SelectionDAGISel.cpp revision 2aeaf4e839438d51766996006fc22310d05ab2a7
1//===-- SelectionDAGISel.cpp - Implement the SelectionDAGISel class -------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAGISel class.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "isel"
15#include "llvm/CodeGen/SelectionDAGISel.h"
16#include "llvm/CallingConv.h"
17#include "llvm/Constants.h"
18#include "llvm/DerivedTypes.h"
19#include "llvm/Function.h"
20#include "llvm/Instructions.h"
21#include "llvm/Intrinsics.h"
22#include "llvm/CodeGen/MachineFunction.h"
23#include "llvm/CodeGen/MachineFrameInfo.h"
24#include "llvm/CodeGen/MachineInstrBuilder.h"
25#include "llvm/CodeGen/SelectionDAG.h"
26#include "llvm/CodeGen/SSARegMap.h"
27#include "llvm/Target/MRegisterInfo.h"
28#include "llvm/Target/TargetData.h"
29#include "llvm/Target/TargetFrameInfo.h"
30#include "llvm/Target/TargetInstrInfo.h"
31#include "llvm/Target/TargetLowering.h"
32#include "llvm/Target/TargetMachine.h"
33#include "llvm/Transforms/Utils/BasicBlockUtils.h"
34#include "llvm/Support/CommandLine.h"
35#include "llvm/Support/Debug.h"
36#include <map>
37#include <iostream>
38using namespace llvm;
39
40// Temporary command line code to enable use of the dag combiner as a beta
41// option.
42namespace llvm {
43  bool CombinerEnabled;
44}
45namespace {
46  cl::opt<bool, true>
47  CombineDAG("enable-dag-combiner", cl::Hidden,
48             cl::desc("Run the DAG combiner before and after Legalize"),
49             cl::location(CombinerEnabled),
50             cl::init(false));
51}
52#ifndef NDEBUG
53static cl::opt<bool>
54ViewDAGs("view-isel-dags", cl::Hidden,
55         cl::desc("Pop up a window to show isel dags as they are selected"));
56#else
57static const bool ViewDAGs = 0;
58#endif
59
60
61namespace llvm {
62  //===--------------------------------------------------------------------===//
63  /// FunctionLoweringInfo - This contains information that is global to a
64  /// function that is used when lowering a region of the function.
65  class FunctionLoweringInfo {
66  public:
67    TargetLowering &TLI;
68    Function &Fn;
69    MachineFunction &MF;
70    SSARegMap *RegMap;
71
72    FunctionLoweringInfo(TargetLowering &TLI, Function &Fn,MachineFunction &MF);
73
74    /// MBBMap - A mapping from LLVM basic blocks to their machine code entry.
75    std::map<const BasicBlock*, MachineBasicBlock *> MBBMap;
76
77    /// ValueMap - Since we emit code for the function a basic block at a time,
78    /// we must remember which virtual registers hold the values for
79    /// cross-basic-block values.
80    std::map<const Value*, unsigned> ValueMap;
81
82    /// StaticAllocaMap - Keep track of frame indices for fixed sized allocas in
83    /// the entry block.  This allows the allocas to be efficiently referenced
84    /// anywhere in the function.
85    std::map<const AllocaInst*, int> StaticAllocaMap;
86
87    /// BlockLocalArguments - If any arguments are only used in a single basic
88    /// block, and if the target can access the arguments without side-effects,
89    /// avoid emitting CopyToReg nodes for those arguments.  This map keeps
90    /// track of which arguments are local to each BB.
91    std::multimap<BasicBlock*, std::pair<Argument*,
92                                         unsigned> > BlockLocalArguments;
93
94
95    unsigned MakeReg(MVT::ValueType VT) {
96      return RegMap->createVirtualRegister(TLI.getRegClassFor(VT));
97    }
98
99    unsigned CreateRegForValue(const Value *V) {
100      MVT::ValueType VT = TLI.getValueType(V->getType());
101      // The common case is that we will only create one register for this
102      // value.  If we have that case, create and return the virtual register.
103      unsigned NV = TLI.getNumElements(VT);
104      if (NV == 1) {
105        // If we are promoting this value, pick the next largest supported type.
106        return MakeReg(TLI.getTypeToTransformTo(VT));
107      }
108
109      // If this value is represented with multiple target registers, make sure
110      // to create enough consequtive registers of the right (smaller) type.
111      unsigned NT = VT-1;  // Find the type to use.
112      while (TLI.getNumElements((MVT::ValueType)NT) != 1)
113        --NT;
114
115      unsigned R = MakeReg((MVT::ValueType)NT);
116      for (unsigned i = 1; i != NV; ++i)
117        MakeReg((MVT::ValueType)NT);
118      return R;
119    }
120
121    unsigned InitializeRegForValue(const Value *V) {
122      unsigned &R = ValueMap[V];
123      assert(R == 0 && "Already initialized this value register!");
124      return R = CreateRegForValue(V);
125    }
126  };
127}
128
129/// isUsedOutsideOfDefiningBlock - Return true if this instruction is used by
130/// PHI nodes or outside of the basic block that defines it.
131static bool isUsedOutsideOfDefiningBlock(Instruction *I) {
132  if (isa<PHINode>(I)) return true;
133  BasicBlock *BB = I->getParent();
134  for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E; ++UI)
135    if (cast<Instruction>(*UI)->getParent() != BB || isa<PHINode>(*UI))
136      return true;
137  return false;
138}
139
140FunctionLoweringInfo::FunctionLoweringInfo(TargetLowering &tli,
141                                           Function &fn, MachineFunction &mf)
142    : TLI(tli), Fn(fn), MF(mf), RegMap(MF.getSSARegMap()) {
143
144  // Initialize the mapping of values to registers.  This is only set up for
145  // instruction values that are used outside of the block that defines
146  // them.
147  for (Function::arg_iterator AI = Fn.arg_begin(), E = Fn.arg_end();
148       AI != E; ++AI)
149    InitializeRegForValue(AI);
150
151  Function::iterator BB = Fn.begin(), EB = Fn.end();
152  for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
153    if (AllocaInst *AI = dyn_cast<AllocaInst>(I))
154      if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(AI->getArraySize())) {
155        const Type *Ty = AI->getAllocatedType();
156        uint64_t TySize = TLI.getTargetData().getTypeSize(Ty);
157        unsigned Align = TLI.getTargetData().getTypeAlignment(Ty);
158
159        // If the alignment of the value is smaller than the size of the value,
160        // and if the size of the value is particularly small (<= 8 bytes),
161        // round up to the size of the value for potentially better performance.
162        //
163        // FIXME: This could be made better with a preferred alignment hook in
164        // TargetData.  It serves primarily to 8-byte align doubles for X86.
165        if (Align < TySize && TySize <= 8) Align = TySize;
166
167        if (CUI->getValue())           // Don't produce zero sized stack objects
168          TySize *= CUI->getValue();   // Get total allocated size.
169        StaticAllocaMap[AI] =
170          MF.getFrameInfo()->CreateStackObject((unsigned)TySize, Align);
171      }
172
173  for (; BB != EB; ++BB)
174    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
175      if (!I->use_empty() && isUsedOutsideOfDefiningBlock(I))
176        if (!isa<AllocaInst>(I) ||
177            !StaticAllocaMap.count(cast<AllocaInst>(I)))
178          InitializeRegForValue(I);
179
180  // Create an initial MachineBasicBlock for each LLVM BasicBlock in F.  This
181  // also creates the initial PHI MachineInstrs, though none of the input
182  // operands are populated.
183  for (BB = Fn.begin(), EB = Fn.end(); BB != EB; ++BB) {
184    MachineBasicBlock *MBB = new MachineBasicBlock(BB);
185    MBBMap[BB] = MBB;
186    MF.getBasicBlockList().push_back(MBB);
187
188    // Create Machine PHI nodes for LLVM PHI nodes, lowering them as
189    // appropriate.
190    PHINode *PN;
191    for (BasicBlock::iterator I = BB->begin();
192         (PN = dyn_cast<PHINode>(I)); ++I)
193      if (!PN->use_empty()) {
194        unsigned NumElements =
195          TLI.getNumElements(TLI.getValueType(PN->getType()));
196        unsigned PHIReg = ValueMap[PN];
197        assert(PHIReg &&"PHI node does not have an assigned virtual register!");
198        for (unsigned i = 0; i != NumElements; ++i)
199          BuildMI(MBB, TargetInstrInfo::PHI, PN->getNumOperands(), PHIReg+i);
200      }
201  }
202}
203
204
205
206//===----------------------------------------------------------------------===//
207/// SelectionDAGLowering - This is the common target-independent lowering
208/// implementation that is parameterized by a TargetLowering object.
209/// Also, targets can overload any lowering method.
210///
211namespace llvm {
212class SelectionDAGLowering {
213  MachineBasicBlock *CurMBB;
214
215  std::map<const Value*, SDOperand> NodeMap;
216
217  /// PendingLoads - Loads are not emitted to the program immediately.  We bunch
218  /// them up and then emit token factor nodes when possible.  This allows us to
219  /// get simple disambiguation between loads without worrying about alias
220  /// analysis.
221  std::vector<SDOperand> PendingLoads;
222
223public:
224  // TLI - This is information that describes the available target features we
225  // need for lowering.  This indicates when operations are unavailable,
226  // implemented with a libcall, etc.
227  TargetLowering &TLI;
228  SelectionDAG &DAG;
229  const TargetData &TD;
230
231  /// FuncInfo - Information about the function as a whole.
232  ///
233  FunctionLoweringInfo &FuncInfo;
234
235  SelectionDAGLowering(SelectionDAG &dag, TargetLowering &tli,
236                       FunctionLoweringInfo &funcinfo)
237    : TLI(tli), DAG(dag), TD(DAG.getTarget().getTargetData()),
238      FuncInfo(funcinfo) {
239  }
240
241  /// getRoot - Return the current virtual root of the Selection DAG.
242  ///
243  SDOperand getRoot() {
244    if (PendingLoads.empty())
245      return DAG.getRoot();
246
247    if (PendingLoads.size() == 1) {
248      SDOperand Root = PendingLoads[0];
249      DAG.setRoot(Root);
250      PendingLoads.clear();
251      return Root;
252    }
253
254    // Otherwise, we have to make a token factor node.
255    SDOperand Root = DAG.getNode(ISD::TokenFactor, MVT::Other, PendingLoads);
256    PendingLoads.clear();
257    DAG.setRoot(Root);
258    return Root;
259  }
260
261  void visit(Instruction &I) { visit(I.getOpcode(), I); }
262
263  void visit(unsigned Opcode, User &I) {
264    switch (Opcode) {
265    default: assert(0 && "Unknown instruction type encountered!");
266             abort();
267      // Build the switch statement using the Instruction.def file.
268#define HANDLE_INST(NUM, OPCODE, CLASS) \
269    case Instruction::OPCODE:return visit##OPCODE((CLASS&)I);
270#include "llvm/Instruction.def"
271    }
272  }
273
274  void setCurrentBasicBlock(MachineBasicBlock *MBB) { CurMBB = MBB; }
275
276
277  SDOperand getIntPtrConstant(uint64_t Val) {
278    return DAG.getConstant(Val, TLI.getPointerTy());
279  }
280
281  SDOperand getValue(const Value *V) {
282    SDOperand &N = NodeMap[V];
283    if (N.Val) return N;
284
285    MVT::ValueType VT = TLI.getValueType(V->getType());
286    if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(V)))
287      if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
288        visit(CE->getOpcode(), *CE);
289        assert(N.Val && "visit didn't populate the ValueMap!");
290        return N;
291      } else if (GlobalValue *GV = dyn_cast<GlobalValue>(C)) {
292        return N = DAG.getGlobalAddress(GV, VT);
293      } else if (isa<ConstantPointerNull>(C)) {
294        return N = DAG.getConstant(0, TLI.getPointerTy());
295      } else if (isa<UndefValue>(C)) {
296        return N = DAG.getNode(ISD::UNDEF, VT);
297      } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
298        return N = DAG.getConstantFP(CFP->getValue(), VT);
299      } else {
300        // Canonicalize all constant ints to be unsigned.
301        return N = DAG.getConstant(cast<ConstantIntegral>(C)->getRawValue(),VT);
302      }
303
304    if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
305      std::map<const AllocaInst*, int>::iterator SI =
306        FuncInfo.StaticAllocaMap.find(AI);
307      if (SI != FuncInfo.StaticAllocaMap.end())
308        return DAG.getFrameIndex(SI->second, TLI.getPointerTy());
309    }
310
311    std::map<const Value*, unsigned>::const_iterator VMI =
312      FuncInfo.ValueMap.find(V);
313    assert(VMI != FuncInfo.ValueMap.end() && "Value not in map!");
314
315    unsigned InReg = VMI->second;
316
317    // If this type is not legal, make it so now.
318    MVT::ValueType DestVT = TLI.getTypeToTransformTo(VT);
319
320    N = DAG.getCopyFromReg(DAG.getEntryNode(), InReg, DestVT);
321    if (DestVT < VT) {
322      // Source must be expanded.  This input value is actually coming from the
323      // register pair VMI->second and VMI->second+1.
324      N = DAG.getNode(ISD::BUILD_PAIR, VT, N,
325                      DAG.getCopyFromReg(DAG.getEntryNode(), InReg+1, DestVT));
326    } else {
327      if (DestVT > VT) { // Promotion case
328        if (MVT::isFloatingPoint(VT))
329          N = DAG.getNode(ISD::FP_ROUND, VT, N);
330        else
331          N = DAG.getNode(ISD::TRUNCATE, VT, N);
332      }
333    }
334
335    return N;
336  }
337
338  const SDOperand &setValue(const Value *V, SDOperand NewN) {
339    SDOperand &N = NodeMap[V];
340    assert(N.Val == 0 && "Already set a value for this node!");
341    return N = NewN;
342  }
343
344  // Terminator instructions.
345  void visitRet(ReturnInst &I);
346  void visitBr(BranchInst &I);
347  void visitUnreachable(UnreachableInst &I) { /* noop */ }
348
349  // These all get lowered before this pass.
350  void visitSwitch(SwitchInst &I) { assert(0 && "TODO"); }
351  void visitInvoke(InvokeInst &I) { assert(0 && "TODO"); }
352  void visitUnwind(UnwindInst &I) { assert(0 && "TODO"); }
353
354  //
355  void visitBinary(User &I, unsigned Opcode, bool isShift = false);
356  void visitAdd(User &I) {
357    visitBinary(I, I.getType()->isFloatingPoint() ? ISD::FADD : ISD::ADD);
358  }
359  void visitSub(User &I);
360  void visitMul(User &I) {
361    visitBinary(I, I.getType()->isFloatingPoint() ? ISD::FMUL : ISD::MUL);
362  }
363  void visitDiv(User &I) {
364    unsigned Opc;
365    const Type *Ty = I.getType();
366    if (Ty->isFloatingPoint())
367      Opc = ISD::FDIV;
368    else if (Ty->isUnsigned())
369      Opc = ISD::UDIV;
370    else
371      Opc = ISD::SDIV;
372    visitBinary(I, Opc);
373  }
374  void visitRem(User &I) {
375    unsigned Opc;
376    const Type *Ty = I.getType();
377    if (Ty->isFloatingPoint())
378      Opc = ISD::FREM;
379    else if (Ty->isUnsigned())
380      Opc = ISD::UREM;
381    else
382      Opc = ISD::SREM;
383    visitBinary(I, Opc);
384  }
385  void visitAnd(User &I) { visitBinary(I, ISD::AND); }
386  void visitOr (User &I) { visitBinary(I, ISD::OR); }
387  void visitXor(User &I) { visitBinary(I, ISD::XOR); }
388  void visitShl(User &I) { visitBinary(I, ISD::SHL, true); }
389  void visitShr(User &I) {
390    visitBinary(I, I.getType()->isUnsigned() ? ISD::SRL : ISD::SRA, true);
391  }
392
393  void visitSetCC(User &I, ISD::CondCode SignedOpc, ISD::CondCode UnsignedOpc);
394  void visitSetEQ(User &I) { visitSetCC(I, ISD::SETEQ, ISD::SETEQ); }
395  void visitSetNE(User &I) { visitSetCC(I, ISD::SETNE, ISD::SETNE); }
396  void visitSetLE(User &I) { visitSetCC(I, ISD::SETLE, ISD::SETULE); }
397  void visitSetGE(User &I) { visitSetCC(I, ISD::SETGE, ISD::SETUGE); }
398  void visitSetLT(User &I) { visitSetCC(I, ISD::SETLT, ISD::SETULT); }
399  void visitSetGT(User &I) { visitSetCC(I, ISD::SETGT, ISD::SETUGT); }
400
401  void visitGetElementPtr(User &I);
402  void visitCast(User &I);
403  void visitSelect(User &I);
404  //
405
406  void visitMalloc(MallocInst &I);
407  void visitFree(FreeInst &I);
408  void visitAlloca(AllocaInst &I);
409  void visitLoad(LoadInst &I);
410  void visitStore(StoreInst &I);
411  void visitPHI(PHINode &I) { } // PHI nodes are handled specially.
412  void visitCall(CallInst &I);
413
414  void visitVAStart(CallInst &I);
415  void visitVAArg(VAArgInst &I);
416  void visitVAEnd(CallInst &I);
417  void visitVACopy(CallInst &I);
418  void visitFrameReturnAddress(CallInst &I, bool isFrameAddress);
419
420  void visitMemIntrinsic(CallInst &I, unsigned Op);
421
422  void visitUserOp1(Instruction &I) {
423    assert(0 && "UserOp1 should not exist at instruction selection time!");
424    abort();
425  }
426  void visitUserOp2(Instruction &I) {
427    assert(0 && "UserOp2 should not exist at instruction selection time!");
428    abort();
429  }
430};
431} // end namespace llvm
432
433void SelectionDAGLowering::visitRet(ReturnInst &I) {
434  if (I.getNumOperands() == 0) {
435    DAG.setRoot(DAG.getNode(ISD::RET, MVT::Other, getRoot()));
436    return;
437  }
438
439  SDOperand Op1 = getValue(I.getOperand(0));
440  MVT::ValueType TmpVT;
441
442  switch (Op1.getValueType()) {
443  default: assert(0 && "Unknown value type!");
444  case MVT::i1:
445  case MVT::i8:
446  case MVT::i16:
447  case MVT::i32:
448    // If this is a machine where 32-bits is legal or expanded, promote to
449    // 32-bits, otherwise, promote to 64-bits.
450    if (TLI.getTypeAction(MVT::i32) == TargetLowering::Promote)
451      TmpVT = TLI.getTypeToTransformTo(MVT::i32);
452    else
453      TmpVT = MVT::i32;
454
455    // Extend integer types to result type.
456    if (I.getOperand(0)->getType()->isSigned())
457      Op1 = DAG.getNode(ISD::SIGN_EXTEND, TmpVT, Op1);
458    else
459      Op1 = DAG.getNode(ISD::ZERO_EXTEND, TmpVT, Op1);
460    break;
461  case MVT::f32:
462  case MVT::i64:
463  case MVT::f64:
464    break; // No extension needed!
465  }
466
467  DAG.setRoot(DAG.getNode(ISD::RET, MVT::Other, getRoot(), Op1));
468}
469
470void SelectionDAGLowering::visitBr(BranchInst &I) {
471  // Update machine-CFG edges.
472  MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
473
474  // Figure out which block is immediately after the current one.
475  MachineBasicBlock *NextBlock = 0;
476  MachineFunction::iterator BBI = CurMBB;
477  if (++BBI != CurMBB->getParent()->end())
478    NextBlock = BBI;
479
480  if (I.isUnconditional()) {
481    // If this is not a fall-through branch, emit the branch.
482    if (Succ0MBB != NextBlock)
483      DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, getRoot(),
484                              DAG.getBasicBlock(Succ0MBB)));
485  } else {
486    MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
487
488    SDOperand Cond = getValue(I.getCondition());
489    if (Succ1MBB == NextBlock) {
490      // If the condition is false, fall through.  This means we should branch
491      // if the condition is true to Succ #0.
492      DAG.setRoot(DAG.getNode(ISD::BRCOND, MVT::Other, getRoot(),
493                              Cond, DAG.getBasicBlock(Succ0MBB)));
494    } else if (Succ0MBB == NextBlock) {
495      // If the condition is true, fall through.  This means we should branch if
496      // the condition is false to Succ #1.  Invert the condition first.
497      SDOperand True = DAG.getConstant(1, Cond.getValueType());
498      Cond = DAG.getNode(ISD::XOR, Cond.getValueType(), Cond, True);
499      DAG.setRoot(DAG.getNode(ISD::BRCOND, MVT::Other, getRoot(),
500                              Cond, DAG.getBasicBlock(Succ1MBB)));
501    } else {
502      std::vector<SDOperand> Ops;
503      Ops.push_back(getRoot());
504      Ops.push_back(Cond);
505      Ops.push_back(DAG.getBasicBlock(Succ0MBB));
506      Ops.push_back(DAG.getBasicBlock(Succ1MBB));
507      DAG.setRoot(DAG.getNode(ISD::BRCONDTWOWAY, MVT::Other, Ops));
508    }
509  }
510}
511
512void SelectionDAGLowering::visitSub(User &I) {
513  // -0.0 - X --> fneg
514  if (I.getType()->isFloatingPoint()) {
515    if (ConstantFP *CFP = dyn_cast<ConstantFP>(I.getOperand(0)))
516      if (CFP->isExactlyValue(-0.0)) {
517        SDOperand Op2 = getValue(I.getOperand(1));
518        setValue(&I, DAG.getNode(ISD::FNEG, Op2.getValueType(), Op2));
519        return;
520      }
521    visitBinary(I, ISD::FSUB);
522  } else {
523    visitBinary(I, ISD::SUB);
524  }
525}
526
527void SelectionDAGLowering::visitBinary(User &I, unsigned Opcode, bool isShift) {
528  SDOperand Op1 = getValue(I.getOperand(0));
529  SDOperand Op2 = getValue(I.getOperand(1));
530
531  if (isShift)
532    Op2 = DAG.getNode(ISD::ANY_EXTEND, TLI.getShiftAmountTy(), Op2);
533
534  setValue(&I, DAG.getNode(Opcode, Op1.getValueType(), Op1, Op2));
535}
536
537void SelectionDAGLowering::visitSetCC(User &I,ISD::CondCode SignedOpcode,
538                                      ISD::CondCode UnsignedOpcode) {
539  SDOperand Op1 = getValue(I.getOperand(0));
540  SDOperand Op2 = getValue(I.getOperand(1));
541  ISD::CondCode Opcode = SignedOpcode;
542  if (I.getOperand(0)->getType()->isUnsigned())
543    Opcode = UnsignedOpcode;
544  setValue(&I, DAG.getSetCC(MVT::i1, Op1, Op2, Opcode));
545}
546
547void SelectionDAGLowering::visitSelect(User &I) {
548  SDOperand Cond     = getValue(I.getOperand(0));
549  SDOperand TrueVal  = getValue(I.getOperand(1));
550  SDOperand FalseVal = getValue(I.getOperand(2));
551  setValue(&I, DAG.getNode(ISD::SELECT, TrueVal.getValueType(), Cond,
552                           TrueVal, FalseVal));
553}
554
555void SelectionDAGLowering::visitCast(User &I) {
556  SDOperand N = getValue(I.getOperand(0));
557  MVT::ValueType SrcTy = TLI.getValueType(I.getOperand(0)->getType());
558  MVT::ValueType DestTy = TLI.getValueType(I.getType());
559
560  if (N.getValueType() == DestTy) {
561    setValue(&I, N);  // noop cast.
562  } else if (DestTy == MVT::i1) {
563    // Cast to bool is a comparison against zero, not truncation to zero.
564    SDOperand Zero = isInteger(SrcTy) ? DAG.getConstant(0, N.getValueType()) :
565                                       DAG.getConstantFP(0.0, N.getValueType());
566    setValue(&I, DAG.getSetCC(MVT::i1, N, Zero, ISD::SETNE));
567  } else if (isInteger(SrcTy)) {
568    if (isInteger(DestTy)) {        // Int -> Int cast
569      if (DestTy < SrcTy)   // Truncating cast?
570        setValue(&I, DAG.getNode(ISD::TRUNCATE, DestTy, N));
571      else if (I.getOperand(0)->getType()->isSigned())
572        setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, DestTy, N));
573      else
574        setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, DestTy, N));
575    } else {                        // Int -> FP cast
576      if (I.getOperand(0)->getType()->isSigned())
577        setValue(&I, DAG.getNode(ISD::SINT_TO_FP, DestTy, N));
578      else
579        setValue(&I, DAG.getNode(ISD::UINT_TO_FP, DestTy, N));
580    }
581  } else {
582    assert(isFloatingPoint(SrcTy) && "Unknown value type!");
583    if (isFloatingPoint(DestTy)) {  // FP -> FP cast
584      if (DestTy < SrcTy)   // Rounding cast?
585        setValue(&I, DAG.getNode(ISD::FP_ROUND, DestTy, N));
586      else
587        setValue(&I, DAG.getNode(ISD::FP_EXTEND, DestTy, N));
588    } else {                        // FP -> Int cast.
589      if (I.getType()->isSigned())
590        setValue(&I, DAG.getNode(ISD::FP_TO_SINT, DestTy, N));
591      else
592        setValue(&I, DAG.getNode(ISD::FP_TO_UINT, DestTy, N));
593    }
594  }
595}
596
597void SelectionDAGLowering::visitGetElementPtr(User &I) {
598  SDOperand N = getValue(I.getOperand(0));
599  const Type *Ty = I.getOperand(0)->getType();
600  const Type *UIntPtrTy = TD.getIntPtrType();
601
602  for (GetElementPtrInst::op_iterator OI = I.op_begin()+1, E = I.op_end();
603       OI != E; ++OI) {
604    Value *Idx = *OI;
605    if (const StructType *StTy = dyn_cast<StructType> (Ty)) {
606      unsigned Field = cast<ConstantUInt>(Idx)->getValue();
607      if (Field) {
608        // N = N + Offset
609        uint64_t Offset = TD.getStructLayout(StTy)->MemberOffsets[Field];
610        N = DAG.getNode(ISD::ADD, N.getValueType(), N,
611                        getIntPtrConstant(Offset));
612      }
613      Ty = StTy->getElementType(Field);
614    } else {
615      Ty = cast<SequentialType>(Ty)->getElementType();
616      if (!isa<Constant>(Idx) || !cast<Constant>(Idx)->isNullValue()) {
617        // N = N + Idx * ElementSize;
618        uint64_t ElementSize = TD.getTypeSize(Ty);
619        SDOperand IdxN = getValue(Idx), Scale = getIntPtrConstant(ElementSize);
620
621        // If the index is smaller or larger than intptr_t, truncate or extend
622        // it.
623        if (IdxN.getValueType() < Scale.getValueType()) {
624          if (Idx->getType()->isSigned())
625            IdxN = DAG.getNode(ISD::SIGN_EXTEND, Scale.getValueType(), IdxN);
626          else
627            IdxN = DAG.getNode(ISD::ZERO_EXTEND, Scale.getValueType(), IdxN);
628        } else if (IdxN.getValueType() > Scale.getValueType())
629          IdxN = DAG.getNode(ISD::TRUNCATE, Scale.getValueType(), IdxN);
630
631        IdxN = DAG.getNode(ISD::MUL, N.getValueType(), IdxN, Scale);
632        N = DAG.getNode(ISD::ADD, N.getValueType(), N, IdxN);
633      }
634    }
635  }
636  setValue(&I, N);
637}
638
639void SelectionDAGLowering::visitAlloca(AllocaInst &I) {
640  // If this is a fixed sized alloca in the entry block of the function,
641  // allocate it statically on the stack.
642  if (FuncInfo.StaticAllocaMap.count(&I))
643    return;   // getValue will auto-populate this.
644
645  const Type *Ty = I.getAllocatedType();
646  uint64_t TySize = TLI.getTargetData().getTypeSize(Ty);
647  unsigned Align = TLI.getTargetData().getTypeAlignment(Ty);
648
649  SDOperand AllocSize = getValue(I.getArraySize());
650  MVT::ValueType IntPtr = TLI.getPointerTy();
651  if (IntPtr < AllocSize.getValueType())
652    AllocSize = DAG.getNode(ISD::TRUNCATE, IntPtr, AllocSize);
653  else if (IntPtr > AllocSize.getValueType())
654    AllocSize = DAG.getNode(ISD::ZERO_EXTEND, IntPtr, AllocSize);
655
656  AllocSize = DAG.getNode(ISD::MUL, IntPtr, AllocSize,
657                          getIntPtrConstant(TySize));
658
659  // Handle alignment.  If the requested alignment is less than or equal to the
660  // stack alignment, ignore it and round the size of the allocation up to the
661  // stack alignment size.  If the size is greater than the stack alignment, we
662  // note this in the DYNAMIC_STACKALLOC node.
663  unsigned StackAlign =
664    TLI.getTargetMachine().getFrameInfo()->getStackAlignment();
665  if (Align <= StackAlign) {
666    Align = 0;
667    // Add SA-1 to the size.
668    AllocSize = DAG.getNode(ISD::ADD, AllocSize.getValueType(), AllocSize,
669                            getIntPtrConstant(StackAlign-1));
670    // Mask out the low bits for alignment purposes.
671    AllocSize = DAG.getNode(ISD::AND, AllocSize.getValueType(), AllocSize,
672                            getIntPtrConstant(~(uint64_t)(StackAlign-1)));
673  }
674
675  std::vector<MVT::ValueType> VTs;
676  VTs.push_back(AllocSize.getValueType());
677  VTs.push_back(MVT::Other);
678  std::vector<SDOperand> Ops;
679  Ops.push_back(getRoot());
680  Ops.push_back(AllocSize);
681  Ops.push_back(getIntPtrConstant(Align));
682  SDOperand DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, VTs, Ops);
683  DAG.setRoot(setValue(&I, DSA).getValue(1));
684
685  // Inform the Frame Information that we have just allocated a variable-sized
686  // object.
687  CurMBB->getParent()->getFrameInfo()->CreateVariableSizedObject();
688}
689
690
691void SelectionDAGLowering::visitLoad(LoadInst &I) {
692  SDOperand Ptr = getValue(I.getOperand(0));
693
694  SDOperand Root;
695  if (I.isVolatile())
696    Root = getRoot();
697  else {
698    // Do not serialize non-volatile loads against each other.
699    Root = DAG.getRoot();
700  }
701
702  SDOperand L = DAG.getLoad(TLI.getValueType(I.getType()), Root, Ptr,
703                            DAG.getSrcValue(I.getOperand(0)));
704  setValue(&I, L);
705
706  if (I.isVolatile())
707    DAG.setRoot(L.getValue(1));
708  else
709    PendingLoads.push_back(L.getValue(1));
710}
711
712
713void SelectionDAGLowering::visitStore(StoreInst &I) {
714  Value *SrcV = I.getOperand(0);
715  SDOperand Src = getValue(SrcV);
716  SDOperand Ptr = getValue(I.getOperand(1));
717  DAG.setRoot(DAG.getNode(ISD::STORE, MVT::Other, getRoot(), Src, Ptr,
718                          DAG.getSrcValue(I.getOperand(1))));
719}
720
721void SelectionDAGLowering::visitCall(CallInst &I) {
722  const char *RenameFn = 0;
723  SDOperand Tmp;
724  if (Function *F = I.getCalledFunction())
725    if (F->isExternal())
726      switch (F->getIntrinsicID()) {
727      case 0:     // Not an LLVM intrinsic.
728        if (F->getName() == "fabs" || F->getName() == "fabsf") {
729          if (I.getNumOperands() == 2 &&   // Basic sanity checks.
730              I.getOperand(1)->getType()->isFloatingPoint() &&
731              I.getType() == I.getOperand(1)->getType()) {
732            Tmp = getValue(I.getOperand(1));
733            setValue(&I, DAG.getNode(ISD::FABS, Tmp.getValueType(), Tmp));
734            return;
735          }
736        }
737        else if (F->getName() == "sin" || F->getName() == "sinf") {
738          if (I.getNumOperands() == 2 &&   // Basic sanity checks.
739              I.getOperand(1)->getType()->isFloatingPoint() &&
740              I.getType() == I.getOperand(1)->getType()) {
741            Tmp = getValue(I.getOperand(1));
742            setValue(&I, DAG.getNode(ISD::FSIN, Tmp.getValueType(), Tmp));
743            return;
744          }
745        }
746        else if (F->getName() == "cos" || F->getName() == "cosf") {
747          if (I.getNumOperands() == 2 &&   // Basic sanity checks.
748              I.getOperand(1)->getType()->isFloatingPoint() &&
749              I.getType() == I.getOperand(1)->getType()) {
750            Tmp = getValue(I.getOperand(1));
751            setValue(&I, DAG.getNode(ISD::FCOS, Tmp.getValueType(), Tmp));
752            return;
753          }
754        }
755        break;
756      case Intrinsic::vastart:  visitVAStart(I); return;
757      case Intrinsic::vaend:    visitVAEnd(I); return;
758      case Intrinsic::vacopy:   visitVACopy(I); return;
759      case Intrinsic::returnaddress: visitFrameReturnAddress(I, false); return;
760      case Intrinsic::frameaddress:  visitFrameReturnAddress(I, true); return;
761
762      case Intrinsic::setjmp:
763        RenameFn = "_setjmp"+!TLI.usesUnderscoreSetJmpLongJmp();
764        break;
765      case Intrinsic::longjmp:
766        RenameFn = "_longjmp"+!TLI.usesUnderscoreSetJmpLongJmp();
767        break;
768      case Intrinsic::memcpy:  visitMemIntrinsic(I, ISD::MEMCPY); return;
769      case Intrinsic::memset:  visitMemIntrinsic(I, ISD::MEMSET); return;
770      case Intrinsic::memmove: visitMemIntrinsic(I, ISD::MEMMOVE); return;
771
772      case Intrinsic::readport:
773      case Intrinsic::readio: {
774        std::vector<MVT::ValueType> VTs;
775        VTs.push_back(TLI.getValueType(I.getType()));
776        VTs.push_back(MVT::Other);
777        std::vector<SDOperand> Ops;
778        Ops.push_back(getRoot());
779        Ops.push_back(getValue(I.getOperand(1)));
780        Tmp = DAG.getNode(F->getIntrinsicID() == Intrinsic::readport ?
781                          ISD::READPORT : ISD::READIO, VTs, Ops);
782
783        setValue(&I, Tmp);
784        DAG.setRoot(Tmp.getValue(1));
785        return;
786      }
787      case Intrinsic::writeport:
788      case Intrinsic::writeio:
789        DAG.setRoot(DAG.getNode(F->getIntrinsicID() == Intrinsic::writeport ?
790                                ISD::WRITEPORT : ISD::WRITEIO, MVT::Other,
791                                getRoot(), getValue(I.getOperand(1)),
792                                getValue(I.getOperand(2))));
793        return;
794      case Intrinsic::dbg_stoppoint:
795      case Intrinsic::dbg_region_start:
796      case Intrinsic::dbg_region_end:
797      case Intrinsic::dbg_func_start:
798      case Intrinsic::dbg_declare:
799        if (I.getType() != Type::VoidTy)
800          setValue(&I, DAG.getNode(ISD::UNDEF, TLI.getValueType(I.getType())));
801        return;
802
803      case Intrinsic::isunordered:
804        setValue(&I, DAG.getSetCC(MVT::i1,getValue(I.getOperand(1)),
805                                  getValue(I.getOperand(2)), ISD::SETUO));
806        return;
807
808      case Intrinsic::sqrt:
809        setValue(&I, DAG.getNode(ISD::FSQRT,
810                                 getValue(I.getOperand(1)).getValueType(),
811                                 getValue(I.getOperand(1))));
812        return;
813
814      case Intrinsic::pcmarker:
815        Tmp = getValue(I.getOperand(1));
816        DAG.setRoot(DAG.getNode(ISD::PCMARKER, MVT::Other, getRoot(), Tmp));
817        return;
818      case Intrinsic::cttz:
819        setValue(&I, DAG.getNode(ISD::CTTZ,
820                                 getValue(I.getOperand(1)).getValueType(),
821                                 getValue(I.getOperand(1))));
822        return;
823      case Intrinsic::ctlz:
824        setValue(&I, DAG.getNode(ISD::CTLZ,
825                                 getValue(I.getOperand(1)).getValueType(),
826                                 getValue(I.getOperand(1))));
827        return;
828      case Intrinsic::ctpop:
829        setValue(&I, DAG.getNode(ISD::CTPOP,
830                                 getValue(I.getOperand(1)).getValueType(),
831                                 getValue(I.getOperand(1))));
832        return;
833      default:
834        std::cerr << I;
835        assert(0 && "This intrinsic is not implemented yet!");
836        return;
837      }
838
839  SDOperand Callee;
840  if (!RenameFn)
841    Callee = getValue(I.getOperand(0));
842  else
843    Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy());
844  std::vector<std::pair<SDOperand, const Type*> > Args;
845
846  for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) {
847    Value *Arg = I.getOperand(i);
848    SDOperand ArgNode = getValue(Arg);
849    Args.push_back(std::make_pair(ArgNode, Arg->getType()));
850  }
851
852  const PointerType *PT = cast<PointerType>(I.getCalledValue()->getType());
853  const FunctionType *FTy = cast<FunctionType>(PT->getElementType());
854
855  std::pair<SDOperand,SDOperand> Result =
856    TLI.LowerCallTo(getRoot(), I.getType(), FTy->isVarArg(), I.getCallingConv(),
857                    I.isTailCall(), Callee, Args, DAG);
858  if (I.getType() != Type::VoidTy)
859    setValue(&I, Result.first);
860  DAG.setRoot(Result.second);
861}
862
863void SelectionDAGLowering::visitMalloc(MallocInst &I) {
864  SDOperand Src = getValue(I.getOperand(0));
865
866  MVT::ValueType IntPtr = TLI.getPointerTy();
867
868  if (IntPtr < Src.getValueType())
869    Src = DAG.getNode(ISD::TRUNCATE, IntPtr, Src);
870  else if (IntPtr > Src.getValueType())
871    Src = DAG.getNode(ISD::ZERO_EXTEND, IntPtr, Src);
872
873  // Scale the source by the type size.
874  uint64_t ElementSize = TD.getTypeSize(I.getType()->getElementType());
875  Src = DAG.getNode(ISD::MUL, Src.getValueType(),
876                    Src, getIntPtrConstant(ElementSize));
877
878  std::vector<std::pair<SDOperand, const Type*> > Args;
879  Args.push_back(std::make_pair(Src, TLI.getTargetData().getIntPtrType()));
880
881  std::pair<SDOperand,SDOperand> Result =
882    TLI.LowerCallTo(getRoot(), I.getType(), false, CallingConv::C, true,
883                    DAG.getExternalSymbol("malloc", IntPtr),
884                    Args, DAG);
885  setValue(&I, Result.first);  // Pointers always fit in registers
886  DAG.setRoot(Result.second);
887}
888
889void SelectionDAGLowering::visitFree(FreeInst &I) {
890  std::vector<std::pair<SDOperand, const Type*> > Args;
891  Args.push_back(std::make_pair(getValue(I.getOperand(0)),
892                                TLI.getTargetData().getIntPtrType()));
893  MVT::ValueType IntPtr = TLI.getPointerTy();
894  std::pair<SDOperand,SDOperand> Result =
895    TLI.LowerCallTo(getRoot(), Type::VoidTy, false, CallingConv::C, true,
896                    DAG.getExternalSymbol("free", IntPtr), Args, DAG);
897  DAG.setRoot(Result.second);
898}
899
900// InsertAtEndOfBasicBlock - This method should be implemented by targets that
901// mark instructions with the 'usesCustomDAGSchedInserter' flag.  These
902// instructions are special in various ways, which require special support to
903// insert.  The specified MachineInstr is created but not inserted into any
904// basic blocks, and the scheduler passes ownership of it to this method.
905MachineBasicBlock *TargetLowering::InsertAtEndOfBasicBlock(MachineInstr *MI,
906                                                       MachineBasicBlock *MBB) {
907  std::cerr << "If a target marks an instruction with "
908               "'usesCustomDAGSchedInserter', it must implement "
909               "TargetLowering::InsertAtEndOfBasicBlock!\n";
910  abort();
911  return 0;
912}
913
914SDOperand TargetLowering::LowerVAStart(SDOperand Chain,
915                                       SDOperand VAListP, Value *VAListV,
916                                       SelectionDAG &DAG) {
917  // We have no sane default behavior, just emit a useful error message and bail
918  // out.
919  std::cerr << "Variable arguments handling not implemented on this target!\n";
920  abort();
921  return SDOperand();
922}
923
924SDOperand TargetLowering::LowerVAEnd(SDOperand Chain, SDOperand LP, Value *LV,
925                                     SelectionDAG &DAG) {
926  // Default to a noop.
927  return Chain;
928}
929
930SDOperand TargetLowering::LowerVACopy(SDOperand Chain,
931                                      SDOperand SrcP, Value *SrcV,
932                                      SDOperand DestP, Value *DestV,
933                                      SelectionDAG &DAG) {
934  // Default to copying the input list.
935  SDOperand Val = DAG.getLoad(getPointerTy(), Chain,
936                              SrcP, DAG.getSrcValue(SrcV));
937  SDOperand Result = DAG.getNode(ISD::STORE, MVT::Other, Val.getValue(1),
938                                 Val, DestP, DAG.getSrcValue(DestV));
939  return Result;
940}
941
942std::pair<SDOperand,SDOperand>
943TargetLowering::LowerVAArg(SDOperand Chain, SDOperand VAListP, Value *VAListV,
944                           const Type *ArgTy, SelectionDAG &DAG) {
945  // We have no sane default behavior, just emit a useful error message and bail
946  // out.
947  std::cerr << "Variable arguments handling not implemented on this target!\n";
948  abort();
949  return std::make_pair(SDOperand(), SDOperand());
950}
951
952
953void SelectionDAGLowering::visitVAStart(CallInst &I) {
954  DAG.setRoot(TLI.LowerVAStart(getRoot(), getValue(I.getOperand(1)),
955                               I.getOperand(1), DAG));
956}
957
958void SelectionDAGLowering::visitVAArg(VAArgInst &I) {
959  std::pair<SDOperand,SDOperand> Result =
960    TLI.LowerVAArg(getRoot(), getValue(I.getOperand(0)), I.getOperand(0),
961                   I.getType(), DAG);
962  setValue(&I, Result.first);
963  DAG.setRoot(Result.second);
964}
965
966void SelectionDAGLowering::visitVAEnd(CallInst &I) {
967  DAG.setRoot(TLI.LowerVAEnd(getRoot(), getValue(I.getOperand(1)),
968                             I.getOperand(1), DAG));
969}
970
971void SelectionDAGLowering::visitVACopy(CallInst &I) {
972  SDOperand Result =
973    TLI.LowerVACopy(getRoot(), getValue(I.getOperand(2)), I.getOperand(2),
974                    getValue(I.getOperand(1)), I.getOperand(1), DAG);
975  DAG.setRoot(Result);
976}
977
978
979// It is always conservatively correct for llvm.returnaddress and
980// llvm.frameaddress to return 0.
981std::pair<SDOperand, SDOperand>
982TargetLowering::LowerFrameReturnAddress(bool isFrameAddr, SDOperand Chain,
983                                        unsigned Depth, SelectionDAG &DAG) {
984  return std::make_pair(DAG.getConstant(0, getPointerTy()), Chain);
985}
986
987SDOperand TargetLowering::LowerOperation(SDOperand Op, SelectionDAG &DAG) {
988  assert(0 && "LowerOperation not implemented for this target!");
989  abort();
990  return SDOperand();
991}
992
993void SelectionDAGLowering::visitFrameReturnAddress(CallInst &I, bool isFrame) {
994  unsigned Depth = (unsigned)cast<ConstantUInt>(I.getOperand(1))->getValue();
995  std::pair<SDOperand,SDOperand> Result =
996    TLI.LowerFrameReturnAddress(isFrame, getRoot(), Depth, DAG);
997  setValue(&I, Result.first);
998  DAG.setRoot(Result.second);
999}
1000
1001void SelectionDAGLowering::visitMemIntrinsic(CallInst &I, unsigned Op) {
1002  std::vector<SDOperand> Ops;
1003  Ops.push_back(getRoot());
1004  Ops.push_back(getValue(I.getOperand(1)));
1005  Ops.push_back(getValue(I.getOperand(2)));
1006  Ops.push_back(getValue(I.getOperand(3)));
1007  Ops.push_back(getValue(I.getOperand(4)));
1008  DAG.setRoot(DAG.getNode(Op, MVT::Other, Ops));
1009}
1010
1011//===----------------------------------------------------------------------===//
1012// SelectionDAGISel code
1013//===----------------------------------------------------------------------===//
1014
1015unsigned SelectionDAGISel::MakeReg(MVT::ValueType VT) {
1016  return RegMap->createVirtualRegister(TLI.getRegClassFor(VT));
1017}
1018
1019void SelectionDAGISel::getAnalysisUsage(AnalysisUsage &AU) const {
1020  // FIXME: we only modify the CFG to split critical edges.  This
1021  // updates dom and loop info.
1022}
1023
1024
1025bool SelectionDAGISel::runOnFunction(Function &Fn) {
1026  MachineFunction &MF = MachineFunction::construct(&Fn, TLI.getTargetMachine());
1027  RegMap = MF.getSSARegMap();
1028  DEBUG(std::cerr << "\n\n\n=== " << Fn.getName() << "\n");
1029
1030  // First pass, split all critical edges for PHI nodes with incoming values
1031  // that are constants, this way the load of the constant into a vreg will not
1032  // be placed into MBBs that are used some other way.
1033  for (Function::iterator BB = Fn.begin(), E = Fn.end(); BB != E; ++BB) {
1034    PHINode *PN;
1035    for (BasicBlock::iterator BBI = BB->begin();
1036         (PN = dyn_cast<PHINode>(BBI)); ++BBI)
1037      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
1038        if (isa<Constant>(PN->getIncomingValue(i)))
1039          SplitCriticalEdge(PN->getIncomingBlock(i), BB);
1040  }
1041
1042  FunctionLoweringInfo FuncInfo(TLI, Fn, MF);
1043
1044  for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
1045    SelectBasicBlock(I, MF, FuncInfo);
1046
1047  return true;
1048}
1049
1050
1051SDOperand SelectionDAGISel::
1052CopyValueToVirtualRegister(SelectionDAGLowering &SDL, Value *V, unsigned Reg) {
1053  SDOperand Op = SDL.getValue(V);
1054  assert((Op.getOpcode() != ISD::CopyFromReg ||
1055          cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
1056         "Copy from a reg to the same reg!");
1057
1058  // If this type is not legal, we must make sure to not create an invalid
1059  // register use.
1060  MVT::ValueType SrcVT = Op.getValueType();
1061  MVT::ValueType DestVT = TLI.getTypeToTransformTo(SrcVT);
1062  SelectionDAG &DAG = SDL.DAG;
1063  if (SrcVT == DestVT) {
1064    return DAG.getCopyToReg(SDL.getRoot(), Reg, Op);
1065  } else if (SrcVT < DestVT) {
1066    // The src value is promoted to the register.
1067    if (MVT::isFloatingPoint(SrcVT))
1068      Op = DAG.getNode(ISD::FP_EXTEND, DestVT, Op);
1069    else
1070      Op = DAG.getNode(ISD::ANY_EXTEND, DestVT, Op);
1071    return DAG.getCopyToReg(SDL.getRoot(), Reg, Op);
1072  } else  {
1073    // The src value is expanded into multiple registers.
1074    SDOperand Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DestVT,
1075                               Op, DAG.getConstant(0, MVT::i32));
1076    SDOperand Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DestVT,
1077                               Op, DAG.getConstant(1, MVT::i32));
1078    Op = DAG.getCopyToReg(SDL.getRoot(), Reg, Lo);
1079    return DAG.getCopyToReg(Op, Reg+1, Hi);
1080  }
1081}
1082
1083/// IsOnlyUsedInOneBasicBlock - If the specified argument is only used in a
1084/// single basic block, return that block.  Otherwise, return a null pointer.
1085static BasicBlock *IsOnlyUsedInOneBasicBlock(Argument *A) {
1086  if (A->use_empty()) return 0;
1087  BasicBlock *BB = cast<Instruction>(A->use_back())->getParent();
1088  for (Argument::use_iterator UI = A->use_begin(), E = A->use_end(); UI != E;
1089       ++UI)
1090    if (isa<PHINode>(*UI) || cast<Instruction>(*UI)->getParent() != BB)
1091      return 0;  // Disagreement among the users?
1092
1093  // Okay, there is a single BB user.  Only permit this optimization if this is
1094  // the entry block, otherwise, we might sink argument loads into loops and
1095  // stuff.  Later, when we have global instruction selection, this won't be an
1096  // issue clearly.
1097  if (BB == BB->getParent()->begin())
1098    return BB;
1099  return 0;
1100}
1101
1102void SelectionDAGISel::
1103LowerArguments(BasicBlock *BB, SelectionDAGLowering &SDL,
1104               std::vector<SDOperand> &UnorderedChains) {
1105  // If this is the entry block, emit arguments.
1106  Function &F = *BB->getParent();
1107  FunctionLoweringInfo &FuncInfo = SDL.FuncInfo;
1108
1109  if (BB == &F.front()) {
1110    SDOperand OldRoot = SDL.DAG.getRoot();
1111
1112    std::vector<SDOperand> Args = TLI.LowerArguments(F, SDL.DAG);
1113
1114    // If there were side effects accessing the argument list, do not do
1115    // anything special.
1116    if (OldRoot != SDL.DAG.getRoot()) {
1117      unsigned a = 0;
1118      for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end();
1119           AI != E; ++AI,++a)
1120        if (!AI->use_empty()) {
1121          SDL.setValue(AI, Args[a]);
1122
1123          SDOperand Copy =
1124            CopyValueToVirtualRegister(SDL, AI, FuncInfo.ValueMap[AI]);
1125          UnorderedChains.push_back(Copy);
1126        }
1127    } else {
1128      // Otherwise, if any argument is only accessed in a single basic block,
1129      // emit that argument only to that basic block.
1130      unsigned a = 0;
1131      for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end();
1132           AI != E; ++AI,++a)
1133        if (!AI->use_empty()) {
1134          if (BasicBlock *BBU = IsOnlyUsedInOneBasicBlock(AI)) {
1135            FuncInfo.BlockLocalArguments.insert(std::make_pair(BBU,
1136                                                      std::make_pair(AI, a)));
1137          } else {
1138            SDL.setValue(AI, Args[a]);
1139            SDOperand Copy =
1140              CopyValueToVirtualRegister(SDL, AI, FuncInfo.ValueMap[AI]);
1141            UnorderedChains.push_back(Copy);
1142          }
1143        }
1144    }
1145
1146    // Next, if the function has live ins that need to be copied into vregs,
1147    // emit the copies now, into the top of the block.
1148    MachineFunction &MF = SDL.DAG.getMachineFunction();
1149    if (MF.livein_begin() != MF.livein_end()) {
1150      SSARegMap *RegMap = MF.getSSARegMap();
1151      const MRegisterInfo &MRI = *MF.getTarget().getRegisterInfo();
1152      for (MachineFunction::livein_iterator LI = MF.livein_begin(),
1153           E = MF.livein_end(); LI != E; ++LI)
1154        if (LI->second)
1155          MRI.copyRegToReg(*MF.begin(), MF.begin()->end(), LI->second,
1156                           LI->first, RegMap->getRegClass(LI->second));
1157    }
1158
1159    // Finally, if the target has anything special to do, allow it to do so.
1160    EmitFunctionEntryCode(F, SDL.DAG.getMachineFunction());
1161  }
1162
1163  // See if there are any block-local arguments that need to be emitted in this
1164  // block.
1165
1166  if (!FuncInfo.BlockLocalArguments.empty()) {
1167    std::multimap<BasicBlock*, std::pair<Argument*, unsigned> >::iterator BLAI =
1168      FuncInfo.BlockLocalArguments.lower_bound(BB);
1169    if (BLAI != FuncInfo.BlockLocalArguments.end() && BLAI->first == BB) {
1170      // Lower the arguments into this block.
1171      std::vector<SDOperand> Args = TLI.LowerArguments(F, SDL.DAG);
1172
1173      // Set up the value mapping for the local arguments.
1174      for (; BLAI != FuncInfo.BlockLocalArguments.end() && BLAI->first == BB;
1175           ++BLAI)
1176        SDL.setValue(BLAI->second.first, Args[BLAI->second.second]);
1177
1178      // Any dead arguments will just be ignored here.
1179    }
1180  }
1181}
1182
1183
1184void SelectionDAGISel::BuildSelectionDAG(SelectionDAG &DAG, BasicBlock *LLVMBB,
1185       std::vector<std::pair<MachineInstr*, unsigned> > &PHINodesToUpdate,
1186                                    FunctionLoweringInfo &FuncInfo) {
1187  SelectionDAGLowering SDL(DAG, TLI, FuncInfo);
1188
1189  std::vector<SDOperand> UnorderedChains;
1190
1191  // Lower any arguments needed in this block.
1192  LowerArguments(LLVMBB, SDL, UnorderedChains);
1193
1194  BB = FuncInfo.MBBMap[LLVMBB];
1195  SDL.setCurrentBasicBlock(BB);
1196
1197  // Lower all of the non-terminator instructions.
1198  for (BasicBlock::iterator I = LLVMBB->begin(), E = --LLVMBB->end();
1199       I != E; ++I)
1200    SDL.visit(*I);
1201
1202  // Ensure that all instructions which are used outside of their defining
1203  // blocks are available as virtual registers.
1204  for (BasicBlock::iterator I = LLVMBB->begin(), E = LLVMBB->end(); I != E;++I)
1205    if (!I->use_empty() && !isa<PHINode>(I)) {
1206      std::map<const Value*, unsigned>::iterator VMI =FuncInfo.ValueMap.find(I);
1207      if (VMI != FuncInfo.ValueMap.end())
1208        UnorderedChains.push_back(
1209                           CopyValueToVirtualRegister(SDL, I, VMI->second));
1210    }
1211
1212  // Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
1213  // ensure constants are generated when needed.  Remember the virtual registers
1214  // that need to be added to the Machine PHI nodes as input.  We cannot just
1215  // directly add them, because expansion might result in multiple MBB's for one
1216  // BB.  As such, the start of the BB might correspond to a different MBB than
1217  // the end.
1218  //
1219
1220  // Emit constants only once even if used by multiple PHI nodes.
1221  std::map<Constant*, unsigned> ConstantsOut;
1222
1223  // Check successor nodes PHI nodes that expect a constant to be available from
1224  // this block.
1225  TerminatorInst *TI = LLVMBB->getTerminator();
1226  for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
1227    BasicBlock *SuccBB = TI->getSuccessor(succ);
1228    MachineBasicBlock::iterator MBBI = FuncInfo.MBBMap[SuccBB]->begin();
1229    PHINode *PN;
1230
1231    // At this point we know that there is a 1-1 correspondence between LLVM PHI
1232    // nodes and Machine PHI nodes, but the incoming operands have not been
1233    // emitted yet.
1234    for (BasicBlock::iterator I = SuccBB->begin();
1235         (PN = dyn_cast<PHINode>(I)); ++I)
1236      if (!PN->use_empty()) {
1237        unsigned Reg;
1238        Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
1239        if (Constant *C = dyn_cast<Constant>(PHIOp)) {
1240          unsigned &RegOut = ConstantsOut[C];
1241          if (RegOut == 0) {
1242            RegOut = FuncInfo.CreateRegForValue(C);
1243            UnorderedChains.push_back(
1244                             CopyValueToVirtualRegister(SDL, C, RegOut));
1245          }
1246          Reg = RegOut;
1247        } else {
1248          Reg = FuncInfo.ValueMap[PHIOp];
1249          if (Reg == 0) {
1250            assert(isa<AllocaInst>(PHIOp) &&
1251                   FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
1252                   "Didn't codegen value into a register!??");
1253            Reg = FuncInfo.CreateRegForValue(PHIOp);
1254            UnorderedChains.push_back(
1255                             CopyValueToVirtualRegister(SDL, PHIOp, Reg));
1256          }
1257        }
1258
1259        // Remember that this register needs to added to the machine PHI node as
1260        // the input for this MBB.
1261        unsigned NumElements =
1262          TLI.getNumElements(TLI.getValueType(PN->getType()));
1263        for (unsigned i = 0, e = NumElements; i != e; ++i)
1264          PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i));
1265      }
1266  }
1267  ConstantsOut.clear();
1268
1269  // Turn all of the unordered chains into one factored node.
1270  if (!UnorderedChains.empty()) {
1271    UnorderedChains.push_back(SDL.getRoot());
1272    DAG.setRoot(DAG.getNode(ISD::TokenFactor, MVT::Other, UnorderedChains));
1273  }
1274
1275  // Lower the terminator after the copies are emitted.
1276  SDL.visit(*LLVMBB->getTerminator());
1277
1278  // Make sure the root of the DAG is up-to-date.
1279  DAG.setRoot(SDL.getRoot());
1280}
1281
1282void SelectionDAGISel::SelectBasicBlock(BasicBlock *LLVMBB, MachineFunction &MF,
1283                                        FunctionLoweringInfo &FuncInfo) {
1284  SelectionDAG DAG(TLI, MF);
1285  CurDAG = &DAG;
1286  std::vector<std::pair<MachineInstr*, unsigned> > PHINodesToUpdate;
1287
1288  // First step, lower LLVM code to some DAG.  This DAG may use operations and
1289  // types that are not supported by the target.
1290  BuildSelectionDAG(DAG, LLVMBB, PHINodesToUpdate, FuncInfo);
1291
1292  // Run the DAG combiner in pre-legalize mode, if we are told to do so
1293  if (CombinerEnabled) DAG.Combine(false);
1294
1295  DEBUG(std::cerr << "Lowered selection DAG:\n");
1296  DEBUG(DAG.dump());
1297
1298  // Second step, hack on the DAG until it only uses operations and types that
1299  // the target supports.
1300  DAG.Legalize();
1301
1302  DEBUG(std::cerr << "Legalized selection DAG:\n");
1303  DEBUG(DAG.dump());
1304
1305  if (ViewDAGs) DAG.viewGraph();
1306
1307  // Run the DAG combiner in post-legalize mode, if we are told to do so
1308  if (CombinerEnabled) DAG.Combine(true);
1309
1310  // Third, instruction select all of the operations to machine code, adding the
1311  // code to the MachineBasicBlock.
1312  InstructionSelectBasicBlock(DAG);
1313
1314  DEBUG(std::cerr << "Selected machine code:\n");
1315  DEBUG(BB->dump());
1316
1317  // Next, now that we know what the last MBB the LLVM BB expanded is, update
1318  // PHI nodes in successors.
1319  for (unsigned i = 0, e = PHINodesToUpdate.size(); i != e; ++i) {
1320    MachineInstr *PHI = PHINodesToUpdate[i].first;
1321    assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
1322           "This is not a machine PHI node that we are updating!");
1323    PHI->addRegOperand(PHINodesToUpdate[i].second);
1324    PHI->addMachineBasicBlockOperand(BB);
1325  }
1326
1327  // Finally, add the CFG edges from the last selected MBB to the successor
1328  // MBBs.
1329  TerminatorInst *TI = LLVMBB->getTerminator();
1330  for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) {
1331    MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[TI->getSuccessor(i)];
1332    BB->addSuccessor(Succ0MBB);
1333  }
1334}
1335