SelectionDAGISel.cpp revision 13aeef9ec42c49c4d7f6786b86b3fa23e547860c
1//===-- SelectionDAGISel.cpp - Implement the SelectionDAGISel class -------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAGISel class.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "isel"
15#include "llvm/CodeGen/SelectionDAGISel.h"
16#include "SelectionDAGBuild.h"
17#include "llvm/ADT/BitVector.h"
18#include "llvm/Analysis/AliasAnalysis.h"
19#include "llvm/Constants.h"
20#include "llvm/CallingConv.h"
21#include "llvm/DerivedTypes.h"
22#include "llvm/Function.h"
23#include "llvm/GlobalVariable.h"
24#include "llvm/InlineAsm.h"
25#include "llvm/Instructions.h"
26#include "llvm/Intrinsics.h"
27#include "llvm/IntrinsicInst.h"
28#include "llvm/ParameterAttributes.h"
29#include "llvm/CodeGen/FastISel.h"
30#include "llvm/CodeGen/GCStrategy.h"
31#include "llvm/CodeGen/GCMetadata.h"
32#include "llvm/CodeGen/MachineFunction.h"
33#include "llvm/CodeGen/MachineFrameInfo.h"
34#include "llvm/CodeGen/MachineInstrBuilder.h"
35#include "llvm/CodeGen/MachineJumpTableInfo.h"
36#include "llvm/CodeGen/MachineModuleInfo.h"
37#include "llvm/CodeGen/MachineRegisterInfo.h"
38#include "llvm/CodeGen/ScheduleDAG.h"
39#include "llvm/CodeGen/SchedulerRegistry.h"
40#include "llvm/CodeGen/SelectionDAG.h"
41#include "llvm/Target/TargetRegisterInfo.h"
42#include "llvm/Target/TargetData.h"
43#include "llvm/Target/TargetFrameInfo.h"
44#include "llvm/Target/TargetInstrInfo.h"
45#include "llvm/Target/TargetLowering.h"
46#include "llvm/Target/TargetMachine.h"
47#include "llvm/Target/TargetOptions.h"
48#include "llvm/Support/Compiler.h"
49#include "llvm/Support/Debug.h"
50#include "llvm/Support/MathExtras.h"
51#include "llvm/Support/Timer.h"
52#include <algorithm>
53using namespace llvm;
54
55static cl::opt<bool>
56EnableValueProp("enable-value-prop", cl::Hidden);
57static cl::opt<bool>
58EnableLegalizeTypes("enable-legalize-types", cl::Hidden);
59static cl::opt<bool>
60EnableFastISel("fast-isel", cl::Hidden,
61          cl::desc("Enable the experimental \"fast\" instruction selector"));
62static cl::opt<bool>
63DisableFastISelAbort("fast-isel-no-abort", cl::Hidden,
64          cl::desc("Use the SelectionDAGISel when \"fast\" instruction "
65                   "selection fails"));
66
67#ifndef NDEBUG
68static cl::opt<bool>
69ViewDAGCombine1("view-dag-combine1-dags", cl::Hidden,
70          cl::desc("Pop up a window to show dags before the first "
71                   "dag combine pass"));
72static cl::opt<bool>
73ViewLegalizeTypesDAGs("view-legalize-types-dags", cl::Hidden,
74          cl::desc("Pop up a window to show dags before legalize types"));
75static cl::opt<bool>
76ViewLegalizeDAGs("view-legalize-dags", cl::Hidden,
77          cl::desc("Pop up a window to show dags before legalize"));
78static cl::opt<bool>
79ViewDAGCombine2("view-dag-combine2-dags", cl::Hidden,
80          cl::desc("Pop up a window to show dags before the second "
81                   "dag combine pass"));
82static cl::opt<bool>
83ViewISelDAGs("view-isel-dags", cl::Hidden,
84          cl::desc("Pop up a window to show isel dags as they are selected"));
85static cl::opt<bool>
86ViewSchedDAGs("view-sched-dags", cl::Hidden,
87          cl::desc("Pop up a window to show sched dags as they are processed"));
88static cl::opt<bool>
89ViewSUnitDAGs("view-sunit-dags", cl::Hidden,
90      cl::desc("Pop up a window to show SUnit dags after they are processed"));
91#else
92static const bool ViewDAGCombine1 = false,
93                  ViewLegalizeTypesDAGs = false, ViewLegalizeDAGs = false,
94                  ViewDAGCombine2 = false,
95                  ViewISelDAGs = false, ViewSchedDAGs = false,
96                  ViewSUnitDAGs = false;
97#endif
98
99//===---------------------------------------------------------------------===//
100///
101/// RegisterScheduler class - Track the registration of instruction schedulers.
102///
103//===---------------------------------------------------------------------===//
104MachinePassRegistry RegisterScheduler::Registry;
105
106//===---------------------------------------------------------------------===//
107///
108/// ISHeuristic command line option for instruction schedulers.
109///
110//===---------------------------------------------------------------------===//
111static cl::opt<RegisterScheduler::FunctionPassCtor, false,
112               RegisterPassParser<RegisterScheduler> >
113ISHeuristic("pre-RA-sched",
114            cl::init(&createDefaultScheduler),
115            cl::desc("Instruction schedulers available (before register"
116                     " allocation):"));
117
118static RegisterScheduler
119defaultListDAGScheduler("default", "  Best scheduler for the target",
120                        createDefaultScheduler);
121
122namespace llvm {
123  //===--------------------------------------------------------------------===//
124  /// createDefaultScheduler - This creates an instruction scheduler appropriate
125  /// for the target.
126  ScheduleDAG* createDefaultScheduler(SelectionDAGISel *IS,
127                                      SelectionDAG *DAG,
128                                      MachineBasicBlock *BB,
129                                      bool Fast) {
130    TargetLowering &TLI = IS->getTargetLowering();
131
132    if (TLI.getSchedulingPreference() == TargetLowering::SchedulingForLatency) {
133      return createTDListDAGScheduler(IS, DAG, BB, Fast);
134    } else {
135      assert(TLI.getSchedulingPreference() ==
136           TargetLowering::SchedulingForRegPressure && "Unknown sched type!");
137      return createBURRListDAGScheduler(IS, DAG, BB, Fast);
138    }
139  }
140}
141
142// EmitInstrWithCustomInserter - This method should be implemented by targets
143// that mark instructions with the 'usesCustomDAGSchedInserter' flag.  These
144// instructions are special in various ways, which require special support to
145// insert.  The specified MachineInstr is created but not inserted into any
146// basic blocks, and the scheduler passes ownership of it to this method.
147MachineBasicBlock *TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
148                                                       MachineBasicBlock *MBB) {
149  cerr << "If a target marks an instruction with "
150       << "'usesCustomDAGSchedInserter', it must implement "
151       << "TargetLowering::EmitInstrWithCustomInserter!\n";
152  abort();
153  return 0;
154}
155
156//===----------------------------------------------------------------------===//
157// SelectionDAGISel code
158//===----------------------------------------------------------------------===//
159
160SelectionDAGISel::SelectionDAGISel(TargetLowering &tli, bool fast) :
161  FunctionPass((intptr_t)&ID), TLI(tli),
162  FuncInfo(new FunctionLoweringInfo(TLI)),
163  CurDAG(new SelectionDAG(TLI, *FuncInfo)),
164  SDL(new SelectionDAGLowering(*CurDAG, TLI, *FuncInfo)),
165  GFI(),
166  Fast(fast),
167  DAGSize(0)
168{}
169
170SelectionDAGISel::~SelectionDAGISel() {
171  delete SDL;
172  delete CurDAG;
173  delete FuncInfo;
174}
175
176unsigned SelectionDAGISel::MakeReg(MVT VT) {
177  return RegInfo->createVirtualRegister(TLI.getRegClassFor(VT));
178}
179
180void SelectionDAGISel::getAnalysisUsage(AnalysisUsage &AU) const {
181  AU.addRequired<AliasAnalysis>();
182  AU.addRequired<GCModuleInfo>();
183  AU.setPreservesAll();
184}
185
186bool SelectionDAGISel::runOnFunction(Function &Fn) {
187  // Get alias analysis for load/store combining.
188  AA = &getAnalysis<AliasAnalysis>();
189
190  MachineFunction &MF = MachineFunction::construct(&Fn, TLI.getTargetMachine());
191  if (MF.getFunction()->hasGC())
192    GFI = &getAnalysis<GCModuleInfo>().getFunctionInfo(*MF.getFunction());
193  else
194    GFI = 0;
195  RegInfo = &MF.getRegInfo();
196  DOUT << "\n\n\n=== " << Fn.getName() << "\n";
197
198  FuncInfo->set(Fn, MF, EnableFastISel);
199  CurDAG->init(MF, getAnalysisToUpdate<MachineModuleInfo>());
200  SDL->init(GFI, *AA);
201
202  for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
203    if (InvokeInst *Invoke = dyn_cast<InvokeInst>(I->getTerminator()))
204      // Mark landing pad.
205      FuncInfo->MBBMap[Invoke->getSuccessor(1)]->setIsLandingPad();
206
207  SelectAllBasicBlocks(Fn, MF);
208
209  // Add function live-ins to entry block live-in set.
210  BasicBlock *EntryBB = &Fn.getEntryBlock();
211  BB = FuncInfo->MBBMap[EntryBB];
212  if (!RegInfo->livein_empty())
213    for (MachineRegisterInfo::livein_iterator I = RegInfo->livein_begin(),
214           E = RegInfo->livein_end(); I != E; ++I)
215      BB->addLiveIn(I->first);
216
217#ifndef NDEBUG
218  assert(FuncInfo->CatchInfoFound.size() == FuncInfo->CatchInfoLost.size() &&
219         "Not all catch info was assigned to a landing pad!");
220#endif
221
222  FuncInfo->clear();
223
224  return true;
225}
226
227static void copyCatchInfo(BasicBlock *SrcBB, BasicBlock *DestBB,
228                          MachineModuleInfo *MMI, FunctionLoweringInfo &FLI) {
229  for (BasicBlock::iterator I = SrcBB->begin(), E = --SrcBB->end(); I != E; ++I)
230    if (EHSelectorInst *EHSel = dyn_cast<EHSelectorInst>(I)) {
231      // Apply the catch info to DestBB.
232      AddCatchInfo(*EHSel, MMI, FLI.MBBMap[DestBB]);
233#ifndef NDEBUG
234      if (!FLI.MBBMap[SrcBB]->isLandingPad())
235        FLI.CatchInfoFound.insert(EHSel);
236#endif
237    }
238}
239
240/// IsFixedFrameObjectWithPosOffset - Check if object is a fixed frame object and
241/// whether object offset >= 0.
242static bool
243IsFixedFrameObjectWithPosOffset(MachineFrameInfo * MFI, SDValue Op) {
244  if (!isa<FrameIndexSDNode>(Op)) return false;
245
246  FrameIndexSDNode * FrameIdxNode = dyn_cast<FrameIndexSDNode>(Op);
247  int FrameIdx =  FrameIdxNode->getIndex();
248  return MFI->isFixedObjectIndex(FrameIdx) &&
249    MFI->getObjectOffset(FrameIdx) >= 0;
250}
251
252/// IsPossiblyOverwrittenArgumentOfTailCall - Check if the operand could
253/// possibly be overwritten when lowering the outgoing arguments in a tail
254/// call. Currently the implementation of this call is very conservative and
255/// assumes all arguments sourcing from FORMAL_ARGUMENTS or a CopyFromReg with
256/// virtual registers would be overwritten by direct lowering.
257static bool IsPossiblyOverwrittenArgumentOfTailCall(SDValue Op,
258                                                    MachineFrameInfo * MFI) {
259  RegisterSDNode * OpReg = NULL;
260  if (Op.getOpcode() == ISD::FORMAL_ARGUMENTS ||
261      (Op.getOpcode()== ISD::CopyFromReg &&
262       (OpReg = dyn_cast<RegisterSDNode>(Op.getOperand(1))) &&
263       (OpReg->getReg() >= TargetRegisterInfo::FirstVirtualRegister)) ||
264      (Op.getOpcode() == ISD::LOAD &&
265       IsFixedFrameObjectWithPosOffset(MFI, Op.getOperand(1))) ||
266      (Op.getOpcode() == ISD::MERGE_VALUES &&
267       Op.getOperand(Op.getResNo()).getOpcode() == ISD::LOAD &&
268       IsFixedFrameObjectWithPosOffset(MFI, Op.getOperand(Op.getResNo()).
269                                       getOperand(1))))
270    return true;
271  return false;
272}
273
274/// CheckDAGForTailCallsAndFixThem - This Function looks for CALL nodes in the
275/// DAG and fixes their tailcall attribute operand.
276static void CheckDAGForTailCallsAndFixThem(SelectionDAG &DAG,
277                                           TargetLowering& TLI) {
278  SDNode * Ret = NULL;
279  SDValue Terminator = DAG.getRoot();
280
281  // Find RET node.
282  if (Terminator.getOpcode() == ISD::RET) {
283    Ret = Terminator.getNode();
284  }
285
286  // Fix tail call attribute of CALL nodes.
287  for (SelectionDAG::allnodes_iterator BE = DAG.allnodes_begin(),
288         BI = DAG.allnodes_end(); BI != BE; ) {
289    --BI;
290    if (BI->getOpcode() == ISD::CALL) {
291      SDValue OpRet(Ret, 0);
292      SDValue OpCall(BI, 0);
293      bool isMarkedTailCall =
294        cast<ConstantSDNode>(OpCall.getOperand(3))->getValue() != 0;
295      // If CALL node has tail call attribute set to true and the call is not
296      // eligible (no RET or the target rejects) the attribute is fixed to
297      // false. The TargetLowering::IsEligibleForTailCallOptimization function
298      // must correctly identify tail call optimizable calls.
299      if (!isMarkedTailCall) continue;
300      if (Ret==NULL ||
301          !TLI.IsEligibleForTailCallOptimization(OpCall, OpRet, DAG)) {
302        // Not eligible. Mark CALL node as non tail call.
303        SmallVector<SDValue, 32> Ops;
304        unsigned idx=0;
305        for(SDNode::op_iterator I =OpCall.getNode()->op_begin(),
306              E = OpCall.getNode()->op_end(); I != E; I++, idx++) {
307          if (idx!=3)
308            Ops.push_back(*I);
309          else
310            Ops.push_back(DAG.getConstant(false, TLI.getPointerTy()));
311        }
312        DAG.UpdateNodeOperands(OpCall, Ops.begin(), Ops.size());
313      } else {
314        // Look for tail call clobbered arguments. Emit a series of
315        // copyto/copyfrom virtual register nodes to protect them.
316        SmallVector<SDValue, 32> Ops;
317        SDValue Chain = OpCall.getOperand(0), InFlag;
318        unsigned idx=0;
319        for(SDNode::op_iterator I = OpCall.getNode()->op_begin(),
320              E = OpCall.getNode()->op_end(); I != E; I++, idx++) {
321          SDValue Arg = *I;
322          if (idx > 4 && (idx % 2)) {
323            bool isByVal = cast<ARG_FLAGSSDNode>(OpCall.getOperand(idx+1))->
324              getArgFlags().isByVal();
325            MachineFunction &MF = DAG.getMachineFunction();
326            MachineFrameInfo *MFI = MF.getFrameInfo();
327            if (!isByVal &&
328                IsPossiblyOverwrittenArgumentOfTailCall(Arg, MFI)) {
329              MVT VT = Arg.getValueType();
330              unsigned VReg = MF.getRegInfo().
331                createVirtualRegister(TLI.getRegClassFor(VT));
332              Chain = DAG.getCopyToReg(Chain, VReg, Arg, InFlag);
333              InFlag = Chain.getValue(1);
334              Arg = DAG.getCopyFromReg(Chain, VReg, VT, InFlag);
335              Chain = Arg.getValue(1);
336              InFlag = Arg.getValue(2);
337            }
338          }
339          Ops.push_back(Arg);
340        }
341        // Link in chain of CopyTo/CopyFromReg.
342        Ops[0] = Chain;
343        DAG.UpdateNodeOperands(OpCall, Ops.begin(), Ops.size());
344      }
345    }
346  }
347}
348
349void SelectionDAGISel::SelectBasicBlock(BasicBlock *LLVMBB,
350                                        BasicBlock::iterator Begin,
351                                        BasicBlock::iterator End) {
352  SDL->setCurrentBasicBlock(BB);
353
354  MachineModuleInfo *MMI = CurDAG->getMachineModuleInfo();
355
356  if (MMI && BB->isLandingPad()) {
357    // Add a label to mark the beginning of the landing pad.  Deletion of the
358    // landing pad can thus be detected via the MachineModuleInfo.
359    unsigned LabelID = MMI->addLandingPad(BB);
360    CurDAG->setRoot(CurDAG->getLabel(ISD::EH_LABEL,
361                                     CurDAG->getEntryNode(), LabelID));
362
363    // Mark exception register as live in.
364    unsigned Reg = TLI.getExceptionAddressRegister();
365    if (Reg) BB->addLiveIn(Reg);
366
367    // Mark exception selector register as live in.
368    Reg = TLI.getExceptionSelectorRegister();
369    if (Reg) BB->addLiveIn(Reg);
370
371    // FIXME: Hack around an exception handling flaw (PR1508): the personality
372    // function and list of typeids logically belong to the invoke (or, if you
373    // like, the basic block containing the invoke), and need to be associated
374    // with it in the dwarf exception handling tables.  Currently however the
375    // information is provided by an intrinsic (eh.selector) that can be moved
376    // to unexpected places by the optimizers: if the unwind edge is critical,
377    // then breaking it can result in the intrinsics being in the successor of
378    // the landing pad, not the landing pad itself.  This results in exceptions
379    // not being caught because no typeids are associated with the invoke.
380    // This may not be the only way things can go wrong, but it is the only way
381    // we try to work around for the moment.
382    BranchInst *Br = dyn_cast<BranchInst>(LLVMBB->getTerminator());
383
384    if (Br && Br->isUnconditional()) { // Critical edge?
385      BasicBlock::iterator I, E;
386      for (I = LLVMBB->begin(), E = --LLVMBB->end(); I != E; ++I)
387        if (isa<EHSelectorInst>(I))
388          break;
389
390      if (I == E)
391        // No catch info found - try to extract some from the successor.
392        copyCatchInfo(Br->getSuccessor(0), LLVMBB, MMI, *FuncInfo);
393    }
394  }
395
396  // Lower all of the non-terminator instructions.
397  for (BasicBlock::iterator I = Begin; I != End; ++I)
398    if (!isa<TerminatorInst>(I))
399      SDL->visit(*I);
400
401  // Ensure that all instructions which are used outside of their defining
402  // blocks are available as virtual registers.  Invoke is handled elsewhere.
403  for (BasicBlock::iterator I = Begin; I != End; ++I)
404    if (!I->use_empty() && !isa<PHINode>(I) && !isa<InvokeInst>(I)) {
405      DenseMap<const Value*,unsigned>::iterator VMI =FuncInfo->ValueMap.find(I);
406      if (VMI != FuncInfo->ValueMap.end())
407        SDL->CopyValueToVirtualRegister(I, VMI->second);
408    }
409
410  // Handle PHI nodes in successor blocks.
411  if (End == LLVMBB->end())
412    HandlePHINodesInSuccessorBlocks(LLVMBB);
413
414  // Make sure the root of the DAG is up-to-date.
415  CurDAG->setRoot(SDL->getControlRoot());
416
417  // Check whether calls in this block are real tail calls. Fix up CALL nodes
418  // with correct tailcall attribute so that the target can rely on the tailcall
419  // attribute indicating whether the call is really eligible for tail call
420  // optimization.
421  CheckDAGForTailCallsAndFixThem(*CurDAG, TLI);
422
423  // Final step, emit the lowered DAG as machine code.
424  CodeGenAndEmitDAG();
425  SDL->clear();
426}
427
428void SelectionDAGISel::ComputeLiveOutVRegInfo() {
429  SmallPtrSet<SDNode*, 128> VisitedNodes;
430  SmallVector<SDNode*, 128> Worklist;
431
432  Worklist.push_back(CurDAG->getRoot().getNode());
433
434  APInt Mask;
435  APInt KnownZero;
436  APInt KnownOne;
437
438  while (!Worklist.empty()) {
439    SDNode *N = Worklist.back();
440    Worklist.pop_back();
441
442    // If we've already seen this node, ignore it.
443    if (!VisitedNodes.insert(N))
444      continue;
445
446    // Otherwise, add all chain operands to the worklist.
447    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
448      if (N->getOperand(i).getValueType() == MVT::Other)
449        Worklist.push_back(N->getOperand(i).getNode());
450
451    // If this is a CopyToReg with a vreg dest, process it.
452    if (N->getOpcode() != ISD::CopyToReg)
453      continue;
454
455    unsigned DestReg = cast<RegisterSDNode>(N->getOperand(1))->getReg();
456    if (!TargetRegisterInfo::isVirtualRegister(DestReg))
457      continue;
458
459    // Ignore non-scalar or non-integer values.
460    SDValue Src = N->getOperand(2);
461    MVT SrcVT = Src.getValueType();
462    if (!SrcVT.isInteger() || SrcVT.isVector())
463      continue;
464
465    unsigned NumSignBits = CurDAG->ComputeNumSignBits(Src);
466    Mask = APInt::getAllOnesValue(SrcVT.getSizeInBits());
467    CurDAG->ComputeMaskedBits(Src, Mask, KnownZero, KnownOne);
468
469    // Only install this information if it tells us something.
470    if (NumSignBits != 1 || KnownZero != 0 || KnownOne != 0) {
471      DestReg -= TargetRegisterInfo::FirstVirtualRegister;
472      FunctionLoweringInfo &FLI = CurDAG->getFunctionLoweringInfo();
473      if (DestReg >= FLI.LiveOutRegInfo.size())
474        FLI.LiveOutRegInfo.resize(DestReg+1);
475      FunctionLoweringInfo::LiveOutInfo &LOI = FLI.LiveOutRegInfo[DestReg];
476      LOI.NumSignBits = NumSignBits;
477      LOI.KnownOne = NumSignBits;
478      LOI.KnownZero = NumSignBits;
479    }
480  }
481}
482
483void SelectionDAGISel::CodeGenAndEmitDAG() {
484  std::string GroupName;
485  if (TimePassesIsEnabled)
486    GroupName = "Instruction Selection and Scheduling";
487  std::string BlockName;
488  if (ViewDAGCombine1 || ViewLegalizeTypesDAGs || ViewLegalizeDAGs ||
489      ViewDAGCombine2 || ViewISelDAGs || ViewSchedDAGs || ViewSUnitDAGs)
490    BlockName = CurDAG->getMachineFunction().getFunction()->getName() + ':' +
491                BB->getBasicBlock()->getName();
492
493  DOUT << "Initial selection DAG:\n";
494  DEBUG(CurDAG->dump());
495
496  if (ViewDAGCombine1) CurDAG->viewGraph("dag-combine1 input for " + BlockName);
497
498  // Run the DAG combiner in pre-legalize mode.
499  if (TimePassesIsEnabled) {
500    NamedRegionTimer T("DAG Combining 1", GroupName);
501    CurDAG->Combine(false, *AA, Fast);
502  } else {
503    CurDAG->Combine(false, *AA, Fast);
504  }
505
506  DOUT << "Optimized lowered selection DAG:\n";
507  DEBUG(CurDAG->dump());
508
509  // Second step, hack on the DAG until it only uses operations and types that
510  // the target supports.
511  if (EnableLegalizeTypes) {// Enable this some day.
512    if (ViewLegalizeTypesDAGs) CurDAG->viewGraph("legalize-types input for " +
513                                                 BlockName);
514
515    if (TimePassesIsEnabled) {
516      NamedRegionTimer T("Type Legalization", GroupName);
517      CurDAG->LegalizeTypes();
518    } else {
519      CurDAG->LegalizeTypes();
520    }
521
522    DOUT << "Type-legalized selection DAG:\n";
523    DEBUG(CurDAG->dump());
524
525    // TODO: enable a dag combine pass here.
526  }
527
528  if (ViewLegalizeDAGs) CurDAG->viewGraph("legalize input for " + BlockName);
529
530  if (TimePassesIsEnabled) {
531    NamedRegionTimer T("DAG Legalization", GroupName);
532    CurDAG->Legalize();
533  } else {
534    CurDAG->Legalize();
535  }
536
537  DOUT << "Legalized selection DAG:\n";
538  DEBUG(CurDAG->dump());
539
540  if (ViewDAGCombine2) CurDAG->viewGraph("dag-combine2 input for " + BlockName);
541
542  // Run the DAG combiner in post-legalize mode.
543  if (TimePassesIsEnabled) {
544    NamedRegionTimer T("DAG Combining 2", GroupName);
545    CurDAG->Combine(true, *AA, Fast);
546  } else {
547    CurDAG->Combine(true, *AA, Fast);
548  }
549
550  DOUT << "Optimized legalized selection DAG:\n";
551  DEBUG(CurDAG->dump());
552
553  if (ViewISelDAGs) CurDAG->viewGraph("isel input for " + BlockName);
554
555  if (!Fast && EnableValueProp)
556    ComputeLiveOutVRegInfo();
557
558  // Third, instruction select all of the operations to machine code, adding the
559  // code to the MachineBasicBlock.
560  if (TimePassesIsEnabled) {
561    NamedRegionTimer T("Instruction Selection", GroupName);
562    InstructionSelect();
563  } else {
564    InstructionSelect();
565  }
566
567  DOUT << "Selected selection DAG:\n";
568  DEBUG(CurDAG->dump());
569
570  if (ViewSchedDAGs) CurDAG->viewGraph("scheduler input for " + BlockName);
571
572  // Schedule machine code.
573  ScheduleDAG *Scheduler;
574  if (TimePassesIsEnabled) {
575    NamedRegionTimer T("Instruction Scheduling", GroupName);
576    Scheduler = Schedule();
577  } else {
578    Scheduler = Schedule();
579  }
580
581  if (ViewSUnitDAGs) Scheduler->viewGraph();
582
583  // Emit machine code to BB.  This can change 'BB' to the last block being
584  // inserted into.
585  if (TimePassesIsEnabled) {
586    NamedRegionTimer T("Instruction Creation", GroupName);
587    BB = Scheduler->EmitSchedule();
588  } else {
589    BB = Scheduler->EmitSchedule();
590  }
591
592  // Free the scheduler state.
593  if (TimePassesIsEnabled) {
594    NamedRegionTimer T("Instruction Scheduling Cleanup", GroupName);
595    delete Scheduler;
596  } else {
597    delete Scheduler;
598  }
599
600  DOUT << "Selected machine code:\n";
601  DEBUG(BB->dump());
602}
603
604void SelectionDAGISel::SelectAllBasicBlocks(Function &Fn, MachineFunction &MF) {
605  for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I) {
606    BasicBlock *LLVMBB = &*I;
607    BB = FuncInfo->MBBMap[LLVMBB];
608
609    BasicBlock::iterator Begin = LLVMBB->begin();
610    BasicBlock::iterator End = LLVMBB->end();
611
612    // Lower any arguments needed in this block if this is the entry block.
613    if (LLVMBB == &Fn.getEntryBlock())
614      LowerArguments(LLVMBB);
615
616    // Before doing SelectionDAG ISel, see if FastISel has been requested.
617    // FastISel doesn't support EH landing pads, which require special handling.
618    if (EnableFastISel && !BB->isLandingPad()) {
619      if (FastISel *F = TLI.createFastISel(*FuncInfo->MF)) {
620        // Emit code for any incoming arguments. This must happen before
621        // beginning FastISel on the entry block.
622        if (LLVMBB == &Fn.getEntryBlock()) {
623          CurDAG->setRoot(SDL->getControlRoot());
624          CodeGenAndEmitDAG();
625          SDL->clear();
626        }
627        // Do FastISel on as many instructions as possible.
628        while (Begin != End) {
629          Begin = F->SelectInstructions(Begin, End, FuncInfo->ValueMap,
630                                        FuncInfo->MBBMap, BB);
631
632          // If the "fast" selector selected the entire block, we're done.
633          if (Begin == End)
634            break;
635
636          // Next, try calling the target to attempt to handle the instruction.
637          if (F->TargetSelectInstruction(Begin, FuncInfo->ValueMap,
638                                         FuncInfo->MBBMap, BB)) {
639            ++Begin;
640            continue;
641          }
642
643          // Handle certain instructions as single-LLVM-Instruction blocks.
644          if (isa<CallInst>(Begin) || isa<LoadInst>(Begin) ||
645              isa<StoreInst>(Begin)) {
646            if (Begin->getType() != Type::VoidTy) {
647              unsigned &R = FuncInfo->ValueMap[Begin];
648              if (!R)
649                R = FuncInfo->CreateRegForValue(Begin);
650            }
651
652            SelectBasicBlock(LLVMBB, Begin, next(Begin));
653            ++Begin;
654            continue;
655          }
656
657          if (!DisableFastISelAbort &&
658              // For now, don't abort on non-conditional-branch terminators.
659              (!isa<TerminatorInst>(Begin) ||
660               (isa<BranchInst>(Begin) &&
661                cast<BranchInst>(Begin)->isUnconditional()))) {
662            // The "fast" selector couldn't handle something and bailed.
663            // For the purpose of debugging, just abort.
664#ifndef NDEBUG
665            Begin->dump();
666#endif
667            assert(0 && "FastISel didn't select the entire block");
668          }
669          break;
670        }
671        delete F;
672      }
673    }
674
675    // Run SelectionDAG instruction selection on the remainder of the block
676    // not handled by FastISel. If FastISel is not run, this is the entire
677    // block. If FastISel is run and happens to handle all of the
678    // LLVM Instructions in the block, [Begin,End) will be an empty range,
679    // but we still need to run this so that
680    // HandlePHINodesInSuccessorBlocks is called and any resulting code
681    // is emitted.
682    SelectBasicBlock(LLVMBB, Begin, End);
683
684    FinishBasicBlock();
685  }
686}
687
688void
689SelectionDAGISel::FinishBasicBlock() {
690
691  // Perform target specific isel post processing.
692  InstructionSelectPostProcessing();
693
694  DOUT << "Target-post-processed machine code:\n";
695  DEBUG(BB->dump());
696
697  DOUT << "Total amount of phi nodes to update: "
698       << SDL->PHINodesToUpdate.size() << "\n";
699  DEBUG(for (unsigned i = 0, e = SDL->PHINodesToUpdate.size(); i != e; ++i)
700          DOUT << "Node " << i << " : (" << SDL->PHINodesToUpdate[i].first
701               << ", " << SDL->PHINodesToUpdate[i].second << ")\n";);
702
703  // Next, now that we know what the last MBB the LLVM BB expanded is, update
704  // PHI nodes in successors.
705  if (SDL->SwitchCases.empty() &&
706      SDL->JTCases.empty() &&
707      SDL->BitTestCases.empty()) {
708    for (unsigned i = 0, e = SDL->PHINodesToUpdate.size(); i != e; ++i) {
709      MachineInstr *PHI = SDL->PHINodesToUpdate[i].first;
710      assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
711             "This is not a machine PHI node that we are updating!");
712      PHI->addOperand(MachineOperand::CreateReg(SDL->PHINodesToUpdate[i].second,
713                                                false));
714      PHI->addOperand(MachineOperand::CreateMBB(BB));
715    }
716    SDL->PHINodesToUpdate.clear();
717    return;
718  }
719
720  for (unsigned i = 0, e = SDL->BitTestCases.size(); i != e; ++i) {
721    // Lower header first, if it wasn't already lowered
722    if (!SDL->BitTestCases[i].Emitted) {
723      // Set the current basic block to the mbb we wish to insert the code into
724      BB = SDL->BitTestCases[i].Parent;
725      SDL->setCurrentBasicBlock(BB);
726      // Emit the code
727      SDL->visitBitTestHeader(SDL->BitTestCases[i]);
728      CurDAG->setRoot(SDL->getRoot());
729      CodeGenAndEmitDAG();
730      SDL->clear();
731    }
732
733    for (unsigned j = 0, ej = SDL->BitTestCases[i].Cases.size(); j != ej; ++j) {
734      // Set the current basic block to the mbb we wish to insert the code into
735      BB = SDL->BitTestCases[i].Cases[j].ThisBB;
736      SDL->setCurrentBasicBlock(BB);
737      // Emit the code
738      if (j+1 != ej)
739        SDL->visitBitTestCase(SDL->BitTestCases[i].Cases[j+1].ThisBB,
740                              SDL->BitTestCases[i].Reg,
741                              SDL->BitTestCases[i].Cases[j]);
742      else
743        SDL->visitBitTestCase(SDL->BitTestCases[i].Default,
744                              SDL->BitTestCases[i].Reg,
745                              SDL->BitTestCases[i].Cases[j]);
746
747
748      CurDAG->setRoot(SDL->getRoot());
749      CodeGenAndEmitDAG();
750      SDL->clear();
751    }
752
753    // Update PHI Nodes
754    for (unsigned pi = 0, pe = SDL->PHINodesToUpdate.size(); pi != pe; ++pi) {
755      MachineInstr *PHI = SDL->PHINodesToUpdate[pi].first;
756      MachineBasicBlock *PHIBB = PHI->getParent();
757      assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
758             "This is not a machine PHI node that we are updating!");
759      // This is "default" BB. We have two jumps to it. From "header" BB and
760      // from last "case" BB.
761      if (PHIBB == SDL->BitTestCases[i].Default) {
762        PHI->addOperand(MachineOperand::CreateReg(SDL->PHINodesToUpdate[pi].second,
763                                                  false));
764        PHI->addOperand(MachineOperand::CreateMBB(SDL->BitTestCases[i].Parent));
765        PHI->addOperand(MachineOperand::CreateReg(SDL->PHINodesToUpdate[pi].second,
766                                                  false));
767        PHI->addOperand(MachineOperand::CreateMBB(SDL->BitTestCases[i].Cases.
768                                                  back().ThisBB));
769      }
770      // One of "cases" BB.
771      for (unsigned j = 0, ej = SDL->BitTestCases[i].Cases.size();
772           j != ej; ++j) {
773        MachineBasicBlock* cBB = SDL->BitTestCases[i].Cases[j].ThisBB;
774        if (cBB->succ_end() !=
775            std::find(cBB->succ_begin(),cBB->succ_end(), PHIBB)) {
776          PHI->addOperand(MachineOperand::CreateReg(SDL->PHINodesToUpdate[pi].second,
777                                                    false));
778          PHI->addOperand(MachineOperand::CreateMBB(cBB));
779        }
780      }
781    }
782  }
783  SDL->BitTestCases.clear();
784
785  // If the JumpTable record is filled in, then we need to emit a jump table.
786  // Updating the PHI nodes is tricky in this case, since we need to determine
787  // whether the PHI is a successor of the range check MBB or the jump table MBB
788  for (unsigned i = 0, e = SDL->JTCases.size(); i != e; ++i) {
789    // Lower header first, if it wasn't already lowered
790    if (!SDL->JTCases[i].first.Emitted) {
791      // Set the current basic block to the mbb we wish to insert the code into
792      BB = SDL->JTCases[i].first.HeaderBB;
793      SDL->setCurrentBasicBlock(BB);
794      // Emit the code
795      SDL->visitJumpTableHeader(SDL->JTCases[i].second, SDL->JTCases[i].first);
796      CurDAG->setRoot(SDL->getRoot());
797      CodeGenAndEmitDAG();
798      SDL->clear();
799    }
800
801    // Set the current basic block to the mbb we wish to insert the code into
802    BB = SDL->JTCases[i].second.MBB;
803    SDL->setCurrentBasicBlock(BB);
804    // Emit the code
805    SDL->visitJumpTable(SDL->JTCases[i].second);
806    CurDAG->setRoot(SDL->getRoot());
807    CodeGenAndEmitDAG();
808    SDL->clear();
809
810    // Update PHI Nodes
811    for (unsigned pi = 0, pe = SDL->PHINodesToUpdate.size(); pi != pe; ++pi) {
812      MachineInstr *PHI = SDL->PHINodesToUpdate[pi].first;
813      MachineBasicBlock *PHIBB = PHI->getParent();
814      assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
815             "This is not a machine PHI node that we are updating!");
816      // "default" BB. We can go there only from header BB.
817      if (PHIBB == SDL->JTCases[i].second.Default) {
818        PHI->addOperand(MachineOperand::CreateReg(SDL->PHINodesToUpdate[pi].second,
819                                                  false));
820        PHI->addOperand(MachineOperand::CreateMBB(SDL->JTCases[i].first.HeaderBB));
821      }
822      // JT BB. Just iterate over successors here
823      if (BB->succ_end() != std::find(BB->succ_begin(),BB->succ_end(), PHIBB)) {
824        PHI->addOperand(MachineOperand::CreateReg(SDL->PHINodesToUpdate[pi].second,
825                                                  false));
826        PHI->addOperand(MachineOperand::CreateMBB(BB));
827      }
828    }
829  }
830  SDL->JTCases.clear();
831
832  // If the switch block involved a branch to one of the actual successors, we
833  // need to update PHI nodes in that block.
834  for (unsigned i = 0, e = SDL->PHINodesToUpdate.size(); i != e; ++i) {
835    MachineInstr *PHI = SDL->PHINodesToUpdate[i].first;
836    assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
837           "This is not a machine PHI node that we are updating!");
838    if (BB->isSuccessor(PHI->getParent())) {
839      PHI->addOperand(MachineOperand::CreateReg(SDL->PHINodesToUpdate[i].second,
840                                                false));
841      PHI->addOperand(MachineOperand::CreateMBB(BB));
842    }
843  }
844
845  // If we generated any switch lowering information, build and codegen any
846  // additional DAGs necessary.
847  for (unsigned i = 0, e = SDL->SwitchCases.size(); i != e; ++i) {
848    // Set the current basic block to the mbb we wish to insert the code into
849    BB = SDL->SwitchCases[i].ThisBB;
850    SDL->setCurrentBasicBlock(BB);
851
852    // Emit the code
853    SDL->visitSwitchCase(SDL->SwitchCases[i]);
854    CurDAG->setRoot(SDL->getRoot());
855    CodeGenAndEmitDAG();
856    SDL->clear();
857
858    // Handle any PHI nodes in successors of this chunk, as if we were coming
859    // from the original BB before switch expansion.  Note that PHI nodes can
860    // occur multiple times in PHINodesToUpdate.  We have to be very careful to
861    // handle them the right number of times.
862    while ((BB = SDL->SwitchCases[i].TrueBB)) {  // Handle LHS and RHS.
863      for (MachineBasicBlock::iterator Phi = BB->begin();
864           Phi != BB->end() && Phi->getOpcode() == TargetInstrInfo::PHI; ++Phi){
865        // This value for this PHI node is recorded in PHINodesToUpdate, get it.
866        for (unsigned pn = 0; ; ++pn) {
867          assert(pn != SDL->PHINodesToUpdate.size() &&
868                 "Didn't find PHI entry!");
869          if (SDL->PHINodesToUpdate[pn].first == Phi) {
870            Phi->addOperand(MachineOperand::CreateReg(SDL->PHINodesToUpdate[pn].
871                                                      second, false));
872            Phi->addOperand(MachineOperand::CreateMBB(SDL->SwitchCases[i].ThisBB));
873            break;
874          }
875        }
876      }
877
878      // Don't process RHS if same block as LHS.
879      if (BB == SDL->SwitchCases[i].FalseBB)
880        SDL->SwitchCases[i].FalseBB = 0;
881
882      // If we haven't handled the RHS, do so now.  Otherwise, we're done.
883      SDL->SwitchCases[i].TrueBB = SDL->SwitchCases[i].FalseBB;
884      SDL->SwitchCases[i].FalseBB = 0;
885    }
886    assert(SDL->SwitchCases[i].TrueBB == 0 && SDL->SwitchCases[i].FalseBB == 0);
887  }
888  SDL->SwitchCases.clear();
889
890  SDL->PHINodesToUpdate.clear();
891}
892
893
894/// Schedule - Pick a safe ordering for instructions for each
895/// target node in the graph.
896///
897ScheduleDAG *SelectionDAGISel::Schedule() {
898  RegisterScheduler::FunctionPassCtor Ctor = RegisterScheduler::getDefault();
899
900  if (!Ctor) {
901    Ctor = ISHeuristic;
902    RegisterScheduler::setDefault(Ctor);
903  }
904
905  ScheduleDAG *Scheduler = Ctor(this, CurDAG, BB, Fast);
906  Scheduler->Run();
907
908  return Scheduler;
909}
910
911
912HazardRecognizer *SelectionDAGISel::CreateTargetHazardRecognizer() {
913  return new HazardRecognizer();
914}
915
916//===----------------------------------------------------------------------===//
917// Helper functions used by the generated instruction selector.
918//===----------------------------------------------------------------------===//
919// Calls to these methods are generated by tblgen.
920
921/// CheckAndMask - The isel is trying to match something like (and X, 255).  If
922/// the dag combiner simplified the 255, we still want to match.  RHS is the
923/// actual value in the DAG on the RHS of an AND, and DesiredMaskS is the value
924/// specified in the .td file (e.g. 255).
925bool SelectionDAGISel::CheckAndMask(SDValue LHS, ConstantSDNode *RHS,
926                                    int64_t DesiredMaskS) const {
927  const APInt &ActualMask = RHS->getAPIntValue();
928  const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
929
930  // If the actual mask exactly matches, success!
931  if (ActualMask == DesiredMask)
932    return true;
933
934  // If the actual AND mask is allowing unallowed bits, this doesn't match.
935  if (ActualMask.intersects(~DesiredMask))
936    return false;
937
938  // Otherwise, the DAG Combiner may have proven that the value coming in is
939  // either already zero or is not demanded.  Check for known zero input bits.
940  APInt NeededMask = DesiredMask & ~ActualMask;
941  if (CurDAG->MaskedValueIsZero(LHS, NeededMask))
942    return true;
943
944  // TODO: check to see if missing bits are just not demanded.
945
946  // Otherwise, this pattern doesn't match.
947  return false;
948}
949
950/// CheckOrMask - The isel is trying to match something like (or X, 255).  If
951/// the dag combiner simplified the 255, we still want to match.  RHS is the
952/// actual value in the DAG on the RHS of an OR, and DesiredMaskS is the value
953/// specified in the .td file (e.g. 255).
954bool SelectionDAGISel::CheckOrMask(SDValue LHS, ConstantSDNode *RHS,
955                                   int64_t DesiredMaskS) const {
956  const APInt &ActualMask = RHS->getAPIntValue();
957  const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
958
959  // If the actual mask exactly matches, success!
960  if (ActualMask == DesiredMask)
961    return true;
962
963  // If the actual AND mask is allowing unallowed bits, this doesn't match.
964  if (ActualMask.intersects(~DesiredMask))
965    return false;
966
967  // Otherwise, the DAG Combiner may have proven that the value coming in is
968  // either already zero or is not demanded.  Check for known zero input bits.
969  APInt NeededMask = DesiredMask & ~ActualMask;
970
971  APInt KnownZero, KnownOne;
972  CurDAG->ComputeMaskedBits(LHS, NeededMask, KnownZero, KnownOne);
973
974  // If all the missing bits in the or are already known to be set, match!
975  if ((NeededMask & KnownOne) == NeededMask)
976    return true;
977
978  // TODO: check to see if missing bits are just not demanded.
979
980  // Otherwise, this pattern doesn't match.
981  return false;
982}
983
984
985/// SelectInlineAsmMemoryOperands - Calls to this are automatically generated
986/// by tblgen.  Others should not call it.
987void SelectionDAGISel::
988SelectInlineAsmMemoryOperands(std::vector<SDValue> &Ops) {
989  std::vector<SDValue> InOps;
990  std::swap(InOps, Ops);
991
992  Ops.push_back(InOps[0]);  // input chain.
993  Ops.push_back(InOps[1]);  // input asm string.
994
995  unsigned i = 2, e = InOps.size();
996  if (InOps[e-1].getValueType() == MVT::Flag)
997    --e;  // Don't process a flag operand if it is here.
998
999  while (i != e) {
1000    unsigned Flags = cast<ConstantSDNode>(InOps[i])->getValue();
1001    if ((Flags & 7) != 4 /*MEM*/) {
1002      // Just skip over this operand, copying the operands verbatim.
1003      Ops.insert(Ops.end(), InOps.begin()+i, InOps.begin()+i+(Flags >> 3) + 1);
1004      i += (Flags >> 3) + 1;
1005    } else {
1006      assert((Flags >> 3) == 1 && "Memory operand with multiple values?");
1007      // Otherwise, this is a memory operand.  Ask the target to select it.
1008      std::vector<SDValue> SelOps;
1009      if (SelectInlineAsmMemoryOperand(InOps[i+1], 'm', SelOps)) {
1010        cerr << "Could not match memory address.  Inline asm failure!\n";
1011        exit(1);
1012      }
1013
1014      // Add this to the output node.
1015      MVT IntPtrTy = CurDAG->getTargetLoweringInfo().getPointerTy();
1016      Ops.push_back(CurDAG->getTargetConstant(4/*MEM*/ | (SelOps.size() << 3),
1017                                              IntPtrTy));
1018      Ops.insert(Ops.end(), SelOps.begin(), SelOps.end());
1019      i += 2;
1020    }
1021  }
1022
1023  // Add the flag input back if present.
1024  if (e != InOps.size())
1025    Ops.push_back(InOps.back());
1026}
1027
1028char SelectionDAGISel::ID = 0;
1029