SelectionDAGISel.cpp revision 238a8d4c3d6868ba4d75158fb7320ef716b1f496
1//===-- SelectionDAGISel.cpp - Implement the SelectionDAGISel class -------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAGISel class.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "isel"
15#include "ScheduleDAGSDNodes.h"
16#include "SelectionDAGBuilder.h"
17#include "FunctionLoweringInfo.h"
18#include "llvm/CodeGen/SelectionDAGISel.h"
19#include "llvm/Analysis/AliasAnalysis.h"
20#include "llvm/Analysis/DebugInfo.h"
21#include "llvm/Constants.h"
22#include "llvm/CallingConv.h"
23#include "llvm/DerivedTypes.h"
24#include "llvm/Function.h"
25#include "llvm/GlobalVariable.h"
26#include "llvm/InlineAsm.h"
27#include "llvm/Instructions.h"
28#include "llvm/Intrinsics.h"
29#include "llvm/IntrinsicInst.h"
30#include "llvm/LLVMContext.h"
31#include "llvm/CodeGen/FastISel.h"
32#include "llvm/CodeGen/GCStrategy.h"
33#include "llvm/CodeGen/GCMetadata.h"
34#include "llvm/CodeGen/MachineFunction.h"
35#include "llvm/CodeGen/MachineFunctionAnalysis.h"
36#include "llvm/CodeGen/MachineFrameInfo.h"
37#include "llvm/CodeGen/MachineInstrBuilder.h"
38#include "llvm/CodeGen/MachineJumpTableInfo.h"
39#include "llvm/CodeGen/MachineModuleInfo.h"
40#include "llvm/CodeGen/MachineRegisterInfo.h"
41#include "llvm/CodeGen/ScheduleHazardRecognizer.h"
42#include "llvm/CodeGen/SchedulerRegistry.h"
43#include "llvm/CodeGen/SelectionDAG.h"
44#include "llvm/CodeGen/DwarfWriter.h"
45#include "llvm/Target/TargetRegisterInfo.h"
46#include "llvm/Target/TargetData.h"
47#include "llvm/Target/TargetFrameInfo.h"
48#include "llvm/Target/TargetIntrinsicInfo.h"
49#include "llvm/Target/TargetInstrInfo.h"
50#include "llvm/Target/TargetLowering.h"
51#include "llvm/Target/TargetMachine.h"
52#include "llvm/Target/TargetOptions.h"
53#include "llvm/Support/Compiler.h"
54#include "llvm/Support/Debug.h"
55#include "llvm/Support/ErrorHandling.h"
56#include "llvm/Support/MathExtras.h"
57#include "llvm/Support/Timer.h"
58#include "llvm/Support/raw_ostream.h"
59#include <algorithm>
60using namespace llvm;
61
62static cl::opt<bool>
63EnableFastISelVerbose("fast-isel-verbose", cl::Hidden,
64          cl::desc("Enable verbose messages in the \"fast\" "
65                   "instruction selector"));
66static cl::opt<bool>
67EnableFastISelAbort("fast-isel-abort", cl::Hidden,
68          cl::desc("Enable abort calls when \"fast\" instruction fails"));
69static cl::opt<bool>
70SchedLiveInCopies("schedule-livein-copies", cl::Hidden,
71                  cl::desc("Schedule copies of livein registers"),
72                  cl::init(false));
73
74#ifndef NDEBUG
75static cl::opt<bool>
76ViewDAGCombine1("view-dag-combine1-dags", cl::Hidden,
77          cl::desc("Pop up a window to show dags before the first "
78                   "dag combine pass"));
79static cl::opt<bool>
80ViewLegalizeTypesDAGs("view-legalize-types-dags", cl::Hidden,
81          cl::desc("Pop up a window to show dags before legalize types"));
82static cl::opt<bool>
83ViewLegalizeDAGs("view-legalize-dags", cl::Hidden,
84          cl::desc("Pop up a window to show dags before legalize"));
85static cl::opt<bool>
86ViewDAGCombine2("view-dag-combine2-dags", cl::Hidden,
87          cl::desc("Pop up a window to show dags before the second "
88                   "dag combine pass"));
89static cl::opt<bool>
90ViewDAGCombineLT("view-dag-combine-lt-dags", cl::Hidden,
91          cl::desc("Pop up a window to show dags before the post legalize types"
92                   " dag combine pass"));
93static cl::opt<bool>
94ViewISelDAGs("view-isel-dags", cl::Hidden,
95          cl::desc("Pop up a window to show isel dags as they are selected"));
96static cl::opt<bool>
97ViewSchedDAGs("view-sched-dags", cl::Hidden,
98          cl::desc("Pop up a window to show sched dags as they are processed"));
99static cl::opt<bool>
100ViewSUnitDAGs("view-sunit-dags", cl::Hidden,
101      cl::desc("Pop up a window to show SUnit dags after they are processed"));
102#else
103static const bool ViewDAGCombine1 = false,
104                  ViewLegalizeTypesDAGs = false, ViewLegalizeDAGs = false,
105                  ViewDAGCombine2 = false,
106                  ViewDAGCombineLT = false,
107                  ViewISelDAGs = false, ViewSchedDAGs = false,
108                  ViewSUnitDAGs = false;
109#endif
110
111//===---------------------------------------------------------------------===//
112///
113/// RegisterScheduler class - Track the registration of instruction schedulers.
114///
115//===---------------------------------------------------------------------===//
116MachinePassRegistry RegisterScheduler::Registry;
117
118//===---------------------------------------------------------------------===//
119///
120/// ISHeuristic command line option for instruction schedulers.
121///
122//===---------------------------------------------------------------------===//
123static cl::opt<RegisterScheduler::FunctionPassCtor, false,
124               RegisterPassParser<RegisterScheduler> >
125ISHeuristic("pre-RA-sched",
126            cl::init(&createDefaultScheduler),
127            cl::desc("Instruction schedulers available (before register"
128                     " allocation):"));
129
130static RegisterScheduler
131defaultListDAGScheduler("default", "Best scheduler for the target",
132                        createDefaultScheduler);
133
134namespace llvm {
135  //===--------------------------------------------------------------------===//
136  /// createDefaultScheduler - This creates an instruction scheduler appropriate
137  /// for the target.
138  ScheduleDAGSDNodes* createDefaultScheduler(SelectionDAGISel *IS,
139                                             CodeGenOpt::Level OptLevel) {
140    const TargetLowering &TLI = IS->getTargetLowering();
141
142    if (OptLevel == CodeGenOpt::None)
143      return createFastDAGScheduler(IS, OptLevel);
144    if (TLI.getSchedulingPreference() == TargetLowering::SchedulingForLatency)
145      return createTDListDAGScheduler(IS, OptLevel);
146    assert(TLI.getSchedulingPreference() ==
147           TargetLowering::SchedulingForRegPressure && "Unknown sched type!");
148    return createBURRListDAGScheduler(IS, OptLevel);
149  }
150}
151
152// EmitInstrWithCustomInserter - This method should be implemented by targets
153// that mark instructions with the 'usesCustomInserter' flag.  These
154// instructions are special in various ways, which require special support to
155// insert.  The specified MachineInstr is created but not inserted into any
156// basic blocks, and this method is called to expand it into a sequence of
157// instructions, potentially also creating new basic blocks and control flow.
158// When new basic blocks are inserted and the edges from MBB to its successors
159// are modified, the method should insert pairs of <OldSucc, NewSucc> into the
160// DenseMap.
161MachineBasicBlock *TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
162                                                         MachineBasicBlock *MBB,
163                   DenseMap<MachineBasicBlock*, MachineBasicBlock*> *EM) const {
164#ifndef NDEBUG
165  dbgs() << "If a target marks an instruction with "
166          "'usesCustomInserter', it must implement "
167          "TargetLowering::EmitInstrWithCustomInserter!";
168#endif
169  llvm_unreachable(0);
170  return 0;
171}
172
173/// EmitLiveInCopy - Emit a copy for a live in physical register. If the
174/// physical register has only a single copy use, then coalesced the copy
175/// if possible.
176static void EmitLiveInCopy(MachineBasicBlock *MBB,
177                           MachineBasicBlock::iterator &InsertPos,
178                           unsigned VirtReg, unsigned PhysReg,
179                           const TargetRegisterClass *RC,
180                           DenseMap<MachineInstr*, unsigned> &CopyRegMap,
181                           const MachineRegisterInfo &MRI,
182                           const TargetRegisterInfo &TRI,
183                           const TargetInstrInfo &TII) {
184  unsigned NumUses = 0;
185  MachineInstr *UseMI = NULL;
186  for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(VirtReg),
187         UE = MRI.use_end(); UI != UE; ++UI) {
188    UseMI = &*UI;
189    if (++NumUses > 1)
190      break;
191  }
192
193  // If the number of uses is not one, or the use is not a move instruction,
194  // don't coalesce. Also, only coalesce away a virtual register to virtual
195  // register copy.
196  bool Coalesced = false;
197  unsigned SrcReg, DstReg, SrcSubReg, DstSubReg;
198  if (NumUses == 1 &&
199      TII.isMoveInstr(*UseMI, SrcReg, DstReg, SrcSubReg, DstSubReg) &&
200      TargetRegisterInfo::isVirtualRegister(DstReg)) {
201    VirtReg = DstReg;
202    Coalesced = true;
203  }
204
205  // Now find an ideal location to insert the copy.
206  MachineBasicBlock::iterator Pos = InsertPos;
207  while (Pos != MBB->begin()) {
208    MachineInstr *PrevMI = prior(Pos);
209    DenseMap<MachineInstr*, unsigned>::iterator RI = CopyRegMap.find(PrevMI);
210    // copyRegToReg might emit multiple instructions to do a copy.
211    unsigned CopyDstReg = (RI == CopyRegMap.end()) ? 0 : RI->second;
212    if (CopyDstReg && !TRI.regsOverlap(CopyDstReg, PhysReg))
213      // This is what the BB looks like right now:
214      // r1024 = mov r0
215      // ...
216      // r1    = mov r1024
217      //
218      // We want to insert "r1025 = mov r1". Inserting this copy below the
219      // move to r1024 makes it impossible for that move to be coalesced.
220      //
221      // r1025 = mov r1
222      // r1024 = mov r0
223      // ...
224      // r1    = mov 1024
225      // r2    = mov 1025
226      break; // Woot! Found a good location.
227    --Pos;
228  }
229
230  bool Emitted = TII.copyRegToReg(*MBB, Pos, VirtReg, PhysReg, RC, RC);
231  assert(Emitted && "Unable to issue a live-in copy instruction!\n");
232  (void) Emitted;
233
234  CopyRegMap.insert(std::make_pair(prior(Pos), VirtReg));
235  if (Coalesced) {
236    if (&*InsertPos == UseMI) ++InsertPos;
237    MBB->erase(UseMI);
238  }
239}
240
241/// EmitLiveInCopies - If this is the first basic block in the function,
242/// and if it has live ins that need to be copied into vregs, emit the
243/// copies into the block.
244static void EmitLiveInCopies(MachineBasicBlock *EntryMBB,
245                             const MachineRegisterInfo &MRI,
246                             const TargetRegisterInfo &TRI,
247                             const TargetInstrInfo &TII) {
248  if (SchedLiveInCopies) {
249    // Emit the copies at a heuristically-determined location in the block.
250    DenseMap<MachineInstr*, unsigned> CopyRegMap;
251    MachineBasicBlock::iterator InsertPos = EntryMBB->begin();
252    for (MachineRegisterInfo::livein_iterator LI = MRI.livein_begin(),
253           E = MRI.livein_end(); LI != E; ++LI)
254      if (LI->second) {
255        const TargetRegisterClass *RC = MRI.getRegClass(LI->second);
256        EmitLiveInCopy(EntryMBB, InsertPos, LI->second, LI->first,
257                       RC, CopyRegMap, MRI, TRI, TII);
258      }
259  } else {
260    // Emit the copies into the top of the block.
261    for (MachineRegisterInfo::livein_iterator LI = MRI.livein_begin(),
262           E = MRI.livein_end(); LI != E; ++LI)
263      if (LI->second) {
264        const TargetRegisterClass *RC = MRI.getRegClass(LI->second);
265        bool Emitted = TII.copyRegToReg(*EntryMBB, EntryMBB->begin(),
266                                        LI->second, LI->first, RC, RC);
267        assert(Emitted && "Unable to issue a live-in copy instruction!\n");
268        (void) Emitted;
269      }
270  }
271}
272
273//===----------------------------------------------------------------------===//
274// SelectionDAGISel code
275//===----------------------------------------------------------------------===//
276
277SelectionDAGISel::SelectionDAGISel(TargetMachine &tm, CodeGenOpt::Level OL) :
278  MachineFunctionPass(&ID), TM(tm), TLI(*tm.getTargetLowering()),
279  FuncInfo(new FunctionLoweringInfo(TLI)),
280  CurDAG(new SelectionDAG(TLI, *FuncInfo)),
281  SDB(new SelectionDAGBuilder(*CurDAG, TLI, *FuncInfo, OL)),
282  GFI(),
283  OptLevel(OL),
284  DAGSize(0)
285{}
286
287SelectionDAGISel::~SelectionDAGISel() {
288  delete SDB;
289  delete CurDAG;
290  delete FuncInfo;
291}
292
293unsigned SelectionDAGISel::MakeReg(EVT VT) {
294  return RegInfo->createVirtualRegister(TLI.getRegClassFor(VT));
295}
296
297void SelectionDAGISel::getAnalysisUsage(AnalysisUsage &AU) const {
298  AU.addRequired<AliasAnalysis>();
299  AU.addPreserved<AliasAnalysis>();
300  AU.addRequired<GCModuleInfo>();
301  AU.addPreserved<GCModuleInfo>();
302  AU.addRequired<DwarfWriter>();
303  AU.addPreserved<DwarfWriter>();
304  MachineFunctionPass::getAnalysisUsage(AU);
305}
306
307bool SelectionDAGISel::runOnMachineFunction(MachineFunction &mf) {
308  Function &Fn = *mf.getFunction();
309
310  // Do some sanity-checking on the command-line options.
311  assert((!EnableFastISelVerbose || EnableFastISel) &&
312         "-fast-isel-verbose requires -fast-isel");
313  assert((!EnableFastISelAbort || EnableFastISel) &&
314         "-fast-isel-abort requires -fast-isel");
315
316  // Get alias analysis for load/store combining.
317  AA = &getAnalysis<AliasAnalysis>();
318
319  MF = &mf;
320  const TargetInstrInfo &TII = *TM.getInstrInfo();
321  const TargetRegisterInfo &TRI = *TM.getRegisterInfo();
322
323  if (Fn.hasGC())
324    GFI = &getAnalysis<GCModuleInfo>().getFunctionInfo(Fn);
325  else
326    GFI = 0;
327  RegInfo = &MF->getRegInfo();
328  DEBUG(dbgs() << "\n\n\n=== " << Fn.getName() << "\n");
329
330  MachineModuleInfo *MMI = getAnalysisIfAvailable<MachineModuleInfo>();
331  DwarfWriter *DW = getAnalysisIfAvailable<DwarfWriter>();
332  CurDAG->init(*MF, MMI, DW);
333  FuncInfo->set(Fn, *MF, EnableFastISel);
334  SDB->init(GFI, *AA);
335
336  for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
337    if (InvokeInst *Invoke = dyn_cast<InvokeInst>(I->getTerminator()))
338      // Mark landing pad.
339      FuncInfo->MBBMap[Invoke->getSuccessor(1)]->setIsLandingPad();
340
341  SelectAllBasicBlocks(Fn, *MF, MMI, DW, TII);
342
343  // If the first basic block in the function has live ins that need to be
344  // copied into vregs, emit the copies into the top of the block before
345  // emitting the code for the block.
346  EmitLiveInCopies(MF->begin(), *RegInfo, TRI, TII);
347
348  // Add function live-ins to entry block live-in set.
349  for (MachineRegisterInfo::livein_iterator I = RegInfo->livein_begin(),
350         E = RegInfo->livein_end(); I != E; ++I)
351    MF->begin()->addLiveIn(I->first);
352
353#ifndef NDEBUG
354  assert(FuncInfo->CatchInfoFound.size() == FuncInfo->CatchInfoLost.size() &&
355         "Not all catch info was assigned to a landing pad!");
356#endif
357
358  FuncInfo->clear();
359
360  return true;
361}
362
363/// SetDebugLoc - Update MF's and SDB's DebugLocs if debug information is
364/// attached with this instruction.
365static void SetDebugLoc(unsigned MDDbgKind, Instruction *I,
366                        SelectionDAGBuilder *SDB,
367                        FastISel *FastIS, MachineFunction *MF) {
368  if (isa<DbgInfoIntrinsic>(I)) return;
369
370  if (MDNode *Dbg = I->getMetadata(MDDbgKind)) {
371    DILocation DILoc(Dbg);
372    DebugLoc Loc = ExtractDebugLocation(DILoc, MF->getDebugLocInfo());
373
374    SDB->setCurDebugLoc(Loc);
375
376    if (FastIS)
377      FastIS->setCurDebugLoc(Loc);
378
379    // If the function doesn't have a default debug location yet, set
380    // it. This is kind of a hack.
381    if (MF->getDefaultDebugLoc().isUnknown())
382      MF->setDefaultDebugLoc(Loc);
383  }
384}
385
386/// ResetDebugLoc - Set MF's and SDB's DebugLocs to Unknown.
387static void ResetDebugLoc(SelectionDAGBuilder *SDB, FastISel *FastIS) {
388  SDB->setCurDebugLoc(DebugLoc::getUnknownLoc());
389  if (FastIS)
390    FastIS->setCurDebugLoc(DebugLoc::getUnknownLoc());
391}
392
393void SelectionDAGISel::SelectBasicBlock(BasicBlock *LLVMBB,
394                                        BasicBlock::iterator Begin,
395                                        BasicBlock::iterator End,
396                                        bool &HadTailCall) {
397  SDB->setCurrentBasicBlock(BB);
398  unsigned MDDbgKind = LLVMBB->getContext().getMDKindID("dbg");
399
400  // Lower all of the non-terminator instructions. If a call is emitted
401  // as a tail call, cease emitting nodes for this block.
402  for (BasicBlock::iterator I = Begin; I != End && !SDB->HasTailCall; ++I) {
403    SetDebugLoc(MDDbgKind, I, SDB, 0, MF);
404
405    if (!isa<TerminatorInst>(I)) {
406      SDB->visit(*I);
407
408      // Set the current debug location back to "unknown" so that it doesn't
409      // spuriously apply to subsequent instructions.
410      ResetDebugLoc(SDB, 0);
411    }
412  }
413
414  if (!SDB->HasTailCall) {
415    // Ensure that all instructions which are used outside of their defining
416    // blocks are available as virtual registers.  Invoke is handled elsewhere.
417    for (BasicBlock::iterator I = Begin; I != End; ++I)
418      if (!isa<PHINode>(I) && !isa<InvokeInst>(I))
419        SDB->CopyToExportRegsIfNeeded(I);
420
421    // Handle PHI nodes in successor blocks.
422    if (End == LLVMBB->end()) {
423      HandlePHINodesInSuccessorBlocks(LLVMBB);
424
425      // Lower the terminator after the copies are emitted.
426      SetDebugLoc(MDDbgKind, LLVMBB->getTerminator(), SDB, 0, MF);
427      SDB->visit(*LLVMBB->getTerminator());
428      ResetDebugLoc(SDB, 0);
429    }
430  }
431
432  // Make sure the root of the DAG is up-to-date.
433  CurDAG->setRoot(SDB->getControlRoot());
434
435  // Final step, emit the lowered DAG as machine code.
436  CodeGenAndEmitDAG();
437  HadTailCall = SDB->HasTailCall;
438  SDB->clear();
439}
440
441namespace {
442/// WorkListRemover - This class is a DAGUpdateListener that removes any deleted
443/// nodes from the worklist.
444class SDOPsWorkListRemover : public SelectionDAG::DAGUpdateListener {
445  SmallVector<SDNode*, 128> &Worklist;
446public:
447  SDOPsWorkListRemover(SmallVector<SDNode*, 128> &wl) : Worklist(wl) {}
448
449  virtual void NodeDeleted(SDNode *N, SDNode *E) {
450    Worklist.erase(std::remove(Worklist.begin(), Worklist.end(), N),
451                   Worklist.end());
452  }
453
454  virtual void NodeUpdated(SDNode *N) {
455    // Ignore updates.
456  }
457};
458}
459
460/// TrivialTruncElim - Eliminate some trivial nops that can result from
461/// ShrinkDemandedOps: (trunc (ext n)) -> n.
462static bool TrivialTruncElim(SDValue Op,
463                             TargetLowering::TargetLoweringOpt &TLO) {
464  SDValue N0 = Op.getOperand(0);
465  EVT VT = Op.getValueType();
466  if ((N0.getOpcode() == ISD::ZERO_EXTEND ||
467       N0.getOpcode() == ISD::SIGN_EXTEND ||
468       N0.getOpcode() == ISD::ANY_EXTEND) &&
469      N0.getOperand(0).getValueType() == VT) {
470    return TLO.CombineTo(Op, N0.getOperand(0));
471  }
472  return false;
473}
474
475/// ShrinkDemandedOps - A late transformation pass that shrink expressions
476/// using TargetLowering::TargetLoweringOpt::ShrinkDemandedOp. It converts
477/// x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free.
478void SelectionDAGISel::ShrinkDemandedOps() {
479  SmallVector<SDNode*, 128> Worklist;
480
481  // Add all the dag nodes to the worklist.
482  Worklist.reserve(CurDAG->allnodes_size());
483  for (SelectionDAG::allnodes_iterator I = CurDAG->allnodes_begin(),
484       E = CurDAG->allnodes_end(); I != E; ++I)
485    Worklist.push_back(I);
486
487  APInt Mask;
488  APInt KnownZero;
489  APInt KnownOne;
490
491  TargetLowering::TargetLoweringOpt TLO(*CurDAG, true);
492  while (!Worklist.empty()) {
493    SDNode *N = Worklist.pop_back_val();
494
495    if (N->use_empty() && N != CurDAG->getRoot().getNode()) {
496      CurDAG->DeleteNode(N);
497      continue;
498    }
499
500    // Run ShrinkDemandedOp on scalar binary operations.
501    if (N->getNumValues() == 1 &&
502        N->getValueType(0).isSimple() && N->getValueType(0).isInteger()) {
503      unsigned BitWidth = N->getValueType(0).getScalarType().getSizeInBits();
504      APInt Demanded = APInt::getAllOnesValue(BitWidth);
505      APInt KnownZero, KnownOne;
506      if (TLI.SimplifyDemandedBits(SDValue(N, 0), Demanded,
507                                   KnownZero, KnownOne, TLO) ||
508          (N->getOpcode() == ISD::TRUNCATE &&
509           TrivialTruncElim(SDValue(N, 0), TLO))) {
510        // Revisit the node.
511        Worklist.erase(std::remove(Worklist.begin(), Worklist.end(), N),
512                       Worklist.end());
513        Worklist.push_back(N);
514
515        // Replace the old value with the new one.
516        DEBUG(errs() << "\nReplacing ";
517              TLO.Old.getNode()->dump(CurDAG);
518              errs() << "\nWith: ";
519              TLO.New.getNode()->dump(CurDAG);
520              errs() << '\n');
521
522        Worklist.push_back(TLO.New.getNode());
523
524        SDOPsWorkListRemover DeadNodes(Worklist);
525        CurDAG->ReplaceAllUsesOfValueWith(TLO.Old, TLO.New, &DeadNodes);
526
527        if (TLO.Old.getNode()->use_empty()) {
528          for (unsigned i = 0, e = TLO.Old.getNode()->getNumOperands();
529               i != e; ++i) {
530            SDNode *OpNode = TLO.Old.getNode()->getOperand(i).getNode();
531            if (OpNode->hasOneUse()) {
532              Worklist.erase(std::remove(Worklist.begin(), Worklist.end(),
533                                         OpNode), Worklist.end());
534              Worklist.push_back(OpNode);
535            }
536          }
537
538          Worklist.erase(std::remove(Worklist.begin(), Worklist.end(),
539                                     TLO.Old.getNode()), Worklist.end());
540          CurDAG->DeleteNode(TLO.Old.getNode());
541        }
542      }
543    }
544  }
545}
546
547void SelectionDAGISel::ComputeLiveOutVRegInfo() {
548  SmallPtrSet<SDNode*, 128> VisitedNodes;
549  SmallVector<SDNode*, 128> Worklist;
550
551  Worklist.push_back(CurDAG->getRoot().getNode());
552
553  APInt Mask;
554  APInt KnownZero;
555  APInt KnownOne;
556
557  do {
558    SDNode *N = Worklist.pop_back_val();
559
560    // If we've already seen this node, ignore it.
561    if (!VisitedNodes.insert(N))
562      continue;
563
564    // Otherwise, add all chain operands to the worklist.
565    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
566      if (N->getOperand(i).getValueType() == MVT::Other)
567        Worklist.push_back(N->getOperand(i).getNode());
568
569    // If this is a CopyToReg with a vreg dest, process it.
570    if (N->getOpcode() != ISD::CopyToReg)
571      continue;
572
573    unsigned DestReg = cast<RegisterSDNode>(N->getOperand(1))->getReg();
574    if (!TargetRegisterInfo::isVirtualRegister(DestReg))
575      continue;
576
577    // Ignore non-scalar or non-integer values.
578    SDValue Src = N->getOperand(2);
579    EVT SrcVT = Src.getValueType();
580    if (!SrcVT.isInteger() || SrcVT.isVector())
581      continue;
582
583    unsigned NumSignBits = CurDAG->ComputeNumSignBits(Src);
584    Mask = APInt::getAllOnesValue(SrcVT.getSizeInBits());
585    CurDAG->ComputeMaskedBits(Src, Mask, KnownZero, KnownOne);
586
587    // Only install this information if it tells us something.
588    if (NumSignBits != 1 || KnownZero != 0 || KnownOne != 0) {
589      DestReg -= TargetRegisterInfo::FirstVirtualRegister;
590      if (DestReg >= FuncInfo->LiveOutRegInfo.size())
591        FuncInfo->LiveOutRegInfo.resize(DestReg+1);
592      FunctionLoweringInfo::LiveOutInfo &LOI =
593        FuncInfo->LiveOutRegInfo[DestReg];
594      LOI.NumSignBits = NumSignBits;
595      LOI.KnownOne = KnownOne;
596      LOI.KnownZero = KnownZero;
597    }
598  } while (!Worklist.empty());
599}
600
601void SelectionDAGISel::CodeGenAndEmitDAG() {
602  std::string GroupName;
603  if (TimePassesIsEnabled)
604    GroupName = "Instruction Selection and Scheduling";
605  std::string BlockName;
606  if (ViewDAGCombine1 || ViewLegalizeTypesDAGs || ViewLegalizeDAGs ||
607      ViewDAGCombine2 || ViewDAGCombineLT || ViewISelDAGs || ViewSchedDAGs ||
608      ViewSUnitDAGs)
609    BlockName = MF->getFunction()->getNameStr() + ":" +
610                BB->getBasicBlock()->getNameStr();
611
612  DEBUG(dbgs() << "Initial selection DAG:\n");
613  DEBUG(CurDAG->dump());
614
615  if (ViewDAGCombine1) CurDAG->viewGraph("dag-combine1 input for " + BlockName);
616
617  // Run the DAG combiner in pre-legalize mode.
618  if (TimePassesIsEnabled) {
619    NamedRegionTimer T("DAG Combining 1", GroupName);
620    CurDAG->Combine(Unrestricted, *AA, OptLevel);
621  } else {
622    CurDAG->Combine(Unrestricted, *AA, OptLevel);
623  }
624
625  DEBUG(dbgs() << "Optimized lowered selection DAG:\n");
626  DEBUG(CurDAG->dump());
627
628  // Second step, hack on the DAG until it only uses operations and types that
629  // the target supports.
630  if (ViewLegalizeTypesDAGs) CurDAG->viewGraph("legalize-types input for " +
631                                               BlockName);
632
633  bool Changed;
634  if (TimePassesIsEnabled) {
635    NamedRegionTimer T("Type Legalization", GroupName);
636    Changed = CurDAG->LegalizeTypes();
637  } else {
638    Changed = CurDAG->LegalizeTypes();
639  }
640
641  DEBUG(dbgs() << "Type-legalized selection DAG:\n");
642  DEBUG(CurDAG->dump());
643
644  if (Changed) {
645    if (ViewDAGCombineLT)
646      CurDAG->viewGraph("dag-combine-lt input for " + BlockName);
647
648    // Run the DAG combiner in post-type-legalize mode.
649    if (TimePassesIsEnabled) {
650      NamedRegionTimer T("DAG Combining after legalize types", GroupName);
651      CurDAG->Combine(NoIllegalTypes, *AA, OptLevel);
652    } else {
653      CurDAG->Combine(NoIllegalTypes, *AA, OptLevel);
654    }
655
656    DEBUG(dbgs() << "Optimized type-legalized selection DAG:\n");
657    DEBUG(CurDAG->dump());
658  }
659
660  if (TimePassesIsEnabled) {
661    NamedRegionTimer T("Vector Legalization", GroupName);
662    Changed = CurDAG->LegalizeVectors();
663  } else {
664    Changed = CurDAG->LegalizeVectors();
665  }
666
667  if (Changed) {
668    if (TimePassesIsEnabled) {
669      NamedRegionTimer T("Type Legalization 2", GroupName);
670      CurDAG->LegalizeTypes();
671    } else {
672      CurDAG->LegalizeTypes();
673    }
674
675    if (ViewDAGCombineLT)
676      CurDAG->viewGraph("dag-combine-lv input for " + BlockName);
677
678    // Run the DAG combiner in post-type-legalize mode.
679    if (TimePassesIsEnabled) {
680      NamedRegionTimer T("DAG Combining after legalize vectors", GroupName);
681      CurDAG->Combine(NoIllegalOperations, *AA, OptLevel);
682    } else {
683      CurDAG->Combine(NoIllegalOperations, *AA, OptLevel);
684    }
685
686    DEBUG(dbgs() << "Optimized vector-legalized selection DAG:\n");
687    DEBUG(CurDAG->dump());
688  }
689
690  if (ViewLegalizeDAGs) CurDAG->viewGraph("legalize input for " + BlockName);
691
692  if (TimePassesIsEnabled) {
693    NamedRegionTimer T("DAG Legalization", GroupName);
694    CurDAG->Legalize(OptLevel);
695  } else {
696    CurDAG->Legalize(OptLevel);
697  }
698
699  DEBUG(dbgs() << "Legalized selection DAG:\n");
700  DEBUG(CurDAG->dump());
701
702  if (ViewDAGCombine2) CurDAG->viewGraph("dag-combine2 input for " + BlockName);
703
704  // Run the DAG combiner in post-legalize mode.
705  if (TimePassesIsEnabled) {
706    NamedRegionTimer T("DAG Combining 2", GroupName);
707    CurDAG->Combine(NoIllegalOperations, *AA, OptLevel);
708  } else {
709    CurDAG->Combine(NoIllegalOperations, *AA, OptLevel);
710  }
711
712  DEBUG(dbgs() << "Optimized legalized selection DAG:\n");
713  DEBUG(CurDAG->dump());
714
715  if (ViewISelDAGs) CurDAG->viewGraph("isel input for " + BlockName);
716
717  if (OptLevel != CodeGenOpt::None) {
718    ShrinkDemandedOps();
719    ComputeLiveOutVRegInfo();
720  }
721
722  // Third, instruction select all of the operations to machine code, adding the
723  // code to the MachineBasicBlock.
724  if (TimePassesIsEnabled) {
725    NamedRegionTimer T("Instruction Selection", GroupName);
726    InstructionSelect();
727  } else {
728    InstructionSelect();
729  }
730
731  DEBUG(dbgs() << "Selected selection DAG:\n");
732  DEBUG(CurDAG->dump());
733
734  if (ViewSchedDAGs) CurDAG->viewGraph("scheduler input for " + BlockName);
735
736  // Schedule machine code.
737  ScheduleDAGSDNodes *Scheduler = CreateScheduler();
738  if (TimePassesIsEnabled) {
739    NamedRegionTimer T("Instruction Scheduling", GroupName);
740    Scheduler->Run(CurDAG, BB, BB->end());
741  } else {
742    Scheduler->Run(CurDAG, BB, BB->end());
743  }
744
745  if (ViewSUnitDAGs) Scheduler->viewGraph();
746
747  // Emit machine code to BB.  This can change 'BB' to the last block being
748  // inserted into.
749  if (TimePassesIsEnabled) {
750    NamedRegionTimer T("Instruction Creation", GroupName);
751    BB = Scheduler->EmitSchedule(&SDB->EdgeMapping);
752  } else {
753    BB = Scheduler->EmitSchedule(&SDB->EdgeMapping);
754  }
755
756  // Free the scheduler state.
757  if (TimePassesIsEnabled) {
758    NamedRegionTimer T("Instruction Scheduling Cleanup", GroupName);
759    delete Scheduler;
760  } else {
761    delete Scheduler;
762  }
763
764  DEBUG(dbgs() << "Selected machine code:\n");
765  DEBUG(BB->dump());
766}
767
768void SelectionDAGISel::SelectAllBasicBlocks(Function &Fn,
769                                            MachineFunction &MF,
770                                            MachineModuleInfo *MMI,
771                                            DwarfWriter *DW,
772                                            const TargetInstrInfo &TII) {
773  // Initialize the Fast-ISel state, if needed.
774  FastISel *FastIS = 0;
775  if (EnableFastISel)
776    FastIS = TLI.createFastISel(MF, MMI, DW,
777                                FuncInfo->ValueMap,
778                                FuncInfo->MBBMap,
779                                FuncInfo->StaticAllocaMap
780#ifndef NDEBUG
781                                , FuncInfo->CatchInfoLost
782#endif
783                                );
784
785  unsigned MDDbgKind = Fn.getContext().getMDKindID("dbg");
786
787  // Iterate over all basic blocks in the function.
788  for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I) {
789    BasicBlock *LLVMBB = &*I;
790    BB = FuncInfo->MBBMap[LLVMBB];
791
792    BasicBlock::iterator const Begin = LLVMBB->begin();
793    BasicBlock::iterator const End = LLVMBB->end();
794    BasicBlock::iterator BI = Begin;
795
796    // Lower any arguments needed in this block if this is the entry block.
797    bool SuppressFastISel = false;
798    if (LLVMBB == &Fn.getEntryBlock()) {
799      LowerArguments(LLVMBB);
800
801      // If any of the arguments has the byval attribute, forgo
802      // fast-isel in the entry block.
803      if (FastIS) {
804        unsigned j = 1;
805        for (Function::arg_iterator I = Fn.arg_begin(), E = Fn.arg_end();
806             I != E; ++I, ++j)
807          if (Fn.paramHasAttr(j, Attribute::ByVal)) {
808            if (EnableFastISelVerbose || EnableFastISelAbort)
809              dbgs() << "FastISel skips entry block due to byval argument\n";
810            SuppressFastISel = true;
811            break;
812          }
813      }
814    }
815
816    if (MMI && BB->isLandingPad()) {
817      // Add a label to mark the beginning of the landing pad.  Deletion of the
818      // landing pad can thus be detected via the MachineModuleInfo.
819      unsigned LabelID = MMI->addLandingPad(BB);
820
821      const TargetInstrDesc &II = TII.get(TargetOpcode::EH_LABEL);
822      BuildMI(BB, SDB->getCurDebugLoc(), II).addImm(LabelID);
823
824      // Mark exception register as live in.
825      unsigned Reg = TLI.getExceptionAddressRegister();
826      if (Reg) BB->addLiveIn(Reg);
827
828      // Mark exception selector register as live in.
829      Reg = TLI.getExceptionSelectorRegister();
830      if (Reg) BB->addLiveIn(Reg);
831
832      // FIXME: Hack around an exception handling flaw (PR1508): the personality
833      // function and list of typeids logically belong to the invoke (or, if you
834      // like, the basic block containing the invoke), and need to be associated
835      // with it in the dwarf exception handling tables.  Currently however the
836      // information is provided by an intrinsic (eh.selector) that can be moved
837      // to unexpected places by the optimizers: if the unwind edge is critical,
838      // then breaking it can result in the intrinsics being in the successor of
839      // the landing pad, not the landing pad itself.  This results
840      // in exceptions not being caught because no typeids are associated with
841      // the invoke.  This may not be the only way things can go wrong, but it
842      // is the only way we try to work around for the moment.
843      BranchInst *Br = dyn_cast<BranchInst>(LLVMBB->getTerminator());
844
845      if (Br && Br->isUnconditional()) { // Critical edge?
846        BasicBlock::iterator I, E;
847        for (I = LLVMBB->begin(), E = --LLVMBB->end(); I != E; ++I)
848          if (isa<EHSelectorInst>(I))
849            break;
850
851        if (I == E)
852          // No catch info found - try to extract some from the successor.
853          CopyCatchInfo(Br->getSuccessor(0), LLVMBB, MMI, *FuncInfo);
854      }
855    }
856
857    // Before doing SelectionDAG ISel, see if FastISel has been requested.
858    if (FastIS && !SuppressFastISel) {
859      // Emit code for any incoming arguments. This must happen before
860      // beginning FastISel on the entry block.
861      if (LLVMBB == &Fn.getEntryBlock()) {
862        CurDAG->setRoot(SDB->getControlRoot());
863        CodeGenAndEmitDAG();
864        SDB->clear();
865      }
866      FastIS->startNewBlock(BB);
867      // Do FastISel on as many instructions as possible.
868      for (; BI != End; ++BI) {
869        // Just before the terminator instruction, insert instructions to
870        // feed PHI nodes in successor blocks.
871        if (isa<TerminatorInst>(BI))
872          if (!HandlePHINodesInSuccessorBlocksFast(LLVMBB, FastIS)) {
873            ResetDebugLoc(SDB, FastIS);
874            if (EnableFastISelVerbose || EnableFastISelAbort) {
875              dbgs() << "FastISel miss: ";
876              BI->dump();
877            }
878            assert(!EnableFastISelAbort &&
879                   "FastISel didn't handle a PHI in a successor");
880            break;
881          }
882
883        SetDebugLoc(MDDbgKind, BI, SDB, FastIS, &MF);
884
885        // Try to select the instruction with FastISel.
886        if (FastIS->SelectInstruction(BI)) {
887          ResetDebugLoc(SDB, FastIS);
888          continue;
889        }
890
891        // Clear out the debug location so that it doesn't carry over to
892        // unrelated instructions.
893        ResetDebugLoc(SDB, FastIS);
894
895        // Then handle certain instructions as single-LLVM-Instruction blocks.
896        if (isa<CallInst>(BI)) {
897          if (EnableFastISelVerbose || EnableFastISelAbort) {
898            dbgs() << "FastISel missed call: ";
899            BI->dump();
900          }
901
902          if (!BI->getType()->isVoidTy()) {
903            unsigned &R = FuncInfo->ValueMap[BI];
904            if (!R)
905              R = FuncInfo->CreateRegForValue(BI);
906          }
907
908          bool HadTailCall = false;
909          SelectBasicBlock(LLVMBB, BI, llvm::next(BI), HadTailCall);
910
911          // If the call was emitted as a tail call, we're done with the block.
912          if (HadTailCall) {
913            BI = End;
914            break;
915          }
916
917          // If the instruction was codegen'd with multiple blocks,
918          // inform the FastISel object where to resume inserting.
919          FastIS->setCurrentBlock(BB);
920          continue;
921        }
922
923        // Otherwise, give up on FastISel for the rest of the block.
924        // For now, be a little lenient about non-branch terminators.
925        if (!isa<TerminatorInst>(BI) || isa<BranchInst>(BI)) {
926          if (EnableFastISelVerbose || EnableFastISelAbort) {
927            dbgs() << "FastISel miss: ";
928            BI->dump();
929          }
930          if (EnableFastISelAbort)
931            // The "fast" selector couldn't handle something and bailed.
932            // For the purpose of debugging, just abort.
933            llvm_unreachable("FastISel didn't select the entire block");
934        }
935        break;
936      }
937    }
938
939    // Run SelectionDAG instruction selection on the remainder of the block
940    // not handled by FastISel. If FastISel is not run, this is the entire
941    // block.
942    if (BI != End) {
943      bool HadTailCall;
944      SelectBasicBlock(LLVMBB, BI, End, HadTailCall);
945    }
946
947    FinishBasicBlock();
948  }
949
950  delete FastIS;
951}
952
953void
954SelectionDAGISel::FinishBasicBlock() {
955
956  DEBUG(dbgs() << "Target-post-processed machine code:\n");
957  DEBUG(BB->dump());
958
959  DEBUG(dbgs() << "Total amount of phi nodes to update: "
960               << SDB->PHINodesToUpdate.size() << "\n");
961  DEBUG(for (unsigned i = 0, e = SDB->PHINodesToUpdate.size(); i != e; ++i)
962          dbgs() << "Node " << i << " : ("
963                 << SDB->PHINodesToUpdate[i].first
964                 << ", " << SDB->PHINodesToUpdate[i].second << ")\n");
965
966  // Next, now that we know what the last MBB the LLVM BB expanded is, update
967  // PHI nodes in successors.
968  if (SDB->SwitchCases.empty() &&
969      SDB->JTCases.empty() &&
970      SDB->BitTestCases.empty()) {
971    for (unsigned i = 0, e = SDB->PHINodesToUpdate.size(); i != e; ++i) {
972      MachineInstr *PHI = SDB->PHINodesToUpdate[i].first;
973      assert(PHI->isPHI() &&
974             "This is not a machine PHI node that we are updating!");
975      PHI->addOperand(MachineOperand::CreateReg(SDB->PHINodesToUpdate[i].second,
976                                                false));
977      PHI->addOperand(MachineOperand::CreateMBB(BB));
978    }
979    SDB->PHINodesToUpdate.clear();
980    return;
981  }
982
983  for (unsigned i = 0, e = SDB->BitTestCases.size(); i != e; ++i) {
984    // Lower header first, if it wasn't already lowered
985    if (!SDB->BitTestCases[i].Emitted) {
986      // Set the current basic block to the mbb we wish to insert the code into
987      BB = SDB->BitTestCases[i].Parent;
988      SDB->setCurrentBasicBlock(BB);
989      // Emit the code
990      SDB->visitBitTestHeader(SDB->BitTestCases[i]);
991      CurDAG->setRoot(SDB->getRoot());
992      CodeGenAndEmitDAG();
993      SDB->clear();
994    }
995
996    for (unsigned j = 0, ej = SDB->BitTestCases[i].Cases.size(); j != ej; ++j) {
997      // Set the current basic block to the mbb we wish to insert the code into
998      BB = SDB->BitTestCases[i].Cases[j].ThisBB;
999      SDB->setCurrentBasicBlock(BB);
1000      // Emit the code
1001      if (j+1 != ej)
1002        SDB->visitBitTestCase(SDB->BitTestCases[i].Cases[j+1].ThisBB,
1003                              SDB->BitTestCases[i].Reg,
1004                              SDB->BitTestCases[i].Cases[j]);
1005      else
1006        SDB->visitBitTestCase(SDB->BitTestCases[i].Default,
1007                              SDB->BitTestCases[i].Reg,
1008                              SDB->BitTestCases[i].Cases[j]);
1009
1010
1011      CurDAG->setRoot(SDB->getRoot());
1012      CodeGenAndEmitDAG();
1013      SDB->clear();
1014    }
1015
1016    // Update PHI Nodes
1017    for (unsigned pi = 0, pe = SDB->PHINodesToUpdate.size(); pi != pe; ++pi) {
1018      MachineInstr *PHI = SDB->PHINodesToUpdate[pi].first;
1019      MachineBasicBlock *PHIBB = PHI->getParent();
1020      assert(PHI->isPHI() &&
1021             "This is not a machine PHI node that we are updating!");
1022      // This is "default" BB. We have two jumps to it. From "header" BB and
1023      // from last "case" BB.
1024      if (PHIBB == SDB->BitTestCases[i].Default) {
1025        PHI->addOperand(MachineOperand::
1026                        CreateReg(SDB->PHINodesToUpdate[pi].second, false));
1027        PHI->addOperand(MachineOperand::CreateMBB(SDB->BitTestCases[i].Parent));
1028        PHI->addOperand(MachineOperand::
1029                        CreateReg(SDB->PHINodesToUpdate[pi].second, false));
1030        PHI->addOperand(MachineOperand::CreateMBB(SDB->BitTestCases[i].Cases.
1031                                                  back().ThisBB));
1032      }
1033      // One of "cases" BB.
1034      for (unsigned j = 0, ej = SDB->BitTestCases[i].Cases.size();
1035           j != ej; ++j) {
1036        MachineBasicBlock* cBB = SDB->BitTestCases[i].Cases[j].ThisBB;
1037        if (cBB->isSuccessor(PHIBB)) {
1038          PHI->addOperand(MachineOperand::
1039                          CreateReg(SDB->PHINodesToUpdate[pi].second, false));
1040          PHI->addOperand(MachineOperand::CreateMBB(cBB));
1041        }
1042      }
1043    }
1044  }
1045  SDB->BitTestCases.clear();
1046
1047  // If the JumpTable record is filled in, then we need to emit a jump table.
1048  // Updating the PHI nodes is tricky in this case, since we need to determine
1049  // whether the PHI is a successor of the range check MBB or the jump table MBB
1050  for (unsigned i = 0, e = SDB->JTCases.size(); i != e; ++i) {
1051    // Lower header first, if it wasn't already lowered
1052    if (!SDB->JTCases[i].first.Emitted) {
1053      // Set the current basic block to the mbb we wish to insert the code into
1054      BB = SDB->JTCases[i].first.HeaderBB;
1055      SDB->setCurrentBasicBlock(BB);
1056      // Emit the code
1057      SDB->visitJumpTableHeader(SDB->JTCases[i].second, SDB->JTCases[i].first);
1058      CurDAG->setRoot(SDB->getRoot());
1059      CodeGenAndEmitDAG();
1060      SDB->clear();
1061    }
1062
1063    // Set the current basic block to the mbb we wish to insert the code into
1064    BB = SDB->JTCases[i].second.MBB;
1065    SDB->setCurrentBasicBlock(BB);
1066    // Emit the code
1067    SDB->visitJumpTable(SDB->JTCases[i].second);
1068    CurDAG->setRoot(SDB->getRoot());
1069    CodeGenAndEmitDAG();
1070    SDB->clear();
1071
1072    // Update PHI Nodes
1073    for (unsigned pi = 0, pe = SDB->PHINodesToUpdate.size(); pi != pe; ++pi) {
1074      MachineInstr *PHI = SDB->PHINodesToUpdate[pi].first;
1075      MachineBasicBlock *PHIBB = PHI->getParent();
1076      assert(PHI->isPHI() &&
1077             "This is not a machine PHI node that we are updating!");
1078      // "default" BB. We can go there only from header BB.
1079      if (PHIBB == SDB->JTCases[i].second.Default) {
1080        PHI->addOperand
1081          (MachineOperand::CreateReg(SDB->PHINodesToUpdate[pi].second, false));
1082        PHI->addOperand
1083          (MachineOperand::CreateMBB(SDB->JTCases[i].first.HeaderBB));
1084      }
1085      // JT BB. Just iterate over successors here
1086      if (BB->isSuccessor(PHIBB)) {
1087        PHI->addOperand
1088          (MachineOperand::CreateReg(SDB->PHINodesToUpdate[pi].second, false));
1089        PHI->addOperand(MachineOperand::CreateMBB(BB));
1090      }
1091    }
1092  }
1093  SDB->JTCases.clear();
1094
1095  // If the switch block involved a branch to one of the actual successors, we
1096  // need to update PHI nodes in that block.
1097  for (unsigned i = 0, e = SDB->PHINodesToUpdate.size(); i != e; ++i) {
1098    MachineInstr *PHI = SDB->PHINodesToUpdate[i].first;
1099    assert(PHI->isPHI() &&
1100           "This is not a machine PHI node that we are updating!");
1101    if (BB->isSuccessor(PHI->getParent())) {
1102      PHI->addOperand(MachineOperand::CreateReg(SDB->PHINodesToUpdate[i].second,
1103                                                false));
1104      PHI->addOperand(MachineOperand::CreateMBB(BB));
1105    }
1106  }
1107
1108  // If we generated any switch lowering information, build and codegen any
1109  // additional DAGs necessary.
1110  for (unsigned i = 0, e = SDB->SwitchCases.size(); i != e; ++i) {
1111    // Set the current basic block to the mbb we wish to insert the code into
1112    MachineBasicBlock *ThisBB = BB = SDB->SwitchCases[i].ThisBB;
1113    SDB->setCurrentBasicBlock(BB);
1114
1115    // Emit the code
1116    SDB->visitSwitchCase(SDB->SwitchCases[i]);
1117    CurDAG->setRoot(SDB->getRoot());
1118    CodeGenAndEmitDAG();
1119
1120    // Handle any PHI nodes in successors of this chunk, as if we were coming
1121    // from the original BB before switch expansion.  Note that PHI nodes can
1122    // occur multiple times in PHINodesToUpdate.  We have to be very careful to
1123    // handle them the right number of times.
1124    while ((BB = SDB->SwitchCases[i].TrueBB)) {  // Handle LHS and RHS.
1125      // If new BB's are created during scheduling, the edges may have been
1126      // updated. That is, the edge from ThisBB to BB may have been split and
1127      // BB's predecessor is now another block.
1128      DenseMap<MachineBasicBlock*, MachineBasicBlock*>::iterator EI =
1129        SDB->EdgeMapping.find(BB);
1130      if (EI != SDB->EdgeMapping.end())
1131        ThisBB = EI->second;
1132
1133      // BB may have been removed from the CFG if a branch was constant folded.
1134      if (ThisBB->isSuccessor(BB)) {
1135        for (MachineBasicBlock::iterator Phi = BB->begin();
1136             Phi != BB->end() && Phi->isPHI();
1137             ++Phi) {
1138          // This value for this PHI node is recorded in PHINodesToUpdate.
1139          for (unsigned pn = 0; ; ++pn) {
1140            assert(pn != SDB->PHINodesToUpdate.size() &&
1141                   "Didn't find PHI entry!");
1142            if (SDB->PHINodesToUpdate[pn].first == Phi) {
1143              Phi->addOperand(MachineOperand::
1144                              CreateReg(SDB->PHINodesToUpdate[pn].second,
1145                                        false));
1146              Phi->addOperand(MachineOperand::CreateMBB(ThisBB));
1147              break;
1148            }
1149          }
1150        }
1151      }
1152
1153      // Don't process RHS if same block as LHS.
1154      if (BB == SDB->SwitchCases[i].FalseBB)
1155        SDB->SwitchCases[i].FalseBB = 0;
1156
1157      // If we haven't handled the RHS, do so now.  Otherwise, we're done.
1158      SDB->SwitchCases[i].TrueBB = SDB->SwitchCases[i].FalseBB;
1159      SDB->SwitchCases[i].FalseBB = 0;
1160    }
1161    assert(SDB->SwitchCases[i].TrueBB == 0 && SDB->SwitchCases[i].FalseBB == 0);
1162    SDB->clear();
1163  }
1164  SDB->SwitchCases.clear();
1165
1166  SDB->PHINodesToUpdate.clear();
1167}
1168
1169
1170/// Create the scheduler. If a specific scheduler was specified
1171/// via the SchedulerRegistry, use it, otherwise select the
1172/// one preferred by the target.
1173///
1174ScheduleDAGSDNodes *SelectionDAGISel::CreateScheduler() {
1175  RegisterScheduler::FunctionPassCtor Ctor = RegisterScheduler::getDefault();
1176
1177  if (!Ctor) {
1178    Ctor = ISHeuristic;
1179    RegisterScheduler::setDefault(Ctor);
1180  }
1181
1182  return Ctor(this, OptLevel);
1183}
1184
1185ScheduleHazardRecognizer *SelectionDAGISel::CreateTargetHazardRecognizer() {
1186  return new ScheduleHazardRecognizer();
1187}
1188
1189//===----------------------------------------------------------------------===//
1190// Helper functions used by the generated instruction selector.
1191//===----------------------------------------------------------------------===//
1192// Calls to these methods are generated by tblgen.
1193
1194/// CheckAndMask - The isel is trying to match something like (and X, 255).  If
1195/// the dag combiner simplified the 255, we still want to match.  RHS is the
1196/// actual value in the DAG on the RHS of an AND, and DesiredMaskS is the value
1197/// specified in the .td file (e.g. 255).
1198bool SelectionDAGISel::CheckAndMask(SDValue LHS, ConstantSDNode *RHS,
1199                                    int64_t DesiredMaskS) const {
1200  const APInt &ActualMask = RHS->getAPIntValue();
1201  const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
1202
1203  // If the actual mask exactly matches, success!
1204  if (ActualMask == DesiredMask)
1205    return true;
1206
1207  // If the actual AND mask is allowing unallowed bits, this doesn't match.
1208  if (ActualMask.intersects(~DesiredMask))
1209    return false;
1210
1211  // Otherwise, the DAG Combiner may have proven that the value coming in is
1212  // either already zero or is not demanded.  Check for known zero input bits.
1213  APInt NeededMask = DesiredMask & ~ActualMask;
1214  if (CurDAG->MaskedValueIsZero(LHS, NeededMask))
1215    return true;
1216
1217  // TODO: check to see if missing bits are just not demanded.
1218
1219  // Otherwise, this pattern doesn't match.
1220  return false;
1221}
1222
1223/// CheckOrMask - The isel is trying to match something like (or X, 255).  If
1224/// the dag combiner simplified the 255, we still want to match.  RHS is the
1225/// actual value in the DAG on the RHS of an OR, and DesiredMaskS is the value
1226/// specified in the .td file (e.g. 255).
1227bool SelectionDAGISel::CheckOrMask(SDValue LHS, ConstantSDNode *RHS,
1228                                   int64_t DesiredMaskS) const {
1229  const APInt &ActualMask = RHS->getAPIntValue();
1230  const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
1231
1232  // If the actual mask exactly matches, success!
1233  if (ActualMask == DesiredMask)
1234    return true;
1235
1236  // If the actual AND mask is allowing unallowed bits, this doesn't match.
1237  if (ActualMask.intersects(~DesiredMask))
1238    return false;
1239
1240  // Otherwise, the DAG Combiner may have proven that the value coming in is
1241  // either already zero or is not demanded.  Check for known zero input bits.
1242  APInt NeededMask = DesiredMask & ~ActualMask;
1243
1244  APInt KnownZero, KnownOne;
1245  CurDAG->ComputeMaskedBits(LHS, NeededMask, KnownZero, KnownOne);
1246
1247  // If all the missing bits in the or are already known to be set, match!
1248  if ((NeededMask & KnownOne) == NeededMask)
1249    return true;
1250
1251  // TODO: check to see if missing bits are just not demanded.
1252
1253  // Otherwise, this pattern doesn't match.
1254  return false;
1255}
1256
1257
1258/// SelectInlineAsmMemoryOperands - Calls to this are automatically generated
1259/// by tblgen.  Others should not call it.
1260void SelectionDAGISel::
1261SelectInlineAsmMemoryOperands(std::vector<SDValue> &Ops) {
1262  std::vector<SDValue> InOps;
1263  std::swap(InOps, Ops);
1264
1265  Ops.push_back(InOps[0]);  // input chain.
1266  Ops.push_back(InOps[1]);  // input asm string.
1267
1268  unsigned i = 2, e = InOps.size();
1269  if (InOps[e-1].getValueType() == MVT::Flag)
1270    --e;  // Don't process a flag operand if it is here.
1271
1272  while (i != e) {
1273    unsigned Flags = cast<ConstantSDNode>(InOps[i])->getZExtValue();
1274    if ((Flags & 7) != 4 /*MEM*/) {
1275      // Just skip over this operand, copying the operands verbatim.
1276      Ops.insert(Ops.end(), InOps.begin()+i,
1277                 InOps.begin()+i+InlineAsm::getNumOperandRegisters(Flags) + 1);
1278      i += InlineAsm::getNumOperandRegisters(Flags) + 1;
1279    } else {
1280      assert(InlineAsm::getNumOperandRegisters(Flags) == 1 &&
1281             "Memory operand with multiple values?");
1282      // Otherwise, this is a memory operand.  Ask the target to select it.
1283      std::vector<SDValue> SelOps;
1284      if (SelectInlineAsmMemoryOperand(InOps[i+1], 'm', SelOps)) {
1285        llvm_report_error("Could not match memory address.  Inline asm"
1286                          " failure!");
1287      }
1288
1289      // Add this to the output node.
1290      Ops.push_back(CurDAG->getTargetConstant(4/*MEM*/ | (SelOps.size()<< 3),
1291                                              MVT::i32));
1292      Ops.insert(Ops.end(), SelOps.begin(), SelOps.end());
1293      i += 2;
1294    }
1295  }
1296
1297  // Add the flag input back if present.
1298  if (e != InOps.size())
1299    Ops.push_back(InOps.back());
1300}
1301
1302/// findFlagUse - Return use of EVT::Flag value produced by the specified
1303/// SDNode.
1304///
1305static SDNode *findFlagUse(SDNode *N) {
1306  unsigned FlagResNo = N->getNumValues()-1;
1307  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
1308    SDUse &Use = I.getUse();
1309    if (Use.getResNo() == FlagResNo)
1310      return Use.getUser();
1311  }
1312  return NULL;
1313}
1314
1315/// findNonImmUse - Return true if "Use" is a non-immediate use of "Def".
1316/// This function recursively traverses up the operand chain, ignoring
1317/// certain nodes.
1318static bool findNonImmUse(SDNode *Use, SDNode* Def, SDNode *ImmedUse,
1319                          SDNode *Root,
1320                          SmallPtrSet<SDNode*, 16> &Visited) {
1321  if (Use->getNodeId() < Def->getNodeId() ||
1322      !Visited.insert(Use))
1323    return false;
1324
1325  for (unsigned i = 0, e = Use->getNumOperands(); i != e; ++i) {
1326    SDNode *N = Use->getOperand(i).getNode();
1327    if (N == Def) {
1328      if (Use == ImmedUse || Use == Root)
1329        continue;  // We are not looking for immediate use.
1330      assert(N != Root);
1331      return true;
1332    }
1333
1334    // Traverse up the operand chain.
1335    if (findNonImmUse(N, Def, ImmedUse, Root, Visited))
1336      return true;
1337  }
1338  return false;
1339}
1340
1341/// isNonImmUse - Start searching from Root up the DAG to check is Def can
1342/// be reached. Return true if that's the case. However, ignore direct uses
1343/// by ImmedUse (which would be U in the example illustrated in
1344/// IsLegalAndProfitableToFold) and by Root (which can happen in the store
1345/// case).
1346/// FIXME: to be really generic, we should allow direct use by any node
1347/// that is being folded. But realisticly since we only fold loads which
1348/// have one non-chain use, we only need to watch out for load/op/store
1349/// and load/op/cmp case where the root (store / cmp) may reach the load via
1350/// its chain operand.
1351static inline bool isNonImmUse(SDNode *Root, SDNode *Def, SDNode *ImmedUse) {
1352  SmallPtrSet<SDNode*, 16> Visited;
1353  return findNonImmUse(Root, Def, ImmedUse, Root, Visited);
1354}
1355
1356/// IsLegalAndProfitableToFold - Returns true if the specific operand node N of
1357/// U can be folded during instruction selection that starts at Root and
1358/// folding N is profitable.
1359bool SelectionDAGISel::IsLegalAndProfitableToFold(SDNode *N, SDNode *U,
1360                                                  SDNode *Root) const {
1361  if (OptLevel == CodeGenOpt::None) return false;
1362
1363  // If Root use can somehow reach N through a path that that doesn't contain
1364  // U then folding N would create a cycle. e.g. In the following
1365  // diagram, Root can reach N through X. If N is folded into into Root, then
1366  // X is both a predecessor and a successor of U.
1367  //
1368  //          [N*]           //
1369  //         ^   ^           //
1370  //        /     \          //
1371  //      [U*]    [X]?       //
1372  //        ^     ^          //
1373  //         \   /           //
1374  //          \ /            //
1375  //         [Root*]         //
1376  //
1377  // * indicates nodes to be folded together.
1378  //
1379  // If Root produces a flag, then it gets (even more) interesting. Since it
1380  // will be "glued" together with its flag use in the scheduler, we need to
1381  // check if it might reach N.
1382  //
1383  //          [N*]           //
1384  //         ^   ^           //
1385  //        /     \          //
1386  //      [U*]    [X]?       //
1387  //        ^       ^        //
1388  //         \       \       //
1389  //          \      |       //
1390  //         [Root*] |       //
1391  //          ^      |       //
1392  //          f      |       //
1393  //          |      /       //
1394  //         [Y]    /        //
1395  //           ^   /         //
1396  //           f  /          //
1397  //           | /           //
1398  //          [FU]           //
1399  //
1400  // If FU (flag use) indirectly reaches N (the load), and Root folds N
1401  // (call it Fold), then X is a predecessor of FU and a successor of
1402  // Fold. But since Fold and FU are flagged together, this will create
1403  // a cycle in the scheduling graph.
1404
1405  EVT VT = Root->getValueType(Root->getNumValues()-1);
1406  while (VT == MVT::Flag) {
1407    SDNode *FU = findFlagUse(Root);
1408    if (FU == NULL)
1409      break;
1410    Root = FU;
1411    VT = Root->getValueType(Root->getNumValues()-1);
1412  }
1413
1414  return !isNonImmUse(Root, N, U);
1415}
1416
1417SDNode *SelectionDAGISel::Select_INLINEASM(SDNode *N) {
1418  std::vector<SDValue> Ops(N->op_begin(), N->op_end());
1419  SelectInlineAsmMemoryOperands(Ops);
1420
1421  std::vector<EVT> VTs;
1422  VTs.push_back(MVT::Other);
1423  VTs.push_back(MVT::Flag);
1424  SDValue New = CurDAG->getNode(ISD::INLINEASM, N->getDebugLoc(),
1425                                VTs, &Ops[0], Ops.size());
1426  return New.getNode();
1427}
1428
1429SDNode *SelectionDAGISel::Select_UNDEF(SDNode *N) {
1430  return CurDAG->SelectNodeTo(N, TargetOpcode::IMPLICIT_DEF,N->getValueType(0));
1431}
1432
1433SDNode *SelectionDAGISel::Select_EH_LABEL(SDNode *N) {
1434  SDValue Chain = N->getOperand(0);
1435  unsigned C = cast<LabelSDNode>(N)->getLabelID();
1436  SDValue Tmp = CurDAG->getTargetConstant(C, MVT::i32);
1437  return CurDAG->SelectNodeTo(N, TargetOpcode::EH_LABEL,
1438                              MVT::Other, Tmp, Chain);
1439}
1440
1441void SelectionDAGISel::CannotYetSelect(SDNode *N) {
1442  std::string msg;
1443  raw_string_ostream Msg(msg);
1444  Msg << "Cannot yet select: ";
1445  N->printrFull(Msg, CurDAG);
1446  llvm_report_error(Msg.str());
1447}
1448
1449void SelectionDAGISel::CannotYetSelectIntrinsic(SDNode *N) {
1450  dbgs() << "Cannot yet select: ";
1451  unsigned iid =
1452    cast<ConstantSDNode>(N->getOperand(N->getOperand(0).getValueType() ==
1453                                       MVT::Other))->getZExtValue();
1454  if (iid < Intrinsic::num_intrinsics)
1455    llvm_report_error("Cannot yet select: intrinsic %" +
1456                      Intrinsic::getName((Intrinsic::ID)iid));
1457  else if (const TargetIntrinsicInfo *tii = TM.getIntrinsicInfo())
1458    llvm_report_error(Twine("Cannot yet select: target intrinsic %") +
1459                      tii->getName(iid));
1460}
1461
1462char SelectionDAGISel::ID = 0;
1463