SelectionDAGISel.cpp revision 1628cec4d7fce310d9cde0bcc73997e5a71692c4
1//===-- SelectionDAGISel.cpp - Implement the SelectionDAGISel class -------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAGISel class.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "isel"
15#include "llvm/Analysis/AliasAnalysis.h"
16#include "llvm/CodeGen/SelectionDAGISel.h"
17#include "llvm/CodeGen/ScheduleDAG.h"
18#include "llvm/CallingConv.h"
19#include "llvm/Constants.h"
20#include "llvm/DerivedTypes.h"
21#include "llvm/Function.h"
22#include "llvm/GlobalVariable.h"
23#include "llvm/InlineAsm.h"
24#include "llvm/Instructions.h"
25#include "llvm/Intrinsics.h"
26#include "llvm/IntrinsicInst.h"
27#include "llvm/CodeGen/IntrinsicLowering.h"
28#include "llvm/CodeGen/MachineDebugInfo.h"
29#include "llvm/CodeGen/MachineFunction.h"
30#include "llvm/CodeGen/MachineFrameInfo.h"
31#include "llvm/CodeGen/MachineJumpTableInfo.h"
32#include "llvm/CodeGen/MachineInstrBuilder.h"
33#include "llvm/CodeGen/SchedulerRegistry.h"
34#include "llvm/CodeGen/SelectionDAG.h"
35#include "llvm/CodeGen/SSARegMap.h"
36#include "llvm/Target/MRegisterInfo.h"
37#include "llvm/Target/TargetData.h"
38#include "llvm/Target/TargetFrameInfo.h"
39#include "llvm/Target/TargetInstrInfo.h"
40#include "llvm/Target/TargetLowering.h"
41#include "llvm/Target/TargetMachine.h"
42#include "llvm/Target/TargetOptions.h"
43#include "llvm/Transforms/Utils/BasicBlockUtils.h"
44#include "llvm/Support/MathExtras.h"
45#include "llvm/Support/Debug.h"
46#include "llvm/Support/Compiler.h"
47#include <map>
48#include <set>
49#include <iostream>
50#include <algorithm>
51using namespace llvm;
52
53#ifndef NDEBUG
54static cl::opt<bool>
55ViewISelDAGs("view-isel-dags", cl::Hidden,
56          cl::desc("Pop up a window to show isel dags as they are selected"));
57static cl::opt<bool>
58ViewSchedDAGs("view-sched-dags", cl::Hidden,
59          cl::desc("Pop up a window to show sched dags as they are processed"));
60#else
61static const bool ViewISelDAGs = 0, ViewSchedDAGs = 0;
62#endif
63
64
65//===---------------------------------------------------------------------===//
66///
67/// RegisterScheduler class - Track the registration of instruction schedulers.
68///
69//===---------------------------------------------------------------------===//
70MachinePassRegistry RegisterScheduler::Registry;
71
72//===---------------------------------------------------------------------===//
73///
74/// ISHeuristic command line option for instruction schedulers.
75///
76//===---------------------------------------------------------------------===//
77namespace {
78  cl::opt<RegisterScheduler::FunctionPassCtor, false,
79          RegisterPassParser<RegisterScheduler> >
80  ISHeuristic("sched",
81              cl::init(&createDefaultScheduler),
82              cl::desc("Instruction schedulers available:"));
83
84  static RegisterScheduler
85  defaultListDAGScheduler("default", "  Best scheduler for the target",
86                          createDefaultScheduler);
87} // namespace
88
89namespace {
90  /// RegsForValue - This struct represents the physical registers that a
91  /// particular value is assigned and the type information about the value.
92  /// This is needed because values can be promoted into larger registers and
93  /// expanded into multiple smaller registers than the value.
94  struct VISIBILITY_HIDDEN RegsForValue {
95    /// Regs - This list hold the register (for legal and promoted values)
96    /// or register set (for expanded values) that the value should be assigned
97    /// to.
98    std::vector<unsigned> Regs;
99
100    /// RegVT - The value type of each register.
101    ///
102    MVT::ValueType RegVT;
103
104    /// ValueVT - The value type of the LLVM value, which may be promoted from
105    /// RegVT or made from merging the two expanded parts.
106    MVT::ValueType ValueVT;
107
108    RegsForValue() : RegVT(MVT::Other), ValueVT(MVT::Other) {}
109
110    RegsForValue(unsigned Reg, MVT::ValueType regvt, MVT::ValueType valuevt)
111      : RegVT(regvt), ValueVT(valuevt) {
112        Regs.push_back(Reg);
113    }
114    RegsForValue(const std::vector<unsigned> &regs,
115                 MVT::ValueType regvt, MVT::ValueType valuevt)
116      : Regs(regs), RegVT(regvt), ValueVT(valuevt) {
117    }
118
119    /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
120    /// this value and returns the result as a ValueVT value.  This uses
121    /// Chain/Flag as the input and updates them for the output Chain/Flag.
122    SDOperand getCopyFromRegs(SelectionDAG &DAG,
123                              SDOperand &Chain, SDOperand &Flag) const;
124
125    /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
126    /// specified value into the registers specified by this object.  This uses
127    /// Chain/Flag as the input and updates them for the output Chain/Flag.
128    void getCopyToRegs(SDOperand Val, SelectionDAG &DAG,
129                       SDOperand &Chain, SDOperand &Flag,
130                       MVT::ValueType PtrVT) const;
131
132    /// AddInlineAsmOperands - Add this value to the specified inlineasm node
133    /// operand list.  This adds the code marker and includes the number of
134    /// values added into it.
135    void AddInlineAsmOperands(unsigned Code, SelectionDAG &DAG,
136                              std::vector<SDOperand> &Ops) const;
137  };
138}
139
140namespace llvm {
141  //===--------------------------------------------------------------------===//
142  /// createDefaultScheduler - This creates an instruction scheduler appropriate
143  /// for the target.
144  ScheduleDAG* createDefaultScheduler(SelectionDAGISel *IS,
145                                      SelectionDAG *DAG,
146                                      MachineBasicBlock *BB) {
147    TargetLowering &TLI = IS->getTargetLowering();
148
149    if (TLI.getSchedulingPreference() == TargetLowering::SchedulingForLatency) {
150      return createTDListDAGScheduler(IS, DAG, BB);
151    } else {
152      assert(TLI.getSchedulingPreference() ==
153           TargetLowering::SchedulingForRegPressure && "Unknown sched type!");
154      return createBURRListDAGScheduler(IS, DAG, BB);
155    }
156  }
157
158
159  //===--------------------------------------------------------------------===//
160  /// FunctionLoweringInfo - This contains information that is global to a
161  /// function that is used when lowering a region of the function.
162  class FunctionLoweringInfo {
163  public:
164    TargetLowering &TLI;
165    Function &Fn;
166    MachineFunction &MF;
167    SSARegMap *RegMap;
168
169    FunctionLoweringInfo(TargetLowering &TLI, Function &Fn,MachineFunction &MF);
170
171    /// MBBMap - A mapping from LLVM basic blocks to their machine code entry.
172    std::map<const BasicBlock*, MachineBasicBlock *> MBBMap;
173
174    /// ValueMap - Since we emit code for the function a basic block at a time,
175    /// we must remember which virtual registers hold the values for
176    /// cross-basic-block values.
177    std::map<const Value*, unsigned> ValueMap;
178
179    /// StaticAllocaMap - Keep track of frame indices for fixed sized allocas in
180    /// the entry block.  This allows the allocas to be efficiently referenced
181    /// anywhere in the function.
182    std::map<const AllocaInst*, int> StaticAllocaMap;
183
184    unsigned MakeReg(MVT::ValueType VT) {
185      return RegMap->createVirtualRegister(TLI.getRegClassFor(VT));
186    }
187
188    unsigned CreateRegForValue(const Value *V);
189
190    unsigned InitializeRegForValue(const Value *V) {
191      unsigned &R = ValueMap[V];
192      assert(R == 0 && "Already initialized this value register!");
193      return R = CreateRegForValue(V);
194    }
195  };
196}
197
198/// isUsedOutsideOfDefiningBlock - Return true if this instruction is used by
199/// PHI nodes or outside of the basic block that defines it, or used by a
200/// switch instruction, which may expand to multiple basic blocks.
201static bool isUsedOutsideOfDefiningBlock(Instruction *I) {
202  if (isa<PHINode>(I)) return true;
203  BasicBlock *BB = I->getParent();
204  for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E; ++UI)
205    if (cast<Instruction>(*UI)->getParent() != BB || isa<PHINode>(*UI) ||
206        isa<SwitchInst>(*UI))
207      return true;
208  return false;
209}
210
211/// isOnlyUsedInEntryBlock - If the specified argument is only used in the
212/// entry block, return true.  This includes arguments used by switches, since
213/// the switch may expand into multiple basic blocks.
214static bool isOnlyUsedInEntryBlock(Argument *A) {
215  BasicBlock *Entry = A->getParent()->begin();
216  for (Value::use_iterator UI = A->use_begin(), E = A->use_end(); UI != E; ++UI)
217    if (cast<Instruction>(*UI)->getParent() != Entry || isa<SwitchInst>(*UI))
218      return false;  // Use not in entry block.
219  return true;
220}
221
222FunctionLoweringInfo::FunctionLoweringInfo(TargetLowering &tli,
223                                           Function &fn, MachineFunction &mf)
224    : TLI(tli), Fn(fn), MF(mf), RegMap(MF.getSSARegMap()) {
225
226  // Create a vreg for each argument register that is not dead and is used
227  // outside of the entry block for the function.
228  for (Function::arg_iterator AI = Fn.arg_begin(), E = Fn.arg_end();
229       AI != E; ++AI)
230    if (!isOnlyUsedInEntryBlock(AI))
231      InitializeRegForValue(AI);
232
233  // Initialize the mapping of values to registers.  This is only set up for
234  // instruction values that are used outside of the block that defines
235  // them.
236  Function::iterator BB = Fn.begin(), EB = Fn.end();
237  for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
238    if (AllocaInst *AI = dyn_cast<AllocaInst>(I))
239      if (ConstantInt *CUI = dyn_cast<ConstantInt>(AI->getArraySize())) {
240        const Type *Ty = AI->getAllocatedType();
241        uint64_t TySize = TLI.getTargetData()->getTypeSize(Ty);
242        unsigned Align =
243          std::max((unsigned)TLI.getTargetData()->getTypeAlignment(Ty),
244                   AI->getAlignment());
245
246        // If the alignment of the value is smaller than the size of the
247        // value, and if the size of the value is particularly small
248        // (<= 8 bytes), round up to the size of the value for potentially
249        // better performance.
250        //
251        // FIXME: This could be made better with a preferred alignment hook in
252        // TargetData.  It serves primarily to 8-byte align doubles for X86.
253        if (Align < TySize && TySize <= 8) Align = TySize;
254        TySize *= CUI->getZExtValue();   // Get total allocated size.
255        if (TySize == 0) TySize = 1; // Don't create zero-sized stack objects.
256        StaticAllocaMap[AI] =
257          MF.getFrameInfo()->CreateStackObject((unsigned)TySize, Align);
258      }
259
260  for (; BB != EB; ++BB)
261    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
262      if (!I->use_empty() && isUsedOutsideOfDefiningBlock(I))
263        if (!isa<AllocaInst>(I) ||
264            !StaticAllocaMap.count(cast<AllocaInst>(I)))
265          InitializeRegForValue(I);
266
267  // Create an initial MachineBasicBlock for each LLVM BasicBlock in F.  This
268  // also creates the initial PHI MachineInstrs, though none of the input
269  // operands are populated.
270  for (BB = Fn.begin(), EB = Fn.end(); BB != EB; ++BB) {
271    MachineBasicBlock *MBB = new MachineBasicBlock(BB);
272    MBBMap[BB] = MBB;
273    MF.getBasicBlockList().push_back(MBB);
274
275    // Create Machine PHI nodes for LLVM PHI nodes, lowering them as
276    // appropriate.
277    PHINode *PN;
278    for (BasicBlock::iterator I = BB->begin();
279         (PN = dyn_cast<PHINode>(I)); ++I)
280      if (!PN->use_empty()) {
281        MVT::ValueType VT = TLI.getValueType(PN->getType());
282        unsigned NumElements;
283        if (VT != MVT::Vector)
284          NumElements = TLI.getNumElements(VT);
285        else {
286          MVT::ValueType VT1,VT2;
287          NumElements =
288            TLI.getPackedTypeBreakdown(cast<PackedType>(PN->getType()),
289                                       VT1, VT2);
290        }
291        unsigned PHIReg = ValueMap[PN];
292        assert(PHIReg &&"PHI node does not have an assigned virtual register!");
293        for (unsigned i = 0; i != NumElements; ++i)
294          BuildMI(MBB, TargetInstrInfo::PHI, PN->getNumOperands(), PHIReg+i);
295      }
296  }
297}
298
299/// CreateRegForValue - Allocate the appropriate number of virtual registers of
300/// the correctly promoted or expanded types.  Assign these registers
301/// consecutive vreg numbers and return the first assigned number.
302unsigned FunctionLoweringInfo::CreateRegForValue(const Value *V) {
303  MVT::ValueType VT = TLI.getValueType(V->getType());
304
305  // The number of multiples of registers that we need, to, e.g., split up
306  // a <2 x int64> -> 4 x i32 registers.
307  unsigned NumVectorRegs = 1;
308
309  // If this is a packed type, figure out what type it will decompose into
310  // and how many of the elements it will use.
311  if (VT == MVT::Vector) {
312    const PackedType *PTy = cast<PackedType>(V->getType());
313    unsigned NumElts = PTy->getNumElements();
314    MVT::ValueType EltTy = TLI.getValueType(PTy->getElementType());
315
316    // Divide the input until we get to a supported size.  This will always
317    // end with a scalar if the target doesn't support vectors.
318    while (NumElts > 1 && !TLI.isTypeLegal(getVectorType(EltTy, NumElts))) {
319      NumElts >>= 1;
320      NumVectorRegs <<= 1;
321    }
322    if (NumElts == 1)
323      VT = EltTy;
324    else
325      VT = getVectorType(EltTy, NumElts);
326  }
327
328  // The common case is that we will only create one register for this
329  // value.  If we have that case, create and return the virtual register.
330  unsigned NV = TLI.getNumElements(VT);
331  if (NV == 1) {
332    // If we are promoting this value, pick the next largest supported type.
333    MVT::ValueType PromotedType = TLI.getTypeToTransformTo(VT);
334    unsigned Reg = MakeReg(PromotedType);
335    // If this is a vector of supported or promoted types (e.g. 4 x i16),
336    // create all of the registers.
337    for (unsigned i = 1; i != NumVectorRegs; ++i)
338      MakeReg(PromotedType);
339    return Reg;
340  }
341
342  // If this value is represented with multiple target registers, make sure
343  // to create enough consecutive registers of the right (smaller) type.
344  unsigned NT = VT-1;  // Find the type to use.
345  while (TLI.getNumElements((MVT::ValueType)NT) != 1)
346    --NT;
347
348  unsigned R = MakeReg((MVT::ValueType)NT);
349  for (unsigned i = 1; i != NV*NumVectorRegs; ++i)
350    MakeReg((MVT::ValueType)NT);
351  return R;
352}
353
354//===----------------------------------------------------------------------===//
355/// SelectionDAGLowering - This is the common target-independent lowering
356/// implementation that is parameterized by a TargetLowering object.
357/// Also, targets can overload any lowering method.
358///
359namespace llvm {
360class SelectionDAGLowering {
361  MachineBasicBlock *CurMBB;
362
363  std::map<const Value*, SDOperand> NodeMap;
364
365  /// PendingLoads - Loads are not emitted to the program immediately.  We bunch
366  /// them up and then emit token factor nodes when possible.  This allows us to
367  /// get simple disambiguation between loads without worrying about alias
368  /// analysis.
369  std::vector<SDOperand> PendingLoads;
370
371  /// Case - A pair of values to record the Value for a switch case, and the
372  /// case's target basic block.
373  typedef std::pair<Constant*, MachineBasicBlock*> Case;
374  typedef std::vector<Case>::iterator              CaseItr;
375  typedef std::pair<CaseItr, CaseItr>              CaseRange;
376
377  /// CaseRec - A struct with ctor used in lowering switches to a binary tree
378  /// of conditional branches.
379  struct CaseRec {
380    CaseRec(MachineBasicBlock *bb, Constant *lt, Constant *ge, CaseRange r) :
381    CaseBB(bb), LT(lt), GE(ge), Range(r) {}
382
383    /// CaseBB - The MBB in which to emit the compare and branch
384    MachineBasicBlock *CaseBB;
385    /// LT, GE - If nonzero, we know the current case value must be less-than or
386    /// greater-than-or-equal-to these Constants.
387    Constant *LT;
388    Constant *GE;
389    /// Range - A pair of iterators representing the range of case values to be
390    /// processed at this point in the binary search tree.
391    CaseRange Range;
392  };
393
394  /// The comparison function for sorting Case values.
395  struct CaseCmp {
396    bool operator () (const Case& C1, const Case& C2) {
397      if (const ConstantInt* I1 = dyn_cast<const ConstantInt>(C1.first))
398        if (I1->getType()->isUnsigned())
399          return I1->getZExtValue() <
400            cast<const ConstantInt>(C2.first)->getZExtValue();
401
402      return cast<const ConstantInt>(C1.first)->getSExtValue() <
403         cast<const ConstantInt>(C2.first)->getSExtValue();
404    }
405  };
406
407public:
408  // TLI - This is information that describes the available target features we
409  // need for lowering.  This indicates when operations are unavailable,
410  // implemented with a libcall, etc.
411  TargetLowering &TLI;
412  SelectionDAG &DAG;
413  const TargetData *TD;
414
415  /// SwitchCases - Vector of CaseBlock structures used to communicate
416  /// SwitchInst code generation information.
417  std::vector<SelectionDAGISel::CaseBlock> SwitchCases;
418  SelectionDAGISel::JumpTable JT;
419
420  /// FuncInfo - Information about the function as a whole.
421  ///
422  FunctionLoweringInfo &FuncInfo;
423
424  SelectionDAGLowering(SelectionDAG &dag, TargetLowering &tli,
425                       FunctionLoweringInfo &funcinfo)
426    : TLI(tli), DAG(dag), TD(DAG.getTarget().getTargetData()),
427      JT(0,0,0,0), FuncInfo(funcinfo) {
428  }
429
430  /// getRoot - Return the current virtual root of the Selection DAG.
431  ///
432  SDOperand getRoot() {
433    if (PendingLoads.empty())
434      return DAG.getRoot();
435
436    if (PendingLoads.size() == 1) {
437      SDOperand Root = PendingLoads[0];
438      DAG.setRoot(Root);
439      PendingLoads.clear();
440      return Root;
441    }
442
443    // Otherwise, we have to make a token factor node.
444    SDOperand Root = DAG.getNode(ISD::TokenFactor, MVT::Other,
445                                 &PendingLoads[0], PendingLoads.size());
446    PendingLoads.clear();
447    DAG.setRoot(Root);
448    return Root;
449  }
450
451  void visit(Instruction &I) { visit(I.getOpcode(), I); }
452
453  void visit(unsigned Opcode, User &I) {
454    switch (Opcode) {
455    default: assert(0 && "Unknown instruction type encountered!");
456             abort();
457      // Build the switch statement using the Instruction.def file.
458#define HANDLE_INST(NUM, OPCODE, CLASS) \
459    case Instruction::OPCODE:return visit##OPCODE((CLASS&)I);
460#include "llvm/Instruction.def"
461    }
462  }
463
464  void setCurrentBasicBlock(MachineBasicBlock *MBB) { CurMBB = MBB; }
465
466  SDOperand getLoadFrom(const Type *Ty, SDOperand Ptr,
467                        const Value *SV, SDOperand Root,
468                        bool isVolatile);
469
470  SDOperand getIntPtrConstant(uint64_t Val) {
471    return DAG.getConstant(Val, TLI.getPointerTy());
472  }
473
474  SDOperand getValue(const Value *V);
475
476  const SDOperand &setValue(const Value *V, SDOperand NewN) {
477    SDOperand &N = NodeMap[V];
478    assert(N.Val == 0 && "Already set a value for this node!");
479    return N = NewN;
480  }
481
482  RegsForValue GetRegistersForValue(const std::string &ConstrCode,
483                                    MVT::ValueType VT,
484                                    bool OutReg, bool InReg,
485                                    std::set<unsigned> &OutputRegs,
486                                    std::set<unsigned> &InputRegs);
487
488  // Terminator instructions.
489  void visitRet(ReturnInst &I);
490  void visitBr(BranchInst &I);
491  void visitSwitch(SwitchInst &I);
492  void visitUnreachable(UnreachableInst &I) { /* noop */ }
493
494  // Helper for visitSwitch
495  void visitSwitchCase(SelectionDAGISel::CaseBlock &CB);
496  void visitJumpTable(SelectionDAGISel::JumpTable &JT);
497
498  // These all get lowered before this pass.
499  void visitInvoke(InvokeInst &I) { assert(0 && "TODO"); }
500  void visitUnwind(UnwindInst &I) { assert(0 && "TODO"); }
501
502  void visitIntBinary(User &I, unsigned IntOp, unsigned VecOp);
503  void visitFPBinary(User &I, unsigned FPOp, unsigned VecOp);
504  void visitShift(User &I, unsigned Opcode);
505  void visitAdd(User &I) {
506    if (I.getType()->isFloatingPoint())
507      visitFPBinary(I, ISD::FADD, ISD::VADD);
508    else
509      visitIntBinary(I, ISD::ADD, ISD::VADD);
510  }
511  void visitSub(User &I);
512  void visitMul(User &I) {
513    if (I.getType()->isFloatingPoint())
514      visitFPBinary(I, ISD::FMUL, ISD::VMUL);
515    else
516      visitIntBinary(I, ISD::MUL, ISD::VMUL);
517  }
518  void visitUDiv(User &I) { visitIntBinary(I, ISD::UDIV, ISD::VUDIV); }
519  void visitSDiv(User &I) { visitIntBinary(I, ISD::SDIV, ISD::VSDIV); }
520  void visitFDiv(User &I) { visitFPBinary(I, ISD::FDIV,  ISD::VSDIV); }
521  void visitRem(User &I) {
522    const Type *Ty = I.getType();
523    if (Ty->isFloatingPoint())
524      visitFPBinary(I, ISD::FREM, 0);
525    else
526      visitIntBinary(I, Ty->isSigned() ? ISD::SREM : ISD::UREM, 0);
527  }
528  void visitAnd(User &I) { visitIntBinary(I, ISD::AND, ISD::VAND); }
529  void visitOr (User &I) { visitIntBinary(I, ISD::OR,  ISD::VOR); }
530  void visitXor(User &I) { visitIntBinary(I, ISD::XOR, ISD::VXOR); }
531  void visitShl(User &I) { visitShift(I, ISD::SHL); }
532  void visitShr(User &I) {
533    visitShift(I, I.getType()->isUnsigned() ? ISD::SRL : ISD::SRA);
534  }
535
536  void visitSetCC(User &I, ISD::CondCode SignedOpc, ISD::CondCode UnsignedOpc,
537                  ISD::CondCode FPOpc);
538  void visitSetEQ(User &I) { visitSetCC(I, ISD::SETEQ, ISD::SETEQ,
539                                        ISD::SETOEQ); }
540  void visitSetNE(User &I) { visitSetCC(I, ISD::SETNE, ISD::SETNE,
541                                        ISD::SETUNE); }
542  void visitSetLE(User &I) { visitSetCC(I, ISD::SETLE, ISD::SETULE,
543                                        ISD::SETOLE); }
544  void visitSetGE(User &I) { visitSetCC(I, ISD::SETGE, ISD::SETUGE,
545                                        ISD::SETOGE); }
546  void visitSetLT(User &I) { visitSetCC(I, ISD::SETLT, ISD::SETULT,
547                                        ISD::SETOLT); }
548  void visitSetGT(User &I) { visitSetCC(I, ISD::SETGT, ISD::SETUGT,
549                                        ISD::SETOGT); }
550
551  void visitExtractElement(User &I);
552  void visitInsertElement(User &I);
553  void visitShuffleVector(User &I);
554
555  void visitGetElementPtr(User &I);
556  void visitCast(User &I);
557  void visitSelect(User &I);
558
559  void visitMalloc(MallocInst &I);
560  void visitFree(FreeInst &I);
561  void visitAlloca(AllocaInst &I);
562  void visitLoad(LoadInst &I);
563  void visitStore(StoreInst &I);
564  void visitPHI(PHINode &I) { } // PHI nodes are handled specially.
565  void visitCall(CallInst &I);
566  void visitInlineAsm(CallInst &I);
567  const char *visitIntrinsicCall(CallInst &I, unsigned Intrinsic);
568  void visitTargetIntrinsic(CallInst &I, unsigned Intrinsic);
569
570  void visitVAStart(CallInst &I);
571  void visitVAArg(VAArgInst &I);
572  void visitVAEnd(CallInst &I);
573  void visitVACopy(CallInst &I);
574  void visitFrameReturnAddress(CallInst &I, bool isFrameAddress);
575
576  void visitMemIntrinsic(CallInst &I, unsigned Op);
577
578  void visitUserOp1(Instruction &I) {
579    assert(0 && "UserOp1 should not exist at instruction selection time!");
580    abort();
581  }
582  void visitUserOp2(Instruction &I) {
583    assert(0 && "UserOp2 should not exist at instruction selection time!");
584    abort();
585  }
586};
587} // end namespace llvm
588
589SDOperand SelectionDAGLowering::getValue(const Value *V) {
590  SDOperand &N = NodeMap[V];
591  if (N.Val) return N;
592
593  const Type *VTy = V->getType();
594  MVT::ValueType VT = TLI.getValueType(VTy);
595  if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(V))) {
596    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
597      visit(CE->getOpcode(), *CE);
598      assert(N.Val && "visit didn't populate the ValueMap!");
599      return N;
600    } else if (GlobalValue *GV = dyn_cast<GlobalValue>(C)) {
601      return N = DAG.getGlobalAddress(GV, VT);
602    } else if (isa<ConstantPointerNull>(C)) {
603      return N = DAG.getConstant(0, TLI.getPointerTy());
604    } else if (isa<UndefValue>(C)) {
605      if (!isa<PackedType>(VTy))
606        return N = DAG.getNode(ISD::UNDEF, VT);
607
608      // Create a VBUILD_VECTOR of undef nodes.
609      const PackedType *PTy = cast<PackedType>(VTy);
610      unsigned NumElements = PTy->getNumElements();
611      MVT::ValueType PVT = TLI.getValueType(PTy->getElementType());
612
613      SmallVector<SDOperand, 8> Ops;
614      Ops.assign(NumElements, DAG.getNode(ISD::UNDEF, PVT));
615
616      // Create a VConstant node with generic Vector type.
617      Ops.push_back(DAG.getConstant(NumElements, MVT::i32));
618      Ops.push_back(DAG.getValueType(PVT));
619      return N = DAG.getNode(ISD::VBUILD_VECTOR, MVT::Vector,
620                             &Ops[0], Ops.size());
621    } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
622      return N = DAG.getConstantFP(CFP->getValue(), VT);
623    } else if (const PackedType *PTy = dyn_cast<PackedType>(VTy)) {
624      unsigned NumElements = PTy->getNumElements();
625      MVT::ValueType PVT = TLI.getValueType(PTy->getElementType());
626
627      // Now that we know the number and type of the elements, push a
628      // Constant or ConstantFP node onto the ops list for each element of
629      // the packed constant.
630      SmallVector<SDOperand, 8> Ops;
631      if (ConstantPacked *CP = dyn_cast<ConstantPacked>(C)) {
632        for (unsigned i = 0; i != NumElements; ++i)
633          Ops.push_back(getValue(CP->getOperand(i)));
634      } else {
635        assert(isa<ConstantAggregateZero>(C) && "Unknown packed constant!");
636        SDOperand Op;
637        if (MVT::isFloatingPoint(PVT))
638          Op = DAG.getConstantFP(0, PVT);
639        else
640          Op = DAG.getConstant(0, PVT);
641        Ops.assign(NumElements, Op);
642      }
643
644      // Create a VBUILD_VECTOR node with generic Vector type.
645      Ops.push_back(DAG.getConstant(NumElements, MVT::i32));
646      Ops.push_back(DAG.getValueType(PVT));
647      return N = DAG.getNode(ISD::VBUILD_VECTOR,MVT::Vector,&Ops[0],Ops.size());
648    } else {
649      // Canonicalize all constant ints to be unsigned.
650      return N = DAG.getConstant(cast<ConstantIntegral>(C)->getZExtValue(),VT);
651    }
652  }
653
654  if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
655    std::map<const AllocaInst*, int>::iterator SI =
656    FuncInfo.StaticAllocaMap.find(AI);
657    if (SI != FuncInfo.StaticAllocaMap.end())
658      return DAG.getFrameIndex(SI->second, TLI.getPointerTy());
659  }
660
661  std::map<const Value*, unsigned>::const_iterator VMI =
662      FuncInfo.ValueMap.find(V);
663  assert(VMI != FuncInfo.ValueMap.end() && "Value not in map!");
664
665  unsigned InReg = VMI->second;
666
667  // If this type is not legal, make it so now.
668  if (VT != MVT::Vector) {
669    MVT::ValueType DestVT = TLI.getTypeToTransformTo(VT);
670
671    N = DAG.getCopyFromReg(DAG.getEntryNode(), InReg, DestVT);
672    if (DestVT < VT) {
673      // Source must be expanded.  This input value is actually coming from the
674      // register pair VMI->second and VMI->second+1.
675      N = DAG.getNode(ISD::BUILD_PAIR, VT, N,
676                      DAG.getCopyFromReg(DAG.getEntryNode(), InReg+1, DestVT));
677    } else if (DestVT > VT) { // Promotion case
678      if (MVT::isFloatingPoint(VT))
679        N = DAG.getNode(ISD::FP_ROUND, VT, N);
680      else
681        N = DAG.getNode(ISD::TRUNCATE, VT, N);
682    }
683  } else {
684    // Otherwise, if this is a vector, make it available as a generic vector
685    // here.
686    MVT::ValueType PTyElementVT, PTyLegalElementVT;
687    const PackedType *PTy = cast<PackedType>(VTy);
688    unsigned NE = TLI.getPackedTypeBreakdown(PTy, PTyElementVT,
689                                             PTyLegalElementVT);
690
691    // Build a VBUILD_VECTOR with the input registers.
692    SmallVector<SDOperand, 8> Ops;
693    if (PTyElementVT == PTyLegalElementVT) {
694      // If the value types are legal, just VBUILD the CopyFromReg nodes.
695      for (unsigned i = 0; i != NE; ++i)
696        Ops.push_back(DAG.getCopyFromReg(DAG.getEntryNode(), InReg++,
697                                         PTyElementVT));
698    } else if (PTyElementVT < PTyLegalElementVT) {
699      // If the register was promoted, use TRUNCATE of FP_ROUND as appropriate.
700      for (unsigned i = 0; i != NE; ++i) {
701        SDOperand Op = DAG.getCopyFromReg(DAG.getEntryNode(), InReg++,
702                                          PTyElementVT);
703        if (MVT::isFloatingPoint(PTyElementVT))
704          Op = DAG.getNode(ISD::FP_ROUND, PTyElementVT, Op);
705        else
706          Op = DAG.getNode(ISD::TRUNCATE, PTyElementVT, Op);
707        Ops.push_back(Op);
708      }
709    } else {
710      // If the register was expanded, use BUILD_PAIR.
711      assert((NE & 1) == 0 && "Must expand into a multiple of 2 elements!");
712      for (unsigned i = 0; i != NE/2; ++i) {
713        SDOperand Op0 = DAG.getCopyFromReg(DAG.getEntryNode(), InReg++,
714                                           PTyElementVT);
715        SDOperand Op1 = DAG.getCopyFromReg(DAG.getEntryNode(), InReg++,
716                                           PTyElementVT);
717        Ops.push_back(DAG.getNode(ISD::BUILD_PAIR, VT, Op0, Op1));
718      }
719    }
720
721    Ops.push_back(DAG.getConstant(NE, MVT::i32));
722    Ops.push_back(DAG.getValueType(PTyLegalElementVT));
723    N = DAG.getNode(ISD::VBUILD_VECTOR, MVT::Vector, &Ops[0], Ops.size());
724
725    // Finally, use a VBIT_CONVERT to make this available as the appropriate
726    // vector type.
727    N = DAG.getNode(ISD::VBIT_CONVERT, MVT::Vector, N,
728                    DAG.getConstant(PTy->getNumElements(),
729                                    MVT::i32),
730                    DAG.getValueType(TLI.getValueType(PTy->getElementType())));
731  }
732
733  return N;
734}
735
736
737void SelectionDAGLowering::visitRet(ReturnInst &I) {
738  if (I.getNumOperands() == 0) {
739    DAG.setRoot(DAG.getNode(ISD::RET, MVT::Other, getRoot()));
740    return;
741  }
742  SmallVector<SDOperand, 8> NewValues;
743  NewValues.push_back(getRoot());
744  for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
745    SDOperand RetOp = getValue(I.getOperand(i));
746    bool isSigned = I.getOperand(i)->getType()->isSigned();
747
748    // If this is an integer return value, we need to promote it ourselves to
749    // the full width of a register, since LegalizeOp will use ANY_EXTEND rather
750    // than sign/zero.
751    // FIXME: C calling convention requires the return type to be promoted to
752    // at least 32-bit. But this is not necessary for non-C calling conventions.
753    if (MVT::isInteger(RetOp.getValueType()) &&
754        RetOp.getValueType() < MVT::i64) {
755      MVT::ValueType TmpVT;
756      if (TLI.getTypeAction(MVT::i32) == TargetLowering::Promote)
757        TmpVT = TLI.getTypeToTransformTo(MVT::i32);
758      else
759        TmpVT = MVT::i32;
760
761      if (isSigned)
762        RetOp = DAG.getNode(ISD::SIGN_EXTEND, TmpVT, RetOp);
763      else
764        RetOp = DAG.getNode(ISD::ZERO_EXTEND, TmpVT, RetOp);
765    }
766    NewValues.push_back(RetOp);
767    NewValues.push_back(DAG.getConstant(isSigned, MVT::i32));
768  }
769  DAG.setRoot(DAG.getNode(ISD::RET, MVT::Other,
770                          &NewValues[0], NewValues.size()));
771}
772
773void SelectionDAGLowering::visitBr(BranchInst &I) {
774  // Update machine-CFG edges.
775  MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
776
777  // Figure out which block is immediately after the current one.
778  MachineBasicBlock *NextBlock = 0;
779  MachineFunction::iterator BBI = CurMBB;
780  if (++BBI != CurMBB->getParent()->end())
781    NextBlock = BBI;
782
783  if (I.isUnconditional()) {
784    // If this is not a fall-through branch, emit the branch.
785    if (Succ0MBB != NextBlock)
786      DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, getRoot(),
787                              DAG.getBasicBlock(Succ0MBB)));
788
789    // Update machine-CFG edges.
790    CurMBB->addSuccessor(Succ0MBB);
791
792    return;
793  }
794
795  // If this condition is one of the special cases we handle, do special stuff
796  // now.
797  Value *CondVal = I.getCondition();
798  MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
799
800  // Create a CaseBlock record representing this branch.
801  SelectionDAGISel::CaseBlock CB(ISD::SETEQ, CondVal, 0,
802                                 Succ0MBB, Succ1MBB, CurMBB);
803  // Use visitSwitchCase to actually insert the fast branch sequence for this
804  // cond branch.
805  visitSwitchCase(CB);
806}
807
808/// visitSwitchCase - Emits the necessary code to represent a single node in
809/// the binary search tree resulting from lowering a switch instruction.
810void SelectionDAGLowering::visitSwitchCase(SelectionDAGISel::CaseBlock &CB) {
811  SDOperand Cond;
812  SDOperand CondLHS = getValue(CB.CmpLHS);
813
814  // If the CaseBlock has both LHS/RHS comparisons, build the setcc now,
815  // otherwise, just use the LHS value as a bool comparison value.
816  if (CB.CmpRHS)
817    Cond = DAG.getSetCC(MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
818  else
819    Cond = CondLHS;
820
821  // Set NextBlock to be the MBB immediately after the current one, if any.
822  // This is used to avoid emitting unnecessary branches to the next block.
823  MachineBasicBlock *NextBlock = 0;
824  MachineFunction::iterator BBI = CurMBB;
825  if (++BBI != CurMBB->getParent()->end())
826    NextBlock = BBI;
827
828  // If the lhs block is the next block, invert the condition so that we can
829  // fall through to the lhs instead of the rhs block.
830  if (CB.TrueBB == NextBlock) {
831    std::swap(CB.TrueBB, CB.FalseBB);
832    SDOperand True = DAG.getConstant(1, Cond.getValueType());
833    Cond = DAG.getNode(ISD::XOR, Cond.getValueType(), Cond, True);
834  }
835  SDOperand BrCond = DAG.getNode(ISD::BRCOND, MVT::Other, getRoot(), Cond,
836                                 DAG.getBasicBlock(CB.TrueBB));
837  if (CB.FalseBB == NextBlock)
838    DAG.setRoot(BrCond);
839  else
840    DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, BrCond,
841                            DAG.getBasicBlock(CB.FalseBB)));
842  // Update successor info
843  CurMBB->addSuccessor(CB.TrueBB);
844  CurMBB->addSuccessor(CB.FalseBB);
845}
846
847void SelectionDAGLowering::visitJumpTable(SelectionDAGISel::JumpTable &JT) {
848  // Emit the code for the jump table
849  MVT::ValueType PTy = TLI.getPointerTy();
850  assert((PTy == MVT::i32 || PTy == MVT::i64) &&
851         "Jump table entries are 32-bit values");
852  bool isPIC = TLI.getTargetMachine().getRelocationModel() == Reloc::PIC_;
853  // PIC jump table entries are 32-bit values.
854  unsigned EntrySize = isPIC ? 4 : MVT::getSizeInBits(PTy)/8;
855  SDOperand Copy = DAG.getCopyFromReg(getRoot(), JT.Reg, PTy);
856  SDOperand IDX = DAG.getNode(ISD::MUL, PTy, Copy,
857                              DAG.getConstant(EntrySize, PTy));
858  SDOperand TAB = DAG.getJumpTable(JT.JTI,PTy);
859  SDOperand ADD = DAG.getNode(ISD::ADD, PTy, IDX, TAB);
860  SDOperand LD  = DAG.getLoad(isPIC ? MVT::i32 : PTy, Copy.getValue(1), ADD,
861                              NULL, 0);
862  if (isPIC) {
863    // For Pic, the sequence is:
864    // BRIND(load(Jumptable + index) + RelocBase)
865    // RelocBase is the JumpTable on PPC and X86, GOT on Alpha
866    SDOperand Reloc;
867    if (TLI.usesGlobalOffsetTable())
868      Reloc = DAG.getNode(ISD::GLOBAL_OFFSET_TABLE, PTy);
869    else
870      Reloc = TAB;
871    ADD = (PTy != MVT::i32) ? DAG.getNode(ISD::SIGN_EXTEND, PTy, LD) : LD;
872    ADD = DAG.getNode(ISD::ADD, PTy, ADD, Reloc);
873    DAG.setRoot(DAG.getNode(ISD::BRIND, MVT::Other, LD.getValue(1), ADD));
874  } else {
875    DAG.setRoot(DAG.getNode(ISD::BRIND, MVT::Other, LD.getValue(1), LD));
876  }
877}
878
879void SelectionDAGLowering::visitSwitch(SwitchInst &I) {
880  // Figure out which block is immediately after the current one.
881  MachineBasicBlock *NextBlock = 0;
882  MachineFunction::iterator BBI = CurMBB;
883
884  if (++BBI != CurMBB->getParent()->end())
885    NextBlock = BBI;
886
887  MachineBasicBlock *Default = FuncInfo.MBBMap[I.getDefaultDest()];
888
889  // If there is only the default destination, branch to it if it is not the
890  // next basic block.  Otherwise, just fall through.
891  if (I.getNumOperands() == 2) {
892    // Update machine-CFG edges.
893
894    // If this is not a fall-through branch, emit the branch.
895    if (Default != NextBlock)
896      DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, getRoot(),
897                              DAG.getBasicBlock(Default)));
898
899    CurMBB->addSuccessor(Default);
900    return;
901  }
902
903  // If there are any non-default case statements, create a vector of Cases
904  // representing each one, and sort the vector so that we can efficiently
905  // create a binary search tree from them.
906  std::vector<Case> Cases;
907
908  for (unsigned i = 1; i < I.getNumSuccessors(); ++i) {
909    MachineBasicBlock *SMBB = FuncInfo.MBBMap[I.getSuccessor(i)];
910    Cases.push_back(Case(I.getSuccessorValue(i), SMBB));
911  }
912
913  std::sort(Cases.begin(), Cases.end(), CaseCmp());
914
915  // Get the Value to be switched on and default basic blocks, which will be
916  // inserted into CaseBlock records, representing basic blocks in the binary
917  // search tree.
918  Value *SV = I.getOperand(0);
919
920  // Get the MachineFunction which holds the current MBB.  This is used during
921  // emission of jump tables, and when inserting any additional MBBs necessary
922  // to represent the switch.
923  MachineFunction *CurMF = CurMBB->getParent();
924  const BasicBlock *LLVMBB = CurMBB->getBasicBlock();
925
926  // If the switch has few cases (two or less) emit a series of specific
927  // tests.
928  if (Cases.size() < 3) {
929    // TODO: If any two of the cases has the same destination, and if one value
930    // is the same as the other, but has one bit unset that the other has set,
931    // use bit manipulation to do two compares at once.  For example:
932    // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
933
934    // Rearrange the case blocks so that the last one falls through if possible.
935    if (NextBlock && Default != NextBlock && Cases.back().second != NextBlock) {
936      // The last case block won't fall through into 'NextBlock' if we emit the
937      // branches in this order.  See if rearranging a case value would help.
938      for (unsigned i = 0, e = Cases.size()-1; i != e; ++i) {
939        if (Cases[i].second == NextBlock) {
940          std::swap(Cases[i], Cases.back());
941          break;
942        }
943      }
944    }
945
946    // Create a CaseBlock record representing a conditional branch to
947    // the Case's target mbb if the value being switched on SV is equal
948    // to C.
949    MachineBasicBlock *CurBlock = CurMBB;
950    for (unsigned i = 0, e = Cases.size(); i != e; ++i) {
951      MachineBasicBlock *FallThrough;
952      if (i != e-1) {
953        FallThrough = new MachineBasicBlock(CurMBB->getBasicBlock());
954        CurMF->getBasicBlockList().insert(BBI, FallThrough);
955      } else {
956        // If the last case doesn't match, go to the default block.
957        FallThrough = Default;
958      }
959
960      SelectionDAGISel::CaseBlock CB(ISD::SETEQ, SV, Cases[i].first,
961                                     Cases[i].second, FallThrough, CurBlock);
962
963      // If emitting the first comparison, just call visitSwitchCase to emit the
964      // code into the current block.  Otherwise, push the CaseBlock onto the
965      // vector to be later processed by SDISel, and insert the node's MBB
966      // before the next MBB.
967      if (CurBlock == CurMBB)
968        visitSwitchCase(CB);
969      else
970        SwitchCases.push_back(CB);
971
972      CurBlock = FallThrough;
973    }
974    return;
975  }
976
977  // If the switch has more than 5 blocks, and at least 31.25% dense, and the
978  // target supports indirect branches, then emit a jump table rather than
979  // lowering the switch to a binary tree of conditional branches.
980  if (TLI.isOperationLegal(ISD::BRIND, TLI.getPointerTy()) &&
981      Cases.size() > 5) {
982    uint64_t First =cast<ConstantIntegral>(Cases.front().first)->getZExtValue();
983    uint64_t Last  = cast<ConstantIntegral>(Cases.back().first)->getZExtValue();
984    double Density = (double)Cases.size() / (double)((Last - First) + 1ULL);
985
986    if (Density >= 0.3125) {
987      // Create a new basic block to hold the code for loading the address
988      // of the jump table, and jumping to it.  Update successor information;
989      // we will either branch to the default case for the switch, or the jump
990      // table.
991      MachineBasicBlock *JumpTableBB = new MachineBasicBlock(LLVMBB);
992      CurMF->getBasicBlockList().insert(BBI, JumpTableBB);
993      CurMBB->addSuccessor(Default);
994      CurMBB->addSuccessor(JumpTableBB);
995
996      // Subtract the lowest switch case value from the value being switched on
997      // and conditional branch to default mbb if the result is greater than the
998      // difference between smallest and largest cases.
999      SDOperand SwitchOp = getValue(SV);
1000      MVT::ValueType VT = SwitchOp.getValueType();
1001      SDOperand SUB = DAG.getNode(ISD::SUB, VT, SwitchOp,
1002                                  DAG.getConstant(First, VT));
1003
1004      // The SDNode we just created, which holds the value being switched on
1005      // minus the the smallest case value, needs to be copied to a virtual
1006      // register so it can be used as an index into the jump table in a
1007      // subsequent basic block.  This value may be smaller or larger than the
1008      // target's pointer type, and therefore require extension or truncating.
1009      if (VT > TLI.getPointerTy())
1010        SwitchOp = DAG.getNode(ISD::TRUNCATE, TLI.getPointerTy(), SUB);
1011      else
1012        SwitchOp = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(), SUB);
1013
1014      unsigned JumpTableReg = FuncInfo.MakeReg(TLI.getPointerTy());
1015      SDOperand CopyTo = DAG.getCopyToReg(getRoot(), JumpTableReg, SwitchOp);
1016
1017      // Emit the range check for the jump table, and branch to the default
1018      // block for the switch statement if the value being switched on exceeds
1019      // the largest case in the switch.
1020      SDOperand CMP = DAG.getSetCC(TLI.getSetCCResultTy(), SUB,
1021                                   DAG.getConstant(Last-First,VT), ISD::SETUGT);
1022      DAG.setRoot(DAG.getNode(ISD::BRCOND, MVT::Other, CopyTo, CMP,
1023                              DAG.getBasicBlock(Default)));
1024
1025      // Build a vector of destination BBs, corresponding to each target
1026      // of the jump table.  If the value of the jump table slot corresponds to
1027      // a case statement, push the case's BB onto the vector, otherwise, push
1028      // the default BB.
1029      std::vector<MachineBasicBlock*> DestBBs;
1030      uint64_t TEI = First;
1031      for (CaseItr ii = Cases.begin(), ee = Cases.end(); ii != ee; ++TEI)
1032        if (cast<ConstantIntegral>(ii->first)->getZExtValue() == TEI) {
1033          DestBBs.push_back(ii->second);
1034          ++ii;
1035        } else {
1036          DestBBs.push_back(Default);
1037        }
1038
1039      // Update successor info
1040      for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(),
1041           E = DestBBs.end(); I != E; ++I)
1042        JumpTableBB->addSuccessor(*I);
1043
1044      // Create a jump table index for this jump table, or return an existing
1045      // one.
1046      unsigned JTI = CurMF->getJumpTableInfo()->getJumpTableIndex(DestBBs);
1047
1048      // Set the jump table information so that we can codegen it as a second
1049      // MachineBasicBlock
1050      JT.Reg = JumpTableReg;
1051      JT.JTI = JTI;
1052      JT.MBB = JumpTableBB;
1053      JT.Default = Default;
1054      return;
1055    }
1056  }
1057
1058  // Push the initial CaseRec onto the worklist
1059  std::vector<CaseRec> CaseVec;
1060  CaseVec.push_back(CaseRec(CurMBB,0,0,CaseRange(Cases.begin(),Cases.end())));
1061
1062  while (!CaseVec.empty()) {
1063    // Grab a record representing a case range to process off the worklist
1064    CaseRec CR = CaseVec.back();
1065    CaseVec.pop_back();
1066
1067    // Size is the number of Cases represented by this range.  If Size is 1,
1068    // then we are processing a leaf of the binary search tree.  Otherwise,
1069    // we need to pick a pivot, and push left and right ranges onto the
1070    // worklist.
1071    unsigned Size = CR.Range.second - CR.Range.first;
1072
1073    if (Size == 1) {
1074      // Create a CaseBlock record representing a conditional branch to
1075      // the Case's target mbb if the value being switched on SV is equal
1076      // to C.  Otherwise, branch to default.
1077      Constant *C = CR.Range.first->first;
1078      MachineBasicBlock *Target = CR.Range.first->second;
1079      SelectionDAGISel::CaseBlock CB(ISD::SETEQ, SV, C, Target, Default,
1080                                     CR.CaseBB);
1081
1082      // If the MBB representing the leaf node is the current MBB, then just
1083      // call visitSwitchCase to emit the code into the current block.
1084      // Otherwise, push the CaseBlock onto the vector to be later processed
1085      // by SDISel, and insert the node's MBB before the next MBB.
1086      if (CR.CaseBB == CurMBB)
1087        visitSwitchCase(CB);
1088      else
1089        SwitchCases.push_back(CB);
1090    } else {
1091      // split case range at pivot
1092      CaseItr Pivot = CR.Range.first + (Size / 2);
1093      CaseRange LHSR(CR.Range.first, Pivot);
1094      CaseRange RHSR(Pivot, CR.Range.second);
1095      Constant *C = Pivot->first;
1096      MachineBasicBlock *FalseBB = 0, *TrueBB = 0;
1097
1098      // We know that we branch to the LHS if the Value being switched on is
1099      // less than the Pivot value, C.  We use this to optimize our binary
1100      // tree a bit, by recognizing that if SV is greater than or equal to the
1101      // LHS's Case Value, and that Case Value is exactly one less than the
1102      // Pivot's Value, then we can branch directly to the LHS's Target,
1103      // rather than creating a leaf node for it.
1104      if ((LHSR.second - LHSR.first) == 1 &&
1105          LHSR.first->first == CR.GE &&
1106          cast<ConstantIntegral>(C)->getZExtValue() ==
1107          (cast<ConstantIntegral>(CR.GE)->getZExtValue() + 1ULL)) {
1108        TrueBB = LHSR.first->second;
1109      } else {
1110        TrueBB = new MachineBasicBlock(LLVMBB);
1111        CurMF->getBasicBlockList().insert(BBI, TrueBB);
1112        CaseVec.push_back(CaseRec(TrueBB, C, CR.GE, LHSR));
1113      }
1114
1115      // Similar to the optimization above, if the Value being switched on is
1116      // known to be less than the Constant CR.LT, and the current Case Value
1117      // is CR.LT - 1, then we can branch directly to the target block for
1118      // the current Case Value, rather than emitting a RHS leaf node for it.
1119      if ((RHSR.second - RHSR.first) == 1 && CR.LT &&
1120          cast<ConstantIntegral>(RHSR.first->first)->getZExtValue() ==
1121          (cast<ConstantIntegral>(CR.LT)->getZExtValue() - 1ULL)) {
1122        FalseBB = RHSR.first->second;
1123      } else {
1124        FalseBB = new MachineBasicBlock(LLVMBB);
1125        CurMF->getBasicBlockList().insert(BBI, FalseBB);
1126        CaseVec.push_back(CaseRec(FalseBB,CR.LT,C,RHSR));
1127      }
1128
1129      // Create a CaseBlock record representing a conditional branch to
1130      // the LHS node if the value being switched on SV is less than C.
1131      // Otherwise, branch to LHS.
1132      ISD::CondCode CC = C->getType()->isSigned() ? ISD::SETLT : ISD::SETULT;
1133      SelectionDAGISel::CaseBlock CB(CC, SV, C, TrueBB, FalseBB, CR.CaseBB);
1134
1135      if (CR.CaseBB == CurMBB)
1136        visitSwitchCase(CB);
1137      else
1138        SwitchCases.push_back(CB);
1139    }
1140  }
1141}
1142
1143void SelectionDAGLowering::visitSub(User &I) {
1144  // -0.0 - X --> fneg
1145  if (I.getType()->isFloatingPoint()) {
1146    if (ConstantFP *CFP = dyn_cast<ConstantFP>(I.getOperand(0)))
1147      if (CFP->isExactlyValue(-0.0)) {
1148        SDOperand Op2 = getValue(I.getOperand(1));
1149        setValue(&I, DAG.getNode(ISD::FNEG, Op2.getValueType(), Op2));
1150        return;
1151      }
1152    visitFPBinary(I, ISD::FSUB, ISD::VSUB);
1153  } else
1154    visitIntBinary(I, ISD::SUB, ISD::VSUB);
1155}
1156
1157void
1158SelectionDAGLowering::visitIntBinary(User &I, unsigned IntOp, unsigned VecOp) {
1159  const Type *Ty = I.getType();
1160  SDOperand Op1 = getValue(I.getOperand(0));
1161  SDOperand Op2 = getValue(I.getOperand(1));
1162
1163  if (const PackedType *PTy = dyn_cast<PackedType>(Ty)) {
1164    SDOperand Num = DAG.getConstant(PTy->getNumElements(), MVT::i32);
1165    SDOperand Typ = DAG.getValueType(TLI.getValueType(PTy->getElementType()));
1166    setValue(&I, DAG.getNode(VecOp, MVT::Vector, Op1, Op2, Num, Typ));
1167  } else {
1168    setValue(&I, DAG.getNode(IntOp, Op1.getValueType(), Op1, Op2));
1169  }
1170}
1171
1172void
1173SelectionDAGLowering::visitFPBinary(User &I, unsigned FPOp, unsigned VecOp) {
1174  const Type *Ty = I.getType();
1175  SDOperand Op1 = getValue(I.getOperand(0));
1176  SDOperand Op2 = getValue(I.getOperand(1));
1177
1178  if (const PackedType *PTy = dyn_cast<PackedType>(Ty)) {
1179    SDOperand Num = DAG.getConstant(PTy->getNumElements(), MVT::i32);
1180    SDOperand Typ = DAG.getValueType(TLI.getValueType(PTy->getElementType()));
1181    setValue(&I, DAG.getNode(VecOp, MVT::Vector, Op1, Op2, Num, Typ));
1182  } else {
1183    setValue(&I, DAG.getNode(FPOp, Op1.getValueType(), Op1, Op2));
1184  }
1185}
1186
1187void SelectionDAGLowering::visitShift(User &I, unsigned Opcode) {
1188  SDOperand Op1 = getValue(I.getOperand(0));
1189  SDOperand Op2 = getValue(I.getOperand(1));
1190
1191  Op2 = DAG.getNode(ISD::ANY_EXTEND, TLI.getShiftAmountTy(), Op2);
1192
1193  setValue(&I, DAG.getNode(Opcode, Op1.getValueType(), Op1, Op2));
1194}
1195
1196void SelectionDAGLowering::visitSetCC(User &I,ISD::CondCode SignedOpcode,
1197                                      ISD::CondCode UnsignedOpcode,
1198                                      ISD::CondCode FPOpcode) {
1199  SDOperand Op1 = getValue(I.getOperand(0));
1200  SDOperand Op2 = getValue(I.getOperand(1));
1201  ISD::CondCode Opcode = SignedOpcode;
1202  if (!FiniteOnlyFPMath() && I.getOperand(0)->getType()->isFloatingPoint())
1203    Opcode = FPOpcode;
1204  else if (I.getOperand(0)->getType()->isUnsigned())
1205    Opcode = UnsignedOpcode;
1206  setValue(&I, DAG.getSetCC(MVT::i1, Op1, Op2, Opcode));
1207}
1208
1209void SelectionDAGLowering::visitSelect(User &I) {
1210  SDOperand Cond     = getValue(I.getOperand(0));
1211  SDOperand TrueVal  = getValue(I.getOperand(1));
1212  SDOperand FalseVal = getValue(I.getOperand(2));
1213  if (!isa<PackedType>(I.getType())) {
1214    setValue(&I, DAG.getNode(ISD::SELECT, TrueVal.getValueType(), Cond,
1215                             TrueVal, FalseVal));
1216  } else {
1217    setValue(&I, DAG.getNode(ISD::VSELECT, MVT::Vector, Cond, TrueVal, FalseVal,
1218                             *(TrueVal.Val->op_end()-2),
1219                             *(TrueVal.Val->op_end()-1)));
1220  }
1221}
1222
1223void SelectionDAGLowering::visitCast(User &I) {
1224  SDOperand N = getValue(I.getOperand(0));
1225  MVT::ValueType SrcVT = N.getValueType();
1226  MVT::ValueType DestVT = TLI.getValueType(I.getType());
1227
1228  if (DestVT == MVT::Vector) {
1229    // This is a cast to a vector from something else.  This is always a bit
1230    // convert.  Get information about the input vector.
1231    const PackedType *DestTy = cast<PackedType>(I.getType());
1232    MVT::ValueType EltVT = TLI.getValueType(DestTy->getElementType());
1233    setValue(&I, DAG.getNode(ISD::VBIT_CONVERT, DestVT, N,
1234                             DAG.getConstant(DestTy->getNumElements(),MVT::i32),
1235                             DAG.getValueType(EltVT)));
1236  } else if (SrcVT == DestVT) {
1237    setValue(&I, N);  // noop cast.
1238  } else if (DestVT == MVT::i1) {
1239    // Cast to bool is a comparison against zero, not truncation to zero.
1240    SDOperand Zero = isInteger(SrcVT) ? DAG.getConstant(0, N.getValueType()) :
1241                                       DAG.getConstantFP(0.0, N.getValueType());
1242    setValue(&I, DAG.getSetCC(MVT::i1, N, Zero, ISD::SETNE));
1243  } else if (isInteger(SrcVT)) {
1244    if (isInteger(DestVT)) {        // Int -> Int cast
1245      if (DestVT < SrcVT)   // Truncating cast?
1246        setValue(&I, DAG.getNode(ISD::TRUNCATE, DestVT, N));
1247      else if (I.getOperand(0)->getType()->isSigned())
1248        setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, DestVT, N));
1249      else
1250        setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, DestVT, N));
1251    } else if (isFloatingPoint(DestVT)) {           // Int -> FP cast
1252      if (I.getOperand(0)->getType()->isSigned())
1253        setValue(&I, DAG.getNode(ISD::SINT_TO_FP, DestVT, N));
1254      else
1255        setValue(&I, DAG.getNode(ISD::UINT_TO_FP, DestVT, N));
1256    } else {
1257      assert(0 && "Unknown cast!");
1258    }
1259  } else if (isFloatingPoint(SrcVT)) {
1260    if (isFloatingPoint(DestVT)) {  // FP -> FP cast
1261      if (DestVT < SrcVT)   // Rounding cast?
1262        setValue(&I, DAG.getNode(ISD::FP_ROUND, DestVT, N));
1263      else
1264        setValue(&I, DAG.getNode(ISD::FP_EXTEND, DestVT, N));
1265    } else if (isInteger(DestVT)) {        // FP -> Int cast.
1266      if (I.getType()->isSigned())
1267        setValue(&I, DAG.getNode(ISD::FP_TO_SINT, DestVT, N));
1268      else
1269        setValue(&I, DAG.getNode(ISD::FP_TO_UINT, DestVT, N));
1270    } else {
1271      assert(0 && "Unknown cast!");
1272    }
1273  } else {
1274    assert(SrcVT == MVT::Vector && "Unknown cast!");
1275    assert(DestVT != MVT::Vector && "Casts to vector already handled!");
1276    // This is a cast from a vector to something else.  This is always a bit
1277    // convert.  Get information about the input vector.
1278    setValue(&I, DAG.getNode(ISD::VBIT_CONVERT, DestVT, N));
1279  }
1280}
1281
1282void SelectionDAGLowering::visitInsertElement(User &I) {
1283  SDOperand InVec = getValue(I.getOperand(0));
1284  SDOperand InVal = getValue(I.getOperand(1));
1285  SDOperand InIdx = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(),
1286                                getValue(I.getOperand(2)));
1287
1288  SDOperand Num = *(InVec.Val->op_end()-2);
1289  SDOperand Typ = *(InVec.Val->op_end()-1);
1290  setValue(&I, DAG.getNode(ISD::VINSERT_VECTOR_ELT, MVT::Vector,
1291                           InVec, InVal, InIdx, Num, Typ));
1292}
1293
1294void SelectionDAGLowering::visitExtractElement(User &I) {
1295  SDOperand InVec = getValue(I.getOperand(0));
1296  SDOperand InIdx = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(),
1297                                getValue(I.getOperand(1)));
1298  SDOperand Typ = *(InVec.Val->op_end()-1);
1299  setValue(&I, DAG.getNode(ISD::VEXTRACT_VECTOR_ELT,
1300                           TLI.getValueType(I.getType()), InVec, InIdx));
1301}
1302
1303void SelectionDAGLowering::visitShuffleVector(User &I) {
1304  SDOperand V1   = getValue(I.getOperand(0));
1305  SDOperand V2   = getValue(I.getOperand(1));
1306  SDOperand Mask = getValue(I.getOperand(2));
1307
1308  SDOperand Num = *(V1.Val->op_end()-2);
1309  SDOperand Typ = *(V2.Val->op_end()-1);
1310  setValue(&I, DAG.getNode(ISD::VVECTOR_SHUFFLE, MVT::Vector,
1311                           V1, V2, Mask, Num, Typ));
1312}
1313
1314
1315void SelectionDAGLowering::visitGetElementPtr(User &I) {
1316  SDOperand N = getValue(I.getOperand(0));
1317  const Type *Ty = I.getOperand(0)->getType();
1318
1319  for (GetElementPtrInst::op_iterator OI = I.op_begin()+1, E = I.op_end();
1320       OI != E; ++OI) {
1321    Value *Idx = *OI;
1322    if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
1323      unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
1324      if (Field) {
1325        // N = N + Offset
1326        uint64_t Offset = TD->getStructLayout(StTy)->MemberOffsets[Field];
1327        N = DAG.getNode(ISD::ADD, N.getValueType(), N,
1328                        getIntPtrConstant(Offset));
1329      }
1330      Ty = StTy->getElementType(Field);
1331    } else {
1332      Ty = cast<SequentialType>(Ty)->getElementType();
1333
1334      // If this is a constant subscript, handle it quickly.
1335      if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
1336        if (CI->getZExtValue() == 0) continue;
1337        uint64_t Offs;
1338        if (CI->getType()->isSigned())
1339          Offs = (int64_t)
1340            TD->getTypeSize(Ty)*cast<ConstantInt>(CI)->getSExtValue();
1341        else
1342          Offs =
1343            TD->getTypeSize(Ty)*cast<ConstantInt>(CI)->getZExtValue();
1344        N = DAG.getNode(ISD::ADD, N.getValueType(), N, getIntPtrConstant(Offs));
1345        continue;
1346      }
1347
1348      // N = N + Idx * ElementSize;
1349      uint64_t ElementSize = TD->getTypeSize(Ty);
1350      SDOperand IdxN = getValue(Idx);
1351
1352      // If the index is smaller or larger than intptr_t, truncate or extend
1353      // it.
1354      if (IdxN.getValueType() < N.getValueType()) {
1355        if (Idx->getType()->isSigned())
1356          IdxN = DAG.getNode(ISD::SIGN_EXTEND, N.getValueType(), IdxN);
1357        else
1358          IdxN = DAG.getNode(ISD::ZERO_EXTEND, N.getValueType(), IdxN);
1359      } else if (IdxN.getValueType() > N.getValueType())
1360        IdxN = DAG.getNode(ISD::TRUNCATE, N.getValueType(), IdxN);
1361
1362      // If this is a multiply by a power of two, turn it into a shl
1363      // immediately.  This is a very common case.
1364      if (isPowerOf2_64(ElementSize)) {
1365        unsigned Amt = Log2_64(ElementSize);
1366        IdxN = DAG.getNode(ISD::SHL, N.getValueType(), IdxN,
1367                           DAG.getConstant(Amt, TLI.getShiftAmountTy()));
1368        N = DAG.getNode(ISD::ADD, N.getValueType(), N, IdxN);
1369        continue;
1370      }
1371
1372      SDOperand Scale = getIntPtrConstant(ElementSize);
1373      IdxN = DAG.getNode(ISD::MUL, N.getValueType(), IdxN, Scale);
1374      N = DAG.getNode(ISD::ADD, N.getValueType(), N, IdxN);
1375    }
1376  }
1377  setValue(&I, N);
1378}
1379
1380void SelectionDAGLowering::visitAlloca(AllocaInst &I) {
1381  // If this is a fixed sized alloca in the entry block of the function,
1382  // allocate it statically on the stack.
1383  if (FuncInfo.StaticAllocaMap.count(&I))
1384    return;   // getValue will auto-populate this.
1385
1386  const Type *Ty = I.getAllocatedType();
1387  uint64_t TySize = TLI.getTargetData()->getTypeSize(Ty);
1388  unsigned Align = std::max((unsigned)TLI.getTargetData()->getTypeAlignment(Ty),
1389                            I.getAlignment());
1390
1391  SDOperand AllocSize = getValue(I.getArraySize());
1392  MVT::ValueType IntPtr = TLI.getPointerTy();
1393  if (IntPtr < AllocSize.getValueType())
1394    AllocSize = DAG.getNode(ISD::TRUNCATE, IntPtr, AllocSize);
1395  else if (IntPtr > AllocSize.getValueType())
1396    AllocSize = DAG.getNode(ISD::ZERO_EXTEND, IntPtr, AllocSize);
1397
1398  AllocSize = DAG.getNode(ISD::MUL, IntPtr, AllocSize,
1399                          getIntPtrConstant(TySize));
1400
1401  // Handle alignment.  If the requested alignment is less than or equal to the
1402  // stack alignment, ignore it and round the size of the allocation up to the
1403  // stack alignment size.  If the size is greater than the stack alignment, we
1404  // note this in the DYNAMIC_STACKALLOC node.
1405  unsigned StackAlign =
1406    TLI.getTargetMachine().getFrameInfo()->getStackAlignment();
1407  if (Align <= StackAlign) {
1408    Align = 0;
1409    // Add SA-1 to the size.
1410    AllocSize = DAG.getNode(ISD::ADD, AllocSize.getValueType(), AllocSize,
1411                            getIntPtrConstant(StackAlign-1));
1412    // Mask out the low bits for alignment purposes.
1413    AllocSize = DAG.getNode(ISD::AND, AllocSize.getValueType(), AllocSize,
1414                            getIntPtrConstant(~(uint64_t)(StackAlign-1)));
1415  }
1416
1417  SDOperand Ops[] = { getRoot(), AllocSize, getIntPtrConstant(Align) };
1418  const MVT::ValueType *VTs = DAG.getNodeValueTypes(AllocSize.getValueType(),
1419                                                    MVT::Other);
1420  SDOperand DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, VTs, 2, Ops, 3);
1421  DAG.setRoot(setValue(&I, DSA).getValue(1));
1422
1423  // Inform the Frame Information that we have just allocated a variable-sized
1424  // object.
1425  CurMBB->getParent()->getFrameInfo()->CreateVariableSizedObject();
1426}
1427
1428void SelectionDAGLowering::visitLoad(LoadInst &I) {
1429  SDOperand Ptr = getValue(I.getOperand(0));
1430
1431  SDOperand Root;
1432  if (I.isVolatile())
1433    Root = getRoot();
1434  else {
1435    // Do not serialize non-volatile loads against each other.
1436    Root = DAG.getRoot();
1437  }
1438
1439  setValue(&I, getLoadFrom(I.getType(), Ptr, I.getOperand(0),
1440                           Root, I.isVolatile()));
1441}
1442
1443SDOperand SelectionDAGLowering::getLoadFrom(const Type *Ty, SDOperand Ptr,
1444                                            const Value *SV, SDOperand Root,
1445                                            bool isVolatile) {
1446  SDOperand L;
1447  if (const PackedType *PTy = dyn_cast<PackedType>(Ty)) {
1448    MVT::ValueType PVT = TLI.getValueType(PTy->getElementType());
1449    L = DAG.getVecLoad(PTy->getNumElements(), PVT, Root, Ptr,
1450                       DAG.getSrcValue(SV));
1451  } else {
1452    L = DAG.getLoad(TLI.getValueType(Ty), Root, Ptr, SV, isVolatile);
1453  }
1454
1455  if (isVolatile)
1456    DAG.setRoot(L.getValue(1));
1457  else
1458    PendingLoads.push_back(L.getValue(1));
1459
1460  return L;
1461}
1462
1463
1464void SelectionDAGLowering::visitStore(StoreInst &I) {
1465  Value *SrcV = I.getOperand(0);
1466  SDOperand Src = getValue(SrcV);
1467  SDOperand Ptr = getValue(I.getOperand(1));
1468  DAG.setRoot(DAG.getStore(getRoot(), Src, Ptr, I.getOperand(1),
1469                           I.isVolatile()));
1470}
1471
1472/// IntrinsicCannotAccessMemory - Return true if the specified intrinsic cannot
1473/// access memory and has no other side effects at all.
1474static bool IntrinsicCannotAccessMemory(unsigned IntrinsicID) {
1475#define GET_NO_MEMORY_INTRINSICS
1476#include "llvm/Intrinsics.gen"
1477#undef GET_NO_MEMORY_INTRINSICS
1478  return false;
1479}
1480
1481// IntrinsicOnlyReadsMemory - Return true if the specified intrinsic doesn't
1482// have any side-effects or if it only reads memory.
1483static bool IntrinsicOnlyReadsMemory(unsigned IntrinsicID) {
1484#define GET_SIDE_EFFECT_INFO
1485#include "llvm/Intrinsics.gen"
1486#undef GET_SIDE_EFFECT_INFO
1487  return false;
1488}
1489
1490/// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
1491/// node.
1492void SelectionDAGLowering::visitTargetIntrinsic(CallInst &I,
1493                                                unsigned Intrinsic) {
1494  bool HasChain = !IntrinsicCannotAccessMemory(Intrinsic);
1495  bool OnlyLoad = HasChain && IntrinsicOnlyReadsMemory(Intrinsic);
1496
1497  // Build the operand list.
1498  SmallVector<SDOperand, 8> Ops;
1499  if (HasChain) {  // If this intrinsic has side-effects, chainify it.
1500    if (OnlyLoad) {
1501      // We don't need to serialize loads against other loads.
1502      Ops.push_back(DAG.getRoot());
1503    } else {
1504      Ops.push_back(getRoot());
1505    }
1506  }
1507
1508  // Add the intrinsic ID as an integer operand.
1509  Ops.push_back(DAG.getConstant(Intrinsic, TLI.getPointerTy()));
1510
1511  // Add all operands of the call to the operand list.
1512  for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) {
1513    SDOperand Op = getValue(I.getOperand(i));
1514
1515    // If this is a vector type, force it to the right packed type.
1516    if (Op.getValueType() == MVT::Vector) {
1517      const PackedType *OpTy = cast<PackedType>(I.getOperand(i)->getType());
1518      MVT::ValueType EltVT = TLI.getValueType(OpTy->getElementType());
1519
1520      MVT::ValueType VVT = MVT::getVectorType(EltVT, OpTy->getNumElements());
1521      assert(VVT != MVT::Other && "Intrinsic uses a non-legal type?");
1522      Op = DAG.getNode(ISD::VBIT_CONVERT, VVT, Op);
1523    }
1524
1525    assert(TLI.isTypeLegal(Op.getValueType()) &&
1526           "Intrinsic uses a non-legal type?");
1527    Ops.push_back(Op);
1528  }
1529
1530  std::vector<MVT::ValueType> VTs;
1531  if (I.getType() != Type::VoidTy) {
1532    MVT::ValueType VT = TLI.getValueType(I.getType());
1533    if (VT == MVT::Vector) {
1534      const PackedType *DestTy = cast<PackedType>(I.getType());
1535      MVT::ValueType EltVT = TLI.getValueType(DestTy->getElementType());
1536
1537      VT = MVT::getVectorType(EltVT, DestTy->getNumElements());
1538      assert(VT != MVT::Other && "Intrinsic uses a non-legal type?");
1539    }
1540
1541    assert(TLI.isTypeLegal(VT) && "Intrinsic uses a non-legal type?");
1542    VTs.push_back(VT);
1543  }
1544  if (HasChain)
1545    VTs.push_back(MVT::Other);
1546
1547  const MVT::ValueType *VTList = DAG.getNodeValueTypes(VTs);
1548
1549  // Create the node.
1550  SDOperand Result;
1551  if (!HasChain)
1552    Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, VTList, VTs.size(),
1553                         &Ops[0], Ops.size());
1554  else if (I.getType() != Type::VoidTy)
1555    Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, VTList, VTs.size(),
1556                         &Ops[0], Ops.size());
1557  else
1558    Result = DAG.getNode(ISD::INTRINSIC_VOID, VTList, VTs.size(),
1559                         &Ops[0], Ops.size());
1560
1561  if (HasChain) {
1562    SDOperand Chain = Result.getValue(Result.Val->getNumValues()-1);
1563    if (OnlyLoad)
1564      PendingLoads.push_back(Chain);
1565    else
1566      DAG.setRoot(Chain);
1567  }
1568  if (I.getType() != Type::VoidTy) {
1569    if (const PackedType *PTy = dyn_cast<PackedType>(I.getType())) {
1570      MVT::ValueType EVT = TLI.getValueType(PTy->getElementType());
1571      Result = DAG.getNode(ISD::VBIT_CONVERT, MVT::Vector, Result,
1572                           DAG.getConstant(PTy->getNumElements(), MVT::i32),
1573                           DAG.getValueType(EVT));
1574    }
1575    setValue(&I, Result);
1576  }
1577}
1578
1579/// visitIntrinsicCall - Lower the call to the specified intrinsic function.  If
1580/// we want to emit this as a call to a named external function, return the name
1581/// otherwise lower it and return null.
1582const char *
1583SelectionDAGLowering::visitIntrinsicCall(CallInst &I, unsigned Intrinsic) {
1584  switch (Intrinsic) {
1585  default:
1586    // By default, turn this into a target intrinsic node.
1587    visitTargetIntrinsic(I, Intrinsic);
1588    return 0;
1589  case Intrinsic::vastart:  visitVAStart(I); return 0;
1590  case Intrinsic::vaend:    visitVAEnd(I); return 0;
1591  case Intrinsic::vacopy:   visitVACopy(I); return 0;
1592  case Intrinsic::returnaddress: visitFrameReturnAddress(I, false); return 0;
1593  case Intrinsic::frameaddress:  visitFrameReturnAddress(I, true); return 0;
1594  case Intrinsic::setjmp:
1595    return "_setjmp"+!TLI.usesUnderscoreSetJmpLongJmp();
1596    break;
1597  case Intrinsic::longjmp:
1598    return "_longjmp"+!TLI.usesUnderscoreSetJmpLongJmp();
1599    break;
1600  case Intrinsic::memcpy_i32:
1601  case Intrinsic::memcpy_i64:
1602    visitMemIntrinsic(I, ISD::MEMCPY);
1603    return 0;
1604  case Intrinsic::memset_i32:
1605  case Intrinsic::memset_i64:
1606    visitMemIntrinsic(I, ISD::MEMSET);
1607    return 0;
1608  case Intrinsic::memmove_i32:
1609  case Intrinsic::memmove_i64:
1610    visitMemIntrinsic(I, ISD::MEMMOVE);
1611    return 0;
1612
1613  case Intrinsic::dbg_stoppoint: {
1614    MachineDebugInfo *DebugInfo = DAG.getMachineDebugInfo();
1615    DbgStopPointInst &SPI = cast<DbgStopPointInst>(I);
1616    if (DebugInfo && SPI.getContext() && DebugInfo->Verify(SPI.getContext())) {
1617      SDOperand Ops[5];
1618
1619      Ops[0] = getRoot();
1620      Ops[1] = getValue(SPI.getLineValue());
1621      Ops[2] = getValue(SPI.getColumnValue());
1622
1623      DebugInfoDesc *DD = DebugInfo->getDescFor(SPI.getContext());
1624      assert(DD && "Not a debug information descriptor");
1625      CompileUnitDesc *CompileUnit = cast<CompileUnitDesc>(DD);
1626
1627      Ops[3] = DAG.getString(CompileUnit->getFileName());
1628      Ops[4] = DAG.getString(CompileUnit->getDirectory());
1629
1630      DAG.setRoot(DAG.getNode(ISD::LOCATION, MVT::Other, Ops, 5));
1631    }
1632
1633    return 0;
1634  }
1635  case Intrinsic::dbg_region_start: {
1636    MachineDebugInfo *DebugInfo = DAG.getMachineDebugInfo();
1637    DbgRegionStartInst &RSI = cast<DbgRegionStartInst>(I);
1638    if (DebugInfo && RSI.getContext() && DebugInfo->Verify(RSI.getContext())) {
1639      unsigned LabelID = DebugInfo->RecordRegionStart(RSI.getContext());
1640      DAG.setRoot(DAG.getNode(ISD::DEBUG_LABEL, MVT::Other, getRoot(),
1641                              DAG.getConstant(LabelID, MVT::i32)));
1642    }
1643
1644    return 0;
1645  }
1646  case Intrinsic::dbg_region_end: {
1647    MachineDebugInfo *DebugInfo = DAG.getMachineDebugInfo();
1648    DbgRegionEndInst &REI = cast<DbgRegionEndInst>(I);
1649    if (DebugInfo && REI.getContext() && DebugInfo->Verify(REI.getContext())) {
1650      unsigned LabelID = DebugInfo->RecordRegionEnd(REI.getContext());
1651      DAG.setRoot(DAG.getNode(ISD::DEBUG_LABEL, MVT::Other,
1652                              getRoot(), DAG.getConstant(LabelID, MVT::i32)));
1653    }
1654
1655    return 0;
1656  }
1657  case Intrinsic::dbg_func_start: {
1658    MachineDebugInfo *DebugInfo = DAG.getMachineDebugInfo();
1659    DbgFuncStartInst &FSI = cast<DbgFuncStartInst>(I);
1660    if (DebugInfo && FSI.getSubprogram() &&
1661        DebugInfo->Verify(FSI.getSubprogram())) {
1662      unsigned LabelID = DebugInfo->RecordRegionStart(FSI.getSubprogram());
1663      DAG.setRoot(DAG.getNode(ISD::DEBUG_LABEL, MVT::Other,
1664                  getRoot(), DAG.getConstant(LabelID, MVT::i32)));
1665    }
1666
1667    return 0;
1668  }
1669  case Intrinsic::dbg_declare: {
1670    MachineDebugInfo *DebugInfo = DAG.getMachineDebugInfo();
1671    DbgDeclareInst &DI = cast<DbgDeclareInst>(I);
1672    if (DebugInfo && DI.getVariable() && DebugInfo->Verify(DI.getVariable())) {
1673      SDOperand AddressOp  = getValue(DI.getAddress());
1674      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(AddressOp))
1675        DebugInfo->RecordVariable(DI.getVariable(), FI->getIndex());
1676    }
1677
1678    return 0;
1679  }
1680
1681  case Intrinsic::isunordered_f32:
1682  case Intrinsic::isunordered_f64:
1683    setValue(&I, DAG.getSetCC(MVT::i1,getValue(I.getOperand(1)),
1684                              getValue(I.getOperand(2)), ISD::SETUO));
1685    return 0;
1686
1687  case Intrinsic::sqrt_f32:
1688  case Intrinsic::sqrt_f64:
1689    setValue(&I, DAG.getNode(ISD::FSQRT,
1690                             getValue(I.getOperand(1)).getValueType(),
1691                             getValue(I.getOperand(1))));
1692    return 0;
1693  case Intrinsic::powi_f32:
1694  case Intrinsic::powi_f64:
1695    setValue(&I, DAG.getNode(ISD::FPOWI,
1696                             getValue(I.getOperand(1)).getValueType(),
1697                             getValue(I.getOperand(1)),
1698                             getValue(I.getOperand(2))));
1699    return 0;
1700  case Intrinsic::pcmarker: {
1701    SDOperand Tmp = getValue(I.getOperand(1));
1702    DAG.setRoot(DAG.getNode(ISD::PCMARKER, MVT::Other, getRoot(), Tmp));
1703    return 0;
1704  }
1705  case Intrinsic::readcyclecounter: {
1706    SDOperand Op = getRoot();
1707    SDOperand Tmp = DAG.getNode(ISD::READCYCLECOUNTER,
1708                                DAG.getNodeValueTypes(MVT::i64, MVT::Other), 2,
1709                                &Op, 1);
1710    setValue(&I, Tmp);
1711    DAG.setRoot(Tmp.getValue(1));
1712    return 0;
1713  }
1714  case Intrinsic::bswap_i16:
1715  case Intrinsic::bswap_i32:
1716  case Intrinsic::bswap_i64:
1717    setValue(&I, DAG.getNode(ISD::BSWAP,
1718                             getValue(I.getOperand(1)).getValueType(),
1719                             getValue(I.getOperand(1))));
1720    return 0;
1721  case Intrinsic::cttz_i8:
1722  case Intrinsic::cttz_i16:
1723  case Intrinsic::cttz_i32:
1724  case Intrinsic::cttz_i64:
1725    setValue(&I, DAG.getNode(ISD::CTTZ,
1726                             getValue(I.getOperand(1)).getValueType(),
1727                             getValue(I.getOperand(1))));
1728    return 0;
1729  case Intrinsic::ctlz_i8:
1730  case Intrinsic::ctlz_i16:
1731  case Intrinsic::ctlz_i32:
1732  case Intrinsic::ctlz_i64:
1733    setValue(&I, DAG.getNode(ISD::CTLZ,
1734                             getValue(I.getOperand(1)).getValueType(),
1735                             getValue(I.getOperand(1))));
1736    return 0;
1737  case Intrinsic::ctpop_i8:
1738  case Intrinsic::ctpop_i16:
1739  case Intrinsic::ctpop_i32:
1740  case Intrinsic::ctpop_i64:
1741    setValue(&I, DAG.getNode(ISD::CTPOP,
1742                             getValue(I.getOperand(1)).getValueType(),
1743                             getValue(I.getOperand(1))));
1744    return 0;
1745  case Intrinsic::stacksave: {
1746    SDOperand Op = getRoot();
1747    SDOperand Tmp = DAG.getNode(ISD::STACKSAVE,
1748              DAG.getNodeValueTypes(TLI.getPointerTy(), MVT::Other), 2, &Op, 1);
1749    setValue(&I, Tmp);
1750    DAG.setRoot(Tmp.getValue(1));
1751    return 0;
1752  }
1753  case Intrinsic::stackrestore: {
1754    SDOperand Tmp = getValue(I.getOperand(1));
1755    DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, MVT::Other, getRoot(), Tmp));
1756    return 0;
1757  }
1758  case Intrinsic::prefetch:
1759    // FIXME: Currently discarding prefetches.
1760    return 0;
1761  }
1762}
1763
1764
1765void SelectionDAGLowering::visitCall(CallInst &I) {
1766  const char *RenameFn = 0;
1767  if (Function *F = I.getCalledFunction()) {
1768    if (F->isExternal())
1769      if (unsigned IID = F->getIntrinsicID()) {
1770        RenameFn = visitIntrinsicCall(I, IID);
1771        if (!RenameFn)
1772          return;
1773      } else {    // Not an LLVM intrinsic.
1774        const std::string &Name = F->getName();
1775        if (Name[0] == 'c' && (Name == "copysign" || Name == "copysignf")) {
1776          if (I.getNumOperands() == 3 &&   // Basic sanity checks.
1777              I.getOperand(1)->getType()->isFloatingPoint() &&
1778              I.getType() == I.getOperand(1)->getType() &&
1779              I.getType() == I.getOperand(2)->getType()) {
1780            SDOperand LHS = getValue(I.getOperand(1));
1781            SDOperand RHS = getValue(I.getOperand(2));
1782            setValue(&I, DAG.getNode(ISD::FCOPYSIGN, LHS.getValueType(),
1783                                     LHS, RHS));
1784            return;
1785          }
1786        } else if (Name[0] == 'f' && (Name == "fabs" || Name == "fabsf")) {
1787          if (I.getNumOperands() == 2 &&   // Basic sanity checks.
1788              I.getOperand(1)->getType()->isFloatingPoint() &&
1789              I.getType() == I.getOperand(1)->getType()) {
1790            SDOperand Tmp = getValue(I.getOperand(1));
1791            setValue(&I, DAG.getNode(ISD::FABS, Tmp.getValueType(), Tmp));
1792            return;
1793          }
1794        } else if (Name[0] == 's' && (Name == "sin" || Name == "sinf")) {
1795          if (I.getNumOperands() == 2 &&   // Basic sanity checks.
1796              I.getOperand(1)->getType()->isFloatingPoint() &&
1797              I.getType() == I.getOperand(1)->getType()) {
1798            SDOperand Tmp = getValue(I.getOperand(1));
1799            setValue(&I, DAG.getNode(ISD::FSIN, Tmp.getValueType(), Tmp));
1800            return;
1801          }
1802        } else if (Name[0] == 'c' && (Name == "cos" || Name == "cosf")) {
1803          if (I.getNumOperands() == 2 &&   // Basic sanity checks.
1804              I.getOperand(1)->getType()->isFloatingPoint() &&
1805              I.getType() == I.getOperand(1)->getType()) {
1806            SDOperand Tmp = getValue(I.getOperand(1));
1807            setValue(&I, DAG.getNode(ISD::FCOS, Tmp.getValueType(), Tmp));
1808            return;
1809          }
1810        }
1811      }
1812  } else if (isa<InlineAsm>(I.getOperand(0))) {
1813    visitInlineAsm(I);
1814    return;
1815  }
1816
1817  SDOperand Callee;
1818  if (!RenameFn)
1819    Callee = getValue(I.getOperand(0));
1820  else
1821    Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy());
1822  std::vector<std::pair<SDOperand, const Type*> > Args;
1823  Args.reserve(I.getNumOperands());
1824  for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) {
1825    Value *Arg = I.getOperand(i);
1826    SDOperand ArgNode = getValue(Arg);
1827    Args.push_back(std::make_pair(ArgNode, Arg->getType()));
1828  }
1829
1830  const PointerType *PT = cast<PointerType>(I.getCalledValue()->getType());
1831  const FunctionType *FTy = cast<FunctionType>(PT->getElementType());
1832
1833  std::pair<SDOperand,SDOperand> Result =
1834    TLI.LowerCallTo(getRoot(), I.getType(), FTy->isVarArg(), I.getCallingConv(),
1835                    I.isTailCall(), Callee, Args, DAG);
1836  if (I.getType() != Type::VoidTy)
1837    setValue(&I, Result.first);
1838  DAG.setRoot(Result.second);
1839}
1840
1841SDOperand RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
1842                                        SDOperand &Chain, SDOperand &Flag)const{
1843  SDOperand Val = DAG.getCopyFromReg(Chain, Regs[0], RegVT, Flag);
1844  Chain = Val.getValue(1);
1845  Flag  = Val.getValue(2);
1846
1847  // If the result was expanded, copy from the top part.
1848  if (Regs.size() > 1) {
1849    assert(Regs.size() == 2 &&
1850           "Cannot expand to more than 2 elts yet!");
1851    SDOperand Hi = DAG.getCopyFromReg(Chain, Regs[1], RegVT, Flag);
1852    Chain = Hi.getValue(1);
1853    Flag  = Hi.getValue(2);
1854    if (DAG.getTargetLoweringInfo().isLittleEndian())
1855      return DAG.getNode(ISD::BUILD_PAIR, ValueVT, Val, Hi);
1856    else
1857      return DAG.getNode(ISD::BUILD_PAIR, ValueVT, Hi, Val);
1858  }
1859
1860  // Otherwise, if the return value was promoted or extended, truncate it to the
1861  // appropriate type.
1862  if (RegVT == ValueVT)
1863    return Val;
1864
1865  if (MVT::isInteger(RegVT)) {
1866    if (ValueVT < RegVT)
1867      return DAG.getNode(ISD::TRUNCATE, ValueVT, Val);
1868    else
1869      return DAG.getNode(ISD::ANY_EXTEND, ValueVT, Val);
1870  } else {
1871    return DAG.getNode(ISD::FP_ROUND, ValueVT, Val);
1872  }
1873}
1874
1875/// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
1876/// specified value into the registers specified by this object.  This uses
1877/// Chain/Flag as the input and updates them for the output Chain/Flag.
1878void RegsForValue::getCopyToRegs(SDOperand Val, SelectionDAG &DAG,
1879                                 SDOperand &Chain, SDOperand &Flag,
1880                                 MVT::ValueType PtrVT) const {
1881  if (Regs.size() == 1) {
1882    // If there is a single register and the types differ, this must be
1883    // a promotion.
1884    if (RegVT != ValueVT) {
1885      if (MVT::isInteger(RegVT)) {
1886        if (RegVT < ValueVT)
1887          Val = DAG.getNode(ISD::TRUNCATE, RegVT, Val);
1888        else
1889          Val = DAG.getNode(ISD::ANY_EXTEND, RegVT, Val);
1890      } else
1891        Val = DAG.getNode(ISD::FP_EXTEND, RegVT, Val);
1892    }
1893    Chain = DAG.getCopyToReg(Chain, Regs[0], Val, Flag);
1894    Flag = Chain.getValue(1);
1895  } else {
1896    std::vector<unsigned> R(Regs);
1897    if (!DAG.getTargetLoweringInfo().isLittleEndian())
1898      std::reverse(R.begin(), R.end());
1899
1900    for (unsigned i = 0, e = R.size(); i != e; ++i) {
1901      SDOperand Part = DAG.getNode(ISD::EXTRACT_ELEMENT, RegVT, Val,
1902                                   DAG.getConstant(i, PtrVT));
1903      Chain = DAG.getCopyToReg(Chain, R[i], Part, Flag);
1904      Flag = Chain.getValue(1);
1905    }
1906  }
1907}
1908
1909/// AddInlineAsmOperands - Add this value to the specified inlineasm node
1910/// operand list.  This adds the code marker and includes the number of
1911/// values added into it.
1912void RegsForValue::AddInlineAsmOperands(unsigned Code, SelectionDAG &DAG,
1913                                        std::vector<SDOperand> &Ops) const {
1914  Ops.push_back(DAG.getConstant(Code | (Regs.size() << 3), MVT::i32));
1915  for (unsigned i = 0, e = Regs.size(); i != e; ++i)
1916    Ops.push_back(DAG.getRegister(Regs[i], RegVT));
1917}
1918
1919/// isAllocatableRegister - If the specified register is safe to allocate,
1920/// i.e. it isn't a stack pointer or some other special register, return the
1921/// register class for the register.  Otherwise, return null.
1922static const TargetRegisterClass *
1923isAllocatableRegister(unsigned Reg, MachineFunction &MF,
1924                      const TargetLowering &TLI, const MRegisterInfo *MRI) {
1925  MVT::ValueType FoundVT = MVT::Other;
1926  const TargetRegisterClass *FoundRC = 0;
1927  for (MRegisterInfo::regclass_iterator RCI = MRI->regclass_begin(),
1928       E = MRI->regclass_end(); RCI != E; ++RCI) {
1929    MVT::ValueType ThisVT = MVT::Other;
1930
1931    const TargetRegisterClass *RC = *RCI;
1932    // If none of the the value types for this register class are valid, we
1933    // can't use it.  For example, 64-bit reg classes on 32-bit targets.
1934    for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
1935         I != E; ++I) {
1936      if (TLI.isTypeLegal(*I)) {
1937        // If we have already found this register in a different register class,
1938        // choose the one with the largest VT specified.  For example, on
1939        // PowerPC, we favor f64 register classes over f32.
1940        if (FoundVT == MVT::Other ||
1941            MVT::getSizeInBits(FoundVT) < MVT::getSizeInBits(*I)) {
1942          ThisVT = *I;
1943          break;
1944        }
1945      }
1946    }
1947
1948    if (ThisVT == MVT::Other) continue;
1949
1950    // NOTE: This isn't ideal.  In particular, this might allocate the
1951    // frame pointer in functions that need it (due to them not being taken
1952    // out of allocation, because a variable sized allocation hasn't been seen
1953    // yet).  This is a slight code pessimization, but should still work.
1954    for (TargetRegisterClass::iterator I = RC->allocation_order_begin(MF),
1955         E = RC->allocation_order_end(MF); I != E; ++I)
1956      if (*I == Reg) {
1957        // We found a matching register class.  Keep looking at others in case
1958        // we find one with larger registers that this physreg is also in.
1959        FoundRC = RC;
1960        FoundVT = ThisVT;
1961        break;
1962      }
1963  }
1964  return FoundRC;
1965}
1966
1967RegsForValue SelectionDAGLowering::
1968GetRegistersForValue(const std::string &ConstrCode,
1969                     MVT::ValueType VT, bool isOutReg, bool isInReg,
1970                     std::set<unsigned> &OutputRegs,
1971                     std::set<unsigned> &InputRegs) {
1972  std::pair<unsigned, const TargetRegisterClass*> PhysReg =
1973    TLI.getRegForInlineAsmConstraint(ConstrCode, VT);
1974  std::vector<unsigned> Regs;
1975
1976  unsigned NumRegs = VT != MVT::Other ? TLI.getNumElements(VT) : 1;
1977  MVT::ValueType RegVT;
1978  MVT::ValueType ValueVT = VT;
1979
1980  if (PhysReg.first) {
1981    if (VT == MVT::Other)
1982      ValueVT = *PhysReg.second->vt_begin();
1983
1984    // Get the actual register value type.  This is important, because the user
1985    // may have asked for (e.g.) the AX register in i32 type.  We need to
1986    // remember that AX is actually i16 to get the right extension.
1987    RegVT = *PhysReg.second->vt_begin();
1988
1989    // This is a explicit reference to a physical register.
1990    Regs.push_back(PhysReg.first);
1991
1992    // If this is an expanded reference, add the rest of the regs to Regs.
1993    if (NumRegs != 1) {
1994      TargetRegisterClass::iterator I = PhysReg.second->begin();
1995      TargetRegisterClass::iterator E = PhysReg.second->end();
1996      for (; *I != PhysReg.first; ++I)
1997        assert(I != E && "Didn't find reg!");
1998
1999      // Already added the first reg.
2000      --NumRegs; ++I;
2001      for (; NumRegs; --NumRegs, ++I) {
2002        assert(I != E && "Ran out of registers to allocate!");
2003        Regs.push_back(*I);
2004      }
2005    }
2006    return RegsForValue(Regs, RegVT, ValueVT);
2007  }
2008
2009  // This is a reference to a register class.  Allocate NumRegs consecutive,
2010  // available, registers from the class.
2011  std::vector<unsigned> RegClassRegs =
2012    TLI.getRegClassForInlineAsmConstraint(ConstrCode, VT);
2013
2014  const MRegisterInfo *MRI = DAG.getTarget().getRegisterInfo();
2015  MachineFunction &MF = *CurMBB->getParent();
2016  unsigned NumAllocated = 0;
2017  for (unsigned i = 0, e = RegClassRegs.size(); i != e; ++i) {
2018    unsigned Reg = RegClassRegs[i];
2019    // See if this register is available.
2020    if ((isOutReg && OutputRegs.count(Reg)) ||   // Already used.
2021        (isInReg  && InputRegs.count(Reg))) {    // Already used.
2022      // Make sure we find consecutive registers.
2023      NumAllocated = 0;
2024      continue;
2025    }
2026
2027    // Check to see if this register is allocatable (i.e. don't give out the
2028    // stack pointer).
2029    const TargetRegisterClass *RC = isAllocatableRegister(Reg, MF, TLI, MRI);
2030    if (!RC) {
2031      // Make sure we find consecutive registers.
2032      NumAllocated = 0;
2033      continue;
2034    }
2035
2036    // Okay, this register is good, we can use it.
2037    ++NumAllocated;
2038
2039    // If we allocated enough consecutive
2040    if (NumAllocated == NumRegs) {
2041      unsigned RegStart = (i-NumAllocated)+1;
2042      unsigned RegEnd   = i+1;
2043      // Mark all of the allocated registers used.
2044      for (unsigned i = RegStart; i != RegEnd; ++i) {
2045        unsigned Reg = RegClassRegs[i];
2046        Regs.push_back(Reg);
2047        if (isOutReg) OutputRegs.insert(Reg);    // Mark reg used.
2048        if (isInReg)  InputRegs.insert(Reg);     // Mark reg used.
2049      }
2050
2051      return RegsForValue(Regs, *RC->vt_begin(), VT);
2052    }
2053  }
2054
2055  // Otherwise, we couldn't allocate enough registers for this.
2056  return RegsForValue();
2057}
2058
2059
2060/// visitInlineAsm - Handle a call to an InlineAsm object.
2061///
2062void SelectionDAGLowering::visitInlineAsm(CallInst &I) {
2063  InlineAsm *IA = cast<InlineAsm>(I.getOperand(0));
2064
2065  SDOperand AsmStr = DAG.getTargetExternalSymbol(IA->getAsmString().c_str(),
2066                                                 MVT::Other);
2067
2068  // Note, we treat inline asms both with and without side-effects as the same.
2069  // If an inline asm doesn't have side effects and doesn't access memory, we
2070  // could not choose to not chain it.
2071  bool hasSideEffects = IA->hasSideEffects();
2072
2073  std::vector<InlineAsm::ConstraintInfo> Constraints = IA->ParseConstraints();
2074  std::vector<MVT::ValueType> ConstraintVTs;
2075
2076  /// AsmNodeOperands - A list of pairs.  The first element is a register, the
2077  /// second is a bitfield where bit #0 is set if it is a use and bit #1 is set
2078  /// if it is a def of that register.
2079  std::vector<SDOperand> AsmNodeOperands;
2080  AsmNodeOperands.push_back(SDOperand());  // reserve space for input chain
2081  AsmNodeOperands.push_back(AsmStr);
2082
2083  SDOperand Chain = getRoot();
2084  SDOperand Flag;
2085
2086  // We fully assign registers here at isel time.  This is not optimal, but
2087  // should work.  For register classes that correspond to LLVM classes, we
2088  // could let the LLVM RA do its thing, but we currently don't.  Do a prepass
2089  // over the constraints, collecting fixed registers that we know we can't use.
2090  std::set<unsigned> OutputRegs, InputRegs;
2091  unsigned OpNum = 1;
2092  for (unsigned i = 0, e = Constraints.size(); i != e; ++i) {
2093    assert(Constraints[i].Codes.size() == 1 && "Only handles one code so far!");
2094    std::string &ConstraintCode = Constraints[i].Codes[0];
2095
2096    MVT::ValueType OpVT;
2097
2098    // Compute the value type for each operand and add it to ConstraintVTs.
2099    switch (Constraints[i].Type) {
2100    case InlineAsm::isOutput:
2101      if (!Constraints[i].isIndirectOutput) {
2102        assert(I.getType() != Type::VoidTy && "Bad inline asm!");
2103        OpVT = TLI.getValueType(I.getType());
2104      } else {
2105        const Type *OpTy = I.getOperand(OpNum)->getType();
2106        OpVT = TLI.getValueType(cast<PointerType>(OpTy)->getElementType());
2107        OpNum++;  // Consumes a call operand.
2108      }
2109      break;
2110    case InlineAsm::isInput:
2111      OpVT = TLI.getValueType(I.getOperand(OpNum)->getType());
2112      OpNum++;  // Consumes a call operand.
2113      break;
2114    case InlineAsm::isClobber:
2115      OpVT = MVT::Other;
2116      break;
2117    }
2118
2119    ConstraintVTs.push_back(OpVT);
2120
2121    if (TLI.getRegForInlineAsmConstraint(ConstraintCode, OpVT).first == 0)
2122      continue;  // Not assigned a fixed reg.
2123
2124    // Build a list of regs that this operand uses.  This always has a single
2125    // element for promoted/expanded operands.
2126    RegsForValue Regs = GetRegistersForValue(ConstraintCode, OpVT,
2127                                             false, false,
2128                                             OutputRegs, InputRegs);
2129
2130    switch (Constraints[i].Type) {
2131    case InlineAsm::isOutput:
2132      // We can't assign any other output to this register.
2133      OutputRegs.insert(Regs.Regs.begin(), Regs.Regs.end());
2134      // If this is an early-clobber output, it cannot be assigned to the same
2135      // value as the input reg.
2136      if (Constraints[i].isEarlyClobber || Constraints[i].hasMatchingInput)
2137        InputRegs.insert(Regs.Regs.begin(), Regs.Regs.end());
2138      break;
2139    case InlineAsm::isInput:
2140      // We can't assign any other input to this register.
2141      InputRegs.insert(Regs.Regs.begin(), Regs.Regs.end());
2142      break;
2143    case InlineAsm::isClobber:
2144      // Clobbered regs cannot be used as inputs or outputs.
2145      InputRegs.insert(Regs.Regs.begin(), Regs.Regs.end());
2146      OutputRegs.insert(Regs.Regs.begin(), Regs.Regs.end());
2147      break;
2148    }
2149  }
2150
2151  // Loop over all of the inputs, copying the operand values into the
2152  // appropriate registers and processing the output regs.
2153  RegsForValue RetValRegs;
2154  std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit;
2155  OpNum = 1;
2156
2157  for (unsigned i = 0, e = Constraints.size(); i != e; ++i) {
2158    assert(Constraints[i].Codes.size() == 1 && "Only handles one code so far!");
2159    std::string &ConstraintCode = Constraints[i].Codes[0];
2160
2161    switch (Constraints[i].Type) {
2162    case InlineAsm::isOutput: {
2163      TargetLowering::ConstraintType CTy = TargetLowering::C_RegisterClass;
2164      if (ConstraintCode.size() == 1)   // not a physreg name.
2165        CTy = TLI.getConstraintType(ConstraintCode[0]);
2166
2167      if (CTy == TargetLowering::C_Memory) {
2168        // Memory output.
2169        SDOperand InOperandVal = getValue(I.getOperand(OpNum));
2170
2171        // Check that the operand (the address to store to) isn't a float.
2172        if (!MVT::isInteger(InOperandVal.getValueType()))
2173          assert(0 && "MATCH FAIL!");
2174
2175        if (!Constraints[i].isIndirectOutput)
2176          assert(0 && "MATCH FAIL!");
2177
2178        OpNum++;  // Consumes a call operand.
2179
2180        // Extend/truncate to the right pointer type if needed.
2181        MVT::ValueType PtrType = TLI.getPointerTy();
2182        if (InOperandVal.getValueType() < PtrType)
2183          InOperandVal = DAG.getNode(ISD::ZERO_EXTEND, PtrType, InOperandVal);
2184        else if (InOperandVal.getValueType() > PtrType)
2185          InOperandVal = DAG.getNode(ISD::TRUNCATE, PtrType, InOperandVal);
2186
2187        // Add information to the INLINEASM node to know about this output.
2188        unsigned ResOpType = 4/*MEM*/ | (1 << 3);
2189        AsmNodeOperands.push_back(DAG.getConstant(ResOpType, MVT::i32));
2190        AsmNodeOperands.push_back(InOperandVal);
2191        break;
2192      }
2193
2194      // Otherwise, this is a register output.
2195      assert(CTy == TargetLowering::C_RegisterClass && "Unknown op type!");
2196
2197      // If this is an early-clobber output, or if there is an input
2198      // constraint that matches this, we need to reserve the input register
2199      // so no other inputs allocate to it.
2200      bool UsesInputRegister = false;
2201      if (Constraints[i].isEarlyClobber || Constraints[i].hasMatchingInput)
2202        UsesInputRegister = true;
2203
2204      // Copy the output from the appropriate register.  Find a register that
2205      // we can use.
2206      RegsForValue Regs =
2207        GetRegistersForValue(ConstraintCode, ConstraintVTs[i],
2208                             true, UsesInputRegister,
2209                             OutputRegs, InputRegs);
2210      assert(!Regs.Regs.empty() && "Couldn't allocate output reg!");
2211
2212      if (!Constraints[i].isIndirectOutput) {
2213        assert(RetValRegs.Regs.empty() &&
2214               "Cannot have multiple output constraints yet!");
2215        assert(I.getType() != Type::VoidTy && "Bad inline asm!");
2216        RetValRegs = Regs;
2217      } else {
2218        IndirectStoresToEmit.push_back(std::make_pair(Regs,
2219                                                      I.getOperand(OpNum)));
2220        OpNum++;  // Consumes a call operand.
2221      }
2222
2223      // Add information to the INLINEASM node to know that this register is
2224      // set.
2225      Regs.AddInlineAsmOperands(2 /*REGDEF*/, DAG, AsmNodeOperands);
2226      break;
2227    }
2228    case InlineAsm::isInput: {
2229      SDOperand InOperandVal = getValue(I.getOperand(OpNum));
2230      OpNum++;  // Consumes a call operand.
2231
2232      if (isdigit(ConstraintCode[0])) {    // Matching constraint?
2233        // If this is required to match an output register we have already set,
2234        // just use its register.
2235        unsigned OperandNo = atoi(ConstraintCode.c_str());
2236
2237        // Scan until we find the definition we already emitted of this operand.
2238        // When we find it, create a RegsForValue operand.
2239        unsigned CurOp = 2;  // The first operand.
2240        for (; OperandNo; --OperandNo) {
2241          // Advance to the next operand.
2242          unsigned NumOps =
2243            cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getValue();
2244          assert(((NumOps & 7) == 2 /*REGDEF*/ ||
2245                  (NumOps & 7) == 4 /*MEM*/) &&
2246                 "Skipped past definitions?");
2247          CurOp += (NumOps>>3)+1;
2248        }
2249
2250        unsigned NumOps =
2251          cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getValue();
2252        assert((NumOps & 7) == 2 /*REGDEF*/ &&
2253               "Skipped past definitions?");
2254
2255        // Add NumOps>>3 registers to MatchedRegs.
2256        RegsForValue MatchedRegs;
2257        MatchedRegs.ValueVT = InOperandVal.getValueType();
2258        MatchedRegs.RegVT   = AsmNodeOperands[CurOp+1].getValueType();
2259        for (unsigned i = 0, e = NumOps>>3; i != e; ++i) {
2260          unsigned Reg=cast<RegisterSDNode>(AsmNodeOperands[++CurOp])->getReg();
2261          MatchedRegs.Regs.push_back(Reg);
2262        }
2263
2264        // Use the produced MatchedRegs object to
2265        MatchedRegs.getCopyToRegs(InOperandVal, DAG, Chain, Flag,
2266                                  TLI.getPointerTy());
2267        MatchedRegs.AddInlineAsmOperands(1 /*REGUSE*/, DAG, AsmNodeOperands);
2268        break;
2269      }
2270
2271      TargetLowering::ConstraintType CTy = TargetLowering::C_RegisterClass;
2272      if (ConstraintCode.size() == 1)   // not a physreg name.
2273        CTy = TLI.getConstraintType(ConstraintCode[0]);
2274
2275      if (CTy == TargetLowering::C_Other) {
2276        if (!TLI.isOperandValidForConstraint(InOperandVal, ConstraintCode[0]))
2277          assert(0 && "MATCH FAIL!");
2278
2279        // Add information to the INLINEASM node to know about this input.
2280        unsigned ResOpType = 3 /*IMM*/ | (1 << 3);
2281        AsmNodeOperands.push_back(DAG.getConstant(ResOpType, MVT::i32));
2282        AsmNodeOperands.push_back(InOperandVal);
2283        break;
2284      } else if (CTy == TargetLowering::C_Memory) {
2285        // Memory input.
2286
2287        // Check that the operand isn't a float.
2288        if (!MVT::isInteger(InOperandVal.getValueType()))
2289          assert(0 && "MATCH FAIL!");
2290
2291        // Extend/truncate to the right pointer type if needed.
2292        MVT::ValueType PtrType = TLI.getPointerTy();
2293        if (InOperandVal.getValueType() < PtrType)
2294          InOperandVal = DAG.getNode(ISD::ZERO_EXTEND, PtrType, InOperandVal);
2295        else if (InOperandVal.getValueType() > PtrType)
2296          InOperandVal = DAG.getNode(ISD::TRUNCATE, PtrType, InOperandVal);
2297
2298        // Add information to the INLINEASM node to know about this input.
2299        unsigned ResOpType = 4/*MEM*/ | (1 << 3);
2300        AsmNodeOperands.push_back(DAG.getConstant(ResOpType, MVT::i32));
2301        AsmNodeOperands.push_back(InOperandVal);
2302        break;
2303      }
2304
2305      assert(CTy == TargetLowering::C_RegisterClass && "Unknown op type!");
2306
2307      // Copy the input into the appropriate registers.
2308      RegsForValue InRegs =
2309        GetRegistersForValue(ConstraintCode, ConstraintVTs[i],
2310                             false, true, OutputRegs, InputRegs);
2311      // FIXME: should be match fail.
2312      assert(!InRegs.Regs.empty() && "Couldn't allocate input reg!");
2313
2314      InRegs.getCopyToRegs(InOperandVal, DAG, Chain, Flag, TLI.getPointerTy());
2315
2316      InRegs.AddInlineAsmOperands(1/*REGUSE*/, DAG, AsmNodeOperands);
2317      break;
2318    }
2319    case InlineAsm::isClobber: {
2320      RegsForValue ClobberedRegs =
2321        GetRegistersForValue(ConstraintCode, MVT::Other, false, false,
2322                             OutputRegs, InputRegs);
2323      // Add the clobbered value to the operand list, so that the register
2324      // allocator is aware that the physreg got clobbered.
2325      if (!ClobberedRegs.Regs.empty())
2326        ClobberedRegs.AddInlineAsmOperands(2/*REGDEF*/, DAG, AsmNodeOperands);
2327      break;
2328    }
2329    }
2330  }
2331
2332  // Finish up input operands.
2333  AsmNodeOperands[0] = Chain;
2334  if (Flag.Val) AsmNodeOperands.push_back(Flag);
2335
2336  Chain = DAG.getNode(ISD::INLINEASM,
2337                      DAG.getNodeValueTypes(MVT::Other, MVT::Flag), 2,
2338                      &AsmNodeOperands[0], AsmNodeOperands.size());
2339  Flag = Chain.getValue(1);
2340
2341  // If this asm returns a register value, copy the result from that register
2342  // and set it as the value of the call.
2343  if (!RetValRegs.Regs.empty())
2344    setValue(&I, RetValRegs.getCopyFromRegs(DAG, Chain, Flag));
2345
2346  std::vector<std::pair<SDOperand, Value*> > StoresToEmit;
2347
2348  // Process indirect outputs, first output all of the flagged copies out of
2349  // physregs.
2350  for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
2351    RegsForValue &OutRegs = IndirectStoresToEmit[i].first;
2352    Value *Ptr = IndirectStoresToEmit[i].second;
2353    SDOperand OutVal = OutRegs.getCopyFromRegs(DAG, Chain, Flag);
2354    StoresToEmit.push_back(std::make_pair(OutVal, Ptr));
2355  }
2356
2357  // Emit the non-flagged stores from the physregs.
2358  SmallVector<SDOperand, 8> OutChains;
2359  for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i)
2360    OutChains.push_back(DAG.getStore(Chain,  StoresToEmit[i].first,
2361                                    getValue(StoresToEmit[i].second),
2362                                    StoresToEmit[i].second, 0));
2363  if (!OutChains.empty())
2364    Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
2365                        &OutChains[0], OutChains.size());
2366  DAG.setRoot(Chain);
2367}
2368
2369
2370void SelectionDAGLowering::visitMalloc(MallocInst &I) {
2371  SDOperand Src = getValue(I.getOperand(0));
2372
2373  MVT::ValueType IntPtr = TLI.getPointerTy();
2374
2375  if (IntPtr < Src.getValueType())
2376    Src = DAG.getNode(ISD::TRUNCATE, IntPtr, Src);
2377  else if (IntPtr > Src.getValueType())
2378    Src = DAG.getNode(ISD::ZERO_EXTEND, IntPtr, Src);
2379
2380  // Scale the source by the type size.
2381  uint64_t ElementSize = TD->getTypeSize(I.getType()->getElementType());
2382  Src = DAG.getNode(ISD::MUL, Src.getValueType(),
2383                    Src, getIntPtrConstant(ElementSize));
2384
2385  std::vector<std::pair<SDOperand, const Type*> > Args;
2386  Args.push_back(std::make_pair(Src, TLI.getTargetData()->getIntPtrType()));
2387
2388  std::pair<SDOperand,SDOperand> Result =
2389    TLI.LowerCallTo(getRoot(), I.getType(), false, CallingConv::C, true,
2390                    DAG.getExternalSymbol("malloc", IntPtr),
2391                    Args, DAG);
2392  setValue(&I, Result.first);  // Pointers always fit in registers
2393  DAG.setRoot(Result.second);
2394}
2395
2396void SelectionDAGLowering::visitFree(FreeInst &I) {
2397  std::vector<std::pair<SDOperand, const Type*> > Args;
2398  Args.push_back(std::make_pair(getValue(I.getOperand(0)),
2399                                TLI.getTargetData()->getIntPtrType()));
2400  MVT::ValueType IntPtr = TLI.getPointerTy();
2401  std::pair<SDOperand,SDOperand> Result =
2402    TLI.LowerCallTo(getRoot(), Type::VoidTy, false, CallingConv::C, true,
2403                    DAG.getExternalSymbol("free", IntPtr), Args, DAG);
2404  DAG.setRoot(Result.second);
2405}
2406
2407// InsertAtEndOfBasicBlock - This method should be implemented by targets that
2408// mark instructions with the 'usesCustomDAGSchedInserter' flag.  These
2409// instructions are special in various ways, which require special support to
2410// insert.  The specified MachineInstr is created but not inserted into any
2411// basic blocks, and the scheduler passes ownership of it to this method.
2412MachineBasicBlock *TargetLowering::InsertAtEndOfBasicBlock(MachineInstr *MI,
2413                                                       MachineBasicBlock *MBB) {
2414  std::cerr << "If a target marks an instruction with "
2415               "'usesCustomDAGSchedInserter', it must implement "
2416               "TargetLowering::InsertAtEndOfBasicBlock!\n";
2417  abort();
2418  return 0;
2419}
2420
2421void SelectionDAGLowering::visitVAStart(CallInst &I) {
2422  DAG.setRoot(DAG.getNode(ISD::VASTART, MVT::Other, getRoot(),
2423                          getValue(I.getOperand(1)),
2424                          DAG.getSrcValue(I.getOperand(1))));
2425}
2426
2427void SelectionDAGLowering::visitVAArg(VAArgInst &I) {
2428  SDOperand V = DAG.getVAArg(TLI.getValueType(I.getType()), getRoot(),
2429                             getValue(I.getOperand(0)),
2430                             DAG.getSrcValue(I.getOperand(0)));
2431  setValue(&I, V);
2432  DAG.setRoot(V.getValue(1));
2433}
2434
2435void SelectionDAGLowering::visitVAEnd(CallInst &I) {
2436  DAG.setRoot(DAG.getNode(ISD::VAEND, MVT::Other, getRoot(),
2437                          getValue(I.getOperand(1)),
2438                          DAG.getSrcValue(I.getOperand(1))));
2439}
2440
2441void SelectionDAGLowering::visitVACopy(CallInst &I) {
2442  DAG.setRoot(DAG.getNode(ISD::VACOPY, MVT::Other, getRoot(),
2443                          getValue(I.getOperand(1)),
2444                          getValue(I.getOperand(2)),
2445                          DAG.getSrcValue(I.getOperand(1)),
2446                          DAG.getSrcValue(I.getOperand(2))));
2447}
2448
2449/// TargetLowering::LowerArguments - This is the default LowerArguments
2450/// implementation, which just inserts a FORMAL_ARGUMENTS node.  FIXME: When all
2451/// targets are migrated to using FORMAL_ARGUMENTS, this hook should be
2452/// integrated into SDISel.
2453std::vector<SDOperand>
2454TargetLowering::LowerArguments(Function &F, SelectionDAG &DAG) {
2455  // Add CC# and isVararg as operands to the FORMAL_ARGUMENTS node.
2456  std::vector<SDOperand> Ops;
2457  Ops.push_back(DAG.getRoot());
2458  Ops.push_back(DAG.getConstant(F.getCallingConv(), getPointerTy()));
2459  Ops.push_back(DAG.getConstant(F.isVarArg(), getPointerTy()));
2460
2461  // Add one result value for each formal argument.
2462  std::vector<MVT::ValueType> RetVals;
2463  for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I) {
2464    MVT::ValueType VT = getValueType(I->getType());
2465
2466    switch (getTypeAction(VT)) {
2467    default: assert(0 && "Unknown type action!");
2468    case Legal:
2469      RetVals.push_back(VT);
2470      break;
2471    case Promote:
2472      RetVals.push_back(getTypeToTransformTo(VT));
2473      break;
2474    case Expand:
2475      if (VT != MVT::Vector) {
2476        // If this is a large integer, it needs to be broken up into small
2477        // integers.  Figure out what the destination type is and how many small
2478        // integers it turns into.
2479        MVT::ValueType NVT = getTypeToTransformTo(VT);
2480        unsigned NumVals = MVT::getSizeInBits(VT)/MVT::getSizeInBits(NVT);
2481        for (unsigned i = 0; i != NumVals; ++i)
2482          RetVals.push_back(NVT);
2483      } else {
2484        // Otherwise, this is a vector type.  We only support legal vectors
2485        // right now.
2486        unsigned NumElems = cast<PackedType>(I->getType())->getNumElements();
2487        const Type *EltTy = cast<PackedType>(I->getType())->getElementType();
2488
2489        // Figure out if there is a Packed type corresponding to this Vector
2490        // type.  If so, convert to the packed type.
2491        MVT::ValueType TVT = MVT::getVectorType(getValueType(EltTy), NumElems);
2492        if (TVT != MVT::Other && isTypeLegal(TVT)) {
2493          RetVals.push_back(TVT);
2494        } else {
2495          assert(0 && "Don't support illegal by-val vector arguments yet!");
2496        }
2497      }
2498      break;
2499    }
2500  }
2501
2502  RetVals.push_back(MVT::Other);
2503
2504  // Create the node.
2505  SDNode *Result = DAG.getNode(ISD::FORMAL_ARGUMENTS,
2506                               DAG.getNodeValueTypes(RetVals), RetVals.size(),
2507                               &Ops[0], Ops.size()).Val;
2508
2509  DAG.setRoot(SDOperand(Result, Result->getNumValues()-1));
2510
2511  // Set up the return result vector.
2512  Ops.clear();
2513  unsigned i = 0;
2514  for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I) {
2515    MVT::ValueType VT = getValueType(I->getType());
2516
2517    switch (getTypeAction(VT)) {
2518    default: assert(0 && "Unknown type action!");
2519    case Legal:
2520      Ops.push_back(SDOperand(Result, i++));
2521      break;
2522    case Promote: {
2523      SDOperand Op(Result, i++);
2524      if (MVT::isInteger(VT)) {
2525        unsigned AssertOp = I->getType()->isSigned() ? ISD::AssertSext
2526                                                     : ISD::AssertZext;
2527        Op = DAG.getNode(AssertOp, Op.getValueType(), Op, DAG.getValueType(VT));
2528        Op = DAG.getNode(ISD::TRUNCATE, VT, Op);
2529      } else {
2530        assert(MVT::isFloatingPoint(VT) && "Not int or FP?");
2531        Op = DAG.getNode(ISD::FP_ROUND, VT, Op);
2532      }
2533      Ops.push_back(Op);
2534      break;
2535    }
2536    case Expand:
2537      if (VT != MVT::Vector) {
2538        // If this is a large integer, it needs to be reassembled from small
2539        // integers.  Figure out what the source elt type is and how many small
2540        // integers it is.
2541        MVT::ValueType NVT = getTypeToTransformTo(VT);
2542        unsigned NumVals = MVT::getSizeInBits(VT)/MVT::getSizeInBits(NVT);
2543        if (NumVals == 2) {
2544          SDOperand Lo = SDOperand(Result, i++);
2545          SDOperand Hi = SDOperand(Result, i++);
2546
2547          if (!isLittleEndian())
2548            std::swap(Lo, Hi);
2549
2550          Ops.push_back(DAG.getNode(ISD::BUILD_PAIR, VT, Lo, Hi));
2551        } else {
2552          // Value scalarized into many values.  Unimp for now.
2553          assert(0 && "Cannot expand i64 -> i16 yet!");
2554        }
2555      } else {
2556        // Otherwise, this is a vector type.  We only support legal vectors
2557        // right now.
2558        const PackedType *PTy = cast<PackedType>(I->getType());
2559        unsigned NumElems = PTy->getNumElements();
2560        const Type *EltTy = PTy->getElementType();
2561
2562        // Figure out if there is a Packed type corresponding to this Vector
2563        // type.  If so, convert to the packed type.
2564        MVT::ValueType TVT = MVT::getVectorType(getValueType(EltTy), NumElems);
2565        if (TVT != MVT::Other && isTypeLegal(TVT)) {
2566          SDOperand N = SDOperand(Result, i++);
2567          // Handle copies from generic vectors to registers.
2568          N = DAG.getNode(ISD::VBIT_CONVERT, MVT::Vector, N,
2569                          DAG.getConstant(NumElems, MVT::i32),
2570                          DAG.getValueType(getValueType(EltTy)));
2571          Ops.push_back(N);
2572        } else {
2573          assert(0 && "Don't support illegal by-val vector arguments yet!");
2574          abort();
2575        }
2576      }
2577      break;
2578    }
2579  }
2580  return Ops;
2581}
2582
2583
2584/// TargetLowering::LowerCallTo - This is the default LowerCallTo
2585/// implementation, which just inserts an ISD::CALL node, which is later custom
2586/// lowered by the target to something concrete.  FIXME: When all targets are
2587/// migrated to using ISD::CALL, this hook should be integrated into SDISel.
2588std::pair<SDOperand, SDOperand>
2589TargetLowering::LowerCallTo(SDOperand Chain, const Type *RetTy, bool isVarArg,
2590                            unsigned CallingConv, bool isTailCall,
2591                            SDOperand Callee,
2592                            ArgListTy &Args, SelectionDAG &DAG) {
2593  SmallVector<SDOperand, 32> Ops;
2594  Ops.push_back(Chain);   // Op#0 - Chain
2595  Ops.push_back(DAG.getConstant(CallingConv, getPointerTy())); // Op#1 - CC
2596  Ops.push_back(DAG.getConstant(isVarArg, getPointerTy()));    // Op#2 - VarArg
2597  Ops.push_back(DAG.getConstant(isTailCall, getPointerTy()));  // Op#3 - Tail
2598  Ops.push_back(Callee);
2599
2600  // Handle all of the outgoing arguments.
2601  for (unsigned i = 0, e = Args.size(); i != e; ++i) {
2602    MVT::ValueType VT = getValueType(Args[i].second);
2603    SDOperand Op = Args[i].first;
2604    bool isSigned = Args[i].second->isSigned();
2605    switch (getTypeAction(VT)) {
2606    default: assert(0 && "Unknown type action!");
2607    case Legal:
2608      Ops.push_back(Op);
2609      Ops.push_back(DAG.getConstant(isSigned, MVT::i32));
2610      break;
2611    case Promote:
2612      if (MVT::isInteger(VT)) {
2613        unsigned ExtOp = isSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
2614        Op = DAG.getNode(ExtOp, getTypeToTransformTo(VT), Op);
2615      } else {
2616        assert(MVT::isFloatingPoint(VT) && "Not int or FP?");
2617        Op = DAG.getNode(ISD::FP_EXTEND, getTypeToTransformTo(VT), Op);
2618      }
2619      Ops.push_back(Op);
2620      Ops.push_back(DAG.getConstant(isSigned, MVT::i32));
2621      break;
2622    case Expand:
2623      if (VT != MVT::Vector) {
2624        // If this is a large integer, it needs to be broken down into small
2625        // integers.  Figure out what the source elt type is and how many small
2626        // integers it is.
2627        MVT::ValueType NVT = getTypeToTransformTo(VT);
2628        unsigned NumVals = MVT::getSizeInBits(VT)/MVT::getSizeInBits(NVT);
2629        if (NumVals == 2) {
2630          SDOperand Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, NVT, Op,
2631                                     DAG.getConstant(0, getPointerTy()));
2632          SDOperand Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, NVT, Op,
2633                                     DAG.getConstant(1, getPointerTy()));
2634          if (!isLittleEndian())
2635            std::swap(Lo, Hi);
2636
2637          Ops.push_back(Lo);
2638          Ops.push_back(DAG.getConstant(isSigned, MVT::i32));
2639          Ops.push_back(Hi);
2640          Ops.push_back(DAG.getConstant(isSigned, MVT::i32));
2641        } else {
2642          // Value scalarized into many values.  Unimp for now.
2643          assert(0 && "Cannot expand i64 -> i16 yet!");
2644        }
2645      } else {
2646        // Otherwise, this is a vector type.  We only support legal vectors
2647        // right now.
2648        const PackedType *PTy = cast<PackedType>(Args[i].second);
2649        unsigned NumElems = PTy->getNumElements();
2650        const Type *EltTy = PTy->getElementType();
2651
2652        // Figure out if there is a Packed type corresponding to this Vector
2653        // type.  If so, convert to the packed type.
2654        MVT::ValueType TVT = MVT::getVectorType(getValueType(EltTy), NumElems);
2655        if (TVT != MVT::Other && isTypeLegal(TVT)) {
2656          // Insert a VBIT_CONVERT of the MVT::Vector type to the packed type.
2657          Op = DAG.getNode(ISD::VBIT_CONVERT, TVT, Op);
2658          Ops.push_back(Op);
2659          Ops.push_back(DAG.getConstant(isSigned, MVT::i32));
2660        } else {
2661          assert(0 && "Don't support illegal by-val vector call args yet!");
2662          abort();
2663        }
2664      }
2665      break;
2666    }
2667  }
2668
2669  // Figure out the result value types.
2670  SmallVector<MVT::ValueType, 4> RetTys;
2671
2672  if (RetTy != Type::VoidTy) {
2673    MVT::ValueType VT = getValueType(RetTy);
2674    switch (getTypeAction(VT)) {
2675    default: assert(0 && "Unknown type action!");
2676    case Legal:
2677      RetTys.push_back(VT);
2678      break;
2679    case Promote:
2680      RetTys.push_back(getTypeToTransformTo(VT));
2681      break;
2682    case Expand:
2683      if (VT != MVT::Vector) {
2684        // If this is a large integer, it needs to be reassembled from small
2685        // integers.  Figure out what the source elt type is and how many small
2686        // integers it is.
2687        MVT::ValueType NVT = getTypeToTransformTo(VT);
2688        unsigned NumVals = MVT::getSizeInBits(VT)/MVT::getSizeInBits(NVT);
2689        for (unsigned i = 0; i != NumVals; ++i)
2690          RetTys.push_back(NVT);
2691      } else {
2692        // Otherwise, this is a vector type.  We only support legal vectors
2693        // right now.
2694        const PackedType *PTy = cast<PackedType>(RetTy);
2695        unsigned NumElems = PTy->getNumElements();
2696        const Type *EltTy = PTy->getElementType();
2697
2698        // Figure out if there is a Packed type corresponding to this Vector
2699        // type.  If so, convert to the packed type.
2700        MVT::ValueType TVT = MVT::getVectorType(getValueType(EltTy), NumElems);
2701        if (TVT != MVT::Other && isTypeLegal(TVT)) {
2702          RetTys.push_back(TVT);
2703        } else {
2704          assert(0 && "Don't support illegal by-val vector call results yet!");
2705          abort();
2706        }
2707      }
2708    }
2709  }
2710
2711  RetTys.push_back(MVT::Other);  // Always has a chain.
2712
2713  // Finally, create the CALL node.
2714  SDOperand Res = DAG.getNode(ISD::CALL,
2715                              DAG.getVTList(&RetTys[0], RetTys.size()),
2716                              &Ops[0], Ops.size());
2717
2718  // This returns a pair of operands.  The first element is the
2719  // return value for the function (if RetTy is not VoidTy).  The second
2720  // element is the outgoing token chain.
2721  SDOperand ResVal;
2722  if (RetTys.size() != 1) {
2723    MVT::ValueType VT = getValueType(RetTy);
2724    if (RetTys.size() == 2) {
2725      ResVal = Res;
2726
2727      // If this value was promoted, truncate it down.
2728      if (ResVal.getValueType() != VT) {
2729        if (VT == MVT::Vector) {
2730          // Insert a VBITCONVERT to convert from the packed result type to the
2731          // MVT::Vector type.
2732          unsigned NumElems = cast<PackedType>(RetTy)->getNumElements();
2733          const Type *EltTy = cast<PackedType>(RetTy)->getElementType();
2734
2735          // Figure out if there is a Packed type corresponding to this Vector
2736          // type.  If so, convert to the packed type.
2737          MVT::ValueType TVT = MVT::getVectorType(getValueType(EltTy), NumElems);
2738          if (TVT != MVT::Other && isTypeLegal(TVT)) {
2739            // Insert a VBIT_CONVERT of the FORMAL_ARGUMENTS to a
2740            // "N x PTyElementVT" MVT::Vector type.
2741            ResVal = DAG.getNode(ISD::VBIT_CONVERT, MVT::Vector, ResVal,
2742                                 DAG.getConstant(NumElems, MVT::i32),
2743                                 DAG.getValueType(getValueType(EltTy)));
2744          } else {
2745            abort();
2746          }
2747        } else if (MVT::isInteger(VT)) {
2748          unsigned AssertOp = RetTy->isSigned() ?
2749                                  ISD::AssertSext : ISD::AssertZext;
2750          ResVal = DAG.getNode(AssertOp, ResVal.getValueType(), ResVal,
2751                               DAG.getValueType(VT));
2752          ResVal = DAG.getNode(ISD::TRUNCATE, VT, ResVal);
2753        } else {
2754          assert(MVT::isFloatingPoint(VT));
2755          ResVal = DAG.getNode(ISD::FP_ROUND, VT, ResVal);
2756        }
2757      }
2758    } else if (RetTys.size() == 3) {
2759      ResVal = DAG.getNode(ISD::BUILD_PAIR, VT,
2760                           Res.getValue(0), Res.getValue(1));
2761
2762    } else {
2763      assert(0 && "Case not handled yet!");
2764    }
2765  }
2766
2767  return std::make_pair(ResVal, Res.getValue(Res.Val->getNumValues()-1));
2768}
2769
2770
2771
2772// It is always conservatively correct for llvm.returnaddress and
2773// llvm.frameaddress to return 0.
2774//
2775// FIXME: Change this to insert a FRAMEADDR/RETURNADDR node, and have that be
2776// expanded to 0 if the target wants.
2777std::pair<SDOperand, SDOperand>
2778TargetLowering::LowerFrameReturnAddress(bool isFrameAddr, SDOperand Chain,
2779                                        unsigned Depth, SelectionDAG &DAG) {
2780  return std::make_pair(DAG.getConstant(0, getPointerTy()), Chain);
2781}
2782
2783SDOperand TargetLowering::LowerOperation(SDOperand Op, SelectionDAG &DAG) {
2784  assert(0 && "LowerOperation not implemented for this target!");
2785  abort();
2786  return SDOperand();
2787}
2788
2789SDOperand TargetLowering::CustomPromoteOperation(SDOperand Op,
2790                                                 SelectionDAG &DAG) {
2791  assert(0 && "CustomPromoteOperation not implemented for this target!");
2792  abort();
2793  return SDOperand();
2794}
2795
2796void SelectionDAGLowering::visitFrameReturnAddress(CallInst &I, bool isFrame) {
2797  unsigned Depth = (unsigned)cast<ConstantInt>(I.getOperand(1))->getZExtValue();
2798  std::pair<SDOperand,SDOperand> Result =
2799    TLI.LowerFrameReturnAddress(isFrame, getRoot(), Depth, DAG);
2800  setValue(&I, Result.first);
2801  DAG.setRoot(Result.second);
2802}
2803
2804/// getMemsetValue - Vectorized representation of the memset value
2805/// operand.
2806static SDOperand getMemsetValue(SDOperand Value, MVT::ValueType VT,
2807                                SelectionDAG &DAG) {
2808  MVT::ValueType CurVT = VT;
2809  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
2810    uint64_t Val   = C->getValue() & 255;
2811    unsigned Shift = 8;
2812    while (CurVT != MVT::i8) {
2813      Val = (Val << Shift) | Val;
2814      Shift <<= 1;
2815      CurVT = (MVT::ValueType)((unsigned)CurVT - 1);
2816    }
2817    return DAG.getConstant(Val, VT);
2818  } else {
2819    Value = DAG.getNode(ISD::ZERO_EXTEND, VT, Value);
2820    unsigned Shift = 8;
2821    while (CurVT != MVT::i8) {
2822      Value =
2823        DAG.getNode(ISD::OR, VT,
2824                    DAG.getNode(ISD::SHL, VT, Value,
2825                                DAG.getConstant(Shift, MVT::i8)), Value);
2826      Shift <<= 1;
2827      CurVT = (MVT::ValueType)((unsigned)CurVT - 1);
2828    }
2829
2830    return Value;
2831  }
2832}
2833
2834/// getMemsetStringVal - Similar to getMemsetValue. Except this is only
2835/// used when a memcpy is turned into a memset when the source is a constant
2836/// string ptr.
2837static SDOperand getMemsetStringVal(MVT::ValueType VT,
2838                                    SelectionDAG &DAG, TargetLowering &TLI,
2839                                    std::string &Str, unsigned Offset) {
2840  MVT::ValueType CurVT = VT;
2841  uint64_t Val = 0;
2842  unsigned MSB = getSizeInBits(VT) / 8;
2843  if (TLI.isLittleEndian())
2844    Offset = Offset + MSB - 1;
2845  for (unsigned i = 0; i != MSB; ++i) {
2846    Val = (Val << 8) | Str[Offset];
2847    Offset += TLI.isLittleEndian() ? -1 : 1;
2848  }
2849  return DAG.getConstant(Val, VT);
2850}
2851
2852/// getMemBasePlusOffset - Returns base and offset node for the
2853static SDOperand getMemBasePlusOffset(SDOperand Base, unsigned Offset,
2854                                      SelectionDAG &DAG, TargetLowering &TLI) {
2855  MVT::ValueType VT = Base.getValueType();
2856  return DAG.getNode(ISD::ADD, VT, Base, DAG.getConstant(Offset, VT));
2857}
2858
2859/// MeetsMaxMemopRequirement - Determines if the number of memory ops required
2860/// to replace the memset / memcpy is below the threshold. It also returns the
2861/// types of the sequence of  memory ops to perform memset / memcpy.
2862static bool MeetsMaxMemopRequirement(std::vector<MVT::ValueType> &MemOps,
2863                                     unsigned Limit, uint64_t Size,
2864                                     unsigned Align, TargetLowering &TLI) {
2865  MVT::ValueType VT;
2866
2867  if (TLI.allowsUnalignedMemoryAccesses()) {
2868    VT = MVT::i64;
2869  } else {
2870    switch (Align & 7) {
2871    case 0:
2872      VT = MVT::i64;
2873      break;
2874    case 4:
2875      VT = MVT::i32;
2876      break;
2877    case 2:
2878      VT = MVT::i16;
2879      break;
2880    default:
2881      VT = MVT::i8;
2882      break;
2883    }
2884  }
2885
2886  MVT::ValueType LVT = MVT::i64;
2887  while (!TLI.isTypeLegal(LVT))
2888    LVT = (MVT::ValueType)((unsigned)LVT - 1);
2889  assert(MVT::isInteger(LVT));
2890
2891  if (VT > LVT)
2892    VT = LVT;
2893
2894  unsigned NumMemOps = 0;
2895  while (Size != 0) {
2896    unsigned VTSize = getSizeInBits(VT) / 8;
2897    while (VTSize > Size) {
2898      VT = (MVT::ValueType)((unsigned)VT - 1);
2899      VTSize >>= 1;
2900    }
2901    assert(MVT::isInteger(VT));
2902
2903    if (++NumMemOps > Limit)
2904      return false;
2905    MemOps.push_back(VT);
2906    Size -= VTSize;
2907  }
2908
2909  return true;
2910}
2911
2912void SelectionDAGLowering::visitMemIntrinsic(CallInst &I, unsigned Op) {
2913  SDOperand Op1 = getValue(I.getOperand(1));
2914  SDOperand Op2 = getValue(I.getOperand(2));
2915  SDOperand Op3 = getValue(I.getOperand(3));
2916  SDOperand Op4 = getValue(I.getOperand(4));
2917  unsigned Align = (unsigned)cast<ConstantSDNode>(Op4)->getValue();
2918  if (Align == 0) Align = 1;
2919
2920  if (ConstantSDNode *Size = dyn_cast<ConstantSDNode>(Op3)) {
2921    std::vector<MVT::ValueType> MemOps;
2922
2923    // Expand memset / memcpy to a series of load / store ops
2924    // if the size operand falls below a certain threshold.
2925    SmallVector<SDOperand, 8> OutChains;
2926    switch (Op) {
2927    default: break;  // Do nothing for now.
2928    case ISD::MEMSET: {
2929      if (MeetsMaxMemopRequirement(MemOps, TLI.getMaxStoresPerMemset(),
2930                                   Size->getValue(), Align, TLI)) {
2931        unsigned NumMemOps = MemOps.size();
2932        unsigned Offset = 0;
2933        for (unsigned i = 0; i < NumMemOps; i++) {
2934          MVT::ValueType VT = MemOps[i];
2935          unsigned VTSize = getSizeInBits(VT) / 8;
2936          SDOperand Value = getMemsetValue(Op2, VT, DAG);
2937          SDOperand Store = DAG.getStore(getRoot(), Value,
2938                                    getMemBasePlusOffset(Op1, Offset, DAG, TLI),
2939                                         I.getOperand(1), Offset);
2940          OutChains.push_back(Store);
2941          Offset += VTSize;
2942        }
2943      }
2944      break;
2945    }
2946    case ISD::MEMCPY: {
2947      if (MeetsMaxMemopRequirement(MemOps, TLI.getMaxStoresPerMemcpy(),
2948                                   Size->getValue(), Align, TLI)) {
2949        unsigned NumMemOps = MemOps.size();
2950        unsigned SrcOff = 0, DstOff = 0, SrcDelta = 0;
2951        GlobalAddressSDNode *G = NULL;
2952        std::string Str;
2953        bool CopyFromStr = false;
2954
2955        if (Op2.getOpcode() == ISD::GlobalAddress)
2956          G = cast<GlobalAddressSDNode>(Op2);
2957        else if (Op2.getOpcode() == ISD::ADD &&
2958                 Op2.getOperand(0).getOpcode() == ISD::GlobalAddress &&
2959                 Op2.getOperand(1).getOpcode() == ISD::Constant) {
2960          G = cast<GlobalAddressSDNode>(Op2.getOperand(0));
2961          SrcDelta = cast<ConstantSDNode>(Op2.getOperand(1))->getValue();
2962        }
2963        if (G) {
2964          GlobalVariable *GV = dyn_cast<GlobalVariable>(G->getGlobal());
2965          if (GV) {
2966            Str = GV->getStringValue(false);
2967            if (!Str.empty()) {
2968              CopyFromStr = true;
2969              SrcOff += SrcDelta;
2970            }
2971          }
2972        }
2973
2974        for (unsigned i = 0; i < NumMemOps; i++) {
2975          MVT::ValueType VT = MemOps[i];
2976          unsigned VTSize = getSizeInBits(VT) / 8;
2977          SDOperand Value, Chain, Store;
2978
2979          if (CopyFromStr) {
2980            Value = getMemsetStringVal(VT, DAG, TLI, Str, SrcOff);
2981            Chain = getRoot();
2982            Store =
2983              DAG.getStore(Chain, Value,
2984                           getMemBasePlusOffset(Op1, DstOff, DAG, TLI),
2985                           I.getOperand(1), DstOff);
2986          } else {
2987            Value = DAG.getLoad(VT, getRoot(),
2988                        getMemBasePlusOffset(Op2, SrcOff, DAG, TLI),
2989                        I.getOperand(2), SrcOff);
2990            Chain = Value.getValue(1);
2991            Store =
2992              DAG.getStore(Chain, Value,
2993                           getMemBasePlusOffset(Op1, DstOff, DAG, TLI),
2994                           I.getOperand(1), DstOff);
2995          }
2996          OutChains.push_back(Store);
2997          SrcOff += VTSize;
2998          DstOff += VTSize;
2999        }
3000      }
3001      break;
3002    }
3003    }
3004
3005    if (!OutChains.empty()) {
3006      DAG.setRoot(DAG.getNode(ISD::TokenFactor, MVT::Other,
3007                  &OutChains[0], OutChains.size()));
3008      return;
3009    }
3010  }
3011
3012  DAG.setRoot(DAG.getNode(Op, MVT::Other, getRoot(), Op1, Op2, Op3, Op4));
3013}
3014
3015//===----------------------------------------------------------------------===//
3016// SelectionDAGISel code
3017//===----------------------------------------------------------------------===//
3018
3019unsigned SelectionDAGISel::MakeReg(MVT::ValueType VT) {
3020  return RegMap->createVirtualRegister(TLI.getRegClassFor(VT));
3021}
3022
3023void SelectionDAGISel::getAnalysisUsage(AnalysisUsage &AU) const {
3024  // FIXME: we only modify the CFG to split critical edges.  This
3025  // updates dom and loop info.
3026  AU.addRequired<AliasAnalysis>();
3027}
3028
3029
3030/// OptimizeNoopCopyExpression - We have determined that the specified cast
3031/// instruction is a noop copy (e.g. it's casting from one pointer type to
3032/// another, int->uint, or int->sbyte on PPC.
3033///
3034/// Return true if any changes are made.
3035static bool OptimizeNoopCopyExpression(CastInst *CI) {
3036  BasicBlock *DefBB = CI->getParent();
3037
3038  /// InsertedCasts - Only insert a cast in each block once.
3039  std::map<BasicBlock*, CastInst*> InsertedCasts;
3040
3041  bool MadeChange = false;
3042  for (Value::use_iterator UI = CI->use_begin(), E = CI->use_end();
3043       UI != E; ) {
3044    Use &TheUse = UI.getUse();
3045    Instruction *User = cast<Instruction>(*UI);
3046
3047    // Figure out which BB this cast is used in.  For PHI's this is the
3048    // appropriate predecessor block.
3049    BasicBlock *UserBB = User->getParent();
3050    if (PHINode *PN = dyn_cast<PHINode>(User)) {
3051      unsigned OpVal = UI.getOperandNo()/2;
3052      UserBB = PN->getIncomingBlock(OpVal);
3053    }
3054
3055    // Preincrement use iterator so we don't invalidate it.
3056    ++UI;
3057
3058    // If this user is in the same block as the cast, don't change the cast.
3059    if (UserBB == DefBB) continue;
3060
3061    // If we have already inserted a cast into this block, use it.
3062    CastInst *&InsertedCast = InsertedCasts[UserBB];
3063
3064    if (!InsertedCast) {
3065      BasicBlock::iterator InsertPt = UserBB->begin();
3066      while (isa<PHINode>(InsertPt)) ++InsertPt;
3067
3068      InsertedCast =
3069        new CastInst(CI->getOperand(0), CI->getType(), "", InsertPt);
3070      MadeChange = true;
3071    }
3072
3073    // Replace a use of the cast with a use of the new casat.
3074    TheUse = InsertedCast;
3075  }
3076
3077  // If we removed all uses, nuke the cast.
3078  if (CI->use_empty())
3079    CI->eraseFromParent();
3080
3081  return MadeChange;
3082}
3083
3084/// InsertGEPComputeCode - Insert code into BB to compute Ptr+PtrOffset,
3085/// casting to the type of GEPI.
3086static Instruction *InsertGEPComputeCode(Instruction *&V, BasicBlock *BB,
3087                                         Instruction *GEPI, Value *Ptr,
3088                                         Value *PtrOffset) {
3089  if (V) return V;   // Already computed.
3090
3091  BasicBlock::iterator InsertPt;
3092  if (BB == GEPI->getParent()) {
3093    // If insert into the GEP's block, insert right after the GEP.
3094    InsertPt = GEPI;
3095    ++InsertPt;
3096  } else {
3097    // Otherwise, insert at the top of BB, after any PHI nodes
3098    InsertPt = BB->begin();
3099    while (isa<PHINode>(InsertPt)) ++InsertPt;
3100  }
3101
3102  // If Ptr is itself a cast, but in some other BB, emit a copy of the cast into
3103  // BB so that there is only one value live across basic blocks (the cast
3104  // operand).
3105  if (CastInst *CI = dyn_cast<CastInst>(Ptr))
3106    if (CI->getParent() != BB && isa<PointerType>(CI->getOperand(0)->getType()))
3107      Ptr = new CastInst(CI->getOperand(0), CI->getType(), "", InsertPt);
3108
3109  // Add the offset, cast it to the right type.
3110  Ptr = BinaryOperator::createAdd(Ptr, PtrOffset, "", InsertPt);
3111  return V = new CastInst(Ptr, GEPI->getType(), "", InsertPt);
3112}
3113
3114/// ReplaceUsesOfGEPInst - Replace all uses of RepPtr with inserted code to
3115/// compute its value.  The RepPtr value can be computed with Ptr+PtrOffset. One
3116/// trivial way of doing this would be to evaluate Ptr+PtrOffset in RepPtr's
3117/// block, then ReplaceAllUsesWith'ing everything.  However, we would prefer to
3118/// sink PtrOffset into user blocks where doing so will likely allow us to fold
3119/// the constant add into a load or store instruction.  Additionally, if a user
3120/// is a pointer-pointer cast, we look through it to find its users.
3121static void ReplaceUsesOfGEPInst(Instruction *RepPtr, Value *Ptr,
3122                                 Constant *PtrOffset, BasicBlock *DefBB,
3123                                 GetElementPtrInst *GEPI,
3124                           std::map<BasicBlock*,Instruction*> &InsertedExprs) {
3125  while (!RepPtr->use_empty()) {
3126    Instruction *User = cast<Instruction>(RepPtr->use_back());
3127
3128    // If the user is a Pointer-Pointer cast, recurse.
3129    if (isa<CastInst>(User) && isa<PointerType>(User->getType())) {
3130      ReplaceUsesOfGEPInst(User, Ptr, PtrOffset, DefBB, GEPI, InsertedExprs);
3131
3132      // Drop the use of RepPtr. The cast is dead.  Don't delete it now, else we
3133      // could invalidate an iterator.
3134      User->setOperand(0, UndefValue::get(RepPtr->getType()));
3135      continue;
3136    }
3137
3138    // If this is a load of the pointer, or a store through the pointer, emit
3139    // the increment into the load/store block.
3140    Instruction *NewVal;
3141    if (isa<LoadInst>(User) ||
3142        (isa<StoreInst>(User) && User->getOperand(0) != RepPtr)) {
3143      NewVal = InsertGEPComputeCode(InsertedExprs[User->getParent()],
3144                                    User->getParent(), GEPI,
3145                                    Ptr, PtrOffset);
3146    } else {
3147      // If this use is not foldable into the addressing mode, use a version
3148      // emitted in the GEP block.
3149      NewVal = InsertGEPComputeCode(InsertedExprs[DefBB], DefBB, GEPI,
3150                                    Ptr, PtrOffset);
3151    }
3152
3153    if (GEPI->getType() != RepPtr->getType()) {
3154      BasicBlock::iterator IP = NewVal;
3155      ++IP;
3156      NewVal = new CastInst(NewVal, RepPtr->getType(), "", IP);
3157    }
3158    User->replaceUsesOfWith(RepPtr, NewVal);
3159  }
3160}
3161
3162
3163/// OptimizeGEPExpression - Since we are doing basic-block-at-a-time instruction
3164/// selection, we want to be a bit careful about some things.  In particular, if
3165/// we have a GEP instruction that is used in a different block than it is
3166/// defined, the addressing expression of the GEP cannot be folded into loads or
3167/// stores that use it.  In this case, decompose the GEP and move constant
3168/// indices into blocks that use it.
3169static bool OptimizeGEPExpression(GetElementPtrInst *GEPI,
3170                                  const TargetData *TD) {
3171  // If this GEP is only used inside the block it is defined in, there is no
3172  // need to rewrite it.
3173  bool isUsedOutsideDefBB = false;
3174  BasicBlock *DefBB = GEPI->getParent();
3175  for (Value::use_iterator UI = GEPI->use_begin(), E = GEPI->use_end();
3176       UI != E; ++UI) {
3177    if (cast<Instruction>(*UI)->getParent() != DefBB) {
3178      isUsedOutsideDefBB = true;
3179      break;
3180    }
3181  }
3182  if (!isUsedOutsideDefBB) return false;
3183
3184  // If this GEP has no non-zero constant indices, there is nothing we can do,
3185  // ignore it.
3186  bool hasConstantIndex = false;
3187  bool hasVariableIndex = false;
3188  for (GetElementPtrInst::op_iterator OI = GEPI->op_begin()+1,
3189       E = GEPI->op_end(); OI != E; ++OI) {
3190    if (ConstantInt *CI = dyn_cast<ConstantInt>(*OI)) {
3191      if (CI->getZExtValue()) {
3192        hasConstantIndex = true;
3193        break;
3194      }
3195    } else {
3196      hasVariableIndex = true;
3197    }
3198  }
3199
3200  // If this is a "GEP X, 0, 0, 0", turn this into a cast.
3201  if (!hasConstantIndex && !hasVariableIndex) {
3202    Value *NC = new CastInst(GEPI->getOperand(0), GEPI->getType(),
3203                             GEPI->getName(), GEPI);
3204    GEPI->replaceAllUsesWith(NC);
3205    GEPI->eraseFromParent();
3206    return true;
3207  }
3208
3209  // If this is a GEP &Alloca, 0, 0, forward subst the frame index into uses.
3210  if (!hasConstantIndex && !isa<AllocaInst>(GEPI->getOperand(0)))
3211    return false;
3212
3213  // Otherwise, decompose the GEP instruction into multiplies and adds.  Sum the
3214  // constant offset (which we now know is non-zero) and deal with it later.
3215  uint64_t ConstantOffset = 0;
3216  const Type *UIntPtrTy = TD->getIntPtrType();
3217  Value *Ptr = new CastInst(GEPI->getOperand(0), UIntPtrTy, "", GEPI);
3218  const Type *Ty = GEPI->getOperand(0)->getType();
3219
3220  for (GetElementPtrInst::op_iterator OI = GEPI->op_begin()+1,
3221       E = GEPI->op_end(); OI != E; ++OI) {
3222    Value *Idx = *OI;
3223    if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
3224      unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
3225      if (Field)
3226        ConstantOffset += TD->getStructLayout(StTy)->MemberOffsets[Field];
3227      Ty = StTy->getElementType(Field);
3228    } else {
3229      Ty = cast<SequentialType>(Ty)->getElementType();
3230
3231      // Handle constant subscripts.
3232      if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
3233        if (CI->getZExtValue() == 0) continue;
3234        if (CI->getType()->isSigned())
3235          ConstantOffset += (int64_t)TD->getTypeSize(Ty)*CI->getSExtValue();
3236        else
3237          ConstantOffset += TD->getTypeSize(Ty)*CI->getZExtValue();
3238        continue;
3239      }
3240
3241      // Ptr = Ptr + Idx * ElementSize;
3242
3243      // Cast Idx to UIntPtrTy if needed.
3244      Idx = new CastInst(Idx, UIntPtrTy, "", GEPI);
3245
3246      uint64_t ElementSize = TD->getTypeSize(Ty);
3247      // Mask off bits that should not be set.
3248      ElementSize &= ~0ULL >> (64-UIntPtrTy->getPrimitiveSizeInBits());
3249      Constant *SizeCst = ConstantInt::get(UIntPtrTy, ElementSize);
3250
3251      // Multiply by the element size and add to the base.
3252      Idx = BinaryOperator::createMul(Idx, SizeCst, "", GEPI);
3253      Ptr = BinaryOperator::createAdd(Ptr, Idx, "", GEPI);
3254    }
3255  }
3256
3257  // Make sure that the offset fits in uintptr_t.
3258  ConstantOffset &= ~0ULL >> (64-UIntPtrTy->getPrimitiveSizeInBits());
3259  Constant *PtrOffset = ConstantInt::get(UIntPtrTy, ConstantOffset);
3260
3261  // Okay, we have now emitted all of the variable index parts to the BB that
3262  // the GEP is defined in.  Loop over all of the using instructions, inserting
3263  // an "add Ptr, ConstantOffset" into each block that uses it and update the
3264  // instruction to use the newly computed value, making GEPI dead.  When the
3265  // user is a load or store instruction address, we emit the add into the user
3266  // block, otherwise we use a canonical version right next to the gep (these
3267  // won't be foldable as addresses, so we might as well share the computation).
3268
3269  std::map<BasicBlock*,Instruction*> InsertedExprs;
3270  ReplaceUsesOfGEPInst(GEPI, Ptr, PtrOffset, DefBB, GEPI, InsertedExprs);
3271
3272  // Finally, the GEP is dead, remove it.
3273  GEPI->eraseFromParent();
3274
3275  return true;
3276}
3277
3278/// SplitCritEdgesForPHIConstants - If this block has any PHI nodes with
3279/// constant operands, and if any of the edges feeding the PHI node are
3280/// critical, split them so that the assignments of a constant to a register
3281/// will not be executed on a path that isn't relevant.
3282void SelectionDAGISel::SplitCritEdgesForPHIConstants(BasicBlock *BB) {
3283  // The most common case is that this is a PHI node with two incoming
3284  // successors handle this case efficiently, because it is simple.
3285  PHINode *PN = cast<PHINode>(BB->begin());
3286  if (PN->getNumIncomingValues() == 2) {
3287    // If neither edge is critical, we never need to split.
3288    if (PN->getIncomingBlock(0)->getTerminator()->getNumSuccessors() == 1 &&
3289        PN->getIncomingBlock(1)->getTerminator()->getNumSuccessors() == 1)
3290      return;
3291
3292    BasicBlock::iterator BBI = BB->begin();
3293    while ((PN = dyn_cast<PHINode>(BBI++))) {
3294      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
3295        if (isa<Constant>(PN->getIncomingValue(i)))
3296          SplitCriticalEdge(PN->getIncomingBlock(i), BB);
3297    }
3298    return;
3299  }
3300
3301  // Otherwise, things are a bit trickier.
3302
3303  // BE SMART HERE.
3304
3305  BasicBlock::iterator BBI = BB->begin();
3306  while ((PN = dyn_cast<PHINode>(BBI++))) {
3307    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
3308      if (isa<Constant>(PN->getIncomingValue(i)))
3309        SplitCriticalEdge(PN->getIncomingBlock(i), BB);
3310  }
3311}
3312
3313
3314bool SelectionDAGISel::runOnFunction(Function &Fn) {
3315  MachineFunction &MF = MachineFunction::construct(&Fn, TLI.getTargetMachine());
3316  RegMap = MF.getSSARegMap();
3317  DEBUG(std::cerr << "\n\n\n=== " << Fn.getName() << "\n");
3318
3319  // First, split all critical edges for PHI nodes with incoming values that are
3320  // constants, this way the load of the constant into a vreg will not be placed
3321  // into MBBs that are used some other way.
3322  //
3323  // In this pass we also look for GEP and cast instructions that are used
3324  // across basic blocks and rewrite them to improve basic-block-at-a-time
3325  // selection.
3326  //
3327  //
3328  bool MadeChange = true;
3329  while (MadeChange) {
3330    MadeChange = false;
3331  for (Function::iterator BB = Fn.begin(), E = Fn.end(); BB != E; ++BB) {
3332    // If this block has any PHI nodes with constant operands, and if any of the
3333    // edges feeding the PHI node are critical, split them.
3334    if (isa<PHINode>(BB->begin()))
3335      SplitCritEdgesForPHIConstants(BB);
3336
3337    for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) {
3338      Instruction *I = BBI++;
3339      if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) {
3340        MadeChange |= OptimizeGEPExpression(GEPI, TLI.getTargetData());
3341      } else if (CastInst *CI = dyn_cast<CastInst>(I)) {
3342        // If the source of the cast is a constant, then this should have
3343        // already been constant folded.  The only reason NOT to constant fold
3344        // it is if something (e.g. LSR) was careful to place the constant
3345        // evaluation in a block other than then one that uses it (e.g. to hoist
3346        // the address of globals out of a loop).  If this is the case, we don't
3347        // want to forward-subst the cast.
3348        if (isa<Constant>(CI->getOperand(0)))
3349          continue;
3350
3351        // If this is a noop copy, sink it into user blocks to reduce the number
3352        // of virtual registers that must be created and coallesced.
3353        MVT::ValueType SrcVT = TLI.getValueType(CI->getOperand(0)->getType());
3354        MVT::ValueType DstVT = TLI.getValueType(CI->getType());
3355
3356        // This is an fp<->int conversion?
3357        if (MVT::isInteger(SrcVT) != MVT::isInteger(DstVT))
3358          continue;
3359
3360        // If this is an extension, it will be a zero or sign extension, which
3361        // isn't a noop.
3362        if (SrcVT < DstVT) continue;
3363
3364        // If these values will be promoted, find out what they will be promoted
3365        // to.  This helps us consider truncates on PPC as noop copies when they
3366        // are.
3367        if (TLI.getTypeAction(SrcVT) == TargetLowering::Promote)
3368          SrcVT = TLI.getTypeToTransformTo(SrcVT);
3369        if (TLI.getTypeAction(DstVT) == TargetLowering::Promote)
3370          DstVT = TLI.getTypeToTransformTo(DstVT);
3371
3372        // If, after promotion, these are the same types, this is a noop copy.
3373        if (SrcVT == DstVT)
3374          MadeChange |= OptimizeNoopCopyExpression(CI);
3375      }
3376    }
3377  }
3378  }
3379
3380  FunctionLoweringInfo FuncInfo(TLI, Fn, MF);
3381
3382  for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
3383    SelectBasicBlock(I, MF, FuncInfo);
3384
3385  return true;
3386}
3387
3388
3389SDOperand SelectionDAGISel::
3390CopyValueToVirtualRegister(SelectionDAGLowering &SDL, Value *V, unsigned Reg) {
3391  SDOperand Op = SDL.getValue(V);
3392  assert((Op.getOpcode() != ISD::CopyFromReg ||
3393          cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
3394         "Copy from a reg to the same reg!");
3395
3396  // If this type is not legal, we must make sure to not create an invalid
3397  // register use.
3398  MVT::ValueType SrcVT = Op.getValueType();
3399  MVT::ValueType DestVT = TLI.getTypeToTransformTo(SrcVT);
3400  SelectionDAG &DAG = SDL.DAG;
3401  if (SrcVT == DestVT) {
3402    return DAG.getCopyToReg(SDL.getRoot(), Reg, Op);
3403  } else if (SrcVT == MVT::Vector) {
3404    // Handle copies from generic vectors to registers.
3405    MVT::ValueType PTyElementVT, PTyLegalElementVT;
3406    unsigned NE = TLI.getPackedTypeBreakdown(cast<PackedType>(V->getType()),
3407                                             PTyElementVT, PTyLegalElementVT);
3408
3409    // Insert a VBIT_CONVERT of the input vector to a "N x PTyElementVT"
3410    // MVT::Vector type.
3411    Op = DAG.getNode(ISD::VBIT_CONVERT, MVT::Vector, Op,
3412                     DAG.getConstant(NE, MVT::i32),
3413                     DAG.getValueType(PTyElementVT));
3414
3415    // Loop over all of the elements of the resultant vector,
3416    // VEXTRACT_VECTOR_ELT'ing them, converting them to PTyLegalElementVT, then
3417    // copying them into output registers.
3418    SmallVector<SDOperand, 8> OutChains;
3419    SDOperand Root = SDL.getRoot();
3420    for (unsigned i = 0; i != NE; ++i) {
3421      SDOperand Elt = DAG.getNode(ISD::VEXTRACT_VECTOR_ELT, PTyElementVT,
3422                                  Op, DAG.getConstant(i, TLI.getPointerTy()));
3423      if (PTyElementVT == PTyLegalElementVT) {
3424        // Elements are legal.
3425        OutChains.push_back(DAG.getCopyToReg(Root, Reg++, Elt));
3426      } else if (PTyLegalElementVT > PTyElementVT) {
3427        // Elements are promoted.
3428        if (MVT::isFloatingPoint(PTyLegalElementVT))
3429          Elt = DAG.getNode(ISD::FP_EXTEND, PTyLegalElementVT, Elt);
3430        else
3431          Elt = DAG.getNode(ISD::ANY_EXTEND, PTyLegalElementVT, Elt);
3432        OutChains.push_back(DAG.getCopyToReg(Root, Reg++, Elt));
3433      } else {
3434        // Elements are expanded.
3435        // The src value is expanded into multiple registers.
3436        SDOperand Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, PTyLegalElementVT,
3437                                   Elt, DAG.getConstant(0, TLI.getPointerTy()));
3438        SDOperand Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, PTyLegalElementVT,
3439                                   Elt, DAG.getConstant(1, TLI.getPointerTy()));
3440        OutChains.push_back(DAG.getCopyToReg(Root, Reg++, Lo));
3441        OutChains.push_back(DAG.getCopyToReg(Root, Reg++, Hi));
3442      }
3443    }
3444    return DAG.getNode(ISD::TokenFactor, MVT::Other,
3445                       &OutChains[0], OutChains.size());
3446  } else if (SrcVT < DestVT) {
3447    // The src value is promoted to the register.
3448    if (MVT::isFloatingPoint(SrcVT))
3449      Op = DAG.getNode(ISD::FP_EXTEND, DestVT, Op);
3450    else
3451      Op = DAG.getNode(ISD::ANY_EXTEND, DestVT, Op);
3452    return DAG.getCopyToReg(SDL.getRoot(), Reg, Op);
3453  } else  {
3454    // The src value is expanded into multiple registers.
3455    SDOperand Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DestVT,
3456                               Op, DAG.getConstant(0, TLI.getPointerTy()));
3457    SDOperand Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DestVT,
3458                               Op, DAG.getConstant(1, TLI.getPointerTy()));
3459    Op = DAG.getCopyToReg(SDL.getRoot(), Reg, Lo);
3460    return DAG.getCopyToReg(Op, Reg+1, Hi);
3461  }
3462}
3463
3464void SelectionDAGISel::
3465LowerArguments(BasicBlock *BB, SelectionDAGLowering &SDL,
3466               std::vector<SDOperand> &UnorderedChains) {
3467  // If this is the entry block, emit arguments.
3468  Function &F = *BB->getParent();
3469  FunctionLoweringInfo &FuncInfo = SDL.FuncInfo;
3470  SDOperand OldRoot = SDL.DAG.getRoot();
3471  std::vector<SDOperand> Args = TLI.LowerArguments(F, SDL.DAG);
3472
3473  unsigned a = 0;
3474  for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end();
3475       AI != E; ++AI, ++a)
3476    if (!AI->use_empty()) {
3477      SDL.setValue(AI, Args[a]);
3478
3479      // If this argument is live outside of the entry block, insert a copy from
3480      // whereever we got it to the vreg that other BB's will reference it as.
3481      if (FuncInfo.ValueMap.count(AI)) {
3482        SDOperand Copy =
3483          CopyValueToVirtualRegister(SDL, AI, FuncInfo.ValueMap[AI]);
3484        UnorderedChains.push_back(Copy);
3485      }
3486    }
3487
3488  // Finally, if the target has anything special to do, allow it to do so.
3489  // FIXME: this should insert code into the DAG!
3490  EmitFunctionEntryCode(F, SDL.DAG.getMachineFunction());
3491}
3492
3493void SelectionDAGISel::BuildSelectionDAG(SelectionDAG &DAG, BasicBlock *LLVMBB,
3494       std::vector<std::pair<MachineInstr*, unsigned> > &PHINodesToUpdate,
3495                                         FunctionLoweringInfo &FuncInfo) {
3496  SelectionDAGLowering SDL(DAG, TLI, FuncInfo);
3497
3498  std::vector<SDOperand> UnorderedChains;
3499
3500  // Lower any arguments needed in this block if this is the entry block.
3501  if (LLVMBB == &LLVMBB->getParent()->front())
3502    LowerArguments(LLVMBB, SDL, UnorderedChains);
3503
3504  BB = FuncInfo.MBBMap[LLVMBB];
3505  SDL.setCurrentBasicBlock(BB);
3506
3507  // Lower all of the non-terminator instructions.
3508  for (BasicBlock::iterator I = LLVMBB->begin(), E = --LLVMBB->end();
3509       I != E; ++I)
3510    SDL.visit(*I);
3511
3512  // Ensure that all instructions which are used outside of their defining
3513  // blocks are available as virtual registers.
3514  for (BasicBlock::iterator I = LLVMBB->begin(), E = LLVMBB->end(); I != E;++I)
3515    if (!I->use_empty() && !isa<PHINode>(I)) {
3516      std::map<const Value*, unsigned>::iterator VMI =FuncInfo.ValueMap.find(I);
3517      if (VMI != FuncInfo.ValueMap.end())
3518        UnorderedChains.push_back(
3519                           CopyValueToVirtualRegister(SDL, I, VMI->second));
3520    }
3521
3522  // Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
3523  // ensure constants are generated when needed.  Remember the virtual registers
3524  // that need to be added to the Machine PHI nodes as input.  We cannot just
3525  // directly add them, because expansion might result in multiple MBB's for one
3526  // BB.  As such, the start of the BB might correspond to a different MBB than
3527  // the end.
3528  //
3529
3530  // Emit constants only once even if used by multiple PHI nodes.
3531  std::map<Constant*, unsigned> ConstantsOut;
3532
3533  // Check successor nodes PHI nodes that expect a constant to be available from
3534  // this block.
3535  TerminatorInst *TI = LLVMBB->getTerminator();
3536  for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
3537    BasicBlock *SuccBB = TI->getSuccessor(succ);
3538    if (!isa<PHINode>(SuccBB->begin())) continue;
3539
3540    MachineBasicBlock::iterator MBBI = FuncInfo.MBBMap[SuccBB]->begin();
3541    PHINode *PN;
3542
3543    // At this point we know that there is a 1-1 correspondence between LLVM PHI
3544    // nodes and Machine PHI nodes, but the incoming operands have not been
3545    // emitted yet.
3546    for (BasicBlock::iterator I = SuccBB->begin();
3547         (PN = dyn_cast<PHINode>(I)); ++I)
3548      if (!PN->use_empty()) {
3549        unsigned Reg;
3550        Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
3551        if (Constant *C = dyn_cast<Constant>(PHIOp)) {
3552          unsigned &RegOut = ConstantsOut[C];
3553          if (RegOut == 0) {
3554            RegOut = FuncInfo.CreateRegForValue(C);
3555            UnorderedChains.push_back(
3556                             CopyValueToVirtualRegister(SDL, C, RegOut));
3557          }
3558          Reg = RegOut;
3559        } else {
3560          Reg = FuncInfo.ValueMap[PHIOp];
3561          if (Reg == 0) {
3562            assert(isa<AllocaInst>(PHIOp) &&
3563                   FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
3564                   "Didn't codegen value into a register!??");
3565            Reg = FuncInfo.CreateRegForValue(PHIOp);
3566            UnorderedChains.push_back(
3567                             CopyValueToVirtualRegister(SDL, PHIOp, Reg));
3568          }
3569        }
3570
3571        // Remember that this register needs to added to the machine PHI node as
3572        // the input for this MBB.
3573        MVT::ValueType VT = TLI.getValueType(PN->getType());
3574        unsigned NumElements;
3575        if (VT != MVT::Vector)
3576          NumElements = TLI.getNumElements(VT);
3577        else {
3578          MVT::ValueType VT1,VT2;
3579          NumElements =
3580            TLI.getPackedTypeBreakdown(cast<PackedType>(PN->getType()),
3581                                       VT1, VT2);
3582        }
3583        for (unsigned i = 0, e = NumElements; i != e; ++i)
3584          PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i));
3585      }
3586  }
3587  ConstantsOut.clear();
3588
3589  // Turn all of the unordered chains into one factored node.
3590  if (!UnorderedChains.empty()) {
3591    SDOperand Root = SDL.getRoot();
3592    if (Root.getOpcode() != ISD::EntryToken) {
3593      unsigned i = 0, e = UnorderedChains.size();
3594      for (; i != e; ++i) {
3595        assert(UnorderedChains[i].Val->getNumOperands() > 1);
3596        if (UnorderedChains[i].Val->getOperand(0) == Root)
3597          break;  // Don't add the root if we already indirectly depend on it.
3598      }
3599
3600      if (i == e)
3601        UnorderedChains.push_back(Root);
3602    }
3603    DAG.setRoot(DAG.getNode(ISD::TokenFactor, MVT::Other,
3604                            &UnorderedChains[0], UnorderedChains.size()));
3605  }
3606
3607  // Lower the terminator after the copies are emitted.
3608  SDL.visit(*LLVMBB->getTerminator());
3609
3610  // Copy over any CaseBlock records that may now exist due to SwitchInst
3611  // lowering, as well as any jump table information.
3612  SwitchCases.clear();
3613  SwitchCases = SDL.SwitchCases;
3614  JT = SDL.JT;
3615
3616  // Make sure the root of the DAG is up-to-date.
3617  DAG.setRoot(SDL.getRoot());
3618}
3619
3620void SelectionDAGISel::CodeGenAndEmitDAG(SelectionDAG &DAG) {
3621  // Get alias analysis for load/store combining.
3622  AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
3623
3624  // Run the DAG combiner in pre-legalize mode.
3625  DAG.Combine(false, AA);
3626
3627  DEBUG(std::cerr << "Lowered selection DAG:\n");
3628  DEBUG(DAG.dump());
3629
3630  // Second step, hack on the DAG until it only uses operations and types that
3631  // the target supports.
3632  DAG.Legalize();
3633
3634  DEBUG(std::cerr << "Legalized selection DAG:\n");
3635  DEBUG(DAG.dump());
3636
3637  // Run the DAG combiner in post-legalize mode.
3638  DAG.Combine(true, AA);
3639
3640  if (ViewISelDAGs) DAG.viewGraph();
3641
3642  // Third, instruction select all of the operations to machine code, adding the
3643  // code to the MachineBasicBlock.
3644  InstructionSelectBasicBlock(DAG);
3645
3646  DEBUG(std::cerr << "Selected machine code:\n");
3647  DEBUG(BB->dump());
3648}
3649
3650void SelectionDAGISel::SelectBasicBlock(BasicBlock *LLVMBB, MachineFunction &MF,
3651                                        FunctionLoweringInfo &FuncInfo) {
3652  std::vector<std::pair<MachineInstr*, unsigned> > PHINodesToUpdate;
3653  {
3654    SelectionDAG DAG(TLI, MF, getAnalysisToUpdate<MachineDebugInfo>());
3655    CurDAG = &DAG;
3656
3657    // First step, lower LLVM code to some DAG.  This DAG may use operations and
3658    // types that are not supported by the target.
3659    BuildSelectionDAG(DAG, LLVMBB, PHINodesToUpdate, FuncInfo);
3660
3661    // Second step, emit the lowered DAG as machine code.
3662    CodeGenAndEmitDAG(DAG);
3663  }
3664
3665  // Next, now that we know what the last MBB the LLVM BB expanded is, update
3666  // PHI nodes in successors.
3667  if (SwitchCases.empty() && JT.Reg == 0) {
3668    for (unsigned i = 0, e = PHINodesToUpdate.size(); i != e; ++i) {
3669      MachineInstr *PHI = PHINodesToUpdate[i].first;
3670      assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
3671             "This is not a machine PHI node that we are updating!");
3672      PHI->addRegOperand(PHINodesToUpdate[i].second, false);
3673      PHI->addMachineBasicBlockOperand(BB);
3674    }
3675    return;
3676  }
3677
3678  // If the JumpTable record is filled in, then we need to emit a jump table.
3679  // Updating the PHI nodes is tricky in this case, since we need to determine
3680  // whether the PHI is a successor of the range check MBB or the jump table MBB
3681  if (JT.Reg) {
3682    assert(SwitchCases.empty() && "Cannot have jump table and lowered switch");
3683    SelectionDAG SDAG(TLI, MF, getAnalysisToUpdate<MachineDebugInfo>());
3684    CurDAG = &SDAG;
3685    SelectionDAGLowering SDL(SDAG, TLI, FuncInfo);
3686    MachineBasicBlock *RangeBB = BB;
3687    // Set the current basic block to the mbb we wish to insert the code into
3688    BB = JT.MBB;
3689    SDL.setCurrentBasicBlock(BB);
3690    // Emit the code
3691    SDL.visitJumpTable(JT);
3692    SDAG.setRoot(SDL.getRoot());
3693    CodeGenAndEmitDAG(SDAG);
3694    // Update PHI Nodes
3695    for (unsigned pi = 0, pe = PHINodesToUpdate.size(); pi != pe; ++pi) {
3696      MachineInstr *PHI = PHINodesToUpdate[pi].first;
3697      MachineBasicBlock *PHIBB = PHI->getParent();
3698      assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
3699             "This is not a machine PHI node that we are updating!");
3700      if (PHIBB == JT.Default) {
3701        PHI->addRegOperand(PHINodesToUpdate[pi].second, false);
3702        PHI->addMachineBasicBlockOperand(RangeBB);
3703      }
3704      if (BB->succ_end() != std::find(BB->succ_begin(),BB->succ_end(), PHIBB)) {
3705        PHI->addRegOperand(PHINodesToUpdate[pi].second, false);
3706        PHI->addMachineBasicBlockOperand(BB);
3707      }
3708    }
3709    return;
3710  }
3711
3712  // If the switch block involved a branch to one of the actual successors, we
3713  // need to update PHI nodes in that block.
3714  for (unsigned i = 0, e = PHINodesToUpdate.size(); i != e; ++i) {
3715    MachineInstr *PHI = PHINodesToUpdate[i].first;
3716    assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
3717           "This is not a machine PHI node that we are updating!");
3718    if (BB->isSuccessor(PHI->getParent())) {
3719      PHI->addRegOperand(PHINodesToUpdate[i].second, false);
3720      PHI->addMachineBasicBlockOperand(BB);
3721    }
3722  }
3723
3724  // If we generated any switch lowering information, build and codegen any
3725  // additional DAGs necessary.
3726  for (unsigned i = 0, e = SwitchCases.size(); i != e; ++i) {
3727    SelectionDAG SDAG(TLI, MF, getAnalysisToUpdate<MachineDebugInfo>());
3728    CurDAG = &SDAG;
3729    SelectionDAGLowering SDL(SDAG, TLI, FuncInfo);
3730
3731    // Set the current basic block to the mbb we wish to insert the code into
3732    BB = SwitchCases[i].ThisBB;
3733    SDL.setCurrentBasicBlock(BB);
3734
3735    // Emit the code
3736    SDL.visitSwitchCase(SwitchCases[i]);
3737    SDAG.setRoot(SDL.getRoot());
3738    CodeGenAndEmitDAG(SDAG);
3739
3740    // Handle any PHI nodes in successors of this chunk, as if we were coming
3741    // from the original BB before switch expansion.  Note that PHI nodes can
3742    // occur multiple times in PHINodesToUpdate.  We have to be very careful to
3743    // handle them the right number of times.
3744    while ((BB = SwitchCases[i].TrueBB)) {  // Handle LHS and RHS.
3745      for (MachineBasicBlock::iterator Phi = BB->begin();
3746           Phi != BB->end() && Phi->getOpcode() == TargetInstrInfo::PHI; ++Phi){
3747        // This value for this PHI node is recorded in PHINodesToUpdate, get it.
3748        for (unsigned pn = 0; ; ++pn) {
3749          assert(pn != PHINodesToUpdate.size() && "Didn't find PHI entry!");
3750          if (PHINodesToUpdate[pn].first == Phi) {
3751            Phi->addRegOperand(PHINodesToUpdate[pn].second, false);
3752            Phi->addMachineBasicBlockOperand(SwitchCases[i].ThisBB);
3753            break;
3754          }
3755        }
3756      }
3757
3758      // Don't process RHS if same block as LHS.
3759      if (BB == SwitchCases[i].FalseBB)
3760        SwitchCases[i].FalseBB = 0;
3761
3762      // If we haven't handled the RHS, do so now.  Otherwise, we're done.
3763      SwitchCases[i].TrueBB = SwitchCases[i].FalseBB;
3764      SwitchCases[i].FalseBB = 0;
3765    }
3766    assert(SwitchCases[i].TrueBB == 0 && SwitchCases[i].FalseBB == 0);
3767  }
3768}
3769
3770
3771//===----------------------------------------------------------------------===//
3772/// ScheduleAndEmitDAG - Pick a safe ordering and emit instructions for each
3773/// target node in the graph.
3774void SelectionDAGISel::ScheduleAndEmitDAG(SelectionDAG &DAG) {
3775  if (ViewSchedDAGs) DAG.viewGraph();
3776
3777  RegisterScheduler::FunctionPassCtor Ctor = RegisterScheduler::getDefault();
3778
3779  if (!Ctor) {
3780    Ctor = ISHeuristic;
3781    RegisterScheduler::setDefault(Ctor);
3782  }
3783
3784  ScheduleDAG *SL = Ctor(this, &DAG, BB);
3785  BB = SL->Run();
3786  delete SL;
3787}
3788
3789
3790HazardRecognizer *SelectionDAGISel::CreateTargetHazardRecognizer() {
3791  return new HazardRecognizer();
3792}
3793
3794//===----------------------------------------------------------------------===//
3795// Helper functions used by the generated instruction selector.
3796//===----------------------------------------------------------------------===//
3797// Calls to these methods are generated by tblgen.
3798
3799/// CheckAndMask - The isel is trying to match something like (and X, 255).  If
3800/// the dag combiner simplified the 255, we still want to match.  RHS is the
3801/// actual value in the DAG on the RHS of an AND, and DesiredMaskS is the value
3802/// specified in the .td file (e.g. 255).
3803bool SelectionDAGISel::CheckAndMask(SDOperand LHS, ConstantSDNode *RHS,
3804                                    int64_t DesiredMaskS) {
3805  uint64_t ActualMask = RHS->getValue();
3806  uint64_t DesiredMask =DesiredMaskS & MVT::getIntVTBitMask(LHS.getValueType());
3807
3808  // If the actual mask exactly matches, success!
3809  if (ActualMask == DesiredMask)
3810    return true;
3811
3812  // If the actual AND mask is allowing unallowed bits, this doesn't match.
3813  if (ActualMask & ~DesiredMask)
3814    return false;
3815
3816  // Otherwise, the DAG Combiner may have proven that the value coming in is
3817  // either already zero or is not demanded.  Check for known zero input bits.
3818  uint64_t NeededMask = DesiredMask & ~ActualMask;
3819  if (getTargetLowering().MaskedValueIsZero(LHS, NeededMask))
3820    return true;
3821
3822  // TODO: check to see if missing bits are just not demanded.
3823
3824  // Otherwise, this pattern doesn't match.
3825  return false;
3826}
3827
3828/// CheckOrMask - The isel is trying to match something like (or X, 255).  If
3829/// the dag combiner simplified the 255, we still want to match.  RHS is the
3830/// actual value in the DAG on the RHS of an OR, and DesiredMaskS is the value
3831/// specified in the .td file (e.g. 255).
3832bool SelectionDAGISel::CheckOrMask(SDOperand LHS, ConstantSDNode *RHS,
3833                                    int64_t DesiredMaskS) {
3834  uint64_t ActualMask = RHS->getValue();
3835  uint64_t DesiredMask =DesiredMaskS & MVT::getIntVTBitMask(LHS.getValueType());
3836
3837  // If the actual mask exactly matches, success!
3838  if (ActualMask == DesiredMask)
3839    return true;
3840
3841  // If the actual AND mask is allowing unallowed bits, this doesn't match.
3842  if (ActualMask & ~DesiredMask)
3843    return false;
3844
3845  // Otherwise, the DAG Combiner may have proven that the value coming in is
3846  // either already zero or is not demanded.  Check for known zero input bits.
3847  uint64_t NeededMask = DesiredMask & ~ActualMask;
3848
3849  uint64_t KnownZero, KnownOne;
3850  getTargetLowering().ComputeMaskedBits(LHS, NeededMask, KnownZero, KnownOne);
3851
3852  // If all the missing bits in the or are already known to be set, match!
3853  if ((NeededMask & KnownOne) == NeededMask)
3854    return true;
3855
3856  // TODO: check to see if missing bits are just not demanded.
3857
3858  // Otherwise, this pattern doesn't match.
3859  return false;
3860}
3861
3862
3863/// SelectInlineAsmMemoryOperands - Calls to this are automatically generated
3864/// by tblgen.  Others should not call it.
3865void SelectionDAGISel::
3866SelectInlineAsmMemoryOperands(std::vector<SDOperand> &Ops, SelectionDAG &DAG) {
3867  std::vector<SDOperand> InOps;
3868  std::swap(InOps, Ops);
3869
3870  Ops.push_back(InOps[0]);  // input chain.
3871  Ops.push_back(InOps[1]);  // input asm string.
3872
3873  unsigned i = 2, e = InOps.size();
3874  if (InOps[e-1].getValueType() == MVT::Flag)
3875    --e;  // Don't process a flag operand if it is here.
3876
3877  while (i != e) {
3878    unsigned Flags = cast<ConstantSDNode>(InOps[i])->getValue();
3879    if ((Flags & 7) != 4 /*MEM*/) {
3880      // Just skip over this operand, copying the operands verbatim.
3881      Ops.insert(Ops.end(), InOps.begin()+i, InOps.begin()+i+(Flags >> 3) + 1);
3882      i += (Flags >> 3) + 1;
3883    } else {
3884      assert((Flags >> 3) == 1 && "Memory operand with multiple values?");
3885      // Otherwise, this is a memory operand.  Ask the target to select it.
3886      std::vector<SDOperand> SelOps;
3887      if (SelectInlineAsmMemoryOperand(InOps[i+1], 'm', SelOps, DAG)) {
3888        std::cerr << "Could not match memory address.  Inline asm failure!\n";
3889        exit(1);
3890      }
3891
3892      // Add this to the output node.
3893      Ops.push_back(DAG.getConstant(4/*MEM*/ | (SelOps.size() << 3), MVT::i32));
3894      Ops.insert(Ops.end(), SelOps.begin(), SelOps.end());
3895      i += 2;
3896    }
3897  }
3898
3899  // Add the flag input back if present.
3900  if (e != InOps.size())
3901    Ops.push_back(InOps.back());
3902}
3903