SelectionDAGISel.cpp revision 2d76c84514216f51526f2be123315f585995d860
1//===-- SelectionDAGISel.cpp - Implement the SelectionDAGISel class -------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAGISel class.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "isel"
15#include "ScheduleDAGSDNodes.h"
16#include "SelectionDAGBuilder.h"
17#include "llvm/CodeGen/FunctionLoweringInfo.h"
18#include "llvm/CodeGen/SelectionDAGISel.h"
19#include "llvm/Analysis/AliasAnalysis.h"
20#include "llvm/Analysis/DebugInfo.h"
21#include "llvm/Constants.h"
22#include "llvm/Function.h"
23#include "llvm/InlineAsm.h"
24#include "llvm/Instructions.h"
25#include "llvm/Intrinsics.h"
26#include "llvm/IntrinsicInst.h"
27#include "llvm/LLVMContext.h"
28#include "llvm/Module.h"
29#include "llvm/CodeGen/FastISel.h"
30#include "llvm/CodeGen/GCStrategy.h"
31#include "llvm/CodeGen/GCMetadata.h"
32#include "llvm/CodeGen/MachineFrameInfo.h"
33#include "llvm/CodeGen/MachineFunction.h"
34#include "llvm/CodeGen/MachineInstrBuilder.h"
35#include "llvm/CodeGen/MachineModuleInfo.h"
36#include "llvm/CodeGen/MachineRegisterInfo.h"
37#include "llvm/CodeGen/ScheduleHazardRecognizer.h"
38#include "llvm/CodeGen/SchedulerRegistry.h"
39#include "llvm/CodeGen/SelectionDAG.h"
40#include "llvm/Target/TargetRegisterInfo.h"
41#include "llvm/Target/TargetIntrinsicInfo.h"
42#include "llvm/Target/TargetInstrInfo.h"
43#include "llvm/Target/TargetLowering.h"
44#include "llvm/Target/TargetMachine.h"
45#include "llvm/Target/TargetOptions.h"
46#include "llvm/Transforms/Utils/BasicBlockUtils.h"
47#include "llvm/Support/Compiler.h"
48#include "llvm/Support/Debug.h"
49#include "llvm/Support/ErrorHandling.h"
50#include "llvm/Support/Timer.h"
51#include "llvm/Support/raw_ostream.h"
52#include "llvm/ADT/PostOrderIterator.h"
53#include "llvm/ADT/Statistic.h"
54#include <algorithm>
55using namespace llvm;
56
57STATISTIC(NumFastIselFailures, "Number of instructions fast isel failed on");
58STATISTIC(NumFastIselBlocks, "Number of blocks selected entirely by fast isel");
59STATISTIC(NumDAGBlocks, "Number of blocks selected using DAG");
60STATISTIC(NumDAGIselRetries,"Number of times dag isel has to try another path");
61
62#ifndef NDEBUG
63STATISTIC(NumBBWithOutOfOrderLineInfo,
64          "Number of blocks with out of order line number info");
65STATISTIC(NumMBBWithOutOfOrderLineInfo,
66          "Number of machine blocks with out of order line number info");
67#endif
68
69static cl::opt<bool>
70EnableFastISelVerbose("fast-isel-verbose", cl::Hidden,
71          cl::desc("Enable verbose messages in the \"fast\" "
72                   "instruction selector"));
73static cl::opt<bool>
74EnableFastISelAbort("fast-isel-abort", cl::Hidden,
75          cl::desc("Enable abort calls when \"fast\" instruction fails"));
76
77#ifndef NDEBUG
78static cl::opt<bool>
79ViewDAGCombine1("view-dag-combine1-dags", cl::Hidden,
80          cl::desc("Pop up a window to show dags before the first "
81                   "dag combine pass"));
82static cl::opt<bool>
83ViewLegalizeTypesDAGs("view-legalize-types-dags", cl::Hidden,
84          cl::desc("Pop up a window to show dags before legalize types"));
85static cl::opt<bool>
86ViewLegalizeDAGs("view-legalize-dags", cl::Hidden,
87          cl::desc("Pop up a window to show dags before legalize"));
88static cl::opt<bool>
89ViewDAGCombine2("view-dag-combine2-dags", cl::Hidden,
90          cl::desc("Pop up a window to show dags before the second "
91                   "dag combine pass"));
92static cl::opt<bool>
93ViewDAGCombineLT("view-dag-combine-lt-dags", cl::Hidden,
94          cl::desc("Pop up a window to show dags before the post legalize types"
95                   " dag combine pass"));
96static cl::opt<bool>
97ViewISelDAGs("view-isel-dags", cl::Hidden,
98          cl::desc("Pop up a window to show isel dags as they are selected"));
99static cl::opt<bool>
100ViewSchedDAGs("view-sched-dags", cl::Hidden,
101          cl::desc("Pop up a window to show sched dags as they are processed"));
102static cl::opt<bool>
103ViewSUnitDAGs("view-sunit-dags", cl::Hidden,
104      cl::desc("Pop up a window to show SUnit dags after they are processed"));
105#else
106static const bool ViewDAGCombine1 = false,
107                  ViewLegalizeTypesDAGs = false, ViewLegalizeDAGs = false,
108                  ViewDAGCombine2 = false,
109                  ViewDAGCombineLT = false,
110                  ViewISelDAGs = false, ViewSchedDAGs = false,
111                  ViewSUnitDAGs = false;
112#endif
113
114//===---------------------------------------------------------------------===//
115///
116/// RegisterScheduler class - Track the registration of instruction schedulers.
117///
118//===---------------------------------------------------------------------===//
119MachinePassRegistry RegisterScheduler::Registry;
120
121//===---------------------------------------------------------------------===//
122///
123/// ISHeuristic command line option for instruction schedulers.
124///
125//===---------------------------------------------------------------------===//
126static cl::opt<RegisterScheduler::FunctionPassCtor, false,
127               RegisterPassParser<RegisterScheduler> >
128ISHeuristic("pre-RA-sched",
129            cl::init(&createDefaultScheduler),
130            cl::desc("Instruction schedulers available (before register"
131                     " allocation):"));
132
133static RegisterScheduler
134defaultListDAGScheduler("default", "Best scheduler for the target",
135                        createDefaultScheduler);
136
137namespace llvm {
138  //===--------------------------------------------------------------------===//
139  /// createDefaultScheduler - This creates an instruction scheduler appropriate
140  /// for the target.
141  ScheduleDAGSDNodes* createDefaultScheduler(SelectionDAGISel *IS,
142                                             CodeGenOpt::Level OptLevel) {
143    const TargetLowering &TLI = IS->getTargetLowering();
144
145    if (OptLevel == CodeGenOpt::None)
146      return createSourceListDAGScheduler(IS, OptLevel);
147    if (TLI.getSchedulingPreference() == Sched::Latency)
148      return createTDListDAGScheduler(IS, OptLevel);
149    if (TLI.getSchedulingPreference() == Sched::RegPressure)
150      return createBURRListDAGScheduler(IS, OptLevel);
151    if (TLI.getSchedulingPreference() == Sched::Hybrid)
152      return createHybridListDAGScheduler(IS, OptLevel);
153    assert(TLI.getSchedulingPreference() == Sched::ILP &&
154           "Unknown sched type!");
155    return createILPListDAGScheduler(IS, OptLevel);
156  }
157}
158
159// EmitInstrWithCustomInserter - This method should be implemented by targets
160// that mark instructions with the 'usesCustomInserter' flag.  These
161// instructions are special in various ways, which require special support to
162// insert.  The specified MachineInstr is created but not inserted into any
163// basic blocks, and this method is called to expand it into a sequence of
164// instructions, potentially also creating new basic blocks and control flow.
165// When new basic blocks are inserted and the edges from MBB to its successors
166// are modified, the method should insert pairs of <OldSucc, NewSucc> into the
167// DenseMap.
168MachineBasicBlock *
169TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
170                                            MachineBasicBlock *MBB) const {
171#ifndef NDEBUG
172  dbgs() << "If a target marks an instruction with "
173          "'usesCustomInserter', it must implement "
174          "TargetLowering::EmitInstrWithCustomInserter!";
175#endif
176  llvm_unreachable(0);
177  return 0;
178}
179
180//===----------------------------------------------------------------------===//
181// SelectionDAGISel code
182//===----------------------------------------------------------------------===//
183
184SelectionDAGISel::SelectionDAGISel(const TargetMachine &tm,
185                                   CodeGenOpt::Level OL) :
186  MachineFunctionPass(ID), TM(tm), TLI(*tm.getTargetLowering()),
187  FuncInfo(new FunctionLoweringInfo(TLI)),
188  CurDAG(new SelectionDAG(tm)),
189  SDB(new SelectionDAGBuilder(*CurDAG, *FuncInfo, OL)),
190  GFI(),
191  OptLevel(OL),
192  DAGSize(0) {
193    initializeGCModuleInfoPass(*PassRegistry::getPassRegistry());
194    initializeAliasAnalysisAnalysisGroup(*PassRegistry::getPassRegistry());
195  }
196
197SelectionDAGISel::~SelectionDAGISel() {
198  delete SDB;
199  delete CurDAG;
200  delete FuncInfo;
201}
202
203void SelectionDAGISel::getAnalysisUsage(AnalysisUsage &AU) const {
204  AU.addRequired<AliasAnalysis>();
205  AU.addPreserved<AliasAnalysis>();
206  AU.addRequired<GCModuleInfo>();
207  AU.addPreserved<GCModuleInfo>();
208  MachineFunctionPass::getAnalysisUsage(AU);
209}
210
211/// FunctionCallsSetJmp - Return true if the function has a call to setjmp or
212/// other function that gcc recognizes as "returning twice". This is used to
213/// limit code-gen optimizations on the machine function.
214///
215/// FIXME: Remove after <rdar://problem/8031714> is fixed.
216static bool FunctionCallsSetJmp(const Function *F) {
217  const Module *M = F->getParent();
218  static const char *ReturnsTwiceFns[] = {
219    "_setjmp",
220    "setjmp",
221    "sigsetjmp",
222    "setjmp_syscall",
223    "savectx",
224    "qsetjmp",
225    "vfork",
226    "getcontext"
227  };
228#define NUM_RETURNS_TWICE_FNS sizeof(ReturnsTwiceFns) / sizeof(const char *)
229
230  for (unsigned I = 0; I < NUM_RETURNS_TWICE_FNS; ++I)
231    if (const Function *Callee = M->getFunction(ReturnsTwiceFns[I])) {
232      if (!Callee->use_empty())
233        for (Value::const_use_iterator
234               I = Callee->use_begin(), E = Callee->use_end();
235             I != E; ++I)
236          if (const CallInst *CI = dyn_cast<CallInst>(*I))
237            if (CI->getParent()->getParent() == F)
238              return true;
239    }
240
241  return false;
242#undef NUM_RETURNS_TWICE_FNS
243}
244
245/// SplitCriticalSideEffectEdges - Look for critical edges with a PHI value that
246/// may trap on it.  In this case we have to split the edge so that the path
247/// through the predecessor block that doesn't go to the phi block doesn't
248/// execute the possibly trapping instruction.
249///
250/// This is required for correctness, so it must be done at -O0.
251///
252static void SplitCriticalSideEffectEdges(Function &Fn, Pass *SDISel) {
253  // Loop for blocks with phi nodes.
254  for (Function::iterator BB = Fn.begin(), E = Fn.end(); BB != E; ++BB) {
255    PHINode *PN = dyn_cast<PHINode>(BB->begin());
256    if (PN == 0) continue;
257
258  ReprocessBlock:
259    // For each block with a PHI node, check to see if any of the input values
260    // are potentially trapping constant expressions.  Constant expressions are
261    // the only potentially trapping value that can occur as the argument to a
262    // PHI.
263    for (BasicBlock::iterator I = BB->begin(); (PN = dyn_cast<PHINode>(I)); ++I)
264      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
265        ConstantExpr *CE = dyn_cast<ConstantExpr>(PN->getIncomingValue(i));
266        if (CE == 0 || !CE->canTrap()) continue;
267
268        // The only case we have to worry about is when the edge is critical.
269        // Since this block has a PHI Node, we assume it has multiple input
270        // edges: check to see if the pred has multiple successors.
271        BasicBlock *Pred = PN->getIncomingBlock(i);
272        if (Pred->getTerminator()->getNumSuccessors() == 1)
273          continue;
274
275        // Okay, we have to split this edge.
276        SplitCriticalEdge(Pred->getTerminator(),
277                          GetSuccessorNumber(Pred, BB), SDISel, true);
278        goto ReprocessBlock;
279      }
280  }
281}
282
283bool SelectionDAGISel::runOnMachineFunction(MachineFunction &mf) {
284  // Do some sanity-checking on the command-line options.
285  assert((!EnableFastISelVerbose || EnableFastISel) &&
286         "-fast-isel-verbose requires -fast-isel");
287  assert((!EnableFastISelAbort || EnableFastISel) &&
288         "-fast-isel-abort requires -fast-isel");
289
290  const Function &Fn = *mf.getFunction();
291  const TargetInstrInfo &TII = *TM.getInstrInfo();
292  const TargetRegisterInfo &TRI = *TM.getRegisterInfo();
293
294  MF = &mf;
295  RegInfo = &MF->getRegInfo();
296  AA = &getAnalysis<AliasAnalysis>();
297  GFI = Fn.hasGC() ? &getAnalysis<GCModuleInfo>().getFunctionInfo(Fn) : 0;
298
299  DEBUG(dbgs() << "\n\n\n=== " << Fn.getName() << "\n");
300
301  SplitCriticalSideEffectEdges(const_cast<Function&>(Fn), this);
302
303  CurDAG->init(*MF);
304  FuncInfo->set(Fn, *MF);
305  SDB->init(GFI, *AA);
306
307  SelectAllBasicBlocks(Fn);
308
309  // If the first basic block in the function has live ins that need to be
310  // copied into vregs, emit the copies into the top of the block before
311  // emitting the code for the block.
312  MachineBasicBlock *EntryMBB = MF->begin();
313  RegInfo->EmitLiveInCopies(EntryMBB, TRI, TII);
314
315  DenseMap<unsigned, unsigned> LiveInMap;
316  if (!FuncInfo->ArgDbgValues.empty())
317    for (MachineRegisterInfo::livein_iterator LI = RegInfo->livein_begin(),
318           E = RegInfo->livein_end(); LI != E; ++LI)
319      if (LI->second)
320        LiveInMap.insert(std::make_pair(LI->first, LI->second));
321
322  // Insert DBG_VALUE instructions for function arguments to the entry block.
323  for (unsigned i = 0, e = FuncInfo->ArgDbgValues.size(); i != e; ++i) {
324    MachineInstr *MI = FuncInfo->ArgDbgValues[e-i-1];
325    unsigned Reg = MI->getOperand(0).getReg();
326    if (TargetRegisterInfo::isPhysicalRegister(Reg))
327      EntryMBB->insert(EntryMBB->begin(), MI);
328    else {
329      MachineInstr *Def = RegInfo->getVRegDef(Reg);
330      MachineBasicBlock::iterator InsertPos = Def;
331      // FIXME: VR def may not be in entry block.
332      Def->getParent()->insert(llvm::next(InsertPos), MI);
333    }
334
335    // If Reg is live-in then update debug info to track its copy in a vreg.
336    DenseMap<unsigned, unsigned>::iterator LDI = LiveInMap.find(Reg);
337    if (LDI != LiveInMap.end()) {
338      MachineInstr *Def = RegInfo->getVRegDef(LDI->second);
339      MachineBasicBlock::iterator InsertPos = Def;
340      const MDNode *Variable =
341        MI->getOperand(MI->getNumOperands()-1).getMetadata();
342      unsigned Offset = MI->getOperand(1).getImm();
343      // Def is never a terminator here, so it is ok to increment InsertPos.
344      BuildMI(*EntryMBB, ++InsertPos, MI->getDebugLoc(),
345              TII.get(TargetOpcode::DBG_VALUE))
346        .addReg(LDI->second, RegState::Debug)
347        .addImm(Offset).addMetadata(Variable);
348
349      // If this vreg is directly copied into an exported register then
350      // that COPY instructions also need DBG_VALUE, if it is the only
351      // user of LDI->second.
352      MachineInstr *CopyUseMI = NULL;
353      for (MachineRegisterInfo::use_iterator
354             UI = RegInfo->use_begin(LDI->second);
355           MachineInstr *UseMI = UI.skipInstruction();) {
356        if (UseMI->isDebugValue()) continue;
357        if (UseMI->isCopy() && !CopyUseMI && UseMI->getParent() == EntryMBB) {
358          CopyUseMI = UseMI; continue;
359        }
360        // Otherwise this is another use or second copy use.
361        CopyUseMI = NULL; break;
362      }
363      if (CopyUseMI) {
364        MachineInstr *NewMI =
365          BuildMI(*MF, CopyUseMI->getDebugLoc(),
366                  TII.get(TargetOpcode::DBG_VALUE))
367          .addReg(CopyUseMI->getOperand(0).getReg(), RegState::Debug)
368          .addImm(Offset).addMetadata(Variable);
369        EntryMBB->insertAfter(CopyUseMI, NewMI);
370      }
371    }
372  }
373
374  // Determine if there are any calls in this machine function.
375  MachineFrameInfo *MFI = MF->getFrameInfo();
376  if (!MFI->hasCalls()) {
377    for (MachineFunction::const_iterator
378           I = MF->begin(), E = MF->end(); I != E; ++I) {
379      const MachineBasicBlock *MBB = I;
380      for (MachineBasicBlock::const_iterator
381             II = MBB->begin(), IE = MBB->end(); II != IE; ++II) {
382        const TargetInstrDesc &TID = TM.getInstrInfo()->get(II->getOpcode());
383
384        if ((TID.isCall() && !TID.isReturn()) ||
385            II->isStackAligningInlineAsm()) {
386          MFI->setHasCalls(true);
387          goto done;
388        }
389      }
390    }
391  done:;
392  }
393
394  // Determine if there is a call to setjmp in the machine function.
395  MF->setCallsSetJmp(FunctionCallsSetJmp(&Fn));
396
397  // Replace forward-declared registers with the registers containing
398  // the desired value.
399  MachineRegisterInfo &MRI = MF->getRegInfo();
400  for (DenseMap<unsigned, unsigned>::iterator
401       I = FuncInfo->RegFixups.begin(), E = FuncInfo->RegFixups.end();
402       I != E; ++I) {
403    unsigned From = I->first;
404    unsigned To = I->second;
405    // If To is also scheduled to be replaced, find what its ultimate
406    // replacement is.
407    for (;;) {
408      DenseMap<unsigned, unsigned>::iterator J =
409        FuncInfo->RegFixups.find(To);
410      if (J == E) break;
411      To = J->second;
412    }
413    // Replace it.
414    MRI.replaceRegWith(From, To);
415  }
416
417  // Release function-specific state. SDB and CurDAG are already cleared
418  // at this point.
419  FuncInfo->clear();
420
421  return true;
422}
423
424void
425SelectionDAGISel::SelectBasicBlock(BasicBlock::const_iterator Begin,
426                                   BasicBlock::const_iterator End,
427                                   bool &HadTailCall) {
428  // Lower all of the non-terminator instructions. If a call is emitted
429  // as a tail call, cease emitting nodes for this block. Terminators
430  // are handled below.
431  for (BasicBlock::const_iterator I = Begin; I != End && !SDB->HasTailCall; ++I)
432    SDB->visit(*I);
433
434  // Make sure the root of the DAG is up-to-date.
435  CurDAG->setRoot(SDB->getControlRoot());
436  HadTailCall = SDB->HasTailCall;
437  SDB->clear();
438
439  // Final step, emit the lowered DAG as machine code.
440  CodeGenAndEmitDAG();
441  return;
442}
443
444void SelectionDAGISel::ComputeLiveOutVRegInfo() {
445  SmallPtrSet<SDNode*, 128> VisitedNodes;
446  SmallVector<SDNode*, 128> Worklist;
447
448  Worklist.push_back(CurDAG->getRoot().getNode());
449
450  APInt Mask;
451  APInt KnownZero;
452  APInt KnownOne;
453
454  do {
455    SDNode *N = Worklist.pop_back_val();
456
457    // If we've already seen this node, ignore it.
458    if (!VisitedNodes.insert(N))
459      continue;
460
461    // Otherwise, add all chain operands to the worklist.
462    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
463      if (N->getOperand(i).getValueType() == MVT::Other)
464        Worklist.push_back(N->getOperand(i).getNode());
465
466    // If this is a CopyToReg with a vreg dest, process it.
467    if (N->getOpcode() != ISD::CopyToReg)
468      continue;
469
470    unsigned DestReg = cast<RegisterSDNode>(N->getOperand(1))->getReg();
471    if (!TargetRegisterInfo::isVirtualRegister(DestReg))
472      continue;
473
474    // Ignore non-scalar or non-integer values.
475    SDValue Src = N->getOperand(2);
476    EVT SrcVT = Src.getValueType();
477    if (!SrcVT.isInteger() || SrcVT.isVector())
478      continue;
479
480    unsigned NumSignBits = CurDAG->ComputeNumSignBits(Src);
481    Mask = APInt::getAllOnesValue(SrcVT.getSizeInBits());
482    CurDAG->ComputeMaskedBits(Src, Mask, KnownZero, KnownOne);
483    FuncInfo->AddLiveOutRegInfo(DestReg, NumSignBits, KnownZero, KnownOne);
484  } while (!Worklist.empty());
485}
486
487void SelectionDAGISel::CodeGenAndEmitDAG() {
488  std::string GroupName;
489  if (TimePassesIsEnabled)
490    GroupName = "Instruction Selection and Scheduling";
491  std::string BlockName;
492  if (ViewDAGCombine1 || ViewLegalizeTypesDAGs || ViewLegalizeDAGs ||
493      ViewDAGCombine2 || ViewDAGCombineLT || ViewISelDAGs || ViewSchedDAGs ||
494      ViewSUnitDAGs)
495    BlockName = MF->getFunction()->getNameStr() + ":" +
496                FuncInfo->MBB->getBasicBlock()->getNameStr();
497
498  DEBUG(dbgs() << "Initial selection DAG:\n"; CurDAG->dump());
499
500  if (ViewDAGCombine1) CurDAG->viewGraph("dag-combine1 input for " + BlockName);
501
502  // Run the DAG combiner in pre-legalize mode.
503  {
504    NamedRegionTimer T("DAG Combining 1", GroupName, TimePassesIsEnabled);
505    CurDAG->Combine(Unrestricted, *AA, OptLevel);
506  }
507
508  DEBUG(dbgs() << "Optimized lowered selection DAG:\n"; CurDAG->dump());
509
510  // Second step, hack on the DAG until it only uses operations and types that
511  // the target supports.
512  if (ViewLegalizeTypesDAGs) CurDAG->viewGraph("legalize-types input for " +
513                                               BlockName);
514
515  bool Changed;
516  {
517    NamedRegionTimer T("Type Legalization", GroupName, TimePassesIsEnabled);
518    Changed = CurDAG->LegalizeTypes();
519  }
520
521  DEBUG(dbgs() << "Type-legalized selection DAG:\n"; CurDAG->dump());
522
523  if (Changed) {
524    if (ViewDAGCombineLT)
525      CurDAG->viewGraph("dag-combine-lt input for " + BlockName);
526
527    // Run the DAG combiner in post-type-legalize mode.
528    {
529      NamedRegionTimer T("DAG Combining after legalize types", GroupName,
530                         TimePassesIsEnabled);
531      CurDAG->Combine(NoIllegalTypes, *AA, OptLevel);
532    }
533
534    DEBUG(dbgs() << "Optimized type-legalized selection DAG:\n";
535          CurDAG->dump());
536  }
537
538  {
539    NamedRegionTimer T("Vector Legalization", GroupName, TimePassesIsEnabled);
540    Changed = CurDAG->LegalizeVectors();
541  }
542
543  if (Changed) {
544    {
545      NamedRegionTimer T("Type Legalization 2", GroupName, TimePassesIsEnabled);
546      CurDAG->LegalizeTypes();
547    }
548
549    if (ViewDAGCombineLT)
550      CurDAG->viewGraph("dag-combine-lv input for " + BlockName);
551
552    // Run the DAG combiner in post-type-legalize mode.
553    {
554      NamedRegionTimer T("DAG Combining after legalize vectors", GroupName,
555                         TimePassesIsEnabled);
556      CurDAG->Combine(NoIllegalOperations, *AA, OptLevel);
557    }
558
559    DEBUG(dbgs() << "Optimized vector-legalized selection DAG:\n";
560          CurDAG->dump());
561  }
562
563  if (ViewLegalizeDAGs) CurDAG->viewGraph("legalize input for " + BlockName);
564
565  {
566    NamedRegionTimer T("DAG Legalization", GroupName, TimePassesIsEnabled);
567    CurDAG->Legalize(OptLevel);
568  }
569
570  DEBUG(dbgs() << "Legalized selection DAG:\n"; CurDAG->dump());
571
572  if (ViewDAGCombine2) CurDAG->viewGraph("dag-combine2 input for " + BlockName);
573
574  // Run the DAG combiner in post-legalize mode.
575  {
576    NamedRegionTimer T("DAG Combining 2", GroupName, TimePassesIsEnabled);
577    CurDAG->Combine(NoIllegalOperations, *AA, OptLevel);
578  }
579
580  DEBUG(dbgs() << "Optimized legalized selection DAG:\n"; CurDAG->dump());
581
582  if (OptLevel != CodeGenOpt::None)
583    ComputeLiveOutVRegInfo();
584
585  if (ViewISelDAGs) CurDAG->viewGraph("isel input for " + BlockName);
586
587  // Third, instruction select all of the operations to machine code, adding the
588  // code to the MachineBasicBlock.
589  {
590    NamedRegionTimer T("Instruction Selection", GroupName, TimePassesIsEnabled);
591    DoInstructionSelection();
592  }
593
594  DEBUG(dbgs() << "Selected selection DAG:\n"; CurDAG->dump());
595
596  if (ViewSchedDAGs) CurDAG->viewGraph("scheduler input for " + BlockName);
597
598  // Schedule machine code.
599  ScheduleDAGSDNodes *Scheduler = CreateScheduler();
600  {
601    NamedRegionTimer T("Instruction Scheduling", GroupName,
602                       TimePassesIsEnabled);
603    Scheduler->Run(CurDAG, FuncInfo->MBB, FuncInfo->InsertPt);
604  }
605
606  if (ViewSUnitDAGs) Scheduler->viewGraph();
607
608  // Emit machine code to BB.  This can change 'BB' to the last block being
609  // inserted into.
610  MachineBasicBlock *FirstMBB = FuncInfo->MBB, *LastMBB;
611  {
612    NamedRegionTimer T("Instruction Creation", GroupName, TimePassesIsEnabled);
613
614    LastMBB = FuncInfo->MBB = Scheduler->EmitSchedule();
615    FuncInfo->InsertPt = Scheduler->InsertPos;
616  }
617
618  // If the block was split, make sure we update any references that are used to
619  // update PHI nodes later on.
620  if (FirstMBB != LastMBB)
621    SDB->UpdateSplitBlock(FirstMBB, LastMBB);
622
623  // Free the scheduler state.
624  {
625    NamedRegionTimer T("Instruction Scheduling Cleanup", GroupName,
626                       TimePassesIsEnabled);
627    delete Scheduler;
628  }
629
630  // Free the SelectionDAG state, now that we're finished with it.
631  CurDAG->clear();
632}
633
634void SelectionDAGISel::DoInstructionSelection() {
635  DEBUG(errs() << "===== Instruction selection begins:\n");
636
637  PreprocessISelDAG();
638
639  // Select target instructions for the DAG.
640  {
641    // Number all nodes with a topological order and set DAGSize.
642    DAGSize = CurDAG->AssignTopologicalOrder();
643
644    // Create a dummy node (which is not added to allnodes), that adds
645    // a reference to the root node, preventing it from being deleted,
646    // and tracking any changes of the root.
647    HandleSDNode Dummy(CurDAG->getRoot());
648    ISelPosition = SelectionDAG::allnodes_iterator(CurDAG->getRoot().getNode());
649    ++ISelPosition;
650
651    // The AllNodes list is now topological-sorted. Visit the
652    // nodes by starting at the end of the list (the root of the
653    // graph) and preceding back toward the beginning (the entry
654    // node).
655    while (ISelPosition != CurDAG->allnodes_begin()) {
656      SDNode *Node = --ISelPosition;
657      // Skip dead nodes. DAGCombiner is expected to eliminate all dead nodes,
658      // but there are currently some corner cases that it misses. Also, this
659      // makes it theoretically possible to disable the DAGCombiner.
660      if (Node->use_empty())
661        continue;
662
663      SDNode *ResNode = Select(Node);
664
665      // FIXME: This is pretty gross.  'Select' should be changed to not return
666      // anything at all and this code should be nuked with a tactical strike.
667
668      // If node should not be replaced, continue with the next one.
669      if (ResNode == Node || Node->getOpcode() == ISD::DELETED_NODE)
670        continue;
671      // Replace node.
672      if (ResNode)
673        ReplaceUses(Node, ResNode);
674
675      // If after the replacement this node is not used any more,
676      // remove this dead node.
677      if (Node->use_empty()) { // Don't delete EntryToken, etc.
678        ISelUpdater ISU(ISelPosition);
679        CurDAG->RemoveDeadNode(Node, &ISU);
680      }
681    }
682
683    CurDAG->setRoot(Dummy.getValue());
684  }
685
686  DEBUG(errs() << "===== Instruction selection ends:\n");
687
688  PostprocessISelDAG();
689}
690
691/// PrepareEHLandingPad - Emit an EH_LABEL, set up live-in registers, and
692/// do other setup for EH landing-pad blocks.
693void SelectionDAGISel::PrepareEHLandingPad() {
694  // Add a label to mark the beginning of the landing pad.  Deletion of the
695  // landing pad can thus be detected via the MachineModuleInfo.
696  MCSymbol *Label = MF->getMMI().addLandingPad(FuncInfo->MBB);
697
698  const TargetInstrDesc &II = TM.getInstrInfo()->get(TargetOpcode::EH_LABEL);
699  BuildMI(*FuncInfo->MBB, FuncInfo->InsertPt, SDB->getCurDebugLoc(), II)
700    .addSym(Label);
701
702  // Mark exception register as live in.
703  unsigned Reg = TLI.getExceptionAddressRegister();
704  if (Reg) FuncInfo->MBB->addLiveIn(Reg);
705
706  // Mark exception selector register as live in.
707  Reg = TLI.getExceptionSelectorRegister();
708  if (Reg) FuncInfo->MBB->addLiveIn(Reg);
709
710  // FIXME: Hack around an exception handling flaw (PR1508): the personality
711  // function and list of typeids logically belong to the invoke (or, if you
712  // like, the basic block containing the invoke), and need to be associated
713  // with it in the dwarf exception handling tables.  Currently however the
714  // information is provided by an intrinsic (eh.selector) that can be moved
715  // to unexpected places by the optimizers: if the unwind edge is critical,
716  // then breaking it can result in the intrinsics being in the successor of
717  // the landing pad, not the landing pad itself.  This results
718  // in exceptions not being caught because no typeids are associated with
719  // the invoke.  This may not be the only way things can go wrong, but it
720  // is the only way we try to work around for the moment.
721  const BasicBlock *LLVMBB = FuncInfo->MBB->getBasicBlock();
722  const BranchInst *Br = dyn_cast<BranchInst>(LLVMBB->getTerminator());
723
724  if (Br && Br->isUnconditional()) { // Critical edge?
725    BasicBlock::const_iterator I, E;
726    for (I = LLVMBB->begin(), E = --LLVMBB->end(); I != E; ++I)
727      if (isa<EHSelectorInst>(I))
728        break;
729
730    if (I == E)
731      // No catch info found - try to extract some from the successor.
732      CopyCatchInfo(Br->getSuccessor(0), LLVMBB, &MF->getMMI(), *FuncInfo);
733  }
734}
735
736
737
738
739bool SelectionDAGISel::TryToFoldFastISelLoad(const LoadInst *LI,
740                                             FastISel *FastIS) {
741  // Don't try to fold volatile loads.  Target has to deal with alignment
742  // constraints.
743  if (LI->isVolatile()) return false;
744
745  // Figure out which vreg this is going into.
746  unsigned LoadReg = FastIS->getRegForValue(LI);
747  assert(LoadReg && "Load isn't already assigned a vreg? ");
748
749  // Check to see what the uses of this vreg are.  If it has no uses, or more
750  // than one use (at the machine instr level) then we can't fold it.
751  MachineRegisterInfo::reg_iterator RI = RegInfo->reg_begin(LoadReg);
752  if (RI == RegInfo->reg_end())
753    return false;
754
755  // See if there is exactly one use of the vreg.  If there are multiple uses,
756  // then the instruction got lowered to multiple machine instructions or the
757  // use of the loaded value ended up being multiple operands of the result, in
758  // either case, we can't fold this.
759  MachineRegisterInfo::reg_iterator PostRI = RI; ++PostRI;
760  if (PostRI != RegInfo->reg_end())
761    return false;
762
763  assert(RI.getOperand().isUse() &&
764         "The only use of the vreg must be a use, we haven't emitted the def!");
765
766  MachineInstr *User = &*RI;
767
768  // Set the insertion point properly.  Folding the load can cause generation of
769  // other random instructions (like sign extends) for addressing modes, make
770  // sure they get inserted in a logical place before the new instruction.
771  FuncInfo->InsertPt = User;
772  FuncInfo->MBB = User->getParent();
773
774  // Ask the target to try folding the load.
775  return FastIS->TryToFoldLoad(User, RI.getOperandNo(), LI);
776}
777
778#ifndef NDEBUG
779/// CheckLineNumbers - Check if basic block instructions follow source order
780/// or not.
781static void CheckLineNumbers(const BasicBlock *BB) {
782  unsigned Line = 0;
783  unsigned Col = 0;
784  for (BasicBlock::const_iterator BI = BB->begin(),
785         BE = BB->end(); BI != BE; ++BI) {
786    const DebugLoc DL = BI->getDebugLoc();
787    if (DL.isUnknown()) continue;
788    unsigned L = DL.getLine();
789    unsigned C = DL.getCol();
790    if (L < Line || (L == Line && C < Col)) {
791      ++NumBBWithOutOfOrderLineInfo;
792      return;
793    }
794    Line = L;
795    Col = C;
796  }
797}
798
799/// CheckLineNumbers - Check if machine basic block instructions follow source
800/// order or not.
801static void CheckLineNumbers(const MachineBasicBlock *MBB) {
802  unsigned Line = 0;
803  unsigned Col = 0;
804  for (MachineBasicBlock::const_iterator MBI = MBB->begin(),
805         MBE = MBB->end(); MBI != MBE; ++MBI) {
806    const DebugLoc DL = MBI->getDebugLoc();
807    if (DL.isUnknown()) continue;
808    unsigned L = DL.getLine();
809    unsigned C = DL.getCol();
810    if (L < Line || (L == Line && C < Col)) {
811      ++NumMBBWithOutOfOrderLineInfo;
812      return;
813    }
814    Line = L;
815    Col = C;
816  }
817}
818#endif
819
820void SelectionDAGISel::SelectAllBasicBlocks(const Function &Fn) {
821  // Initialize the Fast-ISel state, if needed.
822  FastISel *FastIS = 0;
823  if (EnableFastISel)
824    FastIS = TLI.createFastISel(*FuncInfo);
825
826  // Iterate over all basic blocks in the function.
827  ReversePostOrderTraversal<const Function*> RPOT(&Fn);
828  for (ReversePostOrderTraversal<const Function*>::rpo_iterator
829       I = RPOT.begin(), E = RPOT.end(); I != E; ++I) {
830    const BasicBlock *LLVMBB = *I;
831#ifndef NDEBUG
832    CheckLineNumbers(LLVMBB);
833#endif
834
835    if (OptLevel != CodeGenOpt::None) {
836      bool AllPredsVisited = true;
837      for (const_pred_iterator PI = pred_begin(LLVMBB), PE = pred_end(LLVMBB);
838           PI != PE; ++PI) {
839        if (!FuncInfo->VisitedBBs.count(*PI)) {
840          AllPredsVisited = false;
841          break;
842        }
843      }
844
845      if (AllPredsVisited) {
846        for (BasicBlock::const_iterator I = LLVMBB->begin(), E = LLVMBB->end();
847             I != E && isa<PHINode>(I); ++I) {
848          FuncInfo->ComputePHILiveOutRegInfo(cast<PHINode>(I));
849        }
850      } else {
851        for (BasicBlock::const_iterator I = LLVMBB->begin(), E = LLVMBB->end();
852             I != E && isa<PHINode>(I); ++I) {
853          FuncInfo->InvalidatePHILiveOutRegInfo(cast<PHINode>(I));
854        }
855      }
856
857      FuncInfo->VisitedBBs.insert(LLVMBB);
858    }
859
860    FuncInfo->MBB = FuncInfo->MBBMap[LLVMBB];
861    FuncInfo->InsertPt = FuncInfo->MBB->getFirstNonPHI();
862
863    BasicBlock::const_iterator const Begin = LLVMBB->getFirstNonPHI();
864    BasicBlock::const_iterator const End = LLVMBB->end();
865    BasicBlock::const_iterator BI = End;
866
867    FuncInfo->InsertPt = FuncInfo->MBB->getFirstNonPHI();
868
869    // Setup an EH landing-pad block.
870    if (FuncInfo->MBB->isLandingPad())
871      PrepareEHLandingPad();
872
873    // Lower any arguments needed in this block if this is the entry block.
874    if (LLVMBB == &Fn.getEntryBlock())
875      LowerArguments(LLVMBB);
876
877    // Before doing SelectionDAG ISel, see if FastISel has been requested.
878    if (FastIS) {
879      FastIS->startNewBlock();
880
881      // Emit code for any incoming arguments. This must happen before
882      // beginning FastISel on the entry block.
883      if (LLVMBB == &Fn.getEntryBlock()) {
884        CurDAG->setRoot(SDB->getControlRoot());
885        SDB->clear();
886        CodeGenAndEmitDAG();
887
888        // If we inserted any instructions at the beginning, make a note of
889        // where they are, so we can be sure to emit subsequent instructions
890        // after them.
891        if (FuncInfo->InsertPt != FuncInfo->MBB->begin())
892          FastIS->setLastLocalValue(llvm::prior(FuncInfo->InsertPt));
893        else
894          FastIS->setLastLocalValue(0);
895      }
896
897      // Do FastISel on as many instructions as possible.
898      for (; BI != Begin; --BI) {
899        const Instruction *Inst = llvm::prior(BI);
900
901        // If we no longer require this instruction, skip it.
902        if (!Inst->mayWriteToMemory() &&
903            !isa<TerminatorInst>(Inst) &&
904            !isa<DbgInfoIntrinsic>(Inst) &&
905            !FuncInfo->isExportedInst(Inst))
906          continue;
907
908        // Bottom-up: reset the insert pos at the top, after any local-value
909        // instructions.
910        FastIS->recomputeInsertPt();
911
912        // Try to select the instruction with FastISel.
913        if (FastIS->SelectInstruction(Inst)) {
914          // If fast isel succeeded, check to see if there is a single-use
915          // non-volatile load right before the selected instruction, and see if
916          // the load is used by the instruction.  If so, try to fold it.
917          const Instruction *BeforeInst = 0;
918          if (Inst != Begin)
919            BeforeInst = llvm::prior(llvm::prior(BI));
920          if (BeforeInst && isa<LoadInst>(BeforeInst) &&
921              BeforeInst->hasOneUse() && *BeforeInst->use_begin() == Inst &&
922              TryToFoldFastISelLoad(cast<LoadInst>(BeforeInst), FastIS))
923            --BI; // If we succeeded, don't re-select the load.
924          continue;
925        }
926
927        // Then handle certain instructions as single-LLVM-Instruction blocks.
928        if (isa<CallInst>(Inst)) {
929          ++NumFastIselFailures;
930          if (EnableFastISelVerbose || EnableFastISelAbort) {
931            dbgs() << "FastISel missed call: ";
932            Inst->dump();
933          }
934
935          if (!Inst->getType()->isVoidTy() && !Inst->use_empty()) {
936            unsigned &R = FuncInfo->ValueMap[Inst];
937            if (!R)
938              R = FuncInfo->CreateRegs(Inst->getType());
939          }
940
941          bool HadTailCall = false;
942          SelectBasicBlock(Inst, BI, HadTailCall);
943
944          // If the call was emitted as a tail call, we're done with the block.
945          if (HadTailCall) {
946            --BI;
947            break;
948          }
949
950          continue;
951        }
952
953        // Otherwise, give up on FastISel for the rest of the block.
954        // For now, be a little lenient about non-branch terminators.
955        if (!isa<TerminatorInst>(Inst) || isa<BranchInst>(Inst)) {
956          ++NumFastIselFailures;
957          if (EnableFastISelVerbose || EnableFastISelAbort) {
958            dbgs() << "FastISel miss: ";
959            Inst->dump();
960          }
961          if (EnableFastISelAbort)
962            // The "fast" selector couldn't handle something and bailed.
963            // For the purpose of debugging, just abort.
964            llvm_unreachable("FastISel didn't select the entire block");
965        }
966        break;
967      }
968
969      FastIS->recomputeInsertPt();
970    }
971
972    if (Begin != BI)
973      ++NumDAGBlocks;
974    else
975      ++NumFastIselBlocks;
976
977    // Run SelectionDAG instruction selection on the remainder of the block
978    // not handled by FastISel. If FastISel is not run, this is the entire
979    // block.
980    bool HadTailCall;
981    SelectBasicBlock(Begin, BI, HadTailCall);
982
983    FinishBasicBlock();
984    FuncInfo->PHINodesToUpdate.clear();
985  }
986
987  delete FastIS;
988#ifndef NDEBUG
989  for (MachineFunction::const_iterator MBI = MF->begin(), MBE = MF->end();
990       MBI != MBE; ++MBI)
991    CheckLineNumbers(MBI);
992#endif
993}
994
995void
996SelectionDAGISel::FinishBasicBlock() {
997
998  DEBUG(dbgs() << "Total amount of phi nodes to update: "
999               << FuncInfo->PHINodesToUpdate.size() << "\n";
1000        for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i)
1001          dbgs() << "Node " << i << " : ("
1002                 << FuncInfo->PHINodesToUpdate[i].first
1003                 << ", " << FuncInfo->PHINodesToUpdate[i].second << ")\n");
1004
1005  // Next, now that we know what the last MBB the LLVM BB expanded is, update
1006  // PHI nodes in successors.
1007  if (SDB->SwitchCases.empty() &&
1008      SDB->JTCases.empty() &&
1009      SDB->BitTestCases.empty()) {
1010    for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i) {
1011      MachineInstr *PHI = FuncInfo->PHINodesToUpdate[i].first;
1012      assert(PHI->isPHI() &&
1013             "This is not a machine PHI node that we are updating!");
1014      if (!FuncInfo->MBB->isSuccessor(PHI->getParent()))
1015        continue;
1016      PHI->addOperand(
1017        MachineOperand::CreateReg(FuncInfo->PHINodesToUpdate[i].second, false));
1018      PHI->addOperand(MachineOperand::CreateMBB(FuncInfo->MBB));
1019    }
1020    return;
1021  }
1022
1023  for (unsigned i = 0, e = SDB->BitTestCases.size(); i != e; ++i) {
1024    // Lower header first, if it wasn't already lowered
1025    if (!SDB->BitTestCases[i].Emitted) {
1026      // Set the current basic block to the mbb we wish to insert the code into
1027      FuncInfo->MBB = SDB->BitTestCases[i].Parent;
1028      FuncInfo->InsertPt = FuncInfo->MBB->end();
1029      // Emit the code
1030      SDB->visitBitTestHeader(SDB->BitTestCases[i], FuncInfo->MBB);
1031      CurDAG->setRoot(SDB->getRoot());
1032      SDB->clear();
1033      CodeGenAndEmitDAG();
1034    }
1035
1036    for (unsigned j = 0, ej = SDB->BitTestCases[i].Cases.size(); j != ej; ++j) {
1037      // Set the current basic block to the mbb we wish to insert the code into
1038      FuncInfo->MBB = SDB->BitTestCases[i].Cases[j].ThisBB;
1039      FuncInfo->InsertPt = FuncInfo->MBB->end();
1040      // Emit the code
1041      if (j+1 != ej)
1042        SDB->visitBitTestCase(SDB->BitTestCases[i],
1043                              SDB->BitTestCases[i].Cases[j+1].ThisBB,
1044                              SDB->BitTestCases[i].Reg,
1045                              SDB->BitTestCases[i].Cases[j],
1046                              FuncInfo->MBB);
1047      else
1048        SDB->visitBitTestCase(SDB->BitTestCases[i],
1049                              SDB->BitTestCases[i].Default,
1050                              SDB->BitTestCases[i].Reg,
1051                              SDB->BitTestCases[i].Cases[j],
1052                              FuncInfo->MBB);
1053
1054
1055      CurDAG->setRoot(SDB->getRoot());
1056      SDB->clear();
1057      CodeGenAndEmitDAG();
1058    }
1059
1060    // Update PHI Nodes
1061    for (unsigned pi = 0, pe = FuncInfo->PHINodesToUpdate.size();
1062         pi != pe; ++pi) {
1063      MachineInstr *PHI = FuncInfo->PHINodesToUpdate[pi].first;
1064      MachineBasicBlock *PHIBB = PHI->getParent();
1065      assert(PHI->isPHI() &&
1066             "This is not a machine PHI node that we are updating!");
1067      // This is "default" BB. We have two jumps to it. From "header" BB and
1068      // from last "case" BB.
1069      if (PHIBB == SDB->BitTestCases[i].Default) {
1070        PHI->addOperand(MachineOperand::
1071                        CreateReg(FuncInfo->PHINodesToUpdate[pi].second,
1072                                  false));
1073        PHI->addOperand(MachineOperand::CreateMBB(SDB->BitTestCases[i].Parent));
1074        PHI->addOperand(MachineOperand::
1075                        CreateReg(FuncInfo->PHINodesToUpdate[pi].second,
1076                                  false));
1077        PHI->addOperand(MachineOperand::CreateMBB(SDB->BitTestCases[i].Cases.
1078                                                  back().ThisBB));
1079      }
1080      // One of "cases" BB.
1081      for (unsigned j = 0, ej = SDB->BitTestCases[i].Cases.size();
1082           j != ej; ++j) {
1083        MachineBasicBlock* cBB = SDB->BitTestCases[i].Cases[j].ThisBB;
1084        if (cBB->isSuccessor(PHIBB)) {
1085          PHI->addOperand(MachineOperand::
1086                          CreateReg(FuncInfo->PHINodesToUpdate[pi].second,
1087                                    false));
1088          PHI->addOperand(MachineOperand::CreateMBB(cBB));
1089        }
1090      }
1091    }
1092  }
1093  SDB->BitTestCases.clear();
1094
1095  // If the JumpTable record is filled in, then we need to emit a jump table.
1096  // Updating the PHI nodes is tricky in this case, since we need to determine
1097  // whether the PHI is a successor of the range check MBB or the jump table MBB
1098  for (unsigned i = 0, e = SDB->JTCases.size(); i != e; ++i) {
1099    // Lower header first, if it wasn't already lowered
1100    if (!SDB->JTCases[i].first.Emitted) {
1101      // Set the current basic block to the mbb we wish to insert the code into
1102      FuncInfo->MBB = SDB->JTCases[i].first.HeaderBB;
1103      FuncInfo->InsertPt = FuncInfo->MBB->end();
1104      // Emit the code
1105      SDB->visitJumpTableHeader(SDB->JTCases[i].second, SDB->JTCases[i].first,
1106                                FuncInfo->MBB);
1107      CurDAG->setRoot(SDB->getRoot());
1108      SDB->clear();
1109      CodeGenAndEmitDAG();
1110    }
1111
1112    // Set the current basic block to the mbb we wish to insert the code into
1113    FuncInfo->MBB = SDB->JTCases[i].second.MBB;
1114    FuncInfo->InsertPt = FuncInfo->MBB->end();
1115    // Emit the code
1116    SDB->visitJumpTable(SDB->JTCases[i].second);
1117    CurDAG->setRoot(SDB->getRoot());
1118    SDB->clear();
1119    CodeGenAndEmitDAG();
1120
1121    // Update PHI Nodes
1122    for (unsigned pi = 0, pe = FuncInfo->PHINodesToUpdate.size();
1123         pi != pe; ++pi) {
1124      MachineInstr *PHI = FuncInfo->PHINodesToUpdate[pi].first;
1125      MachineBasicBlock *PHIBB = PHI->getParent();
1126      assert(PHI->isPHI() &&
1127             "This is not a machine PHI node that we are updating!");
1128      // "default" BB. We can go there only from header BB.
1129      if (PHIBB == SDB->JTCases[i].second.Default) {
1130        PHI->addOperand
1131          (MachineOperand::CreateReg(FuncInfo->PHINodesToUpdate[pi].second,
1132                                     false));
1133        PHI->addOperand
1134          (MachineOperand::CreateMBB(SDB->JTCases[i].first.HeaderBB));
1135      }
1136      // JT BB. Just iterate over successors here
1137      if (FuncInfo->MBB->isSuccessor(PHIBB)) {
1138        PHI->addOperand
1139          (MachineOperand::CreateReg(FuncInfo->PHINodesToUpdate[pi].second,
1140                                     false));
1141        PHI->addOperand(MachineOperand::CreateMBB(FuncInfo->MBB));
1142      }
1143    }
1144  }
1145  SDB->JTCases.clear();
1146
1147  // If the switch block involved a branch to one of the actual successors, we
1148  // need to update PHI nodes in that block.
1149  for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i) {
1150    MachineInstr *PHI = FuncInfo->PHINodesToUpdate[i].first;
1151    assert(PHI->isPHI() &&
1152           "This is not a machine PHI node that we are updating!");
1153    if (FuncInfo->MBB->isSuccessor(PHI->getParent())) {
1154      PHI->addOperand(
1155        MachineOperand::CreateReg(FuncInfo->PHINodesToUpdate[i].second, false));
1156      PHI->addOperand(MachineOperand::CreateMBB(FuncInfo->MBB));
1157    }
1158  }
1159
1160  // If we generated any switch lowering information, build and codegen any
1161  // additional DAGs necessary.
1162  for (unsigned i = 0, e = SDB->SwitchCases.size(); i != e; ++i) {
1163    // Set the current basic block to the mbb we wish to insert the code into
1164    FuncInfo->MBB = SDB->SwitchCases[i].ThisBB;
1165    FuncInfo->InsertPt = FuncInfo->MBB->end();
1166
1167    // Determine the unique successors.
1168    SmallVector<MachineBasicBlock *, 2> Succs;
1169    Succs.push_back(SDB->SwitchCases[i].TrueBB);
1170    if (SDB->SwitchCases[i].TrueBB != SDB->SwitchCases[i].FalseBB)
1171      Succs.push_back(SDB->SwitchCases[i].FalseBB);
1172
1173    // Emit the code. Note that this could result in FuncInfo->MBB being split.
1174    SDB->visitSwitchCase(SDB->SwitchCases[i], FuncInfo->MBB);
1175    CurDAG->setRoot(SDB->getRoot());
1176    SDB->clear();
1177    CodeGenAndEmitDAG();
1178
1179    // Remember the last block, now that any splitting is done, for use in
1180    // populating PHI nodes in successors.
1181    MachineBasicBlock *ThisBB = FuncInfo->MBB;
1182
1183    // Handle any PHI nodes in successors of this chunk, as if we were coming
1184    // from the original BB before switch expansion.  Note that PHI nodes can
1185    // occur multiple times in PHINodesToUpdate.  We have to be very careful to
1186    // handle them the right number of times.
1187    for (unsigned i = 0, e = Succs.size(); i != e; ++i) {
1188      FuncInfo->MBB = Succs[i];
1189      FuncInfo->InsertPt = FuncInfo->MBB->end();
1190      // FuncInfo->MBB may have been removed from the CFG if a branch was
1191      // constant folded.
1192      if (ThisBB->isSuccessor(FuncInfo->MBB)) {
1193        for (MachineBasicBlock::iterator Phi = FuncInfo->MBB->begin();
1194             Phi != FuncInfo->MBB->end() && Phi->isPHI();
1195             ++Phi) {
1196          // This value for this PHI node is recorded in PHINodesToUpdate.
1197          for (unsigned pn = 0; ; ++pn) {
1198            assert(pn != FuncInfo->PHINodesToUpdate.size() &&
1199                   "Didn't find PHI entry!");
1200            if (FuncInfo->PHINodesToUpdate[pn].first == Phi) {
1201              Phi->addOperand(MachineOperand::
1202                              CreateReg(FuncInfo->PHINodesToUpdate[pn].second,
1203                                        false));
1204              Phi->addOperand(MachineOperand::CreateMBB(ThisBB));
1205              break;
1206            }
1207          }
1208        }
1209      }
1210    }
1211  }
1212  SDB->SwitchCases.clear();
1213}
1214
1215
1216/// Create the scheduler. If a specific scheduler was specified
1217/// via the SchedulerRegistry, use it, otherwise select the
1218/// one preferred by the target.
1219///
1220ScheduleDAGSDNodes *SelectionDAGISel::CreateScheduler() {
1221  RegisterScheduler::FunctionPassCtor Ctor = RegisterScheduler::getDefault();
1222
1223  if (!Ctor) {
1224    Ctor = ISHeuristic;
1225    RegisterScheduler::setDefault(Ctor);
1226  }
1227
1228  return Ctor(this, OptLevel);
1229}
1230
1231//===----------------------------------------------------------------------===//
1232// Helper functions used by the generated instruction selector.
1233//===----------------------------------------------------------------------===//
1234// Calls to these methods are generated by tblgen.
1235
1236/// CheckAndMask - The isel is trying to match something like (and X, 255).  If
1237/// the dag combiner simplified the 255, we still want to match.  RHS is the
1238/// actual value in the DAG on the RHS of an AND, and DesiredMaskS is the value
1239/// specified in the .td file (e.g. 255).
1240bool SelectionDAGISel::CheckAndMask(SDValue LHS, ConstantSDNode *RHS,
1241                                    int64_t DesiredMaskS) const {
1242  const APInt &ActualMask = RHS->getAPIntValue();
1243  const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
1244
1245  // If the actual mask exactly matches, success!
1246  if (ActualMask == DesiredMask)
1247    return true;
1248
1249  // If the actual AND mask is allowing unallowed bits, this doesn't match.
1250  if (ActualMask.intersects(~DesiredMask))
1251    return false;
1252
1253  // Otherwise, the DAG Combiner may have proven that the value coming in is
1254  // either already zero or is not demanded.  Check for known zero input bits.
1255  APInt NeededMask = DesiredMask & ~ActualMask;
1256  if (CurDAG->MaskedValueIsZero(LHS, NeededMask))
1257    return true;
1258
1259  // TODO: check to see if missing bits are just not demanded.
1260
1261  // Otherwise, this pattern doesn't match.
1262  return false;
1263}
1264
1265/// CheckOrMask - The isel is trying to match something like (or X, 255).  If
1266/// the dag combiner simplified the 255, we still want to match.  RHS is the
1267/// actual value in the DAG on the RHS of an OR, and DesiredMaskS is the value
1268/// specified in the .td file (e.g. 255).
1269bool SelectionDAGISel::CheckOrMask(SDValue LHS, ConstantSDNode *RHS,
1270                                   int64_t DesiredMaskS) const {
1271  const APInt &ActualMask = RHS->getAPIntValue();
1272  const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
1273
1274  // If the actual mask exactly matches, success!
1275  if (ActualMask == DesiredMask)
1276    return true;
1277
1278  // If the actual AND mask is allowing unallowed bits, this doesn't match.
1279  if (ActualMask.intersects(~DesiredMask))
1280    return false;
1281
1282  // Otherwise, the DAG Combiner may have proven that the value coming in is
1283  // either already zero or is not demanded.  Check for known zero input bits.
1284  APInt NeededMask = DesiredMask & ~ActualMask;
1285
1286  APInt KnownZero, KnownOne;
1287  CurDAG->ComputeMaskedBits(LHS, NeededMask, KnownZero, KnownOne);
1288
1289  // If all the missing bits in the or are already known to be set, match!
1290  if ((NeededMask & KnownOne) == NeededMask)
1291    return true;
1292
1293  // TODO: check to see if missing bits are just not demanded.
1294
1295  // Otherwise, this pattern doesn't match.
1296  return false;
1297}
1298
1299
1300/// SelectInlineAsmMemoryOperands - Calls to this are automatically generated
1301/// by tblgen.  Others should not call it.
1302void SelectionDAGISel::
1303SelectInlineAsmMemoryOperands(std::vector<SDValue> &Ops) {
1304  std::vector<SDValue> InOps;
1305  std::swap(InOps, Ops);
1306
1307  Ops.push_back(InOps[InlineAsm::Op_InputChain]); // 0
1308  Ops.push_back(InOps[InlineAsm::Op_AsmString]);  // 1
1309  Ops.push_back(InOps[InlineAsm::Op_MDNode]);     // 2, !srcloc
1310  Ops.push_back(InOps[InlineAsm::Op_ExtraInfo]);  // 3 (SideEffect, AlignStack)
1311
1312  unsigned i = InlineAsm::Op_FirstOperand, e = InOps.size();
1313  if (InOps[e-1].getValueType() == MVT::Glue)
1314    --e;  // Don't process a glue operand if it is here.
1315
1316  while (i != e) {
1317    unsigned Flags = cast<ConstantSDNode>(InOps[i])->getZExtValue();
1318    if (!InlineAsm::isMemKind(Flags)) {
1319      // Just skip over this operand, copying the operands verbatim.
1320      Ops.insert(Ops.end(), InOps.begin()+i,
1321                 InOps.begin()+i+InlineAsm::getNumOperandRegisters(Flags) + 1);
1322      i += InlineAsm::getNumOperandRegisters(Flags) + 1;
1323    } else {
1324      assert(InlineAsm::getNumOperandRegisters(Flags) == 1 &&
1325             "Memory operand with multiple values?");
1326      // Otherwise, this is a memory operand.  Ask the target to select it.
1327      std::vector<SDValue> SelOps;
1328      if (SelectInlineAsmMemoryOperand(InOps[i+1], 'm', SelOps))
1329        report_fatal_error("Could not match memory address.  Inline asm"
1330                           " failure!");
1331
1332      // Add this to the output node.
1333      unsigned NewFlags =
1334        InlineAsm::getFlagWord(InlineAsm::Kind_Mem, SelOps.size());
1335      Ops.push_back(CurDAG->getTargetConstant(NewFlags, MVT::i32));
1336      Ops.insert(Ops.end(), SelOps.begin(), SelOps.end());
1337      i += 2;
1338    }
1339  }
1340
1341  // Add the glue input back if present.
1342  if (e != InOps.size())
1343    Ops.push_back(InOps.back());
1344}
1345
1346/// findGlueUse - Return use of MVT::Glue value produced by the specified
1347/// SDNode.
1348///
1349static SDNode *findGlueUse(SDNode *N) {
1350  unsigned FlagResNo = N->getNumValues()-1;
1351  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
1352    SDUse &Use = I.getUse();
1353    if (Use.getResNo() == FlagResNo)
1354      return Use.getUser();
1355  }
1356  return NULL;
1357}
1358
1359/// findNonImmUse - Return true if "Use" is a non-immediate use of "Def".
1360/// This function recursively traverses up the operand chain, ignoring
1361/// certain nodes.
1362static bool findNonImmUse(SDNode *Use, SDNode* Def, SDNode *ImmedUse,
1363                          SDNode *Root, SmallPtrSet<SDNode*, 16> &Visited,
1364                          bool IgnoreChains) {
1365  // The NodeID's are given uniques ID's where a node ID is guaranteed to be
1366  // greater than all of its (recursive) operands.  If we scan to a point where
1367  // 'use' is smaller than the node we're scanning for, then we know we will
1368  // never find it.
1369  //
1370  // The Use may be -1 (unassigned) if it is a newly allocated node.  This can
1371  // happen because we scan down to newly selected nodes in the case of glue
1372  // uses.
1373  if ((Use->getNodeId() < Def->getNodeId() && Use->getNodeId() != -1))
1374    return false;
1375
1376  // Don't revisit nodes if we already scanned it and didn't fail, we know we
1377  // won't fail if we scan it again.
1378  if (!Visited.insert(Use))
1379    return false;
1380
1381  for (unsigned i = 0, e = Use->getNumOperands(); i != e; ++i) {
1382    // Ignore chain uses, they are validated by HandleMergeInputChains.
1383    if (Use->getOperand(i).getValueType() == MVT::Other && IgnoreChains)
1384      continue;
1385
1386    SDNode *N = Use->getOperand(i).getNode();
1387    if (N == Def) {
1388      if (Use == ImmedUse || Use == Root)
1389        continue;  // We are not looking for immediate use.
1390      assert(N != Root);
1391      return true;
1392    }
1393
1394    // Traverse up the operand chain.
1395    if (findNonImmUse(N, Def, ImmedUse, Root, Visited, IgnoreChains))
1396      return true;
1397  }
1398  return false;
1399}
1400
1401/// IsProfitableToFold - Returns true if it's profitable to fold the specific
1402/// operand node N of U during instruction selection that starts at Root.
1403bool SelectionDAGISel::IsProfitableToFold(SDValue N, SDNode *U,
1404                                          SDNode *Root) const {
1405  if (OptLevel == CodeGenOpt::None) return false;
1406  return N.hasOneUse();
1407}
1408
1409/// IsLegalToFold - Returns true if the specific operand node N of
1410/// U can be folded during instruction selection that starts at Root.
1411bool SelectionDAGISel::IsLegalToFold(SDValue N, SDNode *U, SDNode *Root,
1412                                     CodeGenOpt::Level OptLevel,
1413                                     bool IgnoreChains) {
1414  if (OptLevel == CodeGenOpt::None) return false;
1415
1416  // If Root use can somehow reach N through a path that that doesn't contain
1417  // U then folding N would create a cycle. e.g. In the following
1418  // diagram, Root can reach N through X. If N is folded into into Root, then
1419  // X is both a predecessor and a successor of U.
1420  //
1421  //          [N*]           //
1422  //         ^   ^           //
1423  //        /     \          //
1424  //      [U*]    [X]?       //
1425  //        ^     ^          //
1426  //         \   /           //
1427  //          \ /            //
1428  //         [Root*]         //
1429  //
1430  // * indicates nodes to be folded together.
1431  //
1432  // If Root produces glue, then it gets (even more) interesting. Since it
1433  // will be "glued" together with its glue use in the scheduler, we need to
1434  // check if it might reach N.
1435  //
1436  //          [N*]           //
1437  //         ^   ^           //
1438  //        /     \          //
1439  //      [U*]    [X]?       //
1440  //        ^       ^        //
1441  //         \       \       //
1442  //          \      |       //
1443  //         [Root*] |       //
1444  //          ^      |       //
1445  //          f      |       //
1446  //          |      /       //
1447  //         [Y]    /        //
1448  //           ^   /         //
1449  //           f  /          //
1450  //           | /           //
1451  //          [GU]           //
1452  //
1453  // If GU (glue use) indirectly reaches N (the load), and Root folds N
1454  // (call it Fold), then X is a predecessor of GU and a successor of
1455  // Fold. But since Fold and GU are glued together, this will create
1456  // a cycle in the scheduling graph.
1457
1458  // If the node has glue, walk down the graph to the "lowest" node in the
1459  // glueged set.
1460  EVT VT = Root->getValueType(Root->getNumValues()-1);
1461  while (VT == MVT::Glue) {
1462    SDNode *GU = findGlueUse(Root);
1463    if (GU == NULL)
1464      break;
1465    Root = GU;
1466    VT = Root->getValueType(Root->getNumValues()-1);
1467
1468    // If our query node has a glue result with a use, we've walked up it.  If
1469    // the user (which has already been selected) has a chain or indirectly uses
1470    // the chain, our WalkChainUsers predicate will not consider it.  Because of
1471    // this, we cannot ignore chains in this predicate.
1472    IgnoreChains = false;
1473  }
1474
1475
1476  SmallPtrSet<SDNode*, 16> Visited;
1477  return !findNonImmUse(Root, N.getNode(), U, Root, Visited, IgnoreChains);
1478}
1479
1480SDNode *SelectionDAGISel::Select_INLINEASM(SDNode *N) {
1481  std::vector<SDValue> Ops(N->op_begin(), N->op_end());
1482  SelectInlineAsmMemoryOperands(Ops);
1483
1484  std::vector<EVT> VTs;
1485  VTs.push_back(MVT::Other);
1486  VTs.push_back(MVT::Glue);
1487  SDValue New = CurDAG->getNode(ISD::INLINEASM, N->getDebugLoc(),
1488                                VTs, &Ops[0], Ops.size());
1489  New->setNodeId(-1);
1490  return New.getNode();
1491}
1492
1493SDNode *SelectionDAGISel::Select_UNDEF(SDNode *N) {
1494  return CurDAG->SelectNodeTo(N, TargetOpcode::IMPLICIT_DEF,N->getValueType(0));
1495}
1496
1497/// GetVBR - decode a vbr encoding whose top bit is set.
1498LLVM_ATTRIBUTE_ALWAYS_INLINE static uint64_t
1499GetVBR(uint64_t Val, const unsigned char *MatcherTable, unsigned &Idx) {
1500  assert(Val >= 128 && "Not a VBR");
1501  Val &= 127;  // Remove first vbr bit.
1502
1503  unsigned Shift = 7;
1504  uint64_t NextBits;
1505  do {
1506    NextBits = MatcherTable[Idx++];
1507    Val |= (NextBits&127) << Shift;
1508    Shift += 7;
1509  } while (NextBits & 128);
1510
1511  return Val;
1512}
1513
1514
1515/// UpdateChainsAndGlue - When a match is complete, this method updates uses of
1516/// interior glue and chain results to use the new glue and chain results.
1517void SelectionDAGISel::
1518UpdateChainsAndGlue(SDNode *NodeToMatch, SDValue InputChain,
1519                    const SmallVectorImpl<SDNode*> &ChainNodesMatched,
1520                    SDValue InputGlue,
1521                    const SmallVectorImpl<SDNode*> &GlueResultNodesMatched,
1522                    bool isMorphNodeTo) {
1523  SmallVector<SDNode*, 4> NowDeadNodes;
1524
1525  ISelUpdater ISU(ISelPosition);
1526
1527  // Now that all the normal results are replaced, we replace the chain and
1528  // glue results if present.
1529  if (!ChainNodesMatched.empty()) {
1530    assert(InputChain.getNode() != 0 &&
1531           "Matched input chains but didn't produce a chain");
1532    // Loop over all of the nodes we matched that produced a chain result.
1533    // Replace all the chain results with the final chain we ended up with.
1534    for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
1535      SDNode *ChainNode = ChainNodesMatched[i];
1536
1537      // If this node was already deleted, don't look at it.
1538      if (ChainNode->getOpcode() == ISD::DELETED_NODE)
1539        continue;
1540
1541      // Don't replace the results of the root node if we're doing a
1542      // MorphNodeTo.
1543      if (ChainNode == NodeToMatch && isMorphNodeTo)
1544        continue;
1545
1546      SDValue ChainVal = SDValue(ChainNode, ChainNode->getNumValues()-1);
1547      if (ChainVal.getValueType() == MVT::Glue)
1548        ChainVal = ChainVal.getValue(ChainVal->getNumValues()-2);
1549      assert(ChainVal.getValueType() == MVT::Other && "Not a chain?");
1550      CurDAG->ReplaceAllUsesOfValueWith(ChainVal, InputChain, &ISU);
1551
1552      // If the node became dead and we haven't already seen it, delete it.
1553      if (ChainNode->use_empty() &&
1554          !std::count(NowDeadNodes.begin(), NowDeadNodes.end(), ChainNode))
1555        NowDeadNodes.push_back(ChainNode);
1556    }
1557  }
1558
1559  // If the result produces glue, update any glue results in the matched
1560  // pattern with the glue result.
1561  if (InputGlue.getNode() != 0) {
1562    // Handle any interior nodes explicitly marked.
1563    for (unsigned i = 0, e = GlueResultNodesMatched.size(); i != e; ++i) {
1564      SDNode *FRN = GlueResultNodesMatched[i];
1565
1566      // If this node was already deleted, don't look at it.
1567      if (FRN->getOpcode() == ISD::DELETED_NODE)
1568        continue;
1569
1570      assert(FRN->getValueType(FRN->getNumValues()-1) == MVT::Glue &&
1571             "Doesn't have a glue result");
1572      CurDAG->ReplaceAllUsesOfValueWith(SDValue(FRN, FRN->getNumValues()-1),
1573                                        InputGlue, &ISU);
1574
1575      // If the node became dead and we haven't already seen it, delete it.
1576      if (FRN->use_empty() &&
1577          !std::count(NowDeadNodes.begin(), NowDeadNodes.end(), FRN))
1578        NowDeadNodes.push_back(FRN);
1579    }
1580  }
1581
1582  if (!NowDeadNodes.empty())
1583    CurDAG->RemoveDeadNodes(NowDeadNodes, &ISU);
1584
1585  DEBUG(errs() << "ISEL: Match complete!\n");
1586}
1587
1588enum ChainResult {
1589  CR_Simple,
1590  CR_InducesCycle,
1591  CR_LeadsToInteriorNode
1592};
1593
1594/// WalkChainUsers - Walk down the users of the specified chained node that is
1595/// part of the pattern we're matching, looking at all of the users we find.
1596/// This determines whether something is an interior node, whether we have a
1597/// non-pattern node in between two pattern nodes (which prevent folding because
1598/// it would induce a cycle) and whether we have a TokenFactor node sandwiched
1599/// between pattern nodes (in which case the TF becomes part of the pattern).
1600///
1601/// The walk we do here is guaranteed to be small because we quickly get down to
1602/// already selected nodes "below" us.
1603static ChainResult
1604WalkChainUsers(SDNode *ChainedNode,
1605               SmallVectorImpl<SDNode*> &ChainedNodesInPattern,
1606               SmallVectorImpl<SDNode*> &InteriorChainedNodes) {
1607  ChainResult Result = CR_Simple;
1608
1609  for (SDNode::use_iterator UI = ChainedNode->use_begin(),
1610         E = ChainedNode->use_end(); UI != E; ++UI) {
1611    // Make sure the use is of the chain, not some other value we produce.
1612    if (UI.getUse().getValueType() != MVT::Other) continue;
1613
1614    SDNode *User = *UI;
1615
1616    // If we see an already-selected machine node, then we've gone beyond the
1617    // pattern that we're selecting down into the already selected chunk of the
1618    // DAG.
1619    if (User->isMachineOpcode() ||
1620        User->getOpcode() == ISD::HANDLENODE)  // Root of the graph.
1621      continue;
1622
1623    if (User->getOpcode() == ISD::CopyToReg ||
1624        User->getOpcode() == ISD::CopyFromReg ||
1625        User->getOpcode() == ISD::INLINEASM ||
1626        User->getOpcode() == ISD::EH_LABEL) {
1627      // If their node ID got reset to -1 then they've already been selected.
1628      // Treat them like a MachineOpcode.
1629      if (User->getNodeId() == -1)
1630        continue;
1631    }
1632
1633    // If we have a TokenFactor, we handle it specially.
1634    if (User->getOpcode() != ISD::TokenFactor) {
1635      // If the node isn't a token factor and isn't part of our pattern, then it
1636      // must be a random chained node in between two nodes we're selecting.
1637      // This happens when we have something like:
1638      //   x = load ptr
1639      //   call
1640      //   y = x+4
1641      //   store y -> ptr
1642      // Because we structurally match the load/store as a read/modify/write,
1643      // but the call is chained between them.  We cannot fold in this case
1644      // because it would induce a cycle in the graph.
1645      if (!std::count(ChainedNodesInPattern.begin(),
1646                      ChainedNodesInPattern.end(), User))
1647        return CR_InducesCycle;
1648
1649      // Otherwise we found a node that is part of our pattern.  For example in:
1650      //   x = load ptr
1651      //   y = x+4
1652      //   store y -> ptr
1653      // This would happen when we're scanning down from the load and see the
1654      // store as a user.  Record that there is a use of ChainedNode that is
1655      // part of the pattern and keep scanning uses.
1656      Result = CR_LeadsToInteriorNode;
1657      InteriorChainedNodes.push_back(User);
1658      continue;
1659    }
1660
1661    // If we found a TokenFactor, there are two cases to consider: first if the
1662    // TokenFactor is just hanging "below" the pattern we're matching (i.e. no
1663    // uses of the TF are in our pattern) we just want to ignore it.  Second,
1664    // the TokenFactor can be sandwiched in between two chained nodes, like so:
1665    //     [Load chain]
1666    //         ^
1667    //         |
1668    //       [Load]
1669    //       ^    ^
1670    //       |    \                    DAG's like cheese
1671    //      /       \                       do you?
1672    //     /         |
1673    // [TokenFactor] [Op]
1674    //     ^          ^
1675    //     |          |
1676    //      \        /
1677    //       \      /
1678    //       [Store]
1679    //
1680    // In this case, the TokenFactor becomes part of our match and we rewrite it
1681    // as a new TokenFactor.
1682    //
1683    // To distinguish these two cases, do a recursive walk down the uses.
1684    switch (WalkChainUsers(User, ChainedNodesInPattern, InteriorChainedNodes)) {
1685    case CR_Simple:
1686      // If the uses of the TokenFactor are just already-selected nodes, ignore
1687      // it, it is "below" our pattern.
1688      continue;
1689    case CR_InducesCycle:
1690      // If the uses of the TokenFactor lead to nodes that are not part of our
1691      // pattern that are not selected, folding would turn this into a cycle,
1692      // bail out now.
1693      return CR_InducesCycle;
1694    case CR_LeadsToInteriorNode:
1695      break;  // Otherwise, keep processing.
1696    }
1697
1698    // Okay, we know we're in the interesting interior case.  The TokenFactor
1699    // is now going to be considered part of the pattern so that we rewrite its
1700    // uses (it may have uses that are not part of the pattern) with the
1701    // ultimate chain result of the generated code.  We will also add its chain
1702    // inputs as inputs to the ultimate TokenFactor we create.
1703    Result = CR_LeadsToInteriorNode;
1704    ChainedNodesInPattern.push_back(User);
1705    InteriorChainedNodes.push_back(User);
1706    continue;
1707  }
1708
1709  return Result;
1710}
1711
1712/// HandleMergeInputChains - This implements the OPC_EmitMergeInputChains
1713/// operation for when the pattern matched at least one node with a chains.  The
1714/// input vector contains a list of all of the chained nodes that we match.  We
1715/// must determine if this is a valid thing to cover (i.e. matching it won't
1716/// induce cycles in the DAG) and if so, creating a TokenFactor node. that will
1717/// be used as the input node chain for the generated nodes.
1718static SDValue
1719HandleMergeInputChains(SmallVectorImpl<SDNode*> &ChainNodesMatched,
1720                       SelectionDAG *CurDAG) {
1721  // Walk all of the chained nodes we've matched, recursively scanning down the
1722  // users of the chain result. This adds any TokenFactor nodes that are caught
1723  // in between chained nodes to the chained and interior nodes list.
1724  SmallVector<SDNode*, 3> InteriorChainedNodes;
1725  for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
1726    if (WalkChainUsers(ChainNodesMatched[i], ChainNodesMatched,
1727                       InteriorChainedNodes) == CR_InducesCycle)
1728      return SDValue(); // Would induce a cycle.
1729  }
1730
1731  // Okay, we have walked all the matched nodes and collected TokenFactor nodes
1732  // that we are interested in.  Form our input TokenFactor node.
1733  SmallVector<SDValue, 3> InputChains;
1734  for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
1735    // Add the input chain of this node to the InputChains list (which will be
1736    // the operands of the generated TokenFactor) if it's not an interior node.
1737    SDNode *N = ChainNodesMatched[i];
1738    if (N->getOpcode() != ISD::TokenFactor) {
1739      if (std::count(InteriorChainedNodes.begin(),InteriorChainedNodes.end(),N))
1740        continue;
1741
1742      // Otherwise, add the input chain.
1743      SDValue InChain = ChainNodesMatched[i]->getOperand(0);
1744      assert(InChain.getValueType() == MVT::Other && "Not a chain");
1745      InputChains.push_back(InChain);
1746      continue;
1747    }
1748
1749    // If we have a token factor, we want to add all inputs of the token factor
1750    // that are not part of the pattern we're matching.
1751    for (unsigned op = 0, e = N->getNumOperands(); op != e; ++op) {
1752      if (!std::count(ChainNodesMatched.begin(), ChainNodesMatched.end(),
1753                      N->getOperand(op).getNode()))
1754        InputChains.push_back(N->getOperand(op));
1755    }
1756  }
1757
1758  SDValue Res;
1759  if (InputChains.size() == 1)
1760    return InputChains[0];
1761  return CurDAG->getNode(ISD::TokenFactor, ChainNodesMatched[0]->getDebugLoc(),
1762                         MVT::Other, &InputChains[0], InputChains.size());
1763}
1764
1765/// MorphNode - Handle morphing a node in place for the selector.
1766SDNode *SelectionDAGISel::
1767MorphNode(SDNode *Node, unsigned TargetOpc, SDVTList VTList,
1768          const SDValue *Ops, unsigned NumOps, unsigned EmitNodeInfo) {
1769  // It is possible we're using MorphNodeTo to replace a node with no
1770  // normal results with one that has a normal result (or we could be
1771  // adding a chain) and the input could have glue and chains as well.
1772  // In this case we need to shift the operands down.
1773  // FIXME: This is a horrible hack and broken in obscure cases, no worse
1774  // than the old isel though.
1775  int OldGlueResultNo = -1, OldChainResultNo = -1;
1776
1777  unsigned NTMNumResults = Node->getNumValues();
1778  if (Node->getValueType(NTMNumResults-1) == MVT::Glue) {
1779    OldGlueResultNo = NTMNumResults-1;
1780    if (NTMNumResults != 1 &&
1781        Node->getValueType(NTMNumResults-2) == MVT::Other)
1782      OldChainResultNo = NTMNumResults-2;
1783  } else if (Node->getValueType(NTMNumResults-1) == MVT::Other)
1784    OldChainResultNo = NTMNumResults-1;
1785
1786  // Call the underlying SelectionDAG routine to do the transmogrification. Note
1787  // that this deletes operands of the old node that become dead.
1788  SDNode *Res = CurDAG->MorphNodeTo(Node, ~TargetOpc, VTList, Ops, NumOps);
1789
1790  // MorphNodeTo can operate in two ways: if an existing node with the
1791  // specified operands exists, it can just return it.  Otherwise, it
1792  // updates the node in place to have the requested operands.
1793  if (Res == Node) {
1794    // If we updated the node in place, reset the node ID.  To the isel,
1795    // this should be just like a newly allocated machine node.
1796    Res->setNodeId(-1);
1797  }
1798
1799  unsigned ResNumResults = Res->getNumValues();
1800  // Move the glue if needed.
1801  if ((EmitNodeInfo & OPFL_GlueOutput) && OldGlueResultNo != -1 &&
1802      (unsigned)OldGlueResultNo != ResNumResults-1)
1803    CurDAG->ReplaceAllUsesOfValueWith(SDValue(Node, OldGlueResultNo),
1804                                      SDValue(Res, ResNumResults-1));
1805
1806  if ((EmitNodeInfo & OPFL_GlueOutput) != 0)
1807    --ResNumResults;
1808
1809  // Move the chain reference if needed.
1810  if ((EmitNodeInfo & OPFL_Chain) && OldChainResultNo != -1 &&
1811      (unsigned)OldChainResultNo != ResNumResults-1)
1812    CurDAG->ReplaceAllUsesOfValueWith(SDValue(Node, OldChainResultNo),
1813                                      SDValue(Res, ResNumResults-1));
1814
1815  // Otherwise, no replacement happened because the node already exists. Replace
1816  // Uses of the old node with the new one.
1817  if (Res != Node)
1818    CurDAG->ReplaceAllUsesWith(Node, Res);
1819
1820  return Res;
1821}
1822
1823/// CheckPatternPredicate - Implements OP_CheckPatternPredicate.
1824LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
1825CheckSame(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1826          SDValue N,
1827          const SmallVectorImpl<std::pair<SDValue, SDNode*> > &RecordedNodes) {
1828  // Accept if it is exactly the same as a previously recorded node.
1829  unsigned RecNo = MatcherTable[MatcherIndex++];
1830  assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
1831  return N == RecordedNodes[RecNo].first;
1832}
1833
1834/// CheckPatternPredicate - Implements OP_CheckPatternPredicate.
1835LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
1836CheckPatternPredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1837                      SelectionDAGISel &SDISel) {
1838  return SDISel.CheckPatternPredicate(MatcherTable[MatcherIndex++]);
1839}
1840
1841/// CheckNodePredicate - Implements OP_CheckNodePredicate.
1842LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
1843CheckNodePredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1844                   SelectionDAGISel &SDISel, SDNode *N) {
1845  return SDISel.CheckNodePredicate(N, MatcherTable[MatcherIndex++]);
1846}
1847
1848LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
1849CheckOpcode(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1850            SDNode *N) {
1851  uint16_t Opc = MatcherTable[MatcherIndex++];
1852  Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
1853  return N->getOpcode() == Opc;
1854}
1855
1856LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
1857CheckType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1858          SDValue N, const TargetLowering &TLI) {
1859  MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
1860  if (N.getValueType() == VT) return true;
1861
1862  // Handle the case when VT is iPTR.
1863  return VT == MVT::iPTR && N.getValueType() == TLI.getPointerTy();
1864}
1865
1866LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
1867CheckChildType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1868               SDValue N, const TargetLowering &TLI,
1869               unsigned ChildNo) {
1870  if (ChildNo >= N.getNumOperands())
1871    return false;  // Match fails if out of range child #.
1872  return ::CheckType(MatcherTable, MatcherIndex, N.getOperand(ChildNo), TLI);
1873}
1874
1875
1876LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
1877CheckCondCode(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1878              SDValue N) {
1879  return cast<CondCodeSDNode>(N)->get() ==
1880      (ISD::CondCode)MatcherTable[MatcherIndex++];
1881}
1882
1883LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
1884CheckValueType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1885               SDValue N, const TargetLowering &TLI) {
1886  MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
1887  if (cast<VTSDNode>(N)->getVT() == VT)
1888    return true;
1889
1890  // Handle the case when VT is iPTR.
1891  return VT == MVT::iPTR && cast<VTSDNode>(N)->getVT() == TLI.getPointerTy();
1892}
1893
1894LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
1895CheckInteger(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1896             SDValue N) {
1897  int64_t Val = MatcherTable[MatcherIndex++];
1898  if (Val & 128)
1899    Val = GetVBR(Val, MatcherTable, MatcherIndex);
1900
1901  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N);
1902  return C != 0 && C->getSExtValue() == Val;
1903}
1904
1905LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
1906CheckAndImm(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1907            SDValue N, SelectionDAGISel &SDISel) {
1908  int64_t Val = MatcherTable[MatcherIndex++];
1909  if (Val & 128)
1910    Val = GetVBR(Val, MatcherTable, MatcherIndex);
1911
1912  if (N->getOpcode() != ISD::AND) return false;
1913
1914  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
1915  return C != 0 && SDISel.CheckAndMask(N.getOperand(0), C, Val);
1916}
1917
1918LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
1919CheckOrImm(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1920           SDValue N, SelectionDAGISel &SDISel) {
1921  int64_t Val = MatcherTable[MatcherIndex++];
1922  if (Val & 128)
1923    Val = GetVBR(Val, MatcherTable, MatcherIndex);
1924
1925  if (N->getOpcode() != ISD::OR) return false;
1926
1927  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
1928  return C != 0 && SDISel.CheckOrMask(N.getOperand(0), C, Val);
1929}
1930
1931/// IsPredicateKnownToFail - If we know how and can do so without pushing a
1932/// scope, evaluate the current node.  If the current predicate is known to
1933/// fail, set Result=true and return anything.  If the current predicate is
1934/// known to pass, set Result=false and return the MatcherIndex to continue
1935/// with.  If the current predicate is unknown, set Result=false and return the
1936/// MatcherIndex to continue with.
1937static unsigned IsPredicateKnownToFail(const unsigned char *Table,
1938                                       unsigned Index, SDValue N,
1939                                       bool &Result, SelectionDAGISel &SDISel,
1940                 SmallVectorImpl<std::pair<SDValue, SDNode*> > &RecordedNodes) {
1941  switch (Table[Index++]) {
1942  default:
1943    Result = false;
1944    return Index-1;  // Could not evaluate this predicate.
1945  case SelectionDAGISel::OPC_CheckSame:
1946    Result = !::CheckSame(Table, Index, N, RecordedNodes);
1947    return Index;
1948  case SelectionDAGISel::OPC_CheckPatternPredicate:
1949    Result = !::CheckPatternPredicate(Table, Index, SDISel);
1950    return Index;
1951  case SelectionDAGISel::OPC_CheckPredicate:
1952    Result = !::CheckNodePredicate(Table, Index, SDISel, N.getNode());
1953    return Index;
1954  case SelectionDAGISel::OPC_CheckOpcode:
1955    Result = !::CheckOpcode(Table, Index, N.getNode());
1956    return Index;
1957  case SelectionDAGISel::OPC_CheckType:
1958    Result = !::CheckType(Table, Index, N, SDISel.TLI);
1959    return Index;
1960  case SelectionDAGISel::OPC_CheckChild0Type:
1961  case SelectionDAGISel::OPC_CheckChild1Type:
1962  case SelectionDAGISel::OPC_CheckChild2Type:
1963  case SelectionDAGISel::OPC_CheckChild3Type:
1964  case SelectionDAGISel::OPC_CheckChild4Type:
1965  case SelectionDAGISel::OPC_CheckChild5Type:
1966  case SelectionDAGISel::OPC_CheckChild6Type:
1967  case SelectionDAGISel::OPC_CheckChild7Type:
1968    Result = !::CheckChildType(Table, Index, N, SDISel.TLI,
1969                        Table[Index-1] - SelectionDAGISel::OPC_CheckChild0Type);
1970    return Index;
1971  case SelectionDAGISel::OPC_CheckCondCode:
1972    Result = !::CheckCondCode(Table, Index, N);
1973    return Index;
1974  case SelectionDAGISel::OPC_CheckValueType:
1975    Result = !::CheckValueType(Table, Index, N, SDISel.TLI);
1976    return Index;
1977  case SelectionDAGISel::OPC_CheckInteger:
1978    Result = !::CheckInteger(Table, Index, N);
1979    return Index;
1980  case SelectionDAGISel::OPC_CheckAndImm:
1981    Result = !::CheckAndImm(Table, Index, N, SDISel);
1982    return Index;
1983  case SelectionDAGISel::OPC_CheckOrImm:
1984    Result = !::CheckOrImm(Table, Index, N, SDISel);
1985    return Index;
1986  }
1987}
1988
1989namespace {
1990
1991struct MatchScope {
1992  /// FailIndex - If this match fails, this is the index to continue with.
1993  unsigned FailIndex;
1994
1995  /// NodeStack - The node stack when the scope was formed.
1996  SmallVector<SDValue, 4> NodeStack;
1997
1998  /// NumRecordedNodes - The number of recorded nodes when the scope was formed.
1999  unsigned NumRecordedNodes;
2000
2001  /// NumMatchedMemRefs - The number of matched memref entries.
2002  unsigned NumMatchedMemRefs;
2003
2004  /// InputChain/InputGlue - The current chain/glue
2005  SDValue InputChain, InputGlue;
2006
2007  /// HasChainNodesMatched - True if the ChainNodesMatched list is non-empty.
2008  bool HasChainNodesMatched, HasGlueResultNodesMatched;
2009};
2010
2011}
2012
2013SDNode *SelectionDAGISel::
2014SelectCodeCommon(SDNode *NodeToMatch, const unsigned char *MatcherTable,
2015                 unsigned TableSize) {
2016  // FIXME: Should these even be selected?  Handle these cases in the caller?
2017  switch (NodeToMatch->getOpcode()) {
2018  default:
2019    break;
2020  case ISD::EntryToken:       // These nodes remain the same.
2021  case ISD::BasicBlock:
2022  case ISD::Register:
2023  //case ISD::VALUETYPE:
2024  //case ISD::CONDCODE:
2025  case ISD::HANDLENODE:
2026  case ISD::MDNODE_SDNODE:
2027  case ISD::TargetConstant:
2028  case ISD::TargetConstantFP:
2029  case ISD::TargetConstantPool:
2030  case ISD::TargetFrameIndex:
2031  case ISD::TargetExternalSymbol:
2032  case ISD::TargetBlockAddress:
2033  case ISD::TargetJumpTable:
2034  case ISD::TargetGlobalTLSAddress:
2035  case ISD::TargetGlobalAddress:
2036  case ISD::TokenFactor:
2037  case ISD::CopyFromReg:
2038  case ISD::CopyToReg:
2039  case ISD::EH_LABEL:
2040    NodeToMatch->setNodeId(-1); // Mark selected.
2041    return 0;
2042  case ISD::AssertSext:
2043  case ISD::AssertZext:
2044    CurDAG->ReplaceAllUsesOfValueWith(SDValue(NodeToMatch, 0),
2045                                      NodeToMatch->getOperand(0));
2046    return 0;
2047  case ISD::INLINEASM: return Select_INLINEASM(NodeToMatch);
2048  case ISD::UNDEF:     return Select_UNDEF(NodeToMatch);
2049  }
2050
2051  assert(!NodeToMatch->isMachineOpcode() && "Node already selected!");
2052
2053  // Set up the node stack with NodeToMatch as the only node on the stack.
2054  SmallVector<SDValue, 8> NodeStack;
2055  SDValue N = SDValue(NodeToMatch, 0);
2056  NodeStack.push_back(N);
2057
2058  // MatchScopes - Scopes used when matching, if a match failure happens, this
2059  // indicates where to continue checking.
2060  SmallVector<MatchScope, 8> MatchScopes;
2061
2062  // RecordedNodes - This is the set of nodes that have been recorded by the
2063  // state machine.  The second value is the parent of the node, or null if the
2064  // root is recorded.
2065  SmallVector<std::pair<SDValue, SDNode*>, 8> RecordedNodes;
2066
2067  // MatchedMemRefs - This is the set of MemRef's we've seen in the input
2068  // pattern.
2069  SmallVector<MachineMemOperand*, 2> MatchedMemRefs;
2070
2071  // These are the current input chain and glue for use when generating nodes.
2072  // Various Emit operations change these.  For example, emitting a copytoreg
2073  // uses and updates these.
2074  SDValue InputChain, InputGlue;
2075
2076  // ChainNodesMatched - If a pattern matches nodes that have input/output
2077  // chains, the OPC_EmitMergeInputChains operation is emitted which indicates
2078  // which ones they are.  The result is captured into this list so that we can
2079  // update the chain results when the pattern is complete.
2080  SmallVector<SDNode*, 3> ChainNodesMatched;
2081  SmallVector<SDNode*, 3> GlueResultNodesMatched;
2082
2083  DEBUG(errs() << "ISEL: Starting pattern match on root node: ";
2084        NodeToMatch->dump(CurDAG);
2085        errs() << '\n');
2086
2087  // Determine where to start the interpreter.  Normally we start at opcode #0,
2088  // but if the state machine starts with an OPC_SwitchOpcode, then we
2089  // accelerate the first lookup (which is guaranteed to be hot) with the
2090  // OpcodeOffset table.
2091  unsigned MatcherIndex = 0;
2092
2093  if (!OpcodeOffset.empty()) {
2094    // Already computed the OpcodeOffset table, just index into it.
2095    if (N.getOpcode() < OpcodeOffset.size())
2096      MatcherIndex = OpcodeOffset[N.getOpcode()];
2097    DEBUG(errs() << "  Initial Opcode index to " << MatcherIndex << "\n");
2098
2099  } else if (MatcherTable[0] == OPC_SwitchOpcode) {
2100    // Otherwise, the table isn't computed, but the state machine does start
2101    // with an OPC_SwitchOpcode instruction.  Populate the table now, since this
2102    // is the first time we're selecting an instruction.
2103    unsigned Idx = 1;
2104    while (1) {
2105      // Get the size of this case.
2106      unsigned CaseSize = MatcherTable[Idx++];
2107      if (CaseSize & 128)
2108        CaseSize = GetVBR(CaseSize, MatcherTable, Idx);
2109      if (CaseSize == 0) break;
2110
2111      // Get the opcode, add the index to the table.
2112      uint16_t Opc = MatcherTable[Idx++];
2113      Opc |= (unsigned short)MatcherTable[Idx++] << 8;
2114      if (Opc >= OpcodeOffset.size())
2115        OpcodeOffset.resize((Opc+1)*2);
2116      OpcodeOffset[Opc] = Idx;
2117      Idx += CaseSize;
2118    }
2119
2120    // Okay, do the lookup for the first opcode.
2121    if (N.getOpcode() < OpcodeOffset.size())
2122      MatcherIndex = OpcodeOffset[N.getOpcode()];
2123  }
2124
2125  while (1) {
2126    assert(MatcherIndex < TableSize && "Invalid index");
2127#ifndef NDEBUG
2128    unsigned CurrentOpcodeIndex = MatcherIndex;
2129#endif
2130    BuiltinOpcodes Opcode = (BuiltinOpcodes)MatcherTable[MatcherIndex++];
2131    switch (Opcode) {
2132    case OPC_Scope: {
2133      // Okay, the semantics of this operation are that we should push a scope
2134      // then evaluate the first child.  However, pushing a scope only to have
2135      // the first check fail (which then pops it) is inefficient.  If we can
2136      // determine immediately that the first check (or first several) will
2137      // immediately fail, don't even bother pushing a scope for them.
2138      unsigned FailIndex;
2139
2140      while (1) {
2141        unsigned NumToSkip = MatcherTable[MatcherIndex++];
2142        if (NumToSkip & 128)
2143          NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex);
2144        // Found the end of the scope with no match.
2145        if (NumToSkip == 0) {
2146          FailIndex = 0;
2147          break;
2148        }
2149
2150        FailIndex = MatcherIndex+NumToSkip;
2151
2152        unsigned MatcherIndexOfPredicate = MatcherIndex;
2153        (void)MatcherIndexOfPredicate; // silence warning.
2154
2155        // If we can't evaluate this predicate without pushing a scope (e.g. if
2156        // it is a 'MoveParent') or if the predicate succeeds on this node, we
2157        // push the scope and evaluate the full predicate chain.
2158        bool Result;
2159        MatcherIndex = IsPredicateKnownToFail(MatcherTable, MatcherIndex, N,
2160                                              Result, *this, RecordedNodes);
2161        if (!Result)
2162          break;
2163
2164        DEBUG(errs() << "  Skipped scope entry (due to false predicate) at "
2165                     << "index " << MatcherIndexOfPredicate
2166                     << ", continuing at " << FailIndex << "\n");
2167        ++NumDAGIselRetries;
2168
2169        // Otherwise, we know that this case of the Scope is guaranteed to fail,
2170        // move to the next case.
2171        MatcherIndex = FailIndex;
2172      }
2173
2174      // If the whole scope failed to match, bail.
2175      if (FailIndex == 0) break;
2176
2177      // Push a MatchScope which indicates where to go if the first child fails
2178      // to match.
2179      MatchScope NewEntry;
2180      NewEntry.FailIndex = FailIndex;
2181      NewEntry.NodeStack.append(NodeStack.begin(), NodeStack.end());
2182      NewEntry.NumRecordedNodes = RecordedNodes.size();
2183      NewEntry.NumMatchedMemRefs = MatchedMemRefs.size();
2184      NewEntry.InputChain = InputChain;
2185      NewEntry.InputGlue = InputGlue;
2186      NewEntry.HasChainNodesMatched = !ChainNodesMatched.empty();
2187      NewEntry.HasGlueResultNodesMatched = !GlueResultNodesMatched.empty();
2188      MatchScopes.push_back(NewEntry);
2189      continue;
2190    }
2191    case OPC_RecordNode: {
2192      // Remember this node, it may end up being an operand in the pattern.
2193      SDNode *Parent = 0;
2194      if (NodeStack.size() > 1)
2195        Parent = NodeStack[NodeStack.size()-2].getNode();
2196      RecordedNodes.push_back(std::make_pair(N, Parent));
2197      continue;
2198    }
2199
2200    case OPC_RecordChild0: case OPC_RecordChild1:
2201    case OPC_RecordChild2: case OPC_RecordChild3:
2202    case OPC_RecordChild4: case OPC_RecordChild5:
2203    case OPC_RecordChild6: case OPC_RecordChild7: {
2204      unsigned ChildNo = Opcode-OPC_RecordChild0;
2205      if (ChildNo >= N.getNumOperands())
2206        break;  // Match fails if out of range child #.
2207
2208      RecordedNodes.push_back(std::make_pair(N->getOperand(ChildNo),
2209                                             N.getNode()));
2210      continue;
2211    }
2212    case OPC_RecordMemRef:
2213      MatchedMemRefs.push_back(cast<MemSDNode>(N)->getMemOperand());
2214      continue;
2215
2216    case OPC_CaptureGlueInput:
2217      // If the current node has an input glue, capture it in InputGlue.
2218      if (N->getNumOperands() != 0 &&
2219          N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Glue)
2220        InputGlue = N->getOperand(N->getNumOperands()-1);
2221      continue;
2222
2223    case OPC_MoveChild: {
2224      unsigned ChildNo = MatcherTable[MatcherIndex++];
2225      if (ChildNo >= N.getNumOperands())
2226        break;  // Match fails if out of range child #.
2227      N = N.getOperand(ChildNo);
2228      NodeStack.push_back(N);
2229      continue;
2230    }
2231
2232    case OPC_MoveParent:
2233      // Pop the current node off the NodeStack.
2234      NodeStack.pop_back();
2235      assert(!NodeStack.empty() && "Node stack imbalance!");
2236      N = NodeStack.back();
2237      continue;
2238
2239    case OPC_CheckSame:
2240      if (!::CheckSame(MatcherTable, MatcherIndex, N, RecordedNodes)) break;
2241      continue;
2242    case OPC_CheckPatternPredicate:
2243      if (!::CheckPatternPredicate(MatcherTable, MatcherIndex, *this)) break;
2244      continue;
2245    case OPC_CheckPredicate:
2246      if (!::CheckNodePredicate(MatcherTable, MatcherIndex, *this,
2247                                N.getNode()))
2248        break;
2249      continue;
2250    case OPC_CheckComplexPat: {
2251      unsigned CPNum = MatcherTable[MatcherIndex++];
2252      unsigned RecNo = MatcherTable[MatcherIndex++];
2253      assert(RecNo < RecordedNodes.size() && "Invalid CheckComplexPat");
2254      if (!CheckComplexPattern(NodeToMatch, RecordedNodes[RecNo].second,
2255                               RecordedNodes[RecNo].first, CPNum,
2256                               RecordedNodes))
2257        break;
2258      continue;
2259    }
2260    case OPC_CheckOpcode:
2261      if (!::CheckOpcode(MatcherTable, MatcherIndex, N.getNode())) break;
2262      continue;
2263
2264    case OPC_CheckType:
2265      if (!::CheckType(MatcherTable, MatcherIndex, N, TLI)) break;
2266      continue;
2267
2268    case OPC_SwitchOpcode: {
2269      unsigned CurNodeOpcode = N.getOpcode();
2270      unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart;
2271      unsigned CaseSize;
2272      while (1) {
2273        // Get the size of this case.
2274        CaseSize = MatcherTable[MatcherIndex++];
2275        if (CaseSize & 128)
2276          CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex);
2277        if (CaseSize == 0) break;
2278
2279        uint16_t Opc = MatcherTable[MatcherIndex++];
2280        Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
2281
2282        // If the opcode matches, then we will execute this case.
2283        if (CurNodeOpcode == Opc)
2284          break;
2285
2286        // Otherwise, skip over this case.
2287        MatcherIndex += CaseSize;
2288      }
2289
2290      // If no cases matched, bail out.
2291      if (CaseSize == 0) break;
2292
2293      // Otherwise, execute the case we found.
2294      DEBUG(errs() << "  OpcodeSwitch from " << SwitchStart
2295                   << " to " << MatcherIndex << "\n");
2296      continue;
2297    }
2298
2299    case OPC_SwitchType: {
2300      MVT CurNodeVT = N.getValueType().getSimpleVT();
2301      unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart;
2302      unsigned CaseSize;
2303      while (1) {
2304        // Get the size of this case.
2305        CaseSize = MatcherTable[MatcherIndex++];
2306        if (CaseSize & 128)
2307          CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex);
2308        if (CaseSize == 0) break;
2309
2310        MVT CaseVT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2311        if (CaseVT == MVT::iPTR)
2312          CaseVT = TLI.getPointerTy();
2313
2314        // If the VT matches, then we will execute this case.
2315        if (CurNodeVT == CaseVT)
2316          break;
2317
2318        // Otherwise, skip over this case.
2319        MatcherIndex += CaseSize;
2320      }
2321
2322      // If no cases matched, bail out.
2323      if (CaseSize == 0) break;
2324
2325      // Otherwise, execute the case we found.
2326      DEBUG(errs() << "  TypeSwitch[" << EVT(CurNodeVT).getEVTString()
2327                   << "] from " << SwitchStart << " to " << MatcherIndex<<'\n');
2328      continue;
2329    }
2330    case OPC_CheckChild0Type: case OPC_CheckChild1Type:
2331    case OPC_CheckChild2Type: case OPC_CheckChild3Type:
2332    case OPC_CheckChild4Type: case OPC_CheckChild5Type:
2333    case OPC_CheckChild6Type: case OPC_CheckChild7Type:
2334      if (!::CheckChildType(MatcherTable, MatcherIndex, N, TLI,
2335                            Opcode-OPC_CheckChild0Type))
2336        break;
2337      continue;
2338    case OPC_CheckCondCode:
2339      if (!::CheckCondCode(MatcherTable, MatcherIndex, N)) break;
2340      continue;
2341    case OPC_CheckValueType:
2342      if (!::CheckValueType(MatcherTable, MatcherIndex, N, TLI)) break;
2343      continue;
2344    case OPC_CheckInteger:
2345      if (!::CheckInteger(MatcherTable, MatcherIndex, N)) break;
2346      continue;
2347    case OPC_CheckAndImm:
2348      if (!::CheckAndImm(MatcherTable, MatcherIndex, N, *this)) break;
2349      continue;
2350    case OPC_CheckOrImm:
2351      if (!::CheckOrImm(MatcherTable, MatcherIndex, N, *this)) break;
2352      continue;
2353
2354    case OPC_CheckFoldableChainNode: {
2355      assert(NodeStack.size() != 1 && "No parent node");
2356      // Verify that all intermediate nodes between the root and this one have
2357      // a single use.
2358      bool HasMultipleUses = false;
2359      for (unsigned i = 1, e = NodeStack.size()-1; i != e; ++i)
2360        if (!NodeStack[i].hasOneUse()) {
2361          HasMultipleUses = true;
2362          break;
2363        }
2364      if (HasMultipleUses) break;
2365
2366      // Check to see that the target thinks this is profitable to fold and that
2367      // we can fold it without inducing cycles in the graph.
2368      if (!IsProfitableToFold(N, NodeStack[NodeStack.size()-2].getNode(),
2369                              NodeToMatch) ||
2370          !IsLegalToFold(N, NodeStack[NodeStack.size()-2].getNode(),
2371                         NodeToMatch, OptLevel,
2372                         true/*We validate our own chains*/))
2373        break;
2374
2375      continue;
2376    }
2377    case OPC_EmitInteger: {
2378      MVT::SimpleValueType VT =
2379        (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2380      int64_t Val = MatcherTable[MatcherIndex++];
2381      if (Val & 128)
2382        Val = GetVBR(Val, MatcherTable, MatcherIndex);
2383      RecordedNodes.push_back(std::pair<SDValue, SDNode*>(
2384                              CurDAG->getTargetConstant(Val, VT), (SDNode*)0));
2385      continue;
2386    }
2387    case OPC_EmitRegister: {
2388      MVT::SimpleValueType VT =
2389        (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2390      unsigned RegNo = MatcherTable[MatcherIndex++];
2391      RecordedNodes.push_back(std::pair<SDValue, SDNode*>(
2392                              CurDAG->getRegister(RegNo, VT), (SDNode*)0));
2393      continue;
2394    }
2395    case OPC_EmitRegister2: {
2396      // For targets w/ more than 256 register names, the register enum
2397      // values are stored in two bytes in the matcher table (just like
2398      // opcodes).
2399      MVT::SimpleValueType VT =
2400        (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2401      unsigned RegNo = MatcherTable[MatcherIndex++];
2402      RegNo |= MatcherTable[MatcherIndex++] << 8;
2403      RecordedNodes.push_back(std::pair<SDValue, SDNode*>(
2404                              CurDAG->getRegister(RegNo, VT), (SDNode*)0));
2405      continue;
2406    }
2407
2408    case OPC_EmitConvertToTarget:  {
2409      // Convert from IMM/FPIMM to target version.
2410      unsigned RecNo = MatcherTable[MatcherIndex++];
2411      assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2412      SDValue Imm = RecordedNodes[RecNo].first;
2413
2414      if (Imm->getOpcode() == ISD::Constant) {
2415        int64_t Val = cast<ConstantSDNode>(Imm)->getZExtValue();
2416        Imm = CurDAG->getTargetConstant(Val, Imm.getValueType());
2417      } else if (Imm->getOpcode() == ISD::ConstantFP) {
2418        const ConstantFP *Val=cast<ConstantFPSDNode>(Imm)->getConstantFPValue();
2419        Imm = CurDAG->getTargetConstantFP(*Val, Imm.getValueType());
2420      }
2421
2422      RecordedNodes.push_back(std::make_pair(Imm, RecordedNodes[RecNo].second));
2423      continue;
2424    }
2425
2426    case OPC_EmitMergeInputChains1_0:    // OPC_EmitMergeInputChains, 1, 0
2427    case OPC_EmitMergeInputChains1_1: {  // OPC_EmitMergeInputChains, 1, 1
2428      // These are space-optimized forms of OPC_EmitMergeInputChains.
2429      assert(InputChain.getNode() == 0 &&
2430             "EmitMergeInputChains should be the first chain producing node");
2431      assert(ChainNodesMatched.empty() &&
2432             "Should only have one EmitMergeInputChains per match");
2433
2434      // Read all of the chained nodes.
2435      unsigned RecNo = Opcode == OPC_EmitMergeInputChains1_1;
2436      assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2437      ChainNodesMatched.push_back(RecordedNodes[RecNo].first.getNode());
2438
2439      // FIXME: What if other value results of the node have uses not matched
2440      // by this pattern?
2441      if (ChainNodesMatched.back() != NodeToMatch &&
2442          !RecordedNodes[RecNo].first.hasOneUse()) {
2443        ChainNodesMatched.clear();
2444        break;
2445      }
2446
2447      // Merge the input chains if they are not intra-pattern references.
2448      InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG);
2449
2450      if (InputChain.getNode() == 0)
2451        break;  // Failed to merge.
2452      continue;
2453    }
2454
2455    case OPC_EmitMergeInputChains: {
2456      assert(InputChain.getNode() == 0 &&
2457             "EmitMergeInputChains should be the first chain producing node");
2458      // This node gets a list of nodes we matched in the input that have
2459      // chains.  We want to token factor all of the input chains to these nodes
2460      // together.  However, if any of the input chains is actually one of the
2461      // nodes matched in this pattern, then we have an intra-match reference.
2462      // Ignore these because the newly token factored chain should not refer to
2463      // the old nodes.
2464      unsigned NumChains = MatcherTable[MatcherIndex++];
2465      assert(NumChains != 0 && "Can't TF zero chains");
2466
2467      assert(ChainNodesMatched.empty() &&
2468             "Should only have one EmitMergeInputChains per match");
2469
2470      // Read all of the chained nodes.
2471      for (unsigned i = 0; i != NumChains; ++i) {
2472        unsigned RecNo = MatcherTable[MatcherIndex++];
2473        assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2474        ChainNodesMatched.push_back(RecordedNodes[RecNo].first.getNode());
2475
2476        // FIXME: What if other value results of the node have uses not matched
2477        // by this pattern?
2478        if (ChainNodesMatched.back() != NodeToMatch &&
2479            !RecordedNodes[RecNo].first.hasOneUse()) {
2480          ChainNodesMatched.clear();
2481          break;
2482        }
2483      }
2484
2485      // If the inner loop broke out, the match fails.
2486      if (ChainNodesMatched.empty())
2487        break;
2488
2489      // Merge the input chains if they are not intra-pattern references.
2490      InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG);
2491
2492      if (InputChain.getNode() == 0)
2493        break;  // Failed to merge.
2494
2495      continue;
2496    }
2497
2498    case OPC_EmitCopyToReg: {
2499      unsigned RecNo = MatcherTable[MatcherIndex++];
2500      assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2501      unsigned DestPhysReg = MatcherTable[MatcherIndex++];
2502
2503      if (InputChain.getNode() == 0)
2504        InputChain = CurDAG->getEntryNode();
2505
2506      InputChain = CurDAG->getCopyToReg(InputChain, NodeToMatch->getDebugLoc(),
2507                                        DestPhysReg, RecordedNodes[RecNo].first,
2508                                        InputGlue);
2509
2510      InputGlue = InputChain.getValue(1);
2511      continue;
2512    }
2513
2514    case OPC_EmitNodeXForm: {
2515      unsigned XFormNo = MatcherTable[MatcherIndex++];
2516      unsigned RecNo = MatcherTable[MatcherIndex++];
2517      assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2518      SDValue Res = RunSDNodeXForm(RecordedNodes[RecNo].first, XFormNo);
2519      RecordedNodes.push_back(std::pair<SDValue,SDNode*>(Res, (SDNode*) 0));
2520      continue;
2521    }
2522
2523    case OPC_EmitNode:
2524    case OPC_MorphNodeTo: {
2525      uint16_t TargetOpc = MatcherTable[MatcherIndex++];
2526      TargetOpc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
2527      unsigned EmitNodeInfo = MatcherTable[MatcherIndex++];
2528      // Get the result VT list.
2529      unsigned NumVTs = MatcherTable[MatcherIndex++];
2530      SmallVector<EVT, 4> VTs;
2531      for (unsigned i = 0; i != NumVTs; ++i) {
2532        MVT::SimpleValueType VT =
2533          (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2534        if (VT == MVT::iPTR) VT = TLI.getPointerTy().SimpleTy;
2535        VTs.push_back(VT);
2536      }
2537
2538      if (EmitNodeInfo & OPFL_Chain)
2539        VTs.push_back(MVT::Other);
2540      if (EmitNodeInfo & OPFL_GlueOutput)
2541        VTs.push_back(MVT::Glue);
2542
2543      // This is hot code, so optimize the two most common cases of 1 and 2
2544      // results.
2545      SDVTList VTList;
2546      if (VTs.size() == 1)
2547        VTList = CurDAG->getVTList(VTs[0]);
2548      else if (VTs.size() == 2)
2549        VTList = CurDAG->getVTList(VTs[0], VTs[1]);
2550      else
2551        VTList = CurDAG->getVTList(VTs.data(), VTs.size());
2552
2553      // Get the operand list.
2554      unsigned NumOps = MatcherTable[MatcherIndex++];
2555      SmallVector<SDValue, 8> Ops;
2556      for (unsigned i = 0; i != NumOps; ++i) {
2557        unsigned RecNo = MatcherTable[MatcherIndex++];
2558        if (RecNo & 128)
2559          RecNo = GetVBR(RecNo, MatcherTable, MatcherIndex);
2560
2561        assert(RecNo < RecordedNodes.size() && "Invalid EmitNode");
2562        Ops.push_back(RecordedNodes[RecNo].first);
2563      }
2564
2565      // If there are variadic operands to add, handle them now.
2566      if (EmitNodeInfo & OPFL_VariadicInfo) {
2567        // Determine the start index to copy from.
2568        unsigned FirstOpToCopy = getNumFixedFromVariadicInfo(EmitNodeInfo);
2569        FirstOpToCopy += (EmitNodeInfo & OPFL_Chain) ? 1 : 0;
2570        assert(NodeToMatch->getNumOperands() >= FirstOpToCopy &&
2571               "Invalid variadic node");
2572        // Copy all of the variadic operands, not including a potential glue
2573        // input.
2574        for (unsigned i = FirstOpToCopy, e = NodeToMatch->getNumOperands();
2575             i != e; ++i) {
2576          SDValue V = NodeToMatch->getOperand(i);
2577          if (V.getValueType() == MVT::Glue) break;
2578          Ops.push_back(V);
2579        }
2580      }
2581
2582      // If this has chain/glue inputs, add them.
2583      if (EmitNodeInfo & OPFL_Chain)
2584        Ops.push_back(InputChain);
2585      if ((EmitNodeInfo & OPFL_GlueInput) && InputGlue.getNode() != 0)
2586        Ops.push_back(InputGlue);
2587
2588      // Create the node.
2589      SDNode *Res = 0;
2590      if (Opcode != OPC_MorphNodeTo) {
2591        // If this is a normal EmitNode command, just create the new node and
2592        // add the results to the RecordedNodes list.
2593        Res = CurDAG->getMachineNode(TargetOpc, NodeToMatch->getDebugLoc(),
2594                                     VTList, Ops.data(), Ops.size());
2595
2596        // Add all the non-glue/non-chain results to the RecordedNodes list.
2597        for (unsigned i = 0, e = VTs.size(); i != e; ++i) {
2598          if (VTs[i] == MVT::Other || VTs[i] == MVT::Glue) break;
2599          RecordedNodes.push_back(std::pair<SDValue,SDNode*>(SDValue(Res, i),
2600                                                             (SDNode*) 0));
2601        }
2602
2603      } else {
2604        Res = MorphNode(NodeToMatch, TargetOpc, VTList, Ops.data(), Ops.size(),
2605                        EmitNodeInfo);
2606      }
2607
2608      // If the node had chain/glue results, update our notion of the current
2609      // chain and glue.
2610      if (EmitNodeInfo & OPFL_GlueOutput) {
2611        InputGlue = SDValue(Res, VTs.size()-1);
2612        if (EmitNodeInfo & OPFL_Chain)
2613          InputChain = SDValue(Res, VTs.size()-2);
2614      } else if (EmitNodeInfo & OPFL_Chain)
2615        InputChain = SDValue(Res, VTs.size()-1);
2616
2617      // If the OPFL_MemRefs glue is set on this node, slap all of the
2618      // accumulated memrefs onto it.
2619      //
2620      // FIXME: This is vastly incorrect for patterns with multiple outputs
2621      // instructions that access memory and for ComplexPatterns that match
2622      // loads.
2623      if (EmitNodeInfo & OPFL_MemRefs) {
2624        MachineSDNode::mmo_iterator MemRefs =
2625          MF->allocateMemRefsArray(MatchedMemRefs.size());
2626        std::copy(MatchedMemRefs.begin(), MatchedMemRefs.end(), MemRefs);
2627        cast<MachineSDNode>(Res)
2628          ->setMemRefs(MemRefs, MemRefs + MatchedMemRefs.size());
2629      }
2630
2631      DEBUG(errs() << "  "
2632                   << (Opcode == OPC_MorphNodeTo ? "Morphed" : "Created")
2633                   << " node: "; Res->dump(CurDAG); errs() << "\n");
2634
2635      // If this was a MorphNodeTo then we're completely done!
2636      if (Opcode == OPC_MorphNodeTo) {
2637        // Update chain and glue uses.
2638        UpdateChainsAndGlue(NodeToMatch, InputChain, ChainNodesMatched,
2639                            InputGlue, GlueResultNodesMatched, true);
2640        return Res;
2641      }
2642
2643      continue;
2644    }
2645
2646    case OPC_MarkGlueResults: {
2647      unsigned NumNodes = MatcherTable[MatcherIndex++];
2648
2649      // Read and remember all the glue-result nodes.
2650      for (unsigned i = 0; i != NumNodes; ++i) {
2651        unsigned RecNo = MatcherTable[MatcherIndex++];
2652        if (RecNo & 128)
2653          RecNo = GetVBR(RecNo, MatcherTable, MatcherIndex);
2654
2655        assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2656        GlueResultNodesMatched.push_back(RecordedNodes[RecNo].first.getNode());
2657      }
2658      continue;
2659    }
2660
2661    case OPC_CompleteMatch: {
2662      // The match has been completed, and any new nodes (if any) have been
2663      // created.  Patch up references to the matched dag to use the newly
2664      // created nodes.
2665      unsigned NumResults = MatcherTable[MatcherIndex++];
2666
2667      for (unsigned i = 0; i != NumResults; ++i) {
2668        unsigned ResSlot = MatcherTable[MatcherIndex++];
2669        if (ResSlot & 128)
2670          ResSlot = GetVBR(ResSlot, MatcherTable, MatcherIndex);
2671
2672        assert(ResSlot < RecordedNodes.size() && "Invalid CheckSame");
2673        SDValue Res = RecordedNodes[ResSlot].first;
2674
2675        assert(i < NodeToMatch->getNumValues() &&
2676               NodeToMatch->getValueType(i) != MVT::Other &&
2677               NodeToMatch->getValueType(i) != MVT::Glue &&
2678               "Invalid number of results to complete!");
2679        assert((NodeToMatch->getValueType(i) == Res.getValueType() ||
2680                NodeToMatch->getValueType(i) == MVT::iPTR ||
2681                Res.getValueType() == MVT::iPTR ||
2682                NodeToMatch->getValueType(i).getSizeInBits() ==
2683                    Res.getValueType().getSizeInBits()) &&
2684               "invalid replacement");
2685        CurDAG->ReplaceAllUsesOfValueWith(SDValue(NodeToMatch, i), Res);
2686      }
2687
2688      // If the root node defines glue, add it to the glue nodes to update list.
2689      if (NodeToMatch->getValueType(NodeToMatch->getNumValues()-1) == MVT::Glue)
2690        GlueResultNodesMatched.push_back(NodeToMatch);
2691
2692      // Update chain and glue uses.
2693      UpdateChainsAndGlue(NodeToMatch, InputChain, ChainNodesMatched,
2694                          InputGlue, GlueResultNodesMatched, false);
2695
2696      assert(NodeToMatch->use_empty() &&
2697             "Didn't replace all uses of the node?");
2698
2699      // FIXME: We just return here, which interacts correctly with SelectRoot
2700      // above.  We should fix this to not return an SDNode* anymore.
2701      return 0;
2702    }
2703    }
2704
2705    // If the code reached this point, then the match failed.  See if there is
2706    // another child to try in the current 'Scope', otherwise pop it until we
2707    // find a case to check.
2708    DEBUG(errs() << "  Match failed at index " << CurrentOpcodeIndex << "\n");
2709    ++NumDAGIselRetries;
2710    while (1) {
2711      if (MatchScopes.empty()) {
2712        CannotYetSelect(NodeToMatch);
2713        return 0;
2714      }
2715
2716      // Restore the interpreter state back to the point where the scope was
2717      // formed.
2718      MatchScope &LastScope = MatchScopes.back();
2719      RecordedNodes.resize(LastScope.NumRecordedNodes);
2720      NodeStack.clear();
2721      NodeStack.append(LastScope.NodeStack.begin(), LastScope.NodeStack.end());
2722      N = NodeStack.back();
2723
2724      if (LastScope.NumMatchedMemRefs != MatchedMemRefs.size())
2725        MatchedMemRefs.resize(LastScope.NumMatchedMemRefs);
2726      MatcherIndex = LastScope.FailIndex;
2727
2728      DEBUG(errs() << "  Continuing at " << MatcherIndex << "\n");
2729
2730      InputChain = LastScope.InputChain;
2731      InputGlue = LastScope.InputGlue;
2732      if (!LastScope.HasChainNodesMatched)
2733        ChainNodesMatched.clear();
2734      if (!LastScope.HasGlueResultNodesMatched)
2735        GlueResultNodesMatched.clear();
2736
2737      // Check to see what the offset is at the new MatcherIndex.  If it is zero
2738      // we have reached the end of this scope, otherwise we have another child
2739      // in the current scope to try.
2740      unsigned NumToSkip = MatcherTable[MatcherIndex++];
2741      if (NumToSkip & 128)
2742        NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex);
2743
2744      // If we have another child in this scope to match, update FailIndex and
2745      // try it.
2746      if (NumToSkip != 0) {
2747        LastScope.FailIndex = MatcherIndex+NumToSkip;
2748        break;
2749      }
2750
2751      // End of this scope, pop it and try the next child in the containing
2752      // scope.
2753      MatchScopes.pop_back();
2754    }
2755  }
2756}
2757
2758
2759
2760void SelectionDAGISel::CannotYetSelect(SDNode *N) {
2761  std::string msg;
2762  raw_string_ostream Msg(msg);
2763  Msg << "Cannot select: ";
2764
2765  if (N->getOpcode() != ISD::INTRINSIC_W_CHAIN &&
2766      N->getOpcode() != ISD::INTRINSIC_WO_CHAIN &&
2767      N->getOpcode() != ISD::INTRINSIC_VOID) {
2768    N->printrFull(Msg, CurDAG);
2769  } else {
2770    bool HasInputChain = N->getOperand(0).getValueType() == MVT::Other;
2771    unsigned iid =
2772      cast<ConstantSDNode>(N->getOperand(HasInputChain))->getZExtValue();
2773    if (iid < Intrinsic::num_intrinsics)
2774      Msg << "intrinsic %" << Intrinsic::getName((Intrinsic::ID)iid);
2775    else if (const TargetIntrinsicInfo *TII = TM.getIntrinsicInfo())
2776      Msg << "target intrinsic %" << TII->getName(iid);
2777    else
2778      Msg << "unknown intrinsic #" << iid;
2779  }
2780  report_fatal_error(Msg.str());
2781}
2782
2783char SelectionDAGISel::ID = 0;
2784