SelectionDAGISel.cpp revision 2d86ea21dd76647cb054fd5d27df9e49efc672b6
1//===-- SelectionDAGISel.cpp - Implement the SelectionDAGISel class -------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAGISel class.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "isel"
15#include "llvm/CodeGen/SelectionDAGISel.h"
16#include "llvm/Constants.h"
17#include "llvm/DerivedTypes.h"
18#include "llvm/Function.h"
19#include "llvm/Instructions.h"
20#include "llvm/Intrinsics.h"
21#include "llvm/CodeGen/MachineFunction.h"
22#include "llvm/CodeGen/MachineFrameInfo.h"
23#include "llvm/CodeGen/MachineInstrBuilder.h"
24#include "llvm/CodeGen/SelectionDAG.h"
25#include "llvm/CodeGen/SSARegMap.h"
26#include "llvm/Target/TargetData.h"
27#include "llvm/Target/TargetFrameInfo.h"
28#include "llvm/Target/TargetInstrInfo.h"
29#include "llvm/Target/TargetLowering.h"
30#include "llvm/Target/TargetMachine.h"
31#include "llvm/Support/CommandLine.h"
32#include "llvm/Support/Debug.h"
33#include <map>
34#include <iostream>
35using namespace llvm;
36
37#ifndef _NDEBUG
38static cl::opt<bool>
39ViewDAGs("view-isel-dags", cl::Hidden,
40         cl::desc("Pop up a window to show isel dags as they are selected"));
41#else
42static const bool ViewDAGS = 0;
43#endif
44
45namespace llvm {
46  //===--------------------------------------------------------------------===//
47  /// FunctionLoweringInfo - This contains information that is global to a
48  /// function that is used when lowering a region of the function.
49  class FunctionLoweringInfo {
50  public:
51    TargetLowering &TLI;
52    Function &Fn;
53    MachineFunction &MF;
54    SSARegMap *RegMap;
55
56    FunctionLoweringInfo(TargetLowering &TLI, Function &Fn,MachineFunction &MF);
57
58    /// MBBMap - A mapping from LLVM basic blocks to their machine code entry.
59    std::map<const BasicBlock*, MachineBasicBlock *> MBBMap;
60
61    /// ValueMap - Since we emit code for the function a basic block at a time,
62    /// we must remember which virtual registers hold the values for
63    /// cross-basic-block values.
64    std::map<const Value*, unsigned> ValueMap;
65
66    /// StaticAllocaMap - Keep track of frame indices for fixed sized allocas in
67    /// the entry block.  This allows the allocas to be efficiently referenced
68    /// anywhere in the function.
69    std::map<const AllocaInst*, int> StaticAllocaMap;
70
71    /// BlockLocalArguments - If any arguments are only used in a single basic
72    /// block, and if the target can access the arguments without side-effects,
73    /// avoid emitting CopyToReg nodes for those arguments.  This map keeps
74    /// track of which arguments are local to each BB.
75    std::multimap<BasicBlock*, std::pair<Argument*,
76                                         unsigned> > BlockLocalArguments;
77
78
79    unsigned MakeReg(MVT::ValueType VT) {
80      return RegMap->createVirtualRegister(TLI.getRegClassFor(VT));
81    }
82
83    unsigned CreateRegForValue(const Value *V) {
84      MVT::ValueType VT = TLI.getValueType(V->getType());
85      // The common case is that we will only create one register for this
86      // value.  If we have that case, create and return the virtual register.
87      unsigned NV = TLI.getNumElements(VT);
88      if (NV == 1) {
89        // If we are promoting this value, pick the next largest supported type.
90        return MakeReg(TLI.getTypeToTransformTo(VT));
91      }
92
93      // If this value is represented with multiple target registers, make sure
94      // to create enough consequtive registers of the right (smaller) type.
95      unsigned NT = VT-1;  // Find the type to use.
96      while (TLI.getNumElements((MVT::ValueType)NT) != 1)
97        --NT;
98
99      unsigned R = MakeReg((MVT::ValueType)NT);
100      for (unsigned i = 1; i != NV; ++i)
101        MakeReg((MVT::ValueType)NT);
102      return R;
103    }
104
105    unsigned InitializeRegForValue(const Value *V) {
106      unsigned &R = ValueMap[V];
107      assert(R == 0 && "Already initialized this value register!");
108      return R = CreateRegForValue(V);
109    }
110  };
111}
112
113/// isUsedOutsideOfDefiningBlock - Return true if this instruction is used by
114/// PHI nodes or outside of the basic block that defines it.
115static bool isUsedOutsideOfDefiningBlock(Instruction *I) {
116  if (isa<PHINode>(I)) return true;
117  BasicBlock *BB = I->getParent();
118  for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E; ++UI)
119    if (cast<Instruction>(*UI)->getParent() != BB || isa<PHINode>(*UI))
120      return true;
121  return false;
122}
123
124FunctionLoweringInfo::FunctionLoweringInfo(TargetLowering &tli,
125                                           Function &fn, MachineFunction &mf)
126    : TLI(tli), Fn(fn), MF(mf), RegMap(MF.getSSARegMap()) {
127
128  // Initialize the mapping of values to registers.  This is only set up for
129  // instruction values that are used outside of the block that defines
130  // them.
131  for (Function::arg_iterator AI = Fn.arg_begin(), E = Fn.arg_end(); AI != E; ++AI)
132    InitializeRegForValue(AI);
133
134  Function::iterator BB = Fn.begin(), E = Fn.end();
135  for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
136    if (AllocaInst *AI = dyn_cast<AllocaInst>(I))
137      if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(AI->getArraySize())) {
138        const Type *Ty = AI->getAllocatedType();
139        uint64_t TySize = TLI.getTargetData().getTypeSize(Ty);
140        unsigned Align = TLI.getTargetData().getTypeAlignment(Ty);
141        TySize *= CUI->getValue();   // Get total allocated size.
142        StaticAllocaMap[AI] =
143          MF.getFrameInfo()->CreateStackObject((unsigned)TySize, Align);
144      }
145
146  for (; BB != E; ++BB)
147    for (BasicBlock::iterator I = BB->begin(), e = BB->end(); I != e; ++I)
148      if (!I->use_empty() && isUsedOutsideOfDefiningBlock(I))
149        if (!isa<AllocaInst>(I) ||
150            !StaticAllocaMap.count(cast<AllocaInst>(I)))
151          InitializeRegForValue(I);
152
153  // Create an initial MachineBasicBlock for each LLVM BasicBlock in F.  This
154  // also creates the initial PHI MachineInstrs, though none of the input
155  // operands are populated.
156  for (Function::iterator BB = Fn.begin(), E = Fn.end(); BB != E; ++BB) {
157    MachineBasicBlock *MBB = new MachineBasicBlock(BB);
158    MBBMap[BB] = MBB;
159    MF.getBasicBlockList().push_back(MBB);
160
161    // Create Machine PHI nodes for LLVM PHI nodes, lowering them as
162    // appropriate.
163    PHINode *PN;
164    for (BasicBlock::iterator I = BB->begin();
165         (PN = dyn_cast<PHINode>(I)); ++I)
166      if (!PN->use_empty()) {
167        unsigned NumElements =
168          TLI.getNumElements(TLI.getValueType(PN->getType()));
169        unsigned PHIReg = ValueMap[PN];
170        assert(PHIReg &&"PHI node does not have an assigned virtual register!");
171        for (unsigned i = 0; i != NumElements; ++i)
172          BuildMI(MBB, TargetInstrInfo::PHI, PN->getNumOperands(), PHIReg+i);
173      }
174  }
175}
176
177
178
179//===----------------------------------------------------------------------===//
180/// SelectionDAGLowering - This is the common target-independent lowering
181/// implementation that is parameterized by a TargetLowering object.
182/// Also, targets can overload any lowering method.
183///
184namespace llvm {
185class SelectionDAGLowering {
186  MachineBasicBlock *CurMBB;
187
188  std::map<const Value*, SDOperand> NodeMap;
189
190  /// PendingLoads - Loads are not emitted to the program immediately.  We bunch
191  /// them up and then emit token factor nodes when possible.  This allows us to
192  /// get simple disambiguation between loads without worrying about alias
193  /// analysis.
194  std::vector<SDOperand> PendingLoads;
195
196public:
197  // TLI - This is information that describes the available target features we
198  // need for lowering.  This indicates when operations are unavailable,
199  // implemented with a libcall, etc.
200  TargetLowering &TLI;
201  SelectionDAG &DAG;
202  const TargetData &TD;
203
204  /// FuncInfo - Information about the function as a whole.
205  ///
206  FunctionLoweringInfo &FuncInfo;
207
208  SelectionDAGLowering(SelectionDAG &dag, TargetLowering &tli,
209                       FunctionLoweringInfo &funcinfo)
210    : TLI(tli), DAG(dag), TD(DAG.getTarget().getTargetData()),
211      FuncInfo(funcinfo) {
212  }
213
214  /// getRoot - Return the current virtual root of the Selection DAG.
215  ///
216  SDOperand getRoot() {
217    if (PendingLoads.empty())
218      return DAG.getRoot();
219
220    if (PendingLoads.size() == 1) {
221      SDOperand Root = PendingLoads[0];
222      DAG.setRoot(Root);
223      PendingLoads.clear();
224      return Root;
225    }
226
227    // Otherwise, we have to make a token factor node.
228    SDOperand Root = DAG.getNode(ISD::TokenFactor, MVT::Other, PendingLoads);
229    PendingLoads.clear();
230    DAG.setRoot(Root);
231    return Root;
232  }
233
234  void visit(Instruction &I) { visit(I.getOpcode(), I); }
235
236  void visit(unsigned Opcode, User &I) {
237    switch (Opcode) {
238    default: assert(0 && "Unknown instruction type encountered!");
239             abort();
240      // Build the switch statement using the Instruction.def file.
241#define HANDLE_INST(NUM, OPCODE, CLASS) \
242    case Instruction::OPCODE:return visit##OPCODE((CLASS&)I);
243#include "llvm/Instruction.def"
244    }
245  }
246
247  void setCurrentBasicBlock(MachineBasicBlock *MBB) { CurMBB = MBB; }
248
249
250  SDOperand getIntPtrConstant(uint64_t Val) {
251    return DAG.getConstant(Val, TLI.getPointerTy());
252  }
253
254  SDOperand getValue(const Value *V) {
255    SDOperand &N = NodeMap[V];
256    if (N.Val) return N;
257
258    MVT::ValueType VT = TLI.getValueType(V->getType());
259    if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(V)))
260      if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
261        visit(CE->getOpcode(), *CE);
262        assert(N.Val && "visit didn't populate the ValueMap!");
263        return N;
264      } else if (GlobalValue *GV = dyn_cast<GlobalValue>(C)) {
265        return N = DAG.getGlobalAddress(GV, VT);
266      } else if (isa<ConstantPointerNull>(C)) {
267        return N = DAG.getConstant(0, TLI.getPointerTy());
268      } else if (isa<UndefValue>(C)) {
269        return N = DAG.getNode(ISD::UNDEF, VT);
270      } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
271        return N = DAG.getConstantFP(CFP->getValue(), VT);
272      } else {
273        // Canonicalize all constant ints to be unsigned.
274        return N = DAG.getConstant(cast<ConstantIntegral>(C)->getRawValue(),VT);
275      }
276
277    if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
278      std::map<const AllocaInst*, int>::iterator SI =
279        FuncInfo.StaticAllocaMap.find(AI);
280      if (SI != FuncInfo.StaticAllocaMap.end())
281        return DAG.getFrameIndex(SI->second, TLI.getPointerTy());
282    }
283
284    std::map<const Value*, unsigned>::const_iterator VMI =
285      FuncInfo.ValueMap.find(V);
286    assert(VMI != FuncInfo.ValueMap.end() && "Value not in map!");
287
288    return N = DAG.getCopyFromReg(VMI->second, VT, DAG.getEntryNode());
289  }
290
291  const SDOperand &setValue(const Value *V, SDOperand NewN) {
292    SDOperand &N = NodeMap[V];
293    assert(N.Val == 0 && "Already set a value for this node!");
294    return N = NewN;
295  }
296
297  // Terminator instructions.
298  void visitRet(ReturnInst &I);
299  void visitBr(BranchInst &I);
300  void visitUnreachable(UnreachableInst &I) { /* noop */ }
301
302  // These all get lowered before this pass.
303  void visitSwitch(SwitchInst &I) { assert(0 && "TODO"); }
304  void visitInvoke(InvokeInst &I) { assert(0 && "TODO"); }
305  void visitUnwind(UnwindInst &I) { assert(0 && "TODO"); }
306
307  //
308  void visitBinary(User &I, unsigned Opcode);
309  void visitAdd(User &I) { visitBinary(I, ISD::ADD); }
310  void visitSub(User &I);
311  void visitMul(User &I) { visitBinary(I, ISD::MUL); }
312  void visitDiv(User &I) {
313    visitBinary(I, I.getType()->isUnsigned() ? ISD::UDIV : ISD::SDIV);
314  }
315  void visitRem(User &I) {
316    visitBinary(I, I.getType()->isUnsigned() ? ISD::UREM : ISD::SREM);
317  }
318  void visitAnd(User &I) { visitBinary(I, ISD::AND); }
319  void visitOr (User &I) { visitBinary(I, ISD::OR); }
320  void visitXor(User &I) { visitBinary(I, ISD::XOR); }
321  void visitShl(User &I) { visitBinary(I, ISD::SHL); }
322  void visitShr(User &I) {
323    visitBinary(I, I.getType()->isUnsigned() ? ISD::SRL : ISD::SRA);
324  }
325
326  void visitSetCC(User &I, ISD::CondCode SignedOpc, ISD::CondCode UnsignedOpc);
327  void visitSetEQ(User &I) { visitSetCC(I, ISD::SETEQ, ISD::SETEQ); }
328  void visitSetNE(User &I) { visitSetCC(I, ISD::SETNE, ISD::SETNE); }
329  void visitSetLE(User &I) { visitSetCC(I, ISD::SETLE, ISD::SETULE); }
330  void visitSetGE(User &I) { visitSetCC(I, ISD::SETGE, ISD::SETUGE); }
331  void visitSetLT(User &I) { visitSetCC(I, ISD::SETLT, ISD::SETULT); }
332  void visitSetGT(User &I) { visitSetCC(I, ISD::SETGT, ISD::SETUGT); }
333
334  void visitGetElementPtr(User &I);
335  void visitCast(User &I);
336  void visitSelect(User &I);
337  //
338
339  void visitMalloc(MallocInst &I);
340  void visitFree(FreeInst &I);
341  void visitAlloca(AllocaInst &I);
342  void visitLoad(LoadInst &I);
343  void visitStore(StoreInst &I);
344  void visitPHI(PHINode &I) { } // PHI nodes are handled specially.
345  void visitCall(CallInst &I);
346
347  void visitVAStart(CallInst &I);
348  void visitVANext(VANextInst &I);
349  void visitVAArg(VAArgInst &I);
350  void visitVAEnd(CallInst &I);
351  void visitVACopy(CallInst &I);
352  void visitFrameReturnAddress(CallInst &I, bool isFrameAddress);
353
354  void visitMemIntrinsic(CallInst &I, unsigned Op);
355
356  void visitUserOp1(Instruction &I) {
357    assert(0 && "UserOp1 should not exist at instruction selection time!");
358    abort();
359  }
360  void visitUserOp2(Instruction &I) {
361    assert(0 && "UserOp2 should not exist at instruction selection time!");
362    abort();
363  }
364};
365} // end namespace llvm
366
367void SelectionDAGLowering::visitRet(ReturnInst &I) {
368  if (I.getNumOperands() == 0) {
369    DAG.setRoot(DAG.getNode(ISD::RET, MVT::Other, getRoot()));
370    return;
371  }
372
373  SDOperand Op1 = getValue(I.getOperand(0));
374  MVT::ValueType TmpVT;
375
376  switch (Op1.getValueType()) {
377  default: assert(0 && "Unknown value type!");
378  case MVT::i1:
379  case MVT::i8:
380  case MVT::i16:
381  case MVT::i32:
382    // If this is a machine where 32-bits is legal or expanded, promote to
383    // 32-bits, otherwise, promote to 64-bits.
384    if (TLI.getTypeAction(MVT::i32) == TargetLowering::Promote)
385      TmpVT = TLI.getTypeToTransformTo(MVT::i32);
386    else
387      TmpVT = MVT::i32;
388
389    // Extend integer types to result type.
390    if (I.getOperand(0)->getType()->isSigned())
391      Op1 = DAG.getNode(ISD::SIGN_EXTEND, TmpVT, Op1);
392    else
393      Op1 = DAG.getNode(ISD::ZERO_EXTEND, TmpVT, Op1);
394    break;
395  case MVT::f32:
396    // Extend float to double.
397    Op1 = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Op1);
398    break;
399  case MVT::i64:
400  case MVT::f64:
401    break; // No extension needed!
402  }
403
404  DAG.setRoot(DAG.getNode(ISD::RET, MVT::Other, getRoot(), Op1));
405}
406
407void SelectionDAGLowering::visitBr(BranchInst &I) {
408  // Update machine-CFG edges.
409  MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
410
411  // Figure out which block is immediately after the current one.
412  MachineBasicBlock *NextBlock = 0;
413  MachineFunction::iterator BBI = CurMBB;
414  if (++BBI != CurMBB->getParent()->end())
415    NextBlock = BBI;
416
417  if (I.isUnconditional()) {
418    // If this is not a fall-through branch, emit the branch.
419    if (Succ0MBB != NextBlock)
420      DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, getRoot(),
421                              DAG.getBasicBlock(Succ0MBB)));
422  } else {
423    MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
424
425    SDOperand Cond = getValue(I.getCondition());
426    if (Succ1MBB == NextBlock) {
427      // If the condition is false, fall through.  This means we should branch
428      // if the condition is true to Succ #0.
429      DAG.setRoot(DAG.getNode(ISD::BRCOND, MVT::Other, getRoot(),
430                              Cond, DAG.getBasicBlock(Succ0MBB)));
431    } else if (Succ0MBB == NextBlock) {
432      // If the condition is true, fall through.  This means we should branch if
433      // the condition is false to Succ #1.  Invert the condition first.
434      SDOperand True = DAG.getConstant(1, Cond.getValueType());
435      Cond = DAG.getNode(ISD::XOR, Cond.getValueType(), Cond, True);
436      DAG.setRoot(DAG.getNode(ISD::BRCOND, MVT::Other, getRoot(),
437                              Cond, DAG.getBasicBlock(Succ1MBB)));
438    } else {
439      std::vector<SDOperand> Ops;
440      Ops.push_back(getRoot());
441      Ops.push_back(Cond);
442      Ops.push_back(DAG.getBasicBlock(Succ0MBB));
443      Ops.push_back(DAG.getBasicBlock(Succ1MBB));
444      DAG.setRoot(DAG.getNode(ISD::BRCONDTWOWAY, MVT::Other, Ops));
445    }
446  }
447}
448
449void SelectionDAGLowering::visitSub(User &I) {
450  // -0.0 - X --> fneg
451  if (ConstantFP *CFP = dyn_cast<ConstantFP>(I.getOperand(0)))
452    if (CFP->isExactlyValue(-0.0)) {
453      SDOperand Op2 = getValue(I.getOperand(1));
454      setValue(&I, DAG.getNode(ISD::FNEG, Op2.getValueType(), Op2));
455      return;
456    }
457
458  visitBinary(I, ISD::SUB);
459}
460
461void SelectionDAGLowering::visitBinary(User &I, unsigned Opcode) {
462  SDOperand Op1 = getValue(I.getOperand(0));
463  SDOperand Op2 = getValue(I.getOperand(1));
464
465  if (isa<ShiftInst>(I))
466    Op2 = DAG.getNode(ISD::ZERO_EXTEND, TLI.getShiftAmountTy(), Op2);
467
468  setValue(&I, DAG.getNode(Opcode, Op1.getValueType(), Op1, Op2));
469}
470
471void SelectionDAGLowering::visitSetCC(User &I,ISD::CondCode SignedOpcode,
472                                      ISD::CondCode UnsignedOpcode) {
473  SDOperand Op1 = getValue(I.getOperand(0));
474  SDOperand Op2 = getValue(I.getOperand(1));
475  ISD::CondCode Opcode = SignedOpcode;
476  if (I.getOperand(0)->getType()->isUnsigned())
477    Opcode = UnsignedOpcode;
478  setValue(&I, DAG.getSetCC(Opcode, MVT::i1, Op1, Op2));
479}
480
481void SelectionDAGLowering::visitSelect(User &I) {
482  SDOperand Cond     = getValue(I.getOperand(0));
483  SDOperand TrueVal  = getValue(I.getOperand(1));
484  SDOperand FalseVal = getValue(I.getOperand(2));
485  setValue(&I, DAG.getNode(ISD::SELECT, TrueVal.getValueType(), Cond,
486                           TrueVal, FalseVal));
487}
488
489void SelectionDAGLowering::visitCast(User &I) {
490  SDOperand N = getValue(I.getOperand(0));
491  MVT::ValueType SrcTy = TLI.getValueType(I.getOperand(0)->getType());
492  MVT::ValueType DestTy = TLI.getValueType(I.getType());
493
494  if (N.getValueType() == DestTy) {
495    setValue(&I, N);  // noop cast.
496  } else if (isInteger(SrcTy)) {
497    if (isInteger(DestTy)) {        // Int -> Int cast
498      if (DestTy < SrcTy)   // Truncating cast?
499        setValue(&I, DAG.getNode(ISD::TRUNCATE, DestTy, N));
500      else if (I.getOperand(0)->getType()->isSigned())
501        setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, DestTy, N));
502      else
503        setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, DestTy, N));
504    } else {                        // Int -> FP cast
505      if (I.getOperand(0)->getType()->isSigned())
506        setValue(&I, DAG.getNode(ISD::SINT_TO_FP, DestTy, N));
507      else
508        setValue(&I, DAG.getNode(ISD::UINT_TO_FP, DestTy, N));
509    }
510  } else {
511    assert(isFloatingPoint(SrcTy) && "Unknown value type!");
512    if (isFloatingPoint(DestTy)) {  // FP -> FP cast
513      if (DestTy < SrcTy)   // Rounding cast?
514        setValue(&I, DAG.getNode(ISD::FP_ROUND, DestTy, N));
515      else
516        setValue(&I, DAG.getNode(ISD::FP_EXTEND, DestTy, N));
517    } else {                        // FP -> Int cast.
518      if (I.getType()->isSigned())
519        setValue(&I, DAG.getNode(ISD::FP_TO_SINT, DestTy, N));
520      else
521        setValue(&I, DAG.getNode(ISD::FP_TO_UINT, DestTy, N));
522    }
523  }
524}
525
526void SelectionDAGLowering::visitGetElementPtr(User &I) {
527  SDOperand N = getValue(I.getOperand(0));
528  const Type *Ty = I.getOperand(0)->getType();
529  const Type *UIntPtrTy = TD.getIntPtrType();
530
531  for (GetElementPtrInst::op_iterator OI = I.op_begin()+1, E = I.op_end();
532       OI != E; ++OI) {
533    Value *Idx = *OI;
534    if (const StructType *StTy = dyn_cast<StructType> (Ty)) {
535      unsigned Field = cast<ConstantUInt>(Idx)->getValue();
536      if (Field) {
537        // N = N + Offset
538        uint64_t Offset = TD.getStructLayout(StTy)->MemberOffsets[Field];
539        N = DAG.getNode(ISD::ADD, N.getValueType(), N,
540                        getIntPtrConstant(Offset));
541      }
542      Ty = StTy->getElementType(Field);
543    } else {
544      Ty = cast<SequentialType>(Ty)->getElementType();
545      if (!isa<Constant>(Idx) || !cast<Constant>(Idx)->isNullValue()) {
546        // N = N + Idx * ElementSize;
547        uint64_t ElementSize = TD.getTypeSize(Ty);
548        SDOperand IdxN = getValue(Idx), Scale = getIntPtrConstant(ElementSize);
549
550        // If the index is smaller or larger than intptr_t, truncate or extend
551        // it.
552        if (IdxN.getValueType() < Scale.getValueType()) {
553          if (Idx->getType()->isSigned())
554            IdxN = DAG.getNode(ISD::SIGN_EXTEND, Scale.getValueType(), IdxN);
555          else
556            IdxN = DAG.getNode(ISD::ZERO_EXTEND, Scale.getValueType(), IdxN);
557        } else if (IdxN.getValueType() > Scale.getValueType())
558          IdxN = DAG.getNode(ISD::TRUNCATE, Scale.getValueType(), IdxN);
559
560        IdxN = DAG.getNode(ISD::MUL, N.getValueType(), IdxN, Scale);
561        N = DAG.getNode(ISD::ADD, N.getValueType(), N, IdxN);
562      }
563    }
564  }
565  setValue(&I, N);
566}
567
568void SelectionDAGLowering::visitAlloca(AllocaInst &I) {
569  // If this is a fixed sized alloca in the entry block of the function,
570  // allocate it statically on the stack.
571  if (FuncInfo.StaticAllocaMap.count(&I))
572    return;   // getValue will auto-populate this.
573
574  const Type *Ty = I.getAllocatedType();
575  uint64_t TySize = TLI.getTargetData().getTypeSize(Ty);
576  unsigned Align = TLI.getTargetData().getTypeAlignment(Ty);
577
578  SDOperand AllocSize = getValue(I.getArraySize());
579  MVT::ValueType IntPtr = TLI.getPointerTy();
580  if (IntPtr < AllocSize.getValueType())
581    AllocSize = DAG.getNode(ISD::TRUNCATE, IntPtr, AllocSize);
582  else if (IntPtr > AllocSize.getValueType())
583    AllocSize = DAG.getNode(ISD::ZERO_EXTEND, IntPtr, AllocSize);
584
585  AllocSize = DAG.getNode(ISD::MUL, IntPtr, AllocSize,
586                          getIntPtrConstant(TySize));
587
588  // Handle alignment.  If the requested alignment is less than or equal to the
589  // stack alignment, ignore it and round the size of the allocation up to the
590  // stack alignment size.  If the size is greater than the stack alignment, we
591  // note this in the DYNAMIC_STACKALLOC node.
592  unsigned StackAlign =
593    TLI.getTargetMachine().getFrameInfo()->getStackAlignment();
594  if (Align <= StackAlign) {
595    Align = 0;
596    // Add SA-1 to the size.
597    AllocSize = DAG.getNode(ISD::ADD, AllocSize.getValueType(), AllocSize,
598                            getIntPtrConstant(StackAlign-1));
599    // Mask out the low bits for alignment purposes.
600    AllocSize = DAG.getNode(ISD::AND, AllocSize.getValueType(), AllocSize,
601                            getIntPtrConstant(~(uint64_t)(StackAlign-1)));
602  }
603
604  SDOperand DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, AllocSize.getValueType(),
605                              getRoot(), AllocSize,
606                              getIntPtrConstant(Align));
607  DAG.setRoot(setValue(&I, DSA).getValue(1));
608
609  // Inform the Frame Information that we have just allocated a variable-sized
610  // object.
611  CurMBB->getParent()->getFrameInfo()->CreateVariableSizedObject();
612}
613
614
615void SelectionDAGLowering::visitLoad(LoadInst &I) {
616  SDOperand Ptr = getValue(I.getOperand(0));
617
618  SDOperand Root;
619  if (I.isVolatile())
620    Root = getRoot();
621  else {
622    // Do not serialize non-volatile loads against each other.
623    Root = DAG.getRoot();
624  }
625
626  SDOperand L = DAG.getLoad(TLI.getValueType(I.getType()), Root, Ptr, DAG.getSrcValue(&I));
627  setValue(&I, L);
628
629  if (I.isVolatile())
630    DAG.setRoot(L.getValue(1));
631  else
632    PendingLoads.push_back(L.getValue(1));
633}
634
635
636void SelectionDAGLowering::visitStore(StoreInst &I) {
637  Value *SrcV = I.getOperand(0);
638  SDOperand Src = getValue(SrcV);
639  SDOperand Ptr = getValue(I.getOperand(1));
640  //  DAG.setRoot(DAG.getNode(ISD::STORE, MVT::Other, getRoot(), Src, Ptr));
641  DAG.setRoot(DAG.getNode(ISD::STORE, MVT::Other, getRoot(), Src, Ptr, DAG.getSrcValue(&I)));
642}
643
644void SelectionDAGLowering::visitCall(CallInst &I) {
645  const char *RenameFn = 0;
646  if (Function *F = I.getCalledFunction())
647    if (F->isExternal())
648      switch (F->getIntrinsicID()) {
649      case 0:     // Not an LLVM intrinsic.
650        if (F->getName() == "fabs" || F->getName() == "fabsf") {
651          if (I.getNumOperands() == 2 &&   // Basic sanity checks.
652              I.getOperand(1)->getType()->isFloatingPoint() &&
653              I.getType() == I.getOperand(1)->getType()) {
654            SDOperand Tmp = getValue(I.getOperand(1));
655            setValue(&I, DAG.getNode(ISD::FABS, Tmp.getValueType(), Tmp));
656            return;
657          }
658        }
659        break;
660      case Intrinsic::vastart:  visitVAStart(I); return;
661      case Intrinsic::vaend:    visitVAEnd(I); return;
662      case Intrinsic::vacopy:   visitVACopy(I); return;
663      case Intrinsic::returnaddress: visitFrameReturnAddress(I, false); return;
664      case Intrinsic::frameaddress:  visitFrameReturnAddress(I, true); return;
665      default:
666        // FIXME: IMPLEMENT THESE.
667        // readport, writeport, readio, writeio
668        assert(0 && "This intrinsic is not implemented yet!");
669        return;
670      case Intrinsic::setjmp:  RenameFn = "setjmp"; break;
671      case Intrinsic::longjmp: RenameFn = "longjmp"; break;
672      case Intrinsic::memcpy:  visitMemIntrinsic(I, ISD::MEMCPY); return;
673      case Intrinsic::memset:  visitMemIntrinsic(I, ISD::MEMSET); return;
674      case Intrinsic::memmove: visitMemIntrinsic(I, ISD::MEMMOVE); return;
675
676      case Intrinsic::isunordered:
677        setValue(&I, DAG.getSetCC(ISD::SETUO, MVT::i1,getValue(I.getOperand(1)),
678                                  getValue(I.getOperand(2))));
679        return;
680      case Intrinsic::pcmarker: {
681        SDOperand Num = getValue(I.getOperand(1));
682        DAG.setRoot(DAG.getNode(ISD::PCMARKER, MVT::Other, getRoot(), Num));
683        return;
684      }
685      }
686
687  SDOperand Callee;
688  if (!RenameFn)
689    Callee = getValue(I.getOperand(0));
690  else
691    Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy());
692  std::vector<std::pair<SDOperand, const Type*> > Args;
693
694  for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) {
695    Value *Arg = I.getOperand(i);
696    SDOperand ArgNode = getValue(Arg);
697    Args.push_back(std::make_pair(ArgNode, Arg->getType()));
698  }
699
700  const PointerType *PT = cast<PointerType>(I.getCalledValue()->getType());
701  const FunctionType *FTy = cast<FunctionType>(PT->getElementType());
702
703  std::pair<SDOperand,SDOperand> Result =
704    TLI.LowerCallTo(getRoot(), I.getType(), FTy->isVarArg(), Callee, Args, DAG);
705  if (I.getType() != Type::VoidTy)
706    setValue(&I, Result.first);
707  DAG.setRoot(Result.second);
708}
709
710void SelectionDAGLowering::visitMalloc(MallocInst &I) {
711  SDOperand Src = getValue(I.getOperand(0));
712
713  MVT::ValueType IntPtr = TLI.getPointerTy();
714
715  if (IntPtr < Src.getValueType())
716    Src = DAG.getNode(ISD::TRUNCATE, IntPtr, Src);
717  else if (IntPtr > Src.getValueType())
718    Src = DAG.getNode(ISD::ZERO_EXTEND, IntPtr, Src);
719
720  // Scale the source by the type size.
721  uint64_t ElementSize = TD.getTypeSize(I.getType()->getElementType());
722  Src = DAG.getNode(ISD::MUL, Src.getValueType(),
723                    Src, getIntPtrConstant(ElementSize));
724
725  std::vector<std::pair<SDOperand, const Type*> > Args;
726  Args.push_back(std::make_pair(Src, TLI.getTargetData().getIntPtrType()));
727
728  std::pair<SDOperand,SDOperand> Result =
729    TLI.LowerCallTo(getRoot(), I.getType(), false,
730                    DAG.getExternalSymbol("malloc", IntPtr),
731                    Args, DAG);
732  setValue(&I, Result.first);  // Pointers always fit in registers
733  DAG.setRoot(Result.second);
734}
735
736void SelectionDAGLowering::visitFree(FreeInst &I) {
737  std::vector<std::pair<SDOperand, const Type*> > Args;
738  Args.push_back(std::make_pair(getValue(I.getOperand(0)),
739                                TLI.getTargetData().getIntPtrType()));
740  MVT::ValueType IntPtr = TLI.getPointerTy();
741  std::pair<SDOperand,SDOperand> Result =
742    TLI.LowerCallTo(getRoot(), Type::VoidTy, false,
743                    DAG.getExternalSymbol("free", IntPtr), Args, DAG);
744  DAG.setRoot(Result.second);
745}
746
747std::pair<SDOperand, SDOperand>
748TargetLowering::LowerVAStart(SDOperand Chain, SelectionDAG &DAG) {
749  // We have no sane default behavior, just emit a useful error message and bail
750  // out.
751  std::cerr << "Variable arguments handling not implemented on this target!\n";
752  abort();
753  return std::make_pair(SDOperand(), SDOperand());
754}
755
756SDOperand TargetLowering::LowerVAEnd(SDOperand Chain, SDOperand L,
757                                     SelectionDAG &DAG) {
758  // Default to a noop.
759  return Chain;
760}
761
762std::pair<SDOperand,SDOperand>
763TargetLowering::LowerVACopy(SDOperand Chain, SDOperand L, SelectionDAG &DAG) {
764  // Default to returning the input list.
765  return std::make_pair(L, Chain);
766}
767
768std::pair<SDOperand,SDOperand>
769TargetLowering::LowerVAArgNext(bool isVANext, SDOperand Chain, SDOperand VAList,
770                               const Type *ArgTy, SelectionDAG &DAG) {
771  // We have no sane default behavior, just emit a useful error message and bail
772  // out.
773  std::cerr << "Variable arguments handling not implemented on this target!\n";
774  abort();
775  return std::make_pair(SDOperand(), SDOperand());
776}
777
778
779void SelectionDAGLowering::visitVAStart(CallInst &I) {
780  std::pair<SDOperand,SDOperand> Result = TLI.LowerVAStart(getRoot(), DAG);
781  setValue(&I, Result.first);
782  DAG.setRoot(Result.second);
783}
784
785void SelectionDAGLowering::visitVAArg(VAArgInst &I) {
786  std::pair<SDOperand,SDOperand> Result =
787    TLI.LowerVAArgNext(false, getRoot(), getValue(I.getOperand(0)),
788                       I.getType(), DAG);
789  setValue(&I, Result.first);
790  DAG.setRoot(Result.second);
791}
792
793void SelectionDAGLowering::visitVANext(VANextInst &I) {
794  std::pair<SDOperand,SDOperand> Result =
795    TLI.LowerVAArgNext(true, getRoot(), getValue(I.getOperand(0)),
796                       I.getArgType(), DAG);
797  setValue(&I, Result.first);
798  DAG.setRoot(Result.second);
799}
800
801void SelectionDAGLowering::visitVAEnd(CallInst &I) {
802  DAG.setRoot(TLI.LowerVAEnd(getRoot(), getValue(I.getOperand(1)), DAG));
803}
804
805void SelectionDAGLowering::visitVACopy(CallInst &I) {
806  std::pair<SDOperand,SDOperand> Result =
807    TLI.LowerVACopy(getRoot(), getValue(I.getOperand(1)), DAG);
808  setValue(&I, Result.first);
809  DAG.setRoot(Result.second);
810}
811
812
813// It is always conservatively correct for llvm.returnaddress and
814// llvm.frameaddress to return 0.
815std::pair<SDOperand, SDOperand>
816TargetLowering::LowerFrameReturnAddress(bool isFrameAddr, SDOperand Chain,
817                                        unsigned Depth, SelectionDAG &DAG) {
818  return std::make_pair(DAG.getConstant(0, getPointerTy()), Chain);
819}
820
821SDOperand TargetLowering::LowerOperation(SDOperand Op) {
822  assert(0 && "LowerOperation not implemented for this target!");
823  abort();
824  return SDOperand();
825}
826
827void SelectionDAGLowering::visitFrameReturnAddress(CallInst &I, bool isFrame) {
828  unsigned Depth = (unsigned)cast<ConstantUInt>(I.getOperand(1))->getValue();
829  std::pair<SDOperand,SDOperand> Result =
830    TLI.LowerFrameReturnAddress(isFrame, getRoot(), Depth, DAG);
831  setValue(&I, Result.first);
832  DAG.setRoot(Result.second);
833}
834
835void SelectionDAGLowering::visitMemIntrinsic(CallInst &I, unsigned Op) {
836  std::vector<SDOperand> Ops;
837  Ops.push_back(getRoot());
838  Ops.push_back(getValue(I.getOperand(1)));
839  Ops.push_back(getValue(I.getOperand(2)));
840  Ops.push_back(getValue(I.getOperand(3)));
841  Ops.push_back(getValue(I.getOperand(4)));
842  DAG.setRoot(DAG.getNode(Op, MVT::Other, Ops));
843}
844
845//===----------------------------------------------------------------------===//
846// SelectionDAGISel code
847//===----------------------------------------------------------------------===//
848
849unsigned SelectionDAGISel::MakeReg(MVT::ValueType VT) {
850  return RegMap->createVirtualRegister(TLI.getRegClassFor(VT));
851}
852
853
854
855bool SelectionDAGISel::runOnFunction(Function &Fn) {
856  MachineFunction &MF = MachineFunction::construct(&Fn, TLI.getTargetMachine());
857  RegMap = MF.getSSARegMap();
858  DEBUG(std::cerr << "\n\n\n=== " << Fn.getName() << "\n");
859
860  FunctionLoweringInfo FuncInfo(TLI, Fn, MF);
861
862  for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
863    SelectBasicBlock(I, MF, FuncInfo);
864
865  return true;
866}
867
868
869SDOperand SelectionDAGISel::
870CopyValueToVirtualRegister(SelectionDAGLowering &SDL, Value *V, unsigned Reg) {
871  SelectionDAG &DAG = SDL.DAG;
872  SDOperand Op = SDL.getValue(V);
873  assert((Op.getOpcode() != ISD::CopyFromReg ||
874          cast<RegSDNode>(Op)->getReg() != Reg) &&
875         "Copy from a reg to the same reg!");
876  return DAG.getCopyToReg(SDL.getRoot(), Op, Reg);
877}
878
879/// IsOnlyUsedInOneBasicBlock - If the specified argument is only used in a
880/// single basic block, return that block.  Otherwise, return a null pointer.
881static BasicBlock *IsOnlyUsedInOneBasicBlock(Argument *A) {
882  if (A->use_empty()) return 0;
883  BasicBlock *BB = cast<Instruction>(A->use_back())->getParent();
884  for (Argument::use_iterator UI = A->use_begin(), E = A->use_end(); UI != E;
885       ++UI)
886    if (isa<PHINode>(*UI) || cast<Instruction>(*UI)->getParent() != BB)
887      return 0;  // Disagreement among the users?
888
889  // Okay, there is a single BB user.  Only permit this optimization if this is
890  // the entry block, otherwise, we might sink argument loads into loops and
891  // stuff.  Later, when we have global instruction selection, this won't be an
892  // issue clearly.
893  if (BB == BB->getParent()->begin())
894    return BB;
895  return 0;
896}
897
898void SelectionDAGISel::
899LowerArguments(BasicBlock *BB, SelectionDAGLowering &SDL,
900               std::vector<SDOperand> &UnorderedChains) {
901  // If this is the entry block, emit arguments.
902  Function &F = *BB->getParent();
903  FunctionLoweringInfo &FuncInfo = SDL.FuncInfo;
904
905  if (BB == &F.front()) {
906    SDOperand OldRoot = SDL.DAG.getRoot();
907
908    std::vector<SDOperand> Args = TLI.LowerArguments(F, SDL.DAG);
909
910    // If there were side effects accessing the argument list, do not do
911    // anything special.
912    if (OldRoot != SDL.DAG.getRoot()) {
913      unsigned a = 0;
914      for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end();
915           AI != E; ++AI,++a)
916        if (!AI->use_empty()) {
917          SDL.setValue(AI, Args[a]);
918          SDOperand Copy =
919            CopyValueToVirtualRegister(SDL, AI, FuncInfo.ValueMap[AI]);
920          UnorderedChains.push_back(Copy);
921        }
922    } else {
923      // Otherwise, if any argument is only accessed in a single basic block,
924      // emit that argument only to that basic block.
925      unsigned a = 0;
926      for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end();
927           AI != E; ++AI,++a)
928        if (!AI->use_empty()) {
929          if (BasicBlock *BBU = IsOnlyUsedInOneBasicBlock(AI)) {
930            FuncInfo.BlockLocalArguments.insert(std::make_pair(BBU,
931                                                      std::make_pair(AI, a)));
932          } else {
933            SDL.setValue(AI, Args[a]);
934            SDOperand Copy =
935              CopyValueToVirtualRegister(SDL, AI, FuncInfo.ValueMap[AI]);
936            UnorderedChains.push_back(Copy);
937          }
938        }
939    }
940  }
941
942  // See if there are any block-local arguments that need to be emitted in this
943  // block.
944
945  if (!FuncInfo.BlockLocalArguments.empty()) {
946    std::multimap<BasicBlock*, std::pair<Argument*, unsigned> >::iterator BLAI =
947      FuncInfo.BlockLocalArguments.lower_bound(BB);
948    if (BLAI != FuncInfo.BlockLocalArguments.end() && BLAI->first == BB) {
949      // Lower the arguments into this block.
950      std::vector<SDOperand> Args = TLI.LowerArguments(F, SDL.DAG);
951
952      // Set up the value mapping for the local arguments.
953      for (; BLAI != FuncInfo.BlockLocalArguments.end() && BLAI->first == BB;
954           ++BLAI)
955        SDL.setValue(BLAI->second.first, Args[BLAI->second.second]);
956
957      // Any dead arguments will just be ignored here.
958    }
959  }
960}
961
962
963void SelectionDAGISel::BuildSelectionDAG(SelectionDAG &DAG, BasicBlock *LLVMBB,
964       std::vector<std::pair<MachineInstr*, unsigned> > &PHINodesToUpdate,
965                                    FunctionLoweringInfo &FuncInfo) {
966  SelectionDAGLowering SDL(DAG, TLI, FuncInfo);
967
968  std::vector<SDOperand> UnorderedChains;
969
970  // Lower any arguments needed in this block.
971  LowerArguments(LLVMBB, SDL, UnorderedChains);
972
973  BB = FuncInfo.MBBMap[LLVMBB];
974  SDL.setCurrentBasicBlock(BB);
975
976  // Lower all of the non-terminator instructions.
977  for (BasicBlock::iterator I = LLVMBB->begin(), E = --LLVMBB->end();
978       I != E; ++I)
979    SDL.visit(*I);
980
981  // Ensure that all instructions which are used outside of their defining
982  // blocks are available as virtual registers.
983  for (BasicBlock::iterator I = LLVMBB->begin(), E = LLVMBB->end(); I != E;++I)
984    if (!I->use_empty() && !isa<PHINode>(I)) {
985      std::map<const Value*, unsigned>::iterator VMI =FuncInfo.ValueMap.find(I);
986      if (VMI != FuncInfo.ValueMap.end())
987        UnorderedChains.push_back(
988                           CopyValueToVirtualRegister(SDL, I, VMI->second));
989    }
990
991  // Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
992  // ensure constants are generated when needed.  Remember the virtual registers
993  // that need to be added to the Machine PHI nodes as input.  We cannot just
994  // directly add them, because expansion might result in multiple MBB's for one
995  // BB.  As such, the start of the BB might correspond to a different MBB than
996  // the end.
997  //
998
999  // Emit constants only once even if used by multiple PHI nodes.
1000  std::map<Constant*, unsigned> ConstantsOut;
1001
1002  // Check successor nodes PHI nodes that expect a constant to be available from
1003  // this block.
1004  TerminatorInst *TI = LLVMBB->getTerminator();
1005  for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
1006    BasicBlock *SuccBB = TI->getSuccessor(succ);
1007    MachineBasicBlock::iterator MBBI = FuncInfo.MBBMap[SuccBB]->begin();
1008    PHINode *PN;
1009
1010    // At this point we know that there is a 1-1 correspondence between LLVM PHI
1011    // nodes and Machine PHI nodes, but the incoming operands have not been
1012    // emitted yet.
1013    for (BasicBlock::iterator I = SuccBB->begin();
1014         (PN = dyn_cast<PHINode>(I)); ++I)
1015      if (!PN->use_empty()) {
1016        unsigned Reg;
1017        Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
1018        if (Constant *C = dyn_cast<Constant>(PHIOp)) {
1019          unsigned &RegOut = ConstantsOut[C];
1020          if (RegOut == 0) {
1021            RegOut = FuncInfo.CreateRegForValue(C);
1022            UnorderedChains.push_back(
1023                             CopyValueToVirtualRegister(SDL, C, RegOut));
1024          }
1025          Reg = RegOut;
1026        } else {
1027          Reg = FuncInfo.ValueMap[PHIOp];
1028          if (Reg == 0) {
1029            assert(isa<AllocaInst>(PHIOp) &&
1030                   FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
1031                   "Didn't codegen value into a register!??");
1032            Reg = FuncInfo.CreateRegForValue(PHIOp);
1033            UnorderedChains.push_back(
1034                             CopyValueToVirtualRegister(SDL, PHIOp, Reg));
1035          }
1036        }
1037
1038        // Remember that this register needs to added to the machine PHI node as
1039        // the input for this MBB.
1040        unsigned NumElements =
1041          TLI.getNumElements(TLI.getValueType(PN->getType()));
1042        for (unsigned i = 0, e = NumElements; i != e; ++i)
1043          PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i));
1044      }
1045  }
1046  ConstantsOut.clear();
1047
1048  // Turn all of the unordered chains into one factored node.
1049  if (!UnorderedChains.empty()) {
1050    UnorderedChains.push_back(SDL.getRoot());
1051    DAG.setRoot(DAG.getNode(ISD::TokenFactor, MVT::Other, UnorderedChains));
1052  }
1053
1054  // Lower the terminator after the copies are emitted.
1055  SDL.visit(*LLVMBB->getTerminator());
1056
1057  // Make sure the root of the DAG is up-to-date.
1058  DAG.setRoot(SDL.getRoot());
1059}
1060
1061void SelectionDAGISel::SelectBasicBlock(BasicBlock *LLVMBB, MachineFunction &MF,
1062                                        FunctionLoweringInfo &FuncInfo) {
1063  SelectionDAG DAG(TLI, MF);
1064  CurDAG = &DAG;
1065  std::vector<std::pair<MachineInstr*, unsigned> > PHINodesToUpdate;
1066
1067  // First step, lower LLVM code to some DAG.  This DAG may use operations and
1068  // types that are not supported by the target.
1069  BuildSelectionDAG(DAG, LLVMBB, PHINodesToUpdate, FuncInfo);
1070
1071  DEBUG(std::cerr << "Lowered selection DAG:\n");
1072  DEBUG(DAG.dump());
1073
1074  // Second step, hack on the DAG until it only uses operations and types that
1075  // the target supports.
1076  DAG.Legalize();
1077
1078  DEBUG(std::cerr << "Legalized selection DAG:\n");
1079  DEBUG(DAG.dump());
1080
1081  // Third, instruction select all of the operations to machine code, adding the
1082  // code to the MachineBasicBlock.
1083  InstructionSelectBasicBlock(DAG);
1084
1085  if (ViewDAGs) DAG.viewGraph();
1086
1087  DEBUG(std::cerr << "Selected machine code:\n");
1088  DEBUG(BB->dump());
1089
1090  // Next, now that we know what the last MBB the LLVM BB expanded is, update
1091  // PHI nodes in successors.
1092  for (unsigned i = 0, e = PHINodesToUpdate.size(); i != e; ++i) {
1093    MachineInstr *PHI = PHINodesToUpdate[i].first;
1094    assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
1095           "This is not a machine PHI node that we are updating!");
1096    PHI->addRegOperand(PHINodesToUpdate[i].second);
1097    PHI->addMachineBasicBlockOperand(BB);
1098  }
1099
1100  // Finally, add the CFG edges from the last selected MBB to the successor
1101  // MBBs.
1102  TerminatorInst *TI = LLVMBB->getTerminator();
1103  for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) {
1104    MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[TI->getSuccessor(i)];
1105    BB->addSuccessor(Succ0MBB);
1106  }
1107}
1108