SelectionDAGISel.cpp revision 23a1d0c1613002073e4340deb34449a61826c93c
1//===-- SelectionDAGISel.cpp - Implement the SelectionDAGISel class -------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAGISel class.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "isel"
15#include "llvm/ADT/BitVector.h"
16#include "llvm/Analysis/AliasAnalysis.h"
17#include "llvm/CodeGen/SelectionDAGISel.h"
18#include "llvm/CodeGen/ScheduleDAG.h"
19#include "llvm/Constants.h"
20#include "llvm/CallingConv.h"
21#include "llvm/DerivedTypes.h"
22#include "llvm/Function.h"
23#include "llvm/GlobalVariable.h"
24#include "llvm/InlineAsm.h"
25#include "llvm/Instructions.h"
26#include "llvm/Intrinsics.h"
27#include "llvm/IntrinsicInst.h"
28#include "llvm/ParameterAttributes.h"
29#include "llvm/CodeGen/Collector.h"
30#include "llvm/CodeGen/MachineFunction.h"
31#include "llvm/CodeGen/MachineFrameInfo.h"
32#include "llvm/CodeGen/MachineInstrBuilder.h"
33#include "llvm/CodeGen/MachineJumpTableInfo.h"
34#include "llvm/CodeGen/MachineModuleInfo.h"
35#include "llvm/CodeGen/MachineRegisterInfo.h"
36#include "llvm/CodeGen/SchedulerRegistry.h"
37#include "llvm/CodeGen/SelectionDAG.h"
38#include "llvm/Target/TargetRegisterInfo.h"
39#include "llvm/Target/TargetData.h"
40#include "llvm/Target/TargetFrameInfo.h"
41#include "llvm/Target/TargetInstrInfo.h"
42#include "llvm/Target/TargetLowering.h"
43#include "llvm/Target/TargetMachine.h"
44#include "llvm/Target/TargetOptions.h"
45#include "llvm/Support/MathExtras.h"
46#include "llvm/Support/Debug.h"
47#include "llvm/Support/Compiler.h"
48#include <algorithm>
49using namespace llvm;
50
51#ifndef NDEBUG
52static cl::opt<bool>
53ViewISelDAGs("view-isel-dags", cl::Hidden,
54          cl::desc("Pop up a window to show isel dags as they are selected"));
55static cl::opt<bool>
56ViewSchedDAGs("view-sched-dags", cl::Hidden,
57          cl::desc("Pop up a window to show sched dags as they are processed"));
58static cl::opt<bool>
59ViewSUnitDAGs("view-sunit-dags", cl::Hidden,
60      cl::desc("Pop up a window to show SUnit dags after they are processed"));
61#else
62static const bool ViewISelDAGs = 0, ViewSchedDAGs = 0, ViewSUnitDAGs = 0;
63#endif
64
65//===---------------------------------------------------------------------===//
66///
67/// RegisterScheduler class - Track the registration of instruction schedulers.
68///
69//===---------------------------------------------------------------------===//
70MachinePassRegistry RegisterScheduler::Registry;
71
72//===---------------------------------------------------------------------===//
73///
74/// ISHeuristic command line option for instruction schedulers.
75///
76//===---------------------------------------------------------------------===//
77namespace {
78  cl::opt<RegisterScheduler::FunctionPassCtor, false,
79          RegisterPassParser<RegisterScheduler> >
80  ISHeuristic("pre-RA-sched",
81              cl::init(&createDefaultScheduler),
82              cl::desc("Instruction schedulers available (before register"
83                       " allocation):"));
84
85  static RegisterScheduler
86  defaultListDAGScheduler("default", "  Best scheduler for the target",
87                          createDefaultScheduler);
88} // namespace
89
90namespace { struct SDISelAsmOperandInfo; }
91
92namespace {
93  /// RegsForValue - This struct represents the physical registers that a
94  /// particular value is assigned and the type information about the value.
95  /// This is needed because values can be promoted into larger registers and
96  /// expanded into multiple smaller registers than the value.
97  struct VISIBILITY_HIDDEN RegsForValue {
98    /// Regs - This list holds the register (for legal and promoted values)
99    /// or register set (for expanded values) that the value should be assigned
100    /// to.
101    std::vector<unsigned> Regs;
102
103    /// RegVT - The value type of each register.
104    ///
105    MVT::ValueType RegVT;
106
107    /// ValueVT - The value type of the LLVM value, which may be promoted from
108    /// RegVT or made from merging the two expanded parts.
109    MVT::ValueType ValueVT;
110
111    RegsForValue() : RegVT(MVT::Other), ValueVT(MVT::Other) {}
112
113    RegsForValue(unsigned Reg, MVT::ValueType regvt, MVT::ValueType valuevt)
114      : RegVT(regvt), ValueVT(valuevt) {
115        Regs.push_back(Reg);
116    }
117    RegsForValue(const std::vector<unsigned> &regs,
118                 MVT::ValueType regvt, MVT::ValueType valuevt)
119      : Regs(regs), RegVT(regvt), ValueVT(valuevt) {
120    }
121
122    /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
123    /// this value and returns the result as a ValueVT value.  This uses
124    /// Chain/Flag as the input and updates them for the output Chain/Flag.
125    /// If the Flag pointer is NULL, no flag is used.
126    SDOperand getCopyFromRegs(SelectionDAG &DAG,
127                              SDOperand &Chain, SDOperand *Flag) const;
128
129    /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
130    /// specified value into the registers specified by this object.  This uses
131    /// Chain/Flag as the input and updates them for the output Chain/Flag.
132    /// If the Flag pointer is NULL, no flag is used.
133    void getCopyToRegs(SDOperand Val, SelectionDAG &DAG,
134                       SDOperand &Chain, SDOperand *Flag) const;
135
136    /// AddInlineAsmOperands - Add this value to the specified inlineasm node
137    /// operand list.  This adds the code marker and includes the number of
138    /// values added into it.
139    void AddInlineAsmOperands(unsigned Code, SelectionDAG &DAG,
140                              std::vector<SDOperand> &Ops) const;
141  };
142}
143
144namespace llvm {
145  //===--------------------------------------------------------------------===//
146  /// createDefaultScheduler - This creates an instruction scheduler appropriate
147  /// for the target.
148  ScheduleDAG* createDefaultScheduler(SelectionDAGISel *IS,
149                                      SelectionDAG *DAG,
150                                      MachineBasicBlock *BB) {
151    TargetLowering &TLI = IS->getTargetLowering();
152
153    if (TLI.getSchedulingPreference() == TargetLowering::SchedulingForLatency) {
154      return createTDListDAGScheduler(IS, DAG, BB);
155    } else {
156      assert(TLI.getSchedulingPreference() ==
157           TargetLowering::SchedulingForRegPressure && "Unknown sched type!");
158      return createBURRListDAGScheduler(IS, DAG, BB);
159    }
160  }
161
162
163  //===--------------------------------------------------------------------===//
164  /// FunctionLoweringInfo - This contains information that is global to a
165  /// function that is used when lowering a region of the function.
166  class FunctionLoweringInfo {
167  public:
168    TargetLowering &TLI;
169    Function &Fn;
170    MachineFunction &MF;
171    MachineRegisterInfo &RegInfo;
172
173    FunctionLoweringInfo(TargetLowering &TLI, Function &Fn,MachineFunction &MF);
174
175    /// MBBMap - A mapping from LLVM basic blocks to their machine code entry.
176    std::map<const BasicBlock*, MachineBasicBlock *> MBBMap;
177
178    /// ValueMap - Since we emit code for the function a basic block at a time,
179    /// we must remember which virtual registers hold the values for
180    /// cross-basic-block values.
181    DenseMap<const Value*, unsigned> ValueMap;
182
183    /// StaticAllocaMap - Keep track of frame indices for fixed sized allocas in
184    /// the entry block.  This allows the allocas to be efficiently referenced
185    /// anywhere in the function.
186    std::map<const AllocaInst*, int> StaticAllocaMap;
187
188#ifndef NDEBUG
189    SmallSet<Instruction*, 8> CatchInfoLost;
190    SmallSet<Instruction*, 8> CatchInfoFound;
191#endif
192
193    unsigned MakeReg(MVT::ValueType VT) {
194      return RegInfo.createVirtualRegister(TLI.getRegClassFor(VT));
195    }
196
197    /// isExportedInst - Return true if the specified value is an instruction
198    /// exported from its block.
199    bool isExportedInst(const Value *V) {
200      return ValueMap.count(V);
201    }
202
203    unsigned CreateRegForValue(const Value *V);
204
205    unsigned InitializeRegForValue(const Value *V) {
206      unsigned &R = ValueMap[V];
207      assert(R == 0 && "Already initialized this value register!");
208      return R = CreateRegForValue(V);
209    }
210  };
211}
212
213/// isSelector - Return true if this instruction is a call to the
214/// eh.selector intrinsic.
215static bool isSelector(Instruction *I) {
216  if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
217    return (II->getIntrinsicID() == Intrinsic::eh_selector_i32 ||
218            II->getIntrinsicID() == Intrinsic::eh_selector_i64);
219  return false;
220}
221
222/// isUsedOutsideOfDefiningBlock - Return true if this instruction is used by
223/// PHI nodes or outside of the basic block that defines it, or used by a
224/// switch or atomic instruction, which may expand to multiple basic blocks.
225static bool isUsedOutsideOfDefiningBlock(Instruction *I) {
226  if (isa<PHINode>(I)) return true;
227  BasicBlock *BB = I->getParent();
228  for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E; ++UI)
229    if (cast<Instruction>(*UI)->getParent() != BB || isa<PHINode>(*UI) ||
230        // FIXME: Remove switchinst special case.
231        isa<SwitchInst>(*UI))
232      return true;
233  return false;
234}
235
236/// isOnlyUsedInEntryBlock - If the specified argument is only used in the
237/// entry block, return true.  This includes arguments used by switches, since
238/// the switch may expand into multiple basic blocks.
239static bool isOnlyUsedInEntryBlock(Argument *A) {
240  BasicBlock *Entry = A->getParent()->begin();
241  for (Value::use_iterator UI = A->use_begin(), E = A->use_end(); UI != E; ++UI)
242    if (cast<Instruction>(*UI)->getParent() != Entry || isa<SwitchInst>(*UI))
243      return false;  // Use not in entry block.
244  return true;
245}
246
247FunctionLoweringInfo::FunctionLoweringInfo(TargetLowering &tli,
248                                           Function &fn, MachineFunction &mf)
249    : TLI(tli), Fn(fn), MF(mf), RegInfo(MF.getRegInfo()) {
250
251  // Create a vreg for each argument register that is not dead and is used
252  // outside of the entry block for the function.
253  for (Function::arg_iterator AI = Fn.arg_begin(), E = Fn.arg_end();
254       AI != E; ++AI)
255    if (!isOnlyUsedInEntryBlock(AI))
256      InitializeRegForValue(AI);
257
258  // Initialize the mapping of values to registers.  This is only set up for
259  // instruction values that are used outside of the block that defines
260  // them.
261  Function::iterator BB = Fn.begin(), EB = Fn.end();
262  for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
263    if (AllocaInst *AI = dyn_cast<AllocaInst>(I))
264      if (ConstantInt *CUI = dyn_cast<ConstantInt>(AI->getArraySize())) {
265        const Type *Ty = AI->getAllocatedType();
266        uint64_t TySize = TLI.getTargetData()->getABITypeSize(Ty);
267        unsigned Align =
268          std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty),
269                   AI->getAlignment());
270
271        TySize *= CUI->getZExtValue();   // Get total allocated size.
272        if (TySize == 0) TySize = 1; // Don't create zero-sized stack objects.
273        StaticAllocaMap[AI] =
274          MF.getFrameInfo()->CreateStackObject(TySize, Align);
275      }
276
277  for (; BB != EB; ++BB)
278    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
279      if (!I->use_empty() && isUsedOutsideOfDefiningBlock(I))
280        if (!isa<AllocaInst>(I) ||
281            !StaticAllocaMap.count(cast<AllocaInst>(I)))
282          InitializeRegForValue(I);
283
284  // Create an initial MachineBasicBlock for each LLVM BasicBlock in F.  This
285  // also creates the initial PHI MachineInstrs, though none of the input
286  // operands are populated.
287  for (BB = Fn.begin(), EB = Fn.end(); BB != EB; ++BB) {
288    MachineBasicBlock *MBB = new MachineBasicBlock(BB);
289    MBBMap[BB] = MBB;
290    MF.getBasicBlockList().push_back(MBB);
291
292    // Create Machine PHI nodes for LLVM PHI nodes, lowering them as
293    // appropriate.
294    PHINode *PN;
295    for (BasicBlock::iterator I = BB->begin();(PN = dyn_cast<PHINode>(I)); ++I){
296      if (PN->use_empty()) continue;
297
298      MVT::ValueType VT = TLI.getValueType(PN->getType());
299      unsigned NumRegisters = TLI.getNumRegisters(VT);
300      unsigned PHIReg = ValueMap[PN];
301      assert(PHIReg && "PHI node does not have an assigned virtual register!");
302      const TargetInstrInfo *TII = TLI.getTargetMachine().getInstrInfo();
303      for (unsigned i = 0; i != NumRegisters; ++i)
304        BuildMI(MBB, TII->get(TargetInstrInfo::PHI), PHIReg+i);
305    }
306  }
307}
308
309/// CreateRegForValue - Allocate the appropriate number of virtual registers of
310/// the correctly promoted or expanded types.  Assign these registers
311/// consecutive vreg numbers and return the first assigned number.
312unsigned FunctionLoweringInfo::CreateRegForValue(const Value *V) {
313  MVT::ValueType VT = TLI.getValueType(V->getType());
314
315  unsigned NumRegisters = TLI.getNumRegisters(VT);
316  MVT::ValueType RegisterVT = TLI.getRegisterType(VT);
317
318  unsigned R = MakeReg(RegisterVT);
319  for (unsigned i = 1; i != NumRegisters; ++i)
320    MakeReg(RegisterVT);
321
322  return R;
323}
324
325//===----------------------------------------------------------------------===//
326/// SelectionDAGLowering - This is the common target-independent lowering
327/// implementation that is parameterized by a TargetLowering object.
328/// Also, targets can overload any lowering method.
329///
330namespace llvm {
331class SelectionDAGLowering {
332  MachineBasicBlock *CurMBB;
333
334  DenseMap<const Value*, SDOperand> NodeMap;
335
336  /// PendingLoads - Loads are not emitted to the program immediately.  We bunch
337  /// them up and then emit token factor nodes when possible.  This allows us to
338  /// get simple disambiguation between loads without worrying about alias
339  /// analysis.
340  std::vector<SDOperand> PendingLoads;
341
342  /// Case - A struct to record the Value for a switch case, and the
343  /// case's target basic block.
344  struct Case {
345    Constant* Low;
346    Constant* High;
347    MachineBasicBlock* BB;
348
349    Case() : Low(0), High(0), BB(0) { }
350    Case(Constant* low, Constant* high, MachineBasicBlock* bb) :
351      Low(low), High(high), BB(bb) { }
352    uint64_t size() const {
353      uint64_t rHigh = cast<ConstantInt>(High)->getSExtValue();
354      uint64_t rLow  = cast<ConstantInt>(Low)->getSExtValue();
355      return (rHigh - rLow + 1ULL);
356    }
357  };
358
359  struct CaseBits {
360    uint64_t Mask;
361    MachineBasicBlock* BB;
362    unsigned Bits;
363
364    CaseBits(uint64_t mask, MachineBasicBlock* bb, unsigned bits):
365      Mask(mask), BB(bb), Bits(bits) { }
366  };
367
368  typedef std::vector<Case>           CaseVector;
369  typedef std::vector<CaseBits>       CaseBitsVector;
370  typedef CaseVector::iterator        CaseItr;
371  typedef std::pair<CaseItr, CaseItr> CaseRange;
372
373  /// CaseRec - A struct with ctor used in lowering switches to a binary tree
374  /// of conditional branches.
375  struct CaseRec {
376    CaseRec(MachineBasicBlock *bb, Constant *lt, Constant *ge, CaseRange r) :
377    CaseBB(bb), LT(lt), GE(ge), Range(r) {}
378
379    /// CaseBB - The MBB in which to emit the compare and branch
380    MachineBasicBlock *CaseBB;
381    /// LT, GE - If nonzero, we know the current case value must be less-than or
382    /// greater-than-or-equal-to these Constants.
383    Constant *LT;
384    Constant *GE;
385    /// Range - A pair of iterators representing the range of case values to be
386    /// processed at this point in the binary search tree.
387    CaseRange Range;
388  };
389
390  typedef std::vector<CaseRec> CaseRecVector;
391
392  /// The comparison function for sorting the switch case values in the vector.
393  /// WARNING: Case ranges should be disjoint!
394  struct CaseCmp {
395    bool operator () (const Case& C1, const Case& C2) {
396      assert(isa<ConstantInt>(C1.Low) && isa<ConstantInt>(C2.High));
397      const ConstantInt* CI1 = cast<const ConstantInt>(C1.Low);
398      const ConstantInt* CI2 = cast<const ConstantInt>(C2.High);
399      return CI1->getValue().slt(CI2->getValue());
400    }
401  };
402
403  struct CaseBitsCmp {
404    bool operator () (const CaseBits& C1, const CaseBits& C2) {
405      return C1.Bits > C2.Bits;
406    }
407  };
408
409  unsigned Clusterify(CaseVector& Cases, const SwitchInst &SI);
410
411public:
412  // TLI - This is information that describes the available target features we
413  // need for lowering.  This indicates when operations are unavailable,
414  // implemented with a libcall, etc.
415  TargetLowering &TLI;
416  SelectionDAG &DAG;
417  const TargetData *TD;
418  AliasAnalysis &AA;
419
420  /// SwitchCases - Vector of CaseBlock structures used to communicate
421  /// SwitchInst code generation information.
422  std::vector<SelectionDAGISel::CaseBlock> SwitchCases;
423  /// JTCases - Vector of JumpTable structures used to communicate
424  /// SwitchInst code generation information.
425  std::vector<SelectionDAGISel::JumpTableBlock> JTCases;
426  std::vector<SelectionDAGISel::BitTestBlock> BitTestCases;
427
428  /// FuncInfo - Information about the function as a whole.
429  ///
430  FunctionLoweringInfo &FuncInfo;
431
432  /// GCI - Garbage collection metadata for the function.
433  CollectorMetadata *GCI;
434
435  SelectionDAGLowering(SelectionDAG &dag, TargetLowering &tli,
436                       AliasAnalysis &aa,
437                       FunctionLoweringInfo &funcinfo,
438                       CollectorMetadata *gci)
439    : TLI(tli), DAG(dag), TD(DAG.getTarget().getTargetData()), AA(aa),
440      FuncInfo(funcinfo), GCI(gci) {
441  }
442
443  /// getRoot - Return the current virtual root of the Selection DAG.
444  ///
445  SDOperand getRoot() {
446    if (PendingLoads.empty())
447      return DAG.getRoot();
448
449    if (PendingLoads.size() == 1) {
450      SDOperand Root = PendingLoads[0];
451      DAG.setRoot(Root);
452      PendingLoads.clear();
453      return Root;
454    }
455
456    // Otherwise, we have to make a token factor node.
457    SDOperand Root = DAG.getNode(ISD::TokenFactor, MVT::Other,
458                                 &PendingLoads[0], PendingLoads.size());
459    PendingLoads.clear();
460    DAG.setRoot(Root);
461    return Root;
462  }
463
464  SDOperand CopyValueToVirtualRegister(Value *V, unsigned Reg);
465
466  void visit(Instruction &I) { visit(I.getOpcode(), I); }
467
468  void visit(unsigned Opcode, User &I) {
469    // Note: this doesn't use InstVisitor, because it has to work with
470    // ConstantExpr's in addition to instructions.
471    switch (Opcode) {
472    default: assert(0 && "Unknown instruction type encountered!");
473             abort();
474      // Build the switch statement using the Instruction.def file.
475#define HANDLE_INST(NUM, OPCODE, CLASS) \
476    case Instruction::OPCODE:return visit##OPCODE((CLASS&)I);
477#include "llvm/Instruction.def"
478    }
479  }
480
481  void setCurrentBasicBlock(MachineBasicBlock *MBB) { CurMBB = MBB; }
482
483  SDOperand getLoadFrom(const Type *Ty, SDOperand Ptr,
484                        const Value *SV, SDOperand Root,
485                        bool isVolatile, unsigned Alignment);
486
487  SDOperand getValue(const Value *V);
488
489  void setValue(const Value *V, SDOperand NewN) {
490    SDOperand &N = NodeMap[V];
491    assert(N.Val == 0 && "Already set a value for this node!");
492    N = NewN;
493  }
494
495  void GetRegistersForValue(SDISelAsmOperandInfo &OpInfo, bool HasEarlyClobber,
496                            std::set<unsigned> &OutputRegs,
497                            std::set<unsigned> &InputRegs);
498
499  void FindMergedConditions(Value *Cond, MachineBasicBlock *TBB,
500                            MachineBasicBlock *FBB, MachineBasicBlock *CurBB,
501                            unsigned Opc);
502  bool isExportableFromCurrentBlock(Value *V, const BasicBlock *FromBB);
503  void ExportFromCurrentBlock(Value *V);
504  void LowerCallTo(CallSite CS, SDOperand Callee, bool IsTailCall,
505                   MachineBasicBlock *LandingPad = NULL);
506
507  // Terminator instructions.
508  void visitRet(ReturnInst &I);
509  void visitBr(BranchInst &I);
510  void visitSwitch(SwitchInst &I);
511  void visitUnreachable(UnreachableInst &I) { /* noop */ }
512
513  // Helpers for visitSwitch
514  bool handleSmallSwitchRange(CaseRec& CR,
515                              CaseRecVector& WorkList,
516                              Value* SV,
517                              MachineBasicBlock* Default);
518  bool handleJTSwitchCase(CaseRec& CR,
519                          CaseRecVector& WorkList,
520                          Value* SV,
521                          MachineBasicBlock* Default);
522  bool handleBTSplitSwitchCase(CaseRec& CR,
523                               CaseRecVector& WorkList,
524                               Value* SV,
525                               MachineBasicBlock* Default);
526  bool handleBitTestsSwitchCase(CaseRec& CR,
527                                CaseRecVector& WorkList,
528                                Value* SV,
529                                MachineBasicBlock* Default);
530  void visitSwitchCase(SelectionDAGISel::CaseBlock &CB);
531  void visitBitTestHeader(SelectionDAGISel::BitTestBlock &B);
532  void visitBitTestCase(MachineBasicBlock* NextMBB,
533                        unsigned Reg,
534                        SelectionDAGISel::BitTestCase &B);
535  void visitJumpTable(SelectionDAGISel::JumpTable &JT);
536  void visitJumpTableHeader(SelectionDAGISel::JumpTable &JT,
537                            SelectionDAGISel::JumpTableHeader &JTH);
538
539  // These all get lowered before this pass.
540  void visitInvoke(InvokeInst &I);
541  void visitUnwind(UnwindInst &I);
542
543  void visitBinary(User &I, unsigned OpCode);
544  void visitShift(User &I, unsigned Opcode);
545  void visitAdd(User &I) {
546    if (I.getType()->isFPOrFPVector())
547      visitBinary(I, ISD::FADD);
548    else
549      visitBinary(I, ISD::ADD);
550  }
551  void visitSub(User &I);
552  void visitMul(User &I) {
553    if (I.getType()->isFPOrFPVector())
554      visitBinary(I, ISD::FMUL);
555    else
556      visitBinary(I, ISD::MUL);
557  }
558  void visitURem(User &I) { visitBinary(I, ISD::UREM); }
559  void visitSRem(User &I) { visitBinary(I, ISD::SREM); }
560  void visitFRem(User &I) { visitBinary(I, ISD::FREM); }
561  void visitUDiv(User &I) { visitBinary(I, ISD::UDIV); }
562  void visitSDiv(User &I) { visitBinary(I, ISD::SDIV); }
563  void visitFDiv(User &I) { visitBinary(I, ISD::FDIV); }
564  void visitAnd (User &I) { visitBinary(I, ISD::AND); }
565  void visitOr  (User &I) { visitBinary(I, ISD::OR); }
566  void visitXor (User &I) { visitBinary(I, ISD::XOR); }
567  void visitShl (User &I) { visitShift(I, ISD::SHL); }
568  void visitLShr(User &I) { visitShift(I, ISD::SRL); }
569  void visitAShr(User &I) { visitShift(I, ISD::SRA); }
570  void visitICmp(User &I);
571  void visitFCmp(User &I);
572  // Visit the conversion instructions
573  void visitTrunc(User &I);
574  void visitZExt(User &I);
575  void visitSExt(User &I);
576  void visitFPTrunc(User &I);
577  void visitFPExt(User &I);
578  void visitFPToUI(User &I);
579  void visitFPToSI(User &I);
580  void visitUIToFP(User &I);
581  void visitSIToFP(User &I);
582  void visitPtrToInt(User &I);
583  void visitIntToPtr(User &I);
584  void visitBitCast(User &I);
585
586  void visitExtractElement(User &I);
587  void visitInsertElement(User &I);
588  void visitShuffleVector(User &I);
589
590  void visitGetElementPtr(User &I);
591  void visitSelect(User &I);
592
593  void visitMalloc(MallocInst &I);
594  void visitFree(FreeInst &I);
595  void visitAlloca(AllocaInst &I);
596  void visitLoad(LoadInst &I);
597  void visitStore(StoreInst &I);
598  void visitPHI(PHINode &I) { } // PHI nodes are handled specially.
599  void visitCall(CallInst &I);
600  void visitInlineAsm(CallSite CS);
601  const char *visitIntrinsicCall(CallInst &I, unsigned Intrinsic);
602  void visitTargetIntrinsic(CallInst &I, unsigned Intrinsic);
603
604  void visitVAStart(CallInst &I);
605  void visitVAArg(VAArgInst &I);
606  void visitVAEnd(CallInst &I);
607  void visitVACopy(CallInst &I);
608
609  void visitMemIntrinsic(CallInst &I, unsigned Op);
610
611  void visitGetResult(GetResultInst &I);
612
613  void visitUserOp1(Instruction &I) {
614    assert(0 && "UserOp1 should not exist at instruction selection time!");
615    abort();
616  }
617  void visitUserOp2(Instruction &I) {
618    assert(0 && "UserOp2 should not exist at instruction selection time!");
619    abort();
620  }
621};
622} // end namespace llvm
623
624
625/// getCopyFromParts - Create a value that contains the specified legal parts
626/// combined into the value they represent.  If the parts combine to a type
627/// larger then ValueVT then AssertOp can be used to specify whether the extra
628/// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
629/// (ISD::AssertSext).
630static SDOperand getCopyFromParts(SelectionDAG &DAG,
631                                  const SDOperand *Parts,
632                                  unsigned NumParts,
633                                  MVT::ValueType PartVT,
634                                  MVT::ValueType ValueVT,
635                                  ISD::NodeType AssertOp = ISD::DELETED_NODE) {
636  assert(NumParts > 0 && "No parts to assemble!");
637  TargetLowering &TLI = DAG.getTargetLoweringInfo();
638  SDOperand Val = Parts[0];
639
640  if (NumParts > 1) {
641    // Assemble the value from multiple parts.
642    if (!MVT::isVector(ValueVT)) {
643      unsigned PartBits = MVT::getSizeInBits(PartVT);
644      unsigned ValueBits = MVT::getSizeInBits(ValueVT);
645
646      // Assemble the power of 2 part.
647      unsigned RoundParts = NumParts & (NumParts - 1) ?
648        1 << Log2_32(NumParts) : NumParts;
649      unsigned RoundBits = PartBits * RoundParts;
650      MVT::ValueType RoundVT = RoundBits == ValueBits ?
651        ValueVT : MVT::getIntegerType(RoundBits);
652      SDOperand Lo, Hi;
653
654      if (RoundParts > 2) {
655        MVT::ValueType HalfVT = MVT::getIntegerType(RoundBits/2);
656        Lo = getCopyFromParts(DAG, Parts, RoundParts/2, PartVT, HalfVT);
657        Hi = getCopyFromParts(DAG, Parts+RoundParts/2, RoundParts/2,
658                              PartVT, HalfVT);
659      } else {
660        Lo = Parts[0];
661        Hi = Parts[1];
662      }
663      if (TLI.isBigEndian())
664        std::swap(Lo, Hi);
665      Val = DAG.getNode(ISD::BUILD_PAIR, RoundVT, Lo, Hi);
666
667      if (RoundParts < NumParts) {
668        // Assemble the trailing non-power-of-2 part.
669        unsigned OddParts = NumParts - RoundParts;
670        MVT::ValueType OddVT = MVT::getIntegerType(OddParts * PartBits);
671        Hi = getCopyFromParts(DAG, Parts+RoundParts, OddParts, PartVT, OddVT);
672
673        // Combine the round and odd parts.
674        Lo = Val;
675        if (TLI.isBigEndian())
676          std::swap(Lo, Hi);
677        MVT::ValueType TotalVT = MVT::getIntegerType(NumParts * PartBits);
678        Hi = DAG.getNode(ISD::ANY_EXTEND, TotalVT, Hi);
679        Hi = DAG.getNode(ISD::SHL, TotalVT, Hi,
680                         DAG.getConstant(MVT::getSizeInBits(Lo.getValueType()),
681                                         TLI.getShiftAmountTy()));
682        Lo = DAG.getNode(ISD::ZERO_EXTEND, TotalVT, Lo);
683        Val = DAG.getNode(ISD::OR, TotalVT, Lo, Hi);
684      }
685    } else {
686      // Handle a multi-element vector.
687      MVT::ValueType IntermediateVT, RegisterVT;
688      unsigned NumIntermediates;
689      unsigned NumRegs =
690        TLI.getVectorTypeBreakdown(ValueVT, IntermediateVT, NumIntermediates,
691                                   RegisterVT);
692
693      assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
694      assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
695      assert(RegisterVT == Parts[0].getValueType() &&
696             "Part type doesn't match part!");
697
698      // Assemble the parts into intermediate operands.
699      SmallVector<SDOperand, 8> Ops(NumIntermediates);
700      if (NumIntermediates == NumParts) {
701        // If the register was not expanded, truncate or copy the value,
702        // as appropriate.
703        for (unsigned i = 0; i != NumParts; ++i)
704          Ops[i] = getCopyFromParts(DAG, &Parts[i], 1,
705                                    PartVT, IntermediateVT);
706      } else if (NumParts > 0) {
707        // If the intermediate type was expanded, build the intermediate operands
708        // from the parts.
709        assert(NumParts % NumIntermediates == 0 &&
710               "Must expand into a divisible number of parts!");
711        unsigned Factor = NumParts / NumIntermediates;
712        for (unsigned i = 0; i != NumIntermediates; ++i)
713          Ops[i] = getCopyFromParts(DAG, &Parts[i * Factor], Factor,
714                                    PartVT, IntermediateVT);
715      }
716
717      // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the intermediate
718      // operands.
719      Val = DAG.getNode(MVT::isVector(IntermediateVT) ?
720                        ISD::CONCAT_VECTORS : ISD::BUILD_VECTOR,
721                        ValueVT, &Ops[0], NumIntermediates);
722    }
723  }
724
725  // There is now one part, held in Val.  Correct it to match ValueVT.
726  PartVT = Val.getValueType();
727
728  if (PartVT == ValueVT)
729    return Val;
730
731  if (MVT::isVector(PartVT)) {
732    assert(MVT::isVector(ValueVT) && "Unknown vector conversion!");
733    return DAG.getNode(ISD::BIT_CONVERT, ValueVT, Val);
734  }
735
736  if (MVT::isVector(ValueVT)) {
737    assert(MVT::getVectorElementType(ValueVT) == PartVT &&
738           MVT::getVectorNumElements(ValueVT) == 1 &&
739           "Only trivial scalar-to-vector conversions should get here!");
740    return DAG.getNode(ISD::BUILD_VECTOR, ValueVT, Val);
741  }
742
743  if (MVT::isInteger(PartVT) &&
744      MVT::isInteger(ValueVT)) {
745    if (MVT::getSizeInBits(ValueVT) < MVT::getSizeInBits(PartVT)) {
746      // For a truncate, see if we have any information to
747      // indicate whether the truncated bits will always be
748      // zero or sign-extension.
749      if (AssertOp != ISD::DELETED_NODE)
750        Val = DAG.getNode(AssertOp, PartVT, Val,
751                          DAG.getValueType(ValueVT));
752      return DAG.getNode(ISD::TRUNCATE, ValueVT, Val);
753    } else {
754      return DAG.getNode(ISD::ANY_EXTEND, ValueVT, Val);
755    }
756  }
757
758  if (MVT::isFloatingPoint(PartVT) && MVT::isFloatingPoint(ValueVT)) {
759    if (ValueVT < Val.getValueType())
760      // FP_ROUND's are always exact here.
761      return DAG.getNode(ISD::FP_ROUND, ValueVT, Val,
762                         DAG.getIntPtrConstant(1));
763    return DAG.getNode(ISD::FP_EXTEND, ValueVT, Val);
764  }
765
766  if (MVT::getSizeInBits(PartVT) == MVT::getSizeInBits(ValueVT))
767    return DAG.getNode(ISD::BIT_CONVERT, ValueVT, Val);
768
769  assert(0 && "Unknown mismatch!");
770}
771
772/// getCopyToParts - Create a series of nodes that contain the specified value
773/// split into legal parts.  If the parts contain more bits than Val, then, for
774/// integers, ExtendKind can be used to specify how to generate the extra bits.
775static void getCopyToParts(SelectionDAG &DAG,
776                           SDOperand Val,
777                           SDOperand *Parts,
778                           unsigned NumParts,
779                           MVT::ValueType PartVT,
780                           ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
781  TargetLowering &TLI = DAG.getTargetLoweringInfo();
782  MVT::ValueType PtrVT = TLI.getPointerTy();
783  MVT::ValueType ValueVT = Val.getValueType();
784  unsigned PartBits = MVT::getSizeInBits(PartVT);
785  assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!");
786
787  if (!NumParts)
788    return;
789
790  if (!MVT::isVector(ValueVT)) {
791    if (PartVT == ValueVT) {
792      assert(NumParts == 1 && "No-op copy with multiple parts!");
793      Parts[0] = Val;
794      return;
795    }
796
797    if (NumParts * PartBits > MVT::getSizeInBits(ValueVT)) {
798      // If the parts cover more bits than the value has, promote the value.
799      if (MVT::isFloatingPoint(PartVT) && MVT::isFloatingPoint(ValueVT)) {
800        assert(NumParts == 1 && "Do not know what to promote to!");
801        Val = DAG.getNode(ISD::FP_EXTEND, PartVT, Val);
802      } else if (MVT::isInteger(PartVT) && MVT::isInteger(ValueVT)) {
803        ValueVT = MVT::getIntegerType(NumParts * PartBits);
804        Val = DAG.getNode(ExtendKind, ValueVT, Val);
805      } else {
806        assert(0 && "Unknown mismatch!");
807      }
808    } else if (PartBits == MVT::getSizeInBits(ValueVT)) {
809      // Different types of the same size.
810      assert(NumParts == 1 && PartVT != ValueVT);
811      Val = DAG.getNode(ISD::BIT_CONVERT, PartVT, Val);
812    } else if (NumParts * PartBits < MVT::getSizeInBits(ValueVT)) {
813      // If the parts cover less bits than value has, truncate the value.
814      if (MVT::isInteger(PartVT) && MVT::isInteger(ValueVT)) {
815        ValueVT = MVT::getIntegerType(NumParts * PartBits);
816        Val = DAG.getNode(ISD::TRUNCATE, ValueVT, Val);
817      } else {
818        assert(0 && "Unknown mismatch!");
819      }
820    }
821
822    // The value may have changed - recompute ValueVT.
823    ValueVT = Val.getValueType();
824    assert(NumParts * PartBits == MVT::getSizeInBits(ValueVT) &&
825           "Failed to tile the value with PartVT!");
826
827    if (NumParts == 1) {
828      assert(PartVT == ValueVT && "Type conversion failed!");
829      Parts[0] = Val;
830      return;
831    }
832
833    // Expand the value into multiple parts.
834    if (NumParts & (NumParts - 1)) {
835      // The number of parts is not a power of 2.  Split off and copy the tail.
836      assert(MVT::isInteger(PartVT) && MVT::isInteger(ValueVT) &&
837             "Do not know what to expand to!");
838      unsigned RoundParts = 1 << Log2_32(NumParts);
839      unsigned RoundBits = RoundParts * PartBits;
840      unsigned OddParts = NumParts - RoundParts;
841      SDOperand OddVal = DAG.getNode(ISD::SRL, ValueVT, Val,
842                                     DAG.getConstant(RoundBits,
843                                                     TLI.getShiftAmountTy()));
844      getCopyToParts(DAG, OddVal, Parts + RoundParts, OddParts, PartVT);
845      if (TLI.isBigEndian())
846        // The odd parts were reversed by getCopyToParts - unreverse them.
847        std::reverse(Parts + RoundParts, Parts + NumParts);
848      NumParts = RoundParts;
849      ValueVT = MVT::getIntegerType(NumParts * PartBits);
850      Val = DAG.getNode(ISD::TRUNCATE, ValueVT, Val);
851    }
852
853    // The number of parts is a power of 2.  Repeatedly bisect the value using
854    // EXTRACT_ELEMENT.
855    Parts[0] = DAG.getNode(ISD::BIT_CONVERT,
856                           MVT::getIntegerType(MVT::getSizeInBits(ValueVT)),
857                           Val);
858    for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
859      for (unsigned i = 0; i < NumParts; i += StepSize) {
860        unsigned ThisBits = StepSize * PartBits / 2;
861        MVT::ValueType ThisVT = MVT::getIntegerType (ThisBits);
862        SDOperand &Part0 = Parts[i];
863        SDOperand &Part1 = Parts[i+StepSize/2];
864
865        Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, ThisVT, Part0,
866                            DAG.getConstant(1, PtrVT));
867        Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, ThisVT, Part0,
868                            DAG.getConstant(0, PtrVT));
869
870        if (ThisBits == PartBits && ThisVT != PartVT) {
871          Part0 = DAG.getNode(ISD::BIT_CONVERT, PartVT, Part0);
872          Part1 = DAG.getNode(ISD::BIT_CONVERT, PartVT, Part1);
873        }
874      }
875    }
876
877    if (TLI.isBigEndian())
878      std::reverse(Parts, Parts + NumParts);
879
880    return;
881  }
882
883  // Vector ValueVT.
884  if (NumParts == 1) {
885    if (PartVT != ValueVT) {
886      if (MVT::isVector(PartVT)) {
887        Val = DAG.getNode(ISD::BIT_CONVERT, PartVT, Val);
888      } else {
889        assert(MVT::getVectorElementType(ValueVT) == PartVT &&
890               MVT::getVectorNumElements(ValueVT) == 1 &&
891               "Only trivial vector-to-scalar conversions should get here!");
892        Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, PartVT, Val,
893                          DAG.getConstant(0, PtrVT));
894      }
895    }
896
897    Parts[0] = Val;
898    return;
899  }
900
901  // Handle a multi-element vector.
902  MVT::ValueType IntermediateVT, RegisterVT;
903  unsigned NumIntermediates;
904  unsigned NumRegs =
905    DAG.getTargetLoweringInfo()
906      .getVectorTypeBreakdown(ValueVT, IntermediateVT, NumIntermediates,
907                              RegisterVT);
908  unsigned NumElements = MVT::getVectorNumElements(ValueVT);
909
910  assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
911  assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
912
913  // Split the vector into intermediate operands.
914  SmallVector<SDOperand, 8> Ops(NumIntermediates);
915  for (unsigned i = 0; i != NumIntermediates; ++i)
916    if (MVT::isVector(IntermediateVT))
917      Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR,
918                           IntermediateVT, Val,
919                           DAG.getConstant(i * (NumElements / NumIntermediates),
920                                           PtrVT));
921    else
922      Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT,
923                           IntermediateVT, Val,
924                           DAG.getConstant(i, PtrVT));
925
926  // Split the intermediate operands into legal parts.
927  if (NumParts == NumIntermediates) {
928    // If the register was not expanded, promote or copy the value,
929    // as appropriate.
930    for (unsigned i = 0; i != NumParts; ++i)
931      getCopyToParts(DAG, Ops[i], &Parts[i], 1, PartVT);
932  } else if (NumParts > 0) {
933    // If the intermediate type was expanded, split each the value into
934    // legal parts.
935    assert(NumParts % NumIntermediates == 0 &&
936           "Must expand into a divisible number of parts!");
937    unsigned Factor = NumParts / NumIntermediates;
938    for (unsigned i = 0; i != NumIntermediates; ++i)
939      getCopyToParts(DAG, Ops[i], &Parts[i * Factor], Factor, PartVT);
940  }
941}
942
943
944SDOperand SelectionDAGLowering::getValue(const Value *V) {
945  SDOperand &N = NodeMap[V];
946  if (N.Val) return N;
947
948  const Type *VTy = V->getType();
949  MVT::ValueType VT = TLI.getValueType(VTy);
950  if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(V))) {
951    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
952      visit(CE->getOpcode(), *CE);
953      SDOperand N1 = NodeMap[V];
954      assert(N1.Val && "visit didn't populate the ValueMap!");
955      return N1;
956    } else if (GlobalValue *GV = dyn_cast<GlobalValue>(C)) {
957      return N = DAG.getGlobalAddress(GV, VT);
958    } else if (isa<ConstantPointerNull>(C)) {
959      return N = DAG.getConstant(0, TLI.getPointerTy());
960    } else if (isa<UndefValue>(C)) {
961      if (!isa<VectorType>(VTy))
962        return N = DAG.getNode(ISD::UNDEF, VT);
963
964      // Create a BUILD_VECTOR of undef nodes.
965      const VectorType *PTy = cast<VectorType>(VTy);
966      unsigned NumElements = PTy->getNumElements();
967      MVT::ValueType PVT = TLI.getValueType(PTy->getElementType());
968
969      SmallVector<SDOperand, 8> Ops;
970      Ops.assign(NumElements, DAG.getNode(ISD::UNDEF, PVT));
971
972      // Create a VConstant node with generic Vector type.
973      MVT::ValueType VT = MVT::getVectorType(PVT, NumElements);
974      return N = DAG.getNode(ISD::BUILD_VECTOR, VT,
975                             &Ops[0], Ops.size());
976    } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
977      return N = DAG.getConstantFP(CFP->getValueAPF(), VT);
978    } else if (const VectorType *PTy = dyn_cast<VectorType>(VTy)) {
979      unsigned NumElements = PTy->getNumElements();
980      MVT::ValueType PVT = TLI.getValueType(PTy->getElementType());
981
982      // Now that we know the number and type of the elements, push a
983      // Constant or ConstantFP node onto the ops list for each element of
984      // the vector constant.
985      SmallVector<SDOperand, 8> Ops;
986      if (ConstantVector *CP = dyn_cast<ConstantVector>(C)) {
987        for (unsigned i = 0; i != NumElements; ++i)
988          Ops.push_back(getValue(CP->getOperand(i)));
989      } else {
990        assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!");
991        SDOperand Op;
992        if (MVT::isFloatingPoint(PVT))
993          Op = DAG.getConstantFP(0, PVT);
994        else
995          Op = DAG.getConstant(0, PVT);
996        Ops.assign(NumElements, Op);
997      }
998
999      // Create a BUILD_VECTOR node.
1000      MVT::ValueType VT = MVT::getVectorType(PVT, NumElements);
1001      return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, VT, &Ops[0],
1002                                      Ops.size());
1003    } else {
1004      // Canonicalize all constant ints to be unsigned.
1005      return N = DAG.getConstant(cast<ConstantInt>(C)->getValue(),VT);
1006    }
1007  }
1008
1009  if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1010    std::map<const AllocaInst*, int>::iterator SI =
1011    FuncInfo.StaticAllocaMap.find(AI);
1012    if (SI != FuncInfo.StaticAllocaMap.end())
1013      return DAG.getFrameIndex(SI->second, TLI.getPointerTy());
1014  }
1015
1016  unsigned InReg = FuncInfo.ValueMap[V];
1017  assert(InReg && "Value not in map!");
1018
1019  MVT::ValueType RegisterVT = TLI.getRegisterType(VT);
1020  unsigned NumRegs = TLI.getNumRegisters(VT);
1021
1022  std::vector<unsigned> Regs(NumRegs);
1023  for (unsigned i = 0; i != NumRegs; ++i)
1024    Regs[i] = InReg + i;
1025
1026  RegsForValue RFV(Regs, RegisterVT, VT);
1027  SDOperand Chain = DAG.getEntryNode();
1028
1029  return RFV.getCopyFromRegs(DAG, Chain, NULL);
1030}
1031
1032
1033void SelectionDAGLowering::visitRet(ReturnInst &I) {
1034  if (I.getNumOperands() == 0) {
1035    DAG.setRoot(DAG.getNode(ISD::RET, MVT::Other, getRoot()));
1036    return;
1037  }
1038  SmallVector<SDOperand, 8> NewValues;
1039  NewValues.push_back(getRoot());
1040  for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
1041    SDOperand RetOp = getValue(I.getOperand(i));
1042    MVT::ValueType VT = RetOp.getValueType();
1043
1044    // FIXME: C calling convention requires the return type to be promoted to
1045    // at least 32-bit. But this is not necessary for non-C calling conventions.
1046    if (MVT::isInteger(VT)) {
1047      MVT::ValueType MinVT = TLI.getRegisterType(MVT::i32);
1048      if (MVT::getSizeInBits(VT) < MVT::getSizeInBits(MinVT))
1049        VT = MinVT;
1050    }
1051
1052    unsigned NumParts = TLI.getNumRegisters(VT);
1053    MVT::ValueType PartVT = TLI.getRegisterType(VT);
1054    SmallVector<SDOperand, 4> Parts(NumParts);
1055    ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1056
1057    const Function *F = I.getParent()->getParent();
1058    if (F->paramHasAttr(0, ParamAttr::SExt))
1059      ExtendKind = ISD::SIGN_EXTEND;
1060    else if (F->paramHasAttr(0, ParamAttr::ZExt))
1061      ExtendKind = ISD::ZERO_EXTEND;
1062
1063    getCopyToParts(DAG, RetOp, &Parts[0], NumParts, PartVT, ExtendKind);
1064
1065    for (unsigned i = 0; i < NumParts; ++i) {
1066      NewValues.push_back(Parts[i]);
1067      NewValues.push_back(DAG.getConstant(false, MVT::i32));
1068    }
1069  }
1070  DAG.setRoot(DAG.getNode(ISD::RET, MVT::Other,
1071                          &NewValues[0], NewValues.size()));
1072}
1073
1074/// ExportFromCurrentBlock - If this condition isn't known to be exported from
1075/// the current basic block, add it to ValueMap now so that we'll get a
1076/// CopyTo/FromReg.
1077void SelectionDAGLowering::ExportFromCurrentBlock(Value *V) {
1078  // No need to export constants.
1079  if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
1080
1081  // Already exported?
1082  if (FuncInfo.isExportedInst(V)) return;
1083
1084  unsigned Reg = FuncInfo.InitializeRegForValue(V);
1085  PendingLoads.push_back(CopyValueToVirtualRegister(V, Reg));
1086}
1087
1088bool SelectionDAGLowering::isExportableFromCurrentBlock(Value *V,
1089                                                    const BasicBlock *FromBB) {
1090  // The operands of the setcc have to be in this block.  We don't know
1091  // how to export them from some other block.
1092  if (Instruction *VI = dyn_cast<Instruction>(V)) {
1093    // Can export from current BB.
1094    if (VI->getParent() == FromBB)
1095      return true;
1096
1097    // Is already exported, noop.
1098    return FuncInfo.isExportedInst(V);
1099  }
1100
1101  // If this is an argument, we can export it if the BB is the entry block or
1102  // if it is already exported.
1103  if (isa<Argument>(V)) {
1104    if (FromBB == &FromBB->getParent()->getEntryBlock())
1105      return true;
1106
1107    // Otherwise, can only export this if it is already exported.
1108    return FuncInfo.isExportedInst(V);
1109  }
1110
1111  // Otherwise, constants can always be exported.
1112  return true;
1113}
1114
1115static bool InBlock(const Value *V, const BasicBlock *BB) {
1116  if (const Instruction *I = dyn_cast<Instruction>(V))
1117    return I->getParent() == BB;
1118  return true;
1119}
1120
1121/// FindMergedConditions - If Cond is an expression like
1122void SelectionDAGLowering::FindMergedConditions(Value *Cond,
1123                                                MachineBasicBlock *TBB,
1124                                                MachineBasicBlock *FBB,
1125                                                MachineBasicBlock *CurBB,
1126                                                unsigned Opc) {
1127  // If this node is not part of the or/and tree, emit it as a branch.
1128  Instruction *BOp = dyn_cast<Instruction>(Cond);
1129
1130  if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
1131      (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() ||
1132      BOp->getParent() != CurBB->getBasicBlock() ||
1133      !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
1134      !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
1135    const BasicBlock *BB = CurBB->getBasicBlock();
1136
1137    // If the leaf of the tree is a comparison, merge the condition into
1138    // the caseblock.
1139    if ((isa<ICmpInst>(Cond) || isa<FCmpInst>(Cond)) &&
1140        // The operands of the cmp have to be in this block.  We don't know
1141        // how to export them from some other block.  If this is the first block
1142        // of the sequence, no exporting is needed.
1143        (CurBB == CurMBB ||
1144         (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
1145          isExportableFromCurrentBlock(BOp->getOperand(1), BB)))) {
1146      BOp = cast<Instruction>(Cond);
1147      ISD::CondCode Condition;
1148      if (ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
1149        switch (IC->getPredicate()) {
1150        default: assert(0 && "Unknown icmp predicate opcode!");
1151        case ICmpInst::ICMP_EQ:  Condition = ISD::SETEQ;  break;
1152        case ICmpInst::ICMP_NE:  Condition = ISD::SETNE;  break;
1153        case ICmpInst::ICMP_SLE: Condition = ISD::SETLE;  break;
1154        case ICmpInst::ICMP_ULE: Condition = ISD::SETULE; break;
1155        case ICmpInst::ICMP_SGE: Condition = ISD::SETGE;  break;
1156        case ICmpInst::ICMP_UGE: Condition = ISD::SETUGE; break;
1157        case ICmpInst::ICMP_SLT: Condition = ISD::SETLT;  break;
1158        case ICmpInst::ICMP_ULT: Condition = ISD::SETULT; break;
1159        case ICmpInst::ICMP_SGT: Condition = ISD::SETGT;  break;
1160        case ICmpInst::ICMP_UGT: Condition = ISD::SETUGT; break;
1161        }
1162      } else if (FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) {
1163        ISD::CondCode FPC, FOC;
1164        switch (FC->getPredicate()) {
1165        default: assert(0 && "Unknown fcmp predicate opcode!");
1166        case FCmpInst::FCMP_FALSE: FOC = FPC = ISD::SETFALSE; break;
1167        case FCmpInst::FCMP_OEQ:   FOC = ISD::SETEQ; FPC = ISD::SETOEQ; break;
1168        case FCmpInst::FCMP_OGT:   FOC = ISD::SETGT; FPC = ISD::SETOGT; break;
1169        case FCmpInst::FCMP_OGE:   FOC = ISD::SETGE; FPC = ISD::SETOGE; break;
1170        case FCmpInst::FCMP_OLT:   FOC = ISD::SETLT; FPC = ISD::SETOLT; break;
1171        case FCmpInst::FCMP_OLE:   FOC = ISD::SETLE; FPC = ISD::SETOLE; break;
1172        case FCmpInst::FCMP_ONE:   FOC = ISD::SETNE; FPC = ISD::SETONE; break;
1173        case FCmpInst::FCMP_ORD:   FOC = ISD::SETEQ; FPC = ISD::SETO;   break;
1174        case FCmpInst::FCMP_UNO:   FOC = ISD::SETNE; FPC = ISD::SETUO;  break;
1175        case FCmpInst::FCMP_UEQ:   FOC = ISD::SETEQ; FPC = ISD::SETUEQ; break;
1176        case FCmpInst::FCMP_UGT:   FOC = ISD::SETGT; FPC = ISD::SETUGT; break;
1177        case FCmpInst::FCMP_UGE:   FOC = ISD::SETGE; FPC = ISD::SETUGE; break;
1178        case FCmpInst::FCMP_ULT:   FOC = ISD::SETLT; FPC = ISD::SETULT; break;
1179        case FCmpInst::FCMP_ULE:   FOC = ISD::SETLE; FPC = ISD::SETULE; break;
1180        case FCmpInst::FCMP_UNE:   FOC = ISD::SETNE; FPC = ISD::SETUNE; break;
1181        case FCmpInst::FCMP_TRUE:  FOC = FPC = ISD::SETTRUE; break;
1182        }
1183        if (FiniteOnlyFPMath())
1184          Condition = FOC;
1185        else
1186          Condition = FPC;
1187      } else {
1188        Condition = ISD::SETEQ; // silence warning.
1189        assert(0 && "Unknown compare instruction");
1190      }
1191
1192      SelectionDAGISel::CaseBlock CB(Condition, BOp->getOperand(0),
1193                                     BOp->getOperand(1), NULL, TBB, FBB, CurBB);
1194      SwitchCases.push_back(CB);
1195      return;
1196    }
1197
1198    // Create a CaseBlock record representing this branch.
1199    SelectionDAGISel::CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(),
1200                                   NULL, TBB, FBB, CurBB);
1201    SwitchCases.push_back(CB);
1202    return;
1203  }
1204
1205
1206  //  Create TmpBB after CurBB.
1207  MachineFunction::iterator BBI = CurBB;
1208  MachineBasicBlock *TmpBB = new MachineBasicBlock(CurBB->getBasicBlock());
1209  CurBB->getParent()->getBasicBlockList().insert(++BBI, TmpBB);
1210
1211  if (Opc == Instruction::Or) {
1212    // Codegen X | Y as:
1213    //   jmp_if_X TBB
1214    //   jmp TmpBB
1215    // TmpBB:
1216    //   jmp_if_Y TBB
1217    //   jmp FBB
1218    //
1219
1220    // Emit the LHS condition.
1221    FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, Opc);
1222
1223    // Emit the RHS condition into TmpBB.
1224    FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, Opc);
1225  } else {
1226    assert(Opc == Instruction::And && "Unknown merge op!");
1227    // Codegen X & Y as:
1228    //   jmp_if_X TmpBB
1229    //   jmp FBB
1230    // TmpBB:
1231    //   jmp_if_Y TBB
1232    //   jmp FBB
1233    //
1234    //  This requires creation of TmpBB after CurBB.
1235
1236    // Emit the LHS condition.
1237    FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, Opc);
1238
1239    // Emit the RHS condition into TmpBB.
1240    FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, Opc);
1241  }
1242}
1243
1244/// If the set of cases should be emitted as a series of branches, return true.
1245/// If we should emit this as a bunch of and/or'd together conditions, return
1246/// false.
1247static bool
1248ShouldEmitAsBranches(const std::vector<SelectionDAGISel::CaseBlock> &Cases) {
1249  if (Cases.size() != 2) return true;
1250
1251  // If this is two comparisons of the same values or'd or and'd together, they
1252  // will get folded into a single comparison, so don't emit two blocks.
1253  if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
1254       Cases[0].CmpRHS == Cases[1].CmpRHS) ||
1255      (Cases[0].CmpRHS == Cases[1].CmpLHS &&
1256       Cases[0].CmpLHS == Cases[1].CmpRHS)) {
1257    return false;
1258  }
1259
1260  return true;
1261}
1262
1263void SelectionDAGLowering::visitBr(BranchInst &I) {
1264  // Update machine-CFG edges.
1265  MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
1266
1267  // Figure out which block is immediately after the current one.
1268  MachineBasicBlock *NextBlock = 0;
1269  MachineFunction::iterator BBI = CurMBB;
1270  if (++BBI != CurMBB->getParent()->end())
1271    NextBlock = BBI;
1272
1273  if (I.isUnconditional()) {
1274    // If this is not a fall-through branch, emit the branch.
1275    if (Succ0MBB != NextBlock)
1276      DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, getRoot(),
1277                              DAG.getBasicBlock(Succ0MBB)));
1278
1279    // Update machine-CFG edges.
1280    CurMBB->addSuccessor(Succ0MBB);
1281    return;
1282  }
1283
1284  // If this condition is one of the special cases we handle, do special stuff
1285  // now.
1286  Value *CondVal = I.getCondition();
1287  MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
1288
1289  // If this is a series of conditions that are or'd or and'd together, emit
1290  // this as a sequence of branches instead of setcc's with and/or operations.
1291  // For example, instead of something like:
1292  //     cmp A, B
1293  //     C = seteq
1294  //     cmp D, E
1295  //     F = setle
1296  //     or C, F
1297  //     jnz foo
1298  // Emit:
1299  //     cmp A, B
1300  //     je foo
1301  //     cmp D, E
1302  //     jle foo
1303  //
1304  if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
1305    if (BOp->hasOneUse() &&
1306        (BOp->getOpcode() == Instruction::And ||
1307         BOp->getOpcode() == Instruction::Or)) {
1308      FindMergedConditions(BOp, Succ0MBB, Succ1MBB, CurMBB, BOp->getOpcode());
1309      // If the compares in later blocks need to use values not currently
1310      // exported from this block, export them now.  This block should always
1311      // be the first entry.
1312      assert(SwitchCases[0].ThisBB == CurMBB && "Unexpected lowering!");
1313
1314      // Allow some cases to be rejected.
1315      if (ShouldEmitAsBranches(SwitchCases)) {
1316        for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
1317          ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
1318          ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
1319        }
1320
1321        // Emit the branch for this block.
1322        visitSwitchCase(SwitchCases[0]);
1323        SwitchCases.erase(SwitchCases.begin());
1324        return;
1325      }
1326
1327      // Okay, we decided not to do this, remove any inserted MBB's and clear
1328      // SwitchCases.
1329      for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
1330        CurMBB->getParent()->getBasicBlockList().erase(SwitchCases[i].ThisBB);
1331
1332      SwitchCases.clear();
1333    }
1334  }
1335
1336  // Create a CaseBlock record representing this branch.
1337  SelectionDAGISel::CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(),
1338                                 NULL, Succ0MBB, Succ1MBB, CurMBB);
1339  // Use visitSwitchCase to actually insert the fast branch sequence for this
1340  // cond branch.
1341  visitSwitchCase(CB);
1342}
1343
1344/// visitSwitchCase - Emits the necessary code to represent a single node in
1345/// the binary search tree resulting from lowering a switch instruction.
1346void SelectionDAGLowering::visitSwitchCase(SelectionDAGISel::CaseBlock &CB) {
1347  SDOperand Cond;
1348  SDOperand CondLHS = getValue(CB.CmpLHS);
1349
1350  // Build the setcc now.
1351  if (CB.CmpMHS == NULL) {
1352    // Fold "(X == true)" to X and "(X == false)" to !X to
1353    // handle common cases produced by branch lowering.
1354    if (CB.CmpRHS == ConstantInt::getTrue() && CB.CC == ISD::SETEQ)
1355      Cond = CondLHS;
1356    else if (CB.CmpRHS == ConstantInt::getFalse() && CB.CC == ISD::SETEQ) {
1357      SDOperand True = DAG.getConstant(1, CondLHS.getValueType());
1358      Cond = DAG.getNode(ISD::XOR, CondLHS.getValueType(), CondLHS, True);
1359    } else
1360      Cond = DAG.getSetCC(MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
1361  } else {
1362    assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
1363
1364    uint64_t Low = cast<ConstantInt>(CB.CmpLHS)->getSExtValue();
1365    uint64_t High  = cast<ConstantInt>(CB.CmpRHS)->getSExtValue();
1366
1367    SDOperand CmpOp = getValue(CB.CmpMHS);
1368    MVT::ValueType VT = CmpOp.getValueType();
1369
1370    if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
1371      Cond = DAG.getSetCC(MVT::i1, CmpOp, DAG.getConstant(High, VT), ISD::SETLE);
1372    } else {
1373      SDOperand SUB = DAG.getNode(ISD::SUB, VT, CmpOp, DAG.getConstant(Low, VT));
1374      Cond = DAG.getSetCC(MVT::i1, SUB,
1375                          DAG.getConstant(High-Low, VT), ISD::SETULE);
1376    }
1377
1378  }
1379
1380  // Set NextBlock to be the MBB immediately after the current one, if any.
1381  // This is used to avoid emitting unnecessary branches to the next block.
1382  MachineBasicBlock *NextBlock = 0;
1383  MachineFunction::iterator BBI = CurMBB;
1384  if (++BBI != CurMBB->getParent()->end())
1385    NextBlock = BBI;
1386
1387  // If the lhs block is the next block, invert the condition so that we can
1388  // fall through to the lhs instead of the rhs block.
1389  if (CB.TrueBB == NextBlock) {
1390    std::swap(CB.TrueBB, CB.FalseBB);
1391    SDOperand True = DAG.getConstant(1, Cond.getValueType());
1392    Cond = DAG.getNode(ISD::XOR, Cond.getValueType(), Cond, True);
1393  }
1394  SDOperand BrCond = DAG.getNode(ISD::BRCOND, MVT::Other, getRoot(), Cond,
1395                                 DAG.getBasicBlock(CB.TrueBB));
1396  if (CB.FalseBB == NextBlock)
1397    DAG.setRoot(BrCond);
1398  else
1399    DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, BrCond,
1400                            DAG.getBasicBlock(CB.FalseBB)));
1401  // Update successor info
1402  CurMBB->addSuccessor(CB.TrueBB);
1403  CurMBB->addSuccessor(CB.FalseBB);
1404}
1405
1406/// visitJumpTable - Emit JumpTable node in the current MBB
1407void SelectionDAGLowering::visitJumpTable(SelectionDAGISel::JumpTable &JT) {
1408  // Emit the code for the jump table
1409  assert(JT.Reg != -1U && "Should lower JT Header first!");
1410  MVT::ValueType PTy = TLI.getPointerTy();
1411  SDOperand Index = DAG.getCopyFromReg(getRoot(), JT.Reg, PTy);
1412  SDOperand Table = DAG.getJumpTable(JT.JTI, PTy);
1413  DAG.setRoot(DAG.getNode(ISD::BR_JT, MVT::Other, Index.getValue(1),
1414                          Table, Index));
1415  return;
1416}
1417
1418/// visitJumpTableHeader - This function emits necessary code to produce index
1419/// in the JumpTable from switch case.
1420void SelectionDAGLowering::visitJumpTableHeader(SelectionDAGISel::JumpTable &JT,
1421                                         SelectionDAGISel::JumpTableHeader &JTH) {
1422  // Subtract the lowest switch case value from the value being switched on
1423  // and conditional branch to default mbb if the result is greater than the
1424  // difference between smallest and largest cases.
1425  SDOperand SwitchOp = getValue(JTH.SValue);
1426  MVT::ValueType VT = SwitchOp.getValueType();
1427  SDOperand SUB = DAG.getNode(ISD::SUB, VT, SwitchOp,
1428                              DAG.getConstant(JTH.First, VT));
1429
1430  // The SDNode we just created, which holds the value being switched on
1431  // minus the the smallest case value, needs to be copied to a virtual
1432  // register so it can be used as an index into the jump table in a
1433  // subsequent basic block.  This value may be smaller or larger than the
1434  // target's pointer type, and therefore require extension or truncating.
1435  if (MVT::getSizeInBits(VT) > MVT::getSizeInBits(TLI.getPointerTy()))
1436    SwitchOp = DAG.getNode(ISD::TRUNCATE, TLI.getPointerTy(), SUB);
1437  else
1438    SwitchOp = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(), SUB);
1439
1440  unsigned JumpTableReg = FuncInfo.MakeReg(TLI.getPointerTy());
1441  SDOperand CopyTo = DAG.getCopyToReg(getRoot(), JumpTableReg, SwitchOp);
1442  JT.Reg = JumpTableReg;
1443
1444  // Emit the range check for the jump table, and branch to the default
1445  // block for the switch statement if the value being switched on exceeds
1446  // the largest case in the switch.
1447  SDOperand CMP = DAG.getSetCC(TLI.getSetCCResultType(SUB), SUB,
1448                               DAG.getConstant(JTH.Last-JTH.First,VT),
1449                               ISD::SETUGT);
1450
1451  // Set NextBlock to be the MBB immediately after the current one, if any.
1452  // This is used to avoid emitting unnecessary branches to the next block.
1453  MachineBasicBlock *NextBlock = 0;
1454  MachineFunction::iterator BBI = CurMBB;
1455  if (++BBI != CurMBB->getParent()->end())
1456    NextBlock = BBI;
1457
1458  SDOperand BrCond = DAG.getNode(ISD::BRCOND, MVT::Other, CopyTo, CMP,
1459                                 DAG.getBasicBlock(JT.Default));
1460
1461  if (JT.MBB == NextBlock)
1462    DAG.setRoot(BrCond);
1463  else
1464    DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, BrCond,
1465                            DAG.getBasicBlock(JT.MBB)));
1466
1467  return;
1468}
1469
1470/// visitBitTestHeader - This function emits necessary code to produce value
1471/// suitable for "bit tests"
1472void SelectionDAGLowering::visitBitTestHeader(SelectionDAGISel::BitTestBlock &B) {
1473  // Subtract the minimum value
1474  SDOperand SwitchOp = getValue(B.SValue);
1475  MVT::ValueType VT = SwitchOp.getValueType();
1476  SDOperand SUB = DAG.getNode(ISD::SUB, VT, SwitchOp,
1477                              DAG.getConstant(B.First, VT));
1478
1479  // Check range
1480  SDOperand RangeCmp = DAG.getSetCC(TLI.getSetCCResultType(SUB), SUB,
1481                                    DAG.getConstant(B.Range, VT),
1482                                    ISD::SETUGT);
1483
1484  SDOperand ShiftOp;
1485  if (MVT::getSizeInBits(VT) > MVT::getSizeInBits(TLI.getShiftAmountTy()))
1486    ShiftOp = DAG.getNode(ISD::TRUNCATE, TLI.getShiftAmountTy(), SUB);
1487  else
1488    ShiftOp = DAG.getNode(ISD::ZERO_EXTEND, TLI.getShiftAmountTy(), SUB);
1489
1490  // Make desired shift
1491  SDOperand SwitchVal = DAG.getNode(ISD::SHL, TLI.getPointerTy(),
1492                                    DAG.getConstant(1, TLI.getPointerTy()),
1493                                    ShiftOp);
1494
1495  unsigned SwitchReg = FuncInfo.MakeReg(TLI.getPointerTy());
1496  SDOperand CopyTo = DAG.getCopyToReg(getRoot(), SwitchReg, SwitchVal);
1497  B.Reg = SwitchReg;
1498
1499  SDOperand BrRange = DAG.getNode(ISD::BRCOND, MVT::Other, CopyTo, RangeCmp,
1500                                  DAG.getBasicBlock(B.Default));
1501
1502  // Set NextBlock to be the MBB immediately after the current one, if any.
1503  // This is used to avoid emitting unnecessary branches to the next block.
1504  MachineBasicBlock *NextBlock = 0;
1505  MachineFunction::iterator BBI = CurMBB;
1506  if (++BBI != CurMBB->getParent()->end())
1507    NextBlock = BBI;
1508
1509  MachineBasicBlock* MBB = B.Cases[0].ThisBB;
1510  if (MBB == NextBlock)
1511    DAG.setRoot(BrRange);
1512  else
1513    DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, CopyTo,
1514                            DAG.getBasicBlock(MBB)));
1515
1516  CurMBB->addSuccessor(B.Default);
1517  CurMBB->addSuccessor(MBB);
1518
1519  return;
1520}
1521
1522/// visitBitTestCase - this function produces one "bit test"
1523void SelectionDAGLowering::visitBitTestCase(MachineBasicBlock* NextMBB,
1524                                            unsigned Reg,
1525                                            SelectionDAGISel::BitTestCase &B) {
1526  // Emit bit tests and jumps
1527  SDOperand SwitchVal = DAG.getCopyFromReg(getRoot(), Reg, TLI.getPointerTy());
1528
1529  SDOperand AndOp = DAG.getNode(ISD::AND, TLI.getPointerTy(),
1530                                SwitchVal,
1531                                DAG.getConstant(B.Mask,
1532                                                TLI.getPointerTy()));
1533  SDOperand AndCmp = DAG.getSetCC(TLI.getSetCCResultType(AndOp), AndOp,
1534                                  DAG.getConstant(0, TLI.getPointerTy()),
1535                                  ISD::SETNE);
1536  SDOperand BrAnd = DAG.getNode(ISD::BRCOND, MVT::Other, getRoot(),
1537                                AndCmp, DAG.getBasicBlock(B.TargetBB));
1538
1539  // Set NextBlock to be the MBB immediately after the current one, if any.
1540  // This is used to avoid emitting unnecessary branches to the next block.
1541  MachineBasicBlock *NextBlock = 0;
1542  MachineFunction::iterator BBI = CurMBB;
1543  if (++BBI != CurMBB->getParent()->end())
1544    NextBlock = BBI;
1545
1546  if (NextMBB == NextBlock)
1547    DAG.setRoot(BrAnd);
1548  else
1549    DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, BrAnd,
1550                            DAG.getBasicBlock(NextMBB)));
1551
1552  CurMBB->addSuccessor(B.TargetBB);
1553  CurMBB->addSuccessor(NextMBB);
1554
1555  return;
1556}
1557
1558void SelectionDAGLowering::visitInvoke(InvokeInst &I) {
1559  // Retrieve successors.
1560  MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
1561  MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)];
1562
1563  if (isa<InlineAsm>(I.getCalledValue()))
1564    visitInlineAsm(&I);
1565  else
1566    LowerCallTo(&I, getValue(I.getOperand(0)), false, LandingPad);
1567
1568  // If the value of the invoke is used outside of its defining block, make it
1569  // available as a virtual register.
1570  if (!I.use_empty()) {
1571    DenseMap<const Value*, unsigned>::iterator VMI = FuncInfo.ValueMap.find(&I);
1572    if (VMI != FuncInfo.ValueMap.end())
1573      DAG.setRoot(CopyValueToVirtualRegister(&I, VMI->second));
1574  }
1575
1576  // Drop into normal successor.
1577  DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, getRoot(),
1578                          DAG.getBasicBlock(Return)));
1579
1580  // Update successor info
1581  CurMBB->addSuccessor(Return);
1582  CurMBB->addSuccessor(LandingPad);
1583}
1584
1585void SelectionDAGLowering::visitUnwind(UnwindInst &I) {
1586}
1587
1588/// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for
1589/// small case ranges).
1590bool SelectionDAGLowering::handleSmallSwitchRange(CaseRec& CR,
1591                                                  CaseRecVector& WorkList,
1592                                                  Value* SV,
1593                                                  MachineBasicBlock* Default) {
1594  Case& BackCase  = *(CR.Range.second-1);
1595
1596  // Size is the number of Cases represented by this range.
1597  unsigned Size = CR.Range.second - CR.Range.first;
1598  if (Size > 3)
1599    return false;
1600
1601  // Get the MachineFunction which holds the current MBB.  This is used when
1602  // inserting any additional MBBs necessary to represent the switch.
1603  MachineFunction *CurMF = CurMBB->getParent();
1604
1605  // Figure out which block is immediately after the current one.
1606  MachineBasicBlock *NextBlock = 0;
1607  MachineFunction::iterator BBI = CR.CaseBB;
1608
1609  if (++BBI != CurMBB->getParent()->end())
1610    NextBlock = BBI;
1611
1612  // TODO: If any two of the cases has the same destination, and if one value
1613  // is the same as the other, but has one bit unset that the other has set,
1614  // use bit manipulation to do two compares at once.  For example:
1615  // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
1616
1617  // Rearrange the case blocks so that the last one falls through if possible.
1618  if (NextBlock && Default != NextBlock && BackCase.BB != NextBlock) {
1619    // The last case block won't fall through into 'NextBlock' if we emit the
1620    // branches in this order.  See if rearranging a case value would help.
1621    for (CaseItr I = CR.Range.first, E = CR.Range.second-1; I != E; ++I) {
1622      if (I->BB == NextBlock) {
1623        std::swap(*I, BackCase);
1624        break;
1625      }
1626    }
1627  }
1628
1629  // Create a CaseBlock record representing a conditional branch to
1630  // the Case's target mbb if the value being switched on SV is equal
1631  // to C.
1632  MachineBasicBlock *CurBlock = CR.CaseBB;
1633  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) {
1634    MachineBasicBlock *FallThrough;
1635    if (I != E-1) {
1636      FallThrough = new MachineBasicBlock(CurBlock->getBasicBlock());
1637      CurMF->getBasicBlockList().insert(BBI, FallThrough);
1638    } else {
1639      // If the last case doesn't match, go to the default block.
1640      FallThrough = Default;
1641    }
1642
1643    Value *RHS, *LHS, *MHS;
1644    ISD::CondCode CC;
1645    if (I->High == I->Low) {
1646      // This is just small small case range :) containing exactly 1 case
1647      CC = ISD::SETEQ;
1648      LHS = SV; RHS = I->High; MHS = NULL;
1649    } else {
1650      CC = ISD::SETLE;
1651      LHS = I->Low; MHS = SV; RHS = I->High;
1652    }
1653    SelectionDAGISel::CaseBlock CB(CC, LHS, RHS, MHS,
1654                                   I->BB, FallThrough, CurBlock);
1655
1656    // If emitting the first comparison, just call visitSwitchCase to emit the
1657    // code into the current block.  Otherwise, push the CaseBlock onto the
1658    // vector to be later processed by SDISel, and insert the node's MBB
1659    // before the next MBB.
1660    if (CurBlock == CurMBB)
1661      visitSwitchCase(CB);
1662    else
1663      SwitchCases.push_back(CB);
1664
1665    CurBlock = FallThrough;
1666  }
1667
1668  return true;
1669}
1670
1671static inline bool areJTsAllowed(const TargetLowering &TLI) {
1672  return (TLI.isOperationLegal(ISD::BR_JT, MVT::Other) ||
1673          TLI.isOperationLegal(ISD::BRIND, MVT::Other));
1674}
1675
1676/// handleJTSwitchCase - Emit jumptable for current switch case range
1677bool SelectionDAGLowering::handleJTSwitchCase(CaseRec& CR,
1678                                              CaseRecVector& WorkList,
1679                                              Value* SV,
1680                                              MachineBasicBlock* Default) {
1681  Case& FrontCase = *CR.Range.first;
1682  Case& BackCase  = *(CR.Range.second-1);
1683
1684  int64_t First = cast<ConstantInt>(FrontCase.Low)->getSExtValue();
1685  int64_t Last  = cast<ConstantInt>(BackCase.High)->getSExtValue();
1686
1687  uint64_t TSize = 0;
1688  for (CaseItr I = CR.Range.first, E = CR.Range.second;
1689       I!=E; ++I)
1690    TSize += I->size();
1691
1692  if (!areJTsAllowed(TLI) || TSize <= 3)
1693    return false;
1694
1695  double Density = (double)TSize / (double)((Last - First) + 1ULL);
1696  if (Density < 0.4)
1697    return false;
1698
1699  DOUT << "Lowering jump table\n"
1700       << "First entry: " << First << ". Last entry: " << Last << "\n"
1701       << "Size: " << TSize << ". Density: " << Density << "\n\n";
1702
1703  // Get the MachineFunction which holds the current MBB.  This is used when
1704  // inserting any additional MBBs necessary to represent the switch.
1705  MachineFunction *CurMF = CurMBB->getParent();
1706
1707  // Figure out which block is immediately after the current one.
1708  MachineBasicBlock *NextBlock = 0;
1709  MachineFunction::iterator BBI = CR.CaseBB;
1710
1711  if (++BBI != CurMBB->getParent()->end())
1712    NextBlock = BBI;
1713
1714  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
1715
1716  // Create a new basic block to hold the code for loading the address
1717  // of the jump table, and jumping to it.  Update successor information;
1718  // we will either branch to the default case for the switch, or the jump
1719  // table.
1720  MachineBasicBlock *JumpTableBB = new MachineBasicBlock(LLVMBB);
1721  CurMF->getBasicBlockList().insert(BBI, JumpTableBB);
1722  CR.CaseBB->addSuccessor(Default);
1723  CR.CaseBB->addSuccessor(JumpTableBB);
1724
1725  // Build a vector of destination BBs, corresponding to each target
1726  // of the jump table. If the value of the jump table slot corresponds to
1727  // a case statement, push the case's BB onto the vector, otherwise, push
1728  // the default BB.
1729  std::vector<MachineBasicBlock*> DestBBs;
1730  int64_t TEI = First;
1731  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) {
1732    int64_t Low = cast<ConstantInt>(I->Low)->getSExtValue();
1733    int64_t High = cast<ConstantInt>(I->High)->getSExtValue();
1734
1735    if ((Low <= TEI) && (TEI <= High)) {
1736      DestBBs.push_back(I->BB);
1737      if (TEI==High)
1738        ++I;
1739    } else {
1740      DestBBs.push_back(Default);
1741    }
1742  }
1743
1744  // Update successor info. Add one edge to each unique successor.
1745  BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs());
1746  for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(),
1747         E = DestBBs.end(); I != E; ++I) {
1748    if (!SuccsHandled[(*I)->getNumber()]) {
1749      SuccsHandled[(*I)->getNumber()] = true;
1750      JumpTableBB->addSuccessor(*I);
1751    }
1752  }
1753
1754  // Create a jump table index for this jump table, or return an existing
1755  // one.
1756  unsigned JTI = CurMF->getJumpTableInfo()->getJumpTableIndex(DestBBs);
1757
1758  // Set the jump table information so that we can codegen it as a second
1759  // MachineBasicBlock
1760  SelectionDAGISel::JumpTable JT(-1U, JTI, JumpTableBB, Default);
1761  SelectionDAGISel::JumpTableHeader JTH(First, Last, SV, CR.CaseBB,
1762                                        (CR.CaseBB == CurMBB));
1763  if (CR.CaseBB == CurMBB)
1764    visitJumpTableHeader(JT, JTH);
1765
1766  JTCases.push_back(SelectionDAGISel::JumpTableBlock(JTH, JT));
1767
1768  return true;
1769}
1770
1771/// handleBTSplitSwitchCase - emit comparison and split binary search tree into
1772/// 2 subtrees.
1773bool SelectionDAGLowering::handleBTSplitSwitchCase(CaseRec& CR,
1774                                                   CaseRecVector& WorkList,
1775                                                   Value* SV,
1776                                                   MachineBasicBlock* Default) {
1777  // Get the MachineFunction which holds the current MBB.  This is used when
1778  // inserting any additional MBBs necessary to represent the switch.
1779  MachineFunction *CurMF = CurMBB->getParent();
1780
1781  // Figure out which block is immediately after the current one.
1782  MachineBasicBlock *NextBlock = 0;
1783  MachineFunction::iterator BBI = CR.CaseBB;
1784
1785  if (++BBI != CurMBB->getParent()->end())
1786    NextBlock = BBI;
1787
1788  Case& FrontCase = *CR.Range.first;
1789  Case& BackCase  = *(CR.Range.second-1);
1790  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
1791
1792  // Size is the number of Cases represented by this range.
1793  unsigned Size = CR.Range.second - CR.Range.first;
1794
1795  int64_t First = cast<ConstantInt>(FrontCase.Low)->getSExtValue();
1796  int64_t Last  = cast<ConstantInt>(BackCase.High)->getSExtValue();
1797  double FMetric = 0;
1798  CaseItr Pivot = CR.Range.first + Size/2;
1799
1800  // Select optimal pivot, maximizing sum density of LHS and RHS. This will
1801  // (heuristically) allow us to emit JumpTable's later.
1802  uint64_t TSize = 0;
1803  for (CaseItr I = CR.Range.first, E = CR.Range.second;
1804       I!=E; ++I)
1805    TSize += I->size();
1806
1807  uint64_t LSize = FrontCase.size();
1808  uint64_t RSize = TSize-LSize;
1809  DOUT << "Selecting best pivot: \n"
1810       << "First: " << First << ", Last: " << Last <<"\n"
1811       << "LSize: " << LSize << ", RSize: " << RSize << "\n";
1812  for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second;
1813       J!=E; ++I, ++J) {
1814    int64_t LEnd = cast<ConstantInt>(I->High)->getSExtValue();
1815    int64_t RBegin = cast<ConstantInt>(J->Low)->getSExtValue();
1816    assert((RBegin-LEnd>=1) && "Invalid case distance");
1817    double LDensity = (double)LSize / (double)((LEnd - First) + 1ULL);
1818    double RDensity = (double)RSize / (double)((Last - RBegin) + 1ULL);
1819    double Metric = Log2_64(RBegin-LEnd)*(LDensity+RDensity);
1820    // Should always split in some non-trivial place
1821    DOUT <<"=>Step\n"
1822         << "LEnd: " << LEnd << ", RBegin: " << RBegin << "\n"
1823         << "LDensity: " << LDensity << ", RDensity: " << RDensity << "\n"
1824         << "Metric: " << Metric << "\n";
1825    if (FMetric < Metric) {
1826      Pivot = J;
1827      FMetric = Metric;
1828      DOUT << "Current metric set to: " << FMetric << "\n";
1829    }
1830
1831    LSize += J->size();
1832    RSize -= J->size();
1833  }
1834  if (areJTsAllowed(TLI)) {
1835    // If our case is dense we *really* should handle it earlier!
1836    assert((FMetric > 0) && "Should handle dense range earlier!");
1837  } else {
1838    Pivot = CR.Range.first + Size/2;
1839  }
1840
1841  CaseRange LHSR(CR.Range.first, Pivot);
1842  CaseRange RHSR(Pivot, CR.Range.second);
1843  Constant *C = Pivot->Low;
1844  MachineBasicBlock *FalseBB = 0, *TrueBB = 0;
1845
1846  // We know that we branch to the LHS if the Value being switched on is
1847  // less than the Pivot value, C.  We use this to optimize our binary
1848  // tree a bit, by recognizing that if SV is greater than or equal to the
1849  // LHS's Case Value, and that Case Value is exactly one less than the
1850  // Pivot's Value, then we can branch directly to the LHS's Target,
1851  // rather than creating a leaf node for it.
1852  if ((LHSR.second - LHSR.first) == 1 &&
1853      LHSR.first->High == CR.GE &&
1854      cast<ConstantInt>(C)->getSExtValue() ==
1855      (cast<ConstantInt>(CR.GE)->getSExtValue() + 1LL)) {
1856    TrueBB = LHSR.first->BB;
1857  } else {
1858    TrueBB = new MachineBasicBlock(LLVMBB);
1859    CurMF->getBasicBlockList().insert(BBI, TrueBB);
1860    WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR));
1861  }
1862
1863  // Similar to the optimization above, if the Value being switched on is
1864  // known to be less than the Constant CR.LT, and the current Case Value
1865  // is CR.LT - 1, then we can branch directly to the target block for
1866  // the current Case Value, rather than emitting a RHS leaf node for it.
1867  if ((RHSR.second - RHSR.first) == 1 && CR.LT &&
1868      cast<ConstantInt>(RHSR.first->Low)->getSExtValue() ==
1869      (cast<ConstantInt>(CR.LT)->getSExtValue() - 1LL)) {
1870    FalseBB = RHSR.first->BB;
1871  } else {
1872    FalseBB = new MachineBasicBlock(LLVMBB);
1873    CurMF->getBasicBlockList().insert(BBI, FalseBB);
1874    WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR));
1875  }
1876
1877  // Create a CaseBlock record representing a conditional branch to
1878  // the LHS node if the value being switched on SV is less than C.
1879  // Otherwise, branch to LHS.
1880  SelectionDAGISel::CaseBlock CB(ISD::SETLT, SV, C, NULL,
1881                                 TrueBB, FalseBB, CR.CaseBB);
1882
1883  if (CR.CaseBB == CurMBB)
1884    visitSwitchCase(CB);
1885  else
1886    SwitchCases.push_back(CB);
1887
1888  return true;
1889}
1890
1891/// handleBitTestsSwitchCase - if current case range has few destination and
1892/// range span less, than machine word bitwidth, encode case range into series
1893/// of masks and emit bit tests with these masks.
1894bool SelectionDAGLowering::handleBitTestsSwitchCase(CaseRec& CR,
1895                                                    CaseRecVector& WorkList,
1896                                                    Value* SV,
1897                                                    MachineBasicBlock* Default){
1898  unsigned IntPtrBits = MVT::getSizeInBits(TLI.getPointerTy());
1899
1900  Case& FrontCase = *CR.Range.first;
1901  Case& BackCase  = *(CR.Range.second-1);
1902
1903  // Get the MachineFunction which holds the current MBB.  This is used when
1904  // inserting any additional MBBs necessary to represent the switch.
1905  MachineFunction *CurMF = CurMBB->getParent();
1906
1907  unsigned numCmps = 0;
1908  for (CaseItr I = CR.Range.first, E = CR.Range.second;
1909       I!=E; ++I) {
1910    // Single case counts one, case range - two.
1911    if (I->Low == I->High)
1912      numCmps +=1;
1913    else
1914      numCmps +=2;
1915  }
1916
1917  // Count unique destinations
1918  SmallSet<MachineBasicBlock*, 4> Dests;
1919  for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
1920    Dests.insert(I->BB);
1921    if (Dests.size() > 3)
1922      // Don't bother the code below, if there are too much unique destinations
1923      return false;
1924  }
1925  DOUT << "Total number of unique destinations: " << Dests.size() << "\n"
1926       << "Total number of comparisons: " << numCmps << "\n";
1927
1928  // Compute span of values.
1929  Constant* minValue = FrontCase.Low;
1930  Constant* maxValue = BackCase.High;
1931  uint64_t range = cast<ConstantInt>(maxValue)->getSExtValue() -
1932                   cast<ConstantInt>(minValue)->getSExtValue();
1933  DOUT << "Compare range: " << range << "\n"
1934       << "Low bound: " << cast<ConstantInt>(minValue)->getSExtValue() << "\n"
1935       << "High bound: " << cast<ConstantInt>(maxValue)->getSExtValue() << "\n";
1936
1937  if (range>=IntPtrBits ||
1938      (!(Dests.size() == 1 && numCmps >= 3) &&
1939       !(Dests.size() == 2 && numCmps >= 5) &&
1940       !(Dests.size() >= 3 && numCmps >= 6)))
1941    return false;
1942
1943  DOUT << "Emitting bit tests\n";
1944  int64_t lowBound = 0;
1945
1946  // Optimize the case where all the case values fit in a
1947  // word without having to subtract minValue. In this case,
1948  // we can optimize away the subtraction.
1949  if (cast<ConstantInt>(minValue)->getSExtValue() >= 0 &&
1950      cast<ConstantInt>(maxValue)->getSExtValue() <  IntPtrBits) {
1951    range = cast<ConstantInt>(maxValue)->getSExtValue();
1952  } else {
1953    lowBound = cast<ConstantInt>(minValue)->getSExtValue();
1954  }
1955
1956  CaseBitsVector CasesBits;
1957  unsigned i, count = 0;
1958
1959  for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
1960    MachineBasicBlock* Dest = I->BB;
1961    for (i = 0; i < count; ++i)
1962      if (Dest == CasesBits[i].BB)
1963        break;
1964
1965    if (i == count) {
1966      assert((count < 3) && "Too much destinations to test!");
1967      CasesBits.push_back(CaseBits(0, Dest, 0));
1968      count++;
1969    }
1970
1971    uint64_t lo = cast<ConstantInt>(I->Low)->getSExtValue() - lowBound;
1972    uint64_t hi = cast<ConstantInt>(I->High)->getSExtValue() - lowBound;
1973
1974    for (uint64_t j = lo; j <= hi; j++) {
1975      CasesBits[i].Mask |=  1ULL << j;
1976      CasesBits[i].Bits++;
1977    }
1978
1979  }
1980  std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp());
1981
1982  SelectionDAGISel::BitTestInfo BTC;
1983
1984  // Figure out which block is immediately after the current one.
1985  MachineFunction::iterator BBI = CR.CaseBB;
1986  ++BBI;
1987
1988  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
1989
1990  DOUT << "Cases:\n";
1991  for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) {
1992    DOUT << "Mask: " << CasesBits[i].Mask << ", Bits: " << CasesBits[i].Bits
1993         << ", BB: " << CasesBits[i].BB << "\n";
1994
1995    MachineBasicBlock *CaseBB = new MachineBasicBlock(LLVMBB);
1996    CurMF->getBasicBlockList().insert(BBI, CaseBB);
1997    BTC.push_back(SelectionDAGISel::BitTestCase(CasesBits[i].Mask,
1998                                                CaseBB,
1999                                                CasesBits[i].BB));
2000  }
2001
2002  SelectionDAGISel::BitTestBlock BTB(lowBound, range, SV,
2003                                     -1U, (CR.CaseBB == CurMBB),
2004                                     CR.CaseBB, Default, BTC);
2005
2006  if (CR.CaseBB == CurMBB)
2007    visitBitTestHeader(BTB);
2008
2009  BitTestCases.push_back(BTB);
2010
2011  return true;
2012}
2013
2014
2015// Clusterify - Transform simple list of Cases into list of CaseRange's
2016unsigned SelectionDAGLowering::Clusterify(CaseVector& Cases,
2017                                          const SwitchInst& SI) {
2018  unsigned numCmps = 0;
2019
2020  // Start with "simple" cases
2021  for (unsigned i = 1; i < SI.getNumSuccessors(); ++i) {
2022    MachineBasicBlock *SMBB = FuncInfo.MBBMap[SI.getSuccessor(i)];
2023    Cases.push_back(Case(SI.getSuccessorValue(i),
2024                         SI.getSuccessorValue(i),
2025                         SMBB));
2026  }
2027  std::sort(Cases.begin(), Cases.end(), CaseCmp());
2028
2029  // Merge case into clusters
2030  if (Cases.size()>=2)
2031    // Must recompute end() each iteration because it may be
2032    // invalidated by erase if we hold on to it
2033    for (CaseItr I=Cases.begin(), J=++(Cases.begin()); J!=Cases.end(); ) {
2034      int64_t nextValue = cast<ConstantInt>(J->Low)->getSExtValue();
2035      int64_t currentValue = cast<ConstantInt>(I->High)->getSExtValue();
2036      MachineBasicBlock* nextBB = J->BB;
2037      MachineBasicBlock* currentBB = I->BB;
2038
2039      // If the two neighboring cases go to the same destination, merge them
2040      // into a single case.
2041      if ((nextValue-currentValue==1) && (currentBB == nextBB)) {
2042        I->High = J->High;
2043        J = Cases.erase(J);
2044      } else {
2045        I = J++;
2046      }
2047    }
2048
2049  for (CaseItr I=Cases.begin(), E=Cases.end(); I!=E; ++I, ++numCmps) {
2050    if (I->Low != I->High)
2051      // A range counts double, since it requires two compares.
2052      ++numCmps;
2053  }
2054
2055  return numCmps;
2056}
2057
2058void SelectionDAGLowering::visitSwitch(SwitchInst &SI) {
2059  // Figure out which block is immediately after the current one.
2060  MachineBasicBlock *NextBlock = 0;
2061  MachineFunction::iterator BBI = CurMBB;
2062
2063  MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()];
2064
2065  // If there is only the default destination, branch to it if it is not the
2066  // next basic block.  Otherwise, just fall through.
2067  if (SI.getNumOperands() == 2) {
2068    // Update machine-CFG edges.
2069
2070    // If this is not a fall-through branch, emit the branch.
2071    if (Default != NextBlock)
2072      DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, getRoot(),
2073                              DAG.getBasicBlock(Default)));
2074
2075    CurMBB->addSuccessor(Default);
2076    return;
2077  }
2078
2079  // If there are any non-default case statements, create a vector of Cases
2080  // representing each one, and sort the vector so that we can efficiently
2081  // create a binary search tree from them.
2082  CaseVector Cases;
2083  unsigned numCmps = Clusterify(Cases, SI);
2084  DOUT << "Clusterify finished. Total clusters: " << Cases.size()
2085       << ". Total compares: " << numCmps << "\n";
2086
2087  // Get the Value to be switched on and default basic blocks, which will be
2088  // inserted into CaseBlock records, representing basic blocks in the binary
2089  // search tree.
2090  Value *SV = SI.getOperand(0);
2091
2092  // Push the initial CaseRec onto the worklist
2093  CaseRecVector WorkList;
2094  WorkList.push_back(CaseRec(CurMBB,0,0,CaseRange(Cases.begin(),Cases.end())));
2095
2096  while (!WorkList.empty()) {
2097    // Grab a record representing a case range to process off the worklist
2098    CaseRec CR = WorkList.back();
2099    WorkList.pop_back();
2100
2101    if (handleBitTestsSwitchCase(CR, WorkList, SV, Default))
2102      continue;
2103
2104    // If the range has few cases (two or less) emit a series of specific
2105    // tests.
2106    if (handleSmallSwitchRange(CR, WorkList, SV, Default))
2107      continue;
2108
2109    // If the switch has more than 5 blocks, and at least 40% dense, and the
2110    // target supports indirect branches, then emit a jump table rather than
2111    // lowering the switch to a binary tree of conditional branches.
2112    if (handleJTSwitchCase(CR, WorkList, SV, Default))
2113      continue;
2114
2115    // Emit binary tree. We need to pick a pivot, and push left and right ranges
2116    // onto the worklist. Leafs are handled via handleSmallSwitchRange() call.
2117    handleBTSplitSwitchCase(CR, WorkList, SV, Default);
2118  }
2119}
2120
2121
2122void SelectionDAGLowering::visitSub(User &I) {
2123  // -0.0 - X --> fneg
2124  const Type *Ty = I.getType();
2125  if (isa<VectorType>(Ty)) {
2126    if (ConstantVector *CV = dyn_cast<ConstantVector>(I.getOperand(0))) {
2127      const VectorType *DestTy = cast<VectorType>(I.getType());
2128      const Type *ElTy = DestTy->getElementType();
2129      if (ElTy->isFloatingPoint()) {
2130        unsigned VL = DestTy->getNumElements();
2131        std::vector<Constant*> NZ(VL, ConstantFP::getNegativeZero(ElTy));
2132        Constant *CNZ = ConstantVector::get(&NZ[0], NZ.size());
2133        if (CV == CNZ) {
2134          SDOperand Op2 = getValue(I.getOperand(1));
2135          setValue(&I, DAG.getNode(ISD::FNEG, Op2.getValueType(), Op2));
2136          return;
2137        }
2138      }
2139    }
2140  }
2141  if (Ty->isFloatingPoint()) {
2142    if (ConstantFP *CFP = dyn_cast<ConstantFP>(I.getOperand(0)))
2143      if (CFP->isExactlyValue(ConstantFP::getNegativeZero(Ty)->getValueAPF())) {
2144        SDOperand Op2 = getValue(I.getOperand(1));
2145        setValue(&I, DAG.getNode(ISD::FNEG, Op2.getValueType(), Op2));
2146        return;
2147      }
2148  }
2149
2150  visitBinary(I, Ty->isFPOrFPVector() ? ISD::FSUB : ISD::SUB);
2151}
2152
2153void SelectionDAGLowering::visitBinary(User &I, unsigned OpCode) {
2154  SDOperand Op1 = getValue(I.getOperand(0));
2155  SDOperand Op2 = getValue(I.getOperand(1));
2156
2157  setValue(&I, DAG.getNode(OpCode, Op1.getValueType(), Op1, Op2));
2158}
2159
2160void SelectionDAGLowering::visitShift(User &I, unsigned Opcode) {
2161  SDOperand Op1 = getValue(I.getOperand(0));
2162  SDOperand Op2 = getValue(I.getOperand(1));
2163
2164  if (MVT::getSizeInBits(TLI.getShiftAmountTy()) <
2165      MVT::getSizeInBits(Op2.getValueType()))
2166    Op2 = DAG.getNode(ISD::TRUNCATE, TLI.getShiftAmountTy(), Op2);
2167  else if (TLI.getShiftAmountTy() > Op2.getValueType())
2168    Op2 = DAG.getNode(ISD::ANY_EXTEND, TLI.getShiftAmountTy(), Op2);
2169
2170  setValue(&I, DAG.getNode(Opcode, Op1.getValueType(), Op1, Op2));
2171}
2172
2173void SelectionDAGLowering::visitICmp(User &I) {
2174  ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
2175  if (ICmpInst *IC = dyn_cast<ICmpInst>(&I))
2176    predicate = IC->getPredicate();
2177  else if (ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
2178    predicate = ICmpInst::Predicate(IC->getPredicate());
2179  SDOperand Op1 = getValue(I.getOperand(0));
2180  SDOperand Op2 = getValue(I.getOperand(1));
2181  ISD::CondCode Opcode;
2182  switch (predicate) {
2183    case ICmpInst::ICMP_EQ  : Opcode = ISD::SETEQ; break;
2184    case ICmpInst::ICMP_NE  : Opcode = ISD::SETNE; break;
2185    case ICmpInst::ICMP_UGT : Opcode = ISD::SETUGT; break;
2186    case ICmpInst::ICMP_UGE : Opcode = ISD::SETUGE; break;
2187    case ICmpInst::ICMP_ULT : Opcode = ISD::SETULT; break;
2188    case ICmpInst::ICMP_ULE : Opcode = ISD::SETULE; break;
2189    case ICmpInst::ICMP_SGT : Opcode = ISD::SETGT; break;
2190    case ICmpInst::ICMP_SGE : Opcode = ISD::SETGE; break;
2191    case ICmpInst::ICMP_SLT : Opcode = ISD::SETLT; break;
2192    case ICmpInst::ICMP_SLE : Opcode = ISD::SETLE; break;
2193    default:
2194      assert(!"Invalid ICmp predicate value");
2195      Opcode = ISD::SETEQ;
2196      break;
2197  }
2198  setValue(&I, DAG.getSetCC(MVT::i1, Op1, Op2, Opcode));
2199}
2200
2201void SelectionDAGLowering::visitFCmp(User &I) {
2202  FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
2203  if (FCmpInst *FC = dyn_cast<FCmpInst>(&I))
2204    predicate = FC->getPredicate();
2205  else if (ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
2206    predicate = FCmpInst::Predicate(FC->getPredicate());
2207  SDOperand Op1 = getValue(I.getOperand(0));
2208  SDOperand Op2 = getValue(I.getOperand(1));
2209  ISD::CondCode Condition, FOC, FPC;
2210  switch (predicate) {
2211    case FCmpInst::FCMP_FALSE: FOC = FPC = ISD::SETFALSE; break;
2212    case FCmpInst::FCMP_OEQ:   FOC = ISD::SETEQ; FPC = ISD::SETOEQ; break;
2213    case FCmpInst::FCMP_OGT:   FOC = ISD::SETGT; FPC = ISD::SETOGT; break;
2214    case FCmpInst::FCMP_OGE:   FOC = ISD::SETGE; FPC = ISD::SETOGE; break;
2215    case FCmpInst::FCMP_OLT:   FOC = ISD::SETLT; FPC = ISD::SETOLT; break;
2216    case FCmpInst::FCMP_OLE:   FOC = ISD::SETLE; FPC = ISD::SETOLE; break;
2217    case FCmpInst::FCMP_ONE:   FOC = ISD::SETNE; FPC = ISD::SETONE; break;
2218    case FCmpInst::FCMP_ORD:   FOC = ISD::SETEQ; FPC = ISD::SETO;   break;
2219    case FCmpInst::FCMP_UNO:   FOC = ISD::SETNE; FPC = ISD::SETUO;  break;
2220    case FCmpInst::FCMP_UEQ:   FOC = ISD::SETEQ; FPC = ISD::SETUEQ; break;
2221    case FCmpInst::FCMP_UGT:   FOC = ISD::SETGT; FPC = ISD::SETUGT; break;
2222    case FCmpInst::FCMP_UGE:   FOC = ISD::SETGE; FPC = ISD::SETUGE; break;
2223    case FCmpInst::FCMP_ULT:   FOC = ISD::SETLT; FPC = ISD::SETULT; break;
2224    case FCmpInst::FCMP_ULE:   FOC = ISD::SETLE; FPC = ISD::SETULE; break;
2225    case FCmpInst::FCMP_UNE:   FOC = ISD::SETNE; FPC = ISD::SETUNE; break;
2226    case FCmpInst::FCMP_TRUE:  FOC = FPC = ISD::SETTRUE; break;
2227    default:
2228      assert(!"Invalid FCmp predicate value");
2229      FOC = FPC = ISD::SETFALSE;
2230      break;
2231  }
2232  if (FiniteOnlyFPMath())
2233    Condition = FOC;
2234  else
2235    Condition = FPC;
2236  setValue(&I, DAG.getSetCC(MVT::i1, Op1, Op2, Condition));
2237}
2238
2239void SelectionDAGLowering::visitSelect(User &I) {
2240  SDOperand Cond     = getValue(I.getOperand(0));
2241  SDOperand TrueVal  = getValue(I.getOperand(1));
2242  SDOperand FalseVal = getValue(I.getOperand(2));
2243  setValue(&I, DAG.getNode(ISD::SELECT, TrueVal.getValueType(), Cond,
2244                           TrueVal, FalseVal));
2245}
2246
2247
2248void SelectionDAGLowering::visitTrunc(User &I) {
2249  // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
2250  SDOperand N = getValue(I.getOperand(0));
2251  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2252  setValue(&I, DAG.getNode(ISD::TRUNCATE, DestVT, N));
2253}
2254
2255void SelectionDAGLowering::visitZExt(User &I) {
2256  // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2257  // ZExt also can't be a cast to bool for same reason. So, nothing much to do
2258  SDOperand N = getValue(I.getOperand(0));
2259  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2260  setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, DestVT, N));
2261}
2262
2263void SelectionDAGLowering::visitSExt(User &I) {
2264  // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2265  // SExt also can't be a cast to bool for same reason. So, nothing much to do
2266  SDOperand N = getValue(I.getOperand(0));
2267  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2268  setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, DestVT, N));
2269}
2270
2271void SelectionDAGLowering::visitFPTrunc(User &I) {
2272  // FPTrunc is never a no-op cast, no need to check
2273  SDOperand N = getValue(I.getOperand(0));
2274  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2275  setValue(&I, DAG.getNode(ISD::FP_ROUND, DestVT, N, DAG.getIntPtrConstant(0)));
2276}
2277
2278void SelectionDAGLowering::visitFPExt(User &I){
2279  // FPTrunc is never a no-op cast, no need to check
2280  SDOperand N = getValue(I.getOperand(0));
2281  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2282  setValue(&I, DAG.getNode(ISD::FP_EXTEND, DestVT, N));
2283}
2284
2285void SelectionDAGLowering::visitFPToUI(User &I) {
2286  // FPToUI is never a no-op cast, no need to check
2287  SDOperand N = getValue(I.getOperand(0));
2288  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2289  setValue(&I, DAG.getNode(ISD::FP_TO_UINT, DestVT, N));
2290}
2291
2292void SelectionDAGLowering::visitFPToSI(User &I) {
2293  // FPToSI is never a no-op cast, no need to check
2294  SDOperand N = getValue(I.getOperand(0));
2295  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2296  setValue(&I, DAG.getNode(ISD::FP_TO_SINT, DestVT, N));
2297}
2298
2299void SelectionDAGLowering::visitUIToFP(User &I) {
2300  // UIToFP is never a no-op cast, no need to check
2301  SDOperand N = getValue(I.getOperand(0));
2302  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2303  setValue(&I, DAG.getNode(ISD::UINT_TO_FP, DestVT, N));
2304}
2305
2306void SelectionDAGLowering::visitSIToFP(User &I){
2307  // UIToFP is never a no-op cast, no need to check
2308  SDOperand N = getValue(I.getOperand(0));
2309  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2310  setValue(&I, DAG.getNode(ISD::SINT_TO_FP, DestVT, N));
2311}
2312
2313void SelectionDAGLowering::visitPtrToInt(User &I) {
2314  // What to do depends on the size of the integer and the size of the pointer.
2315  // We can either truncate, zero extend, or no-op, accordingly.
2316  SDOperand N = getValue(I.getOperand(0));
2317  MVT::ValueType SrcVT = N.getValueType();
2318  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2319  SDOperand Result;
2320  if (MVT::getSizeInBits(DestVT) < MVT::getSizeInBits(SrcVT))
2321    Result = DAG.getNode(ISD::TRUNCATE, DestVT, N);
2322  else
2323    // Note: ZERO_EXTEND can handle cases where the sizes are equal too
2324    Result = DAG.getNode(ISD::ZERO_EXTEND, DestVT, N);
2325  setValue(&I, Result);
2326}
2327
2328void SelectionDAGLowering::visitIntToPtr(User &I) {
2329  // What to do depends on the size of the integer and the size of the pointer.
2330  // We can either truncate, zero extend, or no-op, accordingly.
2331  SDOperand N = getValue(I.getOperand(0));
2332  MVT::ValueType SrcVT = N.getValueType();
2333  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2334  if (MVT::getSizeInBits(DestVT) < MVT::getSizeInBits(SrcVT))
2335    setValue(&I, DAG.getNode(ISD::TRUNCATE, DestVT, N));
2336  else
2337    // Note: ZERO_EXTEND can handle cases where the sizes are equal too
2338    setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, DestVT, N));
2339}
2340
2341void SelectionDAGLowering::visitBitCast(User &I) {
2342  SDOperand N = getValue(I.getOperand(0));
2343  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2344
2345  // BitCast assures us that source and destination are the same size so this
2346  // is either a BIT_CONVERT or a no-op.
2347  if (DestVT != N.getValueType())
2348    setValue(&I, DAG.getNode(ISD::BIT_CONVERT, DestVT, N)); // convert types
2349  else
2350    setValue(&I, N); // noop cast.
2351}
2352
2353void SelectionDAGLowering::visitInsertElement(User &I) {
2354  SDOperand InVec = getValue(I.getOperand(0));
2355  SDOperand InVal = getValue(I.getOperand(1));
2356  SDOperand InIdx = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(),
2357                                getValue(I.getOperand(2)));
2358
2359  setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT,
2360                           TLI.getValueType(I.getType()),
2361                           InVec, InVal, InIdx));
2362}
2363
2364void SelectionDAGLowering::visitExtractElement(User &I) {
2365  SDOperand InVec = getValue(I.getOperand(0));
2366  SDOperand InIdx = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(),
2367                                getValue(I.getOperand(1)));
2368  setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT,
2369                           TLI.getValueType(I.getType()), InVec, InIdx));
2370}
2371
2372void SelectionDAGLowering::visitShuffleVector(User &I) {
2373  SDOperand V1   = getValue(I.getOperand(0));
2374  SDOperand V2   = getValue(I.getOperand(1));
2375  SDOperand Mask = getValue(I.getOperand(2));
2376
2377  setValue(&I, DAG.getNode(ISD::VECTOR_SHUFFLE,
2378                           TLI.getValueType(I.getType()),
2379                           V1, V2, Mask));
2380}
2381
2382
2383void SelectionDAGLowering::visitGetElementPtr(User &I) {
2384  SDOperand N = getValue(I.getOperand(0));
2385  const Type *Ty = I.getOperand(0)->getType();
2386
2387  for (GetElementPtrInst::op_iterator OI = I.op_begin()+1, E = I.op_end();
2388       OI != E; ++OI) {
2389    Value *Idx = *OI;
2390    if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
2391      unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
2392      if (Field) {
2393        // N = N + Offset
2394        uint64_t Offset = TD->getStructLayout(StTy)->getElementOffset(Field);
2395        N = DAG.getNode(ISD::ADD, N.getValueType(), N,
2396                        DAG.getIntPtrConstant(Offset));
2397      }
2398      Ty = StTy->getElementType(Field);
2399    } else {
2400      Ty = cast<SequentialType>(Ty)->getElementType();
2401
2402      // If this is a constant subscript, handle it quickly.
2403      if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
2404        if (CI->getZExtValue() == 0) continue;
2405        uint64_t Offs =
2406            TD->getABITypeSize(Ty)*cast<ConstantInt>(CI)->getSExtValue();
2407        N = DAG.getNode(ISD::ADD, N.getValueType(), N,
2408                        DAG.getIntPtrConstant(Offs));
2409        continue;
2410      }
2411
2412      // N = N + Idx * ElementSize;
2413      uint64_t ElementSize = TD->getABITypeSize(Ty);
2414      SDOperand IdxN = getValue(Idx);
2415
2416      // If the index is smaller or larger than intptr_t, truncate or extend
2417      // it.
2418      if (IdxN.getValueType() < N.getValueType()) {
2419        IdxN = DAG.getNode(ISD::SIGN_EXTEND, N.getValueType(), IdxN);
2420      } else if (IdxN.getValueType() > N.getValueType())
2421        IdxN = DAG.getNode(ISD::TRUNCATE, N.getValueType(), IdxN);
2422
2423      // If this is a multiply by a power of two, turn it into a shl
2424      // immediately.  This is a very common case.
2425      if (isPowerOf2_64(ElementSize)) {
2426        unsigned Amt = Log2_64(ElementSize);
2427        IdxN = DAG.getNode(ISD::SHL, N.getValueType(), IdxN,
2428                           DAG.getConstant(Amt, TLI.getShiftAmountTy()));
2429        N = DAG.getNode(ISD::ADD, N.getValueType(), N, IdxN);
2430        continue;
2431      }
2432
2433      SDOperand Scale = DAG.getIntPtrConstant(ElementSize);
2434      IdxN = DAG.getNode(ISD::MUL, N.getValueType(), IdxN, Scale);
2435      N = DAG.getNode(ISD::ADD, N.getValueType(), N, IdxN);
2436    }
2437  }
2438  setValue(&I, N);
2439}
2440
2441void SelectionDAGLowering::visitAlloca(AllocaInst &I) {
2442  // If this is a fixed sized alloca in the entry block of the function,
2443  // allocate it statically on the stack.
2444  if (FuncInfo.StaticAllocaMap.count(&I))
2445    return;   // getValue will auto-populate this.
2446
2447  const Type *Ty = I.getAllocatedType();
2448  uint64_t TySize = TLI.getTargetData()->getABITypeSize(Ty);
2449  unsigned Align =
2450    std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty),
2451             I.getAlignment());
2452
2453  SDOperand AllocSize = getValue(I.getArraySize());
2454  MVT::ValueType IntPtr = TLI.getPointerTy();
2455  if (IntPtr < AllocSize.getValueType())
2456    AllocSize = DAG.getNode(ISD::TRUNCATE, IntPtr, AllocSize);
2457  else if (IntPtr > AllocSize.getValueType())
2458    AllocSize = DAG.getNode(ISD::ZERO_EXTEND, IntPtr, AllocSize);
2459
2460  AllocSize = DAG.getNode(ISD::MUL, IntPtr, AllocSize,
2461                          DAG.getIntPtrConstant(TySize));
2462
2463  // Handle alignment.  If the requested alignment is less than or equal to
2464  // the stack alignment, ignore it.  If the size is greater than or equal to
2465  // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
2466  unsigned StackAlign =
2467    TLI.getTargetMachine().getFrameInfo()->getStackAlignment();
2468  if (Align <= StackAlign)
2469    Align = 0;
2470
2471  // Round the size of the allocation up to the stack alignment size
2472  // by add SA-1 to the size.
2473  AllocSize = DAG.getNode(ISD::ADD, AllocSize.getValueType(), AllocSize,
2474                          DAG.getIntPtrConstant(StackAlign-1));
2475  // Mask out the low bits for alignment purposes.
2476  AllocSize = DAG.getNode(ISD::AND, AllocSize.getValueType(), AllocSize,
2477                          DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1)));
2478
2479  SDOperand Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) };
2480  const MVT::ValueType *VTs = DAG.getNodeValueTypes(AllocSize.getValueType(),
2481                                                    MVT::Other);
2482  SDOperand DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, VTs, 2, Ops, 3);
2483  setValue(&I, DSA);
2484  DAG.setRoot(DSA.getValue(1));
2485
2486  // Inform the Frame Information that we have just allocated a variable-sized
2487  // object.
2488  CurMBB->getParent()->getFrameInfo()->CreateVariableSizedObject();
2489}
2490
2491void SelectionDAGLowering::visitLoad(LoadInst &I) {
2492  SDOperand Ptr = getValue(I.getOperand(0));
2493
2494  SDOperand Root;
2495  if (I.isVolatile())
2496    Root = getRoot();
2497  else {
2498    // Do not serialize non-volatile loads against each other.
2499    Root = DAG.getRoot();
2500  }
2501
2502  setValue(&I, getLoadFrom(I.getType(), Ptr, I.getOperand(0),
2503                           Root, I.isVolatile(), I.getAlignment()));
2504}
2505
2506SDOperand SelectionDAGLowering::getLoadFrom(const Type *Ty, SDOperand Ptr,
2507                                            const Value *SV, SDOperand Root,
2508                                            bool isVolatile,
2509                                            unsigned Alignment) {
2510  SDOperand L =
2511    DAG.getLoad(TLI.getValueType(Ty), Root, Ptr, SV, 0,
2512                isVolatile, Alignment);
2513
2514  if (isVolatile)
2515    DAG.setRoot(L.getValue(1));
2516  else
2517    PendingLoads.push_back(L.getValue(1));
2518
2519  return L;
2520}
2521
2522
2523void SelectionDAGLowering::visitStore(StoreInst &I) {
2524  Value *SrcV = I.getOperand(0);
2525  SDOperand Src = getValue(SrcV);
2526  SDOperand Ptr = getValue(I.getOperand(1));
2527  DAG.setRoot(DAG.getStore(getRoot(), Src, Ptr, I.getOperand(1), 0,
2528                           I.isVolatile(), I.getAlignment()));
2529}
2530
2531/// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
2532/// node.
2533void SelectionDAGLowering::visitTargetIntrinsic(CallInst &I,
2534                                                unsigned Intrinsic) {
2535  bool HasChain = !I.doesNotAccessMemory();
2536  bool OnlyLoad = HasChain && I.onlyReadsMemory();
2537
2538  // Build the operand list.
2539  SmallVector<SDOperand, 8> Ops;
2540  if (HasChain) {  // If this intrinsic has side-effects, chainify it.
2541    if (OnlyLoad) {
2542      // We don't need to serialize loads against other loads.
2543      Ops.push_back(DAG.getRoot());
2544    } else {
2545      Ops.push_back(getRoot());
2546    }
2547  }
2548
2549  // Add the intrinsic ID as an integer operand.
2550  Ops.push_back(DAG.getConstant(Intrinsic, TLI.getPointerTy()));
2551
2552  // Add all operands of the call to the operand list.
2553  for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) {
2554    SDOperand Op = getValue(I.getOperand(i));
2555    assert(TLI.isTypeLegal(Op.getValueType()) &&
2556           "Intrinsic uses a non-legal type?");
2557    Ops.push_back(Op);
2558  }
2559
2560  std::vector<MVT::ValueType> VTs;
2561  if (I.getType() != Type::VoidTy) {
2562    MVT::ValueType VT = TLI.getValueType(I.getType());
2563    if (MVT::isVector(VT)) {
2564      const VectorType *DestTy = cast<VectorType>(I.getType());
2565      MVT::ValueType EltVT = TLI.getValueType(DestTy->getElementType());
2566
2567      VT = MVT::getVectorType(EltVT, DestTy->getNumElements());
2568      assert(VT != MVT::Other && "Intrinsic uses a non-legal type?");
2569    }
2570
2571    assert(TLI.isTypeLegal(VT) && "Intrinsic uses a non-legal type?");
2572    VTs.push_back(VT);
2573  }
2574  if (HasChain)
2575    VTs.push_back(MVT::Other);
2576
2577  const MVT::ValueType *VTList = DAG.getNodeValueTypes(VTs);
2578
2579  // Create the node.
2580  SDOperand Result;
2581  if (!HasChain)
2582    Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, VTList, VTs.size(),
2583                         &Ops[0], Ops.size());
2584  else if (I.getType() != Type::VoidTy)
2585    Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, VTList, VTs.size(),
2586                         &Ops[0], Ops.size());
2587  else
2588    Result = DAG.getNode(ISD::INTRINSIC_VOID, VTList, VTs.size(),
2589                         &Ops[0], Ops.size());
2590
2591  if (HasChain) {
2592    SDOperand Chain = Result.getValue(Result.Val->getNumValues()-1);
2593    if (OnlyLoad)
2594      PendingLoads.push_back(Chain);
2595    else
2596      DAG.setRoot(Chain);
2597  }
2598  if (I.getType() != Type::VoidTy) {
2599    if (const VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
2600      MVT::ValueType VT = TLI.getValueType(PTy);
2601      Result = DAG.getNode(ISD::BIT_CONVERT, VT, Result);
2602    }
2603    setValue(&I, Result);
2604  }
2605}
2606
2607/// ExtractTypeInfo - Returns the type info, possibly bitcast, encoded in V.
2608static GlobalVariable *ExtractTypeInfo (Value *V) {
2609  V = IntrinsicInst::StripPointerCasts(V);
2610  GlobalVariable *GV = dyn_cast<GlobalVariable>(V);
2611  assert ((GV || isa<ConstantPointerNull>(V)) &&
2612          "TypeInfo must be a global variable or NULL");
2613  return GV;
2614}
2615
2616/// addCatchInfo - Extract the personality and type infos from an eh.selector
2617/// call, and add them to the specified machine basic block.
2618static void addCatchInfo(CallInst &I, MachineModuleInfo *MMI,
2619                         MachineBasicBlock *MBB) {
2620  // Inform the MachineModuleInfo of the personality for this landing pad.
2621  ConstantExpr *CE = cast<ConstantExpr>(I.getOperand(2));
2622  assert(CE->getOpcode() == Instruction::BitCast &&
2623         isa<Function>(CE->getOperand(0)) &&
2624         "Personality should be a function");
2625  MMI->addPersonality(MBB, cast<Function>(CE->getOperand(0)));
2626
2627  // Gather all the type infos for this landing pad and pass them along to
2628  // MachineModuleInfo.
2629  std::vector<GlobalVariable *> TyInfo;
2630  unsigned N = I.getNumOperands();
2631
2632  for (unsigned i = N - 1; i > 2; --i) {
2633    if (ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(i))) {
2634      unsigned FilterLength = CI->getZExtValue();
2635      unsigned FirstCatch = i + FilterLength + !FilterLength;
2636      assert (FirstCatch <= N && "Invalid filter length");
2637
2638      if (FirstCatch < N) {
2639        TyInfo.reserve(N - FirstCatch);
2640        for (unsigned j = FirstCatch; j < N; ++j)
2641          TyInfo.push_back(ExtractTypeInfo(I.getOperand(j)));
2642        MMI->addCatchTypeInfo(MBB, TyInfo);
2643        TyInfo.clear();
2644      }
2645
2646      if (!FilterLength) {
2647        // Cleanup.
2648        MMI->addCleanup(MBB);
2649      } else {
2650        // Filter.
2651        TyInfo.reserve(FilterLength - 1);
2652        for (unsigned j = i + 1; j < FirstCatch; ++j)
2653          TyInfo.push_back(ExtractTypeInfo(I.getOperand(j)));
2654        MMI->addFilterTypeInfo(MBB, TyInfo);
2655        TyInfo.clear();
2656      }
2657
2658      N = i;
2659    }
2660  }
2661
2662  if (N > 3) {
2663    TyInfo.reserve(N - 3);
2664    for (unsigned j = 3; j < N; ++j)
2665      TyInfo.push_back(ExtractTypeInfo(I.getOperand(j)));
2666    MMI->addCatchTypeInfo(MBB, TyInfo);
2667  }
2668}
2669
2670/// visitIntrinsicCall - Lower the call to the specified intrinsic function.  If
2671/// we want to emit this as a call to a named external function, return the name
2672/// otherwise lower it and return null.
2673const char *
2674SelectionDAGLowering::visitIntrinsicCall(CallInst &I, unsigned Intrinsic) {
2675  switch (Intrinsic) {
2676  default:
2677    // By default, turn this into a target intrinsic node.
2678    visitTargetIntrinsic(I, Intrinsic);
2679    return 0;
2680  case Intrinsic::vastart:  visitVAStart(I); return 0;
2681  case Intrinsic::vaend:    visitVAEnd(I); return 0;
2682  case Intrinsic::vacopy:   visitVACopy(I); return 0;
2683  case Intrinsic::returnaddress:
2684    setValue(&I, DAG.getNode(ISD::RETURNADDR, TLI.getPointerTy(),
2685                             getValue(I.getOperand(1))));
2686    return 0;
2687  case Intrinsic::frameaddress:
2688    setValue(&I, DAG.getNode(ISD::FRAMEADDR, TLI.getPointerTy(),
2689                             getValue(I.getOperand(1))));
2690    return 0;
2691  case Intrinsic::setjmp:
2692    return "_setjmp"+!TLI.usesUnderscoreSetJmp();
2693    break;
2694  case Intrinsic::longjmp:
2695    return "_longjmp"+!TLI.usesUnderscoreLongJmp();
2696    break;
2697  case Intrinsic::memcpy_i32:
2698  case Intrinsic::memcpy_i64:
2699    visitMemIntrinsic(I, ISD::MEMCPY);
2700    return 0;
2701  case Intrinsic::memset_i32:
2702  case Intrinsic::memset_i64:
2703    visitMemIntrinsic(I, ISD::MEMSET);
2704    return 0;
2705  case Intrinsic::memmove_i32:
2706  case Intrinsic::memmove_i64:
2707    visitMemIntrinsic(I, ISD::MEMMOVE);
2708    return 0;
2709
2710  case Intrinsic::dbg_stoppoint: {
2711    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2712    DbgStopPointInst &SPI = cast<DbgStopPointInst>(I);
2713    if (MMI && SPI.getContext() && MMI->Verify(SPI.getContext())) {
2714      SDOperand Ops[5];
2715
2716      Ops[0] = getRoot();
2717      Ops[1] = getValue(SPI.getLineValue());
2718      Ops[2] = getValue(SPI.getColumnValue());
2719
2720      DebugInfoDesc *DD = MMI->getDescFor(SPI.getContext());
2721      assert(DD && "Not a debug information descriptor");
2722      CompileUnitDesc *CompileUnit = cast<CompileUnitDesc>(DD);
2723
2724      Ops[3] = DAG.getString(CompileUnit->getFileName());
2725      Ops[4] = DAG.getString(CompileUnit->getDirectory());
2726
2727      DAG.setRoot(DAG.getNode(ISD::LOCATION, MVT::Other, Ops, 5));
2728    }
2729
2730    return 0;
2731  }
2732  case Intrinsic::dbg_region_start: {
2733    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2734    DbgRegionStartInst &RSI = cast<DbgRegionStartInst>(I);
2735    if (MMI && RSI.getContext() && MMI->Verify(RSI.getContext())) {
2736      unsigned LabelID = MMI->RecordRegionStart(RSI.getContext());
2737      DAG.setRoot(DAG.getNode(ISD::LABEL, MVT::Other, getRoot(),
2738                              DAG.getConstant(LabelID, MVT::i32),
2739                              DAG.getConstant(0, MVT::i32)));
2740    }
2741
2742    return 0;
2743  }
2744  case Intrinsic::dbg_region_end: {
2745    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2746    DbgRegionEndInst &REI = cast<DbgRegionEndInst>(I);
2747    if (MMI && REI.getContext() && MMI->Verify(REI.getContext())) {
2748      unsigned LabelID = MMI->RecordRegionEnd(REI.getContext());
2749      DAG.setRoot(DAG.getNode(ISD::LABEL, MVT::Other, getRoot(),
2750                              DAG.getConstant(LabelID, MVT::i32),
2751                              DAG.getConstant(0, MVT::i32)));
2752    }
2753
2754    return 0;
2755  }
2756  case Intrinsic::dbg_func_start: {
2757    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2758    if (!MMI) return 0;
2759    DbgFuncStartInst &FSI = cast<DbgFuncStartInst>(I);
2760    Value *SP = FSI.getSubprogram();
2761    if (SP && MMI->Verify(SP)) {
2762      // llvm.dbg.func.start implicitly defines a dbg_stoppoint which is
2763      // what (most?) gdb expects.
2764      DebugInfoDesc *DD = MMI->getDescFor(SP);
2765      assert(DD && "Not a debug information descriptor");
2766      SubprogramDesc *Subprogram = cast<SubprogramDesc>(DD);
2767      const CompileUnitDesc *CompileUnit = Subprogram->getFile();
2768      unsigned SrcFile = MMI->RecordSource(CompileUnit->getDirectory(),
2769                                           CompileUnit->getFileName());
2770      // Record the source line but does create a label. It will be emitted
2771      // at asm emission time.
2772      MMI->RecordSourceLine(Subprogram->getLine(), 0, SrcFile);
2773    }
2774
2775    return 0;
2776  }
2777  case Intrinsic::dbg_declare: {
2778    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2779    DbgDeclareInst &DI = cast<DbgDeclareInst>(I);
2780    Value *Variable = DI.getVariable();
2781    if (MMI && Variable && MMI->Verify(Variable))
2782      DAG.setRoot(DAG.getNode(ISD::DECLARE, MVT::Other, getRoot(),
2783                              getValue(DI.getAddress()), getValue(Variable)));
2784    return 0;
2785  }
2786
2787  case Intrinsic::eh_exception: {
2788    if (ExceptionHandling) {
2789      if (!CurMBB->isLandingPad()) {
2790        // FIXME: Mark exception register as live in.  Hack for PR1508.
2791        unsigned Reg = TLI.getExceptionAddressRegister();
2792        if (Reg) CurMBB->addLiveIn(Reg);
2793      }
2794      // Insert the EXCEPTIONADDR instruction.
2795      SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
2796      SDOperand Ops[1];
2797      Ops[0] = DAG.getRoot();
2798      SDOperand Op = DAG.getNode(ISD::EXCEPTIONADDR, VTs, Ops, 1);
2799      setValue(&I, Op);
2800      DAG.setRoot(Op.getValue(1));
2801    } else {
2802      setValue(&I, DAG.getConstant(0, TLI.getPointerTy()));
2803    }
2804    return 0;
2805  }
2806
2807  case Intrinsic::eh_selector_i32:
2808  case Intrinsic::eh_selector_i64: {
2809    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2810    MVT::ValueType VT = (Intrinsic == Intrinsic::eh_selector_i32 ?
2811                         MVT::i32 : MVT::i64);
2812
2813    if (ExceptionHandling && MMI) {
2814      if (CurMBB->isLandingPad())
2815        addCatchInfo(I, MMI, CurMBB);
2816      else {
2817#ifndef NDEBUG
2818        FuncInfo.CatchInfoLost.insert(&I);
2819#endif
2820        // FIXME: Mark exception selector register as live in.  Hack for PR1508.
2821        unsigned Reg = TLI.getExceptionSelectorRegister();
2822        if (Reg) CurMBB->addLiveIn(Reg);
2823      }
2824
2825      // Insert the EHSELECTION instruction.
2826      SDVTList VTs = DAG.getVTList(VT, MVT::Other);
2827      SDOperand Ops[2];
2828      Ops[0] = getValue(I.getOperand(1));
2829      Ops[1] = getRoot();
2830      SDOperand Op = DAG.getNode(ISD::EHSELECTION, VTs, Ops, 2);
2831      setValue(&I, Op);
2832      DAG.setRoot(Op.getValue(1));
2833    } else {
2834      setValue(&I, DAG.getConstant(0, VT));
2835    }
2836
2837    return 0;
2838  }
2839
2840  case Intrinsic::eh_typeid_for_i32:
2841  case Intrinsic::eh_typeid_for_i64: {
2842    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2843    MVT::ValueType VT = (Intrinsic == Intrinsic::eh_typeid_for_i32 ?
2844                         MVT::i32 : MVT::i64);
2845
2846    if (MMI) {
2847      // Find the type id for the given typeinfo.
2848      GlobalVariable *GV = ExtractTypeInfo(I.getOperand(1));
2849
2850      unsigned TypeID = MMI->getTypeIDFor(GV);
2851      setValue(&I, DAG.getConstant(TypeID, VT));
2852    } else {
2853      // Return something different to eh_selector.
2854      setValue(&I, DAG.getConstant(1, VT));
2855    }
2856
2857    return 0;
2858  }
2859
2860  case Intrinsic::eh_return: {
2861    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2862
2863    if (MMI && ExceptionHandling) {
2864      MMI->setCallsEHReturn(true);
2865      DAG.setRoot(DAG.getNode(ISD::EH_RETURN,
2866                              MVT::Other,
2867                              getRoot(),
2868                              getValue(I.getOperand(1)),
2869                              getValue(I.getOperand(2))));
2870    } else {
2871      setValue(&I, DAG.getConstant(0, TLI.getPointerTy()));
2872    }
2873
2874    return 0;
2875  }
2876
2877   case Intrinsic::eh_unwind_init: {
2878     if (MachineModuleInfo *MMI = DAG.getMachineModuleInfo()) {
2879       MMI->setCallsUnwindInit(true);
2880     }
2881
2882     return 0;
2883   }
2884
2885   case Intrinsic::eh_dwarf_cfa: {
2886     if (ExceptionHandling) {
2887       MVT::ValueType VT = getValue(I.getOperand(1)).getValueType();
2888       SDOperand CfaArg;
2889       if (MVT::getSizeInBits(VT) > MVT::getSizeInBits(TLI.getPointerTy()))
2890         CfaArg = DAG.getNode(ISD::TRUNCATE,
2891                              TLI.getPointerTy(), getValue(I.getOperand(1)));
2892       else
2893         CfaArg = DAG.getNode(ISD::SIGN_EXTEND,
2894                              TLI.getPointerTy(), getValue(I.getOperand(1)));
2895
2896       SDOperand Offset = DAG.getNode(ISD::ADD,
2897                                      TLI.getPointerTy(),
2898                                      DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET,
2899                                                  TLI.getPointerTy()),
2900                                      CfaArg);
2901       setValue(&I, DAG.getNode(ISD::ADD,
2902                                TLI.getPointerTy(),
2903                                DAG.getNode(ISD::FRAMEADDR,
2904                                            TLI.getPointerTy(),
2905                                            DAG.getConstant(0,
2906                                                            TLI.getPointerTy())),
2907                                Offset));
2908     } else {
2909       setValue(&I, DAG.getConstant(0, TLI.getPointerTy()));
2910     }
2911
2912     return 0;
2913  }
2914
2915  case Intrinsic::sqrt:
2916    setValue(&I, DAG.getNode(ISD::FSQRT,
2917                             getValue(I.getOperand(1)).getValueType(),
2918                             getValue(I.getOperand(1))));
2919    return 0;
2920  case Intrinsic::powi:
2921    setValue(&I, DAG.getNode(ISD::FPOWI,
2922                             getValue(I.getOperand(1)).getValueType(),
2923                             getValue(I.getOperand(1)),
2924                             getValue(I.getOperand(2))));
2925    return 0;
2926  case Intrinsic::sin:
2927    setValue(&I, DAG.getNode(ISD::FSIN,
2928                             getValue(I.getOperand(1)).getValueType(),
2929                             getValue(I.getOperand(1))));
2930    return 0;
2931  case Intrinsic::cos:
2932    setValue(&I, DAG.getNode(ISD::FCOS,
2933                             getValue(I.getOperand(1)).getValueType(),
2934                             getValue(I.getOperand(1))));
2935    return 0;
2936  case Intrinsic::pow:
2937    setValue(&I, DAG.getNode(ISD::FPOW,
2938                             getValue(I.getOperand(1)).getValueType(),
2939                             getValue(I.getOperand(1)),
2940                             getValue(I.getOperand(2))));
2941    return 0;
2942  case Intrinsic::pcmarker: {
2943    SDOperand Tmp = getValue(I.getOperand(1));
2944    DAG.setRoot(DAG.getNode(ISD::PCMARKER, MVT::Other, getRoot(), Tmp));
2945    return 0;
2946  }
2947  case Intrinsic::readcyclecounter: {
2948    SDOperand Op = getRoot();
2949    SDOperand Tmp = DAG.getNode(ISD::READCYCLECOUNTER,
2950                                DAG.getNodeValueTypes(MVT::i64, MVT::Other), 2,
2951                                &Op, 1);
2952    setValue(&I, Tmp);
2953    DAG.setRoot(Tmp.getValue(1));
2954    return 0;
2955  }
2956  case Intrinsic::part_select: {
2957    // Currently not implemented: just abort
2958    assert(0 && "part_select intrinsic not implemented");
2959    abort();
2960  }
2961  case Intrinsic::part_set: {
2962    // Currently not implemented: just abort
2963    assert(0 && "part_set intrinsic not implemented");
2964    abort();
2965  }
2966  case Intrinsic::bswap:
2967    setValue(&I, DAG.getNode(ISD::BSWAP,
2968                             getValue(I.getOperand(1)).getValueType(),
2969                             getValue(I.getOperand(1))));
2970    return 0;
2971  case Intrinsic::cttz: {
2972    SDOperand Arg = getValue(I.getOperand(1));
2973    MVT::ValueType Ty = Arg.getValueType();
2974    SDOperand result = DAG.getNode(ISD::CTTZ, Ty, Arg);
2975    setValue(&I, result);
2976    return 0;
2977  }
2978  case Intrinsic::ctlz: {
2979    SDOperand Arg = getValue(I.getOperand(1));
2980    MVT::ValueType Ty = Arg.getValueType();
2981    SDOperand result = DAG.getNode(ISD::CTLZ, Ty, Arg);
2982    setValue(&I, result);
2983    return 0;
2984  }
2985  case Intrinsic::ctpop: {
2986    SDOperand Arg = getValue(I.getOperand(1));
2987    MVT::ValueType Ty = Arg.getValueType();
2988    SDOperand result = DAG.getNode(ISD::CTPOP, Ty, Arg);
2989    setValue(&I, result);
2990    return 0;
2991  }
2992  case Intrinsic::stacksave: {
2993    SDOperand Op = getRoot();
2994    SDOperand Tmp = DAG.getNode(ISD::STACKSAVE,
2995              DAG.getNodeValueTypes(TLI.getPointerTy(), MVT::Other), 2, &Op, 1);
2996    setValue(&I, Tmp);
2997    DAG.setRoot(Tmp.getValue(1));
2998    return 0;
2999  }
3000  case Intrinsic::stackrestore: {
3001    SDOperand Tmp = getValue(I.getOperand(1));
3002    DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, MVT::Other, getRoot(), Tmp));
3003    return 0;
3004  }
3005  case Intrinsic::var_annotation:
3006    // Discard annotate attributes
3007    return 0;
3008
3009  case Intrinsic::init_trampoline: {
3010    const Function *F =
3011      cast<Function>(IntrinsicInst::StripPointerCasts(I.getOperand(2)));
3012
3013    SDOperand Ops[6];
3014    Ops[0] = getRoot();
3015    Ops[1] = getValue(I.getOperand(1));
3016    Ops[2] = getValue(I.getOperand(2));
3017    Ops[3] = getValue(I.getOperand(3));
3018    Ops[4] = DAG.getSrcValue(I.getOperand(1));
3019    Ops[5] = DAG.getSrcValue(F);
3020
3021    SDOperand Tmp = DAG.getNode(ISD::TRAMPOLINE,
3022                                DAG.getNodeValueTypes(TLI.getPointerTy(),
3023                                                      MVT::Other), 2,
3024                                Ops, 6);
3025
3026    setValue(&I, Tmp);
3027    DAG.setRoot(Tmp.getValue(1));
3028    return 0;
3029  }
3030
3031  case Intrinsic::gcroot:
3032    if (GCI) {
3033      Value *Alloca = I.getOperand(1);
3034      Constant *TypeMap = cast<Constant>(I.getOperand(2));
3035
3036      FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).Val);
3037      GCI->addStackRoot(FI->getIndex(), TypeMap);
3038    }
3039    return 0;
3040
3041  case Intrinsic::gcread:
3042  case Intrinsic::gcwrite:
3043    assert(0 && "Collector failed to lower gcread/gcwrite intrinsics!");
3044    return 0;
3045
3046  case Intrinsic::flt_rounds: {
3047    setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, MVT::i32));
3048    return 0;
3049  }
3050
3051  case Intrinsic::trap: {
3052    DAG.setRoot(DAG.getNode(ISD::TRAP, MVT::Other, getRoot()));
3053    return 0;
3054  }
3055  case Intrinsic::prefetch: {
3056    SDOperand Ops[4];
3057    Ops[0] = getRoot();
3058    Ops[1] = getValue(I.getOperand(1));
3059    Ops[2] = getValue(I.getOperand(2));
3060    Ops[3] = getValue(I.getOperand(3));
3061    DAG.setRoot(DAG.getNode(ISD::PREFETCH, MVT::Other, &Ops[0], 4));
3062    return 0;
3063  }
3064
3065  case Intrinsic::memory_barrier: {
3066    SDOperand Ops[6];
3067    Ops[0] = getRoot();
3068    for (int x = 1; x < 6; ++x)
3069      Ops[x] = getValue(I.getOperand(x));
3070
3071    DAG.setRoot(DAG.getNode(ISD::MEMBARRIER, MVT::Other, &Ops[0], 6));
3072    return 0;
3073  }
3074  case Intrinsic::atomic_lcs: {
3075    SDOperand Root = getRoot();
3076    SDOperand O3 = getValue(I.getOperand(3));
3077    SDOperand L = DAG.getAtomic(ISD::ATOMIC_LCS, Root,
3078                                getValue(I.getOperand(1)),
3079                                getValue(I.getOperand(2)),
3080                                O3, O3.getValueType());
3081    setValue(&I, L);
3082    DAG.setRoot(L.getValue(1));
3083    return 0;
3084  }
3085  case Intrinsic::atomic_las: {
3086    SDOperand Root = getRoot();
3087    SDOperand O2 = getValue(I.getOperand(2));
3088    SDOperand L = DAG.getAtomic(ISD::ATOMIC_LAS, Root,
3089                                getValue(I.getOperand(1)),
3090                                O2, O2.getValueType());
3091    setValue(&I, L);
3092    DAG.setRoot(L.getValue(1));
3093    return 0;
3094  }
3095  case Intrinsic::atomic_swap: {
3096    SDOperand Root = getRoot();
3097    SDOperand O2 = getValue(I.getOperand(2));
3098    SDOperand L = DAG.getAtomic(ISD::ATOMIC_SWAP, Root,
3099                                getValue(I.getOperand(1)),
3100                                O2, O2.getValueType());
3101    setValue(&I, L);
3102    DAG.setRoot(L.getValue(1));
3103    return 0;
3104  }
3105
3106  }
3107}
3108
3109
3110void SelectionDAGLowering::LowerCallTo(CallSite CS, SDOperand Callee,
3111                                       bool IsTailCall,
3112                                       MachineBasicBlock *LandingPad) {
3113  const PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
3114  const FunctionType *FTy = cast<FunctionType>(PT->getElementType());
3115  MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
3116  unsigned BeginLabel = 0, EndLabel = 0;
3117
3118  TargetLowering::ArgListTy Args;
3119  TargetLowering::ArgListEntry Entry;
3120  Args.reserve(CS.arg_size());
3121  for (CallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
3122       i != e; ++i) {
3123    SDOperand ArgNode = getValue(*i);
3124    Entry.Node = ArgNode; Entry.Ty = (*i)->getType();
3125
3126    unsigned attrInd = i - CS.arg_begin() + 1;
3127    Entry.isSExt  = CS.paramHasAttr(attrInd, ParamAttr::SExt);
3128    Entry.isZExt  = CS.paramHasAttr(attrInd, ParamAttr::ZExt);
3129    Entry.isInReg = CS.paramHasAttr(attrInd, ParamAttr::InReg);
3130    Entry.isSRet  = CS.paramHasAttr(attrInd, ParamAttr::StructRet);
3131    Entry.isNest  = CS.paramHasAttr(attrInd, ParamAttr::Nest);
3132    Entry.isByVal = CS.paramHasAttr(attrInd, ParamAttr::ByVal);
3133    Entry.Alignment = CS.getParamAlignment(attrInd);
3134    Args.push_back(Entry);
3135  }
3136
3137  if (LandingPad && ExceptionHandling && MMI) {
3138    // Insert a label before the invoke call to mark the try range.  This can be
3139    // used to detect deletion of the invoke via the MachineModuleInfo.
3140    BeginLabel = MMI->NextLabelID();
3141    DAG.setRoot(DAG.getNode(ISD::LABEL, MVT::Other, getRoot(),
3142                            DAG.getConstant(BeginLabel, MVT::i32),
3143                            DAG.getConstant(1, MVT::i32)));
3144  }
3145
3146  std::pair<SDOperand,SDOperand> Result =
3147    TLI.LowerCallTo(getRoot(), CS.getType(),
3148                    CS.paramHasAttr(0, ParamAttr::SExt),
3149                    CS.paramHasAttr(0, ParamAttr::ZExt),
3150                    FTy->isVarArg(), CS.getCallingConv(), IsTailCall,
3151                    Callee, Args, DAG);
3152  if (CS.getType() != Type::VoidTy)
3153    setValue(CS.getInstruction(), Result.first);
3154  DAG.setRoot(Result.second);
3155
3156  if (LandingPad && ExceptionHandling && MMI) {
3157    // Insert a label at the end of the invoke call to mark the try range.  This
3158    // can be used to detect deletion of the invoke via the MachineModuleInfo.
3159    EndLabel = MMI->NextLabelID();
3160    DAG.setRoot(DAG.getNode(ISD::LABEL, MVT::Other, getRoot(),
3161                            DAG.getConstant(EndLabel, MVT::i32),
3162                            DAG.getConstant(1, MVT::i32)));
3163
3164    // Inform MachineModuleInfo of range.
3165    MMI->addInvoke(LandingPad, BeginLabel, EndLabel);
3166  }
3167}
3168
3169
3170void SelectionDAGLowering::visitCall(CallInst &I) {
3171  const char *RenameFn = 0;
3172  if (Function *F = I.getCalledFunction()) {
3173    if (F->isDeclaration()) {
3174      if (unsigned IID = F->getIntrinsicID()) {
3175        RenameFn = visitIntrinsicCall(I, IID);
3176        if (!RenameFn)
3177          return;
3178      }
3179    }
3180
3181    // Check for well-known libc/libm calls.  If the function is internal, it
3182    // can't be a library call.
3183    unsigned NameLen = F->getNameLen();
3184    if (!F->hasInternalLinkage() && NameLen) {
3185      const char *NameStr = F->getNameStart();
3186      if (NameStr[0] == 'c' &&
3187          ((NameLen == 8 && !strcmp(NameStr, "copysign")) ||
3188           (NameLen == 9 && !strcmp(NameStr, "copysignf")))) {
3189        if (I.getNumOperands() == 3 &&   // Basic sanity checks.
3190            I.getOperand(1)->getType()->isFloatingPoint() &&
3191            I.getType() == I.getOperand(1)->getType() &&
3192            I.getType() == I.getOperand(2)->getType()) {
3193          SDOperand LHS = getValue(I.getOperand(1));
3194          SDOperand RHS = getValue(I.getOperand(2));
3195          setValue(&I, DAG.getNode(ISD::FCOPYSIGN, LHS.getValueType(),
3196                                   LHS, RHS));
3197          return;
3198        }
3199      } else if (NameStr[0] == 'f' &&
3200                 ((NameLen == 4 && !strcmp(NameStr, "fabs")) ||
3201                  (NameLen == 5 && !strcmp(NameStr, "fabsf")) ||
3202                  (NameLen == 5 && !strcmp(NameStr, "fabsl")))) {
3203        if (I.getNumOperands() == 2 &&   // Basic sanity checks.
3204            I.getOperand(1)->getType()->isFloatingPoint() &&
3205            I.getType() == I.getOperand(1)->getType()) {
3206          SDOperand Tmp = getValue(I.getOperand(1));
3207          setValue(&I, DAG.getNode(ISD::FABS, Tmp.getValueType(), Tmp));
3208          return;
3209        }
3210      } else if (NameStr[0] == 's' &&
3211                 ((NameLen == 3 && !strcmp(NameStr, "sin")) ||
3212                  (NameLen == 4 && !strcmp(NameStr, "sinf")) ||
3213                  (NameLen == 4 && !strcmp(NameStr, "sinl")))) {
3214        if (I.getNumOperands() == 2 &&   // Basic sanity checks.
3215            I.getOperand(1)->getType()->isFloatingPoint() &&
3216            I.getType() == I.getOperand(1)->getType()) {
3217          SDOperand Tmp = getValue(I.getOperand(1));
3218          setValue(&I, DAG.getNode(ISD::FSIN, Tmp.getValueType(), Tmp));
3219          return;
3220        }
3221      } else if (NameStr[0] == 'c' &&
3222                 ((NameLen == 3 && !strcmp(NameStr, "cos")) ||
3223                  (NameLen == 4 && !strcmp(NameStr, "cosf")) ||
3224                  (NameLen == 4 && !strcmp(NameStr, "cosl")))) {
3225        if (I.getNumOperands() == 2 &&   // Basic sanity checks.
3226            I.getOperand(1)->getType()->isFloatingPoint() &&
3227            I.getType() == I.getOperand(1)->getType()) {
3228          SDOperand Tmp = getValue(I.getOperand(1));
3229          setValue(&I, DAG.getNode(ISD::FCOS, Tmp.getValueType(), Tmp));
3230          return;
3231        }
3232      }
3233    }
3234  } else if (isa<InlineAsm>(I.getOperand(0))) {
3235    visitInlineAsm(&I);
3236    return;
3237  }
3238
3239  SDOperand Callee;
3240  if (!RenameFn)
3241    Callee = getValue(I.getOperand(0));
3242  else
3243    Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy());
3244
3245  LowerCallTo(&I, Callee, I.isTailCall());
3246}
3247
3248
3249void SelectionDAGLowering::visitGetResult(GetResultInst &I) {
3250  SDOperand Call = getValue(I.getOperand(0));
3251  setValue(&I, SDOperand(Call.Val, I.getIndex()));
3252}
3253
3254
3255/// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
3256/// this value and returns the result as a ValueVT value.  This uses
3257/// Chain/Flag as the input and updates them for the output Chain/Flag.
3258/// If the Flag pointer is NULL, no flag is used.
3259SDOperand RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
3260                                        SDOperand &Chain, SDOperand *Flag)const{
3261  // Copy the legal parts from the registers.
3262  unsigned NumParts = Regs.size();
3263  SmallVector<SDOperand, 8> Parts(NumParts);
3264  for (unsigned i = 0; i != NumParts; ++i) {
3265    SDOperand Part = Flag ?
3266                     DAG.getCopyFromReg(Chain, Regs[i], RegVT, *Flag) :
3267                     DAG.getCopyFromReg(Chain, Regs[i], RegVT);
3268    Chain = Part.getValue(1);
3269    if (Flag)
3270      *Flag = Part.getValue(2);
3271    Parts[i] = Part;
3272  }
3273
3274  // Assemble the legal parts into the final value.
3275  return getCopyFromParts(DAG, &Parts[0], NumParts, RegVT, ValueVT);
3276}
3277
3278/// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
3279/// specified value into the registers specified by this object.  This uses
3280/// Chain/Flag as the input and updates them for the output Chain/Flag.
3281/// If the Flag pointer is NULL, no flag is used.
3282void RegsForValue::getCopyToRegs(SDOperand Val, SelectionDAG &DAG,
3283                                 SDOperand &Chain, SDOperand *Flag) const {
3284  // Get the list of the values's legal parts.
3285  unsigned NumParts = Regs.size();
3286  SmallVector<SDOperand, 8> Parts(NumParts);
3287  getCopyToParts(DAG, Val, &Parts[0], NumParts, RegVT);
3288
3289  // Copy the parts into the registers.
3290  for (unsigned i = 0; i != NumParts; ++i) {
3291    SDOperand Part = Flag ?
3292                     DAG.getCopyToReg(Chain, Regs[i], Parts[i], *Flag) :
3293                     DAG.getCopyToReg(Chain, Regs[i], Parts[i]);
3294    Chain = Part.getValue(0);
3295    if (Flag)
3296      *Flag = Part.getValue(1);
3297  }
3298}
3299
3300/// AddInlineAsmOperands - Add this value to the specified inlineasm node
3301/// operand list.  This adds the code marker and includes the number of
3302/// values added into it.
3303void RegsForValue::AddInlineAsmOperands(unsigned Code, SelectionDAG &DAG,
3304                                        std::vector<SDOperand> &Ops) const {
3305  MVT::ValueType IntPtrTy = DAG.getTargetLoweringInfo().getPointerTy();
3306  Ops.push_back(DAG.getTargetConstant(Code | (Regs.size() << 3), IntPtrTy));
3307  for (unsigned i = 0, e = Regs.size(); i != e; ++i)
3308    Ops.push_back(DAG.getRegister(Regs[i], RegVT));
3309}
3310
3311/// isAllocatableRegister - If the specified register is safe to allocate,
3312/// i.e. it isn't a stack pointer or some other special register, return the
3313/// register class for the register.  Otherwise, return null.
3314static const TargetRegisterClass *
3315isAllocatableRegister(unsigned Reg, MachineFunction &MF,
3316                      const TargetLowering &TLI,
3317                      const TargetRegisterInfo *TRI) {
3318  MVT::ValueType FoundVT = MVT::Other;
3319  const TargetRegisterClass *FoundRC = 0;
3320  for (TargetRegisterInfo::regclass_iterator RCI = TRI->regclass_begin(),
3321       E = TRI->regclass_end(); RCI != E; ++RCI) {
3322    MVT::ValueType ThisVT = MVT::Other;
3323
3324    const TargetRegisterClass *RC = *RCI;
3325    // If none of the the value types for this register class are valid, we
3326    // can't use it.  For example, 64-bit reg classes on 32-bit targets.
3327    for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
3328         I != E; ++I) {
3329      if (TLI.isTypeLegal(*I)) {
3330        // If we have already found this register in a different register class,
3331        // choose the one with the largest VT specified.  For example, on
3332        // PowerPC, we favor f64 register classes over f32.
3333        if (FoundVT == MVT::Other ||
3334            MVT::getSizeInBits(FoundVT) < MVT::getSizeInBits(*I)) {
3335          ThisVT = *I;
3336          break;
3337        }
3338      }
3339    }
3340
3341    if (ThisVT == MVT::Other) continue;
3342
3343    // NOTE: This isn't ideal.  In particular, this might allocate the
3344    // frame pointer in functions that need it (due to them not being taken
3345    // out of allocation, because a variable sized allocation hasn't been seen
3346    // yet).  This is a slight code pessimization, but should still work.
3347    for (TargetRegisterClass::iterator I = RC->allocation_order_begin(MF),
3348         E = RC->allocation_order_end(MF); I != E; ++I)
3349      if (*I == Reg) {
3350        // We found a matching register class.  Keep looking at others in case
3351        // we find one with larger registers that this physreg is also in.
3352        FoundRC = RC;
3353        FoundVT = ThisVT;
3354        break;
3355      }
3356  }
3357  return FoundRC;
3358}
3359
3360
3361namespace {
3362/// AsmOperandInfo - This contains information for each constraint that we are
3363/// lowering.
3364struct SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
3365  /// CallOperand - If this is the result output operand or a clobber
3366  /// this is null, otherwise it is the incoming operand to the CallInst.
3367  /// This gets modified as the asm is processed.
3368  SDOperand CallOperand;
3369
3370  /// AssignedRegs - If this is a register or register class operand, this
3371  /// contains the set of register corresponding to the operand.
3372  RegsForValue AssignedRegs;
3373
3374  SDISelAsmOperandInfo(const InlineAsm::ConstraintInfo &info)
3375    : TargetLowering::AsmOperandInfo(info), CallOperand(0,0) {
3376  }
3377
3378  /// MarkAllocatedRegs - Once AssignedRegs is set, mark the assigned registers
3379  /// busy in OutputRegs/InputRegs.
3380  void MarkAllocatedRegs(bool isOutReg, bool isInReg,
3381                         std::set<unsigned> &OutputRegs,
3382                         std::set<unsigned> &InputRegs,
3383                         const TargetRegisterInfo &TRI) const {
3384    if (isOutReg) {
3385      for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i)
3386        MarkRegAndAliases(AssignedRegs.Regs[i], OutputRegs, TRI);
3387    }
3388    if (isInReg) {
3389      for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i)
3390        MarkRegAndAliases(AssignedRegs.Regs[i], InputRegs, TRI);
3391    }
3392  }
3393
3394private:
3395  /// MarkRegAndAliases - Mark the specified register and all aliases in the
3396  /// specified set.
3397  static void MarkRegAndAliases(unsigned Reg, std::set<unsigned> &Regs,
3398                                const TargetRegisterInfo &TRI) {
3399    assert(TargetRegisterInfo::isPhysicalRegister(Reg) && "Isn't a physreg");
3400    Regs.insert(Reg);
3401    if (const unsigned *Aliases = TRI.getAliasSet(Reg))
3402      for (; *Aliases; ++Aliases)
3403        Regs.insert(*Aliases);
3404  }
3405};
3406} // end anon namespace.
3407
3408
3409/// GetRegistersForValue - Assign registers (virtual or physical) for the
3410/// specified operand.  We prefer to assign virtual registers, to allow the
3411/// register allocator handle the assignment process.  However, if the asm uses
3412/// features that we can't model on machineinstrs, we have SDISel do the
3413/// allocation.  This produces generally horrible, but correct, code.
3414///
3415///   OpInfo describes the operand.
3416///   HasEarlyClobber is true if there are any early clobber constraints (=&r)
3417///     or any explicitly clobbered registers.
3418///   Input and OutputRegs are the set of already allocated physical registers.
3419///
3420void SelectionDAGLowering::
3421GetRegistersForValue(SDISelAsmOperandInfo &OpInfo, bool HasEarlyClobber,
3422                     std::set<unsigned> &OutputRegs,
3423                     std::set<unsigned> &InputRegs) {
3424  // Compute whether this value requires an input register, an output register,
3425  // or both.
3426  bool isOutReg = false;
3427  bool isInReg = false;
3428  switch (OpInfo.Type) {
3429  case InlineAsm::isOutput:
3430    isOutReg = true;
3431
3432    // If this is an early-clobber output, or if there is an input
3433    // constraint that matches this, we need to reserve the input register
3434    // so no other inputs allocate to it.
3435    isInReg = OpInfo.isEarlyClobber || OpInfo.hasMatchingInput;
3436    break;
3437  case InlineAsm::isInput:
3438    isInReg = true;
3439    isOutReg = false;
3440    break;
3441  case InlineAsm::isClobber:
3442    isOutReg = true;
3443    isInReg = true;
3444    break;
3445  }
3446
3447
3448  MachineFunction &MF = DAG.getMachineFunction();
3449  std::vector<unsigned> Regs;
3450
3451  // If this is a constraint for a single physreg, or a constraint for a
3452  // register class, find it.
3453  std::pair<unsigned, const TargetRegisterClass*> PhysReg =
3454    TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
3455                                     OpInfo.ConstraintVT);
3456
3457  unsigned NumRegs = 1;
3458  if (OpInfo.ConstraintVT != MVT::Other)
3459    NumRegs = TLI.getNumRegisters(OpInfo.ConstraintVT);
3460  MVT::ValueType RegVT;
3461  MVT::ValueType ValueVT = OpInfo.ConstraintVT;
3462
3463
3464  // If this is a constraint for a specific physical register, like {r17},
3465  // assign it now.
3466  if (PhysReg.first) {
3467    if (OpInfo.ConstraintVT == MVT::Other)
3468      ValueVT = *PhysReg.second->vt_begin();
3469
3470    // Get the actual register value type.  This is important, because the user
3471    // may have asked for (e.g.) the AX register in i32 type.  We need to
3472    // remember that AX is actually i16 to get the right extension.
3473    RegVT = *PhysReg.second->vt_begin();
3474
3475    // This is a explicit reference to a physical register.
3476    Regs.push_back(PhysReg.first);
3477
3478    // If this is an expanded reference, add the rest of the regs to Regs.
3479    if (NumRegs != 1) {
3480      TargetRegisterClass::iterator I = PhysReg.second->begin();
3481      TargetRegisterClass::iterator E = PhysReg.second->end();
3482      for (; *I != PhysReg.first; ++I)
3483        assert(I != E && "Didn't find reg!");
3484
3485      // Already added the first reg.
3486      --NumRegs; ++I;
3487      for (; NumRegs; --NumRegs, ++I) {
3488        assert(I != E && "Ran out of registers to allocate!");
3489        Regs.push_back(*I);
3490      }
3491    }
3492    OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
3493    const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
3494    OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI);
3495    return;
3496  }
3497
3498  // Otherwise, if this was a reference to an LLVM register class, create vregs
3499  // for this reference.
3500  std::vector<unsigned> RegClassRegs;
3501  const TargetRegisterClass *RC = PhysReg.second;
3502  if (RC) {
3503    // If this is an early clobber or tied register, our regalloc doesn't know
3504    // how to maintain the constraint.  If it isn't, go ahead and create vreg
3505    // and let the regalloc do the right thing.
3506    if (!OpInfo.hasMatchingInput && !OpInfo.isEarlyClobber &&
3507        // If there is some other early clobber and this is an input register,
3508        // then we are forced to pre-allocate the input reg so it doesn't
3509        // conflict with the earlyclobber.
3510        !(OpInfo.Type == InlineAsm::isInput && HasEarlyClobber)) {
3511      RegVT = *PhysReg.second->vt_begin();
3512
3513      if (OpInfo.ConstraintVT == MVT::Other)
3514        ValueVT = RegVT;
3515
3516      // Create the appropriate number of virtual registers.
3517      MachineRegisterInfo &RegInfo = MF.getRegInfo();
3518      for (; NumRegs; --NumRegs)
3519        Regs.push_back(RegInfo.createVirtualRegister(PhysReg.second));
3520
3521      OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
3522      return;
3523    }
3524
3525    // Otherwise, we can't allocate it.  Let the code below figure out how to
3526    // maintain these constraints.
3527    RegClassRegs.assign(PhysReg.second->begin(), PhysReg.second->end());
3528
3529  } else {
3530    // This is a reference to a register class that doesn't directly correspond
3531    // to an LLVM register class.  Allocate NumRegs consecutive, available,
3532    // registers from the class.
3533    RegClassRegs = TLI.getRegClassForInlineAsmConstraint(OpInfo.ConstraintCode,
3534                                                         OpInfo.ConstraintVT);
3535  }
3536
3537  const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
3538  unsigned NumAllocated = 0;
3539  for (unsigned i = 0, e = RegClassRegs.size(); i != e; ++i) {
3540    unsigned Reg = RegClassRegs[i];
3541    // See if this register is available.
3542    if ((isOutReg && OutputRegs.count(Reg)) ||   // Already used.
3543        (isInReg  && InputRegs.count(Reg))) {    // Already used.
3544      // Make sure we find consecutive registers.
3545      NumAllocated = 0;
3546      continue;
3547    }
3548
3549    // Check to see if this register is allocatable (i.e. don't give out the
3550    // stack pointer).
3551    if (RC == 0) {
3552      RC = isAllocatableRegister(Reg, MF, TLI, TRI);
3553      if (!RC) {        // Couldn't allocate this register.
3554        // Reset NumAllocated to make sure we return consecutive registers.
3555        NumAllocated = 0;
3556        continue;
3557      }
3558    }
3559
3560    // Okay, this register is good, we can use it.
3561    ++NumAllocated;
3562
3563    // If we allocated enough consecutive registers, succeed.
3564    if (NumAllocated == NumRegs) {
3565      unsigned RegStart = (i-NumAllocated)+1;
3566      unsigned RegEnd   = i+1;
3567      // Mark all of the allocated registers used.
3568      for (unsigned i = RegStart; i != RegEnd; ++i)
3569        Regs.push_back(RegClassRegs[i]);
3570
3571      OpInfo.AssignedRegs = RegsForValue(Regs, *RC->vt_begin(),
3572                                         OpInfo.ConstraintVT);
3573      OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI);
3574      return;
3575    }
3576  }
3577
3578  // Otherwise, we couldn't allocate enough registers for this.
3579  return;
3580}
3581
3582
3583/// visitInlineAsm - Handle a call to an InlineAsm object.
3584///
3585void SelectionDAGLowering::visitInlineAsm(CallSite CS) {
3586  InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
3587
3588  /// ConstraintOperands - Information about all of the constraints.
3589  std::vector<SDISelAsmOperandInfo> ConstraintOperands;
3590
3591  SDOperand Chain = getRoot();
3592  SDOperand Flag;
3593
3594  std::set<unsigned> OutputRegs, InputRegs;
3595
3596  // Do a prepass over the constraints, canonicalizing them, and building up the
3597  // ConstraintOperands list.
3598  std::vector<InlineAsm::ConstraintInfo>
3599    ConstraintInfos = IA->ParseConstraints();
3600
3601  // SawEarlyClobber - Keep track of whether we saw an earlyclobber output
3602  // constraint.  If so, we can't let the register allocator allocate any input
3603  // registers, because it will not know to avoid the earlyclobbered output reg.
3604  bool SawEarlyClobber = false;
3605
3606  unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
3607  for (unsigned i = 0, e = ConstraintInfos.size(); i != e; ++i) {
3608    ConstraintOperands.push_back(SDISelAsmOperandInfo(ConstraintInfos[i]));
3609    SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
3610
3611    MVT::ValueType OpVT = MVT::Other;
3612
3613    // Compute the value type for each operand.
3614    switch (OpInfo.Type) {
3615    case InlineAsm::isOutput:
3616      if (!OpInfo.isIndirect) {
3617        // The return value of the call is this value.  As such, there is no
3618        // corresponding argument.
3619        assert(CS.getType() != Type::VoidTy && "Bad inline asm!");
3620        OpVT = TLI.getValueType(CS.getType());
3621      } else {
3622        OpInfo.CallOperandVal = CS.getArgument(ArgNo++);
3623      }
3624      break;
3625    case InlineAsm::isInput:
3626      OpInfo.CallOperandVal = CS.getArgument(ArgNo++);
3627      break;
3628    case InlineAsm::isClobber:
3629      // Nothing to do.
3630      break;
3631    }
3632
3633    // If this is an input or an indirect output, process the call argument.
3634    // BasicBlocks are labels, currently appearing only in asm's.
3635    if (OpInfo.CallOperandVal) {
3636      if (isa<BasicBlock>(OpInfo.CallOperandVal))
3637        OpInfo.CallOperand =
3638          DAG.getBasicBlock(FuncInfo.MBBMap[cast<BasicBlock>(
3639                                                 OpInfo.CallOperandVal)]);
3640      else {
3641        OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
3642        const Type *OpTy = OpInfo.CallOperandVal->getType();
3643        // If this is an indirect operand, the operand is a pointer to the
3644        // accessed type.
3645        if (OpInfo.isIndirect)
3646          OpTy = cast<PointerType>(OpTy)->getElementType();
3647
3648        // If OpTy is not a first-class value, it may be a struct/union that we
3649        // can tile with integers.
3650        if (!OpTy->isFirstClassType() && OpTy->isSized()) {
3651          unsigned BitSize = TD->getTypeSizeInBits(OpTy);
3652          switch (BitSize) {
3653          default: break;
3654          case 1:
3655          case 8:
3656          case 16:
3657          case 32:
3658          case 64:
3659            OpTy = IntegerType::get(BitSize);
3660            break;
3661          }
3662        }
3663
3664        OpVT = TLI.getValueType(OpTy, true);
3665      }
3666    }
3667
3668    OpInfo.ConstraintVT = OpVT;
3669
3670    // Compute the constraint code and ConstraintType to use.
3671    OpInfo.ComputeConstraintToUse(TLI);
3672
3673    // Keep track of whether we see an earlyclobber.
3674    SawEarlyClobber |= OpInfo.isEarlyClobber;
3675
3676    // If we see a clobber of a register, it is an early clobber.
3677    if (!SawEarlyClobber &&
3678        OpInfo.Type == InlineAsm::isClobber &&
3679        OpInfo.ConstraintType == TargetLowering::C_Register) {
3680      // Note that we want to ignore things that we don't trick here, like
3681      // dirflag, fpsr, flags, etc.
3682      std::pair<unsigned, const TargetRegisterClass*> PhysReg =
3683        TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
3684                                         OpInfo.ConstraintVT);
3685      if (PhysReg.first || PhysReg.second) {
3686        // This is a register we know of.
3687        SawEarlyClobber = true;
3688      }
3689    }
3690
3691    // If this is a memory input, and if the operand is not indirect, do what we
3692    // need to to provide an address for the memory input.
3693    if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
3694        !OpInfo.isIndirect) {
3695      assert(OpInfo.Type == InlineAsm::isInput &&
3696             "Can only indirectify direct input operands!");
3697
3698      // Memory operands really want the address of the value.  If we don't have
3699      // an indirect input, put it in the constpool if we can, otherwise spill
3700      // it to a stack slot.
3701
3702      // If the operand is a float, integer, or vector constant, spill to a
3703      // constant pool entry to get its address.
3704      Value *OpVal = OpInfo.CallOperandVal;
3705      if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
3706          isa<ConstantVector>(OpVal)) {
3707        OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal),
3708                                                 TLI.getPointerTy());
3709      } else {
3710        // Otherwise, create a stack slot and emit a store to it before the
3711        // asm.
3712        const Type *Ty = OpVal->getType();
3713        uint64_t TySize = TLI.getTargetData()->getABITypeSize(Ty);
3714        unsigned Align  = TLI.getTargetData()->getPrefTypeAlignment(Ty);
3715        MachineFunction &MF = DAG.getMachineFunction();
3716        int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align);
3717        SDOperand StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy());
3718        Chain = DAG.getStore(Chain, OpInfo.CallOperand, StackSlot, NULL, 0);
3719        OpInfo.CallOperand = StackSlot;
3720      }
3721
3722      // There is no longer a Value* corresponding to this operand.
3723      OpInfo.CallOperandVal = 0;
3724      // It is now an indirect operand.
3725      OpInfo.isIndirect = true;
3726    }
3727
3728    // If this constraint is for a specific register, allocate it before
3729    // anything else.
3730    if (OpInfo.ConstraintType == TargetLowering::C_Register)
3731      GetRegistersForValue(OpInfo, SawEarlyClobber, OutputRegs, InputRegs);
3732  }
3733  ConstraintInfos.clear();
3734
3735
3736  // Second pass - Loop over all of the operands, assigning virtual or physregs
3737  // to registerclass operands.
3738  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
3739    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
3740
3741    // C_Register operands have already been allocated, Other/Memory don't need
3742    // to be.
3743    if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass)
3744      GetRegistersForValue(OpInfo, SawEarlyClobber, OutputRegs, InputRegs);
3745  }
3746
3747  // AsmNodeOperands - The operands for the ISD::INLINEASM node.
3748  std::vector<SDOperand> AsmNodeOperands;
3749  AsmNodeOperands.push_back(SDOperand());  // reserve space for input chain
3750  AsmNodeOperands.push_back(
3751          DAG.getTargetExternalSymbol(IA->getAsmString().c_str(), MVT::Other));
3752
3753
3754  // Loop over all of the inputs, copying the operand values into the
3755  // appropriate registers and processing the output regs.
3756  RegsForValue RetValRegs;
3757
3758  // IndirectStoresToEmit - The set of stores to emit after the inline asm node.
3759  std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit;
3760
3761  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
3762    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
3763
3764    switch (OpInfo.Type) {
3765    case InlineAsm::isOutput: {
3766      if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass &&
3767          OpInfo.ConstraintType != TargetLowering::C_Register) {
3768        // Memory output, or 'other' output (e.g. 'X' constraint).
3769        assert(OpInfo.isIndirect && "Memory output must be indirect operand");
3770
3771        // Add information to the INLINEASM node to know about this output.
3772        unsigned ResOpType = 4/*MEM*/ | (1 << 3);
3773        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
3774                                                        TLI.getPointerTy()));
3775        AsmNodeOperands.push_back(OpInfo.CallOperand);
3776        break;
3777      }
3778
3779      // Otherwise, this is a register or register class output.
3780
3781      // Copy the output from the appropriate register.  Find a register that
3782      // we can use.
3783      if (OpInfo.AssignedRegs.Regs.empty()) {
3784        cerr << "Couldn't allocate output reg for contraint '"
3785             << OpInfo.ConstraintCode << "'!\n";
3786        exit(1);
3787      }
3788
3789      if (!OpInfo.isIndirect) {
3790        // This is the result value of the call.
3791        assert(RetValRegs.Regs.empty() &&
3792               "Cannot have multiple output constraints yet!");
3793        assert(CS.getType() != Type::VoidTy && "Bad inline asm!");
3794        RetValRegs = OpInfo.AssignedRegs;
3795      } else {
3796        IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs,
3797                                                      OpInfo.CallOperandVal));
3798      }
3799
3800      // Add information to the INLINEASM node to know that this register is
3801      // set.
3802      OpInfo.AssignedRegs.AddInlineAsmOperands(2 /*REGDEF*/, DAG,
3803                                               AsmNodeOperands);
3804      break;
3805    }
3806    case InlineAsm::isInput: {
3807      SDOperand InOperandVal = OpInfo.CallOperand;
3808
3809      if (isdigit(OpInfo.ConstraintCode[0])) {    // Matching constraint?
3810        // If this is required to match an output register we have already set,
3811        // just use its register.
3812        unsigned OperandNo = atoi(OpInfo.ConstraintCode.c_str());
3813
3814        // Scan until we find the definition we already emitted of this operand.
3815        // When we find it, create a RegsForValue operand.
3816        unsigned CurOp = 2;  // The first operand.
3817        for (; OperandNo; --OperandNo) {
3818          // Advance to the next operand.
3819          unsigned NumOps =
3820            cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getValue();
3821          assert(((NumOps & 7) == 2 /*REGDEF*/ ||
3822                  (NumOps & 7) == 4 /*MEM*/) &&
3823                 "Skipped past definitions?");
3824          CurOp += (NumOps>>3)+1;
3825        }
3826
3827        unsigned NumOps =
3828          cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getValue();
3829        if ((NumOps & 7) == 2 /*REGDEF*/) {
3830          // Add NumOps>>3 registers to MatchedRegs.
3831          RegsForValue MatchedRegs;
3832          MatchedRegs.ValueVT = InOperandVal.getValueType();
3833          MatchedRegs.RegVT   = AsmNodeOperands[CurOp+1].getValueType();
3834          for (unsigned i = 0, e = NumOps>>3; i != e; ++i) {
3835            unsigned Reg =
3836              cast<RegisterSDNode>(AsmNodeOperands[++CurOp])->getReg();
3837            MatchedRegs.Regs.push_back(Reg);
3838          }
3839
3840          // Use the produced MatchedRegs object to
3841          MatchedRegs.getCopyToRegs(InOperandVal, DAG, Chain, &Flag);
3842          MatchedRegs.AddInlineAsmOperands(1 /*REGUSE*/, DAG, AsmNodeOperands);
3843          break;
3844        } else {
3845          assert((NumOps & 7) == 4/*MEM*/ && "Unknown matching constraint!");
3846          assert((NumOps >> 3) == 1 && "Unexpected number of operands");
3847          // Add information to the INLINEASM node to know about this input.
3848          unsigned ResOpType = 4/*MEM*/ | (1 << 3);
3849          AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
3850                                                          TLI.getPointerTy()));
3851          AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
3852          break;
3853        }
3854      }
3855
3856      if (OpInfo.ConstraintType == TargetLowering::C_Other) {
3857        assert(!OpInfo.isIndirect &&
3858               "Don't know how to handle indirect other inputs yet!");
3859
3860        std::vector<SDOperand> Ops;
3861        TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode[0],
3862                                         Ops, DAG);
3863        if (Ops.empty()) {
3864          cerr << "Invalid operand for inline asm constraint '"
3865               << OpInfo.ConstraintCode << "'!\n";
3866          exit(1);
3867        }
3868
3869        // Add information to the INLINEASM node to know about this input.
3870        unsigned ResOpType = 3 /*IMM*/ | (Ops.size() << 3);
3871        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
3872                                                        TLI.getPointerTy()));
3873        AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
3874        break;
3875      } else if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
3876        assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
3877        assert(InOperandVal.getValueType() == TLI.getPointerTy() &&
3878               "Memory operands expect pointer values");
3879
3880        // Add information to the INLINEASM node to know about this input.
3881        unsigned ResOpType = 4/*MEM*/ | (1 << 3);
3882        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
3883                                                        TLI.getPointerTy()));
3884        AsmNodeOperands.push_back(InOperandVal);
3885        break;
3886      }
3887
3888      assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
3889              OpInfo.ConstraintType == TargetLowering::C_Register) &&
3890             "Unknown constraint type!");
3891      assert(!OpInfo.isIndirect &&
3892             "Don't know how to handle indirect register inputs yet!");
3893
3894      // Copy the input into the appropriate registers.
3895      assert(!OpInfo.AssignedRegs.Regs.empty() &&
3896             "Couldn't allocate input reg!");
3897
3898      OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, Chain, &Flag);
3899
3900      OpInfo.AssignedRegs.AddInlineAsmOperands(1/*REGUSE*/, DAG,
3901                                               AsmNodeOperands);
3902      break;
3903    }
3904    case InlineAsm::isClobber: {
3905      // Add the clobbered value to the operand list, so that the register
3906      // allocator is aware that the physreg got clobbered.
3907      if (!OpInfo.AssignedRegs.Regs.empty())
3908        OpInfo.AssignedRegs.AddInlineAsmOperands(2/*REGDEF*/, DAG,
3909                                                 AsmNodeOperands);
3910      break;
3911    }
3912    }
3913  }
3914
3915  // Finish up input operands.
3916  AsmNodeOperands[0] = Chain;
3917  if (Flag.Val) AsmNodeOperands.push_back(Flag);
3918
3919  Chain = DAG.getNode(ISD::INLINEASM,
3920                      DAG.getNodeValueTypes(MVT::Other, MVT::Flag), 2,
3921                      &AsmNodeOperands[0], AsmNodeOperands.size());
3922  Flag = Chain.getValue(1);
3923
3924  // If this asm returns a register value, copy the result from that register
3925  // and set it as the value of the call.
3926  if (!RetValRegs.Regs.empty()) {
3927    SDOperand Val = RetValRegs.getCopyFromRegs(DAG, Chain, &Flag);
3928
3929    // If the result of the inline asm is a vector, it may have the wrong
3930    // width/num elts.  Make sure to convert it to the right type with
3931    // bit_convert.
3932    if (MVT::isVector(Val.getValueType())) {
3933      const VectorType *VTy = cast<VectorType>(CS.getType());
3934      MVT::ValueType DesiredVT = TLI.getValueType(VTy);
3935
3936      Val = DAG.getNode(ISD::BIT_CONVERT, DesiredVT, Val);
3937    }
3938
3939    setValue(CS.getInstruction(), Val);
3940  }
3941
3942  std::vector<std::pair<SDOperand, Value*> > StoresToEmit;
3943
3944  // Process indirect outputs, first output all of the flagged copies out of
3945  // physregs.
3946  for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
3947    RegsForValue &OutRegs = IndirectStoresToEmit[i].first;
3948    Value *Ptr = IndirectStoresToEmit[i].second;
3949    SDOperand OutVal = OutRegs.getCopyFromRegs(DAG, Chain, &Flag);
3950    StoresToEmit.push_back(std::make_pair(OutVal, Ptr));
3951  }
3952
3953  // Emit the non-flagged stores from the physregs.
3954  SmallVector<SDOperand, 8> OutChains;
3955  for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i)
3956    OutChains.push_back(DAG.getStore(Chain, StoresToEmit[i].first,
3957                                    getValue(StoresToEmit[i].second),
3958                                    StoresToEmit[i].second, 0));
3959  if (!OutChains.empty())
3960    Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
3961                        &OutChains[0], OutChains.size());
3962  DAG.setRoot(Chain);
3963}
3964
3965
3966void SelectionDAGLowering::visitMalloc(MallocInst &I) {
3967  SDOperand Src = getValue(I.getOperand(0));
3968
3969  MVT::ValueType IntPtr = TLI.getPointerTy();
3970
3971  if (IntPtr < Src.getValueType())
3972    Src = DAG.getNode(ISD::TRUNCATE, IntPtr, Src);
3973  else if (IntPtr > Src.getValueType())
3974    Src = DAG.getNode(ISD::ZERO_EXTEND, IntPtr, Src);
3975
3976  // Scale the source by the type size.
3977  uint64_t ElementSize = TD->getABITypeSize(I.getType()->getElementType());
3978  Src = DAG.getNode(ISD::MUL, Src.getValueType(),
3979                    Src, DAG.getIntPtrConstant(ElementSize));
3980
3981  TargetLowering::ArgListTy Args;
3982  TargetLowering::ArgListEntry Entry;
3983  Entry.Node = Src;
3984  Entry.Ty = TLI.getTargetData()->getIntPtrType();
3985  Args.push_back(Entry);
3986
3987  std::pair<SDOperand,SDOperand> Result =
3988    TLI.LowerCallTo(getRoot(), I.getType(), false, false, false, CallingConv::C,
3989                    true, DAG.getExternalSymbol("malloc", IntPtr), Args, DAG);
3990  setValue(&I, Result.first);  // Pointers always fit in registers
3991  DAG.setRoot(Result.second);
3992}
3993
3994void SelectionDAGLowering::visitFree(FreeInst &I) {
3995  TargetLowering::ArgListTy Args;
3996  TargetLowering::ArgListEntry Entry;
3997  Entry.Node = getValue(I.getOperand(0));
3998  Entry.Ty = TLI.getTargetData()->getIntPtrType();
3999  Args.push_back(Entry);
4000  MVT::ValueType IntPtr = TLI.getPointerTy();
4001  std::pair<SDOperand,SDOperand> Result =
4002    TLI.LowerCallTo(getRoot(), Type::VoidTy, false, false, false,
4003                    CallingConv::C, true,
4004                    DAG.getExternalSymbol("free", IntPtr), Args, DAG);
4005  DAG.setRoot(Result.second);
4006}
4007
4008// EmitInstrWithCustomInserter - This method should be implemented by targets
4009// that mark instructions with the 'usesCustomDAGSchedInserter' flag.  These
4010// instructions are special in various ways, which require special support to
4011// insert.  The specified MachineInstr is created but not inserted into any
4012// basic blocks, and the scheduler passes ownership of it to this method.
4013MachineBasicBlock *TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
4014                                                       MachineBasicBlock *MBB) {
4015  cerr << "If a target marks an instruction with "
4016       << "'usesCustomDAGSchedInserter', it must implement "
4017       << "TargetLowering::EmitInstrWithCustomInserter!\n";
4018  abort();
4019  return 0;
4020}
4021
4022void SelectionDAGLowering::visitVAStart(CallInst &I) {
4023  DAG.setRoot(DAG.getNode(ISD::VASTART, MVT::Other, getRoot(),
4024                          getValue(I.getOperand(1)),
4025                          DAG.getSrcValue(I.getOperand(1))));
4026}
4027
4028void SelectionDAGLowering::visitVAArg(VAArgInst &I) {
4029  SDOperand V = DAG.getVAArg(TLI.getValueType(I.getType()), getRoot(),
4030                             getValue(I.getOperand(0)),
4031                             DAG.getSrcValue(I.getOperand(0)));
4032  setValue(&I, V);
4033  DAG.setRoot(V.getValue(1));
4034}
4035
4036void SelectionDAGLowering::visitVAEnd(CallInst &I) {
4037  DAG.setRoot(DAG.getNode(ISD::VAEND, MVT::Other, getRoot(),
4038                          getValue(I.getOperand(1)),
4039                          DAG.getSrcValue(I.getOperand(1))));
4040}
4041
4042void SelectionDAGLowering::visitVACopy(CallInst &I) {
4043  DAG.setRoot(DAG.getNode(ISD::VACOPY, MVT::Other, getRoot(),
4044                          getValue(I.getOperand(1)),
4045                          getValue(I.getOperand(2)),
4046                          DAG.getSrcValue(I.getOperand(1)),
4047                          DAG.getSrcValue(I.getOperand(2))));
4048}
4049
4050/// TargetLowering::LowerArguments - This is the default LowerArguments
4051/// implementation, which just inserts a FORMAL_ARGUMENTS node.  FIXME: When all
4052/// targets are migrated to using FORMAL_ARGUMENTS, this hook should be
4053/// integrated into SDISel.
4054std::vector<SDOperand>
4055TargetLowering::LowerArguments(Function &F, SelectionDAG &DAG) {
4056  // Add CC# and isVararg as operands to the FORMAL_ARGUMENTS node.
4057  std::vector<SDOperand> Ops;
4058  Ops.push_back(DAG.getRoot());
4059  Ops.push_back(DAG.getConstant(F.getCallingConv(), getPointerTy()));
4060  Ops.push_back(DAG.getConstant(F.isVarArg(), getPointerTy()));
4061
4062  // Add one result value for each formal argument.
4063  std::vector<MVT::ValueType> RetVals;
4064  unsigned j = 1;
4065  for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end();
4066       I != E; ++I, ++j) {
4067    MVT::ValueType VT = getValueType(I->getType());
4068    ISD::ParamFlags::ParamFlagsTy Flags = ISD::ParamFlags::NoFlagSet;
4069    unsigned OriginalAlignment =
4070      getTargetData()->getABITypeAlignment(I->getType());
4071
4072    // FIXME: Distinguish between a formal with no [sz]ext attribute from one
4073    // that is zero extended!
4074    if (F.paramHasAttr(j, ParamAttr::ZExt))
4075      Flags &= ~(ISD::ParamFlags::SExt);
4076    if (F.paramHasAttr(j, ParamAttr::SExt))
4077      Flags |= ISD::ParamFlags::SExt;
4078    if (F.paramHasAttr(j, ParamAttr::InReg))
4079      Flags |= ISD::ParamFlags::InReg;
4080    if (F.paramHasAttr(j, ParamAttr::StructRet))
4081      Flags |= ISD::ParamFlags::StructReturn;
4082    if (F.paramHasAttr(j, ParamAttr::ByVal)) {
4083      Flags |= ISD::ParamFlags::ByVal;
4084      const PointerType *Ty = cast<PointerType>(I->getType());
4085      const Type *ElementTy = Ty->getElementType();
4086      unsigned FrameAlign = Log2_32(getByValTypeAlignment(ElementTy));
4087      unsigned FrameSize  = getTargetData()->getABITypeSize(ElementTy);
4088      // For ByVal, alignment should be passed from FE.  BE will guess if
4089      // this info is not there but there are cases it cannot get right.
4090      if (F.getParamAlignment(j))
4091        FrameAlign = Log2_32(F.getParamAlignment(j));
4092      Flags |= ((ISD::ParamFlags::ParamFlagsTy)FrameAlign
4093                   << ISD::ParamFlags::ByValAlignOffs);
4094      Flags |= ((ISD::ParamFlags::ParamFlagsTy)FrameSize
4095                    << ISD::ParamFlags::ByValSizeOffs);
4096    }
4097    if (F.paramHasAttr(j, ParamAttr::Nest))
4098      Flags |= ISD::ParamFlags::Nest;
4099    Flags |= ((ISD::ParamFlags::ParamFlagsTy)OriginalAlignment
4100                  << ISD::ParamFlags::OrigAlignmentOffs);
4101
4102    MVT::ValueType RegisterVT = getRegisterType(VT);
4103    unsigned NumRegs = getNumRegisters(VT);
4104    for (unsigned i = 0; i != NumRegs; ++i) {
4105      RetVals.push_back(RegisterVT);
4106      // if it isn't first piece, alignment must be 1
4107      if (i > 0)
4108        Flags = (Flags & (~ISD::ParamFlags::OrigAlignment)) |
4109          (ISD::ParamFlags::One << ISD::ParamFlags::OrigAlignmentOffs);
4110      Ops.push_back(DAG.getConstant(Flags, MVT::i64));
4111    }
4112  }
4113
4114  RetVals.push_back(MVT::Other);
4115
4116  // Create the node.
4117  SDNode *Result = DAG.getNode(ISD::FORMAL_ARGUMENTS,
4118                               DAG.getVTList(&RetVals[0], RetVals.size()),
4119                               &Ops[0], Ops.size()).Val;
4120
4121  // Prelower FORMAL_ARGUMENTS.  This isn't required for functionality, but
4122  // allows exposing the loads that may be part of the argument access to the
4123  // first DAGCombiner pass.
4124  SDOperand TmpRes = LowerOperation(SDOperand(Result, 0), DAG);
4125
4126  // The number of results should match up, except that the lowered one may have
4127  // an extra flag result.
4128  assert((Result->getNumValues() == TmpRes.Val->getNumValues() ||
4129          (Result->getNumValues()+1 == TmpRes.Val->getNumValues() &&
4130           TmpRes.getValue(Result->getNumValues()).getValueType() == MVT::Flag))
4131         && "Lowering produced unexpected number of results!");
4132  Result = TmpRes.Val;
4133
4134  unsigned NumArgRegs = Result->getNumValues() - 1;
4135  DAG.setRoot(SDOperand(Result, NumArgRegs));
4136
4137  // Set up the return result vector.
4138  Ops.clear();
4139  unsigned i = 0;
4140  unsigned Idx = 1;
4141  for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E;
4142      ++I, ++Idx) {
4143    MVT::ValueType VT = getValueType(I->getType());
4144    MVT::ValueType PartVT = getRegisterType(VT);
4145
4146    unsigned NumParts = getNumRegisters(VT);
4147    SmallVector<SDOperand, 4> Parts(NumParts);
4148    for (unsigned j = 0; j != NumParts; ++j)
4149      Parts[j] = SDOperand(Result, i++);
4150
4151    ISD::NodeType AssertOp = ISD::DELETED_NODE;
4152    if (F.paramHasAttr(Idx, ParamAttr::SExt))
4153      AssertOp = ISD::AssertSext;
4154    else if (F.paramHasAttr(Idx, ParamAttr::ZExt))
4155      AssertOp = ISD::AssertZext;
4156
4157    Ops.push_back(getCopyFromParts(DAG, &Parts[0], NumParts, PartVT, VT,
4158                                   AssertOp));
4159  }
4160  assert(i == NumArgRegs && "Argument register count mismatch!");
4161  return Ops;
4162}
4163
4164
4165/// TargetLowering::LowerCallTo - This is the default LowerCallTo
4166/// implementation, which just inserts an ISD::CALL node, which is later custom
4167/// lowered by the target to something concrete.  FIXME: When all targets are
4168/// migrated to using ISD::CALL, this hook should be integrated into SDISel.
4169std::pair<SDOperand, SDOperand>
4170TargetLowering::LowerCallTo(SDOperand Chain, const Type *RetTy,
4171                            bool RetSExt, bool RetZExt, bool isVarArg,
4172                            unsigned CallingConv, bool isTailCall,
4173                            SDOperand Callee,
4174                            ArgListTy &Args, SelectionDAG &DAG) {
4175  SmallVector<SDOperand, 32> Ops;
4176  Ops.push_back(Chain);   // Op#0 - Chain
4177  Ops.push_back(DAG.getConstant(CallingConv, getPointerTy())); // Op#1 - CC
4178  Ops.push_back(DAG.getConstant(isVarArg, getPointerTy()));    // Op#2 - VarArg
4179  Ops.push_back(DAG.getConstant(isTailCall, getPointerTy()));  // Op#3 - Tail
4180  Ops.push_back(Callee);
4181
4182  // Handle all of the outgoing arguments.
4183  for (unsigned i = 0, e = Args.size(); i != e; ++i) {
4184    MVT::ValueType VT = getValueType(Args[i].Ty);
4185    SDOperand Op = Args[i].Node;
4186    ISD::ParamFlags::ParamFlagsTy Flags = ISD::ParamFlags::NoFlagSet;
4187    unsigned OriginalAlignment =
4188      getTargetData()->getABITypeAlignment(Args[i].Ty);
4189
4190    if (Args[i].isSExt)
4191      Flags |= ISD::ParamFlags::SExt;
4192    if (Args[i].isZExt)
4193      Flags |= ISD::ParamFlags::ZExt;
4194    if (Args[i].isInReg)
4195      Flags |= ISD::ParamFlags::InReg;
4196    if (Args[i].isSRet)
4197      Flags |= ISD::ParamFlags::StructReturn;
4198    if (Args[i].isByVal) {
4199      Flags |= ISD::ParamFlags::ByVal;
4200      const PointerType *Ty = cast<PointerType>(Args[i].Ty);
4201      const Type *ElementTy = Ty->getElementType();
4202      unsigned FrameAlign = Log2_32(getByValTypeAlignment(ElementTy));
4203      unsigned FrameSize  = getTargetData()->getABITypeSize(ElementTy);
4204      // For ByVal, alignment should come from FE.  BE will guess if this
4205      // info is not there but there are cases it cannot get right.
4206      if (Args[i].Alignment)
4207        FrameAlign = Log2_32(Args[i].Alignment);
4208      Flags |= ((ISD::ParamFlags::ParamFlagsTy)FrameAlign
4209                      << ISD::ParamFlags::ByValAlignOffs);
4210      Flags |= ((ISD::ParamFlags::ParamFlagsTy)FrameSize
4211                      << ISD::ParamFlags::ByValSizeOffs);
4212    }
4213    if (Args[i].isNest)
4214      Flags |= ISD::ParamFlags::Nest;
4215    Flags |= ((ISD::ParamFlags::ParamFlagsTy)OriginalAlignment)
4216                    << ISD::ParamFlags::OrigAlignmentOffs;
4217
4218    MVT::ValueType PartVT = getRegisterType(VT);
4219    unsigned NumParts = getNumRegisters(VT);
4220    SmallVector<SDOperand, 4> Parts(NumParts);
4221    ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
4222
4223    if (Args[i].isSExt)
4224      ExtendKind = ISD::SIGN_EXTEND;
4225    else if (Args[i].isZExt)
4226      ExtendKind = ISD::ZERO_EXTEND;
4227
4228    getCopyToParts(DAG, Op, &Parts[0], NumParts, PartVT, ExtendKind);
4229
4230    for (unsigned i = 0; i != NumParts; ++i) {
4231      // if it isn't first piece, alignment must be 1
4232      ISD::ParamFlags::ParamFlagsTy MyFlags = Flags;
4233      if (i != 0)
4234        MyFlags = (MyFlags & (~ISD::ParamFlags::OrigAlignment)) |
4235          (ISD::ParamFlags::One << ISD::ParamFlags::OrigAlignmentOffs);
4236
4237      Ops.push_back(Parts[i]);
4238      Ops.push_back(DAG.getConstant(MyFlags, MVT::i64));
4239    }
4240  }
4241
4242  // Figure out the result value types. We start by making a list of
4243  // the high-level LLVM return types.
4244  SmallVector<const Type *, 4> LLVMRetTys;
4245  if (const StructType *ST = dyn_cast<StructType>(RetTy))
4246    // A struct return type in the LLVM IR means we have multiple return values.
4247    LLVMRetTys.insert(LLVMRetTys.end(), ST->element_begin(), ST->element_end());
4248  else
4249    LLVMRetTys.push_back(RetTy);
4250
4251  // Then we translate that to a list of lowered codegen result types.
4252  SmallVector<MVT::ValueType, 4> LoweredRetTys;
4253  SmallVector<MVT::ValueType, 4> RetTys;
4254  for (unsigned I = 0, E = LLVMRetTys.size(); I != E; ++I) {
4255    MVT::ValueType VT = getValueType(LLVMRetTys[I]);
4256    RetTys.push_back(VT);
4257
4258    MVT::ValueType RegisterVT = getRegisterType(VT);
4259    unsigned NumRegs = getNumRegisters(VT);
4260    for (unsigned i = 0; i != NumRegs; ++i)
4261      LoweredRetTys.push_back(RegisterVT);
4262  }
4263
4264  LoweredRetTys.push_back(MVT::Other);  // Always has a chain.
4265
4266  // Create the CALL node.
4267  SDOperand Res = DAG.getNode(ISD::CALL,
4268                              DAG.getVTList(&LoweredRetTys[0],
4269                                            LoweredRetTys.size()),
4270                              &Ops[0], Ops.size());
4271  Chain = Res.getValue(LoweredRetTys.size() - 1);
4272
4273  // Gather up the call result into a single value.
4274  if (RetTy != Type::VoidTy) {
4275    ISD::NodeType AssertOp = ISD::DELETED_NODE;
4276
4277    if (RetSExt)
4278      AssertOp = ISD::AssertSext;
4279    else if (RetZExt)
4280      AssertOp = ISD::AssertZext;
4281
4282    SmallVector<SDOperand, 4> ReturnValues;
4283    unsigned RegNo = 0;
4284    for (unsigned I = 0, E = LLVMRetTys.size(); I != E; ++I) {
4285      MVT::ValueType VT = getValueType(LLVMRetTys[I]);
4286      MVT::ValueType RegisterVT = getRegisterType(VT);
4287      unsigned NumRegs = getNumRegisters(VT);
4288      unsigned RegNoEnd = NumRegs + RegNo;
4289      SmallVector<SDOperand, 4> Results;
4290      for (; RegNo != RegNoEnd; ++RegNo)
4291        Results.push_back(Res.getValue(RegNo));
4292      SDOperand ReturnValue =
4293        getCopyFromParts(DAG, &Results[0], NumRegs, RegisterVT, VT,
4294                         AssertOp);
4295      ReturnValues.push_back(ReturnValue);
4296    }
4297    Res = ReturnValues.size() == 1 ? ReturnValues.front() :
4298          DAG.getNode(ISD::MERGE_VALUES,
4299                      DAG.getVTList(&RetTys[0], RetTys.size()),
4300                      &ReturnValues[0], ReturnValues.size());
4301  }
4302
4303  return std::make_pair(Res, Chain);
4304}
4305
4306SDOperand TargetLowering::LowerOperation(SDOperand Op, SelectionDAG &DAG) {
4307  assert(0 && "LowerOperation not implemented for this target!");
4308  abort();
4309  return SDOperand();
4310}
4311
4312SDOperand TargetLowering::CustomPromoteOperation(SDOperand Op,
4313                                                 SelectionDAG &DAG) {
4314  assert(0 && "CustomPromoteOperation not implemented for this target!");
4315  abort();
4316  return SDOperand();
4317}
4318
4319/// getMemsetValue - Vectorized representation of the memset value
4320/// operand.
4321static SDOperand getMemsetValue(SDOperand Value, MVT::ValueType VT,
4322                                SelectionDAG &DAG) {
4323  MVT::ValueType CurVT = VT;
4324  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
4325    uint64_t Val   = C->getValue() & 255;
4326    unsigned Shift = 8;
4327    while (CurVT != MVT::i8) {
4328      Val = (Val << Shift) | Val;
4329      Shift <<= 1;
4330      CurVT = (MVT::ValueType)((unsigned)CurVT - 1);
4331    }
4332    return DAG.getConstant(Val, VT);
4333  } else {
4334    Value = DAG.getNode(ISD::ZERO_EXTEND, VT, Value);
4335    unsigned Shift = 8;
4336    while (CurVT != MVT::i8) {
4337      Value =
4338        DAG.getNode(ISD::OR, VT,
4339                    DAG.getNode(ISD::SHL, VT, Value,
4340                                DAG.getConstant(Shift, MVT::i8)), Value);
4341      Shift <<= 1;
4342      CurVT = (MVT::ValueType)((unsigned)CurVT - 1);
4343    }
4344
4345    return Value;
4346  }
4347}
4348
4349/// getMemsetStringVal - Similar to getMemsetValue. Except this is only
4350/// used when a memcpy is turned into a memset when the source is a constant
4351/// string ptr.
4352static SDOperand getMemsetStringVal(MVT::ValueType VT,
4353                                    SelectionDAG &DAG, TargetLowering &TLI,
4354                                    std::string &Str, unsigned Offset) {
4355  uint64_t Val = 0;
4356  unsigned MSB = MVT::getSizeInBits(VT) / 8;
4357  if (TLI.isLittleEndian())
4358    Offset = Offset + MSB - 1;
4359  for (unsigned i = 0; i != MSB; ++i) {
4360    Val = (Val << 8) | (unsigned char)Str[Offset];
4361    Offset += TLI.isLittleEndian() ? -1 : 1;
4362  }
4363  return DAG.getConstant(Val, VT);
4364}
4365
4366/// getMemBasePlusOffset - Returns base and offset node for the
4367static SDOperand getMemBasePlusOffset(SDOperand Base, unsigned Offset,
4368                                      SelectionDAG &DAG, TargetLowering &TLI) {
4369  MVT::ValueType VT = Base.getValueType();
4370  return DAG.getNode(ISD::ADD, VT, Base, DAG.getConstant(Offset, VT));
4371}
4372
4373/// MeetsMaxMemopRequirement - Determines if the number of memory ops required
4374/// to replace the memset / memcpy is below the threshold. It also returns the
4375/// types of the sequence of  memory ops to perform memset / memcpy.
4376static bool MeetsMaxMemopRequirement(std::vector<MVT::ValueType> &MemOps,
4377                                     unsigned Limit, uint64_t Size,
4378                                     unsigned Align, TargetLowering &TLI) {
4379  MVT::ValueType VT;
4380
4381  if (TLI.allowsUnalignedMemoryAccesses()) {
4382    VT = MVT::i64;
4383  } else {
4384    switch (Align & 7) {
4385    case 0:
4386      VT = MVT::i64;
4387      break;
4388    case 4:
4389      VT = MVT::i32;
4390      break;
4391    case 2:
4392      VT = MVT::i16;
4393      break;
4394    default:
4395      VT = MVT::i8;
4396      break;
4397    }
4398  }
4399
4400  MVT::ValueType LVT = MVT::i64;
4401  while (!TLI.isTypeLegal(LVT))
4402    LVT = (MVT::ValueType)((unsigned)LVT - 1);
4403  assert(MVT::isInteger(LVT));
4404
4405  if (VT > LVT)
4406    VT = LVT;
4407
4408  unsigned NumMemOps = 0;
4409  while (Size != 0) {
4410    unsigned VTSize = MVT::getSizeInBits(VT) / 8;
4411    while (VTSize > Size) {
4412      VT = (MVT::ValueType)((unsigned)VT - 1);
4413      VTSize >>= 1;
4414    }
4415    assert(MVT::isInteger(VT));
4416
4417    if (++NumMemOps > Limit)
4418      return false;
4419    MemOps.push_back(VT);
4420    Size -= VTSize;
4421  }
4422
4423  return true;
4424}
4425
4426void SelectionDAGLowering::visitMemIntrinsic(CallInst &I, unsigned Op) {
4427  SDOperand Op1 = getValue(I.getOperand(1));
4428  SDOperand Op2 = getValue(I.getOperand(2));
4429  SDOperand Op3 = getValue(I.getOperand(3));
4430  SDOperand Op4 = getValue(I.getOperand(4));
4431  unsigned Align = (unsigned)cast<ConstantSDNode>(Op4)->getValue();
4432  if (Align == 0) Align = 1;
4433
4434  // If the source and destination are known to not be aliases, we can
4435  // lower memmove as memcpy.
4436  if (Op == ISD::MEMMOVE) {
4437    uint64_t Size = -1ULL;
4438    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op3))
4439      Size = C->getValue();
4440    if (AA.alias(I.getOperand(1), Size, I.getOperand(2), Size) ==
4441        AliasAnalysis::NoAlias)
4442      Op = ISD::MEMCPY;
4443  }
4444
4445  if (ConstantSDNode *Size = dyn_cast<ConstantSDNode>(Op3)) {
4446    std::vector<MVT::ValueType> MemOps;
4447
4448    // Expand memset / memcpy to a series of load / store ops
4449    // if the size operand falls below a certain threshold.
4450    SmallVector<SDOperand, 8> OutChains;
4451    switch (Op) {
4452    default: break;  // Do nothing for now.
4453    case ISD::MEMSET: {
4454      if (MeetsMaxMemopRequirement(MemOps, TLI.getMaxStoresPerMemset(),
4455                                   Size->getValue(), Align, TLI)) {
4456        unsigned NumMemOps = MemOps.size();
4457        unsigned Offset = 0;
4458        for (unsigned i = 0; i < NumMemOps; i++) {
4459          MVT::ValueType VT = MemOps[i];
4460          unsigned VTSize = MVT::getSizeInBits(VT) / 8;
4461          SDOperand Value = getMemsetValue(Op2, VT, DAG);
4462          SDOperand Store = DAG.getStore(getRoot(), Value,
4463                                    getMemBasePlusOffset(Op1, Offset, DAG, TLI),
4464                                         I.getOperand(1), Offset);
4465          OutChains.push_back(Store);
4466          Offset += VTSize;
4467        }
4468      }
4469      break;
4470    }
4471    case ISD::MEMCPY: {
4472      if (MeetsMaxMemopRequirement(MemOps, TLI.getMaxStoresPerMemcpy(),
4473                                   Size->getValue(), Align, TLI)) {
4474        unsigned NumMemOps = MemOps.size();
4475        unsigned SrcOff = 0, DstOff = 0, SrcDelta = 0;
4476        GlobalAddressSDNode *G = NULL;
4477        std::string Str;
4478        bool CopyFromStr = false;
4479
4480        if (Op2.getOpcode() == ISD::GlobalAddress)
4481          G = cast<GlobalAddressSDNode>(Op2);
4482        else if (Op2.getOpcode() == ISD::ADD &&
4483                 Op2.getOperand(0).getOpcode() == ISD::GlobalAddress &&
4484                 Op2.getOperand(1).getOpcode() == ISD::Constant) {
4485          G = cast<GlobalAddressSDNode>(Op2.getOperand(0));
4486          SrcDelta = cast<ConstantSDNode>(Op2.getOperand(1))->getValue();
4487        }
4488        if (G) {
4489          GlobalVariable *GV = dyn_cast<GlobalVariable>(G->getGlobal());
4490          if (GV && GV->isConstant()) {
4491            Str = GV->getStringValue(false);
4492            if (!Str.empty()) {
4493              CopyFromStr = true;
4494              SrcOff += SrcDelta;
4495            }
4496          }
4497        }
4498
4499        for (unsigned i = 0; i < NumMemOps; i++) {
4500          MVT::ValueType VT = MemOps[i];
4501          unsigned VTSize = MVT::getSizeInBits(VT) / 8;
4502          SDOperand Value, Chain, Store;
4503
4504          if (CopyFromStr) {
4505            Value = getMemsetStringVal(VT, DAG, TLI, Str, SrcOff);
4506            Chain = getRoot();
4507            Store =
4508              DAG.getStore(Chain, Value,
4509                           getMemBasePlusOffset(Op1, DstOff, DAG, TLI),
4510                           I.getOperand(1), DstOff);
4511          } else {
4512            Value = DAG.getLoad(VT, getRoot(),
4513                                getMemBasePlusOffset(Op2, SrcOff, DAG, TLI),
4514                                I.getOperand(2), SrcOff, false, Align);
4515            Chain = Value.getValue(1);
4516            Store =
4517              DAG.getStore(Chain, Value,
4518                           getMemBasePlusOffset(Op1, DstOff, DAG, TLI),
4519                           I.getOperand(1), DstOff, false, Align);
4520          }
4521          OutChains.push_back(Store);
4522          SrcOff += VTSize;
4523          DstOff += VTSize;
4524        }
4525      }
4526      break;
4527    }
4528    }
4529
4530    if (!OutChains.empty()) {
4531      DAG.setRoot(DAG.getNode(ISD::TokenFactor, MVT::Other,
4532                  &OutChains[0], OutChains.size()));
4533      return;
4534    }
4535  }
4536
4537  SDOperand AlwaysInline = DAG.getConstant(0, MVT::i1);
4538  SDOperand Node;
4539  switch(Op) {
4540    default:
4541      assert(0 && "Unknown Op");
4542    case ISD::MEMCPY:
4543      Node = DAG.getMemcpy(getRoot(), Op1, Op2, Op3, Op4, AlwaysInline);
4544      break;
4545    case ISD::MEMMOVE:
4546      Node = DAG.getMemmove(getRoot(), Op1, Op2, Op3, Op4, AlwaysInline);
4547      break;
4548    case ISD::MEMSET:
4549      Node = DAG.getMemset(getRoot(), Op1, Op2, Op3, Op4, AlwaysInline);
4550      break;
4551  }
4552  DAG.setRoot(Node);
4553}
4554
4555//===----------------------------------------------------------------------===//
4556// SelectionDAGISel code
4557//===----------------------------------------------------------------------===//
4558
4559unsigned SelectionDAGISel::MakeReg(MVT::ValueType VT) {
4560  return RegInfo->createVirtualRegister(TLI.getRegClassFor(VT));
4561}
4562
4563void SelectionDAGISel::getAnalysisUsage(AnalysisUsage &AU) const {
4564  AU.addRequired<AliasAnalysis>();
4565  AU.addRequired<CollectorModuleMetadata>();
4566  AU.setPreservesAll();
4567}
4568
4569
4570
4571bool SelectionDAGISel::runOnFunction(Function &Fn) {
4572  // Get alias analysis for load/store combining.
4573  AA = &getAnalysis<AliasAnalysis>();
4574
4575  MachineFunction &MF = MachineFunction::construct(&Fn, TLI.getTargetMachine());
4576  if (MF.getFunction()->hasCollector())
4577    GCI = &getAnalysis<CollectorModuleMetadata>().get(*MF.getFunction());
4578  else
4579    GCI = 0;
4580  RegInfo = &MF.getRegInfo();
4581  DOUT << "\n\n\n=== " << Fn.getName() << "\n";
4582
4583  FunctionLoweringInfo FuncInfo(TLI, Fn, MF);
4584
4585  if (ExceptionHandling)
4586    for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
4587      if (InvokeInst *Invoke = dyn_cast<InvokeInst>(I->getTerminator()))
4588        // Mark landing pad.
4589        FuncInfo.MBBMap[Invoke->getSuccessor(1)]->setIsLandingPad();
4590
4591  for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
4592    SelectBasicBlock(I, MF, FuncInfo);
4593
4594  // Add function live-ins to entry block live-in set.
4595  BasicBlock *EntryBB = &Fn.getEntryBlock();
4596  BB = FuncInfo.MBBMap[EntryBB];
4597  if (!RegInfo->livein_empty())
4598    for (MachineRegisterInfo::livein_iterator I = RegInfo->livein_begin(),
4599           E = RegInfo->livein_end(); I != E; ++I)
4600      BB->addLiveIn(I->first);
4601
4602#ifndef NDEBUG
4603  assert(FuncInfo.CatchInfoFound.size() == FuncInfo.CatchInfoLost.size() &&
4604         "Not all catch info was assigned to a landing pad!");
4605#endif
4606
4607  return true;
4608}
4609
4610SDOperand SelectionDAGLowering::CopyValueToVirtualRegister(Value *V,
4611                                                           unsigned Reg) {
4612  SDOperand Op = getValue(V);
4613  assert((Op.getOpcode() != ISD::CopyFromReg ||
4614          cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
4615         "Copy from a reg to the same reg!");
4616
4617  MVT::ValueType SrcVT = Op.getValueType();
4618  MVT::ValueType RegisterVT = TLI.getRegisterType(SrcVT);
4619  unsigned NumRegs = TLI.getNumRegisters(SrcVT);
4620  SmallVector<SDOperand, 8> Regs(NumRegs);
4621  SmallVector<SDOperand, 8> Chains(NumRegs);
4622
4623  // Copy the value by legal parts into sequential virtual registers.
4624  getCopyToParts(DAG, Op, &Regs[0], NumRegs, RegisterVT);
4625  for (unsigned i = 0; i != NumRegs; ++i)
4626    Chains[i] = DAG.getCopyToReg(getRoot(), Reg + i, Regs[i]);
4627  return DAG.getNode(ISD::TokenFactor, MVT::Other, &Chains[0], NumRegs);
4628}
4629
4630void SelectionDAGISel::
4631LowerArguments(BasicBlock *LLVMBB, SelectionDAGLowering &SDL,
4632               std::vector<SDOperand> &UnorderedChains) {
4633  // If this is the entry block, emit arguments.
4634  Function &F = *LLVMBB->getParent();
4635  FunctionLoweringInfo &FuncInfo = SDL.FuncInfo;
4636  SDOperand OldRoot = SDL.DAG.getRoot();
4637  std::vector<SDOperand> Args = TLI.LowerArguments(F, SDL.DAG);
4638
4639  unsigned a = 0;
4640  for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end();
4641       AI != E; ++AI, ++a)
4642    if (!AI->use_empty()) {
4643      SDL.setValue(AI, Args[a]);
4644
4645      // If this argument is live outside of the entry block, insert a copy from
4646      // whereever we got it to the vreg that other BB's will reference it as.
4647      DenseMap<const Value*, unsigned>::iterator VMI=FuncInfo.ValueMap.find(AI);
4648      if (VMI != FuncInfo.ValueMap.end()) {
4649        SDOperand Copy = SDL.CopyValueToVirtualRegister(AI, VMI->second);
4650        UnorderedChains.push_back(Copy);
4651      }
4652    }
4653
4654  // Finally, if the target has anything special to do, allow it to do so.
4655  // FIXME: this should insert code into the DAG!
4656  EmitFunctionEntryCode(F, SDL.DAG.getMachineFunction());
4657}
4658
4659static void copyCatchInfo(BasicBlock *SrcBB, BasicBlock *DestBB,
4660                          MachineModuleInfo *MMI, FunctionLoweringInfo &FLI) {
4661  for (BasicBlock::iterator I = SrcBB->begin(), E = --SrcBB->end(); I != E; ++I)
4662    if (isSelector(I)) {
4663      // Apply the catch info to DestBB.
4664      addCatchInfo(cast<CallInst>(*I), MMI, FLI.MBBMap[DestBB]);
4665#ifndef NDEBUG
4666      if (!FLI.MBBMap[SrcBB]->isLandingPad())
4667        FLI.CatchInfoFound.insert(I);
4668#endif
4669    }
4670}
4671
4672/// CheckDAGForTailCallsAndFixThem - This Function looks for CALL nodes in the
4673/// DAG and fixes their tailcall attribute operand.
4674static void CheckDAGForTailCallsAndFixThem(SelectionDAG &DAG,
4675                                           TargetLowering& TLI) {
4676  SDNode * Ret = NULL;
4677  SDOperand Terminator = DAG.getRoot();
4678
4679  // Find RET node.
4680  if (Terminator.getOpcode() == ISD::RET) {
4681    Ret = Terminator.Val;
4682  }
4683
4684  // Fix tail call attribute of CALL nodes.
4685  for (SelectionDAG::allnodes_iterator BE = DAG.allnodes_begin(),
4686         BI = prior(DAG.allnodes_end()); BI != BE; --BI) {
4687    if (BI->getOpcode() == ISD::CALL) {
4688      SDOperand OpRet(Ret, 0);
4689      SDOperand OpCall(static_cast<SDNode*>(BI), 0);
4690      bool isMarkedTailCall =
4691        cast<ConstantSDNode>(OpCall.getOperand(3))->getValue() != 0;
4692      // If CALL node has tail call attribute set to true and the call is not
4693      // eligible (no RET or the target rejects) the attribute is fixed to
4694      // false. The TargetLowering::IsEligibleForTailCallOptimization function
4695      // must correctly identify tail call optimizable calls.
4696      if (isMarkedTailCall &&
4697          (Ret==NULL ||
4698           !TLI.IsEligibleForTailCallOptimization(OpCall, OpRet, DAG))) {
4699        SmallVector<SDOperand, 32> Ops;
4700        unsigned idx=0;
4701        for(SDNode::op_iterator I =OpCall.Val->op_begin(),
4702              E=OpCall.Val->op_end(); I!=E; I++, idx++) {
4703          if (idx!=3)
4704            Ops.push_back(*I);
4705          else
4706            Ops.push_back(DAG.getConstant(false, TLI.getPointerTy()));
4707        }
4708        DAG.UpdateNodeOperands(OpCall, Ops.begin(), Ops.size());
4709      }
4710    }
4711  }
4712}
4713
4714void SelectionDAGISel::BuildSelectionDAG(SelectionDAG &DAG, BasicBlock *LLVMBB,
4715       std::vector<std::pair<MachineInstr*, unsigned> > &PHINodesToUpdate,
4716                                         FunctionLoweringInfo &FuncInfo) {
4717  SelectionDAGLowering SDL(DAG, TLI, *AA, FuncInfo, GCI);
4718
4719  std::vector<SDOperand> UnorderedChains;
4720
4721  // Lower any arguments needed in this block if this is the entry block.
4722  if (LLVMBB == &LLVMBB->getParent()->getEntryBlock())
4723    LowerArguments(LLVMBB, SDL, UnorderedChains);
4724
4725  BB = FuncInfo.MBBMap[LLVMBB];
4726  SDL.setCurrentBasicBlock(BB);
4727
4728  MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
4729
4730  if (ExceptionHandling && MMI && BB->isLandingPad()) {
4731    // Add a label to mark the beginning of the landing pad.  Deletion of the
4732    // landing pad can thus be detected via the MachineModuleInfo.
4733    unsigned LabelID = MMI->addLandingPad(BB);
4734    DAG.setRoot(DAG.getNode(ISD::LABEL, MVT::Other, DAG.getEntryNode(),
4735                            DAG.getConstant(LabelID, MVT::i32),
4736                            DAG.getConstant(1, MVT::i32)));
4737
4738    // Mark exception register as live in.
4739    unsigned Reg = TLI.getExceptionAddressRegister();
4740    if (Reg) BB->addLiveIn(Reg);
4741
4742    // Mark exception selector register as live in.
4743    Reg = TLI.getExceptionSelectorRegister();
4744    if (Reg) BB->addLiveIn(Reg);
4745
4746    // FIXME: Hack around an exception handling flaw (PR1508): the personality
4747    // function and list of typeids logically belong to the invoke (or, if you
4748    // like, the basic block containing the invoke), and need to be associated
4749    // with it in the dwarf exception handling tables.  Currently however the
4750    // information is provided by an intrinsic (eh.selector) that can be moved
4751    // to unexpected places by the optimizers: if the unwind edge is critical,
4752    // then breaking it can result in the intrinsics being in the successor of
4753    // the landing pad, not the landing pad itself.  This results in exceptions
4754    // not being caught because no typeids are associated with the invoke.
4755    // This may not be the only way things can go wrong, but it is the only way
4756    // we try to work around for the moment.
4757    BranchInst *Br = dyn_cast<BranchInst>(LLVMBB->getTerminator());
4758
4759    if (Br && Br->isUnconditional()) { // Critical edge?
4760      BasicBlock::iterator I, E;
4761      for (I = LLVMBB->begin(), E = --LLVMBB->end(); I != E; ++I)
4762        if (isSelector(I))
4763          break;
4764
4765      if (I == E)
4766        // No catch info found - try to extract some from the successor.
4767        copyCatchInfo(Br->getSuccessor(0), LLVMBB, MMI, FuncInfo);
4768    }
4769  }
4770
4771  // Lower all of the non-terminator instructions.
4772  for (BasicBlock::iterator I = LLVMBB->begin(), E = --LLVMBB->end();
4773       I != E; ++I)
4774    SDL.visit(*I);
4775
4776  // Ensure that all instructions which are used outside of their defining
4777  // blocks are available as virtual registers.  Invoke is handled elsewhere.
4778  for (BasicBlock::iterator I = LLVMBB->begin(), E = LLVMBB->end(); I != E;++I)
4779    if (!I->use_empty() && !isa<PHINode>(I) && !isa<InvokeInst>(I)) {
4780      DenseMap<const Value*, unsigned>::iterator VMI =FuncInfo.ValueMap.find(I);
4781      if (VMI != FuncInfo.ValueMap.end())
4782        UnorderedChains.push_back(
4783                                SDL.CopyValueToVirtualRegister(I, VMI->second));
4784    }
4785
4786  // Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
4787  // ensure constants are generated when needed.  Remember the virtual registers
4788  // that need to be added to the Machine PHI nodes as input.  We cannot just
4789  // directly add them, because expansion might result in multiple MBB's for one
4790  // BB.  As such, the start of the BB might correspond to a different MBB than
4791  // the end.
4792  //
4793  TerminatorInst *TI = LLVMBB->getTerminator();
4794
4795  // Emit constants only once even if used by multiple PHI nodes.
4796  std::map<Constant*, unsigned> ConstantsOut;
4797
4798  // Vector bool would be better, but vector<bool> is really slow.
4799  std::vector<unsigned char> SuccsHandled;
4800  if (TI->getNumSuccessors())
4801    SuccsHandled.resize(BB->getParent()->getNumBlockIDs());
4802
4803  // Check successor nodes' PHI nodes that expect a constant to be available
4804  // from this block.
4805  for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
4806    BasicBlock *SuccBB = TI->getSuccessor(succ);
4807    if (!isa<PHINode>(SuccBB->begin())) continue;
4808    MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
4809
4810    // If this terminator has multiple identical successors (common for
4811    // switches), only handle each succ once.
4812    unsigned SuccMBBNo = SuccMBB->getNumber();
4813    if (SuccsHandled[SuccMBBNo]) continue;
4814    SuccsHandled[SuccMBBNo] = true;
4815
4816    MachineBasicBlock::iterator MBBI = SuccMBB->begin();
4817    PHINode *PN;
4818
4819    // At this point we know that there is a 1-1 correspondence between LLVM PHI
4820    // nodes and Machine PHI nodes, but the incoming operands have not been
4821    // emitted yet.
4822    for (BasicBlock::iterator I = SuccBB->begin();
4823         (PN = dyn_cast<PHINode>(I)); ++I) {
4824      // Ignore dead phi's.
4825      if (PN->use_empty()) continue;
4826
4827      unsigned Reg;
4828      Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
4829
4830      if (Constant *C = dyn_cast<Constant>(PHIOp)) {
4831        unsigned &RegOut = ConstantsOut[C];
4832        if (RegOut == 0) {
4833          RegOut = FuncInfo.CreateRegForValue(C);
4834          UnorderedChains.push_back(
4835                           SDL.CopyValueToVirtualRegister(C, RegOut));
4836        }
4837        Reg = RegOut;
4838      } else {
4839        Reg = FuncInfo.ValueMap[PHIOp];
4840        if (Reg == 0) {
4841          assert(isa<AllocaInst>(PHIOp) &&
4842                 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
4843                 "Didn't codegen value into a register!??");
4844          Reg = FuncInfo.CreateRegForValue(PHIOp);
4845          UnorderedChains.push_back(
4846                           SDL.CopyValueToVirtualRegister(PHIOp, Reg));
4847        }
4848      }
4849
4850      // Remember that this register needs to added to the machine PHI node as
4851      // the input for this MBB.
4852      MVT::ValueType VT = TLI.getValueType(PN->getType());
4853      unsigned NumRegisters = TLI.getNumRegisters(VT);
4854      for (unsigned i = 0, e = NumRegisters; i != e; ++i)
4855        PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i));
4856    }
4857  }
4858  ConstantsOut.clear();
4859
4860  // Turn all of the unordered chains into one factored node.
4861  if (!UnorderedChains.empty()) {
4862    SDOperand Root = SDL.getRoot();
4863    if (Root.getOpcode() != ISD::EntryToken) {
4864      unsigned i = 0, e = UnorderedChains.size();
4865      for (; i != e; ++i) {
4866        assert(UnorderedChains[i].Val->getNumOperands() > 1);
4867        if (UnorderedChains[i].Val->getOperand(0) == Root)
4868          break;  // Don't add the root if we already indirectly depend on it.
4869      }
4870
4871      if (i == e)
4872        UnorderedChains.push_back(Root);
4873    }
4874    DAG.setRoot(DAG.getNode(ISD::TokenFactor, MVT::Other,
4875                            &UnorderedChains[0], UnorderedChains.size()));
4876  }
4877
4878  // Lower the terminator after the copies are emitted.
4879  SDL.visit(*LLVMBB->getTerminator());
4880
4881  // Copy over any CaseBlock records that may now exist due to SwitchInst
4882  // lowering, as well as any jump table information.
4883  SwitchCases.clear();
4884  SwitchCases = SDL.SwitchCases;
4885  JTCases.clear();
4886  JTCases = SDL.JTCases;
4887  BitTestCases.clear();
4888  BitTestCases = SDL.BitTestCases;
4889
4890  // Make sure the root of the DAG is up-to-date.
4891  DAG.setRoot(SDL.getRoot());
4892
4893  // Check whether calls in this block are real tail calls. Fix up CALL nodes
4894  // with correct tailcall attribute so that the target can rely on the tailcall
4895  // attribute indicating whether the call is really eligible for tail call
4896  // optimization.
4897  CheckDAGForTailCallsAndFixThem(DAG, TLI);
4898}
4899
4900void SelectionDAGISel::CodeGenAndEmitDAG(SelectionDAG &DAG) {
4901  DOUT << "Lowered selection DAG:\n";
4902  DEBUG(DAG.dump());
4903
4904  // Run the DAG combiner in pre-legalize mode.
4905  DAG.Combine(false, *AA);
4906
4907  DOUT << "Optimized lowered selection DAG:\n";
4908  DEBUG(DAG.dump());
4909
4910  // Second step, hack on the DAG until it only uses operations and types that
4911  // the target supports.
4912#if 0  // Enable this some day.
4913  DAG.LegalizeTypes();
4914  // Someday even later, enable a dag combine pass here.
4915#endif
4916  DAG.Legalize();
4917
4918  DOUT << "Legalized selection DAG:\n";
4919  DEBUG(DAG.dump());
4920
4921  // Run the DAG combiner in post-legalize mode.
4922  DAG.Combine(true, *AA);
4923
4924  DOUT << "Optimized legalized selection DAG:\n";
4925  DEBUG(DAG.dump());
4926
4927  if (ViewISelDAGs) DAG.viewGraph();
4928
4929  // Third, instruction select all of the operations to machine code, adding the
4930  // code to the MachineBasicBlock.
4931  InstructionSelectBasicBlock(DAG);
4932
4933  DOUT << "Selected machine code:\n";
4934  DEBUG(BB->dump());
4935}
4936
4937void SelectionDAGISel::SelectBasicBlock(BasicBlock *LLVMBB, MachineFunction &MF,
4938                                        FunctionLoweringInfo &FuncInfo) {
4939  std::vector<std::pair<MachineInstr*, unsigned> > PHINodesToUpdate;
4940  {
4941    SelectionDAG DAG(TLI, MF, getAnalysisToUpdate<MachineModuleInfo>());
4942    CurDAG = &DAG;
4943
4944    // First step, lower LLVM code to some DAG.  This DAG may use operations and
4945    // types that are not supported by the target.
4946    BuildSelectionDAG(DAG, LLVMBB, PHINodesToUpdate, FuncInfo);
4947
4948    // Second step, emit the lowered DAG as machine code.
4949    CodeGenAndEmitDAG(DAG);
4950  }
4951
4952  DOUT << "Total amount of phi nodes to update: "
4953       << PHINodesToUpdate.size() << "\n";
4954  DEBUG(for (unsigned i = 0, e = PHINodesToUpdate.size(); i != e; ++i)
4955          DOUT << "Node " << i << " : (" << PHINodesToUpdate[i].first
4956               << ", " << PHINodesToUpdate[i].second << ")\n";);
4957
4958  // Next, now that we know what the last MBB the LLVM BB expanded is, update
4959  // PHI nodes in successors.
4960  if (SwitchCases.empty() && JTCases.empty() && BitTestCases.empty()) {
4961    for (unsigned i = 0, e = PHINodesToUpdate.size(); i != e; ++i) {
4962      MachineInstr *PHI = PHINodesToUpdate[i].first;
4963      assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
4964             "This is not a machine PHI node that we are updating!");
4965      PHI->addOperand(MachineOperand::CreateReg(PHINodesToUpdate[i].second,
4966                                                false));
4967      PHI->addOperand(MachineOperand::CreateMBB(BB));
4968    }
4969    return;
4970  }
4971
4972  for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i) {
4973    // Lower header first, if it wasn't already lowered
4974    if (!BitTestCases[i].Emitted) {
4975      SelectionDAG HSDAG(TLI, MF, getAnalysisToUpdate<MachineModuleInfo>());
4976      CurDAG = &HSDAG;
4977      SelectionDAGLowering HSDL(HSDAG, TLI, *AA, FuncInfo, GCI);
4978      // Set the current basic block to the mbb we wish to insert the code into
4979      BB = BitTestCases[i].Parent;
4980      HSDL.setCurrentBasicBlock(BB);
4981      // Emit the code
4982      HSDL.visitBitTestHeader(BitTestCases[i]);
4983      HSDAG.setRoot(HSDL.getRoot());
4984      CodeGenAndEmitDAG(HSDAG);
4985    }
4986
4987    for (unsigned j = 0, ej = BitTestCases[i].Cases.size(); j != ej; ++j) {
4988      SelectionDAG BSDAG(TLI, MF, getAnalysisToUpdate<MachineModuleInfo>());
4989      CurDAG = &BSDAG;
4990      SelectionDAGLowering BSDL(BSDAG, TLI, *AA, FuncInfo, GCI);
4991      // Set the current basic block to the mbb we wish to insert the code into
4992      BB = BitTestCases[i].Cases[j].ThisBB;
4993      BSDL.setCurrentBasicBlock(BB);
4994      // Emit the code
4995      if (j+1 != ej)
4996        BSDL.visitBitTestCase(BitTestCases[i].Cases[j+1].ThisBB,
4997                              BitTestCases[i].Reg,
4998                              BitTestCases[i].Cases[j]);
4999      else
5000        BSDL.visitBitTestCase(BitTestCases[i].Default,
5001                              BitTestCases[i].Reg,
5002                              BitTestCases[i].Cases[j]);
5003
5004
5005      BSDAG.setRoot(BSDL.getRoot());
5006      CodeGenAndEmitDAG(BSDAG);
5007    }
5008
5009    // Update PHI Nodes
5010    for (unsigned pi = 0, pe = PHINodesToUpdate.size(); pi != pe; ++pi) {
5011      MachineInstr *PHI = PHINodesToUpdate[pi].first;
5012      MachineBasicBlock *PHIBB = PHI->getParent();
5013      assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
5014             "This is not a machine PHI node that we are updating!");
5015      // This is "default" BB. We have two jumps to it. From "header" BB and
5016      // from last "case" BB.
5017      if (PHIBB == BitTestCases[i].Default) {
5018        PHI->addOperand(MachineOperand::CreateReg(PHINodesToUpdate[pi].second,
5019                                                  false));
5020        PHI->addOperand(MachineOperand::CreateMBB(BitTestCases[i].Parent));
5021        PHI->addOperand(MachineOperand::CreateReg(PHINodesToUpdate[pi].second,
5022                                                  false));
5023        PHI->addOperand(MachineOperand::CreateMBB(BitTestCases[i].Cases.
5024                                                  back().ThisBB));
5025      }
5026      // One of "cases" BB.
5027      for (unsigned j = 0, ej = BitTestCases[i].Cases.size(); j != ej; ++j) {
5028        MachineBasicBlock* cBB = BitTestCases[i].Cases[j].ThisBB;
5029        if (cBB->succ_end() !=
5030            std::find(cBB->succ_begin(),cBB->succ_end(), PHIBB)) {
5031          PHI->addOperand(MachineOperand::CreateReg(PHINodesToUpdate[pi].second,
5032                                                    false));
5033          PHI->addOperand(MachineOperand::CreateMBB(cBB));
5034        }
5035      }
5036    }
5037  }
5038
5039  // If the JumpTable record is filled in, then we need to emit a jump table.
5040  // Updating the PHI nodes is tricky in this case, since we need to determine
5041  // whether the PHI is a successor of the range check MBB or the jump table MBB
5042  for (unsigned i = 0, e = JTCases.size(); i != e; ++i) {
5043    // Lower header first, if it wasn't already lowered
5044    if (!JTCases[i].first.Emitted) {
5045      SelectionDAG HSDAG(TLI, MF, getAnalysisToUpdate<MachineModuleInfo>());
5046      CurDAG = &HSDAG;
5047      SelectionDAGLowering HSDL(HSDAG, TLI, *AA, FuncInfo, GCI);
5048      // Set the current basic block to the mbb we wish to insert the code into
5049      BB = JTCases[i].first.HeaderBB;
5050      HSDL.setCurrentBasicBlock(BB);
5051      // Emit the code
5052      HSDL.visitJumpTableHeader(JTCases[i].second, JTCases[i].first);
5053      HSDAG.setRoot(HSDL.getRoot());
5054      CodeGenAndEmitDAG(HSDAG);
5055    }
5056
5057    SelectionDAG JSDAG(TLI, MF, getAnalysisToUpdate<MachineModuleInfo>());
5058    CurDAG = &JSDAG;
5059    SelectionDAGLowering JSDL(JSDAG, TLI, *AA, FuncInfo, GCI);
5060    // Set the current basic block to the mbb we wish to insert the code into
5061    BB = JTCases[i].second.MBB;
5062    JSDL.setCurrentBasicBlock(BB);
5063    // Emit the code
5064    JSDL.visitJumpTable(JTCases[i].second);
5065    JSDAG.setRoot(JSDL.getRoot());
5066    CodeGenAndEmitDAG(JSDAG);
5067
5068    // Update PHI Nodes
5069    for (unsigned pi = 0, pe = PHINodesToUpdate.size(); pi != pe; ++pi) {
5070      MachineInstr *PHI = PHINodesToUpdate[pi].first;
5071      MachineBasicBlock *PHIBB = PHI->getParent();
5072      assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
5073             "This is not a machine PHI node that we are updating!");
5074      // "default" BB. We can go there only from header BB.
5075      if (PHIBB == JTCases[i].second.Default) {
5076        PHI->addOperand(MachineOperand::CreateReg(PHINodesToUpdate[pi].second,
5077                                                  false));
5078        PHI->addOperand(MachineOperand::CreateMBB(JTCases[i].first.HeaderBB));
5079      }
5080      // JT BB. Just iterate over successors here
5081      if (BB->succ_end() != std::find(BB->succ_begin(),BB->succ_end(), PHIBB)) {
5082        PHI->addOperand(MachineOperand::CreateReg(PHINodesToUpdate[pi].second,
5083                                                  false));
5084        PHI->addOperand(MachineOperand::CreateMBB(BB));
5085      }
5086    }
5087  }
5088
5089  // If the switch block involved a branch to one of the actual successors, we
5090  // need to update PHI nodes in that block.
5091  for (unsigned i = 0, e = PHINodesToUpdate.size(); i != e; ++i) {
5092    MachineInstr *PHI = PHINodesToUpdate[i].first;
5093    assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
5094           "This is not a machine PHI node that we are updating!");
5095    if (BB->isSuccessor(PHI->getParent())) {
5096      PHI->addOperand(MachineOperand::CreateReg(PHINodesToUpdate[i].second,
5097                                                false));
5098      PHI->addOperand(MachineOperand::CreateMBB(BB));
5099    }
5100  }
5101
5102  // If we generated any switch lowering information, build and codegen any
5103  // additional DAGs necessary.
5104  for (unsigned i = 0, e = SwitchCases.size(); i != e; ++i) {
5105    SelectionDAG SDAG(TLI, MF, getAnalysisToUpdate<MachineModuleInfo>());
5106    CurDAG = &SDAG;
5107    SelectionDAGLowering SDL(SDAG, TLI, *AA, FuncInfo, GCI);
5108
5109    // Set the current basic block to the mbb we wish to insert the code into
5110    BB = SwitchCases[i].ThisBB;
5111    SDL.setCurrentBasicBlock(BB);
5112
5113    // Emit the code
5114    SDL.visitSwitchCase(SwitchCases[i]);
5115    SDAG.setRoot(SDL.getRoot());
5116    CodeGenAndEmitDAG(SDAG);
5117
5118    // Handle any PHI nodes in successors of this chunk, as if we were coming
5119    // from the original BB before switch expansion.  Note that PHI nodes can
5120    // occur multiple times in PHINodesToUpdate.  We have to be very careful to
5121    // handle them the right number of times.
5122    while ((BB = SwitchCases[i].TrueBB)) {  // Handle LHS and RHS.
5123      for (MachineBasicBlock::iterator Phi = BB->begin();
5124           Phi != BB->end() && Phi->getOpcode() == TargetInstrInfo::PHI; ++Phi){
5125        // This value for this PHI node is recorded in PHINodesToUpdate, get it.
5126        for (unsigned pn = 0; ; ++pn) {
5127          assert(pn != PHINodesToUpdate.size() && "Didn't find PHI entry!");
5128          if (PHINodesToUpdate[pn].first == Phi) {
5129            Phi->addOperand(MachineOperand::CreateReg(PHINodesToUpdate[pn].
5130                                                      second, false));
5131            Phi->addOperand(MachineOperand::CreateMBB(SwitchCases[i].ThisBB));
5132            break;
5133          }
5134        }
5135      }
5136
5137      // Don't process RHS if same block as LHS.
5138      if (BB == SwitchCases[i].FalseBB)
5139        SwitchCases[i].FalseBB = 0;
5140
5141      // If we haven't handled the RHS, do so now.  Otherwise, we're done.
5142      SwitchCases[i].TrueBB = SwitchCases[i].FalseBB;
5143      SwitchCases[i].FalseBB = 0;
5144    }
5145    assert(SwitchCases[i].TrueBB == 0 && SwitchCases[i].FalseBB == 0);
5146  }
5147}
5148
5149
5150//===----------------------------------------------------------------------===//
5151/// ScheduleAndEmitDAG - Pick a safe ordering and emit instructions for each
5152/// target node in the graph.
5153void SelectionDAGISel::ScheduleAndEmitDAG(SelectionDAG &DAG) {
5154  if (ViewSchedDAGs) DAG.viewGraph();
5155
5156  RegisterScheduler::FunctionPassCtor Ctor = RegisterScheduler::getDefault();
5157
5158  if (!Ctor) {
5159    Ctor = ISHeuristic;
5160    RegisterScheduler::setDefault(Ctor);
5161  }
5162
5163  ScheduleDAG *SL = Ctor(this, &DAG, BB);
5164  BB = SL->Run();
5165
5166  if (ViewSUnitDAGs) SL->viewGraph();
5167
5168  delete SL;
5169}
5170
5171
5172HazardRecognizer *SelectionDAGISel::CreateTargetHazardRecognizer() {
5173  return new HazardRecognizer();
5174}
5175
5176//===----------------------------------------------------------------------===//
5177// Helper functions used by the generated instruction selector.
5178//===----------------------------------------------------------------------===//
5179// Calls to these methods are generated by tblgen.
5180
5181/// CheckAndMask - The isel is trying to match something like (and X, 255).  If
5182/// the dag combiner simplified the 255, we still want to match.  RHS is the
5183/// actual value in the DAG on the RHS of an AND, and DesiredMaskS is the value
5184/// specified in the .td file (e.g. 255).
5185bool SelectionDAGISel::CheckAndMask(SDOperand LHS, ConstantSDNode *RHS,
5186                                    int64_t DesiredMaskS) const {
5187  const APInt &ActualMask = RHS->getAPIntValue();
5188  const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
5189
5190  // If the actual mask exactly matches, success!
5191  if (ActualMask == DesiredMask)
5192    return true;
5193
5194  // If the actual AND mask is allowing unallowed bits, this doesn't match.
5195  if (ActualMask.intersects(~DesiredMask))
5196    return false;
5197
5198  // Otherwise, the DAG Combiner may have proven that the value coming in is
5199  // either already zero or is not demanded.  Check for known zero input bits.
5200  APInt NeededMask = DesiredMask & ~ActualMask;
5201  if (CurDAG->MaskedValueIsZero(LHS, NeededMask))
5202    return true;
5203
5204  // TODO: check to see if missing bits are just not demanded.
5205
5206  // Otherwise, this pattern doesn't match.
5207  return false;
5208}
5209
5210/// CheckOrMask - The isel is trying to match something like (or X, 255).  If
5211/// the dag combiner simplified the 255, we still want to match.  RHS is the
5212/// actual value in the DAG on the RHS of an OR, and DesiredMaskS is the value
5213/// specified in the .td file (e.g. 255).
5214bool SelectionDAGISel::CheckOrMask(SDOperand LHS, ConstantSDNode *RHS,
5215                                   int64_t DesiredMaskS) const {
5216  const APInt &ActualMask = RHS->getAPIntValue();
5217  const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
5218
5219  // If the actual mask exactly matches, success!
5220  if (ActualMask == DesiredMask)
5221    return true;
5222
5223  // If the actual AND mask is allowing unallowed bits, this doesn't match.
5224  if (ActualMask.intersects(~DesiredMask))
5225    return false;
5226
5227  // Otherwise, the DAG Combiner may have proven that the value coming in is
5228  // either already zero or is not demanded.  Check for known zero input bits.
5229  APInt NeededMask = DesiredMask & ~ActualMask;
5230
5231  APInt KnownZero, KnownOne;
5232  CurDAG->ComputeMaskedBits(LHS, NeededMask, KnownZero, KnownOne);
5233
5234  // If all the missing bits in the or are already known to be set, match!
5235  if ((NeededMask & KnownOne) == NeededMask)
5236    return true;
5237
5238  // TODO: check to see if missing bits are just not demanded.
5239
5240  // Otherwise, this pattern doesn't match.
5241  return false;
5242}
5243
5244
5245/// SelectInlineAsmMemoryOperands - Calls to this are automatically generated
5246/// by tblgen.  Others should not call it.
5247void SelectionDAGISel::
5248SelectInlineAsmMemoryOperands(std::vector<SDOperand> &Ops, SelectionDAG &DAG) {
5249  std::vector<SDOperand> InOps;
5250  std::swap(InOps, Ops);
5251
5252  Ops.push_back(InOps[0]);  // input chain.
5253  Ops.push_back(InOps[1]);  // input asm string.
5254
5255  unsigned i = 2, e = InOps.size();
5256  if (InOps[e-1].getValueType() == MVT::Flag)
5257    --e;  // Don't process a flag operand if it is here.
5258
5259  while (i != e) {
5260    unsigned Flags = cast<ConstantSDNode>(InOps[i])->getValue();
5261    if ((Flags & 7) != 4 /*MEM*/) {
5262      // Just skip over this operand, copying the operands verbatim.
5263      Ops.insert(Ops.end(), InOps.begin()+i, InOps.begin()+i+(Flags >> 3) + 1);
5264      i += (Flags >> 3) + 1;
5265    } else {
5266      assert((Flags >> 3) == 1 && "Memory operand with multiple values?");
5267      // Otherwise, this is a memory operand.  Ask the target to select it.
5268      std::vector<SDOperand> SelOps;
5269      if (SelectInlineAsmMemoryOperand(InOps[i+1], 'm', SelOps, DAG)) {
5270        cerr << "Could not match memory address.  Inline asm failure!\n";
5271        exit(1);
5272      }
5273
5274      // Add this to the output node.
5275      MVT::ValueType IntPtrTy = DAG.getTargetLoweringInfo().getPointerTy();
5276      Ops.push_back(DAG.getTargetConstant(4/*MEM*/ | (SelOps.size() << 3),
5277                                          IntPtrTy));
5278      Ops.insert(Ops.end(), SelOps.begin(), SelOps.end());
5279      i += 2;
5280    }
5281  }
5282
5283  // Add the flag input back if present.
5284  if (e != InOps.size())
5285    Ops.push_back(InOps.back());
5286}
5287
5288char SelectionDAGISel::ID = 0;
5289