SelectionDAGISel.cpp revision 10fff6078a7bc42f142c536bd55e9569253b280b
1//===-- SelectionDAGISel.cpp - Implement the SelectionDAGISel class -------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAGISel class.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "isel"
15#include "llvm/ADT/BitVector.h"
16#include "llvm/Analysis/AliasAnalysis.h"
17#include "llvm/CodeGen/SelectionDAGISel.h"
18#include "llvm/CodeGen/ScheduleDAG.h"
19#include "llvm/Constants.h"
20#include "llvm/CallingConv.h"
21#include "llvm/DerivedTypes.h"
22#include "llvm/Function.h"
23#include "llvm/GlobalVariable.h"
24#include "llvm/InlineAsm.h"
25#include "llvm/Instructions.h"
26#include "llvm/Intrinsics.h"
27#include "llvm/IntrinsicInst.h"
28#include "llvm/ParameterAttributes.h"
29#include "llvm/CodeGen/Collector.h"
30#include "llvm/CodeGen/MachineFunction.h"
31#include "llvm/CodeGen/MachineFrameInfo.h"
32#include "llvm/CodeGen/MachineInstrBuilder.h"
33#include "llvm/CodeGen/MachineJumpTableInfo.h"
34#include "llvm/CodeGen/MachineModuleInfo.h"
35#include "llvm/CodeGen/MachineRegisterInfo.h"
36#include "llvm/CodeGen/SchedulerRegistry.h"
37#include "llvm/CodeGen/SelectionDAG.h"
38#include "llvm/Target/TargetRegisterInfo.h"
39#include "llvm/Target/TargetData.h"
40#include "llvm/Target/TargetFrameInfo.h"
41#include "llvm/Target/TargetInstrInfo.h"
42#include "llvm/Target/TargetLowering.h"
43#include "llvm/Target/TargetMachine.h"
44#include "llvm/Target/TargetOptions.h"
45#include "llvm/Support/Compiler.h"
46#include "llvm/Support/Debug.h"
47#include "llvm/Support/MathExtras.h"
48#include "llvm/Support/Timer.h"
49#include <algorithm>
50using namespace llvm;
51
52static cl::opt<bool>
53EnableValueProp("enable-value-prop", cl::Hidden, cl::init(false));
54
55
56#ifndef NDEBUG
57static cl::opt<bool>
58ViewISelDAGs("view-isel-dags", cl::Hidden,
59          cl::desc("Pop up a window to show isel dags as they are selected"));
60static cl::opt<bool>
61ViewSchedDAGs("view-sched-dags", cl::Hidden,
62          cl::desc("Pop up a window to show sched dags as they are processed"));
63static cl::opt<bool>
64ViewSUnitDAGs("view-sunit-dags", cl::Hidden,
65      cl::desc("Pop up a window to show SUnit dags after they are processed"));
66#else
67static const bool ViewISelDAGs = 0, ViewSchedDAGs = 0, ViewSUnitDAGs = 0;
68#endif
69
70//===---------------------------------------------------------------------===//
71///
72/// RegisterScheduler class - Track the registration of instruction schedulers.
73///
74//===---------------------------------------------------------------------===//
75MachinePassRegistry RegisterScheduler::Registry;
76
77//===---------------------------------------------------------------------===//
78///
79/// ISHeuristic command line option for instruction schedulers.
80///
81//===---------------------------------------------------------------------===//
82static cl::opt<RegisterScheduler::FunctionPassCtor, false,
83               RegisterPassParser<RegisterScheduler> >
84ISHeuristic("pre-RA-sched",
85            cl::init(&createDefaultScheduler),
86            cl::desc("Instruction schedulers available (before register"
87                     " allocation):"));
88
89static RegisterScheduler
90defaultListDAGScheduler("default", "  Best scheduler for the target",
91                        createDefaultScheduler);
92
93namespace { struct SDISelAsmOperandInfo; }
94
95/// ComputeLinearIndex - Given an LLVM IR aggregate type and a sequence
96/// insertvalue or extractvalue indices that identify a member, return
97/// the linearized index of the start of the member.
98///
99static unsigned ComputeLinearIndex(const TargetLowering &TLI, const Type *Ty,
100                                   const unsigned *Indices,
101                                   const unsigned *IndicesEnd,
102                                   unsigned CurIndex = 0) {
103  // Base case: We're done.
104  if (Indices && Indices == IndicesEnd)
105    return CurIndex;
106
107  // Given a struct type, recursively traverse the elements.
108  if (const StructType *STy = dyn_cast<StructType>(Ty)) {
109    for (StructType::element_iterator EB = STy->element_begin(),
110                                      EI = EB,
111                                      EE = STy->element_end();
112        EI != EE; ++EI) {
113      if (Indices && *Indices == unsigned(EI - EB))
114        return ComputeLinearIndex(TLI, *EI, Indices+1, IndicesEnd, CurIndex);
115      CurIndex = ComputeLinearIndex(TLI, *EI, 0, 0, CurIndex);
116    }
117  }
118  // Given an array type, recursively traverse the elements.
119  else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
120    const Type *EltTy = ATy->getElementType();
121    for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i) {
122      if (Indices && *Indices == i)
123        return ComputeLinearIndex(TLI, EltTy, Indices+1, IndicesEnd, CurIndex);
124      CurIndex = ComputeLinearIndex(TLI, EltTy, 0, 0, CurIndex);
125    }
126  }
127  // We haven't found the type we're looking for, so keep searching.
128  return CurIndex + 1;
129}
130
131/// ComputeValueVTs - Given an LLVM IR type, compute a sequence of
132/// MVTs that represent all the individual underlying
133/// non-aggregate types that comprise it.
134///
135/// If Offsets is non-null, it points to a vector to be filled in
136/// with the in-memory offsets of each of the individual values.
137///
138static void ComputeValueVTs(const TargetLowering &TLI, const Type *Ty,
139                            SmallVectorImpl<MVT> &ValueVTs,
140                            SmallVectorImpl<uint64_t> *Offsets = 0,
141                            uint64_t StartingOffset = 0) {
142  // Given a struct type, recursively traverse the elements.
143  if (const StructType *STy = dyn_cast<StructType>(Ty)) {
144    const StructLayout *SL = TLI.getTargetData()->getStructLayout(STy);
145    for (StructType::element_iterator EB = STy->element_begin(),
146                                      EI = EB,
147                                      EE = STy->element_end();
148         EI != EE; ++EI)
149      ComputeValueVTs(TLI, *EI, ValueVTs, Offsets,
150                      StartingOffset + SL->getElementOffset(EI - EB));
151    return;
152  }
153  // Given an array type, recursively traverse the elements.
154  if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
155    const Type *EltTy = ATy->getElementType();
156    uint64_t EltSize = TLI.getTargetData()->getABITypeSize(EltTy);
157    for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i)
158      ComputeValueVTs(TLI, EltTy, ValueVTs, Offsets,
159                      StartingOffset + i * EltSize);
160    return;
161  }
162  // Base case: we can get an MVT for this LLVM IR type.
163  ValueVTs.push_back(TLI.getValueType(Ty));
164  if (Offsets)
165    Offsets->push_back(StartingOffset);
166}
167
168namespace {
169  /// RegsForValue - This struct represents the registers (physical or virtual)
170  /// that a particular set of values is assigned, and the type information about
171  /// the value. The most common situation is to represent one value at a time,
172  /// but struct or array values are handled element-wise as multiple values.
173  /// The splitting of aggregates is performed recursively, so that we never
174  /// have aggregate-typed registers. The values at this point do not necessarily
175  /// have legal types, so each value may require one or more registers of some
176  /// legal type.
177  ///
178  struct VISIBILITY_HIDDEN RegsForValue {
179    /// TLI - The TargetLowering object.
180    ///
181    const TargetLowering *TLI;
182
183    /// ValueVTs - The value types of the values, which may not be legal, and
184    /// may need be promoted or synthesized from one or more registers.
185    ///
186    SmallVector<MVT, 4> ValueVTs;
187
188    /// RegVTs - The value types of the registers. This is the same size as
189    /// ValueVTs and it records, for each value, what the type of the assigned
190    /// register or registers are. (Individual values are never synthesized
191    /// from more than one type of register.)
192    ///
193    /// With virtual registers, the contents of RegVTs is redundant with TLI's
194    /// getRegisterType member function, however when with physical registers
195    /// it is necessary to have a separate record of the types.
196    ///
197    SmallVector<MVT, 4> RegVTs;
198
199    /// Regs - This list holds the registers assigned to the values.
200    /// Each legal or promoted value requires one register, and each
201    /// expanded value requires multiple registers.
202    ///
203    SmallVector<unsigned, 4> Regs;
204
205    RegsForValue() : TLI(0) {}
206
207    RegsForValue(const TargetLowering &tli,
208                 const SmallVector<unsigned, 4> &regs,
209                 MVT regvt, MVT valuevt)
210      : TLI(&tli),  ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {}
211    RegsForValue(const TargetLowering &tli,
212                 const SmallVector<unsigned, 4> &regs,
213                 const SmallVector<MVT, 4> &regvts,
214                 const SmallVector<MVT, 4> &valuevts)
215      : TLI(&tli), ValueVTs(valuevts), RegVTs(regvts), Regs(regs) {}
216    RegsForValue(const TargetLowering &tli,
217                 unsigned Reg, const Type *Ty) : TLI(&tli) {
218      ComputeValueVTs(tli, Ty, ValueVTs);
219
220      for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
221        MVT ValueVT = ValueVTs[Value];
222        unsigned NumRegs = TLI->getNumRegisters(ValueVT);
223        MVT RegisterVT = TLI->getRegisterType(ValueVT);
224        for (unsigned i = 0; i != NumRegs; ++i)
225          Regs.push_back(Reg + i);
226        RegVTs.push_back(RegisterVT);
227        Reg += NumRegs;
228      }
229    }
230
231    /// append - Add the specified values to this one.
232    void append(const RegsForValue &RHS) {
233      TLI = RHS.TLI;
234      ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end());
235      RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end());
236      Regs.append(RHS.Regs.begin(), RHS.Regs.end());
237    }
238
239
240    /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
241    /// this value and returns the result as a ValueVTs value.  This uses
242    /// Chain/Flag as the input and updates them for the output Chain/Flag.
243    /// If the Flag pointer is NULL, no flag is used.
244    SDOperand getCopyFromRegs(SelectionDAG &DAG,
245                              SDOperand &Chain, SDOperand *Flag) const;
246
247    /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
248    /// specified value into the registers specified by this object.  This uses
249    /// Chain/Flag as the input and updates them for the output Chain/Flag.
250    /// If the Flag pointer is NULL, no flag is used.
251    void getCopyToRegs(SDOperand Val, SelectionDAG &DAG,
252                       SDOperand &Chain, SDOperand *Flag) const;
253
254    /// AddInlineAsmOperands - Add this value to the specified inlineasm node
255    /// operand list.  This adds the code marker and includes the number of
256    /// values added into it.
257    void AddInlineAsmOperands(unsigned Code, SelectionDAG &DAG,
258                              std::vector<SDOperand> &Ops) const;
259  };
260}
261
262namespace llvm {
263  //===--------------------------------------------------------------------===//
264  /// createDefaultScheduler - This creates an instruction scheduler appropriate
265  /// for the target.
266  ScheduleDAG* createDefaultScheduler(SelectionDAGISel *IS,
267                                      SelectionDAG *DAG,
268                                      MachineBasicBlock *BB,
269                                      bool Fast) {
270    TargetLowering &TLI = IS->getTargetLowering();
271
272    if (TLI.getSchedulingPreference() == TargetLowering::SchedulingForLatency) {
273      return createTDListDAGScheduler(IS, DAG, BB, Fast);
274    } else {
275      assert(TLI.getSchedulingPreference() ==
276           TargetLowering::SchedulingForRegPressure && "Unknown sched type!");
277      return createBURRListDAGScheduler(IS, DAG, BB, Fast);
278    }
279  }
280
281
282  //===--------------------------------------------------------------------===//
283  /// FunctionLoweringInfo - This contains information that is global to a
284  /// function that is used when lowering a region of the function.
285  class FunctionLoweringInfo {
286  public:
287    TargetLowering &TLI;
288    Function &Fn;
289    MachineFunction &MF;
290    MachineRegisterInfo &RegInfo;
291
292    FunctionLoweringInfo(TargetLowering &TLI, Function &Fn,MachineFunction &MF);
293
294    /// MBBMap - A mapping from LLVM basic blocks to their machine code entry.
295    std::map<const BasicBlock*, MachineBasicBlock *> MBBMap;
296
297    /// ValueMap - Since we emit code for the function a basic block at a time,
298    /// we must remember which virtual registers hold the values for
299    /// cross-basic-block values.
300    DenseMap<const Value*, unsigned> ValueMap;
301
302    /// StaticAllocaMap - Keep track of frame indices for fixed sized allocas in
303    /// the entry block.  This allows the allocas to be efficiently referenced
304    /// anywhere in the function.
305    std::map<const AllocaInst*, int> StaticAllocaMap;
306
307#ifndef NDEBUG
308    SmallSet<Instruction*, 8> CatchInfoLost;
309    SmallSet<Instruction*, 8> CatchInfoFound;
310#endif
311
312    unsigned MakeReg(MVT VT) {
313      return RegInfo.createVirtualRegister(TLI.getRegClassFor(VT));
314    }
315
316    /// isExportedInst - Return true if the specified value is an instruction
317    /// exported from its block.
318    bool isExportedInst(const Value *V) {
319      return ValueMap.count(V);
320    }
321
322    unsigned CreateRegForValue(const Value *V);
323
324    unsigned InitializeRegForValue(const Value *V) {
325      unsigned &R = ValueMap[V];
326      assert(R == 0 && "Already initialized this value register!");
327      return R = CreateRegForValue(V);
328    }
329
330    struct LiveOutInfo {
331      unsigned NumSignBits;
332      APInt KnownOne, KnownZero;
333      LiveOutInfo() : NumSignBits(0) {}
334    };
335
336    /// LiveOutRegInfo - Information about live out vregs, indexed by their
337    /// register number offset by 'FirstVirtualRegister'.
338    std::vector<LiveOutInfo> LiveOutRegInfo;
339  };
340}
341
342/// isSelector - Return true if this instruction is a call to the
343/// eh.selector intrinsic.
344static bool isSelector(Instruction *I) {
345  if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
346    return (II->getIntrinsicID() == Intrinsic::eh_selector_i32 ||
347            II->getIntrinsicID() == Intrinsic::eh_selector_i64);
348  return false;
349}
350
351/// isUsedOutsideOfDefiningBlock - Return true if this instruction is used by
352/// PHI nodes or outside of the basic block that defines it, or used by a
353/// switch or atomic instruction, which may expand to multiple basic blocks.
354static bool isUsedOutsideOfDefiningBlock(Instruction *I) {
355  if (isa<PHINode>(I)) return true;
356  BasicBlock *BB = I->getParent();
357  for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E; ++UI)
358    if (cast<Instruction>(*UI)->getParent() != BB || isa<PHINode>(*UI) ||
359        // FIXME: Remove switchinst special case.
360        isa<SwitchInst>(*UI))
361      return true;
362  return false;
363}
364
365/// isOnlyUsedInEntryBlock - If the specified argument is only used in the
366/// entry block, return true.  This includes arguments used by switches, since
367/// the switch may expand into multiple basic blocks.
368static bool isOnlyUsedInEntryBlock(Argument *A) {
369  BasicBlock *Entry = A->getParent()->begin();
370  for (Value::use_iterator UI = A->use_begin(), E = A->use_end(); UI != E; ++UI)
371    if (cast<Instruction>(*UI)->getParent() != Entry || isa<SwitchInst>(*UI))
372      return false;  // Use not in entry block.
373  return true;
374}
375
376FunctionLoweringInfo::FunctionLoweringInfo(TargetLowering &tli,
377                                           Function &fn, MachineFunction &mf)
378    : TLI(tli), Fn(fn), MF(mf), RegInfo(MF.getRegInfo()) {
379
380  // Create a vreg for each argument register that is not dead and is used
381  // outside of the entry block for the function.
382  for (Function::arg_iterator AI = Fn.arg_begin(), E = Fn.arg_end();
383       AI != E; ++AI)
384    if (!isOnlyUsedInEntryBlock(AI))
385      InitializeRegForValue(AI);
386
387  // Initialize the mapping of values to registers.  This is only set up for
388  // instruction values that are used outside of the block that defines
389  // them.
390  Function::iterator BB = Fn.begin(), EB = Fn.end();
391  for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
392    if (AllocaInst *AI = dyn_cast<AllocaInst>(I))
393      if (ConstantInt *CUI = dyn_cast<ConstantInt>(AI->getArraySize())) {
394        const Type *Ty = AI->getAllocatedType();
395        uint64_t TySize = TLI.getTargetData()->getABITypeSize(Ty);
396        unsigned Align =
397          std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty),
398                   AI->getAlignment());
399
400        TySize *= CUI->getZExtValue();   // Get total allocated size.
401        if (TySize == 0) TySize = 1; // Don't create zero-sized stack objects.
402        StaticAllocaMap[AI] =
403          MF.getFrameInfo()->CreateStackObject(TySize, Align);
404      }
405
406  for (; BB != EB; ++BB)
407    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
408      if (!I->use_empty() && isUsedOutsideOfDefiningBlock(I))
409        if (!isa<AllocaInst>(I) ||
410            !StaticAllocaMap.count(cast<AllocaInst>(I)))
411          InitializeRegForValue(I);
412
413  // Create an initial MachineBasicBlock for each LLVM BasicBlock in F.  This
414  // also creates the initial PHI MachineInstrs, though none of the input
415  // operands are populated.
416  for (BB = Fn.begin(), EB = Fn.end(); BB != EB; ++BB) {
417    MachineBasicBlock *MBB = new MachineBasicBlock(BB);
418    MBBMap[BB] = MBB;
419    MF.getBasicBlockList().push_back(MBB);
420
421    // Create Machine PHI nodes for LLVM PHI nodes, lowering them as
422    // appropriate.
423    PHINode *PN;
424    for (BasicBlock::iterator I = BB->begin();(PN = dyn_cast<PHINode>(I)); ++I){
425      if (PN->use_empty()) continue;
426
427      MVT VT = TLI.getValueType(PN->getType());
428      unsigned NumRegisters = TLI.getNumRegisters(VT);
429      unsigned PHIReg = ValueMap[PN];
430      assert(PHIReg && "PHI node does not have an assigned virtual register!");
431      const TargetInstrInfo *TII = TLI.getTargetMachine().getInstrInfo();
432      for (unsigned i = 0; i != NumRegisters; ++i)
433        BuildMI(MBB, TII->get(TargetInstrInfo::PHI), PHIReg+i);
434    }
435  }
436}
437
438/// CreateRegForValue - Allocate the appropriate number of virtual registers of
439/// the correctly promoted or expanded types.  Assign these registers
440/// consecutive vreg numbers and return the first assigned number.
441///
442/// In the case that the given value has struct or array type, this function
443/// will assign registers for each member or element.
444///
445unsigned FunctionLoweringInfo::CreateRegForValue(const Value *V) {
446  SmallVector<MVT, 4> ValueVTs;
447  ComputeValueVTs(TLI, V->getType(), ValueVTs);
448
449  unsigned FirstReg = 0;
450  for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
451    MVT ValueVT = ValueVTs[Value];
452    MVT RegisterVT = TLI.getRegisterType(ValueVT);
453
454    unsigned NumRegs = TLI.getNumRegisters(ValueVT);
455    for (unsigned i = 0; i != NumRegs; ++i) {
456      unsigned R = MakeReg(RegisterVT);
457      if (!FirstReg) FirstReg = R;
458    }
459  }
460  return FirstReg;
461}
462
463//===----------------------------------------------------------------------===//
464/// SelectionDAGLowering - This is the common target-independent lowering
465/// implementation that is parameterized by a TargetLowering object.
466/// Also, targets can overload any lowering method.
467///
468namespace llvm {
469class SelectionDAGLowering {
470  MachineBasicBlock *CurMBB;
471
472  DenseMap<const Value*, SDOperand> NodeMap;
473
474  /// PendingLoads - Loads are not emitted to the program immediately.  We bunch
475  /// them up and then emit token factor nodes when possible.  This allows us to
476  /// get simple disambiguation between loads without worrying about alias
477  /// analysis.
478  SmallVector<SDOperand, 8> PendingLoads;
479
480  /// PendingExports - CopyToReg nodes that copy values to virtual registers
481  /// for export to other blocks need to be emitted before any terminator
482  /// instruction, but they have no other ordering requirements. We bunch them
483  /// up and the emit a single tokenfactor for them just before terminator
484  /// instructions.
485  std::vector<SDOperand> PendingExports;
486
487  /// Case - A struct to record the Value for a switch case, and the
488  /// case's target basic block.
489  struct Case {
490    Constant* Low;
491    Constant* High;
492    MachineBasicBlock* BB;
493
494    Case() : Low(0), High(0), BB(0) { }
495    Case(Constant* low, Constant* high, MachineBasicBlock* bb) :
496      Low(low), High(high), BB(bb) { }
497    uint64_t size() const {
498      uint64_t rHigh = cast<ConstantInt>(High)->getSExtValue();
499      uint64_t rLow  = cast<ConstantInt>(Low)->getSExtValue();
500      return (rHigh - rLow + 1ULL);
501    }
502  };
503
504  struct CaseBits {
505    uint64_t Mask;
506    MachineBasicBlock* BB;
507    unsigned Bits;
508
509    CaseBits(uint64_t mask, MachineBasicBlock* bb, unsigned bits):
510      Mask(mask), BB(bb), Bits(bits) { }
511  };
512
513  typedef std::vector<Case>           CaseVector;
514  typedef std::vector<CaseBits>       CaseBitsVector;
515  typedef CaseVector::iterator        CaseItr;
516  typedef std::pair<CaseItr, CaseItr> CaseRange;
517
518  /// CaseRec - A struct with ctor used in lowering switches to a binary tree
519  /// of conditional branches.
520  struct CaseRec {
521    CaseRec(MachineBasicBlock *bb, Constant *lt, Constant *ge, CaseRange r) :
522    CaseBB(bb), LT(lt), GE(ge), Range(r) {}
523
524    /// CaseBB - The MBB in which to emit the compare and branch
525    MachineBasicBlock *CaseBB;
526    /// LT, GE - If nonzero, we know the current case value must be less-than or
527    /// greater-than-or-equal-to these Constants.
528    Constant *LT;
529    Constant *GE;
530    /// Range - A pair of iterators representing the range of case values to be
531    /// processed at this point in the binary search tree.
532    CaseRange Range;
533  };
534
535  typedef std::vector<CaseRec> CaseRecVector;
536
537  /// The comparison function for sorting the switch case values in the vector.
538  /// WARNING: Case ranges should be disjoint!
539  struct CaseCmp {
540    bool operator () (const Case& C1, const Case& C2) {
541      assert(isa<ConstantInt>(C1.Low) && isa<ConstantInt>(C2.High));
542      const ConstantInt* CI1 = cast<const ConstantInt>(C1.Low);
543      const ConstantInt* CI2 = cast<const ConstantInt>(C2.High);
544      return CI1->getValue().slt(CI2->getValue());
545    }
546  };
547
548  struct CaseBitsCmp {
549    bool operator () (const CaseBits& C1, const CaseBits& C2) {
550      return C1.Bits > C2.Bits;
551    }
552  };
553
554  unsigned Clusterify(CaseVector& Cases, const SwitchInst &SI);
555
556public:
557  // TLI - This is information that describes the available target features we
558  // need for lowering.  This indicates when operations are unavailable,
559  // implemented with a libcall, etc.
560  TargetLowering &TLI;
561  SelectionDAG &DAG;
562  const TargetData *TD;
563  AliasAnalysis &AA;
564
565  /// SwitchCases - Vector of CaseBlock structures used to communicate
566  /// SwitchInst code generation information.
567  std::vector<SelectionDAGISel::CaseBlock> SwitchCases;
568  /// JTCases - Vector of JumpTable structures used to communicate
569  /// SwitchInst code generation information.
570  std::vector<SelectionDAGISel::JumpTableBlock> JTCases;
571  std::vector<SelectionDAGISel::BitTestBlock> BitTestCases;
572
573  /// FuncInfo - Information about the function as a whole.
574  ///
575  FunctionLoweringInfo &FuncInfo;
576
577  /// GCI - Garbage collection metadata for the function.
578  CollectorMetadata *GCI;
579
580  SelectionDAGLowering(SelectionDAG &dag, TargetLowering &tli,
581                       AliasAnalysis &aa,
582                       FunctionLoweringInfo &funcinfo,
583                       CollectorMetadata *gci)
584    : TLI(tli), DAG(dag), TD(DAG.getTarget().getTargetData()), AA(aa),
585      FuncInfo(funcinfo), GCI(gci) {
586  }
587
588  /// getRoot - Return the current virtual root of the Selection DAG,
589  /// flushing any PendingLoad items. This must be done before emitting
590  /// a store or any other node that may need to be ordered after any
591  /// prior load instructions.
592  ///
593  SDOperand getRoot() {
594    if (PendingLoads.empty())
595      return DAG.getRoot();
596
597    if (PendingLoads.size() == 1) {
598      SDOperand Root = PendingLoads[0];
599      DAG.setRoot(Root);
600      PendingLoads.clear();
601      return Root;
602    }
603
604    // Otherwise, we have to make a token factor node.
605    SDOperand Root = DAG.getNode(ISD::TokenFactor, MVT::Other,
606                                 &PendingLoads[0], PendingLoads.size());
607    PendingLoads.clear();
608    DAG.setRoot(Root);
609    return Root;
610  }
611
612  /// getControlRoot - Similar to getRoot, but instead of flushing all the
613  /// PendingLoad items, flush all the PendingExports items. It is necessary
614  /// to do this before emitting a terminator instruction.
615  ///
616  SDOperand getControlRoot() {
617    SDOperand Root = DAG.getRoot();
618
619    if (PendingExports.empty())
620      return Root;
621
622    // Turn all of the CopyToReg chains into one factored node.
623    if (Root.getOpcode() != ISD::EntryToken) {
624      unsigned i = 0, e = PendingExports.size();
625      for (; i != e; ++i) {
626        assert(PendingExports[i].Val->getNumOperands() > 1);
627        if (PendingExports[i].Val->getOperand(0) == Root)
628          break;  // Don't add the root if we already indirectly depend on it.
629      }
630
631      if (i == e)
632        PendingExports.push_back(Root);
633    }
634
635    Root = DAG.getNode(ISD::TokenFactor, MVT::Other,
636                       &PendingExports[0],
637                       PendingExports.size());
638    PendingExports.clear();
639    DAG.setRoot(Root);
640    return Root;
641  }
642
643  void CopyValueToVirtualRegister(Value *V, unsigned Reg);
644
645  void visit(Instruction &I) { visit(I.getOpcode(), I); }
646
647  void visit(unsigned Opcode, User &I) {
648    // Note: this doesn't use InstVisitor, because it has to work with
649    // ConstantExpr's in addition to instructions.
650    switch (Opcode) {
651    default: assert(0 && "Unknown instruction type encountered!");
652             abort();
653      // Build the switch statement using the Instruction.def file.
654#define HANDLE_INST(NUM, OPCODE, CLASS) \
655    case Instruction::OPCODE:return visit##OPCODE((CLASS&)I);
656#include "llvm/Instruction.def"
657    }
658  }
659
660  void setCurrentBasicBlock(MachineBasicBlock *MBB) { CurMBB = MBB; }
661
662  SDOperand getValue(const Value *V);
663
664  void setValue(const Value *V, SDOperand NewN) {
665    SDOperand &N = NodeMap[V];
666    assert(N.Val == 0 && "Already set a value for this node!");
667    N = NewN;
668  }
669
670  void GetRegistersForValue(SDISelAsmOperandInfo &OpInfo, bool HasEarlyClobber,
671                            std::set<unsigned> &OutputRegs,
672                            std::set<unsigned> &InputRegs);
673
674  void FindMergedConditions(Value *Cond, MachineBasicBlock *TBB,
675                            MachineBasicBlock *FBB, MachineBasicBlock *CurBB,
676                            unsigned Opc);
677  bool isExportableFromCurrentBlock(Value *V, const BasicBlock *FromBB);
678  void ExportFromCurrentBlock(Value *V);
679  void LowerCallTo(CallSite CS, SDOperand Callee, bool IsTailCall,
680                   MachineBasicBlock *LandingPad = NULL);
681
682  // Terminator instructions.
683  void visitRet(ReturnInst &I);
684  void visitBr(BranchInst &I);
685  void visitSwitch(SwitchInst &I);
686  void visitUnreachable(UnreachableInst &I) { /* noop */ }
687
688  // Helpers for visitSwitch
689  bool handleSmallSwitchRange(CaseRec& CR,
690                              CaseRecVector& WorkList,
691                              Value* SV,
692                              MachineBasicBlock* Default);
693  bool handleJTSwitchCase(CaseRec& CR,
694                          CaseRecVector& WorkList,
695                          Value* SV,
696                          MachineBasicBlock* Default);
697  bool handleBTSplitSwitchCase(CaseRec& CR,
698                               CaseRecVector& WorkList,
699                               Value* SV,
700                               MachineBasicBlock* Default);
701  bool handleBitTestsSwitchCase(CaseRec& CR,
702                                CaseRecVector& WorkList,
703                                Value* SV,
704                                MachineBasicBlock* Default);
705  void visitSwitchCase(SelectionDAGISel::CaseBlock &CB);
706  void visitBitTestHeader(SelectionDAGISel::BitTestBlock &B);
707  void visitBitTestCase(MachineBasicBlock* NextMBB,
708                        unsigned Reg,
709                        SelectionDAGISel::BitTestCase &B);
710  void visitJumpTable(SelectionDAGISel::JumpTable &JT);
711  void visitJumpTableHeader(SelectionDAGISel::JumpTable &JT,
712                            SelectionDAGISel::JumpTableHeader &JTH);
713
714  // These all get lowered before this pass.
715  void visitInvoke(InvokeInst &I);
716  void visitUnwind(UnwindInst &I);
717
718  void visitBinary(User &I, unsigned OpCode);
719  void visitShift(User &I, unsigned Opcode);
720  void visitAdd(User &I) {
721    if (I.getType()->isFPOrFPVector())
722      visitBinary(I, ISD::FADD);
723    else
724      visitBinary(I, ISD::ADD);
725  }
726  void visitSub(User &I);
727  void visitMul(User &I) {
728    if (I.getType()->isFPOrFPVector())
729      visitBinary(I, ISD::FMUL);
730    else
731      visitBinary(I, ISD::MUL);
732  }
733  void visitURem(User &I) { visitBinary(I, ISD::UREM); }
734  void visitSRem(User &I) { visitBinary(I, ISD::SREM); }
735  void visitFRem(User &I) { visitBinary(I, ISD::FREM); }
736  void visitUDiv(User &I) { visitBinary(I, ISD::UDIV); }
737  void visitSDiv(User &I) { visitBinary(I, ISD::SDIV); }
738  void visitFDiv(User &I) { visitBinary(I, ISD::FDIV); }
739  void visitAnd (User &I) { visitBinary(I, ISD::AND); }
740  void visitOr  (User &I) { visitBinary(I, ISD::OR); }
741  void visitXor (User &I) { visitBinary(I, ISD::XOR); }
742  void visitShl (User &I) { visitShift(I, ISD::SHL); }
743  void visitLShr(User &I) { visitShift(I, ISD::SRL); }
744  void visitAShr(User &I) { visitShift(I, ISD::SRA); }
745  void visitICmp(User &I);
746  void visitFCmp(User &I);
747  void visitVICmp(User &I);
748  void visitVFCmp(User &I);
749  // Visit the conversion instructions
750  void visitTrunc(User &I);
751  void visitZExt(User &I);
752  void visitSExt(User &I);
753  void visitFPTrunc(User &I);
754  void visitFPExt(User &I);
755  void visitFPToUI(User &I);
756  void visitFPToSI(User &I);
757  void visitUIToFP(User &I);
758  void visitSIToFP(User &I);
759  void visitPtrToInt(User &I);
760  void visitIntToPtr(User &I);
761  void visitBitCast(User &I);
762
763  void visitExtractElement(User &I);
764  void visitInsertElement(User &I);
765  void visitShuffleVector(User &I);
766
767  void visitExtractValue(ExtractValueInst &I);
768  void visitInsertValue(InsertValueInst &I);
769
770  void visitGetElementPtr(User &I);
771  void visitSelect(User &I);
772
773  void visitMalloc(MallocInst &I);
774  void visitFree(FreeInst &I);
775  void visitAlloca(AllocaInst &I);
776  void visitLoad(LoadInst &I);
777  void visitStore(StoreInst &I);
778  void visitPHI(PHINode &I) { } // PHI nodes are handled specially.
779  void visitCall(CallInst &I);
780  void visitInlineAsm(CallSite CS);
781  const char *visitIntrinsicCall(CallInst &I, unsigned Intrinsic);
782  void visitTargetIntrinsic(CallInst &I, unsigned Intrinsic);
783
784  void visitVAStart(CallInst &I);
785  void visitVAArg(VAArgInst &I);
786  void visitVAEnd(CallInst &I);
787  void visitVACopy(CallInst &I);
788
789  void visitGetResult(GetResultInst &I);
790
791  void visitUserOp1(Instruction &I) {
792    assert(0 && "UserOp1 should not exist at instruction selection time!");
793    abort();
794  }
795  void visitUserOp2(Instruction &I) {
796    assert(0 && "UserOp2 should not exist at instruction selection time!");
797    abort();
798  }
799
800private:
801  inline const char *implVisitBinaryAtomic(CallInst& I, ISD::NodeType Op);
802
803};
804} // end namespace llvm
805
806
807/// getCopyFromParts - Create a value that contains the specified legal parts
808/// combined into the value they represent.  If the parts combine to a type
809/// larger then ValueVT then AssertOp can be used to specify whether the extra
810/// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
811/// (ISD::AssertSext).
812static SDOperand getCopyFromParts(SelectionDAG &DAG,
813                                  const SDOperand *Parts,
814                                  unsigned NumParts,
815                                  MVT PartVT,
816                                  MVT ValueVT,
817                                  ISD::NodeType AssertOp = ISD::DELETED_NODE) {
818  assert(NumParts > 0 && "No parts to assemble!");
819  TargetLowering &TLI = DAG.getTargetLoweringInfo();
820  SDOperand Val = Parts[0];
821
822  if (NumParts > 1) {
823    // Assemble the value from multiple parts.
824    if (!ValueVT.isVector()) {
825      unsigned PartBits = PartVT.getSizeInBits();
826      unsigned ValueBits = ValueVT.getSizeInBits();
827
828      // Assemble the power of 2 part.
829      unsigned RoundParts = NumParts & (NumParts - 1) ?
830        1 << Log2_32(NumParts) : NumParts;
831      unsigned RoundBits = PartBits * RoundParts;
832      MVT RoundVT = RoundBits == ValueBits ?
833        ValueVT : MVT::getIntegerVT(RoundBits);
834      SDOperand Lo, Hi;
835
836      if (RoundParts > 2) {
837        MVT HalfVT = MVT::getIntegerVT(RoundBits/2);
838        Lo = getCopyFromParts(DAG, Parts, RoundParts/2, PartVT, HalfVT);
839        Hi = getCopyFromParts(DAG, Parts+RoundParts/2, RoundParts/2,
840                              PartVT, HalfVT);
841      } else {
842        Lo = Parts[0];
843        Hi = Parts[1];
844      }
845      if (TLI.isBigEndian())
846        std::swap(Lo, Hi);
847      Val = DAG.getNode(ISD::BUILD_PAIR, RoundVT, Lo, Hi);
848
849      if (RoundParts < NumParts) {
850        // Assemble the trailing non-power-of-2 part.
851        unsigned OddParts = NumParts - RoundParts;
852        MVT OddVT = MVT::getIntegerVT(OddParts * PartBits);
853        Hi = getCopyFromParts(DAG, Parts+RoundParts, OddParts, PartVT, OddVT);
854
855        // Combine the round and odd parts.
856        Lo = Val;
857        if (TLI.isBigEndian())
858          std::swap(Lo, Hi);
859        MVT TotalVT = MVT::getIntegerVT(NumParts * PartBits);
860        Hi = DAG.getNode(ISD::ANY_EXTEND, TotalVT, Hi);
861        Hi = DAG.getNode(ISD::SHL, TotalVT, Hi,
862                         DAG.getConstant(Lo.getValueType().getSizeInBits(),
863                                         TLI.getShiftAmountTy()));
864        Lo = DAG.getNode(ISD::ZERO_EXTEND, TotalVT, Lo);
865        Val = DAG.getNode(ISD::OR, TotalVT, Lo, Hi);
866      }
867    } else {
868      // Handle a multi-element vector.
869      MVT IntermediateVT, RegisterVT;
870      unsigned NumIntermediates;
871      unsigned NumRegs =
872        TLI.getVectorTypeBreakdown(ValueVT, IntermediateVT, NumIntermediates,
873                                   RegisterVT);
874      assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
875      NumParts = NumRegs; // Silence a compiler warning.
876      assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
877      assert(RegisterVT == Parts[0].getValueType() &&
878             "Part type doesn't match part!");
879
880      // Assemble the parts into intermediate operands.
881      SmallVector<SDOperand, 8> Ops(NumIntermediates);
882      if (NumIntermediates == NumParts) {
883        // If the register was not expanded, truncate or copy the value,
884        // as appropriate.
885        for (unsigned i = 0; i != NumParts; ++i)
886          Ops[i] = getCopyFromParts(DAG, &Parts[i], 1,
887                                    PartVT, IntermediateVT);
888      } else if (NumParts > 0) {
889        // If the intermediate type was expanded, build the intermediate operands
890        // from the parts.
891        assert(NumParts % NumIntermediates == 0 &&
892               "Must expand into a divisible number of parts!");
893        unsigned Factor = NumParts / NumIntermediates;
894        for (unsigned i = 0; i != NumIntermediates; ++i)
895          Ops[i] = getCopyFromParts(DAG, &Parts[i * Factor], Factor,
896                                    PartVT, IntermediateVT);
897      }
898
899      // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the intermediate
900      // operands.
901      Val = DAG.getNode(IntermediateVT.isVector() ?
902                        ISD::CONCAT_VECTORS : ISD::BUILD_VECTOR,
903                        ValueVT, &Ops[0], NumIntermediates);
904    }
905  }
906
907  // There is now one part, held in Val.  Correct it to match ValueVT.
908  PartVT = Val.getValueType();
909
910  if (PartVT == ValueVT)
911    return Val;
912
913  if (PartVT.isVector()) {
914    assert(ValueVT.isVector() && "Unknown vector conversion!");
915    return DAG.getNode(ISD::BIT_CONVERT, ValueVT, Val);
916  }
917
918  if (ValueVT.isVector()) {
919    assert(ValueVT.getVectorElementType() == PartVT &&
920           ValueVT.getVectorNumElements() == 1 &&
921           "Only trivial scalar-to-vector conversions should get here!");
922    return DAG.getNode(ISD::BUILD_VECTOR, ValueVT, Val);
923  }
924
925  if (PartVT.isInteger() &&
926      ValueVT.isInteger()) {
927    if (ValueVT.bitsLT(PartVT)) {
928      // For a truncate, see if we have any information to
929      // indicate whether the truncated bits will always be
930      // zero or sign-extension.
931      if (AssertOp != ISD::DELETED_NODE)
932        Val = DAG.getNode(AssertOp, PartVT, Val,
933                          DAG.getValueType(ValueVT));
934      return DAG.getNode(ISD::TRUNCATE, ValueVT, Val);
935    } else {
936      return DAG.getNode(ISD::ANY_EXTEND, ValueVT, Val);
937    }
938  }
939
940  if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
941    if (ValueVT.bitsLT(Val.getValueType()))
942      // FP_ROUND's are always exact here.
943      return DAG.getNode(ISD::FP_ROUND, ValueVT, Val,
944                         DAG.getIntPtrConstant(1));
945    return DAG.getNode(ISD::FP_EXTEND, ValueVT, Val);
946  }
947
948  if (PartVT.getSizeInBits() == ValueVT.getSizeInBits())
949    return DAG.getNode(ISD::BIT_CONVERT, ValueVT, Val);
950
951  assert(0 && "Unknown mismatch!");
952  return SDOperand();
953}
954
955/// getCopyToParts - Create a series of nodes that contain the specified value
956/// split into legal parts.  If the parts contain more bits than Val, then, for
957/// integers, ExtendKind can be used to specify how to generate the extra bits.
958static void getCopyToParts(SelectionDAG &DAG,
959                           SDOperand Val,
960                           SDOperand *Parts,
961                           unsigned NumParts,
962                           MVT PartVT,
963                           ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
964  TargetLowering &TLI = DAG.getTargetLoweringInfo();
965  MVT PtrVT = TLI.getPointerTy();
966  MVT ValueVT = Val.getValueType();
967  unsigned PartBits = PartVT.getSizeInBits();
968  assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!");
969
970  if (!NumParts)
971    return;
972
973  if (!ValueVT.isVector()) {
974    if (PartVT == ValueVT) {
975      assert(NumParts == 1 && "No-op copy with multiple parts!");
976      Parts[0] = Val;
977      return;
978    }
979
980    if (NumParts * PartBits > ValueVT.getSizeInBits()) {
981      // If the parts cover more bits than the value has, promote the value.
982      if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
983        assert(NumParts == 1 && "Do not know what to promote to!");
984        Val = DAG.getNode(ISD::FP_EXTEND, PartVT, Val);
985      } else if (PartVT.isInteger() && ValueVT.isInteger()) {
986        ValueVT = MVT::getIntegerVT(NumParts * PartBits);
987        Val = DAG.getNode(ExtendKind, ValueVT, Val);
988      } else {
989        assert(0 && "Unknown mismatch!");
990      }
991    } else if (PartBits == ValueVT.getSizeInBits()) {
992      // Different types of the same size.
993      assert(NumParts == 1 && PartVT != ValueVT);
994      Val = DAG.getNode(ISD::BIT_CONVERT, PartVT, Val);
995    } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
996      // If the parts cover less bits than value has, truncate the value.
997      if (PartVT.isInteger() && ValueVT.isInteger()) {
998        ValueVT = MVT::getIntegerVT(NumParts * PartBits);
999        Val = DAG.getNode(ISD::TRUNCATE, ValueVT, Val);
1000      } else {
1001        assert(0 && "Unknown mismatch!");
1002      }
1003    }
1004
1005    // The value may have changed - recompute ValueVT.
1006    ValueVT = Val.getValueType();
1007    assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
1008           "Failed to tile the value with PartVT!");
1009
1010    if (NumParts == 1) {
1011      assert(PartVT == ValueVT && "Type conversion failed!");
1012      Parts[0] = Val;
1013      return;
1014    }
1015
1016    // Expand the value into multiple parts.
1017    if (NumParts & (NumParts - 1)) {
1018      // The number of parts is not a power of 2.  Split off and copy the tail.
1019      assert(PartVT.isInteger() && ValueVT.isInteger() &&
1020             "Do not know what to expand to!");
1021      unsigned RoundParts = 1 << Log2_32(NumParts);
1022      unsigned RoundBits = RoundParts * PartBits;
1023      unsigned OddParts = NumParts - RoundParts;
1024      SDOperand OddVal = DAG.getNode(ISD::SRL, ValueVT, Val,
1025                                     DAG.getConstant(RoundBits,
1026                                                     TLI.getShiftAmountTy()));
1027      getCopyToParts(DAG, OddVal, Parts + RoundParts, OddParts, PartVT);
1028      if (TLI.isBigEndian())
1029        // The odd parts were reversed by getCopyToParts - unreverse them.
1030        std::reverse(Parts + RoundParts, Parts + NumParts);
1031      NumParts = RoundParts;
1032      ValueVT = MVT::getIntegerVT(NumParts * PartBits);
1033      Val = DAG.getNode(ISD::TRUNCATE, ValueVT, Val);
1034    }
1035
1036    // The number of parts is a power of 2.  Repeatedly bisect the value using
1037    // EXTRACT_ELEMENT.
1038    Parts[0] = DAG.getNode(ISD::BIT_CONVERT,
1039                           MVT::getIntegerVT(ValueVT.getSizeInBits()),
1040                           Val);
1041    for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
1042      for (unsigned i = 0; i < NumParts; i += StepSize) {
1043        unsigned ThisBits = StepSize * PartBits / 2;
1044        MVT ThisVT = MVT::getIntegerVT (ThisBits);
1045        SDOperand &Part0 = Parts[i];
1046        SDOperand &Part1 = Parts[i+StepSize/2];
1047
1048        Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, ThisVT, Part0,
1049                            DAG.getConstant(1, PtrVT));
1050        Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, ThisVT, Part0,
1051                            DAG.getConstant(0, PtrVT));
1052
1053        if (ThisBits == PartBits && ThisVT != PartVT) {
1054          Part0 = DAG.getNode(ISD::BIT_CONVERT, PartVT, Part0);
1055          Part1 = DAG.getNode(ISD::BIT_CONVERT, PartVT, Part1);
1056        }
1057      }
1058    }
1059
1060    if (TLI.isBigEndian())
1061      std::reverse(Parts, Parts + NumParts);
1062
1063    return;
1064  }
1065
1066  // Vector ValueVT.
1067  if (NumParts == 1) {
1068    if (PartVT != ValueVT) {
1069      if (PartVT.isVector()) {
1070        Val = DAG.getNode(ISD::BIT_CONVERT, PartVT, Val);
1071      } else {
1072        assert(ValueVT.getVectorElementType() == PartVT &&
1073               ValueVT.getVectorNumElements() == 1 &&
1074               "Only trivial vector-to-scalar conversions should get here!");
1075        Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, PartVT, Val,
1076                          DAG.getConstant(0, PtrVT));
1077      }
1078    }
1079
1080    Parts[0] = Val;
1081    return;
1082  }
1083
1084  // Handle a multi-element vector.
1085  MVT IntermediateVT, RegisterVT;
1086  unsigned NumIntermediates;
1087  unsigned NumRegs =
1088    DAG.getTargetLoweringInfo()
1089      .getVectorTypeBreakdown(ValueVT, IntermediateVT, NumIntermediates,
1090                              RegisterVT);
1091  unsigned NumElements = ValueVT.getVectorNumElements();
1092
1093  assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
1094  NumParts = NumRegs; // Silence a compiler warning.
1095  assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
1096
1097  // Split the vector into intermediate operands.
1098  SmallVector<SDOperand, 8> Ops(NumIntermediates);
1099  for (unsigned i = 0; i != NumIntermediates; ++i)
1100    if (IntermediateVT.isVector())
1101      Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR,
1102                           IntermediateVT, Val,
1103                           DAG.getConstant(i * (NumElements / NumIntermediates),
1104                                           PtrVT));
1105    else
1106      Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT,
1107                           IntermediateVT, Val,
1108                           DAG.getConstant(i, PtrVT));
1109
1110  // Split the intermediate operands into legal parts.
1111  if (NumParts == NumIntermediates) {
1112    // If the register was not expanded, promote or copy the value,
1113    // as appropriate.
1114    for (unsigned i = 0; i != NumParts; ++i)
1115      getCopyToParts(DAG, Ops[i], &Parts[i], 1, PartVT);
1116  } else if (NumParts > 0) {
1117    // If the intermediate type was expanded, split each the value into
1118    // legal parts.
1119    assert(NumParts % NumIntermediates == 0 &&
1120           "Must expand into a divisible number of parts!");
1121    unsigned Factor = NumParts / NumIntermediates;
1122    for (unsigned i = 0; i != NumIntermediates; ++i)
1123      getCopyToParts(DAG, Ops[i], &Parts[i * Factor], Factor, PartVT);
1124  }
1125}
1126
1127
1128SDOperand SelectionDAGLowering::getValue(const Value *V) {
1129  SDOperand &N = NodeMap[V];
1130  if (N.Val) return N;
1131
1132  if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(V))) {
1133    MVT VT = TLI.getValueType(V->getType(), true);
1134
1135    if (ConstantInt *CI = dyn_cast<ConstantInt>(C))
1136      return N = DAG.getConstant(CI->getValue(), VT);
1137
1138    if (GlobalValue *GV = dyn_cast<GlobalValue>(C))
1139      return N = DAG.getGlobalAddress(GV, VT);
1140
1141    if (isa<ConstantPointerNull>(C))
1142      return N = DAG.getConstant(0, TLI.getPointerTy());
1143
1144    if (ConstantFP *CFP = dyn_cast<ConstantFP>(C))
1145      return N = DAG.getConstantFP(CFP->getValueAPF(), VT);
1146
1147    if (isa<UndefValue>(C) && !isa<VectorType>(V->getType()) &&
1148        !V->getType()->isAggregateType())
1149      return N = DAG.getNode(ISD::UNDEF, VT);
1150
1151    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1152      visit(CE->getOpcode(), *CE);
1153      SDOperand N1 = NodeMap[V];
1154      assert(N1.Val && "visit didn't populate the ValueMap!");
1155      return N1;
1156    }
1157
1158    if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
1159      SmallVector<SDOperand, 4> Constants;
1160      for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end();
1161           OI != OE; ++OI) {
1162        SDNode *Val = getValue(*OI).Val;
1163        for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1164          Constants.push_back(SDOperand(Val, i));
1165      }
1166      return DAG.getMergeValues(&Constants[0], Constants.size());
1167    }
1168
1169    if (const ArrayType *ATy = dyn_cast<ArrayType>(C->getType())) {
1170      assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1171             "Unknown array constant!");
1172      unsigned NumElts = ATy->getNumElements();
1173      if (NumElts == 0)
1174        return SDOperand(); // empty array
1175      MVT EltVT = TLI.getValueType(ATy->getElementType());
1176      SmallVector<SDOperand, 4> Constants(NumElts);
1177      for (unsigned i = 0, e = NumElts; i != e; ++i) {
1178        if (isa<UndefValue>(C))
1179          Constants[i] = DAG.getNode(ISD::UNDEF, EltVT);
1180        else if (EltVT.isFloatingPoint())
1181          Constants[i] = DAG.getConstantFP(0, EltVT);
1182        else
1183          Constants[i] = DAG.getConstant(0, EltVT);
1184      }
1185      return DAG.getMergeValues(&Constants[0], Constants.size());
1186    }
1187
1188    if (const StructType *STy = dyn_cast<StructType>(C->getType())) {
1189      assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1190             "Unknown struct constant!");
1191      unsigned NumElts = STy->getNumElements();
1192      if (NumElts == 0)
1193        return SDOperand(); // empty struct
1194      SmallVector<SDOperand, 4> Constants(NumElts);
1195      for (unsigned i = 0, e = NumElts; i != e; ++i) {
1196        MVT EltVT = TLI.getValueType(STy->getElementType(i));
1197        if (isa<UndefValue>(C))
1198          Constants[i] = DAG.getNode(ISD::UNDEF, EltVT);
1199        else if (EltVT.isFloatingPoint())
1200          Constants[i] = DAG.getConstantFP(0, EltVT);
1201        else
1202          Constants[i] = DAG.getConstant(0, EltVT);
1203      }
1204      return DAG.getMergeValues(&Constants[0], Constants.size());
1205    }
1206
1207    const VectorType *VecTy = cast<VectorType>(V->getType());
1208    unsigned NumElements = VecTy->getNumElements();
1209
1210    // Now that we know the number and type of the elements, get that number of
1211    // elements into the Ops array based on what kind of constant it is.
1212    SmallVector<SDOperand, 16> Ops;
1213    if (ConstantVector *CP = dyn_cast<ConstantVector>(C)) {
1214      for (unsigned i = 0; i != NumElements; ++i)
1215        Ops.push_back(getValue(CP->getOperand(i)));
1216    } else {
1217      assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1218             "Unknown vector constant!");
1219      MVT EltVT = TLI.getValueType(VecTy->getElementType());
1220
1221      SDOperand Op;
1222      if (isa<UndefValue>(C))
1223        Op = DAG.getNode(ISD::UNDEF, EltVT);
1224      else if (EltVT.isFloatingPoint())
1225        Op = DAG.getConstantFP(0, EltVT);
1226      else
1227        Op = DAG.getConstant(0, EltVT);
1228      Ops.assign(NumElements, Op);
1229    }
1230
1231    // Create a BUILD_VECTOR node.
1232    return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
1233  }
1234
1235  // If this is a static alloca, generate it as the frameindex instead of
1236  // computation.
1237  if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1238    std::map<const AllocaInst*, int>::iterator SI =
1239      FuncInfo.StaticAllocaMap.find(AI);
1240    if (SI != FuncInfo.StaticAllocaMap.end())
1241      return DAG.getFrameIndex(SI->second, TLI.getPointerTy());
1242  }
1243
1244  unsigned InReg = FuncInfo.ValueMap[V];
1245  assert(InReg && "Value not in map!");
1246
1247  RegsForValue RFV(TLI, InReg, V->getType());
1248  SDOperand Chain = DAG.getEntryNode();
1249  return RFV.getCopyFromRegs(DAG, Chain, NULL);
1250}
1251
1252
1253void SelectionDAGLowering::visitRet(ReturnInst &I) {
1254  if (I.getNumOperands() == 0) {
1255    DAG.setRoot(DAG.getNode(ISD::RET, MVT::Other, getControlRoot()));
1256    return;
1257  }
1258
1259  SmallVector<SDOperand, 8> NewValues;
1260  NewValues.push_back(getControlRoot());
1261  for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
1262    SDOperand RetOp = getValue(I.getOperand(i));
1263
1264    SmallVector<MVT, 4> ValueVTs;
1265    ComputeValueVTs(TLI, I.getOperand(i)->getType(), ValueVTs);
1266    for (unsigned j = 0, f = ValueVTs.size(); j != f; ++j) {
1267      MVT VT = ValueVTs[j];
1268
1269      // FIXME: C calling convention requires the return type to be promoted to
1270      // at least 32-bit. But this is not necessary for non-C calling conventions.
1271      if (VT.isInteger()) {
1272        MVT MinVT = TLI.getRegisterType(MVT::i32);
1273        if (VT.bitsLT(MinVT))
1274          VT = MinVT;
1275      }
1276
1277      unsigned NumParts = TLI.getNumRegisters(VT);
1278      MVT PartVT = TLI.getRegisterType(VT);
1279      SmallVector<SDOperand, 4> Parts(NumParts);
1280      ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1281
1282      const Function *F = I.getParent()->getParent();
1283      if (F->paramHasAttr(0, ParamAttr::SExt))
1284        ExtendKind = ISD::SIGN_EXTEND;
1285      else if (F->paramHasAttr(0, ParamAttr::ZExt))
1286        ExtendKind = ISD::ZERO_EXTEND;
1287
1288      getCopyToParts(DAG, SDOperand(RetOp.Val, RetOp.ResNo + j),
1289                     &Parts[0], NumParts, PartVT, ExtendKind);
1290
1291      for (unsigned i = 0; i < NumParts; ++i) {
1292        NewValues.push_back(Parts[i]);
1293        NewValues.push_back(DAG.getArgFlags(ISD::ArgFlagsTy()));
1294      }
1295    }
1296  }
1297  DAG.setRoot(DAG.getNode(ISD::RET, MVT::Other,
1298                          &NewValues[0], NewValues.size()));
1299}
1300
1301/// ExportFromCurrentBlock - If this condition isn't known to be exported from
1302/// the current basic block, add it to ValueMap now so that we'll get a
1303/// CopyTo/FromReg.
1304void SelectionDAGLowering::ExportFromCurrentBlock(Value *V) {
1305  // No need to export constants.
1306  if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
1307
1308  // Already exported?
1309  if (FuncInfo.isExportedInst(V)) return;
1310
1311  unsigned Reg = FuncInfo.InitializeRegForValue(V);
1312  CopyValueToVirtualRegister(V, Reg);
1313}
1314
1315bool SelectionDAGLowering::isExportableFromCurrentBlock(Value *V,
1316                                                    const BasicBlock *FromBB) {
1317  // The operands of the setcc have to be in this block.  We don't know
1318  // how to export them from some other block.
1319  if (Instruction *VI = dyn_cast<Instruction>(V)) {
1320    // Can export from current BB.
1321    if (VI->getParent() == FromBB)
1322      return true;
1323
1324    // Is already exported, noop.
1325    return FuncInfo.isExportedInst(V);
1326  }
1327
1328  // If this is an argument, we can export it if the BB is the entry block or
1329  // if it is already exported.
1330  if (isa<Argument>(V)) {
1331    if (FromBB == &FromBB->getParent()->getEntryBlock())
1332      return true;
1333
1334    // Otherwise, can only export this if it is already exported.
1335    return FuncInfo.isExportedInst(V);
1336  }
1337
1338  // Otherwise, constants can always be exported.
1339  return true;
1340}
1341
1342static bool InBlock(const Value *V, const BasicBlock *BB) {
1343  if (const Instruction *I = dyn_cast<Instruction>(V))
1344    return I->getParent() == BB;
1345  return true;
1346}
1347
1348/// FindMergedConditions - If Cond is an expression like
1349void SelectionDAGLowering::FindMergedConditions(Value *Cond,
1350                                                MachineBasicBlock *TBB,
1351                                                MachineBasicBlock *FBB,
1352                                                MachineBasicBlock *CurBB,
1353                                                unsigned Opc) {
1354  // If this node is not part of the or/and tree, emit it as a branch.
1355  Instruction *BOp = dyn_cast<Instruction>(Cond);
1356
1357  if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
1358      (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() ||
1359      BOp->getParent() != CurBB->getBasicBlock() ||
1360      !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
1361      !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
1362    const BasicBlock *BB = CurBB->getBasicBlock();
1363
1364    // If the leaf of the tree is a comparison, merge the condition into
1365    // the caseblock.
1366    if ((isa<ICmpInst>(Cond) || isa<FCmpInst>(Cond)) &&
1367        // The operands of the cmp have to be in this block.  We don't know
1368        // how to export them from some other block.  If this is the first block
1369        // of the sequence, no exporting is needed.
1370        (CurBB == CurMBB ||
1371         (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
1372          isExportableFromCurrentBlock(BOp->getOperand(1), BB)))) {
1373      BOp = cast<Instruction>(Cond);
1374      ISD::CondCode Condition;
1375      if (ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
1376        switch (IC->getPredicate()) {
1377        default: assert(0 && "Unknown icmp predicate opcode!");
1378        case ICmpInst::ICMP_EQ:  Condition = ISD::SETEQ;  break;
1379        case ICmpInst::ICMP_NE:  Condition = ISD::SETNE;  break;
1380        case ICmpInst::ICMP_SLE: Condition = ISD::SETLE;  break;
1381        case ICmpInst::ICMP_ULE: Condition = ISD::SETULE; break;
1382        case ICmpInst::ICMP_SGE: Condition = ISD::SETGE;  break;
1383        case ICmpInst::ICMP_UGE: Condition = ISD::SETUGE; break;
1384        case ICmpInst::ICMP_SLT: Condition = ISD::SETLT;  break;
1385        case ICmpInst::ICMP_ULT: Condition = ISD::SETULT; break;
1386        case ICmpInst::ICMP_SGT: Condition = ISD::SETGT;  break;
1387        case ICmpInst::ICMP_UGT: Condition = ISD::SETUGT; break;
1388        }
1389      } else if (FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) {
1390        ISD::CondCode FPC, FOC;
1391        switch (FC->getPredicate()) {
1392        default: assert(0 && "Unknown fcmp predicate opcode!");
1393        case FCmpInst::FCMP_FALSE: FOC = FPC = ISD::SETFALSE; break;
1394        case FCmpInst::FCMP_OEQ:   FOC = ISD::SETEQ; FPC = ISD::SETOEQ; break;
1395        case FCmpInst::FCMP_OGT:   FOC = ISD::SETGT; FPC = ISD::SETOGT; break;
1396        case FCmpInst::FCMP_OGE:   FOC = ISD::SETGE; FPC = ISD::SETOGE; break;
1397        case FCmpInst::FCMP_OLT:   FOC = ISD::SETLT; FPC = ISD::SETOLT; break;
1398        case FCmpInst::FCMP_OLE:   FOC = ISD::SETLE; FPC = ISD::SETOLE; break;
1399        case FCmpInst::FCMP_ONE:   FOC = ISD::SETNE; FPC = ISD::SETONE; break;
1400        case FCmpInst::FCMP_ORD:   FOC = FPC = ISD::SETO;   break;
1401        case FCmpInst::FCMP_UNO:   FOC = FPC = ISD::SETUO;  break;
1402        case FCmpInst::FCMP_UEQ:   FOC = ISD::SETEQ; FPC = ISD::SETUEQ; break;
1403        case FCmpInst::FCMP_UGT:   FOC = ISD::SETGT; FPC = ISD::SETUGT; break;
1404        case FCmpInst::FCMP_UGE:   FOC = ISD::SETGE; FPC = ISD::SETUGE; break;
1405        case FCmpInst::FCMP_ULT:   FOC = ISD::SETLT; FPC = ISD::SETULT; break;
1406        case FCmpInst::FCMP_ULE:   FOC = ISD::SETLE; FPC = ISD::SETULE; break;
1407        case FCmpInst::FCMP_UNE:   FOC = ISD::SETNE; FPC = ISD::SETUNE; break;
1408        case FCmpInst::FCMP_TRUE:  FOC = FPC = ISD::SETTRUE; break;
1409        }
1410        if (FiniteOnlyFPMath())
1411          Condition = FOC;
1412        else
1413          Condition = FPC;
1414      } else {
1415        Condition = ISD::SETEQ; // silence warning.
1416        assert(0 && "Unknown compare instruction");
1417      }
1418
1419      SelectionDAGISel::CaseBlock CB(Condition, BOp->getOperand(0),
1420                                     BOp->getOperand(1), NULL, TBB, FBB, CurBB);
1421      SwitchCases.push_back(CB);
1422      return;
1423    }
1424
1425    // Create a CaseBlock record representing this branch.
1426    SelectionDAGISel::CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(),
1427                                   NULL, TBB, FBB, CurBB);
1428    SwitchCases.push_back(CB);
1429    return;
1430  }
1431
1432
1433  //  Create TmpBB after CurBB.
1434  MachineFunction::iterator BBI = CurBB;
1435  MachineBasicBlock *TmpBB = new MachineBasicBlock(CurBB->getBasicBlock());
1436  CurBB->getParent()->getBasicBlockList().insert(++BBI, TmpBB);
1437
1438  if (Opc == Instruction::Or) {
1439    // Codegen X | Y as:
1440    //   jmp_if_X TBB
1441    //   jmp TmpBB
1442    // TmpBB:
1443    //   jmp_if_Y TBB
1444    //   jmp FBB
1445    //
1446
1447    // Emit the LHS condition.
1448    FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, Opc);
1449
1450    // Emit the RHS condition into TmpBB.
1451    FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, Opc);
1452  } else {
1453    assert(Opc == Instruction::And && "Unknown merge op!");
1454    // Codegen X & Y as:
1455    //   jmp_if_X TmpBB
1456    //   jmp FBB
1457    // TmpBB:
1458    //   jmp_if_Y TBB
1459    //   jmp FBB
1460    //
1461    //  This requires creation of TmpBB after CurBB.
1462
1463    // Emit the LHS condition.
1464    FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, Opc);
1465
1466    // Emit the RHS condition into TmpBB.
1467    FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, Opc);
1468  }
1469}
1470
1471/// If the set of cases should be emitted as a series of branches, return true.
1472/// If we should emit this as a bunch of and/or'd together conditions, return
1473/// false.
1474static bool
1475ShouldEmitAsBranches(const std::vector<SelectionDAGISel::CaseBlock> &Cases) {
1476  if (Cases.size() != 2) return true;
1477
1478  // If this is two comparisons of the same values or'd or and'd together, they
1479  // will get folded into a single comparison, so don't emit two blocks.
1480  if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
1481       Cases[0].CmpRHS == Cases[1].CmpRHS) ||
1482      (Cases[0].CmpRHS == Cases[1].CmpLHS &&
1483       Cases[0].CmpLHS == Cases[1].CmpRHS)) {
1484    return false;
1485  }
1486
1487  return true;
1488}
1489
1490void SelectionDAGLowering::visitBr(BranchInst &I) {
1491  // Update machine-CFG edges.
1492  MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
1493
1494  // Figure out which block is immediately after the current one.
1495  MachineBasicBlock *NextBlock = 0;
1496  MachineFunction::iterator BBI = CurMBB;
1497  if (++BBI != CurMBB->getParent()->end())
1498    NextBlock = BBI;
1499
1500  if (I.isUnconditional()) {
1501    // Update machine-CFG edges.
1502    CurMBB->addSuccessor(Succ0MBB);
1503
1504    // If this is not a fall-through branch, emit the branch.
1505    if (Succ0MBB != NextBlock)
1506      DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, getControlRoot(),
1507                              DAG.getBasicBlock(Succ0MBB)));
1508    return;
1509  }
1510
1511  // If this condition is one of the special cases we handle, do special stuff
1512  // now.
1513  Value *CondVal = I.getCondition();
1514  MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
1515
1516  // If this is a series of conditions that are or'd or and'd together, emit
1517  // this as a sequence of branches instead of setcc's with and/or operations.
1518  // For example, instead of something like:
1519  //     cmp A, B
1520  //     C = seteq
1521  //     cmp D, E
1522  //     F = setle
1523  //     or C, F
1524  //     jnz foo
1525  // Emit:
1526  //     cmp A, B
1527  //     je foo
1528  //     cmp D, E
1529  //     jle foo
1530  //
1531  if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
1532    if (BOp->hasOneUse() &&
1533        (BOp->getOpcode() == Instruction::And ||
1534         BOp->getOpcode() == Instruction::Or)) {
1535      FindMergedConditions(BOp, Succ0MBB, Succ1MBB, CurMBB, BOp->getOpcode());
1536      // If the compares in later blocks need to use values not currently
1537      // exported from this block, export them now.  This block should always
1538      // be the first entry.
1539      assert(SwitchCases[0].ThisBB == CurMBB && "Unexpected lowering!");
1540
1541      // Allow some cases to be rejected.
1542      if (ShouldEmitAsBranches(SwitchCases)) {
1543        for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
1544          ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
1545          ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
1546        }
1547
1548        // Emit the branch for this block.
1549        visitSwitchCase(SwitchCases[0]);
1550        SwitchCases.erase(SwitchCases.begin());
1551        return;
1552      }
1553
1554      // Okay, we decided not to do this, remove any inserted MBB's and clear
1555      // SwitchCases.
1556      for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
1557        CurMBB->getParent()->getBasicBlockList().erase(SwitchCases[i].ThisBB);
1558
1559      SwitchCases.clear();
1560    }
1561  }
1562
1563  // Create a CaseBlock record representing this branch.
1564  SelectionDAGISel::CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(),
1565                                 NULL, Succ0MBB, Succ1MBB, CurMBB);
1566  // Use visitSwitchCase to actually insert the fast branch sequence for this
1567  // cond branch.
1568  visitSwitchCase(CB);
1569}
1570
1571/// visitSwitchCase - Emits the necessary code to represent a single node in
1572/// the binary search tree resulting from lowering a switch instruction.
1573void SelectionDAGLowering::visitSwitchCase(SelectionDAGISel::CaseBlock &CB) {
1574  SDOperand Cond;
1575  SDOperand CondLHS = getValue(CB.CmpLHS);
1576
1577  // Build the setcc now.
1578  if (CB.CmpMHS == NULL) {
1579    // Fold "(X == true)" to X and "(X == false)" to !X to
1580    // handle common cases produced by branch lowering.
1581    if (CB.CmpRHS == ConstantInt::getTrue() && CB.CC == ISD::SETEQ)
1582      Cond = CondLHS;
1583    else if (CB.CmpRHS == ConstantInt::getFalse() && CB.CC == ISD::SETEQ) {
1584      SDOperand True = DAG.getConstant(1, CondLHS.getValueType());
1585      Cond = DAG.getNode(ISD::XOR, CondLHS.getValueType(), CondLHS, True);
1586    } else
1587      Cond = DAG.getSetCC(MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
1588  } else {
1589    assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
1590
1591    uint64_t Low = cast<ConstantInt>(CB.CmpLHS)->getSExtValue();
1592    uint64_t High  = cast<ConstantInt>(CB.CmpRHS)->getSExtValue();
1593
1594    SDOperand CmpOp = getValue(CB.CmpMHS);
1595    MVT VT = CmpOp.getValueType();
1596
1597    if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
1598      Cond = DAG.getSetCC(MVT::i1, CmpOp, DAG.getConstant(High, VT), ISD::SETLE);
1599    } else {
1600      SDOperand SUB = DAG.getNode(ISD::SUB, VT, CmpOp, DAG.getConstant(Low, VT));
1601      Cond = DAG.getSetCC(MVT::i1, SUB,
1602                          DAG.getConstant(High-Low, VT), ISD::SETULE);
1603    }
1604  }
1605
1606  // Update successor info
1607  CurMBB->addSuccessor(CB.TrueBB);
1608  CurMBB->addSuccessor(CB.FalseBB);
1609
1610  // Set NextBlock to be the MBB immediately after the current one, if any.
1611  // This is used to avoid emitting unnecessary branches to the next block.
1612  MachineBasicBlock *NextBlock = 0;
1613  MachineFunction::iterator BBI = CurMBB;
1614  if (++BBI != CurMBB->getParent()->end())
1615    NextBlock = BBI;
1616
1617  // If the lhs block is the next block, invert the condition so that we can
1618  // fall through to the lhs instead of the rhs block.
1619  if (CB.TrueBB == NextBlock) {
1620    std::swap(CB.TrueBB, CB.FalseBB);
1621    SDOperand True = DAG.getConstant(1, Cond.getValueType());
1622    Cond = DAG.getNode(ISD::XOR, Cond.getValueType(), Cond, True);
1623  }
1624  SDOperand BrCond = DAG.getNode(ISD::BRCOND, MVT::Other, getControlRoot(), Cond,
1625                                 DAG.getBasicBlock(CB.TrueBB));
1626  if (CB.FalseBB == NextBlock)
1627    DAG.setRoot(BrCond);
1628  else
1629    DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, BrCond,
1630                            DAG.getBasicBlock(CB.FalseBB)));
1631}
1632
1633/// visitJumpTable - Emit JumpTable node in the current MBB
1634void SelectionDAGLowering::visitJumpTable(SelectionDAGISel::JumpTable &JT) {
1635  // Emit the code for the jump table
1636  assert(JT.Reg != -1U && "Should lower JT Header first!");
1637  MVT PTy = TLI.getPointerTy();
1638  SDOperand Index = DAG.getCopyFromReg(getControlRoot(), JT.Reg, PTy);
1639  SDOperand Table = DAG.getJumpTable(JT.JTI, PTy);
1640  DAG.setRoot(DAG.getNode(ISD::BR_JT, MVT::Other, Index.getValue(1),
1641                          Table, Index));
1642  return;
1643}
1644
1645/// visitJumpTableHeader - This function emits necessary code to produce index
1646/// in the JumpTable from switch case.
1647void SelectionDAGLowering::visitJumpTableHeader(SelectionDAGISel::JumpTable &JT,
1648                                         SelectionDAGISel::JumpTableHeader &JTH) {
1649  // Subtract the lowest switch case value from the value being switched on
1650  // and conditional branch to default mbb if the result is greater than the
1651  // difference between smallest and largest cases.
1652  SDOperand SwitchOp = getValue(JTH.SValue);
1653  MVT VT = SwitchOp.getValueType();
1654  SDOperand SUB = DAG.getNode(ISD::SUB, VT, SwitchOp,
1655                              DAG.getConstant(JTH.First, VT));
1656
1657  // The SDNode we just created, which holds the value being switched on
1658  // minus the the smallest case value, needs to be copied to a virtual
1659  // register so it can be used as an index into the jump table in a
1660  // subsequent basic block.  This value may be smaller or larger than the
1661  // target's pointer type, and therefore require extension or truncating.
1662  if (VT.bitsGT(TLI.getPointerTy()))
1663    SwitchOp = DAG.getNode(ISD::TRUNCATE, TLI.getPointerTy(), SUB);
1664  else
1665    SwitchOp = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(), SUB);
1666
1667  unsigned JumpTableReg = FuncInfo.MakeReg(TLI.getPointerTy());
1668  SDOperand CopyTo = DAG.getCopyToReg(getControlRoot(), JumpTableReg, SwitchOp);
1669  JT.Reg = JumpTableReg;
1670
1671  // Emit the range check for the jump table, and branch to the default
1672  // block for the switch statement if the value being switched on exceeds
1673  // the largest case in the switch.
1674  SDOperand CMP = DAG.getSetCC(TLI.getSetCCResultType(SUB), SUB,
1675                               DAG.getConstant(JTH.Last-JTH.First,VT),
1676                               ISD::SETUGT);
1677
1678  // Set NextBlock to be the MBB immediately after the current one, if any.
1679  // This is used to avoid emitting unnecessary branches to the next block.
1680  MachineBasicBlock *NextBlock = 0;
1681  MachineFunction::iterator BBI = CurMBB;
1682  if (++BBI != CurMBB->getParent()->end())
1683    NextBlock = BBI;
1684
1685  SDOperand BrCond = DAG.getNode(ISD::BRCOND, MVT::Other, CopyTo, CMP,
1686                                 DAG.getBasicBlock(JT.Default));
1687
1688  if (JT.MBB == NextBlock)
1689    DAG.setRoot(BrCond);
1690  else
1691    DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, BrCond,
1692                            DAG.getBasicBlock(JT.MBB)));
1693
1694  return;
1695}
1696
1697/// visitBitTestHeader - This function emits necessary code to produce value
1698/// suitable for "bit tests"
1699void SelectionDAGLowering::visitBitTestHeader(SelectionDAGISel::BitTestBlock &B) {
1700  // Subtract the minimum value
1701  SDOperand SwitchOp = getValue(B.SValue);
1702  MVT VT = SwitchOp.getValueType();
1703  SDOperand SUB = DAG.getNode(ISD::SUB, VT, SwitchOp,
1704                              DAG.getConstant(B.First, VT));
1705
1706  // Check range
1707  SDOperand RangeCmp = DAG.getSetCC(TLI.getSetCCResultType(SUB), SUB,
1708                                    DAG.getConstant(B.Range, VT),
1709                                    ISD::SETUGT);
1710
1711  SDOperand ShiftOp;
1712  if (VT.bitsGT(TLI.getShiftAmountTy()))
1713    ShiftOp = DAG.getNode(ISD::TRUNCATE, TLI.getShiftAmountTy(), SUB);
1714  else
1715    ShiftOp = DAG.getNode(ISD::ZERO_EXTEND, TLI.getShiftAmountTy(), SUB);
1716
1717  // Make desired shift
1718  SDOperand SwitchVal = DAG.getNode(ISD::SHL, TLI.getPointerTy(),
1719                                    DAG.getConstant(1, TLI.getPointerTy()),
1720                                    ShiftOp);
1721
1722  unsigned SwitchReg = FuncInfo.MakeReg(TLI.getPointerTy());
1723  SDOperand CopyTo = DAG.getCopyToReg(getControlRoot(), SwitchReg, SwitchVal);
1724  B.Reg = SwitchReg;
1725
1726  // Set NextBlock to be the MBB immediately after the current one, if any.
1727  // This is used to avoid emitting unnecessary branches to the next block.
1728  MachineBasicBlock *NextBlock = 0;
1729  MachineFunction::iterator BBI = CurMBB;
1730  if (++BBI != CurMBB->getParent()->end())
1731    NextBlock = BBI;
1732
1733  MachineBasicBlock* MBB = B.Cases[0].ThisBB;
1734
1735  CurMBB->addSuccessor(B.Default);
1736  CurMBB->addSuccessor(MBB);
1737
1738  SDOperand BrRange = DAG.getNode(ISD::BRCOND, MVT::Other, CopyTo, RangeCmp,
1739                                  DAG.getBasicBlock(B.Default));
1740
1741  if (MBB == NextBlock)
1742    DAG.setRoot(BrRange);
1743  else
1744    DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, CopyTo,
1745                            DAG.getBasicBlock(MBB)));
1746
1747  return;
1748}
1749
1750/// visitBitTestCase - this function produces one "bit test"
1751void SelectionDAGLowering::visitBitTestCase(MachineBasicBlock* NextMBB,
1752                                            unsigned Reg,
1753                                            SelectionDAGISel::BitTestCase &B) {
1754  // Emit bit tests and jumps
1755  SDOperand SwitchVal = DAG.getCopyFromReg(getControlRoot(), Reg,
1756                                           TLI.getPointerTy());
1757
1758  SDOperand AndOp = DAG.getNode(ISD::AND, TLI.getPointerTy(), SwitchVal,
1759                                DAG.getConstant(B.Mask, TLI.getPointerTy()));
1760  SDOperand AndCmp = DAG.getSetCC(TLI.getSetCCResultType(AndOp), AndOp,
1761                                  DAG.getConstant(0, TLI.getPointerTy()),
1762                                  ISD::SETNE);
1763
1764  CurMBB->addSuccessor(B.TargetBB);
1765  CurMBB->addSuccessor(NextMBB);
1766
1767  SDOperand BrAnd = DAG.getNode(ISD::BRCOND, MVT::Other, getControlRoot(),
1768                                AndCmp, DAG.getBasicBlock(B.TargetBB));
1769
1770  // Set NextBlock to be the MBB immediately after the current one, if any.
1771  // This is used to avoid emitting unnecessary branches to the next block.
1772  MachineBasicBlock *NextBlock = 0;
1773  MachineFunction::iterator BBI = CurMBB;
1774  if (++BBI != CurMBB->getParent()->end())
1775    NextBlock = BBI;
1776
1777  if (NextMBB == NextBlock)
1778    DAG.setRoot(BrAnd);
1779  else
1780    DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, BrAnd,
1781                            DAG.getBasicBlock(NextMBB)));
1782
1783  return;
1784}
1785
1786void SelectionDAGLowering::visitInvoke(InvokeInst &I) {
1787  // Retrieve successors.
1788  MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
1789  MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)];
1790
1791  if (isa<InlineAsm>(I.getCalledValue()))
1792    visitInlineAsm(&I);
1793  else
1794    LowerCallTo(&I, getValue(I.getOperand(0)), false, LandingPad);
1795
1796  // If the value of the invoke is used outside of its defining block, make it
1797  // available as a virtual register.
1798  if (!I.use_empty()) {
1799    DenseMap<const Value*, unsigned>::iterator VMI = FuncInfo.ValueMap.find(&I);
1800    if (VMI != FuncInfo.ValueMap.end())
1801      CopyValueToVirtualRegister(&I, VMI->second);
1802  }
1803
1804  // Update successor info
1805  CurMBB->addSuccessor(Return);
1806  CurMBB->addSuccessor(LandingPad);
1807
1808  // Drop into normal successor.
1809  DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, getControlRoot(),
1810                          DAG.getBasicBlock(Return)));
1811}
1812
1813void SelectionDAGLowering::visitUnwind(UnwindInst &I) {
1814}
1815
1816/// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for
1817/// small case ranges).
1818bool SelectionDAGLowering::handleSmallSwitchRange(CaseRec& CR,
1819                                                  CaseRecVector& WorkList,
1820                                                  Value* SV,
1821                                                  MachineBasicBlock* Default) {
1822  Case& BackCase  = *(CR.Range.second-1);
1823
1824  // Size is the number of Cases represented by this range.
1825  unsigned Size = CR.Range.second - CR.Range.first;
1826  if (Size > 3)
1827    return false;
1828
1829  // Get the MachineFunction which holds the current MBB.  This is used when
1830  // inserting any additional MBBs necessary to represent the switch.
1831  MachineFunction *CurMF = CurMBB->getParent();
1832
1833  // Figure out which block is immediately after the current one.
1834  MachineBasicBlock *NextBlock = 0;
1835  MachineFunction::iterator BBI = CR.CaseBB;
1836
1837  if (++BBI != CurMBB->getParent()->end())
1838    NextBlock = BBI;
1839
1840  // TODO: If any two of the cases has the same destination, and if one value
1841  // is the same as the other, but has one bit unset that the other has set,
1842  // use bit manipulation to do two compares at once.  For example:
1843  // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
1844
1845  // Rearrange the case blocks so that the last one falls through if possible.
1846  if (NextBlock && Default != NextBlock && BackCase.BB != NextBlock) {
1847    // The last case block won't fall through into 'NextBlock' if we emit the
1848    // branches in this order.  See if rearranging a case value would help.
1849    for (CaseItr I = CR.Range.first, E = CR.Range.second-1; I != E; ++I) {
1850      if (I->BB == NextBlock) {
1851        std::swap(*I, BackCase);
1852        break;
1853      }
1854    }
1855  }
1856
1857  // Create a CaseBlock record representing a conditional branch to
1858  // the Case's target mbb if the value being switched on SV is equal
1859  // to C.
1860  MachineBasicBlock *CurBlock = CR.CaseBB;
1861  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) {
1862    MachineBasicBlock *FallThrough;
1863    if (I != E-1) {
1864      FallThrough = new MachineBasicBlock(CurBlock->getBasicBlock());
1865      CurMF->getBasicBlockList().insert(BBI, FallThrough);
1866    } else {
1867      // If the last case doesn't match, go to the default block.
1868      FallThrough = Default;
1869    }
1870
1871    Value *RHS, *LHS, *MHS;
1872    ISD::CondCode CC;
1873    if (I->High == I->Low) {
1874      // This is just small small case range :) containing exactly 1 case
1875      CC = ISD::SETEQ;
1876      LHS = SV; RHS = I->High; MHS = NULL;
1877    } else {
1878      CC = ISD::SETLE;
1879      LHS = I->Low; MHS = SV; RHS = I->High;
1880    }
1881    SelectionDAGISel::CaseBlock CB(CC, LHS, RHS, MHS,
1882                                   I->BB, FallThrough, CurBlock);
1883
1884    // If emitting the first comparison, just call visitSwitchCase to emit the
1885    // code into the current block.  Otherwise, push the CaseBlock onto the
1886    // vector to be later processed by SDISel, and insert the node's MBB
1887    // before the next MBB.
1888    if (CurBlock == CurMBB)
1889      visitSwitchCase(CB);
1890    else
1891      SwitchCases.push_back(CB);
1892
1893    CurBlock = FallThrough;
1894  }
1895
1896  return true;
1897}
1898
1899static inline bool areJTsAllowed(const TargetLowering &TLI) {
1900  return (TLI.isOperationLegal(ISD::BR_JT, MVT::Other) ||
1901          TLI.isOperationLegal(ISD::BRIND, MVT::Other));
1902}
1903
1904/// handleJTSwitchCase - Emit jumptable for current switch case range
1905bool SelectionDAGLowering::handleJTSwitchCase(CaseRec& CR,
1906                                              CaseRecVector& WorkList,
1907                                              Value* SV,
1908                                              MachineBasicBlock* Default) {
1909  Case& FrontCase = *CR.Range.first;
1910  Case& BackCase  = *(CR.Range.second-1);
1911
1912  int64_t First = cast<ConstantInt>(FrontCase.Low)->getSExtValue();
1913  int64_t Last  = cast<ConstantInt>(BackCase.High)->getSExtValue();
1914
1915  uint64_t TSize = 0;
1916  for (CaseItr I = CR.Range.first, E = CR.Range.second;
1917       I!=E; ++I)
1918    TSize += I->size();
1919
1920  if (!areJTsAllowed(TLI) || TSize <= 3)
1921    return false;
1922
1923  double Density = (double)TSize / (double)((Last - First) + 1ULL);
1924  if (Density < 0.4)
1925    return false;
1926
1927  DOUT << "Lowering jump table\n"
1928       << "First entry: " << First << ". Last entry: " << Last << "\n"
1929       << "Size: " << TSize << ". Density: " << Density << "\n\n";
1930
1931  // Get the MachineFunction which holds the current MBB.  This is used when
1932  // inserting any additional MBBs necessary to represent the switch.
1933  MachineFunction *CurMF = CurMBB->getParent();
1934
1935  // Figure out which block is immediately after the current one.
1936  MachineBasicBlock *NextBlock = 0;
1937  MachineFunction::iterator BBI = CR.CaseBB;
1938
1939  if (++BBI != CurMBB->getParent()->end())
1940    NextBlock = BBI;
1941
1942  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
1943
1944  // Create a new basic block to hold the code for loading the address
1945  // of the jump table, and jumping to it.  Update successor information;
1946  // we will either branch to the default case for the switch, or the jump
1947  // table.
1948  MachineBasicBlock *JumpTableBB = new MachineBasicBlock(LLVMBB);
1949  CurMF->getBasicBlockList().insert(BBI, JumpTableBB);
1950  CR.CaseBB->addSuccessor(Default);
1951  CR.CaseBB->addSuccessor(JumpTableBB);
1952
1953  // Build a vector of destination BBs, corresponding to each target
1954  // of the jump table. If the value of the jump table slot corresponds to
1955  // a case statement, push the case's BB onto the vector, otherwise, push
1956  // the default BB.
1957  std::vector<MachineBasicBlock*> DestBBs;
1958  int64_t TEI = First;
1959  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) {
1960    int64_t Low = cast<ConstantInt>(I->Low)->getSExtValue();
1961    int64_t High = cast<ConstantInt>(I->High)->getSExtValue();
1962
1963    if ((Low <= TEI) && (TEI <= High)) {
1964      DestBBs.push_back(I->BB);
1965      if (TEI==High)
1966        ++I;
1967    } else {
1968      DestBBs.push_back(Default);
1969    }
1970  }
1971
1972  // Update successor info. Add one edge to each unique successor.
1973  BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs());
1974  for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(),
1975         E = DestBBs.end(); I != E; ++I) {
1976    if (!SuccsHandled[(*I)->getNumber()]) {
1977      SuccsHandled[(*I)->getNumber()] = true;
1978      JumpTableBB->addSuccessor(*I);
1979    }
1980  }
1981
1982  // Create a jump table index for this jump table, or return an existing
1983  // one.
1984  unsigned JTI = CurMF->getJumpTableInfo()->getJumpTableIndex(DestBBs);
1985
1986  // Set the jump table information so that we can codegen it as a second
1987  // MachineBasicBlock
1988  SelectionDAGISel::JumpTable JT(-1U, JTI, JumpTableBB, Default);
1989  SelectionDAGISel::JumpTableHeader JTH(First, Last, SV, CR.CaseBB,
1990                                        (CR.CaseBB == CurMBB));
1991  if (CR.CaseBB == CurMBB)
1992    visitJumpTableHeader(JT, JTH);
1993
1994  JTCases.push_back(SelectionDAGISel::JumpTableBlock(JTH, JT));
1995
1996  return true;
1997}
1998
1999/// handleBTSplitSwitchCase - emit comparison and split binary search tree into
2000/// 2 subtrees.
2001bool SelectionDAGLowering::handleBTSplitSwitchCase(CaseRec& CR,
2002                                                   CaseRecVector& WorkList,
2003                                                   Value* SV,
2004                                                   MachineBasicBlock* Default) {
2005  // Get the MachineFunction which holds the current MBB.  This is used when
2006  // inserting any additional MBBs necessary to represent the switch.
2007  MachineFunction *CurMF = CurMBB->getParent();
2008
2009  // Figure out which block is immediately after the current one.
2010  MachineBasicBlock *NextBlock = 0;
2011  MachineFunction::iterator BBI = CR.CaseBB;
2012
2013  if (++BBI != CurMBB->getParent()->end())
2014    NextBlock = BBI;
2015
2016  Case& FrontCase = *CR.Range.first;
2017  Case& BackCase  = *(CR.Range.second-1);
2018  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2019
2020  // Size is the number of Cases represented by this range.
2021  unsigned Size = CR.Range.second - CR.Range.first;
2022
2023  int64_t First = cast<ConstantInt>(FrontCase.Low)->getSExtValue();
2024  int64_t Last  = cast<ConstantInt>(BackCase.High)->getSExtValue();
2025  double FMetric = 0;
2026  CaseItr Pivot = CR.Range.first + Size/2;
2027
2028  // Select optimal pivot, maximizing sum density of LHS and RHS. This will
2029  // (heuristically) allow us to emit JumpTable's later.
2030  uint64_t TSize = 0;
2031  for (CaseItr I = CR.Range.first, E = CR.Range.second;
2032       I!=E; ++I)
2033    TSize += I->size();
2034
2035  uint64_t LSize = FrontCase.size();
2036  uint64_t RSize = TSize-LSize;
2037  DOUT << "Selecting best pivot: \n"
2038       << "First: " << First << ", Last: " << Last <<"\n"
2039       << "LSize: " << LSize << ", RSize: " << RSize << "\n";
2040  for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second;
2041       J!=E; ++I, ++J) {
2042    int64_t LEnd = cast<ConstantInt>(I->High)->getSExtValue();
2043    int64_t RBegin = cast<ConstantInt>(J->Low)->getSExtValue();
2044    assert((RBegin-LEnd>=1) && "Invalid case distance");
2045    double LDensity = (double)LSize / (double)((LEnd - First) + 1ULL);
2046    double RDensity = (double)RSize / (double)((Last - RBegin) + 1ULL);
2047    double Metric = Log2_64(RBegin-LEnd)*(LDensity+RDensity);
2048    // Should always split in some non-trivial place
2049    DOUT <<"=>Step\n"
2050         << "LEnd: " << LEnd << ", RBegin: " << RBegin << "\n"
2051         << "LDensity: " << LDensity << ", RDensity: " << RDensity << "\n"
2052         << "Metric: " << Metric << "\n";
2053    if (FMetric < Metric) {
2054      Pivot = J;
2055      FMetric = Metric;
2056      DOUT << "Current metric set to: " << FMetric << "\n";
2057    }
2058
2059    LSize += J->size();
2060    RSize -= J->size();
2061  }
2062  if (areJTsAllowed(TLI)) {
2063    // If our case is dense we *really* should handle it earlier!
2064    assert((FMetric > 0) && "Should handle dense range earlier!");
2065  } else {
2066    Pivot = CR.Range.first + Size/2;
2067  }
2068
2069  CaseRange LHSR(CR.Range.first, Pivot);
2070  CaseRange RHSR(Pivot, CR.Range.second);
2071  Constant *C = Pivot->Low;
2072  MachineBasicBlock *FalseBB = 0, *TrueBB = 0;
2073
2074  // We know that we branch to the LHS if the Value being switched on is
2075  // less than the Pivot value, C.  We use this to optimize our binary
2076  // tree a bit, by recognizing that if SV is greater than or equal to the
2077  // LHS's Case Value, and that Case Value is exactly one less than the
2078  // Pivot's Value, then we can branch directly to the LHS's Target,
2079  // rather than creating a leaf node for it.
2080  if ((LHSR.second - LHSR.first) == 1 &&
2081      LHSR.first->High == CR.GE &&
2082      cast<ConstantInt>(C)->getSExtValue() ==
2083      (cast<ConstantInt>(CR.GE)->getSExtValue() + 1LL)) {
2084    TrueBB = LHSR.first->BB;
2085  } else {
2086    TrueBB = new MachineBasicBlock(LLVMBB);
2087    CurMF->getBasicBlockList().insert(BBI, TrueBB);
2088    WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR));
2089  }
2090
2091  // Similar to the optimization above, if the Value being switched on is
2092  // known to be less than the Constant CR.LT, and the current Case Value
2093  // is CR.LT - 1, then we can branch directly to the target block for
2094  // the current Case Value, rather than emitting a RHS leaf node for it.
2095  if ((RHSR.second - RHSR.first) == 1 && CR.LT &&
2096      cast<ConstantInt>(RHSR.first->Low)->getSExtValue() ==
2097      (cast<ConstantInt>(CR.LT)->getSExtValue() - 1LL)) {
2098    FalseBB = RHSR.first->BB;
2099  } else {
2100    FalseBB = new MachineBasicBlock(LLVMBB);
2101    CurMF->getBasicBlockList().insert(BBI, FalseBB);
2102    WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR));
2103  }
2104
2105  // Create a CaseBlock record representing a conditional branch to
2106  // the LHS node if the value being switched on SV is less than C.
2107  // Otherwise, branch to LHS.
2108  SelectionDAGISel::CaseBlock CB(ISD::SETLT, SV, C, NULL,
2109                                 TrueBB, FalseBB, CR.CaseBB);
2110
2111  if (CR.CaseBB == CurMBB)
2112    visitSwitchCase(CB);
2113  else
2114    SwitchCases.push_back(CB);
2115
2116  return true;
2117}
2118
2119/// handleBitTestsSwitchCase - if current case range has few destination and
2120/// range span less, than machine word bitwidth, encode case range into series
2121/// of masks and emit bit tests with these masks.
2122bool SelectionDAGLowering::handleBitTestsSwitchCase(CaseRec& CR,
2123                                                    CaseRecVector& WorkList,
2124                                                    Value* SV,
2125                                                    MachineBasicBlock* Default){
2126  unsigned IntPtrBits = TLI.getPointerTy().getSizeInBits();
2127
2128  Case& FrontCase = *CR.Range.first;
2129  Case& BackCase  = *(CR.Range.second-1);
2130
2131  // Get the MachineFunction which holds the current MBB.  This is used when
2132  // inserting any additional MBBs necessary to represent the switch.
2133  MachineFunction *CurMF = CurMBB->getParent();
2134
2135  unsigned numCmps = 0;
2136  for (CaseItr I = CR.Range.first, E = CR.Range.second;
2137       I!=E; ++I) {
2138    // Single case counts one, case range - two.
2139    if (I->Low == I->High)
2140      numCmps +=1;
2141    else
2142      numCmps +=2;
2143  }
2144
2145  // Count unique destinations
2146  SmallSet<MachineBasicBlock*, 4> Dests;
2147  for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
2148    Dests.insert(I->BB);
2149    if (Dests.size() > 3)
2150      // Don't bother the code below, if there are too much unique destinations
2151      return false;
2152  }
2153  DOUT << "Total number of unique destinations: " << Dests.size() << "\n"
2154       << "Total number of comparisons: " << numCmps << "\n";
2155
2156  // Compute span of values.
2157  Constant* minValue = FrontCase.Low;
2158  Constant* maxValue = BackCase.High;
2159  uint64_t range = cast<ConstantInt>(maxValue)->getSExtValue() -
2160                   cast<ConstantInt>(minValue)->getSExtValue();
2161  DOUT << "Compare range: " << range << "\n"
2162       << "Low bound: " << cast<ConstantInt>(minValue)->getSExtValue() << "\n"
2163       << "High bound: " << cast<ConstantInt>(maxValue)->getSExtValue() << "\n";
2164
2165  if (range>=IntPtrBits ||
2166      (!(Dests.size() == 1 && numCmps >= 3) &&
2167       !(Dests.size() == 2 && numCmps >= 5) &&
2168       !(Dests.size() >= 3 && numCmps >= 6)))
2169    return false;
2170
2171  DOUT << "Emitting bit tests\n";
2172  int64_t lowBound = 0;
2173
2174  // Optimize the case where all the case values fit in a
2175  // word without having to subtract minValue. In this case,
2176  // we can optimize away the subtraction.
2177  if (cast<ConstantInt>(minValue)->getSExtValue() >= 0 &&
2178      cast<ConstantInt>(maxValue)->getSExtValue() <  IntPtrBits) {
2179    range = cast<ConstantInt>(maxValue)->getSExtValue();
2180  } else {
2181    lowBound = cast<ConstantInt>(minValue)->getSExtValue();
2182  }
2183
2184  CaseBitsVector CasesBits;
2185  unsigned i, count = 0;
2186
2187  for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
2188    MachineBasicBlock* Dest = I->BB;
2189    for (i = 0; i < count; ++i)
2190      if (Dest == CasesBits[i].BB)
2191        break;
2192
2193    if (i == count) {
2194      assert((count < 3) && "Too much destinations to test!");
2195      CasesBits.push_back(CaseBits(0, Dest, 0));
2196      count++;
2197    }
2198
2199    uint64_t lo = cast<ConstantInt>(I->Low)->getSExtValue() - lowBound;
2200    uint64_t hi = cast<ConstantInt>(I->High)->getSExtValue() - lowBound;
2201
2202    for (uint64_t j = lo; j <= hi; j++) {
2203      CasesBits[i].Mask |=  1ULL << j;
2204      CasesBits[i].Bits++;
2205    }
2206
2207  }
2208  std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp());
2209
2210  SelectionDAGISel::BitTestInfo BTC;
2211
2212  // Figure out which block is immediately after the current one.
2213  MachineFunction::iterator BBI = CR.CaseBB;
2214  ++BBI;
2215
2216  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2217
2218  DOUT << "Cases:\n";
2219  for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) {
2220    DOUT << "Mask: " << CasesBits[i].Mask << ", Bits: " << CasesBits[i].Bits
2221         << ", BB: " << CasesBits[i].BB << "\n";
2222
2223    MachineBasicBlock *CaseBB = new MachineBasicBlock(LLVMBB);
2224    CurMF->getBasicBlockList().insert(BBI, CaseBB);
2225    BTC.push_back(SelectionDAGISel::BitTestCase(CasesBits[i].Mask,
2226                                                CaseBB,
2227                                                CasesBits[i].BB));
2228  }
2229
2230  SelectionDAGISel::BitTestBlock BTB(lowBound, range, SV,
2231                                     -1U, (CR.CaseBB == CurMBB),
2232                                     CR.CaseBB, Default, BTC);
2233
2234  if (CR.CaseBB == CurMBB)
2235    visitBitTestHeader(BTB);
2236
2237  BitTestCases.push_back(BTB);
2238
2239  return true;
2240}
2241
2242
2243/// Clusterify - Transform simple list of Cases into list of CaseRange's
2244unsigned SelectionDAGLowering::Clusterify(CaseVector& Cases,
2245                                          const SwitchInst& SI) {
2246  unsigned numCmps = 0;
2247
2248  // Start with "simple" cases
2249  for (unsigned i = 1; i < SI.getNumSuccessors(); ++i) {
2250    MachineBasicBlock *SMBB = FuncInfo.MBBMap[SI.getSuccessor(i)];
2251    Cases.push_back(Case(SI.getSuccessorValue(i),
2252                         SI.getSuccessorValue(i),
2253                         SMBB));
2254  }
2255  std::sort(Cases.begin(), Cases.end(), CaseCmp());
2256
2257  // Merge case into clusters
2258  if (Cases.size()>=2)
2259    // Must recompute end() each iteration because it may be
2260    // invalidated by erase if we hold on to it
2261    for (CaseItr I=Cases.begin(), J=++(Cases.begin()); J!=Cases.end(); ) {
2262      int64_t nextValue = cast<ConstantInt>(J->Low)->getSExtValue();
2263      int64_t currentValue = cast<ConstantInt>(I->High)->getSExtValue();
2264      MachineBasicBlock* nextBB = J->BB;
2265      MachineBasicBlock* currentBB = I->BB;
2266
2267      // If the two neighboring cases go to the same destination, merge them
2268      // into a single case.
2269      if ((nextValue-currentValue==1) && (currentBB == nextBB)) {
2270        I->High = J->High;
2271        J = Cases.erase(J);
2272      } else {
2273        I = J++;
2274      }
2275    }
2276
2277  for (CaseItr I=Cases.begin(), E=Cases.end(); I!=E; ++I, ++numCmps) {
2278    if (I->Low != I->High)
2279      // A range counts double, since it requires two compares.
2280      ++numCmps;
2281  }
2282
2283  return numCmps;
2284}
2285
2286void SelectionDAGLowering::visitSwitch(SwitchInst &SI) {
2287  // Figure out which block is immediately after the current one.
2288  MachineBasicBlock *NextBlock = 0;
2289  MachineFunction::iterator BBI = CurMBB;
2290
2291  MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()];
2292
2293  // If there is only the default destination, branch to it if it is not the
2294  // next basic block.  Otherwise, just fall through.
2295  if (SI.getNumOperands() == 2) {
2296    // Update machine-CFG edges.
2297
2298    // If this is not a fall-through branch, emit the branch.
2299    CurMBB->addSuccessor(Default);
2300    if (Default != NextBlock)
2301      DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, getControlRoot(),
2302                              DAG.getBasicBlock(Default)));
2303
2304    return;
2305  }
2306
2307  // If there are any non-default case statements, create a vector of Cases
2308  // representing each one, and sort the vector so that we can efficiently
2309  // create a binary search tree from them.
2310  CaseVector Cases;
2311  unsigned numCmps = Clusterify(Cases, SI);
2312  DOUT << "Clusterify finished. Total clusters: " << Cases.size()
2313       << ". Total compares: " << numCmps << "\n";
2314
2315  // Get the Value to be switched on and default basic blocks, which will be
2316  // inserted into CaseBlock records, representing basic blocks in the binary
2317  // search tree.
2318  Value *SV = SI.getOperand(0);
2319
2320  // Push the initial CaseRec onto the worklist
2321  CaseRecVector WorkList;
2322  WorkList.push_back(CaseRec(CurMBB,0,0,CaseRange(Cases.begin(),Cases.end())));
2323
2324  while (!WorkList.empty()) {
2325    // Grab a record representing a case range to process off the worklist
2326    CaseRec CR = WorkList.back();
2327    WorkList.pop_back();
2328
2329    if (handleBitTestsSwitchCase(CR, WorkList, SV, Default))
2330      continue;
2331
2332    // If the range has few cases (two or less) emit a series of specific
2333    // tests.
2334    if (handleSmallSwitchRange(CR, WorkList, SV, Default))
2335      continue;
2336
2337    // If the switch has more than 5 blocks, and at least 40% dense, and the
2338    // target supports indirect branches, then emit a jump table rather than
2339    // lowering the switch to a binary tree of conditional branches.
2340    if (handleJTSwitchCase(CR, WorkList, SV, Default))
2341      continue;
2342
2343    // Emit binary tree. We need to pick a pivot, and push left and right ranges
2344    // onto the worklist. Leafs are handled via handleSmallSwitchRange() call.
2345    handleBTSplitSwitchCase(CR, WorkList, SV, Default);
2346  }
2347}
2348
2349
2350void SelectionDAGLowering::visitSub(User &I) {
2351  // -0.0 - X --> fneg
2352  const Type *Ty = I.getType();
2353  if (isa<VectorType>(Ty)) {
2354    if (ConstantVector *CV = dyn_cast<ConstantVector>(I.getOperand(0))) {
2355      const VectorType *DestTy = cast<VectorType>(I.getType());
2356      const Type *ElTy = DestTy->getElementType();
2357      if (ElTy->isFloatingPoint()) {
2358        unsigned VL = DestTy->getNumElements();
2359        std::vector<Constant*> NZ(VL, ConstantFP::getNegativeZero(ElTy));
2360        Constant *CNZ = ConstantVector::get(&NZ[0], NZ.size());
2361        if (CV == CNZ) {
2362          SDOperand Op2 = getValue(I.getOperand(1));
2363          setValue(&I, DAG.getNode(ISD::FNEG, Op2.getValueType(), Op2));
2364          return;
2365        }
2366      }
2367    }
2368  }
2369  if (Ty->isFloatingPoint()) {
2370    if (ConstantFP *CFP = dyn_cast<ConstantFP>(I.getOperand(0)))
2371      if (CFP->isExactlyValue(ConstantFP::getNegativeZero(Ty)->getValueAPF())) {
2372        SDOperand Op2 = getValue(I.getOperand(1));
2373        setValue(&I, DAG.getNode(ISD::FNEG, Op2.getValueType(), Op2));
2374        return;
2375      }
2376  }
2377
2378  visitBinary(I, Ty->isFPOrFPVector() ? ISD::FSUB : ISD::SUB);
2379}
2380
2381void SelectionDAGLowering::visitBinary(User &I, unsigned OpCode) {
2382  SDOperand Op1 = getValue(I.getOperand(0));
2383  SDOperand Op2 = getValue(I.getOperand(1));
2384
2385  setValue(&I, DAG.getNode(OpCode, Op1.getValueType(), Op1, Op2));
2386}
2387
2388void SelectionDAGLowering::visitShift(User &I, unsigned Opcode) {
2389  SDOperand Op1 = getValue(I.getOperand(0));
2390  SDOperand Op2 = getValue(I.getOperand(1));
2391
2392  if (TLI.getShiftAmountTy().bitsLT(Op2.getValueType()))
2393    Op2 = DAG.getNode(ISD::TRUNCATE, TLI.getShiftAmountTy(), Op2);
2394  else if (TLI.getShiftAmountTy().bitsGT(Op2.getValueType()))
2395    Op2 = DAG.getNode(ISD::ANY_EXTEND, TLI.getShiftAmountTy(), Op2);
2396
2397  setValue(&I, DAG.getNode(Opcode, Op1.getValueType(), Op1, Op2));
2398}
2399
2400void SelectionDAGLowering::visitICmp(User &I) {
2401  ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
2402  if (ICmpInst *IC = dyn_cast<ICmpInst>(&I))
2403    predicate = IC->getPredicate();
2404  else if (ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
2405    predicate = ICmpInst::Predicate(IC->getPredicate());
2406  SDOperand Op1 = getValue(I.getOperand(0));
2407  SDOperand Op2 = getValue(I.getOperand(1));
2408  ISD::CondCode Opcode;
2409  switch (predicate) {
2410    case ICmpInst::ICMP_EQ  : Opcode = ISD::SETEQ; break;
2411    case ICmpInst::ICMP_NE  : Opcode = ISD::SETNE; break;
2412    case ICmpInst::ICMP_UGT : Opcode = ISD::SETUGT; break;
2413    case ICmpInst::ICMP_UGE : Opcode = ISD::SETUGE; break;
2414    case ICmpInst::ICMP_ULT : Opcode = ISD::SETULT; break;
2415    case ICmpInst::ICMP_ULE : Opcode = ISD::SETULE; break;
2416    case ICmpInst::ICMP_SGT : Opcode = ISD::SETGT; break;
2417    case ICmpInst::ICMP_SGE : Opcode = ISD::SETGE; break;
2418    case ICmpInst::ICMP_SLT : Opcode = ISD::SETLT; break;
2419    case ICmpInst::ICMP_SLE : Opcode = ISD::SETLE; break;
2420    default:
2421      assert(!"Invalid ICmp predicate value");
2422      Opcode = ISD::SETEQ;
2423      break;
2424  }
2425  setValue(&I, DAG.getSetCC(MVT::i1, Op1, Op2, Opcode));
2426}
2427
2428void SelectionDAGLowering::visitFCmp(User &I) {
2429  FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
2430  if (FCmpInst *FC = dyn_cast<FCmpInst>(&I))
2431    predicate = FC->getPredicate();
2432  else if (ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
2433    predicate = FCmpInst::Predicate(FC->getPredicate());
2434  SDOperand Op1 = getValue(I.getOperand(0));
2435  SDOperand Op2 = getValue(I.getOperand(1));
2436  ISD::CondCode Condition, FOC, FPC;
2437  switch (predicate) {
2438    case FCmpInst::FCMP_FALSE: FOC = FPC = ISD::SETFALSE; break;
2439    case FCmpInst::FCMP_OEQ:   FOC = ISD::SETEQ; FPC = ISD::SETOEQ; break;
2440    case FCmpInst::FCMP_OGT:   FOC = ISD::SETGT; FPC = ISD::SETOGT; break;
2441    case FCmpInst::FCMP_OGE:   FOC = ISD::SETGE; FPC = ISD::SETOGE; break;
2442    case FCmpInst::FCMP_OLT:   FOC = ISD::SETLT; FPC = ISD::SETOLT; break;
2443    case FCmpInst::FCMP_OLE:   FOC = ISD::SETLE; FPC = ISD::SETOLE; break;
2444    case FCmpInst::FCMP_ONE:   FOC = ISD::SETNE; FPC = ISD::SETONE; break;
2445    case FCmpInst::FCMP_ORD:   FOC = FPC = ISD::SETO;   break;
2446    case FCmpInst::FCMP_UNO:   FOC = FPC = ISD::SETUO;  break;
2447    case FCmpInst::FCMP_UEQ:   FOC = ISD::SETEQ; FPC = ISD::SETUEQ; break;
2448    case FCmpInst::FCMP_UGT:   FOC = ISD::SETGT; FPC = ISD::SETUGT; break;
2449    case FCmpInst::FCMP_UGE:   FOC = ISD::SETGE; FPC = ISD::SETUGE; break;
2450    case FCmpInst::FCMP_ULT:   FOC = ISD::SETLT; FPC = ISD::SETULT; break;
2451    case FCmpInst::FCMP_ULE:   FOC = ISD::SETLE; FPC = ISD::SETULE; break;
2452    case FCmpInst::FCMP_UNE:   FOC = ISD::SETNE; FPC = ISD::SETUNE; break;
2453    case FCmpInst::FCMP_TRUE:  FOC = FPC = ISD::SETTRUE; break;
2454    default:
2455      assert(!"Invalid FCmp predicate value");
2456      FOC = FPC = ISD::SETFALSE;
2457      break;
2458  }
2459  if (FiniteOnlyFPMath())
2460    Condition = FOC;
2461  else
2462    Condition = FPC;
2463  setValue(&I, DAG.getSetCC(MVT::i1, Op1, Op2, Condition));
2464}
2465
2466void SelectionDAGLowering::visitVICmp(User &I) {
2467  ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
2468  if (VICmpInst *IC = dyn_cast<VICmpInst>(&I))
2469    predicate = IC->getPredicate();
2470  else if (ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
2471    predicate = ICmpInst::Predicate(IC->getPredicate());
2472  SDOperand Op1 = getValue(I.getOperand(0));
2473  SDOperand Op2 = getValue(I.getOperand(1));
2474  ISD::CondCode Opcode;
2475  switch (predicate) {
2476    case ICmpInst::ICMP_EQ  : Opcode = ISD::SETEQ; break;
2477    case ICmpInst::ICMP_NE  : Opcode = ISD::SETNE; break;
2478    case ICmpInst::ICMP_UGT : Opcode = ISD::SETUGT; break;
2479    case ICmpInst::ICMP_UGE : Opcode = ISD::SETUGE; break;
2480    case ICmpInst::ICMP_ULT : Opcode = ISD::SETULT; break;
2481    case ICmpInst::ICMP_ULE : Opcode = ISD::SETULE; break;
2482    case ICmpInst::ICMP_SGT : Opcode = ISD::SETGT; break;
2483    case ICmpInst::ICMP_SGE : Opcode = ISD::SETGE; break;
2484    case ICmpInst::ICMP_SLT : Opcode = ISD::SETLT; break;
2485    case ICmpInst::ICMP_SLE : Opcode = ISD::SETLE; break;
2486    default:
2487      assert(!"Invalid ICmp predicate value");
2488      Opcode = ISD::SETEQ;
2489      break;
2490  }
2491  setValue(&I, DAG.getVSetCC(Op1.getValueType(), Op1, Op2, Opcode));
2492}
2493
2494void SelectionDAGLowering::visitVFCmp(User &I) {
2495  FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
2496  if (VFCmpInst *FC = dyn_cast<VFCmpInst>(&I))
2497    predicate = FC->getPredicate();
2498  else if (ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
2499    predicate = FCmpInst::Predicate(FC->getPredicate());
2500  SDOperand Op1 = getValue(I.getOperand(0));
2501  SDOperand Op2 = getValue(I.getOperand(1));
2502  ISD::CondCode Condition, FOC, FPC;
2503  switch (predicate) {
2504    case FCmpInst::FCMP_FALSE: FOC = FPC = ISD::SETFALSE; break;
2505    case FCmpInst::FCMP_OEQ:   FOC = ISD::SETEQ; FPC = ISD::SETOEQ; break;
2506    case FCmpInst::FCMP_OGT:   FOC = ISD::SETGT; FPC = ISD::SETOGT; break;
2507    case FCmpInst::FCMP_OGE:   FOC = ISD::SETGE; FPC = ISD::SETOGE; break;
2508    case FCmpInst::FCMP_OLT:   FOC = ISD::SETLT; FPC = ISD::SETOLT; break;
2509    case FCmpInst::FCMP_OLE:   FOC = ISD::SETLE; FPC = ISD::SETOLE; break;
2510    case FCmpInst::FCMP_ONE:   FOC = ISD::SETNE; FPC = ISD::SETONE; break;
2511    case FCmpInst::FCMP_ORD:   FOC = FPC = ISD::SETO;   break;
2512    case FCmpInst::FCMP_UNO:   FOC = FPC = ISD::SETUO;  break;
2513    case FCmpInst::FCMP_UEQ:   FOC = ISD::SETEQ; FPC = ISD::SETUEQ; break;
2514    case FCmpInst::FCMP_UGT:   FOC = ISD::SETGT; FPC = ISD::SETUGT; break;
2515    case FCmpInst::FCMP_UGE:   FOC = ISD::SETGE; FPC = ISD::SETUGE; break;
2516    case FCmpInst::FCMP_ULT:   FOC = ISD::SETLT; FPC = ISD::SETULT; break;
2517    case FCmpInst::FCMP_ULE:   FOC = ISD::SETLE; FPC = ISD::SETULE; break;
2518    case FCmpInst::FCMP_UNE:   FOC = ISD::SETNE; FPC = ISD::SETUNE; break;
2519    case FCmpInst::FCMP_TRUE:  FOC = FPC = ISD::SETTRUE; break;
2520    default:
2521      assert(!"Invalid VFCmp predicate value");
2522      FOC = FPC = ISD::SETFALSE;
2523      break;
2524  }
2525  if (FiniteOnlyFPMath())
2526    Condition = FOC;
2527  else
2528    Condition = FPC;
2529
2530  MVT DestVT = TLI.getValueType(I.getType());
2531
2532  setValue(&I, DAG.getVSetCC(DestVT, Op1, Op2, Condition));
2533}
2534
2535void SelectionDAGLowering::visitSelect(User &I) {
2536  SDOperand Cond     = getValue(I.getOperand(0));
2537  SDOperand TrueVal  = getValue(I.getOperand(1));
2538  SDOperand FalseVal = getValue(I.getOperand(2));
2539  setValue(&I, DAG.getNode(ISD::SELECT, TrueVal.getValueType(), Cond,
2540                           TrueVal, FalseVal));
2541}
2542
2543
2544void SelectionDAGLowering::visitTrunc(User &I) {
2545  // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
2546  SDOperand N = getValue(I.getOperand(0));
2547  MVT DestVT = TLI.getValueType(I.getType());
2548  setValue(&I, DAG.getNode(ISD::TRUNCATE, DestVT, N));
2549}
2550
2551void SelectionDAGLowering::visitZExt(User &I) {
2552  // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2553  // ZExt also can't be a cast to bool for same reason. So, nothing much to do
2554  SDOperand N = getValue(I.getOperand(0));
2555  MVT DestVT = TLI.getValueType(I.getType());
2556  setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, DestVT, N));
2557}
2558
2559void SelectionDAGLowering::visitSExt(User &I) {
2560  // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2561  // SExt also can't be a cast to bool for same reason. So, nothing much to do
2562  SDOperand N = getValue(I.getOperand(0));
2563  MVT DestVT = TLI.getValueType(I.getType());
2564  setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, DestVT, N));
2565}
2566
2567void SelectionDAGLowering::visitFPTrunc(User &I) {
2568  // FPTrunc is never a no-op cast, no need to check
2569  SDOperand N = getValue(I.getOperand(0));
2570  MVT DestVT = TLI.getValueType(I.getType());
2571  setValue(&I, DAG.getNode(ISD::FP_ROUND, DestVT, N, DAG.getIntPtrConstant(0)));
2572}
2573
2574void SelectionDAGLowering::visitFPExt(User &I){
2575  // FPTrunc is never a no-op cast, no need to check
2576  SDOperand N = getValue(I.getOperand(0));
2577  MVT DestVT = TLI.getValueType(I.getType());
2578  setValue(&I, DAG.getNode(ISD::FP_EXTEND, DestVT, N));
2579}
2580
2581void SelectionDAGLowering::visitFPToUI(User &I) {
2582  // FPToUI is never a no-op cast, no need to check
2583  SDOperand N = getValue(I.getOperand(0));
2584  MVT DestVT = TLI.getValueType(I.getType());
2585  setValue(&I, DAG.getNode(ISD::FP_TO_UINT, DestVT, N));
2586}
2587
2588void SelectionDAGLowering::visitFPToSI(User &I) {
2589  // FPToSI is never a no-op cast, no need to check
2590  SDOperand N = getValue(I.getOperand(0));
2591  MVT DestVT = TLI.getValueType(I.getType());
2592  setValue(&I, DAG.getNode(ISD::FP_TO_SINT, DestVT, N));
2593}
2594
2595void SelectionDAGLowering::visitUIToFP(User &I) {
2596  // UIToFP is never a no-op cast, no need to check
2597  SDOperand N = getValue(I.getOperand(0));
2598  MVT DestVT = TLI.getValueType(I.getType());
2599  setValue(&I, DAG.getNode(ISD::UINT_TO_FP, DestVT, N));
2600}
2601
2602void SelectionDAGLowering::visitSIToFP(User &I){
2603  // UIToFP is never a no-op cast, no need to check
2604  SDOperand N = getValue(I.getOperand(0));
2605  MVT DestVT = TLI.getValueType(I.getType());
2606  setValue(&I, DAG.getNode(ISD::SINT_TO_FP, DestVT, N));
2607}
2608
2609void SelectionDAGLowering::visitPtrToInt(User &I) {
2610  // What to do depends on the size of the integer and the size of the pointer.
2611  // We can either truncate, zero extend, or no-op, accordingly.
2612  SDOperand N = getValue(I.getOperand(0));
2613  MVT SrcVT = N.getValueType();
2614  MVT DestVT = TLI.getValueType(I.getType());
2615  SDOperand Result;
2616  if (DestVT.bitsLT(SrcVT))
2617    Result = DAG.getNode(ISD::TRUNCATE, DestVT, N);
2618  else
2619    // Note: ZERO_EXTEND can handle cases where the sizes are equal too
2620    Result = DAG.getNode(ISD::ZERO_EXTEND, DestVT, N);
2621  setValue(&I, Result);
2622}
2623
2624void SelectionDAGLowering::visitIntToPtr(User &I) {
2625  // What to do depends on the size of the integer and the size of the pointer.
2626  // We can either truncate, zero extend, or no-op, accordingly.
2627  SDOperand N = getValue(I.getOperand(0));
2628  MVT SrcVT = N.getValueType();
2629  MVT DestVT = TLI.getValueType(I.getType());
2630  if (DestVT.bitsLT(SrcVT))
2631    setValue(&I, DAG.getNode(ISD::TRUNCATE, DestVT, N));
2632  else
2633    // Note: ZERO_EXTEND can handle cases where the sizes are equal too
2634    setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, DestVT, N));
2635}
2636
2637void SelectionDAGLowering::visitBitCast(User &I) {
2638  SDOperand N = getValue(I.getOperand(0));
2639  MVT DestVT = TLI.getValueType(I.getType());
2640
2641  // BitCast assures us that source and destination are the same size so this
2642  // is either a BIT_CONVERT or a no-op.
2643  if (DestVT != N.getValueType())
2644    setValue(&I, DAG.getNode(ISD::BIT_CONVERT, DestVT, N)); // convert types
2645  else
2646    setValue(&I, N); // noop cast.
2647}
2648
2649void SelectionDAGLowering::visitInsertElement(User &I) {
2650  SDOperand InVec = getValue(I.getOperand(0));
2651  SDOperand InVal = getValue(I.getOperand(1));
2652  SDOperand InIdx = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(),
2653                                getValue(I.getOperand(2)));
2654
2655  setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT,
2656                           TLI.getValueType(I.getType()),
2657                           InVec, InVal, InIdx));
2658}
2659
2660void SelectionDAGLowering::visitExtractElement(User &I) {
2661  SDOperand InVec = getValue(I.getOperand(0));
2662  SDOperand InIdx = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(),
2663                                getValue(I.getOperand(1)));
2664  setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT,
2665                           TLI.getValueType(I.getType()), InVec, InIdx));
2666}
2667
2668void SelectionDAGLowering::visitShuffleVector(User &I) {
2669  SDOperand V1   = getValue(I.getOperand(0));
2670  SDOperand V2   = getValue(I.getOperand(1));
2671  SDOperand Mask = getValue(I.getOperand(2));
2672
2673  setValue(&I, DAG.getNode(ISD::VECTOR_SHUFFLE,
2674                           TLI.getValueType(I.getType()),
2675                           V1, V2, Mask));
2676}
2677
2678void SelectionDAGLowering::visitInsertValue(InsertValueInst &I) {
2679  const Value *Op0 = I.getOperand(0);
2680  const Value *Op1 = I.getOperand(1);
2681  const Type *AggTy = I.getType();
2682  const Type *ValTy = Op1->getType();
2683  bool IntoUndef = isa<UndefValue>(Op0);
2684  bool FromUndef = isa<UndefValue>(Op1);
2685
2686  unsigned LinearIndex = ComputeLinearIndex(TLI, AggTy,
2687                                            I.idx_begin(), I.idx_end());
2688
2689  SmallVector<MVT, 4> AggValueVTs;
2690  ComputeValueVTs(TLI, AggTy, AggValueVTs);
2691  SmallVector<MVT, 4> ValValueVTs;
2692  ComputeValueVTs(TLI, ValTy, ValValueVTs);
2693
2694  unsigned NumAggValues = AggValueVTs.size();
2695  unsigned NumValValues = ValValueVTs.size();
2696  SmallVector<SDOperand, 4> Values(NumAggValues);
2697
2698  SDOperand Agg = getValue(Op0);
2699  SDOperand Val = getValue(Op1);
2700  unsigned i = 0;
2701  // Copy the beginning value(s) from the original aggregate.
2702  for (; i != LinearIndex; ++i)
2703    Values[i] = IntoUndef ? DAG.getNode(ISD::UNDEF, AggValueVTs[i]) :
2704                SDOperand(Agg.Val, Agg.ResNo + i);
2705  // Copy values from the inserted value(s).
2706  for (; i != LinearIndex + NumValValues; ++i)
2707    Values[i] = FromUndef ? DAG.getNode(ISD::UNDEF, AggValueVTs[i]) :
2708                SDOperand(Val.Val, Val.ResNo + i - LinearIndex);
2709  // Copy remaining value(s) from the original aggregate.
2710  for (; i != NumAggValues; ++i)
2711    Values[i] = IntoUndef ? DAG.getNode(ISD::UNDEF, AggValueVTs[i]) :
2712                SDOperand(Agg.Val, Agg.ResNo + i);
2713
2714  setValue(&I, DAG.getMergeValues(DAG.getVTList(&AggValueVTs[0], NumAggValues),
2715                                  &Values[0], NumAggValues));
2716}
2717
2718void SelectionDAGLowering::visitExtractValue(ExtractValueInst &I) {
2719  const Value *Op0 = I.getOperand(0);
2720  const Type *AggTy = Op0->getType();
2721  const Type *ValTy = I.getType();
2722  bool OutOfUndef = isa<UndefValue>(Op0);
2723
2724  unsigned LinearIndex = ComputeLinearIndex(TLI, AggTy,
2725                                            I.idx_begin(), I.idx_end());
2726
2727  SmallVector<MVT, 4> ValValueVTs;
2728  ComputeValueVTs(TLI, ValTy, ValValueVTs);
2729
2730  unsigned NumValValues = ValValueVTs.size();
2731  SmallVector<SDOperand, 4> Values(NumValValues);
2732
2733  SDOperand Agg = getValue(Op0);
2734  // Copy out the selected value(s).
2735  for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
2736    Values[i - LinearIndex] =
2737      OutOfUndef ? DAG.getNode(ISD::UNDEF, Agg.Val->getValueType(Agg.ResNo + i)) :
2738                   SDOperand(Agg.Val, Agg.ResNo + i);
2739
2740  setValue(&I, DAG.getMergeValues(DAG.getVTList(&ValValueVTs[0], NumValValues),
2741                                  &Values[0], NumValValues));
2742}
2743
2744
2745void SelectionDAGLowering::visitGetElementPtr(User &I) {
2746  SDOperand N = getValue(I.getOperand(0));
2747  const Type *Ty = I.getOperand(0)->getType();
2748
2749  for (GetElementPtrInst::op_iterator OI = I.op_begin()+1, E = I.op_end();
2750       OI != E; ++OI) {
2751    Value *Idx = *OI;
2752    if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
2753      unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
2754      if (Field) {
2755        // N = N + Offset
2756        uint64_t Offset = TD->getStructLayout(StTy)->getElementOffset(Field);
2757        N = DAG.getNode(ISD::ADD, N.getValueType(), N,
2758                        DAG.getIntPtrConstant(Offset));
2759      }
2760      Ty = StTy->getElementType(Field);
2761    } else {
2762      Ty = cast<SequentialType>(Ty)->getElementType();
2763
2764      // If this is a constant subscript, handle it quickly.
2765      if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
2766        if (CI->getZExtValue() == 0) continue;
2767        uint64_t Offs =
2768            TD->getABITypeSize(Ty)*cast<ConstantInt>(CI)->getSExtValue();
2769        N = DAG.getNode(ISD::ADD, N.getValueType(), N,
2770                        DAG.getIntPtrConstant(Offs));
2771        continue;
2772      }
2773
2774      // N = N + Idx * ElementSize;
2775      uint64_t ElementSize = TD->getABITypeSize(Ty);
2776      SDOperand IdxN = getValue(Idx);
2777
2778      // If the index is smaller or larger than intptr_t, truncate or extend
2779      // it.
2780      if (IdxN.getValueType().bitsLT(N.getValueType())) {
2781        IdxN = DAG.getNode(ISD::SIGN_EXTEND, N.getValueType(), IdxN);
2782      } else if (IdxN.getValueType().bitsGT(N.getValueType()))
2783        IdxN = DAG.getNode(ISD::TRUNCATE, N.getValueType(), IdxN);
2784
2785      // If this is a multiply by a power of two, turn it into a shl
2786      // immediately.  This is a very common case.
2787      if (isPowerOf2_64(ElementSize)) {
2788        unsigned Amt = Log2_64(ElementSize);
2789        IdxN = DAG.getNode(ISD::SHL, N.getValueType(), IdxN,
2790                           DAG.getConstant(Amt, TLI.getShiftAmountTy()));
2791        N = DAG.getNode(ISD::ADD, N.getValueType(), N, IdxN);
2792        continue;
2793      }
2794
2795      SDOperand Scale = DAG.getIntPtrConstant(ElementSize);
2796      IdxN = DAG.getNode(ISD::MUL, N.getValueType(), IdxN, Scale);
2797      N = DAG.getNode(ISD::ADD, N.getValueType(), N, IdxN);
2798    }
2799  }
2800  setValue(&I, N);
2801}
2802
2803void SelectionDAGLowering::visitAlloca(AllocaInst &I) {
2804  // If this is a fixed sized alloca in the entry block of the function,
2805  // allocate it statically on the stack.
2806  if (FuncInfo.StaticAllocaMap.count(&I))
2807    return;   // getValue will auto-populate this.
2808
2809  const Type *Ty = I.getAllocatedType();
2810  uint64_t TySize = TLI.getTargetData()->getABITypeSize(Ty);
2811  unsigned Align =
2812    std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty),
2813             I.getAlignment());
2814
2815  SDOperand AllocSize = getValue(I.getArraySize());
2816  MVT IntPtr = TLI.getPointerTy();
2817  if (IntPtr.bitsLT(AllocSize.getValueType()))
2818    AllocSize = DAG.getNode(ISD::TRUNCATE, IntPtr, AllocSize);
2819  else if (IntPtr.bitsGT(AllocSize.getValueType()))
2820    AllocSize = DAG.getNode(ISD::ZERO_EXTEND, IntPtr, AllocSize);
2821
2822  AllocSize = DAG.getNode(ISD::MUL, IntPtr, AllocSize,
2823                          DAG.getIntPtrConstant(TySize));
2824
2825  // Handle alignment.  If the requested alignment is less than or equal to
2826  // the stack alignment, ignore it.  If the size is greater than or equal to
2827  // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
2828  unsigned StackAlign =
2829    TLI.getTargetMachine().getFrameInfo()->getStackAlignment();
2830  if (Align <= StackAlign)
2831    Align = 0;
2832
2833  // Round the size of the allocation up to the stack alignment size
2834  // by add SA-1 to the size.
2835  AllocSize = DAG.getNode(ISD::ADD, AllocSize.getValueType(), AllocSize,
2836                          DAG.getIntPtrConstant(StackAlign-1));
2837  // Mask out the low bits for alignment purposes.
2838  AllocSize = DAG.getNode(ISD::AND, AllocSize.getValueType(), AllocSize,
2839                          DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1)));
2840
2841  SDOperand Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) };
2842  const MVT *VTs = DAG.getNodeValueTypes(AllocSize.getValueType(),
2843                                                    MVT::Other);
2844  SDOperand DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, VTs, 2, Ops, 3);
2845  setValue(&I, DSA);
2846  DAG.setRoot(DSA.getValue(1));
2847
2848  // Inform the Frame Information that we have just allocated a variable-sized
2849  // object.
2850  CurMBB->getParent()->getFrameInfo()->CreateVariableSizedObject();
2851}
2852
2853void SelectionDAGLowering::visitLoad(LoadInst &I) {
2854  const Value *SV = I.getOperand(0);
2855  SDOperand Ptr = getValue(SV);
2856
2857  const Type *Ty = I.getType();
2858  bool isVolatile = I.isVolatile();
2859  unsigned Alignment = I.getAlignment();
2860
2861  SmallVector<MVT, 4> ValueVTs;
2862  SmallVector<uint64_t, 4> Offsets;
2863  ComputeValueVTs(TLI, Ty, ValueVTs, &Offsets);
2864  unsigned NumValues = ValueVTs.size();
2865  if (NumValues == 0)
2866    return;
2867
2868  SDOperand Root;
2869  if (I.isVolatile())
2870    Root = getRoot();
2871  else {
2872    // Do not serialize non-volatile loads against each other.
2873    Root = DAG.getRoot();
2874  }
2875
2876  SmallVector<SDOperand, 4> Values(NumValues);
2877  SmallVector<SDOperand, 4> Chains(NumValues);
2878  MVT PtrVT = Ptr.getValueType();
2879  for (unsigned i = 0; i != NumValues; ++i) {
2880    SDOperand L = DAG.getLoad(ValueVTs[i], Root,
2881                              DAG.getNode(ISD::ADD, PtrVT, Ptr,
2882                                          DAG.getConstant(Offsets[i], PtrVT)),
2883                              SV, Offsets[i],
2884                              isVolatile, Alignment);
2885    Values[i] = L;
2886    Chains[i] = L.getValue(1);
2887  }
2888
2889  SDOperand Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
2890                                &Chains[0], NumValues);
2891  if (isVolatile)
2892    DAG.setRoot(Chain);
2893  else
2894    PendingLoads.push_back(Chain);
2895
2896  setValue(&I, DAG.getMergeValues(DAG.getVTList(&ValueVTs[0], NumValues),
2897                                  &Values[0], NumValues));
2898}
2899
2900
2901void SelectionDAGLowering::visitStore(StoreInst &I) {
2902  Value *SrcV = I.getOperand(0);
2903  SDOperand Src = getValue(SrcV);
2904  Value *PtrV = I.getOperand(1);
2905  SDOperand Ptr = getValue(PtrV);
2906
2907  SmallVector<MVT, 4> ValueVTs;
2908  SmallVector<uint64_t, 4> Offsets;
2909  ComputeValueVTs(TLI, SrcV->getType(), ValueVTs, &Offsets);
2910  unsigned NumValues = ValueVTs.size();
2911  if (NumValues == 0)
2912    return;
2913
2914  SDOperand Root = getRoot();
2915  SmallVector<SDOperand, 4> Chains(NumValues);
2916  MVT PtrVT = Ptr.getValueType();
2917  bool isVolatile = I.isVolatile();
2918  unsigned Alignment = I.getAlignment();
2919  for (unsigned i = 0; i != NumValues; ++i)
2920    Chains[i] = DAG.getStore(Root, SDOperand(Src.Val, Src.ResNo + i),
2921                             DAG.getNode(ISD::ADD, PtrVT, Ptr,
2922                                         DAG.getConstant(Offsets[i], PtrVT)),
2923                             PtrV, Offsets[i],
2924                             isVolatile, Alignment);
2925
2926  DAG.setRoot(DAG.getNode(ISD::TokenFactor, MVT::Other, &Chains[0], NumValues));
2927}
2928
2929/// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
2930/// node.
2931void SelectionDAGLowering::visitTargetIntrinsic(CallInst &I,
2932                                                unsigned Intrinsic) {
2933  bool HasChain = !I.doesNotAccessMemory();
2934  bool OnlyLoad = HasChain && I.onlyReadsMemory();
2935
2936  // Build the operand list.
2937  SmallVector<SDOperand, 8> Ops;
2938  if (HasChain) {  // If this intrinsic has side-effects, chainify it.
2939    if (OnlyLoad) {
2940      // We don't need to serialize loads against other loads.
2941      Ops.push_back(DAG.getRoot());
2942    } else {
2943      Ops.push_back(getRoot());
2944    }
2945  }
2946
2947  // Add the intrinsic ID as an integer operand.
2948  Ops.push_back(DAG.getConstant(Intrinsic, TLI.getPointerTy()));
2949
2950  // Add all operands of the call to the operand list.
2951  for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) {
2952    SDOperand Op = getValue(I.getOperand(i));
2953    assert(TLI.isTypeLegal(Op.getValueType()) &&
2954           "Intrinsic uses a non-legal type?");
2955    Ops.push_back(Op);
2956  }
2957
2958  std::vector<MVT> VTs;
2959  if (I.getType() != Type::VoidTy) {
2960    MVT VT = TLI.getValueType(I.getType());
2961    if (VT.isVector()) {
2962      const VectorType *DestTy = cast<VectorType>(I.getType());
2963      MVT EltVT = TLI.getValueType(DestTy->getElementType());
2964
2965      VT = MVT::getVectorVT(EltVT, DestTy->getNumElements());
2966      assert(VT != MVT::Other && "Intrinsic uses a non-legal type?");
2967    }
2968
2969    assert(TLI.isTypeLegal(VT) && "Intrinsic uses a non-legal type?");
2970    VTs.push_back(VT);
2971  }
2972  if (HasChain)
2973    VTs.push_back(MVT::Other);
2974
2975  const MVT *VTList = DAG.getNodeValueTypes(VTs);
2976
2977  // Create the node.
2978  SDOperand Result;
2979  if (!HasChain)
2980    Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, VTList, VTs.size(),
2981                         &Ops[0], Ops.size());
2982  else if (I.getType() != Type::VoidTy)
2983    Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, VTList, VTs.size(),
2984                         &Ops[0], Ops.size());
2985  else
2986    Result = DAG.getNode(ISD::INTRINSIC_VOID, VTList, VTs.size(),
2987                         &Ops[0], Ops.size());
2988
2989  if (HasChain) {
2990    SDOperand Chain = Result.getValue(Result.Val->getNumValues()-1);
2991    if (OnlyLoad)
2992      PendingLoads.push_back(Chain);
2993    else
2994      DAG.setRoot(Chain);
2995  }
2996  if (I.getType() != Type::VoidTy) {
2997    if (const VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
2998      MVT VT = TLI.getValueType(PTy);
2999      Result = DAG.getNode(ISD::BIT_CONVERT, VT, Result);
3000    }
3001    setValue(&I, Result);
3002  }
3003}
3004
3005/// ExtractTypeInfo - Returns the type info, possibly bitcast, encoded in V.
3006static GlobalVariable *ExtractTypeInfo (Value *V) {
3007  V = V->stripPointerCasts();
3008  GlobalVariable *GV = dyn_cast<GlobalVariable>(V);
3009  assert ((GV || isa<ConstantPointerNull>(V)) &&
3010          "TypeInfo must be a global variable or NULL");
3011  return GV;
3012}
3013
3014/// addCatchInfo - Extract the personality and type infos from an eh.selector
3015/// call, and add them to the specified machine basic block.
3016static void addCatchInfo(CallInst &I, MachineModuleInfo *MMI,
3017                         MachineBasicBlock *MBB) {
3018  // Inform the MachineModuleInfo of the personality for this landing pad.
3019  ConstantExpr *CE = cast<ConstantExpr>(I.getOperand(2));
3020  assert(CE->getOpcode() == Instruction::BitCast &&
3021         isa<Function>(CE->getOperand(0)) &&
3022         "Personality should be a function");
3023  MMI->addPersonality(MBB, cast<Function>(CE->getOperand(0)));
3024
3025  // Gather all the type infos for this landing pad and pass them along to
3026  // MachineModuleInfo.
3027  std::vector<GlobalVariable *> TyInfo;
3028  unsigned N = I.getNumOperands();
3029
3030  for (unsigned i = N - 1; i > 2; --i) {
3031    if (ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(i))) {
3032      unsigned FilterLength = CI->getZExtValue();
3033      unsigned FirstCatch = i + FilterLength + !FilterLength;
3034      assert (FirstCatch <= N && "Invalid filter length");
3035
3036      if (FirstCatch < N) {
3037        TyInfo.reserve(N - FirstCatch);
3038        for (unsigned j = FirstCatch; j < N; ++j)
3039          TyInfo.push_back(ExtractTypeInfo(I.getOperand(j)));
3040        MMI->addCatchTypeInfo(MBB, TyInfo);
3041        TyInfo.clear();
3042      }
3043
3044      if (!FilterLength) {
3045        // Cleanup.
3046        MMI->addCleanup(MBB);
3047      } else {
3048        // Filter.
3049        TyInfo.reserve(FilterLength - 1);
3050        for (unsigned j = i + 1; j < FirstCatch; ++j)
3051          TyInfo.push_back(ExtractTypeInfo(I.getOperand(j)));
3052        MMI->addFilterTypeInfo(MBB, TyInfo);
3053        TyInfo.clear();
3054      }
3055
3056      N = i;
3057    }
3058  }
3059
3060  if (N > 3) {
3061    TyInfo.reserve(N - 3);
3062    for (unsigned j = 3; j < N; ++j)
3063      TyInfo.push_back(ExtractTypeInfo(I.getOperand(j)));
3064    MMI->addCatchTypeInfo(MBB, TyInfo);
3065  }
3066}
3067
3068
3069/// Inlined utility function to implement binary input atomic intrinsics for
3070// visitIntrinsicCall: I is a call instruction
3071//                     Op is the associated NodeType for I
3072const char *
3073SelectionDAGLowering::implVisitBinaryAtomic(CallInst& I, ISD::NodeType Op) {
3074  SDOperand Root = getRoot();
3075  SDOperand L = DAG.getAtomic(Op, Root,
3076                              getValue(I.getOperand(1)),
3077                              getValue(I.getOperand(2)),
3078                              I.getOperand(1));
3079  setValue(&I, L);
3080  DAG.setRoot(L.getValue(1));
3081  return 0;
3082}
3083
3084/// visitIntrinsicCall - Lower the call to the specified intrinsic function.  If
3085/// we want to emit this as a call to a named external function, return the name
3086/// otherwise lower it and return null.
3087const char *
3088SelectionDAGLowering::visitIntrinsicCall(CallInst &I, unsigned Intrinsic) {
3089  switch (Intrinsic) {
3090  default:
3091    // By default, turn this into a target intrinsic node.
3092    visitTargetIntrinsic(I, Intrinsic);
3093    return 0;
3094  case Intrinsic::vastart:  visitVAStart(I); return 0;
3095  case Intrinsic::vaend:    visitVAEnd(I); return 0;
3096  case Intrinsic::vacopy:   visitVACopy(I); return 0;
3097  case Intrinsic::returnaddress:
3098    setValue(&I, DAG.getNode(ISD::RETURNADDR, TLI.getPointerTy(),
3099                             getValue(I.getOperand(1))));
3100    return 0;
3101  case Intrinsic::frameaddress:
3102    setValue(&I, DAG.getNode(ISD::FRAMEADDR, TLI.getPointerTy(),
3103                             getValue(I.getOperand(1))));
3104    return 0;
3105  case Intrinsic::setjmp:
3106    return "_setjmp"+!TLI.usesUnderscoreSetJmp();
3107    break;
3108  case Intrinsic::longjmp:
3109    return "_longjmp"+!TLI.usesUnderscoreLongJmp();
3110    break;
3111  case Intrinsic::memcpy_i32:
3112  case Intrinsic::memcpy_i64: {
3113    SDOperand Op1 = getValue(I.getOperand(1));
3114    SDOperand Op2 = getValue(I.getOperand(2));
3115    SDOperand Op3 = getValue(I.getOperand(3));
3116    unsigned Align = cast<ConstantInt>(I.getOperand(4))->getZExtValue();
3117    DAG.setRoot(DAG.getMemcpy(getRoot(), Op1, Op2, Op3, Align, false,
3118                              I.getOperand(1), 0, I.getOperand(2), 0));
3119    return 0;
3120  }
3121  case Intrinsic::memset_i32:
3122  case Intrinsic::memset_i64: {
3123    SDOperand Op1 = getValue(I.getOperand(1));
3124    SDOperand Op2 = getValue(I.getOperand(2));
3125    SDOperand Op3 = getValue(I.getOperand(3));
3126    unsigned Align = cast<ConstantInt>(I.getOperand(4))->getZExtValue();
3127    DAG.setRoot(DAG.getMemset(getRoot(), Op1, Op2, Op3, Align,
3128                              I.getOperand(1), 0));
3129    return 0;
3130  }
3131  case Intrinsic::memmove_i32:
3132  case Intrinsic::memmove_i64: {
3133    SDOperand Op1 = getValue(I.getOperand(1));
3134    SDOperand Op2 = getValue(I.getOperand(2));
3135    SDOperand Op3 = getValue(I.getOperand(3));
3136    unsigned Align = cast<ConstantInt>(I.getOperand(4))->getZExtValue();
3137
3138    // If the source and destination are known to not be aliases, we can
3139    // lower memmove as memcpy.
3140    uint64_t Size = -1ULL;
3141    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op3))
3142      Size = C->getValue();
3143    if (AA.alias(I.getOperand(1), Size, I.getOperand(2), Size) ==
3144        AliasAnalysis::NoAlias) {
3145      DAG.setRoot(DAG.getMemcpy(getRoot(), Op1, Op2, Op3, Align, false,
3146                                I.getOperand(1), 0, I.getOperand(2), 0));
3147      return 0;
3148    }
3149
3150    DAG.setRoot(DAG.getMemmove(getRoot(), Op1, Op2, Op3, Align,
3151                               I.getOperand(1), 0, I.getOperand(2), 0));
3152    return 0;
3153  }
3154  case Intrinsic::dbg_stoppoint: {
3155    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
3156    DbgStopPointInst &SPI = cast<DbgStopPointInst>(I);
3157    if (MMI && SPI.getContext() && MMI->Verify(SPI.getContext())) {
3158      DebugInfoDesc *DD = MMI->getDescFor(SPI.getContext());
3159      assert(DD && "Not a debug information descriptor");
3160      DAG.setRoot(DAG.getDbgStopPoint(getRoot(),
3161                                      SPI.getLine(),
3162                                      SPI.getColumn(),
3163                                      cast<CompileUnitDesc>(DD)));
3164    }
3165
3166    return 0;
3167  }
3168  case Intrinsic::dbg_region_start: {
3169    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
3170    DbgRegionStartInst &RSI = cast<DbgRegionStartInst>(I);
3171    if (MMI && RSI.getContext() && MMI->Verify(RSI.getContext())) {
3172      unsigned LabelID = MMI->RecordRegionStart(RSI.getContext());
3173      DAG.setRoot(DAG.getLabel(ISD::DBG_LABEL, getRoot(), LabelID));
3174    }
3175
3176    return 0;
3177  }
3178  case Intrinsic::dbg_region_end: {
3179    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
3180    DbgRegionEndInst &REI = cast<DbgRegionEndInst>(I);
3181    if (MMI && REI.getContext() && MMI->Verify(REI.getContext())) {
3182      unsigned LabelID = MMI->RecordRegionEnd(REI.getContext());
3183      DAG.setRoot(DAG.getLabel(ISD::DBG_LABEL, getRoot(), LabelID));
3184    }
3185
3186    return 0;
3187  }
3188  case Intrinsic::dbg_func_start: {
3189    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
3190    if (!MMI) return 0;
3191    DbgFuncStartInst &FSI = cast<DbgFuncStartInst>(I);
3192    Value *SP = FSI.getSubprogram();
3193    if (SP && MMI->Verify(SP)) {
3194      // llvm.dbg.func.start implicitly defines a dbg_stoppoint which is
3195      // what (most?) gdb expects.
3196      DebugInfoDesc *DD = MMI->getDescFor(SP);
3197      assert(DD && "Not a debug information descriptor");
3198      SubprogramDesc *Subprogram = cast<SubprogramDesc>(DD);
3199      const CompileUnitDesc *CompileUnit = Subprogram->getFile();
3200      unsigned SrcFile = MMI->RecordSource(CompileUnit);
3201      // Record the source line but does create a label. It will be emitted
3202      // at asm emission time.
3203      MMI->RecordSourceLine(Subprogram->getLine(), 0, SrcFile);
3204    }
3205
3206    return 0;
3207  }
3208  case Intrinsic::dbg_declare: {
3209    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
3210    DbgDeclareInst &DI = cast<DbgDeclareInst>(I);
3211    Value *Variable = DI.getVariable();
3212    if (MMI && Variable && MMI->Verify(Variable))
3213      DAG.setRoot(DAG.getNode(ISD::DECLARE, MVT::Other, getRoot(),
3214                              getValue(DI.getAddress()), getValue(Variable)));
3215    return 0;
3216  }
3217
3218  case Intrinsic::eh_exception: {
3219    if (!CurMBB->isLandingPad()) {
3220      // FIXME: Mark exception register as live in.  Hack for PR1508.
3221      unsigned Reg = TLI.getExceptionAddressRegister();
3222      if (Reg) CurMBB->addLiveIn(Reg);
3223    }
3224    // Insert the EXCEPTIONADDR instruction.
3225    SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
3226    SDOperand Ops[1];
3227    Ops[0] = DAG.getRoot();
3228    SDOperand Op = DAG.getNode(ISD::EXCEPTIONADDR, VTs, Ops, 1);
3229    setValue(&I, Op);
3230    DAG.setRoot(Op.getValue(1));
3231    return 0;
3232  }
3233
3234  case Intrinsic::eh_selector_i32:
3235  case Intrinsic::eh_selector_i64: {
3236    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
3237    MVT VT = (Intrinsic == Intrinsic::eh_selector_i32 ?
3238                         MVT::i32 : MVT::i64);
3239
3240    if (MMI) {
3241      if (CurMBB->isLandingPad())
3242        addCatchInfo(I, MMI, CurMBB);
3243      else {
3244#ifndef NDEBUG
3245        FuncInfo.CatchInfoLost.insert(&I);
3246#endif
3247        // FIXME: Mark exception selector register as live in.  Hack for PR1508.
3248        unsigned Reg = TLI.getExceptionSelectorRegister();
3249        if (Reg) CurMBB->addLiveIn(Reg);
3250      }
3251
3252      // Insert the EHSELECTION instruction.
3253      SDVTList VTs = DAG.getVTList(VT, MVT::Other);
3254      SDOperand Ops[2];
3255      Ops[0] = getValue(I.getOperand(1));
3256      Ops[1] = getRoot();
3257      SDOperand Op = DAG.getNode(ISD::EHSELECTION, VTs, Ops, 2);
3258      setValue(&I, Op);
3259      DAG.setRoot(Op.getValue(1));
3260    } else {
3261      setValue(&I, DAG.getConstant(0, VT));
3262    }
3263
3264    return 0;
3265  }
3266
3267  case Intrinsic::eh_typeid_for_i32:
3268  case Intrinsic::eh_typeid_for_i64: {
3269    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
3270    MVT VT = (Intrinsic == Intrinsic::eh_typeid_for_i32 ?
3271                         MVT::i32 : MVT::i64);
3272
3273    if (MMI) {
3274      // Find the type id for the given typeinfo.
3275      GlobalVariable *GV = ExtractTypeInfo(I.getOperand(1));
3276
3277      unsigned TypeID = MMI->getTypeIDFor(GV);
3278      setValue(&I, DAG.getConstant(TypeID, VT));
3279    } else {
3280      // Return something different to eh_selector.
3281      setValue(&I, DAG.getConstant(1, VT));
3282    }
3283
3284    return 0;
3285  }
3286
3287  case Intrinsic::eh_return: {
3288    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
3289
3290    if (MMI) {
3291      MMI->setCallsEHReturn(true);
3292      DAG.setRoot(DAG.getNode(ISD::EH_RETURN,
3293                              MVT::Other,
3294                              getControlRoot(),
3295                              getValue(I.getOperand(1)),
3296                              getValue(I.getOperand(2))));
3297    } else {
3298      setValue(&I, DAG.getConstant(0, TLI.getPointerTy()));
3299    }
3300
3301    return 0;
3302  }
3303
3304   case Intrinsic::eh_unwind_init: {
3305     if (MachineModuleInfo *MMI = DAG.getMachineModuleInfo()) {
3306       MMI->setCallsUnwindInit(true);
3307     }
3308
3309     return 0;
3310   }
3311
3312   case Intrinsic::eh_dwarf_cfa: {
3313     MVT VT = getValue(I.getOperand(1)).getValueType();
3314     SDOperand CfaArg;
3315     if (VT.bitsGT(TLI.getPointerTy()))
3316       CfaArg = DAG.getNode(ISD::TRUNCATE,
3317                            TLI.getPointerTy(), getValue(I.getOperand(1)));
3318     else
3319       CfaArg = DAG.getNode(ISD::SIGN_EXTEND,
3320                            TLI.getPointerTy(), getValue(I.getOperand(1)));
3321
3322     SDOperand Offset = DAG.getNode(ISD::ADD,
3323                                    TLI.getPointerTy(),
3324                                    DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET,
3325                                                TLI.getPointerTy()),
3326                                    CfaArg);
3327     setValue(&I, DAG.getNode(ISD::ADD,
3328                              TLI.getPointerTy(),
3329                              DAG.getNode(ISD::FRAMEADDR,
3330                                          TLI.getPointerTy(),
3331                                          DAG.getConstant(0,
3332                                                          TLI.getPointerTy())),
3333                              Offset));
3334     return 0;
3335  }
3336
3337  case Intrinsic::sqrt:
3338    setValue(&I, DAG.getNode(ISD::FSQRT,
3339                             getValue(I.getOperand(1)).getValueType(),
3340                             getValue(I.getOperand(1))));
3341    return 0;
3342  case Intrinsic::powi:
3343    setValue(&I, DAG.getNode(ISD::FPOWI,
3344                             getValue(I.getOperand(1)).getValueType(),
3345                             getValue(I.getOperand(1)),
3346                             getValue(I.getOperand(2))));
3347    return 0;
3348  case Intrinsic::sin:
3349    setValue(&I, DAG.getNode(ISD::FSIN,
3350                             getValue(I.getOperand(1)).getValueType(),
3351                             getValue(I.getOperand(1))));
3352    return 0;
3353  case Intrinsic::cos:
3354    setValue(&I, DAG.getNode(ISD::FCOS,
3355                             getValue(I.getOperand(1)).getValueType(),
3356                             getValue(I.getOperand(1))));
3357    return 0;
3358  case Intrinsic::pow:
3359    setValue(&I, DAG.getNode(ISD::FPOW,
3360                             getValue(I.getOperand(1)).getValueType(),
3361                             getValue(I.getOperand(1)),
3362                             getValue(I.getOperand(2))));
3363    return 0;
3364  case Intrinsic::pcmarker: {
3365    SDOperand Tmp = getValue(I.getOperand(1));
3366    DAG.setRoot(DAG.getNode(ISD::PCMARKER, MVT::Other, getRoot(), Tmp));
3367    return 0;
3368  }
3369  case Intrinsic::readcyclecounter: {
3370    SDOperand Op = getRoot();
3371    SDOperand Tmp = DAG.getNode(ISD::READCYCLECOUNTER,
3372                                DAG.getNodeValueTypes(MVT::i64, MVT::Other), 2,
3373                                &Op, 1);
3374    setValue(&I, Tmp);
3375    DAG.setRoot(Tmp.getValue(1));
3376    return 0;
3377  }
3378  case Intrinsic::part_select: {
3379    // Currently not implemented: just abort
3380    assert(0 && "part_select intrinsic not implemented");
3381    abort();
3382  }
3383  case Intrinsic::part_set: {
3384    // Currently not implemented: just abort
3385    assert(0 && "part_set intrinsic not implemented");
3386    abort();
3387  }
3388  case Intrinsic::bswap:
3389    setValue(&I, DAG.getNode(ISD::BSWAP,
3390                             getValue(I.getOperand(1)).getValueType(),
3391                             getValue(I.getOperand(1))));
3392    return 0;
3393  case Intrinsic::cttz: {
3394    SDOperand Arg = getValue(I.getOperand(1));
3395    MVT Ty = Arg.getValueType();
3396    SDOperand result = DAG.getNode(ISD::CTTZ, Ty, Arg);
3397    setValue(&I, result);
3398    return 0;
3399  }
3400  case Intrinsic::ctlz: {
3401    SDOperand Arg = getValue(I.getOperand(1));
3402    MVT Ty = Arg.getValueType();
3403    SDOperand result = DAG.getNode(ISD::CTLZ, Ty, Arg);
3404    setValue(&I, result);
3405    return 0;
3406  }
3407  case Intrinsic::ctpop: {
3408    SDOperand Arg = getValue(I.getOperand(1));
3409    MVT Ty = Arg.getValueType();
3410    SDOperand result = DAG.getNode(ISD::CTPOP, Ty, Arg);
3411    setValue(&I, result);
3412    return 0;
3413  }
3414  case Intrinsic::stacksave: {
3415    SDOperand Op = getRoot();
3416    SDOperand Tmp = DAG.getNode(ISD::STACKSAVE,
3417              DAG.getNodeValueTypes(TLI.getPointerTy(), MVT::Other), 2, &Op, 1);
3418    setValue(&I, Tmp);
3419    DAG.setRoot(Tmp.getValue(1));
3420    return 0;
3421  }
3422  case Intrinsic::stackrestore: {
3423    SDOperand Tmp = getValue(I.getOperand(1));
3424    DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, MVT::Other, getRoot(), Tmp));
3425    return 0;
3426  }
3427  case Intrinsic::var_annotation:
3428    // Discard annotate attributes
3429    return 0;
3430
3431  case Intrinsic::init_trampoline: {
3432    const Function *F = cast<Function>(I.getOperand(2)->stripPointerCasts());
3433
3434    SDOperand Ops[6];
3435    Ops[0] = getRoot();
3436    Ops[1] = getValue(I.getOperand(1));
3437    Ops[2] = getValue(I.getOperand(2));
3438    Ops[3] = getValue(I.getOperand(3));
3439    Ops[4] = DAG.getSrcValue(I.getOperand(1));
3440    Ops[5] = DAG.getSrcValue(F);
3441
3442    SDOperand Tmp = DAG.getNode(ISD::TRAMPOLINE,
3443                                DAG.getNodeValueTypes(TLI.getPointerTy(),
3444                                                      MVT::Other), 2,
3445                                Ops, 6);
3446
3447    setValue(&I, Tmp);
3448    DAG.setRoot(Tmp.getValue(1));
3449    return 0;
3450  }
3451
3452  case Intrinsic::gcroot:
3453    if (GCI) {
3454      Value *Alloca = I.getOperand(1);
3455      Constant *TypeMap = cast<Constant>(I.getOperand(2));
3456
3457      FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).Val);
3458      GCI->addStackRoot(FI->getIndex(), TypeMap);
3459    }
3460    return 0;
3461
3462  case Intrinsic::gcread:
3463  case Intrinsic::gcwrite:
3464    assert(0 && "Collector failed to lower gcread/gcwrite intrinsics!");
3465    return 0;
3466
3467  case Intrinsic::flt_rounds: {
3468    setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, MVT::i32));
3469    return 0;
3470  }
3471
3472  case Intrinsic::trap: {
3473    DAG.setRoot(DAG.getNode(ISD::TRAP, MVT::Other, getRoot()));
3474    return 0;
3475  }
3476  case Intrinsic::prefetch: {
3477    SDOperand Ops[4];
3478    Ops[0] = getRoot();
3479    Ops[1] = getValue(I.getOperand(1));
3480    Ops[2] = getValue(I.getOperand(2));
3481    Ops[3] = getValue(I.getOperand(3));
3482    DAG.setRoot(DAG.getNode(ISD::PREFETCH, MVT::Other, &Ops[0], 4));
3483    return 0;
3484  }
3485
3486  case Intrinsic::memory_barrier: {
3487    SDOperand Ops[6];
3488    Ops[0] = getRoot();
3489    for (int x = 1; x < 6; ++x)
3490      Ops[x] = getValue(I.getOperand(x));
3491
3492    DAG.setRoot(DAG.getNode(ISD::MEMBARRIER, MVT::Other, &Ops[0], 6));
3493    return 0;
3494  }
3495  case Intrinsic::atomic_cmp_swap: {
3496    SDOperand Root = getRoot();
3497    SDOperand L = DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, Root,
3498                                getValue(I.getOperand(1)),
3499                                getValue(I.getOperand(2)),
3500                                getValue(I.getOperand(3)),
3501                                I.getOperand(1));
3502    setValue(&I, L);
3503    DAG.setRoot(L.getValue(1));
3504    return 0;
3505  }
3506  case Intrinsic::atomic_load_add:
3507    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_ADD);
3508  case Intrinsic::atomic_load_sub:
3509    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_SUB);
3510  case Intrinsic::atomic_load_and:
3511    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_AND);
3512  case Intrinsic::atomic_load_or:
3513    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_OR);
3514  case Intrinsic::atomic_load_xor:
3515    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_XOR);
3516  case Intrinsic::atomic_load_nand:
3517    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_NAND);
3518  case Intrinsic::atomic_load_min:
3519    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MIN);
3520  case Intrinsic::atomic_load_max:
3521    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MAX);
3522  case Intrinsic::atomic_load_umin:
3523    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMIN);
3524  case Intrinsic::atomic_load_umax:
3525      return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMAX);
3526  case Intrinsic::atomic_swap:
3527    return implVisitBinaryAtomic(I, ISD::ATOMIC_SWAP);
3528  }
3529}
3530
3531
3532void SelectionDAGLowering::LowerCallTo(CallSite CS, SDOperand Callee,
3533                                       bool IsTailCall,
3534                                       MachineBasicBlock *LandingPad) {
3535  const PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
3536  const FunctionType *FTy = cast<FunctionType>(PT->getElementType());
3537  MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
3538  unsigned BeginLabel = 0, EndLabel = 0;
3539
3540  TargetLowering::ArgListTy Args;
3541  TargetLowering::ArgListEntry Entry;
3542  Args.reserve(CS.arg_size());
3543  for (CallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
3544       i != e; ++i) {
3545    SDOperand ArgNode = getValue(*i);
3546    Entry.Node = ArgNode; Entry.Ty = (*i)->getType();
3547
3548    unsigned attrInd = i - CS.arg_begin() + 1;
3549    Entry.isSExt  = CS.paramHasAttr(attrInd, ParamAttr::SExt);
3550    Entry.isZExt  = CS.paramHasAttr(attrInd, ParamAttr::ZExt);
3551    Entry.isInReg = CS.paramHasAttr(attrInd, ParamAttr::InReg);
3552    Entry.isSRet  = CS.paramHasAttr(attrInd, ParamAttr::StructRet);
3553    Entry.isNest  = CS.paramHasAttr(attrInd, ParamAttr::Nest);
3554    Entry.isByVal = CS.paramHasAttr(attrInd, ParamAttr::ByVal);
3555    Entry.Alignment = CS.getParamAlignment(attrInd);
3556    Args.push_back(Entry);
3557  }
3558
3559  if (LandingPad && MMI) {
3560    // Insert a label before the invoke call to mark the try range.  This can be
3561    // used to detect deletion of the invoke via the MachineModuleInfo.
3562    BeginLabel = MMI->NextLabelID();
3563    // Both PendingLoads and PendingExports must be flushed here;
3564    // this call might not return.
3565    (void)getRoot();
3566    DAG.setRoot(DAG.getLabel(ISD::EH_LABEL, getControlRoot(), BeginLabel));
3567  }
3568
3569  std::pair<SDOperand,SDOperand> Result =
3570    TLI.LowerCallTo(getRoot(), CS.getType(),
3571                    CS.paramHasAttr(0, ParamAttr::SExt),
3572                    CS.paramHasAttr(0, ParamAttr::ZExt),
3573                    FTy->isVarArg(), CS.getCallingConv(), IsTailCall,
3574                    Callee, Args, DAG);
3575  if (CS.getType() != Type::VoidTy)
3576    setValue(CS.getInstruction(), Result.first);
3577  DAG.setRoot(Result.second);
3578
3579  if (LandingPad && MMI) {
3580    // Insert a label at the end of the invoke call to mark the try range.  This
3581    // can be used to detect deletion of the invoke via the MachineModuleInfo.
3582    EndLabel = MMI->NextLabelID();
3583    DAG.setRoot(DAG.getLabel(ISD::EH_LABEL, getRoot(), EndLabel));
3584
3585    // Inform MachineModuleInfo of range.
3586    MMI->addInvoke(LandingPad, BeginLabel, EndLabel);
3587  }
3588}
3589
3590
3591void SelectionDAGLowering::visitCall(CallInst &I) {
3592  const char *RenameFn = 0;
3593  if (Function *F = I.getCalledFunction()) {
3594    if (F->isDeclaration()) {
3595      if (unsigned IID = F->getIntrinsicID()) {
3596        RenameFn = visitIntrinsicCall(I, IID);
3597        if (!RenameFn)
3598          return;
3599      }
3600    }
3601
3602    // Check for well-known libc/libm calls.  If the function is internal, it
3603    // can't be a library call.
3604    unsigned NameLen = F->getNameLen();
3605    if (!F->hasInternalLinkage() && NameLen) {
3606      const char *NameStr = F->getNameStart();
3607      if (NameStr[0] == 'c' &&
3608          ((NameLen == 8 && !strcmp(NameStr, "copysign")) ||
3609           (NameLen == 9 && !strcmp(NameStr, "copysignf")))) {
3610        if (I.getNumOperands() == 3 &&   // Basic sanity checks.
3611            I.getOperand(1)->getType()->isFloatingPoint() &&
3612            I.getType() == I.getOperand(1)->getType() &&
3613            I.getType() == I.getOperand(2)->getType()) {
3614          SDOperand LHS = getValue(I.getOperand(1));
3615          SDOperand RHS = getValue(I.getOperand(2));
3616          setValue(&I, DAG.getNode(ISD::FCOPYSIGN, LHS.getValueType(),
3617                                   LHS, RHS));
3618          return;
3619        }
3620      } else if (NameStr[0] == 'f' &&
3621                 ((NameLen == 4 && !strcmp(NameStr, "fabs")) ||
3622                  (NameLen == 5 && !strcmp(NameStr, "fabsf")) ||
3623                  (NameLen == 5 && !strcmp(NameStr, "fabsl")))) {
3624        if (I.getNumOperands() == 2 &&   // Basic sanity checks.
3625            I.getOperand(1)->getType()->isFloatingPoint() &&
3626            I.getType() == I.getOperand(1)->getType()) {
3627          SDOperand Tmp = getValue(I.getOperand(1));
3628          setValue(&I, DAG.getNode(ISD::FABS, Tmp.getValueType(), Tmp));
3629          return;
3630        }
3631      } else if (NameStr[0] == 's' &&
3632                 ((NameLen == 3 && !strcmp(NameStr, "sin")) ||
3633                  (NameLen == 4 && !strcmp(NameStr, "sinf")) ||
3634                  (NameLen == 4 && !strcmp(NameStr, "sinl")))) {
3635        if (I.getNumOperands() == 2 &&   // Basic sanity checks.
3636            I.getOperand(1)->getType()->isFloatingPoint() &&
3637            I.getType() == I.getOperand(1)->getType()) {
3638          SDOperand Tmp = getValue(I.getOperand(1));
3639          setValue(&I, DAG.getNode(ISD::FSIN, Tmp.getValueType(), Tmp));
3640          return;
3641        }
3642      } else if (NameStr[0] == 'c' &&
3643                 ((NameLen == 3 && !strcmp(NameStr, "cos")) ||
3644                  (NameLen == 4 && !strcmp(NameStr, "cosf")) ||
3645                  (NameLen == 4 && !strcmp(NameStr, "cosl")))) {
3646        if (I.getNumOperands() == 2 &&   // Basic sanity checks.
3647            I.getOperand(1)->getType()->isFloatingPoint() &&
3648            I.getType() == I.getOperand(1)->getType()) {
3649          SDOperand Tmp = getValue(I.getOperand(1));
3650          setValue(&I, DAG.getNode(ISD::FCOS, Tmp.getValueType(), Tmp));
3651          return;
3652        }
3653      }
3654    }
3655  } else if (isa<InlineAsm>(I.getOperand(0))) {
3656    visitInlineAsm(&I);
3657    return;
3658  }
3659
3660  SDOperand Callee;
3661  if (!RenameFn)
3662    Callee = getValue(I.getOperand(0));
3663  else
3664    Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy());
3665
3666  LowerCallTo(&I, Callee, I.isTailCall());
3667}
3668
3669
3670void SelectionDAGLowering::visitGetResult(GetResultInst &I) {
3671  if (isa<UndefValue>(I.getOperand(0))) {
3672    SDOperand Undef = DAG.getNode(ISD::UNDEF, TLI.getValueType(I.getType()));
3673    setValue(&I, Undef);
3674    return;
3675  }
3676
3677  // To add support for individual return values with aggregate types,
3678  // we'd need a way to take a getresult index and determine which
3679  // values of the Call SDNode are associated with it.
3680  assert(TLI.getValueType(I.getType(), true) != MVT::Other &&
3681         "Individual return values must not be aggregates!");
3682
3683  SDOperand Call = getValue(I.getOperand(0));
3684  setValue(&I, SDOperand(Call.Val, I.getIndex()));
3685}
3686
3687
3688/// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
3689/// this value and returns the result as a ValueVT value.  This uses
3690/// Chain/Flag as the input and updates them for the output Chain/Flag.
3691/// If the Flag pointer is NULL, no flag is used.
3692SDOperand RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
3693                                        SDOperand &Chain,
3694                                        SDOperand *Flag) const {
3695  // Assemble the legal parts into the final values.
3696  SmallVector<SDOperand, 4> Values(ValueVTs.size());
3697  SmallVector<SDOperand, 8> Parts;
3698  for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
3699    // Copy the legal parts from the registers.
3700    MVT ValueVT = ValueVTs[Value];
3701    unsigned NumRegs = TLI->getNumRegisters(ValueVT);
3702    MVT RegisterVT = RegVTs[Value];
3703
3704    Parts.resize(NumRegs);
3705    for (unsigned i = 0; i != NumRegs; ++i) {
3706      SDOperand P;
3707      if (Flag == 0)
3708        P = DAG.getCopyFromReg(Chain, Regs[Part+i], RegisterVT);
3709      else {
3710        P = DAG.getCopyFromReg(Chain, Regs[Part+i], RegisterVT, *Flag);
3711        *Flag = P.getValue(2);
3712      }
3713      Chain = P.getValue(1);
3714
3715      // If the source register was virtual and if we know something about it,
3716      // add an assert node.
3717      if (TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) &&
3718          RegisterVT.isInteger() && !RegisterVT.isVector()) {
3719        unsigned SlotNo = Regs[Part+i]-TargetRegisterInfo::FirstVirtualRegister;
3720        FunctionLoweringInfo &FLI = DAG.getFunctionLoweringInfo();
3721        if (FLI.LiveOutRegInfo.size() > SlotNo) {
3722          FunctionLoweringInfo::LiveOutInfo &LOI = FLI.LiveOutRegInfo[SlotNo];
3723
3724          unsigned RegSize = RegisterVT.getSizeInBits();
3725          unsigned NumSignBits = LOI.NumSignBits;
3726          unsigned NumZeroBits = LOI.KnownZero.countLeadingOnes();
3727
3728          // FIXME: We capture more information than the dag can represent.  For
3729          // now, just use the tightest assertzext/assertsext possible.
3730          bool isSExt = true;
3731          MVT FromVT(MVT::Other);
3732          if (NumSignBits == RegSize)
3733            isSExt = true, FromVT = MVT::i1;   // ASSERT SEXT 1
3734          else if (NumZeroBits >= RegSize-1)
3735            isSExt = false, FromVT = MVT::i1;  // ASSERT ZEXT 1
3736          else if (NumSignBits > RegSize-8)
3737            isSExt = true, FromVT = MVT::i8;   // ASSERT SEXT 8
3738          else if (NumZeroBits >= RegSize-9)
3739            isSExt = false, FromVT = MVT::i8;  // ASSERT ZEXT 8
3740          else if (NumSignBits > RegSize-16)
3741            isSExt = true, FromVT = MVT::i16;   // ASSERT SEXT 16
3742          else if (NumZeroBits >= RegSize-17)
3743            isSExt = false, FromVT = MVT::i16;  // ASSERT ZEXT 16
3744          else if (NumSignBits > RegSize-32)
3745            isSExt = true, FromVT = MVT::i32;   // ASSERT SEXT 32
3746          else if (NumZeroBits >= RegSize-33)
3747            isSExt = false, FromVT = MVT::i32;  // ASSERT ZEXT 32
3748
3749          if (FromVT != MVT::Other) {
3750            P = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext,
3751                            RegisterVT, P, DAG.getValueType(FromVT));
3752
3753          }
3754        }
3755      }
3756
3757      Parts[Part+i] = P;
3758    }
3759
3760    Values[Value] = getCopyFromParts(DAG, &Parts[Part], NumRegs, RegisterVT,
3761                                     ValueVT);
3762    Part += NumRegs;
3763  }
3764
3765  return DAG.getMergeValues(DAG.getVTList(&ValueVTs[0], ValueVTs.size()),
3766                            &Values[0], ValueVTs.size());
3767}
3768
3769/// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
3770/// specified value into the registers specified by this object.  This uses
3771/// Chain/Flag as the input and updates them for the output Chain/Flag.
3772/// If the Flag pointer is NULL, no flag is used.
3773void RegsForValue::getCopyToRegs(SDOperand Val, SelectionDAG &DAG,
3774                                 SDOperand &Chain, SDOperand *Flag) const {
3775  // Get the list of the values's legal parts.
3776  unsigned NumRegs = Regs.size();
3777  SmallVector<SDOperand, 8> Parts(NumRegs);
3778  for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
3779    MVT ValueVT = ValueVTs[Value];
3780    unsigned NumParts = TLI->getNumRegisters(ValueVT);
3781    MVT RegisterVT = RegVTs[Value];
3782
3783    getCopyToParts(DAG, Val.getValue(Val.ResNo + Value),
3784                   &Parts[Part], NumParts, RegisterVT);
3785    Part += NumParts;
3786  }
3787
3788  // Copy the parts into the registers.
3789  SmallVector<SDOperand, 8> Chains(NumRegs);
3790  for (unsigned i = 0; i != NumRegs; ++i) {
3791    SDOperand Part;
3792    if (Flag == 0)
3793      Part = DAG.getCopyToReg(Chain, Regs[i], Parts[i]);
3794    else {
3795      Part = DAG.getCopyToReg(Chain, Regs[i], Parts[i], *Flag);
3796      *Flag = Part.getValue(1);
3797    }
3798    Chains[i] = Part.getValue(0);
3799  }
3800
3801  if (NumRegs == 1 || Flag)
3802    // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
3803    // flagged to it. That is the CopyToReg nodes and the user are considered
3804    // a single scheduling unit. If we create a TokenFactor and return it as
3805    // chain, then the TokenFactor is both a predecessor (operand) of the
3806    // user as well as a successor (the TF operands are flagged to the user).
3807    // c1, f1 = CopyToReg
3808    // c2, f2 = CopyToReg
3809    // c3     = TokenFactor c1, c2
3810    // ...
3811    //        = op c3, ..., f2
3812    Chain = Chains[NumRegs-1];
3813  else
3814    Chain = DAG.getNode(ISD::TokenFactor, MVT::Other, &Chains[0], NumRegs);
3815}
3816
3817/// AddInlineAsmOperands - Add this value to the specified inlineasm node
3818/// operand list.  This adds the code marker and includes the number of
3819/// values added into it.
3820void RegsForValue::AddInlineAsmOperands(unsigned Code, SelectionDAG &DAG,
3821                                        std::vector<SDOperand> &Ops) const {
3822  MVT IntPtrTy = DAG.getTargetLoweringInfo().getPointerTy();
3823  Ops.push_back(DAG.getTargetConstant(Code | (Regs.size() << 3), IntPtrTy));
3824  for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
3825    unsigned NumRegs = TLI->getNumRegisters(ValueVTs[Value]);
3826    MVT RegisterVT = RegVTs[Value];
3827    for (unsigned i = 0; i != NumRegs; ++i)
3828      Ops.push_back(DAG.getRegister(Regs[Reg++], RegisterVT));
3829  }
3830}
3831
3832/// isAllocatableRegister - If the specified register is safe to allocate,
3833/// i.e. it isn't a stack pointer or some other special register, return the
3834/// register class for the register.  Otherwise, return null.
3835static const TargetRegisterClass *
3836isAllocatableRegister(unsigned Reg, MachineFunction &MF,
3837                      const TargetLowering &TLI,
3838                      const TargetRegisterInfo *TRI) {
3839  MVT FoundVT = MVT::Other;
3840  const TargetRegisterClass *FoundRC = 0;
3841  for (TargetRegisterInfo::regclass_iterator RCI = TRI->regclass_begin(),
3842       E = TRI->regclass_end(); RCI != E; ++RCI) {
3843    MVT ThisVT = MVT::Other;
3844
3845    const TargetRegisterClass *RC = *RCI;
3846    // If none of the the value types for this register class are valid, we
3847    // can't use it.  For example, 64-bit reg classes on 32-bit targets.
3848    for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
3849         I != E; ++I) {
3850      if (TLI.isTypeLegal(*I)) {
3851        // If we have already found this register in a different register class,
3852        // choose the one with the largest VT specified.  For example, on
3853        // PowerPC, we favor f64 register classes over f32.
3854        if (FoundVT == MVT::Other || FoundVT.bitsLT(*I)) {
3855          ThisVT = *I;
3856          break;
3857        }
3858      }
3859    }
3860
3861    if (ThisVT == MVT::Other) continue;
3862
3863    // NOTE: This isn't ideal.  In particular, this might allocate the
3864    // frame pointer in functions that need it (due to them not being taken
3865    // out of allocation, because a variable sized allocation hasn't been seen
3866    // yet).  This is a slight code pessimization, but should still work.
3867    for (TargetRegisterClass::iterator I = RC->allocation_order_begin(MF),
3868         E = RC->allocation_order_end(MF); I != E; ++I)
3869      if (*I == Reg) {
3870        // We found a matching register class.  Keep looking at others in case
3871        // we find one with larger registers that this physreg is also in.
3872        FoundRC = RC;
3873        FoundVT = ThisVT;
3874        break;
3875      }
3876  }
3877  return FoundRC;
3878}
3879
3880
3881namespace {
3882/// AsmOperandInfo - This contains information for each constraint that we are
3883/// lowering.
3884struct SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
3885  /// CallOperand - If this is the result output operand or a clobber
3886  /// this is null, otherwise it is the incoming operand to the CallInst.
3887  /// This gets modified as the asm is processed.
3888  SDOperand CallOperand;
3889
3890  /// AssignedRegs - If this is a register or register class operand, this
3891  /// contains the set of register corresponding to the operand.
3892  RegsForValue AssignedRegs;
3893
3894  explicit SDISelAsmOperandInfo(const InlineAsm::ConstraintInfo &info)
3895    : TargetLowering::AsmOperandInfo(info), CallOperand(0,0) {
3896  }
3897
3898  /// MarkAllocatedRegs - Once AssignedRegs is set, mark the assigned registers
3899  /// busy in OutputRegs/InputRegs.
3900  void MarkAllocatedRegs(bool isOutReg, bool isInReg,
3901                         std::set<unsigned> &OutputRegs,
3902                         std::set<unsigned> &InputRegs,
3903                         const TargetRegisterInfo &TRI) const {
3904    if (isOutReg) {
3905      for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i)
3906        MarkRegAndAliases(AssignedRegs.Regs[i], OutputRegs, TRI);
3907    }
3908    if (isInReg) {
3909      for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i)
3910        MarkRegAndAliases(AssignedRegs.Regs[i], InputRegs, TRI);
3911    }
3912  }
3913
3914private:
3915  /// MarkRegAndAliases - Mark the specified register and all aliases in the
3916  /// specified set.
3917  static void MarkRegAndAliases(unsigned Reg, std::set<unsigned> &Regs,
3918                                const TargetRegisterInfo &TRI) {
3919    assert(TargetRegisterInfo::isPhysicalRegister(Reg) && "Isn't a physreg");
3920    Regs.insert(Reg);
3921    if (const unsigned *Aliases = TRI.getAliasSet(Reg))
3922      for (; *Aliases; ++Aliases)
3923        Regs.insert(*Aliases);
3924  }
3925};
3926} // end anon namespace.
3927
3928
3929/// GetRegistersForValue - Assign registers (virtual or physical) for the
3930/// specified operand.  We prefer to assign virtual registers, to allow the
3931/// register allocator handle the assignment process.  However, if the asm uses
3932/// features that we can't model on machineinstrs, we have SDISel do the
3933/// allocation.  This produces generally horrible, but correct, code.
3934///
3935///   OpInfo describes the operand.
3936///   HasEarlyClobber is true if there are any early clobber constraints (=&r)
3937///     or any explicitly clobbered registers.
3938///   Input and OutputRegs are the set of already allocated physical registers.
3939///
3940void SelectionDAGLowering::
3941GetRegistersForValue(SDISelAsmOperandInfo &OpInfo, bool HasEarlyClobber,
3942                     std::set<unsigned> &OutputRegs,
3943                     std::set<unsigned> &InputRegs) {
3944  // Compute whether this value requires an input register, an output register,
3945  // or both.
3946  bool isOutReg = false;
3947  bool isInReg = false;
3948  switch (OpInfo.Type) {
3949  case InlineAsm::isOutput:
3950    isOutReg = true;
3951
3952    // If this is an early-clobber output, or if there is an input
3953    // constraint that matches this, we need to reserve the input register
3954    // so no other inputs allocate to it.
3955    isInReg = OpInfo.isEarlyClobber || OpInfo.hasMatchingInput;
3956    break;
3957  case InlineAsm::isInput:
3958    isInReg = true;
3959    isOutReg = false;
3960    break;
3961  case InlineAsm::isClobber:
3962    isOutReg = true;
3963    isInReg = true;
3964    break;
3965  }
3966
3967
3968  MachineFunction &MF = DAG.getMachineFunction();
3969  SmallVector<unsigned, 4> Regs;
3970
3971  // If this is a constraint for a single physreg, or a constraint for a
3972  // register class, find it.
3973  std::pair<unsigned, const TargetRegisterClass*> PhysReg =
3974    TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
3975                                     OpInfo.ConstraintVT);
3976
3977  unsigned NumRegs = 1;
3978  if (OpInfo.ConstraintVT != MVT::Other)
3979    NumRegs = TLI.getNumRegisters(OpInfo.ConstraintVT);
3980  MVT RegVT;
3981  MVT ValueVT = OpInfo.ConstraintVT;
3982
3983
3984  // If this is a constraint for a specific physical register, like {r17},
3985  // assign it now.
3986  if (PhysReg.first) {
3987    if (OpInfo.ConstraintVT == MVT::Other)
3988      ValueVT = *PhysReg.second->vt_begin();
3989
3990    // Get the actual register value type.  This is important, because the user
3991    // may have asked for (e.g.) the AX register in i32 type.  We need to
3992    // remember that AX is actually i16 to get the right extension.
3993    RegVT = *PhysReg.second->vt_begin();
3994
3995    // This is a explicit reference to a physical register.
3996    Regs.push_back(PhysReg.first);
3997
3998    // If this is an expanded reference, add the rest of the regs to Regs.
3999    if (NumRegs != 1) {
4000      TargetRegisterClass::iterator I = PhysReg.second->begin();
4001      for (; *I != PhysReg.first; ++I)
4002        assert(I != PhysReg.second->end() && "Didn't find reg!");
4003
4004      // Already added the first reg.
4005      --NumRegs; ++I;
4006      for (; NumRegs; --NumRegs, ++I) {
4007        assert(I != PhysReg.second->end() && "Ran out of registers to allocate!");
4008        Regs.push_back(*I);
4009      }
4010    }
4011    OpInfo.AssignedRegs = RegsForValue(TLI, Regs, RegVT, ValueVT);
4012    const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
4013    OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI);
4014    return;
4015  }
4016
4017  // Otherwise, if this was a reference to an LLVM register class, create vregs
4018  // for this reference.
4019  std::vector<unsigned> RegClassRegs;
4020  const TargetRegisterClass *RC = PhysReg.second;
4021  if (RC) {
4022    // If this is an early clobber or tied register, our regalloc doesn't know
4023    // how to maintain the constraint.  If it isn't, go ahead and create vreg
4024    // and let the regalloc do the right thing.
4025    if (!OpInfo.hasMatchingInput && !OpInfo.isEarlyClobber &&
4026        // If there is some other early clobber and this is an input register,
4027        // then we are forced to pre-allocate the input reg so it doesn't
4028        // conflict with the earlyclobber.
4029        !(OpInfo.Type == InlineAsm::isInput && HasEarlyClobber)) {
4030      RegVT = *PhysReg.second->vt_begin();
4031
4032      if (OpInfo.ConstraintVT == MVT::Other)
4033        ValueVT = RegVT;
4034
4035      // Create the appropriate number of virtual registers.
4036      MachineRegisterInfo &RegInfo = MF.getRegInfo();
4037      for (; NumRegs; --NumRegs)
4038        Regs.push_back(RegInfo.createVirtualRegister(PhysReg.second));
4039
4040      OpInfo.AssignedRegs = RegsForValue(TLI, Regs, RegVT, ValueVT);
4041      return;
4042    }
4043
4044    // Otherwise, we can't allocate it.  Let the code below figure out how to
4045    // maintain these constraints.
4046    RegClassRegs.assign(PhysReg.second->begin(), PhysReg.second->end());
4047
4048  } else {
4049    // This is a reference to a register class that doesn't directly correspond
4050    // to an LLVM register class.  Allocate NumRegs consecutive, available,
4051    // registers from the class.
4052    RegClassRegs = TLI.getRegClassForInlineAsmConstraint(OpInfo.ConstraintCode,
4053                                                         OpInfo.ConstraintVT);
4054  }
4055
4056  const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
4057  unsigned NumAllocated = 0;
4058  for (unsigned i = 0, e = RegClassRegs.size(); i != e; ++i) {
4059    unsigned Reg = RegClassRegs[i];
4060    // See if this register is available.
4061    if ((isOutReg && OutputRegs.count(Reg)) ||   // Already used.
4062        (isInReg  && InputRegs.count(Reg))) {    // Already used.
4063      // Make sure we find consecutive registers.
4064      NumAllocated = 0;
4065      continue;
4066    }
4067
4068    // Check to see if this register is allocatable (i.e. don't give out the
4069    // stack pointer).
4070    if (RC == 0) {
4071      RC = isAllocatableRegister(Reg, MF, TLI, TRI);
4072      if (!RC) {        // Couldn't allocate this register.
4073        // Reset NumAllocated to make sure we return consecutive registers.
4074        NumAllocated = 0;
4075        continue;
4076      }
4077    }
4078
4079    // Okay, this register is good, we can use it.
4080    ++NumAllocated;
4081
4082    // If we allocated enough consecutive registers, succeed.
4083    if (NumAllocated == NumRegs) {
4084      unsigned RegStart = (i-NumAllocated)+1;
4085      unsigned RegEnd   = i+1;
4086      // Mark all of the allocated registers used.
4087      for (unsigned i = RegStart; i != RegEnd; ++i)
4088        Regs.push_back(RegClassRegs[i]);
4089
4090      OpInfo.AssignedRegs = RegsForValue(TLI, Regs, *RC->vt_begin(),
4091                                         OpInfo.ConstraintVT);
4092      OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI);
4093      return;
4094    }
4095  }
4096
4097  // Otherwise, we couldn't allocate enough registers for this.
4098}
4099
4100
4101/// visitInlineAsm - Handle a call to an InlineAsm object.
4102///
4103void SelectionDAGLowering::visitInlineAsm(CallSite CS) {
4104  InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
4105
4106  /// ConstraintOperands - Information about all of the constraints.
4107  std::vector<SDISelAsmOperandInfo> ConstraintOperands;
4108
4109  SDOperand Chain = getRoot();
4110  SDOperand Flag;
4111
4112  std::set<unsigned> OutputRegs, InputRegs;
4113
4114  // Do a prepass over the constraints, canonicalizing them, and building up the
4115  // ConstraintOperands list.
4116  std::vector<InlineAsm::ConstraintInfo>
4117    ConstraintInfos = IA->ParseConstraints();
4118
4119  // SawEarlyClobber - Keep track of whether we saw an earlyclobber output
4120  // constraint.  If so, we can't let the register allocator allocate any input
4121  // registers, because it will not know to avoid the earlyclobbered output reg.
4122  bool SawEarlyClobber = false;
4123
4124  unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
4125  unsigned ResNo = 0;   // ResNo - The result number of the next output.
4126  for (unsigned i = 0, e = ConstraintInfos.size(); i != e; ++i) {
4127    ConstraintOperands.push_back(SDISelAsmOperandInfo(ConstraintInfos[i]));
4128    SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
4129
4130    MVT OpVT = MVT::Other;
4131
4132    // Compute the value type for each operand.
4133    switch (OpInfo.Type) {
4134    case InlineAsm::isOutput:
4135      // Indirect outputs just consume an argument.
4136      if (OpInfo.isIndirect) {
4137        OpInfo.CallOperandVal = CS.getArgument(ArgNo++);
4138        break;
4139      }
4140      // The return value of the call is this value.  As such, there is no
4141      // corresponding argument.
4142      assert(CS.getType() != Type::VoidTy && "Bad inline asm!");
4143      if (const StructType *STy = dyn_cast<StructType>(CS.getType())) {
4144        OpVT = TLI.getValueType(STy->getElementType(ResNo));
4145      } else {
4146        assert(ResNo == 0 && "Asm only has one result!");
4147        OpVT = TLI.getValueType(CS.getType());
4148      }
4149      ++ResNo;
4150      break;
4151    case InlineAsm::isInput:
4152      OpInfo.CallOperandVal = CS.getArgument(ArgNo++);
4153      break;
4154    case InlineAsm::isClobber:
4155      // Nothing to do.
4156      break;
4157    }
4158
4159    // If this is an input or an indirect output, process the call argument.
4160    // BasicBlocks are labels, currently appearing only in asm's.
4161    if (OpInfo.CallOperandVal) {
4162      if (BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal))
4163        OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
4164      else {
4165        OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
4166        const Type *OpTy = OpInfo.CallOperandVal->getType();
4167        // If this is an indirect operand, the operand is a pointer to the
4168        // accessed type.
4169        if (OpInfo.isIndirect)
4170          OpTy = cast<PointerType>(OpTy)->getElementType();
4171
4172        // If OpTy is not a single value, it may be a struct/union that we
4173        // can tile with integers.
4174        if (!OpTy->isSingleValueType() && OpTy->isSized()) {
4175          unsigned BitSize = TD->getTypeSizeInBits(OpTy);
4176          switch (BitSize) {
4177          default: break;
4178          case 1:
4179          case 8:
4180          case 16:
4181          case 32:
4182          case 64:
4183            OpTy = IntegerType::get(BitSize);
4184            break;
4185          }
4186        }
4187
4188        OpVT = TLI.getValueType(OpTy, true);
4189      }
4190    }
4191
4192    OpInfo.ConstraintVT = OpVT;
4193
4194    // Compute the constraint code and ConstraintType to use.
4195    TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
4196
4197    // Keep track of whether we see an earlyclobber.
4198    SawEarlyClobber |= OpInfo.isEarlyClobber;
4199
4200    // If we see a clobber of a register, it is an early clobber.
4201    if (!SawEarlyClobber &&
4202        OpInfo.Type == InlineAsm::isClobber &&
4203        OpInfo.ConstraintType == TargetLowering::C_Register) {
4204      // Note that we want to ignore things that we don't trick here, like
4205      // dirflag, fpsr, flags, etc.
4206      std::pair<unsigned, const TargetRegisterClass*> PhysReg =
4207        TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
4208                                         OpInfo.ConstraintVT);
4209      if (PhysReg.first || PhysReg.second) {
4210        // This is a register we know of.
4211        SawEarlyClobber = true;
4212      }
4213    }
4214
4215    // If this is a memory input, and if the operand is not indirect, do what we
4216    // need to to provide an address for the memory input.
4217    if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
4218        !OpInfo.isIndirect) {
4219      assert(OpInfo.Type == InlineAsm::isInput &&
4220             "Can only indirectify direct input operands!");
4221
4222      // Memory operands really want the address of the value.  If we don't have
4223      // an indirect input, put it in the constpool if we can, otherwise spill
4224      // it to a stack slot.
4225
4226      // If the operand is a float, integer, or vector constant, spill to a
4227      // constant pool entry to get its address.
4228      Value *OpVal = OpInfo.CallOperandVal;
4229      if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
4230          isa<ConstantVector>(OpVal)) {
4231        OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal),
4232                                                 TLI.getPointerTy());
4233      } else {
4234        // Otherwise, create a stack slot and emit a store to it before the
4235        // asm.
4236        const Type *Ty = OpVal->getType();
4237        uint64_t TySize = TLI.getTargetData()->getABITypeSize(Ty);
4238        unsigned Align  = TLI.getTargetData()->getPrefTypeAlignment(Ty);
4239        MachineFunction &MF = DAG.getMachineFunction();
4240        int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align);
4241        SDOperand StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy());
4242        Chain = DAG.getStore(Chain, OpInfo.CallOperand, StackSlot, NULL, 0);
4243        OpInfo.CallOperand = StackSlot;
4244      }
4245
4246      // There is no longer a Value* corresponding to this operand.
4247      OpInfo.CallOperandVal = 0;
4248      // It is now an indirect operand.
4249      OpInfo.isIndirect = true;
4250    }
4251
4252    // If this constraint is for a specific register, allocate it before
4253    // anything else.
4254    if (OpInfo.ConstraintType == TargetLowering::C_Register)
4255      GetRegistersForValue(OpInfo, SawEarlyClobber, OutputRegs, InputRegs);
4256  }
4257  ConstraintInfos.clear();
4258
4259
4260  // Second pass - Loop over all of the operands, assigning virtual or physregs
4261  // to registerclass operands.
4262  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
4263    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
4264
4265    // C_Register operands have already been allocated, Other/Memory don't need
4266    // to be.
4267    if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass)
4268      GetRegistersForValue(OpInfo, SawEarlyClobber, OutputRegs, InputRegs);
4269  }
4270
4271  // AsmNodeOperands - The operands for the ISD::INLINEASM node.
4272  std::vector<SDOperand> AsmNodeOperands;
4273  AsmNodeOperands.push_back(SDOperand());  // reserve space for input chain
4274  AsmNodeOperands.push_back(
4275          DAG.getTargetExternalSymbol(IA->getAsmString().c_str(), MVT::Other));
4276
4277
4278  // Loop over all of the inputs, copying the operand values into the
4279  // appropriate registers and processing the output regs.
4280  RegsForValue RetValRegs;
4281
4282  // IndirectStoresToEmit - The set of stores to emit after the inline asm node.
4283  std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit;
4284
4285  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
4286    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
4287
4288    switch (OpInfo.Type) {
4289    case InlineAsm::isOutput: {
4290      if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass &&
4291          OpInfo.ConstraintType != TargetLowering::C_Register) {
4292        // Memory output, or 'other' output (e.g. 'X' constraint).
4293        assert(OpInfo.isIndirect && "Memory output must be indirect operand");
4294
4295        // Add information to the INLINEASM node to know about this output.
4296        unsigned ResOpType = 4/*MEM*/ | (1 << 3);
4297        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
4298                                                        TLI.getPointerTy()));
4299        AsmNodeOperands.push_back(OpInfo.CallOperand);
4300        break;
4301      }
4302
4303      // Otherwise, this is a register or register class output.
4304
4305      // Copy the output from the appropriate register.  Find a register that
4306      // we can use.
4307      if (OpInfo.AssignedRegs.Regs.empty()) {
4308        cerr << "Couldn't allocate output reg for constraint '"
4309             << OpInfo.ConstraintCode << "'!\n";
4310        exit(1);
4311      }
4312
4313      // If this is an indirect operand, store through the pointer after the
4314      // asm.
4315      if (OpInfo.isIndirect) {
4316        IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs,
4317                                                      OpInfo.CallOperandVal));
4318      } else {
4319        // This is the result value of the call.
4320        assert(CS.getType() != Type::VoidTy && "Bad inline asm!");
4321        // Concatenate this output onto the outputs list.
4322        RetValRegs.append(OpInfo.AssignedRegs);
4323      }
4324
4325      // Add information to the INLINEASM node to know that this register is
4326      // set.
4327      OpInfo.AssignedRegs.AddInlineAsmOperands(2 /*REGDEF*/, DAG,
4328                                               AsmNodeOperands);
4329      break;
4330    }
4331    case InlineAsm::isInput: {
4332      SDOperand InOperandVal = OpInfo.CallOperand;
4333
4334      if (isdigit(OpInfo.ConstraintCode[0])) {    // Matching constraint?
4335        // If this is required to match an output register we have already set,
4336        // just use its register.
4337        unsigned OperandNo = atoi(OpInfo.ConstraintCode.c_str());
4338
4339        // Scan until we find the definition we already emitted of this operand.
4340        // When we find it, create a RegsForValue operand.
4341        unsigned CurOp = 2;  // The first operand.
4342        for (; OperandNo; --OperandNo) {
4343          // Advance to the next operand.
4344          unsigned NumOps =
4345            cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getValue();
4346          assert(((NumOps & 7) == 2 /*REGDEF*/ ||
4347                  (NumOps & 7) == 4 /*MEM*/) &&
4348                 "Skipped past definitions?");
4349          CurOp += (NumOps>>3)+1;
4350        }
4351
4352        unsigned NumOps =
4353          cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getValue();
4354        if ((NumOps & 7) == 2 /*REGDEF*/) {
4355          // Add NumOps>>3 registers to MatchedRegs.
4356          RegsForValue MatchedRegs;
4357          MatchedRegs.TLI = &TLI;
4358          MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType());
4359          MatchedRegs.RegVTs.push_back(AsmNodeOperands[CurOp+1].getValueType());
4360          for (unsigned i = 0, e = NumOps>>3; i != e; ++i) {
4361            unsigned Reg =
4362              cast<RegisterSDNode>(AsmNodeOperands[++CurOp])->getReg();
4363            MatchedRegs.Regs.push_back(Reg);
4364          }
4365
4366          // Use the produced MatchedRegs object to
4367          MatchedRegs.getCopyToRegs(InOperandVal, DAG, Chain, &Flag);
4368          MatchedRegs.AddInlineAsmOperands(1 /*REGUSE*/, DAG, AsmNodeOperands);
4369          break;
4370        } else {
4371          assert((NumOps & 7) == 4/*MEM*/ && "Unknown matching constraint!");
4372          assert((NumOps >> 3) == 1 && "Unexpected number of operands");
4373          // Add information to the INLINEASM node to know about this input.
4374          unsigned ResOpType = 4/*MEM*/ | (1 << 3);
4375          AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
4376                                                          TLI.getPointerTy()));
4377          AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
4378          break;
4379        }
4380      }
4381
4382      if (OpInfo.ConstraintType == TargetLowering::C_Other) {
4383        assert(!OpInfo.isIndirect &&
4384               "Don't know how to handle indirect other inputs yet!");
4385
4386        std::vector<SDOperand> Ops;
4387        TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode[0],
4388                                         Ops, DAG);
4389        if (Ops.empty()) {
4390          cerr << "Invalid operand for inline asm constraint '"
4391               << OpInfo.ConstraintCode << "'!\n";
4392          exit(1);
4393        }
4394
4395        // Add information to the INLINEASM node to know about this input.
4396        unsigned ResOpType = 3 /*IMM*/ | (Ops.size() << 3);
4397        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
4398                                                        TLI.getPointerTy()));
4399        AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
4400        break;
4401      } else if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
4402        assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
4403        assert(InOperandVal.getValueType() == TLI.getPointerTy() &&
4404               "Memory operands expect pointer values");
4405
4406        // Add information to the INLINEASM node to know about this input.
4407        unsigned ResOpType = 4/*MEM*/ | (1 << 3);
4408        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
4409                                                        TLI.getPointerTy()));
4410        AsmNodeOperands.push_back(InOperandVal);
4411        break;
4412      }
4413
4414      assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
4415              OpInfo.ConstraintType == TargetLowering::C_Register) &&
4416             "Unknown constraint type!");
4417      assert(!OpInfo.isIndirect &&
4418             "Don't know how to handle indirect register inputs yet!");
4419
4420      // Copy the input into the appropriate registers.
4421      assert(!OpInfo.AssignedRegs.Regs.empty() &&
4422             "Couldn't allocate input reg!");
4423
4424      OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, Chain, &Flag);
4425
4426      OpInfo.AssignedRegs.AddInlineAsmOperands(1/*REGUSE*/, DAG,
4427                                               AsmNodeOperands);
4428      break;
4429    }
4430    case InlineAsm::isClobber: {
4431      // Add the clobbered value to the operand list, so that the register
4432      // allocator is aware that the physreg got clobbered.
4433      if (!OpInfo.AssignedRegs.Regs.empty())
4434        OpInfo.AssignedRegs.AddInlineAsmOperands(2/*REGDEF*/, DAG,
4435                                                 AsmNodeOperands);
4436      break;
4437    }
4438    }
4439  }
4440
4441  // Finish up input operands.
4442  AsmNodeOperands[0] = Chain;
4443  if (Flag.Val) AsmNodeOperands.push_back(Flag);
4444
4445  Chain = DAG.getNode(ISD::INLINEASM,
4446                      DAG.getNodeValueTypes(MVT::Other, MVT::Flag), 2,
4447                      &AsmNodeOperands[0], AsmNodeOperands.size());
4448  Flag = Chain.getValue(1);
4449
4450  // If this asm returns a register value, copy the result from that register
4451  // and set it as the value of the call.
4452  if (!RetValRegs.Regs.empty()) {
4453    SDOperand Val = RetValRegs.getCopyFromRegs(DAG, Chain, &Flag);
4454
4455    // If any of the results of the inline asm is a vector, it may have the
4456    // wrong width/num elts.  This can happen for register classes that can
4457    // contain multiple different value types.  The preg or vreg allocated may
4458    // not have the same VT as was expected.  Convert it to the right type with
4459    // bit_convert.
4460    if (const StructType *ResSTy = dyn_cast<StructType>(CS.getType())) {
4461      for (unsigned i = 0, e = ResSTy->getNumElements(); i != e; ++i) {
4462        if (Val.Val->getValueType(i).isVector())
4463          Val = DAG.getNode(ISD::BIT_CONVERT,
4464                            TLI.getValueType(ResSTy->getElementType(i)), Val);
4465      }
4466    } else {
4467      if (Val.getValueType().isVector())
4468        Val = DAG.getNode(ISD::BIT_CONVERT, TLI.getValueType(CS.getType()),
4469                          Val);
4470    }
4471
4472    setValue(CS.getInstruction(), Val);
4473  }
4474
4475  std::vector<std::pair<SDOperand, Value*> > StoresToEmit;
4476
4477  // Process indirect outputs, first output all of the flagged copies out of
4478  // physregs.
4479  for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
4480    RegsForValue &OutRegs = IndirectStoresToEmit[i].first;
4481    Value *Ptr = IndirectStoresToEmit[i].second;
4482    SDOperand OutVal = OutRegs.getCopyFromRegs(DAG, Chain, &Flag);
4483    StoresToEmit.push_back(std::make_pair(OutVal, Ptr));
4484  }
4485
4486  // Emit the non-flagged stores from the physregs.
4487  SmallVector<SDOperand, 8> OutChains;
4488  for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i)
4489    OutChains.push_back(DAG.getStore(Chain, StoresToEmit[i].first,
4490                                    getValue(StoresToEmit[i].second),
4491                                    StoresToEmit[i].second, 0));
4492  if (!OutChains.empty())
4493    Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
4494                        &OutChains[0], OutChains.size());
4495  DAG.setRoot(Chain);
4496}
4497
4498
4499void SelectionDAGLowering::visitMalloc(MallocInst &I) {
4500  SDOperand Src = getValue(I.getOperand(0));
4501
4502  MVT IntPtr = TLI.getPointerTy();
4503
4504  if (IntPtr.bitsLT(Src.getValueType()))
4505    Src = DAG.getNode(ISD::TRUNCATE, IntPtr, Src);
4506  else if (IntPtr.bitsGT(Src.getValueType()))
4507    Src = DAG.getNode(ISD::ZERO_EXTEND, IntPtr, Src);
4508
4509  // Scale the source by the type size.
4510  uint64_t ElementSize = TD->getABITypeSize(I.getType()->getElementType());
4511  Src = DAG.getNode(ISD::MUL, Src.getValueType(),
4512                    Src, DAG.getIntPtrConstant(ElementSize));
4513
4514  TargetLowering::ArgListTy Args;
4515  TargetLowering::ArgListEntry Entry;
4516  Entry.Node = Src;
4517  Entry.Ty = TLI.getTargetData()->getIntPtrType();
4518  Args.push_back(Entry);
4519
4520  std::pair<SDOperand,SDOperand> Result =
4521    TLI.LowerCallTo(getRoot(), I.getType(), false, false, false, CallingConv::C,
4522                    true, DAG.getExternalSymbol("malloc", IntPtr), Args, DAG);
4523  setValue(&I, Result.first);  // Pointers always fit in registers
4524  DAG.setRoot(Result.second);
4525}
4526
4527void SelectionDAGLowering::visitFree(FreeInst &I) {
4528  TargetLowering::ArgListTy Args;
4529  TargetLowering::ArgListEntry Entry;
4530  Entry.Node = getValue(I.getOperand(0));
4531  Entry.Ty = TLI.getTargetData()->getIntPtrType();
4532  Args.push_back(Entry);
4533  MVT IntPtr = TLI.getPointerTy();
4534  std::pair<SDOperand,SDOperand> Result =
4535    TLI.LowerCallTo(getRoot(), Type::VoidTy, false, false, false,
4536                    CallingConv::C, true,
4537                    DAG.getExternalSymbol("free", IntPtr), Args, DAG);
4538  DAG.setRoot(Result.second);
4539}
4540
4541// EmitInstrWithCustomInserter - This method should be implemented by targets
4542// that mark instructions with the 'usesCustomDAGSchedInserter' flag.  These
4543// instructions are special in various ways, which require special support to
4544// insert.  The specified MachineInstr is created but not inserted into any
4545// basic blocks, and the scheduler passes ownership of it to this method.
4546MachineBasicBlock *TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
4547                                                       MachineBasicBlock *MBB) {
4548  cerr << "If a target marks an instruction with "
4549       << "'usesCustomDAGSchedInserter', it must implement "
4550       << "TargetLowering::EmitInstrWithCustomInserter!\n";
4551  abort();
4552  return 0;
4553}
4554
4555void SelectionDAGLowering::visitVAStart(CallInst &I) {
4556  DAG.setRoot(DAG.getNode(ISD::VASTART, MVT::Other, getRoot(),
4557                          getValue(I.getOperand(1)),
4558                          DAG.getSrcValue(I.getOperand(1))));
4559}
4560
4561void SelectionDAGLowering::visitVAArg(VAArgInst &I) {
4562  SDOperand V = DAG.getVAArg(TLI.getValueType(I.getType()), getRoot(),
4563                             getValue(I.getOperand(0)),
4564                             DAG.getSrcValue(I.getOperand(0)));
4565  setValue(&I, V);
4566  DAG.setRoot(V.getValue(1));
4567}
4568
4569void SelectionDAGLowering::visitVAEnd(CallInst &I) {
4570  DAG.setRoot(DAG.getNode(ISD::VAEND, MVT::Other, getRoot(),
4571                          getValue(I.getOperand(1)),
4572                          DAG.getSrcValue(I.getOperand(1))));
4573}
4574
4575void SelectionDAGLowering::visitVACopy(CallInst &I) {
4576  DAG.setRoot(DAG.getNode(ISD::VACOPY, MVT::Other, getRoot(),
4577                          getValue(I.getOperand(1)),
4578                          getValue(I.getOperand(2)),
4579                          DAG.getSrcValue(I.getOperand(1)),
4580                          DAG.getSrcValue(I.getOperand(2))));
4581}
4582
4583/// TargetLowering::LowerArguments - This is the default LowerArguments
4584/// implementation, which just inserts a FORMAL_ARGUMENTS node.  FIXME: When all
4585/// targets are migrated to using FORMAL_ARGUMENTS, this hook should be
4586/// integrated into SDISel.
4587void TargetLowering::LowerArguments(Function &F, SelectionDAG &DAG,
4588                                    SmallVectorImpl<SDOperand> &ArgValues) {
4589  // Add CC# and isVararg as operands to the FORMAL_ARGUMENTS node.
4590  SmallVector<SDOperand, 3+16> Ops;
4591  Ops.push_back(DAG.getRoot());
4592  Ops.push_back(DAG.getConstant(F.getCallingConv(), getPointerTy()));
4593  Ops.push_back(DAG.getConstant(F.isVarArg(), getPointerTy()));
4594
4595  // Add one result value for each formal argument.
4596  SmallVector<MVT, 16> RetVals;
4597  unsigned j = 1;
4598  for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end();
4599       I != E; ++I, ++j) {
4600    SmallVector<MVT, 4> ValueVTs;
4601    ComputeValueVTs(*this, I->getType(), ValueVTs);
4602    for (unsigned Value = 0, NumValues = ValueVTs.size();
4603         Value != NumValues; ++Value) {
4604      MVT VT = ValueVTs[Value];
4605      const Type *ArgTy = VT.getTypeForMVT();
4606      ISD::ArgFlagsTy Flags;
4607      unsigned OriginalAlignment =
4608        getTargetData()->getABITypeAlignment(ArgTy);
4609
4610      if (F.paramHasAttr(j, ParamAttr::ZExt))
4611        Flags.setZExt();
4612      if (F.paramHasAttr(j, ParamAttr::SExt))
4613        Flags.setSExt();
4614      if (F.paramHasAttr(j, ParamAttr::InReg))
4615        Flags.setInReg();
4616      if (F.paramHasAttr(j, ParamAttr::StructRet))
4617        Flags.setSRet();
4618      if (F.paramHasAttr(j, ParamAttr::ByVal)) {
4619        Flags.setByVal();
4620        const PointerType *Ty = cast<PointerType>(I->getType());
4621        const Type *ElementTy = Ty->getElementType();
4622        unsigned FrameAlign = getByValTypeAlignment(ElementTy);
4623        unsigned FrameSize  = getTargetData()->getABITypeSize(ElementTy);
4624        // For ByVal, alignment should be passed from FE.  BE will guess if
4625        // this info is not there but there are cases it cannot get right.
4626        if (F.getParamAlignment(j))
4627          FrameAlign = F.getParamAlignment(j);
4628        Flags.setByValAlign(FrameAlign);
4629        Flags.setByValSize(FrameSize);
4630      }
4631      if (F.paramHasAttr(j, ParamAttr::Nest))
4632        Flags.setNest();
4633      Flags.setOrigAlign(OriginalAlignment);
4634
4635      MVT RegisterVT = getRegisterType(VT);
4636      unsigned NumRegs = getNumRegisters(VT);
4637      for (unsigned i = 0; i != NumRegs; ++i) {
4638        RetVals.push_back(RegisterVT);
4639        ISD::ArgFlagsTy MyFlags = Flags;
4640        if (NumRegs > 1 && i == 0)
4641          MyFlags.setSplit();
4642        // if it isn't first piece, alignment must be 1
4643        else if (i > 0)
4644          MyFlags.setOrigAlign(1);
4645        Ops.push_back(DAG.getArgFlags(MyFlags));
4646      }
4647    }
4648  }
4649
4650  RetVals.push_back(MVT::Other);
4651
4652  // Create the node.
4653  SDNode *Result = DAG.getNode(ISD::FORMAL_ARGUMENTS,
4654                               DAG.getVTList(&RetVals[0], RetVals.size()),
4655                               &Ops[0], Ops.size()).Val;
4656
4657  // Prelower FORMAL_ARGUMENTS.  This isn't required for functionality, but
4658  // allows exposing the loads that may be part of the argument access to the
4659  // first DAGCombiner pass.
4660  SDOperand TmpRes = LowerOperation(SDOperand(Result, 0), DAG);
4661
4662  // The number of results should match up, except that the lowered one may have
4663  // an extra flag result.
4664  assert((Result->getNumValues() == TmpRes.Val->getNumValues() ||
4665          (Result->getNumValues()+1 == TmpRes.Val->getNumValues() &&
4666           TmpRes.getValue(Result->getNumValues()).getValueType() == MVT::Flag))
4667         && "Lowering produced unexpected number of results!");
4668  Result = TmpRes.Val;
4669
4670  unsigned NumArgRegs = Result->getNumValues() - 1;
4671  DAG.setRoot(SDOperand(Result, NumArgRegs));
4672
4673  // Set up the return result vector.
4674  unsigned i = 0;
4675  unsigned Idx = 1;
4676  for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E;
4677      ++I, ++Idx) {
4678    SmallVector<MVT, 4> ValueVTs;
4679    ComputeValueVTs(*this, I->getType(), ValueVTs);
4680    for (unsigned Value = 0, NumValues = ValueVTs.size();
4681         Value != NumValues; ++Value) {
4682      MVT VT = ValueVTs[Value];
4683      MVT PartVT = getRegisterType(VT);
4684
4685      unsigned NumParts = getNumRegisters(VT);
4686      SmallVector<SDOperand, 4> Parts(NumParts);
4687      for (unsigned j = 0; j != NumParts; ++j)
4688        Parts[j] = SDOperand(Result, i++);
4689
4690      ISD::NodeType AssertOp = ISD::DELETED_NODE;
4691      if (F.paramHasAttr(Idx, ParamAttr::SExt))
4692        AssertOp = ISD::AssertSext;
4693      else if (F.paramHasAttr(Idx, ParamAttr::ZExt))
4694        AssertOp = ISD::AssertZext;
4695
4696      ArgValues.push_back(getCopyFromParts(DAG, &Parts[0], NumParts, PartVT, VT,
4697                                           AssertOp));
4698    }
4699  }
4700  assert(i == NumArgRegs && "Argument register count mismatch!");
4701}
4702
4703
4704/// TargetLowering::LowerCallTo - This is the default LowerCallTo
4705/// implementation, which just inserts an ISD::CALL node, which is later custom
4706/// lowered by the target to something concrete.  FIXME: When all targets are
4707/// migrated to using ISD::CALL, this hook should be integrated into SDISel.
4708std::pair<SDOperand, SDOperand>
4709TargetLowering::LowerCallTo(SDOperand Chain, const Type *RetTy,
4710                            bool RetSExt, bool RetZExt, bool isVarArg,
4711                            unsigned CallingConv, bool isTailCall,
4712                            SDOperand Callee,
4713                            ArgListTy &Args, SelectionDAG &DAG) {
4714  SmallVector<SDOperand, 32> Ops;
4715  Ops.push_back(Chain);   // Op#0 - Chain
4716  Ops.push_back(DAG.getConstant(CallingConv, getPointerTy())); // Op#1 - CC
4717  Ops.push_back(DAG.getConstant(isVarArg, getPointerTy()));    // Op#2 - VarArg
4718  Ops.push_back(DAG.getConstant(isTailCall, getPointerTy()));  // Op#3 - Tail
4719  Ops.push_back(Callee);
4720
4721  // Handle all of the outgoing arguments.
4722  for (unsigned i = 0, e = Args.size(); i != e; ++i) {
4723    SmallVector<MVT, 4> ValueVTs;
4724    ComputeValueVTs(*this, Args[i].Ty, ValueVTs);
4725    for (unsigned Value = 0, NumValues = ValueVTs.size();
4726         Value != NumValues; ++Value) {
4727      MVT VT = ValueVTs[Value];
4728      const Type *ArgTy = VT.getTypeForMVT();
4729      SDOperand Op = SDOperand(Args[i].Node.Val, Args[i].Node.ResNo + Value);
4730      ISD::ArgFlagsTy Flags;
4731      unsigned OriginalAlignment =
4732        getTargetData()->getABITypeAlignment(ArgTy);
4733
4734      if (Args[i].isZExt)
4735        Flags.setZExt();
4736      if (Args[i].isSExt)
4737        Flags.setSExt();
4738      if (Args[i].isInReg)
4739        Flags.setInReg();
4740      if (Args[i].isSRet)
4741        Flags.setSRet();
4742      if (Args[i].isByVal) {
4743        Flags.setByVal();
4744        const PointerType *Ty = cast<PointerType>(Args[i].Ty);
4745        const Type *ElementTy = Ty->getElementType();
4746        unsigned FrameAlign = getByValTypeAlignment(ElementTy);
4747        unsigned FrameSize  = getTargetData()->getABITypeSize(ElementTy);
4748        // For ByVal, alignment should come from FE.  BE will guess if this
4749        // info is not there but there are cases it cannot get right.
4750        if (Args[i].Alignment)
4751          FrameAlign = Args[i].Alignment;
4752        Flags.setByValAlign(FrameAlign);
4753        Flags.setByValSize(FrameSize);
4754      }
4755      if (Args[i].isNest)
4756        Flags.setNest();
4757      Flags.setOrigAlign(OriginalAlignment);
4758
4759      MVT PartVT = getRegisterType(VT);
4760      unsigned NumParts = getNumRegisters(VT);
4761      SmallVector<SDOperand, 4> Parts(NumParts);
4762      ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
4763
4764      if (Args[i].isSExt)
4765        ExtendKind = ISD::SIGN_EXTEND;
4766      else if (Args[i].isZExt)
4767        ExtendKind = ISD::ZERO_EXTEND;
4768
4769      getCopyToParts(DAG, Op, &Parts[0], NumParts, PartVT, ExtendKind);
4770
4771      for (unsigned i = 0; i != NumParts; ++i) {
4772        // if it isn't first piece, alignment must be 1
4773        ISD::ArgFlagsTy MyFlags = Flags;
4774        if (NumParts > 1 && i == 0)
4775          MyFlags.setSplit();
4776        else if (i != 0)
4777          MyFlags.setOrigAlign(1);
4778
4779        Ops.push_back(Parts[i]);
4780        Ops.push_back(DAG.getArgFlags(MyFlags));
4781      }
4782    }
4783  }
4784
4785  // Figure out the result value types. We start by making a list of
4786  // the potentially illegal return value types.
4787  SmallVector<MVT, 4> LoweredRetTys;
4788  SmallVector<MVT, 4> RetTys;
4789  ComputeValueVTs(*this, RetTy, RetTys);
4790
4791  // Then we translate that to a list of legal types.
4792  for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
4793    MVT VT = RetTys[I];
4794    MVT RegisterVT = getRegisterType(VT);
4795    unsigned NumRegs = getNumRegisters(VT);
4796    for (unsigned i = 0; i != NumRegs; ++i)
4797      LoweredRetTys.push_back(RegisterVT);
4798  }
4799
4800  LoweredRetTys.push_back(MVT::Other);  // Always has a chain.
4801
4802  // Create the CALL node.
4803  SDOperand Res = DAG.getNode(ISD::CALL,
4804                              DAG.getVTList(&LoweredRetTys[0],
4805                                            LoweredRetTys.size()),
4806                              &Ops[0], Ops.size());
4807  Chain = Res.getValue(LoweredRetTys.size() - 1);
4808
4809  // Gather up the call result into a single value.
4810  if (RetTy != Type::VoidTy) {
4811    ISD::NodeType AssertOp = ISD::DELETED_NODE;
4812
4813    if (RetSExt)
4814      AssertOp = ISD::AssertSext;
4815    else if (RetZExt)
4816      AssertOp = ISD::AssertZext;
4817
4818    SmallVector<SDOperand, 4> ReturnValues;
4819    unsigned RegNo = 0;
4820    for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
4821      MVT VT = RetTys[I];
4822      MVT RegisterVT = getRegisterType(VT);
4823      unsigned NumRegs = getNumRegisters(VT);
4824      unsigned RegNoEnd = NumRegs + RegNo;
4825      SmallVector<SDOperand, 4> Results;
4826      for (; RegNo != RegNoEnd; ++RegNo)
4827        Results.push_back(Res.getValue(RegNo));
4828      SDOperand ReturnValue =
4829        getCopyFromParts(DAG, &Results[0], NumRegs, RegisterVT, VT,
4830                         AssertOp);
4831      ReturnValues.push_back(ReturnValue);
4832    }
4833    Res = DAG.getMergeValues(DAG.getVTList(&RetTys[0], RetTys.size()),
4834                             &ReturnValues[0], ReturnValues.size());
4835  }
4836
4837  return std::make_pair(Res, Chain);
4838}
4839
4840SDOperand TargetLowering::LowerOperation(SDOperand Op, SelectionDAG &DAG) {
4841  assert(0 && "LowerOperation not implemented for this target!");
4842  abort();
4843  return SDOperand();
4844}
4845
4846SDOperand TargetLowering::CustomPromoteOperation(SDOperand Op,
4847                                                 SelectionDAG &DAG) {
4848  assert(0 && "CustomPromoteOperation not implemented for this target!");
4849  abort();
4850  return SDOperand();
4851}
4852
4853//===----------------------------------------------------------------------===//
4854// SelectionDAGISel code
4855//===----------------------------------------------------------------------===//
4856
4857unsigned SelectionDAGISel::MakeReg(MVT VT) {
4858  return RegInfo->createVirtualRegister(TLI.getRegClassFor(VT));
4859}
4860
4861void SelectionDAGISel::getAnalysisUsage(AnalysisUsage &AU) const {
4862  AU.addRequired<AliasAnalysis>();
4863  AU.addRequired<CollectorModuleMetadata>();
4864  AU.setPreservesAll();
4865}
4866
4867bool SelectionDAGISel::runOnFunction(Function &Fn) {
4868  // Get alias analysis for load/store combining.
4869  AA = &getAnalysis<AliasAnalysis>();
4870
4871  MachineFunction &MF = MachineFunction::construct(&Fn, TLI.getTargetMachine());
4872  if (MF.getFunction()->hasCollector())
4873    GCI = &getAnalysis<CollectorModuleMetadata>().get(*MF.getFunction());
4874  else
4875    GCI = 0;
4876  RegInfo = &MF.getRegInfo();
4877  DOUT << "\n\n\n=== " << Fn.getName() << "\n";
4878
4879  FunctionLoweringInfo FuncInfo(TLI, Fn, MF);
4880
4881  for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
4882    if (InvokeInst *Invoke = dyn_cast<InvokeInst>(I->getTerminator()))
4883      // Mark landing pad.
4884      FuncInfo.MBBMap[Invoke->getSuccessor(1)]->setIsLandingPad();
4885
4886  for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
4887    SelectBasicBlock(I, MF, FuncInfo);
4888
4889  // Add function live-ins to entry block live-in set.
4890  BasicBlock *EntryBB = &Fn.getEntryBlock();
4891  BB = FuncInfo.MBBMap[EntryBB];
4892  if (!RegInfo->livein_empty())
4893    for (MachineRegisterInfo::livein_iterator I = RegInfo->livein_begin(),
4894           E = RegInfo->livein_end(); I != E; ++I)
4895      BB->addLiveIn(I->first);
4896
4897#ifndef NDEBUG
4898  assert(FuncInfo.CatchInfoFound.size() == FuncInfo.CatchInfoLost.size() &&
4899         "Not all catch info was assigned to a landing pad!");
4900#endif
4901
4902  return true;
4903}
4904
4905void SelectionDAGLowering::CopyValueToVirtualRegister(Value *V, unsigned Reg) {
4906  SDOperand Op = getValue(V);
4907  assert((Op.getOpcode() != ISD::CopyFromReg ||
4908          cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
4909         "Copy from a reg to the same reg!");
4910  assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg");
4911
4912  RegsForValue RFV(TLI, Reg, V->getType());
4913  SDOperand Chain = DAG.getEntryNode();
4914  RFV.getCopyToRegs(Op, DAG, Chain, 0);
4915  PendingExports.push_back(Chain);
4916}
4917
4918void SelectionDAGISel::
4919LowerArguments(BasicBlock *LLVMBB, SelectionDAGLowering &SDL) {
4920  // If this is the entry block, emit arguments.
4921  Function &F = *LLVMBB->getParent();
4922  FunctionLoweringInfo &FuncInfo = SDL.FuncInfo;
4923  SDOperand OldRoot = SDL.DAG.getRoot();
4924  SmallVector<SDOperand, 16> Args;
4925  TLI.LowerArguments(F, SDL.DAG, Args);
4926
4927  unsigned a = 0;
4928  for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end();
4929       AI != E; ++AI) {
4930    SmallVector<MVT, 4> ValueVTs;
4931    ComputeValueVTs(TLI, AI->getType(), ValueVTs);
4932    unsigned NumValues = ValueVTs.size();
4933    if (!AI->use_empty()) {
4934      SDL.setValue(AI, SDL.DAG.getMergeValues(&Args[a], NumValues));
4935      // If this argument is live outside of the entry block, insert a copy from
4936      // whereever we got it to the vreg that other BB's will reference it as.
4937      DenseMap<const Value*, unsigned>::iterator VMI=FuncInfo.ValueMap.find(AI);
4938      if (VMI != FuncInfo.ValueMap.end()) {
4939        SDL.CopyValueToVirtualRegister(AI, VMI->second);
4940      }
4941    }
4942    a += NumValues;
4943  }
4944
4945  // Finally, if the target has anything special to do, allow it to do so.
4946  // FIXME: this should insert code into the DAG!
4947  EmitFunctionEntryCode(F, SDL.DAG.getMachineFunction());
4948}
4949
4950static void copyCatchInfo(BasicBlock *SrcBB, BasicBlock *DestBB,
4951                          MachineModuleInfo *MMI, FunctionLoweringInfo &FLI) {
4952  for (BasicBlock::iterator I = SrcBB->begin(), E = --SrcBB->end(); I != E; ++I)
4953    if (isSelector(I)) {
4954      // Apply the catch info to DestBB.
4955      addCatchInfo(cast<CallInst>(*I), MMI, FLI.MBBMap[DestBB]);
4956#ifndef NDEBUG
4957      if (!FLI.MBBMap[SrcBB]->isLandingPad())
4958        FLI.CatchInfoFound.insert(I);
4959#endif
4960    }
4961}
4962
4963/// IsFixedFrameObjectWithPosOffset - Check if object is a fixed frame object and
4964/// whether object offset >= 0.
4965static bool
4966IsFixedFrameObjectWithPosOffset(MachineFrameInfo * MFI, SDOperand Op) {
4967  if (!isa<FrameIndexSDNode>(Op)) return false;
4968
4969  FrameIndexSDNode * FrameIdxNode = dyn_cast<FrameIndexSDNode>(Op);
4970  int FrameIdx =  FrameIdxNode->getIndex();
4971  return MFI->isFixedObjectIndex(FrameIdx) &&
4972    MFI->getObjectOffset(FrameIdx) >= 0;
4973}
4974
4975/// IsPossiblyOverwrittenArgumentOfTailCall - Check if the operand could
4976/// possibly be overwritten when lowering the outgoing arguments in a tail
4977/// call. Currently the implementation of this call is very conservative and
4978/// assumes all arguments sourcing from FORMAL_ARGUMENTS or a CopyFromReg with
4979/// virtual registers would be overwritten by direct lowering.
4980static bool IsPossiblyOverwrittenArgumentOfTailCall(SDOperand Op,
4981                                                    MachineFrameInfo * MFI) {
4982  RegisterSDNode * OpReg = NULL;
4983  if (Op.getOpcode() == ISD::FORMAL_ARGUMENTS ||
4984      (Op.getOpcode()== ISD::CopyFromReg &&
4985       (OpReg = dyn_cast<RegisterSDNode>(Op.getOperand(1))) &&
4986       (OpReg->getReg() >= TargetRegisterInfo::FirstVirtualRegister)) ||
4987      (Op.getOpcode() == ISD::LOAD &&
4988       IsFixedFrameObjectWithPosOffset(MFI, Op.getOperand(1))) ||
4989      (Op.getOpcode() == ISD::MERGE_VALUES &&
4990       Op.getOperand(Op.ResNo).getOpcode() == ISD::LOAD &&
4991       IsFixedFrameObjectWithPosOffset(MFI, Op.getOperand(Op.ResNo).
4992                                       getOperand(1))))
4993    return true;
4994  return false;
4995}
4996
4997/// CheckDAGForTailCallsAndFixThem - This Function looks for CALL nodes in the
4998/// DAG and fixes their tailcall attribute operand.
4999static void CheckDAGForTailCallsAndFixThem(SelectionDAG &DAG,
5000                                           TargetLowering& TLI) {
5001  SDNode * Ret = NULL;
5002  SDOperand Terminator = DAG.getRoot();
5003
5004  // Find RET node.
5005  if (Terminator.getOpcode() == ISD::RET) {
5006    Ret = Terminator.Val;
5007  }
5008
5009  // Fix tail call attribute of CALL nodes.
5010  for (SelectionDAG::allnodes_iterator BE = DAG.allnodes_begin(),
5011         BI = prior(DAG.allnodes_end()); BI != BE; --BI) {
5012    if (BI->getOpcode() == ISD::CALL) {
5013      SDOperand OpRet(Ret, 0);
5014      SDOperand OpCall(static_cast<SDNode*>(BI), 0);
5015      bool isMarkedTailCall =
5016        cast<ConstantSDNode>(OpCall.getOperand(3))->getValue() != 0;
5017      // If CALL node has tail call attribute set to true and the call is not
5018      // eligible (no RET or the target rejects) the attribute is fixed to
5019      // false. The TargetLowering::IsEligibleForTailCallOptimization function
5020      // must correctly identify tail call optimizable calls.
5021      if (!isMarkedTailCall) continue;
5022      if (Ret==NULL ||
5023          !TLI.IsEligibleForTailCallOptimization(OpCall, OpRet, DAG)) {
5024        // Not eligible. Mark CALL node as non tail call.
5025        SmallVector<SDOperand, 32> Ops;
5026        unsigned idx=0;
5027        for(SDNode::op_iterator I =OpCall.Val->op_begin(),
5028              E = OpCall.Val->op_end(); I != E; I++, idx++) {
5029          if (idx!=3)
5030            Ops.push_back(*I);
5031          else
5032            Ops.push_back(DAG.getConstant(false, TLI.getPointerTy()));
5033        }
5034        DAG.UpdateNodeOperands(OpCall, Ops.begin(), Ops.size());
5035      } else {
5036        // Look for tail call clobbered arguments. Emit a series of
5037        // copyto/copyfrom virtual register nodes to protect them.
5038        SmallVector<SDOperand, 32> Ops;
5039        SDOperand Chain = OpCall.getOperand(0), InFlag;
5040        unsigned idx=0;
5041        for(SDNode::op_iterator I = OpCall.Val->op_begin(),
5042              E = OpCall.Val->op_end(); I != E; I++, idx++) {
5043          SDOperand Arg = *I;
5044          if (idx > 4 && (idx % 2)) {
5045            bool isByVal = cast<ARG_FLAGSSDNode>(OpCall.getOperand(idx+1))->
5046              getArgFlags().isByVal();
5047            MachineFunction &MF = DAG.getMachineFunction();
5048            MachineFrameInfo *MFI = MF.getFrameInfo();
5049            if (!isByVal &&
5050                IsPossiblyOverwrittenArgumentOfTailCall(Arg, MFI)) {
5051              MVT VT = Arg.getValueType();
5052              unsigned VReg = MF.getRegInfo().
5053                createVirtualRegister(TLI.getRegClassFor(VT));
5054              Chain = DAG.getCopyToReg(Chain, VReg, Arg, InFlag);
5055              InFlag = Chain.getValue(1);
5056              Arg = DAG.getCopyFromReg(Chain, VReg, VT, InFlag);
5057              Chain = Arg.getValue(1);
5058              InFlag = Arg.getValue(2);
5059            }
5060          }
5061          Ops.push_back(Arg);
5062        }
5063        // Link in chain of CopyTo/CopyFromReg.
5064        Ops[0] = Chain;
5065        DAG.UpdateNodeOperands(OpCall, Ops.begin(), Ops.size());
5066      }
5067    }
5068  }
5069}
5070
5071void SelectionDAGISel::BuildSelectionDAG(SelectionDAG &DAG, BasicBlock *LLVMBB,
5072       std::vector<std::pair<MachineInstr*, unsigned> > &PHINodesToUpdate,
5073                                         FunctionLoweringInfo &FuncInfo) {
5074  SelectionDAGLowering SDL(DAG, TLI, *AA, FuncInfo, GCI);
5075
5076  // Lower any arguments needed in this block if this is the entry block.
5077  if (LLVMBB == &LLVMBB->getParent()->getEntryBlock())
5078    LowerArguments(LLVMBB, SDL);
5079
5080  BB = FuncInfo.MBBMap[LLVMBB];
5081  SDL.setCurrentBasicBlock(BB);
5082
5083  MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
5084
5085  if (MMI && BB->isLandingPad()) {
5086    // Add a label to mark the beginning of the landing pad.  Deletion of the
5087    // landing pad can thus be detected via the MachineModuleInfo.
5088    unsigned LabelID = MMI->addLandingPad(BB);
5089    DAG.setRoot(DAG.getLabel(ISD::EH_LABEL, DAG.getEntryNode(), LabelID));
5090
5091    // Mark exception register as live in.
5092    unsigned Reg = TLI.getExceptionAddressRegister();
5093    if (Reg) BB->addLiveIn(Reg);
5094
5095    // Mark exception selector register as live in.
5096    Reg = TLI.getExceptionSelectorRegister();
5097    if (Reg) BB->addLiveIn(Reg);
5098
5099    // FIXME: Hack around an exception handling flaw (PR1508): the personality
5100    // function and list of typeids logically belong to the invoke (or, if you
5101    // like, the basic block containing the invoke), and need to be associated
5102    // with it in the dwarf exception handling tables.  Currently however the
5103    // information is provided by an intrinsic (eh.selector) that can be moved
5104    // to unexpected places by the optimizers: if the unwind edge is critical,
5105    // then breaking it can result in the intrinsics being in the successor of
5106    // the landing pad, not the landing pad itself.  This results in exceptions
5107    // not being caught because no typeids are associated with the invoke.
5108    // This may not be the only way things can go wrong, but it is the only way
5109    // we try to work around for the moment.
5110    BranchInst *Br = dyn_cast<BranchInst>(LLVMBB->getTerminator());
5111
5112    if (Br && Br->isUnconditional()) { // Critical edge?
5113      BasicBlock::iterator I, E;
5114      for (I = LLVMBB->begin(), E = --LLVMBB->end(); I != E; ++I)
5115        if (isSelector(I))
5116          break;
5117
5118      if (I == E)
5119        // No catch info found - try to extract some from the successor.
5120        copyCatchInfo(Br->getSuccessor(0), LLVMBB, MMI, FuncInfo);
5121    }
5122  }
5123
5124  // Lower all of the non-terminator instructions.
5125  for (BasicBlock::iterator I = LLVMBB->begin(), E = --LLVMBB->end();
5126       I != E; ++I)
5127    SDL.visit(*I);
5128
5129  // Ensure that all instructions which are used outside of their defining
5130  // blocks are available as virtual registers.  Invoke is handled elsewhere.
5131  for (BasicBlock::iterator I = LLVMBB->begin(), E = LLVMBB->end(); I != E;++I)
5132    if (!I->use_empty() && !isa<PHINode>(I) && !isa<InvokeInst>(I)) {
5133      DenseMap<const Value*, unsigned>::iterator VMI =FuncInfo.ValueMap.find(I);
5134      if (VMI != FuncInfo.ValueMap.end())
5135        SDL.CopyValueToVirtualRegister(I, VMI->second);
5136    }
5137
5138  // Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
5139  // ensure constants are generated when needed.  Remember the virtual registers
5140  // that need to be added to the Machine PHI nodes as input.  We cannot just
5141  // directly add them, because expansion might result in multiple MBB's for one
5142  // BB.  As such, the start of the BB might correspond to a different MBB than
5143  // the end.
5144  //
5145  TerminatorInst *TI = LLVMBB->getTerminator();
5146
5147  // Emit constants only once even if used by multiple PHI nodes.
5148  std::map<Constant*, unsigned> ConstantsOut;
5149
5150  // Vector bool would be better, but vector<bool> is really slow.
5151  std::vector<unsigned char> SuccsHandled;
5152  if (TI->getNumSuccessors())
5153    SuccsHandled.resize(BB->getParent()->getNumBlockIDs());
5154
5155  // Check successor nodes' PHI nodes that expect a constant to be available
5156  // from this block.
5157  for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
5158    BasicBlock *SuccBB = TI->getSuccessor(succ);
5159    if (!isa<PHINode>(SuccBB->begin())) continue;
5160    MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
5161
5162    // If this terminator has multiple identical successors (common for
5163    // switches), only handle each succ once.
5164    unsigned SuccMBBNo = SuccMBB->getNumber();
5165    if (SuccsHandled[SuccMBBNo]) continue;
5166    SuccsHandled[SuccMBBNo] = true;
5167
5168    MachineBasicBlock::iterator MBBI = SuccMBB->begin();
5169    PHINode *PN;
5170
5171    // At this point we know that there is a 1-1 correspondence between LLVM PHI
5172    // nodes and Machine PHI nodes, but the incoming operands have not been
5173    // emitted yet.
5174    for (BasicBlock::iterator I = SuccBB->begin();
5175         (PN = dyn_cast<PHINode>(I)); ++I) {
5176      // Ignore dead phi's.
5177      if (PN->use_empty()) continue;
5178
5179      unsigned Reg;
5180      Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
5181
5182      if (Constant *C = dyn_cast<Constant>(PHIOp)) {
5183        unsigned &RegOut = ConstantsOut[C];
5184        if (RegOut == 0) {
5185          RegOut = FuncInfo.CreateRegForValue(C);
5186          SDL.CopyValueToVirtualRegister(C, RegOut);
5187        }
5188        Reg = RegOut;
5189      } else {
5190        Reg = FuncInfo.ValueMap[PHIOp];
5191        if (Reg == 0) {
5192          assert(isa<AllocaInst>(PHIOp) &&
5193                 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
5194                 "Didn't codegen value into a register!??");
5195          Reg = FuncInfo.CreateRegForValue(PHIOp);
5196          SDL.CopyValueToVirtualRegister(PHIOp, Reg);
5197        }
5198      }
5199
5200      // Remember that this register needs to added to the machine PHI node as
5201      // the input for this MBB.
5202      MVT VT = TLI.getValueType(PN->getType());
5203      unsigned NumRegisters = TLI.getNumRegisters(VT);
5204      for (unsigned i = 0, e = NumRegisters; i != e; ++i)
5205        PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i));
5206    }
5207  }
5208  ConstantsOut.clear();
5209
5210  // Lower the terminator after the copies are emitted.
5211  SDL.visit(*LLVMBB->getTerminator());
5212
5213  // Copy over any CaseBlock records that may now exist due to SwitchInst
5214  // lowering, as well as any jump table information.
5215  SwitchCases.clear();
5216  SwitchCases = SDL.SwitchCases;
5217  JTCases.clear();
5218  JTCases = SDL.JTCases;
5219  BitTestCases.clear();
5220  BitTestCases = SDL.BitTestCases;
5221
5222  // Make sure the root of the DAG is up-to-date.
5223  DAG.setRoot(SDL.getControlRoot());
5224
5225  // Check whether calls in this block are real tail calls. Fix up CALL nodes
5226  // with correct tailcall attribute so that the target can rely on the tailcall
5227  // attribute indicating whether the call is really eligible for tail call
5228  // optimization.
5229  CheckDAGForTailCallsAndFixThem(DAG, TLI);
5230}
5231
5232void SelectionDAGISel::ComputeLiveOutVRegInfo(SelectionDAG &DAG) {
5233  SmallPtrSet<SDNode*, 128> VisitedNodes;
5234  SmallVector<SDNode*, 128> Worklist;
5235
5236  Worklist.push_back(DAG.getRoot().Val);
5237
5238  APInt Mask;
5239  APInt KnownZero;
5240  APInt KnownOne;
5241
5242  while (!Worklist.empty()) {
5243    SDNode *N = Worklist.back();
5244    Worklist.pop_back();
5245
5246    // If we've already seen this node, ignore it.
5247    if (!VisitedNodes.insert(N))
5248      continue;
5249
5250    // Otherwise, add all chain operands to the worklist.
5251    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
5252      if (N->getOperand(i).getValueType() == MVT::Other)
5253        Worklist.push_back(N->getOperand(i).Val);
5254
5255    // If this is a CopyToReg with a vreg dest, process it.
5256    if (N->getOpcode() != ISD::CopyToReg)
5257      continue;
5258
5259    unsigned DestReg = cast<RegisterSDNode>(N->getOperand(1))->getReg();
5260    if (!TargetRegisterInfo::isVirtualRegister(DestReg))
5261      continue;
5262
5263    // Ignore non-scalar or non-integer values.
5264    SDOperand Src = N->getOperand(2);
5265    MVT SrcVT = Src.getValueType();
5266    if (!SrcVT.isInteger() || SrcVT.isVector())
5267      continue;
5268
5269    unsigned NumSignBits = DAG.ComputeNumSignBits(Src);
5270    Mask = APInt::getAllOnesValue(SrcVT.getSizeInBits());
5271    DAG.ComputeMaskedBits(Src, Mask, KnownZero, KnownOne);
5272
5273    // Only install this information if it tells us something.
5274    if (NumSignBits != 1 || KnownZero != 0 || KnownOne != 0) {
5275      DestReg -= TargetRegisterInfo::FirstVirtualRegister;
5276      FunctionLoweringInfo &FLI = DAG.getFunctionLoweringInfo();
5277      if (DestReg >= FLI.LiveOutRegInfo.size())
5278        FLI.LiveOutRegInfo.resize(DestReg+1);
5279      FunctionLoweringInfo::LiveOutInfo &LOI = FLI.LiveOutRegInfo[DestReg];
5280      LOI.NumSignBits = NumSignBits;
5281      LOI.KnownOne = NumSignBits;
5282      LOI.KnownZero = NumSignBits;
5283    }
5284  }
5285}
5286
5287void SelectionDAGISel::CodeGenAndEmitDAG(SelectionDAG &DAG) {
5288  DOUT << "Lowered selection DAG:\n";
5289  DEBUG(DAG.dump());
5290
5291  // Run the DAG combiner in pre-legalize mode.
5292  if (TimePassesIsEnabled) {
5293    NamedRegionTimer T("DAG Combining 1");
5294    DAG.Combine(false, *AA);
5295  } else {
5296    DAG.Combine(false, *AA);
5297  }
5298
5299  DOUT << "Optimized lowered selection DAG:\n";
5300  DEBUG(DAG.dump());
5301
5302  // Second step, hack on the DAG until it only uses operations and types that
5303  // the target supports.
5304#if 0  // Enable this some day.
5305  DAG.LegalizeTypes();
5306  // Someday even later, enable a dag combine pass here.
5307#endif
5308  if (TimePassesIsEnabled) {
5309    NamedRegionTimer T("DAG Legalization");
5310    DAG.Legalize();
5311  } else {
5312    DAG.Legalize();
5313  }
5314
5315  DOUT << "Legalized selection DAG:\n";
5316  DEBUG(DAG.dump());
5317
5318  // Run the DAG combiner in post-legalize mode.
5319  if (TimePassesIsEnabled) {
5320    NamedRegionTimer T("DAG Combining 2");
5321    DAG.Combine(true, *AA);
5322  } else {
5323    DAG.Combine(true, *AA);
5324  }
5325
5326  DOUT << "Optimized legalized selection DAG:\n";
5327  DEBUG(DAG.dump());
5328
5329  if (ViewISelDAGs) DAG.viewGraph();
5330
5331  if (!FastISel && EnableValueProp)
5332    ComputeLiveOutVRegInfo(DAG);
5333
5334  // Third, instruction select all of the operations to machine code, adding the
5335  // code to the MachineBasicBlock.
5336  if (TimePassesIsEnabled) {
5337    NamedRegionTimer T("Instruction Selection");
5338    InstructionSelect(DAG);
5339  } else {
5340    InstructionSelect(DAG);
5341  }
5342
5343  // Emit machine code to BB.  This can change 'BB' to the last block being
5344  // inserted into.
5345  if (TimePassesIsEnabled) {
5346    NamedRegionTimer T("Instruction Scheduling");
5347    ScheduleAndEmitDAG(DAG);
5348  } else {
5349    ScheduleAndEmitDAG(DAG);
5350  }
5351
5352  // Perform target specific isel post processing.
5353  if (TimePassesIsEnabled) {
5354    NamedRegionTimer T("Instruction Selection Post Processing");
5355    InstructionSelectPostProcessing(DAG);
5356  } else {
5357    InstructionSelectPostProcessing(DAG);
5358  }
5359
5360  DOUT << "Selected machine code:\n";
5361  DEBUG(BB->dump());
5362}
5363
5364void SelectionDAGISel::SelectBasicBlock(BasicBlock *LLVMBB, MachineFunction &MF,
5365                                        FunctionLoweringInfo &FuncInfo) {
5366  std::vector<std::pair<MachineInstr*, unsigned> > PHINodesToUpdate;
5367  {
5368    SelectionDAG DAG(TLI, MF, FuncInfo,
5369                     getAnalysisToUpdate<MachineModuleInfo>());
5370    CurDAG = &DAG;
5371
5372    // First step, lower LLVM code to some DAG.  This DAG may use operations and
5373    // types that are not supported by the target.
5374    BuildSelectionDAG(DAG, LLVMBB, PHINodesToUpdate, FuncInfo);
5375
5376    // Second step, emit the lowered DAG as machine code.
5377    CodeGenAndEmitDAG(DAG);
5378  }
5379
5380  DOUT << "Total amount of phi nodes to update: "
5381       << PHINodesToUpdate.size() << "\n";
5382  DEBUG(for (unsigned i = 0, e = PHINodesToUpdate.size(); i != e; ++i)
5383          DOUT << "Node " << i << " : (" << PHINodesToUpdate[i].first
5384               << ", " << PHINodesToUpdate[i].second << ")\n";);
5385
5386  // Next, now that we know what the last MBB the LLVM BB expanded is, update
5387  // PHI nodes in successors.
5388  if (SwitchCases.empty() && JTCases.empty() && BitTestCases.empty()) {
5389    for (unsigned i = 0, e = PHINodesToUpdate.size(); i != e; ++i) {
5390      MachineInstr *PHI = PHINodesToUpdate[i].first;
5391      assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
5392             "This is not a machine PHI node that we are updating!");
5393      PHI->addOperand(MachineOperand::CreateReg(PHINodesToUpdate[i].second,
5394                                                false));
5395      PHI->addOperand(MachineOperand::CreateMBB(BB));
5396    }
5397    return;
5398  }
5399
5400  for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i) {
5401    // Lower header first, if it wasn't already lowered
5402    if (!BitTestCases[i].Emitted) {
5403      SelectionDAG HSDAG(TLI, MF, FuncInfo,
5404                         getAnalysisToUpdate<MachineModuleInfo>());
5405      CurDAG = &HSDAG;
5406      SelectionDAGLowering HSDL(HSDAG, TLI, *AA, FuncInfo, GCI);
5407      // Set the current basic block to the mbb we wish to insert the code into
5408      BB = BitTestCases[i].Parent;
5409      HSDL.setCurrentBasicBlock(BB);
5410      // Emit the code
5411      HSDL.visitBitTestHeader(BitTestCases[i]);
5412      HSDAG.setRoot(HSDL.getRoot());
5413      CodeGenAndEmitDAG(HSDAG);
5414    }
5415
5416    for (unsigned j = 0, ej = BitTestCases[i].Cases.size(); j != ej; ++j) {
5417      SelectionDAG BSDAG(TLI, MF, FuncInfo,
5418                         getAnalysisToUpdate<MachineModuleInfo>());
5419      CurDAG = &BSDAG;
5420      SelectionDAGLowering BSDL(BSDAG, TLI, *AA, FuncInfo, GCI);
5421      // Set the current basic block to the mbb we wish to insert the code into
5422      BB = BitTestCases[i].Cases[j].ThisBB;
5423      BSDL.setCurrentBasicBlock(BB);
5424      // Emit the code
5425      if (j+1 != ej)
5426        BSDL.visitBitTestCase(BitTestCases[i].Cases[j+1].ThisBB,
5427                              BitTestCases[i].Reg,
5428                              BitTestCases[i].Cases[j]);
5429      else
5430        BSDL.visitBitTestCase(BitTestCases[i].Default,
5431                              BitTestCases[i].Reg,
5432                              BitTestCases[i].Cases[j]);
5433
5434
5435      BSDAG.setRoot(BSDL.getRoot());
5436      CodeGenAndEmitDAG(BSDAG);
5437    }
5438
5439    // Update PHI Nodes
5440    for (unsigned pi = 0, pe = PHINodesToUpdate.size(); pi != pe; ++pi) {
5441      MachineInstr *PHI = PHINodesToUpdate[pi].first;
5442      MachineBasicBlock *PHIBB = PHI->getParent();
5443      assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
5444             "This is not a machine PHI node that we are updating!");
5445      // This is "default" BB. We have two jumps to it. From "header" BB and
5446      // from last "case" BB.
5447      if (PHIBB == BitTestCases[i].Default) {
5448        PHI->addOperand(MachineOperand::CreateReg(PHINodesToUpdate[pi].second,
5449                                                  false));
5450        PHI->addOperand(MachineOperand::CreateMBB(BitTestCases[i].Parent));
5451        PHI->addOperand(MachineOperand::CreateReg(PHINodesToUpdate[pi].second,
5452                                                  false));
5453        PHI->addOperand(MachineOperand::CreateMBB(BitTestCases[i].Cases.
5454                                                  back().ThisBB));
5455      }
5456      // One of "cases" BB.
5457      for (unsigned j = 0, ej = BitTestCases[i].Cases.size(); j != ej; ++j) {
5458        MachineBasicBlock* cBB = BitTestCases[i].Cases[j].ThisBB;
5459        if (cBB->succ_end() !=
5460            std::find(cBB->succ_begin(),cBB->succ_end(), PHIBB)) {
5461          PHI->addOperand(MachineOperand::CreateReg(PHINodesToUpdate[pi].second,
5462                                                    false));
5463          PHI->addOperand(MachineOperand::CreateMBB(cBB));
5464        }
5465      }
5466    }
5467  }
5468
5469  // If the JumpTable record is filled in, then we need to emit a jump table.
5470  // Updating the PHI nodes is tricky in this case, since we need to determine
5471  // whether the PHI is a successor of the range check MBB or the jump table MBB
5472  for (unsigned i = 0, e = JTCases.size(); i != e; ++i) {
5473    // Lower header first, if it wasn't already lowered
5474    if (!JTCases[i].first.Emitted) {
5475      SelectionDAG HSDAG(TLI, MF, FuncInfo,
5476                         getAnalysisToUpdate<MachineModuleInfo>());
5477      CurDAG = &HSDAG;
5478      SelectionDAGLowering HSDL(HSDAG, TLI, *AA, FuncInfo, GCI);
5479      // Set the current basic block to the mbb we wish to insert the code into
5480      BB = JTCases[i].first.HeaderBB;
5481      HSDL.setCurrentBasicBlock(BB);
5482      // Emit the code
5483      HSDL.visitJumpTableHeader(JTCases[i].second, JTCases[i].first);
5484      HSDAG.setRoot(HSDL.getRoot());
5485      CodeGenAndEmitDAG(HSDAG);
5486    }
5487
5488    SelectionDAG JSDAG(TLI, MF, FuncInfo,
5489                       getAnalysisToUpdate<MachineModuleInfo>());
5490    CurDAG = &JSDAG;
5491    SelectionDAGLowering JSDL(JSDAG, TLI, *AA, FuncInfo, GCI);
5492    // Set the current basic block to the mbb we wish to insert the code into
5493    BB = JTCases[i].second.MBB;
5494    JSDL.setCurrentBasicBlock(BB);
5495    // Emit the code
5496    JSDL.visitJumpTable(JTCases[i].second);
5497    JSDAG.setRoot(JSDL.getRoot());
5498    CodeGenAndEmitDAG(JSDAG);
5499
5500    // Update PHI Nodes
5501    for (unsigned pi = 0, pe = PHINodesToUpdate.size(); pi != pe; ++pi) {
5502      MachineInstr *PHI = PHINodesToUpdate[pi].first;
5503      MachineBasicBlock *PHIBB = PHI->getParent();
5504      assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
5505             "This is not a machine PHI node that we are updating!");
5506      // "default" BB. We can go there only from header BB.
5507      if (PHIBB == JTCases[i].second.Default) {
5508        PHI->addOperand(MachineOperand::CreateReg(PHINodesToUpdate[pi].second,
5509                                                  false));
5510        PHI->addOperand(MachineOperand::CreateMBB(JTCases[i].first.HeaderBB));
5511      }
5512      // JT BB. Just iterate over successors here
5513      if (BB->succ_end() != std::find(BB->succ_begin(),BB->succ_end(), PHIBB)) {
5514        PHI->addOperand(MachineOperand::CreateReg(PHINodesToUpdate[pi].second,
5515                                                  false));
5516        PHI->addOperand(MachineOperand::CreateMBB(BB));
5517      }
5518    }
5519  }
5520
5521  // If the switch block involved a branch to one of the actual successors, we
5522  // need to update PHI nodes in that block.
5523  for (unsigned i = 0, e = PHINodesToUpdate.size(); i != e; ++i) {
5524    MachineInstr *PHI = PHINodesToUpdate[i].first;
5525    assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
5526           "This is not a machine PHI node that we are updating!");
5527    if (BB->isSuccessor(PHI->getParent())) {
5528      PHI->addOperand(MachineOperand::CreateReg(PHINodesToUpdate[i].second,
5529                                                false));
5530      PHI->addOperand(MachineOperand::CreateMBB(BB));
5531    }
5532  }
5533
5534  // If we generated any switch lowering information, build and codegen any
5535  // additional DAGs necessary.
5536  for (unsigned i = 0, e = SwitchCases.size(); i != e; ++i) {
5537    SelectionDAG SDAG(TLI, MF, FuncInfo,
5538                      getAnalysisToUpdate<MachineModuleInfo>());
5539    CurDAG = &SDAG;
5540    SelectionDAGLowering SDL(SDAG, TLI, *AA, FuncInfo, GCI);
5541
5542    // Set the current basic block to the mbb we wish to insert the code into
5543    BB = SwitchCases[i].ThisBB;
5544    SDL.setCurrentBasicBlock(BB);
5545
5546    // Emit the code
5547    SDL.visitSwitchCase(SwitchCases[i]);
5548    SDAG.setRoot(SDL.getRoot());
5549    CodeGenAndEmitDAG(SDAG);
5550
5551    // Handle any PHI nodes in successors of this chunk, as if we were coming
5552    // from the original BB before switch expansion.  Note that PHI nodes can
5553    // occur multiple times in PHINodesToUpdate.  We have to be very careful to
5554    // handle them the right number of times.
5555    while ((BB = SwitchCases[i].TrueBB)) {  // Handle LHS and RHS.
5556      for (MachineBasicBlock::iterator Phi = BB->begin();
5557           Phi != BB->end() && Phi->getOpcode() == TargetInstrInfo::PHI; ++Phi){
5558        // This value for this PHI node is recorded in PHINodesToUpdate, get it.
5559        for (unsigned pn = 0; ; ++pn) {
5560          assert(pn != PHINodesToUpdate.size() && "Didn't find PHI entry!");
5561          if (PHINodesToUpdate[pn].first == Phi) {
5562            Phi->addOperand(MachineOperand::CreateReg(PHINodesToUpdate[pn].
5563                                                      second, false));
5564            Phi->addOperand(MachineOperand::CreateMBB(SwitchCases[i].ThisBB));
5565            break;
5566          }
5567        }
5568      }
5569
5570      // Don't process RHS if same block as LHS.
5571      if (BB == SwitchCases[i].FalseBB)
5572        SwitchCases[i].FalseBB = 0;
5573
5574      // If we haven't handled the RHS, do so now.  Otherwise, we're done.
5575      SwitchCases[i].TrueBB = SwitchCases[i].FalseBB;
5576      SwitchCases[i].FalseBB = 0;
5577    }
5578    assert(SwitchCases[i].TrueBB == 0 && SwitchCases[i].FalseBB == 0);
5579  }
5580}
5581
5582
5583//===----------------------------------------------------------------------===//
5584/// ScheduleAndEmitDAG - Pick a safe ordering and emit instructions for each
5585/// target node in the graph.
5586void SelectionDAGISel::ScheduleAndEmitDAG(SelectionDAG &DAG) {
5587  if (ViewSchedDAGs) DAG.viewGraph();
5588
5589  RegisterScheduler::FunctionPassCtor Ctor = RegisterScheduler::getDefault();
5590
5591  if (!Ctor) {
5592    Ctor = ISHeuristic;
5593    RegisterScheduler::setDefault(Ctor);
5594  }
5595
5596  ScheduleDAG *SL = Ctor(this, &DAG, BB, FastISel);
5597  BB = SL->Run();
5598
5599  if (ViewSUnitDAGs) SL->viewGraph();
5600
5601  delete SL;
5602}
5603
5604
5605HazardRecognizer *SelectionDAGISel::CreateTargetHazardRecognizer() {
5606  return new HazardRecognizer();
5607}
5608
5609//===----------------------------------------------------------------------===//
5610// Helper functions used by the generated instruction selector.
5611//===----------------------------------------------------------------------===//
5612// Calls to these methods are generated by tblgen.
5613
5614/// CheckAndMask - The isel is trying to match something like (and X, 255).  If
5615/// the dag combiner simplified the 255, we still want to match.  RHS is the
5616/// actual value in the DAG on the RHS of an AND, and DesiredMaskS is the value
5617/// specified in the .td file (e.g. 255).
5618bool SelectionDAGISel::CheckAndMask(SDOperand LHS, ConstantSDNode *RHS,
5619                                    int64_t DesiredMaskS) const {
5620  const APInt &ActualMask = RHS->getAPIntValue();
5621  const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
5622
5623  // If the actual mask exactly matches, success!
5624  if (ActualMask == DesiredMask)
5625    return true;
5626
5627  // If the actual AND mask is allowing unallowed bits, this doesn't match.
5628  if (ActualMask.intersects(~DesiredMask))
5629    return false;
5630
5631  // Otherwise, the DAG Combiner may have proven that the value coming in is
5632  // either already zero or is not demanded.  Check for known zero input bits.
5633  APInt NeededMask = DesiredMask & ~ActualMask;
5634  if (CurDAG->MaskedValueIsZero(LHS, NeededMask))
5635    return true;
5636
5637  // TODO: check to see if missing bits are just not demanded.
5638
5639  // Otherwise, this pattern doesn't match.
5640  return false;
5641}
5642
5643/// CheckOrMask - The isel is trying to match something like (or X, 255).  If
5644/// the dag combiner simplified the 255, we still want to match.  RHS is the
5645/// actual value in the DAG on the RHS of an OR, and DesiredMaskS is the value
5646/// specified in the .td file (e.g. 255).
5647bool SelectionDAGISel::CheckOrMask(SDOperand LHS, ConstantSDNode *RHS,
5648                                   int64_t DesiredMaskS) const {
5649  const APInt &ActualMask = RHS->getAPIntValue();
5650  const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
5651
5652  // If the actual mask exactly matches, success!
5653  if (ActualMask == DesiredMask)
5654    return true;
5655
5656  // If the actual AND mask is allowing unallowed bits, this doesn't match.
5657  if (ActualMask.intersects(~DesiredMask))
5658    return false;
5659
5660  // Otherwise, the DAG Combiner may have proven that the value coming in is
5661  // either already zero or is not demanded.  Check for known zero input bits.
5662  APInt NeededMask = DesiredMask & ~ActualMask;
5663
5664  APInt KnownZero, KnownOne;
5665  CurDAG->ComputeMaskedBits(LHS, NeededMask, KnownZero, KnownOne);
5666
5667  // If all the missing bits in the or are already known to be set, match!
5668  if ((NeededMask & KnownOne) == NeededMask)
5669    return true;
5670
5671  // TODO: check to see if missing bits are just not demanded.
5672
5673  // Otherwise, this pattern doesn't match.
5674  return false;
5675}
5676
5677
5678/// SelectInlineAsmMemoryOperands - Calls to this are automatically generated
5679/// by tblgen.  Others should not call it.
5680void SelectionDAGISel::
5681SelectInlineAsmMemoryOperands(std::vector<SDOperand> &Ops, SelectionDAG &DAG) {
5682  std::vector<SDOperand> InOps;
5683  std::swap(InOps, Ops);
5684
5685  Ops.push_back(InOps[0]);  // input chain.
5686  Ops.push_back(InOps[1]);  // input asm string.
5687
5688  unsigned i = 2, e = InOps.size();
5689  if (InOps[e-1].getValueType() == MVT::Flag)
5690    --e;  // Don't process a flag operand if it is here.
5691
5692  while (i != e) {
5693    unsigned Flags = cast<ConstantSDNode>(InOps[i])->getValue();
5694    if ((Flags & 7) != 4 /*MEM*/) {
5695      // Just skip over this operand, copying the operands verbatim.
5696      Ops.insert(Ops.end(), InOps.begin()+i, InOps.begin()+i+(Flags >> 3) + 1);
5697      i += (Flags >> 3) + 1;
5698    } else {
5699      assert((Flags >> 3) == 1 && "Memory operand with multiple values?");
5700      // Otherwise, this is a memory operand.  Ask the target to select it.
5701      std::vector<SDOperand> SelOps;
5702      if (SelectInlineAsmMemoryOperand(InOps[i+1], 'm', SelOps, DAG)) {
5703        cerr << "Could not match memory address.  Inline asm failure!\n";
5704        exit(1);
5705      }
5706
5707      // Add this to the output node.
5708      MVT IntPtrTy = DAG.getTargetLoweringInfo().getPointerTy();
5709      Ops.push_back(DAG.getTargetConstant(4/*MEM*/ | (SelOps.size() << 3),
5710                                          IntPtrTy));
5711      Ops.insert(Ops.end(), SelOps.begin(), SelOps.end());
5712      i += 2;
5713    }
5714  }
5715
5716  // Add the flag input back if present.
5717  if (e != InOps.size())
5718    Ops.push_back(InOps.back());
5719}
5720
5721char SelectionDAGISel::ID = 0;
5722