SelectionDAGISel.cpp revision 26c8dcc692fb2addd475446cfff24d6a4e958bca
1//===-- SelectionDAGISel.cpp - Implement the SelectionDAGISel class -------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAGISel class.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "isel"
15#include "ScheduleDAGSDNodes.h"
16#include "SelectionDAGBuilder.h"
17#include "llvm/CodeGen/FunctionLoweringInfo.h"
18#include "llvm/CodeGen/SelectionDAGISel.h"
19#include "llvm/Analysis/AliasAnalysis.h"
20#include "llvm/Analysis/BranchProbabilityInfo.h"
21#include "llvm/Analysis/DebugInfo.h"
22#include "llvm/Constants.h"
23#include "llvm/Function.h"
24#include "llvm/InlineAsm.h"
25#include "llvm/Instructions.h"
26#include "llvm/Intrinsics.h"
27#include "llvm/IntrinsicInst.h"
28#include "llvm/LLVMContext.h"
29#include "llvm/Module.h"
30#include "llvm/CodeGen/FastISel.h"
31#include "llvm/CodeGen/GCStrategy.h"
32#include "llvm/CodeGen/GCMetadata.h"
33#include "llvm/CodeGen/MachineFrameInfo.h"
34#include "llvm/CodeGen/MachineFunction.h"
35#include "llvm/CodeGen/MachineInstrBuilder.h"
36#include "llvm/CodeGen/MachineModuleInfo.h"
37#include "llvm/CodeGen/MachineRegisterInfo.h"
38#include "llvm/CodeGen/ScheduleHazardRecognizer.h"
39#include "llvm/CodeGen/SchedulerRegistry.h"
40#include "llvm/CodeGen/SelectionDAG.h"
41#include "llvm/Target/TargetRegisterInfo.h"
42#include "llvm/Target/TargetIntrinsicInfo.h"
43#include "llvm/Target/TargetInstrInfo.h"
44#include "llvm/Target/TargetLibraryInfo.h"
45#include "llvm/Target/TargetLowering.h"
46#include "llvm/Target/TargetMachine.h"
47#include "llvm/Target/TargetOptions.h"
48#include "llvm/Transforms/Utils/BasicBlockUtils.h"
49#include "llvm/Support/Compiler.h"
50#include "llvm/Support/Debug.h"
51#include "llvm/Support/ErrorHandling.h"
52#include "llvm/Support/Timer.h"
53#include "llvm/Support/raw_ostream.h"
54#include "llvm/ADT/PostOrderIterator.h"
55#include "llvm/ADT/Statistic.h"
56#include <algorithm>
57using namespace llvm;
58
59STATISTIC(NumFastIselFailures, "Number of instructions fast isel failed on");
60STATISTIC(NumFastIselSuccess, "Number of instructions fast isel selected");
61STATISTIC(NumFastIselBlocks, "Number of blocks selected entirely by fast isel");
62STATISTIC(NumDAGBlocks, "Number of blocks selected using DAG");
63STATISTIC(NumDAGIselRetries,"Number of times dag isel has to try another path");
64
65#ifndef NDEBUG
66static cl::opt<bool>
67EnableFastISelVerbose2("fast-isel-verbose2", cl::Hidden,
68          cl::desc("Enable extra verbose messages in the \"fast\" "
69                   "instruction selector"));
70  // Terminators
71STATISTIC(NumFastIselFailRet,"Fast isel fails on Ret");
72STATISTIC(NumFastIselFailBr,"Fast isel fails on Br");
73STATISTIC(NumFastIselFailSwitch,"Fast isel fails on Switch");
74STATISTIC(NumFastIselFailIndirectBr,"Fast isel fails on IndirectBr");
75STATISTIC(NumFastIselFailInvoke,"Fast isel fails on Invoke");
76STATISTIC(NumFastIselFailResume,"Fast isel fails on Resume");
77STATISTIC(NumFastIselFailUnreachable,"Fast isel fails on Unreachable");
78
79  // Standard binary operators...
80STATISTIC(NumFastIselFailAdd,"Fast isel fails on Add");
81STATISTIC(NumFastIselFailFAdd,"Fast isel fails on FAdd");
82STATISTIC(NumFastIselFailSub,"Fast isel fails on Sub");
83STATISTIC(NumFastIselFailFSub,"Fast isel fails on FSub");
84STATISTIC(NumFastIselFailMul,"Fast isel fails on Mul");
85STATISTIC(NumFastIselFailFMul,"Fast isel fails on FMul");
86STATISTIC(NumFastIselFailUDiv,"Fast isel fails on UDiv");
87STATISTIC(NumFastIselFailSDiv,"Fast isel fails on SDiv");
88STATISTIC(NumFastIselFailFDiv,"Fast isel fails on FDiv");
89STATISTIC(NumFastIselFailURem,"Fast isel fails on URem");
90STATISTIC(NumFastIselFailSRem,"Fast isel fails on SRem");
91STATISTIC(NumFastIselFailFRem,"Fast isel fails on FRem");
92
93  // Logical operators...
94STATISTIC(NumFastIselFailAnd,"Fast isel fails on And");
95STATISTIC(NumFastIselFailOr,"Fast isel fails on Or");
96STATISTIC(NumFastIselFailXor,"Fast isel fails on Xor");
97
98  // Memory instructions...
99STATISTIC(NumFastIselFailAlloca,"Fast isel fails on Alloca");
100STATISTIC(NumFastIselFailLoad,"Fast isel fails on Load");
101STATISTIC(NumFastIselFailStore,"Fast isel fails on Store");
102STATISTIC(NumFastIselFailAtomicCmpXchg,"Fast isel fails on AtomicCmpXchg");
103STATISTIC(NumFastIselFailAtomicRMW,"Fast isel fails on AtomicRWM");
104STATISTIC(NumFastIselFailFence,"Fast isel fails on Frence");
105STATISTIC(NumFastIselFailGetElementPtr,"Fast isel fails on GetElementPtr");
106
107  // Convert instructions...
108STATISTIC(NumFastIselFailTrunc,"Fast isel fails on Trunc");
109STATISTIC(NumFastIselFailZExt,"Fast isel fails on ZExt");
110STATISTIC(NumFastIselFailSExt,"Fast isel fails on SExt");
111STATISTIC(NumFastIselFailFPTrunc,"Fast isel fails on FPTrunc");
112STATISTIC(NumFastIselFailFPExt,"Fast isel fails on FPExt");
113STATISTIC(NumFastIselFailFPToUI,"Fast isel fails on FPToUI");
114STATISTIC(NumFastIselFailFPToSI,"Fast isel fails on FPToSI");
115STATISTIC(NumFastIselFailUIToFP,"Fast isel fails on UIToFP");
116STATISTIC(NumFastIselFailSIToFP,"Fast isel fails on SIToFP");
117STATISTIC(NumFastIselFailIntToPtr,"Fast isel fails on IntToPtr");
118STATISTIC(NumFastIselFailPtrToInt,"Fast isel fails on PtrToInt");
119STATISTIC(NumFastIselFailBitCast,"Fast isel fails on BitCast");
120
121  // Other instructions...
122STATISTIC(NumFastIselFailICmp,"Fast isel fails on ICmp");
123STATISTIC(NumFastIselFailFCmp,"Fast isel fails on FCmp");
124STATISTIC(NumFastIselFailPHI,"Fast isel fails on PHI");
125STATISTIC(NumFastIselFailSelect,"Fast isel fails on Select");
126STATISTIC(NumFastIselFailCall,"Fast isel fails on Call");
127STATISTIC(NumFastIselFailShl,"Fast isel fails on Shl");
128STATISTIC(NumFastIselFailLShr,"Fast isel fails on LShr");
129STATISTIC(NumFastIselFailAShr,"Fast isel fails on AShr");
130STATISTIC(NumFastIselFailVAArg,"Fast isel fails on VAArg");
131STATISTIC(NumFastIselFailExtractElement,"Fast isel fails on ExtractElement");
132STATISTIC(NumFastIselFailInsertElement,"Fast isel fails on InsertElement");
133STATISTIC(NumFastIselFailShuffleVector,"Fast isel fails on ShuffleVector");
134STATISTIC(NumFastIselFailExtractValue,"Fast isel fails on ExtractValue");
135STATISTIC(NumFastIselFailInsertValue,"Fast isel fails on InsertValue");
136STATISTIC(NumFastIselFailLandingPad,"Fast isel fails on LandingPad");
137#endif
138
139static cl::opt<bool>
140EnableFastISelVerbose("fast-isel-verbose", cl::Hidden,
141          cl::desc("Enable verbose messages in the \"fast\" "
142                   "instruction selector"));
143static cl::opt<bool>
144EnableFastISelAbort("fast-isel-abort", cl::Hidden,
145          cl::desc("Enable abort calls when \"fast\" instruction fails"));
146
147static cl::opt<bool>
148UseMBPI("use-mbpi",
149        cl::desc("use Machine Branch Probability Info"),
150        cl::init(true), cl::Hidden);
151
152#ifndef NDEBUG
153static cl::opt<bool>
154ViewDAGCombine1("view-dag-combine1-dags", cl::Hidden,
155          cl::desc("Pop up a window to show dags before the first "
156                   "dag combine pass"));
157static cl::opt<bool>
158ViewLegalizeTypesDAGs("view-legalize-types-dags", cl::Hidden,
159          cl::desc("Pop up a window to show dags before legalize types"));
160static cl::opt<bool>
161ViewLegalizeDAGs("view-legalize-dags", cl::Hidden,
162          cl::desc("Pop up a window to show dags before legalize"));
163static cl::opt<bool>
164ViewDAGCombine2("view-dag-combine2-dags", cl::Hidden,
165          cl::desc("Pop up a window to show dags before the second "
166                   "dag combine pass"));
167static cl::opt<bool>
168ViewDAGCombineLT("view-dag-combine-lt-dags", cl::Hidden,
169          cl::desc("Pop up a window to show dags before the post legalize types"
170                   " dag combine pass"));
171static cl::opt<bool>
172ViewISelDAGs("view-isel-dags", cl::Hidden,
173          cl::desc("Pop up a window to show isel dags as they are selected"));
174static cl::opt<bool>
175ViewSchedDAGs("view-sched-dags", cl::Hidden,
176          cl::desc("Pop up a window to show sched dags as they are processed"));
177static cl::opt<bool>
178ViewSUnitDAGs("view-sunit-dags", cl::Hidden,
179      cl::desc("Pop up a window to show SUnit dags after they are processed"));
180#else
181static const bool ViewDAGCombine1 = false,
182                  ViewLegalizeTypesDAGs = false, ViewLegalizeDAGs = false,
183                  ViewDAGCombine2 = false,
184                  ViewDAGCombineLT = false,
185                  ViewISelDAGs = false, ViewSchedDAGs = false,
186                  ViewSUnitDAGs = false;
187#endif
188
189//===---------------------------------------------------------------------===//
190///
191/// RegisterScheduler class - Track the registration of instruction schedulers.
192///
193//===---------------------------------------------------------------------===//
194MachinePassRegistry RegisterScheduler::Registry;
195
196//===---------------------------------------------------------------------===//
197///
198/// ISHeuristic command line option for instruction schedulers.
199///
200//===---------------------------------------------------------------------===//
201static cl::opt<RegisterScheduler::FunctionPassCtor, false,
202               RegisterPassParser<RegisterScheduler> >
203ISHeuristic("pre-RA-sched",
204            cl::init(&createDefaultScheduler),
205            cl::desc("Instruction schedulers available (before register"
206                     " allocation):"));
207
208static RegisterScheduler
209defaultListDAGScheduler("default", "Best scheduler for the target",
210                        createDefaultScheduler);
211
212namespace llvm {
213  //===--------------------------------------------------------------------===//
214  /// createDefaultScheduler - This creates an instruction scheduler appropriate
215  /// for the target.
216  ScheduleDAGSDNodes* createDefaultScheduler(SelectionDAGISel *IS,
217                                             CodeGenOpt::Level OptLevel) {
218    const TargetLowering &TLI = IS->getTargetLowering();
219
220    if (OptLevel == CodeGenOpt::None ||
221        TLI.getSchedulingPreference() == Sched::Source)
222      return createSourceListDAGScheduler(IS, OptLevel);
223    if (TLI.getSchedulingPreference() == Sched::RegPressure)
224      return createBURRListDAGScheduler(IS, OptLevel);
225    if (TLI.getSchedulingPreference() == Sched::Hybrid)
226      return createHybridListDAGScheduler(IS, OptLevel);
227    if (TLI.getSchedulingPreference() == Sched::VLIW)
228      return createVLIWDAGScheduler(IS, OptLevel);
229    assert(TLI.getSchedulingPreference() == Sched::ILP &&
230           "Unknown sched type!");
231    return createILPListDAGScheduler(IS, OptLevel);
232  }
233}
234
235// EmitInstrWithCustomInserter - This method should be implemented by targets
236// that mark instructions with the 'usesCustomInserter' flag.  These
237// instructions are special in various ways, which require special support to
238// insert.  The specified MachineInstr is created but not inserted into any
239// basic blocks, and this method is called to expand it into a sequence of
240// instructions, potentially also creating new basic blocks and control flow.
241// When new basic blocks are inserted and the edges from MBB to its successors
242// are modified, the method should insert pairs of <OldSucc, NewSucc> into the
243// DenseMap.
244MachineBasicBlock *
245TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
246                                            MachineBasicBlock *MBB) const {
247#ifndef NDEBUG
248  dbgs() << "If a target marks an instruction with "
249          "'usesCustomInserter', it must implement "
250          "TargetLowering::EmitInstrWithCustomInserter!";
251#endif
252  llvm_unreachable(0);
253}
254
255void TargetLowering::AdjustInstrPostInstrSelection(MachineInstr *MI,
256                                                   SDNode *Node) const {
257  assert(!MI->hasPostISelHook() &&
258         "If a target marks an instruction with 'hasPostISelHook', "
259         "it must implement TargetLowering::AdjustInstrPostInstrSelection!");
260}
261
262//===----------------------------------------------------------------------===//
263// SelectionDAGISel code
264//===----------------------------------------------------------------------===//
265
266void SelectionDAGISel::ISelUpdater::anchor() { }
267
268SelectionDAGISel::SelectionDAGISel(const TargetMachine &tm,
269                                   CodeGenOpt::Level OL) :
270  MachineFunctionPass(ID), TM(tm), TLI(*tm.getTargetLowering()),
271  FuncInfo(new FunctionLoweringInfo(TLI)),
272  CurDAG(new SelectionDAG(tm, OL)),
273  SDB(new SelectionDAGBuilder(*CurDAG, *FuncInfo, OL)),
274  GFI(),
275  OptLevel(OL),
276  DAGSize(0) {
277    initializeGCModuleInfoPass(*PassRegistry::getPassRegistry());
278    initializeAliasAnalysisAnalysisGroup(*PassRegistry::getPassRegistry());
279    initializeBranchProbabilityInfoPass(*PassRegistry::getPassRegistry());
280    initializeTargetLibraryInfoPass(*PassRegistry::getPassRegistry());
281  }
282
283SelectionDAGISel::~SelectionDAGISel() {
284  delete SDB;
285  delete CurDAG;
286  delete FuncInfo;
287}
288
289void SelectionDAGISel::getAnalysisUsage(AnalysisUsage &AU) const {
290  AU.addRequired<AliasAnalysis>();
291  AU.addPreserved<AliasAnalysis>();
292  AU.addRequired<GCModuleInfo>();
293  AU.addPreserved<GCModuleInfo>();
294  AU.addRequired<TargetLibraryInfo>();
295  if (UseMBPI && OptLevel != CodeGenOpt::None)
296    AU.addRequired<BranchProbabilityInfo>();
297  MachineFunctionPass::getAnalysisUsage(AU);
298}
299
300/// SplitCriticalSideEffectEdges - Look for critical edges with a PHI value that
301/// may trap on it.  In this case we have to split the edge so that the path
302/// through the predecessor block that doesn't go to the phi block doesn't
303/// execute the possibly trapping instruction.
304///
305/// This is required for correctness, so it must be done at -O0.
306///
307static void SplitCriticalSideEffectEdges(Function &Fn, Pass *SDISel) {
308  // Loop for blocks with phi nodes.
309  for (Function::iterator BB = Fn.begin(), E = Fn.end(); BB != E; ++BB) {
310    PHINode *PN = dyn_cast<PHINode>(BB->begin());
311    if (PN == 0) continue;
312
313  ReprocessBlock:
314    // For each block with a PHI node, check to see if any of the input values
315    // are potentially trapping constant expressions.  Constant expressions are
316    // the only potentially trapping value that can occur as the argument to a
317    // PHI.
318    for (BasicBlock::iterator I = BB->begin(); (PN = dyn_cast<PHINode>(I)); ++I)
319      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
320        ConstantExpr *CE = dyn_cast<ConstantExpr>(PN->getIncomingValue(i));
321        if (CE == 0 || !CE->canTrap()) continue;
322
323        // The only case we have to worry about is when the edge is critical.
324        // Since this block has a PHI Node, we assume it has multiple input
325        // edges: check to see if the pred has multiple successors.
326        BasicBlock *Pred = PN->getIncomingBlock(i);
327        if (Pred->getTerminator()->getNumSuccessors() == 1)
328          continue;
329
330        // Okay, we have to split this edge.
331        SplitCriticalEdge(Pred->getTerminator(),
332                          GetSuccessorNumber(Pred, BB), SDISel, true);
333        goto ReprocessBlock;
334      }
335  }
336}
337
338bool SelectionDAGISel::runOnMachineFunction(MachineFunction &mf) {
339  // Do some sanity-checking on the command-line options.
340  assert((!EnableFastISelVerbose || TM.Options.EnableFastISel) &&
341         "-fast-isel-verbose requires -fast-isel");
342  assert((!EnableFastISelAbort || TM.Options.EnableFastISel) &&
343         "-fast-isel-abort requires -fast-isel");
344
345  const Function &Fn = *mf.getFunction();
346  const TargetInstrInfo &TII = *TM.getInstrInfo();
347  const TargetRegisterInfo &TRI = *TM.getRegisterInfo();
348
349  MF = &mf;
350  RegInfo = &MF->getRegInfo();
351  AA = &getAnalysis<AliasAnalysis>();
352  LibInfo = &getAnalysis<TargetLibraryInfo>();
353  GFI = Fn.hasGC() ? &getAnalysis<GCModuleInfo>().getFunctionInfo(Fn) : 0;
354
355  DEBUG(dbgs() << "\n\n\n=== " << Fn.getName() << "\n");
356
357  SplitCriticalSideEffectEdges(const_cast<Function&>(Fn), this);
358
359  CurDAG->init(*MF);
360  FuncInfo->set(Fn, *MF);
361
362  if (UseMBPI && OptLevel != CodeGenOpt::None)
363    FuncInfo->BPI = &getAnalysis<BranchProbabilityInfo>();
364  else
365    FuncInfo->BPI = 0;
366
367  SDB->init(GFI, *AA, LibInfo);
368
369  SelectAllBasicBlocks(Fn);
370
371  // If the first basic block in the function has live ins that need to be
372  // copied into vregs, emit the copies into the top of the block before
373  // emitting the code for the block.
374  MachineBasicBlock *EntryMBB = MF->begin();
375  RegInfo->EmitLiveInCopies(EntryMBB, TRI, TII);
376
377  DenseMap<unsigned, unsigned> LiveInMap;
378  if (!FuncInfo->ArgDbgValues.empty())
379    for (MachineRegisterInfo::livein_iterator LI = RegInfo->livein_begin(),
380           E = RegInfo->livein_end(); LI != E; ++LI)
381      if (LI->second)
382        LiveInMap.insert(std::make_pair(LI->first, LI->second));
383
384  // Insert DBG_VALUE instructions for function arguments to the entry block.
385  for (unsigned i = 0, e = FuncInfo->ArgDbgValues.size(); i != e; ++i) {
386    MachineInstr *MI = FuncInfo->ArgDbgValues[e-i-1];
387    unsigned Reg = MI->getOperand(0).getReg();
388    if (TargetRegisterInfo::isPhysicalRegister(Reg))
389      EntryMBB->insert(EntryMBB->begin(), MI);
390    else {
391      MachineInstr *Def = RegInfo->getVRegDef(Reg);
392      MachineBasicBlock::iterator InsertPos = Def;
393      // FIXME: VR def may not be in entry block.
394      Def->getParent()->insert(llvm::next(InsertPos), MI);
395    }
396
397    // If Reg is live-in then update debug info to track its copy in a vreg.
398    DenseMap<unsigned, unsigned>::iterator LDI = LiveInMap.find(Reg);
399    if (LDI != LiveInMap.end()) {
400      MachineInstr *Def = RegInfo->getVRegDef(LDI->second);
401      MachineBasicBlock::iterator InsertPos = Def;
402      const MDNode *Variable =
403        MI->getOperand(MI->getNumOperands()-1).getMetadata();
404      unsigned Offset = MI->getOperand(1).getImm();
405      // Def is never a terminator here, so it is ok to increment InsertPos.
406      BuildMI(*EntryMBB, ++InsertPos, MI->getDebugLoc(),
407              TII.get(TargetOpcode::DBG_VALUE))
408        .addReg(LDI->second, RegState::Debug)
409        .addImm(Offset).addMetadata(Variable);
410
411      // If this vreg is directly copied into an exported register then
412      // that COPY instructions also need DBG_VALUE, if it is the only
413      // user of LDI->second.
414      MachineInstr *CopyUseMI = NULL;
415      for (MachineRegisterInfo::use_iterator
416             UI = RegInfo->use_begin(LDI->second);
417           MachineInstr *UseMI = UI.skipInstruction();) {
418        if (UseMI->isDebugValue()) continue;
419        if (UseMI->isCopy() && !CopyUseMI && UseMI->getParent() == EntryMBB) {
420          CopyUseMI = UseMI; continue;
421        }
422        // Otherwise this is another use or second copy use.
423        CopyUseMI = NULL; break;
424      }
425      if (CopyUseMI) {
426        MachineInstr *NewMI =
427          BuildMI(*MF, CopyUseMI->getDebugLoc(),
428                  TII.get(TargetOpcode::DBG_VALUE))
429          .addReg(CopyUseMI->getOperand(0).getReg(), RegState::Debug)
430          .addImm(Offset).addMetadata(Variable);
431        MachineBasicBlock::iterator Pos = CopyUseMI;
432        EntryMBB->insertAfter(Pos, NewMI);
433      }
434    }
435  }
436
437  // Determine if there are any calls in this machine function.
438  MachineFrameInfo *MFI = MF->getFrameInfo();
439  if (!MFI->hasCalls()) {
440    for (MachineFunction::const_iterator
441           I = MF->begin(), E = MF->end(); I != E; ++I) {
442      const MachineBasicBlock *MBB = I;
443      for (MachineBasicBlock::const_iterator
444             II = MBB->begin(), IE = MBB->end(); II != IE; ++II) {
445        const MCInstrDesc &MCID = TM.getInstrInfo()->get(II->getOpcode());
446
447        if ((MCID.isCall() && !MCID.isReturn()) ||
448            II->isStackAligningInlineAsm()) {
449          MFI->setHasCalls(true);
450          goto done;
451        }
452      }
453    }
454  done:;
455  }
456
457  // Determine if there is a call to setjmp in the machine function.
458  MF->setExposesReturnsTwice(Fn.callsFunctionThatReturnsTwice());
459
460  // Replace forward-declared registers with the registers containing
461  // the desired value.
462  MachineRegisterInfo &MRI = MF->getRegInfo();
463  for (DenseMap<unsigned, unsigned>::iterator
464       I = FuncInfo->RegFixups.begin(), E = FuncInfo->RegFixups.end();
465       I != E; ++I) {
466    unsigned From = I->first;
467    unsigned To = I->second;
468    // If To is also scheduled to be replaced, find what its ultimate
469    // replacement is.
470    for (;;) {
471      DenseMap<unsigned, unsigned>::iterator J =
472        FuncInfo->RegFixups.find(To);
473      if (J == E) break;
474      To = J->second;
475    }
476    // Replace it.
477    MRI.replaceRegWith(From, To);
478  }
479
480  // Release function-specific state. SDB and CurDAG are already cleared
481  // at this point.
482  FuncInfo->clear();
483
484  return true;
485}
486
487void SelectionDAGISel::SelectBasicBlock(BasicBlock::const_iterator Begin,
488                                        BasicBlock::const_iterator End,
489                                        bool &HadTailCall) {
490  // Lower all of the non-terminator instructions. If a call is emitted
491  // as a tail call, cease emitting nodes for this block. Terminators
492  // are handled below.
493  for (BasicBlock::const_iterator I = Begin; I != End && !SDB->HasTailCall; ++I)
494    SDB->visit(*I);
495
496  // Make sure the root of the DAG is up-to-date.
497  CurDAG->setRoot(SDB->getControlRoot());
498  HadTailCall = SDB->HasTailCall;
499  SDB->clear();
500
501  // Final step, emit the lowered DAG as machine code.
502  CodeGenAndEmitDAG();
503}
504
505void SelectionDAGISel::ComputeLiveOutVRegInfo() {
506  SmallPtrSet<SDNode*, 128> VisitedNodes;
507  SmallVector<SDNode*, 128> Worklist;
508
509  Worklist.push_back(CurDAG->getRoot().getNode());
510
511  APInt KnownZero;
512  APInt KnownOne;
513
514  do {
515    SDNode *N = Worklist.pop_back_val();
516
517    // If we've already seen this node, ignore it.
518    if (!VisitedNodes.insert(N))
519      continue;
520
521    // Otherwise, add all chain operands to the worklist.
522    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
523      if (N->getOperand(i).getValueType() == MVT::Other)
524        Worklist.push_back(N->getOperand(i).getNode());
525
526    // If this is a CopyToReg with a vreg dest, process it.
527    if (N->getOpcode() != ISD::CopyToReg)
528      continue;
529
530    unsigned DestReg = cast<RegisterSDNode>(N->getOperand(1))->getReg();
531    if (!TargetRegisterInfo::isVirtualRegister(DestReg))
532      continue;
533
534    // Ignore non-scalar or non-integer values.
535    SDValue Src = N->getOperand(2);
536    EVT SrcVT = Src.getValueType();
537    if (!SrcVT.isInteger() || SrcVT.isVector())
538      continue;
539
540    unsigned NumSignBits = CurDAG->ComputeNumSignBits(Src);
541    CurDAG->ComputeMaskedBits(Src, KnownZero, KnownOne);
542    FuncInfo->AddLiveOutRegInfo(DestReg, NumSignBits, KnownZero, KnownOne);
543  } while (!Worklist.empty());
544}
545
546void SelectionDAGISel::CodeGenAndEmitDAG() {
547  std::string GroupName;
548  if (TimePassesIsEnabled)
549    GroupName = "Instruction Selection and Scheduling";
550  std::string BlockName;
551  int BlockNumber = -1;
552  (void)BlockNumber;
553#ifdef NDEBUG
554  if (ViewDAGCombine1 || ViewLegalizeTypesDAGs || ViewLegalizeDAGs ||
555      ViewDAGCombine2 || ViewDAGCombineLT || ViewISelDAGs || ViewSchedDAGs ||
556      ViewSUnitDAGs)
557#endif
558  {
559    BlockNumber = FuncInfo->MBB->getNumber();
560    BlockName = MF->getFunction()->getName().str() + ":" +
561                FuncInfo->MBB->getBasicBlock()->getName().str();
562  }
563  DEBUG(dbgs() << "Initial selection DAG: BB#" << BlockNumber
564        << " '" << BlockName << "'\n"; CurDAG->dump());
565
566  if (ViewDAGCombine1) CurDAG->viewGraph("dag-combine1 input for " + BlockName);
567
568  // Run the DAG combiner in pre-legalize mode.
569  {
570    NamedRegionTimer T("DAG Combining 1", GroupName, TimePassesIsEnabled);
571    CurDAG->Combine(BeforeLegalizeTypes, *AA, OptLevel);
572  }
573
574  DEBUG(dbgs() << "Optimized lowered selection DAG: BB#" << BlockNumber
575        << " '" << BlockName << "'\n"; CurDAG->dump());
576
577  // Second step, hack on the DAG until it only uses operations and types that
578  // the target supports.
579  if (ViewLegalizeTypesDAGs) CurDAG->viewGraph("legalize-types input for " +
580                                               BlockName);
581
582  bool Changed;
583  {
584    NamedRegionTimer T("Type Legalization", GroupName, TimePassesIsEnabled);
585    Changed = CurDAG->LegalizeTypes();
586  }
587
588  DEBUG(dbgs() << "Type-legalized selection DAG: BB#" << BlockNumber
589        << " '" << BlockName << "'\n"; CurDAG->dump());
590
591  if (Changed) {
592    if (ViewDAGCombineLT)
593      CurDAG->viewGraph("dag-combine-lt input for " + BlockName);
594
595    // Run the DAG combiner in post-type-legalize mode.
596    {
597      NamedRegionTimer T("DAG Combining after legalize types", GroupName,
598                         TimePassesIsEnabled);
599      CurDAG->Combine(AfterLegalizeTypes, *AA, OptLevel);
600    }
601
602    DEBUG(dbgs() << "Optimized type-legalized selection DAG: BB#" << BlockNumber
603          << " '" << BlockName << "'\n"; CurDAG->dump());
604  }
605
606  {
607    NamedRegionTimer T("Vector Legalization", GroupName, TimePassesIsEnabled);
608    Changed = CurDAG->LegalizeVectors();
609  }
610
611  if (Changed) {
612    {
613      NamedRegionTimer T("Type Legalization 2", GroupName, TimePassesIsEnabled);
614      CurDAG->LegalizeTypes();
615    }
616
617    if (ViewDAGCombineLT)
618      CurDAG->viewGraph("dag-combine-lv input for " + BlockName);
619
620    // Run the DAG combiner in post-type-legalize mode.
621    {
622      NamedRegionTimer T("DAG Combining after legalize vectors", GroupName,
623                         TimePassesIsEnabled);
624      CurDAG->Combine(AfterLegalizeVectorOps, *AA, OptLevel);
625    }
626
627    DEBUG(dbgs() << "Optimized vector-legalized selection DAG: BB#"
628          << BlockNumber << " '" << BlockName << "'\n"; CurDAG->dump());
629  }
630
631  if (ViewLegalizeDAGs) CurDAG->viewGraph("legalize input for " + BlockName);
632
633  {
634    NamedRegionTimer T("DAG Legalization", GroupName, TimePassesIsEnabled);
635    CurDAG->Legalize();
636  }
637
638  DEBUG(dbgs() << "Legalized selection DAG: BB#" << BlockNumber
639        << " '" << BlockName << "'\n"; CurDAG->dump());
640
641  if (ViewDAGCombine2) CurDAG->viewGraph("dag-combine2 input for " + BlockName);
642
643  // Run the DAG combiner in post-legalize mode.
644  {
645    NamedRegionTimer T("DAG Combining 2", GroupName, TimePassesIsEnabled);
646    CurDAG->Combine(AfterLegalizeDAG, *AA, OptLevel);
647  }
648
649  DEBUG(dbgs() << "Optimized legalized selection DAG: BB#" << BlockNumber
650        << " '" << BlockName << "'\n"; CurDAG->dump());
651
652  if (OptLevel != CodeGenOpt::None)
653    ComputeLiveOutVRegInfo();
654
655  if (ViewISelDAGs) CurDAG->viewGraph("isel input for " + BlockName);
656
657  // Third, instruction select all of the operations to machine code, adding the
658  // code to the MachineBasicBlock.
659  {
660    NamedRegionTimer T("Instruction Selection", GroupName, TimePassesIsEnabled);
661    DoInstructionSelection();
662  }
663
664  DEBUG(dbgs() << "Selected selection DAG: BB#" << BlockNumber
665        << " '" << BlockName << "'\n"; CurDAG->dump());
666
667  if (ViewSchedDAGs) CurDAG->viewGraph("scheduler input for " + BlockName);
668
669  // Schedule machine code.
670  ScheduleDAGSDNodes *Scheduler = CreateScheduler();
671  {
672    NamedRegionTimer T("Instruction Scheduling", GroupName,
673                       TimePassesIsEnabled);
674    Scheduler->Run(CurDAG, FuncInfo->MBB);
675  }
676
677  if (ViewSUnitDAGs) Scheduler->viewGraph();
678
679  // Emit machine code to BB.  This can change 'BB' to the last block being
680  // inserted into.
681  MachineBasicBlock *FirstMBB = FuncInfo->MBB, *LastMBB;
682  {
683    NamedRegionTimer T("Instruction Creation", GroupName, TimePassesIsEnabled);
684
685    // FuncInfo->InsertPt is passed by reference and set to the end of the
686    // scheduled instructions.
687    LastMBB = FuncInfo->MBB = Scheduler->EmitSchedule(FuncInfo->InsertPt);
688  }
689
690  // If the block was split, make sure we update any references that are used to
691  // update PHI nodes later on.
692  if (FirstMBB != LastMBB)
693    SDB->UpdateSplitBlock(FirstMBB, LastMBB);
694
695  // Free the scheduler state.
696  {
697    NamedRegionTimer T("Instruction Scheduling Cleanup", GroupName,
698                       TimePassesIsEnabled);
699    delete Scheduler;
700  }
701
702  // Free the SelectionDAG state, now that we're finished with it.
703  CurDAG->clear();
704}
705
706void SelectionDAGISel::DoInstructionSelection() {
707  DEBUG(errs() << "===== Instruction selection begins: BB#"
708        << FuncInfo->MBB->getNumber()
709        << " '" << FuncInfo->MBB->getName() << "'\n");
710
711  PreprocessISelDAG();
712
713  // Select target instructions for the DAG.
714  {
715    // Number all nodes with a topological order and set DAGSize.
716    DAGSize = CurDAG->AssignTopologicalOrder();
717
718    // Create a dummy node (which is not added to allnodes), that adds
719    // a reference to the root node, preventing it from being deleted,
720    // and tracking any changes of the root.
721    HandleSDNode Dummy(CurDAG->getRoot());
722    ISelPosition = SelectionDAG::allnodes_iterator(CurDAG->getRoot().getNode());
723    ++ISelPosition;
724
725    // The AllNodes list is now topological-sorted. Visit the
726    // nodes by starting at the end of the list (the root of the
727    // graph) and preceding back toward the beginning (the entry
728    // node).
729    while (ISelPosition != CurDAG->allnodes_begin()) {
730      SDNode *Node = --ISelPosition;
731      // Skip dead nodes. DAGCombiner is expected to eliminate all dead nodes,
732      // but there are currently some corner cases that it misses. Also, this
733      // makes it theoretically possible to disable the DAGCombiner.
734      if (Node->use_empty())
735        continue;
736
737      SDNode *ResNode = Select(Node);
738
739      // FIXME: This is pretty gross.  'Select' should be changed to not return
740      // anything at all and this code should be nuked with a tactical strike.
741
742      // If node should not be replaced, continue with the next one.
743      if (ResNode == Node || Node->getOpcode() == ISD::DELETED_NODE)
744        continue;
745      // Replace node.
746      if (ResNode)
747        ReplaceUses(Node, ResNode);
748
749      // If after the replacement this node is not used any more,
750      // remove this dead node.
751      if (Node->use_empty()) { // Don't delete EntryToken, etc.
752        ISelUpdater ISU(ISelPosition);
753        CurDAG->RemoveDeadNode(Node, &ISU);
754      }
755    }
756
757    CurDAG->setRoot(Dummy.getValue());
758  }
759
760  DEBUG(errs() << "===== Instruction selection ends:\n");
761
762  PostprocessISelDAG();
763}
764
765/// PrepareEHLandingPad - Emit an EH_LABEL, set up live-in registers, and
766/// do other setup for EH landing-pad blocks.
767void SelectionDAGISel::PrepareEHLandingPad() {
768  MachineBasicBlock *MBB = FuncInfo->MBB;
769
770  // Add a label to mark the beginning of the landing pad.  Deletion of the
771  // landing pad can thus be detected via the MachineModuleInfo.
772  MCSymbol *Label = MF->getMMI().addLandingPad(MBB);
773
774  // Assign the call site to the landing pad's begin label.
775  MF->getMMI().setCallSiteLandingPad(Label, SDB->LPadToCallSiteMap[MBB]);
776
777  const MCInstrDesc &II = TM.getInstrInfo()->get(TargetOpcode::EH_LABEL);
778  BuildMI(*MBB, FuncInfo->InsertPt, SDB->getCurDebugLoc(), II)
779    .addSym(Label);
780
781  // Mark exception register as live in.
782  unsigned Reg = TLI.getExceptionPointerRegister();
783  if (Reg) MBB->addLiveIn(Reg);
784
785  // Mark exception selector register as live in.
786  Reg = TLI.getExceptionSelectorRegister();
787  if (Reg) MBB->addLiveIn(Reg);
788}
789
790/// TryToFoldFastISelLoad - We're checking to see if we can fold the specified
791/// load into the specified FoldInst.  Note that we could have a sequence where
792/// multiple LLVM IR instructions are folded into the same machineinstr.  For
793/// example we could have:
794///   A: x = load i32 *P
795///   B: y = icmp A, 42
796///   C: br y, ...
797///
798/// In this scenario, LI is "A", and FoldInst is "C".  We know about "B" (and
799/// any other folded instructions) because it is between A and C.
800///
801/// If we succeed in folding the load into the operation, return true.
802///
803bool SelectionDAGISel::TryToFoldFastISelLoad(const LoadInst *LI,
804                                             const Instruction *FoldInst,
805                                             FastISel *FastIS) {
806  // We know that the load has a single use, but don't know what it is.  If it
807  // isn't one of the folded instructions, then we can't succeed here.  Handle
808  // this by scanning the single-use users of the load until we get to FoldInst.
809  unsigned MaxUsers = 6;  // Don't scan down huge single-use chains of instrs.
810
811  const Instruction *TheUser = LI->use_back();
812  while (TheUser != FoldInst &&   // Scan up until we find FoldInst.
813         // Stay in the right block.
814         TheUser->getParent() == FoldInst->getParent() &&
815         --MaxUsers) {  // Don't scan too far.
816    // If there are multiple or no uses of this instruction, then bail out.
817    if (!TheUser->hasOneUse())
818      return false;
819
820    TheUser = TheUser->use_back();
821  }
822
823  // If we didn't find the fold instruction, then we failed to collapse the
824  // sequence.
825  if (TheUser != FoldInst)
826    return false;
827
828  // Don't try to fold volatile loads.  Target has to deal with alignment
829  // constraints.
830  if (LI->isVolatile()) return false;
831
832  // Figure out which vreg this is going into.  If there is no assigned vreg yet
833  // then there actually was no reference to it.  Perhaps the load is referenced
834  // by a dead instruction.
835  unsigned LoadReg = FastIS->getRegForValue(LI);
836  if (LoadReg == 0)
837    return false;
838
839  // Check to see what the uses of this vreg are.  If it has no uses, or more
840  // than one use (at the machine instr level) then we can't fold it.
841  MachineRegisterInfo::reg_iterator RI = RegInfo->reg_begin(LoadReg);
842  if (RI == RegInfo->reg_end())
843    return false;
844
845  // See if there is exactly one use of the vreg.  If there are multiple uses,
846  // then the instruction got lowered to multiple machine instructions or the
847  // use of the loaded value ended up being multiple operands of the result, in
848  // either case, we can't fold this.
849  MachineRegisterInfo::reg_iterator PostRI = RI; ++PostRI;
850  if (PostRI != RegInfo->reg_end())
851    return false;
852
853  assert(RI.getOperand().isUse() &&
854         "The only use of the vreg must be a use, we haven't emitted the def!");
855
856  MachineInstr *User = &*RI;
857
858  // Set the insertion point properly.  Folding the load can cause generation of
859  // other random instructions (like sign extends) for addressing modes, make
860  // sure they get inserted in a logical place before the new instruction.
861  FuncInfo->InsertPt = User;
862  FuncInfo->MBB = User->getParent();
863
864  // Ask the target to try folding the load.
865  return FastIS->TryToFoldLoad(User, RI.getOperandNo(), LI);
866}
867
868/// isFoldedOrDeadInstruction - Return true if the specified instruction is
869/// side-effect free and is either dead or folded into a generated instruction.
870/// Return false if it needs to be emitted.
871static bool isFoldedOrDeadInstruction(const Instruction *I,
872                                      FunctionLoweringInfo *FuncInfo) {
873  return !I->mayWriteToMemory() && // Side-effecting instructions aren't folded.
874         !isa<TerminatorInst>(I) && // Terminators aren't folded.
875         !isa<DbgInfoIntrinsic>(I) &&  // Debug instructions aren't folded.
876         !isa<LandingPadInst>(I) &&    // Landingpad instructions aren't folded.
877         !FuncInfo->isExportedInst(I); // Exported instrs must be computed.
878}
879
880#ifndef NDEBUG
881// Collect per Instruction statistics for fast-isel misses.  Only those
882// instructions that cause the bail are accounted for.  It does not account for
883// instructions higher in the block.  Thus, summing the per instructions stats
884// will not add up to what is reported by NumFastIselFailures.
885static void collectFailStats(const Instruction *I) {
886  switch (I->getOpcode()) {
887  default: assert (0 && "<Invalid operator> ");
888
889  // Terminators
890  case Instruction::Ret:         NumFastIselFailRet++; return;
891  case Instruction::Br:          NumFastIselFailBr++; return;
892  case Instruction::Switch:      NumFastIselFailSwitch++; return;
893  case Instruction::IndirectBr:  NumFastIselFailIndirectBr++; return;
894  case Instruction::Invoke:      NumFastIselFailInvoke++; return;
895  case Instruction::Resume:      NumFastIselFailResume++; return;
896  case Instruction::Unreachable: NumFastIselFailUnreachable++; return;
897
898  // Standard binary operators...
899  case Instruction::Add:  NumFastIselFailAdd++; return;
900  case Instruction::FAdd: NumFastIselFailFAdd++; return;
901  case Instruction::Sub:  NumFastIselFailSub++; return;
902  case Instruction::FSub: NumFastIselFailFSub++; return;
903  case Instruction::Mul:  NumFastIselFailMul++; return;
904  case Instruction::FMul: NumFastIselFailFMul++; return;
905  case Instruction::UDiv: NumFastIselFailUDiv++; return;
906  case Instruction::SDiv: NumFastIselFailSDiv++; return;
907  case Instruction::FDiv: NumFastIselFailFDiv++; return;
908  case Instruction::URem: NumFastIselFailURem++; return;
909  case Instruction::SRem: NumFastIselFailSRem++; return;
910  case Instruction::FRem: NumFastIselFailFRem++; return;
911
912  // Logical operators...
913  case Instruction::And: NumFastIselFailAnd++; return;
914  case Instruction::Or:  NumFastIselFailOr++; return;
915  case Instruction::Xor: NumFastIselFailXor++; return;
916
917  // Memory instructions...
918  case Instruction::Alloca:        NumFastIselFailAlloca++; return;
919  case Instruction::Load:          NumFastIselFailLoad++; return;
920  case Instruction::Store:         NumFastIselFailStore++; return;
921  case Instruction::AtomicCmpXchg: NumFastIselFailAtomicCmpXchg++; return;
922  case Instruction::AtomicRMW:     NumFastIselFailAtomicRMW++; return;
923  case Instruction::Fence:         NumFastIselFailFence++; return;
924  case Instruction::GetElementPtr: NumFastIselFailGetElementPtr++; return;
925
926  // Convert instructions...
927  case Instruction::Trunc:    NumFastIselFailTrunc++; return;
928  case Instruction::ZExt:     NumFastIselFailZExt++; return;
929  case Instruction::SExt:     NumFastIselFailSExt++; return;
930  case Instruction::FPTrunc:  NumFastIselFailFPTrunc++; return;
931  case Instruction::FPExt:    NumFastIselFailFPExt++; return;
932  case Instruction::FPToUI:   NumFastIselFailFPToUI++; return;
933  case Instruction::FPToSI:   NumFastIselFailFPToSI++; return;
934  case Instruction::UIToFP:   NumFastIselFailUIToFP++; return;
935  case Instruction::SIToFP:   NumFastIselFailSIToFP++; return;
936  case Instruction::IntToPtr: NumFastIselFailIntToPtr++; return;
937  case Instruction::PtrToInt: NumFastIselFailPtrToInt++; return;
938  case Instruction::BitCast:  NumFastIselFailBitCast++; return;
939
940  // Other instructions...
941  case Instruction::ICmp:           NumFastIselFailICmp++; return;
942  case Instruction::FCmp:           NumFastIselFailFCmp++; return;
943  case Instruction::PHI:            NumFastIselFailPHI++; return;
944  case Instruction::Select:         NumFastIselFailSelect++; return;
945  case Instruction::Call:           NumFastIselFailCall++; return;
946  case Instruction::Shl:            NumFastIselFailShl++; return;
947  case Instruction::LShr:           NumFastIselFailLShr++; return;
948  case Instruction::AShr:           NumFastIselFailAShr++; return;
949  case Instruction::VAArg:          NumFastIselFailVAArg++; return;
950  case Instruction::ExtractElement: NumFastIselFailExtractElement++; return;
951  case Instruction::InsertElement:  NumFastIselFailInsertElement++; return;
952  case Instruction::ShuffleVector:  NumFastIselFailShuffleVector++; return;
953  case Instruction::ExtractValue:   NumFastIselFailExtractValue++; return;
954  case Instruction::InsertValue:    NumFastIselFailInsertValue++; return;
955  case Instruction::LandingPad:     NumFastIselFailLandingPad++; return;
956  }
957}
958#endif
959
960void SelectionDAGISel::SelectAllBasicBlocks(const Function &Fn) {
961  // Initialize the Fast-ISel state, if needed.
962  FastISel *FastIS = 0;
963  if (TM.Options.EnableFastISel)
964    FastIS = TLI.createFastISel(*FuncInfo);
965
966  // Iterate over all basic blocks in the function.
967  ReversePostOrderTraversal<const Function*> RPOT(&Fn);
968  for (ReversePostOrderTraversal<const Function*>::rpo_iterator
969       I = RPOT.begin(), E = RPOT.end(); I != E; ++I) {
970    const BasicBlock *LLVMBB = *I;
971
972    if (OptLevel != CodeGenOpt::None) {
973      bool AllPredsVisited = true;
974      for (const_pred_iterator PI = pred_begin(LLVMBB), PE = pred_end(LLVMBB);
975           PI != PE; ++PI) {
976        if (!FuncInfo->VisitedBBs.count(*PI)) {
977          AllPredsVisited = false;
978          break;
979        }
980      }
981
982      if (AllPredsVisited) {
983        for (BasicBlock::const_iterator I = LLVMBB->begin();
984             isa<PHINode>(I); ++I)
985          FuncInfo->ComputePHILiveOutRegInfo(cast<PHINode>(I));
986      } else {
987        for (BasicBlock::const_iterator I = LLVMBB->begin();
988             isa<PHINode>(I); ++I)
989          FuncInfo->InvalidatePHILiveOutRegInfo(cast<PHINode>(I));
990      }
991
992      FuncInfo->VisitedBBs.insert(LLVMBB);
993    }
994
995    FuncInfo->MBB = FuncInfo->MBBMap[LLVMBB];
996    FuncInfo->InsertPt = FuncInfo->MBB->getFirstNonPHI();
997
998    BasicBlock::const_iterator const Begin = LLVMBB->getFirstNonPHI();
999    BasicBlock::const_iterator const End = LLVMBB->end();
1000    BasicBlock::const_iterator BI = End;
1001
1002    FuncInfo->InsertPt = FuncInfo->MBB->getFirstNonPHI();
1003
1004    // Setup an EH landing-pad block.
1005    if (FuncInfo->MBB->isLandingPad())
1006      PrepareEHLandingPad();
1007
1008    // Lower any arguments needed in this block if this is the entry block.
1009    if (LLVMBB == &Fn.getEntryBlock())
1010      LowerArguments(LLVMBB);
1011
1012    // Before doing SelectionDAG ISel, see if FastISel has been requested.
1013    if (FastIS) {
1014      FastIS->startNewBlock();
1015
1016      // Emit code for any incoming arguments. This must happen before
1017      // beginning FastISel on the entry block.
1018      if (LLVMBB == &Fn.getEntryBlock()) {
1019        CurDAG->setRoot(SDB->getControlRoot());
1020        SDB->clear();
1021        CodeGenAndEmitDAG();
1022
1023        // If we inserted any instructions at the beginning, make a note of
1024        // where they are, so we can be sure to emit subsequent instructions
1025        // after them.
1026        if (FuncInfo->InsertPt != FuncInfo->MBB->begin())
1027          FastIS->setLastLocalValue(llvm::prior(FuncInfo->InsertPt));
1028        else
1029          FastIS->setLastLocalValue(0);
1030      }
1031
1032      unsigned NumFastIselRemaining = std::distance(Begin, End);
1033      // Do FastISel on as many instructions as possible.
1034      for (; BI != Begin; --BI) {
1035        const Instruction *Inst = llvm::prior(BI);
1036
1037        // If we no longer require this instruction, skip it.
1038        if (isFoldedOrDeadInstruction(Inst, FuncInfo)) {
1039          --NumFastIselRemaining;
1040          continue;
1041        }
1042
1043        // Bottom-up: reset the insert pos at the top, after any local-value
1044        // instructions.
1045        FastIS->recomputeInsertPt();
1046
1047        // Try to select the instruction with FastISel.
1048        if (FastIS->SelectInstruction(Inst)) {
1049          --NumFastIselRemaining;
1050          ++NumFastIselSuccess;
1051          // If fast isel succeeded, skip over all the folded instructions, and
1052          // then see if there is a load right before the selected instructions.
1053          // Try to fold the load if so.
1054          const Instruction *BeforeInst = Inst;
1055          while (BeforeInst != Begin) {
1056            BeforeInst = llvm::prior(BasicBlock::const_iterator(BeforeInst));
1057            if (!isFoldedOrDeadInstruction(BeforeInst, FuncInfo))
1058              break;
1059          }
1060          if (BeforeInst != Inst && isa<LoadInst>(BeforeInst) &&
1061              BeforeInst->hasOneUse() &&
1062              TryToFoldFastISelLoad(cast<LoadInst>(BeforeInst), Inst, FastIS)) {
1063            // If we succeeded, don't re-select the load.
1064            BI = llvm::next(BasicBlock::const_iterator(BeforeInst));
1065            --NumFastIselRemaining;
1066            ++NumFastIselSuccess;
1067          }
1068          continue;
1069        }
1070
1071#ifndef NDEBUG
1072        if (EnableFastISelVerbose2)
1073          collectFailStats(Inst);
1074#endif
1075
1076        // Then handle certain instructions as single-LLVM-Instruction blocks.
1077        if (isa<CallInst>(Inst)) {
1078
1079          if (EnableFastISelVerbose || EnableFastISelAbort) {
1080            dbgs() << "FastISel missed call: ";
1081            Inst->dump();
1082          }
1083
1084          if (!Inst->getType()->isVoidTy() && !Inst->use_empty()) {
1085            unsigned &R = FuncInfo->ValueMap[Inst];
1086            if (!R)
1087              R = FuncInfo->CreateRegs(Inst->getType());
1088          }
1089
1090          bool HadTailCall = false;
1091          SelectBasicBlock(Inst, BI, HadTailCall);
1092
1093          // Recompute NumFastIselRemaining as Selection DAG instruction
1094          // selection may have handled the call, input args, etc.
1095          unsigned RemainingNow = std::distance(Begin, BI);
1096          NumFastIselFailures += NumFastIselRemaining - RemainingNow;
1097
1098          // If the call was emitted as a tail call, we're done with the block.
1099          if (HadTailCall) {
1100            --BI;
1101            break;
1102          }
1103
1104          NumFastIselRemaining = RemainingNow;
1105          continue;
1106        }
1107
1108        if (isa<TerminatorInst>(Inst) && !isa<BranchInst>(Inst)) {
1109          // Don't abort, and use a different message for terminator misses.
1110          NumFastIselFailures += NumFastIselRemaining;
1111          if (EnableFastISelVerbose || EnableFastISelAbort) {
1112            dbgs() << "FastISel missed terminator: ";
1113            Inst->dump();
1114          }
1115        } else {
1116          NumFastIselFailures += NumFastIselRemaining;
1117          if (EnableFastISelVerbose || EnableFastISelAbort) {
1118            dbgs() << "FastISel miss: ";
1119            Inst->dump();
1120          }
1121          if (EnableFastISelAbort)
1122            // The "fast" selector couldn't handle something and bailed.
1123            // For the purpose of debugging, just abort.
1124            llvm_unreachable("FastISel didn't select the entire block");
1125        }
1126        break;
1127      }
1128
1129      FastIS->recomputeInsertPt();
1130    }
1131
1132    if (Begin != BI)
1133      ++NumDAGBlocks;
1134    else
1135      ++NumFastIselBlocks;
1136
1137    if (Begin != BI) {
1138      // Run SelectionDAG instruction selection on the remainder of the block
1139      // not handled by FastISel. If FastISel is not run, this is the entire
1140      // block.
1141      bool HadTailCall;
1142      SelectBasicBlock(Begin, BI, HadTailCall);
1143    }
1144
1145    FinishBasicBlock();
1146    FuncInfo->PHINodesToUpdate.clear();
1147  }
1148
1149  delete FastIS;
1150  SDB->clearDanglingDebugInfo();
1151}
1152
1153void
1154SelectionDAGISel::FinishBasicBlock() {
1155
1156  DEBUG(dbgs() << "Total amount of phi nodes to update: "
1157               << FuncInfo->PHINodesToUpdate.size() << "\n";
1158        for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i)
1159          dbgs() << "Node " << i << " : ("
1160                 << FuncInfo->PHINodesToUpdate[i].first
1161                 << ", " << FuncInfo->PHINodesToUpdate[i].second << ")\n");
1162
1163  // Next, now that we know what the last MBB the LLVM BB expanded is, update
1164  // PHI nodes in successors.
1165  if (SDB->SwitchCases.empty() &&
1166      SDB->JTCases.empty() &&
1167      SDB->BitTestCases.empty()) {
1168    for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i) {
1169      MachineInstr *PHI = FuncInfo->PHINodesToUpdate[i].first;
1170      assert(PHI->isPHI() &&
1171             "This is not a machine PHI node that we are updating!");
1172      if (!FuncInfo->MBB->isSuccessor(PHI->getParent()))
1173        continue;
1174      PHI->addOperand(
1175        MachineOperand::CreateReg(FuncInfo->PHINodesToUpdate[i].second, false));
1176      PHI->addOperand(MachineOperand::CreateMBB(FuncInfo->MBB));
1177    }
1178    return;
1179  }
1180
1181  for (unsigned i = 0, e = SDB->BitTestCases.size(); i != e; ++i) {
1182    // Lower header first, if it wasn't already lowered
1183    if (!SDB->BitTestCases[i].Emitted) {
1184      // Set the current basic block to the mbb we wish to insert the code into
1185      FuncInfo->MBB = SDB->BitTestCases[i].Parent;
1186      FuncInfo->InsertPt = FuncInfo->MBB->end();
1187      // Emit the code
1188      SDB->visitBitTestHeader(SDB->BitTestCases[i], FuncInfo->MBB);
1189      CurDAG->setRoot(SDB->getRoot());
1190      SDB->clear();
1191      CodeGenAndEmitDAG();
1192    }
1193
1194    for (unsigned j = 0, ej = SDB->BitTestCases[i].Cases.size(); j != ej; ++j) {
1195      // Set the current basic block to the mbb we wish to insert the code into
1196      FuncInfo->MBB = SDB->BitTestCases[i].Cases[j].ThisBB;
1197      FuncInfo->InsertPt = FuncInfo->MBB->end();
1198      // Emit the code
1199      if (j+1 != ej)
1200        SDB->visitBitTestCase(SDB->BitTestCases[i],
1201                              SDB->BitTestCases[i].Cases[j+1].ThisBB,
1202                              SDB->BitTestCases[i].Reg,
1203                              SDB->BitTestCases[i].Cases[j],
1204                              FuncInfo->MBB);
1205      else
1206        SDB->visitBitTestCase(SDB->BitTestCases[i],
1207                              SDB->BitTestCases[i].Default,
1208                              SDB->BitTestCases[i].Reg,
1209                              SDB->BitTestCases[i].Cases[j],
1210                              FuncInfo->MBB);
1211
1212
1213      CurDAG->setRoot(SDB->getRoot());
1214      SDB->clear();
1215      CodeGenAndEmitDAG();
1216    }
1217
1218    // Update PHI Nodes
1219    for (unsigned pi = 0, pe = FuncInfo->PHINodesToUpdate.size();
1220         pi != pe; ++pi) {
1221      MachineInstr *PHI = FuncInfo->PHINodesToUpdate[pi].first;
1222      MachineBasicBlock *PHIBB = PHI->getParent();
1223      assert(PHI->isPHI() &&
1224             "This is not a machine PHI node that we are updating!");
1225      // This is "default" BB. We have two jumps to it. From "header" BB and
1226      // from last "case" BB.
1227      if (PHIBB == SDB->BitTestCases[i].Default) {
1228        PHI->addOperand(MachineOperand::
1229                        CreateReg(FuncInfo->PHINodesToUpdate[pi].second,
1230                                  false));
1231        PHI->addOperand(MachineOperand::CreateMBB(SDB->BitTestCases[i].Parent));
1232        PHI->addOperand(MachineOperand::
1233                        CreateReg(FuncInfo->PHINodesToUpdate[pi].second,
1234                                  false));
1235        PHI->addOperand(MachineOperand::CreateMBB(SDB->BitTestCases[i].Cases.
1236                                                  back().ThisBB));
1237      }
1238      // One of "cases" BB.
1239      for (unsigned j = 0, ej = SDB->BitTestCases[i].Cases.size();
1240           j != ej; ++j) {
1241        MachineBasicBlock* cBB = SDB->BitTestCases[i].Cases[j].ThisBB;
1242        if (cBB->isSuccessor(PHIBB)) {
1243          PHI->addOperand(MachineOperand::
1244                          CreateReg(FuncInfo->PHINodesToUpdate[pi].second,
1245                                    false));
1246          PHI->addOperand(MachineOperand::CreateMBB(cBB));
1247        }
1248      }
1249    }
1250  }
1251  SDB->BitTestCases.clear();
1252
1253  // If the JumpTable record is filled in, then we need to emit a jump table.
1254  // Updating the PHI nodes is tricky in this case, since we need to determine
1255  // whether the PHI is a successor of the range check MBB or the jump table MBB
1256  for (unsigned i = 0, e = SDB->JTCases.size(); i != e; ++i) {
1257    // Lower header first, if it wasn't already lowered
1258    if (!SDB->JTCases[i].first.Emitted) {
1259      // Set the current basic block to the mbb we wish to insert the code into
1260      FuncInfo->MBB = SDB->JTCases[i].first.HeaderBB;
1261      FuncInfo->InsertPt = FuncInfo->MBB->end();
1262      // Emit the code
1263      SDB->visitJumpTableHeader(SDB->JTCases[i].second, SDB->JTCases[i].first,
1264                                FuncInfo->MBB);
1265      CurDAG->setRoot(SDB->getRoot());
1266      SDB->clear();
1267      CodeGenAndEmitDAG();
1268    }
1269
1270    // Set the current basic block to the mbb we wish to insert the code into
1271    FuncInfo->MBB = SDB->JTCases[i].second.MBB;
1272    FuncInfo->InsertPt = FuncInfo->MBB->end();
1273    // Emit the code
1274    SDB->visitJumpTable(SDB->JTCases[i].second);
1275    CurDAG->setRoot(SDB->getRoot());
1276    SDB->clear();
1277    CodeGenAndEmitDAG();
1278
1279    // Update PHI Nodes
1280    for (unsigned pi = 0, pe = FuncInfo->PHINodesToUpdate.size();
1281         pi != pe; ++pi) {
1282      MachineInstr *PHI = FuncInfo->PHINodesToUpdate[pi].first;
1283      MachineBasicBlock *PHIBB = PHI->getParent();
1284      assert(PHI->isPHI() &&
1285             "This is not a machine PHI node that we are updating!");
1286      // "default" BB. We can go there only from header BB.
1287      if (PHIBB == SDB->JTCases[i].second.Default) {
1288        PHI->addOperand
1289          (MachineOperand::CreateReg(FuncInfo->PHINodesToUpdate[pi].second,
1290                                     false));
1291        PHI->addOperand
1292          (MachineOperand::CreateMBB(SDB->JTCases[i].first.HeaderBB));
1293      }
1294      // JT BB. Just iterate over successors here
1295      if (FuncInfo->MBB->isSuccessor(PHIBB)) {
1296        PHI->addOperand
1297          (MachineOperand::CreateReg(FuncInfo->PHINodesToUpdate[pi].second,
1298                                     false));
1299        PHI->addOperand(MachineOperand::CreateMBB(FuncInfo->MBB));
1300      }
1301    }
1302  }
1303  SDB->JTCases.clear();
1304
1305  // If the switch block involved a branch to one of the actual successors, we
1306  // need to update PHI nodes in that block.
1307  for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i) {
1308    MachineInstr *PHI = FuncInfo->PHINodesToUpdate[i].first;
1309    assert(PHI->isPHI() &&
1310           "This is not a machine PHI node that we are updating!");
1311    if (FuncInfo->MBB->isSuccessor(PHI->getParent())) {
1312      PHI->addOperand(
1313        MachineOperand::CreateReg(FuncInfo->PHINodesToUpdate[i].second, false));
1314      PHI->addOperand(MachineOperand::CreateMBB(FuncInfo->MBB));
1315    }
1316  }
1317
1318  // If we generated any switch lowering information, build and codegen any
1319  // additional DAGs necessary.
1320  for (unsigned i = 0, e = SDB->SwitchCases.size(); i != e; ++i) {
1321    // Set the current basic block to the mbb we wish to insert the code into
1322    FuncInfo->MBB = SDB->SwitchCases[i].ThisBB;
1323    FuncInfo->InsertPt = FuncInfo->MBB->end();
1324
1325    // Determine the unique successors.
1326    SmallVector<MachineBasicBlock *, 2> Succs;
1327    Succs.push_back(SDB->SwitchCases[i].TrueBB);
1328    if (SDB->SwitchCases[i].TrueBB != SDB->SwitchCases[i].FalseBB)
1329      Succs.push_back(SDB->SwitchCases[i].FalseBB);
1330
1331    // Emit the code. Note that this could result in FuncInfo->MBB being split.
1332    SDB->visitSwitchCase(SDB->SwitchCases[i], FuncInfo->MBB);
1333    CurDAG->setRoot(SDB->getRoot());
1334    SDB->clear();
1335    CodeGenAndEmitDAG();
1336
1337    // Remember the last block, now that any splitting is done, for use in
1338    // populating PHI nodes in successors.
1339    MachineBasicBlock *ThisBB = FuncInfo->MBB;
1340
1341    // Handle any PHI nodes in successors of this chunk, as if we were coming
1342    // from the original BB before switch expansion.  Note that PHI nodes can
1343    // occur multiple times in PHINodesToUpdate.  We have to be very careful to
1344    // handle them the right number of times.
1345    for (unsigned i = 0, e = Succs.size(); i != e; ++i) {
1346      FuncInfo->MBB = Succs[i];
1347      FuncInfo->InsertPt = FuncInfo->MBB->end();
1348      // FuncInfo->MBB may have been removed from the CFG if a branch was
1349      // constant folded.
1350      if (ThisBB->isSuccessor(FuncInfo->MBB)) {
1351        for (MachineBasicBlock::iterator Phi = FuncInfo->MBB->begin();
1352             Phi != FuncInfo->MBB->end() && Phi->isPHI();
1353             ++Phi) {
1354          // This value for this PHI node is recorded in PHINodesToUpdate.
1355          for (unsigned pn = 0; ; ++pn) {
1356            assert(pn != FuncInfo->PHINodesToUpdate.size() &&
1357                   "Didn't find PHI entry!");
1358            if (FuncInfo->PHINodesToUpdate[pn].first == Phi) {
1359              Phi->addOperand(MachineOperand::
1360                              CreateReg(FuncInfo->PHINodesToUpdate[pn].second,
1361                                        false));
1362              Phi->addOperand(MachineOperand::CreateMBB(ThisBB));
1363              break;
1364            }
1365          }
1366        }
1367      }
1368    }
1369  }
1370  SDB->SwitchCases.clear();
1371}
1372
1373
1374/// Create the scheduler. If a specific scheduler was specified
1375/// via the SchedulerRegistry, use it, otherwise select the
1376/// one preferred by the target.
1377///
1378ScheduleDAGSDNodes *SelectionDAGISel::CreateScheduler() {
1379  RegisterScheduler::FunctionPassCtor Ctor = RegisterScheduler::getDefault();
1380
1381  if (!Ctor) {
1382    Ctor = ISHeuristic;
1383    RegisterScheduler::setDefault(Ctor);
1384  }
1385
1386  return Ctor(this, OptLevel);
1387}
1388
1389//===----------------------------------------------------------------------===//
1390// Helper functions used by the generated instruction selector.
1391//===----------------------------------------------------------------------===//
1392// Calls to these methods are generated by tblgen.
1393
1394/// CheckAndMask - The isel is trying to match something like (and X, 255).  If
1395/// the dag combiner simplified the 255, we still want to match.  RHS is the
1396/// actual value in the DAG on the RHS of an AND, and DesiredMaskS is the value
1397/// specified in the .td file (e.g. 255).
1398bool SelectionDAGISel::CheckAndMask(SDValue LHS, ConstantSDNode *RHS,
1399                                    int64_t DesiredMaskS) const {
1400  const APInt &ActualMask = RHS->getAPIntValue();
1401  const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
1402
1403  // If the actual mask exactly matches, success!
1404  if (ActualMask == DesiredMask)
1405    return true;
1406
1407  // If the actual AND mask is allowing unallowed bits, this doesn't match.
1408  if (ActualMask.intersects(~DesiredMask))
1409    return false;
1410
1411  // Otherwise, the DAG Combiner may have proven that the value coming in is
1412  // either already zero or is not demanded.  Check for known zero input bits.
1413  APInt NeededMask = DesiredMask & ~ActualMask;
1414  if (CurDAG->MaskedValueIsZero(LHS, NeededMask))
1415    return true;
1416
1417  // TODO: check to see if missing bits are just not demanded.
1418
1419  // Otherwise, this pattern doesn't match.
1420  return false;
1421}
1422
1423/// CheckOrMask - The isel is trying to match something like (or X, 255).  If
1424/// the dag combiner simplified the 255, we still want to match.  RHS is the
1425/// actual value in the DAG on the RHS of an OR, and DesiredMaskS is the value
1426/// specified in the .td file (e.g. 255).
1427bool SelectionDAGISel::CheckOrMask(SDValue LHS, ConstantSDNode *RHS,
1428                                   int64_t DesiredMaskS) const {
1429  const APInt &ActualMask = RHS->getAPIntValue();
1430  const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
1431
1432  // If the actual mask exactly matches, success!
1433  if (ActualMask == DesiredMask)
1434    return true;
1435
1436  // If the actual AND mask is allowing unallowed bits, this doesn't match.
1437  if (ActualMask.intersects(~DesiredMask))
1438    return false;
1439
1440  // Otherwise, the DAG Combiner may have proven that the value coming in is
1441  // either already zero or is not demanded.  Check for known zero input bits.
1442  APInt NeededMask = DesiredMask & ~ActualMask;
1443
1444  APInt KnownZero, KnownOne;
1445  CurDAG->ComputeMaskedBits(LHS, KnownZero, KnownOne);
1446
1447  // If all the missing bits in the or are already known to be set, match!
1448  if ((NeededMask & KnownOne) == NeededMask)
1449    return true;
1450
1451  // TODO: check to see if missing bits are just not demanded.
1452
1453  // Otherwise, this pattern doesn't match.
1454  return false;
1455}
1456
1457
1458/// SelectInlineAsmMemoryOperands - Calls to this are automatically generated
1459/// by tblgen.  Others should not call it.
1460void SelectionDAGISel::
1461SelectInlineAsmMemoryOperands(std::vector<SDValue> &Ops) {
1462  std::vector<SDValue> InOps;
1463  std::swap(InOps, Ops);
1464
1465  Ops.push_back(InOps[InlineAsm::Op_InputChain]); // 0
1466  Ops.push_back(InOps[InlineAsm::Op_AsmString]);  // 1
1467  Ops.push_back(InOps[InlineAsm::Op_MDNode]);     // 2, !srcloc
1468  Ops.push_back(InOps[InlineAsm::Op_ExtraInfo]);  // 3 (SideEffect, AlignStack)
1469
1470  unsigned i = InlineAsm::Op_FirstOperand, e = InOps.size();
1471  if (InOps[e-1].getValueType() == MVT::Glue)
1472    --e;  // Don't process a glue operand if it is here.
1473
1474  while (i != e) {
1475    unsigned Flags = cast<ConstantSDNode>(InOps[i])->getZExtValue();
1476    if (!InlineAsm::isMemKind(Flags)) {
1477      // Just skip over this operand, copying the operands verbatim.
1478      Ops.insert(Ops.end(), InOps.begin()+i,
1479                 InOps.begin()+i+InlineAsm::getNumOperandRegisters(Flags) + 1);
1480      i += InlineAsm::getNumOperandRegisters(Flags) + 1;
1481    } else {
1482      assert(InlineAsm::getNumOperandRegisters(Flags) == 1 &&
1483             "Memory operand with multiple values?");
1484      // Otherwise, this is a memory operand.  Ask the target to select it.
1485      std::vector<SDValue> SelOps;
1486      if (SelectInlineAsmMemoryOperand(InOps[i+1], 'm', SelOps))
1487        report_fatal_error("Could not match memory address.  Inline asm"
1488                           " failure!");
1489
1490      // Add this to the output node.
1491      unsigned NewFlags =
1492        InlineAsm::getFlagWord(InlineAsm::Kind_Mem, SelOps.size());
1493      Ops.push_back(CurDAG->getTargetConstant(NewFlags, MVT::i32));
1494      Ops.insert(Ops.end(), SelOps.begin(), SelOps.end());
1495      i += 2;
1496    }
1497  }
1498
1499  // Add the glue input back if present.
1500  if (e != InOps.size())
1501    Ops.push_back(InOps.back());
1502}
1503
1504/// findGlueUse - Return use of MVT::Glue value produced by the specified
1505/// SDNode.
1506///
1507static SDNode *findGlueUse(SDNode *N) {
1508  unsigned FlagResNo = N->getNumValues()-1;
1509  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
1510    SDUse &Use = I.getUse();
1511    if (Use.getResNo() == FlagResNo)
1512      return Use.getUser();
1513  }
1514  return NULL;
1515}
1516
1517/// findNonImmUse - Return true if "Use" is a non-immediate use of "Def".
1518/// This function recursively traverses up the operand chain, ignoring
1519/// certain nodes.
1520static bool findNonImmUse(SDNode *Use, SDNode* Def, SDNode *ImmedUse,
1521                          SDNode *Root, SmallPtrSet<SDNode*, 16> &Visited,
1522                          bool IgnoreChains) {
1523  // The NodeID's are given uniques ID's where a node ID is guaranteed to be
1524  // greater than all of its (recursive) operands.  If we scan to a point where
1525  // 'use' is smaller than the node we're scanning for, then we know we will
1526  // never find it.
1527  //
1528  // The Use may be -1 (unassigned) if it is a newly allocated node.  This can
1529  // happen because we scan down to newly selected nodes in the case of glue
1530  // uses.
1531  if ((Use->getNodeId() < Def->getNodeId() && Use->getNodeId() != -1))
1532    return false;
1533
1534  // Don't revisit nodes if we already scanned it and didn't fail, we know we
1535  // won't fail if we scan it again.
1536  if (!Visited.insert(Use))
1537    return false;
1538
1539  for (unsigned i = 0, e = Use->getNumOperands(); i != e; ++i) {
1540    // Ignore chain uses, they are validated by HandleMergeInputChains.
1541    if (Use->getOperand(i).getValueType() == MVT::Other && IgnoreChains)
1542      continue;
1543
1544    SDNode *N = Use->getOperand(i).getNode();
1545    if (N == Def) {
1546      if (Use == ImmedUse || Use == Root)
1547        continue;  // We are not looking for immediate use.
1548      assert(N != Root);
1549      return true;
1550    }
1551
1552    // Traverse up the operand chain.
1553    if (findNonImmUse(N, Def, ImmedUse, Root, Visited, IgnoreChains))
1554      return true;
1555  }
1556  return false;
1557}
1558
1559/// IsProfitableToFold - Returns true if it's profitable to fold the specific
1560/// operand node N of U during instruction selection that starts at Root.
1561bool SelectionDAGISel::IsProfitableToFold(SDValue N, SDNode *U,
1562                                          SDNode *Root) const {
1563  if (OptLevel == CodeGenOpt::None) return false;
1564  return N.hasOneUse();
1565}
1566
1567/// IsLegalToFold - Returns true if the specific operand node N of
1568/// U can be folded during instruction selection that starts at Root.
1569bool SelectionDAGISel::IsLegalToFold(SDValue N, SDNode *U, SDNode *Root,
1570                                     CodeGenOpt::Level OptLevel,
1571                                     bool IgnoreChains) {
1572  if (OptLevel == CodeGenOpt::None) return false;
1573
1574  // If Root use can somehow reach N through a path that that doesn't contain
1575  // U then folding N would create a cycle. e.g. In the following
1576  // diagram, Root can reach N through X. If N is folded into into Root, then
1577  // X is both a predecessor and a successor of U.
1578  //
1579  //          [N*]           //
1580  //         ^   ^           //
1581  //        /     \          //
1582  //      [U*]    [X]?       //
1583  //        ^     ^          //
1584  //         \   /           //
1585  //          \ /            //
1586  //         [Root*]         //
1587  //
1588  // * indicates nodes to be folded together.
1589  //
1590  // If Root produces glue, then it gets (even more) interesting. Since it
1591  // will be "glued" together with its glue use in the scheduler, we need to
1592  // check if it might reach N.
1593  //
1594  //          [N*]           //
1595  //         ^   ^           //
1596  //        /     \          //
1597  //      [U*]    [X]?       //
1598  //        ^       ^        //
1599  //         \       \       //
1600  //          \      |       //
1601  //         [Root*] |       //
1602  //          ^      |       //
1603  //          f      |       //
1604  //          |      /       //
1605  //         [Y]    /        //
1606  //           ^   /         //
1607  //           f  /          //
1608  //           | /           //
1609  //          [GU]           //
1610  //
1611  // If GU (glue use) indirectly reaches N (the load), and Root folds N
1612  // (call it Fold), then X is a predecessor of GU and a successor of
1613  // Fold. But since Fold and GU are glued together, this will create
1614  // a cycle in the scheduling graph.
1615
1616  // If the node has glue, walk down the graph to the "lowest" node in the
1617  // glueged set.
1618  EVT VT = Root->getValueType(Root->getNumValues()-1);
1619  while (VT == MVT::Glue) {
1620    SDNode *GU = findGlueUse(Root);
1621    if (GU == NULL)
1622      break;
1623    Root = GU;
1624    VT = Root->getValueType(Root->getNumValues()-1);
1625
1626    // If our query node has a glue result with a use, we've walked up it.  If
1627    // the user (which has already been selected) has a chain or indirectly uses
1628    // the chain, our WalkChainUsers predicate will not consider it.  Because of
1629    // this, we cannot ignore chains in this predicate.
1630    IgnoreChains = false;
1631  }
1632
1633
1634  SmallPtrSet<SDNode*, 16> Visited;
1635  return !findNonImmUse(Root, N.getNode(), U, Root, Visited, IgnoreChains);
1636}
1637
1638SDNode *SelectionDAGISel::Select_INLINEASM(SDNode *N) {
1639  std::vector<SDValue> Ops(N->op_begin(), N->op_end());
1640  SelectInlineAsmMemoryOperands(Ops);
1641
1642  std::vector<EVT> VTs;
1643  VTs.push_back(MVT::Other);
1644  VTs.push_back(MVT::Glue);
1645  SDValue New = CurDAG->getNode(ISD::INLINEASM, N->getDebugLoc(),
1646                                VTs, &Ops[0], Ops.size());
1647  New->setNodeId(-1);
1648  return New.getNode();
1649}
1650
1651SDNode *SelectionDAGISel::Select_UNDEF(SDNode *N) {
1652  return CurDAG->SelectNodeTo(N, TargetOpcode::IMPLICIT_DEF,N->getValueType(0));
1653}
1654
1655/// GetVBR - decode a vbr encoding whose top bit is set.
1656LLVM_ATTRIBUTE_ALWAYS_INLINE static uint64_t
1657GetVBR(uint64_t Val, const unsigned char *MatcherTable, unsigned &Idx) {
1658  assert(Val >= 128 && "Not a VBR");
1659  Val &= 127;  // Remove first vbr bit.
1660
1661  unsigned Shift = 7;
1662  uint64_t NextBits;
1663  do {
1664    NextBits = MatcherTable[Idx++];
1665    Val |= (NextBits&127) << Shift;
1666    Shift += 7;
1667  } while (NextBits & 128);
1668
1669  return Val;
1670}
1671
1672
1673/// UpdateChainsAndGlue - When a match is complete, this method updates uses of
1674/// interior glue and chain results to use the new glue and chain results.
1675void SelectionDAGISel::
1676UpdateChainsAndGlue(SDNode *NodeToMatch, SDValue InputChain,
1677                    const SmallVectorImpl<SDNode*> &ChainNodesMatched,
1678                    SDValue InputGlue,
1679                    const SmallVectorImpl<SDNode*> &GlueResultNodesMatched,
1680                    bool isMorphNodeTo) {
1681  SmallVector<SDNode*, 4> NowDeadNodes;
1682
1683  ISelUpdater ISU(ISelPosition);
1684
1685  // Now that all the normal results are replaced, we replace the chain and
1686  // glue results if present.
1687  if (!ChainNodesMatched.empty()) {
1688    assert(InputChain.getNode() != 0 &&
1689           "Matched input chains but didn't produce a chain");
1690    // Loop over all of the nodes we matched that produced a chain result.
1691    // Replace all the chain results with the final chain we ended up with.
1692    for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
1693      SDNode *ChainNode = ChainNodesMatched[i];
1694
1695      // If this node was already deleted, don't look at it.
1696      if (ChainNode->getOpcode() == ISD::DELETED_NODE)
1697        continue;
1698
1699      // Don't replace the results of the root node if we're doing a
1700      // MorphNodeTo.
1701      if (ChainNode == NodeToMatch && isMorphNodeTo)
1702        continue;
1703
1704      SDValue ChainVal = SDValue(ChainNode, ChainNode->getNumValues()-1);
1705      if (ChainVal.getValueType() == MVT::Glue)
1706        ChainVal = ChainVal.getValue(ChainVal->getNumValues()-2);
1707      assert(ChainVal.getValueType() == MVT::Other && "Not a chain?");
1708      CurDAG->ReplaceAllUsesOfValueWith(ChainVal, InputChain, &ISU);
1709
1710      // If the node became dead and we haven't already seen it, delete it.
1711      if (ChainNode->use_empty() &&
1712          !std::count(NowDeadNodes.begin(), NowDeadNodes.end(), ChainNode))
1713        NowDeadNodes.push_back(ChainNode);
1714    }
1715  }
1716
1717  // If the result produces glue, update any glue results in the matched
1718  // pattern with the glue result.
1719  if (InputGlue.getNode() != 0) {
1720    // Handle any interior nodes explicitly marked.
1721    for (unsigned i = 0, e = GlueResultNodesMatched.size(); i != e; ++i) {
1722      SDNode *FRN = GlueResultNodesMatched[i];
1723
1724      // If this node was already deleted, don't look at it.
1725      if (FRN->getOpcode() == ISD::DELETED_NODE)
1726        continue;
1727
1728      assert(FRN->getValueType(FRN->getNumValues()-1) == MVT::Glue &&
1729             "Doesn't have a glue result");
1730      CurDAG->ReplaceAllUsesOfValueWith(SDValue(FRN, FRN->getNumValues()-1),
1731                                        InputGlue, &ISU);
1732
1733      // If the node became dead and we haven't already seen it, delete it.
1734      if (FRN->use_empty() &&
1735          !std::count(NowDeadNodes.begin(), NowDeadNodes.end(), FRN))
1736        NowDeadNodes.push_back(FRN);
1737    }
1738  }
1739
1740  if (!NowDeadNodes.empty())
1741    CurDAG->RemoveDeadNodes(NowDeadNodes, &ISU);
1742
1743  DEBUG(errs() << "ISEL: Match complete!\n");
1744}
1745
1746enum ChainResult {
1747  CR_Simple,
1748  CR_InducesCycle,
1749  CR_LeadsToInteriorNode
1750};
1751
1752/// WalkChainUsers - Walk down the users of the specified chained node that is
1753/// part of the pattern we're matching, looking at all of the users we find.
1754/// This determines whether something is an interior node, whether we have a
1755/// non-pattern node in between two pattern nodes (which prevent folding because
1756/// it would induce a cycle) and whether we have a TokenFactor node sandwiched
1757/// between pattern nodes (in which case the TF becomes part of the pattern).
1758///
1759/// The walk we do here is guaranteed to be small because we quickly get down to
1760/// already selected nodes "below" us.
1761static ChainResult
1762WalkChainUsers(SDNode *ChainedNode,
1763               SmallVectorImpl<SDNode*> &ChainedNodesInPattern,
1764               SmallVectorImpl<SDNode*> &InteriorChainedNodes) {
1765  ChainResult Result = CR_Simple;
1766
1767  for (SDNode::use_iterator UI = ChainedNode->use_begin(),
1768         E = ChainedNode->use_end(); UI != E; ++UI) {
1769    // Make sure the use is of the chain, not some other value we produce.
1770    if (UI.getUse().getValueType() != MVT::Other) continue;
1771
1772    SDNode *User = *UI;
1773
1774    // If we see an already-selected machine node, then we've gone beyond the
1775    // pattern that we're selecting down into the already selected chunk of the
1776    // DAG.
1777    if (User->isMachineOpcode() ||
1778        User->getOpcode() == ISD::HANDLENODE)  // Root of the graph.
1779      continue;
1780
1781    if (User->getOpcode() == ISD::CopyToReg ||
1782        User->getOpcode() == ISD::CopyFromReg ||
1783        User->getOpcode() == ISD::INLINEASM ||
1784        User->getOpcode() == ISD::EH_LABEL) {
1785      // If their node ID got reset to -1 then they've already been selected.
1786      // Treat them like a MachineOpcode.
1787      if (User->getNodeId() == -1)
1788        continue;
1789    }
1790
1791    // If we have a TokenFactor, we handle it specially.
1792    if (User->getOpcode() != ISD::TokenFactor) {
1793      // If the node isn't a token factor and isn't part of our pattern, then it
1794      // must be a random chained node in between two nodes we're selecting.
1795      // This happens when we have something like:
1796      //   x = load ptr
1797      //   call
1798      //   y = x+4
1799      //   store y -> ptr
1800      // Because we structurally match the load/store as a read/modify/write,
1801      // but the call is chained between them.  We cannot fold in this case
1802      // because it would induce a cycle in the graph.
1803      if (!std::count(ChainedNodesInPattern.begin(),
1804                      ChainedNodesInPattern.end(), User))
1805        return CR_InducesCycle;
1806
1807      // Otherwise we found a node that is part of our pattern.  For example in:
1808      //   x = load ptr
1809      //   y = x+4
1810      //   store y -> ptr
1811      // This would happen when we're scanning down from the load and see the
1812      // store as a user.  Record that there is a use of ChainedNode that is
1813      // part of the pattern and keep scanning uses.
1814      Result = CR_LeadsToInteriorNode;
1815      InteriorChainedNodes.push_back(User);
1816      continue;
1817    }
1818
1819    // If we found a TokenFactor, there are two cases to consider: first if the
1820    // TokenFactor is just hanging "below" the pattern we're matching (i.e. no
1821    // uses of the TF are in our pattern) we just want to ignore it.  Second,
1822    // the TokenFactor can be sandwiched in between two chained nodes, like so:
1823    //     [Load chain]
1824    //         ^
1825    //         |
1826    //       [Load]
1827    //       ^    ^
1828    //       |    \                    DAG's like cheese
1829    //      /       \                       do you?
1830    //     /         |
1831    // [TokenFactor] [Op]
1832    //     ^          ^
1833    //     |          |
1834    //      \        /
1835    //       \      /
1836    //       [Store]
1837    //
1838    // In this case, the TokenFactor becomes part of our match and we rewrite it
1839    // as a new TokenFactor.
1840    //
1841    // To distinguish these two cases, do a recursive walk down the uses.
1842    switch (WalkChainUsers(User, ChainedNodesInPattern, InteriorChainedNodes)) {
1843    case CR_Simple:
1844      // If the uses of the TokenFactor are just already-selected nodes, ignore
1845      // it, it is "below" our pattern.
1846      continue;
1847    case CR_InducesCycle:
1848      // If the uses of the TokenFactor lead to nodes that are not part of our
1849      // pattern that are not selected, folding would turn this into a cycle,
1850      // bail out now.
1851      return CR_InducesCycle;
1852    case CR_LeadsToInteriorNode:
1853      break;  // Otherwise, keep processing.
1854    }
1855
1856    // Okay, we know we're in the interesting interior case.  The TokenFactor
1857    // is now going to be considered part of the pattern so that we rewrite its
1858    // uses (it may have uses that are not part of the pattern) with the
1859    // ultimate chain result of the generated code.  We will also add its chain
1860    // inputs as inputs to the ultimate TokenFactor we create.
1861    Result = CR_LeadsToInteriorNode;
1862    ChainedNodesInPattern.push_back(User);
1863    InteriorChainedNodes.push_back(User);
1864    continue;
1865  }
1866
1867  return Result;
1868}
1869
1870/// HandleMergeInputChains - This implements the OPC_EmitMergeInputChains
1871/// operation for when the pattern matched at least one node with a chains.  The
1872/// input vector contains a list of all of the chained nodes that we match.  We
1873/// must determine if this is a valid thing to cover (i.e. matching it won't
1874/// induce cycles in the DAG) and if so, creating a TokenFactor node. that will
1875/// be used as the input node chain for the generated nodes.
1876static SDValue
1877HandleMergeInputChains(SmallVectorImpl<SDNode*> &ChainNodesMatched,
1878                       SelectionDAG *CurDAG) {
1879  // Walk all of the chained nodes we've matched, recursively scanning down the
1880  // users of the chain result. This adds any TokenFactor nodes that are caught
1881  // in between chained nodes to the chained and interior nodes list.
1882  SmallVector<SDNode*, 3> InteriorChainedNodes;
1883  for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
1884    if (WalkChainUsers(ChainNodesMatched[i], ChainNodesMatched,
1885                       InteriorChainedNodes) == CR_InducesCycle)
1886      return SDValue(); // Would induce a cycle.
1887  }
1888
1889  // Okay, we have walked all the matched nodes and collected TokenFactor nodes
1890  // that we are interested in.  Form our input TokenFactor node.
1891  SmallVector<SDValue, 3> InputChains;
1892  for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
1893    // Add the input chain of this node to the InputChains list (which will be
1894    // the operands of the generated TokenFactor) if it's not an interior node.
1895    SDNode *N = ChainNodesMatched[i];
1896    if (N->getOpcode() != ISD::TokenFactor) {
1897      if (std::count(InteriorChainedNodes.begin(),InteriorChainedNodes.end(),N))
1898        continue;
1899
1900      // Otherwise, add the input chain.
1901      SDValue InChain = ChainNodesMatched[i]->getOperand(0);
1902      assert(InChain.getValueType() == MVT::Other && "Not a chain");
1903      InputChains.push_back(InChain);
1904      continue;
1905    }
1906
1907    // If we have a token factor, we want to add all inputs of the token factor
1908    // that are not part of the pattern we're matching.
1909    for (unsigned op = 0, e = N->getNumOperands(); op != e; ++op) {
1910      if (!std::count(ChainNodesMatched.begin(), ChainNodesMatched.end(),
1911                      N->getOperand(op).getNode()))
1912        InputChains.push_back(N->getOperand(op));
1913    }
1914  }
1915
1916  SDValue Res;
1917  if (InputChains.size() == 1)
1918    return InputChains[0];
1919  return CurDAG->getNode(ISD::TokenFactor, ChainNodesMatched[0]->getDebugLoc(),
1920                         MVT::Other, &InputChains[0], InputChains.size());
1921}
1922
1923/// MorphNode - Handle morphing a node in place for the selector.
1924SDNode *SelectionDAGISel::
1925MorphNode(SDNode *Node, unsigned TargetOpc, SDVTList VTList,
1926          const SDValue *Ops, unsigned NumOps, unsigned EmitNodeInfo) {
1927  // It is possible we're using MorphNodeTo to replace a node with no
1928  // normal results with one that has a normal result (or we could be
1929  // adding a chain) and the input could have glue and chains as well.
1930  // In this case we need to shift the operands down.
1931  // FIXME: This is a horrible hack and broken in obscure cases, no worse
1932  // than the old isel though.
1933  int OldGlueResultNo = -1, OldChainResultNo = -1;
1934
1935  unsigned NTMNumResults = Node->getNumValues();
1936  if (Node->getValueType(NTMNumResults-1) == MVT::Glue) {
1937    OldGlueResultNo = NTMNumResults-1;
1938    if (NTMNumResults != 1 &&
1939        Node->getValueType(NTMNumResults-2) == MVT::Other)
1940      OldChainResultNo = NTMNumResults-2;
1941  } else if (Node->getValueType(NTMNumResults-1) == MVT::Other)
1942    OldChainResultNo = NTMNumResults-1;
1943
1944  // Call the underlying SelectionDAG routine to do the transmogrification. Note
1945  // that this deletes operands of the old node that become dead.
1946  SDNode *Res = CurDAG->MorphNodeTo(Node, ~TargetOpc, VTList, Ops, NumOps);
1947
1948  // MorphNodeTo can operate in two ways: if an existing node with the
1949  // specified operands exists, it can just return it.  Otherwise, it
1950  // updates the node in place to have the requested operands.
1951  if (Res == Node) {
1952    // If we updated the node in place, reset the node ID.  To the isel,
1953    // this should be just like a newly allocated machine node.
1954    Res->setNodeId(-1);
1955  }
1956
1957  unsigned ResNumResults = Res->getNumValues();
1958  // Move the glue if needed.
1959  if ((EmitNodeInfo & OPFL_GlueOutput) && OldGlueResultNo != -1 &&
1960      (unsigned)OldGlueResultNo != ResNumResults-1)
1961    CurDAG->ReplaceAllUsesOfValueWith(SDValue(Node, OldGlueResultNo),
1962                                      SDValue(Res, ResNumResults-1));
1963
1964  if ((EmitNodeInfo & OPFL_GlueOutput) != 0)
1965    --ResNumResults;
1966
1967  // Move the chain reference if needed.
1968  if ((EmitNodeInfo & OPFL_Chain) && OldChainResultNo != -1 &&
1969      (unsigned)OldChainResultNo != ResNumResults-1)
1970    CurDAG->ReplaceAllUsesOfValueWith(SDValue(Node, OldChainResultNo),
1971                                      SDValue(Res, ResNumResults-1));
1972
1973  // Otherwise, no replacement happened because the node already exists. Replace
1974  // Uses of the old node with the new one.
1975  if (Res != Node)
1976    CurDAG->ReplaceAllUsesWith(Node, Res);
1977
1978  return Res;
1979}
1980
1981/// CheckPatternPredicate - Implements OP_CheckPatternPredicate.
1982LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
1983CheckSame(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1984          SDValue N,
1985          const SmallVectorImpl<std::pair<SDValue, SDNode*> > &RecordedNodes) {
1986  // Accept if it is exactly the same as a previously recorded node.
1987  unsigned RecNo = MatcherTable[MatcherIndex++];
1988  assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
1989  return N == RecordedNodes[RecNo].first;
1990}
1991
1992/// CheckPatternPredicate - Implements OP_CheckPatternPredicate.
1993LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
1994CheckPatternPredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1995                      SelectionDAGISel &SDISel) {
1996  return SDISel.CheckPatternPredicate(MatcherTable[MatcherIndex++]);
1997}
1998
1999/// CheckNodePredicate - Implements OP_CheckNodePredicate.
2000LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2001CheckNodePredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2002                   SelectionDAGISel &SDISel, SDNode *N) {
2003  return SDISel.CheckNodePredicate(N, MatcherTable[MatcherIndex++]);
2004}
2005
2006LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2007CheckOpcode(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2008            SDNode *N) {
2009  uint16_t Opc = MatcherTable[MatcherIndex++];
2010  Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
2011  return N->getOpcode() == Opc;
2012}
2013
2014LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2015CheckType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2016          SDValue N, const TargetLowering &TLI) {
2017  MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2018  if (N.getValueType() == VT) return true;
2019
2020  // Handle the case when VT is iPTR.
2021  return VT == MVT::iPTR && N.getValueType() == TLI.getPointerTy();
2022}
2023
2024LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2025CheckChildType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2026               SDValue N, const TargetLowering &TLI,
2027               unsigned ChildNo) {
2028  if (ChildNo >= N.getNumOperands())
2029    return false;  // Match fails if out of range child #.
2030  return ::CheckType(MatcherTable, MatcherIndex, N.getOperand(ChildNo), TLI);
2031}
2032
2033
2034LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2035CheckCondCode(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2036              SDValue N) {
2037  return cast<CondCodeSDNode>(N)->get() ==
2038      (ISD::CondCode)MatcherTable[MatcherIndex++];
2039}
2040
2041LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2042CheckValueType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2043               SDValue N, const TargetLowering &TLI) {
2044  MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2045  if (cast<VTSDNode>(N)->getVT() == VT)
2046    return true;
2047
2048  // Handle the case when VT is iPTR.
2049  return VT == MVT::iPTR && cast<VTSDNode>(N)->getVT() == TLI.getPointerTy();
2050}
2051
2052LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2053CheckInteger(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2054             SDValue N) {
2055  int64_t Val = MatcherTable[MatcherIndex++];
2056  if (Val & 128)
2057    Val = GetVBR(Val, MatcherTable, MatcherIndex);
2058
2059  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N);
2060  return C != 0 && C->getSExtValue() == Val;
2061}
2062
2063LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2064CheckAndImm(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2065            SDValue N, SelectionDAGISel &SDISel) {
2066  int64_t Val = MatcherTable[MatcherIndex++];
2067  if (Val & 128)
2068    Val = GetVBR(Val, MatcherTable, MatcherIndex);
2069
2070  if (N->getOpcode() != ISD::AND) return false;
2071
2072  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
2073  return C != 0 && SDISel.CheckAndMask(N.getOperand(0), C, Val);
2074}
2075
2076LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2077CheckOrImm(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2078           SDValue N, SelectionDAGISel &SDISel) {
2079  int64_t Val = MatcherTable[MatcherIndex++];
2080  if (Val & 128)
2081    Val = GetVBR(Val, MatcherTable, MatcherIndex);
2082
2083  if (N->getOpcode() != ISD::OR) return false;
2084
2085  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
2086  return C != 0 && SDISel.CheckOrMask(N.getOperand(0), C, Val);
2087}
2088
2089/// IsPredicateKnownToFail - If we know how and can do so without pushing a
2090/// scope, evaluate the current node.  If the current predicate is known to
2091/// fail, set Result=true and return anything.  If the current predicate is
2092/// known to pass, set Result=false and return the MatcherIndex to continue
2093/// with.  If the current predicate is unknown, set Result=false and return the
2094/// MatcherIndex to continue with.
2095static unsigned IsPredicateKnownToFail(const unsigned char *Table,
2096                                       unsigned Index, SDValue N,
2097                                       bool &Result, SelectionDAGISel &SDISel,
2098                 SmallVectorImpl<std::pair<SDValue, SDNode*> > &RecordedNodes) {
2099  switch (Table[Index++]) {
2100  default:
2101    Result = false;
2102    return Index-1;  // Could not evaluate this predicate.
2103  case SelectionDAGISel::OPC_CheckSame:
2104    Result = !::CheckSame(Table, Index, N, RecordedNodes);
2105    return Index;
2106  case SelectionDAGISel::OPC_CheckPatternPredicate:
2107    Result = !::CheckPatternPredicate(Table, Index, SDISel);
2108    return Index;
2109  case SelectionDAGISel::OPC_CheckPredicate:
2110    Result = !::CheckNodePredicate(Table, Index, SDISel, N.getNode());
2111    return Index;
2112  case SelectionDAGISel::OPC_CheckOpcode:
2113    Result = !::CheckOpcode(Table, Index, N.getNode());
2114    return Index;
2115  case SelectionDAGISel::OPC_CheckType:
2116    Result = !::CheckType(Table, Index, N, SDISel.TLI);
2117    return Index;
2118  case SelectionDAGISel::OPC_CheckChild0Type:
2119  case SelectionDAGISel::OPC_CheckChild1Type:
2120  case SelectionDAGISel::OPC_CheckChild2Type:
2121  case SelectionDAGISel::OPC_CheckChild3Type:
2122  case SelectionDAGISel::OPC_CheckChild4Type:
2123  case SelectionDAGISel::OPC_CheckChild5Type:
2124  case SelectionDAGISel::OPC_CheckChild6Type:
2125  case SelectionDAGISel::OPC_CheckChild7Type:
2126    Result = !::CheckChildType(Table, Index, N, SDISel.TLI,
2127                        Table[Index-1] - SelectionDAGISel::OPC_CheckChild0Type);
2128    return Index;
2129  case SelectionDAGISel::OPC_CheckCondCode:
2130    Result = !::CheckCondCode(Table, Index, N);
2131    return Index;
2132  case SelectionDAGISel::OPC_CheckValueType:
2133    Result = !::CheckValueType(Table, Index, N, SDISel.TLI);
2134    return Index;
2135  case SelectionDAGISel::OPC_CheckInteger:
2136    Result = !::CheckInteger(Table, Index, N);
2137    return Index;
2138  case SelectionDAGISel::OPC_CheckAndImm:
2139    Result = !::CheckAndImm(Table, Index, N, SDISel);
2140    return Index;
2141  case SelectionDAGISel::OPC_CheckOrImm:
2142    Result = !::CheckOrImm(Table, Index, N, SDISel);
2143    return Index;
2144  }
2145}
2146
2147namespace {
2148
2149struct MatchScope {
2150  /// FailIndex - If this match fails, this is the index to continue with.
2151  unsigned FailIndex;
2152
2153  /// NodeStack - The node stack when the scope was formed.
2154  SmallVector<SDValue, 4> NodeStack;
2155
2156  /// NumRecordedNodes - The number of recorded nodes when the scope was formed.
2157  unsigned NumRecordedNodes;
2158
2159  /// NumMatchedMemRefs - The number of matched memref entries.
2160  unsigned NumMatchedMemRefs;
2161
2162  /// InputChain/InputGlue - The current chain/glue
2163  SDValue InputChain, InputGlue;
2164
2165  /// HasChainNodesMatched - True if the ChainNodesMatched list is non-empty.
2166  bool HasChainNodesMatched, HasGlueResultNodesMatched;
2167};
2168
2169}
2170
2171SDNode *SelectionDAGISel::
2172SelectCodeCommon(SDNode *NodeToMatch, const unsigned char *MatcherTable,
2173                 unsigned TableSize) {
2174  // FIXME: Should these even be selected?  Handle these cases in the caller?
2175  switch (NodeToMatch->getOpcode()) {
2176  default:
2177    break;
2178  case ISD::EntryToken:       // These nodes remain the same.
2179  case ISD::BasicBlock:
2180  case ISD::Register:
2181  case ISD::RegisterMask:
2182  //case ISD::VALUETYPE:
2183  //case ISD::CONDCODE:
2184  case ISD::HANDLENODE:
2185  case ISD::MDNODE_SDNODE:
2186  case ISD::TargetConstant:
2187  case ISD::TargetConstantFP:
2188  case ISD::TargetConstantPool:
2189  case ISD::TargetFrameIndex:
2190  case ISD::TargetExternalSymbol:
2191  case ISD::TargetBlockAddress:
2192  case ISD::TargetJumpTable:
2193  case ISD::TargetGlobalTLSAddress:
2194  case ISD::TargetGlobalAddress:
2195  case ISD::TokenFactor:
2196  case ISD::CopyFromReg:
2197  case ISD::CopyToReg:
2198  case ISD::EH_LABEL:
2199    NodeToMatch->setNodeId(-1); // Mark selected.
2200    return 0;
2201  case ISD::AssertSext:
2202  case ISD::AssertZext:
2203    CurDAG->ReplaceAllUsesOfValueWith(SDValue(NodeToMatch, 0),
2204                                      NodeToMatch->getOperand(0));
2205    return 0;
2206  case ISD::INLINEASM: return Select_INLINEASM(NodeToMatch);
2207  case ISD::UNDEF:     return Select_UNDEF(NodeToMatch);
2208  }
2209
2210  assert(!NodeToMatch->isMachineOpcode() && "Node already selected!");
2211
2212  // Set up the node stack with NodeToMatch as the only node on the stack.
2213  SmallVector<SDValue, 8> NodeStack;
2214  SDValue N = SDValue(NodeToMatch, 0);
2215  NodeStack.push_back(N);
2216
2217  // MatchScopes - Scopes used when matching, if a match failure happens, this
2218  // indicates where to continue checking.
2219  SmallVector<MatchScope, 8> MatchScopes;
2220
2221  // RecordedNodes - This is the set of nodes that have been recorded by the
2222  // state machine.  The second value is the parent of the node, or null if the
2223  // root is recorded.
2224  SmallVector<std::pair<SDValue, SDNode*>, 8> RecordedNodes;
2225
2226  // MatchedMemRefs - This is the set of MemRef's we've seen in the input
2227  // pattern.
2228  SmallVector<MachineMemOperand*, 2> MatchedMemRefs;
2229
2230  // These are the current input chain and glue for use when generating nodes.
2231  // Various Emit operations change these.  For example, emitting a copytoreg
2232  // uses and updates these.
2233  SDValue InputChain, InputGlue;
2234
2235  // ChainNodesMatched - If a pattern matches nodes that have input/output
2236  // chains, the OPC_EmitMergeInputChains operation is emitted which indicates
2237  // which ones they are.  The result is captured into this list so that we can
2238  // update the chain results when the pattern is complete.
2239  SmallVector<SDNode*, 3> ChainNodesMatched;
2240  SmallVector<SDNode*, 3> GlueResultNodesMatched;
2241
2242  DEBUG(errs() << "ISEL: Starting pattern match on root node: ";
2243        NodeToMatch->dump(CurDAG);
2244        errs() << '\n');
2245
2246  // Determine where to start the interpreter.  Normally we start at opcode #0,
2247  // but if the state machine starts with an OPC_SwitchOpcode, then we
2248  // accelerate the first lookup (which is guaranteed to be hot) with the
2249  // OpcodeOffset table.
2250  unsigned MatcherIndex = 0;
2251
2252  if (!OpcodeOffset.empty()) {
2253    // Already computed the OpcodeOffset table, just index into it.
2254    if (N.getOpcode() < OpcodeOffset.size())
2255      MatcherIndex = OpcodeOffset[N.getOpcode()];
2256    DEBUG(errs() << "  Initial Opcode index to " << MatcherIndex << "\n");
2257
2258  } else if (MatcherTable[0] == OPC_SwitchOpcode) {
2259    // Otherwise, the table isn't computed, but the state machine does start
2260    // with an OPC_SwitchOpcode instruction.  Populate the table now, since this
2261    // is the first time we're selecting an instruction.
2262    unsigned Idx = 1;
2263    while (1) {
2264      // Get the size of this case.
2265      unsigned CaseSize = MatcherTable[Idx++];
2266      if (CaseSize & 128)
2267        CaseSize = GetVBR(CaseSize, MatcherTable, Idx);
2268      if (CaseSize == 0) break;
2269
2270      // Get the opcode, add the index to the table.
2271      uint16_t Opc = MatcherTable[Idx++];
2272      Opc |= (unsigned short)MatcherTable[Idx++] << 8;
2273      if (Opc >= OpcodeOffset.size())
2274        OpcodeOffset.resize((Opc+1)*2);
2275      OpcodeOffset[Opc] = Idx;
2276      Idx += CaseSize;
2277    }
2278
2279    // Okay, do the lookup for the first opcode.
2280    if (N.getOpcode() < OpcodeOffset.size())
2281      MatcherIndex = OpcodeOffset[N.getOpcode()];
2282  }
2283
2284  while (1) {
2285    assert(MatcherIndex < TableSize && "Invalid index");
2286#ifndef NDEBUG
2287    unsigned CurrentOpcodeIndex = MatcherIndex;
2288#endif
2289    BuiltinOpcodes Opcode = (BuiltinOpcodes)MatcherTable[MatcherIndex++];
2290    switch (Opcode) {
2291    case OPC_Scope: {
2292      // Okay, the semantics of this operation are that we should push a scope
2293      // then evaluate the first child.  However, pushing a scope only to have
2294      // the first check fail (which then pops it) is inefficient.  If we can
2295      // determine immediately that the first check (or first several) will
2296      // immediately fail, don't even bother pushing a scope for them.
2297      unsigned FailIndex;
2298
2299      while (1) {
2300        unsigned NumToSkip = MatcherTable[MatcherIndex++];
2301        if (NumToSkip & 128)
2302          NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex);
2303        // Found the end of the scope with no match.
2304        if (NumToSkip == 0) {
2305          FailIndex = 0;
2306          break;
2307        }
2308
2309        FailIndex = MatcherIndex+NumToSkip;
2310
2311        unsigned MatcherIndexOfPredicate = MatcherIndex;
2312        (void)MatcherIndexOfPredicate; // silence warning.
2313
2314        // If we can't evaluate this predicate without pushing a scope (e.g. if
2315        // it is a 'MoveParent') or if the predicate succeeds on this node, we
2316        // push the scope and evaluate the full predicate chain.
2317        bool Result;
2318        MatcherIndex = IsPredicateKnownToFail(MatcherTable, MatcherIndex, N,
2319                                              Result, *this, RecordedNodes);
2320        if (!Result)
2321          break;
2322
2323        DEBUG(errs() << "  Skipped scope entry (due to false predicate) at "
2324                     << "index " << MatcherIndexOfPredicate
2325                     << ", continuing at " << FailIndex << "\n");
2326        ++NumDAGIselRetries;
2327
2328        // Otherwise, we know that this case of the Scope is guaranteed to fail,
2329        // move to the next case.
2330        MatcherIndex = FailIndex;
2331      }
2332
2333      // If the whole scope failed to match, bail.
2334      if (FailIndex == 0) break;
2335
2336      // Push a MatchScope which indicates where to go if the first child fails
2337      // to match.
2338      MatchScope NewEntry;
2339      NewEntry.FailIndex = FailIndex;
2340      NewEntry.NodeStack.append(NodeStack.begin(), NodeStack.end());
2341      NewEntry.NumRecordedNodes = RecordedNodes.size();
2342      NewEntry.NumMatchedMemRefs = MatchedMemRefs.size();
2343      NewEntry.InputChain = InputChain;
2344      NewEntry.InputGlue = InputGlue;
2345      NewEntry.HasChainNodesMatched = !ChainNodesMatched.empty();
2346      NewEntry.HasGlueResultNodesMatched = !GlueResultNodesMatched.empty();
2347      MatchScopes.push_back(NewEntry);
2348      continue;
2349    }
2350    case OPC_RecordNode: {
2351      // Remember this node, it may end up being an operand in the pattern.
2352      SDNode *Parent = 0;
2353      if (NodeStack.size() > 1)
2354        Parent = NodeStack[NodeStack.size()-2].getNode();
2355      RecordedNodes.push_back(std::make_pair(N, Parent));
2356      continue;
2357    }
2358
2359    case OPC_RecordChild0: case OPC_RecordChild1:
2360    case OPC_RecordChild2: case OPC_RecordChild3:
2361    case OPC_RecordChild4: case OPC_RecordChild5:
2362    case OPC_RecordChild6: case OPC_RecordChild7: {
2363      unsigned ChildNo = Opcode-OPC_RecordChild0;
2364      if (ChildNo >= N.getNumOperands())
2365        break;  // Match fails if out of range child #.
2366
2367      RecordedNodes.push_back(std::make_pair(N->getOperand(ChildNo),
2368                                             N.getNode()));
2369      continue;
2370    }
2371    case OPC_RecordMemRef:
2372      MatchedMemRefs.push_back(cast<MemSDNode>(N)->getMemOperand());
2373      continue;
2374
2375    case OPC_CaptureGlueInput:
2376      // If the current node has an input glue, capture it in InputGlue.
2377      if (N->getNumOperands() != 0 &&
2378          N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Glue)
2379        InputGlue = N->getOperand(N->getNumOperands()-1);
2380      continue;
2381
2382    case OPC_MoveChild: {
2383      unsigned ChildNo = MatcherTable[MatcherIndex++];
2384      if (ChildNo >= N.getNumOperands())
2385        break;  // Match fails if out of range child #.
2386      N = N.getOperand(ChildNo);
2387      NodeStack.push_back(N);
2388      continue;
2389    }
2390
2391    case OPC_MoveParent:
2392      // Pop the current node off the NodeStack.
2393      NodeStack.pop_back();
2394      assert(!NodeStack.empty() && "Node stack imbalance!");
2395      N = NodeStack.back();
2396      continue;
2397
2398    case OPC_CheckSame:
2399      if (!::CheckSame(MatcherTable, MatcherIndex, N, RecordedNodes)) break;
2400      continue;
2401    case OPC_CheckPatternPredicate:
2402      if (!::CheckPatternPredicate(MatcherTable, MatcherIndex, *this)) break;
2403      continue;
2404    case OPC_CheckPredicate:
2405      if (!::CheckNodePredicate(MatcherTable, MatcherIndex, *this,
2406                                N.getNode()))
2407        break;
2408      continue;
2409    case OPC_CheckComplexPat: {
2410      unsigned CPNum = MatcherTable[MatcherIndex++];
2411      unsigned RecNo = MatcherTable[MatcherIndex++];
2412      assert(RecNo < RecordedNodes.size() && "Invalid CheckComplexPat");
2413      if (!CheckComplexPattern(NodeToMatch, RecordedNodes[RecNo].second,
2414                               RecordedNodes[RecNo].first, CPNum,
2415                               RecordedNodes))
2416        break;
2417      continue;
2418    }
2419    case OPC_CheckOpcode:
2420      if (!::CheckOpcode(MatcherTable, MatcherIndex, N.getNode())) break;
2421      continue;
2422
2423    case OPC_CheckType:
2424      if (!::CheckType(MatcherTable, MatcherIndex, N, TLI)) break;
2425      continue;
2426
2427    case OPC_SwitchOpcode: {
2428      unsigned CurNodeOpcode = N.getOpcode();
2429      unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart;
2430      unsigned CaseSize;
2431      while (1) {
2432        // Get the size of this case.
2433        CaseSize = MatcherTable[MatcherIndex++];
2434        if (CaseSize & 128)
2435          CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex);
2436        if (CaseSize == 0) break;
2437
2438        uint16_t Opc = MatcherTable[MatcherIndex++];
2439        Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
2440
2441        // If the opcode matches, then we will execute this case.
2442        if (CurNodeOpcode == Opc)
2443          break;
2444
2445        // Otherwise, skip over this case.
2446        MatcherIndex += CaseSize;
2447      }
2448
2449      // If no cases matched, bail out.
2450      if (CaseSize == 0) break;
2451
2452      // Otherwise, execute the case we found.
2453      DEBUG(errs() << "  OpcodeSwitch from " << SwitchStart
2454                   << " to " << MatcherIndex << "\n");
2455      continue;
2456    }
2457
2458    case OPC_SwitchType: {
2459      MVT CurNodeVT = N.getValueType().getSimpleVT();
2460      unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart;
2461      unsigned CaseSize;
2462      while (1) {
2463        // Get the size of this case.
2464        CaseSize = MatcherTable[MatcherIndex++];
2465        if (CaseSize & 128)
2466          CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex);
2467        if (CaseSize == 0) break;
2468
2469        MVT CaseVT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2470        if (CaseVT == MVT::iPTR)
2471          CaseVT = TLI.getPointerTy();
2472
2473        // If the VT matches, then we will execute this case.
2474        if (CurNodeVT == CaseVT)
2475          break;
2476
2477        // Otherwise, skip over this case.
2478        MatcherIndex += CaseSize;
2479      }
2480
2481      // If no cases matched, bail out.
2482      if (CaseSize == 0) break;
2483
2484      // Otherwise, execute the case we found.
2485      DEBUG(errs() << "  TypeSwitch[" << EVT(CurNodeVT).getEVTString()
2486                   << "] from " << SwitchStart << " to " << MatcherIndex<<'\n');
2487      continue;
2488    }
2489    case OPC_CheckChild0Type: case OPC_CheckChild1Type:
2490    case OPC_CheckChild2Type: case OPC_CheckChild3Type:
2491    case OPC_CheckChild4Type: case OPC_CheckChild5Type:
2492    case OPC_CheckChild6Type: case OPC_CheckChild7Type:
2493      if (!::CheckChildType(MatcherTable, MatcherIndex, N, TLI,
2494                            Opcode-OPC_CheckChild0Type))
2495        break;
2496      continue;
2497    case OPC_CheckCondCode:
2498      if (!::CheckCondCode(MatcherTable, MatcherIndex, N)) break;
2499      continue;
2500    case OPC_CheckValueType:
2501      if (!::CheckValueType(MatcherTable, MatcherIndex, N, TLI)) break;
2502      continue;
2503    case OPC_CheckInteger:
2504      if (!::CheckInteger(MatcherTable, MatcherIndex, N)) break;
2505      continue;
2506    case OPC_CheckAndImm:
2507      if (!::CheckAndImm(MatcherTable, MatcherIndex, N, *this)) break;
2508      continue;
2509    case OPC_CheckOrImm:
2510      if (!::CheckOrImm(MatcherTable, MatcherIndex, N, *this)) break;
2511      continue;
2512
2513    case OPC_CheckFoldableChainNode: {
2514      assert(NodeStack.size() != 1 && "No parent node");
2515      // Verify that all intermediate nodes between the root and this one have
2516      // a single use.
2517      bool HasMultipleUses = false;
2518      for (unsigned i = 1, e = NodeStack.size()-1; i != e; ++i)
2519        if (!NodeStack[i].hasOneUse()) {
2520          HasMultipleUses = true;
2521          break;
2522        }
2523      if (HasMultipleUses) break;
2524
2525      // Check to see that the target thinks this is profitable to fold and that
2526      // we can fold it without inducing cycles in the graph.
2527      if (!IsProfitableToFold(N, NodeStack[NodeStack.size()-2].getNode(),
2528                              NodeToMatch) ||
2529          !IsLegalToFold(N, NodeStack[NodeStack.size()-2].getNode(),
2530                         NodeToMatch, OptLevel,
2531                         true/*We validate our own chains*/))
2532        break;
2533
2534      continue;
2535    }
2536    case OPC_EmitInteger: {
2537      MVT::SimpleValueType VT =
2538        (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2539      int64_t Val = MatcherTable[MatcherIndex++];
2540      if (Val & 128)
2541        Val = GetVBR(Val, MatcherTable, MatcherIndex);
2542      RecordedNodes.push_back(std::pair<SDValue, SDNode*>(
2543                              CurDAG->getTargetConstant(Val, VT), (SDNode*)0));
2544      continue;
2545    }
2546    case OPC_EmitRegister: {
2547      MVT::SimpleValueType VT =
2548        (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2549      unsigned RegNo = MatcherTable[MatcherIndex++];
2550      RecordedNodes.push_back(std::pair<SDValue, SDNode*>(
2551                              CurDAG->getRegister(RegNo, VT), (SDNode*)0));
2552      continue;
2553    }
2554    case OPC_EmitRegister2: {
2555      // For targets w/ more than 256 register names, the register enum
2556      // values are stored in two bytes in the matcher table (just like
2557      // opcodes).
2558      MVT::SimpleValueType VT =
2559        (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2560      unsigned RegNo = MatcherTable[MatcherIndex++];
2561      RegNo |= MatcherTable[MatcherIndex++] << 8;
2562      RecordedNodes.push_back(std::pair<SDValue, SDNode*>(
2563                              CurDAG->getRegister(RegNo, VT), (SDNode*)0));
2564      continue;
2565    }
2566
2567    case OPC_EmitConvertToTarget:  {
2568      // Convert from IMM/FPIMM to target version.
2569      unsigned RecNo = MatcherTable[MatcherIndex++];
2570      assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2571      SDValue Imm = RecordedNodes[RecNo].first;
2572
2573      if (Imm->getOpcode() == ISD::Constant) {
2574        int64_t Val = cast<ConstantSDNode>(Imm)->getZExtValue();
2575        Imm = CurDAG->getTargetConstant(Val, Imm.getValueType());
2576      } else if (Imm->getOpcode() == ISD::ConstantFP) {
2577        const ConstantFP *Val=cast<ConstantFPSDNode>(Imm)->getConstantFPValue();
2578        Imm = CurDAG->getTargetConstantFP(*Val, Imm.getValueType());
2579      }
2580
2581      RecordedNodes.push_back(std::make_pair(Imm, RecordedNodes[RecNo].second));
2582      continue;
2583    }
2584
2585    case OPC_EmitMergeInputChains1_0:    // OPC_EmitMergeInputChains, 1, 0
2586    case OPC_EmitMergeInputChains1_1: {  // OPC_EmitMergeInputChains, 1, 1
2587      // These are space-optimized forms of OPC_EmitMergeInputChains.
2588      assert(InputChain.getNode() == 0 &&
2589             "EmitMergeInputChains should be the first chain producing node");
2590      assert(ChainNodesMatched.empty() &&
2591             "Should only have one EmitMergeInputChains per match");
2592
2593      // Read all of the chained nodes.
2594      unsigned RecNo = Opcode == OPC_EmitMergeInputChains1_1;
2595      assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2596      ChainNodesMatched.push_back(RecordedNodes[RecNo].first.getNode());
2597
2598      // FIXME: What if other value results of the node have uses not matched
2599      // by this pattern?
2600      if (ChainNodesMatched.back() != NodeToMatch &&
2601          !RecordedNodes[RecNo].first.hasOneUse()) {
2602        ChainNodesMatched.clear();
2603        break;
2604      }
2605
2606      // Merge the input chains if they are not intra-pattern references.
2607      InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG);
2608
2609      if (InputChain.getNode() == 0)
2610        break;  // Failed to merge.
2611      continue;
2612    }
2613
2614    case OPC_EmitMergeInputChains: {
2615      assert(InputChain.getNode() == 0 &&
2616             "EmitMergeInputChains should be the first chain producing node");
2617      // This node gets a list of nodes we matched in the input that have
2618      // chains.  We want to token factor all of the input chains to these nodes
2619      // together.  However, if any of the input chains is actually one of the
2620      // nodes matched in this pattern, then we have an intra-match reference.
2621      // Ignore these because the newly token factored chain should not refer to
2622      // the old nodes.
2623      unsigned NumChains = MatcherTable[MatcherIndex++];
2624      assert(NumChains != 0 && "Can't TF zero chains");
2625
2626      assert(ChainNodesMatched.empty() &&
2627             "Should only have one EmitMergeInputChains per match");
2628
2629      // Read all of the chained nodes.
2630      for (unsigned i = 0; i != NumChains; ++i) {
2631        unsigned RecNo = MatcherTable[MatcherIndex++];
2632        assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2633        ChainNodesMatched.push_back(RecordedNodes[RecNo].first.getNode());
2634
2635        // FIXME: What if other value results of the node have uses not matched
2636        // by this pattern?
2637        if (ChainNodesMatched.back() != NodeToMatch &&
2638            !RecordedNodes[RecNo].first.hasOneUse()) {
2639          ChainNodesMatched.clear();
2640          break;
2641        }
2642      }
2643
2644      // If the inner loop broke out, the match fails.
2645      if (ChainNodesMatched.empty())
2646        break;
2647
2648      // Merge the input chains if they are not intra-pattern references.
2649      InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG);
2650
2651      if (InputChain.getNode() == 0)
2652        break;  // Failed to merge.
2653
2654      continue;
2655    }
2656
2657    case OPC_EmitCopyToReg: {
2658      unsigned RecNo = MatcherTable[MatcherIndex++];
2659      assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2660      unsigned DestPhysReg = MatcherTable[MatcherIndex++];
2661
2662      if (InputChain.getNode() == 0)
2663        InputChain = CurDAG->getEntryNode();
2664
2665      InputChain = CurDAG->getCopyToReg(InputChain, NodeToMatch->getDebugLoc(),
2666                                        DestPhysReg, RecordedNodes[RecNo].first,
2667                                        InputGlue);
2668
2669      InputGlue = InputChain.getValue(1);
2670      continue;
2671    }
2672
2673    case OPC_EmitNodeXForm: {
2674      unsigned XFormNo = MatcherTable[MatcherIndex++];
2675      unsigned RecNo = MatcherTable[MatcherIndex++];
2676      assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2677      SDValue Res = RunSDNodeXForm(RecordedNodes[RecNo].first, XFormNo);
2678      RecordedNodes.push_back(std::pair<SDValue,SDNode*>(Res, (SDNode*) 0));
2679      continue;
2680    }
2681
2682    case OPC_EmitNode:
2683    case OPC_MorphNodeTo: {
2684      uint16_t TargetOpc = MatcherTable[MatcherIndex++];
2685      TargetOpc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
2686      unsigned EmitNodeInfo = MatcherTable[MatcherIndex++];
2687      // Get the result VT list.
2688      unsigned NumVTs = MatcherTable[MatcherIndex++];
2689      SmallVector<EVT, 4> VTs;
2690      for (unsigned i = 0; i != NumVTs; ++i) {
2691        MVT::SimpleValueType VT =
2692          (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2693        if (VT == MVT::iPTR) VT = TLI.getPointerTy().SimpleTy;
2694        VTs.push_back(VT);
2695      }
2696
2697      if (EmitNodeInfo & OPFL_Chain)
2698        VTs.push_back(MVT::Other);
2699      if (EmitNodeInfo & OPFL_GlueOutput)
2700        VTs.push_back(MVT::Glue);
2701
2702      // This is hot code, so optimize the two most common cases of 1 and 2
2703      // results.
2704      SDVTList VTList;
2705      if (VTs.size() == 1)
2706        VTList = CurDAG->getVTList(VTs[0]);
2707      else if (VTs.size() == 2)
2708        VTList = CurDAG->getVTList(VTs[0], VTs[1]);
2709      else
2710        VTList = CurDAG->getVTList(VTs.data(), VTs.size());
2711
2712      // Get the operand list.
2713      unsigned NumOps = MatcherTable[MatcherIndex++];
2714      SmallVector<SDValue, 8> Ops;
2715      for (unsigned i = 0; i != NumOps; ++i) {
2716        unsigned RecNo = MatcherTable[MatcherIndex++];
2717        if (RecNo & 128)
2718          RecNo = GetVBR(RecNo, MatcherTable, MatcherIndex);
2719
2720        assert(RecNo < RecordedNodes.size() && "Invalid EmitNode");
2721        Ops.push_back(RecordedNodes[RecNo].first);
2722      }
2723
2724      // If there are variadic operands to add, handle them now.
2725      if (EmitNodeInfo & OPFL_VariadicInfo) {
2726        // Determine the start index to copy from.
2727        unsigned FirstOpToCopy = getNumFixedFromVariadicInfo(EmitNodeInfo);
2728        FirstOpToCopy += (EmitNodeInfo & OPFL_Chain) ? 1 : 0;
2729        assert(NodeToMatch->getNumOperands() >= FirstOpToCopy &&
2730               "Invalid variadic node");
2731        // Copy all of the variadic operands, not including a potential glue
2732        // input.
2733        for (unsigned i = FirstOpToCopy, e = NodeToMatch->getNumOperands();
2734             i != e; ++i) {
2735          SDValue V = NodeToMatch->getOperand(i);
2736          if (V.getValueType() == MVT::Glue) break;
2737          Ops.push_back(V);
2738        }
2739      }
2740
2741      // If this has chain/glue inputs, add them.
2742      if (EmitNodeInfo & OPFL_Chain)
2743        Ops.push_back(InputChain);
2744      if ((EmitNodeInfo & OPFL_GlueInput) && InputGlue.getNode() != 0)
2745        Ops.push_back(InputGlue);
2746
2747      // Create the node.
2748      SDNode *Res = 0;
2749      if (Opcode != OPC_MorphNodeTo) {
2750        // If this is a normal EmitNode command, just create the new node and
2751        // add the results to the RecordedNodes list.
2752        Res = CurDAG->getMachineNode(TargetOpc, NodeToMatch->getDebugLoc(),
2753                                     VTList, Ops.data(), Ops.size());
2754
2755        // Add all the non-glue/non-chain results to the RecordedNodes list.
2756        for (unsigned i = 0, e = VTs.size(); i != e; ++i) {
2757          if (VTs[i] == MVT::Other || VTs[i] == MVT::Glue) break;
2758          RecordedNodes.push_back(std::pair<SDValue,SDNode*>(SDValue(Res, i),
2759                                                             (SDNode*) 0));
2760        }
2761
2762      } else {
2763        Res = MorphNode(NodeToMatch, TargetOpc, VTList, Ops.data(), Ops.size(),
2764                        EmitNodeInfo);
2765      }
2766
2767      // If the node had chain/glue results, update our notion of the current
2768      // chain and glue.
2769      if (EmitNodeInfo & OPFL_GlueOutput) {
2770        InputGlue = SDValue(Res, VTs.size()-1);
2771        if (EmitNodeInfo & OPFL_Chain)
2772          InputChain = SDValue(Res, VTs.size()-2);
2773      } else if (EmitNodeInfo & OPFL_Chain)
2774        InputChain = SDValue(Res, VTs.size()-1);
2775
2776      // If the OPFL_MemRefs glue is set on this node, slap all of the
2777      // accumulated memrefs onto it.
2778      //
2779      // FIXME: This is vastly incorrect for patterns with multiple outputs
2780      // instructions that access memory and for ComplexPatterns that match
2781      // loads.
2782      if (EmitNodeInfo & OPFL_MemRefs) {
2783        // Only attach load or store memory operands if the generated
2784        // instruction may load or store.
2785        const MCInstrDesc &MCID = TM.getInstrInfo()->get(TargetOpc);
2786        bool mayLoad = MCID.mayLoad();
2787        bool mayStore = MCID.mayStore();
2788
2789        unsigned NumMemRefs = 0;
2790        for (SmallVector<MachineMemOperand*, 2>::const_iterator I =
2791             MatchedMemRefs.begin(), E = MatchedMemRefs.end(); I != E; ++I) {
2792          if ((*I)->isLoad()) {
2793            if (mayLoad)
2794              ++NumMemRefs;
2795          } else if ((*I)->isStore()) {
2796            if (mayStore)
2797              ++NumMemRefs;
2798          } else {
2799            ++NumMemRefs;
2800          }
2801        }
2802
2803        MachineSDNode::mmo_iterator MemRefs =
2804          MF->allocateMemRefsArray(NumMemRefs);
2805
2806        MachineSDNode::mmo_iterator MemRefsPos = MemRefs;
2807        for (SmallVector<MachineMemOperand*, 2>::const_iterator I =
2808             MatchedMemRefs.begin(), E = MatchedMemRefs.end(); I != E; ++I) {
2809          if ((*I)->isLoad()) {
2810            if (mayLoad)
2811              *MemRefsPos++ = *I;
2812          } else if ((*I)->isStore()) {
2813            if (mayStore)
2814              *MemRefsPos++ = *I;
2815          } else {
2816            *MemRefsPos++ = *I;
2817          }
2818        }
2819
2820        cast<MachineSDNode>(Res)
2821          ->setMemRefs(MemRefs, MemRefs + NumMemRefs);
2822      }
2823
2824      DEBUG(errs() << "  "
2825                   << (Opcode == OPC_MorphNodeTo ? "Morphed" : "Created")
2826                   << " node: "; Res->dump(CurDAG); errs() << "\n");
2827
2828      // If this was a MorphNodeTo then we're completely done!
2829      if (Opcode == OPC_MorphNodeTo) {
2830        // Update chain and glue uses.
2831        UpdateChainsAndGlue(NodeToMatch, InputChain, ChainNodesMatched,
2832                            InputGlue, GlueResultNodesMatched, true);
2833        return Res;
2834      }
2835
2836      continue;
2837    }
2838
2839    case OPC_MarkGlueResults: {
2840      unsigned NumNodes = MatcherTable[MatcherIndex++];
2841
2842      // Read and remember all the glue-result nodes.
2843      for (unsigned i = 0; i != NumNodes; ++i) {
2844        unsigned RecNo = MatcherTable[MatcherIndex++];
2845        if (RecNo & 128)
2846          RecNo = GetVBR(RecNo, MatcherTable, MatcherIndex);
2847
2848        assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2849        GlueResultNodesMatched.push_back(RecordedNodes[RecNo].first.getNode());
2850      }
2851      continue;
2852    }
2853
2854    case OPC_CompleteMatch: {
2855      // The match has been completed, and any new nodes (if any) have been
2856      // created.  Patch up references to the matched dag to use the newly
2857      // created nodes.
2858      unsigned NumResults = MatcherTable[MatcherIndex++];
2859
2860      for (unsigned i = 0; i != NumResults; ++i) {
2861        unsigned ResSlot = MatcherTable[MatcherIndex++];
2862        if (ResSlot & 128)
2863          ResSlot = GetVBR(ResSlot, MatcherTable, MatcherIndex);
2864
2865        assert(ResSlot < RecordedNodes.size() && "Invalid CheckSame");
2866        SDValue Res = RecordedNodes[ResSlot].first;
2867
2868        assert(i < NodeToMatch->getNumValues() &&
2869               NodeToMatch->getValueType(i) != MVT::Other &&
2870               NodeToMatch->getValueType(i) != MVT::Glue &&
2871               "Invalid number of results to complete!");
2872        assert((NodeToMatch->getValueType(i) == Res.getValueType() ||
2873                NodeToMatch->getValueType(i) == MVT::iPTR ||
2874                Res.getValueType() == MVT::iPTR ||
2875                NodeToMatch->getValueType(i).getSizeInBits() ==
2876                    Res.getValueType().getSizeInBits()) &&
2877               "invalid replacement");
2878        CurDAG->ReplaceAllUsesOfValueWith(SDValue(NodeToMatch, i), Res);
2879      }
2880
2881      // If the root node defines glue, add it to the glue nodes to update list.
2882      if (NodeToMatch->getValueType(NodeToMatch->getNumValues()-1) == MVT::Glue)
2883        GlueResultNodesMatched.push_back(NodeToMatch);
2884
2885      // Update chain and glue uses.
2886      UpdateChainsAndGlue(NodeToMatch, InputChain, ChainNodesMatched,
2887                          InputGlue, GlueResultNodesMatched, false);
2888
2889      assert(NodeToMatch->use_empty() &&
2890             "Didn't replace all uses of the node?");
2891
2892      // FIXME: We just return here, which interacts correctly with SelectRoot
2893      // above.  We should fix this to not return an SDNode* anymore.
2894      return 0;
2895    }
2896    }
2897
2898    // If the code reached this point, then the match failed.  See if there is
2899    // another child to try in the current 'Scope', otherwise pop it until we
2900    // find a case to check.
2901    DEBUG(errs() << "  Match failed at index " << CurrentOpcodeIndex << "\n");
2902    ++NumDAGIselRetries;
2903    while (1) {
2904      if (MatchScopes.empty()) {
2905        CannotYetSelect(NodeToMatch);
2906        return 0;
2907      }
2908
2909      // Restore the interpreter state back to the point where the scope was
2910      // formed.
2911      MatchScope &LastScope = MatchScopes.back();
2912      RecordedNodes.resize(LastScope.NumRecordedNodes);
2913      NodeStack.clear();
2914      NodeStack.append(LastScope.NodeStack.begin(), LastScope.NodeStack.end());
2915      N = NodeStack.back();
2916
2917      if (LastScope.NumMatchedMemRefs != MatchedMemRefs.size())
2918        MatchedMemRefs.resize(LastScope.NumMatchedMemRefs);
2919      MatcherIndex = LastScope.FailIndex;
2920
2921      DEBUG(errs() << "  Continuing at " << MatcherIndex << "\n");
2922
2923      InputChain = LastScope.InputChain;
2924      InputGlue = LastScope.InputGlue;
2925      if (!LastScope.HasChainNodesMatched)
2926        ChainNodesMatched.clear();
2927      if (!LastScope.HasGlueResultNodesMatched)
2928        GlueResultNodesMatched.clear();
2929
2930      // Check to see what the offset is at the new MatcherIndex.  If it is zero
2931      // we have reached the end of this scope, otherwise we have another child
2932      // in the current scope to try.
2933      unsigned NumToSkip = MatcherTable[MatcherIndex++];
2934      if (NumToSkip & 128)
2935        NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex);
2936
2937      // If we have another child in this scope to match, update FailIndex and
2938      // try it.
2939      if (NumToSkip != 0) {
2940        LastScope.FailIndex = MatcherIndex+NumToSkip;
2941        break;
2942      }
2943
2944      // End of this scope, pop it and try the next child in the containing
2945      // scope.
2946      MatchScopes.pop_back();
2947    }
2948  }
2949}
2950
2951
2952
2953void SelectionDAGISel::CannotYetSelect(SDNode *N) {
2954  std::string msg;
2955  raw_string_ostream Msg(msg);
2956  Msg << "Cannot select: ";
2957
2958  if (N->getOpcode() != ISD::INTRINSIC_W_CHAIN &&
2959      N->getOpcode() != ISD::INTRINSIC_WO_CHAIN &&
2960      N->getOpcode() != ISD::INTRINSIC_VOID) {
2961    N->printrFull(Msg, CurDAG);
2962  } else {
2963    bool HasInputChain = N->getOperand(0).getValueType() == MVT::Other;
2964    unsigned iid =
2965      cast<ConstantSDNode>(N->getOperand(HasInputChain))->getZExtValue();
2966    if (iid < Intrinsic::num_intrinsics)
2967      Msg << "intrinsic %" << Intrinsic::getName((Intrinsic::ID)iid);
2968    else if (const TargetIntrinsicInfo *TII = TM.getIntrinsicInfo())
2969      Msg << "target intrinsic %" << TII->getName(iid);
2970    else
2971      Msg << "unknown intrinsic #" << iid;
2972  }
2973  report_fatal_error(Msg.str());
2974}
2975
2976char SelectionDAGISel::ID = 0;
2977