SelectionDAGISel.cpp revision 2452595927a19a84ab20f012f1e2414a18f65ffb
1//===-- SelectionDAGISel.cpp - Implement the SelectionDAGISel class -------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAGISel class.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "isel"
15#include "llvm/Analysis/AliasAnalysis.h"
16#include "llvm/CodeGen/SelectionDAGISel.h"
17#include "llvm/CodeGen/ScheduleDAG.h"
18#include "llvm/CallingConv.h"
19#include "llvm/Constants.h"
20#include "llvm/DerivedTypes.h"
21#include "llvm/Function.h"
22#include "llvm/GlobalVariable.h"
23#include "llvm/InlineAsm.h"
24#include "llvm/Instructions.h"
25#include "llvm/Intrinsics.h"
26#include "llvm/IntrinsicInst.h"
27#include "llvm/CodeGen/IntrinsicLowering.h"
28#include "llvm/CodeGen/MachineDebugInfo.h"
29#include "llvm/CodeGen/MachineFunction.h"
30#include "llvm/CodeGen/MachineFrameInfo.h"
31#include "llvm/CodeGen/MachineJumpTableInfo.h"
32#include "llvm/CodeGen/MachineInstrBuilder.h"
33#include "llvm/CodeGen/SchedulerRegistry.h"
34#include "llvm/CodeGen/SelectionDAG.h"
35#include "llvm/CodeGen/SSARegMap.h"
36#include "llvm/Target/MRegisterInfo.h"
37#include "llvm/Target/TargetData.h"
38#include "llvm/Target/TargetFrameInfo.h"
39#include "llvm/Target/TargetInstrInfo.h"
40#include "llvm/Target/TargetLowering.h"
41#include "llvm/Target/TargetMachine.h"
42#include "llvm/Target/TargetOptions.h"
43#include "llvm/Transforms/Utils/BasicBlockUtils.h"
44#include "llvm/Support/MathExtras.h"
45#include "llvm/Support/Debug.h"
46#include "llvm/Support/Compiler.h"
47#include <map>
48#include <set>
49#include <iostream>
50#include <algorithm>
51using namespace llvm;
52
53#ifndef NDEBUG
54static cl::opt<bool>
55ViewISelDAGs("view-isel-dags", cl::Hidden,
56          cl::desc("Pop up a window to show isel dags as they are selected"));
57static cl::opt<bool>
58ViewSchedDAGs("view-sched-dags", cl::Hidden,
59          cl::desc("Pop up a window to show sched dags as they are processed"));
60#else
61static const bool ViewISelDAGs = 0, ViewSchedDAGs = 0;
62#endif
63
64
65//===---------------------------------------------------------------------===//
66///
67/// RegisterScheduler class - Track the registration of instruction schedulers.
68///
69//===---------------------------------------------------------------------===//
70MachinePassRegistry RegisterScheduler::Registry;
71
72//===---------------------------------------------------------------------===//
73///
74/// ISHeuristic command line option for instruction schedulers.
75///
76//===---------------------------------------------------------------------===//
77namespace {
78  cl::opt<RegisterScheduler::FunctionPassCtor, false,
79          RegisterPassParser<RegisterScheduler> >
80  ISHeuristic("sched",
81              cl::init(&createDefaultScheduler),
82              cl::desc("Instruction schedulers available:"));
83
84  static RegisterScheduler
85  defaultListDAGScheduler("default", "  Best scheduler for the target",
86                          createDefaultScheduler);
87} // namespace
88
89namespace {
90  /// RegsForValue - This struct represents the physical registers that a
91  /// particular value is assigned and the type information about the value.
92  /// This is needed because values can be promoted into larger registers and
93  /// expanded into multiple smaller registers than the value.
94  struct VISIBILITY_HIDDEN RegsForValue {
95    /// Regs - This list hold the register (for legal and promoted values)
96    /// or register set (for expanded values) that the value should be assigned
97    /// to.
98    std::vector<unsigned> Regs;
99
100    /// RegVT - The value type of each register.
101    ///
102    MVT::ValueType RegVT;
103
104    /// ValueVT - The value type of the LLVM value, which may be promoted from
105    /// RegVT or made from merging the two expanded parts.
106    MVT::ValueType ValueVT;
107
108    RegsForValue() : RegVT(MVT::Other), ValueVT(MVT::Other) {}
109
110    RegsForValue(unsigned Reg, MVT::ValueType regvt, MVT::ValueType valuevt)
111      : RegVT(regvt), ValueVT(valuevt) {
112        Regs.push_back(Reg);
113    }
114    RegsForValue(const std::vector<unsigned> &regs,
115                 MVT::ValueType regvt, MVT::ValueType valuevt)
116      : Regs(regs), RegVT(regvt), ValueVT(valuevt) {
117    }
118
119    /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
120    /// this value and returns the result as a ValueVT value.  This uses
121    /// Chain/Flag as the input and updates them for the output Chain/Flag.
122    SDOperand getCopyFromRegs(SelectionDAG &DAG,
123                              SDOperand &Chain, SDOperand &Flag) const;
124
125    /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
126    /// specified value into the registers specified by this object.  This uses
127    /// Chain/Flag as the input and updates them for the output Chain/Flag.
128    void getCopyToRegs(SDOperand Val, SelectionDAG &DAG,
129                       SDOperand &Chain, SDOperand &Flag,
130                       MVT::ValueType PtrVT) const;
131
132    /// AddInlineAsmOperands - Add this value to the specified inlineasm node
133    /// operand list.  This adds the code marker and includes the number of
134    /// values added into it.
135    void AddInlineAsmOperands(unsigned Code, SelectionDAG &DAG,
136                              std::vector<SDOperand> &Ops) const;
137  };
138}
139
140namespace llvm {
141  //===--------------------------------------------------------------------===//
142  /// createDefaultScheduler - This creates an instruction scheduler appropriate
143  /// for the target.
144  ScheduleDAG* createDefaultScheduler(SelectionDAGISel *IS,
145                                      SelectionDAG *DAG,
146                                      MachineBasicBlock *BB) {
147    TargetLowering &TLI = IS->getTargetLowering();
148
149    if (TLI.getSchedulingPreference() == TargetLowering::SchedulingForLatency) {
150      return createTDListDAGScheduler(IS, DAG, BB);
151    } else {
152      assert(TLI.getSchedulingPreference() ==
153           TargetLowering::SchedulingForRegPressure && "Unknown sched type!");
154      return createBURRListDAGScheduler(IS, DAG, BB);
155    }
156  }
157
158
159  //===--------------------------------------------------------------------===//
160  /// FunctionLoweringInfo - This contains information that is global to a
161  /// function that is used when lowering a region of the function.
162  class FunctionLoweringInfo {
163  public:
164    TargetLowering &TLI;
165    Function &Fn;
166    MachineFunction &MF;
167    SSARegMap *RegMap;
168
169    FunctionLoweringInfo(TargetLowering &TLI, Function &Fn,MachineFunction &MF);
170
171    /// MBBMap - A mapping from LLVM basic blocks to their machine code entry.
172    std::map<const BasicBlock*, MachineBasicBlock *> MBBMap;
173
174    /// ValueMap - Since we emit code for the function a basic block at a time,
175    /// we must remember which virtual registers hold the values for
176    /// cross-basic-block values.
177    std::map<const Value*, unsigned> ValueMap;
178
179    /// StaticAllocaMap - Keep track of frame indices for fixed sized allocas in
180    /// the entry block.  This allows the allocas to be efficiently referenced
181    /// anywhere in the function.
182    std::map<const AllocaInst*, int> StaticAllocaMap;
183
184    unsigned MakeReg(MVT::ValueType VT) {
185      return RegMap->createVirtualRegister(TLI.getRegClassFor(VT));
186    }
187
188    unsigned CreateRegForValue(const Value *V);
189
190    unsigned InitializeRegForValue(const Value *V) {
191      unsigned &R = ValueMap[V];
192      assert(R == 0 && "Already initialized this value register!");
193      return R = CreateRegForValue(V);
194    }
195  };
196}
197
198/// isUsedOutsideOfDefiningBlock - Return true if this instruction is used by
199/// PHI nodes or outside of the basic block that defines it, or used by a
200/// switch instruction, which may expand to multiple basic blocks.
201static bool isUsedOutsideOfDefiningBlock(Instruction *I) {
202  if (isa<PHINode>(I)) return true;
203  BasicBlock *BB = I->getParent();
204  for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E; ++UI)
205    if (cast<Instruction>(*UI)->getParent() != BB || isa<PHINode>(*UI) ||
206        isa<SwitchInst>(*UI))
207      return true;
208  return false;
209}
210
211/// isOnlyUsedInEntryBlock - If the specified argument is only used in the
212/// entry block, return true.  This includes arguments used by switches, since
213/// the switch may expand into multiple basic blocks.
214static bool isOnlyUsedInEntryBlock(Argument *A) {
215  BasicBlock *Entry = A->getParent()->begin();
216  for (Value::use_iterator UI = A->use_begin(), E = A->use_end(); UI != E; ++UI)
217    if (cast<Instruction>(*UI)->getParent() != Entry || isa<SwitchInst>(*UI))
218      return false;  // Use not in entry block.
219  return true;
220}
221
222FunctionLoweringInfo::FunctionLoweringInfo(TargetLowering &tli,
223                                           Function &fn, MachineFunction &mf)
224    : TLI(tli), Fn(fn), MF(mf), RegMap(MF.getSSARegMap()) {
225
226  // Create a vreg for each argument register that is not dead and is used
227  // outside of the entry block for the function.
228  for (Function::arg_iterator AI = Fn.arg_begin(), E = Fn.arg_end();
229       AI != E; ++AI)
230    if (!isOnlyUsedInEntryBlock(AI))
231      InitializeRegForValue(AI);
232
233  // Initialize the mapping of values to registers.  This is only set up for
234  // instruction values that are used outside of the block that defines
235  // them.
236  Function::iterator BB = Fn.begin(), EB = Fn.end();
237  for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
238    if (AllocaInst *AI = dyn_cast<AllocaInst>(I))
239      if (ConstantInt *CUI = dyn_cast<ConstantInt>(AI->getArraySize())) {
240        const Type *Ty = AI->getAllocatedType();
241        uint64_t TySize = TLI.getTargetData()->getTypeSize(Ty);
242        unsigned Align =
243          std::max((unsigned)TLI.getTargetData()->getTypeAlignment(Ty),
244                   AI->getAlignment());
245
246        // If the alignment of the value is smaller than the size of the
247        // value, and if the size of the value is particularly small
248        // (<= 8 bytes), round up to the size of the value for potentially
249        // better performance.
250        //
251        // FIXME: This could be made better with a preferred alignment hook in
252        // TargetData.  It serves primarily to 8-byte align doubles for X86.
253        if (Align < TySize && TySize <= 8) Align = TySize;
254        TySize *= CUI->getZExtValue();   // Get total allocated size.
255        if (TySize == 0) TySize = 1; // Don't create zero-sized stack objects.
256        StaticAllocaMap[AI] =
257          MF.getFrameInfo()->CreateStackObject((unsigned)TySize, Align);
258      }
259
260  for (; BB != EB; ++BB)
261    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
262      if (!I->use_empty() && isUsedOutsideOfDefiningBlock(I))
263        if (!isa<AllocaInst>(I) ||
264            !StaticAllocaMap.count(cast<AllocaInst>(I)))
265          InitializeRegForValue(I);
266
267  // Create an initial MachineBasicBlock for each LLVM BasicBlock in F.  This
268  // also creates the initial PHI MachineInstrs, though none of the input
269  // operands are populated.
270  for (BB = Fn.begin(), EB = Fn.end(); BB != EB; ++BB) {
271    MachineBasicBlock *MBB = new MachineBasicBlock(BB);
272    MBBMap[BB] = MBB;
273    MF.getBasicBlockList().push_back(MBB);
274
275    // Create Machine PHI nodes for LLVM PHI nodes, lowering them as
276    // appropriate.
277    PHINode *PN;
278    for (BasicBlock::iterator I = BB->begin();
279         (PN = dyn_cast<PHINode>(I)); ++I)
280      if (!PN->use_empty()) {
281        MVT::ValueType VT = TLI.getValueType(PN->getType());
282        unsigned NumElements;
283        if (VT != MVT::Vector)
284          NumElements = TLI.getNumElements(VT);
285        else {
286          MVT::ValueType VT1,VT2;
287          NumElements =
288            TLI.getPackedTypeBreakdown(cast<PackedType>(PN->getType()),
289                                       VT1, VT2);
290        }
291        unsigned PHIReg = ValueMap[PN];
292        assert(PHIReg &&"PHI node does not have an assigned virtual register!");
293        for (unsigned i = 0; i != NumElements; ++i)
294          BuildMI(MBB, TargetInstrInfo::PHI, PN->getNumOperands(), PHIReg+i);
295      }
296  }
297}
298
299/// CreateRegForValue - Allocate the appropriate number of virtual registers of
300/// the correctly promoted or expanded types.  Assign these registers
301/// consecutive vreg numbers and return the first assigned number.
302unsigned FunctionLoweringInfo::CreateRegForValue(const Value *V) {
303  MVT::ValueType VT = TLI.getValueType(V->getType());
304
305  // The number of multiples of registers that we need, to, e.g., split up
306  // a <2 x int64> -> 4 x i32 registers.
307  unsigned NumVectorRegs = 1;
308
309  // If this is a packed type, figure out what type it will decompose into
310  // and how many of the elements it will use.
311  if (VT == MVT::Vector) {
312    const PackedType *PTy = cast<PackedType>(V->getType());
313    unsigned NumElts = PTy->getNumElements();
314    MVT::ValueType EltTy = TLI.getValueType(PTy->getElementType());
315
316    // Divide the input until we get to a supported size.  This will always
317    // end with a scalar if the target doesn't support vectors.
318    while (NumElts > 1 && !TLI.isTypeLegal(getVectorType(EltTy, NumElts))) {
319      NumElts >>= 1;
320      NumVectorRegs <<= 1;
321    }
322    if (NumElts == 1)
323      VT = EltTy;
324    else
325      VT = getVectorType(EltTy, NumElts);
326  }
327
328  // The common case is that we will only create one register for this
329  // value.  If we have that case, create and return the virtual register.
330  unsigned NV = TLI.getNumElements(VT);
331  if (NV == 1) {
332    // If we are promoting this value, pick the next largest supported type.
333    MVT::ValueType PromotedType = TLI.getTypeToTransformTo(VT);
334    unsigned Reg = MakeReg(PromotedType);
335    // If this is a vector of supported or promoted types (e.g. 4 x i16),
336    // create all of the registers.
337    for (unsigned i = 1; i != NumVectorRegs; ++i)
338      MakeReg(PromotedType);
339    return Reg;
340  }
341
342  // If this value is represented with multiple target registers, make sure
343  // to create enough consecutive registers of the right (smaller) type.
344  unsigned NT = VT-1;  // Find the type to use.
345  while (TLI.getNumElements((MVT::ValueType)NT) != 1)
346    --NT;
347
348  unsigned R = MakeReg((MVT::ValueType)NT);
349  for (unsigned i = 1; i != NV*NumVectorRegs; ++i)
350    MakeReg((MVT::ValueType)NT);
351  return R;
352}
353
354//===----------------------------------------------------------------------===//
355/// SelectionDAGLowering - This is the common target-independent lowering
356/// implementation that is parameterized by a TargetLowering object.
357/// Also, targets can overload any lowering method.
358///
359namespace llvm {
360class SelectionDAGLowering {
361  MachineBasicBlock *CurMBB;
362
363  std::map<const Value*, SDOperand> NodeMap;
364
365  /// PendingLoads - Loads are not emitted to the program immediately.  We bunch
366  /// them up and then emit token factor nodes when possible.  This allows us to
367  /// get simple disambiguation between loads without worrying about alias
368  /// analysis.
369  std::vector<SDOperand> PendingLoads;
370
371  /// Case - A pair of values to record the Value for a switch case, and the
372  /// case's target basic block.
373  typedef std::pair<Constant*, MachineBasicBlock*> Case;
374  typedef std::vector<Case>::iterator              CaseItr;
375  typedef std::pair<CaseItr, CaseItr>              CaseRange;
376
377  /// CaseRec - A struct with ctor used in lowering switches to a binary tree
378  /// of conditional branches.
379  struct CaseRec {
380    CaseRec(MachineBasicBlock *bb, Constant *lt, Constant *ge, CaseRange r) :
381    CaseBB(bb), LT(lt), GE(ge), Range(r) {}
382
383    /// CaseBB - The MBB in which to emit the compare and branch
384    MachineBasicBlock *CaseBB;
385    /// LT, GE - If nonzero, we know the current case value must be less-than or
386    /// greater-than-or-equal-to these Constants.
387    Constant *LT;
388    Constant *GE;
389    /// Range - A pair of iterators representing the range of case values to be
390    /// processed at this point in the binary search tree.
391    CaseRange Range;
392  };
393
394  /// The comparison function for sorting Case values.
395  struct CaseCmp {
396    bool operator () (const Case& C1, const Case& C2) {
397      if (const ConstantInt* I1 = dyn_cast<const ConstantInt>(C1.first))
398        if (I1->getType()->isUnsigned())
399          return I1->getZExtValue() <
400            cast<const ConstantInt>(C2.first)->getZExtValue();
401
402      return cast<const ConstantInt>(C1.first)->getSExtValue() <
403         cast<const ConstantInt>(C2.first)->getSExtValue();
404    }
405  };
406
407public:
408  // TLI - This is information that describes the available target features we
409  // need for lowering.  This indicates when operations are unavailable,
410  // implemented with a libcall, etc.
411  TargetLowering &TLI;
412  SelectionDAG &DAG;
413  const TargetData *TD;
414
415  /// SwitchCases - Vector of CaseBlock structures used to communicate
416  /// SwitchInst code generation information.
417  std::vector<SelectionDAGISel::CaseBlock> SwitchCases;
418  SelectionDAGISel::JumpTable JT;
419
420  /// FuncInfo - Information about the function as a whole.
421  ///
422  FunctionLoweringInfo &FuncInfo;
423
424  SelectionDAGLowering(SelectionDAG &dag, TargetLowering &tli,
425                       FunctionLoweringInfo &funcinfo)
426    : TLI(tli), DAG(dag), TD(DAG.getTarget().getTargetData()),
427      JT(0,0,0,0), FuncInfo(funcinfo) {
428  }
429
430  /// getRoot - Return the current virtual root of the Selection DAG.
431  ///
432  SDOperand getRoot() {
433    if (PendingLoads.empty())
434      return DAG.getRoot();
435
436    if (PendingLoads.size() == 1) {
437      SDOperand Root = PendingLoads[0];
438      DAG.setRoot(Root);
439      PendingLoads.clear();
440      return Root;
441    }
442
443    // Otherwise, we have to make a token factor node.
444    SDOperand Root = DAG.getNode(ISD::TokenFactor, MVT::Other,
445                                 &PendingLoads[0], PendingLoads.size());
446    PendingLoads.clear();
447    DAG.setRoot(Root);
448    return Root;
449  }
450
451  void visit(Instruction &I) { visit(I.getOpcode(), I); }
452
453  void visit(unsigned Opcode, User &I) {
454    switch (Opcode) {
455    default: assert(0 && "Unknown instruction type encountered!");
456             abort();
457      // Build the switch statement using the Instruction.def file.
458#define HANDLE_INST(NUM, OPCODE, CLASS) \
459    case Instruction::OPCODE:return visit##OPCODE((CLASS&)I);
460#include "llvm/Instruction.def"
461    }
462  }
463
464  void setCurrentBasicBlock(MachineBasicBlock *MBB) { CurMBB = MBB; }
465
466  SDOperand getLoadFrom(const Type *Ty, SDOperand Ptr,
467                        const Value *SV, SDOperand Root,
468                        bool isVolatile);
469
470  SDOperand getIntPtrConstant(uint64_t Val) {
471    return DAG.getConstant(Val, TLI.getPointerTy());
472  }
473
474  SDOperand getValue(const Value *V);
475
476  const SDOperand &setValue(const Value *V, SDOperand NewN) {
477    SDOperand &N = NodeMap[V];
478    assert(N.Val == 0 && "Already set a value for this node!");
479    return N = NewN;
480  }
481
482  RegsForValue GetRegistersForValue(const std::string &ConstrCode,
483                                    MVT::ValueType VT,
484                                    bool OutReg, bool InReg,
485                                    std::set<unsigned> &OutputRegs,
486                                    std::set<unsigned> &InputRegs);
487
488  // Terminator instructions.
489  void visitRet(ReturnInst &I);
490  void visitBr(BranchInst &I);
491  void visitSwitch(SwitchInst &I);
492  void visitUnreachable(UnreachableInst &I) { /* noop */ }
493
494  // Helper for visitSwitch
495  void visitSwitchCase(SelectionDAGISel::CaseBlock &CB);
496  void visitJumpTable(SelectionDAGISel::JumpTable &JT);
497
498  // These all get lowered before this pass.
499  void visitInvoke(InvokeInst &I) { assert(0 && "TODO"); }
500  void visitUnwind(UnwindInst &I) { assert(0 && "TODO"); }
501
502  void visitBinary(User &I, unsigned IntOp, unsigned FPOp, unsigned VecOp);
503  void visitShift(User &I, unsigned Opcode);
504  void visitAdd(User &I) {
505    visitBinary(I, ISD::ADD, ISD::FADD, ISD::VADD);
506  }
507  void visitSub(User &I);
508  void visitMul(User &I) {
509    visitBinary(I, ISD::MUL, ISD::FMUL, ISD::VMUL);
510  }
511  void visitDiv(User &I) {
512    const Type *Ty = I.getType();
513    visitBinary(I,
514                Ty->isSigned() ? ISD::SDIV : ISD::UDIV, ISD::FDIV,
515                Ty->isSigned() ? ISD::VSDIV : ISD::VUDIV);
516  }
517  void visitRem(User &I) {
518    const Type *Ty = I.getType();
519    visitBinary(I, Ty->isSigned() ? ISD::SREM : ISD::UREM, ISD::FREM, 0);
520  }
521  void visitAnd(User &I) { visitBinary(I, ISD::AND, 0, ISD::VAND); }
522  void visitOr (User &I) { visitBinary(I, ISD::OR,  0, ISD::VOR); }
523  void visitXor(User &I) { visitBinary(I, ISD::XOR, 0, ISD::VXOR); }
524  void visitShl(User &I) { visitShift(I, ISD::SHL); }
525  void visitShr(User &I) {
526    visitShift(I, I.getType()->isUnsigned() ? ISD::SRL : ISD::SRA);
527  }
528
529  void visitSetCC(User &I, ISD::CondCode SignedOpc, ISD::CondCode UnsignedOpc,
530                  ISD::CondCode FPOpc);
531  void visitSetEQ(User &I) { visitSetCC(I, ISD::SETEQ, ISD::SETEQ,
532                                        ISD::SETOEQ); }
533  void visitSetNE(User &I) { visitSetCC(I, ISD::SETNE, ISD::SETNE,
534                                        ISD::SETUNE); }
535  void visitSetLE(User &I) { visitSetCC(I, ISD::SETLE, ISD::SETULE,
536                                        ISD::SETOLE); }
537  void visitSetGE(User &I) { visitSetCC(I, ISD::SETGE, ISD::SETUGE,
538                                        ISD::SETOGE); }
539  void visitSetLT(User &I) { visitSetCC(I, ISD::SETLT, ISD::SETULT,
540                                        ISD::SETOLT); }
541  void visitSetGT(User &I) { visitSetCC(I, ISD::SETGT, ISD::SETUGT,
542                                        ISD::SETOGT); }
543
544  void visitExtractElement(User &I);
545  void visitInsertElement(User &I);
546  void visitShuffleVector(User &I);
547
548  void visitGetElementPtr(User &I);
549  void visitCast(User &I);
550  void visitSelect(User &I);
551
552  void visitMalloc(MallocInst &I);
553  void visitFree(FreeInst &I);
554  void visitAlloca(AllocaInst &I);
555  void visitLoad(LoadInst &I);
556  void visitStore(StoreInst &I);
557  void visitPHI(PHINode &I) { } // PHI nodes are handled specially.
558  void visitCall(CallInst &I);
559  void visitInlineAsm(CallInst &I);
560  const char *visitIntrinsicCall(CallInst &I, unsigned Intrinsic);
561  void visitTargetIntrinsic(CallInst &I, unsigned Intrinsic);
562
563  void visitVAStart(CallInst &I);
564  void visitVAArg(VAArgInst &I);
565  void visitVAEnd(CallInst &I);
566  void visitVACopy(CallInst &I);
567  void visitFrameReturnAddress(CallInst &I, bool isFrameAddress);
568
569  void visitMemIntrinsic(CallInst &I, unsigned Op);
570
571  void visitUserOp1(Instruction &I) {
572    assert(0 && "UserOp1 should not exist at instruction selection time!");
573    abort();
574  }
575  void visitUserOp2(Instruction &I) {
576    assert(0 && "UserOp2 should not exist at instruction selection time!");
577    abort();
578  }
579};
580} // end namespace llvm
581
582SDOperand SelectionDAGLowering::getValue(const Value *V) {
583  SDOperand &N = NodeMap[V];
584  if (N.Val) return N;
585
586  const Type *VTy = V->getType();
587  MVT::ValueType VT = TLI.getValueType(VTy);
588  if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(V))) {
589    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
590      visit(CE->getOpcode(), *CE);
591      assert(N.Val && "visit didn't populate the ValueMap!");
592      return N;
593    } else if (GlobalValue *GV = dyn_cast<GlobalValue>(C)) {
594      return N = DAG.getGlobalAddress(GV, VT);
595    } else if (isa<ConstantPointerNull>(C)) {
596      return N = DAG.getConstant(0, TLI.getPointerTy());
597    } else if (isa<UndefValue>(C)) {
598      if (!isa<PackedType>(VTy))
599        return N = DAG.getNode(ISD::UNDEF, VT);
600
601      // Create a VBUILD_VECTOR of undef nodes.
602      const PackedType *PTy = cast<PackedType>(VTy);
603      unsigned NumElements = PTy->getNumElements();
604      MVT::ValueType PVT = TLI.getValueType(PTy->getElementType());
605
606      SmallVector<SDOperand, 8> Ops;
607      Ops.assign(NumElements, DAG.getNode(ISD::UNDEF, PVT));
608
609      // Create a VConstant node with generic Vector type.
610      Ops.push_back(DAG.getConstant(NumElements, MVT::i32));
611      Ops.push_back(DAG.getValueType(PVT));
612      return N = DAG.getNode(ISD::VBUILD_VECTOR, MVT::Vector,
613                             &Ops[0], Ops.size());
614    } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
615      return N = DAG.getConstantFP(CFP->getValue(), VT);
616    } else if (const PackedType *PTy = dyn_cast<PackedType>(VTy)) {
617      unsigned NumElements = PTy->getNumElements();
618      MVT::ValueType PVT = TLI.getValueType(PTy->getElementType());
619
620      // Now that we know the number and type of the elements, push a
621      // Constant or ConstantFP node onto the ops list for each element of
622      // the packed constant.
623      SmallVector<SDOperand, 8> Ops;
624      if (ConstantPacked *CP = dyn_cast<ConstantPacked>(C)) {
625        for (unsigned i = 0; i != NumElements; ++i)
626          Ops.push_back(getValue(CP->getOperand(i)));
627      } else {
628        assert(isa<ConstantAggregateZero>(C) && "Unknown packed constant!");
629        SDOperand Op;
630        if (MVT::isFloatingPoint(PVT))
631          Op = DAG.getConstantFP(0, PVT);
632        else
633          Op = DAG.getConstant(0, PVT);
634        Ops.assign(NumElements, Op);
635      }
636
637      // Create a VBUILD_VECTOR node with generic Vector type.
638      Ops.push_back(DAG.getConstant(NumElements, MVT::i32));
639      Ops.push_back(DAG.getValueType(PVT));
640      return N = DAG.getNode(ISD::VBUILD_VECTOR,MVT::Vector,&Ops[0],Ops.size());
641    } else {
642      // Canonicalize all constant ints to be unsigned.
643      return N = DAG.getConstant(cast<ConstantIntegral>(C)->getZExtValue(),VT);
644    }
645  }
646
647  if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
648    std::map<const AllocaInst*, int>::iterator SI =
649    FuncInfo.StaticAllocaMap.find(AI);
650    if (SI != FuncInfo.StaticAllocaMap.end())
651      return DAG.getFrameIndex(SI->second, TLI.getPointerTy());
652  }
653
654  std::map<const Value*, unsigned>::const_iterator VMI =
655      FuncInfo.ValueMap.find(V);
656  assert(VMI != FuncInfo.ValueMap.end() && "Value not in map!");
657
658  unsigned InReg = VMI->second;
659
660  // If this type is not legal, make it so now.
661  if (VT != MVT::Vector) {
662    MVT::ValueType DestVT = TLI.getTypeToTransformTo(VT);
663
664    N = DAG.getCopyFromReg(DAG.getEntryNode(), InReg, DestVT);
665    if (DestVT < VT) {
666      // Source must be expanded.  This input value is actually coming from the
667      // register pair VMI->second and VMI->second+1.
668      N = DAG.getNode(ISD::BUILD_PAIR, VT, N,
669                      DAG.getCopyFromReg(DAG.getEntryNode(), InReg+1, DestVT));
670    } else if (DestVT > VT) { // Promotion case
671      if (MVT::isFloatingPoint(VT))
672        N = DAG.getNode(ISD::FP_ROUND, VT, N);
673      else
674        N = DAG.getNode(ISD::TRUNCATE, VT, N);
675    }
676  } else {
677    // Otherwise, if this is a vector, make it available as a generic vector
678    // here.
679    MVT::ValueType PTyElementVT, PTyLegalElementVT;
680    const PackedType *PTy = cast<PackedType>(VTy);
681    unsigned NE = TLI.getPackedTypeBreakdown(PTy, PTyElementVT,
682                                             PTyLegalElementVT);
683
684    // Build a VBUILD_VECTOR with the input registers.
685    SmallVector<SDOperand, 8> Ops;
686    if (PTyElementVT == PTyLegalElementVT) {
687      // If the value types are legal, just VBUILD the CopyFromReg nodes.
688      for (unsigned i = 0; i != NE; ++i)
689        Ops.push_back(DAG.getCopyFromReg(DAG.getEntryNode(), InReg++,
690                                         PTyElementVT));
691    } else if (PTyElementVT < PTyLegalElementVT) {
692      // If the register was promoted, use TRUNCATE of FP_ROUND as appropriate.
693      for (unsigned i = 0; i != NE; ++i) {
694        SDOperand Op = DAG.getCopyFromReg(DAG.getEntryNode(), InReg++,
695                                          PTyElementVT);
696        if (MVT::isFloatingPoint(PTyElementVT))
697          Op = DAG.getNode(ISD::FP_ROUND, PTyElementVT, Op);
698        else
699          Op = DAG.getNode(ISD::TRUNCATE, PTyElementVT, Op);
700        Ops.push_back(Op);
701      }
702    } else {
703      // If the register was expanded, use BUILD_PAIR.
704      assert((NE & 1) == 0 && "Must expand into a multiple of 2 elements!");
705      for (unsigned i = 0; i != NE/2; ++i) {
706        SDOperand Op0 = DAG.getCopyFromReg(DAG.getEntryNode(), InReg++,
707                                           PTyElementVT);
708        SDOperand Op1 = DAG.getCopyFromReg(DAG.getEntryNode(), InReg++,
709                                           PTyElementVT);
710        Ops.push_back(DAG.getNode(ISD::BUILD_PAIR, VT, Op0, Op1));
711      }
712    }
713
714    Ops.push_back(DAG.getConstant(NE, MVT::i32));
715    Ops.push_back(DAG.getValueType(PTyLegalElementVT));
716    N = DAG.getNode(ISD::VBUILD_VECTOR, MVT::Vector, &Ops[0], Ops.size());
717
718    // Finally, use a VBIT_CONVERT to make this available as the appropriate
719    // vector type.
720    N = DAG.getNode(ISD::VBIT_CONVERT, MVT::Vector, N,
721                    DAG.getConstant(PTy->getNumElements(),
722                                    MVT::i32),
723                    DAG.getValueType(TLI.getValueType(PTy->getElementType())));
724  }
725
726  return N;
727}
728
729
730void SelectionDAGLowering::visitRet(ReturnInst &I) {
731  if (I.getNumOperands() == 0) {
732    DAG.setRoot(DAG.getNode(ISD::RET, MVT::Other, getRoot()));
733    return;
734  }
735  SmallVector<SDOperand, 8> NewValues;
736  NewValues.push_back(getRoot());
737  for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
738    SDOperand RetOp = getValue(I.getOperand(i));
739    bool isSigned = I.getOperand(i)->getType()->isSigned();
740
741    // If this is an integer return value, we need to promote it ourselves to
742    // the full width of a register, since LegalizeOp will use ANY_EXTEND rather
743    // than sign/zero.
744    // FIXME: C calling convention requires the return type to be promoted to
745    // at least 32-bit. But this is not necessary for non-C calling conventions.
746    if (MVT::isInteger(RetOp.getValueType()) &&
747        RetOp.getValueType() < MVT::i64) {
748      MVT::ValueType TmpVT;
749      if (TLI.getTypeAction(MVT::i32) == TargetLowering::Promote)
750        TmpVT = TLI.getTypeToTransformTo(MVT::i32);
751      else
752        TmpVT = MVT::i32;
753
754      if (isSigned)
755        RetOp = DAG.getNode(ISD::SIGN_EXTEND, TmpVT, RetOp);
756      else
757        RetOp = DAG.getNode(ISD::ZERO_EXTEND, TmpVT, RetOp);
758    }
759    NewValues.push_back(RetOp);
760    NewValues.push_back(DAG.getConstant(isSigned, MVT::i32));
761  }
762  DAG.setRoot(DAG.getNode(ISD::RET, MVT::Other,
763                          &NewValues[0], NewValues.size()));
764}
765
766void SelectionDAGLowering::visitBr(BranchInst &I) {
767  // Update machine-CFG edges.
768  MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
769
770  // Figure out which block is immediately after the current one.
771  MachineBasicBlock *NextBlock = 0;
772  MachineFunction::iterator BBI = CurMBB;
773  if (++BBI != CurMBB->getParent()->end())
774    NextBlock = BBI;
775
776  if (I.isUnconditional()) {
777    // If this is not a fall-through branch, emit the branch.
778    if (Succ0MBB != NextBlock)
779      DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, getRoot(),
780                              DAG.getBasicBlock(Succ0MBB)));
781
782    // Update machine-CFG edges.
783    CurMBB->addSuccessor(Succ0MBB);
784
785    return;
786  }
787
788  // If this condition is one of the special cases we handle, do special stuff
789  // now.
790  Value *CondVal = I.getCondition();
791  MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
792
793  // Create a CaseBlock record representing this branch.
794  SelectionDAGISel::CaseBlock CB(ISD::SETEQ, CondVal, 0,
795                                 Succ0MBB, Succ1MBB, CurMBB);
796  // Use visitSwitchCase to actually insert the fast branch sequence for this
797  // cond branch.
798  visitSwitchCase(CB);
799}
800
801/// visitSwitchCase - Emits the necessary code to represent a single node in
802/// the binary search tree resulting from lowering a switch instruction.
803void SelectionDAGLowering::visitSwitchCase(SelectionDAGISel::CaseBlock &CB) {
804  SDOperand Cond;
805  SDOperand CondLHS = getValue(CB.CmpLHS);
806
807  // If the CaseBlock has both LHS/RHS comparisons, build the setcc now,
808  // otherwise, just use the LHS value as a bool comparison value.
809  if (CB.CmpRHS)
810    Cond = DAG.getSetCC(MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
811  else
812    Cond = CondLHS;
813
814  // Set NextBlock to be the MBB immediately after the current one, if any.
815  // This is used to avoid emitting unnecessary branches to the next block.
816  MachineBasicBlock *NextBlock = 0;
817  MachineFunction::iterator BBI = CurMBB;
818  if (++BBI != CurMBB->getParent()->end())
819    NextBlock = BBI;
820
821  // If the lhs block is the next block, invert the condition so that we can
822  // fall through to the lhs instead of the rhs block.
823  if (CB.TrueBB == NextBlock) {
824    std::swap(CB.TrueBB, CB.FalseBB);
825    SDOperand True = DAG.getConstant(1, Cond.getValueType());
826    Cond = DAG.getNode(ISD::XOR, Cond.getValueType(), Cond, True);
827  }
828  SDOperand BrCond = DAG.getNode(ISD::BRCOND, MVT::Other, getRoot(), Cond,
829                                 DAG.getBasicBlock(CB.TrueBB));
830  if (CB.FalseBB == NextBlock)
831    DAG.setRoot(BrCond);
832  else
833    DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, BrCond,
834                            DAG.getBasicBlock(CB.FalseBB)));
835  // Update successor info
836  CurMBB->addSuccessor(CB.TrueBB);
837  CurMBB->addSuccessor(CB.FalseBB);
838}
839
840void SelectionDAGLowering::visitJumpTable(SelectionDAGISel::JumpTable &JT) {
841  // Emit the code for the jump table
842  MVT::ValueType PTy = TLI.getPointerTy();
843  assert((PTy == MVT::i32 || PTy == MVT::i64) &&
844         "Jump table entries are 32-bit values");
845  bool isPIC = TLI.getTargetMachine().getRelocationModel() == Reloc::PIC_;
846  // PIC jump table entries are 32-bit values.
847  unsigned EntrySize = isPIC ? 4 : MVT::getSizeInBits(PTy)/8;
848  SDOperand Copy = DAG.getCopyFromReg(getRoot(), JT.Reg, PTy);
849  SDOperand IDX = DAG.getNode(ISD::MUL, PTy, Copy,
850                              DAG.getConstant(EntrySize, PTy));
851  SDOperand TAB = DAG.getJumpTable(JT.JTI,PTy);
852  SDOperand ADD = DAG.getNode(ISD::ADD, PTy, IDX, TAB);
853  SDOperand LD  = DAG.getLoad(isPIC ? MVT::i32 : PTy, Copy.getValue(1), ADD,
854                              NULL, 0);
855  if (isPIC) {
856    // For Pic, the sequence is:
857    // BRIND(load(Jumptable + index) + RelocBase)
858    // RelocBase is the JumpTable on PPC and X86, GOT on Alpha
859    SDOperand Reloc;
860    if (TLI.usesGlobalOffsetTable())
861      Reloc = DAG.getNode(ISD::GLOBAL_OFFSET_TABLE, PTy);
862    else
863      Reloc = TAB;
864    ADD = (PTy != MVT::i32) ? DAG.getNode(ISD::SIGN_EXTEND, PTy, LD) : LD;
865    ADD = DAG.getNode(ISD::ADD, PTy, ADD, Reloc);
866    DAG.setRoot(DAG.getNode(ISD::BRIND, MVT::Other, LD.getValue(1), ADD));
867  } else {
868    DAG.setRoot(DAG.getNode(ISD::BRIND, MVT::Other, LD.getValue(1), LD));
869  }
870}
871
872void SelectionDAGLowering::visitSwitch(SwitchInst &I) {
873  // Figure out which block is immediately after the current one.
874  MachineBasicBlock *NextBlock = 0;
875  MachineFunction::iterator BBI = CurMBB;
876
877  if (++BBI != CurMBB->getParent()->end())
878    NextBlock = BBI;
879
880  MachineBasicBlock *Default = FuncInfo.MBBMap[I.getDefaultDest()];
881
882  // If there is only the default destination, branch to it if it is not the
883  // next basic block.  Otherwise, just fall through.
884  if (I.getNumOperands() == 2) {
885    // Update machine-CFG edges.
886
887    // If this is not a fall-through branch, emit the branch.
888    if (Default != NextBlock)
889      DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, getRoot(),
890                              DAG.getBasicBlock(Default)));
891
892    CurMBB->addSuccessor(Default);
893    return;
894  }
895
896  // If there are any non-default case statements, create a vector of Cases
897  // representing each one, and sort the vector so that we can efficiently
898  // create a binary search tree from them.
899  std::vector<Case> Cases;
900
901  for (unsigned i = 1; i < I.getNumSuccessors(); ++i) {
902    MachineBasicBlock *SMBB = FuncInfo.MBBMap[I.getSuccessor(i)];
903    Cases.push_back(Case(I.getSuccessorValue(i), SMBB));
904  }
905
906  std::sort(Cases.begin(), Cases.end(), CaseCmp());
907
908  // Get the Value to be switched on and default basic blocks, which will be
909  // inserted into CaseBlock records, representing basic blocks in the binary
910  // search tree.
911  Value *SV = I.getOperand(0);
912
913  // Get the MachineFunction which holds the current MBB.  This is used during
914  // emission of jump tables, and when inserting any additional MBBs necessary
915  // to represent the switch.
916  MachineFunction *CurMF = CurMBB->getParent();
917  const BasicBlock *LLVMBB = CurMBB->getBasicBlock();
918
919  // If the switch has few cases (two or less) emit a series of specific
920  // tests.
921  if (Cases.size() < 3) {
922    // TODO: If any two of the cases has the same destination, and if one value
923    // is the same as the other, but has one bit unset that the other has set,
924    // use bit manipulation to do two compares at once.  For example:
925    // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
926
927    // Rearrange the case blocks so that the last one falls through if possible.
928    if (NextBlock && Default != NextBlock && Cases.back().second != NextBlock) {
929      // The last case block won't fall through into 'NextBlock' if we emit the
930      // branches in this order.  See if rearranging a case value would help.
931      for (unsigned i = 0, e = Cases.size()-1; i != e; ++i) {
932        if (Cases[i].second == NextBlock) {
933          std::swap(Cases[i], Cases.back());
934          break;
935        }
936      }
937    }
938
939    // Create a CaseBlock record representing a conditional branch to
940    // the Case's target mbb if the value being switched on SV is equal
941    // to C.
942    MachineBasicBlock *CurBlock = CurMBB;
943    for (unsigned i = 0, e = Cases.size(); i != e; ++i) {
944      MachineBasicBlock *FallThrough;
945      if (i != e-1) {
946        FallThrough = new MachineBasicBlock(CurMBB->getBasicBlock());
947        CurMF->getBasicBlockList().insert(BBI, FallThrough);
948      } else {
949        // If the last case doesn't match, go to the default block.
950        FallThrough = Default;
951      }
952
953      SelectionDAGISel::CaseBlock CB(ISD::SETEQ, SV, Cases[i].first,
954                                     Cases[i].second, FallThrough, CurBlock);
955
956      // If emitting the first comparison, just call visitSwitchCase to emit the
957      // code into the current block.  Otherwise, push the CaseBlock onto the
958      // vector to be later processed by SDISel, and insert the node's MBB
959      // before the next MBB.
960      if (CurBlock == CurMBB)
961        visitSwitchCase(CB);
962      else
963        SwitchCases.push_back(CB);
964
965      CurBlock = FallThrough;
966    }
967    return;
968  }
969
970  // If the switch has more than 5 blocks, and at least 31.25% dense, and the
971  // target supports indirect branches, then emit a jump table rather than
972  // lowering the switch to a binary tree of conditional branches.
973  if (TLI.isOperationLegal(ISD::BRIND, TLI.getPointerTy()) &&
974      Cases.size() > 5) {
975    uint64_t First =cast<ConstantIntegral>(Cases.front().first)->getZExtValue();
976    uint64_t Last  = cast<ConstantIntegral>(Cases.back().first)->getZExtValue();
977    double Density = (double)Cases.size() / (double)((Last - First) + 1ULL);
978
979    if (Density >= 0.3125) {
980      // Create a new basic block to hold the code for loading the address
981      // of the jump table, and jumping to it.  Update successor information;
982      // we will either branch to the default case for the switch, or the jump
983      // table.
984      MachineBasicBlock *JumpTableBB = new MachineBasicBlock(LLVMBB);
985      CurMF->getBasicBlockList().insert(BBI, JumpTableBB);
986      CurMBB->addSuccessor(Default);
987      CurMBB->addSuccessor(JumpTableBB);
988
989      // Subtract the lowest switch case value from the value being switched on
990      // and conditional branch to default mbb if the result is greater than the
991      // difference between smallest and largest cases.
992      SDOperand SwitchOp = getValue(SV);
993      MVT::ValueType VT = SwitchOp.getValueType();
994      SDOperand SUB = DAG.getNode(ISD::SUB, VT, SwitchOp,
995                                  DAG.getConstant(First, VT));
996
997      // The SDNode we just created, which holds the value being switched on
998      // minus the the smallest case value, needs to be copied to a virtual
999      // register so it can be used as an index into the jump table in a
1000      // subsequent basic block.  This value may be smaller or larger than the
1001      // target's pointer type, and therefore require extension or truncating.
1002      if (VT > TLI.getPointerTy())
1003        SwitchOp = DAG.getNode(ISD::TRUNCATE, TLI.getPointerTy(), SUB);
1004      else
1005        SwitchOp = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(), SUB);
1006
1007      unsigned JumpTableReg = FuncInfo.MakeReg(TLI.getPointerTy());
1008      SDOperand CopyTo = DAG.getCopyToReg(getRoot(), JumpTableReg, SwitchOp);
1009
1010      // Emit the range check for the jump table, and branch to the default
1011      // block for the switch statement if the value being switched on exceeds
1012      // the largest case in the switch.
1013      SDOperand CMP = DAG.getSetCC(TLI.getSetCCResultTy(), SUB,
1014                                   DAG.getConstant(Last-First,VT), ISD::SETUGT);
1015      DAG.setRoot(DAG.getNode(ISD::BRCOND, MVT::Other, CopyTo, CMP,
1016                              DAG.getBasicBlock(Default)));
1017
1018      // Build a vector of destination BBs, corresponding to each target
1019      // of the jump table.  If the value of the jump table slot corresponds to
1020      // a case statement, push the case's BB onto the vector, otherwise, push
1021      // the default BB.
1022      std::vector<MachineBasicBlock*> DestBBs;
1023      uint64_t TEI = First;
1024      for (CaseItr ii = Cases.begin(), ee = Cases.end(); ii != ee; ++TEI)
1025        if (cast<ConstantIntegral>(ii->first)->getZExtValue() == TEI) {
1026          DestBBs.push_back(ii->second);
1027          ++ii;
1028        } else {
1029          DestBBs.push_back(Default);
1030        }
1031
1032      // Update successor info
1033      for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(),
1034           E = DestBBs.end(); I != E; ++I)
1035        JumpTableBB->addSuccessor(*I);
1036
1037      // Create a jump table index for this jump table, or return an existing
1038      // one.
1039      unsigned JTI = CurMF->getJumpTableInfo()->getJumpTableIndex(DestBBs);
1040
1041      // Set the jump table information so that we can codegen it as a second
1042      // MachineBasicBlock
1043      JT.Reg = JumpTableReg;
1044      JT.JTI = JTI;
1045      JT.MBB = JumpTableBB;
1046      JT.Default = Default;
1047      return;
1048    }
1049  }
1050
1051  // Push the initial CaseRec onto the worklist
1052  std::vector<CaseRec> CaseVec;
1053  CaseVec.push_back(CaseRec(CurMBB,0,0,CaseRange(Cases.begin(),Cases.end())));
1054
1055  while (!CaseVec.empty()) {
1056    // Grab a record representing a case range to process off the worklist
1057    CaseRec CR = CaseVec.back();
1058    CaseVec.pop_back();
1059
1060    // Size is the number of Cases represented by this range.  If Size is 1,
1061    // then we are processing a leaf of the binary search tree.  Otherwise,
1062    // we need to pick a pivot, and push left and right ranges onto the
1063    // worklist.
1064    unsigned Size = CR.Range.second - CR.Range.first;
1065
1066    if (Size == 1) {
1067      // Create a CaseBlock record representing a conditional branch to
1068      // the Case's target mbb if the value being switched on SV is equal
1069      // to C.  Otherwise, branch to default.
1070      Constant *C = CR.Range.first->first;
1071      MachineBasicBlock *Target = CR.Range.first->second;
1072      SelectionDAGISel::CaseBlock CB(ISD::SETEQ, SV, C, Target, Default,
1073                                     CR.CaseBB);
1074
1075      // If the MBB representing the leaf node is the current MBB, then just
1076      // call visitSwitchCase to emit the code into the current block.
1077      // Otherwise, push the CaseBlock onto the vector to be later processed
1078      // by SDISel, and insert the node's MBB before the next MBB.
1079      if (CR.CaseBB == CurMBB)
1080        visitSwitchCase(CB);
1081      else
1082        SwitchCases.push_back(CB);
1083    } else {
1084      // split case range at pivot
1085      CaseItr Pivot = CR.Range.first + (Size / 2);
1086      CaseRange LHSR(CR.Range.first, Pivot);
1087      CaseRange RHSR(Pivot, CR.Range.second);
1088      Constant *C = Pivot->first;
1089      MachineBasicBlock *FalseBB = 0, *TrueBB = 0;
1090
1091      // We know that we branch to the LHS if the Value being switched on is
1092      // less than the Pivot value, C.  We use this to optimize our binary
1093      // tree a bit, by recognizing that if SV is greater than or equal to the
1094      // LHS's Case Value, and that Case Value is exactly one less than the
1095      // Pivot's Value, then we can branch directly to the LHS's Target,
1096      // rather than creating a leaf node for it.
1097      if ((LHSR.second - LHSR.first) == 1 &&
1098          LHSR.first->first == CR.GE &&
1099          cast<ConstantIntegral>(C)->getZExtValue() ==
1100          (cast<ConstantIntegral>(CR.GE)->getZExtValue() + 1ULL)) {
1101        TrueBB = LHSR.first->second;
1102      } else {
1103        TrueBB = new MachineBasicBlock(LLVMBB);
1104        CurMF->getBasicBlockList().insert(BBI, TrueBB);
1105        CaseVec.push_back(CaseRec(TrueBB, C, CR.GE, LHSR));
1106      }
1107
1108      // Similar to the optimization above, if the Value being switched on is
1109      // known to be less than the Constant CR.LT, and the current Case Value
1110      // is CR.LT - 1, then we can branch directly to the target block for
1111      // the current Case Value, rather than emitting a RHS leaf node for it.
1112      if ((RHSR.second - RHSR.first) == 1 && CR.LT &&
1113          cast<ConstantIntegral>(RHSR.first->first)->getZExtValue() ==
1114          (cast<ConstantIntegral>(CR.LT)->getZExtValue() - 1ULL)) {
1115        FalseBB = RHSR.first->second;
1116      } else {
1117        FalseBB = new MachineBasicBlock(LLVMBB);
1118        CurMF->getBasicBlockList().insert(BBI, FalseBB);
1119        CaseVec.push_back(CaseRec(FalseBB,CR.LT,C,RHSR));
1120      }
1121
1122      // Create a CaseBlock record representing a conditional branch to
1123      // the LHS node if the value being switched on SV is less than C.
1124      // Otherwise, branch to LHS.
1125      ISD::CondCode CC = C->getType()->isSigned() ? ISD::SETLT : ISD::SETULT;
1126      SelectionDAGISel::CaseBlock CB(CC, SV, C, TrueBB, FalseBB, CR.CaseBB);
1127
1128      if (CR.CaseBB == CurMBB)
1129        visitSwitchCase(CB);
1130      else
1131        SwitchCases.push_back(CB);
1132    }
1133  }
1134}
1135
1136void SelectionDAGLowering::visitSub(User &I) {
1137  // -0.0 - X --> fneg
1138  if (I.getType()->isFloatingPoint()) {
1139    if (ConstantFP *CFP = dyn_cast<ConstantFP>(I.getOperand(0)))
1140      if (CFP->isExactlyValue(-0.0)) {
1141        SDOperand Op2 = getValue(I.getOperand(1));
1142        setValue(&I, DAG.getNode(ISD::FNEG, Op2.getValueType(), Op2));
1143        return;
1144      }
1145  }
1146  visitBinary(I, ISD::SUB, ISD::FSUB, ISD::VSUB);
1147}
1148
1149void SelectionDAGLowering::visitBinary(User &I, unsigned IntOp, unsigned FPOp,
1150                                       unsigned VecOp) {
1151  const Type *Ty = I.getType();
1152  SDOperand Op1 = getValue(I.getOperand(0));
1153  SDOperand Op2 = getValue(I.getOperand(1));
1154
1155  if (Ty->isIntegral()) {
1156    setValue(&I, DAG.getNode(IntOp, Op1.getValueType(), Op1, Op2));
1157  } else if (Ty->isFloatingPoint()) {
1158    setValue(&I, DAG.getNode(FPOp, Op1.getValueType(), Op1, Op2));
1159  } else {
1160    const PackedType *PTy = cast<PackedType>(Ty);
1161    SDOperand Num = DAG.getConstant(PTy->getNumElements(), MVT::i32);
1162    SDOperand Typ = DAG.getValueType(TLI.getValueType(PTy->getElementType()));
1163    setValue(&I, DAG.getNode(VecOp, MVT::Vector, Op1, Op2, Num, Typ));
1164  }
1165}
1166
1167void SelectionDAGLowering::visitShift(User &I, unsigned Opcode) {
1168  SDOperand Op1 = getValue(I.getOperand(0));
1169  SDOperand Op2 = getValue(I.getOperand(1));
1170
1171  Op2 = DAG.getNode(ISD::ANY_EXTEND, TLI.getShiftAmountTy(), Op2);
1172
1173  setValue(&I, DAG.getNode(Opcode, Op1.getValueType(), Op1, Op2));
1174}
1175
1176void SelectionDAGLowering::visitSetCC(User &I,ISD::CondCode SignedOpcode,
1177                                      ISD::CondCode UnsignedOpcode,
1178                                      ISD::CondCode FPOpcode) {
1179  SDOperand Op1 = getValue(I.getOperand(0));
1180  SDOperand Op2 = getValue(I.getOperand(1));
1181  ISD::CondCode Opcode = SignedOpcode;
1182  if (!FiniteOnlyFPMath() && I.getOperand(0)->getType()->isFloatingPoint())
1183    Opcode = FPOpcode;
1184  else if (I.getOperand(0)->getType()->isUnsigned())
1185    Opcode = UnsignedOpcode;
1186  setValue(&I, DAG.getSetCC(MVT::i1, Op1, Op2, Opcode));
1187}
1188
1189void SelectionDAGLowering::visitSelect(User &I) {
1190  SDOperand Cond     = getValue(I.getOperand(0));
1191  SDOperand TrueVal  = getValue(I.getOperand(1));
1192  SDOperand FalseVal = getValue(I.getOperand(2));
1193  if (!isa<PackedType>(I.getType())) {
1194    setValue(&I, DAG.getNode(ISD::SELECT, TrueVal.getValueType(), Cond,
1195                             TrueVal, FalseVal));
1196  } else {
1197    setValue(&I, DAG.getNode(ISD::VSELECT, MVT::Vector, Cond, TrueVal, FalseVal,
1198                             *(TrueVal.Val->op_end()-2),
1199                             *(TrueVal.Val->op_end()-1)));
1200  }
1201}
1202
1203void SelectionDAGLowering::visitCast(User &I) {
1204  SDOperand N = getValue(I.getOperand(0));
1205  MVT::ValueType SrcVT = N.getValueType();
1206  MVT::ValueType DestVT = TLI.getValueType(I.getType());
1207
1208  if (DestVT == MVT::Vector) {
1209    // This is a cast to a vector from something else.  This is always a bit
1210    // convert.  Get information about the input vector.
1211    const PackedType *DestTy = cast<PackedType>(I.getType());
1212    MVT::ValueType EltVT = TLI.getValueType(DestTy->getElementType());
1213    setValue(&I, DAG.getNode(ISD::VBIT_CONVERT, DestVT, N,
1214                             DAG.getConstant(DestTy->getNumElements(),MVT::i32),
1215                             DAG.getValueType(EltVT)));
1216  } else if (SrcVT == DestVT) {
1217    setValue(&I, N);  // noop cast.
1218  } else if (DestVT == MVT::i1) {
1219    // Cast to bool is a comparison against zero, not truncation to zero.
1220    SDOperand Zero = isInteger(SrcVT) ? DAG.getConstant(0, N.getValueType()) :
1221                                       DAG.getConstantFP(0.0, N.getValueType());
1222    setValue(&I, DAG.getSetCC(MVT::i1, N, Zero, ISD::SETNE));
1223  } else if (isInteger(SrcVT)) {
1224    if (isInteger(DestVT)) {        // Int -> Int cast
1225      if (DestVT < SrcVT)   // Truncating cast?
1226        setValue(&I, DAG.getNode(ISD::TRUNCATE, DestVT, N));
1227      else if (I.getOperand(0)->getType()->isSigned())
1228        setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, DestVT, N));
1229      else
1230        setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, DestVT, N));
1231    } else if (isFloatingPoint(DestVT)) {           // Int -> FP cast
1232      if (I.getOperand(0)->getType()->isSigned())
1233        setValue(&I, DAG.getNode(ISD::SINT_TO_FP, DestVT, N));
1234      else
1235        setValue(&I, DAG.getNode(ISD::UINT_TO_FP, DestVT, N));
1236    } else {
1237      assert(0 && "Unknown cast!");
1238    }
1239  } else if (isFloatingPoint(SrcVT)) {
1240    if (isFloatingPoint(DestVT)) {  // FP -> FP cast
1241      if (DestVT < SrcVT)   // Rounding cast?
1242        setValue(&I, DAG.getNode(ISD::FP_ROUND, DestVT, N));
1243      else
1244        setValue(&I, DAG.getNode(ISD::FP_EXTEND, DestVT, N));
1245    } else if (isInteger(DestVT)) {        // FP -> Int cast.
1246      if (I.getType()->isSigned())
1247        setValue(&I, DAG.getNode(ISD::FP_TO_SINT, DestVT, N));
1248      else
1249        setValue(&I, DAG.getNode(ISD::FP_TO_UINT, DestVT, N));
1250    } else {
1251      assert(0 && "Unknown cast!");
1252    }
1253  } else {
1254    assert(SrcVT == MVT::Vector && "Unknown cast!");
1255    assert(DestVT != MVT::Vector && "Casts to vector already handled!");
1256    // This is a cast from a vector to something else.  This is always a bit
1257    // convert.  Get information about the input vector.
1258    setValue(&I, DAG.getNode(ISD::VBIT_CONVERT, DestVT, N));
1259  }
1260}
1261
1262void SelectionDAGLowering::visitInsertElement(User &I) {
1263  SDOperand InVec = getValue(I.getOperand(0));
1264  SDOperand InVal = getValue(I.getOperand(1));
1265  SDOperand InIdx = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(),
1266                                getValue(I.getOperand(2)));
1267
1268  SDOperand Num = *(InVec.Val->op_end()-2);
1269  SDOperand Typ = *(InVec.Val->op_end()-1);
1270  setValue(&I, DAG.getNode(ISD::VINSERT_VECTOR_ELT, MVT::Vector,
1271                           InVec, InVal, InIdx, Num, Typ));
1272}
1273
1274void SelectionDAGLowering::visitExtractElement(User &I) {
1275  SDOperand InVec = getValue(I.getOperand(0));
1276  SDOperand InIdx = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(),
1277                                getValue(I.getOperand(1)));
1278  SDOperand Typ = *(InVec.Val->op_end()-1);
1279  setValue(&I, DAG.getNode(ISD::VEXTRACT_VECTOR_ELT,
1280                           TLI.getValueType(I.getType()), InVec, InIdx));
1281}
1282
1283void SelectionDAGLowering::visitShuffleVector(User &I) {
1284  SDOperand V1   = getValue(I.getOperand(0));
1285  SDOperand V2   = getValue(I.getOperand(1));
1286  SDOperand Mask = getValue(I.getOperand(2));
1287
1288  SDOperand Num = *(V1.Val->op_end()-2);
1289  SDOperand Typ = *(V2.Val->op_end()-1);
1290  setValue(&I, DAG.getNode(ISD::VVECTOR_SHUFFLE, MVT::Vector,
1291                           V1, V2, Mask, Num, Typ));
1292}
1293
1294
1295void SelectionDAGLowering::visitGetElementPtr(User &I) {
1296  SDOperand N = getValue(I.getOperand(0));
1297  const Type *Ty = I.getOperand(0)->getType();
1298
1299  for (GetElementPtrInst::op_iterator OI = I.op_begin()+1, E = I.op_end();
1300       OI != E; ++OI) {
1301    Value *Idx = *OI;
1302    if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
1303      unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
1304      if (Field) {
1305        // N = N + Offset
1306        uint64_t Offset = TD->getStructLayout(StTy)->MemberOffsets[Field];
1307        N = DAG.getNode(ISD::ADD, N.getValueType(), N,
1308                        getIntPtrConstant(Offset));
1309      }
1310      Ty = StTy->getElementType(Field);
1311    } else {
1312      Ty = cast<SequentialType>(Ty)->getElementType();
1313
1314      // If this is a constant subscript, handle it quickly.
1315      if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
1316        if (CI->getZExtValue() == 0) continue;
1317        uint64_t Offs;
1318        if (CI->getType()->isSigned())
1319          Offs = (int64_t)
1320            TD->getTypeSize(Ty)*cast<ConstantInt>(CI)->getSExtValue();
1321        else
1322          Offs =
1323            TD->getTypeSize(Ty)*cast<ConstantInt>(CI)->getZExtValue();
1324        N = DAG.getNode(ISD::ADD, N.getValueType(), N, getIntPtrConstant(Offs));
1325        continue;
1326      }
1327
1328      // N = N + Idx * ElementSize;
1329      uint64_t ElementSize = TD->getTypeSize(Ty);
1330      SDOperand IdxN = getValue(Idx);
1331
1332      // If the index is smaller or larger than intptr_t, truncate or extend
1333      // it.
1334      if (IdxN.getValueType() < N.getValueType()) {
1335        if (Idx->getType()->isSigned())
1336          IdxN = DAG.getNode(ISD::SIGN_EXTEND, N.getValueType(), IdxN);
1337        else
1338          IdxN = DAG.getNode(ISD::ZERO_EXTEND, N.getValueType(), IdxN);
1339      } else if (IdxN.getValueType() > N.getValueType())
1340        IdxN = DAG.getNode(ISD::TRUNCATE, N.getValueType(), IdxN);
1341
1342      // If this is a multiply by a power of two, turn it into a shl
1343      // immediately.  This is a very common case.
1344      if (isPowerOf2_64(ElementSize)) {
1345        unsigned Amt = Log2_64(ElementSize);
1346        IdxN = DAG.getNode(ISD::SHL, N.getValueType(), IdxN,
1347                           DAG.getConstant(Amt, TLI.getShiftAmountTy()));
1348        N = DAG.getNode(ISD::ADD, N.getValueType(), N, IdxN);
1349        continue;
1350      }
1351
1352      SDOperand Scale = getIntPtrConstant(ElementSize);
1353      IdxN = DAG.getNode(ISD::MUL, N.getValueType(), IdxN, Scale);
1354      N = DAG.getNode(ISD::ADD, N.getValueType(), N, IdxN);
1355    }
1356  }
1357  setValue(&I, N);
1358}
1359
1360void SelectionDAGLowering::visitAlloca(AllocaInst &I) {
1361  // If this is a fixed sized alloca in the entry block of the function,
1362  // allocate it statically on the stack.
1363  if (FuncInfo.StaticAllocaMap.count(&I))
1364    return;   // getValue will auto-populate this.
1365
1366  const Type *Ty = I.getAllocatedType();
1367  uint64_t TySize = TLI.getTargetData()->getTypeSize(Ty);
1368  unsigned Align = std::max((unsigned)TLI.getTargetData()->getTypeAlignment(Ty),
1369                            I.getAlignment());
1370
1371  SDOperand AllocSize = getValue(I.getArraySize());
1372  MVT::ValueType IntPtr = TLI.getPointerTy();
1373  if (IntPtr < AllocSize.getValueType())
1374    AllocSize = DAG.getNode(ISD::TRUNCATE, IntPtr, AllocSize);
1375  else if (IntPtr > AllocSize.getValueType())
1376    AllocSize = DAG.getNode(ISD::ZERO_EXTEND, IntPtr, AllocSize);
1377
1378  AllocSize = DAG.getNode(ISD::MUL, IntPtr, AllocSize,
1379                          getIntPtrConstant(TySize));
1380
1381  // Handle alignment.  If the requested alignment is less than or equal to the
1382  // stack alignment, ignore it and round the size of the allocation up to the
1383  // stack alignment size.  If the size is greater than the stack alignment, we
1384  // note this in the DYNAMIC_STACKALLOC node.
1385  unsigned StackAlign =
1386    TLI.getTargetMachine().getFrameInfo()->getStackAlignment();
1387  if (Align <= StackAlign) {
1388    Align = 0;
1389    // Add SA-1 to the size.
1390    AllocSize = DAG.getNode(ISD::ADD, AllocSize.getValueType(), AllocSize,
1391                            getIntPtrConstant(StackAlign-1));
1392    // Mask out the low bits for alignment purposes.
1393    AllocSize = DAG.getNode(ISD::AND, AllocSize.getValueType(), AllocSize,
1394                            getIntPtrConstant(~(uint64_t)(StackAlign-1)));
1395  }
1396
1397  SDOperand Ops[] = { getRoot(), AllocSize, getIntPtrConstant(Align) };
1398  const MVT::ValueType *VTs = DAG.getNodeValueTypes(AllocSize.getValueType(),
1399                                                    MVT::Other);
1400  SDOperand DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, VTs, 2, Ops, 3);
1401  DAG.setRoot(setValue(&I, DSA).getValue(1));
1402
1403  // Inform the Frame Information that we have just allocated a variable-sized
1404  // object.
1405  CurMBB->getParent()->getFrameInfo()->CreateVariableSizedObject();
1406}
1407
1408void SelectionDAGLowering::visitLoad(LoadInst &I) {
1409  SDOperand Ptr = getValue(I.getOperand(0));
1410
1411  SDOperand Root;
1412  if (I.isVolatile())
1413    Root = getRoot();
1414  else {
1415    // Do not serialize non-volatile loads against each other.
1416    Root = DAG.getRoot();
1417  }
1418
1419  setValue(&I, getLoadFrom(I.getType(), Ptr, I.getOperand(0),
1420                           Root, I.isVolatile()));
1421}
1422
1423SDOperand SelectionDAGLowering::getLoadFrom(const Type *Ty, SDOperand Ptr,
1424                                            const Value *SV, SDOperand Root,
1425                                            bool isVolatile) {
1426  SDOperand L;
1427  if (const PackedType *PTy = dyn_cast<PackedType>(Ty)) {
1428    MVT::ValueType PVT = TLI.getValueType(PTy->getElementType());
1429    L = DAG.getVecLoad(PTy->getNumElements(), PVT, Root, Ptr,
1430                       DAG.getSrcValue(SV));
1431  } else {
1432    L = DAG.getLoad(TLI.getValueType(Ty), Root, Ptr, SV, isVolatile);
1433  }
1434
1435  if (isVolatile)
1436    DAG.setRoot(L.getValue(1));
1437  else
1438    PendingLoads.push_back(L.getValue(1));
1439
1440  return L;
1441}
1442
1443
1444void SelectionDAGLowering::visitStore(StoreInst &I) {
1445  Value *SrcV = I.getOperand(0);
1446  SDOperand Src = getValue(SrcV);
1447  SDOperand Ptr = getValue(I.getOperand(1));
1448  DAG.setRoot(DAG.getStore(getRoot(), Src, Ptr, I.getOperand(1),
1449                           I.isVolatile()));
1450}
1451
1452/// IntrinsicCannotAccessMemory - Return true if the specified intrinsic cannot
1453/// access memory and has no other side effects at all.
1454static bool IntrinsicCannotAccessMemory(unsigned IntrinsicID) {
1455#define GET_NO_MEMORY_INTRINSICS
1456#include "llvm/Intrinsics.gen"
1457#undef GET_NO_MEMORY_INTRINSICS
1458  return false;
1459}
1460
1461// IntrinsicOnlyReadsMemory - Return true if the specified intrinsic doesn't
1462// have any side-effects or if it only reads memory.
1463static bool IntrinsicOnlyReadsMemory(unsigned IntrinsicID) {
1464#define GET_SIDE_EFFECT_INFO
1465#include "llvm/Intrinsics.gen"
1466#undef GET_SIDE_EFFECT_INFO
1467  return false;
1468}
1469
1470/// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
1471/// node.
1472void SelectionDAGLowering::visitTargetIntrinsic(CallInst &I,
1473                                                unsigned Intrinsic) {
1474  bool HasChain = !IntrinsicCannotAccessMemory(Intrinsic);
1475  bool OnlyLoad = HasChain && IntrinsicOnlyReadsMemory(Intrinsic);
1476
1477  // Build the operand list.
1478  SmallVector<SDOperand, 8> Ops;
1479  if (HasChain) {  // If this intrinsic has side-effects, chainify it.
1480    if (OnlyLoad) {
1481      // We don't need to serialize loads against other loads.
1482      Ops.push_back(DAG.getRoot());
1483    } else {
1484      Ops.push_back(getRoot());
1485    }
1486  }
1487
1488  // Add the intrinsic ID as an integer operand.
1489  Ops.push_back(DAG.getConstant(Intrinsic, TLI.getPointerTy()));
1490
1491  // Add all operands of the call to the operand list.
1492  for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) {
1493    SDOperand Op = getValue(I.getOperand(i));
1494
1495    // If this is a vector type, force it to the right packed type.
1496    if (Op.getValueType() == MVT::Vector) {
1497      const PackedType *OpTy = cast<PackedType>(I.getOperand(i)->getType());
1498      MVT::ValueType EltVT = TLI.getValueType(OpTy->getElementType());
1499
1500      MVT::ValueType VVT = MVT::getVectorType(EltVT, OpTy->getNumElements());
1501      assert(VVT != MVT::Other && "Intrinsic uses a non-legal type?");
1502      Op = DAG.getNode(ISD::VBIT_CONVERT, VVT, Op);
1503    }
1504
1505    assert(TLI.isTypeLegal(Op.getValueType()) &&
1506           "Intrinsic uses a non-legal type?");
1507    Ops.push_back(Op);
1508  }
1509
1510  std::vector<MVT::ValueType> VTs;
1511  if (I.getType() != Type::VoidTy) {
1512    MVT::ValueType VT = TLI.getValueType(I.getType());
1513    if (VT == MVT::Vector) {
1514      const PackedType *DestTy = cast<PackedType>(I.getType());
1515      MVT::ValueType EltVT = TLI.getValueType(DestTy->getElementType());
1516
1517      VT = MVT::getVectorType(EltVT, DestTy->getNumElements());
1518      assert(VT != MVT::Other && "Intrinsic uses a non-legal type?");
1519    }
1520
1521    assert(TLI.isTypeLegal(VT) && "Intrinsic uses a non-legal type?");
1522    VTs.push_back(VT);
1523  }
1524  if (HasChain)
1525    VTs.push_back(MVT::Other);
1526
1527  const MVT::ValueType *VTList = DAG.getNodeValueTypes(VTs);
1528
1529  // Create the node.
1530  SDOperand Result;
1531  if (!HasChain)
1532    Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, VTList, VTs.size(),
1533                         &Ops[0], Ops.size());
1534  else if (I.getType() != Type::VoidTy)
1535    Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, VTList, VTs.size(),
1536                         &Ops[0], Ops.size());
1537  else
1538    Result = DAG.getNode(ISD::INTRINSIC_VOID, VTList, VTs.size(),
1539                         &Ops[0], Ops.size());
1540
1541  if (HasChain) {
1542    SDOperand Chain = Result.getValue(Result.Val->getNumValues()-1);
1543    if (OnlyLoad)
1544      PendingLoads.push_back(Chain);
1545    else
1546      DAG.setRoot(Chain);
1547  }
1548  if (I.getType() != Type::VoidTy) {
1549    if (const PackedType *PTy = dyn_cast<PackedType>(I.getType())) {
1550      MVT::ValueType EVT = TLI.getValueType(PTy->getElementType());
1551      Result = DAG.getNode(ISD::VBIT_CONVERT, MVT::Vector, Result,
1552                           DAG.getConstant(PTy->getNumElements(), MVT::i32),
1553                           DAG.getValueType(EVT));
1554    }
1555    setValue(&I, Result);
1556  }
1557}
1558
1559/// visitIntrinsicCall - Lower the call to the specified intrinsic function.  If
1560/// we want to emit this as a call to a named external function, return the name
1561/// otherwise lower it and return null.
1562const char *
1563SelectionDAGLowering::visitIntrinsicCall(CallInst &I, unsigned Intrinsic) {
1564  switch (Intrinsic) {
1565  default:
1566    // By default, turn this into a target intrinsic node.
1567    visitTargetIntrinsic(I, Intrinsic);
1568    return 0;
1569  case Intrinsic::vastart:  visitVAStart(I); return 0;
1570  case Intrinsic::vaend:    visitVAEnd(I); return 0;
1571  case Intrinsic::vacopy:   visitVACopy(I); return 0;
1572  case Intrinsic::returnaddress: visitFrameReturnAddress(I, false); return 0;
1573  case Intrinsic::frameaddress:  visitFrameReturnAddress(I, true); return 0;
1574  case Intrinsic::setjmp:
1575    return "_setjmp"+!TLI.usesUnderscoreSetJmpLongJmp();
1576    break;
1577  case Intrinsic::longjmp:
1578    return "_longjmp"+!TLI.usesUnderscoreSetJmpLongJmp();
1579    break;
1580  case Intrinsic::memcpy_i32:
1581  case Intrinsic::memcpy_i64:
1582    visitMemIntrinsic(I, ISD::MEMCPY);
1583    return 0;
1584  case Intrinsic::memset_i32:
1585  case Intrinsic::memset_i64:
1586    visitMemIntrinsic(I, ISD::MEMSET);
1587    return 0;
1588  case Intrinsic::memmove_i32:
1589  case Intrinsic::memmove_i64:
1590    visitMemIntrinsic(I, ISD::MEMMOVE);
1591    return 0;
1592
1593  case Intrinsic::dbg_stoppoint: {
1594    MachineDebugInfo *DebugInfo = DAG.getMachineDebugInfo();
1595    DbgStopPointInst &SPI = cast<DbgStopPointInst>(I);
1596    if (DebugInfo && SPI.getContext() && DebugInfo->Verify(SPI.getContext())) {
1597      SDOperand Ops[5];
1598
1599      Ops[0] = getRoot();
1600      Ops[1] = getValue(SPI.getLineValue());
1601      Ops[2] = getValue(SPI.getColumnValue());
1602
1603      DebugInfoDesc *DD = DebugInfo->getDescFor(SPI.getContext());
1604      assert(DD && "Not a debug information descriptor");
1605      CompileUnitDesc *CompileUnit = cast<CompileUnitDesc>(DD);
1606
1607      Ops[3] = DAG.getString(CompileUnit->getFileName());
1608      Ops[4] = DAG.getString(CompileUnit->getDirectory());
1609
1610      DAG.setRoot(DAG.getNode(ISD::LOCATION, MVT::Other, Ops, 5));
1611    }
1612
1613    return 0;
1614  }
1615  case Intrinsic::dbg_region_start: {
1616    MachineDebugInfo *DebugInfo = DAG.getMachineDebugInfo();
1617    DbgRegionStartInst &RSI = cast<DbgRegionStartInst>(I);
1618    if (DebugInfo && RSI.getContext() && DebugInfo->Verify(RSI.getContext())) {
1619      unsigned LabelID = DebugInfo->RecordRegionStart(RSI.getContext());
1620      DAG.setRoot(DAG.getNode(ISD::DEBUG_LABEL, MVT::Other, getRoot(),
1621                              DAG.getConstant(LabelID, MVT::i32)));
1622    }
1623
1624    return 0;
1625  }
1626  case Intrinsic::dbg_region_end: {
1627    MachineDebugInfo *DebugInfo = DAG.getMachineDebugInfo();
1628    DbgRegionEndInst &REI = cast<DbgRegionEndInst>(I);
1629    if (DebugInfo && REI.getContext() && DebugInfo->Verify(REI.getContext())) {
1630      unsigned LabelID = DebugInfo->RecordRegionEnd(REI.getContext());
1631      DAG.setRoot(DAG.getNode(ISD::DEBUG_LABEL, MVT::Other,
1632                              getRoot(), DAG.getConstant(LabelID, MVT::i32)));
1633    }
1634
1635    return 0;
1636  }
1637  case Intrinsic::dbg_func_start: {
1638    MachineDebugInfo *DebugInfo = DAG.getMachineDebugInfo();
1639    DbgFuncStartInst &FSI = cast<DbgFuncStartInst>(I);
1640    if (DebugInfo && FSI.getSubprogram() &&
1641        DebugInfo->Verify(FSI.getSubprogram())) {
1642      unsigned LabelID = DebugInfo->RecordRegionStart(FSI.getSubprogram());
1643      DAG.setRoot(DAG.getNode(ISD::DEBUG_LABEL, MVT::Other,
1644                  getRoot(), DAG.getConstant(LabelID, MVT::i32)));
1645    }
1646
1647    return 0;
1648  }
1649  case Intrinsic::dbg_declare: {
1650    MachineDebugInfo *DebugInfo = DAG.getMachineDebugInfo();
1651    DbgDeclareInst &DI = cast<DbgDeclareInst>(I);
1652    if (DebugInfo && DI.getVariable() && DebugInfo->Verify(DI.getVariable())) {
1653      SDOperand AddressOp  = getValue(DI.getAddress());
1654      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(AddressOp))
1655        DebugInfo->RecordVariable(DI.getVariable(), FI->getIndex());
1656    }
1657
1658    return 0;
1659  }
1660
1661  case Intrinsic::isunordered_f32:
1662  case Intrinsic::isunordered_f64:
1663    setValue(&I, DAG.getSetCC(MVT::i1,getValue(I.getOperand(1)),
1664                              getValue(I.getOperand(2)), ISD::SETUO));
1665    return 0;
1666
1667  case Intrinsic::sqrt_f32:
1668  case Intrinsic::sqrt_f64:
1669    setValue(&I, DAG.getNode(ISD::FSQRT,
1670                             getValue(I.getOperand(1)).getValueType(),
1671                             getValue(I.getOperand(1))));
1672    return 0;
1673  case Intrinsic::powi_f32:
1674  case Intrinsic::powi_f64:
1675    setValue(&I, DAG.getNode(ISD::FPOWI,
1676                             getValue(I.getOperand(1)).getValueType(),
1677                             getValue(I.getOperand(1)),
1678                             getValue(I.getOperand(2))));
1679    return 0;
1680  case Intrinsic::pcmarker: {
1681    SDOperand Tmp = getValue(I.getOperand(1));
1682    DAG.setRoot(DAG.getNode(ISD::PCMARKER, MVT::Other, getRoot(), Tmp));
1683    return 0;
1684  }
1685  case Intrinsic::readcyclecounter: {
1686    SDOperand Op = getRoot();
1687    SDOperand Tmp = DAG.getNode(ISD::READCYCLECOUNTER,
1688                                DAG.getNodeValueTypes(MVT::i64, MVT::Other), 2,
1689                                &Op, 1);
1690    setValue(&I, Tmp);
1691    DAG.setRoot(Tmp.getValue(1));
1692    return 0;
1693  }
1694  case Intrinsic::bswap_i16:
1695  case Intrinsic::bswap_i32:
1696  case Intrinsic::bswap_i64:
1697    setValue(&I, DAG.getNode(ISD::BSWAP,
1698                             getValue(I.getOperand(1)).getValueType(),
1699                             getValue(I.getOperand(1))));
1700    return 0;
1701  case Intrinsic::cttz_i8:
1702  case Intrinsic::cttz_i16:
1703  case Intrinsic::cttz_i32:
1704  case Intrinsic::cttz_i64:
1705    setValue(&I, DAG.getNode(ISD::CTTZ,
1706                             getValue(I.getOperand(1)).getValueType(),
1707                             getValue(I.getOperand(1))));
1708    return 0;
1709  case Intrinsic::ctlz_i8:
1710  case Intrinsic::ctlz_i16:
1711  case Intrinsic::ctlz_i32:
1712  case Intrinsic::ctlz_i64:
1713    setValue(&I, DAG.getNode(ISD::CTLZ,
1714                             getValue(I.getOperand(1)).getValueType(),
1715                             getValue(I.getOperand(1))));
1716    return 0;
1717  case Intrinsic::ctpop_i8:
1718  case Intrinsic::ctpop_i16:
1719  case Intrinsic::ctpop_i32:
1720  case Intrinsic::ctpop_i64:
1721    setValue(&I, DAG.getNode(ISD::CTPOP,
1722                             getValue(I.getOperand(1)).getValueType(),
1723                             getValue(I.getOperand(1))));
1724    return 0;
1725  case Intrinsic::stacksave: {
1726    SDOperand Op = getRoot();
1727    SDOperand Tmp = DAG.getNode(ISD::STACKSAVE,
1728              DAG.getNodeValueTypes(TLI.getPointerTy(), MVT::Other), 2, &Op, 1);
1729    setValue(&I, Tmp);
1730    DAG.setRoot(Tmp.getValue(1));
1731    return 0;
1732  }
1733  case Intrinsic::stackrestore: {
1734    SDOperand Tmp = getValue(I.getOperand(1));
1735    DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, MVT::Other, getRoot(), Tmp));
1736    return 0;
1737  }
1738  case Intrinsic::prefetch:
1739    // FIXME: Currently discarding prefetches.
1740    return 0;
1741  }
1742}
1743
1744
1745void SelectionDAGLowering::visitCall(CallInst &I) {
1746  const char *RenameFn = 0;
1747  if (Function *F = I.getCalledFunction()) {
1748    if (F->isExternal())
1749      if (unsigned IID = F->getIntrinsicID()) {
1750        RenameFn = visitIntrinsicCall(I, IID);
1751        if (!RenameFn)
1752          return;
1753      } else {    // Not an LLVM intrinsic.
1754        const std::string &Name = F->getName();
1755        if (Name[0] == 'c' && (Name == "copysign" || Name == "copysignf")) {
1756          if (I.getNumOperands() == 3 &&   // Basic sanity checks.
1757              I.getOperand(1)->getType()->isFloatingPoint() &&
1758              I.getType() == I.getOperand(1)->getType() &&
1759              I.getType() == I.getOperand(2)->getType()) {
1760            SDOperand LHS = getValue(I.getOperand(1));
1761            SDOperand RHS = getValue(I.getOperand(2));
1762            setValue(&I, DAG.getNode(ISD::FCOPYSIGN, LHS.getValueType(),
1763                                     LHS, RHS));
1764            return;
1765          }
1766        } else if (Name[0] == 'f' && (Name == "fabs" || Name == "fabsf")) {
1767          if (I.getNumOperands() == 2 &&   // Basic sanity checks.
1768              I.getOperand(1)->getType()->isFloatingPoint() &&
1769              I.getType() == I.getOperand(1)->getType()) {
1770            SDOperand Tmp = getValue(I.getOperand(1));
1771            setValue(&I, DAG.getNode(ISD::FABS, Tmp.getValueType(), Tmp));
1772            return;
1773          }
1774        } else if (Name[0] == 's' && (Name == "sin" || Name == "sinf")) {
1775          if (I.getNumOperands() == 2 &&   // Basic sanity checks.
1776              I.getOperand(1)->getType()->isFloatingPoint() &&
1777              I.getType() == I.getOperand(1)->getType()) {
1778            SDOperand Tmp = getValue(I.getOperand(1));
1779            setValue(&I, DAG.getNode(ISD::FSIN, Tmp.getValueType(), Tmp));
1780            return;
1781          }
1782        } else if (Name[0] == 'c' && (Name == "cos" || Name == "cosf")) {
1783          if (I.getNumOperands() == 2 &&   // Basic sanity checks.
1784              I.getOperand(1)->getType()->isFloatingPoint() &&
1785              I.getType() == I.getOperand(1)->getType()) {
1786            SDOperand Tmp = getValue(I.getOperand(1));
1787            setValue(&I, DAG.getNode(ISD::FCOS, Tmp.getValueType(), Tmp));
1788            return;
1789          }
1790        }
1791      }
1792  } else if (isa<InlineAsm>(I.getOperand(0))) {
1793    visitInlineAsm(I);
1794    return;
1795  }
1796
1797  SDOperand Callee;
1798  if (!RenameFn)
1799    Callee = getValue(I.getOperand(0));
1800  else
1801    Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy());
1802  std::vector<std::pair<SDOperand, const Type*> > Args;
1803  Args.reserve(I.getNumOperands());
1804  for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) {
1805    Value *Arg = I.getOperand(i);
1806    SDOperand ArgNode = getValue(Arg);
1807    Args.push_back(std::make_pair(ArgNode, Arg->getType()));
1808  }
1809
1810  const PointerType *PT = cast<PointerType>(I.getCalledValue()->getType());
1811  const FunctionType *FTy = cast<FunctionType>(PT->getElementType());
1812
1813  std::pair<SDOperand,SDOperand> Result =
1814    TLI.LowerCallTo(getRoot(), I.getType(), FTy->isVarArg(), I.getCallingConv(),
1815                    I.isTailCall(), Callee, Args, DAG);
1816  if (I.getType() != Type::VoidTy)
1817    setValue(&I, Result.first);
1818  DAG.setRoot(Result.second);
1819}
1820
1821SDOperand RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
1822                                        SDOperand &Chain, SDOperand &Flag)const{
1823  SDOperand Val = DAG.getCopyFromReg(Chain, Regs[0], RegVT, Flag);
1824  Chain = Val.getValue(1);
1825  Flag  = Val.getValue(2);
1826
1827  // If the result was expanded, copy from the top part.
1828  if (Regs.size() > 1) {
1829    assert(Regs.size() == 2 &&
1830           "Cannot expand to more than 2 elts yet!");
1831    SDOperand Hi = DAG.getCopyFromReg(Chain, Regs[1], RegVT, Flag);
1832    Chain = Hi.getValue(1);
1833    Flag  = Hi.getValue(2);
1834    if (DAG.getTargetLoweringInfo().isLittleEndian())
1835      return DAG.getNode(ISD::BUILD_PAIR, ValueVT, Val, Hi);
1836    else
1837      return DAG.getNode(ISD::BUILD_PAIR, ValueVT, Hi, Val);
1838  }
1839
1840  // Otherwise, if the return value was promoted or extended, truncate it to the
1841  // appropriate type.
1842  if (RegVT == ValueVT)
1843    return Val;
1844
1845  if (MVT::isInteger(RegVT)) {
1846    if (ValueVT < RegVT)
1847      return DAG.getNode(ISD::TRUNCATE, ValueVT, Val);
1848    else
1849      return DAG.getNode(ISD::ANY_EXTEND, ValueVT, Val);
1850  } else {
1851    return DAG.getNode(ISD::FP_ROUND, ValueVT, Val);
1852  }
1853}
1854
1855/// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
1856/// specified value into the registers specified by this object.  This uses
1857/// Chain/Flag as the input and updates them for the output Chain/Flag.
1858void RegsForValue::getCopyToRegs(SDOperand Val, SelectionDAG &DAG,
1859                                 SDOperand &Chain, SDOperand &Flag,
1860                                 MVT::ValueType PtrVT) const {
1861  if (Regs.size() == 1) {
1862    // If there is a single register and the types differ, this must be
1863    // a promotion.
1864    if (RegVT != ValueVT) {
1865      if (MVT::isInteger(RegVT)) {
1866        if (RegVT < ValueVT)
1867          Val = DAG.getNode(ISD::TRUNCATE, RegVT, Val);
1868        else
1869          Val = DAG.getNode(ISD::ANY_EXTEND, RegVT, Val);
1870      } else
1871        Val = DAG.getNode(ISD::FP_EXTEND, RegVT, Val);
1872    }
1873    Chain = DAG.getCopyToReg(Chain, Regs[0], Val, Flag);
1874    Flag = Chain.getValue(1);
1875  } else {
1876    std::vector<unsigned> R(Regs);
1877    if (!DAG.getTargetLoweringInfo().isLittleEndian())
1878      std::reverse(R.begin(), R.end());
1879
1880    for (unsigned i = 0, e = R.size(); i != e; ++i) {
1881      SDOperand Part = DAG.getNode(ISD::EXTRACT_ELEMENT, RegVT, Val,
1882                                   DAG.getConstant(i, PtrVT));
1883      Chain = DAG.getCopyToReg(Chain, R[i], Part, Flag);
1884      Flag = Chain.getValue(1);
1885    }
1886  }
1887}
1888
1889/// AddInlineAsmOperands - Add this value to the specified inlineasm node
1890/// operand list.  This adds the code marker and includes the number of
1891/// values added into it.
1892void RegsForValue::AddInlineAsmOperands(unsigned Code, SelectionDAG &DAG,
1893                                        std::vector<SDOperand> &Ops) const {
1894  Ops.push_back(DAG.getConstant(Code | (Regs.size() << 3), MVT::i32));
1895  for (unsigned i = 0, e = Regs.size(); i != e; ++i)
1896    Ops.push_back(DAG.getRegister(Regs[i], RegVT));
1897}
1898
1899/// isAllocatableRegister - If the specified register is safe to allocate,
1900/// i.e. it isn't a stack pointer or some other special register, return the
1901/// register class for the register.  Otherwise, return null.
1902static const TargetRegisterClass *
1903isAllocatableRegister(unsigned Reg, MachineFunction &MF,
1904                      const TargetLowering &TLI, const MRegisterInfo *MRI) {
1905  MVT::ValueType FoundVT = MVT::Other;
1906  const TargetRegisterClass *FoundRC = 0;
1907  for (MRegisterInfo::regclass_iterator RCI = MRI->regclass_begin(),
1908       E = MRI->regclass_end(); RCI != E; ++RCI) {
1909    MVT::ValueType ThisVT = MVT::Other;
1910
1911    const TargetRegisterClass *RC = *RCI;
1912    // If none of the the value types for this register class are valid, we
1913    // can't use it.  For example, 64-bit reg classes on 32-bit targets.
1914    for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
1915         I != E; ++I) {
1916      if (TLI.isTypeLegal(*I)) {
1917        // If we have already found this register in a different register class,
1918        // choose the one with the largest VT specified.  For example, on
1919        // PowerPC, we favor f64 register classes over f32.
1920        if (FoundVT == MVT::Other ||
1921            MVT::getSizeInBits(FoundVT) < MVT::getSizeInBits(*I)) {
1922          ThisVT = *I;
1923          break;
1924        }
1925      }
1926    }
1927
1928    if (ThisVT == MVT::Other) continue;
1929
1930    // NOTE: This isn't ideal.  In particular, this might allocate the
1931    // frame pointer in functions that need it (due to them not being taken
1932    // out of allocation, because a variable sized allocation hasn't been seen
1933    // yet).  This is a slight code pessimization, but should still work.
1934    for (TargetRegisterClass::iterator I = RC->allocation_order_begin(MF),
1935         E = RC->allocation_order_end(MF); I != E; ++I)
1936      if (*I == Reg) {
1937        // We found a matching register class.  Keep looking at others in case
1938        // we find one with larger registers that this physreg is also in.
1939        FoundRC = RC;
1940        FoundVT = ThisVT;
1941        break;
1942      }
1943  }
1944  return FoundRC;
1945}
1946
1947RegsForValue SelectionDAGLowering::
1948GetRegistersForValue(const std::string &ConstrCode,
1949                     MVT::ValueType VT, bool isOutReg, bool isInReg,
1950                     std::set<unsigned> &OutputRegs,
1951                     std::set<unsigned> &InputRegs) {
1952  std::pair<unsigned, const TargetRegisterClass*> PhysReg =
1953    TLI.getRegForInlineAsmConstraint(ConstrCode, VT);
1954  std::vector<unsigned> Regs;
1955
1956  unsigned NumRegs = VT != MVT::Other ? TLI.getNumElements(VT) : 1;
1957  MVT::ValueType RegVT;
1958  MVT::ValueType ValueVT = VT;
1959
1960  if (PhysReg.first) {
1961    if (VT == MVT::Other)
1962      ValueVT = *PhysReg.second->vt_begin();
1963
1964    // Get the actual register value type.  This is important, because the user
1965    // may have asked for (e.g.) the AX register in i32 type.  We need to
1966    // remember that AX is actually i16 to get the right extension.
1967    RegVT = *PhysReg.second->vt_begin();
1968
1969    // This is a explicit reference to a physical register.
1970    Regs.push_back(PhysReg.first);
1971
1972    // If this is an expanded reference, add the rest of the regs to Regs.
1973    if (NumRegs != 1) {
1974      TargetRegisterClass::iterator I = PhysReg.second->begin();
1975      TargetRegisterClass::iterator E = PhysReg.second->end();
1976      for (; *I != PhysReg.first; ++I)
1977        assert(I != E && "Didn't find reg!");
1978
1979      // Already added the first reg.
1980      --NumRegs; ++I;
1981      for (; NumRegs; --NumRegs, ++I) {
1982        assert(I != E && "Ran out of registers to allocate!");
1983        Regs.push_back(*I);
1984      }
1985    }
1986    return RegsForValue(Regs, RegVT, ValueVT);
1987  }
1988
1989  // This is a reference to a register class.  Allocate NumRegs consecutive,
1990  // available, registers from the class.
1991  std::vector<unsigned> RegClassRegs =
1992    TLI.getRegClassForInlineAsmConstraint(ConstrCode, VT);
1993
1994  const MRegisterInfo *MRI = DAG.getTarget().getRegisterInfo();
1995  MachineFunction &MF = *CurMBB->getParent();
1996  unsigned NumAllocated = 0;
1997  for (unsigned i = 0, e = RegClassRegs.size(); i != e; ++i) {
1998    unsigned Reg = RegClassRegs[i];
1999    // See if this register is available.
2000    if ((isOutReg && OutputRegs.count(Reg)) ||   // Already used.
2001        (isInReg  && InputRegs.count(Reg))) {    // Already used.
2002      // Make sure we find consecutive registers.
2003      NumAllocated = 0;
2004      continue;
2005    }
2006
2007    // Check to see if this register is allocatable (i.e. don't give out the
2008    // stack pointer).
2009    const TargetRegisterClass *RC = isAllocatableRegister(Reg, MF, TLI, MRI);
2010    if (!RC) {
2011      // Make sure we find consecutive registers.
2012      NumAllocated = 0;
2013      continue;
2014    }
2015
2016    // Okay, this register is good, we can use it.
2017    ++NumAllocated;
2018
2019    // If we allocated enough consecutive
2020    if (NumAllocated == NumRegs) {
2021      unsigned RegStart = (i-NumAllocated)+1;
2022      unsigned RegEnd   = i+1;
2023      // Mark all of the allocated registers used.
2024      for (unsigned i = RegStart; i != RegEnd; ++i) {
2025        unsigned Reg = RegClassRegs[i];
2026        Regs.push_back(Reg);
2027        if (isOutReg) OutputRegs.insert(Reg);    // Mark reg used.
2028        if (isInReg)  InputRegs.insert(Reg);     // Mark reg used.
2029      }
2030
2031      return RegsForValue(Regs, *RC->vt_begin(), VT);
2032    }
2033  }
2034
2035  // Otherwise, we couldn't allocate enough registers for this.
2036  return RegsForValue();
2037}
2038
2039
2040/// visitInlineAsm - Handle a call to an InlineAsm object.
2041///
2042void SelectionDAGLowering::visitInlineAsm(CallInst &I) {
2043  InlineAsm *IA = cast<InlineAsm>(I.getOperand(0));
2044
2045  SDOperand AsmStr = DAG.getTargetExternalSymbol(IA->getAsmString().c_str(),
2046                                                 MVT::Other);
2047
2048  // Note, we treat inline asms both with and without side-effects as the same.
2049  // If an inline asm doesn't have side effects and doesn't access memory, we
2050  // could not choose to not chain it.
2051  bool hasSideEffects = IA->hasSideEffects();
2052
2053  std::vector<InlineAsm::ConstraintInfo> Constraints = IA->ParseConstraints();
2054  std::vector<MVT::ValueType> ConstraintVTs;
2055
2056  /// AsmNodeOperands - A list of pairs.  The first element is a register, the
2057  /// second is a bitfield where bit #0 is set if it is a use and bit #1 is set
2058  /// if it is a def of that register.
2059  std::vector<SDOperand> AsmNodeOperands;
2060  AsmNodeOperands.push_back(SDOperand());  // reserve space for input chain
2061  AsmNodeOperands.push_back(AsmStr);
2062
2063  SDOperand Chain = getRoot();
2064  SDOperand Flag;
2065
2066  // We fully assign registers here at isel time.  This is not optimal, but
2067  // should work.  For register classes that correspond to LLVM classes, we
2068  // could let the LLVM RA do its thing, but we currently don't.  Do a prepass
2069  // over the constraints, collecting fixed registers that we know we can't use.
2070  std::set<unsigned> OutputRegs, InputRegs;
2071  unsigned OpNum = 1;
2072  for (unsigned i = 0, e = Constraints.size(); i != e; ++i) {
2073    assert(Constraints[i].Codes.size() == 1 && "Only handles one code so far!");
2074    std::string &ConstraintCode = Constraints[i].Codes[0];
2075
2076    MVT::ValueType OpVT;
2077
2078    // Compute the value type for each operand and add it to ConstraintVTs.
2079    switch (Constraints[i].Type) {
2080    case InlineAsm::isOutput:
2081      if (!Constraints[i].isIndirectOutput) {
2082        assert(I.getType() != Type::VoidTy && "Bad inline asm!");
2083        OpVT = TLI.getValueType(I.getType());
2084      } else {
2085        const Type *OpTy = I.getOperand(OpNum)->getType();
2086        OpVT = TLI.getValueType(cast<PointerType>(OpTy)->getElementType());
2087        OpNum++;  // Consumes a call operand.
2088      }
2089      break;
2090    case InlineAsm::isInput:
2091      OpVT = TLI.getValueType(I.getOperand(OpNum)->getType());
2092      OpNum++;  // Consumes a call operand.
2093      break;
2094    case InlineAsm::isClobber:
2095      OpVT = MVT::Other;
2096      break;
2097    }
2098
2099    ConstraintVTs.push_back(OpVT);
2100
2101    if (TLI.getRegForInlineAsmConstraint(ConstraintCode, OpVT).first == 0)
2102      continue;  // Not assigned a fixed reg.
2103
2104    // Build a list of regs that this operand uses.  This always has a single
2105    // element for promoted/expanded operands.
2106    RegsForValue Regs = GetRegistersForValue(ConstraintCode, OpVT,
2107                                             false, false,
2108                                             OutputRegs, InputRegs);
2109
2110    switch (Constraints[i].Type) {
2111    case InlineAsm::isOutput:
2112      // We can't assign any other output to this register.
2113      OutputRegs.insert(Regs.Regs.begin(), Regs.Regs.end());
2114      // If this is an early-clobber output, it cannot be assigned to the same
2115      // value as the input reg.
2116      if (Constraints[i].isEarlyClobber || Constraints[i].hasMatchingInput)
2117        InputRegs.insert(Regs.Regs.begin(), Regs.Regs.end());
2118      break;
2119    case InlineAsm::isInput:
2120      // We can't assign any other input to this register.
2121      InputRegs.insert(Regs.Regs.begin(), Regs.Regs.end());
2122      break;
2123    case InlineAsm::isClobber:
2124      // Clobbered regs cannot be used as inputs or outputs.
2125      InputRegs.insert(Regs.Regs.begin(), Regs.Regs.end());
2126      OutputRegs.insert(Regs.Regs.begin(), Regs.Regs.end());
2127      break;
2128    }
2129  }
2130
2131  // Loop over all of the inputs, copying the operand values into the
2132  // appropriate registers and processing the output regs.
2133  RegsForValue RetValRegs;
2134  std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit;
2135  OpNum = 1;
2136
2137  for (unsigned i = 0, e = Constraints.size(); i != e; ++i) {
2138    assert(Constraints[i].Codes.size() == 1 && "Only handles one code so far!");
2139    std::string &ConstraintCode = Constraints[i].Codes[0];
2140
2141    switch (Constraints[i].Type) {
2142    case InlineAsm::isOutput: {
2143      TargetLowering::ConstraintType CTy = TargetLowering::C_RegisterClass;
2144      if (ConstraintCode.size() == 1)   // not a physreg name.
2145        CTy = TLI.getConstraintType(ConstraintCode[0]);
2146
2147      if (CTy == TargetLowering::C_Memory) {
2148        // Memory output.
2149        SDOperand InOperandVal = getValue(I.getOperand(OpNum));
2150
2151        // Check that the operand (the address to store to) isn't a float.
2152        if (!MVT::isInteger(InOperandVal.getValueType()))
2153          assert(0 && "MATCH FAIL!");
2154
2155        if (!Constraints[i].isIndirectOutput)
2156          assert(0 && "MATCH FAIL!");
2157
2158        OpNum++;  // Consumes a call operand.
2159
2160        // Extend/truncate to the right pointer type if needed.
2161        MVT::ValueType PtrType = TLI.getPointerTy();
2162        if (InOperandVal.getValueType() < PtrType)
2163          InOperandVal = DAG.getNode(ISD::ZERO_EXTEND, PtrType, InOperandVal);
2164        else if (InOperandVal.getValueType() > PtrType)
2165          InOperandVal = DAG.getNode(ISD::TRUNCATE, PtrType, InOperandVal);
2166
2167        // Add information to the INLINEASM node to know about this output.
2168        unsigned ResOpType = 4/*MEM*/ | (1 << 3);
2169        AsmNodeOperands.push_back(DAG.getConstant(ResOpType, MVT::i32));
2170        AsmNodeOperands.push_back(InOperandVal);
2171        break;
2172      }
2173
2174      // Otherwise, this is a register output.
2175      assert(CTy == TargetLowering::C_RegisterClass && "Unknown op type!");
2176
2177      // If this is an early-clobber output, or if there is an input
2178      // constraint that matches this, we need to reserve the input register
2179      // so no other inputs allocate to it.
2180      bool UsesInputRegister = false;
2181      if (Constraints[i].isEarlyClobber || Constraints[i].hasMatchingInput)
2182        UsesInputRegister = true;
2183
2184      // Copy the output from the appropriate register.  Find a register that
2185      // we can use.
2186      RegsForValue Regs =
2187        GetRegistersForValue(ConstraintCode, ConstraintVTs[i],
2188                             true, UsesInputRegister,
2189                             OutputRegs, InputRegs);
2190      assert(!Regs.Regs.empty() && "Couldn't allocate output reg!");
2191
2192      if (!Constraints[i].isIndirectOutput) {
2193        assert(RetValRegs.Regs.empty() &&
2194               "Cannot have multiple output constraints yet!");
2195        assert(I.getType() != Type::VoidTy && "Bad inline asm!");
2196        RetValRegs = Regs;
2197      } else {
2198        IndirectStoresToEmit.push_back(std::make_pair(Regs,
2199                                                      I.getOperand(OpNum)));
2200        OpNum++;  // Consumes a call operand.
2201      }
2202
2203      // Add information to the INLINEASM node to know that this register is
2204      // set.
2205      Regs.AddInlineAsmOperands(2 /*REGDEF*/, DAG, AsmNodeOperands);
2206      break;
2207    }
2208    case InlineAsm::isInput: {
2209      SDOperand InOperandVal = getValue(I.getOperand(OpNum));
2210      OpNum++;  // Consumes a call operand.
2211
2212      if (isdigit(ConstraintCode[0])) {    // Matching constraint?
2213        // If this is required to match an output register we have already set,
2214        // just use its register.
2215        unsigned OperandNo = atoi(ConstraintCode.c_str());
2216
2217        // Scan until we find the definition we already emitted of this operand.
2218        // When we find it, create a RegsForValue operand.
2219        unsigned CurOp = 2;  // The first operand.
2220        for (; OperandNo; --OperandNo) {
2221          // Advance to the next operand.
2222          unsigned NumOps =
2223            cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getValue();
2224          assert(((NumOps & 7) == 2 /*REGDEF*/ ||
2225                  (NumOps & 7) == 4 /*MEM*/) &&
2226                 "Skipped past definitions?");
2227          CurOp += (NumOps>>3)+1;
2228        }
2229
2230        unsigned NumOps =
2231          cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getValue();
2232        assert((NumOps & 7) == 2 /*REGDEF*/ &&
2233               "Skipped past definitions?");
2234
2235        // Add NumOps>>3 registers to MatchedRegs.
2236        RegsForValue MatchedRegs;
2237        MatchedRegs.ValueVT = InOperandVal.getValueType();
2238        MatchedRegs.RegVT   = AsmNodeOperands[CurOp+1].getValueType();
2239        for (unsigned i = 0, e = NumOps>>3; i != e; ++i) {
2240          unsigned Reg=cast<RegisterSDNode>(AsmNodeOperands[++CurOp])->getReg();
2241          MatchedRegs.Regs.push_back(Reg);
2242        }
2243
2244        // Use the produced MatchedRegs object to
2245        MatchedRegs.getCopyToRegs(InOperandVal, DAG, Chain, Flag,
2246                                  TLI.getPointerTy());
2247        MatchedRegs.AddInlineAsmOperands(1 /*REGUSE*/, DAG, AsmNodeOperands);
2248        break;
2249      }
2250
2251      TargetLowering::ConstraintType CTy = TargetLowering::C_RegisterClass;
2252      if (ConstraintCode.size() == 1)   // not a physreg name.
2253        CTy = TLI.getConstraintType(ConstraintCode[0]);
2254
2255      if (CTy == TargetLowering::C_Other) {
2256        if (!TLI.isOperandValidForConstraint(InOperandVal, ConstraintCode[0]))
2257          assert(0 && "MATCH FAIL!");
2258
2259        // Add information to the INLINEASM node to know about this input.
2260        unsigned ResOpType = 3 /*IMM*/ | (1 << 3);
2261        AsmNodeOperands.push_back(DAG.getConstant(ResOpType, MVT::i32));
2262        AsmNodeOperands.push_back(InOperandVal);
2263        break;
2264      } else if (CTy == TargetLowering::C_Memory) {
2265        // Memory input.
2266
2267        // Check that the operand isn't a float.
2268        if (!MVT::isInteger(InOperandVal.getValueType()))
2269          assert(0 && "MATCH FAIL!");
2270
2271        // Extend/truncate to the right pointer type if needed.
2272        MVT::ValueType PtrType = TLI.getPointerTy();
2273        if (InOperandVal.getValueType() < PtrType)
2274          InOperandVal = DAG.getNode(ISD::ZERO_EXTEND, PtrType, InOperandVal);
2275        else if (InOperandVal.getValueType() > PtrType)
2276          InOperandVal = DAG.getNode(ISD::TRUNCATE, PtrType, InOperandVal);
2277
2278        // Add information to the INLINEASM node to know about this input.
2279        unsigned ResOpType = 4/*MEM*/ | (1 << 3);
2280        AsmNodeOperands.push_back(DAG.getConstant(ResOpType, MVT::i32));
2281        AsmNodeOperands.push_back(InOperandVal);
2282        break;
2283      }
2284
2285      assert(CTy == TargetLowering::C_RegisterClass && "Unknown op type!");
2286
2287      // Copy the input into the appropriate registers.
2288      RegsForValue InRegs =
2289        GetRegistersForValue(ConstraintCode, ConstraintVTs[i],
2290                             false, true, OutputRegs, InputRegs);
2291      // FIXME: should be match fail.
2292      assert(!InRegs.Regs.empty() && "Couldn't allocate input reg!");
2293
2294      InRegs.getCopyToRegs(InOperandVal, DAG, Chain, Flag, TLI.getPointerTy());
2295
2296      InRegs.AddInlineAsmOperands(1/*REGUSE*/, DAG, AsmNodeOperands);
2297      break;
2298    }
2299    case InlineAsm::isClobber: {
2300      RegsForValue ClobberedRegs =
2301        GetRegistersForValue(ConstraintCode, MVT::Other, false, false,
2302                             OutputRegs, InputRegs);
2303      // Add the clobbered value to the operand list, so that the register
2304      // allocator is aware that the physreg got clobbered.
2305      if (!ClobberedRegs.Regs.empty())
2306        ClobberedRegs.AddInlineAsmOperands(2/*REGDEF*/, DAG, AsmNodeOperands);
2307      break;
2308    }
2309    }
2310  }
2311
2312  // Finish up input operands.
2313  AsmNodeOperands[0] = Chain;
2314  if (Flag.Val) AsmNodeOperands.push_back(Flag);
2315
2316  Chain = DAG.getNode(ISD::INLINEASM,
2317                      DAG.getNodeValueTypes(MVT::Other, MVT::Flag), 2,
2318                      &AsmNodeOperands[0], AsmNodeOperands.size());
2319  Flag = Chain.getValue(1);
2320
2321  // If this asm returns a register value, copy the result from that register
2322  // and set it as the value of the call.
2323  if (!RetValRegs.Regs.empty())
2324    setValue(&I, RetValRegs.getCopyFromRegs(DAG, Chain, Flag));
2325
2326  std::vector<std::pair<SDOperand, Value*> > StoresToEmit;
2327
2328  // Process indirect outputs, first output all of the flagged copies out of
2329  // physregs.
2330  for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
2331    RegsForValue &OutRegs = IndirectStoresToEmit[i].first;
2332    Value *Ptr = IndirectStoresToEmit[i].second;
2333    SDOperand OutVal = OutRegs.getCopyFromRegs(DAG, Chain, Flag);
2334    StoresToEmit.push_back(std::make_pair(OutVal, Ptr));
2335  }
2336
2337  // Emit the non-flagged stores from the physregs.
2338  SmallVector<SDOperand, 8> OutChains;
2339  for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i)
2340    OutChains.push_back(DAG.getStore(Chain,  StoresToEmit[i].first,
2341                                    getValue(StoresToEmit[i].second),
2342                                    StoresToEmit[i].second, 0));
2343  if (!OutChains.empty())
2344    Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
2345                        &OutChains[0], OutChains.size());
2346  DAG.setRoot(Chain);
2347}
2348
2349
2350void SelectionDAGLowering::visitMalloc(MallocInst &I) {
2351  SDOperand Src = getValue(I.getOperand(0));
2352
2353  MVT::ValueType IntPtr = TLI.getPointerTy();
2354
2355  if (IntPtr < Src.getValueType())
2356    Src = DAG.getNode(ISD::TRUNCATE, IntPtr, Src);
2357  else if (IntPtr > Src.getValueType())
2358    Src = DAG.getNode(ISD::ZERO_EXTEND, IntPtr, Src);
2359
2360  // Scale the source by the type size.
2361  uint64_t ElementSize = TD->getTypeSize(I.getType()->getElementType());
2362  Src = DAG.getNode(ISD::MUL, Src.getValueType(),
2363                    Src, getIntPtrConstant(ElementSize));
2364
2365  std::vector<std::pair<SDOperand, const Type*> > Args;
2366  Args.push_back(std::make_pair(Src, TLI.getTargetData()->getIntPtrType()));
2367
2368  std::pair<SDOperand,SDOperand> Result =
2369    TLI.LowerCallTo(getRoot(), I.getType(), false, CallingConv::C, true,
2370                    DAG.getExternalSymbol("malloc", IntPtr),
2371                    Args, DAG);
2372  setValue(&I, Result.first);  // Pointers always fit in registers
2373  DAG.setRoot(Result.second);
2374}
2375
2376void SelectionDAGLowering::visitFree(FreeInst &I) {
2377  std::vector<std::pair<SDOperand, const Type*> > Args;
2378  Args.push_back(std::make_pair(getValue(I.getOperand(0)),
2379                                TLI.getTargetData()->getIntPtrType()));
2380  MVT::ValueType IntPtr = TLI.getPointerTy();
2381  std::pair<SDOperand,SDOperand> Result =
2382    TLI.LowerCallTo(getRoot(), Type::VoidTy, false, CallingConv::C, true,
2383                    DAG.getExternalSymbol("free", IntPtr), Args, DAG);
2384  DAG.setRoot(Result.second);
2385}
2386
2387// InsertAtEndOfBasicBlock - This method should be implemented by targets that
2388// mark instructions with the 'usesCustomDAGSchedInserter' flag.  These
2389// instructions are special in various ways, which require special support to
2390// insert.  The specified MachineInstr is created but not inserted into any
2391// basic blocks, and the scheduler passes ownership of it to this method.
2392MachineBasicBlock *TargetLowering::InsertAtEndOfBasicBlock(MachineInstr *MI,
2393                                                       MachineBasicBlock *MBB) {
2394  std::cerr << "If a target marks an instruction with "
2395               "'usesCustomDAGSchedInserter', it must implement "
2396               "TargetLowering::InsertAtEndOfBasicBlock!\n";
2397  abort();
2398  return 0;
2399}
2400
2401void SelectionDAGLowering::visitVAStart(CallInst &I) {
2402  DAG.setRoot(DAG.getNode(ISD::VASTART, MVT::Other, getRoot(),
2403                          getValue(I.getOperand(1)),
2404                          DAG.getSrcValue(I.getOperand(1))));
2405}
2406
2407void SelectionDAGLowering::visitVAArg(VAArgInst &I) {
2408  SDOperand V = DAG.getVAArg(TLI.getValueType(I.getType()), getRoot(),
2409                             getValue(I.getOperand(0)),
2410                             DAG.getSrcValue(I.getOperand(0)));
2411  setValue(&I, V);
2412  DAG.setRoot(V.getValue(1));
2413}
2414
2415void SelectionDAGLowering::visitVAEnd(CallInst &I) {
2416  DAG.setRoot(DAG.getNode(ISD::VAEND, MVT::Other, getRoot(),
2417                          getValue(I.getOperand(1)),
2418                          DAG.getSrcValue(I.getOperand(1))));
2419}
2420
2421void SelectionDAGLowering::visitVACopy(CallInst &I) {
2422  DAG.setRoot(DAG.getNode(ISD::VACOPY, MVT::Other, getRoot(),
2423                          getValue(I.getOperand(1)),
2424                          getValue(I.getOperand(2)),
2425                          DAG.getSrcValue(I.getOperand(1)),
2426                          DAG.getSrcValue(I.getOperand(2))));
2427}
2428
2429/// TargetLowering::LowerArguments - This is the default LowerArguments
2430/// implementation, which just inserts a FORMAL_ARGUMENTS node.  FIXME: When all
2431/// targets are migrated to using FORMAL_ARGUMENTS, this hook should be
2432/// integrated into SDISel.
2433std::vector<SDOperand>
2434TargetLowering::LowerArguments(Function &F, SelectionDAG &DAG) {
2435  // Add CC# and isVararg as operands to the FORMAL_ARGUMENTS node.
2436  std::vector<SDOperand> Ops;
2437  Ops.push_back(DAG.getRoot());
2438  Ops.push_back(DAG.getConstant(F.getCallingConv(), getPointerTy()));
2439  Ops.push_back(DAG.getConstant(F.isVarArg(), getPointerTy()));
2440
2441  // Add one result value for each formal argument.
2442  std::vector<MVT::ValueType> RetVals;
2443  for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I) {
2444    MVT::ValueType VT = getValueType(I->getType());
2445
2446    switch (getTypeAction(VT)) {
2447    default: assert(0 && "Unknown type action!");
2448    case Legal:
2449      RetVals.push_back(VT);
2450      break;
2451    case Promote:
2452      RetVals.push_back(getTypeToTransformTo(VT));
2453      break;
2454    case Expand:
2455      if (VT != MVT::Vector) {
2456        // If this is a large integer, it needs to be broken up into small
2457        // integers.  Figure out what the destination type is and how many small
2458        // integers it turns into.
2459        MVT::ValueType NVT = getTypeToTransformTo(VT);
2460        unsigned NumVals = MVT::getSizeInBits(VT)/MVT::getSizeInBits(NVT);
2461        for (unsigned i = 0; i != NumVals; ++i)
2462          RetVals.push_back(NVT);
2463      } else {
2464        // Otherwise, this is a vector type.  We only support legal vectors
2465        // right now.
2466        unsigned NumElems = cast<PackedType>(I->getType())->getNumElements();
2467        const Type *EltTy = cast<PackedType>(I->getType())->getElementType();
2468
2469        // Figure out if there is a Packed type corresponding to this Vector
2470        // type.  If so, convert to the packed type.
2471        MVT::ValueType TVT = MVT::getVectorType(getValueType(EltTy), NumElems);
2472        if (TVT != MVT::Other && isTypeLegal(TVT)) {
2473          RetVals.push_back(TVT);
2474        } else {
2475          assert(0 && "Don't support illegal by-val vector arguments yet!");
2476        }
2477      }
2478      break;
2479    }
2480  }
2481
2482  RetVals.push_back(MVT::Other);
2483
2484  // Create the node.
2485  SDNode *Result = DAG.getNode(ISD::FORMAL_ARGUMENTS,
2486                               DAG.getNodeValueTypes(RetVals), RetVals.size(),
2487                               &Ops[0], Ops.size()).Val;
2488
2489  DAG.setRoot(SDOperand(Result, Result->getNumValues()-1));
2490
2491  // Set up the return result vector.
2492  Ops.clear();
2493  unsigned i = 0;
2494  for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I) {
2495    MVT::ValueType VT = getValueType(I->getType());
2496
2497    switch (getTypeAction(VT)) {
2498    default: assert(0 && "Unknown type action!");
2499    case Legal:
2500      Ops.push_back(SDOperand(Result, i++));
2501      break;
2502    case Promote: {
2503      SDOperand Op(Result, i++);
2504      if (MVT::isInteger(VT)) {
2505        unsigned AssertOp = I->getType()->isSigned() ? ISD::AssertSext
2506                                                     : ISD::AssertZext;
2507        Op = DAG.getNode(AssertOp, Op.getValueType(), Op, DAG.getValueType(VT));
2508        Op = DAG.getNode(ISD::TRUNCATE, VT, Op);
2509      } else {
2510        assert(MVT::isFloatingPoint(VT) && "Not int or FP?");
2511        Op = DAG.getNode(ISD::FP_ROUND, VT, Op);
2512      }
2513      Ops.push_back(Op);
2514      break;
2515    }
2516    case Expand:
2517      if (VT != MVT::Vector) {
2518        // If this is a large integer, it needs to be reassembled from small
2519        // integers.  Figure out what the source elt type is and how many small
2520        // integers it is.
2521        MVT::ValueType NVT = getTypeToTransformTo(VT);
2522        unsigned NumVals = MVT::getSizeInBits(VT)/MVT::getSizeInBits(NVT);
2523        if (NumVals == 2) {
2524          SDOperand Lo = SDOperand(Result, i++);
2525          SDOperand Hi = SDOperand(Result, i++);
2526
2527          if (!isLittleEndian())
2528            std::swap(Lo, Hi);
2529
2530          Ops.push_back(DAG.getNode(ISD::BUILD_PAIR, VT, Lo, Hi));
2531        } else {
2532          // Value scalarized into many values.  Unimp for now.
2533          assert(0 && "Cannot expand i64 -> i16 yet!");
2534        }
2535      } else {
2536        // Otherwise, this is a vector type.  We only support legal vectors
2537        // right now.
2538        const PackedType *PTy = cast<PackedType>(I->getType());
2539        unsigned NumElems = PTy->getNumElements();
2540        const Type *EltTy = PTy->getElementType();
2541
2542        // Figure out if there is a Packed type corresponding to this Vector
2543        // type.  If so, convert to the packed type.
2544        MVT::ValueType TVT = MVT::getVectorType(getValueType(EltTy), NumElems);
2545        if (TVT != MVT::Other && isTypeLegal(TVT)) {
2546          SDOperand N = SDOperand(Result, i++);
2547          // Handle copies from generic vectors to registers.
2548          N = DAG.getNode(ISD::VBIT_CONVERT, MVT::Vector, N,
2549                          DAG.getConstant(NumElems, MVT::i32),
2550                          DAG.getValueType(getValueType(EltTy)));
2551          Ops.push_back(N);
2552        } else {
2553          assert(0 && "Don't support illegal by-val vector arguments yet!");
2554          abort();
2555        }
2556      }
2557      break;
2558    }
2559  }
2560  return Ops;
2561}
2562
2563
2564/// TargetLowering::LowerCallTo - This is the default LowerCallTo
2565/// implementation, which just inserts an ISD::CALL node, which is later custom
2566/// lowered by the target to something concrete.  FIXME: When all targets are
2567/// migrated to using ISD::CALL, this hook should be integrated into SDISel.
2568std::pair<SDOperand, SDOperand>
2569TargetLowering::LowerCallTo(SDOperand Chain, const Type *RetTy, bool isVarArg,
2570                            unsigned CallingConv, bool isTailCall,
2571                            SDOperand Callee,
2572                            ArgListTy &Args, SelectionDAG &DAG) {
2573  SmallVector<SDOperand, 32> Ops;
2574  Ops.push_back(Chain);   // Op#0 - Chain
2575  Ops.push_back(DAG.getConstant(CallingConv, getPointerTy())); // Op#1 - CC
2576  Ops.push_back(DAG.getConstant(isVarArg, getPointerTy()));    // Op#2 - VarArg
2577  Ops.push_back(DAG.getConstant(isTailCall, getPointerTy()));  // Op#3 - Tail
2578  Ops.push_back(Callee);
2579
2580  // Handle all of the outgoing arguments.
2581  for (unsigned i = 0, e = Args.size(); i != e; ++i) {
2582    MVT::ValueType VT = getValueType(Args[i].second);
2583    SDOperand Op = Args[i].first;
2584    bool isSigned = Args[i].second->isSigned();
2585    switch (getTypeAction(VT)) {
2586    default: assert(0 && "Unknown type action!");
2587    case Legal:
2588      Ops.push_back(Op);
2589      Ops.push_back(DAG.getConstant(isSigned, MVT::i32));
2590      break;
2591    case Promote:
2592      if (MVT::isInteger(VT)) {
2593        unsigned ExtOp = isSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
2594        Op = DAG.getNode(ExtOp, getTypeToTransformTo(VT), Op);
2595      } else {
2596        assert(MVT::isFloatingPoint(VT) && "Not int or FP?");
2597        Op = DAG.getNode(ISD::FP_EXTEND, getTypeToTransformTo(VT), Op);
2598      }
2599      Ops.push_back(Op);
2600      Ops.push_back(DAG.getConstant(isSigned, MVT::i32));
2601      break;
2602    case Expand:
2603      if (VT != MVT::Vector) {
2604        // If this is a large integer, it needs to be broken down into small
2605        // integers.  Figure out what the source elt type is and how many small
2606        // integers it is.
2607        MVT::ValueType NVT = getTypeToTransformTo(VT);
2608        unsigned NumVals = MVT::getSizeInBits(VT)/MVT::getSizeInBits(NVT);
2609        if (NumVals == 2) {
2610          SDOperand Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, NVT, Op,
2611                                     DAG.getConstant(0, getPointerTy()));
2612          SDOperand Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, NVT, Op,
2613                                     DAG.getConstant(1, getPointerTy()));
2614          if (!isLittleEndian())
2615            std::swap(Lo, Hi);
2616
2617          Ops.push_back(Lo);
2618          Ops.push_back(DAG.getConstant(isSigned, MVT::i32));
2619          Ops.push_back(Hi);
2620          Ops.push_back(DAG.getConstant(isSigned, MVT::i32));
2621        } else {
2622          // Value scalarized into many values.  Unimp for now.
2623          assert(0 && "Cannot expand i64 -> i16 yet!");
2624        }
2625      } else {
2626        // Otherwise, this is a vector type.  We only support legal vectors
2627        // right now.
2628        const PackedType *PTy = cast<PackedType>(Args[i].second);
2629        unsigned NumElems = PTy->getNumElements();
2630        const Type *EltTy = PTy->getElementType();
2631
2632        // Figure out if there is a Packed type corresponding to this Vector
2633        // type.  If so, convert to the packed type.
2634        MVT::ValueType TVT = MVT::getVectorType(getValueType(EltTy), NumElems);
2635        if (TVT != MVT::Other && isTypeLegal(TVT)) {
2636          // Insert a VBIT_CONVERT of the MVT::Vector type to the packed type.
2637          Op = DAG.getNode(ISD::VBIT_CONVERT, TVT, Op);
2638          Ops.push_back(Op);
2639          Ops.push_back(DAG.getConstant(isSigned, MVT::i32));
2640        } else {
2641          assert(0 && "Don't support illegal by-val vector call args yet!");
2642          abort();
2643        }
2644      }
2645      break;
2646    }
2647  }
2648
2649  // Figure out the result value types.
2650  SmallVector<MVT::ValueType, 4> RetTys;
2651
2652  if (RetTy != Type::VoidTy) {
2653    MVT::ValueType VT = getValueType(RetTy);
2654    switch (getTypeAction(VT)) {
2655    default: assert(0 && "Unknown type action!");
2656    case Legal:
2657      RetTys.push_back(VT);
2658      break;
2659    case Promote:
2660      RetTys.push_back(getTypeToTransformTo(VT));
2661      break;
2662    case Expand:
2663      if (VT != MVT::Vector) {
2664        // If this is a large integer, it needs to be reassembled from small
2665        // integers.  Figure out what the source elt type is and how many small
2666        // integers it is.
2667        MVT::ValueType NVT = getTypeToTransformTo(VT);
2668        unsigned NumVals = MVT::getSizeInBits(VT)/MVT::getSizeInBits(NVT);
2669        for (unsigned i = 0; i != NumVals; ++i)
2670          RetTys.push_back(NVT);
2671      } else {
2672        // Otherwise, this is a vector type.  We only support legal vectors
2673        // right now.
2674        const PackedType *PTy = cast<PackedType>(RetTy);
2675        unsigned NumElems = PTy->getNumElements();
2676        const Type *EltTy = PTy->getElementType();
2677
2678        // Figure out if there is a Packed type corresponding to this Vector
2679        // type.  If so, convert to the packed type.
2680        MVT::ValueType TVT = MVT::getVectorType(getValueType(EltTy), NumElems);
2681        if (TVT != MVT::Other && isTypeLegal(TVT)) {
2682          RetTys.push_back(TVT);
2683        } else {
2684          assert(0 && "Don't support illegal by-val vector call results yet!");
2685          abort();
2686        }
2687      }
2688    }
2689  }
2690
2691  RetTys.push_back(MVT::Other);  // Always has a chain.
2692
2693  // Finally, create the CALL node.
2694  SDOperand Res = DAG.getNode(ISD::CALL,
2695                              DAG.getVTList(&RetTys[0], RetTys.size()),
2696                              &Ops[0], Ops.size());
2697
2698  // This returns a pair of operands.  The first element is the
2699  // return value for the function (if RetTy is not VoidTy).  The second
2700  // element is the outgoing token chain.
2701  SDOperand ResVal;
2702  if (RetTys.size() != 1) {
2703    MVT::ValueType VT = getValueType(RetTy);
2704    if (RetTys.size() == 2) {
2705      ResVal = Res;
2706
2707      // If this value was promoted, truncate it down.
2708      if (ResVal.getValueType() != VT) {
2709        if (VT == MVT::Vector) {
2710          // Insert a VBITCONVERT to convert from the packed result type to the
2711          // MVT::Vector type.
2712          unsigned NumElems = cast<PackedType>(RetTy)->getNumElements();
2713          const Type *EltTy = cast<PackedType>(RetTy)->getElementType();
2714
2715          // Figure out if there is a Packed type corresponding to this Vector
2716          // type.  If so, convert to the packed type.
2717          MVT::ValueType TVT = MVT::getVectorType(getValueType(EltTy), NumElems);
2718          if (TVT != MVT::Other && isTypeLegal(TVT)) {
2719            // Insert a VBIT_CONVERT of the FORMAL_ARGUMENTS to a
2720            // "N x PTyElementVT" MVT::Vector type.
2721            ResVal = DAG.getNode(ISD::VBIT_CONVERT, MVT::Vector, ResVal,
2722                                 DAG.getConstant(NumElems, MVT::i32),
2723                                 DAG.getValueType(getValueType(EltTy)));
2724          } else {
2725            abort();
2726          }
2727        } else if (MVT::isInteger(VT)) {
2728          unsigned AssertOp = RetTy->isSigned() ?
2729                                  ISD::AssertSext : ISD::AssertZext;
2730          ResVal = DAG.getNode(AssertOp, ResVal.getValueType(), ResVal,
2731                               DAG.getValueType(VT));
2732          ResVal = DAG.getNode(ISD::TRUNCATE, VT, ResVal);
2733        } else {
2734          assert(MVT::isFloatingPoint(VT));
2735          ResVal = DAG.getNode(ISD::FP_ROUND, VT, ResVal);
2736        }
2737      }
2738    } else if (RetTys.size() == 3) {
2739      ResVal = DAG.getNode(ISD::BUILD_PAIR, VT,
2740                           Res.getValue(0), Res.getValue(1));
2741
2742    } else {
2743      assert(0 && "Case not handled yet!");
2744    }
2745  }
2746
2747  return std::make_pair(ResVal, Res.getValue(Res.Val->getNumValues()-1));
2748}
2749
2750
2751
2752// It is always conservatively correct for llvm.returnaddress and
2753// llvm.frameaddress to return 0.
2754//
2755// FIXME: Change this to insert a FRAMEADDR/RETURNADDR node, and have that be
2756// expanded to 0 if the target wants.
2757std::pair<SDOperand, SDOperand>
2758TargetLowering::LowerFrameReturnAddress(bool isFrameAddr, SDOperand Chain,
2759                                        unsigned Depth, SelectionDAG &DAG) {
2760  return std::make_pair(DAG.getConstant(0, getPointerTy()), Chain);
2761}
2762
2763SDOperand TargetLowering::LowerOperation(SDOperand Op, SelectionDAG &DAG) {
2764  assert(0 && "LowerOperation not implemented for this target!");
2765  abort();
2766  return SDOperand();
2767}
2768
2769SDOperand TargetLowering::CustomPromoteOperation(SDOperand Op,
2770                                                 SelectionDAG &DAG) {
2771  assert(0 && "CustomPromoteOperation not implemented for this target!");
2772  abort();
2773  return SDOperand();
2774}
2775
2776void SelectionDAGLowering::visitFrameReturnAddress(CallInst &I, bool isFrame) {
2777  unsigned Depth = (unsigned)cast<ConstantInt>(I.getOperand(1))->getZExtValue();
2778  std::pair<SDOperand,SDOperand> Result =
2779    TLI.LowerFrameReturnAddress(isFrame, getRoot(), Depth, DAG);
2780  setValue(&I, Result.first);
2781  DAG.setRoot(Result.second);
2782}
2783
2784/// getMemsetValue - Vectorized representation of the memset value
2785/// operand.
2786static SDOperand getMemsetValue(SDOperand Value, MVT::ValueType VT,
2787                                SelectionDAG &DAG) {
2788  MVT::ValueType CurVT = VT;
2789  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
2790    uint64_t Val   = C->getValue() & 255;
2791    unsigned Shift = 8;
2792    while (CurVT != MVT::i8) {
2793      Val = (Val << Shift) | Val;
2794      Shift <<= 1;
2795      CurVT = (MVT::ValueType)((unsigned)CurVT - 1);
2796    }
2797    return DAG.getConstant(Val, VT);
2798  } else {
2799    Value = DAG.getNode(ISD::ZERO_EXTEND, VT, Value);
2800    unsigned Shift = 8;
2801    while (CurVT != MVT::i8) {
2802      Value =
2803        DAG.getNode(ISD::OR, VT,
2804                    DAG.getNode(ISD::SHL, VT, Value,
2805                                DAG.getConstant(Shift, MVT::i8)), Value);
2806      Shift <<= 1;
2807      CurVT = (MVT::ValueType)((unsigned)CurVT - 1);
2808    }
2809
2810    return Value;
2811  }
2812}
2813
2814/// getMemsetStringVal - Similar to getMemsetValue. Except this is only
2815/// used when a memcpy is turned into a memset when the source is a constant
2816/// string ptr.
2817static SDOperand getMemsetStringVal(MVT::ValueType VT,
2818                                    SelectionDAG &DAG, TargetLowering &TLI,
2819                                    std::string &Str, unsigned Offset) {
2820  MVT::ValueType CurVT = VT;
2821  uint64_t Val = 0;
2822  unsigned MSB = getSizeInBits(VT) / 8;
2823  if (TLI.isLittleEndian())
2824    Offset = Offset + MSB - 1;
2825  for (unsigned i = 0; i != MSB; ++i) {
2826    Val = (Val << 8) | Str[Offset];
2827    Offset += TLI.isLittleEndian() ? -1 : 1;
2828  }
2829  return DAG.getConstant(Val, VT);
2830}
2831
2832/// getMemBasePlusOffset - Returns base and offset node for the
2833static SDOperand getMemBasePlusOffset(SDOperand Base, unsigned Offset,
2834                                      SelectionDAG &DAG, TargetLowering &TLI) {
2835  MVT::ValueType VT = Base.getValueType();
2836  return DAG.getNode(ISD::ADD, VT, Base, DAG.getConstant(Offset, VT));
2837}
2838
2839/// MeetsMaxMemopRequirement - Determines if the number of memory ops required
2840/// to replace the memset / memcpy is below the threshold. It also returns the
2841/// types of the sequence of  memory ops to perform memset / memcpy.
2842static bool MeetsMaxMemopRequirement(std::vector<MVT::ValueType> &MemOps,
2843                                     unsigned Limit, uint64_t Size,
2844                                     unsigned Align, TargetLowering &TLI) {
2845  MVT::ValueType VT;
2846
2847  if (TLI.allowsUnalignedMemoryAccesses()) {
2848    VT = MVT::i64;
2849  } else {
2850    switch (Align & 7) {
2851    case 0:
2852      VT = MVT::i64;
2853      break;
2854    case 4:
2855      VT = MVT::i32;
2856      break;
2857    case 2:
2858      VT = MVT::i16;
2859      break;
2860    default:
2861      VT = MVT::i8;
2862      break;
2863    }
2864  }
2865
2866  MVT::ValueType LVT = MVT::i64;
2867  while (!TLI.isTypeLegal(LVT))
2868    LVT = (MVT::ValueType)((unsigned)LVT - 1);
2869  assert(MVT::isInteger(LVT));
2870
2871  if (VT > LVT)
2872    VT = LVT;
2873
2874  unsigned NumMemOps = 0;
2875  while (Size != 0) {
2876    unsigned VTSize = getSizeInBits(VT) / 8;
2877    while (VTSize > Size) {
2878      VT = (MVT::ValueType)((unsigned)VT - 1);
2879      VTSize >>= 1;
2880    }
2881    assert(MVT::isInteger(VT));
2882
2883    if (++NumMemOps > Limit)
2884      return false;
2885    MemOps.push_back(VT);
2886    Size -= VTSize;
2887  }
2888
2889  return true;
2890}
2891
2892void SelectionDAGLowering::visitMemIntrinsic(CallInst &I, unsigned Op) {
2893  SDOperand Op1 = getValue(I.getOperand(1));
2894  SDOperand Op2 = getValue(I.getOperand(2));
2895  SDOperand Op3 = getValue(I.getOperand(3));
2896  SDOperand Op4 = getValue(I.getOperand(4));
2897  unsigned Align = (unsigned)cast<ConstantSDNode>(Op4)->getValue();
2898  if (Align == 0) Align = 1;
2899
2900  if (ConstantSDNode *Size = dyn_cast<ConstantSDNode>(Op3)) {
2901    std::vector<MVT::ValueType> MemOps;
2902
2903    // Expand memset / memcpy to a series of load / store ops
2904    // if the size operand falls below a certain threshold.
2905    SmallVector<SDOperand, 8> OutChains;
2906    switch (Op) {
2907    default: break;  // Do nothing for now.
2908    case ISD::MEMSET: {
2909      if (MeetsMaxMemopRequirement(MemOps, TLI.getMaxStoresPerMemset(),
2910                                   Size->getValue(), Align, TLI)) {
2911        unsigned NumMemOps = MemOps.size();
2912        unsigned Offset = 0;
2913        for (unsigned i = 0; i < NumMemOps; i++) {
2914          MVT::ValueType VT = MemOps[i];
2915          unsigned VTSize = getSizeInBits(VT) / 8;
2916          SDOperand Value = getMemsetValue(Op2, VT, DAG);
2917          SDOperand Store = DAG.getStore(getRoot(), Value,
2918                                    getMemBasePlusOffset(Op1, Offset, DAG, TLI),
2919                                         I.getOperand(1), Offset);
2920          OutChains.push_back(Store);
2921          Offset += VTSize;
2922        }
2923      }
2924      break;
2925    }
2926    case ISD::MEMCPY: {
2927      if (MeetsMaxMemopRequirement(MemOps, TLI.getMaxStoresPerMemcpy(),
2928                                   Size->getValue(), Align, TLI)) {
2929        unsigned NumMemOps = MemOps.size();
2930        unsigned SrcOff = 0, DstOff = 0, SrcDelta = 0;
2931        GlobalAddressSDNode *G = NULL;
2932        std::string Str;
2933        bool CopyFromStr = false;
2934
2935        if (Op2.getOpcode() == ISD::GlobalAddress)
2936          G = cast<GlobalAddressSDNode>(Op2);
2937        else if (Op2.getOpcode() == ISD::ADD &&
2938                 Op2.getOperand(0).getOpcode() == ISD::GlobalAddress &&
2939                 Op2.getOperand(1).getOpcode() == ISD::Constant) {
2940          G = cast<GlobalAddressSDNode>(Op2.getOperand(0));
2941          SrcDelta = cast<ConstantSDNode>(Op2.getOperand(1))->getValue();
2942        }
2943        if (G) {
2944          GlobalVariable *GV = dyn_cast<GlobalVariable>(G->getGlobal());
2945          if (GV) {
2946            Str = GV->getStringValue(false);
2947            if (!Str.empty()) {
2948              CopyFromStr = true;
2949              SrcOff += SrcDelta;
2950            }
2951          }
2952        }
2953
2954        for (unsigned i = 0; i < NumMemOps; i++) {
2955          MVT::ValueType VT = MemOps[i];
2956          unsigned VTSize = getSizeInBits(VT) / 8;
2957          SDOperand Value, Chain, Store;
2958
2959          if (CopyFromStr) {
2960            Value = getMemsetStringVal(VT, DAG, TLI, Str, SrcOff);
2961            Chain = getRoot();
2962            Store =
2963              DAG.getStore(Chain, Value,
2964                           getMemBasePlusOffset(Op1, DstOff, DAG, TLI),
2965                           I.getOperand(1), DstOff);
2966          } else {
2967            Value = DAG.getLoad(VT, getRoot(),
2968                        getMemBasePlusOffset(Op2, SrcOff, DAG, TLI),
2969                        I.getOperand(2), SrcOff);
2970            Chain = Value.getValue(1);
2971            Store =
2972              DAG.getStore(Chain, Value,
2973                           getMemBasePlusOffset(Op1, DstOff, DAG, TLI),
2974                           I.getOperand(1), DstOff);
2975          }
2976          OutChains.push_back(Store);
2977          SrcOff += VTSize;
2978          DstOff += VTSize;
2979        }
2980      }
2981      break;
2982    }
2983    }
2984
2985    if (!OutChains.empty()) {
2986      DAG.setRoot(DAG.getNode(ISD::TokenFactor, MVT::Other,
2987                  &OutChains[0], OutChains.size()));
2988      return;
2989    }
2990  }
2991
2992  DAG.setRoot(DAG.getNode(Op, MVT::Other, getRoot(), Op1, Op2, Op3, Op4));
2993}
2994
2995//===----------------------------------------------------------------------===//
2996// SelectionDAGISel code
2997//===----------------------------------------------------------------------===//
2998
2999unsigned SelectionDAGISel::MakeReg(MVT::ValueType VT) {
3000  return RegMap->createVirtualRegister(TLI.getRegClassFor(VT));
3001}
3002
3003void SelectionDAGISel::getAnalysisUsage(AnalysisUsage &AU) const {
3004  // FIXME: we only modify the CFG to split critical edges.  This
3005  // updates dom and loop info.
3006  AU.addRequired<AliasAnalysis>();
3007}
3008
3009
3010/// OptimizeNoopCopyExpression - We have determined that the specified cast
3011/// instruction is a noop copy (e.g. it's casting from one pointer type to
3012/// another, int->uint, or int->sbyte on PPC.
3013///
3014/// Return true if any changes are made.
3015static bool OptimizeNoopCopyExpression(CastInst *CI) {
3016  BasicBlock *DefBB = CI->getParent();
3017
3018  /// InsertedCasts - Only insert a cast in each block once.
3019  std::map<BasicBlock*, CastInst*> InsertedCasts;
3020
3021  bool MadeChange = false;
3022  for (Value::use_iterator UI = CI->use_begin(), E = CI->use_end();
3023       UI != E; ) {
3024    Use &TheUse = UI.getUse();
3025    Instruction *User = cast<Instruction>(*UI);
3026
3027    // Figure out which BB this cast is used in.  For PHI's this is the
3028    // appropriate predecessor block.
3029    BasicBlock *UserBB = User->getParent();
3030    if (PHINode *PN = dyn_cast<PHINode>(User)) {
3031      unsigned OpVal = UI.getOperandNo()/2;
3032      UserBB = PN->getIncomingBlock(OpVal);
3033    }
3034
3035    // Preincrement use iterator so we don't invalidate it.
3036    ++UI;
3037
3038    // If this user is in the same block as the cast, don't change the cast.
3039    if (UserBB == DefBB) continue;
3040
3041    // If we have already inserted a cast into this block, use it.
3042    CastInst *&InsertedCast = InsertedCasts[UserBB];
3043
3044    if (!InsertedCast) {
3045      BasicBlock::iterator InsertPt = UserBB->begin();
3046      while (isa<PHINode>(InsertPt)) ++InsertPt;
3047
3048      InsertedCast =
3049        new CastInst(CI->getOperand(0), CI->getType(), "", InsertPt);
3050      MadeChange = true;
3051    }
3052
3053    // Replace a use of the cast with a use of the new casat.
3054    TheUse = InsertedCast;
3055  }
3056
3057  // If we removed all uses, nuke the cast.
3058  if (CI->use_empty())
3059    CI->eraseFromParent();
3060
3061  return MadeChange;
3062}
3063
3064/// InsertGEPComputeCode - Insert code into BB to compute Ptr+PtrOffset,
3065/// casting to the type of GEPI.
3066static Instruction *InsertGEPComputeCode(Instruction *&V, BasicBlock *BB,
3067                                         Instruction *GEPI, Value *Ptr,
3068                                         Value *PtrOffset) {
3069  if (V) return V;   // Already computed.
3070
3071  BasicBlock::iterator InsertPt;
3072  if (BB == GEPI->getParent()) {
3073    // If insert into the GEP's block, insert right after the GEP.
3074    InsertPt = GEPI;
3075    ++InsertPt;
3076  } else {
3077    // Otherwise, insert at the top of BB, after any PHI nodes
3078    InsertPt = BB->begin();
3079    while (isa<PHINode>(InsertPt)) ++InsertPt;
3080  }
3081
3082  // If Ptr is itself a cast, but in some other BB, emit a copy of the cast into
3083  // BB so that there is only one value live across basic blocks (the cast
3084  // operand).
3085  if (CastInst *CI = dyn_cast<CastInst>(Ptr))
3086    if (CI->getParent() != BB && isa<PointerType>(CI->getOperand(0)->getType()))
3087      Ptr = new CastInst(CI->getOperand(0), CI->getType(), "", InsertPt);
3088
3089  // Add the offset, cast it to the right type.
3090  Ptr = BinaryOperator::createAdd(Ptr, PtrOffset, "", InsertPt);
3091  return V = new CastInst(Ptr, GEPI->getType(), "", InsertPt);
3092}
3093
3094/// ReplaceUsesOfGEPInst - Replace all uses of RepPtr with inserted code to
3095/// compute its value.  The RepPtr value can be computed with Ptr+PtrOffset. One
3096/// trivial way of doing this would be to evaluate Ptr+PtrOffset in RepPtr's
3097/// block, then ReplaceAllUsesWith'ing everything.  However, we would prefer to
3098/// sink PtrOffset into user blocks where doing so will likely allow us to fold
3099/// the constant add into a load or store instruction.  Additionally, if a user
3100/// is a pointer-pointer cast, we look through it to find its users.
3101static void ReplaceUsesOfGEPInst(Instruction *RepPtr, Value *Ptr,
3102                                 Constant *PtrOffset, BasicBlock *DefBB,
3103                                 GetElementPtrInst *GEPI,
3104                           std::map<BasicBlock*,Instruction*> &InsertedExprs) {
3105  while (!RepPtr->use_empty()) {
3106    Instruction *User = cast<Instruction>(RepPtr->use_back());
3107
3108    // If the user is a Pointer-Pointer cast, recurse.
3109    if (isa<CastInst>(User) && isa<PointerType>(User->getType())) {
3110      ReplaceUsesOfGEPInst(User, Ptr, PtrOffset, DefBB, GEPI, InsertedExprs);
3111
3112      // Drop the use of RepPtr. The cast is dead.  Don't delete it now, else we
3113      // could invalidate an iterator.
3114      User->setOperand(0, UndefValue::get(RepPtr->getType()));
3115      continue;
3116    }
3117
3118    // If this is a load of the pointer, or a store through the pointer, emit
3119    // the increment into the load/store block.
3120    Instruction *NewVal;
3121    if (isa<LoadInst>(User) ||
3122        (isa<StoreInst>(User) && User->getOperand(0) != RepPtr)) {
3123      NewVal = InsertGEPComputeCode(InsertedExprs[User->getParent()],
3124                                    User->getParent(), GEPI,
3125                                    Ptr, PtrOffset);
3126    } else {
3127      // If this use is not foldable into the addressing mode, use a version
3128      // emitted in the GEP block.
3129      NewVal = InsertGEPComputeCode(InsertedExprs[DefBB], DefBB, GEPI,
3130                                    Ptr, PtrOffset);
3131    }
3132
3133    if (GEPI->getType() != RepPtr->getType()) {
3134      BasicBlock::iterator IP = NewVal;
3135      ++IP;
3136      NewVal = new CastInst(NewVal, RepPtr->getType(), "", IP);
3137    }
3138    User->replaceUsesOfWith(RepPtr, NewVal);
3139  }
3140}
3141
3142
3143/// OptimizeGEPExpression - Since we are doing basic-block-at-a-time instruction
3144/// selection, we want to be a bit careful about some things.  In particular, if
3145/// we have a GEP instruction that is used in a different block than it is
3146/// defined, the addressing expression of the GEP cannot be folded into loads or
3147/// stores that use it.  In this case, decompose the GEP and move constant
3148/// indices into blocks that use it.
3149static bool OptimizeGEPExpression(GetElementPtrInst *GEPI,
3150                                  const TargetData *TD) {
3151  // If this GEP is only used inside the block it is defined in, there is no
3152  // need to rewrite it.
3153  bool isUsedOutsideDefBB = false;
3154  BasicBlock *DefBB = GEPI->getParent();
3155  for (Value::use_iterator UI = GEPI->use_begin(), E = GEPI->use_end();
3156       UI != E; ++UI) {
3157    if (cast<Instruction>(*UI)->getParent() != DefBB) {
3158      isUsedOutsideDefBB = true;
3159      break;
3160    }
3161  }
3162  if (!isUsedOutsideDefBB) return false;
3163
3164  // If this GEP has no non-zero constant indices, there is nothing we can do,
3165  // ignore it.
3166  bool hasConstantIndex = false;
3167  bool hasVariableIndex = false;
3168  for (GetElementPtrInst::op_iterator OI = GEPI->op_begin()+1,
3169       E = GEPI->op_end(); OI != E; ++OI) {
3170    if (ConstantInt *CI = dyn_cast<ConstantInt>(*OI)) {
3171      if (CI->getZExtValue()) {
3172        hasConstantIndex = true;
3173        break;
3174      }
3175    } else {
3176      hasVariableIndex = true;
3177    }
3178  }
3179
3180  // If this is a "GEP X, 0, 0, 0", turn this into a cast.
3181  if (!hasConstantIndex && !hasVariableIndex) {
3182    Value *NC = new CastInst(GEPI->getOperand(0), GEPI->getType(),
3183                             GEPI->getName(), GEPI);
3184    GEPI->replaceAllUsesWith(NC);
3185    GEPI->eraseFromParent();
3186    return true;
3187  }
3188
3189  // If this is a GEP &Alloca, 0, 0, forward subst the frame index into uses.
3190  if (!hasConstantIndex && !isa<AllocaInst>(GEPI->getOperand(0)))
3191    return false;
3192
3193  // Otherwise, decompose the GEP instruction into multiplies and adds.  Sum the
3194  // constant offset (which we now know is non-zero) and deal with it later.
3195  uint64_t ConstantOffset = 0;
3196  const Type *UIntPtrTy = TD->getIntPtrType();
3197  Value *Ptr = new CastInst(GEPI->getOperand(0), UIntPtrTy, "", GEPI);
3198  const Type *Ty = GEPI->getOperand(0)->getType();
3199
3200  for (GetElementPtrInst::op_iterator OI = GEPI->op_begin()+1,
3201       E = GEPI->op_end(); OI != E; ++OI) {
3202    Value *Idx = *OI;
3203    if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
3204      unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
3205      if (Field)
3206        ConstantOffset += TD->getStructLayout(StTy)->MemberOffsets[Field];
3207      Ty = StTy->getElementType(Field);
3208    } else {
3209      Ty = cast<SequentialType>(Ty)->getElementType();
3210
3211      // Handle constant subscripts.
3212      if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
3213        if (CI->getZExtValue() == 0) continue;
3214        if (CI->getType()->isSigned())
3215          ConstantOffset += (int64_t)TD->getTypeSize(Ty)*CI->getSExtValue();
3216        else
3217          ConstantOffset += TD->getTypeSize(Ty)*CI->getZExtValue();
3218        continue;
3219      }
3220
3221      // Ptr = Ptr + Idx * ElementSize;
3222
3223      // Cast Idx to UIntPtrTy if needed.
3224      Idx = new CastInst(Idx, UIntPtrTy, "", GEPI);
3225
3226      uint64_t ElementSize = TD->getTypeSize(Ty);
3227      // Mask off bits that should not be set.
3228      ElementSize &= ~0ULL >> (64-UIntPtrTy->getPrimitiveSizeInBits());
3229      Constant *SizeCst = ConstantInt::get(UIntPtrTy, ElementSize);
3230
3231      // Multiply by the element size and add to the base.
3232      Idx = BinaryOperator::createMul(Idx, SizeCst, "", GEPI);
3233      Ptr = BinaryOperator::createAdd(Ptr, Idx, "", GEPI);
3234    }
3235  }
3236
3237  // Make sure that the offset fits in uintptr_t.
3238  ConstantOffset &= ~0ULL >> (64-UIntPtrTy->getPrimitiveSizeInBits());
3239  Constant *PtrOffset = ConstantInt::get(UIntPtrTy, ConstantOffset);
3240
3241  // Okay, we have now emitted all of the variable index parts to the BB that
3242  // the GEP is defined in.  Loop over all of the using instructions, inserting
3243  // an "add Ptr, ConstantOffset" into each block that uses it and update the
3244  // instruction to use the newly computed value, making GEPI dead.  When the
3245  // user is a load or store instruction address, we emit the add into the user
3246  // block, otherwise we use a canonical version right next to the gep (these
3247  // won't be foldable as addresses, so we might as well share the computation).
3248
3249  std::map<BasicBlock*,Instruction*> InsertedExprs;
3250  ReplaceUsesOfGEPInst(GEPI, Ptr, PtrOffset, DefBB, GEPI, InsertedExprs);
3251
3252  // Finally, the GEP is dead, remove it.
3253  GEPI->eraseFromParent();
3254
3255  return true;
3256}
3257
3258/// SplitCritEdgesForPHIConstants - If this block has any PHI nodes with
3259/// constant operands, and if any of the edges feeding the PHI node are
3260/// critical, split them so that the assignments of a constant to a register
3261/// will not be executed on a path that isn't relevant.
3262void SelectionDAGISel::SplitCritEdgesForPHIConstants(BasicBlock *BB) {
3263  // The most common case is that this is a PHI node with two incoming
3264  // successors handle this case efficiently, because it is simple.
3265  PHINode *PN = cast<PHINode>(BB->begin());
3266  if (PN->getNumIncomingValues() == 2) {
3267    // If neither edge is critical, we never need to split.
3268    if (PN->getIncomingBlock(0)->getTerminator()->getNumSuccessors() == 1 &&
3269        PN->getIncomingBlock(1)->getTerminator()->getNumSuccessors() == 1)
3270      return;
3271
3272    BasicBlock::iterator BBI = BB->begin();
3273    while ((PN = dyn_cast<PHINode>(BBI++))) {
3274      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
3275        if (isa<Constant>(PN->getIncomingValue(i)))
3276          SplitCriticalEdge(PN->getIncomingBlock(i), BB);
3277    }
3278    return;
3279  }
3280
3281  // Otherwise, things are a bit trickier.
3282
3283  // BE SMART HERE.
3284
3285  BasicBlock::iterator BBI = BB->begin();
3286  while ((PN = dyn_cast<PHINode>(BBI++))) {
3287    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
3288      if (isa<Constant>(PN->getIncomingValue(i)))
3289        SplitCriticalEdge(PN->getIncomingBlock(i), BB);
3290  }
3291}
3292
3293
3294bool SelectionDAGISel::runOnFunction(Function &Fn) {
3295  MachineFunction &MF = MachineFunction::construct(&Fn, TLI.getTargetMachine());
3296  RegMap = MF.getSSARegMap();
3297  DEBUG(std::cerr << "\n\n\n=== " << Fn.getName() << "\n");
3298
3299  // First, split all critical edges for PHI nodes with incoming values that are
3300  // constants, this way the load of the constant into a vreg will not be placed
3301  // into MBBs that are used some other way.
3302  //
3303  // In this pass we also look for GEP and cast instructions that are used
3304  // across basic blocks and rewrite them to improve basic-block-at-a-time
3305  // selection.
3306  //
3307  //
3308  bool MadeChange = true;
3309  while (MadeChange) {
3310    MadeChange = false;
3311  for (Function::iterator BB = Fn.begin(), E = Fn.end(); BB != E; ++BB) {
3312    // If this block has any PHI nodes with constant operands, and if any of the
3313    // edges feeding the PHI node are critical, split them.
3314    if (isa<PHINode>(BB->begin()))
3315      SplitCritEdgesForPHIConstants(BB);
3316
3317    for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) {
3318      Instruction *I = BBI++;
3319      if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) {
3320        MadeChange |= OptimizeGEPExpression(GEPI, TLI.getTargetData());
3321      } else if (CastInst *CI = dyn_cast<CastInst>(I)) {
3322        // If the source of the cast is a constant, then this should have
3323        // already been constant folded.  The only reason NOT to constant fold
3324        // it is if something (e.g. LSR) was careful to place the constant
3325        // evaluation in a block other than then one that uses it (e.g. to hoist
3326        // the address of globals out of a loop).  If this is the case, we don't
3327        // want to forward-subst the cast.
3328        if (isa<Constant>(CI->getOperand(0)))
3329          continue;
3330
3331        // If this is a noop copy, sink it into user blocks to reduce the number
3332        // of virtual registers that must be created and coallesced.
3333        MVT::ValueType SrcVT = TLI.getValueType(CI->getOperand(0)->getType());
3334        MVT::ValueType DstVT = TLI.getValueType(CI->getType());
3335
3336        // This is an fp<->int conversion?
3337        if (MVT::isInteger(SrcVT) != MVT::isInteger(DstVT))
3338          continue;
3339
3340        // If this is an extension, it will be a zero or sign extension, which
3341        // isn't a noop.
3342        if (SrcVT < DstVT) continue;
3343
3344        // If these values will be promoted, find out what they will be promoted
3345        // to.  This helps us consider truncates on PPC as noop copies when they
3346        // are.
3347        if (TLI.getTypeAction(SrcVT) == TargetLowering::Promote)
3348          SrcVT = TLI.getTypeToTransformTo(SrcVT);
3349        if (TLI.getTypeAction(DstVT) == TargetLowering::Promote)
3350          DstVT = TLI.getTypeToTransformTo(DstVT);
3351
3352        // If, after promotion, these are the same types, this is a noop copy.
3353        if (SrcVT == DstVT)
3354          MadeChange |= OptimizeNoopCopyExpression(CI);
3355      }
3356    }
3357  }
3358  }
3359
3360  FunctionLoweringInfo FuncInfo(TLI, Fn, MF);
3361
3362  for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
3363    SelectBasicBlock(I, MF, FuncInfo);
3364
3365  return true;
3366}
3367
3368
3369SDOperand SelectionDAGISel::
3370CopyValueToVirtualRegister(SelectionDAGLowering &SDL, Value *V, unsigned Reg) {
3371  SDOperand Op = SDL.getValue(V);
3372  assert((Op.getOpcode() != ISD::CopyFromReg ||
3373          cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
3374         "Copy from a reg to the same reg!");
3375
3376  // If this type is not legal, we must make sure to not create an invalid
3377  // register use.
3378  MVT::ValueType SrcVT = Op.getValueType();
3379  MVT::ValueType DestVT = TLI.getTypeToTransformTo(SrcVT);
3380  SelectionDAG &DAG = SDL.DAG;
3381  if (SrcVT == DestVT) {
3382    return DAG.getCopyToReg(SDL.getRoot(), Reg, Op);
3383  } else if (SrcVT == MVT::Vector) {
3384    // Handle copies from generic vectors to registers.
3385    MVT::ValueType PTyElementVT, PTyLegalElementVT;
3386    unsigned NE = TLI.getPackedTypeBreakdown(cast<PackedType>(V->getType()),
3387                                             PTyElementVT, PTyLegalElementVT);
3388
3389    // Insert a VBIT_CONVERT of the input vector to a "N x PTyElementVT"
3390    // MVT::Vector type.
3391    Op = DAG.getNode(ISD::VBIT_CONVERT, MVT::Vector, Op,
3392                     DAG.getConstant(NE, MVT::i32),
3393                     DAG.getValueType(PTyElementVT));
3394
3395    // Loop over all of the elements of the resultant vector,
3396    // VEXTRACT_VECTOR_ELT'ing them, converting them to PTyLegalElementVT, then
3397    // copying them into output registers.
3398    SmallVector<SDOperand, 8> OutChains;
3399    SDOperand Root = SDL.getRoot();
3400    for (unsigned i = 0; i != NE; ++i) {
3401      SDOperand Elt = DAG.getNode(ISD::VEXTRACT_VECTOR_ELT, PTyElementVT,
3402                                  Op, DAG.getConstant(i, TLI.getPointerTy()));
3403      if (PTyElementVT == PTyLegalElementVT) {
3404        // Elements are legal.
3405        OutChains.push_back(DAG.getCopyToReg(Root, Reg++, Elt));
3406      } else if (PTyLegalElementVT > PTyElementVT) {
3407        // Elements are promoted.
3408        if (MVT::isFloatingPoint(PTyLegalElementVT))
3409          Elt = DAG.getNode(ISD::FP_EXTEND, PTyLegalElementVT, Elt);
3410        else
3411          Elt = DAG.getNode(ISD::ANY_EXTEND, PTyLegalElementVT, Elt);
3412        OutChains.push_back(DAG.getCopyToReg(Root, Reg++, Elt));
3413      } else {
3414        // Elements are expanded.
3415        // The src value is expanded into multiple registers.
3416        SDOperand Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, PTyLegalElementVT,
3417                                   Elt, DAG.getConstant(0, TLI.getPointerTy()));
3418        SDOperand Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, PTyLegalElementVT,
3419                                   Elt, DAG.getConstant(1, TLI.getPointerTy()));
3420        OutChains.push_back(DAG.getCopyToReg(Root, Reg++, Lo));
3421        OutChains.push_back(DAG.getCopyToReg(Root, Reg++, Hi));
3422      }
3423    }
3424    return DAG.getNode(ISD::TokenFactor, MVT::Other,
3425                       &OutChains[0], OutChains.size());
3426  } else if (SrcVT < DestVT) {
3427    // The src value is promoted to the register.
3428    if (MVT::isFloatingPoint(SrcVT))
3429      Op = DAG.getNode(ISD::FP_EXTEND, DestVT, Op);
3430    else
3431      Op = DAG.getNode(ISD::ANY_EXTEND, DestVT, Op);
3432    return DAG.getCopyToReg(SDL.getRoot(), Reg, Op);
3433  } else  {
3434    // The src value is expanded into multiple registers.
3435    SDOperand Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DestVT,
3436                               Op, DAG.getConstant(0, TLI.getPointerTy()));
3437    SDOperand Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DestVT,
3438                               Op, DAG.getConstant(1, TLI.getPointerTy()));
3439    Op = DAG.getCopyToReg(SDL.getRoot(), Reg, Lo);
3440    return DAG.getCopyToReg(Op, Reg+1, Hi);
3441  }
3442}
3443
3444void SelectionDAGISel::
3445LowerArguments(BasicBlock *BB, SelectionDAGLowering &SDL,
3446               std::vector<SDOperand> &UnorderedChains) {
3447  // If this is the entry block, emit arguments.
3448  Function &F = *BB->getParent();
3449  FunctionLoweringInfo &FuncInfo = SDL.FuncInfo;
3450  SDOperand OldRoot = SDL.DAG.getRoot();
3451  std::vector<SDOperand> Args = TLI.LowerArguments(F, SDL.DAG);
3452
3453  unsigned a = 0;
3454  for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end();
3455       AI != E; ++AI, ++a)
3456    if (!AI->use_empty()) {
3457      SDL.setValue(AI, Args[a]);
3458
3459      // If this argument is live outside of the entry block, insert a copy from
3460      // whereever we got it to the vreg that other BB's will reference it as.
3461      if (FuncInfo.ValueMap.count(AI)) {
3462        SDOperand Copy =
3463          CopyValueToVirtualRegister(SDL, AI, FuncInfo.ValueMap[AI]);
3464        UnorderedChains.push_back(Copy);
3465      }
3466    }
3467
3468  // Finally, if the target has anything special to do, allow it to do so.
3469  // FIXME: this should insert code into the DAG!
3470  EmitFunctionEntryCode(F, SDL.DAG.getMachineFunction());
3471}
3472
3473void SelectionDAGISel::BuildSelectionDAG(SelectionDAG &DAG, BasicBlock *LLVMBB,
3474       std::vector<std::pair<MachineInstr*, unsigned> > &PHINodesToUpdate,
3475                                         FunctionLoweringInfo &FuncInfo) {
3476  SelectionDAGLowering SDL(DAG, TLI, FuncInfo);
3477
3478  std::vector<SDOperand> UnorderedChains;
3479
3480  // Lower any arguments needed in this block if this is the entry block.
3481  if (LLVMBB == &LLVMBB->getParent()->front())
3482    LowerArguments(LLVMBB, SDL, UnorderedChains);
3483
3484  BB = FuncInfo.MBBMap[LLVMBB];
3485  SDL.setCurrentBasicBlock(BB);
3486
3487  // Lower all of the non-terminator instructions.
3488  for (BasicBlock::iterator I = LLVMBB->begin(), E = --LLVMBB->end();
3489       I != E; ++I)
3490    SDL.visit(*I);
3491
3492  // Ensure that all instructions which are used outside of their defining
3493  // blocks are available as virtual registers.
3494  for (BasicBlock::iterator I = LLVMBB->begin(), E = LLVMBB->end(); I != E;++I)
3495    if (!I->use_empty() && !isa<PHINode>(I)) {
3496      std::map<const Value*, unsigned>::iterator VMI =FuncInfo.ValueMap.find(I);
3497      if (VMI != FuncInfo.ValueMap.end())
3498        UnorderedChains.push_back(
3499                           CopyValueToVirtualRegister(SDL, I, VMI->second));
3500    }
3501
3502  // Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
3503  // ensure constants are generated when needed.  Remember the virtual registers
3504  // that need to be added to the Machine PHI nodes as input.  We cannot just
3505  // directly add them, because expansion might result in multiple MBB's for one
3506  // BB.  As such, the start of the BB might correspond to a different MBB than
3507  // the end.
3508  //
3509
3510  // Emit constants only once even if used by multiple PHI nodes.
3511  std::map<Constant*, unsigned> ConstantsOut;
3512
3513  // Check successor nodes PHI nodes that expect a constant to be available from
3514  // this block.
3515  TerminatorInst *TI = LLVMBB->getTerminator();
3516  for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
3517    BasicBlock *SuccBB = TI->getSuccessor(succ);
3518    if (!isa<PHINode>(SuccBB->begin())) continue;
3519
3520    MachineBasicBlock::iterator MBBI = FuncInfo.MBBMap[SuccBB]->begin();
3521    PHINode *PN;
3522
3523    // At this point we know that there is a 1-1 correspondence between LLVM PHI
3524    // nodes and Machine PHI nodes, but the incoming operands have not been
3525    // emitted yet.
3526    for (BasicBlock::iterator I = SuccBB->begin();
3527         (PN = dyn_cast<PHINode>(I)); ++I)
3528      if (!PN->use_empty()) {
3529        unsigned Reg;
3530        Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
3531        if (Constant *C = dyn_cast<Constant>(PHIOp)) {
3532          unsigned &RegOut = ConstantsOut[C];
3533          if (RegOut == 0) {
3534            RegOut = FuncInfo.CreateRegForValue(C);
3535            UnorderedChains.push_back(
3536                             CopyValueToVirtualRegister(SDL, C, RegOut));
3537          }
3538          Reg = RegOut;
3539        } else {
3540          Reg = FuncInfo.ValueMap[PHIOp];
3541          if (Reg == 0) {
3542            assert(isa<AllocaInst>(PHIOp) &&
3543                   FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
3544                   "Didn't codegen value into a register!??");
3545            Reg = FuncInfo.CreateRegForValue(PHIOp);
3546            UnorderedChains.push_back(
3547                             CopyValueToVirtualRegister(SDL, PHIOp, Reg));
3548          }
3549        }
3550
3551        // Remember that this register needs to added to the machine PHI node as
3552        // the input for this MBB.
3553        MVT::ValueType VT = TLI.getValueType(PN->getType());
3554        unsigned NumElements;
3555        if (VT != MVT::Vector)
3556          NumElements = TLI.getNumElements(VT);
3557        else {
3558          MVT::ValueType VT1,VT2;
3559          NumElements =
3560            TLI.getPackedTypeBreakdown(cast<PackedType>(PN->getType()),
3561                                       VT1, VT2);
3562        }
3563        for (unsigned i = 0, e = NumElements; i != e; ++i)
3564          PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i));
3565      }
3566  }
3567  ConstantsOut.clear();
3568
3569  // Turn all of the unordered chains into one factored node.
3570  if (!UnorderedChains.empty()) {
3571    SDOperand Root = SDL.getRoot();
3572    if (Root.getOpcode() != ISD::EntryToken) {
3573      unsigned i = 0, e = UnorderedChains.size();
3574      for (; i != e; ++i) {
3575        assert(UnorderedChains[i].Val->getNumOperands() > 1);
3576        if (UnorderedChains[i].Val->getOperand(0) == Root)
3577          break;  // Don't add the root if we already indirectly depend on it.
3578      }
3579
3580      if (i == e)
3581        UnorderedChains.push_back(Root);
3582    }
3583    DAG.setRoot(DAG.getNode(ISD::TokenFactor, MVT::Other,
3584                            &UnorderedChains[0], UnorderedChains.size()));
3585  }
3586
3587  // Lower the terminator after the copies are emitted.
3588  SDL.visit(*LLVMBB->getTerminator());
3589
3590  // Copy over any CaseBlock records that may now exist due to SwitchInst
3591  // lowering, as well as any jump table information.
3592  SwitchCases.clear();
3593  SwitchCases = SDL.SwitchCases;
3594  JT = SDL.JT;
3595
3596  // Make sure the root of the DAG is up-to-date.
3597  DAG.setRoot(SDL.getRoot());
3598}
3599
3600void SelectionDAGISel::CodeGenAndEmitDAG(SelectionDAG &DAG) {
3601  // Get alias analysis for load/store combining.
3602  AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
3603
3604  // Run the DAG combiner in pre-legalize mode.
3605  DAG.Combine(false, AA);
3606
3607  DEBUG(std::cerr << "Lowered selection DAG:\n");
3608  DEBUG(DAG.dump());
3609
3610  // Second step, hack on the DAG until it only uses operations and types that
3611  // the target supports.
3612  DAG.Legalize();
3613
3614  DEBUG(std::cerr << "Legalized selection DAG:\n");
3615  DEBUG(DAG.dump());
3616
3617  // Run the DAG combiner in post-legalize mode.
3618  DAG.Combine(true, AA);
3619
3620  if (ViewISelDAGs) DAG.viewGraph();
3621
3622  // Third, instruction select all of the operations to machine code, adding the
3623  // code to the MachineBasicBlock.
3624  InstructionSelectBasicBlock(DAG);
3625
3626  DEBUG(std::cerr << "Selected machine code:\n");
3627  DEBUG(BB->dump());
3628}
3629
3630void SelectionDAGISel::SelectBasicBlock(BasicBlock *LLVMBB, MachineFunction &MF,
3631                                        FunctionLoweringInfo &FuncInfo) {
3632  std::vector<std::pair<MachineInstr*, unsigned> > PHINodesToUpdate;
3633  {
3634    SelectionDAG DAG(TLI, MF, getAnalysisToUpdate<MachineDebugInfo>());
3635    CurDAG = &DAG;
3636
3637    // First step, lower LLVM code to some DAG.  This DAG may use operations and
3638    // types that are not supported by the target.
3639    BuildSelectionDAG(DAG, LLVMBB, PHINodesToUpdate, FuncInfo);
3640
3641    // Second step, emit the lowered DAG as machine code.
3642    CodeGenAndEmitDAG(DAG);
3643  }
3644
3645  // Next, now that we know what the last MBB the LLVM BB expanded is, update
3646  // PHI nodes in successors.
3647  if (SwitchCases.empty() && JT.Reg == 0) {
3648    for (unsigned i = 0, e = PHINodesToUpdate.size(); i != e; ++i) {
3649      MachineInstr *PHI = PHINodesToUpdate[i].first;
3650      assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
3651             "This is not a machine PHI node that we are updating!");
3652      PHI->addRegOperand(PHINodesToUpdate[i].second, false);
3653      PHI->addMachineBasicBlockOperand(BB);
3654    }
3655    return;
3656  }
3657
3658  // If the JumpTable record is filled in, then we need to emit a jump table.
3659  // Updating the PHI nodes is tricky in this case, since we need to determine
3660  // whether the PHI is a successor of the range check MBB or the jump table MBB
3661  if (JT.Reg) {
3662    assert(SwitchCases.empty() && "Cannot have jump table and lowered switch");
3663    SelectionDAG SDAG(TLI, MF, getAnalysisToUpdate<MachineDebugInfo>());
3664    CurDAG = &SDAG;
3665    SelectionDAGLowering SDL(SDAG, TLI, FuncInfo);
3666    MachineBasicBlock *RangeBB = BB;
3667    // Set the current basic block to the mbb we wish to insert the code into
3668    BB = JT.MBB;
3669    SDL.setCurrentBasicBlock(BB);
3670    // Emit the code
3671    SDL.visitJumpTable(JT);
3672    SDAG.setRoot(SDL.getRoot());
3673    CodeGenAndEmitDAG(SDAG);
3674    // Update PHI Nodes
3675    for (unsigned pi = 0, pe = PHINodesToUpdate.size(); pi != pe; ++pi) {
3676      MachineInstr *PHI = PHINodesToUpdate[pi].first;
3677      MachineBasicBlock *PHIBB = PHI->getParent();
3678      assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
3679             "This is not a machine PHI node that we are updating!");
3680      if (PHIBB == JT.Default) {
3681        PHI->addRegOperand(PHINodesToUpdate[pi].second, false);
3682        PHI->addMachineBasicBlockOperand(RangeBB);
3683      }
3684      if (BB->succ_end() != std::find(BB->succ_begin(),BB->succ_end(), PHIBB)) {
3685        PHI->addRegOperand(PHINodesToUpdate[pi].second, false);
3686        PHI->addMachineBasicBlockOperand(BB);
3687      }
3688    }
3689    return;
3690  }
3691
3692  // If the switch block involved a branch to one of the actual successors, we
3693  // need to update PHI nodes in that block.
3694  for (unsigned i = 0, e = PHINodesToUpdate.size(); i != e; ++i) {
3695    MachineInstr *PHI = PHINodesToUpdate[i].first;
3696    assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
3697           "This is not a machine PHI node that we are updating!");
3698    if (BB->isSuccessor(PHI->getParent())) {
3699      PHI->addRegOperand(PHINodesToUpdate[i].second, false);
3700      PHI->addMachineBasicBlockOperand(BB);
3701    }
3702  }
3703
3704  // If we generated any switch lowering information, build and codegen any
3705  // additional DAGs necessary.
3706  for (unsigned i = 0, e = SwitchCases.size(); i != e; ++i) {
3707    SelectionDAG SDAG(TLI, MF, getAnalysisToUpdate<MachineDebugInfo>());
3708    CurDAG = &SDAG;
3709    SelectionDAGLowering SDL(SDAG, TLI, FuncInfo);
3710
3711    // Set the current basic block to the mbb we wish to insert the code into
3712    BB = SwitchCases[i].ThisBB;
3713    SDL.setCurrentBasicBlock(BB);
3714
3715    // Emit the code
3716    SDL.visitSwitchCase(SwitchCases[i]);
3717    SDAG.setRoot(SDL.getRoot());
3718    CodeGenAndEmitDAG(SDAG);
3719
3720    // Handle any PHI nodes in successors of this chunk, as if we were coming
3721    // from the original BB before switch expansion.  Note that PHI nodes can
3722    // occur multiple times in PHINodesToUpdate.  We have to be very careful to
3723    // handle them the right number of times.
3724    while ((BB = SwitchCases[i].TrueBB)) {  // Handle LHS and RHS.
3725      for (MachineBasicBlock::iterator Phi = BB->begin();
3726           Phi != BB->end() && Phi->getOpcode() == TargetInstrInfo::PHI; ++Phi){
3727        // This value for this PHI node is recorded in PHINodesToUpdate, get it.
3728        for (unsigned pn = 0; ; ++pn) {
3729          assert(pn != PHINodesToUpdate.size() && "Didn't find PHI entry!");
3730          if (PHINodesToUpdate[pn].first == Phi) {
3731            Phi->addRegOperand(PHINodesToUpdate[pn].second, false);
3732            Phi->addMachineBasicBlockOperand(SwitchCases[i].ThisBB);
3733            break;
3734          }
3735        }
3736      }
3737
3738      // Don't process RHS if same block as LHS.
3739      if (BB == SwitchCases[i].FalseBB)
3740        SwitchCases[i].FalseBB = 0;
3741
3742      // If we haven't handled the RHS, do so now.  Otherwise, we're done.
3743      SwitchCases[i].TrueBB = SwitchCases[i].FalseBB;
3744      SwitchCases[i].FalseBB = 0;
3745    }
3746    assert(SwitchCases[i].TrueBB == 0 && SwitchCases[i].FalseBB == 0);
3747  }
3748}
3749
3750
3751//===----------------------------------------------------------------------===//
3752/// ScheduleAndEmitDAG - Pick a safe ordering and emit instructions for each
3753/// target node in the graph.
3754void SelectionDAGISel::ScheduleAndEmitDAG(SelectionDAG &DAG) {
3755  if (ViewSchedDAGs) DAG.viewGraph();
3756
3757  RegisterScheduler::FunctionPassCtor Ctor = RegisterScheduler::getDefault();
3758
3759  if (!Ctor) {
3760    Ctor = ISHeuristic;
3761    RegisterScheduler::setDefault(Ctor);
3762  }
3763
3764  ScheduleDAG *SL = Ctor(this, &DAG, BB);
3765  BB = SL->Run();
3766  delete SL;
3767}
3768
3769
3770HazardRecognizer *SelectionDAGISel::CreateTargetHazardRecognizer() {
3771  return new HazardRecognizer();
3772}
3773
3774//===----------------------------------------------------------------------===//
3775// Helper functions used by the generated instruction selector.
3776//===----------------------------------------------------------------------===//
3777// Calls to these methods are generated by tblgen.
3778
3779/// CheckAndMask - The isel is trying to match something like (and X, 255).  If
3780/// the dag combiner simplified the 255, we still want to match.  RHS is the
3781/// actual value in the DAG on the RHS of an AND, and DesiredMaskS is the value
3782/// specified in the .td file (e.g. 255).
3783bool SelectionDAGISel::CheckAndMask(SDOperand LHS, ConstantSDNode *RHS,
3784                                    int64_t DesiredMaskS) {
3785  uint64_t ActualMask = RHS->getValue();
3786  uint64_t DesiredMask =DesiredMaskS & MVT::getIntVTBitMask(LHS.getValueType());
3787
3788  // If the actual mask exactly matches, success!
3789  if (ActualMask == DesiredMask)
3790    return true;
3791
3792  // If the actual AND mask is allowing unallowed bits, this doesn't match.
3793  if (ActualMask & ~DesiredMask)
3794    return false;
3795
3796  // Otherwise, the DAG Combiner may have proven that the value coming in is
3797  // either already zero or is not demanded.  Check for known zero input bits.
3798  uint64_t NeededMask = DesiredMask & ~ActualMask;
3799  if (getTargetLowering().MaskedValueIsZero(LHS, NeededMask))
3800    return true;
3801
3802  // TODO: check to see if missing bits are just not demanded.
3803
3804  // Otherwise, this pattern doesn't match.
3805  return false;
3806}
3807
3808/// CheckOrMask - The isel is trying to match something like (or X, 255).  If
3809/// the dag combiner simplified the 255, we still want to match.  RHS is the
3810/// actual value in the DAG on the RHS of an OR, and DesiredMaskS is the value
3811/// specified in the .td file (e.g. 255).
3812bool SelectionDAGISel::CheckOrMask(SDOperand LHS, ConstantSDNode *RHS,
3813                                    int64_t DesiredMaskS) {
3814  uint64_t ActualMask = RHS->getValue();
3815  uint64_t DesiredMask =DesiredMaskS & MVT::getIntVTBitMask(LHS.getValueType());
3816
3817  // If the actual mask exactly matches, success!
3818  if (ActualMask == DesiredMask)
3819    return true;
3820
3821  // If the actual AND mask is allowing unallowed bits, this doesn't match.
3822  if (ActualMask & ~DesiredMask)
3823    return false;
3824
3825  // Otherwise, the DAG Combiner may have proven that the value coming in is
3826  // either already zero or is not demanded.  Check for known zero input bits.
3827  uint64_t NeededMask = DesiredMask & ~ActualMask;
3828
3829  uint64_t KnownZero, KnownOne;
3830  getTargetLowering().ComputeMaskedBits(LHS, NeededMask, KnownZero, KnownOne);
3831
3832  // If all the missing bits in the or are already known to be set, match!
3833  if ((NeededMask & KnownOne) == NeededMask)
3834    return true;
3835
3836  // TODO: check to see if missing bits are just not demanded.
3837
3838  // Otherwise, this pattern doesn't match.
3839  return false;
3840}
3841
3842
3843/// SelectInlineAsmMemoryOperands - Calls to this are automatically generated
3844/// by tblgen.  Others should not call it.
3845void SelectionDAGISel::
3846SelectInlineAsmMemoryOperands(std::vector<SDOperand> &Ops, SelectionDAG &DAG) {
3847  std::vector<SDOperand> InOps;
3848  std::swap(InOps, Ops);
3849
3850  Ops.push_back(InOps[0]);  // input chain.
3851  Ops.push_back(InOps[1]);  // input asm string.
3852
3853  unsigned i = 2, e = InOps.size();
3854  if (InOps[e-1].getValueType() == MVT::Flag)
3855    --e;  // Don't process a flag operand if it is here.
3856
3857  while (i != e) {
3858    unsigned Flags = cast<ConstantSDNode>(InOps[i])->getValue();
3859    if ((Flags & 7) != 4 /*MEM*/) {
3860      // Just skip over this operand, copying the operands verbatim.
3861      Ops.insert(Ops.end(), InOps.begin()+i, InOps.begin()+i+(Flags >> 3) + 1);
3862      i += (Flags >> 3) + 1;
3863    } else {
3864      assert((Flags >> 3) == 1 && "Memory operand with multiple values?");
3865      // Otherwise, this is a memory operand.  Ask the target to select it.
3866      std::vector<SDOperand> SelOps;
3867      if (SelectInlineAsmMemoryOperand(InOps[i+1], 'm', SelOps, DAG)) {
3868        std::cerr << "Could not match memory address.  Inline asm failure!\n";
3869        exit(1);
3870      }
3871
3872      // Add this to the output node.
3873      Ops.push_back(DAG.getConstant(4/*MEM*/ | (SelOps.size() << 3), MVT::i32));
3874      Ops.insert(Ops.end(), SelOps.begin(), SelOps.end());
3875      i += 2;
3876    }
3877  }
3878
3879  // Add the flag input back if present.
3880  if (e != InOps.size())
3881    Ops.push_back(InOps.back());
3882}
3883