB->dump());
1039
1040  DEBUG(dbgs() << "Total amount of phi nodes to update: "
1041               << SDB->PHINodesToUpdate.size() << "\n");
1042  DEBUG(for (unsigned i = 0, e = SDB->PHINodesToUpdate.size(); i != e; ++i)
1043          dbgs() << "Node " << i << " : ("
1044                 << SDB->PHINodesToUpdate[i].first
1045                 << ", " << SDB->PHINodesToUpdate[i].second << ")\n");
1046
1047  // Next, now that we know what the last MBB the LLVM BB expanded is, update
1048  // PHI nodes in successors.
1049  if (SDB->SwitchCases.empty() &&
1050      SDB->JTCases.empty() &&
1051      SDB->BitTestCases.empty()) {
1052    for (unsigned i = 0, e = SDB->PHINodesToUpdate.size(); i != e; ++i) {
1053      MachineInstr *PHI = SDB->PHINodesToUpdate[i].first;
1054      assert(PHI->isPHI() &&
1055             "This is not a machine PHI node that we are updating!");
1056      if (!BB->isSuccessor(PHI->getParent()))
1057        continue;
1058      PHI->addOperand(MachineOperand::CreateReg(SDB->PHINodesToUpdate[i].second,
1059                                                false));
1060      PHI->addOperand(MachineOperand::CreateMBB(BB));
1061    }
1062    SDB->PHINodesToUpdate.clear();
1063    return;
1064  }
1065
1066  for (unsigned i = 0, e = SDB->BitTestCases.size(); i != e; ++i) {
1067    // Lower header first, if it wasn't already lowered
1068    if (!SDB->BitTestCases[i].Emitted) {
1069      // Set the current basic block to the mbb we wish to insert the code into
1070      BB = SDB->BitTestCases[i].Parent;
1071      SDB->setCurrentBasicBlock(BB);
1072      // Emit the code
1073      SDB->visitBitTestHeader(SDB->BitTestCases[i]);
1074      CurDAG->setRoot(SDB->getRoot());
1075      CodeGenAndEmitDAG();
1076      SDB->clear();
1077    }
1078
1079    for (unsigned j = 0, ej = SDB->BitTestCases[i].Cases.size(); j != ej; ++j) {
1080      // Set the current basic block to the mbb we wish to insert the code into
1081      BB = SDB->BitTestCases[i].Cases[j].ThisBB;
1082      SDB->setCurrentBasicBlock(BB);
1083      // Emit the code
1084      if (j+1 != ej)
1085        SDB->visitBitTestCase(SDB->BitTestCases[i].Cases[j+1].ThisBB,
1086                              SDB->BitTestCases[i].Reg,
1087                              SDB->BitTestCases[i].Cases[j]);
1088      else
1089        SDB->visitBitTestCase(SDB->BitTestCases[i].Default,
1090                              SDB->BitTestCases[i].Reg,
1091                              SDB->BitTestCases[i].Cases[j]);
1092
1093
1094      CurDAG->setRoot(SDB->getRoot());
1095      CodeGenAndEmitDAG();
1096      SDB->clear();
1097    }
1098
1099    // Update PHI Nodes
1100    for (unsigned pi = 0, pe = SDB->PHINodesToUpdate.size(); pi != pe; ++pi) {
1101      MachineInstr *PHI = SDB->PHINodesToUpdate[pi].first;
1102      MachineBasicBlock *PHIBB = PHI->getParent();
1103      assert(PHI->isPHI() &&
1104             "This is not a machine PHI node that we are updating!");
1105      // This is "default" BB. We have two jumps to it. From "header" BB and
1106      // from last "case" BB.
1107      if (PHIBB == SDB->BitTestCases[i].Default) {
1108        PHI->addOperand(MachineOperand::
1109                        CreateReg(SDB->PHINodesToUpdate[pi].second, false));
1110        PHI->addOperand(MachineOperand::CreateMBB(SDB->BitTestCases[i].Parent));
1111        PHI->addOperand(MachineOperand::
1112                        CreateReg(SDB->PHINodesToUpdate[pi].second, false));
1113        PHI->addOperand(MachineOperand::CreateMBB(SDB->BitTestCases[i].Cases.
1114                                                  back().ThisBB));
1115      }
1116      // One of "cases" BB.
1117      for (unsigned j = 0, ej = SDB->BitTestCases[i].Cases.size();
1118           j != ej; ++j) {
1119        MachineBasicBlock* cBB = SDB->BitTestCases[i].Cases[j].ThisBB;
1120        if (cBB->isSuccessor(PHIBB)) {
1121          PHI->addOperand(MachineOperand::
1122                          CreateReg(SDB->PHINodesToUpdate[pi].second, false));
1123          PHI->addOperand(MachineOperand::CreateMBB(cBB));
1124        }
1125      }
1126    }
1127  }
1128  SDB->BitTestCases.clear();
1129
1130  // If the JumpTable record is filled in, then we need to emit a jump table.
1131  // Updating the PHI nodes is tricky in this case, since we need to determine
1132  // whether the PHI is a successor of the range check MBB or the jump table MBB
1133  for (unsigned i = 0, e = SDB->JTCases.size(); i != e; ++i) {
1134    // Lower header first, if it wasn't already lowered
1135    if (!SDB->JTCases[i].first.Emitted) {
1136      // Set the current basic block to the mbb we wish to insert the code into
1137      BB = SDB->JTCases[i].first.HeaderBB;
1138      SDB->setCurrentBasicBlock(BB);
1139      // Emit the code
1140      SDB->visitJumpTableHeader(SDB->JTCases[i].second, SDB->JTCases[i].first);
1141      CurDAG->setRoot(SDB->getRoot());
1142      CodeGenAndEmitDAG();
1143      SDB->clear();
1144    }
1145
1146    // Set the current basic block to the mbb we wish to insert the code into
1147    BB = SDB->JTCases[i].second.MBB;
1148    SDB->setCurrentBasicBlock(BB);
1149    // Emit the code
1150    SDB->visitJumpTable(SDB->JTCases[i].second);
1151    CurDAG->setRoot(SDB->getRoot());
1152    CodeGenAndEmitDAG();
1153    SDB->clear();
1154
1155    // Update PHI Nodes
1156    for (unsigned pi = 0, pe = SDB->PHINodesToUpdate.size(); pi != pe; ++pi) {
1157      MachineInstr *PHI = SDB->PHINodesToUpdate[pi].first;
1158      MachineBasicBlock *PHIBB = PHI->getParent();
1159      assert(PHI->isPHI() &&
1160             "This is not a machine PHI node that we are updating!");
1161      // "default" BB. We can go there only from header BB.
1162      if (PHIBB == SDB->JTCases[i].second.Default) {
1163        PHI->addOperand
1164          (MachineOperand::CreateReg(SDB->PHINodesToUpdate[pi].second, false));
1165        PHI->addOperand
1166          (MachineOperand::CreateMBB(SDB->JTCases[i].first.HeaderBB));
1167      }
1168      // JT BB. Just iterate over successors here
1169      if (BB->isSuccessor(PHIBB)) {
1170        PHI->addOperand
1171          (MachineOperand::CreateReg(SDB->PHINodesToUpdate[pi].second, false));
1172        PHI->addOperand(MachineOperand::CreateMBB(BB));
1173      }
1174    }
1175  }
1176  SDB->JTCases.clear();
1177
1178  // If the switch block involved a branch to one of the actual successors, we
1179  // need to update PHI nodes in that block.
1180  for (unsigned i = 0, e = SDB->PHINodesToUpdate.size(); i != e; ++i) {
1181    MachineInstr *PHI = SDB->PHINodesToUpdate[i].first;
1182    assert(PHI->isPHI() &&
1183           "This is not a machine PHI node that we are updating!");
1184    if (BB->isSuccessor(PHI->getParent())) {
1185      PHI->addOperand(MachineOperand::CreateReg(SDB->PHINodesToUpdate[i].second,
1186                                                false));
1187      PHI->addOperand(MachineOperand::CreateMBB(BB));
1188    }
1189  }
1190
1191  // If we generated any switch lowering information, build and codegen any
1192  // additional DAGs necessary.
1193  for (unsigned i = 0, e = SDB->SwitchCases.size(); i != e; ++i) {
1194    // Set the current basic block to the mbb we wish to insert the code into
1195    MachineBasicBlock *ThisBB = BB = SDB->SwitchCases[i].ThisBB;
1196    SDB->setCurrentBasicBlock(BB);
1197
1198    // Emit the code
1199    SDB->visitSwitchCase(SDB->SwitchCases[i]);
1200    CurDAG->setRoot(SDB->getRoot());
1201    CodeGenAndEmitDAG();
1202
1203    // Handle any PHI nodes in successors of this chunk, as if we were coming
1204    // from the original BB before switch expansion.  Note that PHI nodes can
1205    // occur multiple times in PHINodesToUpdate.  We have to be very careful to
1206    // handle them the right number of times.
1207    while ((BB = SDB->SwitchCases[i].TrueBB)) {  // Handle LHS and RHS.
1208      // If new BB's are created during scheduling, the edges may have been
1209      // updated. That is, the edge from ThisBB to BB may have been split and
1210      // BB's predecessor is now another block.
1211      DenseMap<MachineBasicBlock*, MachineBasicBlock*>::iterator EI =
1212        SDB->EdgeMapping.find(BB);
1213      if (EI != SDB->EdgeMapping.end())
1214        ThisBB = EI->second;
1215
1216      // BB may have been removed from the CFG if a branch was constant folded.
1217      if (ThisBB->isSuccessor(BB)) {
1218        for (MachineBasicBlock::iterator Phi = BB->begin();
1219             Phi != BB->end() && Phi->isPHI();
1220             ++Phi) {
1221          // This value for this PHI node is recorded in PHINodesToUpdate.
1222          for (unsigned pn = 0; ; ++pn) {
1223            assert(pn != SDB->PHINodesToUpdate.size() &&
1224                   "Didn't find PHI entry!");
1225            if (SDB->PHINodesToUpdate[pn].first == Phi) {
1226              Phi->addOperand(MachineOperand::
1227                              CreateReg(SDB->PHINodesToUpdate[pn].second,
1228                                        false));
1229              Phi->addOperand(MachineOperand::CreateMBB(ThisBB));
1230              break;
1231            }
1232          }
1233        }
1234      }
1235
1236      // Don't process RHS if same block as LHS.
1237      if (BB == SDB->SwitchCases[i].FalseBB)
1238        SDB->SwitchCases[i].FalseBB = 0;
1239
1240      // If we haven't handled the RHS, do so now.  Otherwise, we're done.
1241      SDB->SwitchCases[i].TrueBB = SDB->SwitchCases[i].FalseBB;
1242      SDB->SwitchCases[i].FalseBB = 0;
1243    }
1244    assert(SDB->SwitchCases[i].TrueBB == 0 && SDB->SwitchCases[i].FalseBB == 0);
1245    SDB->clear();
1246  }
1247  SDB->SwitchCases.clear();
1248
1249  SDB->PHINodesToUpdate.clear();
1250}
1251
1252
1253/// Create the scheduler. If a specific scheduler was specified
1254/// via the SchedulerRegistry, use it, otherwise select the
1255/// one preferred by the target.
1256///
1257ScheduleDAGSDNodes *SelectionDAGISel::CreateScheduler() {
1258  RegisterScheduler::FunctionPassCtor Ctor = RegisterScheduler::getDefault();
1259
1260  if (!Ctor) {
1261    Ctor = ISHeuristic;
1262    RegisterScheduler::setDefault(Ctor);
1263  }
1264
1265  return Ctor(this, OptLevel);
1266}
1267
1268ScheduleHazardRecognizer *SelectionDAGISel::CreateTargetHazardRecognizer() {
1269  return new ScheduleHazardRecognizer();
1270}
1271
1272//===----------------------------------------------------------------------===//
1273// Helper functions used by the generated instruction selector.
1274//===----------------------------------------------------------------------===//
1275// Calls to these methods are generated by tblgen.
1276
1277/// CheckAndMask - The isel is trying to match something like (and X, 255).  If
1278/// the dag combiner simplified the 255, we still want to match.  RHS is the
1279/// actual value in the DAG on the RHS of an AND, and DesiredMaskS is the value
1280/// specified in the .td file (e.g. 255).
1281bool SelectionDAGISel::CheckAndMask(SDValue LHS, ConstantSDNode *RHS,
1282                                    int64_t DesiredMaskS) const {
1283  const APInt &ActualMask = RHS->getAPIntValue();
1284  const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
1285
1286  // If the actual mask exactly matches, success!
1287  if (ActualMask == DesiredMask)
1288    return true;
1289
1290  // If the actual AND mask is allowing unallowed bits, this doesn't match.
1291  if (ActualMask.intersects(~DesiredMask))
1292    return false;
1293
1294  // Otherwise, the DAG Combiner may have proven that the value coming in is
1295  // either already zero or is not demanded.  Check for known zero input bits.
1296  APInt NeededMask = DesiredMask & ~ActualMask;
1297  if (CurDAG->MaskedValueIsZero(LHS, NeededMask))
1298    return true;
1299
1300  // TODO: check to see if missing bits are just not demanded.
1301
1302  // Otherwise, this pattern doesn't match.
1303  return false;
1304}
1305
1306/// CheckOrMask - The isel is trying to match something like (or X, 255).  If
1307/// the dag combiner simplified the 255, we still want to match.  RHS is the
1308/// actual value in the DAG on the RHS of an OR, and DesiredMaskS is the value
1309/// specified in the .td file (e.g. 255).
1310bool SelectionDAGISel::CheckOrMask(SDValue LHS, ConstantSDNode *RHS,
1311                                   int64_t DesiredMaskS) const {
1312  const APInt &ActualMask = RHS->getAPIntValue();
1313  const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
1314
1315  // If the actual mask exactly matches, success!
1316  if (ActualMask == DesiredMask)
1317    return true;
1318
1319  // If the actual AND mask is allowing unallowed bits, this doesn't match.
1320  if (ActualMask.intersects(~DesiredMask))
1321    return false;
1322
1323  // Otherwise, the DAG Combiner may have proven that the value coming in is
1324  // either already zero or is not demanded.  Check for known zero input bits.
1325  APInt NeededMask = DesiredMask & ~ActualMask;
1326
1327  APInt KnownZero, KnownOne;
1328  CurDAG->ComputeMaskedBits(LHS, NeededMask, KnownZero, KnownOne);
1329
1330  // If all the missing bits in the or are already known to be set, match!
1331  if ((NeededMask & KnownOne) == NeededMask)
1332    return true;
1333
1334  // TODO: check to see if missing bits are just not demanded.
1335
1336  // Otherwise, this pattern doesn't match.
1337  return false;
1338}
1339
1340
1341/// SelectInlineAsmMemoryOperands - Calls to this are automatically generated
1342/// by tblgen.  Others should not call it.
1343void SelectionDAGISel::
1344SelectInlineAsmMemoryOperands(std::vector<SDValue> &Ops) {
1345  std::vector<SDValue> InOps;
1346  std::swap(InOps, Ops);
1347
1348  Ops.push_back(InOps[0]);  // input chain.
1349  Ops.push_back(InOps[1]);  // input asm string.
1350
1351  unsigned i = 2, e = InOps.size();
1352  if (InOps[e-1].getValueType() == MVT::Flag)
1353    --e;  // Don't process a flag operand if it is here.
1354
1355  while (i != e) {
1356    unsigned Flags = cast<ConstantSDNode>(InOps[i])->getZExtValue();
1357    if ((Flags & 7) != 4 /*MEM*/) {
1358      // Just skip over this operand, copying the operands verbatim.
1359      Ops.insert(Ops.end(), InOps.begin()+i,
1360                 InOps.begin()+i+InlineAsm::getNumOperandRegisters(Flags) + 1);
1361      i += InlineAsm::getNumOperandRegisters(Flags) + 1;
1362    } else {
1363      assert(InlineAsm::getNumOperandRegisters(Flags) == 1 &&
1364             "Memory operand with multiple values?");
1365      // Otherwise, this is a memory operand.  Ask the target to select it.
1366      std::vector<SDValue> SelOps;
1367      if (SelectInlineAsmMemoryOperand(InOps[i+1], 'm', SelOps)) {
1368        llvm_report_error("Could not match memory address.  Inline asm"
1369                          " failure!");
1370      }
1371
1372      // Add this to the output node.
1373      Ops.push_back(CurDAG->getTargetConstant(4/*MEM*/ | (SelOps.size()<< 3),
1374                                              MVT::i32));
1375      Ops.insert(Ops.end(), SelOps.begin(), SelOps.end());
1376      i += 2;
1377    }
1378  }
1379
1380  // Add the flag input back if present.
1381  if (e != InOps.size())
1382    Ops.push_back(InOps.back());
1383}
1384
1385/// findFlagUse - Return use of EVT::Flag value produced by the specified
1386/// SDNode.
1387///
1388static SDNode *findFlagUse(SDNode *N) {
1389  unsigned FlagResNo = N->getNumValues()-1;
1390  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
1391    SDUse &Use = I.getUse();
1392    if (Use.getResNo() == FlagResNo)
1393      return Use.getUser();
1394  }
1395  return NULL;
1396}
1397
1398/// findNonImmUse - Return true if "Use" is a non-immediate use of "Def".
1399/// This function recursively traverses up the operand chain, ignoring
1400/// certain nodes.
1401static bool findNonImmUse(SDNode *Use, SDNode* Def, SDNode *ImmedUse,
1402                          SDNode *Root, SmallPtrSet<SDNode*, 16> &Visited,
1403                          bool IgnoreChains) {
1404  // The NodeID's are given uniques ID's where a node ID is guaranteed to be
1405  // greater than all of its (recursive) operands.  If we scan to a point where
1406  // 'use' is smaller than the node we're scanning for, then we know we will
1407  // never find it.
1408  //
1409  // The Use may be -1 (unassigned) if it is a newly allocated node.  This can
1410  // happen because we scan down to newly selected nodes in the case of flag
1411  // uses.
1412  if ((Use->getNodeId() < Def->getNodeId() && Use->getNodeId() != -1))
1413    return false;
1414
1415  // Don't revisit nodes if we already scanned it and didn't fail, we know we
1416  // won't fail if we scan it again.
1417  if (!Visited.insert(Use))
1418    return false;
1419
1420  for (unsigned i = 0, e = Use->getNumOperands(); i != e; ++i) {
1421    // Ignore chain uses, they are validated by HandleMergeInputChains.
1422    if (Use->getOperand(i).getValueType() == MVT::Other && IgnoreChains)
1423      continue;
1424
1425    SDNode *N = Use->getOperand(i).getNode();
1426    if (N == Def) {
1427      if (Use == ImmedUse || Use == Root)
1428        continue;  // We are not looking for immediate use.
1429      assert(N != Root);
1430      return true;
1431    }
1432
1433    // Traverse up the operand chain.
1434    if (findNonImmUse(N, Def, ImmedUse, Root, Visited, IgnoreChains))
1435      return true;
1436  }
1437  return false;
1438}
1439
1440/// IsProfitableToFold - Returns true if it's profitable to fold the specific
1441/// operand node N of U during instruction selection that starts at Root.
1442bool SelectionDAGISel::IsProfitableToFold(SDValue N, SDNode *U,
1443                                          SDNode *Root) const {
1444  if (OptLevel == CodeGenOpt::None) return false;
1445  return N.hasOneUse();
1446}
1447
1448/// IsLegalToFold - Returns true if the specific operand node N of
1449/// U can be folded during instruction selection that starts at Root.
1450bool SelectionDAGISel::IsLegalToFold(SDValue N, SDNode *U, SDNode *Root,
1451                                     bool IgnoreChains) const {
1452  if (OptLevel == CodeGenOpt::None) return false;
1453
1454  // If Root use can somehow reach N through a path that that doesn't contain
1455  // U then folding N would create a cycle. e.g. In the following
1456  // diagram, Root can reach N through X. If N is folded into into Root, then
1457  // X is both a predecessor and a successor of U.
1458  //
1459  //          [N*]           //
1460  //         ^   ^           //
1461  //        /     \          //
1462  //      [U*]    [X]?       //
1463  //        ^     ^          //
1464  //         \   /           //
1465  //          \ /            //
1466  //         [Root*]         //
1467  //
1468  // * indicates nodes to be folded together.
1469  //
1470  // If Root produces a flag, then it gets (even more) interesting. Since it
1471  // will be "glued" together with its flag use in the scheduler, we need to
1472  // check if it might reach N.
1473  //
1474  //          [N*]           //
1475  //         ^   ^           //
1476  //        /     \          //
1477  //      [U*]    [X]?       //
1478  //        ^       ^        //
1479  //         \       \       //
1480  //          \      |       //
1481  //         [Root*] |       //
1482  //          ^      |       //
1483  //          f      |       //
1484  //          |      /       //
1485  //         [Y]    /        //
1486  //           ^   /         //
1487  //           f  /          //
1488  //           | /           //
1489  //          [FU]           //
1490  //
1491  // If FU (flag use) indirectly reaches N (the load), and Root folds N
1492  // (call it Fold), then X is a predecessor of FU and a successor of
1493  // Fold. But since Fold and FU are flagged together, this will create
1494  // a cycle in the scheduling graph.
1495
1496  // If the node has flags, walk down the graph to the "lowest" node in the
1497  // flagged set.
1498  EVT VT = Root->getValueType(Root->getNumValues()-1);
1499  while (VT == MVT::Flag) {
1500    SDNode *FU = findFlagUse(Root);
1501    if (FU == NULL)
1502      break;
1503    Root = FU;
1504    VT = Root->getValueType(Root->getNumValues()-1);
1505
1506    // If our query node has a flag result with a use, we've walked up it.  If
1507    // the user (which has already been selected) has a chain or indirectly uses
1508    // the chain, our WalkChainUsers predicate will not consider it.  Because of
1509    // this, we cannot ignore chains in this predicate.
1510    IgnoreChains = false;
1511  }
1512
1513
1514  SmallPtrSet<SDNode*, 16> Visited;
1515  return !findNonImmUse(Root, N.getNode(), U, Root, Visited, IgnoreChains);
1516}
1517
1518SDNode *SelectionDAGISel::Select_INLINEASM(SDNode *N) {
1519  std::vector<SDValue> Ops(N->op_begin(), N->op_end());
1520  SelectInlineAsmMemoryOperands(Ops);
1521
1522  std::vector<EVT> VTs;
1523  VTs.push_back(MVT::Other);
1524  VTs.push_back(MVT::Flag);
1525  SDValue New = CurDAG->getNode(ISD::INLINEASM, N->getDebugLoc(),
1526                                VTs, &Ops[0], Ops.size());
1527  New->setNodeId(-1);
1528  return New.getNode();
1529}
1530
1531SDNode *SelectionDAGISel::Select_UNDEF(SDNode *N) {
1532  return CurDAG->SelectNodeTo(N, TargetOpcode::IMPLICIT_DEF,N->getValueType(0));
1533}
1534
1535/// GetVBR - decode a vbr encoding whose top bit is set.
1536ALWAYS_INLINE static uint64_t
1537GetVBR(uint64_t Val, const unsigned char *MatcherTable, unsigned &Idx) {
1538  assert(Val >= 128 && "Not a VBR");
1539  Val &= 127;  // Remove first vbr bit.
1540
1541  unsigned Shift = 7;
1542  uint64_t NextBits;
1543  do {
1544    NextBits = MatcherTable[Idx++];
1545    Val |= (NextBits&127) << Shift;
1546    Shift += 7;
1547  } while (NextBits & 128);
1548
1549  return Val;
1550}
1551
1552
1553/// UpdateChainsAndFlags - When a match is complete, this method updates uses of
1554/// interior flag and chain results to use the new flag and chain results.
1555void SelectionDAGISel::
1556UpdateChainsAndFlags(SDNode *NodeToMatch, SDValue InputChain,
1557                     const SmallVectorImpl<SDNode*> &ChainNodesMatched,
1558                     SDValue InputFlag,
1559                     const SmallVectorImpl<SDNode*> &FlagResultNodesMatched,
1560                     bool isMorphNodeTo) {
1561  SmallVector<SDNode*, 4> NowDeadNodes;
1562
1563  ISelUpdater ISU(ISelPosition);
1564
1565  // Now that all the normal results are replaced, we replace the chain and
1566  // flag results if present.
1567  if (!ChainNodesMatched.empty()) {
1568    assert(InputChain.getNode() != 0 &&
1569           "Matched input chains but didn't produce a chain");
1570    // Loop over all of the nodes we matched that produced a chain result.
1571    // Replace all the chain results with the final chain we ended up with.
1572    for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
1573      SDNode *ChainNode = ChainNodesMatched[i];
1574
1575      // If this node was already deleted, don't look at it.
1576      if (ChainNode->getOpcode() == ISD::DELETED_NODE)
1577        continue;
1578
1579      // Don't replace the results of the root node if we're doing a
1580      // MorphNodeTo.
1581      if (ChainNode == NodeToMatch && isMorphNodeTo)
1582        continue;
1583
1584      SDValue ChainVal = SDValue(ChainNode, ChainNode->getNumValues()-1);
1585      if (ChainVal.getValueType() == MVT::Flag)
1586        ChainVal = ChainVal.getValue(ChainVal->getNumValues()-2);
1587      assert(ChainVal.getValueType() == MVT::Other && "Not a chain?");
1588      CurDAG->ReplaceAllUsesOfValueWith(ChainVal, InputChain, &ISU);
1589
1590      // If the node became dead and we haven't already seen it, delete it.
1591      if (ChainNode->use_empty() &&
1592          !std::count(NowDeadNodes.begin(), NowDeadNodes.end(), ChainNode))
1593        NowDeadNodes.push_back(ChainNode);
1594    }
1595  }
1596
1597  // If the result produces a flag, update any flag results in the matched
1598  // pattern with the flag result.
1599  if (InputFlag.getNode() != 0) {
1600    // Handle any interior nodes explicitly marked.
1601    for (unsigned i = 0, e = FlagResultNodesMatched.size(); i != e; ++i) {
1602      SDNode *FRN = FlagResultNodesMatched[i];
1603
1604      // If this node was already deleted, don't look at it.
1605      if (FRN->getOpcode() == ISD::DELETED_NODE)
1606        continue;
1607
1608      assert(FRN->getValueType(FRN->getNumValues()-1) == MVT::Flag &&
1609             "Doesn't have a flag result");
1610      CurDAG->ReplaceAllUsesOfValueWith(SDValue(FRN, FRN->getNumValues()-1),
1611                                        InputFlag, &ISU);
1612
1613      // If the node became dead and we haven't already seen it, delete it.
1614      if (FRN->use_empty() &&
1615          !std::count(NowDeadNodes.begin(), NowDeadNodes.end(), FRN))
1616        NowDeadNodes.push_back(FRN);
1617    }
1618  }
1619
1620  if (!NowDeadNodes.empty())
1621    CurDAG->RemoveDeadNodes(NowDeadNodes, &ISU);
1622
1623  DEBUG(errs() << "ISEL: Match complete!\n");
1624}
1625
1626enum ChainResult {
1627  CR_Simple,
1628  CR_InducesCycle,
1629  CR_LeadsToInteriorNode
1630};
1631
1632/// WalkChainUsers - Walk down the users of the specified chained node that is
1633/// part of the pattern we're matching, looking at all of the users we find.
1634/// This determines whether something is an interior node, whether we have a
1635/// non-pattern node in between two pattern nodes (which prevent folding because
1636/// it would induce a cycle) and whether we have a TokenFactor node sandwiched
1637/// between pattern nodes (in which case the TF becomes part of the pattern).
1638///
1639/// The walk we do here is guaranteed to be small because we quickly get down to
1640/// already selected nodes "below" us.
1641static ChainResult
1642WalkChainUsers(SDNode *ChainedNode,
1643               SmallVectorImpl<SDNode*> &ChainedNodesInPattern,
1644               SmallVectorImpl<SDNode*> &InteriorChainedNodes) {
1645  ChainResult Result = CR_Simple;
1646
1647  for (SDNode::use_iterator UI = ChainedNode->use_begin(),
1648         E = ChainedNode->use_end(); UI != E; ++UI) {
1649    // Make sure the use is of the chain, not some other value we produce.
1650    if (UI.getUse().getValueType() != MVT::Other) continue;
1651
1652    SDNode *User = *UI;
1653
1654    // If we see an already-selected machine node, then we've gone beyond the
1655    // pattern that we're selecting down into the already selected chunk of the
1656    // DAG.
1657    if (User->isMachineOpcode() ||
1658        User->getOpcode() == ISD::HANDLENODE)  // Root of the graph.
1659      continue;
1660
1661    if (User->getOpcode() == ISD::CopyToReg ||
1662        User->getOpcode() == ISD::CopyFromReg ||
1663        User->getOpcode() == ISD::INLINEASM ||
1664        User->getOpcode() == ISD::EH_LABEL) {
1665      // If their node ID got reset to -1 then they've already been selected.
1666      // Treat them like a MachineOpcode.
1667      if (User->getNodeId() == -1)
1668        continue;
1669    }
1670
1671    // If we have a TokenFactor, we handle it specially.
1672    if (User->getOpcode() != ISD::TokenFactor) {
1673      // If the node isn't a token factor and isn't part of our pattern, then it
1674      // must be a random chained node in between two nodes we're selecting.
1675      // This happens when we have something like:
1676      //   x = load ptr
1677      //   call
1678      //   y = x+4
1679      //   store y -> ptr
1680      // Because we structurally match the load/store as a read/modify/write,
1681      // but the call is chained between them.  We cannot fold in this case
1682      // because it would induce a cycle in the graph.
1683      if (!std::count(ChainedNodesInPattern.begin(),
1684                      ChainedNodesInPattern.end(), User))
1685        return CR_InducesCycle;
1686
1687      // Otherwise we found a node that is part of our pattern.  For example in:
1688      //   x = load ptr
1689      //   y = x+4
1690      //   store y -> ptr
1691      // This would happen when we're scanning down from the load and see the
1692      // store as a user.  Record that there is a use of ChainedNode that is
1693      // part of the pattern and keep scanning uses.
1694      Result = CR_LeadsToInteriorNode;
1695      InteriorChainedNodes.push_back(User);
1696      continue;
1697    }
1698
1699    // If we found a TokenFactor, there are two cases to consider: first if the
1700    // TokenFactor is just hanging "below" the pattern we're matching (i.e. no
1701    // uses of the TF are in our pattern) we just want to ignore it.  Second,
1702    // the TokenFactor can be sandwiched in between two chained nodes, like so:
1703    //     [Load chain]
1704    //         ^
1705    //         |
1706    //       [Load]
1707    //       ^    ^
1708    //       |    \                    DAG's like cheese
1709    //      /       \                       do you?
1710    //     /         |
1711    // [TokenFactor] [Op]
1712    //     ^          ^
1713    //     |          |
1714    //      \        /
1715    //       \      /
1716    //       [Store]
1717    //
1718    // In this case, the TokenFactor becomes part of our match and we rewrite it
1719    // as a new TokenFactor.
1720    //
1721    // To distinguish these two cases, do a recursive walk down the uses.
1722    switch (WalkChainUsers(User, ChainedNodesInPattern, InteriorChainedNodes)) {
1723    case CR_Simple:
1724      // If the uses of the TokenFactor are just already-selected nodes, ignore
1725      // it, it is "below" our pattern.
1726      continue;
1727    case CR_InducesCycle:
1728      // If the uses of the TokenFactor lead to nodes that are not part of our
1729      // pattern that are not selected, folding would turn this into a cycle,
1730      // bail out now.
1731      return CR_InducesCycle;
1732    case CR_LeadsToInteriorNode:
1733      break;  // Otherwise, keep processing.
1734    }
1735
1736    // Okay, we know we're in the interesting interior case.  The TokenFactor
1737    // is now going to be considered part of the pattern so that we rewrite its
1738    // uses (it may have uses that are not part of the pattern) with the
1739    // ultimate chain result of the generated code.  We will also add its chain
1740    // inputs as inputs to the ultimate TokenFactor we create.
1741    Result = CR_LeadsToInteriorNode;
1742    ChainedNodesInPattern.push_back(User);
1743    InteriorChainedNodes.push_back(User);
1744    continue;
1745  }
1746
1747  return Result;
1748}
1749
1750/// HandleMergeInputChains - This implements the OPC_EmitMergeInputChains
1751/// operation for when the pattern matched at least one node with a chains.  The
1752/// input vector contains a list of all of the chained nodes that we match.  We
1753/// must determine if this is a valid thing to cover (i.e. matching it won't
1754/// induce cycles in the DAG) and if so, creating a TokenFactor node. that will
1755/// be used as the input node chain for the generated nodes.
1756static SDValue
1757HandleMergeInputChains(SmallVectorImpl<SDNode*> &ChainNodesMatched,
1758                       SelectionDAG *CurDAG) {
1759  // Walk all of the chained nodes we've matched, recursively scanning down the
1760  // users of the chain result. This adds any TokenFactor nodes that are caught
1761  // in between chained nodes to the chained and interior nodes list.
1762  SmallVector<SDNode*, 3> InteriorChainedNodes;
1763  for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
1764    if (WalkChainUsers(ChainNodesMatched[i], ChainNodesMatched,
1765                       InteriorChainedNodes) == CR_InducesCycle)
1766      return SDValue(); // Would induce a cycle.
1767  }
1768
1769  // Okay, we have walked all the matched nodes and collected TokenFactor nodes
1770  // that we are interested in.  Form our input TokenFactor node.
1771  SmallVector<SDValue, 3> InputChains;
1772  for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
1773    // Add the input chain of this node to the InputChains list (which will be
1774    // the operands of the generated TokenFactor) if it's not an interior node.
1775    SDNode *N = ChainNodesMatched[i];
1776    if (N->getOpcode() != ISD::TokenFactor) {
1777      if (std::count(InteriorChainedNodes.begin(),InteriorChainedNodes.end(),N))
1778        continue;
1779
1780      // Otherwise, add the input chain.
1781      SDValue InChain = ChainNodesMatched[i]->getOperand(0);
1782      assert(InChain.getValueType() == MVT::Other && "Not a chain");
1783      InputChains.push_back(InChain);
1784      continue;
1785    }
1786
1787    // If we have a token factor, we want to add all inputs of the token factor
1788    // that are not part of the pattern we're matching.
1789    for (unsigned op = 0, e = N->getNumOperands(); op != e; ++op) {
1790      if (!std::count(ChainNodesMatched.begin(), ChainNodesMatched.end(),
1791                      N->getOperand(op).getNode()))
1792        InputChains.push_back(N->getOperand(op));
1793    }
1794  }
1795
1796  SDValue Res;
1797  if (InputChains.size() == 1)
1798    return InputChains[0];
1799  return CurDAG->getNode(ISD::TokenFactor, ChainNodesMatched[0]->getDebugLoc(),
1800                         MVT::Other, &InputChains[0], InputChains.size());
1801}
1802
1803/// MorphNode - Handle morphing a node in place for the selector.
1804SDNode *SelectionDAGISel::
1805MorphNode(SDNode *Node, unsigned TargetOpc, SDVTList VTList,
1806          const SDValue *Ops, unsigned NumOps, unsigned EmitNodeInfo) {
1807  // It is possible we're using MorphNodeTo to replace a node with no
1808  // normal results with one that has a normal result (or we could be
1809  // adding a chain) and the input could have flags and chains as well.
1810  // In this case we need to shift the operands down.
1811  // FIXME: This is a horrible hack and broken in obscure cases, no worse
1812  // than the old isel though.
1813  int OldFlagResultNo = -1, OldChainResultNo = -1;
1814
1815  unsigned NTMNumResults = Node->getNumValues();
1816  if (Node->getValueType(NTMNumResults-1) == MVT::Flag) {
1817    OldFlagResultNo = NTMNumResults-1;
1818    if (NTMNumResults != 1 &&
1819        Node->getValueType(NTMNumResults-2) == MVT::Other)
1820      OldChainResultNo = NTMNumResults-2;
1821  } else if (Node->getValueType(NTMNumResults-1) == MVT::Other)
1822    OldChainResultNo = NTMNumResults-1;
1823
1824  // Call the underlying SelectionDAG routine to do the transmogrification. Note
1825  // that this deletes operands of the old node that become dead.
1826  SDNode *Res = CurDAG->MorphNodeTo(Node, ~TargetOpc, VTList, Ops, NumOps);
1827
1828  // MorphNodeTo can operate in two ways: if an existing node with the
1829  // specified operands exists, it can just return it.  Otherwise, it
1830  // updates the node in place to have the requested operands.
1831  if (Res == Node) {
1832    // If we updated the node in place, reset the node ID.  To the isel,
1833    // this should be just like a newly allocated machine node.
1834    Res->setNodeId(-1);
1835  }
1836
1837  unsigned ResNumResults = Res->getNumValues();
1838  // Move the flag if needed.
1839  if ((EmitNodeInfo & OPFL_FlagOutput) && OldFlagResultNo != -1 &&
1840      (unsigned)OldFlagResultNo != ResNumResults-1)
1841    CurDAG->ReplaceAllUsesOfValueWith(SDValue(Node, OldFlagResultNo),
1842                                      SDValue(Res, ResNumResults-1));
1843
1844  if ((EmitNodeInfo & OPFL_FlagOutput) != 0)
1845  --ResNumResults;
1846
1847  // Move the chain reference if needed.
1848  if ((EmitNodeInfo & OPFL_Chain) && OldChainResultNo != -1 &&
1849      (unsigned)OldChainResultNo != ResNumResults-1)
1850    CurDAG->ReplaceAllUsesOfValueWith(SDValue(Node, OldChainResultNo),
1851                                      SDValue(Res, ResNumResults-1));
1852
1853  // Otherwise, no replacement happened because the node already exists. Replace
1854  // Uses of the old node with the new one.
1855  if (Res != Node)
1856    CurDAG->ReplaceAllUsesWith(Node, Res);
1857
1858  return Res;
1859}
1860
1861/// CheckPatternPredicate - Implements OP_CheckPatternPredicate.
1862ALWAYS_INLINE static bool
1863CheckSame(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1864          SDValue N, const SmallVectorImpl<SDValue> &RecordedNodes) {
1865  // Accept if it is exactly the same as a previously recorded node.
1866  unsigned RecNo = MatcherTable[MatcherIndex++];
1867  assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
1868  return N == RecordedNodes[RecNo];
1869}
1870
1871/// CheckPatternPredicate - Implements OP_CheckPatternPredicate.
1872ALWAYS_INLINE static bool
1873CheckPatternPredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1874                      SelectionDAGISel &SDISel) {
1875  return SDISel.CheckPatternPredicate(MatcherTable[MatcherIndex++]);
1876}
1877
1878/// CheckNodePredicate - Implements OP_CheckNodePredicate.
1879ALWAYS_INLINE static bool
1880CheckNodePredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1881                   SelectionDAGISel &SDISel, SDNode *N) {
1882  return SDISel.CheckNodePredicate(N, MatcherTable[MatcherIndex++]);
1883}
1884
1885ALWAYS_INLINE static bool
1886CheckOpcode(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1887            SDNode *N) {
1888  uint16_t Opc = MatcherTable[MatcherIndex++];
1889  Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
1890  return N->getOpcode() == Opc;
1891}
1892
1893ALWAYS_INLINE static bool
1894CheckType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1895          SDValue N, const TargetLowering &TLI) {
1896  MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
1897  if (N.getValueType() == VT) return true;
1898
1899  // Handle the case when VT is iPTR.
1900  return VT == MVT::iPTR && N.getValueType() == TLI.getPointerTy();
1901}
1902
1903ALWAYS_INLINE static bool
1904CheckChildType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1905               SDValue N, const TargetLowering &TLI,
1906               unsigned ChildNo) {
1907  if (ChildNo >= N.getNumOperands())
1908    return false;  // Match fails if out of range child #.
1909  return ::CheckType(MatcherTable, MatcherIndex, N.getOperand(ChildNo), TLI);
1910}
1911
1912
1913ALWAYS_INLINE static bool
1914CheckCondCode(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1915              SDValue N) {
1916  return cast<CondCodeSDNode>(N)->get() ==
1917      (ISD::CondCode)MatcherTable[MatcherIndex++];
1918}
1919
1920ALWAYS_INLINE static bool
1921CheckValueType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1922               SDValue N, const TargetLowering &TLI) {
1923  MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
1924  if (cast<VTSDNode>(N)->getVT() == VT)
1925    return true;
1926
1927  // Handle the case when VT is iPTR.
1928  return VT == MVT::iPTR && cast<VTSDNode>(N)->getVT() == TLI.getPointerTy();
1929}
1930
1931ALWAYS_INLINE static bool
1932CheckInteger(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1933             SDValue N) {
1934  int64_t Val = MatcherTable[MatcherIndex++];
1935  if (Val & 128)
1936    Val = GetVBR(Val, MatcherTable, MatcherIndex);
1937
1938  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N);
1939  return C != 0 && C->getSExtValue() == Val;
1940}
1941
1942ALWAYS_INLINE static bool
1943CheckAndImm(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1944            SDValue N, SelectionDAGISel &SDISel) {
1945  int64_t Val = MatcherTable[MatcherIndex++];
1946  if (Val & 128)
1947    Val = GetVBR(Val, MatcherTable, MatcherIndex);
1948
1949  if (N->getOpcode() != ISD::AND) return false;
1950
1951  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
1952  return C != 0 && SDISel.CheckAndMask(N.getOperand(0), C, Val);
1953}
1954
1955ALWAYS_INLINE static bool
1956CheckOrImm(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1957           SDValue N, SelectionDAGISel &SDISel) {
1958  int64_t Val = MatcherTable[MatcherIndex++];
1959  if (Val & 128)
1960    Val = GetVBR(Val, MatcherTable, MatcherIndex);
1961
1962  if (N->getOpcode() != ISD::OR) return false;
1963
1964  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
1965  return C != 0 && SDISel.CheckOrMask(N.getOperand(0), C, Val);
1966}
1967
1968/// IsPredicateKnownToFail - If we know how and can do so without pushing a
1969/// scope, evaluate the current node.  If the current predicate is known to
1970/// fail, set Result=true and return anything.  If the current predicate is
1971/// known to pass, set Result=false and return the MatcherIndex to continue
1972/// with.  If the current predicate is unknown, set Result=false and return the
1973/// MatcherIndex to continue with.
1974static unsigned IsPredicateKnownToFail(const unsigned char *Table,
1975                                       unsigned Index, SDValue N,
1976                                       bool &Result, SelectionDAGISel &SDISel,
1977                                       SmallVectorImpl<SDValue> &RecordedNodes){
1978  switch (Table[Index++]) {
1979  default:
1980    Result = false;
1981    return Index-1;  // Could not evaluate this predicate.
1982  case SelectionDAGISel::OPC_CheckSame:
1983    Result = !::CheckSame(Table, Index, N, RecordedNodes);
1984    return Index;
1985  case SelectionDAGISel::OPC_CheckPatternPredicate:
1986    Result = !::CheckPatternPredicate(Table, Index, SDISel);
1987    return Index;
1988  case SelectionDAGISel::OPC_CheckPredicate:
1989    Result = !::CheckNodePredicate(Table, Index, SDISel, N.getNode());
1990    return Index;
1991  case SelectionDAGISel::OPC_CheckOpcode:
1992    Result = !::CheckOpcode(Table, Index, N.getNode());
1993    return Index;
1994  case SelectionDAGISel::OPC_CheckType:
1995    Result = !::CheckType(Table, Index, N, SDISel.TLI);
1996    return Index;
1997  case SelectionDAGISel::OPC_CheckChild0Type:
1998  case SelectionDAGISel::OPC_CheckChild1Type:
1999  case SelectionDAGISel::OPC_CheckChild2Type:
2000  case SelectionDAGISel::OPC_CheckChild3Type:
2001  case SelectionDAGISel::OPC_CheckChild4Type:
2002  case SelectionDAGISel::OPC_CheckChild5Type:
2003  case SelectionDAGISel::OPC_CheckChild6Type:
2004  case SelectionDAGISel::OPC_CheckChild7Type:
2005    Result = !::CheckChildType(Table, Index, N, SDISel.TLI,
2006                        Table[Index-1] - SelectionDAGISel::OPC_CheckChild0Type);
2007    return Index;
2008  case SelectionDAGISel::OPC_CheckCondCode:
2009    Result = !::CheckCondCode(Table, Index, N);
2010    return Index;
2011  case SelectionDAGISel::OPC_CheckValueType:
2012    Result = !::CheckValueType(Table, Index, N, SDISel.TLI);
2013    return Index;
2014  case SelectionDAGISel::OPC_CheckInteger:
2015    Result = !::CheckInteger(Table, Index, N);
2016    return Index;
2017  case SelectionDAGISel::OPC_CheckAndImm:
2018    Result = !::CheckAndImm(Table, Index, N, SDISel);
2019    return Index;
2020  case SelectionDAGISel::OPC_CheckOrImm:
2021    Result = !::CheckOrImm(Table, Index, N, SDISel);
2022    return Index;
2023  }
2024}
2025
2026
2027struct MatchScope {
2028  /// FailIndex - If this match fails, this is the index to continue with.
2029  unsigned FailIndex;
2030
2031  /// NodeStack - The node stack when the scope was formed.
2032  SmallVector<SDValue, 4> NodeStack;
2033
2034  /// NumRecordedNodes - The number of recorded nodes when the scope was formed.
2035  unsigned NumRecordedNodes;
2036
2037  /// NumMatchedMemRefs - The number of matched memref entries.
2038  unsigned NumMatchedMemRefs;
2039
2040  /// InputChain/InputFlag - The current chain/flag
2041  SDValue InputChain, InputFlag;
2042
2043  /// HasChainNodesMatched - True if the ChainNodesMatched list is non-empty.
2044  bool HasChainNodesMatched, HasFlagResultNodesMatched;
2045};
2046
2047SDNode *SelectionDAGISel::
2048SelectCodeCommon(SDNode *NodeToMatch, const unsigned char *MatcherTable,
2049                 unsigned TableSize) {
2050  // FIXME: Should these even be selected?  Handle these cases in the caller?
2051  switch (NodeToMatch->getOpcode()) {
2052  default:
2053    break;
2054  case ISD::EntryToken:       // These nodes remain the same.
2055  case ISD::BasicBlock:
2056  case ISD::Register:
2057  //case ISD::VALUETYPE:
2058  //case ISD::CONDCODE:
2059  case ISD::HANDLENODE:
2060  case ISD::TargetConstant:
2061  case ISD::TargetConstantFP:
2062  case ISD::TargetConstantPool:
2063  case ISD::TargetFrameIndex:
2064  case ISD::TargetExternalSymbol:
2065  case ISD::TargetBlockAddress:
2066  case ISD::TargetJumpTable:
2067  case ISD::TargetGlobalTLSAddress:
2068  case ISD::TargetGlobalAddress:
2069  case ISD::TokenFactor:
2070  case ISD::CopyFromReg:
2071  case ISD::CopyToReg:
2072  case ISD::EH_LABEL:
2073    NodeToMatch->setNodeId(-1); // Mark selected.
2074    return 0;
2075  case ISD::AssertSext:
2076  case ISD::AssertZext:
2077    CurDAG->ReplaceAllUsesOfValueWith(SDValue(NodeToMatch, 0),
2078                                      NodeToMatch->getOperand(0));
2079    return 0;
2080  case ISD::INLINEASM: return Select_INLINEASM(NodeToMatch);
2081  case ISD::UNDEF:     return Select_UNDEF(NodeToMatch);
2082  }
2083
2084  assert(!NodeToMatch->isMachineOpcode() && "Node already selected!");
2085
2086  // Set up the node stack with NodeToMatch as the only node on the stack.
2087  SmallVector<SDValue, 8> NodeStack;
2088  SDValue N = SDValue(NodeToMatch, 0);
2089  NodeStack.push_back(N);
2090
2091  // MatchScopes - Scopes used when matching, if a match failure happens, this
2092  // indicates where to continue checking.
2093  SmallVector<MatchScope, 8> MatchScopes;
2094
2095  // RecordedNodes - This is the set of nodes that have been recorded by the
2096  // state machine.
2097  SmallVector<SDValue, 8> RecordedNodes;
2098
2099  // MatchedMemRefs - This is the set of MemRef's we've seen in the input
2100  // pattern.
2101  SmallVector<MachineMemOperand*, 2> MatchedMemRefs;
2102
2103  // These are the current input chain and flag for use when generating nodes.
2104  // Various Emit operations change these.  For example, emitting a copytoreg
2105  // uses and updates these.
2106  SDValue InputChain, InputFlag;
2107
2108  // ChainNodesMatched - If a pattern matches nodes that have input/output
2109  // chains, the OPC_EmitMergeInputChains operation is emitted which indicates
2110  // which ones they are.  The result is captured into this list so that we can
2111  // update the chain results when the pattern is complete.
2112  SmallVector<SDNode*, 3> ChainNodesMatched;
2113  SmallVector<SDNode*, 3> FlagResultNodesMatched;
2114
2115  DEBUG(errs() << "ISEL: Starting pattern match on root node: ";
2116        NodeToMatch->dump(CurDAG);
2117        errs() << '\n');
2118
2119  // Determine where to start the interpreter.  Normally we start at opcode #0,
2120  // but if the state machine starts with an OPC_SwitchOpcode, then we
2121  // accelerate the first lookup (which is guaranteed to be hot) with the
2122  // OpcodeOffset table.
2123  unsigned MatcherIndex = 0;
2124
2125  if (!OpcodeOffset.empty()) {
2126    // Already computed the OpcodeOffset table, just index into it.
2127    if (N.getOpcode() < OpcodeOffset.size())
2128      MatcherIndex = OpcodeOffset[N.getOpcode()];
2129    DEBUG(errs() << "  Initial Opcode index to " << MatcherIndex << "\n");
2130
2131  } else if (MatcherTable[0] == OPC_SwitchOpcode) {
2132    // Otherwise, the table isn't computed, but the state machine does start
2133    // with an OPC_SwitchOpcode instruction.  Populate the table now, since this
2134    // is the first time we're selecting an instruction.
2135    unsigned Idx = 1;
2136    while (1) {
2137      // Get the size of this case.
2138      unsigned CaseSize = MatcherTable[Idx++];
2139      if (CaseSize & 128)
2140        CaseSize = GetVBR(CaseSize, MatcherTable, Idx);
2141      if (CaseSize == 0) break;
2142
2143      // Get the opcode, add the index to the table.
2144      uint16_t Opc = MatcherTable[Idx++];
2145      Opc |= (unsigned short)MatcherTable[Idx++] << 8;
2146      if (Opc >= OpcodeOffset.size())
2147        OpcodeOffset.resize((Opc+1)*2);
2148      OpcodeOffset[Opc] = Idx;
2149      Idx += CaseSize;
2150    }
2151
2152    // Okay, do the lookup for the first opcode.
2153    if (N.getOpcode() < OpcodeOffset.size())
2154      MatcherIndex = OpcodeOffset[N.getOpcode()];
2155  }
2156
2157  while (1) {
2158    assert(MatcherIndex < TableSize && "Invalid index");
2159#ifndef NDEBUG
2160    unsigned CurrentOpcodeIndex = MatcherIndex;
2161#endif
2162    BuiltinOpcodes Opcode = (BuiltinOpcodes)MatcherTable[MatcherIndex++];
2163    switch (Opcode) {
2164    case OPC_Scope: {
2165      // Okay, the semantics of this operation are that we should push a scope
2166      // then evaluate the first child.  However, pushing a scope only to have
2167      // the first check fail (which then pops it) is inefficient.  If we can
2168      // determine immediately that the first check (or first several) will
2169      // immediately fail, don't even bother pushing a scope for them.
2170      unsigned FailIndex;
2171
2172      while (1) {
2173        unsigned NumToSkip = MatcherTable[MatcherIndex++];
2174        if (NumToSkip & 128)
2175          NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex);
2176        // Found the end of the scope with no match.
2177        if (NumToSkip == 0) {
2178          FailIndex = 0;
2179          break;
2180        }
2181
2182        FailIndex = MatcherIndex+NumToSkip;
2183
2184        unsigned MatcherIndexOfPredicate = MatcherIndex;
2185        (void)MatcherIndexOfPredicate; // silence warning.
2186
2187        // If we can't evaluate this predicate without pushing a scope (e.g. if
2188        // it is a 'MoveParent') or if the predicate succeeds on this node, we
2189        // push the scope and evaluate the full predicate chain.
2190        bool Result;
2191        MatcherIndex = IsPredicateKnownToFail(MatcherTable, MatcherIndex, N,
2192                                              Result, *this, RecordedNodes);
2193        if (!Result)
2194          break;
2195
2196        DEBUG(errs() << "  Skipped scope entry (due to false predicate) at "
2197                     << "index " << MatcherIndexOfPredicate
2198                     << ", continuing at " << FailIndex << "\n");
2199        ++NumDAGIselRetries;
2200
2201        // Otherwise, we know that this case of the Scope is guaranteed to fail,
2202        // move to the next case.
2203        MatcherIndex = FailIndex;
2204      }
2205
2206      // If the whole scope failed to match, bail.
2207      if (FailIndex == 0) break;
2208
2209      // Push a MatchScope which indicates where to go if the first child fails
2210      // to match.
2211      MatchScope NewEntry;
2212      NewEntry.FailIndex = FailIndex;
2213      NewEntry.NodeStack.append(NodeStack.begin(), NodeStack.end());
2214      NewEntry.NumRecordedNodes = RecordedNodes.size();
2215      NewEntry.NumMatchedMemRefs = MatchedMemRefs.size();
2216      NewEntry.InputChain = InputChain;
2217      NewEntry.InputFlag = InputFlag;
2218      NewEntry.HasChainNodesMatched = !ChainNodesMatched.empty();
2219      NewEntry.HasFlagResultNodesMatched = !FlagResultNodesMatched.empty();
2220      MatchScopes.push_back(NewEntry);
2221      continue;
2222    }
2223    case OPC_RecordNode:
2224      // Remember this node, it may end up being an operand in the pattern.
2225      RecordedNodes.push_back(N);
2226      continue;
2227
2228    case OPC_RecordChild0: case OPC_RecordChild1:
2229    case OPC_RecordChild2: case OPC_RecordChild3:
2230    case OPC_RecordChild4: case OPC_RecordChild5:
2231    case OPC_RecordChild6: case OPC_RecordChild7: {
2232      unsigned ChildNo = Opcode-OPC_RecordChild0;
2233      if (ChildNo >= N.getNumOperands())
2234        break;  // Match fails if out of range child #.
2235
2236      RecordedNodes.push_back(N->getOperand(ChildNo));
2237      continue;
2238    }
2239    case OPC_RecordMemRef:
2240      MatchedMemRefs.push_back(cast<MemSDNode>(N)->getMemOperand());
2241      continue;
2242
2243    case OPC_CaptureFlagInput:
2244      // If the current node has an input flag, capture it in InputFlag.
2245      if (N->getNumOperands() != 0 &&
2246          N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Flag)
2247        InputFlag = N->getOperand(N->getNumOperands()-1);
2248      continue;
2249
2250    case OPC_MoveChild: {
2251      unsigned ChildNo = MatcherTable[MatcherIndex++];
2252      if (ChildNo >= N.getNumOperands())
2253        break;  // Match fails if out of range child #.
2254      N = N.getOperand(ChildNo);
2255      NodeStack.push_back(N);
2256      continue;
2257    }
2258
2259    case OPC_MoveParent:
2260      // Pop the current node off the NodeStack.
2261      NodeStack.pop_back();
2262      assert(!NodeStack.empty() && "Node stack imbalance!");
2263      N = NodeStack.back();
2264      continue;
2265
2266    case OPC_CheckSame:
2267      if (!::CheckSame(MatcherTable, MatcherIndex, N, RecordedNodes)) break;
2268      continue;
2269    case OPC_CheckPatternPredicate:
2270      if (!::CheckPatternPredicate(MatcherTable, MatcherIndex, *this)) break;
2271      continue;
2272    case OPC_CheckPredicate:
2273      if (!::CheckNodePredicate(MatcherTable, MatcherIndex, *this,
2274                                N.getNode()))
2275        break;
2276      continue;
2277    case OPC_CheckComplexPat: {
2278      unsigned CPNum = MatcherTable[MatcherIndex++];
2279      unsigned RecNo = MatcherTable[MatcherIndex++];
2280      assert(RecNo < RecordedNodes.size() && "Invalid CheckComplexPat");
2281      if (!CheckComplexPattern(NodeToMatch, RecordedNodes[RecNo], CPNum,
2282                               RecordedNodes))
2283        break;
2284      continue;
2285    }
2286    case OPC_CheckOpcode:
2287      if (!::CheckOpcode(MatcherTable, MatcherIndex, N.getNode())) break;
2288      continue;
2289
2290    case OPC_CheckType:
2291      if (!::CheckType(MatcherTable, MatcherIndex, N, TLI)) break;
2292      continue;
2293
2294    case OPC_SwitchOpcode: {
2295      unsigned CurNodeOpcode = N.getOpcode();
2296      unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart;
2297      unsigned CaseSize;
2298      while (1) {
2299        // Get the size of this case.
2300        CaseSize = MatcherTable[MatcherIndex++];
2301        if (CaseSize & 128)
2302          CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex);
2303        if (CaseSize == 0) break;
2304
2305        uint16_t Opc = MatcherTable[MatcherIndex++];
2306        Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
2307
2308        // If the opcode matches, then we will execute this case.
2309        if (CurNodeOpcode == Opc)
2310          break;
2311
2312        // Otherwise, skip over this case.
2313        MatcherIndex += CaseSize;
2314      }
2315
2316      // If no cases matched, bail out.
2317      if (CaseSize == 0) break;
2318
2319      // Otherwise, execute the case we found.
2320      DEBUG(errs() << "  OpcodeSwitch from " << SwitchStart
2321                   << " to " << MatcherIndex << "\n");
2322      continue;
2323    }
2324
2325    case OPC_SwitchType: {
2326      MVT::SimpleValueType CurNodeVT = N.getValueType().getSimpleVT().SimpleTy;
2327      unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart;
2328      unsigned CaseSize;
2329      while (1) {
2330        // Get the size of this case.
2331        CaseSize = MatcherTable[MatcherIndex++];
2332        if (CaseSize & 128)
2333          CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex);
2334        if (CaseSize == 0) break;
2335
2336        MVT::SimpleValueType CaseVT =
2337          (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2338        if (CaseVT == MVT::iPTR)
2339          CaseVT = TLI.getPointerTy().SimpleTy;
2340
2341        // If the VT matches, then we will execute this case.
2342        if (CurNodeVT == CaseVT)
2343          break;
2344
2345        // Otherwise, skip over this case.
2346        MatcherIndex += CaseSize;
2347      }
2348
2349      // If no cases matched, bail out.
2350      if (CaseSize == 0) break;
2351
2352      // Otherwise, execute the case we found.
2353      DEBUG(errs() << "  TypeSwitch[" << EVT(CurNodeVT).getEVTString()
2354                   << "] from " << SwitchStart << " to " << MatcherIndex<<'\n');
2355      continue;
2356    }
2357    case OPC_CheckChild0Type: case OPC_CheckChild1Type:
2358    case OPC_CheckChild2Type: case OPC_CheckChild3Type:
2359    case OPC_CheckChild4Type: case OPC_CheckChild5Type:
2360    case OPC_CheckChild6Type: case OPC_CheckChild7Type:
2361      if (!::CheckChildType(MatcherTable, MatcherIndex, N, TLI,
2362                            Opcode-OPC_CheckChild0Type))
2363        break;
2364      continue;
2365    case OPC_CheckCondCode:
2366      if (!::CheckCondCode(MatcherTable, MatcherIndex, N)) break;
2367      continue;
2368    case OPC_CheckValueType:
2369      if (!::CheckValueType(MatcherTable, MatcherIndex, N, TLI)) break;
2370      continue;
2371    case OPC_CheckInteger:
2372      if (!::CheckInteger(MatcherTable, MatcherIndex, N)) break;
2373      continue;
2374    case OPC_CheckAndImm:
2375      if (!::CheckAndImm(MatcherTable, MatcherIndex, N, *this)) break;
2376      continue;
2377    case OPC_CheckOrImm:
2378      if (!::CheckOrImm(MatcherTable, MatcherIndex, N, *this)) break;
2379      continue;
2380
2381    case OPC_CheckFoldableChainNode: {
2382      assert(NodeStack.size() != 1 && "No parent node");
2383      // Verify that all intermediate nodes between the root and this one have
2384      // a single use.
2385      bool HasMultipleUses = false;
2386      for (unsigned i = 1, e = NodeStack.size()-1; i != e; ++i)
2387        if (!NodeStack[i].hasOneUse()) {
2388          HasMultipleUses = true;
2389          break;
2390        }
2391      if (HasMultipleUses) break;
2392
2393      // Check to see that the target thinks this is profitable to fold and that
2394      // we can fold it without inducing cycles in the graph.
2395      if (!IsProfitableToFold(N, NodeStack[NodeStack.size()-2].getNode(),
2396                              NodeToMatch) ||
2397          !IsLegalToFold(N, NodeStack[NodeStack.size()-2].getNode(),
2398                         NodeToMatch, true/*We validate our own chains*/))
2399        break;
2400
2401      continue;
2402    }
2403    case OPC_EmitInteger: {
2404      MVT::SimpleValueType VT =
2405        (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2406      int64_t Val = MatcherTable[MatcherIndex++];
2407      if (Val & 128)
2408        Val = GetVBR(Val, MatcherTable, MatcherIndex);
2409      RecordedNodes.push_back(CurDAG->getTargetConstant(Val, VT));
2410      continue;
2411    }
2412    case OPC_EmitRegister: {
2413      MVT::SimpleValueType VT =
2414        (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2415      unsigned RegNo = MatcherTable[MatcherIndex++];
2416      RecordedNodes.push_back(CurDAG->getRegister(RegNo, VT));
2417      continue;
2418    }
2419
2420    case OPC_EmitConvertToTarget:  {
2421      // Convert from IMM/FPIMM to target version.
2422      unsigned RecNo = MatcherTable[MatcherIndex++];
2423      assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2424      SDValue Imm = RecordedNodes[RecNo];
2425
2426      if (Imm->getOpcode() == ISD::Constant) {
2427        int64_t Val = cast<ConstantSDNode>(Imm)->getZExtValue();
2428        Imm = CurDAG->getTargetConstant(Val, Imm.getValueType());
2429      } else if (Imm->getOpcode() == ISD::ConstantFP) {
2430        const ConstantFP *Val=cast<ConstantFPSDNode>(Imm)->getConstantFPValue();
2431        Imm = CurDAG->getTargetConstantFP(*Val, Imm.getValueType());
2432      }
2433
2434      RecordedNodes.push_back(Imm);
2435      continue;
2436    }
2437
2438    case OPC_EmitMergeInputChains1_0:    // OPC_EmitMergeInputChains, 1, 0
2439    case OPC_EmitMergeInputChains1_1: {  // OPC_EmitMergeInputChains, 1, 1
2440      // These are space-optimized forms of OPC_EmitMergeInputChains.
2441      assert(InputChain.getNode() == 0 &&
2442             "EmitMergeInputChains should be the first chain producing node");
2443      assert(ChainNodesMatched.empty() &&
2444             "Should only have one EmitMergeInputChains per match");
2445
2446      // Read all of the chained nodes.
2447      unsigned RecNo = Opcode == OPC_EmitMergeInputChains1_1;
2448      assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2449      ChainNodesMatched.push_back(RecordedNodes[RecNo].getNode());
2450
2451      // FIXME: What if other value results of the node have uses not matched
2452      // by this pattern?
2453      if (ChainNodesMatched.back() != NodeToMatch &&
2454          !RecordedNodes[RecNo].hasOneUse()) {
2455        ChainNodesMatched.clear();
2456        break;
2457      }
2458
2459      // Merge the input chains if they are not intra-pattern references.
2460      InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG);
2461
2462      if (InputChain.getNode() == 0)
2463        break;  // Failed to merge.
2464      continue;
2465    }
2466
2467    case OPC_EmitMergeInputChains: {
2468      assert(InputChain.getNode() == 0 &&
2469             "EmitMergeInputChains should be the first chain producing node");
2470      // This node gets a list of nodes we matched in the input that have
2471      // chains.  We want to token factor all of the input chains to these nodes
2472      // together.  However, if any of the input chains is actually one of the
2473      // nodes matched in this pattern, then we have an intra-match reference.
2474      // Ignore these because the newly token factored chain should not refer to
2475      // the old nodes.
2476      unsigned NumChains = MatcherTable[MatcherIndex++];
2477      assert(NumChains != 0 && "Can't TF zero chains");
2478
2479      assert(ChainNodesMatched.empty() &&
2480             "Should only have one EmitMergeInputChains per match");
2481
2482      // Read all of the chained nodes.
2483      for (unsigned i = 0; i != NumChains; ++i) {
2484        unsigned RecNo = MatcherTable[MatcherIndex++];
2485        assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2486        ChainNodesMatched.push_back(RecordedNodes[RecNo].getNode());
2487
2488        // FIXME: What if other value results of the node have uses not matched
2489        // by this pattern?
2490        if (ChainNodesMatched.back() != NodeToMatch &&
2491            !RecordedNodes[RecNo].hasOneUse()) {
2492          ChainNodesMatched.clear();
2493          break;
2494        }
2495      }
2496
2497      // If the inner loop broke out, the match fails.
2498      if (ChainNodesMatched.empty())
2499        break;
2500
2501      // Merge the input chains if they are not intra-pattern references.
2502      InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG);
2503
2504      if (InputChain.getNode() == 0)
2505        break;  // Failed to merge.
2506
2507      continue;
2508    }
2509
2510    case OPC_EmitCopyToReg: {
2511      unsigned RecNo = MatcherTable[MatcherIndex++];
2512      assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2513      unsigned DestPhysReg = MatcherTable[MatcherIndex++];
2514
2515      if (InputChain.getNode() == 0)
2516        InputChain = CurDAG->getEntryNode();
2517
2518      InputChain = CurDAG->getCopyToReg(InputChain, NodeToMatch->getDebugLoc(),
2519                                        DestPhysReg, RecordedNodes[RecNo],
2520                                        InputFlag);
2521
2522      InputFlag = InputChain.getValue(1);
2523      continue;
2524    }
2525
2526    case OPC_EmitNodeXForm: {
2527      unsigned XFormNo = MatcherTable[MatcherIndex++];
2528      unsigned RecNo = MatcherTable[MatcherIndex++];
2529      assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2530      RecordedNodes.push_back(RunSDNodeXForm(RecordedNodes[RecNo], XFormNo));
2531      continue;
2532    }
2533
2534    case OPC_EmitNode:
2535    case OPC_MorphNodeTo: {
2536      uint16_t TargetOpc = MatcherTable[MatcherIndex++];
2537      TargetOpc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
2538      unsigned EmitNodeInfo = MatcherTable[MatcherIndex++];
2539      // Get the result VT list.
2540      unsigned NumVTs = MatcherTable[MatcherIndex++];
2541      SmallVector<EVT, 4> VTs;
2542      for (unsigned i = 0; i != NumVTs; ++i) {
2543        MVT::SimpleValueType VT =
2544          (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2545        if (VT == MVT::iPTR) VT = TLI.getPointerTy().SimpleTy;
2546        VTs.push_back(VT);
2547      }
2548
2549      if (EmitNodeInfo & OPFL_Chain)
2550        VTs.push_back(MVT::Other);
2551      if (EmitNodeInfo & OPFL_FlagOutput)
2552        VTs.push_back(MVT::Flag);
2553
2554      // This is hot code, so optimize the two most common cases of 1 and 2
2555      // results.
2556      SDVTList VTList;
2557      if (VTs.size() == 1)
2558        VTList = CurDAG->getVTList(VTs[0]);
2559      else if (VTs.size() == 2)
2560        VTList = CurDAG->getVTList(VTs[0], VTs[1]);
2561      else
2562        VTList = CurDAG->getVTList(VTs.data(), VTs.size());
2563
2564      // Get the operand list.
2565      unsigned NumOps = MatcherTable[MatcherIndex++];
2566      SmallVector<SDValue, 8> Ops;
2567      for (unsigned i = 0; i != NumOps; ++i) {
2568        unsigned RecNo = MatcherTable[MatcherIndex++];
2569        if (RecNo & 128)
2570          RecNo = GetVBR(RecNo, MatcherTable, MatcherIndex);
2571
2572        assert(RecNo < RecordedNodes.size() && "Invalid EmitNode");
2573        Ops.push_back(RecordedNodes[RecNo]);
2574      }
2575
2576      // If there are variadic operands to add, handle them now.
2577      if (EmitNodeInfo & OPFL_VariadicInfo) {
2578        // Determine the start index to copy from.
2579        unsigned FirstOpToCopy = getNumFixedFromVariadicInfo(EmitNodeInfo);
2580        FirstOpToCopy += (EmitNodeInfo & OPFL_Chain) ? 1 : 0;
2581        assert(NodeToMatch->getNumOperands() >= FirstOpToCopy &&
2582               "Invalid variadic node");
2583        // Copy all of the variadic operands, not including a potential flag
2584        // input.
2585        for (unsigned i = FirstOpToCopy, e = NodeToMatch->getNumOperands();
2586             i != e; ++i) {
2587          SDValue V = NodeToMatch->getOperand(i);
2588          if (V.getValueType() == MVT::Flag) break;
2589          Ops.push_back(V);
2590        }
2591      }
2592
2593      // If this has chain/flag inputs, add them.
2594      if (EmitNodeInfo & OPFL_Chain)
2595        Ops.push_back(InputChain);
2596      if ((EmitNodeInfo & OPFL_FlagInput) && InputFlag.getNode() != 0)
2597        Ops.push_back(InputFlag);
2598
2599      // Create the node.
2600      SDNode *Res = 0;
2601      if (Opcode != OPC_MorphNodeTo) {
2602        // If this is a normal EmitNode command, just create the new node and
2603        // add the results to the RecordedNodes list.
2604        Res = CurDAG->getMachineNode(TargetOpc, NodeToMatch->getDebugLoc(),
2605                                     VTList, Ops.data(), Ops.size());
2606
2607        // Add all the non-flag/non-chain results to the RecordedNodes list.
2608        for (unsigned i = 0, e = VTs.size(); i != e; ++i) {
2609          if (VTs[i] == MVT::Other || VTs[i] == MVT::Flag) break;
2610          RecordedNodes.push_back(SDValue(Res, i));
2611        }
2612
2613      } else {
2614        Res = MorphNode(NodeToMatch, TargetOpc, VTList, Ops.data(), Ops.size(),
2615                        EmitNodeInfo);
2616      }
2617
2618      // If the node had chain/flag results, update our notion of the current
2619      // chain and flag.
2620      if (EmitNodeInfo & OPFL_FlagOutput) {
2621        InputFlag = SDValue(Res, VTs.size()-1);
2622        if (EmitNodeInfo & OPFL_Chain)
2623          InputChain = SDValue(Res, VTs.size()-2);
2624      } else if (EmitNodeInfo & OPFL_Chain)
2625        InputChain = SDValue(Res, VTs.size()-1);
2626
2627      // If the OPFL_MemRefs flag is set on this node, slap all of the
2628      // accumulated memrefs onto it.
2629      //
2630      // FIXME: This is vastly incorrect for patterns with multiple outputs
2631      // instructions that access memory and for ComplexPatterns that match
2632      // loads.
2633      if (EmitNodeInfo & OPFL_MemRefs) {
2634        MachineSDNode::mmo_iterator MemRefs =
2635          MF->allocateMemRefsArray(MatchedMemRefs.size());
2636        std::copy(MatchedMemRefs.begin(), MatchedMemRefs.end(), MemRefs);
2637        cast<MachineSDNode>(Res)
2638          ->setMemRefs(MemRefs, MemRefs + MatchedMemRefs.size());
2639      }
2640
2641      DEBUG(errs() << "  "
2642                   << (Opcode == OPC_MorphNodeTo ? "Morphed" : "Created")
2643                   << " node: "; Res->dump(CurDAG); errs() << "\n");
2644
2645      // If this was a MorphNodeTo then we're completely done!
2646      if (Opcode == OPC_MorphNodeTo) {
2647        // Update chain and flag uses.
2648        UpdateChainsAndFlags(NodeToMatch, InputChain, ChainNodesMatched,
2649                             InputFlag, FlagResultNodesMatched, true);
2650        return Res;
2651      }
2652
2653      continue;
2654    }
2655
2656    case OPC_MarkFlagResults: {
2657      unsigned NumNodes = MatcherTable[MatcherIndex++];
2658
2659      // Read and remember all the flag-result nodes.
2660      for (unsigned i = 0; i != NumNodes; ++i) {
2661        unsigned RecNo = MatcherTable[MatcherIndex++];
2662        if (RecNo & 128)
2663          RecNo = GetVBR(RecNo, MatcherTable, MatcherIndex);
2664
2665        assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2666        FlagResultNodesMatched.push_back(RecordedNodes[RecNo].getNode());
2667      }
2668      continue;
2669    }
2670
2671    case OPC_CompleteMatch: {
2672      // The match has been completed, and any new nodes (if any) have been
2673      // created.  Patch up references to the matched dag to use the newly
2674      // created nodes.
2675      unsigned NumResults = MatcherTable[MatcherIndex++];
2676
2677      for (unsigned i = 0; i != NumResults; ++i) {
2678        unsigned ResSlot = MatcherTable[MatcherIndex++];
2679        if (ResSlot & 128)
2680          ResSlot = GetVBR(ResSlot, MatcherTable, MatcherIndex);
2681
2682        assert(ResSlot < RecordedNodes.size() && "Invalid CheckSame");
2683        SDValue Res = RecordedNodes[ResSlot];
2684
2685        assert(i < NodeToMatch->getNumValues() &&
2686               NodeToMatch->getValueType(i) != MVT::Other &&
2687               NodeToMatch->getValueType(i) != MVT::Flag &&
2688               "Invalid number of results to complete!");
2689        assert((NodeToMatch->getValueType(i) == Res.getValueType() ||
2690                NodeToMatch->getValueType(i) == MVT::iPTR ||
2691                Res.getValueType() == MVT::iPTR ||
2692                NodeToMatch->getValueType(i).getSizeInBits() ==
2693                    Res.getValueType().getSizeInBits()) &&
2694               "invalid replacement");
2695        CurDAG->ReplaceAllUsesOfValueWith(SDValue(NodeToMatch, i), Res);
2696      }
2697
2698      // If the root node defines a flag, add it to the flag nodes to update
2699      // list.
2700      if (NodeToMatch->getValueType(NodeToMatch->getNumValues()-1) == MVT::Flag)
2701        FlagResultNodesMatched.push_back(NodeToMatch);
2702
2703      // Update chain and flag uses.
2704      UpdateChainsAndFlags(NodeToMatch, InputChain, ChainNodesMatched,
2705                           InputFlag, FlagResultNodesMatched, false);
2706
2707      assert(NodeToMatch->use_empty() &&
2708             "Didn't replace all uses of the node?");
2709
2710      // FIXME: We just return here, which interacts correctly with SelectRoot
2711      // above.  We should fix this to not return an SDNode* anymore.
2712      return 0;
2713    }
2714    }
2715
2716    // If the code reached this point, then the match failed.  See if there is
2717    // another child to try in the current 'Scope', otherwise pop it until we
2718    // find a case to check.
2719    DEBUG(errs() << "  Match failed at index " << CurrentOpcodeIndex << "\n");
2720    ++NumDAGIselRetries;
2721    while (1) {
2722      if (MatchScopes.empty()) {
2723        CannotYetSelect(NodeToMatch);
2724        return 0;
2725      }
2726
2727      // Restore the interpreter state back to the point where the scope was
2728      // formed.
2729      MatchScope &LastScope = MatchScopes.back();
2730      RecordedNodes.resize(LastScope.NumRecordedNodes);
2731      NodeStack.clear();
2732      NodeStack.append(LastScope.NodeStack.begin(), LastScope.NodeStack.end());
2733      N = NodeStack.back();
2734
2735      if (LastScope.NumMatchedMemRefs != MatchedMemRefs.size())
2736        MatchedMemRefs.resize(LastScope.NumMatchedMemRefs);
2737      MatcherIndex = LastScope.FailIndex;
2738
2739      DEBUG(errs() << "  Continuing at " << MatcherIndex << "\n");
2740
2741      InputChain = LastScope.InputChain;
2742      InputFlag = LastScope.InputFlag;
2743      if (!LastScope.HasChainNodesMatched)
2744        ChainNodesMatched.clear();
2745      if (!LastScope.HasFlagResultNodesMatched)
2746        FlagResultNodesMatched.clear();
2747
2748      // Check to see what the offset is at the new MatcherIndex.  If it is zero
2749      // we have reached the end of this scope, otherwise we have another child
2750      // in the current scope to try.
2751      unsigned NumToSkip = MatcherTable[MatcherIndex++];
2752      if (NumToSkip & 128)
2753        NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex);
2754
2755      // If we have another child in this scope to match, update FailIndex and
2756      // try it.
2757      if (NumToSkip != 0) {
2758        LastScope.FailIndex = MatcherIndex+NumToSkip;
2759        break;
2760      }
2761
2762      // End of this scope, pop it and try the next child in the containing
2763      // scope.
2764      MatchScopes.pop_back();
2765    }
2766  }
2767}
2768
2769
2770
2771void SelectionDAGISel::CannotYetSelect(SDNode *N) {
2772  std::string msg;
2773  raw_string_ostream Msg(msg);
2774  Msg << "Cannot yet select: ";
2775
2776  if (N->getOpcode() != ISD::INTRINSIC_W_CHAIN &&
2777      N->getOpcode() != ISD::INTRINSIC_WO_CHAIN &&
2778      N->getOpcode() != ISD::INTRINSIC_VOID) {
2779    N->printrFull(Msg, CurDAG);
2780  } else {
2781    bool HasInputChain = N->getOperand(0).getValueType() == MVT::Other;
2782    unsigned iid =
2783      cast<ConstantSDNode>(N->getOperand(HasInputChain))->getZExtValue();
2784    if (iid < Intrinsic::num_intrinsics)
2785      Msg << "intrinsic %" << Intrinsic::getName((Intrinsic::ID)iid);
2786    else if (const TargetIntrinsicInfo *TII = TM.getIntrinsicInfo())
2787      Msg << "target intrinsic %" << TII->getName(iid);
2788    else
2789      Msg << "unknown intrinsic #" << iid;
2790  }
2791  llvm_report_error(Msg.str());
2792}
2793
2794char SelectionDAGISel::ID = 0;
2795