SelectionDAGISel.cpp revision 0b8c9a80f20772c3793201ab5b251d3520b9cea3
1//===-- SelectionDAGISel.cpp - Implement the SelectionDAGISel class -------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAGISel class.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "isel"
15#include "llvm/CodeGen/SelectionDAGISel.h"
16#include "ScheduleDAGSDNodes.h"
17#include "SelectionDAGBuilder.h"
18#include "llvm/ADT/PostOrderIterator.h"
19#include "llvm/ADT/Statistic.h"
20#include "llvm/Analysis/AliasAnalysis.h"
21#include "llvm/Analysis/BranchProbabilityInfo.h"
22#include "llvm/CodeGen/FastISel.h"
23#include "llvm/CodeGen/FunctionLoweringInfo.h"
24#include "llvm/CodeGen/GCMetadata.h"
25#include "llvm/CodeGen/GCStrategy.h"
26#include "llvm/CodeGen/MachineFrameInfo.h"
27#include "llvm/CodeGen/MachineFunction.h"
28#include "llvm/CodeGen/MachineInstrBuilder.h"
29#include "llvm/CodeGen/MachineModuleInfo.h"
30#include "llvm/CodeGen/MachineRegisterInfo.h"
31#include "llvm/CodeGen/ScheduleHazardRecognizer.h"
32#include "llvm/CodeGen/SchedulerRegistry.h"
33#include "llvm/CodeGen/SelectionDAG.h"
34#include "llvm/DebugInfo.h"
35#include "llvm/IR/Constants.h"
36#include "llvm/IR/Function.h"
37#include "llvm/IR/InlineAsm.h"
38#include "llvm/IR/Instructions.h"
39#include "llvm/IR/IntrinsicInst.h"
40#include "llvm/IR/Intrinsics.h"
41#include "llvm/IR/LLVMContext.h"
42#include "llvm/IR/Module.h"
43#include "llvm/Support/Compiler.h"
44#include "llvm/Support/Debug.h"
45#include "llvm/Support/ErrorHandling.h"
46#include "llvm/Support/Timer.h"
47#include "llvm/Support/raw_ostream.h"
48#include "llvm/Target/TargetInstrInfo.h"
49#include "llvm/Target/TargetIntrinsicInfo.h"
50#include "llvm/Target/TargetLibraryInfo.h"
51#include "llvm/Target/TargetLowering.h"
52#include "llvm/Target/TargetMachine.h"
53#include "llvm/Target/TargetOptions.h"
54#include "llvm/Target/TargetRegisterInfo.h"
55#include "llvm/Target/TargetSubtargetInfo.h"
56#include "llvm/Transforms/Utils/BasicBlockUtils.h"
57#include <algorithm>
58using namespace llvm;
59
60STATISTIC(NumFastIselFailures, "Number of instructions fast isel failed on");
61STATISTIC(NumFastIselSuccess, "Number of instructions fast isel selected");
62STATISTIC(NumFastIselBlocks, "Number of blocks selected entirely by fast isel");
63STATISTIC(NumDAGBlocks, "Number of blocks selected using DAG");
64STATISTIC(NumDAGIselRetries,"Number of times dag isel has to try another path");
65
66#ifndef NDEBUG
67static cl::opt<bool>
68EnableFastISelVerbose2("fast-isel-verbose2", cl::Hidden,
69          cl::desc("Enable extra verbose messages in the \"fast\" "
70                   "instruction selector"));
71  // Terminators
72STATISTIC(NumFastIselFailRet,"Fast isel fails on Ret");
73STATISTIC(NumFastIselFailBr,"Fast isel fails on Br");
74STATISTIC(NumFastIselFailSwitch,"Fast isel fails on Switch");
75STATISTIC(NumFastIselFailIndirectBr,"Fast isel fails on IndirectBr");
76STATISTIC(NumFastIselFailInvoke,"Fast isel fails on Invoke");
77STATISTIC(NumFastIselFailResume,"Fast isel fails on Resume");
78STATISTIC(NumFastIselFailUnreachable,"Fast isel fails on Unreachable");
79
80  // Standard binary operators...
81STATISTIC(NumFastIselFailAdd,"Fast isel fails on Add");
82STATISTIC(NumFastIselFailFAdd,"Fast isel fails on FAdd");
83STATISTIC(NumFastIselFailSub,"Fast isel fails on Sub");
84STATISTIC(NumFastIselFailFSub,"Fast isel fails on FSub");
85STATISTIC(NumFastIselFailMul,"Fast isel fails on Mul");
86STATISTIC(NumFastIselFailFMul,"Fast isel fails on FMul");
87STATISTIC(NumFastIselFailUDiv,"Fast isel fails on UDiv");
88STATISTIC(NumFastIselFailSDiv,"Fast isel fails on SDiv");
89STATISTIC(NumFastIselFailFDiv,"Fast isel fails on FDiv");
90STATISTIC(NumFastIselFailURem,"Fast isel fails on URem");
91STATISTIC(NumFastIselFailSRem,"Fast isel fails on SRem");
92STATISTIC(NumFastIselFailFRem,"Fast isel fails on FRem");
93
94  // Logical operators...
95STATISTIC(NumFastIselFailAnd,"Fast isel fails on And");
96STATISTIC(NumFastIselFailOr,"Fast isel fails on Or");
97STATISTIC(NumFastIselFailXor,"Fast isel fails on Xor");
98
99  // Memory instructions...
100STATISTIC(NumFastIselFailAlloca,"Fast isel fails on Alloca");
101STATISTIC(NumFastIselFailLoad,"Fast isel fails on Load");
102STATISTIC(NumFastIselFailStore,"Fast isel fails on Store");
103STATISTIC(NumFastIselFailAtomicCmpXchg,"Fast isel fails on AtomicCmpXchg");
104STATISTIC(NumFastIselFailAtomicRMW,"Fast isel fails on AtomicRWM");
105STATISTIC(NumFastIselFailFence,"Fast isel fails on Frence");
106STATISTIC(NumFastIselFailGetElementPtr,"Fast isel fails on GetElementPtr");
107
108  // Convert instructions...
109STATISTIC(NumFastIselFailTrunc,"Fast isel fails on Trunc");
110STATISTIC(NumFastIselFailZExt,"Fast isel fails on ZExt");
111STATISTIC(NumFastIselFailSExt,"Fast isel fails on SExt");
112STATISTIC(NumFastIselFailFPTrunc,"Fast isel fails on FPTrunc");
113STATISTIC(NumFastIselFailFPExt,"Fast isel fails on FPExt");
114STATISTIC(NumFastIselFailFPToUI,"Fast isel fails on FPToUI");
115STATISTIC(NumFastIselFailFPToSI,"Fast isel fails on FPToSI");
116STATISTIC(NumFastIselFailUIToFP,"Fast isel fails on UIToFP");
117STATISTIC(NumFastIselFailSIToFP,"Fast isel fails on SIToFP");
118STATISTIC(NumFastIselFailIntToPtr,"Fast isel fails on IntToPtr");
119STATISTIC(NumFastIselFailPtrToInt,"Fast isel fails on PtrToInt");
120STATISTIC(NumFastIselFailBitCast,"Fast isel fails on BitCast");
121
122  // Other instructions...
123STATISTIC(NumFastIselFailICmp,"Fast isel fails on ICmp");
124STATISTIC(NumFastIselFailFCmp,"Fast isel fails on FCmp");
125STATISTIC(NumFastIselFailPHI,"Fast isel fails on PHI");
126STATISTIC(NumFastIselFailSelect,"Fast isel fails on Select");
127STATISTIC(NumFastIselFailCall,"Fast isel fails on Call");
128STATISTIC(NumFastIselFailShl,"Fast isel fails on Shl");
129STATISTIC(NumFastIselFailLShr,"Fast isel fails on LShr");
130STATISTIC(NumFastIselFailAShr,"Fast isel fails on AShr");
131STATISTIC(NumFastIselFailVAArg,"Fast isel fails on VAArg");
132STATISTIC(NumFastIselFailExtractElement,"Fast isel fails on ExtractElement");
133STATISTIC(NumFastIselFailInsertElement,"Fast isel fails on InsertElement");
134STATISTIC(NumFastIselFailShuffleVector,"Fast isel fails on ShuffleVector");
135STATISTIC(NumFastIselFailExtractValue,"Fast isel fails on ExtractValue");
136STATISTIC(NumFastIselFailInsertValue,"Fast isel fails on InsertValue");
137STATISTIC(NumFastIselFailLandingPad,"Fast isel fails on LandingPad");
138#endif
139
140static cl::opt<bool>
141EnableFastISelVerbose("fast-isel-verbose", cl::Hidden,
142          cl::desc("Enable verbose messages in the \"fast\" "
143                   "instruction selector"));
144static cl::opt<bool>
145EnableFastISelAbort("fast-isel-abort", cl::Hidden,
146          cl::desc("Enable abort calls when \"fast\" instruction fails"));
147
148static cl::opt<bool>
149UseMBPI("use-mbpi",
150        cl::desc("use Machine Branch Probability Info"),
151        cl::init(true), cl::Hidden);
152
153#ifndef NDEBUG
154static cl::opt<bool>
155ViewDAGCombine1("view-dag-combine1-dags", cl::Hidden,
156          cl::desc("Pop up a window to show dags before the first "
157                   "dag combine pass"));
158static cl::opt<bool>
159ViewLegalizeTypesDAGs("view-legalize-types-dags", cl::Hidden,
160          cl::desc("Pop up a window to show dags before legalize types"));
161static cl::opt<bool>
162ViewLegalizeDAGs("view-legalize-dags", cl::Hidden,
163          cl::desc("Pop up a window to show dags before legalize"));
164static cl::opt<bool>
165ViewDAGCombine2("view-dag-combine2-dags", cl::Hidden,
166          cl::desc("Pop up a window to show dags before the second "
167                   "dag combine pass"));
168static cl::opt<bool>
169ViewDAGCombineLT("view-dag-combine-lt-dags", cl::Hidden,
170          cl::desc("Pop up a window to show dags before the post legalize types"
171                   " dag combine pass"));
172static cl::opt<bool>
173ViewISelDAGs("view-isel-dags", cl::Hidden,
174          cl::desc("Pop up a window to show isel dags as they are selected"));
175static cl::opt<bool>
176ViewSchedDAGs("view-sched-dags", cl::Hidden,
177          cl::desc("Pop up a window to show sched dags as they are processed"));
178static cl::opt<bool>
179ViewSUnitDAGs("view-sunit-dags", cl::Hidden,
180      cl::desc("Pop up a window to show SUnit dags after they are processed"));
181#else
182static const bool ViewDAGCombine1 = false,
183                  ViewLegalizeTypesDAGs = false, ViewLegalizeDAGs = false,
184                  ViewDAGCombine2 = false,
185                  ViewDAGCombineLT = false,
186                  ViewISelDAGs = false, ViewSchedDAGs = false,
187                  ViewSUnitDAGs = false;
188#endif
189
190//===---------------------------------------------------------------------===//
191///
192/// RegisterScheduler class - Track the registration of instruction schedulers.
193///
194//===---------------------------------------------------------------------===//
195MachinePassRegistry RegisterScheduler::Registry;
196
197//===---------------------------------------------------------------------===//
198///
199/// ISHeuristic command line option for instruction schedulers.
200///
201//===---------------------------------------------------------------------===//
202static cl::opt<RegisterScheduler::FunctionPassCtor, false,
203               RegisterPassParser<RegisterScheduler> >
204ISHeuristic("pre-RA-sched",
205            cl::init(&createDefaultScheduler),
206            cl::desc("Instruction schedulers available (before register"
207                     " allocation):"));
208
209static RegisterScheduler
210defaultListDAGScheduler("default", "Best scheduler for the target",
211                        createDefaultScheduler);
212
213namespace llvm {
214  //===--------------------------------------------------------------------===//
215  /// createDefaultScheduler - This creates an instruction scheduler appropriate
216  /// for the target.
217  ScheduleDAGSDNodes* createDefaultScheduler(SelectionDAGISel *IS,
218                                             CodeGenOpt::Level OptLevel) {
219    const TargetLowering &TLI = IS->getTargetLowering();
220    const TargetSubtargetInfo &ST = IS->TM.getSubtarget<TargetSubtargetInfo>();
221
222    if (OptLevel == CodeGenOpt::None || ST.enableMachineScheduler() ||
223        TLI.getSchedulingPreference() == Sched::Source)
224      return createSourceListDAGScheduler(IS, OptLevel);
225    if (TLI.getSchedulingPreference() == Sched::RegPressure)
226      return createBURRListDAGScheduler(IS, OptLevel);
227    if (TLI.getSchedulingPreference() == Sched::Hybrid)
228      return createHybridListDAGScheduler(IS, OptLevel);
229    if (TLI.getSchedulingPreference() == Sched::VLIW)
230      return createVLIWDAGScheduler(IS, OptLevel);
231    assert(TLI.getSchedulingPreference() == Sched::ILP &&
232           "Unknown sched type!");
233    return createILPListDAGScheduler(IS, OptLevel);
234  }
235}
236
237// EmitInstrWithCustomInserter - This method should be implemented by targets
238// that mark instructions with the 'usesCustomInserter' flag.  These
239// instructions are special in various ways, which require special support to
240// insert.  The specified MachineInstr is created but not inserted into any
241// basic blocks, and this method is called to expand it into a sequence of
242// instructions, potentially also creating new basic blocks and control flow.
243// When new basic blocks are inserted and the edges from MBB to its successors
244// are modified, the method should insert pairs of <OldSucc, NewSucc> into the
245// DenseMap.
246MachineBasicBlock *
247TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
248                                            MachineBasicBlock *MBB) const {
249#ifndef NDEBUG
250  dbgs() << "If a target marks an instruction with "
251          "'usesCustomInserter', it must implement "
252          "TargetLowering::EmitInstrWithCustomInserter!";
253#endif
254  llvm_unreachable(0);
255}
256
257void TargetLowering::AdjustInstrPostInstrSelection(MachineInstr *MI,
258                                                   SDNode *Node) const {
259  assert(!MI->hasPostISelHook() &&
260         "If a target marks an instruction with 'hasPostISelHook', "
261         "it must implement TargetLowering::AdjustInstrPostInstrSelection!");
262}
263
264//===----------------------------------------------------------------------===//
265// SelectionDAGISel code
266//===----------------------------------------------------------------------===//
267
268SelectionDAGISel::SelectionDAGISel(const TargetMachine &tm,
269                                   CodeGenOpt::Level OL) :
270  MachineFunctionPass(ID), TM(tm), TLI(*tm.getTargetLowering()),
271  FuncInfo(new FunctionLoweringInfo(TLI)),
272  CurDAG(new SelectionDAG(tm, OL)),
273  SDB(new SelectionDAGBuilder(*CurDAG, *FuncInfo, OL)),
274  GFI(),
275  OptLevel(OL),
276  DAGSize(0) {
277    initializeGCModuleInfoPass(*PassRegistry::getPassRegistry());
278    initializeAliasAnalysisAnalysisGroup(*PassRegistry::getPassRegistry());
279    initializeBranchProbabilityInfoPass(*PassRegistry::getPassRegistry());
280    initializeTargetLibraryInfoPass(*PassRegistry::getPassRegistry());
281  }
282
283SelectionDAGISel::~SelectionDAGISel() {
284  delete SDB;
285  delete CurDAG;
286  delete FuncInfo;
287}
288
289void SelectionDAGISel::getAnalysisUsage(AnalysisUsage &AU) const {
290  AU.addRequired<AliasAnalysis>();
291  AU.addPreserved<AliasAnalysis>();
292  AU.addRequired<GCModuleInfo>();
293  AU.addPreserved<GCModuleInfo>();
294  AU.addRequired<TargetLibraryInfo>();
295  if (UseMBPI && OptLevel != CodeGenOpt::None)
296    AU.addRequired<BranchProbabilityInfo>();
297  MachineFunctionPass::getAnalysisUsage(AU);
298}
299
300/// SplitCriticalSideEffectEdges - Look for critical edges with a PHI value that
301/// may trap on it.  In this case we have to split the edge so that the path
302/// through the predecessor block that doesn't go to the phi block doesn't
303/// execute the possibly trapping instruction.
304///
305/// This is required for correctness, so it must be done at -O0.
306///
307static void SplitCriticalSideEffectEdges(Function &Fn, Pass *SDISel) {
308  // Loop for blocks with phi nodes.
309  for (Function::iterator BB = Fn.begin(), E = Fn.end(); BB != E; ++BB) {
310    PHINode *PN = dyn_cast<PHINode>(BB->begin());
311    if (PN == 0) continue;
312
313  ReprocessBlock:
314    // For each block with a PHI node, check to see if any of the input values
315    // are potentially trapping constant expressions.  Constant expressions are
316    // the only potentially trapping value that can occur as the argument to a
317    // PHI.
318    for (BasicBlock::iterator I = BB->begin(); (PN = dyn_cast<PHINode>(I)); ++I)
319      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
320        ConstantExpr *CE = dyn_cast<ConstantExpr>(PN->getIncomingValue(i));
321        if (CE == 0 || !CE->canTrap()) continue;
322
323        // The only case we have to worry about is when the edge is critical.
324        // Since this block has a PHI Node, we assume it has multiple input
325        // edges: check to see if the pred has multiple successors.
326        BasicBlock *Pred = PN->getIncomingBlock(i);
327        if (Pred->getTerminator()->getNumSuccessors() == 1)
328          continue;
329
330        // Okay, we have to split this edge.
331        SplitCriticalEdge(Pred->getTerminator(),
332                          GetSuccessorNumber(Pred, BB), SDISel, true);
333        goto ReprocessBlock;
334      }
335  }
336}
337
338bool SelectionDAGISel::runOnMachineFunction(MachineFunction &mf) {
339  // Do some sanity-checking on the command-line options.
340  assert((!EnableFastISelVerbose || TM.Options.EnableFastISel) &&
341         "-fast-isel-verbose requires -fast-isel");
342  assert((!EnableFastISelAbort || TM.Options.EnableFastISel) &&
343         "-fast-isel-abort requires -fast-isel");
344
345  const Function &Fn = *mf.getFunction();
346  const TargetInstrInfo &TII = *TM.getInstrInfo();
347  const TargetRegisterInfo &TRI = *TM.getRegisterInfo();
348
349  MF = &mf;
350  RegInfo = &MF->getRegInfo();
351  AA = &getAnalysis<AliasAnalysis>();
352  LibInfo = &getAnalysis<TargetLibraryInfo>();
353  GFI = Fn.hasGC() ? &getAnalysis<GCModuleInfo>().getFunctionInfo(Fn) : 0;
354
355  DEBUG(dbgs() << "\n\n\n=== " << Fn.getName() << "\n");
356
357  SplitCriticalSideEffectEdges(const_cast<Function&>(Fn), this);
358
359  CurDAG->init(*MF);
360  FuncInfo->set(Fn, *MF);
361
362  if (UseMBPI && OptLevel != CodeGenOpt::None)
363    FuncInfo->BPI = &getAnalysis<BranchProbabilityInfo>();
364  else
365    FuncInfo->BPI = 0;
366
367  SDB->init(GFI, *AA, LibInfo);
368
369  SelectAllBasicBlocks(Fn);
370
371  // If the first basic block in the function has live ins that need to be
372  // copied into vregs, emit the copies into the top of the block before
373  // emitting the code for the block.
374  MachineBasicBlock *EntryMBB = MF->begin();
375  RegInfo->EmitLiveInCopies(EntryMBB, TRI, TII);
376
377  DenseMap<unsigned, unsigned> LiveInMap;
378  if (!FuncInfo->ArgDbgValues.empty())
379    for (MachineRegisterInfo::livein_iterator LI = RegInfo->livein_begin(),
380           E = RegInfo->livein_end(); LI != E; ++LI)
381      if (LI->second)
382        LiveInMap.insert(std::make_pair(LI->first, LI->second));
383
384  // Insert DBG_VALUE instructions for function arguments to the entry block.
385  for (unsigned i = 0, e = FuncInfo->ArgDbgValues.size(); i != e; ++i) {
386    MachineInstr *MI = FuncInfo->ArgDbgValues[e-i-1];
387    unsigned Reg = MI->getOperand(0).getReg();
388    if (TargetRegisterInfo::isPhysicalRegister(Reg))
389      EntryMBB->insert(EntryMBB->begin(), MI);
390    else {
391      MachineInstr *Def = RegInfo->getVRegDef(Reg);
392      MachineBasicBlock::iterator InsertPos = Def;
393      // FIXME: VR def may not be in entry block.
394      Def->getParent()->insert(llvm::next(InsertPos), MI);
395    }
396
397    // If Reg is live-in then update debug info to track its copy in a vreg.
398    DenseMap<unsigned, unsigned>::iterator LDI = LiveInMap.find(Reg);
399    if (LDI != LiveInMap.end()) {
400      MachineInstr *Def = RegInfo->getVRegDef(LDI->second);
401      MachineBasicBlock::iterator InsertPos = Def;
402      const MDNode *Variable =
403        MI->getOperand(MI->getNumOperands()-1).getMetadata();
404      unsigned Offset = MI->getOperand(1).getImm();
405      // Def is never a terminator here, so it is ok to increment InsertPos.
406      BuildMI(*EntryMBB, ++InsertPos, MI->getDebugLoc(),
407              TII.get(TargetOpcode::DBG_VALUE))
408        .addReg(LDI->second, RegState::Debug)
409        .addImm(Offset).addMetadata(Variable);
410
411      // If this vreg is directly copied into an exported register then
412      // that COPY instructions also need DBG_VALUE, if it is the only
413      // user of LDI->second.
414      MachineInstr *CopyUseMI = NULL;
415      for (MachineRegisterInfo::use_iterator
416             UI = RegInfo->use_begin(LDI->second);
417           MachineInstr *UseMI = UI.skipInstruction();) {
418        if (UseMI->isDebugValue()) continue;
419        if (UseMI->isCopy() && !CopyUseMI && UseMI->getParent() == EntryMBB) {
420          CopyUseMI = UseMI; continue;
421        }
422        // Otherwise this is another use or second copy use.
423        CopyUseMI = NULL; break;
424      }
425      if (CopyUseMI) {
426        MachineInstr *NewMI =
427          BuildMI(*MF, CopyUseMI->getDebugLoc(),
428                  TII.get(TargetOpcode::DBG_VALUE))
429          .addReg(CopyUseMI->getOperand(0).getReg(), RegState::Debug)
430          .addImm(Offset).addMetadata(Variable);
431        MachineBasicBlock::iterator Pos = CopyUseMI;
432        EntryMBB->insertAfter(Pos, NewMI);
433      }
434    }
435  }
436
437  // Determine if there are any calls in this machine function.
438  MachineFrameInfo *MFI = MF->getFrameInfo();
439  if (!MFI->hasCalls()) {
440    for (MachineFunction::const_iterator
441           I = MF->begin(), E = MF->end(); I != E; ++I) {
442      const MachineBasicBlock *MBB = I;
443      for (MachineBasicBlock::const_iterator
444             II = MBB->begin(), IE = MBB->end(); II != IE; ++II) {
445        const MCInstrDesc &MCID = TM.getInstrInfo()->get(II->getOpcode());
446
447        if ((MCID.isCall() && !MCID.isReturn()) ||
448            II->isStackAligningInlineAsm()) {
449          MFI->setHasCalls(true);
450          goto done;
451        }
452      }
453    }
454  }
455
456  done:
457  // Determine if there is a call to setjmp in the machine function.
458  MF->setExposesReturnsTwice(Fn.callsFunctionThatReturnsTwice());
459
460  // Replace forward-declared registers with the registers containing
461  // the desired value.
462  MachineRegisterInfo &MRI = MF->getRegInfo();
463  for (DenseMap<unsigned, unsigned>::iterator
464       I = FuncInfo->RegFixups.begin(), E = FuncInfo->RegFixups.end();
465       I != E; ++I) {
466    unsigned From = I->first;
467    unsigned To = I->second;
468    // If To is also scheduled to be replaced, find what its ultimate
469    // replacement is.
470    for (;;) {
471      DenseMap<unsigned, unsigned>::iterator J = FuncInfo->RegFixups.find(To);
472      if (J == E) break;
473      To = J->second;
474    }
475    // Replace it.
476    MRI.replaceRegWith(From, To);
477  }
478
479  // Freeze the set of reserved registers now that MachineFrameInfo has been
480  // set up. All the information required by getReservedRegs() should be
481  // available now.
482  MRI.freezeReservedRegs(*MF);
483
484  // Release function-specific state. SDB and CurDAG are already cleared
485  // at this point.
486  FuncInfo->clear();
487
488  return true;
489}
490
491void SelectionDAGISel::SelectBasicBlock(BasicBlock::const_iterator Begin,
492                                        BasicBlock::const_iterator End,
493                                        bool &HadTailCall) {
494  // Lower all of the non-terminator instructions. If a call is emitted
495  // as a tail call, cease emitting nodes for this block. Terminators
496  // are handled below.
497  for (BasicBlock::const_iterator I = Begin; I != End && !SDB->HasTailCall; ++I)
498    SDB->visit(*I);
499
500  // Make sure the root of the DAG is up-to-date.
501  CurDAG->setRoot(SDB->getControlRoot());
502  HadTailCall = SDB->HasTailCall;
503  SDB->clear();
504
505  // Final step, emit the lowered DAG as machine code.
506  CodeGenAndEmitDAG();
507}
508
509void SelectionDAGISel::ComputeLiveOutVRegInfo() {
510  SmallPtrSet<SDNode*, 128> VisitedNodes;
511  SmallVector<SDNode*, 128> Worklist;
512
513  Worklist.push_back(CurDAG->getRoot().getNode());
514
515  APInt KnownZero;
516  APInt KnownOne;
517
518  do {
519    SDNode *N = Worklist.pop_back_val();
520
521    // If we've already seen this node, ignore it.
522    if (!VisitedNodes.insert(N))
523      continue;
524
525    // Otherwise, add all chain operands to the worklist.
526    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
527      if (N->getOperand(i).getValueType() == MVT::Other)
528        Worklist.push_back(N->getOperand(i).getNode());
529
530    // If this is a CopyToReg with a vreg dest, process it.
531    if (N->getOpcode() != ISD::CopyToReg)
532      continue;
533
534    unsigned DestReg = cast<RegisterSDNode>(N->getOperand(1))->getReg();
535    if (!TargetRegisterInfo::isVirtualRegister(DestReg))
536      continue;
537
538    // Ignore non-scalar or non-integer values.
539    SDValue Src = N->getOperand(2);
540    EVT SrcVT = Src.getValueType();
541    if (!SrcVT.isInteger() || SrcVT.isVector())
542      continue;
543
544    unsigned NumSignBits = CurDAG->ComputeNumSignBits(Src);
545    CurDAG->ComputeMaskedBits(Src, KnownZero, KnownOne);
546    FuncInfo->AddLiveOutRegInfo(DestReg, NumSignBits, KnownZero, KnownOne);
547  } while (!Worklist.empty());
548}
549
550void SelectionDAGISel::CodeGenAndEmitDAG() {
551  std::string GroupName;
552  if (TimePassesIsEnabled)
553    GroupName = "Instruction Selection and Scheduling";
554  std::string BlockName;
555  int BlockNumber = -1;
556  (void)BlockNumber;
557#ifdef NDEBUG
558  if (ViewDAGCombine1 || ViewLegalizeTypesDAGs || ViewLegalizeDAGs ||
559      ViewDAGCombine2 || ViewDAGCombineLT || ViewISelDAGs || ViewSchedDAGs ||
560      ViewSUnitDAGs)
561#endif
562  {
563    BlockNumber = FuncInfo->MBB->getNumber();
564    BlockName = MF->getName().str() + ":" +
565                FuncInfo->MBB->getBasicBlock()->getName().str();
566  }
567  DEBUG(dbgs() << "Initial selection DAG: BB#" << BlockNumber
568        << " '" << BlockName << "'\n"; CurDAG->dump());
569
570  if (ViewDAGCombine1) CurDAG->viewGraph("dag-combine1 input for " + BlockName);
571
572  // Run the DAG combiner in pre-legalize mode.
573  {
574    NamedRegionTimer T("DAG Combining 1", GroupName, TimePassesIsEnabled);
575    CurDAG->Combine(BeforeLegalizeTypes, *AA, OptLevel);
576  }
577
578  DEBUG(dbgs() << "Optimized lowered selection DAG: BB#" << BlockNumber
579        << " '" << BlockName << "'\n"; CurDAG->dump());
580
581  // Second step, hack on the DAG until it only uses operations and types that
582  // the target supports.
583  if (ViewLegalizeTypesDAGs) CurDAG->viewGraph("legalize-types input for " +
584                                               BlockName);
585
586  bool Changed;
587  {
588    NamedRegionTimer T("Type Legalization", GroupName, TimePassesIsEnabled);
589    Changed = CurDAG->LegalizeTypes();
590  }
591
592  DEBUG(dbgs() << "Type-legalized selection DAG: BB#" << BlockNumber
593        << " '" << BlockName << "'\n"; CurDAG->dump());
594
595  if (Changed) {
596    if (ViewDAGCombineLT)
597      CurDAG->viewGraph("dag-combine-lt input for " + BlockName);
598
599    // Run the DAG combiner in post-type-legalize mode.
600    {
601      NamedRegionTimer T("DAG Combining after legalize types", GroupName,
602                         TimePassesIsEnabled);
603      CurDAG->Combine(AfterLegalizeTypes, *AA, OptLevel);
604    }
605
606    DEBUG(dbgs() << "Optimized type-legalized selection DAG: BB#" << BlockNumber
607          << " '" << BlockName << "'\n"; CurDAG->dump());
608  }
609
610  {
611    NamedRegionTimer T("Vector Legalization", GroupName, TimePassesIsEnabled);
612    Changed = CurDAG->LegalizeVectors();
613  }
614
615  if (Changed) {
616    {
617      NamedRegionTimer T("Type Legalization 2", GroupName, TimePassesIsEnabled);
618      CurDAG->LegalizeTypes();
619    }
620
621    if (ViewDAGCombineLT)
622      CurDAG->viewGraph("dag-combine-lv input for " + BlockName);
623
624    // Run the DAG combiner in post-type-legalize mode.
625    {
626      NamedRegionTimer T("DAG Combining after legalize vectors", GroupName,
627                         TimePassesIsEnabled);
628      CurDAG->Combine(AfterLegalizeVectorOps, *AA, OptLevel);
629    }
630
631    DEBUG(dbgs() << "Optimized vector-legalized selection DAG: BB#"
632          << BlockNumber << " '" << BlockName << "'\n"; CurDAG->dump());
633  }
634
635  if (ViewLegalizeDAGs) CurDAG->viewGraph("legalize input for " + BlockName);
636
637  {
638    NamedRegionTimer T("DAG Legalization", GroupName, TimePassesIsEnabled);
639    CurDAG->Legalize();
640  }
641
642  DEBUG(dbgs() << "Legalized selection DAG: BB#" << BlockNumber
643        << " '" << BlockName << "'\n"; CurDAG->dump());
644
645  if (ViewDAGCombine2) CurDAG->viewGraph("dag-combine2 input for " + BlockName);
646
647  // Run the DAG combiner in post-legalize mode.
648  {
649    NamedRegionTimer T("DAG Combining 2", GroupName, TimePassesIsEnabled);
650    CurDAG->Combine(AfterLegalizeDAG, *AA, OptLevel);
651  }
652
653  DEBUG(dbgs() << "Optimized legalized selection DAG: BB#" << BlockNumber
654        << " '" << BlockName << "'\n"; CurDAG->dump());
655
656  if (OptLevel != CodeGenOpt::None)
657    ComputeLiveOutVRegInfo();
658
659  if (ViewISelDAGs) CurDAG->viewGraph("isel input for " + BlockName);
660
661  // Third, instruction select all of the operations to machine code, adding the
662  // code to the MachineBasicBlock.
663  {
664    NamedRegionTimer T("Instruction Selection", GroupName, TimePassesIsEnabled);
665    DoInstructionSelection();
666  }
667
668  DEBUG(dbgs() << "Selected selection DAG: BB#" << BlockNumber
669        << " '" << BlockName << "'\n"; CurDAG->dump());
670
671  if (ViewSchedDAGs) CurDAG->viewGraph("scheduler input for " + BlockName);
672
673  // Schedule machine code.
674  ScheduleDAGSDNodes *Scheduler = CreateScheduler();
675  {
676    NamedRegionTimer T("Instruction Scheduling", GroupName,
677                       TimePassesIsEnabled);
678    Scheduler->Run(CurDAG, FuncInfo->MBB);
679  }
680
681  if (ViewSUnitDAGs) Scheduler->viewGraph();
682
683  // Emit machine code to BB.  This can change 'BB' to the last block being
684  // inserted into.
685  MachineBasicBlock *FirstMBB = FuncInfo->MBB, *LastMBB;
686  {
687    NamedRegionTimer T("Instruction Creation", GroupName, TimePassesIsEnabled);
688
689    // FuncInfo->InsertPt is passed by reference and set to the end of the
690    // scheduled instructions.
691    LastMBB = FuncInfo->MBB = Scheduler->EmitSchedule(FuncInfo->InsertPt);
692  }
693
694  // If the block was split, make sure we update any references that are used to
695  // update PHI nodes later on.
696  if (FirstMBB != LastMBB)
697    SDB->UpdateSplitBlock(FirstMBB, LastMBB);
698
699  // Free the scheduler state.
700  {
701    NamedRegionTimer T("Instruction Scheduling Cleanup", GroupName,
702                       TimePassesIsEnabled);
703    delete Scheduler;
704  }
705
706  // Free the SelectionDAG state, now that we're finished with it.
707  CurDAG->clear();
708}
709
710namespace {
711/// ISelUpdater - helper class to handle updates of the instruction selection
712/// graph.
713class ISelUpdater : public SelectionDAG::DAGUpdateListener {
714  SelectionDAG::allnodes_iterator &ISelPosition;
715public:
716  ISelUpdater(SelectionDAG &DAG, SelectionDAG::allnodes_iterator &isp)
717    : SelectionDAG::DAGUpdateListener(DAG), ISelPosition(isp) {}
718
719  /// NodeDeleted - Handle nodes deleted from the graph. If the node being
720  /// deleted is the current ISelPosition node, update ISelPosition.
721  ///
722  virtual void NodeDeleted(SDNode *N, SDNode *E) {
723    if (ISelPosition == SelectionDAG::allnodes_iterator(N))
724      ++ISelPosition;
725  }
726};
727} // end anonymous namespace
728
729void SelectionDAGISel::DoInstructionSelection() {
730  DEBUG(errs() << "===== Instruction selection begins: BB#"
731        << FuncInfo->MBB->getNumber()
732        << " '" << FuncInfo->MBB->getName() << "'\n");
733
734  PreprocessISelDAG();
735
736  // Select target instructions for the DAG.
737  {
738    // Number all nodes with a topological order and set DAGSize.
739    DAGSize = CurDAG->AssignTopologicalOrder();
740
741    // Create a dummy node (which is not added to allnodes), that adds
742    // a reference to the root node, preventing it from being deleted,
743    // and tracking any changes of the root.
744    HandleSDNode Dummy(CurDAG->getRoot());
745    SelectionDAG::allnodes_iterator ISelPosition (CurDAG->getRoot().getNode());
746    ++ISelPosition;
747
748    // Make sure that ISelPosition gets properly updated when nodes are deleted
749    // in calls made from this function.
750    ISelUpdater ISU(*CurDAG, ISelPosition);
751
752    // The AllNodes list is now topological-sorted. Visit the
753    // nodes by starting at the end of the list (the root of the
754    // graph) and preceding back toward the beginning (the entry
755    // node).
756    while (ISelPosition != CurDAG->allnodes_begin()) {
757      SDNode *Node = --ISelPosition;
758      // Skip dead nodes. DAGCombiner is expected to eliminate all dead nodes,
759      // but there are currently some corner cases that it misses. Also, this
760      // makes it theoretically possible to disable the DAGCombiner.
761      if (Node->use_empty())
762        continue;
763
764      SDNode *ResNode = Select(Node);
765
766      // FIXME: This is pretty gross.  'Select' should be changed to not return
767      // anything at all and this code should be nuked with a tactical strike.
768
769      // If node should not be replaced, continue with the next one.
770      if (ResNode == Node || Node->getOpcode() == ISD::DELETED_NODE)
771        continue;
772      // Replace node.
773      if (ResNode)
774        ReplaceUses(Node, ResNode);
775
776      // If after the replacement this node is not used any more,
777      // remove this dead node.
778      if (Node->use_empty()) // Don't delete EntryToken, etc.
779        CurDAG->RemoveDeadNode(Node);
780    }
781
782    CurDAG->setRoot(Dummy.getValue());
783  }
784
785  DEBUG(errs() << "===== Instruction selection ends:\n");
786
787  PostprocessISelDAG();
788}
789
790/// PrepareEHLandingPad - Emit an EH_LABEL, set up live-in registers, and
791/// do other setup for EH landing-pad blocks.
792void SelectionDAGISel::PrepareEHLandingPad() {
793  MachineBasicBlock *MBB = FuncInfo->MBB;
794
795  // Add a label to mark the beginning of the landing pad.  Deletion of the
796  // landing pad can thus be detected via the MachineModuleInfo.
797  MCSymbol *Label = MF->getMMI().addLandingPad(MBB);
798
799  // Assign the call site to the landing pad's begin label.
800  MF->getMMI().setCallSiteLandingPad(Label, SDB->LPadToCallSiteMap[MBB]);
801
802  const MCInstrDesc &II = TM.getInstrInfo()->get(TargetOpcode::EH_LABEL);
803  BuildMI(*MBB, FuncInfo->InsertPt, SDB->getCurDebugLoc(), II)
804    .addSym(Label);
805
806  // Mark exception register as live in.
807  unsigned Reg = TLI.getExceptionPointerRegister();
808  if (Reg) MBB->addLiveIn(Reg);
809
810  // Mark exception selector register as live in.
811  Reg = TLI.getExceptionSelectorRegister();
812  if (Reg) MBB->addLiveIn(Reg);
813}
814
815/// TryToFoldFastISelLoad - We're checking to see if we can fold the specified
816/// load into the specified FoldInst.  Note that we could have a sequence where
817/// multiple LLVM IR instructions are folded into the same machineinstr.  For
818/// example we could have:
819///   A: x = load i32 *P
820///   B: y = icmp A, 42
821///   C: br y, ...
822///
823/// In this scenario, LI is "A", and FoldInst is "C".  We know about "B" (and
824/// any other folded instructions) because it is between A and C.
825///
826/// If we succeed in folding the load into the operation, return true.
827///
828bool SelectionDAGISel::TryToFoldFastISelLoad(const LoadInst *LI,
829                                             const Instruction *FoldInst,
830                                             FastISel *FastIS) {
831  // We know that the load has a single use, but don't know what it is.  If it
832  // isn't one of the folded instructions, then we can't succeed here.  Handle
833  // this by scanning the single-use users of the load until we get to FoldInst.
834  unsigned MaxUsers = 6;  // Don't scan down huge single-use chains of instrs.
835
836  const Instruction *TheUser = LI->use_back();
837  while (TheUser != FoldInst &&   // Scan up until we find FoldInst.
838         // Stay in the right block.
839         TheUser->getParent() == FoldInst->getParent() &&
840         --MaxUsers) {  // Don't scan too far.
841    // If there are multiple or no uses of this instruction, then bail out.
842    if (!TheUser->hasOneUse())
843      return false;
844
845    TheUser = TheUser->use_back();
846  }
847
848  // If we didn't find the fold instruction, then we failed to collapse the
849  // sequence.
850  if (TheUser != FoldInst)
851    return false;
852
853  // Don't try to fold volatile loads.  Target has to deal with alignment
854  // constraints.
855  if (LI->isVolatile()) return false;
856
857  // Figure out which vreg this is going into.  If there is no assigned vreg yet
858  // then there actually was no reference to it.  Perhaps the load is referenced
859  // by a dead instruction.
860  unsigned LoadReg = FastIS->getRegForValue(LI);
861  if (LoadReg == 0)
862    return false;
863
864  // Check to see what the uses of this vreg are.  If it has no uses, or more
865  // than one use (at the machine instr level) then we can't fold it.
866  MachineRegisterInfo::reg_iterator RI = RegInfo->reg_begin(LoadReg);
867  if (RI == RegInfo->reg_end())
868    return false;
869
870  // See if there is exactly one use of the vreg.  If there are multiple uses,
871  // then the instruction got lowered to multiple machine instructions or the
872  // use of the loaded value ended up being multiple operands of the result, in
873  // either case, we can't fold this.
874  MachineRegisterInfo::reg_iterator PostRI = RI; ++PostRI;
875  if (PostRI != RegInfo->reg_end())
876    return false;
877
878  assert(RI.getOperand().isUse() &&
879         "The only use of the vreg must be a use, we haven't emitted the def!");
880
881  MachineInstr *User = &*RI;
882
883  // Set the insertion point properly.  Folding the load can cause generation of
884  // other random instructions (like sign extends) for addressing modes, make
885  // sure they get inserted in a logical place before the new instruction.
886  FuncInfo->InsertPt = User;
887  FuncInfo->MBB = User->getParent();
888
889  // Ask the target to try folding the load.
890  return FastIS->TryToFoldLoad(User, RI.getOperandNo(), LI);
891}
892
893/// isFoldedOrDeadInstruction - Return true if the specified instruction is
894/// side-effect free and is either dead or folded into a generated instruction.
895/// Return false if it needs to be emitted.
896static bool isFoldedOrDeadInstruction(const Instruction *I,
897                                      FunctionLoweringInfo *FuncInfo) {
898  return !I->mayWriteToMemory() && // Side-effecting instructions aren't folded.
899         !isa<TerminatorInst>(I) && // Terminators aren't folded.
900         !isa<DbgInfoIntrinsic>(I) &&  // Debug instructions aren't folded.
901         !isa<LandingPadInst>(I) &&    // Landingpad instructions aren't folded.
902         !FuncInfo->isExportedInst(I); // Exported instrs must be computed.
903}
904
905#ifndef NDEBUG
906// Collect per Instruction statistics for fast-isel misses.  Only those
907// instructions that cause the bail are accounted for.  It does not account for
908// instructions higher in the block.  Thus, summing the per instructions stats
909// will not add up to what is reported by NumFastIselFailures.
910static void collectFailStats(const Instruction *I) {
911  switch (I->getOpcode()) {
912  default: assert (0 && "<Invalid operator> ");
913
914  // Terminators
915  case Instruction::Ret:         NumFastIselFailRet++; return;
916  case Instruction::Br:          NumFastIselFailBr++; return;
917  case Instruction::Switch:      NumFastIselFailSwitch++; return;
918  case Instruction::IndirectBr:  NumFastIselFailIndirectBr++; return;
919  case Instruction::Invoke:      NumFastIselFailInvoke++; return;
920  case Instruction::Resume:      NumFastIselFailResume++; return;
921  case Instruction::Unreachable: NumFastIselFailUnreachable++; return;
922
923  // Standard binary operators...
924  case Instruction::Add:  NumFastIselFailAdd++; return;
925  case Instruction::FAdd: NumFastIselFailFAdd++; return;
926  case Instruction::Sub:  NumFastIselFailSub++; return;
927  case Instruction::FSub: NumFastIselFailFSub++; return;
928  case Instruction::Mul:  NumFastIselFailMul++; return;
929  case Instruction::FMul: NumFastIselFailFMul++; return;
930  case Instruction::UDiv: NumFastIselFailUDiv++; return;
931  case Instruction::SDiv: NumFastIselFailSDiv++; return;
932  case Instruction::FDiv: NumFastIselFailFDiv++; return;
933  case Instruction::URem: NumFastIselFailURem++; return;
934  case Instruction::SRem: NumFastIselFailSRem++; return;
935  case Instruction::FRem: NumFastIselFailFRem++; return;
936
937  // Logical operators...
938  case Instruction::And: NumFastIselFailAnd++; return;
939  case Instruction::Or:  NumFastIselFailOr++; return;
940  case Instruction::Xor: NumFastIselFailXor++; return;
941
942  // Memory instructions...
943  case Instruction::Alloca:        NumFastIselFailAlloca++; return;
944  case Instruction::Load:          NumFastIselFailLoad++; return;
945  case Instruction::Store:         NumFastIselFailStore++; return;
946  case Instruction::AtomicCmpXchg: NumFastIselFailAtomicCmpXchg++; return;
947  case Instruction::AtomicRMW:     NumFastIselFailAtomicRMW++; return;
948  case Instruction::Fence:         NumFastIselFailFence++; return;
949  case Instruction::GetElementPtr: NumFastIselFailGetElementPtr++; return;
950
951  // Convert instructions...
952  case Instruction::Trunc:    NumFastIselFailTrunc++; return;
953  case Instruction::ZExt:     NumFastIselFailZExt++; return;
954  case Instruction::SExt:     NumFastIselFailSExt++; return;
955  case Instruction::FPTrunc:  NumFastIselFailFPTrunc++; return;
956  case Instruction::FPExt:    NumFastIselFailFPExt++; return;
957  case Instruction::FPToUI:   NumFastIselFailFPToUI++; return;
958  case Instruction::FPToSI:   NumFastIselFailFPToSI++; return;
959  case Instruction::UIToFP:   NumFastIselFailUIToFP++; return;
960  case Instruction::SIToFP:   NumFastIselFailSIToFP++; return;
961  case Instruction::IntToPtr: NumFastIselFailIntToPtr++; return;
962  case Instruction::PtrToInt: NumFastIselFailPtrToInt++; return;
963  case Instruction::BitCast:  NumFastIselFailBitCast++; return;
964
965  // Other instructions...
966  case Instruction::ICmp:           NumFastIselFailICmp++; return;
967  case Instruction::FCmp:           NumFastIselFailFCmp++; return;
968  case Instruction::PHI:            NumFastIselFailPHI++; return;
969  case Instruction::Select:         NumFastIselFailSelect++; return;
970  case Instruction::Call:           NumFastIselFailCall++; return;
971  case Instruction::Shl:            NumFastIselFailShl++; return;
972  case Instruction::LShr:           NumFastIselFailLShr++; return;
973  case Instruction::AShr:           NumFastIselFailAShr++; return;
974  case Instruction::VAArg:          NumFastIselFailVAArg++; return;
975  case Instruction::ExtractElement: NumFastIselFailExtractElement++; return;
976  case Instruction::InsertElement:  NumFastIselFailInsertElement++; return;
977  case Instruction::ShuffleVector:  NumFastIselFailShuffleVector++; return;
978  case Instruction::ExtractValue:   NumFastIselFailExtractValue++; return;
979  case Instruction::InsertValue:    NumFastIselFailInsertValue++; return;
980  case Instruction::LandingPad:     NumFastIselFailLandingPad++; return;
981  }
982}
983#endif
984
985void SelectionDAGISel::SelectAllBasicBlocks(const Function &Fn) {
986  // Initialize the Fast-ISel state, if needed.
987  FastISel *FastIS = 0;
988  if (TM.Options.EnableFastISel)
989    FastIS = TLI.createFastISel(*FuncInfo, LibInfo);
990
991  // Iterate over all basic blocks in the function.
992  ReversePostOrderTraversal<const Function*> RPOT(&Fn);
993  for (ReversePostOrderTraversal<const Function*>::rpo_iterator
994       I = RPOT.begin(), E = RPOT.end(); I != E; ++I) {
995    const BasicBlock *LLVMBB = *I;
996
997    if (OptLevel != CodeGenOpt::None) {
998      bool AllPredsVisited = true;
999      for (const_pred_iterator PI = pred_begin(LLVMBB), PE = pred_end(LLVMBB);
1000           PI != PE; ++PI) {
1001        if (!FuncInfo->VisitedBBs.count(*PI)) {
1002          AllPredsVisited = false;
1003          break;
1004        }
1005      }
1006
1007      if (AllPredsVisited) {
1008        for (BasicBlock::const_iterator I = LLVMBB->begin();
1009             const PHINode *PN = dyn_cast<PHINode>(I); ++I)
1010          FuncInfo->ComputePHILiveOutRegInfo(PN);
1011      } else {
1012        for (BasicBlock::const_iterator I = LLVMBB->begin();
1013             const PHINode *PN = dyn_cast<PHINode>(I); ++I)
1014          FuncInfo->InvalidatePHILiveOutRegInfo(PN);
1015      }
1016
1017      FuncInfo->VisitedBBs.insert(LLVMBB);
1018    }
1019
1020    FuncInfo->MBB = FuncInfo->MBBMap[LLVMBB];
1021    FuncInfo->InsertPt = FuncInfo->MBB->getFirstNonPHI();
1022
1023    BasicBlock::const_iterator const Begin = LLVMBB->getFirstNonPHI();
1024    BasicBlock::const_iterator const End = LLVMBB->end();
1025    BasicBlock::const_iterator BI = End;
1026
1027    FuncInfo->InsertPt = FuncInfo->MBB->getFirstNonPHI();
1028
1029    // Setup an EH landing-pad block.
1030    if (FuncInfo->MBB->isLandingPad())
1031      PrepareEHLandingPad();
1032
1033    // Lower any arguments needed in this block if this is the entry block.
1034    if (LLVMBB == &Fn.getEntryBlock())
1035      LowerArguments(LLVMBB);
1036
1037    // Before doing SelectionDAG ISel, see if FastISel has been requested.
1038    if (FastIS) {
1039      FastIS->startNewBlock();
1040
1041      // Emit code for any incoming arguments. This must happen before
1042      // beginning FastISel on the entry block.
1043      if (LLVMBB == &Fn.getEntryBlock()) {
1044        CurDAG->setRoot(SDB->getControlRoot());
1045        SDB->clear();
1046        CodeGenAndEmitDAG();
1047
1048        // If we inserted any instructions at the beginning, make a note of
1049        // where they are, so we can be sure to emit subsequent instructions
1050        // after them.
1051        if (FuncInfo->InsertPt != FuncInfo->MBB->begin())
1052          FastIS->setLastLocalValue(llvm::prior(FuncInfo->InsertPt));
1053        else
1054          FastIS->setLastLocalValue(0);
1055      }
1056
1057      unsigned NumFastIselRemaining = std::distance(Begin, End);
1058      // Do FastISel on as many instructions as possible.
1059      for (; BI != Begin; --BI) {
1060        const Instruction *Inst = llvm::prior(BI);
1061
1062        // If we no longer require this instruction, skip it.
1063        if (isFoldedOrDeadInstruction(Inst, FuncInfo)) {
1064          --NumFastIselRemaining;
1065          continue;
1066        }
1067
1068        // Bottom-up: reset the insert pos at the top, after any local-value
1069        // instructions.
1070        FastIS->recomputeInsertPt();
1071
1072        // Try to select the instruction with FastISel.
1073        if (FastIS->SelectInstruction(Inst)) {
1074          --NumFastIselRemaining;
1075          ++NumFastIselSuccess;
1076          // If fast isel succeeded, skip over all the folded instructions, and
1077          // then see if there is a load right before the selected instructions.
1078          // Try to fold the load if so.
1079          const Instruction *BeforeInst = Inst;
1080          while (BeforeInst != Begin) {
1081            BeforeInst = llvm::prior(BasicBlock::const_iterator(BeforeInst));
1082            if (!isFoldedOrDeadInstruction(BeforeInst, FuncInfo))
1083              break;
1084          }
1085          if (BeforeInst != Inst && isa<LoadInst>(BeforeInst) &&
1086              BeforeInst->hasOneUse() &&
1087              TryToFoldFastISelLoad(cast<LoadInst>(BeforeInst), Inst, FastIS)) {
1088            // If we succeeded, don't re-select the load.
1089            BI = llvm::next(BasicBlock::const_iterator(BeforeInst));
1090            --NumFastIselRemaining;
1091            ++NumFastIselSuccess;
1092          }
1093          continue;
1094        }
1095
1096#ifndef NDEBUG
1097        if (EnableFastISelVerbose2)
1098          collectFailStats(Inst);
1099#endif
1100
1101        // Then handle certain instructions as single-LLVM-Instruction blocks.
1102        if (isa<CallInst>(Inst)) {
1103
1104          if (EnableFastISelVerbose || EnableFastISelAbort) {
1105            dbgs() << "FastISel missed call: ";
1106            Inst->dump();
1107          }
1108
1109          if (!Inst->getType()->isVoidTy() && !Inst->use_empty()) {
1110            unsigned &R = FuncInfo->ValueMap[Inst];
1111            if (!R)
1112              R = FuncInfo->CreateRegs(Inst->getType());
1113          }
1114
1115          bool HadTailCall = false;
1116          MachineBasicBlock::iterator SavedInsertPt = FuncInfo->InsertPt;
1117          SelectBasicBlock(Inst, BI, HadTailCall);
1118
1119          // If the call was emitted as a tail call, we're done with the block.
1120          // We also need to delete any previously emitted instructions.
1121          if (HadTailCall) {
1122            FastIS->removeDeadCode(SavedInsertPt, FuncInfo->MBB->end());
1123            --BI;
1124            break;
1125          }
1126
1127          // Recompute NumFastIselRemaining as Selection DAG instruction
1128          // selection may have handled the call, input args, etc.
1129          unsigned RemainingNow = std::distance(Begin, BI);
1130          NumFastIselFailures += NumFastIselRemaining - RemainingNow;
1131          NumFastIselRemaining = RemainingNow;
1132          continue;
1133        }
1134
1135        if (isa<TerminatorInst>(Inst) && !isa<BranchInst>(Inst)) {
1136          // Don't abort, and use a different message for terminator misses.
1137          NumFastIselFailures += NumFastIselRemaining;
1138          if (EnableFastISelVerbose || EnableFastISelAbort) {
1139            dbgs() << "FastISel missed terminator: ";
1140            Inst->dump();
1141          }
1142        } else {
1143          NumFastIselFailures += NumFastIselRemaining;
1144          if (EnableFastISelVerbose || EnableFastISelAbort) {
1145            dbgs() << "FastISel miss: ";
1146            Inst->dump();
1147          }
1148          if (EnableFastISelAbort)
1149            // The "fast" selector couldn't handle something and bailed.
1150            // For the purpose of debugging, just abort.
1151            llvm_unreachable("FastISel didn't select the entire block");
1152        }
1153        break;
1154      }
1155
1156      FastIS->recomputeInsertPt();
1157    }
1158
1159    if (Begin != BI)
1160      ++NumDAGBlocks;
1161    else
1162      ++NumFastIselBlocks;
1163
1164    if (Begin != BI) {
1165      // Run SelectionDAG instruction selection on the remainder of the block
1166      // not handled by FastISel. If FastISel is not run, this is the entire
1167      // block.
1168      bool HadTailCall;
1169      SelectBasicBlock(Begin, BI, HadTailCall);
1170    }
1171
1172    FinishBasicBlock();
1173    FuncInfo->PHINodesToUpdate.clear();
1174  }
1175
1176  delete FastIS;
1177  SDB->clearDanglingDebugInfo();
1178}
1179
1180void
1181SelectionDAGISel::FinishBasicBlock() {
1182
1183  DEBUG(dbgs() << "Total amount of phi nodes to update: "
1184               << FuncInfo->PHINodesToUpdate.size() << "\n";
1185        for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i)
1186          dbgs() << "Node " << i << " : ("
1187                 << FuncInfo->PHINodesToUpdate[i].first
1188                 << ", " << FuncInfo->PHINodesToUpdate[i].second << ")\n");
1189
1190  // Next, now that we know what the last MBB the LLVM BB expanded is, update
1191  // PHI nodes in successors.
1192  if (SDB->SwitchCases.empty() &&
1193      SDB->JTCases.empty() &&
1194      SDB->BitTestCases.empty()) {
1195    for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i) {
1196      MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[i].first);
1197      assert(PHI->isPHI() &&
1198             "This is not a machine PHI node that we are updating!");
1199      if (!FuncInfo->MBB->isSuccessor(PHI->getParent()))
1200        continue;
1201      PHI.addReg(FuncInfo->PHINodesToUpdate[i].second).addMBB(FuncInfo->MBB);
1202    }
1203    return;
1204  }
1205
1206  for (unsigned i = 0, e = SDB->BitTestCases.size(); i != e; ++i) {
1207    // Lower header first, if it wasn't already lowered
1208    if (!SDB->BitTestCases[i].Emitted) {
1209      // Set the current basic block to the mbb we wish to insert the code into
1210      FuncInfo->MBB = SDB->BitTestCases[i].Parent;
1211      FuncInfo->InsertPt = FuncInfo->MBB->end();
1212      // Emit the code
1213      SDB->visitBitTestHeader(SDB->BitTestCases[i], FuncInfo->MBB);
1214      CurDAG->setRoot(SDB->getRoot());
1215      SDB->clear();
1216      CodeGenAndEmitDAG();
1217    }
1218
1219    uint32_t UnhandledWeight = 0;
1220    for (unsigned j = 0, ej = SDB->BitTestCases[i].Cases.size(); j != ej; ++j)
1221      UnhandledWeight += SDB->BitTestCases[i].Cases[j].ExtraWeight;
1222
1223    for (unsigned j = 0, ej = SDB->BitTestCases[i].Cases.size(); j != ej; ++j) {
1224      UnhandledWeight -= SDB->BitTestCases[i].Cases[j].ExtraWeight;
1225      // Set the current basic block to the mbb we wish to insert the code into
1226      FuncInfo->MBB = SDB->BitTestCases[i].Cases[j].ThisBB;
1227      FuncInfo->InsertPt = FuncInfo->MBB->end();
1228      // Emit the code
1229      if (j+1 != ej)
1230        SDB->visitBitTestCase(SDB->BitTestCases[i],
1231                              SDB->BitTestCases[i].Cases[j+1].ThisBB,
1232                              UnhandledWeight,
1233                              SDB->BitTestCases[i].Reg,
1234                              SDB->BitTestCases[i].Cases[j],
1235                              FuncInfo->MBB);
1236      else
1237        SDB->visitBitTestCase(SDB->BitTestCases[i],
1238                              SDB->BitTestCases[i].Default,
1239                              UnhandledWeight,
1240                              SDB->BitTestCases[i].Reg,
1241                              SDB->BitTestCases[i].Cases[j],
1242                              FuncInfo->MBB);
1243
1244
1245      CurDAG->setRoot(SDB->getRoot());
1246      SDB->clear();
1247      CodeGenAndEmitDAG();
1248    }
1249
1250    // Update PHI Nodes
1251    for (unsigned pi = 0, pe = FuncInfo->PHINodesToUpdate.size();
1252         pi != pe; ++pi) {
1253      MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[pi].first);
1254      MachineBasicBlock *PHIBB = PHI->getParent();
1255      assert(PHI->isPHI() &&
1256             "This is not a machine PHI node that we are updating!");
1257      // This is "default" BB. We have two jumps to it. From "header" BB and
1258      // from last "case" BB.
1259      if (PHIBB == SDB->BitTestCases[i].Default)
1260        PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second)
1261           .addMBB(SDB->BitTestCases[i].Parent)
1262           .addReg(FuncInfo->PHINodesToUpdate[pi].second)
1263           .addMBB(SDB->BitTestCases[i].Cases.back().ThisBB);
1264      // One of "cases" BB.
1265      for (unsigned j = 0, ej = SDB->BitTestCases[i].Cases.size();
1266           j != ej; ++j) {
1267        MachineBasicBlock* cBB = SDB->BitTestCases[i].Cases[j].ThisBB;
1268        if (cBB->isSuccessor(PHIBB))
1269          PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second).addMBB(cBB);
1270      }
1271    }
1272  }
1273  SDB->BitTestCases.clear();
1274
1275  // If the JumpTable record is filled in, then we need to emit a jump table.
1276  // Updating the PHI nodes is tricky in this case, since we need to determine
1277  // whether the PHI is a successor of the range check MBB or the jump table MBB
1278  for (unsigned i = 0, e = SDB->JTCases.size(); i != e; ++i) {
1279    // Lower header first, if it wasn't already lowered
1280    if (!SDB->JTCases[i].first.Emitted) {
1281      // Set the current basic block to the mbb we wish to insert the code into
1282      FuncInfo->MBB = SDB->JTCases[i].first.HeaderBB;
1283      FuncInfo->InsertPt = FuncInfo->MBB->end();
1284      // Emit the code
1285      SDB->visitJumpTableHeader(SDB->JTCases[i].second, SDB->JTCases[i].first,
1286                                FuncInfo->MBB);
1287      CurDAG->setRoot(SDB->getRoot());
1288      SDB->clear();
1289      CodeGenAndEmitDAG();
1290    }
1291
1292    // Set the current basic block to the mbb we wish to insert the code into
1293    FuncInfo->MBB = SDB->JTCases[i].second.MBB;
1294    FuncInfo->InsertPt = FuncInfo->MBB->end();
1295    // Emit the code
1296    SDB->visitJumpTable(SDB->JTCases[i].second);
1297    CurDAG->setRoot(SDB->getRoot());
1298    SDB->clear();
1299    CodeGenAndEmitDAG();
1300
1301    // Update PHI Nodes
1302    for (unsigned pi = 0, pe = FuncInfo->PHINodesToUpdate.size();
1303         pi != pe; ++pi) {
1304      MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[pi].first);
1305      MachineBasicBlock *PHIBB = PHI->getParent();
1306      assert(PHI->isPHI() &&
1307             "This is not a machine PHI node that we are updating!");
1308      // "default" BB. We can go there only from header BB.
1309      if (PHIBB == SDB->JTCases[i].second.Default)
1310        PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second)
1311           .addMBB(SDB->JTCases[i].first.HeaderBB);
1312      // JT BB. Just iterate over successors here
1313      if (FuncInfo->MBB->isSuccessor(PHIBB))
1314        PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second).addMBB(FuncInfo->MBB);
1315    }
1316  }
1317  SDB->JTCases.clear();
1318
1319  // If the switch block involved a branch to one of the actual successors, we
1320  // need to update PHI nodes in that block.
1321  for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i) {
1322    MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[i].first);
1323    assert(PHI->isPHI() &&
1324           "This is not a machine PHI node that we are updating!");
1325    if (FuncInfo->MBB->isSuccessor(PHI->getParent()))
1326      PHI.addReg(FuncInfo->PHINodesToUpdate[i].second).addMBB(FuncInfo->MBB);
1327  }
1328
1329  // If we generated any switch lowering information, build and codegen any
1330  // additional DAGs necessary.
1331  for (unsigned i = 0, e = SDB->SwitchCases.size(); i != e; ++i) {
1332    // Set the current basic block to the mbb we wish to insert the code into
1333    FuncInfo->MBB = SDB->SwitchCases[i].ThisBB;
1334    FuncInfo->InsertPt = FuncInfo->MBB->end();
1335
1336    // Determine the unique successors.
1337    SmallVector<MachineBasicBlock *, 2> Succs;
1338    Succs.push_back(SDB->SwitchCases[i].TrueBB);
1339    if (SDB->SwitchCases[i].TrueBB != SDB->SwitchCases[i].FalseBB)
1340      Succs.push_back(SDB->SwitchCases[i].FalseBB);
1341
1342    // Emit the code. Note that this could result in FuncInfo->MBB being split.
1343    SDB->visitSwitchCase(SDB->SwitchCases[i], FuncInfo->MBB);
1344    CurDAG->setRoot(SDB->getRoot());
1345    SDB->clear();
1346    CodeGenAndEmitDAG();
1347
1348    // Remember the last block, now that any splitting is done, for use in
1349    // populating PHI nodes in successors.
1350    MachineBasicBlock *ThisBB = FuncInfo->MBB;
1351
1352    // Handle any PHI nodes in successors of this chunk, as if we were coming
1353    // from the original BB before switch expansion.  Note that PHI nodes can
1354    // occur multiple times in PHINodesToUpdate.  We have to be very careful to
1355    // handle them the right number of times.
1356    for (unsigned i = 0, e = Succs.size(); i != e; ++i) {
1357      FuncInfo->MBB = Succs[i];
1358      FuncInfo->InsertPt = FuncInfo->MBB->end();
1359      // FuncInfo->MBB may have been removed from the CFG if a branch was
1360      // constant folded.
1361      if (ThisBB->isSuccessor(FuncInfo->MBB)) {
1362        for (MachineBasicBlock::iterator
1363             MBBI = FuncInfo->MBB->begin(), MBBE = FuncInfo->MBB->end();
1364             MBBI != MBBE && MBBI->isPHI(); ++MBBI) {
1365          MachineInstrBuilder PHI(*MF, MBBI);
1366          // This value for this PHI node is recorded in PHINodesToUpdate.
1367          for (unsigned pn = 0; ; ++pn) {
1368            assert(pn != FuncInfo->PHINodesToUpdate.size() &&
1369                   "Didn't find PHI entry!");
1370            if (FuncInfo->PHINodesToUpdate[pn].first == PHI) {
1371              PHI.addReg(FuncInfo->PHINodesToUpdate[pn].second).addMBB(ThisBB);
1372              break;
1373            }
1374          }
1375        }
1376      }
1377    }
1378  }
1379  SDB->SwitchCases.clear();
1380}
1381
1382
1383/// Create the scheduler. If a specific scheduler was specified
1384/// via the SchedulerRegistry, use it, otherwise select the
1385/// one preferred by the target.
1386///
1387ScheduleDAGSDNodes *SelectionDAGISel::CreateScheduler() {
1388  RegisterScheduler::FunctionPassCtor Ctor = RegisterScheduler::getDefault();
1389
1390  if (!Ctor) {
1391    Ctor = ISHeuristic;
1392    RegisterScheduler::setDefault(Ctor);
1393  }
1394
1395  return Ctor(this, OptLevel);
1396}
1397
1398//===----------------------------------------------------------------------===//
1399// Helper functions used by the generated instruction selector.
1400//===----------------------------------------------------------------------===//
1401// Calls to these methods are generated by tblgen.
1402
1403/// CheckAndMask - The isel is trying to match something like (and X, 255).  If
1404/// the dag combiner simplified the 255, we still want to match.  RHS is the
1405/// actual value in the DAG on the RHS of an AND, and DesiredMaskS is the value
1406/// specified in the .td file (e.g. 255).
1407bool SelectionDAGISel::CheckAndMask(SDValue LHS, ConstantSDNode *RHS,
1408                                    int64_t DesiredMaskS) const {
1409  const APInt &ActualMask = RHS->getAPIntValue();
1410  const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
1411
1412  // If the actual mask exactly matches, success!
1413  if (ActualMask == DesiredMask)
1414    return true;
1415
1416  // If the actual AND mask is allowing unallowed bits, this doesn't match.
1417  if (ActualMask.intersects(~DesiredMask))
1418    return false;
1419
1420  // Otherwise, the DAG Combiner may have proven that the value coming in is
1421  // either already zero or is not demanded.  Check for known zero input bits.
1422  APInt NeededMask = DesiredMask & ~ActualMask;
1423  if (CurDAG->MaskedValueIsZero(LHS, NeededMask))
1424    return true;
1425
1426  // TODO: check to see if missing bits are just not demanded.
1427
1428  // Otherwise, this pattern doesn't match.
1429  return false;
1430}
1431
1432/// CheckOrMask - The isel is trying to match something like (or X, 255).  If
1433/// the dag combiner simplified the 255, we still want to match.  RHS is the
1434/// actual value in the DAG on the RHS of an OR, and DesiredMaskS is the value
1435/// specified in the .td file (e.g. 255).
1436bool SelectionDAGISel::CheckOrMask(SDValue LHS, ConstantSDNode *RHS,
1437                                   int64_t DesiredMaskS) const {
1438  const APInt &ActualMask = RHS->getAPIntValue();
1439  const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
1440
1441  // If the actual mask exactly matches, success!
1442  if (ActualMask == DesiredMask)
1443    return true;
1444
1445  // If the actual AND mask is allowing unallowed bits, this doesn't match.
1446  if (ActualMask.intersects(~DesiredMask))
1447    return false;
1448
1449  // Otherwise, the DAG Combiner may have proven that the value coming in is
1450  // either already zero or is not demanded.  Check for known zero input bits.
1451  APInt NeededMask = DesiredMask & ~ActualMask;
1452
1453  APInt KnownZero, KnownOne;
1454  CurDAG->ComputeMaskedBits(LHS, KnownZero, KnownOne);
1455
1456  // If all the missing bits in the or are already known to be set, match!
1457  if ((NeededMask & KnownOne) == NeededMask)
1458    return true;
1459
1460  // TODO: check to see if missing bits are just not demanded.
1461
1462  // Otherwise, this pattern doesn't match.
1463  return false;
1464}
1465
1466
1467/// SelectInlineAsmMemoryOperands - Calls to this are automatically generated
1468/// by tblgen.  Others should not call it.
1469void SelectionDAGISel::
1470SelectInlineAsmMemoryOperands(std::vector<SDValue> &Ops) {
1471  std::vector<SDValue> InOps;
1472  std::swap(InOps, Ops);
1473
1474  Ops.push_back(InOps[InlineAsm::Op_InputChain]); // 0
1475  Ops.push_back(InOps[InlineAsm::Op_AsmString]);  // 1
1476  Ops.push_back(InOps[InlineAsm::Op_MDNode]);     // 2, !srcloc
1477  Ops.push_back(InOps[InlineAsm::Op_ExtraInfo]);  // 3 (SideEffect, AlignStack)
1478
1479  unsigned i = InlineAsm::Op_FirstOperand, e = InOps.size();
1480  if (InOps[e-1].getValueType() == MVT::Glue)
1481    --e;  // Don't process a glue operand if it is here.
1482
1483  while (i != e) {
1484    unsigned Flags = cast<ConstantSDNode>(InOps[i])->getZExtValue();
1485    if (!InlineAsm::isMemKind(Flags)) {
1486      // Just skip over this operand, copying the operands verbatim.
1487      Ops.insert(Ops.end(), InOps.begin()+i,
1488                 InOps.begin()+i+InlineAsm::getNumOperandRegisters(Flags) + 1);
1489      i += InlineAsm::getNumOperandRegisters(Flags) + 1;
1490    } else {
1491      assert(InlineAsm::getNumOperandRegisters(Flags) == 1 &&
1492             "Memory operand with multiple values?");
1493      // Otherwise, this is a memory operand.  Ask the target to select it.
1494      std::vector<SDValue> SelOps;
1495      if (SelectInlineAsmMemoryOperand(InOps[i+1], 'm', SelOps))
1496        report_fatal_error("Could not match memory address.  Inline asm"
1497                           " failure!");
1498
1499      // Add this to the output node.
1500      unsigned NewFlags =
1501        InlineAsm::getFlagWord(InlineAsm::Kind_Mem, SelOps.size());
1502      Ops.push_back(CurDAG->getTargetConstant(NewFlags, MVT::i32));
1503      Ops.insert(Ops.end(), SelOps.begin(), SelOps.end());
1504      i += 2;
1505    }
1506  }
1507
1508  // Add the glue input back if present.
1509  if (e != InOps.size())
1510    Ops.push_back(InOps.back());
1511}
1512
1513/// findGlueUse - Return use of MVT::Glue value produced by the specified
1514/// SDNode.
1515///
1516static SDNode *findGlueUse(SDNode *N) {
1517  unsigned FlagResNo = N->getNumValues()-1;
1518  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
1519    SDUse &Use = I.getUse();
1520    if (Use.getResNo() == FlagResNo)
1521      return Use.getUser();
1522  }
1523  return NULL;
1524}
1525
1526/// findNonImmUse - Return true if "Use" is a non-immediate use of "Def".
1527/// This function recursively traverses up the operand chain, ignoring
1528/// certain nodes.
1529static bool findNonImmUse(SDNode *Use, SDNode* Def, SDNode *ImmedUse,
1530                          SDNode *Root, SmallPtrSet<SDNode*, 16> &Visited,
1531                          bool IgnoreChains) {
1532  // The NodeID's are given uniques ID's where a node ID is guaranteed to be
1533  // greater than all of its (recursive) operands.  If we scan to a point where
1534  // 'use' is smaller than the node we're scanning for, then we know we will
1535  // never find it.
1536  //
1537  // The Use may be -1 (unassigned) if it is a newly allocated node.  This can
1538  // happen because we scan down to newly selected nodes in the case of glue
1539  // uses.
1540  if ((Use->getNodeId() < Def->getNodeId() && Use->getNodeId() != -1))
1541    return false;
1542
1543  // Don't revisit nodes if we already scanned it and didn't fail, we know we
1544  // won't fail if we scan it again.
1545  if (!Visited.insert(Use))
1546    return false;
1547
1548  for (unsigned i = 0, e = Use->getNumOperands(); i != e; ++i) {
1549    // Ignore chain uses, they are validated by HandleMergeInputChains.
1550    if (Use->getOperand(i).getValueType() == MVT::Other && IgnoreChains)
1551      continue;
1552
1553    SDNode *N = Use->getOperand(i).getNode();
1554    if (N == Def) {
1555      if (Use == ImmedUse || Use == Root)
1556        continue;  // We are not looking for immediate use.
1557      assert(N != Root);
1558      return true;
1559    }
1560
1561    // Traverse up the operand chain.
1562    if (findNonImmUse(N, Def, ImmedUse, Root, Visited, IgnoreChains))
1563      return true;
1564  }
1565  return false;
1566}
1567
1568/// IsProfitableToFold - Returns true if it's profitable to fold the specific
1569/// operand node N of U during instruction selection that starts at Root.
1570bool SelectionDAGISel::IsProfitableToFold(SDValue N, SDNode *U,
1571                                          SDNode *Root) const {
1572  if (OptLevel == CodeGenOpt::None) return false;
1573  return N.hasOneUse();
1574}
1575
1576/// IsLegalToFold - Returns true if the specific operand node N of
1577/// U can be folded during instruction selection that starts at Root.
1578bool SelectionDAGISel::IsLegalToFold(SDValue N, SDNode *U, SDNode *Root,
1579                                     CodeGenOpt::Level OptLevel,
1580                                     bool IgnoreChains) {
1581  if (OptLevel == CodeGenOpt::None) return false;
1582
1583  // If Root use can somehow reach N through a path that that doesn't contain
1584  // U then folding N would create a cycle. e.g. In the following
1585  // diagram, Root can reach N through X. If N is folded into into Root, then
1586  // X is both a predecessor and a successor of U.
1587  //
1588  //          [N*]           //
1589  //         ^   ^           //
1590  //        /     \          //
1591  //      [U*]    [X]?       //
1592  //        ^     ^          //
1593  //         \   /           //
1594  //          \ /            //
1595  //         [Root*]         //
1596  //
1597  // * indicates nodes to be folded together.
1598  //
1599  // If Root produces glue, then it gets (even more) interesting. Since it
1600  // will be "glued" together with its glue use in the scheduler, we need to
1601  // check if it might reach N.
1602  //
1603  //          [N*]           //
1604  //         ^   ^           //
1605  //        /     \          //
1606  //      [U*]    [X]?       //
1607  //        ^       ^        //
1608  //         \       \       //
1609  //          \      |       //
1610  //         [Root*] |       //
1611  //          ^      |       //
1612  //          f      |       //
1613  //          |      /       //
1614  //         [Y]    /        //
1615  //           ^   /         //
1616  //           f  /          //
1617  //           | /           //
1618  //          [GU]           //
1619  //
1620  // If GU (glue use) indirectly reaches N (the load), and Root folds N
1621  // (call it Fold), then X is a predecessor of GU and a successor of
1622  // Fold. But since Fold and GU are glued together, this will create
1623  // a cycle in the scheduling graph.
1624
1625  // If the node has glue, walk down the graph to the "lowest" node in the
1626  // glueged set.
1627  EVT VT = Root->getValueType(Root->getNumValues()-1);
1628  while (VT == MVT::Glue) {
1629    SDNode *GU = findGlueUse(Root);
1630    if (GU == NULL)
1631      break;
1632    Root = GU;
1633    VT = Root->getValueType(Root->getNumValues()-1);
1634
1635    // If our query node has a glue result with a use, we've walked up it.  If
1636    // the user (which has already been selected) has a chain or indirectly uses
1637    // the chain, our WalkChainUsers predicate will not consider it.  Because of
1638    // this, we cannot ignore chains in this predicate.
1639    IgnoreChains = false;
1640  }
1641
1642
1643  SmallPtrSet<SDNode*, 16> Visited;
1644  return !findNonImmUse(Root, N.getNode(), U, Root, Visited, IgnoreChains);
1645}
1646
1647SDNode *SelectionDAGISel::Select_INLINEASM(SDNode *N) {
1648  std::vector<SDValue> Ops(N->op_begin(), N->op_end());
1649  SelectInlineAsmMemoryOperands(Ops);
1650
1651  std::vector<EVT> VTs;
1652  VTs.push_back(MVT::Other);
1653  VTs.push_back(MVT::Glue);
1654  SDValue New = CurDAG->getNode(ISD::INLINEASM, N->getDebugLoc(),
1655                                VTs, &Ops[0], Ops.size());
1656  New->setNodeId(-1);
1657  return New.getNode();
1658}
1659
1660SDNode *SelectionDAGISel::Select_UNDEF(SDNode *N) {
1661  return CurDAG->SelectNodeTo(N, TargetOpcode::IMPLICIT_DEF,N->getValueType(0));
1662}
1663
1664/// GetVBR - decode a vbr encoding whose top bit is set.
1665LLVM_ATTRIBUTE_ALWAYS_INLINE static uint64_t
1666GetVBR(uint64_t Val, const unsigned char *MatcherTable, unsigned &Idx) {
1667  assert(Val >= 128 && "Not a VBR");
1668  Val &= 127;  // Remove first vbr bit.
1669
1670  unsigned Shift = 7;
1671  uint64_t NextBits;
1672  do {
1673    NextBits = MatcherTable[Idx++];
1674    Val |= (NextBits&127) << Shift;
1675    Shift += 7;
1676  } while (NextBits & 128);
1677
1678  return Val;
1679}
1680
1681
1682/// UpdateChainsAndGlue - When a match is complete, this method updates uses of
1683/// interior glue and chain results to use the new glue and chain results.
1684void SelectionDAGISel::
1685UpdateChainsAndGlue(SDNode *NodeToMatch, SDValue InputChain,
1686                    const SmallVectorImpl<SDNode*> &ChainNodesMatched,
1687                    SDValue InputGlue,
1688                    const SmallVectorImpl<SDNode*> &GlueResultNodesMatched,
1689                    bool isMorphNodeTo) {
1690  SmallVector<SDNode*, 4> NowDeadNodes;
1691
1692  // Now that all the normal results are replaced, we replace the chain and
1693  // glue results if present.
1694  if (!ChainNodesMatched.empty()) {
1695    assert(InputChain.getNode() != 0 &&
1696           "Matched input chains but didn't produce a chain");
1697    // Loop over all of the nodes we matched that produced a chain result.
1698    // Replace all the chain results with the final chain we ended up with.
1699    for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
1700      SDNode *ChainNode = ChainNodesMatched[i];
1701
1702      // If this node was already deleted, don't look at it.
1703      if (ChainNode->getOpcode() == ISD::DELETED_NODE)
1704        continue;
1705
1706      // Don't replace the results of the root node if we're doing a
1707      // MorphNodeTo.
1708      if (ChainNode == NodeToMatch && isMorphNodeTo)
1709        continue;
1710
1711      SDValue ChainVal = SDValue(ChainNode, ChainNode->getNumValues()-1);
1712      if (ChainVal.getValueType() == MVT::Glue)
1713        ChainVal = ChainVal.getValue(ChainVal->getNumValues()-2);
1714      assert(ChainVal.getValueType() == MVT::Other && "Not a chain?");
1715      CurDAG->ReplaceAllUsesOfValueWith(ChainVal, InputChain);
1716
1717      // If the node became dead and we haven't already seen it, delete it.
1718      if (ChainNode->use_empty() &&
1719          !std::count(NowDeadNodes.begin(), NowDeadNodes.end(), ChainNode))
1720        NowDeadNodes.push_back(ChainNode);
1721    }
1722  }
1723
1724  // If the result produces glue, update any glue results in the matched
1725  // pattern with the glue result.
1726  if (InputGlue.getNode() != 0) {
1727    // Handle any interior nodes explicitly marked.
1728    for (unsigned i = 0, e = GlueResultNodesMatched.size(); i != e; ++i) {
1729      SDNode *FRN = GlueResultNodesMatched[i];
1730
1731      // If this node was already deleted, don't look at it.
1732      if (FRN->getOpcode() == ISD::DELETED_NODE)
1733        continue;
1734
1735      assert(FRN->getValueType(FRN->getNumValues()-1) == MVT::Glue &&
1736             "Doesn't have a glue result");
1737      CurDAG->ReplaceAllUsesOfValueWith(SDValue(FRN, FRN->getNumValues()-1),
1738                                        InputGlue);
1739
1740      // If the node became dead and we haven't already seen it, delete it.
1741      if (FRN->use_empty() &&
1742          !std::count(NowDeadNodes.begin(), NowDeadNodes.end(), FRN))
1743        NowDeadNodes.push_back(FRN);
1744    }
1745  }
1746
1747  if (!NowDeadNodes.empty())
1748    CurDAG->RemoveDeadNodes(NowDeadNodes);
1749
1750  DEBUG(errs() << "ISEL: Match complete!\n");
1751}
1752
1753enum ChainResult {
1754  CR_Simple,
1755  CR_InducesCycle,
1756  CR_LeadsToInteriorNode
1757};
1758
1759/// WalkChainUsers - Walk down the users of the specified chained node that is
1760/// part of the pattern we're matching, looking at all of the users we find.
1761/// This determines whether something is an interior node, whether we have a
1762/// non-pattern node in between two pattern nodes (which prevent folding because
1763/// it would induce a cycle) and whether we have a TokenFactor node sandwiched
1764/// between pattern nodes (in which case the TF becomes part of the pattern).
1765///
1766/// The walk we do here is guaranteed to be small because we quickly get down to
1767/// already selected nodes "below" us.
1768static ChainResult
1769WalkChainUsers(const SDNode *ChainedNode,
1770               SmallVectorImpl<SDNode*> &ChainedNodesInPattern,
1771               SmallVectorImpl<SDNode*> &InteriorChainedNodes) {
1772  ChainResult Result = CR_Simple;
1773
1774  for (SDNode::use_iterator UI = ChainedNode->use_begin(),
1775         E = ChainedNode->use_end(); UI != E; ++UI) {
1776    // Make sure the use is of the chain, not some other value we produce.
1777    if (UI.getUse().getValueType() != MVT::Other) continue;
1778
1779    SDNode *User = *UI;
1780
1781    // If we see an already-selected machine node, then we've gone beyond the
1782    // pattern that we're selecting down into the already selected chunk of the
1783    // DAG.
1784    if (User->isMachineOpcode() ||
1785        User->getOpcode() == ISD::HANDLENODE)  // Root of the graph.
1786      continue;
1787
1788    unsigned UserOpcode = User->getOpcode();
1789    if (UserOpcode == ISD::CopyToReg ||
1790        UserOpcode == ISD::CopyFromReg ||
1791        UserOpcode == ISD::INLINEASM ||
1792        UserOpcode == ISD::EH_LABEL ||
1793        UserOpcode == ISD::LIFETIME_START ||
1794        UserOpcode == ISD::LIFETIME_END) {
1795      // If their node ID got reset to -1 then they've already been selected.
1796      // Treat them like a MachineOpcode.
1797      if (User->getNodeId() == -1)
1798        continue;
1799    }
1800
1801    // If we have a TokenFactor, we handle it specially.
1802    if (User->getOpcode() != ISD::TokenFactor) {
1803      // If the node isn't a token factor and isn't part of our pattern, then it
1804      // must be a random chained node in between two nodes we're selecting.
1805      // This happens when we have something like:
1806      //   x = load ptr
1807      //   call
1808      //   y = x+4
1809      //   store y -> ptr
1810      // Because we structurally match the load/store as a read/modify/write,
1811      // but the call is chained between them.  We cannot fold in this case
1812      // because it would induce a cycle in the graph.
1813      if (!std::count(ChainedNodesInPattern.begin(),
1814                      ChainedNodesInPattern.end(), User))
1815        return CR_InducesCycle;
1816
1817      // Otherwise we found a node that is part of our pattern.  For example in:
1818      //   x = load ptr
1819      //   y = x+4
1820      //   store y -> ptr
1821      // This would happen when we're scanning down from the load and see the
1822      // store as a user.  Record that there is a use of ChainedNode that is
1823      // part of the pattern and keep scanning uses.
1824      Result = CR_LeadsToInteriorNode;
1825      InteriorChainedNodes.push_back(User);
1826      continue;
1827    }
1828
1829    // If we found a TokenFactor, there are two cases to consider: first if the
1830    // TokenFactor is just hanging "below" the pattern we're matching (i.e. no
1831    // uses of the TF are in our pattern) we just want to ignore it.  Second,
1832    // the TokenFactor can be sandwiched in between two chained nodes, like so:
1833    //     [Load chain]
1834    //         ^
1835    //         |
1836    //       [Load]
1837    //       ^    ^
1838    //       |    \                    DAG's like cheese
1839    //      /       \                       do you?
1840    //     /         |
1841    // [TokenFactor] [Op]
1842    //     ^          ^
1843    //     |          |
1844    //      \        /
1845    //       \      /
1846    //       [Store]
1847    //
1848    // In this case, the TokenFactor becomes part of our match and we rewrite it
1849    // as a new TokenFactor.
1850    //
1851    // To distinguish these two cases, do a recursive walk down the uses.
1852    switch (WalkChainUsers(User, ChainedNodesInPattern, InteriorChainedNodes)) {
1853    case CR_Simple:
1854      // If the uses of the TokenFactor are just already-selected nodes, ignore
1855      // it, it is "below" our pattern.
1856      continue;
1857    case CR_InducesCycle:
1858      // If the uses of the TokenFactor lead to nodes that are not part of our
1859      // pattern that are not selected, folding would turn this into a cycle,
1860      // bail out now.
1861      return CR_InducesCycle;
1862    case CR_LeadsToInteriorNode:
1863      break;  // Otherwise, keep processing.
1864    }
1865
1866    // Okay, we know we're in the interesting interior case.  The TokenFactor
1867    // is now going to be considered part of the pattern so that we rewrite its
1868    // uses (it may have uses that are not part of the pattern) with the
1869    // ultimate chain result of the generated code.  We will also add its chain
1870    // inputs as inputs to the ultimate TokenFactor we create.
1871    Result = CR_LeadsToInteriorNode;
1872    ChainedNodesInPattern.push_back(User);
1873    InteriorChainedNodes.push_back(User);
1874    continue;
1875  }
1876
1877  return Result;
1878}
1879
1880/// HandleMergeInputChains - This implements the OPC_EmitMergeInputChains
1881/// operation for when the pattern matched at least one node with a chains.  The
1882/// input vector contains a list of all of the chained nodes that we match.  We
1883/// must determine if this is a valid thing to cover (i.e. matching it won't
1884/// induce cycles in the DAG) and if so, creating a TokenFactor node. that will
1885/// be used as the input node chain for the generated nodes.
1886static SDValue
1887HandleMergeInputChains(SmallVectorImpl<SDNode*> &ChainNodesMatched,
1888                       SelectionDAG *CurDAG) {
1889  // Walk all of the chained nodes we've matched, recursively scanning down the
1890  // users of the chain result. This adds any TokenFactor nodes that are caught
1891  // in between chained nodes to the chained and interior nodes list.
1892  SmallVector<SDNode*, 3> InteriorChainedNodes;
1893  for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
1894    if (WalkChainUsers(ChainNodesMatched[i], ChainNodesMatched,
1895                       InteriorChainedNodes) == CR_InducesCycle)
1896      return SDValue(); // Would induce a cycle.
1897  }
1898
1899  // Okay, we have walked all the matched nodes and collected TokenFactor nodes
1900  // that we are interested in.  Form our input TokenFactor node.
1901  SmallVector<SDValue, 3> InputChains;
1902  for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
1903    // Add the input chain of this node to the InputChains list (which will be
1904    // the operands of the generated TokenFactor) if it's not an interior node.
1905    SDNode *N = ChainNodesMatched[i];
1906    if (N->getOpcode() != ISD::TokenFactor) {
1907      if (std::count(InteriorChainedNodes.begin(),InteriorChainedNodes.end(),N))
1908        continue;
1909
1910      // Otherwise, add the input chain.
1911      SDValue InChain = ChainNodesMatched[i]->getOperand(0);
1912      assert(InChain.getValueType() == MVT::Other && "Not a chain");
1913      InputChains.push_back(InChain);
1914      continue;
1915    }
1916
1917    // If we have a token factor, we want to add all inputs of the token factor
1918    // that are not part of the pattern we're matching.
1919    for (unsigned op = 0, e = N->getNumOperands(); op != e; ++op) {
1920      if (!std::count(ChainNodesMatched.begin(), ChainNodesMatched.end(),
1921                      N->getOperand(op).getNode()))
1922        InputChains.push_back(N->getOperand(op));
1923    }
1924  }
1925
1926  SDValue Res;
1927  if (InputChains.size() == 1)
1928    return InputChains[0];
1929  return CurDAG->getNode(ISD::TokenFactor, ChainNodesMatched[0]->getDebugLoc(),
1930                         MVT::Other, &InputChains[0], InputChains.size());
1931}
1932
1933/// MorphNode - Handle morphing a node in place for the selector.
1934SDNode *SelectionDAGISel::
1935MorphNode(SDNode *Node, unsigned TargetOpc, SDVTList VTList,
1936          const SDValue *Ops, unsigned NumOps, unsigned EmitNodeInfo) {
1937  // It is possible we're using MorphNodeTo to replace a node with no
1938  // normal results with one that has a normal result (or we could be
1939  // adding a chain) and the input could have glue and chains as well.
1940  // In this case we need to shift the operands down.
1941  // FIXME: This is a horrible hack and broken in obscure cases, no worse
1942  // than the old isel though.
1943  int OldGlueResultNo = -1, OldChainResultNo = -1;
1944
1945  unsigned NTMNumResults = Node->getNumValues();
1946  if (Node->getValueType(NTMNumResults-1) == MVT::Glue) {
1947    OldGlueResultNo = NTMNumResults-1;
1948    if (NTMNumResults != 1 &&
1949        Node->getValueType(NTMNumResults-2) == MVT::Other)
1950      OldChainResultNo = NTMNumResults-2;
1951  } else if (Node->getValueType(NTMNumResults-1) == MVT::Other)
1952    OldChainResultNo = NTMNumResults-1;
1953
1954  // Call the underlying SelectionDAG routine to do the transmogrification. Note
1955  // that this deletes operands of the old node that become dead.
1956  SDNode *Res = CurDAG->MorphNodeTo(Node, ~TargetOpc, VTList, Ops, NumOps);
1957
1958  // MorphNodeTo can operate in two ways: if an existing node with the
1959  // specified operands exists, it can just return it.  Otherwise, it
1960  // updates the node in place to have the requested operands.
1961  if (Res == Node) {
1962    // If we updated the node in place, reset the node ID.  To the isel,
1963    // this should be just like a newly allocated machine node.
1964    Res->setNodeId(-1);
1965  }
1966
1967  unsigned ResNumResults = Res->getNumValues();
1968  // Move the glue if needed.
1969  if ((EmitNodeInfo & OPFL_GlueOutput) && OldGlueResultNo != -1 &&
1970      (unsigned)OldGlueResultNo != ResNumResults-1)
1971    CurDAG->ReplaceAllUsesOfValueWith(SDValue(Node, OldGlueResultNo),
1972                                      SDValue(Res, ResNumResults-1));
1973
1974  if ((EmitNodeInfo & OPFL_GlueOutput) != 0)
1975    --ResNumResults;
1976
1977  // Move the chain reference if needed.
1978  if ((EmitNodeInfo & OPFL_Chain) && OldChainResultNo != -1 &&
1979      (unsigned)OldChainResultNo != ResNumResults-1)
1980    CurDAG->ReplaceAllUsesOfValueWith(SDValue(Node, OldChainResultNo),
1981                                      SDValue(Res, ResNumResults-1));
1982
1983  // Otherwise, no replacement happened because the node already exists. Replace
1984  // Uses of the old node with the new one.
1985  if (Res != Node)
1986    CurDAG->ReplaceAllUsesWith(Node, Res);
1987
1988  return Res;
1989}
1990
1991/// CheckSame - Implements OP_CheckSame.
1992LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
1993CheckSame(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1994          SDValue N,
1995          const SmallVectorImpl<std::pair<SDValue, SDNode*> > &RecordedNodes) {
1996  // Accept if it is exactly the same as a previously recorded node.
1997  unsigned RecNo = MatcherTable[MatcherIndex++];
1998  assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
1999  return N == RecordedNodes[RecNo].first;
2000}
2001
2002/// CheckPatternPredicate - Implements OP_CheckPatternPredicate.
2003LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2004CheckPatternPredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2005                      const SelectionDAGISel &SDISel) {
2006  return SDISel.CheckPatternPredicate(MatcherTable[MatcherIndex++]);
2007}
2008
2009/// CheckNodePredicate - Implements OP_CheckNodePredicate.
2010LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2011CheckNodePredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2012                   const SelectionDAGISel &SDISel, SDNode *N) {
2013  return SDISel.CheckNodePredicate(N, MatcherTable[MatcherIndex++]);
2014}
2015
2016LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2017CheckOpcode(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2018            SDNode *N) {
2019  uint16_t Opc = MatcherTable[MatcherIndex++];
2020  Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
2021  return N->getOpcode() == Opc;
2022}
2023
2024LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2025CheckType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2026          SDValue N, const TargetLowering &TLI) {
2027  MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2028  if (N.getValueType() == VT) return true;
2029
2030  // Handle the case when VT is iPTR.
2031  return VT == MVT::iPTR && N.getValueType() == TLI.getPointerTy();
2032}
2033
2034LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2035CheckChildType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2036               SDValue N, const TargetLowering &TLI,
2037               unsigned ChildNo) {
2038  if (ChildNo >= N.getNumOperands())
2039    return false;  // Match fails if out of range child #.
2040  return ::CheckType(MatcherTable, MatcherIndex, N.getOperand(ChildNo), TLI);
2041}
2042
2043
2044LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2045CheckCondCode(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2046              SDValue N) {
2047  return cast<CondCodeSDNode>(N)->get() ==
2048      (ISD::CondCode)MatcherTable[MatcherIndex++];
2049}
2050
2051LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2052CheckValueType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2053               SDValue N, const TargetLowering &TLI) {
2054  MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2055  if (cast<VTSDNode>(N)->getVT() == VT)
2056    return true;
2057
2058  // Handle the case when VT is iPTR.
2059  return VT == MVT::iPTR && cast<VTSDNode>(N)->getVT() == TLI.getPointerTy();
2060}
2061
2062LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2063CheckInteger(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2064             SDValue N) {
2065  int64_t Val = MatcherTable[MatcherIndex++];
2066  if (Val & 128)
2067    Val = GetVBR(Val, MatcherTable, MatcherIndex);
2068
2069  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N);
2070  return C != 0 && C->getSExtValue() == Val;
2071}
2072
2073LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2074CheckAndImm(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2075            SDValue N, const SelectionDAGISel &SDISel) {
2076  int64_t Val = MatcherTable[MatcherIndex++];
2077  if (Val & 128)
2078    Val = GetVBR(Val, MatcherTable, MatcherIndex);
2079
2080  if (N->getOpcode() != ISD::AND) return false;
2081
2082  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
2083  return C != 0 && SDISel.CheckAndMask(N.getOperand(0), C, Val);
2084}
2085
2086LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2087CheckOrImm(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2088           SDValue N, const SelectionDAGISel &SDISel) {
2089  int64_t Val = MatcherTable[MatcherIndex++];
2090  if (Val & 128)
2091    Val = GetVBR(Val, MatcherTable, MatcherIndex);
2092
2093  if (N->getOpcode() != ISD::OR) return false;
2094
2095  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
2096  return C != 0 && SDISel.CheckOrMask(N.getOperand(0), C, Val);
2097}
2098
2099/// IsPredicateKnownToFail - If we know how and can do so without pushing a
2100/// scope, evaluate the current node.  If the current predicate is known to
2101/// fail, set Result=true and return anything.  If the current predicate is
2102/// known to pass, set Result=false and return the MatcherIndex to continue
2103/// with.  If the current predicate is unknown, set Result=false and return the
2104/// MatcherIndex to continue with.
2105static unsigned IsPredicateKnownToFail(const unsigned char *Table,
2106                                       unsigned Index, SDValue N,
2107                                       bool &Result,
2108                                       const SelectionDAGISel &SDISel,
2109                 SmallVectorImpl<std::pair<SDValue, SDNode*> > &RecordedNodes) {
2110  switch (Table[Index++]) {
2111  default:
2112    Result = false;
2113    return Index-1;  // Could not evaluate this predicate.
2114  case SelectionDAGISel::OPC_CheckSame:
2115    Result = !::CheckSame(Table, Index, N, RecordedNodes);
2116    return Index;
2117  case SelectionDAGISel::OPC_CheckPatternPredicate:
2118    Result = !::CheckPatternPredicate(Table, Index, SDISel);
2119    return Index;
2120  case SelectionDAGISel::OPC_CheckPredicate:
2121    Result = !::CheckNodePredicate(Table, Index, SDISel, N.getNode());
2122    return Index;
2123  case SelectionDAGISel::OPC_CheckOpcode:
2124    Result = !::CheckOpcode(Table, Index, N.getNode());
2125    return Index;
2126  case SelectionDAGISel::OPC_CheckType:
2127    Result = !::CheckType(Table, Index, N, SDISel.TLI);
2128    return Index;
2129  case SelectionDAGISel::OPC_CheckChild0Type:
2130  case SelectionDAGISel::OPC_CheckChild1Type:
2131  case SelectionDAGISel::OPC_CheckChild2Type:
2132  case SelectionDAGISel::OPC_CheckChild3Type:
2133  case SelectionDAGISel::OPC_CheckChild4Type:
2134  case SelectionDAGISel::OPC_CheckChild5Type:
2135  case SelectionDAGISel::OPC_CheckChild6Type:
2136  case SelectionDAGISel::OPC_CheckChild7Type:
2137    Result = !::CheckChildType(Table, Index, N, SDISel.TLI,
2138                        Table[Index-1] - SelectionDAGISel::OPC_CheckChild0Type);
2139    return Index;
2140  case SelectionDAGISel::OPC_CheckCondCode:
2141    Result = !::CheckCondCode(Table, Index, N);
2142    return Index;
2143  case SelectionDAGISel::OPC_CheckValueType:
2144    Result = !::CheckValueType(Table, Index, N, SDISel.TLI);
2145    return Index;
2146  case SelectionDAGISel::OPC_CheckInteger:
2147    Result = !::CheckInteger(Table, Index, N);
2148    return Index;
2149  case SelectionDAGISel::OPC_CheckAndImm:
2150    Result = !::CheckAndImm(Table, Index, N, SDISel);
2151    return Index;
2152  case SelectionDAGISel::OPC_CheckOrImm:
2153    Result = !::CheckOrImm(Table, Index, N, SDISel);
2154    return Index;
2155  }
2156}
2157
2158namespace {
2159
2160struct MatchScope {
2161  /// FailIndex - If this match fails, this is the index to continue with.
2162  unsigned FailIndex;
2163
2164  /// NodeStack - The node stack when the scope was formed.
2165  SmallVector<SDValue, 4> NodeStack;
2166
2167  /// NumRecordedNodes - The number of recorded nodes when the scope was formed.
2168  unsigned NumRecordedNodes;
2169
2170  /// NumMatchedMemRefs - The number of matched memref entries.
2171  unsigned NumMatchedMemRefs;
2172
2173  /// InputChain/InputGlue - The current chain/glue
2174  SDValue InputChain, InputGlue;
2175
2176  /// HasChainNodesMatched - True if the ChainNodesMatched list is non-empty.
2177  bool HasChainNodesMatched, HasGlueResultNodesMatched;
2178};
2179
2180}
2181
2182SDNode *SelectionDAGISel::
2183SelectCodeCommon(SDNode *NodeToMatch, const unsigned char *MatcherTable,
2184                 unsigned TableSize) {
2185  // FIXME: Should these even be selected?  Handle these cases in the caller?
2186  switch (NodeToMatch->getOpcode()) {
2187  default:
2188    break;
2189  case ISD::EntryToken:       // These nodes remain the same.
2190  case ISD::BasicBlock:
2191  case ISD::Register:
2192  case ISD::RegisterMask:
2193  //case ISD::VALUETYPE:
2194  //case ISD::CONDCODE:
2195  case ISD::HANDLENODE:
2196  case ISD::MDNODE_SDNODE:
2197  case ISD::TargetConstant:
2198  case ISD::TargetConstantFP:
2199  case ISD::TargetConstantPool:
2200  case ISD::TargetFrameIndex:
2201  case ISD::TargetExternalSymbol:
2202  case ISD::TargetBlockAddress:
2203  case ISD::TargetJumpTable:
2204  case ISD::TargetGlobalTLSAddress:
2205  case ISD::TargetGlobalAddress:
2206  case ISD::TokenFactor:
2207  case ISD::CopyFromReg:
2208  case ISD::CopyToReg:
2209  case ISD::EH_LABEL:
2210  case ISD::LIFETIME_START:
2211  case ISD::LIFETIME_END:
2212    NodeToMatch->setNodeId(-1); // Mark selected.
2213    return 0;
2214  case ISD::AssertSext:
2215  case ISD::AssertZext:
2216    CurDAG->ReplaceAllUsesOfValueWith(SDValue(NodeToMatch, 0),
2217                                      NodeToMatch->getOperand(0));
2218    return 0;
2219  case ISD::INLINEASM: return Select_INLINEASM(NodeToMatch);
2220  case ISD::UNDEF:     return Select_UNDEF(NodeToMatch);
2221  }
2222
2223  assert(!NodeToMatch->isMachineOpcode() && "Node already selected!");
2224
2225  // Set up the node stack with NodeToMatch as the only node on the stack.
2226  SmallVector<SDValue, 8> NodeStack;
2227  SDValue N = SDValue(NodeToMatch, 0);
2228  NodeStack.push_back(N);
2229
2230  // MatchScopes - Scopes used when matching, if a match failure happens, this
2231  // indicates where to continue checking.
2232  SmallVector<MatchScope, 8> MatchScopes;
2233
2234  // RecordedNodes - This is the set of nodes that have been recorded by the
2235  // state machine.  The second value is the parent of the node, or null if the
2236  // root is recorded.
2237  SmallVector<std::pair<SDValue, SDNode*>, 8> RecordedNodes;
2238
2239  // MatchedMemRefs - This is the set of MemRef's we've seen in the input
2240  // pattern.
2241  SmallVector<MachineMemOperand*, 2> MatchedMemRefs;
2242
2243  // These are the current input chain and glue for use when generating nodes.
2244  // Various Emit operations change these.  For example, emitting a copytoreg
2245  // uses and updates these.
2246  SDValue InputChain, InputGlue;
2247
2248  // ChainNodesMatched - If a pattern matches nodes that have input/output
2249  // chains, the OPC_EmitMergeInputChains operation is emitted which indicates
2250  // which ones they are.  The result is captured into this list so that we can
2251  // update the chain results when the pattern is complete.
2252  SmallVector<SDNode*, 3> ChainNodesMatched;
2253  SmallVector<SDNode*, 3> GlueResultNodesMatched;
2254
2255  DEBUG(errs() << "ISEL: Starting pattern match on root node: ";
2256        NodeToMatch->dump(CurDAG);
2257        errs() << '\n');
2258
2259  // Determine where to start the interpreter.  Normally we start at opcode #0,
2260  // but if the state machine starts with an OPC_SwitchOpcode, then we
2261  // accelerate the first lookup (which is guaranteed to be hot) with the
2262  // OpcodeOffset table.
2263  unsigned MatcherIndex = 0;
2264
2265  if (!OpcodeOffset.empty()) {
2266    // Already computed the OpcodeOffset table, just index into it.
2267    if (N.getOpcode() < OpcodeOffset.size())
2268      MatcherIndex = OpcodeOffset[N.getOpcode()];
2269    DEBUG(errs() << "  Initial Opcode index to " << MatcherIndex << "\n");
2270
2271  } else if (MatcherTable[0] == OPC_SwitchOpcode) {
2272    // Otherwise, the table isn't computed, but the state machine does start
2273    // with an OPC_SwitchOpcode instruction.  Populate the table now, since this
2274    // is the first time we're selecting an instruction.
2275    unsigned Idx = 1;
2276    while (1) {
2277      // Get the size of this case.
2278      unsigned CaseSize = MatcherTable[Idx++];
2279      if (CaseSize & 128)
2280        CaseSize = GetVBR(CaseSize, MatcherTable, Idx);
2281      if (CaseSize == 0) break;
2282
2283      // Get the opcode, add the index to the table.
2284      uint16_t Opc = MatcherTable[Idx++];
2285      Opc |= (unsigned short)MatcherTable[Idx++] << 8;
2286      if (Opc >= OpcodeOffset.size())
2287        OpcodeOffset.resize((Opc+1)*2);
2288      OpcodeOffset[Opc] = Idx;
2289      Idx += CaseSize;
2290    }
2291
2292    // Okay, do the lookup for the first opcode.
2293    if (N.getOpcode() < OpcodeOffset.size())
2294      MatcherIndex = OpcodeOffset[N.getOpcode()];
2295  }
2296
2297  while (1) {
2298    assert(MatcherIndex < TableSize && "Invalid index");
2299#ifndef NDEBUG
2300    unsigned CurrentOpcodeIndex = MatcherIndex;
2301#endif
2302    BuiltinOpcodes Opcode = (BuiltinOpcodes)MatcherTable[MatcherIndex++];
2303    switch (Opcode) {
2304    case OPC_Scope: {
2305      // Okay, the semantics of this operation are that we should push a scope
2306      // then evaluate the first child.  However, pushing a scope only to have
2307      // the first check fail (which then pops it) is inefficient.  If we can
2308      // determine immediately that the first check (or first several) will
2309      // immediately fail, don't even bother pushing a scope for them.
2310      unsigned FailIndex;
2311
2312      while (1) {
2313        unsigned NumToSkip = MatcherTable[MatcherIndex++];
2314        if (NumToSkip & 128)
2315          NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex);
2316        // Found the end of the scope with no match.
2317        if (NumToSkip == 0) {
2318          FailIndex = 0;
2319          break;
2320        }
2321
2322        FailIndex = MatcherIndex+NumToSkip;
2323
2324        unsigned MatcherIndexOfPredicate = MatcherIndex;
2325        (void)MatcherIndexOfPredicate; // silence warning.
2326
2327        // If we can't evaluate this predicate without pushing a scope (e.g. if
2328        // it is a 'MoveParent') or if the predicate succeeds on this node, we
2329        // push the scope and evaluate the full predicate chain.
2330        bool Result;
2331        MatcherIndex = IsPredicateKnownToFail(MatcherTable, MatcherIndex, N,
2332                                              Result, *this, RecordedNodes);
2333        if (!Result)
2334          break;
2335
2336        DEBUG(errs() << "  Skipped scope entry (due to false predicate) at "
2337                     << "index " << MatcherIndexOfPredicate
2338                     << ", continuing at " << FailIndex << "\n");
2339        ++NumDAGIselRetries;
2340
2341        // Otherwise, we know that this case of the Scope is guaranteed to fail,
2342        // move to the next case.
2343        MatcherIndex = FailIndex;
2344      }
2345
2346      // If the whole scope failed to match, bail.
2347      if (FailIndex == 0) break;
2348
2349      // Push a MatchScope which indicates where to go if the first child fails
2350      // to match.
2351      MatchScope NewEntry;
2352      NewEntry.FailIndex = FailIndex;
2353      NewEntry.NodeStack.append(NodeStack.begin(), NodeStack.end());
2354      NewEntry.NumRecordedNodes = RecordedNodes.size();
2355      NewEntry.NumMatchedMemRefs = MatchedMemRefs.size();
2356      NewEntry.InputChain = InputChain;
2357      NewEntry.InputGlue = InputGlue;
2358      NewEntry.HasChainNodesMatched = !ChainNodesMatched.empty();
2359      NewEntry.HasGlueResultNodesMatched = !GlueResultNodesMatched.empty();
2360      MatchScopes.push_back(NewEntry);
2361      continue;
2362    }
2363    case OPC_RecordNode: {
2364      // Remember this node, it may end up being an operand in the pattern.
2365      SDNode *Parent = 0;
2366      if (NodeStack.size() > 1)
2367        Parent = NodeStack[NodeStack.size()-2].getNode();
2368      RecordedNodes.push_back(std::make_pair(N, Parent));
2369      continue;
2370    }
2371
2372    case OPC_RecordChild0: case OPC_RecordChild1:
2373    case OPC_RecordChild2: case OPC_RecordChild3:
2374    case OPC_RecordChild4: case OPC_RecordChild5:
2375    case OPC_RecordChild6: case OPC_RecordChild7: {
2376      unsigned ChildNo = Opcode-OPC_RecordChild0;
2377      if (ChildNo >= N.getNumOperands())
2378        break;  // Match fails if out of range child #.
2379
2380      RecordedNodes.push_back(std::make_pair(N->getOperand(ChildNo),
2381                                             N.getNode()));
2382      continue;
2383    }
2384    case OPC_RecordMemRef:
2385      MatchedMemRefs.push_back(cast<MemSDNode>(N)->getMemOperand());
2386      continue;
2387
2388    case OPC_CaptureGlueInput:
2389      // If the current node has an input glue, capture it in InputGlue.
2390      if (N->getNumOperands() != 0 &&
2391          N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Glue)
2392        InputGlue = N->getOperand(N->getNumOperands()-1);
2393      continue;
2394
2395    case OPC_MoveChild: {
2396      unsigned ChildNo = MatcherTable[MatcherIndex++];
2397      if (ChildNo >= N.getNumOperands())
2398        break;  // Match fails if out of range child #.
2399      N = N.getOperand(ChildNo);
2400      NodeStack.push_back(N);
2401      continue;
2402    }
2403
2404    case OPC_MoveParent:
2405      // Pop the current node off the NodeStack.
2406      NodeStack.pop_back();
2407      assert(!NodeStack.empty() && "Node stack imbalance!");
2408      N = NodeStack.back();
2409      continue;
2410
2411    case OPC_CheckSame:
2412      if (!::CheckSame(MatcherTable, MatcherIndex, N, RecordedNodes)) break;
2413      continue;
2414    case OPC_CheckPatternPredicate:
2415      if (!::CheckPatternPredicate(MatcherTable, MatcherIndex, *this)) break;
2416      continue;
2417    case OPC_CheckPredicate:
2418      if (!::CheckNodePredicate(MatcherTable, MatcherIndex, *this,
2419                                N.getNode()))
2420        break;
2421      continue;
2422    case OPC_CheckComplexPat: {
2423      unsigned CPNum = MatcherTable[MatcherIndex++];
2424      unsigned RecNo = MatcherTable[MatcherIndex++];
2425      assert(RecNo < RecordedNodes.size() && "Invalid CheckComplexPat");
2426      if (!CheckComplexPattern(NodeToMatch, RecordedNodes[RecNo].second,
2427                               RecordedNodes[RecNo].first, CPNum,
2428                               RecordedNodes))
2429        break;
2430      continue;
2431    }
2432    case OPC_CheckOpcode:
2433      if (!::CheckOpcode(MatcherTable, MatcherIndex, N.getNode())) break;
2434      continue;
2435
2436    case OPC_CheckType:
2437      if (!::CheckType(MatcherTable, MatcherIndex, N, TLI)) break;
2438      continue;
2439
2440    case OPC_SwitchOpcode: {
2441      unsigned CurNodeOpcode = N.getOpcode();
2442      unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart;
2443      unsigned CaseSize;
2444      while (1) {
2445        // Get the size of this case.
2446        CaseSize = MatcherTable[MatcherIndex++];
2447        if (CaseSize & 128)
2448          CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex);
2449        if (CaseSize == 0) break;
2450
2451        uint16_t Opc = MatcherTable[MatcherIndex++];
2452        Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
2453
2454        // If the opcode matches, then we will execute this case.
2455        if (CurNodeOpcode == Opc)
2456          break;
2457
2458        // Otherwise, skip over this case.
2459        MatcherIndex += CaseSize;
2460      }
2461
2462      // If no cases matched, bail out.
2463      if (CaseSize == 0) break;
2464
2465      // Otherwise, execute the case we found.
2466      DEBUG(errs() << "  OpcodeSwitch from " << SwitchStart
2467                   << " to " << MatcherIndex << "\n");
2468      continue;
2469    }
2470
2471    case OPC_SwitchType: {
2472      MVT CurNodeVT = N.getValueType().getSimpleVT();
2473      unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart;
2474      unsigned CaseSize;
2475      while (1) {
2476        // Get the size of this case.
2477        CaseSize = MatcherTable[MatcherIndex++];
2478        if (CaseSize & 128)
2479          CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex);
2480        if (CaseSize == 0) break;
2481
2482        MVT CaseVT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2483        if (CaseVT == MVT::iPTR)
2484          CaseVT = TLI.getPointerTy();
2485
2486        // If the VT matches, then we will execute this case.
2487        if (CurNodeVT == CaseVT)
2488          break;
2489
2490        // Otherwise, skip over this case.
2491        MatcherIndex += CaseSize;
2492      }
2493
2494      // If no cases matched, bail out.
2495      if (CaseSize == 0) break;
2496
2497      // Otherwise, execute the case we found.
2498      DEBUG(errs() << "  TypeSwitch[" << EVT(CurNodeVT).getEVTString()
2499                   << "] from " << SwitchStart << " to " << MatcherIndex<<'\n');
2500      continue;
2501    }
2502    case OPC_CheckChild0Type: case OPC_CheckChild1Type:
2503    case OPC_CheckChild2Type: case OPC_CheckChild3Type:
2504    case OPC_CheckChild4Type: case OPC_CheckChild5Type:
2505    case OPC_CheckChild6Type: case OPC_CheckChild7Type:
2506      if (!::CheckChildType(MatcherTable, MatcherIndex, N, TLI,
2507                            Opcode-OPC_CheckChild0Type))
2508        break;
2509      continue;
2510    case OPC_CheckCondCode:
2511      if (!::CheckCondCode(MatcherTable, MatcherIndex, N)) break;
2512      continue;
2513    case OPC_CheckValueType:
2514      if (!::CheckValueType(MatcherTable, MatcherIndex, N, TLI)) break;
2515      continue;
2516    case OPC_CheckInteger:
2517      if (!::CheckInteger(MatcherTable, MatcherIndex, N)) break;
2518      continue;
2519    case OPC_CheckAndImm:
2520      if (!::CheckAndImm(MatcherTable, MatcherIndex, N, *this)) break;
2521      continue;
2522    case OPC_CheckOrImm:
2523      if (!::CheckOrImm(MatcherTable, MatcherIndex, N, *this)) break;
2524      continue;
2525
2526    case OPC_CheckFoldableChainNode: {
2527      assert(NodeStack.size() != 1 && "No parent node");
2528      // Verify that all intermediate nodes between the root and this one have
2529      // a single use.
2530      bool HasMultipleUses = false;
2531      for (unsigned i = 1, e = NodeStack.size()-1; i != e; ++i)
2532        if (!NodeStack[i].hasOneUse()) {
2533          HasMultipleUses = true;
2534          break;
2535        }
2536      if (HasMultipleUses) break;
2537
2538      // Check to see that the target thinks this is profitable to fold and that
2539      // we can fold it without inducing cycles in the graph.
2540      if (!IsProfitableToFold(N, NodeStack[NodeStack.size()-2].getNode(),
2541                              NodeToMatch) ||
2542          !IsLegalToFold(N, NodeStack[NodeStack.size()-2].getNode(),
2543                         NodeToMatch, OptLevel,
2544                         true/*We validate our own chains*/))
2545        break;
2546
2547      continue;
2548    }
2549    case OPC_EmitInteger: {
2550      MVT::SimpleValueType VT =
2551        (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2552      int64_t Val = MatcherTable[MatcherIndex++];
2553      if (Val & 128)
2554        Val = GetVBR(Val, MatcherTable, MatcherIndex);
2555      RecordedNodes.push_back(std::pair<SDValue, SDNode*>(
2556                              CurDAG->getTargetConstant(Val, VT), (SDNode*)0));
2557      continue;
2558    }
2559    case OPC_EmitRegister: {
2560      MVT::SimpleValueType VT =
2561        (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2562      unsigned RegNo = MatcherTable[MatcherIndex++];
2563      RecordedNodes.push_back(std::pair<SDValue, SDNode*>(
2564                              CurDAG->getRegister(RegNo, VT), (SDNode*)0));
2565      continue;
2566    }
2567    case OPC_EmitRegister2: {
2568      // For targets w/ more than 256 register names, the register enum
2569      // values are stored in two bytes in the matcher table (just like
2570      // opcodes).
2571      MVT::SimpleValueType VT =
2572        (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2573      unsigned RegNo = MatcherTable[MatcherIndex++];
2574      RegNo |= MatcherTable[MatcherIndex++] << 8;
2575      RecordedNodes.push_back(std::pair<SDValue, SDNode*>(
2576                              CurDAG->getRegister(RegNo, VT), (SDNode*)0));
2577      continue;
2578    }
2579
2580    case OPC_EmitConvertToTarget:  {
2581      // Convert from IMM/FPIMM to target version.
2582      unsigned RecNo = MatcherTable[MatcherIndex++];
2583      assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2584      SDValue Imm = RecordedNodes[RecNo].first;
2585
2586      if (Imm->getOpcode() == ISD::Constant) {
2587        int64_t Val = cast<ConstantSDNode>(Imm)->getZExtValue();
2588        Imm = CurDAG->getTargetConstant(Val, Imm.getValueType());
2589      } else if (Imm->getOpcode() == ISD::ConstantFP) {
2590        const ConstantFP *Val=cast<ConstantFPSDNode>(Imm)->getConstantFPValue();
2591        Imm = CurDAG->getTargetConstantFP(*Val, Imm.getValueType());
2592      }
2593
2594      RecordedNodes.push_back(std::make_pair(Imm, RecordedNodes[RecNo].second));
2595      continue;
2596    }
2597
2598    case OPC_EmitMergeInputChains1_0:    // OPC_EmitMergeInputChains, 1, 0
2599    case OPC_EmitMergeInputChains1_1: {  // OPC_EmitMergeInputChains, 1, 1
2600      // These are space-optimized forms of OPC_EmitMergeInputChains.
2601      assert(InputChain.getNode() == 0 &&
2602             "EmitMergeInputChains should be the first chain producing node");
2603      assert(ChainNodesMatched.empty() &&
2604             "Should only have one EmitMergeInputChains per match");
2605
2606      // Read all of the chained nodes.
2607      unsigned RecNo = Opcode == OPC_EmitMergeInputChains1_1;
2608      assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2609      ChainNodesMatched.push_back(RecordedNodes[RecNo].first.getNode());
2610
2611      // FIXME: What if other value results of the node have uses not matched
2612      // by this pattern?
2613      if (ChainNodesMatched.back() != NodeToMatch &&
2614          !RecordedNodes[RecNo].first.hasOneUse()) {
2615        ChainNodesMatched.clear();
2616        break;
2617      }
2618
2619      // Merge the input chains if they are not intra-pattern references.
2620      InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG);
2621
2622      if (InputChain.getNode() == 0)
2623        break;  // Failed to merge.
2624      continue;
2625    }
2626
2627    case OPC_EmitMergeInputChains: {
2628      assert(InputChain.getNode() == 0 &&
2629             "EmitMergeInputChains should be the first chain producing node");
2630      // This node gets a list of nodes we matched in the input that have
2631      // chains.  We want to token factor all of the input chains to these nodes
2632      // together.  However, if any of the input chains is actually one of the
2633      // nodes matched in this pattern, then we have an intra-match reference.
2634      // Ignore these because the newly token factored chain should not refer to
2635      // the old nodes.
2636      unsigned NumChains = MatcherTable[MatcherIndex++];
2637      assert(NumChains != 0 && "Can't TF zero chains");
2638
2639      assert(ChainNodesMatched.empty() &&
2640             "Should only have one EmitMergeInputChains per match");
2641
2642      // Read all of the chained nodes.
2643      for (unsigned i = 0; i != NumChains; ++i) {
2644        unsigned RecNo = MatcherTable[MatcherIndex++];
2645        assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2646        ChainNodesMatched.push_back(RecordedNodes[RecNo].first.getNode());
2647
2648        // FIXME: What if other value results of the node have uses not matched
2649        // by this pattern?
2650        if (ChainNodesMatched.back() != NodeToMatch &&
2651            !RecordedNodes[RecNo].first.hasOneUse()) {
2652          ChainNodesMatched.clear();
2653          break;
2654        }
2655      }
2656
2657      // If the inner loop broke out, the match fails.
2658      if (ChainNodesMatched.empty())
2659        break;
2660
2661      // Merge the input chains if they are not intra-pattern references.
2662      InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG);
2663
2664      if (InputChain.getNode() == 0)
2665        break;  // Failed to merge.
2666
2667      continue;
2668    }
2669
2670    case OPC_EmitCopyToReg: {
2671      unsigned RecNo = MatcherTable[MatcherIndex++];
2672      assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2673      unsigned DestPhysReg = MatcherTable[MatcherIndex++];
2674
2675      if (InputChain.getNode() == 0)
2676        InputChain = CurDAG->getEntryNode();
2677
2678      InputChain = CurDAG->getCopyToReg(InputChain, NodeToMatch->getDebugLoc(),
2679                                        DestPhysReg, RecordedNodes[RecNo].first,
2680                                        InputGlue);
2681
2682      InputGlue = InputChain.getValue(1);
2683      continue;
2684    }
2685
2686    case OPC_EmitNodeXForm: {
2687      unsigned XFormNo = MatcherTable[MatcherIndex++];
2688      unsigned RecNo = MatcherTable[MatcherIndex++];
2689      assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2690      SDValue Res = RunSDNodeXForm(RecordedNodes[RecNo].first, XFormNo);
2691      RecordedNodes.push_back(std::pair<SDValue,SDNode*>(Res, (SDNode*) 0));
2692      continue;
2693    }
2694
2695    case OPC_EmitNode:
2696    case OPC_MorphNodeTo: {
2697      uint16_t TargetOpc = MatcherTable[MatcherIndex++];
2698      TargetOpc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
2699      unsigned EmitNodeInfo = MatcherTable[MatcherIndex++];
2700      // Get the result VT list.
2701      unsigned NumVTs = MatcherTable[MatcherIndex++];
2702      SmallVector<EVT, 4> VTs;
2703      for (unsigned i = 0; i != NumVTs; ++i) {
2704        MVT::SimpleValueType VT =
2705          (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2706        if (VT == MVT::iPTR) VT = TLI.getPointerTy().SimpleTy;
2707        VTs.push_back(VT);
2708      }
2709
2710      if (EmitNodeInfo & OPFL_Chain)
2711        VTs.push_back(MVT::Other);
2712      if (EmitNodeInfo & OPFL_GlueOutput)
2713        VTs.push_back(MVT::Glue);
2714
2715      // This is hot code, so optimize the two most common cases of 1 and 2
2716      // results.
2717      SDVTList VTList;
2718      if (VTs.size() == 1)
2719        VTList = CurDAG->getVTList(VTs[0]);
2720      else if (VTs.size() == 2)
2721        VTList = CurDAG->getVTList(VTs[0], VTs[1]);
2722      else
2723        VTList = CurDAG->getVTList(VTs.data(), VTs.size());
2724
2725      // Get the operand list.
2726      unsigned NumOps = MatcherTable[MatcherIndex++];
2727      SmallVector<SDValue, 8> Ops;
2728      for (unsigned i = 0; i != NumOps; ++i) {
2729        unsigned RecNo = MatcherTable[MatcherIndex++];
2730        if (RecNo & 128)
2731          RecNo = GetVBR(RecNo, MatcherTable, MatcherIndex);
2732
2733        assert(RecNo < RecordedNodes.size() && "Invalid EmitNode");
2734        Ops.push_back(RecordedNodes[RecNo].first);
2735      }
2736
2737      // If there are variadic operands to add, handle them now.
2738      if (EmitNodeInfo & OPFL_VariadicInfo) {
2739        // Determine the start index to copy from.
2740        unsigned FirstOpToCopy = getNumFixedFromVariadicInfo(EmitNodeInfo);
2741        FirstOpToCopy += (EmitNodeInfo & OPFL_Chain) ? 1 : 0;
2742        assert(NodeToMatch->getNumOperands() >= FirstOpToCopy &&
2743               "Invalid variadic node");
2744        // Copy all of the variadic operands, not including a potential glue
2745        // input.
2746        for (unsigned i = FirstOpToCopy, e = NodeToMatch->getNumOperands();
2747             i != e; ++i) {
2748          SDValue V = NodeToMatch->getOperand(i);
2749          if (V.getValueType() == MVT::Glue) break;
2750          Ops.push_back(V);
2751        }
2752      }
2753
2754      // If this has chain/glue inputs, add them.
2755      if (EmitNodeInfo & OPFL_Chain)
2756        Ops.push_back(InputChain);
2757      if ((EmitNodeInfo & OPFL_GlueInput) && InputGlue.getNode() != 0)
2758        Ops.push_back(InputGlue);
2759
2760      // Create the node.
2761      SDNode *Res = 0;
2762      if (Opcode != OPC_MorphNodeTo) {
2763        // If this is a normal EmitNode command, just create the new node and
2764        // add the results to the RecordedNodes list.
2765        Res = CurDAG->getMachineNode(TargetOpc, NodeToMatch->getDebugLoc(),
2766                                     VTList, Ops.data(), Ops.size());
2767
2768        // Add all the non-glue/non-chain results to the RecordedNodes list.
2769        for (unsigned i = 0, e = VTs.size(); i != e; ++i) {
2770          if (VTs[i] == MVT::Other || VTs[i] == MVT::Glue) break;
2771          RecordedNodes.push_back(std::pair<SDValue,SDNode*>(SDValue(Res, i),
2772                                                             (SDNode*) 0));
2773        }
2774
2775      } else if (NodeToMatch->getOpcode() != ISD::DELETED_NODE) {
2776        Res = MorphNode(NodeToMatch, TargetOpc, VTList, Ops.data(), Ops.size(),
2777                        EmitNodeInfo);
2778      } else {
2779        // NodeToMatch was eliminated by CSE when the target changed the DAG.
2780        // We will visit the equivalent node later.
2781        DEBUG(dbgs() << "Node was eliminated by CSE\n");
2782        return 0;
2783      }
2784
2785      // If the node had chain/glue results, update our notion of the current
2786      // chain and glue.
2787      if (EmitNodeInfo & OPFL_GlueOutput) {
2788        InputGlue = SDValue(Res, VTs.size()-1);
2789        if (EmitNodeInfo & OPFL_Chain)
2790          InputChain = SDValue(Res, VTs.size()-2);
2791      } else if (EmitNodeInfo & OPFL_Chain)
2792        InputChain = SDValue(Res, VTs.size()-1);
2793
2794      // If the OPFL_MemRefs glue is set on this node, slap all of the
2795      // accumulated memrefs onto it.
2796      //
2797      // FIXME: This is vastly incorrect for patterns with multiple outputs
2798      // instructions that access memory and for ComplexPatterns that match
2799      // loads.
2800      if (EmitNodeInfo & OPFL_MemRefs) {
2801        // Only attach load or store memory operands if the generated
2802        // instruction may load or store.
2803        const MCInstrDesc &MCID = TM.getInstrInfo()->get(TargetOpc);
2804        bool mayLoad = MCID.mayLoad();
2805        bool mayStore = MCID.mayStore();
2806
2807        unsigned NumMemRefs = 0;
2808        for (SmallVector<MachineMemOperand*, 2>::const_iterator I =
2809             MatchedMemRefs.begin(), E = MatchedMemRefs.end(); I != E; ++I) {
2810          if ((*I)->isLoad()) {
2811            if (mayLoad)
2812              ++NumMemRefs;
2813          } else if ((*I)->isStore()) {
2814            if (mayStore)
2815              ++NumMemRefs;
2816          } else {
2817            ++NumMemRefs;
2818          }
2819        }
2820
2821        MachineSDNode::mmo_iterator MemRefs =
2822          MF->allocateMemRefsArray(NumMemRefs);
2823
2824        MachineSDNode::mmo_iterator MemRefsPos = MemRefs;
2825        for (SmallVector<MachineMemOperand*, 2>::const_iterator I =
2826             MatchedMemRefs.begin(), E = MatchedMemRefs.end(); I != E; ++I) {
2827          if ((*I)->isLoad()) {
2828            if (mayLoad)
2829              *MemRefsPos++ = *I;
2830          } else if ((*I)->isStore()) {
2831            if (mayStore)
2832              *MemRefsPos++ = *I;
2833          } else {
2834            *MemRefsPos++ = *I;
2835          }
2836        }
2837
2838        cast<MachineSDNode>(Res)
2839          ->setMemRefs(MemRefs, MemRefs + NumMemRefs);
2840      }
2841
2842      DEBUG(errs() << "  "
2843                   << (Opcode == OPC_MorphNodeTo ? "Morphed" : "Created")
2844                   << " node: "; Res->dump(CurDAG); errs() << "\n");
2845
2846      // If this was a MorphNodeTo then we're completely done!
2847      if (Opcode == OPC_MorphNodeTo) {
2848        // Update chain and glue uses.
2849        UpdateChainsAndGlue(NodeToMatch, InputChain, ChainNodesMatched,
2850                            InputGlue, GlueResultNodesMatched, true);
2851        return Res;
2852      }
2853
2854      continue;
2855    }
2856
2857    case OPC_MarkGlueResults: {
2858      unsigned NumNodes = MatcherTable[MatcherIndex++];
2859
2860      // Read and remember all the glue-result nodes.
2861      for (unsigned i = 0; i != NumNodes; ++i) {
2862        unsigned RecNo = MatcherTable[MatcherIndex++];
2863        if (RecNo & 128)
2864          RecNo = GetVBR(RecNo, MatcherTable, MatcherIndex);
2865
2866        assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2867        GlueResultNodesMatched.push_back(RecordedNodes[RecNo].first.getNode());
2868      }
2869      continue;
2870    }
2871
2872    case OPC_CompleteMatch: {
2873      // The match has been completed, and any new nodes (if any) have been
2874      // created.  Patch up references to the matched dag to use the newly
2875      // created nodes.
2876      unsigned NumResults = MatcherTable[MatcherIndex++];
2877
2878      for (unsigned i = 0; i != NumResults; ++i) {
2879        unsigned ResSlot = MatcherTable[MatcherIndex++];
2880        if (ResSlot & 128)
2881          ResSlot = GetVBR(ResSlot, MatcherTable, MatcherIndex);
2882
2883        assert(ResSlot < RecordedNodes.size() && "Invalid CheckSame");
2884        SDValue Res = RecordedNodes[ResSlot].first;
2885
2886        assert(i < NodeToMatch->getNumValues() &&
2887               NodeToMatch->getValueType(i) != MVT::Other &&
2888               NodeToMatch->getValueType(i) != MVT::Glue &&
2889               "Invalid number of results to complete!");
2890        assert((NodeToMatch->getValueType(i) == Res.getValueType() ||
2891                NodeToMatch->getValueType(i) == MVT::iPTR ||
2892                Res.getValueType() == MVT::iPTR ||
2893                NodeToMatch->getValueType(i).getSizeInBits() ==
2894                    Res.getValueType().getSizeInBits()) &&
2895               "invalid replacement");
2896        CurDAG->ReplaceAllUsesOfValueWith(SDValue(NodeToMatch, i), Res);
2897      }
2898
2899      // If the root node defines glue, add it to the glue nodes to update list.
2900      if (NodeToMatch->getValueType(NodeToMatch->getNumValues()-1) == MVT::Glue)
2901        GlueResultNodesMatched.push_back(NodeToMatch);
2902
2903      // Update chain and glue uses.
2904      UpdateChainsAndGlue(NodeToMatch, InputChain, ChainNodesMatched,
2905                          InputGlue, GlueResultNodesMatched, false);
2906
2907      assert(NodeToMatch->use_empty() &&
2908             "Didn't replace all uses of the node?");
2909
2910      // FIXME: We just return here, which interacts correctly with SelectRoot
2911      // above.  We should fix this to not return an SDNode* anymore.
2912      return 0;
2913    }
2914    }
2915
2916    // If the code reached this point, then the match failed.  See if there is
2917    // another child to try in the current 'Scope', otherwise pop it until we
2918    // find a case to check.
2919    DEBUG(errs() << "  Match failed at index " << CurrentOpcodeIndex << "\n");
2920    ++NumDAGIselRetries;
2921    while (1) {
2922      if (MatchScopes.empty()) {
2923        CannotYetSelect(NodeToMatch);
2924        return 0;
2925      }
2926
2927      // Restore the interpreter state back to the point where the scope was
2928      // formed.
2929      MatchScope &LastScope = MatchScopes.back();
2930      RecordedNodes.resize(LastScope.NumRecordedNodes);
2931      NodeStack.clear();
2932      NodeStack.append(LastScope.NodeStack.begin(), LastScope.NodeStack.end());
2933      N = NodeStack.back();
2934
2935      if (LastScope.NumMatchedMemRefs != MatchedMemRefs.size())
2936        MatchedMemRefs.resize(LastScope.NumMatchedMemRefs);
2937      MatcherIndex = LastScope.FailIndex;
2938
2939      DEBUG(errs() << "  Continuing at " << MatcherIndex << "\n");
2940
2941      InputChain = LastScope.InputChain;
2942      InputGlue = LastScope.InputGlue;
2943      if (!LastScope.HasChainNodesMatched)
2944        ChainNodesMatched.clear();
2945      if (!LastScope.HasGlueResultNodesMatched)
2946        GlueResultNodesMatched.clear();
2947
2948      // Check to see what the offset is at the new MatcherIndex.  If it is zero
2949      // we have reached the end of this scope, otherwise we have another child
2950      // in the current scope to try.
2951      unsigned NumToSkip = MatcherTable[MatcherIndex++];
2952      if (NumToSkip & 128)
2953        NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex);
2954
2955      // If we have another child in this scope to match, update FailIndex and
2956      // try it.
2957      if (NumToSkip != 0) {
2958        LastScope.FailIndex = MatcherIndex+NumToSkip;
2959        break;
2960      }
2961
2962      // End of this scope, pop it and try the next child in the containing
2963      // scope.
2964      MatchScopes.pop_back();
2965    }
2966  }
2967}
2968
2969
2970
2971void SelectionDAGISel::CannotYetSelect(SDNode *N) {
2972  std::string msg;
2973  raw_string_ostream Msg(msg);
2974  Msg << "Cannot select: ";
2975
2976  if (N->getOpcode() != ISD::INTRINSIC_W_CHAIN &&
2977      N->getOpcode() != ISD::INTRINSIC_WO_CHAIN &&
2978      N->getOpcode() != ISD::INTRINSIC_VOID) {
2979    N->printrFull(Msg, CurDAG);
2980    Msg << "\nIn function: " << MF->getName();
2981  } else {
2982    bool HasInputChain = N->getOperand(0).getValueType() == MVT::Other;
2983    unsigned iid =
2984      cast<ConstantSDNode>(N->getOperand(HasInputChain))->getZExtValue();
2985    if (iid < Intrinsic::num_intrinsics)
2986      Msg << "intrinsic %" << Intrinsic::getName((Intrinsic::ID)iid);
2987    else if (const TargetIntrinsicInfo *TII = TM.getIntrinsicInfo())
2988      Msg << "target intrinsic %" << TII->getName(iid);
2989    else
2990      Msg << "unknown intrinsic #" << iid;
2991  }
2992  report_fatal_error(Msg.str());
2993}
2994
2995char SelectionDAGISel::ID = 0;
2996