SelectionDAGISel.cpp revision 2046e12f022ad098fe84776d55f4ea1a5e342c85
1//===-- SelectionDAGISel.cpp - Implement the SelectionDAGISel class -------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAGISel class.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "isel"
15#include "llvm/ADT/BitVector.h"
16#include "llvm/Analysis/AliasAnalysis.h"
17#include "llvm/CodeGen/SelectionDAGISel.h"
18#include "llvm/CodeGen/ScheduleDAG.h"
19#include "llvm/Constants.h"
20#include "llvm/CallingConv.h"
21#include "llvm/DerivedTypes.h"
22#include "llvm/Function.h"
23#include "llvm/GlobalVariable.h"
24#include "llvm/InlineAsm.h"
25#include "llvm/Instructions.h"
26#include "llvm/Intrinsics.h"
27#include "llvm/IntrinsicInst.h"
28#include "llvm/ParameterAttributes.h"
29#include "llvm/CodeGen/MachineModuleInfo.h"
30#include "llvm/CodeGen/MachineFunction.h"
31#include "llvm/CodeGen/MachineFrameInfo.h"
32#include "llvm/CodeGen/MachineJumpTableInfo.h"
33#include "llvm/CodeGen/MachineInstrBuilder.h"
34#include "llvm/CodeGen/SchedulerRegistry.h"
35#include "llvm/CodeGen/SelectionDAG.h"
36#include "llvm/CodeGen/SSARegMap.h"
37#include "llvm/Target/MRegisterInfo.h"
38#include "llvm/Target/TargetData.h"
39#include "llvm/Target/TargetFrameInfo.h"
40#include "llvm/Target/TargetInstrInfo.h"
41#include "llvm/Target/TargetLowering.h"
42#include "llvm/Target/TargetMachine.h"
43#include "llvm/Target/TargetOptions.h"
44#include "llvm/Support/MathExtras.h"
45#include "llvm/Support/Debug.h"
46#include "llvm/Support/Compiler.h"
47#include <algorithm>
48using namespace llvm;
49
50#ifndef NDEBUG
51static cl::opt<bool>
52ViewISelDAGs("view-isel-dags", cl::Hidden,
53          cl::desc("Pop up a window to show isel dags as they are selected"));
54static cl::opt<bool>
55ViewSchedDAGs("view-sched-dags", cl::Hidden,
56          cl::desc("Pop up a window to show sched dags as they are processed"));
57#else
58static const bool ViewISelDAGs = 0, ViewSchedDAGs = 0;
59#endif
60
61//===---------------------------------------------------------------------===//
62///
63/// RegisterScheduler class - Track the registration of instruction schedulers.
64///
65//===---------------------------------------------------------------------===//
66MachinePassRegistry RegisterScheduler::Registry;
67
68//===---------------------------------------------------------------------===//
69///
70/// ISHeuristic command line option for instruction schedulers.
71///
72//===---------------------------------------------------------------------===//
73namespace {
74  cl::opt<RegisterScheduler::FunctionPassCtor, false,
75          RegisterPassParser<RegisterScheduler> >
76  ISHeuristic("sched",
77              cl::init(&createDefaultScheduler),
78              cl::desc("Instruction schedulers available:"));
79
80  static RegisterScheduler
81  defaultListDAGScheduler("default", "  Best scheduler for the target",
82                          createDefaultScheduler);
83} // namespace
84
85namespace { struct AsmOperandInfo; }
86
87namespace {
88  /// RegsForValue - This struct represents the physical registers that a
89  /// particular value is assigned and the type information about the value.
90  /// This is needed because values can be promoted into larger registers and
91  /// expanded into multiple smaller registers than the value.
92  struct VISIBILITY_HIDDEN RegsForValue {
93    /// Regs - This list hold the register (for legal and promoted values)
94    /// or register set (for expanded values) that the value should be assigned
95    /// to.
96    std::vector<unsigned> Regs;
97
98    /// RegVT - The value type of each register.
99    ///
100    MVT::ValueType RegVT;
101
102    /// ValueVT - The value type of the LLVM value, which may be promoted from
103    /// RegVT or made from merging the two expanded parts.
104    MVT::ValueType ValueVT;
105
106    RegsForValue() : RegVT(MVT::Other), ValueVT(MVT::Other) {}
107
108    RegsForValue(unsigned Reg, MVT::ValueType regvt, MVT::ValueType valuevt)
109      : RegVT(regvt), ValueVT(valuevt) {
110        Regs.push_back(Reg);
111    }
112    RegsForValue(const std::vector<unsigned> &regs,
113                 MVT::ValueType regvt, MVT::ValueType valuevt)
114      : Regs(regs), RegVT(regvt), ValueVT(valuevt) {
115    }
116
117    /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
118    /// this value and returns the result as a ValueVT value.  This uses
119    /// Chain/Flag as the input and updates them for the output Chain/Flag.
120    SDOperand getCopyFromRegs(SelectionDAG &DAG,
121                              SDOperand &Chain, SDOperand &Flag) const;
122
123    /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
124    /// specified value into the registers specified by this object.  This uses
125    /// Chain/Flag as the input and updates them for the output Chain/Flag.
126    void getCopyToRegs(SDOperand Val, SelectionDAG &DAG,
127                       SDOperand &Chain, SDOperand &Flag,
128                       MVT::ValueType PtrVT) const;
129
130    /// AddInlineAsmOperands - Add this value to the specified inlineasm node
131    /// operand list.  This adds the code marker and includes the number of
132    /// values added into it.
133    void AddInlineAsmOperands(unsigned Code, SelectionDAG &DAG,
134                              std::vector<SDOperand> &Ops) const;
135  };
136}
137
138namespace llvm {
139  //===--------------------------------------------------------------------===//
140  /// createDefaultScheduler - This creates an instruction scheduler appropriate
141  /// for the target.
142  ScheduleDAG* createDefaultScheduler(SelectionDAGISel *IS,
143                                      SelectionDAG *DAG,
144                                      MachineBasicBlock *BB) {
145    TargetLowering &TLI = IS->getTargetLowering();
146
147    if (TLI.getSchedulingPreference() == TargetLowering::SchedulingForLatency) {
148      return createTDListDAGScheduler(IS, DAG, BB);
149    } else {
150      assert(TLI.getSchedulingPreference() ==
151           TargetLowering::SchedulingForRegPressure && "Unknown sched type!");
152      return createBURRListDAGScheduler(IS, DAG, BB);
153    }
154  }
155
156
157  //===--------------------------------------------------------------------===//
158  /// FunctionLoweringInfo - This contains information that is global to a
159  /// function that is used when lowering a region of the function.
160  class FunctionLoweringInfo {
161  public:
162    TargetLowering &TLI;
163    Function &Fn;
164    MachineFunction &MF;
165    SSARegMap *RegMap;
166
167    FunctionLoweringInfo(TargetLowering &TLI, Function &Fn,MachineFunction &MF);
168
169    /// MBBMap - A mapping from LLVM basic blocks to their machine code entry.
170    std::map<const BasicBlock*, MachineBasicBlock *> MBBMap;
171
172    /// ValueMap - Since we emit code for the function a basic block at a time,
173    /// we must remember which virtual registers hold the values for
174    /// cross-basic-block values.
175    DenseMap<const Value*, unsigned> ValueMap;
176
177    /// StaticAllocaMap - Keep track of frame indices for fixed sized allocas in
178    /// the entry block.  This allows the allocas to be efficiently referenced
179    /// anywhere in the function.
180    std::map<const AllocaInst*, int> StaticAllocaMap;
181
182    unsigned MakeReg(MVT::ValueType VT) {
183      return RegMap->createVirtualRegister(TLI.getRegClassFor(VT));
184    }
185
186    /// isExportedInst - Return true if the specified value is an instruction
187    /// exported from its block.
188    bool isExportedInst(const Value *V) {
189      return ValueMap.count(V);
190    }
191
192    unsigned CreateRegForValue(const Value *V);
193
194    unsigned InitializeRegForValue(const Value *V) {
195      unsigned &R = ValueMap[V];
196      assert(R == 0 && "Already initialized this value register!");
197      return R = CreateRegForValue(V);
198    }
199  };
200}
201
202/// isUsedOutsideOfDefiningBlock - Return true if this instruction is used by
203/// PHI nodes or outside of the basic block that defines it, or used by a
204/// switch instruction, which may expand to multiple basic blocks.
205static bool isUsedOutsideOfDefiningBlock(Instruction *I) {
206  if (isa<PHINode>(I)) return true;
207  BasicBlock *BB = I->getParent();
208  for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E; ++UI)
209    if (cast<Instruction>(*UI)->getParent() != BB || isa<PHINode>(*UI) ||
210        // FIXME: Remove switchinst special case.
211        isa<SwitchInst>(*UI))
212      return true;
213  return false;
214}
215
216/// isOnlyUsedInEntryBlock - If the specified argument is only used in the
217/// entry block, return true.  This includes arguments used by switches, since
218/// the switch may expand into multiple basic blocks.
219static bool isOnlyUsedInEntryBlock(Argument *A) {
220  BasicBlock *Entry = A->getParent()->begin();
221  for (Value::use_iterator UI = A->use_begin(), E = A->use_end(); UI != E; ++UI)
222    if (cast<Instruction>(*UI)->getParent() != Entry || isa<SwitchInst>(*UI))
223      return false;  // Use not in entry block.
224  return true;
225}
226
227FunctionLoweringInfo::FunctionLoweringInfo(TargetLowering &tli,
228                                           Function &fn, MachineFunction &mf)
229    : TLI(tli), Fn(fn), MF(mf), RegMap(MF.getSSARegMap()) {
230
231  // Create a vreg for each argument register that is not dead and is used
232  // outside of the entry block for the function.
233  for (Function::arg_iterator AI = Fn.arg_begin(), E = Fn.arg_end();
234       AI != E; ++AI)
235    if (!isOnlyUsedInEntryBlock(AI))
236      InitializeRegForValue(AI);
237
238  // Initialize the mapping of values to registers.  This is only set up for
239  // instruction values that are used outside of the block that defines
240  // them.
241  Function::iterator BB = Fn.begin(), EB = Fn.end();
242  for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
243    if (AllocaInst *AI = dyn_cast<AllocaInst>(I))
244      if (ConstantInt *CUI = dyn_cast<ConstantInt>(AI->getArraySize())) {
245        const Type *Ty = AI->getAllocatedType();
246        uint64_t TySize = TLI.getTargetData()->getTypeSize(Ty);
247        unsigned Align =
248          std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty),
249                   AI->getAlignment());
250
251        TySize *= CUI->getZExtValue();   // Get total allocated size.
252        if (TySize == 0) TySize = 1; // Don't create zero-sized stack objects.
253        StaticAllocaMap[AI] =
254          MF.getFrameInfo()->CreateStackObject(TySize, Align);
255      }
256
257  for (; BB != EB; ++BB)
258    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
259      if (!I->use_empty() && isUsedOutsideOfDefiningBlock(I))
260        if (!isa<AllocaInst>(I) ||
261            !StaticAllocaMap.count(cast<AllocaInst>(I)))
262          InitializeRegForValue(I);
263
264  // Create an initial MachineBasicBlock for each LLVM BasicBlock in F.  This
265  // also creates the initial PHI MachineInstrs, though none of the input
266  // operands are populated.
267  for (BB = Fn.begin(), EB = Fn.end(); BB != EB; ++BB) {
268    MachineBasicBlock *MBB = new MachineBasicBlock(BB);
269    MBBMap[BB] = MBB;
270    MF.getBasicBlockList().push_back(MBB);
271
272    // Create Machine PHI nodes for LLVM PHI nodes, lowering them as
273    // appropriate.
274    PHINode *PN;
275    for (BasicBlock::iterator I = BB->begin();(PN = dyn_cast<PHINode>(I)); ++I){
276      if (PN->use_empty()) continue;
277
278      MVT::ValueType VT = TLI.getValueType(PN->getType());
279      unsigned NumElements;
280      if (VT != MVT::Vector)
281        NumElements = TLI.getNumElements(VT);
282      else {
283        MVT::ValueType VT1,VT2;
284        NumElements =
285          TLI.getVectorTypeBreakdown(cast<VectorType>(PN->getType()),
286                                     VT1, VT2);
287      }
288      unsigned PHIReg = ValueMap[PN];
289      assert(PHIReg && "PHI node does not have an assigned virtual register!");
290      const TargetInstrInfo *TII = TLI.getTargetMachine().getInstrInfo();
291      for (unsigned i = 0; i != NumElements; ++i)
292        BuildMI(MBB, TII->get(TargetInstrInfo::PHI), PHIReg+i);
293    }
294  }
295}
296
297/// CreateRegForValue - Allocate the appropriate number of virtual registers of
298/// the correctly promoted or expanded types.  Assign these registers
299/// consecutive vreg numbers and return the first assigned number.
300unsigned FunctionLoweringInfo::CreateRegForValue(const Value *V) {
301  MVT::ValueType VT = TLI.getValueType(V->getType());
302
303  // The number of multiples of registers that we need, to, e.g., split up
304  // a <2 x int64> -> 4 x i32 registers.
305  unsigned NumVectorRegs = 1;
306
307  // If this is a vector type, figure out what type it will decompose into
308  // and how many of the elements it will use.
309  if (VT == MVT::Vector) {
310    const VectorType *PTy = cast<VectorType>(V->getType());
311    unsigned NumElts = PTy->getNumElements();
312    MVT::ValueType EltTy = TLI.getValueType(PTy->getElementType());
313    MVT::ValueType VecTy = MVT::getVectorType(EltTy, NumElts);
314
315    // Divide the input until we get to a supported size.  This will always
316    // end with a scalar if the target doesn't support vectors.
317    while (NumElts > 1 && !TLI.isTypeLegal(VecTy)) {
318      NumElts >>= 1;
319      NumVectorRegs <<= 1;
320      VecTy = MVT::getVectorType(EltTy, NumElts);
321    }
322
323    // Check that VecTy isn't a 1-element vector.
324    if (NumElts == 1 && VecTy == MVT::Other)
325      VT = EltTy;
326    else
327      VT = VecTy;
328  }
329
330  // The common case is that we will only create one register for this
331  // value.  If we have that case, create and return the virtual register.
332  unsigned NV = TLI.getNumElements(VT);
333  if (NV == 1) {
334    // If we are promoting this value, pick the next largest supported type.
335    MVT::ValueType PromotedType = TLI.getTypeToTransformTo(VT);
336    unsigned Reg = MakeReg(PromotedType);
337    // If this is a vector of supported or promoted types (e.g. 4 x i16),
338    // create all of the registers.
339    for (unsigned i = 1; i != NumVectorRegs; ++i)
340      MakeReg(PromotedType);
341    return Reg;
342  }
343
344  // If this value is represented with multiple target registers, make sure
345  // to create enough consecutive registers of the right (smaller) type.
346  VT = TLI.getTypeToExpandTo(VT);
347  unsigned R = MakeReg(VT);
348  for (unsigned i = 1; i != NV*NumVectorRegs; ++i)
349    MakeReg(VT);
350  return R;
351}
352
353//===----------------------------------------------------------------------===//
354/// SelectionDAGLowering - This is the common target-independent lowering
355/// implementation that is parameterized by a TargetLowering object.
356/// Also, targets can overload any lowering method.
357///
358namespace llvm {
359class SelectionDAGLowering {
360  MachineBasicBlock *CurMBB;
361
362  DenseMap<const Value*, SDOperand> NodeMap;
363
364  /// PendingLoads - Loads are not emitted to the program immediately.  We bunch
365  /// them up and then emit token factor nodes when possible.  This allows us to
366  /// get simple disambiguation between loads without worrying about alias
367  /// analysis.
368  std::vector<SDOperand> PendingLoads;
369
370  /// Case - A struct to record the Value for a switch case, and the
371  /// case's target basic block.
372  struct Case {
373    Constant* Low;
374    Constant* High;
375    MachineBasicBlock* BB;
376
377    Case() : Low(0), High(0), BB(0) { }
378    Case(Constant* low, Constant* high, MachineBasicBlock* bb) :
379      Low(low), High(high), BB(bb) { }
380    uint64_t size() const {
381      uint64_t rHigh = cast<ConstantInt>(High)->getSExtValue();
382      uint64_t rLow  = cast<ConstantInt>(Low)->getSExtValue();
383      return (rHigh - rLow + 1ULL);
384    }
385  };
386
387  struct CaseBits {
388    uint64_t Mask;
389    MachineBasicBlock* BB;
390    unsigned Bits;
391
392    CaseBits(uint64_t mask, MachineBasicBlock* bb, unsigned bits):
393      Mask(mask), BB(bb), Bits(bits) { }
394  };
395
396  typedef std::vector<Case>           CaseVector;
397  typedef std::vector<CaseBits>       CaseBitsVector;
398  typedef CaseVector::iterator        CaseItr;
399  typedef std::pair<CaseItr, CaseItr> CaseRange;
400
401  /// CaseRec - A struct with ctor used in lowering switches to a binary tree
402  /// of conditional branches.
403  struct CaseRec {
404    CaseRec(MachineBasicBlock *bb, Constant *lt, Constant *ge, CaseRange r) :
405    CaseBB(bb), LT(lt), GE(ge), Range(r) {}
406
407    /// CaseBB - The MBB in which to emit the compare and branch
408    MachineBasicBlock *CaseBB;
409    /// LT, GE - If nonzero, we know the current case value must be less-than or
410    /// greater-than-or-equal-to these Constants.
411    Constant *LT;
412    Constant *GE;
413    /// Range - A pair of iterators representing the range of case values to be
414    /// processed at this point in the binary search tree.
415    CaseRange Range;
416  };
417
418  typedef std::vector<CaseRec> CaseRecVector;
419
420  /// The comparison function for sorting the switch case values in the vector.
421  /// WARNING: Case ranges should be disjoint!
422  struct CaseCmp {
423    bool operator () (const Case& C1, const Case& C2) {
424      assert(isa<ConstantInt>(C1.Low) && isa<ConstantInt>(C2.High));
425      const ConstantInt* CI1 = cast<const ConstantInt>(C1.Low);
426      const ConstantInt* CI2 = cast<const ConstantInt>(C2.High);
427      return CI1->getValue().slt(CI2->getValue());
428    }
429  };
430
431  struct CaseBitsCmp {
432    bool operator () (const CaseBits& C1, const CaseBits& C2) {
433      return C1.Bits > C2.Bits;
434    }
435  };
436
437  unsigned Clusterify(CaseVector& Cases, const SwitchInst &SI);
438
439public:
440  // TLI - This is information that describes the available target features we
441  // need for lowering.  This indicates when operations are unavailable,
442  // implemented with a libcall, etc.
443  TargetLowering &TLI;
444  SelectionDAG &DAG;
445  const TargetData *TD;
446
447  /// SwitchCases - Vector of CaseBlock structures used to communicate
448  /// SwitchInst code generation information.
449  std::vector<SelectionDAGISel::CaseBlock> SwitchCases;
450  /// JTCases - Vector of JumpTable structures used to communicate
451  /// SwitchInst code generation information.
452  std::vector<SelectionDAGISel::JumpTableBlock> JTCases;
453  std::vector<SelectionDAGISel::BitTestBlock> BitTestCases;
454
455  /// FuncInfo - Information about the function as a whole.
456  ///
457  FunctionLoweringInfo &FuncInfo;
458
459  SelectionDAGLowering(SelectionDAG &dag, TargetLowering &tli,
460                       FunctionLoweringInfo &funcinfo)
461    : TLI(tli), DAG(dag), TD(DAG.getTarget().getTargetData()),
462      FuncInfo(funcinfo) {
463  }
464
465  /// getRoot - Return the current virtual root of the Selection DAG.
466  ///
467  SDOperand getRoot() {
468    if (PendingLoads.empty())
469      return DAG.getRoot();
470
471    if (PendingLoads.size() == 1) {
472      SDOperand Root = PendingLoads[0];
473      DAG.setRoot(Root);
474      PendingLoads.clear();
475      return Root;
476    }
477
478    // Otherwise, we have to make a token factor node.
479    SDOperand Root = DAG.getNode(ISD::TokenFactor, MVT::Other,
480                                 &PendingLoads[0], PendingLoads.size());
481    PendingLoads.clear();
482    DAG.setRoot(Root);
483    return Root;
484  }
485
486  SDOperand CopyValueToVirtualRegister(Value *V, unsigned Reg);
487
488  void visit(Instruction &I) { visit(I.getOpcode(), I); }
489
490  void visit(unsigned Opcode, User &I) {
491    // Note: this doesn't use InstVisitor, because it has to work with
492    // ConstantExpr's in addition to instructions.
493    switch (Opcode) {
494    default: assert(0 && "Unknown instruction type encountered!");
495             abort();
496      // Build the switch statement using the Instruction.def file.
497#define HANDLE_INST(NUM, OPCODE, CLASS) \
498    case Instruction::OPCODE:return visit##OPCODE((CLASS&)I);
499#include "llvm/Instruction.def"
500    }
501  }
502
503  void setCurrentBasicBlock(MachineBasicBlock *MBB) { CurMBB = MBB; }
504
505  SDOperand getLoadFrom(const Type *Ty, SDOperand Ptr,
506                        const Value *SV, SDOperand Root,
507                        bool isVolatile, unsigned Alignment);
508
509  SDOperand getIntPtrConstant(uint64_t Val) {
510    return DAG.getConstant(Val, TLI.getPointerTy());
511  }
512
513  SDOperand getValue(const Value *V);
514
515  void setValue(const Value *V, SDOperand NewN) {
516    SDOperand &N = NodeMap[V];
517    assert(N.Val == 0 && "Already set a value for this node!");
518    N = NewN;
519  }
520
521  void GetRegistersForValue(AsmOperandInfo &OpInfo, bool HasEarlyClobber,
522                            std::set<unsigned> &OutputRegs,
523                            std::set<unsigned> &InputRegs);
524
525  void FindMergedConditions(Value *Cond, MachineBasicBlock *TBB,
526                            MachineBasicBlock *FBB, MachineBasicBlock *CurBB,
527                            unsigned Opc);
528  bool isExportableFromCurrentBlock(Value *V, const BasicBlock *FromBB);
529  void ExportFromCurrentBlock(Value *V);
530  void LowerCallTo(Instruction &I,
531                   const Type *CalledValueTy, unsigned CallingConv,
532                   bool IsTailCall, SDOperand Callee, unsigned OpIdx,
533                   MachineBasicBlock *LandingPad = NULL);
534
535  // Terminator instructions.
536  void visitRet(ReturnInst &I);
537  void visitBr(BranchInst &I);
538  void visitSwitch(SwitchInst &I);
539  void visitUnreachable(UnreachableInst &I) { /* noop */ }
540
541  // Helpers for visitSwitch
542  bool handleSmallSwitchRange(CaseRec& CR,
543                              CaseRecVector& WorkList,
544                              Value* SV,
545                              MachineBasicBlock* Default);
546  bool handleJTSwitchCase(CaseRec& CR,
547                          CaseRecVector& WorkList,
548                          Value* SV,
549                          MachineBasicBlock* Default);
550  bool handleBTSplitSwitchCase(CaseRec& CR,
551                               CaseRecVector& WorkList,
552                               Value* SV,
553                               MachineBasicBlock* Default);
554  bool handleBitTestsSwitchCase(CaseRec& CR,
555                                CaseRecVector& WorkList,
556                                Value* SV,
557                                MachineBasicBlock* Default);
558  void visitSwitchCase(SelectionDAGISel::CaseBlock &CB);
559  void visitBitTestHeader(SelectionDAGISel::BitTestBlock &B);
560  void visitBitTestCase(MachineBasicBlock* NextMBB,
561                        unsigned Reg,
562                        SelectionDAGISel::BitTestCase &B);
563  void visitJumpTable(SelectionDAGISel::JumpTable &JT);
564  void visitJumpTableHeader(SelectionDAGISel::JumpTable &JT,
565                            SelectionDAGISel::JumpTableHeader &JTH);
566
567  // These all get lowered before this pass.
568  void visitInvoke(InvokeInst &I);
569  void visitUnwind(UnwindInst &I);
570
571  void visitScalarBinary(User &I, unsigned OpCode);
572  void visitVectorBinary(User &I, unsigned OpCode);
573  void visitEitherBinary(User &I, unsigned ScalarOp, unsigned VectorOp);
574  void visitShift(User &I, unsigned Opcode);
575  void visitAdd(User &I) {
576    if (isa<VectorType>(I.getType()))
577      visitVectorBinary(I, ISD::VADD);
578    else if (I.getType()->isFloatingPoint())
579      visitScalarBinary(I, ISD::FADD);
580    else
581      visitScalarBinary(I, ISD::ADD);
582  }
583  void visitSub(User &I);
584  void visitMul(User &I) {
585    if (isa<VectorType>(I.getType()))
586      visitVectorBinary(I, ISD::VMUL);
587    else if (I.getType()->isFloatingPoint())
588      visitScalarBinary(I, ISD::FMUL);
589    else
590      visitScalarBinary(I, ISD::MUL);
591  }
592  void visitURem(User &I) { visitScalarBinary(I, ISD::UREM); }
593  void visitSRem(User &I) { visitScalarBinary(I, ISD::SREM); }
594  void visitFRem(User &I) { visitScalarBinary(I, ISD::FREM); }
595  void visitUDiv(User &I) { visitEitherBinary(I, ISD::UDIV, ISD::VUDIV); }
596  void visitSDiv(User &I) { visitEitherBinary(I, ISD::SDIV, ISD::VSDIV); }
597  void visitFDiv(User &I) { visitEitherBinary(I, ISD::FDIV, ISD::VSDIV); }
598  void visitAnd (User &I) { visitEitherBinary(I, ISD::AND,  ISD::VAND ); }
599  void visitOr  (User &I) { visitEitherBinary(I, ISD::OR,   ISD::VOR  ); }
600  void visitXor (User &I) { visitEitherBinary(I, ISD::XOR,  ISD::VXOR ); }
601  void visitShl (User &I) { visitShift(I, ISD::SHL); }
602  void visitLShr(User &I) { visitShift(I, ISD::SRL); }
603  void visitAShr(User &I) { visitShift(I, ISD::SRA); }
604  void visitICmp(User &I);
605  void visitFCmp(User &I);
606  // Visit the conversion instructions
607  void visitTrunc(User &I);
608  void visitZExt(User &I);
609  void visitSExt(User &I);
610  void visitFPTrunc(User &I);
611  void visitFPExt(User &I);
612  void visitFPToUI(User &I);
613  void visitFPToSI(User &I);
614  void visitUIToFP(User &I);
615  void visitSIToFP(User &I);
616  void visitPtrToInt(User &I);
617  void visitIntToPtr(User &I);
618  void visitBitCast(User &I);
619
620  void visitExtractElement(User &I);
621  void visitInsertElement(User &I);
622  void visitShuffleVector(User &I);
623
624  void visitGetElementPtr(User &I);
625  void visitSelect(User &I);
626
627  void visitMalloc(MallocInst &I);
628  void visitFree(FreeInst &I);
629  void visitAlloca(AllocaInst &I);
630  void visitLoad(LoadInst &I);
631  void visitStore(StoreInst &I);
632  void visitPHI(PHINode &I) { } // PHI nodes are handled specially.
633  void visitCall(CallInst &I);
634  void visitInlineAsm(CallInst &I);
635  const char *visitIntrinsicCall(CallInst &I, unsigned Intrinsic);
636  void visitTargetIntrinsic(CallInst &I, unsigned Intrinsic);
637
638  void visitVAStart(CallInst &I);
639  void visitVAArg(VAArgInst &I);
640  void visitVAEnd(CallInst &I);
641  void visitVACopy(CallInst &I);
642
643  void visitMemIntrinsic(CallInst &I, unsigned Op);
644
645  void visitUserOp1(Instruction &I) {
646    assert(0 && "UserOp1 should not exist at instruction selection time!");
647    abort();
648  }
649  void visitUserOp2(Instruction &I) {
650    assert(0 && "UserOp2 should not exist at instruction selection time!");
651    abort();
652  }
653};
654} // end namespace llvm
655
656SDOperand SelectionDAGLowering::getValue(const Value *V) {
657  SDOperand &N = NodeMap[V];
658  if (N.Val) return N;
659
660  const Type *VTy = V->getType();
661  MVT::ValueType VT = TLI.getValueType(VTy);
662  if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(V))) {
663    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
664      visit(CE->getOpcode(), *CE);
665      SDOperand N1 = NodeMap[V];
666      assert(N1.Val && "visit didn't populate the ValueMap!");
667      return N1;
668    } else if (GlobalValue *GV = dyn_cast<GlobalValue>(C)) {
669      return N = DAG.getGlobalAddress(GV, VT);
670    } else if (isa<ConstantPointerNull>(C)) {
671      return N = DAG.getConstant(0, TLI.getPointerTy());
672    } else if (isa<UndefValue>(C)) {
673      if (!isa<VectorType>(VTy))
674        return N = DAG.getNode(ISD::UNDEF, VT);
675
676      // Create a VBUILD_VECTOR of undef nodes.
677      const VectorType *PTy = cast<VectorType>(VTy);
678      unsigned NumElements = PTy->getNumElements();
679      MVT::ValueType PVT = TLI.getValueType(PTy->getElementType());
680
681      SmallVector<SDOperand, 8> Ops;
682      Ops.assign(NumElements, DAG.getNode(ISD::UNDEF, PVT));
683
684      // Create a VConstant node with generic Vector type.
685      Ops.push_back(DAG.getConstant(NumElements, MVT::i32));
686      Ops.push_back(DAG.getValueType(PVT));
687      return N = DAG.getNode(ISD::VBUILD_VECTOR, MVT::Vector,
688                             &Ops[0], Ops.size());
689    } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
690      return N = DAG.getConstantFP(CFP->getValue(), VT);
691    } else if (const VectorType *PTy = dyn_cast<VectorType>(VTy)) {
692      unsigned NumElements = PTy->getNumElements();
693      MVT::ValueType PVT = TLI.getValueType(PTy->getElementType());
694
695      // Now that we know the number and type of the elements, push a
696      // Constant or ConstantFP node onto the ops list for each element of
697      // the packed constant.
698      SmallVector<SDOperand, 8> Ops;
699      if (ConstantVector *CP = dyn_cast<ConstantVector>(C)) {
700        for (unsigned i = 0; i != NumElements; ++i)
701          Ops.push_back(getValue(CP->getOperand(i)));
702      } else {
703        assert(isa<ConstantAggregateZero>(C) && "Unknown packed constant!");
704        SDOperand Op;
705        if (MVT::isFloatingPoint(PVT))
706          Op = DAG.getConstantFP(0, PVT);
707        else
708          Op = DAG.getConstant(0, PVT);
709        Ops.assign(NumElements, Op);
710      }
711
712      // Create a VBUILD_VECTOR node with generic Vector type.
713      Ops.push_back(DAG.getConstant(NumElements, MVT::i32));
714      Ops.push_back(DAG.getValueType(PVT));
715      return NodeMap[V] = DAG.getNode(ISD::VBUILD_VECTOR, MVT::Vector, &Ops[0],
716                                      Ops.size());
717    } else {
718      // Canonicalize all constant ints to be unsigned.
719      return N = DAG.getConstant(cast<ConstantInt>(C)->getZExtValue(),VT);
720    }
721  }
722
723  if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
724    std::map<const AllocaInst*, int>::iterator SI =
725    FuncInfo.StaticAllocaMap.find(AI);
726    if (SI != FuncInfo.StaticAllocaMap.end())
727      return DAG.getFrameIndex(SI->second, TLI.getPointerTy());
728  }
729
730  unsigned InReg = FuncInfo.ValueMap[V];
731  assert(InReg && "Value not in map!");
732
733  // If this type is not legal, make it so now.
734  if (VT != MVT::Vector) {
735    if (TLI.getTypeAction(VT) == TargetLowering::Expand) {
736      // Source must be expanded.  This input value is actually coming from the
737      // register pair InReg and InReg+1.
738      MVT::ValueType DestVT = TLI.getTypeToExpandTo(VT);
739      unsigned NumVals = TLI.getNumElements(VT);
740      N = DAG.getCopyFromReg(DAG.getEntryNode(), InReg, DestVT);
741      if (NumVals == 1)
742        N = DAG.getNode(ISD::BIT_CONVERT, VT, N);
743      else {
744        assert(NumVals == 2 && "1 to 4 (and more) expansion not implemented!");
745        N = DAG.getNode(ISD::BUILD_PAIR, VT, N,
746                       DAG.getCopyFromReg(DAG.getEntryNode(), InReg+1, DestVT));
747      }
748    } else {
749      MVT::ValueType DestVT = TLI.getTypeToTransformTo(VT);
750      N = DAG.getCopyFromReg(DAG.getEntryNode(), InReg, DestVT);
751      if (TLI.getTypeAction(VT) == TargetLowering::Promote) // Promotion case
752        N = MVT::isFloatingPoint(VT)
753          ? DAG.getNode(ISD::FP_ROUND, VT, N)
754          : DAG.getNode(ISD::TRUNCATE, VT, N);
755    }
756  } else {
757    // Otherwise, if this is a vector, make it available as a generic vector
758    // here.
759    MVT::ValueType PTyElementVT, PTyLegalElementVT;
760    const VectorType *PTy = cast<VectorType>(VTy);
761    unsigned NE = TLI.getVectorTypeBreakdown(PTy, PTyElementVT,
762                                             PTyLegalElementVT);
763
764    // Build a VBUILD_VECTOR with the input registers.
765    SmallVector<SDOperand, 8> Ops;
766    if (PTyElementVT == PTyLegalElementVT) {
767      // If the value types are legal, just VBUILD the CopyFromReg nodes.
768      for (unsigned i = 0; i != NE; ++i)
769        Ops.push_back(DAG.getCopyFromReg(DAG.getEntryNode(), InReg++,
770                                         PTyElementVT));
771    } else if (PTyElementVT < PTyLegalElementVT) {
772      // If the register was promoted, use TRUNCATE or FP_ROUND as appropriate.
773      for (unsigned i = 0; i != NE; ++i) {
774        SDOperand Op = DAG.getCopyFromReg(DAG.getEntryNode(), InReg++,
775                                          PTyLegalElementVT);
776        if (MVT::isFloatingPoint(PTyElementVT))
777          Op = DAG.getNode(ISD::FP_ROUND, PTyElementVT, Op);
778        else
779          Op = DAG.getNode(ISD::TRUNCATE, PTyElementVT, Op);
780        Ops.push_back(Op);
781      }
782    } else {
783      // If the register was expanded, use BUILD_PAIR.
784      assert((NE & 1) == 0 && "Must expand into a multiple of 2 elements!");
785      for (unsigned i = 0; i != NE; ++i) {
786        SDOperand Op0 = DAG.getCopyFromReg(DAG.getEntryNode(), InReg++,
787                                           PTyLegalElementVT);
788        SDOperand Op1 = DAG.getCopyFromReg(DAG.getEntryNode(), InReg++,
789                                           PTyLegalElementVT);
790        Ops.push_back(DAG.getNode(ISD::BUILD_PAIR, PTyElementVT, Op0, Op1));
791      }
792    }
793
794    Ops.push_back(DAG.getConstant(NE, MVT::i32));
795    Ops.push_back(DAG.getValueType(PTyElementVT));
796    N = DAG.getNode(ISD::VBUILD_VECTOR, MVT::Vector, &Ops[0], Ops.size());
797
798    // Finally, use a VBIT_CONVERT to make this available as the appropriate
799    // vector type.
800    N = DAG.getNode(ISD::VBIT_CONVERT, MVT::Vector, N,
801                    DAG.getConstant(PTy->getNumElements(),
802                                    MVT::i32),
803                    DAG.getValueType(TLI.getValueType(PTy->getElementType())));
804  }
805
806  return N;
807}
808
809
810void SelectionDAGLowering::visitRet(ReturnInst &I) {
811  if (I.getNumOperands() == 0) {
812    DAG.setRoot(DAG.getNode(ISD::RET, MVT::Other, getRoot()));
813    return;
814  }
815  SmallVector<SDOperand, 8> NewValues;
816  NewValues.push_back(getRoot());
817  for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
818    SDOperand RetOp = getValue(I.getOperand(i));
819
820    // If this is an integer return value, we need to promote it ourselves to
821    // the full width of a register, since LegalizeOp will use ANY_EXTEND rather
822    // than sign/zero.
823    // FIXME: C calling convention requires the return type to be promoted to
824    // at least 32-bit. But this is not necessary for non-C calling conventions.
825    if (MVT::isInteger(RetOp.getValueType()) &&
826        RetOp.getValueType() < MVT::i64) {
827      MVT::ValueType TmpVT;
828      if (TLI.getTypeAction(MVT::i32) == TargetLowering::Promote)
829        TmpVT = TLI.getTypeToTransformTo(MVT::i32);
830      else
831        TmpVT = MVT::i32;
832      const FunctionType *FTy = I.getParent()->getParent()->getFunctionType();
833      const ParamAttrsList *Attrs = FTy->getParamAttrs();
834      ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
835      if (Attrs && Attrs->paramHasAttr(0, ParamAttr::SExt))
836        ExtendKind = ISD::SIGN_EXTEND;
837      if (Attrs && Attrs->paramHasAttr(0, ParamAttr::ZExt))
838        ExtendKind = ISD::ZERO_EXTEND;
839      RetOp = DAG.getNode(ExtendKind, TmpVT, RetOp);
840    }
841    NewValues.push_back(RetOp);
842    NewValues.push_back(DAG.getConstant(false, MVT::i32));
843  }
844  DAG.setRoot(DAG.getNode(ISD::RET, MVT::Other,
845                          &NewValues[0], NewValues.size()));
846}
847
848/// ExportFromCurrentBlock - If this condition isn't known to be exported from
849/// the current basic block, add it to ValueMap now so that we'll get a
850/// CopyTo/FromReg.
851void SelectionDAGLowering::ExportFromCurrentBlock(Value *V) {
852  // No need to export constants.
853  if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
854
855  // Already exported?
856  if (FuncInfo.isExportedInst(V)) return;
857
858  unsigned Reg = FuncInfo.InitializeRegForValue(V);
859  PendingLoads.push_back(CopyValueToVirtualRegister(V, Reg));
860}
861
862bool SelectionDAGLowering::isExportableFromCurrentBlock(Value *V,
863                                                    const BasicBlock *FromBB) {
864  // The operands of the setcc have to be in this block.  We don't know
865  // how to export them from some other block.
866  if (Instruction *VI = dyn_cast<Instruction>(V)) {
867    // Can export from current BB.
868    if (VI->getParent() == FromBB)
869      return true;
870
871    // Is already exported, noop.
872    return FuncInfo.isExportedInst(V);
873  }
874
875  // If this is an argument, we can export it if the BB is the entry block or
876  // if it is already exported.
877  if (isa<Argument>(V)) {
878    if (FromBB == &FromBB->getParent()->getEntryBlock())
879      return true;
880
881    // Otherwise, can only export this if it is already exported.
882    return FuncInfo.isExportedInst(V);
883  }
884
885  // Otherwise, constants can always be exported.
886  return true;
887}
888
889static bool InBlock(const Value *V, const BasicBlock *BB) {
890  if (const Instruction *I = dyn_cast<Instruction>(V))
891    return I->getParent() == BB;
892  return true;
893}
894
895/// FindMergedConditions - If Cond is an expression like
896void SelectionDAGLowering::FindMergedConditions(Value *Cond,
897                                                MachineBasicBlock *TBB,
898                                                MachineBasicBlock *FBB,
899                                                MachineBasicBlock *CurBB,
900                                                unsigned Opc) {
901  // If this node is not part of the or/and tree, emit it as a branch.
902  Instruction *BOp = dyn_cast<Instruction>(Cond);
903
904  if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
905      (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() ||
906      BOp->getParent() != CurBB->getBasicBlock() ||
907      !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
908      !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
909    const BasicBlock *BB = CurBB->getBasicBlock();
910
911    // If the leaf of the tree is a comparison, merge the condition into
912    // the caseblock.
913    if ((isa<ICmpInst>(Cond) || isa<FCmpInst>(Cond)) &&
914        // The operands of the cmp have to be in this block.  We don't know
915        // how to export them from some other block.  If this is the first block
916        // of the sequence, no exporting is needed.
917        (CurBB == CurMBB ||
918         (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
919          isExportableFromCurrentBlock(BOp->getOperand(1), BB)))) {
920      BOp = cast<Instruction>(Cond);
921      ISD::CondCode Condition;
922      if (ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
923        switch (IC->getPredicate()) {
924        default: assert(0 && "Unknown icmp predicate opcode!");
925        case ICmpInst::ICMP_EQ:  Condition = ISD::SETEQ;  break;
926        case ICmpInst::ICMP_NE:  Condition = ISD::SETNE;  break;
927        case ICmpInst::ICMP_SLE: Condition = ISD::SETLE;  break;
928        case ICmpInst::ICMP_ULE: Condition = ISD::SETULE; break;
929        case ICmpInst::ICMP_SGE: Condition = ISD::SETGE;  break;
930        case ICmpInst::ICMP_UGE: Condition = ISD::SETUGE; break;
931        case ICmpInst::ICMP_SLT: Condition = ISD::SETLT;  break;
932        case ICmpInst::ICMP_ULT: Condition = ISD::SETULT; break;
933        case ICmpInst::ICMP_SGT: Condition = ISD::SETGT;  break;
934        case ICmpInst::ICMP_UGT: Condition = ISD::SETUGT; break;
935        }
936      } else if (FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) {
937        ISD::CondCode FPC, FOC;
938        switch (FC->getPredicate()) {
939        default: assert(0 && "Unknown fcmp predicate opcode!");
940        case FCmpInst::FCMP_FALSE: FOC = FPC = ISD::SETFALSE; break;
941        case FCmpInst::FCMP_OEQ:   FOC = ISD::SETEQ; FPC = ISD::SETOEQ; break;
942        case FCmpInst::FCMP_OGT:   FOC = ISD::SETGT; FPC = ISD::SETOGT; break;
943        case FCmpInst::FCMP_OGE:   FOC = ISD::SETGE; FPC = ISD::SETOGE; break;
944        case FCmpInst::FCMP_OLT:   FOC = ISD::SETLT; FPC = ISD::SETOLT; break;
945        case FCmpInst::FCMP_OLE:   FOC = ISD::SETLE; FPC = ISD::SETOLE; break;
946        case FCmpInst::FCMP_ONE:   FOC = ISD::SETNE; FPC = ISD::SETONE; break;
947        case FCmpInst::FCMP_ORD:   FOC = ISD::SETEQ; FPC = ISD::SETO;   break;
948        case FCmpInst::FCMP_UNO:   FOC = ISD::SETNE; FPC = ISD::SETUO;  break;
949        case FCmpInst::FCMP_UEQ:   FOC = ISD::SETEQ; FPC = ISD::SETUEQ; break;
950        case FCmpInst::FCMP_UGT:   FOC = ISD::SETGT; FPC = ISD::SETUGT; break;
951        case FCmpInst::FCMP_UGE:   FOC = ISD::SETGE; FPC = ISD::SETUGE; break;
952        case FCmpInst::FCMP_ULT:   FOC = ISD::SETLT; FPC = ISD::SETULT; break;
953        case FCmpInst::FCMP_ULE:   FOC = ISD::SETLE; FPC = ISD::SETULE; break;
954        case FCmpInst::FCMP_UNE:   FOC = ISD::SETNE; FPC = ISD::SETUNE; break;
955        case FCmpInst::FCMP_TRUE:  FOC = FPC = ISD::SETTRUE; break;
956        }
957        if (FiniteOnlyFPMath())
958          Condition = FOC;
959        else
960          Condition = FPC;
961      } else {
962        Condition = ISD::SETEQ; // silence warning.
963        assert(0 && "Unknown compare instruction");
964      }
965
966      SelectionDAGISel::CaseBlock CB(Condition, BOp->getOperand(0),
967                                     BOp->getOperand(1), NULL, TBB, FBB, CurBB);
968      SwitchCases.push_back(CB);
969      return;
970    }
971
972    // Create a CaseBlock record representing this branch.
973    SelectionDAGISel::CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(),
974                                   NULL, TBB, FBB, CurBB);
975    SwitchCases.push_back(CB);
976    return;
977  }
978
979
980  //  Create TmpBB after CurBB.
981  MachineFunction::iterator BBI = CurBB;
982  MachineBasicBlock *TmpBB = new MachineBasicBlock(CurBB->getBasicBlock());
983  CurBB->getParent()->getBasicBlockList().insert(++BBI, TmpBB);
984
985  if (Opc == Instruction::Or) {
986    // Codegen X | Y as:
987    //   jmp_if_X TBB
988    //   jmp TmpBB
989    // TmpBB:
990    //   jmp_if_Y TBB
991    //   jmp FBB
992    //
993
994    // Emit the LHS condition.
995    FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, Opc);
996
997    // Emit the RHS condition into TmpBB.
998    FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, Opc);
999  } else {
1000    assert(Opc == Instruction::And && "Unknown merge op!");
1001    // Codegen X & Y as:
1002    //   jmp_if_X TmpBB
1003    //   jmp FBB
1004    // TmpBB:
1005    //   jmp_if_Y TBB
1006    //   jmp FBB
1007    //
1008    //  This requires creation of TmpBB after CurBB.
1009
1010    // Emit the LHS condition.
1011    FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, Opc);
1012
1013    // Emit the RHS condition into TmpBB.
1014    FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, Opc);
1015  }
1016}
1017
1018/// If the set of cases should be emitted as a series of branches, return true.
1019/// If we should emit this as a bunch of and/or'd together conditions, return
1020/// false.
1021static bool
1022ShouldEmitAsBranches(const std::vector<SelectionDAGISel::CaseBlock> &Cases) {
1023  if (Cases.size() != 2) return true;
1024
1025  // If this is two comparisons of the same values or'd or and'd together, they
1026  // will get folded into a single comparison, so don't emit two blocks.
1027  if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
1028       Cases[0].CmpRHS == Cases[1].CmpRHS) ||
1029      (Cases[0].CmpRHS == Cases[1].CmpLHS &&
1030       Cases[0].CmpLHS == Cases[1].CmpRHS)) {
1031    return false;
1032  }
1033
1034  return true;
1035}
1036
1037void SelectionDAGLowering::visitBr(BranchInst &I) {
1038  // Update machine-CFG edges.
1039  MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
1040
1041  // Figure out which block is immediately after the current one.
1042  MachineBasicBlock *NextBlock = 0;
1043  MachineFunction::iterator BBI = CurMBB;
1044  if (++BBI != CurMBB->getParent()->end())
1045    NextBlock = BBI;
1046
1047  if (I.isUnconditional()) {
1048    // If this is not a fall-through branch, emit the branch.
1049    if (Succ0MBB != NextBlock)
1050      DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, getRoot(),
1051                              DAG.getBasicBlock(Succ0MBB)));
1052
1053    // Update machine-CFG edges.
1054    CurMBB->addSuccessor(Succ0MBB);
1055
1056    return;
1057  }
1058
1059  // If this condition is one of the special cases we handle, do special stuff
1060  // now.
1061  Value *CondVal = I.getCondition();
1062  MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
1063
1064  // If this is a series of conditions that are or'd or and'd together, emit
1065  // this as a sequence of branches instead of setcc's with and/or operations.
1066  // For example, instead of something like:
1067  //     cmp A, B
1068  //     C = seteq
1069  //     cmp D, E
1070  //     F = setle
1071  //     or C, F
1072  //     jnz foo
1073  // Emit:
1074  //     cmp A, B
1075  //     je foo
1076  //     cmp D, E
1077  //     jle foo
1078  //
1079  if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
1080    if (BOp->hasOneUse() &&
1081        (BOp->getOpcode() == Instruction::And ||
1082         BOp->getOpcode() == Instruction::Or)) {
1083      FindMergedConditions(BOp, Succ0MBB, Succ1MBB, CurMBB, BOp->getOpcode());
1084      // If the compares in later blocks need to use values not currently
1085      // exported from this block, export them now.  This block should always
1086      // be the first entry.
1087      assert(SwitchCases[0].ThisBB == CurMBB && "Unexpected lowering!");
1088
1089      // Allow some cases to be rejected.
1090      if (ShouldEmitAsBranches(SwitchCases)) {
1091        for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
1092          ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
1093          ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
1094        }
1095
1096        // Emit the branch for this block.
1097        visitSwitchCase(SwitchCases[0]);
1098        SwitchCases.erase(SwitchCases.begin());
1099        return;
1100      }
1101
1102      // Okay, we decided not to do this, remove any inserted MBB's and clear
1103      // SwitchCases.
1104      for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
1105        CurMBB->getParent()->getBasicBlockList().erase(SwitchCases[i].ThisBB);
1106
1107      SwitchCases.clear();
1108    }
1109  }
1110
1111  // Create a CaseBlock record representing this branch.
1112  SelectionDAGISel::CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(),
1113                                 NULL, Succ0MBB, Succ1MBB, CurMBB);
1114  // Use visitSwitchCase to actually insert the fast branch sequence for this
1115  // cond branch.
1116  visitSwitchCase(CB);
1117}
1118
1119/// visitSwitchCase - Emits the necessary code to represent a single node in
1120/// the binary search tree resulting from lowering a switch instruction.
1121void SelectionDAGLowering::visitSwitchCase(SelectionDAGISel::CaseBlock &CB) {
1122  SDOperand Cond;
1123  SDOperand CondLHS = getValue(CB.CmpLHS);
1124
1125  // Build the setcc now.
1126  if (CB.CmpMHS == NULL) {
1127    // Fold "(X == true)" to X and "(X == false)" to !X to
1128    // handle common cases produced by branch lowering.
1129    if (CB.CmpRHS == ConstantInt::getTrue() && CB.CC == ISD::SETEQ)
1130      Cond = CondLHS;
1131    else if (CB.CmpRHS == ConstantInt::getFalse() && CB.CC == ISD::SETEQ) {
1132      SDOperand True = DAG.getConstant(1, CondLHS.getValueType());
1133      Cond = DAG.getNode(ISD::XOR, CondLHS.getValueType(), CondLHS, True);
1134    } else
1135      Cond = DAG.getSetCC(MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
1136  } else {
1137    assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
1138
1139    uint64_t Low = cast<ConstantInt>(CB.CmpLHS)->getSExtValue();
1140    uint64_t High  = cast<ConstantInt>(CB.CmpRHS)->getSExtValue();
1141
1142    SDOperand CmpOp = getValue(CB.CmpMHS);
1143    MVT::ValueType VT = CmpOp.getValueType();
1144
1145    if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
1146      Cond = DAG.getSetCC(MVT::i1, CmpOp, DAG.getConstant(High, VT), ISD::SETLE);
1147    } else {
1148      SDOperand SUB = DAG.getNode(ISD::SUB, VT, CmpOp, DAG.getConstant(Low, VT));
1149      Cond = DAG.getSetCC(MVT::i1, SUB,
1150                          DAG.getConstant(High-Low, VT), ISD::SETULE);
1151    }
1152
1153  }
1154
1155  // Set NextBlock to be the MBB immediately after the current one, if any.
1156  // This is used to avoid emitting unnecessary branches to the next block.
1157  MachineBasicBlock *NextBlock = 0;
1158  MachineFunction::iterator BBI = CurMBB;
1159  if (++BBI != CurMBB->getParent()->end())
1160    NextBlock = BBI;
1161
1162  // If the lhs block is the next block, invert the condition so that we can
1163  // fall through to the lhs instead of the rhs block.
1164  if (CB.TrueBB == NextBlock) {
1165    std::swap(CB.TrueBB, CB.FalseBB);
1166    SDOperand True = DAG.getConstant(1, Cond.getValueType());
1167    Cond = DAG.getNode(ISD::XOR, Cond.getValueType(), Cond, True);
1168  }
1169  SDOperand BrCond = DAG.getNode(ISD::BRCOND, MVT::Other, getRoot(), Cond,
1170                                 DAG.getBasicBlock(CB.TrueBB));
1171  if (CB.FalseBB == NextBlock)
1172    DAG.setRoot(BrCond);
1173  else
1174    DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, BrCond,
1175                            DAG.getBasicBlock(CB.FalseBB)));
1176  // Update successor info
1177  CurMBB->addSuccessor(CB.TrueBB);
1178  CurMBB->addSuccessor(CB.FalseBB);
1179}
1180
1181/// visitJumpTable - Emit JumpTable node in the current MBB
1182void SelectionDAGLowering::visitJumpTable(SelectionDAGISel::JumpTable &JT) {
1183  // Emit the code for the jump table
1184  assert(JT.Reg != -1U && "Should lower JT Header first!");
1185  MVT::ValueType PTy = TLI.getPointerTy();
1186  SDOperand Index = DAG.getCopyFromReg(getRoot(), JT.Reg, PTy);
1187  SDOperand Table = DAG.getJumpTable(JT.JTI, PTy);
1188  DAG.setRoot(DAG.getNode(ISD::BR_JT, MVT::Other, Index.getValue(1),
1189                          Table, Index));
1190  return;
1191}
1192
1193/// visitJumpTableHeader - This function emits necessary code to produce index
1194/// in the JumpTable from switch case.
1195void SelectionDAGLowering::visitJumpTableHeader(SelectionDAGISel::JumpTable &JT,
1196                                         SelectionDAGISel::JumpTableHeader &JTH) {
1197  // Subtract the lowest switch case value from the value being switched on
1198  // and conditional branch to default mbb if the result is greater than the
1199  // difference between smallest and largest cases.
1200  SDOperand SwitchOp = getValue(JTH.SValue);
1201  MVT::ValueType VT = SwitchOp.getValueType();
1202  SDOperand SUB = DAG.getNode(ISD::SUB, VT, SwitchOp,
1203                              DAG.getConstant(JTH.First, VT));
1204
1205  // The SDNode we just created, which holds the value being switched on
1206  // minus the the smallest case value, needs to be copied to a virtual
1207  // register so it can be used as an index into the jump table in a
1208  // subsequent basic block.  This value may be smaller or larger than the
1209  // target's pointer type, and therefore require extension or truncating.
1210  if (VT > TLI.getPointerTy())
1211    SwitchOp = DAG.getNode(ISD::TRUNCATE, TLI.getPointerTy(), SUB);
1212  else
1213    SwitchOp = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(), SUB);
1214
1215  unsigned JumpTableReg = FuncInfo.MakeReg(TLI.getPointerTy());
1216  SDOperand CopyTo = DAG.getCopyToReg(getRoot(), JumpTableReg, SwitchOp);
1217  JT.Reg = JumpTableReg;
1218
1219  // Emit the range check for the jump table, and branch to the default
1220  // block for the switch statement if the value being switched on exceeds
1221  // the largest case in the switch.
1222  SDOperand CMP = DAG.getSetCC(TLI.getSetCCResultTy(), SUB,
1223                               DAG.getConstant(JTH.Last-JTH.First,VT),
1224                               ISD::SETUGT);
1225
1226  // Set NextBlock to be the MBB immediately after the current one, if any.
1227  // This is used to avoid emitting unnecessary branches to the next block.
1228  MachineBasicBlock *NextBlock = 0;
1229  MachineFunction::iterator BBI = CurMBB;
1230  if (++BBI != CurMBB->getParent()->end())
1231    NextBlock = BBI;
1232
1233  SDOperand BrCond = DAG.getNode(ISD::BRCOND, MVT::Other, CopyTo, CMP,
1234                                 DAG.getBasicBlock(JT.Default));
1235
1236  if (JT.MBB == NextBlock)
1237    DAG.setRoot(BrCond);
1238  else
1239    DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, BrCond,
1240                            DAG.getBasicBlock(JT.MBB)));
1241
1242  return;
1243}
1244
1245/// visitBitTestHeader - This function emits necessary code to produce value
1246/// suitable for "bit tests"
1247void SelectionDAGLowering::visitBitTestHeader(SelectionDAGISel::BitTestBlock &B) {
1248  // Subtract the minimum value
1249  SDOperand SwitchOp = getValue(B.SValue);
1250  MVT::ValueType VT = SwitchOp.getValueType();
1251  SDOperand SUB = DAG.getNode(ISD::SUB, VT, SwitchOp,
1252                              DAG.getConstant(B.First, VT));
1253
1254  // Check range
1255  SDOperand RangeCmp = DAG.getSetCC(TLI.getSetCCResultTy(), SUB,
1256                                    DAG.getConstant(B.Range, VT),
1257                                    ISD::SETUGT);
1258
1259  SDOperand ShiftOp;
1260  if (VT > TLI.getShiftAmountTy())
1261    ShiftOp = DAG.getNode(ISD::TRUNCATE, TLI.getShiftAmountTy(), SUB);
1262  else
1263    ShiftOp = DAG.getNode(ISD::ZERO_EXTEND, TLI.getShiftAmountTy(), SUB);
1264
1265  // Make desired shift
1266  SDOperand SwitchVal = DAG.getNode(ISD::SHL, TLI.getPointerTy(),
1267                                    DAG.getConstant(1, TLI.getPointerTy()),
1268                                    ShiftOp);
1269
1270  unsigned SwitchReg = FuncInfo.MakeReg(TLI.getPointerTy());
1271  SDOperand CopyTo = DAG.getCopyToReg(getRoot(), SwitchReg, SwitchVal);
1272  B.Reg = SwitchReg;
1273
1274  SDOperand BrRange = DAG.getNode(ISD::BRCOND, MVT::Other, CopyTo, RangeCmp,
1275                                  DAG.getBasicBlock(B.Default));
1276
1277  // Set NextBlock to be the MBB immediately after the current one, if any.
1278  // This is used to avoid emitting unnecessary branches to the next block.
1279  MachineBasicBlock *NextBlock = 0;
1280  MachineFunction::iterator BBI = CurMBB;
1281  if (++BBI != CurMBB->getParent()->end())
1282    NextBlock = BBI;
1283
1284  MachineBasicBlock* MBB = B.Cases[0].ThisBB;
1285  if (MBB == NextBlock)
1286    DAG.setRoot(BrRange);
1287  else
1288    DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, CopyTo,
1289                            DAG.getBasicBlock(MBB)));
1290
1291  CurMBB->addSuccessor(B.Default);
1292  CurMBB->addSuccessor(MBB);
1293
1294  return;
1295}
1296
1297/// visitBitTestCase - this function produces one "bit test"
1298void SelectionDAGLowering::visitBitTestCase(MachineBasicBlock* NextMBB,
1299                                            unsigned Reg,
1300                                            SelectionDAGISel::BitTestCase &B) {
1301  // Emit bit tests and jumps
1302  SDOperand SwitchVal = DAG.getCopyFromReg(getRoot(), Reg, TLI.getPointerTy());
1303
1304  SDOperand AndOp = DAG.getNode(ISD::AND, TLI.getPointerTy(),
1305                                SwitchVal,
1306                                DAG.getConstant(B.Mask,
1307                                                TLI.getPointerTy()));
1308  SDOperand AndCmp = DAG.getSetCC(TLI.getSetCCResultTy(), AndOp,
1309                                  DAG.getConstant(0, TLI.getPointerTy()),
1310                                  ISD::SETNE);
1311  SDOperand BrAnd = DAG.getNode(ISD::BRCOND, MVT::Other, getRoot(),
1312                                AndCmp, DAG.getBasicBlock(B.TargetBB));
1313
1314  // Set NextBlock to be the MBB immediately after the current one, if any.
1315  // This is used to avoid emitting unnecessary branches to the next block.
1316  MachineBasicBlock *NextBlock = 0;
1317  MachineFunction::iterator BBI = CurMBB;
1318  if (++BBI != CurMBB->getParent()->end())
1319    NextBlock = BBI;
1320
1321  if (NextMBB == NextBlock)
1322    DAG.setRoot(BrAnd);
1323  else
1324    DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, BrAnd,
1325                            DAG.getBasicBlock(NextMBB)));
1326
1327  CurMBB->addSuccessor(B.TargetBB);
1328  CurMBB->addSuccessor(NextMBB);
1329
1330  return;
1331}
1332
1333void SelectionDAGLowering::visitInvoke(InvokeInst &I) {
1334  // Retrieve successors.
1335  MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
1336  MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)];
1337
1338  LowerCallTo(I, I.getCalledValue()->getType(),
1339              I.getCallingConv(),
1340              false,
1341              getValue(I.getOperand(0)),
1342              3, LandingPad);
1343
1344  // If the value of the invoke is used outside of its defining block, make it
1345  // available as a virtual register.
1346  if (!I.use_empty()) {
1347    DenseMap<const Value*, unsigned>::iterator VMI = FuncInfo.ValueMap.find(&I);
1348    if (VMI != FuncInfo.ValueMap.end())
1349      DAG.setRoot(CopyValueToVirtualRegister(&I, VMI->second));
1350  }
1351
1352  // Drop into normal successor.
1353  DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, getRoot(),
1354                          DAG.getBasicBlock(Return)));
1355
1356  // Update successor info
1357  CurMBB->addSuccessor(Return);
1358  CurMBB->addSuccessor(LandingPad);
1359}
1360
1361void SelectionDAGLowering::visitUnwind(UnwindInst &I) {
1362}
1363
1364/// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for
1365/// small case ranges).
1366bool SelectionDAGLowering::handleSmallSwitchRange(CaseRec& CR,
1367                                                  CaseRecVector& WorkList,
1368                                                  Value* SV,
1369                                                  MachineBasicBlock* Default) {
1370  Case& BackCase  = *(CR.Range.second-1);
1371
1372  // Size is the number of Cases represented by this range.
1373  unsigned Size = CR.Range.second - CR.Range.first;
1374  if (Size > 3)
1375    return false;
1376
1377  // Get the MachineFunction which holds the current MBB.  This is used when
1378  // inserting any additional MBBs necessary to represent the switch.
1379  MachineFunction *CurMF = CurMBB->getParent();
1380
1381  // Figure out which block is immediately after the current one.
1382  MachineBasicBlock *NextBlock = 0;
1383  MachineFunction::iterator BBI = CR.CaseBB;
1384
1385  if (++BBI != CurMBB->getParent()->end())
1386    NextBlock = BBI;
1387
1388  // TODO: If any two of the cases has the same destination, and if one value
1389  // is the same as the other, but has one bit unset that the other has set,
1390  // use bit manipulation to do two compares at once.  For example:
1391  // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
1392
1393  // Rearrange the case blocks so that the last one falls through if possible.
1394  if (NextBlock && Default != NextBlock && BackCase.BB != NextBlock) {
1395    // The last case block won't fall through into 'NextBlock' if we emit the
1396    // branches in this order.  See if rearranging a case value would help.
1397    for (CaseItr I = CR.Range.first, E = CR.Range.second-1; I != E; ++I) {
1398      if (I->BB == NextBlock) {
1399        std::swap(*I, BackCase);
1400        break;
1401      }
1402    }
1403  }
1404
1405  // Create a CaseBlock record representing a conditional branch to
1406  // the Case's target mbb if the value being switched on SV is equal
1407  // to C.
1408  MachineBasicBlock *CurBlock = CR.CaseBB;
1409  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) {
1410    MachineBasicBlock *FallThrough;
1411    if (I != E-1) {
1412      FallThrough = new MachineBasicBlock(CurBlock->getBasicBlock());
1413      CurMF->getBasicBlockList().insert(BBI, FallThrough);
1414    } else {
1415      // If the last case doesn't match, go to the default block.
1416      FallThrough = Default;
1417    }
1418
1419    Value *RHS, *LHS, *MHS;
1420    ISD::CondCode CC;
1421    if (I->High == I->Low) {
1422      // This is just small small case range :) containing exactly 1 case
1423      CC = ISD::SETEQ;
1424      LHS = SV; RHS = I->High; MHS = NULL;
1425    } else {
1426      CC = ISD::SETLE;
1427      LHS = I->Low; MHS = SV; RHS = I->High;
1428    }
1429    SelectionDAGISel::CaseBlock CB(CC, LHS, RHS, MHS,
1430                                   I->BB, FallThrough, CurBlock);
1431
1432    // If emitting the first comparison, just call visitSwitchCase to emit the
1433    // code into the current block.  Otherwise, push the CaseBlock onto the
1434    // vector to be later processed by SDISel, and insert the node's MBB
1435    // before the next MBB.
1436    if (CurBlock == CurMBB)
1437      visitSwitchCase(CB);
1438    else
1439      SwitchCases.push_back(CB);
1440
1441    CurBlock = FallThrough;
1442  }
1443
1444  return true;
1445}
1446
1447static inline bool areJTsAllowed(const TargetLowering &TLI) {
1448  return (TLI.isOperationLegal(ISD::BR_JT, MVT::Other) ||
1449          TLI.isOperationLegal(ISD::BRIND, MVT::Other));
1450}
1451
1452/// handleJTSwitchCase - Emit jumptable for current switch case range
1453bool SelectionDAGLowering::handleJTSwitchCase(CaseRec& CR,
1454                                              CaseRecVector& WorkList,
1455                                              Value* SV,
1456                                              MachineBasicBlock* Default) {
1457  Case& FrontCase = *CR.Range.first;
1458  Case& BackCase  = *(CR.Range.second-1);
1459
1460  int64_t First = cast<ConstantInt>(FrontCase.Low)->getSExtValue();
1461  int64_t Last  = cast<ConstantInt>(BackCase.High)->getSExtValue();
1462
1463  uint64_t TSize = 0;
1464  for (CaseItr I = CR.Range.first, E = CR.Range.second;
1465       I!=E; ++I)
1466    TSize += I->size();
1467
1468  if (!areJTsAllowed(TLI) || TSize <= 3)
1469    return false;
1470
1471  double Density = (double)TSize / (double)((Last - First) + 1ULL);
1472  if (Density < 0.4)
1473    return false;
1474
1475  DOUT << "Lowering jump table\n"
1476       << "First entry: " << First << ". Last entry: " << Last << "\n"
1477       << "Size: " << TSize << ". Density: " << Density << "\n\n";
1478
1479  // Get the MachineFunction which holds the current MBB.  This is used when
1480  // inserting any additional MBBs necessary to represent the switch.
1481  MachineFunction *CurMF = CurMBB->getParent();
1482
1483  // Figure out which block is immediately after the current one.
1484  MachineBasicBlock *NextBlock = 0;
1485  MachineFunction::iterator BBI = CR.CaseBB;
1486
1487  if (++BBI != CurMBB->getParent()->end())
1488    NextBlock = BBI;
1489
1490  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
1491
1492  // Create a new basic block to hold the code for loading the address
1493  // of the jump table, and jumping to it.  Update successor information;
1494  // we will either branch to the default case for the switch, or the jump
1495  // table.
1496  MachineBasicBlock *JumpTableBB = new MachineBasicBlock(LLVMBB);
1497  CurMF->getBasicBlockList().insert(BBI, JumpTableBB);
1498  CR.CaseBB->addSuccessor(Default);
1499  CR.CaseBB->addSuccessor(JumpTableBB);
1500
1501  // Build a vector of destination BBs, corresponding to each target
1502  // of the jump table. If the value of the jump table slot corresponds to
1503  // a case statement, push the case's BB onto the vector, otherwise, push
1504  // the default BB.
1505  std::vector<MachineBasicBlock*> DestBBs;
1506  int64_t TEI = First;
1507  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) {
1508    int64_t Low = cast<ConstantInt>(I->Low)->getSExtValue();
1509    int64_t High = cast<ConstantInt>(I->High)->getSExtValue();
1510
1511    if ((Low <= TEI) && (TEI <= High)) {
1512      DestBBs.push_back(I->BB);
1513      if (TEI==High)
1514        ++I;
1515    } else {
1516      DestBBs.push_back(Default);
1517    }
1518  }
1519
1520  // Update successor info. Add one edge to each unique successor.
1521  BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs());
1522  for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(),
1523         E = DestBBs.end(); I != E; ++I) {
1524    if (!SuccsHandled[(*I)->getNumber()]) {
1525      SuccsHandled[(*I)->getNumber()] = true;
1526      JumpTableBB->addSuccessor(*I);
1527    }
1528  }
1529
1530  // Create a jump table index for this jump table, or return an existing
1531  // one.
1532  unsigned JTI = CurMF->getJumpTableInfo()->getJumpTableIndex(DestBBs);
1533
1534  // Set the jump table information so that we can codegen it as a second
1535  // MachineBasicBlock
1536  SelectionDAGISel::JumpTable JT(-1U, JTI, JumpTableBB, Default);
1537  SelectionDAGISel::JumpTableHeader JTH(First, Last, SV, CR.CaseBB,
1538                                        (CR.CaseBB == CurMBB));
1539  if (CR.CaseBB == CurMBB)
1540    visitJumpTableHeader(JT, JTH);
1541
1542  JTCases.push_back(SelectionDAGISel::JumpTableBlock(JTH, JT));
1543
1544  return true;
1545}
1546
1547/// handleBTSplitSwitchCase - emit comparison and split binary search tree into
1548/// 2 subtrees.
1549bool SelectionDAGLowering::handleBTSplitSwitchCase(CaseRec& CR,
1550                                                   CaseRecVector& WorkList,
1551                                                   Value* SV,
1552                                                   MachineBasicBlock* Default) {
1553  // Get the MachineFunction which holds the current MBB.  This is used when
1554  // inserting any additional MBBs necessary to represent the switch.
1555  MachineFunction *CurMF = CurMBB->getParent();
1556
1557  // Figure out which block is immediately after the current one.
1558  MachineBasicBlock *NextBlock = 0;
1559  MachineFunction::iterator BBI = CR.CaseBB;
1560
1561  if (++BBI != CurMBB->getParent()->end())
1562    NextBlock = BBI;
1563
1564  Case& FrontCase = *CR.Range.first;
1565  Case& BackCase  = *(CR.Range.second-1);
1566  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
1567
1568  // Size is the number of Cases represented by this range.
1569  unsigned Size = CR.Range.second - CR.Range.first;
1570
1571  int64_t First = cast<ConstantInt>(FrontCase.Low)->getSExtValue();
1572  int64_t Last  = cast<ConstantInt>(BackCase.High)->getSExtValue();
1573  double FMetric = 0;
1574  CaseItr Pivot = CR.Range.first + Size/2;
1575
1576  // Select optimal pivot, maximizing sum density of LHS and RHS. This will
1577  // (heuristically) allow us to emit JumpTable's later.
1578  uint64_t TSize = 0;
1579  for (CaseItr I = CR.Range.first, E = CR.Range.second;
1580       I!=E; ++I)
1581    TSize += I->size();
1582
1583  uint64_t LSize = FrontCase.size();
1584  uint64_t RSize = TSize-LSize;
1585  DOUT << "Selecting best pivot: \n"
1586       << "First: " << First << ", Last: " << Last <<"\n"
1587       << "LSize: " << LSize << ", RSize: " << RSize << "\n";
1588  for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second;
1589       J!=E; ++I, ++J) {
1590    int64_t LEnd = cast<ConstantInt>(I->High)->getSExtValue();
1591    int64_t RBegin = cast<ConstantInt>(J->Low)->getSExtValue();
1592    assert((RBegin-LEnd>=1) && "Invalid case distance");
1593    double LDensity = (double)LSize / (double)((LEnd - First) + 1ULL);
1594    double RDensity = (double)RSize / (double)((Last - RBegin) + 1ULL);
1595    double Metric = Log2_64(RBegin-LEnd)*(LDensity+RDensity);
1596    // Should always split in some non-trivial place
1597    DOUT <<"=>Step\n"
1598         << "LEnd: " << LEnd << ", RBegin: " << RBegin << "\n"
1599         << "LDensity: " << LDensity << ", RDensity: " << RDensity << "\n"
1600         << "Metric: " << Metric << "\n";
1601    if (FMetric < Metric) {
1602      Pivot = J;
1603      FMetric = Metric;
1604      DOUT << "Current metric set to: " << FMetric << "\n";
1605    }
1606
1607    LSize += J->size();
1608    RSize -= J->size();
1609  }
1610  if (areJTsAllowed(TLI)) {
1611    // If our case is dense we *really* should handle it earlier!
1612    assert((FMetric > 0) && "Should handle dense range earlier!");
1613  } else {
1614    Pivot = CR.Range.first + Size/2;
1615  }
1616
1617  CaseRange LHSR(CR.Range.first, Pivot);
1618  CaseRange RHSR(Pivot, CR.Range.second);
1619  Constant *C = Pivot->Low;
1620  MachineBasicBlock *FalseBB = 0, *TrueBB = 0;
1621
1622  // We know that we branch to the LHS if the Value being switched on is
1623  // less than the Pivot value, C.  We use this to optimize our binary
1624  // tree a bit, by recognizing that if SV is greater than or equal to the
1625  // LHS's Case Value, and that Case Value is exactly one less than the
1626  // Pivot's Value, then we can branch directly to the LHS's Target,
1627  // rather than creating a leaf node for it.
1628  if ((LHSR.second - LHSR.first) == 1 &&
1629      LHSR.first->High == CR.GE &&
1630      cast<ConstantInt>(C)->getSExtValue() ==
1631      (cast<ConstantInt>(CR.GE)->getSExtValue() + 1LL)) {
1632    TrueBB = LHSR.first->BB;
1633  } else {
1634    TrueBB = new MachineBasicBlock(LLVMBB);
1635    CurMF->getBasicBlockList().insert(BBI, TrueBB);
1636    WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR));
1637  }
1638
1639  // Similar to the optimization above, if the Value being switched on is
1640  // known to be less than the Constant CR.LT, and the current Case Value
1641  // is CR.LT - 1, then we can branch directly to the target block for
1642  // the current Case Value, rather than emitting a RHS leaf node for it.
1643  if ((RHSR.second - RHSR.first) == 1 && CR.LT &&
1644      cast<ConstantInt>(RHSR.first->Low)->getSExtValue() ==
1645      (cast<ConstantInt>(CR.LT)->getSExtValue() - 1LL)) {
1646    FalseBB = RHSR.first->BB;
1647  } else {
1648    FalseBB = new MachineBasicBlock(LLVMBB);
1649    CurMF->getBasicBlockList().insert(BBI, FalseBB);
1650    WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR));
1651  }
1652
1653  // Create a CaseBlock record representing a conditional branch to
1654  // the LHS node if the value being switched on SV is less than C.
1655  // Otherwise, branch to LHS.
1656  SelectionDAGISel::CaseBlock CB(ISD::SETLT, SV, C, NULL,
1657                                 TrueBB, FalseBB, CR.CaseBB);
1658
1659  if (CR.CaseBB == CurMBB)
1660    visitSwitchCase(CB);
1661  else
1662    SwitchCases.push_back(CB);
1663
1664  return true;
1665}
1666
1667/// handleBitTestsSwitchCase - if current case range has few destination and
1668/// range span less, than machine word bitwidth, encode case range into series
1669/// of masks and emit bit tests with these masks.
1670bool SelectionDAGLowering::handleBitTestsSwitchCase(CaseRec& CR,
1671                                                    CaseRecVector& WorkList,
1672                                                    Value* SV,
1673                                                    MachineBasicBlock* Default){
1674  unsigned IntPtrBits = MVT::getSizeInBits(TLI.getPointerTy());
1675
1676  Case& FrontCase = *CR.Range.first;
1677  Case& BackCase  = *(CR.Range.second-1);
1678
1679  // Get the MachineFunction which holds the current MBB.  This is used when
1680  // inserting any additional MBBs necessary to represent the switch.
1681  MachineFunction *CurMF = CurMBB->getParent();
1682
1683  unsigned numCmps = 0;
1684  for (CaseItr I = CR.Range.first, E = CR.Range.second;
1685       I!=E; ++I) {
1686    // Single case counts one, case range - two.
1687    if (I->Low == I->High)
1688      numCmps +=1;
1689    else
1690      numCmps +=2;
1691  }
1692
1693  // Count unique destinations
1694  SmallSet<MachineBasicBlock*, 4> Dests;
1695  for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
1696    Dests.insert(I->BB);
1697    if (Dests.size() > 3)
1698      // Don't bother the code below, if there are too much unique destinations
1699      return false;
1700  }
1701  DOUT << "Total number of unique destinations: " << Dests.size() << "\n"
1702       << "Total number of comparisons: " << numCmps << "\n";
1703
1704  // Compute span of values.
1705  Constant* minValue = FrontCase.Low;
1706  Constant* maxValue = BackCase.High;
1707  uint64_t range = cast<ConstantInt>(maxValue)->getSExtValue() -
1708                   cast<ConstantInt>(minValue)->getSExtValue();
1709  DOUT << "Compare range: " << range << "\n"
1710       << "Low bound: " << cast<ConstantInt>(minValue)->getSExtValue() << "\n"
1711       << "High bound: " << cast<ConstantInt>(maxValue)->getSExtValue() << "\n";
1712
1713  if (range>=IntPtrBits ||
1714      (!(Dests.size() == 1 && numCmps >= 3) &&
1715       !(Dests.size() == 2 && numCmps >= 5) &&
1716       !(Dests.size() >= 3 && numCmps >= 6)))
1717    return false;
1718
1719  DOUT << "Emitting bit tests\n";
1720  int64_t lowBound = 0;
1721
1722  // Optimize the case where all the case values fit in a
1723  // word without having to subtract minValue. In this case,
1724  // we can optimize away the subtraction.
1725  if (cast<ConstantInt>(minValue)->getSExtValue() >= 0 &&
1726      cast<ConstantInt>(maxValue)->getSExtValue() <  IntPtrBits) {
1727    range = cast<ConstantInt>(maxValue)->getSExtValue();
1728  } else {
1729    lowBound = cast<ConstantInt>(minValue)->getSExtValue();
1730  }
1731
1732  CaseBitsVector CasesBits;
1733  unsigned i, count = 0;
1734
1735  for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
1736    MachineBasicBlock* Dest = I->BB;
1737    for (i = 0; i < count; ++i)
1738      if (Dest == CasesBits[i].BB)
1739        break;
1740
1741    if (i == count) {
1742      assert((count < 3) && "Too much destinations to test!");
1743      CasesBits.push_back(CaseBits(0, Dest, 0));
1744      count++;
1745    }
1746
1747    uint64_t lo = cast<ConstantInt>(I->Low)->getSExtValue() - lowBound;
1748    uint64_t hi = cast<ConstantInt>(I->High)->getSExtValue() - lowBound;
1749
1750    for (uint64_t j = lo; j <= hi; j++) {
1751      CasesBits[i].Mask |=  1ULL << j;
1752      CasesBits[i].Bits++;
1753    }
1754
1755  }
1756  std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp());
1757
1758  SelectionDAGISel::BitTestInfo BTC;
1759
1760  // Figure out which block is immediately after the current one.
1761  MachineFunction::iterator BBI = CR.CaseBB;
1762  ++BBI;
1763
1764  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
1765
1766  DOUT << "Cases:\n";
1767  for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) {
1768    DOUT << "Mask: " << CasesBits[i].Mask << ", Bits: " << CasesBits[i].Bits
1769         << ", BB: " << CasesBits[i].BB << "\n";
1770
1771    MachineBasicBlock *CaseBB = new MachineBasicBlock(LLVMBB);
1772    CurMF->getBasicBlockList().insert(BBI, CaseBB);
1773    BTC.push_back(SelectionDAGISel::BitTestCase(CasesBits[i].Mask,
1774                                                CaseBB,
1775                                                CasesBits[i].BB));
1776  }
1777
1778  SelectionDAGISel::BitTestBlock BTB(lowBound, range, SV,
1779                                     -1U, (CR.CaseBB == CurMBB),
1780                                     CR.CaseBB, Default, BTC);
1781
1782  if (CR.CaseBB == CurMBB)
1783    visitBitTestHeader(BTB);
1784
1785  BitTestCases.push_back(BTB);
1786
1787  return true;
1788}
1789
1790
1791// Clusterify - Transform simple list of Cases into list of CaseRange's
1792unsigned SelectionDAGLowering::Clusterify(CaseVector& Cases,
1793                                          const SwitchInst& SI) {
1794  unsigned numCmps = 0;
1795
1796  // Start with "simple" cases
1797  for (unsigned i = 1; i < SI.getNumSuccessors(); ++i) {
1798    MachineBasicBlock *SMBB = FuncInfo.MBBMap[SI.getSuccessor(i)];
1799    Cases.push_back(Case(SI.getSuccessorValue(i),
1800                         SI.getSuccessorValue(i),
1801                         SMBB));
1802  }
1803  sort(Cases.begin(), Cases.end(), CaseCmp());
1804
1805  // Merge case into clusters
1806  if (Cases.size()>=2)
1807    for (CaseItr I=Cases.begin(), J=++(Cases.begin()), E=Cases.end(); J!=E; ) {
1808      int64_t nextValue = cast<ConstantInt>(J->Low)->getSExtValue();
1809      int64_t currentValue = cast<ConstantInt>(I->High)->getSExtValue();
1810      MachineBasicBlock* nextBB = J->BB;
1811      MachineBasicBlock* currentBB = I->BB;
1812
1813      // If the two neighboring cases go to the same destination, merge them
1814      // into a single case.
1815      if ((nextValue-currentValue==1) && (currentBB == nextBB)) {
1816        I->High = J->High;
1817        J = Cases.erase(J);
1818      } else {
1819        I = J++;
1820      }
1821    }
1822
1823  for (CaseItr I=Cases.begin(), E=Cases.end(); I!=E; ++I, ++numCmps) {
1824    if (I->Low != I->High)
1825      // A range counts double, since it requires two compares.
1826      ++numCmps;
1827  }
1828
1829  return numCmps;
1830}
1831
1832void SelectionDAGLowering::visitSwitch(SwitchInst &SI) {
1833  // Figure out which block is immediately after the current one.
1834  MachineBasicBlock *NextBlock = 0;
1835  MachineFunction::iterator BBI = CurMBB;
1836
1837  MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()];
1838
1839  // If there is only the default destination, branch to it if it is not the
1840  // next basic block.  Otherwise, just fall through.
1841  if (SI.getNumOperands() == 2) {
1842    // Update machine-CFG edges.
1843
1844    // If this is not a fall-through branch, emit the branch.
1845    if (Default != NextBlock)
1846      DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, getRoot(),
1847                              DAG.getBasicBlock(Default)));
1848
1849    CurMBB->addSuccessor(Default);
1850    return;
1851  }
1852
1853  // If there are any non-default case statements, create a vector of Cases
1854  // representing each one, and sort the vector so that we can efficiently
1855  // create a binary search tree from them.
1856  CaseVector Cases;
1857  unsigned numCmps = Clusterify(Cases, SI);
1858  DOUT << "Clusterify finished. Total clusters: " << Cases.size()
1859       << ". Total compares: " << numCmps << "\n";
1860
1861  // Get the Value to be switched on and default basic blocks, which will be
1862  // inserted into CaseBlock records, representing basic blocks in the binary
1863  // search tree.
1864  Value *SV = SI.getOperand(0);
1865
1866  // Push the initial CaseRec onto the worklist
1867  CaseRecVector WorkList;
1868  WorkList.push_back(CaseRec(CurMBB,0,0,CaseRange(Cases.begin(),Cases.end())));
1869
1870  while (!WorkList.empty()) {
1871    // Grab a record representing a case range to process off the worklist
1872    CaseRec CR = WorkList.back();
1873    WorkList.pop_back();
1874
1875    if (handleBitTestsSwitchCase(CR, WorkList, SV, Default))
1876      continue;
1877
1878    // If the range has few cases (two or less) emit a series of specific
1879    // tests.
1880    if (handleSmallSwitchRange(CR, WorkList, SV, Default))
1881      continue;
1882
1883    // If the switch has more than 5 blocks, and at least 40% dense, and the
1884    // target supports indirect branches, then emit a jump table rather than
1885    // lowering the switch to a binary tree of conditional branches.
1886    if (handleJTSwitchCase(CR, WorkList, SV, Default))
1887      continue;
1888
1889    // Emit binary tree. We need to pick a pivot, and push left and right ranges
1890    // onto the worklist. Leafs are handled via handleSmallSwitchRange() call.
1891    handleBTSplitSwitchCase(CR, WorkList, SV, Default);
1892  }
1893}
1894
1895
1896void SelectionDAGLowering::visitSub(User &I) {
1897  // -0.0 - X --> fneg
1898  const Type *Ty = I.getType();
1899  if (isa<VectorType>(Ty)) {
1900    visitVectorBinary(I, ISD::VSUB);
1901  } else if (Ty->isFloatingPoint()) {
1902    if (ConstantFP *CFP = dyn_cast<ConstantFP>(I.getOperand(0)))
1903      if (CFP->isExactlyValue(-0.0)) {
1904        SDOperand Op2 = getValue(I.getOperand(1));
1905        setValue(&I, DAG.getNode(ISD::FNEG, Op2.getValueType(), Op2));
1906        return;
1907      }
1908    visitScalarBinary(I, ISD::FSUB);
1909  } else
1910    visitScalarBinary(I, ISD::SUB);
1911}
1912
1913void SelectionDAGLowering::visitScalarBinary(User &I, unsigned OpCode) {
1914  SDOperand Op1 = getValue(I.getOperand(0));
1915  SDOperand Op2 = getValue(I.getOperand(1));
1916
1917  setValue(&I, DAG.getNode(OpCode, Op1.getValueType(), Op1, Op2));
1918}
1919
1920void
1921SelectionDAGLowering::visitVectorBinary(User &I, unsigned OpCode) {
1922  assert(isa<VectorType>(I.getType()));
1923  const VectorType *Ty = cast<VectorType>(I.getType());
1924  SDOperand Typ = DAG.getValueType(TLI.getValueType(Ty->getElementType()));
1925
1926  setValue(&I, DAG.getNode(OpCode, MVT::Vector,
1927                           getValue(I.getOperand(0)),
1928                           getValue(I.getOperand(1)),
1929                           DAG.getConstant(Ty->getNumElements(), MVT::i32),
1930                           Typ));
1931}
1932
1933void SelectionDAGLowering::visitEitherBinary(User &I, unsigned ScalarOp,
1934                                             unsigned VectorOp) {
1935  if (isa<VectorType>(I.getType()))
1936    visitVectorBinary(I, VectorOp);
1937  else
1938    visitScalarBinary(I, ScalarOp);
1939}
1940
1941void SelectionDAGLowering::visitShift(User &I, unsigned Opcode) {
1942  SDOperand Op1 = getValue(I.getOperand(0));
1943  SDOperand Op2 = getValue(I.getOperand(1));
1944
1945  if (TLI.getShiftAmountTy() < Op2.getValueType())
1946    Op2 = DAG.getNode(ISD::TRUNCATE, TLI.getShiftAmountTy(), Op2);
1947  else if (TLI.getShiftAmountTy() > Op2.getValueType())
1948    Op2 = DAG.getNode(ISD::ANY_EXTEND, TLI.getShiftAmountTy(), Op2);
1949
1950  setValue(&I, DAG.getNode(Opcode, Op1.getValueType(), Op1, Op2));
1951}
1952
1953void SelectionDAGLowering::visitICmp(User &I) {
1954  ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
1955  if (ICmpInst *IC = dyn_cast<ICmpInst>(&I))
1956    predicate = IC->getPredicate();
1957  else if (ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
1958    predicate = ICmpInst::Predicate(IC->getPredicate());
1959  SDOperand Op1 = getValue(I.getOperand(0));
1960  SDOperand Op2 = getValue(I.getOperand(1));
1961  ISD::CondCode Opcode;
1962  switch (predicate) {
1963    case ICmpInst::ICMP_EQ  : Opcode = ISD::SETEQ; break;
1964    case ICmpInst::ICMP_NE  : Opcode = ISD::SETNE; break;
1965    case ICmpInst::ICMP_UGT : Opcode = ISD::SETUGT; break;
1966    case ICmpInst::ICMP_UGE : Opcode = ISD::SETUGE; break;
1967    case ICmpInst::ICMP_ULT : Opcode = ISD::SETULT; break;
1968    case ICmpInst::ICMP_ULE : Opcode = ISD::SETULE; break;
1969    case ICmpInst::ICMP_SGT : Opcode = ISD::SETGT; break;
1970    case ICmpInst::ICMP_SGE : Opcode = ISD::SETGE; break;
1971    case ICmpInst::ICMP_SLT : Opcode = ISD::SETLT; break;
1972    case ICmpInst::ICMP_SLE : Opcode = ISD::SETLE; break;
1973    default:
1974      assert(!"Invalid ICmp predicate value");
1975      Opcode = ISD::SETEQ;
1976      break;
1977  }
1978  setValue(&I, DAG.getSetCC(MVT::i1, Op1, Op2, Opcode));
1979}
1980
1981void SelectionDAGLowering::visitFCmp(User &I) {
1982  FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
1983  if (FCmpInst *FC = dyn_cast<FCmpInst>(&I))
1984    predicate = FC->getPredicate();
1985  else if (ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
1986    predicate = FCmpInst::Predicate(FC->getPredicate());
1987  SDOperand Op1 = getValue(I.getOperand(0));
1988  SDOperand Op2 = getValue(I.getOperand(1));
1989  ISD::CondCode Condition, FOC, FPC;
1990  switch (predicate) {
1991    case FCmpInst::FCMP_FALSE: FOC = FPC = ISD::SETFALSE; break;
1992    case FCmpInst::FCMP_OEQ:   FOC = ISD::SETEQ; FPC = ISD::SETOEQ; break;
1993    case FCmpInst::FCMP_OGT:   FOC = ISD::SETGT; FPC = ISD::SETOGT; break;
1994    case FCmpInst::FCMP_OGE:   FOC = ISD::SETGE; FPC = ISD::SETOGE; break;
1995    case FCmpInst::FCMP_OLT:   FOC = ISD::SETLT; FPC = ISD::SETOLT; break;
1996    case FCmpInst::FCMP_OLE:   FOC = ISD::SETLE; FPC = ISD::SETOLE; break;
1997    case FCmpInst::FCMP_ONE:   FOC = ISD::SETNE; FPC = ISD::SETONE; break;
1998    case FCmpInst::FCMP_ORD:   FOC = ISD::SETEQ; FPC = ISD::SETO;   break;
1999    case FCmpInst::FCMP_UNO:   FOC = ISD::SETNE; FPC = ISD::SETUO;  break;
2000    case FCmpInst::FCMP_UEQ:   FOC = ISD::SETEQ; FPC = ISD::SETUEQ; break;
2001    case FCmpInst::FCMP_UGT:   FOC = ISD::SETGT; FPC = ISD::SETUGT; break;
2002    case FCmpInst::FCMP_UGE:   FOC = ISD::SETGE; FPC = ISD::SETUGE; break;
2003    case FCmpInst::FCMP_ULT:   FOC = ISD::SETLT; FPC = ISD::SETULT; break;
2004    case FCmpInst::FCMP_ULE:   FOC = ISD::SETLE; FPC = ISD::SETULE; break;
2005    case FCmpInst::FCMP_UNE:   FOC = ISD::SETNE; FPC = ISD::SETUNE; break;
2006    case FCmpInst::FCMP_TRUE:  FOC = FPC = ISD::SETTRUE; break;
2007    default:
2008      assert(!"Invalid FCmp predicate value");
2009      FOC = FPC = ISD::SETFALSE;
2010      break;
2011  }
2012  if (FiniteOnlyFPMath())
2013    Condition = FOC;
2014  else
2015    Condition = FPC;
2016  setValue(&I, DAG.getSetCC(MVT::i1, Op1, Op2, Condition));
2017}
2018
2019void SelectionDAGLowering::visitSelect(User &I) {
2020  SDOperand Cond     = getValue(I.getOperand(0));
2021  SDOperand TrueVal  = getValue(I.getOperand(1));
2022  SDOperand FalseVal = getValue(I.getOperand(2));
2023  if (!isa<VectorType>(I.getType())) {
2024    setValue(&I, DAG.getNode(ISD::SELECT, TrueVal.getValueType(), Cond,
2025                             TrueVal, FalseVal));
2026  } else {
2027    setValue(&I, DAG.getNode(ISD::VSELECT, MVT::Vector, Cond, TrueVal, FalseVal,
2028                             *(TrueVal.Val->op_end()-2),
2029                             *(TrueVal.Val->op_end()-1)));
2030  }
2031}
2032
2033
2034void SelectionDAGLowering::visitTrunc(User &I) {
2035  // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
2036  SDOperand N = getValue(I.getOperand(0));
2037  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2038  setValue(&I, DAG.getNode(ISD::TRUNCATE, DestVT, N));
2039}
2040
2041void SelectionDAGLowering::visitZExt(User &I) {
2042  // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2043  // ZExt also can't be a cast to bool for same reason. So, nothing much to do
2044  SDOperand N = getValue(I.getOperand(0));
2045  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2046  setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, DestVT, N));
2047}
2048
2049void SelectionDAGLowering::visitSExt(User &I) {
2050  // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2051  // SExt also can't be a cast to bool for same reason. So, nothing much to do
2052  SDOperand N = getValue(I.getOperand(0));
2053  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2054  setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, DestVT, N));
2055}
2056
2057void SelectionDAGLowering::visitFPTrunc(User &I) {
2058  // FPTrunc is never a no-op cast, no need to check
2059  SDOperand N = getValue(I.getOperand(0));
2060  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2061  setValue(&I, DAG.getNode(ISD::FP_ROUND, DestVT, N));
2062}
2063
2064void SelectionDAGLowering::visitFPExt(User &I){
2065  // FPTrunc is never a no-op cast, no need to check
2066  SDOperand N = getValue(I.getOperand(0));
2067  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2068  setValue(&I, DAG.getNode(ISD::FP_EXTEND, DestVT, N));
2069}
2070
2071void SelectionDAGLowering::visitFPToUI(User &I) {
2072  // FPToUI is never a no-op cast, no need to check
2073  SDOperand N = getValue(I.getOperand(0));
2074  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2075  setValue(&I, DAG.getNode(ISD::FP_TO_UINT, DestVT, N));
2076}
2077
2078void SelectionDAGLowering::visitFPToSI(User &I) {
2079  // FPToSI is never a no-op cast, no need to check
2080  SDOperand N = getValue(I.getOperand(0));
2081  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2082  setValue(&I, DAG.getNode(ISD::FP_TO_SINT, DestVT, N));
2083}
2084
2085void SelectionDAGLowering::visitUIToFP(User &I) {
2086  // UIToFP is never a no-op cast, no need to check
2087  SDOperand N = getValue(I.getOperand(0));
2088  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2089  setValue(&I, DAG.getNode(ISD::UINT_TO_FP, DestVT, N));
2090}
2091
2092void SelectionDAGLowering::visitSIToFP(User &I){
2093  // UIToFP is never a no-op cast, no need to check
2094  SDOperand N = getValue(I.getOperand(0));
2095  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2096  setValue(&I, DAG.getNode(ISD::SINT_TO_FP, DestVT, N));
2097}
2098
2099void SelectionDAGLowering::visitPtrToInt(User &I) {
2100  // What to do depends on the size of the integer and the size of the pointer.
2101  // We can either truncate, zero extend, or no-op, accordingly.
2102  SDOperand N = getValue(I.getOperand(0));
2103  MVT::ValueType SrcVT = N.getValueType();
2104  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2105  SDOperand Result;
2106  if (MVT::getSizeInBits(DestVT) < MVT::getSizeInBits(SrcVT))
2107    Result = DAG.getNode(ISD::TRUNCATE, DestVT, N);
2108  else
2109    // Note: ZERO_EXTEND can handle cases where the sizes are equal too
2110    Result = DAG.getNode(ISD::ZERO_EXTEND, DestVT, N);
2111  setValue(&I, Result);
2112}
2113
2114void SelectionDAGLowering::visitIntToPtr(User &I) {
2115  // What to do depends on the size of the integer and the size of the pointer.
2116  // We can either truncate, zero extend, or no-op, accordingly.
2117  SDOperand N = getValue(I.getOperand(0));
2118  MVT::ValueType SrcVT = N.getValueType();
2119  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2120  if (MVT::getSizeInBits(DestVT) < MVT::getSizeInBits(SrcVT))
2121    setValue(&I, DAG.getNode(ISD::TRUNCATE, DestVT, N));
2122  else
2123    // Note: ZERO_EXTEND can handle cases where the sizes are equal too
2124    setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, DestVT, N));
2125}
2126
2127void SelectionDAGLowering::visitBitCast(User &I) {
2128  SDOperand N = getValue(I.getOperand(0));
2129  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2130  if (DestVT == MVT::Vector) {
2131    // This is a cast to a vector from something else.
2132    // Get information about the output vector.
2133    const VectorType *DestTy = cast<VectorType>(I.getType());
2134    MVT::ValueType EltVT = TLI.getValueType(DestTy->getElementType());
2135    setValue(&I, DAG.getNode(ISD::VBIT_CONVERT, DestVT, N,
2136                             DAG.getConstant(DestTy->getNumElements(),MVT::i32),
2137                             DAG.getValueType(EltVT)));
2138    return;
2139  }
2140  MVT::ValueType SrcVT = N.getValueType();
2141  if (SrcVT == MVT::Vector) {
2142    // This is a cast from a vctor to something else.
2143    // Get information about the input vector.
2144    setValue(&I, DAG.getNode(ISD::VBIT_CONVERT, DestVT, N));
2145    return;
2146  }
2147
2148  // BitCast assures us that source and destination are the same size so this
2149  // is either a BIT_CONVERT or a no-op.
2150  if (DestVT != N.getValueType())
2151    setValue(&I, DAG.getNode(ISD::BIT_CONVERT, DestVT, N)); // convert types
2152  else
2153    setValue(&I, N); // noop cast.
2154}
2155
2156void SelectionDAGLowering::visitInsertElement(User &I) {
2157  SDOperand InVec = getValue(I.getOperand(0));
2158  SDOperand InVal = getValue(I.getOperand(1));
2159  SDOperand InIdx = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(),
2160                                getValue(I.getOperand(2)));
2161
2162  SDOperand Num = *(InVec.Val->op_end()-2);
2163  SDOperand Typ = *(InVec.Val->op_end()-1);
2164  setValue(&I, DAG.getNode(ISD::VINSERT_VECTOR_ELT, MVT::Vector,
2165                           InVec, InVal, InIdx, Num, Typ));
2166}
2167
2168void SelectionDAGLowering::visitExtractElement(User &I) {
2169  SDOperand InVec = getValue(I.getOperand(0));
2170  SDOperand InIdx = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(),
2171                                getValue(I.getOperand(1)));
2172  SDOperand Typ = *(InVec.Val->op_end()-1);
2173  setValue(&I, DAG.getNode(ISD::VEXTRACT_VECTOR_ELT,
2174                           TLI.getValueType(I.getType()), InVec, InIdx));
2175}
2176
2177void SelectionDAGLowering::visitShuffleVector(User &I) {
2178  SDOperand V1   = getValue(I.getOperand(0));
2179  SDOperand V2   = getValue(I.getOperand(1));
2180  SDOperand Mask = getValue(I.getOperand(2));
2181
2182  SDOperand Num = *(V1.Val->op_end()-2);
2183  SDOperand Typ = *(V2.Val->op_end()-1);
2184  setValue(&I, DAG.getNode(ISD::VVECTOR_SHUFFLE, MVT::Vector,
2185                           V1, V2, Mask, Num, Typ));
2186}
2187
2188
2189void SelectionDAGLowering::visitGetElementPtr(User &I) {
2190  SDOperand N = getValue(I.getOperand(0));
2191  const Type *Ty = I.getOperand(0)->getType();
2192
2193  for (GetElementPtrInst::op_iterator OI = I.op_begin()+1, E = I.op_end();
2194       OI != E; ++OI) {
2195    Value *Idx = *OI;
2196    if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
2197      unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
2198      if (Field) {
2199        // N = N + Offset
2200        uint64_t Offset = TD->getStructLayout(StTy)->getElementOffset(Field);
2201        N = DAG.getNode(ISD::ADD, N.getValueType(), N,
2202                        getIntPtrConstant(Offset));
2203      }
2204      Ty = StTy->getElementType(Field);
2205    } else {
2206      Ty = cast<SequentialType>(Ty)->getElementType();
2207
2208      // If this is a constant subscript, handle it quickly.
2209      if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
2210        if (CI->getZExtValue() == 0) continue;
2211        uint64_t Offs =
2212            TD->getTypeSize(Ty)*cast<ConstantInt>(CI)->getSExtValue();
2213        N = DAG.getNode(ISD::ADD, N.getValueType(), N, getIntPtrConstant(Offs));
2214        continue;
2215      }
2216
2217      // N = N + Idx * ElementSize;
2218      uint64_t ElementSize = TD->getTypeSize(Ty);
2219      SDOperand IdxN = getValue(Idx);
2220
2221      // If the index is smaller or larger than intptr_t, truncate or extend
2222      // it.
2223      if (IdxN.getValueType() < N.getValueType()) {
2224        IdxN = DAG.getNode(ISD::SIGN_EXTEND, N.getValueType(), IdxN);
2225      } else if (IdxN.getValueType() > N.getValueType())
2226        IdxN = DAG.getNode(ISD::TRUNCATE, N.getValueType(), IdxN);
2227
2228      // If this is a multiply by a power of two, turn it into a shl
2229      // immediately.  This is a very common case.
2230      if (isPowerOf2_64(ElementSize)) {
2231        unsigned Amt = Log2_64(ElementSize);
2232        IdxN = DAG.getNode(ISD::SHL, N.getValueType(), IdxN,
2233                           DAG.getConstant(Amt, TLI.getShiftAmountTy()));
2234        N = DAG.getNode(ISD::ADD, N.getValueType(), N, IdxN);
2235        continue;
2236      }
2237
2238      SDOperand Scale = getIntPtrConstant(ElementSize);
2239      IdxN = DAG.getNode(ISD::MUL, N.getValueType(), IdxN, Scale);
2240      N = DAG.getNode(ISD::ADD, N.getValueType(), N, IdxN);
2241    }
2242  }
2243  setValue(&I, N);
2244}
2245
2246void SelectionDAGLowering::visitAlloca(AllocaInst &I) {
2247  // If this is a fixed sized alloca in the entry block of the function,
2248  // allocate it statically on the stack.
2249  if (FuncInfo.StaticAllocaMap.count(&I))
2250    return;   // getValue will auto-populate this.
2251
2252  const Type *Ty = I.getAllocatedType();
2253  uint64_t TySize = TLI.getTargetData()->getTypeSize(Ty);
2254  unsigned Align =
2255    std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty),
2256             I.getAlignment());
2257
2258  SDOperand AllocSize = getValue(I.getArraySize());
2259  MVT::ValueType IntPtr = TLI.getPointerTy();
2260  if (IntPtr < AllocSize.getValueType())
2261    AllocSize = DAG.getNode(ISD::TRUNCATE, IntPtr, AllocSize);
2262  else if (IntPtr > AllocSize.getValueType())
2263    AllocSize = DAG.getNode(ISD::ZERO_EXTEND, IntPtr, AllocSize);
2264
2265  AllocSize = DAG.getNode(ISD::MUL, IntPtr, AllocSize,
2266                          getIntPtrConstant(TySize));
2267
2268  // Handle alignment.  If the requested alignment is less than or equal to the
2269  // stack alignment, ignore it and round the size of the allocation up to the
2270  // stack alignment size.  If the size is greater than the stack alignment, we
2271  // note this in the DYNAMIC_STACKALLOC node.
2272  unsigned StackAlign =
2273    TLI.getTargetMachine().getFrameInfo()->getStackAlignment();
2274  if (Align <= StackAlign) {
2275    Align = 0;
2276    // Add SA-1 to the size.
2277    AllocSize = DAG.getNode(ISD::ADD, AllocSize.getValueType(), AllocSize,
2278                            getIntPtrConstant(StackAlign-1));
2279    // Mask out the low bits for alignment purposes.
2280    AllocSize = DAG.getNode(ISD::AND, AllocSize.getValueType(), AllocSize,
2281                            getIntPtrConstant(~(uint64_t)(StackAlign-1)));
2282  }
2283
2284  SDOperand Ops[] = { getRoot(), AllocSize, getIntPtrConstant(Align) };
2285  const MVT::ValueType *VTs = DAG.getNodeValueTypes(AllocSize.getValueType(),
2286                                                    MVT::Other);
2287  SDOperand DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, VTs, 2, Ops, 3);
2288  setValue(&I, DSA);
2289  DAG.setRoot(DSA.getValue(1));
2290
2291  // Inform the Frame Information that we have just allocated a variable-sized
2292  // object.
2293  CurMBB->getParent()->getFrameInfo()->CreateVariableSizedObject();
2294}
2295
2296void SelectionDAGLowering::visitLoad(LoadInst &I) {
2297  SDOperand Ptr = getValue(I.getOperand(0));
2298
2299  SDOperand Root;
2300  if (I.isVolatile())
2301    Root = getRoot();
2302  else {
2303    // Do not serialize non-volatile loads against each other.
2304    Root = DAG.getRoot();
2305  }
2306
2307  setValue(&I, getLoadFrom(I.getType(), Ptr, I.getOperand(0),
2308                           Root, I.isVolatile(), I.getAlignment()));
2309}
2310
2311SDOperand SelectionDAGLowering::getLoadFrom(const Type *Ty, SDOperand Ptr,
2312                                            const Value *SV, SDOperand Root,
2313                                            bool isVolatile,
2314                                            unsigned Alignment) {
2315  SDOperand L;
2316  if (const VectorType *PTy = dyn_cast<VectorType>(Ty)) {
2317    MVT::ValueType PVT = TLI.getValueType(PTy->getElementType());
2318    L = DAG.getVecLoad(PTy->getNumElements(), PVT, Root, Ptr,
2319                       DAG.getSrcValue(SV));
2320  } else {
2321    L = DAG.getLoad(TLI.getValueType(Ty), Root, Ptr, SV, 0,
2322                    isVolatile, Alignment);
2323  }
2324
2325  if (isVolatile)
2326    DAG.setRoot(L.getValue(1));
2327  else
2328    PendingLoads.push_back(L.getValue(1));
2329
2330  return L;
2331}
2332
2333
2334void SelectionDAGLowering::visitStore(StoreInst &I) {
2335  Value *SrcV = I.getOperand(0);
2336  SDOperand Src = getValue(SrcV);
2337  SDOperand Ptr = getValue(I.getOperand(1));
2338  DAG.setRoot(DAG.getStore(getRoot(), Src, Ptr, I.getOperand(1), 0,
2339                           I.isVolatile(), I.getAlignment()));
2340}
2341
2342/// IntrinsicCannotAccessMemory - Return true if the specified intrinsic cannot
2343/// access memory and has no other side effects at all.
2344static bool IntrinsicCannotAccessMemory(unsigned IntrinsicID) {
2345#define GET_NO_MEMORY_INTRINSICS
2346#include "llvm/Intrinsics.gen"
2347#undef GET_NO_MEMORY_INTRINSICS
2348  return false;
2349}
2350
2351// IntrinsicOnlyReadsMemory - Return true if the specified intrinsic doesn't
2352// have any side-effects or if it only reads memory.
2353static bool IntrinsicOnlyReadsMemory(unsigned IntrinsicID) {
2354#define GET_SIDE_EFFECT_INFO
2355#include "llvm/Intrinsics.gen"
2356#undef GET_SIDE_EFFECT_INFO
2357  return false;
2358}
2359
2360/// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
2361/// node.
2362void SelectionDAGLowering::visitTargetIntrinsic(CallInst &I,
2363                                                unsigned Intrinsic) {
2364  bool HasChain = !IntrinsicCannotAccessMemory(Intrinsic);
2365  bool OnlyLoad = HasChain && IntrinsicOnlyReadsMemory(Intrinsic);
2366
2367  // Build the operand list.
2368  SmallVector<SDOperand, 8> Ops;
2369  if (HasChain) {  // If this intrinsic has side-effects, chainify it.
2370    if (OnlyLoad) {
2371      // We don't need to serialize loads against other loads.
2372      Ops.push_back(DAG.getRoot());
2373    } else {
2374      Ops.push_back(getRoot());
2375    }
2376  }
2377
2378  // Add the intrinsic ID as an integer operand.
2379  Ops.push_back(DAG.getConstant(Intrinsic, TLI.getPointerTy()));
2380
2381  // Add all operands of the call to the operand list.
2382  for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) {
2383    SDOperand Op = getValue(I.getOperand(i));
2384
2385    // If this is a vector type, force it to the right vector type.
2386    if (Op.getValueType() == MVT::Vector) {
2387      const VectorType *OpTy = cast<VectorType>(I.getOperand(i)->getType());
2388      MVT::ValueType EltVT = TLI.getValueType(OpTy->getElementType());
2389
2390      MVT::ValueType VVT = MVT::getVectorType(EltVT, OpTy->getNumElements());
2391      assert(VVT != MVT::Other && "Intrinsic uses a non-legal type?");
2392      Op = DAG.getNode(ISD::VBIT_CONVERT, VVT, Op);
2393    }
2394
2395    assert(TLI.isTypeLegal(Op.getValueType()) &&
2396           "Intrinsic uses a non-legal type?");
2397    Ops.push_back(Op);
2398  }
2399
2400  std::vector<MVT::ValueType> VTs;
2401  if (I.getType() != Type::VoidTy) {
2402    MVT::ValueType VT = TLI.getValueType(I.getType());
2403    if (VT == MVT::Vector) {
2404      const VectorType *DestTy = cast<VectorType>(I.getType());
2405      MVT::ValueType EltVT = TLI.getValueType(DestTy->getElementType());
2406
2407      VT = MVT::getVectorType(EltVT, DestTy->getNumElements());
2408      assert(VT != MVT::Other && "Intrinsic uses a non-legal type?");
2409    }
2410
2411    assert(TLI.isTypeLegal(VT) && "Intrinsic uses a non-legal type?");
2412    VTs.push_back(VT);
2413  }
2414  if (HasChain)
2415    VTs.push_back(MVT::Other);
2416
2417  const MVT::ValueType *VTList = DAG.getNodeValueTypes(VTs);
2418
2419  // Create the node.
2420  SDOperand Result;
2421  if (!HasChain)
2422    Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, VTList, VTs.size(),
2423                         &Ops[0], Ops.size());
2424  else if (I.getType() != Type::VoidTy)
2425    Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, VTList, VTs.size(),
2426                         &Ops[0], Ops.size());
2427  else
2428    Result = DAG.getNode(ISD::INTRINSIC_VOID, VTList, VTs.size(),
2429                         &Ops[0], Ops.size());
2430
2431  if (HasChain) {
2432    SDOperand Chain = Result.getValue(Result.Val->getNumValues()-1);
2433    if (OnlyLoad)
2434      PendingLoads.push_back(Chain);
2435    else
2436      DAG.setRoot(Chain);
2437  }
2438  if (I.getType() != Type::VoidTy) {
2439    if (const VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
2440      MVT::ValueType EVT = TLI.getValueType(PTy->getElementType());
2441      Result = DAG.getNode(ISD::VBIT_CONVERT, MVT::Vector, Result,
2442                           DAG.getConstant(PTy->getNumElements(), MVT::i32),
2443                           DAG.getValueType(EVT));
2444    }
2445    setValue(&I, Result);
2446  }
2447}
2448
2449/// ExtractGlobalVariable - If C is a global variable, or a bitcast of one
2450/// (possibly constant folded), return it.  Otherwise return NULL.
2451static GlobalVariable *ExtractGlobalVariable (Constant *C) {
2452  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(C))
2453    return GV;
2454  else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
2455    if (CE->getOpcode() == Instruction::BitCast)
2456      return dyn_cast<GlobalVariable>(CE->getOperand(0));
2457    else if (CE->getOpcode() == Instruction::GetElementPtr) {
2458      for (unsigned i = 1, e = CE->getNumOperands(); i != e; ++i)
2459        if (!CE->getOperand(i)->isNullValue())
2460          return NULL;
2461      return dyn_cast<GlobalVariable>(CE->getOperand(0));
2462    }
2463  }
2464  return NULL;
2465}
2466
2467/// visitIntrinsicCall - Lower the call to the specified intrinsic function.  If
2468/// we want to emit this as a call to a named external function, return the name
2469/// otherwise lower it and return null.
2470const char *
2471SelectionDAGLowering::visitIntrinsicCall(CallInst &I, unsigned Intrinsic) {
2472  switch (Intrinsic) {
2473  default:
2474    // By default, turn this into a target intrinsic node.
2475    visitTargetIntrinsic(I, Intrinsic);
2476    return 0;
2477  case Intrinsic::vastart:  visitVAStart(I); return 0;
2478  case Intrinsic::vaend:    visitVAEnd(I); return 0;
2479  case Intrinsic::vacopy:   visitVACopy(I); return 0;
2480  case Intrinsic::returnaddress:
2481    setValue(&I, DAG.getNode(ISD::RETURNADDR, TLI.getPointerTy(),
2482                             getValue(I.getOperand(1))));
2483    return 0;
2484  case Intrinsic::frameaddress:
2485    setValue(&I, DAG.getNode(ISD::FRAMEADDR, TLI.getPointerTy(),
2486                             getValue(I.getOperand(1))));
2487    return 0;
2488  case Intrinsic::setjmp:
2489    return "_setjmp"+!TLI.usesUnderscoreSetJmp();
2490    break;
2491  case Intrinsic::longjmp:
2492    return "_longjmp"+!TLI.usesUnderscoreLongJmp();
2493    break;
2494  case Intrinsic::memcpy_i32:
2495  case Intrinsic::memcpy_i64:
2496    visitMemIntrinsic(I, ISD::MEMCPY);
2497    return 0;
2498  case Intrinsic::memset_i32:
2499  case Intrinsic::memset_i64:
2500    visitMemIntrinsic(I, ISD::MEMSET);
2501    return 0;
2502  case Intrinsic::memmove_i32:
2503  case Intrinsic::memmove_i64:
2504    visitMemIntrinsic(I, ISD::MEMMOVE);
2505    return 0;
2506
2507  case Intrinsic::dbg_stoppoint: {
2508    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2509    DbgStopPointInst &SPI = cast<DbgStopPointInst>(I);
2510    if (MMI && SPI.getContext() && MMI->Verify(SPI.getContext())) {
2511      SDOperand Ops[5];
2512
2513      Ops[0] = getRoot();
2514      Ops[1] = getValue(SPI.getLineValue());
2515      Ops[2] = getValue(SPI.getColumnValue());
2516
2517      DebugInfoDesc *DD = MMI->getDescFor(SPI.getContext());
2518      assert(DD && "Not a debug information descriptor");
2519      CompileUnitDesc *CompileUnit = cast<CompileUnitDesc>(DD);
2520
2521      Ops[3] = DAG.getString(CompileUnit->getFileName());
2522      Ops[4] = DAG.getString(CompileUnit->getDirectory());
2523
2524      DAG.setRoot(DAG.getNode(ISD::LOCATION, MVT::Other, Ops, 5));
2525    }
2526
2527    return 0;
2528  }
2529  case Intrinsic::dbg_region_start: {
2530    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2531    DbgRegionStartInst &RSI = cast<DbgRegionStartInst>(I);
2532    if (MMI && RSI.getContext() && MMI->Verify(RSI.getContext())) {
2533      unsigned LabelID = MMI->RecordRegionStart(RSI.getContext());
2534      DAG.setRoot(DAG.getNode(ISD::LABEL, MVT::Other, getRoot(),
2535                              DAG.getConstant(LabelID, MVT::i32)));
2536    }
2537
2538    return 0;
2539  }
2540  case Intrinsic::dbg_region_end: {
2541    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2542    DbgRegionEndInst &REI = cast<DbgRegionEndInst>(I);
2543    if (MMI && REI.getContext() && MMI->Verify(REI.getContext())) {
2544      unsigned LabelID = MMI->RecordRegionEnd(REI.getContext());
2545      DAG.setRoot(DAG.getNode(ISD::LABEL, MVT::Other,
2546                              getRoot(), DAG.getConstant(LabelID, MVT::i32)));
2547    }
2548
2549    return 0;
2550  }
2551  case Intrinsic::dbg_func_start: {
2552    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2553    DbgFuncStartInst &FSI = cast<DbgFuncStartInst>(I);
2554    if (MMI && FSI.getSubprogram() &&
2555        MMI->Verify(FSI.getSubprogram())) {
2556      unsigned LabelID = MMI->RecordRegionStart(FSI.getSubprogram());
2557      DAG.setRoot(DAG.getNode(ISD::LABEL, MVT::Other,
2558                  getRoot(), DAG.getConstant(LabelID, MVT::i32)));
2559    }
2560
2561    return 0;
2562  }
2563  case Intrinsic::dbg_declare: {
2564    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2565    DbgDeclareInst &DI = cast<DbgDeclareInst>(I);
2566    if (MMI && DI.getVariable() && MMI->Verify(DI.getVariable())) {
2567      SDOperand AddressOp  = getValue(DI.getAddress());
2568      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(AddressOp))
2569        MMI->RecordVariable(DI.getVariable(), FI->getIndex());
2570    }
2571
2572    return 0;
2573  }
2574
2575  case Intrinsic::eh_exception: {
2576    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2577
2578    if (MMI) {
2579      // Mark exception register as live in.
2580      unsigned Reg = TLI.getExceptionAddressRegister();
2581      if (Reg) CurMBB->addLiveIn(Reg);
2582
2583      // Insert the EXCEPTIONADDR instruction.
2584      SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
2585      SDOperand Ops[1];
2586      Ops[0] = DAG.getRoot();
2587      SDOperand Op = DAG.getNode(ISD::EXCEPTIONADDR, VTs, Ops, 1);
2588      setValue(&I, Op);
2589      DAG.setRoot(Op.getValue(1));
2590    } else {
2591      setValue(&I, DAG.getConstant(0, TLI.getPointerTy()));
2592    }
2593    return 0;
2594  }
2595
2596  case Intrinsic::eh_selector:
2597  case Intrinsic::eh_filter:{
2598    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2599
2600    if (MMI) {
2601      // Inform the MachineModuleInfo of the personality for this landing pad.
2602      ConstantExpr *CE = dyn_cast<ConstantExpr>(I.getOperand(2));
2603      assert(CE && CE->getOpcode() == Instruction::BitCast &&
2604             isa<Function>(CE->getOperand(0)) &&
2605             "Personality should be a function");
2606      MMI->addPersonality(CurMBB, cast<Function>(CE->getOperand(0)));
2607
2608      // Gather all the type infos for this landing pad and pass them along to
2609      // MachineModuleInfo.
2610      std::vector<GlobalVariable *> TyInfo;
2611      for (unsigned i = 3, N = I.getNumOperands(); i < N; ++i) {
2612        Constant *C = cast<Constant>(I.getOperand(i));
2613        GlobalVariable *GV = ExtractGlobalVariable(C);
2614        assert (GV || isa<ConstantPointerNull>(C) &&
2615                "TypeInfo must be a global variable or NULL");
2616        TyInfo.push_back(GV);
2617      }
2618      if (Intrinsic == Intrinsic::eh_filter)
2619        MMI->addFilterTypeInfo(CurMBB, TyInfo);
2620      else
2621        MMI->addCatchTypeInfo(CurMBB, TyInfo);
2622
2623      // Mark exception selector register as live in.
2624      unsigned Reg = TLI.getExceptionSelectorRegister();
2625      if (Reg) CurMBB->addLiveIn(Reg);
2626
2627      // Insert the EHSELECTION instruction.
2628      SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
2629      SDOperand Ops[2];
2630      Ops[0] = getValue(I.getOperand(1));
2631      Ops[1] = getRoot();
2632      SDOperand Op = DAG.getNode(ISD::EHSELECTION, VTs, Ops, 2);
2633      setValue(&I, Op);
2634      DAG.setRoot(Op.getValue(1));
2635    } else {
2636      setValue(&I, DAG.getConstant(0, TLI.getPointerTy()));
2637    }
2638
2639    return 0;
2640  }
2641
2642  case Intrinsic::eh_typeid_for: {
2643    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2644
2645    if (MMI) {
2646      // Find the type id for the given typeinfo.
2647      Constant *C = cast<Constant>(I.getOperand(1));
2648      GlobalVariable *GV = ExtractGlobalVariable(C);
2649      assert (GV || isa<ConstantPointerNull>(C) &&
2650              "TypeInfo must be a global variable or NULL");
2651
2652      unsigned TypeID = MMI->getTypeIDFor(GV);
2653      setValue(&I, DAG.getConstant(TypeID, MVT::i32));
2654    } else {
2655      setValue(&I, DAG.getConstant(0, MVT::i32));
2656    }
2657
2658    return 0;
2659  }
2660
2661  case Intrinsic::sqrt_f32:
2662  case Intrinsic::sqrt_f64:
2663    setValue(&I, DAG.getNode(ISD::FSQRT,
2664                             getValue(I.getOperand(1)).getValueType(),
2665                             getValue(I.getOperand(1))));
2666    return 0;
2667  case Intrinsic::powi_f32:
2668  case Intrinsic::powi_f64:
2669    setValue(&I, DAG.getNode(ISD::FPOWI,
2670                             getValue(I.getOperand(1)).getValueType(),
2671                             getValue(I.getOperand(1)),
2672                             getValue(I.getOperand(2))));
2673    return 0;
2674  case Intrinsic::pcmarker: {
2675    SDOperand Tmp = getValue(I.getOperand(1));
2676    DAG.setRoot(DAG.getNode(ISD::PCMARKER, MVT::Other, getRoot(), Tmp));
2677    return 0;
2678  }
2679  case Intrinsic::readcyclecounter: {
2680    SDOperand Op = getRoot();
2681    SDOperand Tmp = DAG.getNode(ISD::READCYCLECOUNTER,
2682                                DAG.getNodeValueTypes(MVT::i64, MVT::Other), 2,
2683                                &Op, 1);
2684    setValue(&I, Tmp);
2685    DAG.setRoot(Tmp.getValue(1));
2686    return 0;
2687  }
2688  case Intrinsic::part_select: {
2689    // Currently not implemented: just abort
2690    assert(0 && "part_select intrinsic not implemented");
2691    abort();
2692  }
2693  case Intrinsic::part_set: {
2694    // Currently not implemented: just abort
2695    assert(0 && "part_set intrinsic not implemented");
2696    abort();
2697  }
2698  case Intrinsic::bswap:
2699    setValue(&I, DAG.getNode(ISD::BSWAP,
2700                             getValue(I.getOperand(1)).getValueType(),
2701                             getValue(I.getOperand(1))));
2702    return 0;
2703  case Intrinsic::cttz: {
2704    SDOperand Arg = getValue(I.getOperand(1));
2705    MVT::ValueType Ty = Arg.getValueType();
2706    SDOperand result = DAG.getNode(ISD::CTTZ, Ty, Arg);
2707    if (Ty < MVT::i32)
2708      result = DAG.getNode(ISD::ZERO_EXTEND, MVT::i32, result);
2709    else if (Ty > MVT::i32)
2710      result = DAG.getNode(ISD::TRUNCATE, MVT::i32, result);
2711    setValue(&I, result);
2712    return 0;
2713  }
2714  case Intrinsic::ctlz: {
2715    SDOperand Arg = getValue(I.getOperand(1));
2716    MVT::ValueType Ty = Arg.getValueType();
2717    SDOperand result = DAG.getNode(ISD::CTLZ, Ty, Arg);
2718    if (Ty < MVT::i32)
2719      result = DAG.getNode(ISD::ZERO_EXTEND, MVT::i32, result);
2720    else if (Ty > MVT::i32)
2721      result = DAG.getNode(ISD::TRUNCATE, MVT::i32, result);
2722    setValue(&I, result);
2723    return 0;
2724  }
2725  case Intrinsic::ctpop: {
2726    SDOperand Arg = getValue(I.getOperand(1));
2727    MVT::ValueType Ty = Arg.getValueType();
2728    SDOperand result = DAG.getNode(ISD::CTPOP, Ty, Arg);
2729    if (Ty < MVT::i32)
2730      result = DAG.getNode(ISD::ZERO_EXTEND, MVT::i32, result);
2731    else if (Ty > MVT::i32)
2732      result = DAG.getNode(ISD::TRUNCATE, MVT::i32, result);
2733    setValue(&I, result);
2734    return 0;
2735  }
2736  case Intrinsic::stacksave: {
2737    SDOperand Op = getRoot();
2738    SDOperand Tmp = DAG.getNode(ISD::STACKSAVE,
2739              DAG.getNodeValueTypes(TLI.getPointerTy(), MVT::Other), 2, &Op, 1);
2740    setValue(&I, Tmp);
2741    DAG.setRoot(Tmp.getValue(1));
2742    return 0;
2743  }
2744  case Intrinsic::stackrestore: {
2745    SDOperand Tmp = getValue(I.getOperand(1));
2746    DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, MVT::Other, getRoot(), Tmp));
2747    return 0;
2748  }
2749  case Intrinsic::prefetch:
2750    // FIXME: Currently discarding prefetches.
2751    return 0;
2752  }
2753}
2754
2755
2756void SelectionDAGLowering::LowerCallTo(Instruction &I,
2757                                       const Type *CalledValueTy,
2758                                       unsigned CallingConv,
2759                                       bool IsTailCall,
2760                                       SDOperand Callee, unsigned OpIdx,
2761                                       MachineBasicBlock *LandingPad) {
2762  const PointerType *PT = cast<PointerType>(CalledValueTy);
2763  const FunctionType *FTy = cast<FunctionType>(PT->getElementType());
2764  const ParamAttrsList *Attrs = FTy->getParamAttrs();
2765  MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2766  unsigned BeginLabel = 0, EndLabel = 0;
2767
2768  TargetLowering::ArgListTy Args;
2769  TargetLowering::ArgListEntry Entry;
2770  Args.reserve(I.getNumOperands());
2771  for (unsigned i = OpIdx, e = I.getNumOperands(); i != e; ++i) {
2772    Value *Arg = I.getOperand(i);
2773    SDOperand ArgNode = getValue(Arg);
2774    Entry.Node = ArgNode; Entry.Ty = Arg->getType();
2775
2776    unsigned attrInd = i - OpIdx + 1;
2777    Entry.isSExt  = Attrs && Attrs->paramHasAttr(attrInd, ParamAttr::SExt);
2778    Entry.isZExt  = Attrs && Attrs->paramHasAttr(attrInd, ParamAttr::ZExt);
2779    Entry.isInReg = Attrs && Attrs->paramHasAttr(attrInd, ParamAttr::InReg);
2780    Entry.isSRet  = Attrs && Attrs->paramHasAttr(attrInd, ParamAttr::StructRet);
2781    Args.push_back(Entry);
2782  }
2783
2784  if (ExceptionHandling && MMI) {
2785    // Insert a label before the invoke call to mark the try range.  This can be
2786    // used to detect deletion of the invoke via the MachineModuleInfo.
2787    BeginLabel = MMI->NextLabelID();
2788    DAG.setRoot(DAG.getNode(ISD::LABEL, MVT::Other, getRoot(),
2789                            DAG.getConstant(BeginLabel, MVT::i32)));
2790  }
2791
2792  std::pair<SDOperand,SDOperand> Result =
2793    TLI.LowerCallTo(getRoot(), I.getType(),
2794                    Attrs && Attrs->paramHasAttr(0, ParamAttr::SExt),
2795                    FTy->isVarArg(), CallingConv, IsTailCall,
2796                    Callee, Args, DAG);
2797  if (I.getType() != Type::VoidTy)
2798    setValue(&I, Result.first);
2799  DAG.setRoot(Result.second);
2800
2801  if (ExceptionHandling && MMI) {
2802    // Insert a label at the end of the invoke call to mark the try range.  This
2803    // can be used to detect deletion of the invoke via the MachineModuleInfo.
2804    EndLabel = MMI->NextLabelID();
2805    DAG.setRoot(DAG.getNode(ISD::LABEL, MVT::Other, getRoot(),
2806                            DAG.getConstant(EndLabel, MVT::i32)));
2807
2808    // Inform MachineModuleInfo of range.
2809    MMI->addInvoke(LandingPad, BeginLabel, EndLabel);
2810  }
2811}
2812
2813
2814void SelectionDAGLowering::visitCall(CallInst &I) {
2815  const char *RenameFn = 0;
2816  if (Function *F = I.getCalledFunction()) {
2817    if (F->isDeclaration())
2818      if (unsigned IID = F->getIntrinsicID()) {
2819        RenameFn = visitIntrinsicCall(I, IID);
2820        if (!RenameFn)
2821          return;
2822      } else {    // Not an LLVM intrinsic.
2823        const std::string &Name = F->getName();
2824        if (Name[0] == 'c' && (Name == "copysign" || Name == "copysignf")) {
2825          if (I.getNumOperands() == 3 &&   // Basic sanity checks.
2826              I.getOperand(1)->getType()->isFloatingPoint() &&
2827              I.getType() == I.getOperand(1)->getType() &&
2828              I.getType() == I.getOperand(2)->getType()) {
2829            SDOperand LHS = getValue(I.getOperand(1));
2830            SDOperand RHS = getValue(I.getOperand(2));
2831            setValue(&I, DAG.getNode(ISD::FCOPYSIGN, LHS.getValueType(),
2832                                     LHS, RHS));
2833            return;
2834          }
2835        } else if (Name[0] == 'f' && (Name == "fabs" || Name == "fabsf")) {
2836          if (I.getNumOperands() == 2 &&   // Basic sanity checks.
2837              I.getOperand(1)->getType()->isFloatingPoint() &&
2838              I.getType() == I.getOperand(1)->getType()) {
2839            SDOperand Tmp = getValue(I.getOperand(1));
2840            setValue(&I, DAG.getNode(ISD::FABS, Tmp.getValueType(), Tmp));
2841            return;
2842          }
2843        } else if (Name[0] == 's' && (Name == "sin" || Name == "sinf")) {
2844          if (I.getNumOperands() == 2 &&   // Basic sanity checks.
2845              I.getOperand(1)->getType()->isFloatingPoint() &&
2846              I.getType() == I.getOperand(1)->getType()) {
2847            SDOperand Tmp = getValue(I.getOperand(1));
2848            setValue(&I, DAG.getNode(ISD::FSIN, Tmp.getValueType(), Tmp));
2849            return;
2850          }
2851        } else if (Name[0] == 'c' && (Name == "cos" || Name == "cosf")) {
2852          if (I.getNumOperands() == 2 &&   // Basic sanity checks.
2853              I.getOperand(1)->getType()->isFloatingPoint() &&
2854              I.getType() == I.getOperand(1)->getType()) {
2855            SDOperand Tmp = getValue(I.getOperand(1));
2856            setValue(&I, DAG.getNode(ISD::FCOS, Tmp.getValueType(), Tmp));
2857            return;
2858          }
2859        }
2860      }
2861  } else if (isa<InlineAsm>(I.getOperand(0))) {
2862    visitInlineAsm(I);
2863    return;
2864  }
2865
2866  SDOperand Callee;
2867  if (!RenameFn)
2868    Callee = getValue(I.getOperand(0));
2869  else
2870    Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy());
2871
2872  LowerCallTo(I, I.getCalledValue()->getType(),
2873              I.getCallingConv(),
2874              I.isTailCall(),
2875              Callee,
2876              1);
2877}
2878
2879
2880SDOperand RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
2881                                        SDOperand &Chain, SDOperand &Flag)const{
2882  SDOperand Val = DAG.getCopyFromReg(Chain, Regs[0], RegVT, Flag);
2883  Chain = Val.getValue(1);
2884  Flag  = Val.getValue(2);
2885
2886  // If the result was expanded, copy from the top part.
2887  if (Regs.size() > 1) {
2888    assert(Regs.size() == 2 &&
2889           "Cannot expand to more than 2 elts yet!");
2890    SDOperand Hi = DAG.getCopyFromReg(Chain, Regs[1], RegVT, Flag);
2891    Chain = Hi.getValue(1);
2892    Flag  = Hi.getValue(2);
2893    if (DAG.getTargetLoweringInfo().isLittleEndian())
2894      return DAG.getNode(ISD::BUILD_PAIR, ValueVT, Val, Hi);
2895    else
2896      return DAG.getNode(ISD::BUILD_PAIR, ValueVT, Hi, Val);
2897  }
2898
2899  // Otherwise, if the return value was promoted or extended, truncate it to the
2900  // appropriate type.
2901  if (RegVT == ValueVT)
2902    return Val;
2903
2904  if (MVT::isVector(RegVT)) {
2905    assert(ValueVT == MVT::Vector && "Unknown vector conversion!");
2906    return DAG.getNode(ISD::VBIT_CONVERT, MVT::Vector, Val,
2907                       DAG.getConstant(MVT::getVectorNumElements(RegVT),
2908                                       MVT::i32),
2909                       DAG.getValueType(MVT::getVectorBaseType(RegVT)));
2910  }
2911
2912  if (MVT::isInteger(RegVT)) {
2913    if (ValueVT < RegVT)
2914      return DAG.getNode(ISD::TRUNCATE, ValueVT, Val);
2915    else
2916      return DAG.getNode(ISD::ANY_EXTEND, ValueVT, Val);
2917  }
2918
2919  assert(MVT::isFloatingPoint(RegVT) && MVT::isFloatingPoint(ValueVT));
2920  return DAG.getNode(ISD::FP_ROUND, ValueVT, Val);
2921}
2922
2923/// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
2924/// specified value into the registers specified by this object.  This uses
2925/// Chain/Flag as the input and updates them for the output Chain/Flag.
2926void RegsForValue::getCopyToRegs(SDOperand Val, SelectionDAG &DAG,
2927                                 SDOperand &Chain, SDOperand &Flag,
2928                                 MVT::ValueType PtrVT) const {
2929  if (Regs.size() == 1) {
2930    // If there is a single register and the types differ, this must be
2931    // a promotion.
2932    if (RegVT != ValueVT) {
2933      if (MVT::isVector(RegVT)) {
2934        assert(Val.getValueType() == MVT::Vector &&"Not a vector-vector cast?");
2935        Val = DAG.getNode(ISD::VBIT_CONVERT, RegVT, Val);
2936      } else if (MVT::isInteger(RegVT) && MVT::isInteger(Val.getValueType())) {
2937        if (RegVT < ValueVT)
2938          Val = DAG.getNode(ISD::TRUNCATE, RegVT, Val);
2939        else
2940          Val = DAG.getNode(ISD::ANY_EXTEND, RegVT, Val);
2941      } else if (MVT::isFloatingPoint(RegVT) &&
2942                 MVT::isFloatingPoint(Val.getValueType())) {
2943        Val = DAG.getNode(ISD::FP_EXTEND, RegVT, Val);
2944      } else if (MVT::getSizeInBits(RegVT) ==
2945                 MVT::getSizeInBits(Val.getValueType())) {
2946        Val = DAG.getNode(ISD::BIT_CONVERT, RegVT, Val);
2947      } else {
2948        assert(0 && "Unknown mismatch!");
2949      }
2950    }
2951    Chain = DAG.getCopyToReg(Chain, Regs[0], Val, Flag);
2952    Flag = Chain.getValue(1);
2953  } else {
2954    std::vector<unsigned> R(Regs);
2955    if (!DAG.getTargetLoweringInfo().isLittleEndian())
2956      std::reverse(R.begin(), R.end());
2957
2958    for (unsigned i = 0, e = R.size(); i != e; ++i) {
2959      SDOperand Part = DAG.getNode(ISD::EXTRACT_ELEMENT, RegVT, Val,
2960                                   DAG.getConstant(i, PtrVT));
2961      Chain = DAG.getCopyToReg(Chain, R[i], Part, Flag);
2962      Flag = Chain.getValue(1);
2963    }
2964  }
2965}
2966
2967/// AddInlineAsmOperands - Add this value to the specified inlineasm node
2968/// operand list.  This adds the code marker and includes the number of
2969/// values added into it.
2970void RegsForValue::AddInlineAsmOperands(unsigned Code, SelectionDAG &DAG,
2971                                        std::vector<SDOperand> &Ops) const {
2972  MVT::ValueType IntPtrTy = DAG.getTargetLoweringInfo().getPointerTy();
2973  Ops.push_back(DAG.getTargetConstant(Code | (Regs.size() << 3), IntPtrTy));
2974  for (unsigned i = 0, e = Regs.size(); i != e; ++i)
2975    Ops.push_back(DAG.getRegister(Regs[i], RegVT));
2976}
2977
2978/// isAllocatableRegister - If the specified register is safe to allocate,
2979/// i.e. it isn't a stack pointer or some other special register, return the
2980/// register class for the register.  Otherwise, return null.
2981static const TargetRegisterClass *
2982isAllocatableRegister(unsigned Reg, MachineFunction &MF,
2983                      const TargetLowering &TLI, const MRegisterInfo *MRI) {
2984  MVT::ValueType FoundVT = MVT::Other;
2985  const TargetRegisterClass *FoundRC = 0;
2986  for (MRegisterInfo::regclass_iterator RCI = MRI->regclass_begin(),
2987       E = MRI->regclass_end(); RCI != E; ++RCI) {
2988    MVT::ValueType ThisVT = MVT::Other;
2989
2990    const TargetRegisterClass *RC = *RCI;
2991    // If none of the the value types for this register class are valid, we
2992    // can't use it.  For example, 64-bit reg classes on 32-bit targets.
2993    for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
2994         I != E; ++I) {
2995      if (TLI.isTypeLegal(*I)) {
2996        // If we have already found this register in a different register class,
2997        // choose the one with the largest VT specified.  For example, on
2998        // PowerPC, we favor f64 register classes over f32.
2999        if (FoundVT == MVT::Other ||
3000            MVT::getSizeInBits(FoundVT) < MVT::getSizeInBits(*I)) {
3001          ThisVT = *I;
3002          break;
3003        }
3004      }
3005    }
3006
3007    if (ThisVT == MVT::Other) continue;
3008
3009    // NOTE: This isn't ideal.  In particular, this might allocate the
3010    // frame pointer in functions that need it (due to them not being taken
3011    // out of allocation, because a variable sized allocation hasn't been seen
3012    // yet).  This is a slight code pessimization, but should still work.
3013    for (TargetRegisterClass::iterator I = RC->allocation_order_begin(MF),
3014         E = RC->allocation_order_end(MF); I != E; ++I)
3015      if (*I == Reg) {
3016        // We found a matching register class.  Keep looking at others in case
3017        // we find one with larger registers that this physreg is also in.
3018        FoundRC = RC;
3019        FoundVT = ThisVT;
3020        break;
3021      }
3022  }
3023  return FoundRC;
3024}
3025
3026
3027namespace {
3028/// AsmOperandInfo - This contains information for each constraint that we are
3029/// lowering.
3030struct AsmOperandInfo : public InlineAsm::ConstraintInfo {
3031  /// ConstraintCode - This contains the actual string for the code, like "m".
3032  std::string ConstraintCode;
3033
3034  /// ConstraintType - Information about the constraint code, e.g. Register,
3035  /// RegisterClass, Memory, Other, Unknown.
3036  TargetLowering::ConstraintType ConstraintType;
3037
3038  /// CallOperand/CallOperandval - If this is the result output operand or a
3039  /// clobber, this is null, otherwise it is the incoming operand to the
3040  /// CallInst.  This gets modified as the asm is processed.
3041  SDOperand CallOperand;
3042  Value *CallOperandVal;
3043
3044  /// ConstraintVT - The ValueType for the operand value.
3045  MVT::ValueType ConstraintVT;
3046
3047  /// AssignedRegs - If this is a register or register class operand, this
3048  /// contains the set of register corresponding to the operand.
3049  RegsForValue AssignedRegs;
3050
3051  AsmOperandInfo(const InlineAsm::ConstraintInfo &info)
3052    : InlineAsm::ConstraintInfo(info),
3053      ConstraintType(TargetLowering::C_Unknown),
3054      CallOperand(0,0), CallOperandVal(0), ConstraintVT(MVT::Other) {
3055  }
3056
3057  void ComputeConstraintToUse(const TargetLowering &TLI);
3058
3059  /// MarkAllocatedRegs - Once AssignedRegs is set, mark the assigned registers
3060  /// busy in OutputRegs/InputRegs.
3061  void MarkAllocatedRegs(bool isOutReg, bool isInReg,
3062                         std::set<unsigned> &OutputRegs,
3063                         std::set<unsigned> &InputRegs) const {
3064     if (isOutReg)
3065       OutputRegs.insert(AssignedRegs.Regs.begin(), AssignedRegs.Regs.end());
3066     if (isInReg)
3067       InputRegs.insert(AssignedRegs.Regs.begin(), AssignedRegs.Regs.end());
3068   }
3069};
3070} // end anon namespace.
3071
3072/// getConstraintGenerality - Return an integer indicating how general CT is.
3073static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
3074  switch (CT) {
3075    default: assert(0 && "Unknown constraint type!");
3076    case TargetLowering::C_Other:
3077    case TargetLowering::C_Unknown:
3078      return 0;
3079    case TargetLowering::C_Register:
3080      return 1;
3081    case TargetLowering::C_RegisterClass:
3082      return 2;
3083    case TargetLowering::C_Memory:
3084      return 3;
3085  }
3086}
3087
3088void AsmOperandInfo::ComputeConstraintToUse(const TargetLowering &TLI) {
3089  assert(!Codes.empty() && "Must have at least one constraint");
3090
3091  std::string *Current = &Codes[0];
3092  TargetLowering::ConstraintType CurType = TLI.getConstraintType(*Current);
3093  if (Codes.size() == 1) {   // Single-letter constraints ('r') are very common.
3094    ConstraintCode = *Current;
3095    ConstraintType = CurType;
3096    return;
3097  }
3098
3099  unsigned CurGenerality = getConstraintGenerality(CurType);
3100
3101  // If we have multiple constraints, try to pick the most general one ahead
3102  // of time.  This isn't a wonderful solution, but handles common cases.
3103  for (unsigned j = 1, e = Codes.size(); j != e; ++j) {
3104    TargetLowering::ConstraintType ThisType = TLI.getConstraintType(Codes[j]);
3105    unsigned ThisGenerality = getConstraintGenerality(ThisType);
3106    if (ThisGenerality > CurGenerality) {
3107      // This constraint letter is more general than the previous one,
3108      // use it.
3109      CurType = ThisType;
3110      Current = &Codes[j];
3111      CurGenerality = ThisGenerality;
3112    }
3113  }
3114
3115  ConstraintCode = *Current;
3116  ConstraintType = CurType;
3117}
3118
3119
3120void SelectionDAGLowering::
3121GetRegistersForValue(AsmOperandInfo &OpInfo, bool HasEarlyClobber,
3122                     std::set<unsigned> &OutputRegs,
3123                     std::set<unsigned> &InputRegs) {
3124  // Compute whether this value requires an input register, an output register,
3125  // or both.
3126  bool isOutReg = false;
3127  bool isInReg = false;
3128  switch (OpInfo.Type) {
3129  case InlineAsm::isOutput:
3130    isOutReg = true;
3131
3132    // If this is an early-clobber output, or if there is an input
3133    // constraint that matches this, we need to reserve the input register
3134    // so no other inputs allocate to it.
3135    isInReg = OpInfo.isEarlyClobber || OpInfo.hasMatchingInput;
3136    break;
3137  case InlineAsm::isInput:
3138    isInReg = true;
3139    isOutReg = false;
3140    break;
3141  case InlineAsm::isClobber:
3142    isOutReg = true;
3143    isInReg = true;
3144    break;
3145  }
3146
3147
3148  MachineFunction &MF = DAG.getMachineFunction();
3149  std::vector<unsigned> Regs;
3150
3151  // If this is a constraint for a single physreg, or a constraint for a
3152  // register class, find it.
3153  std::pair<unsigned, const TargetRegisterClass*> PhysReg =
3154    TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
3155                                     OpInfo.ConstraintVT);
3156
3157  unsigned NumRegs = 1;
3158  if (OpInfo.ConstraintVT != MVT::Other)
3159    NumRegs = TLI.getNumElements(OpInfo.ConstraintVT);
3160  MVT::ValueType RegVT;
3161  MVT::ValueType ValueVT = OpInfo.ConstraintVT;
3162
3163
3164  // If this is a constraint for a specific physical register, like {r17},
3165  // assign it now.
3166  if (PhysReg.first) {
3167    if (OpInfo.ConstraintVT == MVT::Other)
3168      ValueVT = *PhysReg.second->vt_begin();
3169
3170    // Get the actual register value type.  This is important, because the user
3171    // may have asked for (e.g.) the AX register in i32 type.  We need to
3172    // remember that AX is actually i16 to get the right extension.
3173    RegVT = *PhysReg.second->vt_begin();
3174
3175    // This is a explicit reference to a physical register.
3176    Regs.push_back(PhysReg.first);
3177
3178    // If this is an expanded reference, add the rest of the regs to Regs.
3179    if (NumRegs != 1) {
3180      TargetRegisterClass::iterator I = PhysReg.second->begin();
3181      TargetRegisterClass::iterator E = PhysReg.second->end();
3182      for (; *I != PhysReg.first; ++I)
3183        assert(I != E && "Didn't find reg!");
3184
3185      // Already added the first reg.
3186      --NumRegs; ++I;
3187      for (; NumRegs; --NumRegs, ++I) {
3188        assert(I != E && "Ran out of registers to allocate!");
3189        Regs.push_back(*I);
3190      }
3191    }
3192    OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
3193    OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs);
3194    return;
3195  }
3196
3197  // Otherwise, if this was a reference to an LLVM register class, create vregs
3198  // for this reference.
3199  std::vector<unsigned> RegClassRegs;
3200  if (PhysReg.second) {
3201    // If this is an early clobber or tied register, our regalloc doesn't know
3202    // how to maintain the constraint.  If it isn't, go ahead and create vreg
3203    // and let the regalloc do the right thing.
3204    if (!OpInfo.hasMatchingInput && !OpInfo.isEarlyClobber &&
3205        // If there is some other early clobber and this is an input register,
3206        // then we are forced to pre-allocate the input reg so it doesn't
3207        // conflict with the earlyclobber.
3208        !(OpInfo.Type == InlineAsm::isInput && HasEarlyClobber)) {
3209      RegVT = *PhysReg.second->vt_begin();
3210
3211      if (OpInfo.ConstraintVT == MVT::Other)
3212        ValueVT = RegVT;
3213
3214      // Create the appropriate number of virtual registers.
3215      SSARegMap *RegMap = MF.getSSARegMap();
3216      for (; NumRegs; --NumRegs)
3217        Regs.push_back(RegMap->createVirtualRegister(PhysReg.second));
3218
3219      OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
3220      OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs);
3221      return;
3222    }
3223
3224    // Otherwise, we can't allocate it.  Let the code below figure out how to
3225    // maintain these constraints.
3226    RegClassRegs.assign(PhysReg.second->begin(), PhysReg.second->end());
3227
3228  } else {
3229    // This is a reference to a register class that doesn't directly correspond
3230    // to an LLVM register class.  Allocate NumRegs consecutive, available,
3231    // registers from the class.
3232    RegClassRegs = TLI.getRegClassForInlineAsmConstraint(OpInfo.ConstraintCode,
3233                                                         OpInfo.ConstraintVT);
3234  }
3235
3236  const MRegisterInfo *MRI = DAG.getTarget().getRegisterInfo();
3237  unsigned NumAllocated = 0;
3238  for (unsigned i = 0, e = RegClassRegs.size(); i != e; ++i) {
3239    unsigned Reg = RegClassRegs[i];
3240    // See if this register is available.
3241    if ((isOutReg && OutputRegs.count(Reg)) ||   // Already used.
3242        (isInReg  && InputRegs.count(Reg))) {    // Already used.
3243      // Make sure we find consecutive registers.
3244      NumAllocated = 0;
3245      continue;
3246    }
3247
3248    // Check to see if this register is allocatable (i.e. don't give out the
3249    // stack pointer).
3250    const TargetRegisterClass *RC = isAllocatableRegister(Reg, MF, TLI, MRI);
3251    if (!RC) {
3252      // Make sure we find consecutive registers.
3253      NumAllocated = 0;
3254      continue;
3255    }
3256
3257    // Okay, this register is good, we can use it.
3258    ++NumAllocated;
3259
3260    // If we allocated enough consecutive registers, succeed.
3261    if (NumAllocated == NumRegs) {
3262      unsigned RegStart = (i-NumAllocated)+1;
3263      unsigned RegEnd   = i+1;
3264      // Mark all of the allocated registers used.
3265      for (unsigned i = RegStart; i != RegEnd; ++i)
3266        Regs.push_back(RegClassRegs[i]);
3267
3268      OpInfo.AssignedRegs = RegsForValue(Regs, *RC->vt_begin(),
3269                                         OpInfo.ConstraintVT);
3270      OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs);
3271      return;
3272    }
3273  }
3274
3275  // Otherwise, we couldn't allocate enough registers for this.
3276  return;
3277}
3278
3279
3280/// visitInlineAsm - Handle a call to an InlineAsm object.
3281///
3282void SelectionDAGLowering::visitInlineAsm(CallInst &I) {
3283  InlineAsm *IA = cast<InlineAsm>(I.getOperand(0));
3284
3285  /// ConstraintOperands - Information about all of the constraints.
3286  std::vector<AsmOperandInfo> ConstraintOperands;
3287
3288  SDOperand Chain = getRoot();
3289  SDOperand Flag;
3290
3291  std::set<unsigned> OutputRegs, InputRegs;
3292
3293  // Do a prepass over the constraints, canonicalizing them, and building up the
3294  // ConstraintOperands list.
3295  std::vector<InlineAsm::ConstraintInfo>
3296    ConstraintInfos = IA->ParseConstraints();
3297
3298  // SawEarlyClobber - Keep track of whether we saw an earlyclobber output
3299  // constraint.  If so, we can't let the register allocator allocate any input
3300  // registers, because it will not know to avoid the earlyclobbered output reg.
3301  bool SawEarlyClobber = false;
3302
3303  unsigned OpNo = 1;   // OpNo - The operand of the CallInst.
3304  for (unsigned i = 0, e = ConstraintInfos.size(); i != e; ++i) {
3305    ConstraintOperands.push_back(AsmOperandInfo(ConstraintInfos[i]));
3306    AsmOperandInfo &OpInfo = ConstraintOperands.back();
3307
3308    MVT::ValueType OpVT = MVT::Other;
3309
3310    // Compute the value type for each operand.
3311    switch (OpInfo.Type) {
3312    case InlineAsm::isOutput:
3313      if (!OpInfo.isIndirect) {
3314        // The return value of the call is this value.  As such, there is no
3315        // corresponding argument.
3316        assert(I.getType() != Type::VoidTy && "Bad inline asm!");
3317        OpVT = TLI.getValueType(I.getType());
3318      } else {
3319        OpInfo.CallOperandVal = I.getOperand(OpNo++);
3320      }
3321      break;
3322    case InlineAsm::isInput:
3323      OpInfo.CallOperandVal = I.getOperand(OpNo++);
3324      break;
3325    case InlineAsm::isClobber:
3326      // Nothing to do.
3327      break;
3328    }
3329
3330    // If this is an input or an indirect output, process the call argument.
3331    if (OpInfo.CallOperandVal) {
3332      OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
3333      const Type *OpTy = OpInfo.CallOperandVal->getType();
3334      // If this is an indirect operand, the operand is a pointer to the
3335      // accessed type.
3336      if (OpInfo.isIndirect)
3337        OpTy = cast<PointerType>(OpTy)->getElementType();
3338
3339      // If OpTy is not a first-class value, it may be a struct/union that we
3340      // can tile with integers.
3341      if (!OpTy->isFirstClassType() && OpTy->isSized()) {
3342        unsigned BitSize = TD->getTypeSizeInBits(OpTy);
3343        switch (BitSize) {
3344        default: break;
3345        case 1:
3346        case 8:
3347        case 16:
3348        case 32:
3349        case 64:
3350          OpTy = IntegerType::get(BitSize);
3351          break;
3352        }
3353      }
3354
3355      OpVT = TLI.getValueType(OpTy, true);
3356    }
3357
3358    OpInfo.ConstraintVT = OpVT;
3359
3360    // Compute the constraint code and ConstraintType to use.
3361    OpInfo.ComputeConstraintToUse(TLI);
3362
3363    // Keep track of whether we see an earlyclobber.
3364    SawEarlyClobber |= OpInfo.isEarlyClobber;
3365
3366    // If this is a memory input, and if the operand is not indirect, do what we
3367    // need to to provide an address for the memory input.
3368    if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
3369        !OpInfo.isIndirect) {
3370      assert(OpInfo.Type == InlineAsm::isInput &&
3371             "Can only indirectify direct input operands!");
3372
3373      // Memory operands really want the address of the value.  If we don't have
3374      // an indirect input, put it in the constpool if we can, otherwise spill
3375      // it to a stack slot.
3376
3377      // If the operand is a float, integer, or vector constant, spill to a
3378      // constant pool entry to get its address.
3379      Value *OpVal = OpInfo.CallOperandVal;
3380      if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
3381          isa<ConstantVector>(OpVal)) {
3382        OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal),
3383                                                 TLI.getPointerTy());
3384      } else {
3385        // Otherwise, create a stack slot and emit a store to it before the
3386        // asm.
3387        const Type *Ty = OpVal->getType();
3388        uint64_t TySize = TLI.getTargetData()->getTypeSize(Ty);
3389        unsigned Align  = TLI.getTargetData()->getPrefTypeAlignment(Ty);
3390        MachineFunction &MF = DAG.getMachineFunction();
3391        int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align);
3392        SDOperand StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy());
3393        Chain = DAG.getStore(Chain, OpInfo.CallOperand, StackSlot, NULL, 0);
3394        OpInfo.CallOperand = StackSlot;
3395      }
3396
3397      // There is no longer a Value* corresponding to this operand.
3398      OpInfo.CallOperandVal = 0;
3399      // It is now an indirect operand.
3400      OpInfo.isIndirect = true;
3401    }
3402
3403    // If this constraint is for a specific register, allocate it before
3404    // anything else.
3405    if (OpInfo.ConstraintType == TargetLowering::C_Register)
3406      GetRegistersForValue(OpInfo, SawEarlyClobber, OutputRegs, InputRegs);
3407  }
3408  ConstraintInfos.clear();
3409
3410
3411  // Second pass - Loop over all of the operands, assigning virtual or physregs
3412  // to registerclass operands.
3413  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
3414    AsmOperandInfo &OpInfo = ConstraintOperands[i];
3415
3416    // C_Register operands have already been allocated, Other/Memory don't need
3417    // to be.
3418    if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass)
3419      GetRegistersForValue(OpInfo, SawEarlyClobber, OutputRegs, InputRegs);
3420  }
3421
3422  // AsmNodeOperands - The operands for the ISD::INLINEASM node.
3423  std::vector<SDOperand> AsmNodeOperands;
3424  AsmNodeOperands.push_back(SDOperand());  // reserve space for input chain
3425  AsmNodeOperands.push_back(
3426          DAG.getTargetExternalSymbol(IA->getAsmString().c_str(), MVT::Other));
3427
3428
3429  // Loop over all of the inputs, copying the operand values into the
3430  // appropriate registers and processing the output regs.
3431  RegsForValue RetValRegs;
3432
3433  // IndirectStoresToEmit - The set of stores to emit after the inline asm node.
3434  std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit;
3435
3436  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
3437    AsmOperandInfo &OpInfo = ConstraintOperands[i];
3438
3439    switch (OpInfo.Type) {
3440    case InlineAsm::isOutput: {
3441      if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass &&
3442          OpInfo.ConstraintType != TargetLowering::C_Register) {
3443        // Memory output, or 'other' output (e.g. 'X' constraint).
3444        assert(OpInfo.isIndirect && "Memory output must be indirect operand");
3445
3446        // Add information to the INLINEASM node to know about this output.
3447        unsigned ResOpType = 4/*MEM*/ | (1 << 3);
3448        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
3449                                                        TLI.getPointerTy()));
3450        AsmNodeOperands.push_back(OpInfo.CallOperand);
3451        break;
3452      }
3453
3454      // Otherwise, this is a register or register class output.
3455
3456      // Copy the output from the appropriate register.  Find a register that
3457      // we can use.
3458      if (OpInfo.AssignedRegs.Regs.empty()) {
3459        cerr << "Couldn't allocate output reg for contraint '"
3460             << OpInfo.ConstraintCode << "'!\n";
3461        exit(1);
3462      }
3463
3464      if (!OpInfo.isIndirect) {
3465        // This is the result value of the call.
3466        assert(RetValRegs.Regs.empty() &&
3467               "Cannot have multiple output constraints yet!");
3468        assert(I.getType() != Type::VoidTy && "Bad inline asm!");
3469        RetValRegs = OpInfo.AssignedRegs;
3470      } else {
3471        IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs,
3472                                                      OpInfo.CallOperandVal));
3473      }
3474
3475      // Add information to the INLINEASM node to know that this register is
3476      // set.
3477      OpInfo.AssignedRegs.AddInlineAsmOperands(2 /*REGDEF*/, DAG,
3478                                               AsmNodeOperands);
3479      break;
3480    }
3481    case InlineAsm::isInput: {
3482      SDOperand InOperandVal = OpInfo.CallOperand;
3483
3484      if (isdigit(OpInfo.ConstraintCode[0])) {    // Matching constraint?
3485        // If this is required to match an output register we have already set,
3486        // just use its register.
3487        unsigned OperandNo = atoi(OpInfo.ConstraintCode.c_str());
3488
3489        // Scan until we find the definition we already emitted of this operand.
3490        // When we find it, create a RegsForValue operand.
3491        unsigned CurOp = 2;  // The first operand.
3492        for (; OperandNo; --OperandNo) {
3493          // Advance to the next operand.
3494          unsigned NumOps =
3495            cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getValue();
3496          assert(((NumOps & 7) == 2 /*REGDEF*/ ||
3497                  (NumOps & 7) == 4 /*MEM*/) &&
3498                 "Skipped past definitions?");
3499          CurOp += (NumOps>>3)+1;
3500        }
3501
3502        unsigned NumOps =
3503          cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getValue();
3504        if ((NumOps & 7) == 2 /*REGDEF*/) {
3505          // Add NumOps>>3 registers to MatchedRegs.
3506          RegsForValue MatchedRegs;
3507          MatchedRegs.ValueVT = InOperandVal.getValueType();
3508          MatchedRegs.RegVT   = AsmNodeOperands[CurOp+1].getValueType();
3509          for (unsigned i = 0, e = NumOps>>3; i != e; ++i) {
3510            unsigned Reg =
3511              cast<RegisterSDNode>(AsmNodeOperands[++CurOp])->getReg();
3512            MatchedRegs.Regs.push_back(Reg);
3513          }
3514
3515          // Use the produced MatchedRegs object to
3516          MatchedRegs.getCopyToRegs(InOperandVal, DAG, Chain, Flag,
3517                                    TLI.getPointerTy());
3518          MatchedRegs.AddInlineAsmOperands(1 /*REGUSE*/, DAG, AsmNodeOperands);
3519          break;
3520        } else {
3521          assert((NumOps & 7) == 4/*MEM*/ && "Unknown matching constraint!");
3522          assert(0 && "matching constraints for memory operands unimp");
3523        }
3524      }
3525
3526      if (OpInfo.ConstraintType == TargetLowering::C_Other) {
3527        assert(!OpInfo.isIndirect &&
3528               "Don't know how to handle indirect other inputs yet!");
3529
3530        InOperandVal = TLI.isOperandValidForConstraint(InOperandVal,
3531                                                       OpInfo.ConstraintCode[0],
3532                                                       DAG);
3533        if (!InOperandVal.Val) {
3534          cerr << "Invalid operand for inline asm constraint '"
3535               << OpInfo.ConstraintCode << "'!\n";
3536          exit(1);
3537        }
3538
3539        // Add information to the INLINEASM node to know about this input.
3540        unsigned ResOpType = 3 /*IMM*/ | (1 << 3);
3541        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
3542                                                        TLI.getPointerTy()));
3543        AsmNodeOperands.push_back(InOperandVal);
3544        break;
3545      } else if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
3546        assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
3547        assert(InOperandVal.getValueType() == TLI.getPointerTy() &&
3548               "Memory operands expect pointer values");
3549
3550        // Add information to the INLINEASM node to know about this input.
3551        unsigned ResOpType = 4/*MEM*/ | (1 << 3);
3552        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
3553                                                        TLI.getPointerTy()));
3554        AsmNodeOperands.push_back(InOperandVal);
3555        break;
3556      }
3557
3558      assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
3559              OpInfo.ConstraintType == TargetLowering::C_Register) &&
3560             "Unknown constraint type!");
3561      assert(!OpInfo.isIndirect &&
3562             "Don't know how to handle indirect register inputs yet!");
3563
3564      // Copy the input into the appropriate registers.
3565      assert(!OpInfo.AssignedRegs.Regs.empty() &&
3566             "Couldn't allocate input reg!");
3567
3568      OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, Chain, Flag,
3569                                        TLI.getPointerTy());
3570
3571      OpInfo.AssignedRegs.AddInlineAsmOperands(1/*REGUSE*/, DAG,
3572                                               AsmNodeOperands);
3573      break;
3574    }
3575    case InlineAsm::isClobber: {
3576      // Add the clobbered value to the operand list, so that the register
3577      // allocator is aware that the physreg got clobbered.
3578      if (!OpInfo.AssignedRegs.Regs.empty())
3579        OpInfo.AssignedRegs.AddInlineAsmOperands(2/*REGDEF*/, DAG,
3580                                                 AsmNodeOperands);
3581      break;
3582    }
3583    }
3584  }
3585
3586  // Finish up input operands.
3587  AsmNodeOperands[0] = Chain;
3588  if (Flag.Val) AsmNodeOperands.push_back(Flag);
3589
3590  Chain = DAG.getNode(ISD::INLINEASM,
3591                      DAG.getNodeValueTypes(MVT::Other, MVT::Flag), 2,
3592                      &AsmNodeOperands[0], AsmNodeOperands.size());
3593  Flag = Chain.getValue(1);
3594
3595  // If this asm returns a register value, copy the result from that register
3596  // and set it as the value of the call.
3597  if (!RetValRegs.Regs.empty()) {
3598    SDOperand Val = RetValRegs.getCopyFromRegs(DAG, Chain, Flag);
3599
3600    // If the result of the inline asm is a vector, it may have the wrong
3601    // width/num elts.  Make sure to convert it to the right type with
3602    // vbit_convert.
3603    if (Val.getValueType() == MVT::Vector) {
3604      const VectorType *VTy = cast<VectorType>(I.getType());
3605      unsigned DesiredNumElts = VTy->getNumElements();
3606      MVT::ValueType DesiredEltVT = TLI.getValueType(VTy->getElementType());
3607
3608      Val = DAG.getNode(ISD::VBIT_CONVERT, MVT::Vector, Val,
3609                        DAG.getConstant(DesiredNumElts, MVT::i32),
3610                        DAG.getValueType(DesiredEltVT));
3611    }
3612
3613    setValue(&I, Val);
3614  }
3615
3616  std::vector<std::pair<SDOperand, Value*> > StoresToEmit;
3617
3618  // Process indirect outputs, first output all of the flagged copies out of
3619  // physregs.
3620  for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
3621    RegsForValue &OutRegs = IndirectStoresToEmit[i].first;
3622    Value *Ptr = IndirectStoresToEmit[i].second;
3623    SDOperand OutVal = OutRegs.getCopyFromRegs(DAG, Chain, Flag);
3624    StoresToEmit.push_back(std::make_pair(OutVal, Ptr));
3625  }
3626
3627  // Emit the non-flagged stores from the physregs.
3628  SmallVector<SDOperand, 8> OutChains;
3629  for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i)
3630    OutChains.push_back(DAG.getStore(Chain, StoresToEmit[i].first,
3631                                    getValue(StoresToEmit[i].second),
3632                                    StoresToEmit[i].second, 0));
3633  if (!OutChains.empty())
3634    Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
3635                        &OutChains[0], OutChains.size());
3636  DAG.setRoot(Chain);
3637}
3638
3639
3640void SelectionDAGLowering::visitMalloc(MallocInst &I) {
3641  SDOperand Src = getValue(I.getOperand(0));
3642
3643  MVT::ValueType IntPtr = TLI.getPointerTy();
3644
3645  if (IntPtr < Src.getValueType())
3646    Src = DAG.getNode(ISD::TRUNCATE, IntPtr, Src);
3647  else if (IntPtr > Src.getValueType())
3648    Src = DAG.getNode(ISD::ZERO_EXTEND, IntPtr, Src);
3649
3650  // Scale the source by the type size.
3651  uint64_t ElementSize = TD->getTypeSize(I.getType()->getElementType());
3652  Src = DAG.getNode(ISD::MUL, Src.getValueType(),
3653                    Src, getIntPtrConstant(ElementSize));
3654
3655  TargetLowering::ArgListTy Args;
3656  TargetLowering::ArgListEntry Entry;
3657  Entry.Node = Src;
3658  Entry.Ty = TLI.getTargetData()->getIntPtrType();
3659  Args.push_back(Entry);
3660
3661  std::pair<SDOperand,SDOperand> Result =
3662    TLI.LowerCallTo(getRoot(), I.getType(), false, false, CallingConv::C, true,
3663                    DAG.getExternalSymbol("malloc", IntPtr),
3664                    Args, DAG);
3665  setValue(&I, Result.first);  // Pointers always fit in registers
3666  DAG.setRoot(Result.second);
3667}
3668
3669void SelectionDAGLowering::visitFree(FreeInst &I) {
3670  TargetLowering::ArgListTy Args;
3671  TargetLowering::ArgListEntry Entry;
3672  Entry.Node = getValue(I.getOperand(0));
3673  Entry.Ty = TLI.getTargetData()->getIntPtrType();
3674  Args.push_back(Entry);
3675  MVT::ValueType IntPtr = TLI.getPointerTy();
3676  std::pair<SDOperand,SDOperand> Result =
3677    TLI.LowerCallTo(getRoot(), Type::VoidTy, false, false, CallingConv::C, true,
3678                    DAG.getExternalSymbol("free", IntPtr), Args, DAG);
3679  DAG.setRoot(Result.second);
3680}
3681
3682// InsertAtEndOfBasicBlock - This method should be implemented by targets that
3683// mark instructions with the 'usesCustomDAGSchedInserter' flag.  These
3684// instructions are special in various ways, which require special support to
3685// insert.  The specified MachineInstr is created but not inserted into any
3686// basic blocks, and the scheduler passes ownership of it to this method.
3687MachineBasicBlock *TargetLowering::InsertAtEndOfBasicBlock(MachineInstr *MI,
3688                                                       MachineBasicBlock *MBB) {
3689  cerr << "If a target marks an instruction with "
3690       << "'usesCustomDAGSchedInserter', it must implement "
3691       << "TargetLowering::InsertAtEndOfBasicBlock!\n";
3692  abort();
3693  return 0;
3694}
3695
3696void SelectionDAGLowering::visitVAStart(CallInst &I) {
3697  DAG.setRoot(DAG.getNode(ISD::VASTART, MVT::Other, getRoot(),
3698                          getValue(I.getOperand(1)),
3699                          DAG.getSrcValue(I.getOperand(1))));
3700}
3701
3702void SelectionDAGLowering::visitVAArg(VAArgInst &I) {
3703  SDOperand V = DAG.getVAArg(TLI.getValueType(I.getType()), getRoot(),
3704                             getValue(I.getOperand(0)),
3705                             DAG.getSrcValue(I.getOperand(0)));
3706  setValue(&I, V);
3707  DAG.setRoot(V.getValue(1));
3708}
3709
3710void SelectionDAGLowering::visitVAEnd(CallInst &I) {
3711  DAG.setRoot(DAG.getNode(ISD::VAEND, MVT::Other, getRoot(),
3712                          getValue(I.getOperand(1)),
3713                          DAG.getSrcValue(I.getOperand(1))));
3714}
3715
3716void SelectionDAGLowering::visitVACopy(CallInst &I) {
3717  DAG.setRoot(DAG.getNode(ISD::VACOPY, MVT::Other, getRoot(),
3718                          getValue(I.getOperand(1)),
3719                          getValue(I.getOperand(2)),
3720                          DAG.getSrcValue(I.getOperand(1)),
3721                          DAG.getSrcValue(I.getOperand(2))));
3722}
3723
3724/// ExpandScalarFormalArgs - Recursively expand the formal_argument node, either
3725/// bit_convert it or join a pair of them with a BUILD_PAIR when appropriate.
3726static SDOperand ExpandScalarFormalArgs(MVT::ValueType VT, SDNode *Arg,
3727                                        unsigned &i, SelectionDAG &DAG,
3728                                        TargetLowering &TLI) {
3729  if (TLI.getTypeAction(VT) != TargetLowering::Expand)
3730    return SDOperand(Arg, i++);
3731
3732  MVT::ValueType EVT = TLI.getTypeToTransformTo(VT);
3733  unsigned NumVals = MVT::getSizeInBits(VT) / MVT::getSizeInBits(EVT);
3734  if (NumVals == 1) {
3735    return DAG.getNode(ISD::BIT_CONVERT, VT,
3736                       ExpandScalarFormalArgs(EVT, Arg, i, DAG, TLI));
3737  } else if (NumVals == 2) {
3738    SDOperand Lo = ExpandScalarFormalArgs(EVT, Arg, i, DAG, TLI);
3739    SDOperand Hi = ExpandScalarFormalArgs(EVT, Arg, i, DAG, TLI);
3740    if (!TLI.isLittleEndian())
3741      std::swap(Lo, Hi);
3742    return DAG.getNode(ISD::BUILD_PAIR, VT, Lo, Hi);
3743  } else {
3744    // Value scalarized into many values.  Unimp for now.
3745    assert(0 && "Cannot expand i64 -> i16 yet!");
3746  }
3747  return SDOperand();
3748}
3749
3750/// TargetLowering::LowerArguments - This is the default LowerArguments
3751/// implementation, which just inserts a FORMAL_ARGUMENTS node.  FIXME: When all
3752/// targets are migrated to using FORMAL_ARGUMENTS, this hook should be
3753/// integrated into SDISel.
3754std::vector<SDOperand>
3755TargetLowering::LowerArguments(Function &F, SelectionDAG &DAG) {
3756  const FunctionType *FTy = F.getFunctionType();
3757  const ParamAttrsList *Attrs = FTy->getParamAttrs();
3758  // Add CC# and isVararg as operands to the FORMAL_ARGUMENTS node.
3759  std::vector<SDOperand> Ops;
3760  Ops.push_back(DAG.getRoot());
3761  Ops.push_back(DAG.getConstant(F.getCallingConv(), getPointerTy()));
3762  Ops.push_back(DAG.getConstant(F.isVarArg(), getPointerTy()));
3763
3764  // Add one result value for each formal argument.
3765  std::vector<MVT::ValueType> RetVals;
3766  unsigned j = 1;
3767  for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end();
3768       I != E; ++I, ++j) {
3769    MVT::ValueType VT = getValueType(I->getType());
3770    unsigned Flags = ISD::ParamFlags::NoFlagSet;
3771    unsigned OriginalAlignment =
3772      getTargetData()->getABITypeAlignment(I->getType());
3773
3774    // FIXME: Distinguish between a formal with no [sz]ext attribute from one
3775    // that is zero extended!
3776    if (Attrs && Attrs->paramHasAttr(j, ParamAttr::ZExt))
3777      Flags &= ~(ISD::ParamFlags::SExt);
3778    if (Attrs && Attrs->paramHasAttr(j, ParamAttr::SExt))
3779      Flags |= ISD::ParamFlags::SExt;
3780    if (Attrs && Attrs->paramHasAttr(j, ParamAttr::InReg))
3781      Flags |= ISD::ParamFlags::InReg;
3782    if (Attrs && Attrs->paramHasAttr(j, ParamAttr::StructRet))
3783      Flags |= ISD::ParamFlags::StructReturn;
3784    Flags |= (OriginalAlignment << ISD::ParamFlags::OrigAlignmentOffs);
3785
3786    switch (getTypeAction(VT)) {
3787    default: assert(0 && "Unknown type action!");
3788    case Legal:
3789      RetVals.push_back(VT);
3790      Ops.push_back(DAG.getConstant(Flags, MVT::i32));
3791      break;
3792    case Promote:
3793      RetVals.push_back(getTypeToTransformTo(VT));
3794      Ops.push_back(DAG.getConstant(Flags, MVT::i32));
3795      break;
3796    case Expand:
3797      if (VT != MVT::Vector) {
3798        // If this is a large integer, it needs to be broken up into small
3799        // integers.  Figure out what the destination type is and how many small
3800        // integers it turns into.
3801        MVT::ValueType NVT = getTypeToExpandTo(VT);
3802        unsigned NumVals = getNumElements(VT);
3803        for (unsigned i = 0; i != NumVals; ++i) {
3804          RetVals.push_back(NVT);
3805          // if it isn't first piece, alignment must be 1
3806          if (i > 0)
3807            Flags = (Flags & (~ISD::ParamFlags::OrigAlignment)) |
3808              (1 << ISD::ParamFlags::OrigAlignmentOffs);
3809          Ops.push_back(DAG.getConstant(Flags, MVT::i32));
3810        }
3811      } else {
3812        // Otherwise, this is a vector type.  We only support legal vectors
3813        // right now.
3814        unsigned NumElems = cast<VectorType>(I->getType())->getNumElements();
3815        const Type *EltTy = cast<VectorType>(I->getType())->getElementType();
3816
3817        // Figure out if there is a Packed type corresponding to this Vector
3818        // type.  If so, convert to the vector type.
3819        MVT::ValueType TVT = MVT::getVectorType(getValueType(EltTy), NumElems);
3820        if (TVT != MVT::Other && isTypeLegal(TVT)) {
3821          RetVals.push_back(TVT);
3822          Ops.push_back(DAG.getConstant(Flags, MVT::i32));
3823        } else {
3824          assert(0 && "Don't support illegal by-val vector arguments yet!");
3825        }
3826      }
3827      break;
3828    }
3829  }
3830
3831  RetVals.push_back(MVT::Other);
3832
3833  // Create the node.
3834  SDNode *Result = DAG.getNode(ISD::FORMAL_ARGUMENTS,
3835                               DAG.getNodeValueTypes(RetVals), RetVals.size(),
3836                               &Ops[0], Ops.size()).Val;
3837
3838  DAG.setRoot(SDOperand(Result, Result->getNumValues()-1));
3839
3840  // Set up the return result vector.
3841  Ops.clear();
3842  unsigned i = 0;
3843  unsigned Idx = 1;
3844  for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E;
3845      ++I, ++Idx) {
3846    MVT::ValueType VT = getValueType(I->getType());
3847
3848    switch (getTypeAction(VT)) {
3849    default: assert(0 && "Unknown type action!");
3850    case Legal:
3851      Ops.push_back(SDOperand(Result, i++));
3852      break;
3853    case Promote: {
3854      SDOperand Op(Result, i++);
3855      if (MVT::isInteger(VT)) {
3856        if (Attrs && Attrs->paramHasAttr(Idx, ParamAttr::SExt))
3857          Op = DAG.getNode(ISD::AssertSext, Op.getValueType(), Op,
3858                           DAG.getValueType(VT));
3859        else if (Attrs && Attrs->paramHasAttr(Idx, ParamAttr::ZExt))
3860          Op = DAG.getNode(ISD::AssertZext, Op.getValueType(), Op,
3861                           DAG.getValueType(VT));
3862        Op = DAG.getNode(ISD::TRUNCATE, VT, Op);
3863      } else {
3864        assert(MVT::isFloatingPoint(VT) && "Not int or FP?");
3865        Op = DAG.getNode(ISD::FP_ROUND, VT, Op);
3866      }
3867      Ops.push_back(Op);
3868      break;
3869    }
3870    case Expand:
3871      if (VT != MVT::Vector) {
3872        // If this is a large integer or a floating point node that needs to be
3873        // expanded, it needs to be reassembled from small integers.  Figure out
3874        // what the source elt type is and how many small integers it is.
3875        Ops.push_back(ExpandScalarFormalArgs(VT, Result, i, DAG, *this));
3876      } else {
3877        // Otherwise, this is a vector type.  We only support legal vectors
3878        // right now.
3879        const VectorType *PTy = cast<VectorType>(I->getType());
3880        unsigned NumElems = PTy->getNumElements();
3881        const Type *EltTy = PTy->getElementType();
3882
3883        // Figure out if there is a Packed type corresponding to this Vector
3884        // type.  If so, convert to the vector type.
3885        MVT::ValueType TVT = MVT::getVectorType(getValueType(EltTy), NumElems);
3886        if (TVT != MVT::Other && isTypeLegal(TVT)) {
3887          SDOperand N = SDOperand(Result, i++);
3888          // Handle copies from generic vectors to registers.
3889          N = DAG.getNode(ISD::VBIT_CONVERT, MVT::Vector, N,
3890                          DAG.getConstant(NumElems, MVT::i32),
3891                          DAG.getValueType(getValueType(EltTy)));
3892          Ops.push_back(N);
3893        } else {
3894          assert(0 && "Don't support illegal by-val vector arguments yet!");
3895          abort();
3896        }
3897      }
3898      break;
3899    }
3900  }
3901  return Ops;
3902}
3903
3904
3905/// ExpandScalarCallArgs - Recursively expand call argument node by
3906/// bit_converting it or extract a pair of elements from the larger  node.
3907static void ExpandScalarCallArgs(MVT::ValueType VT, SDOperand Arg,
3908                                 unsigned Flags,
3909                                 SmallVector<SDOperand, 32> &Ops,
3910                                 SelectionDAG &DAG,
3911                                 TargetLowering &TLI,
3912                                 bool isFirst = true) {
3913
3914  if (TLI.getTypeAction(VT) != TargetLowering::Expand) {
3915    // if it isn't first piece, alignment must be 1
3916    if (!isFirst)
3917      Flags = (Flags & (~ISD::ParamFlags::OrigAlignment)) |
3918        (1 << ISD::ParamFlags::OrigAlignmentOffs);
3919    Ops.push_back(Arg);
3920    Ops.push_back(DAG.getConstant(Flags, MVT::i32));
3921    return;
3922  }
3923
3924  MVT::ValueType EVT = TLI.getTypeToTransformTo(VT);
3925  unsigned NumVals = MVT::getSizeInBits(VT) / MVT::getSizeInBits(EVT);
3926  if (NumVals == 1) {
3927    Arg = DAG.getNode(ISD::BIT_CONVERT, EVT, Arg);
3928    ExpandScalarCallArgs(EVT, Arg, Flags, Ops, DAG, TLI, isFirst);
3929  } else if (NumVals == 2) {
3930    SDOperand Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, EVT, Arg,
3931                               DAG.getConstant(0, TLI.getPointerTy()));
3932    SDOperand Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, EVT, Arg,
3933                               DAG.getConstant(1, TLI.getPointerTy()));
3934    if (!TLI.isLittleEndian())
3935      std::swap(Lo, Hi);
3936    ExpandScalarCallArgs(EVT, Lo, Flags, Ops, DAG, TLI, isFirst);
3937    ExpandScalarCallArgs(EVT, Hi, Flags, Ops, DAG, TLI, false);
3938  } else {
3939    // Value scalarized into many values.  Unimp for now.
3940    assert(0 && "Cannot expand i64 -> i16 yet!");
3941  }
3942}
3943
3944/// TargetLowering::LowerCallTo - This is the default LowerCallTo
3945/// implementation, which just inserts an ISD::CALL node, which is later custom
3946/// lowered by the target to something concrete.  FIXME: When all targets are
3947/// migrated to using ISD::CALL, this hook should be integrated into SDISel.
3948std::pair<SDOperand, SDOperand>
3949TargetLowering::LowerCallTo(SDOperand Chain, const Type *RetTy,
3950                            bool RetTyIsSigned, bool isVarArg,
3951                            unsigned CallingConv, bool isTailCall,
3952                            SDOperand Callee,
3953                            ArgListTy &Args, SelectionDAG &DAG) {
3954  SmallVector<SDOperand, 32> Ops;
3955  Ops.push_back(Chain);   // Op#0 - Chain
3956  Ops.push_back(DAG.getConstant(CallingConv, getPointerTy())); // Op#1 - CC
3957  Ops.push_back(DAG.getConstant(isVarArg, getPointerTy()));    // Op#2 - VarArg
3958  Ops.push_back(DAG.getConstant(isTailCall, getPointerTy()));  // Op#3 - Tail
3959  Ops.push_back(Callee);
3960
3961  // Handle all of the outgoing arguments.
3962  for (unsigned i = 0, e = Args.size(); i != e; ++i) {
3963    MVT::ValueType VT = getValueType(Args[i].Ty);
3964    SDOperand Op = Args[i].Node;
3965    unsigned Flags = ISD::ParamFlags::NoFlagSet;
3966    unsigned OriginalAlignment =
3967      getTargetData()->getABITypeAlignment(Args[i].Ty);
3968
3969    if (Args[i].isSExt)
3970      Flags |= ISD::ParamFlags::SExt;
3971    if (Args[i].isZExt)
3972      Flags |= ISD::ParamFlags::ZExt;
3973    if (Args[i].isInReg)
3974      Flags |= ISD::ParamFlags::InReg;
3975    if (Args[i].isSRet)
3976      Flags |= ISD::ParamFlags::StructReturn;
3977    Flags |= OriginalAlignment << ISD::ParamFlags::OrigAlignmentOffs;
3978
3979    switch (getTypeAction(VT)) {
3980    default: assert(0 && "Unknown type action!");
3981    case Legal:
3982      Ops.push_back(Op);
3983      Ops.push_back(DAG.getConstant(Flags, MVT::i32));
3984      break;
3985    case Promote:
3986      if (MVT::isInteger(VT)) {
3987        unsigned ExtOp;
3988        if (Args[i].isSExt)
3989          ExtOp = ISD::SIGN_EXTEND;
3990        else if (Args[i].isZExt)
3991          ExtOp = ISD::ZERO_EXTEND;
3992        else
3993          ExtOp = ISD::ANY_EXTEND;
3994        Op = DAG.getNode(ExtOp, getTypeToTransformTo(VT), Op);
3995      } else {
3996        assert(MVT::isFloatingPoint(VT) && "Not int or FP?");
3997        // A true promotion would change the size of the argument.
3998        // Instead, pretend this is an int.  If FP objects are not
3999        // passed the same as ints, the original type should be Legal
4000        // and we should not get here.
4001        Op = DAG.getNode(ISD::BIT_CONVERT,
4002                         VT==MVT::f32 ? MVT::i32 :
4003                         (VT==MVT::f64 ? MVT::i64 :
4004                          MVT::Other),
4005                         Op);
4006      }
4007      Ops.push_back(Op);
4008      Ops.push_back(DAG.getConstant(Flags, MVT::i32));
4009      break;
4010    case Expand:
4011      if (VT != MVT::Vector) {
4012        // If this is a large integer, it needs to be broken down into small
4013        // integers.  Figure out what the source elt type is and how many small
4014        // integers it is.
4015        ExpandScalarCallArgs(VT, Op, Flags, Ops, DAG, *this);
4016      } else {
4017        // Otherwise, this is a vector type.  We only support legal vectors
4018        // right now.
4019        const VectorType *PTy = cast<VectorType>(Args[i].Ty);
4020        unsigned NumElems = PTy->getNumElements();
4021        const Type *EltTy = PTy->getElementType();
4022
4023        // Figure out if there is a Packed type corresponding to this Vector
4024        // type.  If so, convert to the vector type.
4025        MVT::ValueType TVT = MVT::getVectorType(getValueType(EltTy), NumElems);
4026        if (TVT != MVT::Other && isTypeLegal(TVT)) {
4027          // Insert a VBIT_CONVERT of the MVT::Vector type to the vector type.
4028          Op = DAG.getNode(ISD::VBIT_CONVERT, TVT, Op);
4029          Ops.push_back(Op);
4030          Ops.push_back(DAG.getConstant(Flags, MVT::i32));
4031        } else {
4032          assert(0 && "Don't support illegal by-val vector call args yet!");
4033          abort();
4034        }
4035      }
4036      break;
4037    }
4038  }
4039
4040  // Figure out the result value types.
4041  SmallVector<MVT::ValueType, 4> RetTys;
4042
4043  if (RetTy != Type::VoidTy) {
4044    MVT::ValueType VT = getValueType(RetTy);
4045    switch (getTypeAction(VT)) {
4046    default: assert(0 && "Unknown type action!");
4047    case Legal:
4048      RetTys.push_back(VT);
4049      break;
4050    case Promote:
4051      RetTys.push_back(getTypeToTransformTo(VT));
4052      break;
4053    case Expand:
4054      if (VT != MVT::Vector) {
4055        // If this is a large integer, it needs to be reassembled from small
4056        // integers.  Figure out what the source elt type is and how many small
4057        // integers it is.
4058        MVT::ValueType NVT = getTypeToExpandTo(VT);
4059        unsigned NumVals = getNumElements(VT);
4060        for (unsigned i = 0; i != NumVals; ++i)
4061          RetTys.push_back(NVT);
4062      } else {
4063        // Otherwise, this is a vector type.  We only support legal vectors
4064        // right now.
4065        const VectorType *PTy = cast<VectorType>(RetTy);
4066        unsigned NumElems = PTy->getNumElements();
4067        const Type *EltTy = PTy->getElementType();
4068
4069        // Figure out if there is a Packed type corresponding to this Vector
4070        // type.  If so, convert to the vector type.
4071        MVT::ValueType TVT = MVT::getVectorType(getValueType(EltTy), NumElems);
4072        if (TVT != MVT::Other && isTypeLegal(TVT)) {
4073          RetTys.push_back(TVT);
4074        } else {
4075          assert(0 && "Don't support illegal by-val vector call results yet!");
4076          abort();
4077        }
4078      }
4079    }
4080  }
4081
4082  RetTys.push_back(MVT::Other);  // Always has a chain.
4083
4084  // Finally, create the CALL node.
4085  SDOperand Res = DAG.getNode(ISD::CALL,
4086                              DAG.getVTList(&RetTys[0], RetTys.size()),
4087                              &Ops[0], Ops.size());
4088
4089  // This returns a pair of operands.  The first element is the
4090  // return value for the function (if RetTy is not VoidTy).  The second
4091  // element is the outgoing token chain.
4092  SDOperand ResVal;
4093  if (RetTys.size() != 1) {
4094    MVT::ValueType VT = getValueType(RetTy);
4095    if (RetTys.size() == 2) {
4096      ResVal = Res;
4097
4098      // If this value was promoted, truncate it down.
4099      if (ResVal.getValueType() != VT) {
4100        if (VT == MVT::Vector) {
4101          // Insert a VBIT_CONVERT to convert from the packed result type to the
4102          // MVT::Vector type.
4103          unsigned NumElems = cast<VectorType>(RetTy)->getNumElements();
4104          const Type *EltTy = cast<VectorType>(RetTy)->getElementType();
4105
4106          // Figure out if there is a Packed type corresponding to this Vector
4107          // type.  If so, convert to the vector type.
4108          MVT::ValueType TVT = MVT::getVectorType(getValueType(EltTy),NumElems);
4109          if (TVT != MVT::Other && isTypeLegal(TVT)) {
4110            // Insert a VBIT_CONVERT of the FORMAL_ARGUMENTS to a
4111            // "N x PTyElementVT" MVT::Vector type.
4112            ResVal = DAG.getNode(ISD::VBIT_CONVERT, MVT::Vector, ResVal,
4113                                 DAG.getConstant(NumElems, MVT::i32),
4114                                 DAG.getValueType(getValueType(EltTy)));
4115          } else {
4116            abort();
4117          }
4118        } else if (MVT::isInteger(VT)) {
4119          unsigned AssertOp = ISD::AssertSext;
4120          if (!RetTyIsSigned)
4121            AssertOp = ISD::AssertZext;
4122          ResVal = DAG.getNode(AssertOp, ResVal.getValueType(), ResVal,
4123                               DAG.getValueType(VT));
4124          ResVal = DAG.getNode(ISD::TRUNCATE, VT, ResVal);
4125        } else {
4126          assert(MVT::isFloatingPoint(VT));
4127          if (getTypeAction(VT) == Expand)
4128            ResVal = DAG.getNode(ISD::BIT_CONVERT, VT, ResVal);
4129          else
4130            ResVal = DAG.getNode(ISD::FP_ROUND, VT, ResVal);
4131        }
4132      }
4133    } else if (RetTys.size() == 3) {
4134      ResVal = DAG.getNode(ISD::BUILD_PAIR, VT,
4135                           Res.getValue(0), Res.getValue(1));
4136
4137    } else {
4138      assert(0 && "Case not handled yet!");
4139    }
4140  }
4141
4142  return std::make_pair(ResVal, Res.getValue(Res.Val->getNumValues()-1));
4143}
4144
4145SDOperand TargetLowering::LowerOperation(SDOperand Op, SelectionDAG &DAG) {
4146  assert(0 && "LowerOperation not implemented for this target!");
4147  abort();
4148  return SDOperand();
4149}
4150
4151SDOperand TargetLowering::CustomPromoteOperation(SDOperand Op,
4152                                                 SelectionDAG &DAG) {
4153  assert(0 && "CustomPromoteOperation not implemented for this target!");
4154  abort();
4155  return SDOperand();
4156}
4157
4158/// getMemsetValue - Vectorized representation of the memset value
4159/// operand.
4160static SDOperand getMemsetValue(SDOperand Value, MVT::ValueType VT,
4161                                SelectionDAG &DAG) {
4162  MVT::ValueType CurVT = VT;
4163  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
4164    uint64_t Val   = C->getValue() & 255;
4165    unsigned Shift = 8;
4166    while (CurVT != MVT::i8) {
4167      Val = (Val << Shift) | Val;
4168      Shift <<= 1;
4169      CurVT = (MVT::ValueType)((unsigned)CurVT - 1);
4170    }
4171    return DAG.getConstant(Val, VT);
4172  } else {
4173    Value = DAG.getNode(ISD::ZERO_EXTEND, VT, Value);
4174    unsigned Shift = 8;
4175    while (CurVT != MVT::i8) {
4176      Value =
4177        DAG.getNode(ISD::OR, VT,
4178                    DAG.getNode(ISD::SHL, VT, Value,
4179                                DAG.getConstant(Shift, MVT::i8)), Value);
4180      Shift <<= 1;
4181      CurVT = (MVT::ValueType)((unsigned)CurVT - 1);
4182    }
4183
4184    return Value;
4185  }
4186}
4187
4188/// getMemsetStringVal - Similar to getMemsetValue. Except this is only
4189/// used when a memcpy is turned into a memset when the source is a constant
4190/// string ptr.
4191static SDOperand getMemsetStringVal(MVT::ValueType VT,
4192                                    SelectionDAG &DAG, TargetLowering &TLI,
4193                                    std::string &Str, unsigned Offset) {
4194  uint64_t Val = 0;
4195  unsigned MSB = MVT::getSizeInBits(VT) / 8;
4196  if (TLI.isLittleEndian())
4197    Offset = Offset + MSB - 1;
4198  for (unsigned i = 0; i != MSB; ++i) {
4199    Val = (Val << 8) | (unsigned char)Str[Offset];
4200    Offset += TLI.isLittleEndian() ? -1 : 1;
4201  }
4202  return DAG.getConstant(Val, VT);
4203}
4204
4205/// getMemBasePlusOffset - Returns base and offset node for the
4206static SDOperand getMemBasePlusOffset(SDOperand Base, unsigned Offset,
4207                                      SelectionDAG &DAG, TargetLowering &TLI) {
4208  MVT::ValueType VT = Base.getValueType();
4209  return DAG.getNode(ISD::ADD, VT, Base, DAG.getConstant(Offset, VT));
4210}
4211
4212/// MeetsMaxMemopRequirement - Determines if the number of memory ops required
4213/// to replace the memset / memcpy is below the threshold. It also returns the
4214/// types of the sequence of  memory ops to perform memset / memcpy.
4215static bool MeetsMaxMemopRequirement(std::vector<MVT::ValueType> &MemOps,
4216                                     unsigned Limit, uint64_t Size,
4217                                     unsigned Align, TargetLowering &TLI) {
4218  MVT::ValueType VT;
4219
4220  if (TLI.allowsUnalignedMemoryAccesses()) {
4221    VT = MVT::i64;
4222  } else {
4223    switch (Align & 7) {
4224    case 0:
4225      VT = MVT::i64;
4226      break;
4227    case 4:
4228      VT = MVT::i32;
4229      break;
4230    case 2:
4231      VT = MVT::i16;
4232      break;
4233    default:
4234      VT = MVT::i8;
4235      break;
4236    }
4237  }
4238
4239  MVT::ValueType LVT = MVT::i64;
4240  while (!TLI.isTypeLegal(LVT))
4241    LVT = (MVT::ValueType)((unsigned)LVT - 1);
4242  assert(MVT::isInteger(LVT));
4243
4244  if (VT > LVT)
4245    VT = LVT;
4246
4247  unsigned NumMemOps = 0;
4248  while (Size != 0) {
4249    unsigned VTSize = MVT::getSizeInBits(VT) / 8;
4250    while (VTSize > Size) {
4251      VT = (MVT::ValueType)((unsigned)VT - 1);
4252      VTSize >>= 1;
4253    }
4254    assert(MVT::isInteger(VT));
4255
4256    if (++NumMemOps > Limit)
4257      return false;
4258    MemOps.push_back(VT);
4259    Size -= VTSize;
4260  }
4261
4262  return true;
4263}
4264
4265void SelectionDAGLowering::visitMemIntrinsic(CallInst &I, unsigned Op) {
4266  SDOperand Op1 = getValue(I.getOperand(1));
4267  SDOperand Op2 = getValue(I.getOperand(2));
4268  SDOperand Op3 = getValue(I.getOperand(3));
4269  SDOperand Op4 = getValue(I.getOperand(4));
4270  unsigned Align = (unsigned)cast<ConstantSDNode>(Op4)->getValue();
4271  if (Align == 0) Align = 1;
4272
4273  if (ConstantSDNode *Size = dyn_cast<ConstantSDNode>(Op3)) {
4274    std::vector<MVT::ValueType> MemOps;
4275
4276    // Expand memset / memcpy to a series of load / store ops
4277    // if the size operand falls below a certain threshold.
4278    SmallVector<SDOperand, 8> OutChains;
4279    switch (Op) {
4280    default: break;  // Do nothing for now.
4281    case ISD::MEMSET: {
4282      if (MeetsMaxMemopRequirement(MemOps, TLI.getMaxStoresPerMemset(),
4283                                   Size->getValue(), Align, TLI)) {
4284        unsigned NumMemOps = MemOps.size();
4285        unsigned Offset = 0;
4286        for (unsigned i = 0; i < NumMemOps; i++) {
4287          MVT::ValueType VT = MemOps[i];
4288          unsigned VTSize = MVT::getSizeInBits(VT) / 8;
4289          SDOperand Value = getMemsetValue(Op2, VT, DAG);
4290          SDOperand Store = DAG.getStore(getRoot(), Value,
4291                                    getMemBasePlusOffset(Op1, Offset, DAG, TLI),
4292                                         I.getOperand(1), Offset);
4293          OutChains.push_back(Store);
4294          Offset += VTSize;
4295        }
4296      }
4297      break;
4298    }
4299    case ISD::MEMCPY: {
4300      if (MeetsMaxMemopRequirement(MemOps, TLI.getMaxStoresPerMemcpy(),
4301                                   Size->getValue(), Align, TLI)) {
4302        unsigned NumMemOps = MemOps.size();
4303        unsigned SrcOff = 0, DstOff = 0, SrcDelta = 0;
4304        GlobalAddressSDNode *G = NULL;
4305        std::string Str;
4306        bool CopyFromStr = false;
4307
4308        if (Op2.getOpcode() == ISD::GlobalAddress)
4309          G = cast<GlobalAddressSDNode>(Op2);
4310        else if (Op2.getOpcode() == ISD::ADD &&
4311                 Op2.getOperand(0).getOpcode() == ISD::GlobalAddress &&
4312                 Op2.getOperand(1).getOpcode() == ISD::Constant) {
4313          G = cast<GlobalAddressSDNode>(Op2.getOperand(0));
4314          SrcDelta = cast<ConstantSDNode>(Op2.getOperand(1))->getValue();
4315        }
4316        if (G) {
4317          GlobalVariable *GV = dyn_cast<GlobalVariable>(G->getGlobal());
4318          if (GV && GV->isConstant()) {
4319            Str = GV->getStringValue(false);
4320            if (!Str.empty()) {
4321              CopyFromStr = true;
4322              SrcOff += SrcDelta;
4323            }
4324          }
4325        }
4326
4327        for (unsigned i = 0; i < NumMemOps; i++) {
4328          MVT::ValueType VT = MemOps[i];
4329          unsigned VTSize = MVT::getSizeInBits(VT) / 8;
4330          SDOperand Value, Chain, Store;
4331
4332          if (CopyFromStr) {
4333            Value = getMemsetStringVal(VT, DAG, TLI, Str, SrcOff);
4334            Chain = getRoot();
4335            Store =
4336              DAG.getStore(Chain, Value,
4337                           getMemBasePlusOffset(Op1, DstOff, DAG, TLI),
4338                           I.getOperand(1), DstOff);
4339          } else {
4340            Value = DAG.getLoad(VT, getRoot(),
4341                        getMemBasePlusOffset(Op2, SrcOff, DAG, TLI),
4342                        I.getOperand(2), SrcOff);
4343            Chain = Value.getValue(1);
4344            Store =
4345              DAG.getStore(Chain, Value,
4346                           getMemBasePlusOffset(Op1, DstOff, DAG, TLI),
4347                           I.getOperand(1), DstOff);
4348          }
4349          OutChains.push_back(Store);
4350          SrcOff += VTSize;
4351          DstOff += VTSize;
4352        }
4353      }
4354      break;
4355    }
4356    }
4357
4358    if (!OutChains.empty()) {
4359      DAG.setRoot(DAG.getNode(ISD::TokenFactor, MVT::Other,
4360                  &OutChains[0], OutChains.size()));
4361      return;
4362    }
4363  }
4364
4365  DAG.setRoot(DAG.getNode(Op, MVT::Other, getRoot(), Op1, Op2, Op3, Op4));
4366}
4367
4368//===----------------------------------------------------------------------===//
4369// SelectionDAGISel code
4370//===----------------------------------------------------------------------===//
4371
4372unsigned SelectionDAGISel::MakeReg(MVT::ValueType VT) {
4373  return RegMap->createVirtualRegister(TLI.getRegClassFor(VT));
4374}
4375
4376void SelectionDAGISel::getAnalysisUsage(AnalysisUsage &AU) const {
4377  AU.addRequired<AliasAnalysis>();
4378  AU.setPreservesAll();
4379}
4380
4381
4382
4383bool SelectionDAGISel::runOnFunction(Function &Fn) {
4384  MachineFunction &MF = MachineFunction::construct(&Fn, TLI.getTargetMachine());
4385  RegMap = MF.getSSARegMap();
4386  DOUT << "\n\n\n=== " << Fn.getName() << "\n";
4387
4388  FunctionLoweringInfo FuncInfo(TLI, Fn, MF);
4389
4390  for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
4391    if (InvokeInst *Invoke = dyn_cast<InvokeInst>(I->getTerminator())) {
4392      // Mark landing pad.
4393      MachineBasicBlock *LandingPad = FuncInfo.MBBMap[Invoke->getSuccessor(1)];
4394      LandingPad->setIsLandingPad();
4395    }
4396
4397  for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
4398    SelectBasicBlock(I, MF, FuncInfo);
4399
4400  // Add function live-ins to entry block live-in set.
4401  BasicBlock *EntryBB = &Fn.getEntryBlock();
4402  BB = FuncInfo.MBBMap[EntryBB];
4403  if (!MF.livein_empty())
4404    for (MachineFunction::livein_iterator I = MF.livein_begin(),
4405           E = MF.livein_end(); I != E; ++I)
4406      BB->addLiveIn(I->first);
4407
4408  return true;
4409}
4410
4411SDOperand SelectionDAGLowering::CopyValueToVirtualRegister(Value *V,
4412                                                           unsigned Reg) {
4413  SDOperand Op = getValue(V);
4414  assert((Op.getOpcode() != ISD::CopyFromReg ||
4415          cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
4416         "Copy from a reg to the same reg!");
4417
4418  // If this type is not legal, we must make sure to not create an invalid
4419  // register use.
4420  MVT::ValueType SrcVT = Op.getValueType();
4421  MVT::ValueType DestVT = TLI.getTypeToTransformTo(SrcVT);
4422  if (SrcVT == DestVT) {
4423    return DAG.getCopyToReg(getRoot(), Reg, Op);
4424  } else if (SrcVT == MVT::Vector) {
4425    // Handle copies from generic vectors to registers.
4426    MVT::ValueType PTyElementVT, PTyLegalElementVT;
4427    unsigned NE = TLI.getVectorTypeBreakdown(cast<VectorType>(V->getType()),
4428                                             PTyElementVT, PTyLegalElementVT);
4429
4430    // Insert a VBIT_CONVERT of the input vector to a "N x PTyElementVT"
4431    // MVT::Vector type.
4432    Op = DAG.getNode(ISD::VBIT_CONVERT, MVT::Vector, Op,
4433                     DAG.getConstant(NE, MVT::i32),
4434                     DAG.getValueType(PTyElementVT));
4435
4436    // Loop over all of the elements of the resultant vector,
4437    // VEXTRACT_VECTOR_ELT'ing them, converting them to PTyLegalElementVT, then
4438    // copying them into output registers.
4439    SmallVector<SDOperand, 8> OutChains;
4440    SDOperand Root = getRoot();
4441    for (unsigned i = 0; i != NE; ++i) {
4442      SDOperand Elt = DAG.getNode(ISD::VEXTRACT_VECTOR_ELT, PTyElementVT,
4443                                  Op, DAG.getConstant(i, TLI.getPointerTy()));
4444      if (PTyElementVT == PTyLegalElementVT) {
4445        // Elements are legal.
4446        OutChains.push_back(DAG.getCopyToReg(Root, Reg++, Elt));
4447      } else if (PTyLegalElementVT > PTyElementVT) {
4448        // Elements are promoted.
4449        if (MVT::isFloatingPoint(PTyLegalElementVT))
4450          Elt = DAG.getNode(ISD::FP_EXTEND, PTyLegalElementVT, Elt);
4451        else
4452          Elt = DAG.getNode(ISD::ANY_EXTEND, PTyLegalElementVT, Elt);
4453        OutChains.push_back(DAG.getCopyToReg(Root, Reg++, Elt));
4454      } else {
4455        // Elements are expanded.
4456        // The src value is expanded into multiple registers.
4457        SDOperand Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, PTyLegalElementVT,
4458                                   Elt, DAG.getConstant(0, TLI.getPointerTy()));
4459        SDOperand Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, PTyLegalElementVT,
4460                                   Elt, DAG.getConstant(1, TLI.getPointerTy()));
4461        OutChains.push_back(DAG.getCopyToReg(Root, Reg++, Lo));
4462        OutChains.push_back(DAG.getCopyToReg(Root, Reg++, Hi));
4463      }
4464    }
4465    return DAG.getNode(ISD::TokenFactor, MVT::Other,
4466                       &OutChains[0], OutChains.size());
4467  } else if (TLI.getTypeAction(SrcVT) == TargetLowering::Promote) {
4468    // The src value is promoted to the register.
4469    if (MVT::isFloatingPoint(SrcVT))
4470      Op = DAG.getNode(ISD::FP_EXTEND, DestVT, Op);
4471    else
4472      Op = DAG.getNode(ISD::ANY_EXTEND, DestVT, Op);
4473    return DAG.getCopyToReg(getRoot(), Reg, Op);
4474  } else  {
4475    DestVT = TLI.getTypeToExpandTo(SrcVT);
4476    unsigned NumVals = TLI.getNumElements(SrcVT);
4477    if (NumVals == 1)
4478      return DAG.getCopyToReg(getRoot(), Reg,
4479                              DAG.getNode(ISD::BIT_CONVERT, DestVT, Op));
4480    assert(NumVals == 2 && "1 to 4 (and more) expansion not implemented!");
4481    // The src value is expanded into multiple registers.
4482    SDOperand Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DestVT,
4483                               Op, DAG.getConstant(0, TLI.getPointerTy()));
4484    SDOperand Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DestVT,
4485                               Op, DAG.getConstant(1, TLI.getPointerTy()));
4486    Op = DAG.getCopyToReg(getRoot(), Reg, Lo);
4487    return DAG.getCopyToReg(Op, Reg+1, Hi);
4488  }
4489}
4490
4491void SelectionDAGISel::
4492LowerArguments(BasicBlock *LLVMBB, SelectionDAGLowering &SDL,
4493               std::vector<SDOperand> &UnorderedChains) {
4494  // If this is the entry block, emit arguments.
4495  Function &F = *LLVMBB->getParent();
4496  FunctionLoweringInfo &FuncInfo = SDL.FuncInfo;
4497  SDOperand OldRoot = SDL.DAG.getRoot();
4498  std::vector<SDOperand> Args = TLI.LowerArguments(F, SDL.DAG);
4499
4500  unsigned a = 0;
4501  for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end();
4502       AI != E; ++AI, ++a)
4503    if (!AI->use_empty()) {
4504      SDL.setValue(AI, Args[a]);
4505
4506      // If this argument is live outside of the entry block, insert a copy from
4507      // whereever we got it to the vreg that other BB's will reference it as.
4508      DenseMap<const Value*, unsigned>::iterator VMI=FuncInfo.ValueMap.find(AI);
4509      if (VMI != FuncInfo.ValueMap.end()) {
4510        SDOperand Copy = SDL.CopyValueToVirtualRegister(AI, VMI->second);
4511        UnorderedChains.push_back(Copy);
4512      }
4513    }
4514
4515  // Finally, if the target has anything special to do, allow it to do so.
4516  // FIXME: this should insert code into the DAG!
4517  EmitFunctionEntryCode(F, SDL.DAG.getMachineFunction());
4518}
4519
4520void SelectionDAGISel::BuildSelectionDAG(SelectionDAG &DAG, BasicBlock *LLVMBB,
4521       std::vector<std::pair<MachineInstr*, unsigned> > &PHINodesToUpdate,
4522                                         FunctionLoweringInfo &FuncInfo) {
4523  SelectionDAGLowering SDL(DAG, TLI, FuncInfo);
4524
4525  std::vector<SDOperand> UnorderedChains;
4526
4527  // Lower any arguments needed in this block if this is the entry block.
4528  if (LLVMBB == &LLVMBB->getParent()->getEntryBlock())
4529    LowerArguments(LLVMBB, SDL, UnorderedChains);
4530
4531  BB = FuncInfo.MBBMap[LLVMBB];
4532  SDL.setCurrentBasicBlock(BB);
4533
4534  if (ExceptionHandling && BB->isLandingPad()) {
4535    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
4536
4537    if (MMI) {
4538      // Add a label to mark the beginning of the landing pad.  Deletion of the
4539      // landing pad can thus be detected via the MachineModuleInfo.
4540      unsigned LabelID = MMI->addLandingPad(BB);
4541      DAG.setRoot(DAG.getNode(ISD::LABEL, MVT::Other, DAG.getEntryNode(),
4542                              DAG.getConstant(LabelID, MVT::i32)));
4543    }
4544  }
4545
4546  // Lower all of the non-terminator instructions.
4547  for (BasicBlock::iterator I = LLVMBB->begin(), E = --LLVMBB->end();
4548       I != E; ++I)
4549    SDL.visit(*I);
4550
4551  // Ensure that all instructions which are used outside of their defining
4552  // blocks are available as virtual registers.  Invoke is handled elsewhere.
4553  for (BasicBlock::iterator I = LLVMBB->begin(), E = LLVMBB->end(); I != E;++I)
4554    if (!I->use_empty() && !isa<PHINode>(I) && !isa<InvokeInst>(I)) {
4555      DenseMap<const Value*, unsigned>::iterator VMI =FuncInfo.ValueMap.find(I);
4556      if (VMI != FuncInfo.ValueMap.end())
4557        UnorderedChains.push_back(
4558                                SDL.CopyValueToVirtualRegister(I, VMI->second));
4559    }
4560
4561  // Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
4562  // ensure constants are generated when needed.  Remember the virtual registers
4563  // that need to be added to the Machine PHI nodes as input.  We cannot just
4564  // directly add them, because expansion might result in multiple MBB's for one
4565  // BB.  As such, the start of the BB might correspond to a different MBB than
4566  // the end.
4567  //
4568  TerminatorInst *TI = LLVMBB->getTerminator();
4569
4570  // Emit constants only once even if used by multiple PHI nodes.
4571  std::map<Constant*, unsigned> ConstantsOut;
4572
4573  // Vector bool would be better, but vector<bool> is really slow.
4574  std::vector<unsigned char> SuccsHandled;
4575  if (TI->getNumSuccessors())
4576    SuccsHandled.resize(BB->getParent()->getNumBlockIDs());
4577
4578  // Check successor nodes PHI nodes that expect a constant to be available from
4579  // this block.
4580  for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
4581    BasicBlock *SuccBB = TI->getSuccessor(succ);
4582    if (!isa<PHINode>(SuccBB->begin())) continue;
4583    MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
4584
4585    // If this terminator has multiple identical successors (common for
4586    // switches), only handle each succ once.
4587    unsigned SuccMBBNo = SuccMBB->getNumber();
4588    if (SuccsHandled[SuccMBBNo]) continue;
4589    SuccsHandled[SuccMBBNo] = true;
4590
4591    MachineBasicBlock::iterator MBBI = SuccMBB->begin();
4592    PHINode *PN;
4593
4594    // At this point we know that there is a 1-1 correspondence between LLVM PHI
4595    // nodes and Machine PHI nodes, but the incoming operands have not been
4596    // emitted yet.
4597    for (BasicBlock::iterator I = SuccBB->begin();
4598         (PN = dyn_cast<PHINode>(I)); ++I) {
4599      // Ignore dead phi's.
4600      if (PN->use_empty()) continue;
4601
4602      unsigned Reg;
4603      Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
4604
4605      if (Constant *C = dyn_cast<Constant>(PHIOp)) {
4606        unsigned &RegOut = ConstantsOut[C];
4607        if (RegOut == 0) {
4608          RegOut = FuncInfo.CreateRegForValue(C);
4609          UnorderedChains.push_back(
4610                           SDL.CopyValueToVirtualRegister(C, RegOut));
4611        }
4612        Reg = RegOut;
4613      } else {
4614        Reg = FuncInfo.ValueMap[PHIOp];
4615        if (Reg == 0) {
4616          assert(isa<AllocaInst>(PHIOp) &&
4617                 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
4618                 "Didn't codegen value into a register!??");
4619          Reg = FuncInfo.CreateRegForValue(PHIOp);
4620          UnorderedChains.push_back(
4621                           SDL.CopyValueToVirtualRegister(PHIOp, Reg));
4622        }
4623      }
4624
4625      // Remember that this register needs to added to the machine PHI node as
4626      // the input for this MBB.
4627      MVT::ValueType VT = TLI.getValueType(PN->getType());
4628      unsigned NumElements;
4629      if (VT != MVT::Vector)
4630        NumElements = TLI.getNumElements(VT);
4631      else {
4632        MVT::ValueType VT1,VT2;
4633        NumElements =
4634          TLI.getVectorTypeBreakdown(cast<VectorType>(PN->getType()),
4635                                     VT1, VT2);
4636      }
4637      for (unsigned i = 0, e = NumElements; i != e; ++i)
4638        PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i));
4639    }
4640  }
4641  ConstantsOut.clear();
4642
4643  // Turn all of the unordered chains into one factored node.
4644  if (!UnorderedChains.empty()) {
4645    SDOperand Root = SDL.getRoot();
4646    if (Root.getOpcode() != ISD::EntryToken) {
4647      unsigned i = 0, e = UnorderedChains.size();
4648      for (; i != e; ++i) {
4649        assert(UnorderedChains[i].Val->getNumOperands() > 1);
4650        if (UnorderedChains[i].Val->getOperand(0) == Root)
4651          break;  // Don't add the root if we already indirectly depend on it.
4652      }
4653
4654      if (i == e)
4655        UnorderedChains.push_back(Root);
4656    }
4657    DAG.setRoot(DAG.getNode(ISD::TokenFactor, MVT::Other,
4658                            &UnorderedChains[0], UnorderedChains.size()));
4659  }
4660
4661  // Lower the terminator after the copies are emitted.
4662  SDL.visit(*LLVMBB->getTerminator());
4663
4664  // Copy over any CaseBlock records that may now exist due to SwitchInst
4665  // lowering, as well as any jump table information.
4666  SwitchCases.clear();
4667  SwitchCases = SDL.SwitchCases;
4668  JTCases.clear();
4669  JTCases = SDL.JTCases;
4670  BitTestCases.clear();
4671  BitTestCases = SDL.BitTestCases;
4672
4673  // Make sure the root of the DAG is up-to-date.
4674  DAG.setRoot(SDL.getRoot());
4675}
4676
4677void SelectionDAGISel::CodeGenAndEmitDAG(SelectionDAG &DAG) {
4678  // Get alias analysis for load/store combining.
4679  AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
4680
4681  // Run the DAG combiner in pre-legalize mode.
4682  DAG.Combine(false, AA);
4683
4684  DOUT << "Lowered selection DAG:\n";
4685  DEBUG(DAG.dump());
4686
4687  // Second step, hack on the DAG until it only uses operations and types that
4688  // the target supports.
4689  DAG.Legalize();
4690
4691  DOUT << "Legalized selection DAG:\n";
4692  DEBUG(DAG.dump());
4693
4694  // Run the DAG combiner in post-legalize mode.
4695  DAG.Combine(true, AA);
4696
4697  if (ViewISelDAGs) DAG.viewGraph();
4698
4699  // Third, instruction select all of the operations to machine code, adding the
4700  // code to the MachineBasicBlock.
4701  InstructionSelectBasicBlock(DAG);
4702
4703  DOUT << "Selected machine code:\n";
4704  DEBUG(BB->dump());
4705}
4706
4707void SelectionDAGISel::SelectBasicBlock(BasicBlock *LLVMBB, MachineFunction &MF,
4708                                        FunctionLoweringInfo &FuncInfo) {
4709  std::vector<std::pair<MachineInstr*, unsigned> > PHINodesToUpdate;
4710  {
4711    SelectionDAG DAG(TLI, MF, getAnalysisToUpdate<MachineModuleInfo>());
4712    CurDAG = &DAG;
4713
4714    // First step, lower LLVM code to some DAG.  This DAG may use operations and
4715    // types that are not supported by the target.
4716    BuildSelectionDAG(DAG, LLVMBB, PHINodesToUpdate, FuncInfo);
4717
4718    // Second step, emit the lowered DAG as machine code.
4719    CodeGenAndEmitDAG(DAG);
4720  }
4721
4722  DOUT << "Total amount of phi nodes to update: "
4723       << PHINodesToUpdate.size() << "\n";
4724  DEBUG(for (unsigned i = 0, e = PHINodesToUpdate.size(); i != e; ++i)
4725          DOUT << "Node " << i << " : (" << PHINodesToUpdate[i].first
4726               << ", " << PHINodesToUpdate[i].second << ")\n";);
4727
4728  // Next, now that we know what the last MBB the LLVM BB expanded is, update
4729  // PHI nodes in successors.
4730  if (SwitchCases.empty() && JTCases.empty() && BitTestCases.empty()) {
4731    for (unsigned i = 0, e = PHINodesToUpdate.size(); i != e; ++i) {
4732      MachineInstr *PHI = PHINodesToUpdate[i].first;
4733      assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
4734             "This is not a machine PHI node that we are updating!");
4735      PHI->addRegOperand(PHINodesToUpdate[i].second, false);
4736      PHI->addMachineBasicBlockOperand(BB);
4737    }
4738    return;
4739  }
4740
4741  for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i) {
4742    // Lower header first, if it wasn't already lowered
4743    if (!BitTestCases[i].Emitted) {
4744      SelectionDAG HSDAG(TLI, MF, getAnalysisToUpdate<MachineModuleInfo>());
4745      CurDAG = &HSDAG;
4746      SelectionDAGLowering HSDL(HSDAG, TLI, FuncInfo);
4747      // Set the current basic block to the mbb we wish to insert the code into
4748      BB = BitTestCases[i].Parent;
4749      HSDL.setCurrentBasicBlock(BB);
4750      // Emit the code
4751      HSDL.visitBitTestHeader(BitTestCases[i]);
4752      HSDAG.setRoot(HSDL.getRoot());
4753      CodeGenAndEmitDAG(HSDAG);
4754    }
4755
4756    for (unsigned j = 0, ej = BitTestCases[i].Cases.size(); j != ej; ++j) {
4757      SelectionDAG BSDAG(TLI, MF, getAnalysisToUpdate<MachineModuleInfo>());
4758      CurDAG = &BSDAG;
4759      SelectionDAGLowering BSDL(BSDAG, TLI, FuncInfo);
4760      // Set the current basic block to the mbb we wish to insert the code into
4761      BB = BitTestCases[i].Cases[j].ThisBB;
4762      BSDL.setCurrentBasicBlock(BB);
4763      // Emit the code
4764      if (j+1 != ej)
4765        BSDL.visitBitTestCase(BitTestCases[i].Cases[j+1].ThisBB,
4766                              BitTestCases[i].Reg,
4767                              BitTestCases[i].Cases[j]);
4768      else
4769        BSDL.visitBitTestCase(BitTestCases[i].Default,
4770                              BitTestCases[i].Reg,
4771                              BitTestCases[i].Cases[j]);
4772
4773
4774      BSDAG.setRoot(BSDL.getRoot());
4775      CodeGenAndEmitDAG(BSDAG);
4776    }
4777
4778    // Update PHI Nodes
4779    for (unsigned pi = 0, pe = PHINodesToUpdate.size(); pi != pe; ++pi) {
4780      MachineInstr *PHI = PHINodesToUpdate[pi].first;
4781      MachineBasicBlock *PHIBB = PHI->getParent();
4782      assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
4783             "This is not a machine PHI node that we are updating!");
4784      // This is "default" BB. We have two jumps to it. From "header" BB and
4785      // from last "case" BB.
4786      if (PHIBB == BitTestCases[i].Default) {
4787        PHI->addRegOperand(PHINodesToUpdate[pi].second, false);
4788        PHI->addMachineBasicBlockOperand(BitTestCases[i].Parent);
4789        PHI->addRegOperand(PHINodesToUpdate[pi].second, false);
4790        PHI->addMachineBasicBlockOperand(BitTestCases[i].Cases.back().ThisBB);
4791      }
4792      // One of "cases" BB.
4793      for (unsigned j = 0, ej = BitTestCases[i].Cases.size(); j != ej; ++j) {
4794        MachineBasicBlock* cBB = BitTestCases[i].Cases[j].ThisBB;
4795        if (cBB->succ_end() !=
4796            std::find(cBB->succ_begin(),cBB->succ_end(), PHIBB)) {
4797          PHI->addRegOperand(PHINodesToUpdate[pi].second, false);
4798          PHI->addMachineBasicBlockOperand(cBB);
4799        }
4800      }
4801    }
4802  }
4803
4804  // If the JumpTable record is filled in, then we need to emit a jump table.
4805  // Updating the PHI nodes is tricky in this case, since we need to determine
4806  // whether the PHI is a successor of the range check MBB or the jump table MBB
4807  for (unsigned i = 0, e = JTCases.size(); i != e; ++i) {
4808    // Lower header first, if it wasn't already lowered
4809    if (!JTCases[i].first.Emitted) {
4810      SelectionDAG HSDAG(TLI, MF, getAnalysisToUpdate<MachineModuleInfo>());
4811      CurDAG = &HSDAG;
4812      SelectionDAGLowering HSDL(HSDAG, TLI, FuncInfo);
4813      // Set the current basic block to the mbb we wish to insert the code into
4814      BB = JTCases[i].first.HeaderBB;
4815      HSDL.setCurrentBasicBlock(BB);
4816      // Emit the code
4817      HSDL.visitJumpTableHeader(JTCases[i].second, JTCases[i].first);
4818      HSDAG.setRoot(HSDL.getRoot());
4819      CodeGenAndEmitDAG(HSDAG);
4820    }
4821
4822    SelectionDAG JSDAG(TLI, MF, getAnalysisToUpdate<MachineModuleInfo>());
4823    CurDAG = &JSDAG;
4824    SelectionDAGLowering JSDL(JSDAG, TLI, FuncInfo);
4825    // Set the current basic block to the mbb we wish to insert the code into
4826    BB = JTCases[i].second.MBB;
4827    JSDL.setCurrentBasicBlock(BB);
4828    // Emit the code
4829    JSDL.visitJumpTable(JTCases[i].second);
4830    JSDAG.setRoot(JSDL.getRoot());
4831    CodeGenAndEmitDAG(JSDAG);
4832
4833    // Update PHI Nodes
4834    for (unsigned pi = 0, pe = PHINodesToUpdate.size(); pi != pe; ++pi) {
4835      MachineInstr *PHI = PHINodesToUpdate[pi].first;
4836      MachineBasicBlock *PHIBB = PHI->getParent();
4837      assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
4838             "This is not a machine PHI node that we are updating!");
4839      // "default" BB. We can go there only from header BB.
4840      if (PHIBB == JTCases[i].second.Default) {
4841        PHI->addRegOperand(PHINodesToUpdate[pi].second, false);
4842        PHI->addMachineBasicBlockOperand(JTCases[i].first.HeaderBB);
4843      }
4844      // JT BB. Just iterate over successors here
4845      if (BB->succ_end() != std::find(BB->succ_begin(),BB->succ_end(), PHIBB)) {
4846        PHI->addRegOperand(PHINodesToUpdate[pi].second, false);
4847        PHI->addMachineBasicBlockOperand(BB);
4848      }
4849    }
4850  }
4851
4852  // If the switch block involved a branch to one of the actual successors, we
4853  // need to update PHI nodes in that block.
4854  for (unsigned i = 0, e = PHINodesToUpdate.size(); i != e; ++i) {
4855    MachineInstr *PHI = PHINodesToUpdate[i].first;
4856    assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
4857           "This is not a machine PHI node that we are updating!");
4858    if (BB->isSuccessor(PHI->getParent())) {
4859      PHI->addRegOperand(PHINodesToUpdate[i].second, false);
4860      PHI->addMachineBasicBlockOperand(BB);
4861    }
4862  }
4863
4864  // If we generated any switch lowering information, build and codegen any
4865  // additional DAGs necessary.
4866  for (unsigned i = 0, e = SwitchCases.size(); i != e; ++i) {
4867    SelectionDAG SDAG(TLI, MF, getAnalysisToUpdate<MachineModuleInfo>());
4868    CurDAG = &SDAG;
4869    SelectionDAGLowering SDL(SDAG, TLI, FuncInfo);
4870
4871    // Set the current basic block to the mbb we wish to insert the code into
4872    BB = SwitchCases[i].ThisBB;
4873    SDL.setCurrentBasicBlock(BB);
4874
4875    // Emit the code
4876    SDL.visitSwitchCase(SwitchCases[i]);
4877    SDAG.setRoot(SDL.getRoot());
4878    CodeGenAndEmitDAG(SDAG);
4879
4880    // Handle any PHI nodes in successors of this chunk, as if we were coming
4881    // from the original BB before switch expansion.  Note that PHI nodes can
4882    // occur multiple times in PHINodesToUpdate.  We have to be very careful to
4883    // handle them the right number of times.
4884    while ((BB = SwitchCases[i].TrueBB)) {  // Handle LHS and RHS.
4885      for (MachineBasicBlock::iterator Phi = BB->begin();
4886           Phi != BB->end() && Phi->getOpcode() == TargetInstrInfo::PHI; ++Phi){
4887        // This value for this PHI node is recorded in PHINodesToUpdate, get it.
4888        for (unsigned pn = 0; ; ++pn) {
4889          assert(pn != PHINodesToUpdate.size() && "Didn't find PHI entry!");
4890          if (PHINodesToUpdate[pn].first == Phi) {
4891            Phi->addRegOperand(PHINodesToUpdate[pn].second, false);
4892            Phi->addMachineBasicBlockOperand(SwitchCases[i].ThisBB);
4893            break;
4894          }
4895        }
4896      }
4897
4898      // Don't process RHS if same block as LHS.
4899      if (BB == SwitchCases[i].FalseBB)
4900        SwitchCases[i].FalseBB = 0;
4901
4902      // If we haven't handled the RHS, do so now.  Otherwise, we're done.
4903      SwitchCases[i].TrueBB = SwitchCases[i].FalseBB;
4904      SwitchCases[i].FalseBB = 0;
4905    }
4906    assert(SwitchCases[i].TrueBB == 0 && SwitchCases[i].FalseBB == 0);
4907  }
4908}
4909
4910
4911//===----------------------------------------------------------------------===//
4912/// ScheduleAndEmitDAG - Pick a safe ordering and emit instructions for each
4913/// target node in the graph.
4914void SelectionDAGISel::ScheduleAndEmitDAG(SelectionDAG &DAG) {
4915  if (ViewSchedDAGs) DAG.viewGraph();
4916
4917  RegisterScheduler::FunctionPassCtor Ctor = RegisterScheduler::getDefault();
4918
4919  if (!Ctor) {
4920    Ctor = ISHeuristic;
4921    RegisterScheduler::setDefault(Ctor);
4922  }
4923
4924  ScheduleDAG *SL = Ctor(this, &DAG, BB);
4925  BB = SL->Run();
4926  delete SL;
4927}
4928
4929
4930HazardRecognizer *SelectionDAGISel::CreateTargetHazardRecognizer() {
4931  return new HazardRecognizer();
4932}
4933
4934//===----------------------------------------------------------------------===//
4935// Helper functions used by the generated instruction selector.
4936//===----------------------------------------------------------------------===//
4937// Calls to these methods are generated by tblgen.
4938
4939/// CheckAndMask - The isel is trying to match something like (and X, 255).  If
4940/// the dag combiner simplified the 255, we still want to match.  RHS is the
4941/// actual value in the DAG on the RHS of an AND, and DesiredMaskS is the value
4942/// specified in the .td file (e.g. 255).
4943bool SelectionDAGISel::CheckAndMask(SDOperand LHS, ConstantSDNode *RHS,
4944                                    int64_t DesiredMaskS) {
4945  uint64_t ActualMask = RHS->getValue();
4946  uint64_t DesiredMask =DesiredMaskS & MVT::getIntVTBitMask(LHS.getValueType());
4947
4948  // If the actual mask exactly matches, success!
4949  if (ActualMask == DesiredMask)
4950    return true;
4951
4952  // If the actual AND mask is allowing unallowed bits, this doesn't match.
4953  if (ActualMask & ~DesiredMask)
4954    return false;
4955
4956  // Otherwise, the DAG Combiner may have proven that the value coming in is
4957  // either already zero or is not demanded.  Check for known zero input bits.
4958  uint64_t NeededMask = DesiredMask & ~ActualMask;
4959  if (getTargetLowering().MaskedValueIsZero(LHS, NeededMask))
4960    return true;
4961
4962  // TODO: check to see if missing bits are just not demanded.
4963
4964  // Otherwise, this pattern doesn't match.
4965  return false;
4966}
4967
4968/// CheckOrMask - The isel is trying to match something like (or X, 255).  If
4969/// the dag combiner simplified the 255, we still want to match.  RHS is the
4970/// actual value in the DAG on the RHS of an OR, and DesiredMaskS is the value
4971/// specified in the .td file (e.g. 255).
4972bool SelectionDAGISel::CheckOrMask(SDOperand LHS, ConstantSDNode *RHS,
4973                                    int64_t DesiredMaskS) {
4974  uint64_t ActualMask = RHS->getValue();
4975  uint64_t DesiredMask =DesiredMaskS & MVT::getIntVTBitMask(LHS.getValueType());
4976
4977  // If the actual mask exactly matches, success!
4978  if (ActualMask == DesiredMask)
4979    return true;
4980
4981  // If the actual AND mask is allowing unallowed bits, this doesn't match.
4982  if (ActualMask & ~DesiredMask)
4983    return false;
4984
4985  // Otherwise, the DAG Combiner may have proven that the value coming in is
4986  // either already zero or is not demanded.  Check for known zero input bits.
4987  uint64_t NeededMask = DesiredMask & ~ActualMask;
4988
4989  uint64_t KnownZero, KnownOne;
4990  getTargetLowering().ComputeMaskedBits(LHS, NeededMask, KnownZero, KnownOne);
4991
4992  // If all the missing bits in the or are already known to be set, match!
4993  if ((NeededMask & KnownOne) == NeededMask)
4994    return true;
4995
4996  // TODO: check to see if missing bits are just not demanded.
4997
4998  // Otherwise, this pattern doesn't match.
4999  return false;
5000}
5001
5002
5003/// SelectInlineAsmMemoryOperands - Calls to this are automatically generated
5004/// by tblgen.  Others should not call it.
5005void SelectionDAGISel::
5006SelectInlineAsmMemoryOperands(std::vector<SDOperand> &Ops, SelectionDAG &DAG) {
5007  std::vector<SDOperand> InOps;
5008  std::swap(InOps, Ops);
5009
5010  Ops.push_back(InOps[0]);  // input chain.
5011  Ops.push_back(InOps[1]);  // input asm string.
5012
5013  unsigned i = 2, e = InOps.size();
5014  if (InOps[e-1].getValueType() == MVT::Flag)
5015    --e;  // Don't process a flag operand if it is here.
5016
5017  while (i != e) {
5018    unsigned Flags = cast<ConstantSDNode>(InOps[i])->getValue();
5019    if ((Flags & 7) != 4 /*MEM*/) {
5020      // Just skip over this operand, copying the operands verbatim.
5021      Ops.insert(Ops.end(), InOps.begin()+i, InOps.begin()+i+(Flags >> 3) + 1);
5022      i += (Flags >> 3) + 1;
5023    } else {
5024      assert((Flags >> 3) == 1 && "Memory operand with multiple values?");
5025      // Otherwise, this is a memory operand.  Ask the target to select it.
5026      std::vector<SDOperand> SelOps;
5027      if (SelectInlineAsmMemoryOperand(InOps[i+1], 'm', SelOps, DAG)) {
5028        cerr << "Could not match memory address.  Inline asm failure!\n";
5029        exit(1);
5030      }
5031
5032      // Add this to the output node.
5033      MVT::ValueType IntPtrTy = DAG.getTargetLoweringInfo().getPointerTy();
5034      Ops.push_back(DAG.getTargetConstant(4/*MEM*/ | (SelOps.size() << 3),
5035                                          IntPtrTy));
5036      Ops.insert(Ops.end(), SelOps.begin(), SelOps.end());
5037      i += 2;
5038    }
5039  }
5040
5041  // Add the flag input back if present.
5042  if (e != InOps.size())
5043    Ops.push_back(InOps.back());
5044}
5045
5046char SelectionDAGISel::ID = 0;
5047