SelectionDAGISel.cpp revision 2048b85c7c2c987874b9423e682ec8e60b60574b
1//===-- SelectionDAGISel.cpp - Implement the SelectionDAGISel class -------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAGISel class.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "isel"
15#include "ScheduleDAGSDNodes.h"
16#include "SelectionDAGBuilder.h"
17#include "FunctionLoweringInfo.h"
18#include "llvm/CodeGen/SelectionDAGISel.h"
19#include "llvm/Analysis/AliasAnalysis.h"
20#include "llvm/Analysis/DebugInfo.h"
21#include "llvm/Constants.h"
22#include "llvm/CallingConv.h"
23#include "llvm/DerivedTypes.h"
24#include "llvm/Function.h"
25#include "llvm/GlobalVariable.h"
26#include "llvm/InlineAsm.h"
27#include "llvm/Instructions.h"
28#include "llvm/Intrinsics.h"
29#include "llvm/IntrinsicInst.h"
30#include "llvm/LLVMContext.h"
31#include "llvm/CodeGen/FastISel.h"
32#include "llvm/CodeGen/GCStrategy.h"
33#include "llvm/CodeGen/GCMetadata.h"
34#include "llvm/CodeGen/MachineFunction.h"
35#include "llvm/CodeGen/MachineFunctionAnalysis.h"
36#include "llvm/CodeGen/MachineFrameInfo.h"
37#include "llvm/CodeGen/MachineInstrBuilder.h"
38#include "llvm/CodeGen/MachineJumpTableInfo.h"
39#include "llvm/CodeGen/MachineModuleInfo.h"
40#include "llvm/CodeGen/MachineRegisterInfo.h"
41#include "llvm/CodeGen/ScheduleHazardRecognizer.h"
42#include "llvm/CodeGen/SchedulerRegistry.h"
43#include "llvm/CodeGen/SelectionDAG.h"
44#include "llvm/CodeGen/DwarfWriter.h"
45#include "llvm/Target/TargetRegisterInfo.h"
46#include "llvm/Target/TargetData.h"
47#include "llvm/Target/TargetFrameInfo.h"
48#include "llvm/Target/TargetIntrinsicInfo.h"
49#include "llvm/Target/TargetInstrInfo.h"
50#include "llvm/Target/TargetLowering.h"
51#include "llvm/Target/TargetMachine.h"
52#include "llvm/Target/TargetOptions.h"
53#include "llvm/Support/Compiler.h"
54#include "llvm/Support/Debug.h"
55#include "llvm/Support/ErrorHandling.h"
56#include "llvm/Support/MathExtras.h"
57#include "llvm/Support/Timer.h"
58#include "llvm/Support/raw_ostream.h"
59#include <algorithm>
60using namespace llvm;
61
62static cl::opt<bool>
63DisableLegalizeTypes("disable-legalize-types", cl::Hidden);
64static cl::opt<bool>
65EnableFastISelVerbose("fast-isel-verbose", cl::Hidden,
66          cl::desc("Enable verbose messages in the \"fast\" "
67                   "instruction selector"));
68static cl::opt<bool>
69EnableFastISelAbort("fast-isel-abort", cl::Hidden,
70          cl::desc("Enable abort calls when \"fast\" instruction fails"));
71static cl::opt<bool>
72SchedLiveInCopies("schedule-livein-copies", cl::Hidden,
73                  cl::desc("Schedule copies of livein registers"),
74                  cl::init(false));
75
76#ifndef NDEBUG
77static cl::opt<bool>
78ViewDAGCombine1("view-dag-combine1-dags", cl::Hidden,
79          cl::desc("Pop up a window to show dags before the first "
80                   "dag combine pass"));
81static cl::opt<bool>
82ViewLegalizeTypesDAGs("view-legalize-types-dags", cl::Hidden,
83          cl::desc("Pop up a window to show dags before legalize types"));
84static cl::opt<bool>
85ViewLegalizeDAGs("view-legalize-dags", cl::Hidden,
86          cl::desc("Pop up a window to show dags before legalize"));
87static cl::opt<bool>
88ViewDAGCombine2("view-dag-combine2-dags", cl::Hidden,
89          cl::desc("Pop up a window to show dags before the second "
90                   "dag combine pass"));
91static cl::opt<bool>
92ViewDAGCombineLT("view-dag-combine-lt-dags", cl::Hidden,
93          cl::desc("Pop up a window to show dags before the post legalize types"
94                   " dag combine pass"));
95static cl::opt<bool>
96ViewISelDAGs("view-isel-dags", cl::Hidden,
97          cl::desc("Pop up a window to show isel dags as they are selected"));
98static cl::opt<bool>
99ViewSchedDAGs("view-sched-dags", cl::Hidden,
100          cl::desc("Pop up a window to show sched dags as they are processed"));
101static cl::opt<bool>
102ViewSUnitDAGs("view-sunit-dags", cl::Hidden,
103      cl::desc("Pop up a window to show SUnit dags after they are processed"));
104#else
105static const bool ViewDAGCombine1 = false,
106                  ViewLegalizeTypesDAGs = false, ViewLegalizeDAGs = false,
107                  ViewDAGCombine2 = false,
108                  ViewDAGCombineLT = false,
109                  ViewISelDAGs = false, ViewSchedDAGs = false,
110                  ViewSUnitDAGs = false;
111#endif
112
113//===---------------------------------------------------------------------===//
114///
115/// RegisterScheduler class - Track the registration of instruction schedulers.
116///
117//===---------------------------------------------------------------------===//
118MachinePassRegistry RegisterScheduler::Registry;
119
120//===---------------------------------------------------------------------===//
121///
122/// ISHeuristic command line option for instruction schedulers.
123///
124//===---------------------------------------------------------------------===//
125static cl::opt<RegisterScheduler::FunctionPassCtor, false,
126               RegisterPassParser<RegisterScheduler> >
127ISHeuristic("pre-RA-sched",
128            cl::init(&createDefaultScheduler),
129            cl::desc("Instruction schedulers available (before register"
130                     " allocation):"));
131
132static RegisterScheduler
133defaultListDAGScheduler("default", "Best scheduler for the target",
134                        createDefaultScheduler);
135
136namespace llvm {
137  //===--------------------------------------------------------------------===//
138  /// createDefaultScheduler - This creates an instruction scheduler appropriate
139  /// for the target.
140  ScheduleDAGSDNodes* createDefaultScheduler(SelectionDAGISel *IS,
141                                             CodeGenOpt::Level OptLevel) {
142    const TargetLowering &TLI = IS->getTargetLowering();
143
144    if (OptLevel == CodeGenOpt::None)
145      return createFastDAGScheduler(IS, OptLevel);
146    if (TLI.getSchedulingPreference() == TargetLowering::SchedulingForLatency)
147      return createTDListDAGScheduler(IS, OptLevel);
148    assert(TLI.getSchedulingPreference() ==
149         TargetLowering::SchedulingForRegPressure && "Unknown sched type!");
150    return createBURRListDAGScheduler(IS, OptLevel);
151  }
152}
153
154// EmitInstrWithCustomInserter - This method should be implemented by targets
155// that mark instructions with the 'usesCustomInserter' flag.  These
156// instructions are special in various ways, which require special support to
157// insert.  The specified MachineInstr is created but not inserted into any
158// basic blocks, and this method is called to expand it into a sequence of
159// instructions, potentially also creating new basic blocks and control flow.
160// When new basic blocks are inserted and the edges from MBB to its successors
161// are modified, the method should insert pairs of <OldSucc, NewSucc> into the
162// DenseMap.
163MachineBasicBlock *TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
164                                                         MachineBasicBlock *MBB,
165                   DenseMap<MachineBasicBlock*, MachineBasicBlock*> *EM) const {
166#ifndef NDEBUG
167  errs() << "If a target marks an instruction with "
168          "'usesCustomInserter', it must implement "
169          "TargetLowering::EmitInstrWithCustomInserter!";
170#endif
171  llvm_unreachable(0);
172  return 0;
173}
174
175/// EmitLiveInCopy - Emit a copy for a live in physical register. If the
176/// physical register has only a single copy use, then coalesced the copy
177/// if possible.
178static void EmitLiveInCopy(MachineBasicBlock *MBB,
179                           MachineBasicBlock::iterator &InsertPos,
180                           unsigned VirtReg, unsigned PhysReg,
181                           const TargetRegisterClass *RC,
182                           DenseMap<MachineInstr*, unsigned> &CopyRegMap,
183                           const MachineRegisterInfo &MRI,
184                           const TargetRegisterInfo &TRI,
185                           const TargetInstrInfo &TII) {
186  unsigned NumUses = 0;
187  MachineInstr *UseMI = NULL;
188  for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(VirtReg),
189         UE = MRI.use_end(); UI != UE; ++UI) {
190    UseMI = &*UI;
191    if (++NumUses > 1)
192      break;
193  }
194
195  // If the number of uses is not one, or the use is not a move instruction,
196  // don't coalesce. Also, only coalesce away a virtual register to virtual
197  // register copy.
198  bool Coalesced = false;
199  unsigned SrcReg, DstReg, SrcSubReg, DstSubReg;
200  if (NumUses == 1 &&
201      TII.isMoveInstr(*UseMI, SrcReg, DstReg, SrcSubReg, DstSubReg) &&
202      TargetRegisterInfo::isVirtualRegister(DstReg)) {
203    VirtReg = DstReg;
204    Coalesced = true;
205  }
206
207  // Now find an ideal location to insert the copy.
208  MachineBasicBlock::iterator Pos = InsertPos;
209  while (Pos != MBB->begin()) {
210    MachineInstr *PrevMI = prior(Pos);
211    DenseMap<MachineInstr*, unsigned>::iterator RI = CopyRegMap.find(PrevMI);
212    // copyRegToReg might emit multiple instructions to do a copy.
213    unsigned CopyDstReg = (RI == CopyRegMap.end()) ? 0 : RI->second;
214    if (CopyDstReg && !TRI.regsOverlap(CopyDstReg, PhysReg))
215      // This is what the BB looks like right now:
216      // r1024 = mov r0
217      // ...
218      // r1    = mov r1024
219      //
220      // We want to insert "r1025 = mov r1". Inserting this copy below the
221      // move to r1024 makes it impossible for that move to be coalesced.
222      //
223      // r1025 = mov r1
224      // r1024 = mov r0
225      // ...
226      // r1    = mov 1024
227      // r2    = mov 1025
228      break; // Woot! Found a good location.
229    --Pos;
230  }
231
232  bool Emitted = TII.copyRegToReg(*MBB, Pos, VirtReg, PhysReg, RC, RC);
233  assert(Emitted && "Unable to issue a live-in copy instruction!\n");
234  (void) Emitted;
235
236  CopyRegMap.insert(std::make_pair(prior(Pos), VirtReg));
237  if (Coalesced) {
238    if (&*InsertPos == UseMI) ++InsertPos;
239    MBB->erase(UseMI);
240  }
241}
242
243/// EmitLiveInCopies - If this is the first basic block in the function,
244/// and if it has live ins that need to be copied into vregs, emit the
245/// copies into the block.
246static void EmitLiveInCopies(MachineBasicBlock *EntryMBB,
247                             const MachineRegisterInfo &MRI,
248                             const TargetRegisterInfo &TRI,
249                             const TargetInstrInfo &TII) {
250  if (SchedLiveInCopies) {
251    // Emit the copies at a heuristically-determined location in the block.
252    DenseMap<MachineInstr*, unsigned> CopyRegMap;
253    MachineBasicBlock::iterator InsertPos = EntryMBB->begin();
254    for (MachineRegisterInfo::livein_iterator LI = MRI.livein_begin(),
255           E = MRI.livein_end(); LI != E; ++LI)
256      if (LI->second) {
257        const TargetRegisterClass *RC = MRI.getRegClass(LI->second);
258        EmitLiveInCopy(EntryMBB, InsertPos, LI->second, LI->first,
259                       RC, CopyRegMap, MRI, TRI, TII);
260      }
261  } else {
262    // Emit the copies into the top of the block.
263    for (MachineRegisterInfo::livein_iterator LI = MRI.livein_begin(),
264           E = MRI.livein_end(); LI != E; ++LI)
265      if (LI->second) {
266        const TargetRegisterClass *RC = MRI.getRegClass(LI->second);
267        bool Emitted = TII.copyRegToReg(*EntryMBB, EntryMBB->begin(),
268                                        LI->second, LI->first, RC, RC);
269        assert(Emitted && "Unable to issue a live-in copy instruction!\n");
270        (void) Emitted;
271      }
272  }
273}
274
275//===----------------------------------------------------------------------===//
276// SelectionDAGISel code
277//===----------------------------------------------------------------------===//
278
279SelectionDAGISel::SelectionDAGISel(TargetMachine &tm, CodeGenOpt::Level OL) :
280  MachineFunctionPass(&ID), TM(tm), TLI(*tm.getTargetLowering()),
281  FuncInfo(new FunctionLoweringInfo(TLI)),
282  CurDAG(new SelectionDAG(TLI, *FuncInfo)),
283  SDB(new SelectionDAGBuilder(*CurDAG, TLI, *FuncInfo, OL)),
284  GFI(),
285  OptLevel(OL),
286  DAGSize(0)
287{}
288
289SelectionDAGISel::~SelectionDAGISel() {
290  delete SDB;
291  delete CurDAG;
292  delete FuncInfo;
293}
294
295unsigned SelectionDAGISel::MakeReg(EVT VT) {
296  return RegInfo->createVirtualRegister(TLI.getRegClassFor(VT));
297}
298
299void SelectionDAGISel::getAnalysisUsage(AnalysisUsage &AU) const {
300  AU.addRequired<AliasAnalysis>();
301  AU.addPreserved<AliasAnalysis>();
302  AU.addRequired<GCModuleInfo>();
303  AU.addPreserved<GCModuleInfo>();
304  AU.addRequired<DwarfWriter>();
305  AU.addPreserved<DwarfWriter>();
306  MachineFunctionPass::getAnalysisUsage(AU);
307}
308
309bool SelectionDAGISel::runOnMachineFunction(MachineFunction &mf) {
310  Function &Fn = *mf.getFunction();
311
312  // Do some sanity-checking on the command-line options.
313  assert((!EnableFastISelVerbose || EnableFastISel) &&
314         "-fast-isel-verbose requires -fast-isel");
315  assert((!EnableFastISelAbort || EnableFastISel) &&
316         "-fast-isel-abort requires -fast-isel");
317
318  // Get alias analysis for load/store combining.
319  AA = &getAnalysis<AliasAnalysis>();
320
321  MF = &mf;
322  const TargetInstrInfo &TII = *TM.getInstrInfo();
323  const TargetRegisterInfo &TRI = *TM.getRegisterInfo();
324
325  if (Fn.hasGC())
326    GFI = &getAnalysis<GCModuleInfo>().getFunctionInfo(Fn);
327  else
328    GFI = 0;
329  RegInfo = &MF->getRegInfo();
330  DEBUG(errs() << "\n\n\n=== " << Fn.getName() << "\n");
331
332  MachineModuleInfo *MMI = getAnalysisIfAvailable<MachineModuleInfo>();
333  DwarfWriter *DW = getAnalysisIfAvailable<DwarfWriter>();
334  CurDAG->init(*MF, MMI, DW);
335  FuncInfo->set(Fn, *MF, EnableFastISel);
336  SDB->init(GFI, *AA);
337
338  for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
339    if (InvokeInst *Invoke = dyn_cast<InvokeInst>(I->getTerminator()))
340      // Mark landing pad.
341      FuncInfo->MBBMap[Invoke->getSuccessor(1)]->setIsLandingPad();
342
343  SelectAllBasicBlocks(Fn, *MF, MMI, DW, TII);
344
345  // If the first basic block in the function has live ins that need to be
346  // copied into vregs, emit the copies into the top of the block before
347  // emitting the code for the block.
348  EmitLiveInCopies(MF->begin(), *RegInfo, TRI, TII);
349
350  // Add function live-ins to entry block live-in set.
351  for (MachineRegisterInfo::livein_iterator I = RegInfo->livein_begin(),
352         E = RegInfo->livein_end(); I != E; ++I)
353    MF->begin()->addLiveIn(I->first);
354
355#ifndef NDEBUG
356  assert(FuncInfo->CatchInfoFound.size() == FuncInfo->CatchInfoLost.size() &&
357         "Not all catch info was assigned to a landing pad!");
358#endif
359
360  FuncInfo->clear();
361
362  return true;
363}
364
365static void copyCatchInfo(BasicBlock *SrcBB, BasicBlock *DestBB,
366                          MachineModuleInfo *MMI, FunctionLoweringInfo &FLI) {
367  for (BasicBlock::iterator I = SrcBB->begin(), E = --SrcBB->end(); I != E; ++I)
368    if (EHSelectorInst *EHSel = dyn_cast<EHSelectorInst>(I)) {
369      // Apply the catch info to DestBB.
370      AddCatchInfo(*EHSel, MMI, FLI.MBBMap[DestBB]);
371#ifndef NDEBUG
372      if (!FLI.MBBMap[SrcBB]->isLandingPad())
373        FLI.CatchInfoFound.insert(EHSel);
374#endif
375    }
376}
377
378void SelectionDAGISel::SelectBasicBlock(BasicBlock *LLVMBB,
379                                        BasicBlock::iterator Begin,
380                                        BasicBlock::iterator End,
381                                        bool &HadTailCall) {
382  SDB->setCurrentBasicBlock(BB);
383  MetadataContext &TheMetadata = LLVMBB->getParent()->getContext().getMetadata();
384  unsigned MDDbgKind = TheMetadata.getMDKind("dbg");
385
386  // Lower all of the non-terminator instructions. If a call is emitted
387  // as a tail call, cease emitting nodes for this block.
388  for (BasicBlock::iterator I = Begin; I != End && !SDB->HasTailCall; ++I) {
389    if (MDDbgKind) {
390      // Update DebugLoc if debug information is attached with this
391      // instruction.
392      if (!isa<DbgInfoIntrinsic>(I))
393        if (MDNode *Dbg = TheMetadata.getMD(MDDbgKind, I)) {
394          DILocation DILoc(Dbg);
395          DebugLoc Loc = ExtractDebugLocation(DILoc, MF->getDebugLocInfo());
396          SDB->setCurDebugLoc(Loc);
397          if (MF->getDefaultDebugLoc().isUnknown())
398            MF->setDefaultDebugLoc(Loc);
399        }
400    }
401    if (!isa<TerminatorInst>(I))
402      SDB->visit(*I);
403  }
404
405  if (!SDB->HasTailCall) {
406    // Ensure that all instructions which are used outside of their defining
407    // blocks are available as virtual registers.  Invoke is handled elsewhere.
408    for (BasicBlock::iterator I = Begin; I != End; ++I)
409      if (!isa<PHINode>(I) && !isa<InvokeInst>(I))
410        SDB->CopyToExportRegsIfNeeded(I);
411
412    // Handle PHI nodes in successor blocks.
413    if (End == LLVMBB->end()) {
414      HandlePHINodesInSuccessorBlocks(LLVMBB);
415
416      // Lower the terminator after the copies are emitted.
417      SDB->visit(*LLVMBB->getTerminator());
418    }
419  }
420
421  // Make sure the root of the DAG is up-to-date.
422  CurDAG->setRoot(SDB->getControlRoot());
423
424  // Final step, emit the lowered DAG as machine code.
425  CodeGenAndEmitDAG();
426  HadTailCall = SDB->HasTailCall;
427  SDB->clear();
428}
429
430void SelectionDAGISel::ComputeLiveOutVRegInfo() {
431  SmallPtrSet<SDNode*, 128> VisitedNodes;
432  SmallVector<SDNode*, 128> Worklist;
433
434  Worklist.push_back(CurDAG->getRoot().getNode());
435
436  APInt Mask;
437  APInt KnownZero;
438  APInt KnownOne;
439
440  while (!Worklist.empty()) {
441    SDNode *N = Worklist.back();
442    Worklist.pop_back();
443
444    // If we've already seen this node, ignore it.
445    if (!VisitedNodes.insert(N))
446      continue;
447
448    // Otherwise, add all chain operands to the worklist.
449    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
450      if (N->getOperand(i).getValueType() == MVT::Other)
451        Worklist.push_back(N->getOperand(i).getNode());
452
453    // If this is a CopyToReg with a vreg dest, process it.
454    if (N->getOpcode() != ISD::CopyToReg)
455      continue;
456
457    unsigned DestReg = cast<RegisterSDNode>(N->getOperand(1))->getReg();
458    if (!TargetRegisterInfo::isVirtualRegister(DestReg))
459      continue;
460
461    // Ignore non-scalar or non-integer values.
462    SDValue Src = N->getOperand(2);
463    EVT SrcVT = Src.getValueType();
464    if (!SrcVT.isInteger() || SrcVT.isVector())
465      continue;
466
467    unsigned NumSignBits = CurDAG->ComputeNumSignBits(Src);
468    Mask = APInt::getAllOnesValue(SrcVT.getSizeInBits());
469    CurDAG->ComputeMaskedBits(Src, Mask, KnownZero, KnownOne);
470
471    // Only install this information if it tells us something.
472    if (NumSignBits != 1 || KnownZero != 0 || KnownOne != 0) {
473      DestReg -= TargetRegisterInfo::FirstVirtualRegister;
474      if (DestReg >= FuncInfo->LiveOutRegInfo.size())
475        FuncInfo->LiveOutRegInfo.resize(DestReg+1);
476      FunctionLoweringInfo::LiveOutInfo &LOI =
477        FuncInfo->LiveOutRegInfo[DestReg];
478      LOI.NumSignBits = NumSignBits;
479      LOI.KnownOne = KnownOne;
480      LOI.KnownZero = KnownZero;
481    }
482  }
483}
484
485void SelectionDAGISel::CodeGenAndEmitDAG() {
486  std::string GroupName;
487  if (TimePassesIsEnabled)
488    GroupName = "Instruction Selection and Scheduling";
489  std::string BlockName;
490  if (ViewDAGCombine1 || ViewLegalizeTypesDAGs || ViewLegalizeDAGs ||
491      ViewDAGCombine2 || ViewDAGCombineLT || ViewISelDAGs || ViewSchedDAGs ||
492      ViewSUnitDAGs)
493    BlockName = MF->getFunction()->getNameStr() + ":" +
494                BB->getBasicBlock()->getNameStr();
495
496  DEBUG(errs() << "Initial selection DAG:\n");
497  DEBUG(CurDAG->dump());
498
499  if (ViewDAGCombine1) CurDAG->viewGraph("dag-combine1 input for " + BlockName);
500
501  // Run the DAG combiner in pre-legalize mode.
502  if (TimePassesIsEnabled) {
503    NamedRegionTimer T("DAG Combining 1", GroupName);
504    CurDAG->Combine(Unrestricted, *AA, OptLevel);
505  } else {
506    CurDAG->Combine(Unrestricted, *AA, OptLevel);
507  }
508
509  DEBUG(errs() << "Optimized lowered selection DAG:\n");
510  DEBUG(CurDAG->dump());
511
512  // Second step, hack on the DAG until it only uses operations and types that
513  // the target supports.
514  if (!DisableLegalizeTypes) {
515    if (ViewLegalizeTypesDAGs) CurDAG->viewGraph("legalize-types input for " +
516                                                 BlockName);
517
518    bool Changed;
519    if (TimePassesIsEnabled) {
520      NamedRegionTimer T("Type Legalization", GroupName);
521      Changed = CurDAG->LegalizeTypes();
522    } else {
523      Changed = CurDAG->LegalizeTypes();
524    }
525
526    DEBUG(errs() << "Type-legalized selection DAG:\n");
527    DEBUG(CurDAG->dump());
528
529    if (Changed) {
530      if (ViewDAGCombineLT)
531        CurDAG->viewGraph("dag-combine-lt input for " + BlockName);
532
533      // Run the DAG combiner in post-type-legalize mode.
534      if (TimePassesIsEnabled) {
535        NamedRegionTimer T("DAG Combining after legalize types", GroupName);
536        CurDAG->Combine(NoIllegalTypes, *AA, OptLevel);
537      } else {
538        CurDAG->Combine(NoIllegalTypes, *AA, OptLevel);
539      }
540
541      DEBUG(errs() << "Optimized type-legalized selection DAG:\n");
542      DEBUG(CurDAG->dump());
543    }
544
545    if (TimePassesIsEnabled) {
546      NamedRegionTimer T("Vector Legalization", GroupName);
547      Changed = CurDAG->LegalizeVectors();
548    } else {
549      Changed = CurDAG->LegalizeVectors();
550    }
551
552    if (Changed) {
553      if (TimePassesIsEnabled) {
554        NamedRegionTimer T("Type Legalization 2", GroupName);
555        Changed = CurDAG->LegalizeTypes();
556      } else {
557        Changed = CurDAG->LegalizeTypes();
558      }
559
560      if (ViewDAGCombineLT)
561        CurDAG->viewGraph("dag-combine-lv input for " + BlockName);
562
563      // Run the DAG combiner in post-type-legalize mode.
564      if (TimePassesIsEnabled) {
565        NamedRegionTimer T("DAG Combining after legalize vectors", GroupName);
566        CurDAG->Combine(NoIllegalOperations, *AA, OptLevel);
567      } else {
568        CurDAG->Combine(NoIllegalOperations, *AA, OptLevel);
569      }
570
571      DEBUG(errs() << "Optimized vector-legalized selection DAG:\n");
572      DEBUG(CurDAG->dump());
573    }
574  }
575
576  if (ViewLegalizeDAGs) CurDAG->viewGraph("legalize input for " + BlockName);
577
578  if (TimePassesIsEnabled) {
579    NamedRegionTimer T("DAG Legalization", GroupName);
580    CurDAG->Legalize(DisableLegalizeTypes, OptLevel);
581  } else {
582    CurDAG->Legalize(DisableLegalizeTypes, OptLevel);
583  }
584
585  DEBUG(errs() << "Legalized selection DAG:\n");
586  DEBUG(CurDAG->dump());
587
588  if (ViewDAGCombine2) CurDAG->viewGraph("dag-combine2 input for " + BlockName);
589
590  // Run the DAG combiner in post-legalize mode.
591  if (TimePassesIsEnabled) {
592    NamedRegionTimer T("DAG Combining 2", GroupName);
593    CurDAG->Combine(NoIllegalOperations, *AA, OptLevel);
594  } else {
595    CurDAG->Combine(NoIllegalOperations, *AA, OptLevel);
596  }
597
598  DEBUG(errs() << "Optimized legalized selection DAG:\n");
599  DEBUG(CurDAG->dump());
600
601  if (ViewISelDAGs) CurDAG->viewGraph("isel input for " + BlockName);
602
603  if (OptLevel != CodeGenOpt::None)
604    ComputeLiveOutVRegInfo();
605
606  // Third, instruction select all of the operations to machine code, adding the
607  // code to the MachineBasicBlock.
608  if (TimePassesIsEnabled) {
609    NamedRegionTimer T("Instruction Selection", GroupName);
610    InstructionSelect();
611  } else {
612    InstructionSelect();
613  }
614
615  DEBUG(errs() << "Selected selection DAG:\n");
616  DEBUG(CurDAG->dump());
617
618  if (ViewSchedDAGs) CurDAG->viewGraph("scheduler input for " + BlockName);
619
620  // Schedule machine code.
621  ScheduleDAGSDNodes *Scheduler = CreateScheduler();
622  if (TimePassesIsEnabled) {
623    NamedRegionTimer T("Instruction Scheduling", GroupName);
624    Scheduler->Run(CurDAG, BB, BB->end());
625  } else {
626    Scheduler->Run(CurDAG, BB, BB->end());
627  }
628
629  if (ViewSUnitDAGs) Scheduler->viewGraph();
630
631  // Emit machine code to BB.  This can change 'BB' to the last block being
632  // inserted into.
633  if (TimePassesIsEnabled) {
634    NamedRegionTimer T("Instruction Creation", GroupName);
635    BB = Scheduler->EmitSchedule(&SDB->EdgeMapping);
636  } else {
637    BB = Scheduler->EmitSchedule(&SDB->EdgeMapping);
638  }
639
640  // Free the scheduler state.
641  if (TimePassesIsEnabled) {
642    NamedRegionTimer T("Instruction Scheduling Cleanup", GroupName);
643    delete Scheduler;
644  } else {
645    delete Scheduler;
646  }
647
648  DEBUG(errs() << "Selected machine code:\n");
649  DEBUG(BB->dump());
650}
651
652void SelectionDAGISel::SelectAllBasicBlocks(Function &Fn,
653                                            MachineFunction &MF,
654                                            MachineModuleInfo *MMI,
655                                            DwarfWriter *DW,
656                                            const TargetInstrInfo &TII) {
657  // Initialize the Fast-ISel state, if needed.
658  FastISel *FastIS = 0;
659  if (EnableFastISel)
660    FastIS = TLI.createFastISel(MF, MMI, DW,
661                                FuncInfo->ValueMap,
662                                FuncInfo->MBBMap,
663                                FuncInfo->StaticAllocaMap
664#ifndef NDEBUG
665                                , FuncInfo->CatchInfoLost
666#endif
667                                );
668
669  MetadataContext &TheMetadata = Fn.getContext().getMetadata();
670  unsigned MDDbgKind = TheMetadata.getMDKind("dbg");
671
672  // Iterate over all basic blocks in the function.
673  for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I) {
674    BasicBlock *LLVMBB = &*I;
675    BB = FuncInfo->MBBMap[LLVMBB];
676
677    BasicBlock::iterator const Begin = LLVMBB->begin();
678    BasicBlock::iterator const End = LLVMBB->end();
679    BasicBlock::iterator BI = Begin;
680
681    // Lower any arguments needed in this block if this is the entry block.
682    bool SuppressFastISel = false;
683    if (LLVMBB == &Fn.getEntryBlock()) {
684      LowerArguments(LLVMBB);
685
686      // If any of the arguments has the byval attribute, forgo
687      // fast-isel in the entry block.
688      if (FastIS) {
689        unsigned j = 1;
690        for (Function::arg_iterator I = Fn.arg_begin(), E = Fn.arg_end();
691             I != E; ++I, ++j)
692          if (Fn.paramHasAttr(j, Attribute::ByVal)) {
693            if (EnableFastISelVerbose || EnableFastISelAbort)
694              errs() << "FastISel skips entry block due to byval argument\n";
695            SuppressFastISel = true;
696            break;
697          }
698      }
699    }
700
701    if (MMI && BB->isLandingPad()) {
702      // Add a label to mark the beginning of the landing pad.  Deletion of the
703      // landing pad can thus be detected via the MachineModuleInfo.
704      unsigned LabelID = MMI->addLandingPad(BB);
705
706      const TargetInstrDesc &II = TII.get(TargetInstrInfo::EH_LABEL);
707      BuildMI(BB, SDB->getCurDebugLoc(), II).addImm(LabelID);
708
709      // Mark exception register as live in.
710      unsigned Reg = TLI.getExceptionAddressRegister();
711      if (Reg) BB->addLiveIn(Reg);
712
713      // Mark exception selector register as live in.
714      Reg = TLI.getExceptionSelectorRegister();
715      if (Reg) BB->addLiveIn(Reg);
716
717      // FIXME: Hack around an exception handling flaw (PR1508): the personality
718      // function and list of typeids logically belong to the invoke (or, if you
719      // like, the basic block containing the invoke), and need to be associated
720      // with it in the dwarf exception handling tables.  Currently however the
721      // information is provided by an intrinsic (eh.selector) that can be moved
722      // to unexpected places by the optimizers: if the unwind edge is critical,
723      // then breaking it can result in the intrinsics being in the successor of
724      // the landing pad, not the landing pad itself.  This results in exceptions
725      // not being caught because no typeids are associated with the invoke.
726      // This may not be the only way things can go wrong, but it is the only way
727      // we try to work around for the moment.
728      BranchInst *Br = dyn_cast<BranchInst>(LLVMBB->getTerminator());
729
730      if (Br && Br->isUnconditional()) { // Critical edge?
731        BasicBlock::iterator I, E;
732        for (I = LLVMBB->begin(), E = --LLVMBB->end(); I != E; ++I)
733          if (isa<EHSelectorInst>(I))
734            break;
735
736        if (I == E)
737          // No catch info found - try to extract some from the successor.
738          copyCatchInfo(Br->getSuccessor(0), LLVMBB, MMI, *FuncInfo);
739      }
740    }
741
742    // Before doing SelectionDAG ISel, see if FastISel has been requested.
743    if (FastIS && !SuppressFastISel) {
744      // Emit code for any incoming arguments. This must happen before
745      // beginning FastISel on the entry block.
746      if (LLVMBB == &Fn.getEntryBlock()) {
747        CurDAG->setRoot(SDB->getControlRoot());
748        CodeGenAndEmitDAG();
749        SDB->clear();
750      }
751      FastIS->startNewBlock(BB);
752      // Do FastISel on as many instructions as possible.
753      for (; BI != End; ++BI) {
754        if (MDDbgKind) {
755          // Update DebugLoc if debug information is attached with this
756          // instruction.
757          if (!isa<DbgInfoIntrinsic>(BI))
758            if (MDNode *Dbg = TheMetadata.getMD(MDDbgKind, BI)) {
759              DILocation DILoc(Dbg);
760              DebugLoc Loc = ExtractDebugLocation(DILoc,
761                                                  MF.getDebugLocInfo());
762              FastIS->setCurDebugLoc(Loc);
763              if (MF.getDefaultDebugLoc().isUnknown())
764                MF.setDefaultDebugLoc(Loc);
765            }
766        }
767
768        // Just before the terminator instruction, insert instructions to
769        // feed PHI nodes in successor blocks.
770        if (isa<TerminatorInst>(BI))
771          if (!HandlePHINodesInSuccessorBlocksFast(LLVMBB, FastIS)) {
772            if (EnableFastISelVerbose || EnableFastISelAbort) {
773              errs() << "FastISel miss: ";
774              BI->dump();
775            }
776            assert(!EnableFastISelAbort &&
777                   "FastISel didn't handle a PHI in a successor");
778            break;
779          }
780
781        // First try normal tablegen-generated "fast" selection.
782        if (FastIS->SelectInstruction(BI))
783          continue;
784
785        // Next, try calling the target to attempt to handle the instruction.
786        if (FastIS->TargetSelectInstruction(BI))
787          continue;
788
789        // Then handle certain instructions as single-LLVM-Instruction blocks.
790        if (isa<CallInst>(BI)) {
791          if (EnableFastISelVerbose || EnableFastISelAbort) {
792            errs() << "FastISel missed call: ";
793            BI->dump();
794          }
795
796          if (BI->getType() != Type::getVoidTy(*CurDAG->getContext())) {
797            unsigned &R = FuncInfo->ValueMap[BI];
798            if (!R)
799              R = FuncInfo->CreateRegForValue(BI);
800          }
801
802          SDB->setCurDebugLoc(FastIS->getCurDebugLoc());
803
804          bool HadTailCall = false;
805          SelectBasicBlock(LLVMBB, BI, next(BI), HadTailCall);
806
807          // If the call was emitted as a tail call, we're done with the block.
808          if (HadTailCall) {
809            BI = End;
810            break;
811          }
812
813          // If the instruction was codegen'd with multiple blocks,
814          // inform the FastISel object where to resume inserting.
815          FastIS->setCurrentBlock(BB);
816          continue;
817        }
818
819        // Otherwise, give up on FastISel for the rest of the block.
820        // For now, be a little lenient about non-branch terminators.
821        if (!isa<TerminatorInst>(BI) || isa<BranchInst>(BI)) {
822          if (EnableFastISelVerbose || EnableFastISelAbort) {
823            errs() << "FastISel miss: ";
824            BI->dump();
825          }
826          if (EnableFastISelAbort)
827            // The "fast" selector couldn't handle something and bailed.
828            // For the purpose of debugging, just abort.
829            llvm_unreachable("FastISel didn't select the entire block");
830        }
831        break;
832      }
833    }
834
835    // Run SelectionDAG instruction selection on the remainder of the block
836    // not handled by FastISel. If FastISel is not run, this is the entire
837    // block.
838    if (BI != End) {
839      // If FastISel is run and it has known DebugLoc then use it.
840      if (FastIS && !FastIS->getCurDebugLoc().isUnknown())
841        SDB->setCurDebugLoc(FastIS->getCurDebugLoc());
842      bool HadTailCall;
843      SelectBasicBlock(LLVMBB, BI, End, HadTailCall);
844    }
845
846    FinishBasicBlock();
847  }
848
849  delete FastIS;
850}
851
852void
853SelectionDAGISel::FinishBasicBlock() {
854
855  DEBUG(errs() << "Target-post-processed machine code:\n");
856  DEBUG(BB->dump());
857
858  DEBUG(errs() << "Total amount of phi nodes to update: "
859               << SDB->PHINodesToUpdate.size() << "\n");
860  DEBUG(for (unsigned i = 0, e = SDB->PHINodesToUpdate.size(); i != e; ++i)
861          errs() << "Node " << i << " : ("
862                 << SDB->PHINodesToUpdate[i].first
863                 << ", " << SDB->PHINodesToUpdate[i].second << ")\n");
864
865  // Next, now that we know what the last MBB the LLVM BB expanded is, update
866  // PHI nodes in successors.
867  if (SDB->SwitchCases.empty() &&
868      SDB->JTCases.empty() &&
869      SDB->BitTestCases.empty()) {
870    for (unsigned i = 0, e = SDB->PHINodesToUpdate.size(); i != e; ++i) {
871      MachineInstr *PHI = SDB->PHINodesToUpdate[i].first;
872      assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
873             "This is not a machine PHI node that we are updating!");
874      PHI->addOperand(MachineOperand::CreateReg(SDB->PHINodesToUpdate[i].second,
875                                                false));
876      PHI->addOperand(MachineOperand::CreateMBB(BB));
877    }
878    SDB->PHINodesToUpdate.clear();
879    return;
880  }
881
882  for (unsigned i = 0, e = SDB->BitTestCases.size(); i != e; ++i) {
883    // Lower header first, if it wasn't already lowered
884    if (!SDB->BitTestCases[i].Emitted) {
885      // Set the current basic block to the mbb we wish to insert the code into
886      BB = SDB->BitTestCases[i].Parent;
887      SDB->setCurrentBasicBlock(BB);
888      // Emit the code
889      SDB->visitBitTestHeader(SDB->BitTestCases[i]);
890      CurDAG->setRoot(SDB->getRoot());
891      CodeGenAndEmitDAG();
892      SDB->clear();
893    }
894
895    for (unsigned j = 0, ej = SDB->BitTestCases[i].Cases.size(); j != ej; ++j) {
896      // Set the current basic block to the mbb we wish to insert the code into
897      BB = SDB->BitTestCases[i].Cases[j].ThisBB;
898      SDB->setCurrentBasicBlock(BB);
899      // Emit the code
900      if (j+1 != ej)
901        SDB->visitBitTestCase(SDB->BitTestCases[i].Cases[j+1].ThisBB,
902                              SDB->BitTestCases[i].Reg,
903                              SDB->BitTestCases[i].Cases[j]);
904      else
905        SDB->visitBitTestCase(SDB->BitTestCases[i].Default,
906                              SDB->BitTestCases[i].Reg,
907                              SDB->BitTestCases[i].Cases[j]);
908
909
910      CurDAG->setRoot(SDB->getRoot());
911      CodeGenAndEmitDAG();
912      SDB->clear();
913    }
914
915    // Update PHI Nodes
916    for (unsigned pi = 0, pe = SDB->PHINodesToUpdate.size(); pi != pe; ++pi) {
917      MachineInstr *PHI = SDB->PHINodesToUpdate[pi].first;
918      MachineBasicBlock *PHIBB = PHI->getParent();
919      assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
920             "This is not a machine PHI node that we are updating!");
921      // This is "default" BB. We have two jumps to it. From "header" BB and
922      // from last "case" BB.
923      if (PHIBB == SDB->BitTestCases[i].Default) {
924        PHI->addOperand(MachineOperand::CreateReg(SDB->PHINodesToUpdate[pi].second,
925                                                  false));
926        PHI->addOperand(MachineOperand::CreateMBB(SDB->BitTestCases[i].Parent));
927        PHI->addOperand(MachineOperand::CreateReg(SDB->PHINodesToUpdate[pi].second,
928                                                  false));
929        PHI->addOperand(MachineOperand::CreateMBB(SDB->BitTestCases[i].Cases.
930                                                  back().ThisBB));
931      }
932      // One of "cases" BB.
933      for (unsigned j = 0, ej = SDB->BitTestCases[i].Cases.size();
934           j != ej; ++j) {
935        MachineBasicBlock* cBB = SDB->BitTestCases[i].Cases[j].ThisBB;
936        if (cBB->succ_end() !=
937            std::find(cBB->succ_begin(),cBB->succ_end(), PHIBB)) {
938          PHI->addOperand(MachineOperand::CreateReg(SDB->PHINodesToUpdate[pi].second,
939                                                    false));
940          PHI->addOperand(MachineOperand::CreateMBB(cBB));
941        }
942      }
943    }
944  }
945  SDB->BitTestCases.clear();
946
947  // If the JumpTable record is filled in, then we need to emit a jump table.
948  // Updating the PHI nodes is tricky in this case, since we need to determine
949  // whether the PHI is a successor of the range check MBB or the jump table MBB
950  for (unsigned i = 0, e = SDB->JTCases.size(); i != e; ++i) {
951    // Lower header first, if it wasn't already lowered
952    if (!SDB->JTCases[i].first.Emitted) {
953      // Set the current basic block to the mbb we wish to insert the code into
954      BB = SDB->JTCases[i].first.HeaderBB;
955      SDB->setCurrentBasicBlock(BB);
956      // Emit the code
957      SDB->visitJumpTableHeader(SDB->JTCases[i].second, SDB->JTCases[i].first);
958      CurDAG->setRoot(SDB->getRoot());
959      CodeGenAndEmitDAG();
960      SDB->clear();
961    }
962
963    // Set the current basic block to the mbb we wish to insert the code into
964    BB = SDB->JTCases[i].second.MBB;
965    SDB->setCurrentBasicBlock(BB);
966    // Emit the code
967    SDB->visitJumpTable(SDB->JTCases[i].second);
968    CurDAG->setRoot(SDB->getRoot());
969    CodeGenAndEmitDAG();
970    SDB->clear();
971
972    // Update PHI Nodes
973    for (unsigned pi = 0, pe = SDB->PHINodesToUpdate.size(); pi != pe; ++pi) {
974      MachineInstr *PHI = SDB->PHINodesToUpdate[pi].first;
975      MachineBasicBlock *PHIBB = PHI->getParent();
976      assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
977             "This is not a machine PHI node that we are updating!");
978      // "default" BB. We can go there only from header BB.
979      if (PHIBB == SDB->JTCases[i].second.Default) {
980        PHI->addOperand
981          (MachineOperand::CreateReg(SDB->PHINodesToUpdate[pi].second, false));
982        PHI->addOperand
983          (MachineOperand::CreateMBB(SDB->JTCases[i].first.HeaderBB));
984      }
985      // JT BB. Just iterate over successors here
986      if (BB->succ_end() != std::find(BB->succ_begin(),BB->succ_end(), PHIBB)) {
987        PHI->addOperand
988          (MachineOperand::CreateReg(SDB->PHINodesToUpdate[pi].second, false));
989        PHI->addOperand(MachineOperand::CreateMBB(BB));
990      }
991    }
992  }
993  SDB->JTCases.clear();
994
995  // If the switch block involved a branch to one of the actual successors, we
996  // need to update PHI nodes in that block.
997  for (unsigned i = 0, e = SDB->PHINodesToUpdate.size(); i != e; ++i) {
998    MachineInstr *PHI = SDB->PHINodesToUpdate[i].first;
999    assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
1000           "This is not a machine PHI node that we are updating!");
1001    if (BB->isSuccessor(PHI->getParent())) {
1002      PHI->addOperand(MachineOperand::CreateReg(SDB->PHINodesToUpdate[i].second,
1003                                                false));
1004      PHI->addOperand(MachineOperand::CreateMBB(BB));
1005    }
1006  }
1007
1008  // If we generated any switch lowering information, build and codegen any
1009  // additional DAGs necessary.
1010  for (unsigned i = 0, e = SDB->SwitchCases.size(); i != e; ++i) {
1011    // Set the current basic block to the mbb we wish to insert the code into
1012    MachineBasicBlock *ThisBB = BB = SDB->SwitchCases[i].ThisBB;
1013    SDB->setCurrentBasicBlock(BB);
1014
1015    // Emit the code
1016    SDB->visitSwitchCase(SDB->SwitchCases[i]);
1017    CurDAG->setRoot(SDB->getRoot());
1018    CodeGenAndEmitDAG();
1019
1020    // Handle any PHI nodes in successors of this chunk, as if we were coming
1021    // from the original BB before switch expansion.  Note that PHI nodes can
1022    // occur multiple times in PHINodesToUpdate.  We have to be very careful to
1023    // handle them the right number of times.
1024    while ((BB = SDB->SwitchCases[i].TrueBB)) {  // Handle LHS and RHS.
1025      // If new BB's are created during scheduling, the edges may have been
1026      // updated. That is, the edge from ThisBB to BB may have been split and
1027      // BB's predecessor is now another block.
1028      DenseMap<MachineBasicBlock*, MachineBasicBlock*>::iterator EI =
1029        SDB->EdgeMapping.find(BB);
1030      if (EI != SDB->EdgeMapping.end())
1031        ThisBB = EI->second;
1032      for (MachineBasicBlock::iterator Phi = BB->begin();
1033           Phi != BB->end() && Phi->getOpcode() == TargetInstrInfo::PHI; ++Phi){
1034        // This value for this PHI node is recorded in PHINodesToUpdate, get it.
1035        for (unsigned pn = 0; ; ++pn) {
1036          assert(pn != SDB->PHINodesToUpdate.size() &&
1037                 "Didn't find PHI entry!");
1038          if (SDB->PHINodesToUpdate[pn].first == Phi) {
1039            Phi->addOperand(MachineOperand::CreateReg(SDB->PHINodesToUpdate[pn].
1040                                                      second, false));
1041            Phi->addOperand(MachineOperand::CreateMBB(ThisBB));
1042            break;
1043          }
1044        }
1045      }
1046
1047      // Don't process RHS if same block as LHS.
1048      if (BB == SDB->SwitchCases[i].FalseBB)
1049        SDB->SwitchCases[i].FalseBB = 0;
1050
1051      // If we haven't handled the RHS, do so now.  Otherwise, we're done.
1052      SDB->SwitchCases[i].TrueBB = SDB->SwitchCases[i].FalseBB;
1053      SDB->SwitchCases[i].FalseBB = 0;
1054    }
1055    assert(SDB->SwitchCases[i].TrueBB == 0 && SDB->SwitchCases[i].FalseBB == 0);
1056    SDB->clear();
1057  }
1058  SDB->SwitchCases.clear();
1059
1060  SDB->PHINodesToUpdate.clear();
1061}
1062
1063
1064/// Create the scheduler. If a specific scheduler was specified
1065/// via the SchedulerRegistry, use it, otherwise select the
1066/// one preferred by the target.
1067///
1068ScheduleDAGSDNodes *SelectionDAGISel::CreateScheduler() {
1069  RegisterScheduler::FunctionPassCtor Ctor = RegisterScheduler::getDefault();
1070
1071  if (!Ctor) {
1072    Ctor = ISHeuristic;
1073    RegisterScheduler::setDefault(Ctor);
1074  }
1075
1076  return Ctor(this, OptLevel);
1077}
1078
1079ScheduleHazardRecognizer *SelectionDAGISel::CreateTargetHazardRecognizer() {
1080  return new ScheduleHazardRecognizer();
1081}
1082
1083//===----------------------------------------------------------------------===//
1084// Helper functions used by the generated instruction selector.
1085//===----------------------------------------------------------------------===//
1086// Calls to these methods are generated by tblgen.
1087
1088/// CheckAndMask - The isel is trying to match something like (and X, 255).  If
1089/// the dag combiner simplified the 255, we still want to match.  RHS is the
1090/// actual value in the DAG on the RHS of an AND, and DesiredMaskS is the value
1091/// specified in the .td file (e.g. 255).
1092bool SelectionDAGISel::CheckAndMask(SDValue LHS, ConstantSDNode *RHS,
1093                                    int64_t DesiredMaskS) const {
1094  const APInt &ActualMask = RHS->getAPIntValue();
1095  const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
1096
1097  // If the actual mask exactly matches, success!
1098  if (ActualMask == DesiredMask)
1099    return true;
1100
1101  // If the actual AND mask is allowing unallowed bits, this doesn't match.
1102  if (ActualMask.intersects(~DesiredMask))
1103    return false;
1104
1105  // Otherwise, the DAG Combiner may have proven that the value coming in is
1106  // either already zero or is not demanded.  Check for known zero input bits.
1107  APInt NeededMask = DesiredMask & ~ActualMask;
1108  if (CurDAG->MaskedValueIsZero(LHS, NeededMask))
1109    return true;
1110
1111  // TODO: check to see if missing bits are just not demanded.
1112
1113  // Otherwise, this pattern doesn't match.
1114  return false;
1115}
1116
1117/// CheckOrMask - The isel is trying to match something like (or X, 255).  If
1118/// the dag combiner simplified the 255, we still want to match.  RHS is the
1119/// actual value in the DAG on the RHS of an OR, and DesiredMaskS is the value
1120/// specified in the .td file (e.g. 255).
1121bool SelectionDAGISel::CheckOrMask(SDValue LHS, ConstantSDNode *RHS,
1122                                   int64_t DesiredMaskS) const {
1123  const APInt &ActualMask = RHS->getAPIntValue();
1124  const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
1125
1126  // If the actual mask exactly matches, success!
1127  if (ActualMask == DesiredMask)
1128    return true;
1129
1130  // If the actual AND mask is allowing unallowed bits, this doesn't match.
1131  if (ActualMask.intersects(~DesiredMask))
1132    return false;
1133
1134  // Otherwise, the DAG Combiner may have proven that the value coming in is
1135  // either already zero or is not demanded.  Check for known zero input bits.
1136  APInt NeededMask = DesiredMask & ~ActualMask;
1137
1138  APInt KnownZero, KnownOne;
1139  CurDAG->ComputeMaskedBits(LHS, NeededMask, KnownZero, KnownOne);
1140
1141  // If all the missing bits in the or are already known to be set, match!
1142  if ((NeededMask & KnownOne) == NeededMask)
1143    return true;
1144
1145  // TODO: check to see if missing bits are just not demanded.
1146
1147  // Otherwise, this pattern doesn't match.
1148  return false;
1149}
1150
1151
1152/// SelectInlineAsmMemoryOperands - Calls to this are automatically generated
1153/// by tblgen.  Others should not call it.
1154void SelectionDAGISel::
1155SelectInlineAsmMemoryOperands(std::vector<SDValue> &Ops) {
1156  std::vector<SDValue> InOps;
1157  std::swap(InOps, Ops);
1158
1159  Ops.push_back(InOps[0]);  // input chain.
1160  Ops.push_back(InOps[1]);  // input asm string.
1161
1162  unsigned i = 2, e = InOps.size();
1163  if (InOps[e-1].getValueType() == MVT::Flag)
1164    --e;  // Don't process a flag operand if it is here.
1165
1166  while (i != e) {
1167    unsigned Flags = cast<ConstantSDNode>(InOps[i])->getZExtValue();
1168    if ((Flags & 7) != 4 /*MEM*/) {
1169      // Just skip over this operand, copying the operands verbatim.
1170      Ops.insert(Ops.end(), InOps.begin()+i,
1171                 InOps.begin()+i+InlineAsm::getNumOperandRegisters(Flags) + 1);
1172      i += InlineAsm::getNumOperandRegisters(Flags) + 1;
1173    } else {
1174      assert(InlineAsm::getNumOperandRegisters(Flags) == 1 &&
1175             "Memory operand with multiple values?");
1176      // Otherwise, this is a memory operand.  Ask the target to select it.
1177      std::vector<SDValue> SelOps;
1178      if (SelectInlineAsmMemoryOperand(InOps[i+1], 'm', SelOps)) {
1179        llvm_report_error("Could not match memory address.  Inline asm"
1180                          " failure!");
1181      }
1182
1183      // Add this to the output node.
1184      EVT IntPtrTy = TLI.getPointerTy();
1185      Ops.push_back(CurDAG->getTargetConstant(4/*MEM*/ | (SelOps.size()<< 3),
1186                                              IntPtrTy));
1187      Ops.insert(Ops.end(), SelOps.begin(), SelOps.end());
1188      i += 2;
1189    }
1190  }
1191
1192  // Add the flag input back if present.
1193  if (e != InOps.size())
1194    Ops.push_back(InOps.back());
1195}
1196
1197/// findFlagUse - Return use of EVT::Flag value produced by the specified
1198/// SDNode.
1199///
1200static SDNode *findFlagUse(SDNode *N) {
1201  unsigned FlagResNo = N->getNumValues()-1;
1202  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
1203    SDUse &Use = I.getUse();
1204    if (Use.getResNo() == FlagResNo)
1205      return Use.getUser();
1206  }
1207  return NULL;
1208}
1209
1210/// findNonImmUse - Return true if "Use" is a non-immediate use of "Def".
1211/// This function recursively traverses up the operand chain, ignoring
1212/// certain nodes.
1213static bool findNonImmUse(SDNode *Use, SDNode* Def, SDNode *ImmedUse,
1214                          SDNode *Root,
1215                          SmallPtrSet<SDNode*, 16> &Visited) {
1216  if (Use->getNodeId() < Def->getNodeId() ||
1217      !Visited.insert(Use))
1218    return false;
1219
1220  for (unsigned i = 0, e = Use->getNumOperands(); i != e; ++i) {
1221    SDNode *N = Use->getOperand(i).getNode();
1222    if (N == Def) {
1223      if (Use == ImmedUse || Use == Root)
1224        continue;  // We are not looking for immediate use.
1225      assert(N != Root);
1226      return true;
1227    }
1228
1229    // Traverse up the operand chain.
1230    if (findNonImmUse(N, Def, ImmedUse, Root, Visited))
1231      return true;
1232  }
1233  return false;
1234}
1235
1236/// isNonImmUse - Start searching from Root up the DAG to check is Def can
1237/// be reached. Return true if that's the case. However, ignore direct uses
1238/// by ImmedUse (which would be U in the example illustrated in
1239/// IsLegalAndProfitableToFold) and by Root (which can happen in the store
1240/// case).
1241/// FIXME: to be really generic, we should allow direct use by any node
1242/// that is being folded. But realisticly since we only fold loads which
1243/// have one non-chain use, we only need to watch out for load/op/store
1244/// and load/op/cmp case where the root (store / cmp) may reach the load via
1245/// its chain operand.
1246static inline bool isNonImmUse(SDNode *Root, SDNode *Def, SDNode *ImmedUse) {
1247  SmallPtrSet<SDNode*, 16> Visited;
1248  return findNonImmUse(Root, Def, ImmedUse, Root, Visited);
1249}
1250
1251/// IsLegalAndProfitableToFold - Returns true if the specific operand node N of
1252/// U can be folded during instruction selection that starts at Root and
1253/// folding N is profitable.
1254bool SelectionDAGISel::IsLegalAndProfitableToFold(SDNode *N, SDNode *U,
1255                                                  SDNode *Root) const {
1256  if (OptLevel == CodeGenOpt::None) return false;
1257
1258  // If Root use can somehow reach N through a path that that doesn't contain
1259  // U then folding N would create a cycle. e.g. In the following
1260  // diagram, Root can reach N through X. If N is folded into into Root, then
1261  // X is both a predecessor and a successor of U.
1262  //
1263  //          [N*]           //
1264  //         ^   ^           //
1265  //        /     \          //
1266  //      [U*]    [X]?       //
1267  //        ^     ^          //
1268  //         \   /           //
1269  //          \ /            //
1270  //         [Root*]         //
1271  //
1272  // * indicates nodes to be folded together.
1273  //
1274  // If Root produces a flag, then it gets (even more) interesting. Since it
1275  // will be "glued" together with its flag use in the scheduler, we need to
1276  // check if it might reach N.
1277  //
1278  //          [N*]           //
1279  //         ^   ^           //
1280  //        /     \          //
1281  //      [U*]    [X]?       //
1282  //        ^       ^        //
1283  //         \       \       //
1284  //          \      |       //
1285  //         [Root*] |       //
1286  //          ^      |       //
1287  //          f      |       //
1288  //          |      /       //
1289  //         [Y]    /        //
1290  //           ^   /         //
1291  //           f  /          //
1292  //           | /           //
1293  //          [FU]           //
1294  //
1295  // If FU (flag use) indirectly reaches N (the load), and Root folds N
1296  // (call it Fold), then X is a predecessor of FU and a successor of
1297  // Fold. But since Fold and FU are flagged together, this will create
1298  // a cycle in the scheduling graph.
1299
1300  EVT VT = Root->getValueType(Root->getNumValues()-1);
1301  while (VT == MVT::Flag) {
1302    SDNode *FU = findFlagUse(Root);
1303    if (FU == NULL)
1304      break;
1305    Root = FU;
1306    VT = Root->getValueType(Root->getNumValues()-1);
1307  }
1308
1309  return !isNonImmUse(Root, N, U);
1310}
1311
1312SDNode *SelectionDAGISel::Select_INLINEASM(SDValue N) {
1313  std::vector<SDValue> Ops(N.getNode()->op_begin(), N.getNode()->op_end());
1314  SelectInlineAsmMemoryOperands(Ops);
1315
1316  std::vector<EVT> VTs;
1317  VTs.push_back(MVT::Other);
1318  VTs.push_back(MVT::Flag);
1319  SDValue New = CurDAG->getNode(ISD::INLINEASM, N.getDebugLoc(),
1320                                VTs, &Ops[0], Ops.size());
1321  return New.getNode();
1322}
1323
1324SDNode *SelectionDAGISel::Select_UNDEF(const SDValue &N) {
1325  return CurDAG->SelectNodeTo(N.getNode(), TargetInstrInfo::IMPLICIT_DEF,
1326                              N.getValueType());
1327}
1328
1329SDNode *SelectionDAGISel::Select_DBG_LABEL(const SDValue &N) {
1330  SDValue Chain = N.getOperand(0);
1331  unsigned C = cast<LabelSDNode>(N)->getLabelID();
1332  SDValue Tmp = CurDAG->getTargetConstant(C, MVT::i32);
1333  return CurDAG->SelectNodeTo(N.getNode(), TargetInstrInfo::DBG_LABEL,
1334                              MVT::Other, Tmp, Chain);
1335}
1336
1337SDNode *SelectionDAGISel::Select_EH_LABEL(const SDValue &N) {
1338  SDValue Chain = N.getOperand(0);
1339  unsigned C = cast<LabelSDNode>(N)->getLabelID();
1340  SDValue Tmp = CurDAG->getTargetConstant(C, MVT::i32);
1341  return CurDAG->SelectNodeTo(N.getNode(), TargetInstrInfo::EH_LABEL,
1342                              MVT::Other, Tmp, Chain);
1343}
1344
1345void SelectionDAGISel::CannotYetSelect(SDValue N) {
1346  std::string msg;
1347  raw_string_ostream Msg(msg);
1348  Msg << "Cannot yet select: ";
1349  N.getNode()->print(Msg, CurDAG);
1350  llvm_report_error(Msg.str());
1351}
1352
1353void SelectionDAGISel::CannotYetSelectIntrinsic(SDValue N) {
1354  errs() << "Cannot yet select: ";
1355  unsigned iid =
1356    cast<ConstantSDNode>(N.getOperand(N.getOperand(0).getValueType() == MVT::Other))->getZExtValue();
1357  if (iid < Intrinsic::num_intrinsics)
1358    llvm_report_error("Cannot yet select: intrinsic %" + Intrinsic::getName((Intrinsic::ID)iid));
1359  else if (const TargetIntrinsicInfo *tii = TM.getIntrinsicInfo())
1360    llvm_report_error(Twine("Cannot yet select: target intrinsic %") +
1361                      tii->getName(iid));
1362}
1363
1364char SelectionDAGISel::ID = 0;
1365