SelectionDAGISel.cpp revision 2520864773dcb73d76d297605f4bc41c0cf3fa39
1//===-- SelectionDAGISel.cpp - Implement the SelectionDAGISel class -------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAGISel class.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "isel"
15#include "ScheduleDAGSDNodes.h"
16#include "SelectionDAGBuilder.h"
17#include "FunctionLoweringInfo.h"
18#include "llvm/CodeGen/SelectionDAGISel.h"
19#include "llvm/Analysis/AliasAnalysis.h"
20#include "llvm/Analysis/DebugInfo.h"
21#include "llvm/Constants.h"
22#include "llvm/Function.h"
23#include "llvm/InlineAsm.h"
24#include "llvm/Instructions.h"
25#include "llvm/Intrinsics.h"
26#include "llvm/IntrinsicInst.h"
27#include "llvm/LLVMContext.h"
28#include "llvm/CodeGen/FastISel.h"
29#include "llvm/CodeGen/GCStrategy.h"
30#include "llvm/CodeGen/GCMetadata.h"
31#include "llvm/CodeGen/MachineFunction.h"
32#include "llvm/CodeGen/MachineInstrBuilder.h"
33#include "llvm/CodeGen/MachineModuleInfo.h"
34#include "llvm/CodeGen/MachineRegisterInfo.h"
35#include "llvm/CodeGen/ScheduleHazardRecognizer.h"
36#include "llvm/CodeGen/SchedulerRegistry.h"
37#include "llvm/CodeGen/SelectionDAG.h"
38#include "llvm/Target/TargetRegisterInfo.h"
39#include "llvm/Target/TargetIntrinsicInfo.h"
40#include "llvm/Target/TargetInstrInfo.h"
41#include "llvm/Target/TargetLowering.h"
42#include "llvm/Target/TargetMachine.h"
43#include "llvm/Target/TargetOptions.h"
44#include "llvm/Support/Compiler.h"
45#include "llvm/Support/Debug.h"
46#include "llvm/Support/ErrorHandling.h"
47#include "llvm/Support/Timer.h"
48#include "llvm/Support/raw_ostream.h"
49#include "llvm/ADT/Statistic.h"
50#include <algorithm>
51using namespace llvm;
52
53STATISTIC(NumFastIselFailures, "Number of instructions fast isel failed on");
54STATISTIC(NumDAGIselRetries,"Number of times dag isel has to try another path");
55
56static cl::opt<bool>
57EnableFastISelVerbose("fast-isel-verbose", cl::Hidden,
58          cl::desc("Enable verbose messages in the \"fast\" "
59                   "instruction selector"));
60static cl::opt<bool>
61EnableFastISelAbort("fast-isel-abort", cl::Hidden,
62          cl::desc("Enable abort calls when \"fast\" instruction fails"));
63
64#ifndef NDEBUG
65static cl::opt<bool>
66ViewDAGCombine1("view-dag-combine1-dags", cl::Hidden,
67          cl::desc("Pop up a window to show dags before the first "
68                   "dag combine pass"));
69static cl::opt<bool>
70ViewLegalizeTypesDAGs("view-legalize-types-dags", cl::Hidden,
71          cl::desc("Pop up a window to show dags before legalize types"));
72static cl::opt<bool>
73ViewLegalizeDAGs("view-legalize-dags", cl::Hidden,
74          cl::desc("Pop up a window to show dags before legalize"));
75static cl::opt<bool>
76ViewDAGCombine2("view-dag-combine2-dags", cl::Hidden,
77          cl::desc("Pop up a window to show dags before the second "
78                   "dag combine pass"));
79static cl::opt<bool>
80ViewDAGCombineLT("view-dag-combine-lt-dags", cl::Hidden,
81          cl::desc("Pop up a window to show dags before the post legalize types"
82                   " dag combine pass"));
83static cl::opt<bool>
84ViewISelDAGs("view-isel-dags", cl::Hidden,
85          cl::desc("Pop up a window to show isel dags as they are selected"));
86static cl::opt<bool>
87ViewSchedDAGs("view-sched-dags", cl::Hidden,
88          cl::desc("Pop up a window to show sched dags as they are processed"));
89static cl::opt<bool>
90ViewSUnitDAGs("view-sunit-dags", cl::Hidden,
91      cl::desc("Pop up a window to show SUnit dags after they are processed"));
92#else
93static const bool ViewDAGCombine1 = false,
94                  ViewLegalizeTypesDAGs = false, ViewLegalizeDAGs = false,
95                  ViewDAGCombine2 = false,
96                  ViewDAGCombineLT = false,
97                  ViewISelDAGs = false, ViewSchedDAGs = false,
98                  ViewSUnitDAGs = false;
99#endif
100
101//===---------------------------------------------------------------------===//
102///
103/// RegisterScheduler class - Track the registration of instruction schedulers.
104///
105//===---------------------------------------------------------------------===//
106MachinePassRegistry RegisterScheduler::Registry;
107
108//===---------------------------------------------------------------------===//
109///
110/// ISHeuristic command line option for instruction schedulers.
111///
112//===---------------------------------------------------------------------===//
113static cl::opt<RegisterScheduler::FunctionPassCtor, false,
114               RegisterPassParser<RegisterScheduler> >
115ISHeuristic("pre-RA-sched",
116            cl::init(&createDefaultScheduler),
117            cl::desc("Instruction schedulers available (before register"
118                     " allocation):"));
119
120static RegisterScheduler
121defaultListDAGScheduler("default", "Best scheduler for the target",
122                        createDefaultScheduler);
123
124namespace llvm {
125  //===--------------------------------------------------------------------===//
126  /// createDefaultScheduler - This creates an instruction scheduler appropriate
127  /// for the target.
128  ScheduleDAGSDNodes* createDefaultScheduler(SelectionDAGISel *IS,
129                                             CodeGenOpt::Level OptLevel) {
130    const TargetLowering &TLI = IS->getTargetLowering();
131
132    if (OptLevel == CodeGenOpt::None)
133      return createFastDAGScheduler(IS, OptLevel);
134    if (TLI.getSchedulingPreference() == TargetLowering::SchedulingForLatency)
135      return createTDListDAGScheduler(IS, OptLevel);
136    assert(TLI.getSchedulingPreference() ==
137           TargetLowering::SchedulingForRegPressure && "Unknown sched type!");
138    return createBURRListDAGScheduler(IS, OptLevel);
139  }
140}
141
142// EmitInstrWithCustomInserter - This method should be implemented by targets
143// that mark instructions with the 'usesCustomInserter' flag.  These
144// instructions are special in various ways, which require special support to
145// insert.  The specified MachineInstr is created but not inserted into any
146// basic blocks, and this method is called to expand it into a sequence of
147// instructions, potentially also creating new basic blocks and control flow.
148// When new basic blocks are inserted and the edges from MBB to its successors
149// are modified, the method should insert pairs of <OldSucc, NewSucc> into the
150// DenseMap.
151MachineBasicBlock *TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
152                                                         MachineBasicBlock *MBB,
153                   DenseMap<MachineBasicBlock*, MachineBasicBlock*> *EM) const {
154#ifndef NDEBUG
155  dbgs() << "If a target marks an instruction with "
156          "'usesCustomInserter', it must implement "
157          "TargetLowering::EmitInstrWithCustomInserter!";
158#endif
159  llvm_unreachable(0);
160  return 0;
161}
162
163//===----------------------------------------------------------------------===//
164// SelectionDAGISel code
165//===----------------------------------------------------------------------===//
166
167SelectionDAGISel::SelectionDAGISel(TargetMachine &tm, CodeGenOpt::Level OL) :
168  MachineFunctionPass(&ID), TM(tm), TLI(*tm.getTargetLowering()),
169  FuncInfo(new FunctionLoweringInfo(TLI)),
170  CurDAG(new SelectionDAG(TLI, *FuncInfo)),
171  SDB(new SelectionDAGBuilder(*CurDAG, TLI, *FuncInfo, OL)),
172  GFI(),
173  OptLevel(OL),
174  DAGSize(0)
175{}
176
177SelectionDAGISel::~SelectionDAGISel() {
178  delete SDB;
179  delete CurDAG;
180  delete FuncInfo;
181}
182
183void SelectionDAGISel::getAnalysisUsage(AnalysisUsage &AU) const {
184  AU.addRequired<AliasAnalysis>();
185  AU.addPreserved<AliasAnalysis>();
186  AU.addRequired<GCModuleInfo>();
187  AU.addPreserved<GCModuleInfo>();
188  MachineFunctionPass::getAnalysisUsage(AU);
189}
190
191bool SelectionDAGISel::runOnMachineFunction(MachineFunction &mf) {
192  // Do some sanity-checking on the command-line options.
193  assert((!EnableFastISelVerbose || EnableFastISel) &&
194         "-fast-isel-verbose requires -fast-isel");
195  assert((!EnableFastISelAbort || EnableFastISel) &&
196         "-fast-isel-abort requires -fast-isel");
197
198  Function &Fn = *mf.getFunction();
199  const TargetInstrInfo &TII = *TM.getInstrInfo();
200  const TargetRegisterInfo &TRI = *TM.getRegisterInfo();
201
202  MF = &mf;
203  RegInfo = &MF->getRegInfo();
204  AA = &getAnalysis<AliasAnalysis>();
205  GFI = Fn.hasGC() ? &getAnalysis<GCModuleInfo>().getFunctionInfo(Fn) : 0;
206
207  DEBUG(dbgs() << "\n\n\n=== " << Fn.getName() << "\n");
208
209  CurDAG->init(*MF);
210  FuncInfo->set(Fn, *MF, EnableFastISel);
211  SDB->init(GFI, *AA);
212
213  SelectAllBasicBlocks(Fn, *MF, TII);
214
215  // Release function-specific state. SDB and CurDAG are already cleared
216  // at this point.
217  FuncInfo->clear();
218
219  // If the first basic block in the function has live ins that need to be
220  // copied into vregs, emit the copies into the top of the block before
221  // emitting the code for the block.
222  RegInfo->EmitLiveInCopies(MF->begin(), TRI, TII);
223
224  return true;
225}
226
227/// SetDebugLoc - Update MF's and SDB's DebugLocs if debug information is
228/// attached with this instruction.
229static void SetDebugLoc(Instruction *I, SelectionDAGBuilder *SDB,
230                        FastISel *FastIS, MachineFunction *MF) {
231  DebugLoc DL = I->getDebugLoc();
232  if (DL.isUnknown()) return;
233
234  SDB->setCurDebugLoc(DL);
235
236  if (FastIS)
237    FastIS->setCurDebugLoc(DL);
238
239  // If the function doesn't have a default debug location yet, set
240  // it. This is kind of a hack.
241  if (MF->getDefaultDebugLoc().isUnknown())
242    MF->setDefaultDebugLoc(DL);
243}
244
245/// ResetDebugLoc - Set MF's and SDB's DebugLocs to Unknown.
246static void ResetDebugLoc(SelectionDAGBuilder *SDB, FastISel *FastIS) {
247  SDB->setCurDebugLoc(DebugLoc());
248  if (FastIS)
249    FastIS->setCurDebugLoc(DebugLoc());
250}
251
252void SelectionDAGISel::SelectBasicBlock(BasicBlock *LLVMBB,
253                                        BasicBlock::iterator Begin,
254                                        BasicBlock::iterator End,
255                                        bool &HadTailCall) {
256  SDB->setCurrentBasicBlock(BB);
257
258  // Lower all of the non-terminator instructions. If a call is emitted
259  // as a tail call, cease emitting nodes for this block.
260  for (BasicBlock::iterator I = Begin; I != End && !SDB->HasTailCall; ++I) {
261    SetDebugLoc(I, SDB, 0, MF);
262
263    // Visit the instruction. Terminators are handled below.
264    if (!isa<TerminatorInst>(I))
265      SDB->visit(*I);
266
267    ResetDebugLoc(SDB, 0);
268  }
269
270  if (!SDB->HasTailCall) {
271    // Ensure that all instructions which are used outside of their defining
272    // blocks are available as virtual registers.  Invoke is handled elsewhere.
273    for (BasicBlock::iterator I = Begin; I != End; ++I)
274      if (!isa<PHINode>(I) && !isa<InvokeInst>(I))
275        SDB->CopyToExportRegsIfNeeded(I);
276
277    // Handle PHI nodes in successor blocks.
278    if (End == LLVMBB->end()) {
279      HandlePHINodesInSuccessorBlocks(LLVMBB);
280
281      // Lower the terminator after the copies are emitted.
282      SetDebugLoc(LLVMBB->getTerminator(), SDB, 0, MF);
283      SDB->visit(*LLVMBB->getTerminator());
284      ResetDebugLoc(SDB, 0);
285    }
286  }
287
288  // Make sure the root of the DAG is up-to-date.
289  CurDAG->setRoot(SDB->getControlRoot());
290
291  // Final step, emit the lowered DAG as machine code.
292  CodeGenAndEmitDAG();
293  HadTailCall = SDB->HasTailCall;
294  SDB->clear();
295}
296
297namespace {
298/// WorkListRemover - This class is a DAGUpdateListener that removes any deleted
299/// nodes from the worklist.
300class SDOPsWorkListRemover : public SelectionDAG::DAGUpdateListener {
301  SmallVector<SDNode*, 128> &Worklist;
302  SmallPtrSet<SDNode*, 128> &InWorklist;
303public:
304  SDOPsWorkListRemover(SmallVector<SDNode*, 128> &wl,
305                       SmallPtrSet<SDNode*, 128> &inwl)
306    : Worklist(wl), InWorklist(inwl) {}
307
308  void RemoveFromWorklist(SDNode *N) {
309    if (!InWorklist.erase(N)) return;
310
311    SmallVector<SDNode*, 128>::iterator I =
312    std::find(Worklist.begin(), Worklist.end(), N);
313    assert(I != Worklist.end() && "Not in worklist");
314
315    *I = Worklist.back();
316    Worklist.pop_back();
317  }
318
319  virtual void NodeDeleted(SDNode *N, SDNode *E) {
320    RemoveFromWorklist(N);
321  }
322
323  virtual void NodeUpdated(SDNode *N) {
324    // Ignore updates.
325  }
326};
327}
328
329/// TrivialTruncElim - Eliminate some trivial nops that can result from
330/// ShrinkDemandedOps: (trunc (ext n)) -> n.
331static bool TrivialTruncElim(SDValue Op,
332                             TargetLowering::TargetLoweringOpt &TLO) {
333  SDValue N0 = Op.getOperand(0);
334  EVT VT = Op.getValueType();
335  if ((N0.getOpcode() == ISD::ZERO_EXTEND ||
336       N0.getOpcode() == ISD::SIGN_EXTEND ||
337       N0.getOpcode() == ISD::ANY_EXTEND) &&
338      N0.getOperand(0).getValueType() == VT) {
339    return TLO.CombineTo(Op, N0.getOperand(0));
340  }
341  return false;
342}
343
344/// ShrinkDemandedOps - A late transformation pass that shrink expressions
345/// using TargetLowering::TargetLoweringOpt::ShrinkDemandedOp. It converts
346/// x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free.
347void SelectionDAGISel::ShrinkDemandedOps() {
348  SmallVector<SDNode*, 128> Worklist;
349  SmallPtrSet<SDNode*, 128> InWorklist;
350
351  // Add all the dag nodes to the worklist.
352  Worklist.reserve(CurDAG->allnodes_size());
353  for (SelectionDAG::allnodes_iterator I = CurDAG->allnodes_begin(),
354       E = CurDAG->allnodes_end(); I != E; ++I) {
355    Worklist.push_back(I);
356    InWorklist.insert(I);
357  }
358
359  TargetLowering::TargetLoweringOpt TLO(*CurDAG, true);
360  while (!Worklist.empty()) {
361    SDNode *N = Worklist.pop_back_val();
362    InWorklist.erase(N);
363
364    if (N->use_empty() && N != CurDAG->getRoot().getNode()) {
365      // Deleting this node may make its operands dead, add them to the worklist
366      // if they aren't already there.
367      for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
368        if (InWorklist.insert(N->getOperand(i).getNode()))
369          Worklist.push_back(N->getOperand(i).getNode());
370
371      CurDAG->DeleteNode(N);
372      continue;
373    }
374
375    // Run ShrinkDemandedOp on scalar binary operations.
376    if (N->getNumValues() != 1 ||
377        !N->getValueType(0).isSimple() || !N->getValueType(0).isInteger())
378      continue;
379
380    unsigned BitWidth = N->getValueType(0).getScalarType().getSizeInBits();
381    APInt Demanded = APInt::getAllOnesValue(BitWidth);
382    APInt KnownZero, KnownOne;
383    if (!TLI.SimplifyDemandedBits(SDValue(N, 0), Demanded,
384                                  KnownZero, KnownOne, TLO) &&
385        (N->getOpcode() != ISD::TRUNCATE ||
386         !TrivialTruncElim(SDValue(N, 0), TLO)))
387      continue;
388
389    // Revisit the node.
390    assert(!InWorklist.count(N) && "Already in worklist");
391    Worklist.push_back(N);
392    InWorklist.insert(N);
393
394    // Replace the old value with the new one.
395    DEBUG(errs() << "\nShrinkDemandedOps replacing ";
396          TLO.Old.getNode()->dump(CurDAG);
397          errs() << "\nWith: ";
398          TLO.New.getNode()->dump(CurDAG);
399          errs() << '\n');
400
401    if (InWorklist.insert(TLO.New.getNode()))
402      Worklist.push_back(TLO.New.getNode());
403
404    SDOPsWorkListRemover DeadNodes(Worklist, InWorklist);
405    CurDAG->ReplaceAllUsesOfValueWith(TLO.Old, TLO.New, &DeadNodes);
406
407    if (!TLO.Old.getNode()->use_empty()) continue;
408
409    for (unsigned i = 0, e = TLO.Old.getNode()->getNumOperands();
410         i != e; ++i) {
411      SDNode *OpNode = TLO.Old.getNode()->getOperand(i).getNode();
412      if (OpNode->hasOneUse()) {
413        // Add OpNode to the end of the list to revisit.
414        DeadNodes.RemoveFromWorklist(OpNode);
415        Worklist.push_back(OpNode);
416        InWorklist.insert(OpNode);
417      }
418    }
419
420    DeadNodes.RemoveFromWorklist(TLO.Old.getNode());
421    CurDAG->DeleteNode(TLO.Old.getNode());
422  }
423}
424
425void SelectionDAGISel::ComputeLiveOutVRegInfo() {
426  SmallPtrSet<SDNode*, 128> VisitedNodes;
427  SmallVector<SDNode*, 128> Worklist;
428
429  Worklist.push_back(CurDAG->getRoot().getNode());
430
431  APInt Mask;
432  APInt KnownZero;
433  APInt KnownOne;
434
435  do {
436    SDNode *N = Worklist.pop_back_val();
437
438    // If we've already seen this node, ignore it.
439    if (!VisitedNodes.insert(N))
440      continue;
441
442    // Otherwise, add all chain operands to the worklist.
443    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
444      if (N->getOperand(i).getValueType() == MVT::Other)
445        Worklist.push_back(N->getOperand(i).getNode());
446
447    // If this is a CopyToReg with a vreg dest, process it.
448    if (N->getOpcode() != ISD::CopyToReg)
449      continue;
450
451    unsigned DestReg = cast<RegisterSDNode>(N->getOperand(1))->getReg();
452    if (!TargetRegisterInfo::isVirtualRegister(DestReg))
453      continue;
454
455    // Ignore non-scalar or non-integer values.
456    SDValue Src = N->getOperand(2);
457    EVT SrcVT = Src.getValueType();
458    if (!SrcVT.isInteger() || SrcVT.isVector())
459      continue;
460
461    unsigned NumSignBits = CurDAG->ComputeNumSignBits(Src);
462    Mask = APInt::getAllOnesValue(SrcVT.getSizeInBits());
463    CurDAG->ComputeMaskedBits(Src, Mask, KnownZero, KnownOne);
464
465    // Only install this information if it tells us something.
466    if (NumSignBits != 1 || KnownZero != 0 || KnownOne != 0) {
467      DestReg -= TargetRegisterInfo::FirstVirtualRegister;
468      if (DestReg >= FuncInfo->LiveOutRegInfo.size())
469        FuncInfo->LiveOutRegInfo.resize(DestReg+1);
470      FunctionLoweringInfo::LiveOutInfo &LOI =
471        FuncInfo->LiveOutRegInfo[DestReg];
472      LOI.NumSignBits = NumSignBits;
473      LOI.KnownOne = KnownOne;
474      LOI.KnownZero = KnownZero;
475    }
476  } while (!Worklist.empty());
477}
478
479void SelectionDAGISel::CodeGenAndEmitDAG() {
480  std::string GroupName;
481  if (TimePassesIsEnabled)
482    GroupName = "Instruction Selection and Scheduling";
483  std::string BlockName;
484  if (ViewDAGCombine1 || ViewLegalizeTypesDAGs || ViewLegalizeDAGs ||
485      ViewDAGCombine2 || ViewDAGCombineLT || ViewISelDAGs || ViewSchedDAGs ||
486      ViewSUnitDAGs)
487    BlockName = MF->getFunction()->getNameStr() + ":" +
488                BB->getBasicBlock()->getNameStr();
489
490  DEBUG(dbgs() << "Initial selection DAG:\n");
491  DEBUG(CurDAG->dump());
492
493  if (ViewDAGCombine1) CurDAG->viewGraph("dag-combine1 input for " + BlockName);
494
495  // Run the DAG combiner in pre-legalize mode.
496  if (TimePassesIsEnabled) {
497    NamedRegionTimer T("DAG Combining 1", GroupName);
498    CurDAG->Combine(Unrestricted, *AA, OptLevel);
499  } else {
500    CurDAG->Combine(Unrestricted, *AA, OptLevel);
501  }
502
503  DEBUG(dbgs() << "Optimized lowered selection DAG:\n");
504  DEBUG(CurDAG->dump());
505
506  // Second step, hack on the DAG until it only uses operations and types that
507  // the target supports.
508  if (ViewLegalizeTypesDAGs) CurDAG->viewGraph("legalize-types input for " +
509                                               BlockName);
510
511  bool Changed;
512  if (TimePassesIsEnabled) {
513    NamedRegionTimer T("Type Legalization", GroupName);
514    Changed = CurDAG->LegalizeTypes();
515  } else {
516    Changed = CurDAG->LegalizeTypes();
517  }
518
519  DEBUG(dbgs() << "Type-legalized selection DAG:\n");
520  DEBUG(CurDAG->dump());
521
522  if (Changed) {
523    if (ViewDAGCombineLT)
524      CurDAG->viewGraph("dag-combine-lt input for " + BlockName);
525
526    // Run the DAG combiner in post-type-legalize mode.
527    if (TimePassesIsEnabled) {
528      NamedRegionTimer T("DAG Combining after legalize types", GroupName);
529      CurDAG->Combine(NoIllegalTypes, *AA, OptLevel);
530    } else {
531      CurDAG->Combine(NoIllegalTypes, *AA, OptLevel);
532    }
533
534    DEBUG(dbgs() << "Optimized type-legalized selection DAG:\n");
535    DEBUG(CurDAG->dump());
536  }
537
538  if (TimePassesIsEnabled) {
539    NamedRegionTimer T("Vector Legalization", GroupName);
540    Changed = CurDAG->LegalizeVectors();
541  } else {
542    Changed = CurDAG->LegalizeVectors();
543  }
544
545  if (Changed) {
546    if (TimePassesIsEnabled) {
547      NamedRegionTimer T("Type Legalization 2", GroupName);
548      CurDAG->LegalizeTypes();
549    } else {
550      CurDAG->LegalizeTypes();
551    }
552
553    if (ViewDAGCombineLT)
554      CurDAG->viewGraph("dag-combine-lv input for " + BlockName);
555
556    // Run the DAG combiner in post-type-legalize mode.
557    if (TimePassesIsEnabled) {
558      NamedRegionTimer T("DAG Combining after legalize vectors", GroupName);
559      CurDAG->Combine(NoIllegalOperations, *AA, OptLevel);
560    } else {
561      CurDAG->Combine(NoIllegalOperations, *AA, OptLevel);
562    }
563
564    DEBUG(dbgs() << "Optimized vector-legalized selection DAG:\n");
565    DEBUG(CurDAG->dump());
566  }
567
568  if (ViewLegalizeDAGs) CurDAG->viewGraph("legalize input for " + BlockName);
569
570  if (TimePassesIsEnabled) {
571    NamedRegionTimer T("DAG Legalization", GroupName);
572    CurDAG->Legalize(OptLevel);
573  } else {
574    CurDAG->Legalize(OptLevel);
575  }
576
577  DEBUG(dbgs() << "Legalized selection DAG:\n");
578  DEBUG(CurDAG->dump());
579
580  if (ViewDAGCombine2) CurDAG->viewGraph("dag-combine2 input for " + BlockName);
581
582  // Run the DAG combiner in post-legalize mode.
583  if (TimePassesIsEnabled) {
584    NamedRegionTimer T("DAG Combining 2", GroupName);
585    CurDAG->Combine(NoIllegalOperations, *AA, OptLevel);
586  } else {
587    CurDAG->Combine(NoIllegalOperations, *AA, OptLevel);
588  }
589
590  DEBUG(dbgs() << "Optimized legalized selection DAG:\n");
591  DEBUG(CurDAG->dump());
592
593  if (OptLevel != CodeGenOpt::None) {
594    ShrinkDemandedOps();
595    ComputeLiveOutVRegInfo();
596  }
597
598  if (ViewISelDAGs) CurDAG->viewGraph("isel input for " + BlockName);
599
600  // Third, instruction select all of the operations to machine code, adding the
601  // code to the MachineBasicBlock.
602  if (TimePassesIsEnabled) {
603    NamedRegionTimer T("Instruction Selection", GroupName);
604    DoInstructionSelection();
605  } else {
606    DoInstructionSelection();
607  }
608
609  DEBUG(dbgs() << "Selected selection DAG:\n");
610  DEBUG(CurDAG->dump());
611
612  if (ViewSchedDAGs) CurDAG->viewGraph("scheduler input for " + BlockName);
613
614  // Schedule machine code.
615  ScheduleDAGSDNodes *Scheduler = CreateScheduler();
616  if (TimePassesIsEnabled) {
617    NamedRegionTimer T("Instruction Scheduling", GroupName);
618    Scheduler->Run(CurDAG, BB, BB->end());
619  } else {
620    Scheduler->Run(CurDAG, BB, BB->end());
621  }
622
623  if (ViewSUnitDAGs) Scheduler->viewGraph();
624
625  // Emit machine code to BB.  This can change 'BB' to the last block being
626  // inserted into.
627  if (TimePassesIsEnabled) {
628    NamedRegionTimer T("Instruction Creation", GroupName);
629    BB = Scheduler->EmitSchedule(&SDB->EdgeMapping);
630  } else {
631    BB = Scheduler->EmitSchedule(&SDB->EdgeMapping);
632  }
633
634  // Free the scheduler state.
635  if (TimePassesIsEnabled) {
636    NamedRegionTimer T("Instruction Scheduling Cleanup", GroupName);
637    delete Scheduler;
638  } else {
639    delete Scheduler;
640  }
641
642  DEBUG(dbgs() << "Selected machine code:\n");
643  DEBUG(BB->dump());
644}
645
646void SelectionDAGISel::DoInstructionSelection() {
647  DEBUG(errs() << "===== Instruction selection begins:\n");
648
649  PreprocessISelDAG();
650
651  // Select target instructions for the DAG.
652  {
653    // Number all nodes with a topological order and set DAGSize.
654    DAGSize = CurDAG->AssignTopologicalOrder();
655
656    // Create a dummy node (which is not added to allnodes), that adds
657    // a reference to the root node, preventing it from being deleted,
658    // and tracking any changes of the root.
659    HandleSDNode Dummy(CurDAG->getRoot());
660    ISelPosition = SelectionDAG::allnodes_iterator(CurDAG->getRoot().getNode());
661    ++ISelPosition;
662
663    // The AllNodes list is now topological-sorted. Visit the
664    // nodes by starting at the end of the list (the root of the
665    // graph) and preceding back toward the beginning (the entry
666    // node).
667    while (ISelPosition != CurDAG->allnodes_begin()) {
668      SDNode *Node = --ISelPosition;
669      // Skip dead nodes. DAGCombiner is expected to eliminate all dead nodes,
670      // but there are currently some corner cases that it misses. Also, this
671      // makes it theoretically possible to disable the DAGCombiner.
672      if (Node->use_empty())
673        continue;
674
675      SDNode *ResNode = Select(Node);
676
677      // FIXME: This is pretty gross.  'Select' should be changed to not return
678      // anything at all and this code should be nuked with a tactical strike.
679
680      // If node should not be replaced, continue with the next one.
681      if (ResNode == Node || Node->getOpcode() == ISD::DELETED_NODE)
682        continue;
683      // Replace node.
684      if (ResNode)
685        ReplaceUses(Node, ResNode);
686
687      // If after the replacement this node is not used any more,
688      // remove this dead node.
689      if (Node->use_empty()) { // Don't delete EntryToken, etc.
690        ISelUpdater ISU(ISelPosition);
691        CurDAG->RemoveDeadNode(Node, &ISU);
692      }
693    }
694
695    CurDAG->setRoot(Dummy.getValue());
696  }
697  DEBUG(errs() << "===== Instruction selection ends:\n");
698
699  PostprocessISelDAG();
700}
701
702/// PrepareEHLandingPad - Emit an EH_LABEL, set up live-in registers, and
703/// do other setup for EH landing-pad blocks.
704void SelectionDAGISel::PrepareEHLandingPad(MachineBasicBlock *BB) {
705  // Add a label to mark the beginning of the landing pad.  Deletion of the
706  // landing pad can thus be detected via the MachineModuleInfo.
707  MCSymbol *Label = MF->getMMI().addLandingPad(BB);
708
709  const TargetInstrDesc &II =
710    TLI.getTargetMachine().getInstrInfo()->get(TargetOpcode::EH_LABEL);
711  BuildMI(BB, SDB->getCurDebugLoc(), II).addSym(Label);
712
713  // Mark exception register as live in.
714  unsigned Reg = TLI.getExceptionAddressRegister();
715  if (Reg) BB->addLiveIn(Reg);
716
717  // Mark exception selector register as live in.
718  Reg = TLI.getExceptionSelectorRegister();
719  if (Reg) BB->addLiveIn(Reg);
720
721  // FIXME: Hack around an exception handling flaw (PR1508): the personality
722  // function and list of typeids logically belong to the invoke (or, if you
723  // like, the basic block containing the invoke), and need to be associated
724  // with it in the dwarf exception handling tables.  Currently however the
725  // information is provided by an intrinsic (eh.selector) that can be moved
726  // to unexpected places by the optimizers: if the unwind edge is critical,
727  // then breaking it can result in the intrinsics being in the successor of
728  // the landing pad, not the landing pad itself.  This results
729  // in exceptions not being caught because no typeids are associated with
730  // the invoke.  This may not be the only way things can go wrong, but it
731  // is the only way we try to work around for the moment.
732  const BasicBlock *LLVMBB = BB->getBasicBlock();
733  const BranchInst *Br = dyn_cast<BranchInst>(LLVMBB->getTerminator());
734
735  if (Br && Br->isUnconditional()) { // Critical edge?
736    BasicBlock::const_iterator I, E;
737    for (I = LLVMBB->begin(), E = --LLVMBB->end(); I != E; ++I)
738      if (isa<EHSelectorInst>(I))
739        break;
740
741    if (I == E)
742      // No catch info found - try to extract some from the successor.
743      CopyCatchInfo(Br->getSuccessor(0), LLVMBB, &MF->getMMI(), *FuncInfo);
744  }
745}
746
747void SelectionDAGISel::SelectAllBasicBlocks(Function &Fn,
748                                            MachineFunction &MF,
749                                            const TargetInstrInfo &TII) {
750  // Initialize the Fast-ISel state, if needed.
751  FastISel *FastIS = 0;
752  if (EnableFastISel)
753    FastIS = TLI.createFastISel(MF, FuncInfo->ValueMap, FuncInfo->MBBMap,
754                                FuncInfo->StaticAllocaMap
755#ifndef NDEBUG
756                                , FuncInfo->CatchInfoLost
757#endif
758                                );
759
760  // Iterate over all basic blocks in the function.
761  for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I) {
762    BasicBlock *LLVMBB = &*I;
763    BB = FuncInfo->MBBMap[LLVMBB];
764
765    BasicBlock::iterator const Begin = LLVMBB->begin();
766    BasicBlock::iterator const End = LLVMBB->end();
767    BasicBlock::iterator BI = Begin;
768
769    // Lower any arguments needed in this block if this is the entry block.
770    bool SuppressFastISel = false;
771    if (LLVMBB == &Fn.getEntryBlock()) {
772      LowerArguments(LLVMBB);
773
774      // If any of the arguments has the byval attribute, forgo
775      // fast-isel in the entry block.
776      if (FastIS) {
777        unsigned j = 1;
778        for (Function::arg_iterator I = Fn.arg_begin(), E = Fn.arg_end();
779             I != E; ++I, ++j)
780          if (Fn.paramHasAttr(j, Attribute::ByVal)) {
781            if (EnableFastISelVerbose || EnableFastISelAbort)
782              dbgs() << "FastISel skips entry block due to byval argument\n";
783            SuppressFastISel = true;
784            break;
785          }
786      }
787    }
788
789    // Setup an EH landing-pad block.
790    if (BB->isLandingPad())
791      PrepareEHLandingPad(BB);
792
793    // Before doing SelectionDAG ISel, see if FastISel has been requested.
794    if (FastIS && !SuppressFastISel) {
795      // Emit code for any incoming arguments. This must happen before
796      // beginning FastISel on the entry block.
797      if (LLVMBB == &Fn.getEntryBlock()) {
798        CurDAG->setRoot(SDB->getControlRoot());
799        CodeGenAndEmitDAG();
800        SDB->clear();
801      }
802      FastIS->startNewBlock(BB);
803      // Do FastISel on as many instructions as possible.
804      for (; BI != End; ++BI) {
805        // Just before the terminator instruction, insert instructions to
806        // feed PHI nodes in successor blocks.
807        if (isa<TerminatorInst>(BI))
808          if (!HandlePHINodesInSuccessorBlocksFast(LLVMBB, FastIS)) {
809            ++NumFastIselFailures;
810            ResetDebugLoc(SDB, FastIS);
811            if (EnableFastISelVerbose || EnableFastISelAbort) {
812              dbgs() << "FastISel miss: ";
813              BI->dump();
814            }
815            assert(!EnableFastISelAbort &&
816                   "FastISel didn't handle a PHI in a successor");
817            break;
818          }
819
820        SetDebugLoc(BI, SDB, FastIS, &MF);
821
822        // Try to select the instruction with FastISel.
823        if (FastIS->SelectInstruction(BI)) {
824          ResetDebugLoc(SDB, FastIS);
825          continue;
826        }
827
828        // Clear out the debug location so that it doesn't carry over to
829        // unrelated instructions.
830        ResetDebugLoc(SDB, FastIS);
831
832        // Then handle certain instructions as single-LLVM-Instruction blocks.
833        if (isa<CallInst>(BI)) {
834          ++NumFastIselFailures;
835          if (EnableFastISelVerbose || EnableFastISelAbort) {
836            dbgs() << "FastISel missed call: ";
837            BI->dump();
838          }
839
840          if (!BI->getType()->isVoidTy()) {
841            unsigned &R = FuncInfo->ValueMap[BI];
842            if (!R)
843              R = FuncInfo->CreateRegForValue(BI);
844          }
845
846          bool HadTailCall = false;
847          SelectBasicBlock(LLVMBB, BI, llvm::next(BI), HadTailCall);
848
849          // If the call was emitted as a tail call, we're done with the block.
850          if (HadTailCall) {
851            BI = End;
852            break;
853          }
854
855          // If the instruction was codegen'd with multiple blocks,
856          // inform the FastISel object where to resume inserting.
857          FastIS->setCurrentBlock(BB);
858          continue;
859        }
860
861        // Otherwise, give up on FastISel for the rest of the block.
862        // For now, be a little lenient about non-branch terminators.
863        if (!isa<TerminatorInst>(BI) || isa<BranchInst>(BI)) {
864          ++NumFastIselFailures;
865          if (EnableFastISelVerbose || EnableFastISelAbort) {
866            dbgs() << "FastISel miss: ";
867            BI->dump();
868          }
869          if (EnableFastISelAbort)
870            // The "fast" selector couldn't handle something and bailed.
871            // For the purpose of debugging, just abort.
872            llvm_unreachable("FastISel didn't select the entire block");
873        }
874        break;
875      }
876    }
877
878    // Run SelectionDAG instruction selection on the remainder of the block
879    // not handled by FastISel. If FastISel is not run, this is the entire
880    // block.
881    if (BI != End) {
882      bool HadTailCall;
883      SelectBasicBlock(LLVMBB, BI, End, HadTailCall);
884    }
885
886    FinishBasicBlock();
887  }
888
889  delete FastIS;
890}
891
892void
893SelectionDAGISel::FinishBasicBlock() {
894
895  DEBUG(dbgs() << "Target-post-processed machine code:\n");
896  DEBUG(BB->dump());
897
898  DEBUG(dbgs() << "Total amount of phi nodes to update: "
899               << SDB->PHINodesToUpdate.size() << "\n");
900  DEBUG(for (unsigned i = 0, e = SDB->PHINodesToUpdate.size(); i != e; ++i)
901          dbgs() << "Node " << i << " : ("
902                 << SDB->PHINodesToUpdate[i].first
903                 << ", " << SDB->PHINodesToUpdate[i].second << ")\n");
904
905  // Next, now that we know what the last MBB the LLVM BB expanded is, update
906  // PHI nodes in successors.
907  if (SDB->SwitchCases.empty() &&
908      SDB->JTCases.empty() &&
909      SDB->BitTestCases.empty()) {
910    for (unsigned i = 0, e = SDB->PHINodesToUpdate.size(); i != e; ++i) {
911      MachineInstr *PHI = SDB->PHINodesToUpdate[i].first;
912      assert(PHI->isPHI() &&
913             "This is not a machine PHI node that we are updating!");
914      if (!BB->isSuccessor(PHI->getParent()))
915        continue;
916      PHI->addOperand(MachineOperand::CreateReg(SDB->PHINodesToUpdate[i].second,
917                                                false));
918      PHI->addOperand(MachineOperand::CreateMBB(BB));
919    }
920    SDB->PHINodesToUpdate.clear();
921    return;
922  }
923
924  for (unsigned i = 0, e = SDB->BitTestCases.size(); i != e; ++i) {
925    // Lower header first, if it wasn't already lowered
926    if (!SDB->BitTestCases[i].Emitted) {
927      // Set the current basic block to the mbb we wish to insert the code into
928      BB = SDB->BitTestCases[i].Parent;
929      SDB->setCurrentBasicBlock(BB);
930      // Emit the code
931      SDB->visitBitTestHeader(SDB->BitTestCases[i]);
932      CurDAG->setRoot(SDB->getRoot());
933      CodeGenAndEmitDAG();
934      SDB->clear();
935    }
936
937    for (unsigned j = 0, ej = SDB->BitTestCases[i].Cases.size(); j != ej; ++j) {
938      // Set the current basic block to the mbb we wish to insert the code into
939      BB = SDB->BitTestCases[i].Cases[j].ThisBB;
940      SDB->setCurrentBasicBlock(BB);
941      // Emit the code
942      if (j+1 != ej)
943        SDB->visitBitTestCase(SDB->BitTestCases[i].Cases[j+1].ThisBB,
944                              SDB->BitTestCases[i].Reg,
945                              SDB->BitTestCases[i].Cases[j]);
946      else
947        SDB->visitBitTestCase(SDB->BitTestCases[i].Default,
948                              SDB->BitTestCases[i].Reg,
949                              SDB->BitTestCases[i].Cases[j]);
950
951
952      CurDAG->setRoot(SDB->getRoot());
953      CodeGenAndEmitDAG();
954      SDB->clear();
955    }
956
957    // Update PHI Nodes
958    for (unsigned pi = 0, pe = SDB->PHINodesToUpdate.size(); pi != pe; ++pi) {
959      MachineInstr *PHI = SDB->PHINodesToUpdate[pi].first;
960      MachineBasicBlock *PHIBB = PHI->getParent();
961      assert(PHI->isPHI() &&
962             "This is not a machine PHI node that we are updating!");
963      // This is "default" BB. We have two jumps to it. From "header" BB and
964      // from last "case" BB.
965      if (PHIBB == SDB->BitTestCases[i].Default) {
966        PHI->addOperand(MachineOperand::
967                        CreateReg(SDB->PHINodesToUpdate[pi].second, false));
968        PHI->addOperand(MachineOperand::CreateMBB(SDB->BitTestCases[i].Parent));
969        PHI->addOperand(MachineOperand::
970                        CreateReg(SDB->PHINodesToUpdate[pi].second, false));
971        PHI->addOperand(MachineOperand::CreateMBB(SDB->BitTestCases[i].Cases.
972                                                  back().ThisBB));
973      }
974      // One of "cases" BB.
975      for (unsigned j = 0, ej = SDB->BitTestCases[i].Cases.size();
976           j != ej; ++j) {
977        MachineBasicBlock* cBB = SDB->BitTestCases[i].Cases[j].ThisBB;
978        if (cBB->isSuccessor(PHIBB)) {
979          PHI->addOperand(MachineOperand::
980                          CreateReg(SDB->PHINodesToUpdate[pi].second, false));
981          PHI->addOperand(MachineOperand::CreateMBB(cBB));
982        }
983      }
984    }
985  }
986  SDB->BitTestCases.clear();
987
988  // If the JumpTable record is filled in, then we need to emit a jump table.
989  // Updating the PHI nodes is tricky in this case, since we need to determine
990  // whether the PHI is a successor of the range check MBB or the jump table MBB
991  for (unsigned i = 0, e = SDB->JTCases.size(); i != e; ++i) {
992    // Lower header first, if it wasn't already lowered
993    if (!SDB->JTCases[i].first.Emitted) {
994      // Set the current basic block to the mbb we wish to insert the code into
995      BB = SDB->JTCases[i].first.HeaderBB;
996      SDB->setCurrentBasicBlock(BB);
997      // Emit the code
998      SDB->visitJumpTableHeader(SDB->JTCases[i].second, SDB->JTCases[i].first);
999      CurDAG->setRoot(SDB->getRoot());
1000      CodeGenAndEmitDAG();
1001      SDB->clear();
1002    }
1003
1004    // Set the current basic block to the mbb we wish to insert the code into
1005    BB = SDB->JTCases[i].second.MBB;
1006    SDB->setCurrentBasicBlock(BB);
1007    // Emit the code
1008    SDB->visitJumpTable(SDB->JTCases[i].second);
1009    CurDAG->setRoot(SDB->getRoot());
1010    CodeGenAndEmitDAG();
1011    SDB->clear();
1012
1013    // Update PHI Nodes
1014    for (unsigned pi = 0, pe = SDB->PHINodesToUpdate.size(); pi != pe; ++pi) {
1015      MachineInstr *PHI = SDB->PHINodesToUpdate[pi].first;
1016      MachineBasicBlock *PHIBB = PHI->getParent();
1017      assert(PHI->isPHI() &&
1018             "This is not a machine PHI node that we are updating!");
1019      // "default" BB. We can go there only from header BB.
1020      if (PHIBB == SDB->JTCases[i].second.Default) {
1021        PHI->addOperand
1022          (MachineOperand::CreateReg(SDB->PHINodesToUpdate[pi].second, false));
1023        PHI->addOperand
1024          (MachineOperand::CreateMBB(SDB->JTCases[i].first.HeaderBB));
1025      }
1026      // JT BB. Just iterate over successors here
1027      if (BB->isSuccessor(PHIBB)) {
1028        PHI->addOperand
1029          (MachineOperand::CreateReg(SDB->PHINodesToUpdate[pi].second, false));
1030        PHI->addOperand(MachineOperand::CreateMBB(BB));
1031      }
1032    }
1033  }
1034  SDB->JTCases.clear();
1035
1036  // If the switch block involved a branch to one of the actual successors, we
1037  // need to update PHI nodes in that block.
1038  for (unsigned i = 0, e = SDB->PHINodesToUpdate.size(); i != e; ++i) {
1039    MachineInstr *PHI = SDB->PHINodesToUpdate[i].first;
1040    assert(PHI->isPHI() &&
1041           "This is not a machine PHI node that we are updating!");
1042    if (BB->isSuccessor(PHI->getParent())) {
1043      PHI->addOperand(MachineOperand::CreateReg(SDB->PHINodesToUpdate[i].second,
1044                                                false));
1045      PHI->addOperand(MachineOperand::CreateMBB(BB));
1046    }
1047  }
1048
1049  // If we generated any switch lowering information, build and codegen any
1050  // additional DAGs necessary.
1051  for (unsigned i = 0, e = SDB->SwitchCases.size(); i != e; ++i) {
1052    // Set the current basic block to the mbb we wish to insert the code into
1053    MachineBasicBlock *ThisBB = BB = SDB->SwitchCases[i].ThisBB;
1054    SDB->setCurrentBasicBlock(BB);
1055
1056    // Emit the code
1057    SDB->visitSwitchCase(SDB->SwitchCases[i]);
1058    CurDAG->setRoot(SDB->getRoot());
1059    CodeGenAndEmitDAG();
1060
1061    // Handle any PHI nodes in successors of this chunk, as if we were coming
1062    // from the original BB before switch expansion.  Note that PHI nodes can
1063    // occur multiple times in PHINodesToUpdate.  We have to be very careful to
1064    // handle them the right number of times.
1065    while ((BB = SDB->SwitchCases[i].TrueBB)) {  // Handle LHS and RHS.
1066      // If new BB's are created during scheduling, the edges may have been
1067      // updated. That is, the edge from ThisBB to BB may have been split and
1068      // BB's predecessor is now another block.
1069      DenseMap<MachineBasicBlock*, MachineBasicBlock*>::iterator EI =
1070        SDB->EdgeMapping.find(BB);
1071      if (EI != SDB->EdgeMapping.end())
1072        ThisBB = EI->second;
1073
1074      // BB may have been removed from the CFG if a branch was constant folded.
1075      if (ThisBB->isSuccessor(BB)) {
1076        for (MachineBasicBlock::iterator Phi = BB->begin();
1077             Phi != BB->end() && Phi->isPHI();
1078             ++Phi) {
1079          // This value for this PHI node is recorded in PHINodesToUpdate.
1080          for (unsigned pn = 0; ; ++pn) {
1081            assert(pn != SDB->PHINodesToUpdate.size() &&
1082                   "Didn't find PHI entry!");
1083            if (SDB->PHINodesToUpdate[pn].first == Phi) {
1084              Phi->addOperand(MachineOperand::
1085                              CreateReg(SDB->PHINodesToUpdate[pn].second,
1086                                        false));
1087              Phi->addOperand(MachineOperand::CreateMBB(ThisBB));
1088              break;
1089            }
1090          }
1091        }
1092      }
1093
1094      // Don't process RHS if same block as LHS.
1095      if (BB == SDB->SwitchCases[i].FalseBB)
1096        SDB->SwitchCases[i].FalseBB = 0;
1097
1098      // If we haven't handled the RHS, do so now.  Otherwise, we're done.
1099      SDB->SwitchCases[i].TrueBB = SDB->SwitchCases[i].FalseBB;
1100      SDB->SwitchCases[i].FalseBB = 0;
1101    }
1102    assert(SDB->SwitchCases[i].TrueBB == 0 && SDB->SwitchCases[i].FalseBB == 0);
1103    SDB->clear();
1104  }
1105  SDB->SwitchCases.clear();
1106
1107  SDB->PHINodesToUpdate.clear();
1108}
1109
1110
1111/// Create the scheduler. If a specific scheduler was specified
1112/// via the SchedulerRegistry, use it, otherwise select the
1113/// one preferred by the target.
1114///
1115ScheduleDAGSDNodes *SelectionDAGISel::CreateScheduler() {
1116  RegisterScheduler::FunctionPassCtor Ctor = RegisterScheduler::getDefault();
1117
1118  if (!Ctor) {
1119    Ctor = ISHeuristic;
1120    RegisterScheduler::setDefault(Ctor);
1121  }
1122
1123  return Ctor(this, OptLevel);
1124}
1125
1126ScheduleHazardRecognizer *SelectionDAGISel::CreateTargetHazardRecognizer() {
1127  return new ScheduleHazardRecognizer();
1128}
1129
1130//===----------------------------------------------------------------------===//
1131// Helper functions used by the generated instruction selector.
1132//===----------------------------------------------------------------------===//
1133// Calls to these methods are generated by tblgen.
1134
1135/// CheckAndMask - The isel is trying to match something like (and X, 255).  If
1136/// the dag combiner simplified the 255, we still want to match.  RHS is the
1137/// actual value in the DAG on the RHS of an AND, and DesiredMaskS is the value
1138/// specified in the .td file (e.g. 255).
1139bool SelectionDAGISel::CheckAndMask(SDValue LHS, ConstantSDNode *RHS,
1140                                    int64_t DesiredMaskS) const {
1141  const APInt &ActualMask = RHS->getAPIntValue();
1142  const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
1143
1144  // If the actual mask exactly matches, success!
1145  if (ActualMask == DesiredMask)
1146    return true;
1147
1148  // If the actual AND mask is allowing unallowed bits, this doesn't match.
1149  if (ActualMask.intersects(~DesiredMask))
1150    return false;
1151
1152  // Otherwise, the DAG Combiner may have proven that the value coming in is
1153  // either already zero or is not demanded.  Check for known zero input bits.
1154  APInt NeededMask = DesiredMask & ~ActualMask;
1155  if (CurDAG->MaskedValueIsZero(LHS, NeededMask))
1156    return true;
1157
1158  // TODO: check to see if missing bits are just not demanded.
1159
1160  // Otherwise, this pattern doesn't match.
1161  return false;
1162}
1163
1164/// CheckOrMask - The isel is trying to match something like (or X, 255).  If
1165/// the dag combiner simplified the 255, we still want to match.  RHS is the
1166/// actual value in the DAG on the RHS of an OR, and DesiredMaskS is the value
1167/// specified in the .td file (e.g. 255).
1168bool SelectionDAGISel::CheckOrMask(SDValue LHS, ConstantSDNode *RHS,
1169                                   int64_t DesiredMaskS) const {
1170  const APInt &ActualMask = RHS->getAPIntValue();
1171  const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
1172
1173  // If the actual mask exactly matches, success!
1174  if (ActualMask == DesiredMask)
1175    return true;
1176
1177  // If the actual AND mask is allowing unallowed bits, this doesn't match.
1178  if (ActualMask.intersects(~DesiredMask))
1179    return false;
1180
1181  // Otherwise, the DAG Combiner may have proven that the value coming in is
1182  // either already zero or is not demanded.  Check for known zero input bits.
1183  APInt NeededMask = DesiredMask & ~ActualMask;
1184
1185  APInt KnownZero, KnownOne;
1186  CurDAG->ComputeMaskedBits(LHS, NeededMask, KnownZero, KnownOne);
1187
1188  // If all the missing bits in the or are already known to be set, match!
1189  if ((NeededMask & KnownOne) == NeededMask)
1190    return true;
1191
1192  // TODO: check to see if missing bits are just not demanded.
1193
1194  // Otherwise, this pattern doesn't match.
1195  return false;
1196}
1197
1198
1199/// SelectInlineAsmMemoryOperands - Calls to this are automatically generated
1200/// by tblgen.  Others should not call it.
1201void SelectionDAGISel::
1202SelectInlineAsmMemoryOperands(std::vector<SDValue> &Ops) {
1203  std::vector<SDValue> InOps;
1204  std::swap(InOps, Ops);
1205
1206  Ops.push_back(InOps[InlineAsm::Op_InputChain]); // 0
1207  Ops.push_back(InOps[InlineAsm::Op_AsmString]);  // 1
1208  Ops.push_back(InOps[InlineAsm::Op_MDNode]);     // 2, !srcloc
1209
1210  unsigned i = InlineAsm::Op_FirstOperand, e = InOps.size();
1211  if (InOps[e-1].getValueType() == MVT::Flag)
1212    --e;  // Don't process a flag operand if it is here.
1213
1214  while (i != e) {
1215    unsigned Flags = cast<ConstantSDNode>(InOps[i])->getZExtValue();
1216    if (!InlineAsm::isMemKind(Flags)) {
1217      // Just skip over this operand, copying the operands verbatim.
1218      Ops.insert(Ops.end(), InOps.begin()+i,
1219                 InOps.begin()+i+InlineAsm::getNumOperandRegisters(Flags) + 1);
1220      i += InlineAsm::getNumOperandRegisters(Flags) + 1;
1221    } else {
1222      assert(InlineAsm::getNumOperandRegisters(Flags) == 1 &&
1223             "Memory operand with multiple values?");
1224      // Otherwise, this is a memory operand.  Ask the target to select it.
1225      std::vector<SDValue> SelOps;
1226      if (SelectInlineAsmMemoryOperand(InOps[i+1], 'm', SelOps))
1227        report_fatal_error("Could not match memory address.  Inline asm"
1228                           " failure!");
1229
1230      // Add this to the output node.
1231      unsigned NewFlags =
1232        InlineAsm::getFlagWord(InlineAsm::Kind_Mem, SelOps.size());
1233      Ops.push_back(CurDAG->getTargetConstant(NewFlags, MVT::i32));
1234      Ops.insert(Ops.end(), SelOps.begin(), SelOps.end());
1235      i += 2;
1236    }
1237  }
1238
1239  // Add the flag input back if present.
1240  if (e != InOps.size())
1241    Ops.push_back(InOps.back());
1242}
1243
1244/// findFlagUse - Return use of EVT::Flag value produced by the specified
1245/// SDNode.
1246///
1247static SDNode *findFlagUse(SDNode *N) {
1248  unsigned FlagResNo = N->getNumValues()-1;
1249  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
1250    SDUse &Use = I.getUse();
1251    if (Use.getResNo() == FlagResNo)
1252      return Use.getUser();
1253  }
1254  return NULL;
1255}
1256
1257/// findNonImmUse - Return true if "Use" is a non-immediate use of "Def".
1258/// This function recursively traverses up the operand chain, ignoring
1259/// certain nodes.
1260static bool findNonImmUse(SDNode *Use, SDNode* Def, SDNode *ImmedUse,
1261                          SDNode *Root, SmallPtrSet<SDNode*, 16> &Visited,
1262                          bool IgnoreChains) {
1263  // The NodeID's are given uniques ID's where a node ID is guaranteed to be
1264  // greater than all of its (recursive) operands.  If we scan to a point where
1265  // 'use' is smaller than the node we're scanning for, then we know we will
1266  // never find it.
1267  //
1268  // The Use may be -1 (unassigned) if it is a newly allocated node.  This can
1269  // happen because we scan down to newly selected nodes in the case of flag
1270  // uses.
1271  if ((Use->getNodeId() < Def->getNodeId() && Use->getNodeId() != -1))
1272    return false;
1273
1274  // Don't revisit nodes if we already scanned it and didn't fail, we know we
1275  // won't fail if we scan it again.
1276  if (!Visited.insert(Use))
1277    return false;
1278
1279  for (unsigned i = 0, e = Use->getNumOperands(); i != e; ++i) {
1280    // Ignore chain uses, they are validated by HandleMergeInputChains.
1281    if (Use->getOperand(i).getValueType() == MVT::Other && IgnoreChains)
1282      continue;
1283
1284    SDNode *N = Use->getOperand(i).getNode();
1285    if (N == Def) {
1286      if (Use == ImmedUse || Use == Root)
1287        continue;  // We are not looking for immediate use.
1288      assert(N != Root);
1289      return true;
1290    }
1291
1292    // Traverse up the operand chain.
1293    if (findNonImmUse(N, Def, ImmedUse, Root, Visited, IgnoreChains))
1294      return true;
1295  }
1296  return false;
1297}
1298
1299/// IsProfitableToFold - Returns true if it's profitable to fold the specific
1300/// operand node N of U during instruction selection that starts at Root.
1301bool SelectionDAGISel::IsProfitableToFold(SDValue N, SDNode *U,
1302                                          SDNode *Root) const {
1303  if (OptLevel == CodeGenOpt::None) return false;
1304  return N.hasOneUse();
1305}
1306
1307/// IsLegalToFold - Returns true if the specific operand node N of
1308/// U can be folded during instruction selection that starts at Root.
1309bool SelectionDAGISel::IsLegalToFold(SDValue N, SDNode *U, SDNode *Root,
1310                                     bool IgnoreChains) const {
1311  if (OptLevel == CodeGenOpt::None) return false;
1312
1313  // If Root use can somehow reach N through a path that that doesn't contain
1314  // U then folding N would create a cycle. e.g. In the following
1315  // diagram, Root can reach N through X. If N is folded into into Root, then
1316  // X is both a predecessor and a successor of U.
1317  //
1318  //          [N*]           //
1319  //         ^   ^           //
1320  //        /     \          //
1321  //      [U*]    [X]?       //
1322  //        ^     ^          //
1323  //         \   /           //
1324  //          \ /            //
1325  //         [Root*]         //
1326  //
1327  // * indicates nodes to be folded together.
1328  //
1329  // If Root produces a flag, then it gets (even more) interesting. Since it
1330  // will be "glued" together with its flag use in the scheduler, we need to
1331  // check if it might reach N.
1332  //
1333  //          [N*]           //
1334  //         ^   ^           //
1335  //        /     \          //
1336  //      [U*]    [X]?       //
1337  //        ^       ^        //
1338  //         \       \       //
1339  //          \      |       //
1340  //         [Root*] |       //
1341  //          ^      |       //
1342  //          f      |       //
1343  //          |      /       //
1344  //         [Y]    /        //
1345  //           ^   /         //
1346  //           f  /          //
1347  //           | /           //
1348  //          [FU]           //
1349  //
1350  // If FU (flag use) indirectly reaches N (the load), and Root folds N
1351  // (call it Fold), then X is a predecessor of FU and a successor of
1352  // Fold. But since Fold and FU are flagged together, this will create
1353  // a cycle in the scheduling graph.
1354
1355  // If the node has flags, walk down the graph to the "lowest" node in the
1356  // flagged set.
1357  EVT VT = Root->getValueType(Root->getNumValues()-1);
1358  while (VT == MVT::Flag) {
1359    SDNode *FU = findFlagUse(Root);
1360    if (FU == NULL)
1361      break;
1362    Root = FU;
1363    VT = Root->getValueType(Root->getNumValues()-1);
1364
1365    // If our query node has a flag result with a use, we've walked up it.  If
1366    // the user (which has already been selected) has a chain or indirectly uses
1367    // the chain, our WalkChainUsers predicate will not consider it.  Because of
1368    // this, we cannot ignore chains in this predicate.
1369    IgnoreChains = false;
1370  }
1371
1372
1373  SmallPtrSet<SDNode*, 16> Visited;
1374  return !findNonImmUse(Root, N.getNode(), U, Root, Visited, IgnoreChains);
1375}
1376
1377SDNode *SelectionDAGISel::Select_INLINEASM(SDNode *N) {
1378  std::vector<SDValue> Ops(N->op_begin(), N->op_end());
1379  SelectInlineAsmMemoryOperands(Ops);
1380
1381  std::vector<EVT> VTs;
1382  VTs.push_back(MVT::Other);
1383  VTs.push_back(MVT::Flag);
1384  SDValue New = CurDAG->getNode(ISD::INLINEASM, N->getDebugLoc(),
1385                                VTs, &Ops[0], Ops.size());
1386  New->setNodeId(-1);
1387  return New.getNode();
1388}
1389
1390SDNode *SelectionDAGISel::Select_UNDEF(SDNode *N) {
1391  return CurDAG->SelectNodeTo(N, TargetOpcode::IMPLICIT_DEF,N->getValueType(0));
1392}
1393
1394/// GetVBR - decode a vbr encoding whose top bit is set.
1395ALWAYS_INLINE static uint64_t
1396GetVBR(uint64_t Val, const unsigned char *MatcherTable, unsigned &Idx) {
1397  assert(Val >= 128 && "Not a VBR");
1398  Val &= 127;  // Remove first vbr bit.
1399
1400  unsigned Shift = 7;
1401  uint64_t NextBits;
1402  do {
1403    NextBits = MatcherTable[Idx++];
1404    Val |= (NextBits&127) << Shift;
1405    Shift += 7;
1406  } while (NextBits & 128);
1407
1408  return Val;
1409}
1410
1411
1412/// UpdateChainsAndFlags - When a match is complete, this method updates uses of
1413/// interior flag and chain results to use the new flag and chain results.
1414void SelectionDAGISel::
1415UpdateChainsAndFlags(SDNode *NodeToMatch, SDValue InputChain,
1416                     const SmallVectorImpl<SDNode*> &ChainNodesMatched,
1417                     SDValue InputFlag,
1418                     const SmallVectorImpl<SDNode*> &FlagResultNodesMatched,
1419                     bool isMorphNodeTo) {
1420  SmallVector<SDNode*, 4> NowDeadNodes;
1421
1422  ISelUpdater ISU(ISelPosition);
1423
1424  // Now that all the normal results are replaced, we replace the chain and
1425  // flag results if present.
1426  if (!ChainNodesMatched.empty()) {
1427    assert(InputChain.getNode() != 0 &&
1428           "Matched input chains but didn't produce a chain");
1429    // Loop over all of the nodes we matched that produced a chain result.
1430    // Replace all the chain results with the final chain we ended up with.
1431    for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
1432      SDNode *ChainNode = ChainNodesMatched[i];
1433
1434      // If this node was already deleted, don't look at it.
1435      if (ChainNode->getOpcode() == ISD::DELETED_NODE)
1436        continue;
1437
1438      // Don't replace the results of the root node if we're doing a
1439      // MorphNodeTo.
1440      if (ChainNode == NodeToMatch && isMorphNodeTo)
1441        continue;
1442
1443      SDValue ChainVal = SDValue(ChainNode, ChainNode->getNumValues()-1);
1444      if (ChainVal.getValueType() == MVT::Flag)
1445        ChainVal = ChainVal.getValue(ChainVal->getNumValues()-2);
1446      assert(ChainVal.getValueType() == MVT::Other && "Not a chain?");
1447      CurDAG->ReplaceAllUsesOfValueWith(ChainVal, InputChain, &ISU);
1448
1449      // If the node became dead and we haven't already seen it, delete it.
1450      if (ChainNode->use_empty() &&
1451          !std::count(NowDeadNodes.begin(), NowDeadNodes.end(), ChainNode))
1452        NowDeadNodes.push_back(ChainNode);
1453    }
1454  }
1455
1456  // If the result produces a flag, update any flag results in the matched
1457  // pattern with the flag result.
1458  if (InputFlag.getNode() != 0) {
1459    // Handle any interior nodes explicitly marked.
1460    for (unsigned i = 0, e = FlagResultNodesMatched.size(); i != e; ++i) {
1461      SDNode *FRN = FlagResultNodesMatched[i];
1462
1463      // If this node was already deleted, don't look at it.
1464      if (FRN->getOpcode() == ISD::DELETED_NODE)
1465        continue;
1466
1467      assert(FRN->getValueType(FRN->getNumValues()-1) == MVT::Flag &&
1468             "Doesn't have a flag result");
1469      CurDAG->ReplaceAllUsesOfValueWith(SDValue(FRN, FRN->getNumValues()-1),
1470                                        InputFlag, &ISU);
1471
1472      // If the node became dead and we haven't already seen it, delete it.
1473      if (FRN->use_empty() &&
1474          !std::count(NowDeadNodes.begin(), NowDeadNodes.end(), FRN))
1475        NowDeadNodes.push_back(FRN);
1476    }
1477  }
1478
1479  if (!NowDeadNodes.empty())
1480    CurDAG->RemoveDeadNodes(NowDeadNodes, &ISU);
1481
1482  DEBUG(errs() << "ISEL: Match complete!\n");
1483}
1484
1485enum ChainResult {
1486  CR_Simple,
1487  CR_InducesCycle,
1488  CR_LeadsToInteriorNode
1489};
1490
1491/// WalkChainUsers - Walk down the users of the specified chained node that is
1492/// part of the pattern we're matching, looking at all of the users we find.
1493/// This determines whether something is an interior node, whether we have a
1494/// non-pattern node in between two pattern nodes (which prevent folding because
1495/// it would induce a cycle) and whether we have a TokenFactor node sandwiched
1496/// between pattern nodes (in which case the TF becomes part of the pattern).
1497///
1498/// The walk we do here is guaranteed to be small because we quickly get down to
1499/// already selected nodes "below" us.
1500static ChainResult
1501WalkChainUsers(SDNode *ChainedNode,
1502               SmallVectorImpl<SDNode*> &ChainedNodesInPattern,
1503               SmallVectorImpl<SDNode*> &InteriorChainedNodes) {
1504  ChainResult Result = CR_Simple;
1505
1506  for (SDNode::use_iterator UI = ChainedNode->use_begin(),
1507         E = ChainedNode->use_end(); UI != E; ++UI) {
1508    // Make sure the use is of the chain, not some other value we produce.
1509    if (UI.getUse().getValueType() != MVT::Other) continue;
1510
1511    SDNode *User = *UI;
1512
1513    // If we see an already-selected machine node, then we've gone beyond the
1514    // pattern that we're selecting down into the already selected chunk of the
1515    // DAG.
1516    if (User->isMachineOpcode() ||
1517        User->getOpcode() == ISD::HANDLENODE)  // Root of the graph.
1518      continue;
1519
1520    if (User->getOpcode() == ISD::CopyToReg ||
1521        User->getOpcode() == ISD::CopyFromReg ||
1522        User->getOpcode() == ISD::INLINEASM ||
1523        User->getOpcode() == ISD::EH_LABEL) {
1524      // If their node ID got reset to -1 then they've already been selected.
1525      // Treat them like a MachineOpcode.
1526      if (User->getNodeId() == -1)
1527        continue;
1528    }
1529
1530    // If we have a TokenFactor, we handle it specially.
1531    if (User->getOpcode() != ISD::TokenFactor) {
1532      // If the node isn't a token factor and isn't part of our pattern, then it
1533      // must be a random chained node in between two nodes we're selecting.
1534      // This happens when we have something like:
1535      //   x = load ptr
1536      //   call
1537      //   y = x+4
1538      //   store y -> ptr
1539      // Because we structurally match the load/store as a read/modify/write,
1540      // but the call is chained between them.  We cannot fold in this case
1541      // because it would induce a cycle in the graph.
1542      if (!std::count(ChainedNodesInPattern.begin(),
1543                      ChainedNodesInPattern.end(), User))
1544        return CR_InducesCycle;
1545
1546      // Otherwise we found a node that is part of our pattern.  For example in:
1547      //   x = load ptr
1548      //   y = x+4
1549      //   store y -> ptr
1550      // This would happen when we're scanning down from the load and see the
1551      // store as a user.  Record that there is a use of ChainedNode that is
1552      // part of the pattern and keep scanning uses.
1553      Result = CR_LeadsToInteriorNode;
1554      InteriorChainedNodes.push_back(User);
1555      continue;
1556    }
1557
1558    // If we found a TokenFactor, there are two cases to consider: first if the
1559    // TokenFactor is just hanging "below" the pattern we're matching (i.e. no
1560    // uses of the TF are in our pattern) we just want to ignore it.  Second,
1561    // the TokenFactor can be sandwiched in between two chained nodes, like so:
1562    //     [Load chain]
1563    //         ^
1564    //         |
1565    //       [Load]
1566    //       ^    ^
1567    //       |    \                    DAG's like cheese
1568    //      /       \                       do you?
1569    //     /         |
1570    // [TokenFactor] [Op]
1571    //     ^          ^
1572    //     |          |
1573    //      \        /
1574    //       \      /
1575    //       [Store]
1576    //
1577    // In this case, the TokenFactor becomes part of our match and we rewrite it
1578    // as a new TokenFactor.
1579    //
1580    // To distinguish these two cases, do a recursive walk down the uses.
1581    switch (WalkChainUsers(User, ChainedNodesInPattern, InteriorChainedNodes)) {
1582    case CR_Simple:
1583      // If the uses of the TokenFactor are just already-selected nodes, ignore
1584      // it, it is "below" our pattern.
1585      continue;
1586    case CR_InducesCycle:
1587      // If the uses of the TokenFactor lead to nodes that are not part of our
1588      // pattern that are not selected, folding would turn this into a cycle,
1589      // bail out now.
1590      return CR_InducesCycle;
1591    case CR_LeadsToInteriorNode:
1592      break;  // Otherwise, keep processing.
1593    }
1594
1595    // Okay, we know we're in the interesting interior case.  The TokenFactor
1596    // is now going to be considered part of the pattern so that we rewrite its
1597    // uses (it may have uses that are not part of the pattern) with the
1598    // ultimate chain result of the generated code.  We will also add its chain
1599    // inputs as inputs to the ultimate TokenFactor we create.
1600    Result = CR_LeadsToInteriorNode;
1601    ChainedNodesInPattern.push_back(User);
1602    InteriorChainedNodes.push_back(User);
1603    continue;
1604  }
1605
1606  return Result;
1607}
1608
1609/// HandleMergeInputChains - This implements the OPC_EmitMergeInputChains
1610/// operation for when the pattern matched at least one node with a chains.  The
1611/// input vector contains a list of all of the chained nodes that we match.  We
1612/// must determine if this is a valid thing to cover (i.e. matching it won't
1613/// induce cycles in the DAG) and if so, creating a TokenFactor node. that will
1614/// be used as the input node chain for the generated nodes.
1615static SDValue
1616HandleMergeInputChains(SmallVectorImpl<SDNode*> &ChainNodesMatched,
1617                       SelectionDAG *CurDAG) {
1618  // Walk all of the chained nodes we've matched, recursively scanning down the
1619  // users of the chain result. This adds any TokenFactor nodes that are caught
1620  // in between chained nodes to the chained and interior nodes list.
1621  SmallVector<SDNode*, 3> InteriorChainedNodes;
1622  for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
1623    if (WalkChainUsers(ChainNodesMatched[i], ChainNodesMatched,
1624                       InteriorChainedNodes) == CR_InducesCycle)
1625      return SDValue(); // Would induce a cycle.
1626  }
1627
1628  // Okay, we have walked all the matched nodes and collected TokenFactor nodes
1629  // that we are interested in.  Form our input TokenFactor node.
1630  SmallVector<SDValue, 3> InputChains;
1631  for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
1632    // Add the input chain of this node to the InputChains list (which will be
1633    // the operands of the generated TokenFactor) if it's not an interior node.
1634    SDNode *N = ChainNodesMatched[i];
1635    if (N->getOpcode() != ISD::TokenFactor) {
1636      if (std::count(InteriorChainedNodes.begin(),InteriorChainedNodes.end(),N))
1637        continue;
1638
1639      // Otherwise, add the input chain.
1640      SDValue InChain = ChainNodesMatched[i]->getOperand(0);
1641      assert(InChain.getValueType() == MVT::Other && "Not a chain");
1642      InputChains.push_back(InChain);
1643      continue;
1644    }
1645
1646    // If we have a token factor, we want to add all inputs of the token factor
1647    // that are not part of the pattern we're matching.
1648    for (unsigned op = 0, e = N->getNumOperands(); op != e; ++op) {
1649      if (!std::count(ChainNodesMatched.begin(), ChainNodesMatched.end(),
1650                      N->getOperand(op).getNode()))
1651        InputChains.push_back(N->getOperand(op));
1652    }
1653  }
1654
1655  SDValue Res;
1656  if (InputChains.size() == 1)
1657    return InputChains[0];
1658  return CurDAG->getNode(ISD::TokenFactor, ChainNodesMatched[0]->getDebugLoc(),
1659                         MVT::Other, &InputChains[0], InputChains.size());
1660}
1661
1662/// MorphNode - Handle morphing a node in place for the selector.
1663SDNode *SelectionDAGISel::
1664MorphNode(SDNode *Node, unsigned TargetOpc, SDVTList VTList,
1665          const SDValue *Ops, unsigned NumOps, unsigned EmitNodeInfo) {
1666  // It is possible we're using MorphNodeTo to replace a node with no
1667  // normal results with one that has a normal result (or we could be
1668  // adding a chain) and the input could have flags and chains as well.
1669  // In this case we need to shift the operands down.
1670  // FIXME: This is a horrible hack and broken in obscure cases, no worse
1671  // than the old isel though.
1672  int OldFlagResultNo = -1, OldChainResultNo = -1;
1673
1674  unsigned NTMNumResults = Node->getNumValues();
1675  if (Node->getValueType(NTMNumResults-1) == MVT::Flag) {
1676    OldFlagResultNo = NTMNumResults-1;
1677    if (NTMNumResults != 1 &&
1678        Node->getValueType(NTMNumResults-2) == MVT::Other)
1679      OldChainResultNo = NTMNumResults-2;
1680  } else if (Node->getValueType(NTMNumResults-1) == MVT::Other)
1681    OldChainResultNo = NTMNumResults-1;
1682
1683  // Call the underlying SelectionDAG routine to do the transmogrification. Note
1684  // that this deletes operands of the old node that become dead.
1685  SDNode *Res = CurDAG->MorphNodeTo(Node, ~TargetOpc, VTList, Ops, NumOps);
1686
1687  // MorphNodeTo can operate in two ways: if an existing node with the
1688  // specified operands exists, it can just return it.  Otherwise, it
1689  // updates the node in place to have the requested operands.
1690  if (Res == Node) {
1691    // If we updated the node in place, reset the node ID.  To the isel,
1692    // this should be just like a newly allocated machine node.
1693    Res->setNodeId(-1);
1694  }
1695
1696  unsigned ResNumResults = Res->getNumValues();
1697  // Move the flag if needed.
1698  if ((EmitNodeInfo & OPFL_FlagOutput) && OldFlagResultNo != -1 &&
1699      (unsigned)OldFlagResultNo != ResNumResults-1)
1700    CurDAG->ReplaceAllUsesOfValueWith(SDValue(Node, OldFlagResultNo),
1701                                      SDValue(Res, ResNumResults-1));
1702
1703  if ((EmitNodeInfo & OPFL_FlagOutput) != 0)
1704  --ResNumResults;
1705
1706  // Move the chain reference if needed.
1707  if ((EmitNodeInfo & OPFL_Chain) && OldChainResultNo != -1 &&
1708      (unsigned)OldChainResultNo != ResNumResults-1)
1709    CurDAG->ReplaceAllUsesOfValueWith(SDValue(Node, OldChainResultNo),
1710                                      SDValue(Res, ResNumResults-1));
1711
1712  // Otherwise, no replacement happened because the node already exists. Replace
1713  // Uses of the old node with the new one.
1714  if (Res != Node)
1715    CurDAG->ReplaceAllUsesWith(Node, Res);
1716
1717  return Res;
1718}
1719
1720/// CheckPatternPredicate - Implements OP_CheckPatternPredicate.
1721ALWAYS_INLINE static bool
1722CheckSame(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1723          SDValue N, const SmallVectorImpl<SDValue> &RecordedNodes) {
1724  // Accept if it is exactly the same as a previously recorded node.
1725  unsigned RecNo = MatcherTable[MatcherIndex++];
1726  assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
1727  return N == RecordedNodes[RecNo];
1728}
1729
1730/// CheckPatternPredicate - Implements OP_CheckPatternPredicate.
1731ALWAYS_INLINE static bool
1732CheckPatternPredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1733                      SelectionDAGISel &SDISel) {
1734  return SDISel.CheckPatternPredicate(MatcherTable[MatcherIndex++]);
1735}
1736
1737/// CheckNodePredicate - Implements OP_CheckNodePredicate.
1738ALWAYS_INLINE static bool
1739CheckNodePredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1740                   SelectionDAGISel &SDISel, SDNode *N) {
1741  return SDISel.CheckNodePredicate(N, MatcherTable[MatcherIndex++]);
1742}
1743
1744ALWAYS_INLINE static bool
1745CheckOpcode(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1746            SDNode *N) {
1747  uint16_t Opc = MatcherTable[MatcherIndex++];
1748  Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
1749  return N->getOpcode() == Opc;
1750}
1751
1752ALWAYS_INLINE static bool
1753CheckType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1754          SDValue N, const TargetLowering &TLI) {
1755  MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
1756  if (N.getValueType() == VT) return true;
1757
1758  // Handle the case when VT is iPTR.
1759  return VT == MVT::iPTR && N.getValueType() == TLI.getPointerTy();
1760}
1761
1762ALWAYS_INLINE static bool
1763CheckChildType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1764               SDValue N, const TargetLowering &TLI,
1765               unsigned ChildNo) {
1766  if (ChildNo >= N.getNumOperands())
1767    return false;  // Match fails if out of range child #.
1768  return ::CheckType(MatcherTable, MatcherIndex, N.getOperand(ChildNo), TLI);
1769}
1770
1771
1772ALWAYS_INLINE static bool
1773CheckCondCode(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1774              SDValue N) {
1775  return cast<CondCodeSDNode>(N)->get() ==
1776      (ISD::CondCode)MatcherTable[MatcherIndex++];
1777}
1778
1779ALWAYS_INLINE static bool
1780CheckValueType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1781               SDValue N, const TargetLowering &TLI) {
1782  MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
1783  if (cast<VTSDNode>(N)->getVT() == VT)
1784    return true;
1785
1786  // Handle the case when VT is iPTR.
1787  return VT == MVT::iPTR && cast<VTSDNode>(N)->getVT() == TLI.getPointerTy();
1788}
1789
1790ALWAYS_INLINE static bool
1791CheckInteger(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1792             SDValue N) {
1793  int64_t Val = MatcherTable[MatcherIndex++];
1794  if (Val & 128)
1795    Val = GetVBR(Val, MatcherTable, MatcherIndex);
1796
1797  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N);
1798  return C != 0 && C->getSExtValue() == Val;
1799}
1800
1801ALWAYS_INLINE static bool
1802CheckAndImm(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1803            SDValue N, SelectionDAGISel &SDISel) {
1804  int64_t Val = MatcherTable[MatcherIndex++];
1805  if (Val & 128)
1806    Val = GetVBR(Val, MatcherTable, MatcherIndex);
1807
1808  if (N->getOpcode() != ISD::AND) return false;
1809
1810  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
1811  return C != 0 && SDISel.CheckAndMask(N.getOperand(0), C, Val);
1812}
1813
1814ALWAYS_INLINE static bool
1815CheckOrImm(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1816           SDValue N, SelectionDAGISel &SDISel) {
1817  int64_t Val = MatcherTable[MatcherIndex++];
1818  if (Val & 128)
1819    Val = GetVBR(Val, MatcherTable, MatcherIndex);
1820
1821  if (N->getOpcode() != ISD::OR) return false;
1822
1823  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
1824  return C != 0 && SDISel.CheckOrMask(N.getOperand(0), C, Val);
1825}
1826
1827/// IsPredicateKnownToFail - If we know how and can do so without pushing a
1828/// scope, evaluate the current node.  If the current predicate is known to
1829/// fail, set Result=true and return anything.  If the current predicate is
1830/// known to pass, set Result=false and return the MatcherIndex to continue
1831/// with.  If the current predicate is unknown, set Result=false and return the
1832/// MatcherIndex to continue with.
1833static unsigned IsPredicateKnownToFail(const unsigned char *Table,
1834                                       unsigned Index, SDValue N,
1835                                       bool &Result, SelectionDAGISel &SDISel,
1836                                       SmallVectorImpl<SDValue> &RecordedNodes){
1837  switch (Table[Index++]) {
1838  default:
1839    Result = false;
1840    return Index-1;  // Could not evaluate this predicate.
1841  case SelectionDAGISel::OPC_CheckSame:
1842    Result = !::CheckSame(Table, Index, N, RecordedNodes);
1843    return Index;
1844  case SelectionDAGISel::OPC_CheckPatternPredicate:
1845    Result = !::CheckPatternPredicate(Table, Index, SDISel);
1846    return Index;
1847  case SelectionDAGISel::OPC_CheckPredicate:
1848    Result = !::CheckNodePredicate(Table, Index, SDISel, N.getNode());
1849    return Index;
1850  case SelectionDAGISel::OPC_CheckOpcode:
1851    Result = !::CheckOpcode(Table, Index, N.getNode());
1852    return Index;
1853  case SelectionDAGISel::OPC_CheckType:
1854    Result = !::CheckType(Table, Index, N, SDISel.TLI);
1855    return Index;
1856  case SelectionDAGISel::OPC_CheckChild0Type:
1857  case SelectionDAGISel::OPC_CheckChild1Type:
1858  case SelectionDAGISel::OPC_CheckChild2Type:
1859  case SelectionDAGISel::OPC_CheckChild3Type:
1860  case SelectionDAGISel::OPC_CheckChild4Type:
1861  case SelectionDAGISel::OPC_CheckChild5Type:
1862  case SelectionDAGISel::OPC_CheckChild6Type:
1863  case SelectionDAGISel::OPC_CheckChild7Type:
1864    Result = !::CheckChildType(Table, Index, N, SDISel.TLI,
1865                        Table[Index-1] - SelectionDAGISel::OPC_CheckChild0Type);
1866    return Index;
1867  case SelectionDAGISel::OPC_CheckCondCode:
1868    Result = !::CheckCondCode(Table, Index, N);
1869    return Index;
1870  case SelectionDAGISel::OPC_CheckValueType:
1871    Result = !::CheckValueType(Table, Index, N, SDISel.TLI);
1872    return Index;
1873  case SelectionDAGISel::OPC_CheckInteger:
1874    Result = !::CheckInteger(Table, Index, N);
1875    return Index;
1876  case SelectionDAGISel::OPC_CheckAndImm:
1877    Result = !::CheckAndImm(Table, Index, N, SDISel);
1878    return Index;
1879  case SelectionDAGISel::OPC_CheckOrImm:
1880    Result = !::CheckOrImm(Table, Index, N, SDISel);
1881    return Index;
1882  }
1883}
1884
1885
1886struct MatchScope {
1887  /// FailIndex - If this match fails, this is the index to continue with.
1888  unsigned FailIndex;
1889
1890  /// NodeStack - The node stack when the scope was formed.
1891  SmallVector<SDValue, 4> NodeStack;
1892
1893  /// NumRecordedNodes - The number of recorded nodes when the scope was formed.
1894  unsigned NumRecordedNodes;
1895
1896  /// NumMatchedMemRefs - The number of matched memref entries.
1897  unsigned NumMatchedMemRefs;
1898
1899  /// InputChain/InputFlag - The current chain/flag
1900  SDValue InputChain, InputFlag;
1901
1902  /// HasChainNodesMatched - True if the ChainNodesMatched list is non-empty.
1903  bool HasChainNodesMatched, HasFlagResultNodesMatched;
1904};
1905
1906SDNode *SelectionDAGISel::
1907SelectCodeCommon(SDNode *NodeToMatch, const unsigned char *MatcherTable,
1908                 unsigned TableSize) {
1909  // FIXME: Should these even be selected?  Handle these cases in the caller?
1910  switch (NodeToMatch->getOpcode()) {
1911  default:
1912    break;
1913  case ISD::EntryToken:       // These nodes remain the same.
1914  case ISD::BasicBlock:
1915  case ISD::Register:
1916  //case ISD::VALUETYPE:
1917  //case ISD::CONDCODE:
1918  case ISD::HANDLENODE:
1919  case ISD::MDNODE_SDNODE:
1920  case ISD::TargetConstant:
1921  case ISD::TargetConstantFP:
1922  case ISD::TargetConstantPool:
1923  case ISD::TargetFrameIndex:
1924  case ISD::TargetExternalSymbol:
1925  case ISD::TargetBlockAddress:
1926  case ISD::TargetJumpTable:
1927  case ISD::TargetGlobalTLSAddress:
1928  case ISD::TargetGlobalAddress:
1929  case ISD::TokenFactor:
1930  case ISD::CopyFromReg:
1931  case ISD::CopyToReg:
1932  case ISD::EH_LABEL:
1933    NodeToMatch->setNodeId(-1); // Mark selected.
1934    return 0;
1935  case ISD::AssertSext:
1936  case ISD::AssertZext:
1937    CurDAG->ReplaceAllUsesOfValueWith(SDValue(NodeToMatch, 0),
1938                                      NodeToMatch->getOperand(0));
1939    return 0;
1940  case ISD::INLINEASM: return Select_INLINEASM(NodeToMatch);
1941  case ISD::UNDEF:     return Select_UNDEF(NodeToMatch);
1942  }
1943
1944  assert(!NodeToMatch->isMachineOpcode() && "Node already selected!");
1945
1946  // Set up the node stack with NodeToMatch as the only node on the stack.
1947  SmallVector<SDValue, 8> NodeStack;
1948  SDValue N = SDValue(NodeToMatch, 0);
1949  NodeStack.push_back(N);
1950
1951  // MatchScopes - Scopes used when matching, if a match failure happens, this
1952  // indicates where to continue checking.
1953  SmallVector<MatchScope, 8> MatchScopes;
1954
1955  // RecordedNodes - This is the set of nodes that have been recorded by the
1956  // state machine.
1957  SmallVector<SDValue, 8> RecordedNodes;
1958
1959  // MatchedMemRefs - This is the set of MemRef's we've seen in the input
1960  // pattern.
1961  SmallVector<MachineMemOperand*, 2> MatchedMemRefs;
1962
1963  // These are the current input chain and flag for use when generating nodes.
1964  // Various Emit operations change these.  For example, emitting a copytoreg
1965  // uses and updates these.
1966  SDValue InputChain, InputFlag;
1967
1968  // ChainNodesMatched - If a pattern matches nodes that have input/output
1969  // chains, the OPC_EmitMergeInputChains operation is emitted which indicates
1970  // which ones they are.  The result is captured into this list so that we can
1971  // update the chain results when the pattern is complete.
1972  SmallVector<SDNode*, 3> ChainNodesMatched;
1973  SmallVector<SDNode*, 3> FlagResultNodesMatched;
1974
1975  DEBUG(errs() << "ISEL: Starting pattern match on root node: ";
1976        NodeToMatch->dump(CurDAG);
1977        errs() << '\n');
1978
1979  // Determine where to start the interpreter.  Normally we start at opcode #0,
1980  // but if the state machine starts with an OPC_SwitchOpcode, then we
1981  // accelerate the first lookup (which is guaranteed to be hot) with the
1982  // OpcodeOffset table.
1983  unsigned MatcherIndex = 0;
1984
1985  if (!OpcodeOffset.empty()) {
1986    // Already computed the OpcodeOffset table, just index into it.
1987    if (N.getOpcode() < OpcodeOffset.size())
1988      MatcherIndex = OpcodeOffset[N.getOpcode()];
1989    DEBUG(errs() << "  Initial Opcode index to " << MatcherIndex << "\n");
1990
1991  } else if (MatcherTable[0] == OPC_SwitchOpcode) {
1992    // Otherwise, the table isn't computed, but the state machine does start
1993    // with an OPC_SwitchOpcode instruction.  Populate the table now, since this
1994    // is the first time we're selecting an instruction.
1995    unsigned Idx = 1;
1996    while (1) {
1997      // Get the size of this case.
1998      unsigned CaseSize = MatcherTable[Idx++];
1999      if (CaseSize & 128)
2000        CaseSize = GetVBR(CaseSize, MatcherTable, Idx);
2001      if (CaseSize == 0) break;
2002
2003      // Get the opcode, add the index to the table.
2004      uint16_t Opc = MatcherTable[Idx++];
2005      Opc |= (unsigned short)MatcherTable[Idx++] << 8;
2006      if (Opc >= OpcodeOffset.size())
2007        OpcodeOffset.resize((Opc+1)*2);
2008      OpcodeOffset[Opc] = Idx;
2009      Idx += CaseSize;
2010    }
2011
2012    // Okay, do the lookup for the first opcode.
2013    if (N.getOpcode() < OpcodeOffset.size())
2014      MatcherIndex = OpcodeOffset[N.getOpcode()];
2015  }
2016
2017  while (1) {
2018    assert(MatcherIndex < TableSize && "Invalid index");
2019#ifndef NDEBUG
2020    unsigned CurrentOpcodeIndex = MatcherIndex;
2021#endif
2022    BuiltinOpcodes Opcode = (BuiltinOpcodes)MatcherTable[MatcherIndex++];
2023    switch (Opcode) {
2024    case OPC_Scope: {
2025      // Okay, the semantics of this operation are that we should push a scope
2026      // then evaluate the first child.  However, pushing a scope only to have
2027      // the first check fail (which then pops it) is inefficient.  If we can
2028      // determine immediately that the first check (or first several) will
2029      // immediately fail, don't even bother pushing a scope for them.
2030      unsigned FailIndex;
2031
2032      while (1) {
2033        unsigned NumToSkip = MatcherTable[MatcherIndex++];
2034        if (NumToSkip & 128)
2035          NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex);
2036        // Found the end of the scope with no match.
2037        if (NumToSkip == 0) {
2038          FailIndex = 0;
2039          break;
2040        }
2041
2042        FailIndex = MatcherIndex+NumToSkip;
2043
2044        unsigned MatcherIndexOfPredicate = MatcherIndex;
2045        (void)MatcherIndexOfPredicate; // silence warning.
2046
2047        // If we can't evaluate this predicate without pushing a scope (e.g. if
2048        // it is a 'MoveParent') or if the predicate succeeds on this node, we
2049        // push the scope and evaluate the full predicate chain.
2050        bool Result;
2051        MatcherIndex = IsPredicateKnownToFail(MatcherTable, MatcherIndex, N,
2052                                              Result, *this, RecordedNodes);
2053        if (!Result)
2054          break;
2055
2056        DEBUG(errs() << "  Skipped scope entry (due to false predicate) at "
2057                     << "index " << MatcherIndexOfPredicate
2058                     << ", continuing at " << FailIndex << "\n");
2059        ++NumDAGIselRetries;
2060
2061        // Otherwise, we know that this case of the Scope is guaranteed to fail,
2062        // move to the next case.
2063        MatcherIndex = FailIndex;
2064      }
2065
2066      // If the whole scope failed to match, bail.
2067      if (FailIndex == 0) break;
2068
2069      // Push a MatchScope which indicates where to go if the first child fails
2070      // to match.
2071      MatchScope NewEntry;
2072      NewEntry.FailIndex = FailIndex;
2073      NewEntry.NodeStack.append(NodeStack.begin(), NodeStack.end());
2074      NewEntry.NumRecordedNodes = RecordedNodes.size();
2075      NewEntry.NumMatchedMemRefs = MatchedMemRefs.size();
2076      NewEntry.InputChain = InputChain;
2077      NewEntry.InputFlag = InputFlag;
2078      NewEntry.HasChainNodesMatched = !ChainNodesMatched.empty();
2079      NewEntry.HasFlagResultNodesMatched = !FlagResultNodesMatched.empty();
2080      MatchScopes.push_back(NewEntry);
2081      continue;
2082    }
2083    case OPC_RecordNode:
2084      // Remember this node, it may end up being an operand in the pattern.
2085      RecordedNodes.push_back(N);
2086      continue;
2087
2088    case OPC_RecordChild0: case OPC_RecordChild1:
2089    case OPC_RecordChild2: case OPC_RecordChild3:
2090    case OPC_RecordChild4: case OPC_RecordChild5:
2091    case OPC_RecordChild6: case OPC_RecordChild7: {
2092      unsigned ChildNo = Opcode-OPC_RecordChild0;
2093      if (ChildNo >= N.getNumOperands())
2094        break;  // Match fails if out of range child #.
2095
2096      RecordedNodes.push_back(N->getOperand(ChildNo));
2097      continue;
2098    }
2099    case OPC_RecordMemRef:
2100      MatchedMemRefs.push_back(cast<MemSDNode>(N)->getMemOperand());
2101      continue;
2102
2103    case OPC_CaptureFlagInput:
2104      // If the current node has an input flag, capture it in InputFlag.
2105      if (N->getNumOperands() != 0 &&
2106          N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Flag)
2107        InputFlag = N->getOperand(N->getNumOperands()-1);
2108      continue;
2109
2110    case OPC_MoveChild: {
2111      unsigned ChildNo = MatcherTable[MatcherIndex++];
2112      if (ChildNo >= N.getNumOperands())
2113        break;  // Match fails if out of range child #.
2114      N = N.getOperand(ChildNo);
2115      NodeStack.push_back(N);
2116      continue;
2117    }
2118
2119    case OPC_MoveParent:
2120      // Pop the current node off the NodeStack.
2121      NodeStack.pop_back();
2122      assert(!NodeStack.empty() && "Node stack imbalance!");
2123      N = NodeStack.back();
2124      continue;
2125
2126    case OPC_CheckSame:
2127      if (!::CheckSame(MatcherTable, MatcherIndex, N, RecordedNodes)) break;
2128      continue;
2129    case OPC_CheckPatternPredicate:
2130      if (!::CheckPatternPredicate(MatcherTable, MatcherIndex, *this)) break;
2131      continue;
2132    case OPC_CheckPredicate:
2133      if (!::CheckNodePredicate(MatcherTable, MatcherIndex, *this,
2134                                N.getNode()))
2135        break;
2136      continue;
2137    case OPC_CheckComplexPat: {
2138      unsigned CPNum = MatcherTable[MatcherIndex++];
2139      unsigned RecNo = MatcherTable[MatcherIndex++];
2140      assert(RecNo < RecordedNodes.size() && "Invalid CheckComplexPat");
2141      if (!CheckComplexPattern(NodeToMatch, RecordedNodes[RecNo], CPNum,
2142                               RecordedNodes))
2143        break;
2144      continue;
2145    }
2146    case OPC_CheckOpcode:
2147      if (!::CheckOpcode(MatcherTable, MatcherIndex, N.getNode())) break;
2148      continue;
2149
2150    case OPC_CheckType:
2151      if (!::CheckType(MatcherTable, MatcherIndex, N, TLI)) break;
2152      continue;
2153
2154    case OPC_SwitchOpcode: {
2155      unsigned CurNodeOpcode = N.getOpcode();
2156      unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart;
2157      unsigned CaseSize;
2158      while (1) {
2159        // Get the size of this case.
2160        CaseSize = MatcherTable[MatcherIndex++];
2161        if (CaseSize & 128)
2162          CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex);
2163        if (CaseSize == 0) break;
2164
2165        uint16_t Opc = MatcherTable[MatcherIndex++];
2166        Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
2167
2168        // If the opcode matches, then we will execute this case.
2169        if (CurNodeOpcode == Opc)
2170          break;
2171
2172        // Otherwise, skip over this case.
2173        MatcherIndex += CaseSize;
2174      }
2175
2176      // If no cases matched, bail out.
2177      if (CaseSize == 0) break;
2178
2179      // Otherwise, execute the case we found.
2180      DEBUG(errs() << "  OpcodeSwitch from " << SwitchStart
2181                   << " to " << MatcherIndex << "\n");
2182      continue;
2183    }
2184
2185    case OPC_SwitchType: {
2186      MVT::SimpleValueType CurNodeVT = N.getValueType().getSimpleVT().SimpleTy;
2187      unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart;
2188      unsigned CaseSize;
2189      while (1) {
2190        // Get the size of this case.
2191        CaseSize = MatcherTable[MatcherIndex++];
2192        if (CaseSize & 128)
2193          CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex);
2194        if (CaseSize == 0) break;
2195
2196        MVT::SimpleValueType CaseVT =
2197          (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2198        if (CaseVT == MVT::iPTR)
2199          CaseVT = TLI.getPointerTy().SimpleTy;
2200
2201        // If the VT matches, then we will execute this case.
2202        if (CurNodeVT == CaseVT)
2203          break;
2204
2205        // Otherwise, skip over this case.
2206        MatcherIndex += CaseSize;
2207      }
2208
2209      // If no cases matched, bail out.
2210      if (CaseSize == 0) break;
2211
2212      // Otherwise, execute the case we found.
2213      DEBUG(errs() << "  TypeSwitch[" << EVT(CurNodeVT).getEVTString()
2214                   << "] from " << SwitchStart << " to " << MatcherIndex<<'\n');
2215      continue;
2216    }
2217    case OPC_CheckChild0Type: case OPC_CheckChild1Type:
2218    case OPC_CheckChild2Type: case OPC_CheckChild3Type:
2219    case OPC_CheckChild4Type: case OPC_CheckChild5Type:
2220    case OPC_CheckChild6Type: case OPC_CheckChild7Type:
2221      if (!::CheckChildType(MatcherTable, MatcherIndex, N, TLI,
2222                            Opcode-OPC_CheckChild0Type))
2223        break;
2224      continue;
2225    case OPC_CheckCondCode:
2226      if (!::CheckCondCode(MatcherTable, MatcherIndex, N)) break;
2227      continue;
2228    case OPC_CheckValueType:
2229      if (!::CheckValueType(MatcherTable, MatcherIndex, N, TLI)) break;
2230      continue;
2231    case OPC_CheckInteger:
2232      if (!::CheckInteger(MatcherTable, MatcherIndex, N)) break;
2233      continue;
2234    case OPC_CheckAndImm:
2235      if (!::CheckAndImm(MatcherTable, MatcherIndex, N, *this)) break;
2236      continue;
2237    case OPC_CheckOrImm:
2238      if (!::CheckOrImm(MatcherTable, MatcherIndex, N, *this)) break;
2239      continue;
2240
2241    case OPC_CheckFoldableChainNode: {
2242      assert(NodeStack.size() != 1 && "No parent node");
2243      // Verify that all intermediate nodes between the root and this one have
2244      // a single use.
2245      bool HasMultipleUses = false;
2246      for (unsigned i = 1, e = NodeStack.size()-1; i != e; ++i)
2247        if (!NodeStack[i].hasOneUse()) {
2248          HasMultipleUses = true;
2249          break;
2250        }
2251      if (HasMultipleUses) break;
2252
2253      // Check to see that the target thinks this is profitable to fold and that
2254      // we can fold it without inducing cycles in the graph.
2255      if (!IsProfitableToFold(N, NodeStack[NodeStack.size()-2].getNode(),
2256                              NodeToMatch) ||
2257          !IsLegalToFold(N, NodeStack[NodeStack.size()-2].getNode(),
2258                         NodeToMatch, true/*We validate our own chains*/))
2259        break;
2260
2261      continue;
2262    }
2263    case OPC_EmitInteger: {
2264      MVT::SimpleValueType VT =
2265        (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2266      int64_t Val = MatcherTable[MatcherIndex++];
2267      if (Val & 128)
2268        Val = GetVBR(Val, MatcherTable, MatcherIndex);
2269      RecordedNodes.push_back(CurDAG->getTargetConstant(Val, VT));
2270      continue;
2271    }
2272    case OPC_EmitRegister: {
2273      MVT::SimpleValueType VT =
2274        (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2275      unsigned RegNo = MatcherTable[MatcherIndex++];
2276      RecordedNodes.push_back(CurDAG->getRegister(RegNo, VT));
2277      continue;
2278    }
2279
2280    case OPC_EmitConvertToTarget:  {
2281      // Convert from IMM/FPIMM to target version.
2282      unsigned RecNo = MatcherTable[MatcherIndex++];
2283      assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2284      SDValue Imm = RecordedNodes[RecNo];
2285
2286      if (Imm->getOpcode() == ISD::Constant) {
2287        int64_t Val = cast<ConstantSDNode>(Imm)->getZExtValue();
2288        Imm = CurDAG->getTargetConstant(Val, Imm.getValueType());
2289      } else if (Imm->getOpcode() == ISD::ConstantFP) {
2290        const ConstantFP *Val=cast<ConstantFPSDNode>(Imm)->getConstantFPValue();
2291        Imm = CurDAG->getTargetConstantFP(*Val, Imm.getValueType());
2292      }
2293
2294      RecordedNodes.push_back(Imm);
2295      continue;
2296    }
2297
2298    case OPC_EmitMergeInputChains1_0:    // OPC_EmitMergeInputChains, 1, 0
2299    case OPC_EmitMergeInputChains1_1: {  // OPC_EmitMergeInputChains, 1, 1
2300      // These are space-optimized forms of OPC_EmitMergeInputChains.
2301      assert(InputChain.getNode() == 0 &&
2302             "EmitMergeInputChains should be the first chain producing node");
2303      assert(ChainNodesMatched.empty() &&
2304             "Should only have one EmitMergeInputChains per match");
2305
2306      // Read all of the chained nodes.
2307      unsigned RecNo = Opcode == OPC_EmitMergeInputChains1_1;
2308      assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2309      ChainNodesMatched.push_back(RecordedNodes[RecNo].getNode());
2310
2311      // FIXME: What if other value results of the node have uses not matched
2312      // by this pattern?
2313      if (ChainNodesMatched.back() != NodeToMatch &&
2314          !RecordedNodes[RecNo].hasOneUse()) {
2315        ChainNodesMatched.clear();
2316        break;
2317      }
2318
2319      // Merge the input chains if they are not intra-pattern references.
2320      InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG);
2321
2322      if (InputChain.getNode() == 0)
2323        break;  // Failed to merge.
2324      continue;
2325    }
2326
2327    case OPC_EmitMergeInputChains: {
2328      assert(InputChain.getNode() == 0 &&
2329             "EmitMergeInputChains should be the first chain producing node");
2330      // This node gets a list of nodes we matched in the input that have
2331      // chains.  We want to token factor all of the input chains to these nodes
2332      // together.  However, if any of the input chains is actually one of the
2333      // nodes matched in this pattern, then we have an intra-match reference.
2334      // Ignore these because the newly token factored chain should not refer to
2335      // the old nodes.
2336      unsigned NumChains = MatcherTable[MatcherIndex++];
2337      assert(NumChains != 0 && "Can't TF zero chains");
2338
2339      assert(ChainNodesMatched.empty() &&
2340             "Should only have one EmitMergeInputChains per match");
2341
2342      // Read all of the chained nodes.
2343      for (unsigned i = 0; i != NumChains; ++i) {
2344        unsigned RecNo = MatcherTable[MatcherIndex++];
2345        assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2346        ChainNodesMatched.push_back(RecordedNodes[RecNo].getNode());
2347
2348        // FIXME: What if other value results of the node have uses not matched
2349        // by this pattern?
2350        if (ChainNodesMatched.back() != NodeToMatch &&
2351            !RecordedNodes[RecNo].hasOneUse()) {
2352          ChainNodesMatched.clear();
2353          break;
2354        }
2355      }
2356
2357      // If the inner loop broke out, the match fails.
2358      if (ChainNodesMatched.empty())
2359        break;
2360
2361      // Merge the input chains if they are not intra-pattern references.
2362      InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG);
2363
2364      if (InputChain.getNode() == 0)
2365        break;  // Failed to merge.
2366
2367      continue;
2368    }
2369
2370    case OPC_EmitCopyToReg: {
2371      unsigned RecNo = MatcherTable[MatcherIndex++];
2372      assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2373      unsigned DestPhysReg = MatcherTable[MatcherIndex++];
2374
2375      if (InputChain.getNode() == 0)
2376        InputChain = CurDAG->getEntryNode();
2377
2378      InputChain = CurDAG->getCopyToReg(InputChain, NodeToMatch->getDebugLoc(),
2379                                        DestPhysReg, RecordedNodes[RecNo],
2380                                        InputFlag);
2381
2382      InputFlag = InputChain.getValue(1);
2383      continue;
2384    }
2385
2386    case OPC_EmitNodeXForm: {
2387      unsigned XFormNo = MatcherTable[MatcherIndex++];
2388      unsigned RecNo = MatcherTable[MatcherIndex++];
2389      assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2390      RecordedNodes.push_back(RunSDNodeXForm(RecordedNodes[RecNo], XFormNo));
2391      continue;
2392    }
2393
2394    case OPC_EmitNode:
2395    case OPC_MorphNodeTo: {
2396      uint16_t TargetOpc = MatcherTable[MatcherIndex++];
2397      TargetOpc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
2398      unsigned EmitNodeInfo = MatcherTable[MatcherIndex++];
2399      // Get the result VT list.
2400      unsigned NumVTs = MatcherTable[MatcherIndex++];
2401      SmallVector<EVT, 4> VTs;
2402      for (unsigned i = 0; i != NumVTs; ++i) {
2403        MVT::SimpleValueType VT =
2404          (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2405        if (VT == MVT::iPTR) VT = TLI.getPointerTy().SimpleTy;
2406        VTs.push_back(VT);
2407      }
2408
2409      if (EmitNodeInfo & OPFL_Chain)
2410        VTs.push_back(MVT::Other);
2411      if (EmitNodeInfo & OPFL_FlagOutput)
2412        VTs.push_back(MVT::Flag);
2413
2414      // This is hot code, so optimize the two most common cases of 1 and 2
2415      // results.
2416      SDVTList VTList;
2417      if (VTs.size() == 1)
2418        VTList = CurDAG->getVTList(VTs[0]);
2419      else if (VTs.size() == 2)
2420        VTList = CurDAG->getVTList(VTs[0], VTs[1]);
2421      else
2422        VTList = CurDAG->getVTList(VTs.data(), VTs.size());
2423
2424      // Get the operand list.
2425      unsigned NumOps = MatcherTable[MatcherIndex++];
2426      SmallVector<SDValue, 8> Ops;
2427      for (unsigned i = 0; i != NumOps; ++i) {
2428        unsigned RecNo = MatcherTable[MatcherIndex++];
2429        if (RecNo & 128)
2430          RecNo = GetVBR(RecNo, MatcherTable, MatcherIndex);
2431
2432        assert(RecNo < RecordedNodes.size() && "Invalid EmitNode");
2433        Ops.push_back(RecordedNodes[RecNo]);
2434      }
2435
2436      // If there are variadic operands to add, handle them now.
2437      if (EmitNodeInfo & OPFL_VariadicInfo) {
2438        // Determine the start index to copy from.
2439        unsigned FirstOpToCopy = getNumFixedFromVariadicInfo(EmitNodeInfo);
2440        FirstOpToCopy += (EmitNodeInfo & OPFL_Chain) ? 1 : 0;
2441        assert(NodeToMatch->getNumOperands() >= FirstOpToCopy &&
2442               "Invalid variadic node");
2443        // Copy all of the variadic operands, not including a potential flag
2444        // input.
2445        for (unsigned i = FirstOpToCopy, e = NodeToMatch->getNumOperands();
2446             i != e; ++i) {
2447          SDValue V = NodeToMatch->getOperand(i);
2448          if (V.getValueType() == MVT::Flag) break;
2449          Ops.push_back(V);
2450        }
2451      }
2452
2453      // If this has chain/flag inputs, add them.
2454      if (EmitNodeInfo & OPFL_Chain)
2455        Ops.push_back(InputChain);
2456      if ((EmitNodeInfo & OPFL_FlagInput) && InputFlag.getNode() != 0)
2457        Ops.push_back(InputFlag);
2458
2459      // Create the node.
2460      SDNode *Res = 0;
2461      if (Opcode != OPC_MorphNodeTo) {
2462        // If this is a normal EmitNode command, just create the new node and
2463        // add the results to the RecordedNodes list.
2464        Res = CurDAG->getMachineNode(TargetOpc, NodeToMatch->getDebugLoc(),
2465                                     VTList, Ops.data(), Ops.size());
2466
2467        // Add all the non-flag/non-chain results to the RecordedNodes list.
2468        for (unsigned i = 0, e = VTs.size(); i != e; ++i) {
2469          if (VTs[i] == MVT::Other || VTs[i] == MVT::Flag) break;
2470          RecordedNodes.push_back(SDValue(Res, i));
2471        }
2472
2473      } else {
2474        Res = MorphNode(NodeToMatch, TargetOpc, VTList, Ops.data(), Ops.size(),
2475                        EmitNodeInfo);
2476      }
2477
2478      // If the node had chain/flag results, update our notion of the current
2479      // chain and flag.
2480      if (EmitNodeInfo & OPFL_FlagOutput) {
2481        InputFlag = SDValue(Res, VTs.size()-1);
2482        if (EmitNodeInfo & OPFL_Chain)
2483          InputChain = SDValue(Res, VTs.size()-2);
2484      } else if (EmitNodeInfo & OPFL_Chain)
2485        InputChain = SDValue(Res, VTs.size()-1);
2486
2487      // If the OPFL_MemRefs flag is set on this node, slap all of the
2488      // accumulated memrefs onto it.
2489      //
2490      // FIXME: This is vastly incorrect for patterns with multiple outputs
2491      // instructions that access memory and for ComplexPatterns that match
2492      // loads.
2493      if (EmitNodeInfo & OPFL_MemRefs) {
2494        MachineSDNode::mmo_iterator MemRefs =
2495          MF->allocateMemRefsArray(MatchedMemRefs.size());
2496        std::copy(MatchedMemRefs.begin(), MatchedMemRefs.end(), MemRefs);
2497        cast<MachineSDNode>(Res)
2498          ->setMemRefs(MemRefs, MemRefs + MatchedMemRefs.size());
2499      }
2500
2501      DEBUG(errs() << "  "
2502                   << (Opcode == OPC_MorphNodeTo ? "Morphed" : "Created")
2503                   << " node: "; Res->dump(CurDAG); errs() << "\n");
2504
2505      // If this was a MorphNodeTo then we're completely done!
2506      if (Opcode == OPC_MorphNodeTo) {
2507        // Update chain and flag uses.
2508        UpdateChainsAndFlags(NodeToMatch, InputChain, ChainNodesMatched,
2509                             InputFlag, FlagResultNodesMatched, true);
2510        return Res;
2511      }
2512
2513      continue;
2514    }
2515
2516    case OPC_MarkFlagResults: {
2517      unsigned NumNodes = MatcherTable[MatcherIndex++];
2518
2519      // Read and remember all the flag-result nodes.
2520      for (unsigned i = 0; i != NumNodes; ++i) {
2521        unsigned RecNo = MatcherTable[MatcherIndex++];
2522        if (RecNo & 128)
2523          RecNo = GetVBR(RecNo, MatcherTable, MatcherIndex);
2524
2525        assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2526        FlagResultNodesMatched.push_back(RecordedNodes[RecNo].getNode());
2527      }
2528      continue;
2529    }
2530
2531    case OPC_CompleteMatch: {
2532      // The match has been completed, and any new nodes (if any) have been
2533      // created.  Patch up references to the matched dag to use the newly
2534      // created nodes.
2535      unsigned NumResults = MatcherTable[MatcherIndex++];
2536
2537      for (unsigned i = 0; i != NumResults; ++i) {
2538        unsigned ResSlot = MatcherTable[MatcherIndex++];
2539        if (ResSlot & 128)
2540          ResSlot = GetVBR(ResSlot, MatcherTable, MatcherIndex);
2541
2542        assert(ResSlot < RecordedNodes.size() && "Invalid CheckSame");
2543        SDValue Res = RecordedNodes[ResSlot];
2544
2545        assert(i < NodeToMatch->getNumValues() &&
2546               NodeToMatch->getValueType(i) != MVT::Other &&
2547               NodeToMatch->getValueType(i) != MVT::Flag &&
2548               "Invalid number of results to complete!");
2549        assert((NodeToMatch->getValueType(i) == Res.getValueType() ||
2550                NodeToMatch->getValueType(i) == MVT::iPTR ||
2551                Res.getValueType() == MVT::iPTR ||
2552                NodeToMatch->getValueType(i).getSizeInBits() ==
2553                    Res.getValueType().getSizeInBits()) &&
2554               "invalid replacement");
2555        CurDAG->ReplaceAllUsesOfValueWith(SDValue(NodeToMatch, i), Res);
2556      }
2557
2558      // If the root node defines a flag, add it to the flag nodes to update
2559      // list.
2560      if (NodeToMatch->getValueType(NodeToMatch->getNumValues()-1) == MVT::Flag)
2561        FlagResultNodesMatched.push_back(NodeToMatch);
2562
2563      // Update chain and flag uses.
2564      UpdateChainsAndFlags(NodeToMatch, InputChain, ChainNodesMatched,
2565                           InputFlag, FlagResultNodesMatched, false);
2566
2567      assert(NodeToMatch->use_empty() &&
2568             "Didn't replace all uses of the node?");
2569
2570      // FIXME: We just return here, which interacts correctly with SelectRoot
2571      // above.  We should fix this to not return an SDNode* anymore.
2572      return 0;
2573    }
2574    }
2575
2576    // If the code reached this point, then the match failed.  See if there is
2577    // another child to try in the current 'Scope', otherwise pop it until we
2578    // find a case to check.
2579    DEBUG(errs() << "  Match failed at index " << CurrentOpcodeIndex << "\n");
2580    ++NumDAGIselRetries;
2581    while (1) {
2582      if (MatchScopes.empty()) {
2583        CannotYetSelect(NodeToMatch);
2584        return 0;
2585      }
2586
2587      // Restore the interpreter state back to the point where the scope was
2588      // formed.
2589      MatchScope &LastScope = MatchScopes.back();
2590      RecordedNodes.resize(LastScope.NumRecordedNodes);
2591      NodeStack.clear();
2592      NodeStack.append(LastScope.NodeStack.begin(), LastScope.NodeStack.end());
2593      N = NodeStack.back();
2594
2595      if (LastScope.NumMatchedMemRefs != MatchedMemRefs.size())
2596        MatchedMemRefs.resize(LastScope.NumMatchedMemRefs);
2597      MatcherIndex = LastScope.FailIndex;
2598
2599      DEBUG(errs() << "  Continuing at " << MatcherIndex << "\n");
2600
2601      InputChain = LastScope.InputChain;
2602      InputFlag = LastScope.InputFlag;
2603      if (!LastScope.HasChainNodesMatched)
2604        ChainNodesMatched.clear();
2605      if (!LastScope.HasFlagResultNodesMatched)
2606        FlagResultNodesMatched.clear();
2607
2608      // Check to see what the offset is at the new MatcherIndex.  If it is zero
2609      // we have reached the end of this scope, otherwise we have another child
2610      // in the current scope to try.
2611      unsigned NumToSkip = MatcherTable[MatcherIndex++];
2612      if (NumToSkip & 128)
2613        NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex);
2614
2615      // If we have another child in this scope to match, update FailIndex and
2616      // try it.
2617      if (NumToSkip != 0) {
2618        LastScope.FailIndex = MatcherIndex+NumToSkip;
2619        break;
2620      }
2621
2622      // End of this scope, pop it and try the next child in the containing
2623      // scope.
2624      MatchScopes.pop_back();
2625    }
2626  }
2627}
2628
2629
2630
2631void SelectionDAGISel::CannotYetSelect(SDNode *N) {
2632  std::string msg;
2633  raw_string_ostream Msg(msg);
2634  Msg << "Cannot yet select: ";
2635
2636  if (N->getOpcode() != ISD::INTRINSIC_W_CHAIN &&
2637      N->getOpcode() != ISD::INTRINSIC_WO_CHAIN &&
2638      N->getOpcode() != ISD::INTRINSIC_VOID) {
2639    N->printrFull(Msg, CurDAG);
2640  } else {
2641    bool HasInputChain = N->getOperand(0).getValueType() == MVT::Other;
2642    unsigned iid =
2643      cast<ConstantSDNode>(N->getOperand(HasInputChain))->getZExtValue();
2644    if (iid < Intrinsic::num_intrinsics)
2645      Msg << "intrinsic %" << Intrinsic::getName((Intrinsic::ID)iid);
2646    else if (const TargetIntrinsicInfo *TII = TM.getIntrinsicInfo())
2647      Msg << "target intrinsic %" << TII->getName(iid);
2648    else
2649      Msg << "unknown intrinsic #" << iid;
2650  }
2651  report_fatal_error(Msg.str());
2652}
2653
2654char SelectionDAGISel::ID = 0;
2655