SelectionDAGISel.cpp revision 233857537f61a8f4ab93624986676c25b2271bc7
1//===-- SelectionDAGISel.cpp - Implement the SelectionDAGISel class -------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAGISel class.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "isel"
15#include "ScheduleDAGSDNodes.h"
16#include "SelectionDAGBuilder.h"
17#include "llvm/CodeGen/FunctionLoweringInfo.h"
18#include "llvm/CodeGen/SelectionDAGISel.h"
19#include "llvm/Analysis/AliasAnalysis.h"
20#include "llvm/Analysis/DebugInfo.h"
21#include "llvm/Constants.h"
22#include "llvm/Function.h"
23#include "llvm/InlineAsm.h"
24#include "llvm/Instructions.h"
25#include "llvm/Intrinsics.h"
26#include "llvm/IntrinsicInst.h"
27#include "llvm/LLVMContext.h"
28#include "llvm/Module.h"
29#include "llvm/CodeGen/FastISel.h"
30#include "llvm/CodeGen/GCStrategy.h"
31#include "llvm/CodeGen/GCMetadata.h"
32#include "llvm/CodeGen/MachineFrameInfo.h"
33#include "llvm/CodeGen/MachineFunction.h"
34#include "llvm/CodeGen/MachineInstrBuilder.h"
35#include "llvm/CodeGen/MachineModuleInfo.h"
36#include "llvm/CodeGen/MachineRegisterInfo.h"
37#include "llvm/CodeGen/ScheduleHazardRecognizer.h"
38#include "llvm/CodeGen/SchedulerRegistry.h"
39#include "llvm/CodeGen/SelectionDAG.h"
40#include "llvm/Target/TargetRegisterInfo.h"
41#include "llvm/Target/TargetIntrinsicInfo.h"
42#include "llvm/Target/TargetInstrInfo.h"
43#include "llvm/Target/TargetLowering.h"
44#include "llvm/Target/TargetMachine.h"
45#include "llvm/Target/TargetOptions.h"
46#include "llvm/Transforms/Utils/BasicBlockUtils.h"
47#include "llvm/Support/Compiler.h"
48#include "llvm/Support/Debug.h"
49#include "llvm/Support/ErrorHandling.h"
50#include "llvm/Support/Timer.h"
51#include "llvm/Support/raw_ostream.h"
52#include "llvm/ADT/PostOrderIterator.h"
53#include "llvm/ADT/Statistic.h"
54#include <algorithm>
55using namespace llvm;
56
57STATISTIC(NumFastIselFailures, "Number of instructions fast isel failed on");
58STATISTIC(NumFastIselSuccess, "Number of instructions fast isel selected");
59STATISTIC(NumFastIselBlocks, "Number of blocks selected entirely by fast isel");
60STATISTIC(NumDAGBlocks, "Number of blocks selected using DAG");
61STATISTIC(NumDAGIselRetries,"Number of times dag isel has to try another path");
62
63#ifndef NDEBUG
64STATISTIC(NumBBWithOutOfOrderLineInfo,
65          "Number of blocks with out of order line number info");
66STATISTIC(NumMBBWithOutOfOrderLineInfo,
67          "Number of machine blocks with out of order line number info");
68#endif
69
70static cl::opt<bool>
71EnableFastISelVerbose("fast-isel-verbose", cl::Hidden,
72          cl::desc("Enable verbose messages in the \"fast\" "
73                   "instruction selector"));
74static cl::opt<bool>
75EnableFastISelAbort("fast-isel-abort", cl::Hidden,
76          cl::desc("Enable abort calls when \"fast\" instruction fails"));
77
78#ifndef NDEBUG
79static cl::opt<bool>
80ViewDAGCombine1("view-dag-combine1-dags", cl::Hidden,
81          cl::desc("Pop up a window to show dags before the first "
82                   "dag combine pass"));
83static cl::opt<bool>
84ViewLegalizeTypesDAGs("view-legalize-types-dags", cl::Hidden,
85          cl::desc("Pop up a window to show dags before legalize types"));
86static cl::opt<bool>
87ViewLegalizeDAGs("view-legalize-dags", cl::Hidden,
88          cl::desc("Pop up a window to show dags before legalize"));
89static cl::opt<bool>
90ViewDAGCombine2("view-dag-combine2-dags", cl::Hidden,
91          cl::desc("Pop up a window to show dags before the second "
92                   "dag combine pass"));
93static cl::opt<bool>
94ViewDAGCombineLT("view-dag-combine-lt-dags", cl::Hidden,
95          cl::desc("Pop up a window to show dags before the post legalize types"
96                   " dag combine pass"));
97static cl::opt<bool>
98ViewISelDAGs("view-isel-dags", cl::Hidden,
99          cl::desc("Pop up a window to show isel dags as they are selected"));
100static cl::opt<bool>
101ViewSchedDAGs("view-sched-dags", cl::Hidden,
102          cl::desc("Pop up a window to show sched dags as they are processed"));
103static cl::opt<bool>
104ViewSUnitDAGs("view-sunit-dags", cl::Hidden,
105      cl::desc("Pop up a window to show SUnit dags after they are processed"));
106#else
107static const bool ViewDAGCombine1 = false,
108                  ViewLegalizeTypesDAGs = false, ViewLegalizeDAGs = false,
109                  ViewDAGCombine2 = false,
110                  ViewDAGCombineLT = false,
111                  ViewISelDAGs = false, ViewSchedDAGs = false,
112                  ViewSUnitDAGs = false;
113#endif
114
115//===---------------------------------------------------------------------===//
116///
117/// RegisterScheduler class - Track the registration of instruction schedulers.
118///
119//===---------------------------------------------------------------------===//
120MachinePassRegistry RegisterScheduler::Registry;
121
122//===---------------------------------------------------------------------===//
123///
124/// ISHeuristic command line option for instruction schedulers.
125///
126//===---------------------------------------------------------------------===//
127static cl::opt<RegisterScheduler::FunctionPassCtor, false,
128               RegisterPassParser<RegisterScheduler> >
129ISHeuristic("pre-RA-sched",
130            cl::init(&createDefaultScheduler),
131            cl::desc("Instruction schedulers available (before register"
132                     " allocation):"));
133
134static RegisterScheduler
135defaultListDAGScheduler("default", "Best scheduler for the target",
136                        createDefaultScheduler);
137
138namespace llvm {
139  //===--------------------------------------------------------------------===//
140  /// createDefaultScheduler - This creates an instruction scheduler appropriate
141  /// for the target.
142  ScheduleDAGSDNodes* createDefaultScheduler(SelectionDAGISel *IS,
143                                             CodeGenOpt::Level OptLevel) {
144    const TargetLowering &TLI = IS->getTargetLowering();
145
146    if (OptLevel == CodeGenOpt::None)
147      return createSourceListDAGScheduler(IS, OptLevel);
148    if (TLI.getSchedulingPreference() == Sched::Latency)
149      return createTDListDAGScheduler(IS, OptLevel);
150    if (TLI.getSchedulingPreference() == Sched::RegPressure)
151      return createBURRListDAGScheduler(IS, OptLevel);
152    if (TLI.getSchedulingPreference() == Sched::Hybrid)
153      return createHybridListDAGScheduler(IS, OptLevel);
154    assert(TLI.getSchedulingPreference() == Sched::ILP &&
155           "Unknown sched type!");
156    return createILPListDAGScheduler(IS, OptLevel);
157  }
158}
159
160// EmitInstrWithCustomInserter - This method should be implemented by targets
161// that mark instructions with the 'usesCustomInserter' flag.  These
162// instructions are special in various ways, which require special support to
163// insert.  The specified MachineInstr is created but not inserted into any
164// basic blocks, and this method is called to expand it into a sequence of
165// instructions, potentially also creating new basic blocks and control flow.
166// When new basic blocks are inserted and the edges from MBB to its successors
167// are modified, the method should insert pairs of <OldSucc, NewSucc> into the
168// DenseMap.
169MachineBasicBlock *
170TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
171                                            MachineBasicBlock *MBB) const {
172#ifndef NDEBUG
173  dbgs() << "If a target marks an instruction with "
174          "'usesCustomInserter', it must implement "
175          "TargetLowering::EmitInstrWithCustomInserter!";
176#endif
177  llvm_unreachable(0);
178  return 0;
179}
180
181//===----------------------------------------------------------------------===//
182// SelectionDAGISel code
183//===----------------------------------------------------------------------===//
184
185SelectionDAGISel::SelectionDAGISel(const TargetMachine &tm,
186                                   CodeGenOpt::Level OL) :
187  MachineFunctionPass(ID), TM(tm), TLI(*tm.getTargetLowering()),
188  FuncInfo(new FunctionLoweringInfo(TLI)),
189  CurDAG(new SelectionDAG(tm)),
190  SDB(new SelectionDAGBuilder(*CurDAG, *FuncInfo, OL)),
191  GFI(),
192  OptLevel(OL),
193  DAGSize(0) {
194    initializeGCModuleInfoPass(*PassRegistry::getPassRegistry());
195    initializeAliasAnalysisAnalysisGroup(*PassRegistry::getPassRegistry());
196  }
197
198SelectionDAGISel::~SelectionDAGISel() {
199  delete SDB;
200  delete CurDAG;
201  delete FuncInfo;
202}
203
204void SelectionDAGISel::getAnalysisUsage(AnalysisUsage &AU) const {
205  AU.addRequired<AliasAnalysis>();
206  AU.addPreserved<AliasAnalysis>();
207  AU.addRequired<GCModuleInfo>();
208  AU.addPreserved<GCModuleInfo>();
209  MachineFunctionPass::getAnalysisUsage(AU);
210}
211
212/// SplitCriticalSideEffectEdges - Look for critical edges with a PHI value that
213/// may trap on it.  In this case we have to split the edge so that the path
214/// through the predecessor block that doesn't go to the phi block doesn't
215/// execute the possibly trapping instruction.
216///
217/// This is required for correctness, so it must be done at -O0.
218///
219static void SplitCriticalSideEffectEdges(Function &Fn, Pass *SDISel) {
220  // Loop for blocks with phi nodes.
221  for (Function::iterator BB = Fn.begin(), E = Fn.end(); BB != E; ++BB) {
222    PHINode *PN = dyn_cast<PHINode>(BB->begin());
223    if (PN == 0) continue;
224
225  ReprocessBlock:
226    // For each block with a PHI node, check to see if any of the input values
227    // are potentially trapping constant expressions.  Constant expressions are
228    // the only potentially trapping value that can occur as the argument to a
229    // PHI.
230    for (BasicBlock::iterator I = BB->begin(); (PN = dyn_cast<PHINode>(I)); ++I)
231      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
232        ConstantExpr *CE = dyn_cast<ConstantExpr>(PN->getIncomingValue(i));
233        if (CE == 0 || !CE->canTrap()) continue;
234
235        // The only case we have to worry about is when the edge is critical.
236        // Since this block has a PHI Node, we assume it has multiple input
237        // edges: check to see if the pred has multiple successors.
238        BasicBlock *Pred = PN->getIncomingBlock(i);
239        if (Pred->getTerminator()->getNumSuccessors() == 1)
240          continue;
241
242        // Okay, we have to split this edge.
243        SplitCriticalEdge(Pred->getTerminator(),
244                          GetSuccessorNumber(Pred, BB), SDISel, true);
245        goto ReprocessBlock;
246      }
247  }
248}
249
250bool SelectionDAGISel::runOnMachineFunction(MachineFunction &mf) {
251  // Do some sanity-checking on the command-line options.
252  assert((!EnableFastISelVerbose || EnableFastISel) &&
253         "-fast-isel-verbose requires -fast-isel");
254  assert((!EnableFastISelAbort || EnableFastISel) &&
255         "-fast-isel-abort requires -fast-isel");
256
257  const Function &Fn = *mf.getFunction();
258  const TargetInstrInfo &TII = *TM.getInstrInfo();
259  const TargetRegisterInfo &TRI = *TM.getRegisterInfo();
260
261  MF = &mf;
262  RegInfo = &MF->getRegInfo();
263  AA = &getAnalysis<AliasAnalysis>();
264  GFI = Fn.hasGC() ? &getAnalysis<GCModuleInfo>().getFunctionInfo(Fn) : 0;
265
266  DEBUG(dbgs() << "\n\n\n=== " << Fn.getName() << "\n");
267
268  SplitCriticalSideEffectEdges(const_cast<Function&>(Fn), this);
269
270  CurDAG->init(*MF);
271  FuncInfo->set(Fn, *MF);
272  SDB->init(GFI, *AA);
273
274  SelectAllBasicBlocks(Fn);
275
276  // If the first basic block in the function has live ins that need to be
277  // copied into vregs, emit the copies into the top of the block before
278  // emitting the code for the block.
279  MachineBasicBlock *EntryMBB = MF->begin();
280  RegInfo->EmitLiveInCopies(EntryMBB, TRI, TII);
281
282  DenseMap<unsigned, unsigned> LiveInMap;
283  if (!FuncInfo->ArgDbgValues.empty())
284    for (MachineRegisterInfo::livein_iterator LI = RegInfo->livein_begin(),
285           E = RegInfo->livein_end(); LI != E; ++LI)
286      if (LI->second)
287        LiveInMap.insert(std::make_pair(LI->first, LI->second));
288
289  // Insert DBG_VALUE instructions for function arguments to the entry block.
290  for (unsigned i = 0, e = FuncInfo->ArgDbgValues.size(); i != e; ++i) {
291    MachineInstr *MI = FuncInfo->ArgDbgValues[e-i-1];
292    unsigned Reg = MI->getOperand(0).getReg();
293    if (TargetRegisterInfo::isPhysicalRegister(Reg))
294      EntryMBB->insert(EntryMBB->begin(), MI);
295    else {
296      MachineInstr *Def = RegInfo->getVRegDef(Reg);
297      MachineBasicBlock::iterator InsertPos = Def;
298      // FIXME: VR def may not be in entry block.
299      Def->getParent()->insert(llvm::next(InsertPos), MI);
300    }
301
302    // If Reg is live-in then update debug info to track its copy in a vreg.
303    DenseMap<unsigned, unsigned>::iterator LDI = LiveInMap.find(Reg);
304    if (LDI != LiveInMap.end()) {
305      MachineInstr *Def = RegInfo->getVRegDef(LDI->second);
306      MachineBasicBlock::iterator InsertPos = Def;
307      const MDNode *Variable =
308        MI->getOperand(MI->getNumOperands()-1).getMetadata();
309      unsigned Offset = MI->getOperand(1).getImm();
310      // Def is never a terminator here, so it is ok to increment InsertPos.
311      BuildMI(*EntryMBB, ++InsertPos, MI->getDebugLoc(),
312              TII.get(TargetOpcode::DBG_VALUE))
313        .addReg(LDI->second, RegState::Debug)
314        .addImm(Offset).addMetadata(Variable);
315
316      // If this vreg is directly copied into an exported register then
317      // that COPY instructions also need DBG_VALUE, if it is the only
318      // user of LDI->second.
319      MachineInstr *CopyUseMI = NULL;
320      for (MachineRegisterInfo::use_iterator
321             UI = RegInfo->use_begin(LDI->second);
322           MachineInstr *UseMI = UI.skipInstruction();) {
323        if (UseMI->isDebugValue()) continue;
324        if (UseMI->isCopy() && !CopyUseMI && UseMI->getParent() == EntryMBB) {
325          CopyUseMI = UseMI; continue;
326        }
327        // Otherwise this is another use or second copy use.
328        CopyUseMI = NULL; break;
329      }
330      if (CopyUseMI) {
331        MachineInstr *NewMI =
332          BuildMI(*MF, CopyUseMI->getDebugLoc(),
333                  TII.get(TargetOpcode::DBG_VALUE))
334          .addReg(CopyUseMI->getOperand(0).getReg(), RegState::Debug)
335          .addImm(Offset).addMetadata(Variable);
336        EntryMBB->insertAfter(CopyUseMI, NewMI);
337      }
338    }
339  }
340
341  // Determine if there are any calls in this machine function.
342  MachineFrameInfo *MFI = MF->getFrameInfo();
343  if (!MFI->hasCalls()) {
344    for (MachineFunction::const_iterator
345           I = MF->begin(), E = MF->end(); I != E; ++I) {
346      const MachineBasicBlock *MBB = I;
347      for (MachineBasicBlock::const_iterator
348             II = MBB->begin(), IE = MBB->end(); II != IE; ++II) {
349        const TargetInstrDesc &TID = TM.getInstrInfo()->get(II->getOpcode());
350
351        if ((TID.isCall() && !TID.isReturn()) ||
352            II->isStackAligningInlineAsm()) {
353          MFI->setHasCalls(true);
354          goto done;
355        }
356      }
357    }
358  done:;
359  }
360
361  // Determine if there is a call to setjmp in the machine function.
362  MF->setCallsSetJmp(Fn.callsFunctionThatReturnsTwice());
363
364  // Replace forward-declared registers with the registers containing
365  // the desired value.
366  MachineRegisterInfo &MRI = MF->getRegInfo();
367  for (DenseMap<unsigned, unsigned>::iterator
368       I = FuncInfo->RegFixups.begin(), E = FuncInfo->RegFixups.end();
369       I != E; ++I) {
370    unsigned From = I->first;
371    unsigned To = I->second;
372    // If To is also scheduled to be replaced, find what its ultimate
373    // replacement is.
374    for (;;) {
375      DenseMap<unsigned, unsigned>::iterator J =
376        FuncInfo->RegFixups.find(To);
377      if (J == E) break;
378      To = J->second;
379    }
380    // Replace it.
381    MRI.replaceRegWith(From, To);
382  }
383
384  // Release function-specific state. SDB and CurDAG are already cleared
385  // at this point.
386  FuncInfo->clear();
387
388  return true;
389}
390
391void SelectionDAGISel::SelectBasicBlock(BasicBlock::const_iterator Begin,
392                                        BasicBlock::const_iterator End,
393                                        bool &HadTailCall) {
394  // Lower all of the non-terminator instructions. If a call is emitted
395  // as a tail call, cease emitting nodes for this block. Terminators
396  // are handled below.
397  for (BasicBlock::const_iterator I = Begin; I != End && !SDB->HasTailCall; ++I)
398    SDB->visit(*I);
399
400  // Make sure the root of the DAG is up-to-date.
401  CurDAG->setRoot(SDB->getControlRoot());
402  HadTailCall = SDB->HasTailCall;
403  SDB->clear();
404
405  // Final step, emit the lowered DAG as machine code.
406  CodeGenAndEmitDAG();
407}
408
409void SelectionDAGISel::ComputeLiveOutVRegInfo() {
410  SmallPtrSet<SDNode*, 128> VisitedNodes;
411  SmallVector<SDNode*, 128> Worklist;
412
413  Worklist.push_back(CurDAG->getRoot().getNode());
414
415  APInt Mask;
416  APInt KnownZero;
417  APInt KnownOne;
418
419  do {
420    SDNode *N = Worklist.pop_back_val();
421
422    // If we've already seen this node, ignore it.
423    if (!VisitedNodes.insert(N))
424      continue;
425
426    // Otherwise, add all chain operands to the worklist.
427    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
428      if (N->getOperand(i).getValueType() == MVT::Other)
429        Worklist.push_back(N->getOperand(i).getNode());
430
431    // If this is a CopyToReg with a vreg dest, process it.
432    if (N->getOpcode() != ISD::CopyToReg)
433      continue;
434
435    unsigned DestReg = cast<RegisterSDNode>(N->getOperand(1))->getReg();
436    if (!TargetRegisterInfo::isVirtualRegister(DestReg))
437      continue;
438
439    // Ignore non-scalar or non-integer values.
440    SDValue Src = N->getOperand(2);
441    EVT SrcVT = Src.getValueType();
442    if (!SrcVT.isInteger() || SrcVT.isVector())
443      continue;
444
445    unsigned NumSignBits = CurDAG->ComputeNumSignBits(Src);
446    Mask = APInt::getAllOnesValue(SrcVT.getSizeInBits());
447    CurDAG->ComputeMaskedBits(Src, Mask, KnownZero, KnownOne);
448    FuncInfo->AddLiveOutRegInfo(DestReg, NumSignBits, KnownZero, KnownOne);
449  } while (!Worklist.empty());
450}
451
452void SelectionDAGISel::CodeGenAndEmitDAG() {
453  std::string GroupName;
454  if (TimePassesIsEnabled)
455    GroupName = "Instruction Selection and Scheduling";
456  std::string BlockName;
457  int BlockNumber = -1;
458#ifdef NDEBUG
459  if (ViewDAGCombine1 || ViewLegalizeTypesDAGs || ViewLegalizeDAGs ||
460      ViewDAGCombine2 || ViewDAGCombineLT || ViewISelDAGs || ViewSchedDAGs ||
461      ViewSUnitDAGs)
462#endif
463  {
464    BlockNumber = FuncInfo->MBB->getNumber();
465    BlockName = MF->getFunction()->getNameStr() + ":" +
466                FuncInfo->MBB->getBasicBlock()->getNameStr();
467  }
468  DEBUG(dbgs() << "Initial selection DAG: BB#" << BlockNumber
469        << " '" << BlockName << "'\n"; CurDAG->dump());
470
471  if (ViewDAGCombine1) CurDAG->viewGraph("dag-combine1 input for " + BlockName);
472
473  // Run the DAG combiner in pre-legalize mode.
474  {
475    NamedRegionTimer T("DAG Combining 1", GroupName, TimePassesIsEnabled);
476    CurDAG->Combine(Unrestricted, *AA, OptLevel);
477  }
478
479  DEBUG(dbgs() << "Optimized lowered selection DAG: BB#" << BlockNumber
480        << " '" << BlockName << "'\n"; CurDAG->dump());
481
482  // Second step, hack on the DAG until it only uses operations and types that
483  // the target supports.
484  if (ViewLegalizeTypesDAGs) CurDAG->viewGraph("legalize-types input for " +
485                                               BlockName);
486
487  bool Changed;
488  {
489    NamedRegionTimer T("Type Legalization", GroupName, TimePassesIsEnabled);
490    Changed = CurDAG->LegalizeTypes();
491  }
492
493  DEBUG(dbgs() << "Type-legalized selection DAG: BB#" << BlockNumber
494        << " '" << BlockName << "'\n"; CurDAG->dump());
495
496  if (Changed) {
497    if (ViewDAGCombineLT)
498      CurDAG->viewGraph("dag-combine-lt input for " + BlockName);
499
500    // Run the DAG combiner in post-type-legalize mode.
501    {
502      NamedRegionTimer T("DAG Combining after legalize types", GroupName,
503                         TimePassesIsEnabled);
504      CurDAG->Combine(NoIllegalTypes, *AA, OptLevel);
505    }
506
507    DEBUG(dbgs() << "Optimized type-legalized selection DAG: BB#" << BlockNumber
508          << " '" << BlockName << "'\n"; CurDAG->dump());
509  }
510
511  {
512    NamedRegionTimer T("Vector Legalization", GroupName, TimePassesIsEnabled);
513    Changed = CurDAG->LegalizeVectors();
514  }
515
516  if (Changed) {
517    {
518      NamedRegionTimer T("Type Legalization 2", GroupName, TimePassesIsEnabled);
519      CurDAG->LegalizeTypes();
520    }
521
522    if (ViewDAGCombineLT)
523      CurDAG->viewGraph("dag-combine-lv input for " + BlockName);
524
525    // Run the DAG combiner in post-type-legalize mode.
526    {
527      NamedRegionTimer T("DAG Combining after legalize vectors", GroupName,
528                         TimePassesIsEnabled);
529      CurDAG->Combine(NoIllegalOperations, *AA, OptLevel);
530    }
531
532    DEBUG(dbgs() << "Optimized vector-legalized selection DAG: BB#"
533          << BlockNumber << " '" << BlockName << "'\n"; CurDAG->dump());
534  }
535
536  if (ViewLegalizeDAGs) CurDAG->viewGraph("legalize input for " + BlockName);
537
538  {
539    NamedRegionTimer T("DAG Legalization", GroupName, TimePassesIsEnabled);
540    CurDAG->Legalize();
541  }
542
543  DEBUG(dbgs() << "Legalized selection DAG: BB#" << BlockNumber
544        << " '" << BlockName << "'\n"; CurDAG->dump());
545
546  if (ViewDAGCombine2) CurDAG->viewGraph("dag-combine2 input for " + BlockName);
547
548  // Run the DAG combiner in post-legalize mode.
549  {
550    NamedRegionTimer T("DAG Combining 2", GroupName, TimePassesIsEnabled);
551    CurDAG->Combine(NoIllegalOperations, *AA, OptLevel);
552  }
553
554  DEBUG(dbgs() << "Optimized legalized selection DAG: BB#" << BlockNumber
555        << " '" << BlockName << "'\n"; CurDAG->dump());
556
557  if (OptLevel != CodeGenOpt::None)
558    ComputeLiveOutVRegInfo();
559
560  if (ViewISelDAGs) CurDAG->viewGraph("isel input for " + BlockName);
561
562  // Third, instruction select all of the operations to machine code, adding the
563  // code to the MachineBasicBlock.
564  {
565    NamedRegionTimer T("Instruction Selection", GroupName, TimePassesIsEnabled);
566    DoInstructionSelection();
567  }
568
569  DEBUG(dbgs() << "Selected selection DAG: BB#" << BlockNumber
570        << " '" << BlockName << "'\n"; CurDAG->dump());
571
572  if (ViewSchedDAGs) CurDAG->viewGraph("scheduler input for " + BlockName);
573
574  // Schedule machine code.
575  ScheduleDAGSDNodes *Scheduler = CreateScheduler();
576  {
577    NamedRegionTimer T("Instruction Scheduling", GroupName,
578                       TimePassesIsEnabled);
579    Scheduler->Run(CurDAG, FuncInfo->MBB, FuncInfo->InsertPt);
580  }
581
582  if (ViewSUnitDAGs) Scheduler->viewGraph();
583
584  // Emit machine code to BB.  This can change 'BB' to the last block being
585  // inserted into.
586  MachineBasicBlock *FirstMBB = FuncInfo->MBB, *LastMBB;
587  {
588    NamedRegionTimer T("Instruction Creation", GroupName, TimePassesIsEnabled);
589
590    LastMBB = FuncInfo->MBB = Scheduler->EmitSchedule();
591    FuncInfo->InsertPt = Scheduler->InsertPos;
592  }
593
594  // If the block was split, make sure we update any references that are used to
595  // update PHI nodes later on.
596  if (FirstMBB != LastMBB)
597    SDB->UpdateSplitBlock(FirstMBB, LastMBB);
598
599  // Free the scheduler state.
600  {
601    NamedRegionTimer T("Instruction Scheduling Cleanup", GroupName,
602                       TimePassesIsEnabled);
603    delete Scheduler;
604  }
605
606  // Free the SelectionDAG state, now that we're finished with it.
607  CurDAG->clear();
608}
609
610void SelectionDAGISel::DoInstructionSelection() {
611  DEBUG(errs() << "===== Instruction selection begins: BB#"
612        << FuncInfo->MBB->getNumber()
613        << " '" << FuncInfo->MBB->getName() << "'\n");
614
615  PreprocessISelDAG();
616
617  // Select target instructions for the DAG.
618  {
619    // Number all nodes with a topological order and set DAGSize.
620    DAGSize = CurDAG->AssignTopologicalOrder();
621
622    // Create a dummy node (which is not added to allnodes), that adds
623    // a reference to the root node, preventing it from being deleted,
624    // and tracking any changes of the root.
625    HandleSDNode Dummy(CurDAG->getRoot());
626    ISelPosition = SelectionDAG::allnodes_iterator(CurDAG->getRoot().getNode());
627    ++ISelPosition;
628
629    // The AllNodes list is now topological-sorted. Visit the
630    // nodes by starting at the end of the list (the root of the
631    // graph) and preceding back toward the beginning (the entry
632    // node).
633    while (ISelPosition != CurDAG->allnodes_begin()) {
634      SDNode *Node = --ISelPosition;
635      // Skip dead nodes. DAGCombiner is expected to eliminate all dead nodes,
636      // but there are currently some corner cases that it misses. Also, this
637      // makes it theoretically possible to disable the DAGCombiner.
638      if (Node->use_empty())
639        continue;
640
641      SDNode *ResNode = Select(Node);
642
643      // FIXME: This is pretty gross.  'Select' should be changed to not return
644      // anything at all and this code should be nuked with a tactical strike.
645
646      // If node should not be replaced, continue with the next one.
647      if (ResNode == Node || Node->getOpcode() == ISD::DELETED_NODE)
648        continue;
649      // Replace node.
650      if (ResNode)
651        ReplaceUses(Node, ResNode);
652
653      // If after the replacement this node is not used any more,
654      // remove this dead node.
655      if (Node->use_empty()) { // Don't delete EntryToken, etc.
656        ISelUpdater ISU(ISelPosition);
657        CurDAG->RemoveDeadNode(Node, &ISU);
658      }
659    }
660
661    CurDAG->setRoot(Dummy.getValue());
662  }
663
664  DEBUG(errs() << "===== Instruction selection ends:\n");
665
666  PostprocessISelDAG();
667}
668
669/// PrepareEHLandingPad - Emit an EH_LABEL, set up live-in registers, and
670/// do other setup for EH landing-pad blocks.
671void SelectionDAGISel::PrepareEHLandingPad() {
672  // Add a label to mark the beginning of the landing pad.  Deletion of the
673  // landing pad can thus be detected via the MachineModuleInfo.
674  MCSymbol *Label = MF->getMMI().addLandingPad(FuncInfo->MBB);
675
676  const TargetInstrDesc &II = TM.getInstrInfo()->get(TargetOpcode::EH_LABEL);
677  BuildMI(*FuncInfo->MBB, FuncInfo->InsertPt, SDB->getCurDebugLoc(), II)
678    .addSym(Label);
679
680  // Mark exception register as live in.
681  unsigned Reg = TLI.getExceptionAddressRegister();
682  if (Reg) FuncInfo->MBB->addLiveIn(Reg);
683
684  // Mark exception selector register as live in.
685  Reg = TLI.getExceptionSelectorRegister();
686  if (Reg) FuncInfo->MBB->addLiveIn(Reg);
687
688  // FIXME: Hack around an exception handling flaw (PR1508): the personality
689  // function and list of typeids logically belong to the invoke (or, if you
690  // like, the basic block containing the invoke), and need to be associated
691  // with it in the dwarf exception handling tables.  Currently however the
692  // information is provided by an intrinsic (eh.selector) that can be moved
693  // to unexpected places by the optimizers: if the unwind edge is critical,
694  // then breaking it can result in the intrinsics being in the successor of
695  // the landing pad, not the landing pad itself.  This results
696  // in exceptions not being caught because no typeids are associated with
697  // the invoke.  This may not be the only way things can go wrong, but it
698  // is the only way we try to work around for the moment.
699  const BasicBlock *LLVMBB = FuncInfo->MBB->getBasicBlock();
700  const BranchInst *Br = dyn_cast<BranchInst>(LLVMBB->getTerminator());
701
702  if (Br && Br->isUnconditional()) { // Critical edge?
703    BasicBlock::const_iterator I, E;
704    for (I = LLVMBB->begin(), E = --LLVMBB->end(); I != E; ++I)
705      if (isa<EHSelectorInst>(I))
706        break;
707
708    if (I == E)
709      // No catch info found - try to extract some from the successor.
710      CopyCatchInfo(Br->getSuccessor(0), LLVMBB, &MF->getMMI(), *FuncInfo);
711  }
712}
713
714
715
716/// TryToFoldFastISelLoad - We're checking to see if we can fold the specified
717/// load into the specified FoldInst.  Note that we could have a sequence where
718/// multiple LLVM IR instructions are folded into the same machineinstr.  For
719/// example we could have:
720///   A: x = load i32 *P
721///   B: y = icmp A, 42
722///   C: br y, ...
723///
724/// In this scenario, LI is "A", and FoldInst is "C".  We know about "B" (and
725/// any other folded instructions) because it is between A and C.
726///
727/// If we succeed in folding the load into the operation, return true.
728///
729bool SelectionDAGISel::TryToFoldFastISelLoad(const LoadInst *LI,
730                                             const Instruction *FoldInst,
731                                             FastISel *FastIS) {
732  // We know that the load has a single use, but don't know what it is.  If it
733  // isn't one of the folded instructions, then we can't succeed here.  Handle
734  // this by scanning the single-use users of the load until we get to FoldInst.
735  unsigned MaxUsers = 6;  // Don't scan down huge single-use chains of instrs.
736
737  const Instruction *TheUser = LI->use_back();
738  while (TheUser != FoldInst &&   // Scan up until we find FoldInst.
739         // Stay in the right block.
740         TheUser->getParent() == FoldInst->getParent() &&
741         --MaxUsers) {  // Don't scan too far.
742    // If there are multiple or no uses of this instruction, then bail out.
743    if (!TheUser->hasOneUse())
744      return false;
745
746    TheUser = TheUser->use_back();
747  }
748
749  // Don't try to fold volatile loads.  Target has to deal with alignment
750  // constraints.
751  if (LI->isVolatile()) return false;
752
753  // Figure out which vreg this is going into.  If there is no assigned vreg yet
754  // then there actually was no reference to it.  Perhaps the load is referenced
755  // by a dead instruction.
756  unsigned LoadReg = FastIS->getRegForValue(LI);
757  if (LoadReg == 0)
758    return false;
759
760  // Check to see what the uses of this vreg are.  If it has no uses, or more
761  // than one use (at the machine instr level) then we can't fold it.
762  MachineRegisterInfo::reg_iterator RI = RegInfo->reg_begin(LoadReg);
763  if (RI == RegInfo->reg_end())
764    return false;
765
766  // See if there is exactly one use of the vreg.  If there are multiple uses,
767  // then the instruction got lowered to multiple machine instructions or the
768  // use of the loaded value ended up being multiple operands of the result, in
769  // either case, we can't fold this.
770  MachineRegisterInfo::reg_iterator PostRI = RI; ++PostRI;
771  if (PostRI != RegInfo->reg_end())
772    return false;
773
774  assert(RI.getOperand().isUse() &&
775         "The only use of the vreg must be a use, we haven't emitted the def!");
776
777  MachineInstr *User = &*RI;
778
779  // Set the insertion point properly.  Folding the load can cause generation of
780  // other random instructions (like sign extends) for addressing modes, make
781  // sure they get inserted in a logical place before the new instruction.
782  FuncInfo->InsertPt = User;
783  FuncInfo->MBB = User->getParent();
784
785  // Ask the target to try folding the load.
786  return FastIS->TryToFoldLoad(User, RI.getOperandNo(), LI);
787}
788
789#ifndef NDEBUG
790/// CheckLineNumbers - Check if basic block instructions follow source order
791/// or not.
792static void CheckLineNumbers(const BasicBlock *BB) {
793  unsigned Line = 0;
794  unsigned Col = 0;
795  for (BasicBlock::const_iterator BI = BB->begin(),
796         BE = BB->end(); BI != BE; ++BI) {
797    const DebugLoc DL = BI->getDebugLoc();
798    if (DL.isUnknown()) continue;
799    unsigned L = DL.getLine();
800    unsigned C = DL.getCol();
801    if (L < Line || (L == Line && C < Col)) {
802      ++NumBBWithOutOfOrderLineInfo;
803      return;
804    }
805    Line = L;
806    Col = C;
807  }
808}
809
810/// CheckLineNumbers - Check if machine basic block instructions follow source
811/// order or not.
812static void CheckLineNumbers(const MachineBasicBlock *MBB) {
813  unsigned Line = 0;
814  unsigned Col = 0;
815  for (MachineBasicBlock::const_iterator MBI = MBB->begin(),
816         MBE = MBB->end(); MBI != MBE; ++MBI) {
817    const DebugLoc DL = MBI->getDebugLoc();
818    if (DL.isUnknown()) continue;
819    unsigned L = DL.getLine();
820    unsigned C = DL.getCol();
821    if (L < Line || (L == Line && C < Col)) {
822      ++NumMBBWithOutOfOrderLineInfo;
823      return;
824    }
825    Line = L;
826    Col = C;
827  }
828}
829#endif
830
831/// isFoldedOrDeadInstruction - Return true if the specified instruction is
832/// side-effect free and is either dead or folded into a generated instruction.
833/// Return false if it needs to be emitted.
834static bool isFoldedOrDeadInstruction(const Instruction *I,
835                                      FunctionLoweringInfo *FuncInfo) {
836  return !I->mayWriteToMemory() && // Side-effecting instructions aren't folded.
837         !isa<TerminatorInst>(I) && // Terminators aren't folded.
838         !isa<DbgInfoIntrinsic>(I) &&  // Debug instructions aren't folded.
839         !FuncInfo->isExportedInst(I); // Exported instrs must be computed.
840}
841
842void SelectionDAGISel::SelectAllBasicBlocks(const Function &Fn) {
843  // Initialize the Fast-ISel state, if needed.
844  FastISel *FastIS = 0;
845  if (EnableFastISel)
846    FastIS = TLI.createFastISel(*FuncInfo);
847
848  // Iterate over all basic blocks in the function.
849  ReversePostOrderTraversal<const Function*> RPOT(&Fn);
850  for (ReversePostOrderTraversal<const Function*>::rpo_iterator
851       I = RPOT.begin(), E = RPOT.end(); I != E; ++I) {
852    const BasicBlock *LLVMBB = *I;
853#ifndef NDEBUG
854    CheckLineNumbers(LLVMBB);
855#endif
856
857    if (OptLevel != CodeGenOpt::None) {
858      bool AllPredsVisited = true;
859      for (const_pred_iterator PI = pred_begin(LLVMBB), PE = pred_end(LLVMBB);
860           PI != PE; ++PI) {
861        if (!FuncInfo->VisitedBBs.count(*PI)) {
862          AllPredsVisited = false;
863          break;
864        }
865      }
866
867      if (AllPredsVisited) {
868        for (BasicBlock::const_iterator I = LLVMBB->begin();
869             isa<PHINode>(I); ++I)
870          FuncInfo->ComputePHILiveOutRegInfo(cast<PHINode>(I));
871      } else {
872        for (BasicBlock::const_iterator I = LLVMBB->begin();
873             isa<PHINode>(I); ++I)
874          FuncInfo->InvalidatePHILiveOutRegInfo(cast<PHINode>(I));
875      }
876
877      FuncInfo->VisitedBBs.insert(LLVMBB);
878    }
879
880    FuncInfo->MBB = FuncInfo->MBBMap[LLVMBB];
881    FuncInfo->InsertPt = FuncInfo->MBB->getFirstNonPHI();
882
883    BasicBlock::const_iterator const Begin = LLVMBB->getFirstNonPHI();
884    BasicBlock::const_iterator const End = LLVMBB->end();
885    BasicBlock::const_iterator BI = End;
886
887    FuncInfo->InsertPt = FuncInfo->MBB->getFirstNonPHI();
888
889    // Setup an EH landing-pad block.
890    if (FuncInfo->MBB->isLandingPad())
891      PrepareEHLandingPad();
892
893    // Lower any arguments needed in this block if this is the entry block.
894    if (LLVMBB == &Fn.getEntryBlock())
895      LowerArguments(LLVMBB);
896
897    // Before doing SelectionDAG ISel, see if FastISel has been requested.
898    if (FastIS) {
899      FastIS->startNewBlock();
900
901      // Emit code for any incoming arguments. This must happen before
902      // beginning FastISel on the entry block.
903      if (LLVMBB == &Fn.getEntryBlock()) {
904        CurDAG->setRoot(SDB->getControlRoot());
905        SDB->clear();
906        CodeGenAndEmitDAG();
907
908        // If we inserted any instructions at the beginning, make a note of
909        // where they are, so we can be sure to emit subsequent instructions
910        // after them.
911        if (FuncInfo->InsertPt != FuncInfo->MBB->begin())
912          FastIS->setLastLocalValue(llvm::prior(FuncInfo->InsertPt));
913        else
914          FastIS->setLastLocalValue(0);
915      }
916
917      // Do FastISel on as many instructions as possible.
918      for (; BI != Begin; --BI) {
919        const Instruction *Inst = llvm::prior(BI);
920
921        // If we no longer require this instruction, skip it.
922        if (isFoldedOrDeadInstruction(Inst, FuncInfo))
923          continue;
924
925        // Bottom-up: reset the insert pos at the top, after any local-value
926        // instructions.
927        FastIS->recomputeInsertPt();
928
929        // Try to select the instruction with FastISel.
930        if (FastIS->SelectInstruction(Inst)) {
931          ++NumFastIselSuccess;
932          // If fast isel succeeded, skip over all the folded instructions, and
933          // then see if there is a load right before the selected instructions.
934          // Try to fold the load if so.
935          const Instruction *BeforeInst = Inst;
936          while (BeforeInst != Begin) {
937            BeforeInst = llvm::prior(BasicBlock::const_iterator(BeforeInst));
938            if (!isFoldedOrDeadInstruction(BeforeInst, FuncInfo))
939              break;
940          }
941          if (BeforeInst != Inst && isa<LoadInst>(BeforeInst) &&
942              BeforeInst->hasOneUse() &&
943              TryToFoldFastISelLoad(cast<LoadInst>(BeforeInst), Inst, FastIS))
944            // If we succeeded, don't re-select the load.
945            BI = llvm::next(BasicBlock::const_iterator(BeforeInst));
946          continue;
947        }
948
949        // Then handle certain instructions as single-LLVM-Instruction blocks.
950        if (isa<CallInst>(Inst)) {
951          ++NumFastIselFailures;
952          if (EnableFastISelVerbose || EnableFastISelAbort) {
953            dbgs() << "FastISel missed call: ";
954            Inst->dump();
955          }
956
957          if (!Inst->getType()->isVoidTy() && !Inst->use_empty()) {
958            unsigned &R = FuncInfo->ValueMap[Inst];
959            if (!R)
960              R = FuncInfo->CreateRegs(Inst->getType());
961          }
962
963          bool HadTailCall = false;
964          SelectBasicBlock(Inst, BI, HadTailCall);
965
966          // If the call was emitted as a tail call, we're done with the block.
967          if (HadTailCall) {
968            --BI;
969            break;
970          }
971
972          continue;
973        }
974
975        if (isa<TerminatorInst>(Inst) && !isa<BranchInst>(Inst)) {
976          // Don't abort, and use a different message for terminator misses.
977          ++NumFastIselFailures;
978          if (EnableFastISelVerbose || EnableFastISelAbort) {
979            dbgs() << "FastISel missed terminator: ";
980            Inst->dump();
981          }
982        } else {
983          ++NumFastIselFailures;
984          if (EnableFastISelVerbose || EnableFastISelAbort) {
985            dbgs() << "FastISel miss: ";
986            Inst->dump();
987          }
988          if (EnableFastISelAbort)
989            // The "fast" selector couldn't handle something and bailed.
990            // For the purpose of debugging, just abort.
991            llvm_unreachable("FastISel didn't select the entire block");
992        }
993        break;
994      }
995
996      FastIS->recomputeInsertPt();
997    }
998
999    if (Begin != BI)
1000      ++NumDAGBlocks;
1001    else
1002      ++NumFastIselBlocks;
1003
1004    if (Begin != BI) {
1005      // Run SelectionDAG instruction selection on the remainder of the block
1006      // not handled by FastISel. If FastISel is not run, this is the entire
1007      // block.
1008      bool HadTailCall;
1009      SelectBasicBlock(Begin, BI, HadTailCall);
1010    }
1011
1012    FinishBasicBlock();
1013    FuncInfo->PHINodesToUpdate.clear();
1014  }
1015
1016  delete FastIS;
1017#ifndef NDEBUG
1018  for (MachineFunction::const_iterator MBI = MF->begin(), MBE = MF->end();
1019       MBI != MBE; ++MBI)
1020    CheckLineNumbers(MBI);
1021#endif
1022  SDB->clearDanglingDebugInfo();
1023}
1024
1025void
1026SelectionDAGISel::FinishBasicBlock() {
1027
1028  DEBUG(dbgs() << "Total amount of phi nodes to update: "
1029               << FuncInfo->PHINodesToUpdate.size() << "\n";
1030        for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i)
1031          dbgs() << "Node " << i << " : ("
1032                 << FuncInfo->PHINodesToUpdate[i].first
1033                 << ", " << FuncInfo->PHINodesToUpdate[i].second << ")\n");
1034
1035  // Next, now that we know what the last MBB the LLVM BB expanded is, update
1036  // PHI nodes in successors.
1037  if (SDB->SwitchCases.empty() &&
1038      SDB->JTCases.empty() &&
1039      SDB->BitTestCases.empty()) {
1040    for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i) {
1041      MachineInstr *PHI = FuncInfo->PHINodesToUpdate[i].first;
1042      assert(PHI->isPHI() &&
1043             "This is not a machine PHI node that we are updating!");
1044      if (!FuncInfo->MBB->isSuccessor(PHI->getParent()))
1045        continue;
1046      PHI->addOperand(
1047        MachineOperand::CreateReg(FuncInfo->PHINodesToUpdate[i].second, false));
1048      PHI->addOperand(MachineOperand::CreateMBB(FuncInfo->MBB));
1049    }
1050    return;
1051  }
1052
1053  for (unsigned i = 0, e = SDB->BitTestCases.size(); i != e; ++i) {
1054    // Lower header first, if it wasn't already lowered
1055    if (!SDB->BitTestCases[i].Emitted) {
1056      // Set the current basic block to the mbb we wish to insert the code into
1057      FuncInfo->MBB = SDB->BitTestCases[i].Parent;
1058      FuncInfo->InsertPt = FuncInfo->MBB->end();
1059      // Emit the code
1060      SDB->visitBitTestHeader(SDB->BitTestCases[i], FuncInfo->MBB);
1061      CurDAG->setRoot(SDB->getRoot());
1062      SDB->clear();
1063      CodeGenAndEmitDAG();
1064    }
1065
1066    for (unsigned j = 0, ej = SDB->BitTestCases[i].Cases.size(); j != ej; ++j) {
1067      // Set the current basic block to the mbb we wish to insert the code into
1068      FuncInfo->MBB = SDB->BitTestCases[i].Cases[j].ThisBB;
1069      FuncInfo->InsertPt = FuncInfo->MBB->end();
1070      // Emit the code
1071      if (j+1 != ej)
1072        SDB->visitBitTestCase(SDB->BitTestCases[i],
1073                              SDB->BitTestCases[i].Cases[j+1].ThisBB,
1074                              SDB->BitTestCases[i].Reg,
1075                              SDB->BitTestCases[i].Cases[j],
1076                              FuncInfo->MBB);
1077      else
1078        SDB->visitBitTestCase(SDB->BitTestCases[i],
1079                              SDB->BitTestCases[i].Default,
1080                              SDB->BitTestCases[i].Reg,
1081                              SDB->BitTestCases[i].Cases[j],
1082                              FuncInfo->MBB);
1083
1084
1085      CurDAG->setRoot(SDB->getRoot());
1086      SDB->clear();
1087      CodeGenAndEmitDAG();
1088    }
1089
1090    // Update PHI Nodes
1091    for (unsigned pi = 0, pe = FuncInfo->PHINodesToUpdate.size();
1092         pi != pe; ++pi) {
1093      MachineInstr *PHI = FuncInfo->PHINodesToUpdate[pi].first;
1094      MachineBasicBlock *PHIBB = PHI->getParent();
1095      assert(PHI->isPHI() &&
1096             "This is not a machine PHI node that we are updating!");
1097      // This is "default" BB. We have two jumps to it. From "header" BB and
1098      // from last "case" BB.
1099      if (PHIBB == SDB->BitTestCases[i].Default) {
1100        PHI->addOperand(MachineOperand::
1101                        CreateReg(FuncInfo->PHINodesToUpdate[pi].second,
1102                                  false));
1103        PHI->addOperand(MachineOperand::CreateMBB(SDB->BitTestCases[i].Parent));
1104        PHI->addOperand(MachineOperand::
1105                        CreateReg(FuncInfo->PHINodesToUpdate[pi].second,
1106                                  false));
1107        PHI->addOperand(MachineOperand::CreateMBB(SDB->BitTestCases[i].Cases.
1108                                                  back().ThisBB));
1109      }
1110      // One of "cases" BB.
1111      for (unsigned j = 0, ej = SDB->BitTestCases[i].Cases.size();
1112           j != ej; ++j) {
1113        MachineBasicBlock* cBB = SDB->BitTestCases[i].Cases[j].ThisBB;
1114        if (cBB->isSuccessor(PHIBB)) {
1115          PHI->addOperand(MachineOperand::
1116                          CreateReg(FuncInfo->PHINodesToUpdate[pi].second,
1117                                    false));
1118          PHI->addOperand(MachineOperand::CreateMBB(cBB));
1119        }
1120      }
1121    }
1122  }
1123  SDB->BitTestCases.clear();
1124
1125  // If the JumpTable record is filled in, then we need to emit a jump table.
1126  // Updating the PHI nodes is tricky in this case, since we need to determine
1127  // whether the PHI is a successor of the range check MBB or the jump table MBB
1128  for (unsigned i = 0, e = SDB->JTCases.size(); i != e; ++i) {
1129    // Lower header first, if it wasn't already lowered
1130    if (!SDB->JTCases[i].first.Emitted) {
1131      // Set the current basic block to the mbb we wish to insert the code into
1132      FuncInfo->MBB = SDB->JTCases[i].first.HeaderBB;
1133      FuncInfo->InsertPt = FuncInfo->MBB->end();
1134      // Emit the code
1135      SDB->visitJumpTableHeader(SDB->JTCases[i].second, SDB->JTCases[i].first,
1136                                FuncInfo->MBB);
1137      CurDAG->setRoot(SDB->getRoot());
1138      SDB->clear();
1139      CodeGenAndEmitDAG();
1140    }
1141
1142    // Set the current basic block to the mbb we wish to insert the code into
1143    FuncInfo->MBB = SDB->JTCases[i].second.MBB;
1144    FuncInfo->InsertPt = FuncInfo->MBB->end();
1145    // Emit the code
1146    SDB->visitJumpTable(SDB->JTCases[i].second);
1147    CurDAG->setRoot(SDB->getRoot());
1148    SDB->clear();
1149    CodeGenAndEmitDAG();
1150
1151    // Update PHI Nodes
1152    for (unsigned pi = 0, pe = FuncInfo->PHINodesToUpdate.size();
1153         pi != pe; ++pi) {
1154      MachineInstr *PHI = FuncInfo->PHINodesToUpdate[pi].first;
1155      MachineBasicBlock *PHIBB = PHI->getParent();
1156      assert(PHI->isPHI() &&
1157             "This is not a machine PHI node that we are updating!");
1158      // "default" BB. We can go there only from header BB.
1159      if (PHIBB == SDB->JTCases[i].second.Default) {
1160        PHI->addOperand
1161          (MachineOperand::CreateReg(FuncInfo->PHINodesToUpdate[pi].second,
1162                                     false));
1163        PHI->addOperand
1164          (MachineOperand::CreateMBB(SDB->JTCases[i].first.HeaderBB));
1165      }
1166      // JT BB. Just iterate over successors here
1167      if (FuncInfo->MBB->isSuccessor(PHIBB)) {
1168        PHI->addOperand
1169          (MachineOperand::CreateReg(FuncInfo->PHINodesToUpdate[pi].second,
1170                                     false));
1171        PHI->addOperand(MachineOperand::CreateMBB(FuncInfo->MBB));
1172      }
1173    }
1174  }
1175  SDB->JTCases.clear();
1176
1177  // If the switch block involved a branch to one of the actual successors, we
1178  // need to update PHI nodes in that block.
1179  for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i) {
1180    MachineInstr *PHI = FuncInfo->PHINodesToUpdate[i].first;
1181    assert(PHI->isPHI() &&
1182           "This is not a machine PHI node that we are updating!");
1183    if (FuncInfo->MBB->isSuccessor(PHI->getParent())) {
1184      PHI->addOperand(
1185        MachineOperand::CreateReg(FuncInfo->PHINodesToUpdate[i].second, false));
1186      PHI->addOperand(MachineOperand::CreateMBB(FuncInfo->MBB));
1187    }
1188  }
1189
1190  // If we generated any switch lowering information, build and codegen any
1191  // additional DAGs necessary.
1192  for (unsigned i = 0, e = SDB->SwitchCases.size(); i != e; ++i) {
1193    // Set the current basic block to the mbb we wish to insert the code into
1194    FuncInfo->MBB = SDB->SwitchCases[i].ThisBB;
1195    FuncInfo->InsertPt = FuncInfo->MBB->end();
1196
1197    // Determine the unique successors.
1198    SmallVector<MachineBasicBlock *, 2> Succs;
1199    Succs.push_back(SDB->SwitchCases[i].TrueBB);
1200    if (SDB->SwitchCases[i].TrueBB != SDB->SwitchCases[i].FalseBB)
1201      Succs.push_back(SDB->SwitchCases[i].FalseBB);
1202
1203    // Emit the code. Note that this could result in FuncInfo->MBB being split.
1204    SDB->visitSwitchCase(SDB->SwitchCases[i], FuncInfo->MBB);
1205    CurDAG->setRoot(SDB->getRoot());
1206    SDB->clear();
1207    CodeGenAndEmitDAG();
1208
1209    // Remember the last block, now that any splitting is done, for use in
1210    // populating PHI nodes in successors.
1211    MachineBasicBlock *ThisBB = FuncInfo->MBB;
1212
1213    // Handle any PHI nodes in successors of this chunk, as if we were coming
1214    // from the original BB before switch expansion.  Note that PHI nodes can
1215    // occur multiple times in PHINodesToUpdate.  We have to be very careful to
1216    // handle them the right number of times.
1217    for (unsigned i = 0, e = Succs.size(); i != e; ++i) {
1218      FuncInfo->MBB = Succs[i];
1219      FuncInfo->InsertPt = FuncInfo->MBB->end();
1220      // FuncInfo->MBB may have been removed from the CFG if a branch was
1221      // constant folded.
1222      if (ThisBB->isSuccessor(FuncInfo->MBB)) {
1223        for (MachineBasicBlock::iterator Phi = FuncInfo->MBB->begin();
1224             Phi != FuncInfo->MBB->end() && Phi->isPHI();
1225             ++Phi) {
1226          // This value for this PHI node is recorded in PHINodesToUpdate.
1227          for (unsigned pn = 0; ; ++pn) {
1228            assert(pn != FuncInfo->PHINodesToUpdate.size() &&
1229                   "Didn't find PHI entry!");
1230            if (FuncInfo->PHINodesToUpdate[pn].first == Phi) {
1231              Phi->addOperand(MachineOperand::
1232                              CreateReg(FuncInfo->PHINodesToUpdate[pn].second,
1233                                        false));
1234              Phi->addOperand(MachineOperand::CreateMBB(ThisBB));
1235              break;
1236            }
1237          }
1238        }
1239      }
1240    }
1241  }
1242  SDB->SwitchCases.clear();
1243}
1244
1245
1246/// Create the scheduler. If a specific scheduler was specified
1247/// via the SchedulerRegistry, use it, otherwise select the
1248/// one preferred by the target.
1249///
1250ScheduleDAGSDNodes *SelectionDAGISel::CreateScheduler() {
1251  RegisterScheduler::FunctionPassCtor Ctor = RegisterScheduler::getDefault();
1252
1253  if (!Ctor) {
1254    Ctor = ISHeuristic;
1255    RegisterScheduler::setDefault(Ctor);
1256  }
1257
1258  return Ctor(this, OptLevel);
1259}
1260
1261//===----------------------------------------------------------------------===//
1262// Helper functions used by the generated instruction selector.
1263//===----------------------------------------------------------------------===//
1264// Calls to these methods are generated by tblgen.
1265
1266/// CheckAndMask - The isel is trying to match something like (and X, 255).  If
1267/// the dag combiner simplified the 255, we still want to match.  RHS is the
1268/// actual value in the DAG on the RHS of an AND, and DesiredMaskS is the value
1269/// specified in the .td file (e.g. 255).
1270bool SelectionDAGISel::CheckAndMask(SDValue LHS, ConstantSDNode *RHS,
1271                                    int64_t DesiredMaskS) const {
1272  const APInt &ActualMask = RHS->getAPIntValue();
1273  const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
1274
1275  // If the actual mask exactly matches, success!
1276  if (ActualMask == DesiredMask)
1277    return true;
1278
1279  // If the actual AND mask is allowing unallowed bits, this doesn't match.
1280  if (ActualMask.intersects(~DesiredMask))
1281    return false;
1282
1283  // Otherwise, the DAG Combiner may have proven that the value coming in is
1284  // either already zero or is not demanded.  Check for known zero input bits.
1285  APInt NeededMask = DesiredMask & ~ActualMask;
1286  if (CurDAG->MaskedValueIsZero(LHS, NeededMask))
1287    return true;
1288
1289  // TODO: check to see if missing bits are just not demanded.
1290
1291  // Otherwise, this pattern doesn't match.
1292  return false;
1293}
1294
1295/// CheckOrMask - The isel is trying to match something like (or X, 255).  If
1296/// the dag combiner simplified the 255, we still want to match.  RHS is the
1297/// actual value in the DAG on the RHS of an OR, and DesiredMaskS is the value
1298/// specified in the .td file (e.g. 255).
1299bool SelectionDAGISel::CheckOrMask(SDValue LHS, ConstantSDNode *RHS,
1300                                   int64_t DesiredMaskS) const {
1301  const APInt &ActualMask = RHS->getAPIntValue();
1302  const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
1303
1304  // If the actual mask exactly matches, success!
1305  if (ActualMask == DesiredMask)
1306    return true;
1307
1308  // If the actual AND mask is allowing unallowed bits, this doesn't match.
1309  if (ActualMask.intersects(~DesiredMask))
1310    return false;
1311
1312  // Otherwise, the DAG Combiner may have proven that the value coming in is
1313  // either already zero or is not demanded.  Check for known zero input bits.
1314  APInt NeededMask = DesiredMask & ~ActualMask;
1315
1316  APInt KnownZero, KnownOne;
1317  CurDAG->ComputeMaskedBits(LHS, NeededMask, KnownZero, KnownOne);
1318
1319  // If all the missing bits in the or are already known to be set, match!
1320  if ((NeededMask & KnownOne) == NeededMask)
1321    return true;
1322
1323  // TODO: check to see if missing bits are just not demanded.
1324
1325  // Otherwise, this pattern doesn't match.
1326  return false;
1327}
1328
1329
1330/// SelectInlineAsmMemoryOperands - Calls to this are automatically generated
1331/// by tblgen.  Others should not call it.
1332void SelectionDAGISel::
1333SelectInlineAsmMemoryOperands(std::vector<SDValue> &Ops) {
1334  std::vector<SDValue> InOps;
1335  std::swap(InOps, Ops);
1336
1337  Ops.push_back(InOps[InlineAsm::Op_InputChain]); // 0
1338  Ops.push_back(InOps[InlineAsm::Op_AsmString]);  // 1
1339  Ops.push_back(InOps[InlineAsm::Op_MDNode]);     // 2, !srcloc
1340  Ops.push_back(InOps[InlineAsm::Op_ExtraInfo]);  // 3 (SideEffect, AlignStack)
1341
1342  unsigned i = InlineAsm::Op_FirstOperand, e = InOps.size();
1343  if (InOps[e-1].getValueType() == MVT::Glue)
1344    --e;  // Don't process a glue operand if it is here.
1345
1346  while (i != e) {
1347    unsigned Flags = cast<ConstantSDNode>(InOps[i])->getZExtValue();
1348    if (!InlineAsm::isMemKind(Flags)) {
1349      // Just skip over this operand, copying the operands verbatim.
1350      Ops.insert(Ops.end(), InOps.begin()+i,
1351                 InOps.begin()+i+InlineAsm::getNumOperandRegisters(Flags) + 1);
1352      i += InlineAsm::getNumOperandRegisters(Flags) + 1;
1353    } else {
1354      assert(InlineAsm::getNumOperandRegisters(Flags) == 1 &&
1355             "Memory operand with multiple values?");
1356      // Otherwise, this is a memory operand.  Ask the target to select it.
1357      std::vector<SDValue> SelOps;
1358      if (SelectInlineAsmMemoryOperand(InOps[i+1], 'm', SelOps))
1359        report_fatal_error("Could not match memory address.  Inline asm"
1360                           " failure!");
1361
1362      // Add this to the output node.
1363      unsigned NewFlags =
1364        InlineAsm::getFlagWord(InlineAsm::Kind_Mem, SelOps.size());
1365      Ops.push_back(CurDAG->getTargetConstant(NewFlags, MVT::i32));
1366      Ops.insert(Ops.end(), SelOps.begin(), SelOps.end());
1367      i += 2;
1368    }
1369  }
1370
1371  // Add the glue input back if present.
1372  if (e != InOps.size())
1373    Ops.push_back(InOps.back());
1374}
1375
1376/// findGlueUse - Return use of MVT::Glue value produced by the specified
1377/// SDNode.
1378///
1379static SDNode *findGlueUse(SDNode *N) {
1380  unsigned FlagResNo = N->getNumValues()-1;
1381  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
1382    SDUse &Use = I.getUse();
1383    if (Use.getResNo() == FlagResNo)
1384      return Use.getUser();
1385  }
1386  return NULL;
1387}
1388
1389/// findNonImmUse - Return true if "Use" is a non-immediate use of "Def".
1390/// This function recursively traverses up the operand chain, ignoring
1391/// certain nodes.
1392static bool findNonImmUse(SDNode *Use, SDNode* Def, SDNode *ImmedUse,
1393                          SDNode *Root, SmallPtrSet<SDNode*, 16> &Visited,
1394                          bool IgnoreChains) {
1395  // The NodeID's are given uniques ID's where a node ID is guaranteed to be
1396  // greater than all of its (recursive) operands.  If we scan to a point where
1397  // 'use' is smaller than the node we're scanning for, then we know we will
1398  // never find it.
1399  //
1400  // The Use may be -1 (unassigned) if it is a newly allocated node.  This can
1401  // happen because we scan down to newly selected nodes in the case of glue
1402  // uses.
1403  if ((Use->getNodeId() < Def->getNodeId() && Use->getNodeId() != -1))
1404    return false;
1405
1406  // Don't revisit nodes if we already scanned it and didn't fail, we know we
1407  // won't fail if we scan it again.
1408  if (!Visited.insert(Use))
1409    return false;
1410
1411  for (unsigned i = 0, e = Use->getNumOperands(); i != e; ++i) {
1412    // Ignore chain uses, they are validated by HandleMergeInputChains.
1413    if (Use->getOperand(i).getValueType() == MVT::Other && IgnoreChains)
1414      continue;
1415
1416    SDNode *N = Use->getOperand(i).getNode();
1417    if (N == Def) {
1418      if (Use == ImmedUse || Use == Root)
1419        continue;  // We are not looking for immediate use.
1420      assert(N != Root);
1421      return true;
1422    }
1423
1424    // Traverse up the operand chain.
1425    if (findNonImmUse(N, Def, ImmedUse, Root, Visited, IgnoreChains))
1426      return true;
1427  }
1428  return false;
1429}
1430
1431/// IsProfitableToFold - Returns true if it's profitable to fold the specific
1432/// operand node N of U during instruction selection that starts at Root.
1433bool SelectionDAGISel::IsProfitableToFold(SDValue N, SDNode *U,
1434                                          SDNode *Root) const {
1435  if (OptLevel == CodeGenOpt::None) return false;
1436  return N.hasOneUse();
1437}
1438
1439/// IsLegalToFold - Returns true if the specific operand node N of
1440/// U can be folded during instruction selection that starts at Root.
1441bool SelectionDAGISel::IsLegalToFold(SDValue N, SDNode *U, SDNode *Root,
1442                                     CodeGenOpt::Level OptLevel,
1443                                     bool IgnoreChains) {
1444  if (OptLevel == CodeGenOpt::None) return false;
1445
1446  // If Root use can somehow reach N through a path that that doesn't contain
1447  // U then folding N would create a cycle. e.g. In the following
1448  // diagram, Root can reach N through X. If N is folded into into Root, then
1449  // X is both a predecessor and a successor of U.
1450  //
1451  //          [N*]           //
1452  //         ^   ^           //
1453  //        /     \          //
1454  //      [U*]    [X]?       //
1455  //        ^     ^          //
1456  //         \   /           //
1457  //          \ /            //
1458  //         [Root*]         //
1459  //
1460  // * indicates nodes to be folded together.
1461  //
1462  // If Root produces glue, then it gets (even more) interesting. Since it
1463  // will be "glued" together with its glue use in the scheduler, we need to
1464  // check if it might reach N.
1465  //
1466  //          [N*]           //
1467  //         ^   ^           //
1468  //        /     \          //
1469  //      [U*]    [X]?       //
1470  //        ^       ^        //
1471  //         \       \       //
1472  //          \      |       //
1473  //         [Root*] |       //
1474  //          ^      |       //
1475  //          f      |       //
1476  //          |      /       //
1477  //         [Y]    /        //
1478  //           ^   /         //
1479  //           f  /          //
1480  //           | /           //
1481  //          [GU]           //
1482  //
1483  // If GU (glue use) indirectly reaches N (the load), and Root folds N
1484  // (call it Fold), then X is a predecessor of GU and a successor of
1485  // Fold. But since Fold and GU are glued together, this will create
1486  // a cycle in the scheduling graph.
1487
1488  // If the node has glue, walk down the graph to the "lowest" node in the
1489  // glueged set.
1490  EVT VT = Root->getValueType(Root->getNumValues()-1);
1491  while (VT == MVT::Glue) {
1492    SDNode *GU = findGlueUse(Root);
1493    if (GU == NULL)
1494      break;
1495    Root = GU;
1496    VT = Root->getValueType(Root->getNumValues()-1);
1497
1498    // If our query node has a glue result with a use, we've walked up it.  If
1499    // the user (which has already been selected) has a chain or indirectly uses
1500    // the chain, our WalkChainUsers predicate will not consider it.  Because of
1501    // this, we cannot ignore chains in this predicate.
1502    IgnoreChains = false;
1503  }
1504
1505
1506  SmallPtrSet<SDNode*, 16> Visited;
1507  return !findNonImmUse(Root, N.getNode(), U, Root, Visited, IgnoreChains);
1508}
1509
1510SDNode *SelectionDAGISel::Select_INLINEASM(SDNode *N) {
1511  std::vector<SDValue> Ops(N->op_begin(), N->op_end());
1512  SelectInlineAsmMemoryOperands(Ops);
1513
1514  std::vector<EVT> VTs;
1515  VTs.push_back(MVT::Other);
1516  VTs.push_back(MVT::Glue);
1517  SDValue New = CurDAG->getNode(ISD::INLINEASM, N->getDebugLoc(),
1518                                VTs, &Ops[0], Ops.size());
1519  New->setNodeId(-1);
1520  return New.getNode();
1521}
1522
1523SDNode *SelectionDAGISel::Select_UNDEF(SDNode *N) {
1524  return CurDAG->SelectNodeTo(N, TargetOpcode::IMPLICIT_DEF,N->getValueType(0));
1525}
1526
1527/// GetVBR - decode a vbr encoding whose top bit is set.
1528LLVM_ATTRIBUTE_ALWAYS_INLINE static uint64_t
1529GetVBR(uint64_t Val, const unsigned char *MatcherTable, unsigned &Idx) {
1530  assert(Val >= 128 && "Not a VBR");
1531  Val &= 127;  // Remove first vbr bit.
1532
1533  unsigned Shift = 7;
1534  uint64_t NextBits;
1535  do {
1536    NextBits = MatcherTable[Idx++];
1537    Val |= (NextBits&127) << Shift;
1538    Shift += 7;
1539  } while (NextBits & 128);
1540
1541  return Val;
1542}
1543
1544
1545/// UpdateChainsAndGlue - When a match is complete, this method updates uses of
1546/// interior glue and chain results to use the new glue and chain results.
1547void SelectionDAGISel::
1548UpdateChainsAndGlue(SDNode *NodeToMatch, SDValue InputChain,
1549                    const SmallVectorImpl<SDNode*> &ChainNodesMatched,
1550                    SDValue InputGlue,
1551                    const SmallVectorImpl<SDNode*> &GlueResultNodesMatched,
1552                    bool isMorphNodeTo) {
1553  SmallVector<SDNode*, 4> NowDeadNodes;
1554
1555  ISelUpdater ISU(ISelPosition);
1556
1557  // Now that all the normal results are replaced, we replace the chain and
1558  // glue results if present.
1559  if (!ChainNodesMatched.empty()) {
1560    assert(InputChain.getNode() != 0 &&
1561           "Matched input chains but didn't produce a chain");
1562    // Loop over all of the nodes we matched that produced a chain result.
1563    // Replace all the chain results with the final chain we ended up with.
1564    for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
1565      SDNode *ChainNode = ChainNodesMatched[i];
1566
1567      // If this node was already deleted, don't look at it.
1568      if (ChainNode->getOpcode() == ISD::DELETED_NODE)
1569        continue;
1570
1571      // Don't replace the results of the root node if we're doing a
1572      // MorphNodeTo.
1573      if (ChainNode == NodeToMatch && isMorphNodeTo)
1574        continue;
1575
1576      SDValue ChainVal = SDValue(ChainNode, ChainNode->getNumValues()-1);
1577      if (ChainVal.getValueType() == MVT::Glue)
1578        ChainVal = ChainVal.getValue(ChainVal->getNumValues()-2);
1579      assert(ChainVal.getValueType() == MVT::Other && "Not a chain?");
1580      CurDAG->ReplaceAllUsesOfValueWith(ChainVal, InputChain, &ISU);
1581
1582      // If the node became dead and we haven't already seen it, delete it.
1583      if (ChainNode->use_empty() &&
1584          !std::count(NowDeadNodes.begin(), NowDeadNodes.end(), ChainNode))
1585        NowDeadNodes.push_back(ChainNode);
1586    }
1587  }
1588
1589  // If the result produces glue, update any glue results in the matched
1590  // pattern with the glue result.
1591  if (InputGlue.getNode() != 0) {
1592    // Handle any interior nodes explicitly marked.
1593    for (unsigned i = 0, e = GlueResultNodesMatched.size(); i != e; ++i) {
1594      SDNode *FRN = GlueResultNodesMatched[i];
1595
1596      // If this node was already deleted, don't look at it.
1597      if (FRN->getOpcode() == ISD::DELETED_NODE)
1598        continue;
1599
1600      assert(FRN->getValueType(FRN->getNumValues()-1) == MVT::Glue &&
1601             "Doesn't have a glue result");
1602      CurDAG->ReplaceAllUsesOfValueWith(SDValue(FRN, FRN->getNumValues()-1),
1603                                        InputGlue, &ISU);
1604
1605      // If the node became dead and we haven't already seen it, delete it.
1606      if (FRN->use_empty() &&
1607          !std::count(NowDeadNodes.begin(), NowDeadNodes.end(), FRN))
1608        NowDeadNodes.push_back(FRN);
1609    }
1610  }
1611
1612  if (!NowDeadNodes.empty())
1613    CurDAG->RemoveDeadNodes(NowDeadNodes, &ISU);
1614
1615  DEBUG(errs() << "ISEL: Match complete!\n");
1616}
1617
1618enum ChainResult {
1619  CR_Simple,
1620  CR_InducesCycle,
1621  CR_LeadsToInteriorNode
1622};
1623
1624/// WalkChainUsers - Walk down the users of the specified chained node that is
1625/// part of the pattern we're matching, looking at all of the users we find.
1626/// This determines whether something is an interior node, whether we have a
1627/// non-pattern node in between two pattern nodes (which prevent folding because
1628/// it would induce a cycle) and whether we have a TokenFactor node sandwiched
1629/// between pattern nodes (in which case the TF becomes part of the pattern).
1630///
1631/// The walk we do here is guaranteed to be small because we quickly get down to
1632/// already selected nodes "below" us.
1633static ChainResult
1634WalkChainUsers(SDNode *ChainedNode,
1635               SmallVectorImpl<SDNode*> &ChainedNodesInPattern,
1636               SmallVectorImpl<SDNode*> &InteriorChainedNodes) {
1637  ChainResult Result = CR_Simple;
1638
1639  for (SDNode::use_iterator UI = ChainedNode->use_begin(),
1640         E = ChainedNode->use_end(); UI != E; ++UI) {
1641    // Make sure the use is of the chain, not some other value we produce.
1642    if (UI.getUse().getValueType() != MVT::Other) continue;
1643
1644    SDNode *User = *UI;
1645
1646    // If we see an already-selected machine node, then we've gone beyond the
1647    // pattern that we're selecting down into the already selected chunk of the
1648    // DAG.
1649    if (User->isMachineOpcode() ||
1650        User->getOpcode() == ISD::HANDLENODE)  // Root of the graph.
1651      continue;
1652
1653    if (User->getOpcode() == ISD::CopyToReg ||
1654        User->getOpcode() == ISD::CopyFromReg ||
1655        User->getOpcode() == ISD::INLINEASM ||
1656        User->getOpcode() == ISD::EH_LABEL) {
1657      // If their node ID got reset to -1 then they've already been selected.
1658      // Treat them like a MachineOpcode.
1659      if (User->getNodeId() == -1)
1660        continue;
1661    }
1662
1663    // If we have a TokenFactor, we handle it specially.
1664    if (User->getOpcode() != ISD::TokenFactor) {
1665      // If the node isn't a token factor and isn't part of our pattern, then it
1666      // must be a random chained node in between two nodes we're selecting.
1667      // This happens when we have something like:
1668      //   x = load ptr
1669      //   call
1670      //   y = x+4
1671      //   store y -> ptr
1672      // Because we structurally match the load/store as a read/modify/write,
1673      // but the call is chained between them.  We cannot fold in this case
1674      // because it would induce a cycle in the graph.
1675      if (!std::count(ChainedNodesInPattern.begin(),
1676                      ChainedNodesInPattern.end(), User))
1677        return CR_InducesCycle;
1678
1679      // Otherwise we found a node that is part of our pattern.  For example in:
1680      //   x = load ptr
1681      //   y = x+4
1682      //   store y -> ptr
1683      // This would happen when we're scanning down from the load and see the
1684      // store as a user.  Record that there is a use of ChainedNode that is
1685      // part of the pattern and keep scanning uses.
1686      Result = CR_LeadsToInteriorNode;
1687      InteriorChainedNodes.push_back(User);
1688      continue;
1689    }
1690
1691    // If we found a TokenFactor, there are two cases to consider: first if the
1692    // TokenFactor is just hanging "below" the pattern we're matching (i.e. no
1693    // uses of the TF are in our pattern) we just want to ignore it.  Second,
1694    // the TokenFactor can be sandwiched in between two chained nodes, like so:
1695    //     [Load chain]
1696    //         ^
1697    //         |
1698    //       [Load]
1699    //       ^    ^
1700    //       |    \                    DAG's like cheese
1701    //      /       \                       do you?
1702    //     /         |
1703    // [TokenFactor] [Op]
1704    //     ^          ^
1705    //     |          |
1706    //      \        /
1707    //       \      /
1708    //       [Store]
1709    //
1710    // In this case, the TokenFactor becomes part of our match and we rewrite it
1711    // as a new TokenFactor.
1712    //
1713    // To distinguish these two cases, do a recursive walk down the uses.
1714    switch (WalkChainUsers(User, ChainedNodesInPattern, InteriorChainedNodes)) {
1715    case CR_Simple:
1716      // If the uses of the TokenFactor are just already-selected nodes, ignore
1717      // it, it is "below" our pattern.
1718      continue;
1719    case CR_InducesCycle:
1720      // If the uses of the TokenFactor lead to nodes that are not part of our
1721      // pattern that are not selected, folding would turn this into a cycle,
1722      // bail out now.
1723      return CR_InducesCycle;
1724    case CR_LeadsToInteriorNode:
1725      break;  // Otherwise, keep processing.
1726    }
1727
1728    // Okay, we know we're in the interesting interior case.  The TokenFactor
1729    // is now going to be considered part of the pattern so that we rewrite its
1730    // uses (it may have uses that are not part of the pattern) with the
1731    // ultimate chain result of the generated code.  We will also add its chain
1732    // inputs as inputs to the ultimate TokenFactor we create.
1733    Result = CR_LeadsToInteriorNode;
1734    ChainedNodesInPattern.push_back(User);
1735    InteriorChainedNodes.push_back(User);
1736    continue;
1737  }
1738
1739  return Result;
1740}
1741
1742/// HandleMergeInputChains - This implements the OPC_EmitMergeInputChains
1743/// operation for when the pattern matched at least one node with a chains.  The
1744/// input vector contains a list of all of the chained nodes that we match.  We
1745/// must determine if this is a valid thing to cover (i.e. matching it won't
1746/// induce cycles in the DAG) and if so, creating a TokenFactor node. that will
1747/// be used as the input node chain for the generated nodes.
1748static SDValue
1749HandleMergeInputChains(SmallVectorImpl<SDNode*> &ChainNodesMatched,
1750                       SelectionDAG *CurDAG) {
1751  // Walk all of the chained nodes we've matched, recursively scanning down the
1752  // users of the chain result. This adds any TokenFactor nodes that are caught
1753  // in between chained nodes to the chained and interior nodes list.
1754  SmallVector<SDNode*, 3> InteriorChainedNodes;
1755  for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
1756    if (WalkChainUsers(ChainNodesMatched[i], ChainNodesMatched,
1757                       InteriorChainedNodes) == CR_InducesCycle)
1758      return SDValue(); // Would induce a cycle.
1759  }
1760
1761  // Okay, we have walked all the matched nodes and collected TokenFactor nodes
1762  // that we are interested in.  Form our input TokenFactor node.
1763  SmallVector<SDValue, 3> InputChains;
1764  for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
1765    // Add the input chain of this node to the InputChains list (which will be
1766    // the operands of the generated TokenFactor) if it's not an interior node.
1767    SDNode *N = ChainNodesMatched[i];
1768    if (N->getOpcode() != ISD::TokenFactor) {
1769      if (std::count(InteriorChainedNodes.begin(),InteriorChainedNodes.end(),N))
1770        continue;
1771
1772      // Otherwise, add the input chain.
1773      SDValue InChain = ChainNodesMatched[i]->getOperand(0);
1774      assert(InChain.getValueType() == MVT::Other && "Not a chain");
1775      InputChains.push_back(InChain);
1776      continue;
1777    }
1778
1779    // If we have a token factor, we want to add all inputs of the token factor
1780    // that are not part of the pattern we're matching.
1781    for (unsigned op = 0, e = N->getNumOperands(); op != e; ++op) {
1782      if (!std::count(ChainNodesMatched.begin(), ChainNodesMatched.end(),
1783                      N->getOperand(op).getNode()))
1784        InputChains.push_back(N->getOperand(op));
1785    }
1786  }
1787
1788  SDValue Res;
1789  if (InputChains.size() == 1)
1790    return InputChains[0];
1791  return CurDAG->getNode(ISD::TokenFactor, ChainNodesMatched[0]->getDebugLoc(),
1792                         MVT::Other, &InputChains[0], InputChains.size());
1793}
1794
1795/// MorphNode - Handle morphing a node in place for the selector.
1796SDNode *SelectionDAGISel::
1797MorphNode(SDNode *Node, unsigned TargetOpc, SDVTList VTList,
1798          const SDValue *Ops, unsigned NumOps, unsigned EmitNodeInfo) {
1799  // It is possible we're using MorphNodeTo to replace a node with no
1800  // normal results with one that has a normal result (or we could be
1801  // adding a chain) and the input could have glue and chains as well.
1802  // In this case we need to shift the operands down.
1803  // FIXME: This is a horrible hack and broken in obscure cases, no worse
1804  // than the old isel though.
1805  int OldGlueResultNo = -1, OldChainResultNo = -1;
1806
1807  unsigned NTMNumResults = Node->getNumValues();
1808  if (Node->getValueType(NTMNumResults-1) == MVT::Glue) {
1809    OldGlueResultNo = NTMNumResults-1;
1810    if (NTMNumResults != 1 &&
1811        Node->getValueType(NTMNumResults-2) == MVT::Other)
1812      OldChainResultNo = NTMNumResults-2;
1813  } else if (Node->getValueType(NTMNumResults-1) == MVT::Other)
1814    OldChainResultNo = NTMNumResults-1;
1815
1816  // Call the underlying SelectionDAG routine to do the transmogrification. Note
1817  // that this deletes operands of the old node that become dead.
1818  SDNode *Res = CurDAG->MorphNodeTo(Node, ~TargetOpc, VTList, Ops, NumOps);
1819
1820  // MorphNodeTo can operate in two ways: if an existing node with the
1821  // specified operands exists, it can just return it.  Otherwise, it
1822  // updates the node in place to have the requested operands.
1823  if (Res == Node) {
1824    // If we updated the node in place, reset the node ID.  To the isel,
1825    // this should be just like a newly allocated machine node.
1826    Res->setNodeId(-1);
1827  }
1828
1829  unsigned ResNumResults = Res->getNumValues();
1830  // Move the glue if needed.
1831  if ((EmitNodeInfo & OPFL_GlueOutput) && OldGlueResultNo != -1 &&
1832      (unsigned)OldGlueResultNo != ResNumResults-1)
1833    CurDAG->ReplaceAllUsesOfValueWith(SDValue(Node, OldGlueResultNo),
1834                                      SDValue(Res, ResNumResults-1));
1835
1836  if ((EmitNodeInfo & OPFL_GlueOutput) != 0)
1837    --ResNumResults;
1838
1839  // Move the chain reference if needed.
1840  if ((EmitNodeInfo & OPFL_Chain) && OldChainResultNo != -1 &&
1841      (unsigned)OldChainResultNo != ResNumResults-1)
1842    CurDAG->ReplaceAllUsesOfValueWith(SDValue(Node, OldChainResultNo),
1843                                      SDValue(Res, ResNumResults-1));
1844
1845  // Otherwise, no replacement happened because the node already exists. Replace
1846  // Uses of the old node with the new one.
1847  if (Res != Node)
1848    CurDAG->ReplaceAllUsesWith(Node, Res);
1849
1850  return Res;
1851}
1852
1853/// CheckPatternPredicate - Implements OP_CheckPatternPredicate.
1854LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
1855CheckSame(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1856          SDValue N,
1857          const SmallVectorImpl<std::pair<SDValue, SDNode*> > &RecordedNodes) {
1858  // Accept if it is exactly the same as a previously recorded node.
1859  unsigned RecNo = MatcherTable[MatcherIndex++];
1860  assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
1861  return N == RecordedNodes[RecNo].first;
1862}
1863
1864/// CheckPatternPredicate - Implements OP_CheckPatternPredicate.
1865LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
1866CheckPatternPredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1867                      SelectionDAGISel &SDISel) {
1868  return SDISel.CheckPatternPredicate(MatcherTable[MatcherIndex++]);
1869}
1870
1871/// CheckNodePredicate - Implements OP_CheckNodePredicate.
1872LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
1873CheckNodePredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1874                   SelectionDAGISel &SDISel, SDNode *N) {
1875  return SDISel.CheckNodePredicate(N, MatcherTable[MatcherIndex++]);
1876}
1877
1878LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
1879CheckOpcode(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1880            SDNode *N) {
1881  uint16_t Opc = MatcherTable[MatcherIndex++];
1882  Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
1883  return N->getOpcode() == Opc;
1884}
1885
1886LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
1887CheckType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1888          SDValue N, const TargetLowering &TLI) {
1889  MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
1890  if (N.getValueType() == VT) return true;
1891
1892  // Handle the case when VT is iPTR.
1893  return VT == MVT::iPTR && N.getValueType() == TLI.getPointerTy();
1894}
1895
1896LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
1897CheckChildType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1898               SDValue N, const TargetLowering &TLI,
1899               unsigned ChildNo) {
1900  if (ChildNo >= N.getNumOperands())
1901    return false;  // Match fails if out of range child #.
1902  return ::CheckType(MatcherTable, MatcherIndex, N.getOperand(ChildNo), TLI);
1903}
1904
1905
1906LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
1907CheckCondCode(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1908              SDValue N) {
1909  return cast<CondCodeSDNode>(N)->get() ==
1910      (ISD::CondCode)MatcherTable[MatcherIndex++];
1911}
1912
1913LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
1914CheckValueType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1915               SDValue N, const TargetLowering &TLI) {
1916  MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
1917  if (cast<VTSDNode>(N)->getVT() == VT)
1918    return true;
1919
1920  // Handle the case when VT is iPTR.
1921  return VT == MVT::iPTR && cast<VTSDNode>(N)->getVT() == TLI.getPointerTy();
1922}
1923
1924LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
1925CheckInteger(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1926             SDValue N) {
1927  int64_t Val = MatcherTable[MatcherIndex++];
1928  if (Val & 128)
1929    Val = GetVBR(Val, MatcherTable, MatcherIndex);
1930
1931  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N);
1932  return C != 0 && C->getSExtValue() == Val;
1933}
1934
1935LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
1936CheckAndImm(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1937            SDValue N, SelectionDAGISel &SDISel) {
1938  int64_t Val = MatcherTable[MatcherIndex++];
1939  if (Val & 128)
1940    Val = GetVBR(Val, MatcherTable, MatcherIndex);
1941
1942  if (N->getOpcode() != ISD::AND) return false;
1943
1944  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
1945  return C != 0 && SDISel.CheckAndMask(N.getOperand(0), C, Val);
1946}
1947
1948LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
1949CheckOrImm(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1950           SDValue N, SelectionDAGISel &SDISel) {
1951  int64_t Val = MatcherTable[MatcherIndex++];
1952  if (Val & 128)
1953    Val = GetVBR(Val, MatcherTable, MatcherIndex);
1954
1955  if (N->getOpcode() != ISD::OR) return false;
1956
1957  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
1958  return C != 0 && SDISel.CheckOrMask(N.getOperand(0), C, Val);
1959}
1960
1961/// IsPredicateKnownToFail - If we know how and can do so without pushing a
1962/// scope, evaluate the current node.  If the current predicate is known to
1963/// fail, set Result=true and return anything.  If the current predicate is
1964/// known to pass, set Result=false and return the MatcherIndex to continue
1965/// with.  If the current predicate is unknown, set Result=false and return the
1966/// MatcherIndex to continue with.
1967static unsigned IsPredicateKnownToFail(const unsigned char *Table,
1968                                       unsigned Index, SDValue N,
1969                                       bool &Result, SelectionDAGISel &SDISel,
1970                 SmallVectorImpl<std::pair<SDValue, SDNode*> > &RecordedNodes) {
1971  switch (Table[Index++]) {
1972  default:
1973    Result = false;
1974    return Index-1;  // Could not evaluate this predicate.
1975  case SelectionDAGISel::OPC_CheckSame:
1976    Result = !::CheckSame(Table, Index, N, RecordedNodes);
1977    return Index;
1978  case SelectionDAGISel::OPC_CheckPatternPredicate:
1979    Result = !::CheckPatternPredicate(Table, Index, SDISel);
1980    return Index;
1981  case SelectionDAGISel::OPC_CheckPredicate:
1982    Result = !::CheckNodePredicate(Table, Index, SDISel, N.getNode());
1983    return Index;
1984  case SelectionDAGISel::OPC_CheckOpcode:
1985    Result = !::CheckOpcode(Table, Index, N.getNode());
1986    return Index;
1987  case SelectionDAGISel::OPC_CheckType:
1988    Result = !::CheckType(Table, Index, N, SDISel.TLI);
1989    return Index;
1990  case SelectionDAGISel::OPC_CheckChild0Type:
1991  case SelectionDAGISel::OPC_CheckChild1Type:
1992  case SelectionDAGISel::OPC_CheckChild2Type:
1993  case SelectionDAGISel::OPC_CheckChild3Type:
1994  case SelectionDAGISel::OPC_CheckChild4Type:
1995  case SelectionDAGISel::OPC_CheckChild5Type:
1996  case SelectionDAGISel::OPC_CheckChild6Type:
1997  case SelectionDAGISel::OPC_CheckChild7Type:
1998    Result = !::CheckChildType(Table, Index, N, SDISel.TLI,
1999                        Table[Index-1] - SelectionDAGISel::OPC_CheckChild0Type);
2000    return Index;
2001  case SelectionDAGISel::OPC_CheckCondCode:
2002    Result = !::CheckCondCode(Table, Index, N);
2003    return Index;
2004  case SelectionDAGISel::OPC_CheckValueType:
2005    Result = !::CheckValueType(Table, Index, N, SDISel.TLI);
2006    return Index;
2007  case SelectionDAGISel::OPC_CheckInteger:
2008    Result = !::CheckInteger(Table, Index, N);
2009    return Index;
2010  case SelectionDAGISel::OPC_CheckAndImm:
2011    Result = !::CheckAndImm(Table, Index, N, SDISel);
2012    return Index;
2013  case SelectionDAGISel::OPC_CheckOrImm:
2014    Result = !::CheckOrImm(Table, Index, N, SDISel);
2015    return Index;
2016  }
2017}
2018
2019namespace {
2020
2021struct MatchScope {
2022  /// FailIndex - If this match fails, this is the index to continue with.
2023  unsigned FailIndex;
2024
2025  /// NodeStack - The node stack when the scope was formed.
2026  SmallVector<SDValue, 4> NodeStack;
2027
2028  /// NumRecordedNodes - The number of recorded nodes when the scope was formed.
2029  unsigned NumRecordedNodes;
2030
2031  /// NumMatchedMemRefs - The number of matched memref entries.
2032  unsigned NumMatchedMemRefs;
2033
2034  /// InputChain/InputGlue - The current chain/glue
2035  SDValue InputChain, InputGlue;
2036
2037  /// HasChainNodesMatched - True if the ChainNodesMatched list is non-empty.
2038  bool HasChainNodesMatched, HasGlueResultNodesMatched;
2039};
2040
2041}
2042
2043SDNode *SelectionDAGISel::
2044SelectCodeCommon(SDNode *NodeToMatch, const unsigned char *MatcherTable,
2045                 unsigned TableSize) {
2046  // FIXME: Should these even be selected?  Handle these cases in the caller?
2047  switch (NodeToMatch->getOpcode()) {
2048  default:
2049    break;
2050  case ISD::EntryToken:       // These nodes remain the same.
2051  case ISD::BasicBlock:
2052  case ISD::Register:
2053  //case ISD::VALUETYPE:
2054  //case ISD::CONDCODE:
2055  case ISD::HANDLENODE:
2056  case ISD::MDNODE_SDNODE:
2057  case ISD::TargetConstant:
2058  case ISD::TargetConstantFP:
2059  case ISD::TargetConstantPool:
2060  case ISD::TargetFrameIndex:
2061  case ISD::TargetExternalSymbol:
2062  case ISD::TargetBlockAddress:
2063  case ISD::TargetJumpTable:
2064  case ISD::TargetGlobalTLSAddress:
2065  case ISD::TargetGlobalAddress:
2066  case ISD::TokenFactor:
2067  case ISD::CopyFromReg:
2068  case ISD::CopyToReg:
2069  case ISD::EH_LABEL:
2070    NodeToMatch->setNodeId(-1); // Mark selected.
2071    return 0;
2072  case ISD::AssertSext:
2073  case ISD::AssertZext:
2074    CurDAG->ReplaceAllUsesOfValueWith(SDValue(NodeToMatch, 0),
2075                                      NodeToMatch->getOperand(0));
2076    return 0;
2077  case ISD::INLINEASM: return Select_INLINEASM(NodeToMatch);
2078  case ISD::UNDEF:     return Select_UNDEF(NodeToMatch);
2079  }
2080
2081  assert(!NodeToMatch->isMachineOpcode() && "Node already selected!");
2082
2083  // Set up the node stack with NodeToMatch as the only node on the stack.
2084  SmallVector<SDValue, 8> NodeStack;
2085  SDValue N = SDValue(NodeToMatch, 0);
2086  NodeStack.push_back(N);
2087
2088  // MatchScopes - Scopes used when matching, if a match failure happens, this
2089  // indicates where to continue checking.
2090  SmallVector<MatchScope, 8> MatchScopes;
2091
2092  // RecordedNodes - This is the set of nodes that have been recorded by the
2093  // state machine.  The second value is the parent of the node, or null if the
2094  // root is recorded.
2095  SmallVector<std::pair<SDValue, SDNode*>, 8> RecordedNodes;
2096
2097  // MatchedMemRefs - This is the set of MemRef's we've seen in the input
2098  // pattern.
2099  SmallVector<MachineMemOperand*, 2> MatchedMemRefs;
2100
2101  // These are the current input chain and glue for use when generating nodes.
2102  // Various Emit operations change these.  For example, emitting a copytoreg
2103  // uses and updates these.
2104  SDValue InputChain, InputGlue;
2105
2106  // ChainNodesMatched - If a pattern matches nodes that have input/output
2107  // chains, the OPC_EmitMergeInputChains operation is emitted which indicates
2108  // which ones they are.  The result is captured into this list so that we can
2109  // update the chain results when the pattern is complete.
2110  SmallVector<SDNode*, 3> ChainNodesMatched;
2111  SmallVector<SDNode*, 3> GlueResultNodesMatched;
2112
2113  DEBUG(errs() << "ISEL: Starting pattern match on root node: ";
2114        NodeToMatch->dump(CurDAG);
2115        errs() << '\n');
2116
2117  // Determine where to start the interpreter.  Normally we start at opcode #0,
2118  // but if the state machine starts with an OPC_SwitchOpcode, then we
2119  // accelerate the first lookup (which is guaranteed to be hot) with the
2120  // OpcodeOffset table.
2121  unsigned MatcherIndex = 0;
2122
2123  if (!OpcodeOffset.empty()) {
2124    // Already computed the OpcodeOffset table, just index into it.
2125    if (N.getOpcode() < OpcodeOffset.size())
2126      MatcherIndex = OpcodeOffset[N.getOpcode()];
2127    DEBUG(errs() << "  Initial Opcode index to " << MatcherIndex << "\n");
2128
2129  } else if (MatcherTable[0] == OPC_SwitchOpcode) {
2130    // Otherwise, the table isn't computed, but the state machine does start
2131    // with an OPC_SwitchOpcode instruction.  Populate the table now, since this
2132    // is the first time we're selecting an instruction.
2133    unsigned Idx = 1;
2134    while (1) {
2135      // Get the size of this case.
2136      unsigned CaseSize = MatcherTable[Idx++];
2137      if (CaseSize & 128)
2138        CaseSize = GetVBR(CaseSize, MatcherTable, Idx);
2139      if (CaseSize == 0) break;
2140
2141      // Get the opcode, add the index to the table.
2142      uint16_t Opc = MatcherTable[Idx++];
2143      Opc |= (unsigned short)MatcherTable[Idx++] << 8;
2144      if (Opc >= OpcodeOffset.size())
2145        OpcodeOffset.resize((Opc+1)*2);
2146      OpcodeOffset[Opc] = Idx;
2147      Idx += CaseSize;
2148    }
2149
2150    // Okay, do the lookup for the first opcode.
2151    if (N.getOpcode() < OpcodeOffset.size())
2152      MatcherIndex = OpcodeOffset[N.getOpcode()];
2153  }
2154
2155  while (1) {
2156    assert(MatcherIndex < TableSize && "Invalid index");
2157#ifndef NDEBUG
2158    unsigned CurrentOpcodeIndex = MatcherIndex;
2159#endif
2160    BuiltinOpcodes Opcode = (BuiltinOpcodes)MatcherTable[MatcherIndex++];
2161    switch (Opcode) {
2162    case OPC_Scope: {
2163      // Okay, the semantics of this operation are that we should push a scope
2164      // then evaluate the first child.  However, pushing a scope only to have
2165      // the first check fail (which then pops it) is inefficient.  If we can
2166      // determine immediately that the first check (or first several) will
2167      // immediately fail, don't even bother pushing a scope for them.
2168      unsigned FailIndex;
2169
2170      while (1) {
2171        unsigned NumToSkip = MatcherTable[MatcherIndex++];
2172        if (NumToSkip & 128)
2173          NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex);
2174        // Found the end of the scope with no match.
2175        if (NumToSkip == 0) {
2176          FailIndex = 0;
2177          break;
2178        }
2179
2180        FailIndex = MatcherIndex+NumToSkip;
2181
2182        unsigned MatcherIndexOfPredicate = MatcherIndex;
2183        (void)MatcherIndexOfPredicate; // silence warning.
2184
2185        // If we can't evaluate this predicate without pushing a scope (e.g. if
2186        // it is a 'MoveParent') or if the predicate succeeds on this node, we
2187        // push the scope and evaluate the full predicate chain.
2188        bool Result;
2189        MatcherIndex = IsPredicateKnownToFail(MatcherTable, MatcherIndex, N,
2190                                              Result, *this, RecordedNodes);
2191        if (!Result)
2192          break;
2193
2194        DEBUG(errs() << "  Skipped scope entry (due to false predicate) at "
2195                     << "index " << MatcherIndexOfPredicate
2196                     << ", continuing at " << FailIndex << "\n");
2197        ++NumDAGIselRetries;
2198
2199        // Otherwise, we know that this case of the Scope is guaranteed to fail,
2200        // move to the next case.
2201        MatcherIndex = FailIndex;
2202      }
2203
2204      // If the whole scope failed to match, bail.
2205      if (FailIndex == 0) break;
2206
2207      // Push a MatchScope which indicates where to go if the first child fails
2208      // to match.
2209      MatchScope NewEntry;
2210      NewEntry.FailIndex = FailIndex;
2211      NewEntry.NodeStack.append(NodeStack.begin(), NodeStack.end());
2212      NewEntry.NumRecordedNodes = RecordedNodes.size();
2213      NewEntry.NumMatchedMemRefs = MatchedMemRefs.size();
2214      NewEntry.InputChain = InputChain;
2215      NewEntry.InputGlue = InputGlue;
2216      NewEntry.HasChainNodesMatched = !ChainNodesMatched.empty();
2217      NewEntry.HasGlueResultNodesMatched = !GlueResultNodesMatched.empty();
2218      MatchScopes.push_back(NewEntry);
2219      continue;
2220    }
2221    case OPC_RecordNode: {
2222      // Remember this node, it may end up being an operand in the pattern.
2223      SDNode *Parent = 0;
2224      if (NodeStack.size() > 1)
2225        Parent = NodeStack[NodeStack.size()-2].getNode();
2226      RecordedNodes.push_back(std::make_pair(N, Parent));
2227      continue;
2228    }
2229
2230    case OPC_RecordChild0: case OPC_RecordChild1:
2231    case OPC_RecordChild2: case OPC_RecordChild3:
2232    case OPC_RecordChild4: case OPC_RecordChild5:
2233    case OPC_RecordChild6: case OPC_RecordChild7: {
2234      unsigned ChildNo = Opcode-OPC_RecordChild0;
2235      if (ChildNo >= N.getNumOperands())
2236        break;  // Match fails if out of range child #.
2237
2238      RecordedNodes.push_back(std::make_pair(N->getOperand(ChildNo),
2239                                             N.getNode()));
2240      continue;
2241    }
2242    case OPC_RecordMemRef:
2243      MatchedMemRefs.push_back(cast<MemSDNode>(N)->getMemOperand());
2244      continue;
2245
2246    case OPC_CaptureGlueInput:
2247      // If the current node has an input glue, capture it in InputGlue.
2248      if (N->getNumOperands() != 0 &&
2249          N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Glue)
2250        InputGlue = N->getOperand(N->getNumOperands()-1);
2251      continue;
2252
2253    case OPC_MoveChild: {
2254      unsigned ChildNo = MatcherTable[MatcherIndex++];
2255      if (ChildNo >= N.getNumOperands())
2256        break;  // Match fails if out of range child #.
2257      N = N.getOperand(ChildNo);
2258      NodeStack.push_back(N);
2259      continue;
2260    }
2261
2262    case OPC_MoveParent:
2263      // Pop the current node off the NodeStack.
2264      NodeStack.pop_back();
2265      assert(!NodeStack.empty() && "Node stack imbalance!");
2266      N = NodeStack.back();
2267      continue;
2268
2269    case OPC_CheckSame:
2270      if (!::CheckSame(MatcherTable, MatcherIndex, N, RecordedNodes)) break;
2271      continue;
2272    case OPC_CheckPatternPredicate:
2273      if (!::CheckPatternPredicate(MatcherTable, MatcherIndex, *this)) break;
2274      continue;
2275    case OPC_CheckPredicate:
2276      if (!::CheckNodePredicate(MatcherTable, MatcherIndex, *this,
2277                                N.getNode()))
2278        break;
2279      continue;
2280    case OPC_CheckComplexPat: {
2281      unsigned CPNum = MatcherTable[MatcherIndex++];
2282      unsigned RecNo = MatcherTable[MatcherIndex++];
2283      assert(RecNo < RecordedNodes.size() && "Invalid CheckComplexPat");
2284      if (!CheckComplexPattern(NodeToMatch, RecordedNodes[RecNo].second,
2285                               RecordedNodes[RecNo].first, CPNum,
2286                               RecordedNodes))
2287        break;
2288      continue;
2289    }
2290    case OPC_CheckOpcode:
2291      if (!::CheckOpcode(MatcherTable, MatcherIndex, N.getNode())) break;
2292      continue;
2293
2294    case OPC_CheckType:
2295      if (!::CheckType(MatcherTable, MatcherIndex, N, TLI)) break;
2296      continue;
2297
2298    case OPC_SwitchOpcode: {
2299      unsigned CurNodeOpcode = N.getOpcode();
2300      unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart;
2301      unsigned CaseSize;
2302      while (1) {
2303        // Get the size of this case.
2304        CaseSize = MatcherTable[MatcherIndex++];
2305        if (CaseSize & 128)
2306          CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex);
2307        if (CaseSize == 0) break;
2308
2309        uint16_t Opc = MatcherTable[MatcherIndex++];
2310        Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
2311
2312        // If the opcode matches, then we will execute this case.
2313        if (CurNodeOpcode == Opc)
2314          break;
2315
2316        // Otherwise, skip over this case.
2317        MatcherIndex += CaseSize;
2318      }
2319
2320      // If no cases matched, bail out.
2321      if (CaseSize == 0) break;
2322
2323      // Otherwise, execute the case we found.
2324      DEBUG(errs() << "  OpcodeSwitch from " << SwitchStart
2325                   << " to " << MatcherIndex << "\n");
2326      continue;
2327    }
2328
2329    case OPC_SwitchType: {
2330      MVT CurNodeVT = N.getValueType().getSimpleVT();
2331      unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart;
2332      unsigned CaseSize;
2333      while (1) {
2334        // Get the size of this case.
2335        CaseSize = MatcherTable[MatcherIndex++];
2336        if (CaseSize & 128)
2337          CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex);
2338        if (CaseSize == 0) break;
2339
2340        MVT CaseVT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2341        if (CaseVT == MVT::iPTR)
2342          CaseVT = TLI.getPointerTy();
2343
2344        // If the VT matches, then we will execute this case.
2345        if (CurNodeVT == CaseVT)
2346          break;
2347
2348        // Otherwise, skip over this case.
2349        MatcherIndex += CaseSize;
2350      }
2351
2352      // If no cases matched, bail out.
2353      if (CaseSize == 0) break;
2354
2355      // Otherwise, execute the case we found.
2356      DEBUG(errs() << "  TypeSwitch[" << EVT(CurNodeVT).getEVTString()
2357                   << "] from " << SwitchStart << " to " << MatcherIndex<<'\n');
2358      continue;
2359    }
2360    case OPC_CheckChild0Type: case OPC_CheckChild1Type:
2361    case OPC_CheckChild2Type: case OPC_CheckChild3Type:
2362    case OPC_CheckChild4Type: case OPC_CheckChild5Type:
2363    case OPC_CheckChild6Type: case OPC_CheckChild7Type:
2364      if (!::CheckChildType(MatcherTable, MatcherIndex, N, TLI,
2365                            Opcode-OPC_CheckChild0Type))
2366        break;
2367      continue;
2368    case OPC_CheckCondCode:
2369      if (!::CheckCondCode(MatcherTable, MatcherIndex, N)) break;
2370      continue;
2371    case OPC_CheckValueType:
2372      if (!::CheckValueType(MatcherTable, MatcherIndex, N, TLI)) break;
2373      continue;
2374    case OPC_CheckInteger:
2375      if (!::CheckInteger(MatcherTable, MatcherIndex, N)) break;
2376      continue;
2377    case OPC_CheckAndImm:
2378      if (!::CheckAndImm(MatcherTable, MatcherIndex, N, *this)) break;
2379      continue;
2380    case OPC_CheckOrImm:
2381      if (!::CheckOrImm(MatcherTable, MatcherIndex, N, *this)) break;
2382      continue;
2383
2384    case OPC_CheckFoldableChainNode: {
2385      assert(NodeStack.size() != 1 && "No parent node");
2386      // Verify that all intermediate nodes between the root and this one have
2387      // a single use.
2388      bool HasMultipleUses = false;
2389      for (unsigned i = 1, e = NodeStack.size()-1; i != e; ++i)
2390        if (!NodeStack[i].hasOneUse()) {
2391          HasMultipleUses = true;
2392          break;
2393        }
2394      if (HasMultipleUses) break;
2395
2396      // Check to see that the target thinks this is profitable to fold and that
2397      // we can fold it without inducing cycles in the graph.
2398      if (!IsProfitableToFold(N, NodeStack[NodeStack.size()-2].getNode(),
2399                              NodeToMatch) ||
2400          !IsLegalToFold(N, NodeStack[NodeStack.size()-2].getNode(),
2401                         NodeToMatch, OptLevel,
2402                         true/*We validate our own chains*/))
2403        break;
2404
2405      continue;
2406    }
2407    case OPC_EmitInteger: {
2408      MVT::SimpleValueType VT =
2409        (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2410      int64_t Val = MatcherTable[MatcherIndex++];
2411      if (Val & 128)
2412        Val = GetVBR(Val, MatcherTable, MatcherIndex);
2413      RecordedNodes.push_back(std::pair<SDValue, SDNode*>(
2414                              CurDAG->getTargetConstant(Val, VT), (SDNode*)0));
2415      continue;
2416    }
2417    case OPC_EmitRegister: {
2418      MVT::SimpleValueType VT =
2419        (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2420      unsigned RegNo = MatcherTable[MatcherIndex++];
2421      RecordedNodes.push_back(std::pair<SDValue, SDNode*>(
2422                              CurDAG->getRegister(RegNo, VT), (SDNode*)0));
2423      continue;
2424    }
2425    case OPC_EmitRegister2: {
2426      // For targets w/ more than 256 register names, the register enum
2427      // values are stored in two bytes in the matcher table (just like
2428      // opcodes).
2429      MVT::SimpleValueType VT =
2430        (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2431      unsigned RegNo = MatcherTable[MatcherIndex++];
2432      RegNo |= MatcherTable[MatcherIndex++] << 8;
2433      RecordedNodes.push_back(std::pair<SDValue, SDNode*>(
2434                              CurDAG->getRegister(RegNo, VT), (SDNode*)0));
2435      continue;
2436    }
2437
2438    case OPC_EmitConvertToTarget:  {
2439      // Convert from IMM/FPIMM to target version.
2440      unsigned RecNo = MatcherTable[MatcherIndex++];
2441      assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2442      SDValue Imm = RecordedNodes[RecNo].first;
2443
2444      if (Imm->getOpcode() == ISD::Constant) {
2445        int64_t Val = cast<ConstantSDNode>(Imm)->getZExtValue();
2446        Imm = CurDAG->getTargetConstant(Val, Imm.getValueType());
2447      } else if (Imm->getOpcode() == ISD::ConstantFP) {
2448        const ConstantFP *Val=cast<ConstantFPSDNode>(Imm)->getConstantFPValue();
2449        Imm = CurDAG->getTargetConstantFP(*Val, Imm.getValueType());
2450      }
2451
2452      RecordedNodes.push_back(std::make_pair(Imm, RecordedNodes[RecNo].second));
2453      continue;
2454    }
2455
2456    case OPC_EmitMergeInputChains1_0:    // OPC_EmitMergeInputChains, 1, 0
2457    case OPC_EmitMergeInputChains1_1: {  // OPC_EmitMergeInputChains, 1, 1
2458      // These are space-optimized forms of OPC_EmitMergeInputChains.
2459      assert(InputChain.getNode() == 0 &&
2460             "EmitMergeInputChains should be the first chain producing node");
2461      assert(ChainNodesMatched.empty() &&
2462             "Should only have one EmitMergeInputChains per match");
2463
2464      // Read all of the chained nodes.
2465      unsigned RecNo = Opcode == OPC_EmitMergeInputChains1_1;
2466      assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2467      ChainNodesMatched.push_back(RecordedNodes[RecNo].first.getNode());
2468
2469      // FIXME: What if other value results of the node have uses not matched
2470      // by this pattern?
2471      if (ChainNodesMatched.back() != NodeToMatch &&
2472          !RecordedNodes[RecNo].first.hasOneUse()) {
2473        ChainNodesMatched.clear();
2474        break;
2475      }
2476
2477      // Merge the input chains if they are not intra-pattern references.
2478      InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG);
2479
2480      if (InputChain.getNode() == 0)
2481        break;  // Failed to merge.
2482      continue;
2483    }
2484
2485    case OPC_EmitMergeInputChains: {
2486      assert(InputChain.getNode() == 0 &&
2487             "EmitMergeInputChains should be the first chain producing node");
2488      // This node gets a list of nodes we matched in the input that have
2489      // chains.  We want to token factor all of the input chains to these nodes
2490      // together.  However, if any of the input chains is actually one of the
2491      // nodes matched in this pattern, then we have an intra-match reference.
2492      // Ignore these because the newly token factored chain should not refer to
2493      // the old nodes.
2494      unsigned NumChains = MatcherTable[MatcherIndex++];
2495      assert(NumChains != 0 && "Can't TF zero chains");
2496
2497      assert(ChainNodesMatched.empty() &&
2498             "Should only have one EmitMergeInputChains per match");
2499
2500      // Read all of the chained nodes.
2501      for (unsigned i = 0; i != NumChains; ++i) {
2502        unsigned RecNo = MatcherTable[MatcherIndex++];
2503        assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2504        ChainNodesMatched.push_back(RecordedNodes[RecNo].first.getNode());
2505
2506        // FIXME: What if other value results of the node have uses not matched
2507        // by this pattern?
2508        if (ChainNodesMatched.back() != NodeToMatch &&
2509            !RecordedNodes[RecNo].first.hasOneUse()) {
2510          ChainNodesMatched.clear();
2511          break;
2512        }
2513      }
2514
2515      // If the inner loop broke out, the match fails.
2516      if (ChainNodesMatched.empty())
2517        break;
2518
2519      // Merge the input chains if they are not intra-pattern references.
2520      InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG);
2521
2522      if (InputChain.getNode() == 0)
2523        break;  // Failed to merge.
2524
2525      continue;
2526    }
2527
2528    case OPC_EmitCopyToReg: {
2529      unsigned RecNo = MatcherTable[MatcherIndex++];
2530      assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2531      unsigned DestPhysReg = MatcherTable[MatcherIndex++];
2532
2533      if (InputChain.getNode() == 0)
2534        InputChain = CurDAG->getEntryNode();
2535
2536      InputChain = CurDAG->getCopyToReg(InputChain, NodeToMatch->getDebugLoc(),
2537                                        DestPhysReg, RecordedNodes[RecNo].first,
2538                                        InputGlue);
2539
2540      InputGlue = InputChain.getValue(1);
2541      continue;
2542    }
2543
2544    case OPC_EmitNodeXForm: {
2545      unsigned XFormNo = MatcherTable[MatcherIndex++];
2546      unsigned RecNo = MatcherTable[MatcherIndex++];
2547      assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2548      SDValue Res = RunSDNodeXForm(RecordedNodes[RecNo].first, XFormNo);
2549      RecordedNodes.push_back(std::pair<SDValue,SDNode*>(Res, (SDNode*) 0));
2550      continue;
2551    }
2552
2553    case OPC_EmitNode:
2554    case OPC_MorphNodeTo: {
2555      uint16_t TargetOpc = MatcherTable[MatcherIndex++];
2556      TargetOpc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
2557      unsigned EmitNodeInfo = MatcherTable[MatcherIndex++];
2558      // Get the result VT list.
2559      unsigned NumVTs = MatcherTable[MatcherIndex++];
2560      SmallVector<EVT, 4> VTs;
2561      for (unsigned i = 0; i != NumVTs; ++i) {
2562        MVT::SimpleValueType VT =
2563          (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2564        if (VT == MVT::iPTR) VT = TLI.getPointerTy().SimpleTy;
2565        VTs.push_back(VT);
2566      }
2567
2568      if (EmitNodeInfo & OPFL_Chain)
2569        VTs.push_back(MVT::Other);
2570      if (EmitNodeInfo & OPFL_GlueOutput)
2571        VTs.push_back(MVT::Glue);
2572
2573      // This is hot code, so optimize the two most common cases of 1 and 2
2574      // results.
2575      SDVTList VTList;
2576      if (VTs.size() == 1)
2577        VTList = CurDAG->getVTList(VTs[0]);
2578      else if (VTs.size() == 2)
2579        VTList = CurDAG->getVTList(VTs[0], VTs[1]);
2580      else
2581        VTList = CurDAG->getVTList(VTs.data(), VTs.size());
2582
2583      // Get the operand list.
2584      unsigned NumOps = MatcherTable[MatcherIndex++];
2585      SmallVector<SDValue, 8> Ops;
2586      for (unsigned i = 0; i != NumOps; ++i) {
2587        unsigned RecNo = MatcherTable[MatcherIndex++];
2588        if (RecNo & 128)
2589          RecNo = GetVBR(RecNo, MatcherTable, MatcherIndex);
2590
2591        assert(RecNo < RecordedNodes.size() && "Invalid EmitNode");
2592        Ops.push_back(RecordedNodes[RecNo].first);
2593      }
2594
2595      // If there are variadic operands to add, handle them now.
2596      if (EmitNodeInfo & OPFL_VariadicInfo) {
2597        // Determine the start index to copy from.
2598        unsigned FirstOpToCopy = getNumFixedFromVariadicInfo(EmitNodeInfo);
2599        FirstOpToCopy += (EmitNodeInfo & OPFL_Chain) ? 1 : 0;
2600        assert(NodeToMatch->getNumOperands() >= FirstOpToCopy &&
2601               "Invalid variadic node");
2602        // Copy all of the variadic operands, not including a potential glue
2603        // input.
2604        for (unsigned i = FirstOpToCopy, e = NodeToMatch->getNumOperands();
2605             i != e; ++i) {
2606          SDValue V = NodeToMatch->getOperand(i);
2607          if (V.getValueType() == MVT::Glue) break;
2608          Ops.push_back(V);
2609        }
2610      }
2611
2612      // If this has chain/glue inputs, add them.
2613      if (EmitNodeInfo & OPFL_Chain)
2614        Ops.push_back(InputChain);
2615      if ((EmitNodeInfo & OPFL_GlueInput) && InputGlue.getNode() != 0)
2616        Ops.push_back(InputGlue);
2617
2618      // Create the node.
2619      SDNode *Res = 0;
2620      if (Opcode != OPC_MorphNodeTo) {
2621        // If this is a normal EmitNode command, just create the new node and
2622        // add the results to the RecordedNodes list.
2623        Res = CurDAG->getMachineNode(TargetOpc, NodeToMatch->getDebugLoc(),
2624                                     VTList, Ops.data(), Ops.size());
2625
2626        // Add all the non-glue/non-chain results to the RecordedNodes list.
2627        for (unsigned i = 0, e = VTs.size(); i != e; ++i) {
2628          if (VTs[i] == MVT::Other || VTs[i] == MVT::Glue) break;
2629          RecordedNodes.push_back(std::pair<SDValue,SDNode*>(SDValue(Res, i),
2630                                                             (SDNode*) 0));
2631        }
2632
2633      } else {
2634        Res = MorphNode(NodeToMatch, TargetOpc, VTList, Ops.data(), Ops.size(),
2635                        EmitNodeInfo);
2636      }
2637
2638      // If the node had chain/glue results, update our notion of the current
2639      // chain and glue.
2640      if (EmitNodeInfo & OPFL_GlueOutput) {
2641        InputGlue = SDValue(Res, VTs.size()-1);
2642        if (EmitNodeInfo & OPFL_Chain)
2643          InputChain = SDValue(Res, VTs.size()-2);
2644      } else if (EmitNodeInfo & OPFL_Chain)
2645        InputChain = SDValue(Res, VTs.size()-1);
2646
2647      // If the OPFL_MemRefs glue is set on this node, slap all of the
2648      // accumulated memrefs onto it.
2649      //
2650      // FIXME: This is vastly incorrect for patterns with multiple outputs
2651      // instructions that access memory and for ComplexPatterns that match
2652      // loads.
2653      if (EmitNodeInfo & OPFL_MemRefs) {
2654        // Only attach load or store memory operands if the generated
2655        // instruction may load or store.
2656        const TargetInstrDesc &TID = TM.getInstrInfo()->get(TargetOpc);
2657        bool mayLoad = TID.mayLoad();
2658        bool mayStore = TID.mayStore();
2659
2660        unsigned NumMemRefs = 0;
2661        for (SmallVector<MachineMemOperand*, 2>::const_iterator I =
2662             MatchedMemRefs.begin(), E = MatchedMemRefs.end(); I != E; ++I) {
2663          if ((*I)->isLoad()) {
2664            if (mayLoad)
2665              ++NumMemRefs;
2666          } else if ((*I)->isStore()) {
2667            if (mayStore)
2668              ++NumMemRefs;
2669          } else {
2670            ++NumMemRefs;
2671          }
2672        }
2673
2674        MachineSDNode::mmo_iterator MemRefs =
2675          MF->allocateMemRefsArray(NumMemRefs);
2676
2677        MachineSDNode::mmo_iterator MemRefsPos = MemRefs;
2678        for (SmallVector<MachineMemOperand*, 2>::const_iterator I =
2679             MatchedMemRefs.begin(), E = MatchedMemRefs.end(); I != E; ++I) {
2680          if ((*I)->isLoad()) {
2681            if (mayLoad)
2682              *MemRefsPos++ = *I;
2683          } else if ((*I)->isStore()) {
2684            if (mayStore)
2685              *MemRefsPos++ = *I;
2686          } else {
2687            *MemRefsPos++ = *I;
2688          }
2689        }
2690
2691        cast<MachineSDNode>(Res)
2692          ->setMemRefs(MemRefs, MemRefs + NumMemRefs);
2693      }
2694
2695      DEBUG(errs() << "  "
2696                   << (Opcode == OPC_MorphNodeTo ? "Morphed" : "Created")
2697                   << " node: "; Res->dump(CurDAG); errs() << "\n");
2698
2699      // If this was a MorphNodeTo then we're completely done!
2700      if (Opcode == OPC_MorphNodeTo) {
2701        // Update chain and glue uses.
2702        UpdateChainsAndGlue(NodeToMatch, InputChain, ChainNodesMatched,
2703                            InputGlue, GlueResultNodesMatched, true);
2704        return Res;
2705      }
2706
2707      continue;
2708    }
2709
2710    case OPC_MarkGlueResults: {
2711      unsigned NumNodes = MatcherTable[MatcherIndex++];
2712
2713      // Read and remember all the glue-result nodes.
2714      for (unsigned i = 0; i != NumNodes; ++i) {
2715        unsigned RecNo = MatcherTable[MatcherIndex++];
2716        if (RecNo & 128)
2717          RecNo = GetVBR(RecNo, MatcherTable, MatcherIndex);
2718
2719        assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2720        GlueResultNodesMatched.push_back(RecordedNodes[RecNo].first.getNode());
2721      }
2722      continue;
2723    }
2724
2725    case OPC_CompleteMatch: {
2726      // The match has been completed, and any new nodes (if any) have been
2727      // created.  Patch up references to the matched dag to use the newly
2728      // created nodes.
2729      unsigned NumResults = MatcherTable[MatcherIndex++];
2730
2731      for (unsigned i = 0; i != NumResults; ++i) {
2732        unsigned ResSlot = MatcherTable[MatcherIndex++];
2733        if (ResSlot & 128)
2734          ResSlot = GetVBR(ResSlot, MatcherTable, MatcherIndex);
2735
2736        assert(ResSlot < RecordedNodes.size() && "Invalid CheckSame");
2737        SDValue Res = RecordedNodes[ResSlot].first;
2738
2739        assert(i < NodeToMatch->getNumValues() &&
2740               NodeToMatch->getValueType(i) != MVT::Other &&
2741               NodeToMatch->getValueType(i) != MVT::Glue &&
2742               "Invalid number of results to complete!");
2743        assert((NodeToMatch->getValueType(i) == Res.getValueType() ||
2744                NodeToMatch->getValueType(i) == MVT::iPTR ||
2745                Res.getValueType() == MVT::iPTR ||
2746                NodeToMatch->getValueType(i).getSizeInBits() ==
2747                    Res.getValueType().getSizeInBits()) &&
2748               "invalid replacement");
2749        CurDAG->ReplaceAllUsesOfValueWith(SDValue(NodeToMatch, i), Res);
2750      }
2751
2752      // If the root node defines glue, add it to the glue nodes to update list.
2753      if (NodeToMatch->getValueType(NodeToMatch->getNumValues()-1) == MVT::Glue)
2754        GlueResultNodesMatched.push_back(NodeToMatch);
2755
2756      // Update chain and glue uses.
2757      UpdateChainsAndGlue(NodeToMatch, InputChain, ChainNodesMatched,
2758                          InputGlue, GlueResultNodesMatched, false);
2759
2760      assert(NodeToMatch->use_empty() &&
2761             "Didn't replace all uses of the node?");
2762
2763      // FIXME: We just return here, which interacts correctly with SelectRoot
2764      // above.  We should fix this to not return an SDNode* anymore.
2765      return 0;
2766    }
2767    }
2768
2769    // If the code reached this point, then the match failed.  See if there is
2770    // another child to try in the current 'Scope', otherwise pop it until we
2771    // find a case to check.
2772    DEBUG(errs() << "  Match failed at index " << CurrentOpcodeIndex << "\n");
2773    ++NumDAGIselRetries;
2774    while (1) {
2775      if (MatchScopes.empty()) {
2776        CannotYetSelect(NodeToMatch);
2777        return 0;
2778      }
2779
2780      // Restore the interpreter state back to the point where the scope was
2781      // formed.
2782      MatchScope &LastScope = MatchScopes.back();
2783      RecordedNodes.resize(LastScope.NumRecordedNodes);
2784      NodeStack.clear();
2785      NodeStack.append(LastScope.NodeStack.begin(), LastScope.NodeStack.end());
2786      N = NodeStack.back();
2787
2788      if (LastScope.NumMatchedMemRefs != MatchedMemRefs.size())
2789        MatchedMemRefs.resize(LastScope.NumMatchedMemRefs);
2790      MatcherIndex = LastScope.FailIndex;
2791
2792      DEBUG(errs() << "  Continuing at " << MatcherIndex << "\n");
2793
2794      InputChain = LastScope.InputChain;
2795      InputGlue = LastScope.InputGlue;
2796      if (!LastScope.HasChainNodesMatched)
2797        ChainNodesMatched.clear();
2798      if (!LastScope.HasGlueResultNodesMatched)
2799        GlueResultNodesMatched.clear();
2800
2801      // Check to see what the offset is at the new MatcherIndex.  If it is zero
2802      // we have reached the end of this scope, otherwise we have another child
2803      // in the current scope to try.
2804      unsigned NumToSkip = MatcherTable[MatcherIndex++];
2805      if (NumToSkip & 128)
2806        NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex);
2807
2808      // If we have another child in this scope to match, update FailIndex and
2809      // try it.
2810      if (NumToSkip != 0) {
2811        LastScope.FailIndex = MatcherIndex+NumToSkip;
2812        break;
2813      }
2814
2815      // End of this scope, pop it and try the next child in the containing
2816      // scope.
2817      MatchScopes.pop_back();
2818    }
2819  }
2820}
2821
2822
2823
2824void SelectionDAGISel::CannotYetSelect(SDNode *N) {
2825  std::string msg;
2826  raw_string_ostream Msg(msg);
2827  Msg << "Cannot select: ";
2828
2829  if (N->getOpcode() != ISD::INTRINSIC_W_CHAIN &&
2830      N->getOpcode() != ISD::INTRINSIC_WO_CHAIN &&
2831      N->getOpcode() != ISD::INTRINSIC_VOID) {
2832    N->printrFull(Msg, CurDAG);
2833  } else {
2834    bool HasInputChain = N->getOperand(0).getValueType() == MVT::Other;
2835    unsigned iid =
2836      cast<ConstantSDNode>(N->getOperand(HasInputChain))->getZExtValue();
2837    if (iid < Intrinsic::num_intrinsics)
2838      Msg << "intrinsic %" << Intrinsic::getName((Intrinsic::ID)iid);
2839    else if (const TargetIntrinsicInfo *TII = TM.getIntrinsicInfo())
2840      Msg << "target intrinsic %" << TII->getName(iid);
2841    else
2842      Msg << "unknown intrinsic #" << iid;
2843  }
2844  report_fatal_error(Msg.str());
2845}
2846
2847char SelectionDAGISel::ID = 0;
2848