SelectionDAGISel.cpp revision 139f50a1a8d985bd950d88cef54a7ee560de9cb9
1//===-- SelectionDAGISel.cpp - Implement the SelectionDAGISel class -------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAGISel class.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "isel"
15#include "llvm/CodeGen/SelectionDAGISel.h"
16#include "ScheduleDAGSDNodes.h"
17#include "SelectionDAGBuilder.h"
18#include "llvm/ADT/PostOrderIterator.h"
19#include "llvm/ADT/Statistic.h"
20#include "llvm/Analysis/AliasAnalysis.h"
21#include "llvm/Analysis/BranchProbabilityInfo.h"
22#include "llvm/Analysis/TargetTransformInfo.h"
23#include "llvm/CodeGen/FastISel.h"
24#include "llvm/CodeGen/FunctionLoweringInfo.h"
25#include "llvm/CodeGen/GCMetadata.h"
26#include "llvm/CodeGen/GCStrategy.h"
27#include "llvm/CodeGen/MachineFrameInfo.h"
28#include "llvm/CodeGen/MachineFunction.h"
29#include "llvm/CodeGen/MachineInstrBuilder.h"
30#include "llvm/CodeGen/MachineModuleInfo.h"
31#include "llvm/CodeGen/MachineRegisterInfo.h"
32#include "llvm/CodeGen/ScheduleHazardRecognizer.h"
33#include "llvm/CodeGen/SchedulerRegistry.h"
34#include "llvm/CodeGen/SelectionDAG.h"
35#include "llvm/DebugInfo.h"
36#include "llvm/IR/Constants.h"
37#include "llvm/IR/Function.h"
38#include "llvm/IR/InlineAsm.h"
39#include "llvm/IR/Instructions.h"
40#include "llvm/IR/IntrinsicInst.h"
41#include "llvm/IR/Intrinsics.h"
42#include "llvm/IR/LLVMContext.h"
43#include "llvm/IR/Module.h"
44#include "llvm/Support/Compiler.h"
45#include "llvm/Support/Debug.h"
46#include "llvm/Support/ErrorHandling.h"
47#include "llvm/Support/Timer.h"
48#include "llvm/Support/raw_ostream.h"
49#include "llvm/Target/TargetInstrInfo.h"
50#include "llvm/Target/TargetIntrinsicInfo.h"
51#include "llvm/Target/TargetLibraryInfo.h"
52#include "llvm/Target/TargetLowering.h"
53#include "llvm/Target/TargetMachine.h"
54#include "llvm/Target/TargetOptions.h"
55#include "llvm/Target/TargetRegisterInfo.h"
56#include "llvm/Target/TargetSubtargetInfo.h"
57#include "llvm/Transforms/Utils/BasicBlockUtils.h"
58#include <algorithm>
59using namespace llvm;
60
61STATISTIC(NumFastIselBlocks, "Number of blocks selected entirely by fast isel");
62STATISTIC(NumDAGBlocks, "Number of blocks selected using DAG");
63
64#ifndef NDEBUG
65STATISTIC(NumDAGIselRetries,"Number of times dag isel has to try another path");
66STATISTIC(NumFastIselFailures, "Number of instructions fast isel failed on");
67STATISTIC(NumFastIselSuccess, "Number of instructions fast isel selected");
68
69static cl::opt<bool>
70EnableFastISelVerbose2("fast-isel-verbose2", cl::Hidden,
71          cl::desc("Enable extra verbose messages in the \"fast\" "
72                   "instruction selector"));
73  // Terminators
74STATISTIC(NumFastIselFailRet,"Fast isel fails on Ret");
75STATISTIC(NumFastIselFailBr,"Fast isel fails on Br");
76STATISTIC(NumFastIselFailSwitch,"Fast isel fails on Switch");
77STATISTIC(NumFastIselFailIndirectBr,"Fast isel fails on IndirectBr");
78STATISTIC(NumFastIselFailInvoke,"Fast isel fails on Invoke");
79STATISTIC(NumFastIselFailResume,"Fast isel fails on Resume");
80STATISTIC(NumFastIselFailUnreachable,"Fast isel fails on Unreachable");
81
82  // Standard binary operators...
83STATISTIC(NumFastIselFailAdd,"Fast isel fails on Add");
84STATISTIC(NumFastIselFailFAdd,"Fast isel fails on FAdd");
85STATISTIC(NumFastIselFailSub,"Fast isel fails on Sub");
86STATISTIC(NumFastIselFailFSub,"Fast isel fails on FSub");
87STATISTIC(NumFastIselFailMul,"Fast isel fails on Mul");
88STATISTIC(NumFastIselFailFMul,"Fast isel fails on FMul");
89STATISTIC(NumFastIselFailUDiv,"Fast isel fails on UDiv");
90STATISTIC(NumFastIselFailSDiv,"Fast isel fails on SDiv");
91STATISTIC(NumFastIselFailFDiv,"Fast isel fails on FDiv");
92STATISTIC(NumFastIselFailURem,"Fast isel fails on URem");
93STATISTIC(NumFastIselFailSRem,"Fast isel fails on SRem");
94STATISTIC(NumFastIselFailFRem,"Fast isel fails on FRem");
95
96  // Logical operators...
97STATISTIC(NumFastIselFailAnd,"Fast isel fails on And");
98STATISTIC(NumFastIselFailOr,"Fast isel fails on Or");
99STATISTIC(NumFastIselFailXor,"Fast isel fails on Xor");
100
101  // Memory instructions...
102STATISTIC(NumFastIselFailAlloca,"Fast isel fails on Alloca");
103STATISTIC(NumFastIselFailLoad,"Fast isel fails on Load");
104STATISTIC(NumFastIselFailStore,"Fast isel fails on Store");
105STATISTIC(NumFastIselFailAtomicCmpXchg,"Fast isel fails on AtomicCmpXchg");
106STATISTIC(NumFastIselFailAtomicRMW,"Fast isel fails on AtomicRWM");
107STATISTIC(NumFastIselFailFence,"Fast isel fails on Frence");
108STATISTIC(NumFastIselFailGetElementPtr,"Fast isel fails on GetElementPtr");
109
110  // Convert instructions...
111STATISTIC(NumFastIselFailTrunc,"Fast isel fails on Trunc");
112STATISTIC(NumFastIselFailZExt,"Fast isel fails on ZExt");
113STATISTIC(NumFastIselFailSExt,"Fast isel fails on SExt");
114STATISTIC(NumFastIselFailFPTrunc,"Fast isel fails on FPTrunc");
115STATISTIC(NumFastIselFailFPExt,"Fast isel fails on FPExt");
116STATISTIC(NumFastIselFailFPToUI,"Fast isel fails on FPToUI");
117STATISTIC(NumFastIselFailFPToSI,"Fast isel fails on FPToSI");
118STATISTIC(NumFastIselFailUIToFP,"Fast isel fails on UIToFP");
119STATISTIC(NumFastIselFailSIToFP,"Fast isel fails on SIToFP");
120STATISTIC(NumFastIselFailIntToPtr,"Fast isel fails on IntToPtr");
121STATISTIC(NumFastIselFailPtrToInt,"Fast isel fails on PtrToInt");
122STATISTIC(NumFastIselFailBitCast,"Fast isel fails on BitCast");
123
124  // Other instructions...
125STATISTIC(NumFastIselFailICmp,"Fast isel fails on ICmp");
126STATISTIC(NumFastIselFailFCmp,"Fast isel fails on FCmp");
127STATISTIC(NumFastIselFailPHI,"Fast isel fails on PHI");
128STATISTIC(NumFastIselFailSelect,"Fast isel fails on Select");
129STATISTIC(NumFastIselFailCall,"Fast isel fails on Call");
130STATISTIC(NumFastIselFailShl,"Fast isel fails on Shl");
131STATISTIC(NumFastIselFailLShr,"Fast isel fails on LShr");
132STATISTIC(NumFastIselFailAShr,"Fast isel fails on AShr");
133STATISTIC(NumFastIselFailVAArg,"Fast isel fails on VAArg");
134STATISTIC(NumFastIselFailExtractElement,"Fast isel fails on ExtractElement");
135STATISTIC(NumFastIselFailInsertElement,"Fast isel fails on InsertElement");
136STATISTIC(NumFastIselFailShuffleVector,"Fast isel fails on ShuffleVector");
137STATISTIC(NumFastIselFailExtractValue,"Fast isel fails on ExtractValue");
138STATISTIC(NumFastIselFailInsertValue,"Fast isel fails on InsertValue");
139STATISTIC(NumFastIselFailLandingPad,"Fast isel fails on LandingPad");
140#endif
141
142static cl::opt<bool>
143EnableFastISelVerbose("fast-isel-verbose", cl::Hidden,
144          cl::desc("Enable verbose messages in the \"fast\" "
145                   "instruction selector"));
146static cl::opt<bool>
147EnableFastISelAbort("fast-isel-abort", cl::Hidden,
148          cl::desc("Enable abort calls when \"fast\" instruction selection "
149                   "fails to lower an instruction"));
150static cl::opt<bool>
151EnableFastISelAbortArgs("fast-isel-abort-args", cl::Hidden,
152          cl::desc("Enable abort calls when \"fast\" instruction selection "
153                   "fails to lower a formal argument"));
154
155static cl::opt<bool>
156UseMBPI("use-mbpi",
157        cl::desc("use Machine Branch Probability Info"),
158        cl::init(true), cl::Hidden);
159
160#ifndef NDEBUG
161static cl::opt<bool>
162ViewDAGCombine1("view-dag-combine1-dags", cl::Hidden,
163          cl::desc("Pop up a window to show dags before the first "
164                   "dag combine pass"));
165static cl::opt<bool>
166ViewLegalizeTypesDAGs("view-legalize-types-dags", cl::Hidden,
167          cl::desc("Pop up a window to show dags before legalize types"));
168static cl::opt<bool>
169ViewLegalizeDAGs("view-legalize-dags", cl::Hidden,
170          cl::desc("Pop up a window to show dags before legalize"));
171static cl::opt<bool>
172ViewDAGCombine2("view-dag-combine2-dags", cl::Hidden,
173          cl::desc("Pop up a window to show dags before the second "
174                   "dag combine pass"));
175static cl::opt<bool>
176ViewDAGCombineLT("view-dag-combine-lt-dags", cl::Hidden,
177          cl::desc("Pop up a window to show dags before the post legalize types"
178                   " dag combine pass"));
179static cl::opt<bool>
180ViewISelDAGs("view-isel-dags", cl::Hidden,
181          cl::desc("Pop up a window to show isel dags as they are selected"));
182static cl::opt<bool>
183ViewSchedDAGs("view-sched-dags", cl::Hidden,
184          cl::desc("Pop up a window to show sched dags as they are processed"));
185static cl::opt<bool>
186ViewSUnitDAGs("view-sunit-dags", cl::Hidden,
187      cl::desc("Pop up a window to show SUnit dags after they are processed"));
188#else
189static const bool ViewDAGCombine1 = false,
190                  ViewLegalizeTypesDAGs = false, ViewLegalizeDAGs = false,
191                  ViewDAGCombine2 = false,
192                  ViewDAGCombineLT = false,
193                  ViewISelDAGs = false, ViewSchedDAGs = false,
194                  ViewSUnitDAGs = false;
195#endif
196
197//===---------------------------------------------------------------------===//
198///
199/// RegisterScheduler class - Track the registration of instruction schedulers.
200///
201//===---------------------------------------------------------------------===//
202MachinePassRegistry RegisterScheduler::Registry;
203
204//===---------------------------------------------------------------------===//
205///
206/// ISHeuristic command line option for instruction schedulers.
207///
208//===---------------------------------------------------------------------===//
209static cl::opt<RegisterScheduler::FunctionPassCtor, false,
210               RegisterPassParser<RegisterScheduler> >
211ISHeuristic("pre-RA-sched",
212            cl::init(&createDefaultScheduler),
213            cl::desc("Instruction schedulers available (before register"
214                     " allocation):"));
215
216static RegisterScheduler
217defaultListDAGScheduler("default", "Best scheduler for the target",
218                        createDefaultScheduler);
219
220namespace llvm {
221  //===--------------------------------------------------------------------===//
222  /// createDefaultScheduler - This creates an instruction scheduler appropriate
223  /// for the target.
224  ScheduleDAGSDNodes* createDefaultScheduler(SelectionDAGISel *IS,
225                                             CodeGenOpt::Level OptLevel) {
226    const TargetLowering &TLI = IS->getTargetLowering();
227    const TargetSubtargetInfo &ST = IS->TM.getSubtarget<TargetSubtargetInfo>();
228
229    if (OptLevel == CodeGenOpt::None || ST.enableMachineScheduler() ||
230        TLI.getSchedulingPreference() == Sched::Source)
231      return createSourceListDAGScheduler(IS, OptLevel);
232    if (TLI.getSchedulingPreference() == Sched::RegPressure)
233      return createBURRListDAGScheduler(IS, OptLevel);
234    if (TLI.getSchedulingPreference() == Sched::Hybrid)
235      return createHybridListDAGScheduler(IS, OptLevel);
236    if (TLI.getSchedulingPreference() == Sched::VLIW)
237      return createVLIWDAGScheduler(IS, OptLevel);
238    assert(TLI.getSchedulingPreference() == Sched::ILP &&
239           "Unknown sched type!");
240    return createILPListDAGScheduler(IS, OptLevel);
241  }
242}
243
244// EmitInstrWithCustomInserter - This method should be implemented by targets
245// that mark instructions with the 'usesCustomInserter' flag.  These
246// instructions are special in various ways, which require special support to
247// insert.  The specified MachineInstr is created but not inserted into any
248// basic blocks, and this method is called to expand it into a sequence of
249// instructions, potentially also creating new basic blocks and control flow.
250// When new basic blocks are inserted and the edges from MBB to its successors
251// are modified, the method should insert pairs of <OldSucc, NewSucc> into the
252// DenseMap.
253MachineBasicBlock *
254TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
255                                            MachineBasicBlock *MBB) const {
256#ifndef NDEBUG
257  dbgs() << "If a target marks an instruction with "
258          "'usesCustomInserter', it must implement "
259          "TargetLowering::EmitInstrWithCustomInserter!";
260#endif
261  llvm_unreachable(0);
262}
263
264void TargetLowering::AdjustInstrPostInstrSelection(MachineInstr *MI,
265                                                   SDNode *Node) const {
266  assert(!MI->hasPostISelHook() &&
267         "If a target marks an instruction with 'hasPostISelHook', "
268         "it must implement TargetLowering::AdjustInstrPostInstrSelection!");
269}
270
271//===----------------------------------------------------------------------===//
272// SelectionDAGISel code
273//===----------------------------------------------------------------------===//
274
275SelectionDAGISel::SelectionDAGISel(const TargetMachine &tm,
276                                   CodeGenOpt::Level OL) :
277  MachineFunctionPass(ID), TM(tm), TLI(*tm.getTargetLowering()),
278  FuncInfo(new FunctionLoweringInfo(TLI)),
279  CurDAG(new SelectionDAG(tm, OL)),
280  SDB(new SelectionDAGBuilder(*CurDAG, *FuncInfo, OL)),
281  GFI(),
282  OptLevel(OL),
283  DAGSize(0) {
284    initializeGCModuleInfoPass(*PassRegistry::getPassRegistry());
285    initializeAliasAnalysisAnalysisGroup(*PassRegistry::getPassRegistry());
286    initializeBranchProbabilityInfoPass(*PassRegistry::getPassRegistry());
287    initializeTargetLibraryInfoPass(*PassRegistry::getPassRegistry());
288  }
289
290SelectionDAGISel::~SelectionDAGISel() {
291  delete SDB;
292  delete CurDAG;
293  delete FuncInfo;
294}
295
296void SelectionDAGISel::getAnalysisUsage(AnalysisUsage &AU) const {
297  AU.addRequired<AliasAnalysis>();
298  AU.addPreserved<AliasAnalysis>();
299  AU.addRequired<GCModuleInfo>();
300  AU.addPreserved<GCModuleInfo>();
301  AU.addRequired<TargetLibraryInfo>();
302  if (UseMBPI && OptLevel != CodeGenOpt::None)
303    AU.addRequired<BranchProbabilityInfo>();
304  MachineFunctionPass::getAnalysisUsage(AU);
305}
306
307/// SplitCriticalSideEffectEdges - Look for critical edges with a PHI value that
308/// may trap on it.  In this case we have to split the edge so that the path
309/// through the predecessor block that doesn't go to the phi block doesn't
310/// execute the possibly trapping instruction.
311///
312/// This is required for correctness, so it must be done at -O0.
313///
314static void SplitCriticalSideEffectEdges(Function &Fn, Pass *SDISel) {
315  // Loop for blocks with phi nodes.
316  for (Function::iterator BB = Fn.begin(), E = Fn.end(); BB != E; ++BB) {
317    PHINode *PN = dyn_cast<PHINode>(BB->begin());
318    if (PN == 0) continue;
319
320  ReprocessBlock:
321    // For each block with a PHI node, check to see if any of the input values
322    // are potentially trapping constant expressions.  Constant expressions are
323    // the only potentially trapping value that can occur as the argument to a
324    // PHI.
325    for (BasicBlock::iterator I = BB->begin(); (PN = dyn_cast<PHINode>(I)); ++I)
326      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
327        ConstantExpr *CE = dyn_cast<ConstantExpr>(PN->getIncomingValue(i));
328        if (CE == 0 || !CE->canTrap()) continue;
329
330        // The only case we have to worry about is when the edge is critical.
331        // Since this block has a PHI Node, we assume it has multiple input
332        // edges: check to see if the pred has multiple successors.
333        BasicBlock *Pred = PN->getIncomingBlock(i);
334        if (Pred->getTerminator()->getNumSuccessors() == 1)
335          continue;
336
337        // Okay, we have to split this edge.
338        SplitCriticalEdge(Pred->getTerminator(),
339                          GetSuccessorNumber(Pred, BB), SDISel, true);
340        goto ReprocessBlock;
341      }
342  }
343}
344
345bool SelectionDAGISel::runOnMachineFunction(MachineFunction &mf) {
346  // Do some sanity-checking on the command-line options.
347  assert((!EnableFastISelVerbose || TM.Options.EnableFastISel) &&
348         "-fast-isel-verbose requires -fast-isel");
349  assert((!EnableFastISelAbort || TM.Options.EnableFastISel) &&
350         "-fast-isel-abort requires -fast-isel");
351
352  const Function &Fn = *mf.getFunction();
353  const TargetInstrInfo &TII = *TM.getInstrInfo();
354  const TargetRegisterInfo &TRI = *TM.getRegisterInfo();
355
356  MF = &mf;
357  RegInfo = &MF->getRegInfo();
358  AA = &getAnalysis<AliasAnalysis>();
359  LibInfo = &getAnalysis<TargetLibraryInfo>();
360  TTI = getAnalysisIfAvailable<TargetTransformInfo>();
361  GFI = Fn.hasGC() ? &getAnalysis<GCModuleInfo>().getFunctionInfo(Fn) : 0;
362
363  TargetSubtargetInfo &ST =
364    const_cast<TargetSubtargetInfo&>(TM.getSubtarget<TargetSubtargetInfo>());
365  ST.resetSubtargetFeatures(MF);
366
367  DEBUG(dbgs() << "\n\n\n=== " << Fn.getName() << "\n");
368
369  SplitCriticalSideEffectEdges(const_cast<Function&>(Fn), this);
370
371  CurDAG->init(*MF, TTI);
372  FuncInfo->set(Fn, *MF);
373
374  if (UseMBPI && OptLevel != CodeGenOpt::None)
375    FuncInfo->BPI = &getAnalysis<BranchProbabilityInfo>();
376  else
377    FuncInfo->BPI = 0;
378
379  SDB->init(GFI, *AA, LibInfo);
380
381  MF->setHasMSInlineAsm(false);
382  SelectAllBasicBlocks(Fn);
383
384  // If the first basic block in the function has live ins that need to be
385  // copied into vregs, emit the copies into the top of the block before
386  // emitting the code for the block.
387  MachineBasicBlock *EntryMBB = MF->begin();
388  RegInfo->EmitLiveInCopies(EntryMBB, TRI, TII);
389
390  DenseMap<unsigned, unsigned> LiveInMap;
391  if (!FuncInfo->ArgDbgValues.empty())
392    for (MachineRegisterInfo::livein_iterator LI = RegInfo->livein_begin(),
393           E = RegInfo->livein_end(); LI != E; ++LI)
394      if (LI->second)
395        LiveInMap.insert(std::make_pair(LI->first, LI->second));
396
397  // Insert DBG_VALUE instructions for function arguments to the entry block.
398  for (unsigned i = 0, e = FuncInfo->ArgDbgValues.size(); i != e; ++i) {
399    MachineInstr *MI = FuncInfo->ArgDbgValues[e-i-1];
400    unsigned Reg = MI->getOperand(0).getReg();
401    if (TargetRegisterInfo::isPhysicalRegister(Reg))
402      EntryMBB->insert(EntryMBB->begin(), MI);
403    else {
404      MachineInstr *Def = RegInfo->getVRegDef(Reg);
405      MachineBasicBlock::iterator InsertPos = Def;
406      // FIXME: VR def may not be in entry block.
407      Def->getParent()->insert(llvm::next(InsertPos), MI);
408    }
409
410    // If Reg is live-in then update debug info to track its copy in a vreg.
411    DenseMap<unsigned, unsigned>::iterator LDI = LiveInMap.find(Reg);
412    if (LDI != LiveInMap.end()) {
413      MachineInstr *Def = RegInfo->getVRegDef(LDI->second);
414      MachineBasicBlock::iterator InsertPos = Def;
415      const MDNode *Variable =
416        MI->getOperand(MI->getNumOperands()-1).getMetadata();
417      unsigned Offset = MI->getOperand(1).getImm();
418      // Def is never a terminator here, so it is ok to increment InsertPos.
419      BuildMI(*EntryMBB, ++InsertPos, MI->getDebugLoc(),
420              TII.get(TargetOpcode::DBG_VALUE))
421        .addReg(LDI->second, RegState::Debug)
422        .addImm(Offset).addMetadata(Variable);
423
424      // If this vreg is directly copied into an exported register then
425      // that COPY instructions also need DBG_VALUE, if it is the only
426      // user of LDI->second.
427      MachineInstr *CopyUseMI = NULL;
428      for (MachineRegisterInfo::use_iterator
429             UI = RegInfo->use_begin(LDI->second);
430           MachineInstr *UseMI = UI.skipInstruction();) {
431        if (UseMI->isDebugValue()) continue;
432        if (UseMI->isCopy() && !CopyUseMI && UseMI->getParent() == EntryMBB) {
433          CopyUseMI = UseMI; continue;
434        }
435        // Otherwise this is another use or second copy use.
436        CopyUseMI = NULL; break;
437      }
438      if (CopyUseMI) {
439        MachineInstr *NewMI =
440          BuildMI(*MF, CopyUseMI->getDebugLoc(),
441                  TII.get(TargetOpcode::DBG_VALUE))
442          .addReg(CopyUseMI->getOperand(0).getReg(), RegState::Debug)
443          .addImm(Offset).addMetadata(Variable);
444        MachineBasicBlock::iterator Pos = CopyUseMI;
445        EntryMBB->insertAfter(Pos, NewMI);
446      }
447    }
448  }
449
450  // Determine if there are any calls in this machine function.
451  MachineFrameInfo *MFI = MF->getFrameInfo();
452  for (MachineFunction::const_iterator I = MF->begin(), E = MF->end(); I != E;
453       ++I) {
454
455    if (MFI->hasCalls() && MF->hasMSInlineAsm())
456      break;
457
458    const MachineBasicBlock *MBB = I;
459    for (MachineBasicBlock::const_iterator II = MBB->begin(), IE = MBB->end();
460         II != IE; ++II) {
461      const MCInstrDesc &MCID = TM.getInstrInfo()->get(II->getOpcode());
462      if ((MCID.isCall() && !MCID.isReturn()) ||
463          II->isStackAligningInlineAsm()) {
464        MFI->setHasCalls(true);
465      }
466      if (II->isMSInlineAsm()) {
467        MF->setHasMSInlineAsm(true);
468      }
469    }
470  }
471
472  // Determine if there is a call to setjmp in the machine function.
473  MF->setExposesReturnsTwice(Fn.callsFunctionThatReturnsTwice());
474
475  // Replace forward-declared registers with the registers containing
476  // the desired value.
477  MachineRegisterInfo &MRI = MF->getRegInfo();
478  for (DenseMap<unsigned, unsigned>::iterator
479       I = FuncInfo->RegFixups.begin(), E = FuncInfo->RegFixups.end();
480       I != E; ++I) {
481    unsigned From = I->first;
482    unsigned To = I->second;
483    // If To is also scheduled to be replaced, find what its ultimate
484    // replacement is.
485    for (;;) {
486      DenseMap<unsigned, unsigned>::iterator J = FuncInfo->RegFixups.find(To);
487      if (J == E) break;
488      To = J->second;
489    }
490    // Replace it.
491    MRI.replaceRegWith(From, To);
492  }
493
494  // Freeze the set of reserved registers now that MachineFrameInfo has been
495  // set up. All the information required by getReservedRegs() should be
496  // available now.
497  MRI.freezeReservedRegs(*MF);
498
499  // Release function-specific state. SDB and CurDAG are already cleared
500  // at this point.
501  FuncInfo->clear();
502
503  return true;
504}
505
506void SelectionDAGISel::SelectBasicBlock(BasicBlock::const_iterator Begin,
507                                        BasicBlock::const_iterator End,
508                                        bool &HadTailCall) {
509  // Lower all of the non-terminator instructions. If a call is emitted
510  // as a tail call, cease emitting nodes for this block. Terminators
511  // are handled below.
512  for (BasicBlock::const_iterator I = Begin; I != End && !SDB->HasTailCall; ++I)
513    SDB->visit(*I);
514
515  // Make sure the root of the DAG is up-to-date.
516  CurDAG->setRoot(SDB->getControlRoot());
517  HadTailCall = SDB->HasTailCall;
518  SDB->clear();
519
520  // Final step, emit the lowered DAG as machine code.
521  CodeGenAndEmitDAG();
522}
523
524void SelectionDAGISel::ComputeLiveOutVRegInfo() {
525  SmallPtrSet<SDNode*, 128> VisitedNodes;
526  SmallVector<SDNode*, 128> Worklist;
527
528  Worklist.push_back(CurDAG->getRoot().getNode());
529
530  APInt KnownZero;
531  APInt KnownOne;
532
533  do {
534    SDNode *N = Worklist.pop_back_val();
535
536    // If we've already seen this node, ignore it.
537    if (!VisitedNodes.insert(N))
538      continue;
539
540    // Otherwise, add all chain operands to the worklist.
541    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
542      if (N->getOperand(i).getValueType() == MVT::Other)
543        Worklist.push_back(N->getOperand(i).getNode());
544
545    // If this is a CopyToReg with a vreg dest, process it.
546    if (N->getOpcode() != ISD::CopyToReg)
547      continue;
548
549    unsigned DestReg = cast<RegisterSDNode>(N->getOperand(1))->getReg();
550    if (!TargetRegisterInfo::isVirtualRegister(DestReg))
551      continue;
552
553    // Ignore non-scalar or non-integer values.
554    SDValue Src = N->getOperand(2);
555    EVT SrcVT = Src.getValueType();
556    if (!SrcVT.isInteger() || SrcVT.isVector())
557      continue;
558
559    unsigned NumSignBits = CurDAG->ComputeNumSignBits(Src);
560    CurDAG->ComputeMaskedBits(Src, KnownZero, KnownOne);
561    FuncInfo->AddLiveOutRegInfo(DestReg, NumSignBits, KnownZero, KnownOne);
562  } while (!Worklist.empty());
563}
564
565void SelectionDAGISel::CodeGenAndEmitDAG() {
566  std::string GroupName;
567  if (TimePassesIsEnabled)
568    GroupName = "Instruction Selection and Scheduling";
569  std::string BlockName;
570  int BlockNumber = -1;
571  (void)BlockNumber;
572#ifdef NDEBUG
573  if (ViewDAGCombine1 || ViewLegalizeTypesDAGs || ViewLegalizeDAGs ||
574      ViewDAGCombine2 || ViewDAGCombineLT || ViewISelDAGs || ViewSchedDAGs ||
575      ViewSUnitDAGs)
576#endif
577  {
578    BlockNumber = FuncInfo->MBB->getNumber();
579    BlockName = MF->getName().str() + ":" +
580                FuncInfo->MBB->getBasicBlock()->getName().str();
581  }
582  DEBUG(dbgs() << "Initial selection DAG: BB#" << BlockNumber
583        << " '" << BlockName << "'\n"; CurDAG->dump());
584
585  if (ViewDAGCombine1) CurDAG->viewGraph("dag-combine1 input for " + BlockName);
586
587  // Run the DAG combiner in pre-legalize mode.
588  {
589    NamedRegionTimer T("DAG Combining 1", GroupName, TimePassesIsEnabled);
590    CurDAG->Combine(BeforeLegalizeTypes, *AA, OptLevel);
591  }
592
593  DEBUG(dbgs() << "Optimized lowered selection DAG: BB#" << BlockNumber
594        << " '" << BlockName << "'\n"; CurDAG->dump());
595
596  // Second step, hack on the DAG until it only uses operations and types that
597  // the target supports.
598  if (ViewLegalizeTypesDAGs) CurDAG->viewGraph("legalize-types input for " +
599                                               BlockName);
600
601  bool Changed;
602  {
603    NamedRegionTimer T("Type Legalization", GroupName, TimePassesIsEnabled);
604    Changed = CurDAG->LegalizeTypes();
605  }
606
607  DEBUG(dbgs() << "Type-legalized selection DAG: BB#" << BlockNumber
608        << " '" << BlockName << "'\n"; CurDAG->dump());
609
610  if (Changed) {
611    if (ViewDAGCombineLT)
612      CurDAG->viewGraph("dag-combine-lt input for " + BlockName);
613
614    // Run the DAG combiner in post-type-legalize mode.
615    {
616      NamedRegionTimer T("DAG Combining after legalize types", GroupName,
617                         TimePassesIsEnabled);
618      CurDAG->Combine(AfterLegalizeTypes, *AA, OptLevel);
619    }
620
621    DEBUG(dbgs() << "Optimized type-legalized selection DAG: BB#" << BlockNumber
622          << " '" << BlockName << "'\n"; CurDAG->dump());
623  }
624
625  {
626    NamedRegionTimer T("Vector Legalization", GroupName, TimePassesIsEnabled);
627    Changed = CurDAG->LegalizeVectors();
628  }
629
630  if (Changed) {
631    {
632      NamedRegionTimer T("Type Legalization 2", GroupName, TimePassesIsEnabled);
633      CurDAG->LegalizeTypes();
634    }
635
636    if (ViewDAGCombineLT)
637      CurDAG->viewGraph("dag-combine-lv input for " + BlockName);
638
639    // Run the DAG combiner in post-type-legalize mode.
640    {
641      NamedRegionTimer T("DAG Combining after legalize vectors", GroupName,
642                         TimePassesIsEnabled);
643      CurDAG->Combine(AfterLegalizeVectorOps, *AA, OptLevel);
644    }
645
646    DEBUG(dbgs() << "Optimized vector-legalized selection DAG: BB#"
647          << BlockNumber << " '" << BlockName << "'\n"; CurDAG->dump());
648  }
649
650  if (ViewLegalizeDAGs) CurDAG->viewGraph("legalize input for " + BlockName);
651
652  {
653    NamedRegionTimer T("DAG Legalization", GroupName, TimePassesIsEnabled);
654    CurDAG->Legalize();
655  }
656
657  DEBUG(dbgs() << "Legalized selection DAG: BB#" << BlockNumber
658        << " '" << BlockName << "'\n"; CurDAG->dump());
659
660  if (ViewDAGCombine2) CurDAG->viewGraph("dag-combine2 input for " + BlockName);
661
662  // Run the DAG combiner in post-legalize mode.
663  {
664    NamedRegionTimer T("DAG Combining 2", GroupName, TimePassesIsEnabled);
665    CurDAG->Combine(AfterLegalizeDAG, *AA, OptLevel);
666  }
667
668  DEBUG(dbgs() << "Optimized legalized selection DAG: BB#" << BlockNumber
669        << " '" << BlockName << "'\n"; CurDAG->dump());
670
671  if (OptLevel != CodeGenOpt::None)
672    ComputeLiveOutVRegInfo();
673
674  if (ViewISelDAGs) CurDAG->viewGraph("isel input for " + BlockName);
675
676  // Third, instruction select all of the operations to machine code, adding the
677  // code to the MachineBasicBlock.
678  {
679    NamedRegionTimer T("Instruction Selection", GroupName, TimePassesIsEnabled);
680    DoInstructionSelection();
681  }
682
683  DEBUG(dbgs() << "Selected selection DAG: BB#" << BlockNumber
684        << " '" << BlockName << "'\n"; CurDAG->dump());
685
686  if (ViewSchedDAGs) CurDAG->viewGraph("scheduler input for " + BlockName);
687
688  // Schedule machine code.
689  ScheduleDAGSDNodes *Scheduler = CreateScheduler();
690  {
691    NamedRegionTimer T("Instruction Scheduling", GroupName,
692                       TimePassesIsEnabled);
693    Scheduler->Run(CurDAG, FuncInfo->MBB);
694  }
695
696  if (ViewSUnitDAGs) Scheduler->viewGraph();
697
698  // Emit machine code to BB.  This can change 'BB' to the last block being
699  // inserted into.
700  MachineBasicBlock *FirstMBB = FuncInfo->MBB, *LastMBB;
701  {
702    NamedRegionTimer T("Instruction Creation", GroupName, TimePassesIsEnabled);
703
704    // FuncInfo->InsertPt is passed by reference and set to the end of the
705    // scheduled instructions.
706    LastMBB = FuncInfo->MBB = Scheduler->EmitSchedule(FuncInfo->InsertPt);
707  }
708
709  // If the block was split, make sure we update any references that are used to
710  // update PHI nodes later on.
711  if (FirstMBB != LastMBB)
712    SDB->UpdateSplitBlock(FirstMBB, LastMBB);
713
714  // Free the scheduler state.
715  {
716    NamedRegionTimer T("Instruction Scheduling Cleanup", GroupName,
717                       TimePassesIsEnabled);
718    delete Scheduler;
719  }
720
721  // Free the SelectionDAG state, now that we're finished with it.
722  CurDAG->clear();
723}
724
725namespace {
726/// ISelUpdater - helper class to handle updates of the instruction selection
727/// graph.
728class ISelUpdater : public SelectionDAG::DAGUpdateListener {
729  SelectionDAG::allnodes_iterator &ISelPosition;
730public:
731  ISelUpdater(SelectionDAG &DAG, SelectionDAG::allnodes_iterator &isp)
732    : SelectionDAG::DAGUpdateListener(DAG), ISelPosition(isp) {}
733
734  /// NodeDeleted - Handle nodes deleted from the graph. If the node being
735  /// deleted is the current ISelPosition node, update ISelPosition.
736  ///
737  virtual void NodeDeleted(SDNode *N, SDNode *E) {
738    if (ISelPosition == SelectionDAG::allnodes_iterator(N))
739      ++ISelPosition;
740  }
741};
742} // end anonymous namespace
743
744void SelectionDAGISel::DoInstructionSelection() {
745  DEBUG(errs() << "===== Instruction selection begins: BB#"
746        << FuncInfo->MBB->getNumber()
747        << " '" << FuncInfo->MBB->getName() << "'\n");
748
749  PreprocessISelDAG();
750
751  // Select target instructions for the DAG.
752  {
753    // Number all nodes with a topological order and set DAGSize.
754    DAGSize = CurDAG->AssignTopologicalOrder();
755
756    // Create a dummy node (which is not added to allnodes), that adds
757    // a reference to the root node, preventing it from being deleted,
758    // and tracking any changes of the root.
759    HandleSDNode Dummy(CurDAG->getRoot());
760    SelectionDAG::allnodes_iterator ISelPosition (CurDAG->getRoot().getNode());
761    ++ISelPosition;
762
763    // Make sure that ISelPosition gets properly updated when nodes are deleted
764    // in calls made from this function.
765    ISelUpdater ISU(*CurDAG, ISelPosition);
766
767    // The AllNodes list is now topological-sorted. Visit the
768    // nodes by starting at the end of the list (the root of the
769    // graph) and preceding back toward the beginning (the entry
770    // node).
771    while (ISelPosition != CurDAG->allnodes_begin()) {
772      SDNode *Node = --ISelPosition;
773      // Skip dead nodes. DAGCombiner is expected to eliminate all dead nodes,
774      // but there are currently some corner cases that it misses. Also, this
775      // makes it theoretically possible to disable the DAGCombiner.
776      if (Node->use_empty())
777        continue;
778
779      SDNode *ResNode = Select(Node);
780
781      // FIXME: This is pretty gross.  'Select' should be changed to not return
782      // anything at all and this code should be nuked with a tactical strike.
783
784      // If node should not be replaced, continue with the next one.
785      if (ResNode == Node || Node->getOpcode() == ISD::DELETED_NODE)
786        continue;
787      // Replace node.
788      if (ResNode)
789        ReplaceUses(Node, ResNode);
790
791      // If after the replacement this node is not used any more,
792      // remove this dead node.
793      if (Node->use_empty()) // Don't delete EntryToken, etc.
794        CurDAG->RemoveDeadNode(Node);
795    }
796
797    CurDAG->setRoot(Dummy.getValue());
798  }
799
800  DEBUG(errs() << "===== Instruction selection ends:\n");
801
802  PostprocessISelDAG();
803}
804
805/// PrepareEHLandingPad - Emit an EH_LABEL, set up live-in registers, and
806/// do other setup for EH landing-pad blocks.
807void SelectionDAGISel::PrepareEHLandingPad() {
808  MachineBasicBlock *MBB = FuncInfo->MBB;
809
810  // Add a label to mark the beginning of the landing pad.  Deletion of the
811  // landing pad can thus be detected via the MachineModuleInfo.
812  MCSymbol *Label = MF->getMMI().addLandingPad(MBB);
813
814  // Assign the call site to the landing pad's begin label.
815  MF->getMMI().setCallSiteLandingPad(Label, SDB->LPadToCallSiteMap[MBB]);
816
817  const MCInstrDesc &II = TM.getInstrInfo()->get(TargetOpcode::EH_LABEL);
818  BuildMI(*MBB, FuncInfo->InsertPt, SDB->getCurDebugLoc(), II)
819    .addSym(Label);
820
821  // Mark exception register as live in.
822  unsigned Reg = TLI.getExceptionPointerRegister();
823  if (Reg) MBB->addLiveIn(Reg);
824
825  // Mark exception selector register as live in.
826  Reg = TLI.getExceptionSelectorRegister();
827  if (Reg) MBB->addLiveIn(Reg);
828}
829
830/// TryToFoldFastISelLoad - We're checking to see if we can fold the specified
831/// load into the specified FoldInst.  Note that we could have a sequence where
832/// multiple LLVM IR instructions are folded into the same machineinstr.  For
833/// example we could have:
834///   A: x = load i32 *P
835///   B: y = icmp A, 42
836///   C: br y, ...
837///
838/// In this scenario, LI is "A", and FoldInst is "C".  We know about "B" (and
839/// any other folded instructions) because it is between A and C.
840///
841/// If we succeed in folding the load into the operation, return true.
842///
843bool SelectionDAGISel::TryToFoldFastISelLoad(const LoadInst *LI,
844                                             const Instruction *FoldInst,
845                                             FastISel *FastIS) {
846  // We know that the load has a single use, but don't know what it is.  If it
847  // isn't one of the folded instructions, then we can't succeed here.  Handle
848  // this by scanning the single-use users of the load until we get to FoldInst.
849  unsigned MaxUsers = 6;  // Don't scan down huge single-use chains of instrs.
850
851  const Instruction *TheUser = LI->use_back();
852  while (TheUser != FoldInst &&   // Scan up until we find FoldInst.
853         // Stay in the right block.
854         TheUser->getParent() == FoldInst->getParent() &&
855         --MaxUsers) {  // Don't scan too far.
856    // If there are multiple or no uses of this instruction, then bail out.
857    if (!TheUser->hasOneUse())
858      return false;
859
860    TheUser = TheUser->use_back();
861  }
862
863  // If we didn't find the fold instruction, then we failed to collapse the
864  // sequence.
865  if (TheUser != FoldInst)
866    return false;
867
868  // Don't try to fold volatile loads.  Target has to deal with alignment
869  // constraints.
870  if (LI->isVolatile()) return false;
871
872  // Figure out which vreg this is going into.  If there is no assigned vreg yet
873  // then there actually was no reference to it.  Perhaps the load is referenced
874  // by a dead instruction.
875  unsigned LoadReg = FastIS->getRegForValue(LI);
876  if (LoadReg == 0)
877    return false;
878
879  // Check to see what the uses of this vreg are.  If it has no uses, or more
880  // than one use (at the machine instr level) then we can't fold it.
881  MachineRegisterInfo::reg_iterator RI = RegInfo->reg_begin(LoadReg);
882  if (RI == RegInfo->reg_end())
883    return false;
884
885  // See if there is exactly one use of the vreg.  If there are multiple uses,
886  // then the instruction got lowered to multiple machine instructions or the
887  // use of the loaded value ended up being multiple operands of the result, in
888  // either case, we can't fold this.
889  MachineRegisterInfo::reg_iterator PostRI = RI; ++PostRI;
890  if (PostRI != RegInfo->reg_end())
891    return false;
892
893  assert(RI.getOperand().isUse() &&
894         "The only use of the vreg must be a use, we haven't emitted the def!");
895
896  MachineInstr *User = &*RI;
897
898  // Set the insertion point properly.  Folding the load can cause generation of
899  // other random instructions (like sign extends) for addressing modes, make
900  // sure they get inserted in a logical place before the new instruction.
901  FuncInfo->InsertPt = User;
902  FuncInfo->MBB = User->getParent();
903
904  // Ask the target to try folding the load.
905  return FastIS->TryToFoldLoad(User, RI.getOperandNo(), LI);
906}
907
908/// isFoldedOrDeadInstruction - Return true if the specified instruction is
909/// side-effect free and is either dead or folded into a generated instruction.
910/// Return false if it needs to be emitted.
911static bool isFoldedOrDeadInstruction(const Instruction *I,
912                                      FunctionLoweringInfo *FuncInfo) {
913  return !I->mayWriteToMemory() && // Side-effecting instructions aren't folded.
914         !isa<TerminatorInst>(I) && // Terminators aren't folded.
915         !isa<DbgInfoIntrinsic>(I) &&  // Debug instructions aren't folded.
916         !isa<LandingPadInst>(I) &&    // Landingpad instructions aren't folded.
917         !FuncInfo->isExportedInst(I); // Exported instrs must be computed.
918}
919
920#ifndef NDEBUG
921// Collect per Instruction statistics for fast-isel misses.  Only those
922// instructions that cause the bail are accounted for.  It does not account for
923// instructions higher in the block.  Thus, summing the per instructions stats
924// will not add up to what is reported by NumFastIselFailures.
925static void collectFailStats(const Instruction *I) {
926  switch (I->getOpcode()) {
927  default: assert (0 && "<Invalid operator> ");
928
929  // Terminators
930  case Instruction::Ret:         NumFastIselFailRet++; return;
931  case Instruction::Br:          NumFastIselFailBr++; return;
932  case Instruction::Switch:      NumFastIselFailSwitch++; return;
933  case Instruction::IndirectBr:  NumFastIselFailIndirectBr++; return;
934  case Instruction::Invoke:      NumFastIselFailInvoke++; return;
935  case Instruction::Resume:      NumFastIselFailResume++; return;
936  case Instruction::Unreachable: NumFastIselFailUnreachable++; return;
937
938  // Standard binary operators...
939  case Instruction::Add:  NumFastIselFailAdd++; return;
940  case Instruction::FAdd: NumFastIselFailFAdd++; return;
941  case Instruction::Sub:  NumFastIselFailSub++; return;
942  case Instruction::FSub: NumFastIselFailFSub++; return;
943  case Instruction::Mul:  NumFastIselFailMul++; return;
944  case Instruction::FMul: NumFastIselFailFMul++; return;
945  case Instruction::UDiv: NumFastIselFailUDiv++; return;
946  case Instruction::SDiv: NumFastIselFailSDiv++; return;
947  case Instruction::FDiv: NumFastIselFailFDiv++; return;
948  case Instruction::URem: NumFastIselFailURem++; return;
949  case Instruction::SRem: NumFastIselFailSRem++; return;
950  case Instruction::FRem: NumFastIselFailFRem++; return;
951
952  // Logical operators...
953  case Instruction::And: NumFastIselFailAnd++; return;
954  case Instruction::Or:  NumFastIselFailOr++; return;
955  case Instruction::Xor: NumFastIselFailXor++; return;
956
957  // Memory instructions...
958  case Instruction::Alloca:        NumFastIselFailAlloca++; return;
959  case Instruction::Load:          NumFastIselFailLoad++; return;
960  case Instruction::Store:         NumFastIselFailStore++; return;
961  case Instruction::AtomicCmpXchg: NumFastIselFailAtomicCmpXchg++; return;
962  case Instruction::AtomicRMW:     NumFastIselFailAtomicRMW++; return;
963  case Instruction::Fence:         NumFastIselFailFence++; return;
964  case Instruction::GetElementPtr: NumFastIselFailGetElementPtr++; return;
965
966  // Convert instructions...
967  case Instruction::Trunc:    NumFastIselFailTrunc++; return;
968  case Instruction::ZExt:     NumFastIselFailZExt++; return;
969  case Instruction::SExt:     NumFastIselFailSExt++; return;
970  case Instruction::FPTrunc:  NumFastIselFailFPTrunc++; return;
971  case Instruction::FPExt:    NumFastIselFailFPExt++; return;
972  case Instruction::FPToUI:   NumFastIselFailFPToUI++; return;
973  case Instruction::FPToSI:   NumFastIselFailFPToSI++; return;
974  case Instruction::UIToFP:   NumFastIselFailUIToFP++; return;
975  case Instruction::SIToFP:   NumFastIselFailSIToFP++; return;
976  case Instruction::IntToPtr: NumFastIselFailIntToPtr++; return;
977  case Instruction::PtrToInt: NumFastIselFailPtrToInt++; return;
978  case Instruction::BitCast:  NumFastIselFailBitCast++; return;
979
980  // Other instructions...
981  case Instruction::ICmp:           NumFastIselFailICmp++; return;
982  case Instruction::FCmp:           NumFastIselFailFCmp++; return;
983  case Instruction::PHI:            NumFastIselFailPHI++; return;
984  case Instruction::Select:         NumFastIselFailSelect++; return;
985  case Instruction::Call:           NumFastIselFailCall++; return;
986  case Instruction::Shl:            NumFastIselFailShl++; return;
987  case Instruction::LShr:           NumFastIselFailLShr++; return;
988  case Instruction::AShr:           NumFastIselFailAShr++; return;
989  case Instruction::VAArg:          NumFastIselFailVAArg++; return;
990  case Instruction::ExtractElement: NumFastIselFailExtractElement++; return;
991  case Instruction::InsertElement:  NumFastIselFailInsertElement++; return;
992  case Instruction::ShuffleVector:  NumFastIselFailShuffleVector++; return;
993  case Instruction::ExtractValue:   NumFastIselFailExtractValue++; return;
994  case Instruction::InsertValue:    NumFastIselFailInsertValue++; return;
995  case Instruction::LandingPad:     NumFastIselFailLandingPad++; return;
996  }
997}
998#endif
999
1000void SelectionDAGISel::SelectAllBasicBlocks(const Function &Fn) {
1001  // Initialize the Fast-ISel state, if needed.
1002  FastISel *FastIS = 0;
1003  if (TM.Options.EnableFastISel)
1004    FastIS = TLI.createFastISel(*FuncInfo, LibInfo);
1005
1006  // Iterate over all basic blocks in the function.
1007  ReversePostOrderTraversal<const Function*> RPOT(&Fn);
1008  for (ReversePostOrderTraversal<const Function*>::rpo_iterator
1009       I = RPOT.begin(), E = RPOT.end(); I != E; ++I) {
1010    const BasicBlock *LLVMBB = *I;
1011
1012    if (OptLevel != CodeGenOpt::None) {
1013      bool AllPredsVisited = true;
1014      for (const_pred_iterator PI = pred_begin(LLVMBB), PE = pred_end(LLVMBB);
1015           PI != PE; ++PI) {
1016        if (!FuncInfo->VisitedBBs.count(*PI)) {
1017          AllPredsVisited = false;
1018          break;
1019        }
1020      }
1021
1022      if (AllPredsVisited) {
1023        for (BasicBlock::const_iterator I = LLVMBB->begin();
1024             const PHINode *PN = dyn_cast<PHINode>(I); ++I)
1025          FuncInfo->ComputePHILiveOutRegInfo(PN);
1026      } else {
1027        for (BasicBlock::const_iterator I = LLVMBB->begin();
1028             const PHINode *PN = dyn_cast<PHINode>(I); ++I)
1029          FuncInfo->InvalidatePHILiveOutRegInfo(PN);
1030      }
1031
1032      FuncInfo->VisitedBBs.insert(LLVMBB);
1033    }
1034
1035    FuncInfo->MBB = FuncInfo->MBBMap[LLVMBB];
1036    FuncInfo->InsertPt = FuncInfo->MBB->getFirstNonPHI();
1037
1038    BasicBlock::const_iterator const Begin = LLVMBB->getFirstNonPHI();
1039    BasicBlock::const_iterator const End = LLVMBB->end();
1040    BasicBlock::const_iterator BI = End;
1041
1042    FuncInfo->InsertPt = FuncInfo->MBB->getFirstNonPHI();
1043
1044    // Setup an EH landing-pad block.
1045    if (FuncInfo->MBB->isLandingPad())
1046      PrepareEHLandingPad();
1047
1048    // Before doing SelectionDAG ISel, see if FastISel has been requested.
1049    if (FastIS) {
1050      FastIS->startNewBlock();
1051
1052      // Emit code for any incoming arguments. This must happen before
1053      // beginning FastISel on the entry block.
1054      if (LLVMBB == &Fn.getEntryBlock()) {
1055        // Lower any arguments needed in this block if this is the entry block.
1056        if (!FastIS->LowerArguments()) {
1057
1058          if (EnableFastISelAbortArgs)
1059            // The "fast" selector couldn't lower these arguments.  For the
1060            // purpose of debugging, just abort.
1061            llvm_unreachable("FastISel didn't lower all arguments");
1062
1063          // Call target indepedent SDISel argument lowering code if the target
1064          // specific routine is not successful.
1065          LowerArguments(LLVMBB);
1066          CurDAG->setRoot(SDB->getControlRoot());
1067          SDB->clear();
1068          CodeGenAndEmitDAG();
1069        }
1070
1071        // If we inserted any instructions at the beginning, make a note of
1072        // where they are, so we can be sure to emit subsequent instructions
1073        // after them.
1074        if (FuncInfo->InsertPt != FuncInfo->MBB->begin())
1075          FastIS->setLastLocalValue(llvm::prior(FuncInfo->InsertPt));
1076        else
1077          FastIS->setLastLocalValue(0);
1078      }
1079
1080      unsigned NumFastIselRemaining = std::distance(Begin, End);
1081      (void) NumFastIselRemaining;
1082      // Do FastISel on as many instructions as possible.
1083      for (; BI != Begin; --BI) {
1084        const Instruction *Inst = llvm::prior(BI);
1085
1086        // If we no longer require this instruction, skip it.
1087        if (isFoldedOrDeadInstruction(Inst, FuncInfo)) {
1088          --NumFastIselRemaining;
1089          continue;
1090        }
1091
1092        // Bottom-up: reset the insert pos at the top, after any local-value
1093        // instructions.
1094        FastIS->recomputeInsertPt();
1095
1096        // Try to select the instruction with FastISel.
1097        if (FastIS->SelectInstruction(Inst)) {
1098          --NumFastIselRemaining;
1099          DEBUG(++NumFastIselSuccess);
1100          // If fast isel succeeded, skip over all the folded instructions, and
1101          // then see if there is a load right before the selected instructions.
1102          // Try to fold the load if so.
1103          const Instruction *BeforeInst = Inst;
1104          while (BeforeInst != Begin) {
1105            BeforeInst = llvm::prior(BasicBlock::const_iterator(BeforeInst));
1106            if (!isFoldedOrDeadInstruction(BeforeInst, FuncInfo))
1107              break;
1108          }
1109          if (BeforeInst != Inst && isa<LoadInst>(BeforeInst) &&
1110              BeforeInst->hasOneUse() &&
1111              TryToFoldFastISelLoad(cast<LoadInst>(BeforeInst), Inst, FastIS)) {
1112            // If we succeeded, don't re-select the load.
1113            BI = llvm::next(BasicBlock::const_iterator(BeforeInst));
1114            --NumFastIselRemaining;
1115            DEBUG(++NumFastIselSuccess);
1116          }
1117          continue;
1118        }
1119
1120#ifndef NDEBUG
1121        if (EnableFastISelVerbose2)
1122          collectFailStats(Inst);
1123#endif
1124
1125        // Then handle certain instructions as single-LLVM-Instruction blocks.
1126        if (isa<CallInst>(Inst)) {
1127
1128          if (EnableFastISelVerbose || EnableFastISelAbort) {
1129            dbgs() << "FastISel missed call: ";
1130            Inst->dump();
1131          }
1132
1133          if (!Inst->getType()->isVoidTy() && !Inst->use_empty()) {
1134            unsigned &R = FuncInfo->ValueMap[Inst];
1135            if (!R)
1136              R = FuncInfo->CreateRegs(Inst->getType());
1137          }
1138
1139          bool HadTailCall = false;
1140          MachineBasicBlock::iterator SavedInsertPt = FuncInfo->InsertPt;
1141          SelectBasicBlock(Inst, BI, HadTailCall);
1142
1143          // If the call was emitted as a tail call, we're done with the block.
1144          // We also need to delete any previously emitted instructions.
1145          if (HadTailCall) {
1146            FastIS->removeDeadCode(SavedInsertPt, FuncInfo->MBB->end());
1147            --BI;
1148            break;
1149          }
1150
1151          // Recompute NumFastIselRemaining as Selection DAG instruction
1152          // selection may have handled the call, input args, etc.
1153          unsigned RemainingNow = std::distance(Begin, BI);
1154          (void) RemainingNow;
1155          DEBUG(NumFastIselFailures += NumFastIselRemaining - RemainingNow);
1156          DEBUG(NumFastIselRemaining = RemainingNow);
1157          continue;
1158        }
1159
1160        if (isa<TerminatorInst>(Inst) && !isa<BranchInst>(Inst)) {
1161          // Don't abort, and use a different message for terminator misses.
1162          DEBUG(NumFastIselFailures += NumFastIselRemaining);
1163          if (EnableFastISelVerbose || EnableFastISelAbort) {
1164            dbgs() << "FastISel missed terminator: ";
1165            Inst->dump();
1166          }
1167        } else {
1168          DEBUG(NumFastIselFailures += NumFastIselRemaining);
1169          if (EnableFastISelVerbose || EnableFastISelAbort) {
1170            dbgs() << "FastISel miss: ";
1171            Inst->dump();
1172          }
1173          if (EnableFastISelAbort)
1174            // The "fast" selector couldn't handle something and bailed.
1175            // For the purpose of debugging, just abort.
1176            llvm_unreachable("FastISel didn't select the entire block");
1177        }
1178        break;
1179      }
1180
1181      FastIS->recomputeInsertPt();
1182    } else {
1183      // Lower any arguments needed in this block if this is the entry block.
1184      if (LLVMBB == &Fn.getEntryBlock())
1185        LowerArguments(LLVMBB);
1186    }
1187
1188    if (Begin != BI)
1189      ++NumDAGBlocks;
1190    else
1191      ++NumFastIselBlocks;
1192
1193    if (Begin != BI) {
1194      // Run SelectionDAG instruction selection on the remainder of the block
1195      // not handled by FastISel. If FastISel is not run, this is the entire
1196      // block.
1197      bool HadTailCall;
1198      SelectBasicBlock(Begin, BI, HadTailCall);
1199    }
1200
1201    FinishBasicBlock();
1202    FuncInfo->PHINodesToUpdate.clear();
1203  }
1204
1205  delete FastIS;
1206  SDB->clearDanglingDebugInfo();
1207}
1208
1209void
1210SelectionDAGISel::FinishBasicBlock() {
1211
1212  DEBUG(dbgs() << "Total amount of phi nodes to update: "
1213               << FuncInfo->PHINodesToUpdate.size() << "\n";
1214        for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i)
1215          dbgs() << "Node " << i << " : ("
1216                 << FuncInfo->PHINodesToUpdate[i].first
1217                 << ", " << FuncInfo->PHINodesToUpdate[i].second << ")\n");
1218
1219  // Next, now that we know what the last MBB the LLVM BB expanded is, update
1220  // PHI nodes in successors.
1221  if (SDB->SwitchCases.empty() &&
1222      SDB->JTCases.empty() &&
1223      SDB->BitTestCases.empty()) {
1224    for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i) {
1225      MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[i].first);
1226      assert(PHI->isPHI() &&
1227             "This is not a machine PHI node that we are updating!");
1228      if (!FuncInfo->MBB->isSuccessor(PHI->getParent()))
1229        continue;
1230      PHI.addReg(FuncInfo->PHINodesToUpdate[i].second).addMBB(FuncInfo->MBB);
1231    }
1232    return;
1233  }
1234
1235  for (unsigned i = 0, e = SDB->BitTestCases.size(); i != e; ++i) {
1236    // Lower header first, if it wasn't already lowered
1237    if (!SDB->BitTestCases[i].Emitted) {
1238      // Set the current basic block to the mbb we wish to insert the code into
1239      FuncInfo->MBB = SDB->BitTestCases[i].Parent;
1240      FuncInfo->InsertPt = FuncInfo->MBB->end();
1241      // Emit the code
1242      SDB->visitBitTestHeader(SDB->BitTestCases[i], FuncInfo->MBB);
1243      CurDAG->setRoot(SDB->getRoot());
1244      SDB->clear();
1245      CodeGenAndEmitDAG();
1246    }
1247
1248    uint32_t UnhandledWeight = 0;
1249    for (unsigned j = 0, ej = SDB->BitTestCases[i].Cases.size(); j != ej; ++j)
1250      UnhandledWeight += SDB->BitTestCases[i].Cases[j].ExtraWeight;
1251
1252    for (unsigned j = 0, ej = SDB->BitTestCases[i].Cases.size(); j != ej; ++j) {
1253      UnhandledWeight -= SDB->BitTestCases[i].Cases[j].ExtraWeight;
1254      // Set the current basic block to the mbb we wish to insert the code into
1255      FuncInfo->MBB = SDB->BitTestCases[i].Cases[j].ThisBB;
1256      FuncInfo->InsertPt = FuncInfo->MBB->end();
1257      // Emit the code
1258      if (j+1 != ej)
1259        SDB->visitBitTestCase(SDB->BitTestCases[i],
1260                              SDB->BitTestCases[i].Cases[j+1].ThisBB,
1261                              UnhandledWeight,
1262                              SDB->BitTestCases[i].Reg,
1263                              SDB->BitTestCases[i].Cases[j],
1264                              FuncInfo->MBB);
1265      else
1266        SDB->visitBitTestCase(SDB->BitTestCases[i],
1267                              SDB->BitTestCases[i].Default,
1268                              UnhandledWeight,
1269                              SDB->BitTestCases[i].Reg,
1270                              SDB->BitTestCases[i].Cases[j],
1271                              FuncInfo->MBB);
1272
1273
1274      CurDAG->setRoot(SDB->getRoot());
1275      SDB->clear();
1276      CodeGenAndEmitDAG();
1277    }
1278
1279    // Update PHI Nodes
1280    for (unsigned pi = 0, pe = FuncInfo->PHINodesToUpdate.size();
1281         pi != pe; ++pi) {
1282      MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[pi].first);
1283      MachineBasicBlock *PHIBB = PHI->getParent();
1284      assert(PHI->isPHI() &&
1285             "This is not a machine PHI node that we are updating!");
1286      // This is "default" BB. We have two jumps to it. From "header" BB and
1287      // from last "case" BB.
1288      if (PHIBB == SDB->BitTestCases[i].Default)
1289        PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second)
1290           .addMBB(SDB->BitTestCases[i].Parent)
1291           .addReg(FuncInfo->PHINodesToUpdate[pi].second)
1292           .addMBB(SDB->BitTestCases[i].Cases.back().ThisBB);
1293      // One of "cases" BB.
1294      for (unsigned j = 0, ej = SDB->BitTestCases[i].Cases.size();
1295           j != ej; ++j) {
1296        MachineBasicBlock* cBB = SDB->BitTestCases[i].Cases[j].ThisBB;
1297        if (cBB->isSuccessor(PHIBB))
1298          PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second).addMBB(cBB);
1299      }
1300    }
1301  }
1302  SDB->BitTestCases.clear();
1303
1304  // If the JumpTable record is filled in, then we need to emit a jump table.
1305  // Updating the PHI nodes is tricky in this case, since we need to determine
1306  // whether the PHI is a successor of the range check MBB or the jump table MBB
1307  for (unsigned i = 0, e = SDB->JTCases.size(); i != e; ++i) {
1308    // Lower header first, if it wasn't already lowered
1309    if (!SDB->JTCases[i].first.Emitted) {
1310      // Set the current basic block to the mbb we wish to insert the code into
1311      FuncInfo->MBB = SDB->JTCases[i].first.HeaderBB;
1312      FuncInfo->InsertPt = FuncInfo->MBB->end();
1313      // Emit the code
1314      SDB->visitJumpTableHeader(SDB->JTCases[i].second, SDB->JTCases[i].first,
1315                                FuncInfo->MBB);
1316      CurDAG->setRoot(SDB->getRoot());
1317      SDB->clear();
1318      CodeGenAndEmitDAG();
1319    }
1320
1321    // Set the current basic block to the mbb we wish to insert the code into
1322    FuncInfo->MBB = SDB->JTCases[i].second.MBB;
1323    FuncInfo->InsertPt = FuncInfo->MBB->end();
1324    // Emit the code
1325    SDB->visitJumpTable(SDB->JTCases[i].second);
1326    CurDAG->setRoot(SDB->getRoot());
1327    SDB->clear();
1328    CodeGenAndEmitDAG();
1329
1330    // Update PHI Nodes
1331    for (unsigned pi = 0, pe = FuncInfo->PHINodesToUpdate.size();
1332         pi != pe; ++pi) {
1333      MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[pi].first);
1334      MachineBasicBlock *PHIBB = PHI->getParent();
1335      assert(PHI->isPHI() &&
1336             "This is not a machine PHI node that we are updating!");
1337      // "default" BB. We can go there only from header BB.
1338      if (PHIBB == SDB->JTCases[i].second.Default)
1339        PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second)
1340           .addMBB(SDB->JTCases[i].first.HeaderBB);
1341      // JT BB. Just iterate over successors here
1342      if (FuncInfo->MBB->isSuccessor(PHIBB))
1343        PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second).addMBB(FuncInfo->MBB);
1344    }
1345  }
1346  SDB->JTCases.clear();
1347
1348  // If the switch block involved a branch to one of the actual successors, we
1349  // need to update PHI nodes in that block.
1350  for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i) {
1351    MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[i].first);
1352    assert(PHI->isPHI() &&
1353           "This is not a machine PHI node that we are updating!");
1354    if (FuncInfo->MBB->isSuccessor(PHI->getParent()))
1355      PHI.addReg(FuncInfo->PHINodesToUpdate[i].second).addMBB(FuncInfo->MBB);
1356  }
1357
1358  // If we generated any switch lowering information, build and codegen any
1359  // additional DAGs necessary.
1360  for (unsigned i = 0, e = SDB->SwitchCases.size(); i != e; ++i) {
1361    // Set the current basic block to the mbb we wish to insert the code into
1362    FuncInfo->MBB = SDB->SwitchCases[i].ThisBB;
1363    FuncInfo->InsertPt = FuncInfo->MBB->end();
1364
1365    // Determine the unique successors.
1366    SmallVector<MachineBasicBlock *, 2> Succs;
1367    Succs.push_back(SDB->SwitchCases[i].TrueBB);
1368    if (SDB->SwitchCases[i].TrueBB != SDB->SwitchCases[i].FalseBB)
1369      Succs.push_back(SDB->SwitchCases[i].FalseBB);
1370
1371    // Emit the code. Note that this could result in FuncInfo->MBB being split.
1372    SDB->visitSwitchCase(SDB->SwitchCases[i], FuncInfo->MBB);
1373    CurDAG->setRoot(SDB->getRoot());
1374    SDB->clear();
1375    CodeGenAndEmitDAG();
1376
1377    // Remember the last block, now that any splitting is done, for use in
1378    // populating PHI nodes in successors.
1379    MachineBasicBlock *ThisBB = FuncInfo->MBB;
1380
1381    // Handle any PHI nodes in successors of this chunk, as if we were coming
1382    // from the original BB before switch expansion.  Note that PHI nodes can
1383    // occur multiple times in PHINodesToUpdate.  We have to be very careful to
1384    // handle them the right number of times.
1385    for (unsigned i = 0, e = Succs.size(); i != e; ++i) {
1386      FuncInfo->MBB = Succs[i];
1387      FuncInfo->InsertPt = FuncInfo->MBB->end();
1388      // FuncInfo->MBB may have been removed from the CFG if a branch was
1389      // constant folded.
1390      if (ThisBB->isSuccessor(FuncInfo->MBB)) {
1391        for (MachineBasicBlock::iterator
1392             MBBI = FuncInfo->MBB->begin(), MBBE = FuncInfo->MBB->end();
1393             MBBI != MBBE && MBBI->isPHI(); ++MBBI) {
1394          MachineInstrBuilder PHI(*MF, MBBI);
1395          // This value for this PHI node is recorded in PHINodesToUpdate.
1396          for (unsigned pn = 0; ; ++pn) {
1397            assert(pn != FuncInfo->PHINodesToUpdate.size() &&
1398                   "Didn't find PHI entry!");
1399            if (FuncInfo->PHINodesToUpdate[pn].first == PHI) {
1400              PHI.addReg(FuncInfo->PHINodesToUpdate[pn].second).addMBB(ThisBB);
1401              break;
1402            }
1403          }
1404        }
1405      }
1406    }
1407  }
1408  SDB->SwitchCases.clear();
1409}
1410
1411
1412/// Create the scheduler. If a specific scheduler was specified
1413/// via the SchedulerRegistry, use it, otherwise select the
1414/// one preferred by the target.
1415///
1416ScheduleDAGSDNodes *SelectionDAGISel::CreateScheduler() {
1417  RegisterScheduler::FunctionPassCtor Ctor = RegisterScheduler::getDefault();
1418
1419  if (!Ctor) {
1420    Ctor = ISHeuristic;
1421    RegisterScheduler::setDefault(Ctor);
1422  }
1423
1424  return Ctor(this, OptLevel);
1425}
1426
1427//===----------------------------------------------------------------------===//
1428// Helper functions used by the generated instruction selector.
1429//===----------------------------------------------------------------------===//
1430// Calls to these methods are generated by tblgen.
1431
1432/// CheckAndMask - The isel is trying to match something like (and X, 255).  If
1433/// the dag combiner simplified the 255, we still want to match.  RHS is the
1434/// actual value in the DAG on the RHS of an AND, and DesiredMaskS is the value
1435/// specified in the .td file (e.g. 255).
1436bool SelectionDAGISel::CheckAndMask(SDValue LHS, ConstantSDNode *RHS,
1437                                    int64_t DesiredMaskS) const {
1438  const APInt &ActualMask = RHS->getAPIntValue();
1439  const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
1440
1441  // If the actual mask exactly matches, success!
1442  if (ActualMask == DesiredMask)
1443    return true;
1444
1445  // If the actual AND mask is allowing unallowed bits, this doesn't match.
1446  if (ActualMask.intersects(~DesiredMask))
1447    return false;
1448
1449  // Otherwise, the DAG Combiner may have proven that the value coming in is
1450  // either already zero or is not demanded.  Check for known zero input bits.
1451  APInt NeededMask = DesiredMask & ~ActualMask;
1452  if (CurDAG->MaskedValueIsZero(LHS, NeededMask))
1453    return true;
1454
1455  // TODO: check to see if missing bits are just not demanded.
1456
1457  // Otherwise, this pattern doesn't match.
1458  return false;
1459}
1460
1461/// CheckOrMask - The isel is trying to match something like (or X, 255).  If
1462/// the dag combiner simplified the 255, we still want to match.  RHS is the
1463/// actual value in the DAG on the RHS of an OR, and DesiredMaskS is the value
1464/// specified in the .td file (e.g. 255).
1465bool SelectionDAGISel::CheckOrMask(SDValue LHS, ConstantSDNode *RHS,
1466                                   int64_t DesiredMaskS) const {
1467  const APInt &ActualMask = RHS->getAPIntValue();
1468  const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
1469
1470  // If the actual mask exactly matches, success!
1471  if (ActualMask == DesiredMask)
1472    return true;
1473
1474  // If the actual AND mask is allowing unallowed bits, this doesn't match.
1475  if (ActualMask.intersects(~DesiredMask))
1476    return false;
1477
1478  // Otherwise, the DAG Combiner may have proven that the value coming in is
1479  // either already zero or is not demanded.  Check for known zero input bits.
1480  APInt NeededMask = DesiredMask & ~ActualMask;
1481
1482  APInt KnownZero, KnownOne;
1483  CurDAG->ComputeMaskedBits(LHS, KnownZero, KnownOne);
1484
1485  // If all the missing bits in the or are already known to be set, match!
1486  if ((NeededMask & KnownOne) == NeededMask)
1487    return true;
1488
1489  // TODO: check to see if missing bits are just not demanded.
1490
1491  // Otherwise, this pattern doesn't match.
1492  return false;
1493}
1494
1495
1496/// SelectInlineAsmMemoryOperands - Calls to this are automatically generated
1497/// by tblgen.  Others should not call it.
1498void SelectionDAGISel::
1499SelectInlineAsmMemoryOperands(std::vector<SDValue> &Ops) {
1500  std::vector<SDValue> InOps;
1501  std::swap(InOps, Ops);
1502
1503  Ops.push_back(InOps[InlineAsm::Op_InputChain]); // 0
1504  Ops.push_back(InOps[InlineAsm::Op_AsmString]);  // 1
1505  Ops.push_back(InOps[InlineAsm::Op_MDNode]);     // 2, !srcloc
1506  Ops.push_back(InOps[InlineAsm::Op_ExtraInfo]);  // 3 (SideEffect, AlignStack)
1507
1508  unsigned i = InlineAsm::Op_FirstOperand, e = InOps.size();
1509  if (InOps[e-1].getValueType() == MVT::Glue)
1510    --e;  // Don't process a glue operand if it is here.
1511
1512  while (i != e) {
1513    unsigned Flags = cast<ConstantSDNode>(InOps[i])->getZExtValue();
1514    if (!InlineAsm::isMemKind(Flags)) {
1515      // Just skip over this operand, copying the operands verbatim.
1516      Ops.insert(Ops.end(), InOps.begin()+i,
1517                 InOps.begin()+i+InlineAsm::getNumOperandRegisters(Flags) + 1);
1518      i += InlineAsm::getNumOperandRegisters(Flags) + 1;
1519    } else {
1520      assert(InlineAsm::getNumOperandRegisters(Flags) == 1 &&
1521             "Memory operand with multiple values?");
1522      // Otherwise, this is a memory operand.  Ask the target to select it.
1523      std::vector<SDValue> SelOps;
1524      if (SelectInlineAsmMemoryOperand(InOps[i+1], 'm', SelOps))
1525        report_fatal_error("Could not match memory address.  Inline asm"
1526                           " failure!");
1527
1528      // Add this to the output node.
1529      unsigned NewFlags =
1530        InlineAsm::getFlagWord(InlineAsm::Kind_Mem, SelOps.size());
1531      Ops.push_back(CurDAG->getTargetConstant(NewFlags, MVT::i32));
1532      Ops.insert(Ops.end(), SelOps.begin(), SelOps.end());
1533      i += 2;
1534    }
1535  }
1536
1537  // Add the glue input back if present.
1538  if (e != InOps.size())
1539    Ops.push_back(InOps.back());
1540}
1541
1542/// findGlueUse - Return use of MVT::Glue value produced by the specified
1543/// SDNode.
1544///
1545static SDNode *findGlueUse(SDNode *N) {
1546  unsigned FlagResNo = N->getNumValues()-1;
1547  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
1548    SDUse &Use = I.getUse();
1549    if (Use.getResNo() == FlagResNo)
1550      return Use.getUser();
1551  }
1552  return NULL;
1553}
1554
1555/// findNonImmUse - Return true if "Use" is a non-immediate use of "Def".
1556/// This function recursively traverses up the operand chain, ignoring
1557/// certain nodes.
1558static bool findNonImmUse(SDNode *Use, SDNode* Def, SDNode *ImmedUse,
1559                          SDNode *Root, SmallPtrSet<SDNode*, 16> &Visited,
1560                          bool IgnoreChains) {
1561  // The NodeID's are given uniques ID's where a node ID is guaranteed to be
1562  // greater than all of its (recursive) operands.  If we scan to a point where
1563  // 'use' is smaller than the node we're scanning for, then we know we will
1564  // never find it.
1565  //
1566  // The Use may be -1 (unassigned) if it is a newly allocated node.  This can
1567  // happen because we scan down to newly selected nodes in the case of glue
1568  // uses.
1569  if ((Use->getNodeId() < Def->getNodeId() && Use->getNodeId() != -1))
1570    return false;
1571
1572  // Don't revisit nodes if we already scanned it and didn't fail, we know we
1573  // won't fail if we scan it again.
1574  if (!Visited.insert(Use))
1575    return false;
1576
1577  for (unsigned i = 0, e = Use->getNumOperands(); i != e; ++i) {
1578    // Ignore chain uses, they are validated by HandleMergeInputChains.
1579    if (Use->getOperand(i).getValueType() == MVT::Other && IgnoreChains)
1580      continue;
1581
1582    SDNode *N = Use->getOperand(i).getNode();
1583    if (N == Def) {
1584      if (Use == ImmedUse || Use == Root)
1585        continue;  // We are not looking for immediate use.
1586      assert(N != Root);
1587      return true;
1588    }
1589
1590    // Traverse up the operand chain.
1591    if (findNonImmUse(N, Def, ImmedUse, Root, Visited, IgnoreChains))
1592      return true;
1593  }
1594  return false;
1595}
1596
1597/// IsProfitableToFold - Returns true if it's profitable to fold the specific
1598/// operand node N of U during instruction selection that starts at Root.
1599bool SelectionDAGISel::IsProfitableToFold(SDValue N, SDNode *U,
1600                                          SDNode *Root) const {
1601  if (OptLevel == CodeGenOpt::None) return false;
1602  return N.hasOneUse();
1603}
1604
1605/// IsLegalToFold - Returns true if the specific operand node N of
1606/// U can be folded during instruction selection that starts at Root.
1607bool SelectionDAGISel::IsLegalToFold(SDValue N, SDNode *U, SDNode *Root,
1608                                     CodeGenOpt::Level OptLevel,
1609                                     bool IgnoreChains) {
1610  if (OptLevel == CodeGenOpt::None) return false;
1611
1612  // If Root use can somehow reach N through a path that that doesn't contain
1613  // U then folding N would create a cycle. e.g. In the following
1614  // diagram, Root can reach N through X. If N is folded into into Root, then
1615  // X is both a predecessor and a successor of U.
1616  //
1617  //          [N*]           //
1618  //         ^   ^           //
1619  //        /     \          //
1620  //      [U*]    [X]?       //
1621  //        ^     ^          //
1622  //         \   /           //
1623  //          \ /            //
1624  //         [Root*]         //
1625  //
1626  // * indicates nodes to be folded together.
1627  //
1628  // If Root produces glue, then it gets (even more) interesting. Since it
1629  // will be "glued" together with its glue use in the scheduler, we need to
1630  // check if it might reach N.
1631  //
1632  //          [N*]           //
1633  //         ^   ^           //
1634  //        /     \          //
1635  //      [U*]    [X]?       //
1636  //        ^       ^        //
1637  //         \       \       //
1638  //          \      |       //
1639  //         [Root*] |       //
1640  //          ^      |       //
1641  //          f      |       //
1642  //          |      /       //
1643  //         [Y]    /        //
1644  //           ^   /         //
1645  //           f  /          //
1646  //           | /           //
1647  //          [GU]           //
1648  //
1649  // If GU (glue use) indirectly reaches N (the load), and Root folds N
1650  // (call it Fold), then X is a predecessor of GU and a successor of
1651  // Fold. But since Fold and GU are glued together, this will create
1652  // a cycle in the scheduling graph.
1653
1654  // If the node has glue, walk down the graph to the "lowest" node in the
1655  // glueged set.
1656  EVT VT = Root->getValueType(Root->getNumValues()-1);
1657  while (VT == MVT::Glue) {
1658    SDNode *GU = findGlueUse(Root);
1659    if (GU == NULL)
1660      break;
1661    Root = GU;
1662    VT = Root->getValueType(Root->getNumValues()-1);
1663
1664    // If our query node has a glue result with a use, we've walked up it.  If
1665    // the user (which has already been selected) has a chain or indirectly uses
1666    // the chain, our WalkChainUsers predicate will not consider it.  Because of
1667    // this, we cannot ignore chains in this predicate.
1668    IgnoreChains = false;
1669  }
1670
1671
1672  SmallPtrSet<SDNode*, 16> Visited;
1673  return !findNonImmUse(Root, N.getNode(), U, Root, Visited, IgnoreChains);
1674}
1675
1676SDNode *SelectionDAGISel::Select_INLINEASM(SDNode *N) {
1677  std::vector<SDValue> Ops(N->op_begin(), N->op_end());
1678  SelectInlineAsmMemoryOperands(Ops);
1679
1680  std::vector<EVT> VTs;
1681  VTs.push_back(MVT::Other);
1682  VTs.push_back(MVT::Glue);
1683  SDValue New = CurDAG->getNode(ISD::INLINEASM, N->getDebugLoc(),
1684                                VTs, &Ops[0], Ops.size());
1685  New->setNodeId(-1);
1686  return New.getNode();
1687}
1688
1689SDNode *SelectionDAGISel::Select_UNDEF(SDNode *N) {
1690  return CurDAG->SelectNodeTo(N, TargetOpcode::IMPLICIT_DEF,N->getValueType(0));
1691}
1692
1693/// GetVBR - decode a vbr encoding whose top bit is set.
1694LLVM_ATTRIBUTE_ALWAYS_INLINE static uint64_t
1695GetVBR(uint64_t Val, const unsigned char *MatcherTable, unsigned &Idx) {
1696  assert(Val >= 128 && "Not a VBR");
1697  Val &= 127;  // Remove first vbr bit.
1698
1699  unsigned Shift = 7;
1700  uint64_t NextBits;
1701  do {
1702    NextBits = MatcherTable[Idx++];
1703    Val |= (NextBits&127) << Shift;
1704    Shift += 7;
1705  } while (NextBits & 128);
1706
1707  return Val;
1708}
1709
1710
1711/// UpdateChainsAndGlue - When a match is complete, this method updates uses of
1712/// interior glue and chain results to use the new glue and chain results.
1713void SelectionDAGISel::
1714UpdateChainsAndGlue(SDNode *NodeToMatch, SDValue InputChain,
1715                    const SmallVectorImpl<SDNode*> &ChainNodesMatched,
1716                    SDValue InputGlue,
1717                    const SmallVectorImpl<SDNode*> &GlueResultNodesMatched,
1718                    bool isMorphNodeTo) {
1719  SmallVector<SDNode*, 4> NowDeadNodes;
1720
1721  // Now that all the normal results are replaced, we replace the chain and
1722  // glue results if present.
1723  if (!ChainNodesMatched.empty()) {
1724    assert(InputChain.getNode() != 0 &&
1725           "Matched input chains but didn't produce a chain");
1726    // Loop over all of the nodes we matched that produced a chain result.
1727    // Replace all the chain results with the final chain we ended up with.
1728    for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
1729      SDNode *ChainNode = ChainNodesMatched[i];
1730
1731      // If this node was already deleted, don't look at it.
1732      if (ChainNode->getOpcode() == ISD::DELETED_NODE)
1733        continue;
1734
1735      // Don't replace the results of the root node if we're doing a
1736      // MorphNodeTo.
1737      if (ChainNode == NodeToMatch && isMorphNodeTo)
1738        continue;
1739
1740      SDValue ChainVal = SDValue(ChainNode, ChainNode->getNumValues()-1);
1741      if (ChainVal.getValueType() == MVT::Glue)
1742        ChainVal = ChainVal.getValue(ChainVal->getNumValues()-2);
1743      assert(ChainVal.getValueType() == MVT::Other && "Not a chain?");
1744      CurDAG->ReplaceAllUsesOfValueWith(ChainVal, InputChain);
1745
1746      // If the node became dead and we haven't already seen it, delete it.
1747      if (ChainNode->use_empty() &&
1748          !std::count(NowDeadNodes.begin(), NowDeadNodes.end(), ChainNode))
1749        NowDeadNodes.push_back(ChainNode);
1750    }
1751  }
1752
1753  // If the result produces glue, update any glue results in the matched
1754  // pattern with the glue result.
1755  if (InputGlue.getNode() != 0) {
1756    // Handle any interior nodes explicitly marked.
1757    for (unsigned i = 0, e = GlueResultNodesMatched.size(); i != e; ++i) {
1758      SDNode *FRN = GlueResultNodesMatched[i];
1759
1760      // If this node was already deleted, don't look at it.
1761      if (FRN->getOpcode() == ISD::DELETED_NODE)
1762        continue;
1763
1764      assert(FRN->getValueType(FRN->getNumValues()-1) == MVT::Glue &&
1765             "Doesn't have a glue result");
1766      CurDAG->ReplaceAllUsesOfValueWith(SDValue(FRN, FRN->getNumValues()-1),
1767                                        InputGlue);
1768
1769      // If the node became dead and we haven't already seen it, delete it.
1770      if (FRN->use_empty() &&
1771          !std::count(NowDeadNodes.begin(), NowDeadNodes.end(), FRN))
1772        NowDeadNodes.push_back(FRN);
1773    }
1774  }
1775
1776  if (!NowDeadNodes.empty())
1777    CurDAG->RemoveDeadNodes(NowDeadNodes);
1778
1779  DEBUG(errs() << "ISEL: Match complete!\n");
1780}
1781
1782enum ChainResult {
1783  CR_Simple,
1784  CR_InducesCycle,
1785  CR_LeadsToInteriorNode
1786};
1787
1788/// WalkChainUsers - Walk down the users of the specified chained node that is
1789/// part of the pattern we're matching, looking at all of the users we find.
1790/// This determines whether something is an interior node, whether we have a
1791/// non-pattern node in between two pattern nodes (which prevent folding because
1792/// it would induce a cycle) and whether we have a TokenFactor node sandwiched
1793/// between pattern nodes (in which case the TF becomes part of the pattern).
1794///
1795/// The walk we do here is guaranteed to be small because we quickly get down to
1796/// already selected nodes "below" us.
1797static ChainResult
1798WalkChainUsers(const SDNode *ChainedNode,
1799               SmallVectorImpl<SDNode*> &ChainedNodesInPattern,
1800               SmallVectorImpl<SDNode*> &InteriorChainedNodes) {
1801  ChainResult Result = CR_Simple;
1802
1803  for (SDNode::use_iterator UI = ChainedNode->use_begin(),
1804         E = ChainedNode->use_end(); UI != E; ++UI) {
1805    // Make sure the use is of the chain, not some other value we produce.
1806    if (UI.getUse().getValueType() != MVT::Other) continue;
1807
1808    SDNode *User = *UI;
1809
1810    // If we see an already-selected machine node, then we've gone beyond the
1811    // pattern that we're selecting down into the already selected chunk of the
1812    // DAG.
1813    if (User->isMachineOpcode() ||
1814        User->getOpcode() == ISD::HANDLENODE)  // Root of the graph.
1815      continue;
1816
1817    unsigned UserOpcode = User->getOpcode();
1818    if (UserOpcode == ISD::CopyToReg ||
1819        UserOpcode == ISD::CopyFromReg ||
1820        UserOpcode == ISD::INLINEASM ||
1821        UserOpcode == ISD::EH_LABEL ||
1822        UserOpcode == ISD::LIFETIME_START ||
1823        UserOpcode == ISD::LIFETIME_END) {
1824      // If their node ID got reset to -1 then they've already been selected.
1825      // Treat them like a MachineOpcode.
1826      if (User->getNodeId() == -1)
1827        continue;
1828    }
1829
1830    // If we have a TokenFactor, we handle it specially.
1831    if (User->getOpcode() != ISD::TokenFactor) {
1832      // If the node isn't a token factor and isn't part of our pattern, then it
1833      // must be a random chained node in between two nodes we're selecting.
1834      // This happens when we have something like:
1835      //   x = load ptr
1836      //   call
1837      //   y = x+4
1838      //   store y -> ptr
1839      // Because we structurally match the load/store as a read/modify/write,
1840      // but the call is chained between them.  We cannot fold in this case
1841      // because it would induce a cycle in the graph.
1842      if (!std::count(ChainedNodesInPattern.begin(),
1843                      ChainedNodesInPattern.end(), User))
1844        return CR_InducesCycle;
1845
1846      // Otherwise we found a node that is part of our pattern.  For example in:
1847      //   x = load ptr
1848      //   y = x+4
1849      //   store y -> ptr
1850      // This would happen when we're scanning down from the load and see the
1851      // store as a user.  Record that there is a use of ChainedNode that is
1852      // part of the pattern and keep scanning uses.
1853      Result = CR_LeadsToInteriorNode;
1854      InteriorChainedNodes.push_back(User);
1855      continue;
1856    }
1857
1858    // If we found a TokenFactor, there are two cases to consider: first if the
1859    // TokenFactor is just hanging "below" the pattern we're matching (i.e. no
1860    // uses of the TF are in our pattern) we just want to ignore it.  Second,
1861    // the TokenFactor can be sandwiched in between two chained nodes, like so:
1862    //     [Load chain]
1863    //         ^
1864    //         |
1865    //       [Load]
1866    //       ^    ^
1867    //       |    \                    DAG's like cheese
1868    //      /       \                       do you?
1869    //     /         |
1870    // [TokenFactor] [Op]
1871    //     ^          ^
1872    //     |          |
1873    //      \        /
1874    //       \      /
1875    //       [Store]
1876    //
1877    // In this case, the TokenFactor becomes part of our match and we rewrite it
1878    // as a new TokenFactor.
1879    //
1880    // To distinguish these two cases, do a recursive walk down the uses.
1881    switch (WalkChainUsers(User, ChainedNodesInPattern, InteriorChainedNodes)) {
1882    case CR_Simple:
1883      // If the uses of the TokenFactor are just already-selected nodes, ignore
1884      // it, it is "below" our pattern.
1885      continue;
1886    case CR_InducesCycle:
1887      // If the uses of the TokenFactor lead to nodes that are not part of our
1888      // pattern that are not selected, folding would turn this into a cycle,
1889      // bail out now.
1890      return CR_InducesCycle;
1891    case CR_LeadsToInteriorNode:
1892      break;  // Otherwise, keep processing.
1893    }
1894
1895    // Okay, we know we're in the interesting interior case.  The TokenFactor
1896    // is now going to be considered part of the pattern so that we rewrite its
1897    // uses (it may have uses that are not part of the pattern) with the
1898    // ultimate chain result of the generated code.  We will also add its chain
1899    // inputs as inputs to the ultimate TokenFactor we create.
1900    Result = CR_LeadsToInteriorNode;
1901    ChainedNodesInPattern.push_back(User);
1902    InteriorChainedNodes.push_back(User);
1903    continue;
1904  }
1905
1906  return Result;
1907}
1908
1909/// HandleMergeInputChains - This implements the OPC_EmitMergeInputChains
1910/// operation for when the pattern matched at least one node with a chains.  The
1911/// input vector contains a list of all of the chained nodes that we match.  We
1912/// must determine if this is a valid thing to cover (i.e. matching it won't
1913/// induce cycles in the DAG) and if so, creating a TokenFactor node. that will
1914/// be used as the input node chain for the generated nodes.
1915static SDValue
1916HandleMergeInputChains(SmallVectorImpl<SDNode*> &ChainNodesMatched,
1917                       SelectionDAG *CurDAG) {
1918  // Walk all of the chained nodes we've matched, recursively scanning down the
1919  // users of the chain result. This adds any TokenFactor nodes that are caught
1920  // in between chained nodes to the chained and interior nodes list.
1921  SmallVector<SDNode*, 3> InteriorChainedNodes;
1922  for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
1923    if (WalkChainUsers(ChainNodesMatched[i], ChainNodesMatched,
1924                       InteriorChainedNodes) == CR_InducesCycle)
1925      return SDValue(); // Would induce a cycle.
1926  }
1927
1928  // Okay, we have walked all the matched nodes and collected TokenFactor nodes
1929  // that we are interested in.  Form our input TokenFactor node.
1930  SmallVector<SDValue, 3> InputChains;
1931  for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
1932    // Add the input chain of this node to the InputChains list (which will be
1933    // the operands of the generated TokenFactor) if it's not an interior node.
1934    SDNode *N = ChainNodesMatched[i];
1935    if (N->getOpcode() != ISD::TokenFactor) {
1936      if (std::count(InteriorChainedNodes.begin(),InteriorChainedNodes.end(),N))
1937        continue;
1938
1939      // Otherwise, add the input chain.
1940      SDValue InChain = ChainNodesMatched[i]->getOperand(0);
1941      assert(InChain.getValueType() == MVT::Other && "Not a chain");
1942      InputChains.push_back(InChain);
1943      continue;
1944    }
1945
1946    // If we have a token factor, we want to add all inputs of the token factor
1947    // that are not part of the pattern we're matching.
1948    for (unsigned op = 0, e = N->getNumOperands(); op != e; ++op) {
1949      if (!std::count(ChainNodesMatched.begin(), ChainNodesMatched.end(),
1950                      N->getOperand(op).getNode()))
1951        InputChains.push_back(N->getOperand(op));
1952    }
1953  }
1954
1955  SDValue Res;
1956  if (InputChains.size() == 1)
1957    return InputChains[0];
1958  return CurDAG->getNode(ISD::TokenFactor, ChainNodesMatched[0]->getDebugLoc(),
1959                         MVT::Other, &InputChains[0], InputChains.size());
1960}
1961
1962/// MorphNode - Handle morphing a node in place for the selector.
1963SDNode *SelectionDAGISel::
1964MorphNode(SDNode *Node, unsigned TargetOpc, SDVTList VTList,
1965          const SDValue *Ops, unsigned NumOps, unsigned EmitNodeInfo) {
1966  // It is possible we're using MorphNodeTo to replace a node with no
1967  // normal results with one that has a normal result (or we could be
1968  // adding a chain) and the input could have glue and chains as well.
1969  // In this case we need to shift the operands down.
1970  // FIXME: This is a horrible hack and broken in obscure cases, no worse
1971  // than the old isel though.
1972  int OldGlueResultNo = -1, OldChainResultNo = -1;
1973
1974  unsigned NTMNumResults = Node->getNumValues();
1975  if (Node->getValueType(NTMNumResults-1) == MVT::Glue) {
1976    OldGlueResultNo = NTMNumResults-1;
1977    if (NTMNumResults != 1 &&
1978        Node->getValueType(NTMNumResults-2) == MVT::Other)
1979      OldChainResultNo = NTMNumResults-2;
1980  } else if (Node->getValueType(NTMNumResults-1) == MVT::Other)
1981    OldChainResultNo = NTMNumResults-1;
1982
1983  // Call the underlying SelectionDAG routine to do the transmogrification. Note
1984  // that this deletes operands of the old node that become dead.
1985  SDNode *Res = CurDAG->MorphNodeTo(Node, ~TargetOpc, VTList, Ops, NumOps);
1986
1987  // MorphNodeTo can operate in two ways: if an existing node with the
1988  // specified operands exists, it can just return it.  Otherwise, it
1989  // updates the node in place to have the requested operands.
1990  if (Res == Node) {
1991    // If we updated the node in place, reset the node ID.  To the isel,
1992    // this should be just like a newly allocated machine node.
1993    Res->setNodeId(-1);
1994  }
1995
1996  unsigned ResNumResults = Res->getNumValues();
1997  // Move the glue if needed.
1998  if ((EmitNodeInfo & OPFL_GlueOutput) && OldGlueResultNo != -1 &&
1999      (unsigned)OldGlueResultNo != ResNumResults-1)
2000    CurDAG->ReplaceAllUsesOfValueWith(SDValue(Node, OldGlueResultNo),
2001                                      SDValue(Res, ResNumResults-1));
2002
2003  if ((EmitNodeInfo & OPFL_GlueOutput) != 0)
2004    --ResNumResults;
2005
2006  // Move the chain reference if needed.
2007  if ((EmitNodeInfo & OPFL_Chain) && OldChainResultNo != -1 &&
2008      (unsigned)OldChainResultNo != ResNumResults-1)
2009    CurDAG->ReplaceAllUsesOfValueWith(SDValue(Node, OldChainResultNo),
2010                                      SDValue(Res, ResNumResults-1));
2011
2012  // Otherwise, no replacement happened because the node already exists. Replace
2013  // Uses of the old node with the new one.
2014  if (Res != Node)
2015    CurDAG->ReplaceAllUsesWith(Node, Res);
2016
2017  return Res;
2018}
2019
2020/// CheckSame - Implements OP_CheckSame.
2021LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2022CheckSame(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2023          SDValue N,
2024          const SmallVectorImpl<std::pair<SDValue, SDNode*> > &RecordedNodes) {
2025  // Accept if it is exactly the same as a previously recorded node.
2026  unsigned RecNo = MatcherTable[MatcherIndex++];
2027  assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2028  return N == RecordedNodes[RecNo].first;
2029}
2030
2031/// CheckPatternPredicate - Implements OP_CheckPatternPredicate.
2032LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2033CheckPatternPredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2034                      const SelectionDAGISel &SDISel) {
2035  return SDISel.CheckPatternPredicate(MatcherTable[MatcherIndex++]);
2036}
2037
2038/// CheckNodePredicate - Implements OP_CheckNodePredicate.
2039LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2040CheckNodePredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2041                   const SelectionDAGISel &SDISel, SDNode *N) {
2042  return SDISel.CheckNodePredicate(N, MatcherTable[MatcherIndex++]);
2043}
2044
2045LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2046CheckOpcode(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2047            SDNode *N) {
2048  uint16_t Opc = MatcherTable[MatcherIndex++];
2049  Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
2050  return N->getOpcode() == Opc;
2051}
2052
2053LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2054CheckType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2055          SDValue N, const TargetLowering &TLI) {
2056  MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2057  if (N.getValueType() == VT) return true;
2058
2059  // Handle the case when VT is iPTR.
2060  return VT == MVT::iPTR && N.getValueType() == TLI.getPointerTy();
2061}
2062
2063LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2064CheckChildType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2065               SDValue N, const TargetLowering &TLI,
2066               unsigned ChildNo) {
2067  if (ChildNo >= N.getNumOperands())
2068    return false;  // Match fails if out of range child #.
2069  return ::CheckType(MatcherTable, MatcherIndex, N.getOperand(ChildNo), TLI);
2070}
2071
2072
2073LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2074CheckCondCode(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2075              SDValue N) {
2076  return cast<CondCodeSDNode>(N)->get() ==
2077      (ISD::CondCode)MatcherTable[MatcherIndex++];
2078}
2079
2080LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2081CheckValueType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2082               SDValue N, const TargetLowering &TLI) {
2083  MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2084  if (cast<VTSDNode>(N)->getVT() == VT)
2085    return true;
2086
2087  // Handle the case when VT is iPTR.
2088  return VT == MVT::iPTR && cast<VTSDNode>(N)->getVT() == TLI.getPointerTy();
2089}
2090
2091LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2092CheckInteger(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2093             SDValue N) {
2094  int64_t Val = MatcherTable[MatcherIndex++];
2095  if (Val & 128)
2096    Val = GetVBR(Val, MatcherTable, MatcherIndex);
2097
2098  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N);
2099  return C != 0 && C->getSExtValue() == Val;
2100}
2101
2102LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2103CheckAndImm(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2104            SDValue N, const SelectionDAGISel &SDISel) {
2105  int64_t Val = MatcherTable[MatcherIndex++];
2106  if (Val & 128)
2107    Val = GetVBR(Val, MatcherTable, MatcherIndex);
2108
2109  if (N->getOpcode() != ISD::AND) return false;
2110
2111  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
2112  return C != 0 && SDISel.CheckAndMask(N.getOperand(0), C, Val);
2113}
2114
2115LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2116CheckOrImm(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2117           SDValue N, const SelectionDAGISel &SDISel) {
2118  int64_t Val = MatcherTable[MatcherIndex++];
2119  if (Val & 128)
2120    Val = GetVBR(Val, MatcherTable, MatcherIndex);
2121
2122  if (N->getOpcode() != ISD::OR) return false;
2123
2124  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
2125  return C != 0 && SDISel.CheckOrMask(N.getOperand(0), C, Val);
2126}
2127
2128/// IsPredicateKnownToFail - If we know how and can do so without pushing a
2129/// scope, evaluate the current node.  If the current predicate is known to
2130/// fail, set Result=true and return anything.  If the current predicate is
2131/// known to pass, set Result=false and return the MatcherIndex to continue
2132/// with.  If the current predicate is unknown, set Result=false and return the
2133/// MatcherIndex to continue with.
2134static unsigned IsPredicateKnownToFail(const unsigned char *Table,
2135                                       unsigned Index, SDValue N,
2136                                       bool &Result,
2137                                       const SelectionDAGISel &SDISel,
2138                 SmallVectorImpl<std::pair<SDValue, SDNode*> > &RecordedNodes) {
2139  switch (Table[Index++]) {
2140  default:
2141    Result = false;
2142    return Index-1;  // Could not evaluate this predicate.
2143  case SelectionDAGISel::OPC_CheckSame:
2144    Result = !::CheckSame(Table, Index, N, RecordedNodes);
2145    return Index;
2146  case SelectionDAGISel::OPC_CheckPatternPredicate:
2147    Result = !::CheckPatternPredicate(Table, Index, SDISel);
2148    return Index;
2149  case SelectionDAGISel::OPC_CheckPredicate:
2150    Result = !::CheckNodePredicate(Table, Index, SDISel, N.getNode());
2151    return Index;
2152  case SelectionDAGISel::OPC_CheckOpcode:
2153    Result = !::CheckOpcode(Table, Index, N.getNode());
2154    return Index;
2155  case SelectionDAGISel::OPC_CheckType:
2156    Result = !::CheckType(Table, Index, N, SDISel.TLI);
2157    return Index;
2158  case SelectionDAGISel::OPC_CheckChild0Type:
2159  case SelectionDAGISel::OPC_CheckChild1Type:
2160  case SelectionDAGISel::OPC_CheckChild2Type:
2161  case SelectionDAGISel::OPC_CheckChild3Type:
2162  case SelectionDAGISel::OPC_CheckChild4Type:
2163  case SelectionDAGISel::OPC_CheckChild5Type:
2164  case SelectionDAGISel::OPC_CheckChild6Type:
2165  case SelectionDAGISel::OPC_CheckChild7Type:
2166    Result = !::CheckChildType(Table, Index, N, SDISel.TLI,
2167                        Table[Index-1] - SelectionDAGISel::OPC_CheckChild0Type);
2168    return Index;
2169  case SelectionDAGISel::OPC_CheckCondCode:
2170    Result = !::CheckCondCode(Table, Index, N);
2171    return Index;
2172  case SelectionDAGISel::OPC_CheckValueType:
2173    Result = !::CheckValueType(Table, Index, N, SDISel.TLI);
2174    return Index;
2175  case SelectionDAGISel::OPC_CheckInteger:
2176    Result = !::CheckInteger(Table, Index, N);
2177    return Index;
2178  case SelectionDAGISel::OPC_CheckAndImm:
2179    Result = !::CheckAndImm(Table, Index, N, SDISel);
2180    return Index;
2181  case SelectionDAGISel::OPC_CheckOrImm:
2182    Result = !::CheckOrImm(Table, Index, N, SDISel);
2183    return Index;
2184  }
2185}
2186
2187namespace {
2188
2189struct MatchScope {
2190  /// FailIndex - If this match fails, this is the index to continue with.
2191  unsigned FailIndex;
2192
2193  /// NodeStack - The node stack when the scope was formed.
2194  SmallVector<SDValue, 4> NodeStack;
2195
2196  /// NumRecordedNodes - The number of recorded nodes when the scope was formed.
2197  unsigned NumRecordedNodes;
2198
2199  /// NumMatchedMemRefs - The number of matched memref entries.
2200  unsigned NumMatchedMemRefs;
2201
2202  /// InputChain/InputGlue - The current chain/glue
2203  SDValue InputChain, InputGlue;
2204
2205  /// HasChainNodesMatched - True if the ChainNodesMatched list is non-empty.
2206  bool HasChainNodesMatched, HasGlueResultNodesMatched;
2207};
2208
2209}
2210
2211SDNode *SelectionDAGISel::
2212SelectCodeCommon(SDNode *NodeToMatch, const unsigned char *MatcherTable,
2213                 unsigned TableSize) {
2214  // FIXME: Should these even be selected?  Handle these cases in the caller?
2215  switch (NodeToMatch->getOpcode()) {
2216  default:
2217    break;
2218  case ISD::EntryToken:       // These nodes remain the same.
2219  case ISD::BasicBlock:
2220  case ISD::Register:
2221  case ISD::RegisterMask:
2222  //case ISD::VALUETYPE:
2223  //case ISD::CONDCODE:
2224  case ISD::HANDLENODE:
2225  case ISD::MDNODE_SDNODE:
2226  case ISD::TargetConstant:
2227  case ISD::TargetConstantFP:
2228  case ISD::TargetConstantPool:
2229  case ISD::TargetFrameIndex:
2230  case ISD::TargetExternalSymbol:
2231  case ISD::TargetBlockAddress:
2232  case ISD::TargetJumpTable:
2233  case ISD::TargetGlobalTLSAddress:
2234  case ISD::TargetGlobalAddress:
2235  case ISD::TokenFactor:
2236  case ISD::CopyFromReg:
2237  case ISD::CopyToReg:
2238  case ISD::EH_LABEL:
2239  case ISD::LIFETIME_START:
2240  case ISD::LIFETIME_END:
2241    NodeToMatch->setNodeId(-1); // Mark selected.
2242    return 0;
2243  case ISD::AssertSext:
2244  case ISD::AssertZext:
2245    CurDAG->ReplaceAllUsesOfValueWith(SDValue(NodeToMatch, 0),
2246                                      NodeToMatch->getOperand(0));
2247    return 0;
2248  case ISD::INLINEASM: return Select_INLINEASM(NodeToMatch);
2249  case ISD::UNDEF:     return Select_UNDEF(NodeToMatch);
2250  }
2251
2252  assert(!NodeToMatch->isMachineOpcode() && "Node already selected!");
2253
2254  // Set up the node stack with NodeToMatch as the only node on the stack.
2255  SmallVector<SDValue, 8> NodeStack;
2256  SDValue N = SDValue(NodeToMatch, 0);
2257  NodeStack.push_back(N);
2258
2259  // MatchScopes - Scopes used when matching, if a match failure happens, this
2260  // indicates where to continue checking.
2261  SmallVector<MatchScope, 8> MatchScopes;
2262
2263  // RecordedNodes - This is the set of nodes that have been recorded by the
2264  // state machine.  The second value is the parent of the node, or null if the
2265  // root is recorded.
2266  SmallVector<std::pair<SDValue, SDNode*>, 8> RecordedNodes;
2267
2268  // MatchedMemRefs - This is the set of MemRef's we've seen in the input
2269  // pattern.
2270  SmallVector<MachineMemOperand*, 2> MatchedMemRefs;
2271
2272  // These are the current input chain and glue for use when generating nodes.
2273  // Various Emit operations change these.  For example, emitting a copytoreg
2274  // uses and updates these.
2275  SDValue InputChain, InputGlue;
2276
2277  // ChainNodesMatched - If a pattern matches nodes that have input/output
2278  // chains, the OPC_EmitMergeInputChains operation is emitted which indicates
2279  // which ones they are.  The result is captured into this list so that we can
2280  // update the chain results when the pattern is complete.
2281  SmallVector<SDNode*, 3> ChainNodesMatched;
2282  SmallVector<SDNode*, 3> GlueResultNodesMatched;
2283
2284  DEBUG(errs() << "ISEL: Starting pattern match on root node: ";
2285        NodeToMatch->dump(CurDAG);
2286        errs() << '\n');
2287
2288  // Determine where to start the interpreter.  Normally we start at opcode #0,
2289  // but if the state machine starts with an OPC_SwitchOpcode, then we
2290  // accelerate the first lookup (which is guaranteed to be hot) with the
2291  // OpcodeOffset table.
2292  unsigned MatcherIndex = 0;
2293
2294  if (!OpcodeOffset.empty()) {
2295    // Already computed the OpcodeOffset table, just index into it.
2296    if (N.getOpcode() < OpcodeOffset.size())
2297      MatcherIndex = OpcodeOffset[N.getOpcode()];
2298    DEBUG(errs() << "  Initial Opcode index to " << MatcherIndex << "\n");
2299
2300  } else if (MatcherTable[0] == OPC_SwitchOpcode) {
2301    // Otherwise, the table isn't computed, but the state machine does start
2302    // with an OPC_SwitchOpcode instruction.  Populate the table now, since this
2303    // is the first time we're selecting an instruction.
2304    unsigned Idx = 1;
2305    while (1) {
2306      // Get the size of this case.
2307      unsigned CaseSize = MatcherTable[Idx++];
2308      if (CaseSize & 128)
2309        CaseSize = GetVBR(CaseSize, MatcherTable, Idx);
2310      if (CaseSize == 0) break;
2311
2312      // Get the opcode, add the index to the table.
2313      uint16_t Opc = MatcherTable[Idx++];
2314      Opc |= (unsigned short)MatcherTable[Idx++] << 8;
2315      if (Opc >= OpcodeOffset.size())
2316        OpcodeOffset.resize((Opc+1)*2);
2317      OpcodeOffset[Opc] = Idx;
2318      Idx += CaseSize;
2319    }
2320
2321    // Okay, do the lookup for the first opcode.
2322    if (N.getOpcode() < OpcodeOffset.size())
2323      MatcherIndex = OpcodeOffset[N.getOpcode()];
2324  }
2325
2326  while (1) {
2327    assert(MatcherIndex < TableSize && "Invalid index");
2328#ifndef NDEBUG
2329    unsigned CurrentOpcodeIndex = MatcherIndex;
2330#endif
2331    BuiltinOpcodes Opcode = (BuiltinOpcodes)MatcherTable[MatcherIndex++];
2332    switch (Opcode) {
2333    case OPC_Scope: {
2334      // Okay, the semantics of this operation are that we should push a scope
2335      // then evaluate the first child.  However, pushing a scope only to have
2336      // the first check fail (which then pops it) is inefficient.  If we can
2337      // determine immediately that the first check (or first several) will
2338      // immediately fail, don't even bother pushing a scope for them.
2339      unsigned FailIndex;
2340
2341      while (1) {
2342        unsigned NumToSkip = MatcherTable[MatcherIndex++];
2343        if (NumToSkip & 128)
2344          NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex);
2345        // Found the end of the scope with no match.
2346        if (NumToSkip == 0) {
2347          FailIndex = 0;
2348          break;
2349        }
2350
2351        FailIndex = MatcherIndex+NumToSkip;
2352
2353        unsigned MatcherIndexOfPredicate = MatcherIndex;
2354        (void)MatcherIndexOfPredicate; // silence warning.
2355
2356        // If we can't evaluate this predicate without pushing a scope (e.g. if
2357        // it is a 'MoveParent') or if the predicate succeeds on this node, we
2358        // push the scope and evaluate the full predicate chain.
2359        bool Result;
2360        MatcherIndex = IsPredicateKnownToFail(MatcherTable, MatcherIndex, N,
2361                                              Result, *this, RecordedNodes);
2362        if (!Result)
2363          break;
2364
2365        DEBUG(errs() << "  Skipped scope entry (due to false predicate) at "
2366                     << "index " << MatcherIndexOfPredicate
2367                     << ", continuing at " << FailIndex << "\n");
2368        DEBUG(++NumDAGIselRetries);
2369
2370        // Otherwise, we know that this case of the Scope is guaranteed to fail,
2371        // move to the next case.
2372        MatcherIndex = FailIndex;
2373      }
2374
2375      // If the whole scope failed to match, bail.
2376      if (FailIndex == 0) break;
2377
2378      // Push a MatchScope which indicates where to go if the first child fails
2379      // to match.
2380      MatchScope NewEntry;
2381      NewEntry.FailIndex = FailIndex;
2382      NewEntry.NodeStack.append(NodeStack.begin(), NodeStack.end());
2383      NewEntry.NumRecordedNodes = RecordedNodes.size();
2384      NewEntry.NumMatchedMemRefs = MatchedMemRefs.size();
2385      NewEntry.InputChain = InputChain;
2386      NewEntry.InputGlue = InputGlue;
2387      NewEntry.HasChainNodesMatched = !ChainNodesMatched.empty();
2388      NewEntry.HasGlueResultNodesMatched = !GlueResultNodesMatched.empty();
2389      MatchScopes.push_back(NewEntry);
2390      continue;
2391    }
2392    case OPC_RecordNode: {
2393      // Remember this node, it may end up being an operand in the pattern.
2394      SDNode *Parent = 0;
2395      if (NodeStack.size() > 1)
2396        Parent = NodeStack[NodeStack.size()-2].getNode();
2397      RecordedNodes.push_back(std::make_pair(N, Parent));
2398      continue;
2399    }
2400
2401    case OPC_RecordChild0: case OPC_RecordChild1:
2402    case OPC_RecordChild2: case OPC_RecordChild3:
2403    case OPC_RecordChild4: case OPC_RecordChild5:
2404    case OPC_RecordChild6: case OPC_RecordChild7: {
2405      unsigned ChildNo = Opcode-OPC_RecordChild0;
2406      if (ChildNo >= N.getNumOperands())
2407        break;  // Match fails if out of range child #.
2408
2409      RecordedNodes.push_back(std::make_pair(N->getOperand(ChildNo),
2410                                             N.getNode()));
2411      continue;
2412    }
2413    case OPC_RecordMemRef:
2414      MatchedMemRefs.push_back(cast<MemSDNode>(N)->getMemOperand());
2415      continue;
2416
2417    case OPC_CaptureGlueInput:
2418      // If the current node has an input glue, capture it in InputGlue.
2419      if (N->getNumOperands() != 0 &&
2420          N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Glue)
2421        InputGlue = N->getOperand(N->getNumOperands()-1);
2422      continue;
2423
2424    case OPC_MoveChild: {
2425      unsigned ChildNo = MatcherTable[MatcherIndex++];
2426      if (ChildNo >= N.getNumOperands())
2427        break;  // Match fails if out of range child #.
2428      N = N.getOperand(ChildNo);
2429      NodeStack.push_back(N);
2430      continue;
2431    }
2432
2433    case OPC_MoveParent:
2434      // Pop the current node off the NodeStack.
2435      NodeStack.pop_back();
2436      assert(!NodeStack.empty() && "Node stack imbalance!");
2437      N = NodeStack.back();
2438      continue;
2439
2440    case OPC_CheckSame:
2441      if (!::CheckSame(MatcherTable, MatcherIndex, N, RecordedNodes)) break;
2442      continue;
2443    case OPC_CheckPatternPredicate:
2444      if (!::CheckPatternPredicate(MatcherTable, MatcherIndex, *this)) break;
2445      continue;
2446    case OPC_CheckPredicate:
2447      if (!::CheckNodePredicate(MatcherTable, MatcherIndex, *this,
2448                                N.getNode()))
2449        break;
2450      continue;
2451    case OPC_CheckComplexPat: {
2452      unsigned CPNum = MatcherTable[MatcherIndex++];
2453      unsigned RecNo = MatcherTable[MatcherIndex++];
2454      assert(RecNo < RecordedNodes.size() && "Invalid CheckComplexPat");
2455      if (!CheckComplexPattern(NodeToMatch, RecordedNodes[RecNo].second,
2456                               RecordedNodes[RecNo].first, CPNum,
2457                               RecordedNodes))
2458        break;
2459      continue;
2460    }
2461    case OPC_CheckOpcode:
2462      if (!::CheckOpcode(MatcherTable, MatcherIndex, N.getNode())) break;
2463      continue;
2464
2465    case OPC_CheckType:
2466      if (!::CheckType(MatcherTable, MatcherIndex, N, TLI)) break;
2467      continue;
2468
2469    case OPC_SwitchOpcode: {
2470      unsigned CurNodeOpcode = N.getOpcode();
2471      unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart;
2472      unsigned CaseSize;
2473      while (1) {
2474        // Get the size of this case.
2475        CaseSize = MatcherTable[MatcherIndex++];
2476        if (CaseSize & 128)
2477          CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex);
2478        if (CaseSize == 0) break;
2479
2480        uint16_t Opc = MatcherTable[MatcherIndex++];
2481        Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
2482
2483        // If the opcode matches, then we will execute this case.
2484        if (CurNodeOpcode == Opc)
2485          break;
2486
2487        // Otherwise, skip over this case.
2488        MatcherIndex += CaseSize;
2489      }
2490
2491      // If no cases matched, bail out.
2492      if (CaseSize == 0) break;
2493
2494      // Otherwise, execute the case we found.
2495      DEBUG(errs() << "  OpcodeSwitch from " << SwitchStart
2496                   << " to " << MatcherIndex << "\n");
2497      continue;
2498    }
2499
2500    case OPC_SwitchType: {
2501      MVT CurNodeVT = N.getValueType().getSimpleVT();
2502      unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart;
2503      unsigned CaseSize;
2504      while (1) {
2505        // Get the size of this case.
2506        CaseSize = MatcherTable[MatcherIndex++];
2507        if (CaseSize & 128)
2508          CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex);
2509        if (CaseSize == 0) break;
2510
2511        MVT CaseVT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2512        if (CaseVT == MVT::iPTR)
2513          CaseVT = TLI.getPointerTy();
2514
2515        // If the VT matches, then we will execute this case.
2516        if (CurNodeVT == CaseVT)
2517          break;
2518
2519        // Otherwise, skip over this case.
2520        MatcherIndex += CaseSize;
2521      }
2522
2523      // If no cases matched, bail out.
2524      if (CaseSize == 0) break;
2525
2526      // Otherwise, execute the case we found.
2527      DEBUG(errs() << "  TypeSwitch[" << EVT(CurNodeVT).getEVTString()
2528                   << "] from " << SwitchStart << " to " << MatcherIndex<<'\n');
2529      continue;
2530    }
2531    case OPC_CheckChild0Type: case OPC_CheckChild1Type:
2532    case OPC_CheckChild2Type: case OPC_CheckChild3Type:
2533    case OPC_CheckChild4Type: case OPC_CheckChild5Type:
2534    case OPC_CheckChild6Type: case OPC_CheckChild7Type:
2535      if (!::CheckChildType(MatcherTable, MatcherIndex, N, TLI,
2536                            Opcode-OPC_CheckChild0Type))
2537        break;
2538      continue;
2539    case OPC_CheckCondCode:
2540      if (!::CheckCondCode(MatcherTable, MatcherIndex, N)) break;
2541      continue;
2542    case OPC_CheckValueType:
2543      if (!::CheckValueType(MatcherTable, MatcherIndex, N, TLI)) break;
2544      continue;
2545    case OPC_CheckInteger:
2546      if (!::CheckInteger(MatcherTable, MatcherIndex, N)) break;
2547      continue;
2548    case OPC_CheckAndImm:
2549      if (!::CheckAndImm(MatcherTable, MatcherIndex, N, *this)) break;
2550      continue;
2551    case OPC_CheckOrImm:
2552      if (!::CheckOrImm(MatcherTable, MatcherIndex, N, *this)) break;
2553      continue;
2554
2555    case OPC_CheckFoldableChainNode: {
2556      assert(NodeStack.size() != 1 && "No parent node");
2557      // Verify that all intermediate nodes between the root and this one have
2558      // a single use.
2559      bool HasMultipleUses = false;
2560      for (unsigned i = 1, e = NodeStack.size()-1; i != e; ++i)
2561        if (!NodeStack[i].hasOneUse()) {
2562          HasMultipleUses = true;
2563          break;
2564        }
2565      if (HasMultipleUses) break;
2566
2567      // Check to see that the target thinks this is profitable to fold and that
2568      // we can fold it without inducing cycles in the graph.
2569      if (!IsProfitableToFold(N, NodeStack[NodeStack.size()-2].getNode(),
2570                              NodeToMatch) ||
2571          !IsLegalToFold(N, NodeStack[NodeStack.size()-2].getNode(),
2572                         NodeToMatch, OptLevel,
2573                         true/*We validate our own chains*/))
2574        break;
2575
2576      continue;
2577    }
2578    case OPC_EmitInteger: {
2579      MVT::SimpleValueType VT =
2580        (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2581      int64_t Val = MatcherTable[MatcherIndex++];
2582      if (Val & 128)
2583        Val = GetVBR(Val, MatcherTable, MatcherIndex);
2584      RecordedNodes.push_back(std::pair<SDValue, SDNode*>(
2585                              CurDAG->getTargetConstant(Val, VT), (SDNode*)0));
2586      continue;
2587    }
2588    case OPC_EmitRegister: {
2589      MVT::SimpleValueType VT =
2590        (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2591      unsigned RegNo = MatcherTable[MatcherIndex++];
2592      RecordedNodes.push_back(std::pair<SDValue, SDNode*>(
2593                              CurDAG->getRegister(RegNo, VT), (SDNode*)0));
2594      continue;
2595    }
2596    case OPC_EmitRegister2: {
2597      // For targets w/ more than 256 register names, the register enum
2598      // values are stored in two bytes in the matcher table (just like
2599      // opcodes).
2600      MVT::SimpleValueType VT =
2601        (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2602      unsigned RegNo = MatcherTable[MatcherIndex++];
2603      RegNo |= MatcherTable[MatcherIndex++] << 8;
2604      RecordedNodes.push_back(std::pair<SDValue, SDNode*>(
2605                              CurDAG->getRegister(RegNo, VT), (SDNode*)0));
2606      continue;
2607    }
2608
2609    case OPC_EmitConvertToTarget:  {
2610      // Convert from IMM/FPIMM to target version.
2611      unsigned RecNo = MatcherTable[MatcherIndex++];
2612      assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2613      SDValue Imm = RecordedNodes[RecNo].first;
2614
2615      if (Imm->getOpcode() == ISD::Constant) {
2616        int64_t Val = cast<ConstantSDNode>(Imm)->getZExtValue();
2617        Imm = CurDAG->getTargetConstant(Val, Imm.getValueType());
2618      } else if (Imm->getOpcode() == ISD::ConstantFP) {
2619        const ConstantFP *Val=cast<ConstantFPSDNode>(Imm)->getConstantFPValue();
2620        Imm = CurDAG->getTargetConstantFP(*Val, Imm.getValueType());
2621      }
2622
2623      RecordedNodes.push_back(std::make_pair(Imm, RecordedNodes[RecNo].second));
2624      continue;
2625    }
2626
2627    case OPC_EmitMergeInputChains1_0:    // OPC_EmitMergeInputChains, 1, 0
2628    case OPC_EmitMergeInputChains1_1: {  // OPC_EmitMergeInputChains, 1, 1
2629      // These are space-optimized forms of OPC_EmitMergeInputChains.
2630      assert(InputChain.getNode() == 0 &&
2631             "EmitMergeInputChains should be the first chain producing node");
2632      assert(ChainNodesMatched.empty() &&
2633             "Should only have one EmitMergeInputChains per match");
2634
2635      // Read all of the chained nodes.
2636      unsigned RecNo = Opcode == OPC_EmitMergeInputChains1_1;
2637      assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2638      ChainNodesMatched.push_back(RecordedNodes[RecNo].first.getNode());
2639
2640      // FIXME: What if other value results of the node have uses not matched
2641      // by this pattern?
2642      if (ChainNodesMatched.back() != NodeToMatch &&
2643          !RecordedNodes[RecNo].first.hasOneUse()) {
2644        ChainNodesMatched.clear();
2645        break;
2646      }
2647
2648      // Merge the input chains if they are not intra-pattern references.
2649      InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG);
2650
2651      if (InputChain.getNode() == 0)
2652        break;  // Failed to merge.
2653      continue;
2654    }
2655
2656    case OPC_EmitMergeInputChains: {
2657      assert(InputChain.getNode() == 0 &&
2658             "EmitMergeInputChains should be the first chain producing node");
2659      // This node gets a list of nodes we matched in the input that have
2660      // chains.  We want to token factor all of the input chains to these nodes
2661      // together.  However, if any of the input chains is actually one of the
2662      // nodes matched in this pattern, then we have an intra-match reference.
2663      // Ignore these because the newly token factored chain should not refer to
2664      // the old nodes.
2665      unsigned NumChains = MatcherTable[MatcherIndex++];
2666      assert(NumChains != 0 && "Can't TF zero chains");
2667
2668      assert(ChainNodesMatched.empty() &&
2669             "Should only have one EmitMergeInputChains per match");
2670
2671      // Read all of the chained nodes.
2672      for (unsigned i = 0; i != NumChains; ++i) {
2673        unsigned RecNo = MatcherTable[MatcherIndex++];
2674        assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2675        ChainNodesMatched.push_back(RecordedNodes[RecNo].first.getNode());
2676
2677        // FIXME: What if other value results of the node have uses not matched
2678        // by this pattern?
2679        if (ChainNodesMatched.back() != NodeToMatch &&
2680            !RecordedNodes[RecNo].first.hasOneUse()) {
2681          ChainNodesMatched.clear();
2682          break;
2683        }
2684      }
2685
2686      // If the inner loop broke out, the match fails.
2687      if (ChainNodesMatched.empty())
2688        break;
2689
2690      // Merge the input chains if they are not intra-pattern references.
2691      InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG);
2692
2693      if (InputChain.getNode() == 0)
2694        break;  // Failed to merge.
2695
2696      continue;
2697    }
2698
2699    case OPC_EmitCopyToReg: {
2700      unsigned RecNo = MatcherTable[MatcherIndex++];
2701      assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2702      unsigned DestPhysReg = MatcherTable[MatcherIndex++];
2703
2704      if (InputChain.getNode() == 0)
2705        InputChain = CurDAG->getEntryNode();
2706
2707      InputChain = CurDAG->getCopyToReg(InputChain, NodeToMatch->getDebugLoc(),
2708                                        DestPhysReg, RecordedNodes[RecNo].first,
2709                                        InputGlue);
2710
2711      InputGlue = InputChain.getValue(1);
2712      continue;
2713    }
2714
2715    case OPC_EmitNodeXForm: {
2716      unsigned XFormNo = MatcherTable[MatcherIndex++];
2717      unsigned RecNo = MatcherTable[MatcherIndex++];
2718      assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2719      SDValue Res = RunSDNodeXForm(RecordedNodes[RecNo].first, XFormNo);
2720      RecordedNodes.push_back(std::pair<SDValue,SDNode*>(Res, (SDNode*) 0));
2721      continue;
2722    }
2723
2724    case OPC_EmitNode:
2725    case OPC_MorphNodeTo: {
2726      uint16_t TargetOpc = MatcherTable[MatcherIndex++];
2727      TargetOpc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
2728      unsigned EmitNodeInfo = MatcherTable[MatcherIndex++];
2729      // Get the result VT list.
2730      unsigned NumVTs = MatcherTable[MatcherIndex++];
2731      SmallVector<EVT, 4> VTs;
2732      for (unsigned i = 0; i != NumVTs; ++i) {
2733        MVT::SimpleValueType VT =
2734          (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2735        if (VT == MVT::iPTR) VT = TLI.getPointerTy().SimpleTy;
2736        VTs.push_back(VT);
2737      }
2738
2739      if (EmitNodeInfo & OPFL_Chain)
2740        VTs.push_back(MVT::Other);
2741      if (EmitNodeInfo & OPFL_GlueOutput)
2742        VTs.push_back(MVT::Glue);
2743
2744      // This is hot code, so optimize the two most common cases of 1 and 2
2745      // results.
2746      SDVTList VTList;
2747      if (VTs.size() == 1)
2748        VTList = CurDAG->getVTList(VTs[0]);
2749      else if (VTs.size() == 2)
2750        VTList = CurDAG->getVTList(VTs[0], VTs[1]);
2751      else
2752        VTList = CurDAG->getVTList(VTs.data(), VTs.size());
2753
2754      // Get the operand list.
2755      unsigned NumOps = MatcherTable[MatcherIndex++];
2756      SmallVector<SDValue, 8> Ops;
2757      for (unsigned i = 0; i != NumOps; ++i) {
2758        unsigned RecNo = MatcherTable[MatcherIndex++];
2759        if (RecNo & 128)
2760          RecNo = GetVBR(RecNo, MatcherTable, MatcherIndex);
2761
2762        assert(RecNo < RecordedNodes.size() && "Invalid EmitNode");
2763        Ops.push_back(RecordedNodes[RecNo].first);
2764      }
2765
2766      // If there are variadic operands to add, handle them now.
2767      if (EmitNodeInfo & OPFL_VariadicInfo) {
2768        // Determine the start index to copy from.
2769        unsigned FirstOpToCopy = getNumFixedFromVariadicInfo(EmitNodeInfo);
2770        FirstOpToCopy += (EmitNodeInfo & OPFL_Chain) ? 1 : 0;
2771        assert(NodeToMatch->getNumOperands() >= FirstOpToCopy &&
2772               "Invalid variadic node");
2773        // Copy all of the variadic operands, not including a potential glue
2774        // input.
2775        for (unsigned i = FirstOpToCopy, e = NodeToMatch->getNumOperands();
2776             i != e; ++i) {
2777          SDValue V = NodeToMatch->getOperand(i);
2778          if (V.getValueType() == MVT::Glue) break;
2779          Ops.push_back(V);
2780        }
2781      }
2782
2783      // If this has chain/glue inputs, add them.
2784      if (EmitNodeInfo & OPFL_Chain)
2785        Ops.push_back(InputChain);
2786      if ((EmitNodeInfo & OPFL_GlueInput) && InputGlue.getNode() != 0)
2787        Ops.push_back(InputGlue);
2788
2789      // Create the node.
2790      SDNode *Res = 0;
2791      if (Opcode != OPC_MorphNodeTo) {
2792        // If this is a normal EmitNode command, just create the new node and
2793        // add the results to the RecordedNodes list.
2794        Res = CurDAG->getMachineNode(TargetOpc, NodeToMatch->getDebugLoc(),
2795                                     VTList, Ops.data(), Ops.size());
2796
2797        // Add all the non-glue/non-chain results to the RecordedNodes list.
2798        for (unsigned i = 0, e = VTs.size(); i != e; ++i) {
2799          if (VTs[i] == MVT::Other || VTs[i] == MVT::Glue) break;
2800          RecordedNodes.push_back(std::pair<SDValue,SDNode*>(SDValue(Res, i),
2801                                                             (SDNode*) 0));
2802        }
2803
2804      } else if (NodeToMatch->getOpcode() != ISD::DELETED_NODE) {
2805        Res = MorphNode(NodeToMatch, TargetOpc, VTList, Ops.data(), Ops.size(),
2806                        EmitNodeInfo);
2807      } else {
2808        // NodeToMatch was eliminated by CSE when the target changed the DAG.
2809        // We will visit the equivalent node later.
2810        DEBUG(dbgs() << "Node was eliminated by CSE\n");
2811        return 0;
2812      }
2813
2814      // If the node had chain/glue results, update our notion of the current
2815      // chain and glue.
2816      if (EmitNodeInfo & OPFL_GlueOutput) {
2817        InputGlue = SDValue(Res, VTs.size()-1);
2818        if (EmitNodeInfo & OPFL_Chain)
2819          InputChain = SDValue(Res, VTs.size()-2);
2820      } else if (EmitNodeInfo & OPFL_Chain)
2821        InputChain = SDValue(Res, VTs.size()-1);
2822
2823      // If the OPFL_MemRefs glue is set on this node, slap all of the
2824      // accumulated memrefs onto it.
2825      //
2826      // FIXME: This is vastly incorrect for patterns with multiple outputs
2827      // instructions that access memory and for ComplexPatterns that match
2828      // loads.
2829      if (EmitNodeInfo & OPFL_MemRefs) {
2830        // Only attach load or store memory operands if the generated
2831        // instruction may load or store.
2832        const MCInstrDesc &MCID = TM.getInstrInfo()->get(TargetOpc);
2833        bool mayLoad = MCID.mayLoad();
2834        bool mayStore = MCID.mayStore();
2835
2836        unsigned NumMemRefs = 0;
2837        for (SmallVector<MachineMemOperand*, 2>::const_iterator I =
2838             MatchedMemRefs.begin(), E = MatchedMemRefs.end(); I != E; ++I) {
2839          if ((*I)->isLoad()) {
2840            if (mayLoad)
2841              ++NumMemRefs;
2842          } else if ((*I)->isStore()) {
2843            if (mayStore)
2844              ++NumMemRefs;
2845          } else {
2846            ++NumMemRefs;
2847          }
2848        }
2849
2850        MachineSDNode::mmo_iterator MemRefs =
2851          MF->allocateMemRefsArray(NumMemRefs);
2852
2853        MachineSDNode::mmo_iterator MemRefsPos = MemRefs;
2854        for (SmallVector<MachineMemOperand*, 2>::const_iterator I =
2855             MatchedMemRefs.begin(), E = MatchedMemRefs.end(); I != E; ++I) {
2856          if ((*I)->isLoad()) {
2857            if (mayLoad)
2858              *MemRefsPos++ = *I;
2859          } else if ((*I)->isStore()) {
2860            if (mayStore)
2861              *MemRefsPos++ = *I;
2862          } else {
2863            *MemRefsPos++ = *I;
2864          }
2865        }
2866
2867        cast<MachineSDNode>(Res)
2868          ->setMemRefs(MemRefs, MemRefs + NumMemRefs);
2869      }
2870
2871      DEBUG(errs() << "  "
2872                   << (Opcode == OPC_MorphNodeTo ? "Morphed" : "Created")
2873                   << " node: "; Res->dump(CurDAG); errs() << "\n");
2874
2875      // If this was a MorphNodeTo then we're completely done!
2876      if (Opcode == OPC_MorphNodeTo) {
2877        // Update chain and glue uses.
2878        UpdateChainsAndGlue(NodeToMatch, InputChain, ChainNodesMatched,
2879                            InputGlue, GlueResultNodesMatched, true);
2880        return Res;
2881      }
2882
2883      continue;
2884    }
2885
2886    case OPC_MarkGlueResults: {
2887      unsigned NumNodes = MatcherTable[MatcherIndex++];
2888
2889      // Read and remember all the glue-result nodes.
2890      for (unsigned i = 0; i != NumNodes; ++i) {
2891        unsigned RecNo = MatcherTable[MatcherIndex++];
2892        if (RecNo & 128)
2893          RecNo = GetVBR(RecNo, MatcherTable, MatcherIndex);
2894
2895        assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2896        GlueResultNodesMatched.push_back(RecordedNodes[RecNo].first.getNode());
2897      }
2898      continue;
2899    }
2900
2901    case OPC_CompleteMatch: {
2902      // The match has been completed, and any new nodes (if any) have been
2903      // created.  Patch up references to the matched dag to use the newly
2904      // created nodes.
2905      unsigned NumResults = MatcherTable[MatcherIndex++];
2906
2907      for (unsigned i = 0; i != NumResults; ++i) {
2908        unsigned ResSlot = MatcherTable[MatcherIndex++];
2909        if (ResSlot & 128)
2910          ResSlot = GetVBR(ResSlot, MatcherTable, MatcherIndex);
2911
2912        assert(ResSlot < RecordedNodes.size() && "Invalid CheckSame");
2913        SDValue Res = RecordedNodes[ResSlot].first;
2914
2915        assert(i < NodeToMatch->getNumValues() &&
2916               NodeToMatch->getValueType(i) != MVT::Other &&
2917               NodeToMatch->getValueType(i) != MVT::Glue &&
2918               "Invalid number of results to complete!");
2919        assert((NodeToMatch->getValueType(i) == Res.getValueType() ||
2920                NodeToMatch->getValueType(i) == MVT::iPTR ||
2921                Res.getValueType() == MVT::iPTR ||
2922                NodeToMatch->getValueType(i).getSizeInBits() ==
2923                    Res.getValueType().getSizeInBits()) &&
2924               "invalid replacement");
2925        CurDAG->ReplaceAllUsesOfValueWith(SDValue(NodeToMatch, i), Res);
2926      }
2927
2928      // If the root node defines glue, add it to the glue nodes to update list.
2929      if (NodeToMatch->getValueType(NodeToMatch->getNumValues()-1) == MVT::Glue)
2930        GlueResultNodesMatched.push_back(NodeToMatch);
2931
2932      // Update chain and glue uses.
2933      UpdateChainsAndGlue(NodeToMatch, InputChain, ChainNodesMatched,
2934                          InputGlue, GlueResultNodesMatched, false);
2935
2936      assert(NodeToMatch->use_empty() &&
2937             "Didn't replace all uses of the node?");
2938
2939      // FIXME: We just return here, which interacts correctly with SelectRoot
2940      // above.  We should fix this to not return an SDNode* anymore.
2941      return 0;
2942    }
2943    }
2944
2945    // If the code reached this point, then the match failed.  See if there is
2946    // another child to try in the current 'Scope', otherwise pop it until we
2947    // find a case to check.
2948    DEBUG(errs() << "  Match failed at index " << CurrentOpcodeIndex << "\n");
2949    DEBUG(++NumDAGIselRetries);
2950    while (1) {
2951      if (MatchScopes.empty()) {
2952        CannotYetSelect(NodeToMatch);
2953        return 0;
2954      }
2955
2956      // Restore the interpreter state back to the point where the scope was
2957      // formed.
2958      MatchScope &LastScope = MatchScopes.back();
2959      RecordedNodes.resize(LastScope.NumRecordedNodes);
2960      NodeStack.clear();
2961      NodeStack.append(LastScope.NodeStack.begin(), LastScope.NodeStack.end());
2962      N = NodeStack.back();
2963
2964      if (LastScope.NumMatchedMemRefs != MatchedMemRefs.size())
2965        MatchedMemRefs.resize(LastScope.NumMatchedMemRefs);
2966      MatcherIndex = LastScope.FailIndex;
2967
2968      DEBUG(errs() << "  Continuing at " << MatcherIndex << "\n");
2969
2970      InputChain = LastScope.InputChain;
2971      InputGlue = LastScope.InputGlue;
2972      if (!LastScope.HasChainNodesMatched)
2973        ChainNodesMatched.clear();
2974      if (!LastScope.HasGlueResultNodesMatched)
2975        GlueResultNodesMatched.clear();
2976
2977      // Check to see what the offset is at the new MatcherIndex.  If it is zero
2978      // we have reached the end of this scope, otherwise we have another child
2979      // in the current scope to try.
2980      unsigned NumToSkip = MatcherTable[MatcherIndex++];
2981      if (NumToSkip & 128)
2982        NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex);
2983
2984      // If we have another child in this scope to match, update FailIndex and
2985      // try it.
2986      if (NumToSkip != 0) {
2987        LastScope.FailIndex = MatcherIndex+NumToSkip;
2988        break;
2989      }
2990
2991      // End of this scope, pop it and try the next child in the containing
2992      // scope.
2993      MatchScopes.pop_back();
2994    }
2995  }
2996}
2997
2998
2999
3000void SelectionDAGISel::CannotYetSelect(SDNode *N) {
3001  std::string msg;
3002  raw_string_ostream Msg(msg);
3003  Msg << "Cannot select: ";
3004
3005  if (N->getOpcode() != ISD::INTRINSIC_W_CHAIN &&
3006      N->getOpcode() != ISD::INTRINSIC_WO_CHAIN &&
3007      N->getOpcode() != ISD::INTRINSIC_VOID) {
3008    N->printrFull(Msg, CurDAG);
3009    Msg << "\nIn function: " << MF->getName();
3010  } else {
3011    bool HasInputChain = N->getOperand(0).getValueType() == MVT::Other;
3012    unsigned iid =
3013      cast<ConstantSDNode>(N->getOperand(HasInputChain))->getZExtValue();
3014    if (iid < Intrinsic::num_intrinsics)
3015      Msg << "intrinsic %" << Intrinsic::getName((Intrinsic::ID)iid);
3016    else if (const TargetIntrinsicInfo *TII = TM.getIntrinsicInfo())
3017      Msg << "target intrinsic %" << TII->getName(iid);
3018    else
3019      Msg << "unknown intrinsic #" << iid;
3020  }
3021  report_fatal_error(Msg.str());
3022}
3023
3024char SelectionDAGISel::ID = 0;
3025