SelectionDAGISel.cpp revision 2d389e8ad7e98fa50f8d021a7669ba0aab07a571
1//===-- SelectionDAGISel.cpp - Implement the SelectionDAGISel class -------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAGISel class.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "isel"
15#include "llvm/ADT/BitVector.h"
16#include "llvm/Analysis/AliasAnalysis.h"
17#include "llvm/CodeGen/SelectionDAGISel.h"
18#include "llvm/CodeGen/ScheduleDAG.h"
19#include "llvm/Constants.h"
20#include "llvm/CallingConv.h"
21#include "llvm/DerivedTypes.h"
22#include "llvm/Function.h"
23#include "llvm/GlobalVariable.h"
24#include "llvm/InlineAsm.h"
25#include "llvm/Instructions.h"
26#include "llvm/Intrinsics.h"
27#include "llvm/IntrinsicInst.h"
28#include "llvm/ParameterAttributes.h"
29#include "llvm/CodeGen/Collector.h"
30#include "llvm/CodeGen/MachineFunction.h"
31#include "llvm/CodeGen/MachineFrameInfo.h"
32#include "llvm/CodeGen/MachineInstrBuilder.h"
33#include "llvm/CodeGen/MachineJumpTableInfo.h"
34#include "llvm/CodeGen/MachineModuleInfo.h"
35#include "llvm/CodeGen/MachineRegisterInfo.h"
36#include "llvm/CodeGen/SchedulerRegistry.h"
37#include "llvm/CodeGen/SelectionDAG.h"
38#include "llvm/Target/TargetRegisterInfo.h"
39#include "llvm/Target/TargetData.h"
40#include "llvm/Target/TargetFrameInfo.h"
41#include "llvm/Target/TargetInstrInfo.h"
42#include "llvm/Target/TargetLowering.h"
43#include "llvm/Target/TargetMachine.h"
44#include "llvm/Target/TargetOptions.h"
45#include "llvm/Support/MathExtras.h"
46#include "llvm/Support/Debug.h"
47#include "llvm/Support/Compiler.h"
48#include <algorithm>
49using namespace llvm;
50
51#ifndef NDEBUG
52static cl::opt<bool>
53ViewISelDAGs("view-isel-dags", cl::Hidden,
54          cl::desc("Pop up a window to show isel dags as they are selected"));
55static cl::opt<bool>
56ViewSchedDAGs("view-sched-dags", cl::Hidden,
57          cl::desc("Pop up a window to show sched dags as they are processed"));
58static cl::opt<bool>
59ViewSUnitDAGs("view-sunit-dags", cl::Hidden,
60      cl::desc("Pop up a window to show SUnit dags after they are processed"));
61#else
62static const bool ViewISelDAGs = 0, ViewSchedDAGs = 0, ViewSUnitDAGs = 0;
63#endif
64
65//===---------------------------------------------------------------------===//
66///
67/// RegisterScheduler class - Track the registration of instruction schedulers.
68///
69//===---------------------------------------------------------------------===//
70MachinePassRegistry RegisterScheduler::Registry;
71
72//===---------------------------------------------------------------------===//
73///
74/// ISHeuristic command line option for instruction schedulers.
75///
76//===---------------------------------------------------------------------===//
77static cl::opt<RegisterScheduler::FunctionPassCtor, false,
78               RegisterPassParser<RegisterScheduler> >
79ISHeuristic("pre-RA-sched",
80            cl::init(&createDefaultScheduler),
81            cl::desc("Instruction schedulers available (before register"
82                     " allocation):"));
83
84static RegisterScheduler
85defaultListDAGScheduler("default", "  Best scheduler for the target",
86                        createDefaultScheduler);
87
88namespace { struct SDISelAsmOperandInfo; }
89
90/// ComputeValueVTs - Given an LLVM IR type, compute a sequence of
91/// MVTs that represent all the individual underlying
92/// non-aggregate types that comprise it.
93static void ComputeValueVTs(const TargetLowering &TLI, const Type *Ty,
94                            SmallVectorImpl<MVT> &ValueVTs) {
95  // Given a struct type, recursively traverse the elements.
96  if (const StructType *STy = dyn_cast<StructType>(Ty)) {
97    for (StructType::element_iterator EI = STy->element_begin(),
98                                      EB = STy->element_end();
99        EI != EB; ++EI)
100      ComputeValueVTs(TLI, *EI, ValueVTs);
101    return;
102  }
103  // Given an array type, recursively traverse the elements.
104  if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
105    const Type *EltTy = ATy->getElementType();
106    for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i)
107      ComputeValueVTs(TLI, EltTy, ValueVTs);
108    return;
109  }
110  // Base case: we can get an MVT for this LLVM IR type.
111  ValueVTs.push_back(TLI.getValueType(Ty));
112}
113
114namespace {
115  /// RegsForValue - This struct represents the registers (physical or virtual)
116  /// that a particular set of values is assigned, and the type information about
117  /// the value. The most common situation is to represent one value at a time,
118  /// but struct or array values are handled element-wise as multiple values.
119  /// The splitting of aggregates is performed recursively, so that we never
120  /// have aggregate-typed registers. The values at this point do not necessarily
121  /// have legal types, so each value may require one or more registers of some
122  /// legal type.
123  ///
124  struct VISIBILITY_HIDDEN RegsForValue {
125    /// TLI - The TargetLowering object.
126    ///
127    const TargetLowering *TLI;
128
129    /// ValueVTs - The value types of the values, which may not be legal, and
130    /// may need be promoted or synthesized from one or more registers.
131    ///
132    SmallVector<MVT, 4> ValueVTs;
133
134    /// RegVTs - The value types of the registers. This is the same size as
135    /// ValueVTs and it records, for each value, what the type of the assigned
136    /// register or registers are. (Individual values are never synthesized
137    /// from more than one type of register.)
138    ///
139    /// With virtual registers, the contents of RegVTs is redundant with TLI's
140    /// getRegisterType member function, however when with physical registers
141    /// it is necessary to have a separate record of the types.
142    ///
143    SmallVector<MVT, 4> RegVTs;
144
145    /// Regs - This list holds the registers assigned to the values.
146    /// Each legal or promoted value requires one register, and each
147    /// expanded value requires multiple registers.
148    ///
149    SmallVector<unsigned, 4> Regs;
150
151    RegsForValue() : TLI(0) {}
152
153    RegsForValue(const TargetLowering &tli,
154                 const SmallVector<unsigned, 4> &regs,
155                 MVT regvt, MVT valuevt)
156      : TLI(&tli),  ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {}
157    RegsForValue(const TargetLowering &tli,
158                 const SmallVector<unsigned, 4> &regs,
159                 const SmallVector<MVT, 4> &regvts,
160                 const SmallVector<MVT, 4> &valuevts)
161      : TLI(&tli), ValueVTs(valuevts), RegVTs(regvts), Regs(regs) {}
162    RegsForValue(const TargetLowering &tli,
163                 unsigned Reg, const Type *Ty) : TLI(&tli) {
164      ComputeValueVTs(tli, Ty, ValueVTs);
165
166      for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
167        MVT ValueVT = ValueVTs[Value];
168        unsigned NumRegs = TLI->getNumRegisters(ValueVT);
169        MVT RegisterVT = TLI->getRegisterType(ValueVT);
170        for (unsigned i = 0; i != NumRegs; ++i)
171          Regs.push_back(Reg + i);
172        RegVTs.push_back(RegisterVT);
173        Reg += NumRegs;
174      }
175    }
176
177    /// append - Add the specified values to this one.
178    void append(const RegsForValue &RHS) {
179      TLI = RHS.TLI;
180      ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end());
181      RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end());
182      Regs.append(RHS.Regs.begin(), RHS.Regs.end());
183    }
184
185
186    /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
187    /// this value and returns the result as a ValueVTs value.  This uses
188    /// Chain/Flag as the input and updates them for the output Chain/Flag.
189    /// If the Flag pointer is NULL, no flag is used.
190    SDOperand getCopyFromRegs(SelectionDAG &DAG,
191                              SDOperand &Chain, SDOperand *Flag) const;
192
193    /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
194    /// specified value into the registers specified by this object.  This uses
195    /// Chain/Flag as the input and updates them for the output Chain/Flag.
196    /// If the Flag pointer is NULL, no flag is used.
197    void getCopyToRegs(SDOperand Val, SelectionDAG &DAG,
198                       SDOperand &Chain, SDOperand *Flag) const;
199
200    /// AddInlineAsmOperands - Add this value to the specified inlineasm node
201    /// operand list.  This adds the code marker and includes the number of
202    /// values added into it.
203    void AddInlineAsmOperands(unsigned Code, SelectionDAG &DAG,
204                              std::vector<SDOperand> &Ops) const;
205  };
206}
207
208namespace llvm {
209  //===--------------------------------------------------------------------===//
210  /// createDefaultScheduler - This creates an instruction scheduler appropriate
211  /// for the target.
212  ScheduleDAG* createDefaultScheduler(SelectionDAGISel *IS,
213                                      SelectionDAG *DAG,
214                                      MachineBasicBlock *BB) {
215    TargetLowering &TLI = IS->getTargetLowering();
216
217    if (TLI.getSchedulingPreference() == TargetLowering::SchedulingForLatency) {
218      return createTDListDAGScheduler(IS, DAG, BB);
219    } else {
220      assert(TLI.getSchedulingPreference() ==
221           TargetLowering::SchedulingForRegPressure && "Unknown sched type!");
222      return createBURRListDAGScheduler(IS, DAG, BB);
223    }
224  }
225
226
227  //===--------------------------------------------------------------------===//
228  /// FunctionLoweringInfo - This contains information that is global to a
229  /// function that is used when lowering a region of the function.
230  class FunctionLoweringInfo {
231  public:
232    TargetLowering &TLI;
233    Function &Fn;
234    MachineFunction &MF;
235    MachineRegisterInfo &RegInfo;
236
237    FunctionLoweringInfo(TargetLowering &TLI, Function &Fn,MachineFunction &MF);
238
239    /// MBBMap - A mapping from LLVM basic blocks to their machine code entry.
240    std::map<const BasicBlock*, MachineBasicBlock *> MBBMap;
241
242    /// ValueMap - Since we emit code for the function a basic block at a time,
243    /// we must remember which virtual registers hold the values for
244    /// cross-basic-block values.
245    DenseMap<const Value*, unsigned> ValueMap;
246
247    /// StaticAllocaMap - Keep track of frame indices for fixed sized allocas in
248    /// the entry block.  This allows the allocas to be efficiently referenced
249    /// anywhere in the function.
250    std::map<const AllocaInst*, int> StaticAllocaMap;
251
252#ifndef NDEBUG
253    SmallSet<Instruction*, 8> CatchInfoLost;
254    SmallSet<Instruction*, 8> CatchInfoFound;
255#endif
256
257    unsigned MakeReg(MVT VT) {
258      return RegInfo.createVirtualRegister(TLI.getRegClassFor(VT));
259    }
260
261    /// isExportedInst - Return true if the specified value is an instruction
262    /// exported from its block.
263    bool isExportedInst(const Value *V) {
264      return ValueMap.count(V);
265    }
266
267    unsigned CreateRegForValue(const Value *V);
268
269    unsigned InitializeRegForValue(const Value *V) {
270      unsigned &R = ValueMap[V];
271      assert(R == 0 && "Already initialized this value register!");
272      return R = CreateRegForValue(V);
273    }
274  };
275}
276
277/// isSelector - Return true if this instruction is a call to the
278/// eh.selector intrinsic.
279static bool isSelector(Instruction *I) {
280  if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
281    return (II->getIntrinsicID() == Intrinsic::eh_selector_i32 ||
282            II->getIntrinsicID() == Intrinsic::eh_selector_i64);
283  return false;
284}
285
286/// isUsedOutsideOfDefiningBlock - Return true if this instruction is used by
287/// PHI nodes or outside of the basic block that defines it, or used by a
288/// switch or atomic instruction, which may expand to multiple basic blocks.
289static bool isUsedOutsideOfDefiningBlock(Instruction *I) {
290  if (isa<PHINode>(I)) return true;
291  BasicBlock *BB = I->getParent();
292  for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E; ++UI)
293    if (cast<Instruction>(*UI)->getParent() != BB || isa<PHINode>(*UI) ||
294        // FIXME: Remove switchinst special case.
295        isa<SwitchInst>(*UI))
296      return true;
297  return false;
298}
299
300/// isOnlyUsedInEntryBlock - If the specified argument is only used in the
301/// entry block, return true.  This includes arguments used by switches, since
302/// the switch may expand into multiple basic blocks.
303static bool isOnlyUsedInEntryBlock(Argument *A) {
304  BasicBlock *Entry = A->getParent()->begin();
305  for (Value::use_iterator UI = A->use_begin(), E = A->use_end(); UI != E; ++UI)
306    if (cast<Instruction>(*UI)->getParent() != Entry || isa<SwitchInst>(*UI))
307      return false;  // Use not in entry block.
308  return true;
309}
310
311FunctionLoweringInfo::FunctionLoweringInfo(TargetLowering &tli,
312                                           Function &fn, MachineFunction &mf)
313    : TLI(tli), Fn(fn), MF(mf), RegInfo(MF.getRegInfo()) {
314
315  // Create a vreg for each argument register that is not dead and is used
316  // outside of the entry block for the function.
317  for (Function::arg_iterator AI = Fn.arg_begin(), E = Fn.arg_end();
318       AI != E; ++AI)
319    if (!isOnlyUsedInEntryBlock(AI))
320      InitializeRegForValue(AI);
321
322  // Initialize the mapping of values to registers.  This is only set up for
323  // instruction values that are used outside of the block that defines
324  // them.
325  Function::iterator BB = Fn.begin(), EB = Fn.end();
326  for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
327    if (AllocaInst *AI = dyn_cast<AllocaInst>(I))
328      if (ConstantInt *CUI = dyn_cast<ConstantInt>(AI->getArraySize())) {
329        const Type *Ty = AI->getAllocatedType();
330        uint64_t TySize = TLI.getTargetData()->getABITypeSize(Ty);
331        unsigned Align =
332          std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty),
333                   AI->getAlignment());
334
335        TySize *= CUI->getZExtValue();   // Get total allocated size.
336        if (TySize == 0) TySize = 1; // Don't create zero-sized stack objects.
337        StaticAllocaMap[AI] =
338          MF.getFrameInfo()->CreateStackObject(TySize, Align);
339      }
340
341  for (; BB != EB; ++BB)
342    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
343      if (!I->use_empty() && isUsedOutsideOfDefiningBlock(I))
344        if (!isa<AllocaInst>(I) ||
345            !StaticAllocaMap.count(cast<AllocaInst>(I)))
346          InitializeRegForValue(I);
347
348  // Create an initial MachineBasicBlock for each LLVM BasicBlock in F.  This
349  // also creates the initial PHI MachineInstrs, though none of the input
350  // operands are populated.
351  for (BB = Fn.begin(), EB = Fn.end(); BB != EB; ++BB) {
352    MachineBasicBlock *MBB = new MachineBasicBlock(BB);
353    MBBMap[BB] = MBB;
354    MF.getBasicBlockList().push_back(MBB);
355
356    // Create Machine PHI nodes for LLVM PHI nodes, lowering them as
357    // appropriate.
358    PHINode *PN;
359    for (BasicBlock::iterator I = BB->begin();(PN = dyn_cast<PHINode>(I)); ++I){
360      if (PN->use_empty()) continue;
361
362      MVT VT = TLI.getValueType(PN->getType());
363      unsigned NumRegisters = TLI.getNumRegisters(VT);
364      unsigned PHIReg = ValueMap[PN];
365      assert(PHIReg && "PHI node does not have an assigned virtual register!");
366      const TargetInstrInfo *TII = TLI.getTargetMachine().getInstrInfo();
367      for (unsigned i = 0; i != NumRegisters; ++i)
368        BuildMI(MBB, TII->get(TargetInstrInfo::PHI), PHIReg+i);
369    }
370  }
371}
372
373/// CreateRegForValue - Allocate the appropriate number of virtual registers of
374/// the correctly promoted or expanded types.  Assign these registers
375/// consecutive vreg numbers and return the first assigned number.
376///
377/// In the case that the given value has struct or array type, this function
378/// will assign registers for each member or element.
379///
380unsigned FunctionLoweringInfo::CreateRegForValue(const Value *V) {
381  SmallVector<MVT, 4> ValueVTs;
382  ComputeValueVTs(TLI, V->getType(), ValueVTs);
383
384  unsigned FirstReg = 0;
385  for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
386    MVT ValueVT = ValueVTs[Value];
387    MVT RegisterVT = TLI.getRegisterType(ValueVT);
388
389    unsigned NumRegs = TLI.getNumRegisters(ValueVT);
390    for (unsigned i = 0; i != NumRegs; ++i) {
391      unsigned R = MakeReg(RegisterVT);
392      if (!FirstReg) FirstReg = R;
393    }
394  }
395  return FirstReg;
396}
397
398//===----------------------------------------------------------------------===//
399/// SelectionDAGLowering - This is the common target-independent lowering
400/// implementation that is parameterized by a TargetLowering object.
401/// Also, targets can overload any lowering method.
402///
403namespace llvm {
404class SelectionDAGLowering {
405  MachineBasicBlock *CurMBB;
406
407  DenseMap<const Value*, SDOperand> NodeMap;
408
409  /// PendingLoads - Loads are not emitted to the program immediately.  We bunch
410  /// them up and then emit token factor nodes when possible.  This allows us to
411  /// get simple disambiguation between loads without worrying about alias
412  /// analysis.
413  std::vector<SDOperand> PendingLoads;
414
415  /// PendingExports - CopyToReg nodes that copy values to virtual registers
416  /// for export to other blocks need to be emitted before any terminator
417  /// instruction, but they have no other ordering requirements. We bunch them
418  /// up and the emit a single tokenfactor for them just before terminator
419  /// instructions.
420  std::vector<SDOperand> PendingExports;
421
422  /// Case - A struct to record the Value for a switch case, and the
423  /// case's target basic block.
424  struct Case {
425    Constant* Low;
426    Constant* High;
427    MachineBasicBlock* BB;
428
429    Case() : Low(0), High(0), BB(0) { }
430    Case(Constant* low, Constant* high, MachineBasicBlock* bb) :
431      Low(low), High(high), BB(bb) { }
432    uint64_t size() const {
433      uint64_t rHigh = cast<ConstantInt>(High)->getSExtValue();
434      uint64_t rLow  = cast<ConstantInt>(Low)->getSExtValue();
435      return (rHigh - rLow + 1ULL);
436    }
437  };
438
439  struct CaseBits {
440    uint64_t Mask;
441    MachineBasicBlock* BB;
442    unsigned Bits;
443
444    CaseBits(uint64_t mask, MachineBasicBlock* bb, unsigned bits):
445      Mask(mask), BB(bb), Bits(bits) { }
446  };
447
448  typedef std::vector<Case>           CaseVector;
449  typedef std::vector<CaseBits>       CaseBitsVector;
450  typedef CaseVector::iterator        CaseItr;
451  typedef std::pair<CaseItr, CaseItr> CaseRange;
452
453  /// CaseRec - A struct with ctor used in lowering switches to a binary tree
454  /// of conditional branches.
455  struct CaseRec {
456    CaseRec(MachineBasicBlock *bb, Constant *lt, Constant *ge, CaseRange r) :
457    CaseBB(bb), LT(lt), GE(ge), Range(r) {}
458
459    /// CaseBB - The MBB in which to emit the compare and branch
460    MachineBasicBlock *CaseBB;
461    /// LT, GE - If nonzero, we know the current case value must be less-than or
462    /// greater-than-or-equal-to these Constants.
463    Constant *LT;
464    Constant *GE;
465    /// Range - A pair of iterators representing the range of case values to be
466    /// processed at this point in the binary search tree.
467    CaseRange Range;
468  };
469
470  typedef std::vector<CaseRec> CaseRecVector;
471
472  /// The comparison function for sorting the switch case values in the vector.
473  /// WARNING: Case ranges should be disjoint!
474  struct CaseCmp {
475    bool operator () (const Case& C1, const Case& C2) {
476      assert(isa<ConstantInt>(C1.Low) && isa<ConstantInt>(C2.High));
477      const ConstantInt* CI1 = cast<const ConstantInt>(C1.Low);
478      const ConstantInt* CI2 = cast<const ConstantInt>(C2.High);
479      return CI1->getValue().slt(CI2->getValue());
480    }
481  };
482
483  struct CaseBitsCmp {
484    bool operator () (const CaseBits& C1, const CaseBits& C2) {
485      return C1.Bits > C2.Bits;
486    }
487  };
488
489  unsigned Clusterify(CaseVector& Cases, const SwitchInst &SI);
490
491public:
492  // TLI - This is information that describes the available target features we
493  // need for lowering.  This indicates when operations are unavailable,
494  // implemented with a libcall, etc.
495  TargetLowering &TLI;
496  SelectionDAG &DAG;
497  const TargetData *TD;
498  AliasAnalysis &AA;
499
500  /// SwitchCases - Vector of CaseBlock structures used to communicate
501  /// SwitchInst code generation information.
502  std::vector<SelectionDAGISel::CaseBlock> SwitchCases;
503  /// JTCases - Vector of JumpTable structures used to communicate
504  /// SwitchInst code generation information.
505  std::vector<SelectionDAGISel::JumpTableBlock> JTCases;
506  std::vector<SelectionDAGISel::BitTestBlock> BitTestCases;
507
508  /// FuncInfo - Information about the function as a whole.
509  ///
510  FunctionLoweringInfo &FuncInfo;
511
512  /// GCI - Garbage collection metadata for the function.
513  CollectorMetadata *GCI;
514
515  SelectionDAGLowering(SelectionDAG &dag, TargetLowering &tli,
516                       AliasAnalysis &aa,
517                       FunctionLoweringInfo &funcinfo,
518                       CollectorMetadata *gci)
519    : TLI(tli), DAG(dag), TD(DAG.getTarget().getTargetData()), AA(aa),
520      FuncInfo(funcinfo), GCI(gci) {
521  }
522
523  /// getRoot - Return the current virtual root of the Selection DAG,
524  /// flushing any PendingLoad items. This must be done before emitting
525  /// a store or any other node that may need to be ordered after any
526  /// prior load instructions.
527  ///
528  SDOperand getRoot() {
529    if (PendingLoads.empty())
530      return DAG.getRoot();
531
532    if (PendingLoads.size() == 1) {
533      SDOperand Root = PendingLoads[0];
534      DAG.setRoot(Root);
535      PendingLoads.clear();
536      return Root;
537    }
538
539    // Otherwise, we have to make a token factor node.
540    SDOperand Root = DAG.getNode(ISD::TokenFactor, MVT::Other,
541                                 &PendingLoads[0], PendingLoads.size());
542    PendingLoads.clear();
543    DAG.setRoot(Root);
544    return Root;
545  }
546
547  /// getControlRoot - Similar to getRoot, but instead of flushing all the
548  /// PendingLoad items, flush all the PendingExports items. It is necessary
549  /// to do this before emitting a terminator instruction.
550  ///
551  SDOperand getControlRoot() {
552    SDOperand Root = DAG.getRoot();
553
554    if (PendingExports.empty())
555      return Root;
556
557    // Turn all of the CopyToReg chains into one factored node.
558    if (Root.getOpcode() != ISD::EntryToken) {
559      unsigned i = 0, e = PendingExports.size();
560      for (; i != e; ++i) {
561        assert(PendingExports[i].Val->getNumOperands() > 1);
562        if (PendingExports[i].Val->getOperand(0) == Root)
563          break;  // Don't add the root if we already indirectly depend on it.
564      }
565
566      if (i == e)
567        PendingExports.push_back(Root);
568    }
569
570    Root = DAG.getNode(ISD::TokenFactor, MVT::Other,
571                       &PendingExports[0],
572                       PendingExports.size());
573    PendingExports.clear();
574    DAG.setRoot(Root);
575    return Root;
576  }
577
578  void CopyValueToVirtualRegister(Value *V, unsigned Reg);
579
580  void visit(Instruction &I) { visit(I.getOpcode(), I); }
581
582  void visit(unsigned Opcode, User &I) {
583    // Note: this doesn't use InstVisitor, because it has to work with
584    // ConstantExpr's in addition to instructions.
585    switch (Opcode) {
586    default: assert(0 && "Unknown instruction type encountered!");
587             abort();
588      // Build the switch statement using the Instruction.def file.
589#define HANDLE_INST(NUM, OPCODE, CLASS) \
590    case Instruction::OPCODE:return visit##OPCODE((CLASS&)I);
591#include "llvm/Instruction.def"
592    }
593  }
594
595  void setCurrentBasicBlock(MachineBasicBlock *MBB) { CurMBB = MBB; }
596
597  SDOperand getLoadFrom(const Type *Ty, SDOperand Ptr,
598                        const Value *SV, SDOperand Root,
599                        bool isVolatile, unsigned Alignment);
600
601  SDOperand getValue(const Value *V);
602
603  void setValue(const Value *V, SDOperand NewN) {
604    SDOperand &N = NodeMap[V];
605    assert(N.Val == 0 && "Already set a value for this node!");
606    N = NewN;
607  }
608
609  void GetRegistersForValue(SDISelAsmOperandInfo &OpInfo, bool HasEarlyClobber,
610                            std::set<unsigned> &OutputRegs,
611                            std::set<unsigned> &InputRegs);
612
613  void FindMergedConditions(Value *Cond, MachineBasicBlock *TBB,
614                            MachineBasicBlock *FBB, MachineBasicBlock *CurBB,
615                            unsigned Opc);
616  bool isExportableFromCurrentBlock(Value *V, const BasicBlock *FromBB);
617  void ExportFromCurrentBlock(Value *V);
618  void LowerCallTo(CallSite CS, SDOperand Callee, bool IsTailCall,
619                   MachineBasicBlock *LandingPad = NULL);
620
621  // Terminator instructions.
622  void visitRet(ReturnInst &I);
623  void visitBr(BranchInst &I);
624  void visitSwitch(SwitchInst &I);
625  void visitUnreachable(UnreachableInst &I) { /* noop */ }
626
627  // Helpers for visitSwitch
628  bool handleSmallSwitchRange(CaseRec& CR,
629                              CaseRecVector& WorkList,
630                              Value* SV,
631                              MachineBasicBlock* Default);
632  bool handleJTSwitchCase(CaseRec& CR,
633                          CaseRecVector& WorkList,
634                          Value* SV,
635                          MachineBasicBlock* Default);
636  bool handleBTSplitSwitchCase(CaseRec& CR,
637                               CaseRecVector& WorkList,
638                               Value* SV,
639                               MachineBasicBlock* Default);
640  bool handleBitTestsSwitchCase(CaseRec& CR,
641                                CaseRecVector& WorkList,
642                                Value* SV,
643                                MachineBasicBlock* Default);
644  void visitSwitchCase(SelectionDAGISel::CaseBlock &CB);
645  void visitBitTestHeader(SelectionDAGISel::BitTestBlock &B);
646  void visitBitTestCase(MachineBasicBlock* NextMBB,
647                        unsigned Reg,
648                        SelectionDAGISel::BitTestCase &B);
649  void visitJumpTable(SelectionDAGISel::JumpTable &JT);
650  void visitJumpTableHeader(SelectionDAGISel::JumpTable &JT,
651                            SelectionDAGISel::JumpTableHeader &JTH);
652
653  // These all get lowered before this pass.
654  void visitInvoke(InvokeInst &I);
655  void visitUnwind(UnwindInst &I);
656
657  void visitBinary(User &I, unsigned OpCode);
658  void visitShift(User &I, unsigned Opcode);
659  void visitAdd(User &I) {
660    if (I.getType()->isFPOrFPVector())
661      visitBinary(I, ISD::FADD);
662    else
663      visitBinary(I, ISD::ADD);
664  }
665  void visitSub(User &I);
666  void visitMul(User &I) {
667    if (I.getType()->isFPOrFPVector())
668      visitBinary(I, ISD::FMUL);
669    else
670      visitBinary(I, ISD::MUL);
671  }
672  void visitURem(User &I) { visitBinary(I, ISD::UREM); }
673  void visitSRem(User &I) { visitBinary(I, ISD::SREM); }
674  void visitFRem(User &I) { visitBinary(I, ISD::FREM); }
675  void visitUDiv(User &I) { visitBinary(I, ISD::UDIV); }
676  void visitSDiv(User &I) { visitBinary(I, ISD::SDIV); }
677  void visitFDiv(User &I) { visitBinary(I, ISD::FDIV); }
678  void visitAnd (User &I) { visitBinary(I, ISD::AND); }
679  void visitOr  (User &I) { visitBinary(I, ISD::OR); }
680  void visitXor (User &I) { visitBinary(I, ISD::XOR); }
681  void visitShl (User &I) { visitShift(I, ISD::SHL); }
682  void visitLShr(User &I) { visitShift(I, ISD::SRL); }
683  void visitAShr(User &I) { visitShift(I, ISD::SRA); }
684  void visitICmp(User &I);
685  void visitFCmp(User &I);
686  void visitVICmp(User &I);
687  void visitVFCmp(User &I);
688  // Visit the conversion instructions
689  void visitTrunc(User &I);
690  void visitZExt(User &I);
691  void visitSExt(User &I);
692  void visitFPTrunc(User &I);
693  void visitFPExt(User &I);
694  void visitFPToUI(User &I);
695  void visitFPToSI(User &I);
696  void visitUIToFP(User &I);
697  void visitSIToFP(User &I);
698  void visitPtrToInt(User &I);
699  void visitIntToPtr(User &I);
700  void visitBitCast(User &I);
701
702  void visitExtractElement(User &I);
703  void visitInsertElement(User &I);
704  void visitShuffleVector(User &I);
705
706  void visitExtractValue(User &I);
707  void visitInsertValue(User &I);
708
709  void visitGetElementPtr(User &I);
710  void visitSelect(User &I);
711
712  void visitMalloc(MallocInst &I);
713  void visitFree(FreeInst &I);
714  void visitAlloca(AllocaInst &I);
715  void visitLoad(LoadInst &I);
716  void visitStore(StoreInst &I);
717  void visitPHI(PHINode &I) { } // PHI nodes are handled specially.
718  void visitCall(CallInst &I);
719  void visitInlineAsm(CallSite CS);
720  const char *visitIntrinsicCall(CallInst &I, unsigned Intrinsic);
721  void visitTargetIntrinsic(CallInst &I, unsigned Intrinsic);
722
723  void visitVAStart(CallInst &I);
724  void visitVAArg(VAArgInst &I);
725  void visitVAEnd(CallInst &I);
726  void visitVACopy(CallInst &I);
727
728  void visitGetResult(GetResultInst &I);
729
730  void visitUserOp1(Instruction &I) {
731    assert(0 && "UserOp1 should not exist at instruction selection time!");
732    abort();
733  }
734  void visitUserOp2(Instruction &I) {
735    assert(0 && "UserOp2 should not exist at instruction selection time!");
736    abort();
737  }
738
739private:
740  inline const char *implVisitBinaryAtomic(CallInst& I, ISD::NodeType Op);
741
742};
743} // end namespace llvm
744
745
746/// getCopyFromParts - Create a value that contains the specified legal parts
747/// combined into the value they represent.  If the parts combine to a type
748/// larger then ValueVT then AssertOp can be used to specify whether the extra
749/// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
750/// (ISD::AssertSext).
751static SDOperand getCopyFromParts(SelectionDAG &DAG,
752                                  const SDOperand *Parts,
753                                  unsigned NumParts,
754                                  MVT PartVT,
755                                  MVT ValueVT,
756                                  ISD::NodeType AssertOp = ISD::DELETED_NODE) {
757  assert(NumParts > 0 && "No parts to assemble!");
758  TargetLowering &TLI = DAG.getTargetLoweringInfo();
759  SDOperand Val = Parts[0];
760
761  if (NumParts > 1) {
762    // Assemble the value from multiple parts.
763    if (!ValueVT.isVector()) {
764      unsigned PartBits = PartVT.getSizeInBits();
765      unsigned ValueBits = ValueVT.getSizeInBits();
766
767      // Assemble the power of 2 part.
768      unsigned RoundParts = NumParts & (NumParts - 1) ?
769        1 << Log2_32(NumParts) : NumParts;
770      unsigned RoundBits = PartBits * RoundParts;
771      MVT RoundVT = RoundBits == ValueBits ?
772        ValueVT : MVT::getIntegerVT(RoundBits);
773      SDOperand Lo, Hi;
774
775      if (RoundParts > 2) {
776        MVT HalfVT = MVT::getIntegerVT(RoundBits/2);
777        Lo = getCopyFromParts(DAG, Parts, RoundParts/2, PartVT, HalfVT);
778        Hi = getCopyFromParts(DAG, Parts+RoundParts/2, RoundParts/2,
779                              PartVT, HalfVT);
780      } else {
781        Lo = Parts[0];
782        Hi = Parts[1];
783      }
784      if (TLI.isBigEndian())
785        std::swap(Lo, Hi);
786      Val = DAG.getNode(ISD::BUILD_PAIR, RoundVT, Lo, Hi);
787
788      if (RoundParts < NumParts) {
789        // Assemble the trailing non-power-of-2 part.
790        unsigned OddParts = NumParts - RoundParts;
791        MVT OddVT = MVT::getIntegerVT(OddParts * PartBits);
792        Hi = getCopyFromParts(DAG, Parts+RoundParts, OddParts, PartVT, OddVT);
793
794        // Combine the round and odd parts.
795        Lo = Val;
796        if (TLI.isBigEndian())
797          std::swap(Lo, Hi);
798        MVT TotalVT = MVT::getIntegerVT(NumParts * PartBits);
799        Hi = DAG.getNode(ISD::ANY_EXTEND, TotalVT, Hi);
800        Hi = DAG.getNode(ISD::SHL, TotalVT, Hi,
801                         DAG.getConstant(Lo.getValueType().getSizeInBits(),
802                                         TLI.getShiftAmountTy()));
803        Lo = DAG.getNode(ISD::ZERO_EXTEND, TotalVT, Lo);
804        Val = DAG.getNode(ISD::OR, TotalVT, Lo, Hi);
805      }
806    } else {
807      // Handle a multi-element vector.
808      MVT IntermediateVT, RegisterVT;
809      unsigned NumIntermediates;
810      unsigned NumRegs =
811        TLI.getVectorTypeBreakdown(ValueVT, IntermediateVT, NumIntermediates,
812                                   RegisterVT);
813      assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
814      NumParts = NumRegs; // Silence a compiler warning.
815      assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
816      assert(RegisterVT == Parts[0].getValueType() &&
817             "Part type doesn't match part!");
818
819      // Assemble the parts into intermediate operands.
820      SmallVector<SDOperand, 8> Ops(NumIntermediates);
821      if (NumIntermediates == NumParts) {
822        // If the register was not expanded, truncate or copy the value,
823        // as appropriate.
824        for (unsigned i = 0; i != NumParts; ++i)
825          Ops[i] = getCopyFromParts(DAG, &Parts[i], 1,
826                                    PartVT, IntermediateVT);
827      } else if (NumParts > 0) {
828        // If the intermediate type was expanded, build the intermediate operands
829        // from the parts.
830        assert(NumParts % NumIntermediates == 0 &&
831               "Must expand into a divisible number of parts!");
832        unsigned Factor = NumParts / NumIntermediates;
833        for (unsigned i = 0; i != NumIntermediates; ++i)
834          Ops[i] = getCopyFromParts(DAG, &Parts[i * Factor], Factor,
835                                    PartVT, IntermediateVT);
836      }
837
838      // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the intermediate
839      // operands.
840      Val = DAG.getNode(IntermediateVT.isVector() ?
841                        ISD::CONCAT_VECTORS : ISD::BUILD_VECTOR,
842                        ValueVT, &Ops[0], NumIntermediates);
843    }
844  }
845
846  // There is now one part, held in Val.  Correct it to match ValueVT.
847  PartVT = Val.getValueType();
848
849  if (PartVT == ValueVT)
850    return Val;
851
852  if (PartVT.isVector()) {
853    assert(ValueVT.isVector() && "Unknown vector conversion!");
854    return DAG.getNode(ISD::BIT_CONVERT, ValueVT, Val);
855  }
856
857  if (ValueVT.isVector()) {
858    assert(ValueVT.getVectorElementType() == PartVT &&
859           ValueVT.getVectorNumElements() == 1 &&
860           "Only trivial scalar-to-vector conversions should get here!");
861    return DAG.getNode(ISD::BUILD_VECTOR, ValueVT, Val);
862  }
863
864  if (PartVT.isInteger() &&
865      ValueVT.isInteger()) {
866    if (ValueVT.getSizeInBits() < PartVT.getSizeInBits()) {
867      // For a truncate, see if we have any information to
868      // indicate whether the truncated bits will always be
869      // zero or sign-extension.
870      if (AssertOp != ISD::DELETED_NODE)
871        Val = DAG.getNode(AssertOp, PartVT, Val,
872                          DAG.getValueType(ValueVT));
873      return DAG.getNode(ISD::TRUNCATE, ValueVT, Val);
874    } else {
875      return DAG.getNode(ISD::ANY_EXTEND, ValueVT, Val);
876    }
877  }
878
879  if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
880    if (ValueVT < Val.getValueType())
881      // FP_ROUND's are always exact here.
882      return DAG.getNode(ISD::FP_ROUND, ValueVT, Val,
883                         DAG.getIntPtrConstant(1));
884    return DAG.getNode(ISD::FP_EXTEND, ValueVT, Val);
885  }
886
887  if (PartVT.getSizeInBits() == ValueVT.getSizeInBits())
888    return DAG.getNode(ISD::BIT_CONVERT, ValueVT, Val);
889
890  assert(0 && "Unknown mismatch!");
891  return SDOperand();
892}
893
894/// getCopyToParts - Create a series of nodes that contain the specified value
895/// split into legal parts.  If the parts contain more bits than Val, then, for
896/// integers, ExtendKind can be used to specify how to generate the extra bits.
897static void getCopyToParts(SelectionDAG &DAG,
898                           SDOperand Val,
899                           SDOperand *Parts,
900                           unsigned NumParts,
901                           MVT PartVT,
902                           ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
903  TargetLowering &TLI = DAG.getTargetLoweringInfo();
904  MVT PtrVT = TLI.getPointerTy();
905  MVT ValueVT = Val.getValueType();
906  unsigned PartBits = PartVT.getSizeInBits();
907  assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!");
908
909  if (!NumParts)
910    return;
911
912  if (!ValueVT.isVector()) {
913    if (PartVT == ValueVT) {
914      assert(NumParts == 1 && "No-op copy with multiple parts!");
915      Parts[0] = Val;
916      return;
917    }
918
919    if (NumParts * PartBits > ValueVT.getSizeInBits()) {
920      // If the parts cover more bits than the value has, promote the value.
921      if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
922        assert(NumParts == 1 && "Do not know what to promote to!");
923        Val = DAG.getNode(ISD::FP_EXTEND, PartVT, Val);
924      } else if (PartVT.isInteger() && ValueVT.isInteger()) {
925        ValueVT = MVT::getIntegerVT(NumParts * PartBits);
926        Val = DAG.getNode(ExtendKind, ValueVT, Val);
927      } else {
928        assert(0 && "Unknown mismatch!");
929      }
930    } else if (PartBits == ValueVT.getSizeInBits()) {
931      // Different types of the same size.
932      assert(NumParts == 1 && PartVT != ValueVT);
933      Val = DAG.getNode(ISD::BIT_CONVERT, PartVT, Val);
934    } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
935      // If the parts cover less bits than value has, truncate the value.
936      if (PartVT.isInteger() && ValueVT.isInteger()) {
937        ValueVT = MVT::getIntegerVT(NumParts * PartBits);
938        Val = DAG.getNode(ISD::TRUNCATE, ValueVT, Val);
939      } else {
940        assert(0 && "Unknown mismatch!");
941      }
942    }
943
944    // The value may have changed - recompute ValueVT.
945    ValueVT = Val.getValueType();
946    assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
947           "Failed to tile the value with PartVT!");
948
949    if (NumParts == 1) {
950      assert(PartVT == ValueVT && "Type conversion failed!");
951      Parts[0] = Val;
952      return;
953    }
954
955    // Expand the value into multiple parts.
956    if (NumParts & (NumParts - 1)) {
957      // The number of parts is not a power of 2.  Split off and copy the tail.
958      assert(PartVT.isInteger() && ValueVT.isInteger() &&
959             "Do not know what to expand to!");
960      unsigned RoundParts = 1 << Log2_32(NumParts);
961      unsigned RoundBits = RoundParts * PartBits;
962      unsigned OddParts = NumParts - RoundParts;
963      SDOperand OddVal = DAG.getNode(ISD::SRL, ValueVT, Val,
964                                     DAG.getConstant(RoundBits,
965                                                     TLI.getShiftAmountTy()));
966      getCopyToParts(DAG, OddVal, Parts + RoundParts, OddParts, PartVT);
967      if (TLI.isBigEndian())
968        // The odd parts were reversed by getCopyToParts - unreverse them.
969        std::reverse(Parts + RoundParts, Parts + NumParts);
970      NumParts = RoundParts;
971      ValueVT = MVT::getIntegerVT(NumParts * PartBits);
972      Val = DAG.getNode(ISD::TRUNCATE, ValueVT, Val);
973    }
974
975    // The number of parts is a power of 2.  Repeatedly bisect the value using
976    // EXTRACT_ELEMENT.
977    Parts[0] = DAG.getNode(ISD::BIT_CONVERT,
978                           MVT::getIntegerVT(ValueVT.getSizeInBits()),
979                           Val);
980    for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
981      for (unsigned i = 0; i < NumParts; i += StepSize) {
982        unsigned ThisBits = StepSize * PartBits / 2;
983        MVT ThisVT = MVT::getIntegerVT (ThisBits);
984        SDOperand &Part0 = Parts[i];
985        SDOperand &Part1 = Parts[i+StepSize/2];
986
987        Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, ThisVT, Part0,
988                            DAG.getConstant(1, PtrVT));
989        Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, ThisVT, Part0,
990                            DAG.getConstant(0, PtrVT));
991
992        if (ThisBits == PartBits && ThisVT != PartVT) {
993          Part0 = DAG.getNode(ISD::BIT_CONVERT, PartVT, Part0);
994          Part1 = DAG.getNode(ISD::BIT_CONVERT, PartVT, Part1);
995        }
996      }
997    }
998
999    if (TLI.isBigEndian())
1000      std::reverse(Parts, Parts + NumParts);
1001
1002    return;
1003  }
1004
1005  // Vector ValueVT.
1006  if (NumParts == 1) {
1007    if (PartVT != ValueVT) {
1008      if (PartVT.isVector()) {
1009        Val = DAG.getNode(ISD::BIT_CONVERT, PartVT, Val);
1010      } else {
1011        assert(ValueVT.getVectorElementType() == PartVT &&
1012               ValueVT.getVectorNumElements() == 1 &&
1013               "Only trivial vector-to-scalar conversions should get here!");
1014        Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, PartVT, Val,
1015                          DAG.getConstant(0, PtrVT));
1016      }
1017    }
1018
1019    Parts[0] = Val;
1020    return;
1021  }
1022
1023  // Handle a multi-element vector.
1024  MVT IntermediateVT, RegisterVT;
1025  unsigned NumIntermediates;
1026  unsigned NumRegs =
1027    DAG.getTargetLoweringInfo()
1028      .getVectorTypeBreakdown(ValueVT, IntermediateVT, NumIntermediates,
1029                              RegisterVT);
1030  unsigned NumElements = ValueVT.getVectorNumElements();
1031
1032  assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
1033  NumParts = NumRegs; // Silence a compiler warning.
1034  assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
1035
1036  // Split the vector into intermediate operands.
1037  SmallVector<SDOperand, 8> Ops(NumIntermediates);
1038  for (unsigned i = 0; i != NumIntermediates; ++i)
1039    if (IntermediateVT.isVector())
1040      Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR,
1041                           IntermediateVT, Val,
1042                           DAG.getConstant(i * (NumElements / NumIntermediates),
1043                                           PtrVT));
1044    else
1045      Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT,
1046                           IntermediateVT, Val,
1047                           DAG.getConstant(i, PtrVT));
1048
1049  // Split the intermediate operands into legal parts.
1050  if (NumParts == NumIntermediates) {
1051    // If the register was not expanded, promote or copy the value,
1052    // as appropriate.
1053    for (unsigned i = 0; i != NumParts; ++i)
1054      getCopyToParts(DAG, Ops[i], &Parts[i], 1, PartVT);
1055  } else if (NumParts > 0) {
1056    // If the intermediate type was expanded, split each the value into
1057    // legal parts.
1058    assert(NumParts % NumIntermediates == 0 &&
1059           "Must expand into a divisible number of parts!");
1060    unsigned Factor = NumParts / NumIntermediates;
1061    for (unsigned i = 0; i != NumIntermediates; ++i)
1062      getCopyToParts(DAG, Ops[i], &Parts[i * Factor], Factor, PartVT);
1063  }
1064}
1065
1066
1067SDOperand SelectionDAGLowering::getValue(const Value *V) {
1068  SDOperand &N = NodeMap[V];
1069  if (N.Val) return N;
1070
1071  if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(V))) {
1072    MVT VT = TLI.getValueType(V->getType(), true);
1073
1074    if (ConstantInt *CI = dyn_cast<ConstantInt>(C))
1075      return N = DAG.getConstant(CI->getValue(), VT);
1076
1077    if (GlobalValue *GV = dyn_cast<GlobalValue>(C))
1078      return N = DAG.getGlobalAddress(GV, VT);
1079
1080    if (isa<ConstantPointerNull>(C))
1081      return N = DAG.getConstant(0, TLI.getPointerTy());
1082
1083    if (ConstantFP *CFP = dyn_cast<ConstantFP>(C))
1084      return N = DAG.getConstantFP(CFP->getValueAPF(), VT);
1085
1086    if (isa<UndefValue>(C) && !isa<VectorType>(V->getType()))
1087      return N = DAG.getNode(ISD::UNDEF, VT);
1088
1089    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1090      visit(CE->getOpcode(), *CE);
1091      SDOperand N1 = NodeMap[V];
1092      assert(N1.Val && "visit didn't populate the ValueMap!");
1093      return N1;
1094    }
1095
1096    const VectorType *VecTy = cast<VectorType>(V->getType());
1097    unsigned NumElements = VecTy->getNumElements();
1098
1099    // Now that we know the number and type of the elements, get that number of
1100    // elements into the Ops array based on what kind of constant it is.
1101    SmallVector<SDOperand, 16> Ops;
1102    if (ConstantVector *CP = dyn_cast<ConstantVector>(C)) {
1103      for (unsigned i = 0; i != NumElements; ++i)
1104        Ops.push_back(getValue(CP->getOperand(i)));
1105    } else {
1106      assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1107             "Unknown vector constant!");
1108      MVT EltVT = TLI.getValueType(VecTy->getElementType());
1109
1110      SDOperand Op;
1111      if (isa<UndefValue>(C))
1112        Op = DAG.getNode(ISD::UNDEF, EltVT);
1113      else if (EltVT.isFloatingPoint())
1114        Op = DAG.getConstantFP(0, EltVT);
1115      else
1116        Op = DAG.getConstant(0, EltVT);
1117      Ops.assign(NumElements, Op);
1118    }
1119
1120    // Create a BUILD_VECTOR node.
1121    return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
1122  }
1123
1124  // If this is a static alloca, generate it as the frameindex instead of
1125  // computation.
1126  if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1127    std::map<const AllocaInst*, int>::iterator SI =
1128      FuncInfo.StaticAllocaMap.find(AI);
1129    if (SI != FuncInfo.StaticAllocaMap.end())
1130      return DAG.getFrameIndex(SI->second, TLI.getPointerTy());
1131  }
1132
1133  unsigned InReg = FuncInfo.ValueMap[V];
1134  assert(InReg && "Value not in map!");
1135
1136  RegsForValue RFV(TLI, InReg, V->getType());
1137  SDOperand Chain = DAG.getEntryNode();
1138  return RFV.getCopyFromRegs(DAG, Chain, NULL);
1139}
1140
1141
1142void SelectionDAGLowering::visitRet(ReturnInst &I) {
1143  if (I.getNumOperands() == 0) {
1144    DAG.setRoot(DAG.getNode(ISD::RET, MVT::Other, getControlRoot()));
1145    return;
1146  }
1147
1148  SmallVector<SDOperand, 8> NewValues;
1149  NewValues.push_back(getControlRoot());
1150  for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
1151    SDOperand RetOp = getValue(I.getOperand(i));
1152    MVT VT = RetOp.getValueType();
1153
1154    // FIXME: C calling convention requires the return type to be promoted to
1155    // at least 32-bit. But this is not necessary for non-C calling conventions.
1156    if (VT.isInteger()) {
1157      MVT MinVT = TLI.getRegisterType(MVT::i32);
1158      if (VT.getSizeInBits() < MinVT.getSizeInBits())
1159        VT = MinVT;
1160    }
1161
1162    unsigned NumParts = TLI.getNumRegisters(VT);
1163    MVT PartVT = TLI.getRegisterType(VT);
1164    SmallVector<SDOperand, 4> Parts(NumParts);
1165    ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1166
1167    const Function *F = I.getParent()->getParent();
1168    if (F->paramHasAttr(0, ParamAttr::SExt))
1169      ExtendKind = ISD::SIGN_EXTEND;
1170    else if (F->paramHasAttr(0, ParamAttr::ZExt))
1171      ExtendKind = ISD::ZERO_EXTEND;
1172
1173    getCopyToParts(DAG, RetOp, &Parts[0], NumParts, PartVT, ExtendKind);
1174
1175    for (unsigned i = 0; i < NumParts; ++i) {
1176      NewValues.push_back(Parts[i]);
1177      NewValues.push_back(DAG.getArgFlags(ISD::ArgFlagsTy()));
1178    }
1179  }
1180  DAG.setRoot(DAG.getNode(ISD::RET, MVT::Other,
1181                          &NewValues[0], NewValues.size()));
1182}
1183
1184/// ExportFromCurrentBlock - If this condition isn't known to be exported from
1185/// the current basic block, add it to ValueMap now so that we'll get a
1186/// CopyTo/FromReg.
1187void SelectionDAGLowering::ExportFromCurrentBlock(Value *V) {
1188  // No need to export constants.
1189  if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
1190
1191  // Already exported?
1192  if (FuncInfo.isExportedInst(V)) return;
1193
1194  unsigned Reg = FuncInfo.InitializeRegForValue(V);
1195  CopyValueToVirtualRegister(V, Reg);
1196}
1197
1198bool SelectionDAGLowering::isExportableFromCurrentBlock(Value *V,
1199                                                    const BasicBlock *FromBB) {
1200  // The operands of the setcc have to be in this block.  We don't know
1201  // how to export them from some other block.
1202  if (Instruction *VI = dyn_cast<Instruction>(V)) {
1203    // Can export from current BB.
1204    if (VI->getParent() == FromBB)
1205      return true;
1206
1207    // Is already exported, noop.
1208    return FuncInfo.isExportedInst(V);
1209  }
1210
1211  // If this is an argument, we can export it if the BB is the entry block or
1212  // if it is already exported.
1213  if (isa<Argument>(V)) {
1214    if (FromBB == &FromBB->getParent()->getEntryBlock())
1215      return true;
1216
1217    // Otherwise, can only export this if it is already exported.
1218    return FuncInfo.isExportedInst(V);
1219  }
1220
1221  // Otherwise, constants can always be exported.
1222  return true;
1223}
1224
1225static bool InBlock(const Value *V, const BasicBlock *BB) {
1226  if (const Instruction *I = dyn_cast<Instruction>(V))
1227    return I->getParent() == BB;
1228  return true;
1229}
1230
1231/// FindMergedConditions - If Cond is an expression like
1232void SelectionDAGLowering::FindMergedConditions(Value *Cond,
1233                                                MachineBasicBlock *TBB,
1234                                                MachineBasicBlock *FBB,
1235                                                MachineBasicBlock *CurBB,
1236                                                unsigned Opc) {
1237  // If this node is not part of the or/and tree, emit it as a branch.
1238  Instruction *BOp = dyn_cast<Instruction>(Cond);
1239
1240  if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
1241      (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() ||
1242      BOp->getParent() != CurBB->getBasicBlock() ||
1243      !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
1244      !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
1245    const BasicBlock *BB = CurBB->getBasicBlock();
1246
1247    // If the leaf of the tree is a comparison, merge the condition into
1248    // the caseblock.
1249    if ((isa<ICmpInst>(Cond) || isa<FCmpInst>(Cond)) &&
1250        // The operands of the cmp have to be in this block.  We don't know
1251        // how to export them from some other block.  If this is the first block
1252        // of the sequence, no exporting is needed.
1253        (CurBB == CurMBB ||
1254         (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
1255          isExportableFromCurrentBlock(BOp->getOperand(1), BB)))) {
1256      BOp = cast<Instruction>(Cond);
1257      ISD::CondCode Condition;
1258      if (ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
1259        switch (IC->getPredicate()) {
1260        default: assert(0 && "Unknown icmp predicate opcode!");
1261        case ICmpInst::ICMP_EQ:  Condition = ISD::SETEQ;  break;
1262        case ICmpInst::ICMP_NE:  Condition = ISD::SETNE;  break;
1263        case ICmpInst::ICMP_SLE: Condition = ISD::SETLE;  break;
1264        case ICmpInst::ICMP_ULE: Condition = ISD::SETULE; break;
1265        case ICmpInst::ICMP_SGE: Condition = ISD::SETGE;  break;
1266        case ICmpInst::ICMP_UGE: Condition = ISD::SETUGE; break;
1267        case ICmpInst::ICMP_SLT: Condition = ISD::SETLT;  break;
1268        case ICmpInst::ICMP_ULT: Condition = ISD::SETULT; break;
1269        case ICmpInst::ICMP_SGT: Condition = ISD::SETGT;  break;
1270        case ICmpInst::ICMP_UGT: Condition = ISD::SETUGT; break;
1271        }
1272      } else if (FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) {
1273        ISD::CondCode FPC, FOC;
1274        switch (FC->getPredicate()) {
1275        default: assert(0 && "Unknown fcmp predicate opcode!");
1276        case FCmpInst::FCMP_FALSE: FOC = FPC = ISD::SETFALSE; break;
1277        case FCmpInst::FCMP_OEQ:   FOC = ISD::SETEQ; FPC = ISD::SETOEQ; break;
1278        case FCmpInst::FCMP_OGT:   FOC = ISD::SETGT; FPC = ISD::SETOGT; break;
1279        case FCmpInst::FCMP_OGE:   FOC = ISD::SETGE; FPC = ISD::SETOGE; break;
1280        case FCmpInst::FCMP_OLT:   FOC = ISD::SETLT; FPC = ISD::SETOLT; break;
1281        case FCmpInst::FCMP_OLE:   FOC = ISD::SETLE; FPC = ISD::SETOLE; break;
1282        case FCmpInst::FCMP_ONE:   FOC = ISD::SETNE; FPC = ISD::SETONE; break;
1283        case FCmpInst::FCMP_ORD:   FOC = FPC = ISD::SETO;   break;
1284        case FCmpInst::FCMP_UNO:   FOC = FPC = ISD::SETUO;  break;
1285        case FCmpInst::FCMP_UEQ:   FOC = ISD::SETEQ; FPC = ISD::SETUEQ; break;
1286        case FCmpInst::FCMP_UGT:   FOC = ISD::SETGT; FPC = ISD::SETUGT; break;
1287        case FCmpInst::FCMP_UGE:   FOC = ISD::SETGE; FPC = ISD::SETUGE; break;
1288        case FCmpInst::FCMP_ULT:   FOC = ISD::SETLT; FPC = ISD::SETULT; break;
1289        case FCmpInst::FCMP_ULE:   FOC = ISD::SETLE; FPC = ISD::SETULE; break;
1290        case FCmpInst::FCMP_UNE:   FOC = ISD::SETNE; FPC = ISD::SETUNE; break;
1291        case FCmpInst::FCMP_TRUE:  FOC = FPC = ISD::SETTRUE; break;
1292        }
1293        if (FiniteOnlyFPMath())
1294          Condition = FOC;
1295        else
1296          Condition = FPC;
1297      } else {
1298        Condition = ISD::SETEQ; // silence warning.
1299        assert(0 && "Unknown compare instruction");
1300      }
1301
1302      SelectionDAGISel::CaseBlock CB(Condition, BOp->getOperand(0),
1303                                     BOp->getOperand(1), NULL, TBB, FBB, CurBB);
1304      SwitchCases.push_back(CB);
1305      return;
1306    }
1307
1308    // Create a CaseBlock record representing this branch.
1309    SelectionDAGISel::CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(),
1310                                   NULL, TBB, FBB, CurBB);
1311    SwitchCases.push_back(CB);
1312    return;
1313  }
1314
1315
1316  //  Create TmpBB after CurBB.
1317  MachineFunction::iterator BBI = CurBB;
1318  MachineBasicBlock *TmpBB = new MachineBasicBlock(CurBB->getBasicBlock());
1319  CurBB->getParent()->getBasicBlockList().insert(++BBI, TmpBB);
1320
1321  if (Opc == Instruction::Or) {
1322    // Codegen X | Y as:
1323    //   jmp_if_X TBB
1324    //   jmp TmpBB
1325    // TmpBB:
1326    //   jmp_if_Y TBB
1327    //   jmp FBB
1328    //
1329
1330    // Emit the LHS condition.
1331    FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, Opc);
1332
1333    // Emit the RHS condition into TmpBB.
1334    FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, Opc);
1335  } else {
1336    assert(Opc == Instruction::And && "Unknown merge op!");
1337    // Codegen X & Y as:
1338    //   jmp_if_X TmpBB
1339    //   jmp FBB
1340    // TmpBB:
1341    //   jmp_if_Y TBB
1342    //   jmp FBB
1343    //
1344    //  This requires creation of TmpBB after CurBB.
1345
1346    // Emit the LHS condition.
1347    FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, Opc);
1348
1349    // Emit the RHS condition into TmpBB.
1350    FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, Opc);
1351  }
1352}
1353
1354/// If the set of cases should be emitted as a series of branches, return true.
1355/// If we should emit this as a bunch of and/or'd together conditions, return
1356/// false.
1357static bool
1358ShouldEmitAsBranches(const std::vector<SelectionDAGISel::CaseBlock> &Cases) {
1359  if (Cases.size() != 2) return true;
1360
1361  // If this is two comparisons of the same values or'd or and'd together, they
1362  // will get folded into a single comparison, so don't emit two blocks.
1363  if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
1364       Cases[0].CmpRHS == Cases[1].CmpRHS) ||
1365      (Cases[0].CmpRHS == Cases[1].CmpLHS &&
1366       Cases[0].CmpLHS == Cases[1].CmpRHS)) {
1367    return false;
1368  }
1369
1370  return true;
1371}
1372
1373void SelectionDAGLowering::visitBr(BranchInst &I) {
1374  // Update machine-CFG edges.
1375  MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
1376
1377  // Figure out which block is immediately after the current one.
1378  MachineBasicBlock *NextBlock = 0;
1379  MachineFunction::iterator BBI = CurMBB;
1380  if (++BBI != CurMBB->getParent()->end())
1381    NextBlock = BBI;
1382
1383  if (I.isUnconditional()) {
1384    // Update machine-CFG edges.
1385    CurMBB->addSuccessor(Succ0MBB);
1386
1387    // If this is not a fall-through branch, emit the branch.
1388    if (Succ0MBB != NextBlock)
1389      DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, getControlRoot(),
1390                              DAG.getBasicBlock(Succ0MBB)));
1391    return;
1392  }
1393
1394  // If this condition is one of the special cases we handle, do special stuff
1395  // now.
1396  Value *CondVal = I.getCondition();
1397  MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
1398
1399  // If this is a series of conditions that are or'd or and'd together, emit
1400  // this as a sequence of branches instead of setcc's with and/or operations.
1401  // For example, instead of something like:
1402  //     cmp A, B
1403  //     C = seteq
1404  //     cmp D, E
1405  //     F = setle
1406  //     or C, F
1407  //     jnz foo
1408  // Emit:
1409  //     cmp A, B
1410  //     je foo
1411  //     cmp D, E
1412  //     jle foo
1413  //
1414  if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
1415    if (BOp->hasOneUse() &&
1416        (BOp->getOpcode() == Instruction::And ||
1417         BOp->getOpcode() == Instruction::Or)) {
1418      FindMergedConditions(BOp, Succ0MBB, Succ1MBB, CurMBB, BOp->getOpcode());
1419      // If the compares in later blocks need to use values not currently
1420      // exported from this block, export them now.  This block should always
1421      // be the first entry.
1422      assert(SwitchCases[0].ThisBB == CurMBB && "Unexpected lowering!");
1423
1424      // Allow some cases to be rejected.
1425      if (ShouldEmitAsBranches(SwitchCases)) {
1426        for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
1427          ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
1428          ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
1429        }
1430
1431        // Emit the branch for this block.
1432        visitSwitchCase(SwitchCases[0]);
1433        SwitchCases.erase(SwitchCases.begin());
1434        return;
1435      }
1436
1437      // Okay, we decided not to do this, remove any inserted MBB's and clear
1438      // SwitchCases.
1439      for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
1440        CurMBB->getParent()->getBasicBlockList().erase(SwitchCases[i].ThisBB);
1441
1442      SwitchCases.clear();
1443    }
1444  }
1445
1446  // Create a CaseBlock record representing this branch.
1447  SelectionDAGISel::CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(),
1448                                 NULL, Succ0MBB, Succ1MBB, CurMBB);
1449  // Use visitSwitchCase to actually insert the fast branch sequence for this
1450  // cond branch.
1451  visitSwitchCase(CB);
1452}
1453
1454/// visitSwitchCase - Emits the necessary code to represent a single node in
1455/// the binary search tree resulting from lowering a switch instruction.
1456void SelectionDAGLowering::visitSwitchCase(SelectionDAGISel::CaseBlock &CB) {
1457  SDOperand Cond;
1458  SDOperand CondLHS = getValue(CB.CmpLHS);
1459
1460  // Build the setcc now.
1461  if (CB.CmpMHS == NULL) {
1462    // Fold "(X == true)" to X and "(X == false)" to !X to
1463    // handle common cases produced by branch lowering.
1464    if (CB.CmpRHS == ConstantInt::getTrue() && CB.CC == ISD::SETEQ)
1465      Cond = CondLHS;
1466    else if (CB.CmpRHS == ConstantInt::getFalse() && CB.CC == ISD::SETEQ) {
1467      SDOperand True = DAG.getConstant(1, CondLHS.getValueType());
1468      Cond = DAG.getNode(ISD::XOR, CondLHS.getValueType(), CondLHS, True);
1469    } else
1470      Cond = DAG.getSetCC(MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
1471  } else {
1472    assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
1473
1474    uint64_t Low = cast<ConstantInt>(CB.CmpLHS)->getSExtValue();
1475    uint64_t High  = cast<ConstantInt>(CB.CmpRHS)->getSExtValue();
1476
1477    SDOperand CmpOp = getValue(CB.CmpMHS);
1478    MVT VT = CmpOp.getValueType();
1479
1480    if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
1481      Cond = DAG.getSetCC(MVT::i1, CmpOp, DAG.getConstant(High, VT), ISD::SETLE);
1482    } else {
1483      SDOperand SUB = DAG.getNode(ISD::SUB, VT, CmpOp, DAG.getConstant(Low, VT));
1484      Cond = DAG.getSetCC(MVT::i1, SUB,
1485                          DAG.getConstant(High-Low, VT), ISD::SETULE);
1486    }
1487  }
1488
1489  // Update successor info
1490  CurMBB->addSuccessor(CB.TrueBB);
1491  CurMBB->addSuccessor(CB.FalseBB);
1492
1493  // Set NextBlock to be the MBB immediately after the current one, if any.
1494  // This is used to avoid emitting unnecessary branches to the next block.
1495  MachineBasicBlock *NextBlock = 0;
1496  MachineFunction::iterator BBI = CurMBB;
1497  if (++BBI != CurMBB->getParent()->end())
1498    NextBlock = BBI;
1499
1500  // If the lhs block is the next block, invert the condition so that we can
1501  // fall through to the lhs instead of the rhs block.
1502  if (CB.TrueBB == NextBlock) {
1503    std::swap(CB.TrueBB, CB.FalseBB);
1504    SDOperand True = DAG.getConstant(1, Cond.getValueType());
1505    Cond = DAG.getNode(ISD::XOR, Cond.getValueType(), Cond, True);
1506  }
1507  SDOperand BrCond = DAG.getNode(ISD::BRCOND, MVT::Other, getControlRoot(), Cond,
1508                                 DAG.getBasicBlock(CB.TrueBB));
1509  if (CB.FalseBB == NextBlock)
1510    DAG.setRoot(BrCond);
1511  else
1512    DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, BrCond,
1513                            DAG.getBasicBlock(CB.FalseBB)));
1514}
1515
1516/// visitJumpTable - Emit JumpTable node in the current MBB
1517void SelectionDAGLowering::visitJumpTable(SelectionDAGISel::JumpTable &JT) {
1518  // Emit the code for the jump table
1519  assert(JT.Reg != -1U && "Should lower JT Header first!");
1520  MVT PTy = TLI.getPointerTy();
1521  SDOperand Index = DAG.getCopyFromReg(getControlRoot(), JT.Reg, PTy);
1522  SDOperand Table = DAG.getJumpTable(JT.JTI, PTy);
1523  DAG.setRoot(DAG.getNode(ISD::BR_JT, MVT::Other, Index.getValue(1),
1524                          Table, Index));
1525  return;
1526}
1527
1528/// visitJumpTableHeader - This function emits necessary code to produce index
1529/// in the JumpTable from switch case.
1530void SelectionDAGLowering::visitJumpTableHeader(SelectionDAGISel::JumpTable &JT,
1531                                         SelectionDAGISel::JumpTableHeader &JTH) {
1532  // Subtract the lowest switch case value from the value being switched on
1533  // and conditional branch to default mbb if the result is greater than the
1534  // difference between smallest and largest cases.
1535  SDOperand SwitchOp = getValue(JTH.SValue);
1536  MVT VT = SwitchOp.getValueType();
1537  SDOperand SUB = DAG.getNode(ISD::SUB, VT, SwitchOp,
1538                              DAG.getConstant(JTH.First, VT));
1539
1540  // The SDNode we just created, which holds the value being switched on
1541  // minus the the smallest case value, needs to be copied to a virtual
1542  // register so it can be used as an index into the jump table in a
1543  // subsequent basic block.  This value may be smaller or larger than the
1544  // target's pointer type, and therefore require extension or truncating.
1545  if (VT.getSizeInBits() > TLI.getPointerTy().getSizeInBits())
1546    SwitchOp = DAG.getNode(ISD::TRUNCATE, TLI.getPointerTy(), SUB);
1547  else
1548    SwitchOp = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(), SUB);
1549
1550  unsigned JumpTableReg = FuncInfo.MakeReg(TLI.getPointerTy());
1551  SDOperand CopyTo = DAG.getCopyToReg(getControlRoot(), JumpTableReg, SwitchOp);
1552  JT.Reg = JumpTableReg;
1553
1554  // Emit the range check for the jump table, and branch to the default
1555  // block for the switch statement if the value being switched on exceeds
1556  // the largest case in the switch.
1557  SDOperand CMP = DAG.getSetCC(TLI.getSetCCResultType(SUB), SUB,
1558                               DAG.getConstant(JTH.Last-JTH.First,VT),
1559                               ISD::SETUGT);
1560
1561  // Set NextBlock to be the MBB immediately after the current one, if any.
1562  // This is used to avoid emitting unnecessary branches to the next block.
1563  MachineBasicBlock *NextBlock = 0;
1564  MachineFunction::iterator BBI = CurMBB;
1565  if (++BBI != CurMBB->getParent()->end())
1566    NextBlock = BBI;
1567
1568  SDOperand BrCond = DAG.getNode(ISD::BRCOND, MVT::Other, CopyTo, CMP,
1569                                 DAG.getBasicBlock(JT.Default));
1570
1571  if (JT.MBB == NextBlock)
1572    DAG.setRoot(BrCond);
1573  else
1574    DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, BrCond,
1575                            DAG.getBasicBlock(JT.MBB)));
1576
1577  return;
1578}
1579
1580/// visitBitTestHeader - This function emits necessary code to produce value
1581/// suitable for "bit tests"
1582void SelectionDAGLowering::visitBitTestHeader(SelectionDAGISel::BitTestBlock &B) {
1583  // Subtract the minimum value
1584  SDOperand SwitchOp = getValue(B.SValue);
1585  MVT VT = SwitchOp.getValueType();
1586  SDOperand SUB = DAG.getNode(ISD::SUB, VT, SwitchOp,
1587                              DAG.getConstant(B.First, VT));
1588
1589  // Check range
1590  SDOperand RangeCmp = DAG.getSetCC(TLI.getSetCCResultType(SUB), SUB,
1591                                    DAG.getConstant(B.Range, VT),
1592                                    ISD::SETUGT);
1593
1594  SDOperand ShiftOp;
1595  if (VT.getSizeInBits() > TLI.getShiftAmountTy().getSizeInBits())
1596    ShiftOp = DAG.getNode(ISD::TRUNCATE, TLI.getShiftAmountTy(), SUB);
1597  else
1598    ShiftOp = DAG.getNode(ISD::ZERO_EXTEND, TLI.getShiftAmountTy(), SUB);
1599
1600  // Make desired shift
1601  SDOperand SwitchVal = DAG.getNode(ISD::SHL, TLI.getPointerTy(),
1602                                    DAG.getConstant(1, TLI.getPointerTy()),
1603                                    ShiftOp);
1604
1605  unsigned SwitchReg = FuncInfo.MakeReg(TLI.getPointerTy());
1606  SDOperand CopyTo = DAG.getCopyToReg(getControlRoot(), SwitchReg, SwitchVal);
1607  B.Reg = SwitchReg;
1608
1609  // Set NextBlock to be the MBB immediately after the current one, if any.
1610  // This is used to avoid emitting unnecessary branches to the next block.
1611  MachineBasicBlock *NextBlock = 0;
1612  MachineFunction::iterator BBI = CurMBB;
1613  if (++BBI != CurMBB->getParent()->end())
1614    NextBlock = BBI;
1615
1616  MachineBasicBlock* MBB = B.Cases[0].ThisBB;
1617
1618  CurMBB->addSuccessor(B.Default);
1619  CurMBB->addSuccessor(MBB);
1620
1621  SDOperand BrRange = DAG.getNode(ISD::BRCOND, MVT::Other, CopyTo, RangeCmp,
1622                                  DAG.getBasicBlock(B.Default));
1623
1624  if (MBB == NextBlock)
1625    DAG.setRoot(BrRange);
1626  else
1627    DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, CopyTo,
1628                            DAG.getBasicBlock(MBB)));
1629
1630  return;
1631}
1632
1633/// visitBitTestCase - this function produces one "bit test"
1634void SelectionDAGLowering::visitBitTestCase(MachineBasicBlock* NextMBB,
1635                                            unsigned Reg,
1636                                            SelectionDAGISel::BitTestCase &B) {
1637  // Emit bit tests and jumps
1638  SDOperand SwitchVal = DAG.getCopyFromReg(getControlRoot(), Reg, TLI.getPointerTy());
1639
1640  SDOperand AndOp = DAG.getNode(ISD::AND, TLI.getPointerTy(),
1641                                SwitchVal,
1642                                DAG.getConstant(B.Mask,
1643                                                TLI.getPointerTy()));
1644  SDOperand AndCmp = DAG.getSetCC(TLI.getSetCCResultType(AndOp), AndOp,
1645                                  DAG.getConstant(0, TLI.getPointerTy()),
1646                                  ISD::SETNE);
1647
1648  CurMBB->addSuccessor(B.TargetBB);
1649  CurMBB->addSuccessor(NextMBB);
1650
1651  SDOperand BrAnd = DAG.getNode(ISD::BRCOND, MVT::Other, getControlRoot(),
1652                                AndCmp, DAG.getBasicBlock(B.TargetBB));
1653
1654  // Set NextBlock to be the MBB immediately after the current one, if any.
1655  // This is used to avoid emitting unnecessary branches to the next block.
1656  MachineBasicBlock *NextBlock = 0;
1657  MachineFunction::iterator BBI = CurMBB;
1658  if (++BBI != CurMBB->getParent()->end())
1659    NextBlock = BBI;
1660
1661  if (NextMBB == NextBlock)
1662    DAG.setRoot(BrAnd);
1663  else
1664    DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, BrAnd,
1665                            DAG.getBasicBlock(NextMBB)));
1666
1667  return;
1668}
1669
1670void SelectionDAGLowering::visitInvoke(InvokeInst &I) {
1671  // Retrieve successors.
1672  MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
1673  MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)];
1674
1675  if (isa<InlineAsm>(I.getCalledValue()))
1676    visitInlineAsm(&I);
1677  else
1678    LowerCallTo(&I, getValue(I.getOperand(0)), false, LandingPad);
1679
1680  // If the value of the invoke is used outside of its defining block, make it
1681  // available as a virtual register.
1682  if (!I.use_empty()) {
1683    DenseMap<const Value*, unsigned>::iterator VMI = FuncInfo.ValueMap.find(&I);
1684    if (VMI != FuncInfo.ValueMap.end())
1685      CopyValueToVirtualRegister(&I, VMI->second);
1686  }
1687
1688  // Update successor info
1689  CurMBB->addSuccessor(Return);
1690  CurMBB->addSuccessor(LandingPad);
1691
1692  // Drop into normal successor.
1693  DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, getControlRoot(),
1694                          DAG.getBasicBlock(Return)));
1695}
1696
1697void SelectionDAGLowering::visitUnwind(UnwindInst &I) {
1698}
1699
1700/// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for
1701/// small case ranges).
1702bool SelectionDAGLowering::handleSmallSwitchRange(CaseRec& CR,
1703                                                  CaseRecVector& WorkList,
1704                                                  Value* SV,
1705                                                  MachineBasicBlock* Default) {
1706  Case& BackCase  = *(CR.Range.second-1);
1707
1708  // Size is the number of Cases represented by this range.
1709  unsigned Size = CR.Range.second - CR.Range.first;
1710  if (Size > 3)
1711    return false;
1712
1713  // Get the MachineFunction which holds the current MBB.  This is used when
1714  // inserting any additional MBBs necessary to represent the switch.
1715  MachineFunction *CurMF = CurMBB->getParent();
1716
1717  // Figure out which block is immediately after the current one.
1718  MachineBasicBlock *NextBlock = 0;
1719  MachineFunction::iterator BBI = CR.CaseBB;
1720
1721  if (++BBI != CurMBB->getParent()->end())
1722    NextBlock = BBI;
1723
1724  // TODO: If any two of the cases has the same destination, and if one value
1725  // is the same as the other, but has one bit unset that the other has set,
1726  // use bit manipulation to do two compares at once.  For example:
1727  // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
1728
1729  // Rearrange the case blocks so that the last one falls through if possible.
1730  if (NextBlock && Default != NextBlock && BackCase.BB != NextBlock) {
1731    // The last case block won't fall through into 'NextBlock' if we emit the
1732    // branches in this order.  See if rearranging a case value would help.
1733    for (CaseItr I = CR.Range.first, E = CR.Range.second-1; I != E; ++I) {
1734      if (I->BB == NextBlock) {
1735        std::swap(*I, BackCase);
1736        break;
1737      }
1738    }
1739  }
1740
1741  // Create a CaseBlock record representing a conditional branch to
1742  // the Case's target mbb if the value being switched on SV is equal
1743  // to C.
1744  MachineBasicBlock *CurBlock = CR.CaseBB;
1745  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) {
1746    MachineBasicBlock *FallThrough;
1747    if (I != E-1) {
1748      FallThrough = new MachineBasicBlock(CurBlock->getBasicBlock());
1749      CurMF->getBasicBlockList().insert(BBI, FallThrough);
1750    } else {
1751      // If the last case doesn't match, go to the default block.
1752      FallThrough = Default;
1753    }
1754
1755    Value *RHS, *LHS, *MHS;
1756    ISD::CondCode CC;
1757    if (I->High == I->Low) {
1758      // This is just small small case range :) containing exactly 1 case
1759      CC = ISD::SETEQ;
1760      LHS = SV; RHS = I->High; MHS = NULL;
1761    } else {
1762      CC = ISD::SETLE;
1763      LHS = I->Low; MHS = SV; RHS = I->High;
1764    }
1765    SelectionDAGISel::CaseBlock CB(CC, LHS, RHS, MHS,
1766                                   I->BB, FallThrough, CurBlock);
1767
1768    // If emitting the first comparison, just call visitSwitchCase to emit the
1769    // code into the current block.  Otherwise, push the CaseBlock onto the
1770    // vector to be later processed by SDISel, and insert the node's MBB
1771    // before the next MBB.
1772    if (CurBlock == CurMBB)
1773      visitSwitchCase(CB);
1774    else
1775      SwitchCases.push_back(CB);
1776
1777    CurBlock = FallThrough;
1778  }
1779
1780  return true;
1781}
1782
1783static inline bool areJTsAllowed(const TargetLowering &TLI) {
1784  return (TLI.isOperationLegal(ISD::BR_JT, MVT::Other) ||
1785          TLI.isOperationLegal(ISD::BRIND, MVT::Other));
1786}
1787
1788/// handleJTSwitchCase - Emit jumptable for current switch case range
1789bool SelectionDAGLowering::handleJTSwitchCase(CaseRec& CR,
1790                                              CaseRecVector& WorkList,
1791                                              Value* SV,
1792                                              MachineBasicBlock* Default) {
1793  Case& FrontCase = *CR.Range.first;
1794  Case& BackCase  = *(CR.Range.second-1);
1795
1796  int64_t First = cast<ConstantInt>(FrontCase.Low)->getSExtValue();
1797  int64_t Last  = cast<ConstantInt>(BackCase.High)->getSExtValue();
1798
1799  uint64_t TSize = 0;
1800  for (CaseItr I = CR.Range.first, E = CR.Range.second;
1801       I!=E; ++I)
1802    TSize += I->size();
1803
1804  if (!areJTsAllowed(TLI) || TSize <= 3)
1805    return false;
1806
1807  double Density = (double)TSize / (double)((Last - First) + 1ULL);
1808  if (Density < 0.4)
1809    return false;
1810
1811  DOUT << "Lowering jump table\n"
1812       << "First entry: " << First << ". Last entry: " << Last << "\n"
1813       << "Size: " << TSize << ". Density: " << Density << "\n\n";
1814
1815  // Get the MachineFunction which holds the current MBB.  This is used when
1816  // inserting any additional MBBs necessary to represent the switch.
1817  MachineFunction *CurMF = CurMBB->getParent();
1818
1819  // Figure out which block is immediately after the current one.
1820  MachineBasicBlock *NextBlock = 0;
1821  MachineFunction::iterator BBI = CR.CaseBB;
1822
1823  if (++BBI != CurMBB->getParent()->end())
1824    NextBlock = BBI;
1825
1826  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
1827
1828  // Create a new basic block to hold the code for loading the address
1829  // of the jump table, and jumping to it.  Update successor information;
1830  // we will either branch to the default case for the switch, or the jump
1831  // table.
1832  MachineBasicBlock *JumpTableBB = new MachineBasicBlock(LLVMBB);
1833  CurMF->getBasicBlockList().insert(BBI, JumpTableBB);
1834  CR.CaseBB->addSuccessor(Default);
1835  CR.CaseBB->addSuccessor(JumpTableBB);
1836
1837  // Build a vector of destination BBs, corresponding to each target
1838  // of the jump table. If the value of the jump table slot corresponds to
1839  // a case statement, push the case's BB onto the vector, otherwise, push
1840  // the default BB.
1841  std::vector<MachineBasicBlock*> DestBBs;
1842  int64_t TEI = First;
1843  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) {
1844    int64_t Low = cast<ConstantInt>(I->Low)->getSExtValue();
1845    int64_t High = cast<ConstantInt>(I->High)->getSExtValue();
1846
1847    if ((Low <= TEI) && (TEI <= High)) {
1848      DestBBs.push_back(I->BB);
1849      if (TEI==High)
1850        ++I;
1851    } else {
1852      DestBBs.push_back(Default);
1853    }
1854  }
1855
1856  // Update successor info. Add one edge to each unique successor.
1857  BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs());
1858  for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(),
1859         E = DestBBs.end(); I != E; ++I) {
1860    if (!SuccsHandled[(*I)->getNumber()]) {
1861      SuccsHandled[(*I)->getNumber()] = true;
1862      JumpTableBB->addSuccessor(*I);
1863    }
1864  }
1865
1866  // Create a jump table index for this jump table, or return an existing
1867  // one.
1868  unsigned JTI = CurMF->getJumpTableInfo()->getJumpTableIndex(DestBBs);
1869
1870  // Set the jump table information so that we can codegen it as a second
1871  // MachineBasicBlock
1872  SelectionDAGISel::JumpTable JT(-1U, JTI, JumpTableBB, Default);
1873  SelectionDAGISel::JumpTableHeader JTH(First, Last, SV, CR.CaseBB,
1874                                        (CR.CaseBB == CurMBB));
1875  if (CR.CaseBB == CurMBB)
1876    visitJumpTableHeader(JT, JTH);
1877
1878  JTCases.push_back(SelectionDAGISel::JumpTableBlock(JTH, JT));
1879
1880  return true;
1881}
1882
1883/// handleBTSplitSwitchCase - emit comparison and split binary search tree into
1884/// 2 subtrees.
1885bool SelectionDAGLowering::handleBTSplitSwitchCase(CaseRec& CR,
1886                                                   CaseRecVector& WorkList,
1887                                                   Value* SV,
1888                                                   MachineBasicBlock* Default) {
1889  // Get the MachineFunction which holds the current MBB.  This is used when
1890  // inserting any additional MBBs necessary to represent the switch.
1891  MachineFunction *CurMF = CurMBB->getParent();
1892
1893  // Figure out which block is immediately after the current one.
1894  MachineBasicBlock *NextBlock = 0;
1895  MachineFunction::iterator BBI = CR.CaseBB;
1896
1897  if (++BBI != CurMBB->getParent()->end())
1898    NextBlock = BBI;
1899
1900  Case& FrontCase = *CR.Range.first;
1901  Case& BackCase  = *(CR.Range.second-1);
1902  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
1903
1904  // Size is the number of Cases represented by this range.
1905  unsigned Size = CR.Range.second - CR.Range.first;
1906
1907  int64_t First = cast<ConstantInt>(FrontCase.Low)->getSExtValue();
1908  int64_t Last  = cast<ConstantInt>(BackCase.High)->getSExtValue();
1909  double FMetric = 0;
1910  CaseItr Pivot = CR.Range.first + Size/2;
1911
1912  // Select optimal pivot, maximizing sum density of LHS and RHS. This will
1913  // (heuristically) allow us to emit JumpTable's later.
1914  uint64_t TSize = 0;
1915  for (CaseItr I = CR.Range.first, E = CR.Range.second;
1916       I!=E; ++I)
1917    TSize += I->size();
1918
1919  uint64_t LSize = FrontCase.size();
1920  uint64_t RSize = TSize-LSize;
1921  DOUT << "Selecting best pivot: \n"
1922       << "First: " << First << ", Last: " << Last <<"\n"
1923       << "LSize: " << LSize << ", RSize: " << RSize << "\n";
1924  for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second;
1925       J!=E; ++I, ++J) {
1926    int64_t LEnd = cast<ConstantInt>(I->High)->getSExtValue();
1927    int64_t RBegin = cast<ConstantInt>(J->Low)->getSExtValue();
1928    assert((RBegin-LEnd>=1) && "Invalid case distance");
1929    double LDensity = (double)LSize / (double)((LEnd - First) + 1ULL);
1930    double RDensity = (double)RSize / (double)((Last - RBegin) + 1ULL);
1931    double Metric = Log2_64(RBegin-LEnd)*(LDensity+RDensity);
1932    // Should always split in some non-trivial place
1933    DOUT <<"=>Step\n"
1934         << "LEnd: " << LEnd << ", RBegin: " << RBegin << "\n"
1935         << "LDensity: " << LDensity << ", RDensity: " << RDensity << "\n"
1936         << "Metric: " << Metric << "\n";
1937    if (FMetric < Metric) {
1938      Pivot = J;
1939      FMetric = Metric;
1940      DOUT << "Current metric set to: " << FMetric << "\n";
1941    }
1942
1943    LSize += J->size();
1944    RSize -= J->size();
1945  }
1946  if (areJTsAllowed(TLI)) {
1947    // If our case is dense we *really* should handle it earlier!
1948    assert((FMetric > 0) && "Should handle dense range earlier!");
1949  } else {
1950    Pivot = CR.Range.first + Size/2;
1951  }
1952
1953  CaseRange LHSR(CR.Range.first, Pivot);
1954  CaseRange RHSR(Pivot, CR.Range.second);
1955  Constant *C = Pivot->Low;
1956  MachineBasicBlock *FalseBB = 0, *TrueBB = 0;
1957
1958  // We know that we branch to the LHS if the Value being switched on is
1959  // less than the Pivot value, C.  We use this to optimize our binary
1960  // tree a bit, by recognizing that if SV is greater than or equal to the
1961  // LHS's Case Value, and that Case Value is exactly one less than the
1962  // Pivot's Value, then we can branch directly to the LHS's Target,
1963  // rather than creating a leaf node for it.
1964  if ((LHSR.second - LHSR.first) == 1 &&
1965      LHSR.first->High == CR.GE &&
1966      cast<ConstantInt>(C)->getSExtValue() ==
1967      (cast<ConstantInt>(CR.GE)->getSExtValue() + 1LL)) {
1968    TrueBB = LHSR.first->BB;
1969  } else {
1970    TrueBB = new MachineBasicBlock(LLVMBB);
1971    CurMF->getBasicBlockList().insert(BBI, TrueBB);
1972    WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR));
1973  }
1974
1975  // Similar to the optimization above, if the Value being switched on is
1976  // known to be less than the Constant CR.LT, and the current Case Value
1977  // is CR.LT - 1, then we can branch directly to the target block for
1978  // the current Case Value, rather than emitting a RHS leaf node for it.
1979  if ((RHSR.second - RHSR.first) == 1 && CR.LT &&
1980      cast<ConstantInt>(RHSR.first->Low)->getSExtValue() ==
1981      (cast<ConstantInt>(CR.LT)->getSExtValue() - 1LL)) {
1982    FalseBB = RHSR.first->BB;
1983  } else {
1984    FalseBB = new MachineBasicBlock(LLVMBB);
1985    CurMF->getBasicBlockList().insert(BBI, FalseBB);
1986    WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR));
1987  }
1988
1989  // Create a CaseBlock record representing a conditional branch to
1990  // the LHS node if the value being switched on SV is less than C.
1991  // Otherwise, branch to LHS.
1992  SelectionDAGISel::CaseBlock CB(ISD::SETLT, SV, C, NULL,
1993                                 TrueBB, FalseBB, CR.CaseBB);
1994
1995  if (CR.CaseBB == CurMBB)
1996    visitSwitchCase(CB);
1997  else
1998    SwitchCases.push_back(CB);
1999
2000  return true;
2001}
2002
2003/// handleBitTestsSwitchCase - if current case range has few destination and
2004/// range span less, than machine word bitwidth, encode case range into series
2005/// of masks and emit bit tests with these masks.
2006bool SelectionDAGLowering::handleBitTestsSwitchCase(CaseRec& CR,
2007                                                    CaseRecVector& WorkList,
2008                                                    Value* SV,
2009                                                    MachineBasicBlock* Default){
2010  unsigned IntPtrBits = TLI.getPointerTy().getSizeInBits();
2011
2012  Case& FrontCase = *CR.Range.first;
2013  Case& BackCase  = *(CR.Range.second-1);
2014
2015  // Get the MachineFunction which holds the current MBB.  This is used when
2016  // inserting any additional MBBs necessary to represent the switch.
2017  MachineFunction *CurMF = CurMBB->getParent();
2018
2019  unsigned numCmps = 0;
2020  for (CaseItr I = CR.Range.first, E = CR.Range.second;
2021       I!=E; ++I) {
2022    // Single case counts one, case range - two.
2023    if (I->Low == I->High)
2024      numCmps +=1;
2025    else
2026      numCmps +=2;
2027  }
2028
2029  // Count unique destinations
2030  SmallSet<MachineBasicBlock*, 4> Dests;
2031  for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
2032    Dests.insert(I->BB);
2033    if (Dests.size() > 3)
2034      // Don't bother the code below, if there are too much unique destinations
2035      return false;
2036  }
2037  DOUT << "Total number of unique destinations: " << Dests.size() << "\n"
2038       << "Total number of comparisons: " << numCmps << "\n";
2039
2040  // Compute span of values.
2041  Constant* minValue = FrontCase.Low;
2042  Constant* maxValue = BackCase.High;
2043  uint64_t range = cast<ConstantInt>(maxValue)->getSExtValue() -
2044                   cast<ConstantInt>(minValue)->getSExtValue();
2045  DOUT << "Compare range: " << range << "\n"
2046       << "Low bound: " << cast<ConstantInt>(minValue)->getSExtValue() << "\n"
2047       << "High bound: " << cast<ConstantInt>(maxValue)->getSExtValue() << "\n";
2048
2049  if (range>=IntPtrBits ||
2050      (!(Dests.size() == 1 && numCmps >= 3) &&
2051       !(Dests.size() == 2 && numCmps >= 5) &&
2052       !(Dests.size() >= 3 && numCmps >= 6)))
2053    return false;
2054
2055  DOUT << "Emitting bit tests\n";
2056  int64_t lowBound = 0;
2057
2058  // Optimize the case where all the case values fit in a
2059  // word without having to subtract minValue. In this case,
2060  // we can optimize away the subtraction.
2061  if (cast<ConstantInt>(minValue)->getSExtValue() >= 0 &&
2062      cast<ConstantInt>(maxValue)->getSExtValue() <  IntPtrBits) {
2063    range = cast<ConstantInt>(maxValue)->getSExtValue();
2064  } else {
2065    lowBound = cast<ConstantInt>(minValue)->getSExtValue();
2066  }
2067
2068  CaseBitsVector CasesBits;
2069  unsigned i, count = 0;
2070
2071  for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
2072    MachineBasicBlock* Dest = I->BB;
2073    for (i = 0; i < count; ++i)
2074      if (Dest == CasesBits[i].BB)
2075        break;
2076
2077    if (i == count) {
2078      assert((count < 3) && "Too much destinations to test!");
2079      CasesBits.push_back(CaseBits(0, Dest, 0));
2080      count++;
2081    }
2082
2083    uint64_t lo = cast<ConstantInt>(I->Low)->getSExtValue() - lowBound;
2084    uint64_t hi = cast<ConstantInt>(I->High)->getSExtValue() - lowBound;
2085
2086    for (uint64_t j = lo; j <= hi; j++) {
2087      CasesBits[i].Mask |=  1ULL << j;
2088      CasesBits[i].Bits++;
2089    }
2090
2091  }
2092  std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp());
2093
2094  SelectionDAGISel::BitTestInfo BTC;
2095
2096  // Figure out which block is immediately after the current one.
2097  MachineFunction::iterator BBI = CR.CaseBB;
2098  ++BBI;
2099
2100  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2101
2102  DOUT << "Cases:\n";
2103  for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) {
2104    DOUT << "Mask: " << CasesBits[i].Mask << ", Bits: " << CasesBits[i].Bits
2105         << ", BB: " << CasesBits[i].BB << "\n";
2106
2107    MachineBasicBlock *CaseBB = new MachineBasicBlock(LLVMBB);
2108    CurMF->getBasicBlockList().insert(BBI, CaseBB);
2109    BTC.push_back(SelectionDAGISel::BitTestCase(CasesBits[i].Mask,
2110                                                CaseBB,
2111                                                CasesBits[i].BB));
2112  }
2113
2114  SelectionDAGISel::BitTestBlock BTB(lowBound, range, SV,
2115                                     -1U, (CR.CaseBB == CurMBB),
2116                                     CR.CaseBB, Default, BTC);
2117
2118  if (CR.CaseBB == CurMBB)
2119    visitBitTestHeader(BTB);
2120
2121  BitTestCases.push_back(BTB);
2122
2123  return true;
2124}
2125
2126
2127/// Clusterify - Transform simple list of Cases into list of CaseRange's
2128unsigned SelectionDAGLowering::Clusterify(CaseVector& Cases,
2129                                          const SwitchInst& SI) {
2130  unsigned numCmps = 0;
2131
2132  // Start with "simple" cases
2133  for (unsigned i = 1; i < SI.getNumSuccessors(); ++i) {
2134    MachineBasicBlock *SMBB = FuncInfo.MBBMap[SI.getSuccessor(i)];
2135    Cases.push_back(Case(SI.getSuccessorValue(i),
2136                         SI.getSuccessorValue(i),
2137                         SMBB));
2138  }
2139  std::sort(Cases.begin(), Cases.end(), CaseCmp());
2140
2141  // Merge case into clusters
2142  if (Cases.size()>=2)
2143    // Must recompute end() each iteration because it may be
2144    // invalidated by erase if we hold on to it
2145    for (CaseItr I=Cases.begin(), J=++(Cases.begin()); J!=Cases.end(); ) {
2146      int64_t nextValue = cast<ConstantInt>(J->Low)->getSExtValue();
2147      int64_t currentValue = cast<ConstantInt>(I->High)->getSExtValue();
2148      MachineBasicBlock* nextBB = J->BB;
2149      MachineBasicBlock* currentBB = I->BB;
2150
2151      // If the two neighboring cases go to the same destination, merge them
2152      // into a single case.
2153      if ((nextValue-currentValue==1) && (currentBB == nextBB)) {
2154        I->High = J->High;
2155        J = Cases.erase(J);
2156      } else {
2157        I = J++;
2158      }
2159    }
2160
2161  for (CaseItr I=Cases.begin(), E=Cases.end(); I!=E; ++I, ++numCmps) {
2162    if (I->Low != I->High)
2163      // A range counts double, since it requires two compares.
2164      ++numCmps;
2165  }
2166
2167  return numCmps;
2168}
2169
2170void SelectionDAGLowering::visitSwitch(SwitchInst &SI) {
2171  // Figure out which block is immediately after the current one.
2172  MachineBasicBlock *NextBlock = 0;
2173  MachineFunction::iterator BBI = CurMBB;
2174
2175  MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()];
2176
2177  // If there is only the default destination, branch to it if it is not the
2178  // next basic block.  Otherwise, just fall through.
2179  if (SI.getNumOperands() == 2) {
2180    // Update machine-CFG edges.
2181
2182    // If this is not a fall-through branch, emit the branch.
2183    CurMBB->addSuccessor(Default);
2184    if (Default != NextBlock)
2185      DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, getControlRoot(),
2186                              DAG.getBasicBlock(Default)));
2187
2188    return;
2189  }
2190
2191  // If there are any non-default case statements, create a vector of Cases
2192  // representing each one, and sort the vector so that we can efficiently
2193  // create a binary search tree from them.
2194  CaseVector Cases;
2195  unsigned numCmps = Clusterify(Cases, SI);
2196  DOUT << "Clusterify finished. Total clusters: " << Cases.size()
2197       << ". Total compares: " << numCmps << "\n";
2198
2199  // Get the Value to be switched on and default basic blocks, which will be
2200  // inserted into CaseBlock records, representing basic blocks in the binary
2201  // search tree.
2202  Value *SV = SI.getOperand(0);
2203
2204  // Push the initial CaseRec onto the worklist
2205  CaseRecVector WorkList;
2206  WorkList.push_back(CaseRec(CurMBB,0,0,CaseRange(Cases.begin(),Cases.end())));
2207
2208  while (!WorkList.empty()) {
2209    // Grab a record representing a case range to process off the worklist
2210    CaseRec CR = WorkList.back();
2211    WorkList.pop_back();
2212
2213    if (handleBitTestsSwitchCase(CR, WorkList, SV, Default))
2214      continue;
2215
2216    // If the range has few cases (two or less) emit a series of specific
2217    // tests.
2218    if (handleSmallSwitchRange(CR, WorkList, SV, Default))
2219      continue;
2220
2221    // If the switch has more than 5 blocks, and at least 40% dense, and the
2222    // target supports indirect branches, then emit a jump table rather than
2223    // lowering the switch to a binary tree of conditional branches.
2224    if (handleJTSwitchCase(CR, WorkList, SV, Default))
2225      continue;
2226
2227    // Emit binary tree. We need to pick a pivot, and push left and right ranges
2228    // onto the worklist. Leafs are handled via handleSmallSwitchRange() call.
2229    handleBTSplitSwitchCase(CR, WorkList, SV, Default);
2230  }
2231}
2232
2233
2234void SelectionDAGLowering::visitSub(User &I) {
2235  // -0.0 - X --> fneg
2236  const Type *Ty = I.getType();
2237  if (isa<VectorType>(Ty)) {
2238    if (ConstantVector *CV = dyn_cast<ConstantVector>(I.getOperand(0))) {
2239      const VectorType *DestTy = cast<VectorType>(I.getType());
2240      const Type *ElTy = DestTy->getElementType();
2241      if (ElTy->isFloatingPoint()) {
2242        unsigned VL = DestTy->getNumElements();
2243        std::vector<Constant*> NZ(VL, ConstantFP::getNegativeZero(ElTy));
2244        Constant *CNZ = ConstantVector::get(&NZ[0], NZ.size());
2245        if (CV == CNZ) {
2246          SDOperand Op2 = getValue(I.getOperand(1));
2247          setValue(&I, DAG.getNode(ISD::FNEG, Op2.getValueType(), Op2));
2248          return;
2249        }
2250      }
2251    }
2252  }
2253  if (Ty->isFloatingPoint()) {
2254    if (ConstantFP *CFP = dyn_cast<ConstantFP>(I.getOperand(0)))
2255      if (CFP->isExactlyValue(ConstantFP::getNegativeZero(Ty)->getValueAPF())) {
2256        SDOperand Op2 = getValue(I.getOperand(1));
2257        setValue(&I, DAG.getNode(ISD::FNEG, Op2.getValueType(), Op2));
2258        return;
2259      }
2260  }
2261
2262  visitBinary(I, Ty->isFPOrFPVector() ? ISD::FSUB : ISD::SUB);
2263}
2264
2265void SelectionDAGLowering::visitBinary(User &I, unsigned OpCode) {
2266  SDOperand Op1 = getValue(I.getOperand(0));
2267  SDOperand Op2 = getValue(I.getOperand(1));
2268
2269  setValue(&I, DAG.getNode(OpCode, Op1.getValueType(), Op1, Op2));
2270}
2271
2272void SelectionDAGLowering::visitShift(User &I, unsigned Opcode) {
2273  SDOperand Op1 = getValue(I.getOperand(0));
2274  SDOperand Op2 = getValue(I.getOperand(1));
2275
2276  if (TLI.getShiftAmountTy().getSizeInBits() <
2277      Op2.getValueType().getSizeInBits())
2278    Op2 = DAG.getNode(ISD::TRUNCATE, TLI.getShiftAmountTy(), Op2);
2279  else if (TLI.getShiftAmountTy() > Op2.getValueType())
2280    Op2 = DAG.getNode(ISD::ANY_EXTEND, TLI.getShiftAmountTy(), Op2);
2281
2282  setValue(&I, DAG.getNode(Opcode, Op1.getValueType(), Op1, Op2));
2283}
2284
2285void SelectionDAGLowering::visitICmp(User &I) {
2286  ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
2287  if (ICmpInst *IC = dyn_cast<ICmpInst>(&I))
2288    predicate = IC->getPredicate();
2289  else if (ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
2290    predicate = ICmpInst::Predicate(IC->getPredicate());
2291  SDOperand Op1 = getValue(I.getOperand(0));
2292  SDOperand Op2 = getValue(I.getOperand(1));
2293  ISD::CondCode Opcode;
2294  switch (predicate) {
2295    case ICmpInst::ICMP_EQ  : Opcode = ISD::SETEQ; break;
2296    case ICmpInst::ICMP_NE  : Opcode = ISD::SETNE; break;
2297    case ICmpInst::ICMP_UGT : Opcode = ISD::SETUGT; break;
2298    case ICmpInst::ICMP_UGE : Opcode = ISD::SETUGE; break;
2299    case ICmpInst::ICMP_ULT : Opcode = ISD::SETULT; break;
2300    case ICmpInst::ICMP_ULE : Opcode = ISD::SETULE; break;
2301    case ICmpInst::ICMP_SGT : Opcode = ISD::SETGT; break;
2302    case ICmpInst::ICMP_SGE : Opcode = ISD::SETGE; break;
2303    case ICmpInst::ICMP_SLT : Opcode = ISD::SETLT; break;
2304    case ICmpInst::ICMP_SLE : Opcode = ISD::SETLE; break;
2305    default:
2306      assert(!"Invalid ICmp predicate value");
2307      Opcode = ISD::SETEQ;
2308      break;
2309  }
2310  setValue(&I, DAG.getSetCC(MVT::i1, Op1, Op2, Opcode));
2311}
2312
2313void SelectionDAGLowering::visitFCmp(User &I) {
2314  FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
2315  if (FCmpInst *FC = dyn_cast<FCmpInst>(&I))
2316    predicate = FC->getPredicate();
2317  else if (ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
2318    predicate = FCmpInst::Predicate(FC->getPredicate());
2319  SDOperand Op1 = getValue(I.getOperand(0));
2320  SDOperand Op2 = getValue(I.getOperand(1));
2321  ISD::CondCode Condition, FOC, FPC;
2322  switch (predicate) {
2323    case FCmpInst::FCMP_FALSE: FOC = FPC = ISD::SETFALSE; break;
2324    case FCmpInst::FCMP_OEQ:   FOC = ISD::SETEQ; FPC = ISD::SETOEQ; break;
2325    case FCmpInst::FCMP_OGT:   FOC = ISD::SETGT; FPC = ISD::SETOGT; break;
2326    case FCmpInst::FCMP_OGE:   FOC = ISD::SETGE; FPC = ISD::SETOGE; break;
2327    case FCmpInst::FCMP_OLT:   FOC = ISD::SETLT; FPC = ISD::SETOLT; break;
2328    case FCmpInst::FCMP_OLE:   FOC = ISD::SETLE; FPC = ISD::SETOLE; break;
2329    case FCmpInst::FCMP_ONE:   FOC = ISD::SETNE; FPC = ISD::SETONE; break;
2330    case FCmpInst::FCMP_ORD:   FOC = FPC = ISD::SETO;   break;
2331    case FCmpInst::FCMP_UNO:   FOC = FPC = ISD::SETUO;  break;
2332    case FCmpInst::FCMP_UEQ:   FOC = ISD::SETEQ; FPC = ISD::SETUEQ; break;
2333    case FCmpInst::FCMP_UGT:   FOC = ISD::SETGT; FPC = ISD::SETUGT; break;
2334    case FCmpInst::FCMP_UGE:   FOC = ISD::SETGE; FPC = ISD::SETUGE; break;
2335    case FCmpInst::FCMP_ULT:   FOC = ISD::SETLT; FPC = ISD::SETULT; break;
2336    case FCmpInst::FCMP_ULE:   FOC = ISD::SETLE; FPC = ISD::SETULE; break;
2337    case FCmpInst::FCMP_UNE:   FOC = ISD::SETNE; FPC = ISD::SETUNE; break;
2338    case FCmpInst::FCMP_TRUE:  FOC = FPC = ISD::SETTRUE; break;
2339    default:
2340      assert(!"Invalid FCmp predicate value");
2341      FOC = FPC = ISD::SETFALSE;
2342      break;
2343  }
2344  if (FiniteOnlyFPMath())
2345    Condition = FOC;
2346  else
2347    Condition = FPC;
2348  setValue(&I, DAG.getSetCC(MVT::i1, Op1, Op2, Condition));
2349}
2350
2351void SelectionDAGLowering::visitVICmp(User &I) {
2352  ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
2353  if (VICmpInst *IC = dyn_cast<VICmpInst>(&I))
2354    predicate = IC->getPredicate();
2355  else if (ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
2356    predicate = ICmpInst::Predicate(IC->getPredicate());
2357  SDOperand Op1 = getValue(I.getOperand(0));
2358  SDOperand Op2 = getValue(I.getOperand(1));
2359  ISD::CondCode Opcode;
2360  switch (predicate) {
2361    case ICmpInst::ICMP_EQ  : Opcode = ISD::SETEQ; break;
2362    case ICmpInst::ICMP_NE  : Opcode = ISD::SETNE; break;
2363    case ICmpInst::ICMP_UGT : Opcode = ISD::SETUGT; break;
2364    case ICmpInst::ICMP_UGE : Opcode = ISD::SETUGE; break;
2365    case ICmpInst::ICMP_ULT : Opcode = ISD::SETULT; break;
2366    case ICmpInst::ICMP_ULE : Opcode = ISD::SETULE; break;
2367    case ICmpInst::ICMP_SGT : Opcode = ISD::SETGT; break;
2368    case ICmpInst::ICMP_SGE : Opcode = ISD::SETGE; break;
2369    case ICmpInst::ICMP_SLT : Opcode = ISD::SETLT; break;
2370    case ICmpInst::ICMP_SLE : Opcode = ISD::SETLE; break;
2371    default:
2372      assert(!"Invalid ICmp predicate value");
2373      Opcode = ISD::SETEQ;
2374      break;
2375  }
2376  setValue(&I, DAG.getVSetCC(Op1.getValueType(), Op1, Op2, Opcode));
2377}
2378
2379void SelectionDAGLowering::visitVFCmp(User &I) {
2380  FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
2381  if (VFCmpInst *FC = dyn_cast<VFCmpInst>(&I))
2382    predicate = FC->getPredicate();
2383  else if (ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
2384    predicate = FCmpInst::Predicate(FC->getPredicate());
2385  SDOperand Op1 = getValue(I.getOperand(0));
2386  SDOperand Op2 = getValue(I.getOperand(1));
2387  ISD::CondCode Condition, FOC, FPC;
2388  switch (predicate) {
2389    case FCmpInst::FCMP_FALSE: FOC = FPC = ISD::SETFALSE; break;
2390    case FCmpInst::FCMP_OEQ:   FOC = ISD::SETEQ; FPC = ISD::SETOEQ; break;
2391    case FCmpInst::FCMP_OGT:   FOC = ISD::SETGT; FPC = ISD::SETOGT; break;
2392    case FCmpInst::FCMP_OGE:   FOC = ISD::SETGE; FPC = ISD::SETOGE; break;
2393    case FCmpInst::FCMP_OLT:   FOC = ISD::SETLT; FPC = ISD::SETOLT; break;
2394    case FCmpInst::FCMP_OLE:   FOC = ISD::SETLE; FPC = ISD::SETOLE; break;
2395    case FCmpInst::FCMP_ONE:   FOC = ISD::SETNE; FPC = ISD::SETONE; break;
2396    case FCmpInst::FCMP_ORD:   FOC = FPC = ISD::SETO;   break;
2397    case FCmpInst::FCMP_UNO:   FOC = FPC = ISD::SETUO;  break;
2398    case FCmpInst::FCMP_UEQ:   FOC = ISD::SETEQ; FPC = ISD::SETUEQ; break;
2399    case FCmpInst::FCMP_UGT:   FOC = ISD::SETGT; FPC = ISD::SETUGT; break;
2400    case FCmpInst::FCMP_UGE:   FOC = ISD::SETGE; FPC = ISD::SETUGE; break;
2401    case FCmpInst::FCMP_ULT:   FOC = ISD::SETLT; FPC = ISD::SETULT; break;
2402    case FCmpInst::FCMP_ULE:   FOC = ISD::SETLE; FPC = ISD::SETULE; break;
2403    case FCmpInst::FCMP_UNE:   FOC = ISD::SETNE; FPC = ISD::SETUNE; break;
2404    case FCmpInst::FCMP_TRUE:  FOC = FPC = ISD::SETTRUE; break;
2405    default:
2406      assert(!"Invalid VFCmp predicate value");
2407      FOC = FPC = ISD::SETFALSE;
2408      break;
2409  }
2410  if (FiniteOnlyFPMath())
2411    Condition = FOC;
2412  else
2413    Condition = FPC;
2414
2415  MVT DestVT = TLI.getValueType(I.getType());
2416
2417  setValue(&I, DAG.getVSetCC(DestVT, Op1, Op2, Condition));
2418}
2419
2420void SelectionDAGLowering::visitSelect(User &I) {
2421  SDOperand Cond     = getValue(I.getOperand(0));
2422  SDOperand TrueVal  = getValue(I.getOperand(1));
2423  SDOperand FalseVal = getValue(I.getOperand(2));
2424  setValue(&I, DAG.getNode(ISD::SELECT, TrueVal.getValueType(), Cond,
2425                           TrueVal, FalseVal));
2426}
2427
2428
2429void SelectionDAGLowering::visitTrunc(User &I) {
2430  // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
2431  SDOperand N = getValue(I.getOperand(0));
2432  MVT DestVT = TLI.getValueType(I.getType());
2433  setValue(&I, DAG.getNode(ISD::TRUNCATE, DestVT, N));
2434}
2435
2436void SelectionDAGLowering::visitZExt(User &I) {
2437  // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2438  // ZExt also can't be a cast to bool for same reason. So, nothing much to do
2439  SDOperand N = getValue(I.getOperand(0));
2440  MVT DestVT = TLI.getValueType(I.getType());
2441  setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, DestVT, N));
2442}
2443
2444void SelectionDAGLowering::visitSExt(User &I) {
2445  // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2446  // SExt also can't be a cast to bool for same reason. So, nothing much to do
2447  SDOperand N = getValue(I.getOperand(0));
2448  MVT DestVT = TLI.getValueType(I.getType());
2449  setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, DestVT, N));
2450}
2451
2452void SelectionDAGLowering::visitFPTrunc(User &I) {
2453  // FPTrunc is never a no-op cast, no need to check
2454  SDOperand N = getValue(I.getOperand(0));
2455  MVT DestVT = TLI.getValueType(I.getType());
2456  setValue(&I, DAG.getNode(ISD::FP_ROUND, DestVT, N, DAG.getIntPtrConstant(0)));
2457}
2458
2459void SelectionDAGLowering::visitFPExt(User &I){
2460  // FPTrunc is never a no-op cast, no need to check
2461  SDOperand N = getValue(I.getOperand(0));
2462  MVT DestVT = TLI.getValueType(I.getType());
2463  setValue(&I, DAG.getNode(ISD::FP_EXTEND, DestVT, N));
2464}
2465
2466void SelectionDAGLowering::visitFPToUI(User &I) {
2467  // FPToUI is never a no-op cast, no need to check
2468  SDOperand N = getValue(I.getOperand(0));
2469  MVT DestVT = TLI.getValueType(I.getType());
2470  setValue(&I, DAG.getNode(ISD::FP_TO_UINT, DestVT, N));
2471}
2472
2473void SelectionDAGLowering::visitFPToSI(User &I) {
2474  // FPToSI is never a no-op cast, no need to check
2475  SDOperand N = getValue(I.getOperand(0));
2476  MVT DestVT = TLI.getValueType(I.getType());
2477  setValue(&I, DAG.getNode(ISD::FP_TO_SINT, DestVT, N));
2478}
2479
2480void SelectionDAGLowering::visitUIToFP(User &I) {
2481  // UIToFP is never a no-op cast, no need to check
2482  SDOperand N = getValue(I.getOperand(0));
2483  MVT DestVT = TLI.getValueType(I.getType());
2484  setValue(&I, DAG.getNode(ISD::UINT_TO_FP, DestVT, N));
2485}
2486
2487void SelectionDAGLowering::visitSIToFP(User &I){
2488  // UIToFP is never a no-op cast, no need to check
2489  SDOperand N = getValue(I.getOperand(0));
2490  MVT DestVT = TLI.getValueType(I.getType());
2491  setValue(&I, DAG.getNode(ISD::SINT_TO_FP, DestVT, N));
2492}
2493
2494void SelectionDAGLowering::visitPtrToInt(User &I) {
2495  // What to do depends on the size of the integer and the size of the pointer.
2496  // We can either truncate, zero extend, or no-op, accordingly.
2497  SDOperand N = getValue(I.getOperand(0));
2498  MVT SrcVT = N.getValueType();
2499  MVT DestVT = TLI.getValueType(I.getType());
2500  SDOperand Result;
2501  if (DestVT.getSizeInBits() < SrcVT.getSizeInBits())
2502    Result = DAG.getNode(ISD::TRUNCATE, DestVT, N);
2503  else
2504    // Note: ZERO_EXTEND can handle cases where the sizes are equal too
2505    Result = DAG.getNode(ISD::ZERO_EXTEND, DestVT, N);
2506  setValue(&I, Result);
2507}
2508
2509void SelectionDAGLowering::visitIntToPtr(User &I) {
2510  // What to do depends on the size of the integer and the size of the pointer.
2511  // We can either truncate, zero extend, or no-op, accordingly.
2512  SDOperand N = getValue(I.getOperand(0));
2513  MVT SrcVT = N.getValueType();
2514  MVT DestVT = TLI.getValueType(I.getType());
2515  if (DestVT.getSizeInBits() < SrcVT.getSizeInBits())
2516    setValue(&I, DAG.getNode(ISD::TRUNCATE, DestVT, N));
2517  else
2518    // Note: ZERO_EXTEND can handle cases where the sizes are equal too
2519    setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, DestVT, N));
2520}
2521
2522void SelectionDAGLowering::visitBitCast(User &I) {
2523  SDOperand N = getValue(I.getOperand(0));
2524  MVT DestVT = TLI.getValueType(I.getType());
2525
2526  // BitCast assures us that source and destination are the same size so this
2527  // is either a BIT_CONVERT or a no-op.
2528  if (DestVT != N.getValueType())
2529    setValue(&I, DAG.getNode(ISD::BIT_CONVERT, DestVT, N)); // convert types
2530  else
2531    setValue(&I, N); // noop cast.
2532}
2533
2534void SelectionDAGLowering::visitInsertElement(User &I) {
2535  SDOperand InVec = getValue(I.getOperand(0));
2536  SDOperand InVal = getValue(I.getOperand(1));
2537  SDOperand InIdx = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(),
2538                                getValue(I.getOperand(2)));
2539
2540  setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT,
2541                           TLI.getValueType(I.getType()),
2542                           InVec, InVal, InIdx));
2543}
2544
2545void SelectionDAGLowering::visitExtractElement(User &I) {
2546  SDOperand InVec = getValue(I.getOperand(0));
2547  SDOperand InIdx = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(),
2548                                getValue(I.getOperand(1)));
2549  setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT,
2550                           TLI.getValueType(I.getType()), InVec, InIdx));
2551}
2552
2553void SelectionDAGLowering::visitShuffleVector(User &I) {
2554  SDOperand V1   = getValue(I.getOperand(0));
2555  SDOperand V2   = getValue(I.getOperand(1));
2556  SDOperand Mask = getValue(I.getOperand(2));
2557
2558  setValue(&I, DAG.getNode(ISD::VECTOR_SHUFFLE,
2559                           TLI.getValueType(I.getType()),
2560                           V1, V2, Mask));
2561}
2562
2563void SelectionDAGLowering::visitInsertValue(User &I) {
2564  assert(0 && "insertvalue instruction not implemented");
2565  abort();
2566}
2567
2568void SelectionDAGLowering::visitExtractValue(User &I) {
2569  assert(0 && "extractvalue instruction not implemented");
2570  abort();
2571}
2572
2573
2574void SelectionDAGLowering::visitGetElementPtr(User &I) {
2575  SDOperand N = getValue(I.getOperand(0));
2576  const Type *Ty = I.getOperand(0)->getType();
2577
2578  for (GetElementPtrInst::op_iterator OI = I.op_begin()+1, E = I.op_end();
2579       OI != E; ++OI) {
2580    Value *Idx = *OI;
2581    if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
2582      unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
2583      if (Field) {
2584        // N = N + Offset
2585        uint64_t Offset = TD->getStructLayout(StTy)->getElementOffset(Field);
2586        N = DAG.getNode(ISD::ADD, N.getValueType(), N,
2587                        DAG.getIntPtrConstant(Offset));
2588      }
2589      Ty = StTy->getElementType(Field);
2590    } else {
2591      Ty = cast<SequentialType>(Ty)->getElementType();
2592
2593      // If this is a constant subscript, handle it quickly.
2594      if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
2595        if (CI->getZExtValue() == 0) continue;
2596        uint64_t Offs =
2597            TD->getABITypeSize(Ty)*cast<ConstantInt>(CI)->getSExtValue();
2598        N = DAG.getNode(ISD::ADD, N.getValueType(), N,
2599                        DAG.getIntPtrConstant(Offs));
2600        continue;
2601      }
2602
2603      // N = N + Idx * ElementSize;
2604      uint64_t ElementSize = TD->getABITypeSize(Ty);
2605      SDOperand IdxN = getValue(Idx);
2606
2607      // If the index is smaller or larger than intptr_t, truncate or extend
2608      // it.
2609      if (IdxN.getValueType() < N.getValueType()) {
2610        IdxN = DAG.getNode(ISD::SIGN_EXTEND, N.getValueType(), IdxN);
2611      } else if (IdxN.getValueType() > N.getValueType())
2612        IdxN = DAG.getNode(ISD::TRUNCATE, N.getValueType(), IdxN);
2613
2614      // If this is a multiply by a power of two, turn it into a shl
2615      // immediately.  This is a very common case.
2616      if (isPowerOf2_64(ElementSize)) {
2617        unsigned Amt = Log2_64(ElementSize);
2618        IdxN = DAG.getNode(ISD::SHL, N.getValueType(), IdxN,
2619                           DAG.getConstant(Amt, TLI.getShiftAmountTy()));
2620        N = DAG.getNode(ISD::ADD, N.getValueType(), N, IdxN);
2621        continue;
2622      }
2623
2624      SDOperand Scale = DAG.getIntPtrConstant(ElementSize);
2625      IdxN = DAG.getNode(ISD::MUL, N.getValueType(), IdxN, Scale);
2626      N = DAG.getNode(ISD::ADD, N.getValueType(), N, IdxN);
2627    }
2628  }
2629  setValue(&I, N);
2630}
2631
2632void SelectionDAGLowering::visitAlloca(AllocaInst &I) {
2633  // If this is a fixed sized alloca in the entry block of the function,
2634  // allocate it statically on the stack.
2635  if (FuncInfo.StaticAllocaMap.count(&I))
2636    return;   // getValue will auto-populate this.
2637
2638  const Type *Ty = I.getAllocatedType();
2639  uint64_t TySize = TLI.getTargetData()->getABITypeSize(Ty);
2640  unsigned Align =
2641    std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty),
2642             I.getAlignment());
2643
2644  SDOperand AllocSize = getValue(I.getArraySize());
2645  MVT IntPtr = TLI.getPointerTy();
2646  if (IntPtr < AllocSize.getValueType())
2647    AllocSize = DAG.getNode(ISD::TRUNCATE, IntPtr, AllocSize);
2648  else if (IntPtr > AllocSize.getValueType())
2649    AllocSize = DAG.getNode(ISD::ZERO_EXTEND, IntPtr, AllocSize);
2650
2651  AllocSize = DAG.getNode(ISD::MUL, IntPtr, AllocSize,
2652                          DAG.getIntPtrConstant(TySize));
2653
2654  // Handle alignment.  If the requested alignment is less than or equal to
2655  // the stack alignment, ignore it.  If the size is greater than or equal to
2656  // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
2657  unsigned StackAlign =
2658    TLI.getTargetMachine().getFrameInfo()->getStackAlignment();
2659  if (Align <= StackAlign)
2660    Align = 0;
2661
2662  // Round the size of the allocation up to the stack alignment size
2663  // by add SA-1 to the size.
2664  AllocSize = DAG.getNode(ISD::ADD, AllocSize.getValueType(), AllocSize,
2665                          DAG.getIntPtrConstant(StackAlign-1));
2666  // Mask out the low bits for alignment purposes.
2667  AllocSize = DAG.getNode(ISD::AND, AllocSize.getValueType(), AllocSize,
2668                          DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1)));
2669
2670  SDOperand Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) };
2671  const MVT *VTs = DAG.getNodeValueTypes(AllocSize.getValueType(),
2672                                                    MVT::Other);
2673  SDOperand DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, VTs, 2, Ops, 3);
2674  setValue(&I, DSA);
2675  DAG.setRoot(DSA.getValue(1));
2676
2677  // Inform the Frame Information that we have just allocated a variable-sized
2678  // object.
2679  CurMBB->getParent()->getFrameInfo()->CreateVariableSizedObject();
2680}
2681
2682void SelectionDAGLowering::visitLoad(LoadInst &I) {
2683  SDOperand Ptr = getValue(I.getOperand(0));
2684
2685  SDOperand Root;
2686  if (I.isVolatile())
2687    Root = getRoot();
2688  else {
2689    // Do not serialize non-volatile loads against each other.
2690    Root = DAG.getRoot();
2691  }
2692
2693  setValue(&I, getLoadFrom(I.getType(), Ptr, I.getOperand(0),
2694                           Root, I.isVolatile(), I.getAlignment()));
2695}
2696
2697SDOperand SelectionDAGLowering::getLoadFrom(const Type *Ty, SDOperand Ptr,
2698                                            const Value *SV, SDOperand Root,
2699                                            bool isVolatile,
2700                                            unsigned Alignment) {
2701  SDOperand L =
2702    DAG.getLoad(TLI.getValueType(Ty), Root, Ptr, SV, 0,
2703                isVolatile, Alignment);
2704
2705  if (isVolatile)
2706    DAG.setRoot(L.getValue(1));
2707  else
2708    PendingLoads.push_back(L.getValue(1));
2709
2710  return L;
2711}
2712
2713
2714void SelectionDAGLowering::visitStore(StoreInst &I) {
2715  Value *SrcV = I.getOperand(0);
2716  SDOperand Src = getValue(SrcV);
2717  SDOperand Ptr = getValue(I.getOperand(1));
2718  DAG.setRoot(DAG.getStore(getRoot(), Src, Ptr, I.getOperand(1), 0,
2719                           I.isVolatile(), I.getAlignment()));
2720}
2721
2722/// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
2723/// node.
2724void SelectionDAGLowering::visitTargetIntrinsic(CallInst &I,
2725                                                unsigned Intrinsic) {
2726  bool HasChain = !I.doesNotAccessMemory();
2727  bool OnlyLoad = HasChain && I.onlyReadsMemory();
2728
2729  // Build the operand list.
2730  SmallVector<SDOperand, 8> Ops;
2731  if (HasChain) {  // If this intrinsic has side-effects, chainify it.
2732    if (OnlyLoad) {
2733      // We don't need to serialize loads against other loads.
2734      Ops.push_back(DAG.getRoot());
2735    } else {
2736      Ops.push_back(getRoot());
2737    }
2738  }
2739
2740  // Add the intrinsic ID as an integer operand.
2741  Ops.push_back(DAG.getConstant(Intrinsic, TLI.getPointerTy()));
2742
2743  // Add all operands of the call to the operand list.
2744  for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) {
2745    SDOperand Op = getValue(I.getOperand(i));
2746    assert(TLI.isTypeLegal(Op.getValueType()) &&
2747           "Intrinsic uses a non-legal type?");
2748    Ops.push_back(Op);
2749  }
2750
2751  std::vector<MVT> VTs;
2752  if (I.getType() != Type::VoidTy) {
2753    MVT VT = TLI.getValueType(I.getType());
2754    if (VT.isVector()) {
2755      const VectorType *DestTy = cast<VectorType>(I.getType());
2756      MVT EltVT = TLI.getValueType(DestTy->getElementType());
2757
2758      VT = MVT::getVectorVT(EltVT, DestTy->getNumElements());
2759      assert(VT != MVT::Other && "Intrinsic uses a non-legal type?");
2760    }
2761
2762    assert(TLI.isTypeLegal(VT) && "Intrinsic uses a non-legal type?");
2763    VTs.push_back(VT);
2764  }
2765  if (HasChain)
2766    VTs.push_back(MVT::Other);
2767
2768  const MVT *VTList = DAG.getNodeValueTypes(VTs);
2769
2770  // Create the node.
2771  SDOperand Result;
2772  if (!HasChain)
2773    Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, VTList, VTs.size(),
2774                         &Ops[0], Ops.size());
2775  else if (I.getType() != Type::VoidTy)
2776    Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, VTList, VTs.size(),
2777                         &Ops[0], Ops.size());
2778  else
2779    Result = DAG.getNode(ISD::INTRINSIC_VOID, VTList, VTs.size(),
2780                         &Ops[0], Ops.size());
2781
2782  if (HasChain) {
2783    SDOperand Chain = Result.getValue(Result.Val->getNumValues()-1);
2784    if (OnlyLoad)
2785      PendingLoads.push_back(Chain);
2786    else
2787      DAG.setRoot(Chain);
2788  }
2789  if (I.getType() != Type::VoidTy) {
2790    if (const VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
2791      MVT VT = TLI.getValueType(PTy);
2792      Result = DAG.getNode(ISD::BIT_CONVERT, VT, Result);
2793    }
2794    setValue(&I, Result);
2795  }
2796}
2797
2798/// ExtractTypeInfo - Returns the type info, possibly bitcast, encoded in V.
2799static GlobalVariable *ExtractTypeInfo (Value *V) {
2800  V = V->stripPointerCasts();
2801  GlobalVariable *GV = dyn_cast<GlobalVariable>(V);
2802  assert ((GV || isa<ConstantPointerNull>(V)) &&
2803          "TypeInfo must be a global variable or NULL");
2804  return GV;
2805}
2806
2807/// addCatchInfo - Extract the personality and type infos from an eh.selector
2808/// call, and add them to the specified machine basic block.
2809static void addCatchInfo(CallInst &I, MachineModuleInfo *MMI,
2810                         MachineBasicBlock *MBB) {
2811  // Inform the MachineModuleInfo of the personality for this landing pad.
2812  ConstantExpr *CE = cast<ConstantExpr>(I.getOperand(2));
2813  assert(CE->getOpcode() == Instruction::BitCast &&
2814         isa<Function>(CE->getOperand(0)) &&
2815         "Personality should be a function");
2816  MMI->addPersonality(MBB, cast<Function>(CE->getOperand(0)));
2817
2818  // Gather all the type infos for this landing pad and pass them along to
2819  // MachineModuleInfo.
2820  std::vector<GlobalVariable *> TyInfo;
2821  unsigned N = I.getNumOperands();
2822
2823  for (unsigned i = N - 1; i > 2; --i) {
2824    if (ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(i))) {
2825      unsigned FilterLength = CI->getZExtValue();
2826      unsigned FirstCatch = i + FilterLength + !FilterLength;
2827      assert (FirstCatch <= N && "Invalid filter length");
2828
2829      if (FirstCatch < N) {
2830        TyInfo.reserve(N - FirstCatch);
2831        for (unsigned j = FirstCatch; j < N; ++j)
2832          TyInfo.push_back(ExtractTypeInfo(I.getOperand(j)));
2833        MMI->addCatchTypeInfo(MBB, TyInfo);
2834        TyInfo.clear();
2835      }
2836
2837      if (!FilterLength) {
2838        // Cleanup.
2839        MMI->addCleanup(MBB);
2840      } else {
2841        // Filter.
2842        TyInfo.reserve(FilterLength - 1);
2843        for (unsigned j = i + 1; j < FirstCatch; ++j)
2844          TyInfo.push_back(ExtractTypeInfo(I.getOperand(j)));
2845        MMI->addFilterTypeInfo(MBB, TyInfo);
2846        TyInfo.clear();
2847      }
2848
2849      N = i;
2850    }
2851  }
2852
2853  if (N > 3) {
2854    TyInfo.reserve(N - 3);
2855    for (unsigned j = 3; j < N; ++j)
2856      TyInfo.push_back(ExtractTypeInfo(I.getOperand(j)));
2857    MMI->addCatchTypeInfo(MBB, TyInfo);
2858  }
2859}
2860
2861
2862/// Inlined utility function to implement binary input atomic intrinsics for
2863// visitIntrinsicCall: I is a call instruction
2864//                     Op is the associated NodeType for I
2865const char *
2866SelectionDAGLowering::implVisitBinaryAtomic(CallInst& I, ISD::NodeType Op) {
2867  SDOperand Root = getRoot();
2868  SDOperand O2 = getValue(I.getOperand(2));
2869  SDOperand L = DAG.getAtomic(Op, Root,
2870                              getValue(I.getOperand(1)),
2871                              O2, O2.getValueType());
2872  setValue(&I, L);
2873  DAG.setRoot(L.getValue(1));
2874  return 0;
2875}
2876
2877/// visitIntrinsicCall - Lower the call to the specified intrinsic function.  If
2878/// we want to emit this as a call to a named external function, return the name
2879/// otherwise lower it and return null.
2880const char *
2881SelectionDAGLowering::visitIntrinsicCall(CallInst &I, unsigned Intrinsic) {
2882  switch (Intrinsic) {
2883  default:
2884    // By default, turn this into a target intrinsic node.
2885    visitTargetIntrinsic(I, Intrinsic);
2886    return 0;
2887  case Intrinsic::vastart:  visitVAStart(I); return 0;
2888  case Intrinsic::vaend:    visitVAEnd(I); return 0;
2889  case Intrinsic::vacopy:   visitVACopy(I); return 0;
2890  case Intrinsic::returnaddress:
2891    setValue(&I, DAG.getNode(ISD::RETURNADDR, TLI.getPointerTy(),
2892                             getValue(I.getOperand(1))));
2893    return 0;
2894  case Intrinsic::frameaddress:
2895    setValue(&I, DAG.getNode(ISD::FRAMEADDR, TLI.getPointerTy(),
2896                             getValue(I.getOperand(1))));
2897    return 0;
2898  case Intrinsic::setjmp:
2899    return "_setjmp"+!TLI.usesUnderscoreSetJmp();
2900    break;
2901  case Intrinsic::longjmp:
2902    return "_longjmp"+!TLI.usesUnderscoreLongJmp();
2903    break;
2904  case Intrinsic::memcpy_i32:
2905  case Intrinsic::memcpy_i64: {
2906    SDOperand Op1 = getValue(I.getOperand(1));
2907    SDOperand Op2 = getValue(I.getOperand(2));
2908    SDOperand Op3 = getValue(I.getOperand(3));
2909    unsigned Align = cast<ConstantInt>(I.getOperand(4))->getZExtValue();
2910    DAG.setRoot(DAG.getMemcpy(getRoot(), Op1, Op2, Op3, Align, false,
2911                              I.getOperand(1), 0, I.getOperand(2), 0));
2912    return 0;
2913  }
2914  case Intrinsic::memset_i32:
2915  case Intrinsic::memset_i64: {
2916    SDOperand Op1 = getValue(I.getOperand(1));
2917    SDOperand Op2 = getValue(I.getOperand(2));
2918    SDOperand Op3 = getValue(I.getOperand(3));
2919    unsigned Align = cast<ConstantInt>(I.getOperand(4))->getZExtValue();
2920    DAG.setRoot(DAG.getMemset(getRoot(), Op1, Op2, Op3, Align,
2921                              I.getOperand(1), 0));
2922    return 0;
2923  }
2924  case Intrinsic::memmove_i32:
2925  case Intrinsic::memmove_i64: {
2926    SDOperand Op1 = getValue(I.getOperand(1));
2927    SDOperand Op2 = getValue(I.getOperand(2));
2928    SDOperand Op3 = getValue(I.getOperand(3));
2929    unsigned Align = cast<ConstantInt>(I.getOperand(4))->getZExtValue();
2930
2931    // If the source and destination are known to not be aliases, we can
2932    // lower memmove as memcpy.
2933    uint64_t Size = -1ULL;
2934    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op3))
2935      Size = C->getValue();
2936    if (AA.alias(I.getOperand(1), Size, I.getOperand(2), Size) ==
2937        AliasAnalysis::NoAlias) {
2938      DAG.setRoot(DAG.getMemcpy(getRoot(), Op1, Op2, Op3, Align, false,
2939                                I.getOperand(1), 0, I.getOperand(2), 0));
2940      return 0;
2941    }
2942
2943    DAG.setRoot(DAG.getMemmove(getRoot(), Op1, Op2, Op3, Align,
2944                               I.getOperand(1), 0, I.getOperand(2), 0));
2945    return 0;
2946  }
2947  case Intrinsic::dbg_stoppoint: {
2948    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2949    DbgStopPointInst &SPI = cast<DbgStopPointInst>(I);
2950    if (MMI && SPI.getContext() && MMI->Verify(SPI.getContext())) {
2951      SDOperand Ops[5];
2952
2953      Ops[0] = getRoot();
2954      Ops[1] = getValue(SPI.getLineValue());
2955      Ops[2] = getValue(SPI.getColumnValue());
2956
2957      DebugInfoDesc *DD = MMI->getDescFor(SPI.getContext());
2958      assert(DD && "Not a debug information descriptor");
2959      CompileUnitDesc *CompileUnit = cast<CompileUnitDesc>(DD);
2960
2961      Ops[3] = DAG.getString(CompileUnit->getFileName());
2962      Ops[4] = DAG.getString(CompileUnit->getDirectory());
2963
2964      DAG.setRoot(DAG.getNode(ISD::LOCATION, MVT::Other, Ops, 5));
2965    }
2966
2967    return 0;
2968  }
2969  case Intrinsic::dbg_region_start: {
2970    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2971    DbgRegionStartInst &RSI = cast<DbgRegionStartInst>(I);
2972    if (MMI && RSI.getContext() && MMI->Verify(RSI.getContext())) {
2973      unsigned LabelID = MMI->RecordRegionStart(RSI.getContext());
2974      DAG.setRoot(DAG.getNode(ISD::LABEL, MVT::Other, getRoot(),
2975                              DAG.getConstant(LabelID, MVT::i32),
2976                              DAG.getConstant(0, MVT::i32)));
2977    }
2978
2979    return 0;
2980  }
2981  case Intrinsic::dbg_region_end: {
2982    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2983    DbgRegionEndInst &REI = cast<DbgRegionEndInst>(I);
2984    if (MMI && REI.getContext() && MMI->Verify(REI.getContext())) {
2985      unsigned LabelID = MMI->RecordRegionEnd(REI.getContext());
2986      DAG.setRoot(DAG.getNode(ISD::LABEL, MVT::Other, getRoot(),
2987                              DAG.getConstant(LabelID, MVT::i32),
2988                              DAG.getConstant(0, MVT::i32)));
2989    }
2990
2991    return 0;
2992  }
2993  case Intrinsic::dbg_func_start: {
2994    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2995    if (!MMI) return 0;
2996    DbgFuncStartInst &FSI = cast<DbgFuncStartInst>(I);
2997    Value *SP = FSI.getSubprogram();
2998    if (SP && MMI->Verify(SP)) {
2999      // llvm.dbg.func.start implicitly defines a dbg_stoppoint which is
3000      // what (most?) gdb expects.
3001      DebugInfoDesc *DD = MMI->getDescFor(SP);
3002      assert(DD && "Not a debug information descriptor");
3003      SubprogramDesc *Subprogram = cast<SubprogramDesc>(DD);
3004      const CompileUnitDesc *CompileUnit = Subprogram->getFile();
3005      unsigned SrcFile = MMI->RecordSource(CompileUnit->getDirectory(),
3006                                           CompileUnit->getFileName());
3007      // Record the source line but does create a label. It will be emitted
3008      // at asm emission time.
3009      MMI->RecordSourceLine(Subprogram->getLine(), 0, SrcFile);
3010    }
3011
3012    return 0;
3013  }
3014  case Intrinsic::dbg_declare: {
3015    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
3016    DbgDeclareInst &DI = cast<DbgDeclareInst>(I);
3017    Value *Variable = DI.getVariable();
3018    if (MMI && Variable && MMI->Verify(Variable))
3019      DAG.setRoot(DAG.getNode(ISD::DECLARE, MVT::Other, getRoot(),
3020                              getValue(DI.getAddress()), getValue(Variable)));
3021    return 0;
3022  }
3023
3024  case Intrinsic::eh_exception: {
3025    if (!CurMBB->isLandingPad()) {
3026      // FIXME: Mark exception register as live in.  Hack for PR1508.
3027      unsigned Reg = TLI.getExceptionAddressRegister();
3028      if (Reg) CurMBB->addLiveIn(Reg);
3029    }
3030    // Insert the EXCEPTIONADDR instruction.
3031    SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
3032    SDOperand Ops[1];
3033    Ops[0] = DAG.getRoot();
3034    SDOperand Op = DAG.getNode(ISD::EXCEPTIONADDR, VTs, Ops, 1);
3035    setValue(&I, Op);
3036    DAG.setRoot(Op.getValue(1));
3037    return 0;
3038  }
3039
3040  case Intrinsic::eh_selector_i32:
3041  case Intrinsic::eh_selector_i64: {
3042    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
3043    MVT VT = (Intrinsic == Intrinsic::eh_selector_i32 ?
3044                         MVT::i32 : MVT::i64);
3045
3046    if (MMI) {
3047      if (CurMBB->isLandingPad())
3048        addCatchInfo(I, MMI, CurMBB);
3049      else {
3050#ifndef NDEBUG
3051        FuncInfo.CatchInfoLost.insert(&I);
3052#endif
3053        // FIXME: Mark exception selector register as live in.  Hack for PR1508.
3054        unsigned Reg = TLI.getExceptionSelectorRegister();
3055        if (Reg) CurMBB->addLiveIn(Reg);
3056      }
3057
3058      // Insert the EHSELECTION instruction.
3059      SDVTList VTs = DAG.getVTList(VT, MVT::Other);
3060      SDOperand Ops[2];
3061      Ops[0] = getValue(I.getOperand(1));
3062      Ops[1] = getRoot();
3063      SDOperand Op = DAG.getNode(ISD::EHSELECTION, VTs, Ops, 2);
3064      setValue(&I, Op);
3065      DAG.setRoot(Op.getValue(1));
3066    } else {
3067      setValue(&I, DAG.getConstant(0, VT));
3068    }
3069
3070    return 0;
3071  }
3072
3073  case Intrinsic::eh_typeid_for_i32:
3074  case Intrinsic::eh_typeid_for_i64: {
3075    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
3076    MVT VT = (Intrinsic == Intrinsic::eh_typeid_for_i32 ?
3077                         MVT::i32 : MVT::i64);
3078
3079    if (MMI) {
3080      // Find the type id for the given typeinfo.
3081      GlobalVariable *GV = ExtractTypeInfo(I.getOperand(1));
3082
3083      unsigned TypeID = MMI->getTypeIDFor(GV);
3084      setValue(&I, DAG.getConstant(TypeID, VT));
3085    } else {
3086      // Return something different to eh_selector.
3087      setValue(&I, DAG.getConstant(1, VT));
3088    }
3089
3090    return 0;
3091  }
3092
3093  case Intrinsic::eh_return: {
3094    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
3095
3096    if (MMI) {
3097      MMI->setCallsEHReturn(true);
3098      DAG.setRoot(DAG.getNode(ISD::EH_RETURN,
3099                              MVT::Other,
3100                              getControlRoot(),
3101                              getValue(I.getOperand(1)),
3102                              getValue(I.getOperand(2))));
3103    } else {
3104      setValue(&I, DAG.getConstant(0, TLI.getPointerTy()));
3105    }
3106
3107    return 0;
3108  }
3109
3110   case Intrinsic::eh_unwind_init: {
3111     if (MachineModuleInfo *MMI = DAG.getMachineModuleInfo()) {
3112       MMI->setCallsUnwindInit(true);
3113     }
3114
3115     return 0;
3116   }
3117
3118   case Intrinsic::eh_dwarf_cfa: {
3119     MVT VT = getValue(I.getOperand(1)).getValueType();
3120     SDOperand CfaArg;
3121     if (VT.getSizeInBits() > TLI.getPointerTy().getSizeInBits())
3122       CfaArg = DAG.getNode(ISD::TRUNCATE,
3123                            TLI.getPointerTy(), getValue(I.getOperand(1)));
3124     else
3125       CfaArg = DAG.getNode(ISD::SIGN_EXTEND,
3126                            TLI.getPointerTy(), getValue(I.getOperand(1)));
3127
3128     SDOperand Offset = DAG.getNode(ISD::ADD,
3129                                    TLI.getPointerTy(),
3130                                    DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET,
3131                                                TLI.getPointerTy()),
3132                                    CfaArg);
3133     setValue(&I, DAG.getNode(ISD::ADD,
3134                              TLI.getPointerTy(),
3135                              DAG.getNode(ISD::FRAMEADDR,
3136                                          TLI.getPointerTy(),
3137                                          DAG.getConstant(0,
3138                                                          TLI.getPointerTy())),
3139                              Offset));
3140     return 0;
3141  }
3142
3143  case Intrinsic::sqrt:
3144    setValue(&I, DAG.getNode(ISD::FSQRT,
3145                             getValue(I.getOperand(1)).getValueType(),
3146                             getValue(I.getOperand(1))));
3147    return 0;
3148  case Intrinsic::powi:
3149    setValue(&I, DAG.getNode(ISD::FPOWI,
3150                             getValue(I.getOperand(1)).getValueType(),
3151                             getValue(I.getOperand(1)),
3152                             getValue(I.getOperand(2))));
3153    return 0;
3154  case Intrinsic::sin:
3155    setValue(&I, DAG.getNode(ISD::FSIN,
3156                             getValue(I.getOperand(1)).getValueType(),
3157                             getValue(I.getOperand(1))));
3158    return 0;
3159  case Intrinsic::cos:
3160    setValue(&I, DAG.getNode(ISD::FCOS,
3161                             getValue(I.getOperand(1)).getValueType(),
3162                             getValue(I.getOperand(1))));
3163    return 0;
3164  case Intrinsic::pow:
3165    setValue(&I, DAG.getNode(ISD::FPOW,
3166                             getValue(I.getOperand(1)).getValueType(),
3167                             getValue(I.getOperand(1)),
3168                             getValue(I.getOperand(2))));
3169    return 0;
3170  case Intrinsic::pcmarker: {
3171    SDOperand Tmp = getValue(I.getOperand(1));
3172    DAG.setRoot(DAG.getNode(ISD::PCMARKER, MVT::Other, getRoot(), Tmp));
3173    return 0;
3174  }
3175  case Intrinsic::readcyclecounter: {
3176    SDOperand Op = getRoot();
3177    SDOperand Tmp = DAG.getNode(ISD::READCYCLECOUNTER,
3178                                DAG.getNodeValueTypes(MVT::i64, MVT::Other), 2,
3179                                &Op, 1);
3180    setValue(&I, Tmp);
3181    DAG.setRoot(Tmp.getValue(1));
3182    return 0;
3183  }
3184  case Intrinsic::part_select: {
3185    // Currently not implemented: just abort
3186    assert(0 && "part_select intrinsic not implemented");
3187    abort();
3188  }
3189  case Intrinsic::part_set: {
3190    // Currently not implemented: just abort
3191    assert(0 && "part_set intrinsic not implemented");
3192    abort();
3193  }
3194  case Intrinsic::bswap:
3195    setValue(&I, DAG.getNode(ISD::BSWAP,
3196                             getValue(I.getOperand(1)).getValueType(),
3197                             getValue(I.getOperand(1))));
3198    return 0;
3199  case Intrinsic::cttz: {
3200    SDOperand Arg = getValue(I.getOperand(1));
3201    MVT Ty = Arg.getValueType();
3202    SDOperand result = DAG.getNode(ISD::CTTZ, Ty, Arg);
3203    setValue(&I, result);
3204    return 0;
3205  }
3206  case Intrinsic::ctlz: {
3207    SDOperand Arg = getValue(I.getOperand(1));
3208    MVT Ty = Arg.getValueType();
3209    SDOperand result = DAG.getNode(ISD::CTLZ, Ty, Arg);
3210    setValue(&I, result);
3211    return 0;
3212  }
3213  case Intrinsic::ctpop: {
3214    SDOperand Arg = getValue(I.getOperand(1));
3215    MVT Ty = Arg.getValueType();
3216    SDOperand result = DAG.getNode(ISD::CTPOP, Ty, Arg);
3217    setValue(&I, result);
3218    return 0;
3219  }
3220  case Intrinsic::stacksave: {
3221    SDOperand Op = getRoot();
3222    SDOperand Tmp = DAG.getNode(ISD::STACKSAVE,
3223              DAG.getNodeValueTypes(TLI.getPointerTy(), MVT::Other), 2, &Op, 1);
3224    setValue(&I, Tmp);
3225    DAG.setRoot(Tmp.getValue(1));
3226    return 0;
3227  }
3228  case Intrinsic::stackrestore: {
3229    SDOperand Tmp = getValue(I.getOperand(1));
3230    DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, MVT::Other, getRoot(), Tmp));
3231    return 0;
3232  }
3233  case Intrinsic::var_annotation:
3234    // Discard annotate attributes
3235    return 0;
3236
3237  case Intrinsic::init_trampoline: {
3238    const Function *F = cast<Function>(I.getOperand(2)->stripPointerCasts());
3239
3240    SDOperand Ops[6];
3241    Ops[0] = getRoot();
3242    Ops[1] = getValue(I.getOperand(1));
3243    Ops[2] = getValue(I.getOperand(2));
3244    Ops[3] = getValue(I.getOperand(3));
3245    Ops[4] = DAG.getSrcValue(I.getOperand(1));
3246    Ops[5] = DAG.getSrcValue(F);
3247
3248    SDOperand Tmp = DAG.getNode(ISD::TRAMPOLINE,
3249                                DAG.getNodeValueTypes(TLI.getPointerTy(),
3250                                                      MVT::Other), 2,
3251                                Ops, 6);
3252
3253    setValue(&I, Tmp);
3254    DAG.setRoot(Tmp.getValue(1));
3255    return 0;
3256  }
3257
3258  case Intrinsic::gcroot:
3259    if (GCI) {
3260      Value *Alloca = I.getOperand(1);
3261      Constant *TypeMap = cast<Constant>(I.getOperand(2));
3262
3263      FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).Val);
3264      GCI->addStackRoot(FI->getIndex(), TypeMap);
3265    }
3266    return 0;
3267
3268  case Intrinsic::gcread:
3269  case Intrinsic::gcwrite:
3270    assert(0 && "Collector failed to lower gcread/gcwrite intrinsics!");
3271    return 0;
3272
3273  case Intrinsic::flt_rounds: {
3274    setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, MVT::i32));
3275    return 0;
3276  }
3277
3278  case Intrinsic::trap: {
3279    DAG.setRoot(DAG.getNode(ISD::TRAP, MVT::Other, getRoot()));
3280    return 0;
3281  }
3282  case Intrinsic::prefetch: {
3283    SDOperand Ops[4];
3284    Ops[0] = getRoot();
3285    Ops[1] = getValue(I.getOperand(1));
3286    Ops[2] = getValue(I.getOperand(2));
3287    Ops[3] = getValue(I.getOperand(3));
3288    DAG.setRoot(DAG.getNode(ISD::PREFETCH, MVT::Other, &Ops[0], 4));
3289    return 0;
3290  }
3291
3292  case Intrinsic::memory_barrier: {
3293    SDOperand Ops[6];
3294    Ops[0] = getRoot();
3295    for (int x = 1; x < 6; ++x)
3296      Ops[x] = getValue(I.getOperand(x));
3297
3298    DAG.setRoot(DAG.getNode(ISD::MEMBARRIER, MVT::Other, &Ops[0], 6));
3299    return 0;
3300  }
3301  case Intrinsic::atomic_lcs: {
3302    SDOperand Root = getRoot();
3303    SDOperand O3 = getValue(I.getOperand(3));
3304    SDOperand L = DAG.getAtomic(ISD::ATOMIC_LCS, Root,
3305                                getValue(I.getOperand(1)),
3306                                getValue(I.getOperand(2)),
3307                                O3, O3.getValueType());
3308    setValue(&I, L);
3309    DAG.setRoot(L.getValue(1));
3310    return 0;
3311  }
3312  case Intrinsic::atomic_las:
3313    return implVisitBinaryAtomic(I, ISD::ATOMIC_LAS);
3314  case Intrinsic::atomic_lss:
3315    return implVisitBinaryAtomic(I, ISD::ATOMIC_LSS);
3316  case Intrinsic::atomic_load_and:
3317    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_AND);
3318  case Intrinsic::atomic_load_or:
3319    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_OR);
3320  case Intrinsic::atomic_load_xor:
3321    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_XOR);
3322  case Intrinsic::atomic_load_min:
3323    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MIN);
3324  case Intrinsic::atomic_load_max:
3325    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MAX);
3326  case Intrinsic::atomic_load_umin:
3327    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMIN);
3328  case Intrinsic::atomic_load_umax:
3329      return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMAX);
3330  case Intrinsic::atomic_swap:
3331    return implVisitBinaryAtomic(I, ISD::ATOMIC_SWAP);
3332  }
3333}
3334
3335
3336void SelectionDAGLowering::LowerCallTo(CallSite CS, SDOperand Callee,
3337                                       bool IsTailCall,
3338                                       MachineBasicBlock *LandingPad) {
3339  const PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
3340  const FunctionType *FTy = cast<FunctionType>(PT->getElementType());
3341  MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
3342  unsigned BeginLabel = 0, EndLabel = 0;
3343
3344  TargetLowering::ArgListTy Args;
3345  TargetLowering::ArgListEntry Entry;
3346  Args.reserve(CS.arg_size());
3347  for (CallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
3348       i != e; ++i) {
3349    SDOperand ArgNode = getValue(*i);
3350    Entry.Node = ArgNode; Entry.Ty = (*i)->getType();
3351
3352    unsigned attrInd = i - CS.arg_begin() + 1;
3353    Entry.isSExt  = CS.paramHasAttr(attrInd, ParamAttr::SExt);
3354    Entry.isZExt  = CS.paramHasAttr(attrInd, ParamAttr::ZExt);
3355    Entry.isInReg = CS.paramHasAttr(attrInd, ParamAttr::InReg);
3356    Entry.isSRet  = CS.paramHasAttr(attrInd, ParamAttr::StructRet);
3357    Entry.isNest  = CS.paramHasAttr(attrInd, ParamAttr::Nest);
3358    Entry.isByVal = CS.paramHasAttr(attrInd, ParamAttr::ByVal);
3359    Entry.Alignment = CS.getParamAlignment(attrInd);
3360    Args.push_back(Entry);
3361  }
3362
3363  if (LandingPad && MMI) {
3364    // Insert a label before the invoke call to mark the try range.  This can be
3365    // used to detect deletion of the invoke via the MachineModuleInfo.
3366    BeginLabel = MMI->NextLabelID();
3367    // Both PendingLoads and PendingExports must be flushed here;
3368    // this call might not return.
3369    (void)getRoot();
3370    DAG.setRoot(DAG.getNode(ISD::LABEL, MVT::Other, getControlRoot(),
3371                            DAG.getConstant(BeginLabel, MVT::i32),
3372                            DAG.getConstant(1, MVT::i32)));
3373  }
3374
3375  std::pair<SDOperand,SDOperand> Result =
3376    TLI.LowerCallTo(getRoot(), CS.getType(),
3377                    CS.paramHasAttr(0, ParamAttr::SExt),
3378                    CS.paramHasAttr(0, ParamAttr::ZExt),
3379                    FTy->isVarArg(), CS.getCallingConv(), IsTailCall,
3380                    Callee, Args, DAG);
3381  if (CS.getType() != Type::VoidTy)
3382    setValue(CS.getInstruction(), Result.first);
3383  DAG.setRoot(Result.second);
3384
3385  if (LandingPad && MMI) {
3386    // Insert a label at the end of the invoke call to mark the try range.  This
3387    // can be used to detect deletion of the invoke via the MachineModuleInfo.
3388    EndLabel = MMI->NextLabelID();
3389    DAG.setRoot(DAG.getNode(ISD::LABEL, MVT::Other, getRoot(),
3390                            DAG.getConstant(EndLabel, MVT::i32),
3391                            DAG.getConstant(1, MVT::i32)));
3392
3393    // Inform MachineModuleInfo of range.
3394    MMI->addInvoke(LandingPad, BeginLabel, EndLabel);
3395  }
3396}
3397
3398
3399void SelectionDAGLowering::visitCall(CallInst &I) {
3400  const char *RenameFn = 0;
3401  if (Function *F = I.getCalledFunction()) {
3402    if (F->isDeclaration()) {
3403      if (unsigned IID = F->getIntrinsicID()) {
3404        RenameFn = visitIntrinsicCall(I, IID);
3405        if (!RenameFn)
3406          return;
3407      }
3408    }
3409
3410    // Check for well-known libc/libm calls.  If the function is internal, it
3411    // can't be a library call.
3412    unsigned NameLen = F->getNameLen();
3413    if (!F->hasInternalLinkage() && NameLen) {
3414      const char *NameStr = F->getNameStart();
3415      if (NameStr[0] == 'c' &&
3416          ((NameLen == 8 && !strcmp(NameStr, "copysign")) ||
3417           (NameLen == 9 && !strcmp(NameStr, "copysignf")))) {
3418        if (I.getNumOperands() == 3 &&   // Basic sanity checks.
3419            I.getOperand(1)->getType()->isFloatingPoint() &&
3420            I.getType() == I.getOperand(1)->getType() &&
3421            I.getType() == I.getOperand(2)->getType()) {
3422          SDOperand LHS = getValue(I.getOperand(1));
3423          SDOperand RHS = getValue(I.getOperand(2));
3424          setValue(&I, DAG.getNode(ISD::FCOPYSIGN, LHS.getValueType(),
3425                                   LHS, RHS));
3426          return;
3427        }
3428      } else if (NameStr[0] == 'f' &&
3429                 ((NameLen == 4 && !strcmp(NameStr, "fabs")) ||
3430                  (NameLen == 5 && !strcmp(NameStr, "fabsf")) ||
3431                  (NameLen == 5 && !strcmp(NameStr, "fabsl")))) {
3432        if (I.getNumOperands() == 2 &&   // Basic sanity checks.
3433            I.getOperand(1)->getType()->isFloatingPoint() &&
3434            I.getType() == I.getOperand(1)->getType()) {
3435          SDOperand Tmp = getValue(I.getOperand(1));
3436          setValue(&I, DAG.getNode(ISD::FABS, Tmp.getValueType(), Tmp));
3437          return;
3438        }
3439      } else if (NameStr[0] == 's' &&
3440                 ((NameLen == 3 && !strcmp(NameStr, "sin")) ||
3441                  (NameLen == 4 && !strcmp(NameStr, "sinf")) ||
3442                  (NameLen == 4 && !strcmp(NameStr, "sinl")))) {
3443        if (I.getNumOperands() == 2 &&   // Basic sanity checks.
3444            I.getOperand(1)->getType()->isFloatingPoint() &&
3445            I.getType() == I.getOperand(1)->getType()) {
3446          SDOperand Tmp = getValue(I.getOperand(1));
3447          setValue(&I, DAG.getNode(ISD::FSIN, Tmp.getValueType(), Tmp));
3448          return;
3449        }
3450      } else if (NameStr[0] == 'c' &&
3451                 ((NameLen == 3 && !strcmp(NameStr, "cos")) ||
3452                  (NameLen == 4 && !strcmp(NameStr, "cosf")) ||
3453                  (NameLen == 4 && !strcmp(NameStr, "cosl")))) {
3454        if (I.getNumOperands() == 2 &&   // Basic sanity checks.
3455            I.getOperand(1)->getType()->isFloatingPoint() &&
3456            I.getType() == I.getOperand(1)->getType()) {
3457          SDOperand Tmp = getValue(I.getOperand(1));
3458          setValue(&I, DAG.getNode(ISD::FCOS, Tmp.getValueType(), Tmp));
3459          return;
3460        }
3461      }
3462    }
3463  } else if (isa<InlineAsm>(I.getOperand(0))) {
3464    visitInlineAsm(&I);
3465    return;
3466  }
3467
3468  SDOperand Callee;
3469  if (!RenameFn)
3470    Callee = getValue(I.getOperand(0));
3471  else
3472    Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy());
3473
3474  LowerCallTo(&I, Callee, I.isTailCall());
3475}
3476
3477
3478void SelectionDAGLowering::visitGetResult(GetResultInst &I) {
3479  if (isa<UndefValue>(I.getOperand(0))) {
3480    SDOperand Undef = DAG.getNode(ISD::UNDEF, TLI.getValueType(I.getType()));
3481    setValue(&I, Undef);
3482    return;
3483  }
3484
3485  // To add support for individual return values with aggregate types,
3486  // we'd need a way to take a getresult index and determine which
3487  // values of the Call SDNode are associated with it.
3488  assert(TLI.getValueType(I.getType(), true) != MVT::Other &&
3489         "Individual return values must not be aggregates!");
3490
3491  SDOperand Call = getValue(I.getOperand(0));
3492  setValue(&I, SDOperand(Call.Val, I.getIndex()));
3493}
3494
3495
3496/// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
3497/// this value and returns the result as a ValueVT value.  This uses
3498/// Chain/Flag as the input and updates them for the output Chain/Flag.
3499/// If the Flag pointer is NULL, no flag is used.
3500SDOperand RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
3501                                        SDOperand &Chain,
3502                                        SDOperand *Flag) const {
3503  // Assemble the legal parts into the final values.
3504  SmallVector<SDOperand, 4> Values(ValueVTs.size());
3505  SmallVector<SDOperand, 8> Parts;
3506  for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
3507    // Copy the legal parts from the registers.
3508    MVT ValueVT = ValueVTs[Value];
3509    unsigned NumRegs = TLI->getNumRegisters(ValueVT);
3510    MVT RegisterVT = RegVTs[Value];
3511
3512    Parts.resize(NumRegs);
3513    for (unsigned i = 0; i != NumRegs; ++i) {
3514      SDOperand P;
3515      if (Flag == 0)
3516        P = DAG.getCopyFromReg(Chain, Regs[Part+i], RegisterVT);
3517      else {
3518        P = DAG.getCopyFromReg(Chain, Regs[Part+i], RegisterVT, *Flag);
3519        *Flag = P.getValue(2);
3520      }
3521      Chain = P.getValue(1);
3522      Parts[Part+i] = P;
3523    }
3524
3525    Values[Value] = getCopyFromParts(DAG, &Parts[Part], NumRegs, RegisterVT,
3526                                     ValueVT);
3527    Part += NumRegs;
3528  }
3529
3530  if (ValueVTs.size() == 1)
3531    return Values[0];
3532
3533  return DAG.getNode(ISD::MERGE_VALUES,
3534                     DAG.getVTList(&ValueVTs[0], ValueVTs.size()),
3535                     &Values[0], ValueVTs.size());
3536}
3537
3538/// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
3539/// specified value into the registers specified by this object.  This uses
3540/// Chain/Flag as the input and updates them for the output Chain/Flag.
3541/// If the Flag pointer is NULL, no flag is used.
3542void RegsForValue::getCopyToRegs(SDOperand Val, SelectionDAG &DAG,
3543                                 SDOperand &Chain, SDOperand *Flag) const {
3544  // Get the list of the values's legal parts.
3545  unsigned NumRegs = Regs.size();
3546  SmallVector<SDOperand, 8> Parts(NumRegs);
3547  for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
3548    MVT ValueVT = ValueVTs[Value];
3549    unsigned NumParts = TLI->getNumRegisters(ValueVT);
3550    MVT RegisterVT = RegVTs[Value];
3551
3552    getCopyToParts(DAG, Val.getValue(Val.ResNo + Value),
3553                   &Parts[Part], NumParts, RegisterVT);
3554    Part += NumParts;
3555  }
3556
3557  // Copy the parts into the registers.
3558  SmallVector<SDOperand, 8> Chains(NumRegs);
3559  for (unsigned i = 0; i != NumRegs; ++i) {
3560    SDOperand Part;
3561    if (Flag == 0)
3562      Part = DAG.getCopyToReg(Chain, Regs[i], Parts[i]);
3563    else {
3564      Part = DAG.getCopyToReg(Chain, Regs[i], Parts[i], *Flag);
3565      *Flag = Part.getValue(1);
3566    }
3567    Chains[i] = Part.getValue(0);
3568  }
3569
3570  if (NumRegs == 1 || Flag)
3571    // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
3572    // flagged to it. That is the CopyToReg nodes and the user are considered
3573    // a single scheduling unit. If we create a TokenFactor and return it as
3574    // chain, then the TokenFactor is both a predecessor (operand) of the
3575    // user as well as a successor (the TF operands are flagged to the user).
3576    // c1, f1 = CopyToReg
3577    // c2, f2 = CopyToReg
3578    // c3     = TokenFactor c1, c2
3579    // ...
3580    //        = op c3, ..., f2
3581    Chain = Chains[NumRegs-1];
3582  else
3583    Chain = DAG.getNode(ISD::TokenFactor, MVT::Other, &Chains[0], NumRegs);
3584}
3585
3586/// AddInlineAsmOperands - Add this value to the specified inlineasm node
3587/// operand list.  This adds the code marker and includes the number of
3588/// values added into it.
3589void RegsForValue::AddInlineAsmOperands(unsigned Code, SelectionDAG &DAG,
3590                                        std::vector<SDOperand> &Ops) const {
3591  MVT IntPtrTy = DAG.getTargetLoweringInfo().getPointerTy();
3592  Ops.push_back(DAG.getTargetConstant(Code | (Regs.size() << 3), IntPtrTy));
3593  for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
3594    unsigned NumRegs = TLI->getNumRegisters(ValueVTs[Value]);
3595    MVT RegisterVT = RegVTs[Value];
3596    for (unsigned i = 0; i != NumRegs; ++i)
3597      Ops.push_back(DAG.getRegister(Regs[Reg++], RegisterVT));
3598  }
3599}
3600
3601/// isAllocatableRegister - If the specified register is safe to allocate,
3602/// i.e. it isn't a stack pointer or some other special register, return the
3603/// register class for the register.  Otherwise, return null.
3604static const TargetRegisterClass *
3605isAllocatableRegister(unsigned Reg, MachineFunction &MF,
3606                      const TargetLowering &TLI,
3607                      const TargetRegisterInfo *TRI) {
3608  MVT FoundVT = MVT::Other;
3609  const TargetRegisterClass *FoundRC = 0;
3610  for (TargetRegisterInfo::regclass_iterator RCI = TRI->regclass_begin(),
3611       E = TRI->regclass_end(); RCI != E; ++RCI) {
3612    MVT ThisVT = MVT::Other;
3613
3614    const TargetRegisterClass *RC = *RCI;
3615    // If none of the the value types for this register class are valid, we
3616    // can't use it.  For example, 64-bit reg classes on 32-bit targets.
3617    for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
3618         I != E; ++I) {
3619      if (TLI.isTypeLegal(*I)) {
3620        // If we have already found this register in a different register class,
3621        // choose the one with the largest VT specified.  For example, on
3622        // PowerPC, we favor f64 register classes over f32.
3623        if (FoundVT == MVT::Other ||
3624            FoundVT.getSizeInBits() < (*I).getSizeInBits()) {
3625          ThisVT = *I;
3626          break;
3627        }
3628      }
3629    }
3630
3631    if (ThisVT == MVT::Other) continue;
3632
3633    // NOTE: This isn't ideal.  In particular, this might allocate the
3634    // frame pointer in functions that need it (due to them not being taken
3635    // out of allocation, because a variable sized allocation hasn't been seen
3636    // yet).  This is a slight code pessimization, but should still work.
3637    for (TargetRegisterClass::iterator I = RC->allocation_order_begin(MF),
3638         E = RC->allocation_order_end(MF); I != E; ++I)
3639      if (*I == Reg) {
3640        // We found a matching register class.  Keep looking at others in case
3641        // we find one with larger registers that this physreg is also in.
3642        FoundRC = RC;
3643        FoundVT = ThisVT;
3644        break;
3645      }
3646  }
3647  return FoundRC;
3648}
3649
3650
3651namespace {
3652/// AsmOperandInfo - This contains information for each constraint that we are
3653/// lowering.
3654struct SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
3655  /// CallOperand - If this is the result output operand or a clobber
3656  /// this is null, otherwise it is the incoming operand to the CallInst.
3657  /// This gets modified as the asm is processed.
3658  SDOperand CallOperand;
3659
3660  /// AssignedRegs - If this is a register or register class operand, this
3661  /// contains the set of register corresponding to the operand.
3662  RegsForValue AssignedRegs;
3663
3664  explicit SDISelAsmOperandInfo(const InlineAsm::ConstraintInfo &info)
3665    : TargetLowering::AsmOperandInfo(info), CallOperand(0,0) {
3666  }
3667
3668  /// MarkAllocatedRegs - Once AssignedRegs is set, mark the assigned registers
3669  /// busy in OutputRegs/InputRegs.
3670  void MarkAllocatedRegs(bool isOutReg, bool isInReg,
3671                         std::set<unsigned> &OutputRegs,
3672                         std::set<unsigned> &InputRegs,
3673                         const TargetRegisterInfo &TRI) const {
3674    if (isOutReg) {
3675      for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i)
3676        MarkRegAndAliases(AssignedRegs.Regs[i], OutputRegs, TRI);
3677    }
3678    if (isInReg) {
3679      for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i)
3680        MarkRegAndAliases(AssignedRegs.Regs[i], InputRegs, TRI);
3681    }
3682  }
3683
3684private:
3685  /// MarkRegAndAliases - Mark the specified register and all aliases in the
3686  /// specified set.
3687  static void MarkRegAndAliases(unsigned Reg, std::set<unsigned> &Regs,
3688                                const TargetRegisterInfo &TRI) {
3689    assert(TargetRegisterInfo::isPhysicalRegister(Reg) && "Isn't a physreg");
3690    Regs.insert(Reg);
3691    if (const unsigned *Aliases = TRI.getAliasSet(Reg))
3692      for (; *Aliases; ++Aliases)
3693        Regs.insert(*Aliases);
3694  }
3695};
3696} // end anon namespace.
3697
3698
3699/// GetRegistersForValue - Assign registers (virtual or physical) for the
3700/// specified operand.  We prefer to assign virtual registers, to allow the
3701/// register allocator handle the assignment process.  However, if the asm uses
3702/// features that we can't model on machineinstrs, we have SDISel do the
3703/// allocation.  This produces generally horrible, but correct, code.
3704///
3705///   OpInfo describes the operand.
3706///   HasEarlyClobber is true if there are any early clobber constraints (=&r)
3707///     or any explicitly clobbered registers.
3708///   Input and OutputRegs are the set of already allocated physical registers.
3709///
3710void SelectionDAGLowering::
3711GetRegistersForValue(SDISelAsmOperandInfo &OpInfo, bool HasEarlyClobber,
3712                     std::set<unsigned> &OutputRegs,
3713                     std::set<unsigned> &InputRegs) {
3714  // Compute whether this value requires an input register, an output register,
3715  // or both.
3716  bool isOutReg = false;
3717  bool isInReg = false;
3718  switch (OpInfo.Type) {
3719  case InlineAsm::isOutput:
3720    isOutReg = true;
3721
3722    // If this is an early-clobber output, or if there is an input
3723    // constraint that matches this, we need to reserve the input register
3724    // so no other inputs allocate to it.
3725    isInReg = OpInfo.isEarlyClobber || OpInfo.hasMatchingInput;
3726    break;
3727  case InlineAsm::isInput:
3728    isInReg = true;
3729    isOutReg = false;
3730    break;
3731  case InlineAsm::isClobber:
3732    isOutReg = true;
3733    isInReg = true;
3734    break;
3735  }
3736
3737
3738  MachineFunction &MF = DAG.getMachineFunction();
3739  SmallVector<unsigned, 4> Regs;
3740
3741  // If this is a constraint for a single physreg, or a constraint for a
3742  // register class, find it.
3743  std::pair<unsigned, const TargetRegisterClass*> PhysReg =
3744    TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
3745                                     OpInfo.ConstraintVT);
3746
3747  unsigned NumRegs = 1;
3748  if (OpInfo.ConstraintVT != MVT::Other)
3749    NumRegs = TLI.getNumRegisters(OpInfo.ConstraintVT);
3750  MVT RegVT;
3751  MVT ValueVT = OpInfo.ConstraintVT;
3752
3753
3754  // If this is a constraint for a specific physical register, like {r17},
3755  // assign it now.
3756  if (PhysReg.first) {
3757    if (OpInfo.ConstraintVT == MVT::Other)
3758      ValueVT = *PhysReg.second->vt_begin();
3759
3760    // Get the actual register value type.  This is important, because the user
3761    // may have asked for (e.g.) the AX register in i32 type.  We need to
3762    // remember that AX is actually i16 to get the right extension.
3763    RegVT = *PhysReg.second->vt_begin();
3764
3765    // This is a explicit reference to a physical register.
3766    Regs.push_back(PhysReg.first);
3767
3768    // If this is an expanded reference, add the rest of the regs to Regs.
3769    if (NumRegs != 1) {
3770      TargetRegisterClass::iterator I = PhysReg.second->begin();
3771      for (; *I != PhysReg.first; ++I)
3772        assert(I != PhysReg.second->end() && "Didn't find reg!");
3773
3774      // Already added the first reg.
3775      --NumRegs; ++I;
3776      for (; NumRegs; --NumRegs, ++I) {
3777        assert(I != PhysReg.second->end() && "Ran out of registers to allocate!");
3778        Regs.push_back(*I);
3779      }
3780    }
3781    OpInfo.AssignedRegs = RegsForValue(TLI, Regs, RegVT, ValueVT);
3782    const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
3783    OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI);
3784    return;
3785  }
3786
3787  // Otherwise, if this was a reference to an LLVM register class, create vregs
3788  // for this reference.
3789  std::vector<unsigned> RegClassRegs;
3790  const TargetRegisterClass *RC = PhysReg.second;
3791  if (RC) {
3792    // If this is an early clobber or tied register, our regalloc doesn't know
3793    // how to maintain the constraint.  If it isn't, go ahead and create vreg
3794    // and let the regalloc do the right thing.
3795    if (!OpInfo.hasMatchingInput && !OpInfo.isEarlyClobber &&
3796        // If there is some other early clobber and this is an input register,
3797        // then we are forced to pre-allocate the input reg so it doesn't
3798        // conflict with the earlyclobber.
3799        !(OpInfo.Type == InlineAsm::isInput && HasEarlyClobber)) {
3800      RegVT = *PhysReg.second->vt_begin();
3801
3802      if (OpInfo.ConstraintVT == MVT::Other)
3803        ValueVT = RegVT;
3804
3805      // Create the appropriate number of virtual registers.
3806      MachineRegisterInfo &RegInfo = MF.getRegInfo();
3807      for (; NumRegs; --NumRegs)
3808        Regs.push_back(RegInfo.createVirtualRegister(PhysReg.second));
3809
3810      OpInfo.AssignedRegs = RegsForValue(TLI, Regs, RegVT, ValueVT);
3811      return;
3812    }
3813
3814    // Otherwise, we can't allocate it.  Let the code below figure out how to
3815    // maintain these constraints.
3816    RegClassRegs.assign(PhysReg.second->begin(), PhysReg.second->end());
3817
3818  } else {
3819    // This is a reference to a register class that doesn't directly correspond
3820    // to an LLVM register class.  Allocate NumRegs consecutive, available,
3821    // registers from the class.
3822    RegClassRegs = TLI.getRegClassForInlineAsmConstraint(OpInfo.ConstraintCode,
3823                                                         OpInfo.ConstraintVT);
3824  }
3825
3826  const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
3827  unsigned NumAllocated = 0;
3828  for (unsigned i = 0, e = RegClassRegs.size(); i != e; ++i) {
3829    unsigned Reg = RegClassRegs[i];
3830    // See if this register is available.
3831    if ((isOutReg && OutputRegs.count(Reg)) ||   // Already used.
3832        (isInReg  && InputRegs.count(Reg))) {    // Already used.
3833      // Make sure we find consecutive registers.
3834      NumAllocated = 0;
3835      continue;
3836    }
3837
3838    // Check to see if this register is allocatable (i.e. don't give out the
3839    // stack pointer).
3840    if (RC == 0) {
3841      RC = isAllocatableRegister(Reg, MF, TLI, TRI);
3842      if (!RC) {        // Couldn't allocate this register.
3843        // Reset NumAllocated to make sure we return consecutive registers.
3844        NumAllocated = 0;
3845        continue;
3846      }
3847    }
3848
3849    // Okay, this register is good, we can use it.
3850    ++NumAllocated;
3851
3852    // If we allocated enough consecutive registers, succeed.
3853    if (NumAllocated == NumRegs) {
3854      unsigned RegStart = (i-NumAllocated)+1;
3855      unsigned RegEnd   = i+1;
3856      // Mark all of the allocated registers used.
3857      for (unsigned i = RegStart; i != RegEnd; ++i)
3858        Regs.push_back(RegClassRegs[i]);
3859
3860      OpInfo.AssignedRegs = RegsForValue(TLI, Regs, *RC->vt_begin(),
3861                                         OpInfo.ConstraintVT);
3862      OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI);
3863      return;
3864    }
3865  }
3866
3867  // Otherwise, we couldn't allocate enough registers for this.
3868}
3869
3870
3871/// visitInlineAsm - Handle a call to an InlineAsm object.
3872///
3873void SelectionDAGLowering::visitInlineAsm(CallSite CS) {
3874  InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
3875
3876  /// ConstraintOperands - Information about all of the constraints.
3877  std::vector<SDISelAsmOperandInfo> ConstraintOperands;
3878
3879  SDOperand Chain = getRoot();
3880  SDOperand Flag;
3881
3882  std::set<unsigned> OutputRegs, InputRegs;
3883
3884  // Do a prepass over the constraints, canonicalizing them, and building up the
3885  // ConstraintOperands list.
3886  std::vector<InlineAsm::ConstraintInfo>
3887    ConstraintInfos = IA->ParseConstraints();
3888
3889  // SawEarlyClobber - Keep track of whether we saw an earlyclobber output
3890  // constraint.  If so, we can't let the register allocator allocate any input
3891  // registers, because it will not know to avoid the earlyclobbered output reg.
3892  bool SawEarlyClobber = false;
3893
3894  unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
3895  unsigned ResNo = 0;   // ResNo - The result number of the next output.
3896  for (unsigned i = 0, e = ConstraintInfos.size(); i != e; ++i) {
3897    ConstraintOperands.push_back(SDISelAsmOperandInfo(ConstraintInfos[i]));
3898    SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
3899
3900    MVT OpVT = MVT::Other;
3901
3902    // Compute the value type for each operand.
3903    switch (OpInfo.Type) {
3904    case InlineAsm::isOutput:
3905      // Indirect outputs just consume an argument.
3906      if (OpInfo.isIndirect) {
3907        OpInfo.CallOperandVal = CS.getArgument(ArgNo++);
3908        break;
3909      }
3910      // The return value of the call is this value.  As such, there is no
3911      // corresponding argument.
3912      assert(CS.getType() != Type::VoidTy && "Bad inline asm!");
3913      if (const StructType *STy = dyn_cast<StructType>(CS.getType())) {
3914        OpVT = TLI.getValueType(STy->getElementType(ResNo));
3915      } else {
3916        assert(ResNo == 0 && "Asm only has one result!");
3917        OpVT = TLI.getValueType(CS.getType());
3918      }
3919      ++ResNo;
3920      break;
3921    case InlineAsm::isInput:
3922      OpInfo.CallOperandVal = CS.getArgument(ArgNo++);
3923      break;
3924    case InlineAsm::isClobber:
3925      // Nothing to do.
3926      break;
3927    }
3928
3929    // If this is an input or an indirect output, process the call argument.
3930    // BasicBlocks are labels, currently appearing only in asm's.
3931    if (OpInfo.CallOperandVal) {
3932      if (BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal))
3933        OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
3934      else {
3935        OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
3936        const Type *OpTy = OpInfo.CallOperandVal->getType();
3937        // If this is an indirect operand, the operand is a pointer to the
3938        // accessed type.
3939        if (OpInfo.isIndirect)
3940          OpTy = cast<PointerType>(OpTy)->getElementType();
3941
3942        // If OpTy is not a single value, it may be a struct/union that we
3943        // can tile with integers.
3944        if (!OpTy->isSingleValueType() && OpTy->isSized()) {
3945          unsigned BitSize = TD->getTypeSizeInBits(OpTy);
3946          switch (BitSize) {
3947          default: break;
3948          case 1:
3949          case 8:
3950          case 16:
3951          case 32:
3952          case 64:
3953            OpTy = IntegerType::get(BitSize);
3954            break;
3955          }
3956        }
3957
3958        OpVT = TLI.getValueType(OpTy, true);
3959      }
3960    }
3961
3962    OpInfo.ConstraintVT = OpVT;
3963
3964    // Compute the constraint code and ConstraintType to use.
3965    TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
3966
3967    // Keep track of whether we see an earlyclobber.
3968    SawEarlyClobber |= OpInfo.isEarlyClobber;
3969
3970    // If we see a clobber of a register, it is an early clobber.
3971    if (!SawEarlyClobber &&
3972        OpInfo.Type == InlineAsm::isClobber &&
3973        OpInfo.ConstraintType == TargetLowering::C_Register) {
3974      // Note that we want to ignore things that we don't trick here, like
3975      // dirflag, fpsr, flags, etc.
3976      std::pair<unsigned, const TargetRegisterClass*> PhysReg =
3977        TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
3978                                         OpInfo.ConstraintVT);
3979      if (PhysReg.first || PhysReg.second) {
3980        // This is a register we know of.
3981        SawEarlyClobber = true;
3982      }
3983    }
3984
3985    // If this is a memory input, and if the operand is not indirect, do what we
3986    // need to to provide an address for the memory input.
3987    if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
3988        !OpInfo.isIndirect) {
3989      assert(OpInfo.Type == InlineAsm::isInput &&
3990             "Can only indirectify direct input operands!");
3991
3992      // Memory operands really want the address of the value.  If we don't have
3993      // an indirect input, put it in the constpool if we can, otherwise spill
3994      // it to a stack slot.
3995
3996      // If the operand is a float, integer, or vector constant, spill to a
3997      // constant pool entry to get its address.
3998      Value *OpVal = OpInfo.CallOperandVal;
3999      if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
4000          isa<ConstantVector>(OpVal)) {
4001        OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal),
4002                                                 TLI.getPointerTy());
4003      } else {
4004        // Otherwise, create a stack slot and emit a store to it before the
4005        // asm.
4006        const Type *Ty = OpVal->getType();
4007        uint64_t TySize = TLI.getTargetData()->getABITypeSize(Ty);
4008        unsigned Align  = TLI.getTargetData()->getPrefTypeAlignment(Ty);
4009        MachineFunction &MF = DAG.getMachineFunction();
4010        int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align);
4011        SDOperand StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy());
4012        Chain = DAG.getStore(Chain, OpInfo.CallOperand, StackSlot, NULL, 0);
4013        OpInfo.CallOperand = StackSlot;
4014      }
4015
4016      // There is no longer a Value* corresponding to this operand.
4017      OpInfo.CallOperandVal = 0;
4018      // It is now an indirect operand.
4019      OpInfo.isIndirect = true;
4020    }
4021
4022    // If this constraint is for a specific register, allocate it before
4023    // anything else.
4024    if (OpInfo.ConstraintType == TargetLowering::C_Register)
4025      GetRegistersForValue(OpInfo, SawEarlyClobber, OutputRegs, InputRegs);
4026  }
4027  ConstraintInfos.clear();
4028
4029
4030  // Second pass - Loop over all of the operands, assigning virtual or physregs
4031  // to registerclass operands.
4032  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
4033    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
4034
4035    // C_Register operands have already been allocated, Other/Memory don't need
4036    // to be.
4037    if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass)
4038      GetRegistersForValue(OpInfo, SawEarlyClobber, OutputRegs, InputRegs);
4039  }
4040
4041  // AsmNodeOperands - The operands for the ISD::INLINEASM node.
4042  std::vector<SDOperand> AsmNodeOperands;
4043  AsmNodeOperands.push_back(SDOperand());  // reserve space for input chain
4044  AsmNodeOperands.push_back(
4045          DAG.getTargetExternalSymbol(IA->getAsmString().c_str(), MVT::Other));
4046
4047
4048  // Loop over all of the inputs, copying the operand values into the
4049  // appropriate registers and processing the output regs.
4050  RegsForValue RetValRegs;
4051
4052  // IndirectStoresToEmit - The set of stores to emit after the inline asm node.
4053  std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit;
4054
4055  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
4056    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
4057
4058    switch (OpInfo.Type) {
4059    case InlineAsm::isOutput: {
4060      if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass &&
4061          OpInfo.ConstraintType != TargetLowering::C_Register) {
4062        // Memory output, or 'other' output (e.g. 'X' constraint).
4063        assert(OpInfo.isIndirect && "Memory output must be indirect operand");
4064
4065        // Add information to the INLINEASM node to know about this output.
4066        unsigned ResOpType = 4/*MEM*/ | (1 << 3);
4067        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
4068                                                        TLI.getPointerTy()));
4069        AsmNodeOperands.push_back(OpInfo.CallOperand);
4070        break;
4071      }
4072
4073      // Otherwise, this is a register or register class output.
4074
4075      // Copy the output from the appropriate register.  Find a register that
4076      // we can use.
4077      if (OpInfo.AssignedRegs.Regs.empty()) {
4078        cerr << "Couldn't allocate output reg for contraint '"
4079             << OpInfo.ConstraintCode << "'!\n";
4080        exit(1);
4081      }
4082
4083      // If this is an indirect operand, store through the pointer after the
4084      // asm.
4085      if (OpInfo.isIndirect) {
4086        IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs,
4087                                                      OpInfo.CallOperandVal));
4088      } else {
4089        // This is the result value of the call.
4090        assert(CS.getType() != Type::VoidTy && "Bad inline asm!");
4091        // Concatenate this output onto the outputs list.
4092        RetValRegs.append(OpInfo.AssignedRegs);
4093      }
4094
4095      // Add information to the INLINEASM node to know that this register is
4096      // set.
4097      OpInfo.AssignedRegs.AddInlineAsmOperands(2 /*REGDEF*/, DAG,
4098                                               AsmNodeOperands);
4099      break;
4100    }
4101    case InlineAsm::isInput: {
4102      SDOperand InOperandVal = OpInfo.CallOperand;
4103
4104      if (isdigit(OpInfo.ConstraintCode[0])) {    // Matching constraint?
4105        // If this is required to match an output register we have already set,
4106        // just use its register.
4107        unsigned OperandNo = atoi(OpInfo.ConstraintCode.c_str());
4108
4109        // Scan until we find the definition we already emitted of this operand.
4110        // When we find it, create a RegsForValue operand.
4111        unsigned CurOp = 2;  // The first operand.
4112        for (; OperandNo; --OperandNo) {
4113          // Advance to the next operand.
4114          unsigned NumOps =
4115            cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getValue();
4116          assert(((NumOps & 7) == 2 /*REGDEF*/ ||
4117                  (NumOps & 7) == 4 /*MEM*/) &&
4118                 "Skipped past definitions?");
4119          CurOp += (NumOps>>3)+1;
4120        }
4121
4122        unsigned NumOps =
4123          cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getValue();
4124        if ((NumOps & 7) == 2 /*REGDEF*/) {
4125          // Add NumOps>>3 registers to MatchedRegs.
4126          RegsForValue MatchedRegs;
4127          MatchedRegs.TLI = &TLI;
4128          MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType());
4129          MatchedRegs.RegVTs.push_back(AsmNodeOperands[CurOp+1].getValueType());
4130          for (unsigned i = 0, e = NumOps>>3; i != e; ++i) {
4131            unsigned Reg =
4132              cast<RegisterSDNode>(AsmNodeOperands[++CurOp])->getReg();
4133            MatchedRegs.Regs.push_back(Reg);
4134          }
4135
4136          // Use the produced MatchedRegs object to
4137          MatchedRegs.getCopyToRegs(InOperandVal, DAG, Chain, &Flag);
4138          MatchedRegs.AddInlineAsmOperands(1 /*REGUSE*/, DAG, AsmNodeOperands);
4139          break;
4140        } else {
4141          assert((NumOps & 7) == 4/*MEM*/ && "Unknown matching constraint!");
4142          assert((NumOps >> 3) == 1 && "Unexpected number of operands");
4143          // Add information to the INLINEASM node to know about this input.
4144          unsigned ResOpType = 4/*MEM*/ | (1 << 3);
4145          AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
4146                                                          TLI.getPointerTy()));
4147          AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
4148          break;
4149        }
4150      }
4151
4152      if (OpInfo.ConstraintType == TargetLowering::C_Other) {
4153        assert(!OpInfo.isIndirect &&
4154               "Don't know how to handle indirect other inputs yet!");
4155
4156        std::vector<SDOperand> Ops;
4157        TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode[0],
4158                                         Ops, DAG);
4159        if (Ops.empty()) {
4160          cerr << "Invalid operand for inline asm constraint '"
4161               << OpInfo.ConstraintCode << "'!\n";
4162          exit(1);
4163        }
4164
4165        // Add information to the INLINEASM node to know about this input.
4166        unsigned ResOpType = 3 /*IMM*/ | (Ops.size() << 3);
4167        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
4168                                                        TLI.getPointerTy()));
4169        AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
4170        break;
4171      } else if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
4172        assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
4173        assert(InOperandVal.getValueType() == TLI.getPointerTy() &&
4174               "Memory operands expect pointer values");
4175
4176        // Add information to the INLINEASM node to know about this input.
4177        unsigned ResOpType = 4/*MEM*/ | (1 << 3);
4178        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
4179                                                        TLI.getPointerTy()));
4180        AsmNodeOperands.push_back(InOperandVal);
4181        break;
4182      }
4183
4184      assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
4185              OpInfo.ConstraintType == TargetLowering::C_Register) &&
4186             "Unknown constraint type!");
4187      assert(!OpInfo.isIndirect &&
4188             "Don't know how to handle indirect register inputs yet!");
4189
4190      // Copy the input into the appropriate registers.
4191      assert(!OpInfo.AssignedRegs.Regs.empty() &&
4192             "Couldn't allocate input reg!");
4193
4194      OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, Chain, &Flag);
4195
4196      OpInfo.AssignedRegs.AddInlineAsmOperands(1/*REGUSE*/, DAG,
4197                                               AsmNodeOperands);
4198      break;
4199    }
4200    case InlineAsm::isClobber: {
4201      // Add the clobbered value to the operand list, so that the register
4202      // allocator is aware that the physreg got clobbered.
4203      if (!OpInfo.AssignedRegs.Regs.empty())
4204        OpInfo.AssignedRegs.AddInlineAsmOperands(2/*REGDEF*/, DAG,
4205                                                 AsmNodeOperands);
4206      break;
4207    }
4208    }
4209  }
4210
4211  // Finish up input operands.
4212  AsmNodeOperands[0] = Chain;
4213  if (Flag.Val) AsmNodeOperands.push_back(Flag);
4214
4215  Chain = DAG.getNode(ISD::INLINEASM,
4216                      DAG.getNodeValueTypes(MVT::Other, MVT::Flag), 2,
4217                      &AsmNodeOperands[0], AsmNodeOperands.size());
4218  Flag = Chain.getValue(1);
4219
4220  // If this asm returns a register value, copy the result from that register
4221  // and set it as the value of the call.
4222  if (!RetValRegs.Regs.empty()) {
4223    SDOperand Val = RetValRegs.getCopyFromRegs(DAG, Chain, &Flag);
4224
4225    // If any of the results of the inline asm is a vector, it may have the
4226    // wrong width/num elts.  This can happen for register classes that can
4227    // contain multiple different value types.  The preg or vreg allocated may
4228    // not have the same VT as was expected.  Convert it to the right type with
4229    // bit_convert.
4230    if (const StructType *ResSTy = dyn_cast<StructType>(CS.getType())) {
4231      for (unsigned i = 0, e = ResSTy->getNumElements(); i != e; ++i) {
4232        if (Val.Val->getValueType(i).isVector())
4233          Val = DAG.getNode(ISD::BIT_CONVERT,
4234                            TLI.getValueType(ResSTy->getElementType(i)), Val);
4235      }
4236    } else {
4237      if (Val.getValueType().isVector())
4238        Val = DAG.getNode(ISD::BIT_CONVERT, TLI.getValueType(CS.getType()),
4239                          Val);
4240    }
4241
4242    setValue(CS.getInstruction(), Val);
4243  }
4244
4245  std::vector<std::pair<SDOperand, Value*> > StoresToEmit;
4246
4247  // Process indirect outputs, first output all of the flagged copies out of
4248  // physregs.
4249  for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
4250    RegsForValue &OutRegs = IndirectStoresToEmit[i].first;
4251    Value *Ptr = IndirectStoresToEmit[i].second;
4252    SDOperand OutVal = OutRegs.getCopyFromRegs(DAG, Chain, &Flag);
4253    StoresToEmit.push_back(std::make_pair(OutVal, Ptr));
4254  }
4255
4256  // Emit the non-flagged stores from the physregs.
4257  SmallVector<SDOperand, 8> OutChains;
4258  for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i)
4259    OutChains.push_back(DAG.getStore(Chain, StoresToEmit[i].first,
4260                                    getValue(StoresToEmit[i].second),
4261                                    StoresToEmit[i].second, 0));
4262  if (!OutChains.empty())
4263    Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
4264                        &OutChains[0], OutChains.size());
4265  DAG.setRoot(Chain);
4266}
4267
4268
4269void SelectionDAGLowering::visitMalloc(MallocInst &I) {
4270  SDOperand Src = getValue(I.getOperand(0));
4271
4272  MVT IntPtr = TLI.getPointerTy();
4273
4274  if (IntPtr < Src.getValueType())
4275    Src = DAG.getNode(ISD::TRUNCATE, IntPtr, Src);
4276  else if (IntPtr > Src.getValueType())
4277    Src = DAG.getNode(ISD::ZERO_EXTEND, IntPtr, Src);
4278
4279  // Scale the source by the type size.
4280  uint64_t ElementSize = TD->getABITypeSize(I.getType()->getElementType());
4281  Src = DAG.getNode(ISD::MUL, Src.getValueType(),
4282                    Src, DAG.getIntPtrConstant(ElementSize));
4283
4284  TargetLowering::ArgListTy Args;
4285  TargetLowering::ArgListEntry Entry;
4286  Entry.Node = Src;
4287  Entry.Ty = TLI.getTargetData()->getIntPtrType();
4288  Args.push_back(Entry);
4289
4290  std::pair<SDOperand,SDOperand> Result =
4291    TLI.LowerCallTo(getRoot(), I.getType(), false, false, false, CallingConv::C,
4292                    true, DAG.getExternalSymbol("malloc", IntPtr), Args, DAG);
4293  setValue(&I, Result.first);  // Pointers always fit in registers
4294  DAG.setRoot(Result.second);
4295}
4296
4297void SelectionDAGLowering::visitFree(FreeInst &I) {
4298  TargetLowering::ArgListTy Args;
4299  TargetLowering::ArgListEntry Entry;
4300  Entry.Node = getValue(I.getOperand(0));
4301  Entry.Ty = TLI.getTargetData()->getIntPtrType();
4302  Args.push_back(Entry);
4303  MVT IntPtr = TLI.getPointerTy();
4304  std::pair<SDOperand,SDOperand> Result =
4305    TLI.LowerCallTo(getRoot(), Type::VoidTy, false, false, false,
4306                    CallingConv::C, true,
4307                    DAG.getExternalSymbol("free", IntPtr), Args, DAG);
4308  DAG.setRoot(Result.second);
4309}
4310
4311// EmitInstrWithCustomInserter - This method should be implemented by targets
4312// that mark instructions with the 'usesCustomDAGSchedInserter' flag.  These
4313// instructions are special in various ways, which require special support to
4314// insert.  The specified MachineInstr is created but not inserted into any
4315// basic blocks, and the scheduler passes ownership of it to this method.
4316MachineBasicBlock *TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
4317                                                       MachineBasicBlock *MBB) {
4318  cerr << "If a target marks an instruction with "
4319       << "'usesCustomDAGSchedInserter', it must implement "
4320       << "TargetLowering::EmitInstrWithCustomInserter!\n";
4321  abort();
4322  return 0;
4323}
4324
4325void SelectionDAGLowering::visitVAStart(CallInst &I) {
4326  DAG.setRoot(DAG.getNode(ISD::VASTART, MVT::Other, getRoot(),
4327                          getValue(I.getOperand(1)),
4328                          DAG.getSrcValue(I.getOperand(1))));
4329}
4330
4331void SelectionDAGLowering::visitVAArg(VAArgInst &I) {
4332  SDOperand V = DAG.getVAArg(TLI.getValueType(I.getType()), getRoot(),
4333                             getValue(I.getOperand(0)),
4334                             DAG.getSrcValue(I.getOperand(0)));
4335  setValue(&I, V);
4336  DAG.setRoot(V.getValue(1));
4337}
4338
4339void SelectionDAGLowering::visitVAEnd(CallInst &I) {
4340  DAG.setRoot(DAG.getNode(ISD::VAEND, MVT::Other, getRoot(),
4341                          getValue(I.getOperand(1)),
4342                          DAG.getSrcValue(I.getOperand(1))));
4343}
4344
4345void SelectionDAGLowering::visitVACopy(CallInst &I) {
4346  DAG.setRoot(DAG.getNode(ISD::VACOPY, MVT::Other, getRoot(),
4347                          getValue(I.getOperand(1)),
4348                          getValue(I.getOperand(2)),
4349                          DAG.getSrcValue(I.getOperand(1)),
4350                          DAG.getSrcValue(I.getOperand(2))));
4351}
4352
4353/// TargetLowering::LowerArguments - This is the default LowerArguments
4354/// implementation, which just inserts a FORMAL_ARGUMENTS node.  FIXME: When all
4355/// targets are migrated to using FORMAL_ARGUMENTS, this hook should be
4356/// integrated into SDISel.
4357std::vector<SDOperand>
4358TargetLowering::LowerArguments(Function &F, SelectionDAG &DAG) {
4359  // Add CC# and isVararg as operands to the FORMAL_ARGUMENTS node.
4360  std::vector<SDOperand> Ops;
4361  Ops.push_back(DAG.getRoot());
4362  Ops.push_back(DAG.getConstant(F.getCallingConv(), getPointerTy()));
4363  Ops.push_back(DAG.getConstant(F.isVarArg(), getPointerTy()));
4364
4365  // Add one result value for each formal argument.
4366  std::vector<MVT> RetVals;
4367  unsigned j = 1;
4368  for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end();
4369       I != E; ++I, ++j) {
4370    MVT VT = getValueType(I->getType());
4371    ISD::ArgFlagsTy Flags;
4372    unsigned OriginalAlignment =
4373      getTargetData()->getABITypeAlignment(I->getType());
4374
4375    if (F.paramHasAttr(j, ParamAttr::ZExt))
4376      Flags.setZExt();
4377    if (F.paramHasAttr(j, ParamAttr::SExt))
4378      Flags.setSExt();
4379    if (F.paramHasAttr(j, ParamAttr::InReg))
4380      Flags.setInReg();
4381    if (F.paramHasAttr(j, ParamAttr::StructRet))
4382      Flags.setSRet();
4383    if (F.paramHasAttr(j, ParamAttr::ByVal)) {
4384      Flags.setByVal();
4385      const PointerType *Ty = cast<PointerType>(I->getType());
4386      const Type *ElementTy = Ty->getElementType();
4387      unsigned FrameAlign = getByValTypeAlignment(ElementTy);
4388      unsigned FrameSize  = getTargetData()->getABITypeSize(ElementTy);
4389      // For ByVal, alignment should be passed from FE.  BE will guess if
4390      // this info is not there but there are cases it cannot get right.
4391      if (F.getParamAlignment(j))
4392        FrameAlign = F.getParamAlignment(j);
4393      Flags.setByValAlign(FrameAlign);
4394      Flags.setByValSize(FrameSize);
4395    }
4396    if (F.paramHasAttr(j, ParamAttr::Nest))
4397      Flags.setNest();
4398    Flags.setOrigAlign(OriginalAlignment);
4399
4400    MVT RegisterVT = getRegisterType(VT);
4401    unsigned NumRegs = getNumRegisters(VT);
4402    for (unsigned i = 0; i != NumRegs; ++i) {
4403      RetVals.push_back(RegisterVT);
4404      ISD::ArgFlagsTy MyFlags = Flags;
4405      if (NumRegs > 1 && i == 0)
4406        MyFlags.setSplit();
4407      // if it isn't first piece, alignment must be 1
4408      else if (i > 0)
4409        MyFlags.setOrigAlign(1);
4410      Ops.push_back(DAG.getArgFlags(MyFlags));
4411    }
4412  }
4413
4414  RetVals.push_back(MVT::Other);
4415
4416  // Create the node.
4417  SDNode *Result = DAG.getNode(ISD::FORMAL_ARGUMENTS,
4418                               DAG.getVTList(&RetVals[0], RetVals.size()),
4419                               &Ops[0], Ops.size()).Val;
4420
4421  // Prelower FORMAL_ARGUMENTS.  This isn't required for functionality, but
4422  // allows exposing the loads that may be part of the argument access to the
4423  // first DAGCombiner pass.
4424  SDOperand TmpRes = LowerOperation(SDOperand(Result, 0), DAG);
4425
4426  // The number of results should match up, except that the lowered one may have
4427  // an extra flag result.
4428  assert((Result->getNumValues() == TmpRes.Val->getNumValues() ||
4429          (Result->getNumValues()+1 == TmpRes.Val->getNumValues() &&
4430           TmpRes.getValue(Result->getNumValues()).getValueType() == MVT::Flag))
4431         && "Lowering produced unexpected number of results!");
4432  Result = TmpRes.Val;
4433
4434  unsigned NumArgRegs = Result->getNumValues() - 1;
4435  DAG.setRoot(SDOperand(Result, NumArgRegs));
4436
4437  // Set up the return result vector.
4438  Ops.clear();
4439  unsigned i = 0;
4440  unsigned Idx = 1;
4441  for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E;
4442      ++I, ++Idx) {
4443    MVT VT = getValueType(I->getType());
4444    MVT PartVT = getRegisterType(VT);
4445
4446    unsigned NumParts = getNumRegisters(VT);
4447    SmallVector<SDOperand, 4> Parts(NumParts);
4448    for (unsigned j = 0; j != NumParts; ++j)
4449      Parts[j] = SDOperand(Result, i++);
4450
4451    ISD::NodeType AssertOp = ISD::DELETED_NODE;
4452    if (F.paramHasAttr(Idx, ParamAttr::SExt))
4453      AssertOp = ISD::AssertSext;
4454    else if (F.paramHasAttr(Idx, ParamAttr::ZExt))
4455      AssertOp = ISD::AssertZext;
4456
4457    Ops.push_back(getCopyFromParts(DAG, &Parts[0], NumParts, PartVT, VT,
4458                                   AssertOp));
4459  }
4460  assert(i == NumArgRegs && "Argument register count mismatch!");
4461  return Ops;
4462}
4463
4464
4465/// TargetLowering::LowerCallTo - This is the default LowerCallTo
4466/// implementation, which just inserts an ISD::CALL node, which is later custom
4467/// lowered by the target to something concrete.  FIXME: When all targets are
4468/// migrated to using ISD::CALL, this hook should be integrated into SDISel.
4469std::pair<SDOperand, SDOperand>
4470TargetLowering::LowerCallTo(SDOperand Chain, const Type *RetTy,
4471                            bool RetSExt, bool RetZExt, bool isVarArg,
4472                            unsigned CallingConv, bool isTailCall,
4473                            SDOperand Callee,
4474                            ArgListTy &Args, SelectionDAG &DAG) {
4475  SmallVector<SDOperand, 32> Ops;
4476  Ops.push_back(Chain);   // Op#0 - Chain
4477  Ops.push_back(DAG.getConstant(CallingConv, getPointerTy())); // Op#1 - CC
4478  Ops.push_back(DAG.getConstant(isVarArg, getPointerTy()));    // Op#2 - VarArg
4479  Ops.push_back(DAG.getConstant(isTailCall, getPointerTy()));  // Op#3 - Tail
4480  Ops.push_back(Callee);
4481
4482  // Handle all of the outgoing arguments.
4483  for (unsigned i = 0, e = Args.size(); i != e; ++i) {
4484    MVT VT = getValueType(Args[i].Ty);
4485    SDOperand Op = Args[i].Node;
4486    ISD::ArgFlagsTy Flags;
4487    unsigned OriginalAlignment =
4488      getTargetData()->getABITypeAlignment(Args[i].Ty);
4489
4490    if (Args[i].isZExt)
4491      Flags.setZExt();
4492    if (Args[i].isSExt)
4493      Flags.setSExt();
4494    if (Args[i].isInReg)
4495      Flags.setInReg();
4496    if (Args[i].isSRet)
4497      Flags.setSRet();
4498    if (Args[i].isByVal) {
4499      Flags.setByVal();
4500      const PointerType *Ty = cast<PointerType>(Args[i].Ty);
4501      const Type *ElementTy = Ty->getElementType();
4502      unsigned FrameAlign = getByValTypeAlignment(ElementTy);
4503      unsigned FrameSize  = getTargetData()->getABITypeSize(ElementTy);
4504      // For ByVal, alignment should come from FE.  BE will guess if this
4505      // info is not there but there are cases it cannot get right.
4506      if (Args[i].Alignment)
4507        FrameAlign = Args[i].Alignment;
4508      Flags.setByValAlign(FrameAlign);
4509      Flags.setByValSize(FrameSize);
4510    }
4511    if (Args[i].isNest)
4512      Flags.setNest();
4513    Flags.setOrigAlign(OriginalAlignment);
4514
4515    MVT PartVT = getRegisterType(VT);
4516    unsigned NumParts = getNumRegisters(VT);
4517    SmallVector<SDOperand, 4> Parts(NumParts);
4518    ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
4519
4520    if (Args[i].isSExt)
4521      ExtendKind = ISD::SIGN_EXTEND;
4522    else if (Args[i].isZExt)
4523      ExtendKind = ISD::ZERO_EXTEND;
4524
4525    getCopyToParts(DAG, Op, &Parts[0], NumParts, PartVT, ExtendKind);
4526
4527    for (unsigned i = 0; i != NumParts; ++i) {
4528      // if it isn't first piece, alignment must be 1
4529      ISD::ArgFlagsTy MyFlags = Flags;
4530      if (NumParts > 1 && i == 0)
4531        MyFlags.setSplit();
4532      else if (i != 0)
4533        MyFlags.setOrigAlign(1);
4534
4535      Ops.push_back(Parts[i]);
4536      Ops.push_back(DAG.getArgFlags(MyFlags));
4537    }
4538  }
4539
4540  // Figure out the result value types. We start by making a list of
4541  // the potentially illegal return value types.
4542  SmallVector<MVT, 4> LoweredRetTys;
4543  SmallVector<MVT, 4> RetTys;
4544  ComputeValueVTs(*this, RetTy, RetTys);
4545
4546  // Then we translate that to a list of legal types.
4547  for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
4548    MVT VT = RetTys[I];
4549    MVT RegisterVT = getRegisterType(VT);
4550    unsigned NumRegs = getNumRegisters(VT);
4551    for (unsigned i = 0; i != NumRegs; ++i)
4552      LoweredRetTys.push_back(RegisterVT);
4553  }
4554
4555  LoweredRetTys.push_back(MVT::Other);  // Always has a chain.
4556
4557  // Create the CALL node.
4558  SDOperand Res = DAG.getNode(ISD::CALL,
4559                              DAG.getVTList(&LoweredRetTys[0],
4560                                            LoweredRetTys.size()),
4561                              &Ops[0], Ops.size());
4562  Chain = Res.getValue(LoweredRetTys.size() - 1);
4563
4564  // Gather up the call result into a single value.
4565  if (RetTy != Type::VoidTy) {
4566    ISD::NodeType AssertOp = ISD::DELETED_NODE;
4567
4568    if (RetSExt)
4569      AssertOp = ISD::AssertSext;
4570    else if (RetZExt)
4571      AssertOp = ISD::AssertZext;
4572
4573    SmallVector<SDOperand, 4> ReturnValues;
4574    unsigned RegNo = 0;
4575    for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
4576      MVT VT = RetTys[I];
4577      MVT RegisterVT = getRegisterType(VT);
4578      unsigned NumRegs = getNumRegisters(VT);
4579      unsigned RegNoEnd = NumRegs + RegNo;
4580      SmallVector<SDOperand, 4> Results;
4581      for (; RegNo != RegNoEnd; ++RegNo)
4582        Results.push_back(Res.getValue(RegNo));
4583      SDOperand ReturnValue =
4584        getCopyFromParts(DAG, &Results[0], NumRegs, RegisterVT, VT,
4585                         AssertOp);
4586      ReturnValues.push_back(ReturnValue);
4587    }
4588    Res = ReturnValues.size() == 1 ? ReturnValues.front() :
4589          DAG.getNode(ISD::MERGE_VALUES,
4590                      DAG.getVTList(&RetTys[0], RetTys.size()),
4591                      &ReturnValues[0], ReturnValues.size());
4592  }
4593
4594  return std::make_pair(Res, Chain);
4595}
4596
4597SDOperand TargetLowering::LowerOperation(SDOperand Op, SelectionDAG &DAG) {
4598  assert(0 && "LowerOperation not implemented for this target!");
4599  abort();
4600  return SDOperand();
4601}
4602
4603SDOperand TargetLowering::CustomPromoteOperation(SDOperand Op,
4604                                                 SelectionDAG &DAG) {
4605  assert(0 && "CustomPromoteOperation not implemented for this target!");
4606  abort();
4607  return SDOperand();
4608}
4609
4610//===----------------------------------------------------------------------===//
4611// SelectionDAGISel code
4612//===----------------------------------------------------------------------===//
4613
4614unsigned SelectionDAGISel::MakeReg(MVT VT) {
4615  return RegInfo->createVirtualRegister(TLI.getRegClassFor(VT));
4616}
4617
4618void SelectionDAGISel::getAnalysisUsage(AnalysisUsage &AU) const {
4619  AU.addRequired<AliasAnalysis>();
4620  AU.addRequired<CollectorModuleMetadata>();
4621  AU.setPreservesAll();
4622}
4623
4624bool SelectionDAGISel::runOnFunction(Function &Fn) {
4625  // Get alias analysis for load/store combining.
4626  AA = &getAnalysis<AliasAnalysis>();
4627
4628  MachineFunction &MF = MachineFunction::construct(&Fn, TLI.getTargetMachine());
4629  if (MF.getFunction()->hasCollector())
4630    GCI = &getAnalysis<CollectorModuleMetadata>().get(*MF.getFunction());
4631  else
4632    GCI = 0;
4633  RegInfo = &MF.getRegInfo();
4634  DOUT << "\n\n\n=== " << Fn.getName() << "\n";
4635
4636  FunctionLoweringInfo FuncInfo(TLI, Fn, MF);
4637
4638  for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
4639    if (InvokeInst *Invoke = dyn_cast<InvokeInst>(I->getTerminator()))
4640      // Mark landing pad.
4641      FuncInfo.MBBMap[Invoke->getSuccessor(1)]->setIsLandingPad();
4642
4643  for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
4644    SelectBasicBlock(I, MF, FuncInfo);
4645
4646  // Add function live-ins to entry block live-in set.
4647  BasicBlock *EntryBB = &Fn.getEntryBlock();
4648  BB = FuncInfo.MBBMap[EntryBB];
4649  if (!RegInfo->livein_empty())
4650    for (MachineRegisterInfo::livein_iterator I = RegInfo->livein_begin(),
4651           E = RegInfo->livein_end(); I != E; ++I)
4652      BB->addLiveIn(I->first);
4653
4654#ifndef NDEBUG
4655  assert(FuncInfo.CatchInfoFound.size() == FuncInfo.CatchInfoLost.size() &&
4656         "Not all catch info was assigned to a landing pad!");
4657#endif
4658
4659  return true;
4660}
4661
4662void SelectionDAGLowering::CopyValueToVirtualRegister(Value *V, unsigned Reg) {
4663  SDOperand Op = getValue(V);
4664  assert((Op.getOpcode() != ISD::CopyFromReg ||
4665          cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
4666         "Copy from a reg to the same reg!");
4667  assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg");
4668
4669  RegsForValue RFV(TLI, Reg, V->getType());
4670  SDOperand Chain = DAG.getEntryNode();
4671  RFV.getCopyToRegs(Op, DAG, Chain, 0);
4672  PendingExports.push_back(Chain);
4673}
4674
4675void SelectionDAGISel::
4676LowerArguments(BasicBlock *LLVMBB, SelectionDAGLowering &SDL) {
4677  // If this is the entry block, emit arguments.
4678  Function &F = *LLVMBB->getParent();
4679  FunctionLoweringInfo &FuncInfo = SDL.FuncInfo;
4680  SDOperand OldRoot = SDL.DAG.getRoot();
4681  std::vector<SDOperand> Args = TLI.LowerArguments(F, SDL.DAG);
4682
4683  unsigned a = 0;
4684  for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end();
4685       AI != E; ++AI, ++a)
4686    if (!AI->use_empty()) {
4687      SDL.setValue(AI, Args[a]);
4688
4689      // If this argument is live outside of the entry block, insert a copy from
4690      // whereever we got it to the vreg that other BB's will reference it as.
4691      DenseMap<const Value*, unsigned>::iterator VMI=FuncInfo.ValueMap.find(AI);
4692      if (VMI != FuncInfo.ValueMap.end()) {
4693        SDL.CopyValueToVirtualRegister(AI, VMI->second);
4694      }
4695    }
4696
4697  // Finally, if the target has anything special to do, allow it to do so.
4698  // FIXME: this should insert code into the DAG!
4699  EmitFunctionEntryCode(F, SDL.DAG.getMachineFunction());
4700}
4701
4702static void copyCatchInfo(BasicBlock *SrcBB, BasicBlock *DestBB,
4703                          MachineModuleInfo *MMI, FunctionLoweringInfo &FLI) {
4704  for (BasicBlock::iterator I = SrcBB->begin(), E = --SrcBB->end(); I != E; ++I)
4705    if (isSelector(I)) {
4706      // Apply the catch info to DestBB.
4707      addCatchInfo(cast<CallInst>(*I), MMI, FLI.MBBMap[DestBB]);
4708#ifndef NDEBUG
4709      if (!FLI.MBBMap[SrcBB]->isLandingPad())
4710        FLI.CatchInfoFound.insert(I);
4711#endif
4712    }
4713}
4714
4715/// IsFixedFrameObjectWithPosOffset - Check if object is a fixed frame object and
4716/// whether object offset >= 0.
4717static bool
4718IsFixedFrameObjectWithPosOffset(MachineFrameInfo * MFI, SDOperand Op) {
4719  if (!isa<FrameIndexSDNode>(Op)) return false;
4720
4721  FrameIndexSDNode * FrameIdxNode = dyn_cast<FrameIndexSDNode>(Op);
4722  int FrameIdx =  FrameIdxNode->getIndex();
4723  return MFI->isFixedObjectIndex(FrameIdx) &&
4724    MFI->getObjectOffset(FrameIdx) >= 0;
4725}
4726
4727/// IsPossiblyOverwrittenArgumentOfTailCall - Check if the operand could
4728/// possibly be overwritten when lowering the outgoing arguments in a tail
4729/// call. Currently the implementation of this call is very conservative and
4730/// assumes all arguments sourcing from FORMAL_ARGUMENTS or a CopyFromReg with
4731/// virtual registers would be overwritten by direct lowering.
4732static bool IsPossiblyOverwrittenArgumentOfTailCall(SDOperand Op,
4733                                                    MachineFrameInfo * MFI) {
4734  RegisterSDNode * OpReg = NULL;
4735  if (Op.getOpcode() == ISD::FORMAL_ARGUMENTS ||
4736      (Op.getOpcode()== ISD::CopyFromReg &&
4737       (OpReg = dyn_cast<RegisterSDNode>(Op.getOperand(1))) &&
4738       (OpReg->getReg() >= TargetRegisterInfo::FirstVirtualRegister)) ||
4739      (Op.getOpcode() == ISD::LOAD &&
4740       IsFixedFrameObjectWithPosOffset(MFI, Op.getOperand(1))) ||
4741      (Op.getOpcode() == ISD::MERGE_VALUES &&
4742       Op.getOperand(Op.ResNo).getOpcode() == ISD::LOAD &&
4743       IsFixedFrameObjectWithPosOffset(MFI, Op.getOperand(Op.ResNo).
4744                                       getOperand(1))))
4745    return true;
4746  return false;
4747}
4748
4749/// CheckDAGForTailCallsAndFixThem - This Function looks for CALL nodes in the
4750/// DAG and fixes their tailcall attribute operand.
4751static void CheckDAGForTailCallsAndFixThem(SelectionDAG &DAG,
4752                                           TargetLowering& TLI) {
4753  SDNode * Ret = NULL;
4754  SDOperand Terminator = DAG.getRoot();
4755
4756  // Find RET node.
4757  if (Terminator.getOpcode() == ISD::RET) {
4758    Ret = Terminator.Val;
4759  }
4760
4761  // Fix tail call attribute of CALL nodes.
4762  for (SelectionDAG::allnodes_iterator BE = DAG.allnodes_begin(),
4763         BI = prior(DAG.allnodes_end()); BI != BE; --BI) {
4764    if (BI->getOpcode() == ISD::CALL) {
4765      SDOperand OpRet(Ret, 0);
4766      SDOperand OpCall(static_cast<SDNode*>(BI), 0);
4767      bool isMarkedTailCall =
4768        cast<ConstantSDNode>(OpCall.getOperand(3))->getValue() != 0;
4769      // If CALL node has tail call attribute set to true and the call is not
4770      // eligible (no RET or the target rejects) the attribute is fixed to
4771      // false. The TargetLowering::IsEligibleForTailCallOptimization function
4772      // must correctly identify tail call optimizable calls.
4773      if (!isMarkedTailCall) continue;
4774      if (Ret==NULL ||
4775          !TLI.IsEligibleForTailCallOptimization(OpCall, OpRet, DAG)) {
4776        // Not eligible. Mark CALL node as non tail call.
4777        SmallVector<SDOperand, 32> Ops;
4778        unsigned idx=0;
4779        for(SDNode::op_iterator I =OpCall.Val->op_begin(),
4780              E = OpCall.Val->op_end(); I != E; I++, idx++) {
4781          if (idx!=3)
4782            Ops.push_back(*I);
4783          else
4784            Ops.push_back(DAG.getConstant(false, TLI.getPointerTy()));
4785        }
4786        DAG.UpdateNodeOperands(OpCall, Ops.begin(), Ops.size());
4787      } else {
4788        // Look for tail call clobbered arguments. Emit a series of
4789        // copyto/copyfrom virtual register nodes to protect them.
4790        SmallVector<SDOperand, 32> Ops;
4791        SDOperand Chain = OpCall.getOperand(0), InFlag;
4792        unsigned idx=0;
4793        for(SDNode::op_iterator I = OpCall.Val->op_begin(),
4794              E = OpCall.Val->op_end(); I != E; I++, idx++) {
4795          SDOperand Arg = *I;
4796          if (idx > 4 && (idx % 2)) {
4797            bool isByVal = cast<ARG_FLAGSSDNode>(OpCall.getOperand(idx+1))->
4798              getArgFlags().isByVal();
4799            MachineFunction &MF = DAG.getMachineFunction();
4800            MachineFrameInfo *MFI = MF.getFrameInfo();
4801            if (!isByVal &&
4802                IsPossiblyOverwrittenArgumentOfTailCall(Arg, MFI)) {
4803              MVT VT = Arg.getValueType();
4804              unsigned VReg = MF.getRegInfo().
4805                createVirtualRegister(TLI.getRegClassFor(VT));
4806              Chain = DAG.getCopyToReg(Chain, VReg, Arg, InFlag);
4807              InFlag = Chain.getValue(1);
4808              Arg = DAG.getCopyFromReg(Chain, VReg, VT, InFlag);
4809              Chain = Arg.getValue(1);
4810              InFlag = Arg.getValue(2);
4811            }
4812          }
4813          Ops.push_back(Arg);
4814        }
4815        // Link in chain of CopyTo/CopyFromReg.
4816        Ops[0] = Chain;
4817        DAG.UpdateNodeOperands(OpCall, Ops.begin(), Ops.size());
4818      }
4819    }
4820  }
4821}
4822
4823void SelectionDAGISel::BuildSelectionDAG(SelectionDAG &DAG, BasicBlock *LLVMBB,
4824       std::vector<std::pair<MachineInstr*, unsigned> > &PHINodesToUpdate,
4825                                         FunctionLoweringInfo &FuncInfo) {
4826  SelectionDAGLowering SDL(DAG, TLI, *AA, FuncInfo, GCI);
4827
4828  // Lower any arguments needed in this block if this is the entry block.
4829  if (LLVMBB == &LLVMBB->getParent()->getEntryBlock())
4830    LowerArguments(LLVMBB, SDL);
4831
4832  BB = FuncInfo.MBBMap[LLVMBB];
4833  SDL.setCurrentBasicBlock(BB);
4834
4835  MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
4836
4837  if (MMI && BB->isLandingPad()) {
4838    // Add a label to mark the beginning of the landing pad.  Deletion of the
4839    // landing pad can thus be detected via the MachineModuleInfo.
4840    unsigned LabelID = MMI->addLandingPad(BB);
4841    DAG.setRoot(DAG.getNode(ISD::LABEL, MVT::Other, DAG.getEntryNode(),
4842                            DAG.getConstant(LabelID, MVT::i32),
4843                            DAG.getConstant(1, MVT::i32)));
4844
4845    // Mark exception register as live in.
4846    unsigned Reg = TLI.getExceptionAddressRegister();
4847    if (Reg) BB->addLiveIn(Reg);
4848
4849    // Mark exception selector register as live in.
4850    Reg = TLI.getExceptionSelectorRegister();
4851    if (Reg) BB->addLiveIn(Reg);
4852
4853    // FIXME: Hack around an exception handling flaw (PR1508): the personality
4854    // function and list of typeids logically belong to the invoke (or, if you
4855    // like, the basic block containing the invoke), and need to be associated
4856    // with it in the dwarf exception handling tables.  Currently however the
4857    // information is provided by an intrinsic (eh.selector) that can be moved
4858    // to unexpected places by the optimizers: if the unwind edge is critical,
4859    // then breaking it can result in the intrinsics being in the successor of
4860    // the landing pad, not the landing pad itself.  This results in exceptions
4861    // not being caught because no typeids are associated with the invoke.
4862    // This may not be the only way things can go wrong, but it is the only way
4863    // we try to work around for the moment.
4864    BranchInst *Br = dyn_cast<BranchInst>(LLVMBB->getTerminator());
4865
4866    if (Br && Br->isUnconditional()) { // Critical edge?
4867      BasicBlock::iterator I, E;
4868      for (I = LLVMBB->begin(), E = --LLVMBB->end(); I != E; ++I)
4869        if (isSelector(I))
4870          break;
4871
4872      if (I == E)
4873        // No catch info found - try to extract some from the successor.
4874        copyCatchInfo(Br->getSuccessor(0), LLVMBB, MMI, FuncInfo);
4875    }
4876  }
4877
4878  // Lower all of the non-terminator instructions.
4879  for (BasicBlock::iterator I = LLVMBB->begin(), E = --LLVMBB->end();
4880       I != E; ++I)
4881    SDL.visit(*I);
4882
4883  // Ensure that all instructions which are used outside of their defining
4884  // blocks are available as virtual registers.  Invoke is handled elsewhere.
4885  for (BasicBlock::iterator I = LLVMBB->begin(), E = LLVMBB->end(); I != E;++I)
4886    if (!I->use_empty() && !isa<PHINode>(I) && !isa<InvokeInst>(I)) {
4887      DenseMap<const Value*, unsigned>::iterator VMI =FuncInfo.ValueMap.find(I);
4888      if (VMI != FuncInfo.ValueMap.end())
4889        SDL.CopyValueToVirtualRegister(I, VMI->second);
4890    }
4891
4892  // Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
4893  // ensure constants are generated when needed.  Remember the virtual registers
4894  // that need to be added to the Machine PHI nodes as input.  We cannot just
4895  // directly add them, because expansion might result in multiple MBB's for one
4896  // BB.  As such, the start of the BB might correspond to a different MBB than
4897  // the end.
4898  //
4899  TerminatorInst *TI = LLVMBB->getTerminator();
4900
4901  // Emit constants only once even if used by multiple PHI nodes.
4902  std::map<Constant*, unsigned> ConstantsOut;
4903
4904  // Vector bool would be better, but vector<bool> is really slow.
4905  std::vector<unsigned char> SuccsHandled;
4906  if (TI->getNumSuccessors())
4907    SuccsHandled.resize(BB->getParent()->getNumBlockIDs());
4908
4909  // Check successor nodes' PHI nodes that expect a constant to be available
4910  // from this block.
4911  for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
4912    BasicBlock *SuccBB = TI->getSuccessor(succ);
4913    if (!isa<PHINode>(SuccBB->begin())) continue;
4914    MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
4915
4916    // If this terminator has multiple identical successors (common for
4917    // switches), only handle each succ once.
4918    unsigned SuccMBBNo = SuccMBB->getNumber();
4919    if (SuccsHandled[SuccMBBNo]) continue;
4920    SuccsHandled[SuccMBBNo] = true;
4921
4922    MachineBasicBlock::iterator MBBI = SuccMBB->begin();
4923    PHINode *PN;
4924
4925    // At this point we know that there is a 1-1 correspondence between LLVM PHI
4926    // nodes and Machine PHI nodes, but the incoming operands have not been
4927    // emitted yet.
4928    for (BasicBlock::iterator I = SuccBB->begin();
4929         (PN = dyn_cast<PHINode>(I)); ++I) {
4930      // Ignore dead phi's.
4931      if (PN->use_empty()) continue;
4932
4933      unsigned Reg;
4934      Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
4935
4936      if (Constant *C = dyn_cast<Constant>(PHIOp)) {
4937        unsigned &RegOut = ConstantsOut[C];
4938        if (RegOut == 0) {
4939          RegOut = FuncInfo.CreateRegForValue(C);
4940          SDL.CopyValueToVirtualRegister(C, RegOut);
4941        }
4942        Reg = RegOut;
4943      } else {
4944        Reg = FuncInfo.ValueMap[PHIOp];
4945        if (Reg == 0) {
4946          assert(isa<AllocaInst>(PHIOp) &&
4947                 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
4948                 "Didn't codegen value into a register!??");
4949          Reg = FuncInfo.CreateRegForValue(PHIOp);
4950          SDL.CopyValueToVirtualRegister(PHIOp, Reg);
4951        }
4952      }
4953
4954      // Remember that this register needs to added to the machine PHI node as
4955      // the input for this MBB.
4956      MVT VT = TLI.getValueType(PN->getType());
4957      unsigned NumRegisters = TLI.getNumRegisters(VT);
4958      for (unsigned i = 0, e = NumRegisters; i != e; ++i)
4959        PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i));
4960    }
4961  }
4962  ConstantsOut.clear();
4963
4964  // Lower the terminator after the copies are emitted.
4965  SDL.visit(*LLVMBB->getTerminator());
4966
4967  // Copy over any CaseBlock records that may now exist due to SwitchInst
4968  // lowering, as well as any jump table information.
4969  SwitchCases.clear();
4970  SwitchCases = SDL.SwitchCases;
4971  JTCases.clear();
4972  JTCases = SDL.JTCases;
4973  BitTestCases.clear();
4974  BitTestCases = SDL.BitTestCases;
4975
4976  // Make sure the root of the DAG is up-to-date.
4977  DAG.setRoot(SDL.getControlRoot());
4978
4979  // Check whether calls in this block are real tail calls. Fix up CALL nodes
4980  // with correct tailcall attribute so that the target can rely on the tailcall
4981  // attribute indicating whether the call is really eligible for tail call
4982  // optimization.
4983  CheckDAGForTailCallsAndFixThem(DAG, TLI);
4984}
4985
4986void SelectionDAGISel::CodeGenAndEmitDAG(SelectionDAG &DAG) {
4987  DOUT << "Lowered selection DAG:\n";
4988  DEBUG(DAG.dump());
4989
4990  // Run the DAG combiner in pre-legalize mode.
4991  DAG.Combine(false, *AA);
4992
4993  DOUT << "Optimized lowered selection DAG:\n";
4994  DEBUG(DAG.dump());
4995
4996  // Second step, hack on the DAG until it only uses operations and types that
4997  // the target supports.
4998#if 0  // Enable this some day.
4999  DAG.LegalizeTypes();
5000  // Someday even later, enable a dag combine pass here.
5001#endif
5002  DAG.Legalize();
5003
5004  DOUT << "Legalized selection DAG:\n";
5005  DEBUG(DAG.dump());
5006
5007  // Run the DAG combiner in post-legalize mode.
5008  DAG.Combine(true, *AA);
5009
5010  DOUT << "Optimized legalized selection DAG:\n";
5011  DEBUG(DAG.dump());
5012
5013  if (ViewISelDAGs) DAG.viewGraph();
5014
5015  // Third, instruction select all of the operations to machine code, adding the
5016  // code to the MachineBasicBlock.
5017  InstructionSelectBasicBlock(DAG);
5018
5019  DOUT << "Selected machine code:\n";
5020  DEBUG(BB->dump());
5021}
5022
5023void SelectionDAGISel::SelectBasicBlock(BasicBlock *LLVMBB, MachineFunction &MF,
5024                                        FunctionLoweringInfo &FuncInfo) {
5025  std::vector<std::pair<MachineInstr*, unsigned> > PHINodesToUpdate;
5026  {
5027    SelectionDAG DAG(TLI, MF, getAnalysisToUpdate<MachineModuleInfo>());
5028    CurDAG = &DAG;
5029
5030    // First step, lower LLVM code to some DAG.  This DAG may use operations and
5031    // types that are not supported by the target.
5032    BuildSelectionDAG(DAG, LLVMBB, PHINodesToUpdate, FuncInfo);
5033
5034    // Second step, emit the lowered DAG as machine code.
5035    CodeGenAndEmitDAG(DAG);
5036  }
5037
5038  DOUT << "Total amount of phi nodes to update: "
5039       << PHINodesToUpdate.size() << "\n";
5040  DEBUG(for (unsigned i = 0, e = PHINodesToUpdate.size(); i != e; ++i)
5041          DOUT << "Node " << i << " : (" << PHINodesToUpdate[i].first
5042               << ", " << PHINodesToUpdate[i].second << ")\n";);
5043
5044  // Next, now that we know what the last MBB the LLVM BB expanded is, update
5045  // PHI nodes in successors.
5046  if (SwitchCases.empty() && JTCases.empty() && BitTestCases.empty()) {
5047    for (unsigned i = 0, e = PHINodesToUpdate.size(); i != e; ++i) {
5048      MachineInstr *PHI = PHINodesToUpdate[i].first;
5049      assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
5050             "This is not a machine PHI node that we are updating!");
5051      PHI->addOperand(MachineOperand::CreateReg(PHINodesToUpdate[i].second,
5052                                                false));
5053      PHI->addOperand(MachineOperand::CreateMBB(BB));
5054    }
5055    return;
5056  }
5057
5058  for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i) {
5059    // Lower header first, if it wasn't already lowered
5060    if (!BitTestCases[i].Emitted) {
5061      SelectionDAG HSDAG(TLI, MF, getAnalysisToUpdate<MachineModuleInfo>());
5062      CurDAG = &HSDAG;
5063      SelectionDAGLowering HSDL(HSDAG, TLI, *AA, FuncInfo, GCI);
5064      // Set the current basic block to the mbb we wish to insert the code into
5065      BB = BitTestCases[i].Parent;
5066      HSDL.setCurrentBasicBlock(BB);
5067      // Emit the code
5068      HSDL.visitBitTestHeader(BitTestCases[i]);
5069      HSDAG.setRoot(HSDL.getRoot());
5070      CodeGenAndEmitDAG(HSDAG);
5071    }
5072
5073    for (unsigned j = 0, ej = BitTestCases[i].Cases.size(); j != ej; ++j) {
5074      SelectionDAG BSDAG(TLI, MF, getAnalysisToUpdate<MachineModuleInfo>());
5075      CurDAG = &BSDAG;
5076      SelectionDAGLowering BSDL(BSDAG, TLI, *AA, FuncInfo, GCI);
5077      // Set the current basic block to the mbb we wish to insert the code into
5078      BB = BitTestCases[i].Cases[j].ThisBB;
5079      BSDL.setCurrentBasicBlock(BB);
5080      // Emit the code
5081      if (j+1 != ej)
5082        BSDL.visitBitTestCase(BitTestCases[i].Cases[j+1].ThisBB,
5083                              BitTestCases[i].Reg,
5084                              BitTestCases[i].Cases[j]);
5085      else
5086        BSDL.visitBitTestCase(BitTestCases[i].Default,
5087                              BitTestCases[i].Reg,
5088                              BitTestCases[i].Cases[j]);
5089
5090
5091      BSDAG.setRoot(BSDL.getRoot());
5092      CodeGenAndEmitDAG(BSDAG);
5093    }
5094
5095    // Update PHI Nodes
5096    for (unsigned pi = 0, pe = PHINodesToUpdate.size(); pi != pe; ++pi) {
5097      MachineInstr *PHI = PHINodesToUpdate[pi].first;
5098      MachineBasicBlock *PHIBB = PHI->getParent();
5099      assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
5100             "This is not a machine PHI node that we are updating!");
5101      // This is "default" BB. We have two jumps to it. From "header" BB and
5102      // from last "case" BB.
5103      if (PHIBB == BitTestCases[i].Default) {
5104        PHI->addOperand(MachineOperand::CreateReg(PHINodesToUpdate[pi].second,
5105                                                  false));
5106        PHI->addOperand(MachineOperand::CreateMBB(BitTestCases[i].Parent));
5107        PHI->addOperand(MachineOperand::CreateReg(PHINodesToUpdate[pi].second,
5108                                                  false));
5109        PHI->addOperand(MachineOperand::CreateMBB(BitTestCases[i].Cases.
5110                                                  back().ThisBB));
5111      }
5112      // One of "cases" BB.
5113      for (unsigned j = 0, ej = BitTestCases[i].Cases.size(); j != ej; ++j) {
5114        MachineBasicBlock* cBB = BitTestCases[i].Cases[j].ThisBB;
5115        if (cBB->succ_end() !=
5116            std::find(cBB->succ_begin(),cBB->succ_end(), PHIBB)) {
5117          PHI->addOperand(MachineOperand::CreateReg(PHINodesToUpdate[pi].second,
5118                                                    false));
5119          PHI->addOperand(MachineOperand::CreateMBB(cBB));
5120        }
5121      }
5122    }
5123  }
5124
5125  // If the JumpTable record is filled in, then we need to emit a jump table.
5126  // Updating the PHI nodes is tricky in this case, since we need to determine
5127  // whether the PHI is a successor of the range check MBB or the jump table MBB
5128  for (unsigned i = 0, e = JTCases.size(); i != e; ++i) {
5129    // Lower header first, if it wasn't already lowered
5130    if (!JTCases[i].first.Emitted) {
5131      SelectionDAG HSDAG(TLI, MF, getAnalysisToUpdate<MachineModuleInfo>());
5132      CurDAG = &HSDAG;
5133      SelectionDAGLowering HSDL(HSDAG, TLI, *AA, FuncInfo, GCI);
5134      // Set the current basic block to the mbb we wish to insert the code into
5135      BB = JTCases[i].first.HeaderBB;
5136      HSDL.setCurrentBasicBlock(BB);
5137      // Emit the code
5138      HSDL.visitJumpTableHeader(JTCases[i].second, JTCases[i].first);
5139      HSDAG.setRoot(HSDL.getRoot());
5140      CodeGenAndEmitDAG(HSDAG);
5141    }
5142
5143    SelectionDAG JSDAG(TLI, MF, getAnalysisToUpdate<MachineModuleInfo>());
5144    CurDAG = &JSDAG;
5145    SelectionDAGLowering JSDL(JSDAG, TLI, *AA, FuncInfo, GCI);
5146    // Set the current basic block to the mbb we wish to insert the code into
5147    BB = JTCases[i].second.MBB;
5148    JSDL.setCurrentBasicBlock(BB);
5149    // Emit the code
5150    JSDL.visitJumpTable(JTCases[i].second);
5151    JSDAG.setRoot(JSDL.getRoot());
5152    CodeGenAndEmitDAG(JSDAG);
5153
5154    // Update PHI Nodes
5155    for (unsigned pi = 0, pe = PHINodesToUpdate.size(); pi != pe; ++pi) {
5156      MachineInstr *PHI = PHINodesToUpdate[pi].first;
5157      MachineBasicBlock *PHIBB = PHI->getParent();
5158      assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
5159             "This is not a machine PHI node that we are updating!");
5160      // "default" BB. We can go there only from header BB.
5161      if (PHIBB == JTCases[i].second.Default) {
5162        PHI->addOperand(MachineOperand::CreateReg(PHINodesToUpdate[pi].second,
5163                                                  false));
5164        PHI->addOperand(MachineOperand::CreateMBB(JTCases[i].first.HeaderBB));
5165      }
5166      // JT BB. Just iterate over successors here
5167      if (BB->succ_end() != std::find(BB->succ_begin(),BB->succ_end(), PHIBB)) {
5168        PHI->addOperand(MachineOperand::CreateReg(PHINodesToUpdate[pi].second,
5169                                                  false));
5170        PHI->addOperand(MachineOperand::CreateMBB(BB));
5171      }
5172    }
5173  }
5174
5175  // If the switch block involved a branch to one of the actual successors, we
5176  // need to update PHI nodes in that block.
5177  for (unsigned i = 0, e = PHINodesToUpdate.size(); i != e; ++i) {
5178    MachineInstr *PHI = PHINodesToUpdate[i].first;
5179    assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
5180           "This is not a machine PHI node that we are updating!");
5181    if (BB->isSuccessor(PHI->getParent())) {
5182      PHI->addOperand(MachineOperand::CreateReg(PHINodesToUpdate[i].second,
5183                                                false));
5184      PHI->addOperand(MachineOperand::CreateMBB(BB));
5185    }
5186  }
5187
5188  // If we generated any switch lowering information, build and codegen any
5189  // additional DAGs necessary.
5190  for (unsigned i = 0, e = SwitchCases.size(); i != e; ++i) {
5191    SelectionDAG SDAG(TLI, MF, getAnalysisToUpdate<MachineModuleInfo>());
5192    CurDAG = &SDAG;
5193    SelectionDAGLowering SDL(SDAG, TLI, *AA, FuncInfo, GCI);
5194
5195    // Set the current basic block to the mbb we wish to insert the code into
5196    BB = SwitchCases[i].ThisBB;
5197    SDL.setCurrentBasicBlock(BB);
5198
5199    // Emit the code
5200    SDL.visitSwitchCase(SwitchCases[i]);
5201    SDAG.setRoot(SDL.getRoot());
5202    CodeGenAndEmitDAG(SDAG);
5203
5204    // Handle any PHI nodes in successors of this chunk, as if we were coming
5205    // from the original BB before switch expansion.  Note that PHI nodes can
5206    // occur multiple times in PHINodesToUpdate.  We have to be very careful to
5207    // handle them the right number of times.
5208    while ((BB = SwitchCases[i].TrueBB)) {  // Handle LHS and RHS.
5209      for (MachineBasicBlock::iterator Phi = BB->begin();
5210           Phi != BB->end() && Phi->getOpcode() == TargetInstrInfo::PHI; ++Phi){
5211        // This value for this PHI node is recorded in PHINodesToUpdate, get it.
5212        for (unsigned pn = 0; ; ++pn) {
5213          assert(pn != PHINodesToUpdate.size() && "Didn't find PHI entry!");
5214          if (PHINodesToUpdate[pn].first == Phi) {
5215            Phi->addOperand(MachineOperand::CreateReg(PHINodesToUpdate[pn].
5216                                                      second, false));
5217            Phi->addOperand(MachineOperand::CreateMBB(SwitchCases[i].ThisBB));
5218            break;
5219          }
5220        }
5221      }
5222
5223      // Don't process RHS if same block as LHS.
5224      if (BB == SwitchCases[i].FalseBB)
5225        SwitchCases[i].FalseBB = 0;
5226
5227      // If we haven't handled the RHS, do so now.  Otherwise, we're done.
5228      SwitchCases[i].TrueBB = SwitchCases[i].FalseBB;
5229      SwitchCases[i].FalseBB = 0;
5230    }
5231    assert(SwitchCases[i].TrueBB == 0 && SwitchCases[i].FalseBB == 0);
5232  }
5233}
5234
5235
5236//===----------------------------------------------------------------------===//
5237/// ScheduleAndEmitDAG - Pick a safe ordering and emit instructions for each
5238/// target node in the graph.
5239void SelectionDAGISel::ScheduleAndEmitDAG(SelectionDAG &DAG) {
5240  if (ViewSchedDAGs) DAG.viewGraph();
5241
5242  RegisterScheduler::FunctionPassCtor Ctor = RegisterScheduler::getDefault();
5243
5244  if (!Ctor) {
5245    Ctor = ISHeuristic;
5246    RegisterScheduler::setDefault(Ctor);
5247  }
5248
5249  ScheduleDAG *SL = Ctor(this, &DAG, BB);
5250  BB = SL->Run();
5251
5252  if (ViewSUnitDAGs) SL->viewGraph();
5253
5254  delete SL;
5255}
5256
5257
5258HazardRecognizer *SelectionDAGISel::CreateTargetHazardRecognizer() {
5259  return new HazardRecognizer();
5260}
5261
5262//===----------------------------------------------------------------------===//
5263// Helper functions used by the generated instruction selector.
5264//===----------------------------------------------------------------------===//
5265// Calls to these methods are generated by tblgen.
5266
5267/// CheckAndMask - The isel is trying to match something like (and X, 255).  If
5268/// the dag combiner simplified the 255, we still want to match.  RHS is the
5269/// actual value in the DAG on the RHS of an AND, and DesiredMaskS is the value
5270/// specified in the .td file (e.g. 255).
5271bool SelectionDAGISel::CheckAndMask(SDOperand LHS, ConstantSDNode *RHS,
5272                                    int64_t DesiredMaskS) const {
5273  const APInt &ActualMask = RHS->getAPIntValue();
5274  const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
5275
5276  // If the actual mask exactly matches, success!
5277  if (ActualMask == DesiredMask)
5278    return true;
5279
5280  // If the actual AND mask is allowing unallowed bits, this doesn't match.
5281  if (ActualMask.intersects(~DesiredMask))
5282    return false;
5283
5284  // Otherwise, the DAG Combiner may have proven that the value coming in is
5285  // either already zero or is not demanded.  Check for known zero input bits.
5286  APInt NeededMask = DesiredMask & ~ActualMask;
5287  if (CurDAG->MaskedValueIsZero(LHS, NeededMask))
5288    return true;
5289
5290  // TODO: check to see if missing bits are just not demanded.
5291
5292  // Otherwise, this pattern doesn't match.
5293  return false;
5294}
5295
5296/// CheckOrMask - The isel is trying to match something like (or X, 255).  If
5297/// the dag combiner simplified the 255, we still want to match.  RHS is the
5298/// actual value in the DAG on the RHS of an OR, and DesiredMaskS is the value
5299/// specified in the .td file (e.g. 255).
5300bool SelectionDAGISel::CheckOrMask(SDOperand LHS, ConstantSDNode *RHS,
5301                                   int64_t DesiredMaskS) const {
5302  const APInt &ActualMask = RHS->getAPIntValue();
5303  const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
5304
5305  // If the actual mask exactly matches, success!
5306  if (ActualMask == DesiredMask)
5307    return true;
5308
5309  // If the actual AND mask is allowing unallowed bits, this doesn't match.
5310  if (ActualMask.intersects(~DesiredMask))
5311    return false;
5312
5313  // Otherwise, the DAG Combiner may have proven that the value coming in is
5314  // either already zero or is not demanded.  Check for known zero input bits.
5315  APInt NeededMask = DesiredMask & ~ActualMask;
5316
5317  APInt KnownZero, KnownOne;
5318  CurDAG->ComputeMaskedBits(LHS, NeededMask, KnownZero, KnownOne);
5319
5320  // If all the missing bits in the or are already known to be set, match!
5321  if ((NeededMask & KnownOne) == NeededMask)
5322    return true;
5323
5324  // TODO: check to see if missing bits are just not demanded.
5325
5326  // Otherwise, this pattern doesn't match.
5327  return false;
5328}
5329
5330
5331/// SelectInlineAsmMemoryOperands - Calls to this are automatically generated
5332/// by tblgen.  Others should not call it.
5333void SelectionDAGISel::
5334SelectInlineAsmMemoryOperands(std::vector<SDOperand> &Ops, SelectionDAG &DAG) {
5335  std::vector<SDOperand> InOps;
5336  std::swap(InOps, Ops);
5337
5338  Ops.push_back(InOps[0]);  // input chain.
5339  Ops.push_back(InOps[1]);  // input asm string.
5340
5341  unsigned i = 2, e = InOps.size();
5342  if (InOps[e-1].getValueType() == MVT::Flag)
5343    --e;  // Don't process a flag operand if it is here.
5344
5345  while (i != e) {
5346    unsigned Flags = cast<ConstantSDNode>(InOps[i])->getValue();
5347    if ((Flags & 7) != 4 /*MEM*/) {
5348      // Just skip over this operand, copying the operands verbatim.
5349      Ops.insert(Ops.end(), InOps.begin()+i, InOps.begin()+i+(Flags >> 3) + 1);
5350      i += (Flags >> 3) + 1;
5351    } else {
5352      assert((Flags >> 3) == 1 && "Memory operand with multiple values?");
5353      // Otherwise, this is a memory operand.  Ask the target to select it.
5354      std::vector<SDOperand> SelOps;
5355      if (SelectInlineAsmMemoryOperand(InOps[i+1], 'm', SelOps, DAG)) {
5356        cerr << "Could not match memory address.  Inline asm failure!\n";
5357        exit(1);
5358      }
5359
5360      // Add this to the output node.
5361      MVT IntPtrTy = DAG.getTargetLoweringInfo().getPointerTy();
5362      Ops.push_back(DAG.getTargetConstant(4/*MEM*/ | (SelOps.size() << 3),
5363                                          IntPtrTy));
5364      Ops.insert(Ops.end(), SelOps.begin(), SelOps.end());
5365      i += 2;
5366    }
5367  }
5368
5369  // Add the flag input back if present.
5370  if (e != InOps.size())
5371    Ops.push_back(InOps.back());
5372}
5373
5374char SelectionDAGISel::ID = 0;
5375