SelectionDAGISel.cpp revision 2bbd81064a6998496a71ff7ae8160b3caada64fa
1//===-- SelectionDAGISel.cpp - Implement the SelectionDAGISel class -------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAGISel class.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "isel"
15#include "llvm/CodeGen/SelectionDAGISel.h"
16#include "llvm/CodeGen/ScheduleDAG.h"
17#include "llvm/CallingConv.h"
18#include "llvm/Constants.h"
19#include "llvm/DerivedTypes.h"
20#include "llvm/Function.h"
21#include "llvm/GlobalVariable.h"
22#include "llvm/InlineAsm.h"
23#include "llvm/Instructions.h"
24#include "llvm/Intrinsics.h"
25#include "llvm/IntrinsicInst.h"
26#include "llvm/CodeGen/IntrinsicLowering.h"
27#include "llvm/CodeGen/MachineDebugInfo.h"
28#include "llvm/CodeGen/MachineFunction.h"
29#include "llvm/CodeGen/MachineFrameInfo.h"
30#include "llvm/CodeGen/MachineInstrBuilder.h"
31#include "llvm/CodeGen/SelectionDAG.h"
32#include "llvm/CodeGen/SSARegMap.h"
33#include "llvm/Target/MRegisterInfo.h"
34#include "llvm/Target/TargetData.h"
35#include "llvm/Target/TargetFrameInfo.h"
36#include "llvm/Target/TargetInstrInfo.h"
37#include "llvm/Target/TargetLowering.h"
38#include "llvm/Target/TargetMachine.h"
39#include "llvm/Transforms/Utils/BasicBlockUtils.h"
40#include "llvm/Support/CommandLine.h"
41#include "llvm/Support/MathExtras.h"
42#include "llvm/Support/Debug.h"
43#include <map>
44#include <set>
45#include <iostream>
46#include <algorithm>
47using namespace llvm;
48
49#ifndef NDEBUG
50static cl::opt<bool>
51ViewISelDAGs("view-isel-dags", cl::Hidden,
52          cl::desc("Pop up a window to show isel dags as they are selected"));
53static cl::opt<bool>
54ViewSchedDAGs("view-sched-dags", cl::Hidden,
55          cl::desc("Pop up a window to show sched dags as they are processed"));
56#else
57static const bool ViewISelDAGs = 0;
58static const bool ViewSchedDAGs = 0;
59#endif
60
61// Scheduling heuristics
62enum SchedHeuristics {
63  defaultScheduling,      // Let the target specify its preference.
64  noScheduling,           // No scheduling, emit breadth first sequence.
65  simpleScheduling,       // Two pass, min. critical path, max. utilization.
66  simpleNoItinScheduling, // Same as above exact using generic latency.
67  listSchedulingBURR,     // Bottom up reg reduction list scheduling.
68  listSchedulingTD        // Top-down list scheduler.
69};
70
71namespace {
72  cl::opt<SchedHeuristics>
73  ISHeuristic(
74    "sched",
75    cl::desc("Choose scheduling style"),
76    cl::init(defaultScheduling),
77    cl::values(
78      clEnumValN(defaultScheduling, "default",
79                 "Target preferred scheduling style"),
80      clEnumValN(noScheduling, "none",
81                 "No scheduling: breadth first sequencing"),
82      clEnumValN(simpleScheduling, "simple",
83                 "Simple two pass scheduling: minimize critical path "
84                 "and maximize processor utilization"),
85      clEnumValN(simpleNoItinScheduling, "simple-noitin",
86                 "Simple two pass scheduling: Same as simple "
87                 "except using generic latency"),
88      clEnumValN(listSchedulingBURR, "list-burr",
89                 "Bottom up register reduction list scheduling"),
90      clEnumValN(listSchedulingTD, "list-td",
91                 "Top-down list scheduler"),
92      clEnumValEnd));
93} // namespace
94
95namespace {
96  /// RegsForValue - This struct represents the physical registers that a
97  /// particular value is assigned and the type information about the value.
98  /// This is needed because values can be promoted into larger registers and
99  /// expanded into multiple smaller registers than the value.
100  struct RegsForValue {
101    /// Regs - This list hold the register (for legal and promoted values)
102    /// or register set (for expanded values) that the value should be assigned
103    /// to.
104    std::vector<unsigned> Regs;
105
106    /// RegVT - The value type of each register.
107    ///
108    MVT::ValueType RegVT;
109
110    /// ValueVT - The value type of the LLVM value, which may be promoted from
111    /// RegVT or made from merging the two expanded parts.
112    MVT::ValueType ValueVT;
113
114    RegsForValue() : RegVT(MVT::Other), ValueVT(MVT::Other) {}
115
116    RegsForValue(unsigned Reg, MVT::ValueType regvt, MVT::ValueType valuevt)
117      : RegVT(regvt), ValueVT(valuevt) {
118        Regs.push_back(Reg);
119    }
120    RegsForValue(const std::vector<unsigned> &regs,
121                 MVT::ValueType regvt, MVT::ValueType valuevt)
122      : Regs(regs), RegVT(regvt), ValueVT(valuevt) {
123    }
124
125    /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
126    /// this value and returns the result as a ValueVT value.  This uses
127    /// Chain/Flag as the input and updates them for the output Chain/Flag.
128    SDOperand getCopyFromRegs(SelectionDAG &DAG,
129                              SDOperand &Chain, SDOperand &Flag) const;
130
131    /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
132    /// specified value into the registers specified by this object.  This uses
133    /// Chain/Flag as the input and updates them for the output Chain/Flag.
134    void getCopyToRegs(SDOperand Val, SelectionDAG &DAG,
135                       SDOperand &Chain, SDOperand &Flag) const;
136
137    /// AddInlineAsmOperands - Add this value to the specified inlineasm node
138    /// operand list.  This adds the code marker and includes the number of
139    /// values added into it.
140    void AddInlineAsmOperands(unsigned Code, SelectionDAG &DAG,
141                              std::vector<SDOperand> &Ops) const;
142  };
143}
144
145namespace llvm {
146  //===--------------------------------------------------------------------===//
147  /// FunctionLoweringInfo - This contains information that is global to a
148  /// function that is used when lowering a region of the function.
149  class FunctionLoweringInfo {
150  public:
151    TargetLowering &TLI;
152    Function &Fn;
153    MachineFunction &MF;
154    SSARegMap *RegMap;
155
156    FunctionLoweringInfo(TargetLowering &TLI, Function &Fn,MachineFunction &MF);
157
158    /// MBBMap - A mapping from LLVM basic blocks to their machine code entry.
159    std::map<const BasicBlock*, MachineBasicBlock *> MBBMap;
160
161    /// ValueMap - Since we emit code for the function a basic block at a time,
162    /// we must remember which virtual registers hold the values for
163    /// cross-basic-block values.
164    std::map<const Value*, unsigned> ValueMap;
165
166    /// StaticAllocaMap - Keep track of frame indices for fixed sized allocas in
167    /// the entry block.  This allows the allocas to be efficiently referenced
168    /// anywhere in the function.
169    std::map<const AllocaInst*, int> StaticAllocaMap;
170
171    unsigned MakeReg(MVT::ValueType VT) {
172      return RegMap->createVirtualRegister(TLI.getRegClassFor(VT));
173    }
174
175    unsigned CreateRegForValue(const Value *V);
176
177    unsigned InitializeRegForValue(const Value *V) {
178      unsigned &R = ValueMap[V];
179      assert(R == 0 && "Already initialized this value register!");
180      return R = CreateRegForValue(V);
181    }
182  };
183}
184
185/// isUsedOutsideOfDefiningBlock - Return true if this instruction is used by
186/// PHI nodes or outside of the basic block that defines it, or used by a
187/// switch instruction, which may expand to multiple basic blocks.
188static bool isUsedOutsideOfDefiningBlock(Instruction *I) {
189  if (isa<PHINode>(I)) return true;
190  BasicBlock *BB = I->getParent();
191  for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E; ++UI)
192    if (cast<Instruction>(*UI)->getParent() != BB || isa<PHINode>(*UI) ||
193        isa<SwitchInst>(*UI))
194      return true;
195  return false;
196}
197
198/// isOnlyUsedInEntryBlock - If the specified argument is only used in the
199/// entry block, return true.  This includes arguments used by switches, since
200/// the switch may expand into multiple basic blocks.
201static bool isOnlyUsedInEntryBlock(Argument *A) {
202  BasicBlock *Entry = A->getParent()->begin();
203  for (Value::use_iterator UI = A->use_begin(), E = A->use_end(); UI != E; ++UI)
204    if (cast<Instruction>(*UI)->getParent() != Entry || isa<SwitchInst>(*UI))
205      return false;  // Use not in entry block.
206  return true;
207}
208
209FunctionLoweringInfo::FunctionLoweringInfo(TargetLowering &tli,
210                                           Function &fn, MachineFunction &mf)
211    : TLI(tli), Fn(fn), MF(mf), RegMap(MF.getSSARegMap()) {
212
213  // Create a vreg for each argument register that is not dead and is used
214  // outside of the entry block for the function.
215  for (Function::arg_iterator AI = Fn.arg_begin(), E = Fn.arg_end();
216       AI != E; ++AI)
217    if (!isOnlyUsedInEntryBlock(AI))
218      InitializeRegForValue(AI);
219
220  // Initialize the mapping of values to registers.  This is only set up for
221  // instruction values that are used outside of the block that defines
222  // them.
223  Function::iterator BB = Fn.begin(), EB = Fn.end();
224  for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
225    if (AllocaInst *AI = dyn_cast<AllocaInst>(I))
226      if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(AI->getArraySize())) {
227        const Type *Ty = AI->getAllocatedType();
228        uint64_t TySize = TLI.getTargetData().getTypeSize(Ty);
229        unsigned Align =
230          std::max((unsigned)TLI.getTargetData().getTypeAlignment(Ty),
231                   AI->getAlignment());
232
233        // If the alignment of the value is smaller than the size of the value,
234        // and if the size of the value is particularly small (<= 8 bytes),
235        // round up to the size of the value for potentially better performance.
236        //
237        // FIXME: This could be made better with a preferred alignment hook in
238        // TargetData.  It serves primarily to 8-byte align doubles for X86.
239        if (Align < TySize && TySize <= 8) Align = TySize;
240        TySize *= CUI->getValue();   // Get total allocated size.
241        if (TySize == 0) TySize = 1; // Don't create zero-sized stack objects.
242        StaticAllocaMap[AI] =
243          MF.getFrameInfo()->CreateStackObject((unsigned)TySize, Align);
244      }
245
246  for (; BB != EB; ++BB)
247    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
248      if (!I->use_empty() && isUsedOutsideOfDefiningBlock(I))
249        if (!isa<AllocaInst>(I) ||
250            !StaticAllocaMap.count(cast<AllocaInst>(I)))
251          InitializeRegForValue(I);
252
253  // Create an initial MachineBasicBlock for each LLVM BasicBlock in F.  This
254  // also creates the initial PHI MachineInstrs, though none of the input
255  // operands are populated.
256  for (BB = Fn.begin(), EB = Fn.end(); BB != EB; ++BB) {
257    MachineBasicBlock *MBB = new MachineBasicBlock(BB);
258    MBBMap[BB] = MBB;
259    MF.getBasicBlockList().push_back(MBB);
260
261    // Create Machine PHI nodes for LLVM PHI nodes, lowering them as
262    // appropriate.
263    PHINode *PN;
264    for (BasicBlock::iterator I = BB->begin();
265         (PN = dyn_cast<PHINode>(I)); ++I)
266      if (!PN->use_empty()) {
267        unsigned NumElements =
268          TLI.getNumElements(TLI.getValueType(PN->getType()));
269        unsigned PHIReg = ValueMap[PN];
270        assert(PHIReg &&"PHI node does not have an assigned virtual register!");
271        for (unsigned i = 0; i != NumElements; ++i)
272          BuildMI(MBB, TargetInstrInfo::PHI, PN->getNumOperands(), PHIReg+i);
273      }
274  }
275}
276
277/// CreateRegForValue - Allocate the appropriate number of virtual registers of
278/// the correctly promoted or expanded types.  Assign these registers
279/// consecutive vreg numbers and return the first assigned number.
280unsigned FunctionLoweringInfo::CreateRegForValue(const Value *V) {
281  MVT::ValueType VT = TLI.getValueType(V->getType());
282
283  // The number of multiples of registers that we need, to, e.g., split up
284  // a <2 x int64> -> 4 x i32 registers.
285  unsigned NumVectorRegs = 1;
286
287  // If this is a packed type, figure out what type it will decompose into
288  // and how many of the elements it will use.
289  if (VT == MVT::Vector) {
290    const PackedType *PTy = cast<PackedType>(V->getType());
291    unsigned NumElts = PTy->getNumElements();
292    MVT::ValueType EltTy = TLI.getValueType(PTy->getElementType());
293
294    // Divide the input until we get to a supported size.  This will always
295    // end with a scalar if the target doesn't support vectors.
296    while (NumElts > 1 && !TLI.isTypeLegal(getVectorType(EltTy, NumElts))) {
297      NumElts >>= 1;
298      NumVectorRegs <<= 1;
299    }
300    if (NumElts == 1)
301      VT = EltTy;
302    else
303      VT = getVectorType(EltTy, NumElts);
304  }
305
306  // The common case is that we will only create one register for this
307  // value.  If we have that case, create and return the virtual register.
308  unsigned NV = TLI.getNumElements(VT);
309  if (NV == 1) {
310    // If we are promoting this value, pick the next largest supported type.
311    MVT::ValueType PromotedType = TLI.getTypeToTransformTo(VT);
312    unsigned Reg = MakeReg(PromotedType);
313    // If this is a vector of supported or promoted types (e.g. 4 x i16),
314    // create all of the registers.
315    for (unsigned i = 1; i != NumVectorRegs; ++i)
316      MakeReg(PromotedType);
317    return Reg;
318  }
319
320  // If this value is represented with multiple target registers, make sure
321  // to create enough consecutive registers of the right (smaller) type.
322  unsigned NT = VT-1;  // Find the type to use.
323  while (TLI.getNumElements((MVT::ValueType)NT) != 1)
324    --NT;
325
326  unsigned R = MakeReg((MVT::ValueType)NT);
327  for (unsigned i = 1; i != NV*NumVectorRegs; ++i)
328    MakeReg((MVT::ValueType)NT);
329  return R;
330}
331
332//===----------------------------------------------------------------------===//
333/// SelectionDAGLowering - This is the common target-independent lowering
334/// implementation that is parameterized by a TargetLowering object.
335/// Also, targets can overload any lowering method.
336///
337namespace llvm {
338class SelectionDAGLowering {
339  MachineBasicBlock *CurMBB;
340
341  std::map<const Value*, SDOperand> NodeMap;
342
343  /// PendingLoads - Loads are not emitted to the program immediately.  We bunch
344  /// them up and then emit token factor nodes when possible.  This allows us to
345  /// get simple disambiguation between loads without worrying about alias
346  /// analysis.
347  std::vector<SDOperand> PendingLoads;
348
349  /// Case - A pair of values to record the Value for a switch case, and the
350  /// case's target basic block.
351  typedef std::pair<Constant*, MachineBasicBlock*> Case;
352  typedef std::vector<Case>::iterator              CaseItr;
353  typedef std::pair<CaseItr, CaseItr>              CaseRange;
354
355  /// CaseRec - A struct with ctor used in lowering switches to a binary tree
356  /// of conditional branches.
357  struct CaseRec {
358    CaseRec(MachineBasicBlock *bb, Constant *lt, Constant *ge, CaseRange r) :
359    CaseBB(bb), LT(lt), GE(ge), Range(r) {}
360
361    /// CaseBB - The MBB in which to emit the compare and branch
362    MachineBasicBlock *CaseBB;
363    /// LT, GE - If nonzero, we know the current case value must be less-than or
364    /// greater-than-or-equal-to these Constants.
365    Constant *LT;
366    Constant *GE;
367    /// Range - A pair of iterators representing the range of case values to be
368    /// processed at this point in the binary search tree.
369    CaseRange Range;
370  };
371
372  /// The comparison function for sorting Case values.
373  struct CaseCmp {
374    bool operator () (const Case& C1, const Case& C2) {
375      if (const ConstantUInt* U1 = dyn_cast<const ConstantUInt>(C1.first))
376        return U1->getValue() < cast<const ConstantUInt>(C2.first)->getValue();
377
378      const ConstantSInt* S1 = dyn_cast<const ConstantSInt>(C1.first);
379      return S1->getValue() < cast<const ConstantSInt>(C2.first)->getValue();
380    }
381  };
382
383public:
384  // TLI - This is information that describes the available target features we
385  // need for lowering.  This indicates when operations are unavailable,
386  // implemented with a libcall, etc.
387  TargetLowering &TLI;
388  SelectionDAG &DAG;
389  const TargetData &TD;
390
391  /// SwitchCases - Vector of CaseBlock structures used to communicate
392  /// SwitchInst code generation information.
393  std::vector<SelectionDAGISel::CaseBlock> SwitchCases;
394
395  /// FuncInfo - Information about the function as a whole.
396  ///
397  FunctionLoweringInfo &FuncInfo;
398
399  SelectionDAGLowering(SelectionDAG &dag, TargetLowering &tli,
400                       FunctionLoweringInfo &funcinfo)
401    : TLI(tli), DAG(dag), TD(DAG.getTarget().getTargetData()),
402      FuncInfo(funcinfo) {
403  }
404
405  /// getRoot - Return the current virtual root of the Selection DAG.
406  ///
407  SDOperand getRoot() {
408    if (PendingLoads.empty())
409      return DAG.getRoot();
410
411    if (PendingLoads.size() == 1) {
412      SDOperand Root = PendingLoads[0];
413      DAG.setRoot(Root);
414      PendingLoads.clear();
415      return Root;
416    }
417
418    // Otherwise, we have to make a token factor node.
419    SDOperand Root = DAG.getNode(ISD::TokenFactor, MVT::Other, PendingLoads);
420    PendingLoads.clear();
421    DAG.setRoot(Root);
422    return Root;
423  }
424
425  void visit(Instruction &I) { visit(I.getOpcode(), I); }
426
427  void visit(unsigned Opcode, User &I) {
428    switch (Opcode) {
429    default: assert(0 && "Unknown instruction type encountered!");
430             abort();
431      // Build the switch statement using the Instruction.def file.
432#define HANDLE_INST(NUM, OPCODE, CLASS) \
433    case Instruction::OPCODE:return visit##OPCODE((CLASS&)I);
434#include "llvm/Instruction.def"
435    }
436  }
437
438  void setCurrentBasicBlock(MachineBasicBlock *MBB) { CurMBB = MBB; }
439
440  SDOperand getLoadFrom(const Type *Ty, SDOperand Ptr,
441                        SDOperand SrcValue, SDOperand Root,
442                        bool isVolatile);
443
444  SDOperand getIntPtrConstant(uint64_t Val) {
445    return DAG.getConstant(Val, TLI.getPointerTy());
446  }
447
448  SDOperand getValue(const Value *V);
449
450  const SDOperand &setValue(const Value *V, SDOperand NewN) {
451    SDOperand &N = NodeMap[V];
452    assert(N.Val == 0 && "Already set a value for this node!");
453    return N = NewN;
454  }
455
456  RegsForValue GetRegistersForValue(const std::string &ConstrCode,
457                                    MVT::ValueType VT,
458                                    bool OutReg, bool InReg,
459                                    std::set<unsigned> &OutputRegs,
460                                    std::set<unsigned> &InputRegs);
461
462  // Terminator instructions.
463  void visitRet(ReturnInst &I);
464  void visitBr(BranchInst &I);
465  void visitSwitch(SwitchInst &I);
466  void visitUnreachable(UnreachableInst &I) { /* noop */ }
467
468  // Helper for visitSwitch
469  void visitSwitchCase(SelectionDAGISel::CaseBlock &CB);
470
471  // These all get lowered before this pass.
472  void visitInvoke(InvokeInst &I) { assert(0 && "TODO"); }
473  void visitUnwind(UnwindInst &I) { assert(0 && "TODO"); }
474
475  void visitBinary(User &I, unsigned IntOp, unsigned FPOp, unsigned VecOp);
476  void visitShift(User &I, unsigned Opcode);
477  void visitAdd(User &I) {
478    visitBinary(I, ISD::ADD, ISD::FADD, ISD::VADD);
479  }
480  void visitSub(User &I);
481  void visitMul(User &I) {
482    visitBinary(I, ISD::MUL, ISD::FMUL, ISD::VMUL);
483  }
484  void visitDiv(User &I) {
485    const Type *Ty = I.getType();
486    visitBinary(I,
487                Ty->isSigned() ? ISD::SDIV : ISD::UDIV, ISD::FDIV,
488                Ty->isSigned() ? ISD::VSDIV : ISD::VUDIV);
489  }
490  void visitRem(User &I) {
491    const Type *Ty = I.getType();
492    visitBinary(I, Ty->isSigned() ? ISD::SREM : ISD::UREM, ISD::FREM, 0);
493  }
494  void visitAnd(User &I) { visitBinary(I, ISD::AND, 0, ISD::VAND); }
495  void visitOr (User &I) { visitBinary(I, ISD::OR,  0, ISD::VOR); }
496  void visitXor(User &I) { visitBinary(I, ISD::XOR, 0, ISD::VXOR); }
497  void visitShl(User &I) { visitShift(I, ISD::SHL); }
498  void visitShr(User &I) {
499    visitShift(I, I.getType()->isUnsigned() ? ISD::SRL : ISD::SRA);
500  }
501
502  void visitSetCC(User &I, ISD::CondCode SignedOpc, ISD::CondCode UnsignedOpc);
503  void visitSetEQ(User &I) { visitSetCC(I, ISD::SETEQ, ISD::SETEQ); }
504  void visitSetNE(User &I) { visitSetCC(I, ISD::SETNE, ISD::SETNE); }
505  void visitSetLE(User &I) { visitSetCC(I, ISD::SETLE, ISD::SETULE); }
506  void visitSetGE(User &I) { visitSetCC(I, ISD::SETGE, ISD::SETUGE); }
507  void visitSetLT(User &I) { visitSetCC(I, ISD::SETLT, ISD::SETULT); }
508  void visitSetGT(User &I) { visitSetCC(I, ISD::SETGT, ISD::SETUGT); }
509
510  void visitExtractElement(User &I);
511  void visitInsertElement(User &I);
512
513  void visitGetElementPtr(User &I);
514  void visitCast(User &I);
515  void visitSelect(User &I);
516
517  void visitMalloc(MallocInst &I);
518  void visitFree(FreeInst &I);
519  void visitAlloca(AllocaInst &I);
520  void visitLoad(LoadInst &I);
521  void visitStore(StoreInst &I);
522  void visitPHI(PHINode &I) { } // PHI nodes are handled specially.
523  void visitCall(CallInst &I);
524  void visitInlineAsm(CallInst &I);
525  const char *visitIntrinsicCall(CallInst &I, unsigned Intrinsic);
526  void visitTargetIntrinsic(CallInst &I, unsigned Intrinsic);
527
528  void visitVAStart(CallInst &I);
529  void visitVAArg(VAArgInst &I);
530  void visitVAEnd(CallInst &I);
531  void visitVACopy(CallInst &I);
532  void visitFrameReturnAddress(CallInst &I, bool isFrameAddress);
533
534  void visitMemIntrinsic(CallInst &I, unsigned Op);
535
536  void visitUserOp1(Instruction &I) {
537    assert(0 && "UserOp1 should not exist at instruction selection time!");
538    abort();
539  }
540  void visitUserOp2(Instruction &I) {
541    assert(0 && "UserOp2 should not exist at instruction selection time!");
542    abort();
543  }
544};
545} // end namespace llvm
546
547SDOperand SelectionDAGLowering::getValue(const Value *V) {
548  SDOperand &N = NodeMap[V];
549  if (N.Val) return N;
550
551  const Type *VTy = V->getType();
552  MVT::ValueType VT = TLI.getValueType(VTy);
553  if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(V))) {
554    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
555      visit(CE->getOpcode(), *CE);
556      assert(N.Val && "visit didn't populate the ValueMap!");
557      return N;
558    } else if (GlobalValue *GV = dyn_cast<GlobalValue>(C)) {
559      return N = DAG.getGlobalAddress(GV, VT);
560    } else if (isa<ConstantPointerNull>(C)) {
561      return N = DAG.getConstant(0, TLI.getPointerTy());
562    } else if (isa<UndefValue>(C)) {
563      if (!isa<PackedType>(VTy))
564        return N = DAG.getNode(ISD::UNDEF, VT);
565
566      // Create a VBUILD_VECTOR of undef nodes.
567      const PackedType *PTy = cast<PackedType>(VTy);
568      unsigned NumElements = PTy->getNumElements();
569      MVT::ValueType PVT = TLI.getValueType(PTy->getElementType());
570
571      std::vector<SDOperand> Ops;
572      Ops.assign(NumElements, DAG.getNode(ISD::UNDEF, PVT));
573
574      // Create a VConstant node with generic Vector type.
575      Ops.push_back(DAG.getConstant(NumElements, MVT::i32));
576      Ops.push_back(DAG.getValueType(PVT));
577      return N = DAG.getNode(ISD::VBUILD_VECTOR, MVT::Vector, Ops);
578    } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
579      return N = DAG.getConstantFP(CFP->getValue(), VT);
580    } else if (const PackedType *PTy = dyn_cast<PackedType>(VTy)) {
581      unsigned NumElements = PTy->getNumElements();
582      MVT::ValueType PVT = TLI.getValueType(PTy->getElementType());
583
584      // Now that we know the number and type of the elements, push a
585      // Constant or ConstantFP node onto the ops list for each element of
586      // the packed constant.
587      std::vector<SDOperand> Ops;
588      if (ConstantPacked *CP = dyn_cast<ConstantPacked>(C)) {
589        for (unsigned i = 0; i != NumElements; ++i)
590          Ops.push_back(getValue(CP->getOperand(i)));
591      } else {
592        assert(isa<ConstantAggregateZero>(C) && "Unknown packed constant!");
593        SDOperand Op;
594        if (MVT::isFloatingPoint(PVT))
595          Op = DAG.getConstantFP(0, PVT);
596        else
597          Op = DAG.getConstant(0, PVT);
598        Ops.assign(NumElements, Op);
599      }
600
601      // Create a VBUILD_VECTOR node with generic Vector type.
602      Ops.push_back(DAG.getConstant(NumElements, MVT::i32));
603      Ops.push_back(DAG.getValueType(PVT));
604      return N = DAG.getNode(ISD::VBUILD_VECTOR, MVT::Vector, Ops);
605    } else {
606      // Canonicalize all constant ints to be unsigned.
607      return N = DAG.getConstant(cast<ConstantIntegral>(C)->getRawValue(),VT);
608    }
609  }
610
611  if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
612    std::map<const AllocaInst*, int>::iterator SI =
613    FuncInfo.StaticAllocaMap.find(AI);
614    if (SI != FuncInfo.StaticAllocaMap.end())
615      return DAG.getFrameIndex(SI->second, TLI.getPointerTy());
616  }
617
618  std::map<const Value*, unsigned>::const_iterator VMI =
619      FuncInfo.ValueMap.find(V);
620  assert(VMI != FuncInfo.ValueMap.end() && "Value not in map!");
621
622  unsigned InReg = VMI->second;
623
624  // If this type is not legal, make it so now.
625  if (VT == MVT::Vector) {
626    // FIXME: We only handle legal vectors right now.  We need a VBUILD_VECTOR
627    const PackedType *PTy = cast<PackedType>(VTy);
628    unsigned NumElements = PTy->getNumElements();
629    MVT::ValueType PVT = TLI.getValueType(PTy->getElementType());
630    MVT::ValueType TVT = MVT::getVectorType(PVT, NumElements);
631    assert(TLI.isTypeLegal(TVT) &&
632           "FIXME: Cannot handle illegal vector types here yet!");
633    VT = TVT;
634  }
635
636  MVT::ValueType DestVT = TLI.getTypeToTransformTo(VT);
637
638  N = DAG.getCopyFromReg(DAG.getEntryNode(), InReg, DestVT);
639  if (DestVT < VT) {
640    // Source must be expanded.  This input value is actually coming from the
641    // register pair VMI->second and VMI->second+1.
642    N = DAG.getNode(ISD::BUILD_PAIR, VT, N,
643                    DAG.getCopyFromReg(DAG.getEntryNode(), InReg+1, DestVT));
644  } else {
645    if (DestVT > VT) { // Promotion case
646      if (MVT::isFloatingPoint(VT))
647        N = DAG.getNode(ISD::FP_ROUND, VT, N);
648      else
649        N = DAG.getNode(ISD::TRUNCATE, VT, N);
650    }
651  }
652
653  return N;
654}
655
656
657void SelectionDAGLowering::visitRet(ReturnInst &I) {
658  if (I.getNumOperands() == 0) {
659    DAG.setRoot(DAG.getNode(ISD::RET, MVT::Other, getRoot()));
660    return;
661  }
662  std::vector<SDOperand> NewValues;
663  NewValues.push_back(getRoot());
664  for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
665    SDOperand RetOp = getValue(I.getOperand(i));
666
667    // If this is an integer return value, we need to promote it ourselves to
668    // the full width of a register, since LegalizeOp will use ANY_EXTEND rather
669    // than sign/zero.
670    if (MVT::isInteger(RetOp.getValueType()) &&
671        RetOp.getValueType() < MVT::i64) {
672      MVT::ValueType TmpVT;
673      if (TLI.getTypeAction(MVT::i32) == TargetLowering::Promote)
674        TmpVT = TLI.getTypeToTransformTo(MVT::i32);
675      else
676        TmpVT = MVT::i32;
677
678      if (I.getOperand(i)->getType()->isSigned())
679        RetOp = DAG.getNode(ISD::SIGN_EXTEND, TmpVT, RetOp);
680      else
681        RetOp = DAG.getNode(ISD::ZERO_EXTEND, TmpVT, RetOp);
682    }
683    NewValues.push_back(RetOp);
684  }
685  DAG.setRoot(DAG.getNode(ISD::RET, MVT::Other, NewValues));
686}
687
688void SelectionDAGLowering::visitBr(BranchInst &I) {
689  // Update machine-CFG edges.
690  MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
691  CurMBB->addSuccessor(Succ0MBB);
692
693  // Figure out which block is immediately after the current one.
694  MachineBasicBlock *NextBlock = 0;
695  MachineFunction::iterator BBI = CurMBB;
696  if (++BBI != CurMBB->getParent()->end())
697    NextBlock = BBI;
698
699  if (I.isUnconditional()) {
700    // If this is not a fall-through branch, emit the branch.
701    if (Succ0MBB != NextBlock)
702      DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, getRoot(),
703                              DAG.getBasicBlock(Succ0MBB)));
704  } else {
705    MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
706    CurMBB->addSuccessor(Succ1MBB);
707
708    SDOperand Cond = getValue(I.getCondition());
709    if (Succ1MBB == NextBlock) {
710      // If the condition is false, fall through.  This means we should branch
711      // if the condition is true to Succ #0.
712      DAG.setRoot(DAG.getNode(ISD::BRCOND, MVT::Other, getRoot(),
713                              Cond, DAG.getBasicBlock(Succ0MBB)));
714    } else if (Succ0MBB == NextBlock) {
715      // If the condition is true, fall through.  This means we should branch if
716      // the condition is false to Succ #1.  Invert the condition first.
717      SDOperand True = DAG.getConstant(1, Cond.getValueType());
718      Cond = DAG.getNode(ISD::XOR, Cond.getValueType(), Cond, True);
719      DAG.setRoot(DAG.getNode(ISD::BRCOND, MVT::Other, getRoot(),
720                              Cond, DAG.getBasicBlock(Succ1MBB)));
721    } else {
722      std::vector<SDOperand> Ops;
723      Ops.push_back(getRoot());
724      // If the false case is the current basic block, then this is a self
725      // loop. We do not want to emit "Loop: ... brcond Out; br Loop", as it
726      // adds an extra instruction in the loop.  Instead, invert the
727      // condition and emit "Loop: ... br!cond Loop; br Out.
728      if (CurMBB == Succ1MBB) {
729        std::swap(Succ0MBB, Succ1MBB);
730        SDOperand True = DAG.getConstant(1, Cond.getValueType());
731        Cond = DAG.getNode(ISD::XOR, Cond.getValueType(), Cond, True);
732      }
733      SDOperand True = DAG.getNode(ISD::BRCOND, MVT::Other, getRoot(), Cond,
734                                   DAG.getBasicBlock(Succ0MBB));
735      DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, True,
736                              DAG.getBasicBlock(Succ1MBB)));
737    }
738  }
739}
740
741/// visitSwitchCase - Emits the necessary code to represent a single node in
742/// the binary search tree resulting from lowering a switch instruction.
743void SelectionDAGLowering::visitSwitchCase(SelectionDAGISel::CaseBlock &CB) {
744  SDOperand SwitchOp = getValue(CB.SwitchV);
745  SDOperand CaseOp = getValue(CB.CaseC);
746  SDOperand Cond = DAG.getSetCC(MVT::i1, SwitchOp, CaseOp, CB.CC);
747
748  // Set NextBlock to be the MBB immediately after the current one, if any.
749  // This is used to avoid emitting unnecessary branches to the next block.
750  MachineBasicBlock *NextBlock = 0;
751  MachineFunction::iterator BBI = CurMBB;
752  if (++BBI != CurMBB->getParent()->end())
753    NextBlock = BBI;
754
755  // If the lhs block is the next block, invert the condition so that we can
756  // fall through to the lhs instead of the rhs block.
757  if (CB.LHSBB == NextBlock) {
758    std::swap(CB.LHSBB, CB.RHSBB);
759    SDOperand True = DAG.getConstant(1, Cond.getValueType());
760    Cond = DAG.getNode(ISD::XOR, Cond.getValueType(), Cond, True);
761  }
762  SDOperand BrCond = DAG.getNode(ISD::BRCOND, MVT::Other, getRoot(), Cond,
763                                 DAG.getBasicBlock(CB.LHSBB));
764  if (CB.RHSBB == NextBlock)
765    DAG.setRoot(BrCond);
766  else
767    DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, BrCond,
768                            DAG.getBasicBlock(CB.RHSBB)));
769  // Update successor info
770  CurMBB->addSuccessor(CB.LHSBB);
771  CurMBB->addSuccessor(CB.RHSBB);
772}
773
774void SelectionDAGLowering::visitSwitch(SwitchInst &I) {
775  // Figure out which block is immediately after the current one.
776  MachineBasicBlock *NextBlock = 0;
777  MachineFunction::iterator BBI = CurMBB;
778  if (++BBI != CurMBB->getParent()->end())
779    NextBlock = BBI;
780
781  // If there is only the default destination, branch to it if it is not the
782  // next basic block.  Otherwise, just fall through.
783  if (I.getNumOperands() == 2) {
784    // Update machine-CFG edges.
785    MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[I.getDefaultDest()];
786    // If this is not a fall-through branch, emit the branch.
787    if (DefaultMBB != NextBlock)
788      DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, getRoot(),
789                              DAG.getBasicBlock(DefaultMBB)));
790    return;
791  }
792
793  // If there are any non-default case statements, create a vector of Cases
794  // representing each one, and sort the vector so that we can efficiently
795  // create a binary search tree from them.
796  std::vector<Case> Cases;
797  for (unsigned i = 1; i < I.getNumSuccessors(); ++i) {
798    MachineBasicBlock *SMBB = FuncInfo.MBBMap[I.getSuccessor(i)];
799    Cases.push_back(Case(I.getSuccessorValue(i), SMBB));
800  }
801  std::sort(Cases.begin(), Cases.end(), CaseCmp());
802
803  // Get the Value to be switched on and default basic blocks, which will be
804  // inserted into CaseBlock records, representing basic blocks in the binary
805  // search tree.
806  Value *SV = I.getOperand(0);
807  MachineBasicBlock *Default = FuncInfo.MBBMap[I.getDefaultDest()];
808
809  // Get the current MachineFunction and LLVM basic block, for use in creating
810  // and inserting new MBBs during the creation of the binary search tree.
811  MachineFunction *CurMF = CurMBB->getParent();
812  const BasicBlock *LLVMBB = CurMBB->getBasicBlock();
813
814  // Push the initial CaseRec onto the worklist
815  std::vector<CaseRec> CaseVec;
816  CaseVec.push_back(CaseRec(CurMBB,0,0,CaseRange(Cases.begin(),Cases.end())));
817
818  while (!CaseVec.empty()) {
819    // Grab a record representing a case range to process off the worklist
820    CaseRec CR = CaseVec.back();
821    CaseVec.pop_back();
822
823    // Size is the number of Cases represented by this range.  If Size is 1,
824    // then we are processing a leaf of the binary search tree.  Otherwise,
825    // we need to pick a pivot, and push left and right ranges onto the
826    // worklist.
827    unsigned Size = CR.Range.second - CR.Range.first;
828
829    if (Size == 1) {
830      // Create a CaseBlock record representing a conditional branch to
831      // the Case's target mbb if the value being switched on SV is equal
832      // to C.  Otherwise, branch to default.
833      Constant *C = CR.Range.first->first;
834      MachineBasicBlock *Target = CR.Range.first->second;
835      SelectionDAGISel::CaseBlock CB(ISD::SETEQ, SV, C, Target, Default,
836                                     CR.CaseBB);
837      // If the MBB representing the leaf node is the current MBB, then just
838      // call visitSwitchCase to emit the code into the current block.
839      // Otherwise, push the CaseBlock onto the vector to be later processed
840      // by SDISel, and insert the node's MBB before the next MBB.
841      if (CR.CaseBB == CurMBB)
842        visitSwitchCase(CB);
843      else {
844        SwitchCases.push_back(CB);
845        CurMF->getBasicBlockList().insert(BBI, CR.CaseBB);
846      }
847    } else {
848      // split case range at pivot
849      CaseItr Pivot = CR.Range.first + (Size / 2);
850      CaseRange LHSR(CR.Range.first, Pivot);
851      CaseRange RHSR(Pivot, CR.Range.second);
852      Constant *C = Pivot->first;
853      MachineBasicBlock *RHSBB = 0, *LHSBB = 0;
854      // We know that we branch to the LHS if the Value being switched on is
855      // less than the Pivot value, C.  We use this to optimize our binary
856      // tree a bit, by recognizing that if SV is greater than or equal to the
857      // LHS's Case Value, and that Case Value is exactly one less than the
858      // Pivot's Value, then we can branch directly to the LHS's Target,
859      // rather than creating a leaf node for it.
860      if ((LHSR.second - LHSR.first) == 1 &&
861          LHSR.first->first == CR.GE &&
862          cast<ConstantIntegral>(C)->getRawValue() ==
863          (cast<ConstantIntegral>(CR.GE)->getRawValue() + 1ULL)) {
864        LHSBB = LHSR.first->second;
865      } else {
866        LHSBB = new MachineBasicBlock(LLVMBB);
867        CaseVec.push_back(CaseRec(LHSBB,C,CR.GE,LHSR));
868      }
869      // Similar to the optimization above, if the Value being switched on is
870      // known to be less than the Constant CR.LT, and the current Case Value
871      // is CR.LT - 1, then we can branch directly to the target block for
872      // the current Case Value, rather than emitting a RHS leaf node for it.
873      if ((RHSR.second - RHSR.first) == 1 && CR.LT &&
874          cast<ConstantIntegral>(RHSR.first->first)->getRawValue() ==
875          (cast<ConstantIntegral>(CR.LT)->getRawValue() - 1ULL)) {
876        RHSBB = RHSR.first->second;
877      } else {
878        RHSBB = new MachineBasicBlock(LLVMBB);
879        CaseVec.push_back(CaseRec(RHSBB,CR.LT,C,RHSR));
880      }
881      // Create a CaseBlock record representing a conditional branch to
882      // the LHS node if the value being switched on SV is less than C.
883      // Otherwise, branch to LHS.
884      ISD::CondCode CC = C->getType()->isSigned() ? ISD::SETLT : ISD::SETULT;
885      SelectionDAGISel::CaseBlock CB(CC, SV, C, LHSBB, RHSBB, CR.CaseBB);
886      if (CR.CaseBB == CurMBB)
887        visitSwitchCase(CB);
888      else {
889        SwitchCases.push_back(CB);
890        CurMF->getBasicBlockList().insert(BBI, CR.CaseBB);
891      }
892    }
893  }
894}
895
896void SelectionDAGLowering::visitSub(User &I) {
897  // -0.0 - X --> fneg
898  if (I.getType()->isFloatingPoint()) {
899    if (ConstantFP *CFP = dyn_cast<ConstantFP>(I.getOperand(0)))
900      if (CFP->isExactlyValue(-0.0)) {
901        SDOperand Op2 = getValue(I.getOperand(1));
902        setValue(&I, DAG.getNode(ISD::FNEG, Op2.getValueType(), Op2));
903        return;
904      }
905  }
906  visitBinary(I, ISD::SUB, ISD::FSUB, ISD::VSUB);
907}
908
909void SelectionDAGLowering::visitBinary(User &I, unsigned IntOp, unsigned FPOp,
910                                       unsigned VecOp) {
911  const Type *Ty = I.getType();
912  SDOperand Op1 = getValue(I.getOperand(0));
913  SDOperand Op2 = getValue(I.getOperand(1));
914
915  if (Ty->isIntegral()) {
916    setValue(&I, DAG.getNode(IntOp, Op1.getValueType(), Op1, Op2));
917  } else if (Ty->isFloatingPoint()) {
918    setValue(&I, DAG.getNode(FPOp, Op1.getValueType(), Op1, Op2));
919  } else {
920    const PackedType *PTy = cast<PackedType>(Ty);
921    SDOperand Num = DAG.getConstant(PTy->getNumElements(), MVT::i32);
922    SDOperand Typ = DAG.getValueType(TLI.getValueType(PTy->getElementType()));
923    setValue(&I, DAG.getNode(VecOp, MVT::Vector, Op1, Op2, Num, Typ));
924  }
925}
926
927void SelectionDAGLowering::visitShift(User &I, unsigned Opcode) {
928  SDOperand Op1 = getValue(I.getOperand(0));
929  SDOperand Op2 = getValue(I.getOperand(1));
930
931  Op2 = DAG.getNode(ISD::ANY_EXTEND, TLI.getShiftAmountTy(), Op2);
932
933  setValue(&I, DAG.getNode(Opcode, Op1.getValueType(), Op1, Op2));
934}
935
936void SelectionDAGLowering::visitSetCC(User &I,ISD::CondCode SignedOpcode,
937                                      ISD::CondCode UnsignedOpcode) {
938  SDOperand Op1 = getValue(I.getOperand(0));
939  SDOperand Op2 = getValue(I.getOperand(1));
940  ISD::CondCode Opcode = SignedOpcode;
941  if (I.getOperand(0)->getType()->isUnsigned())
942    Opcode = UnsignedOpcode;
943  setValue(&I, DAG.getSetCC(MVT::i1, Op1, Op2, Opcode));
944}
945
946void SelectionDAGLowering::visitSelect(User &I) {
947  SDOperand Cond     = getValue(I.getOperand(0));
948  SDOperand TrueVal  = getValue(I.getOperand(1));
949  SDOperand FalseVal = getValue(I.getOperand(2));
950  setValue(&I, DAG.getNode(ISD::SELECT, TrueVal.getValueType(), Cond,
951                           TrueVal, FalseVal));
952}
953
954void SelectionDAGLowering::visitCast(User &I) {
955  SDOperand N = getValue(I.getOperand(0));
956  MVT::ValueType SrcVT = N.getValueType();
957  MVT::ValueType DestVT = TLI.getValueType(I.getType());
958
959  if (DestVT == MVT::Vector) {
960    // This is a cast to a vector from something else.  This is always a bit
961    // convert.  Get information about the input vector.
962    const PackedType *DestTy = cast<PackedType>(I.getType());
963    MVT::ValueType EltVT = TLI.getValueType(DestTy->getElementType());
964    setValue(&I, DAG.getNode(ISD::VBIT_CONVERT, DestVT, N,
965                             DAG.getConstant(DestTy->getNumElements(),MVT::i32),
966                             DAG.getValueType(EltVT)));
967  } else if (SrcVT == DestVT) {
968    setValue(&I, N);  // noop cast.
969  } else if (DestVT == MVT::i1) {
970    // Cast to bool is a comparison against zero, not truncation to zero.
971    SDOperand Zero = isInteger(SrcVT) ? DAG.getConstant(0, N.getValueType()) :
972                                       DAG.getConstantFP(0.0, N.getValueType());
973    setValue(&I, DAG.getSetCC(MVT::i1, N, Zero, ISD::SETNE));
974  } else if (isInteger(SrcVT)) {
975    if (isInteger(DestVT)) {        // Int -> Int cast
976      if (DestVT < SrcVT)   // Truncating cast?
977        setValue(&I, DAG.getNode(ISD::TRUNCATE, DestVT, N));
978      else if (I.getOperand(0)->getType()->isSigned())
979        setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, DestVT, N));
980      else
981        setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, DestVT, N));
982    } else if (isFloatingPoint(DestVT)) {           // Int -> FP cast
983      if (I.getOperand(0)->getType()->isSigned())
984        setValue(&I, DAG.getNode(ISD::SINT_TO_FP, DestVT, N));
985      else
986        setValue(&I, DAG.getNode(ISD::UINT_TO_FP, DestVT, N));
987    } else {
988      assert(0 && "Unknown cast!");
989    }
990  } else if (isFloatingPoint(SrcVT)) {
991    if (isFloatingPoint(DestVT)) {  // FP -> FP cast
992      if (DestVT < SrcVT)   // Rounding cast?
993        setValue(&I, DAG.getNode(ISD::FP_ROUND, DestVT, N));
994      else
995        setValue(&I, DAG.getNode(ISD::FP_EXTEND, DestVT, N));
996    } else if (isInteger(DestVT)) {        // FP -> Int cast.
997      if (I.getType()->isSigned())
998        setValue(&I, DAG.getNode(ISD::FP_TO_SINT, DestVT, N));
999      else
1000        setValue(&I, DAG.getNode(ISD::FP_TO_UINT, DestVT, N));
1001    } else {
1002      assert(0 && "Unknown cast!");
1003    }
1004  } else {
1005    assert(SrcVT == MVT::Vector && "Unknown cast!");
1006    assert(DestVT != MVT::Vector && "Casts to vector already handled!");
1007    // This is a cast from a vector to something else.  This is always a bit
1008    // convert.  Get information about the input vector.
1009    setValue(&I, DAG.getNode(ISD::VBIT_CONVERT, DestVT, N));
1010  }
1011}
1012
1013void SelectionDAGLowering::visitInsertElement(User &I) {
1014  SDOperand InVec = getValue(I.getOperand(0));
1015  SDOperand InVal = getValue(I.getOperand(1));
1016  SDOperand InIdx = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(),
1017                                getValue(I.getOperand(2)));
1018
1019  SDOperand Num = *(InVec.Val->op_end()-2);
1020  SDOperand Typ = *(InVec.Val->op_end()-1);
1021  setValue(&I, DAG.getNode(ISD::VINSERT_VECTOR_ELT, MVT::Vector,
1022                           InVec, InVal, InIdx, Num, Typ));
1023}
1024
1025void SelectionDAGLowering::visitExtractElement(User &I) {
1026  SDOperand InVec = getValue(I.getOperand(0));
1027  SDOperand InIdx = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(),
1028                                getValue(I.getOperand(1)));
1029  SDOperand Typ = *(InVec.Val->op_end()-1);
1030  setValue(&I, DAG.getNode(ISD::VEXTRACT_VECTOR_ELT,
1031                           TLI.getValueType(I.getType()), InVec, InIdx));
1032}
1033
1034void SelectionDAGLowering::visitGetElementPtr(User &I) {
1035  SDOperand N = getValue(I.getOperand(0));
1036  const Type *Ty = I.getOperand(0)->getType();
1037  const Type *UIntPtrTy = TD.getIntPtrType();
1038
1039  for (GetElementPtrInst::op_iterator OI = I.op_begin()+1, E = I.op_end();
1040       OI != E; ++OI) {
1041    Value *Idx = *OI;
1042    if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
1043      unsigned Field = cast<ConstantUInt>(Idx)->getValue();
1044      if (Field) {
1045        // N = N + Offset
1046        uint64_t Offset = TD.getStructLayout(StTy)->MemberOffsets[Field];
1047        N = DAG.getNode(ISD::ADD, N.getValueType(), N,
1048                        getIntPtrConstant(Offset));
1049      }
1050      Ty = StTy->getElementType(Field);
1051    } else {
1052      Ty = cast<SequentialType>(Ty)->getElementType();
1053
1054      // If this is a constant subscript, handle it quickly.
1055      if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
1056        if (CI->getRawValue() == 0) continue;
1057
1058        uint64_t Offs;
1059        if (ConstantSInt *CSI = dyn_cast<ConstantSInt>(CI))
1060          Offs = (int64_t)TD.getTypeSize(Ty)*CSI->getValue();
1061        else
1062          Offs = TD.getTypeSize(Ty)*cast<ConstantUInt>(CI)->getValue();
1063        N = DAG.getNode(ISD::ADD, N.getValueType(), N, getIntPtrConstant(Offs));
1064        continue;
1065      }
1066
1067      // N = N + Idx * ElementSize;
1068      uint64_t ElementSize = TD.getTypeSize(Ty);
1069      SDOperand IdxN = getValue(Idx);
1070
1071      // If the index is smaller or larger than intptr_t, truncate or extend
1072      // it.
1073      if (IdxN.getValueType() < N.getValueType()) {
1074        if (Idx->getType()->isSigned())
1075          IdxN = DAG.getNode(ISD::SIGN_EXTEND, N.getValueType(), IdxN);
1076        else
1077          IdxN = DAG.getNode(ISD::ZERO_EXTEND, N.getValueType(), IdxN);
1078      } else if (IdxN.getValueType() > N.getValueType())
1079        IdxN = DAG.getNode(ISD::TRUNCATE, N.getValueType(), IdxN);
1080
1081      // If this is a multiply by a power of two, turn it into a shl
1082      // immediately.  This is a very common case.
1083      if (isPowerOf2_64(ElementSize)) {
1084        unsigned Amt = Log2_64(ElementSize);
1085        IdxN = DAG.getNode(ISD::SHL, N.getValueType(), IdxN,
1086                           DAG.getConstant(Amt, TLI.getShiftAmountTy()));
1087        N = DAG.getNode(ISD::ADD, N.getValueType(), N, IdxN);
1088        continue;
1089      }
1090
1091      SDOperand Scale = getIntPtrConstant(ElementSize);
1092      IdxN = DAG.getNode(ISD::MUL, N.getValueType(), IdxN, Scale);
1093      N = DAG.getNode(ISD::ADD, N.getValueType(), N, IdxN);
1094    }
1095  }
1096  setValue(&I, N);
1097}
1098
1099void SelectionDAGLowering::visitAlloca(AllocaInst &I) {
1100  // If this is a fixed sized alloca in the entry block of the function,
1101  // allocate it statically on the stack.
1102  if (FuncInfo.StaticAllocaMap.count(&I))
1103    return;   // getValue will auto-populate this.
1104
1105  const Type *Ty = I.getAllocatedType();
1106  uint64_t TySize = TLI.getTargetData().getTypeSize(Ty);
1107  unsigned Align = std::max((unsigned)TLI.getTargetData().getTypeAlignment(Ty),
1108                            I.getAlignment());
1109
1110  SDOperand AllocSize = getValue(I.getArraySize());
1111  MVT::ValueType IntPtr = TLI.getPointerTy();
1112  if (IntPtr < AllocSize.getValueType())
1113    AllocSize = DAG.getNode(ISD::TRUNCATE, IntPtr, AllocSize);
1114  else if (IntPtr > AllocSize.getValueType())
1115    AllocSize = DAG.getNode(ISD::ZERO_EXTEND, IntPtr, AllocSize);
1116
1117  AllocSize = DAG.getNode(ISD::MUL, IntPtr, AllocSize,
1118                          getIntPtrConstant(TySize));
1119
1120  // Handle alignment.  If the requested alignment is less than or equal to the
1121  // stack alignment, ignore it and round the size of the allocation up to the
1122  // stack alignment size.  If the size is greater than the stack alignment, we
1123  // note this in the DYNAMIC_STACKALLOC node.
1124  unsigned StackAlign =
1125    TLI.getTargetMachine().getFrameInfo()->getStackAlignment();
1126  if (Align <= StackAlign) {
1127    Align = 0;
1128    // Add SA-1 to the size.
1129    AllocSize = DAG.getNode(ISD::ADD, AllocSize.getValueType(), AllocSize,
1130                            getIntPtrConstant(StackAlign-1));
1131    // Mask out the low bits for alignment purposes.
1132    AllocSize = DAG.getNode(ISD::AND, AllocSize.getValueType(), AllocSize,
1133                            getIntPtrConstant(~(uint64_t)(StackAlign-1)));
1134  }
1135
1136  std::vector<MVT::ValueType> VTs;
1137  VTs.push_back(AllocSize.getValueType());
1138  VTs.push_back(MVT::Other);
1139  std::vector<SDOperand> Ops;
1140  Ops.push_back(getRoot());
1141  Ops.push_back(AllocSize);
1142  Ops.push_back(getIntPtrConstant(Align));
1143  SDOperand DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, VTs, Ops);
1144  DAG.setRoot(setValue(&I, DSA).getValue(1));
1145
1146  // Inform the Frame Information that we have just allocated a variable-sized
1147  // object.
1148  CurMBB->getParent()->getFrameInfo()->CreateVariableSizedObject();
1149}
1150
1151void SelectionDAGLowering::visitLoad(LoadInst &I) {
1152  SDOperand Ptr = getValue(I.getOperand(0));
1153
1154  SDOperand Root;
1155  if (I.isVolatile())
1156    Root = getRoot();
1157  else {
1158    // Do not serialize non-volatile loads against each other.
1159    Root = DAG.getRoot();
1160  }
1161
1162  setValue(&I, getLoadFrom(I.getType(), Ptr, DAG.getSrcValue(I.getOperand(0)),
1163                           Root, I.isVolatile()));
1164}
1165
1166SDOperand SelectionDAGLowering::getLoadFrom(const Type *Ty, SDOperand Ptr,
1167                                            SDOperand SrcValue, SDOperand Root,
1168                                            bool isVolatile) {
1169  SDOperand L;
1170  if (const PackedType *PTy = dyn_cast<PackedType>(Ty)) {
1171    MVT::ValueType PVT = TLI.getValueType(PTy->getElementType());
1172    L = DAG.getVecLoad(PTy->getNumElements(), PVT, Root, Ptr, SrcValue);
1173  } else {
1174    L = DAG.getLoad(TLI.getValueType(Ty), Root, Ptr, SrcValue);
1175  }
1176
1177  if (isVolatile)
1178    DAG.setRoot(L.getValue(1));
1179  else
1180    PendingLoads.push_back(L.getValue(1));
1181
1182  return L;
1183}
1184
1185
1186void SelectionDAGLowering::visitStore(StoreInst &I) {
1187  Value *SrcV = I.getOperand(0);
1188  SDOperand Src = getValue(SrcV);
1189  SDOperand Ptr = getValue(I.getOperand(1));
1190  DAG.setRoot(DAG.getNode(ISD::STORE, MVT::Other, getRoot(), Src, Ptr,
1191                          DAG.getSrcValue(I.getOperand(1))));
1192}
1193
1194/// IntrinsicCannotAccessMemory - Return true if the specified intrinsic cannot
1195/// access memory and has no other side effects at all.
1196static bool IntrinsicCannotAccessMemory(unsigned IntrinsicID) {
1197#define GET_NO_MEMORY_INTRINSICS
1198#include "llvm/Intrinsics.gen"
1199#undef GET_NO_MEMORY_INTRINSICS
1200  return false;
1201}
1202
1203/// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
1204/// node.
1205void SelectionDAGLowering::visitTargetIntrinsic(CallInst &I,
1206                                                unsigned Intrinsic) {
1207  bool HasChain = !IntrinsicCannotAccessMemory(Intrinsic);
1208
1209  // Build the operand list.
1210  std::vector<SDOperand> Ops;
1211  if (HasChain)   // If this intrinsic has side-effects, chainify it.
1212    Ops.push_back(getRoot());
1213
1214  // Add the intrinsic ID as an integer operand.
1215  Ops.push_back(DAG.getConstant(Intrinsic, TLI.getPointerTy()));
1216
1217  // Add all operands of the call to the operand list.
1218  for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) {
1219    SDOperand Op = getValue(I.getOperand(i));
1220
1221    // If this is a vector type, force it to the right packed type.
1222    if (Op.getValueType() == MVT::Vector) {
1223      const PackedType *OpTy = cast<PackedType>(I.getOperand(i)->getType());
1224      MVT::ValueType EltVT = TLI.getValueType(OpTy->getElementType());
1225
1226      MVT::ValueType VVT = MVT::getVectorType(EltVT, OpTy->getNumElements());
1227      assert(VVT != MVT::Other && "Intrinsic uses a non-legal type?");
1228      Op = DAG.getNode(ISD::VBIT_CONVERT, VVT, Op);
1229    }
1230
1231    assert(TLI.isTypeLegal(Op.getValueType()) &&
1232           "Intrinsic uses a non-legal type?");
1233    Ops.push_back(Op);
1234  }
1235
1236  std::vector<MVT::ValueType> VTs;
1237  if (I.getType() != Type::VoidTy) {
1238    MVT::ValueType VT = TLI.getValueType(I.getType());
1239    if (VT == MVT::Vector) {
1240      const PackedType *DestTy = cast<PackedType>(I.getType());
1241      MVT::ValueType EltVT = TLI.getValueType(DestTy->getElementType());
1242
1243      VT = MVT::getVectorType(EltVT, DestTy->getNumElements());
1244      assert(VT != MVT::Other && "Intrinsic uses a non-legal type?");
1245    }
1246
1247    assert(TLI.isTypeLegal(VT) && "Intrinsic uses a non-legal type?");
1248    VTs.push_back(VT);
1249  }
1250  if (HasChain)
1251    VTs.push_back(MVT::Other);
1252
1253  // Create the node.
1254  SDOperand Result;
1255  if (!HasChain)
1256    Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, VTs, Ops);
1257  else if (I.getType() != Type::VoidTy)
1258    Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, VTs, Ops);
1259  else
1260    Result = DAG.getNode(ISD::INTRINSIC_VOID, VTs, Ops);
1261
1262  if (HasChain)
1263    DAG.setRoot(Result.getValue(Result.Val->getNumValues()-1));
1264  if (I.getType() != Type::VoidTy) {
1265    if (const PackedType *PTy = dyn_cast<PackedType>(I.getType())) {
1266      MVT::ValueType EVT = TLI.getValueType(PTy->getElementType());
1267      Result = DAG.getNode(ISD::VBIT_CONVERT, MVT::Vector, Result,
1268                           DAG.getConstant(PTy->getNumElements(), MVT::i32),
1269                           DAG.getValueType(EVT));
1270    }
1271    setValue(&I, Result);
1272  }
1273}
1274
1275/// visitIntrinsicCall - Lower the call to the specified intrinsic function.  If
1276/// we want to emit this as a call to a named external function, return the name
1277/// otherwise lower it and return null.
1278const char *
1279SelectionDAGLowering::visitIntrinsicCall(CallInst &I, unsigned Intrinsic) {
1280  switch (Intrinsic) {
1281  default:
1282    // By default, turn this into a target intrinsic node.
1283    visitTargetIntrinsic(I, Intrinsic);
1284    return 0;
1285  case Intrinsic::vastart:  visitVAStart(I); return 0;
1286  case Intrinsic::vaend:    visitVAEnd(I); return 0;
1287  case Intrinsic::vacopy:   visitVACopy(I); return 0;
1288  case Intrinsic::returnaddress: visitFrameReturnAddress(I, false); return 0;
1289  case Intrinsic::frameaddress:  visitFrameReturnAddress(I, true); return 0;
1290  case Intrinsic::setjmp:
1291    return "_setjmp"+!TLI.usesUnderscoreSetJmpLongJmp();
1292    break;
1293  case Intrinsic::longjmp:
1294    return "_longjmp"+!TLI.usesUnderscoreSetJmpLongJmp();
1295    break;
1296  case Intrinsic::memcpy_i32:
1297  case Intrinsic::memcpy_i64:
1298    visitMemIntrinsic(I, ISD::MEMCPY);
1299    return 0;
1300  case Intrinsic::memset_i32:
1301  case Intrinsic::memset_i64:
1302    visitMemIntrinsic(I, ISD::MEMSET);
1303    return 0;
1304  case Intrinsic::memmove_i32:
1305  case Intrinsic::memmove_i64:
1306    visitMemIntrinsic(I, ISD::MEMMOVE);
1307    return 0;
1308
1309  case Intrinsic::dbg_stoppoint: {
1310    MachineDebugInfo *DebugInfo = DAG.getMachineDebugInfo();
1311    DbgStopPointInst &SPI = cast<DbgStopPointInst>(I);
1312    if (DebugInfo && SPI.getContext() && DebugInfo->Verify(SPI.getContext())) {
1313      std::vector<SDOperand> Ops;
1314
1315      Ops.push_back(getRoot());
1316      Ops.push_back(getValue(SPI.getLineValue()));
1317      Ops.push_back(getValue(SPI.getColumnValue()));
1318
1319      DebugInfoDesc *DD = DebugInfo->getDescFor(SPI.getContext());
1320      assert(DD && "Not a debug information descriptor");
1321      CompileUnitDesc *CompileUnit = cast<CompileUnitDesc>(DD);
1322
1323      Ops.push_back(DAG.getString(CompileUnit->getFileName()));
1324      Ops.push_back(DAG.getString(CompileUnit->getDirectory()));
1325
1326      DAG.setRoot(DAG.getNode(ISD::LOCATION, MVT::Other, Ops));
1327    }
1328
1329    return 0;
1330  }
1331  case Intrinsic::dbg_region_start: {
1332    MachineDebugInfo *DebugInfo = DAG.getMachineDebugInfo();
1333    DbgRegionStartInst &RSI = cast<DbgRegionStartInst>(I);
1334    if (DebugInfo && RSI.getContext() && DebugInfo->Verify(RSI.getContext())) {
1335      std::vector<SDOperand> Ops;
1336
1337      unsigned LabelID = DebugInfo->RecordRegionStart(RSI.getContext());
1338
1339      Ops.push_back(getRoot());
1340      Ops.push_back(DAG.getConstant(LabelID, MVT::i32));
1341
1342      DAG.setRoot(DAG.getNode(ISD::DEBUG_LABEL, MVT::Other, Ops));
1343    }
1344
1345    return 0;
1346  }
1347  case Intrinsic::dbg_region_end: {
1348    MachineDebugInfo *DebugInfo = DAG.getMachineDebugInfo();
1349    DbgRegionEndInst &REI = cast<DbgRegionEndInst>(I);
1350    if (DebugInfo && REI.getContext() && DebugInfo->Verify(REI.getContext())) {
1351      std::vector<SDOperand> Ops;
1352
1353      unsigned LabelID = DebugInfo->RecordRegionEnd(REI.getContext());
1354
1355      Ops.push_back(getRoot());
1356      Ops.push_back(DAG.getConstant(LabelID, MVT::i32));
1357
1358      DAG.setRoot(DAG.getNode(ISD::DEBUG_LABEL, MVT::Other, Ops));
1359    }
1360
1361    return 0;
1362  }
1363  case Intrinsic::dbg_func_start: {
1364    MachineDebugInfo *DebugInfo = DAG.getMachineDebugInfo();
1365    DbgFuncStartInst &FSI = cast<DbgFuncStartInst>(I);
1366    if (DebugInfo && FSI.getSubprogram() &&
1367        DebugInfo->Verify(FSI.getSubprogram())) {
1368      std::vector<SDOperand> Ops;
1369
1370      unsigned LabelID = DebugInfo->RecordRegionStart(FSI.getSubprogram());
1371
1372      Ops.push_back(getRoot());
1373      Ops.push_back(DAG.getConstant(LabelID, MVT::i32));
1374
1375      DAG.setRoot(DAG.getNode(ISD::DEBUG_LABEL, MVT::Other, Ops));
1376    }
1377
1378    return 0;
1379  }
1380  case Intrinsic::dbg_declare: {
1381    MachineDebugInfo *DebugInfo = DAG.getMachineDebugInfo();
1382    DbgDeclareInst &DI = cast<DbgDeclareInst>(I);
1383    if (DebugInfo && DI.getVariable() && DebugInfo->Verify(DI.getVariable())) {
1384      std::vector<SDOperand> Ops;
1385
1386      SDOperand AddressOp  = getValue(DI.getAddress());
1387      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(AddressOp)) {
1388        DebugInfo->RecordVariable(DI.getVariable(), FI->getIndex());
1389      }
1390    }
1391
1392    return 0;
1393  }
1394
1395  case Intrinsic::isunordered_f32:
1396  case Intrinsic::isunordered_f64:
1397    setValue(&I, DAG.getSetCC(MVT::i1,getValue(I.getOperand(1)),
1398                              getValue(I.getOperand(2)), ISD::SETUO));
1399    return 0;
1400
1401  case Intrinsic::sqrt_f32:
1402  case Intrinsic::sqrt_f64:
1403    setValue(&I, DAG.getNode(ISD::FSQRT,
1404                             getValue(I.getOperand(1)).getValueType(),
1405                             getValue(I.getOperand(1))));
1406    return 0;
1407  case Intrinsic::pcmarker: {
1408    SDOperand Tmp = getValue(I.getOperand(1));
1409    DAG.setRoot(DAG.getNode(ISD::PCMARKER, MVT::Other, getRoot(), Tmp));
1410    return 0;
1411  }
1412  case Intrinsic::readcyclecounter: {
1413    std::vector<MVT::ValueType> VTs;
1414    VTs.push_back(MVT::i64);
1415    VTs.push_back(MVT::Other);
1416    std::vector<SDOperand> Ops;
1417    Ops.push_back(getRoot());
1418    SDOperand Tmp = DAG.getNode(ISD::READCYCLECOUNTER, VTs, Ops);
1419    setValue(&I, Tmp);
1420    DAG.setRoot(Tmp.getValue(1));
1421    return 0;
1422  }
1423  case Intrinsic::bswap_i16:
1424  case Intrinsic::bswap_i32:
1425  case Intrinsic::bswap_i64:
1426    setValue(&I, DAG.getNode(ISD::BSWAP,
1427                             getValue(I.getOperand(1)).getValueType(),
1428                             getValue(I.getOperand(1))));
1429    return 0;
1430  case Intrinsic::cttz_i8:
1431  case Intrinsic::cttz_i16:
1432  case Intrinsic::cttz_i32:
1433  case Intrinsic::cttz_i64:
1434    setValue(&I, DAG.getNode(ISD::CTTZ,
1435                             getValue(I.getOperand(1)).getValueType(),
1436                             getValue(I.getOperand(1))));
1437    return 0;
1438  case Intrinsic::ctlz_i8:
1439  case Intrinsic::ctlz_i16:
1440  case Intrinsic::ctlz_i32:
1441  case Intrinsic::ctlz_i64:
1442    setValue(&I, DAG.getNode(ISD::CTLZ,
1443                             getValue(I.getOperand(1)).getValueType(),
1444                             getValue(I.getOperand(1))));
1445    return 0;
1446  case Intrinsic::ctpop_i8:
1447  case Intrinsic::ctpop_i16:
1448  case Intrinsic::ctpop_i32:
1449  case Intrinsic::ctpop_i64:
1450    setValue(&I, DAG.getNode(ISD::CTPOP,
1451                             getValue(I.getOperand(1)).getValueType(),
1452                             getValue(I.getOperand(1))));
1453    return 0;
1454  case Intrinsic::stacksave: {
1455    std::vector<MVT::ValueType> VTs;
1456    VTs.push_back(TLI.getPointerTy());
1457    VTs.push_back(MVT::Other);
1458    std::vector<SDOperand> Ops;
1459    Ops.push_back(getRoot());
1460    SDOperand Tmp = DAG.getNode(ISD::STACKSAVE, VTs, Ops);
1461    setValue(&I, Tmp);
1462    DAG.setRoot(Tmp.getValue(1));
1463    return 0;
1464  }
1465  case Intrinsic::stackrestore: {
1466    SDOperand Tmp = getValue(I.getOperand(1));
1467    DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, MVT::Other, getRoot(), Tmp));
1468    return 0;
1469  }
1470  case Intrinsic::prefetch:
1471    // FIXME: Currently discarding prefetches.
1472    return 0;
1473  }
1474}
1475
1476
1477void SelectionDAGLowering::visitCall(CallInst &I) {
1478  const char *RenameFn = 0;
1479  if (Function *F = I.getCalledFunction()) {
1480    if (F->isExternal())
1481      if (unsigned IID = F->getIntrinsicID()) {
1482        RenameFn = visitIntrinsicCall(I, IID);
1483        if (!RenameFn)
1484          return;
1485      } else {    // Not an LLVM intrinsic.
1486        const std::string &Name = F->getName();
1487        if (Name[0] == 'c' && (Name == "copysign" || Name == "copysignf")) {
1488          if (I.getNumOperands() == 3 &&   // Basic sanity checks.
1489              I.getOperand(1)->getType()->isFloatingPoint() &&
1490              I.getType() == I.getOperand(1)->getType() &&
1491              I.getType() == I.getOperand(2)->getType()) {
1492            SDOperand LHS = getValue(I.getOperand(1));
1493            SDOperand RHS = getValue(I.getOperand(2));
1494            setValue(&I, DAG.getNode(ISD::FCOPYSIGN, LHS.getValueType(),
1495                                     LHS, RHS));
1496            return;
1497          }
1498        } else if (Name[0] == 'f' && (Name == "fabs" || Name == "fabsf")) {
1499          if (I.getNumOperands() == 2 &&   // Basic sanity checks.
1500              I.getOperand(1)->getType()->isFloatingPoint() &&
1501              I.getType() == I.getOperand(1)->getType()) {
1502            SDOperand Tmp = getValue(I.getOperand(1));
1503            setValue(&I, DAG.getNode(ISD::FABS, Tmp.getValueType(), Tmp));
1504            return;
1505          }
1506        } else if (Name[0] == 's' && (Name == "sin" || Name == "sinf")) {
1507          if (I.getNumOperands() == 2 &&   // Basic sanity checks.
1508              I.getOperand(1)->getType()->isFloatingPoint() &&
1509              I.getType() == I.getOperand(1)->getType()) {
1510            SDOperand Tmp = getValue(I.getOperand(1));
1511            setValue(&I, DAG.getNode(ISD::FSIN, Tmp.getValueType(), Tmp));
1512            return;
1513          }
1514        } else if (Name[0] == 'c' && (Name == "cos" || Name == "cosf")) {
1515          if (I.getNumOperands() == 2 &&   // Basic sanity checks.
1516              I.getOperand(1)->getType()->isFloatingPoint() &&
1517              I.getType() == I.getOperand(1)->getType()) {
1518            SDOperand Tmp = getValue(I.getOperand(1));
1519            setValue(&I, DAG.getNode(ISD::FCOS, Tmp.getValueType(), Tmp));
1520            return;
1521          }
1522        }
1523      }
1524  } else if (isa<InlineAsm>(I.getOperand(0))) {
1525    visitInlineAsm(I);
1526    return;
1527  }
1528
1529  SDOperand Callee;
1530  if (!RenameFn)
1531    Callee = getValue(I.getOperand(0));
1532  else
1533    Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy());
1534  std::vector<std::pair<SDOperand, const Type*> > Args;
1535  Args.reserve(I.getNumOperands());
1536  for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) {
1537    Value *Arg = I.getOperand(i);
1538    SDOperand ArgNode = getValue(Arg);
1539    Args.push_back(std::make_pair(ArgNode, Arg->getType()));
1540  }
1541
1542  const PointerType *PT = cast<PointerType>(I.getCalledValue()->getType());
1543  const FunctionType *FTy = cast<FunctionType>(PT->getElementType());
1544
1545  std::pair<SDOperand,SDOperand> Result =
1546    TLI.LowerCallTo(getRoot(), I.getType(), FTy->isVarArg(), I.getCallingConv(),
1547                    I.isTailCall(), Callee, Args, DAG);
1548  if (I.getType() != Type::VoidTy)
1549    setValue(&I, Result.first);
1550  DAG.setRoot(Result.second);
1551}
1552
1553SDOperand RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
1554                                        SDOperand &Chain, SDOperand &Flag)const{
1555  SDOperand Val = DAG.getCopyFromReg(Chain, Regs[0], RegVT, Flag);
1556  Chain = Val.getValue(1);
1557  Flag  = Val.getValue(2);
1558
1559  // If the result was expanded, copy from the top part.
1560  if (Regs.size() > 1) {
1561    assert(Regs.size() == 2 &&
1562           "Cannot expand to more than 2 elts yet!");
1563    SDOperand Hi = DAG.getCopyFromReg(Chain, Regs[1], RegVT, Flag);
1564    Chain = Val.getValue(1);
1565    Flag  = Val.getValue(2);
1566    if (DAG.getTargetLoweringInfo().isLittleEndian())
1567      return DAG.getNode(ISD::BUILD_PAIR, ValueVT, Val, Hi);
1568    else
1569      return DAG.getNode(ISD::BUILD_PAIR, ValueVT, Hi, Val);
1570  }
1571
1572  // Otherwise, if the return value was promoted, truncate it to the
1573  // appropriate type.
1574  if (RegVT == ValueVT)
1575    return Val;
1576
1577  if (MVT::isInteger(RegVT))
1578    return DAG.getNode(ISD::TRUNCATE, ValueVT, Val);
1579  else
1580    return DAG.getNode(ISD::FP_ROUND, ValueVT, Val);
1581}
1582
1583/// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
1584/// specified value into the registers specified by this object.  This uses
1585/// Chain/Flag as the input and updates them for the output Chain/Flag.
1586void RegsForValue::getCopyToRegs(SDOperand Val, SelectionDAG &DAG,
1587                                 SDOperand &Chain, SDOperand &Flag) const {
1588  if (Regs.size() == 1) {
1589    // If there is a single register and the types differ, this must be
1590    // a promotion.
1591    if (RegVT != ValueVT) {
1592      if (MVT::isInteger(RegVT))
1593        Val = DAG.getNode(ISD::ANY_EXTEND, RegVT, Val);
1594      else
1595        Val = DAG.getNode(ISD::FP_EXTEND, RegVT, Val);
1596    }
1597    Chain = DAG.getCopyToReg(Chain, Regs[0], Val, Flag);
1598    Flag = Chain.getValue(1);
1599  } else {
1600    std::vector<unsigned> R(Regs);
1601    if (!DAG.getTargetLoweringInfo().isLittleEndian())
1602      std::reverse(R.begin(), R.end());
1603
1604    for (unsigned i = 0, e = R.size(); i != e; ++i) {
1605      SDOperand Part = DAG.getNode(ISD::EXTRACT_ELEMENT, RegVT, Val,
1606                                   DAG.getConstant(i, MVT::i32));
1607      Chain = DAG.getCopyToReg(Chain, R[i], Part, Flag);
1608      Flag = Chain.getValue(1);
1609    }
1610  }
1611}
1612
1613/// AddInlineAsmOperands - Add this value to the specified inlineasm node
1614/// operand list.  This adds the code marker and includes the number of
1615/// values added into it.
1616void RegsForValue::AddInlineAsmOperands(unsigned Code, SelectionDAG &DAG,
1617                                        std::vector<SDOperand> &Ops) const {
1618  Ops.push_back(DAG.getConstant(Code | (Regs.size() << 3), MVT::i32));
1619  for (unsigned i = 0, e = Regs.size(); i != e; ++i)
1620    Ops.push_back(DAG.getRegister(Regs[i], RegVT));
1621}
1622
1623/// isAllocatableRegister - If the specified register is safe to allocate,
1624/// i.e. it isn't a stack pointer or some other special register, return the
1625/// register class for the register.  Otherwise, return null.
1626static const TargetRegisterClass *
1627isAllocatableRegister(unsigned Reg, MachineFunction &MF,
1628                      const TargetLowering &TLI, const MRegisterInfo *MRI) {
1629  for (MRegisterInfo::regclass_iterator RCI = MRI->regclass_begin(),
1630       E = MRI->regclass_end(); RCI != E; ++RCI) {
1631    const TargetRegisterClass *RC = *RCI;
1632    // If none of the the value types for this register class are valid, we
1633    // can't use it.  For example, 64-bit reg classes on 32-bit targets.
1634    bool isLegal = false;
1635    for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
1636         I != E; ++I) {
1637      if (TLI.isTypeLegal(*I)) {
1638        isLegal = true;
1639        break;
1640      }
1641    }
1642
1643    if (!isLegal) continue;
1644
1645    // NOTE: This isn't ideal.  In particular, this might allocate the
1646    // frame pointer in functions that need it (due to them not being taken
1647    // out of allocation, because a variable sized allocation hasn't been seen
1648    // yet).  This is a slight code pessimization, but should still work.
1649    for (TargetRegisterClass::iterator I = RC->allocation_order_begin(MF),
1650         E = RC->allocation_order_end(MF); I != E; ++I)
1651      if (*I == Reg)
1652        return RC;
1653  }
1654  return 0;
1655}
1656
1657RegsForValue SelectionDAGLowering::
1658GetRegistersForValue(const std::string &ConstrCode,
1659                     MVT::ValueType VT, bool isOutReg, bool isInReg,
1660                     std::set<unsigned> &OutputRegs,
1661                     std::set<unsigned> &InputRegs) {
1662  std::pair<unsigned, const TargetRegisterClass*> PhysReg =
1663    TLI.getRegForInlineAsmConstraint(ConstrCode, VT);
1664  std::vector<unsigned> Regs;
1665
1666  unsigned NumRegs = VT != MVT::Other ? TLI.getNumElements(VT) : 1;
1667  MVT::ValueType RegVT;
1668  MVT::ValueType ValueVT = VT;
1669
1670  if (PhysReg.first) {
1671    if (VT == MVT::Other)
1672      ValueVT = *PhysReg.second->vt_begin();
1673    RegVT = VT;
1674
1675    // This is a explicit reference to a physical register.
1676    Regs.push_back(PhysReg.first);
1677
1678    // If this is an expanded reference, add the rest of the regs to Regs.
1679    if (NumRegs != 1) {
1680      RegVT = *PhysReg.second->vt_begin();
1681      TargetRegisterClass::iterator I = PhysReg.second->begin();
1682      TargetRegisterClass::iterator E = PhysReg.second->end();
1683      for (; *I != PhysReg.first; ++I)
1684        assert(I != E && "Didn't find reg!");
1685
1686      // Already added the first reg.
1687      --NumRegs; ++I;
1688      for (; NumRegs; --NumRegs, ++I) {
1689        assert(I != E && "Ran out of registers to allocate!");
1690        Regs.push_back(*I);
1691      }
1692    }
1693    return RegsForValue(Regs, RegVT, ValueVT);
1694  }
1695
1696  // This is a reference to a register class.  Allocate NumRegs consecutive,
1697  // available, registers from the class.
1698  std::vector<unsigned> RegClassRegs =
1699    TLI.getRegClassForInlineAsmConstraint(ConstrCode, VT);
1700
1701  const MRegisterInfo *MRI = DAG.getTarget().getRegisterInfo();
1702  MachineFunction &MF = *CurMBB->getParent();
1703  unsigned NumAllocated = 0;
1704  for (unsigned i = 0, e = RegClassRegs.size(); i != e; ++i) {
1705    unsigned Reg = RegClassRegs[i];
1706    // See if this register is available.
1707    if ((isOutReg && OutputRegs.count(Reg)) ||   // Already used.
1708        (isInReg  && InputRegs.count(Reg))) {    // Already used.
1709      // Make sure we find consecutive registers.
1710      NumAllocated = 0;
1711      continue;
1712    }
1713
1714    // Check to see if this register is allocatable (i.e. don't give out the
1715    // stack pointer).
1716    const TargetRegisterClass *RC = isAllocatableRegister(Reg, MF, TLI, MRI);
1717    if (!RC) {
1718      // Make sure we find consecutive registers.
1719      NumAllocated = 0;
1720      continue;
1721    }
1722
1723    // Okay, this register is good, we can use it.
1724    ++NumAllocated;
1725
1726    // If we allocated enough consecutive
1727    if (NumAllocated == NumRegs) {
1728      unsigned RegStart = (i-NumAllocated)+1;
1729      unsigned RegEnd   = i+1;
1730      // Mark all of the allocated registers used.
1731      for (unsigned i = RegStart; i != RegEnd; ++i) {
1732        unsigned Reg = RegClassRegs[i];
1733        Regs.push_back(Reg);
1734        if (isOutReg) OutputRegs.insert(Reg);    // Mark reg used.
1735        if (isInReg)  InputRegs.insert(Reg);     // Mark reg used.
1736      }
1737
1738      return RegsForValue(Regs, *RC->vt_begin(), VT);
1739    }
1740  }
1741
1742  // Otherwise, we couldn't allocate enough registers for this.
1743  return RegsForValue();
1744}
1745
1746
1747/// visitInlineAsm - Handle a call to an InlineAsm object.
1748///
1749void SelectionDAGLowering::visitInlineAsm(CallInst &I) {
1750  InlineAsm *IA = cast<InlineAsm>(I.getOperand(0));
1751
1752  SDOperand AsmStr = DAG.getTargetExternalSymbol(IA->getAsmString().c_str(),
1753                                                 MVT::Other);
1754
1755  // Note, we treat inline asms both with and without side-effects as the same.
1756  // If an inline asm doesn't have side effects and doesn't access memory, we
1757  // could not choose to not chain it.
1758  bool hasSideEffects = IA->hasSideEffects();
1759
1760  std::vector<InlineAsm::ConstraintInfo> Constraints = IA->ParseConstraints();
1761  std::vector<MVT::ValueType> ConstraintVTs;
1762
1763  /// AsmNodeOperands - A list of pairs.  The first element is a register, the
1764  /// second is a bitfield where bit #0 is set if it is a use and bit #1 is set
1765  /// if it is a def of that register.
1766  std::vector<SDOperand> AsmNodeOperands;
1767  AsmNodeOperands.push_back(SDOperand());  // reserve space for input chain
1768  AsmNodeOperands.push_back(AsmStr);
1769
1770  SDOperand Chain = getRoot();
1771  SDOperand Flag;
1772
1773  // We fully assign registers here at isel time.  This is not optimal, but
1774  // should work.  For register classes that correspond to LLVM classes, we
1775  // could let the LLVM RA do its thing, but we currently don't.  Do a prepass
1776  // over the constraints, collecting fixed registers that we know we can't use.
1777  std::set<unsigned> OutputRegs, InputRegs;
1778  unsigned OpNum = 1;
1779  for (unsigned i = 0, e = Constraints.size(); i != e; ++i) {
1780    assert(Constraints[i].Codes.size() == 1 && "Only handles one code so far!");
1781    std::string &ConstraintCode = Constraints[i].Codes[0];
1782
1783    MVT::ValueType OpVT;
1784
1785    // Compute the value type for each operand and add it to ConstraintVTs.
1786    switch (Constraints[i].Type) {
1787    case InlineAsm::isOutput:
1788      if (!Constraints[i].isIndirectOutput) {
1789        assert(I.getType() != Type::VoidTy && "Bad inline asm!");
1790        OpVT = TLI.getValueType(I.getType());
1791      } else {
1792        const Type *OpTy = I.getOperand(OpNum)->getType();
1793        OpVT = TLI.getValueType(cast<PointerType>(OpTy)->getElementType());
1794        OpNum++;  // Consumes a call operand.
1795      }
1796      break;
1797    case InlineAsm::isInput:
1798      OpVT = TLI.getValueType(I.getOperand(OpNum)->getType());
1799      OpNum++;  // Consumes a call operand.
1800      break;
1801    case InlineAsm::isClobber:
1802      OpVT = MVT::Other;
1803      break;
1804    }
1805
1806    ConstraintVTs.push_back(OpVT);
1807
1808    if (TLI.getRegForInlineAsmConstraint(ConstraintCode, OpVT).first == 0)
1809      continue;  // Not assigned a fixed reg.
1810
1811    // Build a list of regs that this operand uses.  This always has a single
1812    // element for promoted/expanded operands.
1813    RegsForValue Regs = GetRegistersForValue(ConstraintCode, OpVT,
1814                                             false, false,
1815                                             OutputRegs, InputRegs);
1816
1817    switch (Constraints[i].Type) {
1818    case InlineAsm::isOutput:
1819      // We can't assign any other output to this register.
1820      OutputRegs.insert(Regs.Regs.begin(), Regs.Regs.end());
1821      // If this is an early-clobber output, it cannot be assigned to the same
1822      // value as the input reg.
1823      if (Constraints[i].isEarlyClobber || Constraints[i].hasMatchingInput)
1824        InputRegs.insert(Regs.Regs.begin(), Regs.Regs.end());
1825      break;
1826    case InlineAsm::isInput:
1827      // We can't assign any other input to this register.
1828      InputRegs.insert(Regs.Regs.begin(), Regs.Regs.end());
1829      break;
1830    case InlineAsm::isClobber:
1831      // Clobbered regs cannot be used as inputs or outputs.
1832      InputRegs.insert(Regs.Regs.begin(), Regs.Regs.end());
1833      OutputRegs.insert(Regs.Regs.begin(), Regs.Regs.end());
1834      break;
1835    }
1836  }
1837
1838  // Loop over all of the inputs, copying the operand values into the
1839  // appropriate registers and processing the output regs.
1840  RegsForValue RetValRegs;
1841  std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit;
1842  OpNum = 1;
1843
1844  for (unsigned i = 0, e = Constraints.size(); i != e; ++i) {
1845    assert(Constraints[i].Codes.size() == 1 && "Only handles one code so far!");
1846    std::string &ConstraintCode = Constraints[i].Codes[0];
1847
1848    switch (Constraints[i].Type) {
1849    case InlineAsm::isOutput: {
1850      TargetLowering::ConstraintType CTy = TargetLowering::C_RegisterClass;
1851      if (ConstraintCode.size() == 1)   // not a physreg name.
1852        CTy = TLI.getConstraintType(ConstraintCode[0]);
1853
1854      if (CTy == TargetLowering::C_Memory) {
1855        // Memory output.
1856        SDOperand InOperandVal = getValue(I.getOperand(OpNum));
1857
1858        // Check that the operand (the address to store to) isn't a float.
1859        if (!MVT::isInteger(InOperandVal.getValueType()))
1860          assert(0 && "MATCH FAIL!");
1861
1862        if (!Constraints[i].isIndirectOutput)
1863          assert(0 && "MATCH FAIL!");
1864
1865        OpNum++;  // Consumes a call operand.
1866
1867        // Extend/truncate to the right pointer type if needed.
1868        MVT::ValueType PtrType = TLI.getPointerTy();
1869        if (InOperandVal.getValueType() < PtrType)
1870          InOperandVal = DAG.getNode(ISD::ZERO_EXTEND, PtrType, InOperandVal);
1871        else if (InOperandVal.getValueType() > PtrType)
1872          InOperandVal = DAG.getNode(ISD::TRUNCATE, PtrType, InOperandVal);
1873
1874        // Add information to the INLINEASM node to know about this output.
1875        unsigned ResOpType = 4/*MEM*/ | (1 << 3);
1876        AsmNodeOperands.push_back(DAG.getConstant(ResOpType, MVT::i32));
1877        AsmNodeOperands.push_back(InOperandVal);
1878        break;
1879      }
1880
1881      // Otherwise, this is a register output.
1882      assert(CTy == TargetLowering::C_RegisterClass && "Unknown op type!");
1883
1884      // If this is an early-clobber output, or if there is an input
1885      // constraint that matches this, we need to reserve the input register
1886      // so no other inputs allocate to it.
1887      bool UsesInputRegister = false;
1888      if (Constraints[i].isEarlyClobber || Constraints[i].hasMatchingInput)
1889        UsesInputRegister = true;
1890
1891      // Copy the output from the appropriate register.  Find a register that
1892      // we can use.
1893      RegsForValue Regs =
1894        GetRegistersForValue(ConstraintCode, ConstraintVTs[i],
1895                             true, UsesInputRegister,
1896                             OutputRegs, InputRegs);
1897      assert(!Regs.Regs.empty() && "Couldn't allocate output reg!");
1898
1899      if (!Constraints[i].isIndirectOutput) {
1900        assert(RetValRegs.Regs.empty() &&
1901               "Cannot have multiple output constraints yet!");
1902        assert(I.getType() != Type::VoidTy && "Bad inline asm!");
1903        RetValRegs = Regs;
1904      } else {
1905        IndirectStoresToEmit.push_back(std::make_pair(Regs,
1906                                                      I.getOperand(OpNum)));
1907        OpNum++;  // Consumes a call operand.
1908      }
1909
1910      // Add information to the INLINEASM node to know that this register is
1911      // set.
1912      Regs.AddInlineAsmOperands(2 /*REGDEF*/, DAG, AsmNodeOperands);
1913      break;
1914    }
1915    case InlineAsm::isInput: {
1916      SDOperand InOperandVal = getValue(I.getOperand(OpNum));
1917      OpNum++;  // Consumes a call operand.
1918
1919      if (isdigit(ConstraintCode[0])) {    // Matching constraint?
1920        // If this is required to match an output register we have already set,
1921        // just use its register.
1922        unsigned OperandNo = atoi(ConstraintCode.c_str());
1923
1924        // Scan until we find the definition we already emitted of this operand.
1925        // When we find it, create a RegsForValue operand.
1926        unsigned CurOp = 2;  // The first operand.
1927        for (; OperandNo; --OperandNo) {
1928          // Advance to the next operand.
1929          unsigned NumOps =
1930            cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getValue();
1931          assert((NumOps & 7) == 2 /*REGDEF*/ &&
1932                 "Skipped past definitions?");
1933          CurOp += (NumOps>>3)+1;
1934        }
1935
1936        unsigned NumOps =
1937          cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getValue();
1938        assert((NumOps & 7) == 2 /*REGDEF*/ &&
1939               "Skipped past definitions?");
1940
1941        // Add NumOps>>3 registers to MatchedRegs.
1942        RegsForValue MatchedRegs;
1943        MatchedRegs.ValueVT = InOperandVal.getValueType();
1944        MatchedRegs.RegVT   = AsmNodeOperands[CurOp+1].getValueType();
1945        for (unsigned i = 0, e = NumOps>>3; i != e; ++i) {
1946          unsigned Reg=cast<RegisterSDNode>(AsmNodeOperands[++CurOp])->getReg();
1947          MatchedRegs.Regs.push_back(Reg);
1948        }
1949
1950        // Use the produced MatchedRegs object to
1951        MatchedRegs.getCopyToRegs(InOperandVal, DAG, Chain, Flag);
1952        MatchedRegs.AddInlineAsmOperands(1 /*REGUSE*/, DAG, AsmNodeOperands);
1953        break;
1954      }
1955
1956      TargetLowering::ConstraintType CTy = TargetLowering::C_RegisterClass;
1957      if (ConstraintCode.size() == 1)   // not a physreg name.
1958        CTy = TLI.getConstraintType(ConstraintCode[0]);
1959
1960      if (CTy == TargetLowering::C_Other) {
1961        if (!TLI.isOperandValidForConstraint(InOperandVal, ConstraintCode[0]))
1962          assert(0 && "MATCH FAIL!");
1963
1964        // Add information to the INLINEASM node to know about this input.
1965        unsigned ResOpType = 3 /*IMM*/ | (1 << 3);
1966        AsmNodeOperands.push_back(DAG.getConstant(ResOpType, MVT::i32));
1967        AsmNodeOperands.push_back(InOperandVal);
1968        break;
1969      } else if (CTy == TargetLowering::C_Memory) {
1970        // Memory input.
1971
1972        // Check that the operand isn't a float.
1973        if (!MVT::isInteger(InOperandVal.getValueType()))
1974          assert(0 && "MATCH FAIL!");
1975
1976        // Extend/truncate to the right pointer type if needed.
1977        MVT::ValueType PtrType = TLI.getPointerTy();
1978        if (InOperandVal.getValueType() < PtrType)
1979          InOperandVal = DAG.getNode(ISD::ZERO_EXTEND, PtrType, InOperandVal);
1980        else if (InOperandVal.getValueType() > PtrType)
1981          InOperandVal = DAG.getNode(ISD::TRUNCATE, PtrType, InOperandVal);
1982
1983        // Add information to the INLINEASM node to know about this input.
1984        unsigned ResOpType = 4/*MEM*/ | (1 << 3);
1985        AsmNodeOperands.push_back(DAG.getConstant(ResOpType, MVT::i32));
1986        AsmNodeOperands.push_back(InOperandVal);
1987        break;
1988      }
1989
1990      assert(CTy == TargetLowering::C_RegisterClass && "Unknown op type!");
1991
1992      // Copy the input into the appropriate registers.
1993      RegsForValue InRegs =
1994        GetRegistersForValue(ConstraintCode, ConstraintVTs[i],
1995                             false, true, OutputRegs, InputRegs);
1996      // FIXME: should be match fail.
1997      assert(!InRegs.Regs.empty() && "Couldn't allocate input reg!");
1998
1999      InRegs.getCopyToRegs(InOperandVal, DAG, Chain, Flag);
2000
2001      InRegs.AddInlineAsmOperands(1/*REGUSE*/, DAG, AsmNodeOperands);
2002      break;
2003    }
2004    case InlineAsm::isClobber: {
2005      RegsForValue ClobberedRegs =
2006        GetRegistersForValue(ConstraintCode, MVT::Other, false, false,
2007                             OutputRegs, InputRegs);
2008      // Add the clobbered value to the operand list, so that the register
2009      // allocator is aware that the physreg got clobbered.
2010      if (!ClobberedRegs.Regs.empty())
2011        ClobberedRegs.AddInlineAsmOperands(2/*REGDEF*/, DAG, AsmNodeOperands);
2012      break;
2013    }
2014    }
2015  }
2016
2017  // Finish up input operands.
2018  AsmNodeOperands[0] = Chain;
2019  if (Flag.Val) AsmNodeOperands.push_back(Flag);
2020
2021  std::vector<MVT::ValueType> VTs;
2022  VTs.push_back(MVT::Other);
2023  VTs.push_back(MVT::Flag);
2024  Chain = DAG.getNode(ISD::INLINEASM, VTs, AsmNodeOperands);
2025  Flag = Chain.getValue(1);
2026
2027  // If this asm returns a register value, copy the result from that register
2028  // and set it as the value of the call.
2029  if (!RetValRegs.Regs.empty())
2030    setValue(&I, RetValRegs.getCopyFromRegs(DAG, Chain, Flag));
2031
2032  std::vector<std::pair<SDOperand, Value*> > StoresToEmit;
2033
2034  // Process indirect outputs, first output all of the flagged copies out of
2035  // physregs.
2036  for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
2037    RegsForValue &OutRegs = IndirectStoresToEmit[i].first;
2038    Value *Ptr = IndirectStoresToEmit[i].second;
2039    SDOperand OutVal = OutRegs.getCopyFromRegs(DAG, Chain, Flag);
2040    StoresToEmit.push_back(std::make_pair(OutVal, Ptr));
2041  }
2042
2043  // Emit the non-flagged stores from the physregs.
2044  std::vector<SDOperand> OutChains;
2045  for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i)
2046    OutChains.push_back(DAG.getNode(ISD::STORE, MVT::Other, Chain,
2047                                    StoresToEmit[i].first,
2048                                    getValue(StoresToEmit[i].second),
2049                                    DAG.getSrcValue(StoresToEmit[i].second)));
2050  if (!OutChains.empty())
2051    Chain = DAG.getNode(ISD::TokenFactor, MVT::Other, OutChains);
2052  DAG.setRoot(Chain);
2053}
2054
2055
2056void SelectionDAGLowering::visitMalloc(MallocInst &I) {
2057  SDOperand Src = getValue(I.getOperand(0));
2058
2059  MVT::ValueType IntPtr = TLI.getPointerTy();
2060
2061  if (IntPtr < Src.getValueType())
2062    Src = DAG.getNode(ISD::TRUNCATE, IntPtr, Src);
2063  else if (IntPtr > Src.getValueType())
2064    Src = DAG.getNode(ISD::ZERO_EXTEND, IntPtr, Src);
2065
2066  // Scale the source by the type size.
2067  uint64_t ElementSize = TD.getTypeSize(I.getType()->getElementType());
2068  Src = DAG.getNode(ISD::MUL, Src.getValueType(),
2069                    Src, getIntPtrConstant(ElementSize));
2070
2071  std::vector<std::pair<SDOperand, const Type*> > Args;
2072  Args.push_back(std::make_pair(Src, TLI.getTargetData().getIntPtrType()));
2073
2074  std::pair<SDOperand,SDOperand> Result =
2075    TLI.LowerCallTo(getRoot(), I.getType(), false, CallingConv::C, true,
2076                    DAG.getExternalSymbol("malloc", IntPtr),
2077                    Args, DAG);
2078  setValue(&I, Result.first);  // Pointers always fit in registers
2079  DAG.setRoot(Result.second);
2080}
2081
2082void SelectionDAGLowering::visitFree(FreeInst &I) {
2083  std::vector<std::pair<SDOperand, const Type*> > Args;
2084  Args.push_back(std::make_pair(getValue(I.getOperand(0)),
2085                                TLI.getTargetData().getIntPtrType()));
2086  MVT::ValueType IntPtr = TLI.getPointerTy();
2087  std::pair<SDOperand,SDOperand> Result =
2088    TLI.LowerCallTo(getRoot(), Type::VoidTy, false, CallingConv::C, true,
2089                    DAG.getExternalSymbol("free", IntPtr), Args, DAG);
2090  DAG.setRoot(Result.second);
2091}
2092
2093// InsertAtEndOfBasicBlock - This method should be implemented by targets that
2094// mark instructions with the 'usesCustomDAGSchedInserter' flag.  These
2095// instructions are special in various ways, which require special support to
2096// insert.  The specified MachineInstr is created but not inserted into any
2097// basic blocks, and the scheduler passes ownership of it to this method.
2098MachineBasicBlock *TargetLowering::InsertAtEndOfBasicBlock(MachineInstr *MI,
2099                                                       MachineBasicBlock *MBB) {
2100  std::cerr << "If a target marks an instruction with "
2101               "'usesCustomDAGSchedInserter', it must implement "
2102               "TargetLowering::InsertAtEndOfBasicBlock!\n";
2103  abort();
2104  return 0;
2105}
2106
2107void SelectionDAGLowering::visitVAStart(CallInst &I) {
2108  DAG.setRoot(DAG.getNode(ISD::VASTART, MVT::Other, getRoot(),
2109                          getValue(I.getOperand(1)),
2110                          DAG.getSrcValue(I.getOperand(1))));
2111}
2112
2113void SelectionDAGLowering::visitVAArg(VAArgInst &I) {
2114  SDOperand V = DAG.getVAArg(TLI.getValueType(I.getType()), getRoot(),
2115                             getValue(I.getOperand(0)),
2116                             DAG.getSrcValue(I.getOperand(0)));
2117  setValue(&I, V);
2118  DAG.setRoot(V.getValue(1));
2119}
2120
2121void SelectionDAGLowering::visitVAEnd(CallInst &I) {
2122  DAG.setRoot(DAG.getNode(ISD::VAEND, MVT::Other, getRoot(),
2123                          getValue(I.getOperand(1)),
2124                          DAG.getSrcValue(I.getOperand(1))));
2125}
2126
2127void SelectionDAGLowering::visitVACopy(CallInst &I) {
2128  DAG.setRoot(DAG.getNode(ISD::VACOPY, MVT::Other, getRoot(),
2129                          getValue(I.getOperand(1)),
2130                          getValue(I.getOperand(2)),
2131                          DAG.getSrcValue(I.getOperand(1)),
2132                          DAG.getSrcValue(I.getOperand(2))));
2133}
2134
2135// It is always conservatively correct for llvm.returnaddress and
2136// llvm.frameaddress to return 0.
2137std::pair<SDOperand, SDOperand>
2138TargetLowering::LowerFrameReturnAddress(bool isFrameAddr, SDOperand Chain,
2139                                        unsigned Depth, SelectionDAG &DAG) {
2140  return std::make_pair(DAG.getConstant(0, getPointerTy()), Chain);
2141}
2142
2143SDOperand TargetLowering::LowerOperation(SDOperand Op, SelectionDAG &DAG) {
2144  assert(0 && "LowerOperation not implemented for this target!");
2145  abort();
2146  return SDOperand();
2147}
2148
2149SDOperand TargetLowering::CustomPromoteOperation(SDOperand Op,
2150                                                 SelectionDAG &DAG) {
2151  assert(0 && "CustomPromoteOperation not implemented for this target!");
2152  abort();
2153  return SDOperand();
2154}
2155
2156void SelectionDAGLowering::visitFrameReturnAddress(CallInst &I, bool isFrame) {
2157  unsigned Depth = (unsigned)cast<ConstantUInt>(I.getOperand(1))->getValue();
2158  std::pair<SDOperand,SDOperand> Result =
2159    TLI.LowerFrameReturnAddress(isFrame, getRoot(), Depth, DAG);
2160  setValue(&I, Result.first);
2161  DAG.setRoot(Result.second);
2162}
2163
2164/// getMemsetValue - Vectorized representation of the memset value
2165/// operand.
2166static SDOperand getMemsetValue(SDOperand Value, MVT::ValueType VT,
2167                                SelectionDAG &DAG) {
2168  MVT::ValueType CurVT = VT;
2169  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
2170    uint64_t Val   = C->getValue() & 255;
2171    unsigned Shift = 8;
2172    while (CurVT != MVT::i8) {
2173      Val = (Val << Shift) | Val;
2174      Shift <<= 1;
2175      CurVT = (MVT::ValueType)((unsigned)CurVT - 1);
2176    }
2177    return DAG.getConstant(Val, VT);
2178  } else {
2179    Value = DAG.getNode(ISD::ZERO_EXTEND, VT, Value);
2180    unsigned Shift = 8;
2181    while (CurVT != MVT::i8) {
2182      Value =
2183        DAG.getNode(ISD::OR, VT,
2184                    DAG.getNode(ISD::SHL, VT, Value,
2185                                DAG.getConstant(Shift, MVT::i8)), Value);
2186      Shift <<= 1;
2187      CurVT = (MVT::ValueType)((unsigned)CurVT - 1);
2188    }
2189
2190    return Value;
2191  }
2192}
2193
2194/// getMemsetStringVal - Similar to getMemsetValue. Except this is only
2195/// used when a memcpy is turned into a memset when the source is a constant
2196/// string ptr.
2197static SDOperand getMemsetStringVal(MVT::ValueType VT,
2198                                    SelectionDAG &DAG, TargetLowering &TLI,
2199                                    std::string &Str, unsigned Offset) {
2200  MVT::ValueType CurVT = VT;
2201  uint64_t Val = 0;
2202  unsigned MSB = getSizeInBits(VT) / 8;
2203  if (TLI.isLittleEndian())
2204    Offset = Offset + MSB - 1;
2205  for (unsigned i = 0; i != MSB; ++i) {
2206    Val = (Val << 8) | Str[Offset];
2207    Offset += TLI.isLittleEndian() ? -1 : 1;
2208  }
2209  return DAG.getConstant(Val, VT);
2210}
2211
2212/// getMemBasePlusOffset - Returns base and offset node for the
2213static SDOperand getMemBasePlusOffset(SDOperand Base, unsigned Offset,
2214                                      SelectionDAG &DAG, TargetLowering &TLI) {
2215  MVT::ValueType VT = Base.getValueType();
2216  return DAG.getNode(ISD::ADD, VT, Base, DAG.getConstant(Offset, VT));
2217}
2218
2219/// MeetsMaxMemopRequirement - Determines if the number of memory ops required
2220/// to replace the memset / memcpy is below the threshold. It also returns the
2221/// types of the sequence of  memory ops to perform memset / memcpy.
2222static bool MeetsMaxMemopRequirement(std::vector<MVT::ValueType> &MemOps,
2223                                     unsigned Limit, uint64_t Size,
2224                                     unsigned Align, TargetLowering &TLI) {
2225  MVT::ValueType VT;
2226
2227  if (TLI.allowsUnalignedMemoryAccesses()) {
2228    VT = MVT::i64;
2229  } else {
2230    switch (Align & 7) {
2231    case 0:
2232      VT = MVT::i64;
2233      break;
2234    case 4:
2235      VT = MVT::i32;
2236      break;
2237    case 2:
2238      VT = MVT::i16;
2239      break;
2240    default:
2241      VT = MVT::i8;
2242      break;
2243    }
2244  }
2245
2246  MVT::ValueType LVT = MVT::i64;
2247  while (!TLI.isTypeLegal(LVT))
2248    LVT = (MVT::ValueType)((unsigned)LVT - 1);
2249  assert(MVT::isInteger(LVT));
2250
2251  if (VT > LVT)
2252    VT = LVT;
2253
2254  unsigned NumMemOps = 0;
2255  while (Size != 0) {
2256    unsigned VTSize = getSizeInBits(VT) / 8;
2257    while (VTSize > Size) {
2258      VT = (MVT::ValueType)((unsigned)VT - 1);
2259      VTSize >>= 1;
2260    }
2261    assert(MVT::isInteger(VT));
2262
2263    if (++NumMemOps > Limit)
2264      return false;
2265    MemOps.push_back(VT);
2266    Size -= VTSize;
2267  }
2268
2269  return true;
2270}
2271
2272void SelectionDAGLowering::visitMemIntrinsic(CallInst &I, unsigned Op) {
2273  SDOperand Op1 = getValue(I.getOperand(1));
2274  SDOperand Op2 = getValue(I.getOperand(2));
2275  SDOperand Op3 = getValue(I.getOperand(3));
2276  SDOperand Op4 = getValue(I.getOperand(4));
2277  unsigned Align = (unsigned)cast<ConstantSDNode>(Op4)->getValue();
2278  if (Align == 0) Align = 1;
2279
2280  if (ConstantSDNode *Size = dyn_cast<ConstantSDNode>(Op3)) {
2281    std::vector<MVT::ValueType> MemOps;
2282
2283    // Expand memset / memcpy to a series of load / store ops
2284    // if the size operand falls below a certain threshold.
2285    std::vector<SDOperand> OutChains;
2286    switch (Op) {
2287    default: break;  // Do nothing for now.
2288    case ISD::MEMSET: {
2289      if (MeetsMaxMemopRequirement(MemOps, TLI.getMaxStoresPerMemset(),
2290                                   Size->getValue(), Align, TLI)) {
2291        unsigned NumMemOps = MemOps.size();
2292        unsigned Offset = 0;
2293        for (unsigned i = 0; i < NumMemOps; i++) {
2294          MVT::ValueType VT = MemOps[i];
2295          unsigned VTSize = getSizeInBits(VT) / 8;
2296          SDOperand Value = getMemsetValue(Op2, VT, DAG);
2297          SDOperand Store = DAG.getNode(ISD::STORE, MVT::Other, getRoot(),
2298                                        Value,
2299                                    getMemBasePlusOffset(Op1, Offset, DAG, TLI),
2300                                      DAG.getSrcValue(I.getOperand(1), Offset));
2301          OutChains.push_back(Store);
2302          Offset += VTSize;
2303        }
2304      }
2305      break;
2306    }
2307    case ISD::MEMCPY: {
2308      if (MeetsMaxMemopRequirement(MemOps, TLI.getMaxStoresPerMemcpy(),
2309                                   Size->getValue(), Align, TLI)) {
2310        unsigned NumMemOps = MemOps.size();
2311        unsigned SrcOff = 0, DstOff = 0, SrcDelta = 0;
2312        GlobalAddressSDNode *G = NULL;
2313        std::string Str;
2314        bool CopyFromStr = false;
2315
2316        if (Op2.getOpcode() == ISD::GlobalAddress)
2317          G = cast<GlobalAddressSDNode>(Op2);
2318        else if (Op2.getOpcode() == ISD::ADD &&
2319                 Op2.getOperand(0).getOpcode() == ISD::GlobalAddress &&
2320                 Op2.getOperand(1).getOpcode() == ISD::Constant) {
2321          G = cast<GlobalAddressSDNode>(Op2.getOperand(0));
2322          SrcDelta = cast<ConstantSDNode>(Op2.getOperand(1))->getValue();
2323        }
2324        if (G) {
2325          GlobalVariable *GV = dyn_cast<GlobalVariable>(G->getGlobal());
2326          if (GV) {
2327            Str = GV->getStringValue(false);
2328            if (!Str.empty()) {
2329              CopyFromStr = true;
2330              SrcOff += SrcDelta;
2331            }
2332          }
2333        }
2334
2335        for (unsigned i = 0; i < NumMemOps; i++) {
2336          MVT::ValueType VT = MemOps[i];
2337          unsigned VTSize = getSizeInBits(VT) / 8;
2338          SDOperand Value, Chain, Store;
2339
2340          if (CopyFromStr) {
2341            Value = getMemsetStringVal(VT, DAG, TLI, Str, SrcOff);
2342            Chain = getRoot();
2343            Store =
2344              DAG.getNode(ISD::STORE, MVT::Other, Chain, Value,
2345                          getMemBasePlusOffset(Op1, DstOff, DAG, TLI),
2346                          DAG.getSrcValue(I.getOperand(1), DstOff));
2347          } else {
2348            Value = DAG.getLoad(VT, getRoot(),
2349                        getMemBasePlusOffset(Op2, SrcOff, DAG, TLI),
2350                        DAG.getSrcValue(I.getOperand(2), SrcOff));
2351            Chain = Value.getValue(1);
2352            Store =
2353              DAG.getNode(ISD::STORE, MVT::Other, Chain, Value,
2354                          getMemBasePlusOffset(Op1, DstOff, DAG, TLI),
2355                          DAG.getSrcValue(I.getOperand(1), DstOff));
2356          }
2357          OutChains.push_back(Store);
2358          SrcOff += VTSize;
2359          DstOff += VTSize;
2360        }
2361      }
2362      break;
2363    }
2364    }
2365
2366    if (!OutChains.empty()) {
2367      DAG.setRoot(DAG.getNode(ISD::TokenFactor, MVT::Other, OutChains));
2368      return;
2369    }
2370  }
2371
2372  std::vector<SDOperand> Ops;
2373  Ops.push_back(getRoot());
2374  Ops.push_back(Op1);
2375  Ops.push_back(Op2);
2376  Ops.push_back(Op3);
2377  Ops.push_back(Op4);
2378  DAG.setRoot(DAG.getNode(Op, MVT::Other, Ops));
2379}
2380
2381//===----------------------------------------------------------------------===//
2382// SelectionDAGISel code
2383//===----------------------------------------------------------------------===//
2384
2385unsigned SelectionDAGISel::MakeReg(MVT::ValueType VT) {
2386  return RegMap->createVirtualRegister(TLI.getRegClassFor(VT));
2387}
2388
2389void SelectionDAGISel::getAnalysisUsage(AnalysisUsage &AU) const {
2390  // FIXME: we only modify the CFG to split critical edges.  This
2391  // updates dom and loop info.
2392}
2393
2394
2395/// InsertGEPComputeCode - Insert code into BB to compute Ptr+PtrOffset,
2396/// casting to the type of GEPI.
2397static Value *InsertGEPComputeCode(Value *&V, BasicBlock *BB, Instruction *GEPI,
2398                                   Value *Ptr, Value *PtrOffset) {
2399  if (V) return V;   // Already computed.
2400
2401  BasicBlock::iterator InsertPt;
2402  if (BB == GEPI->getParent()) {
2403    // If insert into the GEP's block, insert right after the GEP.
2404    InsertPt = GEPI;
2405    ++InsertPt;
2406  } else {
2407    // Otherwise, insert at the top of BB, after any PHI nodes
2408    InsertPt = BB->begin();
2409    while (isa<PHINode>(InsertPt)) ++InsertPt;
2410  }
2411
2412  // If Ptr is itself a cast, but in some other BB, emit a copy of the cast into
2413  // BB so that there is only one value live across basic blocks (the cast
2414  // operand).
2415  if (CastInst *CI = dyn_cast<CastInst>(Ptr))
2416    if (CI->getParent() != BB && isa<PointerType>(CI->getOperand(0)->getType()))
2417      Ptr = new CastInst(CI->getOperand(0), CI->getType(), "", InsertPt);
2418
2419  // Add the offset, cast it to the right type.
2420  Ptr = BinaryOperator::createAdd(Ptr, PtrOffset, "", InsertPt);
2421  Ptr = new CastInst(Ptr, GEPI->getType(), "", InsertPt);
2422  return V = Ptr;
2423}
2424
2425
2426/// OptimizeGEPExpression - Since we are doing basic-block-at-a-time instruction
2427/// selection, we want to be a bit careful about some things.  In particular, if
2428/// we have a GEP instruction that is used in a different block than it is
2429/// defined, the addressing expression of the GEP cannot be folded into loads or
2430/// stores that use it.  In this case, decompose the GEP and move constant
2431/// indices into blocks that use it.
2432static void OptimizeGEPExpression(GetElementPtrInst *GEPI,
2433                                  const TargetData &TD) {
2434  // If this GEP is only used inside the block it is defined in, there is no
2435  // need to rewrite it.
2436  bool isUsedOutsideDefBB = false;
2437  BasicBlock *DefBB = GEPI->getParent();
2438  for (Value::use_iterator UI = GEPI->use_begin(), E = GEPI->use_end();
2439       UI != E; ++UI) {
2440    if (cast<Instruction>(*UI)->getParent() != DefBB) {
2441      isUsedOutsideDefBB = true;
2442      break;
2443    }
2444  }
2445  if (!isUsedOutsideDefBB) return;
2446
2447  // If this GEP has no non-zero constant indices, there is nothing we can do,
2448  // ignore it.
2449  bool hasConstantIndex = false;
2450  for (GetElementPtrInst::op_iterator OI = GEPI->op_begin()+1,
2451       E = GEPI->op_end(); OI != E; ++OI) {
2452    if (ConstantInt *CI = dyn_cast<ConstantInt>(*OI))
2453      if (CI->getRawValue()) {
2454        hasConstantIndex = true;
2455        break;
2456      }
2457  }
2458  // If this is a GEP &Alloca, 0, 0, forward subst the frame index into uses.
2459  if (!hasConstantIndex && !isa<AllocaInst>(GEPI->getOperand(0))) return;
2460
2461  // Otherwise, decompose the GEP instruction into multiplies and adds.  Sum the
2462  // constant offset (which we now know is non-zero) and deal with it later.
2463  uint64_t ConstantOffset = 0;
2464  const Type *UIntPtrTy = TD.getIntPtrType();
2465  Value *Ptr = new CastInst(GEPI->getOperand(0), UIntPtrTy, "", GEPI);
2466  const Type *Ty = GEPI->getOperand(0)->getType();
2467
2468  for (GetElementPtrInst::op_iterator OI = GEPI->op_begin()+1,
2469       E = GEPI->op_end(); OI != E; ++OI) {
2470    Value *Idx = *OI;
2471    if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
2472      unsigned Field = cast<ConstantUInt>(Idx)->getValue();
2473      if (Field)
2474        ConstantOffset += TD.getStructLayout(StTy)->MemberOffsets[Field];
2475      Ty = StTy->getElementType(Field);
2476    } else {
2477      Ty = cast<SequentialType>(Ty)->getElementType();
2478
2479      // Handle constant subscripts.
2480      if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
2481        if (CI->getRawValue() == 0) continue;
2482
2483        if (ConstantSInt *CSI = dyn_cast<ConstantSInt>(CI))
2484          ConstantOffset += (int64_t)TD.getTypeSize(Ty)*CSI->getValue();
2485        else
2486          ConstantOffset+=TD.getTypeSize(Ty)*cast<ConstantUInt>(CI)->getValue();
2487        continue;
2488      }
2489
2490      // Ptr = Ptr + Idx * ElementSize;
2491
2492      // Cast Idx to UIntPtrTy if needed.
2493      Idx = new CastInst(Idx, UIntPtrTy, "", GEPI);
2494
2495      uint64_t ElementSize = TD.getTypeSize(Ty);
2496      // Mask off bits that should not be set.
2497      ElementSize &= ~0ULL >> (64-UIntPtrTy->getPrimitiveSizeInBits());
2498      Constant *SizeCst = ConstantUInt::get(UIntPtrTy, ElementSize);
2499
2500      // Multiply by the element size and add to the base.
2501      Idx = BinaryOperator::createMul(Idx, SizeCst, "", GEPI);
2502      Ptr = BinaryOperator::createAdd(Ptr, Idx, "", GEPI);
2503    }
2504  }
2505
2506  // Make sure that the offset fits in uintptr_t.
2507  ConstantOffset &= ~0ULL >> (64-UIntPtrTy->getPrimitiveSizeInBits());
2508  Constant *PtrOffset = ConstantUInt::get(UIntPtrTy, ConstantOffset);
2509
2510  // Okay, we have now emitted all of the variable index parts to the BB that
2511  // the GEP is defined in.  Loop over all of the using instructions, inserting
2512  // an "add Ptr, ConstantOffset" into each block that uses it and update the
2513  // instruction to use the newly computed value, making GEPI dead.  When the
2514  // user is a load or store instruction address, we emit the add into the user
2515  // block, otherwise we use a canonical version right next to the gep (these
2516  // won't be foldable as addresses, so we might as well share the computation).
2517
2518  std::map<BasicBlock*,Value*> InsertedExprs;
2519  while (!GEPI->use_empty()) {
2520    Instruction *User = cast<Instruction>(GEPI->use_back());
2521
2522    // If this use is not foldable into the addressing mode, use a version
2523    // emitted in the GEP block.
2524    Value *NewVal;
2525    if (!isa<LoadInst>(User) &&
2526        (!isa<StoreInst>(User) || User->getOperand(0) == GEPI)) {
2527      NewVal = InsertGEPComputeCode(InsertedExprs[DefBB], DefBB, GEPI,
2528                                    Ptr, PtrOffset);
2529    } else {
2530      // Otherwise, insert the code in the User's block so it can be folded into
2531      // any users in that block.
2532      NewVal = InsertGEPComputeCode(InsertedExprs[User->getParent()],
2533                                    User->getParent(), GEPI,
2534                                    Ptr, PtrOffset);
2535    }
2536    User->replaceUsesOfWith(GEPI, NewVal);
2537  }
2538
2539  // Finally, the GEP is dead, remove it.
2540  GEPI->eraseFromParent();
2541}
2542
2543bool SelectionDAGISel::runOnFunction(Function &Fn) {
2544  MachineFunction &MF = MachineFunction::construct(&Fn, TLI.getTargetMachine());
2545  RegMap = MF.getSSARegMap();
2546  DEBUG(std::cerr << "\n\n\n=== " << Fn.getName() << "\n");
2547
2548  // First, split all critical edges for PHI nodes with incoming values that are
2549  // constants, this way the load of the constant into a vreg will not be placed
2550  // into MBBs that are used some other way.
2551  //
2552  // In this pass we also look for GEP instructions that are used across basic
2553  // blocks and rewrites them to improve basic-block-at-a-time selection.
2554  //
2555  for (Function::iterator BB = Fn.begin(), E = Fn.end(); BB != E; ++BB) {
2556    PHINode *PN;
2557    BasicBlock::iterator BBI;
2558    for (BBI = BB->begin(); (PN = dyn_cast<PHINode>(BBI)); ++BBI)
2559      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
2560        if (isa<Constant>(PN->getIncomingValue(i)))
2561          SplitCriticalEdge(PN->getIncomingBlock(i), BB);
2562
2563    for (BasicBlock::iterator E = BB->end(); BBI != E; )
2564      if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(BBI++))
2565        OptimizeGEPExpression(GEPI, TLI.getTargetData());
2566  }
2567
2568  FunctionLoweringInfo FuncInfo(TLI, Fn, MF);
2569
2570  for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
2571    SelectBasicBlock(I, MF, FuncInfo);
2572
2573  return true;
2574}
2575
2576
2577SDOperand SelectionDAGISel::
2578CopyValueToVirtualRegister(SelectionDAGLowering &SDL, Value *V, unsigned Reg) {
2579  SDOperand Op = SDL.getValue(V);
2580  assert((Op.getOpcode() != ISD::CopyFromReg ||
2581          cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
2582         "Copy from a reg to the same reg!");
2583
2584  // If this type is not legal, we must make sure to not create an invalid
2585  // register use.
2586  MVT::ValueType SrcVT = Op.getValueType();
2587  MVT::ValueType DestVT = TLI.getTypeToTransformTo(SrcVT);
2588  SelectionDAG &DAG = SDL.DAG;
2589  if (SrcVT == DestVT) {
2590    return DAG.getCopyToReg(SDL.getRoot(), Reg, Op);
2591  } else if (SrcVT == MVT::Vector) {
2592    // FIXME: THIS DOES NOT SUPPORT PROMOTED/EXPANDED ELEMENTS!
2593
2594    // Figure out the right, legal destination reg to copy into.
2595    const PackedType *PTy = cast<PackedType>(V->getType());
2596    unsigned NumElts = PTy->getNumElements();
2597    MVT::ValueType EltTy = TLI.getValueType(PTy->getElementType());
2598
2599    unsigned NumVectorRegs = 1;
2600
2601    // Divide the input until we get to a supported size.  This will always
2602    // end with a scalar if the target doesn't support vectors.
2603    while (NumElts > 1 && !TLI.isTypeLegal(getVectorType(EltTy, NumElts))) {
2604      NumElts >>= 1;
2605      NumVectorRegs <<= 1;
2606    }
2607
2608    MVT::ValueType VT;
2609    if (NumElts == 1)
2610      VT = EltTy;
2611    else
2612      VT = getVectorType(EltTy, NumElts);
2613
2614    // FIXME: THIS ASSUMES THAT THE INPUT VECTOR WILL BE LEGAL!
2615    Op = DAG.getNode(ISD::BIT_CONVERT, VT, Op);
2616    return DAG.getCopyToReg(SDL.getRoot(), Reg, Op);
2617  } else if (SrcVT < DestVT) {
2618    // The src value is promoted to the register.
2619    if (MVT::isFloatingPoint(SrcVT))
2620      Op = DAG.getNode(ISD::FP_EXTEND, DestVT, Op);
2621    else
2622      Op = DAG.getNode(ISD::ANY_EXTEND, DestVT, Op);
2623    return DAG.getCopyToReg(SDL.getRoot(), Reg, Op);
2624  } else  {
2625    // The src value is expanded into multiple registers.
2626    SDOperand Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DestVT,
2627                               Op, DAG.getConstant(0, MVT::i32));
2628    SDOperand Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DestVT,
2629                               Op, DAG.getConstant(1, MVT::i32));
2630    Op = DAG.getCopyToReg(SDL.getRoot(), Reg, Lo);
2631    return DAG.getCopyToReg(Op, Reg+1, Hi);
2632  }
2633}
2634
2635void SelectionDAGISel::
2636LowerArguments(BasicBlock *BB, SelectionDAGLowering &SDL,
2637               std::vector<SDOperand> &UnorderedChains) {
2638  // If this is the entry block, emit arguments.
2639  Function &F = *BB->getParent();
2640  FunctionLoweringInfo &FuncInfo = SDL.FuncInfo;
2641  SDOperand OldRoot = SDL.DAG.getRoot();
2642  std::vector<SDOperand> Args = TLI.LowerArguments(F, SDL.DAG);
2643
2644  unsigned a = 0;
2645  for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end();
2646       AI != E; ++AI, ++a)
2647    if (!AI->use_empty()) {
2648      SDL.setValue(AI, Args[a]);
2649
2650      // If this argument is live outside of the entry block, insert a copy from
2651      // whereever we got it to the vreg that other BB's will reference it as.
2652      if (FuncInfo.ValueMap.count(AI)) {
2653        SDOperand Copy =
2654          CopyValueToVirtualRegister(SDL, AI, FuncInfo.ValueMap[AI]);
2655        UnorderedChains.push_back(Copy);
2656      }
2657    }
2658
2659  // Next, if the function has live ins that need to be copied into vregs,
2660  // emit the copies now, into the top of the block.
2661  MachineFunction &MF = SDL.DAG.getMachineFunction();
2662  if (MF.livein_begin() != MF.livein_end()) {
2663    SSARegMap *RegMap = MF.getSSARegMap();
2664    const MRegisterInfo &MRI = *MF.getTarget().getRegisterInfo();
2665    for (MachineFunction::livein_iterator LI = MF.livein_begin(),
2666         E = MF.livein_end(); LI != E; ++LI)
2667      if (LI->second)
2668        MRI.copyRegToReg(*MF.begin(), MF.begin()->end(), LI->second,
2669                         LI->first, RegMap->getRegClass(LI->second));
2670  }
2671
2672  // Finally, if the target has anything special to do, allow it to do so.
2673  EmitFunctionEntryCode(F, SDL.DAG.getMachineFunction());
2674}
2675
2676
2677void SelectionDAGISel::BuildSelectionDAG(SelectionDAG &DAG, BasicBlock *LLVMBB,
2678       std::vector<std::pair<MachineInstr*, unsigned> > &PHINodesToUpdate,
2679                                         FunctionLoweringInfo &FuncInfo) {
2680  SelectionDAGLowering SDL(DAG, TLI, FuncInfo);
2681
2682  std::vector<SDOperand> UnorderedChains;
2683
2684  // Lower any arguments needed in this block if this is the entry block.
2685  if (LLVMBB == &LLVMBB->getParent()->front())
2686    LowerArguments(LLVMBB, SDL, UnorderedChains);
2687
2688  BB = FuncInfo.MBBMap[LLVMBB];
2689  SDL.setCurrentBasicBlock(BB);
2690
2691  // Lower all of the non-terminator instructions.
2692  for (BasicBlock::iterator I = LLVMBB->begin(), E = --LLVMBB->end();
2693       I != E; ++I)
2694    SDL.visit(*I);
2695
2696  // Ensure that all instructions which are used outside of their defining
2697  // blocks are available as virtual registers.
2698  for (BasicBlock::iterator I = LLVMBB->begin(), E = LLVMBB->end(); I != E;++I)
2699    if (!I->use_empty() && !isa<PHINode>(I)) {
2700      std::map<const Value*, unsigned>::iterator VMI =FuncInfo.ValueMap.find(I);
2701      if (VMI != FuncInfo.ValueMap.end())
2702        UnorderedChains.push_back(
2703                           CopyValueToVirtualRegister(SDL, I, VMI->second));
2704    }
2705
2706  // Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
2707  // ensure constants are generated when needed.  Remember the virtual registers
2708  // that need to be added to the Machine PHI nodes as input.  We cannot just
2709  // directly add them, because expansion might result in multiple MBB's for one
2710  // BB.  As such, the start of the BB might correspond to a different MBB than
2711  // the end.
2712  //
2713
2714  // Emit constants only once even if used by multiple PHI nodes.
2715  std::map<Constant*, unsigned> ConstantsOut;
2716
2717  // Check successor nodes PHI nodes that expect a constant to be available from
2718  // this block.
2719  TerminatorInst *TI = LLVMBB->getTerminator();
2720  for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
2721    BasicBlock *SuccBB = TI->getSuccessor(succ);
2722    MachineBasicBlock::iterator MBBI = FuncInfo.MBBMap[SuccBB]->begin();
2723    PHINode *PN;
2724
2725    // At this point we know that there is a 1-1 correspondence between LLVM PHI
2726    // nodes and Machine PHI nodes, but the incoming operands have not been
2727    // emitted yet.
2728    for (BasicBlock::iterator I = SuccBB->begin();
2729         (PN = dyn_cast<PHINode>(I)); ++I)
2730      if (!PN->use_empty()) {
2731        unsigned Reg;
2732        Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
2733        if (Constant *C = dyn_cast<Constant>(PHIOp)) {
2734          unsigned &RegOut = ConstantsOut[C];
2735          if (RegOut == 0) {
2736            RegOut = FuncInfo.CreateRegForValue(C);
2737            UnorderedChains.push_back(
2738                             CopyValueToVirtualRegister(SDL, C, RegOut));
2739          }
2740          Reg = RegOut;
2741        } else {
2742          Reg = FuncInfo.ValueMap[PHIOp];
2743          if (Reg == 0) {
2744            assert(isa<AllocaInst>(PHIOp) &&
2745                   FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
2746                   "Didn't codegen value into a register!??");
2747            Reg = FuncInfo.CreateRegForValue(PHIOp);
2748            UnorderedChains.push_back(
2749                             CopyValueToVirtualRegister(SDL, PHIOp, Reg));
2750          }
2751        }
2752
2753        // Remember that this register needs to added to the machine PHI node as
2754        // the input for this MBB.
2755        unsigned NumElements =
2756          TLI.getNumElements(TLI.getValueType(PN->getType()));
2757        for (unsigned i = 0, e = NumElements; i != e; ++i)
2758          PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i));
2759      }
2760  }
2761  ConstantsOut.clear();
2762
2763  // Turn all of the unordered chains into one factored node.
2764  if (!UnorderedChains.empty()) {
2765    SDOperand Root = SDL.getRoot();
2766    if (Root.getOpcode() != ISD::EntryToken) {
2767      unsigned i = 0, e = UnorderedChains.size();
2768      for (; i != e; ++i) {
2769        assert(UnorderedChains[i].Val->getNumOperands() > 1);
2770        if (UnorderedChains[i].Val->getOperand(0) == Root)
2771          break;  // Don't add the root if we already indirectly depend on it.
2772      }
2773
2774      if (i == e)
2775        UnorderedChains.push_back(Root);
2776    }
2777    DAG.setRoot(DAG.getNode(ISD::TokenFactor, MVT::Other, UnorderedChains));
2778  }
2779
2780  // Lower the terminator after the copies are emitted.
2781  SDL.visit(*LLVMBB->getTerminator());
2782
2783  // Copy over any CaseBlock records that may now exist due to SwitchInst
2784  // lowering.
2785  SwitchCases.clear();
2786  SwitchCases = SDL.SwitchCases;
2787
2788  // Make sure the root of the DAG is up-to-date.
2789  DAG.setRoot(SDL.getRoot());
2790}
2791
2792void SelectionDAGISel::CodeGenAndEmitDAG(SelectionDAG &DAG) {
2793  // Run the DAG combiner in pre-legalize mode.
2794  DAG.Combine(false);
2795
2796  DEBUG(std::cerr << "Lowered selection DAG:\n");
2797  DEBUG(DAG.dump());
2798
2799  // Second step, hack on the DAG until it only uses operations and types that
2800  // the target supports.
2801  DAG.Legalize();
2802
2803  DEBUG(std::cerr << "Legalized selection DAG:\n");
2804  DEBUG(DAG.dump());
2805
2806  // Run the DAG combiner in post-legalize mode.
2807  DAG.Combine(true);
2808
2809  if (ViewISelDAGs) DAG.viewGraph();
2810
2811  // Third, instruction select all of the operations to machine code, adding the
2812  // code to the MachineBasicBlock.
2813  InstructionSelectBasicBlock(DAG);
2814
2815  DEBUG(std::cerr << "Selected machine code:\n");
2816  DEBUG(BB->dump());
2817}
2818
2819void SelectionDAGISel::SelectBasicBlock(BasicBlock *LLVMBB, MachineFunction &MF,
2820                                        FunctionLoweringInfo &FuncInfo) {
2821  std::vector<std::pair<MachineInstr*, unsigned> > PHINodesToUpdate;
2822  {
2823    SelectionDAG DAG(TLI, MF, getAnalysisToUpdate<MachineDebugInfo>());
2824    CurDAG = &DAG;
2825
2826    // First step, lower LLVM code to some DAG.  This DAG may use operations and
2827    // types that are not supported by the target.
2828    BuildSelectionDAG(DAG, LLVMBB, PHINodesToUpdate, FuncInfo);
2829
2830    // Second step, emit the lowered DAG as machine code.
2831    CodeGenAndEmitDAG(DAG);
2832  }
2833
2834  // Next, now that we know what the last MBB the LLVM BB expanded is, update
2835  // PHI nodes in successors.
2836  if (SwitchCases.empty()) {
2837    for (unsigned i = 0, e = PHINodesToUpdate.size(); i != e; ++i) {
2838      MachineInstr *PHI = PHINodesToUpdate[i].first;
2839      assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
2840             "This is not a machine PHI node that we are updating!");
2841      PHI->addRegOperand(PHINodesToUpdate[i].second);
2842      PHI->addMachineBasicBlockOperand(BB);
2843    }
2844    return;
2845  }
2846
2847  // If we generated any switch lowering information, build and codegen any
2848  // additional DAGs necessary.
2849  for(unsigned i = 0, e = SwitchCases.size(); i != e; ++i) {
2850    SelectionDAG SDAG(TLI, MF, getAnalysisToUpdate<MachineDebugInfo>());
2851    CurDAG = &SDAG;
2852    SelectionDAGLowering SDL(SDAG, TLI, FuncInfo);
2853    // Set the current basic block to the mbb we wish to insert the code into
2854    BB = SwitchCases[i].ThisBB;
2855    SDL.setCurrentBasicBlock(BB);
2856    // Emit the code
2857    SDL.visitSwitchCase(SwitchCases[i]);
2858    SDAG.setRoot(SDL.getRoot());
2859    CodeGenAndEmitDAG(SDAG);
2860    // Iterate over the phi nodes, if there is a phi node in a successor of this
2861    // block (for instance, the default block), then add a pair of operands to
2862    // the phi node for this block, as if we were coming from the original
2863    // BB before switch expansion.
2864    for (unsigned pi = 0, pe = PHINodesToUpdate.size(); pi != pe; ++pi) {
2865      MachineInstr *PHI = PHINodesToUpdate[pi].first;
2866      MachineBasicBlock *PHIBB = PHI->getParent();
2867      assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
2868             "This is not a machine PHI node that we are updating!");
2869      if (PHIBB == SwitchCases[i].LHSBB || PHIBB == SwitchCases[i].RHSBB) {
2870        PHI->addRegOperand(PHINodesToUpdate[pi].second);
2871        PHI->addMachineBasicBlockOperand(BB);
2872      }
2873    }
2874  }
2875}
2876
2877//===----------------------------------------------------------------------===//
2878/// ScheduleAndEmitDAG - Pick a safe ordering and emit instructions for each
2879/// target node in the graph.
2880void SelectionDAGISel::ScheduleAndEmitDAG(SelectionDAG &DAG) {
2881  if (ViewSchedDAGs) DAG.viewGraph();
2882  ScheduleDAG *SL = NULL;
2883
2884  switch (ISHeuristic) {
2885  default: assert(0 && "Unrecognized scheduling heuristic");
2886  case defaultScheduling:
2887    if (TLI.getSchedulingPreference() == TargetLowering::SchedulingForLatency)
2888      SL = createSimpleDAGScheduler(noScheduling, DAG, BB);
2889    else /* TargetLowering::SchedulingForRegPressure */
2890      SL = createBURRListDAGScheduler(DAG, BB);
2891    break;
2892  case noScheduling:
2893    SL = createBFS_DAGScheduler(DAG, BB);
2894    break;
2895  case simpleScheduling:
2896    SL = createSimpleDAGScheduler(false, DAG, BB);
2897    break;
2898  case simpleNoItinScheduling:
2899    SL = createSimpleDAGScheduler(true, DAG, BB);
2900    break;
2901  case listSchedulingBURR:
2902    SL = createBURRListDAGScheduler(DAG, BB);
2903    break;
2904  case listSchedulingTD:
2905    SL = createTDListDAGScheduler(DAG, BB, CreateTargetHazardRecognizer());
2906    break;
2907  }
2908  BB = SL->Run();
2909  delete SL;
2910}
2911
2912HazardRecognizer *SelectionDAGISel::CreateTargetHazardRecognizer() {
2913  return new HazardRecognizer();
2914}
2915
2916/// SelectInlineAsmMemoryOperands - Calls to this are automatically generated
2917/// by tblgen.  Others should not call it.
2918void SelectionDAGISel::
2919SelectInlineAsmMemoryOperands(std::vector<SDOperand> &Ops, SelectionDAG &DAG) {
2920  std::vector<SDOperand> InOps;
2921  std::swap(InOps, Ops);
2922
2923  Ops.push_back(InOps[0]);  // input chain.
2924  Ops.push_back(InOps[1]);  // input asm string.
2925
2926  const char *AsmStr = cast<ExternalSymbolSDNode>(InOps[1])->getSymbol();
2927  unsigned i = 2, e = InOps.size();
2928  if (InOps[e-1].getValueType() == MVT::Flag)
2929    --e;  // Don't process a flag operand if it is here.
2930
2931  while (i != e) {
2932    unsigned Flags = cast<ConstantSDNode>(InOps[i])->getValue();
2933    if ((Flags & 7) != 4 /*MEM*/) {
2934      // Just skip over this operand, copying the operands verbatim.
2935      Ops.insert(Ops.end(), InOps.begin()+i, InOps.begin()+i+(Flags >> 3) + 1);
2936      i += (Flags >> 3) + 1;
2937    } else {
2938      assert((Flags >> 3) == 1 && "Memory operand with multiple values?");
2939      // Otherwise, this is a memory operand.  Ask the target to select it.
2940      std::vector<SDOperand> SelOps;
2941      if (SelectInlineAsmMemoryOperand(InOps[i+1], 'm', SelOps, DAG)) {
2942        std::cerr << "Could not match memory address.  Inline asm failure!\n";
2943        exit(1);
2944      }
2945
2946      // Add this to the output node.
2947      Ops.push_back(DAG.getConstant(4/*MEM*/ | (SelOps.size() << 3), MVT::i32));
2948      Ops.insert(Ops.end(), SelOps.begin(), SelOps.end());
2949      i += 2;
2950    }
2951  }
2952
2953  // Add the flag input back if present.
2954  if (e != InOps.size())
2955    Ops.push_back(InOps.back());
2956}
2957