SelectionDAGISel.cpp revision 19e57025d458d3cb50804fd821fd89b868a819bd
1//===-- SelectionDAGISel.cpp - Implement the SelectionDAGISel class -------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAGISel class.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "isel"
15#include "ScheduleDAGSDNodes.h"
16#include "SelectionDAGBuilder.h"
17#include "llvm/CodeGen/FunctionLoweringInfo.h"
18#include "llvm/CodeGen/SelectionDAGISel.h"
19#include "llvm/Analysis/AliasAnalysis.h"
20#include "llvm/Analysis/DebugInfo.h"
21#include "llvm/Constants.h"
22#include "llvm/Function.h"
23#include "llvm/InlineAsm.h"
24#include "llvm/Instructions.h"
25#include "llvm/Intrinsics.h"
26#include "llvm/IntrinsicInst.h"
27#include "llvm/LLVMContext.h"
28#include "llvm/Module.h"
29#include "llvm/CodeGen/FastISel.h"
30#include "llvm/CodeGen/GCStrategy.h"
31#include "llvm/CodeGen/GCMetadata.h"
32#include "llvm/CodeGen/MachineFrameInfo.h"
33#include "llvm/CodeGen/MachineFunction.h"
34#include "llvm/CodeGen/MachineInstrBuilder.h"
35#include "llvm/CodeGen/MachineModuleInfo.h"
36#include "llvm/CodeGen/MachineRegisterInfo.h"
37#include "llvm/CodeGen/ScheduleHazardRecognizer.h"
38#include "llvm/CodeGen/SchedulerRegistry.h"
39#include "llvm/CodeGen/SelectionDAG.h"
40#include "llvm/Target/TargetRegisterInfo.h"
41#include "llvm/Target/TargetIntrinsicInfo.h"
42#include "llvm/Target/TargetInstrInfo.h"
43#include "llvm/Target/TargetLowering.h"
44#include "llvm/Target/TargetMachine.h"
45#include "llvm/Target/TargetOptions.h"
46#include "llvm/Support/Compiler.h"
47#include "llvm/Support/Debug.h"
48#include "llvm/Support/ErrorHandling.h"
49#include "llvm/Support/Timer.h"
50#include "llvm/Support/raw_ostream.h"
51#include "llvm/ADT/Statistic.h"
52#include <algorithm>
53using namespace llvm;
54
55STATISTIC(NumFastIselFailures, "Number of instructions fast isel failed on");
56STATISTIC(NumDAGIselRetries,"Number of times dag isel has to try another path");
57
58static cl::opt<bool>
59EnableFastISelVerbose("fast-isel-verbose", cl::Hidden,
60          cl::desc("Enable verbose messages in the \"fast\" "
61                   "instruction selector"));
62static cl::opt<bool>
63EnableFastISelAbort("fast-isel-abort", cl::Hidden,
64          cl::desc("Enable abort calls when \"fast\" instruction fails"));
65
66#ifndef NDEBUG
67static cl::opt<bool>
68ViewDAGCombine1("view-dag-combine1-dags", cl::Hidden,
69          cl::desc("Pop up a window to show dags before the first "
70                   "dag combine pass"));
71static cl::opt<bool>
72ViewLegalizeTypesDAGs("view-legalize-types-dags", cl::Hidden,
73          cl::desc("Pop up a window to show dags before legalize types"));
74static cl::opt<bool>
75ViewLegalizeDAGs("view-legalize-dags", cl::Hidden,
76          cl::desc("Pop up a window to show dags before legalize"));
77static cl::opt<bool>
78ViewDAGCombine2("view-dag-combine2-dags", cl::Hidden,
79          cl::desc("Pop up a window to show dags before the second "
80                   "dag combine pass"));
81static cl::opt<bool>
82ViewDAGCombineLT("view-dag-combine-lt-dags", cl::Hidden,
83          cl::desc("Pop up a window to show dags before the post legalize types"
84                   " dag combine pass"));
85static cl::opt<bool>
86ViewISelDAGs("view-isel-dags", cl::Hidden,
87          cl::desc("Pop up a window to show isel dags as they are selected"));
88static cl::opt<bool>
89ViewSchedDAGs("view-sched-dags", cl::Hidden,
90          cl::desc("Pop up a window to show sched dags as they are processed"));
91static cl::opt<bool>
92ViewSUnitDAGs("view-sunit-dags", cl::Hidden,
93      cl::desc("Pop up a window to show SUnit dags after they are processed"));
94#else
95static const bool ViewDAGCombine1 = false,
96                  ViewLegalizeTypesDAGs = false, ViewLegalizeDAGs = false,
97                  ViewDAGCombine2 = false,
98                  ViewDAGCombineLT = false,
99                  ViewISelDAGs = false, ViewSchedDAGs = false,
100                  ViewSUnitDAGs = false;
101#endif
102
103//===---------------------------------------------------------------------===//
104///
105/// RegisterScheduler class - Track the registration of instruction schedulers.
106///
107//===---------------------------------------------------------------------===//
108MachinePassRegistry RegisterScheduler::Registry;
109
110//===---------------------------------------------------------------------===//
111///
112/// ISHeuristic command line option for instruction schedulers.
113///
114//===---------------------------------------------------------------------===//
115static cl::opt<RegisterScheduler::FunctionPassCtor, false,
116               RegisterPassParser<RegisterScheduler> >
117ISHeuristic("pre-RA-sched",
118            cl::init(&createDefaultScheduler),
119            cl::desc("Instruction schedulers available (before register"
120                     " allocation):"));
121
122static RegisterScheduler
123defaultListDAGScheduler("default", "Best scheduler for the target",
124                        createDefaultScheduler);
125
126namespace llvm {
127  //===--------------------------------------------------------------------===//
128  /// createDefaultScheduler - This creates an instruction scheduler appropriate
129  /// for the target.
130  ScheduleDAGSDNodes* createDefaultScheduler(SelectionDAGISel *IS,
131                                             CodeGenOpt::Level OptLevel) {
132    const TargetLowering &TLI = IS->getTargetLowering();
133
134    if (OptLevel == CodeGenOpt::None)
135      return createSourceListDAGScheduler(IS, OptLevel);
136    if (TLI.getSchedulingPreference() == Sched::Latency)
137      return createTDListDAGScheduler(IS, OptLevel);
138    if (TLI.getSchedulingPreference() == Sched::RegPressure)
139      return createBURRListDAGScheduler(IS, OptLevel);
140    if (TLI.getSchedulingPreference() == Sched::Hybrid)
141      return createHybridListDAGScheduler(IS, OptLevel);
142    assert(TLI.getSchedulingPreference() == Sched::ILP &&
143           "Unknown sched type!");
144    return createILPListDAGScheduler(IS, OptLevel);
145  }
146}
147
148// EmitInstrWithCustomInserter - This method should be implemented by targets
149// that mark instructions with the 'usesCustomInserter' flag.  These
150// instructions are special in various ways, which require special support to
151// insert.  The specified MachineInstr is created but not inserted into any
152// basic blocks, and this method is called to expand it into a sequence of
153// instructions, potentially also creating new basic blocks and control flow.
154// When new basic blocks are inserted and the edges from MBB to its successors
155// are modified, the method should insert pairs of <OldSucc, NewSucc> into the
156// DenseMap.
157MachineBasicBlock *
158TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
159                                            MachineBasicBlock *MBB) const {
160#ifndef NDEBUG
161  dbgs() << "If a target marks an instruction with "
162          "'usesCustomInserter', it must implement "
163          "TargetLowering::EmitInstrWithCustomInserter!";
164#endif
165  llvm_unreachable(0);
166  return 0;
167}
168
169//===----------------------------------------------------------------------===//
170// SelectionDAGISel code
171//===----------------------------------------------------------------------===//
172
173SelectionDAGISel::SelectionDAGISel(const TargetMachine &tm, CodeGenOpt::Level OL) :
174  MachineFunctionPass(ID), TM(tm), TLI(*tm.getTargetLowering()),
175  FuncInfo(new FunctionLoweringInfo(TLI)),
176  CurDAG(new SelectionDAG(tm)),
177  SDB(new SelectionDAGBuilder(*CurDAG, *FuncInfo, OL)),
178  GFI(),
179  OptLevel(OL),
180  DAGSize(0) {
181    initializeGCModuleInfoPass(*PassRegistry::getPassRegistry());
182    initializeAliasAnalysisAnalysisGroup(*PassRegistry::getPassRegistry());
183  }
184
185SelectionDAGISel::~SelectionDAGISel() {
186  delete SDB;
187  delete CurDAG;
188  delete FuncInfo;
189}
190
191void SelectionDAGISel::getAnalysisUsage(AnalysisUsage &AU) const {
192  AU.addRequired<AliasAnalysis>();
193  AU.addPreserved<AliasAnalysis>();
194  AU.addRequired<GCModuleInfo>();
195  AU.addPreserved<GCModuleInfo>();
196  MachineFunctionPass::getAnalysisUsage(AU);
197}
198
199/// FunctionCallsSetJmp - Return true if the function has a call to setjmp or
200/// other function that gcc recognizes as "returning twice". This is used to
201/// limit code-gen optimizations on the machine function.
202///
203/// FIXME: Remove after <rdar://problem/8031714> is fixed.
204static bool FunctionCallsSetJmp(const Function *F) {
205  const Module *M = F->getParent();
206  static const char *ReturnsTwiceFns[] = {
207    "setjmp",
208    "sigsetjmp",
209    "setjmp_syscall",
210    "savectx",
211    "qsetjmp",
212    "vfork",
213    "getcontext"
214  };
215#define NUM_RETURNS_TWICE_FNS sizeof(ReturnsTwiceFns) / sizeof(const char *)
216
217  for (unsigned I = 0; I < NUM_RETURNS_TWICE_FNS; ++I)
218    if (const Function *Callee = M->getFunction(ReturnsTwiceFns[I])) {
219      if (!Callee->use_empty())
220        for (Value::const_use_iterator
221               I = Callee->use_begin(), E = Callee->use_end();
222             I != E; ++I)
223          if (const CallInst *CI = dyn_cast<CallInst>(*I))
224            if (CI->getParent()->getParent() == F)
225              return true;
226    }
227
228  return false;
229#undef NUM_RETURNS_TWICE_FNS
230}
231
232bool SelectionDAGISel::runOnMachineFunction(MachineFunction &mf) {
233  // Do some sanity-checking on the command-line options.
234  assert((!EnableFastISelVerbose || EnableFastISel) &&
235         "-fast-isel-verbose requires -fast-isel");
236  assert((!EnableFastISelAbort || EnableFastISel) &&
237         "-fast-isel-abort requires -fast-isel");
238
239  const Function &Fn = *mf.getFunction();
240  const TargetInstrInfo &TII = *TM.getInstrInfo();
241  const TargetRegisterInfo &TRI = *TM.getRegisterInfo();
242
243  MF = &mf;
244  RegInfo = &MF->getRegInfo();
245  AA = &getAnalysis<AliasAnalysis>();
246  GFI = Fn.hasGC() ? &getAnalysis<GCModuleInfo>().getFunctionInfo(Fn) : 0;
247
248  DEBUG(dbgs() << "\n\n\n=== " << Fn.getName() << "\n");
249
250  CurDAG->init(*MF);
251  FuncInfo->set(Fn, *MF);
252  SDB->init(GFI, *AA);
253
254  SelectAllBasicBlocks(Fn);
255
256  // If the first basic block in the function has live ins that need to be
257  // copied into vregs, emit the copies into the top of the block before
258  // emitting the code for the block.
259  MachineBasicBlock *EntryMBB = MF->begin();
260  RegInfo->EmitLiveInCopies(EntryMBB, TRI, TII);
261
262  DenseMap<unsigned, unsigned> LiveInMap;
263  if (!FuncInfo->ArgDbgValues.empty())
264    for (MachineRegisterInfo::livein_iterator LI = RegInfo->livein_begin(),
265           E = RegInfo->livein_end(); LI != E; ++LI)
266      if (LI->second)
267        LiveInMap.insert(std::make_pair(LI->first, LI->second));
268
269  // Insert DBG_VALUE instructions for function arguments to the entry block.
270  for (unsigned i = 0, e = FuncInfo->ArgDbgValues.size(); i != e; ++i) {
271    MachineInstr *MI = FuncInfo->ArgDbgValues[e-i-1];
272    unsigned Reg = MI->getOperand(0).getReg();
273    if (TargetRegisterInfo::isPhysicalRegister(Reg))
274      EntryMBB->insert(EntryMBB->begin(), MI);
275    else {
276      MachineInstr *Def = RegInfo->getVRegDef(Reg);
277      MachineBasicBlock::iterator InsertPos = Def;
278      // FIXME: VR def may not be in entry block.
279      Def->getParent()->insert(llvm::next(InsertPos), MI);
280    }
281
282    // If Reg is live-in then update debug info to track its copy in a vreg.
283    DenseMap<unsigned, unsigned>::iterator LDI = LiveInMap.find(Reg);
284    if (LDI != LiveInMap.end()) {
285      MachineInstr *Def = RegInfo->getVRegDef(LDI->second);
286      MachineBasicBlock::iterator InsertPos = Def;
287      const MDNode *Variable =
288        MI->getOperand(MI->getNumOperands()-1).getMetadata();
289      unsigned Offset = MI->getOperand(1).getImm();
290      // Def is never a terminator here, so it is ok to increment InsertPos.
291      BuildMI(*EntryMBB, ++InsertPos, MI->getDebugLoc(),
292              TII.get(TargetOpcode::DBG_VALUE))
293        .addReg(LDI->second, RegState::Debug)
294        .addImm(Offset).addMetadata(Variable);
295
296      // If this vreg is directly copied into an exported register then
297      // that COPY instructions also need DBG_VALUE, if it is the only
298      // user of LDI->second.
299      MachineInstr *CopyUseMI = NULL;
300      for (MachineRegisterInfo::use_iterator
301             UI = RegInfo->use_begin(LDI->second);
302           MachineInstr *UseMI = UI.skipInstruction();) {
303        if (UseMI->isDebugValue()) continue;
304        if (UseMI->isCopy() && !CopyUseMI && UseMI->getParent() == EntryMBB) {
305          CopyUseMI = UseMI; continue;
306        }
307        // Otherwise this is another use or second copy use.
308        CopyUseMI = NULL; break;
309      }
310      if (CopyUseMI) {
311        MachineInstr *NewMI =
312          BuildMI(*MF, CopyUseMI->getDebugLoc(),
313                  TII.get(TargetOpcode::DBG_VALUE))
314          .addReg(CopyUseMI->getOperand(0).getReg(), RegState::Debug)
315          .addImm(Offset).addMetadata(Variable);
316        EntryMBB->insertAfter(CopyUseMI, NewMI);
317      }
318    }
319  }
320
321  // Determine if there are any calls in this machine function.
322  MachineFrameInfo *MFI = MF->getFrameInfo();
323  if (!MFI->hasCalls()) {
324    for (MachineFunction::const_iterator
325           I = MF->begin(), E = MF->end(); I != E; ++I) {
326      const MachineBasicBlock *MBB = I;
327      for (MachineBasicBlock::const_iterator
328             II = MBB->begin(), IE = MBB->end(); II != IE; ++II) {
329        const TargetInstrDesc &TID = TM.getInstrInfo()->get(II->getOpcode());
330
331        // Operand 1 of an inline asm instruction indicates whether the asm
332        // needs stack or not.
333        if ((II->isInlineAsm() && II->getOperand(1).getImm()) ||
334            (TID.isCall() && !TID.isReturn())) {
335          MFI->setHasCalls(true);
336          goto done;
337        }
338      }
339    }
340  done:;
341  }
342
343  // Determine if there is a call to setjmp in the machine function.
344  MF->setCallsSetJmp(FunctionCallsSetJmp(&Fn));
345
346  // Replace forward-declared registers with the registers containing
347  // the desired value.
348  MachineRegisterInfo &MRI = MF->getRegInfo();
349  for (DenseMap<unsigned, unsigned>::iterator
350       I = FuncInfo->RegFixups.begin(), E = FuncInfo->RegFixups.end();
351       I != E; ++I) {
352    unsigned From = I->first;
353    unsigned To = I->second;
354    // If To is also scheduled to be replaced, find what its ultimate
355    // replacement is.
356    for (;;) {
357      DenseMap<unsigned, unsigned>::iterator J =
358        FuncInfo->RegFixups.find(To);
359      if (J == E) break;
360      To = J->second;
361    }
362    // Replace it.
363    MRI.replaceRegWith(From, To);
364  }
365
366  // Release function-specific state. SDB and CurDAG are already cleared
367  // at this point.
368  FuncInfo->clear();
369
370  return true;
371}
372
373void
374SelectionDAGISel::SelectBasicBlock(BasicBlock::const_iterator Begin,
375                                   BasicBlock::const_iterator End,
376                                   bool &HadTailCall) {
377  // Lower all of the non-terminator instructions. If a call is emitted
378  // as a tail call, cease emitting nodes for this block. Terminators
379  // are handled below.
380  for (BasicBlock::const_iterator I = Begin; I != End && !SDB->HasTailCall; ++I)
381    SDB->visit(*I);
382
383  // Make sure the root of the DAG is up-to-date.
384  CurDAG->setRoot(SDB->getControlRoot());
385  HadTailCall = SDB->HasTailCall;
386  SDB->clear();
387
388  // Final step, emit the lowered DAG as machine code.
389  CodeGenAndEmitDAG();
390}
391
392void SelectionDAGISel::ComputeLiveOutVRegInfo() {
393  SmallPtrSet<SDNode*, 128> VisitedNodes;
394  SmallVector<SDNode*, 128> Worklist;
395
396  Worklist.push_back(CurDAG->getRoot().getNode());
397
398  APInt Mask;
399  APInt KnownZero;
400  APInt KnownOne;
401
402  do {
403    SDNode *N = Worklist.pop_back_val();
404
405    // If we've already seen this node, ignore it.
406    if (!VisitedNodes.insert(N))
407      continue;
408
409    // Otherwise, add all chain operands to the worklist.
410    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
411      if (N->getOperand(i).getValueType() == MVT::Other)
412        Worklist.push_back(N->getOperand(i).getNode());
413
414    // If this is a CopyToReg with a vreg dest, process it.
415    if (N->getOpcode() != ISD::CopyToReg)
416      continue;
417
418    unsigned DestReg = cast<RegisterSDNode>(N->getOperand(1))->getReg();
419    if (!TargetRegisterInfo::isVirtualRegister(DestReg))
420      continue;
421
422    // Ignore non-scalar or non-integer values.
423    SDValue Src = N->getOperand(2);
424    EVT SrcVT = Src.getValueType();
425    if (!SrcVT.isInteger() || SrcVT.isVector())
426      continue;
427
428    unsigned NumSignBits = CurDAG->ComputeNumSignBits(Src);
429    Mask = APInt::getAllOnesValue(SrcVT.getSizeInBits());
430    CurDAG->ComputeMaskedBits(Src, Mask, KnownZero, KnownOne);
431
432    // Only install this information if it tells us something.
433    if (NumSignBits != 1 || KnownZero != 0 || KnownOne != 0) {
434      DestReg -= TargetRegisterInfo::FirstVirtualRegister;
435      if (DestReg >= FuncInfo->LiveOutRegInfo.size())
436        FuncInfo->LiveOutRegInfo.resize(DestReg+1);
437      FunctionLoweringInfo::LiveOutInfo &LOI =
438        FuncInfo->LiveOutRegInfo[DestReg];
439      LOI.NumSignBits = NumSignBits;
440      LOI.KnownOne = KnownOne;
441      LOI.KnownZero = KnownZero;
442    }
443  } while (!Worklist.empty());
444}
445
446void SelectionDAGISel::CodeGenAndEmitDAG() {
447  std::string GroupName;
448  if (TimePassesIsEnabled)
449    GroupName = "Instruction Selection and Scheduling";
450  std::string BlockName;
451  if (ViewDAGCombine1 || ViewLegalizeTypesDAGs || ViewLegalizeDAGs ||
452      ViewDAGCombine2 || ViewDAGCombineLT || ViewISelDAGs || ViewSchedDAGs ||
453      ViewSUnitDAGs)
454    BlockName = MF->getFunction()->getNameStr() + ":" +
455                FuncInfo->MBB->getBasicBlock()->getNameStr();
456
457  DEBUG(dbgs() << "Initial selection DAG:\n"; CurDAG->dump());
458
459  if (ViewDAGCombine1) CurDAG->viewGraph("dag-combine1 input for " + BlockName);
460
461  // Run the DAG combiner in pre-legalize mode.
462  {
463    NamedRegionTimer T("DAG Combining 1", GroupName, TimePassesIsEnabled);
464    CurDAG->Combine(Unrestricted, *AA, OptLevel);
465  }
466
467  DEBUG(dbgs() << "Optimized lowered selection DAG:\n"; CurDAG->dump());
468
469  // Second step, hack on the DAG until it only uses operations and types that
470  // the target supports.
471  if (ViewLegalizeTypesDAGs) CurDAG->viewGraph("legalize-types input for " +
472                                               BlockName);
473
474  bool Changed;
475  {
476    NamedRegionTimer T("Type Legalization", GroupName, TimePassesIsEnabled);
477    Changed = CurDAG->LegalizeTypes();
478  }
479
480  DEBUG(dbgs() << "Type-legalized selection DAG:\n"; CurDAG->dump());
481
482  if (Changed) {
483    if (ViewDAGCombineLT)
484      CurDAG->viewGraph("dag-combine-lt input for " + BlockName);
485
486    // Run the DAG combiner in post-type-legalize mode.
487    {
488      NamedRegionTimer T("DAG Combining after legalize types", GroupName,
489                         TimePassesIsEnabled);
490      CurDAG->Combine(NoIllegalTypes, *AA, OptLevel);
491    }
492
493    DEBUG(dbgs() << "Optimized type-legalized selection DAG:\n";
494          CurDAG->dump());
495  }
496
497  {
498    NamedRegionTimer T("Vector Legalization", GroupName, TimePassesIsEnabled);
499    Changed = CurDAG->LegalizeVectors();
500  }
501
502  if (Changed) {
503    {
504      NamedRegionTimer T("Type Legalization 2", GroupName, TimePassesIsEnabled);
505      CurDAG->LegalizeTypes();
506    }
507
508    if (ViewDAGCombineLT)
509      CurDAG->viewGraph("dag-combine-lv input for " + BlockName);
510
511    // Run the DAG combiner in post-type-legalize mode.
512    {
513      NamedRegionTimer T("DAG Combining after legalize vectors", GroupName,
514                         TimePassesIsEnabled);
515      CurDAG->Combine(NoIllegalOperations, *AA, OptLevel);
516    }
517
518    DEBUG(dbgs() << "Optimized vector-legalized selection DAG:\n";
519          CurDAG->dump());
520  }
521
522  if (ViewLegalizeDAGs) CurDAG->viewGraph("legalize input for " + BlockName);
523
524  {
525    NamedRegionTimer T("DAG Legalization", GroupName, TimePassesIsEnabled);
526    CurDAG->Legalize(OptLevel);
527  }
528
529  DEBUG(dbgs() << "Legalized selection DAG:\n"; CurDAG->dump());
530
531  if (ViewDAGCombine2) CurDAG->viewGraph("dag-combine2 input for " + BlockName);
532
533  // Run the DAG combiner in post-legalize mode.
534  {
535    NamedRegionTimer T("DAG Combining 2", GroupName, TimePassesIsEnabled);
536    CurDAG->Combine(NoIllegalOperations, *AA, OptLevel);
537  }
538
539  DEBUG(dbgs() << "Optimized legalized selection DAG:\n"; CurDAG->dump());
540
541  if (OptLevel != CodeGenOpt::None)
542    ComputeLiveOutVRegInfo();
543
544  if (ViewISelDAGs) CurDAG->viewGraph("isel input for " + BlockName);
545
546  // Third, instruction select all of the operations to machine code, adding the
547  // code to the MachineBasicBlock.
548  {
549    NamedRegionTimer T("Instruction Selection", GroupName, TimePassesIsEnabled);
550    DoInstructionSelection();
551  }
552
553  DEBUG(dbgs() << "Selected selection DAG:\n"; CurDAG->dump());
554
555  if (ViewSchedDAGs) CurDAG->viewGraph("scheduler input for " + BlockName);
556
557  // Schedule machine code.
558  ScheduleDAGSDNodes *Scheduler = CreateScheduler();
559  {
560    NamedRegionTimer T("Instruction Scheduling", GroupName,
561                       TimePassesIsEnabled);
562    Scheduler->Run(CurDAG, FuncInfo->MBB, FuncInfo->InsertPt);
563  }
564
565  if (ViewSUnitDAGs) Scheduler->viewGraph();
566
567  // Emit machine code to BB.  This can change 'BB' to the last block being
568  // inserted into.
569  MachineBasicBlock *FirstMBB = FuncInfo->MBB, *LastMBB;
570  {
571    NamedRegionTimer T("Instruction Creation", GroupName, TimePassesIsEnabled);
572
573    LastMBB = FuncInfo->MBB = Scheduler->EmitSchedule();
574    FuncInfo->InsertPt = Scheduler->InsertPos;
575  }
576
577  // If the block was split, make sure we update any references that are used to
578  // update PHI nodes later on.
579  if (FirstMBB != LastMBB)
580    SDB->UpdateSplitBlock(FirstMBB, LastMBB);
581
582  // Free the scheduler state.
583  {
584    NamedRegionTimer T("Instruction Scheduling Cleanup", GroupName,
585                       TimePassesIsEnabled);
586    delete Scheduler;
587  }
588
589  // Free the SelectionDAG state, now that we're finished with it.
590  CurDAG->clear();
591}
592
593void SelectionDAGISel::DoInstructionSelection() {
594  DEBUG(errs() << "===== Instruction selection begins:\n");
595
596  PreprocessISelDAG();
597
598  // Select target instructions for the DAG.
599  {
600    // Number all nodes with a topological order and set DAGSize.
601    DAGSize = CurDAG->AssignTopologicalOrder();
602
603    // Create a dummy node (which is not added to allnodes), that adds
604    // a reference to the root node, preventing it from being deleted,
605    // and tracking any changes of the root.
606    HandleSDNode Dummy(CurDAG->getRoot());
607    ISelPosition = SelectionDAG::allnodes_iterator(CurDAG->getRoot().getNode());
608    ++ISelPosition;
609
610    // The AllNodes list is now topological-sorted. Visit the
611    // nodes by starting at the end of the list (the root of the
612    // graph) and preceding back toward the beginning (the entry
613    // node).
614    while (ISelPosition != CurDAG->allnodes_begin()) {
615      SDNode *Node = --ISelPosition;
616      // Skip dead nodes. DAGCombiner is expected to eliminate all dead nodes,
617      // but there are currently some corner cases that it misses. Also, this
618      // makes it theoretically possible to disable the DAGCombiner.
619      if (Node->use_empty())
620        continue;
621
622      SDNode *ResNode = Select(Node);
623
624      // FIXME: This is pretty gross.  'Select' should be changed to not return
625      // anything at all and this code should be nuked with a tactical strike.
626
627      // If node should not be replaced, continue with the next one.
628      if (ResNode == Node || Node->getOpcode() == ISD::DELETED_NODE)
629        continue;
630      // Replace node.
631      if (ResNode)
632        ReplaceUses(Node, ResNode);
633
634      // If after the replacement this node is not used any more,
635      // remove this dead node.
636      if (Node->use_empty()) { // Don't delete EntryToken, etc.
637        ISelUpdater ISU(ISelPosition);
638        CurDAG->RemoveDeadNode(Node, &ISU);
639      }
640    }
641
642    CurDAG->setRoot(Dummy.getValue());
643  }
644
645  DEBUG(errs() << "===== Instruction selection ends:\n");
646
647  PostprocessISelDAG();
648}
649
650/// PrepareEHLandingPad - Emit an EH_LABEL, set up live-in registers, and
651/// do other setup for EH landing-pad blocks.
652void SelectionDAGISel::PrepareEHLandingPad() {
653  // Add a label to mark the beginning of the landing pad.  Deletion of the
654  // landing pad can thus be detected via the MachineModuleInfo.
655  MCSymbol *Label = MF->getMMI().addLandingPad(FuncInfo->MBB);
656
657  const TargetInstrDesc &II = TM.getInstrInfo()->get(TargetOpcode::EH_LABEL);
658  BuildMI(*FuncInfo->MBB, FuncInfo->InsertPt, SDB->getCurDebugLoc(), II)
659    .addSym(Label);
660
661  // Mark exception register as live in.
662  unsigned Reg = TLI.getExceptionAddressRegister();
663  if (Reg) FuncInfo->MBB->addLiveIn(Reg);
664
665  // Mark exception selector register as live in.
666  Reg = TLI.getExceptionSelectorRegister();
667  if (Reg) FuncInfo->MBB->addLiveIn(Reg);
668
669  // FIXME: Hack around an exception handling flaw (PR1508): the personality
670  // function and list of typeids logically belong to the invoke (or, if you
671  // like, the basic block containing the invoke), and need to be associated
672  // with it in the dwarf exception handling tables.  Currently however the
673  // information is provided by an intrinsic (eh.selector) that can be moved
674  // to unexpected places by the optimizers: if the unwind edge is critical,
675  // then breaking it can result in the intrinsics being in the successor of
676  // the landing pad, not the landing pad itself.  This results
677  // in exceptions not being caught because no typeids are associated with
678  // the invoke.  This may not be the only way things can go wrong, but it
679  // is the only way we try to work around for the moment.
680  const BasicBlock *LLVMBB = FuncInfo->MBB->getBasicBlock();
681  const BranchInst *Br = dyn_cast<BranchInst>(LLVMBB->getTerminator());
682
683  if (Br && Br->isUnconditional()) { // Critical edge?
684    BasicBlock::const_iterator I, E;
685    for (I = LLVMBB->begin(), E = --LLVMBB->end(); I != E; ++I)
686      if (isa<EHSelectorInst>(I))
687        break;
688
689    if (I == E)
690      // No catch info found - try to extract some from the successor.
691      CopyCatchInfo(Br->getSuccessor(0), LLVMBB, &MF->getMMI(), *FuncInfo);
692  }
693}
694
695
696
697
698bool SelectionDAGISel::TryToFoldFastISelLoad(const LoadInst *LI,
699                                             FastISel *FastIS) {
700  // Don't try to fold volatile loads.  Target has to deal with alignment
701  // constraints.
702  if (LI->isVolatile()) return false;
703
704  // Figure out which vreg this is going into.
705  unsigned LoadReg = FastIS->getRegForValue(LI);
706  assert(LoadReg && "Load isn't already assigned a vreg? ");
707
708  // Check to see what the uses of this vreg are.  If it has no uses, or more
709  // than one use (at the machine instr level) then we can't fold it.
710  MachineRegisterInfo::reg_iterator RI = RegInfo->reg_begin(LoadReg);
711  if (RI == RegInfo->reg_end())
712    return false;
713
714  // See if there is exactly one use of the vreg.  If there are multiple uses,
715  // then the instruction got lowered to multiple machine instructions or the
716  // use of the loaded value ended up being multiple operands of the result, in
717  // either case, we can't fold this.
718  MachineRegisterInfo::reg_iterator PostRI = RI; ++PostRI;
719  if (PostRI != RegInfo->reg_end())
720    return false;
721
722  assert(RI.getOperand().isUse() &&
723         "The only use of the vreg must be a use, we haven't emitted the def!");
724
725  // Ask the target to try folding the load.
726  return FastIS->TryToFoldLoad(&*RI, RI.getOperandNo(), LI);
727}
728
729
730
731
732void SelectionDAGISel::SelectAllBasicBlocks(const Function &Fn) {
733  // Initialize the Fast-ISel state, if needed.
734  FastISel *FastIS = 0;
735  if (EnableFastISel)
736    FastIS = TLI.createFastISel(*FuncInfo);
737
738  // Iterate over all basic blocks in the function.
739  for (Function::const_iterator I = Fn.begin(), E = Fn.end(); I != E; ++I) {
740    const BasicBlock *LLVMBB = &*I;
741    FuncInfo->MBB = FuncInfo->MBBMap[LLVMBB];
742    FuncInfo->InsertPt = FuncInfo->MBB->getFirstNonPHI();
743
744    BasicBlock::const_iterator const Begin = LLVMBB->getFirstNonPHI();
745    BasicBlock::const_iterator const End = LLVMBB->end();
746    BasicBlock::const_iterator BI = End;
747
748    FuncInfo->InsertPt = FuncInfo->MBB->getFirstNonPHI();
749
750    // Setup an EH landing-pad block.
751    if (FuncInfo->MBB->isLandingPad())
752      PrepareEHLandingPad();
753
754    // Lower any arguments needed in this block if this is the entry block.
755    if (LLVMBB == &Fn.getEntryBlock())
756      LowerArguments(LLVMBB);
757
758    // Before doing SelectionDAG ISel, see if FastISel has been requested.
759    if (FastIS) {
760      FastIS->startNewBlock();
761
762      // Emit code for any incoming arguments. This must happen before
763      // beginning FastISel on the entry block.
764      if (LLVMBB == &Fn.getEntryBlock()) {
765        CurDAG->setRoot(SDB->getControlRoot());
766        SDB->clear();
767        CodeGenAndEmitDAG();
768
769        // If we inserted any instructions at the beginning, make a note of
770        // where they are, so we can be sure to emit subsequent instructions
771        // after them.
772        if (FuncInfo->InsertPt != FuncInfo->MBB->begin())
773          FastIS->setLastLocalValue(llvm::prior(FuncInfo->InsertPt));
774        else
775          FastIS->setLastLocalValue(0);
776      }
777
778      // Do FastISel on as many instructions as possible.
779      for (; BI != Begin; --BI) {
780        const Instruction *Inst = llvm::prior(BI);
781
782        // If we no longer require this instruction, skip it.
783        if (!Inst->mayWriteToMemory() &&
784            !isa<TerminatorInst>(Inst) &&
785            !isa<DbgInfoIntrinsic>(Inst) &&
786            !FuncInfo->isExportedInst(Inst))
787          continue;
788
789        // Bottom-up: reset the insert pos at the top, after any local-value
790        // instructions.
791        FastIS->recomputeInsertPt();
792
793        // Try to select the instruction with FastISel.
794        if (FastIS->SelectInstruction(Inst)) {
795          // If fast isel succeeded, check to see if there is a single-use
796          // non-volatile load right before the selected instruction, and see if
797          // the load is used by the instruction.  If so, try to fold it.
798          const Instruction *BeforeInst = 0;
799          if (Inst != Begin)
800            BeforeInst = llvm::prior(llvm::prior(BI));
801          if (BeforeInst && isa<LoadInst>(BeforeInst) &&
802              BeforeInst->hasOneUse() && *BeforeInst->use_begin() == Inst &&
803              TryToFoldFastISelLoad(cast<LoadInst>(BeforeInst), FastIS)) {
804            // If we succeeded, don't re-select the load.
805            --BI;
806          }
807          continue;
808        }
809
810        // Then handle certain instructions as single-LLVM-Instruction blocks.
811        if (isa<CallInst>(Inst)) {
812          ++NumFastIselFailures;
813          if (EnableFastISelVerbose || EnableFastISelAbort) {
814            dbgs() << "FastISel missed call: ";
815            Inst->dump();
816          }
817
818          if (!Inst->getType()->isVoidTy() && !Inst->use_empty()) {
819            unsigned &R = FuncInfo->ValueMap[Inst];
820            if (!R)
821              R = FuncInfo->CreateRegs(Inst->getType());
822          }
823
824          bool HadTailCall = false;
825          SelectBasicBlock(Inst, BI, HadTailCall);
826
827          // If the call was emitted as a tail call, we're done with the block.
828          if (HadTailCall) {
829            --BI;
830            break;
831          }
832
833          continue;
834        }
835
836        // Otherwise, give up on FastISel for the rest of the block.
837        // For now, be a little lenient about non-branch terminators.
838        if (!isa<TerminatorInst>(Inst) || isa<BranchInst>(Inst)) {
839          ++NumFastIselFailures;
840          if (EnableFastISelVerbose || EnableFastISelAbort) {
841            dbgs() << "FastISel miss: ";
842            Inst->dump();
843          }
844          if (EnableFastISelAbort)
845            // The "fast" selector couldn't handle something and bailed.
846            // For the purpose of debugging, just abort.
847            llvm_unreachable("FastISel didn't select the entire block");
848        }
849        break;
850      }
851
852      FastIS->recomputeInsertPt();
853    }
854
855    // Run SelectionDAG instruction selection on the remainder of the block
856    // not handled by FastISel. If FastISel is not run, this is the entire
857    // block.
858    bool HadTailCall;
859    SelectBasicBlock(Begin, BI, HadTailCall);
860
861    FinishBasicBlock();
862    FuncInfo->PHINodesToUpdate.clear();
863  }
864
865  delete FastIS;
866}
867
868void
869SelectionDAGISel::FinishBasicBlock() {
870
871  DEBUG(dbgs() << "Total amount of phi nodes to update: "
872               << FuncInfo->PHINodesToUpdate.size() << "\n";
873        for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i)
874          dbgs() << "Node " << i << " : ("
875                 << FuncInfo->PHINodesToUpdate[i].first
876                 << ", " << FuncInfo->PHINodesToUpdate[i].second << ")\n");
877
878  // Next, now that we know what the last MBB the LLVM BB expanded is, update
879  // PHI nodes in successors.
880  if (SDB->SwitchCases.empty() &&
881      SDB->JTCases.empty() &&
882      SDB->BitTestCases.empty()) {
883    for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i) {
884      MachineInstr *PHI = FuncInfo->PHINodesToUpdate[i].first;
885      assert(PHI->isPHI() &&
886             "This is not a machine PHI node that we are updating!");
887      if (!FuncInfo->MBB->isSuccessor(PHI->getParent()))
888        continue;
889      PHI->addOperand(
890        MachineOperand::CreateReg(FuncInfo->PHINodesToUpdate[i].second, false));
891      PHI->addOperand(MachineOperand::CreateMBB(FuncInfo->MBB));
892    }
893    return;
894  }
895
896  for (unsigned i = 0, e = SDB->BitTestCases.size(); i != e; ++i) {
897    // Lower header first, if it wasn't already lowered
898    if (!SDB->BitTestCases[i].Emitted) {
899      // Set the current basic block to the mbb we wish to insert the code into
900      FuncInfo->MBB = SDB->BitTestCases[i].Parent;
901      FuncInfo->InsertPt = FuncInfo->MBB->end();
902      // Emit the code
903      SDB->visitBitTestHeader(SDB->BitTestCases[i], FuncInfo->MBB);
904      CurDAG->setRoot(SDB->getRoot());
905      SDB->clear();
906      CodeGenAndEmitDAG();
907    }
908
909    for (unsigned j = 0, ej = SDB->BitTestCases[i].Cases.size(); j != ej; ++j) {
910      // Set the current basic block to the mbb we wish to insert the code into
911      FuncInfo->MBB = SDB->BitTestCases[i].Cases[j].ThisBB;
912      FuncInfo->InsertPt = FuncInfo->MBB->end();
913      // Emit the code
914      if (j+1 != ej)
915        SDB->visitBitTestCase(SDB->BitTestCases[i].Cases[j+1].ThisBB,
916                              SDB->BitTestCases[i].Reg,
917                              SDB->BitTestCases[i].Cases[j],
918                              FuncInfo->MBB);
919      else
920        SDB->visitBitTestCase(SDB->BitTestCases[i].Default,
921                              SDB->BitTestCases[i].Reg,
922                              SDB->BitTestCases[i].Cases[j],
923                              FuncInfo->MBB);
924
925
926      CurDAG->setRoot(SDB->getRoot());
927      SDB->clear();
928      CodeGenAndEmitDAG();
929    }
930
931    // Update PHI Nodes
932    for (unsigned pi = 0, pe = FuncInfo->PHINodesToUpdate.size();
933         pi != pe; ++pi) {
934      MachineInstr *PHI = FuncInfo->PHINodesToUpdate[pi].first;
935      MachineBasicBlock *PHIBB = PHI->getParent();
936      assert(PHI->isPHI() &&
937             "This is not a machine PHI node that we are updating!");
938      // This is "default" BB. We have two jumps to it. From "header" BB and
939      // from last "case" BB.
940      if (PHIBB == SDB->BitTestCases[i].Default) {
941        PHI->addOperand(MachineOperand::
942                        CreateReg(FuncInfo->PHINodesToUpdate[pi].second,
943                                  false));
944        PHI->addOperand(MachineOperand::CreateMBB(SDB->BitTestCases[i].Parent));
945        PHI->addOperand(MachineOperand::
946                        CreateReg(FuncInfo->PHINodesToUpdate[pi].second,
947                                  false));
948        PHI->addOperand(MachineOperand::CreateMBB(SDB->BitTestCases[i].Cases.
949                                                  back().ThisBB));
950      }
951      // One of "cases" BB.
952      for (unsigned j = 0, ej = SDB->BitTestCases[i].Cases.size();
953           j != ej; ++j) {
954        MachineBasicBlock* cBB = SDB->BitTestCases[i].Cases[j].ThisBB;
955        if (cBB->isSuccessor(PHIBB)) {
956          PHI->addOperand(MachineOperand::
957                          CreateReg(FuncInfo->PHINodesToUpdate[pi].second,
958                                    false));
959          PHI->addOperand(MachineOperand::CreateMBB(cBB));
960        }
961      }
962    }
963  }
964  SDB->BitTestCases.clear();
965
966  // If the JumpTable record is filled in, then we need to emit a jump table.
967  // Updating the PHI nodes is tricky in this case, since we need to determine
968  // whether the PHI is a successor of the range check MBB or the jump table MBB
969  for (unsigned i = 0, e = SDB->JTCases.size(); i != e; ++i) {
970    // Lower header first, if it wasn't already lowered
971    if (!SDB->JTCases[i].first.Emitted) {
972      // Set the current basic block to the mbb we wish to insert the code into
973      FuncInfo->MBB = SDB->JTCases[i].first.HeaderBB;
974      FuncInfo->InsertPt = FuncInfo->MBB->end();
975      // Emit the code
976      SDB->visitJumpTableHeader(SDB->JTCases[i].second, SDB->JTCases[i].first,
977                                FuncInfo->MBB);
978      CurDAG->setRoot(SDB->getRoot());
979      SDB->clear();
980      CodeGenAndEmitDAG();
981    }
982
983    // Set the current basic block to the mbb we wish to insert the code into
984    FuncInfo->MBB = SDB->JTCases[i].second.MBB;
985    FuncInfo->InsertPt = FuncInfo->MBB->end();
986    // Emit the code
987    SDB->visitJumpTable(SDB->JTCases[i].second);
988    CurDAG->setRoot(SDB->getRoot());
989    SDB->clear();
990    CodeGenAndEmitDAG();
991
992    // Update PHI Nodes
993    for (unsigned pi = 0, pe = FuncInfo->PHINodesToUpdate.size();
994         pi != pe; ++pi) {
995      MachineInstr *PHI = FuncInfo->PHINodesToUpdate[pi].first;
996      MachineBasicBlock *PHIBB = PHI->getParent();
997      assert(PHI->isPHI() &&
998             "This is not a machine PHI node that we are updating!");
999      // "default" BB. We can go there only from header BB.
1000      if (PHIBB == SDB->JTCases[i].second.Default) {
1001        PHI->addOperand
1002          (MachineOperand::CreateReg(FuncInfo->PHINodesToUpdate[pi].second,
1003                                     false));
1004        PHI->addOperand
1005          (MachineOperand::CreateMBB(SDB->JTCases[i].first.HeaderBB));
1006      }
1007      // JT BB. Just iterate over successors here
1008      if (FuncInfo->MBB->isSuccessor(PHIBB)) {
1009        PHI->addOperand
1010          (MachineOperand::CreateReg(FuncInfo->PHINodesToUpdate[pi].second,
1011                                     false));
1012        PHI->addOperand(MachineOperand::CreateMBB(FuncInfo->MBB));
1013      }
1014    }
1015  }
1016  SDB->JTCases.clear();
1017
1018  // If the switch block involved a branch to one of the actual successors, we
1019  // need to update PHI nodes in that block.
1020  for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i) {
1021    MachineInstr *PHI = FuncInfo->PHINodesToUpdate[i].first;
1022    assert(PHI->isPHI() &&
1023           "This is not a machine PHI node that we are updating!");
1024    if (FuncInfo->MBB->isSuccessor(PHI->getParent())) {
1025      PHI->addOperand(
1026        MachineOperand::CreateReg(FuncInfo->PHINodesToUpdate[i].second, false));
1027      PHI->addOperand(MachineOperand::CreateMBB(FuncInfo->MBB));
1028    }
1029  }
1030
1031  // If we generated any switch lowering information, build and codegen any
1032  // additional DAGs necessary.
1033  for (unsigned i = 0, e = SDB->SwitchCases.size(); i != e; ++i) {
1034    // Set the current basic block to the mbb we wish to insert the code into
1035    MachineBasicBlock *ThisBB = FuncInfo->MBB = SDB->SwitchCases[i].ThisBB;
1036    FuncInfo->InsertPt = FuncInfo->MBB->end();
1037
1038    // Determine the unique successors.
1039    SmallVector<MachineBasicBlock *, 2> Succs;
1040    Succs.push_back(SDB->SwitchCases[i].TrueBB);
1041    if (SDB->SwitchCases[i].TrueBB != SDB->SwitchCases[i].FalseBB)
1042      Succs.push_back(SDB->SwitchCases[i].FalseBB);
1043
1044    // Emit the code. Note that this could result in ThisBB being split, so
1045    // we need to check for updates.
1046    SDB->visitSwitchCase(SDB->SwitchCases[i], FuncInfo->MBB);
1047    CurDAG->setRoot(SDB->getRoot());
1048    SDB->clear();
1049    CodeGenAndEmitDAG();
1050    ThisBB = FuncInfo->MBB;
1051
1052    // Handle any PHI nodes in successors of this chunk, as if we were coming
1053    // from the original BB before switch expansion.  Note that PHI nodes can
1054    // occur multiple times in PHINodesToUpdate.  We have to be very careful to
1055    // handle them the right number of times.
1056    for (unsigned i = 0, e = Succs.size(); i != e; ++i) {
1057      FuncInfo->MBB = Succs[i];
1058      FuncInfo->InsertPt = FuncInfo->MBB->end();
1059      // FuncInfo->MBB may have been removed from the CFG if a branch was
1060      // constant folded.
1061      if (ThisBB->isSuccessor(FuncInfo->MBB)) {
1062        for (MachineBasicBlock::iterator Phi = FuncInfo->MBB->begin();
1063             Phi != FuncInfo->MBB->end() && Phi->isPHI();
1064             ++Phi) {
1065          // This value for this PHI node is recorded in PHINodesToUpdate.
1066          for (unsigned pn = 0; ; ++pn) {
1067            assert(pn != FuncInfo->PHINodesToUpdate.size() &&
1068                   "Didn't find PHI entry!");
1069            if (FuncInfo->PHINodesToUpdate[pn].first == Phi) {
1070              Phi->addOperand(MachineOperand::
1071                              CreateReg(FuncInfo->PHINodesToUpdate[pn].second,
1072                                        false));
1073              Phi->addOperand(MachineOperand::CreateMBB(ThisBB));
1074              break;
1075            }
1076          }
1077        }
1078      }
1079    }
1080  }
1081  SDB->SwitchCases.clear();
1082}
1083
1084
1085/// Create the scheduler. If a specific scheduler was specified
1086/// via the SchedulerRegistry, use it, otherwise select the
1087/// one preferred by the target.
1088///
1089ScheduleDAGSDNodes *SelectionDAGISel::CreateScheduler() {
1090  RegisterScheduler::FunctionPassCtor Ctor = RegisterScheduler::getDefault();
1091
1092  if (!Ctor) {
1093    Ctor = ISHeuristic;
1094    RegisterScheduler::setDefault(Ctor);
1095  }
1096
1097  return Ctor(this, OptLevel);
1098}
1099
1100ScheduleHazardRecognizer *SelectionDAGISel::CreateTargetHazardRecognizer() {
1101  return new ScheduleHazardRecognizer();
1102}
1103
1104//===----------------------------------------------------------------------===//
1105// Helper functions used by the generated instruction selector.
1106//===----------------------------------------------------------------------===//
1107// Calls to these methods are generated by tblgen.
1108
1109/// CheckAndMask - The isel is trying to match something like (and X, 255).  If
1110/// the dag combiner simplified the 255, we still want to match.  RHS is the
1111/// actual value in the DAG on the RHS of an AND, and DesiredMaskS is the value
1112/// specified in the .td file (e.g. 255).
1113bool SelectionDAGISel::CheckAndMask(SDValue LHS, ConstantSDNode *RHS,
1114                                    int64_t DesiredMaskS) const {
1115  const APInt &ActualMask = RHS->getAPIntValue();
1116  const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
1117
1118  // If the actual mask exactly matches, success!
1119  if (ActualMask == DesiredMask)
1120    return true;
1121
1122  // If the actual AND mask is allowing unallowed bits, this doesn't match.
1123  if (ActualMask.intersects(~DesiredMask))
1124    return false;
1125
1126  // Otherwise, the DAG Combiner may have proven that the value coming in is
1127  // either already zero or is not demanded.  Check for known zero input bits.
1128  APInt NeededMask = DesiredMask & ~ActualMask;
1129  if (CurDAG->MaskedValueIsZero(LHS, NeededMask))
1130    return true;
1131
1132  // TODO: check to see if missing bits are just not demanded.
1133
1134  // Otherwise, this pattern doesn't match.
1135  return false;
1136}
1137
1138/// CheckOrMask - The isel is trying to match something like (or X, 255).  If
1139/// the dag combiner simplified the 255, we still want to match.  RHS is the
1140/// actual value in the DAG on the RHS of an OR, and DesiredMaskS is the value
1141/// specified in the .td file (e.g. 255).
1142bool SelectionDAGISel::CheckOrMask(SDValue LHS, ConstantSDNode *RHS,
1143                                   int64_t DesiredMaskS) const {
1144  const APInt &ActualMask = RHS->getAPIntValue();
1145  const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
1146
1147  // If the actual mask exactly matches, success!
1148  if (ActualMask == DesiredMask)
1149    return true;
1150
1151  // If the actual AND mask is allowing unallowed bits, this doesn't match.
1152  if (ActualMask.intersects(~DesiredMask))
1153    return false;
1154
1155  // Otherwise, the DAG Combiner may have proven that the value coming in is
1156  // either already zero or is not demanded.  Check for known zero input bits.
1157  APInt NeededMask = DesiredMask & ~ActualMask;
1158
1159  APInt KnownZero, KnownOne;
1160  CurDAG->ComputeMaskedBits(LHS, NeededMask, KnownZero, KnownOne);
1161
1162  // If all the missing bits in the or are already known to be set, match!
1163  if ((NeededMask & KnownOne) == NeededMask)
1164    return true;
1165
1166  // TODO: check to see if missing bits are just not demanded.
1167
1168  // Otherwise, this pattern doesn't match.
1169  return false;
1170}
1171
1172
1173/// SelectInlineAsmMemoryOperands - Calls to this are automatically generated
1174/// by tblgen.  Others should not call it.
1175void SelectionDAGISel::
1176SelectInlineAsmMemoryOperands(std::vector<SDValue> &Ops) {
1177  std::vector<SDValue> InOps;
1178  std::swap(InOps, Ops);
1179
1180  Ops.push_back(InOps[InlineAsm::Op_InputChain]); // 0
1181  Ops.push_back(InOps[InlineAsm::Op_AsmString]);  // 1
1182  Ops.push_back(InOps[InlineAsm::Op_MDNode]);     // 2, !srcloc
1183  Ops.push_back(InOps[InlineAsm::Op_IsAlignStack]);  // 3
1184
1185  unsigned i = InlineAsm::Op_FirstOperand, e = InOps.size();
1186  if (InOps[e-1].getValueType() == MVT::Flag)
1187    --e;  // Don't process a flag operand if it is here.
1188
1189  while (i != e) {
1190    unsigned Flags = cast<ConstantSDNode>(InOps[i])->getZExtValue();
1191    if (!InlineAsm::isMemKind(Flags)) {
1192      // Just skip over this operand, copying the operands verbatim.
1193      Ops.insert(Ops.end(), InOps.begin()+i,
1194                 InOps.begin()+i+InlineAsm::getNumOperandRegisters(Flags) + 1);
1195      i += InlineAsm::getNumOperandRegisters(Flags) + 1;
1196    } else {
1197      assert(InlineAsm::getNumOperandRegisters(Flags) == 1 &&
1198             "Memory operand with multiple values?");
1199      // Otherwise, this is a memory operand.  Ask the target to select it.
1200      std::vector<SDValue> SelOps;
1201      if (SelectInlineAsmMemoryOperand(InOps[i+1], 'm', SelOps))
1202        report_fatal_error("Could not match memory address.  Inline asm"
1203                           " failure!");
1204
1205      // Add this to the output node.
1206      unsigned NewFlags =
1207        InlineAsm::getFlagWord(InlineAsm::Kind_Mem, SelOps.size());
1208      Ops.push_back(CurDAG->getTargetConstant(NewFlags, MVT::i32));
1209      Ops.insert(Ops.end(), SelOps.begin(), SelOps.end());
1210      i += 2;
1211    }
1212  }
1213
1214  // Add the flag input back if present.
1215  if (e != InOps.size())
1216    Ops.push_back(InOps.back());
1217}
1218
1219/// findFlagUse - Return use of EVT::Flag value produced by the specified
1220/// SDNode.
1221///
1222static SDNode *findFlagUse(SDNode *N) {
1223  unsigned FlagResNo = N->getNumValues()-1;
1224  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
1225    SDUse &Use = I.getUse();
1226    if (Use.getResNo() == FlagResNo)
1227      return Use.getUser();
1228  }
1229  return NULL;
1230}
1231
1232/// findNonImmUse - Return true if "Use" is a non-immediate use of "Def".
1233/// This function recursively traverses up the operand chain, ignoring
1234/// certain nodes.
1235static bool findNonImmUse(SDNode *Use, SDNode* Def, SDNode *ImmedUse,
1236                          SDNode *Root, SmallPtrSet<SDNode*, 16> &Visited,
1237                          bool IgnoreChains) {
1238  // The NodeID's are given uniques ID's where a node ID is guaranteed to be
1239  // greater than all of its (recursive) operands.  If we scan to a point where
1240  // 'use' is smaller than the node we're scanning for, then we know we will
1241  // never find it.
1242  //
1243  // The Use may be -1 (unassigned) if it is a newly allocated node.  This can
1244  // happen because we scan down to newly selected nodes in the case of flag
1245  // uses.
1246  if ((Use->getNodeId() < Def->getNodeId() && Use->getNodeId() != -1))
1247    return false;
1248
1249  // Don't revisit nodes if we already scanned it and didn't fail, we know we
1250  // won't fail if we scan it again.
1251  if (!Visited.insert(Use))
1252    return false;
1253
1254  for (unsigned i = 0, e = Use->getNumOperands(); i != e; ++i) {
1255    // Ignore chain uses, they are validated by HandleMergeInputChains.
1256    if (Use->getOperand(i).getValueType() == MVT::Other && IgnoreChains)
1257      continue;
1258
1259    SDNode *N = Use->getOperand(i).getNode();
1260    if (N == Def) {
1261      if (Use == ImmedUse || Use == Root)
1262        continue;  // We are not looking for immediate use.
1263      assert(N != Root);
1264      return true;
1265    }
1266
1267    // Traverse up the operand chain.
1268    if (findNonImmUse(N, Def, ImmedUse, Root, Visited, IgnoreChains))
1269      return true;
1270  }
1271  return false;
1272}
1273
1274/// IsProfitableToFold - Returns true if it's profitable to fold the specific
1275/// operand node N of U during instruction selection that starts at Root.
1276bool SelectionDAGISel::IsProfitableToFold(SDValue N, SDNode *U,
1277                                          SDNode *Root) const {
1278  if (OptLevel == CodeGenOpt::None) return false;
1279  return N.hasOneUse();
1280}
1281
1282/// IsLegalToFold - Returns true if the specific operand node N of
1283/// U can be folded during instruction selection that starts at Root.
1284bool SelectionDAGISel::IsLegalToFold(SDValue N, SDNode *U, SDNode *Root,
1285                                     CodeGenOpt::Level OptLevel,
1286                                     bool IgnoreChains) {
1287  if (OptLevel == CodeGenOpt::None) return false;
1288
1289  // If Root use can somehow reach N through a path that that doesn't contain
1290  // U then folding N would create a cycle. e.g. In the following
1291  // diagram, Root can reach N through X. If N is folded into into Root, then
1292  // X is both a predecessor and a successor of U.
1293  //
1294  //          [N*]           //
1295  //         ^   ^           //
1296  //        /     \          //
1297  //      [U*]    [X]?       //
1298  //        ^     ^          //
1299  //         \   /           //
1300  //          \ /            //
1301  //         [Root*]         //
1302  //
1303  // * indicates nodes to be folded together.
1304  //
1305  // If Root produces a flag, then it gets (even more) interesting. Since it
1306  // will be "glued" together with its flag use in the scheduler, we need to
1307  // check if it might reach N.
1308  //
1309  //          [N*]           //
1310  //         ^   ^           //
1311  //        /     \          //
1312  //      [U*]    [X]?       //
1313  //        ^       ^        //
1314  //         \       \       //
1315  //          \      |       //
1316  //         [Root*] |       //
1317  //          ^      |       //
1318  //          f      |       //
1319  //          |      /       //
1320  //         [Y]    /        //
1321  //           ^   /         //
1322  //           f  /          //
1323  //           | /           //
1324  //          [FU]           //
1325  //
1326  // If FU (flag use) indirectly reaches N (the load), and Root folds N
1327  // (call it Fold), then X is a predecessor of FU and a successor of
1328  // Fold. But since Fold and FU are flagged together, this will create
1329  // a cycle in the scheduling graph.
1330
1331  // If the node has flags, walk down the graph to the "lowest" node in the
1332  // flagged set.
1333  EVT VT = Root->getValueType(Root->getNumValues()-1);
1334  while (VT == MVT::Flag) {
1335    SDNode *FU = findFlagUse(Root);
1336    if (FU == NULL)
1337      break;
1338    Root = FU;
1339    VT = Root->getValueType(Root->getNumValues()-1);
1340
1341    // If our query node has a flag result with a use, we've walked up it.  If
1342    // the user (which has already been selected) has a chain or indirectly uses
1343    // the chain, our WalkChainUsers predicate will not consider it.  Because of
1344    // this, we cannot ignore chains in this predicate.
1345    IgnoreChains = false;
1346  }
1347
1348
1349  SmallPtrSet<SDNode*, 16> Visited;
1350  return !findNonImmUse(Root, N.getNode(), U, Root, Visited, IgnoreChains);
1351}
1352
1353SDNode *SelectionDAGISel::Select_INLINEASM(SDNode *N) {
1354  std::vector<SDValue> Ops(N->op_begin(), N->op_end());
1355  SelectInlineAsmMemoryOperands(Ops);
1356
1357  std::vector<EVT> VTs;
1358  VTs.push_back(MVT::Other);
1359  VTs.push_back(MVT::Flag);
1360  SDValue New = CurDAG->getNode(ISD::INLINEASM, N->getDebugLoc(),
1361                                VTs, &Ops[0], Ops.size());
1362  New->setNodeId(-1);
1363  return New.getNode();
1364}
1365
1366SDNode *SelectionDAGISel::Select_UNDEF(SDNode *N) {
1367  return CurDAG->SelectNodeTo(N, TargetOpcode::IMPLICIT_DEF,N->getValueType(0));
1368}
1369
1370/// GetVBR - decode a vbr encoding whose top bit is set.
1371LLVM_ATTRIBUTE_ALWAYS_INLINE static uint64_t
1372GetVBR(uint64_t Val, const unsigned char *MatcherTable, unsigned &Idx) {
1373  assert(Val >= 128 && "Not a VBR");
1374  Val &= 127;  // Remove first vbr bit.
1375
1376  unsigned Shift = 7;
1377  uint64_t NextBits;
1378  do {
1379    NextBits = MatcherTable[Idx++];
1380    Val |= (NextBits&127) << Shift;
1381    Shift += 7;
1382  } while (NextBits & 128);
1383
1384  return Val;
1385}
1386
1387
1388/// UpdateChainsAndFlags - When a match is complete, this method updates uses of
1389/// interior flag and chain results to use the new flag and chain results.
1390void SelectionDAGISel::
1391UpdateChainsAndFlags(SDNode *NodeToMatch, SDValue InputChain,
1392                     const SmallVectorImpl<SDNode*> &ChainNodesMatched,
1393                     SDValue InputFlag,
1394                     const SmallVectorImpl<SDNode*> &FlagResultNodesMatched,
1395                     bool isMorphNodeTo) {
1396  SmallVector<SDNode*, 4> NowDeadNodes;
1397
1398  ISelUpdater ISU(ISelPosition);
1399
1400  // Now that all the normal results are replaced, we replace the chain and
1401  // flag results if present.
1402  if (!ChainNodesMatched.empty()) {
1403    assert(InputChain.getNode() != 0 &&
1404           "Matched input chains but didn't produce a chain");
1405    // Loop over all of the nodes we matched that produced a chain result.
1406    // Replace all the chain results with the final chain we ended up with.
1407    for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
1408      SDNode *ChainNode = ChainNodesMatched[i];
1409
1410      // If this node was already deleted, don't look at it.
1411      if (ChainNode->getOpcode() == ISD::DELETED_NODE)
1412        continue;
1413
1414      // Don't replace the results of the root node if we're doing a
1415      // MorphNodeTo.
1416      if (ChainNode == NodeToMatch && isMorphNodeTo)
1417        continue;
1418
1419      SDValue ChainVal = SDValue(ChainNode, ChainNode->getNumValues()-1);
1420      if (ChainVal.getValueType() == MVT::Flag)
1421        ChainVal = ChainVal.getValue(ChainVal->getNumValues()-2);
1422      assert(ChainVal.getValueType() == MVT::Other && "Not a chain?");
1423      CurDAG->ReplaceAllUsesOfValueWith(ChainVal, InputChain, &ISU);
1424
1425      // If the node became dead and we haven't already seen it, delete it.
1426      if (ChainNode->use_empty() &&
1427          !std::count(NowDeadNodes.begin(), NowDeadNodes.end(), ChainNode))
1428        NowDeadNodes.push_back(ChainNode);
1429    }
1430  }
1431
1432  // If the result produces a flag, update any flag results in the matched
1433  // pattern with the flag result.
1434  if (InputFlag.getNode() != 0) {
1435    // Handle any interior nodes explicitly marked.
1436    for (unsigned i = 0, e = FlagResultNodesMatched.size(); i != e; ++i) {
1437      SDNode *FRN = FlagResultNodesMatched[i];
1438
1439      // If this node was already deleted, don't look at it.
1440      if (FRN->getOpcode() == ISD::DELETED_NODE)
1441        continue;
1442
1443      assert(FRN->getValueType(FRN->getNumValues()-1) == MVT::Flag &&
1444             "Doesn't have a flag result");
1445      CurDAG->ReplaceAllUsesOfValueWith(SDValue(FRN, FRN->getNumValues()-1),
1446                                        InputFlag, &ISU);
1447
1448      // If the node became dead and we haven't already seen it, delete it.
1449      if (FRN->use_empty() &&
1450          !std::count(NowDeadNodes.begin(), NowDeadNodes.end(), FRN))
1451        NowDeadNodes.push_back(FRN);
1452    }
1453  }
1454
1455  if (!NowDeadNodes.empty())
1456    CurDAG->RemoveDeadNodes(NowDeadNodes, &ISU);
1457
1458  DEBUG(errs() << "ISEL: Match complete!\n");
1459}
1460
1461enum ChainResult {
1462  CR_Simple,
1463  CR_InducesCycle,
1464  CR_LeadsToInteriorNode
1465};
1466
1467/// WalkChainUsers - Walk down the users of the specified chained node that is
1468/// part of the pattern we're matching, looking at all of the users we find.
1469/// This determines whether something is an interior node, whether we have a
1470/// non-pattern node in between two pattern nodes (which prevent folding because
1471/// it would induce a cycle) and whether we have a TokenFactor node sandwiched
1472/// between pattern nodes (in which case the TF becomes part of the pattern).
1473///
1474/// The walk we do here is guaranteed to be small because we quickly get down to
1475/// already selected nodes "below" us.
1476static ChainResult
1477WalkChainUsers(SDNode *ChainedNode,
1478               SmallVectorImpl<SDNode*> &ChainedNodesInPattern,
1479               SmallVectorImpl<SDNode*> &InteriorChainedNodes) {
1480  ChainResult Result = CR_Simple;
1481
1482  for (SDNode::use_iterator UI = ChainedNode->use_begin(),
1483         E = ChainedNode->use_end(); UI != E; ++UI) {
1484    // Make sure the use is of the chain, not some other value we produce.
1485    if (UI.getUse().getValueType() != MVT::Other) continue;
1486
1487    SDNode *User = *UI;
1488
1489    // If we see an already-selected machine node, then we've gone beyond the
1490    // pattern that we're selecting down into the already selected chunk of the
1491    // DAG.
1492    if (User->isMachineOpcode() ||
1493        User->getOpcode() == ISD::HANDLENODE)  // Root of the graph.
1494      continue;
1495
1496    if (User->getOpcode() == ISD::CopyToReg ||
1497        User->getOpcode() == ISD::CopyFromReg ||
1498        User->getOpcode() == ISD::INLINEASM ||
1499        User->getOpcode() == ISD::EH_LABEL) {
1500      // If their node ID got reset to -1 then they've already been selected.
1501      // Treat them like a MachineOpcode.
1502      if (User->getNodeId() == -1)
1503        continue;
1504    }
1505
1506    // If we have a TokenFactor, we handle it specially.
1507    if (User->getOpcode() != ISD::TokenFactor) {
1508      // If the node isn't a token factor and isn't part of our pattern, then it
1509      // must be a random chained node in between two nodes we're selecting.
1510      // This happens when we have something like:
1511      //   x = load ptr
1512      //   call
1513      //   y = x+4
1514      //   store y -> ptr
1515      // Because we structurally match the load/store as a read/modify/write,
1516      // but the call is chained between them.  We cannot fold in this case
1517      // because it would induce a cycle in the graph.
1518      if (!std::count(ChainedNodesInPattern.begin(),
1519                      ChainedNodesInPattern.end(), User))
1520        return CR_InducesCycle;
1521
1522      // Otherwise we found a node that is part of our pattern.  For example in:
1523      //   x = load ptr
1524      //   y = x+4
1525      //   store y -> ptr
1526      // This would happen when we're scanning down from the load and see the
1527      // store as a user.  Record that there is a use of ChainedNode that is
1528      // part of the pattern and keep scanning uses.
1529      Result = CR_LeadsToInteriorNode;
1530      InteriorChainedNodes.push_back(User);
1531      continue;
1532    }
1533
1534    // If we found a TokenFactor, there are two cases to consider: first if the
1535    // TokenFactor is just hanging "below" the pattern we're matching (i.e. no
1536    // uses of the TF are in our pattern) we just want to ignore it.  Second,
1537    // the TokenFactor can be sandwiched in between two chained nodes, like so:
1538    //     [Load chain]
1539    //         ^
1540    //         |
1541    //       [Load]
1542    //       ^    ^
1543    //       |    \                    DAG's like cheese
1544    //      /       \                       do you?
1545    //     /         |
1546    // [TokenFactor] [Op]
1547    //     ^          ^
1548    //     |          |
1549    //      \        /
1550    //       \      /
1551    //       [Store]
1552    //
1553    // In this case, the TokenFactor becomes part of our match and we rewrite it
1554    // as a new TokenFactor.
1555    //
1556    // To distinguish these two cases, do a recursive walk down the uses.
1557    switch (WalkChainUsers(User, ChainedNodesInPattern, InteriorChainedNodes)) {
1558    case CR_Simple:
1559      // If the uses of the TokenFactor are just already-selected nodes, ignore
1560      // it, it is "below" our pattern.
1561      continue;
1562    case CR_InducesCycle:
1563      // If the uses of the TokenFactor lead to nodes that are not part of our
1564      // pattern that are not selected, folding would turn this into a cycle,
1565      // bail out now.
1566      return CR_InducesCycle;
1567    case CR_LeadsToInteriorNode:
1568      break;  // Otherwise, keep processing.
1569    }
1570
1571    // Okay, we know we're in the interesting interior case.  The TokenFactor
1572    // is now going to be considered part of the pattern so that we rewrite its
1573    // uses (it may have uses that are not part of the pattern) with the
1574    // ultimate chain result of the generated code.  We will also add its chain
1575    // inputs as inputs to the ultimate TokenFactor we create.
1576    Result = CR_LeadsToInteriorNode;
1577    ChainedNodesInPattern.push_back(User);
1578    InteriorChainedNodes.push_back(User);
1579    continue;
1580  }
1581
1582  return Result;
1583}
1584
1585/// HandleMergeInputChains - This implements the OPC_EmitMergeInputChains
1586/// operation for when the pattern matched at least one node with a chains.  The
1587/// input vector contains a list of all of the chained nodes that we match.  We
1588/// must determine if this is a valid thing to cover (i.e. matching it won't
1589/// induce cycles in the DAG) and if so, creating a TokenFactor node. that will
1590/// be used as the input node chain for the generated nodes.
1591static SDValue
1592HandleMergeInputChains(SmallVectorImpl<SDNode*> &ChainNodesMatched,
1593                       SelectionDAG *CurDAG) {
1594  // Walk all of the chained nodes we've matched, recursively scanning down the
1595  // users of the chain result. This adds any TokenFactor nodes that are caught
1596  // in between chained nodes to the chained and interior nodes list.
1597  SmallVector<SDNode*, 3> InteriorChainedNodes;
1598  for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
1599    if (WalkChainUsers(ChainNodesMatched[i], ChainNodesMatched,
1600                       InteriorChainedNodes) == CR_InducesCycle)
1601      return SDValue(); // Would induce a cycle.
1602  }
1603
1604  // Okay, we have walked all the matched nodes and collected TokenFactor nodes
1605  // that we are interested in.  Form our input TokenFactor node.
1606  SmallVector<SDValue, 3> InputChains;
1607  for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
1608    // Add the input chain of this node to the InputChains list (which will be
1609    // the operands of the generated TokenFactor) if it's not an interior node.
1610    SDNode *N = ChainNodesMatched[i];
1611    if (N->getOpcode() != ISD::TokenFactor) {
1612      if (std::count(InteriorChainedNodes.begin(),InteriorChainedNodes.end(),N))
1613        continue;
1614
1615      // Otherwise, add the input chain.
1616      SDValue InChain = ChainNodesMatched[i]->getOperand(0);
1617      assert(InChain.getValueType() == MVT::Other && "Not a chain");
1618      InputChains.push_back(InChain);
1619      continue;
1620    }
1621
1622    // If we have a token factor, we want to add all inputs of the token factor
1623    // that are not part of the pattern we're matching.
1624    for (unsigned op = 0, e = N->getNumOperands(); op != e; ++op) {
1625      if (!std::count(ChainNodesMatched.begin(), ChainNodesMatched.end(),
1626                      N->getOperand(op).getNode()))
1627        InputChains.push_back(N->getOperand(op));
1628    }
1629  }
1630
1631  SDValue Res;
1632  if (InputChains.size() == 1)
1633    return InputChains[0];
1634  return CurDAG->getNode(ISD::TokenFactor, ChainNodesMatched[0]->getDebugLoc(),
1635                         MVT::Other, &InputChains[0], InputChains.size());
1636}
1637
1638/// MorphNode - Handle morphing a node in place for the selector.
1639SDNode *SelectionDAGISel::
1640MorphNode(SDNode *Node, unsigned TargetOpc, SDVTList VTList,
1641          const SDValue *Ops, unsigned NumOps, unsigned EmitNodeInfo) {
1642  // It is possible we're using MorphNodeTo to replace a node with no
1643  // normal results with one that has a normal result (or we could be
1644  // adding a chain) and the input could have flags and chains as well.
1645  // In this case we need to shift the operands down.
1646  // FIXME: This is a horrible hack and broken in obscure cases, no worse
1647  // than the old isel though.
1648  int OldFlagResultNo = -1, OldChainResultNo = -1;
1649
1650  unsigned NTMNumResults = Node->getNumValues();
1651  if (Node->getValueType(NTMNumResults-1) == MVT::Flag) {
1652    OldFlagResultNo = NTMNumResults-1;
1653    if (NTMNumResults != 1 &&
1654        Node->getValueType(NTMNumResults-2) == MVT::Other)
1655      OldChainResultNo = NTMNumResults-2;
1656  } else if (Node->getValueType(NTMNumResults-1) == MVT::Other)
1657    OldChainResultNo = NTMNumResults-1;
1658
1659  // Call the underlying SelectionDAG routine to do the transmogrification. Note
1660  // that this deletes operands of the old node that become dead.
1661  SDNode *Res = CurDAG->MorphNodeTo(Node, ~TargetOpc, VTList, Ops, NumOps);
1662
1663  // MorphNodeTo can operate in two ways: if an existing node with the
1664  // specified operands exists, it can just return it.  Otherwise, it
1665  // updates the node in place to have the requested operands.
1666  if (Res == Node) {
1667    // If we updated the node in place, reset the node ID.  To the isel,
1668    // this should be just like a newly allocated machine node.
1669    Res->setNodeId(-1);
1670  }
1671
1672  unsigned ResNumResults = Res->getNumValues();
1673  // Move the flag if needed.
1674  if ((EmitNodeInfo & OPFL_FlagOutput) && OldFlagResultNo != -1 &&
1675      (unsigned)OldFlagResultNo != ResNumResults-1)
1676    CurDAG->ReplaceAllUsesOfValueWith(SDValue(Node, OldFlagResultNo),
1677                                      SDValue(Res, ResNumResults-1));
1678
1679  if ((EmitNodeInfo & OPFL_FlagOutput) != 0)
1680    --ResNumResults;
1681
1682  // Move the chain reference if needed.
1683  if ((EmitNodeInfo & OPFL_Chain) && OldChainResultNo != -1 &&
1684      (unsigned)OldChainResultNo != ResNumResults-1)
1685    CurDAG->ReplaceAllUsesOfValueWith(SDValue(Node, OldChainResultNo),
1686                                      SDValue(Res, ResNumResults-1));
1687
1688  // Otherwise, no replacement happened because the node already exists. Replace
1689  // Uses of the old node with the new one.
1690  if (Res != Node)
1691    CurDAG->ReplaceAllUsesWith(Node, Res);
1692
1693  return Res;
1694}
1695
1696/// CheckPatternPredicate - Implements OP_CheckPatternPredicate.
1697LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
1698CheckSame(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1699          SDValue N,
1700          const SmallVectorImpl<std::pair<SDValue, SDNode*> > &RecordedNodes) {
1701  // Accept if it is exactly the same as a previously recorded node.
1702  unsigned RecNo = MatcherTable[MatcherIndex++];
1703  assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
1704  return N == RecordedNodes[RecNo].first;
1705}
1706
1707/// CheckPatternPredicate - Implements OP_CheckPatternPredicate.
1708LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
1709CheckPatternPredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1710                      SelectionDAGISel &SDISel) {
1711  return SDISel.CheckPatternPredicate(MatcherTable[MatcherIndex++]);
1712}
1713
1714/// CheckNodePredicate - Implements OP_CheckNodePredicate.
1715LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
1716CheckNodePredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1717                   SelectionDAGISel &SDISel, SDNode *N) {
1718  return SDISel.CheckNodePredicate(N, MatcherTable[MatcherIndex++]);
1719}
1720
1721LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
1722CheckOpcode(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1723            SDNode *N) {
1724  uint16_t Opc = MatcherTable[MatcherIndex++];
1725  Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
1726  return N->getOpcode() == Opc;
1727}
1728
1729LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
1730CheckType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1731          SDValue N, const TargetLowering &TLI) {
1732  MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
1733  if (N.getValueType() == VT) return true;
1734
1735  // Handle the case when VT is iPTR.
1736  return VT == MVT::iPTR && N.getValueType() == TLI.getPointerTy();
1737}
1738
1739LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
1740CheckChildType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1741               SDValue N, const TargetLowering &TLI,
1742               unsigned ChildNo) {
1743  if (ChildNo >= N.getNumOperands())
1744    return false;  // Match fails if out of range child #.
1745  return ::CheckType(MatcherTable, MatcherIndex, N.getOperand(ChildNo), TLI);
1746}
1747
1748
1749LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
1750CheckCondCode(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1751              SDValue N) {
1752  return cast<CondCodeSDNode>(N)->get() ==
1753      (ISD::CondCode)MatcherTable[MatcherIndex++];
1754}
1755
1756LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
1757CheckValueType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1758               SDValue N, const TargetLowering &TLI) {
1759  MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
1760  if (cast<VTSDNode>(N)->getVT() == VT)
1761    return true;
1762
1763  // Handle the case when VT is iPTR.
1764  return VT == MVT::iPTR && cast<VTSDNode>(N)->getVT() == TLI.getPointerTy();
1765}
1766
1767LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
1768CheckInteger(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1769             SDValue N) {
1770  int64_t Val = MatcherTable[MatcherIndex++];
1771  if (Val & 128)
1772    Val = GetVBR(Val, MatcherTable, MatcherIndex);
1773
1774  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N);
1775  return C != 0 && C->getSExtValue() == Val;
1776}
1777
1778LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
1779CheckAndImm(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1780            SDValue N, SelectionDAGISel &SDISel) {
1781  int64_t Val = MatcherTable[MatcherIndex++];
1782  if (Val & 128)
1783    Val = GetVBR(Val, MatcherTable, MatcherIndex);
1784
1785  if (N->getOpcode() != ISD::AND) return false;
1786
1787  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
1788  return C != 0 && SDISel.CheckAndMask(N.getOperand(0), C, Val);
1789}
1790
1791LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
1792CheckOrImm(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1793           SDValue N, SelectionDAGISel &SDISel) {
1794  int64_t Val = MatcherTable[MatcherIndex++];
1795  if (Val & 128)
1796    Val = GetVBR(Val, MatcherTable, MatcherIndex);
1797
1798  if (N->getOpcode() != ISD::OR) return false;
1799
1800  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
1801  return C != 0 && SDISel.CheckOrMask(N.getOperand(0), C, Val);
1802}
1803
1804/// IsPredicateKnownToFail - If we know how and can do so without pushing a
1805/// scope, evaluate the current node.  If the current predicate is known to
1806/// fail, set Result=true and return anything.  If the current predicate is
1807/// known to pass, set Result=false and return the MatcherIndex to continue
1808/// with.  If the current predicate is unknown, set Result=false and return the
1809/// MatcherIndex to continue with.
1810static unsigned IsPredicateKnownToFail(const unsigned char *Table,
1811                                       unsigned Index, SDValue N,
1812                                       bool &Result, SelectionDAGISel &SDISel,
1813                 SmallVectorImpl<std::pair<SDValue, SDNode*> > &RecordedNodes) {
1814  switch (Table[Index++]) {
1815  default:
1816    Result = false;
1817    return Index-1;  // Could not evaluate this predicate.
1818  case SelectionDAGISel::OPC_CheckSame:
1819    Result = !::CheckSame(Table, Index, N, RecordedNodes);
1820    return Index;
1821  case SelectionDAGISel::OPC_CheckPatternPredicate:
1822    Result = !::CheckPatternPredicate(Table, Index, SDISel);
1823    return Index;
1824  case SelectionDAGISel::OPC_CheckPredicate:
1825    Result = !::CheckNodePredicate(Table, Index, SDISel, N.getNode());
1826    return Index;
1827  case SelectionDAGISel::OPC_CheckOpcode:
1828    Result = !::CheckOpcode(Table, Index, N.getNode());
1829    return Index;
1830  case SelectionDAGISel::OPC_CheckType:
1831    Result = !::CheckType(Table, Index, N, SDISel.TLI);
1832    return Index;
1833  case SelectionDAGISel::OPC_CheckChild0Type:
1834  case SelectionDAGISel::OPC_CheckChild1Type:
1835  case SelectionDAGISel::OPC_CheckChild2Type:
1836  case SelectionDAGISel::OPC_CheckChild3Type:
1837  case SelectionDAGISel::OPC_CheckChild4Type:
1838  case SelectionDAGISel::OPC_CheckChild5Type:
1839  case SelectionDAGISel::OPC_CheckChild6Type:
1840  case SelectionDAGISel::OPC_CheckChild7Type:
1841    Result = !::CheckChildType(Table, Index, N, SDISel.TLI,
1842                        Table[Index-1] - SelectionDAGISel::OPC_CheckChild0Type);
1843    return Index;
1844  case SelectionDAGISel::OPC_CheckCondCode:
1845    Result = !::CheckCondCode(Table, Index, N);
1846    return Index;
1847  case SelectionDAGISel::OPC_CheckValueType:
1848    Result = !::CheckValueType(Table, Index, N, SDISel.TLI);
1849    return Index;
1850  case SelectionDAGISel::OPC_CheckInteger:
1851    Result = !::CheckInteger(Table, Index, N);
1852    return Index;
1853  case SelectionDAGISel::OPC_CheckAndImm:
1854    Result = !::CheckAndImm(Table, Index, N, SDISel);
1855    return Index;
1856  case SelectionDAGISel::OPC_CheckOrImm:
1857    Result = !::CheckOrImm(Table, Index, N, SDISel);
1858    return Index;
1859  }
1860}
1861
1862namespace {
1863
1864struct MatchScope {
1865  /// FailIndex - If this match fails, this is the index to continue with.
1866  unsigned FailIndex;
1867
1868  /// NodeStack - The node stack when the scope was formed.
1869  SmallVector<SDValue, 4> NodeStack;
1870
1871  /// NumRecordedNodes - The number of recorded nodes when the scope was formed.
1872  unsigned NumRecordedNodes;
1873
1874  /// NumMatchedMemRefs - The number of matched memref entries.
1875  unsigned NumMatchedMemRefs;
1876
1877  /// InputChain/InputFlag - The current chain/flag
1878  SDValue InputChain, InputFlag;
1879
1880  /// HasChainNodesMatched - True if the ChainNodesMatched list is non-empty.
1881  bool HasChainNodesMatched, HasFlagResultNodesMatched;
1882};
1883
1884}
1885
1886SDNode *SelectionDAGISel::
1887SelectCodeCommon(SDNode *NodeToMatch, const unsigned char *MatcherTable,
1888                 unsigned TableSize) {
1889  // FIXME: Should these even be selected?  Handle these cases in the caller?
1890  switch (NodeToMatch->getOpcode()) {
1891  default:
1892    break;
1893  case ISD::EntryToken:       // These nodes remain the same.
1894  case ISD::BasicBlock:
1895  case ISD::Register:
1896  //case ISD::VALUETYPE:
1897  //case ISD::CONDCODE:
1898  case ISD::HANDLENODE:
1899  case ISD::MDNODE_SDNODE:
1900  case ISD::TargetConstant:
1901  case ISD::TargetConstantFP:
1902  case ISD::TargetConstantPool:
1903  case ISD::TargetFrameIndex:
1904  case ISD::TargetExternalSymbol:
1905  case ISD::TargetBlockAddress:
1906  case ISD::TargetJumpTable:
1907  case ISD::TargetGlobalTLSAddress:
1908  case ISD::TargetGlobalAddress:
1909  case ISD::TokenFactor:
1910  case ISD::CopyFromReg:
1911  case ISD::CopyToReg:
1912  case ISD::EH_LABEL:
1913    NodeToMatch->setNodeId(-1); // Mark selected.
1914    return 0;
1915  case ISD::AssertSext:
1916  case ISD::AssertZext:
1917    CurDAG->ReplaceAllUsesOfValueWith(SDValue(NodeToMatch, 0),
1918                                      NodeToMatch->getOperand(0));
1919    return 0;
1920  case ISD::INLINEASM: return Select_INLINEASM(NodeToMatch);
1921  case ISD::UNDEF:     return Select_UNDEF(NodeToMatch);
1922  }
1923
1924  assert(!NodeToMatch->isMachineOpcode() && "Node already selected!");
1925
1926  // Set up the node stack with NodeToMatch as the only node on the stack.
1927  SmallVector<SDValue, 8> NodeStack;
1928  SDValue N = SDValue(NodeToMatch, 0);
1929  NodeStack.push_back(N);
1930
1931  // MatchScopes - Scopes used when matching, if a match failure happens, this
1932  // indicates where to continue checking.
1933  SmallVector<MatchScope, 8> MatchScopes;
1934
1935  // RecordedNodes - This is the set of nodes that have been recorded by the
1936  // state machine.  The second value is the parent of the node, or null if the
1937  // root is recorded.
1938  SmallVector<std::pair<SDValue, SDNode*>, 8> RecordedNodes;
1939
1940  // MatchedMemRefs - This is the set of MemRef's we've seen in the input
1941  // pattern.
1942  SmallVector<MachineMemOperand*, 2> MatchedMemRefs;
1943
1944  // These are the current input chain and flag for use when generating nodes.
1945  // Various Emit operations change these.  For example, emitting a copytoreg
1946  // uses and updates these.
1947  SDValue InputChain, InputFlag;
1948
1949  // ChainNodesMatched - If a pattern matches nodes that have input/output
1950  // chains, the OPC_EmitMergeInputChains operation is emitted which indicates
1951  // which ones they are.  The result is captured into this list so that we can
1952  // update the chain results when the pattern is complete.
1953  SmallVector<SDNode*, 3> ChainNodesMatched;
1954  SmallVector<SDNode*, 3> FlagResultNodesMatched;
1955
1956  DEBUG(errs() << "ISEL: Starting pattern match on root node: ";
1957        NodeToMatch->dump(CurDAG);
1958        errs() << '\n');
1959
1960  // Determine where to start the interpreter.  Normally we start at opcode #0,
1961  // but if the state machine starts with an OPC_SwitchOpcode, then we
1962  // accelerate the first lookup (which is guaranteed to be hot) with the
1963  // OpcodeOffset table.
1964  unsigned MatcherIndex = 0;
1965
1966  if (!OpcodeOffset.empty()) {
1967    // Already computed the OpcodeOffset table, just index into it.
1968    if (N.getOpcode() < OpcodeOffset.size())
1969      MatcherIndex = OpcodeOffset[N.getOpcode()];
1970    DEBUG(errs() << "  Initial Opcode index to " << MatcherIndex << "\n");
1971
1972  } else if (MatcherTable[0] == OPC_SwitchOpcode) {
1973    // Otherwise, the table isn't computed, but the state machine does start
1974    // with an OPC_SwitchOpcode instruction.  Populate the table now, since this
1975    // is the first time we're selecting an instruction.
1976    unsigned Idx = 1;
1977    while (1) {
1978      // Get the size of this case.
1979      unsigned CaseSize = MatcherTable[Idx++];
1980      if (CaseSize & 128)
1981        CaseSize = GetVBR(CaseSize, MatcherTable, Idx);
1982      if (CaseSize == 0) break;
1983
1984      // Get the opcode, add the index to the table.
1985      uint16_t Opc = MatcherTable[Idx++];
1986      Opc |= (unsigned short)MatcherTable[Idx++] << 8;
1987      if (Opc >= OpcodeOffset.size())
1988        OpcodeOffset.resize((Opc+1)*2);
1989      OpcodeOffset[Opc] = Idx;
1990      Idx += CaseSize;
1991    }
1992
1993    // Okay, do the lookup for the first opcode.
1994    if (N.getOpcode() < OpcodeOffset.size())
1995      MatcherIndex = OpcodeOffset[N.getOpcode()];
1996  }
1997
1998  while (1) {
1999    assert(MatcherIndex < TableSize && "Invalid index");
2000#ifndef NDEBUG
2001    unsigned CurrentOpcodeIndex = MatcherIndex;
2002#endif
2003    BuiltinOpcodes Opcode = (BuiltinOpcodes)MatcherTable[MatcherIndex++];
2004    switch (Opcode) {
2005    case OPC_Scope: {
2006      // Okay, the semantics of this operation are that we should push a scope
2007      // then evaluate the first child.  However, pushing a scope only to have
2008      // the first check fail (which then pops it) is inefficient.  If we can
2009      // determine immediately that the first check (or first several) will
2010      // immediately fail, don't even bother pushing a scope for them.
2011      unsigned FailIndex;
2012
2013      while (1) {
2014        unsigned NumToSkip = MatcherTable[MatcherIndex++];
2015        if (NumToSkip & 128)
2016          NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex);
2017        // Found the end of the scope with no match.
2018        if (NumToSkip == 0) {
2019          FailIndex = 0;
2020          break;
2021        }
2022
2023        FailIndex = MatcherIndex+NumToSkip;
2024
2025        unsigned MatcherIndexOfPredicate = MatcherIndex;
2026        (void)MatcherIndexOfPredicate; // silence warning.
2027
2028        // If we can't evaluate this predicate without pushing a scope (e.g. if
2029        // it is a 'MoveParent') or if the predicate succeeds on this node, we
2030        // push the scope and evaluate the full predicate chain.
2031        bool Result;
2032        MatcherIndex = IsPredicateKnownToFail(MatcherTable, MatcherIndex, N,
2033                                              Result, *this, RecordedNodes);
2034        if (!Result)
2035          break;
2036
2037        DEBUG(errs() << "  Skipped scope entry (due to false predicate) at "
2038                     << "index " << MatcherIndexOfPredicate
2039                     << ", continuing at " << FailIndex << "\n");
2040        ++NumDAGIselRetries;
2041
2042        // Otherwise, we know that this case of the Scope is guaranteed to fail,
2043        // move to the next case.
2044        MatcherIndex = FailIndex;
2045      }
2046
2047      // If the whole scope failed to match, bail.
2048      if (FailIndex == 0) break;
2049
2050      // Push a MatchScope which indicates where to go if the first child fails
2051      // to match.
2052      MatchScope NewEntry;
2053      NewEntry.FailIndex = FailIndex;
2054      NewEntry.NodeStack.append(NodeStack.begin(), NodeStack.end());
2055      NewEntry.NumRecordedNodes = RecordedNodes.size();
2056      NewEntry.NumMatchedMemRefs = MatchedMemRefs.size();
2057      NewEntry.InputChain = InputChain;
2058      NewEntry.InputFlag = InputFlag;
2059      NewEntry.HasChainNodesMatched = !ChainNodesMatched.empty();
2060      NewEntry.HasFlagResultNodesMatched = !FlagResultNodesMatched.empty();
2061      MatchScopes.push_back(NewEntry);
2062      continue;
2063    }
2064    case OPC_RecordNode: {
2065      // Remember this node, it may end up being an operand in the pattern.
2066      SDNode *Parent = 0;
2067      if (NodeStack.size() > 1)
2068        Parent = NodeStack[NodeStack.size()-2].getNode();
2069      RecordedNodes.push_back(std::make_pair(N, Parent));
2070      continue;
2071    }
2072
2073    case OPC_RecordChild0: case OPC_RecordChild1:
2074    case OPC_RecordChild2: case OPC_RecordChild3:
2075    case OPC_RecordChild4: case OPC_RecordChild5:
2076    case OPC_RecordChild6: case OPC_RecordChild7: {
2077      unsigned ChildNo = Opcode-OPC_RecordChild0;
2078      if (ChildNo >= N.getNumOperands())
2079        break;  // Match fails if out of range child #.
2080
2081      RecordedNodes.push_back(std::make_pair(N->getOperand(ChildNo),
2082                                             N.getNode()));
2083      continue;
2084    }
2085    case OPC_RecordMemRef:
2086      MatchedMemRefs.push_back(cast<MemSDNode>(N)->getMemOperand());
2087      continue;
2088
2089    case OPC_CaptureFlagInput:
2090      // If the current node has an input flag, capture it in InputFlag.
2091      if (N->getNumOperands() != 0 &&
2092          N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Flag)
2093        InputFlag = N->getOperand(N->getNumOperands()-1);
2094      continue;
2095
2096    case OPC_MoveChild: {
2097      unsigned ChildNo = MatcherTable[MatcherIndex++];
2098      if (ChildNo >= N.getNumOperands())
2099        break;  // Match fails if out of range child #.
2100      N = N.getOperand(ChildNo);
2101      NodeStack.push_back(N);
2102      continue;
2103    }
2104
2105    case OPC_MoveParent:
2106      // Pop the current node off the NodeStack.
2107      NodeStack.pop_back();
2108      assert(!NodeStack.empty() && "Node stack imbalance!");
2109      N = NodeStack.back();
2110      continue;
2111
2112    case OPC_CheckSame:
2113      if (!::CheckSame(MatcherTable, MatcherIndex, N, RecordedNodes)) break;
2114      continue;
2115    case OPC_CheckPatternPredicate:
2116      if (!::CheckPatternPredicate(MatcherTable, MatcherIndex, *this)) break;
2117      continue;
2118    case OPC_CheckPredicate:
2119      if (!::CheckNodePredicate(MatcherTable, MatcherIndex, *this,
2120                                N.getNode()))
2121        break;
2122      continue;
2123    case OPC_CheckComplexPat: {
2124      unsigned CPNum = MatcherTable[MatcherIndex++];
2125      unsigned RecNo = MatcherTable[MatcherIndex++];
2126      assert(RecNo < RecordedNodes.size() && "Invalid CheckComplexPat");
2127      if (!CheckComplexPattern(NodeToMatch, RecordedNodes[RecNo].second,
2128                               RecordedNodes[RecNo].first, CPNum,
2129                               RecordedNodes))
2130        break;
2131      continue;
2132    }
2133    case OPC_CheckOpcode:
2134      if (!::CheckOpcode(MatcherTable, MatcherIndex, N.getNode())) break;
2135      continue;
2136
2137    case OPC_CheckType:
2138      if (!::CheckType(MatcherTable, MatcherIndex, N, TLI)) break;
2139      continue;
2140
2141    case OPC_SwitchOpcode: {
2142      unsigned CurNodeOpcode = N.getOpcode();
2143      unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart;
2144      unsigned CaseSize;
2145      while (1) {
2146        // Get the size of this case.
2147        CaseSize = MatcherTable[MatcherIndex++];
2148        if (CaseSize & 128)
2149          CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex);
2150        if (CaseSize == 0) break;
2151
2152        uint16_t Opc = MatcherTable[MatcherIndex++];
2153        Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
2154
2155        // If the opcode matches, then we will execute this case.
2156        if (CurNodeOpcode == Opc)
2157          break;
2158
2159        // Otherwise, skip over this case.
2160        MatcherIndex += CaseSize;
2161      }
2162
2163      // If no cases matched, bail out.
2164      if (CaseSize == 0) break;
2165
2166      // Otherwise, execute the case we found.
2167      DEBUG(errs() << "  OpcodeSwitch from " << SwitchStart
2168                   << " to " << MatcherIndex << "\n");
2169      continue;
2170    }
2171
2172    case OPC_SwitchType: {
2173      MVT::SimpleValueType CurNodeVT = N.getValueType().getSimpleVT().SimpleTy;
2174      unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart;
2175      unsigned CaseSize;
2176      while (1) {
2177        // Get the size of this case.
2178        CaseSize = MatcherTable[MatcherIndex++];
2179        if (CaseSize & 128)
2180          CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex);
2181        if (CaseSize == 0) break;
2182
2183        MVT::SimpleValueType CaseVT =
2184          (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2185        if (CaseVT == MVT::iPTR)
2186          CaseVT = TLI.getPointerTy().SimpleTy;
2187
2188        // If the VT matches, then we will execute this case.
2189        if (CurNodeVT == CaseVT)
2190          break;
2191
2192        // Otherwise, skip over this case.
2193        MatcherIndex += CaseSize;
2194      }
2195
2196      // If no cases matched, bail out.
2197      if (CaseSize == 0) break;
2198
2199      // Otherwise, execute the case we found.
2200      DEBUG(errs() << "  TypeSwitch[" << EVT(CurNodeVT).getEVTString()
2201                   << "] from " << SwitchStart << " to " << MatcherIndex<<'\n');
2202      continue;
2203    }
2204    case OPC_CheckChild0Type: case OPC_CheckChild1Type:
2205    case OPC_CheckChild2Type: case OPC_CheckChild3Type:
2206    case OPC_CheckChild4Type: case OPC_CheckChild5Type:
2207    case OPC_CheckChild6Type: case OPC_CheckChild7Type:
2208      if (!::CheckChildType(MatcherTable, MatcherIndex, N, TLI,
2209                            Opcode-OPC_CheckChild0Type))
2210        break;
2211      continue;
2212    case OPC_CheckCondCode:
2213      if (!::CheckCondCode(MatcherTable, MatcherIndex, N)) break;
2214      continue;
2215    case OPC_CheckValueType:
2216      if (!::CheckValueType(MatcherTable, MatcherIndex, N, TLI)) break;
2217      continue;
2218    case OPC_CheckInteger:
2219      if (!::CheckInteger(MatcherTable, MatcherIndex, N)) break;
2220      continue;
2221    case OPC_CheckAndImm:
2222      if (!::CheckAndImm(MatcherTable, MatcherIndex, N, *this)) break;
2223      continue;
2224    case OPC_CheckOrImm:
2225      if (!::CheckOrImm(MatcherTable, MatcherIndex, N, *this)) break;
2226      continue;
2227
2228    case OPC_CheckFoldableChainNode: {
2229      assert(NodeStack.size() != 1 && "No parent node");
2230      // Verify that all intermediate nodes between the root and this one have
2231      // a single use.
2232      bool HasMultipleUses = false;
2233      for (unsigned i = 1, e = NodeStack.size()-1; i != e; ++i)
2234        if (!NodeStack[i].hasOneUse()) {
2235          HasMultipleUses = true;
2236          break;
2237        }
2238      if (HasMultipleUses) break;
2239
2240      // Check to see that the target thinks this is profitable to fold and that
2241      // we can fold it without inducing cycles in the graph.
2242      if (!IsProfitableToFold(N, NodeStack[NodeStack.size()-2].getNode(),
2243                              NodeToMatch) ||
2244          !IsLegalToFold(N, NodeStack[NodeStack.size()-2].getNode(),
2245                         NodeToMatch, OptLevel,
2246                         true/*We validate our own chains*/))
2247        break;
2248
2249      continue;
2250    }
2251    case OPC_EmitInteger: {
2252      MVT::SimpleValueType VT =
2253        (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2254      int64_t Val = MatcherTable[MatcherIndex++];
2255      if (Val & 128)
2256        Val = GetVBR(Val, MatcherTable, MatcherIndex);
2257      RecordedNodes.push_back(std::pair<SDValue, SDNode*>(
2258                              CurDAG->getTargetConstant(Val, VT), (SDNode*)0));
2259      continue;
2260    }
2261    case OPC_EmitRegister: {
2262      MVT::SimpleValueType VT =
2263        (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2264      unsigned RegNo = MatcherTable[MatcherIndex++];
2265      RecordedNodes.push_back(std::pair<SDValue, SDNode*>(
2266                              CurDAG->getRegister(RegNo, VT), (SDNode*)0));
2267      continue;
2268    }
2269
2270    case OPC_EmitConvertToTarget:  {
2271      // Convert from IMM/FPIMM to target version.
2272      unsigned RecNo = MatcherTable[MatcherIndex++];
2273      assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2274      SDValue Imm = RecordedNodes[RecNo].first;
2275
2276      if (Imm->getOpcode() == ISD::Constant) {
2277        int64_t Val = cast<ConstantSDNode>(Imm)->getZExtValue();
2278        Imm = CurDAG->getTargetConstant(Val, Imm.getValueType());
2279      } else if (Imm->getOpcode() == ISD::ConstantFP) {
2280        const ConstantFP *Val=cast<ConstantFPSDNode>(Imm)->getConstantFPValue();
2281        Imm = CurDAG->getTargetConstantFP(*Val, Imm.getValueType());
2282      }
2283
2284      RecordedNodes.push_back(std::make_pair(Imm, RecordedNodes[RecNo].second));
2285      continue;
2286    }
2287
2288    case OPC_EmitMergeInputChains1_0:    // OPC_EmitMergeInputChains, 1, 0
2289    case OPC_EmitMergeInputChains1_1: {  // OPC_EmitMergeInputChains, 1, 1
2290      // These are space-optimized forms of OPC_EmitMergeInputChains.
2291      assert(InputChain.getNode() == 0 &&
2292             "EmitMergeInputChains should be the first chain producing node");
2293      assert(ChainNodesMatched.empty() &&
2294             "Should only have one EmitMergeInputChains per match");
2295
2296      // Read all of the chained nodes.
2297      unsigned RecNo = Opcode == OPC_EmitMergeInputChains1_1;
2298      assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2299      ChainNodesMatched.push_back(RecordedNodes[RecNo].first.getNode());
2300
2301      // FIXME: What if other value results of the node have uses not matched
2302      // by this pattern?
2303      if (ChainNodesMatched.back() != NodeToMatch &&
2304          !RecordedNodes[RecNo].first.hasOneUse()) {
2305        ChainNodesMatched.clear();
2306        break;
2307      }
2308
2309      // Merge the input chains if they are not intra-pattern references.
2310      InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG);
2311
2312      if (InputChain.getNode() == 0)
2313        break;  // Failed to merge.
2314      continue;
2315    }
2316
2317    case OPC_EmitMergeInputChains: {
2318      assert(InputChain.getNode() == 0 &&
2319             "EmitMergeInputChains should be the first chain producing node");
2320      // This node gets a list of nodes we matched in the input that have
2321      // chains.  We want to token factor all of the input chains to these nodes
2322      // together.  However, if any of the input chains is actually one of the
2323      // nodes matched in this pattern, then we have an intra-match reference.
2324      // Ignore these because the newly token factored chain should not refer to
2325      // the old nodes.
2326      unsigned NumChains = MatcherTable[MatcherIndex++];
2327      assert(NumChains != 0 && "Can't TF zero chains");
2328
2329      assert(ChainNodesMatched.empty() &&
2330             "Should only have one EmitMergeInputChains per match");
2331
2332      // Read all of the chained nodes.
2333      for (unsigned i = 0; i != NumChains; ++i) {
2334        unsigned RecNo = MatcherTable[MatcherIndex++];
2335        assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2336        ChainNodesMatched.push_back(RecordedNodes[RecNo].first.getNode());
2337
2338        // FIXME: What if other value results of the node have uses not matched
2339        // by this pattern?
2340        if (ChainNodesMatched.back() != NodeToMatch &&
2341            !RecordedNodes[RecNo].first.hasOneUse()) {
2342          ChainNodesMatched.clear();
2343          break;
2344        }
2345      }
2346
2347      // If the inner loop broke out, the match fails.
2348      if (ChainNodesMatched.empty())
2349        break;
2350
2351      // Merge the input chains if they are not intra-pattern references.
2352      InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG);
2353
2354      if (InputChain.getNode() == 0)
2355        break;  // Failed to merge.
2356
2357      continue;
2358    }
2359
2360    case OPC_EmitCopyToReg: {
2361      unsigned RecNo = MatcherTable[MatcherIndex++];
2362      assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2363      unsigned DestPhysReg = MatcherTable[MatcherIndex++];
2364
2365      if (InputChain.getNode() == 0)
2366        InputChain = CurDAG->getEntryNode();
2367
2368      InputChain = CurDAG->getCopyToReg(InputChain, NodeToMatch->getDebugLoc(),
2369                                        DestPhysReg, RecordedNodes[RecNo].first,
2370                                        InputFlag);
2371
2372      InputFlag = InputChain.getValue(1);
2373      continue;
2374    }
2375
2376    case OPC_EmitNodeXForm: {
2377      unsigned XFormNo = MatcherTable[MatcherIndex++];
2378      unsigned RecNo = MatcherTable[MatcherIndex++];
2379      assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2380      SDValue Res = RunSDNodeXForm(RecordedNodes[RecNo].first, XFormNo);
2381      RecordedNodes.push_back(std::pair<SDValue,SDNode*>(Res, (SDNode*) 0));
2382      continue;
2383    }
2384
2385    case OPC_EmitNode:
2386    case OPC_MorphNodeTo: {
2387      uint16_t TargetOpc = MatcherTable[MatcherIndex++];
2388      TargetOpc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
2389      unsigned EmitNodeInfo = MatcherTable[MatcherIndex++];
2390      // Get the result VT list.
2391      unsigned NumVTs = MatcherTable[MatcherIndex++];
2392      SmallVector<EVT, 4> VTs;
2393      for (unsigned i = 0; i != NumVTs; ++i) {
2394        MVT::SimpleValueType VT =
2395          (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2396        if (VT == MVT::iPTR) VT = TLI.getPointerTy().SimpleTy;
2397        VTs.push_back(VT);
2398      }
2399
2400      if (EmitNodeInfo & OPFL_Chain)
2401        VTs.push_back(MVT::Other);
2402      if (EmitNodeInfo & OPFL_FlagOutput)
2403        VTs.push_back(MVT::Flag);
2404
2405      // This is hot code, so optimize the two most common cases of 1 and 2
2406      // results.
2407      SDVTList VTList;
2408      if (VTs.size() == 1)
2409        VTList = CurDAG->getVTList(VTs[0]);
2410      else if (VTs.size() == 2)
2411        VTList = CurDAG->getVTList(VTs[0], VTs[1]);
2412      else
2413        VTList = CurDAG->getVTList(VTs.data(), VTs.size());
2414
2415      // Get the operand list.
2416      unsigned NumOps = MatcherTable[MatcherIndex++];
2417      SmallVector<SDValue, 8> Ops;
2418      for (unsigned i = 0; i != NumOps; ++i) {
2419        unsigned RecNo = MatcherTable[MatcherIndex++];
2420        if (RecNo & 128)
2421          RecNo = GetVBR(RecNo, MatcherTable, MatcherIndex);
2422
2423        assert(RecNo < RecordedNodes.size() && "Invalid EmitNode");
2424        Ops.push_back(RecordedNodes[RecNo].first);
2425      }
2426
2427      // If there are variadic operands to add, handle them now.
2428      if (EmitNodeInfo & OPFL_VariadicInfo) {
2429        // Determine the start index to copy from.
2430        unsigned FirstOpToCopy = getNumFixedFromVariadicInfo(EmitNodeInfo);
2431        FirstOpToCopy += (EmitNodeInfo & OPFL_Chain) ? 1 : 0;
2432        assert(NodeToMatch->getNumOperands() >= FirstOpToCopy &&
2433               "Invalid variadic node");
2434        // Copy all of the variadic operands, not including a potential flag
2435        // input.
2436        for (unsigned i = FirstOpToCopy, e = NodeToMatch->getNumOperands();
2437             i != e; ++i) {
2438          SDValue V = NodeToMatch->getOperand(i);
2439          if (V.getValueType() == MVT::Flag) break;
2440          Ops.push_back(V);
2441        }
2442      }
2443
2444      // If this has chain/flag inputs, add them.
2445      if (EmitNodeInfo & OPFL_Chain)
2446        Ops.push_back(InputChain);
2447      if ((EmitNodeInfo & OPFL_FlagInput) && InputFlag.getNode() != 0)
2448        Ops.push_back(InputFlag);
2449
2450      // Create the node.
2451      SDNode *Res = 0;
2452      if (Opcode != OPC_MorphNodeTo) {
2453        // If this is a normal EmitNode command, just create the new node and
2454        // add the results to the RecordedNodes list.
2455        Res = CurDAG->getMachineNode(TargetOpc, NodeToMatch->getDebugLoc(),
2456                                     VTList, Ops.data(), Ops.size());
2457
2458        // Add all the non-flag/non-chain results to the RecordedNodes list.
2459        for (unsigned i = 0, e = VTs.size(); i != e; ++i) {
2460          if (VTs[i] == MVT::Other || VTs[i] == MVT::Flag) break;
2461          RecordedNodes.push_back(std::pair<SDValue,SDNode*>(SDValue(Res, i),
2462                                                             (SDNode*) 0));
2463        }
2464
2465      } else {
2466        Res = MorphNode(NodeToMatch, TargetOpc, VTList, Ops.data(), Ops.size(),
2467                        EmitNodeInfo);
2468      }
2469
2470      // If the node had chain/flag results, update our notion of the current
2471      // chain and flag.
2472      if (EmitNodeInfo & OPFL_FlagOutput) {
2473        InputFlag = SDValue(Res, VTs.size()-1);
2474        if (EmitNodeInfo & OPFL_Chain)
2475          InputChain = SDValue(Res, VTs.size()-2);
2476      } else if (EmitNodeInfo & OPFL_Chain)
2477        InputChain = SDValue(Res, VTs.size()-1);
2478
2479      // If the OPFL_MemRefs flag is set on this node, slap all of the
2480      // accumulated memrefs onto it.
2481      //
2482      // FIXME: This is vastly incorrect for patterns with multiple outputs
2483      // instructions that access memory and for ComplexPatterns that match
2484      // loads.
2485      if (EmitNodeInfo & OPFL_MemRefs) {
2486        MachineSDNode::mmo_iterator MemRefs =
2487          MF->allocateMemRefsArray(MatchedMemRefs.size());
2488        std::copy(MatchedMemRefs.begin(), MatchedMemRefs.end(), MemRefs);
2489        cast<MachineSDNode>(Res)
2490          ->setMemRefs(MemRefs, MemRefs + MatchedMemRefs.size());
2491      }
2492
2493      DEBUG(errs() << "  "
2494                   << (Opcode == OPC_MorphNodeTo ? "Morphed" : "Created")
2495                   << " node: "; Res->dump(CurDAG); errs() << "\n");
2496
2497      // If this was a MorphNodeTo then we're completely done!
2498      if (Opcode == OPC_MorphNodeTo) {
2499        // Update chain and flag uses.
2500        UpdateChainsAndFlags(NodeToMatch, InputChain, ChainNodesMatched,
2501                             InputFlag, FlagResultNodesMatched, true);
2502        return Res;
2503      }
2504
2505      continue;
2506    }
2507
2508    case OPC_MarkFlagResults: {
2509      unsigned NumNodes = MatcherTable[MatcherIndex++];
2510
2511      // Read and remember all the flag-result nodes.
2512      for (unsigned i = 0; i != NumNodes; ++i) {
2513        unsigned RecNo = MatcherTable[MatcherIndex++];
2514        if (RecNo & 128)
2515          RecNo = GetVBR(RecNo, MatcherTable, MatcherIndex);
2516
2517        assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2518        FlagResultNodesMatched.push_back(RecordedNodes[RecNo].first.getNode());
2519      }
2520      continue;
2521    }
2522
2523    case OPC_CompleteMatch: {
2524      // The match has been completed, and any new nodes (if any) have been
2525      // created.  Patch up references to the matched dag to use the newly
2526      // created nodes.
2527      unsigned NumResults = MatcherTable[MatcherIndex++];
2528
2529      for (unsigned i = 0; i != NumResults; ++i) {
2530        unsigned ResSlot = MatcherTable[MatcherIndex++];
2531        if (ResSlot & 128)
2532          ResSlot = GetVBR(ResSlot, MatcherTable, MatcherIndex);
2533
2534        assert(ResSlot < RecordedNodes.size() && "Invalid CheckSame");
2535        SDValue Res = RecordedNodes[ResSlot].first;
2536
2537        assert(i < NodeToMatch->getNumValues() &&
2538               NodeToMatch->getValueType(i) != MVT::Other &&
2539               NodeToMatch->getValueType(i) != MVT::Flag &&
2540               "Invalid number of results to complete!");
2541        assert((NodeToMatch->getValueType(i) == Res.getValueType() ||
2542                NodeToMatch->getValueType(i) == MVT::iPTR ||
2543                Res.getValueType() == MVT::iPTR ||
2544                NodeToMatch->getValueType(i).getSizeInBits() ==
2545                    Res.getValueType().getSizeInBits()) &&
2546               "invalid replacement");
2547        CurDAG->ReplaceAllUsesOfValueWith(SDValue(NodeToMatch, i), Res);
2548      }
2549
2550      // If the root node defines a flag, add it to the flag nodes to update
2551      // list.
2552      if (NodeToMatch->getValueType(NodeToMatch->getNumValues()-1) == MVT::Flag)
2553        FlagResultNodesMatched.push_back(NodeToMatch);
2554
2555      // Update chain and flag uses.
2556      UpdateChainsAndFlags(NodeToMatch, InputChain, ChainNodesMatched,
2557                           InputFlag, FlagResultNodesMatched, false);
2558
2559      assert(NodeToMatch->use_empty() &&
2560             "Didn't replace all uses of the node?");
2561
2562      // FIXME: We just return here, which interacts correctly with SelectRoot
2563      // above.  We should fix this to not return an SDNode* anymore.
2564      return 0;
2565    }
2566    }
2567
2568    // If the code reached this point, then the match failed.  See if there is
2569    // another child to try in the current 'Scope', otherwise pop it until we
2570    // find a case to check.
2571    DEBUG(errs() << "  Match failed at index " << CurrentOpcodeIndex << "\n");
2572    ++NumDAGIselRetries;
2573    while (1) {
2574      if (MatchScopes.empty()) {
2575        CannotYetSelect(NodeToMatch);
2576        return 0;
2577      }
2578
2579      // Restore the interpreter state back to the point where the scope was
2580      // formed.
2581      MatchScope &LastScope = MatchScopes.back();
2582      RecordedNodes.resize(LastScope.NumRecordedNodes);
2583      NodeStack.clear();
2584      NodeStack.append(LastScope.NodeStack.begin(), LastScope.NodeStack.end());
2585      N = NodeStack.back();
2586
2587      if (LastScope.NumMatchedMemRefs != MatchedMemRefs.size())
2588        MatchedMemRefs.resize(LastScope.NumMatchedMemRefs);
2589      MatcherIndex = LastScope.FailIndex;
2590
2591      DEBUG(errs() << "  Continuing at " << MatcherIndex << "\n");
2592
2593      InputChain = LastScope.InputChain;
2594      InputFlag = LastScope.InputFlag;
2595      if (!LastScope.HasChainNodesMatched)
2596        ChainNodesMatched.clear();
2597      if (!LastScope.HasFlagResultNodesMatched)
2598        FlagResultNodesMatched.clear();
2599
2600      // Check to see what the offset is at the new MatcherIndex.  If it is zero
2601      // we have reached the end of this scope, otherwise we have another child
2602      // in the current scope to try.
2603      unsigned NumToSkip = MatcherTable[MatcherIndex++];
2604      if (NumToSkip & 128)
2605        NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex);
2606
2607      // If we have another child in this scope to match, update FailIndex and
2608      // try it.
2609      if (NumToSkip != 0) {
2610        LastScope.FailIndex = MatcherIndex+NumToSkip;
2611        break;
2612      }
2613
2614      // End of this scope, pop it and try the next child in the containing
2615      // scope.
2616      MatchScopes.pop_back();
2617    }
2618  }
2619}
2620
2621
2622
2623void SelectionDAGISel::CannotYetSelect(SDNode *N) {
2624  std::string msg;
2625  raw_string_ostream Msg(msg);
2626  Msg << "Cannot yet select: ";
2627
2628  if (N->getOpcode() != ISD::INTRINSIC_W_CHAIN &&
2629      N->getOpcode() != ISD::INTRINSIC_WO_CHAIN &&
2630      N->getOpcode() != ISD::INTRINSIC_VOID) {
2631    N->printrFull(Msg, CurDAG);
2632  } else {
2633    bool HasInputChain = N->getOperand(0).getValueType() == MVT::Other;
2634    unsigned iid =
2635      cast<ConstantSDNode>(N->getOperand(HasInputChain))->getZExtValue();
2636    if (iid < Intrinsic::num_intrinsics)
2637      Msg << "intrinsic %" << Intrinsic::getName((Intrinsic::ID)iid);
2638    else if (const TargetIntrinsicInfo *TII = TM.getIntrinsicInfo())
2639      Msg << "target intrinsic %" << TII->getName(iid);
2640    else
2641      Msg << "unknown intrinsic #" << iid;
2642  }
2643  report_fatal_error(Msg.str());
2644}
2645
2646char SelectionDAGISel::ID = 0;
2647