SelectionDAGISel.cpp revision 20a4921791eafc0cce00fb01dcacfcfc15a0d0fc
1//===-- SelectionDAGISel.cpp - Implement the SelectionDAGISel class -------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAGISel class.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "isel"
15#include "llvm/CodeGen/SelectionDAGISel.h"
16#include "llvm/CodeGen/ScheduleDAG.h"
17#include "llvm/CallingConv.h"
18#include "llvm/Constants.h"
19#include "llvm/DerivedTypes.h"
20#include "llvm/Function.h"
21#include "llvm/GlobalVariable.h"
22#include "llvm/InlineAsm.h"
23#include "llvm/Instructions.h"
24#include "llvm/Intrinsics.h"
25#include "llvm/CodeGen/IntrinsicLowering.h"
26#include "llvm/CodeGen/MachineDebugInfo.h"
27#include "llvm/CodeGen/MachineFunction.h"
28#include "llvm/CodeGen/MachineFrameInfo.h"
29#include "llvm/CodeGen/MachineInstrBuilder.h"
30#include "llvm/CodeGen/SelectionDAG.h"
31#include "llvm/CodeGen/SSARegMap.h"
32#include "llvm/Target/MRegisterInfo.h"
33#include "llvm/Target/TargetData.h"
34#include "llvm/Target/TargetFrameInfo.h"
35#include "llvm/Target/TargetInstrInfo.h"
36#include "llvm/Target/TargetLowering.h"
37#include "llvm/Target/TargetMachine.h"
38#include "llvm/Transforms/Utils/BasicBlockUtils.h"
39#include "llvm/Support/CommandLine.h"
40#include "llvm/Support/MathExtras.h"
41#include "llvm/Support/Debug.h"
42#include <map>
43#include <set>
44#include <iostream>
45#include <algorithm>
46using namespace llvm;
47
48#ifndef NDEBUG
49static cl::opt<bool>
50ViewISelDAGs("view-isel-dags", cl::Hidden,
51          cl::desc("Pop up a window to show isel dags as they are selected"));
52static cl::opt<bool>
53ViewSchedDAGs("view-sched-dags", cl::Hidden,
54          cl::desc("Pop up a window to show sched dags as they are processed"));
55#else
56static const bool ViewISelDAGs = 0;
57static const bool ViewSchedDAGs = 0;
58#endif
59
60// Scheduling heuristics
61enum SchedHeuristics {
62  defaultScheduling,      // Let the target specify its preference.
63  noScheduling,           // No scheduling, emit breadth first sequence.
64  simpleScheduling,       // Two pass, min. critical path, max. utilization.
65  simpleNoItinScheduling, // Same as above exact using generic latency.
66  listSchedulingBURR,     // Bottom up reg reduction list scheduling.
67  listSchedulingTD        // Top-down list scheduler.
68};
69
70namespace {
71  cl::opt<SchedHeuristics>
72  ISHeuristic(
73    "sched",
74    cl::desc("Choose scheduling style"),
75    cl::init(defaultScheduling),
76    cl::values(
77      clEnumValN(defaultScheduling, "default",
78                 "Target preferred scheduling style"),
79      clEnumValN(noScheduling, "none",
80                 "No scheduling: breadth first sequencing"),
81      clEnumValN(simpleScheduling, "simple",
82                 "Simple two pass scheduling: minimize critical path "
83                 "and maximize processor utilization"),
84      clEnumValN(simpleNoItinScheduling, "simple-noitin",
85                 "Simple two pass scheduling: Same as simple "
86                 "except using generic latency"),
87      clEnumValN(listSchedulingBURR, "list-burr",
88                 "Bottom up register reduction list scheduling"),
89      clEnumValN(listSchedulingTD, "list-td",
90                 "Top-down list scheduler"),
91      clEnumValEnd));
92} // namespace
93
94namespace {
95  /// RegsForValue - This struct represents the physical registers that a
96  /// particular value is assigned and the type information about the value.
97  /// This is needed because values can be promoted into larger registers and
98  /// expanded into multiple smaller registers than the value.
99  struct RegsForValue {
100    /// Regs - This list hold the register (for legal and promoted values)
101    /// or register set (for expanded values) that the value should be assigned
102    /// to.
103    std::vector<unsigned> Regs;
104
105    /// RegVT - The value type of each register.
106    ///
107    MVT::ValueType RegVT;
108
109    /// ValueVT - The value type of the LLVM value, which may be promoted from
110    /// RegVT or made from merging the two expanded parts.
111    MVT::ValueType ValueVT;
112
113    RegsForValue() : RegVT(MVT::Other), ValueVT(MVT::Other) {}
114
115    RegsForValue(unsigned Reg, MVT::ValueType regvt, MVT::ValueType valuevt)
116      : RegVT(regvt), ValueVT(valuevt) {
117        Regs.push_back(Reg);
118    }
119    RegsForValue(const std::vector<unsigned> &regs,
120                 MVT::ValueType regvt, MVT::ValueType valuevt)
121      : Regs(regs), RegVT(regvt), ValueVT(valuevt) {
122    }
123
124    /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
125    /// this value and returns the result as a ValueVT value.  This uses
126    /// Chain/Flag as the input and updates them for the output Chain/Flag.
127    SDOperand getCopyFromRegs(SelectionDAG &DAG,
128                              SDOperand &Chain, SDOperand &Flag) const;
129
130    /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
131    /// specified value into the registers specified by this object.  This uses
132    /// Chain/Flag as the input and updates them for the output Chain/Flag.
133    void getCopyToRegs(SDOperand Val, SelectionDAG &DAG,
134                       SDOperand &Chain, SDOperand &Flag) const;
135
136    /// AddInlineAsmOperands - Add this value to the specified inlineasm node
137    /// operand list.  This adds the code marker and includes the number of
138    /// values added into it.
139    void AddInlineAsmOperands(unsigned Code, SelectionDAG &DAG,
140                              std::vector<SDOperand> &Ops) const;
141  };
142}
143
144namespace llvm {
145  //===--------------------------------------------------------------------===//
146  /// FunctionLoweringInfo - This contains information that is global to a
147  /// function that is used when lowering a region of the function.
148  class FunctionLoweringInfo {
149  public:
150    TargetLowering &TLI;
151    Function &Fn;
152    MachineFunction &MF;
153    SSARegMap *RegMap;
154
155    FunctionLoweringInfo(TargetLowering &TLI, Function &Fn,MachineFunction &MF);
156
157    /// MBBMap - A mapping from LLVM basic blocks to their machine code entry.
158    std::map<const BasicBlock*, MachineBasicBlock *> MBBMap;
159
160    /// ValueMap - Since we emit code for the function a basic block at a time,
161    /// we must remember which virtual registers hold the values for
162    /// cross-basic-block values.
163    std::map<const Value*, unsigned> ValueMap;
164
165    /// StaticAllocaMap - Keep track of frame indices for fixed sized allocas in
166    /// the entry block.  This allows the allocas to be efficiently referenced
167    /// anywhere in the function.
168    std::map<const AllocaInst*, int> StaticAllocaMap;
169
170    unsigned MakeReg(MVT::ValueType VT) {
171      return RegMap->createVirtualRegister(TLI.getRegClassFor(VT));
172    }
173
174    unsigned CreateRegForValue(const Value *V) {
175      MVT::ValueType VT = TLI.getValueType(V->getType());
176      // The common case is that we will only create one register for this
177      // value.  If we have that case, create and return the virtual register.
178      unsigned NV = TLI.getNumElements(VT);
179      if (NV == 1) {
180        // If we are promoting this value, pick the next largest supported type.
181        return MakeReg(TLI.getTypeToTransformTo(VT));
182      }
183
184      // If this value is represented with multiple target registers, make sure
185      // to create enough consecutive registers of the right (smaller) type.
186      unsigned NT = VT-1;  // Find the type to use.
187      while (TLI.getNumElements((MVT::ValueType)NT) != 1)
188        --NT;
189
190      unsigned R = MakeReg((MVT::ValueType)NT);
191      for (unsigned i = 1; i != NV; ++i)
192        MakeReg((MVT::ValueType)NT);
193      return R;
194    }
195
196    unsigned InitializeRegForValue(const Value *V) {
197      unsigned &R = ValueMap[V];
198      assert(R == 0 && "Already initialized this value register!");
199      return R = CreateRegForValue(V);
200    }
201  };
202}
203
204/// isUsedOutsideOfDefiningBlock - Return true if this instruction is used by
205/// PHI nodes or outside of the basic block that defines it.
206static bool isUsedOutsideOfDefiningBlock(Instruction *I) {
207  if (isa<PHINode>(I)) return true;
208  BasicBlock *BB = I->getParent();
209  for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E; ++UI)
210    if (cast<Instruction>(*UI)->getParent() != BB || isa<PHINode>(*UI))
211      return true;
212  return false;
213}
214
215/// isOnlyUsedInEntryBlock - If the specified argument is only used in the
216/// entry block, return true.
217static bool isOnlyUsedInEntryBlock(Argument *A) {
218  BasicBlock *Entry = A->getParent()->begin();
219  for (Value::use_iterator UI = A->use_begin(), E = A->use_end(); UI != E; ++UI)
220    if (cast<Instruction>(*UI)->getParent() != Entry)
221      return false;  // Use not in entry block.
222  return true;
223}
224
225FunctionLoweringInfo::FunctionLoweringInfo(TargetLowering &tli,
226                                           Function &fn, MachineFunction &mf)
227    : TLI(tli), Fn(fn), MF(mf), RegMap(MF.getSSARegMap()) {
228
229  // Create a vreg for each argument register that is not dead and is used
230  // outside of the entry block for the function.
231  for (Function::arg_iterator AI = Fn.arg_begin(), E = Fn.arg_end();
232       AI != E; ++AI)
233    if (!isOnlyUsedInEntryBlock(AI))
234      InitializeRegForValue(AI);
235
236  // Initialize the mapping of values to registers.  This is only set up for
237  // instruction values that are used outside of the block that defines
238  // them.
239  Function::iterator BB = Fn.begin(), EB = Fn.end();
240  for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
241    if (AllocaInst *AI = dyn_cast<AllocaInst>(I))
242      if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(AI->getArraySize())) {
243        const Type *Ty = AI->getAllocatedType();
244        uint64_t TySize = TLI.getTargetData().getTypeSize(Ty);
245        unsigned Align =
246          std::max((unsigned)TLI.getTargetData().getTypeAlignment(Ty),
247                   AI->getAlignment());
248
249        // If the alignment of the value is smaller than the size of the value,
250        // and if the size of the value is particularly small (<= 8 bytes),
251        // round up to the size of the value for potentially better performance.
252        //
253        // FIXME: This could be made better with a preferred alignment hook in
254        // TargetData.  It serves primarily to 8-byte align doubles for X86.
255        if (Align < TySize && TySize <= 8) Align = TySize;
256        TySize *= CUI->getValue();   // Get total allocated size.
257        if (TySize == 0) TySize = 1; // Don't create zero-sized stack objects.
258        StaticAllocaMap[AI] =
259          MF.getFrameInfo()->CreateStackObject((unsigned)TySize, Align);
260      }
261
262  for (; BB != EB; ++BB)
263    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
264      if (!I->use_empty() && isUsedOutsideOfDefiningBlock(I))
265        if (!isa<AllocaInst>(I) ||
266            !StaticAllocaMap.count(cast<AllocaInst>(I)))
267          InitializeRegForValue(I);
268
269  // Create an initial MachineBasicBlock for each LLVM BasicBlock in F.  This
270  // also creates the initial PHI MachineInstrs, though none of the input
271  // operands are populated.
272  for (BB = Fn.begin(), EB = Fn.end(); BB != EB; ++BB) {
273    MachineBasicBlock *MBB = new MachineBasicBlock(BB);
274    MBBMap[BB] = MBB;
275    MF.getBasicBlockList().push_back(MBB);
276
277    // Create Machine PHI nodes for LLVM PHI nodes, lowering them as
278    // appropriate.
279    PHINode *PN;
280    for (BasicBlock::iterator I = BB->begin();
281         (PN = dyn_cast<PHINode>(I)); ++I)
282      if (!PN->use_empty()) {
283        unsigned NumElements =
284          TLI.getNumElements(TLI.getValueType(PN->getType()));
285        unsigned PHIReg = ValueMap[PN];
286        assert(PHIReg &&"PHI node does not have an assigned virtual register!");
287        for (unsigned i = 0; i != NumElements; ++i)
288          BuildMI(MBB, TargetInstrInfo::PHI, PN->getNumOperands(), PHIReg+i);
289      }
290  }
291}
292
293
294
295//===----------------------------------------------------------------------===//
296/// SelectionDAGLowering - This is the common target-independent lowering
297/// implementation that is parameterized by a TargetLowering object.
298/// Also, targets can overload any lowering method.
299///
300namespace llvm {
301class SelectionDAGLowering {
302  MachineBasicBlock *CurMBB;
303
304  std::map<const Value*, SDOperand> NodeMap;
305
306  /// PendingLoads - Loads are not emitted to the program immediately.  We bunch
307  /// them up and then emit token factor nodes when possible.  This allows us to
308  /// get simple disambiguation between loads without worrying about alias
309  /// analysis.
310  std::vector<SDOperand> PendingLoads;
311
312public:
313  // TLI - This is information that describes the available target features we
314  // need for lowering.  This indicates when operations are unavailable,
315  // implemented with a libcall, etc.
316  TargetLowering &TLI;
317  SelectionDAG &DAG;
318  const TargetData &TD;
319
320  /// FuncInfo - Information about the function as a whole.
321  ///
322  FunctionLoweringInfo &FuncInfo;
323
324  SelectionDAGLowering(SelectionDAG &dag, TargetLowering &tli,
325                       FunctionLoweringInfo &funcinfo)
326    : TLI(tli), DAG(dag), TD(DAG.getTarget().getTargetData()),
327      FuncInfo(funcinfo) {
328  }
329
330  /// getRoot - Return the current virtual root of the Selection DAG.
331  ///
332  SDOperand getRoot() {
333    if (PendingLoads.empty())
334      return DAG.getRoot();
335
336    if (PendingLoads.size() == 1) {
337      SDOperand Root = PendingLoads[0];
338      DAG.setRoot(Root);
339      PendingLoads.clear();
340      return Root;
341    }
342
343    // Otherwise, we have to make a token factor node.
344    SDOperand Root = DAG.getNode(ISD::TokenFactor, MVT::Other, PendingLoads);
345    PendingLoads.clear();
346    DAG.setRoot(Root);
347    return Root;
348  }
349
350  void visit(Instruction &I) { visit(I.getOpcode(), I); }
351
352  void visit(unsigned Opcode, User &I) {
353    switch (Opcode) {
354    default: assert(0 && "Unknown instruction type encountered!");
355             abort();
356      // Build the switch statement using the Instruction.def file.
357#define HANDLE_INST(NUM, OPCODE, CLASS) \
358    case Instruction::OPCODE:return visit##OPCODE((CLASS&)I);
359#include "llvm/Instruction.def"
360    }
361  }
362
363  void setCurrentBasicBlock(MachineBasicBlock *MBB) { CurMBB = MBB; }
364
365
366  SDOperand getIntPtrConstant(uint64_t Val) {
367    return DAG.getConstant(Val, TLI.getPointerTy());
368  }
369
370  SDOperand getValue(const Value *V) {
371    SDOperand &N = NodeMap[V];
372    if (N.Val) return N;
373
374    const Type *VTy = V->getType();
375    MVT::ValueType VT = TLI.getValueType(VTy);
376    if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(V)))
377      if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
378        visit(CE->getOpcode(), *CE);
379        assert(N.Val && "visit didn't populate the ValueMap!");
380        return N;
381      } else if (GlobalValue *GV = dyn_cast<GlobalValue>(C)) {
382        return N = DAG.getGlobalAddress(GV, VT);
383      } else if (isa<ConstantPointerNull>(C)) {
384        return N = DAG.getConstant(0, TLI.getPointerTy());
385      } else if (isa<UndefValue>(C)) {
386        return N = DAG.getNode(ISD::UNDEF, VT);
387      } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
388        return N = DAG.getConstantFP(CFP->getValue(), VT);
389      } else if (const PackedType *PTy = dyn_cast<PackedType>(VTy)) {
390        unsigned NumElements = PTy->getNumElements();
391        MVT::ValueType PVT = TLI.getValueType(PTy->getElementType());
392        MVT::ValueType TVT = MVT::getVectorType(PVT, NumElements);
393
394        // Now that we know the number and type of the elements, push a
395        // Constant or ConstantFP node onto the ops list for each element of
396        // the packed constant.
397        std::vector<SDOperand> Ops;
398        if (ConstantPacked *CP = dyn_cast<ConstantPacked>(C)) {
399          if (MVT::isFloatingPoint(PVT)) {
400            for (unsigned i = 0; i != NumElements; ++i) {
401              const ConstantFP *El = cast<ConstantFP>(CP->getOperand(i));
402              Ops.push_back(DAG.getConstantFP(El->getValue(), PVT));
403            }
404          } else {
405            for (unsigned i = 0; i != NumElements; ++i) {
406              const ConstantIntegral *El =
407                cast<ConstantIntegral>(CP->getOperand(i));
408              Ops.push_back(DAG.getConstant(El->getRawValue(), PVT));
409            }
410          }
411        } else {
412          assert(isa<ConstantAggregateZero>(C) && "Unknown packed constant!");
413          SDOperand Op;
414          if (MVT::isFloatingPoint(PVT))
415            Op = DAG.getConstantFP(0, PVT);
416          else
417            Op = DAG.getConstant(0, PVT);
418          Ops.assign(NumElements, Op);
419        }
420
421        // Handle the case where we have a 1-element vector, in which
422        // case we want to immediately turn it into a scalar constant.
423        if (Ops.size() == 1) {
424          return N = Ops[0];
425        } else if (TVT != MVT::Other && TLI.isTypeLegal(TVT)) {
426          return N = DAG.getNode(ISD::ConstantVec, TVT, Ops);
427        } else {
428          // If the packed type isn't legal, then create a ConstantVec node with
429          // generic Vector type instead.
430          SDOperand Num = DAG.getConstant(NumElements, MVT::i32);
431          SDOperand Typ = DAG.getValueType(PVT);
432          Ops.insert(Ops.begin(), Typ);
433          Ops.insert(Ops.begin(), Num);
434          return N = DAG.getNode(ISD::VConstant, MVT::Vector, Ops);
435        }
436      } else {
437        // Canonicalize all constant ints to be unsigned.
438        return N = DAG.getConstant(cast<ConstantIntegral>(C)->getRawValue(),VT);
439      }
440
441    if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
442      std::map<const AllocaInst*, int>::iterator SI =
443        FuncInfo.StaticAllocaMap.find(AI);
444      if (SI != FuncInfo.StaticAllocaMap.end())
445        return DAG.getFrameIndex(SI->second, TLI.getPointerTy());
446    }
447
448    std::map<const Value*, unsigned>::const_iterator VMI =
449      FuncInfo.ValueMap.find(V);
450    assert(VMI != FuncInfo.ValueMap.end() && "Value not in map!");
451
452    unsigned InReg = VMI->second;
453
454    // If this type is not legal, make it so now.
455    MVT::ValueType DestVT = TLI.getTypeToTransformTo(VT);
456
457    N = DAG.getCopyFromReg(DAG.getEntryNode(), InReg, DestVT);
458    if (DestVT < VT) {
459      // Source must be expanded.  This input value is actually coming from the
460      // register pair VMI->second and VMI->second+1.
461      N = DAG.getNode(ISD::BUILD_PAIR, VT, N,
462                      DAG.getCopyFromReg(DAG.getEntryNode(), InReg+1, DestVT));
463    } else {
464      if (DestVT > VT) { // Promotion case
465        if (MVT::isFloatingPoint(VT))
466          N = DAG.getNode(ISD::FP_ROUND, VT, N);
467        else
468          N = DAG.getNode(ISD::TRUNCATE, VT, N);
469      }
470    }
471
472    return N;
473  }
474
475  const SDOperand &setValue(const Value *V, SDOperand NewN) {
476    SDOperand &N = NodeMap[V];
477    assert(N.Val == 0 && "Already set a value for this node!");
478    return N = NewN;
479  }
480
481  RegsForValue GetRegistersForValue(const std::string &ConstrCode,
482                                    MVT::ValueType VT,
483                                    bool OutReg, bool InReg,
484                                    std::set<unsigned> &OutputRegs,
485                                    std::set<unsigned> &InputRegs);
486
487  // Terminator instructions.
488  void visitRet(ReturnInst &I);
489  void visitBr(BranchInst &I);
490  void visitUnreachable(UnreachableInst &I) { /* noop */ }
491
492  // These all get lowered before this pass.
493  void visitExtractElement(ExtractElementInst &I) { assert(0 && "TODO"); }
494  void visitInsertElement(InsertElementInst &I) { assert(0 && "TODO"); }
495  void visitSwitch(SwitchInst &I) { assert(0 && "TODO"); }
496  void visitInvoke(InvokeInst &I) { assert(0 && "TODO"); }
497  void visitUnwind(UnwindInst &I) { assert(0 && "TODO"); }
498
499  //
500  void visitBinary(User &I, unsigned IntOp, unsigned FPOp, unsigned VecOp);
501  void visitShift(User &I, unsigned Opcode);
502  void visitAdd(User &I) {
503    visitBinary(I, ISD::ADD, ISD::FADD, ISD::VADD);
504  }
505  void visitSub(User &I);
506  void visitMul(User &I) {
507    visitBinary(I, ISD::MUL, ISD::FMUL, ISD::VMUL);
508  }
509  void visitDiv(User &I) {
510    const Type *Ty = I.getType();
511    visitBinary(I,
512                Ty->isSigned() ? ISD::SDIV : ISD::UDIV, ISD::FDIV,
513                Ty->isSigned() ? ISD::VSDIV : ISD::VUDIV);
514  }
515  void visitRem(User &I) {
516    const Type *Ty = I.getType();
517    visitBinary(I, Ty->isSigned() ? ISD::SREM : ISD::UREM, ISD::FREM, 0);
518  }
519  void visitAnd(User &I) { visitBinary(I, ISD::AND, 0, ISD::VAND); }
520  void visitOr (User &I) { visitBinary(I, ISD::OR,  0, ISD::VOR); }
521  void visitXor(User &I) { visitBinary(I, ISD::XOR, 0, ISD::VXOR); }
522  void visitShl(User &I) { visitShift(I, ISD::SHL); }
523  void visitShr(User &I) {
524    visitShift(I, I.getType()->isUnsigned() ? ISD::SRL : ISD::SRA);
525  }
526
527  void visitSetCC(User &I, ISD::CondCode SignedOpc, ISD::CondCode UnsignedOpc);
528  void visitSetEQ(User &I) { visitSetCC(I, ISD::SETEQ, ISD::SETEQ); }
529  void visitSetNE(User &I) { visitSetCC(I, ISD::SETNE, ISD::SETNE); }
530  void visitSetLE(User &I) { visitSetCC(I, ISD::SETLE, ISD::SETULE); }
531  void visitSetGE(User &I) { visitSetCC(I, ISD::SETGE, ISD::SETUGE); }
532  void visitSetLT(User &I) { visitSetCC(I, ISD::SETLT, ISD::SETULT); }
533  void visitSetGT(User &I) { visitSetCC(I, ISD::SETGT, ISD::SETUGT); }
534
535  void visitGetElementPtr(User &I);
536  void visitCast(User &I);
537  void visitSelect(User &I);
538  //
539
540  void visitMalloc(MallocInst &I);
541  void visitFree(FreeInst &I);
542  void visitAlloca(AllocaInst &I);
543  void visitLoad(LoadInst &I);
544  void visitStore(StoreInst &I);
545  void visitPHI(PHINode &I) { } // PHI nodes are handled specially.
546  void visitCall(CallInst &I);
547  void visitInlineAsm(CallInst &I);
548  const char *visitIntrinsicCall(CallInst &I, unsigned Intrinsic);
549
550  void visitVAStart(CallInst &I);
551  void visitVAArg(VAArgInst &I);
552  void visitVAEnd(CallInst &I);
553  void visitVACopy(CallInst &I);
554  void visitFrameReturnAddress(CallInst &I, bool isFrameAddress);
555
556  void visitMemIntrinsic(CallInst &I, unsigned Op);
557
558  void visitUserOp1(Instruction &I) {
559    assert(0 && "UserOp1 should not exist at instruction selection time!");
560    abort();
561  }
562  void visitUserOp2(Instruction &I) {
563    assert(0 && "UserOp2 should not exist at instruction selection time!");
564    abort();
565  }
566};
567} // end namespace llvm
568
569void SelectionDAGLowering::visitRet(ReturnInst &I) {
570  if (I.getNumOperands() == 0) {
571    DAG.setRoot(DAG.getNode(ISD::RET, MVT::Other, getRoot()));
572    return;
573  }
574  std::vector<SDOperand> NewValues;
575  NewValues.push_back(getRoot());
576  for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
577    SDOperand RetOp = getValue(I.getOperand(i));
578
579    // If this is an integer return value, we need to promote it ourselves to
580    // the full width of a register, since LegalizeOp will use ANY_EXTEND rather
581    // than sign/zero.
582    if (MVT::isInteger(RetOp.getValueType()) &&
583        RetOp.getValueType() < MVT::i64) {
584      MVT::ValueType TmpVT;
585      if (TLI.getTypeAction(MVT::i32) == TargetLowering::Promote)
586        TmpVT = TLI.getTypeToTransformTo(MVT::i32);
587      else
588        TmpVT = MVT::i32;
589
590      if (I.getOperand(i)->getType()->isSigned())
591        RetOp = DAG.getNode(ISD::SIGN_EXTEND, TmpVT, RetOp);
592      else
593        RetOp = DAG.getNode(ISD::ZERO_EXTEND, TmpVT, RetOp);
594    }
595    NewValues.push_back(RetOp);
596  }
597  DAG.setRoot(DAG.getNode(ISD::RET, MVT::Other, NewValues));
598}
599
600void SelectionDAGLowering::visitBr(BranchInst &I) {
601  // Update machine-CFG edges.
602  MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
603
604  // Figure out which block is immediately after the current one.
605  MachineBasicBlock *NextBlock = 0;
606  MachineFunction::iterator BBI = CurMBB;
607  if (++BBI != CurMBB->getParent()->end())
608    NextBlock = BBI;
609
610  if (I.isUnconditional()) {
611    // If this is not a fall-through branch, emit the branch.
612    if (Succ0MBB != NextBlock)
613      DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, getRoot(),
614                              DAG.getBasicBlock(Succ0MBB)));
615  } else {
616    MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
617
618    SDOperand Cond = getValue(I.getCondition());
619    if (Succ1MBB == NextBlock) {
620      // If the condition is false, fall through.  This means we should branch
621      // if the condition is true to Succ #0.
622      DAG.setRoot(DAG.getNode(ISD::BRCOND, MVT::Other, getRoot(),
623                              Cond, DAG.getBasicBlock(Succ0MBB)));
624    } else if (Succ0MBB == NextBlock) {
625      // If the condition is true, fall through.  This means we should branch if
626      // the condition is false to Succ #1.  Invert the condition first.
627      SDOperand True = DAG.getConstant(1, Cond.getValueType());
628      Cond = DAG.getNode(ISD::XOR, Cond.getValueType(), Cond, True);
629      DAG.setRoot(DAG.getNode(ISD::BRCOND, MVT::Other, getRoot(),
630                              Cond, DAG.getBasicBlock(Succ1MBB)));
631    } else {
632      std::vector<SDOperand> Ops;
633      Ops.push_back(getRoot());
634      // If the false case is the current basic block, then this is a self
635      // loop. We do not want to emit "Loop: ... brcond Out; br Loop", as it
636      // adds an extra instruction in the loop.  Instead, invert the
637      // condition and emit "Loop: ... br!cond Loop; br Out.
638      if (CurMBB == Succ1MBB) {
639        std::swap(Succ0MBB, Succ1MBB);
640        SDOperand True = DAG.getConstant(1, Cond.getValueType());
641        Cond = DAG.getNode(ISD::XOR, Cond.getValueType(), Cond, True);
642      }
643      Ops.push_back(Cond);
644      Ops.push_back(DAG.getBasicBlock(Succ0MBB));
645      Ops.push_back(DAG.getBasicBlock(Succ1MBB));
646      DAG.setRoot(DAG.getNode(ISD::BRCONDTWOWAY, MVT::Other, Ops));
647    }
648  }
649}
650
651void SelectionDAGLowering::visitSub(User &I) {
652  // -0.0 - X --> fneg
653  if (I.getType()->isFloatingPoint()) {
654    if (ConstantFP *CFP = dyn_cast<ConstantFP>(I.getOperand(0)))
655      if (CFP->isExactlyValue(-0.0)) {
656        SDOperand Op2 = getValue(I.getOperand(1));
657        setValue(&I, DAG.getNode(ISD::FNEG, Op2.getValueType(), Op2));
658        return;
659      }
660  }
661  visitBinary(I, ISD::SUB, ISD::FSUB, ISD::VSUB);
662}
663
664void SelectionDAGLowering::visitBinary(User &I, unsigned IntOp, unsigned FPOp,
665                                       unsigned VecOp) {
666  const Type *Ty = I.getType();
667  SDOperand Op1 = getValue(I.getOperand(0));
668  SDOperand Op2 = getValue(I.getOperand(1));
669
670  if (Ty->isIntegral()) {
671    setValue(&I, DAG.getNode(IntOp, Op1.getValueType(), Op1, Op2));
672  } else if (Ty->isFloatingPoint()) {
673    setValue(&I, DAG.getNode(FPOp, Op1.getValueType(), Op1, Op2));
674  } else {
675    const PackedType *PTy = cast<PackedType>(Ty);
676    unsigned NumElements = PTy->getNumElements();
677    MVT::ValueType PVT = TLI.getValueType(PTy->getElementType());
678    MVT::ValueType TVT = MVT::getVectorType(PVT, NumElements);
679
680    // Immediately scalarize packed types containing only one element, so that
681    // the Legalize pass does not have to deal with them.  Similarly, if the
682    // abstract vector is going to turn into one that the target natively
683    // supports, generate that type now so that Legalize doesn't have to deal
684    // with that either.  These steps ensure that Legalize only has to handle
685    // vector types in its Expand case.
686    unsigned Opc = MVT::isFloatingPoint(PVT) ? FPOp : IntOp;
687    if (NumElements == 1) {
688      setValue(&I, DAG.getNode(Opc, PVT, Op1, Op2));
689    } else if (TVT != MVT::Other &&
690               TLI.isTypeLegal(TVT) && TLI.isOperationLegal(Opc, TVT)) {
691      setValue(&I, DAG.getNode(Opc, TVT, Op1, Op2));
692    } else {
693      SDOperand Num = DAG.getConstant(NumElements, MVT::i32);
694      SDOperand Typ = DAG.getValueType(PVT);
695      setValue(&I, DAG.getNode(VecOp, MVT::Vector, Num, Typ, Op1, Op2));
696    }
697  }
698}
699
700void SelectionDAGLowering::visitShift(User &I, unsigned Opcode) {
701  SDOperand Op1 = getValue(I.getOperand(0));
702  SDOperand Op2 = getValue(I.getOperand(1));
703
704  Op2 = DAG.getNode(ISD::ANY_EXTEND, TLI.getShiftAmountTy(), Op2);
705
706  setValue(&I, DAG.getNode(Opcode, Op1.getValueType(), Op1, Op2));
707}
708
709void SelectionDAGLowering::visitSetCC(User &I,ISD::CondCode SignedOpcode,
710                                      ISD::CondCode UnsignedOpcode) {
711  SDOperand Op1 = getValue(I.getOperand(0));
712  SDOperand Op2 = getValue(I.getOperand(1));
713  ISD::CondCode Opcode = SignedOpcode;
714  if (I.getOperand(0)->getType()->isUnsigned())
715    Opcode = UnsignedOpcode;
716  setValue(&I, DAG.getSetCC(MVT::i1, Op1, Op2, Opcode));
717}
718
719void SelectionDAGLowering::visitSelect(User &I) {
720  SDOperand Cond     = getValue(I.getOperand(0));
721  SDOperand TrueVal  = getValue(I.getOperand(1));
722  SDOperand FalseVal = getValue(I.getOperand(2));
723  setValue(&I, DAG.getNode(ISD::SELECT, TrueVal.getValueType(), Cond,
724                           TrueVal, FalseVal));
725}
726
727void SelectionDAGLowering::visitCast(User &I) {
728  SDOperand N = getValue(I.getOperand(0));
729  MVT::ValueType SrcTy = TLI.getValueType(I.getOperand(0)->getType());
730  MVT::ValueType DestTy = TLI.getValueType(I.getType());
731
732  if (N.getValueType() == DestTy) {
733    setValue(&I, N);  // noop cast.
734  } else if (DestTy == MVT::i1) {
735    // Cast to bool is a comparison against zero, not truncation to zero.
736    SDOperand Zero = isInteger(SrcTy) ? DAG.getConstant(0, N.getValueType()) :
737                                       DAG.getConstantFP(0.0, N.getValueType());
738    setValue(&I, DAG.getSetCC(MVT::i1, N, Zero, ISD::SETNE));
739  } else if (isInteger(SrcTy)) {
740    if (isInteger(DestTy)) {        // Int -> Int cast
741      if (DestTy < SrcTy)   // Truncating cast?
742        setValue(&I, DAG.getNode(ISD::TRUNCATE, DestTy, N));
743      else if (I.getOperand(0)->getType()->isSigned())
744        setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, DestTy, N));
745      else
746        setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, DestTy, N));
747    } else {                        // Int -> FP cast
748      if (I.getOperand(0)->getType()->isSigned())
749        setValue(&I, DAG.getNode(ISD::SINT_TO_FP, DestTy, N));
750      else
751        setValue(&I, DAG.getNode(ISD::UINT_TO_FP, DestTy, N));
752    }
753  } else {
754    assert(isFloatingPoint(SrcTy) && "Unknown value type!");
755    if (isFloatingPoint(DestTy)) {  // FP -> FP cast
756      if (DestTy < SrcTy)   // Rounding cast?
757        setValue(&I, DAG.getNode(ISD::FP_ROUND, DestTy, N));
758      else
759        setValue(&I, DAG.getNode(ISD::FP_EXTEND, DestTy, N));
760    } else {                        // FP -> Int cast.
761      if (I.getType()->isSigned())
762        setValue(&I, DAG.getNode(ISD::FP_TO_SINT, DestTy, N));
763      else
764        setValue(&I, DAG.getNode(ISD::FP_TO_UINT, DestTy, N));
765    }
766  }
767}
768
769void SelectionDAGLowering::visitGetElementPtr(User &I) {
770  SDOperand N = getValue(I.getOperand(0));
771  const Type *Ty = I.getOperand(0)->getType();
772  const Type *UIntPtrTy = TD.getIntPtrType();
773
774  for (GetElementPtrInst::op_iterator OI = I.op_begin()+1, E = I.op_end();
775       OI != E; ++OI) {
776    Value *Idx = *OI;
777    if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
778      unsigned Field = cast<ConstantUInt>(Idx)->getValue();
779      if (Field) {
780        // N = N + Offset
781        uint64_t Offset = TD.getStructLayout(StTy)->MemberOffsets[Field];
782        N = DAG.getNode(ISD::ADD, N.getValueType(), N,
783                        getIntPtrConstant(Offset));
784      }
785      Ty = StTy->getElementType(Field);
786    } else {
787      Ty = cast<SequentialType>(Ty)->getElementType();
788
789      // If this is a constant subscript, handle it quickly.
790      if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
791        if (CI->getRawValue() == 0) continue;
792
793        uint64_t Offs;
794        if (ConstantSInt *CSI = dyn_cast<ConstantSInt>(CI))
795          Offs = (int64_t)TD.getTypeSize(Ty)*CSI->getValue();
796        else
797          Offs = TD.getTypeSize(Ty)*cast<ConstantUInt>(CI)->getValue();
798        N = DAG.getNode(ISD::ADD, N.getValueType(), N, getIntPtrConstant(Offs));
799        continue;
800      }
801
802      // N = N + Idx * ElementSize;
803      uint64_t ElementSize = TD.getTypeSize(Ty);
804      SDOperand IdxN = getValue(Idx);
805
806      // If the index is smaller or larger than intptr_t, truncate or extend
807      // it.
808      if (IdxN.getValueType() < N.getValueType()) {
809        if (Idx->getType()->isSigned())
810          IdxN = DAG.getNode(ISD::SIGN_EXTEND, N.getValueType(), IdxN);
811        else
812          IdxN = DAG.getNode(ISD::ZERO_EXTEND, N.getValueType(), IdxN);
813      } else if (IdxN.getValueType() > N.getValueType())
814        IdxN = DAG.getNode(ISD::TRUNCATE, N.getValueType(), IdxN);
815
816      // If this is a multiply by a power of two, turn it into a shl
817      // immediately.  This is a very common case.
818      if (isPowerOf2_64(ElementSize)) {
819        unsigned Amt = Log2_64(ElementSize);
820        IdxN = DAG.getNode(ISD::SHL, N.getValueType(), IdxN,
821                           DAG.getConstant(Amt, TLI.getShiftAmountTy()));
822        N = DAG.getNode(ISD::ADD, N.getValueType(), N, IdxN);
823        continue;
824      }
825
826      SDOperand Scale = getIntPtrConstant(ElementSize);
827      IdxN = DAG.getNode(ISD::MUL, N.getValueType(), IdxN, Scale);
828      N = DAG.getNode(ISD::ADD, N.getValueType(), N, IdxN);
829    }
830  }
831  setValue(&I, N);
832}
833
834void SelectionDAGLowering::visitAlloca(AllocaInst &I) {
835  // If this is a fixed sized alloca in the entry block of the function,
836  // allocate it statically on the stack.
837  if (FuncInfo.StaticAllocaMap.count(&I))
838    return;   // getValue will auto-populate this.
839
840  const Type *Ty = I.getAllocatedType();
841  uint64_t TySize = TLI.getTargetData().getTypeSize(Ty);
842  unsigned Align = std::max((unsigned)TLI.getTargetData().getTypeAlignment(Ty),
843                            I.getAlignment());
844
845  SDOperand AllocSize = getValue(I.getArraySize());
846  MVT::ValueType IntPtr = TLI.getPointerTy();
847  if (IntPtr < AllocSize.getValueType())
848    AllocSize = DAG.getNode(ISD::TRUNCATE, IntPtr, AllocSize);
849  else if (IntPtr > AllocSize.getValueType())
850    AllocSize = DAG.getNode(ISD::ZERO_EXTEND, IntPtr, AllocSize);
851
852  AllocSize = DAG.getNode(ISD::MUL, IntPtr, AllocSize,
853                          getIntPtrConstant(TySize));
854
855  // Handle alignment.  If the requested alignment is less than or equal to the
856  // stack alignment, ignore it and round the size of the allocation up to the
857  // stack alignment size.  If the size is greater than the stack alignment, we
858  // note this in the DYNAMIC_STACKALLOC node.
859  unsigned StackAlign =
860    TLI.getTargetMachine().getFrameInfo()->getStackAlignment();
861  if (Align <= StackAlign) {
862    Align = 0;
863    // Add SA-1 to the size.
864    AllocSize = DAG.getNode(ISD::ADD, AllocSize.getValueType(), AllocSize,
865                            getIntPtrConstant(StackAlign-1));
866    // Mask out the low bits for alignment purposes.
867    AllocSize = DAG.getNode(ISD::AND, AllocSize.getValueType(), AllocSize,
868                            getIntPtrConstant(~(uint64_t)(StackAlign-1)));
869  }
870
871  std::vector<MVT::ValueType> VTs;
872  VTs.push_back(AllocSize.getValueType());
873  VTs.push_back(MVT::Other);
874  std::vector<SDOperand> Ops;
875  Ops.push_back(getRoot());
876  Ops.push_back(AllocSize);
877  Ops.push_back(getIntPtrConstant(Align));
878  SDOperand DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, VTs, Ops);
879  DAG.setRoot(setValue(&I, DSA).getValue(1));
880
881  // Inform the Frame Information that we have just allocated a variable-sized
882  // object.
883  CurMBB->getParent()->getFrameInfo()->CreateVariableSizedObject();
884}
885
886void SelectionDAGLowering::visitLoad(LoadInst &I) {
887  SDOperand Ptr = getValue(I.getOperand(0));
888
889  SDOperand Root;
890  if (I.isVolatile())
891    Root = getRoot();
892  else {
893    // Do not serialize non-volatile loads against each other.
894    Root = DAG.getRoot();
895  }
896
897  const Type *Ty = I.getType();
898  SDOperand L;
899
900  if (const PackedType *PTy = dyn_cast<PackedType>(Ty)) {
901    unsigned NumElements = PTy->getNumElements();
902    MVT::ValueType PVT = TLI.getValueType(PTy->getElementType());
903    MVT::ValueType TVT = MVT::getVectorType(PVT, NumElements);
904
905    // Immediately scalarize packed types containing only one element, so that
906    // the Legalize pass does not have to deal with them.
907    if (NumElements == 1) {
908      L = DAG.getLoad(PVT, Root, Ptr, DAG.getSrcValue(I.getOperand(0)));
909    } else if (TVT != MVT::Other &&
910               TLI.isTypeLegal(TVT) && TLI.isOperationLegal(ISD::LOAD, TVT)) {
911      L = DAG.getLoad(TVT, Root, Ptr, DAG.getSrcValue(I.getOperand(0)));
912    } else {
913      L = DAG.getVecLoad(NumElements, PVT, Root, Ptr,
914                         DAG.getSrcValue(I.getOperand(0)));
915    }
916  } else {
917    L = DAG.getLoad(TLI.getValueType(Ty), Root, Ptr,
918                    DAG.getSrcValue(I.getOperand(0)));
919  }
920  setValue(&I, L);
921
922  if (I.isVolatile())
923    DAG.setRoot(L.getValue(1));
924  else
925    PendingLoads.push_back(L.getValue(1));
926}
927
928
929void SelectionDAGLowering::visitStore(StoreInst &I) {
930  Value *SrcV = I.getOperand(0);
931  SDOperand Src = getValue(SrcV);
932  SDOperand Ptr = getValue(I.getOperand(1));
933  DAG.setRoot(DAG.getNode(ISD::STORE, MVT::Other, getRoot(), Src, Ptr,
934                          DAG.getSrcValue(I.getOperand(1))));
935}
936
937/// visitIntrinsicCall - Lower the call to the specified intrinsic function.  If
938/// we want to emit this as a call to a named external function, return the name
939/// otherwise lower it and return null.
940const char *
941SelectionDAGLowering::visitIntrinsicCall(CallInst &I, unsigned Intrinsic) {
942  switch (Intrinsic) {
943  case Intrinsic::vastart:  visitVAStart(I); return 0;
944  case Intrinsic::vaend:    visitVAEnd(I); return 0;
945  case Intrinsic::vacopy:   visitVACopy(I); return 0;
946  case Intrinsic::returnaddress: visitFrameReturnAddress(I, false); return 0;
947  case Intrinsic::frameaddress:  visitFrameReturnAddress(I, true); return 0;
948  case Intrinsic::setjmp:
949    return "_setjmp"+!TLI.usesUnderscoreSetJmpLongJmp();
950    break;
951  case Intrinsic::longjmp:
952    return "_longjmp"+!TLI.usesUnderscoreSetJmpLongJmp();
953    break;
954  case Intrinsic::memcpy_i32:
955  case Intrinsic::memcpy_i64:
956    visitMemIntrinsic(I, ISD::MEMCPY);
957    return 0;
958  case Intrinsic::memset_i32:
959  case Intrinsic::memset_i64:
960    visitMemIntrinsic(I, ISD::MEMSET);
961    return 0;
962  case Intrinsic::memmove_i32:
963  case Intrinsic::memmove_i64:
964    visitMemIntrinsic(I, ISD::MEMMOVE);
965    return 0;
966
967  case Intrinsic::dbg_stoppoint: {
968    if (TLI.getTargetMachine().getIntrinsicLowering().EmitDebugFunctions())
969      return "llvm_debugger_stop";
970
971    MachineDebugInfo *DebugInfo = DAG.getMachineDebugInfo();
972    if (DebugInfo &&  DebugInfo->Verify(I.getOperand(4))) {
973      std::vector<SDOperand> Ops;
974
975      // Input Chain
976      Ops.push_back(getRoot());
977
978      // line number
979      Ops.push_back(getValue(I.getOperand(2)));
980
981      // column
982      Ops.push_back(getValue(I.getOperand(3)));
983
984      DebugInfoDesc *DD = DebugInfo->getDescFor(I.getOperand(4));
985      assert(DD && "Not a debug information descriptor");
986      CompileUnitDesc *CompileUnit = dyn_cast<CompileUnitDesc>(DD);
987      assert(CompileUnit && "Not a compile unit");
988      Ops.push_back(DAG.getString(CompileUnit->getFileName()));
989      Ops.push_back(DAG.getString(CompileUnit->getDirectory()));
990
991      if (Ops.size() == 5)  // Found filename/workingdir.
992        DAG.setRoot(DAG.getNode(ISD::LOCATION, MVT::Other, Ops));
993    }
994
995    setValue(&I, DAG.getNode(ISD::UNDEF, TLI.getValueType(I.getType())));
996    return 0;
997  }
998  case Intrinsic::dbg_region_start:
999    if (TLI.getTargetMachine().getIntrinsicLowering().EmitDebugFunctions())
1000      return "llvm_dbg_region_start";
1001    if (I.getType() != Type::VoidTy)
1002      setValue(&I, DAG.getNode(ISD::UNDEF, TLI.getValueType(I.getType())));
1003    return 0;
1004  case Intrinsic::dbg_region_end:
1005    if (TLI.getTargetMachine().getIntrinsicLowering().EmitDebugFunctions())
1006      return "llvm_dbg_region_end";
1007    if (I.getType() != Type::VoidTy)
1008      setValue(&I, DAG.getNode(ISD::UNDEF, TLI.getValueType(I.getType())));
1009    return 0;
1010  case Intrinsic::dbg_func_start:
1011    if (TLI.getTargetMachine().getIntrinsicLowering().EmitDebugFunctions())
1012      return "llvm_dbg_subprogram";
1013    if (I.getType() != Type::VoidTy)
1014      setValue(&I, DAG.getNode(ISD::UNDEF, TLI.getValueType(I.getType())));
1015    return 0;
1016
1017  case Intrinsic::isunordered_f32:
1018  case Intrinsic::isunordered_f64:
1019    setValue(&I, DAG.getSetCC(MVT::i1,getValue(I.getOperand(1)),
1020                              getValue(I.getOperand(2)), ISD::SETUO));
1021    return 0;
1022
1023  case Intrinsic::sqrt_f32:
1024  case Intrinsic::sqrt_f64:
1025    setValue(&I, DAG.getNode(ISD::FSQRT,
1026                             getValue(I.getOperand(1)).getValueType(),
1027                             getValue(I.getOperand(1))));
1028    return 0;
1029  case Intrinsic::pcmarker: {
1030    SDOperand Tmp = getValue(I.getOperand(1));
1031    DAG.setRoot(DAG.getNode(ISD::PCMARKER, MVT::Other, getRoot(), Tmp));
1032    return 0;
1033  }
1034  case Intrinsic::readcyclecounter: {
1035    std::vector<MVT::ValueType> VTs;
1036    VTs.push_back(MVT::i64);
1037    VTs.push_back(MVT::Other);
1038    std::vector<SDOperand> Ops;
1039    Ops.push_back(getRoot());
1040    SDOperand Tmp = DAG.getNode(ISD::READCYCLECOUNTER, VTs, Ops);
1041    setValue(&I, Tmp);
1042    DAG.setRoot(Tmp.getValue(1));
1043    return 0;
1044  }
1045  case Intrinsic::bswap_i16:
1046  case Intrinsic::bswap_i32:
1047  case Intrinsic::bswap_i64:
1048    setValue(&I, DAG.getNode(ISD::BSWAP,
1049                             getValue(I.getOperand(1)).getValueType(),
1050                             getValue(I.getOperand(1))));
1051    return 0;
1052  case Intrinsic::cttz_i8:
1053  case Intrinsic::cttz_i16:
1054  case Intrinsic::cttz_i32:
1055  case Intrinsic::cttz_i64:
1056    setValue(&I, DAG.getNode(ISD::CTTZ,
1057                             getValue(I.getOperand(1)).getValueType(),
1058                             getValue(I.getOperand(1))));
1059    return 0;
1060  case Intrinsic::ctlz_i8:
1061  case Intrinsic::ctlz_i16:
1062  case Intrinsic::ctlz_i32:
1063  case Intrinsic::ctlz_i64:
1064    setValue(&I, DAG.getNode(ISD::CTLZ,
1065                             getValue(I.getOperand(1)).getValueType(),
1066                             getValue(I.getOperand(1))));
1067    return 0;
1068  case Intrinsic::ctpop_i8:
1069  case Intrinsic::ctpop_i16:
1070  case Intrinsic::ctpop_i32:
1071  case Intrinsic::ctpop_i64:
1072    setValue(&I, DAG.getNode(ISD::CTPOP,
1073                             getValue(I.getOperand(1)).getValueType(),
1074                             getValue(I.getOperand(1))));
1075    return 0;
1076  case Intrinsic::stacksave: {
1077    std::vector<MVT::ValueType> VTs;
1078    VTs.push_back(TLI.getPointerTy());
1079    VTs.push_back(MVT::Other);
1080    std::vector<SDOperand> Ops;
1081    Ops.push_back(getRoot());
1082    SDOperand Tmp = DAG.getNode(ISD::STACKSAVE, VTs, Ops);
1083    setValue(&I, Tmp);
1084    DAG.setRoot(Tmp.getValue(1));
1085    return 0;
1086  }
1087  case Intrinsic::stackrestore: {
1088    SDOperand Tmp = getValue(I.getOperand(1));
1089    DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, MVT::Other, getRoot(), Tmp));
1090    return 0;
1091  }
1092  case Intrinsic::prefetch:
1093    // FIXME: Currently discarding prefetches.
1094    return 0;
1095  default:
1096    std::cerr << I;
1097    assert(0 && "This intrinsic is not implemented yet!");
1098    return 0;
1099  }
1100}
1101
1102
1103void SelectionDAGLowering::visitCall(CallInst &I) {
1104  const char *RenameFn = 0;
1105  if (Function *F = I.getCalledFunction()) {
1106    if (F->isExternal())
1107      if (unsigned IID = F->getIntrinsicID()) {
1108        RenameFn = visitIntrinsicCall(I, IID);
1109        if (!RenameFn)
1110          return;
1111      } else {    // Not an LLVM intrinsic.
1112        const std::string &Name = F->getName();
1113        if (Name[0] == 'c' && (Name == "copysign" || Name == "copysignf")) {
1114          if (I.getNumOperands() == 3 &&   // Basic sanity checks.
1115              I.getOperand(1)->getType()->isFloatingPoint() &&
1116              I.getType() == I.getOperand(1)->getType() &&
1117              I.getType() == I.getOperand(2)->getType()) {
1118            SDOperand LHS = getValue(I.getOperand(1));
1119            SDOperand RHS = getValue(I.getOperand(2));
1120            setValue(&I, DAG.getNode(ISD::FCOPYSIGN, LHS.getValueType(),
1121                                     LHS, RHS));
1122            return;
1123          }
1124        } else if (Name[0] == 'f' && (Name == "fabs" || Name == "fabsf")) {
1125          if (I.getNumOperands() == 2 &&   // Basic sanity checks.
1126              I.getOperand(1)->getType()->isFloatingPoint() &&
1127              I.getType() == I.getOperand(1)->getType()) {
1128            SDOperand Tmp = getValue(I.getOperand(1));
1129            setValue(&I, DAG.getNode(ISD::FABS, Tmp.getValueType(), Tmp));
1130            return;
1131          }
1132        } else if (Name[0] == 's' && (Name == "sin" || Name == "sinf")) {
1133          if (I.getNumOperands() == 2 &&   // Basic sanity checks.
1134              I.getOperand(1)->getType()->isFloatingPoint() &&
1135              I.getType() == I.getOperand(1)->getType()) {
1136            SDOperand Tmp = getValue(I.getOperand(1));
1137            setValue(&I, DAG.getNode(ISD::FSIN, Tmp.getValueType(), Tmp));
1138            return;
1139          }
1140        } else if (Name[0] == 'c' && (Name == "cos" || Name == "cosf")) {
1141          if (I.getNumOperands() == 2 &&   // Basic sanity checks.
1142              I.getOperand(1)->getType()->isFloatingPoint() &&
1143              I.getType() == I.getOperand(1)->getType()) {
1144            SDOperand Tmp = getValue(I.getOperand(1));
1145            setValue(&I, DAG.getNode(ISD::FCOS, Tmp.getValueType(), Tmp));
1146            return;
1147          }
1148        }
1149      }
1150  } else if (isa<InlineAsm>(I.getOperand(0))) {
1151    visitInlineAsm(I);
1152    return;
1153  }
1154
1155  SDOperand Callee;
1156  if (!RenameFn)
1157    Callee = getValue(I.getOperand(0));
1158  else
1159    Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy());
1160  std::vector<std::pair<SDOperand, const Type*> > Args;
1161  Args.reserve(I.getNumOperands());
1162  for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) {
1163    Value *Arg = I.getOperand(i);
1164    SDOperand ArgNode = getValue(Arg);
1165    Args.push_back(std::make_pair(ArgNode, Arg->getType()));
1166  }
1167
1168  const PointerType *PT = cast<PointerType>(I.getCalledValue()->getType());
1169  const FunctionType *FTy = cast<FunctionType>(PT->getElementType());
1170
1171  std::pair<SDOperand,SDOperand> Result =
1172    TLI.LowerCallTo(getRoot(), I.getType(), FTy->isVarArg(), I.getCallingConv(),
1173                    I.isTailCall(), Callee, Args, DAG);
1174  if (I.getType() != Type::VoidTy)
1175    setValue(&I, Result.first);
1176  DAG.setRoot(Result.second);
1177}
1178
1179SDOperand RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
1180                                        SDOperand &Chain, SDOperand &Flag)const{
1181  SDOperand Val = DAG.getCopyFromReg(Chain, Regs[0], RegVT, Flag);
1182  Chain = Val.getValue(1);
1183  Flag  = Val.getValue(2);
1184
1185  // If the result was expanded, copy from the top part.
1186  if (Regs.size() > 1) {
1187    assert(Regs.size() == 2 &&
1188           "Cannot expand to more than 2 elts yet!");
1189    SDOperand Hi = DAG.getCopyFromReg(Chain, Regs[1], RegVT, Flag);
1190    Chain = Val.getValue(1);
1191    Flag  = Val.getValue(2);
1192    if (DAG.getTargetLoweringInfo().isLittleEndian())
1193      return DAG.getNode(ISD::BUILD_PAIR, ValueVT, Val, Hi);
1194    else
1195      return DAG.getNode(ISD::BUILD_PAIR, ValueVT, Hi, Val);
1196  }
1197
1198  // Otherwise, if the return value was promoted, truncate it to the
1199  // appropriate type.
1200  if (RegVT == ValueVT)
1201    return Val;
1202
1203  if (MVT::isInteger(RegVT))
1204    return DAG.getNode(ISD::TRUNCATE, ValueVT, Val);
1205  else
1206    return DAG.getNode(ISD::FP_ROUND, ValueVT, Val);
1207}
1208
1209/// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
1210/// specified value into the registers specified by this object.  This uses
1211/// Chain/Flag as the input and updates them for the output Chain/Flag.
1212void RegsForValue::getCopyToRegs(SDOperand Val, SelectionDAG &DAG,
1213                                 SDOperand &Chain, SDOperand &Flag) const {
1214  if (Regs.size() == 1) {
1215    // If there is a single register and the types differ, this must be
1216    // a promotion.
1217    if (RegVT != ValueVT) {
1218      if (MVT::isInteger(RegVT))
1219        Val = DAG.getNode(ISD::ANY_EXTEND, RegVT, Val);
1220      else
1221        Val = DAG.getNode(ISD::FP_EXTEND, RegVT, Val);
1222    }
1223    Chain = DAG.getCopyToReg(Chain, Regs[0], Val, Flag);
1224    Flag = Chain.getValue(1);
1225  } else {
1226    std::vector<unsigned> R(Regs);
1227    if (!DAG.getTargetLoweringInfo().isLittleEndian())
1228      std::reverse(R.begin(), R.end());
1229
1230    for (unsigned i = 0, e = R.size(); i != e; ++i) {
1231      SDOperand Part = DAG.getNode(ISD::EXTRACT_ELEMENT, RegVT, Val,
1232                                   DAG.getConstant(i, MVT::i32));
1233      Chain = DAG.getCopyToReg(Chain, R[i], Part, Flag);
1234      Flag = Chain.getValue(1);
1235    }
1236  }
1237}
1238
1239/// AddInlineAsmOperands - Add this value to the specified inlineasm node
1240/// operand list.  This adds the code marker and includes the number of
1241/// values added into it.
1242void RegsForValue::AddInlineAsmOperands(unsigned Code, SelectionDAG &DAG,
1243                                        std::vector<SDOperand> &Ops) const {
1244  Ops.push_back(DAG.getConstant(Code | (Regs.size() << 3), MVT::i32));
1245  for (unsigned i = 0, e = Regs.size(); i != e; ++i)
1246    Ops.push_back(DAG.getRegister(Regs[i], RegVT));
1247}
1248
1249/// isAllocatableRegister - If the specified register is safe to allocate,
1250/// i.e. it isn't a stack pointer or some other special register, return the
1251/// register class for the register.  Otherwise, return null.
1252static const TargetRegisterClass *
1253isAllocatableRegister(unsigned Reg, MachineFunction &MF,
1254                      const TargetLowering &TLI, const MRegisterInfo *MRI) {
1255  for (MRegisterInfo::regclass_iterator RCI = MRI->regclass_begin(),
1256       E = MRI->regclass_end(); RCI != E; ++RCI) {
1257    const TargetRegisterClass *RC = *RCI;
1258    // If none of the the value types for this register class are valid, we
1259    // can't use it.  For example, 64-bit reg classes on 32-bit targets.
1260    bool isLegal = false;
1261    for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
1262         I != E; ++I) {
1263      if (TLI.isTypeLegal(*I)) {
1264        isLegal = true;
1265        break;
1266      }
1267    }
1268
1269    if (!isLegal) continue;
1270
1271    // NOTE: This isn't ideal.  In particular, this might allocate the
1272    // frame pointer in functions that need it (due to them not being taken
1273    // out of allocation, because a variable sized allocation hasn't been seen
1274    // yet).  This is a slight code pessimization, but should still work.
1275    for (TargetRegisterClass::iterator I = RC->allocation_order_begin(MF),
1276         E = RC->allocation_order_end(MF); I != E; ++I)
1277      if (*I == Reg)
1278        return RC;
1279  }
1280  return 0;
1281}
1282
1283RegsForValue SelectionDAGLowering::
1284GetRegistersForValue(const std::string &ConstrCode,
1285                     MVT::ValueType VT, bool isOutReg, bool isInReg,
1286                     std::set<unsigned> &OutputRegs,
1287                     std::set<unsigned> &InputRegs) {
1288  std::pair<unsigned, const TargetRegisterClass*> PhysReg =
1289    TLI.getRegForInlineAsmConstraint(ConstrCode, VT);
1290  std::vector<unsigned> Regs;
1291
1292  unsigned NumRegs = VT != MVT::Other ? TLI.getNumElements(VT) : 1;
1293  MVT::ValueType RegVT;
1294  MVT::ValueType ValueVT = VT;
1295
1296  if (PhysReg.first) {
1297    if (VT == MVT::Other)
1298      ValueVT = *PhysReg.second->vt_begin();
1299    RegVT = VT;
1300
1301    // This is a explicit reference to a physical register.
1302    Regs.push_back(PhysReg.first);
1303
1304    // If this is an expanded reference, add the rest of the regs to Regs.
1305    if (NumRegs != 1) {
1306      RegVT = *PhysReg.second->vt_begin();
1307      TargetRegisterClass::iterator I = PhysReg.second->begin();
1308      TargetRegisterClass::iterator E = PhysReg.second->end();
1309      for (; *I != PhysReg.first; ++I)
1310        assert(I != E && "Didn't find reg!");
1311
1312      // Already added the first reg.
1313      --NumRegs; ++I;
1314      for (; NumRegs; --NumRegs, ++I) {
1315        assert(I != E && "Ran out of registers to allocate!");
1316        Regs.push_back(*I);
1317      }
1318    }
1319    return RegsForValue(Regs, RegVT, ValueVT);
1320  }
1321
1322  // This is a reference to a register class.  Allocate NumRegs consecutive,
1323  // available, registers from the class.
1324  std::vector<unsigned> RegClassRegs =
1325    TLI.getRegClassForInlineAsmConstraint(ConstrCode, VT);
1326
1327  const MRegisterInfo *MRI = DAG.getTarget().getRegisterInfo();
1328  MachineFunction &MF = *CurMBB->getParent();
1329  unsigned NumAllocated = 0;
1330  for (unsigned i = 0, e = RegClassRegs.size(); i != e; ++i) {
1331    unsigned Reg = RegClassRegs[i];
1332    // See if this register is available.
1333    if ((isOutReg && OutputRegs.count(Reg)) ||   // Already used.
1334        (isInReg  && InputRegs.count(Reg))) {    // Already used.
1335      // Make sure we find consecutive registers.
1336      NumAllocated = 0;
1337      continue;
1338    }
1339
1340    // Check to see if this register is allocatable (i.e. don't give out the
1341    // stack pointer).
1342    const TargetRegisterClass *RC = isAllocatableRegister(Reg, MF, TLI, MRI);
1343    if (!RC) {
1344      // Make sure we find consecutive registers.
1345      NumAllocated = 0;
1346      continue;
1347    }
1348
1349    // Okay, this register is good, we can use it.
1350    ++NumAllocated;
1351
1352    // If we allocated enough consecutive
1353    if (NumAllocated == NumRegs) {
1354      unsigned RegStart = (i-NumAllocated)+1;
1355      unsigned RegEnd   = i+1;
1356      // Mark all of the allocated registers used.
1357      for (unsigned i = RegStart; i != RegEnd; ++i) {
1358        unsigned Reg = RegClassRegs[i];
1359        Regs.push_back(Reg);
1360        if (isOutReg) OutputRegs.insert(Reg);    // Mark reg used.
1361        if (isInReg)  InputRegs.insert(Reg);     // Mark reg used.
1362      }
1363
1364      return RegsForValue(Regs, *RC->vt_begin(), VT);
1365    }
1366  }
1367
1368  // Otherwise, we couldn't allocate enough registers for this.
1369  return RegsForValue();
1370}
1371
1372
1373/// visitInlineAsm - Handle a call to an InlineAsm object.
1374///
1375void SelectionDAGLowering::visitInlineAsm(CallInst &I) {
1376  InlineAsm *IA = cast<InlineAsm>(I.getOperand(0));
1377
1378  SDOperand AsmStr = DAG.getTargetExternalSymbol(IA->getAsmString().c_str(),
1379                                                 MVT::Other);
1380
1381  // Note, we treat inline asms both with and without side-effects as the same.
1382  // If an inline asm doesn't have side effects and doesn't access memory, we
1383  // could not choose to not chain it.
1384  bool hasSideEffects = IA->hasSideEffects();
1385
1386  std::vector<InlineAsm::ConstraintInfo> Constraints = IA->ParseConstraints();
1387  std::vector<MVT::ValueType> ConstraintVTs;
1388
1389  /// AsmNodeOperands - A list of pairs.  The first element is a register, the
1390  /// second is a bitfield where bit #0 is set if it is a use and bit #1 is set
1391  /// if it is a def of that register.
1392  std::vector<SDOperand> AsmNodeOperands;
1393  AsmNodeOperands.push_back(SDOperand());  // reserve space for input chain
1394  AsmNodeOperands.push_back(AsmStr);
1395
1396  SDOperand Chain = getRoot();
1397  SDOperand Flag;
1398
1399  // We fully assign registers here at isel time.  This is not optimal, but
1400  // should work.  For register classes that correspond to LLVM classes, we
1401  // could let the LLVM RA do its thing, but we currently don't.  Do a prepass
1402  // over the constraints, collecting fixed registers that we know we can't use.
1403  std::set<unsigned> OutputRegs, InputRegs;
1404  unsigned OpNum = 1;
1405  for (unsigned i = 0, e = Constraints.size(); i != e; ++i) {
1406    assert(Constraints[i].Codes.size() == 1 && "Only handles one code so far!");
1407    std::string &ConstraintCode = Constraints[i].Codes[0];
1408
1409    MVT::ValueType OpVT;
1410
1411    // Compute the value type for each operand and add it to ConstraintVTs.
1412    switch (Constraints[i].Type) {
1413    case InlineAsm::isOutput:
1414      if (!Constraints[i].isIndirectOutput) {
1415        assert(I.getType() != Type::VoidTy && "Bad inline asm!");
1416        OpVT = TLI.getValueType(I.getType());
1417      } else {
1418        const Type *OpTy = I.getOperand(OpNum)->getType();
1419        OpVT = TLI.getValueType(cast<PointerType>(OpTy)->getElementType());
1420        OpNum++;  // Consumes a call operand.
1421      }
1422      break;
1423    case InlineAsm::isInput:
1424      OpVT = TLI.getValueType(I.getOperand(OpNum)->getType());
1425      OpNum++;  // Consumes a call operand.
1426      break;
1427    case InlineAsm::isClobber:
1428      OpVT = MVT::Other;
1429      break;
1430    }
1431
1432    ConstraintVTs.push_back(OpVT);
1433
1434    if (TLI.getRegForInlineAsmConstraint(ConstraintCode, OpVT).first == 0)
1435      continue;  // Not assigned a fixed reg.
1436
1437    // Build a list of regs that this operand uses.  This always has a single
1438    // element for promoted/expanded operands.
1439    RegsForValue Regs = GetRegistersForValue(ConstraintCode, OpVT,
1440                                             false, false,
1441                                             OutputRegs, InputRegs);
1442
1443    switch (Constraints[i].Type) {
1444    case InlineAsm::isOutput:
1445      // We can't assign any other output to this register.
1446      OutputRegs.insert(Regs.Regs.begin(), Regs.Regs.end());
1447      // If this is an early-clobber output, it cannot be assigned to the same
1448      // value as the input reg.
1449      if (Constraints[i].isEarlyClobber || Constraints[i].hasMatchingInput)
1450        InputRegs.insert(Regs.Regs.begin(), Regs.Regs.end());
1451      break;
1452    case InlineAsm::isInput:
1453      // We can't assign any other input to this register.
1454      InputRegs.insert(Regs.Regs.begin(), Regs.Regs.end());
1455      break;
1456    case InlineAsm::isClobber:
1457      // Clobbered regs cannot be used as inputs or outputs.
1458      InputRegs.insert(Regs.Regs.begin(), Regs.Regs.end());
1459      OutputRegs.insert(Regs.Regs.begin(), Regs.Regs.end());
1460      break;
1461    }
1462  }
1463
1464  // Loop over all of the inputs, copying the operand values into the
1465  // appropriate registers and processing the output regs.
1466  RegsForValue RetValRegs;
1467  std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit;
1468  OpNum = 1;
1469
1470  for (unsigned i = 0, e = Constraints.size(); i != e; ++i) {
1471    assert(Constraints[i].Codes.size() == 1 && "Only handles one code so far!");
1472    std::string &ConstraintCode = Constraints[i].Codes[0];
1473
1474    switch (Constraints[i].Type) {
1475    case InlineAsm::isOutput: {
1476      TargetLowering::ConstraintType CTy = TargetLowering::C_RegisterClass;
1477      if (ConstraintCode.size() == 1)   // not a physreg name.
1478        CTy = TLI.getConstraintType(ConstraintCode[0]);
1479
1480      if (CTy == TargetLowering::C_Memory) {
1481        // Memory output.
1482        SDOperand InOperandVal = getValue(I.getOperand(OpNum));
1483
1484        // Check that the operand (the address to store to) isn't a float.
1485        if (!MVT::isInteger(InOperandVal.getValueType()))
1486          assert(0 && "MATCH FAIL!");
1487
1488        if (!Constraints[i].isIndirectOutput)
1489          assert(0 && "MATCH FAIL!");
1490
1491        OpNum++;  // Consumes a call operand.
1492
1493        // Extend/truncate to the right pointer type if needed.
1494        MVT::ValueType PtrType = TLI.getPointerTy();
1495        if (InOperandVal.getValueType() < PtrType)
1496          InOperandVal = DAG.getNode(ISD::ZERO_EXTEND, PtrType, InOperandVal);
1497        else if (InOperandVal.getValueType() > PtrType)
1498          InOperandVal = DAG.getNode(ISD::TRUNCATE, PtrType, InOperandVal);
1499
1500        // Add information to the INLINEASM node to know about this output.
1501        unsigned ResOpType = 4/*MEM*/ | (1 << 3);
1502        AsmNodeOperands.push_back(DAG.getConstant(ResOpType, MVT::i32));
1503        AsmNodeOperands.push_back(InOperandVal);
1504        break;
1505      }
1506
1507      // Otherwise, this is a register output.
1508      assert(CTy == TargetLowering::C_RegisterClass && "Unknown op type!");
1509
1510      // If this is an early-clobber output, or if there is an input
1511      // constraint that matches this, we need to reserve the input register
1512      // so no other inputs allocate to it.
1513      bool UsesInputRegister = false;
1514      if (Constraints[i].isEarlyClobber || Constraints[i].hasMatchingInput)
1515        UsesInputRegister = true;
1516
1517      // Copy the output from the appropriate register.  Find a register that
1518      // we can use.
1519      RegsForValue Regs =
1520        GetRegistersForValue(ConstraintCode, ConstraintVTs[i],
1521                             true, UsesInputRegister,
1522                             OutputRegs, InputRegs);
1523      assert(!Regs.Regs.empty() && "Couldn't allocate output reg!");
1524
1525      if (!Constraints[i].isIndirectOutput) {
1526        assert(RetValRegs.Regs.empty() &&
1527               "Cannot have multiple output constraints yet!");
1528        assert(I.getType() != Type::VoidTy && "Bad inline asm!");
1529        RetValRegs = Regs;
1530      } else {
1531        IndirectStoresToEmit.push_back(std::make_pair(Regs,
1532                                                      I.getOperand(OpNum)));
1533        OpNum++;  // Consumes a call operand.
1534      }
1535
1536      // Add information to the INLINEASM node to know that this register is
1537      // set.
1538      Regs.AddInlineAsmOperands(2 /*REGDEF*/, DAG, AsmNodeOperands);
1539      break;
1540    }
1541    case InlineAsm::isInput: {
1542      SDOperand InOperandVal = getValue(I.getOperand(OpNum));
1543      OpNum++;  // Consumes a call operand.
1544
1545      if (isdigit(ConstraintCode[0])) {    // Matching constraint?
1546        // If this is required to match an output register we have already set,
1547        // just use its register.
1548        unsigned OperandNo = atoi(ConstraintCode.c_str());
1549
1550        // Scan until we find the definition we already emitted of this operand.
1551        // When we find it, create a RegsForValue operand.
1552        unsigned CurOp = 2;  // The first operand.
1553        for (; OperandNo; --OperandNo) {
1554          // Advance to the next operand.
1555          unsigned NumOps =
1556            cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getValue();
1557          assert((NumOps & 7) == 2 /*REGDEF*/ &&
1558                 "Skipped past definitions?");
1559          CurOp += (NumOps>>3)+1;
1560        }
1561
1562        unsigned NumOps =
1563          cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getValue();
1564        assert((NumOps & 7) == 2 /*REGDEF*/ &&
1565               "Skipped past definitions?");
1566
1567        // Add NumOps>>3 registers to MatchedRegs.
1568        RegsForValue MatchedRegs;
1569        MatchedRegs.ValueVT = InOperandVal.getValueType();
1570        MatchedRegs.RegVT   = AsmNodeOperands[CurOp+1].getValueType();
1571        for (unsigned i = 0, e = NumOps>>3; i != e; ++i) {
1572          unsigned Reg=cast<RegisterSDNode>(AsmNodeOperands[++CurOp])->getReg();
1573          MatchedRegs.Regs.push_back(Reg);
1574        }
1575
1576        // Use the produced MatchedRegs object to
1577        MatchedRegs.getCopyToRegs(InOperandVal, DAG, Chain, Flag);
1578        MatchedRegs.AddInlineAsmOperands(1 /*REGUSE*/, DAG, AsmNodeOperands);
1579        break;
1580      }
1581
1582      TargetLowering::ConstraintType CTy = TargetLowering::C_RegisterClass;
1583      if (ConstraintCode.size() == 1)   // not a physreg name.
1584        CTy = TLI.getConstraintType(ConstraintCode[0]);
1585
1586      if (CTy == TargetLowering::C_Other) {
1587        if (!TLI.isOperandValidForConstraint(InOperandVal, ConstraintCode[0]))
1588          assert(0 && "MATCH FAIL!");
1589
1590        // Add information to the INLINEASM node to know about this input.
1591        unsigned ResOpType = 3 /*IMM*/ | (1 << 3);
1592        AsmNodeOperands.push_back(DAG.getConstant(ResOpType, MVT::i32));
1593        AsmNodeOperands.push_back(InOperandVal);
1594        break;
1595      } else if (CTy == TargetLowering::C_Memory) {
1596        // Memory input.
1597
1598        // Check that the operand isn't a float.
1599        if (!MVT::isInteger(InOperandVal.getValueType()))
1600          assert(0 && "MATCH FAIL!");
1601
1602        // Extend/truncate to the right pointer type if needed.
1603        MVT::ValueType PtrType = TLI.getPointerTy();
1604        if (InOperandVal.getValueType() < PtrType)
1605          InOperandVal = DAG.getNode(ISD::ZERO_EXTEND, PtrType, InOperandVal);
1606        else if (InOperandVal.getValueType() > PtrType)
1607          InOperandVal = DAG.getNode(ISD::TRUNCATE, PtrType, InOperandVal);
1608
1609        // Add information to the INLINEASM node to know about this input.
1610        unsigned ResOpType = 4/*MEM*/ | (1 << 3);
1611        AsmNodeOperands.push_back(DAG.getConstant(ResOpType, MVT::i32));
1612        AsmNodeOperands.push_back(InOperandVal);
1613        break;
1614      }
1615
1616      assert(CTy == TargetLowering::C_RegisterClass && "Unknown op type!");
1617
1618      // Copy the input into the appropriate registers.
1619      RegsForValue InRegs =
1620        GetRegistersForValue(ConstraintCode, ConstraintVTs[i],
1621                             false, true, OutputRegs, InputRegs);
1622      // FIXME: should be match fail.
1623      assert(!InRegs.Regs.empty() && "Couldn't allocate input reg!");
1624
1625      InRegs.getCopyToRegs(InOperandVal, DAG, Chain, Flag);
1626
1627      InRegs.AddInlineAsmOperands(1/*REGUSE*/, DAG, AsmNodeOperands);
1628      break;
1629    }
1630    case InlineAsm::isClobber: {
1631      RegsForValue ClobberedRegs =
1632        GetRegistersForValue(ConstraintCode, MVT::Other, false, false,
1633                             OutputRegs, InputRegs);
1634      // Add the clobbered value to the operand list, so that the register
1635      // allocator is aware that the physreg got clobbered.
1636      if (!ClobberedRegs.Regs.empty())
1637        ClobberedRegs.AddInlineAsmOperands(2/*REGDEF*/, DAG, AsmNodeOperands);
1638      break;
1639    }
1640    }
1641  }
1642
1643  // Finish up input operands.
1644  AsmNodeOperands[0] = Chain;
1645  if (Flag.Val) AsmNodeOperands.push_back(Flag);
1646
1647  std::vector<MVT::ValueType> VTs;
1648  VTs.push_back(MVT::Other);
1649  VTs.push_back(MVT::Flag);
1650  Chain = DAG.getNode(ISD::INLINEASM, VTs, AsmNodeOperands);
1651  Flag = Chain.getValue(1);
1652
1653  // If this asm returns a register value, copy the result from that register
1654  // and set it as the value of the call.
1655  if (!RetValRegs.Regs.empty())
1656    setValue(&I, RetValRegs.getCopyFromRegs(DAG, Chain, Flag));
1657
1658  std::vector<std::pair<SDOperand, Value*> > StoresToEmit;
1659
1660  // Process indirect outputs, first output all of the flagged copies out of
1661  // physregs.
1662  for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
1663    RegsForValue &OutRegs = IndirectStoresToEmit[i].first;
1664    Value *Ptr = IndirectStoresToEmit[i].second;
1665    SDOperand OutVal = OutRegs.getCopyFromRegs(DAG, Chain, Flag);
1666    StoresToEmit.push_back(std::make_pair(OutVal, Ptr));
1667  }
1668
1669  // Emit the non-flagged stores from the physregs.
1670  std::vector<SDOperand> OutChains;
1671  for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i)
1672    OutChains.push_back(DAG.getNode(ISD::STORE, MVT::Other, Chain,
1673                                    StoresToEmit[i].first,
1674                                    getValue(StoresToEmit[i].second),
1675                                    DAG.getSrcValue(StoresToEmit[i].second)));
1676  if (!OutChains.empty())
1677    Chain = DAG.getNode(ISD::TokenFactor, MVT::Other, OutChains);
1678  DAG.setRoot(Chain);
1679}
1680
1681
1682void SelectionDAGLowering::visitMalloc(MallocInst &I) {
1683  SDOperand Src = getValue(I.getOperand(0));
1684
1685  MVT::ValueType IntPtr = TLI.getPointerTy();
1686
1687  if (IntPtr < Src.getValueType())
1688    Src = DAG.getNode(ISD::TRUNCATE, IntPtr, Src);
1689  else if (IntPtr > Src.getValueType())
1690    Src = DAG.getNode(ISD::ZERO_EXTEND, IntPtr, Src);
1691
1692  // Scale the source by the type size.
1693  uint64_t ElementSize = TD.getTypeSize(I.getType()->getElementType());
1694  Src = DAG.getNode(ISD::MUL, Src.getValueType(),
1695                    Src, getIntPtrConstant(ElementSize));
1696
1697  std::vector<std::pair<SDOperand, const Type*> > Args;
1698  Args.push_back(std::make_pair(Src, TLI.getTargetData().getIntPtrType()));
1699
1700  std::pair<SDOperand,SDOperand> Result =
1701    TLI.LowerCallTo(getRoot(), I.getType(), false, CallingConv::C, true,
1702                    DAG.getExternalSymbol("malloc", IntPtr),
1703                    Args, DAG);
1704  setValue(&I, Result.first);  // Pointers always fit in registers
1705  DAG.setRoot(Result.second);
1706}
1707
1708void SelectionDAGLowering::visitFree(FreeInst &I) {
1709  std::vector<std::pair<SDOperand, const Type*> > Args;
1710  Args.push_back(std::make_pair(getValue(I.getOperand(0)),
1711                                TLI.getTargetData().getIntPtrType()));
1712  MVT::ValueType IntPtr = TLI.getPointerTy();
1713  std::pair<SDOperand,SDOperand> Result =
1714    TLI.LowerCallTo(getRoot(), Type::VoidTy, false, CallingConv::C, true,
1715                    DAG.getExternalSymbol("free", IntPtr), Args, DAG);
1716  DAG.setRoot(Result.second);
1717}
1718
1719// InsertAtEndOfBasicBlock - This method should be implemented by targets that
1720// mark instructions with the 'usesCustomDAGSchedInserter' flag.  These
1721// instructions are special in various ways, which require special support to
1722// insert.  The specified MachineInstr is created but not inserted into any
1723// basic blocks, and the scheduler passes ownership of it to this method.
1724MachineBasicBlock *TargetLowering::InsertAtEndOfBasicBlock(MachineInstr *MI,
1725                                                       MachineBasicBlock *MBB) {
1726  std::cerr << "If a target marks an instruction with "
1727               "'usesCustomDAGSchedInserter', it must implement "
1728               "TargetLowering::InsertAtEndOfBasicBlock!\n";
1729  abort();
1730  return 0;
1731}
1732
1733void SelectionDAGLowering::visitVAStart(CallInst &I) {
1734  DAG.setRoot(DAG.getNode(ISD::VASTART, MVT::Other, getRoot(),
1735                          getValue(I.getOperand(1)),
1736                          DAG.getSrcValue(I.getOperand(1))));
1737}
1738
1739void SelectionDAGLowering::visitVAArg(VAArgInst &I) {
1740  SDOperand V = DAG.getVAArg(TLI.getValueType(I.getType()), getRoot(),
1741                             getValue(I.getOperand(0)),
1742                             DAG.getSrcValue(I.getOperand(0)));
1743  setValue(&I, V);
1744  DAG.setRoot(V.getValue(1));
1745}
1746
1747void SelectionDAGLowering::visitVAEnd(CallInst &I) {
1748  DAG.setRoot(DAG.getNode(ISD::VAEND, MVT::Other, getRoot(),
1749                          getValue(I.getOperand(1)),
1750                          DAG.getSrcValue(I.getOperand(1))));
1751}
1752
1753void SelectionDAGLowering::visitVACopy(CallInst &I) {
1754  DAG.setRoot(DAG.getNode(ISD::VACOPY, MVT::Other, getRoot(),
1755                          getValue(I.getOperand(1)),
1756                          getValue(I.getOperand(2)),
1757                          DAG.getSrcValue(I.getOperand(1)),
1758                          DAG.getSrcValue(I.getOperand(2))));
1759}
1760
1761// It is always conservatively correct for llvm.returnaddress and
1762// llvm.frameaddress to return 0.
1763std::pair<SDOperand, SDOperand>
1764TargetLowering::LowerFrameReturnAddress(bool isFrameAddr, SDOperand Chain,
1765                                        unsigned Depth, SelectionDAG &DAG) {
1766  return std::make_pair(DAG.getConstant(0, getPointerTy()), Chain);
1767}
1768
1769SDOperand TargetLowering::LowerOperation(SDOperand Op, SelectionDAG &DAG) {
1770  assert(0 && "LowerOperation not implemented for this target!");
1771  abort();
1772  return SDOperand();
1773}
1774
1775SDOperand TargetLowering::CustomPromoteOperation(SDOperand Op,
1776                                                 SelectionDAG &DAG) {
1777  assert(0 && "CustomPromoteOperation not implemented for this target!");
1778  abort();
1779  return SDOperand();
1780}
1781
1782void SelectionDAGLowering::visitFrameReturnAddress(CallInst &I, bool isFrame) {
1783  unsigned Depth = (unsigned)cast<ConstantUInt>(I.getOperand(1))->getValue();
1784  std::pair<SDOperand,SDOperand> Result =
1785    TLI.LowerFrameReturnAddress(isFrame, getRoot(), Depth, DAG);
1786  setValue(&I, Result.first);
1787  DAG.setRoot(Result.second);
1788}
1789
1790/// getMemsetValue - Vectorized representation of the memset value
1791/// operand.
1792static SDOperand getMemsetValue(SDOperand Value, MVT::ValueType VT,
1793                                SelectionDAG &DAG) {
1794  MVT::ValueType CurVT = VT;
1795  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
1796    uint64_t Val   = C->getValue() & 255;
1797    unsigned Shift = 8;
1798    while (CurVT != MVT::i8) {
1799      Val = (Val << Shift) | Val;
1800      Shift <<= 1;
1801      CurVT = (MVT::ValueType)((unsigned)CurVT - 1);
1802    }
1803    return DAG.getConstant(Val, VT);
1804  } else {
1805    Value = DAG.getNode(ISD::ZERO_EXTEND, VT, Value);
1806    unsigned Shift = 8;
1807    while (CurVT != MVT::i8) {
1808      Value =
1809        DAG.getNode(ISD::OR, VT,
1810                    DAG.getNode(ISD::SHL, VT, Value,
1811                                DAG.getConstant(Shift, MVT::i8)), Value);
1812      Shift <<= 1;
1813      CurVT = (MVT::ValueType)((unsigned)CurVT - 1);
1814    }
1815
1816    return Value;
1817  }
1818}
1819
1820/// getMemsetStringVal - Similar to getMemsetValue. Except this is only
1821/// used when a memcpy is turned into a memset when the source is a constant
1822/// string ptr.
1823static SDOperand getMemsetStringVal(MVT::ValueType VT,
1824                                    SelectionDAG &DAG, TargetLowering &TLI,
1825                                    std::string &Str, unsigned Offset) {
1826  MVT::ValueType CurVT = VT;
1827  uint64_t Val = 0;
1828  unsigned MSB = getSizeInBits(VT) / 8;
1829  if (TLI.isLittleEndian())
1830    Offset = Offset + MSB - 1;
1831  for (unsigned i = 0; i != MSB; ++i) {
1832    Val = (Val << 8) | Str[Offset];
1833    Offset += TLI.isLittleEndian() ? -1 : 1;
1834  }
1835  return DAG.getConstant(Val, VT);
1836}
1837
1838/// getMemBasePlusOffset - Returns base and offset node for the
1839static SDOperand getMemBasePlusOffset(SDOperand Base, unsigned Offset,
1840                                      SelectionDAG &DAG, TargetLowering &TLI) {
1841  MVT::ValueType VT = Base.getValueType();
1842  return DAG.getNode(ISD::ADD, VT, Base, DAG.getConstant(Offset, VT));
1843}
1844
1845/// MeetsMaxMemopRequirement - Determines if the number of memory ops required
1846/// to replace the memset / memcpy is below the threshold. It also returns the
1847/// types of the sequence of  memory ops to perform memset / memcpy.
1848static bool MeetsMaxMemopRequirement(std::vector<MVT::ValueType> &MemOps,
1849                                     unsigned Limit, uint64_t Size,
1850                                     unsigned Align, TargetLowering &TLI) {
1851  MVT::ValueType VT;
1852
1853  if (TLI.allowsUnalignedMemoryAccesses()) {
1854    VT = MVT::i64;
1855  } else {
1856    switch (Align & 7) {
1857    case 0:
1858      VT = MVT::i64;
1859      break;
1860    case 4:
1861      VT = MVT::i32;
1862      break;
1863    case 2:
1864      VT = MVT::i16;
1865      break;
1866    default:
1867      VT = MVT::i8;
1868      break;
1869    }
1870  }
1871
1872  MVT::ValueType LVT = MVT::i64;
1873  while (!TLI.isTypeLegal(LVT))
1874    LVT = (MVT::ValueType)((unsigned)LVT - 1);
1875  assert(MVT::isInteger(LVT));
1876
1877  if (VT > LVT)
1878    VT = LVT;
1879
1880  unsigned NumMemOps = 0;
1881  while (Size != 0) {
1882    unsigned VTSize = getSizeInBits(VT) / 8;
1883    while (VTSize > Size) {
1884      VT = (MVT::ValueType)((unsigned)VT - 1);
1885      VTSize >>= 1;
1886    }
1887    assert(MVT::isInteger(VT));
1888
1889    if (++NumMemOps > Limit)
1890      return false;
1891    MemOps.push_back(VT);
1892    Size -= VTSize;
1893  }
1894
1895  return true;
1896}
1897
1898void SelectionDAGLowering::visitMemIntrinsic(CallInst &I, unsigned Op) {
1899  SDOperand Op1 = getValue(I.getOperand(1));
1900  SDOperand Op2 = getValue(I.getOperand(2));
1901  SDOperand Op3 = getValue(I.getOperand(3));
1902  SDOperand Op4 = getValue(I.getOperand(4));
1903  unsigned Align = (unsigned)cast<ConstantSDNode>(Op4)->getValue();
1904  if (Align == 0) Align = 1;
1905
1906  if (ConstantSDNode *Size = dyn_cast<ConstantSDNode>(Op3)) {
1907    std::vector<MVT::ValueType> MemOps;
1908
1909    // Expand memset / memcpy to a series of load / store ops
1910    // if the size operand falls below a certain threshold.
1911    std::vector<SDOperand> OutChains;
1912    switch (Op) {
1913    default: break;  // Do nothing for now.
1914    case ISD::MEMSET: {
1915      if (MeetsMaxMemopRequirement(MemOps, TLI.getMaxStoresPerMemset(),
1916                                   Size->getValue(), Align, TLI)) {
1917        unsigned NumMemOps = MemOps.size();
1918        unsigned Offset = 0;
1919        for (unsigned i = 0; i < NumMemOps; i++) {
1920          MVT::ValueType VT = MemOps[i];
1921          unsigned VTSize = getSizeInBits(VT) / 8;
1922          SDOperand Value = getMemsetValue(Op2, VT, DAG);
1923          SDOperand Store = DAG.getNode(ISD::STORE, MVT::Other, getRoot(),
1924                                        Value,
1925                                    getMemBasePlusOffset(Op1, Offset, DAG, TLI),
1926                                      DAG.getSrcValue(I.getOperand(1), Offset));
1927          OutChains.push_back(Store);
1928          Offset += VTSize;
1929        }
1930      }
1931      break;
1932    }
1933    case ISD::MEMCPY: {
1934      if (MeetsMaxMemopRequirement(MemOps, TLI.getMaxStoresPerMemcpy(),
1935                                   Size->getValue(), Align, TLI)) {
1936        unsigned NumMemOps = MemOps.size();
1937        unsigned SrcOff = 0, DstOff = 0, SrcDelta = 0;
1938        GlobalAddressSDNode *G = NULL;
1939        std::string Str;
1940        bool CopyFromStr = false;
1941
1942        if (Op2.getOpcode() == ISD::GlobalAddress)
1943          G = cast<GlobalAddressSDNode>(Op2);
1944        else if (Op2.getOpcode() == ISD::ADD &&
1945                 Op2.getOperand(0).getOpcode() == ISD::GlobalAddress &&
1946                 Op2.getOperand(1).getOpcode() == ISD::Constant) {
1947          G = cast<GlobalAddressSDNode>(Op2.getOperand(0));
1948          SrcDelta = cast<ConstantSDNode>(Op2.getOperand(1))->getValue();
1949        }
1950        if (G) {
1951          GlobalVariable *GV = dyn_cast<GlobalVariable>(G->getGlobal());
1952          if (GV) {
1953            Str = GV->getStringValue();
1954            if (!Str.empty()) {
1955              CopyFromStr = true;
1956              SrcOff += SrcDelta;
1957            }
1958          }
1959        }
1960
1961        for (unsigned i = 0; i < NumMemOps; i++) {
1962          MVT::ValueType VT = MemOps[i];
1963          unsigned VTSize = getSizeInBits(VT) / 8;
1964          SDOperand Value, Chain, Store;
1965
1966          if (CopyFromStr) {
1967            Value = getMemsetStringVal(VT, DAG, TLI, Str, SrcOff);
1968            Chain = getRoot();
1969            Store =
1970              DAG.getNode(ISD::STORE, MVT::Other, Chain, Value,
1971                          getMemBasePlusOffset(Op1, DstOff, DAG, TLI),
1972                          DAG.getSrcValue(I.getOperand(1), DstOff));
1973          } else {
1974            Value = DAG.getLoad(VT, getRoot(),
1975                        getMemBasePlusOffset(Op2, SrcOff, DAG, TLI),
1976                        DAG.getSrcValue(I.getOperand(2), SrcOff));
1977            Chain = Value.getValue(1);
1978            Store =
1979              DAG.getNode(ISD::STORE, MVT::Other, Chain, Value,
1980                          getMemBasePlusOffset(Op1, DstOff, DAG, TLI),
1981                          DAG.getSrcValue(I.getOperand(1), DstOff));
1982          }
1983          OutChains.push_back(Store);
1984          SrcOff += VTSize;
1985          DstOff += VTSize;
1986        }
1987      }
1988      break;
1989    }
1990    }
1991
1992    if (!OutChains.empty()) {
1993      DAG.setRoot(DAG.getNode(ISD::TokenFactor, MVT::Other, OutChains));
1994      return;
1995    }
1996  }
1997
1998  std::vector<SDOperand> Ops;
1999  Ops.push_back(getRoot());
2000  Ops.push_back(Op1);
2001  Ops.push_back(Op2);
2002  Ops.push_back(Op3);
2003  Ops.push_back(Op4);
2004  DAG.setRoot(DAG.getNode(Op, MVT::Other, Ops));
2005}
2006
2007//===----------------------------------------------------------------------===//
2008// SelectionDAGISel code
2009//===----------------------------------------------------------------------===//
2010
2011unsigned SelectionDAGISel::MakeReg(MVT::ValueType VT) {
2012  return RegMap->createVirtualRegister(TLI.getRegClassFor(VT));
2013}
2014
2015void SelectionDAGISel::getAnalysisUsage(AnalysisUsage &AU) const {
2016  // FIXME: we only modify the CFG to split critical edges.  This
2017  // updates dom and loop info.
2018}
2019
2020
2021/// InsertGEPComputeCode - Insert code into BB to compute Ptr+PtrOffset,
2022/// casting to the type of GEPI.
2023static Value *InsertGEPComputeCode(Value *&V, BasicBlock *BB, Instruction *GEPI,
2024                                   Value *Ptr, Value *PtrOffset) {
2025  if (V) return V;   // Already computed.
2026
2027  BasicBlock::iterator InsertPt;
2028  if (BB == GEPI->getParent()) {
2029    // If insert into the GEP's block, insert right after the GEP.
2030    InsertPt = GEPI;
2031    ++InsertPt;
2032  } else {
2033    // Otherwise, insert at the top of BB, after any PHI nodes
2034    InsertPt = BB->begin();
2035    while (isa<PHINode>(InsertPt)) ++InsertPt;
2036  }
2037
2038  // If Ptr is itself a cast, but in some other BB, emit a copy of the cast into
2039  // BB so that there is only one value live across basic blocks (the cast
2040  // operand).
2041  if (CastInst *CI = dyn_cast<CastInst>(Ptr))
2042    if (CI->getParent() != BB && isa<PointerType>(CI->getOperand(0)->getType()))
2043      Ptr = new CastInst(CI->getOperand(0), CI->getType(), "", InsertPt);
2044
2045  // Add the offset, cast it to the right type.
2046  Ptr = BinaryOperator::createAdd(Ptr, PtrOffset, "", InsertPt);
2047  Ptr = new CastInst(Ptr, GEPI->getType(), "", InsertPt);
2048  return V = Ptr;
2049}
2050
2051
2052/// OptimizeGEPExpression - Since we are doing basic-block-at-a-time instruction
2053/// selection, we want to be a bit careful about some things.  In particular, if
2054/// we have a GEP instruction that is used in a different block than it is
2055/// defined, the addressing expression of the GEP cannot be folded into loads or
2056/// stores that use it.  In this case, decompose the GEP and move constant
2057/// indices into blocks that use it.
2058static void OptimizeGEPExpression(GetElementPtrInst *GEPI,
2059                                  const TargetData &TD) {
2060  // If this GEP is only used inside the block it is defined in, there is no
2061  // need to rewrite it.
2062  bool isUsedOutsideDefBB = false;
2063  BasicBlock *DefBB = GEPI->getParent();
2064  for (Value::use_iterator UI = GEPI->use_begin(), E = GEPI->use_end();
2065       UI != E; ++UI) {
2066    if (cast<Instruction>(*UI)->getParent() != DefBB) {
2067      isUsedOutsideDefBB = true;
2068      break;
2069    }
2070  }
2071  if (!isUsedOutsideDefBB) return;
2072
2073  // If this GEP has no non-zero constant indices, there is nothing we can do,
2074  // ignore it.
2075  bool hasConstantIndex = false;
2076  for (GetElementPtrInst::op_iterator OI = GEPI->op_begin()+1,
2077       E = GEPI->op_end(); OI != E; ++OI) {
2078    if (ConstantInt *CI = dyn_cast<ConstantInt>(*OI))
2079      if (CI->getRawValue()) {
2080        hasConstantIndex = true;
2081        break;
2082      }
2083  }
2084  // If this is a GEP &Alloca, 0, 0, forward subst the frame index into uses.
2085  if (!hasConstantIndex && !isa<AllocaInst>(GEPI->getOperand(0))) return;
2086
2087  // Otherwise, decompose the GEP instruction into multiplies and adds.  Sum the
2088  // constant offset (which we now know is non-zero) and deal with it later.
2089  uint64_t ConstantOffset = 0;
2090  const Type *UIntPtrTy = TD.getIntPtrType();
2091  Value *Ptr = new CastInst(GEPI->getOperand(0), UIntPtrTy, "", GEPI);
2092  const Type *Ty = GEPI->getOperand(0)->getType();
2093
2094  for (GetElementPtrInst::op_iterator OI = GEPI->op_begin()+1,
2095       E = GEPI->op_end(); OI != E; ++OI) {
2096    Value *Idx = *OI;
2097    if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
2098      unsigned Field = cast<ConstantUInt>(Idx)->getValue();
2099      if (Field)
2100        ConstantOffset += TD.getStructLayout(StTy)->MemberOffsets[Field];
2101      Ty = StTy->getElementType(Field);
2102    } else {
2103      Ty = cast<SequentialType>(Ty)->getElementType();
2104
2105      // Handle constant subscripts.
2106      if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
2107        if (CI->getRawValue() == 0) continue;
2108
2109        if (ConstantSInt *CSI = dyn_cast<ConstantSInt>(CI))
2110          ConstantOffset += (int64_t)TD.getTypeSize(Ty)*CSI->getValue();
2111        else
2112          ConstantOffset+=TD.getTypeSize(Ty)*cast<ConstantUInt>(CI)->getValue();
2113        continue;
2114      }
2115
2116      // Ptr = Ptr + Idx * ElementSize;
2117
2118      // Cast Idx to UIntPtrTy if needed.
2119      Idx = new CastInst(Idx, UIntPtrTy, "", GEPI);
2120
2121      uint64_t ElementSize = TD.getTypeSize(Ty);
2122      // Mask off bits that should not be set.
2123      ElementSize &= ~0ULL >> (64-UIntPtrTy->getPrimitiveSizeInBits());
2124      Constant *SizeCst = ConstantUInt::get(UIntPtrTy, ElementSize);
2125
2126      // Multiply by the element size and add to the base.
2127      Idx = BinaryOperator::createMul(Idx, SizeCst, "", GEPI);
2128      Ptr = BinaryOperator::createAdd(Ptr, Idx, "", GEPI);
2129    }
2130  }
2131
2132  // Make sure that the offset fits in uintptr_t.
2133  ConstantOffset &= ~0ULL >> (64-UIntPtrTy->getPrimitiveSizeInBits());
2134  Constant *PtrOffset = ConstantUInt::get(UIntPtrTy, ConstantOffset);
2135
2136  // Okay, we have now emitted all of the variable index parts to the BB that
2137  // the GEP is defined in.  Loop over all of the using instructions, inserting
2138  // an "add Ptr, ConstantOffset" into each block that uses it and update the
2139  // instruction to use the newly computed value, making GEPI dead.  When the
2140  // user is a load or store instruction address, we emit the add into the user
2141  // block, otherwise we use a canonical version right next to the gep (these
2142  // won't be foldable as addresses, so we might as well share the computation).
2143
2144  std::map<BasicBlock*,Value*> InsertedExprs;
2145  while (!GEPI->use_empty()) {
2146    Instruction *User = cast<Instruction>(GEPI->use_back());
2147
2148    // If this use is not foldable into the addressing mode, use a version
2149    // emitted in the GEP block.
2150    Value *NewVal;
2151    if (!isa<LoadInst>(User) &&
2152        (!isa<StoreInst>(User) || User->getOperand(0) == GEPI)) {
2153      NewVal = InsertGEPComputeCode(InsertedExprs[DefBB], DefBB, GEPI,
2154                                    Ptr, PtrOffset);
2155    } else {
2156      // Otherwise, insert the code in the User's block so it can be folded into
2157      // any users in that block.
2158      NewVal = InsertGEPComputeCode(InsertedExprs[User->getParent()],
2159                                    User->getParent(), GEPI,
2160                                    Ptr, PtrOffset);
2161    }
2162    User->replaceUsesOfWith(GEPI, NewVal);
2163  }
2164
2165  // Finally, the GEP is dead, remove it.
2166  GEPI->eraseFromParent();
2167}
2168
2169bool SelectionDAGISel::runOnFunction(Function &Fn) {
2170  MachineFunction &MF = MachineFunction::construct(&Fn, TLI.getTargetMachine());
2171  RegMap = MF.getSSARegMap();
2172  DEBUG(std::cerr << "\n\n\n=== " << Fn.getName() << "\n");
2173
2174  // First, split all critical edges for PHI nodes with incoming values that are
2175  // constants, this way the load of the constant into a vreg will not be placed
2176  // into MBBs that are used some other way.
2177  //
2178  // In this pass we also look for GEP instructions that are used across basic
2179  // blocks and rewrites them to improve basic-block-at-a-time selection.
2180  //
2181  for (Function::iterator BB = Fn.begin(), E = Fn.end(); BB != E; ++BB) {
2182    PHINode *PN;
2183    BasicBlock::iterator BBI;
2184    for (BBI = BB->begin(); (PN = dyn_cast<PHINode>(BBI)); ++BBI)
2185      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
2186        if (isa<Constant>(PN->getIncomingValue(i)))
2187          SplitCriticalEdge(PN->getIncomingBlock(i), BB);
2188
2189    for (BasicBlock::iterator E = BB->end(); BBI != E; )
2190      if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(BBI++))
2191        OptimizeGEPExpression(GEPI, TLI.getTargetData());
2192  }
2193
2194  FunctionLoweringInfo FuncInfo(TLI, Fn, MF);
2195
2196  for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
2197    SelectBasicBlock(I, MF, FuncInfo);
2198
2199  return true;
2200}
2201
2202
2203SDOperand SelectionDAGISel::
2204CopyValueToVirtualRegister(SelectionDAGLowering &SDL, Value *V, unsigned Reg) {
2205  SDOperand Op = SDL.getValue(V);
2206  assert((Op.getOpcode() != ISD::CopyFromReg ||
2207          cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
2208         "Copy from a reg to the same reg!");
2209
2210  // If this type is not legal, we must make sure to not create an invalid
2211  // register use.
2212  MVT::ValueType SrcVT = Op.getValueType();
2213  MVT::ValueType DestVT = TLI.getTypeToTransformTo(SrcVT);
2214  SelectionDAG &DAG = SDL.DAG;
2215  if (SrcVT == DestVT) {
2216    return DAG.getCopyToReg(SDL.getRoot(), Reg, Op);
2217  } else if (SrcVT < DestVT) {
2218    // The src value is promoted to the register.
2219    if (MVT::isFloatingPoint(SrcVT))
2220      Op = DAG.getNode(ISD::FP_EXTEND, DestVT, Op);
2221    else
2222      Op = DAG.getNode(ISD::ANY_EXTEND, DestVT, Op);
2223    return DAG.getCopyToReg(SDL.getRoot(), Reg, Op);
2224  } else  {
2225    // The src value is expanded into multiple registers.
2226    SDOperand Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DestVT,
2227                               Op, DAG.getConstant(0, MVT::i32));
2228    SDOperand Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DestVT,
2229                               Op, DAG.getConstant(1, MVT::i32));
2230    Op = DAG.getCopyToReg(SDL.getRoot(), Reg, Lo);
2231    return DAG.getCopyToReg(Op, Reg+1, Hi);
2232  }
2233}
2234
2235void SelectionDAGISel::
2236LowerArguments(BasicBlock *BB, SelectionDAGLowering &SDL,
2237               std::vector<SDOperand> &UnorderedChains) {
2238  // If this is the entry block, emit arguments.
2239  Function &F = *BB->getParent();
2240  FunctionLoweringInfo &FuncInfo = SDL.FuncInfo;
2241  SDOperand OldRoot = SDL.DAG.getRoot();
2242  std::vector<SDOperand> Args = TLI.LowerArguments(F, SDL.DAG);
2243
2244  unsigned a = 0;
2245  for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end();
2246       AI != E; ++AI, ++a)
2247    if (!AI->use_empty()) {
2248      SDL.setValue(AI, Args[a]);
2249
2250      // If this argument is live outside of the entry block, insert a copy from
2251      // whereever we got it to the vreg that other BB's will reference it as.
2252      if (FuncInfo.ValueMap.count(AI)) {
2253        SDOperand Copy =
2254          CopyValueToVirtualRegister(SDL, AI, FuncInfo.ValueMap[AI]);
2255        UnorderedChains.push_back(Copy);
2256      }
2257    }
2258
2259  // Next, if the function has live ins that need to be copied into vregs,
2260  // emit the copies now, into the top of the block.
2261  MachineFunction &MF = SDL.DAG.getMachineFunction();
2262  if (MF.livein_begin() != MF.livein_end()) {
2263    SSARegMap *RegMap = MF.getSSARegMap();
2264    const MRegisterInfo &MRI = *MF.getTarget().getRegisterInfo();
2265    for (MachineFunction::livein_iterator LI = MF.livein_begin(),
2266         E = MF.livein_end(); LI != E; ++LI)
2267      if (LI->second)
2268        MRI.copyRegToReg(*MF.begin(), MF.begin()->end(), LI->second,
2269                         LI->first, RegMap->getRegClass(LI->second));
2270  }
2271
2272  // Finally, if the target has anything special to do, allow it to do so.
2273  EmitFunctionEntryCode(F, SDL.DAG.getMachineFunction());
2274}
2275
2276
2277void SelectionDAGISel::BuildSelectionDAG(SelectionDAG &DAG, BasicBlock *LLVMBB,
2278       std::vector<std::pair<MachineInstr*, unsigned> > &PHINodesToUpdate,
2279                                    FunctionLoweringInfo &FuncInfo) {
2280  SelectionDAGLowering SDL(DAG, TLI, FuncInfo);
2281
2282  std::vector<SDOperand> UnorderedChains;
2283
2284  // Lower any arguments needed in this block if this is the entry block.
2285  if (LLVMBB == &LLVMBB->getParent()->front())
2286    LowerArguments(LLVMBB, SDL, UnorderedChains);
2287
2288  BB = FuncInfo.MBBMap[LLVMBB];
2289  SDL.setCurrentBasicBlock(BB);
2290
2291  // Lower all of the non-terminator instructions.
2292  for (BasicBlock::iterator I = LLVMBB->begin(), E = --LLVMBB->end();
2293       I != E; ++I)
2294    SDL.visit(*I);
2295
2296  // Ensure that all instructions which are used outside of their defining
2297  // blocks are available as virtual registers.
2298  for (BasicBlock::iterator I = LLVMBB->begin(), E = LLVMBB->end(); I != E;++I)
2299    if (!I->use_empty() && !isa<PHINode>(I)) {
2300      std::map<const Value*, unsigned>::iterator VMI =FuncInfo.ValueMap.find(I);
2301      if (VMI != FuncInfo.ValueMap.end())
2302        UnorderedChains.push_back(
2303                           CopyValueToVirtualRegister(SDL, I, VMI->second));
2304    }
2305
2306  // Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
2307  // ensure constants are generated when needed.  Remember the virtual registers
2308  // that need to be added to the Machine PHI nodes as input.  We cannot just
2309  // directly add them, because expansion might result in multiple MBB's for one
2310  // BB.  As such, the start of the BB might correspond to a different MBB than
2311  // the end.
2312  //
2313
2314  // Emit constants only once even if used by multiple PHI nodes.
2315  std::map<Constant*, unsigned> ConstantsOut;
2316
2317  // Check successor nodes PHI nodes that expect a constant to be available from
2318  // this block.
2319  TerminatorInst *TI = LLVMBB->getTerminator();
2320  for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
2321    BasicBlock *SuccBB = TI->getSuccessor(succ);
2322    MachineBasicBlock::iterator MBBI = FuncInfo.MBBMap[SuccBB]->begin();
2323    PHINode *PN;
2324
2325    // At this point we know that there is a 1-1 correspondence between LLVM PHI
2326    // nodes and Machine PHI nodes, but the incoming operands have not been
2327    // emitted yet.
2328    for (BasicBlock::iterator I = SuccBB->begin();
2329         (PN = dyn_cast<PHINode>(I)); ++I)
2330      if (!PN->use_empty()) {
2331        unsigned Reg;
2332        Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
2333        if (Constant *C = dyn_cast<Constant>(PHIOp)) {
2334          unsigned &RegOut = ConstantsOut[C];
2335          if (RegOut == 0) {
2336            RegOut = FuncInfo.CreateRegForValue(C);
2337            UnorderedChains.push_back(
2338                             CopyValueToVirtualRegister(SDL, C, RegOut));
2339          }
2340          Reg = RegOut;
2341        } else {
2342          Reg = FuncInfo.ValueMap[PHIOp];
2343          if (Reg == 0) {
2344            assert(isa<AllocaInst>(PHIOp) &&
2345                   FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
2346                   "Didn't codegen value into a register!??");
2347            Reg = FuncInfo.CreateRegForValue(PHIOp);
2348            UnorderedChains.push_back(
2349                             CopyValueToVirtualRegister(SDL, PHIOp, Reg));
2350          }
2351        }
2352
2353        // Remember that this register needs to added to the machine PHI node as
2354        // the input for this MBB.
2355        unsigned NumElements =
2356          TLI.getNumElements(TLI.getValueType(PN->getType()));
2357        for (unsigned i = 0, e = NumElements; i != e; ++i)
2358          PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i));
2359      }
2360  }
2361  ConstantsOut.clear();
2362
2363  // Turn all of the unordered chains into one factored node.
2364  if (!UnorderedChains.empty()) {
2365    SDOperand Root = SDL.getRoot();
2366    if (Root.getOpcode() != ISD::EntryToken) {
2367      unsigned i = 0, e = UnorderedChains.size();
2368      for (; i != e; ++i) {
2369        assert(UnorderedChains[i].Val->getNumOperands() > 1);
2370        if (UnorderedChains[i].Val->getOperand(0) == Root)
2371          break;  // Don't add the root if we already indirectly depend on it.
2372      }
2373
2374      if (i == e)
2375        UnorderedChains.push_back(Root);
2376    }
2377    DAG.setRoot(DAG.getNode(ISD::TokenFactor, MVT::Other, UnorderedChains));
2378  }
2379
2380  // Lower the terminator after the copies are emitted.
2381  SDL.visit(*LLVMBB->getTerminator());
2382
2383  // Make sure the root of the DAG is up-to-date.
2384  DAG.setRoot(SDL.getRoot());
2385}
2386
2387void SelectionDAGISel::SelectBasicBlock(BasicBlock *LLVMBB, MachineFunction &MF,
2388                                        FunctionLoweringInfo &FuncInfo) {
2389  SelectionDAG DAG(TLI, MF, getAnalysisToUpdate<MachineDebugInfo>());
2390  CurDAG = &DAG;
2391  std::vector<std::pair<MachineInstr*, unsigned> > PHINodesToUpdate;
2392
2393  // First step, lower LLVM code to some DAG.  This DAG may use operations and
2394  // types that are not supported by the target.
2395  BuildSelectionDAG(DAG, LLVMBB, PHINodesToUpdate, FuncInfo);
2396
2397  // Run the DAG combiner in pre-legalize mode.
2398  DAG.Combine(false);
2399
2400  DEBUG(std::cerr << "Lowered selection DAG:\n");
2401  DEBUG(DAG.dump());
2402
2403  // Second step, hack on the DAG until it only uses operations and types that
2404  // the target supports.
2405  DAG.Legalize();
2406
2407  DEBUG(std::cerr << "Legalized selection DAG:\n");
2408  DEBUG(DAG.dump());
2409
2410  // Run the DAG combiner in post-legalize mode.
2411  DAG.Combine(true);
2412
2413  if (ViewISelDAGs) DAG.viewGraph();
2414
2415  // Third, instruction select all of the operations to machine code, adding the
2416  // code to the MachineBasicBlock.
2417  InstructionSelectBasicBlock(DAG);
2418
2419  DEBUG(std::cerr << "Selected machine code:\n");
2420  DEBUG(BB->dump());
2421
2422  // Next, now that we know what the last MBB the LLVM BB expanded is, update
2423  // PHI nodes in successors.
2424  for (unsigned i = 0, e = PHINodesToUpdate.size(); i != e; ++i) {
2425    MachineInstr *PHI = PHINodesToUpdate[i].first;
2426    assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
2427           "This is not a machine PHI node that we are updating!");
2428    PHI->addRegOperand(PHINodesToUpdate[i].second);
2429    PHI->addMachineBasicBlockOperand(BB);
2430  }
2431
2432  // Finally, add the CFG edges from the last selected MBB to the successor
2433  // MBBs.
2434  TerminatorInst *TI = LLVMBB->getTerminator();
2435  for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) {
2436    MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[TI->getSuccessor(i)];
2437    BB->addSuccessor(Succ0MBB);
2438  }
2439}
2440
2441//===----------------------------------------------------------------------===//
2442/// ScheduleAndEmitDAG - Pick a safe ordering and emit instructions for each
2443/// target node in the graph.
2444void SelectionDAGISel::ScheduleAndEmitDAG(SelectionDAG &DAG) {
2445  if (ViewSchedDAGs) DAG.viewGraph();
2446  ScheduleDAG *SL = NULL;
2447
2448  switch (ISHeuristic) {
2449  default: assert(0 && "Unrecognized scheduling heuristic");
2450  case defaultScheduling:
2451    if (TLI.getSchedulingPreference() == TargetLowering::SchedulingForLatency)
2452      SL = createSimpleDAGScheduler(noScheduling, DAG, BB);
2453    else /* TargetLowering::SchedulingForRegPressure */
2454      SL = createBURRListDAGScheduler(DAG, BB);
2455    break;
2456  case noScheduling:
2457    SL = createBFS_DAGScheduler(DAG, BB);
2458    break;
2459  case simpleScheduling:
2460    SL = createSimpleDAGScheduler(false, DAG, BB);
2461    break;
2462  case simpleNoItinScheduling:
2463    SL = createSimpleDAGScheduler(true, DAG, BB);
2464    break;
2465  case listSchedulingBURR:
2466    SL = createBURRListDAGScheduler(DAG, BB);
2467    break;
2468  case listSchedulingTD:
2469    SL = createTDListDAGScheduler(DAG, BB, CreateTargetHazardRecognizer());
2470    break;
2471  }
2472  BB = SL->Run();
2473  delete SL;
2474}
2475
2476HazardRecognizer *SelectionDAGISel::CreateTargetHazardRecognizer() {
2477  return new HazardRecognizer();
2478}
2479
2480/// SelectInlineAsmMemoryOperands - Calls to this are automatically generated
2481/// by tblgen.  Others should not call it.
2482void SelectionDAGISel::
2483SelectInlineAsmMemoryOperands(std::vector<SDOperand> &Ops, SelectionDAG &DAG) {
2484  std::vector<SDOperand> InOps;
2485  std::swap(InOps, Ops);
2486
2487  Ops.push_back(InOps[0]);  // input chain.
2488  Ops.push_back(InOps[1]);  // input asm string.
2489
2490  const char *AsmStr = cast<ExternalSymbolSDNode>(InOps[1])->getSymbol();
2491  unsigned i = 2, e = InOps.size();
2492  if (InOps[e-1].getValueType() == MVT::Flag)
2493    --e;  // Don't process a flag operand if it is here.
2494
2495  while (i != e) {
2496    unsigned Flags = cast<ConstantSDNode>(InOps[i])->getValue();
2497    if ((Flags & 7) != 4 /*MEM*/) {
2498      // Just skip over this operand, copying the operands verbatim.
2499      Ops.insert(Ops.end(), InOps.begin()+i, InOps.begin()+i+(Flags >> 3) + 1);
2500      i += (Flags >> 3) + 1;
2501    } else {
2502      assert((Flags >> 3) == 1 && "Memory operand with multiple values?");
2503      // Otherwise, this is a memory operand.  Ask the target to select it.
2504      std::vector<SDOperand> SelOps;
2505      if (SelectInlineAsmMemoryOperand(InOps[i+1], 'm', SelOps, DAG)) {
2506        std::cerr << "Could not match memory address.  Inline asm failure!\n";
2507        exit(1);
2508      }
2509
2510      // Add this to the output node.
2511      Ops.push_back(DAG.getConstant(4/*MEM*/ | (SelOps.size() << 3), MVT::i32));
2512      Ops.insert(Ops.end(), SelOps.begin(), SelOps.end());
2513      i += 2;
2514    }
2515  }
2516
2517  // Add the flag input back if present.
2518  if (e != InOps.size())
2519    Ops.push_back(InOps.back());
2520}
2521