SelectionDAGISel.cpp revision 2332b9f16fe17d1886566729b2241b8cd90f9916
1//===-- SelectionDAGISel.cpp - Implement the SelectionDAGISel class -------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAGISel class.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "isel"
15#include "llvm/CodeGen/SelectionDAGISel.h"
16#include "llvm/CodeGen/ScheduleDAG.h"
17#include "llvm/CallingConv.h"
18#include "llvm/Constants.h"
19#include "llvm/DerivedTypes.h"
20#include "llvm/Function.h"
21#include "llvm/GlobalVariable.h"
22#include "llvm/InlineAsm.h"
23#include "llvm/Instructions.h"
24#include "llvm/Intrinsics.h"
25#include "llvm/CodeGen/IntrinsicLowering.h"
26#include "llvm/CodeGen/MachineDebugInfo.h"
27#include "llvm/CodeGen/MachineFunction.h"
28#include "llvm/CodeGen/MachineFrameInfo.h"
29#include "llvm/CodeGen/MachineInstrBuilder.h"
30#include "llvm/CodeGen/SelectionDAG.h"
31#include "llvm/CodeGen/SSARegMap.h"
32#include "llvm/Target/MRegisterInfo.h"
33#include "llvm/Target/TargetData.h"
34#include "llvm/Target/TargetFrameInfo.h"
35#include "llvm/Target/TargetInstrInfo.h"
36#include "llvm/Target/TargetLowering.h"
37#include "llvm/Target/TargetMachine.h"
38#include "llvm/Transforms/Utils/BasicBlockUtils.h"
39#include "llvm/Support/CommandLine.h"
40#include "llvm/Support/MathExtras.h"
41#include "llvm/Support/Debug.h"
42#include <map>
43#include <set>
44#include <iostream>
45#include <algorithm>
46using namespace llvm;
47
48#ifndef NDEBUG
49static cl::opt<bool>
50ViewISelDAGs("view-isel-dags", cl::Hidden,
51          cl::desc("Pop up a window to show isel dags as they are selected"));
52static cl::opt<bool>
53ViewSchedDAGs("view-sched-dags", cl::Hidden,
54          cl::desc("Pop up a window to show sched dags as they are processed"));
55#else
56static const bool ViewISelDAGs = 0;
57static const bool ViewSchedDAGs = 0;
58#endif
59
60// Scheduling heuristics
61enum SchedHeuristics {
62  defaultScheduling,      // Let the target specify its preference.
63  noScheduling,           // No scheduling, emit breadth first sequence.
64  simpleScheduling,       // Two pass, min. critical path, max. utilization.
65  simpleNoItinScheduling, // Same as above exact using generic latency.
66  listSchedulingBURR,     // Bottom up reg reduction list scheduling.
67  listSchedulingTD        // Top-down list scheduler.
68};
69
70namespace {
71  cl::opt<SchedHeuristics>
72  ISHeuristic(
73    "sched",
74    cl::desc("Choose scheduling style"),
75    cl::init(defaultScheduling),
76    cl::values(
77      clEnumValN(defaultScheduling, "default",
78                 "Target preferred scheduling style"),
79      clEnumValN(noScheduling, "none",
80                 "No scheduling: breadth first sequencing"),
81      clEnumValN(simpleScheduling, "simple",
82                 "Simple two pass scheduling: minimize critical path "
83                 "and maximize processor utilization"),
84      clEnumValN(simpleNoItinScheduling, "simple-noitin",
85                 "Simple two pass scheduling: Same as simple "
86                 "except using generic latency"),
87      clEnumValN(listSchedulingBURR, "list-burr",
88                 "Bottom up register reduction list scheduling"),
89      clEnumValN(listSchedulingTD, "list-td",
90                 "Top-down list scheduler"),
91      clEnumValEnd));
92} // namespace
93
94namespace {
95  /// RegsForValue - This struct represents the physical registers that a
96  /// particular value is assigned and the type information about the value.
97  /// This is needed because values can be promoted into larger registers and
98  /// expanded into multiple smaller registers than the value.
99  struct RegsForValue {
100    /// Regs - This list hold the register (for legal and promoted values)
101    /// or register set (for expanded values) that the value should be assigned
102    /// to.
103    std::vector<unsigned> Regs;
104
105    /// RegVT - The value type of each register.
106    ///
107    MVT::ValueType RegVT;
108
109    /// ValueVT - The value type of the LLVM value, which may be promoted from
110    /// RegVT or made from merging the two expanded parts.
111    MVT::ValueType ValueVT;
112
113    RegsForValue() : RegVT(MVT::Other), ValueVT(MVT::Other) {}
114
115    RegsForValue(unsigned Reg, MVT::ValueType regvt, MVT::ValueType valuevt)
116      : RegVT(regvt), ValueVT(valuevt) {
117        Regs.push_back(Reg);
118    }
119    RegsForValue(const std::vector<unsigned> &regs,
120                 MVT::ValueType regvt, MVT::ValueType valuevt)
121      : Regs(regs), RegVT(regvt), ValueVT(valuevt) {
122    }
123
124    /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
125    /// this value and returns the result as a ValueVT value.  This uses
126    /// Chain/Flag as the input and updates them for the output Chain/Flag.
127    SDOperand getCopyFromRegs(SelectionDAG &DAG,
128                              SDOperand &Chain, SDOperand &Flag) const;
129
130    /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
131    /// specified value into the registers specified by this object.  This uses
132    /// Chain/Flag as the input and updates them for the output Chain/Flag.
133    void getCopyToRegs(SDOperand Val, SelectionDAG &DAG,
134                       SDOperand &Chain, SDOperand &Flag) const;
135
136    /// AddInlineAsmOperands - Add this value to the specified inlineasm node
137    /// operand list.  This adds the code marker and includes the number of
138    /// values added into it.
139    void AddInlineAsmOperands(unsigned Code, SelectionDAG &DAG,
140                              std::vector<SDOperand> &Ops) const;
141  };
142}
143
144namespace llvm {
145  //===--------------------------------------------------------------------===//
146  /// FunctionLoweringInfo - This contains information that is global to a
147  /// function that is used when lowering a region of the function.
148  class FunctionLoweringInfo {
149  public:
150    TargetLowering &TLI;
151    Function &Fn;
152    MachineFunction &MF;
153    SSARegMap *RegMap;
154
155    FunctionLoweringInfo(TargetLowering &TLI, Function &Fn,MachineFunction &MF);
156
157    /// MBBMap - A mapping from LLVM basic blocks to their machine code entry.
158    std::map<const BasicBlock*, MachineBasicBlock *> MBBMap;
159
160    /// ValueMap - Since we emit code for the function a basic block at a time,
161    /// we must remember which virtual registers hold the values for
162    /// cross-basic-block values.
163    std::map<const Value*, unsigned> ValueMap;
164
165    /// StaticAllocaMap - Keep track of frame indices for fixed sized allocas in
166    /// the entry block.  This allows the allocas to be efficiently referenced
167    /// anywhere in the function.
168    std::map<const AllocaInst*, int> StaticAllocaMap;
169
170    unsigned MakeReg(MVT::ValueType VT) {
171      return RegMap->createVirtualRegister(TLI.getRegClassFor(VT));
172    }
173
174    unsigned CreateRegForValue(const Value *V);
175
176    unsigned InitializeRegForValue(const Value *V) {
177      unsigned &R = ValueMap[V];
178      assert(R == 0 && "Already initialized this value register!");
179      return R = CreateRegForValue(V);
180    }
181  };
182}
183
184/// isUsedOutsideOfDefiningBlock - Return true if this instruction is used by
185/// PHI nodes or outside of the basic block that defines it.
186static bool isUsedOutsideOfDefiningBlock(Instruction *I) {
187  if (isa<PHINode>(I)) return true;
188  BasicBlock *BB = I->getParent();
189  for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E; ++UI)
190    if (cast<Instruction>(*UI)->getParent() != BB || isa<PHINode>(*UI))
191      return true;
192  return false;
193}
194
195/// isOnlyUsedInEntryBlock - If the specified argument is only used in the
196/// entry block, return true.
197static bool isOnlyUsedInEntryBlock(Argument *A) {
198  BasicBlock *Entry = A->getParent()->begin();
199  for (Value::use_iterator UI = A->use_begin(), E = A->use_end(); UI != E; ++UI)
200    if (cast<Instruction>(*UI)->getParent() != Entry)
201      return false;  // Use not in entry block.
202  return true;
203}
204
205FunctionLoweringInfo::FunctionLoweringInfo(TargetLowering &tli,
206                                           Function &fn, MachineFunction &mf)
207    : TLI(tli), Fn(fn), MF(mf), RegMap(MF.getSSARegMap()) {
208
209  // Create a vreg for each argument register that is not dead and is used
210  // outside of the entry block for the function.
211  for (Function::arg_iterator AI = Fn.arg_begin(), E = Fn.arg_end();
212       AI != E; ++AI)
213    if (!isOnlyUsedInEntryBlock(AI))
214      InitializeRegForValue(AI);
215
216  // Initialize the mapping of values to registers.  This is only set up for
217  // instruction values that are used outside of the block that defines
218  // them.
219  Function::iterator BB = Fn.begin(), EB = Fn.end();
220  for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
221    if (AllocaInst *AI = dyn_cast<AllocaInst>(I))
222      if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(AI->getArraySize())) {
223        const Type *Ty = AI->getAllocatedType();
224        uint64_t TySize = TLI.getTargetData().getTypeSize(Ty);
225        unsigned Align =
226          std::max((unsigned)TLI.getTargetData().getTypeAlignment(Ty),
227                   AI->getAlignment());
228
229        // If the alignment of the value is smaller than the size of the value,
230        // and if the size of the value is particularly small (<= 8 bytes),
231        // round up to the size of the value for potentially better performance.
232        //
233        // FIXME: This could be made better with a preferred alignment hook in
234        // TargetData.  It serves primarily to 8-byte align doubles for X86.
235        if (Align < TySize && TySize <= 8) Align = TySize;
236        TySize *= CUI->getValue();   // Get total allocated size.
237        if (TySize == 0) TySize = 1; // Don't create zero-sized stack objects.
238        StaticAllocaMap[AI] =
239          MF.getFrameInfo()->CreateStackObject((unsigned)TySize, Align);
240      }
241
242  for (; BB != EB; ++BB)
243    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
244      if (!I->use_empty() && isUsedOutsideOfDefiningBlock(I))
245        if (!isa<AllocaInst>(I) ||
246            !StaticAllocaMap.count(cast<AllocaInst>(I)))
247          InitializeRegForValue(I);
248
249  // Create an initial MachineBasicBlock for each LLVM BasicBlock in F.  This
250  // also creates the initial PHI MachineInstrs, though none of the input
251  // operands are populated.
252  for (BB = Fn.begin(), EB = Fn.end(); BB != EB; ++BB) {
253    MachineBasicBlock *MBB = new MachineBasicBlock(BB);
254    MBBMap[BB] = MBB;
255    MF.getBasicBlockList().push_back(MBB);
256
257    // Create Machine PHI nodes for LLVM PHI nodes, lowering them as
258    // appropriate.
259    PHINode *PN;
260    for (BasicBlock::iterator I = BB->begin();
261         (PN = dyn_cast<PHINode>(I)); ++I)
262      if (!PN->use_empty()) {
263        unsigned NumElements =
264          TLI.getNumElements(TLI.getValueType(PN->getType()));
265        unsigned PHIReg = ValueMap[PN];
266        assert(PHIReg &&"PHI node does not have an assigned virtual register!");
267        for (unsigned i = 0; i != NumElements; ++i)
268          BuildMI(MBB, TargetInstrInfo::PHI, PN->getNumOperands(), PHIReg+i);
269      }
270  }
271}
272
273/// CreateRegForValue - Allocate the appropriate number of virtual registers of
274/// the correctly promoted or expanded types.  Assign these registers
275/// consecutive vreg numbers and return the first assigned number.
276unsigned FunctionLoweringInfo::CreateRegForValue(const Value *V) {
277  MVT::ValueType VT = TLI.getValueType(V->getType());
278
279  // The number of multiples of registers that we need, to, e.g., split up
280  // a <2 x int64> -> 4 x i32 registers.
281  unsigned NumVectorRegs = 1;
282
283  // If this is a packed type, figure out what type it will decompose into
284  // and how many of the elements it will use.
285  if (VT == MVT::Vector) {
286    const PackedType *PTy = cast<PackedType>(V->getType());
287    unsigned NumElts = PTy->getNumElements();
288    MVT::ValueType EltTy = TLI.getValueType(PTy->getElementType());
289
290    // Divide the input until we get to a supported size.  This will always
291    // end with a scalar if the target doesn't support vectors.
292    while (NumElts > 1 && !TLI.isTypeLegal(getVectorType(EltTy, NumElts))) {
293      NumElts >>= 1;
294      NumVectorRegs <<= 1;
295    }
296    if (NumElts == 1)
297      VT = EltTy;
298    else
299      VT = getVectorType(EltTy, NumElts);
300  }
301
302  // The common case is that we will only create one register for this
303  // value.  If we have that case, create and return the virtual register.
304  unsigned NV = TLI.getNumElements(VT);
305  if (NV == 1) {
306    // If we are promoting this value, pick the next largest supported type.
307    MVT::ValueType PromotedType = TLI.getTypeToTransformTo(VT);
308    unsigned Reg = MakeReg(PromotedType);
309    // If this is a vector of supported or promoted types (e.g. 4 x i16),
310    // create all of the registers.
311    for (unsigned i = 1; i != NumVectorRegs; ++i)
312      MakeReg(PromotedType);
313    return Reg;
314  }
315
316  // If this value is represented with multiple target registers, make sure
317  // to create enough consecutive registers of the right (smaller) type.
318  unsigned NT = VT-1;  // Find the type to use.
319  while (TLI.getNumElements((MVT::ValueType)NT) != 1)
320    --NT;
321
322  unsigned R = MakeReg((MVT::ValueType)NT);
323  for (unsigned i = 1; i != NV*NumVectorRegs; ++i)
324    MakeReg((MVT::ValueType)NT);
325  return R;
326}
327
328//===----------------------------------------------------------------------===//
329/// SelectionDAGLowering - This is the common target-independent lowering
330/// implementation that is parameterized by a TargetLowering object.
331/// Also, targets can overload any lowering method.
332///
333namespace llvm {
334class SelectionDAGLowering {
335  MachineBasicBlock *CurMBB;
336
337  std::map<const Value*, SDOperand> NodeMap;
338
339  /// PendingLoads - Loads are not emitted to the program immediately.  We bunch
340  /// them up and then emit token factor nodes when possible.  This allows us to
341  /// get simple disambiguation between loads without worrying about alias
342  /// analysis.
343  std::vector<SDOperand> PendingLoads;
344
345public:
346  // TLI - This is information that describes the available target features we
347  // need for lowering.  This indicates when operations are unavailable,
348  // implemented with a libcall, etc.
349  TargetLowering &TLI;
350  SelectionDAG &DAG;
351  const TargetData &TD;
352
353  /// FuncInfo - Information about the function as a whole.
354  ///
355  FunctionLoweringInfo &FuncInfo;
356
357  SelectionDAGLowering(SelectionDAG &dag, TargetLowering &tli,
358                       FunctionLoweringInfo &funcinfo)
359    : TLI(tli), DAG(dag), TD(DAG.getTarget().getTargetData()),
360      FuncInfo(funcinfo) {
361  }
362
363  /// getRoot - Return the current virtual root of the Selection DAG.
364  ///
365  SDOperand getRoot() {
366    if (PendingLoads.empty())
367      return DAG.getRoot();
368
369    if (PendingLoads.size() == 1) {
370      SDOperand Root = PendingLoads[0];
371      DAG.setRoot(Root);
372      PendingLoads.clear();
373      return Root;
374    }
375
376    // Otherwise, we have to make a token factor node.
377    SDOperand Root = DAG.getNode(ISD::TokenFactor, MVT::Other, PendingLoads);
378    PendingLoads.clear();
379    DAG.setRoot(Root);
380    return Root;
381  }
382
383  void visit(Instruction &I) { visit(I.getOpcode(), I); }
384
385  void visit(unsigned Opcode, User &I) {
386    switch (Opcode) {
387    default: assert(0 && "Unknown instruction type encountered!");
388             abort();
389      // Build the switch statement using the Instruction.def file.
390#define HANDLE_INST(NUM, OPCODE, CLASS) \
391    case Instruction::OPCODE:return visit##OPCODE((CLASS&)I);
392#include "llvm/Instruction.def"
393    }
394  }
395
396  void setCurrentBasicBlock(MachineBasicBlock *MBB) { CurMBB = MBB; }
397
398  SDOperand getLoadFrom(const Type *Ty, SDOperand Ptr,
399                        SDOperand SrcValue, SDOperand Root,
400                        bool isVolatile);
401
402  SDOperand getIntPtrConstant(uint64_t Val) {
403    return DAG.getConstant(Val, TLI.getPointerTy());
404  }
405
406  SDOperand getValue(const Value *V);
407
408  const SDOperand &setValue(const Value *V, SDOperand NewN) {
409    SDOperand &N = NodeMap[V];
410    assert(N.Val == 0 && "Already set a value for this node!");
411    return N = NewN;
412  }
413
414  RegsForValue GetRegistersForValue(const std::string &ConstrCode,
415                                    MVT::ValueType VT,
416                                    bool OutReg, bool InReg,
417                                    std::set<unsigned> &OutputRegs,
418                                    std::set<unsigned> &InputRegs);
419
420  // Terminator instructions.
421  void visitRet(ReturnInst &I);
422  void visitBr(BranchInst &I);
423  void visitUnreachable(UnreachableInst &I) { /* noop */ }
424
425  // These all get lowered before this pass.
426  void visitSwitch(SwitchInst &I) { assert(0 && "TODO"); }
427  void visitInvoke(InvokeInst &I) { assert(0 && "TODO"); }
428  void visitUnwind(UnwindInst &I) { assert(0 && "TODO"); }
429
430  //
431  void visitBinary(User &I, unsigned IntOp, unsigned FPOp, unsigned VecOp);
432  void visitShift(User &I, unsigned Opcode);
433  void visitAdd(User &I) {
434    visitBinary(I, ISD::ADD, ISD::FADD, ISD::VADD);
435  }
436  void visitSub(User &I);
437  void visitMul(User &I) {
438    visitBinary(I, ISD::MUL, ISD::FMUL, ISD::VMUL);
439  }
440  void visitDiv(User &I) {
441    const Type *Ty = I.getType();
442    visitBinary(I,
443                Ty->isSigned() ? ISD::SDIV : ISD::UDIV, ISD::FDIV,
444                Ty->isSigned() ? ISD::VSDIV : ISD::VUDIV);
445  }
446  void visitRem(User &I) {
447    const Type *Ty = I.getType();
448    visitBinary(I, Ty->isSigned() ? ISD::SREM : ISD::UREM, ISD::FREM, 0);
449  }
450  void visitAnd(User &I) { visitBinary(I, ISD::AND, 0, ISD::VAND); }
451  void visitOr (User &I) { visitBinary(I, ISD::OR,  0, ISD::VOR); }
452  void visitXor(User &I) { visitBinary(I, ISD::XOR, 0, ISD::VXOR); }
453  void visitShl(User &I) { visitShift(I, ISD::SHL); }
454  void visitShr(User &I) {
455    visitShift(I, I.getType()->isUnsigned() ? ISD::SRL : ISD::SRA);
456  }
457
458  void visitSetCC(User &I, ISD::CondCode SignedOpc, ISD::CondCode UnsignedOpc);
459  void visitSetEQ(User &I) { visitSetCC(I, ISD::SETEQ, ISD::SETEQ); }
460  void visitSetNE(User &I) { visitSetCC(I, ISD::SETNE, ISD::SETNE); }
461  void visitSetLE(User &I) { visitSetCC(I, ISD::SETLE, ISD::SETULE); }
462  void visitSetGE(User &I) { visitSetCC(I, ISD::SETGE, ISD::SETUGE); }
463  void visitSetLT(User &I) { visitSetCC(I, ISD::SETLT, ISD::SETULT); }
464  void visitSetGT(User &I) { visitSetCC(I, ISD::SETGT, ISD::SETUGT); }
465
466  void visitExtractElement(ExtractElementInst &I) { assert(0 && "TODO"); }
467  void visitInsertElement(InsertElementInst &I);
468
469  void visitGetElementPtr(User &I);
470  void visitCast(User &I);
471  void visitSelect(User &I);
472  //
473
474  void visitMalloc(MallocInst &I);
475  void visitFree(FreeInst &I);
476  void visitAlloca(AllocaInst &I);
477  void visitLoad(LoadInst &I);
478  void visitStore(StoreInst &I);
479  void visitPHI(PHINode &I) { } // PHI nodes are handled specially.
480  void visitCall(CallInst &I);
481  void visitInlineAsm(CallInst &I);
482  const char *visitIntrinsicCall(CallInst &I, unsigned Intrinsic);
483
484  void visitVAStart(CallInst &I);
485  void visitVAArg(VAArgInst &I);
486  void visitVAEnd(CallInst &I);
487  void visitVACopy(CallInst &I);
488  void visitFrameReturnAddress(CallInst &I, bool isFrameAddress);
489
490  void visitMemIntrinsic(CallInst &I, unsigned Op);
491
492  void visitUserOp1(Instruction &I) {
493    assert(0 && "UserOp1 should not exist at instruction selection time!");
494    abort();
495  }
496  void visitUserOp2(Instruction &I) {
497    assert(0 && "UserOp2 should not exist at instruction selection time!");
498    abort();
499  }
500};
501} // end namespace llvm
502
503SDOperand SelectionDAGLowering::getValue(const Value *V) {
504  SDOperand &N = NodeMap[V];
505  if (N.Val) return N;
506
507  const Type *VTy = V->getType();
508  MVT::ValueType VT = TLI.getValueType(VTy);
509  if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(V))) {
510    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
511      visit(CE->getOpcode(), *CE);
512      assert(N.Val && "visit didn't populate the ValueMap!");
513      return N;
514    } else if (GlobalValue *GV = dyn_cast<GlobalValue>(C)) {
515      return N = DAG.getGlobalAddress(GV, VT);
516    } else if (isa<ConstantPointerNull>(C)) {
517      return N = DAG.getConstant(0, TLI.getPointerTy());
518    } else if (isa<UndefValue>(C)) {
519      if (!isa<PackedType>(VTy))
520        return N = DAG.getNode(ISD::UNDEF, VT);
521
522      // Create a VBUILD_VECTOR of undef nodes.
523      const PackedType *PTy = cast<PackedType>(VTy);
524      unsigned NumElements = PTy->getNumElements();
525      MVT::ValueType PVT = TLI.getValueType(PTy->getElementType());
526
527      std::vector<SDOperand> Ops;
528      Ops.assign(NumElements, DAG.getNode(ISD::UNDEF, PVT));
529
530      // Create a VConstant node with generic Vector type.
531      Ops.push_back(DAG.getConstant(NumElements, MVT::i32));
532      Ops.push_back(DAG.getValueType(PVT));
533      return N = DAG.getNode(ISD::VBUILD_VECTOR, MVT::Vector, Ops);
534    } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
535      return N = DAG.getConstantFP(CFP->getValue(), VT);
536    } else if (const PackedType *PTy = dyn_cast<PackedType>(VTy)) {
537      unsigned NumElements = PTy->getNumElements();
538      MVT::ValueType PVT = TLI.getValueType(PTy->getElementType());
539
540      // Now that we know the number and type of the elements, push a
541      // Constant or ConstantFP node onto the ops list for each element of
542      // the packed constant.
543      std::vector<SDOperand> Ops;
544      if (ConstantPacked *CP = dyn_cast<ConstantPacked>(C)) {
545        if (MVT::isFloatingPoint(PVT)) {
546          for (unsigned i = 0; i != NumElements; ++i) {
547            const ConstantFP *El = cast<ConstantFP>(CP->getOperand(i));
548            Ops.push_back(DAG.getConstantFP(El->getValue(), PVT));
549          }
550        } else {
551          for (unsigned i = 0; i != NumElements; ++i) {
552            const ConstantIntegral *El =
553            cast<ConstantIntegral>(CP->getOperand(i));
554            Ops.push_back(DAG.getConstant(El->getRawValue(), PVT));
555          }
556        }
557      } else {
558        assert(isa<ConstantAggregateZero>(C) && "Unknown packed constant!");
559        SDOperand Op;
560        if (MVT::isFloatingPoint(PVT))
561          Op = DAG.getConstantFP(0, PVT);
562        else
563          Op = DAG.getConstant(0, PVT);
564        Ops.assign(NumElements, Op);
565      }
566
567      // Create a VBUILD_VECTOR node with generic Vector type.
568      Ops.push_back(DAG.getConstant(NumElements, MVT::i32));
569      Ops.push_back(DAG.getValueType(PVT));
570      return N = DAG.getNode(ISD::VBUILD_VECTOR, MVT::Vector, Ops);
571    } else {
572      // Canonicalize all constant ints to be unsigned.
573      return N = DAG.getConstant(cast<ConstantIntegral>(C)->getRawValue(),VT);
574    }
575  }
576
577  if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
578    std::map<const AllocaInst*, int>::iterator SI =
579    FuncInfo.StaticAllocaMap.find(AI);
580    if (SI != FuncInfo.StaticAllocaMap.end())
581      return DAG.getFrameIndex(SI->second, TLI.getPointerTy());
582  }
583
584  std::map<const Value*, unsigned>::const_iterator VMI =
585      FuncInfo.ValueMap.find(V);
586  assert(VMI != FuncInfo.ValueMap.end() && "Value not in map!");
587
588  unsigned InReg = VMI->second;
589
590  // If this type is not legal, make it so now.
591  if (VT == MVT::Vector) {
592    // FIXME: We only handle legal vectors right now.  We need a VBUILD_VECTOR
593    const PackedType *PTy = cast<PackedType>(VTy);
594    unsigned NumElements = PTy->getNumElements();
595    MVT::ValueType PVT = TLI.getValueType(PTy->getElementType());
596    MVT::ValueType TVT = MVT::getVectorType(PVT, NumElements);
597    assert(TLI.isTypeLegal(TVT) &&
598           "FIXME: Cannot handle illegal vector types here yet!");
599    VT = TVT;
600  }
601
602  MVT::ValueType DestVT = TLI.getTypeToTransformTo(VT);
603
604  N = DAG.getCopyFromReg(DAG.getEntryNode(), InReg, DestVT);
605  if (DestVT < VT) {
606    // Source must be expanded.  This input value is actually coming from the
607    // register pair VMI->second and VMI->second+1.
608    N = DAG.getNode(ISD::BUILD_PAIR, VT, N,
609                    DAG.getCopyFromReg(DAG.getEntryNode(), InReg+1, DestVT));
610  } else {
611    if (DestVT > VT) { // Promotion case
612      if (MVT::isFloatingPoint(VT))
613        N = DAG.getNode(ISD::FP_ROUND, VT, N);
614      else
615        N = DAG.getNode(ISD::TRUNCATE, VT, N);
616    }
617  }
618
619  return N;
620}
621
622
623void SelectionDAGLowering::visitRet(ReturnInst &I) {
624  if (I.getNumOperands() == 0) {
625    DAG.setRoot(DAG.getNode(ISD::RET, MVT::Other, getRoot()));
626    return;
627  }
628  std::vector<SDOperand> NewValues;
629  NewValues.push_back(getRoot());
630  for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
631    SDOperand RetOp = getValue(I.getOperand(i));
632
633    // If this is an integer return value, we need to promote it ourselves to
634    // the full width of a register, since LegalizeOp will use ANY_EXTEND rather
635    // than sign/zero.
636    if (MVT::isInteger(RetOp.getValueType()) &&
637        RetOp.getValueType() < MVT::i64) {
638      MVT::ValueType TmpVT;
639      if (TLI.getTypeAction(MVT::i32) == TargetLowering::Promote)
640        TmpVT = TLI.getTypeToTransformTo(MVT::i32);
641      else
642        TmpVT = MVT::i32;
643
644      if (I.getOperand(i)->getType()->isSigned())
645        RetOp = DAG.getNode(ISD::SIGN_EXTEND, TmpVT, RetOp);
646      else
647        RetOp = DAG.getNode(ISD::ZERO_EXTEND, TmpVT, RetOp);
648    }
649    NewValues.push_back(RetOp);
650  }
651  DAG.setRoot(DAG.getNode(ISD::RET, MVT::Other, NewValues));
652}
653
654void SelectionDAGLowering::visitBr(BranchInst &I) {
655  // Update machine-CFG edges.
656  MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
657
658  // Figure out which block is immediately after the current one.
659  MachineBasicBlock *NextBlock = 0;
660  MachineFunction::iterator BBI = CurMBB;
661  if (++BBI != CurMBB->getParent()->end())
662    NextBlock = BBI;
663
664  if (I.isUnconditional()) {
665    // If this is not a fall-through branch, emit the branch.
666    if (Succ0MBB != NextBlock)
667      DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, getRoot(),
668                              DAG.getBasicBlock(Succ0MBB)));
669  } else {
670    MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
671
672    SDOperand Cond = getValue(I.getCondition());
673    if (Succ1MBB == NextBlock) {
674      // If the condition is false, fall through.  This means we should branch
675      // if the condition is true to Succ #0.
676      DAG.setRoot(DAG.getNode(ISD::BRCOND, MVT::Other, getRoot(),
677                              Cond, DAG.getBasicBlock(Succ0MBB)));
678    } else if (Succ0MBB == NextBlock) {
679      // If the condition is true, fall through.  This means we should branch if
680      // the condition is false to Succ #1.  Invert the condition first.
681      SDOperand True = DAG.getConstant(1, Cond.getValueType());
682      Cond = DAG.getNode(ISD::XOR, Cond.getValueType(), Cond, True);
683      DAG.setRoot(DAG.getNode(ISD::BRCOND, MVT::Other, getRoot(),
684                              Cond, DAG.getBasicBlock(Succ1MBB)));
685    } else {
686      std::vector<SDOperand> Ops;
687      Ops.push_back(getRoot());
688      // If the false case is the current basic block, then this is a self
689      // loop. We do not want to emit "Loop: ... brcond Out; br Loop", as it
690      // adds an extra instruction in the loop.  Instead, invert the
691      // condition and emit "Loop: ... br!cond Loop; br Out.
692      if (CurMBB == Succ1MBB) {
693        std::swap(Succ0MBB, Succ1MBB);
694        SDOperand True = DAG.getConstant(1, Cond.getValueType());
695        Cond = DAG.getNode(ISD::XOR, Cond.getValueType(), Cond, True);
696      }
697      SDOperand True = DAG.getNode(ISD::BRCOND, MVT::Other, getRoot(), Cond,
698                                   DAG.getBasicBlock(Succ0MBB));
699      DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, True,
700                              DAG.getBasicBlock(Succ1MBB)));
701    }
702  }
703}
704
705void SelectionDAGLowering::visitSub(User &I) {
706  // -0.0 - X --> fneg
707  if (I.getType()->isFloatingPoint()) {
708    if (ConstantFP *CFP = dyn_cast<ConstantFP>(I.getOperand(0)))
709      if (CFP->isExactlyValue(-0.0)) {
710        SDOperand Op2 = getValue(I.getOperand(1));
711        setValue(&I, DAG.getNode(ISD::FNEG, Op2.getValueType(), Op2));
712        return;
713      }
714  }
715  visitBinary(I, ISD::SUB, ISD::FSUB, ISD::VSUB);
716}
717
718void SelectionDAGLowering::visitBinary(User &I, unsigned IntOp, unsigned FPOp,
719                                       unsigned VecOp) {
720  const Type *Ty = I.getType();
721  SDOperand Op1 = getValue(I.getOperand(0));
722  SDOperand Op2 = getValue(I.getOperand(1));
723
724  if (Ty->isIntegral()) {
725    setValue(&I, DAG.getNode(IntOp, Op1.getValueType(), Op1, Op2));
726  } else if (Ty->isFloatingPoint()) {
727    setValue(&I, DAG.getNode(FPOp, Op1.getValueType(), Op1, Op2));
728  } else {
729    const PackedType *PTy = cast<PackedType>(Ty);
730    SDOperand Num = DAG.getConstant(PTy->getNumElements(), MVT::i32);
731    SDOperand Typ = DAG.getValueType(TLI.getValueType(PTy->getElementType()));
732    setValue(&I, DAG.getNode(VecOp, MVT::Vector, Op1, Op2, Num, Typ));
733  }
734}
735
736void SelectionDAGLowering::visitShift(User &I, unsigned Opcode) {
737  SDOperand Op1 = getValue(I.getOperand(0));
738  SDOperand Op2 = getValue(I.getOperand(1));
739
740  Op2 = DAG.getNode(ISD::ANY_EXTEND, TLI.getShiftAmountTy(), Op2);
741
742  setValue(&I, DAG.getNode(Opcode, Op1.getValueType(), Op1, Op2));
743}
744
745void SelectionDAGLowering::visitSetCC(User &I,ISD::CondCode SignedOpcode,
746                                      ISD::CondCode UnsignedOpcode) {
747  SDOperand Op1 = getValue(I.getOperand(0));
748  SDOperand Op2 = getValue(I.getOperand(1));
749  ISD::CondCode Opcode = SignedOpcode;
750  if (I.getOperand(0)->getType()->isUnsigned())
751    Opcode = UnsignedOpcode;
752  setValue(&I, DAG.getSetCC(MVT::i1, Op1, Op2, Opcode));
753}
754
755void SelectionDAGLowering::visitSelect(User &I) {
756  SDOperand Cond     = getValue(I.getOperand(0));
757  SDOperand TrueVal  = getValue(I.getOperand(1));
758  SDOperand FalseVal = getValue(I.getOperand(2));
759  setValue(&I, DAG.getNode(ISD::SELECT, TrueVal.getValueType(), Cond,
760                           TrueVal, FalseVal));
761}
762
763void SelectionDAGLowering::visitCast(User &I) {
764  SDOperand N = getValue(I.getOperand(0));
765  MVT::ValueType SrcVT = TLI.getValueType(I.getOperand(0)->getType());
766  MVT::ValueType DestVT = TLI.getValueType(I.getType());
767
768  if (N.getValueType() == DestVT) {
769    setValue(&I, N);  // noop cast.
770  } else if (DestVT == MVT::i1) {
771    // Cast to bool is a comparison against zero, not truncation to zero.
772    SDOperand Zero = isInteger(SrcVT) ? DAG.getConstant(0, N.getValueType()) :
773                                       DAG.getConstantFP(0.0, N.getValueType());
774    setValue(&I, DAG.getSetCC(MVT::i1, N, Zero, ISD::SETNE));
775  } else if (isInteger(SrcVT)) {
776    if (isInteger(DestVT)) {        // Int -> Int cast
777      if (DestVT < SrcVT)   // Truncating cast?
778        setValue(&I, DAG.getNode(ISD::TRUNCATE, DestVT, N));
779      else if (I.getOperand(0)->getType()->isSigned())
780        setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, DestVT, N));
781      else
782        setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, DestVT, N));
783    } else {                        // Int -> FP cast
784      if (I.getOperand(0)->getType()->isSigned())
785        setValue(&I, DAG.getNode(ISD::SINT_TO_FP, DestVT, N));
786      else
787        setValue(&I, DAG.getNode(ISD::UINT_TO_FP, DestVT, N));
788    }
789  } else if (isFloatingPoint(SrcVT)) {
790    if (isFloatingPoint(DestVT)) {  // FP -> FP cast
791      if (DestVT < SrcVT)   // Rounding cast?
792        setValue(&I, DAG.getNode(ISD::FP_ROUND, DestVT, N));
793      else
794        setValue(&I, DAG.getNode(ISD::FP_EXTEND, DestVT, N));
795    } else {                        // FP -> Int cast.
796      if (I.getType()->isSigned())
797        setValue(&I, DAG.getNode(ISD::FP_TO_SINT, DestVT, N));
798      else
799        setValue(&I, DAG.getNode(ISD::FP_TO_UINT, DestVT, N));
800    }
801  } else {
802    assert(0 && "Cannot bitconvert vectors yet!");
803#if 0
804    const PackedType *SrcTy = cast<PackedType>(I.getOperand(0)->getType());
805    const PackedType *DstTy = cast<PackedType>(I.getType());
806
807    unsigned SrcNumElements = SrcTy->getNumElements();
808    MVT::ValueType SrcPVT = TLI.getValueType(SrcTy->getElementType());
809    MVT::ValueType SrcTVT = MVT::getVectorType(SrcPVT, SrcNumElements);
810
811    unsigned DstNumElements = DstTy->getNumElements();
812    MVT::ValueType DstPVT = TLI.getValueType(DstTy->getElementType());
813    MVT::ValueType DstTVT = MVT::getVectorType(DstPVT, DstNumElements);
814
815    // If the input and output type are legal, convert this to a bit convert of
816    // the SrcTVT/DstTVT types.
817    if (SrcTVT != MVT::Other && DstTVT != MVT::Other &&
818        TLI.isTypeLegal(SrcTVT) && TLI.isTypeLegal(DstTVT)) {
819      assert(N.getValueType() == SrcTVT);
820      setValue(&I, DAG.getNode(ISD::BIT_CONVERT, DstTVT, N));
821    } else {
822      // Otherwise, convert this directly into a store/load.
823      // FIXME: add a VBIT_CONVERT node that we could use to automatically turn
824      // 8xFloat -> 8xInt casts into two 4xFloat -> 4xInt casts.
825      // Create the stack frame object.
826      uint64_t ByteSize = TD.getTypeSize(SrcTy);
827      assert(ByteSize == TD.getTypeSize(DstTy) && "Not a bit_convert!");
828      MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
829      int FrameIdx = FrameInfo->CreateStackObject(ByteSize, ByteSize);
830      SDOperand FIPtr = DAG.getFrameIndex(FrameIdx, TLI.getPointerTy());
831
832      // Emit a store to the stack slot.
833      SDOperand Store = DAG.getNode(ISD::STORE, MVT::Other, DAG.getEntryNode(),
834                                    N, FIPtr, DAG.getSrcValue(NULL));
835      // Result is a load from the stack slot.
836      SDOperand Val =
837        getLoadFrom(DstTy, FIPtr, DAG.getSrcValue(NULL), Store, false);
838      setValue(&I, Val);
839    }
840#endif
841  }
842}
843
844void SelectionDAGLowering::visitInsertElement(InsertElementInst &I) {
845  SDOperand InVec = getValue(I.getOperand(0));
846  SDOperand InVal = getValue(I.getOperand(1));
847  SDOperand InIdx = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(),
848                                getValue(I.getOperand(2)));
849
850  SDOperand Num = *(InVec.Val->op_end()-2);
851  SDOperand Typ = *(InVec.Val->op_end()-1);
852  setValue(&I, DAG.getNode(ISD::VINSERT_VECTOR_ELT, MVT::Vector,
853                           InVec, InVal, InIdx, Num, Typ));
854}
855
856
857void SelectionDAGLowering::visitGetElementPtr(User &I) {
858  SDOperand N = getValue(I.getOperand(0));
859  const Type *Ty = I.getOperand(0)->getType();
860  const Type *UIntPtrTy = TD.getIntPtrType();
861
862  for (GetElementPtrInst::op_iterator OI = I.op_begin()+1, E = I.op_end();
863       OI != E; ++OI) {
864    Value *Idx = *OI;
865    if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
866      unsigned Field = cast<ConstantUInt>(Idx)->getValue();
867      if (Field) {
868        // N = N + Offset
869        uint64_t Offset = TD.getStructLayout(StTy)->MemberOffsets[Field];
870        N = DAG.getNode(ISD::ADD, N.getValueType(), N,
871                        getIntPtrConstant(Offset));
872      }
873      Ty = StTy->getElementType(Field);
874    } else {
875      Ty = cast<SequentialType>(Ty)->getElementType();
876
877      // If this is a constant subscript, handle it quickly.
878      if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
879        if (CI->getRawValue() == 0) continue;
880
881        uint64_t Offs;
882        if (ConstantSInt *CSI = dyn_cast<ConstantSInt>(CI))
883          Offs = (int64_t)TD.getTypeSize(Ty)*CSI->getValue();
884        else
885          Offs = TD.getTypeSize(Ty)*cast<ConstantUInt>(CI)->getValue();
886        N = DAG.getNode(ISD::ADD, N.getValueType(), N, getIntPtrConstant(Offs));
887        continue;
888      }
889
890      // N = N + Idx * ElementSize;
891      uint64_t ElementSize = TD.getTypeSize(Ty);
892      SDOperand IdxN = getValue(Idx);
893
894      // If the index is smaller or larger than intptr_t, truncate or extend
895      // it.
896      if (IdxN.getValueType() < N.getValueType()) {
897        if (Idx->getType()->isSigned())
898          IdxN = DAG.getNode(ISD::SIGN_EXTEND, N.getValueType(), IdxN);
899        else
900          IdxN = DAG.getNode(ISD::ZERO_EXTEND, N.getValueType(), IdxN);
901      } else if (IdxN.getValueType() > N.getValueType())
902        IdxN = DAG.getNode(ISD::TRUNCATE, N.getValueType(), IdxN);
903
904      // If this is a multiply by a power of two, turn it into a shl
905      // immediately.  This is a very common case.
906      if (isPowerOf2_64(ElementSize)) {
907        unsigned Amt = Log2_64(ElementSize);
908        IdxN = DAG.getNode(ISD::SHL, N.getValueType(), IdxN,
909                           DAG.getConstant(Amt, TLI.getShiftAmountTy()));
910        N = DAG.getNode(ISD::ADD, N.getValueType(), N, IdxN);
911        continue;
912      }
913
914      SDOperand Scale = getIntPtrConstant(ElementSize);
915      IdxN = DAG.getNode(ISD::MUL, N.getValueType(), IdxN, Scale);
916      N = DAG.getNode(ISD::ADD, N.getValueType(), N, IdxN);
917    }
918  }
919  setValue(&I, N);
920}
921
922void SelectionDAGLowering::visitAlloca(AllocaInst &I) {
923  // If this is a fixed sized alloca in the entry block of the function,
924  // allocate it statically on the stack.
925  if (FuncInfo.StaticAllocaMap.count(&I))
926    return;   // getValue will auto-populate this.
927
928  const Type *Ty = I.getAllocatedType();
929  uint64_t TySize = TLI.getTargetData().getTypeSize(Ty);
930  unsigned Align = std::max((unsigned)TLI.getTargetData().getTypeAlignment(Ty),
931                            I.getAlignment());
932
933  SDOperand AllocSize = getValue(I.getArraySize());
934  MVT::ValueType IntPtr = TLI.getPointerTy();
935  if (IntPtr < AllocSize.getValueType())
936    AllocSize = DAG.getNode(ISD::TRUNCATE, IntPtr, AllocSize);
937  else if (IntPtr > AllocSize.getValueType())
938    AllocSize = DAG.getNode(ISD::ZERO_EXTEND, IntPtr, AllocSize);
939
940  AllocSize = DAG.getNode(ISD::MUL, IntPtr, AllocSize,
941                          getIntPtrConstant(TySize));
942
943  // Handle alignment.  If the requested alignment is less than or equal to the
944  // stack alignment, ignore it and round the size of the allocation up to the
945  // stack alignment size.  If the size is greater than the stack alignment, we
946  // note this in the DYNAMIC_STACKALLOC node.
947  unsigned StackAlign =
948    TLI.getTargetMachine().getFrameInfo()->getStackAlignment();
949  if (Align <= StackAlign) {
950    Align = 0;
951    // Add SA-1 to the size.
952    AllocSize = DAG.getNode(ISD::ADD, AllocSize.getValueType(), AllocSize,
953                            getIntPtrConstant(StackAlign-1));
954    // Mask out the low bits for alignment purposes.
955    AllocSize = DAG.getNode(ISD::AND, AllocSize.getValueType(), AllocSize,
956                            getIntPtrConstant(~(uint64_t)(StackAlign-1)));
957  }
958
959  std::vector<MVT::ValueType> VTs;
960  VTs.push_back(AllocSize.getValueType());
961  VTs.push_back(MVT::Other);
962  std::vector<SDOperand> Ops;
963  Ops.push_back(getRoot());
964  Ops.push_back(AllocSize);
965  Ops.push_back(getIntPtrConstant(Align));
966  SDOperand DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, VTs, Ops);
967  DAG.setRoot(setValue(&I, DSA).getValue(1));
968
969  // Inform the Frame Information that we have just allocated a variable-sized
970  // object.
971  CurMBB->getParent()->getFrameInfo()->CreateVariableSizedObject();
972}
973
974void SelectionDAGLowering::visitLoad(LoadInst &I) {
975  SDOperand Ptr = getValue(I.getOperand(0));
976
977  SDOperand Root;
978  if (I.isVolatile())
979    Root = getRoot();
980  else {
981    // Do not serialize non-volatile loads against each other.
982    Root = DAG.getRoot();
983  }
984
985  setValue(&I, getLoadFrom(I.getType(), Ptr, DAG.getSrcValue(I.getOperand(0)),
986                           Root, I.isVolatile()));
987}
988
989SDOperand SelectionDAGLowering::getLoadFrom(const Type *Ty, SDOperand Ptr,
990                                            SDOperand SrcValue, SDOperand Root,
991                                            bool isVolatile) {
992  SDOperand L;
993  if (const PackedType *PTy = dyn_cast<PackedType>(Ty)) {
994    MVT::ValueType PVT = TLI.getValueType(PTy->getElementType());
995    L = DAG.getVecLoad(PTy->getNumElements(), PVT, Root, Ptr, SrcValue);
996  } else {
997    L = DAG.getLoad(TLI.getValueType(Ty), Root, Ptr, SrcValue);
998  }
999
1000  if (isVolatile)
1001    DAG.setRoot(L.getValue(1));
1002  else
1003    PendingLoads.push_back(L.getValue(1));
1004
1005  return L;
1006}
1007
1008
1009void SelectionDAGLowering::visitStore(StoreInst &I) {
1010  Value *SrcV = I.getOperand(0);
1011  SDOperand Src = getValue(SrcV);
1012  SDOperand Ptr = getValue(I.getOperand(1));
1013  DAG.setRoot(DAG.getNode(ISD::STORE, MVT::Other, getRoot(), Src, Ptr,
1014                          DAG.getSrcValue(I.getOperand(1))));
1015}
1016
1017/// visitIntrinsicCall - Lower the call to the specified intrinsic function.  If
1018/// we want to emit this as a call to a named external function, return the name
1019/// otherwise lower it and return null.
1020const char *
1021SelectionDAGLowering::visitIntrinsicCall(CallInst &I, unsigned Intrinsic) {
1022  switch (Intrinsic) {
1023  case Intrinsic::vastart:  visitVAStart(I); return 0;
1024  case Intrinsic::vaend:    visitVAEnd(I); return 0;
1025  case Intrinsic::vacopy:   visitVACopy(I); return 0;
1026  case Intrinsic::returnaddress: visitFrameReturnAddress(I, false); return 0;
1027  case Intrinsic::frameaddress:  visitFrameReturnAddress(I, true); return 0;
1028  case Intrinsic::setjmp:
1029    return "_setjmp"+!TLI.usesUnderscoreSetJmpLongJmp();
1030    break;
1031  case Intrinsic::longjmp:
1032    return "_longjmp"+!TLI.usesUnderscoreSetJmpLongJmp();
1033    break;
1034  case Intrinsic::memcpy_i32:
1035  case Intrinsic::memcpy_i64:
1036    visitMemIntrinsic(I, ISD::MEMCPY);
1037    return 0;
1038  case Intrinsic::memset_i32:
1039  case Intrinsic::memset_i64:
1040    visitMemIntrinsic(I, ISD::MEMSET);
1041    return 0;
1042  case Intrinsic::memmove_i32:
1043  case Intrinsic::memmove_i64:
1044    visitMemIntrinsic(I, ISD::MEMMOVE);
1045    return 0;
1046
1047  case Intrinsic::dbg_stoppoint: {
1048    MachineDebugInfo *DebugInfo = DAG.getMachineDebugInfo();
1049    if (DebugInfo &&  DebugInfo->Verify(I.getOperand(3))) {
1050      std::vector<SDOperand> Ops;
1051
1052      // Input Chain
1053      Ops.push_back(getRoot());
1054
1055      // line number
1056      Ops.push_back(getValue(I.getOperand(1)));
1057
1058      // column
1059      Ops.push_back(getValue(I.getOperand(2)));
1060
1061      DebugInfoDesc *DD = DebugInfo->getDescFor(I.getOperand(3));
1062      assert(DD && "Not a debug information descriptor");
1063      CompileUnitDesc *CompileUnit = dyn_cast<CompileUnitDesc>(DD);
1064      assert(CompileUnit && "Not a compile unit");
1065      Ops.push_back(DAG.getString(CompileUnit->getFileName()));
1066      Ops.push_back(DAG.getString(CompileUnit->getDirectory()));
1067
1068      if (Ops.size() == 5)  // Found filename/workingdir.
1069        DAG.setRoot(DAG.getNode(ISD::LOCATION, MVT::Other, Ops));
1070    }
1071
1072    setValue(&I, DAG.getNode(ISD::UNDEF, TLI.getValueType(I.getType())));
1073    return 0;
1074  }
1075  case Intrinsic::dbg_region_start:
1076    if (I.getType() != Type::VoidTy)
1077      setValue(&I, DAG.getNode(ISD::UNDEF, TLI.getValueType(I.getType())));
1078    return 0;
1079  case Intrinsic::dbg_region_end:
1080    if (I.getType() != Type::VoidTy)
1081      setValue(&I, DAG.getNode(ISD::UNDEF, TLI.getValueType(I.getType())));
1082    return 0;
1083  case Intrinsic::dbg_func_start:
1084    if (I.getType() != Type::VoidTy)
1085      setValue(&I, DAG.getNode(ISD::UNDEF, TLI.getValueType(I.getType())));
1086    return 0;
1087
1088  case Intrinsic::isunordered_f32:
1089  case Intrinsic::isunordered_f64:
1090    setValue(&I, DAG.getSetCC(MVT::i1,getValue(I.getOperand(1)),
1091                              getValue(I.getOperand(2)), ISD::SETUO));
1092    return 0;
1093
1094  case Intrinsic::sqrt_f32:
1095  case Intrinsic::sqrt_f64:
1096    setValue(&I, DAG.getNode(ISD::FSQRT,
1097                             getValue(I.getOperand(1)).getValueType(),
1098                             getValue(I.getOperand(1))));
1099    return 0;
1100  case Intrinsic::pcmarker: {
1101    SDOperand Tmp = getValue(I.getOperand(1));
1102    DAG.setRoot(DAG.getNode(ISD::PCMARKER, MVT::Other, getRoot(), Tmp));
1103    return 0;
1104  }
1105  case Intrinsic::readcyclecounter: {
1106    std::vector<MVT::ValueType> VTs;
1107    VTs.push_back(MVT::i64);
1108    VTs.push_back(MVT::Other);
1109    std::vector<SDOperand> Ops;
1110    Ops.push_back(getRoot());
1111    SDOperand Tmp = DAG.getNode(ISD::READCYCLECOUNTER, VTs, Ops);
1112    setValue(&I, Tmp);
1113    DAG.setRoot(Tmp.getValue(1));
1114    return 0;
1115  }
1116  case Intrinsic::bswap_i16:
1117  case Intrinsic::bswap_i32:
1118  case Intrinsic::bswap_i64:
1119    setValue(&I, DAG.getNode(ISD::BSWAP,
1120                             getValue(I.getOperand(1)).getValueType(),
1121                             getValue(I.getOperand(1))));
1122    return 0;
1123  case Intrinsic::cttz_i8:
1124  case Intrinsic::cttz_i16:
1125  case Intrinsic::cttz_i32:
1126  case Intrinsic::cttz_i64:
1127    setValue(&I, DAG.getNode(ISD::CTTZ,
1128                             getValue(I.getOperand(1)).getValueType(),
1129                             getValue(I.getOperand(1))));
1130    return 0;
1131  case Intrinsic::ctlz_i8:
1132  case Intrinsic::ctlz_i16:
1133  case Intrinsic::ctlz_i32:
1134  case Intrinsic::ctlz_i64:
1135    setValue(&I, DAG.getNode(ISD::CTLZ,
1136                             getValue(I.getOperand(1)).getValueType(),
1137                             getValue(I.getOperand(1))));
1138    return 0;
1139  case Intrinsic::ctpop_i8:
1140  case Intrinsic::ctpop_i16:
1141  case Intrinsic::ctpop_i32:
1142  case Intrinsic::ctpop_i64:
1143    setValue(&I, DAG.getNode(ISD::CTPOP,
1144                             getValue(I.getOperand(1)).getValueType(),
1145                             getValue(I.getOperand(1))));
1146    return 0;
1147  case Intrinsic::stacksave: {
1148    std::vector<MVT::ValueType> VTs;
1149    VTs.push_back(TLI.getPointerTy());
1150    VTs.push_back(MVT::Other);
1151    std::vector<SDOperand> Ops;
1152    Ops.push_back(getRoot());
1153    SDOperand Tmp = DAG.getNode(ISD::STACKSAVE, VTs, Ops);
1154    setValue(&I, Tmp);
1155    DAG.setRoot(Tmp.getValue(1));
1156    return 0;
1157  }
1158  case Intrinsic::stackrestore: {
1159    SDOperand Tmp = getValue(I.getOperand(1));
1160    DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, MVT::Other, getRoot(), Tmp));
1161    return 0;
1162  }
1163  case Intrinsic::prefetch:
1164    // FIXME: Currently discarding prefetches.
1165    return 0;
1166  default:
1167    std::cerr << I;
1168    assert(0 && "This intrinsic is not implemented yet!");
1169    return 0;
1170  }
1171}
1172
1173
1174void SelectionDAGLowering::visitCall(CallInst &I) {
1175  const char *RenameFn = 0;
1176  if (Function *F = I.getCalledFunction()) {
1177    if (F->isExternal())
1178      if (unsigned IID = F->getIntrinsicID()) {
1179        RenameFn = visitIntrinsicCall(I, IID);
1180        if (!RenameFn)
1181          return;
1182      } else {    // Not an LLVM intrinsic.
1183        const std::string &Name = F->getName();
1184        if (Name[0] == 'c' && (Name == "copysign" || Name == "copysignf")) {
1185          if (I.getNumOperands() == 3 &&   // Basic sanity checks.
1186              I.getOperand(1)->getType()->isFloatingPoint() &&
1187              I.getType() == I.getOperand(1)->getType() &&
1188              I.getType() == I.getOperand(2)->getType()) {
1189            SDOperand LHS = getValue(I.getOperand(1));
1190            SDOperand RHS = getValue(I.getOperand(2));
1191            setValue(&I, DAG.getNode(ISD::FCOPYSIGN, LHS.getValueType(),
1192                                     LHS, RHS));
1193            return;
1194          }
1195        } else if (Name[0] == 'f' && (Name == "fabs" || Name == "fabsf")) {
1196          if (I.getNumOperands() == 2 &&   // Basic sanity checks.
1197              I.getOperand(1)->getType()->isFloatingPoint() &&
1198              I.getType() == I.getOperand(1)->getType()) {
1199            SDOperand Tmp = getValue(I.getOperand(1));
1200            setValue(&I, DAG.getNode(ISD::FABS, Tmp.getValueType(), Tmp));
1201            return;
1202          }
1203        } else if (Name[0] == 's' && (Name == "sin" || Name == "sinf")) {
1204          if (I.getNumOperands() == 2 &&   // Basic sanity checks.
1205              I.getOperand(1)->getType()->isFloatingPoint() &&
1206              I.getType() == I.getOperand(1)->getType()) {
1207            SDOperand Tmp = getValue(I.getOperand(1));
1208            setValue(&I, DAG.getNode(ISD::FSIN, Tmp.getValueType(), Tmp));
1209            return;
1210          }
1211        } else if (Name[0] == 'c' && (Name == "cos" || Name == "cosf")) {
1212          if (I.getNumOperands() == 2 &&   // Basic sanity checks.
1213              I.getOperand(1)->getType()->isFloatingPoint() &&
1214              I.getType() == I.getOperand(1)->getType()) {
1215            SDOperand Tmp = getValue(I.getOperand(1));
1216            setValue(&I, DAG.getNode(ISD::FCOS, Tmp.getValueType(), Tmp));
1217            return;
1218          }
1219        }
1220      }
1221  } else if (isa<InlineAsm>(I.getOperand(0))) {
1222    visitInlineAsm(I);
1223    return;
1224  }
1225
1226  SDOperand Callee;
1227  if (!RenameFn)
1228    Callee = getValue(I.getOperand(0));
1229  else
1230    Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy());
1231  std::vector<std::pair<SDOperand, const Type*> > Args;
1232  Args.reserve(I.getNumOperands());
1233  for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) {
1234    Value *Arg = I.getOperand(i);
1235    SDOperand ArgNode = getValue(Arg);
1236    Args.push_back(std::make_pair(ArgNode, Arg->getType()));
1237  }
1238
1239  const PointerType *PT = cast<PointerType>(I.getCalledValue()->getType());
1240  const FunctionType *FTy = cast<FunctionType>(PT->getElementType());
1241
1242  std::pair<SDOperand,SDOperand> Result =
1243    TLI.LowerCallTo(getRoot(), I.getType(), FTy->isVarArg(), I.getCallingConv(),
1244                    I.isTailCall(), Callee, Args, DAG);
1245  if (I.getType() != Type::VoidTy)
1246    setValue(&I, Result.first);
1247  DAG.setRoot(Result.second);
1248}
1249
1250SDOperand RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
1251                                        SDOperand &Chain, SDOperand &Flag)const{
1252  SDOperand Val = DAG.getCopyFromReg(Chain, Regs[0], RegVT, Flag);
1253  Chain = Val.getValue(1);
1254  Flag  = Val.getValue(2);
1255
1256  // If the result was expanded, copy from the top part.
1257  if (Regs.size() > 1) {
1258    assert(Regs.size() == 2 &&
1259           "Cannot expand to more than 2 elts yet!");
1260    SDOperand Hi = DAG.getCopyFromReg(Chain, Regs[1], RegVT, Flag);
1261    Chain = Val.getValue(1);
1262    Flag  = Val.getValue(2);
1263    if (DAG.getTargetLoweringInfo().isLittleEndian())
1264      return DAG.getNode(ISD::BUILD_PAIR, ValueVT, Val, Hi);
1265    else
1266      return DAG.getNode(ISD::BUILD_PAIR, ValueVT, Hi, Val);
1267  }
1268
1269  // Otherwise, if the return value was promoted, truncate it to the
1270  // appropriate type.
1271  if (RegVT == ValueVT)
1272    return Val;
1273
1274  if (MVT::isInteger(RegVT))
1275    return DAG.getNode(ISD::TRUNCATE, ValueVT, Val);
1276  else
1277    return DAG.getNode(ISD::FP_ROUND, ValueVT, Val);
1278}
1279
1280/// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
1281/// specified value into the registers specified by this object.  This uses
1282/// Chain/Flag as the input and updates them for the output Chain/Flag.
1283void RegsForValue::getCopyToRegs(SDOperand Val, SelectionDAG &DAG,
1284                                 SDOperand &Chain, SDOperand &Flag) const {
1285  if (Regs.size() == 1) {
1286    // If there is a single register and the types differ, this must be
1287    // a promotion.
1288    if (RegVT != ValueVT) {
1289      if (MVT::isInteger(RegVT))
1290        Val = DAG.getNode(ISD::ANY_EXTEND, RegVT, Val);
1291      else
1292        Val = DAG.getNode(ISD::FP_EXTEND, RegVT, Val);
1293    }
1294    Chain = DAG.getCopyToReg(Chain, Regs[0], Val, Flag);
1295    Flag = Chain.getValue(1);
1296  } else {
1297    std::vector<unsigned> R(Regs);
1298    if (!DAG.getTargetLoweringInfo().isLittleEndian())
1299      std::reverse(R.begin(), R.end());
1300
1301    for (unsigned i = 0, e = R.size(); i != e; ++i) {
1302      SDOperand Part = DAG.getNode(ISD::EXTRACT_ELEMENT, RegVT, Val,
1303                                   DAG.getConstant(i, MVT::i32));
1304      Chain = DAG.getCopyToReg(Chain, R[i], Part, Flag);
1305      Flag = Chain.getValue(1);
1306    }
1307  }
1308}
1309
1310/// AddInlineAsmOperands - Add this value to the specified inlineasm node
1311/// operand list.  This adds the code marker and includes the number of
1312/// values added into it.
1313void RegsForValue::AddInlineAsmOperands(unsigned Code, SelectionDAG &DAG,
1314                                        std::vector<SDOperand> &Ops) const {
1315  Ops.push_back(DAG.getConstant(Code | (Regs.size() << 3), MVT::i32));
1316  for (unsigned i = 0, e = Regs.size(); i != e; ++i)
1317    Ops.push_back(DAG.getRegister(Regs[i], RegVT));
1318}
1319
1320/// isAllocatableRegister - If the specified register is safe to allocate,
1321/// i.e. it isn't a stack pointer or some other special register, return the
1322/// register class for the register.  Otherwise, return null.
1323static const TargetRegisterClass *
1324isAllocatableRegister(unsigned Reg, MachineFunction &MF,
1325                      const TargetLowering &TLI, const MRegisterInfo *MRI) {
1326  for (MRegisterInfo::regclass_iterator RCI = MRI->regclass_begin(),
1327       E = MRI->regclass_end(); RCI != E; ++RCI) {
1328    const TargetRegisterClass *RC = *RCI;
1329    // If none of the the value types for this register class are valid, we
1330    // can't use it.  For example, 64-bit reg classes on 32-bit targets.
1331    bool isLegal = false;
1332    for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
1333         I != E; ++I) {
1334      if (TLI.isTypeLegal(*I)) {
1335        isLegal = true;
1336        break;
1337      }
1338    }
1339
1340    if (!isLegal) continue;
1341
1342    // NOTE: This isn't ideal.  In particular, this might allocate the
1343    // frame pointer in functions that need it (due to them not being taken
1344    // out of allocation, because a variable sized allocation hasn't been seen
1345    // yet).  This is a slight code pessimization, but should still work.
1346    for (TargetRegisterClass::iterator I = RC->allocation_order_begin(MF),
1347         E = RC->allocation_order_end(MF); I != E; ++I)
1348      if (*I == Reg)
1349        return RC;
1350  }
1351  return 0;
1352}
1353
1354RegsForValue SelectionDAGLowering::
1355GetRegistersForValue(const std::string &ConstrCode,
1356                     MVT::ValueType VT, bool isOutReg, bool isInReg,
1357                     std::set<unsigned> &OutputRegs,
1358                     std::set<unsigned> &InputRegs) {
1359  std::pair<unsigned, const TargetRegisterClass*> PhysReg =
1360    TLI.getRegForInlineAsmConstraint(ConstrCode, VT);
1361  std::vector<unsigned> Regs;
1362
1363  unsigned NumRegs = VT != MVT::Other ? TLI.getNumElements(VT) : 1;
1364  MVT::ValueType RegVT;
1365  MVT::ValueType ValueVT = VT;
1366
1367  if (PhysReg.first) {
1368    if (VT == MVT::Other)
1369      ValueVT = *PhysReg.second->vt_begin();
1370    RegVT = VT;
1371
1372    // This is a explicit reference to a physical register.
1373    Regs.push_back(PhysReg.first);
1374
1375    // If this is an expanded reference, add the rest of the regs to Regs.
1376    if (NumRegs != 1) {
1377      RegVT = *PhysReg.second->vt_begin();
1378      TargetRegisterClass::iterator I = PhysReg.second->begin();
1379      TargetRegisterClass::iterator E = PhysReg.second->end();
1380      for (; *I != PhysReg.first; ++I)
1381        assert(I != E && "Didn't find reg!");
1382
1383      // Already added the first reg.
1384      --NumRegs; ++I;
1385      for (; NumRegs; --NumRegs, ++I) {
1386        assert(I != E && "Ran out of registers to allocate!");
1387        Regs.push_back(*I);
1388      }
1389    }
1390    return RegsForValue(Regs, RegVT, ValueVT);
1391  }
1392
1393  // This is a reference to a register class.  Allocate NumRegs consecutive,
1394  // available, registers from the class.
1395  std::vector<unsigned> RegClassRegs =
1396    TLI.getRegClassForInlineAsmConstraint(ConstrCode, VT);
1397
1398  const MRegisterInfo *MRI = DAG.getTarget().getRegisterInfo();
1399  MachineFunction &MF = *CurMBB->getParent();
1400  unsigned NumAllocated = 0;
1401  for (unsigned i = 0, e = RegClassRegs.size(); i != e; ++i) {
1402    unsigned Reg = RegClassRegs[i];
1403    // See if this register is available.
1404    if ((isOutReg && OutputRegs.count(Reg)) ||   // Already used.
1405        (isInReg  && InputRegs.count(Reg))) {    // Already used.
1406      // Make sure we find consecutive registers.
1407      NumAllocated = 0;
1408      continue;
1409    }
1410
1411    // Check to see if this register is allocatable (i.e. don't give out the
1412    // stack pointer).
1413    const TargetRegisterClass *RC = isAllocatableRegister(Reg, MF, TLI, MRI);
1414    if (!RC) {
1415      // Make sure we find consecutive registers.
1416      NumAllocated = 0;
1417      continue;
1418    }
1419
1420    // Okay, this register is good, we can use it.
1421    ++NumAllocated;
1422
1423    // If we allocated enough consecutive
1424    if (NumAllocated == NumRegs) {
1425      unsigned RegStart = (i-NumAllocated)+1;
1426      unsigned RegEnd   = i+1;
1427      // Mark all of the allocated registers used.
1428      for (unsigned i = RegStart; i != RegEnd; ++i) {
1429        unsigned Reg = RegClassRegs[i];
1430        Regs.push_back(Reg);
1431        if (isOutReg) OutputRegs.insert(Reg);    // Mark reg used.
1432        if (isInReg)  InputRegs.insert(Reg);     // Mark reg used.
1433      }
1434
1435      return RegsForValue(Regs, *RC->vt_begin(), VT);
1436    }
1437  }
1438
1439  // Otherwise, we couldn't allocate enough registers for this.
1440  return RegsForValue();
1441}
1442
1443
1444/// visitInlineAsm - Handle a call to an InlineAsm object.
1445///
1446void SelectionDAGLowering::visitInlineAsm(CallInst &I) {
1447  InlineAsm *IA = cast<InlineAsm>(I.getOperand(0));
1448
1449  SDOperand AsmStr = DAG.getTargetExternalSymbol(IA->getAsmString().c_str(),
1450                                                 MVT::Other);
1451
1452  // Note, we treat inline asms both with and without side-effects as the same.
1453  // If an inline asm doesn't have side effects and doesn't access memory, we
1454  // could not choose to not chain it.
1455  bool hasSideEffects = IA->hasSideEffects();
1456
1457  std::vector<InlineAsm::ConstraintInfo> Constraints = IA->ParseConstraints();
1458  std::vector<MVT::ValueType> ConstraintVTs;
1459
1460  /// AsmNodeOperands - A list of pairs.  The first element is a register, the
1461  /// second is a bitfield where bit #0 is set if it is a use and bit #1 is set
1462  /// if it is a def of that register.
1463  std::vector<SDOperand> AsmNodeOperands;
1464  AsmNodeOperands.push_back(SDOperand());  // reserve space for input chain
1465  AsmNodeOperands.push_back(AsmStr);
1466
1467  SDOperand Chain = getRoot();
1468  SDOperand Flag;
1469
1470  // We fully assign registers here at isel time.  This is not optimal, but
1471  // should work.  For register classes that correspond to LLVM classes, we
1472  // could let the LLVM RA do its thing, but we currently don't.  Do a prepass
1473  // over the constraints, collecting fixed registers that we know we can't use.
1474  std::set<unsigned> OutputRegs, InputRegs;
1475  unsigned OpNum = 1;
1476  for (unsigned i = 0, e = Constraints.size(); i != e; ++i) {
1477    assert(Constraints[i].Codes.size() == 1 && "Only handles one code so far!");
1478    std::string &ConstraintCode = Constraints[i].Codes[0];
1479
1480    MVT::ValueType OpVT;
1481
1482    // Compute the value type for each operand and add it to ConstraintVTs.
1483    switch (Constraints[i].Type) {
1484    case InlineAsm::isOutput:
1485      if (!Constraints[i].isIndirectOutput) {
1486        assert(I.getType() != Type::VoidTy && "Bad inline asm!");
1487        OpVT = TLI.getValueType(I.getType());
1488      } else {
1489        const Type *OpTy = I.getOperand(OpNum)->getType();
1490        OpVT = TLI.getValueType(cast<PointerType>(OpTy)->getElementType());
1491        OpNum++;  // Consumes a call operand.
1492      }
1493      break;
1494    case InlineAsm::isInput:
1495      OpVT = TLI.getValueType(I.getOperand(OpNum)->getType());
1496      OpNum++;  // Consumes a call operand.
1497      break;
1498    case InlineAsm::isClobber:
1499      OpVT = MVT::Other;
1500      break;
1501    }
1502
1503    ConstraintVTs.push_back(OpVT);
1504
1505    if (TLI.getRegForInlineAsmConstraint(ConstraintCode, OpVT).first == 0)
1506      continue;  // Not assigned a fixed reg.
1507
1508    // Build a list of regs that this operand uses.  This always has a single
1509    // element for promoted/expanded operands.
1510    RegsForValue Regs = GetRegistersForValue(ConstraintCode, OpVT,
1511                                             false, false,
1512                                             OutputRegs, InputRegs);
1513
1514    switch (Constraints[i].Type) {
1515    case InlineAsm::isOutput:
1516      // We can't assign any other output to this register.
1517      OutputRegs.insert(Regs.Regs.begin(), Regs.Regs.end());
1518      // If this is an early-clobber output, it cannot be assigned to the same
1519      // value as the input reg.
1520      if (Constraints[i].isEarlyClobber || Constraints[i].hasMatchingInput)
1521        InputRegs.insert(Regs.Regs.begin(), Regs.Regs.end());
1522      break;
1523    case InlineAsm::isInput:
1524      // We can't assign any other input to this register.
1525      InputRegs.insert(Regs.Regs.begin(), Regs.Regs.end());
1526      break;
1527    case InlineAsm::isClobber:
1528      // Clobbered regs cannot be used as inputs or outputs.
1529      InputRegs.insert(Regs.Regs.begin(), Regs.Regs.end());
1530      OutputRegs.insert(Regs.Regs.begin(), Regs.Regs.end());
1531      break;
1532    }
1533  }
1534
1535  // Loop over all of the inputs, copying the operand values into the
1536  // appropriate registers and processing the output regs.
1537  RegsForValue RetValRegs;
1538  std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit;
1539  OpNum = 1;
1540
1541  for (unsigned i = 0, e = Constraints.size(); i != e; ++i) {
1542    assert(Constraints[i].Codes.size() == 1 && "Only handles one code so far!");
1543    std::string &ConstraintCode = Constraints[i].Codes[0];
1544
1545    switch (Constraints[i].Type) {
1546    case InlineAsm::isOutput: {
1547      TargetLowering::ConstraintType CTy = TargetLowering::C_RegisterClass;
1548      if (ConstraintCode.size() == 1)   // not a physreg name.
1549        CTy = TLI.getConstraintType(ConstraintCode[0]);
1550
1551      if (CTy == TargetLowering::C_Memory) {
1552        // Memory output.
1553        SDOperand InOperandVal = getValue(I.getOperand(OpNum));
1554
1555        // Check that the operand (the address to store to) isn't a float.
1556        if (!MVT::isInteger(InOperandVal.getValueType()))
1557          assert(0 && "MATCH FAIL!");
1558
1559        if (!Constraints[i].isIndirectOutput)
1560          assert(0 && "MATCH FAIL!");
1561
1562        OpNum++;  // Consumes a call operand.
1563
1564        // Extend/truncate to the right pointer type if needed.
1565        MVT::ValueType PtrType = TLI.getPointerTy();
1566        if (InOperandVal.getValueType() < PtrType)
1567          InOperandVal = DAG.getNode(ISD::ZERO_EXTEND, PtrType, InOperandVal);
1568        else if (InOperandVal.getValueType() > PtrType)
1569          InOperandVal = DAG.getNode(ISD::TRUNCATE, PtrType, InOperandVal);
1570
1571        // Add information to the INLINEASM node to know about this output.
1572        unsigned ResOpType = 4/*MEM*/ | (1 << 3);
1573        AsmNodeOperands.push_back(DAG.getConstant(ResOpType, MVT::i32));
1574        AsmNodeOperands.push_back(InOperandVal);
1575        break;
1576      }
1577
1578      // Otherwise, this is a register output.
1579      assert(CTy == TargetLowering::C_RegisterClass && "Unknown op type!");
1580
1581      // If this is an early-clobber output, or if there is an input
1582      // constraint that matches this, we need to reserve the input register
1583      // so no other inputs allocate to it.
1584      bool UsesInputRegister = false;
1585      if (Constraints[i].isEarlyClobber || Constraints[i].hasMatchingInput)
1586        UsesInputRegister = true;
1587
1588      // Copy the output from the appropriate register.  Find a register that
1589      // we can use.
1590      RegsForValue Regs =
1591        GetRegistersForValue(ConstraintCode, ConstraintVTs[i],
1592                             true, UsesInputRegister,
1593                             OutputRegs, InputRegs);
1594      assert(!Regs.Regs.empty() && "Couldn't allocate output reg!");
1595
1596      if (!Constraints[i].isIndirectOutput) {
1597        assert(RetValRegs.Regs.empty() &&
1598               "Cannot have multiple output constraints yet!");
1599        assert(I.getType() != Type::VoidTy && "Bad inline asm!");
1600        RetValRegs = Regs;
1601      } else {
1602        IndirectStoresToEmit.push_back(std::make_pair(Regs,
1603                                                      I.getOperand(OpNum)));
1604        OpNum++;  // Consumes a call operand.
1605      }
1606
1607      // Add information to the INLINEASM node to know that this register is
1608      // set.
1609      Regs.AddInlineAsmOperands(2 /*REGDEF*/, DAG, AsmNodeOperands);
1610      break;
1611    }
1612    case InlineAsm::isInput: {
1613      SDOperand InOperandVal = getValue(I.getOperand(OpNum));
1614      OpNum++;  // Consumes a call operand.
1615
1616      if (isdigit(ConstraintCode[0])) {    // Matching constraint?
1617        // If this is required to match an output register we have already set,
1618        // just use its register.
1619        unsigned OperandNo = atoi(ConstraintCode.c_str());
1620
1621        // Scan until we find the definition we already emitted of this operand.
1622        // When we find it, create a RegsForValue operand.
1623        unsigned CurOp = 2;  // The first operand.
1624        for (; OperandNo; --OperandNo) {
1625          // Advance to the next operand.
1626          unsigned NumOps =
1627            cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getValue();
1628          assert((NumOps & 7) == 2 /*REGDEF*/ &&
1629                 "Skipped past definitions?");
1630          CurOp += (NumOps>>3)+1;
1631        }
1632
1633        unsigned NumOps =
1634          cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getValue();
1635        assert((NumOps & 7) == 2 /*REGDEF*/ &&
1636               "Skipped past definitions?");
1637
1638        // Add NumOps>>3 registers to MatchedRegs.
1639        RegsForValue MatchedRegs;
1640        MatchedRegs.ValueVT = InOperandVal.getValueType();
1641        MatchedRegs.RegVT   = AsmNodeOperands[CurOp+1].getValueType();
1642        for (unsigned i = 0, e = NumOps>>3; i != e; ++i) {
1643          unsigned Reg=cast<RegisterSDNode>(AsmNodeOperands[++CurOp])->getReg();
1644          MatchedRegs.Regs.push_back(Reg);
1645        }
1646
1647        // Use the produced MatchedRegs object to
1648        MatchedRegs.getCopyToRegs(InOperandVal, DAG, Chain, Flag);
1649        MatchedRegs.AddInlineAsmOperands(1 /*REGUSE*/, DAG, AsmNodeOperands);
1650        break;
1651      }
1652
1653      TargetLowering::ConstraintType CTy = TargetLowering::C_RegisterClass;
1654      if (ConstraintCode.size() == 1)   // not a physreg name.
1655        CTy = TLI.getConstraintType(ConstraintCode[0]);
1656
1657      if (CTy == TargetLowering::C_Other) {
1658        if (!TLI.isOperandValidForConstraint(InOperandVal, ConstraintCode[0]))
1659          assert(0 && "MATCH FAIL!");
1660
1661        // Add information to the INLINEASM node to know about this input.
1662        unsigned ResOpType = 3 /*IMM*/ | (1 << 3);
1663        AsmNodeOperands.push_back(DAG.getConstant(ResOpType, MVT::i32));
1664        AsmNodeOperands.push_back(InOperandVal);
1665        break;
1666      } else if (CTy == TargetLowering::C_Memory) {
1667        // Memory input.
1668
1669        // Check that the operand isn't a float.
1670        if (!MVT::isInteger(InOperandVal.getValueType()))
1671          assert(0 && "MATCH FAIL!");
1672
1673        // Extend/truncate to the right pointer type if needed.
1674        MVT::ValueType PtrType = TLI.getPointerTy();
1675        if (InOperandVal.getValueType() < PtrType)
1676          InOperandVal = DAG.getNode(ISD::ZERO_EXTEND, PtrType, InOperandVal);
1677        else if (InOperandVal.getValueType() > PtrType)
1678          InOperandVal = DAG.getNode(ISD::TRUNCATE, PtrType, InOperandVal);
1679
1680        // Add information to the INLINEASM node to know about this input.
1681        unsigned ResOpType = 4/*MEM*/ | (1 << 3);
1682        AsmNodeOperands.push_back(DAG.getConstant(ResOpType, MVT::i32));
1683        AsmNodeOperands.push_back(InOperandVal);
1684        break;
1685      }
1686
1687      assert(CTy == TargetLowering::C_RegisterClass && "Unknown op type!");
1688
1689      // Copy the input into the appropriate registers.
1690      RegsForValue InRegs =
1691        GetRegistersForValue(ConstraintCode, ConstraintVTs[i],
1692                             false, true, OutputRegs, InputRegs);
1693      // FIXME: should be match fail.
1694      assert(!InRegs.Regs.empty() && "Couldn't allocate input reg!");
1695
1696      InRegs.getCopyToRegs(InOperandVal, DAG, Chain, Flag);
1697
1698      InRegs.AddInlineAsmOperands(1/*REGUSE*/, DAG, AsmNodeOperands);
1699      break;
1700    }
1701    case InlineAsm::isClobber: {
1702      RegsForValue ClobberedRegs =
1703        GetRegistersForValue(ConstraintCode, MVT::Other, false, false,
1704                             OutputRegs, InputRegs);
1705      // Add the clobbered value to the operand list, so that the register
1706      // allocator is aware that the physreg got clobbered.
1707      if (!ClobberedRegs.Regs.empty())
1708        ClobberedRegs.AddInlineAsmOperands(2/*REGDEF*/, DAG, AsmNodeOperands);
1709      break;
1710    }
1711    }
1712  }
1713
1714  // Finish up input operands.
1715  AsmNodeOperands[0] = Chain;
1716  if (Flag.Val) AsmNodeOperands.push_back(Flag);
1717
1718  std::vector<MVT::ValueType> VTs;
1719  VTs.push_back(MVT::Other);
1720  VTs.push_back(MVT::Flag);
1721  Chain = DAG.getNode(ISD::INLINEASM, VTs, AsmNodeOperands);
1722  Flag = Chain.getValue(1);
1723
1724  // If this asm returns a register value, copy the result from that register
1725  // and set it as the value of the call.
1726  if (!RetValRegs.Regs.empty())
1727    setValue(&I, RetValRegs.getCopyFromRegs(DAG, Chain, Flag));
1728
1729  std::vector<std::pair<SDOperand, Value*> > StoresToEmit;
1730
1731  // Process indirect outputs, first output all of the flagged copies out of
1732  // physregs.
1733  for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
1734    RegsForValue &OutRegs = IndirectStoresToEmit[i].first;
1735    Value *Ptr = IndirectStoresToEmit[i].second;
1736    SDOperand OutVal = OutRegs.getCopyFromRegs(DAG, Chain, Flag);
1737    StoresToEmit.push_back(std::make_pair(OutVal, Ptr));
1738  }
1739
1740  // Emit the non-flagged stores from the physregs.
1741  std::vector<SDOperand> OutChains;
1742  for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i)
1743    OutChains.push_back(DAG.getNode(ISD::STORE, MVT::Other, Chain,
1744                                    StoresToEmit[i].first,
1745                                    getValue(StoresToEmit[i].second),
1746                                    DAG.getSrcValue(StoresToEmit[i].second)));
1747  if (!OutChains.empty())
1748    Chain = DAG.getNode(ISD::TokenFactor, MVT::Other, OutChains);
1749  DAG.setRoot(Chain);
1750}
1751
1752
1753void SelectionDAGLowering::visitMalloc(MallocInst &I) {
1754  SDOperand Src = getValue(I.getOperand(0));
1755
1756  MVT::ValueType IntPtr = TLI.getPointerTy();
1757
1758  if (IntPtr < Src.getValueType())
1759    Src = DAG.getNode(ISD::TRUNCATE, IntPtr, Src);
1760  else if (IntPtr > Src.getValueType())
1761    Src = DAG.getNode(ISD::ZERO_EXTEND, IntPtr, Src);
1762
1763  // Scale the source by the type size.
1764  uint64_t ElementSize = TD.getTypeSize(I.getType()->getElementType());
1765  Src = DAG.getNode(ISD::MUL, Src.getValueType(),
1766                    Src, getIntPtrConstant(ElementSize));
1767
1768  std::vector<std::pair<SDOperand, const Type*> > Args;
1769  Args.push_back(std::make_pair(Src, TLI.getTargetData().getIntPtrType()));
1770
1771  std::pair<SDOperand,SDOperand> Result =
1772    TLI.LowerCallTo(getRoot(), I.getType(), false, CallingConv::C, true,
1773                    DAG.getExternalSymbol("malloc", IntPtr),
1774                    Args, DAG);
1775  setValue(&I, Result.first);  // Pointers always fit in registers
1776  DAG.setRoot(Result.second);
1777}
1778
1779void SelectionDAGLowering::visitFree(FreeInst &I) {
1780  std::vector<std::pair<SDOperand, const Type*> > Args;
1781  Args.push_back(std::make_pair(getValue(I.getOperand(0)),
1782                                TLI.getTargetData().getIntPtrType()));
1783  MVT::ValueType IntPtr = TLI.getPointerTy();
1784  std::pair<SDOperand,SDOperand> Result =
1785    TLI.LowerCallTo(getRoot(), Type::VoidTy, false, CallingConv::C, true,
1786                    DAG.getExternalSymbol("free", IntPtr), Args, DAG);
1787  DAG.setRoot(Result.second);
1788}
1789
1790// InsertAtEndOfBasicBlock - This method should be implemented by targets that
1791// mark instructions with the 'usesCustomDAGSchedInserter' flag.  These
1792// instructions are special in various ways, which require special support to
1793// insert.  The specified MachineInstr is created but not inserted into any
1794// basic blocks, and the scheduler passes ownership of it to this method.
1795MachineBasicBlock *TargetLowering::InsertAtEndOfBasicBlock(MachineInstr *MI,
1796                                                       MachineBasicBlock *MBB) {
1797  std::cerr << "If a target marks an instruction with "
1798               "'usesCustomDAGSchedInserter', it must implement "
1799               "TargetLowering::InsertAtEndOfBasicBlock!\n";
1800  abort();
1801  return 0;
1802}
1803
1804void SelectionDAGLowering::visitVAStart(CallInst &I) {
1805  DAG.setRoot(DAG.getNode(ISD::VASTART, MVT::Other, getRoot(),
1806                          getValue(I.getOperand(1)),
1807                          DAG.getSrcValue(I.getOperand(1))));
1808}
1809
1810void SelectionDAGLowering::visitVAArg(VAArgInst &I) {
1811  SDOperand V = DAG.getVAArg(TLI.getValueType(I.getType()), getRoot(),
1812                             getValue(I.getOperand(0)),
1813                             DAG.getSrcValue(I.getOperand(0)));
1814  setValue(&I, V);
1815  DAG.setRoot(V.getValue(1));
1816}
1817
1818void SelectionDAGLowering::visitVAEnd(CallInst &I) {
1819  DAG.setRoot(DAG.getNode(ISD::VAEND, MVT::Other, getRoot(),
1820                          getValue(I.getOperand(1)),
1821                          DAG.getSrcValue(I.getOperand(1))));
1822}
1823
1824void SelectionDAGLowering::visitVACopy(CallInst &I) {
1825  DAG.setRoot(DAG.getNode(ISD::VACOPY, MVT::Other, getRoot(),
1826                          getValue(I.getOperand(1)),
1827                          getValue(I.getOperand(2)),
1828                          DAG.getSrcValue(I.getOperand(1)),
1829                          DAG.getSrcValue(I.getOperand(2))));
1830}
1831
1832// It is always conservatively correct for llvm.returnaddress and
1833// llvm.frameaddress to return 0.
1834std::pair<SDOperand, SDOperand>
1835TargetLowering::LowerFrameReturnAddress(bool isFrameAddr, SDOperand Chain,
1836                                        unsigned Depth, SelectionDAG &DAG) {
1837  return std::make_pair(DAG.getConstant(0, getPointerTy()), Chain);
1838}
1839
1840SDOperand TargetLowering::LowerOperation(SDOperand Op, SelectionDAG &DAG) {
1841  assert(0 && "LowerOperation not implemented for this target!");
1842  abort();
1843  return SDOperand();
1844}
1845
1846SDOperand TargetLowering::CustomPromoteOperation(SDOperand Op,
1847                                                 SelectionDAG &DAG) {
1848  assert(0 && "CustomPromoteOperation not implemented for this target!");
1849  abort();
1850  return SDOperand();
1851}
1852
1853void SelectionDAGLowering::visitFrameReturnAddress(CallInst &I, bool isFrame) {
1854  unsigned Depth = (unsigned)cast<ConstantUInt>(I.getOperand(1))->getValue();
1855  std::pair<SDOperand,SDOperand> Result =
1856    TLI.LowerFrameReturnAddress(isFrame, getRoot(), Depth, DAG);
1857  setValue(&I, Result.first);
1858  DAG.setRoot(Result.second);
1859}
1860
1861/// getMemsetValue - Vectorized representation of the memset value
1862/// operand.
1863static SDOperand getMemsetValue(SDOperand Value, MVT::ValueType VT,
1864                                SelectionDAG &DAG) {
1865  MVT::ValueType CurVT = VT;
1866  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
1867    uint64_t Val   = C->getValue() & 255;
1868    unsigned Shift = 8;
1869    while (CurVT != MVT::i8) {
1870      Val = (Val << Shift) | Val;
1871      Shift <<= 1;
1872      CurVT = (MVT::ValueType)((unsigned)CurVT - 1);
1873    }
1874    return DAG.getConstant(Val, VT);
1875  } else {
1876    Value = DAG.getNode(ISD::ZERO_EXTEND, VT, Value);
1877    unsigned Shift = 8;
1878    while (CurVT != MVT::i8) {
1879      Value =
1880        DAG.getNode(ISD::OR, VT,
1881                    DAG.getNode(ISD::SHL, VT, Value,
1882                                DAG.getConstant(Shift, MVT::i8)), Value);
1883      Shift <<= 1;
1884      CurVT = (MVT::ValueType)((unsigned)CurVT - 1);
1885    }
1886
1887    return Value;
1888  }
1889}
1890
1891/// getMemsetStringVal - Similar to getMemsetValue. Except this is only
1892/// used when a memcpy is turned into a memset when the source is a constant
1893/// string ptr.
1894static SDOperand getMemsetStringVal(MVT::ValueType VT,
1895                                    SelectionDAG &DAG, TargetLowering &TLI,
1896                                    std::string &Str, unsigned Offset) {
1897  MVT::ValueType CurVT = VT;
1898  uint64_t Val = 0;
1899  unsigned MSB = getSizeInBits(VT) / 8;
1900  if (TLI.isLittleEndian())
1901    Offset = Offset + MSB - 1;
1902  for (unsigned i = 0; i != MSB; ++i) {
1903    Val = (Val << 8) | Str[Offset];
1904    Offset += TLI.isLittleEndian() ? -1 : 1;
1905  }
1906  return DAG.getConstant(Val, VT);
1907}
1908
1909/// getMemBasePlusOffset - Returns base and offset node for the
1910static SDOperand getMemBasePlusOffset(SDOperand Base, unsigned Offset,
1911                                      SelectionDAG &DAG, TargetLowering &TLI) {
1912  MVT::ValueType VT = Base.getValueType();
1913  return DAG.getNode(ISD::ADD, VT, Base, DAG.getConstant(Offset, VT));
1914}
1915
1916/// MeetsMaxMemopRequirement - Determines if the number of memory ops required
1917/// to replace the memset / memcpy is below the threshold. It also returns the
1918/// types of the sequence of  memory ops to perform memset / memcpy.
1919static bool MeetsMaxMemopRequirement(std::vector<MVT::ValueType> &MemOps,
1920                                     unsigned Limit, uint64_t Size,
1921                                     unsigned Align, TargetLowering &TLI) {
1922  MVT::ValueType VT;
1923
1924  if (TLI.allowsUnalignedMemoryAccesses()) {
1925    VT = MVT::i64;
1926  } else {
1927    switch (Align & 7) {
1928    case 0:
1929      VT = MVT::i64;
1930      break;
1931    case 4:
1932      VT = MVT::i32;
1933      break;
1934    case 2:
1935      VT = MVT::i16;
1936      break;
1937    default:
1938      VT = MVT::i8;
1939      break;
1940    }
1941  }
1942
1943  MVT::ValueType LVT = MVT::i64;
1944  while (!TLI.isTypeLegal(LVT))
1945    LVT = (MVT::ValueType)((unsigned)LVT - 1);
1946  assert(MVT::isInteger(LVT));
1947
1948  if (VT > LVT)
1949    VT = LVT;
1950
1951  unsigned NumMemOps = 0;
1952  while (Size != 0) {
1953    unsigned VTSize = getSizeInBits(VT) / 8;
1954    while (VTSize > Size) {
1955      VT = (MVT::ValueType)((unsigned)VT - 1);
1956      VTSize >>= 1;
1957    }
1958    assert(MVT::isInteger(VT));
1959
1960    if (++NumMemOps > Limit)
1961      return false;
1962    MemOps.push_back(VT);
1963    Size -= VTSize;
1964  }
1965
1966  return true;
1967}
1968
1969void SelectionDAGLowering::visitMemIntrinsic(CallInst &I, unsigned Op) {
1970  SDOperand Op1 = getValue(I.getOperand(1));
1971  SDOperand Op2 = getValue(I.getOperand(2));
1972  SDOperand Op3 = getValue(I.getOperand(3));
1973  SDOperand Op4 = getValue(I.getOperand(4));
1974  unsigned Align = (unsigned)cast<ConstantSDNode>(Op4)->getValue();
1975  if (Align == 0) Align = 1;
1976
1977  if (ConstantSDNode *Size = dyn_cast<ConstantSDNode>(Op3)) {
1978    std::vector<MVT::ValueType> MemOps;
1979
1980    // Expand memset / memcpy to a series of load / store ops
1981    // if the size operand falls below a certain threshold.
1982    std::vector<SDOperand> OutChains;
1983    switch (Op) {
1984    default: break;  // Do nothing for now.
1985    case ISD::MEMSET: {
1986      if (MeetsMaxMemopRequirement(MemOps, TLI.getMaxStoresPerMemset(),
1987                                   Size->getValue(), Align, TLI)) {
1988        unsigned NumMemOps = MemOps.size();
1989        unsigned Offset = 0;
1990        for (unsigned i = 0; i < NumMemOps; i++) {
1991          MVT::ValueType VT = MemOps[i];
1992          unsigned VTSize = getSizeInBits(VT) / 8;
1993          SDOperand Value = getMemsetValue(Op2, VT, DAG);
1994          SDOperand Store = DAG.getNode(ISD::STORE, MVT::Other, getRoot(),
1995                                        Value,
1996                                    getMemBasePlusOffset(Op1, Offset, DAG, TLI),
1997                                      DAG.getSrcValue(I.getOperand(1), Offset));
1998          OutChains.push_back(Store);
1999          Offset += VTSize;
2000        }
2001      }
2002      break;
2003    }
2004    case ISD::MEMCPY: {
2005      if (MeetsMaxMemopRequirement(MemOps, TLI.getMaxStoresPerMemcpy(),
2006                                   Size->getValue(), Align, TLI)) {
2007        unsigned NumMemOps = MemOps.size();
2008        unsigned SrcOff = 0, DstOff = 0, SrcDelta = 0;
2009        GlobalAddressSDNode *G = NULL;
2010        std::string Str;
2011        bool CopyFromStr = false;
2012
2013        if (Op2.getOpcode() == ISD::GlobalAddress)
2014          G = cast<GlobalAddressSDNode>(Op2);
2015        else if (Op2.getOpcode() == ISD::ADD &&
2016                 Op2.getOperand(0).getOpcode() == ISD::GlobalAddress &&
2017                 Op2.getOperand(1).getOpcode() == ISD::Constant) {
2018          G = cast<GlobalAddressSDNode>(Op2.getOperand(0));
2019          SrcDelta = cast<ConstantSDNode>(Op2.getOperand(1))->getValue();
2020        }
2021        if (G) {
2022          GlobalVariable *GV = dyn_cast<GlobalVariable>(G->getGlobal());
2023          if (GV) {
2024            Str = GV->getStringValue(false);
2025            if (!Str.empty()) {
2026              CopyFromStr = true;
2027              SrcOff += SrcDelta;
2028            }
2029          }
2030        }
2031
2032        for (unsigned i = 0; i < NumMemOps; i++) {
2033          MVT::ValueType VT = MemOps[i];
2034          unsigned VTSize = getSizeInBits(VT) / 8;
2035          SDOperand Value, Chain, Store;
2036
2037          if (CopyFromStr) {
2038            Value = getMemsetStringVal(VT, DAG, TLI, Str, SrcOff);
2039            Chain = getRoot();
2040            Store =
2041              DAG.getNode(ISD::STORE, MVT::Other, Chain, Value,
2042                          getMemBasePlusOffset(Op1, DstOff, DAG, TLI),
2043                          DAG.getSrcValue(I.getOperand(1), DstOff));
2044          } else {
2045            Value = DAG.getLoad(VT, getRoot(),
2046                        getMemBasePlusOffset(Op2, SrcOff, DAG, TLI),
2047                        DAG.getSrcValue(I.getOperand(2), SrcOff));
2048            Chain = Value.getValue(1);
2049            Store =
2050              DAG.getNode(ISD::STORE, MVT::Other, Chain, Value,
2051                          getMemBasePlusOffset(Op1, DstOff, DAG, TLI),
2052                          DAG.getSrcValue(I.getOperand(1), DstOff));
2053          }
2054          OutChains.push_back(Store);
2055          SrcOff += VTSize;
2056          DstOff += VTSize;
2057        }
2058      }
2059      break;
2060    }
2061    }
2062
2063    if (!OutChains.empty()) {
2064      DAG.setRoot(DAG.getNode(ISD::TokenFactor, MVT::Other, OutChains));
2065      return;
2066    }
2067  }
2068
2069  std::vector<SDOperand> Ops;
2070  Ops.push_back(getRoot());
2071  Ops.push_back(Op1);
2072  Ops.push_back(Op2);
2073  Ops.push_back(Op3);
2074  Ops.push_back(Op4);
2075  DAG.setRoot(DAG.getNode(Op, MVT::Other, Ops));
2076}
2077
2078//===----------------------------------------------------------------------===//
2079// SelectionDAGISel code
2080//===----------------------------------------------------------------------===//
2081
2082unsigned SelectionDAGISel::MakeReg(MVT::ValueType VT) {
2083  return RegMap->createVirtualRegister(TLI.getRegClassFor(VT));
2084}
2085
2086void SelectionDAGISel::getAnalysisUsage(AnalysisUsage &AU) const {
2087  // FIXME: we only modify the CFG to split critical edges.  This
2088  // updates dom and loop info.
2089}
2090
2091
2092/// InsertGEPComputeCode - Insert code into BB to compute Ptr+PtrOffset,
2093/// casting to the type of GEPI.
2094static Value *InsertGEPComputeCode(Value *&V, BasicBlock *BB, Instruction *GEPI,
2095                                   Value *Ptr, Value *PtrOffset) {
2096  if (V) return V;   // Already computed.
2097
2098  BasicBlock::iterator InsertPt;
2099  if (BB == GEPI->getParent()) {
2100    // If insert into the GEP's block, insert right after the GEP.
2101    InsertPt = GEPI;
2102    ++InsertPt;
2103  } else {
2104    // Otherwise, insert at the top of BB, after any PHI nodes
2105    InsertPt = BB->begin();
2106    while (isa<PHINode>(InsertPt)) ++InsertPt;
2107  }
2108
2109  // If Ptr is itself a cast, but in some other BB, emit a copy of the cast into
2110  // BB so that there is only one value live across basic blocks (the cast
2111  // operand).
2112  if (CastInst *CI = dyn_cast<CastInst>(Ptr))
2113    if (CI->getParent() != BB && isa<PointerType>(CI->getOperand(0)->getType()))
2114      Ptr = new CastInst(CI->getOperand(0), CI->getType(), "", InsertPt);
2115
2116  // Add the offset, cast it to the right type.
2117  Ptr = BinaryOperator::createAdd(Ptr, PtrOffset, "", InsertPt);
2118  Ptr = new CastInst(Ptr, GEPI->getType(), "", InsertPt);
2119  return V = Ptr;
2120}
2121
2122
2123/// OptimizeGEPExpression - Since we are doing basic-block-at-a-time instruction
2124/// selection, we want to be a bit careful about some things.  In particular, if
2125/// we have a GEP instruction that is used in a different block than it is
2126/// defined, the addressing expression of the GEP cannot be folded into loads or
2127/// stores that use it.  In this case, decompose the GEP and move constant
2128/// indices into blocks that use it.
2129static void OptimizeGEPExpression(GetElementPtrInst *GEPI,
2130                                  const TargetData &TD) {
2131  // If this GEP is only used inside the block it is defined in, there is no
2132  // need to rewrite it.
2133  bool isUsedOutsideDefBB = false;
2134  BasicBlock *DefBB = GEPI->getParent();
2135  for (Value::use_iterator UI = GEPI->use_begin(), E = GEPI->use_end();
2136       UI != E; ++UI) {
2137    if (cast<Instruction>(*UI)->getParent() != DefBB) {
2138      isUsedOutsideDefBB = true;
2139      break;
2140    }
2141  }
2142  if (!isUsedOutsideDefBB) return;
2143
2144  // If this GEP has no non-zero constant indices, there is nothing we can do,
2145  // ignore it.
2146  bool hasConstantIndex = false;
2147  for (GetElementPtrInst::op_iterator OI = GEPI->op_begin()+1,
2148       E = GEPI->op_end(); OI != E; ++OI) {
2149    if (ConstantInt *CI = dyn_cast<ConstantInt>(*OI))
2150      if (CI->getRawValue()) {
2151        hasConstantIndex = true;
2152        break;
2153      }
2154  }
2155  // If this is a GEP &Alloca, 0, 0, forward subst the frame index into uses.
2156  if (!hasConstantIndex && !isa<AllocaInst>(GEPI->getOperand(0))) return;
2157
2158  // Otherwise, decompose the GEP instruction into multiplies and adds.  Sum the
2159  // constant offset (which we now know is non-zero) and deal with it later.
2160  uint64_t ConstantOffset = 0;
2161  const Type *UIntPtrTy = TD.getIntPtrType();
2162  Value *Ptr = new CastInst(GEPI->getOperand(0), UIntPtrTy, "", GEPI);
2163  const Type *Ty = GEPI->getOperand(0)->getType();
2164
2165  for (GetElementPtrInst::op_iterator OI = GEPI->op_begin()+1,
2166       E = GEPI->op_end(); OI != E; ++OI) {
2167    Value *Idx = *OI;
2168    if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
2169      unsigned Field = cast<ConstantUInt>(Idx)->getValue();
2170      if (Field)
2171        ConstantOffset += TD.getStructLayout(StTy)->MemberOffsets[Field];
2172      Ty = StTy->getElementType(Field);
2173    } else {
2174      Ty = cast<SequentialType>(Ty)->getElementType();
2175
2176      // Handle constant subscripts.
2177      if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
2178        if (CI->getRawValue() == 0) continue;
2179
2180        if (ConstantSInt *CSI = dyn_cast<ConstantSInt>(CI))
2181          ConstantOffset += (int64_t)TD.getTypeSize(Ty)*CSI->getValue();
2182        else
2183          ConstantOffset+=TD.getTypeSize(Ty)*cast<ConstantUInt>(CI)->getValue();
2184        continue;
2185      }
2186
2187      // Ptr = Ptr + Idx * ElementSize;
2188
2189      // Cast Idx to UIntPtrTy if needed.
2190      Idx = new CastInst(Idx, UIntPtrTy, "", GEPI);
2191
2192      uint64_t ElementSize = TD.getTypeSize(Ty);
2193      // Mask off bits that should not be set.
2194      ElementSize &= ~0ULL >> (64-UIntPtrTy->getPrimitiveSizeInBits());
2195      Constant *SizeCst = ConstantUInt::get(UIntPtrTy, ElementSize);
2196
2197      // Multiply by the element size and add to the base.
2198      Idx = BinaryOperator::createMul(Idx, SizeCst, "", GEPI);
2199      Ptr = BinaryOperator::createAdd(Ptr, Idx, "", GEPI);
2200    }
2201  }
2202
2203  // Make sure that the offset fits in uintptr_t.
2204  ConstantOffset &= ~0ULL >> (64-UIntPtrTy->getPrimitiveSizeInBits());
2205  Constant *PtrOffset = ConstantUInt::get(UIntPtrTy, ConstantOffset);
2206
2207  // Okay, we have now emitted all of the variable index parts to the BB that
2208  // the GEP is defined in.  Loop over all of the using instructions, inserting
2209  // an "add Ptr, ConstantOffset" into each block that uses it and update the
2210  // instruction to use the newly computed value, making GEPI dead.  When the
2211  // user is a load or store instruction address, we emit the add into the user
2212  // block, otherwise we use a canonical version right next to the gep (these
2213  // won't be foldable as addresses, so we might as well share the computation).
2214
2215  std::map<BasicBlock*,Value*> InsertedExprs;
2216  while (!GEPI->use_empty()) {
2217    Instruction *User = cast<Instruction>(GEPI->use_back());
2218
2219    // If this use is not foldable into the addressing mode, use a version
2220    // emitted in the GEP block.
2221    Value *NewVal;
2222    if (!isa<LoadInst>(User) &&
2223        (!isa<StoreInst>(User) || User->getOperand(0) == GEPI)) {
2224      NewVal = InsertGEPComputeCode(InsertedExprs[DefBB], DefBB, GEPI,
2225                                    Ptr, PtrOffset);
2226    } else {
2227      // Otherwise, insert the code in the User's block so it can be folded into
2228      // any users in that block.
2229      NewVal = InsertGEPComputeCode(InsertedExprs[User->getParent()],
2230                                    User->getParent(), GEPI,
2231                                    Ptr, PtrOffset);
2232    }
2233    User->replaceUsesOfWith(GEPI, NewVal);
2234  }
2235
2236  // Finally, the GEP is dead, remove it.
2237  GEPI->eraseFromParent();
2238}
2239
2240bool SelectionDAGISel::runOnFunction(Function &Fn) {
2241  MachineFunction &MF = MachineFunction::construct(&Fn, TLI.getTargetMachine());
2242  RegMap = MF.getSSARegMap();
2243  DEBUG(std::cerr << "\n\n\n=== " << Fn.getName() << "\n");
2244
2245  // First, split all critical edges for PHI nodes with incoming values that are
2246  // constants, this way the load of the constant into a vreg will not be placed
2247  // into MBBs that are used some other way.
2248  //
2249  // In this pass we also look for GEP instructions that are used across basic
2250  // blocks and rewrites them to improve basic-block-at-a-time selection.
2251  //
2252  for (Function::iterator BB = Fn.begin(), E = Fn.end(); BB != E; ++BB) {
2253    PHINode *PN;
2254    BasicBlock::iterator BBI;
2255    for (BBI = BB->begin(); (PN = dyn_cast<PHINode>(BBI)); ++BBI)
2256      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
2257        if (isa<Constant>(PN->getIncomingValue(i)))
2258          SplitCriticalEdge(PN->getIncomingBlock(i), BB);
2259
2260    for (BasicBlock::iterator E = BB->end(); BBI != E; )
2261      if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(BBI++))
2262        OptimizeGEPExpression(GEPI, TLI.getTargetData());
2263  }
2264
2265  FunctionLoweringInfo FuncInfo(TLI, Fn, MF);
2266
2267  for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
2268    SelectBasicBlock(I, MF, FuncInfo);
2269
2270  return true;
2271}
2272
2273
2274SDOperand SelectionDAGISel::
2275CopyValueToVirtualRegister(SelectionDAGLowering &SDL, Value *V, unsigned Reg) {
2276  SDOperand Op = SDL.getValue(V);
2277  assert((Op.getOpcode() != ISD::CopyFromReg ||
2278          cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
2279         "Copy from a reg to the same reg!");
2280
2281  // If this type is not legal, we must make sure to not create an invalid
2282  // register use.
2283  MVT::ValueType SrcVT = Op.getValueType();
2284  MVT::ValueType DestVT = TLI.getTypeToTransformTo(SrcVT);
2285  SelectionDAG &DAG = SDL.DAG;
2286  if (SrcVT == DestVT) {
2287    return DAG.getCopyToReg(SDL.getRoot(), Reg, Op);
2288  } else if (SrcVT < DestVT) {
2289    // The src value is promoted to the register.
2290    if (MVT::isFloatingPoint(SrcVT))
2291      Op = DAG.getNode(ISD::FP_EXTEND, DestVT, Op);
2292    else
2293      Op = DAG.getNode(ISD::ANY_EXTEND, DestVT, Op);
2294    return DAG.getCopyToReg(SDL.getRoot(), Reg, Op);
2295  } else  {
2296    // The src value is expanded into multiple registers.
2297    SDOperand Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DestVT,
2298                               Op, DAG.getConstant(0, MVT::i32));
2299    SDOperand Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DestVT,
2300                               Op, DAG.getConstant(1, MVT::i32));
2301    Op = DAG.getCopyToReg(SDL.getRoot(), Reg, Lo);
2302    return DAG.getCopyToReg(Op, Reg+1, Hi);
2303  }
2304}
2305
2306void SelectionDAGISel::
2307LowerArguments(BasicBlock *BB, SelectionDAGLowering &SDL,
2308               std::vector<SDOperand> &UnorderedChains) {
2309  // If this is the entry block, emit arguments.
2310  Function &F = *BB->getParent();
2311  FunctionLoweringInfo &FuncInfo = SDL.FuncInfo;
2312  SDOperand OldRoot = SDL.DAG.getRoot();
2313  std::vector<SDOperand> Args = TLI.LowerArguments(F, SDL.DAG);
2314
2315  unsigned a = 0;
2316  for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end();
2317       AI != E; ++AI, ++a)
2318    if (!AI->use_empty()) {
2319      SDL.setValue(AI, Args[a]);
2320
2321      // If this argument is live outside of the entry block, insert a copy from
2322      // whereever we got it to the vreg that other BB's will reference it as.
2323      if (FuncInfo.ValueMap.count(AI)) {
2324        SDOperand Copy =
2325          CopyValueToVirtualRegister(SDL, AI, FuncInfo.ValueMap[AI]);
2326        UnorderedChains.push_back(Copy);
2327      }
2328    }
2329
2330  // Next, if the function has live ins that need to be copied into vregs,
2331  // emit the copies now, into the top of the block.
2332  MachineFunction &MF = SDL.DAG.getMachineFunction();
2333  if (MF.livein_begin() != MF.livein_end()) {
2334    SSARegMap *RegMap = MF.getSSARegMap();
2335    const MRegisterInfo &MRI = *MF.getTarget().getRegisterInfo();
2336    for (MachineFunction::livein_iterator LI = MF.livein_begin(),
2337         E = MF.livein_end(); LI != E; ++LI)
2338      if (LI->second)
2339        MRI.copyRegToReg(*MF.begin(), MF.begin()->end(), LI->second,
2340                         LI->first, RegMap->getRegClass(LI->second));
2341  }
2342
2343  // Finally, if the target has anything special to do, allow it to do so.
2344  EmitFunctionEntryCode(F, SDL.DAG.getMachineFunction());
2345}
2346
2347
2348void SelectionDAGISel::BuildSelectionDAG(SelectionDAG &DAG, BasicBlock *LLVMBB,
2349       std::vector<std::pair<MachineInstr*, unsigned> > &PHINodesToUpdate,
2350                                    FunctionLoweringInfo &FuncInfo) {
2351  SelectionDAGLowering SDL(DAG, TLI, FuncInfo);
2352
2353  std::vector<SDOperand> UnorderedChains;
2354
2355  // Lower any arguments needed in this block if this is the entry block.
2356  if (LLVMBB == &LLVMBB->getParent()->front())
2357    LowerArguments(LLVMBB, SDL, UnorderedChains);
2358
2359  BB = FuncInfo.MBBMap[LLVMBB];
2360  SDL.setCurrentBasicBlock(BB);
2361
2362  // Lower all of the non-terminator instructions.
2363  for (BasicBlock::iterator I = LLVMBB->begin(), E = --LLVMBB->end();
2364       I != E; ++I)
2365    SDL.visit(*I);
2366
2367  // Ensure that all instructions which are used outside of their defining
2368  // blocks are available as virtual registers.
2369  for (BasicBlock::iterator I = LLVMBB->begin(), E = LLVMBB->end(); I != E;++I)
2370    if (!I->use_empty() && !isa<PHINode>(I)) {
2371      std::map<const Value*, unsigned>::iterator VMI =FuncInfo.ValueMap.find(I);
2372      if (VMI != FuncInfo.ValueMap.end())
2373        UnorderedChains.push_back(
2374                           CopyValueToVirtualRegister(SDL, I, VMI->second));
2375    }
2376
2377  // Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
2378  // ensure constants are generated when needed.  Remember the virtual registers
2379  // that need to be added to the Machine PHI nodes as input.  We cannot just
2380  // directly add them, because expansion might result in multiple MBB's for one
2381  // BB.  As such, the start of the BB might correspond to a different MBB than
2382  // the end.
2383  //
2384
2385  // Emit constants only once even if used by multiple PHI nodes.
2386  std::map<Constant*, unsigned> ConstantsOut;
2387
2388  // Check successor nodes PHI nodes that expect a constant to be available from
2389  // this block.
2390  TerminatorInst *TI = LLVMBB->getTerminator();
2391  for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
2392    BasicBlock *SuccBB = TI->getSuccessor(succ);
2393    MachineBasicBlock::iterator MBBI = FuncInfo.MBBMap[SuccBB]->begin();
2394    PHINode *PN;
2395
2396    // At this point we know that there is a 1-1 correspondence between LLVM PHI
2397    // nodes and Machine PHI nodes, but the incoming operands have not been
2398    // emitted yet.
2399    for (BasicBlock::iterator I = SuccBB->begin();
2400         (PN = dyn_cast<PHINode>(I)); ++I)
2401      if (!PN->use_empty()) {
2402        unsigned Reg;
2403        Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
2404        if (Constant *C = dyn_cast<Constant>(PHIOp)) {
2405          unsigned &RegOut = ConstantsOut[C];
2406          if (RegOut == 0) {
2407            RegOut = FuncInfo.CreateRegForValue(C);
2408            UnorderedChains.push_back(
2409                             CopyValueToVirtualRegister(SDL, C, RegOut));
2410          }
2411          Reg = RegOut;
2412        } else {
2413          Reg = FuncInfo.ValueMap[PHIOp];
2414          if (Reg == 0) {
2415            assert(isa<AllocaInst>(PHIOp) &&
2416                   FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
2417                   "Didn't codegen value into a register!??");
2418            Reg = FuncInfo.CreateRegForValue(PHIOp);
2419            UnorderedChains.push_back(
2420                             CopyValueToVirtualRegister(SDL, PHIOp, Reg));
2421          }
2422        }
2423
2424        // Remember that this register needs to added to the machine PHI node as
2425        // the input for this MBB.
2426        unsigned NumElements =
2427          TLI.getNumElements(TLI.getValueType(PN->getType()));
2428        for (unsigned i = 0, e = NumElements; i != e; ++i)
2429          PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i));
2430      }
2431  }
2432  ConstantsOut.clear();
2433
2434  // Turn all of the unordered chains into one factored node.
2435  if (!UnorderedChains.empty()) {
2436    SDOperand Root = SDL.getRoot();
2437    if (Root.getOpcode() != ISD::EntryToken) {
2438      unsigned i = 0, e = UnorderedChains.size();
2439      for (; i != e; ++i) {
2440        assert(UnorderedChains[i].Val->getNumOperands() > 1);
2441        if (UnorderedChains[i].Val->getOperand(0) == Root)
2442          break;  // Don't add the root if we already indirectly depend on it.
2443      }
2444
2445      if (i == e)
2446        UnorderedChains.push_back(Root);
2447    }
2448    DAG.setRoot(DAG.getNode(ISD::TokenFactor, MVT::Other, UnorderedChains));
2449  }
2450
2451  // Lower the terminator after the copies are emitted.
2452  SDL.visit(*LLVMBB->getTerminator());
2453
2454  // Make sure the root of the DAG is up-to-date.
2455  DAG.setRoot(SDL.getRoot());
2456}
2457
2458void SelectionDAGISel::SelectBasicBlock(BasicBlock *LLVMBB, MachineFunction &MF,
2459                                        FunctionLoweringInfo &FuncInfo) {
2460  SelectionDAG DAG(TLI, MF, getAnalysisToUpdate<MachineDebugInfo>());
2461  CurDAG = &DAG;
2462  std::vector<std::pair<MachineInstr*, unsigned> > PHINodesToUpdate;
2463
2464  // First step, lower LLVM code to some DAG.  This DAG may use operations and
2465  // types that are not supported by the target.
2466  BuildSelectionDAG(DAG, LLVMBB, PHINodesToUpdate, FuncInfo);
2467
2468  // Run the DAG combiner in pre-legalize mode.
2469  DAG.Combine(false);
2470
2471  DEBUG(std::cerr << "Lowered selection DAG:\n");
2472  DEBUG(DAG.dump());
2473
2474  // Second step, hack on the DAG until it only uses operations and types that
2475  // the target supports.
2476  DAG.Legalize();
2477
2478  DEBUG(std::cerr << "Legalized selection DAG:\n");
2479  DEBUG(DAG.dump());
2480
2481  // Run the DAG combiner in post-legalize mode.
2482  DAG.Combine(true);
2483
2484  if (ViewISelDAGs) DAG.viewGraph();
2485
2486  // Third, instruction select all of the operations to machine code, adding the
2487  // code to the MachineBasicBlock.
2488  InstructionSelectBasicBlock(DAG);
2489
2490  DEBUG(std::cerr << "Selected machine code:\n");
2491  DEBUG(BB->dump());
2492
2493  // Next, now that we know what the last MBB the LLVM BB expanded is, update
2494  // PHI nodes in successors.
2495  for (unsigned i = 0, e = PHINodesToUpdate.size(); i != e; ++i) {
2496    MachineInstr *PHI = PHINodesToUpdate[i].first;
2497    assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
2498           "This is not a machine PHI node that we are updating!");
2499    PHI->addRegOperand(PHINodesToUpdate[i].second);
2500    PHI->addMachineBasicBlockOperand(BB);
2501  }
2502
2503  // Finally, add the CFG edges from the last selected MBB to the successor
2504  // MBBs.
2505  TerminatorInst *TI = LLVMBB->getTerminator();
2506  for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) {
2507    MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[TI->getSuccessor(i)];
2508    BB->addSuccessor(Succ0MBB);
2509  }
2510}
2511
2512//===----------------------------------------------------------------------===//
2513/// ScheduleAndEmitDAG - Pick a safe ordering and emit instructions for each
2514/// target node in the graph.
2515void SelectionDAGISel::ScheduleAndEmitDAG(SelectionDAG &DAG) {
2516  if (ViewSchedDAGs) DAG.viewGraph();
2517  ScheduleDAG *SL = NULL;
2518
2519  switch (ISHeuristic) {
2520  default: assert(0 && "Unrecognized scheduling heuristic");
2521  case defaultScheduling:
2522    if (TLI.getSchedulingPreference() == TargetLowering::SchedulingForLatency)
2523      SL = createSimpleDAGScheduler(noScheduling, DAG, BB);
2524    else /* TargetLowering::SchedulingForRegPressure */
2525      SL = createBURRListDAGScheduler(DAG, BB);
2526    break;
2527  case noScheduling:
2528    SL = createBFS_DAGScheduler(DAG, BB);
2529    break;
2530  case simpleScheduling:
2531    SL = createSimpleDAGScheduler(false, DAG, BB);
2532    break;
2533  case simpleNoItinScheduling:
2534    SL = createSimpleDAGScheduler(true, DAG, BB);
2535    break;
2536  case listSchedulingBURR:
2537    SL = createBURRListDAGScheduler(DAG, BB);
2538    break;
2539  case listSchedulingTD:
2540    SL = createTDListDAGScheduler(DAG, BB, CreateTargetHazardRecognizer());
2541    break;
2542  }
2543  BB = SL->Run();
2544  delete SL;
2545}
2546
2547HazardRecognizer *SelectionDAGISel::CreateTargetHazardRecognizer() {
2548  return new HazardRecognizer();
2549}
2550
2551/// SelectInlineAsmMemoryOperands - Calls to this are automatically generated
2552/// by tblgen.  Others should not call it.
2553void SelectionDAGISel::
2554SelectInlineAsmMemoryOperands(std::vector<SDOperand> &Ops, SelectionDAG &DAG) {
2555  std::vector<SDOperand> InOps;
2556  std::swap(InOps, Ops);
2557
2558  Ops.push_back(InOps[0]);  // input chain.
2559  Ops.push_back(InOps[1]);  // input asm string.
2560
2561  const char *AsmStr = cast<ExternalSymbolSDNode>(InOps[1])->getSymbol();
2562  unsigned i = 2, e = InOps.size();
2563  if (InOps[e-1].getValueType() == MVT::Flag)
2564    --e;  // Don't process a flag operand if it is here.
2565
2566  while (i != e) {
2567    unsigned Flags = cast<ConstantSDNode>(InOps[i])->getValue();
2568    if ((Flags & 7) != 4 /*MEM*/) {
2569      // Just skip over this operand, copying the operands verbatim.
2570      Ops.insert(Ops.end(), InOps.begin()+i, InOps.begin()+i+(Flags >> 3) + 1);
2571      i += (Flags >> 3) + 1;
2572    } else {
2573      assert((Flags >> 3) == 1 && "Memory operand with multiple values?");
2574      // Otherwise, this is a memory operand.  Ask the target to select it.
2575      std::vector<SDOperand> SelOps;
2576      if (SelectInlineAsmMemoryOperand(InOps[i+1], 'm', SelOps, DAG)) {
2577        std::cerr << "Could not match memory address.  Inline asm failure!\n";
2578        exit(1);
2579      }
2580
2581      // Add this to the output node.
2582      Ops.push_back(DAG.getConstant(4/*MEM*/ | (SelOps.size() << 3), MVT::i32));
2583      Ops.insert(Ops.end(), SelOps.begin(), SelOps.end());
2584      i += 2;
2585    }
2586  }
2587
2588  // Add the flag input back if present.
2589  if (e != InOps.size())
2590    Ops.push_back(InOps.back());
2591}
2592